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Abstract

The nucleus contains diverse phase-separated condensates that compartmentalize and concentrate 

biomolecules with distinct physicochemical properties. Here we consider whether condensates 

concentrate small molecule cancer therapeutics such that their pharmacodynamic properties are 

altered. We found that antineoplastic drugs become concentrated in specific protein condensates in 

vitro and that this occurs through physicochemical properties independent of the drug target. This 

behavior was also observed in tumor cells, where drug partitioning influenced drug activity. 

Altering the properties of the condensate was found to impact the concentration and activity of 

drugs. These results suggest that selective partitioning and concentration of small molecules within 

condensates contributes to drug pharmacodynamics and that further understanding of this 

phenomenon may facilitate advances in disease therapy.

One Sentence Summary:

Phase-separated condensates concentrate small molecule drugs impacting their on-target activity 

and pharmacodynamics.

The 5–10 billion protein molecules of cells are compartmentalized into both membrane-and 

non-membrane-bound organelles (1–3). Many non-membrane-bound organelles are phase-

separated biomolecular condensates with distinct physicochemical properties that can absorb 

and concentrate specific proteins and nucleic acids (4–17). We reasoned that selective 

condensate partitioning might also occur with small molecule drugs whose targets occur 

within condensates (Figure 1A), and that the therapeutic index and efficacy of such 

compounds might therefore relate to their ability to partition into condensates that harbor 

their target. To test this idea, we focused our study on a collection of nuclear condensates 

previously reported in cell lines, demonstrated that they all occur in normal human cells and 
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in tumor cells, and then developed in vitro condensate droplet assays with key components 

of each of the nuclear condensates to enable testing of small molecules.

Nuclear condensates have been described in diverse cultured cell lines and contain one or 

more proteins that can serve both as markers of the condensate and as a scaffold for 

condensate formation in droplet assays in vitro (10–12, 18–32). Specifically, transcriptional 

condensates are marked by the condensate forming proteins MED1 and BRD4 (10, 12, 19), 

splicing speckles by SRSF2 (11, 20), heterochromatin by HP1α (21, 22) and nucleoli by 

FIB1 and NPM1 (23–25) (Figure S1A). To determine whether such condensates can also be 

observed in the cells of healthy and malignant human tissue, we obtained biopsies of breast 

ductal epithelium, invasive ductal carcinoma, normal colon, and colon cancer (Figures S1B, 

S1C). Immunofluorescence revealed nuclear bodies containing these marker proteins in both 

normal and transformed tissue (Figures 1B, 1C). There was a broad distribution of nuclear 

body sizes and numbers, as expected for dynamic biomolecular condensates, and no 

significant differences were observed between benign and malignant tissue (Figures S2A–

C). However, tumor cells acquire large super-enhancers (SEs) at driver oncogenes (33) and 

these can form tumor-specific transcriptional condensates.

We developed an assay to model these nuclear condensates and study the behavior of small 

molecules within these droplets (Figure 1D). We produced and purified recombinant 

fluorescently-labeled versions of MED1, BRD4, SRSF2, HP1α, FIB1, and NPM1 (Figure 

S3), and confirmed the ability of these proteins to form droplets in an in vitro assay (Figures 

S4A, S4B). To investigate the partitioning behavior of small molecules, we added the dyes 

Fluorescein (332Da) and Hoechst (452Da), as well as fluorescently-labeled dextrans (4.4 

kilodaltons (kDa), to solutions containing each of the six protein condensates. The dyes and 

dextrans appeared to diffuse through all the condensates without substantial partitioning 

(Figures 1E, S5, S6A–D). Small molecule drugs are generally smaller than 1 kDa, so these 

results suggested that small molecules can freely diffuse through these nuclear condensates 

unless there are factors other than size that influence partitioning.

We next sought to determine whether diverse clinically important drugs with targets that 

reside in nuclear condensates also exhibit free diffusion across these condensates, or display 

a different behavior. Cisplatin and mitoxantrone, members of a class of antineoplastic 

compounds that modify DNA through platination or intercalation, can be modified to have 

fluorescent properties (cisplatin) (34) or are inherently fluorescent (mitoxantrone). When 

added to droplet formation buffer with purified MED1, BRD4, SRSF2, HP1α, FIB1, or 

NPM1, cisplatin was found to be selectively concentrated in MED1 droplets (Figures 2A, 

S7A), with a partition coefficient of up to 600 (Figures S8A–C). Fluorescent modification of 

cisplatin did not appear to contribute to this behavior in vitro, as the modified drug could be 

chased out of the condensate with unmodified cisplatin, and an isomer of cisplatin did not 

exhibit the same behavior (Figures S7B–D). Mitoxantrone was also concentrated in MED1 

condensates, as well as in FIB1 and NPM1 condensates (Figures 2B, S7A, S8A–D). 

Consistent with these results, mitoxantrone is known to concentrate in the nucleolus where 

FIB1 and NPM1 reside (35, 36). These results show that in contrast to the dyes tested above, 

small molecule drugs may concentrate in certain condensates, even in the absence of the 

drug target.
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We selected for further study antineoplastic drugs that target transcriptional regulators 

expected to be contained within transcriptional condensates in cells. These targets include: 

a) the estrogen receptor (ER), a transcription factor and nuclear hormone receptor, b) CDK7, 

a cyclin-dependent kinase that functions in transcription initiation and cell cycle control, and 

c) BRD4, a bromodomain protein and coactivator involved in oncogene regulation (Figures 

S9A, S9B). To monitor drug behavior with a confocal fluorescent microscope, we used a 

fluorescent tamoxifen analog (FLTX1), which targets ER, and modified fluorescent THZ1 

and JQ1, which target CDK7 and BRD4, respectively (37, 38). FLTX1 and THZ1 

concentrated preferentially in MED1 droplets (Figures 2C, 2D, S7A), and this behavior was 

not attributable to the fluorescent moiety (Figures S7B, S7D). JQ1 concentration presented a 

different pattern, being concentrated in MED1, BRD4, and NPM1 droplets (Figures 2E, 

S7A, S7B). Reinforcing these results, we found that the small molecules that concentrate in 

MED1 condensates were also concentrated in condensates formed from purified whole 

Mediator complexes (Figure S10A) and in MED1 condensates formed in an alternative 

crowding agent (Figure S11A). The targets of these three compounds (ERα, CDK7, and the 

bromodomains of BRD4) are not present in these in vitro condensates, but are present in the 

SEs that form condensates with transcription factors and Mediator in vivo (10, 12, 39) 

(Figures S9A, S9B), suggesting that the ability of some small molecules to concentrate 

preferentially in the same condensate as their protein target may contribute to the 

pharmacological properties of these drugs.

To gain additional insight into the nature of interactions governing small molecule 

enrichment in condensates, we focused on the MED1-IDR condensate. Fluorescence 

recovery after photobleaching (FRAP) experiments showed that cisplatin molecules are 

highly mobile in this condensate (Figures S12A, S12B), suggesting that the condensate 

produces a physiochemical environment that facilitates drug concentration in a state of high 

dynamic mobility. To gain insights into the chemical features of small molecules that may 

contribute to selective association with MED1 in condensates, we used a fluorescent boron-

dipyrromethene (BODIPY) library of 81 compounds with various combinations of chemical 

side groups (Figure S13A). Molecules that contained aromatic rings were found to 

preferentially concentrate in MED1 condensates (Figures S13A–D, S14A). These data 

suggest that pi-pi or pi-cation interactions are among the physicochemical properties that 

favor small molecule partitioning into MED1 condensates. Aromatic amino acids participate 

in pi-system interactions, and are overrepresented in the MED1 IDR relative to the other 

condensate forming proteins studied (Figure S3B). We generated a MED1 aromatic mutant 

protein (all 30 aromatic amino acids mutated to alanine) which retained the ability to form 

droplets in vitro, indicating that the aromatic amino acids are not required for droplet 

formation (Figure S14B, S14C), but small molecule probes containing aromatic rings and 

the polar molecule cisplatin no longer partitioned into condensates formed by the MED1 

aromatic mutant protein (Figures S14D–F). These results suggest that the aromatic residues 

of MED1 condensates contribute to the physicochemical properties that selectively 

concentrate these small molecules.

We anticipated that the ability of small molecules to concentrate in specific condensates 

would influence target engagement and thus drug pharmacodynamics. To investigate this, we 

took advantage of the ability of condensates to incorporate DNA (Figure 3A, S15A), and 
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measured the relative efficiency of DNA platination by cisplatin in MED1 condensates, 

where cisplatin is concentrated, versus HP1α condensates, where cisplatin freely diffuses 

(Figure 2A). DNA platination, visualized by size-shift on a bioanalyzer, was more prevalent 

in MED1 condensates than in HP1α condensates (Figure 3B), consistent with the 

expectation that elevated concentrations of cisplatin in the MED1 condensates yield 

enhanced target engagement. If cisplatin becomes concentrated in Mediator condensates in 

cells, we would expect that DNA colocalized within Mediator condensates would be 

preferentially platinated. To test this idea, we performed co-immunofluorescence in 

cisplatin-treated HCT116 colon cancer cells using an antibody that specifically recognizes 

platinated DNA (Figure S16A) (40) together with antibodies specific for MED1, HP1α, or 

FIB1. Consistent with cisplatin’s preference for MED1 condensates in vitro, we found that 

platinated DNA frequently colocalized with MED1 condensates, but not with HP1α or FIB1 

condensates (Figure 3C). To determine whether the ability of cisplatin to engage DNA is 

dependent on the presence of a MED1 condensate we treated cells with JQ1, which caused a 

loss of MED1 condensates (Figure S16B), and observed a concomitant reduction in 

platinated DNA at the MYC oncogene (Figures S16C, S16D). These results are consistent 

with the idea that concentration of small molecules in specific condensates can influence the 

efficiency of target engagement.

In cells, the preferential modification of DNA in MED1-containing condensates might be 

expected to selectively disrupt these condensates with prolonged treatment. To test this, 

HCT116 colon cancer cells were engineered to express GFP-tagged marker proteins for each 

of the 6 nuclear condensates (Figures S17A–G, S18A, S18B). When exposed to cisplatin, a 

selective and progressive reduction in MED1 condensates was observed (Figures 3D, S19A, 

S19B, S20A). Consistent with this, cisplatin treatment led to a preferential loss of MED1 

ChIP-seq signal at SEs (Figures 3E S21A). Furthermore, high throughput sequencing data 

from platinated-DNA pull-down (41) revealed that cisplatin-modified DNA preferentially 

occurs at SEs, where MED1 is concentrated (42) (Figure 3F). These results are consistent 

with reports that cisplatin preferentially modifies transcribed genes (41, 43), and argue that 

this effect is due to preferential condensate partitioning. Taken together, these results suggest 

a model where cisplatin preferentially modifies SE DNA, which in turn leads to dissolution 

of these condensates. Previous studies have shown that diverse tumor cells become highly 

dependent on SE driven oncogene expression (44–48), which might explain why platinum 

drugs, which are capable of general DNA modification, are effective therapeutics in diverse 

cancers (49).

We explored the behavior of another clinically important antineoplastic drug, tamoxifen, to 

assess whether drug response and resistance are associated with partitioning in condensates 

(Figure 4A). ERα incorporates into MED1 condensates in an estrogen-dependent manner in 

vitro (12); droplet assays confirmed this and revealed that the addition of tamoxifen leads to 

eviction of ERα from the MED1 condensates (Figure 4B). We further investigated the 

effects of estrogen and tamoxifen on MED1 condensates in breast cancer cells, focusing on 

the MYC oncogene due to its prominent oncogenic role and responsiveness to estrogen (50). 

MED1 condensates were observed on the MYC oncogene in the ER+ breast cancer cell line 

MCF7 (S9A, S22A–D). DNA FISH with MED1 IF revealed that estrogen enhances 

formation of MED1 condensates at the MYC oncogene and tamoxifen treatment reduces 
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these (Figures S23A, S23B). Artificial MED1 condensates without ER concentrated FLTX1 

at the site of the condensate (Figure S24A), indicating that ER is not required for the 

partitioning of FLTX1 into MED1 condensates in cells. These results are consistent with the 

model that ERα interacts with MED1 condensates in an estrogen-dependent, tamoxifen-

sensitive manner to drive oncogene expression in breast cancer cells.

The mechanisms that produce drug resistance can provide clues to drug activity in the 

clinical setting. Endocrine therapy and tamoxifen resistance is an enduring clinical challenge 

and is associated with multiple mechanisms including ERα mutation and MED1 

overexpression (Figure 4A, S25) (51–55). To investigate whether ERα mutations alter ERα 
behavior in condensates, we produced 4 patient-derived ERα mutant proteins and tested 

their partitioning in the presence of tamoxifen. In contrast to WT ERα, condensates 

composed of patient-derived ERα mutants and MED1 were not disrupted upon tamoxifen 

treatment (Figures 4B, S26A, S26B). The ERα point mutations reduce the affinity for 

tamoxifen approximately 10-fold (52), indicating that the drug concentration in the droplet is 

inadequate to evict these ER mutant proteins when this affinity is reduced.

MED1 overexpression is associated with tamoxifen resistance and poor prognosis in breast 

cancer (51), but it is not clear why overexpression of one subunit of the Mediator complex 

produces resistance. We considered the possibility that overexpressed MED1 is incorporated 

into transcriptional condensates, which contain clusters of Mediator molecules (39), thereby 

expanding their volumes and diluting the available tamoxifen (Figure S27A). We found that 

the tamoxifen-resistant breast cancer cell line TAMR7 (56), which was derived from the 

tamoxifen-sensitive cell line MCF7, produces 4-fold elevated levels of MED1 protein 

(Figure S27B). The volume of MED1-containing condensates is 2-fold larger in these cells 

(Figures 4C, S27C). When modeled in an in vitro droplet assay, we found that a 4-fold 

increase in MED1 levels led to a commensurate increase in droplet size (Figures S28A, 

S28B). Furthermore, we found that 100μM tamoxifen prevented ERα incorporation into 

MED1 condensates (Figures 4B, 4D), but was much less effective in preventing ERα 
incorporation into the larger MED1 condensates produced with higher MED1 levels (Figure 

4D). To confirm that the levels of tamoxifen in the larger droplets are more dilute, we 

measured the enrichment of the fluorescent tamoxifen analog FLTX1 in MED1 droplets, and 

found that the larger condensates have lower concentrations of the drug (Figure 4E). These 

results were mirrored in cells, where a collection of tethered ERα molecules form a MED1 

condensate that is eliminated by tamoxifen, but when MED1 is overexpressed tamoxifen is 

unable to dissociate the ERα-MED1 condensate (Figure S29A). Similarly, knockdown of 

MED1 in tamoxifen resistant breast cancer cells sensitizes cells to tamoxifen (51, 55). These 

results support a model of tamoxifen resistance where MED1 overexpression causes the 

formation of larger transcriptional condensates, in which tamoxifen is diluted and thereby 

less effective in dissociating ER from the condensate (Figure 4F).

Our results show that drugs partition selectively into condensates, that this can occur through 

physicochemical properties that exist independent of their molecular targets, and that cells 

can develop resistance to drugs through condensate altering mechanisms. This may explain 

the surprising observation that inhibition of global gene regulators such as BRD4 or CDK7 

can have selective effects on oncogenes that have acquired large SEs (46); selective 
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partitioning of inhibitors like JQ1 and THZ1 into SE condensates will preferentially disrupt 

transcription at those loci. These results also have implications for future development of 

efficacious disease therapeutics; effective target-engagement will depend on measurable 

factors such as drug partitioning in condensates (Figures S30A–D). Condensate assays of the 

type described here may thus help optimize condensate partitioning, target engagement, and 

the therapeutic index of small molecule drugs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Nuclear condensates in human tissue and in vitro. (A) Model illustrating potential behaviors 

of small molecules in nuclear condensates. (B–C) Immunofluorescence of scaffold proteins 

of various nuclear condensates in tissue biopsies from benign and malignant human breast 

(B), and benign and malignant colon tissue (C), in nuclei stained with Hoechst, imaged at 

100× on a fluorescent confocal microscope (see also Figures S1, S2). (D) Schematic of in 

vitro droplet formation assay to measure small molecule partitioning into nuclear 

condensates. (E) In vitro droplet assay showing the behavior of fluorescein dye in the 

presence of six protein condensates formed in 125mM NaCl and 10% PEG, with 10μM 

protein and 5μM fluorescein, imaged at 150× on a confocal fluorescent microscope (see also 
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Figures S3–S6). Quantification of enrichment of the drug is shown to the right, error bars 

represent SEM.
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Fig. 2. 
The partitioning behavior of small molecule drugs in nuclear condensates in a droplet assay. 

Six nuclear condensates formed in 125mM NaCl and 10% PEG, with 10μM protein treated 

with either (A) 5μM Cisplatin-TMR, (B) 50 μM Mitoxantrone, (C) 100μM FLTX1, (D) 5μM 

THZ1-TMR, or (D) 1μM JQ1-ROX imaged at 150× on a confocal fluorescent microscope 

(see also Figures S7–S11). Quantification of enrichment of the drug within droplets is shown 

to the right of each panel, error bars represent SEM (see also S12–S14).

Klein et al. Page 14

Science. Author manuscript; available in PMC 2020 December 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Small molecule concentration within condensates influences drug activity. (A) In vitro 

droplet assay of MED1 and HP1α condensates formed in 125mM NaCl and 10% PEG, 5nM 

of 450bp DNA, 10μM MED1, and 5μM cisplatin-TR, imaged at 150× on a confocal 

fluorescent microscope (see also Figure S15). (B) Bioanalyzer tracings of DNA contained 

within either MED1 or HP1α droplets exposed to the indicated concentration of cisplatin. 

(C) (Top) Schematic of an assay to determine the location of platinated DNA relative to 

various nuclear condensates. (Bottom) Co-immunofluorescence of platinated DNA and the 

indicated protein in HCT116 cells treated with 50μM cisplatin for 6 hours. Imaged at 100× 

on a confocal fluorescent microscope. Quantification of overlap shown to the right. (D) 

(Top) Schematic of a live cell condensate dissolution assay. (Bottom) HCT116 cells bearing 
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endogenously mEGFP-tagged MED1, HP1α, or FIB1 treated with 50μM cisplatin for 12 

hours. Quantification of MED1, HP1α, or FIB1 condensate score is shown to the right. (E) 

MED1 ChIP-seq in HCT116 cells treated with vehicle or 50μM cisplatin for 6 hours. (Left) 

Plotted are mean read density of MED1 at super-enhancers and typical-enhancers (error bars 

show min and max) and (Right) gene tracks of MED1 ChIP-Seq at the MYC super-enhancer 

and AQPEP typical-enhancer. (F) Metaplot of cisplatin-DNA-Seq in cisplatin treated Hela 

cells comparing super-enhancers and typical enhancers (41) (see also Figures S16–S21).
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Fig. 4. 
Tamoxifen action and resistance in MED1 condensates. (A) Schematic showing tamoxifen 

resistance by ER mutation and MED1 overexpression in breast cancer. (B) In vitro droplets 

assay of the indicated form of GFP-tagged ER in the presence of estrogen, +/− 100μM 

tamoxifen. Droplets are formed in 125mM NaCl and 10% PEG with 10μM each protein and 

100μM estrogen. (C) (Left) Immunofluorescence of MED1 in tamoxifen sensitive (MCF7) 

and resistant (TAMR7) ER+ breast cancer cell lines imaged at 100× on a confocal 

fluorescent microscope. (Top right) Quantification of MED1 condensate size in breast 

cancer cells. (Bottom right) Relative quantities of MED1 in the indicated breast cancer cell 

line by western blot, error bars show SEM. (D) In vitro droplets assays of ER in the presence 

of 100μM estrogen, +/− 100μM tamoxifen with either 5μM (Low) or 20μM (High) MED1. 

Droplets are formed with 5μM ER in 125mM NaCl and 10% PEG, imaged at 150× on a 

confocal fluorescent microscope, error bars are SEM. (E) In vitro droplet assay with either 
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5μM (Low) or 20μM (High) MED1 with 100μM FLTX1 in 125mM NaCl and 10% PEG, 

error bars are SD. (F) Models for tamoxifen resistance due to altered drug affinity (via ER 

mutation) or concentration (via MED1 overexpression) (see also Figures S22–S30).
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