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Abstract The Alpha Magnetic Spectrometer (AMS) is a
precision particle physics detector operating at an altitude of
∼ 410 km aboard the International Space Station. The AMS
silicon tracker, together with the permanent magnet, mea-
sures the rigidity (momentum/charge) of cosmic rays in the
range from ∼ 0.5 GV to several TV. In order to have accu-
rate rigidity measurements, the positions of more than 2000
tracker modules have to be determined at the micron level by
an alignment procedure. The tracker was first aligned using
the 400 GeV/c proton test beam at CERN and then re-aligned
using cosmic-ray events after being launched into space. A
unique method to align the permanent magnetic spectrometer
for a space experiment is presented. The developed underly-
ing mathematical algorithm is discussed in detail.
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1 Introduction

The Alpha Magnetic Spectrometer (AMS), operating aboard
the International Space Station (ISS) since May 2011, is a
unique large acceptance magnetic spectrometer in space. It
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aims to measure energy spectra of cosmic-ray charged par-
ticles, nuclei, antiparticles, antinuclei, and gamma-rays in
the GeV–TeV region to understand Dark Matter, antimat-
ter, and the origin of cosmic rays, as well as to explore
new physics phenomena. The AMS silicon tracker detector,
together with the permanent magnet, determines the rigid-
ity (momentum/charge) of charged cosmic rays by multiple
measurements of the coordinates along the particle trajec-
tory. High performance of the tracker is crucial for the AMS
mission and requires a sophisticated alignment to accurately
determine the positions of the detector modules.

In August 2010, before AMS was launched, the complete
detector was tested with a 400 GeV/c proton beam at the
CERN Super Proton Synchrotron (SPS). This data allows the
precise alignment of the tracker with micron accuracy using
the procedure described in this paper, which aligns all the
detector modules from different mechanical hierarchy levels
in one step. The strong accelerations and vibrations during
launch, followed by the rapid outgassing of the support struc-
ture in vacuum, together with continuous temperature vari-
ations in space all change the positions of the tracker mod-
ules. The tracker is continuously re-aligned with cosmic-ray
events to correct the resulting displacements. The unprece-
dented challenge in the alignment of the magnetic spectrom-
eter in space is that the detector has to be aligned by using
cosmic-ray events with unknown rigidities in the presence of
the magnetic field. In this paper, we report a unique mathe-
matical approach which allows to overcome these difficulties
and align the tracker to micron precision.

2 AMS detector and the silicon tracker

As shown in Fig. 1, the AMS detector consists of a perma-
nent magnet and an array of particle detectors to measure the
velocity β = v/c, absolute charge Q, energy E, and rigid-
ity R of the passing particles. Within the magnet bore and
above and below the magnet are a total of 9 precision silicon
tracker layers, L1 to L9. The tracker accurately measures R
and Q of the particles. Above and below the magnet bore
are the Upper and Lower Time of Flight (TOF) counters [1].
The TOF provides a charged particle trigger to AMS and
determines β and Q of the incoming particles. The Transi-
tion Radiation Detector (TRD) [2], located above the Upper
Time of Flight counters, identifies electrons and positrons.
The Ring Imaging Cherenkov detector (RICH) [3], below the
Lower Time of Flight counters, measures β and Q of passing
particles. The Electromagnetic Calorimeter (ECAL) [4], at
the bottom of AMS, measures E of electromagnetic parti-
cles and separates protons from electrons and positrons. The
Anti-Coincidence Counters (ACC) [5], surrounding the inner
tracker inside the magnet bore, reject cosmic rays entering
AMS from the side. The magnet [6] is made of 64 sectors
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Fig. 1 (Right) Schematic view of a cosmic-ray fluorine nuclei event
of 26 GV rigidity measured by AMS, with the signals in the TRD, TOF,
silicon tracker, RICH, and ECAL. Also shown are the permanent magnet
and ACC. (Left) Layout of the tracker showing the upper external layer
(L1), the inner tracker (L2–L8), and the lower external layer (L9) as
well as their support planes

of high-grade Nd-Fe-B assembled in a cylindrical shell. The
central field of the magnet is 1.4 kGauss. In 2010, the field
was measured in 120 000 locations to an accuracy of better
than 2 Gauss. Comparison with the measurements performed
with the same magnet in 1997 shows that the field did not
change within 1%. On orbit, the magnet temperature varies
from −3 to +20 ◦C. The field strength is corrected with a
measured temperature dependence of −0.09%/◦C [7].

The AMS tracker comprises 2284 double-sided silicon
micro-strip sensors each with a surface area of 41.360×72.045
(active area of 39.832 × 70.565) mm2 and thickness of
0.300 mm, assembled in 192 mechanical and electrical units
called ladders [8]. Each ladder contains 9 to 15 sensors, see
Fig. 2a. The total active area is 6.42 m2. Both sides of a
sensor are implanted with metallic strips running in orthogo-
nal directions, providing a two-dimensional measurement of
the particle position. For the side with p+ doped strips (p-
side), the implantation (readout) strip pitch is 27.5 (110)µm.

The opposite side (n-side) with n+ strips has an implanta-
tion (readout) pitch of 104 (208) µm. The p-side (n-side)
strips provide the measurement of the particle bending (non-
bending) coordinate y (x). Combining the information from
all signal strips in a sensor, the coordinate resolution in y is
∼ 10 µm for Q = 1 and ∼ 5 µm for Q = 6 particles [9].
Sensors within a ladder are daisy-chained together through
wire bonds on the p-side and are connected by a metalized
Upilex film on the n-side which is then glued to a ladder rein-
forcement frame with layers of foam and carbon fiber (see
Fig. 2a).
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Fig. 2 The AMS silicon tracker ladder: a the main components of the
ladder and b two assembled ladders

From 16 to 26 ladders are mounted onto one side of a
support plane to form a layer. As seen in Fig. 1, the tracker
has 9 layers supported by 6 rigid planes. Each plane is made
of an aluminum honeycomb interior and carbon fiber skins.
The first layer (L1) is on plane 1 at the top of the detector, the
second (L2) is on plane 2 just above the magnet, six (L3 to
L8) are on 2 sides of planes 3, 4, and 5 within the bore of the
magnet, and the last (L9) is on plane 6 just above the ECAL.
The maximum lever arm from L1 to L9 is about 3 m. L2 to
L8 constitute the inner tracker.

The planes of the inner tracker are firmly held by a cylin-
drical carbon fiber structure which has near zero coefficient
of thermal expansion and excellent mechanical strength [8].
The material thickness of a plane, including 2 layers of lad-
ders, represents ∼ 1% of a radiation length (X0). External
plane 1 carrying L1 is bolted to another support sandwich
plane (plane 1 NS) fastened to the top cover of the TRD.
External plane 6 carrying L9 is attached to the ECAL fix-
ation blocks [6]. The deformation of the support structures
of the TRD (M-Structure) [10] and ECAL (Unique Support
Structure) [11] due to gravity change or temperature variation
(more than ±10 ◦C in space) induce sizable displacements
of L1 and L9 with respect to the position of the inner tracker.

Fig. 3 The components and coordinate systems of a a sensor, b a lad-
der, c a layer, and d the inner tracker. The inner tracker coordinate
system is also the global coordinate system

The material thickness between L1 and L2, mostly the TRD
and Upper TOF, is ∼ 0.3 X0, and that between L8 and L9,
mostly the Lower TOF and RICH, is ∼ 0.2 X0 [12].

3 Coordinate systems and composite alignment
parameters

The AMS tracker modules (sensors, ladders, and layers) are
assembled in a hierarchical support structure – sensors in lad-
ders, ladders on layers, and layers on planes into the tracker.
Each module is positioned with respect to the next support
structure by 6 degrees of freedom: 3 translations and 3 rota-
tion angles. Figure 3a–c illustrates the local coordinate sys-
tems of a sensor, a ladder, and a layer where the geometric
center of each module is defined as its origin point (�os, �oL , or
�oP ). Taking the sensor coordinate system as an example, as
shown in Fig. 3a, the us -axis and the vs-axis are defined along
the coordinates measured by the strips of the n-side and the
p-side respectively and the ws-axis is normal to the sensor
plane. Figure 3d shows the global coordinate system of the
tracker where the geometric center of the inner tracker layers
(L2–L8) is defined as its origin point (�og or �o), the x (ug)-axis
is along the coordinates measured by n-side strips parallel to
the main component of the magnetic field, the z (wg)-axis
is pointing vertically perpendicular to the tracker layers, and
the y (vg)-axis completes to a right-handed orthogonal coor-
dinate system.

In composite alignment, all detector modules from dif-
ferent hierarchy levels are aligned simultaneously. This
approach was previously used in the CMS experiment [13].
In this section and Sect. 4, we will introduce mathemati-
cal formulae for composite alignment. Specifically, Sect. 4
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will address the implementation of constraints in composite
alignment using our original numerical grid method.

3.1 Coordinate transformation and alignment parameters

The coordinates of the detector hit measured in the local
sensor frame �q = (us, vs, ws)

T can be transformed sub-
sequently to the coordinates in the next reference frame,
namely, in the ladder frame (�rL), in the layer frame (�rP ),

and in the global tracker frame (�rg), as:

�rL = RT
s ΔRs(�q + Δ�qs) + �r0s (1)

�rP = RT
LΔRL(�rL + Δ�qL) + �r0L (2)

�rg = RT
PΔRP (�rP + Δ�qP ) + �r0P (3)

where �q + Δ�qs, �rL + Δ�qL , and �rP + Δ�qP are the hit
coordinates in the frames of the sensor, ladder, and layer
respectively including small corrections on their individual
position shifts of Δ�qs, Δ�qL , and Δ�qP ; RT

s , RT
L , and RT

P
are the nominal rotation matrices from the sensor into the
ladder, from the ladder into the layer, and from the layer
into the tracker respectively and ΔRs, ΔRL , and ΔRP are
their small individual corrections; and �r0s, �r0L , and �r0P

are the nominal positions of the sensor, ladder, and layer
origin points in the next frame of the ladder, layer, and
tracker respectively. The corrections of each module dis-
placement by an offset Δ�qi = (Δu,Δv,Δw)T and a rota-
tion ΔRi = ΔRγ

i ΔRβ
i ΔRα

i have to be determined from the

alignment procedure, where ΔRα
i , ΔRβ

i , and ΔRγ

i are the
decomposed rotation matrices defined by angles of rotation
α, β, and γ around the u-axis, the new v-axis, and the new
w-axis (Fig. 3):

ΔRα
i =

⎛
⎝

1 0 0
0 cos α sin α

0 − sin α cos α

⎞
⎠ ΔRβ

i =
⎛
⎝

cos β 0 − sin β

0 1 0
sin β 0 cos β

⎞
⎠

ΔRγ

i =
⎛
⎝

cos γ sin γ 0
− sin γ cos γ 0

0 0 1

⎞
⎠ . (4)

In the small-angle approximation, the correction matrix for
rotation becomes:

ΔRi = ΔRγ

i ΔRβ
i ΔRα

i =
⎛
⎝

1 γ −β

−γ 1 α

β −α 1

⎞
⎠ . (5)

The transformation of a hit coordinate from the local sen-
sor frame, �q, to the global tracker frame, �rg, is given by:

�rg� RT(�q + Δ�q) + �r0 (6)

where Δ�q is the total equivalent displacement correction in
the local sensor frame including alignment parameters for
all composite detector structures of the sensor, ladder, and
layer, RT is the nominal rotation matrix from the sensor into
the global tracker frame, and �r0 is the nominal position of the
sensor origin point in the global tracker frame. The definitions
of Δ�q, RT, and �r0 and the detailed calculation can be found
in Appendix A.

3.2 Coordinate measurement residual and its derivatives
with respect to the alignment parameters

The coordinate measurement (hit) residual �ε is defined as
the spatial difference between the predicted position of the
track �qp and the measured position of the detector hit �q in
the sensor plane (local sensor frame), as:

�ε = �qp − �q. (7)

The predicted position of the track in the sensor plane, �qp,
is only sensitive to the sensor displacement, Δ�q, along the
ws-axis (Fig. 3a). Such displacement will introduce a change
of the track intersection position Δ�qp as:

Δ�qp = PpΔ�q (8)

where

Pp =

⎛
⎜⎜⎜⎜⎝

0 0 du p
s

dw
p
s

0 0 dv
p
s

dw
p
s

0 0 1

⎞
⎟⎟⎟⎟⎠

. (9)

The quantities du p
s /dw

p
s and dv

p
s /dw

p
s are the track pro-

jected directions in the sensor usws-plane and vsws-plane
respectively. Hence, the total correction to the residual for
the detector module displacements is:

Δ�ε = Δ�qp − Δ�q = PΔ�q (10)

where

P = Pp − E =

⎛
⎜⎜⎜⎜⎝

−1 0 du p
s

dw
p
s

0 −1 dv
p
s

dw
p
s

0 0 0

⎞
⎟⎟⎟⎟⎠

(11)

and E is the unit matrix.
From Eqs. (A.3) and (10), all the partial derivatives of

the residual with respect to the alignment parameters can be
calculated. Some examples are listed as follows:

∂�ε
∂us

= P�e1

∂�ε
∂uL

= PRs �e1
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∂�ε
∂uP

= PRsRL �e1

∂�ε
∂αs

= P
∂ΔRs

∂αs
�q

∂�ε
∂αL

= PRs
∂ΔRL

∂αL
(RT

s �q + �r0s) = PRs
∂ΔRL

∂αL
�̂r L

∂�ε
∂αP

= PRsRL
∂ΔRP

∂αP

[
RT

L(RT
s �q + �r0s) + �r0L

]

= PRsRL
∂ΔRP

∂αP
�̂r P (12)

where �e1=(1, 0, 0)T is the unit vector of the u-axis, and
�̂r L=(ûL , v̂L , ŵL)T=RT

s �q + �r0s and �̂r P=(û P , v̂P , ŵP )T=
RT

L(RT
s �q + �r0s)+ �r0L are the hit coordinates in the frames of

the ladder and layer respectively without displacement. Sub-
stituting the rotation (Eq. (5)) derivatives, the partial deriva-
tives of the residual with respect to the alignment parameters
of the sensor (∂�ε/∂ �ps), ladder (∂�ε/∂ �pL), and layer (∂�ε/ �pP )

are obtained as:

∂�ε
∂ �ps =

(
∂�ε
∂us

,
∂�ε
∂vs

,
∂�ε
∂ws

,
∂�ε
∂αs

,
∂�ε
∂βs

,
∂�ε
∂γs

)
= P

∂ �q
∂ �ps

= P

⎛
⎝

1 0 0 0 −ws = 0 vs
0 1 0 ws = 0 0 −us
0 0 1 −vs us 0

⎞
⎠ (13)

∂�ε
∂ �pL =

(
∂�ε
∂uL

,
∂�ε
∂vL

,
∂�ε

∂wL
,

∂�ε
∂αL

,
∂�ε
∂βL

,
∂�ε
∂γL

)
= P

∂ �q
∂ �pL

= PRs

⎛
⎝

1 0 0 0 −ŵL v̂L
0 1 0 ŵL 0 −ûL
0 0 1 −v̂L ûL 0

⎞
⎠ (14)

∂�ε
∂ �pP =

(
∂�ε

∂uP
,

∂�ε
∂vP

,
∂�ε

∂wP
,

∂�ε
∂αP

,
∂�ε
∂βP

,
∂�ε
∂γP

)
= P

∂ �q
∂ �pP

= PRsRL

⎛
⎝

1 0 0 0 −ŵP v̂P
0 1 0 ŵP 0 −û P

0 0 1 −v̂P ûP 0

⎞
⎠ . (15)

The alignment parameters of the sensor, ladder, and
layer are Δ �ps = (Δus,Δvs,Δws, αs, βs, γs)

T, Δ �pL =
(ΔuL ,ΔvL ,ΔwL , αL , βL , γL)T, and Δ �pP = (ΔuP ,ΔvP ,

ΔwP , αP , βP , γP )T correspondingly.

4 Constraints of the composite alignment parameters

For a composite detector which consists of several subcom-
ponents, those modules on the same support structure are
likely to have highly correlated displacements. Applying the
alignment directly on a single level of the hierarchy such
as the sensors ignores the mechanical correlations and dis-
torts the detector structure. In the composite alignment, the
alignment parameters in each level are defined relative to the
next support structure as shown in Eqs. (1)–(3) and all the

Fig. 4 Schematics of a a ladder and b a layer divided into fine uniform
grids

alignment parameters for all the detector modules (sensors,
ladders, and layers) are aligned simultaneously. In this way,
all correlations are considered and the alignment accuracy is
optimized.

If all composite modules are aligned at the same time with-
out constraints, there will be no unique solution. For example,
all the sensors in a ladder can move in one direction and the
ladder can move in the opposite direction, which results in
no movement of any sensors. To avoid this, 6 degrees of free-
dom must be constrained for every group of subcomponents
on the same support structure. The expressions of all the con-
straints are derived by our developed grid method described
in the following Sects. 4.1–4.3.

In addition, the stretching and shear deformations of the
detector as subsets of the linear coordinate transformation
will need specific constraints, as they are not sensed by the
track alignment procedure. In Sect. 4.4, we present our study
to deal with this issue.

4.1 Constraints of sensors in a ladder

Each sensor in a ladder can move individually. To investigate
the displacements of the sensors with respect to the ladder,
a ladder is divided into fine uniform grids spanning over
all its sensors, as illustrated in Fig. 4a. A lattice point �mi

represents a movement in the i-th grid position induced by the
displacement of the sensor. The movement of the ladder Δ�q
as a result of the displacements of all its sensors is estimated

123



  245 Page 6 of 29 Eur. Phys. J. C           (2023) 83:245 

from all the lattices via χ2-minimization:

χ2 =
∑
i

| �mi − Δ�q|2. (16)

The derivatives of the minimized χ2 with respect to the ladder
movement parameters Δ �pL are zero:

∂χ2

∂ �pL =
∑
i

2

(
∂ �q
∂ �pL

)T

i
( �mi − Δ�q) = �0. (17)

The displacements of sensors in a ladder are required to
result in zero overall ladder displacement as Δ�q(ΔusL ,ΔvsL ,

Δws
L , αs

L , βs
L , γ s

L) = �0. Substituting Δ�q = �0 and �mi =
(∂ �q/∂ �ps)iΔ �pis (the first order approximation) into Eq. (17),
6 constraints on the alignment parameters of sensors in a
ladder are obtained by summing up all the lattice points, as:

∑
i

(
∂ �q
∂ �pL

)T

i

(
∂ �q
∂ �ps

)

i
Δ �pis = �0 (18)

where
(

∂ �q
∂ �pL

)T

i
=

(
∂ �q
∂uL

,
∂ �q
∂vL

,
∂ �q

∂wL
,

∂ �q
∂αL

,
∂ �q
∂βL

,
∂ �q
∂γL

)T

i

=
⎛
⎝

1 0 0 0 −ŵi
L v̂iL

0 1 0 ŵi
L 0 −ûiL

0 0 1 −v̂iL ûiL 0

⎞
⎠

T

RiT
s (19)

is transposed from Eq. (14),

(
∂ �q
∂ �ps

)

i
=

⎛
⎝

1 0 0 0 −wi
s = 0 vis

0 1 0 wi
s = 0 0 −uis

0 0 1 −vis uis 0

⎞
⎠ (20)

is from Eq. (13), and

Δ �pis = (Δuis,Δvis,Δwi
s, α

i
s, β

i
s , γ

i
s )

T. (21)

4.2 Constraints of ladders in a layer

Similarly, to study the displacements of the ladders with
respect to the layer, a layer is divided into fine uniform grids
as illustrated in Fig. 4b. A lattice point �mi = (∂ �q/∂ �pL)iΔ �piL
represents a movement in the i-th grid position induced by
the displacement of the ladder. Using the same method, 6
constraints on the alignment parameters of ladders in a layer
are derived as:

∑
i

(
∂ �q

∂ �pP
)T

i

(
∂ �q
∂ �pL

)

i
Δ �piL = �0 (22)

where
(

∂ �q
∂ �pP

)T

i
=

(
∂ �q
∂uP

,
∂ �q
∂vP

,
∂ �q

∂wP
,

∂ �q
∂αP

,
∂ �q
∂βP

,
∂ �q
∂γP

)T

i

=
⎛
⎝

1 0 0 0 −ŵi
P v̂iP

0 1 0 ŵi
P 0 −ûiP

0 0 1 −v̂iP ûiP 0

⎞
⎠

T

RiT
L RiT

s (23)

is transposed from Eq. (15),

(
∂ �q
∂ �pL

)

i
= Ri

s

⎛
⎝

1 0 0 0 −ŵi
L v̂iL

0 1 0 ŵi
L 0 −ûiL

0 0 1 −v̂iL ûiL 0

⎞
⎠ (24)

is from Eq. (14), and

Δ �piL = (ΔuiL ,ΔviL ,Δwi
L , αi

L , β i
L , γ i

L)T. (25)

4.3 Constraints of layers in the tracker

The composite structure of layers in the tracker also has to be
constrained to factor out the translations and rotations of the
whole detector and to establish the basic position and orienta-
tion of AMS. Considering mechanical and thermal stability,
only the layers from the inner tracker (L2–L8), whose planes
are firmly held by the carbon fiber cylinder, are used in the
constraints. All the inner tracker layers are divided into fine
grids of equal size with each (i-th) lattice point represent-
ing the layer displacement at that position, see Fig. 4b. By
requiring the overall inner tracker to have neither translations
nor rotations as Δ �pg = (Δx,Δy,Δz, α, β, γ )T = �0, the
constraints on the alignment parameters of the inner tracker
layers are obtained as:

∑
i

(
∂ �q
∂ �pg

)T

i

(
∂ �q

∂ �pP
)

i
Δ �piP = �0 (26)

where

(
∂ �q
∂ �pg

)T

i

=
⎛
⎝

1 0 0 0 −ẑi ŷi

0 1 0 ẑi 0 −x̂ i

0 0 1 −ŷi x̂ i 0

⎞
⎠

T

RiT
P RiT

L RiT
s (27)

�̂r ig = (x̂ i , ŷi , ẑi )T is the i-th lattice point position in the
global tracker frame without displacement,

(
∂ �q

∂ �pP
)

i
= Ri

sR
i
L

⎛
⎝

1 0 0 0 −ŵi
P v̂iP

0 1 0 ŵi
P 0 −ûiP

0 0 1 −v̂iP ûiP 0

⎞
⎠ (28)

is from Eq. (15), and

Δ �piP = (ΔuiP ,ΔviP ,Δwi
P , αi

P , β i
P , γ i

P )T. (29)

The grid density for calculation of Eqs. (18), (22), or
Eq. (26) is sufficiently large so that its contribution to the
uncertainty of each constraint is negligible.

4.4 Constraints of stretching and shear deformations

The first alignment of the AMS tracker is based on the
400 GeV/c proton test beam, where the characteristics of
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Fig. 5 Schematics of the inner tracker deformations: a stretching, b
shearing, and c shearing section view

tracks with given momenta in the magnetic field is equiva-
lent to straight tracks. Any linear coordinate transformation
will conserve the linearity of a straight track and hence not be
sensed by the track alignment procedure. Conversely, without
specific constraints, an unstable system of the alignment due
to χ2 invariance could introduce this kind of transformation,
manifested as an extra detector displacement or deformation.
A general linear transformation from a vector �r = (x, y, z)T

to a new vector �r ′ = (x ′, y′, z′)T can be expressed by the
matrix equation:

�r ′ = D�r + �d (30)

where D is a 3×3 matrix, called a transformation matrix,
and �d = (d1, d2, d3)

T is a vector representing a translation.
Clearly, in a linear transformation, there are a total of 12 free
parameters (3 in �d and 9 in D), which can be categorized to
describe the following decomposed transformations:

(i) 3 translations represented by 3 elements in �d
(ii) 3 rotations whose matrix forms are shown in Eq. (4)

(iii) 3 stretchings with each leading to an expansion or
shrinking of the object along the corresponding axis.
As an example, Fig. 5a shows the shrinking along the
z-axis

(iv) 3 shearings with each deforming the object shape on
the corresponding projection plane as the one in Fig. 5b
shows the shearing on the yz-plane.

The outcome of (i) translations and (ii) rotations is a rigid-
body displacement without changing the object shape or size.
The 3 translations and 3 rotations of the inner tracker Δ �pg =
(Δx,Δy,Δz, α, β, γ )T have already been constrained to be
zero as previously discussed in Sect. 4.3. Next, we will focus
on (iii) stretchings and (iv) shearings.

4.4.1 Stretching

The matrix of stretching Dt is diagonal:

Dt =
⎛
⎝

λ1 0 0
0 λ2 0
0 0 λ3

⎞
⎠ (31)

where λ1, λ2, and λ3 are the extension-contraction coeffi-
cients along the x-, y-, and z-axes, respectively.

Stretching deformations are connected to the detector
structure. As shown in Fig. 3, the silicon sensors through the
ladder structure are tiled in the xy-plane to form all layers.
The stretching deformation in the xy-plane is constrained to
some extent by the exactly known size of the sensors. During
exposure to the proton test beam or to cosmic rays in space,
the incoming particles always enter the detector in various
directions and positions. The distance between the neighbor-
ing sensors or ladders is well determined by many tracks,
which are crossing them and the sensors from other layers in
front and behind. Therefore, during alignment, the extension-
contraction coefficients λ1 and λ2 are naturally constrained
by the intrinsic size of the sensors either themselves or the
ones in front/behind and no external constrains are needed.

The extension-contraction coefficient along the z-axis, λ3,

has no any sensor structure restriction (Fig. 5a) and has to be
defined. According to Eq. (31), the stretching length along
the z-axis, Δz, is described as:

Δz = (λ3 − 1)z = kz (32)

where no stretching deformation is k ≡ (λ3−1) = 0. We can
use the same grid method as in the previous section to derive
the corresponding constraint on the alignment parameters.
As seen in Fig. 4b, the i-th lattice point of the inner tracker
mi = Δzi represents the z position shift induced by the dis-
placement of the layer at that position. The stretching param-
eter k is estimated from all the lattices via χ2-minimization,
as:

χ2 =
∑
i

(mi − kzi )2 (33)

where the derivative of χ2 with respect to k is zero:

∂χ2

∂k
=

∑
i

2zi (mi − kzi ) = 0. (34)

The constraint of k = 0 leads to:
∑
i

zimi =
∑
i

ziΔzi = 0 (35)

Δzi in Δ �pig = (Δxi ,Δyi ,Δzi , αi , β, γ )T can be replaced

by the layer alignment parameters of Δ �piP = (ΔuiP ,ΔviP ,
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Δwi
P , αi

P , β i
P , γ i

P )T as:

Δ �pig =
(

∂ �q
∂ �pg

)T

i

(
∂ �q

∂ �pP
)

i
Δ �piP (36)

where (∂ �q/∂ �pg)Ti is from Eq. (27) and (∂ �q/∂ �pP )i is from
Eq. (28). For the AMS inner tracker structure, the constraint
of Eq. (35) can be simplified as:

8∑
l=2

RTl
P (3, 3)Δwl

P z
l Al = 0 (37)

where RTl
P (3, 3) is the (3, 3) entry of the l-th layer rotation

matrix, Δwl
P is the l-th layer alignment parameter on the

translation along the wP -axis, and zl and Al are the l-th layer
z position and surface area respectively.

4.4.2 Shearing

Three individual matrices of pure shearing Dκ1
h , Dκ2

h , and
Dκ3
h are given by:

Dκ1
h =

⎛
⎝

1 0 0
0 1 κ1/2
0 κ1/2 1

⎞
⎠ Dκ2

h =
⎛
⎝

1 0 κ2/2
0 1 0

κ2/2 0 1

⎞
⎠

Dκ3
h =

⎛
⎝

1 κ3/2 0
κ3/2 1 0

0 0 1

⎞
⎠ (38)

where κ1, κ2, and κ3 are the shear strains on the yz-, xz-,
and xy-planes, respectively. As seen, the pure shear matrices
are symmetric in contrast with rotation matrices which are
anti-symmetric as shown in Eq. (4).

Using small angle and shear strain approximation, the
product of matrices of shearing Dκ1

h and rotation ΔRα is:

Dκ1
h ΔRα =

⎛
⎝

1 0 0
0 1 κ1/2 + α

0 κ1/2 − α 1

⎞
⎠ . (39)

When α = κ1/2, Dκ1
h ΔRα becomes a simple shearing [14]

along the y-axis on the yz-plane as illustrated in Fig. 5c. In
the presence of both shearing and rotation in the yz-plane, the
change of the object position along the y-axis, Δy, obtained
from Eq. (39) is:

Δy = (κ1/2 + α)z = k1z (40)

where the requirement of the object to have neither rotation
α = 0 nor shear deformation κ1 = 0, defines k1 = 0. Repeat-
ing χ2 minimization to Eq. (40) together with the constraint
k1 = 0 leads to:
∑
i

ziΔyi = 0 (41)

where Δyi can be replaced by the layer alignment parameters
as shown in Eq. (36). For the AMS inner tracker structure,
the corresponding constraint is simplified to be:

8∑
l=2

RTl
P (2, 2)ΔvlP z

l Al = 0 (42)

where RTl
P (2, 2) is the (2, 2) entry of the l-th layer rotation

matrix, ΔvlP is the l-th layer alignment parameter on the
translation along the vP -axis, and zl and Al are the l-th layer
z position and surface area respectively. From Eq. (39), we
can also study the change of the object position along the
z-axis instead of the y-axis to derive another constraint on
the yz-plane as:

Δz = (κ1/2 − α)y = k′
1y. (43)

Nevertheless, given a rotation constraint on α, the constraints
on k′

1 of Eq. (43) and k1 of Eq. (40) are not independent as
k′

1 = k1 − 2α, which means the k′
1 constraint is just a linear

combination of the k1 constraint and the α constraint. To
restrict both rotation and shearing on the yz-plane, a pair of
constraints on any of (α, k1), (α, k′

1), or (k1, k′
1) are sufficient

and they are equivalent to each other.
For the xz-plane, which is similar to the yz-plane (Fig. 3),

the requirement of the object to have neither rotation β = 0
nor shearing κ2 = 0, leads to:
∑
i

ziΔxi = 0 (44)

where Δxi can be replaced by the layer alignment parameters
as shown in Eq. (36). For the AMS inner tracker structure,
the corresponding constraint can be simplified as:

8∑
l=2

RTl
P (1, 1)ΔulP z

l Al = 0 (45)

where RTl
P (1, 1) is the (1, 1) entry of the l-th layer rotation

matrix and ΔulP is the l-th layer alignment parameter on the
translation along the uP -axis.

The detector structure of the xy-plane, where the sensors
are tiled, is completely different from the yz- and xz-planes.
The essence of shear deformation is a symmetric strain ten-
sor that results in a change in angle. So, the shearing on the
xy-plane to a sensor will shear the sensor surface and break
the orthogonal system of the strips on the opposite sides,
which is mechanically not allowed. In this sense, the pure
shearing on a xy-plane or a layer, which leads to a homoge-
neous deformation of all detector microscopic components,
is practically non-existent. Another kind of pseudo-shearing
of a layer with only shifting the positions of its ladders along
the x-axis (uP -axis in Fig. 4b) without deforming the lad-
ders’ shape, is also constrained by the intrinsic structure of
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the sensors in the track alignment procedure, where the rel-
ative position between neighboring ladders in a layer is well
defined by many tracks crossing them and the sensors from
other layers in front and behind. Accordingly, similar to λ1

and λ2 in the stretching deformation, the shearing strain κ3

also does not need external constraint.
In this section, we have studied the 12 degrees of freedom

in the linear transformation with each of them corresponding
to a kind of detector displacement or deformation. They were
all constrained:

(a) 3 translations and 3 rotations by Eq. (26),
(b) 2 stretchings and 1 shearing by the intrinsic size and shape

of the sensors during track alignment,
(c) 1 stretching by Eq. (35) or Eq. (37),
(d) 2 shearings, one by Eq. (41) or Eq. (42) and the other by

Eq. (44) or Eq. (45).

5 Global track alignment

The global alignment method was first introduced in Ref. [15].
It is widely used in HEP and other fields [16–18]. In addition
to this method, there are also other alignment methods, such
as the one presented in Ref. [19].

In magnetic field, each track trajectory is characterized
by a number of parameters (5 for a helix without multiple-
scattering) which has to be determined from the track fitting
procedure. Besides the position measurements, multiple scat-
tering due to Coulomb interaction of the particle with the
detector materials also impacts the accurate determination
of the track. Taking into account the scattering angles being
extra measurement quantities, for a given track i, the track
parameters Δ�qi are determined via χ2 minimization [20]:

χ2
i =

nmeas∑
j=1

�ε j (�qi )TV−1
j �ε j (�qi ) +

nscat−1∑
j=2

�β j (�qi )TW−1
j

�β j (�qi )

(46)

where �ε j is the j-th hit residual with the position measure-
ment covariance matrix V j , and �β j is the j-th scattering
angle with the covariance matrix W j [21,22].

In the AMS global alignment, the global detector align-
ment parameters, Δ �p, and the local track parameters, Δ�q, of
all tracks are determined simultaneously through a vast χ2

minimization, taking account of both residual measurements
and multiple-scattering effects:

χ2(�q, �p) =
Ntrack∑
i=1

⎡
⎣
nmeas∑
j=1

�εi j (�qi , �p)TV−1
i j �εi j (�qi , �p)

+
nscat−1∑
j=2

�βi j (�qi )TW−1
i j

�βi j (�qi )
⎤
⎦ . (47)

Setting the partial derivatives of the χ2 of Eq. (47) with
respect to each global parameter and each local track param-
eter equal to zero leads to the matrix equation:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
i C

i G1 . . . G j . . . GN

(G1)T �1 . . . 0 . . . 0
...

...
. . .

...
. . .

...

(G j )T 0 . . . � j . . . 0
...

...
. . .

...
. . .

...

(GN )T 0 . . . 0 . . . �N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δ �p
Δ�q1

...

Δ�q j
...

Δ�qN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
i
�di

�b1

...
�b j

...
�bN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(48)

see Appendix B for the definitions of matrices C, G, �

and vectors �d, �b as well as the detailed calculation. The
solution requires the inversion of the matrix of dimension
(ng + N ·nl)2, where ng is the number of global alignment
parameters (up to ∼ 15,000 for the AMS tracker), N is the
number of tracks used for the alignment (e.g. ∼ 109 tracks
for the alignment with cosmic rays collected in flight), and nl
is the number of local parameters per track (e.g. up to 27 for
the General Broken Lines algorithm [20] with 13 equivalent
thin scatterers representing the AMS materials). The dimen-
sion of the inversion matrix for solving the global alignment
parameters can be reduced to n2

g by partitioning [23]. The
constraints discussed in Sect. 4 are added into the matrix via
Lagrange multipliers. The matrix inversion is handled by the
Pede program [24]. A presigma, which can be interpreted
as an initial detector mounting precision, can be assigned to
the diagonal matrix element of each alignment parameter to
optimize the matrix solution in the program.

In principle, the matrix inversion for solving the global
alignment parameters only needs to be performed once and
no iterations are required. However due to potential inac-
curacies in the solution of the large linear system and due
to a required outlier (large residual events) treatment, a few
internal iterations for the matrix inversion may be necessary.
For the “Inversion” solution method in the Pede, 3 internal
iterations are more than enough. The presigmas are always
defined with respect to the previous iteration, hence align-
ment corrections significantly larger than the presigmas can
still occur after iterations. In this sense, the presigmas are
considered not to bias the result if enough iterations are per-
formed but will impact the choice of the preferred solution
among all possible candidates with similar χ2, which will
be discussed in more detail in the next section.

Recently, the version of the Pede written in Fortran has
been implemented to be compatible with multi-threading [25].
But it is still deficient in dealing with massive local param-
eters of billions of tracks (N ·nl ∼ 109 × 20) and a sizable
number of global parameters (ng ∼ 15,000). This version of
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Pede is extended by the AMS collaboration to become fully
parallelized using the OpenMP platform [26], which allows
much faster I/O and computational processing. In particu-
lar, the most restricted I/O part is improved by replacement
with the parallelized ROOT [27] I/I. Using CERN 64-CPU
machines and the EOS storage system [28], it takes ∼ 30 h
to process the matrix inversion for 1 billion tracks with 3
internal iterations.

6 Alignment based on the 400 GeV/c proton test beam

Each module of the AMS tracker has its own initial mechan-
ical mounting precision varying from a few microns to thou-
sands of microns: the assembly accuracy for a sensor in the
ladder is ∼6 µm, the mounting accuracy for a ladder on
the layer is ∼70 µm, the installation accuracy for an inner
tracker layer is ∼40 µm along x and y and ∼200 µm along
z while for an external layer it is ∼1000 µm for x, y, and
z. A summary of the initial mounting precision can be found
in Table 1a. The test-beam track alignment aims to reduce
the module misalignment from all these sources down to a
micron level for the rigidity measurement.

6.1 Setup of the test beam

During the beam test, AMS was installed on a rotation stand
which allows the detector to be exposed to particles from
different positions and directions. To minimize the potential
deformation of the tracker planes as well as the contraction
of the support structures due to gravity, the nominal attitude
of the AMS illustrated in Fig. 6 was pointing to be the z-axis
against the beam direction, the x-axis to the nadir (down),
and the y-axis parallel to the Earth (horizontal), hence the
positions of the tracker modules along the y-axis, i.e. the
particle bending direction, was the least deformed.

The track alignment is performed based on the primary
400 GeV/c proton beam, where the positions and orientations
of the detector were adjusted 886 times to collect events in
the full acceptance of the tracker as illustrated in Fig. 6. The
beam spot size, defined as the spot radius to include 68%
of events at each position, was rather narrow at ∼ 3.5 mm.
With ∼ 104 events per position, the total collected number
of events for the alignment was ∼ 107.

Besides the normal data collection, AMS also collected
a special dataset of the 400 GeV/c proton beam, in which
the whole detector was rotated around the y-axis by 180◦ to
examine the mechanical stability of the tracker, as illustrated
in Fig. 7. There were 60 assigned beam positions for this
configuration and the total number of the collected events
was ∼106. This data is only used for the alignment verifica-
tion purpose instead of being directly used in the test-beam
alignment.

Table 1 a The initial mechanical mounting precision of the tracker
modules and b the presigmas of the alignment parameters used in the
test-beam alignment. The presigmas labeled “–” indicate the parameters
that cannot be precisely determined by the alignment due to the limited
beam directions per sensor and therefore are fixed to 0. The presigmas
labeled “†” are significantly increased to approach the preferred solution

Precision Translation (µm) Rotation (mrad)
Δu Δv Δw α β γ

(a) Initial mechanical mounting precision

L1/L9 1000 1000 1500 0.1 0.1 0.5

L2–L8 50 30 200 0.06 0.06 0.05

Ladder 70 100 40 0.3 0.3 0.2

Sensor 6 6 6 0.1 0.1 0.1

(b) Presigmas used in the test-beam alignment

L1/L9 5000† 5000† 5000† 10† 10† 10†

L2–L8 200† 200† 200 0.25† 0.25† 0.2†

Ladder 100 100 50 0.3 0.3 0.2

Sensor 6 6 – – – 0.1

Fig. 6 Schematics of the nominal attitude of the AMS in the beam
test: the z-axis of the AMS against the beam direction, the x-axis to the
nadir, and the y-axis (pointing out of the page) parallel to the Earth.
The densely packed lines represent the 886 directions of the primary
400 GeV/c proton test beam passing through AMS

6.2 Alignment procedure

In the test-beam alignment, all the composite tracker mod-
ules are aligned simultaneously using the global composite
alignment approach as discussed in Sects. 3, 4, and 5. The
General Broken Lines (GBL) algorithm with fixed curvature
(1/R = 1/400 GV−1) track fitting is imposed to derive the
residuals �εi j (�q0

i , �p0), the partial derivatives with respect to
the local track parameters of the residuals ∂�εi j/∂ �qi and the
scattering angles ∂ �βi j/∂ �qi , for Eq. (48), see also Eqs. (B.8),
(B.10), (B.13) and (B.14). The 400 GeV/c proton Monte
Carlo sample produced by Geant4 [29] is used for the align-
ment optimization.
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Fig. 7 Schematics of the
detector deformations due to
gravity for a nominal AMS and
for b 180◦ rotated AMS in the
beam test

6.2.1 Presigmas in the alignment

The external layers, L1 and L9, have much worse mounting
accuracy than the inner tracker (L2–L8). At the small scale,
the assembly accuracy of the sensors-in-ladders or ladders-
on-layers for L1 and L9 are similar to that of the inner tracker.
It means that the positions of the external layers in the sensor
or ladder level can be treated equally as the inner tracker in
the alignment and help to reduce the overall bias. But this
can only be achieved by the composite alignment, where all
the modules are defined relative to the next support struc-
tures and all the modules from the inner tracker and external
layers are aligned together taking into account all the correla-
tions. In the composite alignment, the presigmas of the layer
alignment parameters for L1 and L9 are set to be more than
20 times larger than the inner tracker (see Table 1b), while
the presigmas of the sensor/ladder alignment parameters are
assigned to be the same for every layer, so that the preferred
alignment solution tends to correct the displacements of the
whole external layers with reference to the position of the
inner tracker.

On the other hand, under similar conditions or χ2, the
solutions with displacements of the larger modules are pre-
ferred to the solutions with displacements of the smaller com-
ponents. Presigmas of the alignment parameters can be prop-
erly adjusted to favor displacements of the larger modules. As
seen in Table 1, the presigmas of the layer alignment param-
eters labeled “†” are significantly increased compared with
the layer mounting precision to strengthen the preference of
the corrections on the layers rather than on the ladders.

6.2.2 Fixed parameters in the alignment

With a total of 886 beam spots distributed over ∼ 250 sensors
per layer, the average number of beam spots per sensor is ∼ 3.

Due to the limited beam positions and directions, ∼ 75% of
the sensors with the crucial sensor parameters of Δus, Δvs,

and γs can be aligned: for a sensor with a small number of
passing events, < 2000, Δus, Δvs, and γs are fixed to 0; for
a sensor with the passing beam spots close together, such as
σ(us) < 10 mm and σ(vs) < 12 mm, γs cannot be precisely

Table 2 The number of ladders (a) and sensors (b) with fixed param-
eters in the test-beam alignment. Note that the AMS tracker has 192
ladders and 2284 sensors

ΔuL ΔvL ΔwL αL βL γL

(a) Number of fixed ladder alignment parameters

2 1 1 39 2 1

Δus Δvs Δws αs βs γs

(b) Number of fixed sensor alignment parameters

734 572 2284 2284 2284 1276

determined and is fixed to 0, where σ represents the standard
deviation.

One ladder in L3 is completely inactive and its alignment
parameters are fixed as ΔuL = ΔvL = ΔwL = αL =
βL = γL = 0. Another ladder in L4 is inactive on the n-
side and its ΔuL is fixed to 0. For a ladder with the passing
beams at small inclination angles and small position span-
ning along the vL -axis, both σ(du p

L/dw
p
L ·vL) < 2.2 mm and

σ(dv
p
L/dw

p
L ·vL) < 2.2 mm, αL cannot be precisely obtained

from the alignment and is fixed to 0, where du p
L/dw

p
L and

dv
p
L/dw

p
L are the beam projected directions in the ladder

uLwL -plane and vLwL -plane respectively (see Fig. 3b). Sim-
ilarly, for a ladder with the passing beams of small inclination
angles and small position spanning along the uL -axis, both
σ(du p

L/dw
p
L ·uL) < 7 mm and σ(dv

p
L/dw

p
L ·uL) < 7 mm,

βL is fixed to 0.
Table 2 summarizes the number of ladders and sensors

with fixed alignment parameters. As seen, 39 ladders –
out of a total 192 ladders – have the alignment parame-
ter αL fixed. From Eq. (14), we can derive that the αL

equivalent alignment corrections on the ladder hit position
are du p

L/dw
p
L ·vL ·αL and dv

p
L/dw

p
L ·vL ·αL for the uL - and

vL -projections respectively. Assuming the particle incident
angle du p

L/dw
p
L (or dv

p
L/dw

p
L) = 0.3, for the hit with the

largest vL = 35 mm at the ladder edge, a typical mounting
precision of σ(αL) = 0.3 mrad (see Table 1a) or a fixed
αL = 0 will introduce a misalignment of 3.15 µm, which is
a small inaccuracy. This is also the case for sensor alignment
parameters of Δws, αs, and βs fixing them in the alignment
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Fig. 8 The distributions of the alignment parameters of layers (top row), ladders (middle row), and sensors (bottom row) obtained from the
test-beam alignment. The fixed alignment parameters are not included

will not result in a sizable misalignment. Owing to a good sen-
sor assembly precision of σ(γs) = 0.1 mrad, a fixed γs = 0
for part of sensors will also give a small misalignment of up
to |vsγs | = 3.5 µm (vL = 35 mm) and |usγs | = 1.9 µm
(uL = 19 mm) for the uL - and vL -projections respectively.

6.3 Alignment results

The alignment parameters obtained from the test-beam align-
ment are shown in Fig. 8. As seen, the external layers, L1
and L9, have much larger layer-biases both in translations
and rotations compared with the layers of the inner tracker.
Other than that, no significant large outliers on the alignment
parameters occur. Figure 9 shows the residual distributions
of the 9 layers in the sensor vs direction before and after the
test-beam alignment. A large improvement of the residual
distributions is obvious. Figure 10 shows the residual biases
of all sensors before and after the alignment. As seen, there
is no bias in each sensor after the alignment. Even taking into
account the limited beam positions and directions, the overall
misalignment in the vs direction for the rigidity measurement
is 1–2 µm.

6.4 Mechanical stability study with the 180◦ runs

The test-beam alignment is done based on the nominal data
where the AMS z-axis is against the beam direction and the
x-axis is to the nadir as illustrated in Fig. 7a. The obtained
alignment corrections are then applied to the data collected

with the whole detector rotated around the y-axis by 180◦
where now the z-axis is along the beam direction and the
x-axis is pointing to the zenith as illustrated in Fig. 7b. After
rotation, as seen in Fig. 11a, there is a significant bias of each
sensor in the sensor us direction (along or opposite to the x-
axis), while the residual bias of each sensor in the sensor vs
direction (along or opposite to the y-axis) is tiny as shown in
Fig. 11b. This clearly indicates the displacement induced by
gravity whose direction is parallel to the x-axis.

Compared with the inner tracker support structure, a car-
bon fiber cylinder, the support structures of the external lay-
ers, the TRD M-Structure and the Unique Support Structure,
are made from aluminum, which is much less stiff. The result-
ing detector deformations due to gravity before and after
the detector rotation are illustrated in Fig. 7a, b respectively.
As seen, when the direction of gravity was switched from
along to opposite to the AMS x-axis, the most prominent
changes of the external layer positions in the tracker frame
are expected to be the layer translation along the x-axis (e.g.
from ΔuL1

P > 0 to ΔuL1
P < 0 for L1) and the layer rotation

around the y-axis (e.g. from βL9
P < 0 to βL9

P > 0 for L9).
To justify this reasoning, an additional alignment to cor-

rect the displacements of the external layers is performed
to the 180◦ runs, where all the alignment parameters on the
sensors and ladders as well as the layers of the inner tracker
are fixed to be the same as the nominal runs except the layer
alignment parameters of L1 and L9 which are left free. The
obtained relative changes (180◦ with respect to the nominal)
of the layer alignment parameters of L1 and L9 are shown
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Fig. 9 The residual
distributions of the individual
layers in the sensor vs direction
before (dashed histograms) and
after (solid histograms) the
test-beam alignment

Fig. 10 The residual biases of the individual sensors in a the us direc-
tion and b the vs direction before (open squares) and after (full circles)
the test-beam alignment. A circle or square represents the residual bias
of each sensor. The circles or squares of a common group are the sen-
sors from the same half of a tracker layer. The sensor ID is defined as
(sensor + 20 × ladder + 400 × layer) × hal f, where sensor is the
sensor number [1 . . . 15], ladder is the ladder number [1 . . . 13], layer
is the layer number [0 . . . 8], and hal f is −1 for the ladders located on
the negative half (u0L < 0) and +1 on the positive half (u0L > 0) of a
layer

in Table 3. As seen, when reversing the gravity load in the
x-direction, the largest translation displacements are along
the x-axis, −200 µm and −580 µm for L1 and L9 respec-
tively, and the largest rotation displacements are around the
y-axis, 0.297 mrad and 1.253 mrad for L1 and L9 respec-
tively. The translation displacement along the y-axis, which
is the most critical direction, namely the particle bending
direction, is the smallest, −1 µm and −2 µm for L1 and L9

Fig. 11 The residual biases in a the us and b the vs directions of
the individual sensors of the 180◦ test-beam runs using the alignment
corrections from the nominal runs but before (open squares) and after
(full circles) the additional alignment on the external layers

respectively. Most strikingly, with the alignment only on the
external layers, all the major structures of the sensor resid-
ual biases disappear and the remaining deviations are within
2 µm as shown in Fig. 7. This demonstrates that the major
outcome of the tracker deformation due to gravity in the beam
test is the rigid-body displacement of the external layers.

With the 180◦ runs, the alignment has been verified, the
inner tracker support structure has been proved to be rigid,
and significant movements induced by gravity of the external
layers as rigid bodies have been observed.
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Table 3 The displacements of L1 and L9 introduced by 180◦ detector
rotation obtained from the test-beam alignment

Displacement Translation (µm) Rotation (mrad)
ΔuP ΔvP ΔwP αP βP γP

L1 −200 −1 −42 −0.016 0.297 0.002

L9 −580 −2 96 0.038 1.253 −0.007

7 Dynamic alignment of the external tracker layers in
space

After AMS was launched into space, we found that the posi-
tions of ladders and sensors were permanently changed up to
tens of microns compared to their positions on the ground.
In addition, the continuous temperature variations on orbit,
through the thermal deformation of the support structures,
cause the periodic movements of the whole external layers at
hundreds of microns per half-obit (∼ 46 min). The first kind
of displacement is corrected by the static alignment with bil-
lions of cosmic-ray events, which will be discussed in Sect. 8.
The second kind of displacement is corrected by the dynamic
alignment with instantaneously collected cosmic-ray events
and will be reported in this section. Prior to the static align-
ment, the dynamic alignment should be applied to remove
large periodic movements of the external layers and decrease
the inaccuracy of the external tracker layers to the same level
as that of the inner tracker.

7.1 Thermal environment and data collection on orbit

The ISS orbits the Earth every 93 min with an orbital incli-
nation of 52◦. The thermal environment of AMS on the ISS
has both short-term and long-term variations. The regular
short-term variation is the periodic temperature cycle that
follows orbital day and night transition. The long-term vari-
ation is mainly due to the change of the angle between the ISS
orbital plane and the direction to the Sun, or solar beta angle,
which has a precession period of 60 days and can reach up
to ±75◦. Other thermal variables such as the positions of the
ISS radiators and solar arrays, ISS attitude changes for visit-
ing vehicles and reboosts, and shading of AMS by adjacent
payloads can also have a big influence on the temperature
changes at different time scales, from minutes to months.

The sensor positions with respect to the carbon fiber rein-
forced ladders should not change over time, as carbon fiber
has near zero coefficient of thermal expansion. Likewise, the
positions of ladders on the carbon fiber skinned planes is
stable. The positions of the inner tracker layers should also
not change as their planes are firmly embedded in the car-
bon fiber cylinder. However, the variation of the tempera-
ture and gradients across the aluminum mechanical structures
(mainly the TRD M-Structure and the Unique Support Struc-

ture) lead to continuous periodic movements of the external
layers, which are corrected by the dynamic alignment using
the concurrently collected cosmic-ray events, mainly protons
and helium.

In flight, the AMS event trigger rates vary from 200 Hz
near the equator to ∼ 2000 Hz near the Earth’s magnetic
poles. The average event acquisition rate is ∼ 700 Hz. The
events from each quarter of the ISS orbit (from near the pole
to the equator or vice versa), about 23 min, are arranged in
sequence as one run. Detector hardware calibrations are done
between runs and last up to two minutes.

7.2 Alignment procedure

In the dynamic alignment, only the rigid-body move-
ments of the external layers are considered. In this case,
there are a total of 12 alignment parameters, 6 for L1
of (ΔuL1

P ,ΔvL1
P ,ΔwL1

P , αL1
P , βL1

P , γ L1
P )T and 6 for L9 of

(ΔuL9
P , ΔvL9

P ,ΔwL9
P , αL9

P , βL9
P , γ L9

P )T. For a short time
interval with a finite number of cosmic-ray events which
are mostly at low rigidities [7,30], the main constraint on
the alignment precision of an external layer comes from the
multiple scattering due to the materials of between L1 and
L2, ∼ 0.3 X0, or between L8 and L9, ∼ 0.2 X0 (see Fig. 1).
As an example, for a particle with 10 GV rigidity, the average
scattering angle between L1 and L2 is ∼ 0.7 mrad, which
corresponds to ∼700 µm smearing on the L1 position using
the 1 m extrapolation from the inner tracker. Since multi-
ple scattering and the resulting position smearing decreases
linearly with increasing rigidity [21], the efficient usage of
cosmic-ray events and particularly those at high rigidities is
critical for the precision of the dynamic alignment.

7.2.1 Dynamic alignment in a short-time window

The developed global alignment approach as discussed in
Sects. 3 and 5 is applied for the dynamic alignment. The
GBL algorithm with free curvature (inverse rigidity, 1/R)
track fitting is used to derive the residuals �εi j (�q0

i , �p0), the
partial derivatives with respect to the local track parameters
of the residuals ∂�εi j/∂ �qi and the scattering angles ∂ �βi j/∂ �qi ,
for Eq. (48), see also Eqs. (B.8), (B.10), (B.13) and (B.14).
The event sample used for the dynamic alignment is required
to have a reconstructed track and hits on the external layers.
The crucial ingredient for the dynamic alignment accuracy,
the covariance matrix of the scattering angle, Wi j ∝ 1/R2

i in
Eq. (47), can be calculated iteratively event by event using the
measured rigidity with the following alignment procedures:

(i) Initialize Wi j (Ri ) event by event using the rigidity mea-
sured from the inner tracker.

(ii) Determine the alignment parameters of L1 and L9 by
minimization of Eq. (47).

123



Eur. Phys. J. C           (2023) 83:245 Page 15 of 29   245 

Fig. 12 Misalignments of L1 (a, b) and L9 (c, d) before (dashed his-
tograms) and after (solid histograms) the dynamic alignment derived
from the MC simulation. For every 100,000 simulated events passing
through either L1 or L9, the positions of the external layers in the MC
are randomly displaced, which is then followed by a dynamic align-
ment. One entry of misalignment in each histogram corresponds to one
set of displacements of the external layers. With the alignment, the mis-
alignments projected to x (a, c) and y (b, d) coordinates are reduced
from more than a thousand microns down to 2.8 µm for L1 and 3.8 µm
for L9

(iii) Recalculate Wi j (Ri ) event by event by replacing the
rigidity with the new one measured from both the inner
tracker and external layers including the latest alignment
corrections from step (ii).

(iv) Repeat steps (ii) (iii) until all the alignment parameters
converge.

An isotropic cosmic-ray Monte Carlo (MC) sample pro-
duced by Geant4 [7,29,30] is used for validation of the align-
ment. For every 100,000 events, the positions of the external
layers in the MC are randomly displaced, which is then fol-
lowed by a dynamic alignment. Figure 12 shows the misalign-
ments of L1 and L9 before and after the alignment derived
directly from the MC. As seen, with the alignment, the mis-
alignments are reduced from more than a thousand microns
down to a few microns.

For the flight data, this alignment is performed in time-
slices of Δt ≈ 90 s. The set of alignment parameters obtained
in each time-slice have significant statistical errors, which
are further reduced by combining the alignment results from
the nearby time-slices via a custom developed smoothing
procedure described in the next section.

7.2.2 Alignment smoothing for long time period

After the short-time dynamic alignment, for a given time
period of NΔt , N sets of alignment parameters are smoothed
as functions of time to describe the differential movements
of the external layers. To fully exploit the alignment informa-

Fig. 13 Illustration of the spline smoothing for describing the variation
of the dynamic alignment parameter ΔuL1

P over time. The entire time
block is divided into several smaller overlapping time segments, where
the alignment data (points) in each segment are smoothed by a spline
function (curve) as indicated. The distribution of knots of the spline
is indicated by the vertical lines including those knots shared with the
neighboring splines (dashed vertical lines)

tion, the time period for each smoothing should be as long as
possible, but that introduces too many fitting parameters to
solve. Instead, in our approach, the entire 10 years is divided
into small overlapping time segments of a few hours, where
the alignment data in each time segment are smoothed by a
spline function [31], as illustrated in Fig. 13:

1. Each spline function has up to 40 knots (indicated as
vertical lines in Fig. 13) which are distributed over time
with an equal number of data points per knot.

2. The neighboring segments overlap (share) 6 knots of the
alignment data (Fig. 13 dashed vertical lines’ region).

3. If there is a data gap (more than 1 h), the new segment
will restart once the next alignment data appears.

To achieve the minimal alignment error, the assignment of
the knots is critical: the more alignment-data points per knot,
the smaller the statistical error but the larger the systematic
error; while the fewer data points per knot, the smaller the
systematic error but the larger the statistical error.

In the short-time dynamic alignment, the error of each
alignment parameter for each time slice (Δt ), σt , is estimated
from error propagation, which has a small bias depending on
(a) the track fitting model along with the assessment of errors
on the multiple scattering and coordinate resolution and (b)
the intrinsic correlation among the alignment parameters. A
correction factor k, which scales the alignment parameter
error to the true one as kσt , can be derived from the alignment
data over a long time period (N0Δt ) by bootstrapping:

k =
√

χ2
0

n0
=

√
χ2

0

N0 − m0
(49)

where χ2
0 , m0, and n0 = N0 −m0 are the fitting chi-square,

number of knots, and degrees of freedom, for the spline fitting
to N0 data points with a sufficient number of knots to reach
a negligible systematic error. In view of the observed rate of
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Fig. 14 The total errors of the dynamic alignment parameters as functions of number of data points per knot, calculated over 10 years from Eq. (50).
The error bars in each plot represent the standard deviations of the alignment errors arising from the time dependence

the external-layer movement, every 2 data points or 180 s per
knot (m0 = N0/2) is enough to derive k.

For a spline fit to N data points with a given number of data
points per knot, the total alignment error after smoothing is
the sum in quadrature of the statistical and systematic errors:

σtot =
√

σ 2
stat + σ 2

sys =
√
k2σ 2

f i t +
(χ2

n
− k2

)
σ 2
t (50)

where σ f i t , χ2, and n are the fitting error, chi-square, and
degrees of freedom respectively, σstat = kσ f i t is the statisti-
cal error which decreases as increasing data points per knot,
and σsys = σt

√
χ2/n − k2 is the systematic error which

increases as increasing data points per knot.
The smoothing of the external layer movement is opti-

mized by assigning the knots with the minimal total error of
Eq. (50) for every alignment parameter.

7.3 Alignment results

The total errors of the individual alignment parameters as
functions of number of data points per knot calculated over
10 years from Eq. (50) are shown in Fig. 14. Accordingly, the
time intervals between adjacent knots for the spline smooth-
ings with the minimal alignment errors are summarized in
Table 4a. As seen, compared with rotations, translations need
more dense knots to trace their variations, indicating that the
movements of the external layers in terms of translations are
more rapid than in terms of rotations.

Typical variations of the individual alignment parameters
over a day together with the smoothings are shown in Fig. 15.
The orbital period of ∼ 93 min can be clearly seen. As shown
in the figure, the movement of L1 (L9) in terms of transla-
tion is ∼ 200 µm, ∼ 100 µm, and ∼ 200 µm (∼ 100 µm,

∼ 20 µm, and ∼ 200 µm) per half orbit in the x-, y-,
and z-directions (strictly the uP -, vP -, and wP -directions)
respectively and of rotation is ∼ 0.2 mrad, ∼ 0.2 mrad, and
∼ 0.03 mrad (∼ 0.2 mrad, ∼ 0.1 mrad, and ∼ 0.05 mrad) per
half orbit around the x-, y-, and z-axes (strictly the uP -, vP -,

Table 4 (a) The time intervals between adjacent knots used for the
spline smoothings of the individual alignment parameters that provide
(b) the best dynamic alignment precision

Parameter ΔuP ΔvP ΔwP αP βP γP

(a) The time intervals between adjacent knots (s)

L1 450 540 990 1800 1800 1800

L9 540 720 900 1800 1800 1800

Parameter Translation (µm) Rotation (mrad)
ΔuP ΔvP ΔwP αP βP γP

(b) External layer dynamic alignment precision

L1 7.4 6.8 25.6 0.098 0.078 0.015

L9 7.2 7.6 29.1 0.164 0.115 0.023

and wP -axes) respectively. In addition to the orbital move-
ments, the external layers also display the long-term move-
ments with a cycle of about 2 months – the period of the solar
beta angle. Figures 16 and 17 show the variations of the indi-
vidual alignment parameters of L1 and L9 respectively, over
10 years from May 20, 2011 to May 20, 2021, where each
data point represents the alignment parameter averaged over
a day. As seen, the long-term movements of L1 (L9) trans-
lations are up to ∼ 1000 µm, ∼ 200 µm, and ∼ 300 µm
(∼ 300 µm, ∼ 100 µm, and ∼ 700 µm) per month in the x-,
y-, and z-directions respectively and the rotations can reach
∼ 0.2 mrad, ∼ 0.6 mrad, and ∼ 0.02 mrad (∼ 0.4 mrad,
∼ 0.5 mrad, and ∼ 0.03 mrad) per month around the x-, y-,
and z-axes respectively.

The final achieved alignment precision for all the align-
ment parameters derived from Fig. 14 is summarized in
Table 4b. As seen, for example, with the dynamic align-
ment, the translational movement in the y-direction (ΔvP )

is aligned to a precision of 6.8 µm for L1 and 7.6 µm for L9.
To evaluate the total residual misalignments of the external
layers in the particle bending direction which is connected to
the rigidity resolution, the rigidity measured using the upper
span of the tracker, namely from L1 to L8 (R18), are com-
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Fig. 15 The variations of the dynamic alignment parameters of L1 (left column) and L9 (right column) over 24 h on Dec. 17, 2015

pared to the rigidity measured using the lower span, namely
from L2 to L9 (R29), for a helium sample with the full-span
rigidity (measured from L1 to L9) R19 > 570 GV. Figure 18
shows the Gaussian sigma of the 1/R18 − 1/R29 distribu-
tion derived from the flight data (full circle) and its fit to the
prediction from the MC simulation (line). As seen, with the
dynamic alignment, the total residual misalignments (align-
ment errors) on the rigidity measurement are estimated to be
7.1 µm for L1 and 7.9 µm for L9.

8 Static alignment of the tracker in space

Before launch, AMS has been aligned based on the primary
400 GeV/c proton test beam as discussed in Sect. 6. How-
ever, the strong accelerations and vibrations during launch,
followed by the rapid outgassing of the support structure in
vacuum permanently changed the positions of all the tracker
modules. Therefore, the entire tracker has to be aligned again
with cosmic-ray events to correct the resulting displace-
ments. The most challenging part of this alignment is the
unknown curvatures (1/R) of the incoming particles in the
presence of the magnetic field. A track alignment approach
similar to the test-beam alignment but with free curvature

track fitting (see Eq. (47)) is not enough for such an align-
ment as the curvatures of the tracks can be biased by any
value without changing the alignment χ2. The development
of a new mathematical description is required for such an
alignment.

8.1 Global track alignment with curvature constraints

For the alignment with a magnetic field and with particles
whose rigidities are unknown, a new term,ρ2

i ( �p)/Zi , is intro-
duced in the global alignment χ2 to constrain the curvature
change:

χ2(�q, �p) =
Ntrack∑
i=1

⎡
⎣
nmeas∑
j=1

�εi j (�qi , �p)TV−1
i j �εi j (�qi , �p)

+
nscat−1∑
j=2

�βi j (�qi )TW−1
i j

�βi j (�qi ) + ρ2
i ( �p)
Zi

⎤
⎦ (51)

where ρi ( �p) = ρi ( �p0) +∑
g′ ∂ρi

∂pg′
Δpg′ is the curvature bias

(ΔR−1) for the i-th track, that depends on the global align-
ment parameters Δ �p, and is equal to ρi ( �p0) before the align-
ment, namely Δ �p = �0; and Zi is its variance. Z→0 will
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Fig. 16 The variations of the dynamic alignment parameters of L1 over 10 years from May 20, 2011 to May 20, 2021. Note the change in behavior
starting from the end of 2015, which is due to the installation of a thermal blanket on the port (−x) side of AMS on Oct 28, 2015 (indicated by the
vertical dashed line)

impose no change of the curvature measurement before and
after the alignment. Conversely, Z→∞ means no curvature
constraints in the alignment, making Eq. (51) the same as
Eq. (47). In the absence of a curvature reference, the mea-
sured curvature of a track is supposed to have no bias before
the alignment, as ρi ( �p0) = 0, with an uncertainty repre-
sented by the variance (squared error) Zi .

Setting the partial derivative of the χ2 of Eq. (51) with
respect to each global parameter Δpg equal to zero, we can
derive a matrix equation similar to Eq. (B.7), as:

Ntrack∑
i=1

�d ′i =
⎛
⎝

Ntrack∑
i=1

C′i
⎞
⎠Δ �p +

Ntrack∑
i=1

GiΔ�qi (52)

where �d ′i is a vector whose g-th element is given by:

d ′i
g = −

nmeas∑
j=1

(
∂�εi j
∂pg

)T

V−1
i j �εi j (�q0

i , �p0) − ∂ρi

∂pg
Z−1
i ρi ( �p0)

(53)

C′i is a matrix whose (g, g′) entry is given by:

C ′i
gg′ =

nmeas∑
j=1

(
∂�εi j
∂pg

)T

V−1
i j

∂�εi j
∂pg′

+ ∂ρi

∂pg
Z−1
i

∂ρi

∂pg′
(54)

and Gi is the matrix whose entry has been defined in
Eq. (B.10).

Setting the partial derivative of the χ2 of Eq. (51) with
respect to each local track parameter of each track equal to
zero, we obtain the same matrix equation as Eq. (B.12).

Combining Eqs. (B.12) and (52), all the global alignment
parameters, Δ �p, and all the local track parameters, Δ�q, can
be solved simultaneously as in Eq. (48) with the replacement

of �di → �d ′i and Ci → C′i .
The partial derivatives of the curvature change with

respect to the global alignment parameters, ∂ρi/∂ �p, present

in both �d ′i of Eq. (53) and C′i of Eq. (54), are needed for the
alignment. For the i-th track, the alignment corrections Δ �p
will change the ( j-th) hit residual by:

�̃ε0
i j =

∑
g′

∂�εi j
∂pg′

Δpg′ . (55)
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Fig. 17 The variations of the dynamic alignment parameters of L9 over 10 years from May 20, 2011 to May 20, 2021. Note the change in behavior
starting from the end of 2015, which is due to the installation of a thermal blanket on the port (−x) side of AMS on Oct 28, 2015 (indicated by the
vertical dashed line)

Fig. 18 The standard deviation of the difference in the inverse rigidities
measured using the upper span (L1–L8) and using the lower span (L2–
L9) of the tracker, σ(1/R18 − 1/R29), for cosmic-ray helium data with
the alignment corrections (full circle) and for the Monte Carlo prediction
based on the alignment errors of L1 and L9 (line) in the rigidity range
R19 > 570 GV. As seen, the data point best matches the Monte Carlo
prediction at the alignment errors of 7.1 µm and 7.9 µm for L1 and L9
respectively

A track fitting is performed on �̃ε0
i from all the hits to derive the

local track parameters, Δ �̃qi , which represent the alignment
corrections on the i-th track trajectory. Minimization of the
fitting χ̃2 leads to the partial derivative with respect to each
local track parameter, q̃il , equal to zero:

0 = ∂χ̃2

∂ q̃il
� 2

nmeas∑
j=1

(
∂�εi j
∂ q̃il

)T
(

�̃ε0
i j +

∑
l ′

∂�εi j
∂ q̃il ′

Δq̃il ′

)

= 2
nmeas∑
j=1

(
∂�εi j
∂ q̃il

)T
⎛
⎝∑

g′

∂�εi j
∂pg′

Δpg′ +
∑
l ′

∂�εi j
∂ q̃il ′

Δq̃il ′

⎞
⎠ .

(56)

Equation (56) can be simplified in matrix form as:

�0 = (G̃i )TΔ �p + �̃iΔ�̃qi (57)

where G̃i is a matrix whose (g, l ′) entry is given by:

G̃i
gl ′ =

nmeas∑
j=1

(
∂�εi j
∂pg

)T ∂�εi j
∂ q̃il ′

(58)
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and �̃i is a matrix whose (l, l ′) entry is given by:

�̃i
ll ′ =

nmeas∑
j=1

(
∂�εi j
∂q̃il

)T ∂�εi j
∂q̃il ′

. (59)

The partial derivatives of the residual with respect to the
local track parameters, ∂�εi j/∂ �̃qi , for Eqs. (58) and (59), are
derived from the track fitting algorithm (e.g. the GBL algo-
rithm) without multiple scattering. Hence, the local track
parameters, Δ�̃qi , which represent the i-th track trajectory
change by the alignment, are obtained from Eq. (57) as:

Δ�̃qi = [−(�̃i )−1(G̃i )T
]
Δ �p = H̃iΔ �p (60)

where Δ�̃qi = (
Δρi = ΔR̃−1

i ,Δq̃i2,Δq̃i3,Δq̃i4,Δq̃i5
)T

has only 5 parameters, much fewer than Δ�qi with multiple
scattering appearing in Eqs. (B.12) and (52), and the matrix
H̃i is given by H̃i = −(�̃i )−1(G̃i )T. As Δρi = Δq̃i1 in
Eq. (60), the partial derivative of the curvature change with
respect to the g-th global alignment parameter, ∂ρi/∂pg, is
the (1, g) entry of H̃i :

∂ρi

∂pg
= H̃i (1, g). (61)

The variance of ρi , namely Zi , present in both �d ′i of
Eq. (53) and C′i of Eq. (54), is also needed for the alignment.
As inferred from Eq. (60), Zi can be interpreted as the error
propagation from a given covariance matrix of Δ �p denoted
by ṼΔ �p, as:

Zi = [
H̃i ṼΔ �p(H̃i )T

]
(1, 1). (62)

Each layer alignment translation parameter can be assigned
an error, σ̃ , for the calculation of ṼΔ �p as ṼΔ �p = Ṽ(̃σ ) and
propagated to Zi (̃σ ) as:

Zi (̃σ ) = [
H̃i Ṽ(̃σ )(H̃i )T

]
(1, 1). (63)

Note that Zi is set via σ̃ rather than itself merely for the sake
of understanding: for instance, Zi (̃σ ) with σ̃ = 10 µm is
equal to the curvature variance (squared error) arising from
a position uncertainty of 10 µm on each tracker layer. The
assignment of σ̃ passing to Zi (̃σ ) should be optimized to
attain the best alignment precision as discussed below in
Sect. 8.3.

8.2 Alignment data sample

Most of the collected cosmic-ray events are at low rigidi-
ties, below 10 GV [7,30]. To achieve micron level alignment
accuracy for each sensor, the alignment will require billions
of cosmic-ray events to overcome the multiple scattering aris-
ing from the detector materials, especially the large amounts
between the external layers and inner tracker (∼ 0.3 X0

between L1 and L2 and ∼ 0.2 X0 between L8 and L9).

Multiple scattering decreases linearly with increasing
rigidity [21]. By selecting the latitude and longitude where
the minimal geomagnetic cutoff [32,33] in the AMS field of
view is greater than 7.6 GV, the number of events at rigidi-
ties below 10 GV is reduced to 5%; while ∼ 40% of the high
rigidity (> 30 GV) events are kept for the alignment.

In the static alignment data sample, there are 1.6 bil-
lion cosmic-ray events, which corresponds to the full AMS
dataset from May 2011 to January 2015 (over 3.5 years
period). The track information from all those events is filled
into one matrix to solve all the alignment parameters in one
step (see Sects. 5 and 8.1). Owing to the massive amount of
data used, the statistical error in the alignment is negligible.

8.3 Alignment procedure

After the previous dynamic alignment, the external tracker
layers have been aligned with respect to the inner tracker.
Next, the modules from the external layers and inner tracker
can be aligned together to reduce the overall misalignment.
In particular, the positions of the external layers in the ladder
or sensor level can help to improve the alignment precision
of the inner tracker.

The developed global alignment approach as discussed
in Sects. 3, 4, and 8.1 is applied for the static alignment.
The GBL algorithm with multiple scattering and with free
curvature (1/R) track fitting is used to derive the residuals
�εi j (�q0

i , �p0), the partial derivatives with respect to the local
track parameters of the residuals ∂�εi j/∂ �qi and the scattering
angles ∂ �βi j/∂ �qi , for Eqs. (B.10), (B.13), (B.14) and (53).
The GBL algorithm without multiple scattering and with free
curvature track fitting is used to derive the partial derivatives
of the residuals with respect to the local track parameters
∂�εi j/∂ �̃qi for Eqs. (58) and (59).

8.3.1 Alignment validation with Monte Carlo

An isotropic cosmic-ray Monte Carlo sample produced by
Geant4 [7,29,30] is used to validate the static alignment. All
the tracker modules in the MC are randomly displaced by
Gaussian sampling using the displacement parameters sim-
ilar to the flight data. The static alignment (see Eq. (51))
accuracy is optimized by varying the curvature constraint,
namely σ̃ , which defines the curvature variance Zi (̃σ ) for
the alignment as shown in Eq. (63).

Figure 19 shows the distributions of the proton full-span
rigidity resolution (δR−1

19 ) at 1.5 TV for no module displace-
ment (dashed histogram), displaced modules before align-
ment (solid histogram), and displaced modules after align-
ment with σ̃ = 200 µm (full circle histogram). As seen, the
developed alignment procedure is capable of restoring most
of the smeared rigidity resolution. Note that the small shift
in the mean of the measured rigidity will be precisely cor-
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Fig. 19 The distributions of the proton full-span rigidity resolution
(δR−1

19 ) at 1.5 TV for the MC samples with no tracker module displace-
ment (dashed histogram), displaced modules before alignment (solid
histogram), and displaced modules after alignment using σ̃ = 200 µm
(full circle histogram)

rected by using the rigidity-scale determination procedure in
Sect. 8.3.4. Figure 20 shows the proton rigidity resolutions of
(a) the inner tracker (R28), (b) L1 and the inner tracker (R18),

and (c) the full-span tracker (R19) as functions of the cur-
vature constraint σ̃ (full circles and dot-dashed curves). As
seen, in the alignment, the optimal values of σ̃ that derive the
best rigidity resolutions, are ∼ 150 µm for R28, ∼ 200 µm
for R18, and ∼ 280 µm for R19. It is clear that the curvature
constraint σ̃ should be neither too tight as that will force no
track curvature change before and after alignment, nor too
loose as that will result in arbitrary change of the curvature
in the alignment. Compared with a typical tracker intrinsic
position resolution of ∼ 10 µm, Zi (̃σ ) with σ̃ ∼ 200 µm
is a rather loose variance, which is equal to a curvature vari-
ance transformed from a position uncertainty of ∼ 200 µm
on each tracker layer.

8.3.2 Alignment optimization for the flight data

As shown in the MC study (Sect. 8.3.1), the alignment pre-
cision is sensitive to the curvature variance, Zi (̃σ ), used in
Eq. (51), which also needs to be derived from the flight data.
The primary goal for the alignment is to improve the track
curvature (1/R) measurement precision, i.e. to reduce the
curvature bias. Residuals cannot be used for the study of the
curvature misalignment as the curvature bias cannot be seen
from the residuals. However, the curvature bias or rigidity
bias is very sensitive to the cosmic-ray flux measurement –
or, more precisely, the rigidity dependence of the cosmic-ray
flux measured at high rigidities [7,30,34]. This feature can
be exploited to probe the curvature misalignment.

As cosmic rays are isotropic, for an ideal tracker without
misalignment, the cosmic-ray fluxes measured with a similar

Fig. 20 The proton rigidity resolutions σ(1/R) of a the inner tracker
(R = R28), b L1 and the inner tracker (R = R18), and c the full-span
tracker (R = R19) at 1.5 TV as functions of the curvature constraint σ̃ ,

obtained from the alignment on the MC with the tracker modules dis-
placed (full circles and dot-dashed curves). The rigidity resolutions for
no module displacement (dashed lines) and displaced modules before
alignment (solid lines) are also shown

pattern in layers but different detector-module combinations,
such as different ladder combinations (see one ladder com-
bination illustrated in Fig. 21a), are expected to be the same.
Therefore, as a result of the differential curvature bias, the
deviation of the fluxes or the rigidity dependencies of the
event rates (the number of the collected events per second)
obtained from different ladder combinations, is used as an
estimator of the tracker misalignment.

To display the relative rigidity dependence, the cosmic-
ray event rates measured from the i-th ladder combination
are divided by the event rates measured with the total tracker,
denoted by ni/n. Then the obtained ni/n is normalized by
its acceptance fraction Ai/A, as:

n̂i
n̂

= ni/n

Ai/A
= ni/n

ℵi/ℵ (64)

where ℵi is the total number of events for the i-th ladder com-
bination, which sums up all the passing events above 30 GV –
the rigidity region that has no influence from the geomagnetic
field [35]; and ℵi/ℵ is the ratio of the total events between
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Fig. 21 a Schematic of a ladder combination of the inner tracker and
b the slope fits (lines) to the normalized event ratios (̂ni /̂n) of 4 dif-
ferent ladder combinations with each specified by a set of symbols
(up triangles, squares, circles, or down triangles). The different rigidity
dependences of the ratios, or the deviation among the slopes, induced
by the different curvature biases, are clearly seen

the i-th ladder combination and the full tracker, which is used
to calculate the acceptance fraction as Ai/A = ℵi/ℵ.

For the i-th ladder combination, the normalized event
ratio, n̂i /̂n, is fitted over the high rigidity range 90–1000 GV
to derive the event-ratio slope ki , with:

n̂i
n̂

= ki log(R) + bi (65)

where the slope ki and the intercept bi are the two fitting
parameters.

As an illustration, Fig. 21b shows the slope fits to the
normalized event ratios of 4 different ladder combinations.
A clear deviation among the event-ratio slopes of different
ladder combinations is seen. For each track pattern of L2–L8,
L1–L8, or L1–L9, the standard deviation of the event-ratio
slopes from the 1000 most populated ladder combinations
(i.e. with the largest number of passing events) is used as a
gauge to evaluate the misalignment.

Figure 22 shows the standard deviations of the event-ratio
slopes, σ(k), as functions of the alignment used σ̃ for the
ladder combinations of (a) the inner tracker (R28), (b) L1
and the inner tracker (R18), and (c) the full-span tracker
(R19). As seen, the optimal values of σ̃ for the flight data that
have the minimal curvature misalignment, are 80−150 µm
for R28, 150−200 µm for R18, and ∼ 280 µm for R19,

which are consistent with the previous estimation from the
MC (Sect. 8.3.1). Taking all the track patterns (L2–L8, L1–
L8, and L1–L9) into account, the curvature constraint of
σ̃ = 200 µm is chosen for the static alignment. As shown in
the figure, after the static alignment, the quality of the rigidity
measurement or the rigidity resolution has been significantly
improved. There is also no misalignment of the residuals
after this step. However, a small remaining misalignment of
the curvature still exists and is further reduced by the 2nd
static alignment performed afterwards using the curvature
alignment approach introduced below.

Fig. 22 The standard deviations of the cosmic-ray event-ratio slopes
(flux rigidity dependences), σ(k), as functions of the curvature con-
straint σ̃ for the ladder combinations of a the inner tracker (R28), b L1
and the inner tracker (R18), and c the full-span tracker (R19), obtained
from the static alignment on the flight data (full circles and dot-dashed
curves). The deviations of the slopes before the static alignment (solid
lines) and the statistical limits due to the slope uncertainties arising from
the limited number of cosmic-ray events at high rigidities (dashed lines)
are also shown

8.3.3 Refinement with the curvature alignment

In the 2nd static alignment, the alignment corrections
obtained from the 1st static alignment are applied. Different
from the 1st static alignment, which was using zero mean for
the curvature constraint as ρi ( �p) = ρi ( �p0) + ∑

g′ ∂ρi
∂pg′

Δpg′

with ρi ( �p0) = 0 in Eq. (51), the 2nd static alignment, namely
the curvature alignment, uses the curvature bias ρi ( �p0) esti-
mated from the data to further improve the result. The method
to obtain ρi ( �p0) is based on the isotropic property of cosmic-
ray fluxes, i.e. the same rigidity dependence of the cosmic-
ray event rates measured with the different detector-module
combinations.

In the j-th rigidity bin [R j , R j+1], the event rate, n j =
N j/T (the number of the events per second), measured from
the total tracker which has a small curvature misalignment
of ρ, can be described by:
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n j (ρ) =
∫ R j+1

R j

d R

R2

∫ ∞

0
Φ(R0)A(R0)M

×
(
R0,

1

R
− 1

R0
+ ρ

)
dR0 (66)

where 1/R + ρ and 1/R are the measured inverse rigidities
with and without the curvature bias respectively, R0 is the true
rigidity before detector resolution smearing, Φ(R0) is the
cosmic-ray flux, A(R0) is the acceptance of the tracker, and
M(R0, 1/R − 1/R0 + ρ) is the probability density function
of the tracker rigidity resolution for a given true rigidity R0

expressed as a function of 1/R−1/R0 +ρ. The total tracker
is assumed to have no curvature bias as ρ = 0. With A and M
parameterized from the MC simulation, the parameterization
of Φ is obtained from the fit to the event rates measured with
the total tracker.

In the j-th rigidity bin, the ratio of the event rate of the
i-th detector-module combination, ni j , to the total event rate,
n j , is:

ni j
n j

= fi n j (ρ = ρi )

n j (ρ = 0)

=
fi
∫ R j+1
R j

dR
R2

∫ ∞
0 Φ(R0)A(R0)M

(
R0,

1
R − 1

R0
+ ρi

)
dR0

∫ R j+1
R j

dR
R2

∫ ∞
0 Φ(R0)A(R0)M

(
R0,

1
R − 1

R0

)
dR0

(67)

where ρi is the curvature bias of the i-th detector-module
combination, fi = Ai/A is the constant acceptance ratio
of the i-th detector-module combination to the total tracker,
and ni j = Ai/A·n j (ρ = ρi ) = fi n j (ρ = ρi ). From the fit
of Eq. (67) to the event-rate ratio at high rigidity bins (90–
1000 GV as in Fig. 21b), the curvature bias ρi is obtained.

After the 1st static alignment, 2500 ladder combinations of
the inner tracker (86% of the total sample), 4000 ladder com-
binations of L1 and the inner tracker (88% of the total sam-
ple), and 2000 ladder combinations of the full-span tracker
(77% of the total sample) are estimated for their remaining
curvature biases, which are used as the curvature reference
ρi ( �p0) in Eq. (51) for the 2nd static alignment.

To illustrate the full (1st and 2nd) static alignment
improvement, Fig. 23 shows the curvature biases of the 1000
most populated ladder combinations (∼ 60% of the total sam-
ple) for each track pattern (L2–L8, L1–L8, or L1–L9) before
the static alignment (open squares) and after the full static
alignment (full circles), which are derived from Eq. (67).
Figure 24 summarizes the curvature misalignments, defined
as the standard deviations of curvature biases of the 1000
ladder combinations, σ(ρ), for the individual track patterns,
together with the statistical limits (dashed line) due to the
uncertainties arising from the limited number of cosmic-ray
events at high rigidities in the curvature bias determination.
As seen, with the static alignment approach, the misalign-

Fig. 23 The curvature biases of the 1000 most populated ladder com-
binations for the individual track patterns of a L2–L8 (R28), b L1–L8
(R18), and c L1–L9 (R19) before the static alignment (open squares)
and after the full static alignment (full circles)

Fig. 24 The curvature misalignments, defined as the standard devia-
tions of curvature biases of the 1000 most populated ladder combina-
tions, σ(ρ), for the track patterns of the inner tracker (R28), L1 and
the inner tracker (R18), and the full-span tracker (R19) before (open
squares) and after (full circles) the static alignment. The statistical lim-
its (dashed line) due to the uncertainties arising from the limited number
of cosmic-ray events at high rigidities in the curvature bias determina-
tion are also shown

ment of the tracker has been greatly reduced for all the track
patterns.

8.3.4 Determination of the total absolute rigidity scale

After the previous 2 rounds of static alignment, the tracker
becomes homogeneous, i.e. the relative curvature bias from
module combination to module combination has vanished.
However, the whole tracker can have an overall curvature
bias, or a shift in the total absolute rigidity scale, which
behaves as a coherent shift in the positions of the tracker lay-
ers. To determine the total absolute rigidity scale in space, a
method using cosmic-ray electrons (e−) and positrons (e+)

events to calibrate the detector has been developed.
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Fig. 25 The distributions of the alignment parameters of layers (top row, a–f), ladders (middle row, g–l), and sensors (bottom row, m-n-o) obtained
from the static alignment of all the tracker modules in space. The layer alignment parameters of L1 and L9 are not included in the plots (a–f) as
they are dynamically aligned using the position of the inner tracker for the reference

Similar method to estimate the curvature bias was used
in the CMS experiment [36]. The basic idea is to use the
property that the deflection curves of the track trajectories in
the magnetic field are mirrored between a charged particle
and its anti-particle with the same energy. When a coher-
ent shift in the tracker layers occurs, the measured absolute
inverse rigidity, |1/R|, will be shifted by a positive (negative)
and by a negative (positive) value for e− and e+ respec-
tively. The rigidity scale shift therefore can be evaluated
by comparing the |1/R| distributions between e− and e+
events with the same energy measured in the AMS electro-
magnetic calorimeter detector. To make full use of the col-
lected cosmic-ray e+ and e− events with different energies,
an unbinned likelihood method was developed. The detailed
description of the method is presented in Ref. [34].

Using this approach, the total rigidity scale is established
with an accuracy of ±1/34 TV−1 based on 10 years of
AMS data, limited mostly by the available positron statis-
tics. The estimated small correction for the total curvature
bias is converted into position offsets of the individual tracker
layers [34], adding to the layer alignment parameters.

8.4 Alignment results

The results of the static alignment are classified into several
aspects shown in the following sections.

8.4.1 Displacements of the tracker modules during launch

After the static alignment, we obtain the changes between
the positions of the tracker modules in space and those on
the ground, which are expressed as the alignment parameters
shown in Fig. 25.

As seen in Fig. 25a–f, the translations of the inner tracker
layers are ∼ 1 µm, ∼ 1 µm, and ∼ 32 µm along the uP -,
vP -, and wP -axes (x-, y-, and z-axes) respectively and the
rotations are ∼ 0.015 mrad, ∼ 0.04 mrad, and ∼ 0.004 mrad
around the uP -, vP -, and wP -axes respectively. The transla-
tion of ∼ 32 µm along the wP -axis (z-axis) can be explained
by the outgassing of the support structure, i.e. the foam in the
ladder reinforcement frame (see Fig. 2a), which happened
very rapidly under vacuum. This is confirmed by the fact
that the odd and even layers of the inner tracker are shifted
in opposite z-direction (see Fig. 25c), since their ladders are
mounted oppositely. Apart from that, the support structure of
the inner tracker planes (the carbon fiber cylinder), exhibits
excellent mechanical stability, holding the layers of the inner
tracker in place at the micron level through the launch.

As seen in Fig. 25g–l, the translations of the ladders are
∼ 13 µm, ∼ 11 µm, and ∼ 13 µm along the uL -, vL -,
and wL -axes respectively and the rotations are ∼ 0.4 mrad,
∼ 0.1 mrad, and ∼ 0.03 mrad around the uL -, vL -, and wL -
axes respectively. The sizable changes of the ladder positions
are the major sources of the tracker misalignment in space.

As seen in Fig. 25m–o, the translations of the sensors are
∼ 16 µm and ∼ 5 µm along the us- and vs-axes respectively
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Fig. 26 The residual biases of the individual sensors of the inner
tracker in a the us direction and b the vs direction before (open squares)
and after (full circles) the static alignment for a selected cosmic-ray pro-
ton sample with rigidity R > 30 GV based on 10 years of AMS data.
A circle or square represents a residual bias of each sensor. The circles
or squares of a common group are the sensors from the same half of a
tracker layer

and the rotation is ∼ 0.1 mrad around the ws-axis, which are
also not small changes. In particular, the largest translation
of ∼ 16 µm along the us-axis reveals a systematic change
of the ladder structure after the launch, that is an increased
distance between the adjacent sensors in a ladder. The reason
might also be related to the deformation of the foam in the
ladder reinforcement frame.

Figure 26 shows the residual biases of the individual sen-
sors of the inner tracker in the sensor us- and vs-directions
before and after the static alignment for a selected cosmic-ray
proton sample with rigidity R > 30 GV based on 10 years
of AMS data. Obvious displacements of the tracker modules
induced by the launch (before the static alignment) are seen.
After the alignment, there is no bias in the residual of each
sensor.

8.4.2 Stability of the tracker modules in space

We have also examined the position stability of the inner
tracker sensors in space through their residuals over time.
During the 10 year period, in the microgravity environment,
the changes of the sensor positions are found to be very small.

In order to increase the sensitivity of detecting the tracker
movement in space, a similar approach as in Sect. 8.3.3 is
applied to estimate the time dependent rigidity-scale shift
of the total tracker, by using that the cosmic-ray flux at
high rigidities is constant in time. The curvature biases, or
the rigidity-scale shifts, are measured in 40 time periods of
3 months each by fitting the measured event-rate ratios of
those periods to the total over 10 years (ni=1−40/n) with a
function similar to Eq. (67).

Figure 27 shows the rigidity-scale shifts as a function of
time over 10 years obtained from the event rates of cosmic-

Fig. 27 The rigidity-scale shifts as a function of time over 10 years
obtained from the event rates of cosmic-ray protons (open symbols) and
helium (full symbols) measured using the inner tracker (R28, circles),
L1 and the inner tracker (R18, squares), and the full-span tracker (R19,

triangles). The solid curve shows the fit with a logistic function

ray protons (open symbols) and helium (full symbols) mea-
sured using the inner tracker (R28, circles), L1 and the inner
tracker (R18, squares), and the full-span tracker (R19, trian-
gles). As seen, the slow shift of the rigidity scale, or the long-
term movement of the inner tracker, is evident before 2015
and progressively decreasing to near zero around 2016. The
amplitude of this movement is fairly small, as the maximum
rigidity-scale change of ∼ 0.18 TV−1 shown in the figure
is equivalent to a displacement of an inner tracker layer of
< 1µm [34]. It is also shown in the figure that the shift of the
rigidity measured with the external layers (R18 or R19) per-
fectly follows the shift of the rigidity measured with only the
inner tracker (R28), proving the high stability and reliability
of the L1 and L9 dynamic-alignment procedure.

The small correction for the time dependent rigidity-scale
shift is converted into position offsets of the individual tracker
layers [34], adding to the layer alignment parameters.

8.4.3 Alignment precision

After the static alignment, the misalignment in the residual,
or incoherent misalignment, is negligible (under a micron as
seen in Fig. 26) compared with the intrinsic tracker coordi-
nate resolution. Figure 28 shows the Gaussian sigma of the
vs residual, that is the vs coordinate difference between the
measurement from a sensor of L5 and the prediction from the
track fit using the other layers, as functions of the incident
particle direction in the sensor vsws-plane, dv

p
s /dw

p
s , for

cosmic-ray helium (triangles) and carbon (full circles) nuclei
with rigidities R > 50 GV. Owing to the precise alignment
together with the advanced position finding algorithm [9],
the average vs or y coordinate resolutions are 6.5 (7.5) µm
for helium and 5.1 (5.8) µm for carbon in the full-span (L1
and inner) tracker geometry. The detailed performance of the
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Fig. 28 The standard deviation (σ ) of the vs residual (the vs coordi-
nate difference between the measurement from a sensor of L5 and the
prediction from the track fit using the other layers), as functions of the
incident particle direction dv

p
s /dw

p
s for cosmic-ray helium (triangles)

and carbon (full circles) nuclei with rigidities R > 50 GV. The verti-
cal dashed lines indicate the angular boundary of the full-span tracker
geometrical acceptance, which includes 95% of the events. The vertical
dot-dashed lines indicate the same boundary but of the L1-inner tracker
acceptance. The intrinsic tracker spatial resolution is predominant in
the residual σ. The average vs coordinate resolutions are 6.5 (7.5) µm
for helium and 5.1 (5.8) µm for carbon in the full-span (L1 and inner)
tracker geometry

AMS tracker coordinate resolutions for all charged particles
up to Q = 26 can be found in Ref. [9].

Another source of the misalignment in the static alignment
is the misalignment of the curvature, or coherent misalign-
ment, which is not visible in the residual and is more crucial.
The curvature misalignment can be split into two parts: (a)
the overall curvature bias that will shift the mean of the mea-
sured rigidity and (b) the differential curvature bias that will
degrade the rigidity resolution.

The overall curvature bias, or the rigidity scale shift of
the total tracker, has been corrected to an accuracy of ±1/34
TV−1 by using cosmic-ray electrons and positrons events
with the procedure discussed in Sect. 8.3.4.

The differential curvature biases for the different combina-
tions of the tracker modules can smear the tracker resolution
as shown in the MC study (see Fig. 19). With the unique
alignment approach, most of the smeared rigidity resolution
is recovered. By using the isotropic property of cosmic-ray
flux, direct assessment of the misalignment is performed on
the data. As shown in Fig. 24, after the alignment, the stan-
dard deviations of the differential curvature biases among
different ladder combinations, are better than 0.18 TV−1,

0.125 TV−1, and 0.11 TV−1 for the rigidities measured using
the inner tracker (R28), L1 and inner tracker (R18), and full-
span tracker (R19) respectively, which are the misalignments
equivalent to additional smearings of the measured position
of each layer by less than 0.7 µm, 1.2 µm, and 2.7 µm for
R28, R18, and R19 respectively. This estimation is based on

Fig. 29 The rigidity resolutions, σ(1/R), of L1-inner (R = R18) and
full-span (R = R19) track patterns as functions of the true rigidity
for carbon nuclei obtained from MC simulation. The corresponding
maximal detectable rigidities, RM , with RMσ(1/RM ) ≡ 1, are RM

18 =
1.6 TV and RM

19 = 3.6 TV

different ladder combinations and does not include the contri-
bution from the misalignment of the sensors, which cannot
be accurately determined from the different sensor combi-
nations due to the limited number of cosmic-ray events per
sensor combination at high rigidities. Considering that the
sensor position change during launch is small, ∼ 5µm, in the
bending direction, based on the MC simulation, we assign an
error of ∼ 2 µm to the sensor misalignment. So, combining
in quadrature, the total differential curvature misalignments
equivalent to the position errors of each layer are 2.1 µm,

2.3 µm, and 3.3 µm for R28, R18, and R19 respectively,
which are smaller than both the intrinsic spatial resolution
(e.g. 5.1 µm for carbon nuclei in the full-span geometry) and
the alignment errors of the external layers in the dynamic
alignment (7.1 µm for L1 and 7.9 µm for L9).

9 Conclusion

Precise alignment of the silicon tracker is invaluable for the
success of the AMS mission. We have presented a series of
new methods to align the large permanent magnetic spec-
trometer for the space experiment, starting from the align-
ment with the test beam data on the ground through the align-
ment with the cosmic-ray events in space, with an ultimate
precision of a few microns achieved under harsh conditions.
This allows AMS to accurately measure cosmic rays up to the
multi-TV region. As an example, Fig. 29 shows the rigidity
resolutions of L1-inner track pattern, σ(1/R18), and of full-
span track pattern, σ(1/R19), as functions of the true rigid-
ity for carbon nuclei after the full alignment procedure. The
maximal detectable rigidities, RM , with RMσ(1/RM ) ≡ 1,

are RM
18 = 1.6 TV and RM

19 = 3.6 TV, correspondingly.
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The developments of the new mathematical alignment
algorithms, such as the alignment for the composite detec-
tor structure, the alignment for the dynamic system, and the
alignment in the presence of the magnetic field, are useful for
various HEP experiments equipped with the tracking detec-
tors and particularly valuable for the future spaceborne mag-
netic spectrometers.
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Appendix A: Coordinate transformation from the local
sensor frame to the global tracker frame

Substituting Eq. (1) into Eq. (2) gives:

�rP =RT
LΔRL

[
RT
s ΔRs(�q + Δ�qs) + �r0s + Δ�qL

] + �r0L

�RT
LR

T
s

[
(RsΔRLRT

s )ΔRs �q + Δ�qs + RsΔRL �r0s

+ RsΔ�qL
] + �r0L . (A.1)

Subsequently, substituting Eq. (A.1) into Eq. (3) gives:

�rg � RT
PR

T
LR

T
s

[
(RsRLΔRPRT

LR
T
s )(RsΔRLRT

s )ΔRs �q
+ Δ�qs + (RsRLΔRPRT

LR
T
s )RsΔRL �r0s + RsΔ�qL

+ RsRLΔRP �r0L + RsRLΔ�qP
] + �r0P . (A.2)

The above equation can be simplified to:

�rg � RT(�q + Δ�q) + �r0

where

Δ�q = [
(RsRLΔRPRT

LR
T
s )(RsΔRLRT

s )ΔRs − E
]�q

+ Δ�qs + [
(RsRLΔRPRT

LR
T
s )RsΔRL − Rs

]�r0s

+ RsΔ�qL + RsRL(ΔRP − E)�r0L + RsRLΔ�qP
(A.3)

RT = RT
PR

T
LR

T
s (A.4)

�r0 = RT
PR

T
L �r0s + RT

P �r0L + �r0P . (A.5)

Appendix B: χ2 minimization and alignment matrix in
the global alignment

Minimization of the χ2 of Eq. (47) leads to the partial deriva-
tive with respect to each (g-th) global parameter Δpg being
zero:

∂χ2

∂pg
= 2

Ntrack∑
i=1

nmeas∑
j=1

(∂�εi j
∂pg

)T
V−1
i j �εi j = 0

� 2
Ntrack∑
i=1

nmeas∑
j=1

(∂�εi j
∂pg

)T
V−1
i j

[
�εi j (�q0

i , �p0)

+
∑
l ′

∂�εi j
∂qil ′

Δqil ′ +
∑
g′

∂�εi j
∂pg′

Δpg′
]

(B.6)

where �εi j��εi j (�q0
i , �p0) + ∑

l ′
∂�εi j
∂qil′

Δqil ′ + ∑
g′

∂�εi j
∂pg′

Δpg′

depends both on the local track parameters Δ�qi and the

global alignment parameters Δ �p, and �βi j�∑
l ′

∂ �βi j
∂qil′

Δqil ′ as
the intrinsic track property only depends on the local track
parameters Δ�qi . Equation (B.6) can be further simplified in
matrix form as:

Ntrack∑
i=1

�di =
(Ntrack∑

i=1

Ci
)
Δ �p +

Ntrack∑
i=1

GiΔ�qi (B.7)

where �di is a vector whose g-th element is given by:

dig = −
nmeas∑
j=1

(∂�εi j
∂pg

)T
V−1
i j �εi j (�q0

i , �p0) (B.8)

Ci is a matrix whose (g, g′) entry is given by:

Ci
gg′ =

nmeas∑
j=1

(∂�εi j
∂pg

)T
V−1
i j

∂�εi j
∂pg′

(B.9)

and Gi is a matrix whose (g, l ′) entry is given by:

Gi
gl ′ =

nmeas∑
j=1

(∂�εi j
∂pg

)T
V−1
i j

∂�εi j
∂qil ′

.

(B.10)
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The partial derivatives of the residual with respect to the
global alignment parameters, ∂�εi j/∂ �p, are from Eqs. (13)–
(15) and with respect to the local track parameters, ∂�εi j/∂ �qi ,
are derived from the track fitting algorithm. In this paper, the
track fitting was done with the custom software implemen-
tation of the General Broken Lines algorithm [20].

Minimization of the χ2 of Eq. (47) leads the partial deriva-
tive with respect to each (l-th) local track parameter of each
(i-th) track, Δqil , to equal zero:

∂χ2

∂qil
= 2

nmeas∑
j=1

(∂�εi j
∂qil

)T
V−1
i j �εi j + 2

nscat−1∑
j=2

(∂ �βi j

∂qil

)T
W−1

i j
�βi j = 0

� 2
nmeas∑
j=1

(∂�εi j
∂qil

)T
V−1
i j

[
�εi j (�q0

i , �p0) +
∑
l ′

∂�εi j
∂qil ′

Δqil ′

+
∑
g′

∂�εi j
∂pg′

Δpg′
]

+ 2
nscat−1∑
j=2

(∂ �βi j

∂qil

)T
W−1

i j

∑
l ′

∂ �βi j

∂qil ′
Δqil ′ .

(B.11)

Equation (B.11) can be simplified in matrix form as:

�bi = (Gi )TΔ �p + �iΔ�qi (B.12)

where �bi is a vector whose l-th element is given by:

bil = −
nmeas∑
j=1

(∂�εi j
∂qil

)T
V−1
i j �εi j (�q0

i , �p0) (B.13)

(Gi )T is the transpose of the matrix Gi which is defined in
Eq. (B.10), and �i is a matrix whose (l, l ′) entry is given by:

�i
ll ′ =

nmeas∑
j=1

(∂�εi j
∂qil

)T
V−1
i j

∂�εi j
∂qil ′

+
nscat−1∑
j=2

(∂ �βi j

∂qil

)T
W−1

i j
∂ �βi j

∂qil ′
.

(B.14)

The partial derivatives of the scattering angle with respect
to the local track parameters, ∂ �βi j/∂ �qi , are derived from the
track fitting algorithm.

Combining Eqs. (B.7) and (B.12), all the global alignment
parameters, Δ �p, and all the local track parameters, Δ�q, can
be solved simultaneously from following matrix equation:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
i C

i G1 . . . G j . . . GN

(G1)T �1 . . . 0 . . . 0
...

...
. . .

...
. . .

...

(G j )T 0 . . . � j . . . 0
...

...
. . .

...
. . .

...

(GN )T 0 . . . 0 . . . �N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δ �p
Δ�q1

...

Δ�q j
...

Δ�qN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
i
�di

�b1

...
�b j

...
�bN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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