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PREFACE 
, ' 

THE mathematical problems which anse in dealing WIth 
numepcal'data are att,ractive and important. Some know
ledge regardmg them is requll'ed by workers in many dIffer
ept fields;-3stronomers, meteorologists, phY81ClStS, engineers! 
naval architects, actuaries, biometrlcians, and, statisticians, 
as well a~ p1(re mathematicians; but until recently there 
has been very little instruction OD. the subject in the 
"mathematical departments of the British universities. Of 
late, however, there has b~~n a great awakening of interest 
in it, and it is now included in the syllabus ,for t~e Open 

• Competitivp Examination for appointments in the Home and 
Indian Civil Services, the Colonial Service, etc, 
'. The 'present volume represents courses of lectures given 
at diflerent times during the years 1913-1923 by Professor 
WW.ttake~ to undergraduate and graduate ,students in the 
Mathematical Laboratory orthe, University of Edinburgh, and 
ma.y be regarded a~ a. manual of the tea.ching and practice. 
of the Labor!"tory, pom;>lete save for the subject of Descriptive 
Geometry, for which a separate text-book is desirable. The 
manuscript ,of t.he lectures has been prepared for publication by 
Mr. Robinson, who ha.s performed the whole of the work of 
num~rical verification and has contnbuted additional examples. 

, . 
The exposition has been designed to make fach chapter" 

as far as possibl~, intelligible to those who have not mastered 
th~ preceding chapters; so that a~y Qne who' is interested in 
some special problem may, by tl~e help of ~he Table of Contents, 

v 
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. find and ~nderi!tand what is said about it without bemg obhgeJ 
to read from the begmning of the book. 

One feature whICh perhaps calls for a word of explanatIOn 
IS the prominence glven to arithmetical, as distmgUlshed from 
graphlcal; methods. 'Vhen the EdInburgh Laboratory Was 
established m 1913, a trial was made, as far as posslble, of 
every method which had been proposed for the solution of the 
problems under consideratIOn, and many of these methods "ere, 
gra.phical. Dunng the ten years which have elapsed smce 
then, the graphlcal methods have almost all been abandoned, as 
theIr infenonty has become eVldent, and at the present tillle 
tile work of the Laboratory is almost excluslvely anthmetlcal. 
'A rough sketch on squared paper is often useful, but (except m 
Descriptive Geometry) graphical work performed carefully With 
instruments on a drawing-board lS generally lesl:\ rapid and less 
accurate than the arithmetlcal solutlOn of the same problem. 

The material equipment essentlal for a student's mathe-' 
matical laboratory is very simple. Each student should have 
a. copy of Barlow's tables of squares, etc, a copy of Crelle's 
.. Calculating Tables," and a seven-place table of .logarIthm~ 
Further, It is necessary to provide a stock of computmg paper 
(i.e. paper ruled mto squares by rulings a quarter of an inch 
apart; each square is intended to hold two digits; the rulmgs 
should be very faint, 80 as not to catch the eye ~ore than 
is necessary to guide the alignment of the calculation), and 
lastly, a stock of computing fonns for pract!cal Fourier analysis 
(those used in Chapter X of this book may be purchaSed). 
With this modest apparatus nearly all the computatIOns here
after descnbed may be perfonned, although time and labour 
may. often be saved by the use of multiplying and adding 
machines' when these are available. • , 

Attention may be drawn to the opportulllties which the 
subject presents to the research worker in Mathematics. There 
is an evident need for new and improved methods of dealing 
with many of the problems dIsc.ussed in the later chapters. 
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. CIJAPTER I 

INTERPOLATION" WITH .EQUAL INTERVALS OF THE ARGUMENT .. . . . 

1. Introduction.-l\lathematlCs 1S occupied largely Wlth the 
• idea of correspondenci: e fl. to every amiber :v .there corre· 

spondB a value 0(:v2, thus , 
:v= 1, 2, ~,.4, 5, .. 

:va ... 1, 4, 9, 16, 25, I' •• 
• ' l 

\ . One of'the 'two variables between willch correspondence 
\ holds is called the argument and the other is called the/unction 
\of that ar~ument. ' ". . ' 

• If 8/ function 'y of an argument :v is defined by an equation. 
y=/(x), w};eraj(x) is a.n algebraical expression .involving only 
arithmetical operationS' such as squlloring, dividmg, etc., then by 
perform~g these operatioJ).s. \Ve can find accurately the value 

'of , which corresponds to any yalu~ of' x. But if y=loglox , 
(say it is' not ~osslble, to .caloulate y' by perfofffilng sim,Ple. 
arith eti5!al.operations on x (at any rate. !t is not posslble t? 
calcul te '!/ accurately by performing' a. finite Ilumber of such 
opel'at ns), and we are compelled to have recourse to a. table, 
~hich gi~es the values of '!I corresponding to certain selected 
values ok z; e.g. • _ . • 

; \ " 
• z .• \ log 4 '" log z. 
7·0 " 0·845 098 7-4 0·869 232 
7-1 \ 0·851 258 7·5 0·875 061 
7·2 0·857332 7·6', .()·880814 
7·3 0·863 323 • 7·7 0·886491 . 

Tue question then arises as to'how we cnn find'the values 
of the function log'z f~r valuee of the argument x whiph ar~ 

(Dall) , • I. 
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IntermedIate between the tabulated values, e g sueh a valu~ as 
x=1~152. The answer to tIus question is furnished by the 
theory ~f Interpoiatwn, whICh In its most' elementary aspect' 
may be described aft the science of "reading between the lines 
of a mathematICal table." 

In the further development of. the theory of interpolatIOn 
it wIll be shown how to find the dIfferential coefficient of a 
functIon which is specified by a table, and also to find Its 
integral taken between any bounds of Integration. 

A kmd bf mterpolatlOn was used. by Brlggo,* but'mtelpolatwn of 
the kmd hereafter explained, based on the H'presentatwll of fuuctwll" 
by polynonuals, was first llltroduced by James Gregory t III 1670. 

2. Difference Tables.-Suppose a function f(u) is given in 
a table for the val~es a, a+w, a+2w,· a+31", ... of Its 
argument u. It IS required to 'find the value of the functIOn 
when the argument has the/value a+xw, where x is a fraction. 

,Before this problem can be solved by the method, of inter
polatlOn, It is first necessary to form what are called the dtjfer~ 
tnces of the tabular values. The quantity 

f(a+w) -f(a) 

is denoted by llf(a) and is called the first dijference of f(a). 
The nrst difference of f(a+w) is j(a+2u) -f(a+w), which is 
denoted by llf(a+w). Moreover, the quantity 

, lll(a+~') -llf(a) 

is denoted by llo/(a) and is called the second dijference of f(a), 
while the quan~ity . 

llo/(aHv) -ll~(a) 

is denoted by llo/(a) and is called the third dtfference of f((I), 
a.nd.so on. 

It is convenient to arrange the tabular values and their 
differences for increasing values .of the argument in what i'J 
called a diiference table, as fopows: 

* Briggs' method was, ho" ever~ closely related to the modern cenhal· 
difference formulae Cf. hiS Ar.thmetica Logarithm.ea, ch. XIII., and IllS 

Tr'gonomet,.ia Bnlannica, eh xii cr. Journal of the Inslt/ute of AduaTVJ!, 
14, pp. I, 73, 84, 88 ; 15, P 312 '., 

't Rigaud's Corresplmlience of Scunt.jic .3fen of th. lith Century, 2, p. 209 



Argument. Entry. 

a j(a) 

a'+w f(a+w) 

a+2w f(ct+2w) 

a+31v f(ct+3w) 

a+4w 
• 

f(a+4w) 

.. 

·INIERPOLA.TION • 

'~. 

Af(a) 

Aj(a + 'U!) 

Af(af2w) . 

~! , 

A~(a) 

A~(a+w) 

a~(a+2w) 

.A~(a,+.3w), 

3 

'A~(a) 

A~{a+w) 

A~(a+2w) 

and similarll" for dlfferences of order higher thaIl' the thlr~. 

The first entry f(a) IS called the leading term, and the differences 
of f(a), that' is to eay Af(a), A~(a), . . are called the lead~nfJ 
differences. EVIdently each· d~ffe'l'ence in (he table ~s the number' 
'(with its proper algebraic sign) ootained by subtracting the 
"/'um.ber imm6d~ate.liJ ablJVe and ta the left jrom the number' 
immediately ~elow and to the left. 

The Bum of the entries III any column,of differences is equal to the 
, difference between the first lind last entnes of the precedmg' column. 

TIns affordll a numerical ~heck on the' accuracy of the table. Thus III 

the above tablA we have 
• I::.'f(a.+ 3w) = A2f(a) + ASf(a) + l)"SJ(a + w) + ASf(a + 2w). 

An example of a difference ~table is the followlllg, which represents 
the natural 81neg of angles from 25' 40! 0" to 25° 43',0· inclusive at 
mtervals'of ~O". 
A rgument. Entry, 

. 25° 40' 0" 0'438134785866963 
'.ll. ~l 

• 87393305476 
.20" 0·433222179'1 72439 - 4073056 

8 7;3892 32420 - 822 
·()04.3330.9a684 04859 - 467.3878 

e 73891 58542 !i.. 822 
25: 41' 0." 0·433396953563401' - 40 74700 

• 87381083842 - 820 
20" .0·43348 43346' 41243 . - 40 7552($ 

40" 

8 73770 08322 ...! 8it3 
0'43'3571711655,5,65 - 40 76343 

87372931979 - 82;1 
043365' 90a45 87544 -4077164 

40~ 

25' 42' 0" 
87368854815 - 821 

O,43374645344235g - 40-77985 
873114776830 - 822 

• '40" \)'4338338182191,89 : . - 40 78807 
" 8'73606 98023 

,25° 43'0" 0'43392 117~9 17212 
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It w¥1 be seen tllltt in tlllS case the third. differences are practically 
constant when ~uantltles beyond the fifteenth place are neglected, any • 
depart\ue from con~tanct m the last place bemg really due to tile 
neglect of the sixteenth place of deciruala. m the ol'lginai entlles So 
the fourth dtfferences are zero. • . . 

II; will De found'that in the case of prdctically all tabular 
functions the differences of q ce1'tain order are all zero;. or, to 
speak more accurately, they are smtdler than one unit ~n the last 
decunal plaf!e retained'in tke tables. in ,question, This fact hes 
at the basIS or'the'method of interpolation, as we shall now see 

3. Symbolic Operators,-The' formulae of the calculus of· 
differences may be very simply represented by the use of wh~t 

• are called symbohc operators. Of these we have already intro
duced !::J., and we shall now consIder another operator denoted 

.by E: • 
Let w represent the interval between succeSSIve values of the 

argument of the functlOnf(a), and let E denote the operatlOo 
of increasmg the ~rgUn1ent by w; s9 that Ef(a)=f(a+71'), In 

general we shall,write E"'f(a} =f(a+:tw), where x is an integer, 
Now by definition we had !::J.f(a+xw)=f(a+xw+1o)-f(a.Hmo), 
so !::J.f(a+xw)=(E-l)f(a.+:z:w).' It is therefore evident that. 
the operators E and !::J. ar~ ~onnected by the relation !::J.';" E -'lor 

• :E=1+!::J.. . 
When s.ymbohc optrators obey the ordinary laws of Algebra 

they may be ~eparated from, the symbols representing the 
functions to which' they refer and trl}ated independently in 
much the same way as symbols of ,quantIty, Now it may be 
easily shown that the following relations are true' for the 
opera tor !::J. : • 
!::J.{f(a) + feb) + fCc) +. , .J =!::J.f(a) + !::J.f(b) + !::J.f(c) +, ." . 

!::J.kf(a) =k!::J.f(a), where k is a constant factor, 
. !::J.m~nf(a)=!::J.m+nf(a), wnere m, n are positIve 

, . inte$ers . 
.The corresponding. identities for E are: 

. 'E{f(a) + feb) + fCc) +: : .} = Ef(a) + Ef(b) + Ef(c) + •• " 
. . • . Eh,j(a) =kEf(a), 

• ) EmEnf(al=Em+Rf(a). , 
Thus in ~any respects the ~perators E and !:i behave Lke 

al.gebralC SY~~IS ~nd may be ~ombine~ ~ke them. 
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The following exam~le8 illustrate the use of these operaoors: . , . 
Ex. I.-To expres, lhemth diffe;inces of a tabulated function in term. 

of the succe"ive entries: • . • 

inf(a) :=.(~ - !)nf(a) ~ • 

. • = {En _ ~Efl-l + !l(n
2 
~ I)En:2 - .. : + ( - l)n If(<<), 

~.e. 

• . n(n -1) 
~nf(a) == f(1t + nw) - hf(a + nw - w) + -----,-'-f(a + nw - 2w) - ... 

• 2. 
. +( -I)"f(<<)· 

-Ex. 2.~To eJ'pros, the function f(a =.. xw) in termJI of f(a) and the 
• ,ucce'8we differences of flp), when x ,is a p08'lt~ve i'llte~er. 

~ 

f(a';' xw) = ESf(a) 
= (1 + ~"'f(a), 

80 that 
': x(x -1) 

f(a +xw)=f(a) +xllf(a\ + --~2j(a) + ... +~Sf(a) 
I 2! . . 

. 4. The Differences of a. Polynomia.l.-We find withouu 
difOOuitj tqat the differenctt table for the functIOn 'y = XS IS 

as follqw8: 
x. 1/. 4. AI 41• 1::.'. 
0 0 

1 
1 • 1 6. 

7 6 
2 8 12,_ 0 

19 , 6 
3 27· 18 0 

37 6 
4 64 24 0 

61 6-
5 125 30 

91 
6 216 

• It will be seen that the third differences of this function are 
, rigorously constant' and the fourth 'differences are zero. This is 
. Ii particull\l' case of a general property which· we shall qow 
establIsh. . -
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Note that the table lliay be extended mdefiDitely \\hen \\e hUO\\' the 
thud !hffelences to be constant. FOr'by defimtlOn, \\hen \Ie add to nn 
entry' m a column of differences the corresponding fin,t dl!rel ence, the 
bum so formed gives the next entry ni the column. It follo\\6 that the 
column of second dIfferences can be formed from the leading t~1Il G by 
repeatedly addmg the constant third differeille 6 I the colulnn of fir"t 
dI(l:'erences bemg forJ;ned from the leadmg term 1 by adding in SUClCSSI(.n 

the second dIfferences 6, 12, 18, . • The values of :iJ are then Ohtallll rI 
from the leadmg term 0 by adding m successIOn the first differences 
1, 7, 19, 37, 61, .. 

. Consid~r the case when the tabulated fUllction j(x) HI 1\ 

polynomial of degree 11., say, 
f(x)=Ax"+Bx,,-I+Cx,,-2+ .+Lx+l\f. 

Then 
Llf(a)=f(a+w) -f(a) 

=A{(a+w)"- an} +B{(a+wJ"-l- an-I} + ... +Lw. 
Now 

(a+~~)n=an+nwdn-l+ n(n
2
71)wnn- 2+ . .. +1(}", 

so that 
. 11.(11.-1) 

Llf(a)=A{nwan - I+--
2

-! _w2an- B+ . . . +w"} 

(11.-1) (11.-2) + B{(n -1)wa .. - 2 + --2-,--w2an - 8 +. . +wn-l} . . 
+ ... 
+Lw. 

This is a polynomIal of degree (11. -1) In a, and therefore the 
first dIfferences of a p~lynomial represent another polynollllal 
of deiree less by one urnt. ' 

By repeated application dr this result we see that 
the 2nd differences represent a polynomial of degree 11. - 2, 

3rd ,,' I' 11.-3, 

nth ." " 0, 
i e. the nth differences are constant. It follows, therefore, that 
the ~n + l)th differences Of a polynomial of the nth degree are 
all zero. 

5 The Differences of Zero.-A table of values of any powtr 
of .the natural numbers may be formed by simple addition" htn 
the Jeadmg term ana. the' leadmg dIfferences are known, in 
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precisely tpe same way as in forming the table of cuheS' (§ 4). 
The dlfferences of the leading te~ ()P, whICh are generally used 
in forming Il. table of xP, are known as the differences of zero. 
They are of frequent occurrence in tl].e caicnlus of dlfferences. 
· In order tQ form a table of reference of the differences of zero we 

apply the result of § 3 (Ex. 1" 

• .1'i(a) = f(a -4- nw) - nf(a +,mo - 1V) + tn(n -, 1)f(a + nw - 2w) - •.. 

a\ld write 

• .1'':1:1(= (x of; '!)p - nIx + (n - 1)}P + !n(n - l){x + (n - 2)}p - ... 

If we now 8l),bstitu'te in this equa tion particular values for x, p, and n, we 
,obtain the equatIOns ' . 

.1'1()P = nP - n(n - I)P + !n(n - l)(n - 2)P - ... ± n IP + 01', 
, .1n-1Ip-1=nP-1_(n>-I)P+!(n-I)(n-2)P- •.. ± IP-1, 

and therefore' . .1"01' =n.1,,-lIp-1. (1) 

From the relatIOn' .111 - 1f(a + w) '"' .1nf(a) + .1n - 1f(a) we see that 
~n-Jlp-1 = .1"Ol,-1+.1n- 1op-1, and equatIOn (1) may be wfltten 

.1"01' = n(.1nOp-1 + .1n - 10p -,1). (2) 

W~ now constrl;ct a taLle of values 01 ~"()P by the repeated applica
tIOn of thiS equation, rememberJng that .1°01 = 0, .1101 = 1, and also 
tllat ~n01' = 0 for n>p. . 

p ~OP ~·OP. ~IOp. ~.O". ~IQ' 

1- r 
II 1 
3 "t 
4 1 
li 1 
6 I' 
7 1 
8 1 
9 1 

10 1 

2 
6 

14. 
30 
62 

126 
254 
510 

1022 

6 
36 

150 
540 

1806 
5796 

18150' 
5598() 

.24 
240 

1560 
8400 

• 40824 
- 186480 

818520 

120 
1800 

16800 
126000 
834120 

510~000 

720 
15120 

191520 
1905120 

1643q440 

From equatIOn (2) we see diat the 'varue of a particular dtfference 
~noP is obtained by takmg n times the sum of ~he two numbers of the 
preceding row which are Situated ~n the same column and jIl the preced
mg column respectively For eXl\mple, 

.1907 = 3(62 ... 540) 
• = 1806. 

6. The Ditrerences of x(x - 1) ex :.. 2) . (x - p + 1).-
Among the polynomials pf degree p. there is one polynomial of 
special interest in the theory of interpolation, namely, • 

. . :r(x-l) (x-~) •.. (x":p+~). 
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ThIs polynomial is denoted by [x Jp al;d IS called a /acto'Nal If 
we suppose the mterml of t.~e argument In the diffcrcncl' taU~ 
of [x]p to be ll;nity, w~ have. '. . .• 

[a]P=a(a-l)(a-2) ... (a-p+l), 
[a+,lJP=(a+l)a(a-l) (a-2) ... (n-p+2), 

A[aJP= [a+ l]P - [a]p . 
Ta(a-l) (a-2)"(a-3) ... (a-

1
p+2){(a+l)_(a_p+l)) 

=p[a]P-l, 

so that 

It follows that 

t,[x]P [x:P>-l [x+ IJp [x]p [;r]p-l 
7= (p -1}1' or -p-' -0=; liT + (p'- f)I' . . 

a result that may now be used to tabulate the vahlcs of (:r]p/p' as In the 
followmg table:' . 

x. [x]2/2 \. [xP/3 t [x]'/4 t [x]6/5 t. 
0 
1 0 
2 1 0 
3 3 1 . 0 
4 6 4 1 0 
5 10 . 10 5 1 
6 15 20 15 . '6 
7 21 35 35 21 
8 28 5.6 70 56 
9 36 84 126. 126 

'7. The Representation of a Polyno~ial by Factorials.
In § 4: we found an expression fo! A/(X), the first dIfft'rt'nce 
of a polynomial of degree n, in a form whlCh 1S less 811llpltl 
than the polynomial Itself.· It is mor~ convenient to c.arry out 
the operation of dijfp-rt'ncing by the use of factorials, using the 
relation of §.6 : . . . . 

A[xy=p[X]p-l. (1) 

Let cf>lx) denote a polynomial in x of degree k .. 'Ve may 
write cf>k(X) =r+{x-n +k)cf>k-l(X), where r is the remainder and 
cf>k-l(xl the quotient ~hen cf>k(X) is divided by (x - n .... k), so 
cf>k-llJ) is of degree (k-l)' Bya repeated application of this 

• . . d 
• This is, analogOllll to the fm-mula of the dlfl'erentiaI calculus J.Z(:r?j=pxP-l. 
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~Iansformation, we obtain all eXpression for a polynomial of the , 
nth degree, m terms of factorials:" 

q,,.(x) = a t [X]q,n_l(X) 
= a + /3[x] + [l, ]2q,"_2(X} 
,=~+ /3[x] + y[X]2+ Jx]3q,n_s(x) .... 
=a+/3[:1:]+y[:]2+ • . . +[x]nq,o(x), . 

where ~, p, y, ... are co~~tants and q,o(x) is a cOI).stant I' (say). 
We thus obtain the result 

q, .. {x) = ~ + /3[ x] +y[ ~]2 + o[ X]8 + ..• + v[ x]". (2) 
• Ex.-To 'repTe8611t the ju~ction y =x' - I2.Ji + 42",2":' 30x + 9 and till 
successive di/feT61ICBB in the fa~torial notation. 

tUslIig detacped'coeflicients w~en dlVidlIlg by x, X -I, x - 2", . .,* 
. 1\1.- 12 + 42 - 30 9 . 

0+ 1-11+31 
. 2 1.- 11 + 31 11 

0+ 2-18_ 
3 1.- 9113 

0+ .3 
~.f=-6--

~ lobtain the v.alue of y in the focm 

y =[.L)' - 6[x]3 + l~rx]Z+ [~] + 9. 

The successive diflerences are given py 

Ay = 4[xJl _18[ .. ]1 + 26[x] + I, 
• Ally = I2[x]Z - 36[1.]+ 26, 

A'J.y = 24[x] - 36, 
A~y=24, 

, .. 
Now iet .It be ~ue of the tablllat~d values of the argument. 

of a polynom:\al of degree n, and let.w be the'interval between 
successive' values, of the argument. Consider' the, v;alue • 
/(a+xw) of the pOlynomial' corresponding to the value (a+xw) 
of the 'ltr~umcnt. . Writing .f(a +xfo). fof <f>n(x) in (2) and 
applying the' operation denote~ by equatioll (1) to hoth sides of • 
equation (2), we find tha.t ' •. 

~.f(a +l,"ill) ='/3 +2y[.r ]1+ 30[.x]ll +. , . + 1Iv[x ]n-t, ,(3) . . 
• • Chry,tal, AJgebra, 1, p lOS. • \ 
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Ihfferencing tills equation, we ontain 

dJ"(a + mv) = 2y + 2.3o[X]1 + 3.4E[X]2+ ... +n(n -l}1{x]n-a. (4} 

Jl.loreover, 
, 

d 3j( a + xw) = 2.3.0+ 2.3.4E[ x ]1 + 3.4 5g[x ]2 +. . 
+n(n-1) (n-2)v[x]n-a, (5) 

and so on for dIfferences of hIgher order. The- values of the 
coefficients ~, {3, y, ... are found by putting x= 0 in each of 
the equatiOns (2), (3), (4), .•. so that 
a =j({t) , fJ=dj(a), y=idJ"(a), o=id~(a), ... , v=dnf(a)/n I. 

Equati<)ll (2) may now be written 

j(a+xw)=J(a) +xdj(a) + x(x2~ l~~(a) + ... 

This jormula * enables us to exp1'es;; the polynomial j(ct +xw) 
in terms ojthejactortals IV,x(x-l), x(x-1)(x-2), ... 'When a 
dtffererwe table oj the junctwn tS given. 

ThIS general formula may be easIly venfied for speCial values of x. 
When x=O, it becomesj(a)=j(a) 
When X= I, then 

J(a + w) = j(a)-+ l.t.j(a) . 
=j(a) + {j(a+w)-f(a)}, which 18 an ulentlty. 

When :r..=2, 
j(a + 2w) = j(a) + 2t.f(a) + t.2f(a) 

=j(a)+.2{j(a+w)-f(a)} . ' 
+ {J(a + 2w) - 2f(a + w) + f(a)}. 

8. The Gregory-Newton Formula of Interpolation.-,-The 
general formula of the last se9tlOn may be apphed to solve the 
problem of interpolation. 

,Suppose that 'If is a fun~tion of art argument u and that the 
• values of 'If given in t)1e 'ab1e are f(a),.j(a+w), f(a+2w), 

f(a+3w), ... corresp~nding to the values a, a+w .. a+21(1, 
a + 3w, ... of u. AlSo suppose that these values of the functIOn 

• ar!l entered in a d!fference table and that the drfferences of 
order n are constant. 1Ve are not supposed to know the values 
of '!I which correspond ~o other values of u, such as u = a + !1IJ. 

• Cf. Ex 2, § 3. 



INTERPOLATION 

. l,t ~3' requi~ed to ,find an analytical exprressioll for these inter
mediate values of 1/. ' 

I: The problem may'be stated graphiCally as follows: ' 
• Draw the rectangular axes Ou, 'Oy. Let K. L, M, N . ' .. 
b3 ppints on ~he u axis,having allsClssae a, a+w, a+2w, a+3w, 
, .. respectively. .At these points erect ordmates KA, LB, 

.1[C, ND; ... equal respectively to ,the' entries f(a), j(a+1<), 
'f(IH2w), f(a+3u1), .. , Then the points A, B, C, D, . .. so 
depermined are' points on, the,graph of the functIOn.* The 
PFoblem of finding a "smooth" curve to pass through the point,S 
A, B, C, D, . . .' has not a unique solution: in fact an infimte 

. nllmbe:r; of curve.s satisfying these conditIOns can be fOl,md. As 
our aim is' a praotical one, we naturlj.lly choose. the SImplest 

,solution of ,our problem. y 

Remembe.riI~g· that ,the 
.sImplest functions are poly
nomials, we inqu\re ~f it is 
possible to pass through the 
points A, B, C, . . . a curve 
whi'ch is the graph of a poly-

Ax Bx ex Ox 

• no'lTllial function of degree n. u 
We 'have already se~n 0 K L M N 

(§4) h l' I' I FIG. ,1. • t at ior an;y po ynomla • 
; of ,degree n the differences of order n ar~ constant and for the 

set of values :f{a),f(a.+w),f(a+ 2w); • .. It. has been assumM 
that the differences of order n are. constant. This being so, 

?a 'polynomial' o~ degree n eXIsts whiCh "takes the values j(a), 
j(CHW), f(a-=!-2w), ' .. ,when tlie argument u ha~ the values 

. a; a + w, a + 2w, ... ; ill' fact, 'by the last section, we can' write 
down an expressiQn for the flolynomial. It is 

, x(x-l),(2' 
y=f(a) +x~f(a) + 2!"'Ll.~a) + ... 

• +x(.:n-l) .. " (x-1Hl)~ .. Jta) '(1)' 
,. ~ "'11. • 

. ""f(u), 
... W~ do not know' anything about the portions of the graph lDtermedii'te 

bob, een these poults, but we assume tpat the graph is k 31T1,1)Oth curve"; for 
our present pu,rpose "e·can take tillS, to'mean that tllJl fUDction 11u fimte 

)Ifferenttal coefficlents.of aU'order3 at every rOlDt. • ."~ 
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where x is coo.nectep. with' u I'y, the rclation ~t = a +,1,11)" 

Jmd where 
. . ' 

Af(a) stands for /(a + w) - f(a), 
A~(a) stands f0l1/(a+2w)-2f(a+whf(a), 
and so on. ... 

We shall now take the polynomial (1) to represent the function. 
y also for values of the argument intermed~ate b~tween the 
tabulated values. The portions of the. graph intermediate 
between the points A, B, a, may therefore ,be filled in lJy 
drawing the curve 

y=f(a+x11J) 
x(x-1) 

=f(a) +xAf(a) -io -~A~a) +. (2) 

and 'in, order to compute the value of' y.corresponding to any. 
intermediate value of the argument suc~ as, a + tW, we silll)ly 
substitute the value x,,;l In this formula,* which is the analytI-
cal expr~ssion reqrured. . " 

The fundamental probl;m of interpolatIOn' hl thus soh'rd. 
The formula (1) is of~el~ referred to ae Newton's formula oj 
interpolation, although it was discovered by Jamcs Gregory In 

167:0 t 
,I 

The apphcatlOn of the Gr'!,gory-N e\\ to~ formula. IS Illustrated by the 
~ollowmg examples " 

* Many books of logarlthnnc tallIes, etc , contam a tabId of the blllolli,al' 
coefljCle'?ts reqUIred m the mterpolat\on formula (1), at mtervals of 0-01 from 
:1:=0 to 0:=1. • • 

t Cf a Ictter of Gregory to Collms of date November 23, 16iO, printed m 
Rigaud's Oorrespondence, 2, p 20~. An exa'1.1p)e of the use !If the formula lq 
worked out on p. 211 of Rigaud. Collins \\ as acoustomed to send on to J\ e"ton 
the iuathemattcal d,scoveries of Gregory (cf. R\gaud, 2, p. 335). • 
• Newton's pubhcatlOns on mterpolatlon are contamed m • 

1. 1h& Jletlwdus l>tfferentlaZ,s pubhshed lU lill but \\TItten bdore 
. October 16i6 ' 
2 A letter \\rltten lU 1676 to John SmIth. 
3 Lem'ma v. m Book Ill. of the PnnClzna pubhshed 10 168i. The aoo .. e 

formula IS Case I. 

'4' VarIOus references in the (JommerC?um Epostollc1tm ofdQt.e. 16i2/3 to 1671) 
These have been collected and edited by D C Fraser I!! the ;!ournvl of t/,e 

Institute of Act'ltaru;, 61 (1918-19), Pl" 77 and 211. ' 
• 
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Ez. I.-From the table ;iven below. to find the 'entry corrupondmg to 
~,.. 21. . .. 
Aruununll • Entry. • 4 . 4 1• .68• .6' • 

20 0'229314955248 . 

22 0'2300167.02495 
70l'i4~~4T 

602297 
, '02349544 .... 1944 

24 0·230719052039 600353 4 
7029498,97 '-1940 

26" 0'2314220019,36 5984.1 3 3 
7035483io -1937 

... 28 . 0·232125550246 596476 .. 
704144786 " 

30 . 0'232829695032 '. 

'Here. a="iw, w'=2, f(a+X'1uj=f(21), aml.c=! 

f(21)=f(2C!} +x~f(20! + X(X; 1)~V(20).f x(,l" ... ~~z - 2)~3f(20) + ... 

=>229314955248 +. !C701747247) - i(602297) - i;r(1944) 
.= 229314905248, . _]7528'1-1' , 

+ 350873623'5 , '1. + 121-5. ' 
, = ~2966582887Jto5 - 754Q8'6 

so • 
f(21) = 0·229665753463 . . . 

E;. 2.-To find the cD-ordinate X of thi Sim on No~ember ,10, 1910, at 
4" 30m G M.T (X is the ,uln', true geocentric co-ordt.nate measured on a ltne 
passtng through the trlle equtnoz of the date). . 
• The 'Nauhcal Alma7UJc gIves'the follOWing reawllgs ftO~l wJll~h we 

construct a dIfference tl\bl~: • . . 
1910. -X. 4 4 1, A". 

. November 9·0 
~ . 

0·6850997 
- 63809 

9·5 • .- 0-6787188 - 514 • 
- 64323 4 

10-0 0'6722865 -510 
~64833 7 

10-5 1 0-6658032 -503 
-.65336 _ 2 

11-0 0'6592~96 -501 
. . 

- 6r..B37 . #-
11·5 • 0'6526859 

. . 
We muS/; iutei-po!ate for 4h 30m from November 10·0., The argument 

'Is 12b. ,'Then 4h 30lD
, as a ,fraction of the argument, gIves z = 0·375. • 
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log x=9'5740313 
log (x - 1)= 9·7958800(11), 

where (n) mdlcates that 9·n;58800 IS t}Ie loganthm of a negstIve nttmbe~ 
log 1 = 9 6989700 

log lr(x -1)= 9 0688813(n) 
. log t=9 5228787 

log (x - 2>';= 0 2108.j34(n) 
log ix(x - 1) (1: - 2) = S 8026134. 

Also 

log (- 64833)= 4'8117961(n) log (- 503) = 2 7015680(11) 
log X.= 9:5740313 'log 1-r(£ - 1) = 90688813(11) 

log (- 64833;),) = 4'3858274(11) ,log lr(x - 1)( - 503) = 1 7704493 

Therefore 

and finally 

= log ( - 24312·4) = log 58 !J.f • 

log 2 = 03010300 
log ix(,; - l)(x - 2) = 88026134 

log i.l.('. - 1)(x ';" 2)(2) = 9·1036434 = log 0 1. 

- X = 067228650:'" 0 00~43124 + 0 00000589, 

-X=O 6698612 

9. An Alternative Form of the Gregory - Newton 
Formula.-The Gregory-Newton formula ,may be wntten IJ1 

an alternatIve form wInch is convement when an ,anthmometl'l • 
is used. Rearrangmg the formula of the last sectwn IJ1 the form 

j(a+xUJ) = j(a) +x[Ll.f\q) - !(1- x){Ll:f(a) - t(2 -:t')( ... );]. 

and assummg the dIfferences of order on ~ 1)e constant, we may 
replace thtl Gregory-Newton formula by 

j(a+xw)=j(a)+xu1• (1) 
where 'UI = Ll.f\a) - !(1 - :0'U2, 

1 . 
'Up = Llpj(a) ---(P-x)up+t. 

}J .... ~ • 

un =Ll'1(a), which.Is constant. 

'When computmg a value of the function by thts method, "e 
begin' WIth the constant,difference 'Un and calculate in succe"SIfJIl 
the values of 'Un-I, 'Un -2, ••• , 'Ut, finally substItutmg 'the "alue 
of 1//1 in equation (1): The following examp1e will serye as an 
illustratwn of ,this method: 

* ·When an anthmometer IS not available Crelle's Calculcdl7l~ TaUes mil La 
found useful for this pnrpose. 
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E.c--:I'o find f({}) when (J = 24·'46980 05207 020, h(lVl'il(J !P'l.'tJ11 

D. • /(8) A .1" 
2.1 4 0·216 198 iiOl 343 

168,272307 
2.1·5 ·0216366 8;J3 650 745715 

169018022· 
24·6 . 0'216 :135 851 672 

. 
746483 

169764505 
24·7 - .P 216 705 616177 7472'>6 

170511761 
24·R 0·216 87S 127938 748033 

171251) 794 
249 0·217047387732 74881'> . 172008609 
250 0'217219396341 
Hew w = 0,1, a = 24 ·'4, '~ = 0'698 005 207 02 

. Bunce 'Ua = t13f(a) - i(3 - x)t1'J(a) = 768 - 0-576 x 5 
= 765'1, 

1'8=t12j(a)-1(2 -~)u3=74.5 715 -0'434 0 x 7651 
= 745383'0, 

AJ. 

768 

773 

777 

782 

1~ 

5 

4 

5 

ll1 = t1J(aJ - 1(1- ~)lla = 168 272 307 - 0'15(} 907 4 x 745 383 
= 168159756'1. . 

Then 
f(a+xfiI)=f(lt)+.Llll . • 

= 0·216198561343 rI- 0·698 005 20702 x 0'000 168159756 
, = 0'216 198 561 34.3 . 

. '+ 117 376 385, 

or f({}) = 0·216315 937 728. 

10. The Binomial Theorein.-By use of the operator E, we 
can write the G1-'egory-Newton interpolation form~la in the form 

. _ x(x-l) I 
EZf(a) = {1+xd+ -2f-~ ~ .. If(1f). 

When thus written, the formula ill seen to be the same as that 
obtained by expanding (1 +d)z by the Binomial Theorem in 
ascending po\ters of d and' then operati,ng on f(a) WIth the 
terms of the series 80 formed, i.e. 

K'f(a) = (1 +d)"'f(a). 

The Binomial Th!lorem was made kno~n (in correspondence) 
si~ years' after the Gregory-Newton formula; !n fact, ~ewton 
Repms to have discovered the Binomial Theorem by forming 'the 
expansions of (1 +x)n directly for integral values of ft, and then 
"Titing down the powers of x in these expansions. J n the 
case of the coefficient of xB he would have: 
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. 

AI. \ 

1 

1 

1 

whence eVIdently the coeffiClep.t is of the second deglee in n. 
- S{uce It vamshes when n = 0 and also when n = 1, It .must 

ctmtam the factors n. anq (n -1); and, smce the c6efficient JIIl.S 

. 1 1 h 2 . . n(n -1) the va u: w en n= ,It IS -2--

We lllay remark that II we form a dIfference tahle for (1 + x)n thus: ' 
Argument Entry .6.. • 4".' AI. 

o 1 

.1 

2 
x(1 +x)2 . 

3 . (1.+x)3 rc2(} +z)2 
~hen on sllbstItutmg the values /(0) =; 1,6./(0) =x ... m the Gregory 
Newton formula , 

J(n) =/(0) + n6./(O) + l11(n - 1)6.0/(0) + ... 
. 11(n - 1) 2 

we obtal;n (1 + x)n = 1 + nx + -2-'-' x + .. '. 

whICh is the bmomial expan;lon 

. EXA,~rpLES ON CHAPTER I 
1. Form the dlfferen~e tables correspondmg to the folIo\\ mg entrIes: 

6. ." lo!! tan 6 
(a) 26° 10' 0" 9'691 380858 10301 

10" 434054 052 28 
20"' 48724602072 
30" 54043400942 
40". 593618 OUI 47 
50" 64679805197 

26° 11'0: 9·69169997410801 
10" 753 146 188 70~. 
20" 8063]429511 
30" 859478428 3? 



(b) 
T. 

28° 40' 00" 
• 10" 

::l0· 
30· 
40· 
50' 

28° 41' 00· 
10' 

IN TEu,rOLATION 

In • .£ 

.0,479.713113250246 
. 755 651 470168 

798 188562 452 
840 724 526 998 • 
883 259 36;!1'705 
92'} 793072474 ' 
968 325 653 205 

0·480010857 105798 

17 

2. If y = 2.cS - .& + 3x + 1, calculate the valucs of Y'correspondmg to 
x = 0, 1, 2, 3, 4, 5, and form the table of dllferences. Prove theoretically 
that the second dllferenctl l~ 12x + 10 and verily thiS numencally 

3 Fmd, the funchon whose first dliferenoo IS the funcbon 

u;>,.3 + {3x2 + "Ix + 8 

4. Fmd thll' ~ucceS"l\'e differences of 

(a5 l/x, the hlterval belllg um'y, 
(b) cos nx, the interval belllg w 

, 6, Express /(x) = 3",3 +;>,11 + ill + 1 m the form 

ax(x - l)(x - 2) + (3x(x - 1) + "Ix + 8 

by comparmg coefficients 'Calculate the values off('!") for x = 0, 1,2,3,4,5, 
etc, and form a dlffcl'euLe table. Venfy the equatIOn 

f(x) =/(0) + x.1.f!(Jj + ~(x ":---.!).12f(0) of x(x - 1) (oL - 2).131(0). 
2! 3' 

6. Compute the third difference of 1(51) by the formula of § 3, Ex. I, 
from tIle followmg table of entl;les . 

x 51 52 • 
!(x) 132651 140608 

"ertfYlllg the l'eBult hy means of a difference table. 
7. Qlven th'e table of values 

54 
157464 

x - 3 -2 -1 0 1 
Y 16 • 7 4, 1, - 8 

find by means of the Greg6ry-Newton formula an expressIOn for !I as a 
fun chon bf ~ 

8. Construct a difference table havmg given 

log 5·950 = 0·776 701 184 0 
log 0·901.= 0'776 7'T3 802 4 
log 0·952 = 0·776 846 408'7 
log 0·953= O'7~6 919 0028 
log 5·954 = 0·776991 584 9 

and detel'nune log 5·9500. . • . 
9. Let p, g, r, S be successive entries in a table cn;rrespondmg' ~ 

qmdlstant. arguments. 
Show that when. third differences are taken into account the entry 

(D 31t) 3 • 
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correspondmg to the argunient 'hal£-\\ay bet\\een the arguments of f} 

and T IS 
q+T (q+T)'-(P+8) --+ ----~-. 

'2 16 ' 
(De Morgan) 

io. Let p, g, T, S be SUCce5SITe entrIes (correspondmg to eqUidlAtdut 
arguJIlents) m a table It IS reqUIred to Interpo"c 3 entries (curre
spondmg to eqmdistant arguments) bet\\een q and T, uNmg third dIfI"r
enees. Show that this may be done as follows: 

Between q and T mterpose 3 arIthmetical means A, B, and C, a1.(. 
between 3q - 2)1 - sand 3T - 28 - P interpose 3 means A', B', aud C'. 
Then the 3 terms required are A + -lIA', B + -l.B', C of -lIe'. 

11. Determine'log 6 0405, havmg gil en 

log 6 040 = 0·7810369386 
log 6·041 = 0·7811088357 
log 6·042 = 0·7811807209 
log 6 043 = 0·7812525942 
log 6.044 = 0·7813244557 

(De MOIgln) 

12 Usmg tl1e method of § 9, lind sui 24'0'4698005207, l,a\mg given 
the values 

IJ IItn IJ 
2425 0'41071 8852614 
24·50 0414693242656 
24·75 0'418659737537 
25'00 0422618261741 
25·25 0'426568739902 
2550 0·430511096808 . 

13. Given the values 
t. I(x) 

0 858·313740095 
1 869 645772308 
2 880 975826766 
3 892'303904583 
4 903630006875 

calculatef(I'5) by the Gregory-Newton formula. • 
14. The values Qf a fUllctlon cOlTe~pondmg to tIle vailles 1, 2, 3, 4, 5 

of. the argument ale 0'198669, 0237702, 0276355, 0314566, 
0'352274 respectively. Calculate the values of the funttlon \\ iH'n tlte 
argument has the values 1'25 and 1·75 respectively 

15. U smg tlle difference table gwen In § 2, find the value.~ of 
sin 25' 40' 10" and ~m 25' 40' 30' Also verify the answers 

• sm 25° 40' 50" = 0'433353261493416, 
sm 25' 41' 10" = 0'433440644614 711, 
Sin 25' 41' 30" = 0'433528023660896, 
Sin 25' 41' 50" = 0'433615398631 149, 

obtained by taking'x numerically le~ tllan nmty In the fonnula of ~ 8. 
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16. Calculate log tan 24~0' 5", given the values-

log tan 24° 0' 0" = 9 (148 58313740095 
log tan 24' 0' 20" = 9;64869645772308 
log tan 24' 0' 4(J'" = 9·64880975826766 
log tan' 24' l' O' = 9-64892303904583 
log tan 24' l' 20" = 9·649036 30006875 
log tan 24° l' 40' = 964914954134757 

f
oo 

17. The followmg table gIves the values of l(x) = e- 82ds' 
• x 

J.. [(3) 

0·1)0 0·886 226 92 
0·01 0 876 227 24 
002 0·86622957 
0·03 0·856 235 90 
0'04 0·846 248 22 
0·05 0·836 268 1)3 

19 

JaJculate 1(1.) for x = Q·025 by interpolatlQn and verIfy your result by 
lse of ihe fomlllla ' 

,,3 :r5 27 

1(0) - I(J) "" X - :3 + 5~ I - 7.31 +. . . 



CHAPTER II 

INTERPOLATION WITH UNEQUAL INTERVALS OJ! TilE AIWU~iE:-;T 

11. Divided Differences.-We have so 'far asslllued tllat tile 
values of the algument proceed by equal steps, but \\lth data 
denved from observatIOn It IS not ah\ays pObsllJlc to completl' n 
difference table in thIS way. ~or e~aillple, when ItlltlOuollllcal 
observatIOns are dlstu~ hed by clouds thl're arc gaps 111 the 
lecords 

Cons14er the case 111 wInch the \alues 01 thl' argument, lor 
which the functIOn IS known, are unequally tlpacl'd, and 8111'1'08(' 
that the values' of f(x) a~e known for x = (10, X = a~, ;,; = a2, 

... , x=a n, where the intervals (ll-aO' a 2 -n1, (la-az• 
a" - a"~1 ne~d not be equaL In l)lacc 01 orJlIIary dIfferences 
we now introduce wha.t are known as dlV~dcd dtfferences· Let 
us form in SllCC<'SSlOn the quantitIes 

/(a1) - f(ao) = j(a (/) j(02) - ./t°l) = f(a a) j'~:?J:: jh) = I(n ,a ), 
a1 -aO l' 0' (/2-(l1 2, l' aa-a

2 
~ 2 

and so on These are called d~mded differences (If the first Qrrln·. 
Moreover, let us form 

1(a2, a1) - f(a1, ao} j( ) 1(°3, a2} -f(a~ (II) -I( ) 
/12' ~, ao , - a3• ali' (11 

~-~ ~-~ 
These are called dividfd dtiferences of the second order. A Iso let 

{1(as, a2, aJ - l(a2, aI' ao)}/(aa - ao) = 1(0a. a2• aI' ao}· 
TIllS I~ called a dit tried difference of the third order TIle 
diVIded dIfferences of higher orderS are formed in the same way, 
so that the order of a diVIded dIfference is le8s by unity th'ln the 
number of arguments' required for its definiti~Jl1. 

* llivlded dlffelences Imght faIrly he asenbed to Newton, Lemma" The 
term ,laS used firs' by De Morgan, Ihff and Int. Calc (1842), p 550, and afur
wards by OppermanD, Journ. but. Ad. 115 (1869), P 146. Ampere, Ann. tU 
Gergonllt, 26 (1826), P 329, used the name tnterpolalory!undwnB 

l/O 
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Divided differences may be expressed more symmetrically 
as follows: .. 

j{a1• ao) = /(ao) + f(aJ 
00 - ax a1 - ao 

J(<<2' a1• (to) 

= li2-~-aJa~:a~1 + ~(~lJ + ao = a~ t~~l!o + (l~:o~J 
= __ j(':!:.o_) __ + j(al) + __ !Ja2~ ___ _ 

(ao,- aJ (ao - aa) (ax - ao) (a1 - a2) (al - aJ (aa - (lo) 

j(aa,ai,a1,aO) 

, 

__ ' _ __ j(ao) ____ + j(a1) 

- (ao - aJ (ao - aa) (ao - as) (a1 - ao) (ax - aa) (a1 - a3) 

+ /(aa) + j(aa) _ _, 
(ua - ao) (a2 - a1) (aa - as) (as - ao) (as - aJ (a3 - a2) 

In general, as may eastly be SlWI1J'n ,by induction, it du tded 
difference oj tiM pth order tS a symmetrw junctwn oj 1ts arguments 
and i~ in jact the sum oj (p + 1) junctions oj the Jorm 

j{ar ) 

difference-product of Ur with a." at, ~, , Or-I, ar+h ' , "ap 

It is eV.ldent from this statement that' when the arguments reqUlred 
to form a particular divuled dlfference are arranged in a different order, 
the value of the dlvlded difference remams unchanged, "g, 

, !(I!,IJ an_\, a,,_2' ' , " a l• (101 =!(a", a1• a .. ' , " an_I' an) 

Divided dlfferences are arranged in a table oj divided differ
ences as follows: 

Arg'Ulumt, ' Entry 

"0 j{ao) 
j{ao, ax) 

(l' . l(a1) f(ao. aI' (l2) • 1 
j{al, ( 2) ./(ao' a1• aa 

. , 
Us 

as I(as) 
j{a2• trll~ 

I(a'l' aa. ~T 
.1( a,.. aa. as. a,) 

a3 j{Us) /(a2• Us, a,) 
f(ns, tiJ j{aa~ aJ, a f , a5) 

af ~a,) /( as, a" ( 5) 
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The followmg lIlay serve Il.:! an example of a tal,le of Jl\'ldcd 
differences • 

x fix) 

0 132651 
8113 

2 , 148877 158 
8587 1 

3 ,157464 162 
8911 1 

4 166375 167 
9579 

7 195112 173 
10444 

9 216000 

In this example the difference, of the thll-d Ol-der are co·nl<tant. W" 
shall now seQ under what drClllllstances a colullIn of constant dlnd,-d 
dllferen~es IS obtamed 

12 Theorems on Divided Differences. 

I. Ifafunctwnf(x) ~s numerically equal to the Bum of two 
funct~ons g(x), h(x),for a set of values of the argument x, th,n 
any dwided difference of f(x) formed from those values is equnl to 
the sum of the correspondmg d~v~ded dlfferences of g(x) and hex). 

For example, 
• 

f(~, a
o
) =f(al) - (ao) = fq(al }'- ,q(aoH ;I- {h(a l } - h(flOH 

al - (to a1 - ao 

= g(a1, lto) + 1I,(a1, ao), 

and snnilarly for differences of higher or~er. 
II. A d~v~ded difference of c.f(x), where c is a constant fnctor, 

is c times the corresponding dimded difference of .f(x) . 
For example, the divided difference of the first order of cf(x) is . 

cf(al) - cf(a~) = J(a!) - (ao) = cf(a
l
, u

o
) 

. al-aO al-aO 

III. The divided d~fferences of order n of xft are constant 
(where 'II, ~s a p08it~ve integer). . 

Let f(3.·) = x". 

Then f(ao, all = (aon -;JJt)/(ao - a l ) 

= ao .. - l + al aO .. -
2 +. . + at"-.l 
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a homogen:eous function of a()l a1 of degree (n -1). Moreover. 

1(0,0' a1• as) • 
[ao"-l + alaO

n - z+ ... + a1n - l] - [asn - 1 + a1asn-2 + ... + a1
lt

- l ] 

= . ao-as .. 

= (ao .. - 1 - (ls"-l)f(ao - a2) + a1(aO
n - Z - as,,-2)/(ao - liS) + ... 

+ at-Z(ao - a~)/(ao - (t2) 
= (cton - I + azao,,-8 -h. .. + as,,-2) 

+ a1(ao.,.-3 +'uzao"-' + ... + a.2,,-3) + .: 

which is a homogeneous function of ao• al • a z of degree (n - 2). 
In general j(ao• aI' "2.' ... ap) is a homogeneous function of 
ao• a1• as. • . .• ap of degree (n - p), Taking p = n. we see that 
[(ao.~. as • . : " an) is a constant. 

. Corollary: The d~vided differen.ces oj order (n + 1) oj x" are zero. 
IV .. The dividetl d~fferences oj order n oj a polynom~al oj tIM 

nth degree are constant, 
'. ThIS theoreDJ follows Immediately from theocems I.. II .• and 
111.. since the divided difference of order n of each of the terms 
wl\ose degree is less than 111. is zero. . 

V. A divided difference of order r may be expressed as the 
quotient oj two determinants each oj order.,. + 1. 

Consider the divided difference of the third order, 

11.) ~ j(ao) 
~aO.al.a2'uS =..:.( )( )( ) ao - a1 a:o - as ao - as 

_ };"f(ao) (difference-product of ~. as_ as). 
- dllierence-product of ao, ~, as. as 

Now a difference-product .may be expressed as a determin~nfi 
of the kind known as Vandermoude's. thus 

(diff~-P'odUO~ of a,. a,. oJ ~.I~: i~ ~'I 

Therefo're 



24 TH.E OALOULUS OF OBSEHVATlONS 

or f(a1) f(a2) /(a8) 
a1

2 alJ.2 a82 

a1 a l "a 
1 1 1 
als tl23 --;;8 

tll
2 a2

2 aal 

and so 1Il general for ddferences of order hlgher than the third. 
13 'Newton's Formula for Unequal Intervals -Let /(11) 

be a functIOn :whose divided dlfferences of (say) Older 4 vanish 
or are neghgiLle, and suppose Its values for 4 argumclltR 
ao' aI' a2, a3 are known so that the table of dIvided dIfferences 
is as follows: 
Argument Entry 

(to f(ao) 
/(ao, ( 1) 

a1 f(a1) f(ao aI' a2) 
f(al> a2) f(ao, aI' a2, "a) 

/(a2) f(a1, a2, aa) 
. 

a2 
f(a 2, aa) f(a1• "2' da, a.' 

a3 f(aa) 

We may obtd.m the value of the function for any other 
argument 11. In the following way. Begmnmg W\th the constant 
difference whICh IS of order 3, ?Ie have 

feu, ao al> 02) = f(ao• a1• O2• (/a)' (1) 

By.defimtion of the divIded difference of order 2. 

f( u, ao, a1) = f( 00, aI' a2) + (11. - a2)f( u, ao. a1• a 2)' 
and therefore 

/(11., ao• a1) = f(ao• a1• a2) + (11. - a2)!(aO' 01' a2, a/l)' (2) 
..Again oy definitIOn. 

feu, ao)=i(a .. a])+(u-a1)/(u, ao, aJ. (3) 

and substituting in thIS equation the value of /(11.. ao' ( 1) from (2). 

feu, ao) = f(ao.a1}+ (1~ - al)f(o~,al,a2) + (u - ( 1) (11. - a2lf(00,a1.a2>0a) 

Also by definition' fM = f( ( 0) + (11. - aoV( 11., ao): (4) 
or feu) = /(ao) + (11. - 9 0)/(ao. a1) -j, (11. - ao) (11. - a1lf(aO' 01, a2) 

+ (1t - ao) (u - aJ (11.:" (/2)f(ao' ai' aR> as). (5) 
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From the equations (I), (2), (3), (4) the quantitiesfiu,ao.ol'o,,) 
f(u, ao• al}, fiu, 0o},f(u} are now known and :nay be msert;tl 
in the table of divided dlffel'ences thus' * . 
Argument Entr'JI. 

U fiu} 

fiao) 
fiu, ao} 

ao feu, ao, al} 

f.(al ) 
fiao, all f( u, ao' aI' (/2) 

a1 f(ao, aI' a2} 

fia2)' 
f(a1, a2} f(ao, aI' 02' (la) 

as fial, as, a3} 

fia s) 
f(a Zl as} 

as 

Formu'la (5) lllay evidently be generalised to express a 
function whose divided differences of order (n + 1) are negligIble 
or zero, in the form • 

/(11) = fiao) + (u - ao)f(ao' all + (u - ao) (u - 01)f(OO' (/1' a2) 
+ (u - ao) (u - all (u - a2lt{ao> aI' 02' a3) +. 
+.(u - ao) (u - a l ). • (u - ltn-ilf(ao• aI' .. " an). (6) 

This for~ula was discovered by Newton. t 
The first term on \he rIght-hand side of thIS equation represents the 

poll"nomlal of zero degree, whICh has the value !(aO! at tL = ao- The 
first two terms together represent the polynomial of degree 1, whIch has 
the values !(ao) and !(al) at Go and a1 respectIvely, and so on 

The remaInder term whIch must be added to the rIght-hand sIde of 
• the eqlllltion in order to obtaIn str,ict accuracy is In fact 

(u - aO> (u - a1> ... (u - a.,Jj(u, a." 11,. ., a~). 

But this term vanishes if the dIvided dIfferences of order 11 are ngorously 
constallt. 

Ex.-From tM tabZe gwen below to find the entry corresponding to 3'';608, 
x fix). 

ao9q '3989423 
500 

a1 =2·5069 '3988169 -199 
-1499 

a l =5'0154 '3984408 -199 
f 

-2496 
a3 =7'5270 '3978138 

.. In practice the value of /(u) is usually found by Conning the successive 
diVIded dIfferences 111 tJlis wsy, as In the worked-out example below. • 

t Pn:n."p"a (1687), Book rii. Lemma v. Case iI. cr. Ca,!chy, (EU'I!7'U, (1) G, 
p.409. 
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Forllung the successIve dIvIded dlfference~ of j(II), "here lL= 31608, 
"e 'find • 

j(u, ao. at)=j(ao, at, aV= -199, 
j(u, ao>= -500+1·2539'x(-199)= -749'520, 

j(u) = ,3989423-+'3,7608 X (- 749·u26) 

The calculated value-Is thcrefuI'e 0·3986604. 

• 14 The Gregory-Newton Form]1la. as a Special Case of Newton's 
Formula. -The Gregory-Newton formula may be regarded as the spedal 
case of the formula of tlie last sectIon when the mtervals of the argument 
.are equal. 

For m Newton's formula for unequal mtervals suppose that \\e put 

ao=a, at =a + w, a2 =/1, + 2w, ••. , u =a +X10. 

By constructmg a table of dtvlded dlffereuces, "e see that 

j(al)l at) = ~!:.j(a), j(at, av = !.!:.j(a + w), ' 
w w 

.'. j(al)l at, a2l = ~!:.2j(a). 
21w· 

In the same way we find 

and so 011. 

j(ao' a It a2, a~ = ~!:.3j(a), 
31w 

If we now replace u by a + xw, the formula for unequal mtervals oC 
the argun,ent becomes 

• x(x - 1) x(x - IJ(J: - 2) j(a + xw) =J(a) + x!:.j(a) + __ !:.2j(a) + !:.3j(a)+ • .• 
21 31 

• winch IS the Gregory-Newton forniula • . 
15. The Practical Application of Newton's Formula.

In laboratory computatIOn from Newton's formula, we proceed. 
by a method which is really identical with that given above 
(Ex. § 13). Real!angiDg the formula o'f § 13, we see that. 

f(u) = J(ao) + (u - ao) [l(ao' at) 

+ (u - atH./tao, at, a2) + (u -: a2)(f(ao, at, a2• a3) + )}] 
This equation may be written in the form 

J(u) =/(ao>+ (u - ao)vt , (1) 
where {Vt = ./tao, at) + (u - at)t'2' 

~r = rth ~Vided ~d.Ifferen?e + (u ~ ar)vr+~ 
Vn = J(ao, aI' ... , an), a constant. 

The v's are computed in the following order: Vn_t, Vn-I, 

VI' The value 01' feU) is then obtained from equation (1). , 
. . -, 
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E.L.-To find ti,e funchdv. correspondmg to tIle argum~nt 6'417 ill 
t~e followmg difference table. 

"Argument Rntry. 

• ao =:= Ii 150' 
121 

a1 = 7 392 24 
265 1 

a2 = 11 1452' 32 
457 1 

a~= 13 ~366 46 
1117 

a,=21 9702 

u=~'417, va=l, 1'2=24+(6'417-11)1=19'417, 
111 = 121 x (6-417 -.7)19'417 = 109'679889, . . 

.'. /(6'417) = 150 + (6'417 - 5)109 679889 
. =305·416402713. 

~6. Divided Differences with Repeated Arguments.-The 
original definition of divided differences presupposes that the 
arguments conceriled a.re all different. If, however, the 
quantity f(a~ ao + E) tends to a definite limit as E tends to zero. 
we denote .tIllS limit by J(ao• aD}. and slmilarly for divide.d 
differences of higher order. 

N ow suppose that in § 13, u ~ ao- 8111ee the difterenoes of otder 
3 are supposed <;onstant, we see thatj(ao• aD. a1• a2} is equal·tc 
/(ao• a1• eGg. -as). and the remaining differellcesl(ao• aD. a1},l(aO' aD) 
may then be'-calculated just as in the general case when u and aD 
were supposed different. We may now form another set of 
differences by-again taking u = ao- Repeating this method. we 
obtain the following ,table of divided differences: 
ArgU1nMlt. Entry. ~ 

aD I(ao) 
I(ao• aD. a", aD) I(ao• au) 

aD I(ao) • I(ao• ao• aD) 
.f( a';' aD. aD. a1) I(I:!", aD} 

I( ao• ao• a1) aD ,I(ao} o· 

.l(al)l'a1) 
f(a~. all aa) 

I(ao• al)l ~1' aJ 
a1 /(a1) 

/(ao• a1• a2• as) . /(a1• aa) 
f(aJ f( a1• aa. as) 

. 
to as 

I(at , as) 
as l(a3) 
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In terms of these divided differences with repeated alguments 
the formula of Newton becomE1s 

((II) =f(ao) + (u - ao)f(ao• 'ao) + (u - ao)V{flo' ao• a,o) 
+ (u - ao)~(ao. ao' ao. (to) + .. 

• This formula will be used later to obtain an exprefosIOn for 
the derivatives of a function ill terms of its divided dlfferencl's * 

x 5 11 2~ 34 42 , 
Ex.-Gtten the ,values f(x) 23 899 17315 35606 68510 to find Al") 

~n terms of flowers of (x - 3) 

Constructmg a table of dIvIded dlfferences and extendmg It to mdude 
repeated arguments for x = 3, we obtam 

x f(,) 

42 68510 
4113 

34 35606 100 
2613 1 

27 T7315 69 
1026 1 

11 899 40 
146 1 

5 23 16 
18 . 1 

3 -13 8 
-2 1 

3 -13 6 
2 • 

3 -13 

Applymg Newton's formula for lepeated arguments, the reqUJr~d 

value is f(x) = - 13 + 2(x - 3) + 6(.c - 3;2 + (x - 3)3. 

17. Lagrange's Formula of Interpolation.-Let fix) be 
the polynomial of degree n whICh for values ao• al • a2 • ••• '(In 

of the ,argument x has the values f(ao), f(a1) • •••• .Aa,,) Ie
spectively. By th~ definitIOn of dIvIded differences, we have 

((ao, a1• a2 • •••• an. x) 
. f(x) +' j(ao) __ .-,,--_ 

(x - ao)(x - al) ... (x - an) (ao - x)(ao - a1) ... (ao - an) 

+ /(a1) + 
(a1 - x)(a l - ao) ... (a1 - an) . 

~ f(an ) • 

(an - x)(an - ao) ., . (an - an_I) 
'. § 37. 
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Sinc~f(:t') is a. polynomial of degree n, its dIvIded dlff;rences of 
order (n + 1) are zero, i.e. . I . 

"./tao, al a2,· • • an, x} = 0 . ' 

Arranging the factors of the denominators in the above 
fractioos so that 'the first factor in each denominator IS of th~ 
for!ll'(x - ap ), we obtain 

./tx) 

_ f(ao) 
- (x - aoHao - a1)(aO - a2). • (ao :-a;.) 
+ f(a1} 

(x - a1)(al - ao) .. (at - au) 

• (A) 

which is Lagra:nge's formula in a form suitable for computation * 
Another way of writing this formula is obtained by multi

plying both BIdes of e.quation (A) by 

(x - ao)(x - at)(x - aa] . (x - an), 

{B) 

I~ is important to·note that when a set 'Of experimental data obey a 
law wl/ich can be expres..<en algehralcally as a polynomial of degree ", 
then not Ipss than ('II. + 1) ob'elvations are required in order to cnn.truct 
tlle polynomial If only 'II. value~ were used, the resultmg polynomial 
"ould be IIf degr~e ('II. -1). Bpfore applYing the" Lagrange formula It I~ 
therefore necessary to ascertam the order of the diVided dIfferences which 
are of constant v~lue and thus tinrl the proper value for n. 

• , x 14 17 31 35 
Ex I.-Gwen lhe mi,61'S (x) ~8'7 64.(). 44.039.1 to cakulate the 'Lalull 

o( f(.£) forre<ponding to x = 27 

•• T,agrange's formula "as Jir~t pubhsheil in hiS ltt;f)1IJJ lUmmla,res mf' les 
matMmahqUf8, In 1795, repnnteilm his lEt,vru, T, p. 286 • 
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Applying formula (A), we obtaill 

f(27) 

(27 - 14) (27 - 17~ (27 - 31) (27 - 35) 

68·7 
(27 - 14)(14 - 17)(14 - 31)(14 - 35) 

64·0 
+ (27 - 17)(17 - 14)(17 - 31)(17 - 35) 

+ _ _ ___ 44·0 _ _ 
. (27 - 31) (31- 14)(31 -17)(31 - 35) 

39·1 
+ (27 - 85)(35 -'14)(35 - 17) (~5--:3J) 

f(27) 68·7 64·0 44 0 39 1 
4160 = - 13923 + 7560 + 3808 - 12096' 

'. f(27}= 49·317 (approx) 

The.reqUlred value 18 49·3. 

E.L 2-Gtvel~thedat((, f~) ~ ~ 122 1~7,toformtheCltblcfunCftQnofx: 

Applymg formul1 (B), we have 

(x - l)(x - 2) (x - 5) x(x - 2)(x - 5) x(.,; - 1) (x - 5) 
f(x) = (0 _ 1) (0 - 2) (0 _ 5)2 + 1(1 _ 2){1 _ 5)3 + 2(2--=iTi2 _ 5) U 

x(x-1)(x-2)147 
+ ~(5 - 1)(5 - 2) 

=x3 +x2 -x+2" 

18. An alternative proof of Lagrange's formula by the 
use of determinants is the following: 

Let P n denote a polynomIal of degree n, and put 

p .. -=A + Bz+ Cx2 + . .. + Lzn 
=f(x). 

SubstItuting in succession the values ao' al •• •• , an for x, we 
obtain 

f(ao) = A + Bao + Cao
l + 

f(al ) = A + Bal + eftt" + 
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ElIminating A, B, C, :,. . from these equations determinant-
ally we have 

0= !Pn j(ao} j(a1} j(as} · j( ... ) i 
1 '1 1 1 · 1 
x ao • ttl l'2 

.::. I x2 a 2 a 2 a II 
0 1. II 

IX" an an 
0 1 a2n · ann I 

ExpandIng this determInant according to the elements of the 
first row, we see that 

\ I =/(ao)! 1 
ao III .an Ix 

ao~ a.~9, : • a~21' .,' ~9 
ao" 4t~.. . a,.n I z" 

1 ..• 1 

-j(al) 1 1 
. 

1 + .. +( -1)·j(a.) 1 1 ... 1 I 
z ao a. .a" z Uo •. a"-l 
aP a,: a2

1 • • an'J aP Go' ••. atlt-l 

: zn ao• .a~JI a.n .X" (fo" • • 4-n- 1 (1) 

The determinants in this equation may be represented 
as difference-products. The coefficient of j(ao) is the differ-

, ence-product o,f x, .a1" "an, the cOllfficient of j(a1} is the 
difference-product of x, a." as, . . ., a", and so on. 'Ve may 
write 

1

1 1 ... 1 

~o a,1 " • a~ 
aD" at" ... a...'A 

a. 0'"0 ns· . Uft ag 00 0t . aft 
=-11 1 1 ... 1 ,=+11 1 1 .1 /=-.,. 

I~" ~n" .;,. ...... ~.I k ... ;,. ;," .. ,;,.. 
~ e. the coefficient of p .. is equal to the difference-product of 
a3• a1,. , ., a,,: it is also equal to miI].llS the -dlfference
produc\ of a1• ao• Oz ••• 'J a .. , or to plus the difference-product 
l)f ag• 0 0, a1, • •• , an, and so on. 'If we now divide throngh-

. out by the coefficiE'nt of p .. in equation (1), we obtain the 
re~~It : 



f( ) (x - ao)(x - l/l) 
+ an (an - aO)(a" - a1) 

which is the formula required. 

There IS an mfimte number of fUllCtlOUS of x, each of "blcb has tIle 
values f(ao}, f(aJ,. ,f(an} at ao> "I' ... , an Ie-pI" lively I n the 
practICal apphCl/.tlOus 01 mathematlC.-, ho" e' er, "c cou>l<ler only fUlltlIOll", 
SIIch that If ao> aI' . ,an are Bulhcleutly du-/, tugltl.er, all' Onto 01 the 
functions may be represented with toleral,le accllIacy by tl.e 1'0)YIlOlIlI<11 

Pm for the lange of values mcluded bet ween' l/o> "1" • • a" '1 he 
formu)a may thll~ be used for int<'l poiatlOu. 

19. The Remainder Term iIi La~ange's Formula 
of Interpolation. *-Let f(x) be a functIOIl of the real 
variable x defined in au intenal to whICh belong the values 
1:0, Xl" ., Xn, and possessmg in this mterval the derivatIve 
of order n 

Consider the function g(x), where 

g(x) = fix) 
f(xo) 

f(x,,) x" .. X ,,-1 
n 

X .1 
Xo 1 

Xn 1 

The determmant vanishes for the values xo' Xl' •. 'J :r". By 
the dlfferentla1 calculus we see that since g(x) vamsheR for 
(n + 1) values of x, its derivative q'(x) vanishes for n values of 
x, the second derivative for (n - 1) values, and 80 on; the nth 
derivative vanishing for one value of X in the intl'rval Thus 
there exists a value x intermediate hetween xo' x)' .•. , Xn 8t1c,h 
that g<n)(x) = O. 

Forming the nth derivative of the determinant by diffl'T· 
entiating the variable elements of the first row, we have: 

* Pea.no, Scruti offert. act E. d' O",dw (Tunn, 1918), p. 333. 
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f"(x) 
. 

1I.! 0 ... 0 o =,0 . 
• f(xo) xn X ,,-1 ••• Xo 1 0 0 

f(x lI) x" .. X n-l .. " X .. 1 

I)' we,ex~and this determinant according to the elements of 
the fir4 column and solve for /(xo) in the resulting equatiOn, 
we find . . 

[(xo) = (xo ~ x2) (:1;0 - xs) '(~o - Xn~ {(Xl) 
(Xl - X2)(Xl - Xa} .. (Xl - Xnr ' 

+ (.To - X12J~ . .;:~_=-(Xo - X,,) f(x ) 
(X2 - ..I l )(X2 - ::!fa) • (a'2 ... Xn) 2 

+ (XO - X 1)(XO - X 2) • 

(X" - Xl) (x .. - X2) " 

(:co - Xl) (XO - X2) • , • (XO - Xn) ¥In)( ) 
+. " 11. 1 • • J' X, 

where'x is, some number intermediate between Xo. Xl, .. ,' X,. 

This is Lagrang~'8formul~ with a remainder term,-

• EXAMPLES ON CHAPTER II 

1. If f(x) = ~. fiud the divided dtfferences/(a, b),/(a, b, c), andf(a, b, c, tl}. , ~' x 

2. If f(z)=g(x)+h(x), where g(x)=x' ,and. h(x)=&', verify tha; 
(5, 7,.11~ 13)=g(5. 7,11, 13) + h(5, 7, 11, 13~ 

3. Givtln the values' 

X 

f(x) 
4 

48 
5. 

100 
7 

294 
]0 

900 
11 

1210 
13 

2028 

form the tablll ~f dIVIded dIfferences and extend It to incl1l,de ,the valUe!! 
of the function ,fot x = 3 and x = 14. , . 

4., Find the function /(x) In each of the followmg ~ • 

(a) x il. 13 14 18 19 21 
~~ 1342 22!0 2758 5850 6878 9282 

(b) x' 16', 17 19 23' • 29 31 
f(x) 65536 8352} 1303~1 279,84i ~07281 ,923521 

by D1ea!ls of a'table of dIvided' differences. 
(0311) , 4 
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• 

5. Calculate /('1), gIven the values 

x 0 2 3 6 7 
f(x) 658503 704969 729000 804367 S30584 

9 
884'(36 

11 A.--umlllg' fix) to be J'l funclion of the fpurth d,'glee III X, find the 
value of.f(19) I',om the values . 

x. 
fix) 

11 
14646 

17 
83526 

21 
194486 

23 
219846 

3t' 
923526 

7 The value.~ of a cubi~ functIOn are 150, 392, 1462, 2366, nnd 
5~02, corresppndmg to the values of the algtllllent 5, 7, 11. 13,_ 17 
respectIvely. Apply.the Lagrange formula to find the 'functIOn "her!' 
the argtlIllent has the values 9 aud 6 5 r~spectlvely 

8 Fn\a an expresswit f9r the fu~ction 'm eRch of the example'B (6) 
and (7), usmg the Lagrange formula of interpolatIOn. 

9. J.f 'I'(x) = f(x)g(x}. 

obtall). the formula (analogous to t./)lbmtz's formula. for the nth derJv~t,ve • 
'pf a p~oduct) -. • 

•• J , " 

'I'(x". Xn_I' ( •• xol ~ ~ [(xn•· ., Xk)g(.I<~' •. 2"0) 
'=0 

. (Steffel18en ) 



CHAPTER II~ 

• CENTRAL-DIFFERENCE FOR~fUI.AE 

20. CeDt~al-Dift'eren~e Notations,-In thIS cqapter we 
spall oonsider certain formulae of interpolatIOn which employ 
differenoes, taken nearly or exaotly from a: slDgle horIzontal hne 
of the differeqoe table In order to eXl!ress these sImply }t IS 
oonvem~nt to modify the hotation of the calculus of dIffereno(:!s 
• Several systems ~f modIfied no~atIOn are m use., One, 

, whioh, we shall frequently employ, WdS mtroduced bI W. F. 
Shevpard'" and' ,,;illlle' understood from the follow,mg dlffei'enoe 

,table It is. based on a symbol ~ whioh may'be regarded 'as 
~quiv'alent to LlE. - ~:where E as usual denotes the' transiti~n 

.from any number to the number next below. it m the dIfference 
table, '!I.e, E = 1 +A: 

Sinoe' Il=:LlE,-i and'thel.'efore Ll=:IlEi, we may write 
Lluo ='Ilui , Ll1uO = IlBu1, Llsuo = 1l3ut • " Ll"uo = Bnu;, and so on. 
Hejvritmg the ordinary dlfferenoe table, we obtain 

Argument ,Ell/'ll, 

a - 210 "_. 
Il~ , -t 

a 

/i3u_ 1 

,Ilu:~ oSu 
-i 

~IU 0 
oUj 

oSu 
i 

01 ' u1 
" 

.01\ oSui 
a + ~w ' us. o2ua li'ua 

If w; suppose each row of the difference ~able to be numbered With 
the suffix p of Ille corl'espouding entry up' or, In the case of.3 row 
situated lTIJuway'fl~tween t\\O (·nlr'ies up Rlld up+l' to take the number 
p + t, we see that 6,2ru()J the dlffe1'tlIlc~ of even order of 11()J are repre
sented \II the centl'al-dlflercnce notatIOn by /l2Tu" smce ·they ar.e· sithated 

• -: Pruc. LO'IIdm ~!ath. Soc. 31 (1899)1 Ii 459. 
35 
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III the lOW 1. TIle dItfmences of otld order ,:l21+1/10 ,;'c r"ll/'eJ.cnle<l Ly 
the expressIOn /)2r+lur +t ;;ll1ce they he III the 1'0\\ , + k . • 

It is often reqUIred to find the antllluetrc mean ot t\\O 

adjacent entnes m the same coillflln of (l!fferellceR. In the 
o system ot notatIOn we mdlcate thIS mean by the symbol ,L 
Thus p.ouo IS defined to be Hou _ i + ou;), p./)8UO IS ~(0311_ i + 031l~), 
and so on for the mean dIfferences at the other entlles. 'J Ill' 
mean differences may be mserted m the tallle to fillm the ga}J~ 
that occur between the symbols of the quantities from wlllch 
they are derived. 

In another notatlUn \\ bleh was suggested by SA. .• Toffe * thl' 
syml;>ol &: IS used mstead of 0 The notatIOn 18 Illustrated Ill- th .. 
follllwmg dlffeI'en~e table 

• lrgullIent, Entry • 
a"':'2w '110 -2 

a-w '110 -1 

&'110,-1 
• ,&au._1 

'&'110-1 ,&8'110_1 • 
'a 'Uo 

:~Ul 
,&au.o '&'uo . &,3'1101 

a+w '110,.1 ,&2u1 
,&'U! 

a+2w '''2 

21 The Newton-Gauss Formula of Interpolation.
Supp6se that a functionj(a + xw) is given for the values. 

a.,.w, a, a+w, a+2w, 

I of its argument. 
If in the Newton formula for unequal intervals \\e taJ...e 

ao=a, a1 =a +w, a2 =a -w, aa =a +. 210, a,=a - 2w, and so on, 
and denote a + xw by u, we obtain 

feu) = j(a) + (u - a)j(a, a + 10) + '(u - a)(u - a - wlf(a, a + w,a - u) 
+ (u - a)(u -a -w)(u - a+ w)j(a, a+ w, a - w, a + 2/1) 
+(u-a)(u. a-w)(1b-a+w)(~-a-2w) 

f(a, a+w, a-w, a+ 2w, a- 21/) 
+ (u ... a)(u - a - w)(u- a +w)(u- a - 2w)(It'- a + 2w) 

j(a, a + w, a - w, a + 2w, a - 21lj, a + 3u,). 
+. . .' (1) 

• Tra7l.8, Act. Soc, Amer, 18 (1917), p ,91: 
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The dlVlued dJ)l'erences con tamed in this equation may be 
wrl~ten in the ordlDary notation of differences as tollows: 

/(a, at w) = !L\j(a), 
w 

. . 1 
/('1, a ..,.w: (t -w) = 2TW2L\~{a -w}, 

1 
f(a, a + w; a - w, (t", 2w) = 3t-3L\~(a.., w), 

.10 

etc. 

Equation (I) thus takes the form 

. x(x-l} 
/«(t + xw) = /(a) + x,;V(a} + - 2-1- ~~f(a - w) 

(X+l)X(J:-l}A31:( . ') + - llJ1a-u 
31 • 

(x + l}x(x -l)(x ~ 2) AM _? .} + ,41 llJ\a _1C 

(x + 2)(x + l)x(x - l)(x - 2) L\5'j( 2) + 5! . a - w +, , (A) 

This formula, which IS one of tlw 6>TOUP of furlllulae known to 
Newton, I; often milled the Gauss formula' 

'The ditferences used in tIlls forlllula are a_ nearly a. possible m the 
hOluuutaI hue tlnough 1(0,) III the ongmal dlfierencE! table. The formula 
IS therefore convement tnr nee when th& \ alue of the argu'ment for" hleh 
the function IS required IS neal' the middle of the tahulat~d vahws This 
forllluia may be represented more simply by usmg the aynlbol (n)r to 

,denute the bmomral coeffieleut 

_n(,-'I_-_l-=-)--,-(I---,I.-_2,--) -:-----!(_n_-_T_+_l-'-), 
Tl 

iiO that It may bl' written 

1(0, +xrv)=J(a)+xt:.j(a) + (P;)~6.2J(a - w) + (r + 1),t:.3f(a -12) 
+ (x+ 1).6.'.1(0, - 2u') + (x+;'!)56.5f(<! =- 211')+ •• (B) 

22. The Newton-Gauss- Backward Formula.-Frolll the 
for;llula of the last lIection atlOther ma.y l~ derived whICh 
is .'often' used when x is measured in a nega'tive dirrction 
from fin}, i.e towards decrea.sing values of the argumt"ut. 
Suppose we "Tite f(a - l'1l'} 10 the form/fa +:l'( - w}: and ~hang4il 
thl:' SIgn of 111 in the digcus~ion of the last sl'ctioI,l The. 
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order of the arguments' and correspondlng !-!Iltnes I~ theu 
reversed. Instead of af(a) In the ~e\\t.oll,-Ga.UbS lormul.L Ill' 

now have !(a - u) - I(a), or - af(a - w}, a 3j(It'_ 10) 11.1. till' 
abo'Q iormula bl'comes - a~\a - :!w), tl/'j{1t -.:!II') becomes 
- a?f(a - 3w), a.lld so on. We thus obtam the foqllul<l 

f(lt - X;t,) =f(a) - x!1j(a -1/') + (.:t)2a~(11 - 11') - (I. + 1)A3/«(/ - 21/') 
+ (x + 1)4ay(u - 211') - (x t 2)sa':!(o - Jtl') + ., 

whwh has been called ,tbe Newton-G(/U88 fOI m alit jor 1J,fgll/H e 
~ntet'polatwn, or the Newton-Guuss uac!.,lf a1 d furrllula. 

23 The Newton-Stirling Formula.-In the Gau;;s lurllluM 

f(a + xw) = f(a) + xaf(a) + gx(x - l)a~(1t -11) 
+ i(x + l)x(x -l)a~a - w) 
+ -:h(X + l)x(x - 1) (x - 2).1~trt - 211') + .. , , . 

. the terllls may be learrdnged thus: 
. ~ 

'f(a + X?") = f(a) -1- x{.1f(a) ~ ~ay(a -11.)} 'I-_ita~(f~ - w) 

a'(x2 12)" 
+ - ...:'-.if-ta~l\a - w) - !a~fl - 21")} 

a;2(:t2 _ 12) 
+ 4' ay(a-2zl')+., 

!il,uppose we replace the differences qf even. order within the 
bt~ckets by differences of odd order, using the Id-entltles 

\, 
" a'1(a - w) = af(a) - .:l.t(a - 10), , . ) 

• \ Ay(a - ~n') = A3f(a -1/') - .1~l\a - 210 , 

and so on,\ \V e obtam the. r~sult • '. 

\ Af(a) + At(a..!. w) x2 
f(a+X1~') =f(ll( +X---i--~ + 216'1(a -w) 

+ :{~2 - 1:2 \~t(a - 10) + a~t(a - 2w) + ~{X2 -12JaYCrt _ 2w) 
31 ~. 2 4' . 

x(x2-12)'(x2- 2) A5f(a-2w)+A~l\a-3'I/J)' '. 
c!- 5' - 2 

,x2(x2-12)(7:2!...2)A6fi( ~3")' (A) + .~Jla L~ +_, , 
6! ,. 
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. This fo~mula. whlCh was first given by Newton,* was after

\\ ,I.f(ls studied by ,Stirling t and )s called the Newton-Stirhng 
furmu7a. •• • .' . .' 

The mean.dllferences't{A!(a) + ~f(a .. W)},jlA3f(a - 210) + A3f(a ... w)}, 
etc., are completely synlllletllcal with regatd to mcteasing and decreasmg 
ngllnwnt.. This f!let enabtes liS to express the fornmla wry conCisely 
hy means of the central-d,ifl'erence nolation of § 20 : 

• . x2 x(x2_ I) '9'2(.,2_'1) 
u. = 110 1: XI-'0Uo + 2102

110 + -3-,-1-'03Uo + , 4 , o'uo 
., . :. 

x( ,2 - 1)(x2 - 22) .1)5 (B) 
+ 6! ' I-' Uo+··· 

whele 1-'0Uo = ~(OU_l + OU~), 
/L03uO ":: i(03a_l + 03U!), 
and so'on. 

24, The Newton-Bessel Formula.-In the Newto}l-Gauss 
" formula 

j(tH xw) =j'a) + xl1j(a) + ~f(x -'l)ay(a - tv) 
+ Hx + 1)x(x -l)a:y(a - w) 
+ A{x + 1)x(x:.... 1) (x - 2)a~(a - ~U1)', 

let us ,substitute for !I(a}, !ao/(a - w). !a~a - 2w). etc, their 
· values obtained from the iden~Ities . 

. j(a} =;t{a + ~l') - aj(a}, 
ay(a - 1o} = ao/(a} - a3j(a - 1");. 
a~(a -.210) = a~(a - 10) - a5J(rt - 2~). 

· . etc. 
The above equatIon becomes 

f(a + X1O) = !Ij(a) + j(a + 1o)} +. (x:- !)aj(a) 

+ x(x -l)l{a2A'a ... 10) + ao/(a)} + x(x -1) (x - !)i:y(a _ w) 
, 2!"2.1\ 31 • 

, : + (~+ l)x(x ~/)(x ~ 2). Ha~~ _ 2w) + ~4j(a _ ~)} + .. ~ CA) 
</' ' 

which'is syrtlmetrical wit'b respect to the arguml:'nt (a + ~w). 
This formula. which w!ls first gIven by Newton ~ and later 

· used by Bessel, is called the,·Neioton-Bessd jormulct. 
•• Newton Methodw zi,{f~rential06 (1711), Prop~ Iii. Case 1. 

t StlrllDg: Method us Pt.ffertnt.al~ (1780), Prop. ·xx • 
. t )fethodu8 D.{fer<ntlalu (1711), Prop. iii. Case ii.; Sti~hng, JldMd!U 

: Dljferetlhalu., (1 ;30), Prop. xx. Case il. 
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If in this formula we wnte x - ~ = y, It becomes 

I(a +!1o of- Y1o) = H,f(a) + f(a + 1o)} + ydf(ll) 

+y22~ -l-!{do/(a - u') + a:f(a») + Y(Y~~ l) d~/(a - u') 

( 2 1) ( 2 _ 9) • ' 
+ y -"4/ .. Hd4j{a - 2u') + d~a -11'») +. (I~) 

25. Tbe Laplace·Ever,ett Formula.-When it is l'equiJ'cd 
to interpolate between f(a) and f(a + w) in the con!>tructioll 
of tables by the subdivision of intervals, statisticians often u'>e 
it formula due to Laplace and Everett,* whICh may be writtf'n 

u",=[g+ g(g~~ 1)o2+grg~-=!i,(g2-4)/)4+ .. Juo 
[ 

x(x2-1)/)2 a.(a,2-1)(x2-4)o4 ] 
+ x + ::l' + 5! • + . ,uI ' 

• • 
where u'" denotes f(a + xw), a~d g denotes (1- x), and where as 
usual 82 denotes diE-I. Thus for u!' x =!, ~ = 1-! = l 

This. formula involves 0111y even central differences of each 
of the' two middle terUts of the senes between which the 
interpolation has to p~ made. 

To prove this formula we elIminate from the N ewton-Gaus'! 
formula 

I(a + xw) = f(a) + xdf(a) + (x)2d:/(a - 10) + (x + Ihd~(t -1/') 
/ + (x + l),d4j'(a - 2w) + (x + 2)sdOj(a - 210) + ... 
-

the dlffere.vces of odd ordet: by means of the relatioDs 

df(a) = j(a + w) - f(;). d3f(a - w) = d~(a) - d~(a - w), 
d 5f(a - 210) = d4j{rt - u') - d~t«(/ - 211') ... 

, 
The Newton-Gauss formula becomes 

f(a + XII') = f(a) + x{f(a + w) -f(l1)} + (x)A:/(a - u') 
+ (x + Ih!d~(I1) - d 2f(fI -11')} + (x + l),d4j'(a - 211) 
+ (x + 2)s{d4j'(a ~ 11:) - d'f(11 - 2u'): + .. 

Using the relation. (p + 1 )q+] = (P)q.l.l + (P)q. thiS equatlOD 
!Uay be Wrltten 

• Laplace. TM<rru! anal. des Proo, p. 15, Everett, Bnt • .Assoc. Rep. (1900). 
P 648, J I A 35. P 452 (1901). Tables of the co-efhuent& have been pubh,hed 
lll.T/acts fat Comp~ltfrs. No. V. 
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I(a +xw) = (1-x)f(a) +xlta + w) +1x + Iha~(a) - (X)3a~(a - u:) 
'+ (x + 2)6a'.f(a - wY- (i + 1)5a'.f(a -210) + .. 

Introducing central'dlfferences ~nd rearranging the terms. 

,f(q+xw) = (1 :-xlf(a) - '(xho~(a) -'(x+ 1)604/(a) - ... 
+x/(a+w) + (x+·1)3o~a+w)'" (x+ 2)604f(a+vJ) +. 

If we npw transform the coefficijmts off(a) by mea.ns of the 
relation 1 - x =~. so· that (x)s = - (~ + 1 )3' (x -t n; = - (~ + 2)5' 
et,c .• we have . 

f(a +xw) =lj{a) + (~+ 1)38~(a) + (E + 2)504J(a) +. .. . 
+ xl(a + w) + (x + 1)3o~{a + w) + (x + 2)504j(a + w) +. 

~hich is Everett's form'llla for equal· inte'rvals oj lite argument . 
. 26. Example of ,Central-Difference Formulae.~The fol

lowing example illustrates the various centraI-differenceformulae:t 
To C07np1,te the value of lOYIO cosh 0'3655, hamny gtven a table of vallles 

of l~glO ·cos.h x at tlltervals 0'002 of the argument. 

Forllllng the d~tfcrence table, we see that the dillerences of the tlurd 
order are approximately constant. The differences of the fourth order 
lull, however, be taken ;nto account SIllLe such a difference may affect 
the accuracy of the last figure of the lesUlt., 

Argument. Entry. 
• 0·360 0'Q275 5462 3980 

30061 3823 
0·362 27655237805 1528035 

302141860 -2122 
0·364 281 57379"665 1525913 -q 

3036677'73 - 2135 
0·366 2$461047438 1523778 -3 

305191551 -2138 
0·368 287 6623 8989 15216tO 

306713191 
0·37(t- 29072952180 

In Everett', formula put x=i, E=}, and 110 =00281'57379665. 

/(0,3655)= }(281 57379665)+ (..£ Th)(152' 5913) + nih( -13) 
+ i(284 6104 7438) + (- ri ... )(152 3n8) of! 8 I ~.! (- 3) 

= 28385130494·75 - 14 2937'59 - 0·13 = 283 8498 7557 03. 
• log cosh (0'3655)=0'0283 8498 7557 • 

* Corresponding formulae for unequal ink'rl'&ls have beoen given by R. Tod
hunt~r. J.l.A. 50 (1916). p. 137, and by 0.1. LJdstone, Proc. Ed.n. Math Soc. 

• 40 (1922)1 p. 26. • 
• t l' A valuable set of wotked-out exainpl~s IS gl,en by L J ComrIe 1& the 

Naulit'cal Allllanac for 1937. pp. 93\-934, ' 
, ; - . 
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. In the Ne,vton:nes,,'l formula 'put X= ~ 

( 
281 (7379665) 

f~O 36(5) = 2 -+: 2846104 7438 + 1 (3036~ 7.773) 

, l( 152 (913) 1 '8 
+ (-:J.h '+152 3778 -H,,(-2135)+1r0i,,~(-13-3) 

= 28309213551 /) + 75916943 25 - 14!%4 2"7 + 16 68 - 0: 14 
=2838498755702 

log cObh (0·3655) = 00283 849R 7557 

By the Newton-Gauss formula 
{(0'3655);=; 281 5737 9665 -h t(3 0366 7773) + ( - J'J (152 51;13) 

+(-I~i<)(-2133)+2Jh(-13) 

'= 281 57379665 + 2277 50829·75 - 14 3054·34 
+ ll6·i6 - 022 

, = 2e3 8498 7556'95 . 

. log cosh (0'3655)=O'02!l3 84987557. 

By the Newton-BttTlmg formula 

-l. ')-'81 7379665 }.II ;3021418flO) "1" ,\03650 -2 5 +-'"\+303667773 +J"( .)25913) > 

.+-·rfr .. )~ -2135 ~-"lJn -13) ( - 1( ..... 2122) ( 2J)( 

=; 281 5737 9665 + ~'27\7 8612 38 + 12916303 
. + 116'40+'13 

= 283 8498 '7.556 94 . 
. ' log, cosh (0'3655)=00283'84987557. 

27. The Formulae of the preceding S,ections may be 
expressed more "Concisely' by means of the Central
Difference Notation of §.20. 
• E'Verett's formula: 
u'" = ~uo + (~ ;I- 1 )302uO + (E + 2)o04uo "'" + (~ +? )2T+l0Z,Uo + " • 

. + :001'+ (x + 1)3Q2u1 + (x + 2)504ul + .. + (x + ?'hr+1OZrut + 

The Newton-Bessel formula: 
_ ( ) , 2 ~(x-1) (x.!!) 3 

U"'-fL¥!+ x-i oU~+(J,)2fLO u!+ - 31, - SUi 

( 1) .4.~ (x+1)x(x-1)(x-2)(x-~).5 
+ x+ . 4fLo- th! + 5! 0 u1 + ... 

, x-!~ 
+: ' ,+.(x + r -lhrfLc'l2rUi + (x' + r -1)2T 21' + -Io2T+lu~ + •.• . . 
The Newton-Gauss formula: 

u.,=uo+Xc'lU, + (X)202uo+ (x+ 1)ac'l3u ! + (x+ 1)404uo+ (x+,2)so5ui 
. +, .. + {x + ~ -1)2Tc'l2ru o + (x + rhr+'102r+1u! + •• 
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The ~Vfwton-Shl hng fUTIllIrla: '. 
x2 x(z2-1). x2(x2 _12) 

u", = Uo + x,J.Ouo + -02UO + 1L03u + ,. 04u 
• " 2' Jl r 0 4l .0 

x(x2 - 12) (x2 - 22)' 5 X2(X2":' 12) (x2 _ 22) 
+ 5!. /Lo Uo + -- -- -- 6 r-- (,Guo +. . . 

.... ~ {(x + ;'hr + (x + l' -lh.}tj2ruo + (x + rhr+J1LQ2r+luo + ... 
N'ewton-Gau,s bllcl.wa1'd.fo1'mula . 

'U_o; = Uo - xoud + (X)2.52uo - (x +.1)a03U_! 
, + (x + 1)4Q4uo - (x + 2)605U:~ + ... 

;f- (x + l' - :L)2r02ruo- (x + 1'hr+tIl2r+lu_~ + 

28. The Lozenge Diagram.-W 6 shan now give a mHhod 
wInch enables us to find a large number of formulae of 
jnterJlolatlOn. . , 

Let (P)q denote the quantity ,,(;_ ) " and 'let U T denote the 
, lJ· q • 

entry f( a + 1'10). We obtain at once the relations 
• • (P)q = (p + l)q+1 - (P)q+l' '(1) 

-Aqu _ r+t - ~qu _ ~ = Aq+1u -T' (2) 

and, combimng these equations, we see that;. . 

(p)~{AqU_r+t - Aq,L r } = {(p'~ ~)q+t ; {p)q+t}Aq+l¥_r. 
or 
(P)qAqu_ r + (p + l)q+tAq+~-r'" (p)qAq~-r+t + '(p)q+tAq+lU_~ . (3) 
Suppose we arrab.ge these tenus In the form of a "lozenge v so 
that the'terms on th~ left-hand side 'of the equatIon lie along' 
the two upper sides :of the .lozenge and the terpls of. the right-. 

q 

()".-~~ 

(P+I)q+,} 
Aq+~_; 

(p)q+1 • 

~)~.;~;/ 
FIG. 2. ' 
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hand side along the lower sides. 'Ye obtam the above diagram 
In WhICh a Ime directed from left to right joining t\\O (lUantltlt'8 
denotes the additwn of those quantities. . 

Equation (3) may be expressed by the statement that: w 
tra1Jell~ng from the left-hand veTte:r;. to the right-lwnd vertex (1 
the lozenge in the dw,gram, the sum of the elements which he 
along the Upp~1' route is equal to the sUln of the ele7T£ents which be 
along the lOVJe1' route. 

It is eVident that thIS statement may be extended. for 
ekample, let us place in contiguity the lozenges correspond
ing to 

(;:~) (;:~-1) (;:~) 
1'=1 1'=0 1'=1 

so that the upper vertices of the lozenges, whICh are of the' form 
(p)qAqu_ r , form a sort of dIfference table: 

(nhA1Ll 
(n)2A2u_ 1 

(n -l)IAuO 
We obtam the following dIagram' 

FIG. 3. 

ApplYIng the rule gIven by equation (3), it ~s eVident that 
the sum of the elements along eIther of the followmg routes I~ 
the same: , 

. 'Ito +\(nY1Au_ 1 + (n + IhA2u -I + (n + l)aA3u -1' 

uo+ (~)lAuo + (n)2~2u_l + (n + 1)1A31Ll' 
110+ (n)IAuO + (n)2A2uo + (n)3A3(I_l 
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.Since uo+(n)lLluo=u1T(n-lhLlu()J we may form three 
other expressIons beginning" with the term u1 IDstead of 'Ito a1,ld 
equivalent to those already given, namefy, . 

. 11+(n-lhLluo+(n)iLlZu_l+{n+llaLlSu_l' 

and two siplilar expressions. 
If we examine the structure of this diagram, it wIll be seen 

that the values of q and r in the expression {p)qLlqu_ r (l.re 
arranged in precisely the same way as for the dIfferences 
LlV(u - rw) in an ordinary difference table. The values of pare 
cOllstant along any dIagonal descending from left t!> right of 
the diagratp., whIle along a diagonal ascending from left to right 
these values increase by unity at each vertex. The first value 
of p al~ng eIther line radiating from Uo is taken to be p= n. 

By extending this diagram we arrive at the following, which 

u 2 } A~_s~ }A;'f" 

- ~Z)'} (n+2)2 (nT~)S} <Cn
+3). 

• 4U.r.< A~_3 
,/1), • (~+2j2} 2 /2)s (n+3)4}A4,> 

\'-, • ... 4U"2~ U_s 

~I), (~+1)2 (nH)S} s (n~2)4 

. . (nJ""·, <.,~. (n+" •• ~. <'l'} 4 , u~ } ~u_,< _ A'!.;----

, . .............. (n,' () , (n+I). 

(n)t} , < 2 n+1 Sliu .< . 
• 4u o J .-, 

(0'1),' (n)2} (n)s cn+I).} • 
/ • • • II < Au ......... ~. u, Au o -, 

. ~I), «n-I)2 • (n)s}' s «n). 

'}4U Au o 

(n-2), . ~ (~_I) } «n-Ils cn):} . 
~. I. Sf W 44~ 

u~ . . 4u 1 • Uo 

FIo. 4. 
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may be called a lozenge or "Pmser" dIagram since it IS a 
modlficatlOn -of one due to D. C, Fraser. * 

Now the Gregory-Newton formula for ~n is the s~m of 'the 
elementS' from '1.60 along the duwnwjl.rd sloping lme to the hue 
of zero dlffer\lnces. So Un = the sum of the elements from Yo' 

along any ?·o'l.de whatever to the line of zero dIfferences 
From the ldentity '1.60 + n~uo = u1 + (n -l)Auo it is eviuellt 

that the value of Un IS unaltered If a route is selected sta:rtmg 
from.u1lllstead of fromuO" In general the sum of the elements 
along any route proceeding from any entry UT whateter to the 
h7lt of zer() d~fferences is equal to Un 

Applytng t~1S rule, we have at once from the lozenge diagram 

,u,,= uo+ (nh6.ur1 + ('110 + 1)26.2u_2 + ('110 + 2)3.13u_S 

+(n+3),.1'u_,+. (4) 

It .. = 'lfo+ (tth6.1t_ 1 + ('110 + 1)26.2u_ 1 +.('110+ Ih.13u_2 
+(n+2),.1'u_ 2+ .•• (5) 

un = uo+ (1I)1.1uO+ (n)26.2u_1 +{n + ])36.3u_l + ('110 + ]),6.'u_ 2 +. (6) 

It" = u1 + ('110 - l)l6.uO+ (n)26.2uo+ ('110)36.314_1 + (n + ]),6.'u_ 1 +. . . (7) 

RewrItmg equatlollS (5), (6) III the central-chfference notatIOn, \\e find 

·un = uo+ (nhllu_!+ ('110 + 1)21l2uO+ ('110 + l);lJ3u_~ + (n + 2),Il~to+ .. 
and 

11n';' uo+ (nhllu;+ (n)21l2uo+ ('110+ 1)31l3u~+(n+ l),o'uo+ . 

which IS the Newton-Gauss formula 
If we now take the mean o( these values of Un' we obtam the formula 

whose dlffelenccs are along the row coITel'pondmg to Uo 
1t,,=:UU+ (nh¥llu_l+ 1l1t~) + -!{(n + 1.\+ ('110)21 1)2 Ito 

+ (n + 1)3l(1l3u _l + 1)3U +) + ll(n + 2), + ('/10+ t),lo'''o+ 
or 

1t .. =Uo+ (nhp.lluo -I> in21l2uo+jn(n2 - 1)fLo3uo + ;''1102(112 - ])o'/lo+' . , . 
whICh is the Newton-Shrlmg formula. 

The mean vahl,e of un from equatIOns (6), (7) may he expres-ed either 
as Everett's formula or as the Newton-Bessel formula. Wntmg (6), (7) 
in the central-dIfference notation, 

u".: Uo+(n)18u! + (n)21l2uO,+ ('110+ i)aI)8U! + ('110+ l)ii'vo+' • 
\ +(n+r-1)zrIl2Tuo+(n+r)V+1lJ2rMVj+ •. (8) 

• u,.= u1.+ (~- 1~8ul + (n)2IJ2ut + (n)31)3u1 + ('110;1- ]),O'ut +.. • 
\,!- ('110 + r - 1)zr02"u1 + (n + r ~ 1)V+152r'i'1ui + .. (<I) 

, Takmg the arit~~~ic mean of these ~alues of Un> we may eh~Jlnate 
\ * J I A. 43 (1909), p. 238. 
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dlffcreBce~ of odd order byapplYlDg the" relatlO!l8 (p) ~ (p + 1) _ to,) 
" d "2 +1 02r M T , 'I. q+l \I' Y+l .. n 0' U4 = U U1 - o-ruCl' he weffiCient. of 02'111 takes the JOllll 

~ 1 (n +. r - 1)2' + (n + r)U+1 + (n + r - l)2T+l} (II' (n + r)2T+1 'I he ':0-
dfideIIt of /)2ruo hecomes i{(n+.r- :t)v-(n+r)V+l- (11+7-1)2'+11 
or - (n + 7 - l)ar+j, ullli by 8ubstitutIDg ~ for (1- n) \\e see that 

, -(n+r-l)V+1= -(r-~lJT~l=(~+T)v+l' , 
The adthmetic mean of equatlO~s (8), (9) may thus be "ntte'n III the 101'111 

Un ':= ~uo + (~+ l)a0Zuo + (~+ 2)o0'-uo + .•. + (~+ r)ar+l02ruO + , 
+ nut + (n + 1)so2u1 + (n + 2)60'u1 +. " + (11 + 1)W+102Tlll + , . 
• which 18, Everett's formula 

Suppose, however, w~ find the arithmetiC mean of the values 'bf Un 

dO (8) IIhd (9) and BIQJ.phfy the coeffiCients of differences of odd order In 

thl! resultlllg expressIOn b'y means of the relatlOn n-, 
i{(n + r)V+1 + (n.+r-l)V+1} =(n+r-l)v' ~ 

We now obtaIn the result. . 
• n(n-l)(II-!' 

Un=/-,Ul+(n-k)llul"i;(1I)2ft1l2u,+ 31 ' 03U , + (Il + 1)~1l41l!+ 
. 'n:"'! ' 

+ (n+ ~ - l)v/-,ll2rut+ (n + r - I):, 2r+ IIl2r+lu~ + 

'which is tpe Newton.B6dsertormula. 

. 29. Reiative Accuracy of Centrai-Difference Formulae.
It 18 'frequently necessary to u~ appro~imate formulae which 
tetminate before the column of zero dJ.ft"erences is reached. From 
the last seotion we ha.ve seen that the sums of the elements along 
any t\Vo routes whiQh' terminate at the same vertex ~re identical 

. If the routes terminate at two adjacent vertices {p}qLlfu_ r+1 and 
!P)qLlqu~,. which are in th.e same. "lozenge:' the !:lums of the 
elements , along these routes dIffer by (pMLl~u_r+l - Llqu_r). i.e. 
hy (p)qLlq+;lu,-", 'Extending this result to routes terminating in 
the same columu of differences. for example. at Lltu_a and ~4uQo 
it iii evident that the sums 'Of the elements along the~ routes 
differ by (11. + ~),Ll5.z(-a + (11. + 1),Ll5u _1 + (n),Ll5u_1: 

We shall now ,consid~r route$ th~t lie along horizontal 
lines; these yield t~ formulae containing mean-differences. J n 
the last section it was shown that a. mean-difference'formnla is 
obtained by taking the arithmetic inean of the ei~men,ts along 
two adjaGE'nt routes. From the mode of .formatjon. we see that 
the Bums of the elements along such routes are identiCIII ~s far 
as the vertices at the intersection,s of the routes. For examplt'/ 
the Newton-Gauss formula is equivalent 'to the. Newton-Stirling' 
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formula as far. as dIfferences of even order, and it IS also 
equIvalent to'the Newton-Bessel formula as far as dIfferellces 
of odd order. When a formula IS curtailed, the qUestlOll anSlS 
as tO,whether It IS more advantageous to select a route which 
terminates' at a mean dIfference or at an ordlllary dIfference. 

The followlllg diagram represents the portIOn of the 10zenge 
dIagram along the row corresponding to Yo and adjacent to 
the dIfferences of order 21'. Let A denote the mean differ
ence (n + r)2r+1,u,s2r+luo• and let 'B denote the mean dIfr~rellce 
(n + l' -1)2r,u<'l2ru). . 

} 

2<-1 } or .. au, 0 UJ. 

~ (n+r )0<+' ""-
(n+r)} < (n+r+I)}" 2r lZr A U+2 ~U'+2 ou. ------__ x ______ - .. --- Ii U o 

(n+r-J)or (n+r) (n+r).r+. ~ 

} 
.r-J / B .r+'} or .. ' <: o Ut~----x----- .. ----~ 0 Ut- -----------

/
n+r-I) 

(n+r-I) } 0<+, 
2r 2r. 

cl U, 

FIG. 5. 

The route along the dotted line through A represents the 
Newton-Stirling formula and the route along the dotted line 
through B represents the N~wton-Bessel formula.. The Newton
Ga'l{;ss formula, which is represented in the dIagram by a zigzag 
intermediate route, is equivalent to the Stirling formula at the 
vertices ,s2ruo and ,s2r+2uo, and it is also equivalent to the Bessel 
formula at the vertices ,s2r-lu! and 82r+lul . 

Consider the three routes representing' the GauBs and the 
Stirling formulae and the formula which contains the differences 
,s2r-lu_!, ,s2ruo, ,s2r+lu_!, and 82r+2UO' If we suppose these 
formulae to.be curtailed so that the last dIfference of each IS of 
order 21' + 1, we may compare the accuracy of these formulae 
by ascertaining the magnitude of the neglected terms of order 
(21' + 2). The sum of the elements along either of the routes from 
the common vertex ,s2r+2uo to the lin~ of zero dIfferences bemg 
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the same, the most accurate- formula 18 the one III which the 
neglected term of order (2~+ 2) is' the smallest: These terms are: 
(n + 1'):1, +2021 Huo •. H(n + r):lr+2 of' {n + l' + 1)2r+2}02r+2l1o• 

(n+ l' + 1)2r+202r+2uo 
~espectively, a~d. they are aiso arranged in ascenaIllg order of 
magnitUde. The Newton-Gauss formula IS therefore more 
accurate as far -as mean differences of order (21' + 1), when 
further terms are. neglected,· than the correspondlUg Newton
$tlrlillg formula. passIllg through the same dllierences of even 
order; l\nd both are mpre accura.te than the formula. contaimng 
the difference 82r+11t_i. IJ1. precIsely the same way we see 
that the Bessel formula 'is more aeculate than the Gauss 
formula as' far as differences' of even order when furthe~ terms 
are neglected. In general, /1, centml-differenceforrnula term~nat
inq at a ~nean:· difference of the ent1'Y up ~s rnOl'e accurate than 
(J, form1da which. is curtailed at the correspond~ng central
differe1J,ce oj up-I, and ~8 ~s less accu"ate tlwn a formulfl 1"hich 
,s em·tailed at tke corresponding dljJerence of Up+1 * 

• We sbali now Illustrate by an example the sllpcrlOrity whICh central • 
. difference fOl'nllllae generally have over other mterpolahon formulae 

Let It be reqUired to find'll"" "bere ..4!<x<!, If we employ for 
• thIs purpose an interpolation fOI'mula. whIch proceeds accordlUg to 
central lhfferences of uQ> ~nd stop at. the (2r -!-1)th term, the result 18 

the same as if W8 employed Lagrange's formula. WIth gIven values of 
'U_ n 'U_ r+1" ., 'U,., so that bYJ 19 the'err,Ol IS 

(z + r)(x + r 7" '1) • . . (:I) - r1(2r+1) (~), 
. (2r;+ 1) ! 

where ~ denotes some number hetween a - rw and a + rw If, on the 
oth~ hand, we employ the Gregory-Newton. formula, and stop at the 
(2r + l)th term, the result we thereby obtam is the !;arne as If we 
em ployed Lagrange's ,formula. 'wIth given values of 'UQ>!l1> ., UlV' SQ. 

that the error IS 
x(x - 1) ••• (x - 2r)1'3o'+1)< ) 

(2r+l)!. "/. 

where' '1 d'euotes some number between a and a + 2rw: Now f'2r+1
I (f> 

does not, In most cases, differ greatly from j!2r+1) ('1), but (x + r) (x + r - I) 
• : , (x - r) 18 much smaller than :r{x - I} . '.' (x - 2r) in absolute 
v~lue when - l<a:<l" Thus the error is ~.maller in the fo~~er case th'an 

• A detl\lled diSCUSSIOn of the accuracy oC interpolation Connulae is gIven 110. • 

papers by W. F. Sheppard, PrOd. Ltmd Matli. Soc. 4 (1906), p, 820, and 10 (1911). 
p. 139; D. C. Fraser, J.{.A. 60. Jlp. 25·27 ; G,;r. Lidsto?e, Tram FlU. Act 9 (1923). 

~D 311)' • - 5 
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in 'the latter For this r~on' cenlral,dlfr~rence formulae are pler"r-
able to the ordmal'y formulae for advancIIlg differences. 

The followmg remarks" are of general appl1catlOn 
"Formulas whICh proc~ed to wlIstant dIfferellces are CAact, and /11(' 

true for aU values of n whethe.r mtegral or fract lOnal. 
"Formulas'Wh~ch stop ShOlt of constant dlfferell~es ale apl'rOAllllatlOno;. 
" ApprOXimate formulas whICh ternllnate \\ Ith the same (hflerence ale 

identically equal . 
"ApproxImate formulas wlllch term mate with distInct dlfle.rellces or 

the _ same order are 1I0t Identical. The dlffel'ellce between them I" 
expressed by the cham of lmes necessary to complete ~he cIrcUIt" 

30. Preliminary Transformations. - In certam caseR 
formulae of mterpolation should not be used untIl some 
preliminary transformatIOn has been effected. We shall Illus-
trate this by two examples.' ' . 

Ex I-Suppose :that It IS reqmred to find L,sm 15". 
a table of logarlthm~ the iollowmg entl'les' ' 

, 8 Linn 8 
0° 0' 10" li 6855749 

3Q10300. 
20" 59866049 

, 
-1249388 

1760912 
30" 6 16261)61 -511524 

1249388 
40" 62876349 - 2'80288 

969100 
5'0" 6~3845449 

We hal'e from 

737864 

231236 

The dlfferencee are eVIdently very sloWly convergent, Oue reason for 
thIS WIll be seen when it 18 remembered that when () 18 small allcl 
(}"=x radIans, then sin x=x-ixl'+ . •. and x=() sm 1- (nearl»), 
bO that L 8m () = L 8m I" + rog () (nearly), and the dIfferences of log () 
for the values 10, 20, 30, 40, 50 .' .• of () are very slowly.oonYergent 
'We therefore calculate L SID () when () is small by addmg the mter-

(
sin B\ ' , . 

polated values of L e)' whIch has regular dlfferenCf's, and log (), for 

whIch iables eXIst. wIth smal:er mtervals of the argument 

E~ 2 -SuppO!'e It 18 reqUIred to mterpolate between t\\O terms of 
such a sequence as'the following, 

I, 
r r(r+1) r(r+l)(r+2) 
p' pCp + 1)' . p(p + 1)(,11 +,2)' 

r(r + l)(r+ 2)(r + 3) 
p(p+l)(p+2)(p+3), • 

. where'r and ,11 are two ~ldel; dlfferent numbels. . 

• D C. Fraser, J I A '43 (1909), p. 238. 
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It 'I~ hest to mteppolate in ;lie sequence of ~l{merators . . , . , 
I, T, r(r+ 1),'r(' + 1)(. + 2), 

ailu to mt!lrpolate separately m the sequence of denommator~ . " 
• I, p,p(p+ I), p(p+ 11CP-t:"'2) , 

We fhell dIvide the forlllel"'Iesult by th(! latter, 1Il order to obtam'the 
reqUIred interpolated valne. 

Stll'lmg (Method,u D~ff.,.ential~B (1730), Prop XVIl. SdlOhum) Eay. 
"As m j)ommo~ algebfll, the whole art or the analyst d"e" not consl,t 
m the resolutIon of the equatlOlls but' in b~lDgmg the problems theret~ , 
flO hke~Ise In 'thIS analysIs: there 18 less dextel'Ity requ~red m the 
performance of the process of lDterpolatIOn than m the prelim mary 
determination of the !equences whIch are best fitted for interpolatIOn." 

,. ,.he general rule is 'to ma.ke snch transformations as Will make the 
luterpolatlol~ as ilimple as p0S81bl~ 

1. GIVejl 

EX4MPLE~ ON CHAPTER III 

8lll' 25° 41' 40" = 0'433'571 HI (155 p65 
sm 25° 42' 0" =0'433659084,587544 

20· =r 0·433 746453 442 359-
40" = 0'43:\ 833 818 219 189 

find ~h~ value of'sm 25° ~2' 10" by the ~ewton-Ga1,lSs formula. 

• 2. Fnld tIle v~lue of IC?g SIll 0° 16' 8"·5 haVIng gIven 

• log sin 0° IS' 7",= 7'6709997500 
8" = 7·67;1 448 629 9' 
9" = 7:671 897 046 4 

10" = 7 672.345 000 ~ 

uSlllg the Newto~Gauss formula. " , 
, Check your result .by, obtaining log SIB 0° ] 6' 8-,5 from the following 

• !jata· • . 
, log-sm 0° 16' 6" = 76705504055. 

8" = 7·671 448 629 II 
10" = 7'6723450002 
12" = ;·673 23f) 524 3' 

I 

\ 3 .(pply the Newton-&hrlmg formula to compute sm 25° 40' 30" 
from tpe table of values • 

sin' 21)° 40' 0" = 0·433134785866963 
20· =0·433222179172439 
40· = 0,4333.0051>8404859 

SlD 25° 41' OM = 0·4333969535634J)1 • 
• 20· = 0 433.484334647243 

and vellfy yOU,l' answer, uSIng the Newton-Bes..-el formula. • . ' . ~ 
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4. Given , 
log 310=2'4913617 

320 = 2'5051500 
330=25185139 
340 = 2 5314789 
350 = 2'5440680 
360.= 2 5563025 

find the value of log 3375 by the Newton-Be.·el formula, venfymg the 
result by one or more other central-difference fOlJlJuJae and (Qrnpallng 
It Wlth the true value. ~3 5282738} 

5. Show that the lozenge-diagram method JeaJIy derIves all the 
mterpolatlOn formulae by repeated summatlOn by parts, t.e by the u'e 
of the formula • 

1lX+l~Vx = ~(1l",vx) - t'x~nx. 

whICh IS the analogne in the Calculus of DIfferences of the formUla 

fudv=uv-fvdu 

ih the Integral Calculus. 



CHAPTER IV 

APP~ICA,.'l'lONS OF DIFFERENCE FORMU~AE 

31. Subtabulation.-An Important application of inter
polatIOn formulae is to the extenslon of tables of a functlOn. 
Thus, supposing we already possess III table givmg sm x at 
interval!! of 1.' of x, we might wish to COllstruct a table glvmg 
sm x at intervals of 10" of X. ThIS operation IS called sub
tabulation, SubtabulatlOn might eVIdently b~ J>erforme~ ~ 
calculating each of the new values by ordmary'lnterpolatlOn. 

-but when the new values are required In thIS w.holesale fashion 
. it is better to proc~ed otherw18e, formmg filst the d~jjerences of 

the new sequence of values of the functIOn, and thed calculatuig 
the latter from those dIffetences * . 

Let 1'0' T1• Ta, ~ra' ... be a gIven sequence of entrIes'in a 
. table correspo~ding to intervals w of . the argument, and let 
theIr successive differences be aTo = Tl - To, a2To = Ts - 2Tt + To> 

,etc. Suppose it is deslred to' nnd the values of the functIOn 
in question at intervals w/m of the argument so that (m -1) 
·intermed~ate va1ues, are-to be interpolated between every two 
consecutive members .ot' th,.e set Te. TI • T2' __ . Denote the 
s':,quences thus required by to~ fl' fs. .., 1;:0 that to = To. tm = TIl 

"taln = Ta. tam = Ts. etc, and let the successive differences jn the 
Ilew sequence be ' 
. • dlto = tl - to. d l

2to = ta - 2tl + to> etc., 
where d 1 is 'Used instead of a. to denote the operatIOn" o~ 
differencing in the new sequence. The differ~nces ·in the 'new 
sequenc~ 'may now be fou'nd in terms C?f the differences i,:! the 

• old eequence by the 'use of ope~ators ill the following way. 
, • Lagrange. (Ellt.,.es. 5. p. 663 (179z:..3). Cf. L J. Comrie. :lI01itkly Katlces 
R AS. 88 (1928). p. 506. F. Emde. Zeilacllr.,. angell1 Math. 14 (1934) 333. 
K. ClUnp. Trana Act. Soc. A mer • 38 (1937) 16. 

~ .. t.' 5! 
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Denotmg the lllltial value to or' To by )-(0), we have by the 
Gregory-N ewton inteq>olatlOD. formula; • 

tl =/(a+ wFn) = To + (1/m)16.To+ (1/mh6.2T~+ (1/lIlh~3To+ 
. and thtl operators LlI and 6. are thus connected by the relatIOn 
, 6.1 = (1/mh6. + (1/m)2a2 + (1/m)3aa +. . (I) 

'Suppose for sImphCIty that A4TO is the last non-zero dill'erence 
of ~he origmal sequence, so that A5To = 0, Ll6To = 0, etc. 
Equation (1) glVes • 

alB = {(1/m)A + (l/mh6.2 + (1/m)36.s + (1/m)4~4J' (2) 
If we now substitute the .values s = 1, 2, 3, 4 m the last ertuation, 
we are able to determIne all the dIfferences of the new sequellce 
Ill'terms of the differ~nces of the old sequence: 

6. t - ~6.T 1- m 6.2T (1 -111)(1- 2m) aST 
10- m 0+ 2m2 0+ 6ms • 0 

+ .(~~_ m) (1 - _~l (1 - 3.!n) A 'To. 
24m' L.l (3) 

(4). 

(5) 

6.i!.to= \a4To. -'(i), 
m 

When ~he differences are thus calculated; the entries t1, 12, t3 

may be derived in the usual way by simple addition, The 
values of tm, t2m, tsm' • , , formed in this wa.y should agr~e 

. with the tab~ated values TI , T2, T3, • ,-. • 

Ex-The logs of the '1tu1nbers 1500, lIilO, 1520, 1530,1540 be'tnp 
given to ntne places of dectmals, to find the logs of the tntegers between 1500 
and 1510 

The dJ.fference table of the OrIgInal values i~ 3S' follows. 
No lug A A" A\ • ,:1' • 

. 1500 176091269 

1,510 

1'520 

i530 

1540 

178976947 

181843588 

184691431 

187520721 

2885688 

2866641 

2847843 

. 2829290 

- 19047 
249 

-18798 
. 

-4 
245 

-18553 
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to. ... <II • 

Hel'e ni:!::: 10. ..t ,<I. ... ..... , .... •• 

A4 r - . ~ ~" .. ~ .. 
-_ Ll1 = -..( - iQ = - 0·OQ04 ~n the mnth place, whlch JB neghgILle, 
1O~' _ 

I~l= ~ai!49+ 3(1- ~O)(_ 4)=0'2544=oO~25 -
~O _ 2-10 whlch JB approximately coostant, 

6.
1
2= ~2( -19047)+ (1-1

3
0)249+ (1-10)(7 -110)(_ 4)= -192.74 

10 • 10. 12-104 - _ ' 

• '6. =2-2885688 + (1-10)( _ 1.9047)+ (1-10)(1 - 20)249 
1 10 2'1\>1 6'103' 
• '. +'(1 - 10) (I - 20) (1 - 30,( _ 4) 

, 24-104 
= 288568-8' 

857·115 
7'096.5· 

, 0·08265 

= :.!89433·094 

No. loy!. 
:t500 176091259'1 . , 
1501 1763'80692'2 

1502 • 176669932·6 • 

1503 17695'8980'5 

.1504 177247836 1 , 

1505 11'536499'7 • 
1506 177824971'6 

1507 178113252-0 

1508 178401341'2 

• 1509 '178689239,4 
f 

1510 
. 
,178976946·g 

';he reqUl;ed neW ,table i~ -
• No· lug, 

1500 3'176091259 
1501 3·176380692 
150? 3·176669933 
1503 3'176958981 
1504 ~177247836 

'1505 3·177536500 

~1' 

280433'1 

289240·4 • 

289047·9 

288855·6 

288663·6 

288471'9 

288'280'4 

2tl8089·2 

2871l?8·2 

287i07:4 

Ko. 
15.06 
1507 
1508 
1509 
1510 

fl.1'· ~la 

- i92'74 
0·25 

....192·49 
'0'25 

- 192·24- • . ~'26 
-191'99 

0'25 
-191·74 

025. 
-191'49 

Q 25' 
- 191-,24 

0·25 
-19099 

025 
'-190·74 

log~ 

3'177824972 . 
3'178113252 
3·178401341 
~'17S689239 
3· T7S976941 

and the final value of , log 1510' agrees \uth the or~g!n~ value. 
~ I ~ 1 . 
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32. An Alternative Derivatlon.-It 18 fr~quently lOnvelllent "Iwn 
dealmg With a functIOn whose degree IS known to Imelt vulu.s •• f 
the functlOn, mtermedlate to those alrelldy tabulated, by the folio" mg 
metbod . 

Suppose, for example, that a funLtlOn f(:L) may be repleseuted by II 

polynOlmal of the third degree, and thllt values of the fUnttlU1l are 
tabulated at mtervals w = 10 of the argument. Let It be reqUIred to m'eJ t 
values at an mterval 10= 1. Usmg the lll.tahon of the labt section, we 
have (by the Gregory-Newton formula) 

To=lo. 
Tl = 110 = to -f: 1061to + 4561210 + 120j,1310' 
T2=,120=10+2061/0 + 1906)2/0 + 114061

3/0> 
'1'3 = /30= /0 + 306.to + 43561

2/0 + 4060.:l1
8/0' 

Dlfferencmg these equatIOns, we ~ee that 

SUllllarly 

6To= 1061to + 45612/0 + 120~31()o 
6T1 == 1061'0 + 14561

2/0 + 1020~1310-
6'1'2= 1061tO + 24561

2/0 + 2920.:l1
310 

6 2']'0= 10061
2to + 90061~/0' 

6 2Tl = 100~12to + 190061
3/0-

63TO =} 00061
3tO' 

The leadmg term and Its dIfferences for the subdiVIded mtervalq are 
seen to be 

6 1
3/0 = _'00 163T 0> 

61210= 0162To - ·00963To• 
61to = '16To - -D4562To + '028563'1'0>" 

from whICh the values t1, t2• t3' ••• are formed by nddlhon 
E c -HaHng gtven a table of values of log x at tnterval. of the argument 

W= 5, to tllsert between log 6250 and log 6255 the wtermedwte willes of 
the juncttQn at tntervals w = 1 

Entry ~ ~I 

Put To=log 6250 = 3-7958800 
3473 

Tl = log 6255 = 3 79?2273 -3 
3470 

T2=log 6.260=;3.7965743 -2 
3468 

T~,;= iog 6265 = 3·7969211 

The differences of the second order are approXimately con&tant, s<o "e 
assume log x to be a polynomial of the second degrel' 

To= 10= 3 7958800, 
T1 =lo='o+56J,o+ 10j,12,O' 
T2 = 110= to + 106)'0+ 45j,12/0' 

6'1'0= 561to + 1 0.:l12/0 = 3473, 
6T1 = 561to + 35612/0 

62TO= 25.:llI0 = - 3 
* These are preCisely the s~t of tquatIOns of ~ 31 "l,en ~1T •• the thud 

differences or the tabulated functIOn, al e a'sumed to be constant 
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From these equa,tions we obtaui the values 

t:.12tO= - 0·12, t:.1tO"'" 694,84, 

expre'liled' in umts 'of tae seventh deClO131 place. 
Forming the difference table fQl' the- subdlyided intervaL~, 

Entry. 
log 62 50= 37958800·00 

Al Al"· 

694-84 
log 62' 51 = 37959494·84 -0·12 

694·72 
log 62 52 = 37960189·56 -0·12 

694-60 
log 6253=37960884·16 -0·12 

694·48 
l~g 62 54 = 37961578·64 -0·12 

694·36 
log 62 55 ~ 37962273·00 

We Dlay now IUsel t the!oe values of the functIOn 10 the table of valueq, thus 

log 6251.= 3·7959495 
log 6252 = 3'7960190, etc. 

We may obtalli WIthout dIfficulty formulae for sub tabulatIOn ba,ed 
Oil centlal-diff~ren~e formulae, or on Everett's formula. These are 
frequentfy to be p!,;Cferred to. the subtabulatlOn formlliae b8iSt!d on the 
Gregory.NtJwton formula. • 

Owmg to the rapid accumulatIOn of error In the hIgher order" of 
dIfferences, care must be taken to include addltlODal places of dIgIts In 

the computatIOns, as In the above examples 

33. Estimation o( ~opulation for Individual Ages when 
Populations are given in· Age Groups.-We shall nOw find 
the values of a 'statistlcal quantity, such as the population of 
'a given ,district, for indhqdual years, when the sums of • it!! -
values for quinquennial periods are given,* . 

Let " .. , 1.'-lI' 1.'-1' uo, ~, ui, ... he the' values of the 
quaptitjr for individual years, a.nd let tlie quinquenmal sums 
be .... , 'VI' Woo 'V -f, ... ', so that . . 

WI =~ +118 +us +'It. +113, 

Wo =u'l .+~ +110 .+1.'-1+'U':\!, 

. 'V -I = u_~+ tL, -+- 1.'-s + 1L6 +1l- 7• 

It is requir~d to find the value "0 in terms ofthe. W's. 

• G. KlI1g, J.l.A . • 3, p. 109 (1909). See also 110, p. 32-
! 
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The Newton-StIrling formula may be WrItten 
_ . Llu_ 1 + Lluo n2

Ll2 
n(n2 ..... 1) Ll3u_2 +Ll3u_

1 
n,,-1lo+n--2--+ 2 Il-l~ 6 ---2~ 

n2(n2 -1) , 
+ 24 LlIL z+-

If we denote Un -f; U_ n bY'Yn and neglect the differences of 
the fourth and higher orders, we may write 

y .. = 2uo + n2Ll2u_ 1 

Therefore Wo ~ Uo + Yl + Y2 

and 

= 5uo 'I- 5Ll2u_1, 

WI + W -1 =Ya+ y, + Y5 + Y6+ Y7 
= 10uo+ 135Ll2u _1 

Ehmmatm,g Ll2U • 1 from the two last equations, Uo may Le 
expressed III terms of the "V's: 

i25uo = 27Wo - (W -1 + WI)' 
or, WrItlllg Ll2W -1 for (W -1 - 2.Wo + WI)' we obtalll.the result 

i25uo = 25Wo - Ll2W -1' 

or Uo = 0-2Wo - O·OO8Ll2W -1' • (1) 
Ex.-To find the value of the quantity for the m£ddle year oj the Beconll 

quwqllenntum, when the folloWt7lg. are three r07lsewt,ve qllHlqUffl1lUlI 
ftHRS' 36556 39387: 41921 . 

Denote the gIven qumquennial 8ums by W -1' 'Vo, WI re..pectlvely; 
and form a difference table. 

W _1=36556 
2831 

Wo= 39387 - 297 
2534 

W1 =41921 

, The r~qUlred quantity ~o 15 therefore,oy (1), 

uo= 0·2 x 39 387 - 008 (- 297) 
=7877-4+24 . 
=7879·8, ' 

so 1to= 7880. 

The abov~ formula may be extended 'to mcIude the fourth 
differences of\the W'e when we neglect the dIfferences of the u's \ . , 
of the sIXth arifl h!gher orders.* "Ve have now 

* 'When the groups a.re unequal, we can proceed in a 81mlJar way, U'1D~ 
dlVlded differences. '. , 
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~ • f .. , . 

'!I.,.=u,.+u_: 
= 2uo + n2Ll2u_ 1 + "F\-n2(n2 - L)Ll4.u_z • 

. 'VO=,110 +Yl+Y2 . 
, = 5uo + 5Ll2U _ 1'+ A4U _ z• (2) 

WI'" W -1 = lOuO + 135Ll2u_1 + 377 Ll4u_z• 
~ \ + W _~ = 10Ugo+ 510LYu_ l + 4627Ll'u_ 2• 

ElIminating 'Ito frQID the three last equatlOns. we have . 
Ll2W -1 = 125Ll2u _1 + 375Ll4U _ z• 

and LlW~-~W:_2=375~2W_l + 425M'u_ 2 • 

.and elIminating &2U-l from.tpese two equations we find ~hat 
" , 

Ll~-2 = O'00032Ll4W -2 

and • Ll2u_ 1 = O'008Ll2W -1 - O·00096A'W -2' 

If we now substitute these values in equation '(2). we 'obtam 
the'resl}lt . 

uo=O.20yo .... '5A2U_l-Ll4U_2) • . ' . 
or Uo = O'2Wo - O·Q08Ll2W -rl + O·000896A'W -2' 

I' , 

,ThiS value of 1£0 was also given by G. Klng. lt 
Th6 following demonstratlOJI. of It more general fOWlula is due to 

G. J. Lld.t9ne ' 
• r 3r+l 

L~t •• Wo=!1£., ,WI=' ~ 1£., etc.., 

and le't 
. . 

-r ,. 4r+1 

(2r+l)z-r--t 

'!I",= ! 'It., ... 
where .P l~ sqme number llldept!lldellt of x From these· defimtlOlls we 
have at once '. 

• 'Ay",=W!Je 

. and 1!o=Y I -y. 1 
1+'011""+1' • i-" ... +.,· 

" In B~Sl'l'8 formula; 

• "O+Yl \ ~2_t A2y_1+ A!yo ~(n12.-:l2A3 
. Yi+m=-ll - +muyo+~ , 2' • ~ --~ Y-l+'" 

put 
1 

'. '11£ 2(2r+ I)' . 

Forl,n the dlfferense Y,J+ .. -h-m ~na Ill: the'result llubstItute W and ~ts . 
... J,~,A' 43, p. U~~ 



60 THE CALCULUS OF OBSERVATIONS' 

dIfferences for t::..y and its (1Jfferellce~ We thus obtam the t'l''llllred 
fonnula. 

The result 18 

m(m2 - -1) 2 m(m2 - i)(m2 - n , . 
'to= 2mWo+ 3!/2 t::.. W_ 1 + .51/2 t::.. W_ 2 +·· 

whICh, when 2r + 1 = 5, becomes 

Uti = O·2Wo - O·OOSt::..2W -1 +O·OOOS96t::..'W -2+' •• 

a~ found above. 

34. Inverse Interpolation.-We shall now consider the 
process whIch 18 the lllverse of direct lllterpolatiOll, namely, that 
of findmg the val~e of the argument correspondIng to a gn en 
value of thefunctwn intermediate between two tabulated values, 
when a difference table of the function is given' This is known 
as inverse interpolat~on 

Let f(a + xw) denote a partICular value of the fUnctIOn of 
which the dIfferences are tabulated. We now Wish to find the 
value of the argument ::c corresponding to f(a + X'w); for this 
purpose It IS best, If - i<::c<i, to u~e'Stirhng's formula * 

f(a + ::cw) = f(a) + ::cHLlf(a) + Llf(a - w)} + ~::c2Llo/(a - VJ) 
+ !::c(x2 ,-12)HLl3j(a ~ w) + Ll~(a - 2w)} 
+2\x2(::c2-12)Ll~(a-2w)+... (1) 

Dividmg throughout by HLlf(a) + Llf(a'- w)}, the coefhCJent 
of::c, equation (1) may be written in the form 

::c = m - ~x2Dl - lx(x2 - 1) P2':' _;'_::c2(::c2 - I)D3 -. (2) 

)vhere m = {f(a + X1~) - f(a)}/HLlf(a) + Llf(a - w)}, 
Dl = {Llo/(a - VJ}/HLlf(rt) + Llf(a - w)}, 
D2 = {Ll3j(a - 10) + Ll3j(ct - 2w)} /{Llf(a) -l: Llf(a -1~')}' 

and so on. ""Ve have now to solve equatiOn (2) by successive 
approXIDlatlons. 1st approximation: ::c = m. . Substituting this 

"Value ill equatiOn (2) we obtain the 2nd approximation . 

::c = m - !m2D1 - im(m2 - 1)D2 - !4-m2(m2 - 1)D3 -. . 
Tlus value of ::c is now substituted in equation (2) to form the 
3rd approximatiOn for ::c, and so on for further approximatlOllS.t 

* If l<x< f, Bessel's formula should be used . 
. t An excellent method of performmg mverae mterpolatJOD WIth a (81-

culatmg machme 18 descnhed by L J. Comne in the Naut,cal Almanac for 
1937, p. 934. 
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• IJl.>tead of solving equation (2) bY'SUCCeSS1Ve approXlmattonawe may 
. Ill'range it in the fOllll .. 

111=£ + ~J'2bli!*z - 1)Dz+-h.t2(.r2 - I)D3+' .. 

W" )lave'lIlelely to reverse thlS series to obtam a forDiula from whlch x 
may he fOllnd by direct BubshtutlQn, namely, 

£=m(1+1Da+ )+1),2(-!Di+;1.·Da-iDIDZ-·) 
+ m3(!D12 - iDa -, . ,) , 
+. 

, A8 hn e~a'lllple of mvelse interpolation, suppose "e wlsh to find the 
posltne root of the equatlOn * 

z7 + 28z4~ 480= 0, 

Wrltmg' y = z7 + 28<' - 480, and finding by a rough graph that the 
root IS a 11ttle over 1'9, we construct the follOWing difl'eren,ce table 

.. y • .1.. .1.' 
1·90 - 25'7140261 

110886094 
,1'91 - 14·6254167· :0·2293434 

1l·317952~ 00041112 
1·92 3·3074639 0·2334546 

1'1'&514074 00041775 
1·93 8'2439!35 0'2376321. 

11·7890395 
1'94 '20'0329830 

'EVluently the root he.';between·I'~}! and 193, and therefore V. tbe root 
be 1·92 + 0·01r. we hllve by Stirhng's formula III equatlon (1) : 

0== - 3·3074639 + 11-434680lx + 0'II67273xt + 0·0006907(xl' - iL), 
4 D == - 3·3074639 + 11·.4339894x+ 0'1167273x2 + 0·0006907xl'. 

D1Vldlllg throughout by the coeffiClent of x, 

• ~=0·28926595 -d·Ol02088xll -Q·()000604",.3. 

1st approXlmatlOn: x = 0'28926595, 
2nd appro'Untahon : x= 028926595 - 00102088 x.0·083675 

. - 00000604 x 0·0242 
, =0·28841027, 

31'd apprOXlInatlOn: x= 0·28926595 - 0·0102088 x 0 0831805 
• -; 0·0000604 x 0·0240 

'=0·28841533. 

>The required root is 1'9228841533, correctly to 10 deCimal places. ' . . . 
• ThIS equation was suggested by lV. B. Da\'ls (Ed 7'111tU, 1867, p. !OS) 

but solved other\\ise by him. • 
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35 The' Derivatives of a Function.-Frolll the Gregory~ 

Newton formula . 
x(x- I) 

f(a + xw) = f(a) + x~f(a) + -21-- ~o/(a) 

x(x - 1)(x - 2) A3jY ) . (1) + --3'--0. \(( + ... 
we have at once 
f(a + xw) - f(a) 

xw 
=~fA,i'I) X-1 A2i'1) (x-I) (X-2}!l.3i'1 ) 'J 

wluJ\a + 2 uJ\a + 3 1 uJ\a + .... 

If x IS taken very small so that xw-O, the left-hand sIde of 
the equation. is of the fo!m {f(a + h) - f(a)}/h. The .l!~ltlllg 
value of thIS expreSSIon when 1£-+0 IS the derivatit'e of the 
fun'ction f(x) for the value a of its argument. . We thus 
obtam 

f'(a) = ~{~f(a) - t~o/(a) + -!~3f(a) -l~Y(a) + ... } (2). 
w . 

The succeesive derivatIves of the functi9n may be obtallled 
by the use of the dIfferential calculus' m the followmg way. 
DIfferentIating (1), we ob~am 

. 2x-l 3x2 -6x+2 
.wf'(a+xw);=~f(a)+~~o/(a~~, 3 1 ~o/(a) 

4z3 - 18x2 + 22x - 6 ~4/i() . 
+ 4' a + ... 

Also 

) 
6X2 - 18x + 11 

w2f"(a +a;w =~o/'(a} + (x-l)~o/(a) + -12--~y(a} + ... 

and so on for derIvatIves of higher order. 
Putting x = 0 in thIS set of equations, ,we optam the results 

wf'(a) = ~f(a) - t~o/(a) + l~o/(a) -l~Y(a) + !~o/(a) 
- t~~(a} + ... 

wo/'''(a) =~o/'(a} - ~o/'(a) + H~y(a} - i~5f(a} + Hi~~((I} - - •. 
waj"'(a) = ~o/(a) ~ ~~y(a) + t~o/(a) - ¥~o/(a) + .. \ 
w4r(a) = ~y(a) - 2~o/(a) + J;-~6j(a) -. . • . 
w5f"(a) = ~o/(a} - !~6J(a) + ... 
wGf"'(a) = ~6J(a) - ... . , 
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,Ex ~To find. the first and Becond.derwat~veB of log, x at X= 500. ' 

J'. log, Ie A. AI Ai. tJ. • 
500 6·214608 

19803 
&234411 -385 

19418 15 
520 6'253829 - 370 

19048 14 
530, 6·272877 - 356 

18692 13 
540 6291569 -343 

18349 
550 .6'309918 

HElr~ W= 10 aM 

101'(500)= 0·019803 +!(O 000385) +1(0'000015) 
=0·02000f. . 

Also 1001"(500) = - 6,000385 - 0·000015 - M(O 000001) 
= - 0·000401. 

-1 

-1 

Neglecting the last fignre, which Ia hable to error, we obtam the results . . 
/'(500) =0 0 002000' 

. /,'(500)= ... 0'0000040. 

W Ii Illay find the formula <for the nth' derIvatIve of & functIon otlll'l
Wlse, by usmg symbolic operators and expandmg the functIOn f(a + 'w) by 
'i'aylor's Thebrem , , 

• 'w2 • 
Thu8 f(a+w)=f(a)-f,wf~a)+~"l'(a)+. •• (1) 

2. 
. ·d 

, If we denote -, the operator for dIfferentIa-hon, by D, e,qllatIOlI (1) 
, dx 

becomes 
. . w2D2 w3Ds .. 

f(a+w)=(1 +wD+-, +-, + .• . )f(a)1 
.2. 3 

-01'. ,(1 + A)j(a5"; tWDf(a), 

and I+A=e"n. 

Taking Jogarithms of each SIde of t1ns equatIon, 

wD = log, (1 '+ A) 

• or 
'Also 

~herefore' 

. =A-{AI+IA37"'" 

~J'(a) T' Aj(aJ -i.l""2j(a) + lAo/(a) ~. " , 
wSnt={Iog (1 +A)!~ 

~(A"':' lAt + l A3 _ .•. )2. 

w2f"(a).= (A - iAs + lA3 - .. . )2fl..a). 

, • = A2/(a) - Ao/(a) + HA'f(a) + 

(2) 

(4) 
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and In genelal 
wnr)(a)=(~_!~2+p3_!~'+ . )"f(a) ~5) 

36 The Derivatives of a Function expressed in TerroR 
of Differences which are in the same Horizontal Line.
By dIfferentiating Stirhng's formula, 

j(a + xw) =j(a) + 4 {Llj(a) + Llj(a - w)} + !x2Ll2j(a - w) 
+ lx(x2 -12H{Ll~(a - w) + Ll~(a - 211») 
+ _l,X2(X2 - 12)Lly(a - 21L) 
+ Thx(x2 - 12) (x2 - 22)! {Llo/(lt - 2u') + Llo/(n - 3/1') J 
+·.,-hX2(X2 _12) (x2 - 22)Llo/(n - 3w), 

the dIfferentul coeffiments may lJe represented by a rapIdly 
convergmg series in terms of the hOrIzontal dIfferences. Thus 
wj'(lt + xw) 

= HLlj(a) + Llj(a - 1o)} + xLl~(a - w) 
+ H3x2 -1)HLl~(a - 70) + Ll~(a - 2w)} 
+ ~14(4x3 - 2x)~~(a - 2w) 
+ rh(5x4 -15x2 + 4H{Ll5j(n - 2n') + Ll5j(n - 3w)} + __ • 

w2f'(a+xw) 
= Ll2j(a - w)+x!{Ll3f(a - w)+ ,;l3f(a - 2w)} 
+ -h(12x2 - 2)Ll~(a -: 270) 
+ Th(20x3 - 39x)!{Ll5j(a - 2w) + Llo/(a - 3w)} + __ 

Puttmg x=O in these equatIOns, we have 

1nf(n) = t{Llj(n) + Llj(n - w)} - H{Ll~(n - w) + Ll~a - 2w)} 
. + lo'HLl5j(a - 210) + ,;l5j(a - 31r)} +. .. (1) 

wy"(a) = Ll2j~llI- 10) - l2Ll~(a - 2w) + }uLl6j(a - 310) + . - (~) 

These equatIOns give .the value of the derivatives III terms of 
dIfferences which are symmetrICal as reganls the direction of 
increasing and decreasing arguments 

In order to extend these results to derivath·es of highu 
order we shall write StirlIng's formula in the central-difference 
notatIOn of § 20 as far as dIfferences ()f the eighth ordn 

j(a + xw) = Uo + xp.ouo + !x202160 + lx(r _1),.03//0 + +.-x2(x2 - 1)o4uo 
+ rhX(xl -1) (x2 - 4),.05110 + ~hx2(x2 -1) (x2 - 4)b6vo 
+ ~x(;il- 1) (Xl - 4) (x2 - 9)p.~uo 

+ ~ox2(x2 -1) (x2 - 4) (x2 - 9)oBuO' 
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When the rIght-hand side is arranged accordmg to ascending' 
powers of x, we obtain ' 

J(a + xw) = uo+ x(JL(juo -lJL(j8uo + -lw(j5uo - rhrJLo'1uo) 
+ X2(~(j2UO - :i~·(j4uO + Tho&uo - rlno8uo) 
+ z8(!,u(j3UO - ftjJ,(j5UO + .... hJL(j7UO) 

+ :rf'(-h(j4uo - -rho&uo + dn/ho) 
+ z5(Ih05uO -1JhJLo'1uo) + x'(..,hS6uo - .-lIITiSsuo)' (3) 

If both sjdes of this e9-uation are differentiated and we 
substitute the value x = O. we obtain the value of wf'(a) as in 
equatIOn (1), and the higher derivatives of J(a) are formed by 
differentiatmg Ulf'(a + xw), wo/"(a + xw), and so on, 

The successive derivatives of j(n) correct to dIfferences of 
the eighth, order are giv~n by the fo~lowing rquations: 

wf'(a) = JL(juo.- tJL03UO + lrJJL05uo - rt.rJLil7uO' 
wo/" (a) = 021tO - T\1)4UO + g\OSuo - ri-o-OSuo. 

wf"'(a) = p.1)3uo - ip.1)5uO + rh,u.o'uo• 

w4p""(a) = 04uo - iOGuo + .. hI)8UO' 

WSr'(a) = p.1)6uo - !p.IJ7uo, 
w6r"(a) = OGuo - il)8uo 

'We see, that wf'(a) IS equiLl to the coefficient of'Z in (3) and, 
iIi general, w'1(n)(a} is equal to the coeffictent of xn tn the 
equation (3) multiplied by n!. This- result might have been 
obtained at once b1 comparing (3) with .Taylor's expansion 
ofJ(a + xw). 

37. To express the Derivatives of a. Function in Terms' 
of its Divided Difl"erences.-We shall first find the derivative 
of a funotion fix) for the particular value ao of the argument x 
in ,terms of Its "divide~ differences. .As shown at -equation (3), 
§ 13, we may write ' 

fiu.ao) = J(ao all + (ll - allf(aO.al,a2) 'I- (u - al)(u,... a2lf\aO.~.all.a'3) 
+, .. + (iI. - a'l}(u - aJ . , , (u - an-ll!(ao.~. ' , "atl ). 

whe~e the divided ,diffeJ;ences of order beyond the' nth are 
~upposed ?egligible. If we put u = ao> we have 

J(ao• ao) ... J(ao. all + (ao - ~lf(ao' ~. as) 
. + (ao - al)(uO - aslt{llo• ~. ~.~) +. , , 
+ «(10 ":' aJ(tlo -"aa) (ao - (tli-llf(ao, a.,. , "an). (1) 

(0311) 6 
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'But in § 16 we found that 
feu) = /(ao) + (u - ao)f(ao• ao) + (u - ao)::1(ao. (10' ao) 

+ (u _·(lo)o/(ao• "0' ao, ao) + ... 
and by Taylor's expanSIOn. 

() () ( )f'() ( )21" (eto) ( )3f''' «(to) /lu =/ao + u-ao ao + U-IlO 2'-+ u-ao -3-'-+'" 

so that f(ao) = /(ao. eto), t/"(eto) = teCto' ao• (to), and in general 

.tn)(ao)/n , = /h. ao •. · . ,ao), 

whlCh glves the nth derivative in terms of the dIvIded dIner. 
ence of the nth order wIth repeated arguments. 

EquatIOn (1) thus becomes 
/"(ao) = /(ao ( 1) + (ao - ( 1)/(aO.et1.a2) + (ao - aI)(aO - (2)/(ao,(ll.a2,o3) 

+.. + (ao - ((1) (ao - a2) . (ao - a",..·I)/(aO,a1 • ... , a,,), (:!) 
whlCh gIves /'(ao) In terms of its succeSSIve dIvIded dIfferences. 

As a speCIal case of this formula when a l = ao + V', a2 = ao + 2w, etc 

j'(ao) = !..Llf(ao) + (- W)2
1 

2Ll2j(aOJ + (- w)( - 2W)3i"f:::1i
1 

Ll3j(aOJ + ... 
10 11!' W 

or lOf'(aOJ = Llf(ao) - !Ll2j(ao) + lLl3/(ao) -. 
whIch IS the formula of § 3& 

A more general expreSSIOn for the denvatives of a function 
in terms of ltS divided dlfferences may be obtained from 
Newton's formula: . 

lex) = /(ao) + (x - aol!(ao• a I ) + (x - ao) (x - (l'l)/(aO' a1• et2) 
+ (x - ao) (x - ( 1) (x - ( 2)/(aO' aI' a2• (13) + ... 

Denotmg the factor (x - an) by an, this equation becomes 
/(x)"; /(ao) + ao/(ao' ( 1) + aoat/(ao• aI' a2) + floutad(ao• a l • ((2. (la) 

+ .. + aOaIa2 ... an-d(ao• a l • a2 • ...• -an). (3) 
'DIfferentiating both sides of thlS equation, 'V:e see that 

f(x) = /(ao• d1) + (ao + a1)/(aO' a1• ( 2) 
+ (rLOal + aOa2 + a1~)/(aO' a.t. (12' (13) +. . (4) 

/"(x)/2' = /(ao• av (t2) + (ao + a1 -i- a2)f(aO' a1• a2: (/3) 
+ (aoa1'+ aOa2 + ao«s + a1a2 + a1aa + a2aa)/(llo• al' a2• (1a. a4) + 

/"'(x)/3 ! = /(ao• al • a2• aa) 
+ (ao + al + a2 + aa)/(ao• 0 1, a2• aa. a.) +. .. (5} 

/"(x)/4' = /(ao• a1• a2• aa. a.) 
\ + (aO+a1 +a2+«s+a.)f(ao• I'll' a2• 0 3, (/4' as) +,. (6) 

and s\on. " 
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In these equatIons the coefficJ,ent of the divided differences of order r 

is a symmetric (unctIOn of the quantities al) ai' a2" "ar _ 1 In 
'equatIOn (3) thl~ coefficient IS of r dlmenSlon~, and after each dlfferentulr 
tlon Its dimensions decrease by umty; so we see, therefore, t11at the 
cQe/hLlent of f(al) ai' ••. , aT) m thl' equatlon fOl f(T)(X)/r! IS umty 

·(u. ZCIO chmensu'm m .al).a", ... , aT_V, and all differences of lowet 
order vall1sh 

If we suppose aoT" a\= a2 = a3 = = am "e obtam the "alues given 
above. j'(ao)=f(al) ao), f"(ao) = 2f(ao, ao' ao), and so on 

Su1 •• tJtutmg III eCJuahon (4) thl' value x = ao, \\e obtam equatIOn (2), 
namely, • 

f'(ciQi =j(ao, a1) + (00 - a1)f(ao' a1,a2) + (ao - aV(ao - aN(lIo, ai' a2'(/3) +. 
The latter equatIOn IS used when the derivative of a smgle Y~lue of 

the functIOn IS reqUlred> but wIlen the del'lvatlves of several values of 
the fUllctlOJI are to he computed, \, e use equatIOn (4). 

E.L -Flom the followtng taUe of values comput. the thtrd and foltrth 
deHvattVe; of f(fl) whelJ the argument () has the values 5, 14, and 23 
1 eSl'ecfwe(y. 

(j 2 4 9 13 16 21 29 
f({) 57 1345 66340 402052 1118209 4287844 21242820 

We first form a table of UI vided differences: 

0 1(0), 

ao= 2 57 
644 

a1 = 4 la4~ 1765 
12999 556 

af = 9 6634'0 7881 45 
83928 1186 1 

('3= 13 4020;)2 22113 64 
238719 22(4 

a.= 16 1118209 49401 89' 
633927 4054 

a5 =21 4287844 114265 
2119372 

J1o= 29 21242820 

The functIOn IS evidently a polynomial of the 5th degree . 
Tabulating the values of ao> a1• all> • ,we find 

0=5 0=.14 8=23 
ao 3 '12 21 
(/1' l 10 19 

. a l 4 5 14 
as 8 1 10 
a, -11 -2 7 

.-



68 THE CALCULUS 'oF OBSERVATIONS 

1!l'Om equatJOD (5) we Ilave at ollce 

iJ"'(8) = 556 + (ao + a1 + a, + (3)45 

+ (aOa l + aO"2 + aOa3 + ao'" + a1"2 + "lfL3 + "I", + al"a + "2", + "au~)l, 

86 f"'( . .,) = 1 626, J"'(14) = 12102, 1"'(23)= 32 29R 

so 

From equatIOn (6) we have 

-hflV(8) = 45 + (ao + a1 + "2 + a3 + a,)I, 

r(5) = 624, r(14) = 1704, r(23) = 2784. 

EXAMPLES ON CHAPTER IV 

The Ipga of the numbers 400, 410, 420, 430, 440 Lelng gIven to. 
seven places of deCImals, find the logs of the mtt'gcr~ between 400 
and 410 

log 400 = 2·6020600 
log 410=2·6127839 
log 420 = 2·6232493 
log 430 = 2·6334685 
log 440 = 2·6434527 

2 If ~rTo IS the last non-zero dIfference of the orlgmal sequencp, so 
that ~T+lTo= 0, ~r+2To= 0, •• , show that the formulae for 811b-
tabulation are 

~{to=~~rTo'* 
'lnT 

~r-1t =_I_~'-lT +(r-l)(I-m)~'T 
1 0 mr-1 0 2m' 01 

+ {(r - 2) (J - 'In) (1 - 2m) + (r - 2) (r - 3) (1 _11l)2}~rT 
2.3m' 8m' 0' 

The differences of order hIgher than the rth 1D the new sequence 
are, of course, all zero_ 

3 The followmg are three consecutIVe lJ.umquenlllal sums: 

44133,41921 and 39387. 

* lfouton, an astronomer of Lyons, III 16iO notlced that If m a sequence 
whose ~th dlfferellces ale const.ant, say=e, mtermedlate terms ate Illserted 
corresp nding to a diVISion of each interval of the argument Illto m equal parts, 
then the new sequeuce has Its nh d,lfference const.ant and equal to elm'.-
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Fllld the value of the quantIty for the nuddle year of the second 
quinquenmulll. 

4. 'fhtl IJopulatlOlls for fo"ur cOllsecutive age groups are given by the 
iaMe of valul'/! 

• Age Group 
25 to 29 yeals (mclus~v.c) 
30 to 34 years ( " ) 
35 to' 39 years ( 'I ) 

40 to 44 years ( " ) 

Pllpulatwn 
458572 
441424 
423123 
402918 

E&tullate the populatIOns of ages between 32 and 33 years, and between 
37 aHd 38 years respectIvely. 

5. Show that if 

and III gl'neral 

.+U%+It_11 
t ' 

toen .the inqlvldual value 'I./,,/t may be found from the groups of t Illdl' 
VIdual vahles W (It WI' W 21 • amI then differences by the formula 

whcre thIrd differences are neglected. * 
6, In the followlIlg set of data 11, is the heIght above .sea·level, p the 

balOllilltrIC presslue. CalClllate by a dIfference table the heIght at whICh 
p=29 and,the pressme when h=5~80. 

2753 
27 

4763 
25 

6942 
23 

10593 
20 

7. FOMn a dIfference table from 
pressure in Ibs. per square IlIch. 

the followmg steam data, where p is 

8° C 93·0 96·2 
P 11·38 12·80 

1000 
14·70 

~04'2 
17'07 

1087 
1.9·91 

Calculate p when () = 99° 1 and dctermme. by inverse lDterpolatlOn the 
temrerature at wInch p= 15 . 

R. Ca1cul~te tIle real root of the equation 

xlI+x- 3=0 

by mverse interpolation 

• C H. Forsyth, Quartll'l'ly PuhhcatUY/l8 Of the AmeT'lcan Statisttcal AssOCUJ.· 
hon, Decelllber 1..916. • 
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9. Fmd the dlflelelltial coe/hclLnt of log • .c at :r = 300, gl\ cn the tahk 
of values 

300 
301 
302 
303 
304 
305 
306 
307 

log. :x:. 

&·703782474656 
5·707110264749 
5'710427017375 
5·713732805509 
5·717027701406 
5·720311776607 
5·723585101952 
5·726847747587 

Fllld from the above tahle the differentIal coeffiuent of log, x at x = 302. 

1 O. Give~ the'values 

x 

o 
1 
2 
3 
4 

find the value of d2y when x"= 0 
_ dx2 

11 

858313740095 
869·645772308 
886975826766 
~92'303904 5fl3 
903630006 875 

d2y 
] 1 FlllU -2 when z = 1, given the followlllg value~ : 

dz 

1 
2 
3 
4 
5 
6 

11 

0·198669 
0·295520 
0·389418 
0·479425 
0'564642 
0644217 

12 Apply the celltral-dIlference formulae of § 36 tH compute the 
first and second uerlvatlv~s of log. 304, havmg gwen tnc table of valUe!! 
of Ex. 9. 

13 From the followmg data compute the first four denvatlvc~ of the 
functlOll y corrllilpondmg to the argument x:' 11 . 

2 
5 
9. 

13 
15 
21 

11 
108243219 
121550628 
141158164 
163047364 
174900628 
214 358 884 



CHAPTER V 

DETER1>!INANTS AND LINEAR EQUATIONS 

3S. The Numerical Computation of Determinants.
In this chapter we shall consider the problem of findlDg the 
numerical value of a determ.mant, say, 

~ ~ a3 a, as 
bl bz ba b, h" 
Cl Cz ca c, Cs (A) 
dl dz da d, d" 
el ez e8 e" eo 

when the elem,ents a., a'2, •. , are given n"umbers. The method 
g!lnerally adopted, which is due to ChiD,· is as follows: 

IN e first notice whether any element is equal to umty; If 
~ot, we prepare the determinant for our subsequent operations 

• 'by multIplying some row or column by such a number pas' 
will make one of the elements unity, and put lip as a factor 
outside the determinant. This unit element WIll henceforth 
be caJled the Jnvotal elemen~. Thus in the ab\?ve determinant 
we shall suppose that ba = 1 and take ba as the pivotal element. 
W ~ shall show that the above determinant is equal to the 
determinant 

( _l}Z+3 ttl - a'3bl as- aaba a, - a'llb" as- a'llbs 
Cl - cabl Cs - caba c, - Cab. C5 - Cab" . 

(B) 
~ - dabl ds - daba d, - aab, ds - dabs 
er - eabl es - taba e, - eab, es - tabs I 

• F. Chlo, MimOire sur ItS jOnctlO1l6 CQllllUea aoua le nom ¢e TUulteu>tes ou de 
dlterl7unl1nts, Turin (1853): . 
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The law of formatIOn of thIS new determinant (B) may be 
expressed' thus: The row and column ~ntersecting ~n tlte znvotal 
element of the onginal determmant, say the rth 1'01t' and sth 
column, are deleted, then every 'element y is d~m~ntshed by the 
product of the elements qoh~ch stand u,here the elimmated 1'OW 

and column are met by perpendiculU1s from y, and tlte whole 
determ2nant ~s mult2phed by ( - 1 )r+l. 

The advantage gamed by substituting the determmant (B) 
for the determinant (A) IS that (B) is of order one unit lOll er 
than A; and therefore by repeated apphcatIOn of this method 
of reductwn we can reduce any delerrmnant to the second order, 
when ItS value may be written down at once. 

To prove thIS theorem, we first dIvide the columns of the 
determmant (A) by b], b2• • , ,bo respectively, so that it takes 
the form 

b] b2 b, bo a] ~ a, ao 
b; ba 

a3 
b, b;; 

1 1 1 1 1 
C1 C2 

Ca 
c, Co 

b; ~ ~ b;; 
d1 dz da 

d, do 
b; ba b, bo 
e] e2 e, ~I b; b2 

fa b. bs 

smce ha = 1: then (subtractmg the elements of the thIrd column 
from those in the other columns) we write the determinant m 
the form 

- , 

b] h2 h, hs (11 ~ a, lis 
--aa --aa aa - - ((a - - ((a 
h1 h2 h, ho 
0 0 1 0 0 
C1 C2 C, Cs 
--Ca b; -Ca Ca --Ca - -fa b] be hs 

dt d. 
da 

d, £Is --da --= - d3 - -tla --d3 h] ha h, bo , 
e] f2 e, e( --ea - -ea fa --e3 -- ea 
h1 ha h, ho 
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This determi~ant may now be written 

( _1)2+8 b1 bz h, bi lZt a'l a, as I 

--aa --aa --aa --aa 
hi bz b, hs 
1.'1 ~z C, Cs 
--I.'a - -1.'8 - -Ca -- Ca bl bz h, bi 

r!! - da ~-da ~-da ds --da 
bl hz b, bs 

el ez e, eo 
--fa - -fa --fa bo - ea bl bz b, 

which is obvIOusly equivalent to the form (B). 

It is usually advISable to prepare the detenlllnant for computatlOll by 
formmg zello elements In the ruw and column contammg the plvotdl 
element. For example, III the deternunaut (A) of Ex. 1 below, zelO 

elements may be mtroduced IlltO the first row by adding three times the 
third column to the first column to form the new first column, then 
adding the third column to the seoond column to form the new 8econd 
column, and so Qn. In tlus way ,the ~ubser!uent calculatIOns ale sImplIfied 

In performlllg the computatlOll of a deternunant It WIll be found 
convenient to draw pencIl hnes through the row and column "hleh 
intersect in the ;>ivotal elenient; this helps the eye In findmg the 
elements at the feet of the perpendiculars 

Instead of first dIViding borne row Qf column m order to obtam a 
pivotal element equal to umty, we may eHmmate the row and column' 
llltersectIng in any element (not necessarily unity) as follows Delete the 
lOW and column III question by drawing pencil hnes through them; then 
the rille IS • 

I II I 
product of elements at feet of perpll'lldtrulars 

New eemellt=o { eement- ., 
• element at mtersec/ton 0/ penctl hnn 

the nelO determinallt betng multiphed by the element at the tllierserlion 
of the penctl ltnes alld by the factor (- l)r+., where l,and s denote the 
1I11mbers oj the deleted ruw alld column respectively. 

The above method of computing the value of a Jeterminant 
ena.bles us at the same time to compute the co-factors of the 
elements corresponding' to the surviving elements;. for thefe 
co-factors are actuaUy equal to the co-factors of the correspond
ing elements in the reduced determinant. 

For·example, the co· factor of ci in determinant (A) is 
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wInch, SlUce bs = 1, is equal to 

I 
a2 - aab2 a, - dab, ao - aabol 
d2 - dab2 If, - dab, do - dabs 
e2 - eab2 e, - eab, ts - eah5 

the latter determmant bemg the co-factor of (cI - cabI ), \I Inch M the 
element m the reduced determmant (B) correspondmg to cI In (A). 

Ex I-Evaluate 

3 1 -1 2 1 I 
-2 3 1 4 3 

1 4 2 3 1 (A) 
5 -2 -3 5 ~l 

--;1 1 2 3 2 

We may select as pivotal element the number] at the mten<ectwn 
of the first row and the fifth column; the rule then gIves 

3 1 -l. 2 11 =<:-1)61- 11 0 4 -2 I 
-2 3' 1 4 3' 1- 2 3 3 I I 

1 4' 2 3 
1 I R 

-1 -4 7 : ~B) 
5 -2 -'3 5 - ~ I - 7 -1 4 -1 I 

-1 1 2 3 I 
Takmg as new pIvotal element the UnIt at the mtelBectlOn of the 
second row and last column, we obtam 

( - 1)6+6
1 - 15 

22 
1- 9 

6 
- 2'2 

2 

It) I 
- 2~ (0) 

As there IS now nb umt element m thlS determmant, we Dlay 
dIvIde the second column by 2 and so form a umt pIvotal element. The 
determmant becOIjles 

21'-15 3 
22 -11 

- 9 1 

10 I '-2~ 

=2(-1)01.12 -111 
-77 52 

(D) 

= 446, the required value ' 

If It were reqUITed to d"ternllne the co-factor of (say) the element 
in the iOlITth row and first column of the above determmant, \Ie 
should have the ,co-factor of 5 in (A) equal to the co-factor of 8, the 
,correspondmg element m the reduced determinant (B) 

= the co-factor of 22 m the ,next reduced determmant (0) 
= the co-factor c,f - 77 I~ (D) • 
'= - 22. 

Ex. 2 -Evaluate thp determmant for th~ Legendre polynomtal of order 
five: 
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1 II 
P6(z)=5j 1 

o 
o 
o 

1 
3" 
2 
6 
0 

row 

0 
2 

5z 
3 
0 

and ,fifth 

0 0 
0 0 
3 0 

7z 4 
4 9z 

column, notmg that the We elmllnate the fourth 
eleIQent at the mtersectlOn 
determmant. Thus 

of these hne~ uecomes /l. factor of the 

.(ehmlnatll~g the 1st row and 2nd col.)= 

1 
1 3z 
o 2 

o 0 

~ 1-3z2 

-2z 

o 

0 
2 
511 

27z 
-4 

2 
5z 

27z 
-4 

(clulIlilatmg the 1st 'row and 2nd col.).= - 8 15.8 _ ~ 
2" 2 
81~s 27z 

-8+-;;-
= 945z5 - 1:050z3 + 225z. 

So we have P6(z)=1(63z0-70z3 +15z) 

0 
0 
3 

63z2 

4· 
4 
0 
:l 

63z2 
4---

4. 

3 

61z2 
4-~ 

4 

39 Th~ Solution of a. System of Linear Equations.
Bemg now in a posltion to compute the numerical value of a 
determinant, we can sol va a set of Imear equations m' any 
number of unknowns, XI, :l1!, :ca, ... , x"' say . 

ran. Xl, + alB Xa +. . • + al" X" = Cl ) 

a2l Xl + a22 X2 +.. . . + ~" X" = C2 

t~l Xl .~ an~ Xz +. . . + ~nn ~n = ~J 
by the formulae whIch are pr,oved in 'works on determinants, 
namely: 

CI • a19 (/13 • • • 
Cs (/22 (/2a, ••• 

al~ I 
a2n I . , 

Xl = C" a,,2 "113_-,--' _._Q-,,"" I, Xz = ani en ails an" 
an a12 a13 .,' all. 

an a23 (/23 ••• (12n 

I
' ~~::~:: ~ 
'a:l a~2 a:l~ ..• all" • ani an, an3 ... a,m 

and similar expressions for :ca, x". . , x". * 
• Further remarks and examples on the solUtlOD of lmear e4u»t1Ons ~nll be 

fOUlld ill Chapter IX. 11\ connectlQn With the solution of the .. nomlal equations" 
ill thd Method of Least Squares. 
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Ex.-1'ind the wl'LeS of x, y, z, U' that sah1y the syst6flt of eql/al/vlls: 

9x + 3y + 4z + 2w = 28} 
3x+ f,z- 410= 12 
y+ Z+ 10= 5 . 

6x- y+ 310= 19 

We have at once 

, 28 3 4 2 
112 0 5 -4 
: 5 1 1 1 
I 19 - 1 0 3 - 276 

X= 9---3---4-- 2- = _207=11, 

305 4 
011 1 
6 -1 0 3 

28 
12 

5 
19 

4 
5 
1 
o 

2 
-4 

1 
3 

414 • = __ = -2. 
207 

and m the same "II ay we obtam the values z = 4, 10 = 3. 
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3. Compute tllc values of 

(a.) ! 1 0 0 ({3i 3 7 1 2 51 

1-
! 1 0 6 4 3 0 2 

i ! 1 0 3 0 1 2 
1 ' ! ~ 1 0 6 5 3 T 

2 1 0 2 0 

(y) 1 2 3 4 5 6 
2 3 4 5 6 1 
3 4 5 6 1 2 
4 5 6 1 2 3 
5 6 1 2 3 4 
6 1 2 3 4 5 

4. Verily the relation 

2"= 1 1 0 0 0 . (n + 1) rows, 
-1 1 1 0 0 

1 1 2 1 0 
-1 1 :3 3 1 

1 1 4 6 4 

the constituents bemg bmomial coefficients, when n = 2, 3, 4, • 

5. Solve deterruinantallY,the following sets of equatIOns: 

(a) X -I: 2y - 2z = 31l } 
3x + y + 2w = 4p 
y+ z - w=6q 
x- z- w=o 

((3) 
. 

Xl + 5'3- 2:1', + :1'6= 10) 
4:1'1- 3xa+ '1x,=- 14 l 

_. 9xl + 8x2 + IOx,= 31' 
2xl +20xs-13xs+ xs=- 2) 

5xt + 4.1:1 + 3xa + 2x, + 4xli = 1 

77~ 



CHAPTBR VI 

THE NUMERICAL SOLUTION OF ALGERRAIC AND 
TRANSCE~DENTAL EQUATIONS 

40. Introduction.-In the present chapter we shall show 
how to. find the value of an unknown quantlty which satisfies 
some given algebraICal or transcendental equatlon; or the 
values of several unknown quantltles whICh satisfy a set of 
gIven equatIOns, equal m number to the number of the 
unknowns. 

The methods m use may be classIfied as follov,s: 
(a) L~teral methods, in whICh the solutIOn IS obtained as a 

general forl1lula, so that nothing remains but to 'SUbstitute 
numerIcal values in the formula; as, for example, the solution 
of the quadratIc equatIOn :£2 + 2bz + c = 0 by the formula 

Z= -b±Yb2 -c. 

These hteral solutions are valuable when they can be 
obtamed,* but· in most of the cases we shall have to dlscuss, 
they are unattaInable, at any rate in a form Involving only 
a fillite number of arithmetICal operations. 

(f3) Numertcal or computer's methods, In whICh the working 
is mainly arithmeticaL from the beginning These are, on the 
whole, the most useful, particularly "hen a hlgh degree of 
acCUracy is required, and they constitute the main tOpIC of 
the present chapter. 

(y) Graphical methods, in whICh the solution is obtained 
by drawing diagrams These are much. used when a rough 

* The solutIOn ofthc,cubic dlScussed lD § 62 below, and the general formula 
proved in § 60, are examples of hteral solutIOns. 

78 



ALGEBRAIC & TRANSCENDENTAL EQU~T.roNS • 79 

solutIOn is all that is required or as a pteparatlO~ for a more 
accurate solution by numerical method8, but for many purposes 
they have been superseded by the 

(B) Nomographic methods, in whICh a. diagram is prepared 
onoe for all to serve for .a WIde .class af cases, so that it njay 
he used over and Over again with different numerIcal.data. 

(£) 'ltfechanical methods, in which some mechanIcal arrange
ment is applied; many ingenious machmes have been de
vised for the purpose of solving different equations, but on 
account of their cost and'complexity they have not come into 
extensIve use . 
. 41. The Pre-Newtonian Period.-A method for the ex

traction of the square and cdbe roots of numbers, digIt bY'digIt, 
was discovered by the Hindu mathematiCIans, ~nd by them 
communicated to the Arabs, who transmitted it to Europe. 

This method 'was extended by Vleta in 1600 * so as to 
furll1sh the roots of algebraic equation,s m general. The 
proces~ was 'So laborious that a. seventeenth-century mathe
matician described it as "work unfit for a ChrlStian," t but 
It ~as in general use from 1600 to 1680 . 

. In 1674 a method depending on a new prmciple, the 
principle of iteration, was cOIIl1l}.unicated in a letter from 
Gregory to Collins; l and independently, a few months later, 
in a letter, from Michael Dary to Newton.§ Tills prmciple we 
shall now dISCUSS. 

42. The Principle of Iteration.-As a first i,llustration 
of the principle of iteration we shall consider an algorithm 
suggested by Newton" for the determination of square rO!'ts, 
which may be described as follows: 

Let N bs the number 1v,hose square root is required. Take 
any number Xo and from it fONn Xl according to the ,equation 
Xl = HXo. + N lXo). From Xl form X2 ·accordin." to the equatwn 
~ = t(Xl + N IX1)' Froin X! form X3 according to the equation 

• De nUnM1'osd pote.,tntum adjectal'Um reSoll4ltollt, 1600. 
t Warner in Rl!:aud's Correspondence of Scientlfic Men ot the 17th Century. 

I, p 248. . • 
t Rlgaud'~ Corr.<pondence, II, P: 255. . • • 
l Rlgaud. 01' Cit. II, 1'. 365 For an account or Dary see Rlgaud, 1.1' 204 

• II Op. cU. II, p. 872. • . • 
; • 
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.r3=HX:!+NIx.~). and so on. 'J'hen the 8eljuence of n'l1mbC1S 
Xo. Xl, X:! Xa, •• , tends to a luntt wlJ,ich ~s .IN. 

Thus, takmg N = 10 and xo= I, we have 
~=!{l+ 10)=5'5, 
x2=~(5 5+ 10/5 5)=~(5'5+ 18)=3 7, 
xa = ~(3 7 + 10/3·7) = !(3'70 + 2·7) = 32, 
:<, = i(3'2 + 10/3'2) = i(3'2 + 3 125) = 3'163, 
xs= !(3 163 + 10/3·163) = ~(3'163 + 3·161555)= 31622775, 
:1"6 = !(3-l622775 + 10/3 1622775) = !<3·1622775 + 3'1622778) 

= 3'1622777, 
which IS the square root of 10, correctly to seven dellmal places. 

In order to prove the valIdity of the process, we proceed as 
follows: . 

The equation 
may be written 

whence we have 

Xp - .IN _ (Xp -l - IN)2 
Xp+ IN- Xp _l+ IN ' 

Xn - IN 
xn+ IN 

From this equation it is eviden'l; that If * 

lXo- JNI - . Xo+ IN <1, then Ltn~coxn- IN. 

if I~: )~I>I, then Lt~coxn= - IN. 

The limiting case IS when 

IXo- JNI=IXo+ JNI· 
If we write 

thIS becomes 
1 r cos f) - Xl COS !a + iT sm f) - iXl sin !a I 

(1) 

(2) 

= I r COS f) + Xi cos!a + ir sm f) + iX' sin ~a I, 
or, squaring both sides, 

,.2 +X- 2rXlcos (f)- ~a) =r2+ X+ 2rXl cos (f)- la), 
so COs(f)-~a)=O, 

or f) = ±900 + la, 

which is the equation of a straight line through the origin in 

* If z is a complex number, say equal to 110 + ",,-=1, "here II and" are real 
numbers, then .J (1102 +".) is denoted by Izl and is called the '{nodulus of t. ' 
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the plane of the complex variable xo, perpendicular to the lme 
'Joining the points IN and - ,IN. Denotmg this hne by 1. 
we reg,ud it as dIviding the plane mto two half-planes; and 
we see from (1) and (2) above that the algonthm leads to the 
value IN, as long as the initwl numbe1' Xo is taJ.en tn that 
half 0/ the pl(tne whtch cU1dains IN; and the algoT'tthm leads 
to the value -. IN, as long as Xo tS taken tn that half-plane 

. whtch contatns - IN. I/ Xo tS taken exnctly on the hne l, the 
sequence xo, Xl, X:!, • • ., does not tend to n hmtt " 

A plea~mg characterbtw of ItelahvL pIOL~'8~' may be oLberved III 

wnnectlOn wIth tIns examplc, namcly, that a mIstake III the perfOImance 
of the numerlCal wOlk does not IIlvahdate the whole Lalcu].ltlon If, for 
example, a mIstake were made 111 lalchlatmg al from :ro' the erroneous 
vallie l' oLtallled mIght nave been obtamed coaeltly by staltIng from 
a different value 1'0" and bmce 1'0 IS to be taken albltranly, the true 
solutIon may be reaLhed by way ot l' as well a- by way of '1 '1 he 
COl'lect re.ult IS obtamed \\henever the numbel" :rn .rT +l' 1'T +2' •• ale 
obviously tendmg to a hmlt, ho\\ever many erlols ma~ have been com
nntted III obtammg these numbers. ThIS valuable feature of Itmatlve 
methods has made them very popular. 

43. Geometrical Interpretation of Iteration.-Th~ nature 
of iterative methods may readily be illustrated t geometrIcally. 
Let J(x) = 0 be the equatIOn. Write it In the form Ji(x) = /2(X), 
as may usually be done in many ways; thus, if the equation 1'1 

3x3 - 8x + a = 0, we can take /1(X) = 3X2, /2(X) = 831 - a Draw 
the curves.y = /1 (X) and y =/2(X) , the real roots of /(x) = 0 are 
eVidently ~he abscissae of the points of intersection of these 
two curves. An iterative process for findmg them may be 
devised as follows: select any point Xo on the aXIS of X so that 
the value 'of Xo is nearly equal to that of the abscissa of one of 
the pmn'vs of intersection of the curves. From Xo draw a 
straight line parallel to the axis of y until it meets ~he curve 
which ha(! the siope of lesser magnitude. Suppose, for example; 
when :r:=Xo that'IR(x)I<I/s'(x)1 and that the line X=Xo meets 
the curve y = /1 (x) at the point (Xo, Yo). Ftom tws second point 
draw a line parallel to the axis of :r: until it meets '!I = /s(:r:) in. 
the point (Xb Yo). }'rom the third point draw a IIlle parallel 1;0 

• For further work on Iterative solutIons of quadratic equatIons and their 
oonnectlon WIth geometryef 0 N)coletti, Rend dl Palermo, 42 (1917), p. 13. 

t cr. R. Ross, Natu~, 78 (1908), p. 663. 
(D 311) 7 
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the axis of y until it meets the curve fl(X) = y in (Xl, 1/1), and 
from this fourth point a line parallel to the aXIS of J.', and 80 on. 

/ ,. 

--------------x~=~x~o------x ------------~x~-~x~o-------x 

l!'lG 6. FIG. 7 

Then the absCIssa of the first and second points IS Xo, that of the 
third and fourth points is Xt, and in general Xn approaches nearer 

" I , , 
I ., 
I , , 

- - : r - - - -- - -::::-;.-~--r-~--="'" 

i 
I 
I 
I 

t ... • 
FIG 8. 

, \ 

to the point of intersection of the two curves for increJsing 
• values of n; i.e., Xn converges to a root of the original equatlOD. 

There are two main. types of diagram resulting from thIS 
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process acCording as the' ~lopes of the two curves have the same 
or different signs fo~ the abscissae Xo, Xi, Xa.. . . 

In Fl&,. 6 the abscissae xl' X2> X3' ••• are all on the same side of 
the lOot x and the hnes approach the point of intersectIOn of the curves 
m the form of a "staI,l'CBse." In Fig 7 the hnes approach ~he inter
sectIOn splfally. The stalTcase I!OlutlOn IS obtamed "hen the derivatives 
of the curves fl(x), 12(x) have tlle same Sign near the pomt of mter
sectIOn and the Bplral ~lutlOn occurs when those denvatlves have 
opposite SignS. 

E.c. I.-To find the real roots of the equatwn 

x5- x -02=0 

The real roots are the three inteNectlOns of the curves, = x5 and 
, = x + 0·2 a" shown lU Fig. B. 

We can Iterate to each of the three roots as follows: 
For the p08Itl~\l root 

.c=~ ,=02+x 
.1'0= 1·000 '0= 1·200 
xl=1'037 Yl=1'237 
xz= 1·0434 '2= 1·2434 
x8= 1·0445 '3= 1·2445 
x,= 1·04472 ,,= 1·24472 

(The root lS X= ]'0447616) 

For the larger negative root x=,. 
xO= - ]·000 
xl= - 0·956 
xB= -0·9456 
x8= - 0·9430 
x,= -0·9;423 
x5= - 0·94214 
:1:8='- 0'94210 

'0= -0 BOO 
'1= -0·756 
'2= - 0·7456 
'8= -0·7430 ,,= -0·7423 
'5= - 0·74214 

(The root lij x = - 0·94209) 

For the smaller negative root • 

, x=~-~~2 ___ i 
xo= -0·000 ! 
3'1 = - 0 200 '\ 
41 = - 0·20032 

'0= -0,000 '1 = - 0·00032 
Y2= - 00003225 

(Correctly to five places.) 

Ex. '2 -Find, correctly to five dec~mQ,I places, the root of the equati01l 

y+logl0,=0·5 

by iterating the formula lip+! = 0·5 - loglotl," 
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By lIl'pectlOll of a log tahle we see that yo= 068 18 an !!.l'l'foxlllJ.\te 
value of the loot So we take 

Yl = 05 - 10glOO 68 = 06675, 
Y2=0 5 -loglOO 6G75=O 67(;6 

As the IteratlOll eVidently furmshes valu~s alternately h,,~ and gl~at\'l 
than lihe root, we take (Yl + Y2)/2 Of 06716 as the next appro'tllllatlOll 
Ya' and then we have 

Y4 =O.j -loglOO·6716=0 6729. 
Take Y6 = (Ya + Y4)/2 = 0'6723, 

Y6 = ° 5 -loglOO·6723 = 0672437, 
Y7 = 0·5. -loglOO 672437 = 0·672347 

Take Ys = (116 + Y7)/2 = 0.672392, 
Y9 = 0·5 -loglOO 672392 = 0672377, 
YI0' the mean of the last two value, = 0672385, 
Yll = 05 -loglOO 672385 = 0672382 

The root, correctly to five decimal places, }, 0·67238. 

Ex 3.-Ftnd (us-mg only BarlouYs table oj cubes) the smaller l)onttve 
root of 

x3 _ 2x+O·5=0 

44. The Newton-Raphson Method.-It H! eVIdent that In 

iteratmg towards any root we are not bound to proceed by 

y 

-'O~------_--~A~_~--------.~-~~X 

Q, 

FIG. 9 

rectangular steps, as we have done in the preceding article; we 
mIght just as well have proceeded by oblique steps, as in the 
following method: 

Let QIP be an arc of a curve y = f(x) , i~tersecting the axis 
of x at A, so that the abscissa of A IS a root of the equation 
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j(x) = 0, Suppose that the arc AP IS'convex to the aXIS of x, 
and that P is a point on this arc with abscissa Xo- At P draw 
a tangent to the curve meeting the aXIS of x in M a""nd let 
OM =:l1., Let Q be the point on the curve whose absCissa IS Xl, 

and at Q draw a tangent to meet the axis of x in N, WrIte 
ON =~, Let R be the point on the curve whose absClss<t IS X2, 

and slIlIllarly at R draw a tangent to the curve to meet the aXIs 
of x, It is e,:ident that the pomts L, M, N" , " tend to A, or, 
in other worda, the values xo, Xl, X2, Xa, ' , "form a sequence 
tending to the root of the equatIOn j (x) = 0, If, however, we 
start on the other side of A, where the curve IS concave to the 
axis of x, at Ql say, the first step of thIS method carries us 
to the other side of A, where the arc of the curve is convex to 
the axis of x, after whwD. the sequence tends to the' r~ot as 
.before, 

Now we have 
:ro -:l1. = ML = LP cot PML = f(:ro)/!'(:ro), 

so Xl =:ro -j(xo)/!'(:ro), 
and in general XT+1=XT -j(x.)If'(x,). (I) 

The process is therefore an iteratIOn based on the equation (I} 
In substantially thIS form it was gIVen by Raphson * in 1690, 
but the method is commonly called :Kewton's, because Newton 
had previously t suggested a nearly related process t 

The preceding discussion is .really based on two assumptIons 
1. That the slope of the curve does not become zero. along the arc 

Ql P; i.8. that t~e equation f'(x) = 0 ha~ no. root' between x'; and x." the 
absClssae of QI. and P. ' 

2, nat the curve has no point of inflexlOn along QIP. . 
The rule of Newton becomes more preclbe if we make me of the 

observation that we can determme which of the two abscis..<ae xo' and :1'0 

corresponds to the paIt of the curve which IS cOIll'ex ·towards the x·aXIS 

trom the conditlon that at potnti whe1e the curve y=f(x) t8 convex 
towards the axis of x, we have the relatton 

J(x}f"(J:):> 0 

• Analyns AequatlOnum UntVe1'SalU, London (1690). 
t WalliS' Algebra (1685), p. 338. 
t The dliTelence between Newton's process and Ral'hson's IS that Ne" ton 

calculated a set of successive equatIOns, whose roots were the successive residuals 
between the above quantities a;, and the trl'e value of the root, "hereas In 

Raphson's form oC the process tins i~ \mneCesbary. 
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Hence we see that If fix) has only one loot betv'een two bo1tlld8 J'; (/"d 
"01 whtle f'(x) and f"(7;) are never zero between these bOllnds, then Ih, Ne",I",,· 
Raphso!" process unll certatnly succeed ~f it be begun at that aile of the 
bounds for whtch f(x) and r(x) have Ihe same B1[Jn 

We mlg'ht have denved Newton'. method by the aid of Ta) 101)" 
Theorem as follo\\ 8 

Let Xo be an approximate 'Value of a root of the e'luahou fer) = 0 
Put x=xo+P, where p 18 small Then l)y Taylor's Theorem 

o =f(xo+ p)=f(xo) + pf'(ro) + terms mvolvlDg higher pO\\el'8 of p, 

so approXimately we have 

and therefore 
p = - f(xo>/I("o), 
x=xo - f(xo)//(xOJ, 

whIch IS Newton's fOrIJlula * 
Ex. I.-Let the eq1tatwn be 

x3 - 2x - 5 = o. t 
Here It IS obVIOUS that an approximate value of the root 18 2. 

Takmg xo= 2, we have 

f(2) 1 
:l1. = Xo - f'(2) = 2 + 10 = 2'1. 

Next 

f(2 1) 0061 
x2 =:1,1 - /(2'1) = 2·1- 'il23 = 2·1- 0'0054 (nearIY)~ 2'0946. 

Now 
f(2'O,946) 0-0005415505 

/(2'0946) 11-16205 = 0000048517 

so . "3 = 2-094600000 - -000048517 
= 2-094551483. 

The reqUITed root 18 2-09455148 correctly to the first nine dlgIta We 
'postpone for the present (cf. § 50) the answer to the questlOlI, 110\\ \\ e 
know the number of places to whICh our result is correct 

Ex. 2.-F~nd correctly to four dectmal places the greal&<t root of 

,,3 _ 4x2 --; x + 3 = 0 

• On the formulatIOn of conditIOns under "hlCh Ne\\ton's method of ap
proXimatIOn leads to a root of an equatIon' cf Cauchy, fEuvres, Ser 2, 4, I' :'i3, 
G Faber, Jour,! fur IIlath 138 (1910), p 1 

t .. The reason I call x" - 2x - 5=0 a celebrated equatIOn IS """anse It Was tho 
one on which Wallis chanced to e"hlbltNewton'smethod \\hen he first pubhshed 
It, In consequence of "hleh every numerical solver ha9 felt bound In duty to 
make It one of hIS e"amples Invent a numerical method, neglect to .how how 
It "orks on thIs equatIOn, and you are a pJlgrim "ho doe. not come In at the 
htt1~ Wicket (mde J, Bunyan)," [de Morgan to Whe\\ell, 20th January 1861J 
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E ... 3.-Fmd by Newton's method, correctly to BtX places 0/ dectmals, the 
root 0/ the eq uation 

X logloX = 4·7772393. 

From a taLle of logarithms we have, by lDspectlOn, the values 

.6 log106 = 4·67 and 7 10gl07 = 5'92, 

80 we take as a first approxlmat1~n xo= 6. 

The next approXlmahon IS 

Xl = Xo - /(xo)/I(xo) 

Now /(xo)=(6 x 0'77815) - 47772 = - 0'1083, 
/'(xO> = 10gloXo+ logloe=0'778 + 0·434 = 1·2] 2, 

so ]/I(xO> = 0·825 (nearly), 

and xt = 6·089. 

The next approximatIOn is 

Xa =; Xi - /(x,,)/I(x l )· 

Now /(x,,) = (6'089 x Q'7845460) - 4·7772393 = - 0'0001387, 

so x.= 6·089 + (0'0001387 x 0·825), 

or x. = 6'089114, which is correct to SlX places. 

45. An Altel1lative Procedure. - Instead of lollowing 
Newton's rule strictly by forming J(Xo) andf(Xo), etc., we may 
proceed lD a somewhat less elabOJ:ate way as follows: 

Suppose 'We have found (graphically or otherWIse) a first 
approximation to the root of the equation f(x) = 0, which we 
will call al' Let x denote the required root of the equation 
and 'put 

(1) 

where a is a small quantIty. We no,! substitute this value of 
x in the original ~quation. neglecting powers of a greater than 
the first. 'We solve the simple equation in a. so formed and 
denote the value obtained for a by St. Then the second 
approximation. to the root x is a1 + -St. N ow denote a1 + a1 

by as. and write 
XFas+8, (2) 

and substItute this value of z in the original equation. Pro
ceeding' as bef~re. w~ find' an approximate value of the 8 of 
equation (2); let it be as. so as + as is a third. approximation to 
the root; then we denote as + 8t by as. and wr~te 

(3) 
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and similarly for further operatlOns. Tlte sequI?nce al. a2 • ••• , an, 

converges to the root x. ThIs procedure 18 essentially equivalent 
to the Newtoll-Raphson process, a,s is evident from the 
connectlOn pointed out above between the Newton-Raphson 
process and Taylor's Theorem (§ 44). 

Ex -Iltnd the r90t of the eqltutwn 

lOx - :k.3= 3'1462644, 
whtch tS near 0·3. 

If x,. a1 + Il "here illS small, we have approximately 

Il- ~'1462644 - l~aI + a1
3 

- 10 - 3a
1

2 • 

Put al = 0'3, then 
0·17326 

Il= ~ =0·17326 xO-l0277 =0.017806 

The next approXImatIOn IS a2 = 0·3178, from whICh" e have 

Il= 31462644 - 3·178 + 0'0320968 = 0·0003612 
10-3xO·l0l 9697 

= 0'000037,249, 

a3 = 0'317837,249 

The reqtllred. root of the equatiOn IS ° 3178372, correctly to seven places. 
It may be remarked. that the above method IS themetIcally applicable 

to complex as well as to real roots, but In the case of complex roots the 
numerical calculatIOns are generally so labonollq tllat other methods to 
be described later are preferable 

46. Solution of SImultaneous Equations.-As a fUlther Illu~tra
tlOn of the' method o( the last qectlOll we shall find a solutIOn of the 
simultaneous equatIons, 

x3+ 2y2= I, 
5y3+'t2 - 2xy= 4. 

(1) 
(2) 

We first trace the curves replesented by the;;e two equatiOns. In the 
first equatIOn we find, correspondmg to given values ot 3', the followmg 
values of y 

x 0 + 1 > 1 - I - 2 - 3 - 10·0 
Y 1=0·71 ° ImagInary 1=) 1=2·12 1=3·74 1=224, 

and in the secund equatIon simIlarly 

y 0 0'5 +1 > +1 -1 -2 -3 
x -2 -1·4 +1 Imagmary -4·16 -893 -15 

+2- +2·4 + 2·16 +4·93 +9 

There IS eVIdently only one real root of the equatlUn8, repreqented by 
the pomt G In the dlB,,<7I'am. From the diagram we see that the ordlIIate 
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of G hes between + 0·7 and + 09. Introducing th,e three value~ y = (j·7, 
y=0'8, y=0'9, mto equatIOns (I) and (2), we obtam 

y ill by (l) ill by (:2). Ihifercnce 
0·7 + 0·27 - 0·95 + 1·22 
0·8 - 0·65 ...., 0·64 - 0 01 
0·9 -0·85 -0·18 -067, 

so if in the two curves x were to vary proporhonally to y we should 
deduce that y \lould be near 0·799 If we now try the thlee ,"alues 

\ Y 
2 

~----~~--__ ~ ____ ~~ ____ ~~ ____ -+~ ___ x 

-2 

FIG. 10. 

0'797, 0·798, and 0·799, tins time usmg logs to five places of deCimals, 
we obtam 

y. 
0·797 
0·798 
0·799 

ill by (1). 
- 0'6467 
-0·6492 
- 0·6517 

ill by (2). 
-0·6534 
- 0·6498 
-06460 

D'ifcrence 
+0·0067 
+0·0006 
-0'0057, 

from wluch it lS, seen that the true values are nearly 

x= -0'64?4 and y= +0·7981 

We therefore substltute in equations (I) and (2) 

x":'-06494+& and y=+0·7981+By, 

neglectmg squares' of Bx and By Usmg units of the thud decimal 
place, we have 

1265&+3192By = -00621, 
2895&-10853By= 0'0959, 
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ox= -00160, oy= -0·0131, 

X= -0·649416, Y= +0'798087, 

"Inch IS the reqUIred solution. 

4 7. Solution of a Pair of .Equations in two Unknowns by 
Newton's Method.-A more formal and general treatment of the 
topIC of the last sectlOll IS the following Let two equatIOns he gl\"'n, 

f(x, y) = 0, g(:r, y) = 0, 

from whICh the unknowns (x, y) are to be deternuned. 
Let (xo> Yo) be an approXImate solutlon of tbe equatIOns. Writ<> 

x=xo+h, 
y=yo+k. 

Then: by Taylor'S Theorem, neglectmg powers of 11. and k above the first, 
we have 

Yl = Yo + af og of og 

axo Oyo - Oyo oXo 

Tbese 'formulae may be Iterated as m Ne\\-ton's process for equatlODe 
III one varIable. 

48. A Modification of the Newton-Raphson Method.
The computatlOns required for the Newton-Raphson method 
may be simplified in the following way. 
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Insteaq of 
a:..+l = Xr - f(x,} If (xr), 

we may take as the formula. on which iteration is based • 
Xr+l = Xr - f(xr}ff'(Xo}. 

This means that .in the succeSSIve steps of the process of 
§ 44, we replace_ the tangents at Q, R, . . . by lines parallel to 
the tangent at P. By this method we are saved the trouble of 
calculating f'(xr} at each stage, whIle the numbe;- of approxi
mations required is practically no greater than in the' N ewton
Raphson nietliod. 

E c_ 1.-To find the root of the equation 

f(x) =x5 +'4x'- 2x3+ 10x2 - 2x- 962 =0 

whtch lies betwesn 3 and 4. 
Heref(3)= - 365, f(4);; 1110, so by plOportlOnal parts we may take 

((0= 3·3 as a first approximation to the root. 
The next approxlmation is 

. ~ =((0 - f(xo)/I(xo) 
Kow 

f(xo) = '- 65-85, !(xo) = 5x'+ 16x3 - 6x2 + 20x - 2 = 1166-6, 
and l/f'(xo) = 0-000857 (nearly). 
Th~refol'e "'1 = 3-3 + t65'8 x 0·000857) 

=3'356. 

The next approximation is 

. .xa=x1-f(Xl)/I(xt)· 

bistead of calcul~tlllg f'(Xl)' we may use f'(x~ agam, 

Now 

and therefore 

Xl. + 4 =_ 7'356, 
~2+4xl-2= 22-6867, 

~3+4.l'12-;2xl+I0= 86137, 
xl'T4~3 - 2~2+ l(~xt - 2= 287-08, . 

xl+4x1'-2xt3 + 10xla"'2xl -962= _ 1-44, 

We ha~e at once 
J(x1) = 1-44. 

'- XS=x1 ... (1·44 x 0-000857) 
= 3-3560 - 0-0012 
=33548. 

ThiS is COl'rect as far as it goes, the value of the root to 8eve~ places 
of deolluals being 3 3548187. 

E.c. 2.-Compute the root of the equatwn 

x+ logloX~ 0·5 
correctly to five places of dectmals. 
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49. The Rule of False Position.-Apother iteratIOn pro
cess belonging to the same class as Newton's for findlOg the 
root of an equation is the followmg. 

Let f(x) = 0 be the given eq uation. We find (by tnal or 
otherWIse) two values a and b near the root of the equation 
such that f(a) and f(b) are OpposIte in sign I.et the arc 
CRD III the diagram denote the curve y = j\x), the abSCIssa 
of R bemg the root of the given equatIOn, and suppose that 
the equatIOns f'(x) = 0, f"(x) = 0 have no root between (f and 

o 

__ ~A ______ 7f ____ ~--~~~------X 

c 
FIG. 11. 

b, the abscissae of C and D. The curve is therefore constantly 
concave to the axis of x along one of the arcs CR and RD, 
and constantly convex to the axis of x along the other of 
these arcs. Let RD be the arc which is convex to the x-axis. 

The equation of the chord CD IS given by 

y - f(a) =f(bl =1a
) (x - a), 

and the abscissa a' of the point A', where the chord cuts the 
aXIS ot x, is given by 

I (b-a)f(a) 
a =a-f(b) _ }(a)' (1) 

Then a' is evidently a closer approximatlOD to the root of the 
eq uation than a, 
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We now draw the ordmate at A"to cut the curve in C' and, 

as before, we draw the chord C'D intersectmg- the x-ax18 in a 
pomt AU whlCh hes betweell .A: ~nd R. The abscissa aU of the 
pomt AU is eVIdently a closer approximation to the value of 
the root than a', and Its value is 

" I (b - a')j(a/) 
a =a - j(o).-j(a'}' (2) 

and so on for further approximations to the root of the 
equation . 
• It I~ eVident that thE' computatIOn of the loot may be simplified If III 

equatIOn (2) ~e replaLe b by b' , the absCissa of any pomt on the curve 
bet~een It and D, as In Ex. 1 below. 

EquatIon (1) may also be wntten in the form 

. ,_ aj(b) - bj(a) 
a - j(b) _ j(a) . 

The iterative process based on this equation is known as the 
rule oj jalse positwn 

The rule of false position IS essentially Inverse InterpolatIOn 
(§ 34) when differences above the first are neglected. The 
above i~eration to the root is valid even when the initIal points 
C, D are on the sa"tne side of the root R, provided the arc 
RD is conve1{ to the x.-axis. 

Ex .. I.-To solve the equatIOn 

r-2x-5=0. 

Here we can take a = 2, b ~ 3, and 

, (3 - 2)(2) 1 
!\ = 2 - }(3) _ /(2) = 2 + 17' 

i.e, a' = 2·06. 
We now take a' = 2,06, /I = 2·10, then 

, (2·10 - 2·06) ( - 0 378184) 
a =206- 0,061000+0378184 =2·0944 .• , 

ie, a' = 2·094. 
Instead of taking b' = 2·10 as before, we may take b' = 2·096 SInce 

j(2·096) is pOSItive We have 

.. 0·002 (- 0·006153416) 
a = 2·094 - 0.016180736 + 0.006153418 2·094551') 

The required root is 2·094551 correctly to seven slgmficant figures. 
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'Vh~n the Iule of false pO~Iholl 1" wntten 1Il the form 

f(b) - f(a) 
b-a 

\\ e may expless the rule !Ill follows' * 

(3) 

Assume two numbers as near the true loot aS1Jo8tnble, and find tile err", 
armng from the 8ubstttutwn of each of these quant~l~e8 tnslead of the 
tmknown quant~ty tn the proposed equatwn, tit en as tlte dtfferrnce betuulI 
the two errors ts to the dtfference of the assumed numbers 80 u etiller error 10 

the correct~on of the correspondtng 'assumed numbel·. 
Assummg thIs new value a' In"tead. of a and another quanti!) b' 

dlffermg from a' only by one umt m the last place so that b' IS greater 
01' less than a' accordmg as a' IS found too small 01' too great, we tht:n 
find a new approXImatIOn a" and so on to any. required degr('e (If 

accuracy. 
Ex 2.-Solve in th~s way the above equalton 

x3-2x- 5=0. 

50 Combination of the Methods of § 44 and § 49.-It 
was remarked by Dandelin t that by combining Newton's rule 
with the rule of false posltion we are in possession of a method 
of solving equations in which upper and lower bounds to the 
value of the toot are obtained at every stage of the process, 
so that any digits common to the two bounds certainly belong 
to the correct value of the root. 

Thus usmg the figure of the last section, and IItIll aSBummg 
that RD is the arc which' is convex to the x-axis, we draw as 
before the chord ,CD to cut the axis of x in the point A' 
whose abscissa a' is given by the equatIOn 

, (b - a)j(a) ( ) 
a = a - j(b) _ j(a) .. , 1 

where a, b are the abscissae of the points C, D. Then a' is a 
closer approximatIOn to the root of the equation than a We 
now dl'aw the tangent at D to cut the axis of x in B/. If b 
is the abscissa of D, then b', the abscissa of B', is given by 
Newton's rule in the form 

b' = b _j(b) 
feb) 

(2) 

and b' is a closer approximation to the root of the equation 

* Barlow's ],[athematual Tables (1814), p. xxxvi. 
t MtfI" de Z'Acad. Bayak de Bruxelles, 3 (1826), p. 30. 
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than b. It is evi~ent that the root of the equatIon must he 
between the bounds a' and b'. 

We may now operate on a: and b' as on a and b, to find 
two new bounds of the root, namely, 

(I _" (b' - a')f(a') d b" b' f(b') 
a - a - f(b') _ -f(a'f an = - j'(b')' 

which envelop the root more closely than a' and b', and so on 
for further approximations to ,the root. 

It Illay be remarked here that at the conclUSIOn of the process It IS 
best to take, as our final value for the root of the equatIOn, the arIth
metical mean of thll paIr of values last calculated for a and b. 

Ex -Con~l<ter agaJn the equatIOn 

f(;L) =x3 - 2x - 5= 0, 

for WhICh f(x) h"s a root between 2 and 2,1, ~hIle rex) has no root 
between these hmits. 

Now f(2) xf'(2) <0 and f(2-1) xf'(2-l»O, . 
80 If a = 2, b= 2·1, the curve y=f(x) is convex to the aXIS when x= b 

The next approxunatfons are. 

1(2'1) 0·061 
b = 2·1- /'(2'1) = 2·1- 1l-230 

= 2·09457, 

, f(2) X (2'1- 2) 
a = 2 - 1(2-1) - f(2) 

1 
= 2 + 10.61"" 2·()943. 

Comparing b' and a', we see that 2'094 are dIgIts of the true root. 

Now take a' = 2'0943, b' = 2·0946 

and we get 
" , f(a') (b' - a') 

a =a - f(b')-f(a') 
0'00000'0,841949,4579 

2·0943 + 0.003348048729 , 
= 2'094551,475, 

,b" = b' - !(b')!f'(b')=; 2.0946 _ 0.000541,550536 
- • 1l.J62047,48 

= 2·094551,483, 
so the first ei~ht digitS of the root are 2·094551,4. 

The a.rithmetic mean between a" and b" is 
2.094551,48, 

which gives the first ~ine digits correctly. . . 
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51 Solutions of Equations by the use of the Calculus 
of Differences.-\Ve have already seen in § 34 how equation:! 
may be solved by ~nverse ~nterpolatwn. 'Va shall now show by 
an example how dHtded dIfferences (Chap. 1I) may be applleu 
for thIS purpose 

Suppose it is required to solve the equation 

y=.r + 3x2 - 12x -10 = 0 

The coeffi,cIents -10, -12, 3, 1, are of course the dIvIded 
dIfferences of y for the set of coincIdent arguments 0, 0, 0, 0,80 

we can wnte down part of a table of diVIded dIfferences thus: 

x. y. 
o 

o 
1 

o 3 
-12 

o ·-10 

and this we shall now extend downwards. The third dIffer
ences of yare constant, and therefore if we take as the next 
argument x = 2, we have 

x. y. 
0 

1 
0 3 

-12 1 
0 -10 5 

-2 
2 -14 

Here the number 5, wIDeh is the new dIvided dIfference of the 
2nd order, is obtained from the equation (p - 3)/2 = 1 giving 
p = 5· then the new difference of the first order is obtained 
from (q + 12)/2 = 5 giving q = - 2. and lastly- the value of the 
function corresponding to the argument x = 2 is obtained from 
{r + 10)/2 =. - 2 giving r = -14. In this way we construct 
the following table of divided differences, taking arguments 
suggested by the sequence of values of 1J already obtained: 
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x. y. 

0 -10 ~ .... 
-12 1 

0 -IQ 5 
-2 1 

2 -14 75 
1675. 1 

'2·5 - 5·625 102 
.2389 1 

27 -0.847 109 
2607 1 

2·7 - 0.847 11·1 
261)7 1 

2·7 -0847 11·13 
264039 1 

2·73 -: 0 054883 l1J6 
26'7387 1 

2·73 - p·054883 ~1·19 

26'7387 1 
2'73 - 0'054883 11192 

2676108! 1 
2'732 - 0 0013608 11'194 

Having found that 2·7 is near the Toot, smce y is com
paratively small, we repeat the intel'J?olation and thus obtain. 
(§ 16) 

y= - 0 841 + 26 07(z- 2·7) + 111(z- ~·7)2 nearly, 

giving z - 2·7 = () 03 approximately; so we take- 2·73 a.s our next 
approximation. We continue this method until the approxima
tions are 'sufficiently accurate for our 'purpose . 
. If we require the approximation correctly to four digits, we 

have':I:= 2 '132 and the next digit is found to be 0, so thE.' 
required root is 2 732. < • 

Having obtaIned .this root, we proceed to find approximate 
values for the rema]lling Toots of the eqnation. Thus we. first 
transform y 'mto a'polynomial in (z - 2.732). 

(D 311) I 8. 
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27$ - 0 054883 11192" 

26·761084 1 
2·732 - 0·001361 11·194 

26 '783472 1 
2 '732 - 0·001361 11·196 

26·783472 
2·732 - 0 001361 

so 
'II = ~6·783(x - 2 732) + 11·196(x - 2 732)2 + (x - 2 732)8 (nearly). 

We may now divide out the factor x - 2732 and solve the 
quadra.tic so formed, 

26 '783 + 11·196 (x - 2.'732) + (x - 2 '732)2:" O. 
the reml).ining roots are fo~nd to be 

{ 
x= - 5 000 

and x,:", - 0 732, 
which are cOl7'ect to four significant figures. 

(The actual roots of the above equation are 2 7320508, 
-" (J 7320508, and - 5.) 

Ex.-!.F~nd correctly to jour s~gnificant figures the root oj the 
equation 

wh~ch ~s between + 4 and + 5. 

52 The Method of Daniel Bernoulli.-In 1728 Daniel 
Bernoulli * deVIsed a method wholly dIfferent i,n principle from 
any which were·then known Though hardly now of first-raro 
importance, it IS interesting and worthy of mention 

Let it be required to solve the equation 

aoz".+lZtx:-1+ ... +an=O (1) 
Ct;)nsider the difference equation 

aoy (t+n) +aLY (t+ n-1) + .' .. + an'll (t) =0. (2) 

The solution of (2) is known to be 

y(t) = WI ZIt + W2 ~t + ... + w" x,/, . . . (3) 

where WI, W2, ••• , 70" are arbitrary functions of t of period 
1, and ~I' •• ,Xn are the roots of equation (1). 

* Commenlarn Acm:l Be PetropoZ.III. (1732); Cf Euler, Introduclw on Analy • 
.Inf. I cap. XYII , Lagrange, Ri<oZ"tioTL des equat.on. numer'que8, Note 6 
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If /Xtl-is greater than the modulus of any other'root; the 
first term on the righ~ in (3) beco~~s ve,ry large compared with 
the other terms wh.en t is large; and tnerefore we have 

Xt=Lt y(t+ 1). 
',_"" y(t) 

Th.is leads at once to BernouijJ.'s rule, which is as follows: 
In orderto .find the absolutely greatest rhot oj the equation (1), 

lOe take any arbitrary values for y(O); y(l), y(2), ... , y(n -1), 
from these by repeated applicatio,!,- oj equation (2) we crtlculate ~n 
succession the values of y(n), y(n + 1), y(n + 2), ' . . . The ratw 
01 two succesSi1'e members of this sequence tends W 'general * to 
a limit, which is t1~'e abS:lutely greatest root of the equation (1). 

Ex, I.-FInd eke absolutely greatekt root of 

xli + 5x' - 5 = ~. 

Copslder the difference equation 

vet + 5)+ 5y(t + 4) - 5y(t) = 0, (l) , 

and wnte down arLlt'x:arily the values y(O);= 0, y(l) = 0, y(2) =0, y(3} = 0, 
y(4)=1 By means of,equatlon (1), w,e have the followlllg value. of 

,y(5), y(6), etc ,: . 

t I Ii 16 ! 7 I 8' 9 I 10 I 11 l 12 , 13 ) , 
Y(t) ~525 -1266251-3,12015,576 -77,750 38~,125 -1,937,500 

Also y(14)= ... 5y(13)+ 5y(9), 

y(14) 5y(9) 156 
y(13) = - 5 + -y(13) 'TO - 5,+ 19375 so 

= - 4991948 

The absolutely greate;t root of the equation IS therefore gIven by this 
method as appro:umately - 4·99l9~8 j tills' value IS as a matter of fact 
correct to 'the last digit,' If we had stopped earher, we might have 
obta}ned, e,g, '. • • 

y(12). 388,125'. 
yell) = -77,.750 - 4'99196, 

• \I Mch i~ in error only in the srxth sigmflcant digit. . . . 
Ex 2.-Find the smallest root of 

, z3 - 622 + 9:11 - 1 = 0 

correctly td seven ~lacel by B,ernoulh's method. 

• 1 
(Note -Put z=; and solve for x.) 

• • If the ratul does not tend to • limit, but OSCIllates, the Toot bf greates1; 
modulUS is one of a. p~Ir of Qonjugate complex toots. • . . . 
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53. The Ruffini-Horner Method.* - As we have men

tIOned in § 41, the method of VIeta was the common method of 
solvmg algebraIc equations until it was superseded by 1\ ewton's 
method of apprOXImatIOn. The reason why the N ewtoman 
approxIlllation was found to be less laborious than its pre
decessor was that the earlier method con tamed no prOVISion for 
makmg the steps of one part of the process faCIlItate those 
WhICh succeed. 

In 1819 W. G. Horner discovered a rule t for performing 
the computations necessary in VIeta's method, by WhICh that 
method was made preferable to the N ewtoman, and so restored 
to fa.vour. 

Horner's contrIbutIon was essentially a convenient numerIcal 
process for computing the coeffiCIents of the equation whose 
roots dIffer by a given constant from the roots of a gIven 
equation. vVe shall first consider thiS process. 

Let f(x) = 0 be a given equatIOn where /(x) is a polynomial III 
x, and let It be required to find the equatIOn whose roots are 
the roots of thIS equatIon, each ruminished by r. This equatIOn 
will be /(x + r) = 0 or 

x2 X! 
0=/(1') + xf'(r) + 21/"(1') + 3 /"'(1') +. (1) 

The expressions /(1'),/'(1'), /"(1')/2 1,/"'(1')/3 I, .•. may now be 
found m the followmg way. Suppose for example that 

/(x) == Ax" + BX" + CX! + Dx2 + Ex + F. 

WrIte down the coeffiCIents A, B, C, D, ... , F In a horizontal 
row and form from them the followmg scheme In "hich a new 
letter below a line stands for the sl1m of the two Immediately 
above It, e [J P = A1' + R 

* Ruffim. SOl'rtr. 1" tklermI1Vl","ne delle radut, lIIo,Tena (1804), and J[nnone 

d, .lIat. ed, F" dell" Soc ]'a1"'n,, delle SCIC""" Verona (1813) 
Horner, PI,,' Trans (1819), Pal tIp 308, and TI,e iI[((lnemal1e]a", 1 (181',). 

p 109 
1 So far lIS the cube root is eoncerned, It had been 1(1\ en pTe\lou_Iy l,v 

Alexander Ingram ID the Appendix to his editIon or Hutton's Arl'n""llc 
(E'hnbur~h. 1807). A method ba,ed on the same prInciples had been d,scoHred 
In the tlurteenth century by the ChIDese mathematlc"~ns. 
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A. BCD E F 

Ar Pr Qr Rr 8r 
p Q If S- III 

Ar Tr Ur Vr 
T U V -

X 
Ar Wr Xr 
W X Y, 
Ar Yr 
y- ep 
Ar 
e 

It is seen at; once that the values .of 8, ep, y" X, w, thus 
obtained at the feet of the columns, have respectIvely th.e 
values 

1 
8 .. 5Ar + B = 4 I IW'(r}, 

-1 
ep = 10Ar' + 4Br + C = 3 ("(r); 

, 1 
Y, = 10M3 + 6Br' of 30r + D = 2 1"(r), 

X = 5Ar' + 4B,.3 'I- 3Cr' + 2D" + E = f(r}, 
Id = A".o + Br' + Q1.3'+ nr' +:Er -+= F = j{r), 

and therefore the equatIOn' (l) whose roots are the roots of the 
equation j{x) = 0, each diminished by r, becomes 

o =.Az5 + Ox' + ¢:1:' + y,xl + xZ + III. (2) 

The above scheme therefore enables us to find readIly the 
equation, whQse roots are the roots of a gtven equation, E.'ach 
diminisbed by ~ given number. 

This process is first applied in order to dIminISh a root of 
the proposed equation by its first digit; then it is again applied 
.in order to diminish the corresponding root of the resulting 

, equation- by its. first digit, wl\ich is the second digit of the 
required 'roo~ of the original equation; then again in diminishing 
the root of the equation last obtained by its first digit, "bich 
is the third digif of the required root;' and 1'0 on, 

Note that r - i is t~e Bame as r - Jf;r and this i~ t~e 
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quantity which would be given by the Newton-Raphson 
. method as an improved approximation to the root, after r had 
be~n found as a: first approxImation. This property is used at 
each stage of the process In order to obtain the next digit of 
the root, in fact, we use the two last terms xx + w of equation 
(2) to suggest the next digIt. . 

We shall a Pl'ly thIs method to find the smallest pOBdu'e root (1 the 
equation 

:Jl- 4;12+ 5 =0. 

By means of a graph of the curves y = :L3, Y = 4:+2 ~ 5 It 10 r~adlly 8{,PJ\ 

that the reqUIred root lies between 1 and 2, ~o \I e shall fiI-t dmllTIl-h 
the roots of the gIven equatIon 11y uruty 

1 -4 0 5(1 
1 -3 -3 

-3 -3' 2 
1 -2, 

-2 ~ 

-'1 

The equatIOn whose roots are the roots of the ongwal equation cllll1J.TIl~hrd 
by 1 IS th~refore 

(I) 

We now form the equatIOn whose roots are ten tImes the roots or thiS 
equatIOn; It is 

:Jl- 101)2 - 500x + 2000 = 0 

We want 'the root of thiS equatIon \I hl~h lies between 1 and 10, the 
other roots bewg numellcally greater than 10 'It I- found to be between 
3 and 4,* so we dlIDlm-h, the root~ by 3, tlllt-

-10 
3 

-=7 
~ 
- 4 

3 
- I 

~o the transformed equatIOn IS 

-500 
- 21 
- 521 
- 12 

--=5a3 

2000(3 
-1563 

~ 

x3- x2 _ 533x+ 437 =0. (2) 

* By the prmcIple. explanled above, VIZ that the two last terms or this 
equatIOn have the ~hIer lDflueuce In determIBmg the root, the two first terms 
bemg eVIdently small comptned WIth the two last terms, \I hen z bes beh een 
1 and 10. • 
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• • It;~.. 

•• f " 

Multiplying the rQots of this equation by 10. it becomes .. ,. . 
x3 - 10x2 - 53300x + 437000 = O. 

, This equatlOn has a. root beh ... een 8 and 9 (as is se~n by the in
spectlon of the last two ter~s since 437000/53300=8.19 ••• ). so 
W6 diminish the roots by 8. 

'I -10 - 533QO 437000(8 
8 -16 - 426528 

- 2 - 53316 10472 
8 48 
~ .- 53268 

8 
---rr 

The transformed equation 18 therefole 

x3 + 14x2~53268x+ 10472=0, 

ami, mllJtlplymg the 'roots by Iei, It becomes 

x3 + 140:1.2 - 5326800x+ 10472000=0. 

for whu:h a.n approltlmate value of the root ,is 

, ~, 104720'00 0 1.~659 
5326800 r • 

(3) 

(4) 

• Thus, finally. we obtam for the requhed root of the ongmal equatIOn 
the value 

1'3819659, 

which is. in error only by one ~mlt in the seventh place, of deOlmals. 
We m&y note thLIt appl'ox,lmau, values of the other two roots may 

be obtamed. from the equation at ,thiS stage m a very simple fashion. 
FQr if a cubiC equation has twe rootS' M and N. which are numerically 
very large Il;l comparison With the thud root £, the cubiC is nearly 

~ <I • • 

xS - (M + N)xll + l\INx- MN£= 0 

The other two roots of the cubIC (4) will there tore be approxImately 
the roots of the quadratic • 

which are 

aI!d 

':),.ll + 140x':" 5326800= 0.' 
x= 2239·05' 

~= .:.. 2379'05. 
, . 

and therefore the two OOl'oosponding roots ()f the original cubic are ~hese 
values divided by 1000 and VIcrease<\ by 1·38 (the p!U't of the root 

. already fOl~nd) •. viz. 

and 
x= LO'999 
x= 3·619. 

These are in elTo~ by one unit in the thiI-d place of d~cllllaIs; 
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We may note that lIorne,', Process is really the formattOn of a table of 
d~vu1ed dtfferences. Thus taking the last example agalD, suppose It 18 

required ~o fina the equation whose roots are the roots of 

X=X'-4x2 +S=0, 

each dimInished by unity. We note that the coefficients 5, 0, - 4, 1 ale 
the divIded dIfferences of X for the set of COInCIdent arguments 0,0,0,0, 
so we can WrIte down the followmg table of diVided differences: 

x X 
-----

0 5 -4 
0 

0 5 -3 
-3 

1 2 -2 
-5 1 

1 2 -1 
-5 

2 

whence, by Newton's formula for mterpolatlOn With repeated arguments 
(§ 16) we have 

01' 

X",,2- 5{x-l)-(~-1)2+(x-l)8 
X"" 2 _ 5y _ y2 + y3, 

whICh IS equatIOn (1) above. 
Therefore the equation whose roots are ten bmes the roots of the 

reduced equatIOn is 
X",,2000-500x-IOx2 +X'=0. 

Now dmllnlsh the roots by 3. This IS done by the dlfference table 

x X 
1 

0 2000 -10 
-500 1 

0 2000 -7 
- 521 1 

3 437 -4 
-533 1 

3 437 -I 
-533 

3 437 

so that X,= 437 - 533(x - 3) - (x - 3)2' + (x - 3)3, 

whIch gives us precISely e9.uatlOn (2) above; and so OD. 

Ex. l.-F~nd to six 8'Igntjicant digtts the pOll'ltwe root of the equahon 

X'+ 3L2 -12x-lO=0 

hy performtng threl1 lIorner's transformations and then appTcy,/;~mahng. 
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First, dlmlnlsh the roots by 2, 

1 ' 3 
2 

6 
2 

'1 
2 

9" 

Therefore the new eqnatlon is 

-12 
10 

- 2 
l4. 

12 

-10 
..... 4 
-14 

x8+ 9x9+ 123:-14 =0. 

Multlply the roots by 10, 

x8+ 90xl+ 1200x-l4000=0. 

Dlminish the roots by' 7, . 

1 90 , 1200 -14000 
7 679 la163 

97 1879 847 
7 728 

104 2607 
7 

TIT 
Therefore the new equation is 

x8+ 11lx9 + 2607x - 847 =0. 

Mult!ply tbe roots by 10, 

xl + IIIOx' + 260700x - 8470'00 = O. 

Dimini~h tbe roots by 3, 

1. 1110 
3 

1113 
3 

1116 
3' 

1119 

'Therefore the new equation is . 

260700 
3339 

264039 
3348 . 

267387 

- 847000 
792117 

- 54883 

xI+ lU9x1+ 267387x!"54883=O. 

Moreo~er. 54883 = 0.205 (!learl ), 
267387. . Y 

so tbat the J'equired root is 2-73205. 
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• To get a better apprOXimatIOn, '\\e have from the last equatIOn, 
approximately, 

54883 1119 2 

X= 267387. - 267387''' 
= 0·205257 - (0·0041849)(0'205)2 
= 0205257 - 0·000176 
=0·205081, 

so the reqUIred root IS 2'732050,8. 

Ex 2 -F~nd correctly to seven ngn~Jtcant thgtts that root oj the equatIOn 

'Ifl- 9x2 + 23x -14=0 

whlch t8 between -I' 4 and + 5, by performUlU three Horner's trallsfor1lla. 
t1On8 and then approX?,mahng. 

EoL. 3 ~F~nd by BOJner's method a Toot of the equatwn * 
X'-2x=5' 

54. The Root-squaring, Method of Dandelin. Loba
chevsky, and Graeife.-"'IV e shall next consider a method 
of solving eqnations whIch was suggested independently Ly 
Dandelm t m.1826, Lobachevsky t 1Il 1834, and Graeffe § In 

1837, and whICh is frequently of great nse, espeCIally in the 
case of equatIOns possessing complex roots. It has the 
advantage (when performed completely) of finding all the 
roots at once and of not requirmg any prehminary deter
minatlon of theIr approxImate position. Its principle IS to 
form a new. equation whose rQots are some high power of Lhe 
roots of the given equatIOn: suppose we say the 128th pow<lr, 
so that If the lOOts ~f the gIven equatio~ are Xl, Xa, X3, ., , 

then the roots of the new equation are X}128, xi28, X3128, • 

These numbers are widely separated, thus if Xl 'Yere tWic~ :r~. 
then X}128 would be more than 1038 times X2128, and, as \\e shall 
see, an equatIOn wh9se roots are very wi?ely separated can be 
Solved. at once numerically 

* A pupil of De Morgan by Homer's method found the root of WallIS'S well· 
known example..," - 2",=5 to 51 places to be 
0:=2094 551, 481 642,326 591, 482 386, 540 579, 302 963,857 306, 10:; 628 2:J9. 

,ThIs was .;mbsequently extended to 101 deCImal places; cf. The ,vathemnticwfl, 
3 (1850), p. 290. 

t Men. de l'Acad. Ruyale de Bruulles, 3 (1826), p. 48. 
t .Algebra or Calculus of Pm&tts, Kazan (1834), § 257. 
§ A ujlosung der hohcren n1Wlemchen GlelChungen, Zunch (1837). The method 

was perfected by Brodetsky aud Smeal, Proc Camb. Phil Soc., 22 (1924), P 83. 



ALGEBRAIC ~ TRANSCENDENTAL 'EQUATIONS 
." • I ( 

. 
107 

Suppose it is requIred to solve the equation . . 
,z"+ alZ,,-l:l- aaX"-2 + IlGXn• 8 + ... + a.. = 0 (1) 

In this equation we shall' denote the .roots, which will for the 
present be assumed to be real and unequal, by - a, - b, - c, 
- d, ... , the'order being that of descending numencal magm
tude, so that laklbl>lcl>ldl, . .. The value~ a, b, c, d,. ., 
winch are the roots of the equatIon teversed in sIgn, will be 
called the Encke * roots, EquatIOn (1) may. now be wri~ten in 

. the form 

zn + [a]x .. -1 + [ab]zn-z + rabc ]X,,-8 +, • = 0, (2) 

where [a] denotes a + b + c + d + "that IS, the sum of the 
Encke roots, [abJ denotes ab + at + be +, , " the sum of the 
products of the Encke roots taken two at a time, and so on. 
If, mortlover, we denote tpe sum am + bm + em + dm + , by [am], 
then'the equation. whose roots are the moth powe1;s of the roots 
of the given equation WIll evidentty, if m is even, be 

zn + [am]xn - 1 + [amb''']x'·-lI+ [a"'bme'J,]zn-3+, ,= O. (3) 

The problem before us is to .const}:,uct the equation (3) when 
the equatIon (2) is given,and m is some prescnbed number. 
In praCtice 1wis a large ~umher in the equation (~) which is 
ultimately formed, but. we do not attempt to constru9t this 
equatIon at a smgle step of th'e prbcess; instead of this we first 
take' /I~ = 2, that is to say, we form a new. equation whose 

·Encke roots are the squares of the Bneke roots of the original 
equation.; ,then, haying done thIS, we repeat the process, 
forming a ne,w equation whose Encke roots are the squares of 
the Encka'roots of the equation just obtained-that is, the 4th 

• powers 'of the Encke roots of the onginal equation-and so on. 
Th'us our immediate problem is to -construct the equation 

" , 
(,3), when' equation (2) is given and m has 'the value 2, This 
we do in the'following way. Rearra~ge the given equation 

~ .. .. \ 

x:. + alZn - 1 +aaXn - l + aa3;n-s+ ••• +«,,=0, , (1) 
, 

so that the terms containing the even powers of 'X are on one 
'side of the equation;and the te~ms' contai~ing the.odd powers 

• Encke' Journaljli.r Math 211 (1841), p. 193, 
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are on the other Slue. 'SquarIng both sides of the resulting 
equatIOn, we have at once 

(xn + ai!X,,-2 + a,x,,-4 + ... )2 = (alX,,-l + aa:z;,,-3 + ... )2, 

or, putting - x2 = y, . 

= O. (4) 

Smce the roots of equatIOn (1) are - a, - b, - c, ... , and 
..:. x2 = y, the roots of equation (-4,) are - a2, - bZ, - c2, • • .; that 

IS to say (wntmg x in place of y), the equatwn 'whose Encl.,e roots 
are the squares oj the Encke roots oj (1) is 

(5) 

The law of formatIOn of the coeffiCIents III equation (5) may 
be stated thus: The coe.!ficient oj any power oj :z; is jurmed by 
add~ng to the square oj the corresponding coefficient in. the 
orig~nal equation the doubled product oj every pair 0/ cOfjficienls 
which stand equally jar jro11" it on either SIde, these products 
being taken with s~gns alternately negatw(! and poS'ttive. 

Having thus formed the equation whose Encke roots are the 
squares of the Encke roots of (1), we repeat the process, thus 
obtaining an equatIon whose Encke roots are the squares of 
the Encke roots of (5), that is to say, the 4th powers of the 
Encke roots of (1). The next stage yields an equatIOn "ho~e 
Encke roots are the 8tli powers of the Encke roots of (1), and 
so on. 

Now consld~r the equation whIch is olJtained when the 
process has been repeated several times, so that we have calcu
lated the equation (3) where m is (say) 64 or 128 or 250. 
Since a is numerically larger than b, therefore am is enormously 
larger than b'" or c'" or d'" . . ., and thus the sum [am] bears 
to its first terzp. am a ratio which is very near to uDlty. SImi
larly [ambm ] bears to its first term ambm a ratio which is very 
near to unity, and so on. ' 

If, then, the ratio of [am] to am IS 1 + €, where E is small, wa 
have 

log [am] = m log lal + log (1 + €) 
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1 1 
!og Ja] = in log [am] - m log (1 + e). or 

SU:Jce we have calculated [a"'], the right-hand side of thIs 

equation is kn~n except for the small quantIty ~ log (1 + e), 
1n 

which we may neglect j and thus laJ is determmed. 
Next, since ~ambm] =ambm(l +y}, where'y is small, we have 

1 ' , 1 
log labl = - log [a1Rbm], neglecting -log' (1 + y), m. m 

and therefore 

wk~ch determines tke '!nodulus of the second root b, and SQ on. 
In solving an equatIOn by this method, It is all-important 

to know when to stop. Obv,iouRly the tIme to stop is when 
another doubling of m would give a res lilt not different (in the 

, ,dIgits we wish to include) from the result whICh would be 
obtained by stopping at onc~; that IS to say, when the 
coefficientS [aIm], [a2mb2m], • • , of the new equation are 
practical1y nothing but the sqllares of the correspondmg 
90efficients [a'''], [amb"'], . m the equation, already obtamed, 

Ez. I.-To solve t,fle equation 

:z:3+9a,2+ 23x+ 14=0 

Thll l'quatlOD whose Encke roots aI'll the squares of the Encke root~ 
of this equatIOn IS 

x8 + 35x2 + 277x+ 196 =0. 

The equatIOn whose Encke roots are fhe squares of these IS 

~ + 67l.t1l + 63009x+ 38416= 0, 

and proceedIng III thIS '\'lay we obtam the folloWIng ~qnatlOns' • 

~,3'1-324223l2+ 3·91858 x 109x+ 1'47578Q x 108 =0 

x3+!l'72834)( 1010,rB+ 1·535431 xlouix+2.177953 x 1018=0. . , 
.1 8 + ')"48335 X '1021,.2 + 2,351548 x 10sax + (2'177953 x 1018)2= O. 

x8.+8 898762'x 1043xB+(2 3;7548x 1088)2.l'+(2177953x 101B)~=O. 
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StoppIng at this stage, we have 

log (a64) = log (8'898762 x 1043) =r 43'9493296t 

when,ce log lal = 0 6867,083, 

so the numerically greatest root IS± 4'860806 

Also log a64b64 = 2 log (2 357548 x 1038) 

= 767449212, 

'So log Ibl = -h(76'7449212 - 439493296)= 0'5124311 
=10g.32541015 

The next-root IS therefore ± 3·2541015 

Lastly, 

log ,a64b64e64 = 4 log (2'17,(953 x 1018), 

so .log lei = -h(73 35219,36 - 76'7449212) = 19469886 . 
= log 08850924. 

The numerically smallest root IS therefole ± 0'8850924 . 
.A. rough graph shows that all the roots are negative j they are 

therefore 

- 4860806, - 3'2541015, and - 08850924. 

We do not usually require to compute each of the toots of an 
equatIOn to th~ same degree of accuracy, althouglr we may requIre 
to know the approximate values of all the roots. 'We shall 
therefore gIve here a more rapid way of computing the roots to 
t'Xo or three sigmficant figures, ~n whlch we use a 4-place table 
of squares, such as Barlow's 'Tables, and 4-place tables of 
logarithms. We shall denote by pm the equation whose roots are 
IDlnus the mth powers of the roots of the original equation, and 
we shall write, e g , 189()P for the number 1 896 x 10", 

Ex. 2 -To solve by th~s m.ethod the equation of Ex ,1: 

w+9x2 + 233:+ 14 =0-

We first arrange the coefficl~nts of the equatIOn In order: 

x" 
1 

fJ'", 

9000 
x. 

23001 

SquarIng these coefficients and adding the do.ubled· products aq in 
eq11ation (5), we compute p2, then p4, pS, and so on, arrangIng the values 
of the successive equatIOns in tabular form, thus: 
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1 81001 52902 19602 

-4600 - 2520 

pI 1 35001 2'1702 ' 19602 

1 12253 7673' 3842' 
-0554 7 1,372 

pol 1 06713 6301' 3842' 

1 4002~ .39709 14769 

'~1260 - 00'5~ 

p8 1 32425 39189 14769 , 

• 1 105111 153519 2i7918 

- 0078 

pie 1 097311 153519 • 217918 

946721 235638 474836 

-0031 

p8Z ,94;3621 23'5638 474886 

p64 1 8Q0448 555176 225473 

EX8.lmnmg- ,the .coeffiClents of p64, we see that, If t~e. coeffi,Clents of 
pl28 were formed they would be (to four sIgmfican't digIts) the squares of 
the coefficIents of p64, so we stop the process herE! and compute the rOQts 
of the ~qlia.tion ~I! lU Ex. I, usI'ng, however,,4-place tables. We ha.ve 

199 a64 F 43 9496, 

whence a= ±4·861. 

In ordel." to' determine' the sign ot, the root a, we notll that I( ..! 4 8) 
= + 0'368 andf(.- 49)= - 0'259, w'here I(x) = xli + 9x2 +23x+ HI The 

. equation hlj.S therefore a root between - 4 8 arid - 4'9, and we have . 
.. IJ,= '- 4'861, 

.' 
Also log aMb64 = 767444. subtractmg loga64, we find log Ibl=log 3254, 

waence , • • . 
b= -3254.; 

Agam, log aG4b64c64 = 733530 i subtractIng the value of log al!'bM, we 
• tip.d log Ie I = log 08851,. whence . • ' . . . , 

. ~=' - 0'8851. 

The required,roots correctly to four SIgnIficant figures. ¥e 
." . 

- 4'861, - 3 254, .- 0'8851. . .. 



112 'tHE CALCULUS OF OBSEUVATIONS 

.E c. 3.-Apply tho root-sqltartng method to approXtmale to the roots 01 
tlte equatwn 

',k:J+ 10x2 + 31x+ 30= 0 

to three stgntfieant d1gtls. 

Ex 4.-FMd COTI'80tly to Beven dtgtts the rools of the equatton 

',k:J+ 12x2+ 44x+ 48= O. 

55. Comparlson of the Root-squanng Method with Bernoulli's 
Method.-The root-s'luarmg method may be regarded as belongmg tu 
the same general type as that of Bernoulli, with wInch it may Le connected 
III the followmg way. 

Let the equatIOn whose roots are to be deternnned be 

(1) 

Bernoulli's prIDClple (§ 52) IS that, If we select arbitrarIly any values for 
yeO), y(I), ... , yen - 1), and then detellullle yen), yen + 1), etc., In 8ucce<
sion by the equation 

(2) 

then the. rAtio of two succeSblve members of the sequence of y's tend~ ID 
general to a linnt, which IS the absolutely greatest lOot of the equatIOn. 

~ow let sp denote the Bum of the pth powers of the lOOts of equalloll 
I), and take y(O)=s()t y(I)=Bl' ., yen -1)=8"_1 8mce each root 
of equatIOn (1) satisfies the equation 

(3) 

It IS e\'ldent that If we form n equations by sub~tltutlllg In tIllS equation 
the dlffelent roots ID successIOn, and then add these n equatIOns, we have 
at once 

so that St. consideled as a functIon of t, -satisfies the difference equatlOlJ 
(2) We see therefore that 'Hth the values we llave chosen for the first 
n of the y's, yet + n) Will be equal to St+R' and BernoullI's formula ylt 1,1" 
the result that the absolut~ly gleatest poot of the equatIOn (1) 18 

Lt ~ 
.t~oe ~k 

TIns IS obVIously closely related to the result of the root-squarIng method, 

by whleh the root In questIOn IS given In the form I,t :.r;;, * 
* The value of the numerIcally greatest root of an equation in the form 

(a2n +t/"n+Y'"+ •• )1/2ft
, "here a, (J, 'Y,. • are the roots, and a>{J>'Y. had 

been given as eally as 1776 by \Varlllg ID Ius JIcd,tatwnes Analut,cae, p &11 
Euler used the method to find the roots of Jo(x) in l7St 
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56. Application of ,the Root-squaring Method to deter-

'mjne,the Complex Roots of an Equation.-If the roots of an 
equation are not real the method of § 54 is equally applicable. 
Suppose, for example, that the equatIon IS- of the 5th degree, 
the roots m Encke's sense being a, ,'ei4l, re-*. b, c, where a, b, c 
are real and lal>r>lbl>lel, so th~t the equation is 

~+~~+~~~+N-~~+~~+~=Q 

The equation whose Encke roots are the mth powers of these is 

(x + a·n)(x + ,.mem*)(x + rme-.n*}(x + bln)(x + em) = 0, 

and if m is a larg~ number, and we retain only the dommant 
part of the coeffiCient of each power of x, this reduces to 

a;5 + amx' + 2amr'" cos m¢ + alnr2mx2 + am,.2mli"x 
. + a"'r2mblnc'" = 0. 11) 

The root a may be computed at. once by the method already 
given in § 54. We now proceed'to find the otber roots. 

It is evident from equation (1) that, corresponding to a 
pair of complex roots, there will be one coefficient, namely, 
2all'r'" cos m.p, which fluctuates in sign when m takes in succes-
8l0n !l- set of increasmg values (owing to the presence of the 
cosine factor), 'Ve also see that the value of 1'2 corresponding 
to the pair of complex roots may be computed from the 
coefficients in the terms immediately preceding and immedI
ately {ollowillg the fluctuating term: ~ the above equation 
r = (a'¥"'ja>n)l/m. HaVing found the. value of r2, we now find 
the values of the Encke roots b, c from the two last coefficients 
in equation (1). Let a', b', e' be the actual roots (i e. roots with 
their proper sign) corresponding to the Encke roots a, b, e. 

In 'order to compute the complex roots 1'e'~', 1'~-I</l', we write 
them in- the form u + iv and 'U - iv, where u = l' cos .p', V = r sin .p', 
so that rew + rrW = 2u. If the original equation is written 

a;5 + alx' + a,;t' + a:¢l' + a4X + alj = 0, 

we see at once that the sum of the roots satisfies the relatIOn 

- al = a' + 2u + b' + e', 

from \\hich u .may be found. Since 'It, rZ are known, '1;7 may 
ID 311) 9 
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now be found from the relatIOn ,.2 = us.+ v2• The twa cOlD.l'le~ 
roots are thus deternuned. 

Ex.-l. Solve the 8tJ.ltat~on 

x' - 2x3 - 6:1,.2+ 25x - 28= O. 

x' x' afJ. or ,0 
1 - 2000 -6000 2fl001 - 28001 

1 4000 36001 62502 78402 

12000 10000 -3360 
-5600 

p2 16001 80001 28902 78402 

25602 64003 8352' (11475 

-1600 -9248 ~ 12544 
1568 

p4 1 09602 -12803 - 4192' 61476 

92163 16388 17579 377011 

2560 8049 1574 
1229 

p8 1 11784 10927 33319 37'i911 

13888 119214 111019 142823 

-0218 -0785 - 0825 
0008 

pl6 1 11708 041514 028519 142823 

1 136916 172227 612338 2039" 
-0008 -0667 - 11852 

p32 1 136}l6 105527 _ 372938 2039" 

1 185232 111364 139178 415892 

0102 - 4302 

pM 1 185232 121564 _2911 73 4151>92 

3430M 14761~ 8474146 1729185 

0011 - 10104 
--- ---

1'128 1 . 3430M 1487108 [ - 2630146] 1729185 

It 18 eVident that further equations are obtamOO by Simply squarmg 
the correspondmg coeffiCIents of the prevIOus equatIOn With the e'tC('l'tlOn 
of the coeffiCient of x (which fluctuates In Sign, thus Indicating the 
presence of a pair of complex roots) The process of formmg new 
equations may th~refore be stopped llere. 
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TakltJg logs, we obtalQ, the results 

10gaI28 = 64'5353, whence legjal=0'5042 and a=3'193(-) 
log aI2S,bI28= 108·1724, whence log IbJ = 0·3409 and b= 2'193t+) 

log aI28bI28r258 = 185 2377, whence log r =0'6021 and r 2 =4·000. 

It may he remarked here that the most Important numhers in 
determmmg the values of the quantItIes a, b, r2 are the rndlces 
representmg the powers of· ten III the factor of the coeffiClents m the 
final equatIon. For example, in the equahon denoted by pI28 WI' obtam 
practICally the same value of the I'ootS a, b, If we neglect the last two 
digits of the numbers :3430 and 1487; but an error rn the mdlCes 
64, 128 would gIVe qUIte a dIfferent result. Smce the above numbers 
cannot be relied llpon as regards the accuracy of the fourth dIgIt, we 
shall conSIder the final values of -the roots to be conect only to three 
slgniticAn t figures. 

In order to compute the values of the complex roots u ± tV, we see at 
once, froUl the coeffiCIent of rid m the orlgmal equatIOn, that 

2u - 3'193 + 2·193 = 2, 

whence 

and the co'mplex roots ate 1'600 ± 1·323t, 

Thus the required roots of the equatIOn correctly to three BlgDlfi
cant dIgIts are - 3'19, 2·19, 1·50 ± 1·32t. (As a matter of fact. the 
above vaiues nf the roots are correct to four SIgnIficant dIgits, the roots 
correctly to SIX ,places bemg - 3'192582, 2'192582, 1'5 ± 1·322876i.) 

EJ;. 2.-Ftnd the roots of the f1quaeton 

'x4':'" Grid + 11x2 + 2x - 28 = O. 

57. Equations with more than one pair .of Complex 
Roots.-The case where the given equa.tion possesses two 
pairs of complex roots presents little additional d.iffiqulty. 
Suppt>se the process is applied to the equation 

x'! + aIXn-~+ ~n'-t +.. + an_IX + an=O, (1) 

and that the coefficients of two of the powers of X are found to 
fluctuate in sign, thus indIcating. the preseI;lce of two pairs of 
complex roots. Denote these complex roots OJ re'9, re-'s, r'el~, 
r'e-04>. We shalt' assume that the values rt, r'2, together with 
the actual real roots a', b', c'; have been computed' as in the 
last section. 

Writing U=T cos 8, v=r sin 8, U'=1" cos-cp, v' -=r' sin cp, the . . 
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complex roots are denoted by '1£ ± w, and '1£' ± ~v', and theIr BUill 

IS 2(ll + '1£'). Wntmg equation (1) m the form 

(x - a') (x - b')(x - 0') . (xi - 2ux + 12)(X2 - 2u'x + r'2) = 0, (2) 

we see that the coeffiCIent of x in thIS equatlOn IS. a hnear 
function of '1£, '1£' wluch we shall call </>('1£, '1£'). 

Then </>('1£, '1£') = an-l. (3) 

By comparmg the coeffiCIents of xn - l m equations (1) and (2), 
we find 

- al = a' + b' + e' + .. + 2'1£ + 2'1£'. (4) 

The two last equatlOns express the unknowns '1£, u' 111 

terms of the known quantities a', b'; e', . . ,1"2, r'2 and may now 
be solved for '1£, '1£'; the values of v, v' bemg then determmed 
from the equatlOns v2 = r2 - '1£2, v'2 = r'2 - 1/2 The two pairs of 
complex roots are thus Known. It IS eVldent that a simil<lr 
method to that given here may be applIed to solve equatlOns 
WIth more than two pairs of complex roots 

Ex -To solve the equatwn 

:1,7 + 7x6 + 21xfi + 63x' + 147x3+ 189x2 + 119x - 451 = O. 

As l!l. Ex. 1, § 56, we first form the equ.1hons for p'Z., p', p8, . . aA 
follows' 

x' :J!I :J!I :J!I x' z' !I: 

p2 1 70DO -1470' 02031 '0911· - 5610· 1846" 2034" 
p. 1 3430· 369gt 1565" 4865' - 0133' 5690'· 4137'· 
p8 1 04366 03918 -1355" 6964'6 -538918 3249" 171121 

p'8 1 .11198 2850" -4086" 3644"' -162117 1058'· 2928" 

p" 1 068218 9044" -041141 1201" -5083'· 111gH 85i3N 

pM 1 28!216 8173"· -200498 1438'" - 0104"· 1252171 7:l50'~· 

p'28 1 6442'· 6680'" 1665198 2068'" -3590'" 1568- 5402111 

pOI." 1 4016'" 4462"9 [0009".'] 427760t [0640'·'] .2459ON 29180
" 

The coeffiCIents of x' and x2 fluctuate In SIgn, whence we infer the 
presence of two paIrs of ~omplex·roots. TakIng logs, we have 

256 log a = 141'6037, "hence 
256 log ab = 279 6495, • 

256 log abr2 = 504 6311, 
256 log abrZr'2 = 688'3908, 
256 log abe2r2r'2 = 679 4651, 

log ta \ = 05531 and a' = - 3·574. 
loglb\=0'5392 b'=-3461. 
log r2 =0 8788 r= 7·565 
logr'2=0 7178 r'2= 5222 

log lei = i 9652 e' = 0923. 
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In order to compute the values oC u, u', we.write down' the value of 
the coeffiCient of x6 m the orlgmal equatIOn, 

-7 = - 3'574 - 3'461 + 0·923 + 2u + 21~', (1) 

and'then the value of the coefficient of x, 

119 = T2T'2(a'b' + b'e' + e'a') + 2a'b'e'(ur'2 + u'r2). (2) 

Substltutmg m these equatlbns the known Va,llles of a', b: e ~ : Z, 

r'a, we have 

whence 

u=0'681, . u' = -1·125, 

11=2·665, 11'=1·989. 

The required roots of the given equatIOn are 

- 3'574, - 3'461, 0681 ± 2'665i, -1·125 ± 1'98!n, 0'923, 

ill which values the last digIt IS uncertam. 
[The roots correctly to four SIgnIficant dIgits are - 3'678, - 3·458, 

0,.684 ± 2·664l. - 1-128 f 1·987i, 0·923.] 

58. The Solution of· Equations with Coincident Roots 
by the Root-squaring Method.-When the root-Ilquarmg 
process is applIed to an equation possessing coincident roots, It 
does not lead ultimat'ely to an equation in which every co
efficient is the square of the corresponding coefficient in the 
preceding equation. We shall now consider in what way the 
process may be applIed to solve such an e.quation. 

Suppose that the Encke roots of the given equation /(x) = 0 
are a, b, b', c, d, ... where b, h' are coincident roots, and 
where lal > Ibl> Icl>ldl ... The equation, whose Encke roots 
are the mth powers of those of the given equation, will be 
denoted by , 

xn + [am]xn-l + [ambm]xn-z+ [ambmb'm]xn-S+ . .. =0, (1) 

and, retaining only the dominant term in each coeffiCIent, for 
large values of m this equation reduces to 
xn + amxn-1 + 2ambmxn- 1 + amblmz"-s + amblmimzn-' + ... = O. (2) 

We see that the coefficient of Z'I-Il does not follow the usuaf 
rule, Viz. that when m is doubled the coefficient is approximately 
squared. Here, on the other hand, when m is doubled, the new 
coefficient iii approximately half. th.e square of the old one. 
This observation enables us to detect the presence of a repeated 
root. It is evident that the value of b may be computed in 
much the same way as r l ' in the case of complex roota. namely, 
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by forming the quotient of the coefficients immedIately follow
Ing and lmmedlately preceding the lrregular coefficient. Thus 
from equation (2) we have 

b = ~/{a.mb21nIam}, 

the remainIng roots, a, c, d, .. being computed as before by 
the method of § 54. 

Ex. I.-Solve by the root-squarwg method the equahon 

x3+ 7x2+ I6x+ 12=0. 

The successive equatIOns are 

p2 W + 17 x2 + 88x + 144 : O. 
p4 w+113x2+2848x+20736=0 
p8 xS +7073xl?+3'425 x 106x+4'300x 108 =0. 
pl6 w .. H·318 X 107x2 + 5·648 X 1012x + 1,849 X 1017 = O. 
pa2 x 3 + 1·853 x 1015X2 + 1-/)93 x 1025x+3'419 x 1084 =0. 

It IS eVident that the coefficients of the equatIOn pM would be the squales 
of the correspondmg coefficien t9 of p32 except m the ca~e of the coefhclen t 
of x. We therefore denote the Encke roots of the eql1atIOn by a, b, b', 
where bj b' are approXImately equal, and where lal > Ibl. Takmg logs, 
we have 

log a32 = 15'2679, whence log lal=O 4771 and lal=3 000, 
log a32bM =34'5339, whence log Ibl=0'30IO and Ibl=2·000 

=WI· . 
The actual roots of the given equ~tIOn are - 3, - 2, - 2. 

Ex 2 -Calculate by the root-squarMg method the greatest root of Ihe 
equatwn 

~-7x3+ 7x~-7x4-7=0 .. 

Use the reqult to 1» ove that the other three roots areneariy equal tn mml"'lus, 
but that only one of them is real.. 

59. Extension of the Root-squaring Method to the RootJ 
of Functions given as Infinite Series.~The root-squanng 
process depends essentially on the fact that the coeffiCIents of a 
polynomial (In which the coefficient of the highest power of x IS 
unity) are the elementary symmetric functIOns of the roots, or, 
if the polynomlal is div1ded throughout by the term independent 
of x, so that the term Independent of x becomes umty, the 
coeffiCIents are the. elementary symmetric functions of the 
recIprocals of the roots. This, however, is true not merely for 
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polynomials, but for all entrre tra~scendenta.l functions of genre 
zero,· and hence we can readIly see that the root-squaring 
ptocesB IS applIcable to any entire transcendental function of 
genre zero; and, indeed, as has been shown by Polya,t the 
method may be used in cOtlnection WIth functions of any finite 
genre. 

Ex. 1.-2'0 find by the root-Bq'Ullh"lng method. the lowe8t roots of the Fourier
, BesBel funchon. 

The FOlmer-Bessel fdnction may be, defined by the power-serles :I: 
z" z' 26 

Jo(z) = 1 - 2 + 22 - ""'2'22 + ... 
2 2 4 2.4.6 

. ~ ~ ~ ~ ~ ~ ~ 
= 1 +x+ (21)2 + (3 !)2 + (4 !)B + (51)2 + (6 !)2 + (71)2 + (81)2 +. 

where x= -t22. Evaluatmg the terms on the rlght slde of this equa
tion, and retammg eleven places of decunals, we have 

Jo(z)= 1 +11:+ 0'2511:2 + 0'02777'1,77778~ 
. +0'OOI736,1l1l1~ 

+ 0'000069,444HzS 
+ 0'0000o'l,9290lzl 

+ 0'000000,03937x7 

+ 0·000000,00062~. 

The equation whose roots (in Encke's sense) are the 'squares of the 
roots 0,£ thlS equation is 

0= 1 + 0'5x + 0·01 0416,66666~ + Q'000038,58024x1 
+ O·OOOOOO,04306~ + ..• 

'l'hel'efore the equation whose root,s are the 4th powers of the roots 
of the original equation is 

0= 1 + 0 229166,66667:1: + O·000070,01283~ + O'000000,00060xl + ••• 

and the equation whose roots are the 8th powers of those roots is 

0= 1 + 0 052377,33517x + OOOOOOO,004625x1. 

Evidently we can ~ke 

~= __ l~ 
0·052377 

19'0923, 

whence '1:= -1-4458 and z'= ~.,r::::z = ±2.404S. 
, . 

• 0& the' subJect of g.'nr. cf. Borel, Le~O'M sur les Jonctions emures 
(Paris, 1900). 

t Z .. tsc"njtjur Math. 63 (1915), p. 275. 
: Whittaker an4 Watson, Modern Analyms, § 17.1. 
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Therefore the lowt'st root of Jo(z) IS Z= 24048 

Ex. 2 -Calculate 1r 110m the propelfy that tr/2 u the 101L't.>t root of the 
SeTteS fOT COB :1', ~ e 

a:2x'a:8~ 0=1-_+ ___ + __ ... 
2' 4! 6' 8! 

60. A Series .Formula for the Root.-A method published 
III 1918 * IS somewhat different III character from those which 
have been described hitherto, since It furnishes a literal formula 
by mere substitution in whICh the root is obtained. 'I he 
result may be stated thus: 

The root of the equation 

o = ao + alX + a2x2 + naXJ + a¢' + . 

which is the smallest tn absolute value, 1,8 gtven by the ~rrie8 

or 

or 

.As a numerical example, consider the equatIOn 

x3 - 4a:2 - 321x+ 20=0. 

Here ao=20, a l = - 321, aa= - 4, a3 = 1. 

I 
~ aal= 103121, 
ao~ l

alaaa31= -33127121, 
ao ~ aa 
o ao ~ 

The smallest root of the equatIon IS tht'refOle 

I a2 a 3 /=337. 
al a2 

~ _ 202 
X 4 + 203 

X 337 +. . . 
321 321 x 103121 103121 x 33127121 

0'062305,30 - 0'000048,36 + 0'000000,79, 

0062257,73 correctly to seven decimal places. 

(1) 

(2) 

The series converges rapidly when the ratio of the smallebt 
root to every one of the other roots is small. In calculatmg 

.. Whittaker, Proc Ed~n. Jfath. Soc. 36 (1918). p. 103. Cr. De Morgal!, 
Joltrn Inst Act. 14 (1868), p. 353. 
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any root of a given equation by the formula, it is therefore 
advisable in many cases first to transforfn the given equation 
by two or three root-squaring operations each of which re
pl,tees the equation operated on by an equation whose roots 
are the squares of its roots; or else, If an approximate value of 
the ropt is known, by Horner's procells to reduce the roots of 
the given eqllation by a, where a is an approximate value of 
the required root, so that the required .root of the new 
equation is small compared with any of the other roots. 

Proof of the Formula.-Let the roots of equatIOn (1), supposed 
for the present to be of degree n, be Xt, X2, • •• , x". Then If Z 
be any number whose modulus is smaller than each of the 
moduli of the roots, we have 

1 
.. (1 - zjxn) 

. ) (1 + Z/Xa + Z2/X22 + ... ) 
(1 + zjxn + z2jX,.2 + 

=-1 + Plz + }>zZz + Pail + .. 

where Pr denotes the sum of tl;1e homogeneous powers and 
products of the reciprocals qf the roots taken r at a time. 

Therefore 

ao= (ao + alZ + azZ~+· .• )(1 + Plz + P ZZ2+ Paz3+ ... ). 

Equating coefficients of powers of z, We have 

O=tl:l+aoPl> . 

O=~+alPl+aoP2' 
0= as + asPl + alPZ + aoPs, 

whence * 

(3) 

Now since I al azl = ala - aoaz, :e Eee that thlJ first two terms 
aoal . 

• The formulae of equatlon (:i) were known to W.ronskl. IntrOtl.. a la phllos 
des math. (1811), Pans. 
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of the series (2) are eqUivalent to the single term 

ao al PI ( 
-, al CL? i or p~. 4) 

ao all 

Moreover, by Jacobi's theorem on the mmors of the ad
Jugate we have 

and this shows that the term (4), togethe.r with the third term 
of the series (2), is equal to 

I al aa I 
-ao

j 
£: ~ I or ~:. 
Oao~ 

AgaIn, by JacobI's theorem we have 

) ~ ~ I ~:~ ~:: = I ~ :: ~ f 2 - €loa) ~ ~ ~ I 
.0 aO~a2 0 aoal ao~aa 
OOaoal . 

(5) 

and thIS shows that the term (5), together with the fourth 
terII;l of the series (2), is equal to 

l~aa~1 ao ~ aa 
-ao o ao ~ Pa 

~ aa ~ a, or~, 

ao al aa ~ 
o ao al aa 
o 0 ao al 

WhICh is therefore equal to the sum of the first four terms of 
the BerIes (2). Proceeding in thIS way, we see that the Bum 
of the first s terms of the series is equal to P,-lIP .. 

If now for simplicity We. consider the 'case when n = 2, so 
that there are only two roots, Xl and X2, of which we shall 
suppose Xl to have ~he smaller modulus, we have 
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and smce I~I < 1, this gives at once-

L P.-l 
t -P ""X} • 

• -+00 Il 

. Sunilar reasoning leads to the same result when n:::> 2. 
Thus tp,e sum of the .first 8 terms ,of the seIles is equal to 

p.-I/P, As 8 increases indefinitely this tends to the limit Xl. 

where Xl IS that root of equation (1), which has the smallest 
modulus. Thus the theorem is establIshed. 

'Ex, l.-F,nd Ihe root, wh,ch is smallest In absolute value, oj the equation . 

w+ 14x2 - 53268x+ 10~72 =0. 

Ex. 2.-F'nd the numer~cally smallest root of the equa~on 

rJ!i - 25x' + 200w - 600x2 + 1200x - 500 == o. 

61. General Remarks on the Di1ferent Methods,-The 
process 9f calculating a root of an equatIOn f(x) = 0 may be 
regarded as consistmg ~n general of three stages: 

I. Locat~ng roughly the pos~twn oj the root. - This .is, m 
general, best done by plotting a rough gtaph; in the case when 
/(x) is a polynomml, it may also M done by. divided differences. 
or b:y the rules of Descartes, Fourier, and Sturm, which are 
explamed in works on the algebraical theory of equations. 

II. Traniforrn,ing the equation so as to isolate this root from 
the other roots oj the cquations.-Let Xl be the required root of 
the equation f(x) = 0, and let ~, :la.... be the otJ1er roots. 
Then. performing a. transformation x= <t>{y). where '</> is some 
glven function, we obtain an equation F(Y) = 0, which we shall 
suppose to have roots Yl, Y2. Ya.. . . corresponding respectively 
to the roots Xl. X3. :la. . ThIS transforma.tion is to b,e chosen. 
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so that the root Yl bears to the other roots Y2, Ya, .. ratIOs 
which are small m absolute value The root Yl IS then said to 
be isolated. For this purpose we may use, for example, Horner's 
process, or the root-squaring process or inverse mterpolation. 

III. Calculating the root of the transformed equatwn -
ThIs may be done rapidly by one of the iteratlVe methods, e !! 
Newton's (§ 44), or Bernoulh's (§ 52), or by Whittakel's senes 
(§ 60). Having found Yl, the reqUIred root of the ongmal 
equatIqn IS gIven by the formula Xl = c/>(Yl)' 

62. The Numerical Solution of the Cubic. - For the 
solutIOn of cublC and quartIc equations some speCIal methods 
are avallable which cannot be applied to equations of hIgher 
degree To one of these, known as the tnsection method of 
solvmg the cublC, we shall bnefly now refer The term In x2 

may be supposed to have been removed in the usual way, so that 
the' cubic may be wntten in the form 

w-qx-r=O 

There are two prinCIpal cases to consider: 
(1) If 27r2 >4(l, the cublc has one real root and two complex 

roots, whIch may be found by Cardan's formula 

X = ar + (ir2 - _l'rt)i}l + ar - (ir2 - nq3)i}1, (1) 

or else (If q and r are both positive) by findlllg c/> such that 

31 r 
cosh </>=2· q!' 

when the real root IS given by formula (1) 

2 
X= J3qi cosh H, 

or (If q is negatlve and r posltive) by finding </> Buch that 

. 31 r 
smh </>=2' (_q)l' 

when the real root is given by the formula 

. 2 
X= J3( - q)! sinh !-c/>. 

(2) 

(3) 
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We can always suppose that r is positIve, since changmg the 
sign of , merely changes the signs of the roots. 

(Ii) If 27r2< 4q3, the cubic has an its roots real In thl8 
case we find the smallest positIVe angle </> such that 

3~ r 
cos </>=-2 '~. q. 

Vl'hen the real roots are given by 

2 </> 
:2:1= J?l cos "3 

2 7r-</> 
Xz== - J3q! cos -3- (4) 

2 7r+</> 
:2:-= __ ql cos--
e";;i 3 

Ex. I.-Con8ider the equuhon 

iI+ 9x2+ 23x+ 14 = 0 

Wrltmg x = Y - 3 to remove the second term, the equatlOn becomes 

y8-4y-l=0. (1) 

Thel'e are tlnee real roots since 4.4-3 >27.12• 

'" e havtl at once 

cos </> = 11" • 31 and log cos </> = i IQg 3 -log 16 = log cos 71° 2' 56"'4, 

so that ft</> = 23° 40' 58" 8. 

One value of Y I. llOW obtamed hy wrltlng 

log YI = log 4 - ! log 3 + log cos 23° 40' 58" 8 
=03252913 
= log 2114907, 

so Yl=2·114907. (2) 

:For the secoud root we have 

log ( - ya> = log 4 - i log 3 + log eos (60° - 23° 40' 58":8) 
=02697010 
= log 1 860806, 

so Y:a = - 1'860806. (3) 

Lastly, 

log ( - yiJ = log 4 - t log 3 + log cos (60° + 23°,40' 58"'8) 
=9·4050073 
= log 0'2541015, 

80 Ys=-02541015. {4l 
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The requlred roots are therefore -088,,093, -4800800, -32::'4101". 

Ex. 2.-Solve the equation 

iJ + 3",2 + 5)' - 27 = <> 

by the trisectwn method 

63. Graphical Method of solving Equations.-W e shall 
now consIder the solutIOn of an equatIOn fix) = ° by a graphIcal 
procedure. We first wrIte the equation in the form 

fl(X) =/2(X) 
(as may usually be done in several ways), and draw graphs of 
the equatIOns y = /l(X), y =/2(X), For, example, to solve the 
equation x3 - 4x + 6 = 0, thE! curvee might be taken to be Yl = x3, 
Y2 = 4x - 6. The abscissae of the points of intersection of these 
curves eVIdently satisfy the equation /(x) = 0, and are thus the 
roots of the gIven equation. 

Let one of these abscissae, as measured on the graph, be 
denoted by al; we must, of course, recognise that al is only 
an approximation to the root, since the accuracy of the readmg 
is limIted by the usual defects of graphical representatlOn. 
To overcome this dIfficulty we now repeat the drawing of the 
portion of the graph near the abscissa x = <11 on a larger scale. 
From the new diagram we find a new value x = a2 such that "2 

IS a closer approximation. to the root than <11' IJroceeding in 
this way, we ~orm a sequence of values <11, <12, <1a, • • ,whICh 
approach continually closer to the correct value of the root of 
the equation. 

Ex -Ftnd the real root of the equatwn 

cosx=x 

rorrectly to seven places of decimals, havtng given 

cos 42° 20' 40" = 0739108,82, 
cos 42° 20' 50" = 0'739076,16, 
cos 42° 21' 0" = 0 739043,50, 

and 11"/648000 = 0'000004,848137. 

Suppose x = yn, th,en the glven equation becomes 

o 000004,848137y= cos y . • 

We first plot the curves 

ft(y)=O 000004,848137Y} 
12(Y) = cos y , . . 

(1) 

(2) 
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u8mg the Cono~ing'data : 

42° 20' 40* = 152440', 0000004,848137 x 152440 = 0-73901)0,0, 
42° 20' 50" = 152450", 0-000004,848137 x 152450 = 07:'9098,5_ 

,Fig_ 12 suggests as a solutIOn the value y=-42° 20' 47*-3, so the that 
approximatIon for y is 

Now 

and 

al = 0 739084,98_ 

cOs 42° 20' 47"-2 = 0 739085,30, 
cos 42° 20' 4 7"-3 = 0-739084,98, 

0-000004,848137 x 1524472 = 0-739084,91, 
0-000004,848137 x 152447-3=0 739085,40. 

j(y) 
---~- ·--------l 

I 

FIG. 12. 

(y) 
650 

/.Iy) 

.7---------~~--------~~--~y 

FIG. 13. 

Fig. 13 gIves as II solution y=42° 20' 47":248, and the value of the 
cosme i~ then 0'739085,14. The second approximation to the root IS 

therefore 
all = 0 739085,\4, 

whICh is the required value. 
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. 64 Nomography.-Nomography is a special kind of graph

Ical calculation whICh differs from other graphIcal methods 
In thIs respect: that WIth graphIcal methods generally It IS 
necessary to draw a . fresh dIagram for every problem that IS 
to be solved, whereas in nomography It is possible to use the 
same dIagram oV,er and over again for the solution of different 
problems, so long as these problems belong to the same type, 
and dIffer only In regard to the numerical data occurrmg in 
them. For example, there are many well-known graphIcal 
solutIOns of the quadratic equatio~ In which the roots arc 
obtaIned as the Intersections of a CIrcle with a straIght hne. 
The practICal objection to these solutions IS that a fresh dIagram 
has to be drawn for each particular quadratic equation that 
has to be solved, and the time occupied in constructing the 
diagram IS greater than the tIme required to sol-ye the equatIOn 
by the ordInary arIthmetical method. This objection no longer 
applies if the dIagram is of such a nature that when once con
structed it can be used for any quadratic, whatever be the 
values of the coeffiCIents. Such a diagram, in "h1ch the 
constructIOn is made once for all and is apphcable to any 
number of specIal cases, is called a nomogram. 

The detaIled treatment of the subject, which is an extensIve 
one, IS somewhat beyond the scope of the present book; the 
reader may be referred to the works of l\f. d'Ocagne* and 
S. Brodetsky t ; we shall confine ourselves to illustrating the 
fundamental Idea of nomography by deSCrIbing a SImple 
nomogram,t by means of which quadratic equatIOns may be 
solved at SIght. 

The accompanying diagram consists of two rectangular. 
axes and a CIrcle touching one of them (which we may regard 
as horizontal) at the origin. The circle may be of any arbItrary 
radIUS R. The horizontal axis is graduated so that the gradua
tIOn p on it is at a distance 2R/p from the origin, and the 
other axis is graduated so that the graduation p on it is at a 
distance 2R/Cl-p) from the origin. The graduation at any 

* Trade de 71omographu (1899) and Calcul graph.que elnomographu (1914). 
't A Forst Course In Nomography (1920) 
:t E. T WhIttaker, Edln Math Soc. Notes, No 19 (Dec. 1915), p 215 
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point. of the circle is the same (with sign reversed) as the 
graduation at that point of the horizontal axis which IS d~rived 

from it by projection from the highest point of the cIrcle. 

-II .13 

.. 10 -12 -I S 

b D. 

D.' 
D. 

<r'. 
D' 

.ee 

'0 

3D 

•• 

", 
.0 

e"..,lt O/rooll 

.3 

•• . . 

FiG, 14.~Nomogram for the SolutIon of x"+tIX+b=O. 

.0 

The method of using the nom'ogram is B& follows: Let the 
equation to be solved be . 

Xz.f.a3Hb=O. 

Find the point on the horizontal axis at u.hich the reading is a, 
and the point on the vertical axis at, which the readtng is b. 

(D 311) 10 
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Imagtne these two potnts Jowed by a stTu~gltt lille (e g. by 
stretcrung a thread between the~, or by laymg a. straIght-edge 
across). Where the hne meets the circle, read off the graduatwns 
on the ctrcle,' t/l,ese are the requtred roots of the quadratw. 

The proof may be left to the reader. . 
If the lIne is not conveniently situated on the dIagram, \\e 

may replace the given equation, e.g. by the equation whose 
roots are the roots of the given equatIon with signs reversed, 
or the equation whose roots are the ropts of the given equa.tion 
multIplIed 'or diVIded by 10 or some power of 10. 

MISCELLANEOUS EXAMPLES ON CHAPTER VI 

1. Fmd the p6~ntive root of the equatlOn 

x+x'+x'+xl = 5. 

2. Fmd the posItive root of each of the follmung equatlOns 

(a) x!og.x= 18, «(3) log. (x + l)/(x - 1) = 23' 

3. Fmd correctly to four SIgnIficant dIgits the pOSItive root of the 
equatlOn 

x" + 5x = 1000, 

us~ng eIther the Newton-Raphson method or the method of IteratlOn. 
4 Compute to seven places the posItive root of 

x7 + 28x'= 480. 

5. Locate roughly the real roots of the equation 

x'- 3x2 + 75x-l0000= 0, 

and calculate one of them by the Newton-Raphson method to four places 
of decimals 

6. Show by the Newton-Raphson method that a root of the equatlOn 

y3 +'a(x + a)y - x3 - 2a3 = 0 

x x2 131x3' 509x' 
y=a-"4+ 64a + 572aZ + 16384a3 +. is 

(Wallis, Algebra (1685» 
7. Solve the equation 

x' + 2x3 - x2 - X - 631064798 = 0-

by Horner's method. 
(De Morgan., 
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8. Apply the root-squaring metpod to apprOXImate to the roots of 
the followmg equations to three Significant figures . 

9. Find by ,the root-squarin~ method the' numerically greatest root of' 
the equatIOn 

4x4+}28i'- 95x2 + 24x- ~=o, 

and determine the n~t~re bf the remaining roots. 
10. Show that' the root-squarmg meth9d may be apphed to determme 

, the cOlDcldent roots of the e~uation 

x4-10i'+ 35x2 - 50x+ 25=0. 

II. DetermIne z from the equation 

111=6 sin (on+z), - . 
where e is the eccentricity of a planet's orbit,-

n is the mean anomaly, 
having given the values 8=0-208. n= 30·=0-5235988 .. 



CHAPTER VII 

NUMERICAL INTEGRATION AND SUMMATION 

65. Introduction.-In the present chapter we shall show 
how to calculate the numerical value of a defiwte integral 

tf(x)dx .. 
when f(x) is a function whose numerical value is known for 
values of x between a and b. 

In works on the Integral Calculus it is shown that the 
above definIte integral can be found, prOVIded we can first 
find the indefin~te integral of f(x) , say F(x): for the value 
of the definite integral is then 1<'(0) - F(a). This method is, 
however, of very limited apphcatIOn: tor even when f(x) IS 
given as a compound of the well-known elementary functions 
X,n, eZ, log x" its mdefinite integral cannot in general be 
expressed as a compound of a finite number of these functIOns: 
and when f(x) is not given in terms of the known elementary 
functions, but is merely specified by a table of numerIcal 
values, the indefinite-integral method is altogether inapplicable. 
~he methods described in the present chapter, which are of 
general application, are therefore of great practical importance. 

The problem of calculating the sum of a sequence 

Ul+U2+Ua+U4 + • •• +Un 

is closely connected with the problem of numericalmtegration, 
and 18 therefore included in the discussion. ' 

66. The Approximate Value of a Definite Integra.l.
A definite integral 
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may be regarded as the measure Of the area ip.cluded between the 
curve y=J(x) , the ordinates x=a and x=a+rw, and the axis Of x. 

Le~ l' and Q be the two points on the curve whose abscissae 
are a and a+rw resplctively, so that the area in question IS 

PLMQ III the wagram. 
Let the base LM be divided into r parts each of length w, 

at the paints U, V, W, .' .. , and let the corresponding pomts 
on the curve be H, .:1", K, . .. Then we have 

area of quadr1la.teral PLUB = !w{f(a) + J(a + w)}, 
II HUVJ=~w{J((J+w)+J(a-+-2w)}, 

etc., 

y Q 

J 
H 

p 

o .L U V W M r 

FIG. 15. 

and the sum of the areas of the quadrilaterals PL UH, 
lIUVJ, .. : 

=w{!J(a) +J(a+w) +J(a+ 2w) + ... +J(a+r-l. w) +!J(a+rw)} 

This sum may be regarded as a rough approximation to the 
area PLM:Q, so that we have 

1 [+r1V to a J(x)d:D=fJ(a)+J(a+w)+J(a+2w)+ ... 

+J(a+r-1.w)+!J(a+r:w)+T, 

where T denotes certain correction-terms. 
We shall now show how these correction-terms may 

be found. 
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6'7. The Euler-Maclaurin formula.-Let. us coninder the 
case'in which the function f(x) IS eVlO where 11 is independent 
of x. Then the above formula becomes 

11a+r," • 
- e1Y.l:dx = leva + ev(a+w) + ev(a+2w) +. . . + e"'H(r -1)111" 

w'" 
+lem +I1nD +T, (1) 

where T denotes .the correction-terms; or (performing the 
mtegrati(:m) 

eva(et>rw -1) 
lIVJ eva {1 + eVW + e2VW +.. + e(r-l),,,,,} + ieva(e l1nD -1) + T 

. so 

eva(et>rW -1) 
= + leva(el1nD -1) + 'r e=-1 . ' 

Now we have 

1 1 1 1 
='8- 2+ 120 -'720(J3+ . 

It IS c'!lstomary to write thIS expansion 

1 1 1 BIO B2(J3 B35 ' 
e6 -1=0-2+21 - 4! +6!O - ... , 

(2) 

(3) 

where the numbers B, which are called the Bernoulltan 
numbers, have the p.umerical values 

1 1 1 1 5 691 
HI = 6' B2 = 30' B3 = 42' B4 "" 3p' Bs = 66' B6 = 2730 

Comparing equations (2) and (3) we have 

T - va(...... 1)( BI B2VS 03 B3 '5w5 ) - e e - - 2111W + 4! 7 - 6! v + .... 

Now if j(x)=evz, we have j'(x)=lIevz, j"(x)=1I2eVZ, .•• and 
therefore when /(x) = e""', we have 
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~ b - BJ7 {I'(a + ,:,,) - f{a)} + ~i1 {f'"(a +, rw) - fl/(a); 

B 5 . ' • -, 6~ {fV(a + rw) - jY(a)} +: .. , 
t 

SQ that in the case wheref(x);;:e""', we have th~ formula 

1 [+1"ID' . W f(x)d~= If(a) + f(a+.w) + f(a + 2w).+, , , 
". ' 

, + f(a + r -1. w) + tf(a+rw) 

- B27{f(a+r~) -f(a)} + B~1 {f"/{a + rw) -f"'(a)} 

~ Btr{fv(a~rw) -jV(a)}+, , . ,(4) 

or, as we'may more briefly ,wnte It, 

1[+"'" · (1 . 1 ) Wa (xJdx = -:;,fo + h +/a + ... t-f .. -l + 2fr 

W (f,' .fl) W (.fill .fill) 'IIf> (f,v .fV) -12 r -JO +720Jr -JO -30240 f' -JO + .... (5) 

Now let fix) be an arbitrary function of x. We shall 
assUme'that it is possible to reprllsent fix) between the firute 
bounds x=a and x=a+rw to a sufficient degree of approxima
tio~ by means of a sum of terms -of the form Ae~, where A 
and v al;e independent of ::c: ,say let 

fix) = Ale"!'" + Asev", + Ase¥ +, , " 

where AI' As. As. ' . '. ,vl' 'Va. 'Va. ' •• are suitably chosen 
constants. 

Apply~ng formula (4) to each term of this sum, and adding 
the, results, we see that the for~ula (4) or' (5) may be applied 
to such an arbitrary function fix) In general. It IS known as 
the. Euler-Macla!uri1l, formula, 'having been discovered inde
p~ndently by Euler and by"f\!aclaurin in the yealfl1730-1740.* , 11

01> dz' . • • • 
E+-To compute - cO'l'f'tlCtly to /fight plac68 of dtlCtmal& 

100 x 
. •• . .' 1 

Ip the Euler-Maclaurm fqrmul$ put 11';".1 00) w = I, r = 5, f(x) = ;. 

• In both cases th~ pubhca~lOn was several years subsequent to the 
discovery, cr. Euler, Comm. Acad, Sci. Imp. Petrop. 6 (1738), p. 68, and 
MaclaurlD, Treat1.S8 0/ FlUX'ltmS (l742), p, ~72. 
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= 0 005000 000 
0009900990 
0'00980a 922 
0009708738 
0009615385 
0004761905 

= 0048790 940 
= 0·048790 165 

1 ( 0000100000) 
- 12 ~ 0·000090 703 

- 0·000000775 

The calculated v<llue of the mtegrallB therefore 0'048790,165 

ThIs result may be verIfied by computmg log, (105/100) from the 
logarIthmIc serIes, as follows 

l~ 5 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 
log, 100 = 100 -"2 11102 + 3 1003 - 4: 100' +5 1005 .... 6 fOOi+' .. 

0'050000 000 
+ 0 000041 667 
+ 0'000000 062 

0050041729 

0'048790,164 

- 0001250000 
- 0 000001 562 
- 0 000000 003 

- 0·001251 565 

which aglees wIth the prevIous result to oue UnIt m the mutll place of 
deClmals... 

68 Applieation to the Summation of Series.-The Euler
Maclaurin formula is often used In the computation of Bums, 
when the integral which OCCUt;S in it can be calculated by 
other methods; the method will be obvious from the following 
examples: 

Ex. 1 -If It IS reqUIred fa obtatn correctly to, ntne places of dectmals 
the value of 

1 1 1 1 
2012 + 2032 + 2052 + ... + 2992' 

we have from the Euler-Maclaurm formula wIth a = 201, W = 2, r = 50, 
f(x) = 1/x2, 

1 1 1 
'+2992 +23012 
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• so 

= 0'000826 4325 
0'0000068575 
0'000000 0288 

= 0'OP0833 319, whICh 18 the requl\,ed value. 

Ex. 2 -To compute the o/Ium of the ~njimte sertes 

1 1 1 J 
1012 + 1032 +"iQ52 + 1072 +. 

If'm the Euler-Maclaurm formula ,we put f(x) = 1/J-2, W= 2, r= 00, 

we huye 

1] 1 1 1 14 
2a = 2a2 + (a + 2)2 + (a + 4)2 + (a + 6)2 +. . . - 3a3 + 15a5 -

80 thut 

1 1 1 1"1 1 4 
i12 + (a + 2)2+ (a+4)2+' .. = 2a + 202+ 3a3 - 15a5 +. 

Putting a= 101, thIS glves 

III 111 4 
101 2 + 1032 + 1052 + ... = 2.101 + 2.1012 + 3.1018" - 15.1015 + . 

= 0'004950,49505 - 0'000000,00003 
+.0·000049,01480 
+ ° 000000,32353 

= 0'004999,83335, which 18 the reqmred sum 

Ex. 3.-aal~utate correctly to ten places the sum of the t'1ljimte 8enes 

1 1 1 1 
113 + 123 + 133 + 143 + ... 

69. The Sums of Powers of the Whole Numbers.-The 
sums of the first, second, and third powers of the first n whole 
numbers are l as is well known, . 

1 + 2 + 3 +. . . + n = in2 + !n: 
l' + 22 + 32 + ... + n2 = inS + in2 +.In, 
13 + 23 + 33 +. . . + n3 = In' + in3 + in2. 

We shall now .show that the Euler-Maclaurin formula 
enables us j,o find readily the sum of the pth powers of the 
first r whole numbers, where p is any positive whole nnmber. 
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For talung a = 0, 10 = 1, /(x) = ~I? In the formula 

~[+rw /(x)dx = (¥o + /1 + /2 +. . .+/.-1 + ~/r) - ;~(/: -/O) 

W
3 

'" III U.p V V 
+ 720(/r -/0 ) - 30240(/r -/0) +. 

we have 
rP+1 1 1 
--= Ip+ 2p+ 3v+ + (r-l)p + -I'P- -prP - 1 
p+ 1 2 12 

1 + -p(p -1)(P - 2)I'V-8 
720 

1 
- 30240P(P -1)(P - 2)(p - 3)(p - 4)rP -

5 +. 

and therefore 

IP + 2p + 3p +. . + rP = ~+1 + ~ + J!...rV - 1 _ :e(p -l)(p - 2)rv-a 
p + 1 2 12 720 
p(p -1)(p - 2)(p - 3)(p - 4) .p-5 

+ 30240 1 - •• , 

the last term being that in r or r2; 

Tms is the general formula for a sum of positive powers: it 
was first published in James Bernoulli's posthumous work, Ars 
Confectandi, in 1713.* 

Ex-Show that the Bum of the 7th and 6th powers of the first 71. whole 
numbers tS double the s~uare of the Bum of thetr cube.~. 

We have at once 

17 + 27 + 37 + .. +71.7 =tn8 + !n7 +-.bn6--i4nt+-bn2 
SImilarly 

Iii + 25 + 35 + .. + 71.5 = tn6 + in5 + -t-ln4 - An2 . 

• We have therefore only to prove that 
(tn8+.3n7+ 7 n6_ '1\4+ In~+(1n6+1n5+ 5_nt_ '_n2) 

- 12 24 12 1; 2 I~ IJ 4 « 
=tn (71. + 1), 

whICh IS evidently. true 

70. Stirling's Approximation to the Factorial-In the 
Euler-Maclaurin expansion 

1[+rw (~ . 1) W to a /(x)dx= 2/0 + /1 +/2 +. . +/,-'1 + Wr -12(1/-/o) 

ufI if,'11 ~ "') :'720 r -JO - ••• 

• Ar. e(mj p. 97 
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write w = 1, f(x) = log x. The formula. then gives 

[
~ 1 . 

" log x dx = 210ga-l; log (a + 1}+ ... + log (a +1'-1) 

1 1 (1 1) 1 {II} 
+"2 log (a+1')-12\.t!+1'-a +360 (a+1')3_aa - ... 

or 

(a + l' + ~) log (a + 1') - (a +~) log a - r 

1 (1 1) = log {(a + l)(a+ 2) ... (a'H)} - - -- --
12 a+r a 

1. (1 1) + 360 (a + r13 - aa - ... 
Writing n for (a + r), this becomes 

.( n :~)log n - (a+~) loga- n+a=log (n I) -log (a I) 
... 

We have therefore 

'. (1) i 1 
log (n I) = C + 7H 2' log.n'" n + 12n - 360n3 + ... (1) 

where 0 is in4,ependent of n. 
In order to determine 0, we refer to' Wallis' formula 

!! = Lt (~.~.~.~.~.~ ~.~) 
2 .-+_.1 3 3 5 5 7" . 2n - 1 2n + 1 

71' 2'''(n!)' 
-= ·Lt , 
2 '1-+" {(2n) I}2(2n + 1) or 

and th~refore' 

109i = ."!:;: [4n log 2 + 4 log nI - 2 log (2n!) -log (2n + 1)]. 

• Substituting for the logs of the factorials from (1), we have' 

10~; = .~.I 4~ log 2 +4{ (nt~) i?g n-:'16 + 01 
. . - 2{ (2n:~) log (2n) - 2~+ o} -log (2n + 1)] 

= - 2 log 2 + 20, 

80 0,;;, ! lo-g (271"), 



140 TH~ CALCULUS OF OBSEnYATIOX~ 

a.nd finally 

10<7 (n I) = (11.+ !) iog n _ n + ! log 211" + _1 ___ l~_ + 
b 2 2 12n 360n3 • 

or n ,= nnH J211" . e- n ( 1 + 1!n + . .) 

ThIS formula is due to Strrhng: * It is of great value for 

computing the factorials of large numbers. 

Ex. 1 -To compute log lfJ.79 ') 

In StIrhng's formula, replacmg log (n!) by {log (/I - I)' + log" I \I t' 

oLtam 

loglO(1I - 1)' = (n - ~) log IOn + ~ log 10(211") 

where 
Takmg 

.\nd 

then 

+M{_n+_1 ___ 1_+_1 __ ---..!- + 
12.1 360113 1260"a 16S0n7 

M=log10e= 0'434294,481903,251828 
/I = 80, log 1080 = ] 9030S9,986991,943586 

79.5 log 1080 = 151·2956:>3,965859,515 

1 ( 1 1) log 10(79 ') = 795 log 1080 + 2" log 10(211") +)1 1280 + 1261180. . 

} 

-M( SO + 360lS03 + i 68'~ tlO') 

= 151'295653,965859,515 
0'399089,934179,058 
o 000452,390085,316 
0'000000,000000,105 

= 151'695196,290123,994 

= 116'951637,735507,649 

- 3474,3558,552260,146 
- 0000000,002356,198 
- 0 000000,000000,000 

- 34'743;-'58,554616,345 

ThIS IS the requl1'ed value correctly to fifteen places. 

Ex. 2.-S/IOW that 

1[+.... 11' 
tV. f(x)dJ.=(/!+h+h+· +1.-1)+"24(1:-/0') 

7,t
3 

'" '" 31 Wi (j," t. 
- 5760(/' -/0 ) + 96;680 • - oj - . 

71 The Remainder Term in the Euler -Maclaurin 
Expansion.-"\Ve shall now investIgate the error committed 

by truncating the Enler-Maclaurin expansion at any term t 
• ,llethodus d.jfcrentwhs (1730), p. 137. 

t JacObi, JOltffl fur Math 12 (1834), P 263 
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• Let a set' of polynomials cf>t(t), c/>2(t), cpa(t), ... be defined 
by the statement that CPn(t) is the coeffiClent of 8n In 1 in the 

, e!'-l 
expansion of 8· ~1 in ascending powers of 8. We readIly 

e -

find . 
</>I{t) = t, c/>2{t) = t(t - 1), cf>a{t) = t3 - ft 2 +!t. . 

The polynomials cp,,(t) are called the polynom~al8 oj 
Ber'fl,oull~. * 

From the defining equation 

e!' - 1 ... cp,.(t)sn' 
s.--= ~ -

e" -1 ,,=1 n! 
(1) 

we see on putting t = 0, and t = 1 successively, that all the 
Bernoullian polynomials vanish when t = 0, and all oj them 
after the first vanish when t = 1. 

Moreover, by differentiating equation (I) with respect to t, 
we see that-

~ <t>'n+l{t)S" _ i <t>,,{t)s" = _8_. 

,,=0(n+1)1 n:l nr e'-1 

Remembering that 

s s BlS2 B~ 
ea -1 =1- 2+ 21- 41 + .. , 

and equating coefficients of powers of s, we have 

a.nd so on. , 

lc/>2'(t) = CPl(t) - 1, 
icf>a'{t) = cp2(t) + Bt , 

!¢,'(t) = r/>3(t), 
Ho'(t) = cp,(t) - B2, 

Now denoting by f(x) an arbitra.ry function, we have 

f+Hj(X)dx = w f f(a + ~t)dt. 

wt =]Jo f(a +wt)d(2t -I) • 

(2) 
(3) 
(4) 
(5) 

... The name was given by ,Raabe 10 honour or James B~rnoulh. the Iluthor of 
Ars Conjectandi. • 
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and, by repeated integration by parts, 

[
+'" w war 

a f(x)dx = 2{f(a + w) + j(a)} - 210 (2t :-l)j'(a + wl)rlt 

w will' = 2{f(a + w) + f(a)} - 2" 0 j'(a + Wt)d</>2(t) 

W '~(l 
= 2 {f(a + w) + f(a)} + 2:10 </>2(t)f"(a + wt)dt. 

But by (3) we have 

u: f </>2(t)j"(a + wt)dt 

= - B~~ fj"(a +wt)dt + ~ f </>a'(t)j"(a +wt)dt 

B w? w4t 
= - -W-if'(a + w) - j'(a)} - 3 1 1c f"'(a + VJt)</>a(t)dt 

, 0 

B WI w4!ol 
= - -!J{j'(a + w) - j'(a)} - 41 j'''(a + wt)</>,'(t)dt 

• 0 

B w2 uf'r . 
='- 2! {j'(a+w) -j'(a)} -I- 4!}0 </>,(tlr(a+~t)dt. 

On substItuting from (7) in (6) we have 

[
+w w B w2 

a. f(x)dx=:l{f(a+w)+f(a)}- 2! {j'(a+w)-J'(a): 

(6) 

(7) 

. + ": f </>,(t)jtv(a + u·t)dt, (8) 

But by (5) we have 

~f <Mt)jtv(a + wt)dt 

= Bl~ [jtV(a + wt)dt + ~ f ~5'(t)jtV(~ + wt)dt 

Bw4 wr' 
=-tr-{f"'(a + w) ';' j'''(a)} - 5110 p(a + wt)</>o(t)dt 

Bw4 . W7(1 
= II {f"'(a + w) -j'''(a)} + 6Uo </>6(t)fVl(a + wt)dt. 

Substituting from (9) in (8) "e have 

l
B+W w B Wi 

G f(x)dx = 2{f(a + w) + f(a)} - Tt {j'(a + w) - j'(a)} 

(9) 

B w4' w7 {I 
+ ~! {j'''(a + w) - j'''(a)} + 6!lo </>s(t)j' '(a + wt)dt. 
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This ~s the Euler-Mqclawrin formula with a.remainder-term 
expressing the erro1' committed when the series ~8 truncated at the 
terms invoh'ing th6 th~rd derivatwes. By proceedmg in tlie 
same way we can find the error committed in truncating the 
Euler-Maclaurm expanSIon at any assigned term. 

If f(x) is a polynomial, the.Euler-Maclaurin series terminates 
and is exact. 

72. Gregory's Formula of Numerical Integration.
The earliest formula of numencal integration to be dIscovered 
was one in which the correction terms were expressed In terms 
of differences instead of derivatives. This formula, which IS of 
great use in practice, may be derived from the 'Euler-Maclaurin 
formula in the following way: 

In the Euler-Maclaurin formula 

~[+rw f(x)dx = (~.(o + It + i2 + ... +lr-1 + ~/7) - ~(!r' -/0') 

• W (f, 11/ ji III) vi' (f, v .f V) + 
+ 720 r - 0 - 30240 T - JO • 

let us substitute for the derivatives froiD. the equations 

10/0',= !:l/o -1!:l% + !A% - i!:l4fo + l.:l% - ... 
wj/ = !:lIT:1 + 1!:l0/ .. -8 + !A3/r_s + i!:lY .. -fo + iA!fr-6 + .. 
~f 0''' = !:l% - !!:l Yci * 1-!:l % -. . . 

. wlr'" = ASjr_8 + !!:lY .. _, + tA~ .. -G +., . 
w5j'o".=!:l%-. . . ' 
vl'ITV = !:l~ro.6 +: .. 
etc. 

It may be remarked that the formulae for .the derivatives 0110 are 
gJven in § 35, ana that the formulae for the derIVatiVes of I .. may be 
obtamed by formmg a. difference-table m WhiCh tb,e entries are reversed 
in order, i8. In IT-I' IT_., 1"-8> ... , IlJ 101 and applymg the equations 
of § .35. • _ • 

Thus we obtain 

l[+rw (1 . 1)' 1 W to f(x)dx="21o +11 +1. + ... + Ir-I+."2fr -I2(!:lI .. -i- Ll/o} 

• - 2~(L~Y"-2 +A%) ~ 7~:0(!:lSj..-8 - !:l%) - l!O(AYo -fo + A%) 

863 (!:lU 'AG.f) 275 '(!:lS-I ' AS",) • ,,- 60480 J T-G - • JO - 24192 Jr-6 + JO - ••• 
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This formula was discovered by James Gregory: * hke his 
formula of interpolation (§ 8), it does not require ordinates 
beyond the hmlts /0 and i1' III order to form the differences. 

On takmg f(x) ='e""', w = 1, a = 0, the formula becomes 

eT • - 1 1 1 
--~ = (1 + eV + e2• + . + el1' - 11,,) + 2(e1'• - 1) - 12(1 - e-,,)e1" 

1 1 l' 
+ 12(eV -l)- 24(I-e-')2er'- 24(e·-1)2+ . • , 

whICh eVldently breaks up into the expansIOns 

1 1 1 1 1 19 
;= eV _ 1 +"2 - ~ev - 1) + 24(e' -1)2 -720(e'- 1)3 -. 

and 
1 1 1 1 1 19 
;= 1- e-' -2"-12(1 - e-,,) - 24(1- e- V)2- 720(1- e-·)3_ . .. , 

whlCh are the expanSIOns of 

1 and _ 1 
log {I + (eV - I)} log {l _ (1 - e V)} 

respectlvely. The numencal coe:lfic~ent8 ~n GTegory's formu..la are therefore 
the same as those which occur tn the expan8wn of - {log (1 - J) } -1 t1l 

ascend~ng powers of x 
That this must be so may be seen at once by symbolIc reasonmg; 

for If D denotes the operatIOn of differentiatIOn, so that D-l denotes 
mtegratlOn, we have (§ ~5) 

eWD=E= 1 +A, 
and therefore 

1 1 -I 
wD -

1
=log(1 + A) = 1·0-g-;:(I;-_-'A-.;o;E~1)' 

whence Gregory's formula may be derlved ~ymbolIcally. 
Expresslons for the remamder after n terms of ~everal formulae of 

numerical mtegratlOn of thls type have been found by H. P. NlCleen, 
Arhv for Math. Astron. och Fy8~k, 4 (1908), Nr. 21. 

Ex. 1 -Show that the coe:lfi~ent of - {Anf,_n ± A"fo} in Gregory'. 
formula t8 

1 

and that it m.ty also be wntten 

( _ l)nJ.' x(x - l)(x - 2) .•. 
on' 

I 

'1 [('II + 1) rou) 

(x-n+ l)d 
x. (Glaisher ) 

,. Letter of Gregory to Collms of date 23rd November 1670, pnnted In 

Rlgaud's Correspondena 2, p. 209. 
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Ex. 2.-To calculate 

1
10'~ 

100 X 

cOTrectly to seven places of decimals. 
By Gregory's formula, the mtegrallS equal to 

g Tfr-o-+ Tn + rh- + Th + rh + !.h - T\St.,fl04 - t.,fl~ 
-7J.\(t.,2fl03 + t.,%~ - Nmt.,3fl02 - t.,3flOO) -. " (1) 

f. A. A2 A3 
Th = 0·010000 00 

-9901 
Th = 0·009900 99 194 

-9707 -5 
rh = 0·009803 92 189 

-9518 -6 
rts-=0·00970874 I8a 

-> 9335 -6 
rh=0·00961538 177 

- 9158 
I!-K = 0·009523 81 

Substituting In (I) the required dIfferences, we have 

J
105 

dx = 0 • 005000 00 
100 X +0.00990099 

+0·00980392 

- -f7j( - 9158 + 9901) '''-IT(177 + 194) 

~0·009708 74 
+0·00961538 
+0·00476190 

0·048790,93 

0·048790 16 

-62 -15 

The required value is therefore 0·0487902 correctly to seven places. 

Ex. 3.-Glvtm the table 

:l: J\:t) 
1 287626,699801 
2 287757,439208 
3 2878B8,2I8227 
4 28801~036864 

5 288149,895125 
6 288280,793016 
7 288411,730543 

7' • 

(ompuie[ f(x)dx by the Gregory formula. 

,(1;> 311) 11 
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Ex. 4.-Calc'I/,late 

73. A Central-Difference Formula for Numerical Integra. 
tion.-The formula. of Gregory 

l[+rw (1' 1 ) wa f(x)dx= 2fo + fl + f2 + ... + fr-l +2/' 

-1
1
2(t1/r-1 - t1fo) - 2~(t12fr-2 + t1%) - 71~)(t18J"_3 - t1%) -. 

utilises differences which he in lines sloping towards the centre 
of the dIfference table. Evidently there must exist a corre
sponding formula in whIch central-dIfferences are used, and 
which will therefore be of the form 

l[+rw (1 ] ) W a flx)dx = 2fo + fl + f2 +.. + fr-1 -I 2/r 

+ A{ t1f. +2t1f.-1_ t1fo +2t1f-1} 

+ B{t12fr_1 - t12f-1} 

Cf t13fr_1 + t13 fr-2 _ t1~f-1 + tJ.8J-2} 
+ t 2 2 

+ D{t1~_2 - t1Y-2} 
+ ... "(1) 

where A, B, C, D are coefficients as yet unknown. To 
determlDe these coeffiCIents, we may transform the derivatives 
lD the Euler-Maclaurin formula, or more dire?tIy, we may 
write f(x) = e""', UJ = 1 when formula (1) becomes 
e(a+7')v _ eav e<a+r)v _ eav 1 
----= + _{e(a+r)v _ ea"} ... A sinh VI e<a+.)v - ea"} 

v eV -1 2 ' I 

or 

or 

1 1 1 A' h 
- = --;;--1 +-2 + BlD V + .. v e-

+ ..• 

~= (~- ~ + ~2 _7~30 + ... ) +~ +A(v +~ + ... ) + B(v2 + .. ) , 

+C(-rr+ ... )+ ..• 



NUUERICAL INTtGRATION AND SUMMATION 147 , ' 

Equating coefficients of powers of t1 we obtain 

:A = - 1
1
2' B = 0, C = 7~~" . , 

and thus we have the. formula 

1[+"" (1 1 ) W" f(x)dx= 2fo+f1+12+·· ·+fr- 1 +2f r 

_ .!.. {fl..fr + fl.fr-1 _ fl.fo + fl.f -1} 
12 2 2. 

11 {fl.3fr-1 + fl.3fr-2 fl.3f-l + fl.3f-2' 
+ 720 2 - 2 f +. 

This formula, which is extensively used by astronomers in 
the calculation of perturbations, is in general more rapidly 
convergent than Gregory's; but it involves values off outside 
the range of integration. 

Ex. I.-Show that the above ,formula may be obtatned by wtegrattng 
with. respect to n, between the ltmtts 0 and 1, the interpolation-formula 

I' +/ n(n _ 1) ~2.f + ~21' 
f(a +nw)=Y+(lI_ !)6/0+ -2-'-' J -\ JO 

11(n - 1) (n - !) A3 n(n2 - 1) (1/, - 2) ~"f -2+ t:."f -1 
-+ 3l L.l~_1+ 4l 2 + ..• 

Ex. 2.-To calculate 'If' from the for;mula 

'If' it' dx 
4'= 0 1+z2 

. Takmgw=llfJ T= 10 we have 

loll dx _!.. 1 1 1 1 1 1 1 1 
o 1 +x~- 2 2·00 + 1·81 + 1·64 + 1'49 + 1·36 + 1·25 + 1·16 + 1'09 

+ _1_+ _1_+ _1 __ .!-'~f]o+Af9 ~fo+~/-l} 
1·04 1·01 2'00 12 \ 2' 2 

11 {~%-A3Js ~3f_l +~3f_2} 
+720 ~-2-- ----2-- + ... 

[TABLE 
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f ~ 

.1 
1-2= 1.04 =0·9615385 

285605 
1 

1-1 = 1.01 = 0·9900990 -186595 

99010 -11425 

fo = _1_ = 1'0000000 
1·00 

-198020 

- 99010 

11 
i 

=-=09900990 
1'01 

11425 

-186595 

- 285605 

f2 =_1_=09615385 
1'04 

is = _1_=06097561 
1·64 

- 572699 

i9 = _1_ = 0.5524862 
1·81 

47837 

- 524862 1912 
1 

110 =-=0'5000000 
2·00 

49749 

- 475113 . '- 1I62 
1 

in = 2.21 = 0·4524887 48587 

-426526 
1 

Il~ =.- = 0'4098361 
2'44 

We have therefore, neglectmg dIfferences of order hIgher than the thud, 

l' dx 11' • 
10 --=10·-

o 1 +x2 4 

=0·2500000 
o 55~4862 
0·6097561 
0·6711409 
0·7352941 
08000000 
9'8620690 
o 91 '74312 
0·9615385 
0'9900990 
0-5000000 

= 7·8498150 
= 7·8539822. 

1 11 
-12( - 499988 - 0)+ 720(375 - 0) 

+41666+6 
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Therefore 
71"= 4 x 0·78539822 = 3'141592,88 

whereas the correct value of 71" 18 3'141592,65 

74-. Lubbock's Formula of Summation.-In 
Maclaurin formula 

the Euler-

11a
+

rw 

- f(x)dx = (fo + It +/2 + . 
V) a 

. + Ir) - ~(fo + Ir) - ;;(fr' - fo') 

+ VJl(I'III_I'III)_ 
720 Jr % • 

suppose' that each interval is subdivided into m parts: the 
Euler-Maclauri1J. formula corresponding to the division is 
m[+rw 1 
- f(x)dx = (/0 + h + h. +. . . + fr) - ..,(fo .J-Ir) 
W (J, m fn ~ 

.. 10 , I 1l.3 "' '" 
- 12m (lr - fo) + 7"20m3(fr - fo ) 

Eliminating the integral between these ~wo eq uations we have 
10 + I!. + h + h + ... + /r=rn(fe + f1 + la + ... + Ir) m _ ~ • 

m-1(1' !c) (1n2-1)' (f,' !c,)1 'm4-1 w(I'''' !c"') 
- -2- Jr + 0 - 12m w - - 0 + mS- 720 Jr - 0 

This formula enables us to deduce the sum of a large number 
. of values of the func,tion taken at any interval from a smaller 
num.ber of values of the function, taken at intervals m times 
greater. 

If the derivatives in this formula are replaced by their 
values in terms of dIfferences, as in § 72, we have what is known 
as Lubbock's lormula," 

m-1 
10+11. +h + ... +Ir = m(fo +/1 + ... +Ir) - -2-(fr+!0) .. .. 

, m l -1 (m2 -1) 2 2 
- 12m (Afr-1 - A/o) - 24m (A~r-2 + A~o) 

_(ml -1)(19m2 -1)(AU' -6031') • 
• 720rn3 ./r-3 Jo 

_ (m2 -1) (9m2 -1)(t:.41' t:.") _ 
480m3 Jr-4 + 010 •• 

• J. W. Luhbock, Camb Phil. Trans. II (1829), p. 323. The formula as 
given originally by Lubbock mvolved advancing differences off.; the formula 
here giveQ, which does not require a kno'wledge of, f~ for values of :r: greater 
than r, is due to A, de Morgan, Ihff. Int. Calc., pp. 317-318, § 191. • It may he 
obtamed readily by the use of symbohc operators; cf. T. B. Sprague, J.I.,A. 18 
(lSi J), P 309. . 
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Er I.-To calwlute the Bum 
III 1 

1002 + 10] 2 + 1022 + ... + 1502 

1 
Let '1n= 10, lV= 10, and form the difference table of f(n)=;-a> 

1 
beginnmg wIth the value 10 = 1002 

/0 = 0 00010000 
-1736 

/1 = 0·00008264 4]6 
-1320 -123 

12 = 0 00006944 293 42 
-1027 - 81 

fa = 000005917 212 26 
- 815 - 55 

f 4 =0 00005102 157 
- 658 

f5 = 0 00004444 

By Lubbock's formula we have 

150( 1) 9 99 1; nz = 10(fo + fl + .. + f6) - 2(f6 + I~ - 120(Mr I1f~ 

. 99 2 2 99 x 1899 3 3 
- 240(11 73 + 11 '10' - 720000 (11 '12 - 11 '1~ 

99 x 899 4 4 
- 480000 (11 '11 + 11 '1~ 

= 406710 - 64998 - 88935 - 236 36 - 17· 76 - 12·61 
=340556. 

The reqmred value is therefore 0.OU34056. 

Ex. 2.-Evuluate to seven places 
100 1 
~2 

z=50 X 

Ex 3.-Show that Gregory'8 formula may be obtained by maktng m ~n

crease ~ndefin~tely M Lubbock's formula. 

75. Formulae which involve only selected Values of the 
Function.~If the function "hich is to be integrated is such 
that Its differences beyond a certain order'1/, may be neglected, 

the formula of Gregory (§ 72) enables us to express [+rw /(x)dx in 

terms of the values of/and its differences as far as order n, 
at selected values of x. But these dIfferences can in turn be 
l'lxpressed in terms of selected values of/by reductions 'such as 

11/0 = It -/0, 11% =/2 - 2Ji +10, etc., 
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and th;refore it'is possible to express[+rw I(x}dx entirely in 

terms of values of I at selected values of x. Among formulae 
of this class may be mentioned specially the following, * which 
are accurate for functions whose fifth differences are constant: 

1
a+& 

l.,dx = T"o-U" + 5/,,+1 +1,,+2 + 6/,,+3 + 1a.+4 + 5/"+0 + I,.+&}· 
a • 

[+6 /",dx = 0 28U" + I .. +J· + 1 {\2U"+1 ila+o} + 2'2/11+3' 

(Weddle.) 

(G. F. Hardy.) 

[

HO 

" • /",dz = rh-{8U" + III+lo} + 35U,,+1 + I"T3 +/,,+7 + la+u} -

+ 15U,,+2 +/,,+& + la+6 + 1,,+8} + 36fa+5)}' 
, (Shovelton.) 

These formulae may be proved directly, without reference 
to Gregory's formula, in the following way: 

Let it be required, for example, to prove the second of them 
(G. F. Hardy's formula). Si"nce I", IS a function whose fifth 
differences are constant, we can 'represent I", by a polynomial 

'of degree 5 in x, and therefore by a polynomial of degree 5 in 
the variable z, where z = x - a - 3, say 

III; =/"+3 + aZ + {3z3 + yz3 + 8z4 + as, (1) 
where a, {3, 'Y, 8, £ a.re independent of z. 

Therefore 

[+6J",dX = faU"+3 + aZ + (3z2 + 'YzS + 8z4 + ao}dz 

. . 486 
= 6/11+3 + 18{3 + -~ 8 (2) 

{) 

Now let us see if this can be represented by an expression 
of the type 

where A, B, 
written 

AUII + 111+6) + B(f"+1 + 1,,+5} + C/II+3' (3) 
C are absolute constants .. By (1), (3) may be 

A (2/,,+3 + 1R{3 + 1625) + B(2/"+3 + 8{3 + 325} + C/,,+3' (-I) 
. Since the expressions (2) and (4) are to be identical, we may 
• A 'Valuable discussion of formulae of this type is given by W. F Sheppard, 

hoe. Lond: Math. Soc 32 (1900), P. 258 ; and a detalled elementary treatment 
by A. E. Kmg. Trllll& File. Act. 9 (~923). p. 218. . 
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equate the coeffiCIents of 1",+3' {3, and 8 in 'them. and thus 
obtain the equations 

These equatlOns give 

{

2AT2B+C=6 
18A+8B=18 

162A + 32B = 486/5. 

7 81 
A = 25 = 0'28. B = 50 = 1'62. C = 2 2, 

so (3) becomes 

o 28(f", +1"'+6) + 1'62(f0+l +10+6) + 2 2/a+3' 

and thus Hardy's formula is estabhshed 
Weddle's formula may be deduced at once by addmg the 

zero quantity 510A6f", to the right-hand side in Hardy's formula. 

Ex I.-Evaluate 

·Weddle's formula may be wrItten 

[
+6" 3w 

f.,dx= 1O(f", +.5f",+w+la+2W+ 6fo+ 3w+ foHw+ 5f"+5w+ fa +811")' 

a • 

Let a=O, w=-b. andf.,= 1/ J(I-x2) 

r dx' 1 in J(I- x2) = 40fl·OOOOOO + 5O()17452, + 1,01418.5 + 6·196773 

o 1 060660 + 5 5001.91 + 1 154700) 

= 0·5235990. 

The true value of thIS integral 1S!1r or 0·5235987 correctly to Beven 
places.. ' 

Usmg Hardy's formula we haye 

(' dx 1 Jo J(l- x2) = i2{(0 28 x 2·1547005) +(1-62 x 2-10 .. 35285) __ 
+2·2 x Y.0321955)}=O.523a9Sa. 

Ex. 2 -Evaluate 

/.

' dx 
o I +:r2

' 

uS'lng seven ordmates. 

76. The Newton-Cotes Formulae of Integration.-Among 
formulae of the type discussed iI,l the last section, the oldest 
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and best known are the Newton-Ootes formulae, which we 
shall now derive from first principles. 

Let it be reqUired to calculate the integral of a gIven 
function between limits z = a and z = b. By the transformation 

z=a+b + b-a/-
2 2!O . 

we can reduce the integral to one in WhICh the limits are - 1 
and + 1. Let 11,0. kt,.. . ., hn be numbers intermediate between 
- 1 and + 1: we shall try to find a sum of the type 

Hoj{ho) + Hij{hl ) + ... + Hnj{hn), (1) 
where Ho, H l , •.• , Hn are constants, which will closely 

. represent 

f}f(x)dx. (2) 

We are thus trymg to represent the value of the integral by 
a. kind of weighted average, in which weights Ho, iII, , Hn 
are attributed to 'the values of the .ordmate f(x), corresponding 
to the abscissae 11,0. hlJ ... , hn• In order to secure that the 
sum (1) shall represent closely the integral (2) we shall lay 
down the condition that the sum (1) is to be equal to the 
integral (2) exactly so long as f(x) is any polynomial of degree 
less than (16 + 1). 

DebQting the product' (x - ho) (x - hI) . (x - hn) by F'(x) , 
we see that the S)lm (I) exactly represents the integral (2) 
when 

j{x} = F(x), 
z-k .. 

since this function is a polynomial of degree 16. Th.e sum (1) 
then reduces to 

. Hr(h,. - 11,0)(11,,. - 11,1) ••• ' (hr - hn), 

where the factor (11,,. - hr) is omitted; and this may be written 

T.hi~ gives at onoe 

. F(x) , 
H,. Lt --). , or H,.F (hr ). 
,,~-I.,. 

(3) 

0. formula which det~rmines the H's when the h's are,known. 
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Tlus formula mIght have been derived ~y remarkmg that 
wheilf(x) is a polynomIal of degree less than (n + I), it may be 
represented accurately by Lagrange's formula of interpolatIOn 
(§ 17), which may be wrItten 

/I( ) - ~ F(.1;) ; fi(k ) 
, x - ::'(x _ hr}F/(krf r 

The reqmred formula IS obtamed from this at once by 
integratIOn. 

Let us suppose that the h's are chosen at equal intervals 
apart so that 

2 4 
ho = -I, hi = -1 + -. h2 = -1 + -, ... , k n = 1 

n n 
Then 
F(x) 
-~L- = (x - ko) ... (x - h'_I) (x - k'+l) ... (x - hn ) x -I., 

=(x+I) . {X+I_ 2(r:I)}{X+I_ 2(;:I)} ... (x-I) 

",,(~r{t(t-I) (t-1'+ I)(t-1'-I) ... (t-n)}, 

where t=!n(x-l-I) and 

F/(hr ) = (h, - ho). (h, - hr- 1) (hr - hr+l) 

"" (-l)n-'(~) n1' I (n -1') I 

We have at once 

f/(X)dX = Hof( -1) + Hd( -1 +~) + ... + Hnf(I), 

where 

( -1)n-'21n 
H, = ( ) I t(t -1) ... (t - l' + 1)(t - r -1) ... (t - n)dt 

n.rl n-1' 0 

This ~s known as the Newton-CotesJormula oj ~ntegration.· 
More generally, writing h, = a + 1'w, we have 

[

a+n .. 
a f(x)dx = Hof(a) + Hd(a +w) 

+ H2/(a + 21C) + ... + Hnj(a + nw), 
* Newton, Letter to Le,bmtz of date 24th October 1676; Prone'p.a, 3 (1687), 

Prop. xl Lemma 5; Cotes, Harmoma me7UIUrarurn (1722); James Gregory 
(for n = 2) in Exerct! iJearn (1668). Cf. BICkley, Math. Gazette, 23 (1939) 352. 
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where' 

( -1)n-.. w'[ 
Hr=rl(n-r)l

o 
t(t-1) ... (t-r+1)(t-r-1) {t - n)dt .. 

The values of the eoefficlents Hr In a number of cases are given here 
for reference: 

For n=l, '10=1 
HQ=HI=! ' 

For n = 2, '10 = ! 
Ho=lIz=l, 

For n=3, w=! 
Ho~H8=1, HI=H2=~ 

For n=4, w=t 
Ho=H,=/o-, HI=Ha=H, H2=ls 

For" = 5, '10 = f 

FOI: 11 =6, '10=1 
Ho = He = Jitr, HI = H6 = -:ls, H2 = H, = "2"k, Hs = -ii-if 

Note that we must always have lIO+HI+H2'+ ... +Hn=nw 

A formula makmg use of the ordmates at the middle of the intervals 
(instead of the ends of the mtervals) was given by ?Iaclaunn, Fluxwns, 
2 (1742), p. 832. . 

An expressIOn for the remamder after n terms In the Newton-Cotes 
formula has been given by-J. F. Steffensen, Skandtna1!'isk Aktuariettdsknft 
(1921), p. 201. 

Ex.-Oalculate 

fl~X 
by the NewtlY1l-Cotes formula W1.th. ttght ord~nates. 

Let 'IO~1 so that n=8, and wnte' 
</>(t)=t(l-l) •.. (t-8). 

The coefficients Ht' may be written 

and we have the values 

H = (- 1)8-.. ! r. ~(t)dt, 
r f"! (8 - r) ! 8 }o- t - r 

Ho=H;=~k: HI =H7=NTV.: Ha=H8= ;:'tMh ~ 
Hs = H& = ·l-A,/-,; ~ H, = - -N..,,\. 

1 
8mce f(x) = -1-' we have +x 

x 0 I I ~ l i It 
f(.r) 1 t t -ft i 1"3 -} 185 ! 

14175H 494'5 2944 "- 464 5248 - 22iO 5248 - 464 2944 494 5 
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2 8 4 
3 + Hij , 13 + H8 ' "7 

8 I 
+ H7 '15 + Hs' 2 

1 { 192 48 192 2 } 
= 14175 494·5 x 1 5 + 135 . 2944 - 35' 464 + 143'5248 - 3 . 2270 

=0'693147£1, 

whereas the true value IS 069314718. 

77. The Trapezoidal and Parabolic Rules.-The simplest 
cases of the Newton-Cotes formula are the followmg : 
1°. n = 1. 

l
a+w 

j(x)dx = !U7j(a) + !u:f(a + w), 
a 

ThIS is known as the trapezoidal rule. It is exact "hen 
j(x) is a function whose first differences are constant. 'When 
j(x) IS a functIOn whose first differences are not constant, the 
dIfference between the two sides of the above equation may 
be wrItten 

where 0 < 0< 1. 
2°. n=2. 

.,fiwl'j"(a + Ow), 

-a+2w 
J j(x)dx = twj(a) + tvif(a + w) + iwj(a;- 2w). 
a 

This formula was first given (in a geometrical form) by 
CavalIeri,* a.nd later by James Gregory t and by Thomas 
Simpson t; it is generally known as &mpson's or the parabohc 
rule. It is exact when j(x) is a function whose third dIfferences 
are constant; when j(x) IS a function whose third dIfferences 
are not constant, the error involved in the use of SImpson's 
formula, i.e the difference between the first ~nd second members, 
may be expressed in the form § 

- ~f'V(a + 20u), 

where 0<0<1 
* Ccntwna. d~ 'l>arn problem~, Bologna (1639), p. 446. 
t Exert.t geom, London (1668) • 

. t Matl!. Dtssertatwns, London (1743), p. 109. 
§ Peano, AppZ,cazzonz geom. deZ calcoZo infin., Turin (1887), p 208. 



NUMERICAL 'INTEGRATI"oN ~D SUMMATION 151 

3°. '111=3. 

l
,,+sW • 

II J(x)dx = iw{J(a) + 3J(a + w) + 3J(a + 2w) + J(a + 3w)}. 

This is generally called'the three-eighths rule. 
In practice, wllen it is required to compute an' integral, we 

first divide the range of integration into a number of lntervals 
and then apply one of the above rules to each of the intervals 
and add the results so obtained. Thus when we use Sunpson's 
rule after dIviding tpe range (say from a to a + 2pw) into p 
intervals, we have for the value of the integral 

or 

iwj('a) +!wf(a+w) +lwf(a + 2w) 
+ twf(a + 2w) + '!wJ(a + 3w) + lwf(a + 4w) 
+ lwf(1;1- + 4w) + !wf(a + 5w) + lwf(a + 6w) 
+. 

!-w[f(a) + 2{f(a + 27.0) + J(a + 4u) + .. } 
+4{f(a +w} +J(a +3w) +., .. } +f(a +2pw)], 

whence .the form in which Simpson's rule is generally stated: 
Form the sum of the extreme orainates, twice the sum oj the 
even ordinates, and Jour times the sum of the odd ordinates; 
and multiply the result by one-third oj the interval of the abscissa. 

Ex. I.-Calculate 

11 dz 

o 1 +z 

by the Simpson formula, using nine ordinattlll. 

• 1 , 1 
Letf(z)=-, a=O, and,w=-. We have the values 

l+z 8 

z 0 l j l! ~ i i 
f(x} 1 ~.! -lr i -& ~ ~ 

Then 

1 
1 
~ 

11 dx 1 {( '1) (4 2 4) (8 S S S )} 
, 0 l+z=24 1+2 +25+3+7 -+'4 9+il+13+15 

1 
• = 24 P'5 +4·076190 5 + l}·05951S 3} 

=0·6931545. 
The value obtamed is 0'693155, whereas the correct value is 
log 2 = O·693147,.correctly to six places. 
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Ex 2.-Show that ~f tn evaluattng the area between the ordwafes 
x = 1 and x = 2 of the rectangular. hyperbola xy = 1 the formula of 
'svlnpson w~th 11 ord~nates is employed, the error u 0·000003. 

78.-Woolhouse's Formulae.-A number of Integration fOl1llulae 
akm to those which have been considered In the last three artl~les were 
gIven by Woolhollse in Journ. Inst. Act. 27 (1888), p 122. He r('colll
mended tIle two follOWIng speclUlly for their "high and pel'!ll"tent 
appioximatlOn :' 

flO { 223 5875 4625 4I} 
o udt= 5 3969(uO+ uIO) + 18144(ul + u9) + 10584 (ua+ u7) + lliu6 

={9'4485938](uo + ulO) + [0'2092449](ul + ltg) 

+ [0 3394319](ua + u7) + [0·2625358]ujj 

(where the numbers In square brackets are the logS of the coeffiClents\, 
and 

128 { 7 16807 128 71) 
o 'udt= 14 195(uO+u~+ 666.90(u2 +u2U)+ 285(U7 +u21) + 135ltUf 

= [9'7011914](uo + u:uJ + [0'54 75575](u2 + u26). 

+ [0 798493I](u7 + u 21) + [0·8670526]//14 

79 -Chebyshefs Formulae.-If, mstead of laymg down the 
condItion In formula (1) of § 76 that the mtervals hi - ho' h2 - hi' etc., 
are to be equal, we lay down the WndltlOn that the coellkJents 
,Ho' HI' ... , Hn are to be equal to each other, we obtain a I-et of 
formulae first given by Chebyshef,* whI(h have found acceptance chiefly 
with naval alchlteCU,. They have a certam advantage when the ordmates 
are expenmental data hable to unknown errol'll; for If we have a 
number of quantities wInch are eqlially lIable to be affected With error, 
and If a lmear functIOn of these quantlttes iH formed, the sum of tile 
coeffiCIents In thIS functIOn bemg fixed, then the probable error ()f the 
functIOn IS least when the coeffiCIents are all equal. 

Chebyshef's general formula IS that If f(x) is a function '\\ hoqe 
(n + l)th differences are neghgtblet then 

r f(x)dx = ~ {J(xl ) + f(x2) +. . . + !(x,,)} , 
-1 n 

where Xl' x2" ., x" are the roots of a certam polynomial, whkh lS, in 
fact, the polynomial part of the expanRion of • 

" n n 
xne -2 SXO:45x-1- b 7 xG-

m descendmg powers of x 
• Thus, when f(x) IS a function whose SIxth dIfferences are negllgtble, 
we have 

t f(x)dx"; i {f(xl ) ~ !(x~ + !(xal + !(x), + !(xsJ}, 

* Jomn. de math, (2), 19 (1874), P 19: ABSOC Fran9 II (Lyon, 1873), p 69_ 
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where xl' x2,· • •• , x6 'are the roots of the equatIOn 

x6 - {x3 +...qx = 0, 

80 that - ~ = 0·832437 = X5 

-x2 =0 374542=x" 
X3= (). 

Chebyshefs formulae were suggested by a formula due to Bronwm, * 
namely 

11 f(x)dx [ 
-i J(l - x2) = 0 !(COB t)dt 

=;(!(cos :n)+!(cos ::)+!(C06 ~:) + . +f(COS (2~;nl)7r)}. 
whlCh is rlgorousq true when f(x) 18 a functlOn whose 2nth dlfference. 
are zero. Thus if f(x) 18 a function whose SiXth differences are negligible, 
we have 

11 f(~)ax ~{f( J3)' + f(O) + f( _ J3)}. 
-1 J( 1 - xli) 3 2 2 

80. Gauss's Formula of Numerical Integration.-Suppose 
now that instead of prescribing the numbers ho, hI> . . ., h .. of 
§ 76 by the 'condition that they are to be at equal intervals 
apart, we determine them by the condition that the formula IS to 
have the highest possIble degree of accuracy j since there are at 
our disposal (2n + 2) constants hOI hI> . . ., hno Ho. HI, . . ., H .. , 
we can choose them so as to make the formula rigorously true 
when /(x) is any polynomial of degree (2n + 1). Denoting 
the 'Product (x - ko)(z - hi) . . . (x - hn) as before by F(x), we 
must therefore have in part!cq]ar 

f/(x)dx = II </>(z)F(x) dz = 0, 

. where </>(x) denotes any polsnomial' of degree less than (n + 1) 
N ow it is a. known property t of the Legendre polynomial 
p .. +1(x) tha.t 

{

I . 
</>(::;) P .. +1(x)dz = 0, 

I -I 

so long as </>(z) is any polynomial of degree less than (Jt + 1). 
'We see, therefore, that the stated conditions are satisfied 
by taking • 

F(z) = P"+1(x), 
• Phil. Mag. 34 (1849), p. 262 

t Whit~aker and Watson, Mode~ An/l,lyS'ls, ~ 15·14 
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so the numbers ho, hl, ... , hn are the ·roots of tlie Legendre 
polynomIal of degre~ (n + 1). * The H's are then given by 
formula (3) of § 76 

In the simplest cases we obtain the following values for 
the h's and H's: 

1 1 
n=l, ho= - J3' hl = JJ' Ho=I, Hl=1. 

J3 J3 5 8 5 
11=2, ho= - J5' hl=O, h2= J5' HO=9' HI = !}' Ha=l) 

3 2 J6 . 3 2 J6 
n = 3, h0

2 = h32 = '7 + '7 J5' 1~2 = h22 = '7 - '7 J5' 

Ho = Ha = 18 - J30 HI = H2 = 18 + J30 
36 ' 36 

Converting to decimals and transforming the vanable so that 
the range of mtegratlOn is from 0 to 1, we have 

[f(X)dX = Aof(xo) + A1f(Xl) + ... + Anf(xn), 

where reT and Ar are the transformed values of hr and Hr 
respectively, and in fact 

'110=1 

n=2 

'110=4 

-Xo = 0·21132487 
Xl = 0·788675 13 

Xo = 0·112701 67 
xl=0·5 
~ = 0·887298 33 

Xo = 0·069431 84 
Xl = 0·330009 48 
~ = 0·669990 52 
Xa = 0·930568 16 -
xo=0·046910 08 
Xl = 0·230765 34 
x2=0·5 
rca = 0·769234 66 
X, = 0·953089 92 

Ao = As = 0·173927 4 
Al = Aa = 0·326072 6 

.Au = A, = 0·118463 4 
Al =.A3 = 0·2393143 
A2 = 0·284444 4 

• Gauss, "Methodus nova intcf(rahum valoree per approx. mveDlendl," G~tt. 
Cornm. III. (1814)=JVerke, 3, p. 163. 
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Ex. l.-F~nd by Gauss'. method, with n = 4, the 1Jalue of 

Writmg 
11 log (1 + x) dx. 

o 1 +x2 

'/':L _ log (1 + x) 2.302585 091ogl0 (1 + x), 
oy( ) - 1 +.,;2 1 +:L2 

we may arrange the )vorlung m the form 

:1:0 

l+x 1·04691008 
loglO (1 +x) 0·01990938 

A 0·tI84634 
1 +:L2 ] ·00220056 

JoglO 2·302585 09 0·36221569 
loglO {JogiO (1 + x)} 829905'7 '73 

loglO A 9·0'7358420 

1 '7''73485'7 62 
loglO (1 + :lo2) 0·00095464 

loglO Ay,(x) 7·73390298-
Ay,('r) 0·00541880 

We thus obtam the values 

Aoy,(x~ = 0 005418 80 
A 11f(xt> = 0:0471'7'796 
A21f(xa) = 0·092265 82 
Aay,(xs)= 0·085'78136 
A,1f(x,) = 0·041554 03. 

Finally we have 

Xl 

1·230'765 34 
0·0901;526 
0'2844444 
1'05325264 

0·362215 69 
8'95508'740 
9'3'7896865 

186962'7] 74 
0·02253256 

8·6'73'739 18. 
0'04717796 

. 11 log (1 +x) 
o 1 +x2 daJ=Ao"'(x~+Al!f(x,)+··· +f..,!f(xn) 

=0·2721980, • . , 

whet'eaa the correct value of thIS integral ( = i log 2) IS 0·2721983 

Ex, 2,-Show that a degree of a~curaC'i equal to that of GausisJorm1tla 
u obta~ned by the use of 

(
,., . 1 ,. F(h) 

'-1 F(x)dJ:=n(n+ 1)";'{Pn(h)}2' 

the sU'!'I being extended over all the roots 11. of the equahtm 

Pn+1(J.')- Pn-l(x)=o, 

, that is, over + 1, -1, and the.'I'oofs of Pn'(x)=O. 
(Ra?au) 

12 
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MISCELLANEOUS EXAMPLES ON CHAPTER VII 

1 Show that If fifth differences are neglIgible 

l
a+6n 

• /",dx = 0.-28(/a + 2/a+6 + 2/a+12+' .• + /a + 6 .. ) 

+ 1·62(fa+1 + /a+3+ .. )+ 0·58(/a+3 + 10+9+' .• ~ 
(Shovelton.) 

2 Show that If fifth differences are neglIglhle 

1~f",dx=Iuf.(/a+fa+2+/a+4+ •• +fa+6n) 

+ 5(fa+1 + fa+3 + + fa+6n-l) + (/a+3 + la+6 + ... + fa+6n-3)} 

(Shovelton ) 

3. Show that the mtegral 

f' cp(x) (I - :/,)"(1 + x)l'dx 
-1 

may be represented by the sum 

Hocp(hO> + HI cp(hJ +. . 
exactly so long as cp(x) IS a polynomial of degree less than 2n, provided 
the abscissae hf}t ~, ... are the roots of the equat19n F(x) = 0, 'II here 
F(x) IS defined by the relatIOn 

dn 
(x-I)"(x+ I}I'F(x)= dxn {(x-l)n+"(x+ l)n+I'}, 

and the H's are defined by 

1 {I F(x)/(x) 
Hr=F/(hr) -1 x-hr dJ" 

4. The values of a functIOn /(x) are given by the table 

x. /(x). 
1·050 1'25386 
1·060 1·26996 
1·070 1·28619 
1·080 1·30254 
1·090 1'31903 
1·100 1'33565. 

Usmg the Gregory formula, calculate 

flOO 
Jl<JOO f(x)dx. 

(Radau) 



NUMERICAL INTEGRATION AND SUMMATION 163 

5. The values of a function lex) are gIven by the table 

:ll. fix) 
41 395254161 
42 406586896 
43 418161 601 
44 429981 696 
45 ,442 050 625 
46 454 371 856 
47 46694888L 

Evaluate • £7f(x)dX. 

6. I~!(x) 18 a functlOn whose fourth differences are neghglble, prove 
that 

1.. 2+J2 2-J2 
o e-a:f(x)dx = -4-/ (2 - J2) + -4-f(2 + J2), 

and, more generally, If lex) is a functIon whose 2nth differences are 
neglIgible, obtam a formula 

1,., e-a:f(x)dx=' i .Ak/(Xk), 
o .. =1 

dn 
where XI, Xi> ••• , x" are the roots of the polynonlJal If" dx,,(e-a:x") 

• (.A. ~erger) 

7. If !(x) is a function whose SIXth differencell are negl~ble, prove 
that 

. L:~f(X)dJ:=~1r{!( -J:)+4f(0)+!(J~)}, 
and more generally, If !(x) is a function whose 2nth differences are 
neghgl~le. Obtalll a formula 

• [: e-o;'Jj(x)dx = '~1 Al.!(XI;), 

dn 
where XI.:I'lI! ••• , x" are the roots of the polynomial tPfA dJ:n(e~ 

(.A. Berger.) 

8. Show that Hardy's formula. (p. 151) may be derived from Gauss's 
general formula. by taking the nearest integral values for the ordinates. 



CHAPTER VIII 

NORMAL FREQUENCY DISTRIBUTIONS 

81. Frequency Distributions.-In statistical investIgatIons 
attention IS dll'ected to a group of persons or objects, and an 
enumerl!-tion is made of the IndIvIduals in the group "ho 
have some particular attribute: for instance, we may con
sIder the group consisting of all the inhabitants of Edm~urgh 
and enumerate those who are widowers. In the most Important 
and interesting cases the attribute is one which IS capaule of 
beIng expressed by a number, thus the attribute might be the 
height of the individual, whICh is expressible as a numLer of 
inches. In sU9h cases the whole group may be partitlOned 
into classes or sub-groups accordmg to the value of thIS 
number: thus the whole group of the inhabitants of EdmLurgh 
may be arranged in classes accordmg to the number of inches 
in their stature; one class, for example, might conSISt of persons 
whose heIght is between 68! mches and 69! inches. . Now let 
Xl be the number of inches in the heIght of the shortest person 
in the city, and let the number of persons whose height IS 

between X! -:-l, and XJ. + l inches be Yl; let Xl + 1 be denoted 
by :211, and let the number of persons whose height is between 
X2 -l and l1 + l be Y~; let X2 + 1 be denoted by Xa, and let the 
.number of persons whose height is between Xa -! and Xa + l be. 

enoted by Ya, and so on. Then we may regard XL :211, X3, ••• 

a successive values of an argument and YL Y2> Ya, ••. as the 
cm esporlding values of a function of this argument. The 
tab of values thus obtai;lled specifies the distribution of the 
heigH s among the inhabitants of Edinburgh: such a distrIbu
tion is aIled a frequency distribution. 

164 



NORMAL FREQUENCY DISTRIBUTIONS 165 

As an example of a frequency dlstnbuhon, we may take the follow
lDg results.ot JIleasW'ementa of the chesta of 6732 soldiers in ScottlSh 
regiments. * 
Chest mea8ure'in inch" 33 34 35 36 37 38 39 40 
Number of men : 3 19 81 189 409 753 1062 1082 

Chest measure in inches 41 42 43 44 45 46 47 48 
Number of men.. • 935 646 ~13 168 50 18 3 1 

The type of frequency distribution which is most familiar 
to the worker in experimental science is the distribp.tion of 
the measures obtained by repeated measurements of the same 
observed quantity, Let the true measure of an observed 
quantity be a. Smce measurements made of this quantity' 
by the same or different observers are affected by errors of 
observation, the measures actually obtained will not all be 
equal to a, but will form a group of measures al> aa, aa, a" 

not ,differmg greatly frop! a. The practical problem is to obtam 
the best p'ossibl~ estimate for a when we know the measures 
al> aa, as. . . 'J and also to estimate the error to whicli this 
value is liable. In order to solve these problems, we must 
stUdy the type of frequency distribution to which the group 
aI, a2, aa, . . . belongs. . 

82. Continuous Frequency Distributions.-In the above 
numerical example we have grouped together in a single class 
all the '753 men whose chest measure is. between 3'7i and 
38! inches. Supposing that full information regarding the 
individual measures is at our disposal, we might have divided 
this 'class into two classes, one consisting of men whose chest 
measure ill between 3'7! and 38 inches, and the other whose 
chest measure is between 38 and 3S!" inches; and in this way 
Wlj might subdivide each. of the original classes, thereby 
evidently doubling the total number of classes and sO' producing 
a more detailed statement, regardm'g the chest measures of the 
men. Further, we'might divi,de each of the new classes int() 
two, thus· quadrupling the origi~al number of 'tlasses. But 
evidently if we attempt to proceed very far in this direction 
we shall meet with, practical difficulties: thus no .statistician 
would think of trying to arrange the men in classes each of. 

, Edmbllrgh Mtdtcal J01trllal, 13 (1817), p. 260. 
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which comprehends a VarIatIOn of only one-thousandth of an 
Inch in heIght, partly because the measures cannot be relIed 
on to such great accuracy, and partly because the numbers of 
men in the classes would become small and irregular, and 
would cease to present to the mInd a clear picture of the 
frequency dIstrIbution. 

For theoretIcal purposes, however, we may dIsregard these 
practical dlfficulties and consider an ideal case in which the 
measures are supposed perfectly accurate, and the number of 
IndIVIduals in the whole group is supposed very large, so that, 
however narrow we make the qualIficatIOn for membership of 
.a class, there will always be enough members in it to make 
the sequence of the numbers of members of classes a regular 
sequence. N ow consider the class constituted of Indhiduals 
whose measure IS between x and x + Ii, where Ii IS a small 
number. The number of members in thIS class will eVIdently 
be approxImately proportional to Ii, since doubling the range 
of qtlallfication for the class would approximately double the 
membership; and it will also be proportIOnal to the number 
N of indIVIduals in the whole group, since, If tWIce as many 
soldIers were measured, the number of soldiers in each class 
would be approximately doubled. Let us then denote the 
number of individuals whose measure is between z and z + Ii by 
Ney ~ then the number y depends on z, and. in fact the way 
in which y depends on x specifies completely the frequency 
distr.lbution. We shall often express the dependence of y on z 
by writing q,(x) for y, and we shall use the differential notatIOn, 
writing dx for Ii, so that in a group of N indlviduals the number 
whose measure is between x and x + dx is denoted by N q,(x)dx. 

Expressing the same idea in other words, we may say that 
q,(x)dx represents the probab~hty that an individual chosen at 
random in the whole group has a measure between x and 
Z + dx, and hence If the frequency curve y = q,(x) be drawn, 
the measure of any indiVIdual is equally likely to be the 
abscissa of any point; taken at random within the area bounded 
by the curve y = q,(x) and the axis of x. 

The earliest mathematical dIscussIOn of a frequency dlStnbutIOn seems 
to have been that of SImpson (1756) In connectIOn WIth the Theory of 
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Errors of ObSel'VdtJon. Simpson assumed that the probability of a posItive 
error IYlllg between z and a; + dx waR cp(x)dx, where cp(x) = ~ '1IUL + e, 
'In and /J being pOSltlV~ constants: the probability pf a negative elTor 
was assumed equal to the probability of a pos!.tJve error of the same 
amount, and errors of greater magnitude than elm were assumed to be 
impossible. The frequency curve for the errors is therefore, in th1.8 case, 
two sides of an isosceles triangle, together With. the prolongations of the 
base outside the tnangle. 

83, Basis of the Theory of Frequency Distributions.
'We shall now approach the discussIOn of frequency curves from 
the theoretical sIde. The considerations on which the theoretical 
investlgatlOn is based were first put forward by Laplace, and 
may be described as follows. 

Consider the frequency distribution of (say) the chest 
measures of the soldiers (§ 81). If we fix our attention on an 
indIvidual soldier, we may say that a great many different 
factors have contributed to make his chest measure what it 
actually is. For, owing to heredIty, it WIll have been influenced 
by the chest measures of hIS father and mother; bub the chest 
measure of his father wlll in turn have been influenced by 
those of his father and mother, and so on, so that ultimately 
the, chest measure of the individual soldIer we are considering 
may be regarded as influenced by the chest measures of a very 
large number of individuals ,of a remote generation, each of 
them smgly Illa~ing only' a very small contnbution to the total 
effect. Moreover, other factors will enter: fol' example, his 
nourishment and exercise at dIfferent ages of life. Thus the 
deviation of the actual chest measure of an indivldual from the 
average may be regarded as the sum of a very great -",umber of 
very small deviatwns (positive 9r negative) due to the separate 
factors in the heredity and environment of the individual. These 
multitudinous sman component deviatIOns will be assumed to 
be independent of each other, in the sense in which the word 
.. independent" is \lsed in the Theory of Probability. 

84. Galton's Quincunx.-An interestmg piece of apparatus 
was devised by Galton* to illustrate the formation of a 
frequency dIstribution from the joint effect of a l!U'ge number 
of small and independent deviations. 

.. Natural Inheritance, p. 63; for experImental results cf. 0 Gruber, Zelts. 
Illr Nath. u. Phi/so 116 (1908), p. 322. 
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Into a board inchned to the horizontal about a tholtlland 
pms are driven, dIsposed in the fashIOn known to frUIt growers 
as the quincunx, i.e. so that every pin forms eqUllateral triangles 
wIth its nearest neighbours. At the top of the board is a 
funnel, into which small shot is poured. The shot in descend
mg strikes the pins in the successive rows, each piece be'mg 
deVIated to right or to left at every encounter with a pin At 
the bottom of the board are about thirty compartments into 
which the shot ultImately falls. It is found that the mIddle 
compartment receives most shot, and that the falling-off in the 
amount of shot received by the compartments, as we proceed 
outwards from the mIddle compartment, resembles closely the 
falling off in the number of men haVIng correspondmg devia
tIOns from the average chest measures (§ 81), or the fallmg off 
m the number of measurements which have correspondmg deVIa
tions from the average of the measures of an observed quantity. 
In fact, the curve formed by the outline of the heap of shot is 

'80 frequency curve of a commonly occurring type 
85. The Probability of a Linear Function of Devi&.

tions.*-We shall now proceed to the analytical dISCUSSIOn of 
frequency distrIbutIons, We start from the fact that a measured 
quantity, such as the chest measure of a soldIer,1s lIable to 
vary from one individual to another, or, in other words, to 
exhIbIt a deviatwn from ItS average value; and Vve shall suppose 
that this deviation is the total effect of a vast number of very 
small deviations, due to causes which operate independently of 
each other: denoting the small deviatIons by E"1' E"2' • , '. E"n. we 
shall suppose that the total deviation is their sum, or, more gener
ally, is a llllear function of them, say, '\E"1 + '\E"2 +, , ,+ A"E'n 
We want to find the probabIlIty that in the case of a given 

~
ndividual soldier this total deviation shall have a value 

13 tWllen (say) wl and w2' where WI and w2 are given numbers. 
n the present section we shall not require to make use of 

the ~umptions that the deviations E"1' E"2" ,E"n are very 
small r very numerous. 

b 

cf>,(.T)dx be the probability that the 1·th deVIation E", has 

" .. Laplac Theone anal, des prob., lIvre ~I. chap. IV,; POIsson, Conna1Ssance 
des temps (18' l. P 273 
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a value between d and b, so that </>r(x)dx is the probability that 
it has a value between x and x + dx. N ow the probability of the 
concurrence of any number of independent events is the product 
of the probabilities of the events happening separately, and 
'hence the probability that tlie first constituent deviation has a 
value between E"1 and E"1 + dE"I' while the second has a valu,e 
between E"2 and E"2 + dE"z' and so on, is 

4>1(E"I)4>2(E"Z) .•• 4>n{€,.)d€ld€2· . d€n, (1) 

and the probability that -\E"1 + .. + AnE"1I has a value between 
101 and Wz is therefore the integral of the expression (1), taken 
over the field of integration for which AlE"1 + AzE"z + ... + A,.E"n 
lies betvveen WI and wZ' 

N ow by FO';1rier's Integral Theorem * the expression 

, ~f" lIDO "i8(T'-X)dTdO 
211" _ .. ..", 

has the value unity)'Vhen x lies between. WI and wZ' and has the 
value zero when x does not lie between these 'numbers. So 
instead of integrating the expression (1) over the field for which 
WI < A1E"1 + A2t:a + . . . + A,.E"h < wZ' • we can first multiply the 
expre!jsion (1) ,by 

!.f'" f"" i8(T:'AI .. -A ... -. ,-An.n)dTdO, 
211' -., lWJ, 

and then integrate the resulting expression over the field of all 
values of E"1' E"z, ••• , E"n. t The probability that AIE"l + AZ€S + ... + A,.E",. 
has a value between WI and wa is therefore 

~J'"' ["'J'" J"': ... foe e'8(T-AI .. -A ... - .-A·· .. )<h(E"I)4>Z(E"Z),·· 
21!' _'" WJ -co -'" ~., 

,,4>n(E"n)d€ldE"z ••• dE"ndTdO • 
• Tho theOlem in' question IS that under cer,taIn conditIons (for whICh cf. 

WhIttaker and Watson, Modern AnalyS'ls, § 9'7), the integral 

11'" fW' ;;: df} - cOS{f}(Z-T)}f(;}dT 
o .. U"l 

1 [' 1"'" '8("-T) or 2ir df} e 'f(T}dT 

-<D "" 
he.. the valucf(z) when 2l bes bet\\een 11'1 and "'2' and has the value zero \\hen 
'" does not he between these numbers, 

t ThiS device is due to Cauchy, Comptes Relldns, 13T (1853), pp. 109, 264, 
834, 
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WrIting nr(8) for{'",c-tIIXcf>r(x)dx, the reqUIred probability is 

therefore 

2
1 f'" [0 e,6Tnl(A18)n2(A28) . , . n,,(Ar.8)dTd8, 
1r -00 WI 

or, performmg the mtegration wIth respect to T, the probabilIty 
that Al"l + A2"2 + " + An"" hes between x - c and x + c is 

~f'" n(8)etllX sm c8 d8, 
11" _'" 8 

where n(8) is written for nl("-t8)n2(A28) •. , n,,(An8); and 
therefore the probability that Al"l +. . ,+ Ar."" lies between x 
and x + dx IS cf>(x)dx, where 

cf>(x) = 2~f", n(8)e'BXd(}, (2) 

From the last equation we have, by Fourier's Integral 
TheOl;em, 

(3) 

so n(x) bears to ",(x) the same relation that nr(x) bears to cf>r(.')' 
It appears, therefore, that when devlatIons are added to form an 

aggregate devlatlOn, the correspondmg functions nr(A,.8} are multlplIed 
together to form the functlOn n(8) The underlymg reason for thls l~ 
that when the n's are multIphed together, the arguments of the 
exponentlals add together m preclSely the same way as the devlation ... 

Now write 8j; for r '" afcf>r(x)d.JJ, so that 11k is (in the language 

of the Theory of ProbabIhty) the CJpectation of the kth power 
of the rth deviatIOn Then by the definition of nr(8) we have 

, 82 iea (j4 
nr ( 8) = 1 - t8sl - 21 82 + 3! 8a + 4,1$, + ... 

N ow let the logarithm of the series on the rIght, when 
expanded in ascendmg powers of 8, be denoted by 

so that 

82 tea B' 
log .Q,(8) = - t8Pl - 2"!P2 + 3 ,Pa + 41P, - • • • (4) 

1)1 = SI' P2 = -I' 81 1 ; 
82 81 1' 
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Tha quantity P. is called'" the 8e7ntnVanant of order k. By 
(4) the fundamental formula 

!!(8) = !!1(AlJ)!!2('\iJ) ... !!n(An8) , 

or log !!(8) = log !!1(~8) + log !!2(A28) + ... + log !!n('\',8), 

may now be expressed by the simple statement that tke ktk 
seminva1·iant of a sum of deviations El + E2 +. . . + En is tke sum 
of tke !"th seminvariants of the indimdual deviatwns, with the 
further remark that the kth seminvariant of AE is A" times the 
semmvanRnt of E. 

86. 'Approximation to the Frequency Function.-We shall 
now derive from the result of the last sectIOn a formula of 
great practical importance by introducmg the assumptIOns 
(which have not as yet been used) that the constItuent deVia
tIOns El , E2, • • ., En are very numerous and are individually very 
small. It is eaSIly seen that by shifting the zero-point from 
which the deviation Er is measured we can secure the vamslung 
of its first seminvariant: we shall suppose this effected for 
each of the constituent deviations El , E2, ••• , £". . 

Let 0, P21' PSI' P'u,· .. be .the semmvariants for the devia
tion El , let 0, P22' Pw P42' •.. be the seminvariants for the 
deVIation £2' and so on; then, as we have seen, the semin
variants of the aggregate deviation E are PI' P2, ••• , where 

P1 =0, 
r 2 = AI2p21 + A22p22 + A/p'l:J +. . . 
Pa = AlaP31 + "-zap32 + "-alip33 + ... 

We shall suppose that P II is finite; and' we shall further 
suppose that the constituent deviations are very numerous and 
are approximately of the same order of magnitude (or at any 
rate that a very large number of them are of the Eame order of 
magnitude and the rest are smaller than these), so the condition 
that Pi is finite implies that each of the quantIties Ar2p2r IS a 
nmte quantity multiplied by lIn, and therefore ArJP2r is of 
the order of n- I. This being so, ArsPsr will be of the order of 
P3TP2r-~n-l,and Ps wIll be of the order OfP3TP2r~~n-l,and so 
will-at any rate' in a large class of cases-be small compared 

• ThIele, Almindellg Jag/tagelseslasre, Copenhagen, 1897: Theory of Observa
tiom, London (C. & E. Layton), 1903. 
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with P
2

• on account of the factor on-I. Similarly,!'. Will be 
small compared with Pa• and so on Thus for the aggregate 
deviatIOn we have 

()2 ti,(j3 (J4 
10g!2(O).= - 2l2 +31 Pa + 411',-

where P2• Pa• Pt. " are a rapidly' decreasing sequence of 
quantIties, and mdeed m a large class of c~ses Pa> Pt •... are 
negligIble compared with P2• The probabIlity that the aggre
gate deviatIOn lies between x and x + d:c is therefore </>(J )d,,; 
where. by equation (2) of the last sectIOn, 

If'" flO i83 84 

( ) 
.9z-2i P'+]jIP3+ijP'+' .. dO </>x=- 6 

2lT -OD 

Writmg 

,ii' 84 
IT P'+;r; p.+ . 

e = 1 + A(~O)3 + B(iO)4 + C(~O)5 + 

where A.. B, " are in a large class of cases negligible compared 
with P2 (as follows from what has been sald above), we ha,'e 

</>(x) =.l r elil.T-~P"'. {I + A(tO)3 + B(iO)4 + C(iO)5 + .. . }dO 
2lT _OJ 

Now 

and therefore 

f (d)3 (d)4 (d)5 } 1 -~ </>(x) = II + A dJ; + B dx + C i£C + ... (2lTP2)1 e 2P.. (A) 

rn the large class of cases to which we have referred, when 
A, B, C, . . . are negligible, thIS becomes 

.x" 
1 -215: 

</>(1) = (2lTP
2
)!e • (B) 

The formula (B) 18 due to Laplace, and the more general 
farm (A) to various later wnters * These formulae specify 
the nature of a frequency dlstnbutIOn in which the devlatlOns 

.. The first of the adclibonal terms was found by Poisson, and the rest by 
J. P Gram. Om RtuHend.,1.l.hnger (1879); ThIele. Forelaesntnger our 
Almt"deZ,g IafJttagelseslaere (1889) ; ElcmenlruT laqUaqelseslaere (1897); E(jge. 
worth. Ph,l. Mag 41 (1896). P 90. Bruns. Ast. Nach. 143 (1897) col 329; 
Charlier, A,hvfor j/ath 2 (1905). No 20 
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from the average measure are due to the"joint'effect of a 'Yery 
large number of independent causes, each of which SIngly has 
'only a very slight influence; the deviation of an individqal's 
chest' measure from the average, for i~stance, bemg thought of 
as affected. by inheritance from a very large number of remote 
ancestors, 

'87. Normal Frequency l?istrlbutions and Skew 
Frequency Distributions.-Formula (B) of the last section 
shows that, at any rate in a. large class of cases, when a devia
tion E is constituted by the summation Qj a very large number oj 
independent deviations ~,E2J • , " En, the probability that € hes 
between x and x + dx is 

zJ r -2Pp_ 

(2 P )1 e u.w, 
, 'If' 2 

where P 2 is independent oj x. This is called the normal law oj 
deviation. " 

.N ow consider a frequency distribution consisting of N 
. individuals (where oN is a very'large number), and suppose that 

the number of these individuals whose measure ~ between x 
and x + d:c is denoted by N cf> (x) dx, so that cf>(x) is the prob
,ability that an individual t~ken at random in the whole group 

• has a measure between x and x + dx. Let a de:p.ote the average 
value of x for all the individuals of tpe group, so that (x- a) is 
the deviation ?f the measure of an individual from the average. 
Then on the assumption that the deviatioh is dlle to ·the 
operation .of a very large number, of Independent causes, each 
of which makes only a very small cOlitribntion to the total 
deviation, we have Been that' the probability of a total devia
tion between x - a and x - a '+ ax is (at any ra1;e in a large 
class of cases) 

1 
_(,,-a)1 

2Pt ~-
(2'1f'P

2
)le u.w, 

where Pa is independent of x. 'Frequency distributions to 
which this applies are called normal frefJ7.uncy diBtributions. 
Other distributions, for which the law (B) must be replaced by 
the more general law (A), are generally called skew frequency 
distributions. 
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As the subject of the present chapter IS normal dlstnbutIOn~, 
we shall say nothing more about skew dIstributIOns excevt. 
that formula (A) leads to an expression for a skew frequency 
function as a series of the functions which are called paraZ,olic
cylinder functions * or Hermite's functions. In most cases two 
or three terms of the serIes are adequate to represent the 
fllJ1ctlOn with sufficient accuracy . 

.AJ; an IllustratIOn of the way In whIch a great number of frequency 
distrIbutIons In nature conforlll to the normal law, we gIve the follu\\ IIlg 
data relatIng to 1000 observatIOns made at GreenwIch, of the RIght 
.AJ;censIOn of Polans. Let x denote the deVlatIOll of one such Illeasure 
from a value near the mean of all the measures, expressed as usual III 

seconds of tIme; let y denote the number of measures for \\ hICh the 
amount of the deVlatIOn IS x; let y' denote a value calculated flOm the 
theoretIcal equation of a normal frequency dlstllbuhon, 

, 1000h -"'<x-a)' 
Y = J'h e , 

where a= -0,06 and h=O 6. Then we have the follo\\ mg results: 
x 

-35 
-30 
-25 
-20 
-15 
-10 
-05 

o 
05 
1'0 
1'5 
20 
2'5 
3·0 

y. y'. 
2 4 

12 10 
25 22 
43 46 
74 82 

126 121 
150 152 
168 163 
148 147 
129 112 

78 72 
33 40 
10 19 

2 10 
The a.,areement of y and y' IS, generally speakmg, good. 

Ex -r measurements are made of a certaut qll.anltly, each mea8ure 
betng ltable to an error whtch may have any value belu'een ( and - E, all 
such wlues betng equally ltkely The sum of the r measures t8 denoted b,lI 8. 

Show that when € tends to zero and r tncreases indefinttely m Buch a 1,-ay 
that EJr tends tq a fimte 'Value k, then the probabtltty that B !tes be/treen z 
and x + dx te/,ds to 

8x' 

(~)ldJ: e -2I2. 
211' k 

* For an account of these functIons cf. WhIttaker and Watson, JlodeT1l 
Analy:ns, § 16 i. 
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88. The Reproductive Property of the Normal Law 

of Frequency.-Consider a frequency distributIOn which is 
normal, so' that if " denotes the deviatIOn of an individual 
measure from the average, then the probability that "has a. 

value between x and x + dx is (writing h2 for ~~ ) 
2 

h 
J."e-h'IgfJdx. 

The constant h was called' by Gauss the modulus oj preciswn. 

so 

The function U(8) is, by equation (3) of § 85, 

U( 8) = L: e-illxcf>(x)dx 

..; _ e-,9%-h¥dx h f"' 
J1I' -", 

9-
=e -4111, 

1 
log U(8) = - 4haOZ. 

The only seminvariant is therefore of order two and bas the 

value 2i2' From the additive property of seminvariants it 

follows that a deviation which is formed by the summation of 
any number of partial devia.tions, .each of which obeys the 
normal law, has all its seminvariants zero except the second; 
and therefore this aggregate deviation itself obeys the normal 
law. This is the reproductive property or gr01tp property of the 
normal law of frequency j an aggregate deviation, Jormed by 
the summation of any number of deviations which obey the 
normal law, itself obeys the normal law. 

89. The Modulus of Precision of a Compound Devia
tion.-Let a deviation E be given as a linear combination 
'\E1 + ~E8 +. . . + A.,,,,, of a number of deviations "1' "2' • • ., '''n 

each ()f which obeys the normal law, so that the probability 
that "r lies between x and x + dx is 

h . 
-.! .. r"'¥dx . J1I' J 

where hr is the modulus of precisioit for "" 
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Then by th.e last section, the seminvarIant for Er IS 2b, and 

therefore the seminvanant for -\El + ... + -\,.E", which IS also 
of order two, is 

I(A 2 A 2 A,.~ 
2 .<2+ 11:2 +' .. + h,,2} 

Now, as we have seen, E also obeys the normal law of 
frequency; let the modulus of precision for E be H, 80 the 
probability that E lies between x and x + d.e 18 

H 
_C- H2x2dx . 
Jrr ' 

h h .. fi·l E t 1... hi t en t e semmvanant or E IS ~li2' qua mg tws to t eva ue 

obtained a,bove, we have 
1 _ -\2 Az2 Ani 

H2 - h 2 + h 2 + . . + hi' 
1 2 11 

Tlris Important formula gIves the modulus of precisIOn of a 
compound deVIatlOn in terms ot the moduli of preClsion of its 
constituent deviations, when these are of the normal type. 

90. The Frequency Distribution of Tosses of a Coin.
The earliest example of a normal distrIbution of frequency was 
discovered by De Moivre in 1756 * in considering the follo\\ing 
problem: A coin is tossed N 'tlmes, where N is a very largf 
number ,(which for convenience we suppose even and ey.ual 
to 2n): to find the probability oj exactly (tN - p) head~ and 
(!N + p) tails The probability of exactly n heads and n tails 

is, by an elementary formula of probabIlity, 2~" . ;.:\. Re

placing the factorials by Stirling's approximate value (§ 70), 

namely, z!= e-ZzZH (2'1r)!, this becomes (rrn)-i or C~)~ The 

probability of exactly (n - p} heads and (n + p) taIls IS 

}. 2nl . denoting the ratio of this to the former 
22,. (n-p)1 (n+p)!' 
'probability by E, we have therefore 

E- l1!n l 

-(n-p)'(n+p)I' 
• Do;;tNM of Chances, 3rd ed. (1756), p. 243. 



NORlIAL .:FREQUENCY DISTRmUTIONS 177 
• 

so log E =2Iogn! -log (n -p)! -log (n + p)L 

Replacing the factorials by S'tirhng's approxImation, we have 

iog E= (2n + 1) log n - (n-p+ H log (n-p) 
-(n+p+~) log (n+p) 

= - { ( n - p + ~) log ( 1 -*) + ( '" + p + ~) log (1 +~) } 

= (n-p+~)(~+ ::3+' .. ) + (n +p+~)( -~+ ::2+' .. ) 
p3 

= -n-+"" 
2p3 

= -NT ... 

Combinmg these results, we see that the probab~lity of e:mctly 
i 2p! 

(!N -p) heads and (!N +p) tails M appro.11-mately Cr.;') e -~'f, 
whence the probawltt'/ that the number of heads 1t~1l be betueen 

iN +xJii and iN + (x+ dx)Jii M approJ.imately (~)!e-2zldx. 
This is evidently a case of a normal frequency distribution. 

E:& I.-Show that tlte probabthty that the number of hea~s w'lll be 

2 -11 

between iN + iJN and iN - iJN t8 J- "\-II"dy or 0·6827. 
"0 

Ex. 2.-A com t8 tossed 1000 hmes. Sh01l1 that an absolute majonty 
of the 21000 posBtbk sequences gives the dtjference between the number oj 
heads Ilnil IlItmber of tatls less than twe7ltY-ltOO. 

91. An mustration 'Of the Non'- Universaliiy of the 
Normal Law.-The following example· shows that a great 
number of C!l-uses, each producing a very small deviation, do 
not always by ,their collective operation give rise to a frequency 
distribution of the normal type. 

Suppose the law of frequency for each of the' small con
stituent deviations £1' £2' £3' ••• is .p(x) = !e-Isl, 80 . . 

</>(x) = !e-S when x is positive, 

(D 311) 
• Hausdorff. Lrip.::tg Ber. 63 (1901). p. 1~2. 

13 
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and cf>(x) = !e" when x IS negative, 

In this case we hav~ (§' 85) for each of the constituent 
deviations 

nr( 8) = f'" e- 18zcf>r(3:)d.'C = !J'''' e-·8x- xd.'C + !1° e- Wr+xd.c 
-00 0 -GO 

1 
=1+82' 

Let the compound deviatIOn be defined to. be f:, where 

.). 
Then (§ 85) the probability that f: has a VIllue between x and 
x + dx is cf>(x)d.'C, where 

and 

Therefore 

cf>(x) = 2:L: n(8)el8xdIJ" 

n( 8) = nl(~8 )n2(:1r 8 )n3(;1r 8) , , 
1 1 1 

=~'-2282'~" • 
1 +""7" 1 + 32~ 1 + 521r2 

1 
=COsIiO' 

jJJz 

This integral may readily be evaluated by integrating e': e-8 

in the plane of the complex variable () round a rectangle of 
heIght 1r and indefimtely great breadth, one of whose Bides is 
the real axiS of 8, The result IS ' 

1 
cf>(x) = e~ + e-r-z 

Thus 'the probabtlity that the deviation f:,has a val1Je between x 

and x + d.'C is ~ 1 ~d.'C, Thi~ is clearly different from the 
~ +e- . 

normal law. 
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Theory aRserts, and observation conthms th~ llESertlOn, that the 

normal law is to be expected m Jl. very great numhr of frequency 
dlstnbutIOnS, but not in all This state of thmgs led In the past 
to much confusIOn of thought regardmg the validity of the nQl'mal 
law, which was wittily lefer:red to In Lippmann's remark to POimare * 
"Everybody believes in thll exponential law of eIrOlS: the expCll
menters, because they think it can be proved by mathematics; and 
the mathematicians, because they believe ,It has been established by 
observatIOn." 

92. The Error Function.-Having now established the 
theory of normal frequency distributions on a theoretical basis, 
'we proceed t~ ll1vestigate the propertie~ of these distributions. 
Denoting the modulus of precision by h, the probability that a 
:deviation lies between x and .:.. x is 

where 

J1I'[ e-h1zBhdx, or <I>(ha;), 

<I>(x) = ~11'[ e-zldx. . 

On account of its importance in the Theory' of Errors of 
Observation, <I>(x) is called the Error Fu,{!ction. 

If the. probability that a deviation hes between x and - x is 
given, <I>(h.r) is known, and therefore hx is determinate: so 
the devIation x 'corresponding to this probability decreases 
as k increases; that is to say, in th~ case when the devia-' 
tions are the errors occurring in a set of measureIJlents of 
a quantity, the precision of the measurements increases as 
h increases. This is the reason why h is called t,he modlll11S of 
precision. 

We must now see how the functio~ <I>(x) ,can be computed t 
1°: FlIst we have 

-01 1 .-g 'xt ~ 
e = -~-+2!-3i+"" 

• Poincar~, {Jalcul de, prob p. 149. 
t For the' an'eJybeal relations of tho Error Funcbon, cr. ~hittaker and • 

Watson, Modem A1IalyS1.l, § 162. 
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and, integrating this, 

2{ ~ xf' {Jp 
<I> (x) = J7r x-l13+215-:m+' 

ThIs series converges for all values of x. 

For example, when x=O 5, "e have 

x xli af> <£7 :1,9 

i-1 13 + 215 -317+ 419-' .. 

1 1 1 1 1 

.. }: 

=2 - 24 + 320 - 5376 + 110592 - ••• 

so 

=050000-0·04167 
0·00313 000019 
000001 

= 0'46128, 

2°. Next, wnte 

<I>(x) = 0·46128 x 1·12838 
=0'52050. 

DifferentIating, we have 

d 
dx(e-zly) = e-zl, 

or ~ - 2xy=I. 

Now y evidently begins with a term x. So substitute 
y = x + aafl + bxf' + ex7 +. . . in the last equation and equate co
efficients of powers of x; therefore we obtain 3a - 2 = 0, 
5b - 2a = 0, 7 c - 2b = 0, etc., and therefore 

_ 2.3 22 ,,5 23 
,7 

y-x+:.f< +3.5: +3.5.7J
> +. 

Therefore 

<I> (x) = J7re- zOx{ 1 + ~(2x2) + 3~5(2x2)2+ 3 ~.7(2.J})3+ . •• J. 
This series converges for all values of x. 
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1 { 1 1 1 1 
= 1·12838 X 0·778801 X 2 X 1 + 6 + 60 + 840 + 15120 +. 
== 0·56419 X 0·778801 X 1·000000 

0'166667 
0'0166&7 
0·001190 
0·000066 
0'000003 

= 0'56419 X 0·778801 X 1·184593 
=0'52060. 

30. ~e:x:t,since J'Ir=2[Oe- z1dx,wehave 

J'Ir - J'Ir'P (x) = 2 {' r""dx 

where ~==Y, 

= {'e- lly-fdy, 
1/ 

and therefore 
e-zl 

{ 1 1.3 1.3.5 } 
'P (x) = 1 - xJ'Ir 1 - (2~2) + (2x2)2 - (2X2)3 +. . . . 

181 

} 
.} 

This is an asymptotic expansion,· which IS convenient 
computation .when x is large. 

for 

A table of values t IS 

:.. 01>(:.). z. 
0·0 0·0000 0 6 
01 0·1125 0·7 
02 02227 0'8 
03 03286 0·9 
0·4 0·4284 1·0· 
0·477 0'6001 1'1 
05 0'5205 1·2 

01>(:.) 
0·6039 
0·6778 . 
07421 
0·7969 
0·8427 
08802 
0·9103 

z. 
• 1·3 

1·4 
1·5 
1·6 
1·7 
1·8 
1·9 

oI>(z). 
0·9340 
0·9523 
0·9661 
09763 
09838 
0·9891 
0'9928 

• Or. WhIttaker and Watson, Modem AnalyS'ls, ell. VllI. 

z. 
2·0 
2·1 
2·2 
23 
2·4 
2·5. 

01>(, ). 
0·9953 
0·9970 
09981 
0'9989 
0·9993 
09996 

t 1II0re extenued tsbles wil~ be found in a memoir by J. Burgess, TraM Roy. 
Soc. Ed" .. '39 (1898), p.257. Cf. also W. F. Sheppard, Bwmetnka, h. (1903), p. 174. 
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Ex 1.- Show that the l'robabtlily that- the dWlatlO.n t8 greater than x 
is slIghtly less than 0 001 u hen <1>(h.r) = 0 11981 or hx = 2 2. 

Ex. 2.-0btatn the formula 

e- z2 1 
<1> (x) = 1- xJ1I' '--y 

I+~, 
l+-a;, 
1+~., 

1 
where y = 2x2 

93. Means connected with Normal Distributions.-Wlth 
the normal law of devlation 

"!!:"-'e-h¥dJ., 
J1I' ' 

the arithmetic mean of the nth powers of the absolute valucB 
of the deviations is 

In partlcular, writing CT fot h,~2' we. have 

Arithmetic mean of the absolute values of-

First powers of the deviations = h~1r = J~ . CT, 

Second ,1 9 

" .. = 21£2 =0-", 

Third 1 2J2 
" " .. ----.q3 

- h,3J1I' - J1I' ' 

Fourth 
. 3 

" - -- 3CT' .. " - 4h'-' , 

Fifth 2 8J2 
" 

= -----.q5 
. kG.jr. - Jr. . 

• cr. Whlttaker and Watson, Modern AnalyStS, § 12.2. 
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From the abpve we see that the square of the mean of the 
absolute deviations, divided by the mean of their squares, has the 

value ~. 
7r 

Ex. I.-Show t/;at'ln the curve Y = 'J!!:'- rill; the product oj the ahscusa 
, 7r 

and the subtangent·is,constant. 

Ex. 2 -Show that in the curve Y= Jh r"'" the abscissae oj the PO'IlIts 
7r • 

oj inflexIon are ± fT. • 

94. Parameters connected wi~h a Normal Frequency 
Distribution. ' 

1°. Let the curve which represents graphically a normal 
frequency distribution be written 

h 
y == J7r e-hl(~-a)l. 

Then the arithmetic mean of all the observations 

= f'" .!!:... e-hl(:t-a)l:.cdx 
-'" J7r 

=a. 
2°. The quantity fT which pas been introduced in the last 

section is (as we have seen) the square root of the aritlimetic 
mean of the squares of the deviations, and has the value 

1 
fT= hJ,2 

fT is called the standard'demahon, or the quadratic mean dev1a-
tion or the error of mean square. * • 

In, terms of fT, the normal law 18 that the probability of a 
deviation, between :.c and :.c + dx is .. 

1 -2;"l
d fTJ(27r)e x. 

By the .formula which gives the measure of precision of a 
lInear function of deviations we see that the square 6f the 
standard deviation of a sum of quantities' is the sum of the 
squares of the standard deviations of the -separate quantities. 

• It was called by Gauss the mean error. 
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Hence the standard deviation 0/ the arithmetic mean of n 
quant~t~es is n- i x the standard deviation Of one of the quantitus. 

3°. The arIthmetic mean of the absolute values of the 
devIations is called the mean absolute dev~atwn.* Denoting it 
by 71, we have (as \>e have seen in § 93) 

71 = h~7r = J~. u. 

The arIthmetic mean of all the observations that are greater 

than the mea~ a 18 a + J~. u, so, denoting this by A, we have 

u= J~(A-a)=1.253(A-a). 
ThIS formula IS convenient when the observations are given in 
the rough, not arranged In order of magmtude; for then, after 
adding ,them all and dividing by their number so as to obtam 
a, we have merely to add all that are greater than a and divide 

by their number In order to obtain a + u J~. 

4°. The probable error or quartile t is defined to be such that 
the chances are even whether the deviation exceeds it m 
absolute magnitude or is less than it. So if Q denotes the 
quartile, we have 

! = ~lQ e -h"~' da = 2 {QIr. e -I" dt, 
2 J7r ° .jr.Jo 

whICh gives 

or 

so 

Qh = 0·476936 = p (say), 

~=0.67449 (roughly ~). 
u=1·4826Q, Q=0·674491T. 

Q is connected with 71 by the equations 

1'}= 1·1829Q, Q = 0·84535" 

evidently that deviation which stands in the middle of the 
ce when the' deviatIOns are arranged in order of absolute 

• It was called by Laplace the mea" error 
t The name 1. due to Galton. 
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magnitude. • It therefore furnishes a means of determining the 
parameters ", or fT of the curve as follows: 

Let there be 'II, measurements. Taken equidistant points 
along a base-line, and at these points erect ordinates pro
portional respectively to the measures arranged in order of 
magnitude. We thus obtain a curve as in the diagram: 

A' 

0' 
E' 

A c o E 
FIG. 16. 

Divide the base AB int9 four equal parts' by points of divI8ion 
C, D, E. The ordinate at D is the mean value a of the 
measures: The ordinate at E is such that there are as many 
meaSUl"es greater than it as lie between it and a. The difference 
DD' - EE' or CC' - DD' is the Quartile Q. 

More generally, we can determine the parameter ", or fT of 
a curve by finding a. measure 3.1. such that (say) p per cent of 
aIl'the measures fall within the interval between the mean a 
and 3.1.. In order to obtain fT, we have only to multiply (J'l - a) 
by a known numerical factor depending on p. 

The degree of accuracy of this and the other methods of 
determining fT will be conSIdered later (§ 1,03). 

For expressing results in t",rms of probable error, the following 
form of the table of the function 4>(x) is useful: * 

0'5000000 = 4>(0'4769363) = 4>(p), where pi'" IS the probable error 
0·6000000 = 4>(0'5951161) = 4>(1-24 7790p) 
0·7000000 = 4>(0'7328691) = 4>(l-536618p) 
08000000 = 4>(09061939) = 4>(1'900032p) 
0·8427008 = 4>(1) = 4>(2'096716p) 
0·9000000 = 4>(1·1630872) = 4>(2·438664p) 
09900000 = 4>(1,8213864) = 4>(3'818930p) 
09990000 = 4>(2'3276754) = 4>(4·880475p) 
0·9999000 = 4>(2'7510654) = 4>(5·768204p) 
1 =4>(00)' 

• It is due to Gauss, Werle, 4, p. 109. 
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'Ve see, therefO! e, 

The probabilIty that the elror el.ceeds--

2'438664 times the probable error IS T1lJ' 

3'818930 " " " TfrlJ' etc. 

E.c.-A number of bodtes simtlar tn shape and denBtfy dtffer Bltglttly 
tn stze, thezr lengths bezng grouped about a mean a with standard demafwn 
rr If the wetght of a body of length x ts c:z8, show that the 1l'e1!Jht8 are 
grouped about a mean ca3 mth the standard devtal10n 3ca2rr 

95 Determination of the Pa.rameters of a. Normal 
Frequency Distribution from a. Finite Number of Observa
tions.-In the precedmg section we have shown how to find the 
parameters a and rr (or 7f or h or Q) of a normal distnbutIOn, 
assummg tacitly that the observations are infinlte iIi. number 
so as to furnish contmuous dlstribution. In reality, however, 
the number of observations is finite, and we have to determine 
the best valuEls of the parameters from them. 

Suppose there are n observations giving the values Xl' ;l'2' 
X3' ..• , X,. respectIvely for x. The a priori probability of the 
value X1 18 

1 _ (X) -a)l 

---e 2 .. ° 
J(27r)rr 

and therefore the a pri01'i probability that the observations WIll' 
give the set of values actually. observed is 

( 
1 )" _ (X)-")I+(-.-")"+ +(%o-a)" 

--- e 2.," 
J(27r)rr 

The most probable hypothesIs regarding a and rr is that 
which makes this quantity a maximum when Xl' XI' ••• , X" are 
supposed wven. Taking logs, we see that 

1 (Xl - a)1 + '(XI - a)I+ • . ,+ {.r" - a)2 
n ogrr+ 2u2 ' 

or II say, must be a minimum, and therefore ~~ = 0, which gIves 

0= (xI - a) + (J'z-a) +, .. + (;l;,.-a), 

or (1). 
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Mor"eover, ~~ = 0, which gives 

O _ ~ _ (Xl - a)l+ (XI - a)1 +. . + (X" - a)1 
-u all 

and therefore 
I (Xl - a)1 + (XI - a)1 + ... + (X" - a)2 

u = n (2) 

Thus the formula!, (1) and (2) for a and 0" are determined 
directly from the theory of Inductlve Probability This IS, 

strictly speaking, the only correct method when the number of 
observations is finite. 

Ex. I.-Numbers which are gvven as d~c~maI8 to some defin~te number, 
of places are usually forced, i e. the last dtgd retamed U Mcreased by 
untty when, the first dtgd not retained tB 5, 6, 7, 8, or 9. Fmd the 
standard de'lliatton or mean. Brlor to which a number u hable, dUe to 
abbrematipn Wtth forcing. 

Denotmg the standard deViatIon by 0", we have 

2 Sum of squares of all pOSSible omitted" tails" 
u =-------.~N.u-m-b'e-r-o'f~t~h-ffi-e~"~ta~I'~-'"'----~~ 

£5 (IdE 

= -06 , smce all tall~ E between - 0 5 and 0 5 (10 umts 
J06 dE of tIle last wgtt retained) are equally probable, 

,-06 
(0·5)3 - (- 0·5)8 

3 ' . 

u=0·2887. 

Ex. 2.-Hence shGW tha~ the mean error liable to occur in the Bum 
. of 1000 numbers, ,each of wh,ich has been abbreVlated with forcmg, is 

less than 10 umts of the last plact'. 

Ex. 3.-A quanttty is repeatedly measuud, the measurea betng subject 
to errors of observation. Assumtng the law of fact/tty of error to be such 
that the probabiltty of a t"alue between x and x + dx is 

, !k2e-kllz-bldx, 

where b u nd It are fonstants, determine the most probable values of the para
meters band k when n observattons give the values ~,x2' • • ., x.., fqr x, 
the vailles Xl' X2' ••• betng arranged in ascending order oj magnitude. 

Here the a priori probability that the observatlOns will gtve thiS set 
of ",alues IS proportional to . 

.!.k2ns-k!{I"I-bl + IZ2-bl + ... + I;"-bl} 
2" 



188 THE CALCULUS OF OBSERVATIONS 

The most· probable hypotheSIS regardmg band k jR that whllh 
makes thIS quantIty a ma:umum, when xl' X2> • • , x" are supposed 
gIven. 

Takmg logs, we see that 

II=2nlogk-k2{ Ix1-bl+lx2-bl+ • .• +Ix,,-bll 

all 
IS a maXImum, and therefore ab = o. Suppose that b lies between ';1 rand 

Xr+1. Then 

a 
a/j{lx1-b 1+ Ixa-bl+· •• ~I X,,- b I} 

o 
=Ft;{ (b- Xl) + (b - x2)t ... +(b - Xr)+ ('r+l- b) + .. . +(x" - h)} 

=( 1 + 1 + .. + 1),. terms + (- 1 - 1. .. - 1 )(n-r)termo, 

orr 
and thl!refore iJb IS zero when r = n - r or r = !n. We see, therefore, that 

the most plaustble value of b t8 that one of the quant.tie8 Xl' ';12' • • , ';1" 

whtch stands tn the mtddle of the sequence when they are arranged in order 
• {>II 

of magnttude ThIS value IS called the medtan. The condItion ck = 0 

then gIve. for the determmatlOn of the most probable value of k the 
equatlOn 

1 1 
k2=;;:{ Ix1-b 1+1 xz-b 1 + .. ·+Ix,,-bll· 

96. The Practical Computation of a and u.-In calcu
lating a and u, when we are given that the measures Xl' X 2' Xa> ••• 
have occurred Yl' Yz' Ys' .•. times respectively, we generally 
find it convenient to subtract some fixed number c from each 
of the x's ill order to have smaller numbers to deal with. 
'Vrite Xl - C = El , x2 - C = Ea, etc. 

Then we form a column of the quantities ~l' E2' E3' ••• 

then" ",1ltEl' Y2E2> Y3E3' • 
then YlE12, YzEa2

, Y3El, •.• 
the value of y,.gr2 being obtained by multiplying Y~r by En 
and sum the column of y's and the last two columns. 'Ye 
then have 

(1). 
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and CT2 = !y(x - a)2 = !y(e+ ~ - a)2 
'iy 'iy 

= 'i If + 2(c _ a)!Y~ + (c.- a)2 
'iy 'iy 

.... yf 
="''iy - 2(c - a)2+ (c _a)2, 

or 
'iyf 

0-2= 'iy -(c-a)2. (2) 

Thus a and CT are determined . 
.As a control for the computation of a, we may use the 

equation . 
Sum 0/ all positive residuals = Sum 0/ all negative residuals, 

and as a 'control for the computation of CT, we may use the 
equation 

nu2 = 'i(x':' 0,)2 
or nCTa = '1,1\:12 - 20,'1,1\:1 + a'i1\:1 = '1,1\:12 - a'i1\:1, 
where '.£1\:1 denotes the sum of the measures and '1,1\:12 denotes 
the sum of the squares of the me~sures. 

97. Examples of the Computation of a and CT. 

Ex. I.-The chest meaB'Urements of 10,000 men. are g~ven below, z 
bewg the measure i?t inches p.nd y bei-qg the number of men who have th.~se 
measures. F~nd the two constants a and CT whtch spectfy the frequency 

,curve, obtaining the standard deviation firstly from the mean·s2uare of the 
deviations, and secondly f~om the mean absolute deviatwn 

00. y ~(=oo-40+. y~ 

:J3 6 -7 42 
34 36 - 6 - 210 
30 126 - 5 - 626 
36 338 -4 -1352 
37 740 -3 -2220 
38 1303 - 2 - 2606 
39 1810 - 1 -1810 
40 1940 0 0 
41 1640 1 1640 
42 1120 2 2240 
43 600 3 1800 
44 222 4 888 
16 84 6 420 
46 . 30 6 180 
47 6 7 36 
48 2 8 16 

Total 10000 -1646 

yl;'l 

294 
1260 
3126 
5408 
6660 
6212 
1810 

o 
1640 
4480 
5400 
3662 
2100 
1080 

246 
128 

42394 
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Therefore 
1646 

a = 40 - 10000 = 39'835, 

and 
42394 (T2= 10000 -{0·1646)2= 42123, 

so (T= 2'052 

In order to find (T from the mean absolute devh'ltlOn, we have the 
followmg table: 

x. y H=x-40) y~. 

33 6 -7 42 
34 35 -6' - 210 
35 125 -5 - 625 
36 338 -4 -1352 
37 740 -3 -2220 
38 1303 -2 - 2606 
39 1810 -1 -1810 

39668 650 -0332 - 216 
(=39'500 to 

39-835) 
Total 5007 -9081 

Now 

a - (TJ ~ = Arlthmetlc mean of aU obbervatlOllS leM than a 

~yx };y~ 
= ~ =40+};y 

or 
/2 9081 

39·835 - (TV ;;: = 40 - 5007' 

Therefore (T~;= 10649, 

so (T= 1·649 xl 253 

or 0'=2066 

Ex 2.-Ftnd the mean value alld standard dematwn for the follovnng 
frequency dtstnbutwn, y betng the nU7nber of occurrences of the measure x 
Trace the normal curve whuh has thts mean value and standard demaftll7f, 
and compare tt vnth the ongtnal data 

{C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Y 6 10 2 11 15 18 18 34 32 39 39 45 50 43 

x 15 16 17 18 19 20 21 22 23 24' 25 

Y 38 26 34 28 22 17 11 12 11 4 4 

Ex 3.-Determine the standard dematwn from the mean absolut, 
demation in thts last example. 
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Ex. 4.-The chest mllasures of 10,000 ~en are as foll01L8, x denotmg II 

mllasure in. inches, and y the number of men who have that measure. 
Determtne the standard demation by jindtng the place of the quarltle. 

x. 33 34 35 36 37 38' 39 40- 41 42 
y. 5 31 \41 322 732 1305 1867 1882 1628 1148 

'J,y. 5 36 177 499 1l!31 2536 4403 6285 7913 9061 

x. 43 44 45 46 47 48. 
y. 645 160 87 38 7 2. 

};y. 9706 9866 9953 • 9991 9998 10000. 

It 18 to be remembered thl\t under "x = 38 ~ are grouped all men 
whose meabures are from 37! to 38, inches. The sum of all measures 

.from the lowest to xd38 (u. to 38! Inches) 18 2536; and the rate of 
Increase of men JS about 16 per Tk inoh at 38!, so that 2500 WIll be 
the SUlll. of all to 38·478 inches. , 

The ArIthmetIc mean II of all the ·measures is found to be 39 834, 
and Q = 39·834 - 38'478 = 1 356, 

so !1'= 1·~83 x Q= 1·483 x 1·356 = 2·01. 

Let us .now find the quartIle fro~ \he other end of the sequence. 
The sum of all measures from the largest down to x = 42 (t e to 41! 
inches) IS 2087. Adding half the number opposIte 41 III the table, 
we' see that the number down to 41 inches 18 2901. whIch is 2500 + 401. 

401 
The quartIle WIll therefore be at 41 + x, where x = 1628 = 0,246, 

80 that 

and 

Q=41'246 - 39834 = J 412, 

0'= 1'483 x 1;412 = 2·09. 

The d18cordance between th18 and the former value is, of course, due to 
the absence of perfect normal,tty and contmuity In the d18trlbutlOn 

The 1IIean of the two values of iT Dbtained by the quartIle method 18 
therefore 0'= 2·05. ThIS IS close to the values obtamed by the method 
of § 97 and the mean absolute deVlation method, whIch are found to be 
2·05 an~ 2·06 respectively. 

98. Computation o( Moments by Summation.-The 
quantities Mo = };Y. Ml = »-y, Ma = ~J • ... , which are called 
the 1noments, may be readily formed. by. mere addition in the 
following way. 

We use the notation };y (read" sum of y ,,), to denote the 
function whose first difference is the function y, so that if' 

'.1'1.6 = y, then '1.6 F' !y. The symbol! corresponds. in the Calculus 

of Differences, to the symbol J.which represents indefinite in~ 
. tegration in the Infinitesimal Calculus. Just as a column of 
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first dlfferences of u can be formed from a column of values of 
u by subtractlOns, so a column of values of "iy can be formed 
from a column of values of y by additIons. 

Suppose the set of gIven values of y is Yr, Yr+l' '!/r+z •.••• 
Yr+:' corresponding respectIvely to the values r, (r + I). (r + 2) • 

. . , (r + n), of x. Form a table of sums of the function y Ly 
additIOns from the foot of the column, thus: 

x y 'I,y. ~2y 

'liT 'liT + YT+! + ... +Yr+n 
r+l 'liT+! ?IT+! +. . +Yr+n Yr+l + 2Yr+2 +. .. + 71.1Jr+n 
r+2 

r+n-2 
r+n-1 
r+n 

y .. +2 Yr+2+· • +Yr+n 

I '!Ir+n-2 YT+n-2 +.. + Yr+n 
I Yr+n-l Yr+n-l + Yr+n 

I Yr+n YT+n 

Yr+2 + 2Yr+3 + . . . + (n - l)Yr+n 

YT+n-2 + 2Yr+n-l + 3Y+m 
1/r+n-l + 2Yrt" 
Yr+n 

Sum = ~z 

The uppermost number on the "iy column is evidently Mo. 
the moment of zero order. Let the uppermost number in the 
"iy column be denoted by So> and the uppermost number in the 
'2'.2y column be denoted by 81" Then 

So=Mol' 
SI = Yr+! + 2Yr+2 + 3Yr+3 + ... + nYr+n 

= Ml-rMo, 

where Ml = rYr + (r + 1) 'liT+! + ... + (r + n) Yr+n is the moment 
of order 1 

The sum Sz of the "iZy column is 

n(n+ 1) 
S2 = 'liT+! + 3Yr+2 + 6Yr+3 +; .. + --z-Yr+n 

= t {Mz - (2r -1) Ml + r (r -1) Mo}, 

where Ma = r2Yr + (r + 1)2YT+! + ... + (r + n)ZyT+n IS the ?noment 
of order 2. Thus Ml and M2 may be determined from the 
equations 

Ml =SI +rMo, 
Ma = 2Sa + (2r -1) SI + r2MO' 
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and therefore if these relate to a fre<J.uency distribution of mean 
a and standard deviation IT, we have' 

MI SI 
a = M: = lI: + T, 

o 0 

a2=!!a- MI2 =~_§.._ (~)2 
Mo M02 Mo Mo Mo' 

or u'=2Sz _ SI_ (~r 
So So So 

1Jle higher moments may then be found in the same way if 
desired.· 

Let us apply this to the computatIOn of a and (T for the chest measures 
of Ex. I, § 97. 

:1:. y. T.y T.2y 

33 6 10000 (= 80) 

34 • 35 9994 68354(=8J 
35 125 9959 58360 
36 338 9834 48401 
37 740 9496 38567 
38 1303 8756 29071 
39 1810 7453 20315 
40 1940 5643 12862 
41 1640 3703 7219 
42 1120 2063 3516 
43 600 943 1453 
44 222 343 510 
45 84 121 167 
46 30 37 46 
47 5 7 9 
4& 2 2 2 

8.=288852 
Therefore 

and 

Mo= 10000=8", 

8 
a =? + '1' = 6·8354 + 33 "" 39,8354, 

o 

qll=2 8s _ 81 _ (~)a =57.7704 _ 68354-(68354)11 
80 So So 

=4·212 as before, giVIng 11"=2·052. 

• For a fuller investigation, showmg the advantages of central or mean 
sums, of a note contrIbuted by G. J. Lidstone to G. F. Hardy's Constructt01t of 
Tables of Mortaluy (London, 1909), printed on pp 124-128 of that work. 

'(D 311) 14 
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Ex. l.-Ulnng the data of Ex. 2, § 97, compute the value of fT by the 
method of summation. 

Ex. 2 -The mean d<!~ly temperature at Brussels on the 310 day. of the 
months of July ~n ten years was as follows: 

Mean temperatu,re 11°'5 12°'5 13°'5 14° 5 15°.5 16·'5 17° 5 18··5 
Number of days. 1 9 21 24 33 32 49 35 

Mean temperatu,re 
N u,mber of days . 

19°.5 20°'5 21°'5 22°'5 23° Ii 24· I) 25°'5 26··JJ 
31 24 21 17 • 7 2 3 1 

Futd the mean temperatu,re and standald demahon by the method of 
summation. 

99. Sheppard's Corrections.-·We shall now InvestIgate a correctIOn 
whICh is to be applled lI~calculatlOns such as those of the plecedmgscctlOn. 

Let y = f(x) be the equatIOn of a frequency curve. The mtRgral 

r :rJ'f(x)dx, 
-00 

wInch IS called the pth moment of the curve, will be denoted by 'fflp-

The statIstical data. whICh specIfy frequency curves are olten given 
In a summariSed form ,from whICh the moment.. cannot be cOl1Jpul~d 
dIrectly WIth accuracy. For lllstance, in statIstIcs of the chebt measure
ments of a group of men, all men whose chest measule Iles between 38i 
and 39 ~ lllches mIght be gIven under the headmg "39 Inches", all 
men WIth measures between 39~ and 40 inches might be given under 
the headmg "40 Inches," and so on. The number gIven under thp 
headmg "40 lllches" IS tJ!.erefore not a true ordmate of the freq uen~ y 
curve, but is really the area of that stnp of the frequency curve whlcJ-. 
IS compl'laed between the ordlllates at x = 391 and x = 40!; that IS, It IB 

£Oif(X)dX. 
B!Ii 

Suppose, then, that. X_ill X_I' X()I Xl' X2' • are the values of 
X for whICh statIstIcal data are gIven, these values bemg spllC{'d at 
equalllltervais w, and suppose that the statistical data. are the nbmbe!''' 

r·+ iW 
., where u. = J(x)dx, and ~'lPpOo;e \\e 

-Z.-lw 
calculate the quantItIes 

!l) 

soo that mp' is a rough value for the ptb moment, obtamed l,y Ii prOl~" 
whICh IS eqmvalent to collectmg at 3', all the mdlvldual meas1l1e~ bttween 
x. - itO and x. + !w 

Tbe problem before us IS to oh/am a formula 'whuh tMll enable liB to 
calculate th~ true moments 'fflp from the rough 'I1W'1MntB 'fflp '. We .I,all 
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suppose that tile" frequency curve has dose contact WIth the axis of x 'at 
both ends; so that 

nip = j'" xPf('.X)dx = w ;; xl'/(x.). 
_GQ '=-00 

(2) 

Now, by the Newton-StirllDg formula (§ 23), 

nZ 
/(x,+ 1Iw) = fix,) + n1 { ~f(x,) of Af(x, - w)} + 2jA 2f(x. - w) 

n(nS - 1) n2(nZ - 1) 
+--3-r -!{A8f(x,-w) + A 3f(x,-2w)} + --4-' - A'f(x.- 210)+. " 

80 we have 

J
.t 1 17 
_ i I( " + nw)cln = I(x,) + 3 '2zA Z/(x, - w) - 3.5 12,A 'J(x. - 2w) +. 

In particular, when J(x) = If" we have 

A'lAI/(x, - 1Iw) = 22,,1f'" sinh2n 1w 

~uttlllg f} = 1w and dlvidmg throughout by If"', the expansIOn reduces t" 

sinh f} 1 sf} 17 . h4Ll 
-IJ-'= 1 +3isl~h - 3.51 sm "'+. 

whence the coeffipiellts in the general expansion may be determmed 
readlly. 

Since ~lx.+tUlJ(X)dX = ft I(x, + nw)dn, 
'I(: %.-I!" -t 

we lIIay wrlte 
1 smhil' 
;U, = ~/(x,), 

where emh2 .. {I stands for the ope~atlQn <-lA2E-')I>, We have therefore 
from (1) 

1 .,. 1 00 sinh f} 
-mp' = ~ -x.Pu. == ~ x.p -0 -I (x.) 
W 8= .... «)10 . S=-QO 

00 .. 

Also since ~ x.pf(x.+lJ.w)= ~ l(x.)x._qP, 
'=-(10 ,=-OQ 

tlle terms of both sides of this equality bemg the same but counted 
dIfferently, we have 

., 
~ f(x.)(A2E-l)flx,1'. 

8=-00 , 1=-00 

, ,}x.~, 
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so 

d 
Now If D denotes d- we have 

x, 
E=ewD and a=ewD-l, 

wD 
ia2E-l=sInh32' 

Hence we see that () == !wD and 

I ... {w3D2 w'D' w6!)6 } 
'Inp =w .=~<.Of(X8) 1 + 3f2i1 t 5! 2' + 7i2i + .•. x.p 

... { wi 
=w.=~ ... f(x.) x.p + 3 !2ZP(P - I)x.

p
- 2 

+ 5~iP(P -I)(P - 2)(P - 3)trt+ .. -). 

or finally, substitutIng from equatIOn (2), we have 

w2 w' 
'fnp' ='Inp + 3!2aP(P - I)mp _ a + 5 !2tP(P - I)(p - 2)(P - 3)mp_c + ... (3) 

TakIng p= 1, 2, 3, 4, 5 In succession III (3), we have 

~'='/I'l' 
'In2' = m2 + -hw2m()l 
'""a'=ma+iw~, 

and hence 

'In,,: = 'In, + !wlml! + -kw'mor 
'Ins' = ms + *1v2ma + ·l1rw'm1, 

mo=mo', 
~=~', 
m2 = m2' - f\w2mO" 

ma='""a'-i~', 
m, = 'In,' - tw2m2' + zi-o-w'mo', 
ms = 'Ins' - tw2ma' + -ls'IL4m/. 

These formulae, whICh express the true moments m terIll8 of the 
approXImate moments, the curve bemg supposed to have close contact 
with the aXIS of x at both ends, are due to W. F. Sheppard.'" 

100. On Fitting a Norma.l Curve to a.n Incomplete Set of 
Da.ta.-It sometImes happens that we WlSh to detenmne a normal 
curve when we know only the ordInates Y1, Yz. Y3I .•. of a set of points 
of abSCissa ~, x2' Xao. • WhICh are extended over part of the curve, no 
mformatlOn bemg available regardIng the rest of the curve In thIS 
case It IS best to treat the problem as one of fitting 8 paraholIc curve 
z = a + bx + cx2 for the given values of z where 2 = log Y The comtants 
a, h, c may be determmed by the method of Least Squares (Chapter IX.) 

101. The Probable Error of the Arithmetic Mean.-Let 

" Proc. Lond Math. Soc. a9 (1898), p. 353. 
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7no denote the arithmetic mean of n measures MI , M2> •• ,,:M,., 
so that 

1 
~o = n:(MI + M2 +. . . + M,,). 

Then if hI denote the modulus of preCISIOn of the anthmetic 
mean and h denote the modulus of precision of a single 
observation, from the formula for the precision of a linear 
function (§ 89), we have 

or 
The probable error of a single measure bemg connected 

with th~ modulus of precision by the equatlon Q = *' where 

p =:' 0·476936 (§ 94), we see at once that the probable error oj the 

arith1netic mean ilJ In tlmelJ the probable error oj a single 

observation. 
102. The Probable Erx:or of ~he Median.-Instead of 

taking the arithmetic mean of the measures of an observed 
quantity as the estimate of the true value of the quantity, 
suppose we now arrange aU the n measures in the order of 
their magnitude and select the middle one, which is called the 
1nedian.· Usually the median will be close to the arithmetic 
mean and will furnish an independent estimateQlf the observed 
quantity. 

A more precise definition. of the median IS as follows; t 
Let ai' alP as> • • ., an be a set of real numbers, which mayor may 

not be all dlstmct. Let' .. 
82(x) = ~ (x - a,)s. 

,:1 

The value of x whl(,h reduct's 8z<:r) to a mlllimum is the arithmetic mean 
of the numbers ai' .•. , an. If the condition that 8s(x) be a mimmum 
I~ replaced by the condition tha: .. 

81(x) = ~ I x - a, I 
>:1 

be reduced to a minimum, the 'Ulddian of the a's 18 obtamed. !t1l! 

• cr. § 95, Ex. 2. 
t Dunham Jackson, Bull. Am. path. SOl:. 27 (1921), p. 160. , 
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untCluely defined whenever n IS odd, If the numblers a, are arrrlllg.,J m 
order of magnItude, so that 

a1 ,-:;; a2 ~.. 6. an, 

and If n = 2k - 1, the lIledIan I~ sImply ak, the nnddle olle of the a I;. 
The medIan 18 untquely defined ak" "hell n IS eVln, 11.= 2k, If It Ilal'pel18 
that; ak = ak+I, bemg then eq,ual to this (,Qllllllon value Other" 1"" the 
defimtlOn 18 satisfied by any uumber x beJongmg to the mten al 

ak ~ x ~ ak+l, 

and the meruan IS to tIns extent mdetelllllnate But for ea. h ,alue 
of p > 1 there is a defimte number x = xp "Inch Illlntmli'eS the "11111 .. 

Sp(x)= ~ Ix-a,lp, 
1=1 

and xp approaches a defimte Imut X as p approaches 1. The value of X 
comCldes WIth the medIau as already defined, III the ca-cs "here that 
defimtlOn IS determlllate, and" hen n = 2k and ak '*' «4+ 10 X IR a defimtc 
number between ak and ak+l It thus Rei V(S to supplement ti,e 
former defimtJOn 

'Ve shall now find the probable error of the median in order 
that we may judge of the relative advantages of the arIthmetiC 
mean and the medIan as estImates of the true value of the 
observed quantIty 

Suppose we have' n measures (where n IS supposed a great 
number). Then the probabIlIty that anyone measure exceeds 
the true value is ! and by § 90 the probability that exactly 
an + r) of the measures exceed the true value IS 

JC21}-~' 
Now If h IS the modulus of precisIOn of the measures) 

the probabilIty that a measure lIes at a distance between 0 

f.
~ h 

and E from the true value where ~ IS small is 0 J7r e- h2"'d.c or 

approximately ~7r~; and therefore of n measures the number 

between 0 and E is ~~E. If this number is T, "e have T= ~~~. 
Of the (!n + r) measures greateJ: than the true value, ~n 
exceed~. Therefore the'probabillty that the medIan is at the 
point E is 
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Denotmg the value of ~ corresponding to (r + 1) by ~ + d~. then 
n'~(~ + cl~) . 

r + 1 = -J----;;:-- • and the change 'from r to r + 1 corresponds to 

all increase Qf ~: d~ in the number of measures, so d~ = ~~. 

The probabIlIty that the medIan hes between ~ and ~ + ~~ is 

therefore 

J( 2) -2nh"tt nh J(2n)h _ 2'''-h2{' 

- e ... -cl~= --e "d~. 1I"n J1I" 11" 

Thus ihe probability that the medIan lies at a dIstance 
.. between ~ a~d e + d~ from the true value IS 

H e-H.ttd~ 
J1I" I 

where H = Jt2n)h 
J1I" . 

For thIs result we see that the modulus of preCIsion for the 

determination of' the median is hJ (2;). and therefore (§ 94) 

the probable error of the median is 

~J(2:)' 
where p = 0·476936 . 

In the last section we have seen that the probable error ?f the 

arithmetic mean IS Ji,jn: Thus the error to be feared when we 

take the median as the true value is ~ (;) or 1·253 times the 

error to be feared 1l'lMJ16 we take the t1"Ue value to be the aritl~metic 
1IImn. 

103. Accuracy of the Determinations of the Modulus 
of Precision and Standard Deviation. * - Denote the n 
deviations by E1• E2 •••• , En. and the modulus of precision by h; 
on the hypothesis that h has a value H. the a priori prob
ability of the occurrence of this set of deviations is 

(1) 

• Gauss, 1(' ... 1.6,4. p. 109 ; cf. R. A. Fl>her. NOllth. Not. R.A S. 80, p. 758. 
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whIle on the hypothesis that It has a value (II + A) the a 
prwri probabilIty of this set of observations is 

(H + A)n r(HH)2('J."+" + ... B) (2) 
(';71')" . 

By the Principle of Inductive Probability, the ratio of the 
probabIlity that (H + A) 18 the true value of It to the probability 
that H is the true value of It is equal to the ratIO of the expres
sions (2) and (1), that IS, of 

(1 + ~rr(2AH+A")('J."+' + •• B) to unity. (:3) 

Now let H be the most probable value of It (u. the value 
which makes (1) a maximum), so that 

H=,J {2(E12+.~ .+En
2)}· 

Then (3) may be written 

(1 >")" -(2AH+A2)2~' • +H e to umty, 

or -~(l+~)+"log (l+i) t 't e 0 um y, 
nAt M3 --+-- .. e H' SR' to unity, or 

or, approximately (>.. bemg very small compared With H), 
nA2 

e - R2 to 1. 

Therefore the probability that the value of It lies between 
H + >.. and H + >.. + d>.. IS nearly 

1
"' nA2 

where K is a constant, which, since Ke - H 2dA = 1, is gIven by IJn -» 
K=H ;. 

Therefore the probability that the value of h lies between 
H + >.. and H + >.. + dA IS 

1 . n -HOd' J 
nAB 

- -·e 1\ H 71' ' 
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or the modulus of preC1,swn for the determtnatwn of f" by the 
root-mean-square method is Jnjh. 

From this we deduce at once that the probabiltty that the 
standard deviation CT, as deduced by the root-mean-square method, 
hes between CT + x and CT + x + tk is· 

In e -":.tk 
CTJrr ' 

so the modulus of precision for the determtnation of the standard 
deviation CT by the root-mean-squtlre-method t/J J njCT. Hence 
the probable error of the standard deviation CT, as deduced by 
the root-mean-square method, is 

0·476936 
In CT. 

Gauss * extended this by showing that the probable error' 
of the standard deviation CT, wl1en It has been deduced by 
computing the pth powers of the errors, is 

0'476936~{Jrrr(p + !) _l}l 
pJn r2(P~1) . 

This gives the followmg results: 
When CT has been computed from the-

0·5095841 
I. 1st powers of the errors, the probable error = In CT, 

II 2nd 
" " 

III. 3rd 
" 

IV. 4th 
" " 

V.5th 
" 

VI. 6th 
" " 

" " 

. " 

" " 

" 

" 

0·4769363 
In CT, 

0·4971987 
In CT • 

0·5507186 
In CT, 

0·6355080 
In CT, 

0·7557764 
In CT. 

It is evident, therefore, that the most advantageous method 
is the root-mean-square. In fact, ;tOO errors of observation' 

• Werle. 4, p.109 
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YIeld by the computation of the root-mean-square 8S good a 
valu.e of the standard devIation as 114 treated by I, 10fl by 
III, 133 by IV., 178 by V., 251 by vl. There 18 not much 
dIfference as regards accuracy between I. ond II, and of 
course I. is much more convenIent for calculatIOn. 

Lastly, we must consider the accuracy of the determinatIOn 
of the quartile byarrangmg the 11. errors of observatIOn accord
ing to their absolute magnitude, and taking the middle one at! 
Q, or, more generally, arrangmg the 11. errors of observation 
accordmg to their absolute magllltude, and then taklllg the 
error ;cp which has ?no errors less than it, and deriving a value 
H for the modulus of precision from the equation 

?no = <l>(Hxp). 
11. 

Let 11, be the true value of the modulus of preCIsIOn and let 
x be such that h.v = Hxp• Then x is the positIOn that J'p would 
have if the number of measures were infinite, so that perfect 
accuracy in the determination of J'p could be attained. 'Vntmg 

?no = p, 1-p = q, we can show that the probability that out of 
11. 

11. measures (all taken pOSItIvely) ?no + r lie between 0 and J' IS 
1 TI 

-2npq 
-J=(2--1r-np-q"') e . 

Now the probalnlIty that a measure (taken POSItively) hes 
between x and x +~, where g 18 small, is 

211, -h";tlt 
J1re ~, 

and therefore of 11. measures (taken posItively) the number 
between x ~nd x + g is 

211.11, _h2x"t 
J1r e ~. 

If this number 18 r, we have 

_ 211.11, -hZ;tlt 
r- J1I"e ~, 

so the probability that .rp = X + E is 

1 _ 2nh"<'e-2h1zl 

-.;;;---,e P'I" 
J(21rnpq) 
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and, therefore (as 10 the correspond1Og discussio,n of the 
median, § 102) the modulus of preCIsion for the determmation 

J(2n)'w""" 
of.'pis J(PIJ1r) • SmceHxp=constant,we.have 

Hd.cp + .'l:pdH = 0, 
and therefore by the formula for the preCIsIOn of a linear 
function of deVIations, we have 

lfodulus of precision for the determination of h, by this method 

= X times the modulus of precision for the determination of xp 

_ ./(2n).crk'
zJ 

- J(pq1r) • 

Hence the square of the standard deVIatIOn for the determma
tiOn of h, by this method is 

pq1r e2hhO 

4n.h.2 ' 

or if t be the value of hx obtained from the equation 1II0 =cp(t), 
n 

It is 
h,21r<I>(t){l-cp(t)} 21" 

2n. 2t2 e. 

In particular, when we determine the quartile by findIng 
the deVIatIOn which "IS in the middle of the senes of devia
tions arranged in absolute order of magnitude, we have 
cp (t) = P = q = !, t = p where p = 0·476936, and therefore the 
standard deviation for the determination of 11, by this method is 

I~. !!:...cP\ 
V n 4p 

80 the probable error of the determination of the quartile by 
. this me.thod is .• 

or 

pJ2 . J~ . Q cP" 
n 4p 

I ~. BP". Q, 
VSn 

or, in numbers, 
O.79

Q In . 
This result is due to Gauss: * i~ shows that (on the average 

• Loc. ~.t" 
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of a large number of determinations) 249 measures, treated 
by thIS method, must be ta.ken In order to YIeld as good 
a. value of Q as 100 measures treated by the root-me an
square method: thIs determination is nearly the same In 

accuracy as that by the sums of the 6th powers of the errors. 
We can, however, choose mo much more advantageously than 
this: In fact, determirung the minimum of the functIOn 

4>(t){l- 4>(t)} 212 
t2 e, 

we find that It has a mInimum when t = about 1·05, and 
therefore the most accurate determination of the standard 
deviation IS obtained when we determine the error x, which is 
such that about 86 per cent of the errors (all taken posItIvely) 
lie below x and about 14 per cent above x: the probable error 
of the standard devIatIOn found from this value of ;1; is then 
only 1·24 tImes as great as the probable error of the standard 
deviation determined by the root-mean-square method.· By 
taking t = 1 we obtain the following easily remembered precept: 
the measure oj preciswn ~s the 1'eciproeal oj that deviation 11 hell, 
is exceeded (in absolute value) by 16 per cent of tlte ob.~er'/)rd de
v~ations and not atta~ned by 84 per cent oj them: for these 
percentages we can put more sImply -t and * 

10·!, Determination of Probable Error from Residuals. 
-In § 94 we have regarded a and u simply as two parameters 
which occur in the problem of fitting a curve of the type 

1 _ (z-a)l 
y=---e 2,,1 
• u.j(27r) 

to certain data. When, however, we are dealing WIth errors of 
measurement of an observed quantity, It is necessary to regard 
the problem from a somewhat different pOint of view. We 
must now take into consideration the fact that the quantIty 
measured has a certain true value which, though unknown, must 
be regarded as possessing a physical existence' thIS true value 
must be distinguished from the arithmetic mean of the 
measures, which is merely the best estimate we can form of it. 
The differences of the measures from the true value of the 

* ThIS was pomted out by F Hausdorff, Leip:.g BeT. 113 (1901). P 164. 
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quan~ity are the erro1'S, whIle the dIfferences of the measures 
from their arithmetic mean are called the re~duals. We shall 
now' show that the probability tliat the error should lie 
between prescribed values a and b is not equal to the prob
abilIty that a residual should lie between a and b. 

Let the measures be denoted by M l , M 2,. • ., their 
'anthmetic ~ean by mo' the true value by m, and let the 
residuals be 

vl=mo-Ml• va=mo-Ma.···, 

while the errors are 
El=m-Ml• E2 =m-M2,···· 

Adding the last equatIOns we have (denoting 
quantities by square brac~ets) 

Therefore 

and 

or 

[E]=nm - [M]=nm - nmo' 
[E] 

mo=m- n 

the sum of n 

Thus the residual 111 is expressed as a linear function of 
the errors. 

Now let h denote the modulus of precision of the errors, and 
h' the modulus of precision for the residuals: then the' formula 
for the precision of a linear function of errors gives 

1 (n-l)ll 1 n-l 
11.'2 = ----n- hi + (n - 1) n2h2 = nh2' 

so the probability that a residual lies between v and v + dv is 

Since 

we have therefore 

J( n) h _"h
2t' 

-- . -e ,,-ldv. 
n-l J1I' 

1 [V2] 1 
2h'2 = nand 2h2 = uI, 

u=J(~). 
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and the probable error or quartile of the errors is 

Q = 0·67449<T 

= 0.67449J U~]l)' 
and therefore the standard deviatIOn of the arithmetic mean 

of the 11. observations, which is jn' IS ~ (n(~v~~)), while the 

probable error of the arithmetic mean is 0.67449J (n(~v~ 1)) 

These are generally known as Bessel's j01·11tulae 
SImilarly, the mean absolute deVlatIOn TJ IS given in terms of 

the absolute values of the residuals by the equation 

[I v I] 
TJ = J{n(n -I)}' 

so that m terms of the absolute values of the resIduals we have 

<T=J;TJ= J (211.(:-1) [Iv I], . 
and the probable error of a smgle observatIOn IS 

Q = 0.84535 = O·84535[ I v I 1, 
1/ J{n(n -I)} 

\\ lule the probable error of the arithmetic mean of 11. observa
tIOns IS 11. -1(11. -l)-l O.84535[lvlJ. 

This formula IS due to C A. F. Peters * It can be more 
readily computed th~n Bessel's and is In general sufficiently 
accurate. 

105. Effect of Errors of Observation on Frequency 
Curves.-Let a large number N of mdIvlduals be measured as 
regards some attribute, and suppose that the number found 
to have measures between x and x + d:lJ is N y(x)dx Suppose, 
however, that the measures are known to be vitiated to some 
extent by errors of observatIOn, each measure being liable to 
error with a modulus of precision h; and suppose that, in 
consequence of these errors, the number of individuals having 
a true measure between :r and x + dx is not Ny(r)dx but 

• Ast. Nach 44 (1856), p 29. 
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Nu(x)dx. It iS'required to find the function u(x);the function 
y(x) and the modulus h being known. 

There are actually Nu(t)dt individuals having the measure' 
between t and t + dt. In consequence of the errors of measure
ment, these contribute a number 

h N u(t)dt-e-h'{t-z)ldx 
J7I' 

to the measures between x and x + dx. Therefore the number 
of measures observed between a; and x + dx is 

Nh 1" -dx e-h'{l-xJlU(t)dt, 
.J1r -GO 

or Nh 1" -dx e-h:a.·U(X + s)ds, J1r -ao 

or Nh,L/'" _/l:a.a{ ( ) '() 8
2
.,,() }d J1rUilJ _",e u x +su x +2iu x + .. , s, 

or N dx{ u(x) + 4i2U"(X) +, 3 ih4U1v (x) + ... }. 

Thus the functions y(x) and u(x) are connected by the relat\on 

y(x) = u(x) + 4i2U"(X)'+ 3ih,Ul\ (x) + ... , 

which readily- inverts into 
, 1 1 

.u(x) = y(x) - 4h?J/'(x) + 32k4Jr(x) +. 

This equation deter~ines u(x) in terms of y(x). 

MISCELLANEOUS EXAMPLES ON .CHAPTER. VIII 

1. The followmg f7equency dlStnbutlOn was obtamed by countmg 
the nmuber of letters per hne of a book. Calculate the mean value anc! 
the Iltandard deVlatlOn, and indicate what might be expected to happen 
aR the number of observatiollll ill Increased. 

Number of letters (n) 32 33 34 35 36 37 38 39 
Frequency (j) 1 2 2 10 23, 31 42 54 

(n) 40 41 42 43 44 45 46 47 
(f) 46 M 35 28 16 10 2 2 

(Edin. Univ. Honours EX&IIl., 1918.) 

2. Compute . the mean he'lght and standard deviation from the 
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followmg data by the method of summatIOn, verlfymg the result by the 
root-mean-square method. 

Hetght tn tnche$ (h) 54'5 55 5 56'5 57 5 58 5 
Frequency!j) 2 4 13 36 69 

(h) 62·5 63 5 64 5 65 5 66 5 67·5 
!j) 366 326 229 157 82 32 

595 605 
159 2il 

68 5 69'5 
15 9 

61 fi 
326 

4 

3. Calculate the probablhty that In a given mterval of hme there 
Will be a given number of "calls" at a telephone I'xchange, and the 
probablhty that a subscriber will be k~pt walhng a given time. 

[Cr. A. K. Erlang, Nyt Tidesknft for Math. 20 (1909), p. 33] 
4. A vector E is the resultant of a very large number n of elementary 

vectors, each of given (small) length, whoRe directIOns are distributer! at 
random In all duections in the plane Show that the prolJabllity thnt 
the resultant vector E should have a length between rand r + dr is 

where CT IS independent of r 

rdr r' 
ut e - 20'2, 

[Thl~ result is of importance in the theory of the Bro\\man mohon, 
and also In connection with the scattenng of {3-rays by matter; the 
formula is due to Lord Rayleigh.] 



CHAPTER IX 

THE METHOD OF LEAST SQVARES 

106. Introductiou. ........ ln the present chapter we shall be 
concerne~ with. one. particular kind of frequency mstribution, 
namely, the' distnbution ot the measures oj an observed 
q1,lantity, when these measures differ fro;p1 each other owing to 
accideptal errors of observat~on. . 

'The deductIOn of the n~)].'Inal law of frequendy given in the 
preceding chapter is applicable. to this p~rticular distribution; 
but alternative deductions have b.een given which' depend on 
special..asllumptions'regardmg errors of .o9servation, and which 
are in the hlg~est degree interesting and worthy of study from 
the point of view of axiomatics. We shall therefore now ,make 
a fresh start with the theory. ' 

10'7. Legendre's Principle.-Iri the mathematical dis
cussion of the results of observat~qn, it is required to derive 
from the data -th~ best or most plausible' resul~s whic~ they
are capable of affording. When th~ quantities which are 
observed directly are functions of ' several unknown qua~tities 
which 'are to be determined, the' problem can generally be 
reduced (as will be ~een lat~) -to a formulation. such as the 
following: . • 

It ts required to find values for a set of unknown quantities 
x; y, Z, • • • in sueh a way that a set of given -equations . . 

f

alx -f bly + clz +. . . +'flt = 71,1' 

~~1" -l- ~~Y'+ ~: :-' : ~ ~ ~t = n~. 
n8'C;I- b/y + c.z + .. ,+ f.t = n. 

(called the equations oj -condition) may be satisfied as nearly as 
(D 311): 209 ' '15 
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possible, when the number s of eqllfltwns is greater awn the 
number of unknowns x, y, z, ... , t, and the equatlons are not 
strictly compatible with each otlie1' 

By saymg that the equations are to be satisfied as nemly (IS 

posslble we mean that the quantitIes 

{

El = ae; + bIY + C12 + ... + fit - n l, 
E2 = a~ + b2y + c~ + ... + fzt - na, . . . . . . . 
E.= a,p: + b"y + c,;:+ . .. + f.t - n .. 

which we shall·call the errors, are to be as small as possible. 
We shall, for the present, assume that the equations are equally 
trustworthy, ~ e that t.he quantity, which is more precIsely 
defined later as we~ght, IS the same for each equation. 

In 1806 Legendre* suggested for the solutIOn of this problem 
a prinCIple which may be thus stated: of all Jlos~ble sets of 
values of x, y, z, .. " the most sahsfaetonj ~s that nhtch rendo s 
the sum of the squares of the errors a mimmum; that is, 

E12 + E22 + ... + E.2 
is to be a mimmum. 

For the present we shall simply accept this as. a convement 
working principle whICh serves the intended purpose: later In 

the chapter (§§ 110, 115) we shall examine dUferent attempts 
which have bee~ made to deduce It from other princIples which 
have been regarded as more evident or better fitted to serve 
as fundamental aXIOms' 

108. Deduction of the Normal Equations.-Assumlng 
Legendre'S principle, we have now to find the values of ;)', J/, 
z, . . . whICh make 

E12+E22+ .. +E,2 

a mInImum. If we use the notatIOn [] as a symbol of 
summation so that, eg, [aa]=a1

2 +a2
2+. ' . . +a,2, [ab] = (lIb, 

+ a2b! + ... + asb" the sum of squares is 

[aaJt.2 + [bb]y2 + [CC]Z2 +.. + 2[abb/ + 2[ac}'z + .. - 2["n]-
- 2[bnJ.y - . + [nn]. 

* 1lo11ullfS Jfethodes POUT la delermlnatlO'll dtB ",,'ntcs des cQ1TIiles, Pans, 
1806, p 72 
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The unknowlls x, y, z, . . . kre to be chosen to make this. a 
mmimum, so that the deriva'tives WIth respect to x, y, z, ... 
must vanish. Thus a .minimum value is obtained when the 
unknowns are calculated from the equations 

{

[aa].n + [ably + [ac]z + ... = [an], 
[abJa + [bb]y + [bc]z.t .. .. = [bn], 
. . . . . . 

These are known as the normal equations: from them the 
values of x, y, z, ... are to be determined by ordInary algebraic 
analysIs. EVIdently,1.n order to fOT1n the normal equatwn utth 
respect to anyone of the unknowns, we m'llst 1nulttply each of the 
oN.qinal equcitions by the coeffictents of the unknown in lhis 
equation and add,. togetAer all these, products. 

,The method which has been followed was named by Legendre 
the ],[ethod of Least Squares. 

In uel'lvmg'the normal equations from the equations of conditlOn we 
can use'tables of quarter squares, for we have not only _ 

[aa] = a1
s + a2

2 +. . + a.2, 

but also [ab] = tWa + b) (a + b)] - [aa] - [bb]} 

As a ,check on the computation of the normal equa.tIOns, It 
is well to calculate the sums 

ITI = a1 + bi + cI + ... + .h.+ nl , 

IT. = a. + b. + c. -h ••• + Is + 'III!> 

and from these to calculate the suins [aIT], [bO'], . . ., [fIT]. 
These, with the sums [aa) . • . [ffl which have already been 
computed, should satisfy the equations 

{~~a] + [:~] +. 'c • -: taf? + [an]. = [aIT ]'. 

[af] + [bf] + ... + [if] + [nf] = [fIT]. 

The verificatic;ln of these equatioi:J.s se,rves to assure us of the 
accuracy. of OUr calculation of the normal equations: We shall 
<liSCllSS later (§§ 11'7-121) ·the systematic solution of the normal 
eqUatlonS and the controls conne(}ted therewith. For the 
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present we shall regard the solution merely as a matter of 
elementary algebra. 

Ex. I.-Fmd the most plaunble values of x and y from th, equation. 

4·91x - 59'Oy= ...: 339·8 
2·72x- 2·7y= - 475 
0·05x + 32'4y = 262'5 

- 2 91x+ 27·7Y= 1529 
-4·77x+ 1·4y= - 279. 

We shall first find the normal equatIon for x by use of Clelle's 
multlphcation table. lIIqltIplymg each equation by the coefficient of x 
in It, we have 

.Addmg, WE' get 

24 llx-289·7y= -1668·4 
7·40x- 7 3y= - 1292 

1'6y= 13·1 
8'47:1: - 80 6y= - 4449 

2275x- 6·7y= 133'1. 

62 73x - 382·7y = - 2096 :1. (1) 

This IS the normal equatIOn for x. 
We shall now nnd the normal equatIOn for y by use of a "tahle of 

squares. We have 

[aa~=4'912+ 2.722 + 2.91 2 +4'772 = 6:3073 
Ibb = 592 + 2.72 + 32'42 + 27.72 + 1'42 = 5307·3 r a + b, a + b = 54,.092 + 32.452 + 24.792 + 3'372 

= 2925·73 + 1053 + 614·54 + 11·36 
= 460·H3 -

[b+n, h+n]="281846'10 
[n, n] = 210783'36. 

Therefore 

[ab] =! /4604 63 - 62·73 - 5307-3) = - 382-7 
[bn] = H[b + n, b + n] -ebb] - [nn]} = !(65755'44)= 32877-7, 

and the normal equation of y is 

- 382·7x + 5307·3y= 32877·7. 

From (1) and (2) we find 

x=7'81, y=6 76. 

(2) 

The corp.putatlOn of the normal equations and the check on the 
'Computation may be carl1.ed out sImultaneollsly as in the foll()~ mg 
scheme the coefficients 11\ the normal equ'ItlOn for x bemg read from 
the row (3), and the coefficients 1D the normal equahon for y from the 
row (4) In each table a row IS formed for eaLh of the given equation., 
and the columns are added. The Sllm of tIle first three columns should 
then be equal to the sum of the last column. 
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. I [ 
1 

a. b. n: " 
491 ~ 590 - - 339'8 - 393. 89 
2·72 - 2-7 - 475 - 47·48 

• 0·05 32'4 262'5 294·95 
'- ~'91 27·1 152·9 177·69 
-4·77 1·4 - 27·9 - 31-27 J 

aa. abo an. ad. 

, ~4'1081 - 289·690 - 1668 418 ;- 1933 9999 
7'3984 ~ 7'344 - 129 200 - 1291456 I 
00025 1·620 13'125 14·7475 
8'4681 - 80607' - 444939 - 517'0779 

22'752-9 - 6·678 133·083 149 1579 

---~ 

um ,62·7300 - 382 q99 - 2U96 349 - 2416·3180 

ba. M. on. b". 

- 28969 3481·00 20048·20 23239·51. 
- 7'344 7·29 12825 128·196 

1'02 1049·76 850500 9556'38 
- 80·607 767-29 42311 33 4922'013 - 6·678 .1·1)6 - 39·06 - 43·778 

-
Sum - 382·699 . 530?'30 3~877 72 37802'321 (4) 

I . 
nil.. 110 ml. :It". . 

-1668'418 20048·20 11546404 133843822 
..: 129·200 128·25 225626 2255·300 . 

13·125 8505'00 68906·25 77424'3'75 
- 444·939 423533 2337841 . 27168801 

.~33 083 - 3906' 778.41 872·433 . . 
1111 -2096·349 32877·72 210783:36 241564·731 , . I 

(5) • 
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, 

Ex. 2.-F~nd the most plausIble wlues of x and y from the eqll<lt/o118 

x+ y=3'01 
2..:- y=0·03 
x+ 3y= 702 

3.1;+ y=4·97. 

Ex. 3.-The :ollou,tng duta were "cad flOrn u graph slwu'1l1g the l)rul~,ble 
stature of son for gwen fMhel~8 stature, denoted by S Ulcltes and .F u"I,," 
1espectwely: 

S. 65·7 668 67·2 69 3 698 705 70·9 
F 62 64 65 69 70 71 72 

If Sand F are connected by the. relatIOn S= a + b/t~ deternllJle by tI.e 
.Method of Least Squares the '/lIDS! probable -values of the con.tants a a)/,( b 

(Edill. UUlV. ActuRI1RI DlploUlll, HI:.!:! ) 

109 Reduction of the Equations of Condition to the 
Linear Form.-In many cases the original data of the problem 
are not ImmedIately expressible as a set of linear equations 'of 
~ondition. Suppose. for example. we reqUIre to find the most 
plausIble values of x and y from a set of equations 

11(x. y) = u1• 12(x. y) = 112• • ••• 1.(3'. Y) = Y,. 

where h . .... /. are known functions and Y 1• 112" ••• 1', are 
measures derived frQm observation and liable to accidental error. 
In this case we first find. In any way. an approximate pair of 
values of x and y,·say X, y. Putting x = x + ~. y = Y i "/, we have 

- - - - 0" (; v) of, (;j v) 
h(x.y) =h(x+t, ,1}+,,/) = ~(x, Y) +~t+ ~7J ox oy 

approximately 
The equations of condition thus become 

{

Oh(X' Y).. oft(x, y) __ 
-:;=-6" + -----;;=--"1 = Y 1 - h(J:, y), 

U.V u1/ 

ai.(x, y) .. + (1f.(x, y) _ . _ "(~ -) 
,,- 6" ,,- "I - Y'I J'.t, y , 
ux U!J 

and these, being linear in (t, "1). can be solved by the process 
already described. 

Ex.-Determt·ne the most plau8'£ble lIalues of the rec/(t7lgular co
ordmates (x, y) of a point P, giten that its measured dutances from the 
powts (0,0) (7,0) (0,6) are respectively 640,447, 5'38, anrl tlwt these 
'measures are of equal u'll'lght 
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We readily find grRphlcally that approXimate values are x = 5, ii = 4 
Therefore writing oX =;; + g, y = ii + 1/, the equations of conditIOn become 

. WH~2+<4 + "I)2il= 6 40, 
1<2 - ,)2+ (4 + "I)2}!= 4-47, 
{(5 +~2 +(2 - "I12}!= 5'38, 

1
5E;~lJ =6·40- J41= -0.0031, 

-2E+4"1 J . 
or 'J20 =4·47 - 20= -0.0021, 

5~-2!"I =5.38,.. J2'J= -0·0052. 

These equations, which are linear In E and 1], are now treated as ordinary 
equations of condition as In § 108. 

11 O. Gauss's .. Theoria Motus" ~ the Postulate of the 
Arithmetic Mean.-·We now' pro(leed to consider the various 
attempts that ha~e been made tg place the Method of Least 
Square~ on a logical foundation. 

The first writer to connect the method WIth the mathe
matical theory of proba.hility was Gauss.* His treatment 
assumes as a postulate that when any number oj equally good 
direct observations M, M'; ::\1", . • . oj an unknown magnitude 
x are· given, the most .probable value is their anthmetic mean. 
Gauss's deduction of the law of error will he given in '§ 112 ': 
for the prescnt we shall consider the postulate in itself.t 

This postulate must be diStmguished from the statement that as tM 
number 'of observatIOns IS lDcJ;eased indefinitely, the arithmetIC mean 
tends to the true value of oX: this latter statemenj; is indeed correct, t 
and is true of an infimte number of other funcuons besides the arithmetIC 
mean: § but we cannot ,infer from it that the arithmetic mean gives the 
mos~ probable result when the number of obser,:ations is finite. 

In recent years the postulate of the anthmetic mean has 
, ' 

• Thwna motus C01'pOMtm calest'1'1Il, Hamburg (1809), § 177 Gauss 
me!)tlons that lie had 'Used the m~thod from the year 1795., 

t For a critical dlscusslbn see P. Pizzetti, "I rondamentl mat. per la crltica 
del nsultati sperimentali," .Atti della R. Unl~. d. Gnun:a per .1 unlenano 
Colomb1ano, 1892, pp. 113·334. 

t Indeed we may define the true 'i1alU6 of a phYSical quantity as the l.m" to 
wh ... h th~ mean of" obsermt.ons tends when n .ncrell3es indtfinttely. 

l:f(M -2:) . , 
§ E.g. -'-n--~O, where f is any odd fUJIctton, when the number of 

observatIons 19 incressed indefiDitely. 
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been exhibited: as a deduction from other axioms of a. lllOre 
elementary nature,* whICh.may,be formulated thus: 

AXW1fL L-'J'he dIfferences between the most probable value 
.and the IndIVIdual measures do not depend on the positIOn of 
the null-pomt from whlCh they are' reckoned. 

AXWln 'IL-The ratio of the most probable value to any 
IndIVIdual m.easure does not depend ,on the unit in terms of 
which measures are reckoned. 

Amom, IlL-The most probable value is independent of 
the order m whICh the measurements are made, and 80 IS a 
symmetric function of the measures. 

AxiO?n IV -The most probable value, regarded as a functIOn 
of the indIVIdual measures, has one-valued and contInUOUS first 
derivatives WIth respec~ to them, 

From these four aXIOms we can derive the postulate of the 
arithmetic mean III the follOWIng way: 

Suppose the most probable value is expressed in terms of 
the n measures aJ1, x2' .. " Xn by the function' f(xl' x2, ••• , :r n) 
Then by the theorem of the mean value in the dIfferentIal 
qalculus (which by, Axiom IV. is applIcable), we have 

f(kx1, kx2' •. , lex,,) = f(O, 0, .,' 0) + kJ:1[:fJ + ... + 1.. t .,,[_v,t J, 
uX

l 
(!,r1l 

wbere the square brackets denote that every x is to be replaced 
.by Bkx, wherfl B lies between ° and 1. Now by Axiom II., the 
left-hand side = kf(Xl' x2' ••• , .1:n ); and since by the continuity 
of the functIOn J, the equatIOn • 

f(kx1• kx2' ... , k;"n) =kf(7:1,:r2' .. 'J xn) 

must hold in the limit when k is zero, we have 

Thus we have 
f(O, 0, .. , 0) = 0. 

" [ofJ +kx" dJ:
n 

' 

• Cf G Schiaparelh, Rend Ist. Lombardo, (2) 40 (1907), p. 752, and Ast 
Nach. U6 (1907), P 205; U. Broggl, L'Enmfl",,,,ent matMmatUJue, U (1909), 
p. 14, R Schlmmack, Alath. Ann. 68 (1909), P 125. 
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!n ~his eq?ation m'ake ~~O ;, then each of the qu~titie8 [o~J 
tends tel a: valu~ which is ,independent of the x's, so we can 
write /(;1' xe' ••• , xn) = C1X~ +, , . + CnXn' where the c's are. 
independent of the x's. By Axiom III., the c's must all be 
equal,' so ." 

/(x1, xa' ••. , xn) = c(J:1 + xa + ..... + ~n), 
and since AxIOm I. gives the equation 

/(x1 +h, . . , xn"+h)=f(xv .: "xn)+h, 
we have ' , cnh=h; 

1 so C=-' 
n 

1 Therefore /(x1, xa,. ., xn) = -(Xl + xa +, .. + xn), 
n 

which expresses ,the postulate of the arithmetic mean" 
111. Failure of, the Postulate of the Arithmetic Mean~ 

-;For certain types of observations the postulate of the 
arIthmetIo mean is not valId: in partlCular, for visual photo
metr~o measurements in' astronomy.* In these the quant.Ity, -
of whioh measures are made, is the ratio of the brightnesses 

" of the two stars. Suppose that X is the true yalue of the ratio 
Jor the two partioular Eltars" and let 11, 12' • • " In' be different 
measures of it. The observations being supposed to b~ made 
visually, we take as t:>ur starting-point the Weber-Feohner 
psycho-physIcal law on the sensitlVeness of the human retina 
to differences of light intensity! this asserts that increment of 
sensation 'is propOl;tlOnal to "relative increase of excitation, or 

BE = oonstaD;t x ~, where E measures the sensation of .light and 

1 is a physica.1 measure ot its' intensity. If E and ,Eo denote 
the intensities of perception corresponding to the bright~esses 
t and x, we have therefore • 

E -'Eo=c log'!. 
x 

The quantities E - Eo reprellent the errors :of observation, 
denoting them by .11' .12' ',' ., .1'1> 'we have • 

- III 112 ' 1110 .11 = C o!! -, .12' = C og -, ....1,. = C og-. 
~ x x x 

• • Cf. Seehger, 1st Kack, 132 (1893), col. 209 • . 
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The ~'s appear to obey the normal law of facihty: so that the 
most probable value of x is that which makes 

e-h2(41'+42'+ •• +4 .. 1) 

a maXImum, i e whICh makes 
~12 + ~22 +. 

a mmIIDUID; this gIves 

~ O~I ~ O~2 
lOX + 22,<: +. 

I I 
or log ...! + 10

0
0' ~ + . 

x x 

2~n 0 
'+~II~= 

V,C 

I I" 0 + og - = x ' 

so li2~_'_'_~= 1 
x'1. ' 

I 

or X = (li2' . In)'"-. 
ThIS formula fur determining the most probable value from the 
observations was first gIven by Seidel in 1863 * 

Ex.-Show that ~f the probabtltty that the error of a me(/8/tTement 1l'l1l 
be between x and x+dx ~8 c{l+jhxjf}-ldx,wherecandhareconstant, 
then the anthmetu: meun of two measurements t8 not as reltable as a Slnrfle 

meclsurement, and ~n fact ts the least probable value among all 1)08,,/'/e 
weighted means. (E L. DodO.) 

112 Gauss's II Theoria Motus" Proof of the Normal 
Law.-We shall now show how, when the postulate of the 
anthmetic mean IS granted, the normal law of error can 
be deduced. 

Suppose that for the measure of an observed quantity, the 
probability of an error between ~ and ~ + d~ is cp(~)d~, so 
that cp(A) IS the relative frequency of error If E denotes the 
least quantity to which the measurmg-instrument is sensItIve, 
we can suppose that the possible values of any measure proceed 
by steps of amount E. and the probability of an error ~ may be 
taken a$ cp(~)E. . 

It ~hould be notIced that it IS here tacItly a'lSumed that the prol)a\ll1Ity 
of a certain devlatIon depends ouly on the magnItude of the deviation. 
If this assumptIOn is not made, a law of faCIlity much more general 
than the normal law may be deduced t 

• J[unchen. AM. 9 (1863). 
t Of POInCare, Calcul. des prob. p. 165, and B. lJCldell, Zetts. fur JJath. u. 

Phys. 56 (1908), p. 77. 
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.N 9W SU'ppO!~e thll;t a. number 8 ofmea~ures M:, M', M": ' are 
taken of a quantity x whose true value is p. The errors are 
A = M - p, A' = M' - p, etc. The probability of the error in the 
first measurement being M - p is cp(1\1- p)e; the probabIlity 
of the error in the second measurement being M' - P is 
4>(1\1' - p)e, and so on. The probability that a set of measures 
(!I, M', M" ... ) wIll occur is. therefore 

~. cp(M - p)cp(M' - p)cp(M" - p) .... 
If now we assume that, before the observations are made, all 
values o( x are equally likely to be the true value, * it follows 
from Bayes'theorem in Inductlve ProbabilIty that, when the 
observations. have been made, the probability of the true value 
of x lying between p and p. + dp is ' 

cp(M - p)cp(M' - p)cf>(M" - p). ,dp L: cp(M - p)cp(M'. - p);(M" ~ p) -. -. -. elp' 

and therefore the most probable hypothesis regarding the true 
value of x is that x has that value which makes 

cp(M - x)cp(M' - x)cf>(M" - x) 

a maximum, i.e. that. value of x for which 
• d • 

}; dx log </>(M -:) = O. (1) 

Adopting the postulate of the arithmetic mean, we see 
that equation (1) must be equivalent to 

X=~(M+M':t- ... ) 
or ~(M -x) ~ p. 

d . 
Therefore dx log cp(M - x) = c(.M - x), 

where c denotes a constant, and therefore 

cf>(M - x) = Ae-!«M-x)", 

where A denotes !l. constant, so 
cf>(Ll) = Ae-!<A" •• 

• It IS not necessary to'make thIS an independent assumptIon, for it may be 
doduced as a oonsequence of the postulate of the arIthmetIc mean, whIch WIll 
be mtl'oduced pr~sent1y. ' . 



220 THE CALCULUS OF OBSER\' ATIO;NS 

Smce the sum of the probabilitIes of flll posslb~e eqon IS 

umty, we have . 

fa> ¢(J.)dJ. = 1 

or 

But 

so 

1 = A J:a>e-1r':"'dj., 

f.,e- Y2dy = J7I', 

A=J;7I" 
Wntmg h for J(!c), we have 

¢(tl.) = ~71' e- h
'

A
", 

whiCh shows that the d~st1"bbutwn oj tlt. measU/'cs abollt tile 
true value is a normal frequency d~str1,butlO.n, 

113. Gauss's " Theoria Motus" Discussion of Direct 
Measurements of a Single Quantity.-Assumirrg, then, that 
In the meaSllre of an observed quantity the probability of an 
error between tl. and tl. + dt!.. IS • 

h . 
-e- I,2A"dt::. 
J7I' ' 

where h IS the modulus of precisIOn, we note that the modulus 
of preClsion affords an indication of the ueig';t which must be 
attached'to an observation when it' is to be combined with 
other observations. Thus in observations to determIne the time, 
made wIth.the meridian circle, the modulus of precision is less 
for a star verr. near the pol~ than for an equatorial star, so in 
combining the results of an equatOrIal with a circumpolar 
obs~rvation we should attach more Importance ,to one than to 
the. other. 

Suppose now that s measurements are made of a quantIty ~~, 
the measures being Xl' X2, •• " X., and the corresponding 
meap-ures of precision being "'1' h2' . • "h.. Let p be the true 
value of x, so the errors are P-XI ,p-,T2, • •• The probahillty 
of preClsely this set of errors is therefore 
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Now the JIlost probable yalue'of x is that value of p which 
makes this expressiop a maximum.. i,e. it is. the value of x 
which makes 

h8x -: XI)2 + hz
2(x - x2)! + •.. + h,B(x - x,)· 

. a minimum. It is therefore given by 

or 

h1
2(X - -:J + ~22(X - xa) + ••. + h,2(X - x,) = 0, 

hl2XI + h2
2X2 + . .. + h,IX, 

:IJ= 1. 2 1. 2 h a • 
Ib1 +Iba + ... + , (1) 

Now we have seen (§ 89) that the IJ?odulus of preCIsIon 
H for any linear function alAI + aa~ +. . . of the errors 
~I' ~ •••• -yvhose modUli of precision are' hi' ha •••• is given 
by the equation. 

(2) 

BO H2=h;~+h2a-r- ••• +1,2. ' (3) 

Now let h be the lllodulus of precision of certain observa
tions which are .taken as a s'tandard for comparison 9f precision, 
and write' . , 

h II h 2 , h.2 HI ... _ I. .., _ 2 W _ -.u- __ 
""'I - 11.2' "'a - 11.2' ••• , • - 11.2' n - 11.2' {4) 

The equations (1) and (3) become 

. { ,_ U'la'l + u;rXs +. • • + u,:x. x- i .. I " 
• WI + 'Wa + ... + 1IJ. 

. 'W =w;+'wa+' • • +w,. 

These' equations are evidently analogous to the equations 
which deteI:ID~e the position of tM centre of gravity of 
particles of we~ghts WI' ?t'a' ' •• 'J W. placed at .the points 

• 01'1' ol'a' • • 'J x. respectively, 'V denoting the weight of the 
equivalent body to be placed at the cel!-t~e of .gra~ty. On 
this account WI' 1£'3' ••• , 'w, are called the ?t·eights of the 
observa.tions Xl' Xa, •• 'J:1", respectively; the weight W of the 

• result is the sum of t~e weights of the separate observations . . 
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Hence we deduce at once the following results: . 
1. The mean of s equally good observations lws It 11 rigid s 

times th'trt oj anyone oj them 
2. Ij w denotes the weight oj a determ~nation p v·hich ts 

ded1lced as the most probable value of x jrom a certain bet 0/ 
observatwns, and ij we adjoin a new observation x = p + 11 0/ 

weight I, then the most probable value oj J' is 1J + ~1' (lnd it 
ll't 

has the weight (w+ I). 
3. Ij an observation ;J; has the weight w, then on 1nult~pl!Jing 

11) 
~t by any number A the new value >"'1; has the we~ght Xi' }'or 

If the probabllity that x lies between x and x+dx 18 j~rh'I'dl;' 
then, denotmg >"'T by y, the probabllity that y lies between ?J and 

h _n:y2 h 
y + dy IS AJ1/ ).2 dy, so the modulus of precIsion for A.r lS X, 

and therefore the weIght of Ax is~. It follows that: 

4. Observations oj different 'lUe~ghts can be treated all ol'SPr?:n. 
twns oj umt we~ght by multiplying each equation of cond~tion 
by the square root oj ~ts V!e~ght (§ 114). 

Ex-IJ alxl + aZCC2 + ... .+ a,x. is a ltnl1!lr Junetton oj illdepelldent 
est~mates Xl' X2J ., x. oj a number x, determtne 01> 0 21 •• , (I, 

suIJJeet to the condttwn at + a2 + ... + a, = 1, 80 that the wetght oj th. 
ltnear Junetton may be a maX'llmum 

1 a 2 a 2 0,2 
From equatlOm (2) and (4) above we see that,u=....!. +~ +. +-. 

" 1/1 'V'2 V"s 

where W IS the weight of the lmear functlOn and Wt' 11 2' •• , 1V, are the 
weights of the mdependent estImate!> Tllerefore we mu!>t have 

atdat a2da2 a,p", 
0=--+ --+ . +--

WI W2 w. 
subject to 0 = dat + da2 + . + da •• 

and therefore 

so 

~=~_ _~= at -ra2 + .. +a. 
1V1 102 -. • • - 1V, Wt + "'2 + . . + W, 

Wi 

al = WI +W2+ . .. +11', 
Thus the estima.te for :J; which has the greatest weight IS 

X = wtxl + 1~ZCC2 + ... + 1n,.r •• 
WI +W2+· . . +w, 

ThiS agrees with \the value of x given by the lIIethod of Least Squares. 
\ . 
" 
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114. Gauss's "Theoria Moius II 'Discussion of Indi~ect 
Observations.-Now suppose that a set of unknown quantities 
J:, Y, z, . . . are to be determined from s measures nI , n2J ... , n., 
the un~nowns being connected with the measured quantitI~s 
by the equations of condItion 

{~£e +~!Y +C~Z +. : . + i~t;;= n~, 
a,;p + b.y + csZ + ... + it = n .. 

where the coefficients aI' bl •••• , a .. b., • .. are supposed to be 
known accurately, while the measures are liable to . accidental 
errors' of observation. Suppose that for the observed quantity 
nI the measure of precisIOn is hI' for the observed quantIty 112 

the.m~asure of precision is ha' etc.; then the probability of an 

error Al in n1 is hj;e-h)IA1I, where EI is the smallest quantity to 

which the measurmg-instrumt:nt of nI is sensitive, so that the 
measures'may be supposeq to proceed by steps of amount El • 

Then as in § 113, the probability of the concurrence of errors 
(Jol' ~, • is 

and the most pro,bable values of x, y, ~, .•. , t are those' wh1ch 
ma.ke this expression a maximum, when 

A.= ar'V+ bIY+hz+ . . ,+ ilt - n l , 

~=~I.zc+h'l1l+c~+, , . + i2t- n2, etc. 

The values Ge, y; z, ,', ., t) must therefore be determmed 
from the condition that . 

h'I2AlS+ hsIAs2 + ... + h.sA.' 

is to be a minImum, If WI' w2" " '" 1(1. are the 1ceiiJhts of the 
observations' (whic4 are proportional to the squar,es. of the 
moduli of pre.cision), we must therefore have 

t1"1!:i1
8 + 'U'2~2 +, . ',+ w:A.1 

a minim~m: that is, in the notation of § l,08~ 
[u·aa].tJl+ [U'bb]yl + [1t"CC]Z2 +, . ,+ 2[1I:ab].1"y+, . , 

.' . -2[wan].r-:" ,+[untn] 
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must be a minimum, and therefore the unknowns x, y, z, . 
must be determined from the equatIons 

{

[ waa J1: + [wab]y + [u:ac]z + ... = [nan], 
[wab]'e+ [wbb]y +fwbc]Z+ . .• = [u bn], 
. . . . . . . 

These are the normal equatwns 
It is eVident that an obserVation of weight w enters into 

equations exactly as if it were, w separate observations each l)f 
weIght unity. The best practical method of accounting fur 
weight is, however, to prepare the equations of condItion by 
multiplying each equation throughout by the square root of 
Its weight: the resulting equations then have their weights all 
equal, as we have seen (§ 113). 

115. Laplace's ,Proof and Gauss's "Theoria Combina
tionis I, Proof.-The Method of Least Squares was established 
in an entirely different manner by Laplace in 1811,· and by 
G-auss (who to a considerable extent adopted Laplace's ideas) in 
1821-23·t 

The eommon principle of these and various modern proofs 
which have been developed from them may be stated thus: 

Suppose that for s linear expressions 

a1x + b1y + c1z +. . .} 
aiXJ+ b.;; + cr +. . . 
'. . . . 
a;c + b.y;- c.z 4-. • 

(1) 

we. have respectively the independent estqnates nI' n2J ... , n" 
derived from observation, the number 8 being supposed greater 
than the number of unknowns x, .II, Z, •••• 

For the quantity 

-\(al''C + b1y + c1z+ . . :) + -\(uz'1;+ b2y + cr + ... ) +. 
+ A.(a.x+ b.y+csZ+ . .. } . (A) 

• TMoruanal desprob. JAvre II. chap. iv (1812),.folIowingamemoirof181l. 
t Th~oria combmalionts oba.nall/mum errO'l'1.bus m.nimts obnrr.r'lae, rVcrke, 

Band IV. p. 1. A French translatIon by J. Bertrand waa published at Pails 

m1855 ~ 
Gauss in a let,er to Bessel of Fehruary 28, 1839, admItted that h~ had changed 

his VIews regardI g the pstabhshment of the Method of Least Squares since the 
publIcation of his tOTta l[otus in 1809, having abandoned the" metaphYSIcal" 
ba~is on wh~ch the- ~fethod was founded in that work. 
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we have therefore the' estimate . 
-\ n1 + A2n2 +. . ..... A,n .. 

Suppose the A'S are chosen s~ that in the expression (A) the 
"resultant coefficient of x is unity and the resultant coefficients 
<!f !/, z, ... are all zero, so that 

-\n1 + ... + A,n, 
is an estimate of x. The problem is to lay down such further 
conditions for the )..'s as wIll sec~e that this is the best poss~bl~ 
estImate for x. Now this can be done if we take as a funda
mental idea the notion of the weight of an estimate. Let n be 
an estimate, derived from observation, of the value of some 
quantity: then we shall suppose that with this estimate IS 
associated a number W which will be called its ueight. We 
shall further establish (in various ways according as the method 
of Laplace or of Gauss or of more modern writers is followed) 
that if WI' wz, •.• , w. are the weights of the estimates~, nv 
. . ., n. for. the linear expressions (I), then the weight of the 
estimate -\n1 + ... t A.lI. for the expression (A) is W, where 

1 AI "zl AI 
-r-1...+-+ ... +~ 
'V 1('1 WI • U', 

Finally, we shall define the best possible estimate for x to be 
that whose weight is greatest. With these presuppositions the 
best estimate for x is , 

X= AI 1&1'+' •• + A,n .. 
where the A'S satisfy the equations 

Also we have 

Alai + "zrt. + ... + A,a, = I}' 
. AA + .Alb;, +. . . + A,b. = 0 . 

AlCI + ABC2 +. . . + A"c. = 0 
•. 411.. 

AldAl + "zd"z +. . . + A,dAB = O. 
WI 1('1 II', 

These 'equatio~s give at pnce 

. (AI + pDl + p.'b1 + p:c1 + ... = 0, 
11'1 '. • , ... 
A. 'b -' 0 - + ,.a. + po , + po c, +. . = , 
/I). • 

(D 311) 

(B) 

(O) 

16 
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or ~1 + P.Wl~1 ~ P.'Wl~l,j- P."~{'ICl + ... = O} 
A. + p.w.a. + p.'w.b. + p." w,c. + ... = 0 

(D) 

Substituting for the A's from (D) in (B) and (C), we have 
o =x+ p.[wan] + p.,[nbn] + p."[n·cll] + ... 
o = 1 + p.[ waa] + p.'[ II'ba] + p."[ wca] +. . . 
0= p.[ wab] + p.,[nbb] + p."[ ncb] + ... 
o = p.( wac] + ,..'[ wbc] + p."[ ncc] +. . . 
etc. 

Ehminating the p.'s from these equations, we have 
0= x [wan] [ubn] .•• [1Ifn] 

1 [wan] [n·ba]... [1{/a] 

o [waf] [wbf]··· [llff] I 

or 
[wan] [wbn] ... [ufn] 
[wab] [wbb] [II/b] 
[wac] [nbc] [lIje] 

[waf] [ubf] [ lI f.n , 
X= -- -- ---

[waa] [wba] ••• [11;(a} i 
[ wab] [wbb] .•. [uJb] I 

[wac] [wbc] [n;(c] 

[waf] [wbf] • [lIff] 

As this is the value of x obtained from the ordinary normal 
equations of the Method of Least Squares, we see that the 
present mvestigatlOn leads to the estabhshment of that 
Method. 

116. The Weight of a Linear Function.-It remains to 
show how the equation 

. 1 1 2 A
J
2 11..2 

-=.::1...+-+ ... +--.::.... (E) 
1;V WI w2 1'"" 

has been obtained by the different writers who have furnished 
proofs of this type. Laplace obtained it by inyestigating the 
value of a linear sum of errors 

~t"1 +. . . + Aat" •• 
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when each of the errors has a definite law of facility, say the 
probability that the rth error lies between £r and £r + d£r is 
cf>(£r)d£r. This investigation we have given in a form some
what different to laplace's, in § 86: as is there shown, it leads 
to the result that if 

f a,,2cf> (3;) dx 

is denoted by 1..2, then the probability that the linear sum 
~£l +. . . + A.£. lies between -l and + 1 is, when 8 is large and 
under certain conditions, 

1 [-4;:kl 
'( 1I"-:};::-:A'-;;21.";-:2~) i 0 e d u, 

and whatever 1 may be, this is a maximum,when 

~2k12 + Az2k;" + ... + A,2k.2 

IS a minimum. Defining the weights as inversely proportional 
to kll, •.• , k,l, we obtain the equation (E). It will be 
noticed that .Laplace's method r~quires that the number of 
observatIOns should be very large, or else that the elementary 
errors should follow the normal law of facility. 

Gauss, on the other hand, writing 

{~l = al~ + bl~ +. ' .. - '11.1' 

£.=a;x+ b.y+ • •• - 'II" 

obtained accurately 

.X= (Alnl + ... + 1.'11.) + (~£I + •.. + A,£,), 

where as before the A's are multipliers which satisfy the 
equations 

{

AlaI + ... + )...a.= 1, 
Albl +. . .. + ~b, = 0, 
etc., 

and therefore reduce the coefficient of x to unity and the 
coefficients of y, z, . • • to zero. He then assumed that the 
importance of the error ~£l +. . . + )..,£" i.e. the detriment of 
which it is the cause, may be represented by {~£l + ... + )..,£,)1. 

That is, ('\£1 + ... + )..,£,)1 is a function whose mean value is 
to be made a minimum: Thus instead of securing that the 



228 TlJE CALCULUS OF OBSEItV ATIONS 

probability of a zero error is to be a maximum, as he dld in 
the Theona lIfotlts proof, Gauss now'endeavoured to dlminish for 
each unknown quantity, the probable value of the square of the 
error committed. Now . 

(Al€l + ... + As€s)2 = ~A12€12 + 2~AIA2€1€Z" 

The mean value of £12 is 

L: €2</>1 (€)d€ = 2k1', 

and the mean value of £1€2 is zero. 
Hence the quantlty to be made a minimum is 

A1
2k1

2 + ... + A.2k.' 

as m Laplace's proof; and It appears from Gauss's proof that 
this formula can be obtained by making mimmum the mean 
square of error (which is the average of the true square of error 
for an mfi,Iute number of cases); or in other words the Method 
of Least Squares gives a result such that, if the whole system of 
observations were repeated an infinite number of times, the 
average value of the square of the error would be ~ mimmum. 
The postulate of the arithmetic mean, on which the Theoria 
Motus proof was based, IS not needed here. Gauss himself 
decidedly preferred this proof to his earlier treat~ent.:Io 

Some modern' writers have derived the equation (E) directly 
from assumptions regarding wei,qht, which is taken as a funda. 
mental notion, and have.. thereby succeeded in establishmg the 
Method of Least Squares without any appeal to the ordinary 
theories of probability of error. This may be done in the 
following way: t 

'Let n be an estimated value of a quantity x: then we shall 
associate with' this estimate a number w which will be called 
its ~ve~ght, and we shall assume as an axiom that the weight of 
the estimate An of the value of M; (where A is any number) is 
of the form Wf(A), where f(A) is some function of A. If JL is any 
number, the weight of the estimate .JLAn of the value of JLA.7' is 

• Of. letter of Gauss to Schumacher, November 25, 1844, In Gauss, Werke, 
8, Ji. 147 

t, Of. Bernstein and Bser, Math. Ann. '16 (1915), p. 284. 

\ 
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therefore wj(AlI\J<): but it is also j(AJ<); so the function f must 
satisfy the equatio~ . 

j(AJ<) = f(A)f(J<), 

whence we have j(A) = A", 
where k is some number. Thus if the weight of thf! estimate 
n jor x be w, the weight of the estimate An for Ax is 

wA". (1) 

N ext suppo~ an estimate I for x h'as the weight p and an 
independent estimate m for y lias the weight q, and let the 
wllight of the estimate I + m for x + y be r. 

We shall assume as an axiom that r is given by an equation 
of t~e fprm 

y,(r) == f(p) + y,(q), (2) 

this being in fact the definition of independence of the two 
estimates. Since the estimate Al for Ax has the weight PA" 
etc., we have 

(3) 

'Ve have. therefore to find the nature of the function y, for 
which. equation (3) is a consequence of equation (2), whatever 
A may be. Regarding- r as a function of p and q, we have by 
differentiating (2) with respect to p 

l('I')~ = y,'(p), 

and by differentiating (3) 

Thus 

_y,'(rA")~ = y,'(pAI:). 

. y,'(pA") y,'(rAk) 

y,:(p) = ~'(r) ! 

and similarly the latter fraction is equal to 
. y,'(qA") 

!f'(q) • 

Therefore y,~~r~) is independent of p, and therefore. since 

pAl: is symmetrical with respect to p and AI:, we must have 

y,'(pA") 
y,'(p)!f'(A")' 
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& constant independent of p and Ale. The function If' therefore 
satisfies the functional equation 

g(x, y) = cg(;r)g(y), 

which shows that If'(x) IS a mere power of x multiplied by a 
constant, and therefore If(x) is also a power of x multiplIed by 
a constant. This constant has no influence on equation (2), 
and we can therefore write without loss of generality 

If(x) =x"Y. (4) 

Next let nl and n2 be two independent estimates of :1', each 
of weight 1. Then by (1), inl and in2 are two independent 

estimates of i x, each of weight ~: and therefore by (2) and 

(4), !nl + in2 IS an estimate of x of weight T, where 

rY=(~Y +(~y = 21.!-1· 
JVe shall now assume as an axtom that if two independent 

estimates of the same quantity are each of unit weight, their 
arithmetIC mean is an estimate of the same quantity haYlDg 
the weIght 2. We have therefore r = 2, and consequently 

or 

1 
21= 2"y-l 

(k+ 1)y= 1. (5) 
Combining (1), (2), (4), (5) we see that if nl is an estimate 

of Xl with weight WI' and if n2 is an independent estimate of 
X 2 with weight w2' then ~nl + ~n2 is an estimate of AlXl + >..z:rz 
wIth the weIght r, where 

rY=wlYAll-Y+wzy~l-y. (6) 

Now suppose that nl : n2' ••• , n. are estimates of Xl; X2' ••. , ;r, 

respectively, each of weight 1. Then by repeated applications 
of' (6), we see that n1 + nz +. • • + n. is an estimate of 
Xl + x2 + ••• + x. with the weight r where 

r'l' = p + P + ..• + P = s, 
1 

00 r=~ 

Now ue shall assume as an axiom that when the weights of 
'161, ••. , n. are each unity, the weight of nl + nz + ... + n, is 
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of the order !, i.e. the product of this weight and s is alwa.ys 
s 

finite and bounded as s_oo • Therefore 
1 . 
- = - 1 or "y = - 1. (7) 
"y 

By (6) repeated and (7), we see that if nl' n2, ., n, are 
esttmates of Xl' X2' • • " x, respectively, of weights WI' W 2' • .'., w" 
then -\nl + A2nZ + ... + A.n. is an estimate of -\3:1 + Ar2 + ... + A7. 
with the weight W, where 

1. A12 A22 A.2 -=-+-+ ... +-. 1IV WI Wz W, 

This is equation (E), from which, as we have seen, the 
Method of Least Squares may be derived. 

117. Solution of the Normal Equations.-We shall now 
discuss the solution' of the normal equations, which are equal 
in number to the number m of unknowns, and which we shall 
write 

{

anx + auJI +. . . + almt = cl ' 

~21X ~ a'{l-Y .+' . : + l!2,,:t = C~: 

amlx. + am2Y + .. : + dmmt =Cm, 

where aqp = apq: 

Let D denote the determinant lIapqli, and let Apq denote the co
factor of ap'l in D. Then the solution of the above equations 
is known to be 

{

DX = Ancl + A21cZ +. . . + Am1cm, 

. ~Y = ~J~l ~ A22C~ +. ' .. + ~mzCm'. 
Dt = A1mcl + A2mcz +. . . + Ammcm. 

The problem is therefore to calculate D Il:nd its minors Apq. 

To effect this, by the repeated application of the theorem of 
§ 38, we reduce D to a determinant of lower order: the process 
may conveniently be stopped when the reduced determinant is 
of the 4th order, so that we have, say, 

D = M bm1nl b"'lns bml"t 

b,..nl b,..ns b......, 
b"S"1 bm~"t b......, 

I b ... lIJ. bOlO":} b ... "3 

b"'I"O 
~/I12no 
bman, 

bmono I 
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where M denotes an external factor, and each element lip'l has 
been derived from an original element apq by a succession of 
processes of the kind descnbed in § 38. 

Now if bpq is one of these 16 surviving elements, the 
minor Apq of D may be reduced, by precisely the same trans
formations as D, to the product of M and a determinant of the 
3rd order: indeed this reduced form of Apq may be derived 
from the above reduced form of D by merely forming the co
factor of bpq in it. Thus a single reduction-process furnishes 
not only D, but also 16 of the mmors Ap'l 

TaklDg for example the case where we have 6 unknowns, 80 that D 
is of the 6th order, we may reduce D by taking all and b22 In succe."I<lOn 
as the pivotal elements, and shall therehy obtam the mInors 

Ass At4 At5 At6 A44 At. A:'ij AM At6 A,,6' 
those with an aster18k beIng obtaIned t" Ice. 

We can next redu~ D lDdependently by takmg a34 and b56 In 

succeSSIOn as the pivotal elements, and shall thereby obtaIn the nllnors 

AllAf2 Al3 Al5 A22 A23 A25 Au A42 A43 A45 A61 Ae2 A63 A6/j ; 
so that altogether of the Hunors 

All 4)2 A13 Au Al5 Ale 
A22 A23 Au A25 A26 

A33 A34 Aa5 Aae 
A~I A45 A«d 

A55 A56 
A66 

we obtam fourteen of them once, three of them twice, and four three 
times. These multIple determInatIons serve as checks to the calculatIOns. 

Ex. I-To solve the equatWTUI 
x + 3y - 2z, - 2v = 0 5, 

3x + 4y - 5z + u - 3v = 5 4, 
-2x-5y+3z-2u+2v= -5·0, 

Y - 2z + 5u + 3v = 7 5, 
-2x-3y+2z+3u+4v= 3,3, 

we first form the determinant 
D= I 3 -2 0-2 

3 4 -5 1-3 
-2 -5 3 -2 2 

o 1 -2 5 3 
-2 -3 2 3 4, 

and taking all as the plvotal element, we have at once 
D=D'", -5 1 1 3 = -25. 

-1 -2 -2 
- 2. 5 3 

:3 -2 3 0 
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We now find t.he co-factol'll of the elementa apq of D, correspondrng 

to the Burvlvrng elements m D'. For example A23' the co-factor of 
, - 5 m D, 18 eVIdently (§ 38~ the co-factor of b12 = 1 m'D', so 

A23 = -11 - 2 ~ 21 = 3. 
153 
3 3 0 

In tJ118 way" e find the values 

A23= 13 Aaa= 3 
AZI== 3 Aaa= 18 
.!u= -11 Aa.= 9 
A26= 16 Aa:;= - 4 

Now selecbng aM as pivotal element, we form the determmant 

D=D"= 1 3 -2 -2 = -25 
4 3 -7 -4' 

- 15 - 19 23 18 ! 

- 11 - 15 17 13 ~ 

and then determine the co-factors of the elements apq of D, correspondmg 
to cpq of D". For example, 

All = 1 3 -19 
-li 

In th18 way we find the values . 

-7 
23 
17 

-41 =52. 
lSi 

131 

, AIU= - 1, A31 = 19, A41= - 3, A51 =I8, 
All = 52, Au= - 1, A13= 19, A15= 18. 

Now takmg au 88 pivotal element in D we pbtam the remarnrng 
co-factors : 

AIU= -I, Au.=-3. 

The solution of the above e.quatlOns can be written down at once: 

Dz = 0'5All + 5'4Au - 5·0An rI- 7'5A41 + 3'3A51 
:= 26·0 -;- 5·4 - 95'0 - 22·5 + 59·4 

or ':' 25z= - 37'5; whence :1:= 1'5. 
Dy=0'5A18 + 5'4Au- 5·0A32 + 7'5Au+ 3'3A52 

= -0'5+70'2-150,&,82·5+52·8 
or - 25y = 25·0 ; ,whence y = - 1·0. 

Da = 0'5A1S + 5·4A23 - 5'0Aas + 7·5A43 + 3'3A53 
= 9'5 + 16·2 - 90·0 + 675 - 13 2 

or - 2 5a = - 10·0 ; • whence z =,0·4. 
Du = 0'oA1" + 5'4~ - 5·OAa. + 7 SA," + 3 3AM 

_ = :"1-5-59'4-450+127·5-89'1. 
01 ..... 25u= - 67'5; whence 11= 2·7. 

Dv = 0'5~15 + 5'4A26 - 5'0Aas + 7 5A-'5 + 3 3A55 
= 9·0 + 86'4 + 20·0 - 202·5 + 122-1 

or -25v=35'~; whence'tI= -1,4. 
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Ex 2.-Solve the equatwn8 

5x-3y+7z + u+2v= 3568, 
- 3x + 2y + 2'1£ + 2v 60'5, 

7x+2z + '1£- v 167'0, 
x+2y+ ~ + u-5v= - 7'5, 

2x+2y- z -5'1£+ 11= - 71'2. 

118. Final Control of the Calculations.-When the most 
plausIble values XO' YIJ' ••• , to have been found by solution of 
the normal equatIons, we can calculate the residuals VI' ... , v, 
defined by the equa.tions 

a1xO + b1yo +. . . +f/o - n1 >= VI} 

atfCo+bsyo+ • . • ;f.tO-·n8=~8 . (1) 

These residuals V are (as will appear later) required in order 
to determme the mean error of our results. Meanwhile we 
shall show how they may be used to furnish a check on the 
working hitherto. 

We have 
['172] = (a1xo + ... + /ltO - n1)2 +. . + (a.:ro + ... + f.to - n8)2 

= [aa].1·o2 + [bb]y«f+ . •. + 2[ab].1'oYo + ... - 2[anJro- • •• + [nn] 
=.ro{[aa]r.o + ... + [a/Jto - [an]} + Yo{[ ab].co + ... + [bf]to - [bn]} 

+ ... - [an]xo - [bn]yo - ••• - [jn]to+ [nn], 
and by Vll'tue of the normal equations thIS expression reduces 
to the last set of terms, so we have 

['172] = - [an]xo - [bn]yo - ••• - [jn]to+ [nn]. 

This equatIOn may be used as a control for checking the 
accuracy of the whole set of computatlons, [v2] being computed 
directly by squaring and addIng the residuals. We have 
prevIOUsly (§§ 108, 117) descnbed controls on the formation 
of the normal equations and' on the calculation of the deter~ 
minants involved in their solution. 

119 Gauss's Method of Solution of the Normal Equatlons.
The method' of solving normal equatIOns gIven by Gauss * dIffers, in form 
at any )'ate, from the determinantal method descnbed In § 117. It 
may be described thus: 

From the normal equatIOn in iX, we find x in terms of the other 
varIables and substItute this value In the remammg normal equations: 

• Theuruz Oombtnatum .. , Supplcmt1ltum The method IS fully descnbed by 
Encke. Berhn astronomUlcM Jahrbuch (1835), pp. 267, 272, and (1836), p. 263 
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this glVes us . the "first transformed Systeill," which Involves only 
y, z, • • ., t, and is (hke the original system) axisymmetric. 

}'rom the first equation of the first transformed system (VIZ. that 
equatIoll whlCh was denved from the normal equatIon 1D y) we finu 
y in WIllS of z, .•. , t, and substitute thlS value 1D the remammg 
e<luatlons of the first transformed system: this gIves us the "second 
transfortned system," which involve.~ only lI, • • , t, and is also aXl
symmetric. Proceeding In this way we obtam at last an equation which 
lllvolves only t and from which t can thereforSl be determmed' we then 
determinE' all the other unk,nowns, each from the equatIOn which was 
used for its elimination. 

Thus If the original normal equatIons are 

az+hy+gz=l, 
hz+ l;y+ Iz =m, 
gz + Iy + ez = fI, 

the set of equations ",hlch are used 1D Gauss's method for the 
deterlllination of x, y, z are 

az+hy+gz=' 1 
I: ~IY+~: }lz=l: ~I 

I: : }lz=l~ : ~I J' 
9 I t: 9 f n, 

final 

(I) 

Now If T denote the quadratic form wIDch represents the sum of the 
squarej of t1?e errors, namely 

T=qxZ+ by3+ ez2+ 2fyz+ 2gzz+ 2hzy- 21.1:- 2my - 2nz+1£, 
It is known that T can be expressed as a .sum of squares in the fOrlll 

T=~(a.t+hY+9z-l)3+ ral h {I~ ~/y+l: }/ z'-I: ~i r 
a Ih b I 

1 {fa h gila h '\}S 1 a h 9 , 

+Iffll~ -Z-- JI ~ ~ ~ z-i~ ~ ': .+I~ z ;,. ~ ~ { ~I 
9 leg I elm n 1£' 

wroch shows at once that the equations (1) must necessarily represent 
the conditions that T is to be a minimum, and shows also that Gauss's 
method of solution is substantially equivalent to the reductIOn of a 
quadratiC f~rm to a sum of squares. 

Ex. I.-To 8011le the equations 

x+ 3y- 23- 2v= 0'5. 
3z+4y-5z+ 1£-311= 5'4. 

-2z-5y+3z-2u+211= -5'0. 
y-2z+5u+311= 7'5, 

-2z-3y+2Z+3u+4~= 3·3. 

(I) 
(2) 
(3) 
(4) 
(5) 
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Elimmatmg x from equations (11 and (2), we have 

1
1 31 1

1
-

2
\ \1 01 1

1
- 21 11 3 4 y+ 3-5 Z+ 3 1 ll+ 3-3I v = 3 

0'5\ 
IH 

- 5y +z+u+ 3v= 39, (6) 

and slmIlarly, by combimng (1) wlth (3), (4), (5) In succession, we obtam 
the equations 

or 

y - z - 2u - 2v = - 4 0, 
y-2z+5u+3v= 7'5, 

3y-2z+3u 43 

Now ehmmatmg y from (6) and (7), we have 

1
-5 11 1-

5 
11 1- 5 

31 1- 5 39
1 1-1 z+ 1-2 u+ 1-2 v= 1-40, 

4z+9u+7v=161, 

(i) 
(8) 
('l) 

(10) 

and slmllarly, combimng (6) with (8) and (9) In successIOn, we obtam 

9~-26u-18'11= -41'4, 
7z-18u- 9'11= - 332. 

(11) 
(12) 

Contlllumg tlus process of elUfllllatIOD, the followmg equahon~ are 
obtamed: 

185u+ 135v=310'5, 
135u + 85'11 = 245'5, 

(13) 

• (14) 

and finally, from (14), (13), (10), (6), (1), we determme the results 
'11= -1·4, u= 2'7, z=0'4, y= -1'0, and X= 1;5. 

Ex. 2.-Solve by Gauss's method the equatwnB 

5x-3y+7z+ u+2v= 356'8, 
-3x+2y+ 2u+2v= 605, 

7x+ 2z+ u- '11= 167'0, 
x + 2y + z + u - 5'11 = - 7 5, 

2x+2y- Z-51t+ tI= - 71'2. 

120. The" Method of Equal Coefficients" for the Solution 
of Linear Equations.*-In a method of performing the 
elnnmation, winch is known as the Method of Equal Coefficunts, 
th~ two first equations are reduced to two equations between 
each of the two first unknowns and the remaining unknowns; 
then these two with the third equatIOn of the onginal system 
are reduced to three equations between each of the three first 

* B. I Clasen, Bruz. Soc. Se. 12 (1888), A 50·59, B 251·281. 
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unknowns and the remaining unknowns, and so on. The 
advantage of this method is that the same coefficients occur 

"repeatedly, the elimination being thereby greatly facilitated. 
The method involves certain divisions, which, however, sh01tld 
always 'give exact quotients without remainders, thereby con
stituting a control of the accuracy of the computation. 

Thus let the equations be 

¥+~*Y+~+¥=h ~ 
a.;e + b.;; + co? + d2u + c2v =h, 12 
a:rc + baY + caz + d3u + eav = f3' 13 
a~r + b41l + c,z + d,u + e,v = f4' 14 
aix + boY + cr.z + diU + eov = fr.· 15 

Eli~inating x between 11 and ls, we have 

la1baly+laicalzt la1dalu+lalezlv=~a1hl, 22 

and eliminating y between 11 and 22 by forming the sum of 
-I aloal 11 and b122 and dividing by a1, we have . 

-I albslx+ I b1c. rz + I bldzi u + I blezl V= I bxfzl· 21 

Now multiplymg 21 bY" a3, 22 by - ba, 13 by I al b2 1 and adding, 
~h~ . 

I a1bscs i III + 1 alb.dsl u + I albaeal v = I albdsl· 33 

Eliminating z between ~2 an~ 33 by forming the combination 
I a1bacs l2s -I alca 133> and dividing by -I albzl, we have 

-I a,bacs\ Y + I alcadsl u + I alczesl v = I alczla I, '32 

and eliminating z between 21 and 33 by forming the combination 
1 a1ba~312, - ~ bl cs l3s and divi~ng by .-1 albzl, we have 

I ~lbzcsl x + I blcsdsl u + 1 blcarsl v = I blczla I· .. 
->1 

N ow form the combination - a43l '+ b,32 - c,33 + I al bzca l14• 

We get' ; 

Eliminating 'U between this equation and 3s by forming 
I albacsd, I 33 - , a1bzd3144 .an4 dividing by -, albacal , we have 

-I alb2c3d, I III + I alb2~3e, I v =, albsda.h, " 4a 
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and sImilarly 
I a1b2cad, 1 'If + 1 a1c£aae,1 v = 1 (/l~2aai,l. 

-I a1b2cad,1 x + 1 b1c2dae,1 v = / b1c2daf,I, 
Now form the combinatIon a041 - bo~ + c54a - d04, + Irri'2carl411 •. 

We get 

Eliminating v between 55 and 4, by forming I alb2cad"e514, 
-I a1b2cae, 1 55 and dividIng by 1 a1b2ced,l. we haye 

and simIlarly 
I a1b2cad,eo /z = / (/lb2daeJ5'. 

- 1 alb2cad,eol Y= 1 (/lc2rlaf 4is', 
I a1b2cadh 1 x = I b1c2aacJ51· 

The solutIOn is thus completed. 

Ex. 1.-To 801ve the equations 

x + 3y - 2z - 2v = 0'5, 
3x+4y-5z+ ~t-3v= 5'4, 

-2x-5y+3z-2u+2v= -5'0, 
y - 2z + 5u + 3v = 7 5, 

-2x-3y+2z+3u+411= 3'3. 

Ehmmatmg x from equatlOns 11 and 12' we have 

- 5y+z+ u+ 3v= 39, 

and ehmmatmg y between 11 and 22 by forIllIng the Bum of 5.11 an,1 
3 22, we obtam 

5x-7z+3u-v=14'2, 

in which the coeffiCIent of x is mmus the coeffiCient of y 1D 2:r 
Now multiply 21 by - 2, 22 by 5, Is by - 5, and add to form the 

equatlOn 

4z+ 9u+ 7v= 16'1, 

in whIch there are no terms m x and y 
Ehmmatmg z between 3a and 22 by formmg the combmatIOn 

}(4.22 - 3:0, we obtam the equatlOn 

-4y-u+v= -0 1, 

In which the coefficient of y IS minus the coeffiCIent of z m 33' 
Now ehminatmg z between 21 and 33 by formmg the comhination 

j(4.21 + 7.3~ we find 
4x+I5u+9v=339, 3J 
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in whlCh equation' the coefficient· of x differs only in Sign from the . , 
coefficient of y III 32' Now form the sum 32 + 233 + 4.1" 

.37u+27v=62·1, 44 

and eluninate u between th18 equation and 33' 

-37z-4v=-92. 43 

The remaining equations of the process are 

37y-16v= -14·6, 
- 37x+ 18v= - 80,7, 

-25v= 35'0, 
25u= 67'5, 

- 2,5z= 100, 
25y= -25'0, 

-25x= -37'5. 

The J;equired solution 18 therefore 

'x= 1'5, y= -1'~, z=0'4, u=2'7, v= -1'4. 

Ex. 2.-Solve by the above method the equations 

5x- 3y+ 72+ u+2v= 356·8, 
-3z+2y+ 2u+211= 605, 

7x+ 2z+ u- v= 167'0, 
x+2y+ z-!' u-5v= - 7'5, 

2x+2y- z- 5u+ tI= - 71·2. 

121. Comparison of the Three Methods of solving Normal 
Equations.-Comparing the three methods wluch have. been 
given-the Determinantal. method (§ 117), Gauss's method 
(§ 119), and the method ~f Equal Coefficients (§ 120)-we may 
say that the Determinantal method is on the whole the best for 
the solution of a set of normal equations. It should be observed, 
however. t~at the superiority of the Determinantal method 
depends on the circumstance that a set of normal equations 
is always axisymmetrio (i.e. the coefficient of y in the normal 
equation for x is equal to the coefficient of x in the normal 
equation for y). For a set of linear equations which is not 
axisymmetric, the Determinantal method is inferior to the 
method of Gauss. 

122. The Weight of the Unknowns.-We shall _now 
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lnVestlgate the weights of the determinatIons of the unknowns 
x, y,. ., t. Denote the most probable values' of the unknowns 
by xo' Yo" . ., tIT We have in the notatlOn of § 117 

where D and the minor .Apq depend only on the accurately
known coefficients a, h, • . . of the equations of conditIon and 
where 

C1 =w1a1n1 + w2a2n2 + ... +u·.a.n. 
C2 =101h1n1 + w2h2nZ + ... +1('.h.n. 

so (1) 

where 

gl = .Anal + .A21hl +. .= ct1 hI c1 " ·h 
(/21 ((22 a23 ••• (/2m 

(/31 a32 (/33 ••• ((3m 

((ml ami arna • • . am". 

g2= a2 hz ~ ·/2 , etc. 
a21 ((22 (/23 • ((2m 

By giving to n1, ••• , n. the partIcular values a1, • •• , ((" iJ;l 
whICh case we should eVIdently have Xo = 1, we derive from 
equatlOns (1) the result 

D=[gwa], (2) 

and sImilarly by gIving to "'1" ., n. the values hI" ., h .. in 
whIch case xo= 0, we have 

. (3) 

Let 101l; be the welght of the determinat{on of xlT Then since 
:Vo is given by equation (1), we have by the formula for the 
weight of a lmear function of n l • •••• n., 
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D2_.!2.!2 .!~. 
--101 101 +6"2 W2 +· . '+6",-11), 
~ ? 

wlElal wJ.~lbl ••• Wl~l.h + w2g2a2 W2g2b2 ••• u'zgz/2 '+. 
a22 ••• /l:!m 

+ W.~,a. w.g.b, ... W,g,/. 
aZl a22 • •• a2m 

['lOa g] [wbg] . . • [wig] 
au a22 ••• a2m 

D 0 o by equatlOns (2). and (3). 
a2m' 

(l,mm 

Therefore 

or, 

and similarly 

• These focmulae, give the weights of' the determination of 
x, y, ... j ~hey: are due to Gauss. * 

It is a consideration ira. favour of the determmantal method 
of solution of the normal equations that as D, All' A22, ••• 

are calcu.lated in order to find x, y, z, : '. 'J the method furnishes 
the weights without any fresh calculation, 

N (JW let E denote the mean error to be feared in an obl:'erva
tion of unit weight, and let E., denote the mean e~ror ,to be 

f~ll:red in the determination of x: then since U':r:= ~.,. we ha, e 

EZ=E~(~l). . 
• ~ori" Combinahonis. § 21. 

(D 311) 17 
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We shall see la.ter (§ 124) how E .may be found in term~ of 
the residuals of the equations of condition. 

123. Weight of any Linear Function of Unknowns.
Now let 

u = llX + l~y +. . . + lmt 

be any hnear function of the unknowns x, y, z, ... , t, so that Its 
most probable value is 

Uo = llxO + l'J1Jo +. . . + lmfo, 

where (xo' Yo, ••• , to) are the most probable values of the un
knowns. Let It be required to find the weight of the equation 

u=uo·* 
It will be sufficient In the first place to take u = l.t + l'y 

W ritmg as before 

and wrIting 

we have 

and therefore 

{

gl = Anal + A21br +· .. + A",J/t, 
ea = Anaa + A21ba + ... -t AmI/a, , 

. ... . 

''It = Al~al + Azzbl +. . . + Arndl' etc., 

Dxo = Elwlnl + Eawana +.. + E,w,n" 
Dyo = 'hwlnl + 7Jawana +.. + 7J,w,n., 

Duo = (lEI + Z'7Jl)wl nl + (lE2 + l'7Ja)wana + ... + (lg. + l'7J.)n',nr 

ThereforE! if Wu denote the weight of the equatIOn u = 7'0' we 
have 

D2 = (lEI + l' 711) aWl + (lEa + l' 7Ja)2v)2 + ... + (IE, + l'7J.)2W ,. 
Wu 

Now we have already proved' that 

ElZwI + EaZwa + ... + E.Zw. = DAn' 

and in the same way we may show that 

EI7JlWI + Ea7JaWa + ... + E.7J,w. = DAl2' 
D2 . 
- = l2DAu + 2ll'DA12 + l'2DA22 
Wu 

l~erefore 
\ 

or . D = A [a + 2AdZ' + A ['2 
U'u U 22 , 

• Gauss, Theoruz Comb ... alwm.<, § 29 
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and similarly i,n general)f w... is the weight of the function 
ll'~~ +l'J1J + .. ~ +lmt, we ~ve ' 

D = A lIZ + A?9.lZz + ... + Ammlmz'+ 2AIJiz + .•. w... J,lV 

This fOT1nula gives the weight of the determinatwn oj any 
linear function of the unknowns. 

124, The'Mean Error of a Determination whose Weight 
is Unity.*-We shall now find the me!ln error of a determma
tion whose weight is unity. For simplicity we shall suppose 
that the equations of condition have been multiplied by the 
square J;oots'pf their weights, so thl!-t they may be taken to be 
each of unit weight. Let. them be as usual 

alx + bly +. . . + fIt = nIl 
~~;+b8Y+: . . ~f,t=~J 

(1) 

Write 
a,x + bTy +. . . + frt - nr = ET j so ~, Ez• . . ., E. are the true 
errors of 111, •• • ,'n .. if x, y, •• :, t are supposed to be the true 

• values of the m unknowns. , 
Write also 

a,xo + bryo + ... + J.to - nr = 'lJT j 

so VI' • " " v. are the residuals when the most probable values 
xo •.•• , to are substituted in the equations of condition. 

We have evidently 

Also, 
[av] = 0, [bv] = 0,. . [fv] = O. (2) 

EI - VI = a1(x - xo) + bl(y -'yo) + ... + /,,(t - to)} 

i. -~: = a.(~ - xo; + b.(~ _ Yo) +. : . + /.(t ~ t~)' (3) 

Multiplying (3) by VI" • '. v. and adding, remembering (2), 
we have 

. [Ev] - [vv] = O • 

• Multiplying (3) by E 1: • • • , E. and adding, we b,ave 

~E] - [Ev] = [aE] (x- a'o) + .. '. + ffEl,(t - to)' 

so [EE] - [vv] = [aE](x - a'o) + .. :+ [fEW,.... to)' . (4) 

• Gauss, Tkeoria Comb"',?tilnl,tS, §§ 37. 38.39, 
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Now we have alIeady seen that if coeffiCIents gl' ... , g. are 
defined by the equation 

Dxo = glnl + g2n2 + ... + g.n ... 
then rag] = D, [hg] = 0, ... , [fg] = 0, 

and 
[€g] = [ag]xo + [bg]yo +. . . + [fg]to - [ng] = Da:'o -[ ng] = o. 

Multiplymg (3) by gl' ... , g. respectively and adding, 
remembenng the equations just wrItten, we have 

[gEl = (x - xo)D. 
Thus (4) becomes 

D[EE] - D[vv] == [aE][gE] + [bE][lJE] + ... + [jE][TE]. (5) 

This is a relation between the sum of the squares of the 
resIduals and the sum of the squares of the true errors. As it 
stands, however, it IS no£ sufficient to determine [EE], smce 
the quantitIes E occur also on the right-hand side of the 
equation; but we may overcome this dIfficulty in the followmg 
way: 

Suppose the set of observations repeated by the same 
observers with the same Instruments under the same condItions, 
N times, where N is a great number. For each of these sets 
of observations we shall obtain an equation correspondlDg to 
(5). Let these equations be added together, and the resulting 
equatIon divided by N. The values of D and the a's, b's, •• '., 
/,s, (s, •.. , T'S are the same for each set of observations, but 
the n's, E's, and v's differ from one set to another. U sing the 
symbol }; to denote summ~tion over the different sets of 
observatio~B, we have 

D D 
N};[EE] - N~[ V'IJ ] 

111 
= :N};[aE] [gEl + N};[bE] ['IE] + ... + N};[fE] [TE). 

N ow if positive and negative errors are equally liable to 

occur, each of j;he sums j};EpEq evidently tends to zero as X 

increases indefinitely: and then the equation becomes (when 
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we understand the ,sign of equality now to indIcate that the 
two sides of the equation differ only by negligIble quantities) 

~I[EE] - MI[VV] = ~I(al~lE18 + aJ2E22 + ... + aJ,E.2) + ... 

+ ~I(flT1E12 + ... + I,T.E,S). 

111 
Now NIE,.2='NIE22= ... = 'NIE.2= the square of the true 

quadratic mean error, i.e. the value which we shQuld deduce 
from an indefinitely great number of observations. 

Therefore, denoting the quadratic mean error by E, we have 

D 
DSE2 - 'NI[ vv] 

so 

= (al~l + a2~a + ... + a.g.)E2 + ... + (hTl + ... + j.T.)E2 

= DmE', 

In this equation E is the true value of the quadratic mean 
error to be feared in a determinatiQn whose weight is unity, 

and ~I[VV] is the mea!l value of the sum of the squares. of the 

residuals. Since the true value of ~I[VV] is unknown, we are 

obliged to be content with that which is furnished by the 
unique actual set of observations: so for the most probable 
value of I: we have the equation 

• "8 [vll 
E =--. 

S-tn' 

This is Gauss's expression for the quadratic mea~ error ~ to be 
feared in a d~termination whORe weight is unity; s denotes the 
number of equations of 'condition, and m is the number of the 
unknowns ;v, y, ••. , t. The quantity 

Je[:rj) 
is therefore well a.dapted' to mea.sure the precision of the given 
set of observations. • 
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J 25. Evaluation.. of the Sum of the Squares of the 
Residuals.-We shall now show how [v2] , the sum of the 
squares of the residuals, may be expressed in terms of tIll' 
coeffiClents in the equations of condItion and normal equatlOnll. 
We have 
[V2] = (a1xo + b1yo +.. + JltO - n1)2·+ . •• + (a.J'o + ... +.f,f 0 - n,)2 

= [aa]x02 + [bb]Y02 + . + 2[ab]xoYo + ... - 2[an].ro - ..• 
+ [nn], (1) 

and we know that [v2] is the minimum value of the quadratic 
form . 

[aa]1J2 + [bb]y2 + ... + 2[abJry + ... - 2[anJ.7; ... + [nn]. 

From the general theory of quadratic forms we know that 
the minimum value of this last form (which we know to be 
essentially positIVe, smce it IS a sum of squares) is 

[aa] [ab] .. raj] [an] I 
[ab] [bb]. . [bJl [b.] I 

[v2]= 
[an] [bn] . ._.JJn] [nn] 

(2) [aa] [ab] . '" raj] i 
[ab] ~bb] . : • [bJ~ I 
raj] [bJ] •.• [jJ] I 

We may also establISh thIS formula directly In the followlDg way 
We have already proved (§ 118) that 

[v2]= - [an]xo - [bnpJo - •.• - (fn]to + [n1l1 

and substituting for XO' YO" ,to theIr deterllunantal value-, \\e 
obtam the equatIOn (2) 

Combinmg the results of this section with the equation (§ 124) 

€2= [v2
] • 

:;-m 
and the equation (§ 122) 

we see that the quadratic mean e)'ror to be Jeared in the defer
mination oj x is €o:, 
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where 

[bb] [be]. 
[be] [ce]. 

[aa] [ab]', raj] [an] I 
[bJ] ; [ab] [bbJ. [bJ] lbnJ 
[eJ] I 

E8_I[b~] [eJ].,.[fJ] iran] [bn] .. [fn] [n~]. 
'" - (s-m) [aa] [ab] ... [aJf'-z------'=-"'--"--"--' 

[ab] [bb].,. [bl] 

[qf] [bl]··· [fJ] 
If the ongina~ observations are weighted we must WrIte [waa] 
for [aa], etc. 

Ex. *-Suppose that observatIons of equal weIght give 

, x- y+2z=3 
3x+2y- 5z=5 
4x+ y+ 4z=21, 

while an observatIOn of weight! gIves 

- 2x + 6y + 6z = 28. 
For the last eqliatIOn we substitute 

-:r:+ 3V+ 3z= 14, 
and the fmlr equatIOns are now of equal weIght. 

The normal equations are 

, , 27xo+6Yo=88 } 
6xo+ 15yo+zo= 70 , 

Yo+ 54zo= 107 

49154 2617 
:1'0= 191199' Yo= 737' whIch gIve 

12707 
zo= 6633' 

or 

so 

, . 
Xo = 2'470, Yo = 3'551, zo= 1·916. 

The weight of the determination Xo is 11'"" where 

115 1/ 
~'" = A; ~ I '! lIt ~ I 

o 1 54 

19899 
11'",= 809 ' 

809 

and sumlarly 
737 2211 

11',=54" W'z=41' 
• ThIS eX&IDple was used by Gauss himself as an Illustration of tbe Method 

oC Least Squares. • 
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The residuals are 

4960 1320 1880 1400 
-19899' -19899' 19899' - 19899' 

and therefore the BUill of the squares of the residuals IS 

1600 
[vll]= 19899' 

so the quadratic mean error to be feared III the determinatIOn of x 18 

2 [vii] 1294400 2 2 
~"" where E", = w", = (19899)2' and slnlllarly for Ey and E. ' 

126. Other Examples 'of the Method.-The PrlDClple of 
Least Squares is applied in the first of the following examples 
to a problem of curve-fitting, and in the second to a geometrical 
construction. 

Ex 1 -F~nd the values of the constant8 a, b, c, which nearly sattsfy 
the equatwl~ 

b t 
f(x)=a+;; +;;z 

for values of x between q and p, where j(x) is a gtven furrctton. 
In thiS case 

is to be made a mlnIIllUm, so dlfi'erentlatlllg with re.peet to a, b, and e, 
we have the three equatIOns 

1'1' l' Pdx {Pdx fP a dx + b (C + e Xi = f(x)dx, 
q q 'I q 

(tiP ~ + biP 
~ +ei" ~ = 1" j(x) dx 

qX qX2 q:J.-lI q x' 

alP ~+ blP ~+ eLI' c!:: =1" j(J.)dx 
qx2 q:c3 qx" qX2 

From these the values of a, b, c can be determined, 

Ex 2,-The posthon of a point tn a plane u determtned a8 the tnter
secttOn of several ltnes furnished by obseTtalwn, Owmg to errOT8 of obseT'ta· 
twn the ltrles are not exactly concurrent To find lhe most probable post/ton 
of ~he potnt * 

" dn the dIStances of a point of the plane from 

* d'Ocagne, "ourn de Z'Ecnle Pol. cab. 63 (1893), p. 1. 
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the n given lines j let J,; '\20 ••. , .>.." be the welgh~s' attached to those 
lmes' then the required pOint 18 that for whICh 

'\ld1
2 + '\2d22 +. . . + .>.."dn2 

IS a mlrumum, This pOint may be called the centre oj least squares of 
the system. 

The centre of least squares 18 the pOint for whICh the functIOn 

S _ }; A,(a,"X + b,y + c.l2 

-.-1 a;!- + b;!-

IS a mlrumum: SO its co-ordinates are gIVen by 

or 

oS ax =0, 
oS ' 
ay=O, 

i ,\,a.( ave + b.y + e,l 
._1 a,!/.+ b,Z 

~ A"b,(a,"X + b,y + e.l 0,... !/. b!/. =0, '-1 a, + • 
(1) 

Now If a IS any pomt whatever of the plane, and ai', O2', ,On' are 
the images of a with respect to the given hnes, the centre of gravity O· 
of particles of masses '\1' -\. .. ','\n at ai', O2', " On' may be called 
the symmetric baT1Jcmtre of a With' respect to the system of hnes 

If a be (X, Y), the symmetric barycen,tre A' of a has the co-ordlDates 
(X', Y'), where 

X' = X _.! i '\'tl,{a.: + b~Y + c,l 
:£"=1 a, + b, 

Y'_ Y _.! };A,b,{a.X + b,Y + c.) 
- :£"=1' a,!/.+ h,!/. , (2) 

where L='\l +, . ,+'\,.. 
Now suppose the orlgm taken at P, the centre of least sq~ares, ,so that 

by (I) we have 
'<;' A,tl,-c. 0 '\' ,\,b,-c. 
-~b 1=' ----:a---b!/. = 0, a, + , a, + • 

and suppose the d~ectiollo of the ahs Px chosen so that 

'" '\,-a,b, 
.... -----a-b.! = 0, 

a. + • 
Then the equations (2) become 

, ( 2~ A,-a,.! ) 
X = I-t.l.a,lI+b;!- X, Y ' ( 2~ ,\,b;!- " = 1-r.-a,.!+b!')Y' 

and since 

th~se may be written 
X'=p.x, Y'= -p.Y, • 
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Let O' be the symmetric barycentre of 0', 
The co-ordmates of O' are X· = p.2X, Y' = p.2Y. and therefore the line 

00" passes through P Moreover, the hnes PO and PO' are equally 
PO' PO· 

mclmed to Px, and PO = P. = PO" 

o 

p~------------~----~~-------------

FlO, 17. 

Thelefore the trllmgles PO'O" and POO' are sImIlar, and O'P lII.lkes 
wIth 0'0· an angle equal to the angle 0'00", Thus the centre of lcru<t 
squares P is the mtersectIOn of 00" wIth the lme O'P whIch lIIakes 
wIth 0'0" an angle equal to 0'00· or otherwIse expressed, the centre of 
least squares U1 the ~ntel8ecttOn of 00" 'llnth the tangmt at 0' to the c~rcle 
00'0", 

127. Case when two Measured Quantities occur in the 
same Equation of Condition.-'Ve shall now consider the case 
lD whICh the quantity n in an equation of condition 

ax+by+cz+ . . . +Jt=n (1) 

is not itself a measure derived from a single observatIOn to 
which a known weight is attached, but is a known functIon of 
two measures p and q derived from dIfferent observations to 
which weights Wp and Wq are attached. It is required to find 
the weight which must be attached to the equation (1). 

Let the expression for 11. in terms of p and q be 

11.= </>(p, q). 

Then a small error £ in p and a small error p.·in q gIve rise 

to an error ~; £ + ~t in 11.; and therefore the weight VJn of 11. 18 

given by the equation 

, ~=CJ</»2~+(~r~· 
wn Op VJp oq 11.'q 



THE METHOD OF LEAST SQUARES 251 

The eq~atlon (1)' is now to be trea.ted .as if n were a 
measure dexived from a single observation having the 
weight w,.. 

128. Jacobi's Theorem.-It was shown by Jacobi * that 
the values of the m unknowns which are obtained from s 
equatIons of condition by the Method of Least Squares may be 
derived also in the following way. Take any m of the equations 
of condition and solve ,them as ordinary algebraic equations, 
obtaining (say) a value 

Xl = i l (where ~ and BI are determinants) 
1 

for the \lDknown x. We can select the m equatIOns for' thIS 

, pur~ose in p ways, where p = (~) and thus obtain p values for 

X, Bay 
Ap 

., xP=B
p

' 

Then tke valulJ oj X given by tke J[etkod oj Least Squares is 

_ AIBI + ABBa + •.. of- ApBp 
xo- Bl'+B22+ •• "+ Bp2 

This result is an immediate consequence ()f Cauchy's well
known theorem 011 the equivalence of the two forms in which 
the product of two array.s can be expressed.: thus in the case 
of 8 = 3, m = 2, what is to be proved is . 

I al 1'1 + ar', + asXa 
blx1 + bz.ra + ba::ra 

\
a;8 +a2z +aal 

c;bl + aab, + a3ba 

~bl + azba + asba I 
bIB + baz + bs" 

albl + aaba + aabsl 
bl

a+ bl+ bs-

I xlblll albll + IXlbll1 c;bll + I xzbzll (lzbz I 
= x2ba asba ,X3bS asbs xsbs Cr3bs , 

lalbl!S + I albl 11.+ laabz!' 
lalba asbs asbs 

which follows at once t;rom·the theorem on the product of two 
arrays. 

• Journ.. ,.!r Math, 1111 (1841), p. 285. 
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Ex *-Consider .. the system of four equatlOlls used by Oam<l, and 
worked out m Ex, § 125, above, VI? 

x - y + 2z = 3, (1) 
3x + 2y - 5z = 5, (2) 
4x+ y+4z=21, (3) 

- x+3y+3z=14. (4) 

Now equatlOns (1), (2), (3) alone would g'lVe 
90 115 65 

x= 35' y=J'ij' Z= 35' 

the numerators and denommators bemg the exact values of the de
termmants, thus, 

1

1-1 2' 
3 2 - 51 = 35, etc. 
4 1 4 

EquatlOns (1), (2), (4) would gIve 

122 167 93 
x=47' y=-'4'1' z=-

47 

EquatlOns (1), (3), (4) would.glve 
78 113 

x=33' y=3"3' 
67 

z=33' 

Equahons (2), (3), (4) would gIve 

so 

- 304 - 444 
x= -124' y= -124' 

- 236 
z= _ 124' 

(90 x 35)+(122 x 47)+(78 x 33)+(304 x 124) 
x()= 3511 +472 +332 +1242 , 

49154 
= --, as before. 

19899 

129. Case when the' Unknowns are connected by 
Rigorous Equations.---..:n frequently happens that the un
knowns x, y, z, •.. , t are not mdependent, but are connected 
by rigorous equations: for instance, if x, y, z represent the 
three angles of a triangle, they are connected by the rigorous 
equation x+y+z='I!'. In order to discuss this case we shall 
suppose that the unknowns are given as before by a set of 
linear equations derived from observation 

) a1x+b1y+· . . +fi=n1} 

~zX+~211+' • • '+~2t=~2 , (1) 

a,;c+ b.y+ . .. + f.t= n. 
• GIalsher, .lIon/h. Not. 40 (1880), p 600. 
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(where nH • ' •• ,7'. are the observed q~antities), together With 
p rigorous equations 

<PI (x, y, .'. " t) "'" O} 
<Ps (x, y, . . " t) = 0 . . . . 

V>P (x, y, ... , t) = 0 

(2) 

We shall suppose that (by multiplying each of the equatIOns 
of condItion by the square root of Its weight If necessary) the 
equations of condition have been rendered all of equal weight. 
Then, as in the proof of § 125, we see that the most probable 
values of the unknowns are those which make 

E:; [aaJ.l;2 + [bb]yq .. .• + 2 [ab]xy + ... - 2 [an]x - ... + [nn] 

a minimum, subject to the conditions (2). We must have 
ther,efore 

oE oE oE 
Ox'dx + o,/Y +. . . + Ftdt = 0, 

where dx, dy • . 1 ., dt are subject only to the conditions 

~d o<P1d o~ l 01 ox x + oy y +. . . + at t = 

0<P2dx 0<P2d o</>2dt - 0 ' 
ox + (}y y+ . . ·+'.at -
. . . . . . 

and therefore the unknowns are to be determined from the m 
equations 

(where ~, -\' .. " Ap are unknown multipliers), together with 
equations (2). We have therefore (m + p) equations to de
termine the (m + p) ,:nknown qua~tities x, y, •.. , t, AI" • ., >-r' 

Ex. - The measures of the four angles of a plane quadrangle are 
a, {3, 1, Il, WIth wlJ'ights 91,92' 93' 9, respectively. Find the. most probable 
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vetlnes of the (!?lyles, and idtow that the wll'lyht of the t'al,le found fOT fhe flTst 
an 'lIe ts 

y]g'lfJa + g1'/2g« -+- gII}'3fJ4 + g2(1-{1« 
g:fl« + g'lf!, + g!"a 

so that when all the wetghts are equal, the 'we1ght of the ;:'''If11 wille "f an 
angle t8 ! the weight of an observatwn 

Let the angles pe 81, 82, 8a• 8" The equatIOns of condItIOn, lellllced 
to umt weight, are 

JgI81 = Jgla, Jgz82 = JyJ3, Jga83 = JYaY, JrJ,8, = Jgl.0' 

and the rIgorous condItIon IS that 

81 + 02 + 83 + (I, = 2", 

We have therefore to make 

~~-~+~~-~+~~-~+~~-~ 
a nlll1lmllID, subject to the last condItIon We have thCl~fOle 

gI(OI - a)dOI + g2(02 - f3)dOa+ ga(Oa - y)dO + y,(8, - 13)d8, = 0, 

where the dIfferentIals are suq)ect to the conditIOn 

d8t + d82 + d8a+ d8,= 0, 

and therefore 

or 

gl(OI - a) = g2(82 - (3) = Ya(Oa - y) = g«(8, - 13) 

We thus obtam 

8'-a _ rJ'lf!aYia +{3+y+13- 2,,) 
1 - g'lf!aY, + YlgaY, + YIYzY, + YIg'lf!a' 

° = Yl(Y'lfJ3:- YaY, + YtY2) a _ ~'lfJaY4 ({3 13 _ 2,,) 
1 }.Y'lfJaY, }.Y'lfJaY« + y, + , 

and SImIlar expressIOns for the other angle<!, 
Denotmg the weight of °1 by WI' we have at once 

~ = {YI(g'lfJa:; g:fl, + YtY~}2 -.!. + {.!zY:fl4.. }2( 1 + .!. + -.!.), 
'VI ~9'lfJ'J,g« fit .... Y'lfJaY, Y2 [/3 Y, 

Y'lfJ3 + Ya"4 + 9 .. "z{ 
= ('£Y'lfJaY4)2 y10'lfJ3 + Y:fI, + Y4Y~ + Y'lfJ37,} , 

1}2ga + yaY, + YtY2 
= ::£Y'lfJ31}, ' 

or W _ Y'lfJaY« + YIYaY, + Y1'12Y, + Y1921]3 
1- g'b"a + ga.'I, + g .. '12 • ' 

whIch is the reqlUr~d result. 
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130. The Solv,in~ Processes of Gauss and, Seidel

When the number of unknowns is great, the algebraic methods 
for tha solution of the nprmal equations, which. have been 
descnbed in §§ 117-120, become exceedingly laborious: under 
these circumstances,' th~ normal equations may be solved by 
a method of successive approximation in the ,following way. 

Writing the norJIlal equations 

aux + u1?J1 + .. + almt = CI } 

a1iC + a2iY. +.. + a2,nt' = C2 

~tI"x ~ (t2"Y ~ • ~ + an~t =~" ' 

we first assume for x, y, . .., any system ot' values. Since 
in the normal equations the ,dla,.gonal coefficients are sums of 
squares, whereas the non-diagonal coefficients are sums of 
products of which ill general some are positive and some are 
negative, it is most often found that the diagonal coefficients 
are larger than the others, and therefore the corresponding 
tenns are most in;tportant: so we therefore generally take as 

• initial values for x, y, . . ., t the numbers • 

respectively, 
With these assumed va.lues of x, y, .. " t, we calculate the 

quantitl~s 

NI = aux + ~1?JI + . ' .. + (llmt - cI ' 

and take 6x= _ N1• 
all 

We'can now assert that by adding 6x to the assumed value 
of x we are impromng ,it: for if we denote by Q the sum of the 
squares of the residuals when the assumed values are put for 
x, y, ... , t, we have 

Q = allr + a2iY2 + ... t QrnmtZ + 2al.JCY + 2al3'TZ + ... 
+ 2almxt +. '.' - 2c1x -: . • + p, 

• = (aux + a1?JI +. , . + aI"l,t - c1)i/au 
+ terms depending only on '!I. Z, • • ., t. 
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If in this we replace x by x + ~r, witholit changing !I, z, ... , t, 
the effect IS to destroy the term (allx + ... + a1mt - C1)2 in Q 
wIthout affectmg the other terms; that IS, the effect is to 
d~m~m8h Q. Now the set of values of x, y, ... , t whIch we 
wish to obtain are the set which make Q a mimmum: and 
therefore if we say that one set of values of x, '!I, ••. , t 18 an 
o.,mpi'ovement in another set when it corresponds to a smaller 
value of Q, we can say that by adding 6x to x, without changing 
the values of y, . . ., t, we are obtaining an improved set of 
values for the unknowns. • 

Now with the improved set of values of :e, y, ... , t we 
calculate the quantity 

N2 = a21'l: + a'l2lJ + ... + a2mt - c2, 

and take 

In the same way we can show that to add /).!I to the assumed 
value of y IS an improvement.. Proceedmg in thIS way, we 
improve each of the values x, y, • . ., t in succession, and then 
return to x. The process, which is due to Seidel,* may be· 
stopped when the reSIdual N's are sufficiently small In 
common with all iterative methods of approximation, it has 
the advantage that an error of calculation continually corrects 
Itself in the subsequent steps of the process. 

Ex-Let llS solve by thIS PI:.ocess the normal equations of Gau .. .,'e 
orIgmal example, namely 

{

27X+ 6y = 88, 
6x+ 15y+ Z= 70, 
y+ 54z = 107. 

We take as a first approXImatIOn 

Then 

and 

X= H = 3 roughly, 
y = H = 5 roughly, 
Z= I-fi =2 roughly. 

N 1 =27x+6y-88=23, 

• ],[lInek Abk 11 (1874), Abt. 3, p. 81. 
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Thus the>llllproved set of values is :1:= 2'15, Y = 5, z= 2. These gIVe 
N ' 

Na=6J:+15y+z-70=19·9, and therefore Ay= -1;= -1'33, so we 

now have x=2'15, y=3'67,z=2, and Na=y+54z-107=4·67. Thus 
N 

Az= - 643= - 0'086, gIvmg:l:= 2'15, 11= 367, z= l·gI4, and Nl =- - 8. 

Repeating the process, we have 

Az= - :;= 287 =0·296,givingx= 2'446,y= 3 67,z= 1'914, N~,,= 1'640; 

N 
Il.y= -1;= - 0'1093, gIvmg p:=2'446, y= 3'561, z=)·914, 

N3= - 0·083; 

Na 
A~= - 64 =001, glvmg:l:= 2'446, y= 3561, z= 1'915, Nl = - 0592; . 
Ax= - :;= 0'022, givmg :I:,.:j·468, y= 3'561, z= 1'915, Nz=0·138; 

N 
Ay= - 1;= - 0'0092, gIvmg x= 2468, y= 3.552, z= 1915. 

These dlffer only by at most 0 002 from the true values. 

If Seidel's process be carried out for II. set of equations with 
. Meral coefficients, such as 

{

ax + hy + gz ;: l, 
hx + by + jz = m, 
.qx + III + cZ:= n, 

it is readily seen that the value of x.is what would be obtained 
from the formula 

11m n ( 2jgh f2 g2 h2)-l 
x;: abc h b j 1 + abc" - be - ac - ab 

9 I c 

by expanding the last factor by' the binomial theorem as an 
infinite series. 

A'method closely akin to this had been "communicated many 
years before by Gauss to Gerling.. It may be illustrated by 
the following example: t 

• Cf. the appendix to Gerling'~ work on the application of 'the calculus of 
compensation to _practical geometry (1843). p. 386. Another very similar 
process w~s described by Jacobl, Ast. Nach. No 523 (1845), P. 297. 

t C. A. Schott, u.s. CQast SUMJeY Rep. (1855), p. 255. 
(D 311) 18 
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Let the normal equatlOns be 

0= 2 8 + 76.c - 30y - 20z - 26u, 
0= ..... 4 1 - 30x + 83y - 25% - 28u, 
0= - 1 9 - 20x - 2 5y + 89z - 44 u, 
0= 3 2 - 26..: - 28y - 44z + 98u. 

To ascertam whlCh of the unknowns will probably be the greatest, 
we examme th~ quohents . 

28 41 19 
x=-76=-0'03, y=83=+004, z=89=002, 

3·2 
U= - 98 = -0,03 

Accordlngly we begm wIth y and wnte y = 0 04 + A.y. The equatlODE 
now become 

0= 1·60 + 76x - 30A.y - 20z - 26u, 
0= - 0·78 - 30x + 83A.y - 25z - 281£, 
0= - 2·90 - 20x - 25A.y + 89z - 44u, 
0= 2·08 - 26x - 28A.y - 44z + 981£. 

ThIs gives for quotIents (roughly) • 

1 60. 0,78 2·90 . 
ll:= -'"76= -0·02, A.Y=Ta=O 01, z=8'9=0'03, 

208 
u= - 9"8= -002. 

We therefore now substitute z=003+!lz' and proceedlDg m thl8 
way, the whole solutlOn may be brought to the form. . 

y=004 z=().os 4p=OOI x= -001 u= - O'()I Az= -0.003 Az= -O.Q02 Au=().OOI 

0= 160 1·00 0·70 -0·06 0·20 -0028 0012 -0·014 
-0·78 -1'53 -070 -040 -0·12 -0030 +0020 -; 0008 
-2·90 -G 23 -0'48 -028 +016 +0220 + 0·042 -0002 
+2·08 +0·76 TO 48 +074 -024 -0162 -0074 -0024 

The operatlOn is now completed if we are satIsfied with two piau·. 
of decImals, and the first unknown quantIty 18 ll: + A.x + A.!x +. or 
ll:=-0013 

SImIlarly y= 0,050, 
11= 0028, 
u= -0009. 

131 Alternatlves to the Method of Least Squares.-At dIfferent 
tImes varIOUS methods have been proposed, other than the Method of 
Least Squares, for lleallDg with problems whIch are commonly solved 
by that method. We shall now notice bnefly some of these: 

1° The Method of Tobias Mayer.-Tn the latter half of the 
eighteenth century the most plaUSIble value.q of the unknowns "ere 
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• cOPlmonly fo\md by a method whIch l}ad been pUblIShed bY,Toblas Mayer 

m 1148 and 1760.* It consIsted m lJ:ITangmg the equations of condItion 
mto seIM, forming the sum of the equatIOns of each set, and treatiDg the 
equations so obtained as normal equatIons. The method IS deCidedly 
mterior to the ~Iethod of Least Squares. 

2°. The Method of MinimlllI/o Approxima.tion.-Conslder a system 
of • incompatIble linear equatIOns In m unknowDs (s>m) : 

(1; a;x+b,y+ . • . +/.t='1I( (i=l, 2, .. , 8). 

Replace It by the followmg : 

(2) a;x+ bi!! + ... + /.t - n{.= r, (i= 1,2, ... , s), 

where the quantities r, may' be called re81duals. The name 1'Iintmum 
approximatwlt of the system (1) was gIVen by Goedseels f to the smallest 
value which we can assign to the absolute valUe" of the greatest reSidual 
of the system (2), In order that t~llS systElm (2) may be compatible. 

The problem of determining the minimum apprOXimatIOn of a 
~y8tem (1) W!18 enunciated and valved by ,Laplace t in I799~ but.h18 
method mvolved such laborious calculations as to be ,In general 
ImpractIcable. ,SIX years later, in 1805, Legendre proposed the same 
problem, m the appendix to his 1l0u-velles Methodes pOUT la diterminatton 
des orbites des cometes: he found no easy method of solution, and proposed 
to replace the method by that ot Least Squares. 

A 'much better solutlon was given 'lIl 1911 by C J. de la Vallee-
.Poussin.§ , . 

3°. Edgeworth's Method.-Taking the data as usual in the form 

u1z+ b1y+· .. + !It=~I} 

ar::+;~.Y+. : ·+I.I=n, 

where 111, n2' ••• , n, are mellsures of equal weIght, F. Y. Edgeworth m 
188111 proposed to define the most plaUSIble values x, Y, • #., t lD the 
following way: x, y, . . ., t are to be Bttch as to rende1- flnntmum the 8um 
01 the absolute values 01 tlia residuals, 

la1x+ . . .'+/11 -nil + I a:r:+ . .. + I~t -7Isl + ... 
+ I ar:+ b.y + ... + I.t -.7I,i· 

It mlly readtly be shown tha~ ihiS rule IS derivable from the 
hypothesis that the law of error is of the form 

y=lh8-""',' 
where z is taken' positively m both dIrections. 

• Kosmograpl",sch~ Nackriihtm vnd Sammlungen 
t P. J. E. Goedseels, Ph/one des srrt1,T, d'obstMltU1016: Louvaln (1907). 
: M.lcan"lue cilesu, Live III. No 39 • 
§' Annales de la Soc. Be de Bruzellts, aD (1911), B, 1'. 1. 
II Phil. Mag. 24 (1887), p. 222, and 25 (1888), p. 184. 



CHAPTER X 

PRACTICAL FOURIER ANALYSIS 

132. Introduction.-For the descrIption of phenomena. 
and the solution of problems In Physics, Astronomy, and 
Meteorology, much use IS made of Fourier series, that IS to say, 
series of the type 

ao + a l cos 8 + (/z cos 28 + (/3 cos 38 
+bl sm lJ+u2 sm 28 + b3 s111 3/J;+-. 

where (/0' ai' bl • (/z. bz• . . . are mdependent of e. 
(1) 

Consider, for example, the vibration of a vIOlm string. Let 
a stretched elastIc string be fixed at its end-pOlnts and take 
the aXIS of .1; along the string. so that the abSCIssae of the end
points can be taken to be x = 0 and x = I; let y be the diS
placement (Ill a dIrection perpendicular to the string), at tUlle 
t, of the pomt of the strmg "hose ausClssa is x. Then when 
the string 'IS set into vibration in such a way that it emIts Its 
fundamental note, unmixed with any overtones, its VIbratIOn is 
represented mathematically by the equation 

7rJ' 
y=A s~n 7 sm (.\t+a), 

where 27r/A is the penod of the note in questIOn, A dependmg 
on the mass, length, and tension of the string. and ",here A 
and a are arblttary constants. If the strmg IS set mto Vibra
tion in such a way that it emits its first overtone (the octave 
of the fundamental note) unmixed 'with any other sound, the 
vibration is represented by 

B . 27rx • (2 fl) Y = SlIl, -1- 8m At + I~ • 

260 



PRACT~CAL FOURIER ANALYSIS 261 
• 

whlle the second overpone is represe~ted by 

'U = C sin ~ SIn (3At + y). 

and so on. When the string is set into vibration in a quite 
general fashion, so that all the overtones are present in the 
sound emitted. the dlSplaceIIlent at time t is represented by a. 
sum of these terms; thus 

'U = ~ six\ ~x sin ('\'t + a) + B sin 2~x Slll (2'\'t + 13) 

O · 311'X, (3 ) + SIn -1- SIn At + Y +, , 

and therefore the velocity at time t is represented Py 

~f =.\..A sin yCOS (.\.t + a) + 2'\Bsin 27 cos (2'\t + 13) 

(2) 

+ 3.\.0 sin 37 cos (3'\t + y) +. .. (3) 

Suppose that at the initial instant. t = 0. the displacement 
and velocity at every point of the string are given j let the 
dlsplacement be cf>(x) and the velocity.be y,(x) Suppose. more
over. that .we are in, possession of a method which enables us to 
express a.given function fix), w!rich vanishes at x = 0 and x = I. 
as a series of the form 

~() h . 1I'X h . 271'1: h . 37TX 
J1x = lSInT+ aSIn-l-+ sSIn-1-+· .. (4) 

where hl • h2' hs ..... do not depend on x. but depend upon the 
natUl,'e of the function fix). Applying this theorem to the 
function cf>(x). we should have an equation 

()
' .11'';; .211'x .311'x 

cf> X =Pl SIn T+Ps Sl~-l-+ 1?s SID -1-+' .. (5) . 

1Vhe!e Pl' Pa. Ps. . . . may be' regarded as k~own. SInce the 
functIOn cf>(x) is given. Similarly 

,1.( ) • 1I'X ,2mc . 311'x 
't' X = ql SID T + qa SIn -1- + qs SIn T + .•• (6) 

where ql' qa' qs" .• may be regarded as known. . , 
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But puttmg t = 0 m (2) and (3) we hav~ 

t) A . 1rX B· f3 . 27I"X C· . 3n-.r cp x = sm a. sm T + sm sm -z- + Sln "Y sm -l- + ... (7) 

• 1rX 2n-x 
",(x) = AA cos a. sm T + 2AB cos f3 sm -z-

3 C 
. "31r.'c 

+ A cos"YsmT+. (8) 

Comparing (5) and (7) we have 

A sin a. = PI' B sin f3 = PIP C sin "Y = Pa • • . (9) 

Comparing (6) and (8), we have 

AA cos a. = ql' 2AB cos f3 = q2' 3,\C cos "Y = qa . .. (10) 

The syst~ms of equations (9) and (10) enable us to find the 
unknown constants A. a., B, f3, C, "Y, ••• in terms of PI' qt' P'P q'P 
that IS to say, in terms of known quantIties. Thus equation 
(4) enables US to analyse the initIal data into constItuents 
A, a., B, f3, ... such that the first pair of constItuents (A, «) 
gives nse to the fundamental note of the strmg, the second paIr 
of constituents (B, f3) gives rise to the first overtone, the third 
pair of constituent~ gives rise to the second overtone, and so OD. 

As a second illustration consider the Theory of TIdes. The 
tide-generating potentIal due to the sun and moon may. be 
expanded as a senes of t.erms of the type 

A sin (At + e), 

where t denotes the time and A,.A., e are independent of t but 
change from one term of this type to another. Each such 
constItuent te:t:m gives rise to an oscillation of the sea, the 
oscillation having the same period 2n-/A as the term in the 
tide-generating potential to which it is due; and the height 

. of the tide at any instant at any seaport may therefore be 
represented as a series of Mrms of the type 

A' sin (At + el, 
where the constant A is characteristic of the particular tide 
but is the same for all seaports, while the constants A' and e' 
are characteristic of the particular constituent tide and the 
partIcular seaport. By analysing the observed tides at a 
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seaport by means of a theorem similar to (4), w~ can find these 
constants A' and £' j we are then in It positIOn to predict the 
tides at this port for all future time. 

A series (If the type 
ao + al cos x + az cos 2x + a3 cos 3x+. '. 

+ bl sin x + hI sin 2x + ha. sin 3x +. . . 

is generally called a Fourier ser~es, the coefficients ao' ai' hi' •.• 
bei~g called Fourier ~o.e.fficients: and the representation of a 
given function by means of a series of this form is called 
Fourier analysis. The term trigonometrie tnterpolatwn is 
perhaps more appropriate when (as in the present chapter) we 
are concerned ollly WIth ,findmg a series with a finite number 
of terms which takes given valuea for a given finite number of 
values of the argument' x. 

133. Interpol!Ltion of a. Function by a. Sipe Series.-In 
the last article we have seen the importance, in Applied 
Mathematics, of a. th~orem which ~ll enable us to analyse 
a given function into a sum of tngonometric terms. ,The 
problem was solved, at any rate in its simplest form, in 
1754-59 by Clairaut * and Lagrange.t who showed how to 
construct !l sum of n trigono,J",etrie terms, S1lck as 

u(.v) = bl sin x + b2 sin 2.:1':+ bs sin 3x -+ .. " + bll~,l sin (n .... 1)x, (1) 

wkiek 1t111 take given values for (11.-1) given equally-spaced 
values of tke argument x; say, 

u(~) = 111, u(2;) = u2' u(:) = 113, ••• , u((n -:/)7r) = Un-I> 

where ~. us • ••. , U,,_1 are gIven numbers. 
To effect this, Lagrange remarked that the sum 

sin pr sin qr + sin 2pr sin ~qr + ... + sin (n -1)pr sin (;. - l)q7r 
16 16 n n 11. 11. 

(where p and q denote positive integers less than n) has.the 
value in when p is equal ,to q, and is zerQ when p is not equal 
to q. Therefore the function 

• Clairaut, HiIst. de l' A cad , Paris. 1754, p. 545. . 
t Lagrange, Hue. Taurin. i: (1759), p. 1: reprinted. a,.·,wres de,Lagrange, 

i. p. 39; Hue. TauMn. ill. (1762-5), P. 25~: reprinted lEu."." de' Lagrange. 
i.' p. 553. 
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~(SinxsmP71" + sin 2xsm 2p1f' + ... + sin (n -l)xsm (n -l)prr) 11p 
n n n n 

has the value Up when x = p71" and vanishes when x = q71" where 
n n 

q is dIfferent from p: whence it follows immediately that the 
coejJicients ~n (1) must he given by the eq'lWtwn 

2{ . in71" • 2m71" • (n -1)/1/71") 
hm =- ulsIn-+16zsm--+ .. ,+un_lsm-- - J' n n n n 

It should be noticed that the expression (1) satISfies the 
condition that: 

1°. It takes the prescribed values ul' .•. , 'Un-l at the gIven 
values of the argument. 

2°. It is periodlc with period 271". 
3°. It IS an odd function of x. 
Suppose now that u(x) is -a function of x which takes 

prescribed values 161, ••• , Un-l at the given values of the 
argument, but suppose that the function u(x) is not periodIc 
and is not odd; in such a case the expressIon (1) would have 
a graph agreemg more or less WIth the graph of the functIOD 
u(x) between' x=O and X=1I", but the agreement would cease 
altogether for values of x less than zero or greater than 11". It 
is important to reahse that by this method of interpolation we 
can obtam an expression WhICh agrees very closely mdeed WIth 
a given function over a certain range of values of the argument, 
but which, outside that range of values, bears no resemblance 
whatever to the function. 

134. A, more general ~epresentation of a Trigonometric 
Series.-In the last article we obtained for the. function u(x) 
an interpolation formula which is formed of sines only. We 
shall now obtain a more general formula * which involves 
both sines and cosines, and which, moreover, enables us to 
make the best use of all the data in our possession, when we 
have more data than the minimum number required. 

Let it be required'to find a sum 

ao+a1cosx+azcos2x+ ... +arcosrx} (1) 
+ hi sin x+ hz sm 2x+ . .• + br sin rx 

• Bessel, Kontgsoerger BeooaclitulIgen, 1 Abt. p. ui (1815). 
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which, ju1'nishe'S ~he best possible 1'epresentatwn oj a junction 
u(x), when we are given that u(x) takes the values uo' 'Ill' ••• , 

. . I al 2?r 2(11. - 1)" u .. _l respectIve y, when x takes the v ues 0, -, .. " ---'----'-
11. 11. 

respectively: 11. being some number greater than 21'. The 
problem is to determine the (21' + 1) • constants ao' aI' bl , ••• , 

a" br , so as to make the expression (1) take, as nearly as 
possible, the n.values uo' 'Ill' ••• , Un-lJ when x takes the values 

O 211" 2(11.-1)11" • • . . 
, -, •• 'J - ; so the equatIOns of conditIOn are 11. n 

( - . 
1

'1(0- 40+«1+' • • +ar • 

271" 2 • 211" l' • 211" 

I
n1 =aO+a1 cos -+a1cos-- + ... +~cos--11. n 11. 

l
b' 211" b . 2.2" b . 1'.2" 

+ 1 8Ill n: + 1 SIll -n + .•. + r 8Ill ---n-' 
2.2" 4.211" 21'.211" 

U 1 = ao + al C08 ----n- + al cos -n +. . . + ar cos ------n-
b . 2. 271" b . 4 • 211" b . 21' • 211" 

+ 1 SIll n + a SIll ----n- +. . . + r SIll ---n--' 

(n - 1)211" T(n - 1)211" 
u .. _l=ao+~cos '11. + •.. +arcos '11. 

. b . ('11. -1)211" b . 1'('11. - 1)211" 
+ 1 Sill n' +... + r SIll ~-n---' 

The normal equation for ao is therefore 
tlO+ ~ + u2 + . •• +u .. -l 

{ 
211" (11. -1)2,,} = nao + a1 1 + cos -; +. . . + cos '11. 

. { 2.271" '. 2(n-1)211"} 
+aa 1+cos 1l' + ... +C08 n 

+ ... 
+ ar {1 + cos 1'.211" + ... + ~os 1'('11. -1)211"} 

'11. '11.' 

b (. 211" . 2.211" . ('11. -1)211"} 
+ I\SIll n: + SIn n + ... +.sm '11. . 

+ ... 
l. (. 1'.211" • 1'(n-1)211"} + !irl SIn -;- + ..• + SIll To • 
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Smce 
2k1t' 4kn.. 2(11. -1)"1t' 

l+c08 - +C08-+ .... +C08 =0, 
11. 11. 11. 

when k IS an integer greater than zero and less tha.n 11., and 

sm 2kr + sin 4kr +.. + sm 2(11. -l)"'Ir 0 
11. n· 11. =. 

tills becomes 

1/'0 + u1 + u2 + ... + Un_l = 11."0· 

The normal e9.uatlOn for a1 IS 

2r 2. 2r (11 - l)21t' 
uO+u1 COS-;-+U2 cos-:;:; +. .+Un-ICOS--n-

=ao{ 1 + cos :- + ... + cos (11. -n1)21t'} 

( 2r 2 (11. -1)21t'} + a1 \ 1 -f; cos2 n +. . . + cos 11 

{
·1 2r 2 . 2r . 2 . 21t' 4. 2r 

+a2 • + cos -cos --+COS-- cos --+ .. 
11. 11. 11 11 

(n -1)2r 2(11. - 1)2,,} +C08 cos -n 11. 
+ ... 

1-. { 2r. 2r (n-1)21t' . ~n-l)2"} 
+"1 C08r;:sm ;:+ ... +cos n 8m n. 

+ .... 

Using the trigonometric formulae 

rl + cos2 2r + cos2 4r'+ ... + cos2 2(n - 1)1t' = 2!n, 
n n • n 

11 ~ 2.~ 2.~ 4.~ 
I 

+ cos - cos --+ cos -- cos -- + ..• n 11. • 11. n 
2(n-1)r 4(n-1)r 

+ cos cos 0, 
11. n 

2r . .2r . 2(n -1)r . 2(n - I)" cos-sm -+ ... +oos , sm------ =0, n . 11. n n 
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this becomes 
211" • 4n- 2(n - 1)11" 1 

uo+~COSn+u2Cosn+' . ,+un_1COS 16 =2 1U11' 

The other normal equations may be obtained and reduced 
m the. sa~e way; finally we obtain the following set oj values 
jor'ao, ••• , aT' bl , .• " b .. : 

1 .. -1 

ao= - ~ U" 
'I!. k;O 

• 2 .. -1 2kr 
a l =- ~ u"COS-

'II> k;O n 

2 ,,-1 2k1l'r 
a,,=- ~ u" cos -- > 

n k~O n 
2,,-1 . 2k1l' 

bl =- ~ U"Sln-
'II> 11:=0 • 'II> 

2 .. - 1 2kr1l' 
b .. =- ~ u"sln--

'II> .1:=0' n 
1 • 2 

When r= iin, the factor of a .. in front of the symbol ~ 18 W;, not 1i: 

(1) 

The connectIOn of this .result with that or' the preceding 
article is easily seen; in fact, the formulae of § 133 are merely 
those of the present article. adapted tel the particular case when 
the function U is an odd penodic function of its argument, so 
that u(x) = - u(211' - x). For if in the formulae (1) above we 
wrIte n.= 2p and suppose that ul = - ~-1J ua = - u2P -B> etc., 
with uo=O, 'lip = 0, then the formulae (1) become 

ao=O, aI=O, .. " ar=O, 
2{ . m1l" . 2m1l" . (p, -1)m1l"} b",= - 111 am - +usSln - + ... +11p _1Sln - , 
P P P P . 

which agree with the formulae of § 133. . 
135. The 12-0rd~nate Scheme.-.In most' cases in practice 

the nUD?-ber of gil-en values uo• uI' u 2' ••• is either 12 or 24. 
We shall first consider the case when 12 values are gIven. 

Let it be required, then, to obtain an expresswn 
ao + ~ cps x + aa cos 2x + .•. + aD cos 5x' + a. c~s 6,c • 

+ hI sin x + ha sin 2x +. . . + bs sin 5.:p 
which takes .qi'lJen vallles '110' 'Ill" .; lIn respectively ·u·hen :x 
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11" 211" 311" 1111" 
takes the values 0, 6' 6' 6' ' , " """6 1espccfwelll, Formulae (1) 

of the last article, written in full, are now 

12ao= 110 + 'ltl + U z + U a + 71. + Us + 'Uo + U 7 + 118+ 'U 9 + 1l10 + 'Un 

J3 1 1 J3 J3 
6a1=uo+71I ' -:r+uz' 2- u,'"2-'Us ' 2--'UO-v7'"2" 

1 1 J3 
- 'Us' 2 + 'U10 ' ~ + vn ' 2'" 

1 1 1 1 1 
6(( = Vo + VI' "2 - Uz ' 2 - Ua -11, ' "2 + 'Us ' 2 + Vo + V 7 ' "2 

1 1 1 : 
- Us' :2 - V9 - 1/10 ' "2 + 7In ' 2 I 

6(la = Vo - Uz + u. - U 6 + Us - U 10 I 

6((. =; 'Uo - u 1 ' ~ - v z ' ~ + 'lia - u, ' ~ - vs' ~ + 'Uo - 'U1 • ~ I 
111 

-us' 2+ Ug - 'Ii 10 , 2 - un '"2 
J3 11. J3 J3 

6((s = 110 - 'iiI' 2 + 1tz' "2 - U.' "2 + 115' "2 - Vo + V 7 ' 2'" 
1 1 J3 

-us' :2 + 1110 ' 2 - Un ' 2 
12 

. (1) 
~=~-~+~-~+~-~+~-~+~-~+~-~I 

1 .13 J3 1 1 J:J 
6b1 = U 1 ' 2 + U a' "2" + V3 + u. ' "2" + Vs ' :2 - U 7 ';3- 7'8' -21 I 

- 'U9 - 'U 10 ' ""2 - /1n ' "2 
J3 .13 J3 J3 J3 

6bz = u1 ' - 2- + ua' ""2 - v.' 2 - us' -2 + v 7 ' T 
J3 J3 J3 

+us ' -2--U10'""2 - Un' 2 

6bs = 111 - Ua + Us - U 7 + U 9 - 'Un 

J3 J3 J3 J3 J3 
6b. = 711 • 2'" - 'liz" -2- + u. ' """2 - Us ' 2'" + U7 ' 2'" 

J3 J3 .. /3 
-Us 'T+ 1l10' 2-1Iu '"2 

1 J3", J3 1 1 J3 
6b5 = u1 ' :2 -112 , 2 + Va - V.' """2 + Us' 2 - U 7 ' "2 + Vs' "2" 

.1'3 1 
-u9+ulO , T- uu'2 
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'1011 + '10111 = 'VI 

'Ua + 'UIO = VJ 

'1013 +'1019 =V3 

U4 +Us =V, 

'1016 +'1017 =V6 

'loll - '10111 =U'1 
'lola - '10110 = U'2 
Ua -U9 =U'a 

U,-Us=U',' 

'101&-'1017 =U'6 

'the equations take the ,simpler form 

12ao = '1010 + VI + Va + Va + V, + V6 + '1016 

" J3 1 1 J3 
6a1 = '1010 + VI • 2 + Va • '2 - V4 ' 2" - V&' "2 - u6 

1 ' 1 1,], 
6a = '1010 + VI ' 2" - v~ • :& - Va - V, • '2 + V6 • '2 + 'U& 

6aa=uo-'lI2 +v,-ue _ 
. 1 f 1 1 

6a, = '1010 - VI ' 2" - Va ' "2 + Va - V, • 2,- Vii ' 2" + Us 

J3 1 1 J3 
6a5 = 'ito - VI ' "2' + Va ' 2 - v, ' '2 + V6 ' "2 - u. 

12a. = '1010 - VI + Va - Va + V, - Vs + u~ 
. ,1 J3 J3 1 

6b1 = U'I ' 2 + 'ws ' "2 + U'a + U', • 2"" + U'6 ' 2 

J3 J3 J3 J3 
6ba=U'1' T+U'2 ',2""-w,'"2 -U'6' 2 
6b3 = U'I - U'a + U'6 

J3 J3 J3. J3 
6~,=Wi'2 -,wa '"2+U"'"2 -Ws' '2 

l 6b6 = WI ' ~ - Wa' ~3 + Wa - W, • ~3 + W6 ' ~, 
If we now write 

'110 + 'U6 =Po 
VI +V6 =P1 
Vs+'V,=Pa 

Vs=Pa 
'U'1 + 1°6 :" r1 

'l'2 + 10, = ra 
1l's=rs 

'UO - U6 = qo 
~ -V6=Q1 

va-v,=qa 

11'1 - 'U'6 = 81 

11'2 -1/', =82 
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the equations take the still simpler form· 

(12ao=po + PI + Pz + Pa 
./3 1 

6al = qo + ql' -2" + q2' "2 

-< 

Now write 

1 1 
6aa = Po + PI ' "2 - Pa ' "2 - Ps 

6as = qo - q?, 
1 1 

6a, = Po - PI • "2 - Pa ' 2. + P3 

./3 1 
6as = qo - ql ' """2 + qz' 2 

12as = Po - PI + P2 - Pa 
1 ' ./3 

,6bl =rl , "2+rs' T+ r3 

./3 ./3 
6ba=Sl'T+ S2' '"2 

6bs=rl -ra 
./3 ./3 

6b,=Sl' T -sa' '"2 
1 ./3 

6bs =r1 , 2-r2' T+Ta 

1 1 1 1 
2Pl = hI' 2Pz = h.,., 2'12 = t2' !tl = mI' 

./3 ./3 ./3 J3 2 ql = 11, 2 ra = 1na> 2- Sl == nl • :fS2 = nz-

./3 1 1 . 
(Note that 2 = 0·866 = 1·- 10 - 30' whICh enables the 

multIplication by ;3 to be performed mentally,) 

Then the equations may be wntten 

12ao=po+Pa+Pl +Pa 
12as=po +P2 -Pl-Pa 

6al =qo+l?,+Zl 
6as=qO+ZZ- 1l' 
.6a, = Po + Pa - hI - ha 
6a2 =po+hl -Pa- ha 

6b1 =1n l +r3+ m2 

6bs=11I1 +r,-1n2 

6"a='10-'12 
6ba=nl +11,2 
6b,=l1l -n2 

6ba= r1-Ts 



~( ~ ~ r'\ !-"'J[. r 0'\ 

1 V ol-: t.'\ ~)":n!. = tIt! 

n(i';",-. 
r 

UrfldI,lJ j ... I l'J I IIJ --:" 

0-;'" U,IfJI'l,..'", 1 JI:' In HI,I~ 

b": I .. ..t (I~t J I 1J1I!~ 

."~ I .1;,1 [ 

-- -- .... ---~ 

t \} rl " .l \.J + Ol~ .." ,}r 

~ \, U c.., J \ ~t" 

1-''1 <l " ",lIl II = 

1'1' n 1 
I 

• 1 
l 
I 

, I'J~ j#l 

ll!.lUA.TIUAL LABORATORY 

.3084 Pa= 916 ml = 1116 me= 2743 (10,..2344 "1=2009 r l =2230 I 
I 

,2422 h.=1338 ra= 1630 (1.= 718 n.= 1709 r ... 1630 i 
-

6 2741S 

4 2743 

6488=6&1 3il8=6h. 

2=6a2 2=6&6 1626=6a3 300 = 6b, 600 .. 6b. 
-_.- - -~ 

CHECItS: "o=ao+ al +a.+a8 + II, +a6 + a. 
WI = bl + 2b8 + h6 + 1·732(h. + h,) 

)6 COB 6:1: 

To/_ page 270 . 
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These equations give the coefficients"a",at , •• " bs in a con
venient form j 'the computation may conveniently be· carried 
out on a printed sheet of which the, arrangemElnt is showI\ in 
the accoml'anying specimen:'" 

EXI 2.-Given. 

.. oj 'U1 I ~ I 'Ua 1 1" U. I U'I u., I u. I 'U9 t6)0 I 1tll 

-;1 0·262 0·524 0·786 1·047 1 l·309 -;r -,1,309\ -1.047; - 00786i - 0.524 1 
- 0·262 

express u(x) a. a Fourier ,eries. . 
[Ans. 0 977 SIn x - 0·454 sin 2x + 0·262 sin 3x - 0·151 SID 4x 

. , . + 0·070.m 5x.]· 

136. Approximate Formulae for Rapid Calculations.-In 
many cases the h~rmonics above the third (i.e. those with the 
coefficients. a,,'as' ae, b" bs) may be neglected, the function 
being capable of representation with sufficient accuracy by 
an expression . 

U (x.) = ao + at cos x + as cos 2x + a, cos 3X.} 
+bl einx+bs sin2x+basm3x' (1) 

It waS pointed out by S. ~. Thompson t th~t when this 1S 

the case we can calculate the coefficients by simple averaging 
of the data without any multiplications,' in the followmg. way: 

First: as we have seell in equation (1) of § 135, the co
efficients ao' as, bs are given by the equations, 

'1. : • 
ao = 12(uO + ul + Us + Us + u, + uli + ua + u7.+ Us + u, + '!llO + un ),(2) 

. ,,' 
1 . 

flS= ti(uo-ua+u,"'us+US-UlO)' (3) 

l' . 
ba= '6 (ul -us + uli - u7·+ ug - un)' (4) 

Next, we have, by putting x successively equal to 90' and 270' 
in equation (1) above, 
, • . us=ao-as+bl-bs}' 

uD = ao - as - bl + bs ' . (5) 

)Vhence Us - u, = 2(bt - bs), 

• The computatiqn, form has been designed by he1p of the suggestions 
derived from many writers, among whom particular mention should be made of 
C. Runge, Zeits. jilr Math. 'U. Phys. 48 (1903), P. 443. 

t hoc. Phy. Soc. ,London, 113 (1911), p, 334. 
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and therefore ~1 =! (us - us) + lis. (G) 
Next, puttmg x equal to 0° and 180· m (1), we have 

~=~+~+~+~}, m 
'Us = ao - a1 + a8 - aa 

whence U o - 'Us = 2(a1 + a3), 

and therefore a1 = i (uo - us) - aa. (8) 
EquatIOns (5) and (7) now give 

(/2 = i(uo": Us + Us - us). (9) 
We have still to find b2• For this we shall suppose that the 

complete graph of the function u(x) is known, so that we can 
read off the ordinates at any point on it; let us read off the 
values at x=45,0 135°, 225°, 315° and call them U1' ~, 116> V7 re
spectively. Then, putting n= 8 in equation (1) of § 134, we have 

7 _ k1f' 
b2 =! ~ u" sm -2 

k=O 

or b2 = !(U1 - Ua + U6 - U7). (10) 
Equations (2), (3), (4), (6), (8), (9}, (10) give the co~t1icienf.~ (10' 

a1, et2, (/a' b1, b2, ba me1·ely by forming averages 0/ the measurrd 
ord~nate8 0/ the graph 0/ u(x). 
Ex.~o find an app,.oximate jQrmula for the FouT'ler BeT'!e8 whIch 

represents the follounng observatwns: 

_ 1tol U, I u. I u. I u. 1 u5 , 'Ue I u., I'lli!I ... j u,o I U II 

~3.od 2·134 11•273JO.788 \0.495 0370 I 0·540 0·191 - 0·357 - IH37 0·767 

FormmS" the sum of the entrIes, we have 

12ao=uo+ ~ +U2+· •• + Un 
= 11·520, 

so ao = 0·960, 

aud we now form the follo\\ mg sums 
6aa=uo - u2 + u4 - us + u8 - u100 whence aa= 0271 
6ba = u1 - ua + lt5 - u7 + lt9 - un' "hence ba=O 1 

li1 = }(ua - u9) + ba, whence b1 = 0915 
a1 = }(uo - uJ - aao whence a1 = 0901 

4a2 =uO-u3 + us - u" whence a2 = 0·542. 
Fmally, forming a graph of the function U z aud readmg off the ordmates 
:;L1' ua. u5• u71 corresponding to the argl1ment~ :1:=45°,135°,225°,315. 
respectively, we have 

whence 

4b2 =U1 - ua+u5 -;7 
=2·36, 

• b2 = 0 59 (approx.). 
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• . Thus an approxImate formula ~r the reauired Founer senes is 

0-960 + 0 90 cos x + 0-54 cos 2x + 0 27 cos 3x 
+ 0-92 8IR II: + 0'59 sin 2x + 0-1 sin 3x_ 

13'7. Th~ 24-0rdinate Scheme.-We shall next consider the 
case whell 24 values of u(x) are given, corresponding to x = 0, 
15°, 30°, .. _, 345°. Denoting these by Uev uI' - , _, u:/3I the 
problem is to obtain art expression 

ao + ai-cos x += as cos 2x +. 0 ,+ a12 cos 12.:r 
+bisin x+ basin 2x+. -, . + b11 sin llx 

which takes gi1)en 1)alues uO' U I, • _ _, u23 reepecti1)ely when :v 
7T 237T _ 

takes the 1)alues 0, 12' 0 • 0, 12 respectwelyo 

If we form the sums and differences of the u's, thus: 

Uo '/2.1 u2 Us 0 0 0 un U I2 
u23 u22 un . , , u13 

Sums 1)", 1)1 1)a 1)s 0 0 • 1)11 1)12 

Differences WI w2 wa • 0 0 wn 

_ then the formulae (1) of § 134 applied to this case may be 
written . 

24ao = 1)0 + 1)1 + "'a + "'s + 'V, + 1)6 + "'e + 1)7 + "'s'+ "'9 + 'VIO + 1)11 + "11 

12al = 1)0 + "'I COB l5° + "'. cos 30" + "'s cos 45" + 'V, cos 60" 
+ "'6 cos '75" + 1)6 cos 90· + 'V7 cos 105" + 'Vs cos 120° 
+ 'V9 cos 1350 + 'VIO cos 1500 + 'Vll cos 165" + 'V12 cos 180c 

12b
l 

= W
l 

sin 150 + WI sin 300 + Ws sin 45" + w, sin 60" + W6 sin 75" 
+ We sin 90" + 107 sin 1050 + 1Va sin 1200 + W9 sin 135" 
+ wIO sin 1500 + 1011 sin 1650 

' 

Now form the 13ums and differences of the 1)'S thus: 

'Vo 1)1 t'2 1)s "', 1)5 'Ve 

1'12 1)11 'V10 'V9 'Vs 'V7 

• Po Pl Pa Ps Pt Ps Pe' 

'10 '11 'Is 'Is '1, "'16 
(D 311) 19 
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and form the sum and differences of the '1I/s thus: 

WI 'W 2 Wa 'It' , 'It'6 'It'8 

Wll ~1'10 1('9 11'8 1"7 

Tl l' 2 Ta T, T6 l' 8 

81 82 83 8, 86 

Then the equations become 

~~=A+~+~+~+~+~+~ 
12a1 = go + ql cos 150 + qa cos 300 + q3 COB 450 + g, cos 600 

+ g6 COB 75c 

,12aa = Po + PI cos 300 + Pa COB 60' + Pa cos 900 + 1', COB 1200 

+ 1'6 COB 1500 + 1'8 COB 180e 

12aa = go + ql cos 450 + ga COB 90° + q3 cos 1350 + q, COB 1800 

+ g6 COB 225' 
12a, = Po + 'PI cos 600 + Pa cos 1200 + 1'3 cos 1800 + 1', COB 240

0 

+ 1'6 COB 3000 + 1'8 COB 3GO' 
12as = go + ql COB 750 + qa cos 1500 + q3 COB 2250 + q~ COB 3000 

+ qo COB 3750 

12aa = Po + PI COB 90" + Pa COB 1800 + Pa COB 2700 
T 1', cos 360' 

+ 1'6 cos 4500 + 1'8 COB 540' 
12a7 =.fJo + ql cos 1050 + ga cos 2100 + q3 COB 3150 + q, COB 4200 

+ g6 COB 5250 

12as = Po + PI cos 1200 + Pa cos 240· + 1'3 cos 3600 
of 1', cos 4800 

+ 1'5 COB 600' + Po COB 7200 

12a9 = go + ql cos 1350 + qa cos 270' + q3 cos 4050 + q4 COB 540
0 

+ g6 COB 6750 

12a10 = Po + PI cos 150' ... 1'2 COB 3000 + Pa cos 4500 + p, cos 600" 
+ 1'6 cos 750' + 'Po cos (l00° 

12all = qo + ql cos 165' + qa cos 330' + q3 cos 495' + q, COB 6600 

+ qs COB 8250 

.24a12 = Po + PI cos 180' + 1'2 COs 3600 + 1'3 cos 540' + 1', COB 720' 
+ 1'6 cos 9000 + 1'6 COB 1080' 

12b1 = Tl sin 15° + T2 S10 30" + T3 sin 45° + T, sin 60' + To sin 75 
. +Ts 8JO 90< 

12ba = 81 sin 30° + 8a sin 60° + 8a sin 90' + s, Bin 120' + 86 sin 150' 
120a = Tl sin 45' + T2 sin 900 + Ta 810 135' + T, sin 180' 

+ To sin 2250 + T8610 270' 
12b, = 81 sin 60° +.s2 sin 120° + 8, sin 2400 + 85 sin 300' 
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12b6 = 1'1 sin 75° + 1'2 sin 150° + 1'3 sin '225° + 1', sin 300° 

+ 1'6 sin 375° + 1'6 sin 450° 
12be = 81 sin 90° + 8a sin 270° + 86 sin 450° 
12b7 == 1'1 sin 1050 + 1'. sin 210° + 1'3 sin 315° + 1', sin 420° 

+ 1'6 sin 525° + 1'e sin 630" 
12bs = 81 sin 1200 + 82 sin 240° + 8, sin 480° + 86 sin 600° 
12bg = 1'1 sin 1350 + 1'. sin 2700 + 1'a sin 405° + 1', sin 540° 

+ 1'6 sin 675° + 1'6 sin 810" 
12b10 = 81 sin 150° +.8. sin 300' + 8a sin 450° + 8, sin 600' 

+85 sin 750'> 
12bu == 1'1 sin 165° + 1'. sin 330' + 1'a sin 495° + 1', sin 660° 

or 

+ 1'6 sin 825° + 1'6 sin 990~ 

Now form the sums and differences of the p·s. thus:, 

Po PI P2 Pa 
P6 P6 p~ 

'Sums 10 11 12 Is 
Differences '»10 'lnl 'Ina 

Then we have 

24ao =10+ 11 +12+13' 
12aa = 'lno + '»11 cos :WO + '»12 cos 60°. 
12a, = 10 + 11 cos 60° + 12 cos 120° + I; cos 180°, 
12a6 = 'lno + '»11 cos 90° + '»Ia cos 180°. 
12as = lo + II cos 1200 + 12 cos 240° + 13 cos 360°, 
12alo = 'lno + '»11 cos 15~o + '»12 cos 300°, 
24a12 = 10 + 11 cos 180° + 12 cos 360° + la cos 540°, 

24ao = 10 + II + Is +' ~3> 
1 1 

12a, = 10 + iii -; is -Is. 

1 1 
12as = 10 - iiI - "i2 + Is. 

24au = 10 -II + Is -l" 
J3 1 

12a!'='»IO+'»IIT+'»I2Z' 
12a6 ='»10"-'»12, 

J3 1 
12alo = 'lno - '»I1-2~ + '»122' 
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or 

Next form the sums and differences of the s·s. thus: 

Sums 

Now write 

~lI = 11'. ~ll = II', ~?nl = m2', ~kI = kI'. 

~J3?nI = mI ', ~J3kl = k2', ~J3nI = nI '. ~J3nl = nt'. 

Then the equations become 
24a~ = (10 + 11) + (11 + 13), 

2~12'= (10 + lJ - (11 + la), 
12aj = (lo + 11') - (12' + 13), 

12as = (lo + 13) - (11' + 12'), • 

12al =: (?no + ml ') + ?nI ', 

12a10 = (mo + m21-?nI', 

12a6 = mo - m2• 

12b2 = (kI ' + ka) + k2', 

12bIO = (kI ' + ka) - kz', 
12b6 = ki - ka• 
12b4 = n/ + n2', 

12bs == n I ' - n2'· 
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Now write • qs , q5 , 
../2 = qa. '../2 = q5' 

"t I ,'../3, 
ql + q5 =}' 2q, = q,. ""2q2= q2' 

" 
, , t It t ' ../3t t ' 

ql - qa = 2' 2 2 = 2' ""2 I = I' 

tl' + ta' = It. q,' + qa' = el, 
tl' - ta' = fa' q; - qa' = ea' 



Put 

r1' + r;='hl' ~h2=h2" ~3hl=hl" ra'-ha'=h. 

, , h 1 , J3 _.' ,. 
r1 -r5 = 2' :t2=r2, 2 r,-1" re+r2 =h' 

Then' the above equations ,?ecome 

12bl = VI + hI') + 02 + r:), 
12bn = (J~ + hI'} - Va + 1':). 
12ba = (h2 + 1'a') + (1'2 - 1'6)' 

'I 12b9=(\+ra')-(1:2-r6), 
12bs = (hI -11) + U2 - 1',). 
12b7 = (hI' - 11) - Ua - 1':). 

The calculation is made on a computing form arranged 
as shown in the sheets inset: 

Ex, 2,-F~nd the Fourter expression for u( (i). gwen 

U,2 I U,3 I U,4 11/11i j U,
6

1 u
17

1
1
'J8 • j 1'J. I 11

20 j u,q 1 It". : tI.oz3 

-100 -]27 -100 -41-0--=-; -100 -2071-273 -24]1-:;~ 
[Answer, 100 (sin 8+cos 8+sin 28+cos 28+SlD 38 + C08 3~),] 

138 Application of the Method to Observational Data.-
1°, Adjustment to Penod,-In applying the above-descnbed 

method of practical Fourier analysis to observational data, we 
have first to find the values of the argument at which the data 
110' U I • U 2 • •• • ,1123 are to be taken. Suppose. for instance. that 
the observed period of the phenomenon is 185·28 days. Then, 
SInce -h of 185·28 is 7·72, if we take Uo to be the value of the 
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observed quantity at the instant to> we must take 'Ill to be its 
value at the instant to + '7·72 days, while '112 will be Its value at 
the instant to + 15·44 days, U 3 will be its value at the instant 
to+23.16 days, and so on. 

2°.' Allowance jar Secular Change.-In many cases the pheno
menon whose vanation is to be studied is not strictly periodic: 
thus if the numbers to be analysed represent hourly means of 
some meteorological phenomenon, the means for hour 0 will not 
in general be the same as the meaIlS for hour 24. This difference 
is allowed for in practice by applying a correction to each of the 
terms except that for noon. 

3°. :Allowance for the use oj Means.-In many cases the data 
from which the Fourier expansiol! 18 to be computed are not the 
actual values of tpe ordinates corresponding to the values 

0, 211' ••• of the argument, but the mean values of the ordinates 
11. 

taken over certain intej·vals. Thus if we WlBh to find the curve 
which represents the annual variation of temPerature at a given 
station, Wf! generally take as data the mean temperatures of the 
twelve separate months. It is evident, however, that if we were 

. to calculate the"curve directly from these data, taking the tem
perature .on the middle day of July to be the mean temperature 
of July, we should introduce an error, since the average tempera
ture on the middle day of July is not the same as the average 
temperature over the whole month: in fact, the curve obtaip.ed 
from the means would be too low in summer and too high in 
winter: the true curve being external to the curve of means. 

'We can deal with this dIfficulty by applying a correction to 
the data in the following way: 

Let mp-I' mp. mp+1 be three successive means, each taken 
over an interval 2E; and let 7'p be the true value of the function 
fOl: the middle of the interval ove~ which m is taken. so that 
1tp is the quantity which should be. substItuted for mp as a 
datum' from which to const~uct the Fourier representation .• 

We shall suppose that the function may be represented with 
• sufficien~ accuracy for values of the argument in this region by 
an expression 

u = a + 20.r + 3c.1.:II• 
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where a, b, c are constants, and where ~ is the argument 
measured from the middle- of the interval over which lIlp 18 

measured: we have therefore 

1f-' 1[ 1/3
• up=a, mp-I=~ udx, mp=~ udx, mp+1 =2; ?Id.r; 

-Be • -c f 

Performing the integrations, these equations give 

. mp-l = a - 40. + 13c~. 
mpH = a + 4b. + 13c~, 
mp =a+ c.z. 

1 ( mp +1 + mp - 1) 1 2 whence c~= -12 mp- 2 =24Ilmp. 

and therefore 
1 2 1 ( ',np +1 +'lIlp - 1) 

up=mp-24Ilmp=mp+12 mp- . ~ -. 

That.is to say, '~n orde1' to convert the give~ mean 1Iip tnlo lite 
true ordinate correspondtng to the mtddle of the tntervai over 
whtch mp tS taken,.we add a correction equal to one-twelfth of the. 
excess of. mp over the mean of mpH and mp-l' 

An alternative method IS to compute the Fourier eXpl"e88lOn' from the 
given means and then' multIply all Its penodlC terlllS (t e. all Its termK 
except the constant ao) by a factor whICh reprebents the latlO of the 
amplItude of the true curve to the amplItude of the curve of n;eans. 

An Example of Harmonic Analysts -In the accompanymg example 
the data are taken from observations of the magnitude of the variable star 
RW Cassiopelae ; * the magnitude of the variable star IS denoted by m. 

'fhe curve represented by the harmolllc formula is drawn In the 
figure. The observed magmtudes of RW CasslOpelae are allo gtven III 

Fig. 18 for purposes of comparison 

139. Probable Error of the Fourier Coefficients.-Knowing 
the probable errors of observation affecting the data u()J u1' 112, •••• 

we can easily calculate the probable errors of the values 
deduced for the Fourier coefficients a()J ai' bl • a2> b2• • • •• For 
(§§ 89, 94) if E is a linear function of 110, U1: 0 0 0, un. say 
Aouo + -\u1 + 0 0 0 + AnUn. and if the probable error of each of 
the. quantities uo• u1' • • ., 11 n is q, then the probable error. 
of E is (Ao2 + -\2 + ~z + ... + AnZ)!q. Thus in the 24-ordinate 
scheme, since 24ao = 110 + u1 + 1Iz +. , . + 1(~ the probable error' 
of ao is q/J24 or 0·204q. 
* E. T. Whittaker and C. lIIartin. Munthly KotlCeB. F..A.S. '1'1 (1911). p 511 
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A sme t~rm and a cosine term in the Fourier representation, 
which have the same period, are often combmed into a single 
term thus, 

a. cos 8+ b sm 8=Rsin (8+a), 

where R 7' J(a2 + b2) and cos a = blR, sin a = aiR: we then require 
to know the probable error of R and a, assuming that the 
probable errors of a and b have already been calculated. 
Suppose that the probable errors of a and b are each of 
amount E. Then, since 

8R= a8a+Mb 
J(a2 + b2

)' 

we see that the probable error in U. is E. Moreover, since 

8 _bSa-a8b 
a- a2+ b2 ' 

the p1'obable error in a IS 

E 

J(a2 + b2
)" 

It is lmportant to have clear ideas on this subJect, since 
otherwise there is a risk of carrying the computations to more 
dIgits than is warranted by the degree of accuracy of the data. 
ThIS remark applies particularly to the 'ComputatIOll of a. 

140. Trigonometric Interpolation for Unequal Intervals 
of the Argument.-Lastly, we shall conSIder the representation 
of a function u(x) by a trigonometric interpolation formula, 
when the values of the function are known ~nly for a set of 
values a, b, c, .' .• , m,n of .the' argument, which are not at 
equal intervals apart. 

The problem, which is analogous to Lagrange's problem in 
ordInary interpolation (§ 17), may be solved in more than one 
way: it is readily seen, indeed, that any of the following 
expressions will serve: 

~ . 
() _sint(x-b)sin!(.r-e) ... sin!(.r-n) ( ) 

u x - )11 a + ... 
sm!(a - b) sm!(a - e) •.. sm Ha. - n 
sint(x-a)sin!(x-b) ... sin!('1;-m) (", * 

:- sin!(n-a) sm !(n-b) ... sm!(n-m)1I 1£,: 

* Cauchy, Camptes rendu8, 12 (1841), p 283 = (Eufn'es (1), 6, P 71. 
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. 2°. 
u(x)::(cosx-cosb)(cou-cosc) ... (cosx-cosn)u(a)+. 

(cos a - cos b) (cos a - cos c) (cos a T COl! n) 
(cos x - cos a)(cosx - cos b) .•• (cos x - cos m) ( ) 

+ (cos n - cos a)(cos n - cos b) ••• (cos n _ cos m) un. 
3°. 

u(x) = sinx(cosx - cos b)(eosx - cos c) .•• (cou - cos n)u(a) + .. 
sma(cosa-cosb)(cosa-cosc) ... (cosa-cosn) 

sinx(cosx-cosa, ... (cosx-cosm) ( ) * 
+ smn(cosn-cosa) ... (cosn-cosm)u n. 

4°. 

() sin (x - b) sin (x - c) .•. sin (x - n) () ux= ua+. 
sm (a - b) sm (a - c) •.• SIn (a - n) 
sin (x - a) sin (3; - b) .•• ein (x -m) () t 

+ sm (n-a) sm (n - b) .•• em (n_m)u n. 

Ex. 1.-D18ClJSS the relation of the above formulae to the formulae 
obtAmed for equal mtervals of the algument in §§ 133, 134. 

Ex. 2.-By makmg b tend to equalIty' with a in formula 10 above, 
obtam an interpolatIon formula for the case when the functIOn and Its 
first derIvatIve are both known at x= a, whIle the functIOn alone 18 

known at x=c, d, ' •.•• 
(Th18 is useful when we happen to know the values of the argument. 

for which the functIOn is a maXImum or a mmlmunl) 
Ex. a.-Apply the first of the Jlbove formulae to obtam an expreBSlon 

for . 

1
2 .. 

o 'II(x)dx. 

(U.e the formula 

2.. l' "1 1 1f' (1 ) • r 8In2 (x - Xl) sin 2 (x - x~ ... sill 2 (x - x2p) dJ: = 22p-l ~ co~ 28 - 81' l 
10 . . 

• where 8 denotes Xl + Xi +. . . + X2P' and $p 18 the sum of p of these :is.) 

[Baillaud, TO'lllo'll8e Ann. rio (1!l86), B.] 

MISCELLANEOUS EXAMPLES ON CHAPTER X . 
In each of the folloWIng examples it. 18 reqlllred to find a' }'oul'ler 

series for 'II(x). The tabulated values of 'II(x) represent eqUldlstant 
ordInates spaced at mtel'vafs of -h of the complete period. 

• These two formulae aro due to Gauss, Nachla~, Wer!e (1866), w. pp. 
291.292. 

t Hermite, COUTS a'analyse 
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Ex.'l.-

~1~1~1~1~1~~I:::-I~~l'~~I~I~I~I~ 
4 4 38168 79\92 91 75 94 1181115 73 85 86 78 

u15 i ula I' ul7 I urs ! Ul91~1 u2l I~I u~ 
77 I 86 I 74 \ 43 I 50 35 35 20 1- 10 

Ex. 2-

Uo I ul I U2
! ual U'I u~ ! Us I U71 Us [ u, j uJO I un , "12 

-1-U
1
-;-0- 105 138 158 159 i 150 139 142 143 1271134 

~1~!2.!~!~!~I~I~!~I~I~ 
140 135 150 160 134 120 120 I 100 72 66 30 

Ex.3-

Uo I ul \ u2 i ua \ U'! Us I Us I u7 \ 11,. ! u, \ ulO I ~l I U12 ! u13 

-;;7-;;i-;;-;;-,-W--;;--;-I--U;f 148 1,50 \-;;;1125 131) 

~1~1~1 u l7 I~I~!~!~~~!~ 
125 85 82, 60 ! 24 20 28 45"! 56 J 40 

Ex. 4:'-

U
o 

I Jtl ! U21 Ua'i U'I Us I Us I U
7

! Us I U'11tlo 
I_ un I un 

170 142 760 171 , 129 139 130' 1"50 181 179 170 148 106 

~1~12.\~I~!~I~I~I~I~I~. 
75 I 74 7 15 r 34 48 I 69 105 130 146 r 160 

[Coples of tlte Computatwn Sheets facin.'I page. 270 and 
278 may be obtamed d.lrect from the Publt8heJ 8 in quantltlea 
of not less than one dozen, at- the price of 2, 6d. per dozen 
sets. Specwl terms mil be qupted for ol'dera of one thousand 
and uplvaI·ds.] 



CHAPTER. XI 

GRADUAlION, OR THE SMOOTHING OF DATA 

141. The Problem of Graduation.-Suppose that Q,S a' 
result of observa.tion' or experience of some kind we have 
obtained a set of values of a variable U corresponding to equi
distant values of its argument: let these values be denoted by 
u10 uZ' u; .. '" u... If they have been derived from observa
tions of some natural phenomenon, .they will be affected by 
errors of observation; if they are statistical data derived from 
the examination of a comparatively small field, they will be 
affected by irregularities arising from the accidental peculiar
ities of the field; that is to say, if we ex'Pllme another field 
and derive a set of v~lues of 'J.£ from it, the set of values of U 

derived from the two fieJds will nbt in general agree with each 
other. In any case, if we form a table of the differences 
~Ul = Uz - u1' ~U2 = ua - uzo • • ., ~lul = ~uz - ~U,I' etc., it will 
generally be found that these differences are irregular; so that 
the difference table cannot be used for the purposes to which 
a'difference table is usually' put, viz. finding interpolated values 
of u, or differential coefficients of 'If with respect to its argument, 
or definite integrals involving u. Before we can use-the -differ
ence table, we must perform a. process of "smoothing"; that is • 
to say, we must find another sequence ul ', uz'" .. '0 u,.' whose 
terms differ as little as possible from the terms of the sequence 

, 111, 1120 ' , ., u,., but wbich bas regular differences. Th!s smooth
ing process, leading to the formation of 111', Us', • • " u,:, is 
called the graduation or adjustment of the observationa.-

For example, let us consIder an extract from the Government Female 
Anmlita$ (1883) :Ultimate Table and form a dUference table of the 

285 
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I 

entrIes. We have, denotmg by q", the probability of a person IIged X 

dymg in a year, 

a; (Age). 10'q .. A. 
50 1019 

531 
51 1550 

61 
52 1611 

142 
53 1753 

19 
54 1772 

-224 
55 1548 

474 
56 2022 

-99 
57 1923 

-81 
58 1842 

487 
59 2329 

The dllferences are altogether Irregular, and, as we shall see (§ 155), 
when the data are adjusted the dIfferences become more regular 

In deahng wIth.experimental results of no grea.t accuracy 
the smoothIng process 18 generally performed graphically,· but 
in the present chapter we shall be concerned wIth more refined 
methods Involving analytIcal formula~. 

142. Woolhouse's Formula of Graduation.-We shall 
consIder first a formula which, though now'disused in practice, 
IS of considerable historical and theoretical interest. W 001-

house proposed t to pass five ordinary parabolas through the 
five s'~ts of pomts 

(u- 7, u- 2, ~3)' (71- 6, u- 1, 1€4)' (u- o' 'UO' 1t6), (u_" 'Ill' us), (u-3> u Z' 7'7)' 

* Fot'the best graphical method cf' T. B Sprague, J LA. lI8 (1886), p 77 
For valuable comments on snch methods cf. Whewell, NO'/J1.lm Orqanum Re
novatum, Book III. ch. Vll p 204 of the edltton ofl858 

t J I A 16 (1870), p. 389 In J 1.4 lI3 (1882), p 351, G. F. Hardy showpd 
that the calculationq required for the application of Woolhouse's formula mlA'ht 
be performed by a "columnar" process of calculation, 1D the form 

11: = .-h· ~(1 - 3a")A.s~"t, 
which is identical WIth the form (Th)[5]3(1-38')u,l(iven later by him, since 
A,~=[5], and T G. Ackland, J 1 A. 23 (1882), p. 352, showed tIl at they can 
be performed by summattons of a different nature • 
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arid take as the 'graduated value of 1.6 the arithmetic mean of 
the values derived from these fiv;e parabolas. Now using .11) 
to denote thll operation .1 performed with the interval 5;by the 
ordinary interpolation formula (§ 21)" the values derived from 
these five. parabolas are: 

• ,2 3 
1.60 = 1.6- 2 + 5.151.6- 2 - 25t:.52.u -7 (from 1.6-7' 1.6- 2' 1.63), 

1 2 
1.60 = 1.6-1 + 5.161.6-1 - 25.162u_6 (from 1.6-6, 1.6-1' U 4), 

(from 1.6-5' 1.60' 1.65), 

(from 1.6-4, 1.61, Ue), 

Therefore if 1.6; denote t.h~ graduated value of 1.60> we have 

" 2 1 1 2 3 
51.60 = [5]1.60 + 5.151.6-2 + 5.151.6-1 - 585U1 - 5.151.62 - 25A52u-7 

2 .1 2 3 .1 2 7 .1 2u (1) - 25 5 U-e + 25 5 1.6- 4 + 25 5 -3' 

. where (5]1.60 stands for 1.6- 2 + 1.6-1 + 1.60 + 1.61 '+ Ua-

T)le operatIOn of replacmg a term U r by the sum' 

,U .. -1+" .+Ur + . . . +U ,,-1 
r-T r+T 

WIll be called sum'mutton by n'B. and denoted by the operator [n], 80 that 

. [n]uo=u_,,-'l+" '+Uo+' .+U,,_I 
2 ~ 

We shall use [n]2 to denote the effuct of perform~ng thIS operation 
twice III successIOn. so that, for example, 

[5]2uo=u" + 21£3+ 31£z + 4u1 + 5uo + 4u_1 + 3u_a+ 2u_3+ u_~. 
Since .10.1.6-2 = [5].11.6(1) and .152u_4 = [5]2.12uo• equation (1) may 

be writ~en . 

5, 2 1 1.. 2 3 (5] ~.. 2 [5] ..... . [5]110 == 110 + 5.11.60 + 5.11.61 - 5.1113 - 5.11.64 - 25 .1-16_3 - 25 .1-u""\l 

3 7 
+ 25[5].12uo ;l- 25[5].12u] • 

2 i 3 2 3 
,= - 5~5]U3 + 5[5]112 - 25[5].1~L3 - 25[5].1~L2 + 25[5].1~lo 

. + :Sr5]A2111• 
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so ~:]~U: = -10ua+ 15ua - 3A2u_a - 2~2U_2 + 3~2UO+ 'lABul 

= -31La+4u-2+u-l+uo+ll1+4u2-3l1a 
= - 3[5]u_l + 'l[5]uo - 3[5]ur 

Thus W oolhouse's formula of graduation may be written in 
the forms 

, [5]3 
Uz = 125 ( - 3Uz-l + 'luz - 3/tz+!), 

or * uz' = f~;(Uz - 3.>2uz), or uz' = f;];{10[1] - 3[3]}uz• 

or Uz' = 1~5{25Uz + 24(uz_l + U Z +!) + 21(uz_z + u"'+2) 

+ 'l(uz_a + Uz+3) + 3(UZ-4 + UzH) - 2(uz_a + UZ+6) 
- 3 (Uz _7 + UzH}}, 

or 'liz' = O·200uz + O.192(uz_l + uz+!) + O.168(uz_a + U .. +2) 
+ O·056(u';_a + uz+s) + O.024(uz _4 + UzH) 
- O.OI6(uz_a + U z+6) - O.024(uz_7 + UzH)' 

143. Summation Formulae.t-The formulae of Woolhouse 
may be regarded as a particular instance of a class of gradua
tion formulae, much used by actuaries, which may be called 
summatwn formulae, and which are based o,n the following 
prinCIple 

Let A denote the operation of dtfferencing, so that 
Allz = 'liz+! - U z ; and, as in § 142, let [2m + l]uz denote the 
sum of (2m + 1) u's of which u" is the middle one. Then it is 
possible to find combinations of these operations A and [ ] 
which, when differences above a certain order .are neglected. 
merely reproduce the functions operated on; so that we have 
(say) 

f{A, [ ]}uz = 'liz. + high differences. 

We now take f{A, [ ]}ltz to be the graduated value of 1lr 
that is, 

'liz' = f{A, [ ]}uz, 

the merit of phis It,,,' depending on the circumstance that 

* This fOrln is due to Hardy, J l.A. 311 (1896), p. 372 
t On Summation Formulae cr. G J. Lidstone, J.I.A. It (1907), p. 348, 

411 (190,8), p. 106. 
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f{~,'[ ]}u", involves a large n1lIl;lber o~ the observed 1l'S, whose 
errors to a considerable extent neutralise each other and so 
produce a smoothed 'value u; in place of 11", 

In practice, instead. of the symbol A, it is generally c~>n
veniant to use the symbol of central differencing B, where B~IO 
denotes u1 - 2uo + u-l' Writing E = e2*, we have 

B2=E - 2 + E-l= - 4 sin2 </>, 
so that 

1l_m + u-m+1 +. . . + Uo +. . . + U m 

= {e- 2ml</> + e-2(m-l),</> + ... + 6-2* + 1 + e2t</> +. . + e2m*}uo 
= (1 + 2 cos 2</>+ 2cos4</>+ ... + 2cos2m</»1l~ 

sin (2m + I)</> 
= 1l SIn </> 0> 

and tnerefore, 

. sinn</> 
[n]uo=--"" Uo SIn,/, 

{ 
1£(1£2_12) . • n(n2 _12)(n2 _32). 

c= 1£- SInl </>+ sm-</>-3! . 5! . 

or 

This shows that (p][q][r]u =u + ~(p2_ :)B~l + terms inB4 
p.q.r o 0 24 o. 0' 

(}IlIo> •• I and therefore a sllmmatio'TJ, formula, co~rect to third 
differences, is , • • ' 

'1t ' = (p][~][r]{t ... ~(p9 -1)B2}11 . 
I) p.q.r ~4 0 

TakIng any two formulae of this type, and elumnating 1)2, we obtaIn 
summatIon formulae of a type ii,rst Introduced (but otherWIse cJemon
stI'ated) by J. A. Higham, J.LA. 23 (1882), p. 335 j 24 (1883), p, 44 j 
25 (1884-85), pp. 15, 245. 

Formulae correct to fourth differences may be deduced by the above 
method. , The use of a formula correct to too Iowan orde,r may lead to 
systematic distortion of the results. 

It may be remarked 'that, formulae such 88 Woolhouse's, which are 
based O}l interpolations, may all be reauced to the summation type; but 
the converse is- no't true, so the summation method is the more general. 

'(D 3u) '20 
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144. Spencer's Formula.,- Perhaps the best of the 
summatIOn formulae of graduation correct to third dlfferences 
is the 21-term formula of Spencer,* namely, . 

u ' = [5][5][?J(1_ 402)u 
o 5.5.7 o· 

Thls may eVIdently be obtained by taking p = 5, q = 5, 
r = 7 in the preceding formula. \Ve shall now obtain ltS 
expanded expreSSIOn. If we perform summatIOn by 7's on 
2(1-402 - 304-106) or (_E3+E + 2 + E-l_ E-3), we obtam 

- E6 - E~ + 2E3 + 3E2 + 3E + 2 + ::lE-l + 3E-2 + 2E-8 _ E-o _ E-8, 

and if on this we perform summation by 5's twice, we obtam 

- ElO - 3E9 - 5Es - 5E7 - 2E6 + 6Eo + 18E' + 33E3 + 47E2 + 57E 

or 

+ 60 + 57E-l + 47E-2 + 33E-3 + 18l!:-4 + 6E-o - 2E-6- 5E-7 
- 5E-s - 3E-9 _ E-IO. 

Spencer's formula may therefore be written 

u; = -rlo{60uo + 57(1Ll + 1(1) + 47(u_2 + u2) + 33( u-3 + Va) 
+ 18(n_4 + u4) + 6(u-o + vo) - 2(u_u + vo) - 5(11_7 + u7) 
- 5(u-s + Us) - 3(u_9 + 1/9) - (u- 10 + 1'10)} 

u; = 0·,171uo + 0.163(ul + u-l)'+ 0.134(112 + 1/_2) + O.094(va + 1/ _3) 

+ 0.051(1t4 + u-J + 0.017(115 + 1Lo) - 0·006( Vo + 11 -8) 

- 0.014(u7 + u-7) - 0.014(lIS + 1LS) - 0.009(lJg + 11 -g) 
- O.003(1tlO + u- lO). 

In the practical apphcatIOn of the ·formula.· we form the 
expreSSIOn 

!( - 11a + u1 + 2110 + 1Ll - u-a), 

sum by 7's and dIvide by 7, then sum twice by 5's, dlvIdmg by 
5 each time .. 

The following is an example of the workmg process of 
Spencer's 21-terIp. formula' t 

* This was employed In the graduatIon <>f the rates of mortality exhibited 
by the Manchester Umty Experience, 1893-97 • cr. J.I A 38 (1904), P 334, U 
(1907), p. 361 

t J Spencer, J I A 38 (1904), p.'339 
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(1) (2) (8) (4) . (~) (a) (') (8) (~) (10) 

Graduated 

A~o Ungr"duated Divide Sum Sum DIvIde 8um qz=sum In 

by 7 (2l+(8) " .. (4)-(5) Col 6 Col 8 [)'s cuttmg 
(.) q •• 

~" 
In S's. +u ... 

lD 7's by5 m5's down as 
fara. . necessary 

---------- ------
20 000431 62 

1 0·00401) 58 181 239 
2 000429 61 179 240 
3 000422 60 197 257 128 129 
4 0·00530 76 208 284 129 155 

25 0·00505 72 214 286 136 150 
6 0'D0459 66 209 275 140 135 997 199 
7 000499 71 212 283 160 ]23 H>34 207 
8 0·00526 75 226 301 157 144 1043 209 1055 
9 0·00563 80 239 319 158 161 1069 214 1101 

30 0·00587 84 249 333 167 166 ].130 226 1154 '00582 
1 0·00595 85 261 346 182 164 1223 245 1220 ·00614 
2 0·00647 92 273 365 189 176 1302 260 1294 ·00648 
3 000669 96 205 391 ]95 196 1375 275 1370 00682 
4 0·00746 107 312 419 203 216 1439 288 1438 ·00716 

35 0·00760 109 327 436 213 223 ]508 302 1501 00749 
6 0·00778 111 338 449 215 234 1566 313 1559 
7 000828 118 350 468 238 230 1616 323 1620 
8 0·00846 121 358 479 246 233 1667 333 
9 0'00836 119 371 1190 256 234 1745 349 

40 000916 131 ~87 518 272 246 
1 0·00956 137 413 550 283 267 
2 0·OlO14 iJ.45 436 581 2~0 301 
3 0.01076 154 461 61& 
4 0·0].134 162 477 639 

I 45 • 001124 161 

145. Graduation' Formulae obtained by 'fitting a Poly
'nomial.-We shall next consider a class of graduation formulae 
whl(ihare based on wholly different prmClples from thesunrmation 
formulae. Supposing the ungraduated values 'U., to be plotted 
as points against the corresponding yalues of x, we shall fit 
a parabohc curve of some assigned degree j to' tne points 
(II _".1£',,+1> .' •• , 110, • : ., 'Un), determining' the constants of the 
curve by the.Method of Least Squares, and we shall th~n take 
the ordinate of this curve at x = 0 as the graduated value of '110' * 

• Cf: Sheppard. Proc. V: Int. Congo (1912). (Ii) 348; Proc. L.N.B~' 13 • 
97; J.I.A. 48 181. 390. 49 148; Shernff. Proc. R.B.E. (1920) 112; Condon. 
Calif. Publ 2 (1927) 55; Birge and Shea. ,bid. 67. 
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Let us then find the polynomial oj degree j, 
11 (.1:) = Co + cIJ: + ci'~.2 +. • • + cJ"', 

." { )2 jo,'which p=~n Up -1I(p) '/,s a mimmum; then 71(0) 11 III be t,th/'7I 

to be the graduated value oj 1/0, ' 

The equations of condition to .determine co. ci • •• '. <, arl:! 

f
Co + c1n + c2n2 + ... + c/,I,i = 11" 

Co + cl(n -1) + c2(n _1)2 + ••• + c)(n -1)1 = lI n -l 

lC~-cI~+C2n~- .·.+cA-n)J =1t_n' 

If we now fOfm the normal equations, It is eVldent that the 
coeffiCIent of 'co III every alternate equation vanishes. the s~ms 
of the odd powers of the natural numbers from - m to + ?It bemg 
zero. Let j = 2k or 2k + 1. Denote by:Z a summa.tIon over the 
values from - n to n inclusive; let ~ be denoted by ~p * and 
let ':isPu., which is the pth moment, be denoted by Mp' Then 
the normal equations which involve Co are 

{

CO':iO + c!':i£ +, , ,+ c 2k':i2.\: = Mo. 
c?"'i.! + C2~~ +. , . -: C2k~+2 = Ma, 

co~ + C2~+2 +. , • + C2.\:':i4k = M2.\: 

SolVing these equations for COl we have 
14 M2 '" M2k , 

':i2 ~4 '. ~+2 
~4 ~6 ••• ~2kH 

"'i. 2k "'i.2k+2 • ~4k 
u; =1t(O) =Co= 

..... "'i.o 
... ' 

-2 -2.1: 

"'i.a "'i., "'i.2.\: +2 

"'i., "'i.6 ~H 

~ ~+2" .. ~4i. 
* From § 69, we note' that the sum of the·pth powers of the n.>tnral 

numbers'from -'II. to 'II. lDcluSlve (where p is ali even number) is given by 
2:p =2{1"+2D + ... +""'1 

=2 [nl'+l +~+~B ,.,,-,_p(p-l}(p-2} B"",,,...3 
p+l 2 21 1 4' • 

, +p(p -l)(p- !\(p- 3)(P- 4)B,n"""- •• .J 
where !II =i. B2=-h. B8=~\' B.=-h. B5=/a-, ..• 



GRADUATION, OR THE SMOOTHING OF DATA 293 . . 
This is tke Graduated Value oj uo.-Since the moments lfo• 

M2 •••• are linear functions of the ungraduated da.ta U- n • ••• , 

Un, we see that the graduated value Uo is also a linear function 
of these da:ta. 

The follOWIng table is useful fu. performing the computations. , 

[TABLE 



In== 1. 2. 3. 4. 

I - - --

~~ 2 10 28 60 

2:. 2 34 196 708 

~6 2 130 1588 9780 

~. 2 514 13636 144708 

... 2 2050 120148 2217300 -10 

... 2 819! 107107~ 34625508 -12 

... 2 32i70 9598708 546169620 -I~ 

... 2 131074 86224516 8e76159108 
-10 I 

TABLE OF THE SUMS OF POWERS OJ' THE NATURAL NUMBERS 

2:p =( - m)p+( - m+1)p+ . •• +(m-1)P+mP• 

5 6. 7 8. 9 . 
110 182 280 408 570 

1958 4550 9352 17544 30666 

41030 134342 369640 893928 1956810 

925958 4285190 15814792 49369224 135462666 
. 

21748550 142680902 707631400 . 2855115048 9828683850 

522906758 4876471430 32559045832 169997999304 734857072266 . 
12753500870 169481829062 1525927974760 10322020996968 56075605906890 

313851940358 5956071755270 72421932894472 635371886315784 4341412264019466 

10. 

-
770 2:2 , 

50666 2:. 

3956810 ... 
-6 

335462666 2:6 

2P828683850 2:10 

2734857072266 2:12 

256075605906890 i ~1. 
I 2~3~14122640194661 ~16 
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146. ';t'able of these Formulae.-By substituting par
ticular numbers for k and n and evaluating the determinants, 
we obtain the following table of the graduation formulae which 
are obtained by fitting a polynomial to the data. 

Case L k = 0, i.e. fitt~ng (t stra1ght ltne to the data. 

uo' = 2n: 1 {uo + (uJ + 1LI) + (u2 + 1L2) + ... + (un + 1Ln)}. 

'Case IL k= 1, i.e. fitting a parabola oj degJ'ee 2_ or 3. The 
general formula in this case is 

uo' = pnun + Pn-Iun-I + .•• + P-n1Lnt 

where 

This gives 

n= 1 u;=1to' 

3n2 + 3n - 1 - 582 

P. = 3 . (2n - 1)'(2n + 1)(2n + 3f 

n~2 110' =:IT{17uo + 12(111 +1£-1) - 3(1l2 + u-z)} =;,tlo-rt~4u_2 
n = 3 110' = ~T~7uo + 6(111 + 1L1) + 3('!l2 + u- 2) - 2(113 + u-3)}· 

n = 4 uo' = Tb-{59uo + 54(ul + u_I) + 39(112 + u- 2) + 14(113 + u-3) 
- 21(u, + ILJ}. 

n = 5 110' = .h·{89uo + 84(ul + U'-I) + 69(112 + u- 2) + 44(u3 + u-3) 

+ 9(11, + u- t ) - 36(115 + u-s)}' 
n = 6 110' = rh-{25uo + 24(111 + u_ I) + 21(112 + ~-2} + 16(ua +'It-a) 

. +9(11,+U_,) -ll(lIs+U-'s)} 
n = 7 1£0' = rr\rx-{167110 + 162(ul + 1£_1) t 147(112 + 1L2) 

.... 122( 113 + U-3) + 8'1(u, + 1LJ + 42(115 + 1L5) 

-13(us + u-s) - 78(u7,+ u-7)}· 

1& c= 8 110' = -s-h{43uo + 42 (ul + 11 -I) + 39(112 + U-2) + 34(1Ia + u-3) 

+ 27(11, + 1L,) + 18(lls + u-s) + 7(IIS 'l-1L 6) 

. - 6( 117 + u -7) - 21( lls + u-s)}' 
n = 9 110' = "!rm{269110 + 264(u1 + 11 -1) + 249(u2 + 1L2) 

+ 224h + 1Lal + 189(11, + 1LJ +. ~44(lIs +.1L5) 
+ 89(116 + u-s) + 24(117 + 11 -7) - 51(1Is + 1'-s) 
-136(1I9 +'1'-g)}· 

n= 10 '110'=~{329/1o+ 324(111 + 11 -I) + 309(1/2+1LJ 
+ 284(113 + IL3) + 249(11, + 1'-4) + 204(1/5 + u-s} 
+ 149 (us + 1'-6) + 84(117'+ 1L7) -+ 9( lis + 1'-8) 
-76(119 + u_ g) -171(1110 + "-IO}}' 
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Case IIL k = 2, u. jitting a pa'rabola oj degree 4 or 5. 
n=2 710'=110 

n = 3 110' =;rh{13luo + 75(111 + u-1) - 30(118 + u- 2) 

+ 5(lIa + 1L3)}' 

n = 4 110' = -d..{179uo + 135(1(1 + 1L1) + 30(u2 + u- 2) 

- 55(113 + 1L3) + 15(/(, + lI-JJ. 
n = 5 /(o~ = Th{143uo + 120(711 + u- 1) + 60(112 + '11- 2) 

-10(ua+ u-a) - 45(u, + u-J + 18(110 + u-o)} 
n = 6 110' =-dsr{6771l0 + 600(u1 + u-1) + 390(112 + u- z) 

+ 110(na + 1La) -135(u, + 1L,) -198(lIo + 11_6) 

-;/- 110(116 + 1L6)}' 

n ='7 110' =n-h"D"{110e3uo + 10125(u1 + 1L1) + 7500(118 + 11_2) 

+ 3755(1Ia + 1La) -165(11, + u_,) 
- 2937(u5 + 11_ 5) - 2860(1(6 + u-6) 

+ 2145(117 + u- 7)}· 

n = 8 110' =nn{88:3110 + 825('111 + u-1) + 660(11
Z + U- a) 

+415(lla+U_3) + 135(u,+1L" -117(/lo+11~5) 
- 260(u6 + u- 6) -195(117 + 1L 7) + 195(lIa+ ?I-a)}' 

n = 9 '110' = ~{1393uo + 1320(u1 + 1L1) + 1110(112 + u-J 
+ 790(u3 + u-a) + 405('11, + 11 _,) + 18(116 + 1'_6 ) 

- 290(1(6 + u- 6) - 420(117 + u- 7) - 255(11a + 11 -a) 
+ 340(lIg + 1Lg)J 

n == 10 Ito' == 2 OliJ15 {44003110 + 42120(111 + 1L1) + 36660(112 + 11_2) 

+ 28190(Ua + 1I-a) + 1'i655(u, + 11_,) 
+ 63'78(u5 + 1L5) - 3940('116 + u- 6) 

-11220(117 + 11_7) - 13005(118 + 1'_ 8) 

- 6460{lIg + 1L 9) + 11628(1110 + u- 10)}· 

14'7. Selection of the Appropriate Formula.-Among 
the many formulae of the last section, we have to deternune the 
one whlCh is most appropriate to the particular material that. is 
to be graduated; this may be done in the following way: 

From thll formulae of § 145 we see that if we tried to fit an 
ordinary parabola y=cO+C1X+Ci1J2 to data u-w u-n+1' ••• , ?In' 

til en we should have 
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Now Cs is !~2y, where t:J.2y denotes the second difference of y, 

which is of course constant since y is of the second degree in [t. 
So if we try to represent a. certain stretch of the data, say from 
u-n to un inclusive, by an ordinary parabola, then the most 
probable value of t:J.2y for this parabola is 

2(~oM2 - ~2Mo) 
~o~, - ~~~ 

Thi£! is readily calculated (the rs being given at once by the 
table of § 145), and thus we can make a preliminary test of the 
value of t:J.2y for curves roughly fitting the data. in different 
.. stretches." This enables us to judge what is the lowest orqer 
of parabola. which will give a satisfactory fit when we use some 
definite number (2n + 1) 'of data.' in the graduation formula. 

Ex. I.-If d Bet of observations Yl' Y2' •• '1 Yn. cOTTeSpondtng to equt
dtBtant values of the argument x, t8 given, and if we I'epresent these as 'fLell 
as possible by a fOf'17lula of the type Y = Ax + B, 80 that t:J.y u constant for 
ihe graduated values, then the most probable value of tMs constant t:J.y is 

6" 
~_12) 

{I. (n - I)t:J.YJ + 2.(n - 2)t:J.Y2+ 3.(n - 3)t:J.Ya+' •• + (n - 1). 1. t:J.y "-'1}. 

Ex. ~.~If .. I6t of obseTvation, Yl' Y2> ••• , Yin corresponding to equt
dtstant values of the argument x, is.given, and tf we represent these as well 
as pomble by a formula of /JIe type Y = Ax2 + Bx + C, so that &2y 1S constant 
for the graduated v~lues, then the ?nost p.rob~ble value 0/ thts constant t:J.2y 18 

30 
(2 12)( 2 22\~{P(P+ I)(n-p)(n-p-I)~2yp}. 

n n - n - -Jp 

Ex. 3.-If a set of obseTvations Yl' Y2' ... , Yn, cOTTeBpondmg to equi
distant val",es of the argument X, ts given, and 1f we rep' esent the.~e as well 
as possible by a formula of the type Y = AxB + Bx! + Cx + D, 80 that t:J.3y is 
constant for the graduated values, then the most probable value of thts 
constant is 

140 
71(n2- 12)(nB_ 22)<n2 - 311) 

~{p(p + 1) (p+ 2) (n - p) (n - p T 1) (n -p - 2).l3yp} 
pl' .. 

148. Tests performed on Actual Data.*-We shall now confUder 
the relative merits of Summation formulae and Least-square formulae 
as tested by tneir p~rformance. when applied to defimte numerical data. 

• 'Sherrlff, loc, cft. 
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We have first to decide what is to be accepted as the measure '0£ good 
pelformance In a graduation. The test we shall u<>e may be dtlbcnbl.u 
thus 

Consider some known analJ tic functlon of X, such as log J', of \llmh 
tables accurate to, say, 6 places are available. A 4·place table of tIllS 
function may be prepareq by omitting the last two digits (which will he 
called the tad) and "joTC1-ng," i e increasIng the last retaIned digit hy 
ulllty when the omitted tall begins with one of the digits 5, 6, 7,8, or 9. 
We can regaid the values of log x given by the 4-place table as affected 
wIth" errors," namely, the error& whICh have been produced hy ollllttmg 
the tails Let us now take a sequence of these 4-place values, Bud 
graduate them by the gladuatlOn formula whICh is to be rested; the 
effect of the graduatIOn should be to smooth out the" erlOrs" and restore, 
to some extent at least, the IDQre acciuate valuPlI of the 6-place tahle. 
The success With whICh thiS IS performed may be taken as a measure of 
the merit of the graduatIOn formula; for It mUbt be remembered that 
the purpose of a gradnatlOn formula IS precisely to reduce the magm tude 
of aCCidental eqors. The advantage of usmg a known function, su~h as 
log 'l:, for the test IS that we can be certain that the errors (VI7. the tails) 
are aCCIdental, t 6. nan-systematic. There is, however, the dIsadvantage 
that the errors do not obey the normal law of frequency, smce \\lthIn 
the limIts ± 0·5 of the laat place, the probabIlity of ~ error € dOL'S not 
vary WIth € 

In the followmg table tIns method of testlng is applIed to the functIOn 
107 
---; - 39,999 95. Spencer's formula and the Leas1;.square formula k = 1, 

m= 10 are used. The merIts of the graduated values are obtaIned by 
comparmg columns 9, 10, and 11:· the result is that the sum of the 
squares of the reSIdual errors IS 873 when the Least-square formula IS 
used, and 1327 when Spencer's formula IS used. 

[TABLE 
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GRADUATION OF THE ltECIPltOCALS OF NUMBERS BY SPENCER'S FORMULA 

A'm'THE LEAST-SQUA;RE FORMULA k=l,n=lO' 

'" ~ Graduated Value Difference betwePn Un-.- 0 
ofu=u/. '" " graduated and Graduated (U-u')2. '" " --~--- ~~ '" .. ;I and True Values x 10'. ;0;'0 ,,-:> 

"'II By Least-
I 'f /I is:> square By I .... ------

~ e Formula (;;pencer'R 
Col 2- Col 2- Col 2- ~§. 

0 k=l, Formula. CoL 8 Col 4 Col 5 (CoI7)Z (Col 8)" ... fl.=:'0. 
- -------- --- ------- -------
(I) (2) (3) (4) (5) (6) (i) (8) (0) (10) (11) 
201 9751·29 9751 
202 9505·00 9505 
203 926J.13 9261 
20~ 9019·66 9020 
205 878054 8781 
206 8543·74 8544 
207 8309023 8309 
208 8076 P7 8077 .. y 

209 7846.94 7847 
~10 7619.10 7619 
211 7393.41 7393 7393.36 7393.29 41 5 12 1681 25 144 
212 7169·86 7170 716980 716973 -14 6 13 196 36 169 
21~ 6948.41 6948 6948.34 6948.26 41 7 15 1681 49 225 
214 6729·02 6729 6728·93 6728·94 2 9 8 4 81 64 
215 6511.68 6512 6511·63 6511·64 - 32 5 4 1024 25 ]6 
216 6296·35 62P6 6296·31 6296·36 35 4 -- ] 1225 16 1 
217 6083.00 6083 6082·99 GOM3·05 0 1 -5 0 1 25 
218 5871·61 5872 5871·5& 5871·69 - 39 3 -8 1521 9 64 
219 5662·15 5662 5662·15 5662.23 15 0 -8 225 0 64 
220 5454·60 5455 5454·64 5454·67 - 40 -4 -7 1600 l(l 4Sl 
221 524892 5249 5248·97 5248·97 - 8 -5 -5 64 25 25 
222 5045·10 6045 5045·14 504511 10 -4 -1 100 16 1 
223 484310 4843 4843·10 484309 10 0 1 • 100 0 1 
2~4 464291 4648 4642·88 4642·88 - 9 3 3 81 9 9 
225 4444·49 4444 4444·46 4444·46 49 8 3 2401 9 9 
226 4247·84 4248 424780 4247·79 -HI 4 ;; 256 16 25 
227 4052.91 4053 4052·84 4052·86 - 9 7 5 81 49 25 
228 3859·70 3860 3859·59 3859·64 -30 11 8 900 121 36 
229 3668·17 8668 3668·08 3tl68·10 17 9 7 289 81 ' 411 
230 3478·31 3478 3478·19 3478.23 31 12 8 961 144 64 
231 329009 3290 8289·99 8290·00 9 10 9 8] ]00 81 
2.32 8103-50 8103 3103·44 3103·40 50 6 10 2500 36 100 
233 2918·50 2919 2918·4] 2918·41 -50 8 9 2500 9 81 
2.34 2735·09 2735 . ~ 
2J5 2553·24 2553 
2036 2372·93 2373 
237 2194 14 2]94 .. . . . 
238 2016·86 2017 
239 1841.05 1841 .. 
240 ]666·72 1667 
241 1493·88 1494 ~ 

242 ]322·86 ]32:1 
243 1152·31 1152 .. 
- -- .-~------ ----- ---

Total for ClPlumns 9, 10, and 11 19471 873 132i . . 
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149. Graduation by Reduction of. Prol>abl~ Error.-The 

graduatIon formulae which we have obtained by fittmg poly
nomials have been derived otherwise by 'V. F. Sheppard,· who 
approaches the problem HI. the following way: 

As before, let ... u- 2, u- 1, VOl VI' V 2, ••• be the un graduated 
values of u. Suppose that the determination of each of these 
IS subject to the probable error £. If the graduated value of 
Uo is 

11; =Pouo + Pl111 + P21(2 + ... + p,.11n 

+ P-11LI + P-21L2 + ... + P_n1Ln, 

then the probable error of 110' is . 

(p_n2 + P_n+l2 + ... + Pn-I' + Pn2)!£. 

Sheppard lays down the condition that this quantity ~s to be 
a m~nimum, subject to a further condition which secures that 
the graduated values shall not wiler systematically from the 
ungraduated. This latter condition he takes in the form that 
vo' ts to differ from U o only by d~.fferences of 110 of 01 duo (j + 1) 
and upwards; thIs amounts to supposing that the (J + l)th 
differences of th~ u's are negligible. 

N ow, by a Q.Iscussion resembling Laplace's and Gauss's 
Theor~a Commnatwnis proof of the Method of Least Squares 
(§ 1;15), we see that Sheppard's conditions are really equIvalent 
to the two conwtions which were laid down m § 145; and 
hence the graduatwn formulae obtained ly a/is method me 
idf!Utical with those which have been obtatned (§§ 145-147) by 
jitttng polynomtals to the data by Least Squares. 

150. The Method o{ Interlaced Parabolas.-A method 
of graduation prop'bsed in 1922,t which yields satisfactory 
results when, applied to actuarial data, may be explained as 
foHows. 

• Proc. of the Fifth Int. Oongress of lIlathematU:Ja1l8 (Cambndge, 1912), u. 
p. 348, and other papers quoted in the footnote, p. 291. A. C. AItken, Proc. 
Roy. Soc. Edtn. 53 (1932), p. 54, has solved the problem of polynoIDlal 
graduation by use of orthogonal polynomials, obtaining a process whIch IS 

decidedly preferable to those of Sheppard and MIss Shemff. 

tJ.l..A. 53 (1922), p. 92. 
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Let a polynomial of the third -degree 

u=a+bx+cJ!-+d.,..3 (1) . 
be determined by the conditions that (1) it is to take as nearly 
as ,possible the'values U_" .. U-m+h, , ,,1'-2' Uo> U!" , "Um, when 
x has the values - m, - m + 1, ' . ,,- 2, 0, 2, ... , m respectively, 
and (2) it is to take precisely ·the yalues u' -1 and 'U1' when x 
has the values - 1 and 1 "respectively. Here as usual Yo, 111, 

. . . denote ungraduated values and Yo', u 1', • • • denote gradu
ated values, so that we are really finding a parabola of the third 

. degree which will fit as well as possible the ungraduated data 
u-m> 1Lm+1, ••• , um' and will also fit rlzorously the two gradu
ated values u' -1 and u1', which' for the moment are supposed 
already known. Then the ordinate of th~8 parabola at x = 0 u'1,ll 
be taken to be the'.qraduated value u;. The graduated values 
will therefore be given by a series of interlaced parabolas, each 
of which passes through three consecutive graduated values, so 
that each successive pair of these parabolas has two points on 
the graduated curve in cOJ:I1ID.on. The equations of condition 
are eviden~ly 

(2) 

for r = - 1n, - m + 1, ••• , - 2, 0, 2, .. " 1n; and we may without 
error include ,,= - 1 and r = 1 in this s~quence; since the eff~ct 
of the two equations or condition thus introduced will be 
nullified by the two equations which have to be satisfied 
'rigorously, namely, 

u' -1 =a- ~+ C - d} 
~'=a+b+c+d 

r=_ 

(3) 

DenotIng as usual }; rP by };p' we have therefore, to choose 
~ r=-". . 

a, b, ~, d so as to ,make 
,.. 
}; (a -+- br + c/oS + dr3 - 11r)~ 

f'=-m 

or 

a2};o + b2};s + c~, + d2};, + 2ac; + 2bd};, - 2a~1l, - 2b~l"llr 
- 2c};,su, - 2tn:rSu, 
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a mm1mUln subject to the rIgorous equatlOns i3). The normal 
equatlOns are therefore (§ 108) 

a~O+c~2-~/lr+'\+p. =O} 
b~2 + d~4 - ~rllr - ,\ + I' = ° 
c~4+a~2- ~j,211T+'\+p.=O • (4) 

d'26 + b~4 --' ~}'31(, -,\ + 1"= ° 
The unknowns a, "5, c, d, A, I' are to be determined from 

equations (3) and (4). EVldentiy we need only consider the 
equatlOns wruch mvolve'a, c, and (,\ + 1'), which are 

1/ -1 +111' =2a+ 2c, 

a~o + C~2 -: ~UT + (A + 1') = 0, 

C~4 + a~2 - ~1'2Ur + (A + 1') = 0, 

and we have also 7/; = a. 

Ehminating a, c, and (A + 1') from these four equations, we 
have 

};4 - 2~2+ ~o Thus if we WrIte cos 0 for -.,-..,----, and Kz for 
~4- -2 

2"'1}'2 -l)u . 
_""'~\:---=-.::.X+-,-,-T, the graduated values, of u z' satisfy the lmear 

~4-~2 

difference equation 

the solutlOn of whlCh 1S 

'U.: = A cos xO + B sm ,,_0 
KosinxO+ K1 sin (x -1)0+ ... + KX-1 sm (j 

+ SIll 0 ' 

where A and B are the constants of integration, they lliay be 
used, in the case of mortahty data, to make the deviatlOns of 
the actual from the expected deaths, and the accumulated 
deviations, zero, or in all cases they may be used to reproduce 
the moments of order zero and one, of the ungraduated 1/'e. 
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• 
15t. A Method of Graduation based on Probability.*-

The methods descnbed above fulfil their purpose of smoothing 
out irregularities from observational qata in a way which is on 
the whole efficient. From the purely theoretical standpomt they 
are. not altogether satisfactory, since each of them contams 
arbitrary or empirical' elementa whose introduction does not 
appear to be logICally necessary; e.g. in the methods'of §§ 142, 
150 it is not obvious (apart from mere convenience) why we 
should fit parabolic curves to 'the observations rather than fit 
curves such as (say) 

( X)A y=ae-YX 1 +c . 

In Qrder to find' a sounder basis for the theory, we must 
remember that the problem of graduation belongs essentially 
to the mathematical theory of probability i t we have the gIven 
observations, and 'they would constItute the "most probable" 
values of u for the corresponding values of the .argument, were 
it not that we have a priori grounds for behevipg that the 
true values of u form a smooth sequenqe, the Irregularities 
being due to accidental causes which it is desirable to eliminate. 
Tije problem is to combine all the materials of judgment-the 
observed values and the a priori considerations~in order to 
obtai'n the" most probable" values of u. 

Let us then suppose that we are concerned with a number 
1t .. which depenqs on an argument x, and suppose that we have 
n data which are affected with uncertainties or irregularities 
due, e,g., to acciqental errors of observation i so that when u'" is 
plotted as a. function of x, t;he.n points so obtained. do not he 
on a smooth curve, although there is a strong antecedent prob. 
abIlity that if the observations had been more accurate the 
curve would Qave been smooth. We may make the somewhat 

• Whittaker, hoc. Edin. Ntdh. Soc. n, p. 63 (read Nov. 14, 1919:. printed, 
wlth addltlons, in the volume for 1922-23). The method haS' been further 
improved by WhIttaker, hoc. R.S. Ed.". (1924). 

t The first recogDltion of thIS fundamentsl pnnciple seems to have been 
mado by lIIr. G. KlDg in the. conrse of the dIscussion on Dr. T. B. Sprague's 
paper of 1886, J.l.A. 26, p. 77: ," What is the real object of graduatIon' lIIany 
would'reply, to get a smooth curve; but th<1t is not qUIte correct. The reply 
sholll~ be, to get the most probable deaths." 
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vague word "smooth" more precise by interpreting it to mean, 
e.g., that the third differences A3u", are to be very small. 

Now consider the fo1l9Wlng hypothesis: that the true value, 
which should have been obtained by. the observation 7/1' hes 
between u; and ul ' + CT, where CT is a small constant number 
(e.g. one unit in the last decImal place used in the measures); 
that the true value which should have been obtained by the 
observ~tlOn for 'liz lies between 'Uz' and 'Uz' + CT, and so on; and 
finally the true value which should have been obtained by the 
observation for Un lIes between 1t,: and 11

10
' + CT. This hypothesis 

we shall call" hypothesis H." Before the observations have. 
been made we have nothing to guide us as to the probabilIty 
of this hypothesis H except the degree of smoothness of the 
sequence ul ', ••• u,:, which may be measured by the smallness 
of the sum of the squares. of the thIrd differences. 

S = (u,' - 3ua' + 31lZ' -1tl ')2 + (us' - 3u,' + 3ua' -1IZ')Z + ... 
-t (u,: - 3un - l ' + 3u,._a' - Un _ a')2. 

S may be called the measure of roughness of the sequence. 
The theory may be,extended to the case when 'the observatIOns are 

not taken at equidlStant values of the argument, by takmg instead oC 
. S the sum of the squares of the thud divided dlfferences of the graduated 

values. 

We may therefore, by analogy with the normal law of 
frequency, suppose that the a pri01'i probability of hypothesis 
His 

(A) 
where c and A. denote constants. 

Next let us .consider the a priori pr~ba.bility that the 
measures obtained by the observations will be 'UI , 'liz •••• ,71,., on 
the assumption that hypothesis H is true. 

Smce the true value of the first observed quantity is, on 
this hypothesis, ul ', the probability that a value between 7'1 and 
111 + CT will !loCtually be observed is (postulating the normal law 
of error) , 

hI -ht'<"l-U]')I 
J.,/ . CT" 

where hI is a constant which measures the precision with which 
this observation can be made. Similarly the probability that 
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a value between u:i and ua + (T w1l1 actually be obtained~for the' 
second observed m~asurEf is . ' 

71,2 -h.l{u,-u.;)1 
J7f'C' CT, 

where ,71,2, 1S tlie measure of precision of this observation. Thus 
. on the assumption that' hypothesis H 1S true, the a pruyri 
probabihty that the ob~erved 'measure of the first observed 
quantity wlll· lie between u1 and" u1 + CT, the observed measure 
qf the second observed quantity between; u2 and u2 + CT, and 
so on, is 

(B) 

where F denotes t4,e sum • . 
F - 1. 2 ( ')2 l. 2'( . ')2 l. 2( ')2 ="1 U1 - U1 + 1~2 1t2 - U z +: .. + I~n U,. - Un • 

, The sums ~S and F en~ble us to express nume!ically ·the 
smoothness of the' graqu.ated values, and- the fidelity 01 the 
graduated to the u~graduated values respectively. > 

. We must now make use of, the fundame'J;l.tal theorem in jihe 
theory of Inductive Prpbability; which iS,as follo~s. Suppose 
that a certai~ observed pheno~enon may be a.ccountfid for by' 
anyone of a certain number of hypothese!,!, of which one, and 
not more than one, must. b~ true: suppose, moreover, that' the 
probability o£ ,the 8th hYBotpesis, as based on informatiQIl in 
·our possession before the ph,enomenon i~ observeg, is p., whlle 
the probability of the .observed phenomenon, on the assumption 
of the truth of the 8th hypothesis: is :p.. Then when' the 

. observation of the phenomenon is taken into considera.tion, the 
probability of the 8th hypothesis is . 

p,P. 
~PNP: 

~where tpe symbol ~ denotes the summation over all the hypG
th~ses. It follows from this that whereas before the phenomenon 
was observed. the most probable hypothesis w~s that for which 
p. was greatest, the most probable hypothesis after the.pheno
m!\,llon has 'been Qbserved is that for which 'the product P,P. i& 
'greatest. Applying, ~his theore'm to the case und.~ oonsidera-

(D 311)' 21 
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tIOn and combining expressIOns (A) and (D), we see that the 
most probable hypothesis is that for which 

ChI hz ••• hn -A'S-Fulln -(J;yn-e 
~s a maanmum, that is to say, the most probable set 7/

1' 

oj values oj the q7lantttus ~8 that which makcB 

;\ZS+F 
a 7n~nimum. 

152. The Analytical Formulation.-Writing do\\n the 
ordmary conditions for a mmimum, we obtain the equatlOnR 

h1
ZZl1 = h;tll/ - ;\ZA3 U1', 

hzz1l2 = h2
2UZ' + 3.VA3U1' - )..2A31/2', 

h3zua = h~2l1a' - 3)..zA3U1' -.I- 3;\2A311Z' - ;\2,j.3 I1a', 

hlu
4 
=hlu

4
' + )..2A3111' - 3)..2A3uz' + 3)..2'::"3/ la' - )..Z'::"3/1,', 

We shall now make the sImplifying assumption that the memmre 
of preCIsion IS the same for all the data, so 11 1 = " Z = . . . ="". 

If thIS IS not the case, we graduate some functIOn of u, Ruch as log II, 

mstead of u, choosmg thIS function so that Its measure of preclslOlI IJa~ 

nearly the same value for all values of the argument. 

If we wnte hl = E;\2, the equations may now be WrItten 

Elll = Elll' - A3U1' 1 
EllZ = E1l2' + 3A3U/ - A3//Z' 

E7t3 = E1I3' - 3A3/11' + 3Il3/IS' - A31"3 )
~1l4 = E~: + A~Ul' - 3~3112' +. 3A31/3'.- A3114~ l' 
E71" = Ell,,' + A3u',,_a } 

(1) 

N ow all these equations, except the three first and the three 
last, are of the form 

E7t", = Ell",' - f16 u 'z_a. 

Moreover, if we introduce. a quantIty 7/; such that A3/,O' = 0, the 
third equation becomes 

which is of the same- form j and similarly.the first two and last 
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three equations can be brought to the same form.by introducing 
t 't' , , , .J1 " h h new quan lies u -1' u -2' ~t n+\. 'U; n+2. 1t n+3. SUC t at 

:"3 ' 0 4 3 ' 0 A3 ' 0' A8 ' 0 A3 ' 0 "'U-l=, U_2= .... U n-2= ,,,,U,._l= ,uUn =. 

Thus tiLe graduated values uz' sat~sf!l the l1near d~ffe1'ellce equa-
~n . 

If.~lz' - A6zt'z_3 = If.Ux• (2) 

be~n.rJ in fact the pa?·ticular solution of tMs equation which satisfies 
the six terminal conditwns 

fl3uO'=0. fl3U'_I=0, fl3u'_2=0. ,6.3u'n_2=0, fl31t'n_l=0; 
, fl3Un' = 0, (3) 

whence we have at once 

fl4n'_a=0, 6.'1t'_1=0, fl5u'_2=0, fl«-tt',._2=0, ~~1t'''_1=0, 
fl5u'n_2=0. (4) 

153. The Theorems of ~onservatiOn.-From (2) we have 
by summatiOn 

, \ +U,:) -1f.(UI +112 +, •. + Un) 

Therefore 

Moreover, by (2), 

= fl6U; -2 + fl6tt' -1 + .. ,+ fjht',,-3 

= 6.szl"_2 - fl5zt' -2 

=0, by (4). 

1£(111' + 2u2' + ... + ml,:) -If.(~'+ 2u2.... :+nun) 

= fl61t' -s -t 2flGu' -1 +. . + n,6.6u 'n_:r 
= n/!!l'U'''-2 - !{4U' .. _S + fl4.U'_2 

=0, by (4). 
Therefore 

'tIl' + 2112' +. . + nil,,' = 1'1 +'2us +. ',' + nU'I' (6) 

N"ext, by (2), 

1£(111' + 22us' + .. . +n2urJ -,,(111 + 221/2+' . . +n2u,,)' 
, =flGu' -8 + 22,6.616' -1 +. . + n2,6.6u',,_3 , 

I 

=. nS,6.5n',,_s - (2n -1)fl41l,,_a + 2,6.811"_2 - fl3 II , ~2 - ~an' -1 • 

= 0, by (3) and (4). 
Therefore 

1/1' + 22112' + ... + nlu,.' = fl1 + 2~/2 +. . + n2u". (7) 
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Equations (5). (6). (7) show that the moment8 of order~ 
0; 1. 2 are the 8ame for the graduated data as for the original 
data. This may be called the 'Theorem of the Consermtwn 
of J.loment8. We may express it by saying that tlte gmph 
'Which 'I'epresents the u'I'1graduated data and the graph wit wh 
'represents the graduated data have the same area. tlte same 
x co-ord'mate of the centre of gravtty. and the same moment 
of ~nert'/,a about any line parallel to the axis of tt. 

'154. The Solution of the Difference Equation.*-We 
have now to solve the central difference equation of gradua
tion. 

subject to the &ix terminal conditions imposed in § 152. Let 
us assume for the present .that £ is given. Then we may 
obtain a general solution by mea~ of symbolic operators Il!~ 

follows 
Since ~ = E - 1, t.he equation, in terms of E, becomes 

[
(E - I)L EE3] , 

E3 U",= -EU"" 

[
. E3 J 

so that U'",=-E (E-li-,EJ u..,. (8) 

Considerations of symmetry lead us to expect that each l~' 
will be given as a linear functIOn of ·u·s. with coefficient'! 
symmetrically placed. about that of the central term. This 
suggests that we ex6and the operator 011 the right of equation 
(8) in powers of both E and E-l, in fact as a La1Lrent scr/eld 
Such an expansion is readily seen to be possible. for the equa
tion (z -1)6:" Ez3 = 0, being a reciprocal equation. has itb six 
roots reciprocal J,I1 paIrs. so that three are less In modulus than 
unity. and the remaining three greater, hence [(z -1)6 - E:3]-1 

may be expanded as a Laurent series, convergent for z ~ 1. 
and the coetIicients. with which we are chiefly concerned, mny 
be found by the usual theory. That these coe~cients will'be 

*The method of solutIOn descnhed in §§ 154-15;; 18 due to Dr. A. C. AItken. 
and was first given 1D a thesIS for the doctorate of the Umvers.ty of Edmburgh. 
submitted 1D May. 1925. 

t Cf ,'Vhlttaker and Watson; Modern A naly .... § 5 6. 



akADUATION. OR THE SMOOTHING (J'F, DATA 3Q9 .,.. .. ~ " . ... . 
8yl}lmetrically 'disposed 'follows jrom the fact that the operator 

,is left u~ltered by the 'substitution of E-l for E. . 
Appeal to the theory of Func~o~B of a. Complex Variable may be 

avoided. If preferred, by having recourse to the theory of Partial Frac
tions. If we resolve the operator in <\uestlOn mto. Sl:l partial operators 
by this theory. then, for the, reasons already stated, three of the parhal 
operators md.Y be expanded In powers of E, three in powers of E-" 
whence by addition the complete expansIOn is obtained. 

Either .of the~e 'lays leads to the same graduating formula, 
namely. . . 

J:o= ko'U:t + kl'U:O+l+ 'U:O-l) + k2('U:ot2 + 'UZ-2) + ...• (9) 

in which a. fJ. 'Yare the three roots less in modulus than 
unity. o~ the eql1ation' (z-I)6 ..... £z3=01 and ~ denotes inter
change of a. fJ. y followed by·summation. One of these roots 
i!\ evidently real; hence we may write them as 1'1' r 2e

i9• r~-'II, 
'when (10) becomes 

k .. = ( _ Er)2 , . 1 {A+~}. (11) 
T12 - 2T11'2 cos9 + 7'2"l (1'12 - 2~ cos9 + 1'221 . 

. r n+l 
wpere A=~1 • 

-1'1 

B=1'rf"t2. sin(n - ~)8-1'2(1'l +'~)sin(n ~ 1)8 

+.!(1'l +!) sin(n+'J}8 - I2 sin(n+ 2)0", 
1'2 "I '"2' J 

q = (1 - 1'22) sinO(,"22- 2 COS28+--;). 
, .' '"2 

By mean& of (ll) the coefficients Ie,. have ,been calculated for 
~ number of representative'values of E, O.O!, 0·02,0·05,0·1, 
0·25, and 1. ·A table of these to four decimal places is given 
on p. 314: ... 

A defect inhElrent ,in most methods of graduation .balled on 
'linear compQunding ~f 'U's on either side. of '80 particular 'U is 
that if is impossible to graduate the whole of a fli'Ve~ set oJ. 

, • '9 • 

• It IS assbmed throughout !hat '18 pos,tive, not zero. 
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data; e g. Spencer's formula is inapplicable' when we are 
withm ten places of either terminal (See the example of 
§ 144, p. 291.) This defect will also seriously llllpair the 
present method, unless by some means, without departi.llg 
from the conditions of the problem, we can attach to each 
end of a given set the addItional, or, as we may call them, 
aux'Lliary data, Un+!, U n+9, ••• , and U O' U-1,"" the exihtence of 
WhICh is implied in formula (9). (The number of data to he 
attached in practIce will depend on the degree of accUlacy 
required and the rapidity with which the fluccessive graduatmg 
coefficients diminish) As in § 152 we introduced SIX new 
quantities u'n+t. U',,+2, U'n+s, u'o' U'-l, U' -2, SO let us now inbo
<luce a further indefinite.number u'"+,, 1t'n+5,"" and 11.'_3, 

U'_4, , •• , under the same condition, namely that tlurd 
d~lJerences involv'Lng graduated data beyond the O1'iginctl 
tumini are to be all zero. Differencing the added third 
dIfferences three times more, we obtain 

A6U'n_2=0, A6U'n_1=0, ... , and A6u '_a=0, A6$_,=0, .. , 

from which, referring again to the difference equation, we 
must have 

U'n+1 =Un+1, $n+2 =Un+2"" and u'o= .Uo, $-1 = U-l ... ' (12) 

Thus the condition imposed 01'L the auxiliary data is tlwt 
graduated an'd ungraduated values are to coincide. It a)"o 
follows that 

AS1tn+! =0, ASUn +2=0, ... , and A3u_3=0, A3U_4 =0,.... (13) 

The difference equation (2), with the condItions (3) and 
(12), or (3) and (13), suffices to determine the external data. 
If the original number of data to be graduated is not too 
small (in general, if it exceeds twenty-five), the external data 
may be found as accurately as may be required by the follow
ing method. 

We have, from (12) and the difference equation (8), 
, £Es 

Uj; == - (E _ 1)6- £EaUj;, 

or 
(E-1)6 _ _ 

(~-1)6_ fESU"'-O, ~or x - n+ l, n+2, .•. 
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This eq!J&t.ion may be, written 

(E-i)8 (E-I)3 '0 (14) 
(E - a)(E - ,8)(E -.y)'(E- a-1)(E- ,8-1)(E-'Y-1)U",= • 

We shall shqw that u,,+l, u,,+2, ... are given by the equa
tion formed by retaining only the fust operating factor on.. the 
1eft side of .(14), viz the equation ' 

(E-I)3 , 
(E - a)(E - ,8)(E _ 'Y"u", = O. ' ,15) 

in .the first place we see that (15) gives- u'" uniquely in 
terms of US-l, Us-a ... , for' the operator can be expanded in 
~le8c~nding pow'ers of E!, in the form' , 

" I-jlE-Lj2E...I2-jaE-L ... , 

so, that we obtai}'! 

'1£", = jlus-l + j2US-2+;JsU",-3 +:." (16) 

for .a; = 'It + 1, n + ,2, .... From this equatIOn Un+}, u,,+2, ,. 
are determined in succession, provided that the terms con.
taining the undetermined external data 'Uo. 'U-1, ••.• aTe 
negligible. ' _ 

Next,- the 'values of u'" thus determined will satisfy (14); 
for the operator 

(E-l)3 

is expltnsible in ascending powers of E, and therefore (14) can 
be deduced from (15), which holds for ~ = n + 1, n,+ 2, .... 

Lastly, th~ conditions' (13) will be satisfie.d, for from (Hi) 
~~" ' 
. (E - 1)3 _ _ _ _ 

(E-a)(E-,8)(E-'Y)'(E. a)(E ,8)(E 'Y):ts-O, 

since (15) ho~ds for an ascending series of values of x. 

Hence (E _1)3u", = ASu",=O, for x=n+ 1, n+2, .... 

The 'value of}n in (16»)s easily found to be 

In - 1 t.,3,,{'7'}"_1+1'."-sr ... sm(n.!.2)8-;"sin(n-1)8]}. ,(17) 
f't:J - 2rlr:l cos6 + Til sln6 
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By means of (17) the coefficients jn have been calculated for 
the same values of • as before, 0 01, 0·02, 0·05. 0·1. 0·25. 
and 1. It is found that they decrease successively witl~ 

sufficient rapidIty for all practical purposes. 
Actually only three auxHiAry data. Un+}. ,un+2. U,,+3. need 

be calculated, for the rest can be found. again in virtue of 
(13), by forming a difference table wIth zero third dIfferencc,", 
Exactly the same process may be applied to the other end of 
the table by reversing the order of the data. 

We have finally to ascerta.in what v~lues of E are likely 
to be of standard practical application, and also to· find a 
means, given any particular set of data to pe graduated. of 
assigning 'in advance an appropriate value from among the~e 
Here we may refer to the notion of a " smoothing coefficient". 
introduced by G. F Hardy,· and based on the followjn~ 

considerations. The u's have been supposed subject to the 
same probable error, p, say. Then the probable error of thell 
third dIfferences, e g of Ua - 3U2 + 3uI - u o• is lJv'(1 + 32 + 32 + 1). 
or pv'20. But if we have a graduating formula 

Uo = }:'knun, 

then l!bko'" }:,(A3kn)UII' 

so that the probable error of A3U
l
O is pv'{}:'(A3kn )2t. The ratio 

v'{}:'(A3k .. )2}: v'20 may then be regarded as measuring the 
degree of reduction of probable error ill third differences, it 
has been called the "smoothing coefficient" for the fonnula 
in question. 

* J.J.A. 32 (1896), p. 376. The name "smoothmg coeffiCIent" 1J! due 1.<. 

J. Spencer. Cf. G. J LIdstone, J.L.A. 42 (1908). p. 114. 



GR:ADUATI~N,. OR THE- SlIOOTH4"'\G OF . DATA: 313 

TABi.E OF'COEFFJCIE..1US In 

-
n 0=901. 0=0'02.- .=005. r=Ol e=825 .=1. 

. 
1 -0·91;)5 1·0237 1·1847 1·3209 1·5204 1·8615 
2. 0·4491 0·4337 0:3812 0·:3082 0·1;)23 -0·2545 
3 0·1321 0·0626 -0·0600 -0·1750 -0·3468 -0:5842 
4 -0·0563 -0·1293 -0·2~97 -0·2965 '-0·3471 .-0.,2660 
5 -0·1442 -0·1917 -0·2309 -0-2294 -0·1700 0·0302 
6 ... 0·1619 -0·1745 -0·1542 -0·1060, -0·0075 0·1257 
7 -0-1374 -;0·1199 -0·0633 -0·0027 0·0731 0·0899 
8 -0·0937 -0:0579 0·0069 0-0;:':31 0·0810 0·0276 

'9 -00474 -0·0065 .0·0452 0·06;)4 0·05~3 -0-0087 
10 '-0·0084 0-0268 0·0548 0·0512 0·0189 -0·0156 
11 0·0185 0·0418 0·0460 0·0281 -0·0031 -0·0088 
12 0-0330 - 0·0425 0-0293 0·0078 -0'·0112 -O·OOla 
13 , OO(}369 0·0345 0.0'127 -0-0045 -0·0100 0·0020 
14 0'0334 0·0229 0·0005 -0·0091 -0·00;)3 0·0019 
15 0'0257 0·0114 -0·0060 -0.0083 -0·0011 0·0008 
:t6 . 0-0167 0-0024 -0·0079 -0·0052 0·0012 0·0000 
11 0'0083 -0·00:~4 -0·0067 ,-0:0020 • 0·0017 -0·0003 
18 0'0017 -0·0060 -0-0043 0·0003. 0·0012 -0·0002 
19 -0'0027 -0·0063 -0-0018 0·0013 'O-OODi, -a~OOOI 
20 -0'0049, -0·0051 0·0000 0;0014 0·0000 ... 
21 -0'0055, -0·0034 0·0010 0·0010 -0-0002 
22 -0-0049 -0·0017 0-0012 0:0005 -Q·OOO2 
23 -0·0037 -0·0003 0 /0010 0·0001 -0·0001 
24 -0·0023 0·0006 0·0007 -0·0002 ... 
25 

. 
-Q'OQI0 O"OOlQ 0·0003 -0·0002 

26 .. 0·0001. 0·0010 ()OOOOO -0·0002 
27 0-0005 0·0008 -0·0001 -0·0001 
28 0·0008 0·0005 -0-0002 ... 
29 0'0009 0·0003 -0-0002 i 

30 0·0007 0·0000 ·-0-0001 
• 31 • .0'0005 -0-0001 ... 
'32 0-0003 -0·0002 
:~:3 0·0001 -0·0002 
34 0·0000 -0·0001 
35 , -0·0001 ~O·oool 
36 -0-0001 ... . 
37 -0-0001 
38 -0·0001 

I· I 89 -0·0001 

I I 40' ... 

. Formula. for ~trapolating auxiliary data.: 

(l'~ 0) 



sa :rHE CALCULUS OF o"BSERVATIO~S 
TABLE OF COEFFICIENTS I,. 

" • =OOL .=002. .=005 .=OL .==025 • 

---
0 0·1570 0·1769 0·2076 0·2347 0·2771 
1 0·1482 0·1644 0·1873 0·2056 0·2297 
2 0·1254 0·]329 0·1397 0·1412 0·1356 
3 0·0948 0·0928 0·0842 0·0721 0·0486 
4 0·0628 0·0536' 0·0359 0·0191 -0·0046 
5 0·0341 0·0216 0·0027 -0·0110 -0·0236 
'6 0·0117 -0·0004 -0·0145 -0,0211 -0·0211 
7 -0·0035 -0·0125 -0·0191 -0·0186 -0·0108 
8 -O·OIJ9 -0·0165 -0.0161 -0·0110 -0·0017 
9 -0·0148 -0 0151 -0·0099 -0·0035 0·0031 

10 -0·0138 -0·0110 -0·0038 0·0014 0·003'.1 
11 -0·0108 -0·0062 0·0005 0·0034 0·0027 
12 -0·0070 -0·0021 0·0027 0·003:3 0·0010 
13 -0·0034 0·0008 0·0032 0·0022 -0·1)001 
14 -0·0005 0·0024 0·0026 0·0009 -o·ooor, 
15 0·0014 0·0028 0·0016 0·0000 -o·ooor, 
16 0·0023 0·0025 0·0006 -0·0004 -0·0003 
17 0·0025 0·0018 -0·0001 -0·0005 -0·000\ 
18 0·0022 0·0010 -0·0004 -0·0004 0·00)1 
19 0·0017 0·0003 -0·0005 -0·0002 0·0001 
20 0·0010 -0·0001' -0·0004 0·0000 o·ouoo 
21 0·0005 -0·0004 -0·0002 0·0000 
22 0·0000 -0·0004 -0·0001 0·0001 . 

I 23 -0·0002 -0·0004' o'OOOQ 0·0001 
I 24 -0·0004 -0·0003 0·0001. .. , 

25 -0·0004 -0·0002 0·0001 
26 -0·0003 0·0000 0·0001 
27 -0·0002 0·0000 ... 
28 -0·0001 0·0001 
29 -0·0001 0·0001 
30 0·0000 0·0001 
31 0·0000 ... 
32 0·0001 
33 0·0001 
34 0·0001 

I 
35 ... 

Formula of graduatIOn: 
u'" ,= ko1t",+kl(UZ+l + 11z-1) + kiu'H + 11"'_.)+ •••• 

r=1 

0·31;0\ 
0·2(,1)4 
O·lOr. 
0·002. 

-0·0!.'1: 
-0·0 . .!1: 
-O·(H)",( 

0·003 .! 
O·O(H 
0·002: 

4 
I 
I 
6 

0·000; 
-0·000 
-0·000'-, 
-O·O(H) !. 

O·OIHJl 
0·0110\ 
o·nU(H 

.. 

Now each ( corresponds, as we have seen, to a definite 
linear combination, and therefore to a definite 8moothin~ 
coefficient Approximate values are given in the table below. 
, , 

• 0 0·01 0·02 0·05 0·1 0.2.3 i 1 10 
t 

'So 

-------- -- --1--

Smoothmg 0 .. +0- rh rn f~ 1>'0 t i I I coeffiCIent. 17' 

, 
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,Thus a preliminary inspection of the third differ~nces of 
a set of ungraduated data enables us to estimate the amount 
of smoothing likely to be required, and to select accordingly 
an approprjate value of e. , 

155. The Numerical Process of Graduation. -.:.... The 
r~mtine to be followed in applying the preceding theory to 
actual data falls ther~fore 'into three parts: 

(1) To form the third differences of the given data, and 
by inspection to'decide what degree of smoothing is necessary 
To choose from the selected values of e that which most nearly 
produces this ,degree of smoothing. 

(2) To evaluate in succession four auxihary data, 'Un+l, 

tlnH' 'Un+s, 'UnH by the formula 

'Un+l = j1'Un + j Z'Un -.l + j s'Un -2 + ••• 

'Un.f2 =j1'Un+l +jz'Un +ja'Un-l + ... , &c. 

As a check, the two second differences in the difference 
'table of these four added data should be equal. Repeat these 
second differen~es outwards and 'build up the table to obtain 
as many auxiliary data as are required. ~everse the order 
of the data a.nd carry out exactly the same process at the 
other end. 

(3) To- graduate the extended set by means of the coeffi
cients k,.. 

< Ex.=-To graduate, by this method, the set of data of § 144, P. 291 • 
• We shall' suppose that e has been taken t~ be 0·25, . 

Then '" .. = 1'.5204(1124) +0.1523(1184) -0.3468(1076) - ... =1155·5, 
".,=1.5204(1155.5) + 0.1523(1124) -0·3468(1134) - ... = 1156.0, 
.. ,.=1.5204(1156) +0·1523(1155.5)-0·8468(1124-) - , .. =1142.~ 
" .. =1.5204(1142.8)+0.1523(1156) -0.3468(1155.5~-. =1114·4. 

Forrumg a difference table we find, as we should, that the two second 
differences are equal, ea.!!h being -14·2. By repeatmg l.hem outwards 
and bUilding up again we easily find the values'" (taken to thl! nearest 
integer): 

""'110 , Ug "iii "58 UH Va Use Un U58 

1072 1016 .946 861 '762 649 522 380 224 

• "59 'lIeo tea "- 'Ug tl5I 

54 - 130 - 328 - 541 - 767 - 1008 

• No att~mpt should be mad .. to inter pm the aUXIlIary data in- terms of the 
rest of the table. They are m~roduced purely to facilitat" the solution. 
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Turn;ng now to the ether end o! ,the table we oLtalD tn the ~'L!uo 
manner 

alid by a difference table (second differences all 9·1) 

ft,. 
538 

u .. 
589 

UlJ 

649 
'Us Us 'U4 llJ 

1325 1458 1600 1i52 

u, 'Us • it: 
981 lOBi 1201 

Ul 'Us 

1.912 2081 

The final proceBB of graduatIDg the extended table, and mdeed all 
processes whiCh, hke the method of Least Squares and the present method, 
depend on formmg a symmetriCaJ lmear compound, but are not reduLiLle 
to succeSSiVe "summatlOn "" are. most. convemently c3;rned out when 
arranged as on table faclllg p. 316. On a sheet of computmg paper the 
data to be gl'aduated are entered in a column at equal dllltanLes b .. low 
each other, and to the left other columns of Bt"ictly equal wLdth are allotted 
to each successive graduatmg coefficient, which IS wlitten at the head of 
Its column. The products kmu" m each column are computed either Ly 
arlthmometer or, ill three place work, by Crelle's Tables. The graduated 
value u: of any U IS then seen to be the sum of the entnes m the dIagonal 
hnes whiCh converge In the ~o column opposite to that u. . 

Part of the whole computmg sheet IS shown facmg p, 316, In 8umnullg 
the diagonal entries, dlstractlOn of the eye may be aVOided by the use of 
a V-shaped stencd, whlCh leaves exposed at any time only the particular 
convergmg diagonals required, , 

<'-'hecks durmg the computation may be provided by sumnung the 
entnes in any completed row, the entry III 'the 'column under 1:0 LeIDg 
halved. In the row opposite Urn the sum should be tUm' A final <-beLk 
IS provided by the "Theorems of ConservatIOn" of § 153. Thu~ in the 
present example we find the three moments to be 

18285, 290109, 5581363 for the ungraduated data, 
18284" 290095, 5581071 for the graduated data 

A comparison of tbe graduated and ungraduated data and their third ' 
differences shows that a satisfactory degree of smoothmg has been secUl ed 
Without great departure froni the ongmal values, 

156. Other Methods,-In additJon to the methods of graduatIOn 
whIch have been described in thIs chapter, mention should be made of 
a method proposed by E. C. Rhode&, and descnbed in his Tract * on 
8mooth~ng, to whIch the reader is referred. A merqoir by C. Lanczos, 
"TrigonometrIc interpolation of emplrical and analytical functions", 
Journ. Math. Phys. 17 (1938) 123, may also be consulted With advantage. 

* No. VI of the Tracts for Comp1.tters, edIted by K. Pearson"; Camb. Uwv. 
Press (1921) • 
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L 1. -1. ' -3. -5. -5. -1. 10. 21. 89. 31. -17. -lOB. - 211. -236. -46. 4S6. 1856. 2297. 2771. (1). It.,. "'a:. ------------ ------
... 

1 1 -1 -2 -4 -4 -1 7 19 28 22 -12 718 
1 1 -1 -2 -3 -3 -1 6 17 25 20 -11 -70 649 
1 1 -1 -2 -3 -3 -1 6 16 23 18 -10 -64 -124 589 
1 1 -1 -2 -3 -3 -1 5 15 21 17 - 9 -58 -114 -127 538 
0 0 0 -1 -2 -2 0 5 13 19 15 - 8 -54 -105 -117 -23 496 
0 0 0 -1 -2 -2 0 5 13 18 14 - 8 -50 - 98 -109 -21 225 463 
0 0 0 -1 -2 -2 0 4 12 17 14 - 7 -47 - 93 -104 -20 213 595 439 AS A3 
0 0 0 -1 -2 -2 0 4 11 17 13 - 7 -46 - 89 -100 -20 206 575 974 424 
0 0 0 -1 -2 -2 0 4 12 17 13 - 7 -47 - 91 -102 -20 209 584 990 1194 20 431 - 69 419 -4 
0 0 0 -1 -2 -2 0 4 11 16 13 - 7 -44 - 86 - 97 -19 199 555 939 1133 1 409 142 422 -6 
0 0 0 -1 -2 -2 0 4 12 17 13 - 7 -46 - 91 -101 -20 208 582 985 1189 2 429 -248 435 -5 I 
0 0 0 -1 -2 -2 0 4 11 16 13 - 7 -46 - 89 -100 -19 205 572 969 1169 3 422 112 454 0 I 1 1 -1 -2 -3 -3 -1 5 14 21 16 - 9 -57 -112 -125 -24 258 719 1217 1469 4 530 107 473 8 
1 1 -1 -2 -3 -3 -1 5 14 20 15 - 9 -55 -107 -119 ·-23 245 685 1160 1399 25 505 -99 487 3 
0 0 0 -1 -2 -2 0 5 12 18 14 - 8 -50 - 97 -108 -21 223 622 1054 1272 6 459 23 496 0 
0 0 0 -1 -2 -2 0 5 13 19 14 - 8 -54 -105 -118 -23 243 677 1146 1383 7 499 -23 508 -2 
1 1 -1 -2 -3 -3 -1 5 14 21 16 - 9 -57 --111 -124 -24 256 713 1208 1458 8 526 - 3 526 u 
1 1 -1 -2 -3 -3 -1 6 15 22 17 -10 -61 -119 -133 -26 274 763 1293 1560 9 563 60 550 0 
1 1 -1 -2 -3 -3 -1 6 16 23 18 -10 -63 -12'4 -139 -27 285 796 1348 1627 30 587 - 74 578 -1 
1 ,1 -1 -2 -3 -3 -1 6 16 23 18 -10 -64 -126 -140 -27 289 808 1367 1649 1 595 85 610 -3 
1 1 -1 -2 -3 -3 -1 6 17 25 20 -11 -70 -137 -153 -30 314 877 1486 1793 2 647 -118 646 -5 
1 1 -1 -2 -3 -3 -1 7 18 26 21 -11 -72 -141 -158 -31 325 907 1537 1854 3 669 67 685 0 

--I- I -I -2 -4 -4 -1 7 20 29 23 -13 -81 -157 -176 -34 363 1012 1714 2067 4 746 28 724 1 
I 1 -1 -2 - -4 -4 -1 8 21 30 24 -13 -82 -160 -179 -35 369 1031 1746 2106 35 760 -64 758 4-
1 1 -1 -2 -4 -4 -1 8 21 30 24 -13 -84 -164 -184 -36 378 1055 1787 2156 6 778 4 787 6 
1 1 -1 -2 -4 -4 -1 8 22 32 26 -14 -89 -175 -195 -38 402 1123 1902 2294 7 828 118 812 5 
1 1 "':1 -3 ~4 -4 -1 8 23 33 26 -14 -91 -179 -200 -39 411 1147 1943 2344 8 846 -130 837 -2 
1 1 -1 -3 -4 -4 -1 8 23 33 26 -14 -90 -176 -197 -38 406 1134 1920 2317 9 836 58 868 -5 
1 1 -1 -3 -5 -4 -1 9 25 36 28 -16 -99- -193 -216 -42 445 1242 2104 2538 40 916 - 14 910 -6 
1 1 -1 -3 -5 -5 -1 10 26 37 30 -16 -103 -202 -226 -44 465 1296 2196 2649 1 956 - 8 961 -8 
1 1 -1 -3 -5 -5 -1 10 27 40 31 -17 -110 -214 -239 -47 493 1375 2329 2810 2 1014 -64- 1016 -4 
1 1 -1 -3 -5 -5 -1 11 29 42 33 -18 -116 -227 -254 -49 523 1459 2472 2982 3 1076 1069 
1 1 -1 -3 -6 -6 -1 11 31 44 35 -19 -122 -239 -268 -52 551 1538 2605 3142 4 1134 1112 
1 1 -1 -3 -6 -6 -1 11 30 44 35 -19 -121 -237 -265 -52 546 1524 2582 3115 45 1124 1141 
1 1 -1 -3 -6 -6 -1 12 31 45 36 -20 -125 -244 -273 -53 562 1568 2655 1156 
1 1 -1 -3 -6 -6 -1 12 31 45 36 -20 -125 -244- -273 -53 562 1568 1156 
1 1 -1 -3 -6 -6 -1 11 31 45 35 -19 --123 -241 -270 -53 555 1142 
1 1 -1 -3 -6 -6 -1 11 30 43 35 -19 -120 -235 -263 -51 1114 
1 1 -1 -3 -5 -5 -1 11 29 42 33 -18 -116 -29.-6 -253 1072 
1 1 -I -3 -5 -5 -1 10 27 40 32 -17 -110 -214 1016 
1 1 -1 -3 -5 -5 - 1 9 26 37 29 -16 -102 946 
1 1 -I -3 -4- -4 -I 9 23 34 27 -15 861 

... 

(Facing p. 316 



CHAPTER XII 

CORRELATION 

'157. Definition of Correlation.-Consider a definite group 
c~>ntaining a large number of ipdjviduals j let lis measure some 
attribute A of the individuals, and let us also. measure some 
'Other attribute B. For instance, the mdIvIDuals mIght be all 
the stlU"S of the'third magnitude, and A mIght represent the 
'parallax· of the star, While B mig{>.t represent its proper motion j 
o~ the group might cOJIsist of. all Adult Scotsmen, and A migh1i, 
represent the height' of .a man in inches, while.B might repre
sent his wealth in pounds sterling. Consider now the indi
viduals. in the group for whom. A lies between x and x + dx 
while B .lies petween y and y + dy, let the number of such 
indIviduals be N </>(x, y)dxdy, where N denotes the total number 
of individuals ~n the -group, or, to expresll the same' thing in 
other words, let </>(x, y)clXdy denote the probability that for an 
indIvidual taken at random the' first attribute A lies between 

, x and x + dx, while tlie second -attribute lies between y ~nd 
y+dy. • 

. Now·Fermat's Principle" of Conjunctive Pr?ba,bility may be 
seated thus:'The probability that two events will ~oth happen is 

• hk, where h is the probability that the first evenfJ will happen" 
and k is the pT,obability ~hat the second event 1m?}, happen. when 
'the first event is known to have happe.ned. Applying this to the 
present ~ase, let h = f(x)dx be~ the probability tha:t' for an indi
vidual ta~en at random from the ·group the first attribute ~ 
lies between·x and x+dxj and let k=g(x, y)dy be the prob
ability that for an individqar taken at random from those 

• members Qr toe group whose attrib~te A lies 'between x and 
~17 • 
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x + dx, tlie attribute B lies between y and y + dy. Then by the 
PrincIple of ConJlmctive ProbabIlity we have 

cf>(.]J, y) = f(J )g(.c, V). 

Now here two possibilIties present themselves. 
In the fir~t possibilIty, g(x, y) is a functIOn of y only, not 

lllvolvlllg x. When this lS the case, if we dlVIde the ongmal 
group Into sub-groups accordmg to the magnitude of the 
attnbute A, then the probability that B will lie between y and 
y + dy is the same for each of the sub-groups. The two attnbutes 
A and B are then saId to be not correlated, and eVldently CPt 1,1/) 

'/,s express'/,ble as the product of a junction of x only, ffllllft}llU'd 
by a functwn of y only. ThIS would be the case, approximately 
at least, WIth the height and wealth of the Scotsmen; for let 
the probabIlIty that a man IS of a certaIn height x to x + d.1; be 
f(x)dx,' then the llrobabilIty that hIS wealth lies between y and 
y + ely pounds is nearly the same for tall men as for short men, 
so may be expressed in the form g(y)dy, where g(y) does not 
Involve x; and the compound probability that hls heIght i'i 
between x and x + dx while his wealth is between y and y + dy 
IS then SImply 

f(x)g(y)dxdy. 

But In a large class of cases the functIOn cp(:f, y) is not capahle 
of beIng expressed as a functIOn of x multIplIed by a funCtIOn 
of y. In such cases the probabilIty that the first attrIbute has 
a measure between x and x + dx IS not the same for indiVIduals 
with large y's as for individuals With s~all V's, and the prob
abllIty that the second attrIbute has a measure between ?! and 
y + dy is not the same for indinduals with large x's as for 
IndIVIduals with small x's. Tn such cases the two attrIbuks 
are r;ald ·to be correlated. Thus the PILrallaxes and the proper 
motions of the stars are correlated; for a star which has a 
large parallax, and is therefo~e comparatively near to US, is 
more likely to have a large proper motion than a RIDall one. 

Many elementary problems in Probahlhty cannot be solved correctl~' 
WIthout takmg' account of correlation. For example. tIle follo\\mg 
"TIle prol)ablhtv that A can solve a mathematical problem taken at 
random from a certain book is i, and the probabJllty that B can oohe 
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one is alBo ! .. What is the pfobalJlhty that a problem taken at random 
WIll be solved by.one or other or both of them 1" 

Here the group cons1sts of all the problenls.m the book, and the two 
attribute's of an md1vIduai problem are Its solubIlIty by A and 1ts 
solublhty by B., These two attnbutes are correlated, smce the problems 
that A can solv.e wIll he, 10 a great extellt, the same as the problems that 
.B can solve. It would therefore be wrong to aosert that the probab1hty 
of both falhng to solve a problem taken at random IS ! x ~ = -1, and that 
consequently the probabIlIty that one or other or both would succeed IS 

1- t or t· 
15S. An Example 'of a Frequency Distribution involving 

Oorrelation.-.As an Illustration of corr:elation, let us consider 
two nflemen side by SIde firing at targets when a 'strong wmd 
is blowmg. The wind WIll be supposed to affect 'the shooting 
of both men in much the same way, so that we may expect a 
certain amount of correlatIOn between ·their records. In this 
case the" group" conSIsts of all the records of the two men's 
shots, an "mdividual" of the group is constltuted of a smgle 
shot of the first }Dan together \uth the shot fired at the same 
instant by the second . man, and the" attributes" of. this in
dividual are ,the deviations of the two. shots. 

Let X denote that part of th~ dElVIatIOn of the 'first man's 
bullet froIl). the mark which is due to causes affecting him 
alone and not affecting ~he other man, i.e. all.causes except the 
wind. Similarly let Y denote that part of the second man's 
deviation which is due to clauses affecting him only; and let 
X + aZ, denote the total deviation of the first man's bullet, and 
Y + bZ denote the total deviation of the second man's bullet, 
where Z is due to the wind. For simplicity, we suppose all the 
deviations to be in a horizontal direction from the mark. We 
assume tha~ X, Y, Z are indeJ,>ande:Q.t of each other, and that 
each' ,occurs aCQording to the norma.l law of frequency, fO 

the probability that 

X lies between x and x~dx i~ J,/-ho",;a~, 

y .. d a · k _kly' 
'!J an Y+ ,If IS J'/ dy, 

Z .. d el • I '-lM el III an III + Z IS .;'/ - z. 
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We ~()o\v want to find, the frequency of cases in' w hlCh 
U ;=; X + aZ has a value between u and u + dlt, and V = Y + bZ 
has a value betw~eij. v and v + dv. , ' 

Suppose Z hes between z and z + dz, which happens In the 

. l -z2'"d f . Th' d t d h proportlOij. J./ . z 0 cases. en In or er 0 pro uce suc 

a paIr as IS considered, X must be taken between 1£ - ((Z and 
1t + du - az, willIe Y must be betweell v - bz and v + dv - bz , 
the probablhty of these happening together IS 

h -h2(u.-az)'d k -k2(v-bz)2d ,Jrr e lt x J7r e v. 

Therefore' the, frequency ot' cases In whIch U hes between 
1t and u + du, while V hes betwten v and v + dv, is 

hkld d' J'" -Z,.'-k'(u-az)'-k'(v-b")'d fnve z, 
rr _00 

or 
hk( •••• (aU"'+bvl")'j'" .".. {z- au/t'+b,'l' ) 2 
rr] dudve- u " -v k. +a,,.'+b·"'+Z· _<0 e-(a h +b k +1) u'/t'+b'I.'+/' J dz, 

1 hkl (uuh'+bv''')' 
or _ " -u2h'-v'k'+ a''''+b'l'+z'l d 

7r (a2h2 + b2k2 + l2)!~ (/I v 

If we examme this expression we see that it is of the form 

~(u, v)dudv=:.ce-P'v.'-q'v'+28uVdud11, (1) 

where c, p, q, 8 denote constants. The constant 8 would be 
z!'ro If eIther of the constants a or b were zero, i e. if no common 
,Influence acted on the two rIflemen. The correlatwn is repre
sented analyt~cally by the occurrence oj this term in uv in the 
exponent~al. If tills te~m were'absent, the expressIOn (1) could 
be regarded as the product of two factors 

Constant x e-p'v.'du and Constant x e-q'v'dv, 

of which the first involves 1£ only and the second mvo1Yes 11 

only, so that in thIS case (§ 157) there would be no correlation. 
The expression (1) may be regarded as the extension to two 

v!Lriables U ,and 11 of the normal .law of frequency for one 
varIable 1t, 

h -h''''d -e 1£· 
Jrr ' 
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on this account we shall caUlt the norm~llaw of frequency fOr" 
• tu;o variables. 'The coristlln~ ~ in tpe expression (1) m~l be 

determined from the condition' tJ.lat f~ f .. cp(;-: v)dudv = 1 ; this 

gives 

(2) 

'1'hll above is a partICular case of the followlJlg more ~neral reauit. * 
. Let 'ltl , u2' ' • " u., be variables, such that the probablhty of 1', 

lYl,ng between'll, and 'V, + d'll£ is , 

h, -h"v"d' -:'li/ 'II .. 

L'et ~l' x21 
,eqtui.tl.ons 

" xp be a set of linear fUDctlOng of the u's, defined by 

k" and let ·aft = x,: 

.. + k1.,u." 
. + k2.,u." 

Then the probability that x) lies between ~ and ~ + d~ is 

J(!) 6-(~.b.IJtP+2hJ>t{k)dt. dt. at.' 
.1I'P' 1 1 6"1 Ii' . " 6"p' 

• ~D}Dk . 1 
where bJk=(-l)J+' ~D2 (j,k=l, 2,. p)and.E=~D2' 

while D denotes a'determinant of,o:rder p taken from the array 

alla12 • • • al .. , 

a21u22 • • ., 62." 

and Dj CIenotes a determmant of order (p - 1) .tak.en (rom the array 
whic~ is obtamed by oml~hng the jth row .ill! the above array. The 
two determinants D) and Dk in the product DJDk ate to 'be formed froQl 
the Sl\me colulIlJls of !II • 

, . 
159. Bertrand's Proof of tile Nannal Law.-It was re

~arkea by Bertrand t that t!J.e normal law of frequency for two 
variables may be deduced' from an a!lsumption resempling the 
Postulate pf the Arithmetic.:Mef»l. from which, as we have s!len 

l' • ........ ~ .. 

• • Cf_1tI. J. van Uven, Proc. Alrut",. Ac. 16 (1914), p. 1124 

: (D ~tr) 
t Comptes RendU8, 106 (1888), p. 387. 

22 
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(§ 112), the normal law of frequency for one variable may 1)(, 

deduced. ' . 
Consider for definiteness the shots of a rifleman at a tal get , 

and let the horizontal and vertical deviations of a shot from 
the centre of the target be called A and B. It is found ill 
practice that ,A and B are not independent, but are to some 
extent correlated. 

Let us now make the following assumption, which wa~ 
first proposed by Cotes: that ~f any number of shots hare 
struck the ta1'get ~n points PI' P2, ••• , p .. , then the most probable 
position of the point aimed at is the centroid (centre of grav~ty) 
of these points. 

Suppose the probability tha.t a shot strikes an. element of 
area dxdy at (x, y) is 

F(X - x, Y - y)dxdy, 

when X, Yare the co-ordmates of the point aimed at. Then 
if the co-ordinates of the points PI' P2, ••• , p .. are (J'l'Yl)' 
(x2, Y2)' ..• , (x .. , y,,) respectively, the product 

F(X-Xl' Y -Yl)F(X-x2, Y -Y2) ••• F(X-xn, Y -Yn) 

must be a maximum, when X and Y regarded as variables have 
for values 

If then we put 

X Xl+~:2+···+X .. 
n 

Y Yl+Y2+" ·+Y .. 
7/,' • 

d log 1!:(x, '1f) _ ( ) 
• d.i; - cp x, Y , 

o log F(x, y) _ ./,( ) " -yX,y, 
U!I 

. X-Xn=an, Y -y"=(3,,, 

the functions cp and", must be such that the equations 

cp(al, (31) + cp(a2, (32) + ... + cp(a", (3,,): O} 
"'(aI' (31) + "'(a2, (32) + ... + ",(a,., (3,,) - 0 

are the necessary consequences of 

U:t + ... + a: = 0) 
(31 +. . . + (3" = 0 r 

(1) 

(2) 
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Therefore 
q,( - as - aa -. . . - an' '7 Ps - Pa ~. . • - P .. ) 

+ q,( az, PI) _ +. . . + q,( an' ft,.} 
is ideJltically zero; and therefore differentIating partially with 
respect to as and denoting the partial derivatives of <p(x, y) with 
respect to x and y by <PI and <P2 respectively, we have 

- <P1( - as - ••• - an' - Pa - ... - Pn) + <P1(a2• P2) = 0, 

sq <Pl(X, y) is independent of x and y: denote it 1>y a. Similarly 
rPa(x, 71) is a constant b, and so 

.p(x, y) =ax + by + c. 

Since equ!J.tions (1) are consequences of equation (2), we see 
on substituting this value of <P that c is ze,ro. Thus 

<p(x. y) = ~x + by. 

Similarly y,(x, y) = a'x + b'y, 

where a', and b' are constants. 
Since <p and y, are partial derivatives of the Bame function. 

we must have b = a', and thus, integrating, 

log F(x, y) = !/1.1.'-+ bxy + !b'y2 + ()On stant. 

,Therefore F(x, y) is of the form 

Constant x .ei<uI+l>xy+{b'Y', 

and tl~e normal lctw of frequency for two va'l'1.ables is thus 
established. ' 

The study of normal frequency distributions In two and three 
variables was hegun by August Bravais in a celebrated memoir, SltT les 
pTobalnlitr!s des erTaUTS de situation d'un POt'llt, publIshed in 1846.* 

Ex.-Tha displacemant of a POt'llt tS the' vector sum. of'll dtsplacemants, 
and tha p7'obability that tha ,"lA of thesa displacll'IBants has a value between 
(x" Y.) alld (x, + dx" YI + dy.) is 

~_(""'.1+211;X'Y'+'Yi!I,l)da' dy. 7r _ 1, 

u'here S,=a.I"- P.!J' (i= I, 2, • , ,.11) .ShOIO that the probalnldy that 
the total diSJ11acemant has a value betloeen (x, y) a'llti (x + dx, y + dy) ts 

8i , 
;a-(""1":211lrY+'Yyl)d~dy, 

• Mom Sav, EtTang , PariS, 9 (1846), p, 2'55 • 
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ABC J ., 
where a= ~, (3=-;5,' Y=:s' '0= K'the numbers 4, n, c, ~ betl1g 

defined by the equations 

(d'OCIIgne ) 

160. The More General La.w of Frequency.-In § 86 we saw tha't 
the normal law of frequency for one vaIJable was a spellal, though 
frequently occurrmg, ease of a more general law of frequency. Denotmg 
the probablhty of a devlatlOn between x and x + dx by cp(x)dx, tben 1Il 

thiS more general law cp(x) IS represented by an mfilllte selles, \\ hose first 
h ' 

term IS J'Tf' e- h2;c2, and whose subsequent terms are obtamecl from thld 

term by dlfferentlatlOn. The normal law corresponds to the Ui"e \\ hen 
the mfimte senes reduces to Its first term. 

SImilarly m the case when, thete are two variables we may der"e a 
more general law of frequency than' the normal law, repre'ented by 
.p(x, y)dxdy, where 

'Of 'Of '(;2j '(;2f Z2j 
cp(x, y) = ccJ(x, y) + c10ijX + C01ay + cOOat2 + cUcxOy + c020j2 + ... 

where f(x, y),= e-p2;c2-q2y2+2,zuj when the orIgm IS sUItably chosen, or 
more generally 

I(x, y) = e-p9(Z-m)2_q2(u-n)2+2s(z-.mXu-n>, 

where p, q, S, m, n are constants 

161. Deternlination of the Constants in a Normal Fre
queney Distribution with Two Variables.-Let h be the 
smallest step recognised in measurmg x, and let k be the' 
smallest step in measuring y; 'and let the probability that 
the first ~ttribute A has a measure between x and x + II, whIle 
the second attribute B has a measure between y and 71 + k, be 
cp(x, y)hk, where (§ 158) 

1 . 
cp(x, Y) =;;: (P2q2 _ 82)!e-p2(z-a)2,+~z-a)(Y-b)-q'<Y-b)2. 

Let it be required to determine the most probable values of 
the constants p; q, 8, 'a, b, 'from ~ set of observations.. Let the 
measures of the indIviduals observed be (x1" 711), (~2' Y2)' •.. , 
(x",Yn)· Then the a priori probability that the observations 
will yield these measures is 

hnkn , 
__ (p2q2 _ 82)lne-p2l("1-a)2+2sl("1-aXYl-b)-q2!{Yl-bj2 

'Tf'R 
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The ~bst probable hypothesis J'egar<ling p, q: ;, a, b is that 
which makes this quantity a maximum when (Xl' Yl)' (x2, Y2)" " 
(Xn, Yn) .are supposed given. Taking logs, we see that 

II == in log (p2q2 or S2) - p2~(Xl - a)2 . 
. ' • + 2&~(Xl -.a) \Yl - b) - q2~(Yl - b)2 

must be a: ml1x,imum, and therefore 

all all all 
ali" = 0, vb =: 0, op = 0, 

The first ~wo of these equat\o~ are. 

o = p2~(xl- a) - &~(Yl - b), 
0::: - &~(Xl .:. a) + q2"f,(Yl - ~), 

which, since pq "" 8, give a,t once 

and 
, . 

. 1 
a=-Ix 

11. 1 

1 
b=- ~Y1:' • 11. ~ 

The other three equatIons are 

• 

npql o = --~ - 2»~(Xl - a)1 p2q9_ S2 T. ' 

, . nplq 
o = T2~ - 2q~(Yl - b)l, P q -;,- . 

0= - 2:& a+2"f,(x~-a)(Yl':'b). p q ... 8 

11' Let us denote -~(Xl - a)2 'by u1
1, -~(Yl - b)' by,us'. and. 

11. • ,11.. 

,-1-~('l:1 - a)(Yl .:. b) by r, so that th~ three numbers ;1' US! T 
1kTlue •• 

. may be calculated from the Gbserved measures. T.hen the 
three~ preceding equations may be written . . 

I 2 • 
L= !L:.=~:=p2(l_·&2 
2IJl 2u 1 a 2u lU aT ' . , 

~ach f~acliion is e~idently equl\.l to 2-2...- I {'p31q~ -/1..8\ and 
• u1-ulV" 1 'j 

therefore 
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Thus the values of p, q; r are given by 

2 ___ 1_ 
q - ~(1 - 12\;-2' , 8 

and replacing p, q, s by these values in the frequency function 
we see that the probabtlity that the first attribute haJj a measure 
between x and x + h, whtle the second attribute has a measure 
between y and y + k, is cf>(x, y)hk, where 

and where the constants a, b, 0"1' 0"2' r are expressed tn iu'lns oj 
the observed meas1treS by the equations 

These formulae enable us to determine the most probable 
values of the constants of a normal frequency distnbution m 
two variables in terms of observed measures. 

Ex.-A man t8 firing at a target, atming at ttB centre. Taking IhB 
centre as OT'lgtn, the co-ordtnates of the point' struck by the bullrl' tn n .hotl 
are (1' Yl)' (1:2> Y~, .' , (xno Yn). Writing 

1 . 
~(x12 + x2

2 + ... T x,;~) = ul-, 

1 
;,(x1Yl + :r2Y2+' ','+ xnYn) =u10""r, 
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'show that iJ the long run on,e.halj of the p'oint8 struck wtll lie mthin tM 
elltplJe lvho8e equ(ttion is . 

1 (..,2 2rxy y2) . --- -- ---+- =0·69315. 
2(1 ~ r2) ui "'l(1'S (1'22 

(Bertrand, C.R. 106 (1888), p. 521.) 

162~ The.Frequencies of the Variables taken Singly.-Let 
us now find·the probabiJity that the attnbute A- lies between 
~. apd x + dx, when the attribute B is' ignored, iIi the pormal 
frequency dIstnbution whi"h has been studied. By (1) of the 
last article, the required probabili~y is n",dx, where 

1 
'" __ 1_ {(x-a)' _ 2r(x-aXY -b)+(Y-b)l} 

f 2(1-.0) "," ",G"o G",. d n",= ------2 e y; 
271'(1'1(1'2J(1- r) _ ... 

l'erforming the integration, r~membering that 

we have 

-This equation shows .that (1'1 is the standard dev~ati?n frr the 
attrib1tte A, when the attrlbute 1? is ignored. _ Similar.ly vI, is 
the standard deviation for the attributE) B. 

Denoting by q,(x, y)dxdy the probability that the attribute' 
,A. lies between z and x + dx w!ule the attribute B lies between 
11 and y + dy, and denoting by g(x, y)d!/ the probability that B 
lies between y and y + dy ,Then A· is known to be between x 
and x +d.r, we have 

~(.r, y) ~ n:zfJ(a.', y), 

Substituting in this equation the known values of q, and 
n .... we obtain g(x, y}, and thus find that the probabil~ty that B 
lirs between y and y + dy, when A is knoll"1£ to be between x ~nd 
.£+ dx, is. 

1 - 1 {,-b- G",1'(Z-O)}8 ____ ~ e 2(1-,..,.... IT} d 
• u~J{271'(1-,-I)} , • y, 

This is a nor.mal frequfflCY dislloibl/lion about the' mean 

b + ~2~J·t:- a), with the standard deviat'tOn iTaJ(l-. r). 
(1'1 '. 
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It'follows from this that if (with a gre~t numJ'er of t)hserva~ 
tions) we find the mean '!J,. of all the measured values of n for 
which the measured value of A lies between J: and ,J' + dr. alld 
if then we plot YM a[J(/~nst x. the plotted po~nt8 11'1[[ lu On the 
stra~ght lme 

y" _ b = U 2T(JJ _ a) 
U

1 
. 

Sunilarly if ~'" denotes the mean of all the measured values of 
A for which the measured value of B lies between y and 1/ + lI!/. 
then .r" plotted against y gives the 'straight hne 

y - b = .":~ (.t·" '- (/). 
U'11' 

These lme~ .were called by Galton hncs of ngl'csstOn. 
Ex. 1 -To find the standard devwtwtl of the dt./Jerence oetuwn tI" 

measttres of the two altrtbutes .A and' B. 
The probablhty that (measure of .A) - (measure of B) hes Lctwe.'n 

a-b+x and a-b+x+dx IS eVIdently 
(t'+r)O ,0 . + 2r.{1 +r) 

!/J) f'" d -~<T}>{~r')-2u;<1-r') 2"1",<1=,·) 

./ 
v. e ., 

211"0"10"2 1-,2_
00 

or 

,. 
. d.r. - ~(<T}'+"" ~r", .. J 

./{'l.r.)./{0"12 + 0"22 - 2"0"10"2)e 

'ThelefOle If O"v denote the standard .denatlOn of (x - y). we have' 

O"v2 = crl + u 22 - 210"10"2> 

and therefore 
0"12 + 0"22 - O"v2 

r 20"10"2' 

an equatlOn wInch' may be used to determwe r * . 
.Et. 2 t-;-ShOI" that the standard denatwl! of the BUm of the me((8lt"~ of 

.A a1t(l B .s 
(0"12 + /1'l + lIrO"l0"2)!' 

Ex 3 -Show that tT,e standard dematwn of the product of the fneaBltrel 
of.A and B ~s 

{b20"12 + a 20"22 + 2raw10"z + u 1
20"l(l + r) }l . 

. * Cf. K: Pearson.' Drap61's' Company P.csea.<h ],[c",01r8. BIometTlC Senes. 
IV (1907). 

t Cf. R. Pearl. B.omelnka. 6 (1909). p. 437. 
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163. !l'he Ooefficient 9f Oorrel~ti~n.~We now approach 
the question, How is correlation to be measured? 

We have ~eeh that in a normal frequency distribution for two' 
variables defined by the frequency fJlnction 

1 , __ 1 _{( .. -a)~ 2r( .. -a)(y-b) (y-b)2} 
q,(::c y) = 'e 2(1-~') I1}I - "1", + .... 
, , 271'ITIITzJ(1-.rZ) 
• 

the existence of cop-elation depends on the. presence of the 
term in (x - a) (y - b) in the exponential, i.e. it depends on 'the 
coefficient 1'. When r is zerQ there is no correlation, .since 
</>(:7:, y) then. factorises into the product of a' term depending 
On x only and a term depending on y only. 

Consider the ,case when there is perfect correla.tion, i.£. each 
v~IJle of the- measure. of A 'occurs' only in conjunction with a 
particular vahle of the measure' of B, so that one determmes 
the other.. Tn 'this. case the standard deviation of B, when A is 
known to have a definite ,value, must be zero; that is, by the 
last section, ITzV(l- '1'2) must vanish, and therefore r must have 
~he value unity. 

l'hus r = 0 C01Tesponds to the abse'IWe of 'cor?'elatwn, u'hile' 
'1' = 1 corresponds to perfect correlatwn. It is therefore natural 
to take either t itself or so~e pOwer or it, such as r2 or Jr, as 
the numerical measure of the correlation .between the attributes 

·.A· and E. To decide ~hich power is most sUltable,* let us 
recur to the caee of 'the two riflemen. If we suppose, in' the 
notation of' § 158, that a and b are each unity while h, k, 1 are 
equal to, eacl} other, the f~equency function becomes 

• h
i _ 2h!ul .J.. !hIUl' _ 2hZ1'-

B • S 3 

'rrJ3
e 

• 

Wh~C' h d 't I I' lIB t' thi Y-' correspon s 0 1T1 = ITa = hJ! r = 2' u m g case 

exactly half of each ~an's me~n error is due to the common 
element (the wind), and.it would seem 'natural to t~ke the 
measure of correlation to be t. We 'ther~fore decide that i 
itself is the ?nost ,suitable nwmerical measure of co.rrelation. It 

. is called the coefficient of correlatwn. . 

• Kapteyn • • Vontllly Kotlces R .4.8: '12 (1912), p. 518. 
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Let (xl' YI)' (X2> y~, ... be a great number of measures of the 
attributes .A and B; and let pomts having these co-ordmates be plott{(l. 
The points WIll cluster round the mean x = a, Y = b; and If "e draw 
rectangular axes through tIps mean pomt, the majority of the POIllt.. 
WIll be found In the first and third of the quadrants formed by thl>,e 
axes when r is positIve, and in the second and fourth qnadmnts II hl'n 
r IS nega tl ve. 

164. Alternative Way of computing the Correlation Coefficient. 
-We have seen m § 97 that the standard devIallon of a ,normal 
frequency uistnbu.tlOn III a smgle variable may Le found In lllany 
different ways from gIVen observational material; the same applies to 
the coefficient of correlatIOn in a normal frequency IllStrIbutlOn In til 0 

variables Thus to obtam the correlatIOn coefficient directly from the 
raw materJaI without attemptmg to arrange either of the measnrements 
In order of increasmg magmtude, we may proceed as folloll8. FIr~t 
summmg each column, find the mean a of the a!s and the mean b of the 
y's Take out all the x's that e~ceed a, find their lllean .A, and find al_o 
the mean B' of the correspondlllg y's Then 

/-rr I r(T2 I I':l. 
(TI=,y-2(.A-a), andB -b=-(.A-a) orB -b=V-.r(Ta 

(Tl ~ 

SimIlarly take out all the y's that exceed b, find their mean B, and find 
aho the mean .A' of the correspondmg x's. 'We have 

(T2=~i(B-~), .A' -a= ';1(B7b) or.A' -a= ~~. r(Tt' 
2 

These equatIOns give (TI' (Til' and r. In fact 

B' - b .A/-a 
r=B_b = .A-a' 

165. Numerical Examples.-
Ex. I.-.As a first example we shall conSIder the results of throws of 

dIce made by .A. D DarblshIre.* 
Twelve dICe were taken, of which 'In were nlarked With red, the re.,t 

belllg white. .All 12 dice were thrown together, and the number of 
alCe showlllg faces With 4 or more pipS uppermost in thl8 throw was 
noted; thiS number Will be called the" First Throw" 

The red dICe were left down and the" hlte dIce thrown agam. The 
total number of dice (red and WhIte) now showmg faces With 4 or more 
pipS uppermost was noted; thIS Will be called the "Second Tl,row" 
cOITespopdlng to the" First Throw" previol1sly made. t Evidently there 
WIll be correlatIOn between tlle first and second throws. t 

• Jlem. Manchester L,t and Ph,Z Soe. 111 (1907), No 16. 
t It may be shown Without difficulty that the probability of the case in 

"hleh the first throw i~ p and th,e correspondmg second throw IS q IS the 
coeffiCient of yP:;'I in the expansion of 

C!l2.l-mCl + yz)"'Cl + y)12-"Cl H)II-",. 

t I · on 
11 tact, r=12' 
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.~. ,. 

For 500 pairs of throws of 12 dlCe, of whlCh 6 were marked red' and 
"Were left do~n and counted' again in the second throw, the results were 
as in tM followmg table; a paIr of throws of (<,ay) 2 and /; bemg entered 
as II> unit m ~he< ~quare at ,the intersection of the tlnrd row and sixth 
column. 

0 r-

0 1 2 

1 1 
2 1 . 

CD 
3 2 

~ 4 
0 

5 0: 
II: 

6 r< 

5 
2 
1 

Eo< 
.,. 

SECOND THROWS 

3 4 5 6 7 

1 1 
2 3' 2 

3 5 6 2 6 
9 8 11 16 7 
5 17 24 19 25 
5 14 25 24 24 
2 2 13 16 27 

8 9 '10 11 12 Totals 

6 1 
11 2 
17 4 
12- 4 

3 
2 

o 
3 
8 

24 
63 

10& 
117 

78 
18 • 8 2 7 13 22. 14 5 3 66 

30 r;:; 9' 3 5 6 
10 2 
11 
12 

9 
1 
1 

5 
2 

2 
5 
1 
{) 

Tot,h, 0 0 12 25 51 92 97 119 71.23 10 0 0 i 500 

Thl\ m~ans II and b are of 'course approxImately * each equal to 6. 
Let Y .. denote the value of the mean of the second throws corresponding 
to the value x of the first throw j then we have from the above table 

so 

x Ii 2 i 3 ! 4 I 5 I 6 I 7 1 8 I 9 1
10 ! 11 

: ;;:-;-1 4.-6 I 4·9 l~: 5·1 ~, 6'617.0T;-; 8·0 18.0 

:rhe~e lie very nearly on the straight line 

y .. ...,6 = lex -,6), 

'!f. = 1. 
c;l 

13imllarly if 'X" denotes the value of .the mean of the- first throws 
correl-pollding to the value y of the second throw, we find very nearly 

so 

x" -6"= My- 6), 

~=l· 
ITz 

Hence we 113ve 0'1 = 0'1 and r = 1, nearly. The value of. 0'1 may be 

... The c9mputed values of the ~rlthmetl~ means are .a=f!'9:;O~ b=t'l·106. 
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founa from the irequency distrIbutIOn of the first throws alon~, Ignollng 
second throws, whIch IS (addmg 1'0"8' III the above table) 

x 0 '[I I 2 I 31 4 I 5 1 6 J 7 I 8 I 9 '[10 III 112 
frequency 0 -;-I-;I~ -;;;! 105 117 --;;--;;-~I--;--I-'-O-

For SimplIClty, we shall assume that a = b = 6. We then obtam 

x FreqUlfncy (x-a)Z, Prodllcl 
0 0 36 
1 3 25 75 
2" 8 16 128 
3 24 9 216 
4 63 4 252 • 
5 105 1 105 
6 117 0 0 
7 78 1 78 
8 66 4 264 
9 30 9 270 

10 5 1(l 80 
11 1 25 25 
12 0 36 

n=500 1493 = ~(J.: - 0)2 

1 
u12=-~(x-a)Z=2 986, 

n 

0"1 = 1,73. 

The value of O"z IS found III preCISely the same "ay from the freqnency 
dlstllbutlOn (addmg columns m the above table) 

We tina 0"22 =2 966, so that O"z= 1·72 
Lastly, let us compute the value of r from the formula <If § 161, 

namely, . 

We find 

and therefore 

~Xl- a)(YI -: b)= 664, 

r=O 002 x 0578 x 0581 x 664 

=0'45, 

agreemg roughly WIth the preVIOUS determmatlOn. 

Ex 2.-Whtm three of the 12 due were marked red, and wer. lpft down 
to be cQunted in Ihe second throw, Darblshtre's results were as foile/II' . 
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SECOND THROWS 

: 0, 1 2 3' 4 5 
'0 • 

. , 6 7 8 9 ,10 11 12 

1 i 1 
2 6 1 

rn 3 1 .1 5, 2 2 4 5 e. 
0 4 1 8 '6 21 16 6 6 I': = Ii .4 3 1~ 15 23' 22 9 3 1 k 6, 1 10 16 I'" 23 28 
Eo< " 22 5 1 
III • 7 I, 4 9 17 ·i8 24 16 5 3 
~ 8 1 5 6 10 '14 8 7 2 1 

9 4 3 9 6 6 2 
10 ' 1 1 1 4 .a 

"11 1· 
12 

F 

Find th~ co'qficient'df correlati:m. 

Ex. '3.-When lIine of the 12 dtce were 'marked red, and ~oere left down 
to be counted \n the second throw, Dt1.rb,sh,re's result8 were a8 follows: 

SECOND TaROWS 

0 1 2 3 4 5 6 7 8 9 10 11 12 
0 
1 1 1 
2 2 5 1 1 

rn 3 5 7 3 1 
L4 1 8 18 19 5 1 
~ 5 6 17 '30 ~2 13' 1 

E-t 6 1 lO 18 34 26 10 'I 

~ ·7 4 ,17 26 3()- 18 '1 
.... & 7 28 16 11 5 

r..., 9 3 6 15 9 7 1 
10 1 4 3 2 
11 . 1 1 
12 

Find the coefficient of correlation. 

Ex. • 4.~I II. the folloWtng table, ";hteh is due to Weldon, * x denotes the 
length of the caraPace of the common shrimp, y denotes, the length of the post-

, 8pinOlU portion of the carapace, x. denotes. the "lean of the 'Mlues of ~ 
corresponding to a definite vallie ofy, and y,.' denotes the mean of the values 
of y corresponding to a d~finite value of x. The mean value. of x is 249'63, 
lIs standard deviation ,8 6 73 j ~h8 'mean value of y is .177'53, and 
\18 standard deviatio~ ip 5'18. . . , 

PrOt:. R.S. " (1890), p. ,445 ; 'Ill (1892), p. 2. 
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I.-----
x 
----:-I--;M

I----~I 
lOver 260 I 

260 1 

259 
258 
257 
256 
255 
254 
253 
252 
251 
250 
249 
248 
247 
246 
245 
244 
243 
242 
241 
240 

Under 240 

18841 
18541 
183·25 
182·25 
182·34 
182·22 
181'14 
179·98 
1'79'50 
179 17 
17868 
177·71 
177·39 
176·64 
175·36 
17520 
173'56 
17331 
173·33 
17281 
171·30 
16957 
17033 

From these data show that r0'2";O 67, 
0'1 

r=O 83 

y 

Over 186 
186 
185 
184 
183 
182. 
181 
180 
179 
178 
177 
176 
175 
174 
173 
172 

,171 
170 
169 

Under 169 

262 11 
258 2;, 
2.j6·1!) 
2.~6 84 
254 R8 
2';4 18 
2.j3 olR 
251 73 
2.j134 
249 i8 
249 10 
248 !)3 
24679 
245·73 
24500l 
243 R9 
24367 
'241 28 
241·06 
23988 

0'2 = 0'975, and consequently 
rO'I 

Ex. 5 *-An urn contMntng whtle and black balls tS 80 maintatnecl 
that tn draunng a ball the probabtltty of gethng a v)htte ball is a cons/ant 
p, and that of getttng a black ball tS q = 1 - p. The first draunng of a patr 
'/,8 to constst of s balls taken one at a hme from the urn. The second dra11,. 
tng is to constst of 8 balls of whtch tare tal.,en at random from the s first 
drawn, and 8 - t are drawn one at a time from the urn. Show that the 
coeifictent of correlatton between the number of whtte balls in the fiTst and 
second dravnngs of a patr t8 tIs . 

166. The Ooefficient of Oorrelation for Frequency Distri· 
butions 'Which are not NormaI.-The theory may be extended 
to frequency distnbuti9ns which ar~ not normal in the following 
way·t 

" H L Rletz, Annals of j[ath 21 (1920), P 305 
t Cf G. U. Yule, Proc ,Roy. Soc. 60 (1897), p 477. 
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Let x' and Y denote deviations from. the means of the 
measures, t;>f the t,,:o attrIbutes. Let' Y" denote tLs- usual the 
mean of all the values of 1/ :which are observed 'in association 
with a. given deviation x of tlte attribute A from its mean. 
Th~n in the case of normal frequency distrIbutions we know 
{§ 162) that if the values of y" are plotted against the corre
sponding '9'alues of x, the representative points lie on a straight 

line, nam~ly, 1/" = bx, where b has the value (T2T. . ~ 

In the case of non-nonnal frequency the points will :qot in 
general lie on a straight line, but let us try to find a constant 
b which will satisfy all the equations 

'YM1= bXl> 

y .. 2= ba:2' 

as well as p'ossible, when Xl' Xz, .. '. are the observed values of 
x, and 1/>lh YM2, . ... the associated values of YM' We shall 
suppose that to the equation YMT;= wT a weight; is attached, 
equal' to the ~umber of observatIOns on which it is based, say 
'P".' From these equatiobs of condition We h~~e at once ,the 
normal equation for b, 

where the summation.is over all the distinct values of x. This 
equation is evidently equivalent to the equation 

b~ .. 2 = ~,.yT' 

where the summation is now not over, all the distinct values of 
x, bu~ 'over all the- obsenations, so that the same value of x,. 
occurs 'l1.,. times in the sum. 

If as before we write (Tl for the mean of x2, (Tl' for the mean 
of yS, cnd (Tl(T2T for the mean" of 3.1/, we" see therefore that the 
straight line which best fits the points (x, YMris the straight 
liM • 

• (T2T 
YM=-X,. 

(Tl 

just as in the case of normal frequency distributions. . SimUarly 
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the st:t;aIght lme whlCh best fits the. pomt~ k'lI Y) IS the 
straight line 

, G'lr 
:1.:,.= -'I 

G'2 • 

We may then call the number r defined jn thIS way the 
coc.f!ic~eni of cQl'relatwn of the two attributes, even though the 
frequency dIstnbutIOn IS not normal. 

167, The Oorrelation Ratio.-A more satisfactory method 
of estimatmg the degree of correlatIOn ill a non -llormal 
frequ,ency dlstnbutIOn is by means of the COrl'tirltwn ~(ltlO. 

which IS defined In the following way. -
Let the total number of individual observations be N, and 

let N cj>(x, y)rLxdy be the number -for which the attrIbute A hes 
between x and x + dx, while the attrIbute B lies between y and 
y + dy. Let N n",c7x, where 

• ni= foo cf>(x, y)c7y, 

be the number of individuals for which A' lies between x and 
x + dx, and let y .. denote the mean value of y for thIS set, so 
that 

n,.Y .. = L: y¢(x, y)dy. 

There wili be high correlation if the y's of this set are always 
clustered closely around the value YM, i.e-. if the standard devia
tion of these y's IS always small. Denoting thIs standar<! devia
tIOn by G'"" we have 

n",G'",2= foo (y - y,,)2~{X, y)d!J. 

If G'",2 is to be small for all values of X, its weighted average 
mnst be small. 'We shall denote this weIghted average by (12, so - . 

. f)2= L: n,p",2dx= L: L"'",{Y - y,,)2¢{X, y)d.cd!l .. 

Now the standard deviation G'z is given by the formula 

G'l = L .... '" f",{y - b)2q,{X, y)d;,;tl!J. 

• Of K Pearson, .. On the Theory of SKew CorrelatIOn," Drapers' p.e&earck 
Hem a (1905). . 
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( If in, this we. write {(y - ;,,) + (lj .. - ZW for (y _,0)2, we obtain . 
oi = ()2 + fOool:oo 2(y - y .. )0!,. -; b)cf>(:c, y)dxdy 

. ,+ {", foo (1/>1 - b"2cf>(X~ y)dxdy. 

Since f .. (y':' y .. )CP(x, y)d~ is 'zero, the first of these double 

integrals vanishes. So if \\6 define a new number 7J by the 
equatIon ' 

'1]2= ";flo JOO (y~ - b)2cf>!x, y)dxdy, 
0"2 .,CO -(.0 • 

t'h.e last equation .becomes 
,8"-

1)2=1- 2' ' 
0'1 

Sip,ce 'high correlation is ~ssoClated wIth very small va,lues 
of O,'we see that high cqrrelatwn ~s associated wtth 'vallles of.,., 
neurly equal to 'timty. If, on the other hand, there is no 
correlatipn, there is .no reason wP-y the mean of the y's f01" each 

'separate value of x i!hould differ sy~tematically from the mean 
of all the y's, and we may "therefore' expect (y~ ~ b)2 to be small, 

"a'rid consequently.,., to be small. ' 
J, The Jl~mber 1) is called t,he e01'1'elat~on ratio.* From' the 

. definition, w~ have '. 

1)2=-\[": n",(y .. - b)2dx: 
0'1 -io • 

so 'that 1)1 is the weighted average of (y,. - b)2 ~vlded by ul. 
168. Ca.se of Normal Distributions.-We shall now sMw 

t~at >when the frequency distribution is normal the correlation, 
ratio is idenhcal tcifh the. correlation coefficient r. • .' . 
• • For in the case 'of normal frequency distributions, as we 

t have seeTJ. ~§ 162), we navET 

y .. - 'b =.rO:2(X - a), 
0'1 

where a is the mean'of all tlie x's, 

so 1)1= \(Tul)2('" n",{~;-a)adx. 
ITa 0'1 J- ... 

• There "is, of cour.e, 1\ Sl'cond COl relation ratio obtalDed by interchanging the 
parts played by III and y throughout. • 

.(0311) 23 
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Sm,ce J:",n",(.c-a)2clJ;=u12, 

thIs gives 7]2,= 1'1, whlCh establishes the proposItion. 
169. Contingency Methods.-It frequently happens that 

the attributes whose' correlation we wish to discover are 01 • 
such a natur~ that they do not admit of quantItatIve measure
ment-e.g. dIfferent colours,-and the groups into whlCh they 
are classified cannot be arranged in a sequence possessing a 
logical order. To meet this case, what are known as contingf7U'!J 
methods have been deVIsed by K. Pearson.* 

Let A represent any attribute, and iet It be classified into 
groups AI' A 2, •• " As, let the total number of mdIvlduals 
exammed 'be N, and let the numbers whlCh fall mto these 
groups be nl , n2, ••• , n. respectively. Then the proLablhty 

n 
of an IJldividual falling mto the pth group is N' Now let the 

same populatIOn be classified according to any other attrIbute 
into the groups B1, B2, ••• , Bt• and let the group frequencies 
of the N mruvlduals be rn~, 'ln2 • ••• , mt respectively, so that 
the probabIlity of an mdIvldual fallmg mto the qtb group is 
'lnq -. :rhen by the theorem of Conjunctive Probablhty, if the 
N 
two attributes were entirely uncorrelated, the probablhty oC 
an indiVIdual falling'into the gronp A" and also into the group 

n ?Tb 
Bq would be N2 q, so the number of individuals to be expected 

satisfying these condltions would be ~~~q, which we shall 
N 

denote lily Vpq. Let the number actually observed as satisfymg 
these condItions be npq. Then the dlfferences (nl)? -:- vP'J)' in so 
far as they are systematic, represent the correlation of the two 
attributes, and some function of them ma.y be taken as a 
measure of the correlation. Pearson introduced two of these, 
namely, the root-mean-squa1'e continrJf7U'Y cf> defined by the 
equation 

( \2 
cf>2=~~ n"'J-VJ!'J1, 

.N Vpq 

* Drapers' Co Res ],[em, BlOm. Serle" i (1904). 
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and'the melln conhngency if, defined by the equation , 

1f~ ~~/(npq ~ vpq)' 

where r denotes summation over the positIve contingencies 
only. 

170.' Case of Normal Distributionl5.-We shall ~ow show 
thali when the frequency distribution is normal, th{ root-mean
square cQntingency </> is connected with the correlatwn coefficient '1" 

by the equation 
1·a 

cp2'F -1 2' or arc sin r = arc tan cp. 
-1' 

For when tb& frequency distribution IS normal, taking the 
. origin of x and'y at the centre of the .distribution, we 'have 

(§ 162)'. 

80' 

and 

we have 

which is the required result.* 
.. For othtU' deductions, cf. V{. P. Elderton, FrequfflC'jJ CUTre, and ('orreZalum 

(London, 1906), r. 148. • 
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t'71 Multiple Normal Correlation.-We sball now extend. 
tbe tbeory to tlIe case wben more attributes tban two are COIl

sIdered. For SImpliCIty we shall suppose tbe number to Le 
tbree, out tbe formulae admit of an obvious generalIsatIOn to 
the, case of any number: the frequency dIstributIOn will be 
supposed to b~ normal, so the probabIhty that the attribute d. 

has a mea~ure between x and x + d:c, wbIle the attribute f3 h~s 
a -measure 'betweeil y and y + dy; and the attribute "'I has 8 

measure between z and z + dz, IS cf>(X, y, z)d:cdydz, where 

-1..( ) _ K -( ..... + by' + cz' + 2fJl' + 2g:x + 2h"l/) 
't' X, y, Z - e , (1) 

and K, a, b, a, f, g, h denote constants, the origin having bHen 
taken so that the mean values of x, y, and z are zero, The 
constant K may be 'determined at once from the equation 

f", f'", J: cf>(x, y, z)d:cdydz = 1 , 

for, remembermg that if F(Xl' XZ' ' •• , xn) is a posItIve 
quadratic form and Ll its determmant, then 

yve have 

where 

1'" -F("I.x.. , e 
-<Q 

Ll = a h g = abC' + 2fgh - af2 - v.ri oJ ch~, 
h b f 
g f c 

(2) 

(3) 

By inte,grating the expression (1) we readily obtain the follow-
ing results: , I •• 

The pr?bability that a is between x and x + dx, while f3 is 
between y and y + dy, .y being disregarded, is 

1 M -!(B.tI+Ay2-2Hzy) 
_ -'c C d:cdg 
1r ct ' 

(4) 

where, A, B, . . " are the co-factors of a, b, . • . in the 
determinant Ii 
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• ;Comparing (4) with the u!!u~l ior;P of ~he frequellcy function 
fQr'two vanables, namely" 

. 1 1 (xl 2rxy+~) 
• '-2(1-.1) Ci12- 17l"2, ;;0 d d 

2--J-(1 .2)6 . X y, 
'/1"17"117"2 - 1 , 

H A B 
we have, . r= J(AB), 17"1

2
= 21l' 17"2

2
= 2tl' 

The coefficient 0/ corr'elation 0/ tlte'attributes a artll f3 is there/ore 
II . 

: J(AB)' We ~hall denote this by r12, Introducmg slIDllady 

the- coefficient of Qorrelation r23 between f3 and y, and 1'13 

betWeen a and y, let us consider the determinant 

R = 1 1'12 "13/ 
rn 1 1'23 

1'31 ?'32 1 I 

ana denote by Rpq the co-factor of the element in the pth roW' 
and qtli column. We have ' . 

R=/ '1 H G '1l2 
J(AB) . J(AC) I = ABC' 

H 
1 

F 
J(AH) J{BC) 

G F , 

'J(AU) J(BC)' 
1 

. R all 
\n'=:SU' 

an~ 'thus finally expressing the frequency function in ,terms 
of the correlation· coefficients and standard devia.tions, the 

, pi obabiliiy thai. the attri~te a has a measure 'betu:een x and • 
x + dJ, w'hile f3 hds a 1neaSllre between y and y + dy, and y has,a 
measure between :II and :II + dz, is 

</>(x, y, z) d;dydz.' 
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-where 
1 ' _~(!!Jl~+!l-"'Y~+ R'l.":" + 2R23£+ ~~3£X +~RI"'Y) 

cp( -y z) = e 2R 0'l3 U23 U32 ups USer) CTI0"2 

X" (21r)iIT1CTaITalt!. . 

SimIlarly In the general case * when there are n V((/"'laUcs 
Xl' Xa •••• ,:1)" 1chose standard deviations are IT1' .(Ta' ••• , IT", owl 
whose correlatwn coefficients in pmrs are r12' 1"23' •• " the prob
abtl~ty that thejirst attnbute has (t mcaS1lre beill ccn ,1'1 and J'l + d,"l' 
1vhile the second attribute has a measure betu'cen .1·~ and J'8 + d I'a. 
a7l;d so on, ~s 

1vhel'c 

cp= .. 
1 

(21r}"IT1ITJ • 

+2RI~~+ 
0')0'2 

Here R denotes the determinant 1 rIa 1'13 ••• 1"1" " and Hpq 
r a1 1 1·~. • 1'2 .. 

l'nlrn2rlla'" 1 , 
denotes the co-factor of the element in the pth row and ~th 
column. ' 

Ex 1.--111, the case of th,'ee attrtbutes, suppose that "t ts known to \ave a 
measure between z anci z + dz; show that the probabtltty that a has a 
measure between x and :c+ d.£, whtle f3 has a measure betu'een y nn-l 
y+dy, tS 

1 _~ (%_~.2)2_ R22 (y_r23U2z)2+~(%_rJ30'lz)(y_~1T2z) 
-::----=e 2Ru12 eTa _ 21<0'22 0'3 Bal0'2 O'a 0'3 d.uty, 
2;rIT1ITaJH 

SO that when the measure of "t tS knou?!' to be z, the mean taluc of a '8 

rlT rIT 
.1Uz, and the mea.n 'Value of f3 tS ~z. 

ITa ITa 
Ex. 2.-11£ the case of three attnbutcB, suppose that "t is Inoun to hate a 

measure between z and z + dz, and f3 to ha'be a measure between y and 
y + dy. Show that the probabtltty that a has a measure betueen x and 
x+dx t8 

"R I _~(x+IT]R12y+IT]Rl3z)· 
_~"1_1_e 2RIT]' 0"2R11 "aRn d.r" 

(21r.R)!IT 1 

so that when tke measure of "t tS known to be z, and the measure of ~ ic 
~own to be y, the mean 'Value of the measure of a is 

ITIRU IT1 R13 - -- y---z 
• ITaRn ITaRn 

* K. \ Pearson, Phtl. Trans 187 A (1896), p. 253, 200 A (1902), p. 1 



CHAPTER XIII 

THE SEARCH FOR PERIODICITIES 

172: Introduction.-tn.. Chapter X. we have been concerned 
'with sums of trigonometric terms. of tpe type 

.at cos (nt + Et ) + az cos (2nt + EZ) + as cos (3nt + ES) +. .. (1) 

.As ~xplained in § 132, the vibration of a violm string may be 
represent!ld by a series of this' kind when t denotes the time and 
at; as' . . • are certain functions' of positlon on the string, the 
individual terms of the series corresponding to the fundamental 
not~ of the string a.nd its various o~rtones. 

It is shown in works on the Theory of Sound that if instead, 
of a. violin string ~e' consider, a bar' 'vibrating laterally (e.g. a, 
tuning fork), we obtain for the motion at a definite point of 
t~e bar a series of the tiP.e . 

lJl cos (~t + Et ) + as cos (nzt + E'J + as cos (nst + ES) +. .. (2) 
where a~, al' aa' . " . are certain funct,ions of positiOn on the 
par~ but where we now no longer have n2 equal to twice nt, or 
'na equal .to three. times nt ; in fact, the ratios n1 ' nz : 'na' " .. : 
are equal, to the ratios of the squares of the roots of. the 
'equation cos 'In cosh 'In + 1 = 0, so' ~'bat nt : nz : 'na: . . . = 
3.5~ •.. : 22·03 .. ": 61·'70 • ',' : " •. The.suID, of a series 
of the type (2) is evidently not a' periodlo function of t, 
but we can speak of it as constituted of element& which a.re 

. . d th " db' 211' 211' penq lC, e peno s emg -, -=> etc. 
. nt'na . 

• In many branches of physical science, especially in meteoro
logy and astronomy, phenomena am observed which .may be 
represented by sums resemblmg (2): for example, the height of 
sea-water at any instant depends on a number of Cons.tltuent 

• ~43~ 
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t~des, 'of ~hIch ohe (the semi-dlUrnal"tIde', "hleh IS the largest 
constItuent tIde along the Bntish coasts) has a perwd of half a 
day, another (the diurnal tIde) has a period of a day, another 
(the fortnightly tIde) has a penod of nearly a f9rtnight. and 80 

on. Each constituent tide produces its -own effect in<lepe~d
ently of the others, and the actual height of water is the sum 
of these effects The height of water can therefore be repre
sented by an expression of the form 

'!J = ao + a1 cos (nIt + £1) + az cos (nl + £2) + . ',+ air, cos (nt' + £,), 

each of the tngonometrical terms correspondmg to one of the 
constituent tides. 

In the case of other' phElllomena. e g the spottednebs of 
the sun, the variation of the observed quantity appears to 
consIst of an accIdental or capncious part, whkh cannot be 
represented by any analytical expressIOn, superposed on a 
systematic paH, whIch the mathematician may attempt to 
represent by an expreSSIon of the form (2). The area covered' 
by spots on the sun certainly fluctuates in a way "inch 
suggests a certain amount of regularity in the variatIOn, 
·maxima occurrmg at mtervals of (on the .average) rather 
more than eieven years. 

~f a series of observatIOns of any quantity are taken, and 
there IS reason to expect that they can be represented Ly 11 

sum of trigonometnc ~erms,. or that they involve (entangled 
wIth an irregular variation) a regular variati.on which can l,e 
represented by a sum of trigonometric terms, then the first 

task' of the mathematician is to discover the periods ~. 2"., 
ni n2 

of these constituent terms. This must al"ays be done before 
we attempt to find the amplitudes a l • a'll a:v ... or the phases 
£1' £2' £3' • •• In many cases the periods are known a prw'n 

. from theory or from some reasonable ground of expectation: 
for instanqe, we should naturally expect the periods of the . 
regular terms in the temperature at a given place to be a day 
and a year. But in maIlJ' other cases, (!.q the spottedness of 
the sun, the periods are quite unknown. 'Ve tlhall show in the 
pre~ent chapter how they ~ay be discovered. 
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173. Testing for an Assumed Pet:i'od-Letr the obsen'ed 
measlires of the phenomenon, made at equal1n£ervals or tilne, 
be denoted by . (I) 

and suppose that it is desired to test this se<;luence for a" 
penodici~y whose period extends over p consecutIve numbers 
of the sequence; u", 'might, for instance, mean thtl number qf 

. earthquakes in the year IX, ana we might wish to know whether 
the liabihty to earthquakes is gr!,ater every p' years. Let 'IJr 

denote. the remainder when 'an integer r is divided bv p, so 
that the sequence 

(2) 
is'sl~ply 

" 

0, 1. 2, . (p - I), 0, 1, 2, ... (p - 1), 0, 1, 2. (3) 

Then the question" Does the sequence (1) involve the assumed 
periodicity 1" may be expressed more preCls~ly thus: "Does 
cOl'ulL!tion eJ."/,st between tli./ sequence (1) and the se!luence (2)!" 
As the frequency c;listnbutlOn with which we are dealiIlg is not 
lIkely to be normal, the oorrelation ratio (§ 167) is a. better 
method of estima.ting correlation than the correlation coefficient. 

, To find t?e correlation ratIO. we ml!lst fir~t auan~e the u's in 
columns. so that all the u's which corresponCI to the same .value 
of v are in' the same column. This may obviously be done by 

, merely writing down .the u's in order in horizontal lines, each of 
, which contains p u's thus: 

, 
1'0 'Ill 1'a ~Ip':l 

Up • 'UP+ I 1tp+a .. 112p - 1 

1l2p 118p+1 11l!p+S 1i3P- 1 

11(,,.-1)p 1(~'-1)P+l 1'(m-l)p+a • , U mp - 1 

SUIDS' U 0 ., • U ~ U I Up-I' , 

All the u'fJ in the nrst column correspond to the value zero of 
v, all' the u's in the second .column correspond to the value 

• unity of v. and so on: we have taken enough of the ol>serva
tional material' to fill m horizontal rows, and we have denoted 

·the sums o! the :indi-rldual columns by Uo' U1• ~.:, UP-I" 
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DivIding these last numbers. by m we obtain the means ::\10 
lVIl' .. , lVIp - 1 of the values of u m the indivIdual columns 
Then (§ 167) the cOI'1'Clatwn mtw 1J is tlte standard devullwn of 
the M's, dt'IJtded by the standa1;d devtation of the u's. The value 
of 1J JS calculated in tris way for a large number of values of ]l, 

and the results plotted as a curve in whICh 11 IS the abscir,f,u. 
and the corresponding value of 1J is the ordinate. This curve 
WIll be called a periodogram. <F 

It is easy to see why the ratio of the standard deviation of 
the M's to the standard d,eviatlon of the u's is a sUltable 
mdlCator of periodicity. For in the course of one horizontal 
rGW of the above schenie, the part of the phenomenon whlCh. is 
of period p Wlll pass through all the phases of one complete 
period, so that thIS periodic part is in the same phase at all 
terms whIch are above or below each other in the same vertical 
column, e g. it is in the same phase at the terms 1(r' 'llp+r' 'l12p+r 

••• , ~t(m-llp+r' The part of the ph-enomenon which is of period 
p therefo;re appears with m-fold amplitude in the row Uo' U I' ••• , 

Up-I' and therefore appears with its own proper amplitude m 
the row of means Mo' M1, ••• , Mp-l' Any accidental disturb
ance, on the other hand, or any periodic disturbance of penod 
dIfferent from p, WIll be enfeebled by the process of forming 
means, smce posItive and negative deviations WIll tend to 
annul each other; and therefore, when a periodicIty of penod 
p eXIsts, the standard deviation of the .1\1's has a value much 
larger tlian when a. periodic.ity of this period does not eXlst 
m the phenomenon. . . 

1 '74. The Periodogram in the Neighbourhood of a True 
Period.-Suppose now that each of the terms of the sequence 

u", consists of a simple periodic part of period T, say a sin 2~T, 
together with a part which does not inv-Olve this penodlCity, 
say bz"so 

• • 2/l"X b 
1t",=asln y+ z • 

• . * The term pertodogra". was mtroduced by Schustel, Terrestrw.l JlagnettSm, 
3 (1898), p. 24 Schubter'g perlOdogram differ. from that Introduced above, 
but the simIlarity of form aud purpose IS so great that It has )leemed best to 
letam the name 
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Denote by CTb the standard dev~ation of the b's, and denote 
by ~ the standard deviation of ~he u's. Since the standard 

d . t' f h' 0' 211' , 411' • 671" . 1 
eVla l,on 0 t e. sequence ,sm 'J:: sm 'T' sm T' ',' ., IS J2' 

anp. there is ~o coq:elatiQn between bs and a sin 2;, we have, 

uI= !a2+CTb2. 

Next, let Us denote. as before the sum of 11", + 1lp+z '1- •• 

. + u(m: l)l'h' and let B", denot~ tbe sum bs + bph +: .. 
+ b(,,,-v-p+s' Th~n . 

. U {. 271"x • 211'(P + x) sin 211'(m -l)p + 271"X} B 
s=a smy+sm T + •.. + T + .. 

sin 7n7l"p 
• '1' . (211'x (m-I FP} 

<>r U .. =a---sm l ...... + 'l.' +B",. • • 7I"p ~ ... 
sm'r 

Denote by ~ the standard ~eyiation of the U's and by ~B' the 
.sta!ldard devIation of 'th~ B's. Then!n the sat;l1e way as we 
found CT, we find 

sinzm7l"P 
~2 1 2 T. ~ 8 
~ =ija • +-'lB. 

'<I • 27rP • 
sm T 

'Now, since B .. is the sum of 'In of the bs's, we maJ write 
~B~ r mer;' I, and therefore 

• am7l"p 
1 sm T 

~a=-al +'InCTb'. 
2 . a1r]J 

sm 'l.' 

-rrhus if ~~ dehates the standard deviation of the ineap.~ 
Mp' ~!l' . . .,' Mm.of the individual c~lumns, w~ have 

~B=~~B 
7ft 
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Ther~fore, if 'Y/ denotes ~s ;usual the correlation ratio, we have 

"" 2 2 ~" 7J = rTA-

1 
-a2 +u 2 
2 b 

This '/,8 the equatwn of the perwdogram, w,hen p and 7J are 
taken as rectangular co-ordInates; or to speak more accurately,. 
it is the form to which the equation of the penodogram tends 

, as the amount of observational material, used in. constructIng 
it, 18 increased Indefinitely. The nUlllber m will, In most cases, 
be taken greater than 20 if there is suffiCIent observational 
material to provide so many horizontal rows. 

From the above equation it is ObVIOUS that with such a 
val~e of m, 7J is a rather small fraction, except when p is nearly' 
equal to T. Let p = T(l- E), where 6 is a small number; then 
as E tends to zero, the above value of 7J2 tends to the value 

1 2 1 2 . <l' + mUb 

1 ' 
2fl2 + u b

2 

1 
and as m is a .large number, this is nearly 1 '2ut 

+(i2 

It falls 

away rapidly as E passes away from zero in either direction, 

and when l= ±'2:, 7J2 becomes 
m 

1 2 
;;;:Tb 

1 ' 
2a2 + ub

2 

whicq IS the smallest value it can take for any value of p. 
There are maxima ~f 7J agaIn near the v~lues of p given by 

m';'p 3uh "h ,- I 1 3 CIlt T=m7r±2,t atlsw en.Elsnearyequa to±2m- 0 ec-
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ing our re~lts, we may say that when the phenomenon studzed 
is a 'siriLple pe'rioduJ disturbartce ()j period T, s~lperposea on a. 
n:n-systernatic d1,stu1'bance, and the llerwdogi'am 1,S I!omputed 

. 'h~th a large'vaZ'ue oj m, the periodagr«11t fJlUrve 28 close to the wms 
oj p exc7Jt when p is ip., the neigh~ourhood oj T, where the c!lrve 

• 2T" . 
has a peak oj br'eadth -, flanked by smaller> peaks on bot/~ sides. 
'!f ,m '. 

The recognition of these 'peaks i~ the periodogram is the means 
bY'whic~ 'we discover hidden,. penodicitIes. 

"175 .• An Example of Periodogram Analysis.-The table 
below gives the magnitude .("e. a measure of the brlghtness) of 
'8. varialtle star 'at mid~igh1i on 600 successive days (These 
magn'itudes' .were oqtainea by readmg off -from a curve, on 
whlCll,l all the observ~tlO!lS of tl;1~ sta.r's bnghtness were plotted: 
they have been reduced to a sc'ale, suitable for penodogram 
anaJysis J It is req~ired to find a tn~onometncal function 
which will represent the magnitude at any timE! t. . 

I . 
Day, Mag. Day. Mag Day Mag D~y., Mag. Day Mag 
-- ------~ -- -~ -- ----

I 25' 21 2 41 lO . 61 27 81 11' 
2 28 22. 4 42 7 62 25, 82 1$ 
3 :n 23 8 43 5 63 24 83 19 
4 32 24 11 44 3 .64 21 84 19 
5 33 215' 15 45 , 3 65 19 85 '1,9 
6 33 26 '19 46 3 66' 17 86' 19 
1 32 27 23 47 4 67 15 .87 20 
8 31 . 28 26 48 5 '68 13 88, 20 
9 28 2'9 29 49 7 69 12 89 20 

10 25 30 :~2 . 50 10 70 11 90 20 
H ,22 31 ' ~~3 51 13 . 71 11 .91 20 
12 18 32 34 52 16 72 10 92 20 
13 14 33 33. 53 19 73 10 ,93 2<1 

'14 16 . 34 32' ' 54 22' 74 1~ 94 20 
15 7 35 30 55 24 75 12 95 21 
16 4 36 27 56 26 76 12 96 20 
p, 2 • 37 24 .57 27 77 13 ·97 20 
18 0 38 20 5.8 28 78 14 98 20 
19 0 39 1,7 59 29 79 15' .99' 20 
20 0 40 13 60 28 80 16 100 19 , . . 

I. f . 
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Day Mag I Day l.lIIg D,ay. Mag. D"y. Mag. Da). :lldg I 
-- - -- - -- - - -- -

101 18 142 12 18a 19 224 15 265 ., .. 
~I 

102 17 143 16 184 15 225 15 266 29 
lOa 16 144 19 185 12 226 16 267 30 
104 15 145 23 186 9 227 17 268 :10 
105 13 146 27 187 7 228 17 269 30 
106 12 147 30 188 5 229 17 270 29 
107 11 148 32 189 4 230 17 271 27 
108 10 149 33 190 4 231 18 272 25 
109 9 150 34 191 5 232 18 273 22 
110 9 151 3.3 192 5 233 19 274 If) 
111 10 152 32 193 '7 234 19' 275 16 
liZ 10 153 30 194 9 235 20 2iG 12 
113 11 154 27 195 12 236 20 277 9 
114 12 155 24 196 14 237 21 278 Q 

115 14 156 '20 197 17 238 21 279 4 
116 16 157 16 19:3 20 239 22 280 2 
117 19 158 12 199 22 240 22 281 1 
118 21 159 9 200 24 241 22 282 1 
119 24, 160 5 201 25 242 22 283 2 
120 25 161 3 202 26 243 22 284 4 
121 27 162 1 203 27 244 21 285 7 
122 28 163 .0 204 27 245 20 286 10 
12&' 20 164 0 205 26 246 19 287 14 
124 29 165 1 206 25 247 17 288 17 
125 28 166 3 207 24 248 16 289 21 
126 27 167 6 208. 22 249 i4 290 2G 
127 25 Hi'8 9 209 20 250 12 291 29 
128 2.3 169 13 210 18 251 11 292 31 
129 20 170 17 211 17 252 9 293 :H 
130 17 171 21 212 15 253 8 294 34, 
l:H 14 172 2-! 213 14 254 7 \295 34 
132 11 173 27 214 13 ' 255 8 29G 3:3 
133 8 174 30 215 13 256 8 297 31 
i34 5 175 32 216 12 257 9 298 29 
135 4 176 a3 217 12 258 10 299 26 
136 2 177 33 218 12 259 12 300 22 
137. 2 17s ::12 219 13 260 14 301 19 
138 2 179 31 220 13 261 17 302 14 
139 4 180 28 221 13 262 20 303 11 
140 6 '181 25 222 14 26:3 23 304 7 
141 9 182 22 223 14 264 25 305 4 
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Day. Mag Day. Mag Day. Mag. pay. Mag. Day. Mag 

-~ - -- - - - --- --
"306 2 347 '25 388 23 429 5 47'0 24 
307 1 348 25 389 22 43Q 8 471 22 
308. 0 349 25 390 21 431 '12 472 ID 
309 1 350 24' 391 19 432 15 473 16 
310 2 351 24" 392 17 433 1!1 474 13 
311 5 352 22 393 15 434 23 475 11 
312 7 353 21 394 13 435 27 476 9 
313 11 354 19 395 '11 436 30 477 8 
:314 '15 355- 18 396 '9 437 32 478 7 
315 19 356 17. 397 1 438 34 '479 0-

J 

316 22 357 16 39$ 6 439 ,34 480 7 
.317 25 '35S 15 399 (l 44() 34 :481 8 
·:li8 28 359 15 400 6 441 32 482 9 
319 30 360 14 401 7 442 '30 483 11 
320 32 361 14 . 402 8 443 28 484 12 
321 32 362 14 403 10 444 24 485 14 
322 32 ..g,63 14 404 12 44~ 20 486 16 
323 31 364 14 405 15 446 16 487 18 
324 29 • 365 14 406 18 441 13 488 20 
325 26 366 14 407 22 448 9 489 

21 I 
326 23 367 14 408-' 24 449 6 490 22 
327 21 368 14 409 .27 450 3 491 23 , 
328 17 369 14 410 29 451 2 492, 23 
329 f4 370 14 411 31 452 1 493 23 
330 11 371 15 412 31 453 1 494 '23 
331 9 372' 15 413 31 454 2 495 2:{ 
3:32 7 373 15 414 31 455 • 4. 496 22 
&33 P 374 15 415 29 456 .6 497 21 
334 5 ,375 16 416 27 457 9 498 20 
035 6 376 16 417 24 458 13· 499 19 
336 6 377 17 418 21 459 17 500 18 
337 7 378 18 ' 419 18 460 20 ·501 18 
338 9 379 H) 420 1-1 ,461 23 502 17 

I 339 11 380 20 421 10 462 26 5'03 17 

~ 340 13 381 21 422 'I 463 28 504 16 
341 1.5 382 22 423 5 464 30 305 16 
342 18 383 23 424 2 465 .al 506 16 
34a 20 384 23 425 1 466' :n '5Q7 16 
344 2~ :~85 24 426· ',0 467 31 508 15 
M5 2:~ 386 24' 427 1 '468 29 509 15 
346 24 387 24 428 2. 469 27 510 .15 

I . I 
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! Day. Mag I~ lIIag Day. lIng. Day. Mag Day Mag 

-,-

511 '14 529 25 547 8 565 12 583 34' 
512 14 530 .26 548 10 566 8 584 34 
51J 13 531 26 549 13 567 .6 585, 33 
514 13 532 25 550 16 '568 3 586 31 
515 13 533 24 551 20 56!) 1 587 2!) 
516 13 534 23 552 ·23 570 0 588 26 
517 13 535 21 553 26 571 0 589 22 
518 13 . 536 19 554 29 572 1 590 18 
519 14 537 16 555 31 573 3 501 15 
520 14 538 14 556 32 574 6 592 11 
521 .15 539 12 557 32 575 10 593 8 
522 Hi 540 9 558 32 576 13 594 5 
523 18 541 7 559 31 577 17 595 ;3 
524 19. 542 5 560 29 578 21 596 2 
525 21 543 5' 561 26 . .579 ~5 597 2 
526; 22 544 4 562 23 580 28 598 2 
527 24 545 5 56.3 20 581 31 599 4 

I 528 24 546 6 564 16 582' 33 600 I 5 .. 
I 

We have first to find the mean value and stanaard deviatIOn 
of the observatIO~s. By the,methods Qf Chapter VIII. we find 

M~an value = 17, 
Standard deviation = 863. . 

As there are on the 'whole about 21 maXIma and 21 miruma 
III the 600 days, we suspect that one of the most important 
periods W;ill b~ not· far from 6QO/21 days. ;We shall therefore 
take tl'~al pmods ranging from 20 days to 32! days; that is, we 
shall give to p in succession the va\ues 20, 20!, 21, 21!, and so . 
on'to 32!. Taking m = 17, the summation process for, e g., 24 
days is as follows: 

rTABLE 



, 

25 28 31 32 33 '33 32 31 28 25 22 18 14 10 ~ 4 '2 - 0 0 0 2 -4 8 11 

'8 15 19 23 26 29 82. 33 34 33 32 '30 21 24 20 "17 13 10 7 5 . ";3 3 3 4 5 
-~ ~ 10 f3 16 19 22 24 .26 2'(' '28 29 28 2'1 25 24 21 19" 17 15 13 12 11411 10 
..:::. 

20 10 11 12 12 J.3 14 15' 16 17 18 19 19 l~ 19 20 20 20 • 2(r ?O 20' 20 ~1 20 
20 20 20 19 18 1'1 1'1> 15 13 12 il, 10 9 9 10 10 11 12 14 16 19 21 24 . 2ij 

-27 28 29 29 28 2'1 25 23 20 17 14 11 ·8 5 4 ,2 2' '2 • 4 6 9 lz' .16 19, 
23 "27 30 32 33 34 33 :32 30- 2~ 24,20 16 

. 
.12 9 5 ? 1 0 0 1 , 3' 6. 9 

13 17 2i 24 27, 30' 32 33, 33 32 31 28 25 22 19 1~ 12 9 ~ 5 4 4 ~ .5 :7 9 12 14 1'1 20' 22 24 ~5 26 27 2'1 26 25 24 22 20 18' 17 15 14.. 13 13- 12 
12 12- 13 13 13 14· 14 15 15 16 17 ,17 17 • 1.7 18 18. 19· 19 20 20 21 21 22 22 . 
22 22 22 21 20 19 1~ 16 .14 U 11 9 .8 7 8 8 '9 10 -12 14 17 ·20 23 ' 25 . 

30~ .9 : 6 ·27 ... 29 30 30 2a 2'1 25, 22 19 16 ·12 '4 2 1 1 2 4' '1 10 14 17 
21. 25 29 31 33 34 '34 39 31 29 26 22 19- ' 14 Ii ~ 4 2 1 0 1 2 5 '1 
U· 15 19 22 25 28 30 32 32 32 31 29 26 23 ~1 17 14 11 1) '1 6 5 '6 6 
7 9 11 13 .15 18 20 2~ 23 24 25 25 -25 24 24 22 21 19' 18 17 i6 15 15 14 .. 

l':l: 14 14 14 14 14 14 '14 14 '14 i5 15 15 ' 15 16- 1.6 1'1 lR 19 20 21 22 23 23 
I» 24 24 
"" 

24 23 22 21 19 17 15 13 11 9 ., 6 6 6 7· 8 10 12' 15 18 22 2J -. - -:- - - - - - -- -- ~ - - - - - -' - - ~ -- -'---
285 p19 353 371 389 406 ~07 40a 392 3r6 359'326 294 259 242 208 191 174 173 172 188 204 238 254 
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The sums at the fout of the columns are the numbers IT 0' IT l' 
U

2
, ••• correspondmg to this trial period. , 
, When the tHai penod is. not a whole number of days, \\e 

modIfy the arrangement slIghtly so as to secure that terms II1 

the, same phltSe are stIll in the same vertical column: thus if 
the tn1l.1 period were 311 .days, we should write the values 
corresponding to days 1 to 31 in the first horizontal row, and 
the "values corresponding to days 32 to 62 in the second 
horizontal row, then" we should omit altogether the vaIuo 
corresponding to day 63 in order to bring the value correspond
ing to day 64 to the beginning of the third row, and so on. 

The table of values of the u's- obtained by the summatioll 
process with the different tnal periods is as follows: 

(TABLE 



'Ptriod (P)(<lays) 

29· 20j. 21 211 U. 22} 23 23}. 2fo 24}. ~s: 2Sj: 26 26j 27. lI7}. 28. 28j. 29 29}. SO. SOl Sl' Sll 8; .112}. 
292 274 285 282 285 2S3 "251 211 285 359 333 295' 29~ 290 301 281 !!27 282 '437 442 337 291 315 324 300 293 
291 278 290 '285 2$5 287 252 227 319 3703 330 297 297 295 310 283 240 318 454 431 3:.lO 290 315 323 296 295 
297 281 .295 286 21M 288 25i 247 353 381 326 .298 304 300 315 284 261 350 '472 419· 307 284 315 318 287 296 
292 284 297 288 295 291 258 272 371 384 317 299 304 305 31~ 285' 272 379 471 396 284 282 314 312 287 295 
291 288 301 291 305 296 264 297 389 379 308 301 307 ,310 321 287 289 405 471 373 270, 217 311 307 282 296 
293 293 305 292 309 296 273 ,321 406 37J 299 300 306 312 322 287 306 424 '452 344 2411 2~4 308 299 277 295 
297 297 305 '295 308 299 284 344 407 354 291 300 307 314 319 288 328 437 432 313 234 273 .304 - 291 279 296 
293 299 307 296 311 302 296 362 408 337 281 301 303 315 319 290 338 445 412 280 222 '271 300 284 270 294 
292 303 3011 2119 3]5 302 307 379 392 313 272 297 '303 314 315 290 351 443 375 248 216 271 '294 275 267 296 
293 306 304 301 314 301 317 386 '3.76 291 266 294 296 316 308 289 361 434 339 220.206 270 289 268 266 294 
298 306 306 305 315 302 326 390 359 267 263 294 297 312 305 292 374 420 303 193 208 273 285 '253 271 292 
292 306 304 306 312 301 333 385 326 245 260 291 290 310 298 292 871 395 265 ]72 205 272 2i9 257 266' 290 
292 305 293 305 311 298 338 3i5. 294 228. 259 287 290 307 2S9 293 871 371 229 153 2]0 278 275 253 270 289 
290 '30t 297 303 305 298 340 358 259 214 262 286 285 303 28' 294 367 342 ]94 144 219. 279 272 252 271 289 
296 300 293 300 303 296 338 337 242 209 267 284 288 300 278 296 865 310 161 139 236 286 ·269 252 281 287 
287 297 287 298 292 292 332 314 208 205 273 281 282 295 270 2q8 349 278 143 146 247 289 267 253 280 287 
287 205: 287 295 287 291 324 ,287 191 212 279 280 286 291 267 298 336 246 127 155 268 !!l5 266 258 285 286 
284 287 282 291 276 288 313 261 114 220 286 278 263 286 263 301 320 2]5 112 '173 282 299 267 1163 291 285 
289 285 279 288 274 285 302 237 173. 237 295 279 2R8 283 259 303 808 189 115 195 801 304 268 269 802 285 
282 281 279 283 266 285 289 215 112 254 302 280 287 279 260 302 284 168 118 222 819 309 271 278 301 28~ 

277 279 267 281 276 197 188 276 307 282 292 275 261 302 267 ]51 137 253 341 312 275 286 807 285 
262 282 263 189 204 298 310 283' 291 272 261 303' 249 141 ]57 285' 352 316 280 295 311 286 

252 186 238 318 314 287. 296 270 268 302 "240 140 194 320 869 315 284 806 .319 287 
251 337 3]4 287·295 268 272 299 222 144 231 349 373 3]8 2B(l • 312 816 288 

312 290 297 267 277 299 212 156 267 379 378 313 294 320 216 289 
296 266 285 297 206 175 301 400 379 313 299 327 315 '290 

293 291 209 198 336 421 380 309 303 330 319 291 
205 225 369 431 361 304 308 332 309 292 

~03 442 .361 297 310 334 304 294 
343 292 313 331 299 2q4 

814 327 298' 296 
286 296 
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We have next to find the standard deviation of each of 
these columns and dIvide it by m ( = 17) in order to obtain the 
standard devia9-on of the corresponding column of means 
M", MI , M2, • • •• 

N ow dIviding .these standard deviations Of the :U's by the 
standard deVIation of the u's, which was found to be 8·63, we 
have a table of values of the correlation ratio '1 correspondmg 
to the dIfferent values of the trial period p. The values of '1 • 

J:!lay eVIdently be obtained at once by dIviding th~ correspond
"lUg standard deviations of the columns by 146·'71 (= 17 x 8·63) 
The results are as follow: • 

20 
20! 
21 
21! 
22 
22t 
23 
23! 
24 
24! 
25 
25! 
26 

291·4 
293'5 
2946 
293,7 
295 
293 
294'9 
2947 
291·2 
2943 
293 
290 
294·8 

4042 
10171 
10018 
7947 

17034 
6772 

31'630 
69·389 
~3'~56 
62'567 
23198 

7·697 
23·561 .. 

0028 
0069 
0·068 
0054 
0116 
004'6 
0'216 
0473 
b 572 
0'426 
0·158 
0'052 
0·161 

Period. Arithmetic Standard 
Meao. Deviation. 

26! 
27 
27! 
28 
28! 
29 
29l 
30 
30\ 
31~ 

31i 
32 
3,2! 

1---1----
294'4 
2903 
2936 
2939 
2922 
2923 
291 
292·6 
2919 
292 
2!)32 
291'5 
291 

16837 0 llj 
22·132 0151 

6'590 0045 
58 197 0·397 

109·019 0·743 
126'481 0862 
106089 0 ;23 

61 587 0420 
15'948 0 l09 
17·481 0119 
29034 0198 
169;20U6 
4020 0027 

These values of 'fJ, plotted against the corresponding values of 
p, gIve the pe~iod~gram shown on p. 357., 

In the practlce of pel'lodogram ana1ysis, smce eavmg of labout IS 
more important than' great accW'acy, It is not unU,Sual to omit altogether 
the calculatlOll of the standar~ deVIations, merely plottmg the perJodo. 
gram frqm points obtamed as follows. As abscissa take p, and as ordmate 
take thE! dIfference between the greatest and least nnmbers of the sequence 
Uo' U1, U2, •• "Up _ I ; thIS dIfference IS called the oscillation correspond
mg to the trial period p • The .table on p. 358 gIves the OSCIllations 
correspondmg to the various values of p, uetween '19 days and 33t day~, 
the number m bemg takim to be 17 throughout. 
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TrI.l PerIOd OsclllatlOn of Sum. I Tnal Period OsclllatIon of Sum 

I 

Days I Days 

19 30 

! 
26t 20 

19~ 36 26! 60 
20 16 : 27 63 
20t 32 27} 30 
21 30 211 22 
21i 27 28 169 
22 51 

I 
28~ 30ii 

22t 35 29 360 
22t 20 29! 303 
23 89 30 170 
23t 204 30! 5ii 
24 236 31 49 
24t 17'1 3q 86 
25 74 32 53 I 

25t 2fl 
I 

32i Iii 
25t 23 33 58 
26 ,25 I 33t 49 

. It WIll be seen on plottmg the osclllatlOn against p that the lUrve ~o 
obtamed closely resembles the perIOdogram obtamed uy the 1II0'l'e accurate 
and laborIOus method of computmg the standar4 devmtIOns 

It wIll be se~n that tlie periodogram in our example shows 
two hIgh 'peaks at p = 24 and p = 29, wIth the sIde-peaks belong
mg to these as in a dIffraction-pattern in optICS. We ale 
therefore led to infer the existence of two' constItuent oSCIlla
tlons, one of which has a period of approxImately 2-1 days and 
the other of approXImately 29 days. In order to find these 
periods more exactly, we repeat the work so far as concerns the 
neighbourliood of p = 24 and p = 29, but taking a larger varne 
{)f m-say about twice as great-and alsO' takmg values of p 
separated from each other by smaller intervals. Thus we mIght 
now' calculate the correlation ratIOS corresponding to p = 23· 6, 
23·8, 24·0, 24.2, 24·4, when 34 horizontal lmes are taken. 
This will give a much better defined peak in the neIghbourhood 
of p = 24; the peak WIll in fact be only half as broad as In the 
prevIous penodogram. 
. It may be remarked that if two periods are found (from an 
mspectIOn of the first periodogram) to be so close together that 
the peaks corresponding to them run into each other, it "Ill in 
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,!ny case be necessary to re~at the work Wltp a larg~r value of • 
m, in orde; to dimini~h the breadth of each peak and so bring 

. the two peaks clear of each other. This is analogous to the 
corresponding' device in spectroscopy, of ~mploying a grating 
with a larger number of rulings in 'order to resolve two hnes 
which are not distinctly eeyarated by a smaller instrument, 

In order to get the periods still more exactly, we must study 
the phase of the constItuent oscillation\! (as found by Fourier's 
allalysis) at different epochs;. for if there is a sh~ht error 1D 

the as.sumed period, the consequence wIll be that the phases 
'of the oscillation, as deternrined from different" stretches" of 
material, will not fit together accu,rately..-~he oscillatio!l Wlll 
appear as if it were continually being accelerated or ret3J'ded 
in ,phase; an improved value fbr the period is then suggest~d 

:by the amount of acceleratIOn or retardation of phase, In 
this way ,we' find that' in the present example the periods 
are exactly 24 and 29 days: We then add together the two 
oscillatlop.s (.i e, write down the llumbers'Mt)I MI , Ms' ' ... for 
the first ,oscillation in one horizontal line, and write down the 
numbers }1'O! MI, Ms' . , . fot the'second oscillation in a hori~ 
zontalline below them, and add) and 8~btract the resnlt from 
,the given observed values, in order to see what is left stili 
unacoounted for. Thus 

Day • 1 2 3 4 5 6 7 8 9 
24-tlay term 16'·8 18·8 20·8 21·8 22·9'23·9 23·9 24 23·1 
29-day terflb 25·7 26·7 27·8 27,·7 27·7 2~·6 25·4 24·2 22·1 

Sltm . 4~.5 45·5 48·6 49·5 50·6 50·5 49~3 48·2 45·2 
Git'enmgraph 25 28 31 32 33, 33 32 31 28 

,Diffi • 17.5 17·5 17.6.17 .. 5 17·6 1'7·5 17·3 17·2 17·2 

IJay 10 11 12" 13 14 15 16 17 18 
• 24-day term, 22·1 21·1 19·~ 17·3 15·2 14.2,12.2 11·2 10·2 

29-day term 19·9 17·8 15:6 13·5'11·4 9·5 8·4 7·5 6·6 
Sum .' 42·0 38·9 34·8 30·8 '26·6 23·7 2U·6·18·7 16·8 

Given ingraph 25 22 18' 14 10 7. 4· 2 O' 

IJi.ff. 17·0 16·9 \6·8 16·8 16·6 16·7 ,16·6 16.7 16·8 
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Day 19. 20 21 22. 2:~' 2-1 25 26 27 
24 day tmn 10·2 10·1 11·1 12 14 14·9 16·8 18·8 20·8 
29-day ter/n 6·8 6·9 8·1 9·2 11..4 13·6 15·7 17·7 19·8 

Sum 17·0 17·0 19·2 21·2 25·4 28·5 32·5 36·5 40·6 
(hveningraph 0 ,0 . 2' 4 8 11 15 19 23 

D~ff. 17·0 1/·0 17·2 17·2 17·4 17·5 17·5 17-£i 17·6 

Day 28 29 30 31 32 33 34 35 36 
24-day ter?n 21·8 22·9 23·9 23·9 24 23·1 22·1 21·1 19.2 
29-day term 21·7 23·7 25·7 26·7 27·8 27·7 27·7 26·6 25·4 

Sum 43·5 46·6 49·6 50·5 51·8 50·8 49·8 47·7 44·6 
Given~ngraph 26 . 29 32 33 ·34 S3 32 30 27 

·Diff. 17·5 17·6 17·6 17·6 17·8 17·8 17·8 17·7 17·6 

The numbers m' the last line are nearly constant, the 
deviations from copstancy bemg no more than might Le 
expected from the inaccuracy of the numbers'taken to repIc, 
sent th~ 24-day and 29-day terms; so the g~ven observations 
may be accounted for as the resultant of two const~t1Ie1U osctll(l
tMons of penods 24 and 29 days .1·espectivrly, together w/,fh a 
constant term. We tlre:r:efore write 

27rt 27rt 27rt . 27rf 
1lt = a + ,8 cos 29 + 'Y sm 29 + 8 cos 24 + t' SID 2-1 ; 

the constant a must have the value 17, since this is the mean 
value of 11t• and the constants ,8, y, 8, t' may be determined by 
least squares. The final result is . ' 

, _ 27r(t+3). 27r(t-l) 
u t -17 + 10 sm 29 + 7 sm -u:--' 

,where t denotes the tIme in dalB 

176. BIbliographical Note -Methods for the dISCovery of hIdden 
perIodICIties- have been gIven by many "Titers, begmmng wIth Lagrange * 
m 1772 and 1778. Lagtange'~ II\ethod, whICh has been Improved I,y 
Dale,t IS qUIte dIfferent from the m~tllod descrIbed above. 

In the latter half of the nmeteenth century attentIOn "as gtHll 

,,* rEuvres, 6, p. 505 ; 'I, p 535 . 
t Monthly Not. R A.S '14 (1914), p. 628. Carse a:.d Shearer, Edln. Malh, 

TI acts, No.4, P 4,1. 
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chiefly to methods wlhch depend <In the prwClple'that (~n the notation of , 
§ 173) the sequence U oo Uv ' .. , Up "': l preserves any periodlClty of PerlOd 
p that may he present in the obflllrvatlOns, and does not 'preserve other 
rerlodlcltles.. 1l1ethods of tb18 kmd· were origtnated by Buys-Ballot * • 
and devefoped by Strachey t and by Stewart and DO!'Igson.t Stokes § 

. suggested that in orde,l' to test' an observ¢ functIon u(x) for II. penod 

. '~, the integrals J u(x) sin nxdx ~~d J ~(x) cos 71xdx. might. be calcu~ted; 
If a true periodicitr of u(x) 18 represented by the terlll C 8m (n'x + a), 
then w}len n 18 near 11.' tlte integrals "1l11mvolve terms . . 

• .. c .. (c 
2(n' _ n) sin {(n' -n)x+ a} and - 2(n~ _ n) cos {In' ...I n)x + a}, 

• 
which are 'of large amplltllde and long perlOd, and are therefore .readlly 
detected, . ". ' 

Schuster discussed the matter in a number,of important memOlrs,1I 
In 'wlpch the perlOdogram ,was mtrpduced. Let a 'functlOn u(J;) of. the 
tIme x take the values uo' u1' U2' 1/,3' ' •• , U"_1 at cqludlstant values of the 
time Xc» xo+a, xo+!la, ..• , xo+(n-I)a: . . , 

Let 
,,-1 • 2'11'8 

A= ~ U B cos-, 
.=0 p 

'II~I 2108 
B= ~ 'Utsm-, 

.=0. P, 

and tet S=(~2'+B2)a. 
'n 

,Then the value of. S in the neighbourhood of a particular value pa· 
'ras defined, by Schuste1' to be'the ordmatll' of the periodogram for 

,that perloi\ .. '1t was r.emarked by Craig~' that Schqj!ter's formulae were 
!lqUlvale~t to thosll arrived at m ,findmg the correlation coeffiCient '1'. 

betwpen the sequence 1'0' 111; 1121<' •• , U"_1 and the sequences 

I, 
2'11' 

cos
p' 

4'11' 
cosp' 

6'11' 
cos p ' . 

• : 21i 47r # 6r 
and . 0, 8m - sm L- sin -,'.. 

p' p' P 

~ .. 

• Le8 ch'angements ptfriod/ques de /e'fTlJltfrat'UI e, Utrecht (1847). i' '84. 
.t Proc. R.S. 26 (18m:p. 249. •• . 
t Pro~. R.S. 29 (1879), p. 106. 
§ Proc. R.S, 29 (1879), pp. 122,303. • 
II TenestnaZ Ma"netmn. 3 (Hl98), p. 13; Camb l',hll. T,:ans 18 (190(/), 
107 ; Proc. R.S. '17 (1906). p. 136; Phd. Tra"$. 206 (1906), P 69. 
~ . Bn,t. Ass. 'Rep 1919, p 416 
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H. H: Turner * has publIshed tables for facmtatmg the computatIOns 
of Schuster's process 

A method depending on the formatIon of dIfference equatIOns has 
been suggested by Oppenheim,t and mechamcal methods have been 
described by A. E. Douglass t and W. L. Balls § • 

'The reader' who Wishes to pursue further the subject of this chapter 
is recommended to consult a valuable memOIr by J. Bartels, .. Random 
fluctuatIOns, persistence, and quasi-perSistence m geophYSical and cosmlcnJ 
periodicIties ", Terrestrial Mag. 40 (1935), pp. 1-60, and a memOIr by T. E 
Sterne and L. Campbell, "Properties of the light curve of l:l: CygDl". 
Annal8'of Harvard Call. Oba. 90, No.6 (1934). Cf. also Dodd ... PerlOdogram 
analYSIS WIth the phase a chance varIable", Economelrtca 7 (1939) 57. 

* Tables for FacIlitating lhe U8e of HarmonIc AnalysIS. by H H. Turner 
(Oxford Umverslty Press. 1913). . 

t W,en Sltzungsber. 118 (2a) (1909). p. 823. cf. F. Hoptner. Ibrd 119 (2a) 
(1910). p 351. , 

t AstrophysIcal J. '40 (1914). p. 326; 41 (1915), p. 173. 
§ Proc R S. 99 (1921). p 283. • 



CHAPTER XIV 

THE NUMERICAL SOLUTION OF DIFFERENTIAL EQUArIONS 

177. Theory of the Method.-The best method of mte
grating dlfferential equations numerically is one devised, by 
J. C. Adams I'" it is applicable to ectuutiQns of any order, but' 
fo~ simphcity we shall describe its apphcation to equat.ions of 

'thE! first order. 
Let the dIfferential eq~ation 'be 

~~ =/(y, x), (1) 

wi$ the mitial condition that Y is to have the value Yo when 
x has the. value Xo. Let xO' Xl' '~'2' Xa, ... be a sequence of 
values of :v at .equal intervals w apart; we shall denote 'the 
corresponding val'!es of Y by go> YI' Y2' Ya, . . • aI).d ~he' corre-

d· I f d.1J b Th d J>t' spon mg va ues 0 ~v dJ; Y qo> ql' q2" qa, • e luerences 

(.III - Yo), (Y2": Yl)' etc., will be denoted by flyo, flYI' etc., as. 'usual. 
It WIU generally be found convenient to choose the mterval w 
so sIllall that' differences or otder above the fourth (or, better 

'stIU, differences of order above the thirq.) may be, n~glected. 
'l,'he valu,e Yo, being gIven. the problem is. to determine 
YI' Y2' y;. . . ;. • ., 

,The first four of these values are determined in the following 
way: by d~fferentlating' equat.ion ~1) we, have 

(2) 

• Theor'e8 of Ctip,llary Action, by F. Bashforth and J. C. Adams: Cambridge, 
1883r Tl].e method has been since developed in Russian memoirs by A. Knloff. 
C. Stormer, Compte8 rendUB du crmg .. ull., Strasbourg, 1920, develops a similar 
method for equatJons of tqe second order. .For more recent developmenta cf. 
R. v.Mlses, ZeltBchr.f. angew. Math. 10 (1930), p. 81; G. Schulz, Ibid. 12 (1932), 
p. 44; D. R. lIartree, MancheBter Lit. and Phil. ·Soc. Mem. 71 (1932), p. 91i 
V.M. Falkner, Phil. Mag. 21 (1936). p. 624. 

363 
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h· h day. t 'f' • d w IC expresses, dJp. In erms 0 x ' an 7/.. By differentIatmg 

(2) we can' similarly. obtain 'dd3~ In terms of x and y, and so on, 
. x • 

In th~s' way all tHe succeSSIve derivatives of 'Ii with respect to 
x are obtained as known functions of x and y. Thus in Taylor's 
expansion 

Y r Yo + (x - xo) (~) + (x ~ ~O)2 (~) + (x -3~'0)3 (~3.~) +. ., (3) 
(I ~. r; 0 .. • {. ,J." • 0 , 

the quantIties Yo, (~~)o' (~~)o' .. , are all known, and there

fore Y can be found for any value of x near to xo' By sub
stItuting 'W, 210, 310, 4v) for (x - 030) in e'quation (3) we obtain 
the values of YI' Y2' Ya' Y~ with as 'great accuracy as may be 
desIred; or alternatIvely, we may compute Ayo' tl2llo' ••• from 
the equations 

and then calculate 1h, Y2' ih. Yc by building 'up the difference 
table of the ?I'S, Then from either the equation 

. dq .A( ) 
q=1I'd~ = 1('.! ,Y,x • 

or 'the equatIOn 

q=1O(dy) +w(x_:I')(d21/) 'I;1,,(03-Xo)2(d3y ) +., • 
dJ;.~ 0 dx2,o 2' \J,;3 0 ' 

we pbtalll. the values of gl' q2' g31 Q4' 

, Now with these cQIDPuted values we form a dlfference table 
,thus: " 
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q. • Ag. , 'A2q 113q A~q. 

• qo 
Ajo 

• ANo ql 
Aq~ A3qo 

qa A2qL A'qo 
Aq2 A3q1 

¥a A2qa 
Aqs' 

, q" 

The fu.rther process consists- id extending this tabie by 
adjoining new (sloping) hnes. To effect this, we remark that 
to the,symbolic formula . 

'E"=(E~L0r =(l-~r" =!+iAE-l+r(~~'t)A2E~2r1-' .• , 

there corresponds the- interpolation formula (the backward form 
of the Gregory-Newton formula) . • . ' 

. • _. ~ • r(r+1) 2 r(r+1)(r+2) 3 
q(x" + rw) - qn + 1Aq"-1 + 1.2 A qn-2 + 1.2.3 A q,,-3 

. Q'(r + 1Hr +2)(r t 3) A, : 
. + 1.2.3.4 ~ q"-,,.+. .. (4) 

Now 
, . [.+~dy 

1/n+1 -,1/n = dx dx 
.. s,. , 

1["+10 .= _ qdz 
u.~"", . ' 

.' = {q(Xn + TW)dr. 

,Substituting the yal\le of q (Xl'; + ,-tv) 'fr?m (4) and performing 
~he integrations with respect to ,r, w,e have 

"., .. 1
A

• 5
A2
·' 3

A3 
• Yn+1-y?;=q"+"2L.lq,,-l + 12L.l q~-2;"8L.l qn-Il 

• • 251 , t 729 A 9,.-4..... .. (5} 

.. and in particuiar . . • . 
1 A' 5 1A2 +3 AS .251 A4 

Ys - y, = q,.+ '2 ~q3 + 12-L.l ~2 "8 L.l qJ,,+ 7~O L.l qo' 
• • 
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Every term on the nght-hand sIde of tlus e(luatIOn IS 1~nown, 
so by means of It we can compute Yo' The equatIOn 

gs = 11!(Ys' xo) 

enables us now to compute go' and so to adjoIn a new Sluplllg 
hne to the dIfference table of the g's. 

Next we put n = 5 in equatIOIr (5) and use thIs equation to 
compute V6' then from the equation 

g~ = Uf(Y6' xs) 

we compute g6' and so obtain ,anot her sloping hne III the 
illfference table. 

Adams's .process consIsts simply in the repetition of thIS 
operation. .It may eVldently be extended to any number of 
simultaneous equatlOne each of the first order, such as the paIr 

d1J 
d~ = cf>(y, z, a,),. 

dz 
d:» = f(y, z, x). 

and so to any system of orillnary differen'tlal equations. 
Ex.-Gwen the differential equatwn 

r!JLY-x 
dx-y+x 

with the tntltal values Xo = 0, Yo = I, tabulate the solution from x = 0 
to x=0·2, 

We have' by successIve dIfferentIatIOn 

yy' +xy' - y+x= 0, 
'12 + yy" + xy",+ 1 = 0, 

3y'1/" + yy'" + y" + rry'" = 0, 
3y"2 + 4y' y'" + yylV + nf" + 2y'" = 0, • 

10y"y'" + 5y'y'V + yyV + nJv + 3yl' = 0, 
101/"2 + 15y"y1V + 6V'yV + Yl/''' + :1'1/)1 + 4y' = 0, 

whence the lllltI~l values are 

Yo' = 1, Yo"= -2, Yo'" = 8, YoIV = -GO, yov=G40, yo\l= -8840, 

and hence the Taylor senes is 
_ _,2 ~_q_~ 16._<_221.A 

Y - 1 +" " + 3..... 2 + 3 X" 18 r +. . . 

WIth 
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Takmg 'III = 0-02;we have from these Sl'rles 

Yo = 1-000000, qo=O 02, 
Yl = 1-019610" ql = 0'019230, 
Y2= 1;038479, q2=0-018516, 
Ya= 1056659, qa=0017851, 
y,=1·074195. q,='b 017228. 

T,he remaining values Y5' Y6' y" .• ~ are computed from a dlff~rence 
table of the q's, usJng equatIOn (5); the eorreepondmg values q5' qfll q". . 
bemg given by the formula q~ = w(y" - x .. )/(y" + x .. ). We "thus arflve 
at the followmg results: 

.A. A'l. 
" 

A3 A' 
xo=O Yo= 1000000 qo= 0·02 

-770 
:/'1=0'02 ~1=I'O~9610 ql = 0·019230 56 

-714 -7 
:/'2=O-~4 Ya = 1 :0384 79 q2=0 018516 49 0 

-665 -7 
xs=O 06 Ys= 1·056659 Qa=Q'017851 42 2 

- 623 -5 
x,=0'08 Y,=I'074195 q,=O 017228 '37 • 2 

-586 -;3 

~6=0'10 • Y5= 1'091126 q5 ~ 0·016642 34 -2 
-552 -5 

~e=0'12 Ye= 110,7490 qe=0·016090 29 4 
- 523 -1 

:/,,=0'14 y,= 1'123317 .q,=0·015567 28 -? 
-495 -4 

:ts=0:16 Ya= 1·138632 qs'; 0·015072 24 
-471 

_x&=018 Y&= 1..J.53469 q&=O 014601 

x1o =O·20 YIO= 1·)67842 

The above value of YIO IS correct tb the last dl~t. 
178. Bibliogra.phical Note.-Oqhe other methods which have been 

proposed for lo.tegratlDg differential e<iuatlons, the best known IS that of 
Runge, Math. Ann. 46 (1895),·p. 167, Improved and extended by Kutta, 
Zeds. j. Math. u. Phg6. 46 P901). p.435. See also Luidelof, Acta Soc. Sc. 
Fenn. 2 (1938), No. 13. 

A method which permits the determmation of an upper limit to the 
error involved has bee~ described by Steffensen. Sartrgck ur Skandinamsk 
Aktuanetidsknft. 1922, p_ 20. • . 

On the numerical solp.tion of partial differential equatio~ cf. Gerakh 
Prasad, Phil. Mag. 9 (1930), 1074. A • v!l.luabl~ monograph on. the. 
mimerical integration of differential ~quatJons. both' ordinary and partIal. 
'WrItten by X. A. Bennett. W. E. MIlne and H_ Bateman, was published by 
the NatIOnal Resemrch CounCIl. ~ashmgton. D.C, ill 1933. 



CHAPTER ,XV 

SOME FUitTHER PROBLElIlS 

IN thIS chapter we shall give a brief treatment of varioue 
topICS which cannot be discussed more fully hera on account 
of lImitations of space. . .. 

179. The Summation of Slowly - Convergent Series.
Many of the commonest serIes of Analysis converge very 
slowly. Thus ~ith Brouncker's series for log. 2, . ' 

1 1 1 1 1 
, log. 2 = 1.2 + 3.4 + 5.6.+ 7.8 -t 9.10 +. . . 

a hundred terms are required to gIve' the sum accurately to. 
two dIgIts; 10,000 terms are required to gIve it ac<!Urately to 
four dIgits; and 1,000,000,000 terms are reqUIred to give it . 

. accurately to lll!le digits ' 
StIrling," in 1730, showed how a lleries of this kind may be 

transformed into one which is rapidly convergent. 
His method is to expand the general' term of the given 

series as a -series of inverse factorials; thus the general term 

C'f Brouncker's. series is 1t"=·41:(.X
1
+ !)' where x":J, !, -fr, •.• 

and this may be expanded· as a series of Inverse factOljals in 
the form • 

1 1 1.3' 
1t= + + -., 22x(x+1) 23X(X +.l)(x + 2) 24x(x+1)(x+2)(.x+3) 

1.3.5 
+ 25x(x + l)(x + 2)(x + 3)(x + 4) + .. . 

Now . .form the sum 1l", + 1t.,+1'+ 11%+2 + 1{%+3 +.'. . The' sums 
, 

.. Mellt. D.tf. (1730), I',op. II. Ex. 5 .. 
. 368· 
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ansmg from the individual inverse factorials can each be 
summed by the well-known algebraical formula, and thus "e 
obtain • 

• u.,+ U",+l + u",+2 + .. 
1 ! . l.l.3 

. = 22x + 23x(x + 1) + 2'x(x + l)(x + 2) 

In this formula put x = 13t. 

1·1.3.5 
+ 2Sx(x+ l)(x+ 2)(x+ 3);' 

Thus 
, 

1 ·"1 1 
27.28 + 29.30 + 3\.32 + . 

The series on the right is rap~dl"y convergent and YIelds the. 
sum 0·018861219 ..• ; and the sum of the first thirteen terms 

of Brouncker's series l; + 3~4 + . . + 2:.26 is f~und by addition 

to be 0·6H285961 . .. Adding these sums, we have finally 
for the sum, to t~finity of Brouncker's serie~ 

log. 2 = 0·693147180. 

StirlIng's method was extended by himself (Meth. Dtff. (1730), 
Prop.' III.) to the case of series whose nth term Involves an nth power . 
.Another method was gIven by Kummer III Journal JUT Math. 16 (1837), 
p. 206. See further Cata.lan, Mem. Berg. cour. 33 (1865); Markoff, 
Mem. de St-Pet. (7) 37 (1890); Anaoyer, Bull de la Soc Math. de 
France, 33 (1905), p. 36; and BockwInkel, Nieuw Archie! 1I00r Wukunde 
(2) 13 (1921), p. 383.. • . 

180. Prony's Method of Interpolation by Exponentiais.*
We shall now show how a function K(X), which is specified by a. 
table of numerial values, may be representeft approximately by' 
a sum of exponentials 

• K(X) = Pel"" + Qeq", + Rt''''' + ... + Yen, 

where P, Q, R, ... , Y, p, q, r, ... , v ar~ constants which are 
,chosen so as to give the cl<?sest possible representation of the 
given numerical values. Let the given values of K(X) be 
KO' K1,' Kg, Ka, • • . corresponding respectively to the values 
0, 1t', '211', 3U1, • • • of the argument x. 

• A. L. 'Prany, Jour. de l'Ee. Pol. Cah. 2 (an IV.), p. 29 
(D 311) 25 
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If K(X) could be represented ecactl!/ as a. sum of f' 

exponentials, say 
P.cJ>.1' + Qe2Z + Re .... +. . . + Ve"'", 

then K(X) would satIsfy a linear difference equation of the form 

AK"+,, + BKn+,,_l + C"n+,,-2 + ... + 11K,. = 0, 

where the roots of the algebraic equation 

Ax" + Ex" -1 +. . . + 1I = 0 

wO\lld be ePw, eqw, ••• , e1lW. Prony's method, which Is'based on 
thIS fact, IS to write down a set of unear equaJ;lOnA 

AK" +BK,,_1+CK,,_2+" .+MKo=O, 
AK,,+l + BK" + CK,,_l + ... + MKI = 0, 
AK,,+2 + BK,,+, + CK" +... + MKa = 0, 

(where the quantIties KO' Kl' KZ' K3' are know!!, since K( 1') is 
a known tabulated functlOn), and by the ordinary method of 
Least Squares to find the values of A, B, Q,' .. '., M whICh 
best satIsfy these equations; then WIth these values of 
A, B, C, ... , M to form the algebraiC equation 

A,e" + Be" -1 +. . . + M = ° 
and find ItS roots; these" roots Will be ePW, e2"', ., e""', and 
thus p. q • ...• v are determined. Knowmg p, q, ... , v, we 
have a. set of linear .equations to determ!ne the coe!flcients 
P, Q, .. " V, and these also are to be solved by the method 
of Least Squares. 

Ex. I.-If from the data 

x! 10 I 20 I' 30 I 40 I 50 I 60 ~ 70 I 80 I 90 

K(X) I 6460 6090 1-56~2 , 5049 I 4417 :~i 2401 ,983 142 

we repruent K(X) ~n the form 

PaZ + Qf3'" + Ry"', 

:prove that the but valu~s of a, p, yare the 1'00/' of the cubic 

zl'- 3 02923x2 + 3 78779~ - 1 68664 = 0, 
(W. S. B. Woolhouse.) 
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• E;:. 2.-From taa data,' 

,how that 

,z I 0 I 8 ' 1" I 24 I 32 11i~' 
K(Z) 248 ~~lml~1 529 569 

K(Z) = 629'3763'" 1'00.14438'" 
-381'3767 x 0'9670412'" 
+ 0·00046064 x .1'2361997'" 

37}. 

(F. Sellmg) 

181. Interpolation Formulae for Functions of Two Argu
ments . .*-The formulae of interpolation f!>r functions of a single 
argument, which have' been established in Cpapters I.-III., may 
be extended to functions of two or ,more mdependent argu
mentS. Thus we can introduce di'lJided diJferen~es (cf. § 11) for 
a function f(x, y) of two arguments by the defirution . 

f, (x y) =.t.. ~_l(X, y) - 1.,A-l(X, YA) 
.,A , Y _ YA' • 

=1.-l,A(X,y) - 1.-l.A(X •• Y) 
x-x. 

and obtain a.·formula analogous to Newton's formula for unequal 
intervals (§ J3), nam~ly, 

f(x, y) =1 oo(tJ, y) 
.: loo(x1• Yl) + (x - X1VI0(Z, rl + (y - YIV01(ZI' y) 
= loo(x1, Yl) + (x - Xl)ftO~Z, yJ + (y - Yl)/01(Z, y) 
= loo(x1, Yl) + (x - x1lho(z2J Yl) + (x - ZI)(Z - X2V20(X, Yt) 

+ (y - YIV01(X1, Ys) + (x - xt)Jy - Ytlhl(X, y) 
+ (y - Yt)(Y - Y2V02(:l1., y), 

. etc. '.' • 
From this all the interpolation formulae for a function of two· 
urguments may be derived. Thus the polynomial of the second 
degree, which at the places • 

(Xl' Yt) • (~, ?Js) • (X}' '!Is) 
(XI' '!It) (x2, ?Js) 
(Xs>JIt) 

• Cf •• K. Pearson. Trace, 10'1' Computars. No: IIr. (C'ambndge, 1920); 
completed (by the dIscussion of'some omltted cases) on pp. x el Stg. of the 
Introductlon to Tables of th' Incomplete Gamma FlII1IctlO'n, S. Narumi, T~ho! u. 

'. Math. J(1I4m. 18'(19~0), p.309. . 
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takes the values 

respectIvely, is 

'1n 
.'1)21 

'1)31 

j(x, 'II) :"1n + (~+ ~)(x-x) + (~+~)(Y-Y) 
~_~ ~_~ 1 ~_~ ~_~ 1 

+ ( '1)11 + '121 + ___ '1)31 __ ) 

,(Xl - .1:2)(X1 - X3) (.T2 - X1)(XS - X3) (X3 - X1)(Xa - X2) 
• (x - Xl) (X - X2) 

+ ( ___ ~11. __ + '1)12 + ___ ''1)21 __ 

~-~~-~ ~-~~-~ ~-~~-~ 

+ (.~)22(~))(X - Xl)(Y - '111) 
X2 Xl '112 '111 

+ ( '1)11 + '1)12 + ___ '1)1_3 __ ) 

~-~~-~ ~-~~-~ ~-~~-~ 
• ('II - '111)('11 - 7/2)' 

In particular, taking Xl = 7ft = 0, ;1;2 = '112 = 1, X3 = '113 = - 1, we 
have the formula 

I(x, y) =10,0 + tx(iI, 0 - 1-1,0) + ty(jo, 1 -10. -1) 
. + tx2(iI, 0- 210, 0 + 1-1,0) + xy(jo, 0 - 10,1'-1;,0 + iI, 1) 

+. ly2{fo, 1 - 210,0 + 10, -1), 

which is the best for generai uSy when x and '!J are posItive and 
less than t. 

Similarly we may determine * the polynomIal of degree m 
which at the t(m + 1)(m + 2) places • 

.. (Xl' 'Ill) (X2' 'Ill) . . . (x"", YIJ (.cm+1' 'Ill) 
(Xl' '112) (x!' '112) • • • (X"", 112) 

(fl' Ym+l) • 

takes the vlJ-Iues 
'1)1] '1)21'" 'l)ml 'l)m+l,1 

'1)12 '1)22'.' "1m2 

"1Lm+r 

• Cf 0 BIermann, Monatsllfjtejur Math 14 (1903), l' 211. 
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Consldenng now the case when the entries are given at 
equ~llntervals ~ of x and equai intervals 'rJ of y, and introducing 
the notation 

.lld=f(x+~, y) - fix, y), 
AJ = f(x, y + 'rJ), - f(x, y), 

A2t"! = f(x + g, !J + 'rJ) - f(x, y + 'rJ) - f(x +~, y) + fix, y), 
etc:, 

the above, generahsation of Newton's formula for unequal 
intervals becomes 

f(x+mg,y+n'rJ) 

) 
m(m - 1) • 

= f(x, y + mAd + nd,,/ + 2 A2td + mnA2t ,,/ 

n(n-1)A2 ; m(m-1)(m ~ 2)A3 f m(m-1) A3 f + 2 'I'/J + 2.3--- m. + -2--71, u~ 

mn(n -1) ~3 .f n(n -l)(n - 2) /l3f' 
+~- - 2 -:- t'I'/J + 2.3 'I'('W .... • , 

This, which may be regarded as the extension of the Gregory
Newton formula to functions of two arguments, is due to 
Lambert. * Symbolically it may be ,written , 

It is sometlmes practlcable and advantageous to reduce interpolation 
of functlons of two arguments to lmear lnterpolatlon t For example, 
If 'U(x, y) 18 tabulated for qthpary Vallles of x and y, the 'II, correspondmg 
to any Int~ra} values of x and y may, by a proper cholce of ongm, be 
reduced to the form 11( ± I, ± \), where ,t and s,. take one of the values . 
I' and 2. The valUE' of 'II, can be found by interpolatlOn along the hne 
of "alues of the form '11,( ± 5t, ± 5s). for example, '11,( - 1, 2) piay be
found by hnear interpolatIon along the'lme of -values '.' . u( - 5, 10), 
'11,(0, 0), '11,(5, - 10) .. 

Ex. 1.':'Complete the accompanying table on Ihe assumphon that thira
ordtrr dtfftrences are evtrrywhtrre ZtrrO, and expre.'<8 the tabulated function as a 
polynomtal in t'wo variables ' 

• Beytrage, Part III.' Cr:Lagrange, Nou'l1. Mim. de Bcrlm (1772), repnnted 
(EuvreB, S, p. 441.' . • .. 

t Elderton, B\Mndrika, 6 (1908), po 94; Spencer, J.I.A. 40, p. ,299, Bure 
and Brown, Element, of Fm!.te Dtifermces, §§ 148·154, 

I 
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x=O 1 i 2 1 3 
, .. j I 

,--. --1--:-

y=~I~~1_9_1_ 
1 2 3 I ;---;--1-1-
;-- I I 

[Answer, u= 3 +:.,- 2y + ",2_ xy + y2] 

Ex. 2 --The following table gnes the t~me (in hours, minutes,'and uconds) 
correspondtng to certam alt~tudes (a) of, the sun tn various decl~natwna (0). 
at ~ place tn a eertatn latitude 

.. =10' 14' IS' 22' 

------
8=20' 6" llm 26" 51, 50m 17' 5" 29m 27" , 5" 81n 48' 

15' 5 55 41 15 35 5 5 14 39 i 4 54 17 
~O' 5 40 16 15 19 56 4 59 3~ I: 39 17 
5' 5 24 50 ,5 4 30 4 44 23 ::l9 
0' 5 9 5. 1 4 48 29 4 27 39 4 6 28 

Find the ttme correspondtng to a= 16',0= 12'. 
. [Answer, 5h 15m 50-.] 

Ftnd also the time C0118spondmg to 0,=20\ 8= 14'. 
[1-nswer, 5h 1m 30'.] 

Ex 3.-The constructIOn of Isobars on meteo~ologlCa(charts essentially 
involves Inverse InterpolatIon wIth two ·argument. The ordmary con
structIOn assumes that, wlthm small Iniervals, the barometrIc pre.'U!ure IS 
a hnear functIOn of the co-ordInates of the place. A more accurate con
structIOn due to ThIele [Ttdsskr. C3l 4 (1873), p. 871 ",hleh 18 speCIally 
useful near maxIma and mlmma, IS th18 Three neJghb0l1rmg places of 

,observatIOn lire connected by hnes, and op. these ,the pomts 'aIe found 
where, accordIng to the ordInary' method, there would be a certam baTQ
metric pre..qsure u. The lme JOInmg any two of these pomts tUts the 
cIrcumscnbmg circle of the triangle in pomts whIch he on the lsohar 
belongIng to the pressure u 

Show tft-at Thiele's GonstruettOn may be dertved fro,m the assumptwn that 
the barometric pressure may be 8'cpressed by a funettOn of the form 

u=a + b.1' + cy + d('r2 + '1/2) 

182. The Numerical Comput~tion of Double Integrals.
It is easy to' construct formulae for the evaluation of double 
i~tegral§ on the same principle as the Newton-Cotes and Gauss 
formulae of single mtegration (§§ 76, 80). Thus when differences 
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of the fourth order (in the two ~ariabl~s combined) are neglected, 
we .have (by & dC;lUble applicati6n of Simpson's formula) r dy tj(X, y)'rJx = -h(b - a)(d - c) {'j(a, c) + j(a, d) t-/(b, c) 

+ j(b,~) +4tl(a, c~ d)+I\b, C~d) + l(a ~b, c) +le;~, d)] 

+ 16j(ti; b, c ~ d)}. 
This formula illdeed IS true even when some of the differences 
df orders 4 to 9 are not negiigible, e.g. AAB, A.,ZAy2, A.,3A;, 
A 2A a A aA 1I A SA S • 
Liz u y , Llz u y , U z --U . • 
. When differences of the sixth order are neglected, we have 

Burnside's formula,·. • • 

fl fl j(x,'y)dxdy= !~{j(J 1~' 9)+1(0, ~ ~) 

+j( -J Z5' O)+j(O, -J l~)}-I' :9{I(J~,J~) 
+ j(J~, -J~ + j(.- J~, J~) + j( -J~, -J~)}-

:r'his 'i~ exac~ so long, as 1 (x, y) is a poiynomial ~f degree not 
exce'eding 5. 

A formula slIuilar to Blfrnside's may be obtamed by a double applIca
tion of Gauss's three-teJ:lU (fifth-<hfference) formula. This also is valid 
even when many of the higher differences are. not negligible. 

It IS often advantageous to break up the field of the double integration 
mto sectlOn~, and apply a formula to each sectIon separately. 

For other Jorn\ulae cf. W. F. Sheppard, 'Proc. Lond. Math. Soc. 31 
(1899), p. 486 j 32 (i900), p .. 272; A. C Aitken and G. L. Frewm, P/Oc 
EllUl. Math. Soc. 42 (1923·4) • 

.'I 1111 dxdy 
.AX. l.-;-Shoto that the value of 0 0 J(3 _ ~2 _ 1/2) computed /;y 

BnrnnUs formula, is 0 6641. 
[The true value is 0·6638 ,to 4 digits.] 

.' 1111 dxdy 
Ex. 2.-S~o,~. that the value of 0 0 -:)(2 _ xl _ y2) • computed by 

Burnside's form Ida, is 0·9262. • 
[The true value is 0·9202 to 4 digits.] 

• Mess •• of Malhs. (2) 3'1 (1908), po 166. 
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183. The Numerical Soluti~n of Integral Equations.
I.n recent years Integral EquatlOns have proved to be of great 
importance in ApplIed Mathematics; thus It. was by the 
numencal solution of an integral equation that Knott was 
enabled m 1919 * to deduce the forms of the seistnic rays m 
the earth's interior by a ngorous mathematical method from 
the observatIOnal data of earthquakes. 

Some types of integral equation whlCh occur in Applied 
MathematlCs are as follows: 

(1.) Abel's Origmal E'luatwn.-This is 

; </>(s)ds 
Jo (x - s)P =,t(x) , (0 <p< 1,f(0) = 9) (1) 

where </>(x) is the unknown function whicn IS to.be determined, 
and j(x) is a given function. The solution oj this equatwn, which 
was given by Abel himself,t 'is 

1 !co ,t"(s)ds </>(x) = - sm p7l' . 
r. 0 (x - S)1 P 

(2) 

Whenj(x) is given, the values off(s) and of thls integral may 
be obtained without 'difficulty by the ordmary processes of 
interpolation and numerical integJ:ation. . 

(iI.) Integral Equatwns oj Abel's Typc.-These, whIch may 
be regarded as a generalisation of (1); are of the form 

[ </>(s) " (x - s)ds = f(x), (3) 

where ,,(x) is a given function called the nuclcus,j(x) IS also a 
given function, and </>(x) is the unknown functIOn whICh IS to be 
determined We need only consider the case when the nucleus 

• Proc. R.S E 39 (1919), p. 15i. It was H. Bateman, Plul. Mag. (6), 19 
(1910), p 5i6, who discovered the mtegral equation. 

t (Euv.es (ed. 1881), p 11 (1823) and p. 97 (1826) The fundamental 
meamng of Abel's result IS most clearly scen If the mtegrals "hlCil occur m It 
are mterpreted as in the theory of generalised differentiation; if "'(.e) IS "lItteo 
for 1'(1-p)</>(x), Abel's formula reduces to the slmple statement ~hat If 

(d)P-' dZ ",(x)=j'(x), 

then (d)-P . ",(x)= dZ f (x). 
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K(X) becomes mfinite ali x = 0, for in the siIDpler ckse, wheu 
the nucleus is finite at w = 0, the equation can be reduced 
immediately' (by differentiating it) to Poisson's type (iii.) anp 
dealt with by the methods appropriate to that type. We may 
then sl'lppose K(X) to be such that wt'K(X) is finite and not zero 
at x""' 0, where p lies between 0 and 1, and for the purposes of 

• numerical integratIon we can represent it, by the methods 
.of Chapters I.-II!., 'with as gre~t a degree of accuracy as may 
be desired,_ by an analytical expression of the form 

K(X) = X-1'(ao + a1w + a.p;2 + ... + a1Oxn). 

Then * the solution oj the integral equatMn (3) M 

sinP1l'1'" cp(x) = -- f'(s)L(w - s)ds, 
11' 0 

whe1'e 
. _ wp - 1 a 1O - p p1o-p v"-p 

;L(x) - -a-;;- + lna) /,p(ax) + F'(f3) /,p(f3x) + ... + l"(v) /,p(vX), 

and wh~I'e a,'f3, ... , II are the roots oj the algebraic equatMn 

F(x):=o(r + (1- p)alxn~l+ {1- p)(2 - p)aaXn - 2 + . .. 
oj! (1- p)(2 - p) ... (n- p)a" = 0, 

and where /'p(x) denotes the Incomplete Gamma FunctMn 

/' (x) = eX t sP-1e-'ds. 
p JD 

This may be regarded as a direct extension' of Abel's origmal 
formula (2), which.may be derived from It by taking n = O. It 
expresses the solution of the integral equation in a fi1l1te form 
in terms of the Incomplete Gamma. FunctIon, of which tables 
have been published.t . 

(iii.) Integ,al Equations oj POtSson's Type.-These are of tpe 
form 

(4) 

where ,,(x) and j{x} are given functions, and cp(x) is the unknown 
function 'which is to be determined. Several different methods 
foJ, the numerical integration of this equation are given in 

• WhIttaker, Proc. R.S. 94 (1918), P. 367. 
l' K. Pearson, Tabl .. of th, lncomplete Galllma Functwn (1922) 
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Wh1ttaker's memOIr of 1918,* and have been applIed to the 
solution of certain problems in viscous fluid motlOn by Haveloc~. t 
We shall here inmcate the most useful of them. . 

Smce the nucleus K(X) 1S sllpposed to be spec1fied by a table 
of numencal values over the range of values of x considered, 
we may apply Prony's method of mterpola~ion by exponentials 
in order to represent it. analytically m the form of a sum o~. 

p. exponent1als • 
K(X) = Pel"" + Qeq", + ... + VelIZ, (5) 

where (P, Q, ... , V, p, q, .. " v) are constants whlCh are 
chosen so as to give the closest posslble representation of the 
given numerical values. Taking then this form (5) for the 
nucleus K(X), we shall show that the. integral equation (4) may. 

-be sat1sfied by a solutlOn of the form 

cp(X) =f(x) - [It(x - slf(s)ds, (6) 

where the solving function K(x) is also, a sum of p. exponentIals, 
say 

K(x) = Ae~+BeJI"'+ Ce'Y"+. (7) 

To prove this we remark first that certain eX1stence-theorems 
established by-Volterra justify us in assummg for the solution 
the form (6), where K(x) is now the function to be determined. 
In (6) put K(X) for.f(x): thus 

cp(x) = K(X) - [K(x - s}K(s)ds, 

which gives the valu~ of cp(x) corresponding to thlS va1ue 
ofJ(x) . 

. Putting (x - s) for s in the integral, we have 

cp(x) = K(X) - [K(S)K{X":' s)ds. 

Comparing this with the integral equation (4), after replacing 
J(x) by K(X) in the latter, we have 

cp(x) = K(x), 

fLoc, cu. 
t Phtl. }.[ag 42 (1921), pp 620, 628, 
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and therefore the pair of fqnctions 

.p(x) = K(x), I(x) = K(X) 

satisfy the integral e~uation, t?~t is to.say, 

K(x) + [K(S)K(X - s)ds= K~X). (8) 

In this equatIon substitute the value (5) for K(Z) and the 
·value (7) for' K(x). Thus we have 

Aed + Bel'''' + CeY-" +. . . + N e .... 

+ [{Ae""+Be/!B+Ce'Y'+' . . +Ne"} 

, {PeP"'-P' + Qeqx - qB +. ',:+ V &",,-V'}ds 
= PeP'" + Qeq21 +. . . + VeV;. 

Equating coeffioients of eare on the two sides of the equation; 
we' have 

P Q V ' 
-- + --+, '.' + - + 1 = 0, a-p u-q a-V 

and similar!), equating co.efficients of ellre 

;P Q V a--- + r.r-- +. . . + r.r-- + 1 = 0, ,...-p ,...-q ,,...-V 

and' 80 on; and therefore a, {3, "'/, ••. , v are the . roots of the 
algebraio equation in x, 

P Q V --+ --+ ... + --+ 1 = o. x-p x-q . x-v 
(9) 

• , ThIs enables us to determine a, {3, "'/, • • , • 
Next, equating coefficients of eFX on the two sides of the 

e~u!J,tion, we have . " ~ " 

~'+ -~ + .. '+~+l=Ol a-p {3-p v-p 
SiJhilarlX 

A 'n '. N 
--+-'--+. , . .+--+1=0 . .(10) 
a-q {3-q, ~ v-q 

~"t~+ .+ 'N +'l=~j 
• a-V' {3-v ,. v-v 
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SInce (a, f3, y, ... , v) and (p, q, r, •.. , v) are known, tlic!oIe 
equatIOns (10)' eQ.able us to determine A, TI, ... , N; and we 
see t}lat If the constants (a, f3, y, .. " I') and (A, B, ... , N) 

. are determIned by equations (9) and (10), the equatIOn (8) IS. 

satIsfied by the value (7) of K(x) . 
The value of K(,~) may be obtained In a more expliCIt form 

in the f<;dlowmg manner. If we ehminate A, TI, ... , N 
determinantally from the equations (7) and (10), we have 

K(x)! 1 1 1 
1 

1 1 
. !a-p f3-p 

= - eoZ 
.f3 -p v-P P-p 

1 1 1 
1 

1 1 
a-q f3-q v-q f3-q v-q 

1 1 1 
1 

1 1 
\a-v 73" f3-v -v v- V v-v 

- ell'" 1 1, 1 -. 
a-p v-p 
1 

1 
1 

a-q v'-q 

1 
1 

1 
a-~ v-v 

The determinants whiCh occur In this equatIOn are of the 
kind known as alternants, and may be factorised by known 
methods. * Performing the factorIsatlOn, we have 

• 
K(x)=_(a- p )(a- q)(a-1') (a-v)c"'" 

(a- f3)(a-y) (a- v) 
(f3-p)(f3-q) .. (f3-v), Il"" (v-p)(V-q)(V-1) .. (v-v) "" 

-'(f3~a)(f3-y) ... (f3-v)e ... - (v-a)(v-f3) .•. (v-JL) e,' 

Combimng our results, we have the following theorem I 
The solution of the integral equation , . 

.p(x) + fa .p(s}K(x ~ s)ds:: f(x) , 

where the nUcleus I«x) is supposed to be gwen numerically and . \ 
* The evaluation of alternants of thiS type IS due to Caucby, E.t:trclCe, 

d'analyse, 2 (1841), p. 151. ' 
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to have been expressed approximateiy by P1:ony's method il~ tILe . . 
fofm . 

K(x5 == PeP:r + Qeq:r +. . . + VeWJ, • 

is </>(x) =f(x) - [K(xl..sV(s)d8, 

where •. 

K(x) "" _ (a-p)(a-q) ... (a-v\"",_ (f3-p)(f3-q) .,. (f3~v)efl'"'-
(a-f3)(a-y) .•• (a-v) «(3-a)(f3-y) ... (f3-v) 

_ (v-p)(v-q~~-v)e""" 
(v-a}(v-f3) ... (V-ft) , 

and where a, p, y, •• ., v are the 1'OOts of the algebraic equation 
in x, 

P Q R' V 
.-' + - + ---;-- + ... + --+ 1 = O. 
x-p xrq x-r f-v 

The solution of the integral equation. is thus obtained in a 
. finite form which admits of computation. 

See also Prasad, Proc. Edin. Math. Soc. 42 (1924) 4~. 

(IV.) Integral Equati07Ul oJ Fredholm'8 and H,lbert'8 Type.-The 
numerical solution of'integral equations of the. type 

q,(x) - A r.\(x, 8)q,(8)d8 = I(x), 
I J; 

where K(X, 8) and I(x) are given functions. A is a. consknt, and </>(x) is the 
unknown function, has been discussed by Bateman,' Proc. R.S. 100 
(1921), p. 441, who gives references to the hterature of the question. 
See ~1so F. Trioomi, Lincei Rend. 331 (1924), p. 483, 332 (1924), p. ~6, and 
NystrOm. Acta. Math. 54 (1930) 185. 

[CopieB 01 the Computation Sheet8 lacing pageB 270 and 278 may be 
obtained direct Jrom the Publz8her8 in quanti'lieB oJ not leB8 than one dozen, 
at the price oJ 28. 6d. per dozen.set8. Special terms will be quoted for order8 
oJ one thousand and upward8.) • 



ANSWERS TO EXAl\IPLES 

CHAPTER I 

Page. Ellample. 

16 
a x' 3aw - 2f3 xa aw2- 2{3w + 2y 2 f3w2 - 3yw + 68 . 

3. 4w - 6w +. . 4w x + 6uo x 
• 

4. (a p - = -1 . (1) f pI 
) ll, 'II ( n(!,- + 1) ... (II +p) 

( nw)p ( 'hPw P7r) (b) ll,P cos nx= 2 sm:i' cos nX+ 2 +"2' . 
5. 3:>;(x'- l)(x - 2) + 10x(x - 1) + 5x + 1. 
6. 6. 
7.- _a,3._ 3a,2- 5x+ 1. 
8. ·0'776737,4947. 

11. 0.781072,8886. 
12. 0'414213,562374. 
13. 875'311046,687.' 
14 f(1-25) = 0-208459, itl'75) = 0·227977. 
-15. (a) 0'433178,483028,782. • 

(b) 0'433265,874297,833. 
16. 9'648611,469336,24. 
17. 0 861232, n. . 

CHAPTER II. 

+const 

33 1. f(a, b) = - (a + b)/a2b2 : ita, b, t) = (ab + be + ca)/a2b3c1 : 

• ita, b, c, d) = - (abc + abd + acd + bc(/)/a2b2c2d2. 
3. /(3)= 18, ./t14)=2548. 
4. (a) xa + x. tb) xl. 
II. 681472. 
6. 130326. 
7. f(9) =.810: /(6,,5)= 316875. 
8. (6) x' + 5. (7) xl + xli. 

3S3 
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Page. -Example. 
CHAPTER III 

51 1. 0'433.702,769524,48., 
2. 7671672,8960. 
3. 0'433265,874297,832. 
4. 3'528273,8. 

CHAPTER IV 

68 'I. 2602060,0. 2'607455,1. 
2'603144,4. 2608526,1. 
2604226,1. 2'609594,4. 
2'605305,1. 2'610660,2. 
2'606381,4. • 2'611723,3. 

3. 8387 
4. (a) 88294. (b) 84640. 
6. h=886,p=24·5I. 
7 p = 14·23, (;/ = 100··1)6. 
8. 1 213411,6. 
9 (a) 0'003333,333333. (b) 0'003311,256276. 

10 - 0001978,867. 
11. - 0·001986. 
la 5470524.147852. 2664: 2~ 

CHAPTER V 

76 1. (a) O. (/1) 121 (y) 7/45. 
3. (a) - 19/720 (/3) 278. (y) - t 7.65• 

5. (a) x=P, y=3q, z=~(p+3q), w=!(P-3q). 
(/3) :1'1= ':"5, x2 =3/4, :1'3=1, ;)'4= --2, x6 =6. 

CHAPTER VI 

83 2. 0'67239. 
3.' 0·25863, 

86 2. 4·0644. 
91 2. 067239. 
98 4·861 
99 2. 0'120614,8a 

106 L 486080& 
112 . 3. - 5, - 3, - 2. 

4. -6, -4, -2 
115 2. 2 ± 1·732..r=I, 3'236, -1·236. 
1 ~8 2. 5·994. 
120 2. 31415926. 
123 1. 0·196601. 

2. 0'5366. 
126 2.. X=r 1·893. 



ANSWE)."..s TO. E4AMP~S • 
. . 

Page. J:xample. , 
• ' : MiBc81~atl8oU8 • Ezamplu-

laO 1.':1:= Hi29. • 
• 2. (a) :t-=8 46 .• (/J):I:= 1-19967864. 

3. 4·546. " . • 
4. 1'922884,15.' 
5, 9·886. " 
7. z= 158: " • 
8. (a) - 1,95, 1'.70, 0·76. 

(,8) - .2·93~ 0'46, 1-474. 
9.- .• T' 32·74: . 

10. 1,381966, 3·6180a-r. 
11. 11:= 7° I~' .23". . \ 

137" 3. 

• CuA.PTER VII 

0.00452,.49175. . 
'1,128,114,577,800. 
0.182321,56. 

145 $. 
4. 

150 2. 0.0102512. 
152 2. 0·7853996 (Weddl~). 

Niscellanl101Pl ExampleB-

162 4. - 0.064724,.2. 

1110 .. 

194 

. 
'207-

5. '2,582,129,'161. . . ' 

2 .. 
3-
1 . 
. 2: 

I. 
2. 

CHAPTEJ!, VIII 

11=)2875,0'=5'08, 
({=;a 06. 
0'=508, 
<£=17°.894,0'=2094. . . 

, . 
Mucellaneou. Examples-

, .. 
a = 39'838, 0' = 2-62. 
a ~ 62·50f.! in.,oa = 2·35 •. 

CBAPTER'IX 

+ • 
214"' 2. x=0·9997,y=2001Q. 

a.. .~= 33351 + 0 52U'. 

~:} ... ~=: 13'1,11='19:2, 11= 37'5, u= 2P'O, 91==,197. 
2. ' . 

234 
• 236 

239 
(D 311) 

385 

.26a 
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Page 284 

I (0) (I) 

------
Ex I (a)i 6292 -8809 

(b) 17 88 

E'\!) '11188 -50.41 
(b) 9 28 

Ex.-3 
(a) 7079 -6816 

.(b) 1226 
Ex 4 

(,,) 11825 250.4 
(b) ! 5883 

Page. Example 
333 ' 2. 

3. 

(2) (3) 

----

-1550 -51& 
389 247 

-3629 -1218 
661 -751 

1855 048 
-857 -218 

2277 ~1 87 
-3279 716

1 

r=O 25. 
r=O 75. 

CHAPTER X 

(4) (5) M (7) (8) (") (10) \ (11) 

-- ---- - -r --- - ---
I 

-1046 1,4 -on -100 221 165 442 1 -089 
-498 -082 688 -~qo HI~ 180 0. 94 1-210. 

-696 -0 ~2 -o.o.S .... 885 -163 0. 18 0.88 -0.28 
-80.1 -119 -20.8 -458 898 03' I f..OI 099 

290\ -064 -1558 -216 ~I 0.0. '146 -) 17 f.08 
-491 -995 425 :-619 -101 965 0.82

1 
078 

.. -Ii 88 -0. 70. -IRS 558 -0. 68 570 8 >7, - 226 
108 -640. -0.50. -182 -n8 250. -0.47, 3 5~ I , , 

CHAPTER XII 

(I!)I 

-
108 

0. 25 

071 

i ~5 
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GauBB' formulae oClIltol polatIc.n, 36, 46 

" _ ba(k 
\I ard, 3i 

for IIltegratIon, 159 
for IIlterpolatIOn (til' 

gonollletrlC), 283 
I, method of solutIon of nomlal 

equations, 234 
postulate oC the arIthmetic 

nlean, 215, 217 
TIUJIJMa Combuw{""u.s I'roof 

oC the Method of the Least 
Sq oares, 224 , 

Tluona MotuB proof of tlte 
notmallaw, 218 

Gauss and SeIdel's solvll1g process, 255 
Genre of entire functIons, 119 

• GraduatIon, 285 
.. AItken's development of 

... 
WhIttaker's method, 
308 

formula., HIgham's, 289 
• II Rhodes's, 316 

Sheppard's,291, 300 
Spencer's, 290 
,WhIttaker's, 303 

.. .. Woolhouse's, 286 
Graeffe's metllO,d of solvmg equatIOns, 

106 
Gregory's formula ofintegratton, 143 
Gregory.Ne\lton (ormula, 10 

~ ,-, "genetahsed 
to t"o arglltnents, 
373 

Hardy's formula for lIltegratlOll, 151 
Hermite's formula for tngonometne 

interpolatton, 283 
.. functIOns, 174 

Hubert's integral equation,' 381 
Horner's method, 100 

and dIVide,! dIffer. 
ences, 104 

Incomplete data for normaI'curve, 196 
. Gamma Function, 3i7 
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,Indirect observatIons, Gauss' Tlw>rz(1, 
Motus dISCussIon, 223 

• 10 fiUlte &erIes, roots of, 118 
Integral eqnatlOns, 376 
Integrals, double, computatIon of, 314 
Integration, numerIcal, 132 
Interlaced parabolas, gladnatlon fOl. 

mula, 300 
InterpolatIon by eXl'onentIale, 36g' 

f, 

by sme serle.'!, 263 
mversc, 60 
trIgonometr}c, 263 
trIgonometrIc, for un· 

equal intervale, 282 
InterpolatIon formula 

for functIOns of two arguments, 371 
for qlllnquenmal sums, 57' 
Gregory.Newton, 10, 26 

Lagran;'s, 28 
backwllrd, 36~ 

... remainder term m, 32 
Laplace-~verett, 40, 46 
Newton, for unequalllltervals, 24 
New~n·Bessel, 39,'47 
Newton-GauSS; 36, 46 

.. backward, 37 
Newton-Stlrhng, 38, 43, 46 

Interpolatory functIOns, 20 
Inverse lllterpolatlOn, bO 
iteratIOn, 79 ' 

Jaco~I's theorem m Least Squ~251 

Kmg's formula for qumquenmal 8Ums, 
~7 ' 

~ Lagrange's interpolation formula, 28 
" It remalD-

der term In, 32 
, Laplace-Everett formula, 40, 46 

Laplace's 'pypotheeis on frequency 
• dIstrIbutions, 167 
'" proof of Method of Least 

Squares, 224 • 
Least Squares, Method of, 209':'259 
Legend...., polynomIal, i 4 [20' 
Legendre's prlllclple pf Least Squares, 

-LInear equatIons, solution of, 75, 231, 
2M, 236, 239 • 

functIon of deVIations, prob
abIlIty of, 168 

function of unknQwns, weight 
-of, 242 

Lobaohevsky's method' of solvlDg 
~quations, 106 

Lozenge d18gram, 43 
Lubbock'. formula for summatIOn, 149, 

Mayer's metnod, :;lug' 
Mean absolute deVIatIon, 184 

contmgency, 338 
error, 183, 184 

" of a determinatIon, 243 
.. of observatIOns, weight of, 222 

Meallllo allowance for, m Founer 
analYSIS, 279 

connected WIth normal dl~. 
tnljutIons, 182 

lIeduw, 188 
" probable error of, 197 

Method of equal coeffiuents; 236 
of Least Squares, '209·259 

alternatives 
to, 258 

Mmimum approXImatIOn method, 259 
Modulus, 80 

of precIsIon, 175, 179 
'" accuracy of deter. 

mination, 199 
J.loments, computatIOn by summstlon, 

191 
MultIple normal correlatIon, ~40 

Newton's fonnula for unequal intervals, 
• 24 

. - ", 

Newton-Bessel 
39,47 

fpr unequal interva1s, 
gerteralised to two 
arguments, 3il 

interpolatIon. formula, 

Newton-Cotes formulae of llltegratlOU, 
152 

Newton.Gauss mterpolatlon formula, 
36, 46 

Newton-Gauss mterpolatlon formllla, 
backward, 37 

Newton-Gregory mterpolatlon formul", 
10,26 •• 

Newton -Gregory interpolatIOn (ormnla, 
backward, 365 

Newton-Raphson method, 84, 90 
N ewtoll-Sttrhng Interpolation formula, 

38, 43, 46 
Nomography, 128 
Normal curve with Incomplete data,196 

.. equatIons, 211, 224 
so~utton of, 231, 

234, 236, 239 
frequency distrIbutioBs, 164-. 

208 
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NOIma1 lall, Gauss' TlwoTla .1[0IU8 
plOof of, 218 

non.ulllversahty of, 177 ' 
of' frequency for two 

vanables, 321 
" of fLequency for two 

varIables, determlna· 
tlon of constants, 324, 

Nucleus of aU mtegl8,1 equation, 376 

Operators, symboltc, 4 

l?ataboho rule for integra~ion, 156 
Palabohc.cyhnder fuuc1;l.0ns, 174 
Palametels .connected wIth a nonnal 

dlstnbutton, 183, 186 
Perl6d, adjustment to, IiI a Feuner 

analysIs, 278 
Peliodicitles, Bealch for, 343·362 
PerIodIcIty, clltrelatton' as Ii tetlt for, 

345 
Pel\odogram, 346 

" equatIOn of, 348 
" Schuster's, 36! 

Petels' formulae for probable enol' of 
I'uthmetlc mean, 206 

PIVOtal element. 71 
POIsson's integral equattous. 377 
Polynomlat, dIfferences of. 5 
Polynomials of Betnoulh, 141 
POSltlOu, :Rule of False. 92 
Postulate "Of the arIthmetic ;mean. 215, 

217 
POlleIS, sums of, 137., 294 
PleClslOn,.measure of, '245 

'" modulus of, 175. 179 
PlObablhty, con1uuctlve, 317 
PlObable 81~br, 184 ' 

". 

determmatlon of, from 
I'eslduals, 204 

of the arIthmetIC mean. 
196, 206 

of foul\er coefficIents, 
280 

of the medIan, i97 
" <If standard deVIatIOn 

and modulus of pre. 
clSlon, 201 ' 

value of constant differences 
, o{ data, 297 • 

Plouy's method of interpolation by 
e~ponentlals, 369 

Quallr .. tlc, nomogram for, 128 
•• form, reductIon of, 235-

mean deVIatIOn, 183 

. QuadratIc DleaU e1 lOr of a dctcrullua 
bon, 245 

Quartile, 184 
,; probable error 01. 20a 

Quincunx, Galton's, 16i 

Repeated roots of an equattou. 11 i 
ReproductIve property of normal law, 

li5 
'ResIduals. 234 

determlUatlOn of probable 
error flom. 20~ 

" sum of squales, 246 
Root.mean.squale cOllttngency, 338 
Root - squanng method of soh 11l!; 

equations. 106 
Root· squa11ug n .. thod of .,,1 illig 

equatIOn •• compared \\lth BClllulllh's 
method, 112 

Roots. squaro. 79 
Ruffint-Horner method, ioo, 

.. BUll diVIded 
dlllelenc.s, 104 

Rule of False PosItion, 92, 

Schuster's llenodogram. 346, 361 
Secular change. m FOlJrlCr an .... y .... 

279 
SeIdel's Sruvl1Jg 1'loce"", :,l;'!} 
Semin va11an ts. 1 it 
Senes, 1i>rmula ti" loot 01 an c'l"atlOn, 

120 
Founer, 263 
roots of, 118 
summation of slowly.comor 

gent. 368 
Sheppard's correctIOns. 194 

.. graduation fOllnulae, '291 
ShoveItoil's fOI mula for lutegratlOn, 

151 ' 
SImpson's formula. 156, 157 

" "double, 375 
SImultaneous equations. 88, 90 
Skew f,e'1uency dlSmbutlOns, \i3 
~lowly,coll\ergent serIes. 8ummatlOII 

of, 368 
Smoothmg of dB .. , 285 
Smoothness, e"pre~lOn or, 'JD5 
Solvmg process of Gauss ;llld St'.J..l, 

255 
Spencer's gradllatlOn furmula, 20 0 
Square roots, i 9 
Standard deVIation; 183 

• accuracy of detC!_ 
mtnatlOn of, 19 
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Staudald devm~ion for attllbutes taken 
, .l\Igly, 327 

of sum, etc., of two 
measures, 328 

Stlrlmg's approxImatIOn to the fae'· 
• tOllal, 138 

.mtcrpolation fonnula, 38, 43, 
46 • 

" method for 810wly.conver-
gent .erICs, 36S 

SubtalmlatlOn, 53 . 
Sum of s'luares of re&lduaIQ, 246 
SUDlPlatlOn, 191 

by n's, 287, 288 
by parta, 52 

,I fonnulae of gladuation, 288 
nutnencal, 132, 136, 149 
of .lowly.convergent senes, 

368 
S>;mmetllc balycenhe. 249 

Tlteorta ,l/i)/II'; Gauss', 215, 224 
Tillea . eighths nile for mtegratlOn, 

157 
Transcendental equations, 78 
Transfonnahons prelimioory to mter· 

polation, 50. . ' 
Trapezoidal rule for iutegratlon, 156 
Tngonometric interpolatIOn, 263 
Tmection method of solving cubiC, 

121 

T\\elve.ordmate scheme tor Founer 
analy.lS, 267 

Twenty·four ordlllate scheme for 
FourIer analysIS, 273 

Unequal intervals, tI igonometilC mter. 
polatlOn for, 282 

Unknowns connected by UgOl 0118 equa-
tIOns, 252 . 

Weher.FechnerpsychophyslCal law, 217 
Weddle's formula feir integIat.on, 151 
Weight of a linear fnnctIon, 222, 226 

of a hnear functIOl\ 01· the Ull· 

knowns, 242 
of .. n pbservat'lOIl, 220, ~2-1, 

225,228 
" of the unknowns, 239 

Whlttaker's formula for root of a SClles 
120 

graduahon method, 303 
nomogram for quadratic, 

128 
solutIons of integral e'lua-

tions, 377 • 
'Voolhou.e's formula for mtegratIoll', 

1'158, 
fonnula of graduatlO,n,' 

286, 28'9 

Zero, dllferences of, 6 
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