AN INVESTIGATION OF THE THERMAL STRUCTURE IN THE VICINITY OF IPOD SITES 417 and 418

by

DANIEL ALLEN GALSON

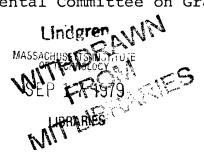
B.S. Massachusetts Institute of Technology (1979)

SUBMITTED IN

PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE


at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August, 1979

1

Accepted by..... Chairman, Departmental Committee on Graduate Students

AN INVESTIGATION OF THE THERMAL STRUCTURE IN THE VICINITY OF IPOD SITES 417 AND 418

by

Daniel Allen Galson

Submitted to the Department of Earth and Planetary Sciences on August 17, 1979 in partial fulfillment of the requirements for the degree of Master of Science

ABSTRACT

We have obtained a suite of 53 closely spaced acoustically navigated heat flow measurements on well sedimented 110 Ma crust in the northwest Atlantic Ocean $(25^{\circ}N, 68^{\circ}W; 950$ kms south of Bermuda). Their mean and standard deviation are 1.17 HFU (49.0 mW/m²) and .08 (3.3), respectively. The temperature gradients increased asymptotically with depth in a remarkably consistent fashion; a 10% perturbation in gradient was seen at a depth of 1 m in the sediment column. This perturbation was less than a few percent at a depth of 2 m in the sediment column. These observations can be explained by either a step increase in water temperature of a few hundredths of a degree at the sediment interface 1 month prior to the measurements or by an oscillatory temperature change at the sediment interface with a maximum amplitude of a few hundredths of a degree and a 1 month period. The mean, based on the asymptotic temperature gradient, is close to the 1.18 HFU (49.4 mW/m²) predicted by lithospheric cooling models that incorporate an exponential decrease in heat flow with increasing age for the older oceanic basins (i.e. plate models). The average basement depth (corrected for sediment loading), of the 10 by 20 km IPOD (International Phase of Ocean Drilling) survey area is within 135 m of that predicted by these same cooling models, well within the predicted scatter of the depth-age relationship. Hence, it appears that the thermal anomaly which caused the formation of the Bermuda Rise may not currently be significantly affecting the shallow thermal structure of the lithosphere 950 kms south of the island.

The heat flow measuremen+s were made with a new digitally recording instrument, the operating characteristics and limits of which we discuss. The instrument has a maximum temperature sensitivity of .00017 $^{\circ}$ C and a maximum depth (pressure) sensitivity of .06 m. Generally, the temperature resolution was not better than ±.0005 $^{\circ}$ C due to either cable leakage or electronic path effects (instrument noise).

Thesis Supervisor: R.P. Von Herzen

Title: Senior Scientist, Woods Hole Oceanographic Institution

-3-

ACKNOWLEDGEMENTS

I am grateful to my thesis advisor, Dick Von Herzen for his understanding, patience and helpful advice. I am thankful to John Sclater for providing me with financial support for much of the time I spent working on this thesis, for initially encouraging me into the discipline of observational heat flow, and for much beneficial advice in my three years as an undergraduate and a graduate student at MIT.

I would like to acknowledge John Crowe and Ken Green who were always willing to answer questions and provide criticism. Ken Green also did some of the initial data processing. Lawrence Hobbie was responsible for obtaining all of the thermal conductivity measurements, for many grammatical improvements in the final version of the text, and for drafting the final version of some of the figures. Jim Akens was responsible for running the heat flow program during the cruise.

Finally, I am grateful to Dorothy Frank and Laura Willard who each typed part of the final draft of the text, and to Jamie MacEachern who typed the final version of all of the tables.

A special acknowledgement must go to my family, who provided me with endless amounts of much needed encouragement, warmth and advice.

-4-

TABLE OF CONTENTS

.

page
ABSTRACT
ACKNOWLEDGEMENTS 4
LIST OF FIGURES
LIST OF TABLES
I. INTRODUCTION 11
II. INSTRUMENTATION AND METHODS 17
Navigation 17
Thermal Gradient Measurements
Thermal Conductivity Measurements
III. DATA REDUCTION 35
Introduction 35
Steps 1,2,3 and 4. A Brief Preview
Step 5. Conversion of Temperature Data to Heat Flow Values - Error Analysis
Equilibrium Temperature Determinations 36
Piston Core Heat Flow
Pogo Probe Heat Flow
Step 6. Locating the Heat Flow Stations 62
Step 7. Conversion of Digital Pressure Data to Actual Depths 80
IV. DISCUSSION AND INTERPRETATION OF THE THERMAL DATA
BIBLIOGRAPHY114

-

page APPENDICES117
Appendix A. Step 1 - Cassette Tape to 9-Track Tape118
Appendix B. Step 2 - Segmentation of the Digital Data127
Appendix C. Step 3 - Plotting of the Digital Data
Appendix D. Step 4 - Conversion of Digital Thermistor Data to Temperature Data140
Appendix E. Conversion of Pogo Probe Temperature Data to Temperature Gradients148

.

.

.

.

LIST OF FIGURES

1.	Index Map of the Western Atlantic Basin Showing Locations of Deep Sea Drilling Program Sites	ige 12
2.	Bathymetry and Heat Flow Map of the Survey Area	14
3.	Ship Tracks Along Which Depth Data Was Gathered For the Construction of a Bathymetry Map	16
4.	Ship-Relay Transponder-Heat Flow Probe Configuration	18
5.	Two Views of the DHF2	20
6.	Thermistor Resistance (R _x) to Voltage Conversion Via A Wheatstone Bridge Circuit	21
7a.	Simplified Block Diagram of the Operation of the DHF2	24
7b.	Expanded Block Diagram of the Operation of the DHF2.	24
8.	Thermal Conductivity Equilibrium Extrapolations From Piston Core 1	31
9.	Temperature and Thermal Conductivity Versus Depth For the Five Piston Core Stations	46
10.	Some Representative Pogo Probe Temperature Versus Depth Plots - Station 7	47
11.	Geometry Used to Determine Ship/Fish Separation For Stations With No Fish Navigation	68
12.	Ship and Fish Tracks During Heat Flow Stations	70
13.	Geometry Used to Determine Probe Height Above Bottom	83
14.	Bottom Water Temperature Profiles	92
15.	Reitzel's (1963) Northwestern Atlantic Basin Heat Flow Values	95
16.	Schematic Showing How a Recent Change in Surface Temperature Can Affect the Temperature Gradient	97

	page
17.	Purdy et al.'s (in press) Interpretation of the Basement High in the Survey Area105
18a.	The Thermal Boundary Layer Model
18b.	The Plate Model
19.	The Cooling of the Oceanic Lithosphere After Sclater <u>et al</u> . (in press)
	Appendices
Al	Job Control Statements Necessary to Run Ken Green's Program
Bl	Job Control Statements Necessary to Run GETPEN 131
в2	Job Control Statements Necessary to Output Contents of AIIDATA to Line Printer
Cla	Job Control Statements Necessary to Transfer TOWP From Card Deck Storage to Disk Storage137
Clb	Job Control Statements Necessary to Run TOWP From a Terminal
Clc	Section of the Keyboard Printout From TOWP138
C2	Job Control Statements Necessary to Use the Versatec Plotter
C3	Plot Produced by TOWP - Station 7 Penetration 1139
Dl	Test Run of CONVERT - Station 2 Penetration 2145
D2	Procedure Necessary to Copy Station 2 Penetration 2 From AIIDATA to SAMPLE146
D3a	Job Control Statements Necessary to Store File AIIDATA On a Labelled 9-Track Magnetic Tape146
D3b	Job Control Statements Necessary to Store File TEMPDATA on a Labelled 9-Track Magnetic Tape146
El	Job Control Statements Necessary to Run FILE From a Terminal155

LIST OF TABLES

	pa	ige
1.	Drilling Data From IPOD Sites 417 and 418	13
2.	Pogo Probe Temperature Gradients - Error Estimates	43
3.	Summary AII97-2 Piston Core Heat Flow Stations	49
4a.	Interval Temperature Gradients - Station 2 Pogo 1	55
4b.	Interval Temperature Gradients - Station 3 Pogo 2	56
4c.	Interval Temperature Gradients - Station 6 Pogo 3	57
4d.	Interval Temperature Gradients - Station 7 Pogo 4	58
5.	Thermal Conductivities Used for Pogo Probe Stations	60
6.	Summary AII97-2 2.5 Meter Pogo Probe Heat Flow Stations	63
7.	ACNAV Ship Positions During Heat Flow Measurements	66
8.	Ship/Fish Separation Data - First Penetration	69
9a.	S/F Pogo Probe First Penetration - Fish Navigation	71
9b.	S/F Pogo Probe First Penetration - No Fish Navigation.	71
10a.	Ship/Fish Separation Data - Station 2a Pogo la	73
10b.	Ship/Fish Separation Data - Station 6 Pogo 3	74
10c.	Ship/Fish Separation Data - Station 7 Pogo 4	75
lla.	Ship Velocity Versus Wire Curvature - Fish Navigation	77
llb.	. Ship Velocity Versus Wire Curvature - No Fish Navigation	78
12.	Ship/Fish Separation Data - No Fish Navigation	79
13a.	The Relationship Between Depth and Pressure Counts Stations 6-10	90
13b.	The Relationship Between Depth and Pressure Counts Stations 1-4	90

.

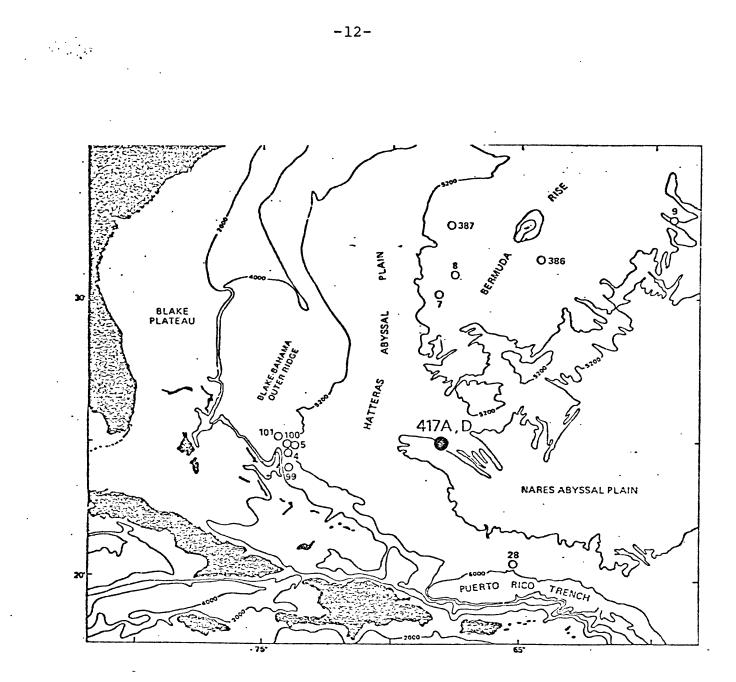
-9-

.

•

14.	The Relationship Between Bottom-Water Temperature Perturbation, Time and Gradient Perturbation at 2 Meters Depth103
	Appendices
Al	Sample of 9-Track Tape Printout From Station 7, Showing First Two Penetrations123
Bl	Segmented Digital Data - Station 7 Penetration 1132
Dl	Converted Temperature Data - Station 7 Penetration 1147
Ela	Input Format For Heat Flow Program (FILE)152
Elb	Format For Heat Flow Program Output (HEAT)
Elc	Sample Heat Flow Program Output - Station 7 Penetration 1154

١


I INTRODUCTION

Fifty-five closely spaced measurements of heat flow were obtained in the vicinity of IPOD sites 417 and 418 during Leg 2 of the Atlantis II cruise #97 in February of 1978. Fifty of the measurements were obtained during 4 multipenetration 'pogo' probe stations. The remaining 5 measurements were deep piston cores. The mean and standard deviation of the 53 reliable measurements are respectively, 1.17 HFU (μ cal/cm²s) and .08. The two drill sites were occupied for five months (20 November 1976 to 21 April 1977, Glomar Challenger Legs 51-53) and are located at the southern part of the Bermuda Rise, slightly north of the Vema Gap on oceanic floor connecting the Nares and Hattaras abyssal plains (figure 1). A drilling summary is given in Table 1 and the results of the drilling have been presented by Donnelly, Francheteau et al. (1977), Bryan, Robinson et al. (1977), and Flower, Salisbury et al. (1977).

The heat flow measurements were taken in conjunction with seismic reflection experiments carried out using a .66 liter (40 cubic inch) airgun and a single hydrophone towed within a few hundred meters of the seafloor. These results are presented elsewhere (Purdy et al., 1979).

A bathymetry contour map was made of the 10 by 20 kilometer survey area using data from a conventional 3.5 kHz echo sounder (figure 2). Superimposed on this map are the

-11-

شدر ۲

Index Map of the Western Atlantic Basin showing Locations of Deep Sea Drilling Sites

Hole	Latitude(N)	Longitude(W)	Depth(m)	Sediment	Basement	Total
417A	25°06.63'	68°02.48'	5468	211	206	417
417D	25°06.69'	68°02.82'	5482	343	363	708
418A	25°02.08'	68°03.44'	5511	324	544	868
418B	25°02.08'	68°03.45'	5514	320	10	330

.

.

•

Drilling Data from IPOD Sites 417 and 418

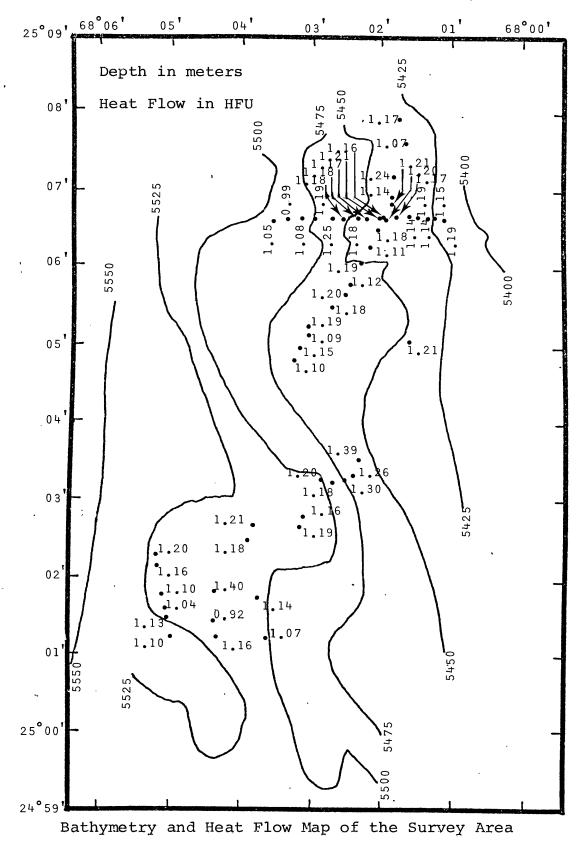
1

.

.

Penetration (m)

.

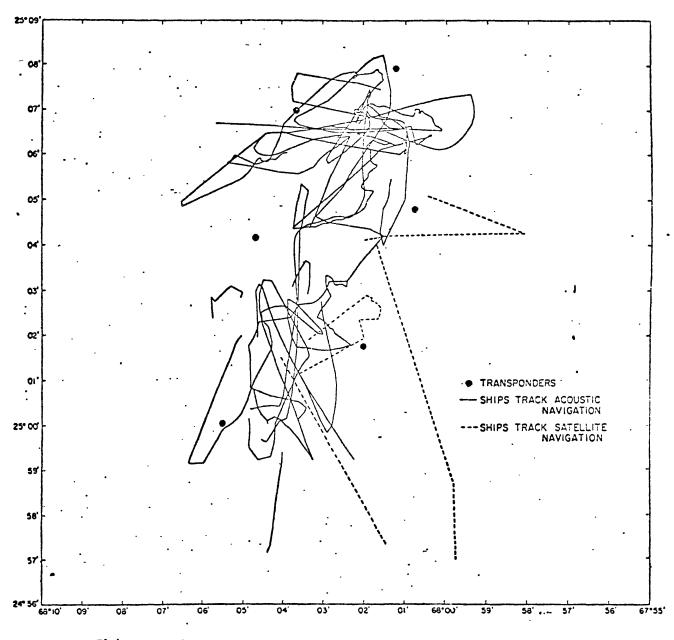

Table 1

.

.

.

-13-


. **.**

-14-

53 reliable heat flow values. Ship tracks, most of which were navigated using acoustic transponders, are shown in figure 3. The bathymetry map shows a gentle slope towards the west with total seafloor relief of about 150 meters in the survey area.

Previous work in the area has been done at IPOD survey site AT 2.3 and is reported by Harkins and Groman (1976). No previous heat flow measurements have been taken in the exact survey area although Gerard <u>et al</u>. (1962), Reitzel (1963), Langseth <u>et al</u>. (1966) and Bookman <u>et al</u>. (1973) have presented discussions of measurements obtained within a few 100 kms of the survey area.

This paper will briefly report on the instrumentation and operations used in the collection of the measurements. A discussion is given of data reduction techniques and possible sources of error in the heat flow values. Finally, we present a discussion and interpretation of the measurements.

Ship Tracks Along Which Depth Data was Gathered for the Construction of a Bathymetry Map

II INSTRUMENTATION AND METHODS

Due to recent advances in instrumentation, both in navigation and in the design of the heat flow apparatus, new standards should soon be set for the reporting of thermal gradient measurements at sea.

Navigation

/

Precise navigation was obtained using a network of transponders laid out in the configuration shown in figure 3. When within the range of the transponder net, an independent determination of the position of the heat flow instrument could be made by the use of a transponder relay (hereafter referred to as 'fish') placed a short distance up the wire from the instrument. This distance was either 200 meters or 1000 meters. The configuration is shown in figure 4. A description of the Woods Hole Oceanographic Institution's acoustic navigation system (known as ACNAV) is given by Hunt et al. (1974).

When inside the range of the net, the relative position of the fish or of the ship could be determined to within ±25 meters (Purdy <u>et al.</u>, 1979). However, the absolute accuracy of the locations is limited by our ability to determine the absolute positions of the transponders. These positions are calculated from satellite fixes collected during the survey operations. Hence, the absolute accuracy of the fish and ship locations is estimated to be ±100 meters (Purdy et al.,

-17-

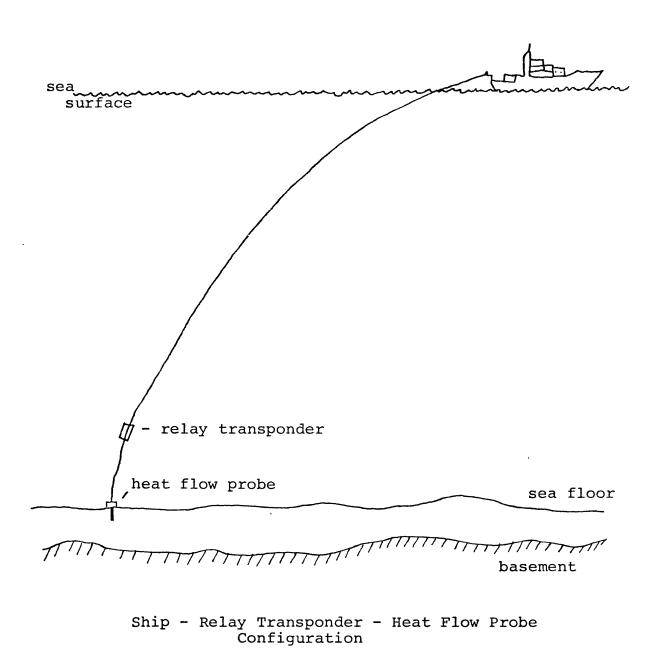
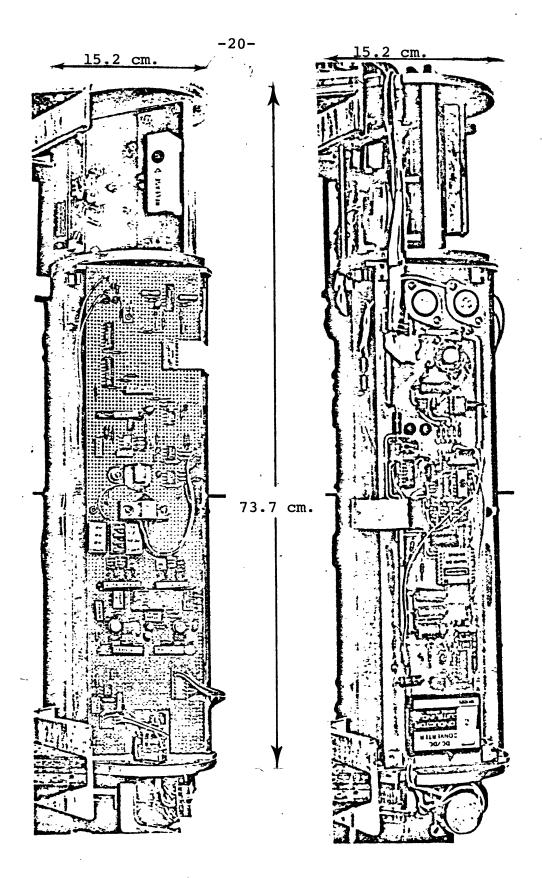
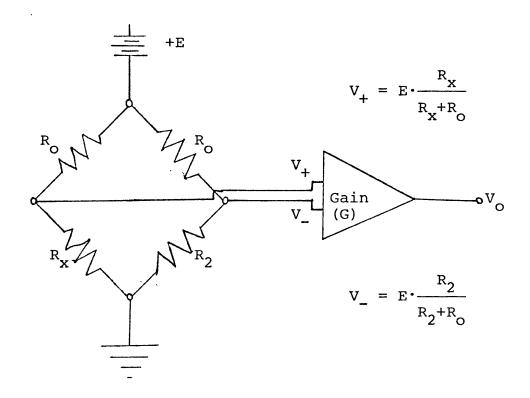


Figure 4


1979). This represents a considerable improvement over the accuracy of more conventional satellite fixes, radar fixes and Loran fixes. For some of the heat flow stations, the fish was either not used or was out of the range of the transponder net. In these cases, the position of the heat flow instrument was estimated from an analysis of ship/fish separations for stations in which acoustic navigation data was available for the fish. A discussion is postponed to the section on data reduction.

Thermal Gradient Measurements

Until recently, most oceanic heat flow measurements were obtained with analog recording devices, such as that described by Langseth (1965). With recent electronic improvements, the capability has been developed to utilize a digitally recording instrument. The Woods Hole Oceanographic Institution's digital heat flow instrument (DHF2), designed by Paul Murray and built by Jim Akens, was used for all of the measurements. Figure 5 shows 2 photographs of the instrument, taken at different angles.


The thermistors used are of the standard type; their resistance is sensed by a Wheatstone bridge whose output is an analog voltage. Figure 6 shows a simplified version of this part of the circuitry. V_0 is the output voltage and is equal to G· (V_+-V_-) where G is the gain of the Op-Amp. R_2 is a variable fixed precision resistor. R_x is the thermistor

-19-

Two Views of the DHF2

Figure 5

$$V_{O} = G \cdot (V_{+} - V_{-})$$
$$= G \cdot E \cdot (\frac{R_{x}}{R_{x} + R_{O}} - \frac{R_{2}}{R_{2} + R_{O}})$$

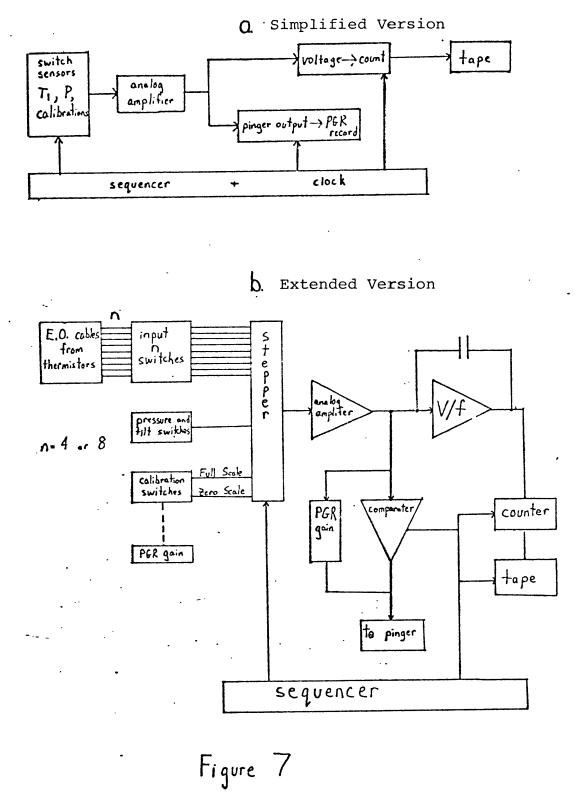
Thermistor Resistance (
$$R_x$$
) to Voltage Conversion
Via a Wheatstone Bridge Circuit

resistance to be sensed. R_o is a constant resistance, typically equal to 20,000 ohms. E is typically on the order of 1 Volt. We have,

$$V_{+} = E \cdot \frac{R_{x}}{R_{x} + R_{o}}$$
; $V_{-} = E \cdot \frac{R_{2}}{R_{2} + R_{o}}$

hence,

$$V_{o} = G \cdot E \cdot (R_{x} \cdot (R_{x} + R_{o})^{-1} - R_{2} \cdot (R_{2} + R_{o})^{-1})$$


It is desirable to have the R_x/V_0 transfer function as linear as possible. From the form of the equation, we can see that greater linearity is achieved if R_0 is large compared to R_x . However, as R_0 is increased, the gain of the Op-Amp must also be increased so as to maintain an output voltage of approximately the same magnitude. Unfortunately, increasing the gain of the Op-Amp will introduce new nonlinearities into the R_x/V_0 transfer.

With previous instruments, the analog voltage was measured by the deflection of a galvanometer, which was recorded optically on film or on a paper tape strip chart recorder. However, via a voltage to frequency (V to F) converter, DHF2 records a serial data stream digitally on an internal cassette tape. Essentially, the V to F converter is a circuit which sends out a pulse with a frequency which is dependent on the input voltage. The time interval between pulses is clocked by a 12 bit digital counter circuit. The output of the counter circuit is recorded on the tape as a 12 bit number of 'counts.'

Figure 7a is a simplified block diagram of the operation of the instrument. A slightly expanded version is given in figure 7b. The pinger output is a 12 kHz signal which is telemetered to the ship and which is received, decoded and subsequently displayed by a Precision Graphic Recorder (PGR). The PGR data, although not as precise as that recorded on the tape, provides an excellent backup in case of tape or V to F failure. Furthermore, it allows the scientist to continuously monitor the temperatures and pressures being recorded by the heat flow instrument.

The principal characteristics of the device are as follows. Each data word consists of 12 bi+s, which allows a resolution of 1 part in 2^{12} (1:4096). The instrument is equipped with a pressure sensor and has inputs for time, tilt, pressure, a zero scale calibration resistance, from 4 to 8 thermistors and a full scale calibration resistance. The record length is 28 seconds, in which time the instrument accepts, in the above order, information from all of these variables with a 2 second lapse between the recording of each variable. The first thermistor (the water thermistor on this cruise) and the clock pulse are recorded twice. Unfortunately, the tilt variable was not operational on this cruise. The temperatures and pressures recorded are aver-

-23-

Block Diagrams of the Operation of the DHF2

۰.

ages over 1 13/16 second intervals. For situations when fewer than 8 thermistors are used (e.g., pogo probe stations), the instrument can sample a given thermistor more than once each 28 second record.

The allowable sensitivity of the digital recording of pressure and temperature is determined by a combination of the following factors: the actual depth and sediment temperatures, the automatic rollover to 0 of the number of counts after 4096 is reached, and the instruments upperscale limit of 13.5 rollovers (55296 usable counts). The temperature counts were set to rollover at intervals of approximately .7 °C. This corresponds to a least significant bit of .00017 °C. The thermistors used to measure temperature have a characteristic resistance change on the order of 200 ohms/deg near 2 °C, which decreases as temperature increases. Thus, the least significant bit corresponds to a resistance change of .034 ohms. Rollovers occur approximately every 141 ohms. Pressure rolls over every 246 meters corresponding to a least significant bit of .06 meters. For the first 4 stations of the cruise, the pressure sensitivity was actually .09 meters. This was changed to .11 meters for the last 5 stations because a sensitivity of .09 meters resulted in an off-scale pressure near bottom.

The meaningful recording life of the battery is at least 20 hours. Station 6, during which 19 thermal gradient measurements were obtained, alone exhausted 16 hours of

-25-

battery life. Good results were obtained up until the time the battery died. On the other hand, during station 10, dying batteries resulted in a measurement with noise level slightly above average. In fact, the instrument actually stopped recording while the probe was still in the sediments (but fortunately, after thermal equilibrium had been reached).

For data reduction purposes, a thermistor count can be converted back to an actual resistance by utilizing our knowledge of the instrument design characteristics. The equations which are used in this conversion can be derived from the bridge and V to F circuits characteristic of the instrument. They are as follows:

$$R(ohms) = \frac{R_{0}}{\frac{a}{N-b} - 1} \quad where,$$

$$a = \frac{F - Z}{C - D} ; \quad b = \frac{(F \cdot D) - (Z \cdot C)}{D - C}$$
and, $C = (1 + R_{0}/R_{F})^{-1}; \quad D = (1 + R_{0}/R_{Z})^{-1}$

N is the number of counts corresponding to a given resistance. R_0 is a constant resistance, generally equal to 20,000 ohms. R_z and R_F are zero and full scale fixed precision calibration resistances, and Z and F are the number of counts corresponding to these resistances. R_z and R_F are known constants which are pre-set on the instrument before any station whereas Z and F may fluctuate slightly with respect to time due to instrument noise or weak batteries.

-26-

It is R_z and R_F to which the thermistor readings are compared. R_Z and R_F were on the order of 5000 ohms and were typically different by 90.5 ohms corresponding to voltage and frequency differences of approximately .16 volts and 1385 hertz respectively. It is clear that the counts versus resistance relationship is dependent on the values of Z and F. Typically, the relationship is linear to better than 99 percent.

The nonlinearity inherent in the counts to resistance conversion should be primarily due to the transfer characterisitics of the V to F converter. With the electronics available today, the bridge circuit should be able to be made linear to within a few tenths of a percent. It is our belief that the linearity of the counts to resistance conversion could be greatly increased if the V to F conversion chip were replaced by an analog to digital (A to D) conversion chip. Such a chip would cost about \$200 (Fajans, personal communication).

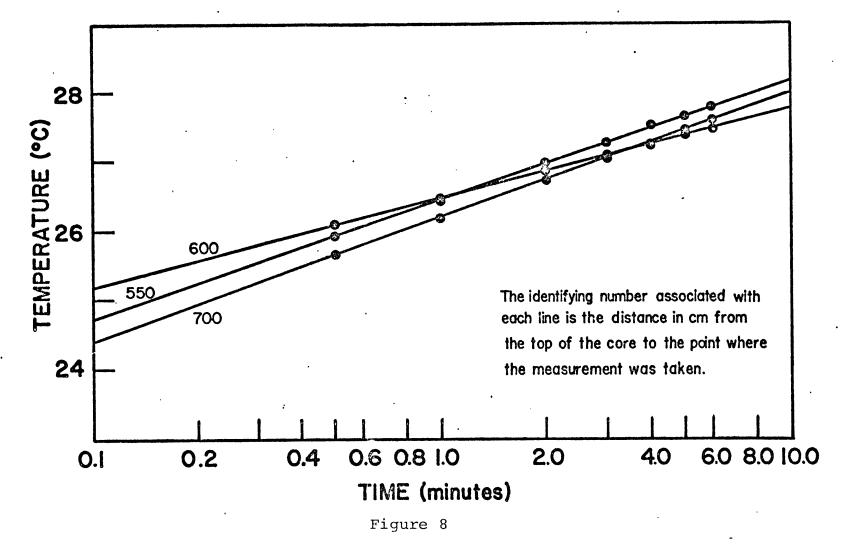
As would be the case with analog instruments, the thermistors were preselected to have closely matching resistances around 2 °C, the temperature expected for the bottom water. Empirical constants, α , β , and γ , which describe the temperature dependency of the thermistors are used in the equation: T = $(\alpha + \beta \cdot \ln R + \gamma \cdot (\ln R)^3)^{-1}$ to determine a temperature once the resistance has been calculated. In this equation, the

-27-

temperature is given in degrees Kelvin for a resistance given in ohms. For the thermistors which we used, α , β , and γ had a range of $(.127-.133)\cdot 10^{-2}$, $(.260-.269)\cdot 10^{-3}$ and $(.137-.148)\cdot 10^{-6}$ respectively. From these values and the form of the temperature-resistance relationship, it can be seen that the conversion from counts to temperature has a high degree of linearity for a range of temperatures.

We conclude with a work on the future of the digital heat flow instrument. At the time of the Atlantis II 97 cruise, major technical advancements were being made in the instrument design. However, the basic operating system described here is still applicable to the more updated versions of the instrument. Green (in preparation) and Murray (in preparation) will describe in more detail the updated and improved versions of the DHF2 currently in use. George Pelletier, the technician responsible for building the current instrument, has remarked that the DHF5 has operating characteristics that are an order of magnitude better than those of the DHF2. Furthermore, he believes that the operating characteristics of the DHF5 will be improved upon by another order of magnitude, pending the design and marketing of more advanced electronic components.

The thermal gradient probes were of two conventional designs. Five of the measurements were taken with piston cores with the thermistor probes mounted in outrigger fashion on the outside of the core barrel. As many as 7 thermistors could penetrate the sediment to a maximum of 12 meters depth with this apparatus. Fifty of the measurements were obtained using a 3 meter long multipenetration pogo probe with 3 externally mounted thermistors at distances of .5, 1.5, and 2.5 meters beneath the weight stand (Von Herzen and Anderson, 1972). Both types of apparatus have a thermistor attached to the outside of the heat flow instrument casing. This thermistor measures the water temperature 1 meter off the bottom during the heat flow measurement. All of the thermistors used have thermal time constants on the order of a few seconds (Von Herzen et al., 1970).


There still exist uncertainties as to the temperature and pressure characteristics of the electronics and battery, and of the magnitude of resistances at connections, of the E.O. cables and elsewhere in the electronics. Hence, it is difficult to determine the absolute error associated with an individual water temperature or sediment temperature determination. However, this error is probably less than ±.02 °C as evidenced by the distribution of thermistor temperatures along the probe at times when we felt they should be at the same temperature. Because of continuous cable leakage, the temperature determinations from the sediment thermistors have relative errors associated with them that there were as great as ±.012 °C but which were generally less than ±.001 °C. Instabilities of the sediment thermistors due to causes other than leakage were probably negli-

-29-

gible. In theory, the deeper penetrating cores should yield more accurate thermal gradient determinations because temperature perturbations of the sediment-water interface die out exponentially with increasing depth. If cable leakage does not occur, it should be possible to obtain relative temperature determinations accurate to at least .00025 °C, the smallest estimated error with leakage. As previously mentioned, the temperature sensitivity of the instrument is almost exactly 1 count to .00017 °C; this provides an absolute lower bound for the precision of the sediment thermistors.

Thermal Conductivity Measurements

For the 5 piston cores, thermal conductivities were measured every 50 centimeters using the needle probe technique described by Von Herzen and Maxwell (1959). Additionally, conductivities were measured every 50 centimeters in the 1.53 meter long gravity cores. The accuracy of an individual conductivity measurement is related to the calibration of the needle, the thermal state of the core at the time of measurement and the validity of the approximations assumed by Von Herzen and Maxwell (1959). Figure 8 depicts three representative plots of data produced from piston core 1 for the equilibrium temperature/time extrapolations. As can be seen in the examples shown in figure 8, most of the points for individual conductivity measurements fall along a straight line, indicating a high degree of precision.

Thermal Conductivity Equiblibrium Extrapolations From Piston Core 1

-31-

Due to environmental factors difficult to control, it is likely that the cores were not in a state of exact thermal equilibrium at the time the conductivity measurements were taken. The following envronmental disturbances were noted by Lawrence Hobbie, who was responsible for obtaining the conductivity measurements. They were afterthoughts and are included here, primarily to serve as cautions for future investigators.

1) The table on which the measurements were taken was next to a window which received a great deal of sun. On bright days, the air temperature around the table was on the order of several degrees warmer than elsewhere in the dimly lit storage room. During the later measurements, a piece of cardboard was used to cover the window. However, although the sunlight no longer fell directly on the cores as it had in some earlier measurements, the air around the table was probably still slightly warmer than elsewhere in the room.

2) The cores were stored on a low shelf, which appeared to keep them cooler than the average ambient air temperature in the rest of the room. For some measurements, the cores had only a few minutes to warm up to the ambient air temperature while resting on an adjacent table.

Thus, during the conductivity measurements, it is possible that the temperature of the entire core was changing for a reason other than the heat input from the needle

-32-

probe. Hobbie noted certain other factors which might have served to give erroneous conductivity measurements. They are:

3) In some cases the cores on which measurements were to be made the following day were brought to a place by the work table and leaned vertically against a rack. It was thought that this would insure that the cores were at the same temperature as the ambient air surrounding the work table. However, becasuse the cores were leaned vertically, the water in the cores might have migrated to the lower end. Furthermore, in at least one case, the core was raised abruptly from the vertical to a horizontal position and, consequently, a part of the core (not the plastic liner) shifted its position by a few centimeters.

Hence, the fluid part of the core may not have been properly distributed at the time of the conductivity measurement, yielding an erroneous value.

4) Because of a lack of electrical sockets in the room, the voltmeter which was used as a source of heat input for the conductivity measurements had to rely on its battery for power. Although the voltmeter's battery was recharged between measurements, the battery may still have weakened slightly in the course of a measurement.

Hobbie notes that this effect was unlikely to have produced noticeable inaccuracies in the measurements because the temperature/time extrapolations all plotted as straight

-33-

lines. Finally,

5) Occasionally measurements were taken quite near the end of a core section.

The implications of this are that the needle probe could have entered an air pocket, hence producing a misleading conductivity measurement.

The scatter in conductivity along a given core is, however, thought to be greater than the errors which are introduced by these various effects; hence, no account was taken of them. Von Herzen and Maxwell (1959) estimate an error of 3 to 4 percent for a given needle probe measurement from an analysis of possible errors in calibration and random errors on repeated measurements.

At heat flow stations where no core was taken, it was not possible to independently determine a thermal conductivity. For the pogo probe stations, conductivities were assumed from an analysis of the nearby cores.

-34-

III DATA REDUCTION

Introduction

This section and Appendices A through E explain the procedure used in going from the digitally recorded thermistor data on the cassette tape to actual heat flow values. The appendices contain information relevant to the computer processing while we explain here our method of converting from processed temperature data to heat flow values. A detailed error analysis of the data is given as well. Discussion is then given to our method of finding the geographical location of each heat flow measurement. Finally, we show how the conversion of digital pressure readings to actual depths is accomplished. The computer programs and machine command statements given in the appendices were designed for the Woods Hole Oceanographic Institution's Sigma 7 computer system.

Steps 1, 2, 3 and 4: A Brief Preview

These four steps in the data reduction process, described in detail in Appendices A through E, encompass the procedure necessary to convert the raw digital data into a workable format. Step 1 explains how the transformation from the cassette tape to a 9-track tape occurs. Gross errors in the digital data are located and processed during this step. During step 2, the digital data are segmented into intervals that each contain one thermal gradient mea-

-35-

surement. In step 3, we show how these intervals can be plotted; such plots serve as an excellent first order indicator of measurement quality. Finally, in step 4 we discuss how the digital thermistor data was converted to temperature data.

Step 5: Conversion of Temperature Data to Heat Flow Values--Error Analysis

The first three steps have been straightforward application of computer programming techniques. At this point, we will describe not only the rather simple conversion of temperature data to thermal gradients, but also our method for determining the error associated with an individual heat flow measurement.

Equilibrium Temperature Determination

Five piston core stations were occupied resulting in 3 reliable measurements of heat flow, and 4 pogo probe stations were run resulting in an additional 50 reliable measurements of the thermal gradient. In the determinations of absolute temperatures, slightly different methods were used for the 2 probe types. However, several important steps in the data reduction process including the entire error analysis scheme were the same for both piston core and pogo probe measurements. The estimated errors associated with individual temperature determinations were obtained as explained below. Ideally, both shortly before penetration and after pullout from a thermal gradient measurement, the probe will be held motionless in the water column, on the order of a few hundred meters above the bottom. Because of the near isothermal nature of the bottom water in the deep seas, the entire length of the the probe is hopefully at the same temperature during these holding periods. Hence, at these times the thermistors should all be recording exactly the same temperature. However, this is generally not the case due to various factors such as cable leakage, varying lengths (and hence resistances) of the E.O. cables, and other path effects. At these times then, temperature corrections can be determined so that all of the thermistors effectively record the same temperature. These corrections can then be applied to the temperatures recorded while the thermistor probes are not at the same temperature, such as during a thermal gradient measurement. Determining these correction terms both before and after a thermal gradient measurement is one way of estimating the error in the measurement due to instrument drift and cable leadage. Tn some cases, these holding periods were not well defined. For these cases, we effectively generated isothermal conditions by averaging thermistor temperatures over several consecutive cycles.

Another source of error in the sediment temperature determinations is introduced if the probe is pulled out of the sediments or disturbed before the thermistors have had

-37-

time to come to thermal equilibrium. In this case, the error can be reduced by extrapolating the observed temperature decay to equilibrium using the theory described by Bullard (1954). The exact penetration time must be known. The temperature decay is then plotted against l/t on normal graph paper. Equilibrium is reached as time goes to infinity or, equivalently, as 1/t goes to 0. Because of the thermistor characteristics, a series of points will be plotted through which a straight line can be drawn, intersecting the l/t equals 0 axis at some equilibrium temperature. Only in exceptional cases was an equilibrium extrapolation capable of reducing an estimated sediment temperature error. For a few measurements in which thormal equilibrium was reached, checks were performed in order to determine whether the extrapolations resulted in the same temperature as the chosen values at equilibrium. All such checks agreed to within the estimated error of the temperature determination.

Further sources of error are the instability of the thermistor reading during the equilibrium, pre-penetration and post-pullout times chosen. These instabilities as well as deviations from straight line plots during equilibrium extrapolations can all be due to either leakage or instrument drift and noise. Each thermistor temperature was recorded twice (water temperature 3 times) every 28 second recording cycle during pogo probe stations. The instrument noise was less for the later sequence of data (e.g.

-38-

appendices, tables Bl and Dl, figure C3). Hence for all of these measurements, we used the temperatures recorded during the 5, 6, 7 and 8 switching positions. However, for penetration 8 of station 2, we found it necessary to use both data sets in the equilibrium extrapolations because of the short measurement time.

Hence, to obtain errors on temperature measurements, we looked closely at two factors, one short-term and one longterm. Both of the following problems can result from cable > leakage, a frequent problem when taking oceanic heat flow measurements. For each measurement, we estimated the stability of each thermistor at equilibrium and while it was held in the water column before and after the measurement (short-term errors). Furthermore, for each thermistor we calculated correction terms for both of these holding periods. We estimate the average error due to a change in the value of the correction terms from before to after the measurement as 1/2 of the magnitude of this change (longterm error). In extreme cases, the variations in these correction terms was much greater than the instabilities noted over shorter observation times (e.g., equilibirum, holding periods). In these cases, the error in the temperature during equlibrium was estimated solely on the basis of this variation. Typically, the instability errors and longer term errors were of the same order. In these cases, the

-39-

total error was estimated as a weighted average of the three short-term instabilities noted above and 1/2 of the longterm change of one thermistor with respect to another. It bears reiteration that all of the errors described can be due to either leakage or instrument noise and are all somewhat related. Hence, our error estimates have a certain degree of subjectivity to them.

During the holding periods, the temperatures recorded by the piston core probe thermistors and by the pogo probe thermistors exhibited different behaviors. For the piston cores, the sediment thermistors were observed to read the same temperature to within ±.01 °C. However, at a given holding time, the water thermistor recorded a temperature between .04 °C and .07 °C less than the mean temperature recorded by the sediment thermistors. Hence to determine correction terms, we first found the mean value recorded by the reliable sediment thermistors. We then corrected both the sediment thermistors and the water thermistor to this value.

For the pogo probe stations, we observed that the bottom water temperatures recorded by the water thermistor agreed well with the corrected bottom water temperatures determined from the piston core probe water thermistor. Hence, during the holding periods, we simply corrected all of the sediment thermistors so that they agreed with the temperature recorded by the water thermistor. No correction

-40-

was applied to the water thermistor temperatures. This was done to establish agreement between the water temperatures recorded by the piston core probe thermistors and the pogo probe thermistors. We note that all of the pogo probe E.O. cables leaked in varying degrees throughout the cruise.

To determine the error due to a change over the course of a measurement in the temperature recorded by one thermistor with respect to another, we first were able to look only at the sediment thermistors. This was due to our method of calculating correction terms. In certain cases, if we noticed that these changes all had the same sign, and had magnitudes larger than .001 ⁰C, we assumed that the changes were partially due to leakage of the water thermistor's cable. We then reduced ourserror estimate of these changes by an amount that was the same for all of the sediment thermistors. This amount was chosen based on our estimates of the temperature effect of this leakage and from the observed sign of the effect. After performing all of this analysis, we noticed that the temperatures recorded by the lower 2 sediment thermistors on the probe typically had associated errors of ±.0005 °C with only an occassional error as great as $\pm .01$ ⁰C. Hence, the cables of these thermistors appear to have leaked, but with a generally minimal affect on the path resistance (and hence temperature).

-41-

Table 2 shows a typical example (station 7, penetration 1) of our method of determining the temperature errors. It was not possible to make a reliable estimate of the stability of the water thermistor during equilibrium for any of the stations. Generally, the water temperature recorded displayed a rise on the order of .01 °C over the course of a measurement. We postulate that this is due to a phenomenon whereby as the probe penetrates, it stirs up the top of the sediment pile around the probe. Hence, the lowermost few meters of bottom water are heated by interactions with the warmer sediments. The water temperatures we have chosen are those that were recorded during or 1 cycle after penetration.

We calculated interval temperature gradients from our corrected temperature data whenever possible. For the 4 pogo probe stations, a computer program was developed that could calculate the 2-interval gradients as well as the total gradient (Appendix E). Furthermore, we tried other methods of converting the raw temperature data to thermal gradients. For example, during the pre-penetration and post-pullout holds, we first averaged all 4 of the thermistor temperatures. Then we calculated a temperature correction for each thermistor as the difference between its actual value and this average value. We applied these correction terms to the

-42-

Table 2

Pogo Probe Temperature Gradients - Error Estimates

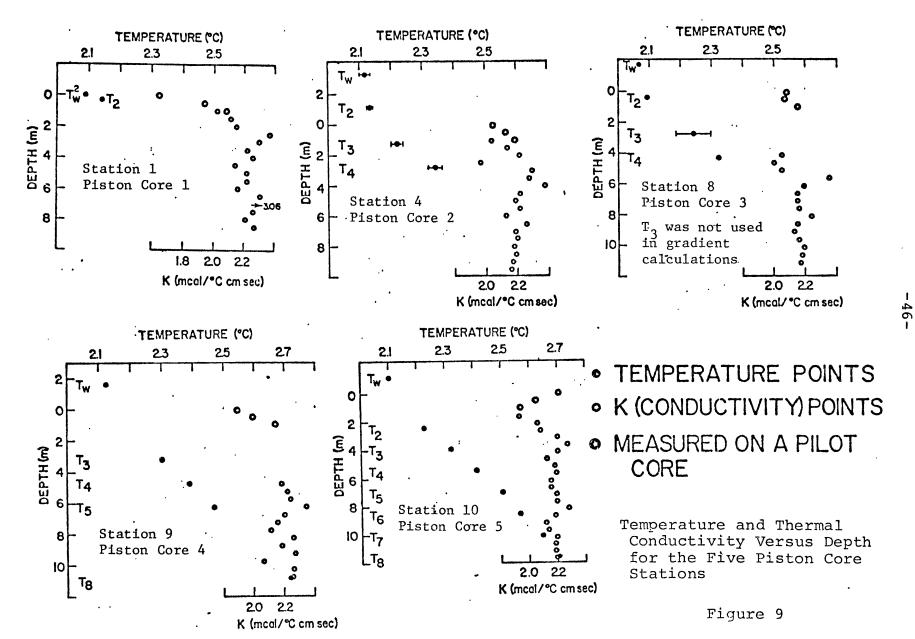
Explanation	Station 7	Penetration 1	Penetration 1	
	water	2		_4
Thermistor penetration depth (m)	+1	5	-1.5	-2.5
equilibrium temperature (°C)	2.1212	2.1350	2.1828	2.2382
stability (°C) equilibrium pre-penetration	?	<u>+</u> .0005	<u>+</u> .0005	<u>+</u> .0005
hold post-pullout hold	<u>+</u> .00025 <u>+</u> .00025	<u>+</u> .00025 <u>+</u> .0005	<u>+.001</u> <u>+</u> .0003	<u>+</u> .0005 <u>+</u> .0005
magnitude and direction of drift with respect to water thermistor (°C)		<u>+</u> .001	<u>+</u> .0005	<u>+</u> .0005
Total error (°C)		<u>+</u> .0005	<u>+</u> .0005	<u>+</u> .0005

\$

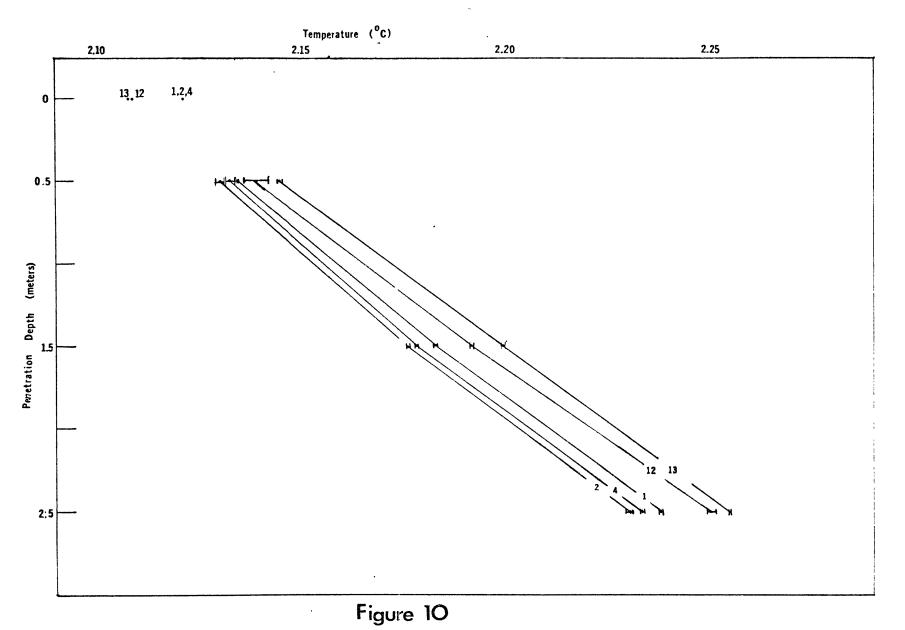
۱

temperatures recorded by the thermistors at thermal equilibrium while in the sediment column. The temperature gradients calculated from this method of data reduction were different from those calculated by the previous method by an amount that was within the estimated error of the gradient. Hence, we feel justified in using the first method.

Piston Core Heat Flow


Heat flow is defined as the product of a temperature gradient with the thermal conductivity over the interval of the gradient. Hence, the errors introduced with the conductivity measurements are important in determining the total error of the heat flow measurement. The piston corer never penetrated to its full length. Furthermore, the amount of core recovered was always less than the estimated amount of penetration from mudmark indications.

In order to determine the real locations of the conductivity measurements and thermistors in the sediment column, we did as explained below. For each core we first plotted all of the temperature gradients on a temperature/depth graph. We then adjusted the thermistor depths until the line representing the mean gradient crossed through the water temperature at the sedimentwater interface. This located the thermistors in the sediment column by giving us an idea of the depth of penetration. We assumed that the top of the sediment column was lost during penetration. Hence, the conductivity measurements obtained are thought to be made on sections of the core recovered from the depth of deepest penetration to a depth less than this by an amount equal to the total length of core recovered. We show the temperature versus depth plot alongside the conductivity versus depth plot for all 5 piston core stations in figure 9. The circled conductivity points were taken from the gravity core.


Similar temperature versus depth plots were made for the pogo probe measurements. Figure 10 shows some representative examples (including station 7, penetration 1). In deriving these graphs we assumed full penetration of the probe. Strictly speaking, the amount of total penetration varies within $\pm .25$ meters, and can be determined in the same manner as was done for the piston core stations. However, we did not do this because the $\pm .25$ meter variation does not affect our final results or interpretation.

For the piston core stations, we calculated the heat flow and errors as explained below. We first calculated interval thermal gradients g_i and e_i . The g_i were calculated using our best estimates of the equilibrium temperatures. The e_i were then calculated as the maximum variation in the gradient possible with the given errors on temperature. For each core we then found a weighted

-45-

•

Some Representative Pogo Probe Temperature Versus Depth Plots - Station 7

-47-

mean gradient (g) and a weighted mean error (e) from the interval gradients and errors. Within the frequency of our sampling interval, the thermal conductivity data show no significant variation with depth. A mean harmonic conductivity was found utilizing all of the measuremnts that fell within the depth range of the thermistors used for the gradient calculations. The error on this mean conductivity (K) was taken to be the standard deviation (σ) of all of the measurements. This error is typically much larger than the error in temperature gradient. Following Von Herzen and Anderson (1972), we found a fractional error in thermla conductivity (FEK) as σ/K + .02. The factor of .02 takes into account systematic biases of the needle probe used for the measurements. The total error (E) in heat flow (Q) was calculated as,

$$E = \{(FEK)^2 + (FEG)^2\}^{1/2} \cdot Q$$

where (FEG) is the fractional error in the temperature gradient e/g. Table 3 is a summary of the 5 piston core stations including location, ocean depth, bottom water temperature, penetration of deepest reliable thermistor, total number of conductivity values used and their harmonic mean and standard deviation, number of thermistors used to calculate the temperature gradient, temperature gradient with error, and heat flow with error.

-48-

Table	3.
-------	----

Summary AI197-2 Piston Core Heat Flow Stations

<u>sta.</u> #	<u>core#</u>	Lat.(N)	Long.(W)	Corr. Depth(m)	W!	Pen. ²	<u>∦</u> K3	к4	$\frac{\# th^5}{}$	$\frac{dT/dz^6}{dT}$	HF ⁷	<u>Q</u> 8
1	1	25°01.43'	68°02.20'	5484	2.09	0.25	2	1.79 + .22	1	1.93 + .05	+3.45 + .49	A
4	2	25°01.80'	68°02,62'	5482	2.13	2.80	3	2.17 + .13	2	.77 + .41	1.62 + .87	A
8	3	25°04.95'	68°01.44	5434	2.07	4.30	4	2.07 + .07	2	.587 + .10	$1.21 \pm .21$	A
9	4	25°06.67'	68°01.58	5433	2.07	10.83	13	2.21 + .07	4	$.546 \pm .019$	$91.21 \pm .06$	A
10	5	25°01.29'	68°04.33	5513	2.10	11.53	20	$2.18 \pm .05$	7	$.534 \pm .019$	$5 1.16 \pm .04$	A

+ unreliable value - temperature gradient was obtained by using penetration depth from mudmark indication and water temperature ~ 15 meters above seafloor (see text)

-49-

1 W=bottom water temperature given in °C.

² Pen.=depth of lowermost thermistor used in calculation of temperature gradient

³ #K=number of conductivity determinations obtained over the temperature gradient interval

⁴ K=harmonic mean conductivity + standard deviation $.10^3$ cal/°C cm s

⁵ #th=number of thermistors used for temperature gradient calculation

 6 dT/dz=temperature gradient + error .10³ °C/cm

7 HF=heat flow in μ cal/cm² s

⁸ Q-environmental evaluation after Sclater <u>et al</u>. (1976)

Three of the piston core stations were plaqued with thermistors that did not work properly. Only the thermistor located .55 meters beneath the corehead was operational throughout the first station. The depth of penetration from the mudmark indication was estimated as 8.85 meters and this station was unique in that a 9.15 meter (30 feet) long core barrel was used. Hence, we estimate the depth of penetration of this thermistor as .25 meters, The water temperature recorded by this thermistor approximately 15 meters off the bottom (1 cycle before penetration) was 2.0920 \pm .002 ^OC. As shall later be explained, the bottom water was not always isothermal, showing slight increases or decreases in temperature through at least the lowermost 30 meters. However, because we could find no systematic magnitudes or directionality in this depth range, we assumed isothermal conditions in this case. The equilibrium temperature was 2.1402 + .003 °C. The nearest two conductivity measurements were at .05 and .5 meters depth. A value of $1.79 + .22 \cdot 10^{-3} \text{ cal/}^{\circ}\text{C} \cdot \text{cm} \cdot \text{s was obtained.}$ The heat flow was calculated

-50-

as 3.45±.49 HFU. However, because this value is different from the more reliable piston core measurements by a factor of 3 and because a small mislocation of the thermistor depth will greatly affect the temperature gradient, we have chosen to ignore the measurement.

Station 4, piston core 2 had 4 working thermistors, located at distances of 1.32, 3.67, 5.25 and 9.62 meters from the corehead. Unfortunately, the lowermost thermistor leaked so severely that the associated temperature errors were unreasonably large. Furthermore, the uppermost thermistor could not have penetrated the sediments since its equilibrium temperature agreed with the water temperature to within .0022°C. The remaining 2 thermistors, at estimated sediment depths of 1.22 and 2.80 meters, were disturbed throughout the measurement and produced somewhat unreliable equilibrium temperatures. Hence, the heat flow value of 1.62±.87 HFU is also a poor estimate of the regional heat flux.

During station 8, piston core 3 four sediment thermistors were operational, the lowermost of which leaked so severely as to make it unusable. Of the remaining three thermistors, at estimated sediment depths of .4, 2.32 and 4.30 meters, the middle thermistor had leakage related temperature errors far greater in magnitude than the other two thermistors (Figure 9). Hence, we have used only

-51-

two thermistors in obtaining our heat flow value of 1.21+.21 HFU.

Fortunately, station 9, piston core 4 and station 10, piston core 5 produced somewhat more reliable heat flow values than did the first 3 piston core stations. Station 9 had 5 working sediment thermistors, which were estimated to lie at depths of 1.70, 3.21, 4.74, 6.27 and 10.83 meters in the sediment column. Upon shipboard recovery of the coring apparatus, it was observed that the uppermost sediment thermistor was severely bent, and that the connecting chain to the gravity corer was quite muddy. Apparently, the chain had wrapped itself around the piston core while the instrument package was lowered through the water column. This prevented a proper trip of the piston core. Nevertheless, the piston core was able to slowly drive itself into the sediments. From the sediment thermistor temperature data, we deduced that penetration occurred over a several-cycle period. Because the uppermost sediment thermistor apparently received an uncalculable amount of heat input from extraneous sources, we have not used it in our thermal gradient calculations. We feel that the calculated value of 1.21+.06 HFU is a reliable estimate of the regional heat flux.

Station 10 had 7 working sediment thermistors, which were estimated to lie at depths of 2.40, 3.91, 5.44, 6.97,

8.50, 10.00 and 11.53 meters in the sediment column. The only problems encountered in the data reduction were with instrument noise; as remarked in the Instrumentation section, the battery died before pullout. Thus, we had no check as to the amount of leakage or instrument drift that might have occurred over the course of the measurement. With the exception of the lowermost interval gradient, we feel that the linearity of the interval gradients is one check of the reliability of the heat flow measurement. The fact that the calculated heat flow of 1.16+.04 HFU agrees closely with the values obtained at stations 8 and 9 is further evidence of the reliability of the measurement. Hence, from the measurements obtained at stations 8, 9, and 10, we estimate the regional heat flux to be on the order of 1.2 HFU.

Pogo Probe Heat Flow

The two deep piston core measurements are inherently more accurate estimators of the heat flow at depth than the 2.5 meter pogo probe measurements for two reasons. The thermal conductivity can be measured from the recovered core sediments for the piston core stations whereas it has to be assumed using nearby core samples for the pogo probe stations. Secondly, as already noted, the temperature perturbation due to a recent change in conditions at the sediment-water interface dies out exponentially with depth

-53-

in the sediment column.

Although leakage was at times a problem, all three sediment thermistors worked during the 4 pogo probe stations with the exception of the first 7 penetrations of station 2. The lowermost thermistor, 2.5 meters below the weight stand, was not operational during these measurements. Tables 4a-d list the temperature gradients which we calculated between thermistors 2 and 3, 3 and 4, and 2 and 4. The notable feature of these tables is the consistency of the data. The mean and standard deviation for 42 gradients in the interval .5 to 1.5 meters depth are respectively, .479.10⁻³°C/cm and .051.10⁻³. In the interval 1.5 to 2.5 meters depth, the mean and standard deviation for the same 42 measurements are, respectively, .537.10⁻³ °C/cm and .036.10⁻³ We have excluded the first 7 penetrations, station 2 and penetration 3a, station 6. The latter measurement was a clear case of the upper thermistor failing to penetrate the sediments. The small but consistent nonlinearity of these relatively shallow measurements is remarkable. They are in most cases larger than can be explained by the errors in temperature alone. Only 4 measurements exhibited gradients which did not increase with depth.

We first looked for an explanation of these data under the assumption that the heat flow through the sediments is constant with depth. In general, one expects the thermal

-54-

Table 4a	
----------	--

.

Station 2 Pogo 1 - Interval Temperature Gradients

Station 2 Pogo 1	- Interval Temperature Gra	$dT/dz : 10^3$ °C/cm	
penetration	2-3(.5-1.5 m)	<u>3-4(1.5-2.5 m)</u>	<u>2-4(.5-2.5 m)</u>
. 1	.589 <u>+</u> .06	.647 <u>+</u> .078	
2	.5292 <u>+</u> .008	.587 <u>+</u> .026	
3	.5501 <u>+</u> .010	.608 <u>+</u> .023	
4	.494 <u>+</u> .03	.552 <u>+</u> .048	assumed lower
5	.5011 <u>+</u> .012	.559 <u>+</u> .030	gradients
6	.4840 <u>+</u> .008	.542 <u>+</u> .026	(see text)
7	.4992 <u>+</u> .008	.557 <u>+</u> .026	
.8	.5235 <u>+</u> .014	.6539 <u>+</u> .010	.5887 <u>+</u> .014
9	.3081 <u>+</u> .005	.4296 <u>+</u> .013	.3689 <u>+</u> .013

-55-

1

penetration		$dT/dz \cdot 10^3$ °C/cm 2-3 (.5-1.5m)	3-4(1.5-2.5)	2-4(.5-2.5m)
1		.4886 <u>+</u> .014	.5613 + .008	.5250 <u>+</u> .015
2		.5039 <u>+</u> .009	.5399 <u>+</u> .008	.5219 <u>+</u> .006
3		.4409 <u>+</u> .005	.5139 <u>+</u> .008	.4774 <u>+</u> .109
3a	v	• 474 <u>+</u> • 04	.484 + .04	.479 <u>+</u> .01
4		.4307 <u>+</u> .110	.5257 <u>+</u> .019	.4782 <u>+</u> .109
5		.4381 <u>+</u> .130	.5132 <u>+</u> .015	.4757 <u>+</u> .125

Station 3 Pogo 2 - Interval Temperature Gradients

•

Table 4b

. ~

-56-

Table	4c

•

Station 6 Pogo 3 - Interval Temperature Gradients

-

.

per	netration	dT/dz / 10 ³ 2-3(.5-1.5m)	°C/cm 3-4(1.5-2.5 m)	<u>2-4(.5-2.5m)</u>
	1		.5636 <u>+</u> .009	.5460 <u>+</u> .009
	2	.4819 <u>+</u> .013	.5503 <u>+</u> .008	.5161 <u>+</u> .015
	3	.4796 <u>+</u> .005	.5310 <u>+</u> .005	.5053 <u>+</u> .005,
	· 3a	.4438 <u>+</u> .005	⁺ .5014 <u>+</u> .023	
`	4	.4773 <u>+</u> .013	.5469 <u>+</u> .011	.5121 <u>+</u> .014
	5	.6414 + .045(135)	.4976 <u>+</u> .025	.5684 <u>+</u> .040 (130)
	6	.3610 <u>+</u> .115	.5803 <u>+</u> .020	.4706 <u>+</u> .105
	7	•4352 <u>+</u> •016	.5323 <u>+</u> .012	.4838 <u>+</u> .012
	8	.4888 <u>+</u> .015	.5586 <u>+</u> .015	.5237 <u>+</u> .010
	9	• 4548 <u>+</u> • 065	.5497 <u>+</u> .015	.5022 <u>+</u> .070
	10	.4790 <u>+</u> .011	.5174 <u>+</u> .008	.4982 <u>+</u> .011
-	11	.4709 <u>+</u> .009	.5534 <u>+</u> .012	.5121 <u>+</u> .013
	12	•474 <u>+</u> •02	.522 <u>+</u> .02	.498 <u>+</u> .02
	13	.5268 <u>+</u> .084	.5587 <u>+</u> .013	.5427 <u>+</u> .089
	14	.4915 <u>+</u> .014	.5492 <u>+</u> .006	.5204 <u>+</u> .013
	15	.5785 <u>+</u> .084	.5574 <u>+</u> .007	.5680 <u>+</u> .083
	16	.4860 <u>+</u> .013	.5076 <u>+</u> .008	.4968 <u>+</u> .011
	17	•4635 <u>+</u> •009	.5367 <u>+</u> .009	.5001 <u>+</u> .008
	18	.4331 <u>+</u> .008	.5135 <u>+</u> .009	.4733 <u>+</u> .006
	•			

.

-+ assumed gradient (see text)

.

•

. Table 4d

,

Station 7 Pogo 4 - Interval Temperature Gradients

.

.

.

penetration	dT/dz ·103 2-3 (.5-1.5m)	^c C/cm <u>3-4(1.5-2.5m)</u>	<u>2-4(.5-1,5m)</u>
. 1	.4783 <u>+</u> .010	.5540 <u>+</u> .010	.5162 <u>+</u> .010
2	.4525 <u>+</u> .008	· .5383 <u>+</u> .010	.4954 <u>+</u> .008
3	.4621 <u>+</u> .005	••••••••••••••••••••••••••••••••••••••	.4981 <u>+</u> .005
4	.4575 <u>+</u> .013	.5557 <u>+</u> .008	.5066 <u>+</u> .015
. 5	.423 <u>+</u> .110	.533 <u>+</u> .1 00	.493 <u>+</u> .190
6	.495 <u>+</u> .090	.545 <u>+</u> .010	.5 20 <u>+</u> .090
7 ·	.5004 <u>+</u> .065	.5405 <u>+</u> .015	.5205 <u>+</u> .070
8	.4874 <u>+</u> .025	.5638 <u>+</u> .010	.5256 <u>+</u> .025
9	.4783 <u>+</u> .023	.5467 <u>+</u> .013	.5125 <u>+</u> .020
10	.4631 <u>+</u> .021	.5519 <u>+</u> .015	.5075 <u>+</u> .018
11	•4989 <u>+</u> •035	.5510 <u>+</u> .010	.5250 <u>+</u> .035
12	.5 291 <u>+</u> .035	•5824 <u>+</u> •015	.5558 <u>+</u> .040
13	.5438 <u>+</u> .012	.5539 <u>+</u> .008	.5 489 <u>+</u> .010
14	.5112 <u>+</u> .015	.5040 <u>+</u> .010	.5076 <u>+</u> .015
15	•4758 <u>+</u> •088	.4598 <u>+</u> .016	.4678 <u>+</u> .088
16	.4865 <u>+</u> .024	.488 <u>+</u> .013	.4873 <u>+</u> .021

conductivities to also increase slightly with depth due to compaction of the sediments. The actual conductivity data seem to bear out this generalization (Figure 9); certainly, there is no characteristic decrease in conductivity within the upper few meters of sediment. Hence, we concluded that the departure from nonlinearity of the shallow temperature gradients was an artifact of disturbances created at the sediment-water interface. A standard assumption in calculating the heat flow through oceanic sediments is that the temperature of the sediment-water boundary has remained at the same temperature - that of the bottom water - for a long period of time. This assumption was clearly not valid at the time the measurements were made.

The thermal conductivity which we used to calculate heat flow for the pogo probe measurements represents the arithmetric mean of all conductivity determinations that were made in sediments which lay between 1.25 and 2.75 meters beneath the seafloor. We list these for each core in Table 5. The mean and standard deviation of the 9 conductivities are respectively, $2.14.10^{-3}$ cal/°C.cm.s and $.11.10^{-3}$.

The heat fluxes calculated from the 2 most reliable piston core measurements given in Table 3, were 1.21 HFU for station 9 and 1.16 HFU for station 10. The mean of

-59-

-60-Table 5

Thermal Conductivities Used for Pogo Probe Stations

Station	Core	Conductivity 10 ³ cal/°C cm s
1	1	2.11, 2.15, 2.37
4	2	2.14, 2.22, 1.97
8	3	none
9	4	none
10	5	2.06, 2.08, 2.20

depth range: 1.25-2.75 m mean = $\begin{bmatrix} N \\ n=1 \end{bmatrix} / N = 2.144 \text{ cal/°C cm s, } N=9$ standard deviation = .113

these two values is 1.185 HFU, a few percent greater than the mean heat flow which would be calculated between the two deepest pogo probe thermistors. Hence, we believe that the heat flow calculated from the temperature gradients between thermistors 3 and 4 is more representative of the heat flow at depth than that calculated from the gradients measured between thermistors 2 and 3 or 2 and 4. Furthermore, as evidenced by a slightly lower mean than the reliable piston core measurements, it is possible that the lower gradient still samples the effect of the recent temperature perturbation at the sediment-water interface. It is unfortunate that these 2 piston core measurements did not sample the temperature gradient in the upper 1 or 2 meters of the sediment column. Had gradients measured in this interval been smaller by on the order of $.06.10^{-3}$ °C/cm from the mean calculated gradient for the piston core station, it would have strongly supported our arguments.

The mean difference between 42 of the upper and lower pogo probe gradients is $.058.10^{-3}$ °C/cm. There were 8 measurements discussed previously in which the temperature was not measured below 1.5 meters in the sediment column. By adding this correction term to the upper gradient, we were able to obtain more reliable estimates of the deep temperature gradient. The error on these gradients was

-61-

obtained by adding 1/2 of the standard deviation of the gradients actually measured at depths of 1.5 to 2.5 meters (.018.10⁻³) to the error obtained for the specific gradient measured at a depth of .5 to 1.5 meters.

Table 6 is a summary of the pogo probe stations listing similar information in a similar format as was given for the piston core stations (Table 3). The error analysis was done using the same method as was used for the piston cores. The error in thermal conductivity is assumed to be the standard deviation of the 9 usable measurements. The error in thermal gradient is the difference between our best estimate of the gradient and the maximum/minimum gradient allowable with the given errors on equilibrium temperatures. The error (E) in heat flow (Q) is calculated as,

$$E = [(FEK)^{2} + (FEG)^{2}]^{1/2}.Q$$

Step 6 - Locating the Heat Flow Stations

Locating the heat flow stations was, for the most part, a straightforward task. For 4 stations the use of an acoustic relay transponder placed a short distance up the wire from the heat flow probe simplified matters. This distance was 200 meters for station 2 and 1000 meters for stations 6, 7, and 9. We assumed that the wire hung

Table 6

.

•

Sta.#	Pogof	Pen.#	Lut, (N)	Long, (W)	Corr, Depth(m)	<u>К(-10³Ca1/_ΔC cm s)</u>	dt/dz(-10 ³ °C/cr	a) <u>RF(HFU)</u> <u>+q</u>
2	1	1 25	• 3.370'	68° 2.255'	5457	$2.14 \pm .11$.647 + .078	1.39 + .18 A
		2 '	3.289'	2.301'	5464		.647 <u>+</u> .078 .587 <u>+</u> .026	1.26 + .09 A
		3	3.224'	2.449'	5474		.608 + .028	$1.30 \pm .09 A$
		4	3.228'	2.608'	5484		.552 + .048	1.18 + .12 A
		5	3.261'	2.753'	5497		$.559 \pm .030$	$1.20 \pm .09$ A
		6	2.801'	3.041'	5 505		$1542 \pm .026$	$1.16 \pm .08$ A
		7	2.662'	3.093"	5 50 5		.557 + .026	$1.19 \pm .08$ A
		8	1.92'	4.32	5509		$.654 \pm .010$	$1.40 \pm .08$ A
		9	1.55'	4.37'	5514	•	$.430 \pm .013$	$0.92 \pm .05$ A
4	2 ·	1 25	• 2.41	68° 5.08'	5517	2.14 <u>+</u> .11	.561 <u>+</u> .009	$1.20 \pm .06$ A
		2	2.27'	5.07'	5514	I	$.540 \pm .008$	$1.16 \pm .06$ A
		3 .	1.91'	5.03'	5513	•	$.514 \pm .008$	$1.10 \pm .06$ A
•		3a	1.72'	5.01'	5514		$.484 \pm .009$	$1.04 \pm .06$ A
		4	1.59'	5.00'	5527		$.526 \pm .019$	$1.13 \pm .07$ A
		5	1.35'	4.97'	552 7		$.513 \pm .015$	$1.10 \pm .07$ A
6	3	1 25	• 2.718'	68° 3.740'	5518	$2.14 \pm .11$	$.564 \pm .009$	$1.21 \pm .07$ A
		2	2.533'	3.818'	5514		.550 <u>+</u> .008	$1.18 \pm .06$ A
	•	3	1.808	3.728'	5 50 2	x	$.531 \pm .005$	$1.14 \pm .06$ A
		_ 3a	1.276'	3.639'	5 50 2		.501 + .005	$1.07 \pm .06$ A
		4	7. 750'	1.443'	5428		$.547 \pm .011$	$1.17 \pm .06$ A
		5	7.428	1.379'	5428	*	.498 + .025	$1.07 \pm .06$ A
		6	7.011'	1.551'	5432		.580 + .020	$1.24 \pm .08$ A
		7	6.764'	1.609'	5434		• 532 + • 012	$1.14 \pm .06$ A
		8	6.512'	1.731'	5434		.559 🕂 .015	1.20 🕂 .07 A
		9	6.367'	1.822'	5436		.550 + .015	$1.18 \pm .07$ A
		10	6.158'	1.929'	5448		$.517 \pm .008$	$1.11 \pm .06$ A
		11	5.971'	2.048'	5452	·	.553 + .012	1.19 + .07 A
		12	5.737'	2.186'	5456		$.522 \pm .018$	1.12 + .07 A
		13	5.579'	2.312'	5459	· ·	.559 + .013	$1.20 \pm .07$ A
		14	5.395'	2.477	5461		$.549 \pm .006$	$1.18 \pm .06$ A

Summary AI197-2 2.5 Meter Pogo Probe Heat Flow Stations

.

.

-63-

.

.

· · .

۰.

<u>Sta.</u> #	Pogo#	Pen.#	Lat.(N)	Long.(W)	Corr. Depth(m)	<u>К(-10³Cal/AC ст в)</u>	$dt/dz(-10^{3\circ}C/cm)$	<u>) HF(HFU) ⁺Q</u>
6	3	15	25° 5.183'	68° 2.312'	5464	2.14 <u>+</u> .11	.557 <u>+</u> .007	$1.19 \pm .06$ A
		16	5.080'	2.818'	5463		$.508 \pm .008$	$1.09 \pm .06$ A
		17	4.931	2,920'	5464		.537 <u>+</u> .009	$1.15 \pm .06$ A
		18	4.844'	3.008*	5467		$.514 \pm .009$	1.10 <u>+</u> .06 A
7	4	1	25° 6.436'	68° 0.922'	5415	2.14 + .11	.554 + .010	1.19 + .06 A
		2	6.465'	· 1.029'	5417		.538 + .010	1.15 + .06 A
		3	6.478	· 1.133'	5421		.534 + .005	1.14 + .06 A
		4	6.485'	1.265'	5425		.556 + .008	1.19 + .06 A
		5	6.493'	1.372'	5426		.533 + .095	1.14 + .21 A
		6	6.505	1.538'	5429		.545 + .014	1.17 + .07 A
	•	7	6.503'	1.694'	5432	•		1.16 + .07 A.
•		8	6.506'	1.811'	5436	, ,	.569 + .010	1.21 + .07 A
		9	6.512'	1.969'	5439		.547 + .013	$1.17 + .07 \cdot A$
		10	6.518'	2.097'	5441	•.	.552 + .015	1.18 + .07 A
		11	6.520'	2.296'	5441		.551 + .010	1.18 + .06 A
		12	6.532'	2.437	5445	•	.582 + .015	1.25 + .07 A
		13	6,528'	2.669'	5455		.554 + .008	$1.19 \pm .06$ A
		14	6.536'	2.851'	5460		.504 + .010	1.08 + .06 A
		15	6.545'	3.044'	5472	•	.460 + .016	0.99 + .06 A
		16	6.557'	3.236'	5481		$.488 \pm .013$	$1.05 \pm .06$ A

. 4

-

.

Table 6 continued

+ environmental evaluation after Sclater et al.

. •

.

.

.

.

•

vertically below the transponder. With the exception of penetrations 1, 7, 8 and 9 of station 2, we were able to directly interpolate the fish position from the processed acoustic navigation data. It was necessary to extrapolate the fish position backwards and forwards in time in order to obtain locations for, respectively, penetrations 1 and 7. Penetrations 8 and 9, station 2; penetrations 1, 2, 3, 3a, 4 and 5, station 3; and stations 1, 4, 8 and 10 (piston core measurements) did not have fish navigation data. For the piston cores, we relied on a combination of satellite fixes and acoustic navigation data for the ship in calculating their locations.

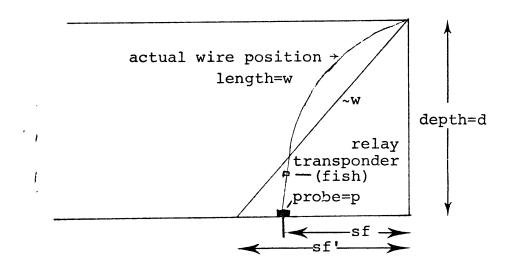
We attempted to develop an empirical relationship between ship position and fish position for the remaining 8 pogo probe measurements. Table 7 lists the acoustically navigated ship position for all of the 55 heat flow measurements. During stations 2 and 6, the heat flow probe was raised to the ship in order to perform maintenance work and then relowered. This occurred between penetrations 7 and 8 for station 2 and between penetrations 3a and 4 for station 6. For the purposes of the following discussion, we have divided both stations 2 and 6 into two groups, separated by a raising and subsequent relowering of the probe. We divided the 8 unlocated pogo probe measurements into two groups: those that occurred during a first lowering (penetration 7, station 2; penetration 1,

-65-

-66-

Table 7

		Latitude(N)	Lor	ngitude(W)			La	titude(N)	Lo	ngitude(W)
S-1	C-1				S-7	P-4				
1		25° 1.431'	68°	2.195'	1		25°	6.583'	68°	3.225'
S-2	P-1				2			6.543'		1.611'
1		25° 3.165'	68°	2.427'	3			6.546'		1.778'
2		3.079'		2.615'	4			6.557'		1.958'
3		3.236'		2.794'	5			6.557'		2.111'
4		3.339'		2.934	6			6.570'		2.347'
5		3.119'		2.921'	7			6.571'		2.570'
6		2.393'		3.223'	8			6.581'		2.723'
7		2.189'		2.858'	9			6.600'		2.920'
8		.905'		4.727'	10			6.575'		3.131'
9		.205'		4.193'	11			6.580'		3.344'
S-3	P-2				12			6.560'		3.545'
1		25° 1.579'		5.014'	13			6.601'		3.876'
2		1.053'		4.942'	14			6.627'		4.092'
3		. 394		4.847'	15			6.631'		4.644'
3a		.207'		4.810'	S-8	C-3				
4		24° 59.902'		4.731'	1		25°	4.964'	68°	1.446'
5		59.444'		4.615'	S-9	C-4				
S-4	P-2				1		25°	6.564'	68°	1.276'
1		25° 1.801'	68°	2.842'	S-10	C-5				
S-6	P-3				1		25°	1.301	68°	4.389'
1		25° 1.306'	68°	4.582'						
2		.992'		4.706'						
3		.464'		4.922'						
3a		.211'		5.074'						
4		7.404'		1.237'						
5		6.712'		1.738'						
6		6.023'		1.690'						
7		5.764'		2.304'						
8		5.389'		2.351'						
9		5.124'		2.531'						
10		4.792'		2.614'						
11		4.628'		2.828'						
12		4.516'		3.225'						
13		4.505'		3.544'						
14		4.168'		3.636'						
17		3.122'		3.660'						
18		3.098'		4.023'						


ACNAV Ship Positions During Heat Flow Measurements

station 3) and those that were obtained as multiple penetrations (remaining 6 penetrations).

We located the first two penetrations using the following physical argument. When the heat flow probe is being lowered, a higher average ship velocity (v) will mean an initially larger ship/fish separation (sf). We knew that the wire was not paid out at the same average rate for all of the lowerings. We attempted to take this factor into account by calculating the rate at which the ship/fish separation increased (sf/ Δ t) during the lowering. We also looked at the horizontal deviation (Δ ') of the wire from a straight line and the difference (Δ) between the wire out (w) and the ocean depth (d). Finally, we also calculated two nondimensional numbers, q and k, in a somewhat unsuccessful effort to find a quantity which was conserved between stations.

Figure 11 is a schematic diagram showing the various features to be discussed and the formulae used. Table 8 shows this information, when calculable, for all lowerings. The Δx and v values are minimums because they are calculated assuming the ship travels in a straight line between penetrations. Reference to Figure 12 shows that this assumption is usually valid. In Table 9a, we reproduce the relevant information for the 4 pogo probe lowerings during which the fish position was known by

-67-

FORMULAE USED

sf' = ((wire)² - (depth)²)^{1/2}
$$\Delta' = sf' - sf$$

 $\Delta = (wire) - (depth)$ $q = sf/\Delta$ $k = q\frac{sf}{sf} = \frac{sf^2}{sf' \cdot \Delta}$

 Δ ' is a measure of wire curvature

 Δx = distance between penetrations (in minutes)

 $\mathbf{v} = \Delta \mathbf{x} / \Delta t$ = average ship velocity between penetrations (in knots)

Geometry Used to Determine Fish/Ship Separation for Stations with No Fish Navigation

T	ab	1e	8
---	----	----	---

Ship/Fish Separation Data -- First Penetration

<u>sta.</u> ₿	type	⁺ start time(z)	penetration $time(z)$	<u>sf(m)</u>	wire(m)	depth(m)	<u>s/f'(m)</u>	<u>Δ'(m)</u>	<u> </u>	<u>k</u>	<u>∆t(min)</u>	sf/At(m/min)	<u>ΔX(min)</u>	V(knots)	
1	Core	2114	2232		5980	5484	2382				78				
2a	Pogo	1037	1206	496	5534	5457	918	422	6.5	3.5	90	5.5	.921	.61	
2Ъ	Pogo	1913	2032		6127	5509	2670				79	;	1.549	1.18	
3	Pogo	1343	1451		5869	5517	2002				68		1.227	1.08	1
4	Core	1941	2056		5682	5482	1494 ,				75				-69
6a	Pogo	1057	1222	3042	6618	5518	3653	611	2,8	2.3	85	35.8	2,278	1.62	
6Ъ	Pogo	1821	1924	744	5592	5428	1339	- 594	4.6	2.6	63	11,8	.641	.61	
7	Pogo	1155	1320	882	5560	5415	1260	379	6.1	4.3	85	10.4	.927	.65	
8	Core	1949	2102		5 554	5434	1153				73				
9	Core	1050	1243	636	5569	5433	1229	410	4,6	2.4	113	5.6	.283	.15	
10	Core	1501	1614		5513	5513	400 400 and -			400 000 400	73			400-400 MM	

•

••••

⁺probe in water

.

Symbols are defined in figure 11. Some numbers may not be exact due to small depth inaccuracies in the initial calculations.

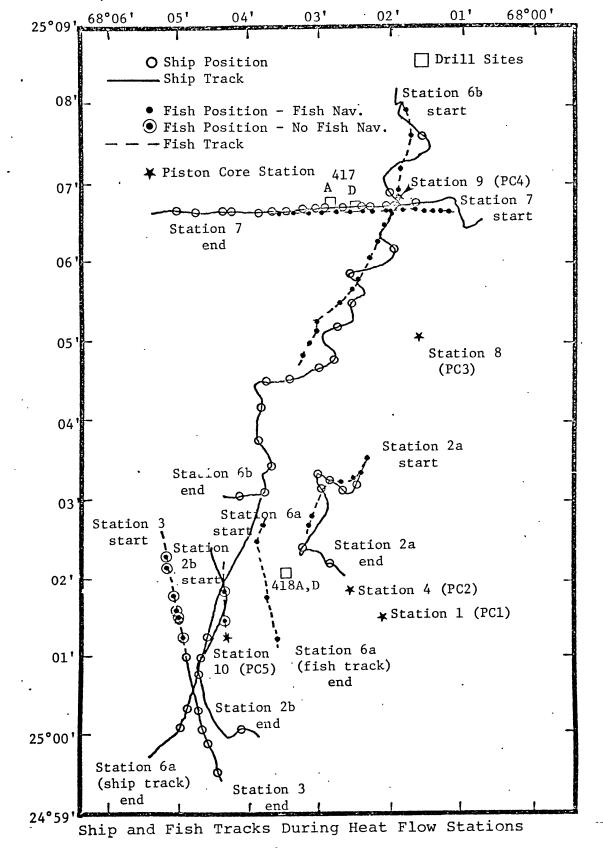


Figure 12

:•

Table 9a

station	v(knots)	sf(n) <u>wire(m)</u>	depth(m) <u>∆t(min)</u>	<u>s/f</u>	<u>At(m/min.)</u>
2a	.61	496	5535	5 45 7	90		5.5
6b		average 744	5591	5502	63	average 9.2	11.8
7	.62	708 882	~ 5560	5415	85	9.2	10.4
6a	1.62	3042	6617	5518	85	,	35.8

· S/F Pogo Probe First Penetration -- Fish Navigation

Table 9b

S/F Pogo Probe First Penetration -- No Fish Navigation

station	v(knots)	sf(m)	wire(m)	depth(m)	$\Delta t(min)$	$sf/\Deltat(m/min)$	explanation
25	1.18	2012	6127	5509	79	25.5	sf interpolated
3	1.08	1555	5869	5517	68	22.9	sf interpolated and reduced to account for sf/Δt

-71-

means of acoustic navigation. We see that as the average ship velocity increases, the ship/fish separation does in fact increase. Furthermore, since the wire is paid out an approximately constant rate for the 4 stations, the rate at which the separation increases for a particular station is also larger for a larger ship velocity. Admittedly, our data base is rather sparse. However, we feel comfortable in using it to obtain approximate fish locations for the two pogo probe lowerings during which these locations were not acoustically navigated. For penetration 7, station 2 we have directly interpolated a value of 2012 meters from the observed v/sf relationship. For penetration 1, station 3 we have decreased the directly interpolated value by a small amount to bring the $sf/\Delta t$ value more in line with the relationship noted in table 9a. These results are shown in table 9b.

We felt that the most important factor in estimating the ship/fish separation once the probe had been lowered was the relationship between ship velocity and the deviation of the wire from a straight line. Tables 10a-c are listings of the values obtained for the quantities described in Figure 11 for all acoustically navigated pogo probe penetrations. Care must be taken in interpreting this data as Ivers and Mudie (1973) have shown that changes in ship speed or direction often take 30 minutes or more to propagate down a long wire. We see that the values of q and

-72-

penetration	time(z)	<u>sf(m)</u>	wire(m)	depth(m)	<u>sf'(m)</u>	<u>∆'(m)</u>	_ a _	<u>_k</u> _	<u>∆t(min)</u>	<u>∆sf(m)</u>	$\Delta sf/\Delta t (m/min)$	<u>Ax(min)</u>	v(knots)	•
1	1207	496	5534	5457	918	422	6.5	3.5	90	496	5.5	.921	.61	
- 2	1239.5	699	5531+	5464	863	165	10.3	8.4	22.5	203	9.0	.207	.55	
3	1305	638	5528	5474	765	126	12.0	10.1	25.5	-60	-2.4	.238	.56	
4	1331	636	5525 ⁺	5484	6 6 6	29	15.8	15.1	26	-2	-0.1	.174	.40	-73
5	1357.5	408	5522	5497	530	123	15.9	12.2	26.5	-228	-8.6	.220	.50	ĩ
6	1533.5	827	5631	5505	1185	358	6.6	4.6	36	419	11.7	.786	1.31	
7	1610	977	5631	5505	1185	209	7.7	6.4	36.5	150	4.0	.418	.69	
+ interpolate	đ												•	

Table 10a

-

Ship/Fish Separation Data -- Station 2a Pogo la

start = 1037 Z 2/14/78

Symbols are defined in figure 11. Some numbers may not be exact due to small depth inaccuracies in the initial calculations.

.

.

•

~

							•							
Ship/Fish Se	paration	Data	Station 6	Pogo 3		A	<u>.</u>							
penetration	time(z)	<u>sf(m)</u>	wire(m)	<u>depth(m)</u>	<u>sf'(m)</u>	<u>Δ'(m)</u>	- a -	k	<u>At(min)</u>	<u>∆sf(m)</u>	$\Delta sf/\Delta t (m/min)$	$\Delta x(min)$	v(knots)	
1	1222	3042	6618	5518	3653	611	2,8	2,3	85	3042	35,8	2,278	1,62	
2	1242	3323	6690	5514	3792	468	2.8	2.5	20	281	14.1	.338	.94	
3	1309	3327	6917	5502	4192	865	2.4	1.9	27	4	0.1	.570	1.27	
3a	1325	3307	6917+	5502	4192	885	2.3	1.8	16	-20	-1.3	.295	1.11	
						10	•							
						B	-							
4	1924	744	5592	5428	1339	594	4.6	2.6	63	744	11.8	.641	.61	
5	2019.5	1481	5760	5428	1924	443	4.5	3.4	55.5	737	13.3	.854	.93	
6	2103	1845	5942	5432	2409	563	3.6	2.8	43.5	361	8.4	.691	.95	
7	2137	2253	6067	5434	2698	444	3.6	3.0	34	408	12.0	.666	1.18	1
8	· 2203.5	2374	6116	5434	2808	433	3.5	2.9	33.5	121	3.6	.378	• .68	
9	2221.5	2648	6244	5436	3073	424	3.3	2.8	18	274	15.2	. 320	1.07	
10	2242	2828	6446	5448	3444	616	2.8	2.3	21.5	180	8.4	.342	.96	
11	2300	2873	6368	5452	3290	417	3.1	2.7	18	45	2.5	.270	.90	
12	2322.5	2967	6431	5456	3404	437	3.0	2.7	22.5	94	4.2	.412	1.10	
13	2340	3023	6460	5459	3453	430	3.0	2.6	17.5	56	3.2	. 319	1.09	
14	0000	3151	6478	5461	3484	333	3.1	2.8	20	128	6.4	.356	1.07	
15	0019.5	3009	6608	5464	3715	710	2.6	2.1	19.5	-142	-7.3	. 396	1.22	
16	0033.5	3329	6765	5463	3991	662	2.6	2.1	14	320	22.9	.345	1.48	
17	0050	3616	6878	5464	4179	563	2.6	2.2	16.5	287	. 17.4	. 334	1.21	
18	0105	3737	684 5	5467	4117	380	2.7	2.5	25	121	4.8	.364	.87	
+assumed	A start	= 1057	z	2/16 /79			B st	art = 1	L821 Z	2/17/3	79			

Symbols are defined in figure 11. Some numbers may not be exact due to small depth inaccuracies in the initial caculations.

Table	10 c
-------	-------------

,

1

Ship/Fish Separation Data -- Station 7 Pogo 4

pene- tration	time(z)	<u>sf(m)</u>	wire(m)	depth(m)	<u>sf'(m)</u>	<u>∆'(m)</u>	<u></u>	<u>k</u>	<u>∆t(min)</u>	<u>∆sf(m)</u>	$sf/\Delta t\Delta(m/min)$	<u> </u>	V(knots)	
1	1320	882	5560	5415	1260	379	6.1	4.3	85	882	10.4	.927	.65	
2	1338.5	1086	5586	5417	1361	274	6.5	5.2	18.5	204	11.1	.239	.78	
3	1354	1200	5626	5421	1503	304	5.9	4.8	15.5	114	7.4	.167	.65	
4	1411	1289	5640	5425	1546	256	6.0	5.0	17	89	5.2	.180	.64	
5	1424	1372	5680	5426	1681	30 9	5.4	· 4.4	13	83	6.4	.153	.71	
6	1443	1502	5717	5429	1794	293	5.2	4.4	19	130	6.8	.236	. 75	
7	1501.5	1626	5758	5432	1946	320	5.0	4.2	18.5	124	6.7	.223	.72	
8	1514.5	1694	5770	5436	1937	243	5.0	4.4	13	68	5.2	.153	.71	
9	1531	1767	5800	5439	2012	245	4.9	4.3	16.5	78	4.4	.198	.72	
10	1546.5	1917	5840	5441	2122	205	4.8	4.3	15.5	[.] 150	9.7	.212	. 82	
11	1 603 .5	1942	5861	5441	2177	234	4.7	4.2	17	25	1.5	.213	.75	
12	1620	2050	5890	5445	2244	194	4.7	4.3	16.5	108	6.6	.202	.73	
13	1643	2237	5952	5455	2391	154	4.5	4.2	23	187	8.1	. 334	.87	
14	1659.5	2303	5995	5460	2478	176	4.3	4.0	16.5	66	4.0	.218	. 79	
15	1717	2451	6070	5472	2628	177	4.1	3.8	17.5	148	8.4	.274	.94	
16	1734.5	2610	6147	5481	2782	172	3.9	3.7	17.5	159	9.1	.278	.95	
start	= 1155Z	2/17	/78											

Symbols are defined in figure 11. Some numbers may not be exact due to small depth inaccuracies in the initial calculations.

-75-

.

k are roughly constant for a given station, but vary from one station to the next. Table lla shows only the relationship between ship velocity and the deviation of the wire from a straight line. During station 7, we see a small but probably insignificant tendency towards an inverse relationship between v and Δ '. Station 6 shows no correlation and station 2a strongly shows the reverse tendency. From one station to the next, a tendency appears as well for Δ ' to increase nonlinearly as v increases. We have used these crude relationships to obtain values of Δ ' for stations 2b and 3.

In Table 11b we show our estimated values of Δ ' for the remaining 6 unlocated penetrations. In arriving at our values of ship/fish separation, we worked backwards from our knowledge of the wire out, the depth and our estimates of Δ '. This data is given in Table 12. During station 3, the ship/fish separation increases at a faster rate than for other stations because the amount of wire paid out as a function of time is greater than at other stations.

In Figure 12 we have plotted the acoustically navigated ship tracks for all of the pogo probe stations. Also plotted whenever possible is the acoustically navigated path which the fish took as it lagged behind the ship. The noticeable feature is that small changes in ship course

Table 11a

Ship Velocity Versus Wire Curvature -- Fish Navigation First Penetration Station 2a Station 6a Station 6b Station 7 $v(knots) \Delta'(m)$ $v(knots) \Delta'(m)$ v(knots) ∆'(m) $v(knots) \Delta'(m)$.61 422 1.62 611 .61 594 .65 379 Multiple Penetrations .40 29 .94 468 .68 433 .64 256 .50 123 1.11 885 .87 380 .65 304 .55 165 1.27 .90 865 417 .71 309 .56 126 .93 443 243 .71 Ave. = 739 .69 209 .95 563 .72 320 1.31 358 .96 616 .72 245 1.07 424 .73 194 Ave. = 1681.07 333 .75 293 1.09 430 .75 234 1.10 437 .78 274 1.18 444 .79 176 1.21 563 .82 205 1.22 710 154 .87 1.48 662 .94 172 Ave. = 490Ave. = 238

Table 11b

Ship Velocity Versus Wire Curvature -- No Fish Navigation

First Penetration

Statio <u>v(knots)</u>		Statio v(knots)	
1.18	658	1.08	435
	Multiple Pe	enetrations	
. 84	365	1.05	330
		1.08	330
		1.11	330
		1.11	330
		1.14	330

•					Sta	tion 2b	Pog	<u>5 15</u>		•			
enetration	time(z)	<u>sf(m)</u>	wire(m)	depth(m)	<u>sf'(m)</u>	<u>Δ'(m)</u>	<u> </u>	<u>k</u>	<u>∆t(min)</u>	<u>∆sf(m)</u>	$\Delta sf/\Delta t(m/min)$	<u>Ax(min)</u>	v(knots)
8 9	2032 2135	2012 2504	6127 6230	5509 5514	2670 2870	658 365	3.3 3.6	2.5 3.1	79 63	2012 493	25.5 7.8	1.549 .880	1.18 .84
tart 1913Z	2/14/78												
					Sta	tion 3	Poge	<u> </u>					
1	1451	1555	5869	5517	2002	435	4.5	3.5	68	1555	22.9	1.227	1.08
2	1520.5	2262	6098	5514	2592	330	3.9	3.4	29.5	707	24.0	.531	1.08
3	1556.5	2840	6371	5513	3170	330	3.4	3.0	36	578	16.1	.666	1.11
3a	1606.8	2839	6371	5514	3168	330	3.4	3.0	10	-1	0.1	.191	1.14
4	1624.5	3179	6550	5517	3508	330	3.1	2.8	18	340	18.9	. 315	1.05
5	1650	3588	6775	5527	3918	3 30	2.9	2.6	25 .5	409	16 . 1	. 472	1.11

Symbols are defined in figure 11. Some numbers may not be exact due to small depth inaccuracies in the initial calculations.

Table 12

•

•

-79-

.

do not necessarily affect the path of the heat flow probe. From an analysis of the known ship paths versus fish paths, we have estimated the fish path when only the ship path was known. These estimated paths are also shown in Figure 12. Given the fish paths and the ship/fish separation at the time of the heat flow measurements, we could straightforwardly plot the positions of the 8 pogo probe measurements discussed. Final locations for all of the heat flow measurements are given in tables 3 and 6.

We tried other methods of locating the heat flow probe, based on slightly different analyses of the data given in tables 10a-c. By this means, we were able to estimate the error of our empirically derived locations to be on the order of ± 350 meters. This error is relative to the acoustic navigation net. Ivers and Mudie (1973), using a complex three-dimensional dynamic model of towing a long cable at slow speeds, were able to reduce this error by a factor of two.

<u>Step 7 - Conversion of Digital Pressure Data to Actual</u> <u>Depths</u>

Initially, we felt that the digital pressure data would allow us to determine the depth at which any given measurement was taken with a high degree of accuracy. This was found not to be the case. However, we were able to produce bottom water temperature profiles accurate to within +15 meters, and with a precision estimated to

こうちょう あいまち しょうちょう しょうしん しょうしき しん

-80-

be on the order of +1 meter.

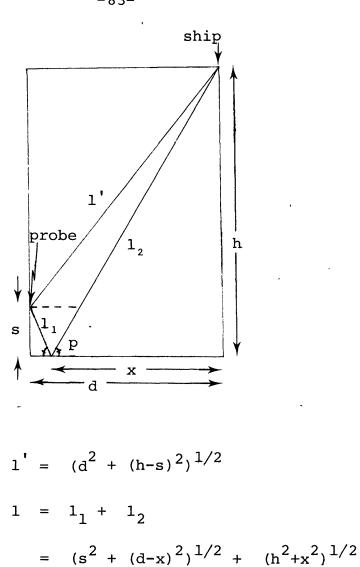
We know that over small depth ranges, the relationship between pressure and depth can be taken as linear. Furthermore, the heat flow instrument's electronics are designed such that the relationship between digital counts and actual pressure is as linear as possible. In order to determine the depth sensitivity of the pressure counts, it is necessary to know the actual depth at two times when we also know the pressure counts. Furthermore, to avoid any nonlinearities in the counts/depth relationship, it is best to pick these two depths as close to the actual depth range of interest as possible. For our uses, this depth range is the lowermost few hundred meters of the water column.

Because of the high density of ship tracks in the survey area and the small amount of seafloor relief, we were able to determine the ocean depth to within <u>+5</u> meters (from the bathymetry map). Thus, for any particular station, we used the ocean depth as one of our known depths. To determine the other depths, we had recourse to the PGR records. From these records, we could determine to within <u>+3</u> seconds, the penetration time, and the times when the direct and reflected signals from the 12 kHz pinger crossed on the PGR record. Hence, a method was developed to calculate the depths to which these

-81-

crossovers corresponded.

The geometry which we assumed is given in Figure 13. The ship is at a distance h above the seafloor. The pinger (situated next to the heat flow instrument) is at a distance s above the seafloor and is located a distance d away from the ship in a horizontal plane. The length l' is the direct travel distance from the pinger to the ship. The reflected travel distance has a length 1, equal to the sum of l_1 and l_2 . We will assume that over the distance d, the seafloor is flat. Reference to Figure 2 shows that this is true to within ± 25 meters. We could calculate d, the ship/fish separation at the crossover times and at penetration to within ± 25 meters for stations with fish navigation.


The PGR was set at a ,5 second sweep. The length of time the direct (t') and reflected (t) signals travel are given by,

t' = 1'/v' and $t = 21_1/v + q/v'$

where, $q = 1_2 - 1_1$.

v' is the average sound velocity above the pinger and v is the average sound velocity between the pinger and the seafloor. We expect the direct and reflected arrivals to cross over when the difference in their arrival times is

-82-

Geometry Used to Determine Probe Height Above Bottom

Figure 13

equal to an integral multiple of .5 seconds. The PGR converted travel time to meters under the assumption that the average sound velocity was a constant 1463 m/s (800 fm/s). Hence, crossovers occur when the distance between direct and reflected paths (1 - 1'), is equal to an integral multiple of 1463 $\cdot \Delta t$. Or,

$$1463.\Delta t = 1463.5n = 731.5 m$$

where Δt is given by,

$$\Delta t = (t - t') = 2l_1/v + (q - l')/v'.$$

Crossover depths occur when,

$$731.5n = 1463.(21_1/v + (q - 1')/v').$$

The travel lengths 1' and 1 are equal to,

$$1' = (d^2 + (h - s)^2)^{1/2}$$

 $1 = 1_1 + 1_2 = (s^2 + (d - x)^2)^{1/2} + (h^2 + x^2)^{1/2}.$

We can determine x by using the geometrical relationship,

$$tan(p) = h/x = s/(d - x).$$

This yields, x = h.d/(h + s).

The only remaining unknown are v', v and s. As a first approximation, we can assume that v = v' = 1463 m/s and that the pinger is directly beneath the ship (x = d = 0). Then crossovers would occur when,

$$731.5 = 1 - 1' = 2s$$
 or, $s = 365.8 \text{ m} (200 \text{ fm})$.

Using this first order approximation to s, we could calculate the depth to which v' and v corresponded. Using Matthews (1939), we were able to directly interpolate the the value of v' from his tables of harmonic mean vertical sounding velocity versus depth.

The mean sound velocity beneath the pinger, v, was found from Matthews (1939) as well, but by somewhat more indirect means. At 35.00 % salinity and 2.1 °C, near the bottom water temperature, Matthews (1939) gives the velocity of sound as 1455 m/s. The actual salinity will probably be greater than 35.00 % near the bottom, but the salinity correction is negligible (Matthews, 1939). The pressure (hence, depth) correction was found from Matthews' (1939) Table 5. The depth correction is quite linear in the range of interest; hence, the correction we chose was that corresponding to a depth half way between the pinger and the seafloor. This depth is given by, $h_c = h - \frac{1}{2}s$. The velocity obtained by this method should be similar to that obtained by adding the velocity at (h - s) to that at h and dividing by 2. Or, $v = (v_h + v_{h-s})/2$. This proved to be the case, indicating that in fact the pressure correction is linearly related to depth, at least near the seafloor.

With our estimated values of v' and v, we wanted to solve for s:

731.5n =
$$1463 \cdot (21_1/v + (1_2 - 1_1 - 1')/v')$$

= $1463 \cdot (2 \cdot (h^2 + x^2)^{\frac{1}{2}}/v + ((h^2 + x^2)^{\frac{1}{2}} - (s^2 + (d-x)^2)^{\frac{1}{2}} - (d^2 + (h-s)^2)^{\frac{1}{2}}))$

with, $x = h \cdot d/(h + s)$.

Rather than spend time on such a problem, we guessed at s and found the value (e) of,

731.5n - 1463
$$(21_1/v + (1_2 - 1_1 - 1')/v')$$
.

We used this value to help modify our estimate of s. The s which we finally used was that which minimized e. With this value of s, it was now possible to refine our estimates of v' and v. Typically, only the first iteration was needed to insure convergence of s. The accuracy of s is on the order of +5 meters.

The pressures counts corresponding to the distance s can be found from the digital printout (GEJB - Appendix A). The time interval between penetration and the crossover in question is first determined from the PGR record. This time interval is then converted to a number of cycles (28 seconds = 1 cycle). The penetration time is noted on the digital printout and the number of cycles are either subtracted or added to the penetration cycle time (in counts), corresponding to the probe being lowered or raised. It would be fortuitous if penetration occurred while the pressure variable was being recorded. Thus, it is usually necessary to interpolate the pressure counts. The number of rollovers (r) must be determined and 4096.r added to the pressure counts in order to obtain the total counts. A 3 second error in time corresponds to an error in cycles of .1. At the rate which the probe was moving vertically through the water column, this generally corresponded to an error in estimating pressure counts of 50.

The number of counts corresponding to the ocean depth could be determined from the portion of the digital record corresponding to the heat flow measurement. The error introduced with this determination was due entirely to an instrument drift of typically 10 counts over the course of the measurement. Given the estimates of pressure counts at the seafloor and for at least 1 crossover, we could determine the sensitivity of the pressure sensor in counts/meter.

However, in general, the zero in depth does not correspond to the zero in counts. Hence, a correction term corresponding to this difference must be subtracted from all count readings before converting to depths. The correction term can be determined given the slope (m) of the counts (c) versus depth (d) relationship (i.e. the pressure sensitivity) and one point where both counts and depth are known.

If the entire depth range is used (sea-surface to seafloor), the slope determined from crossovers can be checked. b can be determined from the digital printout while the probe is at the surface. This number, which fluctuates by as much as 40 counts, should be approximately equal to the correction determined from slope-intercept analysis. We would expect the two numbers to be exactly equal if the depth/pressure relationship was linear over its entire range and if we could neglect temperature effects to the instrument.

Over the lowermost 420 meters of the water column, we calculated the pressure sensitivities and corresponding b values given in table 13a. We see that for these stations, the resolution of the pressure sensor is on the order of .11 meters. The actual zero of depth corresponded to approximately 240 counts; the table shows varying degrees of nonlinearity in the counts/ depth relationship. We attempted to use these pressure sensitivities to calculate the depths of nearby heat flow measurements. We found that the amount of instrument drift between penetrations was large enough to make this method of calculating depths less reliable than simply reading the depths from the bathymetry map. For example, the station 6, penetration 6 sensitivity and b values applied to the penetration 7 pressure counts (47849) yield a depth of 5440 meters. Our estimate of the depth from the bathymetry map is 5434 meters, accurate to within +5 meters. Over the 440 meter range in which we calculated the pressure sensitivities, we estimate that they are accurate to within +.14 c/m. This represents a fractional error of less than 1.6 percent, a total error of less than 7 out of 440 meters. However, 1.6 percent of 5434 meters is 87 meters. It is surprising, then, that we did obtain an agreement of 6 meters for penetration 7; as other

-89-

Table 13a

Station	Penetration	Pressure Sensitivity(c/m)	<u>b(c)</u>	Pressure During Penetration(c)
6	1	8.869	-296	48645
6	4	9.072	-1602	47643
6	6	8.984	-1021	47796
7	16	8.485	1571	48081
9	1	8.776	257	47928

,

The Relationship Between Depth and Pressure Counts Stations 6-10

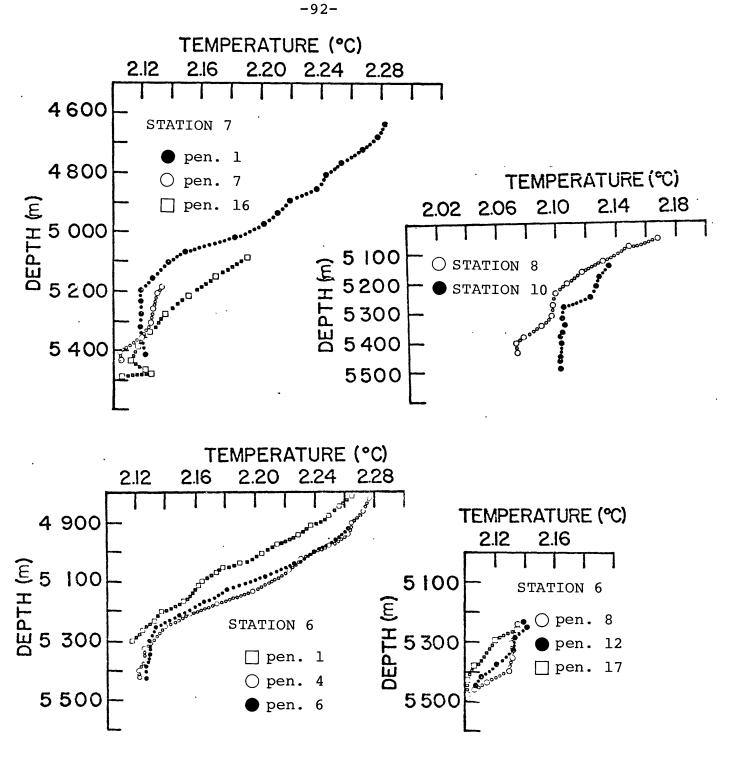
,

Table 13b

The Relationship Between Depth and Pressure Counts Stations 1-4

Station	Penetration	Pressure Sensitivity(c/m)	<u>b(c)</u>
2	1	11.1/	100
3	1	11.07	100

-90-

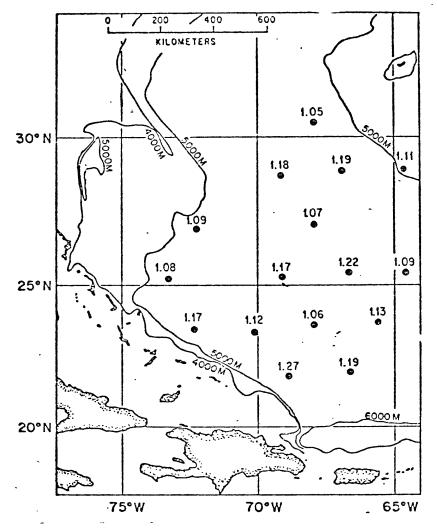

calculations showed, this was the closest agreement we ever obtained.

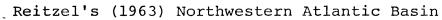
We could not calculate pressure sensitivities for most pogo probe penetrations because the probe was rarely raised more than a few hundred meters off the seafloor between penetrations. Hence, for the purpose of producing bottom water temperature profiles, we assumed a pressure sensitivity of 8.857 c/m for stations 6 through 10 in all instances when it was not directly calculable. During stations 1 through 4, the pressure sensitivity was greater, causing the pressure counts to go off scale at approximately 5000 meters depth. For these stations, we calculated pressure sensitivities by using the pressure counts at the crossover corresponding to n = 2 (s approximately 797 meters) and the observed value of b while the probe was at the surface. Table 13b shows that the pressure sensitivities calculated for stations 2 and 3 are in good agreement. Figure 14 show bottom water temperature profiles for station 6,

penetrations 1, 4, 6, 8, 12 and 17; station 7
penetrations 1, 7 and 16; and piston core stations 8 and
10.

We have noted that in the survey area, the bathymetry map generally proves a more reliable means of estimating ocean depths than the digital pressure counts. All of the depths of the heat flow measurements were initially

-91-

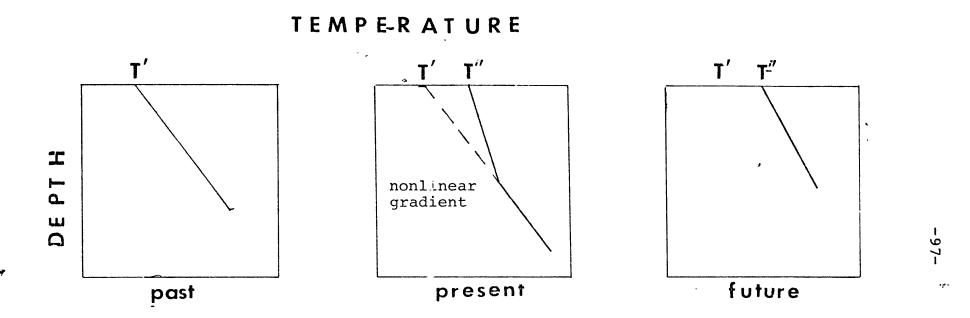

Bottom Water Temperature Profiles


interpolated from the bathymetry map. Because of the high density of ship tracks, most of the measurements were actually crossed over by the ship. Whenever possible we checked the depths obtained from the bathymetry map with those obtained directly from the echo-sounding records. Agreement to within ±5 meters was obtained in all cases. Tables 3 and 6 list our estimates of the ocean depth at the locations of the heat flow measurements. IV DISCUSSION AND INTERPRETATION OF THE THERMAL DATA

We have obtained 50 2.5 meter pogo probe and 5 piston core probe heat flow measurements. Two of the piston core probe measurements are not considered reliable because of the large errors associated with their temperature gradients. The 53 reliable measurements range from .92 HFU to 1.40 HFU with the vast majority lying between 1.1 HFU and 1.2 HFU. Their mean and standard deviation are 1.17 HFU and ^.08 respectively; we are fairly certain that this is . representative of the regional heat flux at depth.

Our data compare quite favorably with previous heat flow measurements obtained in the vicinity of the survey Reitzel (1963) obtains a mean heat flow form 16 area. measurements of 1.14 HFU, with a standard deviation of Figure 15 shows the locations of these measurements. .06. The standard deviation of Reitzel's values is unusually low because he has subjectively excluded certain stations based on their anomalous environment or location. The value of 1.17 HFU is located about 100 kms to the west of our survey area (Figure 15). Langseth et al. (1966) obtain a mean from 33 measurements of heat flow in the northwest Atlantic basin of 1.17 HFU, with a standard deviation of .24. However, it should be noted that the areal extent of these two surveys is on the order of

-94-


Heat Flow Values

millions of kms whereas our survey is confined to a 10 by 20 km area.

The nonlinearities present in the pogo probe thermal gradients can be explained by a recent temperature perturbation occurring at the sediment-water interface. Von Herzen and Uyeda (1963) discuss the implications for heat flow of recent sedimentation, turbidity currents and landslides and irregular subsurface topography. They note that, generally, these effects all serve to reduce the measured heat flow. Many authors (e.g. Palmasson, 1967; Talwani <u>et al</u>., 1971; Lister, 1972) have noted that hydrothermal circulation through the sediments can serve to greatly reduce the measured heat flux. However, we feel that the only plausible explanation of the nonlinear temperature gradients is a recent increase in the bottom water temperature. Figure 16 indicates schematically how this might occur.

Carslaw and Jaeger (1959) derive the formula for the temperature in a half space due to a periodic temperature change $(T_0 \cdot \cos(\omega t - \varepsilon))$ at the surface. The temperature is given by,

$$\mathbf{T} = \mathbf{T}_{\mathbf{0}} \cdot e^{-\mathbf{k} \cdot \mathbf{Z}} \cdot \cos(\omega t - \mathbf{k} \cdot \mathbf{z} - \varepsilon)$$

Schematic Showing How a Recent Change in Surface Temperature Can Affect the Temperature Gradient

٠

Figure 16

where,

z = distance from surface T_0 = initial maximum amplitude of perturbation k = ($\omega/2K$)^{1/2} K = thermal diffusivity = conductivity/($\rho.C_p$) ρ = density C_p = heat capacity

and the wavelength λ is,

 $\lambda = 2\pi/k = (4.\pi.K.P)^{1/2}$ where P is the period $2\pi/\omega$. If we ignore the phase and consider only the maximum amplitude, the temperature perturbation is $T = T_0 \cdot e^{-k \cdot z}$. The perturbation to the temperature gradient will be $dT/dt = -T_0 \cdot k \cdot e^{-k \cdot z}$. We know that the mean heat flow is about 1.2 HFU and that the average conductivity in the upper sediments is about 2.10^{-3} cal/°C.cm.s. We have seen that the nonlinearity in temperature gradient at a depth of 1 meter is, on the average, 10 percent of the actual gradient or $.1.(1.2.10^{-6}/2.10^{-3}) = 6.10^{-5}$ °C/cm. We can assume that the quantity $\rho.C_p$ is approximately 1 for oceanic sediments (Sclater, 1978). This yields a value of 2.10^{-3} cm²/s for the thermal diffusivity. Hence, the maximum temperature perturbation at the surface necessary to cause a 10 percent perturbation in the gradient at a depth of 1 meter is given by,

$$T_{o} = 6.10^{-5} / (k.e^{-100.k})$$

where, $k = (\pi/(K.P))^{1/2} = (\pi/(.002.P))^{1/2}$. For a surface temperature that oscillates with a 1 month period, the maximum temperature perturbation would have to be .03 °C to produce the observed nonlinearities. Furthermore, the wavelength of the oscillation would be about 2.5 meters.

Given this value for T_{o} , we calculated the expected perturbation in the temperature gradient at a depth of 2 meters In the Data Reduction section, by a as 1 to 2 percent. comparison with the deeper piston core gradients, we postulated that the nonlinearity might very well be on the order of a few percent at this depth (1.5 to 2.5 meters). Further evidence for a maximum surface temperature perturbation of .03 °C is displayed on our bottom water temperature profiles. Note in Figure 14 the tendency for the water temperature to decrease by .02 to .03 °C over the last 150 to 200 meters of the water column. In few cases do we observe a well-mixed isothermal bottom boundary layer. Indeed, that the bottom water had a variable temperature gradient as a function of depth at the time the heat flow measurements were obtained is good reason to suspect that the temperature at the sediment-water interface had been and still was changing. Since the water temperature tended to decrease nonlinearly with

-99-

depth near the seafloor, there is reason to believe that the bottom water temperature was even colder sometime before the cruise.

If we include the phase of the oscillation in our calculation we find a range of T_0 's and periods which would produce similar results. However, this range becomes quite confined if we desire the perturbation to the temperature gradient to decrease from 10 percent at a depth of 1 meter in the sediment column to less than a few percent at a depth of 2 meters in the sediment column. For example, it would be impossible to obtain this behavior with an annual temperature oscillation, regardless of the values of the maximum temperature perturbation T_0 , and of the time t since this maximum temperature perturbation occurred.

A periodic temperature change at the surface can explain the thermal gradient data. However, the data can be as equally well explained by invoking a step function increase in the temperature of the bottom water (Figure 16). A step change in temperature (T_0) at the sedimentwater interface (z=0) would be propagated downward according to the relation,

 $T = T_0.erf[z/(4.K.t)^{1/2}]$

-100-

with the same definitions as before (Carslaw and Jaeger, 1959). The temperature gradient that results solely from the change in surface temperature is obtained, as before, by differentiating this equation with respect to z. Or,

$$dT/dz = T_0 \cdot (\pi \cdot K \cdot t)^{-1/2} \cdot e^{[-z^2/(4 \cdot K \cdot t)]}$$

Given a K of .002 cm²/s, we want to know the magnitude of the temperature perturbation and the time it takes for this perturbation to cause a 10 percent error in the gradient (g_1) measured at z = 100 cm and a 2.5 percent error in the gradient (g_2) measured at z = 200 cm. As with the periodic temperature perturbation, we assume a background gradient of 6.10^{-4} °C/cm yielding a g_1 equal to 6.10^{-5} °C/cm and a g_2 equal to $1.5.10^{-5}$ °C/cm. The simultaneous equations which we want to solve for T_o and t are,

$$g_{1} = 6.10^{-5} = T_{0} \cdot (.002.\pi.t)^{-1/2} \cdot e^{(-1.25.10^{6}/t)}$$
$$g_{2} = 1.5.10^{-5} = T_{0} \cdot (.002.\pi.t)^{-1/2} \cdot e^{(-5.10^{6}/t)}.$$

Taking the natural logarithm of g_1/g_2 and solving for t yields,

$$-102-$$

t = 3.75.10⁶/ln(g₁/g₂).

Then, we can invert the equation for g_1 (or g_2) to find T_o as,

$$T_o = g_1 \cdot (.002.\pi.t)^{1/2} \cdot e^{(1.25.10^6/t)}$$

We see that the propagation time is dependent only on the ratio of g_1 to g_2 and not on the absolute magnitudes of these gradient perturbations. Our initially chosen error contrast of 4 yields a propagation time of 31 days and a surface temperature change of .012 °C. Table 14 gives values of t and T_0 as a function of g_2 . From this table we see that a gradient contrast of about 4, between a z of 100 and 200 cms, requires the smallest surface temperature perturbation. The data also indicate that the perturbation must be on the order of a few tenths of a degree.

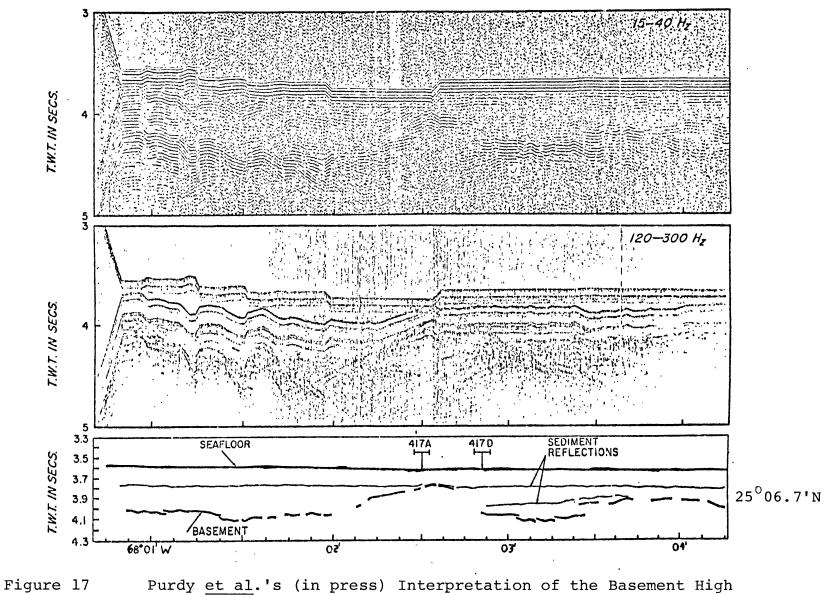
We have seen that the bottom water temperature variations can explain the shallow nonlinearities observed in the thermal gradient. Can other effects also explain The small interval over which a the nonlinearities? significant nonlinearity is present excludes as an explanation rapid sedimentation effects. Sclater et al. (1976) have shown that in well sedimented areas, where the basement material is covered by a layer of impermeable

·

Table 14

-

2

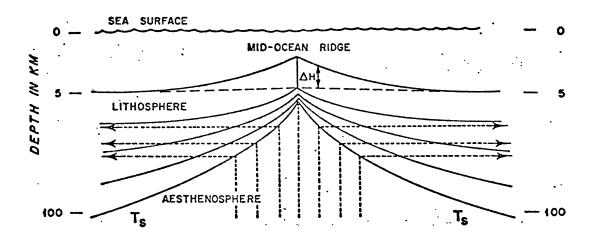

The Relationship Between Bottom Water Temperature Perturbation, Time and Gradient Perturbation at 2 Meters Depth

percent error	^g _z (.10 ⁵ °C/cm)	g _{1/g2} (error contrast)	<u>t(days)</u>	<u>To(°C)</u>
.01	.006	1000	6	.035
.1	.06	100	9	.020
1	.6	10	19	.013
1.25	.75	8	21	.013
2.5	1.5	4	31	.012
3.33	2	3	40	.013
4	2.4	2.5	47	.013
5	3	2	63	.014
10	6	1	œ	ω

background gradient = $6 \cdot 10^{-4}$ °C/cm percent error at 1m = 10, $g_1 = 6 \cdot 10^{-5}$ °C/cm sediments, hydrothermal circulation effects are not observed. We are confident that all of our heat flow measurements are located in A environments (Sclater <u>et al.</u>, 1974). Furthermore, if hydrothermal circulation were occurring, we would expect a much greater scatter in the heat flow data. Thus, we are able to rule out convective heat transfer as a possible perturbing effect to the shallow temperature gradients.

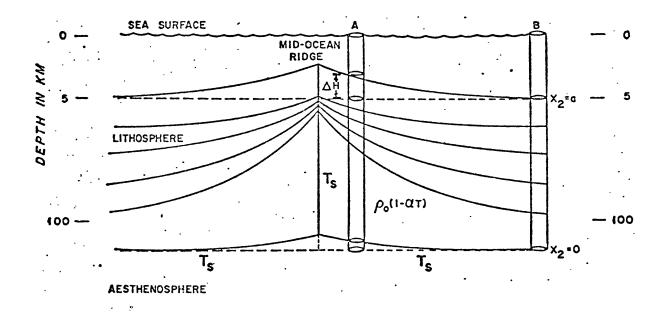
The deep towed hydrophone data are able to resolve a basement high that occurs at approximately 25°06.7'N, 68°02.8'W (Purdy <u>et al.</u>, in press). Figure 17 shows the actual reflection data, filtered at two different frequency ranges, and Purdy <u>et al.'s</u> (in press) interpretation. Because of the consistency of the heat flow data across this feature (figure 2), it is not readily apparent that thermal refraction has affected the heat flow measurements. Further analysis of the effects of this subsurface topography is planned. If we assume that the basement high is a two-dimensional feature, we can use Sclater and Miller's (1969) finite difference method to compute the surface heat flow across the high.

Hyndman et al. (1972) have obtained a value of 1.26 HFU from an 800 meter deep drill hole on Bermuda. This value has been corrected for the topographic effect and radioactive heat generation of the Bermuda seamount and the difference between seafloor and land surface


in the Survey Area

-105-

temperatures. The value is only slightly greater than our mean of 1.17 HFU. This general agreement supports Crough's (in press) suggestion that the reheating of midplate hot-spot swells occurs mostly in the lower part of the lithosphere. Furthermore, as Crough (in press) states, if the heat that supports mid-plate swells is intruded, then it rises vertically from the aesthenosphere and the source of the heat is probably as wide as the surface relief of the swell.


Discrimination between the plate and boundary layer models for the creation of oceanic lithosphere has awaited precise heat flow measurements from older oceanic basins. The age of the oceanic basement underlying the survey area has been calculated from the magnetic time scale of Larson and Hilde (1975) as 110 Ma. A schematic of the thermal boundary layer model showing the material flow (dashed lines) and the concept of a thickening lithosphere is shown in Figure 18a. The solidus temperature T_s is the isotherm that represents the temperature between solid and partially molten states. The solid lithosphere above is cooler than T_s and the aesthenosphere below is hotter. Isothermal surfaces within the cooling lithosphere are indicated by solid lines. ΔH is the elevation of the ridge crest. Parsons and Sclater (1977) derive a

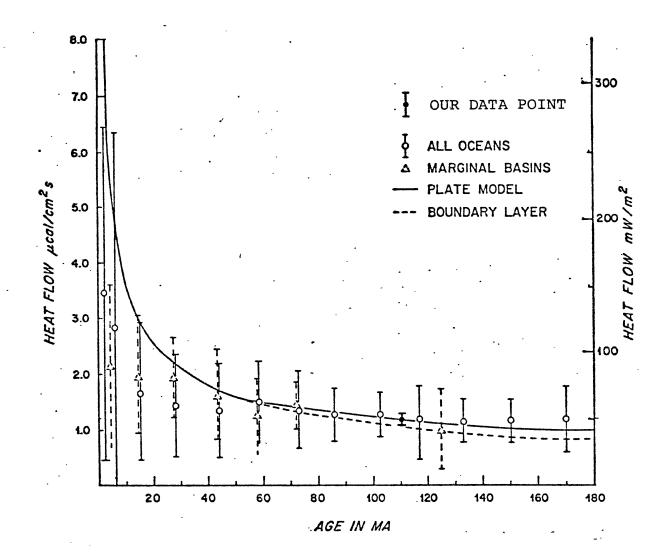
-106-

a. The Thermal Boundary Layer Model

b. The Plate Model

Oceanic Cooling Models

.


relationship for the heat flow (q_b) as a function of the age of the oceanic basement for the boundary layer model as,

$$q_b = 11.3/(t)^{1/2}$$
 q_b in HFU, t in Ma
0

The plate model (a more complex kind of boundary layer model), which assumes a constant temperature T_s at the base of the lithosphere, gives a much better match to the elevation of older oceanic crust (Parsons and Sclater, 1977). Figure **18b** is a schematic showing various facets of this model. The elevation ΔH is calculated by assuming that columns A and B of equal cross-sectional area must have equal masses above a common layer $x_2 = 0$. Sclater <u>et al</u>. (in press) give the following relationship between heat flow (q_p) and the age of the oceanic basement for the plate model:

 $q_p = .9 + 1.6.e^{-t/62.8}$ q_p in HFU, t in Ma t>60 Ma

Figure 19 is a plot of Sclater et al.'s (in press) oceanic heat flow averages superimposed on the plate and

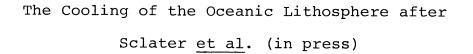


Figure 19

-109-

boundary layer model cooling curves. Note that for young oceanic ages, the plate and boundary layer models are identical (Parsons and Sclater, 1977) and that the observed conductive heat flow falls well below the predicted values. Sclater <u>et al</u>. (in press) have shown that as much as 28% of the oceanic heat loss is due to hydrothermal circulation through the impermeable sediments which overlie younger oceanic crust. Using an age of 110 Ma yields a q_b of 1.08 HFU and a q_p of 1.18 HFU. Our estimated value of the regional heat flow is $1.17 \pm .08$ HFU. This point has been plotted in Figure 19. Our suite of measurements has been obtained over a small area of thick (>300 m) sediment cover on crust of well-defined age. Hence, we believe that our data bear out the validity of the plate model for older oceanic lithosphere.

There have been few well designed (e.g. A environment, well known basement age) closely spaced heat flow surveys carried out on older (>100 Ma) oceanic crust. Our data, although fitting the above criteria cannot be accepted as unreservedly distinguishing between the plate and boundary layer models. We have obtained only 3 reliable measurements that penetrated more than 2.5 meters into the sediment column. Furthermore, because our data lie on the southern part of the Bermuda Rise, we face uncertainties due to the problem of additional heat input at the base of the lithosphere during the formation of the Rise.

Hyndman <u>et al</u>. (1972) show that the present island was probably formed about 33 Ma ago by lamprophyric intrusions into a structure that was then some 40 to 80 Ma old. The thermal time constant of the oceanic lithosphere is on the order of 50 to 60 million years (Parsons, personal communication). If the heat transport was entirely conductive, we would not expect to observe a thermal anomaly from a heat intrusion which occurred 33 Ma ago at the base of the lithosphere. However, if the heat intrusion involves material flow to the surface via cracks in the lithosphere or melting of the lithosphere, the thermal time constant could be appreciably smaller.

The time scale of the original formation of the Bermuda Rise (70 to 110 Ma ago), does not preclude the possibility that the original lithospheric reheating still affects the surface temperature gradient. However, Parsons and Sclater (1977) have shown that the depth of the older ocean basins can best be described by the following formula,

$$d(t) = 6400 - 3200 e^{-t/62.8}$$
 t in Ma
d in meters
t >20 Ma

-111-

This yields an equilibrium depth of 5845 meters for a t The depth to the seafloor in our survey area of 110 Ma. is on the average, 5500 meters. From table 1 it can be seen that there is about 300 meters of sediment overlying the basement in the survey area. Depending on the density of these sediments, the loading effect is on the order of 3/10 to 1/2 of the thickness of the sediments. Following Parsons and Sclater (1977), we choose a correction factor of .3 and arrive at an average depth to basement of 5710 meters. The difference between this depth and the depth predicted from models which account for the conductive cooling of the lithosphere is 135 meters. This is about 1/2 of the estimated scatter expected in the depth-age relationship in the North Atlantic (Parsons and Sclater, 1977). Thus, the argument can be made that if this part of the Bermuda Rise has subsided to a depth near equilibrium, the thermal anomaly which accounted for the initial uplift of the seafloor must also have entirely decayed. On the other hand, it is worth noting that the depth-age relationship derived by Parsons and Sclater (1977) is in part based on depth data from the Bermuda Rise. If the relationship is biased by data from this area, our subsidence argument may be circular. More deeply penetrating (>3 m) heat flow measurements, from old oceanic basins (>110 Ma), far from the sites of more recent upper mantle temperature perturbations (e.g. hot-spots, trenches), would greatly

-112-

aid our interpretation and arguments.

Finally, we wish to compute the temperature of the upper mantle beneath the survey area. We assume a 10 km thick crustal layer with a heat generation of between 1 and 2 HGU $(10^{-13} \text{ cal/cm}^3)$. These heat generation values bracket the published estimates for basalt and gabbro (Sclater et al., 1979). Therefore, the corresponding contribution to the surface heat flux is between .1 and .2 HFU. Thus, the heat flow from the mantle (q_m) is $1.02 \pm .13$ HFU. The temperature at the base of the crust is given by,

$$T_{m} = (q_{m} \cdot d) / K + \frac{\int_{0}^{d} \int^{z} A(t) dt dz / K}{K}$$

where d is the thickness of the crust, K is the thermal conductivity, assumed to be constant and A(z) is the vertical radioelement distribution function, in this application, also assumed to be constant. The second factor reduces to $Ad^2/2K$. Following Sclater <u>et al</u>. (in press), we have chosen an average thermal conductivity for the crust of $6 \cdot 10^{-3}$ cal/°C·cm·s. Thus, with our calculated value of q_m , we arrive at a T_m of 182 ± 27 °C.

-114-

BIBLIOGRAPHY

- Bookman, C.A., I. Malone, and M.G. Langseth, Sea floor geothermal measurements from Vema cruise 26, Columbia University Technical Report, 7-CU-7-73, 1973.
- Bryan, W.B., P.T. Robinson, et al., Studying oceanic layers, Geotimes, 22, July/August, 22-26, 1977.
- Bullard, E.C., The flow of heat through the floor of the Atlantic Ocean, Proc. Roy. Soc. London, A, 222, 408-429, 1954.
- Carslaw, H.S., and J.C. Jaeger, <u>Conduction of Heat in</u> <u>Solids</u>, 510 pages, Oxford Uiversity Press, London, <u>1959</u>.
- Correy, C., C. Dubois, and V. Vacquier, Instrumentation for measuring the terrestial heat flow through the ocean floor, J. Mar. Res., 26, 165-167, 1968.
- Crough, S.T., Thermal origin of mid-plate hot-spot swells, Geophys. J. Roy. Astr. Soc., in press.
- Crough, S.T., and G.A. Thompson, Numerical and approximate solutions for lithospheric thickening and thinning, Earth and Plan. Sci. Letters, 31, 397-402, 1976.
- Donnelly, T.W., J. Francheteau, et al., Mid-Ocean ridge in the Cretaceous, Geotimes, 22, June, 21-23, 1977.
- Flower, M.F.J., M.H. Salisbury, et al., DSDP Cretaceous crust sought, Geotimes, 22, September, 20-22, 1977.
- Galson, D., Oceanic heat flow, unpublished manuscript, 10 pages, December, 1976.
- Gerard, R., M.G. Langseth, and M. Ewing, Thermal gradient measurements in the sater and bottom sediment of the western Atlantic, <u>J. Geophys. Res.</u>, <u>67</u>, 785-803, 1962.
- Hoskins, H., and R.C. Groman, Informal report to IPOD site survey management on surveys at IPOD sites A2.2 and 2.3, unpublished manuscript, 21 pages, October, 1976.

- Hunt, M.M., W.M. Marquet, D.A. Moller, K.R. Peal, W.K. Smith, and R.C. Spindel, An acoustic navigation system, Woods Hole Oceanographic Institution Technical Report, WHOI-74-6, 1974.
- Hyndman, R.D., G.K. Muecke, and F. Aumento, Deep Drill 1972. Heat flow and heat production in Bermuda, Canadian J. of Earth Sci., 6, 809-818, 1974.
- Ivers, W.D., and J.D. Mudie, Towing a long cable at slow speeds: A three-dimensional model, Mar. Tech. Soc. Jour., 3, 23-31, 1973.
- Langseth, M.G., Techniques of measuring heat flow through the ocean floor, in <u>Terrestial Heat Flow</u>, <u>Geophysical</u> <u>Monograph 8</u>, edited by W.H.K. Lee, Chapter 4, pages 58-77, American Geophysical Union, Washington, D.C., 1965.
- Langseth, M.G., X. Le Pichon, and M. Ewing, Crustal structure of the mid-ocean ridges, 5-Heat flow through the Atlantic Ocean floor, and Convection currents, J. Geophys. Res., 71, 5321-5355, 1966.
- Larson, R.L., and T.W.C. Hilde, A revised time scale of magnetic reversals for the early Cretaceous and late Jurassic, J. Geophys. Res., 80, 2586-2594, 1975.
- Lister, C.R.B., On the thermal balance of a mid-ocean ridge, <u>Geophys. J. Roy. Astr. Soc.</u>, <u>26</u>, 515-535, 1972.
- Lister, C.R.B., The dependence of heat flow on age, paper presented at the 16th IUGG General Assembly, Grenoble, 1975.
- Lister, C.R.B., Estimators for heat flow and deep rock properties based on boundary layer theory, in <u>Heat</u> <u>Flow and Geodynamics</u>, edited by A.M. Jessop, <u>Tectonophysics</u>, 41, 157-171, 1977.
- Matthews, D.J., Tables of the velocity of sound in pure water and sea water for use in echo-sounding and sound-ranging, 2cd ed., Hydrographic Department, Admiralty, London, 52 pages, 1939.
- Palmasson, G., On heat flow in Iceland in relation to the Mid-Atlantic Ridge, in Iceland and Mid-Ocean Ridges, edited by S. Bjoinsson, Soc. Sci. Islandia, 38, 111-117, 1967.

Parsons, B., and J.G. Sclater, An analysis of the variation of ocean floor bathymetry and heat flow with age, J. Geophys. Res., 82, 803-827, 1977.

- Purdy, G.M., J.I. Ewing, and G.M. Bryan, A deep towed hydrophone seismic reflection survey around IPOD sites 417 and 418, submitted to J. Geophys Res., 1979.
- Reitzel, J.S., A region of uniform heat flow in the north Atlantic, J. Geophys. Res., 68, 5191-5196, 1963.
- Sclater, J.G., C. Jaupart, and D. Galson, The heat flow through continents and oceans, <u>Reviews of Geophys</u>., in press.
- Sclater, J.G., J. Crowe, and R.N. Anderson, On the reliability of oceanic heat flow measurements, J. Geophys. Res., 81, 2997-3006, 1976.
- Sclater, J.G., and S.P. Miller, A machine method for computing the effect of a two-layered conductivity structure, Tech. Memo. 198, Mar. Phys. Lab. Scripps Inst. of Oceanogr. La Jolla, CA, 1964.
- Sclater, J.G., R.P. Von Herzen, D.L. Williams, R.N. Anderson, and K. Klitgord, The Galapagos spreading center, heat flow low on the north flank, <u>Geophys.</u> J. Roy. Astr. Soc., 38, 609-626, 1974.
- Talwani, M., C.C. Windisch, and M.G. Langseth, Reykjanes Ridge crest: A detailed geophysical study, <u>J.</u> Geophys. Res., 76, 473-517, 1971.
- Von Herzen, R.P., and R.N. Anderson, Implications of heat flow and bottom water temperature in the eastern equatorial Pacific, <u>Geophys. J. Roy. Astr.</u> Soc., 26, 427-458, 1972.
- Von Herzen, R.P., and A.E. Maxwell, The measurement of thermal conductivity of deep-sea sediments by a needle probe method, <u>J. Geophys. Res.</u>, <u>64</u>, 1557-1563, 1959.
- Von Herzen, R.P., G. Simmons, and A. Folinsbee, Heat flow between the Caribbean Sea and the Mid-Atlantic Ridge, J. Geophys. Res., 75, 1973-1984, 1970.

-117-

.

APPENDICES

	Ē	page
А	Step 1 - Cassette Tape to 9-Track Tape	118
В	Step 2 - Segmentation of the Digital Data	127
С	Step 3 - Plotting of the Digital Data	133
D	Step 4 - Conversion of Digital Thermistor Data to Temperature Data	140
Е	Conversion of Pogo Probe Temperature Data to Temperature Gradients	148

APPENDIX A

.

	page
1.	Step 1 - Cassette Tape to 9-Track Tape119
2.	Listing of Ken Green's program that accomplishes gross processing of digital data121
3.	Job control statements necessary to run Ken Green's program122
4.	Sample of 9-track tape printout from station 7, showing first two penetrations123

•

•

Step 1 - Cassette Tape to 9-Track Tape

Each heat flow station, whether a single piston core measurement or a multipenetration pogo probe station, is contained on one side of a cassette tape in binary form. The cassette tape is first transferred via a special interface with the computer to a 9-track magnetic tape. For our data, the tape was labelled GEJA. This tape could then be edited - any sort of gross errors in the data sets could be located and processed. To this end, a computer program was written by Ken Green. The program reads the digital data from tape GEJA and writes it out sequentially on a new 9-track tape (which in the present case, was labelled GEJB). One record on the sequential 9-track tape contains 100 of the 28 second records on the cassette tape. As previously mentioned, each 28 second record contains 14 separate binary numbers. The contents of tape GEJB, the edited 9-track tape, are then printed out on a line printer. A listing of this program and the job control statements necessary to run it are given below. A more precise explanation of what occurs during this step can be found in Green (in prep.)

We also give a sample of the print-out from station 7. Sixteen measurements of heat flow were obtained during this station although only the first two penetrations are shown. A thermistor value of 2049 is an off scale reading. Note that the last column, denoted as delta,

-119-

contains a quantity which is calculated in the program and is not recorded on the cassette tape. Delta is the difference between the number of counts (F) corresponding to the full scale calibration resistance (R_F) and the number of counts (Z) corresponding to the zero scale calibration resistance (R_Z). Delta is a measure of instrument data quality and it should remain fairly constant during a given station.

1•	C PROGRAM TO READ DHE DATA FROM CARP TAPE AND WRITE BINARY RECOR
Ž	5 BF 1400=100 INPUT RECORDS PLUS SEQUENCE NUMBER
	C MODIFIED TO OUTPUT INPUT RECORDS TO LINE PRINTER 16 MARCH 78
	INTEGER CR/105/.LP/108/.MT1/4/.MT8/5/
5.	INTEGER [BUF(1000), R/12/, IN(13), BUT(1400)
	CALL SETSKP(IND)
7.	READ(CR, 1)NFIL1,NFIL2
	1_F0RMAT(2G)
9.	IF(NFIL1.E9.1)G8 T0 10 CALL SKPFIL(MTI,NFIL1-1)
_10.	
11.	. IF(IND • NE • 2) WRITE(LP, 2) IND
	2_FORMAT(!SKPFIL_ERROR_IND:")G) 3_FORMAT(!SIGMA7_READ_FRROR_IN_FILE!,X,G,X, 'RECORD!,X,G)
13.	<u>4 FORMAT('WRITE ERROR IN FILE',X)G,X,'RECORD',X,G,X,'KERR=',G)</u>
10.	10 CONTINUE D0 500 NFIL=NFIL1/NFIL2
10.	CALL CASSFORM(IBUF,MTI,LP,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R,R)
17.	CALL CASSERR(ISI, NCHAR, IERR, ISEQ)
	KRECLEN=0
19.	KRELLEN=0
21.	D0 100 NPEC=1,2600
23.	08 50 JRFC=1,100 D0 20_I=1,13
	IN(I)=0
25.	20. CONTINUE
27.	CALL CASSREC(IN(1), IN(2), IN(3), IN(4), IN(5), IN(6), IN(7), IN(8),
	<pre>\$IN(9), IN(10), IN(11), IN(12), IN(13))</pre>
29.	
31.	IF(ISI+EQ+3)KRECLEN=KRECLEN+1
	IF(ISI • ER • 4) KCARP=KCARP+1 ·
33.	IF(ISI+EQ+5)WRITE(LP,3)NFIL,100+NREC+JREC
34 •	G0 T0 31
35.	30 CONTINUE
36.	ICAL=IN(13)-IN(3)
37.	WRITE(LP,5)ISEQ,(IN(1),I=1,13),ICAL
38.	5 FORMAT(1X, 1516)
39.	31 CONTINUE
40.	0UT(K)=ISE0
41.	K=K+1
_42+	D0.40. I=1/13
43.	BUT(K)=IN(I)
44 .	KeK+1
45.	40 CONTINUE
46.	50_C3NTINUE
47.	JREC=JREC=1.
48	60 CONTINUE
49.	CALL BUFF BUT (MT0, 1, BUT, 14* JREC)
	80. IF(ICHECK(MT9, ISTAT, NPTS, KERR) +E0+1)60 TO 80
51.	IF (ISTAT.EQ.4) WRITE (LP,4) NFIL, NREC, KERR
53.	100 CONTINUE
	110 CONTINUE
55.	END FILE MTO
	WRITE(LP, 200) NFIL, NREC
57.	WRITE(LP, 201) KRECLEN, KCARP
	200 FORMAT('FILE NUMBER ', X, G, X, 'CONTAINS', X, G, X, 'OUTPUT RECORDS' 201 FORMAT('LENGTH ERRORS=', G, SX, 'CARP ERRORS=', G)
59.	201 FORMATTILENGTH ERRORSETJGJSAJTCARP ERRORSETJGJ
60.	500 CONTINUE
	END FILE MTO

.

-121-

.

15

Figure Al

Job Control Statements Necessary to Run Ken Green's program

!JOB account,ID !LIMIT (9T,2),(CORE,10),(TIME,5) !MESSAGE TAPE GEJA ON 9T TAPE IN I/O RACK NORING !MESSAGE GEJB ON 9T **WRITE** !FORTRAN LS,GO

.

•

-program-

•

!ASSIGN F:4,(DEVICE,9T),(SN,GEJA),(IN) !ASSIGN F:5,(DEVICE,9T),(SN,GEJB),(OUT) !LOAD (GO),(UNSAT,(3)) !RUN !EOD

Table Al

Sample of 9-Track Tape Printout from Station 7 Showing First Two Penetrations

<pre> J. * 198**********************************</pre>																	
 • USUAL V3. *7 CASSETTE 4CC*35 FEE *TANL 4KC945 * M5. *1 & *17. *00.** * M5. *10.** * M5. *10.***<	JA + FORMAT CODE																
11 - M. 0F 16 417 -UNCO PCZ (ASECTTE 42C040 TAL 12 - 5. 217120 / 7000 + TAL 12 - 5. 217120 / 7000 + 13 - 5. 216 204 2049 2049 2049 2049 2049 2049 2049												Cero					
TAFL 1024 R0+5000 9+5. 1 . 5 . 114 A25 20+9 70+9 70+9 20+9 20+9 20+9 20+9 20+9 70+9 70+9 70+9 3225 20+9 9 . 7 . 129 A25 20+7 20+9 70+9 20+9 70+9 20+9 70+9 20+9 70+9 3255 20+7 9 . 235 P71 20+9 70+9 70+9 20+9 70+9 20+9 70+9 20+9 70+9 20+9 3355 20+7 9 . 235 P71 20+9 70+9 70+9 20+9 70+9 20+9 70+9 20+9 70+9 20+9 3355 20+7 1 . 10 439 870 20+9 70+9 70+9 20+9 20+9 20+9 20+9 20+9 20+9 3350 20+9 9 . 10 439 870 20+9 70+9 70+9 20+9 20+9 20+9 20+9 20+9 20+9 20+9 3350 20+9 1 . 1397 874 20+9 70+9 20+9 20+9 20+9 20+9 20+9 20+9 20+9 30+9 3360 20+4 1 . 1397 874 20+9 70+9 20+9 20+9 20+9 20+9 20+9 20+9 20+9 30+9 3360 20+4 1 . 1397 874 20+9 70+9 20+9 20+9 20+9 20+9 20+9 20+9 20+9 30+9 3360 20+4 1 . 1397 874 20+9 70+9 20+9 20+9 20+9 20+9 20+9 20+9 20+9 2											- 2			•			
RotoD00 RotoD000 RotoD000 RotoD000 RotoD0000 RotoD00000 RotoD00000000 RotoD00000000000000000000000000000000000					ATION .	7 P069	٠.										• • •)
1 5 11 825 2049 <th></th> <th></th> <th></th> <th></th> <th>-</th> <th>•</th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>					-	•		-									
2 . 6 . 3 2 2 2 2 2 2 3 2 2 3 2 2 3 2 3 2 2 3			/00			825	2049	2049	2049	2049	2049	2049	2049	2349	2049	3293	24.8
- 8 233 - - 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 3 2 3 2 3 3 2 3 3 2 3 3 3 2 3		5		. 6.											-		2516
b g 235 247 2049 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th>-</th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th>									-		-		-				
• 10 439 870 20+9 </th <th></th> <th></th> <th>-</th> <th></th>			-														
7 11 631 872 20-9 20								-								-	
y 1. 1397 87.4 20.49 <th></th> <th>-</th> <th></th> <th></th> <th></th> <th>- · ·</th> <th></th>												-				- · ·	
10 14 18 19 72 20+9																	
11 15 2004 271 2049					-												
id id<																	
13 17 3014 A72 20+3 20+3 20+9				-						-							
19 19 374 805 20.49 <th></th> <th></th> <th></th> <th>17</th> <th>3014</th> <th>Ŗ72</th> <th>20+9</th> <th>2349</th> <th>2049</th> <th>2049</th> <th>20-9</th> <th></th> <th></th> <th></th> <th>2049</th> <th>3360</th> <th>2458</th>				17	3014	Ŗ72	20+9	2349	2049	2049	20-9				2049	3360	2458
ib 20 97 5c/8 20.9<																	
1 21 499 56.6 20.99 20.93 33.55 24.37 22 22.6 62.6 40.6 27.13 33.55 24.29 20.10 33.55 24.29 24 10 63.0 16.3 16.56 20.99 27.97 33.55 24.29 25 29 37.36 66.0 17.57 37.66 37.3 31.9 27.97 33.55 24.29 24.33 24.13 24.56						-											
is 22 904 For 2049<					•	-											
20 24 1726 184 254 214 195 210 154 164 1355 2441 21 25 214 404 2431 3294 3569 2454 1645 2357 1434 1643 3357 2449 22 26 P524 800 244 4046 2431 3294 3559 2512 2353 1537 1649 1533 3255 2422 29 3736 Pb33 P403 P40 P334 P331 P332 P100 P1354 P355 2422 29 3736 Pb33 P40 P334 P333 P1179 P335 2437 20 34 840 P40 P330 P1079 P1070 P1071 P33 P1719 P335 P237 P1180 P337 P1719 P335 P237 P1180 P333 P317 P333 P333 P333 P333 P333 P333 <	·							2049		50+3		2049					
21 25 21/24 40.66 21/25 22/20 10/20 13/24 10/20								-									
22 26 26 26 26 26 26 26 26 26 20 235 24*7 24 26 2331 603 355 1355 125 275 265 316 1355 212 2355 110 3355 242 25 29 373 60 374 405 275 3220 1971 2747 2719 3355 2420 26 30 34 80* 310 286 3415 4035 975 3220 1971 2747 856 2440 27 847 856 1277 87 856 1271 1335 659 1473 313 455 1277 847 856 1277 2456 3353 2432 30 34 340 1655 1372 1107 138 354 1710 3353 2432 31 343 326 840 2570				-												-	
23 27 2926 Ack 3715 37372 1753 2665 3005 2247 2983 1220 2010 3355 24412 25 29 3736 P605 3791 3453 1856 2645 2012 37373 312 1139 3355 2442 24 31 864 330 2466 334 1130 557 1504 1957 3556 24437 24 31 356 177 87 876 1974 1355 257 3552 24437 30 34 302 861 1454 144 422 1606 2604 1107 138 854 1710 3355 24437 31 35 329 940 2511 1875 1352 1470 1107 1355 1434 144 326 3357 1416 2513 1416 2513 1416 2513 1416 1416 1416															-		
25 29 3724 #85 3791 3453 1855 224 2815 2033 657 1604 1954 3354 2433 26 30 38 84 300 344 405 95 3220 1991 274 2719 3354 2433 28 32 410 860 777 87 636 1270 138 854 1710 3354 2432 30 34 302 801 1458 1444 432 1266 2042 1507 1375 3157 1406 3354 2432 31 35 329 1620 1633 914 1877 1516 2437 32 34 34 244 1645 1376 2371 2511 13721 2509 1533 2433 343 3353 2437 34 38 264 2657 2670 2771 1377 2426 3333														1820			
26 36 364 336 286 341 435 95 3520 1991 27.37 27.19 335.8 2423 26 31 417 863 550 955 3664 314 1139 356 2433 26 32 400 862 833 911 279 849 170 135 854 1710 335.8 24.32 30 362 861 1453 1444 422 189 170 150 135.3 344 159 1577 24.66 335.2 24.22 31 35 327 24.37 1825 1255 1259 1274 24.0 335.4 24.32 33 37 24.8 84.2 24.27 131 21.5 1259 1274 137.2 1274 137.2 1274 137.2 1274 137.2 1274 137.2 1273 135.2 137.2 1433 133.2 132	•																
2/ 31 4.7 6.3 5.45 2.95 36.64 334 1130 5.93 3733 312 1139 335.6 2.4433 29 34 400 Re2 833 915 2.79 R89 1709 1107 138 85.4 1710 335.4 2.4433 30 34 400 Re2 R81 1709 1107 138 85.4 1710 335.4 2.4433 30 34 400 R62 833 915 2.79 R84 164.9 2.130 1518 855 1577 2.442 335.4 2.442 31 35 36 314 864 2.594 2.611 1823 2.549 3.407 335.7 2.443 34 38 2.64 864 2.594 2.611 2.513 2.443 2.643 3.441 3.355 2.443 35 36 36 2.645 2.655 2.657						-			-								
28 32 410 861 7.6 7.7 8.7 636 1245 781 355 659 1497 325. 2492 30 34 302 801 1448 432 1066 2042 1507 138 854 1710 335. 2442 31 35 327 823 1455 1955 1322 1870 2411 2335 1244 333 244.2 335.3 244.2 335.4 244.2 335.4 244.2 335.4 244.2 335.4 244.2 335.4 244.2 335.4 244.2 335.4 244.2 335.4 244.2 335.4 244.2 335.4 244.2 335.4 244.2 335.2 244.3 335.2 244.3 335.2 244.3 335.2 244.3 335.2 244.3 335.2 244.3 347.3 347.3 347.3 347.3 347.3 347.3 347.3 347.3 347.3 347.3 347.3 347.3 <td></td> <th></th> <th></th> <td></td>																	
29 34 400 Re2 813 915 279 889 1709 1107 138 854 1710 3354 24422 30 34 362 861 1559 1533 844 1569 2350 1577 2426 3354 24472 31 35 224 844 1559 1325 1279 1727 246 3354 24473 34 36 248 844 2592 2511 1766 2351 12761 1882 2549 3237 2444 36 297 2461 2475 2770 2011 2648 3477 2741 1864 2573 3413 3355 2444 36 40 2448 1646 2477 1511 2574 3477 2431 1849 2543 3413 3355 2444 36 42 267 865 2372 2777 1831 2276 2811 7537 3737 2443 36 42 267 8651 1574 <td></td> <th></th> <th></th> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>				-								-					
35 36 36 84 1549 235 1518 855 1377 2426 3356 24393 31 36 314 863 1865 1955 1322 1870 2611 2335 1279 1724 2440 3356 24393 34 34 264 864 2594 2671 1311 2535 1279 1724 2440 3355 2431 35 39 262 864 2677 1811 2750 2791 12829 2744 3405 2843 3455 2433 36 40 2875 2877 1836 2537 2431 1845 2535 2434 37 41 248 804 2531 2536 2432 2527 2573 3357 2433 38 426 804 2531 2557 1633 2457 1616 2637 1516 2335 2433 39																	
31 32 32 32 120 140 251 122 1270 261 1235 1279 174 24.0 3356 24.33 34 34 26.8 864 2502 2521 1706 2359 2950 2514 1827 2569 3407 3357 24.33 35 39 262 861 2659 2750 201 2648 3477 2813 1829 2569 3406 3355 24.43 36 40 262 805 2572 2771 1836 2543 3418 3355 24.41 37 41 246 805 2572 2771 1836 2543 3418 3355 24.43 39 43 286 804 2531 2535 129 1571 1257 1257 1573 3357 24.33 40 44 306 805 1574 1576 151 1516 210 1557 1177 1433 1985 3443 24.44 43																	
33 37 24.8 84.4 25.2 25.21 17.36 23.89 29.62 251.4 18.27 25.8 32.69 33.57 24.33 34 34 24.8 86.4 25.94 24.73 37.1 25.05 18.27 28.13 18.29 25.74 34.07 33.57 24.33 36 39 26.2 86.4 26.77 15.11 27.67 34.03 26.33 34.13 33.55 24.32 36 4.2 26.7 86.5 25.72 27.77 18.36 25.83 33.30 27.628 18.65 23.35 24.32 40 4.8 36.6 8.55 23.32 22.90 96.5 16.53 24.52 16.167 25.77 25.73 33.56 24.24 41 4.5 32.6 8.54 15.74 15.76 8.51 15.16 16.77 15.43 16.72 16.15 23.13 16.75 15.77 15.76 8.71 <td< th=""><td></td><th></th><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																	
35 39 262 861 2855 2750 2638 2820 2094 2631 3418 3355 2431 30 40 248 804 2871 1942 2549 3406 2820 2094 2631 3418 3355 2432 34 42 267 805 2877 1836 2533 3437 2434 1864 2537 2535 1646 2277 2573 3355 2433 40 44 306 855 2332 2290 965 1633 2455 2104 957 1615 2277 2573 3355 2443 41 45 326 854 1536 1528 747 1335 1343 13355 2443 42 46 337 864 1536 1528 747 1325 1645 1677 1576 871 1325 1645 1671 1335 2444 43																	
36 40 2448 804 2851 2459 3406 2820 2094 2531 3418 3355 2441 37 41 246 803 2876 2877 1851 2576 3437 2434 1864 2533 3413 3355 2443 39 43 266 805 2572 2577 1853 2575 2107 1515 2443 3355 2443 40 43 266 805 2332 2290 965 1653 2351 1566 839 1514 2323 3355 2441 41 45 326 80* 1574 1576 811 1771 1355 2471 42 46 337 80* 1538 154* 843 1494 2071 1550 839 1514 1325 2442 43 47 333 80* 1558 1577 1575 177 1355 </th <td></td> <th></th> <th></th> <td></td> <td></td> <td>-</td> <td></td>						-											
37 41 246 863 2876 2877 1851 2576 3437 2436 1868 2583 3413 3355 2442 38 42 267 865 2572 2577 1836 2543 1863 2257 1877 2257 2577 2773 3357 2443 40 44 306 805 2332 2290 965 1653 2455 2104 957 1615 2441 3356 2441 41 45 326 804 1574 1576 861 1561 2351 1650 879 1514 2233 3356 2444 43 47 333 804 1536 1547 1375 1816 1406 510 1137 1936 1377 2433 3357 2442 44 48 349 865 1518 1520 1137 1936 3377 2472 45 49 352 864 1477 1520 1131 1297 1513 1939 2433 <td></td> <th></th> <th></th> <td></td>																	
38 42 267 805 2572 2877 1836 2583 3330 2828 1850 2496 3134 3357 2493 39 43 286 864 2531 2531 1636 2220 2817 7529 1615 2493 40 44 306 855 2332 2200 2817 1530 1514 2237 3357 2493 41 45 326 8-4 1574 1576 861 1551 2210 1550 837 1514 2233 3353 24-34 42 46 337 864 1574 1576 871 1320 1820 1535 557 1172 1761 3353 24-34 45 90 337 865 1574 1576 871 1575 2575 1172 1761 357 24-32 45 302 865 1574 1574 1267 1777						-	-								-		-
39 43 286 864 2531 2535 1636 2240 2817 2529 2577 2573 3257 2441 41 45 326 864 1574 1653 2455 2104 957 1615 2441 3356 2441 42 46 337 864 1538 1544 843 1494 2072 1543 797 1433 1985 3354 2444 43 47 333 864 1536 1629 613 1177 1932 1527 803 1314 1985 3354 2442 45 49 352 864 1477 1520 1731 1305 1816 1606 510 1117 1980 3357 2442 45 303 865 1577 1576 871 1535 1577 1636 2432 1420 1521 1513 1919 2546 3353 2442 45 302 867 1577 1576 871 1532 5292 1517 <td></td> <th></th> <th></th> <td></td> <td>-</td> <td>3355</td> <td></td>															-	335 5	
41 45 326 804 1574 1576 861 1561 2310 1550 839 1514 2323 3355 24-71 42 46 337 864 1538 1544 843 1494 2072 1543 797 1433 1985 3334 24.94 43 47 333 864 1536 1529 613 1177 1932 1527 853 1366 1977 3355 24.92 44 48 349 865 1518 1528 737 1305 1416 1406 510 1137 1980 3359 24.92 45 49 352 864 1477 1520 1525 1577 1576 871 1585 2577 1761 3359 24.92 47 51 322 867 1577 1576 871 1580 24.33 3353 24.92 48 323 263 866 274 2574 1577 2472 2385 1647 3573 3353 </th <td></td> <th></th> <th></th> <td>43</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				43					-								
42 46 337 864 1538 1544 843 1494 2072 1543 797 1433 1925 3354 2494 43 47 333 864 1536 1529 613 1177 1932 1527 823 1336 1977 3356 2492 44 48 349 865 1518 1528 771 1325 1577 1172 1761 3359 2495 45 49 3252 864 1477 1520 713 1204 1810 1535 557 1172 1761 3359 2495 46 50 337 865 1574 1537 1757 875 870 1588 2434 3353 2491 47 51 322 867 1534 2492 1633 3259 2492 48 52 302 867 1841 2004 1267 1757 2475 2298 1510 1919 2546 3253 2492 50 54						-											-
43 47 333 864 1536 1229 613 1177 1932 1427 803 1936 1977 3356 2492 44 48 349 865 1518 1526 737 1305 1116 1406 510 1137 1980 3357 2442 45 49 352 864 1477 1520 713 1201 1815 557 7172 1761 3359 2442 47 51 322 867 1557 1576 871 1585 873 1548 2434 3359 2441 47 51 322 867 1557 1576 871 1585 2472 1543 2434 3353 2442 49 53 263 866 2574 2574 1950 2472 3455 2592 1887 2637 3495 3354 24472 49 53 263 868 28431 2422 203 9730 3738 3354 24472 51						-		•••	-	•						-	
45 49 352 864 1477 1520 713 124 1810 1535 557 1172 1761 3359 24+5 46 50 337 865 1574 1536 840 1280 1422 1532 859 1540 2163 3359 24+34 47 51 322 867 1557 1576 871 1585 2434 3353 24-34 48 52 309 867 1874 2004 1257 1757 2425 2288 1510 1919 2546 3259 24-32 50 54 228 864 2811 2432 2033 707 3532 2921 2239 930 3738 3353 24+32 50 54 2864 313 3171 2529 318 3501 2443 3234 4081 3239 24+33 51 55 143 868 3873 3991 3241 3788 507 128 3502 1443 4031 3414 <td></td> <th></th> <th></th> <td></td>																	
46 50 337 865 1544 1534 800 1280 1822 1522 1530 1540 2163 3359 2444 47 51 322 867 1557 1576 871 1585 2435 1645 870 1548 2434 3353 2471 48 52 302 867 1874 2004 1267 1757 2475 2298 1510 1919 2546 3353 2472 49 53 263 866 2574 2474 1900 2542 3350 2592 1887 2637 3495 3358 2492 50 54 222 868 2831 2492 3185 4046 3301 2498 3234 4081 3359 2493 51 55 193 866 3118 3171 2529 3184 507 128 3506 735 3360 2493 52 56 143 864 355 294 1145 210 354 4351																	
47 51 322 867 1557 1576 871 1585 2435 1645 875 1588 2434 3353 2471 48 52 302 867 1874 2034 1267 1757 2475 2298 1510 1919 2546 3259 2472 49 53 263 866 2574 2474 1900 2542 3360 2592 1887 2637 3495 3353 2472 50 54 228 868 2831 7907 3532 2921 2239 930 3738 3353 2472 51 55 193 866 3113 3171 2529 3145 4066 3201 2498 3234 4081 3353 2493 52 56 143 868 3873 3991 3241 3788 507 128 3254 4081 3353 2493 53 57 73 867 258 3656 798 1145 210 3549 301				-													
48 52 302 867 1874 2004 1267 1757 2475 2298 1510 1919 2546 3259 2472 49 53 263 866 2574 2574 1900 2542 3360 2592 1887 2637 3495 3353 2492 50 54 222 868 2831 2492 2083 707 3532 2921 2239 2930 3738 3353 2492 51 55 173 866 3113 3171 2529 3145 4046 3201 2493 3234 4081 3259 2493 52 56 143 868 3873 3991 3241 3788 507 128 3506 735 3360 2493 55 59 4055 868 559 619 4093 657 1672 499 203 912 1698 3361 2493 56 60 3982 809 930 947 317 1036 1903																	
50 54 222 868 2831 2892 2083 7707 3532 2921 2239 2930 3738 3353 2430 51 55 193 866 3113 3171 2529 3145 4046 3301 2498 3234 4081 3259 2493 52 56 143 868 3893 3991 3241 3788 507 128 3504 4081 3259 2493 53 57 73 867 253 3655 298 1146 210 3589 300 1146 360 2493 54 58 22 868 559 619 4093 697 1472 809 203 912 1698 3361 2493 55 59 4055 868 559 619 4093 697 1472 809 203 912 1693 3361 2493 56 60 3982 809 930 947 317 1036 1903 1221 276 </th <td></td> <th>48</th> <th>•</th> <td></td> <td></td> <td></td> <td>1874</td> <td>2034</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		48	•				1874	2034									
51 55 173 856 3113 3171 2529 3135 4046 3201 2493 3234 4081 3239 2493 52 56 143 868 3893 3591 3241 3788 507 128 3506 4036 735 3360 2492 53 57 73 867 253 258 3655 298 1146 210 3549 300 1146 3340 2493 54 58 22 868 316 350 3749 358 1194 441 3598 450 1243 3361 2493 55 59 4055 858 559 619 4093 697 1472 499 203 912 1698 3361 2493 56 60 3982 859 930 947 317 1036 1903 1225 557 1229 2048 3362 2493 58 62 3874 807 1675 1685 2603 3746 870 </th <td></td> <th></th> <th></th> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>· · · ·</td>								-					-				· · · ·
52 56 143 868 3873 3991 3241 3788 507 128 3525 4936 735 3360 2492 53 57 73 867 253 258 3655 298 1146 210 3589 300 1146 3360 2493 54 58 22 868 316 350 3749 368 1194 441 3898 450 1244 3361 2493 55 59 4055 868 559 619 4093 687 1472 809 203 912 1693 361 2493 56 60 3982 809 930 947 317 1036 1903 1225 557 1239 2048 3361 2493 57 61 3898 870 1623 1682 902 1641 2457 14-5 1253 1958 2838 3363 2493 58 62 3898 871 1545 645 4075 520 1304 <td></td> <th></th> <th></th> <td></td>																	
53 57 73 867 253 258 3655 298 1146 210 3589 300 1146 3360 2493 54 58 22 868 316 350 3749 358 1194 441 3598 450 1294 3361 2493 55 59 4055 868 559 619 4093 687 1422 A09 203 912 1698 3362 2493 56 60 3982 805 930 947 317 1036 1903 1225 557 1259 2048 3362 2493 57 61 3898 870 1625 1682 902 1641 2457 14-5 1253 1958 2838 3361 2493 58 62 3824 867 220 2453 1805 2255 3049 2871 2121 2776 3672 3361 2493 59 63 3736 871 1540 1649 1023 1647 25																	
55 59 4055 858 559 619 4093 687 1422 809 203 912 1698 3361 24.93 56 60 3982 809 930 947 317 1036 1903 1225 557 1209 2048 3362 24.93 57 61 3594 870 1675 1682 902 1641 2437 14-5 1253 1958 2838 3363 24.93 58 62 3824 869 220 24.59 1805 2255 30.49 28.01 2121 2776 3672 3361 24.92 59 63 3736 870 34.17 2742 34.44 201 3524 2876 3531 298 3361 24.91 60 64 3639 871 1545 665 4075 520 130.4 910 260 924 1789 3362 24.91 61 65 3546 871 1549 1023 1647 2523 187		53					253									-	
56 60 3982 859 930 947 317 1036 1903 1225 557 1209 2048 3362 2493 57 61 3898 870 1675 1682 902 1641 2437 19-5 1253 1958 2533 3363 2493 58 62 3898 869 2220 2453 1805 2265 3049 2801 2121 2776 3361 2493 59 63 3736 870 3417 2742 3444 201 3524 2876 3531 298 3361 2491 60 64 3639 871 545 665 4075 520 1304 910 260 924 1789 3362 2491 61 65 3546 871 1540 1649 1023 1647 2523 1872 1150 1901 2729 3362 2491 62 66 3455 872 2392 2460 1746 2539 1170 2553				_													
57 61 3897 870 1675 1582 902 1541 2437 19-5 1253 1953 2533 3363 2493 58 62 3824 869 220 2453 1805 2265 3049 2801 2121 2776 3672 3361 2492 59 63 3736 870 3340 3417 2742 3444 201 3524 2876 3531 298 3361 2491 60 64 3639 871 545 665 4075 520 1304 910 260 924 1789 3362 2491 61 65 3546 871 1649 1023 1647 2523 1872 1150 1901 2729 3362 2491 62 66 3455 872 2392 2450 1745 2359 170 2553 1882 2574 3350 3363 2491 63 67 3355 871 3359 3397 2576 3378 127 <td></td> <th></th> <th></th> <td></td>																	
58 62 3824 869 2220 2453 1805 2265 3049 2801 2121 2776 3672 3361 2432 59 63 3736 870 3340 3417 2742 3444 201 3524 2876 3531 298 3361 2491 60 64 3639 871 545 665 4075 520 1304 910 260 924 1789 3362 2491 61 65 3546 871 1540 1649 1023 1647 2523 1872 1150 1901 2729 3362 2491 62 66 3455 872 2392 2450 1746 2359 3170 2553 1872 1530 3363 2491 63 67 3355 871 3359 3397 2576 3378 127 3643 2951 3644 406 3353 2492 64 68 3276 873 71 193 3437 77 878																	
60 64 3639 871 545 656 4075 520 1304 910 260 924 1789 3362 2491 61 65 3546 871 1540 1689 1023 1647 2523 1872 1150 1901 2729 3362 2491 62 66 3455 872 2392 2460 1746 2359 3170 2553 1882 2574 3363 2491 63 67 3355 871 3359 3397 2576 3378 127 3643 2951 3684 406 3553 2492 64 68 3276 873 71 193 3437 77 878 551 3963 550 1427 3363 2492 65 69 3192 574 1291 1343 593 1310 2172 1598 854 1578 2351 3364 2492 65 70 3117 874 2096 2165 1404 2137 2973								2453								-	
61 65 3546 871 1540 1689 1023 1647 2523 1872 1150 1901 2729 3262 2491 62 66 3455 572 2392 2460 1746 2369 3170 2553 1882 2574 3350 3363 2491 63 67 3355 871 3359 3397 2596 3378 127 3643 2951 3684 406 3353 2492 64 68 3276 873 71 193 3497 77 878 551 3963 550 1427 3363 2490 65 69 3192 574 1291 1343 593 1310 2172 1598 851 1578 2351 3364 2490 66 70 3117 874 2096 2165 1404 2137 2973 2246 1457 2257 3552 3265 2491 67 71 3043 874 2542 2562 1734 2569 3355 2446 1457 2257 3552 3265 2491 67 72 2979 873 2639 2055 2848 3616 2930 2120 2952 3679 3354 2491 69 73 2942 877 3145 3205 2304 3065 3810 3308 2334 3368 3817 3365 2491										-							
62 66 3455 572 2392 2460 1745 2369 3170 2553 1842 2574 3300 3363 2491 63 67 3355 871 3359 3397 2576 3378 127 3643 2951 3684 406 3353 2492 64 68 3276 873 71 193 3437 77 878 551 3963 550 1427 3363 2492 64 68 3276 873 71 193 3437 77 878 551 3963 550 1427 3363 2492 65 69 3192 574 1291 1343 593 1310 2172 1598 851 1578 2351 3364 2490 65 70 3117 874 2095 2165 1404 2137 2973 2246 1457 2351 3364 2490 67 71 3043 2472 1756 3355 2446 1457 2573																-	-
63 67 3355 871 3359 3397 2536 3378 127 3643 2951 3684 406 3353 2492 64 68 3276 873 71 193 3437 77 878 551 3963 550 1427 3363 2492 65 69 3192 574 1291 1343 593 1310 2172 1598 851 1578 2351 3364 2490 66 70 3117 874 2095 1464 2137 2973 2246 1457. 2351 3364 2490 66 70 3117 874 2095 2165 1404 2137 2973 2246 1457. 2351 3364 2490 67 71 3043 874 2552 1674 2557 3355 2445 68 72 2979 873 2639 2559 2848 3616								-									
64 68 3276 873 71 193 3437 77 878 551 3963 550 1427 3363 2430 65 69 3192 574 1291 1343 593 1310 2172 1598 851 1578 2351 3364 2430 66 70 3117 874 2095 1464 2137 2973 2246 1457. 2351 3364 2430 67 71 3043 874 2095 1464 2137 2973 2246 1457. 2257 3052 3265 24471 67 71 3043 874 2552 17.14 2559 3352 2645 1834 2666 3433 3355 2431 68 72 2979 873 2105 2304 3055 2448 3616 2930 2334 3085 3817 3363 2435 69 73 2942		63	•••						2576	3378	127	3543	2951	3634	406	3353	2492
66 70 3117 874 2096 2165 1404 2137 2973 2246 145 2257 3052 3265 2471 67 71 3043 874 2542 2562 1734 2569 3355 2445 1834 2666 3433 3365 2471 68 72 2979 873 2839 2899 2055 2848 3616 2930 2130 2952 3679 3364 2471 69 73 2942 877 3145 3205 2304 3065 3810 3308 2334 3088 3817 3363 2438		_64		•	3276	873	71	193									
67 71 3043 874 2542 2562 1734 2569 3355 2445 1844 2666 3433 3355 2491 68 72 2979 873 2849 2899 2055 2848 3616 2940 2140 2952 3679 3354 2491 69 73 2942 877 3145 3205 2304 3065 3810 3308 2334 3068 3817 3365 2438																	
68 72 2979 873 2889 2899 2055 2848 3616 2930 2130 2952 3679 3354 2431 69 73 2942 877 3145 3205 2304 3065 3810 3308 2334 3068 3817 3365 2438																	
67 73 2942 277 3145 3205 2334 3065 3310 3338 2334 3388 3817 3363 2438							•										2491
<u>70</u> 74 2927 676 34/jr 7426 2599 3219 3732 3445 2565 3185 3840 3366 2490		67		73	29-2	<u>*</u> 77	3145	3205	2334								
		.70	•	74	5952	§76	₽ن45	3426	5233	3213	3432	.1445	5562	3142	1943	1.100	6-22

-123-

Table Al (cont.)

-124-

Table Al (cont.)

	•	•												•
148	152	1867	#85	2755	2765	2364	2832	4486 1	2756	2357	2320	3822	3372	2437
147	153	5523	Fa5	2710	2705	2325				5596	2757	3751	3372	2457
150	154	2644	884	2653	2657	2234	2718			2239	2711	3712		
151	155	3032	884	2601	2606	2526	2671		2599				3374	2430
152	156		363	2572	2574	2177	2537			5500	2655	3669	3374	2490
153	157		863	2534	2540	21+1	2606		2561	2162	2629	3631	3372	2439
154	153		584	2517	2522				2533	2147	2639	3617	3374	2491-
155	159		854			5151	2590		2506	2117	5955	3593	3375	2491
150	160		RAB	25/14	2504	2107	2572		2494	5024	2562	3568	3375	2491
157	161	811		2473	2478	2092	2548		2471	2075	2545	3552	3373	2470
		1151	863	2458	2+59	5064	5-51		2454	2057	2725	3526	3374	2471
158	162	1538	885	2439	2439	50+6	2508		2430	5033	2537	3515	3374	2459
159	163	1939	886	2410	2419	5030	2458	34 48	5403	5005	2472	3479	3374	24 3 R
160	164	2334	355	2379	2387	1932	2455	3452	2374	1930	2445	3454	3375	2490
161	165	2719	855	2343	2373	1955	2435	3451	2361	1975	24+3	3450	3374	2439
162	166	3097	865	5348	2359	1963	2424	3431	2349	1955	2422	3425	3375	2490
193	167	3496	854	5333	2334	1937	2400		2316	1917	5335	3335	3377	2493
164.	. 168	3886	885	2276	2255	1845	2343		2262	1870	2334	3343	3375	
165	159	181	\$ 66	2255	2201	1853	2321	3326	2240	1545	2305			2430
166	170	564	864	2221	2555	1523	2289		2213	1823		3305	3378	2492
16/	171	949	885	2137	2174	1795	2244	3237		1758	2231	3292	3375	2492
168.	172	1340	887	2117	2114	1693	215/		2121		2224	3233	3377	2492
167	173	1694	886	2043	2033			3155	2059	1681	2143	3158	3375	2438
170	174	2085	855	1997		1634	5623	3058	500+	1610	5325	3051	3375	2459
171	175	2470		-	1959	1588	2051	3065	1972	1579	5036	3039	3375	2490
172			885	1919	1920	1507	1962	2943	1860	1452	1928	2927	3375	2490
173	. 176	2827	887	1524	1828	1426	1885	28-59	1803	1417	1875	2879	3375	2458
	1/7	3205	886	1761	1759	1365	1828	2842	1750	1345	1805	2803	3375	2439
174	178	3589	886	1669	1668	1256	1727	2718	1631	1235	1696	2700	3375	2439
175	179	3975	837	1536	1450	1065	1524	2514	1426	1025	1491	2497	3374	2437
176	140	273	887	1331	1351	936	1447	2448	1359 -		1421	2422	3373	2435
177	181	650	884	1296	1305	905	1367	2331	1290	901	1363	2379	3374	2490
178	195	1047	885	1279	1282	872	1334	2331	1244	854	1320	2331	3373	2455
179	183	1430	883	1249	1250	862	1319	2336	1244	953	1314	2325	3373	2493
150	184	1819	883	1244	1255	860	1324	2342	1248	861	1327	2342		
181	185	2520	844	1246	1242	843	1312	2332	1240	851	1320		3375 3372	2492
152	145	2579	R-5	1200	1264	1220	2011	3444				2336		2438
153	137	641-1	855	1250	1255	938	1771	3135	1257	1079	1378	3593	3373	2455
184	185	2622	803	1259	1264	971			1259	947	1756	3150	3372	2437
185	189	2619	883				1733	3045	1260	945	1729	30%4	3375	2492
186	190	262)	A83	1262	1265	957	1722	3072	1261	958	1720	3067	3373	2490
18/	191			1258	1266	949	1712	3061	1258	950	1712	3059	3372	2439
		2625	983	1261	1267	947	1706	3050	1258	945	1708	3055	3373	2430
188	192	5653	895	1259	1264	945	1705	3075	1257	.943	1705	3057	3373	2431
189	193	5653	843	1263	1270	944	1708	3054	1264	943	1705	3053	3372	2439
190	194	2628	885	1267	12/2	941	1702	3054	1249	943	1734	3055	3372	2430
191	195	5953	883	1272	1279	942	1702	3055	1275	941	1704	3053	3372	2439
192	196	2625	884	1274	1251	942	1701	3057	1283	946	1704	3056	3376	2492
193	197	595¥	854	1269	1275	942	1704	3057	1281	947	1704	3056	3374	2490
194	198	2627	883	1290	1297	944	1703	3057	1296	944	1704	3056	3374	2491
195	199	2627	854	1293	1336	945	1702	3057	1296	945	1707	3057	3375	2491
196	200	5659	804	1301	1308	946	1704	3059	1302	945	1708			
197	201	2627	556	1276	1301	943	1704	3054	1294	946	1705	3055 3057	3375 3373	2431 2437
198	505	262×	866	1302	1312	943	1703					-		
199	203	5654	R54	1316	1355	946	1705	3057 3055	1304	943 943	1705	3056	3374	2438
200	204	2632	865			-			-		1796	3058	3375	2491
201	205	2633	5.5	1302 1272	1310 1231	944 1172	1704 2364	3059	1303	971	1706	3059	3375	2490
202	206	2530	kad	1243	1271			3735	1273	E47	1634	5340	3374	2439
· ·	· · · · · ·					850	1334	2344	1259	848	1326	2337	3373	2430
203 204	203	2457	500 284	1245	1253	540	1313	2329	1245	855	1324	2341	3376	2491
205	209	1598	804	1249 1233	1254 1248	849 846	1323	2335	1244	842	1316	2327	3374	c 4 70
509	210	1217	-	-			1316	5358	1237	840	1311	2325	3376	2431
501			664	1243	1249	847	1317	2329	1246	553	1318	5335	3375	2491
	211	1217	886	1247	1255	849	1316	5335	1247	546	1319	5353	3375	2439
200	212	1208	286	1245	1255	85?	1318	5335	1248	849	1320	2335	3376	2430
502	213	1198	867	1525	1501	853	1323	5339	1254	은드+	1320	2335	3374	2437
210		1169	857	1257	1265	852	1319	2334	1255	359	1325	2334	3375	2438
211	215	1163	P.07	1245	1205	859	1324	2341 .	1260	859	1333	2340	3374	2437
515	216	1159	F87	1240	1592	852	1329	2345	1252	853	1335	2340	3376	24-19
513	217	1167	885	1251	1270	868	1336	2347	1262	854	1337	2346	3377	2492
214	218	1148	855	1245	1270	862	1336	2750	1271	867	1337	2349	3376	2490
215	219	1144	800	1269	1278	870	133/	2350	1270	856	1336	2352	3374	2434
516 2	SS 0	1147	857	1254	1275	870	1335	2301	1257	858	1335	2352	3376	2439
217	221	1136	807	1267	12/3	863	1338	2349	1269 .	857 857	13.15	2373		2+37 2+30
218	222	1117	588	1266	1274	867	1334	2351	1522		-		-	· •
217	223	1275	859		1225	843	1318	2358			1337	23+5		2458
220	224	1741	527		1251				1241		1355	5330		2437
251	225		807 808			846	1351	2339	1252		1333	2344		845R
555		2193			1269	855	1332	2331	1244		1355	5378		2438
	226	2655	889 889		1268	1001		3125	1262		1715	3066		2+37
553 253	227	2671	865		1205	926	1679	3027	1260		1676	3024		2439
554	223	2573	8d7	1242	1267	919	1670	3016	1260	916	1570	3014	3379	5+35
										•				•

. بر این ا -125-

Table Al (cont.)

225	229	2675	859	1262	126#	916	1669	3009	1263	915	1670	3011	3377	2+38
550	230	2677	889	1266	1267	919			1264	917	1668	3010	3375	2439
559 551	535 531	2675 2675	889 589	1254	1270	917			1264	919	1667	3005	3375	2+39
257	233	2674	869 869	1264 1265	1259 1274	918 921			1265 1267	920 915	1665	3007	3377	2435
230	234	2675	858	1256	1274				1256	921	1669 1675	3005	3377 3376	2438 2438
231	235	2673	888	1247	1273		-		1256	917	1671	3009	378	2430
232	236	2676 _	858	1257	1268		_		1266	918	1574	3009	3379	2491
533	237	2675		1264	12/5				1269	921	1572	3003	3378	2+31
234 235	238 239	2675 2675		1256	1271				1252	917	1675	3009	3375	2437
235	240	2674			12/2 1285				1266 1270		1581	3014	3375	2+39
237	241	2672			1269				1.159		1822 1337	2960 2342	3377 3377	2490 2437
238	242	2574			1252				1249		1322	2337	3377	2438
532	243	2463			1247		1315		1241		1312	2329	3377	2490
. 240	. 244 .	. 2369			1247				1239		1313	2330	3375	2438
- 241 - 242	245	2268 2149			1263 1253				1263		1331	2343	3379	2491
243	247	2051			1255				1253 1256		1331	2341	3376	2438
_244		1952.			1256				1246		1353 1321	2338 2336	3376 3377	2487 2437
245	249	1537			1245				1234	-	1308	2325	3375	2436
.246		1625			1233				1232		1306	2316	3376	2437
247	251	1395			1236				1552		1301	5316	3377	2+39
248 247	252 253	1359 1382			1236				1558		1301	2315	3375	2488
250	254	1342			1237 1245				1231	827		2315	3377	2+39
251	255	1380			1235				1231		1307 1298	2314 2310	3377 337.	2459 2437
252	256	1373			1235				1232		13:15	2317	3375	2438
253	257	1403			1241	827	1307 8		1227		1300	2312	3379	2491
. 254	258	1805			1248				1252		1332	2336	3376	2438
235 256	259 260	2206 2596			1267				1255		1355	2334	3377	2489
600	200	2375	007	1523	1270 1	216	2002 3	3516	1261 1	1058	1503	3160	3377	2490
	•		•	•	. •.	•	•	•	•	•	•	•	•	•
•		•										_	. .	
•	•			•	•	•	•	•	•	•		•	•	
		•		_		•		,	•	•	•	•	•	•
	•	•	÷.	-	7	T	Т	T	T	Т	T	T	F	Δ
Time	Time	Pressure	2	T,w	Tw	T2	T ₃	T.	Ť,	Tz	T,	Tg	1	~~ `
•	•	•	•		• 1	•	• •		•	•	;		•	•
				_	_					•				
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
-	•	•	•	•	•	•	•	•	•	•	• .	•	•	•
·			•				•		•					
	•	•	•	•		•	•	•	٠	•		.		•
-						•					_			
- 5	7 86	287	913	2049	2049	2049	2049	2049	2049	5049	2049			
			911	2049	2049	2049	2049 2049	20*9	2049 2049	2049	2049			
85			912	2049	2049 2049	2049 2049	2049	2049	2049	2049	2049			
86 85			910 910	2049	2949	2049	2049	2049	2049	2049	2045		3393	
86			910	2049	2949	2049	2047	2049	2049	5049	2045			
85			910	2049	2949	50 <i>4 û</i>	2049	20+9	2049	2049	2045			
86			909	2049	2049	2049	2049	2049	2049	2049	2345			
86			910	2049		2049 2049		2049 2049		2049 2049				
			۲ ۲09 ۲09	20+9		2049	5042	2049		2049				2452
· 80 86	-		902	2043		2049		2049		Ō			3391	
			909	Ĵ,		0	0	0	0	0				
87			910	ŏ	0	0	0	3	. 0	D				
			906	0		0	0	5		0				
. 87			935	0		0	0))		0				
87	13 87	7 285	904	9		0								
			0/12	•	.	~ ^	0	n	n	<u>, </u>			, ,,,,,	
	4 87					0	0	0		0			3389	2433
	14 87 15 87	9 290	ەنو 905	0	0	Ö O	0	Ö	0				3385	2433

FILE NUMBER 6 CO LENGTH ERROHS=1

CANP ERMASSED

APPENDIX B

-

1

	page
1.	Step 2 - Segmentation of the Digital Data128
2.	Program GETPEN - segments digital data onto AIIDATA130
3.	Job control statements necessary to run GETPEN131
4.	Job control statements necessary to output contents cf AIIDATA to line printer
5.	Semented digital data - station 7 penetration 1132

Step 2 - Segmentation of the Digital Data

At this stage, it becomes convenient to segment the 9-track tape for clarity and less expensive disk storage. Typically, the probe was held near the bottom for several cycles both before penetration and after pullout for calibration purposes. For each thermal gradient measurement, we attempted to choose an interval that included these holding periods. For ease in later graphic presentation, we limited the length of each interval to a maximum of 76 cycles or 35.5 minutes. A program entitled GETPEN was written that reads from cards the desired start and end counts for any chosen interval. These intervals are then labelled and sequentially written onto a disk file (named AIIDATA). A listing of program GETPEN and the job control statements necessary to run the program are given below.

The contents of the disk file can easily be output to a line printer using the sequence of job control statements given in Figure Bl. A sample of this output consisting of the first chosen interval (penetration 1) for station 7 is given in table Bl. We chose a start time count (second column) of 181 and an end time count of 214 in order to include both holding periods. Note that for this station, a change of one count in the pressure column corresponds to a change in depth of about 11

-128-

centimeters. Since this is a pogo probe station utilizing one water thermistor and only three sediment thermistors, the water thermistor's temperature is recorded three times and the sediment thermistors' temperatures are recorded twice every 28 second cycle. Penetration occurs during the indicated cycle. Note the sharp jump in the count readings (recall that the counts are approximately linearly proportional to temperature) due to the frictional heating of the sediment thermistors and higher sediment temperatures. It can be seen that the pressure and water temperature remain roughly constant throughout the entire measurement while the temperatures recorded in the sediment column decay from initial values associated with a frictional heating of penetration to constant values that are representative of the sediment temperature at the depth of sampling. Pullout, as indicated in table Bl is characterized by more frictional heating of the sediment thermistors followed by an immediate return to the prepenetration water temperature.

-129-

-130-

1•		INTEGER IN(14,1700), SHEC
		BUTPUTIPROGRAM GETPEN VERSION 1, JAN. 16.79
3.		
~ 4 •		6UT 12
5.	1000	FRRMAT(10G)
6 •		READ(105,1000)NFIL
7•		DA 400 KG#1,NFIL
. 8 .		BUTPUTINOW READING TAPE GEUB FILE#1,KG
9•		READ(105,1000)SREC, NREC, NPEN
10•		IF(SREC+LE+O+) G0 T0 93
11+		D0 93 I=1,SREC
. 12.		CALL BUFFER IN(LIN, 0, IN, 1400, ISTAT, NTOT)
13.	93	CONTINUE
14•		DO 25 JODY=1,NREC
15.		CALL BUFFER IN(LIN, 0, IN(1, 1+100+(JBDY-1)), 1400, ISTAT, NTOT)
16•	•	IF(ISTAT.EQ.4)OUTPUTIREAD ERRORI,KG; GO TO 25
17•		IF(ISTAT.EQ.3) BUTPUTIEND OF FILE', KG, GB TO 25
18+	25	CANTINUE
19•		KSTART=1
20•		KEND=NREC+100
21•		DR 40 KN=1/NPEN
55.		READ(105,1000) ISPEN, IEPEN
23•		OUTPUTIDHE START AND END COUNTY, ISPEN, IEPEN
24 •	-	D0 20 K=KSTART;KEND IF((IN(2;K),GE,ISPEN),AND+(IN(2;K)+LE+IEPEN)) G0 T0 30
25+	20	CANTINUE
26+	20	BUTPUTIDID NOT FIND FILE KG, PEN KN',KG,KN
28+		GB TO 40
29.	30	INC I IEPEN I ISPEN
30,	20	WRITE(BUT, 3000)KG, KN, ISPEN, IEPEN
31.		WRITE(BUT, 2000)((IN(I, NK), I=1, 14), NK=K, K+INC)
32•		KSTART=K+1
33.	40	CONTINUE
. 34 •		De 100 IKG#1,10
35.		CALL BUFFER IN(LIN, 0, IN, 1400, ISTAT, NTUT)
36.		IF(ISTAT.EU.3) OUTPUT'END OF FILE KG', KG, GO TO 400
37.	100	CONTINUE
38.		CUNTINUE
39.	2000	F9RMAT(1415)
40+	3000	FORMAT('AII-97-2 HEAT FLOW TAPE GEJB FILE',13,
41+		\$1 PENETRATION 1, 13, 1 START 1, 15, 1 END 1, 15)
_ 42+		END
		· · · · · · · · · · · · · · · · · · ·

Figure Bl

Job Control Statements Necessary to Run GETPEN

!JOB account,ID !LIMIT (CORE,27),(TIME,3),(9T,1) !MESSAGE TAPE GEJB ON 9T TAPE IN VAULT NORING !ASSIGN F:1,(DEVICE,9T),(SN,GEJB) !ASSIGN F:2,(FILE,AIIDATA),(OUT),(SAVE) !RUN (LMN,LGET)

-program-

.

!EOD

Figure B2

Job Control Statements Necessary to Output Contents of AIIDATA to Line Printer

.

!JOB account,ID !LIMIT (ORDER) !LIMIT (CORE,5),(TIME,1) !PCL COPY DP/AIIDATA TO LP !EOD

									-		-		
AII-97			JW TA	PE_GE	JB FI	LE 6	PEN	ETKAT	ION	1 STA			
-177	181	650		1296				2381			1363		
178	182	1047		1279		872	1334	2331	1244	854	1320		3373
179	183	1430	887	1249	1250	862	1319	5336	1244	853	1314	2328	3373 hold
180	184	1819	883	1244	1255	850	1324	2342	1248		1327		3375
181	185	2200	884	1246	1242			2332			1320		3372
		2579	885	1260	1264	1220							3373
183		2619	885	1260	1265.			3138					3372pen.
		2620	883	1259	1264			3095			1723		3375
185		2619	883	1262	1265	957	1722	3072	1561		1720	3067	
186	190	2620	883	1258	1266	949	1712	3061	1258	950	1712		3372
187		2625		1261	1267	947		3060					3373
188	192	2623			1264			3058					3373
189		2622			1270	944	1708	3054	1264				3372
-		2628	882	1267	1272	941	1702	3054	1269		1704		3372 equili brium
191		2623		1272		942	1702	3056	1275	941	1704	3055	3372 '
192		2625		1274				3057		946	1704		3376
193		2628		1269				3057		947	1704	3056	
194		2627		1290		944		3057		944	1704	3056	
195	-	2627			1306	945		3057		945	1707	3057	3375
196		2629		1301				3059		945	1708	3055	3375
197		2627		1296				3054		946	1704	3057	3373
198		2623		1302				3051		943	1705	3056	3374
199		2625			1322			3055		943	1706	3058	3375
		2630		1302				3059		951	1706	3059	3375
201	205	2633	885		1281			3735		867	1634	2380	3374 pullout
202		2590	887	1269	1271	850	1334	2344	1259		1326		
203	207	2457	885		1253				1245		1324	2341	3376
204		2048	884		1254	849	1323	2336	1244	842		2327	
		1598	885	1238	1248				1237		1311		
205		1217	884		1249				1246		1318		
206	211		885	1247	-				1247		1318		
		1208	886	1246	1255				1248		1320	2335	3376 hold
208	213		887	1252	-				1254		1320	2335	3374
209	-	1169							1256		1325		
210	~1 4	1165		123/	15-5	002	1.11		1	~~~	1020		

Segmented Digital Data - Station 7 Penetration 1

Table Bl

-132-

APPENDIX C

	page
1.	Step 3 - Plotting of the Digital Data134
2.	Program TOWP - plots digital data136
3.	Job control statements necessary to transfer TOWP from card deck storage to disk storage137
4.	Job control statements necessary to run TOWP from a terminal
5.	Section of the keyboard printout from TOWP138
6.	Job control statements necessary to use the Versatec plotter
7.	Plot produced by TOWP - station 7 penetration 1139

Step 3 - Plotting of the Digital Data

Plots were made of each interval contained in the disk file AIIDATA. The plotting program entitled TOWP, was designed to be run on a remote terminal - the only necessary input being the total number of desired plots (equal to the number of intervals in AIIDATA) and a logical input unit (LIN). TOWP, currently stored on cards, can be input to a disk file by utilizing the series of job control statements shown in figure Cla. TOWP can then be run from a terminal by following the sequence shown in figure Clb. Each plot will be stored as a separate output file on a disk named PLOT1. A section of the keyboard printout from TOWP is shown in Figure Clc. A complete listing of TOWP is given below.

Once the plot files are generated from TOWP, it remains to print them. Both Tektronix and Versatec plots were made initially for a few of the plot files. We decided that the added clarity and size obtainable through use of the Versatec plotter more than compensated for its slightly greater expense and inconvenience. To minimize waste in case of error, it is recommended that no more than five plots be made during one job. The job control statements necessary to use the Versatec plotter are given in Figure C2. The PLOTV statement is to be interpreted as follows: the first number is a scale

-134-

factor and should always be set to 1.0, the second and third numbers are the start and end plot files. In the example chosen, plot files 1 through 5 are to be plotted. It is important that the word SAVE be used on line 4 because otherwise the entire PLOT1 file would be destroyed after only the first 5 plot files had been accessed.

Figure C3 is a typical example of a plot generated from AII DATA - again we have chosen the first penetration from station 7. The abscissa has units of cycles (28 seconds) and the ordinate has units of counts. Because of the nearly linear relationship between counts and both temperature and pressure, the plots serve as an excellent first order indicator of measurement quality. For example, pressure is seen to increase as the probe is lowered to the bottom and to rise abruptly to a constant value $(\pm.7 \text{ meters})$ during penetration. Also refer to the discussion given of table B1.

We felt that it would not be possible to obtain substantial quantitative information from these plots. Hence, as an aid in representation, we have chosen to make the counts axis serve only as a relative indicator of the actual counts for each of the 14 variables. Furthermore, the counts shown for any given variable is unrelated to any of the other 13 variables.

-135-

	-136-
1.000	INTEGEP_YIN(13,75),Y1TITLE(9),X1TITLE(9)
2.000 3.000	DIMENSION IBUF(1000) DUTPUT/ PPOGRAM TOWP JAN. 79/;/INPUT UNIT=?/
4.000	READ(105,1000)LIN
5.000	OUTPUT LIN, 'NUMBER OF PLOTS='
6.000 7.000	READ(105,1000)NPLOT CALL PLOTS(IBUF,-1000)
8.000	DO 100 KG=1,NPLOT
9.000	CALL PLOT(1.,9.53)
10.000 C EF	ICH PLOT WILL BE A SEFARATE OUTPUT PLOT FILE YSCALE=682.6667
12.000	XSCALE=8.0
13.000	PEAD (LIN, 2000) XITITLE, YITITLE, NSTART, NSTOP
14.000 15.000	WRITE(108,4000)X1TITLE,Y1TITLE NTOT=NSTOP-NSTART+1
16.000	OUTPUT NTOT
17.000	XLEN=NTOT/XCCALE
18.000 ** 19.000 1	<pre>READ(LIN, 3000, END=10) ((YIN(L, M), L=1, 13), M=1, NTOT) 0. CALL AXIS(0., 0., Y1TITLE, 36, 12., 0., 0., YSCALE)</pre>
20.000	START=NSTART
21.000	CALL AXIS(0.,0.,X1TITLE,-36,9.5,270.,START,XSCALE)
22.000 23.000	DO 700 JC=1,13,2 IPEN=3
24.000	DD 800 KC=1,NTDT
25.000 26.000	Y=YIN(JC;KC)/YSCALE +JC/25 X=(KC-1)/XSCALE
27.000	CALL PLOT (Y)-X) IPEN)
28.000	IPEN=2
29.000 80 30.000	10 CONTINUE IF(JC.LE.3 .OR. JC.GE.13)60 T0 805
31.000	INTEQ=JC+108
32.000	60 TD 825
33.000 80 34.000	15 IF(JC.NE.1)60 TO 810 INTE0=99
35.000	GD TD 825
	0 IF(JC.NE.3)6D TO 820
37.000 38.000	INTEQ=105 GD TO 825
39.000 88	0 INTE0=70
40.000 82 41.000	25 YY=Y125
42.000	XX=-X2 CALL SYMBOL(YY,XX,.25,INTEQ,-90.,-1)
43.000	IPEN=3
44.000	IF (JC+1.GE.13) GD TD 700
45.000 46.000	DO 900 KC=1,NTOT KB=NTOT-KC+1
47.000	Y=YIN(JC+1,KB)/YSCALE +JC/2.
48.000 49.000	X=XLEN - KC/XSCALE CALL PLOT(Y)-X)IPEN)
50.000	IF (KC.NE.1) 60 TO 850
51.000	INTEQ=JC+109
52.000 53.000	IF (JC.EQ.1) INTEQ=87 YY=Y125
54.000	XX=-X2
55.000	CALL SYMBOL (YY, XX, 25, INTEQ, -90., -1)
56.000 57.000 85	CALL PLOT(Y,-X,IPEN) 0 IPEN=2
	0 CONTINUE
	0 CONTINUE COLL PLAT(=1, -9, 5, -3)
60.000 61.000	CALL PLOT(-1.,-9.5,-3) CALL PLOT(0.,0.,999)
62.000 10	IO CONTINUE
63.000 64.000 100	OUTPUT' IT IS FINISHED'
	0 FOPMAT (984, 984, T59, I5, T68, I5)
	0 FDPMAT (5X, 1315)
	10 FOFMAT (1%)9A4) 10 FORMAT (9A4) •
69.000	FND

.

•

Figure Cla

Job Control Statements Necessary to Transfer TOWP from Card Deck Storage to Disk Storage

!JOB account,ID !LIMIT (CORE,5),(TIME,1) !PCL COPY CR/TOWP TO DP

-program TOWP-

!EOD

Figure Clb

Job Control Statements Necessary to Run TOWP from a Terminal

FORT4 TOWP OVER PTOWP EXT. FORTRAN IV, VERSION FOI OPTIONS >NS

ISET F: 95/PLOT1; OUT

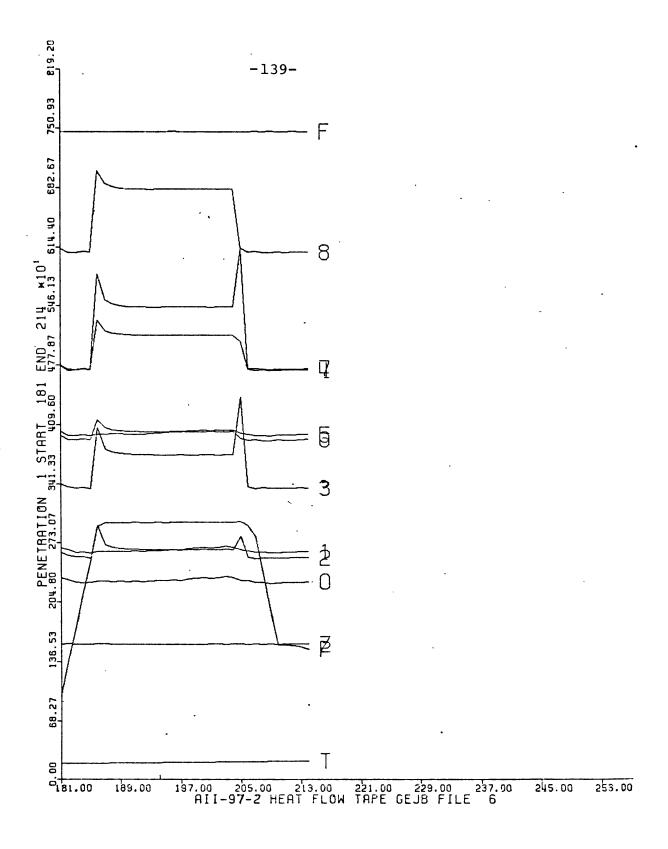
SET FILMEDATA; TR

!LYNX RTOWP OVER LTOWP, PLOTDFER.8;.3
:P1 ASSOCIATED.
 + ALLOCATION SUMMARY > ^
PROTECTION LOCATION PAGES

DATA (00)		A000	7
PROCEDURE	(01)	B0 0 0	3
DCB <10>		AEOO	1

START LTOWP

Figure Clc


Section of the Keyboard Printout from TOWP

PROGRAM TOWP JAN. 79 'INPUT UNIT=? ?1 LIN = 1NUMBER OF PLOTS=746 AII-97-2 HEAT FLOW TAPE GEJB FILE 2 PENETRATION 7 START 771 END 810 NTOT = 40AII-97-2 HEAT FLOW TAPE GEJB FILE 2 PENETRATION 8 START 1340 END 1364 • AII-97-2 HEAT FLOW TAPE GEUB FILE 8 PENETRATION 1 START 449 END 508 NTOT = 60AII-97-2 HEAT FLOW TAPE GEJB FILE 9 PENETRATION 1 START 229 END 272 NTOT = 44IT IS FINISHED

Figure C2

Job Control Statements Necessary to Use the Versatec Plotter

!JOB account,ID !LIMIT (CORE,20),(TIME,2),(ACCOUNT) !MESSAGE USES VERSATEC !SET F:95/PLOT1;SAVE !PLOTV 1.0,1,5

Plot Produced by TOWP - Station 7 Penetration 1

Figure C3

APPENDIX D

page

1

.

.

•

1.	Step 4 - Conversion of Digital Thermistor Data to Temperature Data141
2.	Program CONVERT - converts digital thermistor data to temperature data144
3.	Test run of CONVERT - station 2 penetration 2145
4.	Procedure necessary to copy station 2 penetration 2 from AIIDATA to SAMPLE146
5.	Converted temperature data - station 7 penetration 1146
6.	Job control statements necessary to store file AIIDATA on a labelled 9-track magnetic tape146
7.	Job control statements necessary to store file TEMPDATA on a labelled 9-track magnetic tape147

Step 4 - Conversion of Digital Thermistor Data to Temperature Data

A program was written entitled CONVERT that would convert the digital thermistor data located in file AIIDATA to actual temperature data using the equations given in the Instrumentation and Methods section. The program is designed to be run on a terminal; hence, it must first be stored as a disk file. The job control statements which accomplish this task are given in Figure Cla, with CONVERT replacing TOWP. As inputs, the program requires a logical input unit, a logical output unit, the total number of stations, the total number of thermistors used, the α , β and γ values for each thermistor and a value for R_o. Furthermore, for each station the program requires values for ${\rm R}_{\rm Z}$ and ${\rm R}_{\rm F}$, the number of penetrations (1 for piston core stations), the specific thermistors used, and the multiplicative factor for the counts (F) corresponding to R_F. The multiplicative factor takes into account whether or not the F value has rolled over. For example, if Z is 900 and F is 3400 (computed delta would be 2500), the multiplicative factor would be 0. On the other hand, if Z is 2100 and F is 500 (computed delta would be -1600), the multiplicative factor would be 1. Then, all F values would automatically be increased by 4096 counts for use in the thermistor counts to resistance conversion

equations. The real value of delta would be F (augmented) - Z = (500 + 4096) - 2100 or approximately 2500 counts. As can be seen, R_Z and R_F have a similar separation for both examples.

A test run of CONVERT is shown in Figure Dl. For the purposes of a test run, the data from the second penetration of station 2 was copied from the AIIDATA file to a file named SAMPLE. The data from this penetration occupies lines 110 through 144 of AIIDATA. Figure D2 shows the procedure necessary to accomplish this task from a terminal. The last command returns AIIDATA to the unlined mode (not accessible for editing), which lessens the storage cost of this typically large file. Note that in Figure Dl, when options are asked for, the user response was 'ADP, NS'. ADP specifies that CONVERT should be run in the double precision mode; a mode which allows for more accurate results in the conversion process. The job control statements further specify that the output of CONVERT should be stored on a file named TEMP.

A listing of program CONVERT is given below. In this more general case (with AIIDATA specified as the input file), the output of CONVERT was stored on a file named TEMPDATA. The contents of TEMPDATA can be dumped to the line printer in a similar manner as were the contents of AIIDATA. Table Dl gives the section of TEMPDATA corresponding to the part of AIIDATA shown in table Bl

-142-

and Figure C3 and described earlier in the text. Note that CONVERT is not capable of dealing with cases in which the temperature counts rollover.

We decided that the contents of both TEMPDATA (thermistor readings given in degrees Centigrade) and AIIDATA (thermistor readings given in counts) were of enough future value to permanently save on a labelled 9-track magnetic tape. This was accomplished for the initial file AIIDATA by submitting the job control statements shown in Figure D3a. Once the tape, which we titled GEDG, was initially used, the sequence of job control statements shown in Figure D3b had to be submitted. On the labelled tape, the contents of each disk file was given the name of the file from which it was copied.

In retrospect, due to the small nonlinearity between thermistor temperatures and thermistor counts, it may have been better to have done the plotting with the contents of TEMPDATA. With only minor revisions in TOWP (the plotting program), this change in data processing could be made. We felt that because of the extra cost involved, replotting was not justified.

1.000 2.000 3.000 4.000 5.000 6.000 7.000 DIMENSION DATA(14).THERM(3.25).NGPRAY(9).*K(10).TITLE(10) DUTENT 'FFOLFRAM (CHVERT FEB. 79', INPUT UNIT=7' READ(105.1000)LIM DUTENT LIN. NUMBER DF STATIONS=7' READ(105.1000)NTHT DUTENT NSTAT. CDIFUT UNIT=7' FEAD(105.1000)LOLT 8.000 9.000 10.000 11.000 AT ORDER DUTPUT LOUT, NUMBER OF THERMISTORS USED=?' READ(105:1000)NTHERM OUTPUT 'I WILL ASSIGN THE THERMISTORS NUMBERS' DUTPUT 'YOU TYPE IN THE A+ B & C CALIBRATION VALUES IN TH 12.000 DUTPUT 'EXPONENTS OF -2+ -3 & -6 ARE ASSUMED IN THE CALCU 13.000 VALUE' OUTPUT 'INPUT DHLY THE FRACTIONAL PART OF THE CALIBRATION DUTPUT 'SKIP A SPACE BETWEEN EACH DF THE THREE NUMBERS' DO 50 I=1,NTHERM DUTPUT 'THERMISTOR NUMBER ',I,' CALIBRATION VALUES AR 14.000 16.000 NUMBER '+I+' CALIBRATION VALUES ARE? FEAD(103,1000)(THEPM(J,1),J=1,3) 50 CONTINUE DD 60 I=1,NTHERM WPITE(108,2000)I,(THERM(J,I),J=1,3) 60 CONTINUE OUTFUT 'TO EDIT, INPUT THE ASSIGNED THERMISTOR NUMBER FOL DUTPUT 'THE THREE NEW CALIBRATION VALUES' DUTRUT 'SFIP A SPACE BETWEEN EACH OF THE NUMBERS' 5 DUTPUT 'TYPE 1 TO EDIT, 0 TO CONTINUE' READ(105,1000)M IF(M.EQ.0)GO TO 30 KG=0 10 DUTPUT 'EDIT' 10 DUTPUT 'EDIT' KG=KG+1 READ(105,1000)KK(KG),(THERM(K,KK(KG)),K=1,3) DUTPUT '1 DR 0?' FEAD(105,1000)M IF(M.EQ.1)GD TD 10 DUTPUT 'YDUR NEW VALUES ARE:' DD 20 KB=1,KG WRITE(108,2000)KK(KB),(THERM(K,KK(KB)),K=1,3) 20 CDNTINUE GD TD 5 31.000 32.000 33.000 34.000 35.000 36.000 37.000 38.000 39.000 60 TO 5 30 DUTPUT 'THERMISTOR NUMBERS WILL BE ASKED FOR BEFORE STATI DNS 41.000 SED DUTPUT YWHEN ASKED, LIST IN ORDER THE EIGHT THERMISTORS U 42.000 TIVELY DUTPUT 'BEGIN WITH THE THERMISTOR RECORDING TWICE CONSECU DUTPUT 'SKIP A SPACE BETWEEN EACH THERMISTOR NUMBER' DUTPUT 'ZEPO CALIBPATION RESISTANCE=?' READ(105,1000)R0 DUTPUT P0 D0 703 1=1,MSTAT DUTPUT 'STATION ',I, 'NUMBER OF PENETRATIONS=?' 43.000 44.000 45.000 45.000 45.000 45.000 51.000 51.000 51.000 53.000 53.000 55.000 55.000 55.000 55.000 55.000 55.000 55.000 DUTPUT 'STATION ', I, 'HUMBER OF I PEAD(105,1000) NPENS DUTPUT 'ZERO SCALE RESISTANCE=?' READ(105,1000) FZERO DUTPUT 'FULL SCALE RESISTANCE=?' READ(105,1000) PFULL C=1.-(1.+P0.RZEPD) CD=C-D DUTPUT NPENS,PZEPD, PFULL,C,D DUTPUT 'THEFMISTORS USED?' READ(105,1000) (NAFPAY(J),J=2,9) NAFPAY(1)=NAFRAY(2) DD 500 J=1.9 J=J=1 58.000 59.000 60.000 62.000 63.000 64.000 65.000 SUD CLM/INCE DUTPUT 'MULTIPLICATIVE FACTOR FOR FULL SCA DUTPUT '0 IF FULL SCALE COUNTS D-K AS IS' READ(105+1000)IFACTOR DD 600 J=1+NFEM3 PEAD(1N+4000)TITLE,NSTART+NSTOP WPITE(DUT,5000)TITLE NTOT=NSTOP-NSTAPT+1 WRITE(108,5000)ITLE DUTPUT NTOT DD 575 +=1+NTOT PEAP(LIN+6000)(DATA(L)+L=1+14) FULL=SATA(4)+()-(FULL+D))/CD DS 570 L=5,13 DATA(L)=P6,(P(CATA(L)-B))-1.) Q=ALD6(DATA(L)) N=NAPEAY(L-4) X=THEEM(1+N)+01 Y=IHEPM(2+N)+00+001 Z=THEPM(2+N)+00+001 Z=THEPM(2+N)+00+001 DTAT(L)=(1./()+Y+2))-273.15 STO (DNTINUE 600 FCFAMT(164+T59+15,T68+15) 500 FCFAMT(14:15) FOO CONTINUE 1000 FCFAMT(14:15) FOO CONTINUE 1000 FCFAMT(14:15) FOO CONTINUE 1000 FCFAMT(14:15) FOO CONTINUE 1000 FCFAMT(14:15) FOO FCFAMT(14:15) FCFAMT(14:15) FCFAMT(15) FCFAMT(14:15) FCFAMT(15) FCFAMT 66.000 84.000 85.000 87.000 87.000 87.000 97.000 91.000 91.000 93.000 93.000 93.000 95.000 96.000 97.000 98. 000

```
I FORT4 CONVERT OVER RVERT
EXT. FORTPAN IV, VERSION FOI
OPTIONS : ADP+NS
 ISET FIL/SAMPLETIN
 ISET F:2/TEMP; DUT
 LYNX RVEPT OVEP LVERT
P1 ASSOCIATED.
• • ALLOCATION SUMMARY •
PROTECTION
                                  LOCATION
                                                           PAGES
 DATA (00)
PROCEDURE (01)
                                        A000
                                                                3
                                        8800
                                                                22
A600
ISTAPT LVEPT
PROGPAM CONVERT FEB. 79
INPUT UNIT=?
?1
 DCB (10)
 LIN = 1
NUMBER OF STATIONS=?
?1
  NSTAT = 1
 DUTPUT UNIT=?
NUMBER OF THERMISTORS USED =?
  LOUT = 2
  I WILL ASSIGN THE THERMISTORS NUMBERS
You type in the A, B & C CALIERATION VALUES IN THAT ORDER
EXPONENTS OF -2, -3 & -6 APE ASSUMED IN THE CALCULATIONS
INPUT ONLY THE FRACTIONAL PART OF THE CALIERATION VALUE
SKIP A SPACE BETWEEN EACH OF THE THREE NUMBERS
   THERMISTOR
                             NUMBER
   1 = 1
CALIBRATION VALUES ARE?
?.1315576 .2622218 .1399615
THERMISTOR NUMBER
I = 2
CALIBRATION VALUES ARE?
?.1266464...2686491..1310889
THERMISTOR NUMBER
I = 3
7.122545

THERMISTOR TURES ARE?

CALIBRATION VALUES ARE?

7.1322545.2610160.1457364

THERMISTOR NUMBER

I = 4

CALIBRATION VALUES ARE?

7.1323985.2611319.1454189

I .1315576 .262218

2 .1266464 .2686491

2 .1322545 .2610160

.2611319

.2611319
                                                                                          .1399615
.1310889
.1457364
  3 .1322545 .2610160 .1457364

4 .1323985 .2611319 .1454189

TD EDIT, INPUT THE ASSIGNED THERMISTOR NUMBER FOLLOWED BY

THE THREE NEW CALIPPATION VALUES

SKIP A SPACE BETWEEN EACH OF THE NUMBERS

TYPE 1 TO EDIT, 0 TO CONTINUE
 70
  THERMISTOR NUMPERS WILL BE ASKED FOR BEFORE STATIONS
WHEN ASKED, LIST IN OPDER THE EIGHT THERMISTORS USED
BEGIN WITH THE THERMISTOP PECORDING TWICE CONSECUTIVELY
SKIP A SPACE BETWEEN EACH THERMISTOR NUMBER
ZERD CALIBRATION PESISTANCE=?
 ?20000
  R0 = 20000.000000000
STATION
NUMBER OF PENETRATIONS=7
ZERD SCALE RESISTANCE=?
.2622218
                                                                                         .1399615
                                                        .2622218
.2686491
.2610160
.2611319
.2622218
                                                                                         .1399615
                       .1266464
.1322545
.1323985
.1315576
      Ŝ
                                                                                         .1457364
      45
                                                                                          .1399615
                        1265464
      ē
                                                         .2686491
                                                                                         .1310889
NTOT = 33
+STOP+ 0
```

Test Run of CONVERT - Station 2 Penetration 2

Figure D2

Procedure Necessary to Copy Station 2 Penetration 2 from AIIDATA to SAMPLE

!COPY AIIDATA OVER AIIDATA(LN)
-terminal responds!COPY AIIDATA(110-144) OVER SAMPLE
-terminal responds!COPY AIIDATA OVER AIIDATA(NLN)
-terminal responds-

Figure D3a

Job Control Statements Necessary to Store File AIIDATA on a Labelled 9-Track Magnetic Tape

!JOB account,ID !LIMIT (CORE,5),(TIME,1),(9T,1) !MESSAGE USES NEW TAPE GEDG ON 9T !PCL COPY /AIIDATA.account TO LT#GEDG/AIIDATA !EOD

Figure D3b

Job Control Statements Necessary to Store File TEMPDATA on a Labelled 9-Track Magnetic Tape

!JOB account,ID !LIMIT (CORE,5),(TIME,1),(9T,1) !MESSAGE USES GEDG ON 9T **WRITE RING** !PCL COPY /TEMPDATA.account TO LT#GEDG/TEMPDATA !EOD

AII-97-2 HEAT FLOW TAPE GEUB FILE 6 PENETRATION 1 START 181 END 214												
177	181 650	884	2 . 12765	2+12911	2.05513	2.11900	2+11526	2+12668	2+05447	2.11834	3.44404	
178	182 1047	885	2.15428	2.12526	2.04953	2.11353	2.10713	2.11908	2.04637	2.11125	2+11494 2+10713	
179	183 1430	887	2 • 12017	2+12034	2.04822	2.11135	2.10805	2.11936	2.04574	2.11054	2+10713	
180	184 1819	883	2+11931	2.12110	2.04789	2.11211	2.10837	2.11996	2.04836	2+11260		3375
181	185 2200	884	2+11957	2.11892	2.04492	2+11011	2.10745	2.11860	2.04524	2+11141	2+10547	
182	186 2579	885	2+12169	2+12234	2+10694	5+55383	2+28958	2.12120	2+08357	2.20218	2.25984	
183	187 2619	885	2•12171	2 • 12269	2+07031	2+18478	2.23946	2.12155	2.06830	2+18233		3372
184	188 2620	887	2+12175	2+12256	2.06616	2.17863	2.23150	2+12191	2.06517	2.17797	2.23019	
185	189 2619	887	5.15553	2+12277	5+06326	2.17695	2.22852	2.12212	2.06403	2.17662	2+22770	
186	190 2650	887	5•15199	2+12296	2+06255	2+17537	2.22686	2+12166	2.06271	2.17537	2.22653	
187	191 2625	.887	5+15515	5+15310	5.09555	2 . 17434	2.22655	2+12164	2.06502	2.17466	2+22573	
188	195 5653	882	5+15194	2•12275	2006205	2+17428	2.22624	5+15191	2.06172	2 • 17428	5.55208	
189	193 5655	883	5+15542	2+12361	2.061/3	2 17472	2+22571	2.12264	2.06136	2+17423	2+22554	
190	194 2628	882	5+15359	2 • 12407	2+06139	2+17355	2 • 22573	3.12359	2.05172	2 . 17413		3372 equilibrium
191	195 2623	887	2 12394	2.12508	2.06140	2+17374	2.22604	2 • 12 4 4 3	5.02153	2.17407	5.55939	3372
192	196 2625	884	2+12402	2 • 12516	2.00155	2+17325	2+22561	2.12549	2.06138	2.17374	2+22544	
193	197 2628	884	5+15359	2 • 12424	5.00153	2+17385	2.22589	2 • 12521	2,06205	2+17385	2.22573	
194	198 2627	883 883	2+12681	2 • 12795	2.001/5	2+17380	5+552531	2+12779	2.06172	2+17396	2.22575	
195 196	199 2627	884	2 • 12795	2 • 12925	2.06172	2+17347	2 • 22575	2.12762	2.06172	2.17428	2+22575	2375
197	500 5653	884	2+12844	2 • 12957	5.00188	2+17380	5+55608	2+12860	2.06172	2.17445	2.22342	
	201 2627	886	2 • 12741	5.15855	2.06102	2+17368	2+22550	2:12708	2.06157	2 17368	2.22599	
198	505 5658	885	2 • 12836	2 • 12998	2.06102	2+17347	2 • 22585	2+12868	2.06107	2+17379	2.22369	
. 199	503 5658	884	2+13087	2.13185	5.06188	2+17396	2 • 22542	2+12892	2.06139	2.17412	2+22591	
200	204 2630	885	2+12846	2+12976	2.06139	2+17369	5.55606	2+12863	2.06235	2+17401	5.55206	
201	205 2633	885	2 • 1 ? 3 6 1	2.12208	2.08745	2•28150	5•33258	2+12377	2.04871	2+16233		3374-pullout
202	206 2590	883	2.12342	2 • 12375	2.04654	2+11379	5+10939	2.12180	2.04591	2.11249		3373
203	207 2457	885	2•11934	2.12047	2.04427	5.11005	2•10651	2+11918	2+04590	2+11181	2+10847	
204	208 2048	884	2.15001	2.15085	2.04591	2•11184	5+10295	5.11950	2+04476	2.11070	2.10545	
203 206	209 1398	885 884	2.11804	2.11966	2.04526	2+11051	2•10635	2 • 11788	2+04427	2+10970	2+10585	
207	210 1217 211 1217		2 • 11901	2.11999	2.04558	2.11084	2+10668	2+11950	2.04657	2.11100		3370
208	212 1208	885 885	2+11938 2+11920	2.12069	2.04558	2+11041	2+10703	2+11938	2+04309	2+11073	2.10654	3375
209	213 1198	887	2+12008	2+12115	2.04608	2.11070	2.10694	2.11952	2-045-55	2+11103	2.10743	3376 hold
510	214 1169	887	2+12087	2•12155 2•12169	2.04607	2.11144	2.10771	2.15041	2.04523	2 • 11095	2+10753	
		~ • • ·	C.ICO31	CA16103	2•04591	2+11076	2+10729	5.15021	2.04705	2+11174	2 • 10729	3370

•

Converted Temperature Data - Station 7 Penetration 1

.

.

Table Dl

-148-

APPENDIX E

page

1.	Conversion of Pogo Probe Temperature Data to Temperature Gradients149
2.	Listing of program that calculates pogo probe temperature gradients151
3.	Input format for heat flow program (FILE)152
4.	Format for heat flow program output (HEAT)153
5.	Sample output - station 7 penetration 1154
6.	Job control statements necessary to run FILE from a terminal155

-

Conversion of Pogo Probe Temperature Data to Temperature Gradients

For the 4 pogo probe stations, a computer program was developed that calculates the interval gradients and the total gradient. The program requires inputs on cards for each station in the format indicated in table Ela. The format of the output is shown in table Elb. An important use of the output was in determining the magnitude of thermistor leakage. The quantity (TCl - TC2) gives the change between the two holding periods of thermistors 2, 3, and 4 with respect to the water thermistor. Table Elc is a sample of the program's output for the first penetration of station 7.

A listing of the program is given below. For operation from a terminal, it is first necessary to copy the program and the data to separate disk files. This can be accomplished in a similar manner as was done for TOWP and CONVERT (Figure Cla). We named our program file FILE and our data file FILEL. Figure El shows how FILE would be run from a terminal. The output is written onto a file It is then necessary to have the contents named HEATFLOW. of HEATFLOW printed. This can be done on the line printer as was done for files AIIDATA and TEMPDATA (Figure Bl) or it can be done on the terminal by issuing the single command, COPY HEATFLOW.

At the time this program was written, file TEMPDATA had not been created. It represents an initial attempt to obtain thermal gradient information from the pogo probe measurements. In some cases, such as when holding periods were not well defined or when the sediment thermistors failed to reach equilibrium, we had to modify the output from the program. Furthermore, it would definitely have been easier to use TEMPDATA (actual temperature data) to calculate the gradients, rather than start with AIIDATA (digital data).

1.000		DIMENSION T (4), TC1 (4), TC2 (4), TC12 (4), RA (4), RB (4), RC (4)
2.000		DATA KR.LP/105.108/
3.000	e	DATA R0/20000./
4.000	5	READ (KR, 10) N. RZ, RF
5.000		FORMAT(110,2F10.0)
	10	C=1.7(1.+80/RF)
5.000		D=1.7(1.+R0/RZ)
7.000		
8.000		WRITE(LP+15)C+D FORMAT((11+,F10.7,5X,F10.7)
9.000	15	
10.000		DO 25 J=1,4
11.000		READ (KR, 20) RA (J), RB (J), RC (J)
12.000		FORMAT (3F10.0)
13.000	25	CONTINUE
14.000		DO 140 II=1,N
15.000		CALL HELOW (T.II, RA, RB, RC, C, D)
16.000	<u>3</u>)	CALL HELOW (TC1, II, RA, RB, RC, C, D)
17.000		CALL HELDW (TC2, II, RA, RB, RC, C, D)
18.000		DD 100 I=2.4
19.000		TC1 (I) =TC1 (I) -TC1 (I)
20.000		TC2(I)=TC2(I)-TC2(I)
21.000		$T_{C12}(I) = (T_{C2}(I) + T_{C1}(I))/2$
		WRITE (LP, 90) II, I, TC1 (I) . TC2 (I) , TC12 (D
22.000	00	FORMAT (1, 14, 5%, 14, 3(5%, F10.7))
23.000		CONTINUE
24.000		
25.000		TC12(1)=0.
26.000		DO 120 I=1,4
27.000		T(I) = T(I) - TC12(I)
28.000		WRITE (LP, 110) II, I, T (D)
29.000	110	FORMAT (1 14,5%, 14,5%, F10.7)
30.000	120	CONTINUE
31.000		SRAD1=(T(3)-T(2))/100.
32.000	1.1.1.1	SRAD2=(T(4)-T(3))/100.
33.000		SPAD12=(T(4)-T(2))/200.
34.000		WRITE (LP, 130) SRAD1. SPAD2, SRAD12
35.000		FORMAT (/3(5X, E15.7)/)
36.000		CONTINUE
37.000		READ (KR, 150) NSTA
38.000		FORMAT(I10)
39.000		IF (NSTA . 20. 1) 50 TO 5
40.000		STOP
41.000		SND
42.000		CURRENTING HELOW (T.II, RA, RB, RC, C, D)
43.000		DIMENSION R8(4), RB(4), RC(4), 8N(4), R(4), T(4)
		DATA R0/20000./
44.000		DATA KR, LP/105,108/
45.000		
46.000		CD=C-D READ(5,40)Z.F.(AN(I),I=1,4)
47.00		
48.000		FORMAT(6F10.0)
49.00		8≃(F-Z)/CD
50.00	0	$\mathbf{B} = \left(\left(\mathbb{Z} \bullet \mathbb{C} \right) - \left(\mathbb{F} \bullet \mathbb{D} \right) \right) / \mathbb{C} \mathbb{D}$
51.00		RN=-R0/(8/B+1.)
52.00		WRITE (LP, 45) II, A. B. RM
53.00	0 45	FORMAT(1 1,14,5%,E15.7,5%,E15.7,5%,F10.2)
54.00	0	DD 60 I=1,4
55.00		R(I) = R0/((3/(3N(I) - B)) - 1.)
56.00		
57.00		+ 275 = 24 - 22709273 + 210 + 4(-9))) + (22(1) + 2 + (10, + + (-10))) + (22(1) + 2 + (-10)))
58.00		C(RC(I) +0+0+0+(10.++(-13)))) -273.15
59.00		
60.00		FORMAT((', 14, 5X, 14, 5X, F10.2, 5X, F10.6)
50.00 51.00		CONTINUE
		RETURN
62.00		END
63.00	0	CHU

Input Format for Heat Flow Program (FILE)

Explanation

column	1	10 11	21	31	41	51	
		n R _z	R _F				
W	a· 10 ⁹	β·10 ¹⁰	Y·10 ¹³				
2	α·10 ⁹	β·10 ¹⁰	Y.10 ¹³				
3	α·10 ⁹	β·10 ¹⁰	$\gamma \cdot 10^{13}$				
4	α·10 ⁹	β·10 ¹⁰	Y.10 ¹³				
equilibrium	Z	F	Nw	N ₂	N ₃	NL	
pre-penetrati hold	on Z	F	Nw	N ₂	N ₃	N4	repeat n times
post-pullout hold	Z :	F	Nw	N ₂	N ₃	N4	CIME 5
	•						

1 (if another station follows)

w=water thermistor

2=sediment thermistor located .5 meters below the weight stand 3=sediment thermistor located 1.5 meters below the weight stand 4=sediment thermistor located 2.5 meters below the weight stand α,β,γ =thermistor calibration constants (in Real format)

n=number of measurements that use the given R_z, R_f, α 's, β 's and γ 's (generally one station) - must be right justified to column 10 and in Integer format

 $N_w, N_2, N_3, N_4, Z, F=$ number of counts (in Real format) corresponding to the W,2,3 and 4 thermistors, R_z and R_f respectively

Table Elb

Format for Heat Flow Program Output (HEATFLOW)

Explanation

equilibrium	1 C In In In In In	5x 5x 5x 5x 5x 5x	1 2 3 4	5x 5x	R _w R2 R3 R4	5x 5x	R _n T _w T ₂ T ₃ T ₄ post-pu	110+	holda
rcp		n pr	ep	ener	Lation	anu	post-pu	TTOUL	notas
temperature corrections	In In In		3	5x 5x 5x	TCl ₂ TCl ₃ TCl ₄	5x		5x 5x 5x	TC12 ₂ TC12 ₃ TC124
corrected equilibrium temperatures	In In In In	5x	2 3	5x 5x 5x 5x	T _w T2 T3 T4				
			sk	ip a	line				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
repeat entire process n times for each station									

repeat entire process again if another station follows

 ${\bf I}_n$ = integer count which is set equal to the measurement number

5x = skip 5 spaces

 R_n = resistance corresponding to 0 counts

TCl = temperature correction calculated for pre-penetration hold

TC2 = temperature correction calculated for post-pullout hold

TCl₂ = average of TCl and TC2 - used to calculate the corrected equilibrium temperatures

GRAD23, GRAD34, GRAD23 = temperature gradients calculated between thermistors 2 and 3, 3 and 4, and 2 and 4.

Table Elc

Sample Heat Flow Program Output - Station 7 Penetration 1

1	.196076	9.19	99811		
•	1	8573645	E 06	.1714813E 06	5000.31
	1	1	4954.14	2.123587	
	1	2	4965.96	2.061722	
	1	3	4938.35	2.174175	
	1	4	4889.45	2.225893	· ·
	t	8573645	E 06	.1714823E 0 6	5000.34
•	1	· 1	4955.08	2.119361	
	1	2	4969.29	2.046735	
	1	3	4952.54	2.110540	
	1	4	4915.78	2.106772	
	1	8573645	E 06 ·	.1714853E 06	5000.45
	1	1	4955.05	2.119524	•
	1	2	4969.55	2.045582	
	Ł	2 3	4952.43	2.111029	
	1	4	4915.63	2.107425	
	1	4 22 - 3 -	.0726262	0739412	0732837
	1	3 -	.0088211	0084958	0086585
	1	4 -	.0125891	0120994	0123438
	1	1 2	.1235668		
	1	2 2	.1350057	·	
	1		.1828337		
	1	4 2	.2382363		
	.4	7827942-03	. 55	40269E-03	.5161532E-03

-- 154-

.

Figure El

Job Control Statements Necessary to Run FILE from a Terminal

!FORT4 FILE OVER RFILE
EXT. FORTRAN IV, VERSION FO1
OPTIONS >NS.BC, ADP

SET F:105/FILE1:1N

.

.

ISET F:108/HEATFLOW: DUT

DATA (00)	A000	2
PROCEDURE (01)	n 900	1
DOB <10>	A400	2

+START LFILE +STOP+ 0

.