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One Sentence Summary: Phase-separated condensates compartmentalize the transcription apparatus at key cell identity genes.
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Super-enhancers (SEs) are clusters of enhancers that cooperatively assemble a high density of 

transcriptional apparatus to drive robust expression of genes with prominent roles in cell identity. 

Here, we demonstrate that the SE-enriched transcriptional coactivators BRD4 and MED1 form 

nuclear puncta at SEs that exhibit properties of liquid-like condensates and are disrupted by 

chemicals that perturb condensates. The intrinsically disordered regions (IDRs) of BRD4 and 

MED1 can form phase-separated droplets and MED1-IDR droplets can compartmentalize and 

concentrate transcription apparatus from nuclear extracts. These results support the idea that 

coactivators form phase-separated condensates at SEs that compartmentalize and concentrate the 

transcription apparatus, suggest a role for coactivator IDRs in this process, and offer insights into 

mechanisms involved in control of key cell identity genes.

Phase separation of fluids is a physicochemical process by which molecules separate into a 

dense phase and a dilute phase. Phase-separated biomolecular condensates, which include 

the nucleolus, nuclear speckles, stress granules, and others, provide a mechanism to 

compartmentalize and concentrate biochemical reactions within cells (1–3). Biomolecular 

condensates produced by liquid-liquid phase separation allow rapid movement of 

components into and within the dense phase and exhibit properties of liquid droplets such as 

fusion and fission (4). Dynamic and cooperative multivalent interactions among molecules, 

such as those produced by certain intrinsically disordered regions of proteins, have been 

implicated in liquid-liquid phase separation (5–7).

Enhancers are gene regulatory elements bound by transcription factors and other 

components of the transcription apparatus that function to regulate expression of cell type-

specific genes (8–13). Super-enhancers (SEs), clusters of enhancers that are occupied by 

exceptionally high densities of transcriptional machinery, regulate genes with especially 

important roles in cell identity (14, 15). DNA interaction data show that enhancer elements 

in the clusters are in close spatial proximity with each other and the promoters of the genes 

they regulate (16–18), consistent with the notion of a dense assembly of transcriptional 

machinery at these sites. This high-density assembly at SEs has been shown to exhibit sharp 

transitions of formation and dissolution, forming as the consequence of a single nucleation 

event (19, 20) and collapsing when concentrated factors are depleted from chromatin (21–

25) or when nucleation sites are deleted (26–29). These properties of SEs led to the proposal 

that the high-density assembly of biomolecules at active SEs is due to phase separation of 

enriched factors at these genetic elements (30). Here, we provide experimental evidence that 

the transcriptional coactivators BRD4 and MED1 form condensates at SEs. This establishes 

a new framework to account for the diverse properties described for these regulatory 

elements and expands the biochemical processes regulated by phase separation to include 

cell identity gene control.

BRD4 and MED1 coactivators form nuclear puncta

The enhancer clusters comprising SEs are occupied by master transcription factors and 

unusually high densities of factors, including BRD4 and MED1, which are coactivators (31–

35) whose presence can be used to define SEs (14, 15, 21). We reasoned that if BRD4 and 

MED1, a subunit of the Mediator complex, are components of nuclear condensates, then 
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they might be visualized as discrete puncta in the nuclei of cells and the properties of these 

puncta could be investigated. Fixed cell immunofluorescence (IF) with antibodies against 

BRD4 and MED1 in murine embryonic stem cells (mESC) revealed nuclear puncta for both 

factors (Fig. 1A). To determine whether such puncta occur in live cells, mESCs were 

engineered using CRISPR/Cas9 to tag endogenous BRD4 and MED1 with mEGFP (Fig. 

S1). Live cell fluorescence microscopy of these engineered mESCs lines also revealed 

discrete nuclear puncta (Fig. 1B). Analysis of these images revealed that there were 1034 

± 130 (SEM) BRD4 and 983 ± 102 (SEM) MED1 puncta per nucleus (Table S1). These 

results demonstrate that BRD4 and MED1 are components of puncta within the nuclei of 

mESCs.

Super-enhancers are associated with coactivator puncta

Several lines of evidence suggest that SEs are likely to be associated with some of the BRD4 

and MED1 puncta in mESCs. ChIP-seq data for BRD4 and MED1 show that SEs are 

especially enriched in these coactivators (14, 15). DNA interaction data suggests that SE 

constituents occupied by BRD4 and MED1 are in close spatial proximity to one another 

(Fig. 1C, Fig. S2A). Co-occupancy of the genome by BRD4 and MED1 is most evident at 

SEs (Fig. S2B) (14, 15). To determine if SEs are associated with some of the BRD4 and 

MED1 puncta, we performed IF for BRD4 or MED1 together with DNA-FISH or nascent 

RNA-FISH for the genomic region containing the Nanog gene and its super-enhancers (Fig. 

1D–G). We found that BRD4 and MED1 puncta consistently overlapped the DNA-FISH foci 

(Fig. 1D) or RNA-FISH foci (Fig. 1F). An average image analysis (see methods for details) 

of BRD4 or MED1 IF signal centered at DNA-FISH foci (N=137 for BRD4 and N=125 for 

MED1) or RNA-FISH foci (N=121 for BRD4 and N=181 for MED1) revealed that, on 

average, BRD4 and MED1 fluorescence intensities are most enriched at the center of FISH 

foci (Fig. 1E, 1G); this trend was not observed for average images centered at randomly 

selected nuclear positions (Fig. 1E, 1G). Radial distribution functions of the averaged 

images for FISH and IF pairs show a significant correlation (Spearman correlation 

coefficients > 0.6, p-values < 1×10−16), with both BRD4 and MED1 having highest signal 

intensity at the center of the FISH focus, decaying with distance from this center (Fig. S3). 

The radial distributions of FISH and IF at randomly selected nuclear positions do not show a 

correlation (Spearman correlation coefficients < 0.2) (Fig. S3). Similar results were obtained 

when we performed IF for BRD4 or MED1 together with nascent RNA-FISH for the SE-

regulated genes Klf4, Mir290, and Trim28 (Fig. S3 and S4A–F). When a similar experiment 

was conducted for two genes expressed in mESCs but not associated with a SE (Fam168b 
and Zfp606), there was no evident overlap between FISH foci and BRD4 puncta (Fig. S4G). 

These results indicate that both BRD4 and MED1 puncta are present at SEs.

Coactivator puncta exhibit liquid-like rates of fluorescence recovery after 

photobleaching

We next sought to examine whether BRD4 and MED1 puncta exhibit features characteristic 

of liquid-like condensates. A hallmark of liquid-like condensates is internal dynamical 

reorganization and rapid exchange kinetics (1–3), which can be interrogated by measuring 

Sabari et al. Page 3

Science. Author manuscript; available in PMC 2018 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the rate of fluorescence recovery after photobleaching (FRAP). To study the dynamics of 

BRD4 and MED1 foci in live cells, we performed FRAP experiments on endogenously 

tagged mEGFP-BRD4 or mEGFP-MED1 cell lines. After photobleaching, mEGFP-BRD4 

and mEGFP-MED1 puncta recovered fluorescence on a time-scale of seconds (Fig. 2A–2D), 

with approximate apparent diffusion coefficients of 0.37 ± 0.13 μm2/s and 0.14 ± 0.04 

μm2/s, respectively. These values are similar to previously described components of liquid-

like condensates (36, 37). ATP has been implicated in promoting condensate fluidity by 

driving energy-dependent processes and/or through its intrinsic hydrotrope activity (38, 39). 

Depletion of cellular ATP by glucose deprivation and oligomycin treatment altered 

fluorescence recovery after photobleaching for both mEGFP-BRD4 and mEGFP-MED1 

foci, with the rate of recovery for MED1 reduced and the extent of recovery for BRD4 

diminished (Fig. 2E–2H). These results indicate that puncta containing BRD4 and MED1 

have liquid-like properties in cells, consistent with previously described phase-separated 

condensates.

Coactivator puncta and super-enhancer occupancy are sensitive to 

condensate perturbation

To further investigate the biophysical properties of BRD4 and MED1 puncta, we 

investigated their sensitivity to 1,6-hexanediol, a compound known to disrupt liquid-like 

condensates, putatively through the disruption of hydrophobic interactions (40). We found 

that treatment of mESCs expressing endogenously tagged mEGFP-BRD4 or mEGFP-MED1 

with 1,6-hexanediol caused a reduction in the number of BRD4 and MED1 puncta (Fig. 3A, 

B).

To determine the effect of 1,6-hexanediol on BRD4, MED1 and RNA polymerase II 

(RNAPII) occupancy at enhancers and genes, ChIP-seq was performed with antibodies 

against these proteins in untreated or 1,6-hexanediol-treated mESCs. The results showed that 

1,6-hexanediol treatment caused a reduction in all three proteins at enhancers, with the most 

profound effects occurring at super-enhancers (Fig. 3C, 3D, S5A). For example, at the Klf4 
super-enhancer, the levels of BRD4 were reduced by 44%, those of MED1 by 80% and those 

of RNA polymerase II by 56% upon 1,6-hexanediol treatment (Fig. 3C). Similar effects were 

observed genome-wide, where reductions in BRD4, MED1, and RNAPII were substantially 

larger at super-enhancers than typical enhancers (Fig. 3D) and the degree to which BRD4 

and MED1 were lost from SEs was positively correlated (Fig. S5B). These results are 

consistent with the notion that BRD4 and MED1 form condensates at super-enhancers that 

are sensitive to 1,6-hexanediol.

The level of RNAPII occupancy across gene bodies can be used as a measure of 

transcriptional output (41). The ChIP-seq data revealed that the reduction of BRD4 and 

MED1 occupancy at SEs was associated with a loss of RNAPII occupancy across SE-

associated gene bodies (Fig. 3C, E, and S5A). When genes were ranked by the extent to 

which RNAPII was lost upon 1,6-hexanediol treatment, SE-associated genes were highly 

enriched among those that lost the most RNAPII (Fig. 3F). These results are consistent with 
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the idea that BRD4 and MED1 condensates are associated with super-enhancers and the 

notion that loss of condensate integrity adversely affects transcription.

Intrinsically disordered regions of BRD4 and MED1 phase separate in vitro

BRD4 and MED1 contain large intrinsically disordered regions (IDRs) (Fig. 4A) and share 

features with the IDRs of several proteins known to facilitate condensate formation (2, 3), 

including high proline and glutamine content (BRD4), high serine content (MED1), and 

acidic and basic regions (BRD4 and MED1). The purified IDRs of several proteins involved 

in condensate formation form phase-separated droplets in vitro (36, 37, 42, 43), so we 

investigated whether the IDRs of BRD4 or MED1 form such droplets in vitro. Purified 

recombinant mEGFP-IDR fusion proteins (BRD4-IDR and MED1-IDR) (Fig. 4B) were 

added to buffers containing 10% PEG-8000 (see materials and methods), turning the 

solution opaque, while equivalent solutions with mEGFP alone remained clear (Fig. 4C). 

Fluorescence microscopy of the opaque MED1-IDR and BRD4-IDR solutions revealed 

GFP-positive, micron-sized spherical droplets freely moving in solution (Movies S1 and S2) 

and falling onto and wetting the surface of the glass coverslip, where the droplets remained 

stationary (Movie S3). As determined by aspect ratio analysis, the MED1-IDR and BRD4-

IDR droplets were highly spherical (Fig. S6A), a property expected for liquid-like droplets 

(1–3).

Phase-separated droplets typically scale in size according to the concentration of 

components in the system (44). We performed the droplet formation assay with varying 

concentrations of BRD4-IDR, MED1-IDR, and mEGFP ranging from 0.625μM to 20μM. 

BRD4-IDR and MED1-IDR formed droplets with concentration-dependent size 

distributions, whereas mEGFP remained diffuse in all conditions tested (Fig. 4D and S6B). 

Although these droplets were smaller at lower concentrations, we observed BRD4-IDR and 

MED1-IDR droplets at the lowest concentration tested (0.625μM) (Fig. S6C).

To investigate the biophysical properties of these droplets we tested their ability to form 

droplets under varying salt concentrations (to probe the contribution of electrostatic 

interactions) or upon 1,6-hexanediol (to probe the contribution of hydrophobic interactions). 

The size distributions or opacity of both BRD4-IDR and MED1-IDR droplets shifted toward 

smaller droplets with increasing NaCl concentration (from 50mM to 350mM) (Fig. 4E, 

S6D) or in 10% 1,6-hexanediol (S7A). These results demonstrate that a variety of molecular 

interactions contribute to BRD4-IDR and MED1-IDR droplet formation.

We next sought to test whether the droplets are irreversible aggregates or reversible phase-

separated condensates. To do this, BRD4-IDR and MED1-IDR were allowed to form 

droplets in an initial solution. The protein concentration was then diluted by half in 

equimolar salt or in a higher salt solution (Fig. 4F). The pre-formed droplets of both BRD4-

IDR and MED1-IDR were reduced in size and number with dilution and even further 

reduced with elevated salt concentration (Fig. 4F, Fig. S7B). These results show that the 

BRD4-IDR and MED1-IDR droplets form a distribution of sizes dependent on the 

conditions of the system and, once formed, respond to changes in the system, with rapid 
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adjustments in size. These features are characteristic of phase-separated condensates formed 

by networks of weak protein-protein interactions (1–3).

MED1-IDR participates in liquid-liquid phase separation in cells

To investigate whether the coactivator IDRs facilitate phase separation in cells, we used a 

previously developed assay to manipulate local protein concentrations within the cell; this 

optoIDR assay tests IDR-dependent, light-inducible droplet formation in vivo (45). Briefly, 

the photo-activatable, self-associating Cry2 protein was labeled with mCherry and fused to 

an IDR of interest. This fusion mediates a blue light-inducible increase in local 

concentration of selected IDRs within the cell (Fig. 5A) (45). In this assay, IDRs known to 

promote phase separation enhance the photo-responsive clustering properties of Cry2, 

causing rapid formation of liquid-like spherical droplets upon blue light-stimulation (46, 47). 

Fusion of a portion of the MED1 IDR to Cry2-mCherry facilitated the rapid formation of 

micron-sized spherical droplets upon blue light-stimulation (optoDroplets) (Fig. 5B, C, S8). 

During blue light-stimulation, proximal droplets were observed to fuse (Fig. 5D, 5E and 

Movie S4). The fusions exhibited characteristic liquid-like fusion properties of necking and 

relaxation to spherical shape (Fig. 5E). The MED1-IDR droplets persisted after blue light-

stimulation and exhibited liquid-like FRAP recovery rates in the absence of blue light-

stimulation (Fig. 5F–H). The rapid FRAP kinetics in the absence of light-activated Cry2 

interactions suggests that the MED1-IDR optoDroplets established by blue light are dynamic 

assemblies exchanging with the dilute phase.

Conserved serine bias in the MED1-IDR is necessary for phase separation

Previous studies have implicated low complexity, intrinsically disordered regions of proteins 

in liquid-liquid phase separation (7, 36, 37, 43). An examination of the amino acid content 

of MED1 revealed that the IDR contains a striking compositional bias for serine (Fig. 6A). 

Interestingly, this serine compositional bias is conserved among vertebrates (Fig. 6B). To 

investigate whether this serine bias is necessary for the MED1 IDR’s capacity to phase 

separate, we mutated all the serine residues to alanine and investigated the ability of this 

mutated IDR to form phase-separated droplets in vitro. The MED1-IDR S-to-A mutant was 

incapable of forming phase-separated droplets under conditions where the wild type IDR 

readily formed droplets (Fig. 6C), indicating that the conserved serine bias in the MED1 

IDR is necessary for droplet formation.

MED1-IDR droplets can incorporate proteins necessary for transcription

A proposed function of phase separation at SEs is the ability to compartmentalize and 

concentrate factors within a biomolecular condensate, so we sought to test whether MED1-

IDR droplets could recapitulate this compartmentalization function in vitro. We identified 

conditions where the MED1-IDR could form droplets but the BRD4-IDR could not (Fig. 

S9). We then investigated whether the MED1-IDR droplets could compartmentalize BRD4-

IDR protein under these conditions (Fig. 7A). Using either mEGFP or mCherry fused 

proteins, we found that the MED1-IDR droplets (mCherry-fused) could incorporate, and 

thus concentrate, the BRD4-IDR protein (mEGFP-fused) (Fig. 7A). The MED1-IDR 
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droplets (mCherry-fused) did not incorporate mEGFP (Fig. 7A). To probe the approximate 

mesh size of the MED1-IDR droplet (48), we incubated MED1-IDR droplets with 

fluorescently-labeled dextrans of average molecular weights 4kDa, 10kDa, and 40kDa. We 

found that the 4kDa dextrans were incorporated into the MED1-IDR droplets, the 10kDa 

dextrans were incorporated with less efficiency, and the 40kDa dextrans were excluded (Fig. 

S10). These results suggest that the incorporation of mEGFP-BRD4-IDR (105 kDa) into the 

MED1-IDR droplet is due to attractive molecular interactions, as opposed to passive 

diffusion through the droplet mesh.

We next investigated whether the MED1-IDR, introduced into a transcription-competent 

nuclear extract, would form droplets that might incorporate BRD4 or other transcriptional 

components. We found that the wild type MED1-IDR but not the MED1-IDR S-to-A mutant 

formed droplets in these extracts (Fig. 7B). The MED1-IDR phase-separated droplets are 

denser than the surrounding extract and thus can be purified from solution by centrifugation. 

Immunoblot analysis revealed that BRD4 and the largest subunit of RNAPII (RPB1) were 

enriched in pelleted droplets in a MED1-IDR dose-dependent manner (Fig. 7C). These 

results indicate that the MED1-IDR droplets can incorporate BRD4 and RNAPII.

The ability of the MED1-IDR protein to incorporate BRD4 and RNAPII into an artificial 

phase-separated compartment suggests that it sequesters key components of the transcription 

apparatus and might thus be used to “squelch” transcription in the nuclear extract. We 

carried out an in vitro transcription assay with these extracts and found that the wild type 

MED1-IDR protein does indeed squelch transcription, correlating with the amount of 

material separated from solution by the MED1-IDR droplets (Fig. 7D). We did not observe 

these effects with equivalent concentrations of mEGFP or with the MED1-IDR S-to-A 

mutant (Fig. 7D). These results demonstrate that the MED1-IDR has the capacity to 

compartmentalize and concentrate transcriptional machinery from a complex nuclear extract.

Discussion

Super-enhancers (SEs) regulate genes with prominent roles in healthy and diseased cellular 

states (14, 15, 19–25, 49, 50). SEs and their components have been proposed to form phase-

separated condensates (30), but with no direct evidence. Here, we demonstrate that two key 

components of SEs, BRD4 and MED1, form nuclear condensates at sites of SE-driven 

transcription. Within these condensates, BRD4 and MED1 exhibit apparent diffusion 

coefficients similar to those previously reported for other proteins in phase-separated 

condensates in vivo (36, 37). The IDRs of both BRD4 and MED1 are sufficient to form 

phase-separated droplets in vitro and the MED1-IDR facilitates phase separation in living 

cells. Droplets formed by MED1-IDR are capable of concentrating transcription machinery 

in a transcriptionally competent nuclear extract. These results support a model in which 

transcriptional coactivators form phase-separated condensates that compartmentalize and 

concentrate the transcription apparatus at SE-regulated genes and identify SE components 

that likely play a role in phase separation.

SEs are established by the binding of master transcription factors (TFs) to enhancer clusters 

(14, 15). These TFs typically consist of a structured DNA binding domain and an 
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intrinsically disordered transcriptional activation domain (51–53). The activation domains of 

these TFs recruit high densities of many transcription proteins, which as a class are enriched 

for IDRs (54). While the exact client-scaffold relationship (55) between these components 

remains an open question, it is likely that these protein sequences mediate weak multivalent 

interactions thereby facilitating condensation. We propose that condensation of such high-

valency factors at SEs creates a reaction crucible within the separated dense phase, where 

high local concentrations of the transcriptional machinery ensure robust gene expression.

The nuclear organization of chromosomes is likely influenced by condensates at SEs. DNA 

interaction technologies indicate that the individual enhancers within the SEs have 

exceptionally high interaction frequencies with one another (16–18), consistent with the idea 

that condensates draw these elements into close proximity in the dense phase. Several recent 

studies suggest that SEs can interact with one another and may also contribute in this fashion 

to chromosome organization (56, 57). Cohesin, a Structural Maintenance of Chromosomes 

(SMC) protein complex, has been implicated in constraining SE-SE interactions because its 

loss causes extensive fusion of SEs within the nucleus (57). These SE-SE interactions may 

be due to a tendency of liquid phase condensates to undergo fusion (1–3).

The model that phase separation of coactivators compartmentalizes and concentrates the 

transcription apparatus at SEs and their regulated genes raises many questions. How does 

condensation contribute to regulation of transcriptional output? A study of RNAPII clusters, 

which may be phase-separated condensates, suggests a positive correlation between 

condensate lifetime and transcriptional output (58). What components drive formation and 

dissolution of transcriptional condensates? Our studies indicate that BRD4 and MED1 likely 

participate, but the roles of DNA-binding TFs, RNAPII and regulatory RNAs require further 

study. Why do some proteins, such as HP1a, contribute to phase-separated heterochromatin 

condensates (59, 60) and others contribute to euchromatic condensates? Studies to dissect 

the rules that govern partitioning into specific types of condensates have begun (61–65) and 

will need to be defined for proteins involved in transcriptional condensates. Does condensate 

misregulation contribute to pathological processes in disease and will new insights into 

condensate behaviors present new opportunities for therapy? Mutations within IDRs and 

misregulation of phase separation have already been implicated in a number of 

neurodegenerative diseases (66–68). Tumor cells have exceptionally large SEs at driver 

oncogenes that are not found in their cell of origin, and some of these are exceptionally 

sensitive to drugs that target SE components (22–25). How do we take advantage of phase 

separation principles established in physics and chemistry to more effectively improve our 

understanding of this form of regulatory biology? Addressing these questions at the 

crossroads of physics, chemistry, and biology will require collaboration across these diverse 

sciences.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. BRD4 and MED1 form puncta at super-enhancers
(A) Immunofluorescence (IF) imaging of BRD4 and MED1 in mouse embryonic stem cells 

(mESC). Fluorescence signal is shown alone (left) and merged with Hoechst stain (right). 

(B) Live imaging of endogenously-tagged mEGFP-BRD4 and mEGFP-MED1 in mESC. (C) 

Depiction of Nanog locus, associated super-enhancers (black bars), DNA contacts (red arcs), 

BRD4 and MED1 ChIP-seq (green histograms), and location of FISH probes. (D) Co-

localization between BRD4 or MED1 and the Nanog locus by IF and DNA-FISH in fixed 

mESC. Separate images of the indicated IF and FISH are shown, along with an image 

showing the merged channels (overlapping signal in white). The blue line highlights nuclear 
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periphery, determined by Hoechst staining (not shown). The “Merge (zoom)” column 

displays region of image (yellow box) zoomed in for greater detail. (E) Averaged signal of 

either FISH, IF for BRD4, or IF for MED1 centered at Nanog DNA-FISH foci or randomly 

selected nuclear positions. (F) Co-localization between BRD4 or MED1 and the nascent 

RNA of Nanog by IF and RNA-FISH in fixed mESC. Data shown as in (D). (G) Averaged 

signal of either FISH, IF for BRD4, or IF for MED1 centered at Nanog RNA-FISH foci or 

randomly selected nuclear positions.
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Fig. 2. BRD4 and MED1 nuclear puncta exhibit properties expected for biomolecular 
condensates
(A) Representative images of FRAP experiment of mEGFP-BRD4 engineered mESCs. 

Yellow box highlights the punctum undergoing targeted bleaching. (B) Quantification of 

FRAP data for mEGFP-BRD4 puncta. Bleaching event occurs at t = 0s. For both bleached 

area and unbleached control, background-subtracted fluorescence intensities are plotted 

relative to a pre-bleach time point (t = −4s). Data are plotted as mean +/− SEM (N=9). (C) 

Same as (A) with mEGFP-MED1 engineered mESC cells. (D) Quantification of FRAP data 
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for mEGFP-MED1 puncta (N=9), same as (B). (E) Representative images of FRAP 

experiment of mEGFP-BRD4 engineered mESCs upon ATP-depletion. (F) Quantification of 

FRAP data of mEGFP-BRD4 upon ATP-depletion (N=8), same as (B). (G) Representative 

images of FRAP experiment of mEGFP-MED1 engineered mESC cells upon ATP depletion. 

(H) Quantification of FRAP data for mEGFP-MED1 puncta upon ATP-depletion (N=8), 

same as (B). Images were taken using the Zeiss LSM 880 confocal microscope with 

Airyscan detector with 63x objective at 37°C.
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Fig. 3. 1,6-hexanediol disrupts BRD4 and MED1 puncta and disrupts BRD4, MED1, and 
RNAPII occupancy at super-enhancers and super-enhancer driven genes.
(A) Representative images of mEGFP-BRD4 or mEGP-MED1 engineered mESCs before 

and after treatment with 3% hexanediol for 15 seconds. (B) Box plot presentation of the fold 

change in number of mEGFP-BRD4 or mEGFP-MED1 puncta observed before and after 

addition of vehicle or 1,6-hexanediol to a final concentration of 3%. (C) Genome browser 

view of BRD4 (blue), MED1 (red), and RNAPII (brown) ChIP-seq data from untreated or 

1,6-hexanediol treated (1.5% for 30 minutes) mESCs at the Klf4 locus. (D) Box plot 

representation of log2 fold-change in BRD4 (blue), MED1 (red), and RNAPII (brown) 

ChIP-seq read density (1,6-hexanediol versus untreated) for regions defined as super-

enhancers (SEs) or typical enhancers (TEs) (see methods and Table S2). (E) Boxplot 

representation of log2 fold-change in RNAPII ChIP-seq density (1,6-hexanediol versus 

untreated) within the gene body (transcription start site to transcription end site) of all active 

genes (RPKM>1), typical-enhancer associated genes (TE genes) or super-enhancer 

associated genes (SE genes). (F) Gene Set Enrichment Analysis of genes, ranked by their 

log2 fold-change in RNAPII ChIP-seq density within the gene body and annotated against 

the set of super-enhancer-associated genes. Enrichment score profile and position of SE-

associated genes is shown.

Sabari et al. Page 17

Science. Author manuscript; available in PMC 2018 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. Intrinsically disordered regions (IDRs) of BRD4 and MED1 phase separate in vitro
(A) Graphs plotting intrinsic disorder (PONDR VSL2) for BRD4 and MED1. PONDR 

VSL2 score (y-axis) and amino acid position (x-axis) are shown. Purple bar designates the 

IDR under investigation. (B) Schematic of recombinant mEGFP fusion proteins used here. 

Purple boxes indicate IDR’s of BRD4 (BRD4-IDR) and MED1 (MED1-IDR) shown in (A). 

(C) Visualization of turbidity associated with droplet formation. Tubes containing BRD4-

IDR (left pair), MED1-IDR (middle pair) or GFP (right pair) in the presence (+) or absence 

(−) of PEG-8000 are shown. Blank tubes included between pairs for contrast. (D) 
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Representative images of droplet formation at different protein concentrations. BRD4-IDR, 

MED1-IDR or mEGFP were added to droplet formation buffer to final concentrations 

indicated. (E) Representative images of droplet formation at different salt concentrations. 

BRD4-IDR or MED1-IDR was added to droplet formation buffer to achieve 10 μM protein 

concentration with a final NaCl concentration as indicated. (F) Representative images of 

droplet reversibility experiment. BRD4-IDR (top row) or MED1-IDR (bottom row) BRD4-

IDR or MED1-IDR, as indicated, (20 μM protein, 75 mM NaCl) (initial) or followed by a 

1:1 dilution (diluted 1/2) or a 1:1 dilution with an increase to 425mM NaCl (diluted 1/2 + 

NaCl)
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Fig. 5. The IDR of MED1 participates in phase separation in cells
(A) Schematic of optoIDR assay, depicting recombinant protein with intrinsically disordered 

domain (purple), mCherry (red) and Cry2 (orange) expressed in cells exposed to blue light. 

(B and C) Images of NIH3T3 cells expressing either (B) mCherry-Cry2 or (C) a portion of 

the MED1 IDR (amino acids 948–1157) fused to mCherry-Cry2 (MED1-optoIDR). Cells 

were subjected to laser excitation every 2 seconds for indicated time. (D) Time-lapse images 

of the nucleus of an NIH3T3 cell expressing MED1-optoIDR subjected to laser excitation 

every 2 seconds for the times indicated. A droplet fusion event occurs in the region 

Sabari et al. Page 20

Science. Author manuscript; available in PMC 2018 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



highlighted by the yellow box. (E) Droplet fusion event highlighted in (D) at higher 

resolution and extended times as indicated. (F) Image of a MED1-optoIDR optoDroplet 

(yellow box) before (left), during (middle) and after (right) photobleaching. The blue box 

highlights an unbleached region for comparison. Time relative to photobleaching (0”) is 

indicated. (G) Signal intensity relative to pre-bleaching signal (y-axis) and time relative to 

photobleaching (x-axis) are shown. Data shown as average relative intensity ± SD (n=15). 

(H) Time-lapse and close-up view of droplet recovery for regions highlighted in (F). Times 

relative to photobleaching are indicated. Scale bar, 1 μm.
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Fig. 6: Conserved serine bias is necessary for MED1-IDR phase separation
(A) Amino acid composition of the MED1 protein. Each row represents information for a 

single amino acid, single letter amino code shown on right. The length of the row 

corresponds to the length of the MED1 protein. Black bars represent occurrence of indicated 

amino acid at that position in MED1. Purple bar represents the IDR of MED1 under 

investigation. (B) Serine composition of MED1 protein from indicated organisms. Presented 

as in (A). (C) Mutating all serines to alanine disrupts phase separation. Representative 

images of wild type MED1-IDR or all serines to alanine mutant MED1-IDR (MED1-IDR S-

to-A mutant) fused to mEGFP in droplet formation assay (10uM protein, 125mM NaCl, 

10% Ficoll-400).
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Fig. 7: MED1-IDR droplets compartmentalize and concentrate proteins necessary for 
transcription
(A) MED1-IDR droplets incorporate BRD4-IDR protein in vitro. The indicated mEGFP or 

mCherry fusion proteins were mixed at 10μM each in Buffer D containing 10% Ficoll-400 

and 125mM NaCl. Indicated fluorescence channels are presented for each mixture. 

Illustrations summarizing results shown on left. (B) MED1-IDR forms droplets in an in vitro 

transcription reaction containing HeLa cell nuclear extract, while the MED1-IDR S-to-A 

mutant does not. Representative images of indicated mEGFP-fusion protein when added to 

an in vitro transcription reaction containing HeLa cell nuclear extract at a final concentration 
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of 3mg/ml (see Materials and Methods for complete list of components). (C) MED1-IDR 

droplets compartmentalize transcriptional machinery from a nuclear extract. Immunoblots of 

the pellet fraction of indicated protein added to in vitro transcription reactions (as in B). 

Illustration of a proposed model of molecular interactions taking place within MED1-IDR 

droplets in the nuclear extract is presented to the right. (D) MED1-IDR droplets 

compartmentalize machinery necessary for the in vitro transcription reaction. 

Autoradiograph of radiolabelled RNA products of in vitro transcription reactions under 

indicated conditions. Arrow indicates expected RNA product. Reactions conducted as in 

(69) with minor modifications. See Materials and Methods for full details. Illustration of a 

proposed model of molecular interactions taking place within MED1-IDR droplets in 

nuclear extract and the impact on in vitro transcription reaction is presented to the right.
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