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Summary 

The existence of uncertainties and variations in data represents a remaining 

challenge for life cycle assessment. Moreover, a full analysis may be complex, time 

consuming and implemented mainly when a product design is already defined. Structured 

under-specification, a method developed to streamline life cycle assessment, is here 

proposed to support the residential building design process, by quantifying environmental 

impact when specific information on the system under analysis cannot be available. By 

means of structured classifications of materials and building assemblies, it is possible to use 

surrogate data during the life cycle inventory phase, and thus to obtain environmental 

impact and associated uncertainty. The bill of materials of a building assembly can be 

specified using minimal detail during the design process. The low-fidelity characterization of 

a building assembly and the uncertainty associated with these low levels of fidelity are 

systematically quantified through structured under-specification using a structured 

classification of materials. The analyst is able to use this classification to quantify 

uncertainty in results at each level of specificity. Concerning building assemblies, an average 

decrease of uncertainty of 25% is observed at each additional level of specificity within the 

data structure. This approach was used to compare different exterior wall options during 

the early design process. Almost 50% of the comparisons can be statistically differentiated 

at even the lowest level of specificity. This data structure is the foundation of a streamlined 

approach that can be applied not only when a complete bill of materials is available, but also 

when fewer details are known.  
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<heading level 1>Introduction  

Life Cycle Assessment (LCA) is a scientific and structured methodology, based on 

international standards (ISO 14040 2010; ISO 14044 2010), that represents the reference for 

environmental impact assessment. The aim of LCA is to quantify the environmental 

consequences of products and services from “cradle to grave” (Finnveden et al. 2009; 

Curran 2013). The increased awareness of environmental sustainability in the construction 

sector has resulted in a significant number of publications focused on LCA applied to 

buildings and building products (for reviews of these publications see Ghattas et al. 2016; 

Cabeza et al. 2014; Ortiz et al. 2009; Khasreen et al. 2009; Buyle et al. 2013), and in the 

growth of various assessment frameworks and tools for rating building sustainability 

(Schwartz and Raslan 2013; Bayer et al. 2010; Haapio and Viitaniemi 2008; Anand and Amor 

2017).  

Unfortunately, conventional LCAs are complex and time-consuming (Hochschorner 

and Finnveden 2003; Schulz et al. 2012), and designers are discouraged by both this 

complexity (Zabalza Bribián et al. 2009) and the information lag within the process (Malin 

2005). As such, despite the large academic literature on buildings LCA, the use of LCA tools 

by building design professionals is still uncommon (Olinzock et al. 2015). When it is used, 

LCA is typically applied by experienced practitioners in a resource-intensive effort at the end 
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of the design process, excluding de facto the possibility of obtaining environmental results 

to drive the decisions during the early design phases (Malmqvist et al. 2011). By contrast, if 

LCA can be applied to explore and innovate at the early design stage when few parameters 

are defined and a broad selection of options is still available, there is more potential to 

impact decisions and drive toward lower impact designs (Bragança et al. 2014). Recent 

surveys on the building design process show that few details of the building design are 

finalized in the early phases of the process (Ghattas et al. 2015; Olinzock et al. 2015). 

In this context, more simplified or streamlined LCA methods that allow for 

evaluations with limited and uncertain information are needed (De Soete et al. 2014; Hunt 

et al. 1998). This need is not new to the field of LCA. Streamlined LCA techniques emerged 

early in the development of LCA to reduce the amount of effort required to conduct a study 

(Baumann and Tillman 2004; Pesonen and Horn 2012). Several streamlined tools exist, but 

they often limit the scope of analysis (Schulz et al. 2012; Bala et al. 2010), are qualitative in 

nature (Hochschorner and Finnveden 2003; Pesonen and Horn 2012), rely on proxy data 

(Tecchio et al. 2016), or do not address uncertainty analysis (Pelton and Smith 2015; 

Steubing et al. 2016). If not applied carefully, many streamlining methods, particularly those 

that limit analytical scope, will give incorrect conclusions (Hunt et al. 1998). 

Streamlining has also been an important topic of research for LCA of buildings. This 

focus has led to the creation of a number of specialized tools aimed to facilitate the analysis 

of buildings (Malmqvist et al. 2011; Anand and Amor 2017). A commonly cited challenge is 

the burden of collecting data that characterizes the building life cycle (often referred to as 
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the bill of materials (BOM)). One strategy to address this has been scope reduction either in 

terms of life cycle activities, detail of components, or impact assessments (Kellenberger and 

Althaus 2009; Blengini and Di Carlo 2010; Lewandowska et al. 2015; Ghattas et al. 2016) (for 

a detailed review of scope reduction approaches see Soust-Verdaguer et al. (2016)). In 

recent years, a number of studies have described the use of building information 

management (BIM) software to reduce this burden by automatically translating 

architectural drawings into the BOMs needed for a LCA. This approach has been applied to a 

broad range of cases including single family homes (Iddon and Firth 2013; Houlihan Wiberg 

et al. 2014; Hollberg and Ruth 2016; Motuzienė et al. 2016), office buildings (Flager et al. 

2012; Basbagill et al. 2013, 2014), the selection of refurbishment strategies for a multi-story 

office building (Seo et al. 2007), school buildings (Ajayi et al. 2015) and an apartment 

building (Hollberg and Ruth 2016) (See review by Soust-Verdaguer et al. (2017)). One 

challenge for this strategy is that digital drawings may not exist at the earliest stages of 

building design before electronic drawings are created. Hollberg and Ruth (2016) and 

Basbagill et al. (2013) address this challenge by using specific BIM models that require less 

detail and can easily permute designs. Wang et al. (2005) and Heeren et al. (2015) avoid the 

challenges of BIM tools altogether by developing fully analytic models based on limited 

geometric information.  

Each of these approaches reduces the burden of estimating quantities within the 

BOM. To complete that LCA, these BOM quantities must be multiplied by an inventory or 

impact factor per unit of material. At the early design stage, the material is also not settled. 
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Basbagill describes an approach that samples building designs made from many materials 

(Flager et al. 2012; Basbagill et al. 2013, 2014), but each component in each design is 

associated with a specific material from existing databases. The work described here 

complements earlier streamlining approaches by describing a data structure and sampling 

approach that would allow early stage geometric representations to be matched with an 

appropriately generalized set of inventory data all the while estimating the associated 

uncertainty in impact. 

Some of the authors have previously proposed an approach to streamlining that 

attempts to reduce data collection burden and provides an estimate of uncertainty in the 

result. As described in Olivetti et al. (2013), the structured under-specification approach 

involves developing an inventory from the combination of a low-fidelity description of the 

system under investigation and a structured classification of materials (or other activities) 

designed to match with that low-fidelity description. By accommodating low-fidelity (i.e. 

high-level) information, this approach can be applied during the early design process when 

specific information on the system cannot be available. This approach streamlines LCA 

because the practitioner spends less time collecting the data required to specify details on 

all aspects of the system being analyzed. This makes it particularly suited for identifying 

promising alternatives with lower impacts even in early-stage building design where details 

are not settled. Finally, by leveraging the structured classifications of materials, it is possible 

to estimate both the environmental impact and associated uncertainty. 
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We applied the structured under-specification approach to building assemblies as 

the foundation for a broader method to streamline building LCAs. The core enabler of the 

under-specification approach is a hierarchically-structured dataset that captures the 

distribution of possible impacts for a given activity, when that activity is described with a 

limited amount of information. We describe such a structured dataset for building-relevant 

materials and assemblies and demonstrate the impacts of calculating environmental 

indicators (EIs) at several levels of specification. Significant uncertainty is present in all LCA 

results. Streamlined methods only amplify that uncertainty. As such, a key metric for any 

streamlining method is its ability to generate results that differentiate alternatives in a 

statistically-defensible manner (Heijungs and Huijbregts 2004; Heijungs and Kleijn 2001). 

Herein, such statistically-differentiable results will be referred to as resolvable.  

This work has three primary contributions. The first is the application of the 

structured under-specification approach to building materials and assemblies, which 

required the development of a classification scheme and new technique in which both 

materials and assemblies are under-specified (as opposed to just materials, which has been 

done in the past). The second contribution is the use of four impact categories to 

demonstrate the efficacy of the method; Patanavanich (2011) and Olivetti et al. (2013) only 

analyzed cumulative energy demand (CED). These contributions provide new insights on the 

use of the approach and its implications for streamlining building LCA. The third contribution 

is the proposal and application of metrics to evaluate the performance of under-

specification data structures. 
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<heading level 1>Methodology  

We applied the structured under-specification concept to develop a hierarchical data 

structure by which a wide range of building materials and assemblies could be categorized. 

Using this categorization system and data compiled from several databases, it was then 

possible to obtain distributions of environmental impacts for a range of building materials 

and assemblies (predominantly from the residential building sector) at different levels of 

specificity, which can be used at different phases of the design process. Developing this data 

structure involves several steps, which are detailed in this section for both materials and 

assemblies datasets. 

<heading level 2>Scope definition 

Our focus is residential building materials and assemblies, primarily those related to 

the building structure and envelope. As such, the scope of the life cycle datasets is cradle-to-

gate. A reference unit of 1 kg of mass for each material and 1 m2 of surface area for each 

building assembly was used. Materials used for electrical wiring, water, sanitary and HVAC 

systems, furniture and appliances are not included in the current analysis.  

<heading level 2>Data collection 

We assembled LCI datasets of construction materials from four relevant databases: 

ecoinvent 2.2. (Ecoinvent 2013), PE International Professional database (Thinkstep 2014), 

USLCI (NREL 2014a), and Athena Sustainable Materials Institute (ASMI 2014). We used 

different databases, as differences in LCA results can arise from differences in the 

methodological approaches used for LCI modelling (Hischier and Achachlouei 2014), other 
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than variability due to differences in LCIA modeling (Alvarenga et al. 2016; Benini and Sala 

2016; Pizzol et al. 2011). 

The LCI datasets used in this analysis include all the lifecycle phases from the 

extraction of raw materials (or use of secondary raw materials) to the production of the 

material (e.g. cement) or the product to be used in a building assembly (e.g. plastic 

connectors or concrete blocks). Transportation to the construction sites, use phase and end 

of life were not considered.  

The database of materials initially contained 580 datasets complied from all sources, 

but was reduced to 530 by removing repetitious, out of scope processes (e.g., products that 

are not directly used in constructions), and datasets with inconsistent scope (i.e., gate-to-

gate datasets). 

Bills of materials (BOMs) and technical details about residential building assemblies 

have been retrieved from the textbook Architectural Graphic Standards for Residential 

Construction (The American Institute of Architects 2010) and from the tools Athena Impact 

Estimator for Buildings V4.5 and Building Energy Optimization (BEopt) V2.1 (NREL 2014b). 

Each assembly contained in the building assembly database is therefore represented by a 

BOM dataset, which contains information about quantity and type of materials. 

<heading level 2>Classification  

We used and adapted the MasterFormat® structure, defined by the Construction 

Specifications Institute (2014) (CSI), as a starting point to create a classification system 
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(taxonomy) for the materials datasets. MasterFormat® is a standard for organizing 

specifications and other written information for building projects in the USA and Canada. It 

is structured with nested sub-divisions, providing a structured hierarchy for all the activities 

of a construction site.  

The MasterFormat® data structure is organized into four levels which we will refer to 

as material levels (ML). Formally, it is a strictly finite, 1-to-n hierarchical tree which means 

that each entry at ML4 (the terminal level in the tree) is univocally assigned to a preceding 

level (ML3) and by extension therefore to an ML2 and ML1. We extended this classification 

system by assigning Individual material datasets to specific ML4 categories. These material 

datasets, therefore, represent a new fifth level of the hierarchical tree. In the end, the data 

structure is a five level hierarchical tree, organized as ML1 to ML5 with ML1 being the most 

general classification and ML5 being the most specific (i.e., individual datasets). The 

categorization of individual material datasets within the classification system was based on 

the supporting information provided in the documentation for individual LCI datasets and 

expert judgment. A subset of the hierarchical structure is described in Table 1, while the full 

structure is available in the supporting information S1 available on the Journal’s website, 

Table S1-1. 

Some additional modifications were necessary to adapt the MasterFormat® structure 

to accommodate all of the collected LCI datasets. First of all, we added an additional division 

in this structure that includes basic materials (e.g., gravel, sand, water, etc.) that may not be 

used as is in a building, but are clearly related to the sector (about 170 individual datasets 
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were classified in this group). Additionally, the subcategories of the MasterFormat® category 

05 00 00-Metals were expanded because in its current form the structure does not 

differentiate stainless and low-alloyed steel, primary and secondary aluminum, nor other 

non-ferrous metals. Adaptions were considered necessary by the authors in order to create 

a link between common practice in the building sector and information contained in life 

cycle inventories. Finally, we note that for almost all cases it was only possible to populate 

one ML3 category within each ML2. In that form, any analysis of ML2 would have an 

identical statistical dispersion, that this is the observed spread or variation in values often 

measured in terms of standard deviation or variance, as the single ML3 within it. We felt 

that would be misrepresentative and as such have omitted the ML2 level from reporting.   

Table 1 gives an example of the hierarchical categorization scheme for thermal 

insulation. For example, the dataset “Rock wool, packed, at plant” (ML5) is univocally 

classified as “thermal and moisture protection” (low-level of specificity, ML1), “thermal 

insulation” (medium-level of specificity, ML3) and “insulation blanket” (high-level of 

specificity, ML4). These materials datasets act as the basis for the assemblies datasets 

described next. The full list of materials is available in the supporting information S1 on the 

Web, Table S1-1. 
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Table 1. Extract of MasterFormat® adapted to classify LCA datasets in nested groups (material level, 

ML). The extract is focused on the ML3 category Thermal Insulation. ML5 lists individual datasets 

ML1 ML3 ML4 ML5 
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(072106) 
Blanket insulation 

Fiberglass Batt R11-50 

Glass wool mat, at_plant 

Mineral wool Batt R11-50 

Glass wool 

Rock wool  

Rock wool, at_plant 

Rock wool, packed, at_plant 

Wood wool, u=20%, at_plant 

(072126) 
Blown insulation 

Cellulose fibre, inclusive blowing in, at_plant 

Blown Cellulose 

(072113) 
Board insulation 

Cork slab, at_plant 

Foam glass, at_plant 

Foam glass, at_regional_storage 

Foam glass, at_regional_storage 

Polystyrene foam slab, 100% recycled, at_plant 

Polystyrene foam slab, 45% recycled, at_plant 

Polystyrene foam slab, at_plant 

Polystyrene, extruded CO2 blown, at_plant 

Polystyrene, extruded, at  plant 

Polystyrene, extruded, HFC-134a blown, at_plant 

Polystyrene, extruded, HFC-152a blown, at_plant 

Urea formaldehyde foam slab, hard, at_plant 

Raw cork, at_forest_road 

Wood, cork oak, under bark, u=70%, at_forest_road 

Wood wool boards, cement bonded, at_plant 

Polyisocyanurate (high-density foam)  

Expanded Polystyrene 

Extruded Polystyrene 

Polyiso Foam Board (unfaced) 

(072119) 
Foamed-in-place 

insulation 

Urea formaldehyde foam, in situ foaming, at_plant 

Urea formaldehyde resin, at_plant 

Polyurethane, flexible foam, at_plant 

Polyurethane, rigid foam, at_plant 

(072123)  
Loose-fill insulation 

Fiberglass low filled Cavity Fill R15-38 

Fiberglass low filled Open Blow R13-60 

Pipe insulation Tube insulation, elastomer, at_plant 
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ML1 ML3 ML4 ML5 
Synthetic rubber, at_plant 

 

Another database was developed to classify a series of building assemblies, divided 

into eight main categories: exterior walls, interior walls, foundations, roofs, floors, windows, 

doors, and exterior finishes. Figure 1 provides an example of some of the building 

assemblies considered in this study, highlighting a specific insulated concrete form (ICF) 

wall. We analyzed and characterized almost three hundred building assemblies typically 

used in the U.S. residential sector (the full list is available in the supporting information S1 

on the Web, Table S1-2). Each assembly is characterized by a BOM. Each entry within that 

BOM contains a material type (i.e., a reference to an entry from the material data structure) 

and a quantity referred to the assembly area of 1 m2. For these cases, quantities consists of 

the thickness of a given layer or, in specific cases (e.g., paint), the amount in terms of kg/m3 

or kg/m2. Table 2 provides an example of structured under-specification of materials (ML3-

5) for a specific insulated concrete form wall. It is possible to note the presence of basic 

materials (e.g. polypropylene used as proxy data for plastic connectors). 

We classified the individual assembly datasets and their environmental impacts into 

five hierarchical levels of specificity (AL, assembly level), AL1 to AL5 with AL1 being the first 

and most general classification, namely the eight main categories described before.  

AL2 data were developed by using the main assembly typologies available in the 

literature and in tools like Athena Impact Estimator for Buildings 4.5 (ASMI 2014) and 
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Building Energy Optimization (BEopt) V2.1 (NREL 2014b). As an example of AL2 

categorization, Figure 1 lists five wall typologies that make up the AL1 exterior wall group: a) 

concrete masonry units (18 individual assemblies), b) ICFs (12), c) precast concrete walls (5), 

d) structural insulated panels (5), and e) wood stud walls (12). Each AL2 category comprises 

a series of specific assemblies at AL3. Each AL3 assembly is defined by details on materials 

used (type) and layer thicknesses (quantity). Information about the most common used 

assemblies were retrieved from literature and design-support tools (The American Institute 

of Architects 2010; ASMI 2014; NREL 2014b). AL4 and AL5 refine the description of the 

assembly by using high-fidelity categories of materials. As in the previous case, the data 

structure created is a finite hierarchical tree, such that each entry at AL5 is univocally 

assigned to preceding levels (AL1-4). As such, Table 2 also provide an example of structured 

under-specification of an assembly (AL3-5). 

The full list of assemblies described at AL1-5 levels is available in the supporting 

information S1 on the Web, Table S1-2 and related spreadsheets.  

Table 2. Bill of materials of an insulated concrete form exterior wall (1 m2), specified at AL5 
(with ML5 datasets), and under-specified at AL4 and AL3 (with materials categories ML3 and 
ML4). 

Assembly defined at AL5  Assembly defined at AL4 Assembly defined at AL3 
Mass 

[kg/m2] 

ML5: Stucco, at plant ML4: Cement-plastering ML3: Plaster-gypsum  18,29 

ML5: Polystyrene foam 
slab, at plant ML4: Board insulation ML3: Thermal-insulation  1,52 

ML5: Concrete, normal, at 
plant 

ML4: Cast-in-place 2400 
kg/m3 ML3: Cast-in-place  241,81 

ML5: Polystyrene foam 
slab, at plant ML4: Board insulation ML3: Thermal-insulation  1,52 

ML5: Nails ML4: Metal-fastener ML3: Metal-fastener  1,99E-08 
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ML5: Gypsum fibre board, 
at plant ML4: Gypsum-board ML3: Plaster-gypsum 14,29 

ML5: Polypropylene, 
granulate, at plant ML4: Polypropylene ML3: Plastic 0,52 

ML5: Reinforcing steel, at 
plant ML4: Bar ML3: Concrete-reinforcing  1,10 

ML5: Joint compound 
ML4: Supports-gypsum-
board ML3: Plaster-Gypsum  1,10 

ML5: Paper tape 
ML4: Supports-gypsum-
board ML3: Plaster-Gypsum  0,01 

ML5: Sawn timber, 
softwood, raw, kiln dried, 
u=20%, at plant ML4: Soft-dried wood ML3: Rough-carpentry  7,20 

ML5: Alkyd paint, white, 
60% in H2O, at plant ML4: Paint ML3: Interior  0,08 

Note: ML = material level; AL = assembly level 
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Figure 1. Extract of the hierarchical structure developed for building assemblies (AL1 
and AL2). The highlighted example at AL3 is for an ICF wall. Values in parenthesis represent 
the number of assemblies within a given category. 

Note: AL = assembly level 
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<heading level 2>Probabilistic impact assessment and aggregation  

We used existing datasets to calculate life cycle impacts using the life cycle impact 

assessment (LCIA) method Tool for the Reduction and Assessment of Chemical and other 

environmental Impacts (TRACI) version 2.1, with a reference unit of 1 kg of mass for each 

material and 1 m2 for each assembly. Conversions were made where necessary (e.g., unit of 

volume to unit of mass) by using information available from the primary source of data, 

database supporting information or from RSMeans (2013). TRACI is a midpoint-oriented 

LCIA method that includes a range of EIs (Bare 2012; Bare et al. 2006) and is implemented in 

LCA tools used for this research. Therefore, results were obtained directly from these LCA 

tools, namely Simapro, GaBi and Athena Impact Estimator for Buildings. However, due to 

different impact assessment methods in some LCA tools and databases, some impact 

categories were not evaluated (e.g., Athena Impact Estimator for Buildings V4.5 did not 

include carcinogenic and non-carcinogenic effects, ecotoxicity and fossil fuel depletion). The 

categories included in our analysis are acidification (AP), eutrophication (EP), global 

warming (GW), and smog creation (SM). We did not include normalization, grouping, or 

weighting.   

The procedure for calculating and aggregating probabilistic impact assessment 

results for the structured hierarchy is schematically represented in the supporting 

information S2 available on the Journal’s website, section S1.  

For ML5 entries, uncertainty is present for a number of reasons, including 

measurement error, (in)completeness, and natural variation as well as the technical, 
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temporal, and geographic correlation of the data with its intended use here (Frischknecht et 

al. 2004; Heijungs and Suh 2002; Clavreul et al. 2013, 2012). Although these factors would 

vary for each LCA dataset, to test the data structure, we have applied a uniform estimate of 

uncertainty at ML5. ML5 uncertainty of a given environmental impact, was evaluated using 

a log-normal distribution with the mean based on the nominal value presented in the data 

set and the squared geometric standard deviation (perturbation term) equal to 1.27. This 

value happens to correspond to the geometric standard deviation that would result from 

selecting midrange values for all indicators within the pedigree matrix first described by 

Weidema and Wesnaes (1996) and more recently updated by Muller et al. (2016). The 

authors chose this point of reference as it suggested that such a level of uncertainty was 

expected in at least some forms of LCA studies.  ML5 entries were modeled as following a 

lognormal distribution, as it is frequently observed in real life populations (Koch 1966), is 

representative of many LCA input parameters (Huijbregts et al. 2003), and the majority of 

parameters for real life populations are always positive (Weidema et al. 2013). Using a 

uniform estimate of the uncertainty, instead, was a simplified approach adopted in Olivetti 

et al. (2013), in which any existing estimates of uncertainty for individual LCI datasets were 

therefore overwritten. 

Because of the hierarchical nature of the data structure, by defining the impact and 

the associated uncertainty of each specific material (at ML5), distributions of impacts at 

other levels of specificity (from ML1 to ML4) are implicitly assigned, as they derive from the 

aggregation of all of the distributions of results of those materials included in a given set of 
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data (e.g., for ML3 “Thermal insulation” this consists of all the ML5 results for the datasets 

included in that set of data). The distribution of impacts for levels ML1 to ML4 were 

estimated through a two stage Monte Carlo sampling process. First, a specific material 

(ML5) that is a member of given category was randomly selected. Then an impact value was 

randomly sampled from the distribution associated with that ML5 material. 

Monte Carlo simulations were also used for estimating the distribution of impacts in 

the assemblies datasets. For each assembly, a Monte Carlo simulation with 1,000 samples 

was used to obtain a distribution of results for each level of specificity and for each impact 

category. First of all, each assembly can be seen as a set of components (materials and 

products, as specified in <heading level 2>Data collection). For each assembly, we calculated a 

distribution of results using the highest level of specificity, here referred to as AL5. At AL5, 

each component is represented by a unique ML5 material. As noted earlier, the impact of 

the materials at ML5 are uncertain and assumed to follow a log-normal distribution. 

Subsequently, we used the ML4 materials categories to calculate under-specified results for 

the assembly level AL4. The distribution of AL4 impacts was estimated through a two stage 

Monte Carlo sampling process; first, selecting a specific material (ML5) in that category, 

then an impact value from the distribution associated with that ML5 material. In this way 

the uncertainty in results is increased by the variation of possible materials for each 

component. The same applies for AL3 with materials coming from ML3 categories. 

We then observed that using material category ML1 as the basis for building 

assembly levels AL1 and AL2 led to an unworkable degree of uncertainty. Therefore, the 
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distribution of results of a given type of building assembly at AL2 (e.g., ICF walls) is 

represented by all the results obtained at AL3 for individual building assemblies of that type 

(e.g., ICF walls as specified in supporting information S1 on the Web, Table S1-2). The same 

applies at AL1, where all the AL3 results for a given class (e.g., exterior walls) building 

assemblies are combined. 

The procedure is also schematically represented in the supporting information S2 on the 

Web, section S2. 

<heading level 2>Evaluation  

We evaluate the proposed data structures using two related sets of analyses. First 

we evaluate the four EIs for a set of two case examples (a material, rock wool, and an 

assembly, ICF walls) and then for the data structures as a whole and compute how the 

spread in the estimate of those metrics declines with increasing specificity. These results are 

compared among the ML1 categories for the data structure described here and against a 

novel analysis of the data structure utilized by Olivetti et al. (2013). An effective data 

taxonomy should most frequently reduce the dispersion in the estimate as more 

information is provided. Second, we test how this taxonomy allows the environmental 

performance of the building materials and assemblies to be statistically resolved (i.e., 

provide results with sufficient fidelity that when compared the confidence in their 

difference is deemed statistically significant). In the following formulas, xi,EI,ALj represents the 

ith simulated result obtained for a given EI and for a defined level of specificity (ALj, j = 1:5) 

and XEI,ALj represents a vector of results obtained by Monte Carlo simulations for a given EI 

[x1, x2, x3,…, x1000] and a given level of specificity. 
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<heading level 3>Statistical dispersion of results 

The hierarchical data structures being tested here serve a role much like a statistical 

tree model where the metric of interest (environmental impact) is a continuous response. 

The performance of such models, also referred to as regression trees, is measured in terms 

of the homogeneity of the categories defined with the tree (Loh 2002; Loh et al. 2008). 

When categories are more homogenous, the characteristics of the category better 

represent the characteristics of the members of the category. This is directly analogous to 

our own use of the taxonomy where the performance of the taxonomy ultimately derives 

from how well the LCA characteristics of the categories represent the LCA characteristics of 

category members. The most common metric of homogeneity is the total sum of squared 

(TSS) errors from the category mean, here computed for the assembly database as TSS EI,ALj 

(for a given EI specificity (ALj)): 

          ∑(                       )
 

 

   

 (1) 

TSS is a common metric for evaluating alternative categorization schemes for a specific 

taxonomy. Its magnitude, however, is a function of the number and scale of observations. 

As such, TSS is not particularly useful for comparing the performance of different 

taxonomies. For that purpose, we compute average metrics of dispersion scaled to the 

expected value of the sample.  

Specifically, we compute the coefficient of variation (CV), for each EI and for a 

defined level of specificity (ALj). For a given set of data, the CV EI,ALj can be defined as the 
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ratio between the standard deviation and the mean (Upton and Cook 2008), as in the 

following formula: 

         
                  (       )

    (       )
 (2) 

Additionally, we compute the median absolute deviation coefficient of variation 

(MAD-COV), a measure of data dispersion similar to standard deviation, but robust to data 

outliers (Rousseeuw and Croux 2012). The MAD-COV describes the median percent variation 

of a dataset from the median value. In equation (3), MAD-COVEI,ALj is defined as: 

              
       |                (       )| 

      (       )
 (3) 

Average values of CV are calculated as the arithmetic mean of CV values obtained at 

a certain level. For example, if we consider the exterior wall category, the average CV EI,AL5 

consists of the arithmetic mean of the 52 CV values obtained for a given EI at AL5. The same 

applies at AL4 and AL3, using CV values at the equivalent levels of specificity. At AL1, 

instead, the average CV is computed by using simultaneously all of the 52 results of the 

Monte Carlo simulation at AL3, for a total of 52,000 values. At AL2, the average CV is 

computed with the same procedure used at AL1, but with smaller samples, corresponding to 

the nested groups identified in the assembly classification; for instance, considering the 

exterior wall category, the 5 types of exterior walls were taken into account. The same 

procedure applies for the calculation of the average MAD-COV. Equations (1), (2), (3) can 

also be applied to the material database, when the index ML replace AL in these equations. 
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<heading level 3>Comparison of results  

Since LCA results are usually interpreted in a comparative manner (Noshadravan et 

al. 2013), it is also important to include comparative metrics. To evaluate the difference 

between two alternative designs, we used a comparison indicator (CI). This is defined as the 

ratio of environmental impacts of two products (Huijbregts et al. 2003). Therefore, the 

overall uncertainty in individual assemblies is not the key driver, but the uncertainty in the 

ratio of the results of the two building assemblies (design A and design B, in equation (4)) 

becomes crucial. CI EL,ALj is the comparison indicator for a given EI at a given level of 

specificity: 

         
                

                
 (4) 

We define β EI,ALj as the probability that design A has lower environmental burden 

than design B once again for a given EI, at a given AL. Given this, we can express β EI,ALj  

between A and B as: 

         (          ) (5) 

where P(CI EI,ALj < 1) means the probability of CI being less than 1. Results of the 

comparison are considered statistically significant if β EI,ALj  exceeds some threshold, βcrit, (or 

if β EI,ALj  ≤(1-βcrit)) established by the decision-maker. Cases that meet this criteria will be 

referred to as “resolvable”. 
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<heading level 2>Comparison against available literature  

A literature review was conducted to understand if other studies addressed LCA of 

building assemblies in a similar way. However, we realized that it is difficult to find studies 

that look at similar scopes, in the literature. Most of these studies focus on whole buildings 

or constituent materials, therefore the comparison of results appears to be unfeasible. A 

detailed discussion of related case work is described in the supporting information S2 on the 

Web, Section S9. 

<heading level 1>Results 

The first goal of this work is to characterize the overall performance of this under-

specification structure for building materials and assemblies. Before reporting those results 

we first show two detailed case analyses – the performance of the material rock wool and 

the assembly of a wall created using an ICF wall. These analyses provide a clearer picture of 

how the data structure would impact analyses with various levels of available information. 

<heading level 2>Case Analyses 

<heading level 3>Materials 

We use the rock wool insulation (Table 1) as a demonstration case for the materials 

datasets, to show result distributions at different levels of specificity. Figure 2 shows 

median, interquartile range, 5th and 95th percentiles of the EIs for the specific dataset (ML5) 

and for the corresponding hierarchical categories of which it is a member up through the 

most general – Thermal and Moisture Protection (ML1).  
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These plots depict the trend of generally decreasing uncertainty in results from ML1 

to ML5 that is desirable within a well formed data structure. For this particular data, the 

dispersion of results drops for all four EIs when measured by either MAD-COV or CV with 

only one exception; the CVGW grows from ML1 (145%) to ML3 (161%). This occurs because 

the ML3 category of which rock wool is a member (i.e., Thermal Insulation) contains both 

the highest (extruded polystyrene) and lowest (renewables-based insulation) within the 

ML1, while some of the central values within that ML1 are assigned to other ML3’s. More 

details on this are provided in the supporting information S2 on the Web, section S7. EP 

results from ML4 and ML5 showed distributions at the extremes of the distributions 

associated with ML1 and ML3. This impact category had the highest variation of impacts 

already at the material database level, which was then analyzed in detail (see supporting 

information S2 on the Web, section S6). The behavior of the ML4 (Insulation blanket) and 

ML5 (rock wool) occurs because the values within category Insulation blanket are 

distributed across two uneven modes. The largest mode contains a number of low impact 

alternatives that pulls the median and interquartile range to lower values. The impact of the 

rock wool material, however, is positioned within the high impact mode. In fact, rock wool 

has the second highest mean EP impact among the insulation blanket materials. While such 

a distribution of impacts could always occur, this particular instance highlights an issue that 

needs to be considered in future taxonomy development. Namely, sometimes large 

differences in average impacts across databases. The two modes within the insulation 

blanket category are notable in part because each mode is dominated by materials from 
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distinct databases. Future research should explore the implications of either limiting the 

application of this method to a single database or otherwise adjusting databases to make 

their results more comparable.     

 

 

Figure 2. Probabilistic distributions of impact metrics (AP, EP, GW, SM) for the rock 
wool dataset, at ML1-ML5. ML1 = thermal and moisture protection; ML3 = thermal 
insulation; ML4 = blanket insulation; ML5 = rock wool packed, at plant. 

Note: AP = acidification; EP = eutrophication; GW = global warming; SM = smog 
creation; ML = material level; CV = coefficient of variation; MAD-COV = median absolute 
deviation coefficient of variation. 

<heading level 3>Assemblies  

We use the ICF wall described in Table 2 as a demonstration case for the assemblies 

datasets. Figure 3 shows the median, interquartile range, 5th and 95th percentiles of the four 

EIs, progressing from a generic (AL1) exterior wall and finishing with the specific (AL5) ICF 

wall.   
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Figure 3. Probabilistic distributions of impact metrics (AP, EP, GW, SM) for an ICF 
wall (BOM in Table 2). AL1 = exterior walls; AL2 = ICF walls; AL3 = ICF wall (BOM as in Table 
2, materials specification at ML3); AL4 = ICF wall (BOM as in Table 2, materials specification 
at ML4); AL5 = ICF wall (BOM as in Table 2, materials specification at ML5) 

Note: AP = acidification; EP = eutrophication; GW = global warming; SM = smog 
creation; AL = assembly level; CV = coefficient of variation; MAD-COV = median absolute 
deviation coefficient of variation. 
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Figure 3 shows MAD-COV and CV EI AL1-AL5 results for four EIs. Boxplots also 

demonstrate the reduced, but still present, uncertainty at AL5. Concerning GW at AL5, it is 

possible to observe a median impact of 48.2 kg CO2 eq/m2 and a CVGW,AL5 of 14%. Using the 

under-specified categories described in Table 2, AL4 and AL3 results are characterized by a 

similar median GW (respectively 45.2 and 52.1 kg CO2 eq/m2) but a wider distribution, with 

CVGW,AL4 of 29% and CVGW,AL3 of 37%. AL2 and AL1 boxplots appear even larger because of 

the variation of different assemblies within the same category (12 ICF walls in AL2 and 52 

exterior walls in AL1).  

MAD-COV values with the highest levels of specificity (MAD-COV EI,AL5) range from 

7% to 9%, whereas they range from 38% to 49% for the most generic information (MAD-

COV EI,AL1) and from 20% to 32% for an average level of detail (MAD-COV EI,AL3). EP showed 

the greatest dispersion of results. The same trend can be seen in the CV values, which 

decrease from AL1 (75-124%) to AL5 (11-14%).    

When this approach is put into practice, the user would be able to quantify the 

uncertainty at each level of detail, from AL1 to AL5. While at AL5 a full fledged LCA is 

required, this is not the case for previous levels. At AL3 and AL4 less specificity is required 

for the different materials used for the building assembly (it can be possible to define a 

generic insulation board, for example). The burden of collecting data is drastically reduced 

when AL2 is considered (only the definition of the type of wall is needed). At AL1, in 

principle, the only piece of information required is the total area of the building assembly, 

and without any further specification, a range of environmental impacts is available. 
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<heading level 2>Material Categories 

To understand the performance of the proposed data structure we explore several 

metrics of categorization performance and compare them to a previously published data 

structure. Figure 4 plots average MAD-COV GW ML1-ML5 for each level of specificity when the 

data is organized by the ML1 levels (TSS and average MAD-COV plots for this and for the 

other impact categories are provided in the supporting information S2 on the Web, section 

S3). This and the corresponding plots in the supporting information S2 on the Web depict 

the trend of decreasing uncertainty in results from ML1 to ML5 that is desirable within an 

effective data structure. The average MAD-COV GW,ML1 ranges from 51% for the Openings 

category to 134% for Basic materials. Also, this dispersion decreases when assessed by all 

three metrics for every increase in specificity across every category. This trend continues 

across the other EIs as well. For this particular data, the dispersion of results, as measured 

by TSS, drops for all eight categories and all four impact assessment metrics. When 

measured by either average MAD-COV or average CV, dispersion also decreases with only 

four exceptions; the average CV SM in the metals category grows slightly from CV SM,ML3 

(46%) to CV SM,ML4 (49%) and the average MAD-COV EP grows for three categories (Concrete, 

Metals and Openings) in the transition from ML3 to ML4 (note: Monte Carlo sampling 

inherently generates some amount of error in estimating any parameter. To account for 

this, in this analysis we consider values equivalent if they are within 0.5% to account for 

error in estimation attributable to Monte Carlo sampling). 
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Considering each individual subgrouping of data, in 80% to 88% of cases, the ML3 

category has an equal or lower MAD-COV than the corresponding ML1, and in 83% to 90% 

of cases MAD-COV EI,ML4 is lower than the corresponding ML3. On average, the MAD-COV 

drops by around 33% (CV by approximately 40%) with each additional level of specificity 

across the four metrics. 

 

 

Figure 4. Average median absolute deviation coefficient of variation (MAD-COV) 

values for global warming (GW) for all building material categories (from material level ML1 

to material level ML5) 

 

To provide some benchmark of these results, the authors analyzed the product 

dataset (labeled P11) originally assembled by Patanavanich (2011) that assessed CED for a 
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broad set of materials. In Olivetti et al. (2013), the P11 dataset proved sufficiently effective 

to identify the key drivers (probabilistic triage) of impact across seven case studies, even at 

the ML1 level of specificity. For P11, the MAD-COV ranged from 29% to 148% and average 

CV ranged from 34% to 282%. The span of dispersion within the data structure explored 

here is within that for P11 (it is worth noting that this is true even considering that P11, 

when compared to this study, was developed assuming a lower level of uncertainty for the 

database entry level (ML5)). This should imply that for similarly structured cases the dataset 

presented here should be at least as effective as P11 for probabilistic triage.  

Like the dataset explored here, metrics of dispersion decline for P11 for most 

additions of specificity. When considering the transition of individual categories within P11, 

however, in only 63% of cases was the MAD-COV of ML2 equal or lower than that of the 

corresponding ML1 and in only 58% of cases was ML3 lower than the corresponding ML2. As 

such, the currently proposed materials structure seems to be more efficient with gains in 

specificity than P11. 

<heading level 2>Assembly Categories  

Performance metrics were also calculated for the assemblies data structure and 

Figure 5 depicts average MAD-COV GW AL1-AL5 for each level of specificity (complete set of 

plots in the supporting information S2 on the Web, section S4). As observed for materials, 

the assemblies data structure exhibits generally decreasing dispersion in results from AL1 to 

AL5. The average MAD-COV GW,AL1 ranges from 33% for the Windows and Interior Walls 

categories to 109% for Finishes, and average CV ranges from 31% to 285% for Windows and 



 

[running head: METHODS, TOOLS, AND SOFTWARE] 

[running foot: Tecchio et. al., Structured under-specification LCA data for buildings] 

 

This article is protected by copyright. All rights reserved. 

 

Finishes. These are well within the range of P11 suggesting that the assemblies data 

structure should be effective at probabilistic triage even at the AL1 level. 

When measured according to average measures of error, the assemblies data 

structure also performs well. In terms of average CV, all additions of specificity lead to 

improvements in normalized error except for four including the transition from AL1 to AL2 

for Exterior Walls (75% to 81%). Using the measure of MAD-COV, average error declines for 

all additions of specificity except for 10 transitions (seven in the transition from AL3 to AL4) 

with an average drop of nearly 25% for each additional level of specificity. Considering each 

individual category, in 65% to 88% of cases, the AL2 category has an equal or lower MAD-

COV than the corresponding AL1 and in 82% to 97%of cases AL3 MAD-COV is lower than the 

corresponding AL2. The most populated category is Roofs and ceilings, and gets the most 

benefit in terms of dispersion reduction when moving from AL2 to AL3 (MAD-COV from 92% 

to 53%); this drop is mainly due to the classification used at AL2, which considered only two 

subcategories.  

Given these measures, it would appear that the assemblies data structure should be 

at least as efficient as P11 with gains in specificity. Furthermore, it appears that most of the 

challenges appear in the transition from AL3 to AL4 and with the EP metric.  
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Figure 5. Average median absolute deviation coefficient of variation (MAD-COV) 

values for global warming (GW) for all building assembly categories (from assembly level 

AL1 to assembly level AL5) 

<heading level 2>Comparisons  

We further explore the utility of the data structure by calculating CIs (formulas (4) 

and (5)) for the ICF wall described in Table 2 (design A) in reference to the other results of 

exterior walls analyzed in this study, for 51 different designs B, and therefore a total of 51 

comparisons. Each exterior wall was assigned with a code, from 1 to 52. Codes and 

specifications of the 52 exterior walls are detailed in the supporting information S2 on the 

Web, Table S1-2. It is worth noting that this is a demanding test of data structure 

performance. The authors do not make a claim that underspecified data is sufficient to 

reach most LCA conclusions. The role of the underspecified data is to identify the most likely 
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large contributors for further, targeted specification. Furthermore, in the context of a whole 

building LCA the energy performance of alternatives would also contribute to their 

differences. Nonetheless, this provides an interesting test of performance. 

Figure 6 provides the results of these comparisons performed at different levels of 

specificity (AL3: black dots & AL5: green dashes, AL4 results are described in the supporting 

information S1 on the Web). Results show that the higher the specificity level (AL5), the 

better the resolution of results: a β value close to 50% implies a situation in which it is not 

possible to determine the design alternative with the lower environmental impact, while β 

values approaching 100% or 0% are clearly identifying the lower impact designs 

(respectively design A or design B). Thus, in order to verify the resolution of results at 

different levels, probabilities can be divided in two groups: 1) β > βcrit or β < (1 ─ βcrit) – green 

background color on the plot, and 2) (1 ─ βcrit) ≤ β ≤ βcrit . For this analysis, βcrit was assumed 

equal to 90%. The first group contains well-differentiated situations (resolvable), while the 

second group contains ambiguous results (unresolved). 

For these designs and this critical threshold, it is notable that 18 (35%) of the 51 

comparisons remain unresolved at AL5. That means that the impacts of the designs are 

similar enough that the level of uncertainty present in the LCI database is sufficient to 

prevent a statistically defensible conclusion. Of these 33 resolvable comparisons, at AL3 it is 

possible to identify 16 resolvable comparisons (50%). This grows to 21 (65%) at AL4. The 

results highlight that the method as a whole can be quite efficient. With very low resolution 

information (AL3) it is possible to resolve half of the resolvable (33) comparisons. With a 
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little more information (AL4), nearly two-thirds are resolvable. As this is a statistically based 

assessment, we would assume some fraction of false conclusions. In fact for these threshold 

values, up to 10% of outcomes represent an opposite conclusion. For these cases and this 

threshold, there are 4 cases (exterior walls 48, 49, 50, and 51) for which the AL3 suggests 

that the cases are resolvable, while the AL5 result finds them unresolved. There is also one 

case (exterior wall 52), that is nearly resolvable as A preferred at AL3, but then shifts to B 

preferred for AL5. All of these occur because at least part of the assembly is made of a 

material at the extreme of its class’s impact distribution.  

As noted earlier, these results alone cannot diagnose whether the data structure is 

sufficient for a specific case, but they provide a benchmark against which future data 

structures or modifications to this one can be compared. The full set of results is available in 

supporting information S2 on the Web, Section S8. 
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Figure 6. Probability β that design A has lower environmental impact than design B, 

evaluated at AL3 and AL5. The EI considered for this evaluation was GW. AL1 and AL2 were 

not considered as representative of groups of assemblies. Full set of results is available in 

supporting information S2 on the Web, Section S8. 

Note: CI = comparison indicator, AL = assembly level 
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<heading level 1>Discussion 

In this document we have proposed an approach that can be used to implement 

structured under-specification for building materials and assemblies. Altogether the data 

structure is a hierarchical classification that comprises 530 materials, 8 categories and 4 

specificity levels (ML1-5, ML2 has been excluded), and 297 building assemblies, 8 categories 

and 5 specificity levels (AL1-5). This set should be sufficiently comprehensive to characterize 

the structural, envelope, and finishing materials for most residential construction in the 

USA. The hierarchical nature of the data structure means that individuals can get estimates 

of impact for any level of knowledge about the materials or assemblies. 

Additionally, we have proposed some initial metrics by which such data structures 

can be evaluated. Specifically, we have examined overall TSS, progress of average dispersion 

(average CV, average MAD-COV), and the frequency of reduced dispersion with additional 

classification information. These metrics were applied to the data structures described here, 

as well as in a novel analysis of the only previously characterized under-specification data 

structure originally assembled by Patanavanich (2011) referred to here as P11, as in Olivetti 

et al. (2013). The results presented indicate that the materials and assemblies data structure 

should be at least as effective at probabilistic triage as the under-specification data 

structure presented by P11 for general materials. Furthermore, it would appear that the 

materials data structure described here gains resolution much more rapidly than P11. 

Finally, through a case analysis of 52 wall assemblies, we have demonstrated that a 

significant number of comparisons can be statistically resolvable even at low levels of 
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fidelity, and therefore that structured under-specification has real potential to streamline 

building-related LCA.  

These results suggest that the data structures presented here, which are based on a 

widely used standard within the construction industry, could be used to produce 

quantitative environmental results, including uncertainty, using low-fidelity information 

about building materials and assemblies. The method is the foundation of a streamlined LCA 

approach that will enable building LCAs to be conducted even when few details about the 

design have been decided.  

There are ample opportunities to improve this approach in future work. One area is 

the use of different and more efficient ways to structure the taxonomy for materials and for 

assemblies (e.g., using cost or material properties). Figure 5 shows how data dispersion at 

AL1 and AL2 is wider for some assembly categories, indicating that a more structured 

approach could possibly be used to improve taxonomies. In this work, we made use of LCI 

data from several sources. Differences in the data collection strategies across those sources 

is a key source of observed impact variation in this present work. Further research should be 

done to evaluate the performance of this method when LCI datasets are gathered from only 

one database. This would bring benefits from data harmonization, but has the downside of 

limiting the number of options available to the user.   

Future work should explore the possibility of using an alternative classification at AL2 

for the roof and ceiling category, which should then reduce dispersion of results. Lee (2013) 
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highlighted that poor data structures reduced accuracy in streamlining, while Reis (2013) 

found that data mining techniques support structured under-specification, providing 

guidance for developing taxonomies. 

Another area that will be included in future work is the use of probabilistic triage in 

combination with structured under-specification. This approach determines the specific 

parameters of influence for a system and illuminates which data should be specified further 

in an LCA model. It involves the identification of the set of interest of the BOM that should 

be specified at ML5 in order to obtain reliable results with less effort (Olivetti et al. 2013).   

The final area worthy of future work is testing the approach with building 

professionals to determine how best this approach can be used to support design decisions 

early in the design process.  
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Supporting Information 

Additional supporting information may be found in the online version of this article: 

Supporting Information S1: This supporting information contains two main tables. Table S1-1 

contains the materials database, classified into ML1, ML3, ML4, ML5 and CSI categories. The 

source of the dataset is included. Table S1-2 contains the list of assemblies, classified into AL1 and 

AL2 categories, with a description of the building assembly. Assemblies are hyperlinked to specific 

spreadsheets (1-297) for the definition of the bill of materials at ML3, ML4 and ML5. 

Supporting Information S2: This supporting information includes sections: Section S1: materials. 

ML-level result distribution calculation, Section S2: assemblies. AL-level data creation, Section S3: 

TSS and average MAD-COV for the materials data structure, Section S4: TSS and average MAD-

COV for the assemblies data structure, Section S4: TSS and average MAD-COV for the 

assemblies data structure, Section S5: TSS and average MAD-COV for the assemblies data 

structure, Section S6: EP trends, Section S7: Exploring the Behavior of GW in the category 

Thermal and Moisture Protection, Section S8: Comparison indicators, Section S9: Comparison 

against available literature. 
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