ENGINEERING AND DESIGN REPORT

B-18 CLASSI LANDFILL PHASE III EXPANSION AND FINAL CLOSURE

KETTLEMAN HILLS FACILITY

 KETTLEMAN CITY, CAIIFORNIA

Golder Associates Inc.

ENGINEERING AND DESIGN REPORT
 LANDFILL UNIT B-18
 KETTLEMAN HILLS FACILITY

 KETTLEMAN CITY, CALIFORNIA

 KETTLEMAN CITY, CALIFORNIA}

Prepared for:

Chemical Waste Management, Inc.
Kettleman Hills Facility
35251 Old Skyline Road
Kettleman City, California 93239

Prepared by:

Golder Associates Inc. 230 Commerce, Suite 200 Irvine, California 92602

Distribution:

10 copies - Chemical Waste Management, Inc.
2 copies - Golder Associates Inc.

TABLE OF CONTENTS

SECTION1.0 INTRODUCTION 1
1.1 Purpose of Report and Background Information 1
1.2 Landfill B-18 Design 1
1.3 Report Organization 3
2.0 SITE DESCRIPTION 5
2.1 General 5
2.2 Current Site Layout and Conditions. 5
2.3 Pre-Development Site Conditions 6
2.4 Geologic Conditions 6
2.5 Design Ground Motions 7
2.5.1 General 7
2.5.2 Ground Motions Used in the Original Design 7
2.5.3 Ground Motions Used in the Current Design 7
2.6 Hydrogeology 8
3.0 GEOTECHNICAL INVESTIGATIONS 9
3.1 General 9
3.2 Field Investigations 9
3.2.1 Geotechnical Exploration Program 9
3.2.2 Clay Liner Test Pads 11
3.3 Site Subsurface Conditions 11
3.3.1 Surficial Soils 11
3.3.2 Bedrock Lithology, Structure, and Stratigraphy 12
3.4 Laboratory Investigations 13
3.4.1 Sample and Testing Selection Process 13
3.4.2 Prior (Pre-1990) Geotechnical Data 14
3.4.3 Laboratory Testing for Landfill Design 14
3.4.4 Special Testing of the Phases I and II Clay Borrow Material 15
3.5 Laboratory Testing Results 16
3.5.1 General 16
3.5.2 Index Property Tests. 16
3.5.3 Compaction Tests 17
3.5.4 Strength Tests on Relatively Undisturbed Samples 18
3.5.5 Strength Tests on Remolded Samples 19
3.5.6 Permeability Tests 19
3.5.7 Consolidation Tests 20
3.5.8 Shrink/Swell Potential Tests 20
3.5.9 Geochemical Tests 20
3.6 Method 9090 (Liner/Leachate Compatibility Testing 21
4.0 LANDFILL B-18 DESCRIPTION 23
4.1 General 23
4.2 Phase I 26

TABLE OF CONTENTS (continued)

SECTION
PAGE

4.3 Phase II
 28

4.4 Phase III 29
4.5 Final Closure 30
4.6 Clay Borrow Operations 32
4.6.1 Phases I and II 32
4.6.2 Phase III 33
4.7 Liner Systems 33
4.7.1 General 33
4.7.2 Liner System Configurations 34
4.7.2.1 Base Liner 34
4.7.2.2 Vadose Zone Trench 36
4.7.2.3 Phases I and II Sideslope Liner 36
4.7.2.4 Phase III Sideslope Liner 37
4.7.2.5 Base to Sideslope Liner Transition 38
4.7.2.6 Final Cover Liner 38
4.7.3 Special Liner Details 38
4.7.3.1 Sideslope Liner Anchor Trenches... 38
4.7.3.2 Temporary Phase I/II Transition Anchors 39
4.7.3.3 Phases I and II Access Ramp Liner 40
4.8 Leachate Collection and Recovery System (LCRS) 40
4.8.1 General 40
4.8.2 Primary LCRS 42
4.8.3 Secondary LCRS 43
4.8.4 Vadose Zone Collection System 44
4.8.5 Leachate Storage 45
4.9 Surface Water Control 45
4.9.1 Off-site Diversion of Run-On. 46
4.9.2 Active Area Run-Off Control for Phase I Operations 47
4.9.3 Phase I Direct Rainfall Control 48
4.9.4 Active Area Run-Off Control for Phase II Operations 48
4.9.5 Phase II Direct Rainfall Control 49
4.9.6 Run-Off Control During the Above Grade Filling Period. 49
4.9.7 Phase III Direct Rainfall Control. 50
4.9.8 Run-Off Control at Closure 50
4.10 Utilities 50
5.0 ENGINEERING ANALYSES 51
5.1 General 51
5.2 Settlement Analyses 51
5.2.1 Conditions Evaluated 51
5.2.2 Foundation Settlement 51
5.2.3 Degree of Consolidation of Clay Liners 52
5.2.4 Magnitude of Clay Liner Consolidation. 52
5.2.5 Post-Closure Waste Settlement 53

TABLE OF CONTENTS (continued)

SECTION
5.3 Stability Analyses 54
5.3.1 General 54
5.3.2 Temporary Rock Cut Slopes 55
5.3.3 Compacted Fill Slopes 56
5.3.4 Temporary Phase I Intermediate Fill Slopes 56
5.3.5 Temporary Phase IIIA Intermediate Fill Slope 57
5.3.6 Final Closure Conditions 58
5.4 Cover Soil Erosion 60
5.5 Surface Water Drainage 60
5.5.1 General 60
5.5.2 Phases I and II Run-On Control 62
5.5.3 Phases I and II Run-Off Control 62
5.5.4 Phase III Run-on Control 62
5.5.5 Phase III Run-Off Control 63
5.5.6 Closure Drainage 64
5.6 Leachate Collection and Removal 64
5.7 Riser Pipe Designs. 65
5.8 Cover Infiltration 66
5.9 Frost and Biotic Protection 67
6.0 REFERENCES 68

LIST OF TABLES

Table 3.1 Key Boring Information

Table 3.2
Table 3.3
Table 3.4
Table 3.5
Table 3.6
Table 3.7
Table 3.8
Table $3.9 \quad$ Compaction Test Results (Modified Proctor)
Table 3.10 Summary of Permeability Tests
Table 3.11 Summary of Swell Test Results (Undisturbed Samples)
Table 3.12 Summary of Swell Test Results (Remolded Samples)
Table 3.13 Summary of Clay Source Evaluation - Pecten Claystone
Table 5.1 Material and Interface Properties Used for Stability Calculations
Table 5.2 Summary of Slope Stability Analyses
Table 5.3 Perimeter Run-On Diversion Ditch Flow and Capacity Summary
Table $5.4 \quad$ Active Road Run-Off Control Summary
Table 5.5 Summary of Containment Basin Capacities
Table 5.6 Final Closure Run-Off Control Summary

LIST OF FIGURES

Figure 1.1 Site Vicinity Map
Figure 2.1 Landfill B-18 Pre-Development Topography
Figure 2.2 Area Geologic Map
Figure 2.3 Site Geologic Map
Figure 3.1 Site Geologic and Exploration Map
Figure $3.2 \quad$ Geologic Cross Sections
Figure 3.3 Plasticity Chart, Stratigraphic Unit 18-8
Figure 3.4 Grain Size Curve Envelopes
Figure 3.5 Material Water Content vs. Plasticity Index, Stratum 18-8
Figure 3.6 Summary of Direct Shear Test Results
Figure 5.1 Stability Considerations for Rock Cut Slopes
Figure 5.2 Stability Considerations for Phase I Intermediate Fill Slope
Figure 5.3 Potential Sliding Mechanisms for Phase IIIA Intermediate Fill Slope and Final Closure
Figure 5.4 Surface Water Drainage Area Map for Phases I and II
Figure 5.5 Surface Water Drainage Area Map for Phase III and Closure

LIST OF APPENDICES

Appendix A Construction Drawings
A. 1 Phase I and II
A. 2 Phase III
Appendix B Boring Logs
Appendix C Trench and Test Pit Logs
Appendix D Laboratory Data
Appendix E Clay Liner Test Pad Data
Appendix F Liner System Material Data
Appendix G Settlement Analyses
Appendix H Stability Analyses
Appendix I Soil Erosion Analyses
Appendix J Surface Water Dage Analyses
Appendix K LCRS Analyses
Appendix L Riser Pipe Analyses
Appendix M Cover Infiltration Analyses
Appendix N Frost and Biotic Protection Evaluation
Appendix O Technical Specifications
Appendix P CQA Plan

1.0 INTRODUCTION

1.1 Purpose of Report and Background Information

This report provides engineering data and analyses to support the Construction Drawings (Drawings), the Technical Specifications (Specifications), and the Construction Quality Assurance (CQA) Plans for Landfill Unit B-18 (B-18) at the Kettleman Hills Facility (KHF) in Kettleman City, Kings County, California. B-18 is located in the southeast portion of the KHF, as shown on Figure 1.1 and on the Site Location Map portion of Sheet T-1 ${ }^{1}$ in Appendix A.1.2

B-18 is an existing active Class I/II landfill that has been accepting waste continually since 1992. The existing B-18 landfill was constructed in two phases (Phases I and II), both of which were completed in the early 1990s. The design of Phases I and II of B-18 was completed by Environmental Solutions, Inc. (ESI) and was presented in the original Engineering and Design Report for B-18 (ESI, 1990a) ${ }^{2}$.

Chemical Waste Management, Inc. (CWM), the owner and operator of B-18, wishes to construct Phase III to expand B-18 to provide additional waste capacity. Hence, this report has been prepared to supersede and serve as an updated revision to the original ESI (1990a) Engineering and Design Report for B-18. The updates contained in this report pertain primarily to the proposed Phase III expansion of $\mathrm{B}-18$ and to the revised final closure design for $\mathrm{B}-18$. The contents of the original ESI (1990a) Engineering and Design Report have been preserved herein - as appropriate - such that this report should be used as a stand-alone reference for the entirety of the Landfill B-18 engineering and design.

Reduced-size copies of the Drawings for Phases I through III and final closure are included in Appendix A. The Specifications and CQA Plan for Phases I and II of B-18 were prepared as a separate document by ESI (1990b). The Specifications and CQA Plans for Phase III and final closure are included in Appendices O and P , respectively.

1.2 Landfill B-18 Design

As described in Section 1.1, ESI (1990a) designed the existing Phases I and II of B-18 while Golder Associates Inc. (Golder) designed the proposed Phase III expansion and the revised final closure configuration. Golder's design of Phase III and the final closure of B-18 is based largely on the design of the existing B-18 Phases I and II completed by ESI (1990a).

The design of B-18 described in this report follows the master plan for the KHF, including the approved Kings County Conditional Use Permit (CUP) requirements. A Subsequent Environmental Impact Report (SEIR) has been prepared in accordance with the California Environmental Quality Act (CEQA). The SEIR is currently under review and certification of the SEIR will be required prior to construction of B-18 Phase III. The B-18 design generally follows procedures used for prior KHF

[^0]waste management units (WMU) for land disposal and complies with the following regulatory documents:

- United States Environmental Protection Agency (USEPA) Draft Minimum Technology Guidance on Double Liner Systems (USEPA, 1985) ${ }^{3}$.
- USEPA Resource Conservation and Recovery Act (RCRA) Hazardous Waste Facility Permit, Part B (USEPA, 1990) ${ }^{4}$.
- USEPA PCB regulations for Chemical Waste Landfills, Code of Federal Regulations, Title 40, Section 761.75.
- California Department of Toxic Substances Control (DTSC) Hazardous Waste Facility (Part B) Permit (DTSC, 2003).
- DTSC Environmental Health Standards for the Management of Hazardous Waste, Title 22, Division 4.5 of the California Code of Regulations (CCR).
- California Regional Water Quality Control Board (RWQCB), Central Valley Region, Waste Discharge Requirements No. 98-058 (RWQCB, 1998).
- California State Water Resources Control Board and RWQCBs, Discharges of Hazardous Waste to Land, Title 23, Division 3, Chapter 15 of the CCR.
- Kings County Conditional Use Permit (CUP) No. 1412, Administrative Approval Nos. 90-23 and 90-24 for the B-18 Landfill Phases I and II (Kings County, 1990).
- Kings County CUP No. 05-10 (application under review).

The primary differences between the B-18 design and the design of prior (i.e., pre-1990) KHF landfill units are the use of textured high density polyethylene (HDPE) geomembrane and the avoidance of operating waste slopes directly on the base liner system. These changes improve stability conditions throughout the operating period. These design concepts were initiated in Phase I and continue through Phase III and Closure.

Key aspects of the $B-18$ design are:

- The facility is developed in three phases (see Sheet 2 in Appendix A. 1 and Sheet C-3 in Appendix A.2). Phase I is located on the west side of the existing landfill and was constructed in 1990 thru 1992 (ECS, 1992f). Phase II is located on the east side of the existing landfill and was constructed in 1992 thru 1993 (GCS, 1993h). Phase III will include a vertical expansion primarily over the western half (approximately) of the existing landfill as well as a lateral expansion up the existing rock cut slope along the west side of the landfill. Phase III is anticipated to be constructed in 2010/2011 and operational in 2010/2011.

[^1]- Phases I and II each have two independent sump areas for leachate collection, detection, and removal. No other sumps will be installed for Phase III since only sideslope liner systems will be constructed for this phase. The existing portions of each phase draining to the separate sumps are designated as Areas IA and IB for Phase I and Areas IIA and IIB for Phase II. The Phase III sideslope liner will drain to all four of the existing Areas (IA, IB, IIA, and IIB).
- The source of clay for the existing Phase I and Phase II liners was from an overburden claystone stratum (herein referred to as Stratum 18-8) that was excavated from the Phase II footprint. The primary source of clay for the Phase III liner is anticipated to be from the Landfill Unit B-17 excavation. The clay borrowing and preparation procedures that were used for Phases I and II as well as the procedures to be used for Phase III are described in Section 4.6.

1.3 Report Organization

This report is organized into the following sections that provide detailed descriptions and background information for the design of B-18:

- \quad Section 2.0 - Site Description;
- \quad Section 3.0 - Geotechnical Investigations;
- \quad Section 4.0 - Landfill B-18 Description;
- \quad Section 5.0 - Engineering Analyses; and
- \quad Section 6.0 - References.

Supporting information on the B-18 engineering and design is provided in the following appendices to this report:

- Appendix A - Construction Drawings;
- \quad Appendix B - Boring Logs;
- Appendix C - Trench and Test Pit Logs;
- Appendix D - Laboratory Data;
- Appendix E - Clay Liner Test Pad Data;
- Appendix F - Liner System Material Data;
- Appendix G - Settlement Analyses;
- Appendix H - Stability Analyses;
- Appendix I - Soil Erosion Analyses;
- Appendix J - Surface Water Drainage Analyses;
- Appendix K - LCRS Analyses;
- Appendix L - Riser Pipe Analyses;
- Appendix M - Cover Infiltration Analyses;
- Appendix N - Frost and Biotic Protection Evaluation;
- Appendix O - Technical Specifications; and
- Appendix P - CQA Plan.

2.0 SITE DESCRIPTION

2.1 General

This section describes the general location of $\mathrm{B}-18$ as well as its pre-development and existing conditions. Sections 2.2 and 2.3 describe the current and pre-development B-18 site conditions, respectively. Sections 2.4 to 2.6 provide brief descriptions of the B-18 site's geologic, seismic, and hydrogeologic conditions, respectively.

2.2 Current Site Layout and Conditions

The KHF is located approximately midway between San Francisco and Los Angeles (see the Regional Location Map on Sheet T-1 in Appendix A.1) along the western edge of the San Joaquin Valley in central California. The KHF property consists of approximately 1,600 acres that occupies 2.5 Sections (1/2 of Section 33 and all of Section 34, R18E, T22S, and all of Section 3, R18E, T23S, Mount Diablo Base and Meridian). Landfill B-18 is located in the southeast portion of the KHF (see Figure 1.1) and currently has a footprint area of approximately 53 acres. The proposed final footprint area of B-18 will be approximately 68 acres.

Figure 1.1 shows the KHF in relation to the west side of the San Joaquin Valley floor. The KHF is located in the Kettleman Hills, approximately four miles from the valley's edge. The existing ground surface elevations (USGS Datum) at the KHF range from approximately 750 to 1,010 feet above mean sea level, making the KHF approximately 600 feet higher than the adjacent portion of the valley floor. The most recent (March 28, 2008) topographic survey of the KHF indicates that, as of March 28, 2008, the top deck waste elevations of B-18 range between 885 and 905 feet above mean sea level (see Sheet C-2 in Appendix A.2).

Access to the KHF is from State Route 41 and Interstate 5, located along the west side of the San Joaquin Valley as shown on Figure 1.1. The entrance to the KHF is approximately three miles west of Interstate 5 and 60 miles northeast of San Luis Obispo, California. Within the KHF, access to the B18 area is through the existing Guard Station at the Main Gate, northwestward past Landfill Unit B15, westward along the road that is south of Surface Impoundment P-9, and southward past Surface Impoundments $\mathrm{P}-10$ and $\mathrm{P}-11$ and past the Final Stabilization Unit (FSU), which is located immediately north of B-18 (see Sheet C-1 in Appendix A.2). Waste trucks currently enter at the northwest corner of the B-18 area; as waste elevations increase, the trucks will use the western access road and closure cover access road as shown on Sheet C-4 in Appendix A.2.

The layout of the existing Phases I and II of B-18 was based on the August 1990 CUP Facilities Boundary during the original design of B-18 (see Sheet 2 in Appendix A.1). Physical constraints for the Phases I and II areas included the following:

- The existing FSU facility to the north of Phase I.
- The existing KHF truck access road surface water control basin located along the northeast portion of Phase II.
- The requirement for a B-18 surface water containment basin (referred to as the Northeast Containment Basin herein) near the northeast corner of Phase II. This surface water basin was constructed as part of Phase II in 1992 thru 1993 and is shown on Sheet 2 in Appendix A.1.

The layout of Phase III of B-18 was developed based on the proposed modified CUP Facility Boundary the three above-mentioned physical constraints, and the following additional physical constraints:

- The existing Phases I and II geometry.
- The requirement for a second surface water containment basin (referred to as the South Containment Basin herein) to the south of B-18, as shown on Sheet C-3 in Appendix A. 2.

The clean soil stockpile from the Phases I and II excavation is located outside of the immediate B-18 area as shown on Sheet C-1 in Appendix A.2. The "B-17 Borrow Area," within the boundary of Landfill B-17, to the northwest of $\mathrm{B}-18$ is used for clay borrow and processing activities, but is primarily utilized as the source of daily and final cover soil.

No major KHF utilities are located within the B-18 area. Power for the existing light poles that surround $\mathrm{B}-18$ and for the $\mathrm{B}-18$ leachate control pumps is currently provided from an electrical transformer located along the north side of B-18 (see Sheet C-2 in Appendix A.2). For the Phase III construction, this electrical transformer will be removed and relocated to the north. The existing lighting system that surrounds B-18 is no longer required and will be removed during the Phase III construction.

2.3 Pre-Development Site Conditions

Figure 2.1 shows the B-18 site topography prior to the construction of B-18. This area was defined by a central, east/northeast-draining dry wash (i.e., swale) flanked on either side by several roughly northwest-trending ridge spurs. A former elongated, northeast-facing ridge slope formed the southwest boundary between Phases I and II and was used to develop these phases. In the Phase I area, two former tributary swales drained (northwest and southeast, respectively) along the toe of this slope into the former central swale. Another former swale drained northward through the south portion of the Phase II area, joining the former central swale near the northeast corner of the B-18 area. Typical relief between the former swales and adjacent ridge tops varied up to about 100 feet; however, the long ridge that currently borders B-18 on its southwest side rises over 250 feet above the lower portion of the former central swale. Former slopes in the B-18 footprint were gentle to moderate, ranging from nearly flat up to inclinations of about $3 \mathrm{H}: 1 \mathrm{~V}$ (horizontal:vertical). Locally steep ($2 \mathrm{H}: 1 \mathrm{~V}$) former slopes occurred on the east/northeast side of the former ridge spur in the southcentral portion of $\mathrm{B}-18$.

2.4 Geologic Conditions

Geologic conditions at the KHF are well-documented in the many studies completed for previous site activities. In general, subsurface conditions are relatively straightforward and consistent in comparison with other sites in California.

Figure 2.2 shows the general geologic conditions in the vicinity of the KHF, based on the work of Woodring, et al. (1940). The KHF is located along the southwest limb of North Dome, which is a broad northwest-trending anticline that forms the north portion of the Kettleman Hills. The bedrock in the vicinity of B-18 mainly consists of the stratigraphically lowest units of the Upper and Lower San Joaquin Formation, which are comprised of discrete beds of sandstone, siltstone, and claystone. The
prevailing strike of these beds in the KHF area is about $\mathrm{N} 45^{\circ} \mathrm{W}$, with dips ranging from 25° to 35° southwest.

Figure 2.3 summarizes the geologic conditions at the KHF based on data from a variety of prior investigations. The most important characteristic of the site geology with respect to the B-18 site investigation program (Section 3) was the continuity and uniformity of the bedrock strata. Of special importance was the thick claystone stratum which passes through the western portion of the B-18 Phase II area. This material served as the clay source for the Phases I and II liner. Additionally, for the Phase III area, the dip of the bedrock strata is to the southwest, representing the most favorable bedding orientation for stability of the excavation.

Neither Figure 2.2 nor 2.3 indicates the existence of faults within the KHF, which would disrupt the general bedrock strike and dip trends and/or the continuity of the individual sandstone, siltstone, and claystone strata. Two studies by Roger Foott and Associates (1990a and 1990b) concluded that there is no surface or recent (i.e., Holocene) faulting in the B-18 area. This conclusion was corroborated by geologic mapping of the completed landfill subgrades during the construction of Phases I and II (Golder, 1992; GCS, 1993b).

2.5 Design Ground Motions

2.5.1 General

CCR Titles 22 and 23 require Class I landfills to be designed and maintained to withstand the Maximum Credible Earthquake (MCE) event. Hence, the design ground motions used in the analyses of B-18 were based on the MCE event(s), as described in the following two sections.

2.5.2 Ground Motions Used in the Original Design

In the original design of B-18, ESI (1990a) used the MCE event and associated ground motion parameters that had been developed by Golder (1988). The Golder (1988) MCE event for the KHF corresponded to a moment magnitude $\left(\mathrm{M}_{\mathrm{w}}\right) 7.0$ earthquake occurring at a depth of 10 km below the site on the Ramp Thrust Kettleman Hills North Dome segment of the blind Ramp Thrust Faults. The deterministic peak horizontal ground acceleration (PHGA) associated with this MCE event was calculated to be 0.43 g (Golder, 1988), where g is the acceleration due to gravity.

2.5.3 Ground Motions Used in the Current Design

Hushmand Associates, Inc. (HAI), under subcontract to Golder, updated the design ground motions for the KHF as part of the current B-18 design. Appendix H. 5 contains HAI's slope stability report that explains the methods used to develop the updated design ground motions. HAI performed deterministic seismic hazard analyses to evaluate the MCE ground motions for the controlling nearfield and far-field events using a variety of state-of-the-practice attenuation relationships. Based on their analyses, HAI has developed the following deterministic MCE ground motion parameters for the KHF that were used in the current design of B-18:

- Near-Field Event: The controlling near-field MCE event is considered to be a $\mathrm{M}_{\mathrm{w}} 7$ earthquake occurring 10 km from the site on the Ramp Thrust Kettleman Hills North Dome segment. The PHGA associated with this event was calculated to be 0.62 g .
- Far-Field Event: The controlling far-field MCE event is considered to be a $\mathrm{M}_{\mathrm{w}} 8$ earthquake occurring 35 km from the site on the San Andreas Fault. The PHGA associated with this event was calculated to be 0.16 g .

2.6 Hydrogeology

Groundwater conditions are extensively monitored at several existing monitoring wells located throughout the KHF site. Sheet C-2, C-3 and C-4 in Appendix A. 2 shows the locations of monitoring wells in the vicinity of B-18. Recent data from these wells indicate that the depth to groundwater is about 250 feet below the bottom of the existing B-18 base liner system. No shallow perched groundwater or perennial springs are known to occur in the B-18 area.

Because groundwater conditions do not affect the design or construction of B-18, an extensive evaluation of hydrogeology is not provided in this report. A report by EMCON (1986) contains a detailed description of the hydrogeological conditions at the KHF. The current Groundwater Monitoring Plan for the KHF was prepared by Geosyntec (2001).

3.0 GEOTECHNICAL INVESTIGATIONS

3.1 General

This section describes the geotechnical field and laboratory investigations previously undertaken by ESI and others to characterize the B-18 subsurface conditions and to evaluate soil and rock properties necessary for the geotechnical design of B-18. No additional field or laboratory investigations were performed by Golder in the preparation of this report. Field and laboratory testing on the proposed clay source for Phase III of B-18 was performed by Geosyntec (2008), as discussed in Section 3.2.2.

Section 3.2 describes the main field investigation activities associated with the design of B-18 and the evaluation of on-site claystone for use in the B-18 liner construction. Section 3.3 summarizes the subsurface conditions for B-18 based on the results of the geotechnical investigations. Section 3.4 describes the procedures used to select the soil and rock samples for laboratory testing in order to evaluate the required geotechnical design parameters. Results of the laboratory tests, including prior KHF data not directly associated with the design of B-18, are discussed in Section 3.5.

3.2 Field Investigations

3.2.1 Geotechnical Exploration Program

The locations of geotechnical field exploration activities are shown in plan view on Figure 3.1 and in sectional views on Figure 3.2. The field explorations were undertaken in several phases designed to verify the anticipated site geologic characteristics and to obtain representative soil and rock samples.

The initial phase of B-18 field exploration activities was conducted from February 20 through 27, 1990, and consisted of the following:

- Excavating long dozer trenches DT-A to DT-F to observe the thickness of colluvium, identify stratum contacts, and measure the strike and dip of rock discontinuities/bedding. These dozer trenches were generally between about 3 and 10 feet deep.
- Excavating test pits TP-l through TP-21 to penetrate colluvium at the base of the dozer trenches and to observe soil and rock conditions throughout the B-18 area. These test pits were generally about 6 to 18 feet deep.

Several disturbed bulk samples of representative colluvium and rock materials were collected for general laboratory analyses during this initial program.

The second phase of B-18 field exploration activities was conducted from March 12 through 23, 1990, and consisted of the following:

- Drilling nine geotechnical borings (L18-A through L18-I) to further verify the depth of contacts between individual rock strata and to collect relatively undisturbed samples of the rock materials to be encountered during excavation and/or to be used as embankment borrow material. These borings were advanced to depths ranging between approximately 18.5 and 89 feet below ground surface.
- Excavating test pits TP-22 through TP-28 to confirm colluvium thicknesses and characteristics of bedrock strata at locations between the borings. These test pits were excavated to depths of approximately 5.5 to 13.5 feet.

Table 3.1 summarizes the purpose for and key information about each boring. The borings were drilled using a Pitcher Barrel rig so that core samples could be recovered at the various intervals shown in Table 3.1. A total of 65 Pitcher Barrel samples of bedrock and 6 drive samples of colluvium were collected from the initial borings (L18-A through L18-I).

Data from the two initial field exploration phases were used to develop the preliminary versions of the geologic cross sections shown in Figure 3.2. Existing monitoring well logs were also reviewed to confirm interpretations of rock strike and dip. These data consistently verified the relatively uniform site conditions and indicated that site characterization for the purposes of the B-18 design was complete. However, it was concluded that additional clay samples were required to complete the characterization of Stratum 18-8 for use as the onsite clay source for the Phases I and II liner.

Therefore, the third and final phase of B-18 field exploration activities was conducted from May 8 through 11, 1990, and consisted of the following:

- Drilling boring L18-J to penetrate the entire Stratum 18-8 (clay borrow source) thickness to confirm uniformity of the claystone throughout this stratum. Sampling was accomplished by collecting approximately 2.5 feet of relatively undisturbed sample for each 5 feet of penetration. This boring was drilled to a depth of approximately 172.5 feet below ground surface.
- Drilling boring L18-K through the entire thickness of Stratum 18-9 and into the underlying Stratum 18-8. Stratum 18-9 was excavated concurrently with the Stratum 18-8 claystone during the construction of Phases I and II. This boring was also sampled by collecting approximately 2.5 feet of relatively undisturbed sample for each 5-foot penetration interval. This boring was drilled to a depth of approximately 97.5 feet below ground surface.
- Excavating test pits TP-29 through TP-43 to obtain larger bag samples of materials from Strata 18-8, 18-9, 18-10, 18-11, 18-12, and 18-13. These larger samples were used to evaluate properties of compacted borrow materials that could be mixed with the clay. These test pits were excavated to depths of approximately 3.5 to 16 feet.

Appendix B contains the logs of the above-described borings. Logs of the dozer trenches and test pits are included in Appendix C.

The information contained in Table 3.2 demonstrates that the colluvium and rock strata of interest to the design of $\mathrm{B}-18$ have been adequately investigated by the above-described field exploration activities. Table 3.2 also includes the existing and previous monitoring wells which pass/passed through each geologic stratum underlying B-18.

Supplemental geologic field investigations were undertaken by Roger Foott and Associates (1990a and 1990b) to evaluate the potential for recent faulting in the vicinity of B-18. The findings of these investigations are discussed in Section 3.3.2.

3.2.2 Clay Liner Test Pads

In 1991, a clay liner test pad was constructed to evaluate the B-18 Phases I and II clay borrow source (i.e., Stratum 18-8). A sealed double-ring infiltrometer (SDRI) test was conducted on this test pad. Results of the SDRI test confirmed that the Stratum $18-8$ clay source met the permeability requirements under actual field conditions. The construction of the 1991 clay liner test pad and the SDRI testing are discussed in detail in the test fill and infiltrometer report by ESI (1992), which is provided in Appendix E.1. CQA testing of the clay liner material during construction of Phases I and II of B-18 (ECS, 1992a, 1992b, and 1992d; GCS, 1993a, 1993d, and 1993f) verified the results of the SDRI test and indicated that the as-built clay liners for Phases I and II have permeabilities that do not exceed the specified maximum of $1 \times 10^{-7} \mathrm{~cm} / \mathrm{s}$.

The clay source for the Phase III liner is anticipated to be the on-site Pecten Claystone stratum that lies along the eastern boundary of Landfill Unit B-17 (see Sheet C-1 in Appendix A.2). Geosyntec (2008) performed laboratory testing on samples of this stratum of Pecten Claystone. Results of Geosyntec's laboratory tests indicate that the Pecten Claystone stratum is a suitable clay borrow source for the Phase III liner. The Geosyntec (2008) report on the Pecten Claystone testing is summarized in Table 3.13 and presented in Appendix E.2. A clay liner test pad consisting of Pecten Claystone was constructed in July 2008. A SDRI test was conducted by Geosyntec (2008a) on this test pad to further evaluate the Pecten Claystone and validate its use as the clay borrow source for the Phase III liner. The SDRI test report was completed in December 2008 and is presented in Appendix E.3. The report concludes the Pecten clay is suitable for Phase III clay liner.

3.3 Site Subsurface Conditions

3.3.1 Surficial Soils

The majority of the B-18 site was blanketed with colluvial soils prior to its development. These deposits consisted of low to moderately plastic, silty and/or sandy clays and very fine-grained clayey sands. The colluvium was generally stiff to very stiff and dry to slightly damp when encountered during the field explorations. Occasional laminated lenses of fine-grained sand, probably representative of intermittent alluvial deposits within the colluvium, were encountered in some swale areas. The colluvium varied in thickness from less than 1 foot along the uppermost ridge slopes to over 18 feet within the swales, as shown in Figure 3.2. Considerable variation in the thickness of colluvium beneath uniform slopes was indicative of differential weathering of the underlying San Joaquin Formation bedrock and surficial soil compaction.

During the Phases I and II construction, the colluvium was excavated from the vast majority of foundation areas within the B-18 footprint due to its shallow depths. The only areas where colluvium was left in place were at the crest of the $2 \mathrm{H}: 1 \mathrm{~V}$ slope along the western boundary of Phase I. The colluvium that remained in these areas was less than 5 feet thick (GCS, 1993h). Areas where colluvium remained above landfill cut slopes outside of the waste footprint (e.g., the steep northeast facing slope above the southwestern edge of $\mathrm{B}-18$) were graded to control soil erosion and/or sloughing.

Prior to the development of $\mathrm{B}-18$, minor portions of the $\mathrm{B}-18$ footprint were covered with fill. The northern portion of the Phase I area included the toe of a fill slope associated with the FSU construction. Several small fills in the Phase II area were apparently associated with drilling pads and a former access road that traversed the area. These fill materials were removed during the Phases I and II excavations.

3.3.2 Bedrock Lithology, Structure, and Stratigraphy

The San Joaquin Formation underlying B-18 is similar to the other portions of this formation found throughout the KHF area. The San Joaquin Formation consists of three major lithologic units: sandstone, siltstone, and claystone. Principal variants include silty sandstone and sandy siltstone. These units of the San Joaquin Formation were relatively easy to excavate using conventional earthmoving equipment (e.g., scrapers and dozers) during the Phases I and II construction. The physical characteristics of each of the discrete lithologic units, as well as qualities common to the overall San Joaquin Formation, are:

- Sandstone: Beds of both clean and silty sandstone occur within the B-18 area. The sandstones are variably white, gray, tan, and orange-brown. They are typically slightly weathered, soft, friable, very fine- to fine-grained, thick-bedded, and uncemented to weakly cemented. Occasional thin beds are moderately- to wellcemented. Numerous veins of gypsum and thin, orange interbeds of hard, cemented, iron-rich material occur along bedding planes and joints within the sandstones, as well as within the other lithologic units. The sandstone excavations generated fine, loose, clean, and silty sand. Several fossiliferous, well-cemented sandstone beds (including "Trachycardium" and "Mya") occur at various stratigraphic positions within the B-18 area, as shown on Figures 2.3, 3.1, and 3.2. These fossil beds are generally excavated as hard, gravel- to boulder-sized blocks.
- Siltstone: The siltstone units within the B-18 area are of variable character and include siltstone, sandy siltstone, and occasionally clayey siltstone. Each siltstone type is typically slightly weathered, soft, and laminated to thin-bedded. The siltstones vary from non- to low-plastic materials. Atterberg limits of selected samples, visually classified as siltstone, indicate that some "siltstones" consist of silty clays that plot just above the A-line on the plasticity chart. The siltstones are usually light brown or gray. Excavation of siltstone generates thin, angular fragments or slabs ranging from about $1 / 2$ inch to 1 foot in largest dimension.
- Claystone: The claystone is usually either light gray, gray-brown, or dark olive-gray. It is typically slightly weathered, soft, laminated to thin-bedded, highly plastic, and frequently exhibits pronounced slickensides (striations) along glossy or waxyappearing fracture and bedding surfaces. Dozer excavation of the claystone opposite the direction of dip yielded generally uniform, angular gravel-sized fragments, while excavation in the direction of dip yielded gravel- and larger-sized blocks and slabs in the range of 12 to 18 inches in maximum size. The largest slabs of claystone generated during the initial excavation tended to break down after repeated passes with the dozer.

The prevailing structural characteristic of the bedrock is its consistent bedding, which trends generally $\mathrm{N} 30^{\circ} \mathrm{W}$ to $\mathrm{N} 50^{\circ} \mathrm{W}$ and dips about 24 to $45^{\circ} \mathrm{SW}$ throughout the $\mathrm{B}-18$ area (Golder, 1992; GCS, 1993b). Most measured joints dip steeper than the bedding and trend both across and generally parallel to the bedding (bedding and joint attitudes are shown on Figure 3.2). As shown on the cross sections in Figure 3.2, the cut slopes required for the Phases I and II construction were excavated shallower than the bedding plane angles to prevent adverse daylight conditions (e.g., along generally southwest-facing cut slopes).

Anomalous and contorted bedding (measured at $\mathrm{N} 55^{\circ} \mathrm{E}, 73^{\circ} \mathrm{SE}$) was encountered in dozer trench DTC (Figure 3.1) within the thick Stratum 18-8 claystone. The length of the dozer trench characterized by this feature was logged as trench T-3 (see Appendix C). A detailed examination of the geologic units along this portion of DT-C suggest that the anomalous bedding was a result of old, intraformational deformation (e.g., localized folding, faulting, or slumping). The colluvium that overlaid this feature appeared undisturbed and displayed no evidence of offset or displacement that would be indicative of recent slope instability or faulting. Excavations for the construction of Phases I and II confirmed that the contorted bedding observed in DT-C was a localized, anomalous feature.

Contorted beds of cemented sandstone, appearing to be folded or compressed in a down-dip direction, were encountered immediately beneath colluvial soils in dozer trench DT-B (Figure 3.1). The contorted bedding is apparently related to settlement of the near-surface, cemented bedrock following erosion or animal burrowing of underlying, softer, uncemented sandstone (refer to the log of trench T1 in Appendix C). The disturbed, near-surface bedrock was removed during the excavations for Phases I and II.

Stratigraphically, the San Joaquin Formation beds underlying B-18 have been grouped into a sequence of 13 stratigraphic units. Each unit is defined according to either a discrete lithology or a distinctive interbedding of various lithologic units. The units are designated 18-1 through 18-13, from northeast (oldest) units to southwest (youngest) units. The approximate contacts of these units are depicted in plan on Figure 3.1 and in profile on Figure 3.2. The stratigraphy shown in Figures 3.1 and 3.2 was based on the results of the dozer trenching, exploration drilling, air photo analysis, mapping of cut exposures prior to the development of B-18, and excavation of test pits. Comparisons were also made with logs of existing and previous monitoring wells in the $\mathrm{B}-18$ area. In general, the geologic conditions in the $\mathrm{B}-18$ area were found to be straightforward and consistent. Geologic mapping of the B-18 subgrades performed during the construction of Phases I and II revealed 15 units within the Phase I area (Golder, 1992) and 26 units within the Phase II area (GCS, 1993b). The results of this mapping confirmed the general geologic conditions shown on Figures 3.1 and 3.2 with the only significant discrepancies being local adjustments of some of the contact locations.

Geologic field investigations undertaken by Roger Foott and Associates (1990a and 1990b) indicated that recent (i.e., Holocene) faulting has not occurred in the vicinity of B-18. Additionally, geologic mapping of the completed B-18 subgrades during the construction of Phases I and II did not reveal any evidence of recent faulting (Golder, 1992; GCS, 1993b).

3.4 Laboratory Investigations

3.4.1 Sample and Testing Selection Process

This section describes the approach for selecting appropriate geotechnical laboratory tests to evaluate the necessary geotechnical design parameters and to establish geochemical background data for the on-site materials.

Initially, the large amount of existing geotechnical data available from pre-1990 KHF landfill designs was evaluated to assess the usefulness of this data for the B-18 design. Also, index property tests were initially conducted on many of the B-18 samples for comparison with properties of materials previously tested and to characterize the range of material types which may be important for design. Representative samples for strength, consolidation, compaction, shrink/swell, permeability, and geochemical testing were selected based on the results of index property tests, past data, and the importance of specific strata to the design analyses.

3.4.2 Prior (Pre-1990) Geotechnical Data

The most pertinent pre-1990 KHF geotechnical data used in the design of B-18 is summarized in Table 3.3 and is based on the results of investigations reported for the following activities:

- The design of Phases II and III of Landfill Unit B-19 (Donohue and Associates, 1988a);
- The slope failure investigation for Phase IA of Landfill Unit B-19 (Seed et al., 1988); and
- Generic investigations of closure alternatives for various landfills at the KHF (Golder, 1988b, 1989c, and 1989a).

Table 3.3 also summarizes reported properties from published literature and vendor data on geosynthetic liner interface testing.

3.4.3 Laboratory Testing for Landfill Design

Tables 3.4 and 3.5 summarize the B-18 geotechnical laboratory testing program and show the samples collected from the borings and test pits/trenches, respectively. An " X " is provided in each table to indicate the types of tests conducted on each sample. The analysis methods used for the various tests are summarized in Table 3.6.

A large number of index tests were initially conducted to evaluate the consistency of characteristics for the various rock and soil types. The index tests performed on a particular sample were selected based on the type of material. For example, plasticity index testing was conducted only on finegrained claystone or siltstone samples. Index property comparisons were then used to select representative samples to be tested for the various engineering properties (e.g., compaction, strength, settlement, permeability).

Tests that were conducted under conditions to simulate the B-18 site-specific conditions are indicated by the footnotes in Tables 3.4 and 3.5. These included:

- Conducting unconsolidated undrained (UU) triaxial tests at confining pressures ranging between 4 and 16 kips per square foot (ksf) to represent the anticipated range of overburden pressures due to the weight of the overlying waste.
- Conducting most of the clay permeability tests at a dry unit weight equal to 90 percent of the Modified Proctor (ASTM D1557) maximum dry density and at water contents ranging from 2 to 6 percent above the optimum moisture content to represent clay liner material that has been compacted in accordance with the Specifications.

All of the compaction tests except two were conducted using the Modified Proctor procedures (ASTM D1557), which are specified for the B-18 construction. Standard Proctor procedures (ASTM D698) were conducted on one sandstone sample from Boring L18-K and one claystone sample from test pit TP-37 for comparison purposes only.

Table 3.4 also shows that background geochemistry was analyzed for three rock samples (one each from borings L18-A, L18-C, and L18-F) representing a range of the claystone, siltstone, and sandstone. The geochemical analyses conducted are listed in Table 3.6. These are the same background analyses conducted for prior KHF landfill investigations.

3.4.4 Special Testing of the Phases I and II Clay Borrow Material

Plasticity and unit weight/water content tests were conducted on 15 samples of Stratum 18-8 claystone collected from Boring L18-J to assess the uniformity of the claystone. Hydrometer tests were then conducted on five of the 15 samples that were considered representative of the range of conditions in the stratum to compare grain size characteristics. Shrinkage tests were conducted on four of the five samples to quantify the clay shrink/swell characteristics. Plasticity index and hydrometer tests were also conducted on shallow claystone samples from dozer trenches DT-A and DT-C and from test pits TP-36, TP-38, and TP-40 to provide a comparison of conditions derived from the shallow weathered rock.

Modified Proctor (ASTM D1557) compaction tests were conducted on three "pure" claystone composites of borehole samples to determine their water content-dry density relationship. Permeability tests were also performed on each of these three Modified Proctor composite samples using material compacted at approximately 90 percent relative compaction and water contents ranging from 0 to 2 percent above optimum. Unconsolidated-undrained (UU) triaxial and consolidation tests were conducted on one Modified Proctor test sample from dozer trench DT-A that was considered to be representative of the clay material.

The above-described tests on "pure" claystone samples provided conservative characteristics of strength and consolidation parameters for the clay materials. In order to assess the potential for mixing the claystone with other rock materials, an additional series of tests was conducted on mixtures of claystone from Stratum 18-8 and sandstone/siltstone from the adjacent Stratum 18-9. Mix ratios of 70:30 and 50:50 (claystone:sandstone/siltstone) percent were used.

Long-term leachate compatibility testing for the B-18 clay was not conducted in light of the results of an extensive testing program by EMCON (1989) using on-site claystone materials. That program included soil/waste compatibility tests performed consistent with the California Administrative Code, Title 23, Chapter 3, Subchapter 15, Section 2541(b) and (c); the United States Environmental Protection Agency (USEPA) regulations in 40 CFR 270.17(b)(1), 270.21(b)(1), 264.22l(a)(1), and 264.301(a)(1)(i); and the Resource Conservation and Recovery Act (RCRA) Method 9100.

The EMCON (1989) compatibility tests showed no significant increase in clay permeability after displacing two volumes of pore water with a representative leachate obtained from another hazardous waste site operated by CWM EMCON (1989) therefore concluded that the leachate did not have a significant effect on the permeability of the clay. EMCON (1989) also considered this conclusion to be consistent with findings reported by others in published literature, which indicate that dilute organic liquids do not adversely affect the permeability of clay soils.

3.5 Laboratory Testing Results

3.5.1 General

This section summarizes the B-18-specific laboratory testing results in the following order:

1. Index properties.
2. Compaction tests.
3. Strength tests.
4. Permeability tests.
5. Consolidation tests.
6. Shrink/swell potential tests.
7. Geochemical analyses.

The complete laboratory test results and supporting information are presented in Appendices D and E .

The laboratory test results described in this section were performed prior to the development of B-18 and provided the necessary information that guided the B-18 design. CQA reports prepared for the Phases I and II construction (see Section 4.1) contain additional laboratory and field test results that were performed as part of the Phases I and II CQA program. These CQA test results generally confirmed that the actual properties of the various as-built materials met or exceeded the material properties that were assumed during design. Hence, no attempt has been made to fully incorporate the CQA test data into the discussions in this report. Rather, CQA test results are only mentioned herein when deemed appropriate to reinforce an earlier assumption or finding. More recent testing, Geosyntec 2008a and b, has been conducted on proposed clay liner materials. Test results indicate the clay liner is similar to that used for Phase I and II and it will be suitable for use as a clay liner in Phase III. Test results that are included in Appendix E. 2 and E. 3 are summarized herein.

3.5.2 Index Property Tests

Plasticity index tests (i.e., Atterberg limits tests) were performed on claystone samples from Strata 18-2 through 18-5, 18-7, 18-8 (the clay borrow source for Phases I and II), 18-9, 18-10, and 18-12. Table 3.7 summarizes the plasticity index data and indicates that the majority of the claystone is classified as high-plasticity clay (CH) having a liquid limit ranging from about 55 to 90 and a plasticity index ranging from about 30 to 60 . One sample from Stratum $18-8$ and several samples from other fine-grained strata were classified as low-plasticity clay (CL). These materials have a liquid limit ranging from about 30 to 49 and a plasticity index ranging from about 6 to 29 . In addition, one of the plasticity index tests performed on a minor claystone/siltstone sample of Stratum 18-3 showed the characteristics of a low plasticity silt (ML).

Figure 3.3 shows a plasticity chart with plotted data points for the majority of the Stratum $18-8$ samples that were tested. It can be seen from this figure that the Stratum 18-8 claystone material consistently lies in the CH (i.e., high-plasticity clay) range. Additional plasticity charts containing plotted data for the other strata that were tested are included in Appendix D.1.

Table 3.8 summarizes the tests performed to evaluate the percentage of material passing the U.S. No. 200 sieve (i.e., fine-grained silt and clay) for the various samples tested. The colluvial soil samples generally have a fairly high percentage (about 33 to 81 percent) of fine-grained materials. This variation apparently relates to the origin of the colluvial materials with the highest percentage of fines being derived from siltstone or claystone. The data in Table 3.8 for sandstone shows a relatively low
percentage of fines that ranges from about 11 to 37 percent. Clayey and silty sandstone samples showed the largest variation of percent fines (from about 21 to 73 percent) which reflects the varying amount of fine-grained laminations in these samples.

Figure 3.4 presents the grain size envelopes obtained from sieve analyses on sandstone samples from Stratum 18-9 and hydrometer tests on claystones from Stratum 18-8. Individual test results for samples from these strata and other rock units are included in Appendix D.2. These results further show the relative uniformity of the various rock types at $\mathrm{B}-18$. The sandstones have relatively uniform grain sizes that fall mostly in the 4 to 0.1 millimeter diameter range. The percentage fines in the sandstones is approximately 10 to 40 percent. The claystone is well-graded with at least 80 percent fines and about 5 to 30 percent of the particles being smaller than 0.001 millimeters. The clay-size fraction (particles with a diameter less than 0.002 millimeters) varies between about 12 and 40 percent.

Natural moisture contents and dry densities for samples tested are presented on the boring logs in Appendix B. Typically, the sandstone materials have a natural moisture content varying between about 8 and 20 percent and a natural dry density varying between about 95 and 121 pounds per cubic foot (pcf). The claystone material's natural moisture content typically varies between about 15 and 30 percent and its dry density range is approximately 90 to 105 pcf.

Figure 3.5 contains a plot showing the relationship of the natural water content to the Atterberg limits for claystone samples from Stratum 18-8. This relationship is useful for qualitatively evaluating the compressibility and strength behavior of the claystone. The data in Figure 3.5 show that the natural water content of the Stratum 18-8 claystone is typically less than or roughly equal to its plastic limit. This condition is indicative of a material with relatively low compressibility and high strength. The importance of this condition is that it allowed the settlements of the $\mathrm{B}-18$ foundation to be calculated based on the theory of elasticity. Other interesting features that can be seen from Figure 3.5 are the following:

- The natural water content of the Stratum 18-8 claystone is relatively close to its optimum moisture content as determined from Modified Proctor compaction tests (see Section 3.5.3); and
- The Stratum 18-8 claystone plasticity characteristics are relatively uniform throughout its entire depth, although a lower-plasticity zone was encountered in the 70 - to 90 -foot depth range.
- Recent testing on the proposed clay liner material, summarized in Table 3.13, indicates the plasticity index data of the claystone is generally classified as highplasticity clay (CH) having a liquid limit ranging from about 58 to 105 and a plasticity index ranging from about 29 to 72 . The fines content of the claystone ranged from 76 percent to nearly 100 percent. This is consistent with clay liner materials used for Phases I and II.

3.5.3 Compaction Tests

Table 3.9 summarizes the results of compaction tests conducted on a variety of composited samples and on individual bag samples from test pit TP-42 and dozer trenches DT-A and DT-C. With the exception of composite Samples No. 4 and No. 11, all of the tests were performed using the Modified Proctor test method (ASTM D1557), which is the method that was specified for the Phases I and II
construction (ESI, 1990b) and is specified for the Phase III and final closure construction (see Appendix O). The Standard Proctor test method (ASTM D698) was utilized for Samples No. 4 and No. 11 in order to assess the differences in densities resulting from the use of a lower compactive energy (the Modified Proctor method utilizes an energy of 56,000 foot-pounds per cubic foot as compared to an energy of only 12,400 foot-pounds per cubic foot for the Standard Proctor method). Individual plots for the Modified and Standard Proctor tests are provided in Appendices D. 3 and D.4, respectively.

The Modified Proctor compaction data indicate that the optimum water content for the claystone is on the order of 21 to 25 percent and the corresponding maximum dry density is approximately 96 to 104 pcf. As the percentage of sandstone increases, the optimum moisture content is expected to decrease and the maximum dry density to increase. The recent testing by Geosyntec, presented in Appendix E.2, indicates lower optimum moisture contents and higher maximum dry density than previous testing. The optimum moisture content and maximum dry density ranged from 12.5 to 20.1 percent and 105.5 to 122.0 pcf , respectively. These variations are not significant and do not necessarily indicate a change in the clay quality.

The compaction tests using the Standard Proctor method indicate that the claystone's optimum water content for this lower compactive energy increases to about 30 percent while the maximum dry density decreases to below 90 pcf. A similar amount of change was also observed for the mixture of sandstone and claystone tested.

3.5.4 Strength Tests on Relatively Undisturbed Samples

Strength properties of the in-situ rock materials that form the sidewalls of the majority of B-18 were evaluated by the following two types of tests:

1. Unconsolidated-undrained (UU) triaxial compression tests performed on relatively undisturbed samples of silty sandstone and claystone as summarized in Appendix D.5. These tests allowed failure to occur on the weakest plane in the sample and provided representative data for evaluating the stability of slopes in which failure along bedding planes may occur.
2. Direct shear tests performed on relatively undisturbed samples of sandstone and claystone, as summarized in Figure 3.6 and Appendix D.8. The direct shear samples were oriented such that failure occurred across bedding planes. These test results were then used for the stability evaluation of slopes which are not parallel or nearly parallel to the bedding.

Figure 3.6 also includes direct shear test data from the previous B-19 Phases II and III investigation (Golder, 1988b) for comparison.

The in-situ rock strengths along bedding planes obtained from the UU triaxial tests were consistently higher than the minimum strengths obtained for similar conditions for the design of B-19 Phases II and III (Golder, 1988b). Therefore, in order to be conservative for B-18 cut slopes in the west-facing direction, it was concluded that the appropriate rock strength along bedding planes should be represented by a friction angle $(\phi)=36$ degrees and a cohesion intercept $(\mathrm{c})=0$, as recommended by Golder (1988b).

As shown on Figure 3.6, the shear strength parameters for evaluating slope stability for crossbed conditions was evaluated to be $\phi=40$ degrees and $\mathrm{c}=800$ pounds per square foot (psf). As can be seen in Figure 3.6, these strength parameters provide an approximately lower-bound limit of the direct shear test data conducted for the B-18 and B-19 (Golder, 1988b) investigations.

3.5.5 Strength Tests on Remolded Samples

The following two types of tests were performed to evaluate the strength of the clay liner for use in assessing the stability of B-18 at different times throughout its life:

1. UU triaxial compression tests were conducted on remolded sandstone and claystone samples to provide strength parameters to assess landfill stability for short-term conditions (i.e., prior to significant clay liner consolidation occurring due to the weight of the overlying waste).
2. Consolidated-undrained (CU) triaxial compression tests were conducted on remolded claystone samples for use in evaluating the long-term stability of B-18 (i.e., after the clay liner consolidation is essentially complete).

The results of the UU and CU triaxial tests are included in Appendices D. 6 and D.7, respectively.
The UU triaxial test results indicate that the short-term strength of the clay liner can be represented by $\phi=8$ degrees and $\mathrm{c}=3,600$ psf. After consolidation is essentially complete, the clay liner is significantly stronger and can be represented by $\phi=15$ degrees and $\mathrm{c}=1,500 \mathrm{psf}$.

CU triaxial compression tests conducted on silty sandstone materials from Stratum 18-9 indicate that the shear strength of these materials when compacted to 95 percent relative compaction can be represented by $\phi=30$ degrees and $c=3,000 \mathrm{psf}$. These strength parameters are considered appropriate for evaluating the stability of structural fill and embankments constructed from low plasticity borrow materials.

3.5.6 Permeability Tests

The five permeability tests summarized in Table 3.10 were conducted on clay samples derived from the Stratum 18-8 claystone. These tests show that the anticipated permeability under laboratory conditions varies between about 2×10^{-8} and $2 \times 10^{-9} \mathrm{~cm} / \mathrm{s}$. For comparison, the field SDRI test performed by ESI (1992) indicated that the permeability of a clay liner constructed of Stratum 18-8 claystone is on the order of approximately $5 \times 10^{-8} \mathrm{~cm} / \mathrm{s}$.

The laboratory permeability tests were conducted under a variety of conditions to evaluate the degree to which the particle size and weathering of the claystone may affect its permeability. The first two tests in Table 3.10 were conducted using a maximum particle size of $3 / 8$-inches in the Proctor mold. Although small with respect to field compaction equipment, the $3 / 8$-inch particle size is relatively large for small-scale laboratory permeability tests. The second two tests in Table 3.10 were conducted using a $1 / 4$-inch maximum particle size, which corresponds to the ASTM procedures. The final test in Table 3.10 was designed to simulate the field conditions anticipated for B-18. This test was conducted by allowing the material to weather over a two-week period and without controlling the particle size. This procedure best represents the conditions which are realized in the field as the clay borrow material is mixed, worked, stockpiled, and recovered with wetting operations at various times
during these activities. Experience from the Phases I and II construction indicates that adequate permeabilities are realized if a maximum particle size of 1 to 2 inches is maintained.

Recent permeability tests, Geosyntec 2008, indicate the proposed clay liner material has a permeability of less than $1 \times 10^{-7} \mathrm{~cm} / \mathrm{sec}$. The tests show that the anticipated permeability under laboratory conditions varies between about 9×10^{-8} and $4 \times 10^{-9} \mathrm{~cm} / \mathrm{s}$, and $4.2 \times 10^{-8} \mathrm{~cm} / \mathrm{s}$ based on the field SDRI (see Appendix E. 2 and E.3).

3.5.7 Consolidation Tests

Consolidation tests were conducted on two samples of the Stratum 18-8 clay that were compacted to conditions similar to those specified for construction. These tests provided information for:

- Estimating the amount of settlement that will occur in the clay liners as a result of the waste loading; and
- Estimating the rate at which pore pressures will dissipate from the clay liner in order to evaluate if there is a potential for excess pore pressure build-up.

The two consolidation tests showed similar compressive stress versus void ratio relationships. The results of the consolidation tests are included in Appendix D.9.

3.5.8 Shrink/Swell Potential Tests

Tables 3.11 and 3.12 summarize the shrink/swell test results for relatively undisturbed and remolded Stratum 18-8 claystone samples, respectively. The test results for the relatively undisturbed samples in Table 3.11 indicate that the in-situ claystone has low to moderate swell potential under low confining pressures. At high confining pressures, such as those on the base liner system, the swelling potential of the claystone is considered negligible based on the test results in Table 3.11.

The data in Table 3.12 shows that remolded Stratum 18-8 clay has a moderate to high swelling potential under low confining pressures. This indicates that it is important to keep the clay liner materials wet after placement and prior to deployment of the overlying geosynthetics in order to prevent significant desiccation cracking. Appropriate steps were taken to prevent excessive drying of the clay liner during the Phases I and II construction. Similar preventative procedures are specified for the Phase III clay liner construction (see Appendix O.1).

3.5.9 Geochemical Tests

Background geochemical analyses were conducted on representative claystone, siltstone, and sandstone samples prior to the development of B-18. These test results are presented in Appendix D. 10 .

Additional geochemical analyses were performed on seven bedrock samples collected from the B-18 excavations during the construction of Phases I and II (Golder, 1992; GCS, 1993b). The results of these tests were consistent with the typical natural background composition (in terms of analytes and concentrations) of the San Joaquin Formation bedrock.

3.6 Method 9090 (Liner/Leachate Compatibility Testing

As a condition of the Hazardous Waste Facility Permit (DTSC, 2003) "the Permittee shall test all components of landfill liners for waste/leachate compatibility using EPA Method 9090 or other more appropriate methods approved by DTSC. The liner components include seamed portions of 60 -mil [HDPE], [HDPE] geomembrane material, [HDPE] geonet, geotextiles fabric, graded gravel used as drainage material, and [HDPE] piping used in the leachate collection systems."

For Landfill B-18 Phases I and II, leachate samples from an on-site hazardous waste landfill were used to test compatibility with the liner components. The following reports were submitted to the agencies, confirming the acceptability of the materials:

- Chemical Compatibility Testing of National Seal 60 mil Geomembrane with Kettleman Hills Waste Leachate, Soltex Resin, NSC\#CO2A, Final Report (TRI/Environmental, Inc., October 14, 1991)
- Leachate Compatibility of Geosynthetic Materials - Kettleman Hills Facility, Final Report (J\&L Testing Company, November 4, 1991)
- Geotechnical Laboratory Test Results Aggregate/Leachate Compatibility Testing, Kettleman Hills Facility, (J\&L Testing Company, November 7, 1991)
- NSC 60 mil Textured HDPE Chemical Compatibility Testing EPA Method 9090 Kettleman Hills Facility, (J\&L Testing Company, September 8, 1992)

The materials that were tested in 1991 and 1992 (during the B-18 construction) by J\&L Testing Company included:

```
Gundle XL-14 Geonet
NSC PN-3000 Geonet
Trevira }1125\mathrm{ Geotextile
Gundle 60mil HDPE Geomembrane
Gundle 60mil Textured HDPE Geomembrane (New Resin)
NSC 60 mil Textured HDPE Geomembrane (1992 testing)
PVC Pipe
HDPE Pipe
LCRS Gravel
```

Testing was conducted in accordance with the Test Protocol and Methodology for Compatibility Testing (CWMI, May 31, 1988, revised August 31, 1989). This Test Protocol was approved with the issuance of EPA Permit Modification \#2 and DTSC Permit Modification \#1. Results of the testing indicate that the liner components, when exposed to leachate, would function satisfactorily and had no adverse cumulative effect on the physical and/or engineering properties.

Phase III will utilize similar materials for the construction of the liner components. The previous test results as well as industry-wide testing of liner materials with leachate (see Appendix F, Attachment 3), indicate that the proposed materials will function without adverse effect due to the exposure to leachate. Based on these data, no additional compatibility testing is proposed for materials to be used in the construction of Phase III. As allowed by the Hazardous Waste Facility Permit, the "existing
test data from similar studies, and manufacturer supplied specifications [may be] used as an alternative [to testing]."

4.0 LANDFILL B-18 DESCRIPTION

4.1 General

This section describes the B-18 design configuration, the key elements of $\mathrm{B}-18$, and the supporting reasoning for the $\mathrm{B}-18$ design.

B-18 development includes the following three phases:

- Phase I, which was constructed from October 1990 to February 1992 and has a footprint area of approximately 21 acres as shown on Sheet 2 in Appendix A.1.
- Phase II, which was constructed from August 1992 to November 1993 and has a footprint area of approximately 32 acres as shown on Sheet 2 in Appendix A.1.
- Phase III, which is anticipated to be constructed in 2012 and will have a footprint area of approximately 13.8 acres as shown on Sheet C-3 in Appendix A.2.

The landfill components and construction procedures for the three phases and final closure of B-18 are described in the following documents:

1. The Drawings for Phases I and II provided in Appendix A.1. It is noted that the original final closure design of $\mathrm{B}-18$ shown on the Drawings in Appendix A. 1 is superseded by the final closure design shown on the Drawings in Appendix A. 2 and discussed herein.
2. The Drawings for Phase III and final closure provided in Appendix A.2.
3. The Specifications and CQA Plan for Phases I and II (ESI, 1990b).
4. The Specifications for Phase III and final closure contained in Appendices O.1 and O.2, respectively.
5. The CQA Plans for Phase III and final closure presented in Appendices P. 1 and P.2, respectively.
6. The CQA Reports prepared for Phase I, which consist of the following:
a. Volume 1 - Subgrade Geologic Mapping Report (Golder, 1992).
b. Volume 2 - Clay Liner Source Report (ECS, 1992a).
c. Volume 3 - Secondary Clay Liner Construction Report (ECS, 1992b).
d. Volume 4 - Secondary HDPE Liner and Leachate Collection System Construction Report (ECS, 1992c).
e. Volume 5 - Primary Clay Liner Construction Report (ECS, 1992d).
f. Volume 6 - Primary HDPE Liner and Leachate Collection System Construction Report (ECS, 1992e).
g. Volume 7 - Summary Construction Observation Report (ECS, 1992f).
h. Volume 8 - Operational Features Report (ECS, 1992g).
i. Volume 9 - Design Changes and Design Clarifications Report (ECS, 1992h).
7. The CQA Reports prepared for Phase II, which consist of the following:
a. Volume 1 - Clay Liner Source Report (GCS, 1993a).
b. Volume 2 - Subgrade Geologic Mapping Report (GCS, 1993b).
c. Volume 3 - Excavation and Structural Fill Placement Construction Report (GCS, 1993c).
d. Volume 4 - Secondary Clay Liner Construction Report (GCS, 1993d).
e. Volume 5 - Secondary and Vadose HDPE Liner and Leachate Collection System Construction Report (GCS, 1993e).
f. Volume 6 - Primary Clay Liner Construction Report (GCS, 1993f).
g. Volume 7 - Primary HDPE Liner and Leachate Collection System Construction Report (GCS, 1993g).
h. Volume 8 - Summary Construction Observation Report (GCS, 1993h).
i. Volume 9 - Operational Features Report (GCS, 1993i).

An overview of the existing Phases I and II of B-18 is provided on the following sheets in Appendix A.1:

- \quad Sheet 2 shows the Phases I and II areas and the former stockpile areas that were used for temporary storage of excavated materials during the construction of Phases I and II.
- Sheet 3 shows the Phase I subgrade elevations and the initial Phases I and II clay borrow area configuration in the Stratum 18-8 claystone described in Section 3 (see Figures 3.1 and 3.2).
- \quad Sheet 7 generally shows how the Phases I and II clay borrow area was expanded after completion of Phase I but prior to the construction of Phase II. However, the grades shown on Sheet 7 were adjusted such that overexcavation below the Phase II subgrade was avoided.
- \quad Sheet 8 shows the interim closure of Phase I and the Phase II subgrade elevations.

An overview of the proposed Phase III and final closure of B-18 is provided on the following sheets in Appendix A.2:

- Sheet C-1 and C-2 show the existing conditions of the B-18 area (as of March 28, 2008) and the location of the Phase III clay borrow area (borrow is within Landfill B17).
- \quad Sheet C-3 shows the subgrade elevations for all of B-18.
- Sheet C-4 illustrates the configuration of the B-18 closure cover final development grades (including benches, drainage, and access roads) for B-18.
- Sheets C-5 and C-6 show critical cross sections that further detail the development of B-18
- Sheet C-7 provides critical details for the liner cross section, liner termination, liner tie-in, and other items required for development of B-18.
- \quad Sheet C-8 provides critical details for the extension of the existing leachate riser system as well as development of a replacement leachate riser and tank station.
- Sheet C-9 provides details to convey drainage into the new southern retention basin.
- \quad Sheet C-10 provides additional drainage bench details and the final cover profile.

Detailed descriptions of the B-18 design are provided in the following sections:

- \quad Section 4.2 - Phase I;
- \quad Section 4.3 - Phase II;
- \quad Section 4.4 - Phase III;
- \quad Section 4.5 - Final Closure;
- \quad Section 4.6 - Clay Borrow Operations;
- \quad Section 4.7 - Liner Systems;
- \quad Section 4.8 - Leachate Collection and Recovery Systems;
- \quad Section 4.9 - Surface Water Control; and
- \quad Section 4.10 - Utilities.

4.2 Phase I

Phase I comprises the western 40 percent (approximately) of the existing B-18 area (see Sheets 2 to 6 in Appendix A.1). Phase I of B-18 was configured so that:

- Disposed wastes are located within the 1990 CUP Facilities Boundary (Kings County, 1990).
- The number of boundary curves, which complicate excavation and liner construction, were minimized.
- Approximately 1,000,000 cubic yards of waste (including daily cover) were disposed of in Phase I.
- The waste is adequately stable under the operating and interim fill conditions.

The north, south, and west sides of Phase I form the originally-planned ultimate B-18 limits and were constructed as the final waste containment boundary. However, the proposed Phase III expansion will extend the ultimate limits of B-18 such that the Phase I area will be bordered by Phase III along the full length of its north, south, and west sides. The entire east side of Phase I is bordered by Phase II. Prior to the construction of Phase II, the east boundary of Phase I consisted of a berm (the Phase I/II Berm) that rises approximately 40 to 45 feet above the landfill base (see Sheets 3 and 8 in Appendix A.1). The Phase I/II Berm allowed waste to be filled in horizontal lifts in Phase I without having a laterally-unsupported waste slope on the Phase I base liner system. This minimized the risk of slope instability during Phase I disposal operations. The Phase I/II Berm is a permanent feature of the B-18 floor.

Almost all of Phase I is within excavated rock of the San Joaquin Formation. The only significant areas that required structural fill during the construction of Phase I were along the B-18 Perimeter Road near the northwest and southwest corners of $B-18$, as shown on Sheet 3 A and in Section A 3A/15 on Sheet 15 in Appendix A.1.

The former access route into the Phase I area during its initial filling is illustrated on Sheet 5 in Appendix A.1. The main waste truck access included the following segments:

- Entering B-18 near the northwest corner of Phase I.
- Proceeding southward along the northern two-thirds (approximately) of the B-18 Perimeter Road on the west side of B-18.
- Proceeding down the 35-foot-wide access ramp on the west, south, and east Phase I waste area slopes. Special liner and road construction details for this access ramp are discussed in Section 4.7.3.3.

The Phase I waste area access ramp discussed above was aligned to intersect the top of the Phase I/II Berm near the southeast corner of Phase I. This allowed operations personnel to move landfill equipment and daily soil cover into the Phase I waste area along a temporary road on top of the Phase I/II Berm without impacting the main waste truck access. The appropriate manner for handling site traffic was refined on an on-going basis as operational experience was gained.

The existing B-18 Perimeter Road (see Section A-3,8/15 on Sheet 15 and Section A on Sheet 17 in Appendix A.1) is typically set back approximately 20 feet from the waste disposal limit to allow for the future construction of the final closure cover (Section 4.5). This separation is wider at two locations along the western portion of the B-18 Perimeter Road to accommodate the leachate collection and recovery system (LCRS) riser pads.

The base of Phase I is subdivided into two separate leachate collection zones that are referred to as Areas IA and IB, as shown on Sheets 2 through 5 in Appendix A.1. These areas are sloped toward two separate leachate sumps. This arrangement reduces the flow length for leachate to be collected as compared to an arrangement with only one sump at either end of the Phase I base. The sump areas are described in Section 4.8.

Waste was placed in nearly level, 10 -foot-thick lifts across the entire Phase I area. This filling method avoided the condition of having interim waste slopes that were supported directly on the liner system. The interim waste surface was sloped slightly toward the north to allow for collection of surface water at a single location away from the waste fill access ramp.

Sheet 6 in Appendix A. 1 shows the Phase I Intermediate Closure configuration that provided approximately $1,000,000$ cubic yards of initial airspace in the Phase I area. The intermediate closure was primarily an operational condition to allow time for the then newly constructed Phase II to be filled to an elevation above the Phase I/II berm. Design considerations for this intermediate fill plan consisted of the following:

- A maximum waste elevation of approximately 810 feet to provide the $1,000,000$ cubic yards of airspace.
- The east-facing intermediate closure slope was configured to provide adequate stability against a potential wedge failure occurring along the liner system. This stability consideration is discussed in Section 5.3.4.
- The south-facing intermediate closure slope was configured such that the access ramp to the Phase I waste area was maintained to provide access into the Phase II disposal area.
- The north-facing intermediate closure slope was provided to avoid having any laterally-unsupported portion of the waste fill directly on the liner system.

The Phase I Intermediate Closure top deck included a run-off collection sump to temporarily collect direct rainfall run-off from the top deck area. Control of this run-off is described in Section 4.9.3.

Once the Phase I Intermediate Closure elevations were reached, the flatter portions of the intermediate closure slopes (i.e., the top deck slopes) were temporarily covered by a nominal soil foundation layer and an overlying temporary 40-mil HDPE geomembrane for infiltration control. The temporary run-off collection sump in the top deck area was also lined with a 40 -mil HDPE geomembrane to minimize infiltration during the infrequent periods when surface water was temporarily retained in this sump. The sideslope portions of the Phase I Intermediate Closure area were covered with soil as shown in Section A-6/23 on Sheet 23 in Appendix A. 1 to provide stability and infiltration control. This soil was recovered and used for daily cover when waste disposal in the Phase I area resumed. Additionally, the 40-mil HDPE geomembrane was removed prior to covering the interim Phase I top deck with additional waste.

4.3 Phase II

Phase II comprises the eastern 60 percent (approximately) of the existing $\mathrm{B}-18$ area (see Sheets 2,8 , 9, and 10 in Appendix A.1). This area encompasses the initial Phases I and II clay borrow area (excavated during the Phase I construction), the Phases I and II clay mixing area shown on the Drawings in Appendix A.1, and the Phase II clay borrow area expansion shown on Sheet 7 in Appendix A. 1 (excavated prior to the construction of Phase II). Phase II of B-18 was configured so that:

- Disposed wastes are located within the 1990 CUP Facilities Boundary (Kings County, 1990).
- The number of boundary curves, which complicate construction, were minimized.
- The waste is adequately stable under the operating and interim fill conditions.

The eastern portion of Phase II was located to allow for the construction of the Northeast Containment Basin (see Sheet C-2 and C-3 in Appendix A.2).

Most of the Phase II area was also formed by excavation into rock of the San Joaquin Formation. A fill embankment was constructed along the eastern portion of Phase II where the former main natural drainage channel formed a low spot in the B-18 perimeter (see Figure 2.1). This fill embankment contains waste on its western (Phase II) side and forms the western sideslope of the Northeast Containment Basin on its eastern side. A cross-section of this embankment is shown in Section A$8 / 23$ on Sheet 23 in Appendix A.1. Fill was also placed along the southern portion of the B-18 Perimeter Road (see Section D-8/15 on Sheet 15 in Appendix A.1) and to form the remaining upper sideslopes of the Northeast Containment Basin.

Waste truck access into Phase II occurred along the previously-described (see Section 4.2) access route into Phase I. This was accomplished by extending the Phase I access ramp across the Phase I/II Berm and then constructing an access ramp down the southern Phase II sideslope, as shown on Sheet 9 in Appendix A.1. This access ramp was 44 feet wide (see Section A on Sheet 16A in Appendix A.1) to provide adequate room for waste truck and operations equipment traffic.

As with Phase I, the existing B-18 Perimeter Road (see Section A-3,8/15 on Sheet 15 and Section A on Sheet 17 in Appendix A.1) is typically set back approximately 20 feet from the Phase II waste disposal limit to allow for the future construction of the final closure cover (Section 4.5). This separation is wider at two locations along the northeastern and southeastern portions of the B-18 Perimeter Road to accommodate the Phase II LCRS riser pads.

Phase II is also provided with two separated sumps (see Sheets 8, 9, and 10 in Appendix A.1) serving areas designated as Areas IIA and IIB. These sumps are located to optimize drainage distances within the Phase II LCRS and to provide access for the leachate pump and storage facilities along the Phase II perimeter.

Waste placement in the Phase II area also occurred in nearly level lifts to avoid laterally-unsupported slopes against the liner system. A slight slope on the waste surface was maintained toward one or two low areas during filling to allow for collection of direct rainfall run-off in the Phase II area. Procedures that were used for handling this run-off are described in Section 4.9.5.

When the waste elevation in Phase II reached the Phase I/II berm height, the entire existing B-18 Landfill began operating as a single contiguous disposal area.

4.4 Phase III

The proposed Phase III vertical and lateral expansion of B-18 will increase the footprint area of the landfill by approximately 14 acres. Most of the lateral expansion area will be along the existing western, northwestern, and southern edges of B-18. Sheet C-3 in Appendix A. 2 shows the limit of the existing B-18 liner system and the limit of the Phase III expansion area. Phase III of B-18 is configured so that:

- Disposed wastes are located within the modified CUP Facilities Boundary.
- The number of boundary curves, which complicate construction, will be minimized.
- The maximum waste elevation is increased from 965 feet to 1,018 feet, which provides B-18 with a total airspace of approximately $15,700,000$ cubic yards. Of this total airspace capacity (volume between base grades and final grades which includes lining and final cover systems), the expansion of B-18 accounts for approximately $5,000,000$ cubic yards of airspace.
- The waste is adequately stable under the operating, interim, and final fill conditions.

Construction of the Phase III liner system will be completed in one continuous construction sequence in accordance with the certified EIR. However, to facilitate early use of a portion of the expansion area, KHF will submit a CQA certification report for the 3.5-acre Phase IIIA area in the northwestern portion of the Phase III expansion area. Once approval from the regulatory agencies is obtained, the site will begin placement of waste within the approved Phase IIIA limits. Construction of the Phase IIIB liner system will continue and would be expected to be completed within 6 months of the initiation of waste placement in Phase IIIA. A separate CQA certification report will be prepared and submitted for Phase IIIB.

The configuration of the Phase IIIA waste fill is shown on Sheet C-4A in Appendix A.2. As can be seen on Sheet C-4A, the waste placement in Phase IIIA will involve filling to final design grades along the north, east, and west portions of the landfill. The south limit of waste in Phase IIIA will terminate in a $2 \mathrm{H}: 1 \mathrm{~V}$ interim waste fill slope. A lined temporary stormwater containment berm will be provided a minimum of 10 feet from the toe of the Phase IIIA interim waste slope as shown in Detail 1 on Sheet C-4A. This temporary berm will prevent stormwater run-off from the 24-hour PMP storm event from leaving the Phase IIIA area and will also prevent stormwater run-on from entering the Phase IIIA area from the south, as discussed in Sections 5.5.5 and 5.5.4, respectively. The Phase IIIA area will not involve the construction of any leachate controls; the temporary stormwater containment berm will also serve to contain leachate and direct this leachate to the adjacent Phase IA leachate collection system.

The southern limits of Phase III are located to allow for the construction of a second surface water run-off containment basin for $\mathrm{B}-18$, herein referred to as the South Containment Basin, which will be built during the construction of Phase IIIB. The layout of Phase III and the South Containment Basin also allows two of the existing groundwater monitoring wells along the south side of B-18 (K-51 and K-32R) to be protected during the construction of Phase III. Monitoring well K-68 will be extended due to soil fill placement in the vicinity of this well.

The Phase III expansion will involve the construction of an additional sideslope liner system only (i.e., no additional base liner will be installed). Most of the Phase III sideslope liner will be constructed over either the existing B-18 Perimeter Road or the existing rock cut slopes located above the existing B-18 Perimeter Road. The existing rock cut slope will be regraded to the proposed design subgrade for Phase III. A fill embankment will be required along much of the southern and southeastern boundary of the Phase III limits to build this area up to the design subgrade elevations. This fill embankment will contain the waste on its northern (Phase III) side and will form the northern sideslope of the South Containment Basin on its southern side. A cross-section of this embankment is shown in Section D on Sheet C-5 in Appendix A.2.

Waste truck access into the Phase III disposal area will be initially through the existing entry point into B-18 at its northwest corner. Access to B-18 will eventually be relocated to the west side perimeter access road as the waste fill is extended above the surrounding topography.

The new B-18 Perimeter Road (see Sheet C-3 and C-4 in Appendix A.2) will typically be set back a minimum of 20 feet from the Phase III waste disposal limit to allow for the future construction of the final closure cover (Section 4.5). This separation will be wider at the locations of the three LCRS riser pads (the riser pads for Areas IA, IB, and IIB) that will be relocated up to the new B-18 Perimeter Road during the Phase III construction.

Phase III will not include any additional floor areas. Hence, no new LCRS sumps will be constructed as part of Phase III. Depending upon where leachate originates within Phase III, it will flow to one of the four existing sumps (IA, IB, IIA, and IIB).

Similar to Phases I and II, waste will be placed in the Phase III area in nearly level lifts to avoid laterally-unsupported slopes against the liner system. A slight waste surface slope will be maintained toward one or two low areas during operations to allow for collection of direct rainfall run-off in the Phase III area. Procedures that will be used for handling this run-off are described in Section 4.9.7.

4.5 Final Closure

Sheet C-4 in Appendix A. 2 shows the proposed B-18 final closure configuration, which is based on the following parameters:

- Overall closure slope inclinations of $4 \mathrm{H}: 1 \mathrm{~V}$.
- Approximately 25 -foot wide benches at maximum vertical intervals of 50 feet.
- Approximately $3.5 \mathrm{H}: 1 \mathrm{~V}$ slope inclinations between the individual benches.

Access to each final cover bench and the top deck will be provided by either the new B-18 Perimeter Road or the Cover Access Road that will run up the west sideslope of B-18 at the approximate location shown on Sheet C-4 in Appendix A.2. This Cover Access Road will be developed during operations to haul waste onto the above-grade disposal areas.

The final cover benches will be sloped to direct surface water flow to the Cover Access Road and/or the new B-18 Perimeter Road. The longitudinal slope of the benches will generally be about 2 percent to control flow velocities and to allow adjustment for differential settlement of the waste. The Cover Access Road and the new B-18 Perimeter Road will both be sloped at about 8 percent in most locations.

Each final cover bench will be configured as a trapezoidal drainage ditch to provide the necessary capacity to adequately convey surface water flows resulting from the 6-hour Probable Maximum Precipitation (PMP) storm event. The 6-hour PMP is used to design conveyance structures (e.g. channels) since the rainfall intensity is greater than the 24 -hour PMP, and is therefore conservative. The Cover Access Road will be configured with a lined V-ditch to convey surface water flows from the 100 -year 24 -hour storm event. In the event of the 6-hour PMP storm event, the flow will be contained within the road width.

In accordance with the current Hazardous Waste Facility Permit for the KHF (DTSC, 2003), the final cover system for B-18 will consist of the following components (from bottom to top):

- Intermediate soil cover (minimum of 1 foot) over the last lift of waste.
- A foundation layer consisting of a minimum of 1 foot of compacted soil having a maximum permeability of $1 \times 10^{-5} \mathrm{~cm} / \mathrm{s}$.
- 40-mil textured HDPE geomembrane.
- A $12 \mathrm{oz} / \mathrm{sy}$ nonwoven geotextile.
- A minimum 2.5-foot-thick vegetative cover soil layer. The top surface of the vegetative cover soil layer will be vegetated with plants having shallow root depths. Seed types for the final cover vegetation are provided in Section 02924 of the final closure Specifications in Appendix O.2.

The portions of the geomembrane located under the Cover Access Road and benches will be sloped at a minimum of 2 percent toward the outside of the landfill so that any water in the geotextile drainage layer can flow toward the toe of the cover system around the perimeter of the landfill.

Detail 4 on Sheet C-7 in Appendix A. 2 shows the typical perimeter detail of how the final cover system will be terminated and toed out onto the B-18 Perimeter Road. The HDPE geomembrane and geotextile of the cover system will be terminated approximately 5 -feet out beyond the limit of the foundation layer.

In accordance with 22 CCR 66264.111 and $66264.310, \mathrm{~B}-18$ has been designed to be closed in a manner that will:

- Minimize the need for further maintenance;
- Control, minimize or eliminate, to the extent necessary, to protect human health and the environment, post-closure escape of hazardous waste, hazardous constituents, leachate, contaminated rainfall or run-off, or waste decomposition products to groundwater, surface water or the atmosphere;
- Prevent the downward entry of water into the closed landfill throughout a period of at least 100 years;
- Promote drainage;
- Accommodate settling and subsidence so that the cover's integrity is maintained; and
- Accommodate lateral and vertical shear forces generated by the MCE.

After waste acceptance ceases in B-18, the intermediate cover/foundation layer will be graded per the final closure grading plan, as shown on Sheet C-4. A 40 mil HDPE geomembrane, geotextiles and vegetative cover will be constructed over the foundation layer. The entire cover will be vegetated for erosion control. The final cover has been designed to avoid ponding, control run-off, minimize erosion and withstand the MCE event. Therefore the cover will function with minimum maintenance. The base liner and closure cover will provide barriers to protect human health and the environment.

Post-closure inspections will be performed and post-closure maintenance will occur in accordance with the Hazardous Waste Facility Permit (DTSC, 2003).

4.6 Clay Borrow Operations

4.6.1 Phases I and II

The initial Phases I and II clay borrow area excavation was completed during the Phase I excavation as shown on Sheet 3 in Appendix A.1. Sheet 7 in Appendix A. 1 shows how the Phases I and II clay borrow area was extended toward the southeast before the Phase II construction began. The crosssections on Figure 3.2 illustrate how the area was excavated to borrow clay from the thick Stratum $18-8$ claystone in the Phase II footprint.

The west-facing sideslope of the clay borrow area was excavated along the rock's dip as the claystone was recovered down to the underlying stratum. This sideslope had an inclination of approximately 25 to 30 degrees on average. The other sideslopes of the clay borrow area cut across bedding planes and were inclined at $2 \mathrm{H}: 1 \mathrm{~V}$.

A bench was provided around the initial borrow area (see Sheet 3 in Appendix A.1) at an elevation of approximately 720 feet. This bench was used to anchor the $40-\mathrm{mil}$ HDPE geomembrane (see Section B on Sheet 13 in Appendix A.1) in the bottom of the borrow area. This lined area served as an interim containment basin for run-off from the Phase I access roads.

Sheet 3 in Appendix A. 1 also shows how the eastern portion of the Phase II area was initially graded to create a relatively flat clay mixing area. KHF construction crews prepared the claystone in this area to achieve the required engineering properties for clay liner material. The clay preparation procedures used for the Phases I and II construction included the following activities:

- \quad Ripping and excavation of the claystone in a manner that reduced the friable material to relatively small particle sizes;
- Mechanical breakdown of the excavated material to further reduce particle sizes; and
- Moisture conditioning of the clay liner material on mixing tables.

The clay liner test pad described in Appendix E. 1 was constructed of Stratum 18-8 clay from the Phases I and II borrow source. This clay liner test pad program demonstrated that the Stratum 18-8 clay was suitable for use as clay liner material under field conditions.

4.6.2 Phase III

The Phase III clay borrow area will be located adjacent and north of Landfill Unit B-17 (i.e., northwest of B-18), as shown on Sheet C-1 in Appendix A.2. This clay borrow source consists of a thick bed of the Pecten Claystone (see Appendix E.2). The contractor will be responsible for excavating and processing all of the required clay liner material for Phase III. Excavation and processing of the Pecten Claystone may be performed as part of the construction of various phases of Landfill B-17. KHF personnel will instruct the contractor on the appropriate excavation configurations to be used when mining the Pecten Claystone from the borrow area.

Sheet C-1 in Appendix A. 2 also shows the designated clay mixing area that will be used by the contractor to process and prepare the clay liner material. This mixing area will be located adjacent to the clay borrow area (i.e., northwest of $\mathrm{B}-18$). The final clay preparation procedures, to be determined by the contractor, may include combinations of the following activities:

- Ripping and excavation of the claystone in a manner that reduces the friable material to relatively small particle sizes;
- Crushing of the excavated material to further reduce particle sizes;
- Blending different portions of the claystone by the use of a pugmill or discing the material in lifts; and
- Pre-wetting stockpiled clay material with fresh water and/or a weak dispersant solution to accelerate weathering prior to re-excavation of the stockpiled clay.

A clay liner test pad was constructed from the Pecten Claystone material at the end of July 2008. The SDRI test report was completed in December 2008 (Geosyntec, 2008a). This clay liner test pad program verified the adequacy of the clay material from the Phase III borrow source when placed and compacted under actual field conditions. Based on laboratory testing and the SDRI test by Geosyntec (see Appendices E. 2 and E.3), the Pecten Claystone material meets the requirements for use as clay liner. Additional pre-construction testing will be performed to confirm materials used for the construction meet the specified properties.

For Phase III, the compacted clay liner will be constructed using the same specifications as were used for the Phases I and II clay liner (see Section 4.7.2.1). Similar construction equipment will be used to compact the Phase III clay liner as was used to construct the Phases I and II clay liner test pad.

4.7 Liner Systems

4.7.1 General

Liner system details and sections for Phases I and II are shown on Sheets 16 through 22A in Appendix A.1. The Phase III and final closure liner system details and sections are shown on Sheets C-7 through C-10 in Appendix A.2. The B-18 liner configurations are generally the same as those successfully used for prior KHF disposal WMUs. The primary modifications to the B-18 liner system design compared to KHF landfills designed prior to 1990 are:

- The use of textured HDPE geomembranes throughout $\mathrm{B}-18$ and the use of geocomposites and geotextiles on the sideslope areas to improve the stability of B-18.
- The use of protective liner material on the B-18 sideslopes to provide temporary ultraviolet protection to the underlying geotextile component of the geocomposite. This protective liner is removed as the operations layer soil is periodically extended up the slope in advance of the waste mass.

Each of the basic liner systems used in B-18 are described in Section 4.7.2. Special liner construction details (e.g., anchor trenches) are described in Section 4.7.3. Appendix F. 1 contains data sheets that list representative properties of the geosynthetic materials used in the construction of Phases I and II. Similarly, Appendix F. 2 contains data sheets that list typical properties of the geosynthetic materials that will be used in the construction of Phase III and the final cover. The CQA reports for Phases I and II contain detailed information on the properties of the existing B-18 liner systems.

4.7.2 Liner System Configurations

4.7.2.1 Base Liner

The existing base (i.e., floor) areas of B-18 were each graded to drain toward a sump where leachate is monitored and collected in the three separate zones (primary, secondary, and vadose) described in Section 4.8. The entire base of each of the four areas (IA, IB, IIA, and IIB) was graded at 2 percent toward a central flow line. The central flow line in each area was sloped at 2.4 percent toward that area's respective collection sump. No new base area will be constructed for Phase III.

Detail 2 on Sheet 16 in Appendix A. 1 shows the general B-18 base liner system configuration, which consists of the following components (from top to bottom):

- A 2-foot-thick (minimum) base soil operations layer. This operations layer was constructed from on-site granular material with a maximum particle size of 6 inches. The purpose of this layer was to provide a working surface for waste trucks and landfill equipment while protecting the underlying liner system components.
- A 1-foot-thick (minimum) primary LCRS consisting of the following components (from top to bottom):

An $8 \mathrm{oz} / \mathrm{sy}$ nonwoven geotextile (Trevira 1125) to function as a filter below the operations layer soil.

A 12-inch-thick (minimum) drainage gravel layer. A single-sided geocomposite filter/drainage layer consisting of an $8 \mathrm{oz} / \mathrm{sy}$ nonwoven geotextile (Trevira 1125) thermally-bonded to one side of a Polynet 3000 geonet. The geocomposite was placed with the geotextile facing up.

An $8 \mathrm{oz} /$ sy nonwoven geotextile (Trevira 1125) to provide increased interface shear strength.

- A composite primary liner consisting of the following components (from top to bottom):

A 60-mil textured HDPE geomembrane.

A 1.5-foot-thick (minimum) layer of compacted clay having a maximum permeability of $1 \times 10^{-7} \mathrm{~cm} / \mathrm{s}$.

- A secondary LCRS consisting of the following components (from top to bottom):

A $16-\mathrm{oz} /$ sy nonwoven geotextile (Trevira 1155) to function as a filter below the primary clay liner.

An approximately 12-inch-thick layer of drainage gravel.
A single-sided geocomposite filter/drainage layer consisting of a $16-\mathrm{oz} / \mathrm{sy}$ nonwoven geotextile (Trevira 1155) thermally-bonded to one side of a Polynet 3000 geonet. The geocomposite was placed with the geotextile facing up.

An 80 -foot-wide layer of Polynet 3000 geonet centered along the entire secondary LCRS flow line above the vadose trench.

A 16-oz/sy nonwoven geotextile (Trevira 1155) to provide increased interface shear strength.

- A composite secondary liner consisting of the following components (from top to bottom):

A 60-mil textured HDPE geomembrane.
A 3.5-foot-thick (minimum) layer of compacted clay having a maximum permeability of $1 \times 10-7 \mathrm{~cm} / \mathrm{s}$.

- A prepared subgrade that was graded smooth and proof-rolled to assure that soft or loose zones did not exist.

Both of the clay liners (primary and secondary) were placed in 8-inch-thick (maximum) loose lifts before compaction. The Phases I and II Specifications (ESI, 1990b) required the clay to be compacted to a dry density of at least 90 percent of its Modified Proctor maximum dry density (ASTM D1557) at a water content wet of optimum (ASTM D1557). During the Phase I construction, the clay liner placement specifications were modified to allow the compacted clay's dry density and moisture content to lie within the window defined by the following four points on a moisture-dry density plot:

- Two (2) percent above the optimum moisture content for a dry density equal to 90 percent of the Modified Proctor maximum dry density.
- \quad Five (5) percent above the optimum moisture content for a dry density equal to 90 percent of the Modified Proctor maximum dry density.
- \quad One (1) percent above the optimum moisture content for a dry density equal to 98 percent of the Modified Proctor maximum dry density.
- Three (3) percent above the optimum moisture content for a dry density equal to 97 percent of the Modified Proctor maximum dry density.

This window, which allowed a lower water content for higher compactive efforts, was established to:

- Assure that both the required strength and permeability characteristics of the clay were achieved; and
- Provide the flexibility needed for controlling the clay's moisture content in an arid environment.

It should be noted that an allowance was made for up to 20 percent of the clay moisture-density test results to be slightly outside the above-described compaction window by ± 0.5 percent for moisture content and -0.5 percent for relative compaction as long as the average of all acceptable tests for the day fell within the compaction window. The above-described compaction window (along with the allowance for outliers) was used for both the Phases I and II clay liner construction and was formally documented in two design change letters prepared by ESI and contained in the CQA reports for Phases I and II (ECS, 1992h; GCS, 1993h). Copies of both of these ESI letters are included in Appendix E.4.

4.7.2.2 Vadose Zone Trench

Section C on Sheet 16 in Appendix A. 1 shows the 12 -foot-wide vadose trench that is located directly below the secondary clay liner and along the flow line of the LCRS. Key elements of the vadose trench are:

- An 80 -mil smooth HDPE geomembrane, which extends approximately 2.5 feet beyond both sides of the trench; and
- A 1-foot-thick layer of drainage gravel wrapped in a 16 -oz/sy nonwoven geotextile (Trevira 1155).

4.7.2.3 Phases I and II Sideslope Liner

Detail 1 on Sheet 16 in Appendix A. 1 shows the typical existing Phases I and II sideslope liner system configuration. This system includes each basic component of the base liner system except the drainage gravel layers and the primary clay liner, none of which are required due to the relatively steep inclination of the sideslope liner system and the resulting rapid drainage of any liquids in the LCRS. The Phases I and II sideslope liner system consists of the following components (from top to bottom):

- A 2-foot-thick (minimum) soil operations layer to protect the liner system from the disposal operations. A 1-inch maximum particle size criterion was established for the slope operations layer because this material was placed directly against the geosynthetic layers. The slope operations layer was placed in increments at least 3 feet but not more than 10 feet above the rising waste level.
- A temporary protective liner to protect the underlying geotextile component of the geocomposite from ultraviolet light prior to placement of the operations layer. This protective liner consisted of white 40 -mil smooth HDPE geomembrane and was removed as the operations layer was placed.
- A primary LCRS consisting of a single-sided geocomposite underlain by an $8 \mathrm{oz} / \mathrm{sy}$ nonwoven geotextile (Trevira 1125). The single-sided geocomposite consisted of an $8 \mathrm{oz} / \mathrm{sy}$ nonwoven geotextile (Trevira 1125) thermally-bonded to a Polynet 3000 geonet and was placed with the geotextile facing up. In construction of Phase II the components were combined in a double-sided geocomposite.
- A primary liner consisting of a 60-mil textured HDPE geomembrane.
- A secondary LCRS consisting of a single-sided geocomposite underlain by an $8 \mathrm{oz} / \mathrm{sy}$ nonwoven geotextile (Trevira 1125). The single-sided geocomposite consisted of an 8 oz/sy nonwoven geotextile (Trevira 1125) thermally-bonded to a Polynet 3000 geonet and was placed with the geotextile facing up. In construction of Phase II the components were combined in a double-sided geocomposite.
- A composite secondary liner that is the same as that used in the base liner system and consists of the following components (from top to bottom):

A 60-mil textured HDPE geomembrane.

A 3.5 -foot-thick (minimum) layer of compacted clay having a maximum permeability of $1 \times 10^{-7} \mathrm{~cm} / \mathrm{s}$.

- The sideslope subgrade that was prepared differently than the subgrade for the base liner in order to increase stability of the clay liner. The sloped subgrade surface was scarified to a depth of approximately 4 inches as the clay liner was placed to create a rough interface between these two soil layers.

4.7.2.4 Phase III Sideslope Liner

Detail 1 on Sheet C-7 in Appendix A. 2 shows the typical Phase III sideslope liner system configuration. This system is the same as the existing sideslope liner system for Phases I and II except the secondary clay liner will have a minimum thickness of 3 feet instead of 3.5 feet and double-sided geocomposites will be used instead of single-sided geocomposites with an underlying geotextile. The Phase III sideslope liner system will consist of the following components (from top to bottom):

- A 2-foot-thick (minimum) soil operations layer with a 1 -inch maximum particle size criterion. The slope operations layer will be placed in increments at least 3 feet but not more than 10 feet above the rising waste level.
- Prior to the placement of the 2-foot-thick operations layer on the slope, a temporary 40 mil thick white HDPE protective liner will be installed. The protective liner will be removed as the operations layer is placed.
- A primary LCRS consisting of a double-sided geocomposite.
- A primary liner consisting of a 60 -mil textured HDPE geomembrane.
- A secondary LCRS consisting of a double-sided geocomposite.
- A composite secondary liner consisting of the following components (from top to bottom):

A 60-mil textured HDPE geomembrane.
A 3-foot-thick (minimum) layer of compacted clay having a maximum permeability of $1 \times 10^{-7} \mathrm{~cm} / \mathrm{s}$.

- A prepared subgrade that will be scarified to a depth of approximately 4 inches as the clay liner is placed to create a rough interface between these two soil layers.

4.7.2.5 Base to Sideslope Liner Transition

Details 4 and 5 on Sheet 16 in Appendix A. 1 show how geotextiles were wrapped around the ends of the drainage gravel and clay layers where the existing base and sideslope liner systems meet. Since there will be no connection between the new Phase III side slope liner and any of the base liner areas of Phases I and II, this does not apply to construction of the Phase III area.

4.7.2.6 Final Cover Liner

The final closure cover liner system for B-18 will be similar to the final cover liner system approved in the Part B Permit and which has been used for closure of several other WMUs at KHF. The final closure cover liner system is described in Section 4.5.

4.7.3 Special Liner Details

4.7.3.1 Sideslope Liner Anchor Trenches

Detail 3 on Sheet 16 in Appendix A. 1 shows the typical existing sideslope liner system anchor trench around the perimeter of the existing landfill. The primary requirements of the anchor trench are to prevent the geosynthetic components of the liner system from being pulled down the slope and to minimize the potential for surface water to enter the LCRSs. A vertical separation of 0.5 feet was maintained between the individual geosynthetic components in the anchor trench to provide soil friction against each of these geosynthetics. A 3-foot-tall soil berm was installed above the anchor trench to increase the frictional resistance on the geosynthetic components and to control surface water drainage.

The construction of Phase III will result in some of the existing anchor trenches being removed, as shown in Detail 5 on Sheet C-7 in Appendix A.2. The new anchor trenches for the Phase III sideslope liner system will typically have the configuration shown in Detail 2 on Sheet C-7 in Appendix A.2. The new anchor trenches will be configured similar to the existing anchor trenches except that the 0.5 -foot vertical separation between geosynthetic components in the anchor trench is not required and the depth and width of the Phase III anchor trench are slightly less than that of the existing anchor trench.

The final closure cover system will be installed above the perimeter anchor trench as shown in Detail 4 on Sheet C-7 in Appendix A.2. This detail was described in Section 4.5.

4.7.3.2 Temporary Phase I/II Transition Anchors

The B-18 liner system was temporarily terminated along the eastern edge of Phase I prior to the construction of Phase II. During the construction of Phase II, the Phases I and II liner systems were spliced together at the following locations:

- Along the top of the Phase I/II Berm.
- Along the north and south sideslopes above the Phase I/II Berm.

Section B-5,15,23/17 on Sheet 17 in Appendix A. 1 shows the temporary liner system configuration at the top of the Phase I/II Berm at the end of the Phase I construction. The temporary anchor trench at the Phase I/II Berm was relatively far from the slope (12 feet) to provide room for the splicing of the Phases I and II liner systems. Also, the portion of the liner system on top of the Phase I/II Berm was sloped 2 percent toward Phase I to assure that leachate ponding did not occur. A small soil berm was constructed on top of the temporary anchor trench to increase frictional resistance of the geosynthetics, control surface water drainage, and provide a foundation for the temporary lights as shown in Section B on Sheet 23 in Appendix A.1.

The procedure that was used to splice the Phases I and II liner systems at the Phase I/II Berm included the following steps:

- The temporary small soil berm, drainage ditches, and light poles were removed.
- The liner system was cut a minimum of 3 feet back (i.e., toward Phase I) from the temporary anchor trench and then this anchor trench was removed.
- The east side of the Phase I/II Berm was graded to match the base of the existing clay liner while maintaining the 2 percent slope toward Phase I.
- The existing 4-foot-thick secondary clay liner on top of the Phase I/II Berm was extended to connect with the clay liner on the west sideslope of Phase II.
- Each individual geosynthetic component was spliced at the cut location, resulting in a continuous liner system over the top of the Phase I/II Berm as shown in Section B9,10/17 on Sheet 17 in Appendix A.1.

Section B-4,5/16 on Sheet 16 in Appendix A. 1 shows the temporary anchoring procedure that was used for the Phase I/II transition on the south and north sideslopes above the Phase I/II Berm. The temporary anchors at these locations were different than those at the tops of the sideslopes since there are no significant liner stresses acting perpendicular to the anchoring. The temporary edge of the Phase I sideslope liner was anchored by:

- Securing approximately 6 feet of the secondary 60-mil HDPE geomembrane beneath 2 feet of compacted clay. Clay was used to provide increased erosion resistance on the slope.
- Cutting and welding the primary 60-mil HDPE geomembrane and temporary protective liner to the secondary 60-mil HDPE geomembrane above the temporary
anchor trench. The geocomposites and geotextiles were also cut to end just inside these welds.

Section B-4,5/16 on Sheet 16 in Appendix A. 1 also shows how clay was used to contain a temporary 18 -inch diameter corrugated metal pipe (CMP) on the southside slope only. This pipe was used to convey surface water run-off from the B-18 Perimeter Road to the temporary drainage ditch along the top of the Phase I/II Berm.

The splicing of the Phases I and II liner systems on the north and south sideslopes was similar to that described above for the liner system splice at the top of Phase I/II Berm. Section B-9,10/16 on Sheet 16 in Appendix A. 1 shows how the Phases I and II sideslope liner systems were spliced together.

4.7.3.3 Phases I and II Access Ramp Liner

Section D-4,5/17 on Sheet 17 in Appendix A. 1 shows a typical cross-section through the 35 -footwide access ramp along the Phase I sideslopes. Key aspects of the design of this access ramp are:

- Both the primary and secondary LCRSs were sloped 2 percent toward the landfill to promote drainage without the need for water to flow the entire length of the ramp.
- An extra layer of $16 \mathrm{oz} / \mathrm{sy}$ nonwoven geotextile (Trevira 1155) was placed over the primary LCRS geocomposite to provide added cushioning under traffic loading.
- Three feet of operations layer soil (1-inch maximum particle size) was placed above the extra $16 \mathrm{oz} / \mathrm{sy}$ geotextile to further protect the liner system. The operations layer was also extended at least 10 feet up the sideslope areas adjacent to the access ramp to avoid the potential for traffic to accidentally drive onto the liner system.
- The roadway was finished with 1 foot of Class 2 aggregate base to provide allweather access. Note that this aggregate base layer was used instead of the 4-inchthick asphalt pavement shown in Section D-4,5/17 on Sheet 17 in Appendix A.1.

A special detail to weld the secondary $60-\mathrm{mil}$ HDPE geomembrane was provided to facilitate continuous access along the ramp during construction and to minimize the potential for the liner to lift off of the ramp before the other materials and operations layer were placed. This was accomplished by anchoring the secondary HDPE geomembrane from the bottom sideslope in a trench about 15 feet from the toe of the upper sideslope. This 15 -foot zone was then used for access until the upper sideslope portion of the secondary HDPE geomembrane was installed.

Section A on Sheet 16A in Appendix A. 1 shows the arrangement of the Phase II access ramp. This ramp into the Phase II area was 44 feet wide to provide adequate space for the waste trucks and landfill equipment. The special liner details and protection details for the Phase II access ramp were similar to those described above for the Phase I access ramp.

4.8 Leachate Collection and Recovery System (LCRS)

4.8.1 General

The main features of the B-18 LCRS are the collection sumps where leachate is detected and removed. Phases I and II have two sumps each (see Sheets 5 and 10 in Appendix A.1), which
subdivide these phases into Areas IA and IB and Areas IIA and IIB, respectively. Phase III will utilize the existing sumps for Phases I and II and, therefore, no additional sumps will be installed.

Phase IIIA will be constructed such that leachate from Phase IIIA will be able to flow directly into the Phase IA LCRS. No interim control measures, except a temporary lined containment berm at the edge of Phase IIIA/IIIB (see Sheet C-4A in Appendix A.2) will be required. Stormwater contained on the north side of this temporary berm (i.e., between the berm and the Phase IIIA waste mass) will be treated as leachate and will be handled in the same manner as leachate that is collected in the existing B-18 leachate storage tanks (located on the concrete riser pads). The temporary berm has been sized such that stormwater run-off from the 24 -hour PMP event will be fully contained on the north side of the berm with greater than 1 foot of freeboard.

The layout of the sumps in Areas IA and IB are shown on Sheet 18 in Appendix A.1. The layout of the sumps for Areas IIA and IIB are shown on Sheet 18A in Appendix A.1. Representative crosssections through the sumps are provided on Sheets 19, 19A, 20, 20A, 22, and 22A in Appendix A.1. Sheet 21 in Appendix A. 1 provides typical details for the vertical riser pipe that was installed at each of the four primary sump locations. Sheets 22 and 22A in Appendix A. 1 also show details for the existing four riser pads (one riser pad is above each sump) that enable the removal and handling of the leachate. Of the four existing riser pads, three of them (the pads for Areas IA, IB, and IIB) will be removed during the construction of Phase III to allow for the expansion of the B-18 waste footprint in these areas. Three new riser pads will be constructed during Phase IIIB as replacements for the three pads to be removed as shown on Sheet C-3 in Appendix A.2. Typical details for the new riser pads to be constructed during Phase III are shown on Sheet C-8 in Appendix A.2. These new riser pads will be very similar to the existing ones.

Each B-18 sump includes the following three leachate (or leak detection) collection and recovery zones (from top to bottom):

- The primary LCRS, which collects liquids that have infiltrated through the overlying waste and operations layer. The design of the primary LCRS is based on providing adequate pump capacity so that the liquids level in each sump will not exceed the height of that sump, which is taken to be the elevation of the landfill base at the sump perimeter.
- The secondary LCRS, which is typically not expected to be affected by liquids infiltration but drains consolidation water from the overlying clay liner and any seepage that may pass through leaks in the primary liner system.
- The vadose zone collection system, which is located in a 12 -foot-wide trench below the secondary liner system. The purpose of this zone is to detect any seepage through leaks in the secondary liner system. Some clay consolidation water may also be collected in the vadose zone as increasing amounts of waste are placed within B-18.

Each of the four sump areas is located so that leachate pumps are lowered into the respective gravel collection zones through sideslope riser pipes. The primary LCRS design also includes a vertical riser pipe in each sump area that is extended upward in segments as the surrounding waste is placed. Details of the individual systems are described in the following three subsections.

4.8.2 Primary LCRS

The maximum operating liquid level for each of the four primary LCRSs is 1 foot above the top of each sump, where the top of a sump corresponds to the lowest point where the $5 \mathrm{H}: 1 \mathrm{~V}$ sump sideslope meets the toe of the landfill sideslope. The liquid level in each sump is currently maintained as low as possible using a pump, which is lowered to the sump through an existing 8-inch diameter steel riser pipe that lies on a 60-mil HDPE rub sheet (see Section A on Sheet 22 in Appendix A.1). The bottom portion of this riser pipe consists of Type 304 stainless steel to resist corrosion. Above the level of normal liquids exposure, the existing riser pipe is carbon steel that is double-wrapped to protect against corrosion. During the Phase III construction, the primary sideslope riser pipes in Areas IA, IB, and IIB will be extended up the new Phase III sideslopes by connecting a 10 -inch diameter HDPE pipe to the existing 8 " diameter steel pipe as shown in Detail 3 on Sheet C-8 in Appendix A.2. The existing pumps and controls will be replaced with a system capable of reaching the extended length of the riser and providing a pumping capacity that will maintain the liquid level below the allowable limit.

At each sump, the primary leachate pump is lowered through the sideslope riser pipe into a 4-foot by 8 -foot by 1.5 -foot-deep gravel-filled pumping zone. This arrangement maximizes the pumping effectiveness of the system. Pumping is controlled manually as required. The pumping need is determined by a water level control bubbler system or equivalent system that provides liquid level sensing at the top of the riser pipe when sufficient liquids for pumping exist in the sump.

As shown in Section A and Detail 1 on Sheet 18 in Appendix A.1, the bottom of each sideslope riser pipe is connected to a perforated collection tee that is also made of stainless steel. This tee lies on and against 2-inch-thick HDPE flatstock to protect the primary liner system from impact and pipe movements as the pumps are operated and periodically removed for maintenance and repair.

Historically (January 2001 to December 2007), the primary LCRS has removed an average of 360 gallons per day from the 4 sumps. During this period, the peak flow in a primary LCRS sump was 98,000 gallons (Phase IB) during January 2006, or 3,300 gallons per day. The volume of liquids removed during Phase III waste placement and after closure is expected to remain the same or diminish after closure.

In addition to the sideslope riser pipes, each of the four sumps has a redundant vertical riser pipe that can also be used to pump leachate from the primary LCRS. Each of the four vertical riser pipes is extended upward in about 10 -foot increments as the level of the surrounding waste rises. The design of the vertical riser pipes includes several features, shown on Sheet 21 in Appendix A.1, to control the drag loads transmitted to the pipe as the surrounding waste settles. These features include the following:

- The bottom 7 feet (approximately) consists of perforated, 18-inch diameter stainless steel pipe founded in the small pumping sump adjacent to the perforated tee for the sideslope riser pipe. This bottom pipe telescopes into the main vertical riser pipe through a concrete footing such that drag loads are not transmitted to the pumping area.
- The main 24-inch diameter carbon steel vertical riser pipe is surrounded by a thinwalled corrugated HDPE pipe. This corrugated pipe, which is very flexible in the longitudinal direction, deforms as the adjacent wastes settle, thereby reducing the potential for large drag loads to act on the steel vertical riser pipe.
- A 6-foot by 6-foot reinforced concrete footing provides support for the 24 -inch diameter carbon steel pipe and any drag loads that may act on the steel pipe.

The corrugated HDPE pipe has a diameter of 30 inches to provide an annular space for lateral deformation to occur around the 24 -inch steel pipe. Spacers were provided inside the corrugated pipe to keep the riser pipe alignment nearly vertical at the time of its initial installation.

As shown in Detail 6 on Sheet C-7 in Appendix A.2, slip connections will be installed in the Area IA and IB vertical risers due to the increased height of waste that will be placed over these areas during the Phase III expansion. These slip connections will be placed at an elevation of between 900 and 910 feet and will reduce the potential drag loads transmitted to the existing 24 -inch diameter vertical riser pipes. Analysis of the existing concrete pad at the base of the liner to withstand the additional vertical force related to the expansion was performed and is contained in Appendix L. As shown, the existing pads can satisfactorily carry the additional load related to the extended risers and the downdrag forces related to waste settlement.

Initially, a backup 350 gpm, 20 horsepower submersible pump was installed through each vertical riser pipe and into the primary pumping sump. However, these backup pumps were never used and are no longer provided since they presented difficulties when extending the vertical riser pipes. In the future, backup pumps can be provided through the vertical risers on an as-needed basis.

During the Phase III construction, there will be a period of approximately 6 months between the demolition of the existing LCRS riser pads and the installation of the new riser pads. The primary LCRS will continue to be monitored on a daily basis for liquid level and liquids will be removed in accordance with site protocol during this period by placing pumps down the existing vertical riser pipes (which will not be disturbed during the Phase III construction) and/or by placing pumps down the sideslope risers that will be cut off at the existing riser pads. As the sideslope risers are extended, but before the new riser pads are constructed, a wye fitting will be installed in each sideslope pipe close to the locations of the demolished riser pads (i.e., near the bottom of Phase III). Pumps and level monitoring equipment can be inserted through the wye and then lowered down the sideslope riser. Once the new riser pads are completed, the wyes will be removed and the sideslope risers repaired at those locations.

4.8.3 Secondary LCRS

The existing secondary LCRS is provided with two 8-inch diameter sideslope riser pipes as shown in Section A-18/19 and Detail 2 on Sheet 19 in Appendix A. 1 and in Section C-18/20 on Sheet 20 in Appendix A.1. The bottom portion of one of these pipes is Type 304 stainless steel connected to a perforated stainless steel tee. The portion of this existing pipe above the level of normal liquids exposure is double-wrapped carbon steel. The other riser pipe is SDR 8.3 HDPE pipe for its entire length. During the Phase III construction, the secondary sideslope riser pipes in Areas IA, IB, and IIB will be extended up the new Phase III sideslopes. The existing HDPE riser pipe will be extended by splicing to a similar diameter pipe while the existing steel riser pipe will be extended by splicing to a 10 -inch diameter HDPE pipe as shown in Detail 3 on Sheet C-8 in Appendix A.2.

A 4 -foot by 4 -foot by 1.5 -foot-deep pumping zone was provided for the secondary LCRS. The perforated tee lies on and against a 2-inch-thick HDPE flatstock to protect the underlying HDPE geomembrane. The HDPE riser pipe terminates against the tee.

Both secondary sideslope riser pipes are sized to contain a pump and a bubbler liquid level control gauge. However, the current operating configuration has the pump in the steel riser pipe and the level control gauge in the HDPE riser pipe.

Historically (January 2001 to December 2007), there has been very little liquid in the secondary LCRS, averaging less than 10 gallons per day from B-18 sumps. Peak flow in the secondary LCRS approached 150 gallons per day in January 2006. This peak resulted from damage to the primary liner system that allowed rainfall to enter the secondary LCRS. The damage was subsequently repaired and leachate volumes have reduced to zero since March 2007.

The existing pumps and controls will be replaced with a system capable of reaching the extended length of the riser and providing a pumping capacity that will maintain the liquid level below the allowable limit. The maximum operating liquid level is 1 foot above the top of each secondary LCRS sump.

During the Phase III construction, there will be a period of approximately 6 months between the demolition of the existing LCRS riser pads and the installation of the new riser pads. The secondary LCRS will continue to be monitored on a daily basis for liquid level and liquids will be removed in accordance with site protocol during this period by placing pumps down the sideslope risers that will be cut off at the existing riser pads. As the sideslope risers are extended, but before the new riser pads are constructed, a wye fitting will be installed in each sideslope pipe close to the locations of the demolished riser pads (i.e., near the bottom of Phase III). Pumps can be inserted through the wye and then lowered down the sideslope riser. Once the new riser pads are completed, the wyes will be removed and the sideslope risers repaired at those locations.

4.8.4 Vadose Zone Collection System

Section B-18A/19A on Sheet 19A in Appendix A. 1 shows the configuration of the existing sideslope riser pipe used for pumping liquids from the vadose zone collection sump. A single 8-inch diameter pipe is provided since only a small volume of liquids (e.g., clay liner consolidation water) was expected to be removed from this sump. Historic (January 2001 to December 2010) LCRS pumping data indicate no liquids have been removed from the vadose LCRS. The bottom portion of the vadose riser pipe is stainless steel. During the Phase III construction, the vadose sideslope riser pipes in Areas IA, IB, and IIB will be extended up the new Phase III sideslopes by splicing a 10 -inch diameter HDPE pipe to the existing steel pipe as shown in Detail 3 on Sheet C-8 in Appendix A.2.

A 4-foot by 4-foot by 1.5 -foot-deep pumping zone is provided below the main 12 -foot-wide vadose trench in the sump areas. The $80-\mathrm{mil}$ smooth HDPE geomembrane at the bottom of the main vadose trench extends below the pumping sump to provide continuous containment. Two-inch-thick HDPE flatstock was provided as impact protection above the 80-mil geomembrane.

A pump is currently installed through the vadose sideslope riser pipe and into the vadose sump. A bubbler level control device is also provided through the 8-inch pipe. The maximum operating liquid level is 1 foot above the top of the vadose trench at each sump. During the period of January 2001 to December 2007 no liquids have been detected in the vadose sumps.

The existing pumps and controls will be replaced with a system capable of reaching the extended length of the riser and providing a pumping capacity that will maintain the liquid level below the allowable limit.

During the Phase III construction, there will be a period of approximately 6 months between the demolition of the existing LCRS riser pads and the installation of the new riser pads. Since no liquids have been detected in the vadose zone in the last 10 years, monitoring of the three vadose sumps whose riser pads are to be removed will be suspended for the duration of the Phase III construction. Once the new riser pads are constructed, monitoring of the vadose zones will resume.

4.8.5 Leachate Storage

The following discussion of the leachate tank system provides information peripheral to the permitted unit's design, but supports the operational needs for understanding. Sheets 22 and 22A in Appendix A. 1 show the existing top-of-slope riser pads above each sump area where liquids from the three (primary, secondary, and vadose) collection zones are handled. Flows from each pumping zone are monitored individually by a totalizer on each of the four (one primary, two secondary, and one vadose) pump discharge pipes. These pipes are then individually discharged into the top portion of a 6,000-gallon, double-walled, HDPE tank.

The double-walled tank is provided with a centrifugal pump for transferring liquids into vacuum trucks. The removed liquids are treated in on-site treatment facilities located away from B-18.

A curbed concrete slab (i.e., a concrete riser pad) is provided at each pump collection and storage tank area to contain any spilled liquids. A collection sump is provided in each concrete slab for removal of spilled liquids or rainwater.

As discussed in Section 4.8.1, three of the existing concrete riser pads (the pads for Areas IA, IB, and IIB) will be removed during the construction of Phase III. Three new riser pads will be constructed as replacements for the three pads to be removed. These new riser pads will be very similar to the existing ones and it is anticipated that the existing HDPE tanks and appurtenances will be salvaged and re-used for the new system or replaced with similar components.

4.9 Surface Water Control

The B-18 design includes surface water control features for the following conditions described in the indicated sections:

- \quad Section 4.9.1 - Offsite Diversion of Run-on
- \quad Section 4.9.2 - Active Area Run-off Control for Phase I Operations
- \quad Section 4.9.3 - Phase I Direct Rainfall Control
- \quad Section 4.9.4 - Active Area Run-off Control for Phase II Operations
- \quad Section 4.9.5 - Phase II Direct Rainfall Control
- \quad Section 4.9.6 - Run-off Control During the Above Grade Filling Period
- \quad Section 4.9.7 - Phase III Direct Rainfall Control
- \quad Section 4.9.8 - Run-off Control at Closure

Run-on is surface water that originates outside of the B-18 limits and it can therefore be discharged into natural stream channels. Active area run-off is surface water that flows from roads used for waste truck and/or landfill equipment access or from portions of the landfill with intermediate cover. This run-off does not come into direct contract with the waste disposal area.

The primary surface water design criteria for B-18 are the following:

- \quad Precipitation falling directly into the disposal area must be contained within the waste prism. Resulting ponding on the waste surface must be managed as stipulated in the existing KHF permits.
- Active area run-off must be contained in surface water retention (i.e., containment) basins.

The permanent surface water controls that are used for conveying peak flows are designed based on rainfall intensity and duration relationships for the PMP storm event. The 24-hour PMP rainfall event for the site is 10.3 inches as reported by the National Oceanic and Atmospheric Administration (NOAA, 1998). The original design of B-18 (ESI, 1990a), used a 24 -hour PMP storm event for the site of 7.4 inches, based on data from the California Department of Water Resources (CDWR, 1976). The CDWR used a statistical method, based on historic rainfall data, to determine the PMP rainfall depth. The CDWR no longer publishes data pertaining to PMP events as they apparently now defer to the PMP data provided by NOAA. The NOAA value is "theoretically, the greatest depth of precipitation for a given duration that is physically possible over a given storm area at a particular geographical location at a certain time of the year." Hence, the current design PMP storm event of 10.3 inches has increased substantially from the 7.4 inches used in the original design.

4.9.1 Off-site Diversion of Run-On

Sheets 5 and 10 in Appendix A. 1 show the existing configuration for diverting run-on away from the $\mathrm{B}-18$ area. This is accomplished by providing run-on collection ditches outside of the entire existing B-18 Perimeter Road that are capable of diverting run-on from the PMP storm event. These run-on collection ditches begin near the northwest corner of Phase I. One of these ditches diverts run-on flows along the outside of the B-18 Perimeter Road along the north side of the existing landfill. The other ditch diverts run-on flows along the outside of the B-18 Perimeter Road along the west and south sides of the existing landfill. These V-shaped run-on collection ditches are 5 -feet-wide, earthen, and vary in depth from one to three feet. Sheets 5 and 10 in Appendix A. 1 show the locations where changes in the depths of these ditches occur.

A buried culvert is used to convey flows from the southern-most run-on collection ditch under the B18 Stockpile access road. This culvert is a 24 -inch diameter corrugated metal pipe (CMP) that is capable of conveying the 25 -year storm event. Larger storms can be safely conveyed over a swale at this road intersection. This swale is graded to maintain the entire surface water flow from the PMP storm event in the run-on collection ditch system.

Upon the completion of the Phase I construction (Sheet 5 in Appendix A.1), the run-on collection ditches were discharged into the natural drainage channel at the northeast corner of the B-18 area, near the limit of the Phases I and II clay mixing area. Upon the completion of Phase II (Sheet 10 in Appendix A.1), the run-on collection ditches were directed to an existing culvert under the KHF main access road. That culvert is capable of conveying flows from most of the storms that may be expected
to occur during the B-18 operations. Surface water from large, infrequent storms is allowed to flow across the KHF main access road with no potential for drainage to the existing waste disposal areas.

The final elements of the existing run-on collection ditch system are smaller V-ditches (brow ditches) along the tops of the existing B-18 Perimeter Road cuts. These brow ditches divert run-on from the natural hill slopes into drop inlets that discharge into the collection ditches that run along the outside
of the B-18 Perimeter Road. Due to the relatively steep slopes along the tops of these road cuts, the brow ditches are lined with asphalt to reduce erosion. The locations of the brow ditches and drop inlets are shown on Sheets 5 and 10 in Appendix A.1.

During the Phase III construction, most of the existing collection ditches along the outside edge of the existing B-18 Perimeter Road as well as the smaller brow ditches at the tops of the existing B-18 Perimeter Road cuts on the north, south, and west sides of B-18 will be removed and relocated to accommodate the expanded landfill footprint. The new collection ditches and brow ditches generally have a similar or increased capacity design as those of the existing ditches and they will be located along the outside edge of the new B-18 Perimeter Road (collection ditches) and at the tops of the cuts along the new B-18 Perimeter Road (brow ditches), as shown on Sheet C-3 in Appendix A.2. The permanent stormwater controls for B-18 are designed to convey the design PMP storm event. To be conservative, the stormwater controls were designed to convey the flow of the 6-hour PMP. The 6hour PMP has a higher rainfall intensity and therefore greater peak flow than the 24-hour PMP event. During a PMP storm event, the drainage channels will reach capacity and some flows extend into the roadway. This design approach maintains reasonable size channels that convey a majority of storm events, however, flows from the PMP are controlled within the roadway assuming trafficable conditions would not need to be maintained during such an event.

During operation of Phase IIIA (while Phase IIIB is being constructed), there will be no potential for stormwater run-on into Phase IIIA from the adjacent portion of Phase IIIB due to the presence of the lined temporary Phase IIIA stormwater containment berm that will be constructed along the Phases IIIA-IIIB interface (see Detail 1 on Sheet C-4A in Appendix A.2). The top of this berm will be approximately 8 feet higher than the nearby high point on the Phase IIIB "bench liner" area, meaning that stormwater run-on from Phase IIIB will flow to the existing Northeast Containment Basin before it could overtop the temporary Phase IIIA berm. It is estimated that a maximum of approximately 2 feet of stormwater run-on could accumulate on the south side of the temporary Phase IIIA berm; this stormwater would be clean and would therefore be pumped by site personnel to just south of the nearby high point, where it could then flow to the Northeast Containment Basin. Once Phase IIIB is completed, the need for conveying stormwater run-on will be eliminated.

4.9.2 Active Area Run-Off Control for Phase I Operations

Sheets 5 and 6 in Appendix A. 1 shows how surface water run-off from active areas for the PMP storm event was controlled during the Phase I disposal operations. The main aspects of this control were:

- Active area roads were sloped inward to a ditch system that was separate from the run-on ditch system described in Section 4.9.1.
- The active area run-off was directed to a lined retention basin located in the bottom of the initial clay borrow pit.

The west and south portions of the B-18 Perimeter Road adjacent to Phase I slope inward to an asphalt-lined V-ditch as shown in Section A-3,8/15 on Sheet 15 in Appendix A.1. This ditch flows in
the south and east direction to a former culvert inlet on the south portion of the B-18 Perimeter Road approximately 12.5 feet beyond the limit of the sideslope liner system for Phase I. The former culvert was an 18 -inch diameter CMP that dropped down the south sideslope (see Section B-4,5/16 on Sheet 16 in Appendix A.1) and into an 18 -inch diameter, concrete-encased CMP culvert beneath the entrance of the Phase I/II Berm road to the Phase I access ramp. This culvert then discharged into a V-ditch (see Section B-5,15,23/17 on Sheet 17 in Appendix A.1) that flowed along the west side of the Phase I/II Berm to a drop inlet. This drop inlet discharged into a 30 -inch diameter CMP that passed beneath the Phase I/II Berm crest and down its eastern embankment slope and into the lined basin in the clay borrow pit. The V-ditch and culvert also collected run-off from the road on top of the Phase I/II Berm, which sloped at two percent toward the west for its entire length.

An additional concrete-encased, 12 -inch diameter CMP culvert was provided where the Phase I access ramp met the west portion of the existing B-18 Perimeter Road. This culvert drained the small flow from the northern part of this portion of the B-18 Perimeter Road and was concrete-encased to support waste truck traffic.

The north portion of the B-18 Perimeter Road adjacent to Phase I and the access road around the top of the initial clay borrow pit were also considered to have active area run-off because of the daily cover and landfill equipment that used these roads. Hence, these roads were also sloped toward an inside ditch that conveyed surface water flows to an 18 -inch diameter CMP culvert along the southeast corner of the initial clay pit slope.

The clay pit retention basin was lined with 40-mil HDPE geomembrane from a bench at an elevation of 720 feet to its base at an elevation of 680 feet. Although not normally required for retention basins of this type, the liner was provided to avoid saturation of the clay borrow area because this area would later form part of Phase II floor. The retention basin and its liner system were completely removed when Phase II was constructed. The capacity of this temporary containment basin was sufficient to contain the 24 -hour PMP run-off from the areas discussed above. Section A on Sheet 13 in Appendix A. 1 shows a cross-section through this retention basin.

4.9.3 Phase I Direct Rainfall Control

The control of direct rainfall into the Phase I disposal area consisted of sloping the waste surface toward a low spot where the collected surface water was removed by vacuum trucks (or other appropriate means) and transported to the appropriate storage, treatment, and/or disposal facilities.

The amount of water that was handled by vacuum trucks was reduced by installing slope gutters on the temporary liner portions of the slopes. Water collected in these gutters drained into a clean tank and was then pumped into the run-on collection ditch system discussed in Section 4.9.1.

Initially, the low spot on the waste surface was located in the northern portion of Phase I to minimize interference with traffic at the Phase I access ramp. As the waste level in Phase I rose, the low spot was moved to best suit operational conditions. Once the waste height rose above the top of the Phase I/II Berm, it was necessary to keep the low spot away from the east-facing Phase I waste slope to avoid localized instability of this slope.

4.9.4 Active Area Run-Off Control for Phase II Operations

Sheet 10 in Appendix A. 1 shows the configuration that was used for containing active area run-off during the Phase II operations. The collection system for this period consisted of an extension of the

Phase I ditches located along the inside of the B-18 Perimeter Road as described in Section 4.9.2. These ditches sloped toward the east-northeast portion of Phase II and conveyed run-off into the lined Northeast Containment Basin that was constructed in conjunction with Phase II. This basin is sized to contain run-off from both the existing B-18 Perimeter Road and from waste slopes with interim cover that are located above the level of the existing B-18 Perimeter Road. Surface water from the inside ditches flows into either of two culverts (one culvert is a 30 -inch diameter CMP while the other culvert is a 24 -inch diameter CMP) at the eastern portion of the B-18 Perimeter Road above the Northeast Containment Basin. These culverts discharge into asphalt-lined swales in the corners of the Northeast Containment Basin. For very large storms, the roadway profile above the culverts is depressed to direct flows across the road and into the asphalt-lined containment basin swales.

4.9.5 Phase II Direct Rainfall Control

Direct rainfall into the Phase II waste disposal area was handled using procedures similar to those described in Section 4.9.3 for the Phase I operations.

4.9.6 Run-Off Control During the Above Grade Filling Period

Currently, the B-18 waste mass is in the above grade filling period. As the waste mass rose above the level of the existing B-18 Perimeter Road, rainfall run-off began to be handled in the following two ways:

- The top deck area, where waste disposal is ongoing, is graded to direct surface water toward a low spot (with temporary earthen berms, as needed) where the collected surface water is removed as discussed for the Phase I and II areas in Sections 4.9.3 and 4.9.5, respectively.
- Surface water from sloped areas with interim cover is handled as run-off water. This run-off is collected from the sideslopes of the existing landfill and conveyed into the inside B-18 Perimeter Road ditches, which ultimately direct the run-off into the Northeast Containment Basin.

The asphalt-paved ditches on the inside of the existing B-18 Perimeter Road contain run-off from storms with recurrence intervals less than 100 years (based on original design storm event). During larger storms and up to the PMP event, the flow may extend outside of these paved ditches but is maintained within the larger channel formed by the inward-sloping perimeter road. Flows up to the PMP storm condition are currently directed into the Northeast Containment Basin. During operations within Phase IIIA (while Phase IIIB is still being constructed), stormwater run-off from the north, east, and west facing Phase IIIA waste slopes will be diverted to the Northeast Containment Basin. A temporary lined containment berm will be constructed at the interface of Phases IIIA and IIIB (see Sheet C-4A in Appendix A.2) to provide containment of stormwater run-off from the lower portions of the south-facing temporary Phase IIIA waste slope. This temporary berm has been sized to contain the entire run-off volume generated by the 24 -hour PMP event (while maintaining a freeboard of greater than 1 foot); this run-off will be contained on the north side of the temporary berm. Therefore, no pumping will be required to prevent the overtopping of the temporary berm. Site personnel will treat the stormwater run-off contained on the north side of the temporary berm as leachate. Accordingly, the impounded stormwater run-off will be pumped into tanker trucks and transported to the appropriate on-site facility for treatment as leachate.

The Phase III expansion of B-18 will involve the construction of a new B-18 Perimeter Road around most of the landfill. Similar to the existing configuration, the new B-18 Perimeter Road will be sloped inward toward the landfill during the above grade filling period. Also, asphalt or shotcretelined V-ditches will run along the entire inside edge of the new B-18 Perimeter Road to convey runoff to containment basins in a similar manner as is currently done.

Due to the change in the PMP storm event (see the discussion at the beginning of Section 4.9) and the increased landfill area after the construction of Phase III, a second stormwater basin, the South Containment Basin, will be required to provide adequate run-off storage capacity for the PMP storm event after Phase III is completed. The new South Containment Basin will be constructed as part of the Phase IIIB expansion as shown on Sheet C-3 in Appendix A.2. The surface water flow patterns around the expanded landfill will be such that all run-off will be directed to and contained in the South and Northeast Containment Basins.

4.9.7 Phase III Direct Rainfall Control

Direct rainfall into the Phase III waste disposal area will be handled using procedures similar to those described in Section 4.9.3 for the Phase I operations.

4.9.8 Run-Off Control at Closure

The surface water drainage capacities of the final benches, Cover Access Road, and the new B-18 Perimeter Road are designed to be capable of conveying the 6-hour PMP storm water run-off without damage to the landfill. This storm water flow will drain to either the existing Northeast Containment Basin or the new South Containment Basin, as shown on Sheet C-4 in Appendix A.2. The stormwater containment basins are designed to contain the runoff from the 24 -hour PMP storm event. After site closure, the basins may be modified to release the stormwater run-off in a controlled manner.

4.10 Utilities

The existing utilities for B-18 consist of the following:

- A perimeter lighting system that currently serves the existing B-18 Perimeter Road and that formerly served the waste disposal area before the waste mass grew to its current level above the lights.
- Electrical power to operate the various leachate control pumps and the perimeter lighting system.

As part of the B-18 Phases I and II construction, permanent lighting fixtures were placed around the entire existing B-18 Perimeter Road as illustrated in Section A-5,10/23 on Sheet 23 in Appendix A.1. However, this existing lighting system is no longer needed and it will be removed as part of the Phase III construction.

Power for the existing lighting system and leachate pumps is provided by an electrical transformer located along the northern boundary of B-18, as shown on Sheet C-2 in Appendix A.2. During the Phase III construction, this transformer will be removed and relocated to allow for the construction of the Phase III expansion.

5.0 ENGINEERING ANALYSES

5.1 General

This section describes the engineering analyses that were performed to support the design of B-18. The B-18 analyses are discussed in Sections 5.2 through 5.9 with calculations provided in Appendices G through N for Settlement, Stability, Cover Soil Erosion, Surface water drainage, leachate collection and removal, riser pipes, cover infiltration, and frost and biotic protection, respectively.

5.2 Settlement Analyses

5.2.1 Conditions Evaluated

The following four settlement conditions were analyzed for B-18:

1. The elastic settlement of the landfill's foundation to assess the minimum slope of the LCRSs. Ideally, the post-settlement slopes of the LCRSs should be maintained at 2 percent or greater.
2. Evaluation of the degree of consolidation of the primary and secondary clay liners at interim and final closure to assign appropriate strength properties for these materials for use in the stability analyses.
3. Estimation of the magnitude of settlements of the primary and secondary clay liners to assure that adequate thicknesses (i.e., 3 feet or more) will be maintained after compression and consolidation of the liners are completed.
4. Estimation of the post-closure waste settlements to assure positive drainage of the cover, benches, and the Cover Access Road.

The settlement calculations are provided in Appendix G and described in the following sections.

5.2.2 Foundation Settlement

The rock strata beneath B-18 have and will continue to settle in an approximately elastic manner as each layer of waste is placed. Therefore, essentially all of the foundation settlement is anticipated to occur prior to closure and, hence, foundation settlement will not be a factor with regard to the closure cover configuration or drainage control. The foundation settlement will, however, result in slope changes at the base of the landfill that will impact the LCRS. These settlements will not cause abrupt changes on the base (e.g., large differential settlements over short distances), but they could potentially reduce the slopes of the LCRS to below the desired minimum of 2 percent. A minimum LCRS slope of 2 percent is desired to assure positive leachate drainage to the sumps.

The foundation settlement estimates presented in Appendix G. 1 were calculated using Boussinesq's stress distribution theory in conjunction with the elastic properties of the foundation materials. Elastic properties of the claystone and siltstone were conservatively considered to be the same and were estimated based on the measured plasticity index and strength characteristics of the undisturbed claystone samples using the procedure described by Duncan and Buchignani (1976). The elastic modulus and Poisson's ratio of these fine-grained rocks were estimated to be $6,000 \mathrm{ksf}$ and 0.38 , respectively. The sandstone was assumed to be incompressible since information obtained from the boring logs and laboratory test data indicate that deformation of the coarse-grained rock strata (i.e., sandstone) would be negligible in comparison to that of the claystone and siltstone.

In Appendix G.1, landfill base settlement profiles are estimated for four representative cross-sections through the waste mass to evaluate both the total and differential settlements. The total estimated settlements range up to about 15 inches. According to the computed settlements, the resulting slope of the base of the landfill will be greater than 2 percent. Hence, it is concluded that the LCRS will remain sloped at a minimum of 2 percent.

5.2.3 Degree of Consolidation of Clay Liners

Calculations of the time rate of consolidation of the clay liners due to placement of the overlying waste are provided in Appendix G.2. These calculations were carried out in order to evaluate the appropriate clay strength parameters for use in the stability analyses. Shortly after clay liner construction, UU triaxial strength parameters are appropriate. After "complete" consolidation (i.e., an average degree of consolidation greater than about 95 percent) of the clay due to the weight of the overlying waste has occurred, CU triaxial strength parameters are appropriate. The selection of clay strength parameters to assess stability at a certain stage of waste disposal is based on the expected degree of consolidation of the clay liner at that particular time.

The clay liners will be continually consolidating during waste placement such that the undrained shear strength of the clay liners will be continually increasing. Based on the consolidation test data for compacted (remolded) clay discussed in Section 3.5.7, it is estimated that the average degree of consolidation for both the primary and secondary clay liners will be greater than 95 percent by the time the final closure cover is installed. Therefore, the undrained shear strength of the clay liners for long-term, post-closure conditions should be based on its fully-consolidated strength as evaluated from the CU triaxial tests.

Another calculation was performed to evaluate the degree of consolidation of the clay liners when the Phase I Intermediate Closure was completed about two years after initial clay liner construction. This calculation shows that approximately 30 percent of clay consolidation will have occurred at that time, resulting in a modest gain in strength. To be conservative, the UU triaxial test data were used in the stability analyses for the Phase I Intermediate Closure condition. Also, because all of the excess porewater pressures were not dissipated at that time, the friction angle (ϕ) portion of the UU triaxial test data was not relied upon in the Phase I Intermediate Closure stability evaluation.

5.2.4 Magnitude of Clay Liner Consolidation

The clay liner consolidation calculations in Appendix G. 3 were performed to estimate the clay liner thickness reductions once "complete" consolidation of the clay had occurred under the weight of the overlying waste mass. Calculations are provided for the following:

1. A primary and secondary clay liner thickness of 1.5 feet and 3.5 feet, respectively, at the landfill base and a maximum waste thickness of about 300 feet (compared to a maximum waste thickness of 230 feet without Phase III).
2. A clay liner thickness of 5 feet beneath the vertical riser pipe, where additional load will be applied to the clay liner by the vertical riser pipe foundation (see Section 5.7).

The calculations show that the maximum consolidation settlement of the primary and secondary clay liners at the landfill base will be approximately 0.1 and 0.3 feet, respectively, under loading from 300 feet of waste (similar to the result for Phase I and II). Therefore, it is concluded that the primary and
secondary clay liner's required minimum thickness of 1 and 3 feet, respectively, will be maintained after consolidation settlement is complete.

The maximum primary and secondary clay liner settlements beneath the vertical riser pipe foundation were calculated to be about 0.4 and 0.7 feet, respectively, under loading from 300 feet of waste. These magnitudes of settlement are acceptable because the original clay liner thicknesses in this area were about 3 and 5 feet for the primary and secondary clay liners, respectively.

5.2.5 Post-Closure Waste Settlement

Appendix G. 4 contains the post-closure waste settlement calculations that were performed in order to assess the minimum closure cover slopes for positive drainage. It was assumed that the primary consolidation of waste material will fully occur during waste placement. Therefore, the post-closure waste settlements were estimated based on the fo1lowing factors:

- Crushing of disposed drums and the related settlements due to:

Closure of void spaces in the drums within the waste mass; and
Consolidation of loosely-placed materials in the drums.

- Secondary consolidation (or creep) settlement of the main, soil-like waste matrix.

It is anticipated that settlement of waste within B-18 will be less than prior WMUs at the KHF because of more restrictive disposal regulations, especially since a significant portion of the waste has been and will continue to be solidified prior to disposal. The waste settlement estimates discussed below do not fully account for these changes and are therefore considered to be conservative.

The waste settlement calculations were based on KHF's estimate that 15 percent of the waste volume within B-18 consists of drums that are distributed randomly throughout the waste. The drums are conservatively assumed to contain 10 percent voids and the wastes within the drums were calculated to consolidate an additional 30 percent. Long-term creep settlement of the waste was estimated based on characteristics for normally-consolidated soft to medium stiff clay.

By analyzing representative cross-sections through the entire B-18 waste mass, it is estimated that the post-closure waste settlements will vary from approximately zero at the edge of the landfill to a maximum of about 27 feet where the waste thickness is greatest. On the basis of the calculations in Appendix G.4, it is concluded that the proposed final cover grades shown on Sheet C-4 in Appendix A. 2 will be adequate to assure appropriate drainage after waste settlement is complete.

It is recommended that survey monuments be monitored at areas with interim cover on the landfill sideslopes once these areas are filled to their final elevation. As this settlement data is obtained, it may be appropriate to re-evaluate whether or not a portion of the primary settlement may occur during the post-closure period and to re-assess the final cover grading plan.

5.3 Stability Analyses

5.3.1 General

Appendix H includes static and seismic slope stability analyses for the conditions discussed in the following sections:

- \quad Section 5.3.2 - Temporary Rock Cut Slopes;
- \quad Section 5.3.3 - Compacted Fill Slopes;
- \quad Section 5.3.4 - Temporary Phase I Intermediate Fill Slopes;
- \quad Section 5.3.5 - Temporary Phase IIIA Intermediate Fill Slope; and
- \quad Section 5.3.6 - Final Closure Conditions.

Table 5.1 summarizes the shear strength and unit weight parameters assigned to each of the materials and material interfaces modeled in the stability analyses. The right-hand column in Table 5.1 identifies the data sources for these parameters, which include the site-specific laboratory testing discussed in Section 3, prior KHF landfill investigations, and published data and information.

Table 5.2 summarizes the results of the stability analyses and lists the criteria used to evaluate acceptability. For static conditions, the minimum acceptable factor of safety is considered to be 1.5 . This criterion was satisfied for all of the critical conditions analyzed. For seismic conditions, acceptability is evaluated based on a design displacement during the MCE event (see Section 2.5.1). A maximum design displacement of 6 inches was established for all cases where the failure plane could intersect the base liner system, based on the recommendations of Seed and Bonaparte (1992). This minimizes the potential for large displacements that could potentially disrupt the HDPE geomembrane/clay composite liner or the LCRS. As shown in Table 5.2, the estimated displacement for most of the cases considered is less than 1 inch for the applicable MCE event.

The following seismic displacements during the MCE event were considered maximum acceptable values for locations where permanent liner systems are not affected:

- A 6-inch seismic displacement for the Northeast Containment Basin embankment, primarily to minimize the potential of overall embankment instability occurring.
- A 12-inch displacement entirely within the waste mass for the Phase I intermediate fill slope because it is temporary and regrading improvements could easily be made without exposing the underlying liner systems.
- A 12-inch displacement would be allowable for the geotextile/HDPE geomembrane and vegetative cover soil/geotextile interfaces of the final cover system. This maximum displacement minimizes the potential for damage to the HDPE geomembrane and any resulting near-surface cracking could be repaired relatively easily.

The static factors of safety were calculated using:

1. The STABL5 computer program, developed by Purdue University (1986), for the stability analyses performed during the original design of B-18 (ESI, 1990a).
2. The computer program GSTABL7 version 2.003, developed by Gregory Geotechnical Software, for the stability analyses performed for the current design.

Displacement estimates for the seismic conditions were calculated using the following procedures:

1. Newmark (1965), as modified by Franklin and Chang (1977), for temporary rock cut slopes, compacted fill slopes, and the Phase I intermediate waste fill conditions. A conservative velocity-to-acceleration ratio of 30 was used for the Newmark and Franklin and Chang methods for these cases, based on measured velocity/acceleration ratios published by Donovan (1983). The maximum acceleration of the waste mass for these cases was assumed to be 80 percent of the PHGA, based on comparisons with site response analyses performed by Woodward-Clyde (1987) for the OII Landfill in Monterey Park, California. However, no attenuation was allowed for very shallow potential failure surfaces because the lower portions of the slide mass were close to the ground surface.
2. Makdisi and Seed (1978), which is based on the Newmark (1965) method, for the final closure configuration. In order to evaluate the average acceleration time histories of the critical slide mass, two-dimensional dynamic finite element analyses were performed using the computer program QUAD4M (Hudson et al., 1994).
3. Bray et al. (1998) for the final cover veneer stability analyses. Two-dimensional site response analyses were also performed for this case using QUAD4M to evaluate the average acceleration of the cover system.

The PHGAs corresponding to the MCE events (near-field and far-field) used in the current design are discussed in Section 2.5.3. These PHGAs and MCEs were used in the stability analyses of the final closure configuration and in the cover veneer analyses. During the original design of B-18 (ESI, 1990a), a single MCE event was considered, as discussed in Section 2.5.2. This MCE event and its associated PHGA differ from those used in the current design due to advances in geotechnical earthquake engineering since the time of the original design. The temporary rock cut slopes, compacted fill slopes, and Phase I intermediate waste fill conditions were not re-analyzed for the current design since these conditions no longer exist due to the placement of overlying waste. The rock cut slope on the west side of B-18 will be flattened and will be more stable than the current configuration. Hence, the computed seismic displacements for these conditions correspond to the MCE event from the original design (ESI, 1990a), as discussed in Section 2.5.2.

5.3.2 Temporary Rock Cut Slopes

Appendix H. 2 provides stability analyses for the two rock cut slope conditions illustrated in Figure 5.1. East-, south-, and north-facing slopes were excavated at a $2 \mathrm{H}: 1 \mathrm{~V}$ inclination across bedding planes. West-facing slopes, which were in the general direction of the weaker bedding planes, were excavated at a shallower $3 \mathrm{H}: 1 \mathrm{~V}$ inclination. Table 5.2 shows that the static factors of safety for these two conditions are 2.4 and 2.2 for the $2 \mathrm{H}: 1 \mathrm{~V}$ and $3 \mathrm{H}: 1 \mathrm{~V}$ slopes, respectively. Table 5.2 also shows that essentially no displacement of either slope configuration is anticipated during the original design’s MCE event (Section 2.5.2). Therefore, the designed temporary rock cut slopes were adequate for both the static and seismic criteria for Phases I and II and are considered to be adequate for the comparatively minor proposed Phase III temporary rock cut slopes.

5.3.3 Compacted Fill Slopes

Phases I and II of B-18 were formed primarily by excavation into rock and there were no large fill embankments required. A relatively small fill embankment was necessary in the former natural drainage area at the northeast edge of Phase II. This fill embankment forms a portion of the eastern Phase II sideslope and also forms one of the sideslopes for the Northeast Containment Basin. A crosssection through this embankment is shown in Section A-8/23 on Sheet 23 in Appendix A.1. Stability analyses were performed for this fill embankment.

Table 5.2 shows that the Phase II/Northeast Containment Basin fill embankment is satisfactory for both static and seismic conditions. The static factor of safety for this embankment is 2.2 and essentially no displacement was projected for this slope during the original design's MCE event (Section 2.5.2). Appendix H. 3 contains the detailed stability computations for this condition.

Phase III will require some relatively small fill embankments along the south side of the existing landfill. The slopes of these fill embankments will have inclinations equal to or less than those of the existing Phase II/Northeast Containment Basin fill embankment. Based on the stability analysis results for the Phase II/Northeast Containment Basin fill embankment, the proposed fill embankments for Phase III are considered to be adequately stable for both the static and seismic conditions.

5.3.4 Temporary Phase I Intermediate Fill Slopes

The typical configuration of the temporary Phase I intermediate waste fill slopes is shown in Section A-6/23 on Sheet 23 in Appendix A.1. This slope condition existed from the time that initial filling of Phase I was completed until the Phase II area was filled to the top of the Phase I/II Berm. This temporary waste slope was constructed at the relatively steep $1.5 \mathrm{H}: 1 \mathrm{~V}$ inclination because the stability analyses showed that the factor of safety along the critical liner interface is higher when the waste slope is steeper due to the added frictional resistance along the toe portion of the potential sliding wedge.

Appendix H. 4 presents the detailed results of the stability analyses conducted for the Phase I intermediate fill slopes. Figure 5.2 illustrates the various potential failure mechanisms considered for the Phase I temporary fill slopes. The most important potential sliding mechanism (Cases A1 and A2 in Figure 5.2) involved shearing through the waste, along the base liner of the landfill, and up the lined Phase I/II Berm sideslope, resulting in a wedge-shaped slide mass. This mechanism is critical because the liner interface strengths are much lower than those of the underlying foundation or the overlying waste materials. Also, a failure at this location could damage the liner and LCRSs. Figure 5.2 shows the following two potential shear surfaces for this sliding mechanism:

- Case Al: A shear surface that would occur entirely along the liner interface, including at the intersection of the landfill base and the Phase I/II Berm sideslope.
- Case A2: A shear surface that would include an approximately 50-foot-long diagonal shear zone through the waste near the base/berm intersection to simulate a circular failure surface across that intersection angle.

The results in Table 5.2 for these cases show a static factor of safety of at least 2.5 and essentially no displacement during the original design's MCE event (Section 2.5.2). These results are acceptable for this important stability condition.

The potential for a shallow circular failure (Case B in Figure 5.2) to occur through the intermediate fill slope without intersecting the liner system was an additional consideration for the Phase I temporary waste slope. This condition was less important than Cases Al or A2 because, if some movement were to occur along the potential sliding surface, the underlying liner system would not be damaged. Table 5.2 shows that the static factor of safety for Case B is approximately 1.5 and the estimated displacement for the original design's MCE event (Section 2.5.2) is about half an inch. These results are based on shallow waste strength parameters of $\phi=27$ degrees and $\mathrm{c}=300 \mathrm{psf}$ as compared to $\phi=31$ degrees and $c=0$ used for deeper zones of the landfill. Use of the cohesionless waste strength parameters would result in a lower static factor of safety (approximately 1.3) for very shallow potential failure surfaces. However, it is reasonable to assume that the waste will have a small degree of cohesion. Therefore, the factor of safety and estimated MCE displacement discussed above were considered to be appropriate and the intermediate slope was acceptable for this temporary and non-critical condition.

During the preliminary stability analyses, calculations were also performed to evaluate whether a failure could potentially occur along the entire Phase I liner interface (i.e., along the west sideslope, the landfill base, and the Phase I/II Berm sideslope). The factor of safety for this condition was found to be much higher than for the Cases A1 and A2 conditions.

Finally, because of prior experience at the KHF, an evaluation was made as to whether or not it would be appropriate to analyze the Phase I intermediate fill slope for a three-dimensional potential failure surface. However, because of the designed configuration, it was concluded that such an analysis was not necessary. Phase I was purposely configured to avoid three-dimensional driving forces that were significantly different than those realized for the two-dimensional (Cases Al and A2) condition. Therefore, the factor of safety for a three-dimensional case would essentially be the same as the acceptable values for the two-dimensional cases discussed above.

5.3.5 Temporary Phase IIIA Intermediate Fill Slope

The configuration of the temporary Phase IIIA intermediate waste fill slope is shown on Sheet C-4A in Appendix A.2. As can been seen on Sheet C-4A, the Phase IIIA interim waste slope is a southfacing, $2 \mathrm{H}: 1 \mathrm{~V}$ slope that contains an approximately 30 -foot wide bench to allow for access to the landfill during waste placement operations. This interim slope condition will exist for only a short time, if at all, as it is anticipated that no more than 6 months of waste will be placed in Phase IIIA before waste placement in Phase IIIB begins. After waste placement in Phase IIIB commences, the interim Phase IIIA waste slope will be covered with waste relatively quickly. The north, east, and west facing Phase IIIA waste slopes will be built to the final cover grades (i.e., $3.5 \mathrm{H}: 1 \mathrm{~V}$ inclination between benches); therefore, these waste slopes were analyzed as part of the final closure configuration (Section 5.3.6).

Appendix H. 4 presents the detailed results of the stability analyses conducted for the south-facing 2H:1V Phase IIIA intermediate fill slope. Due to its temporary nature, only static stability analyses were conducted for the Phase IIIA intermediate waste slope. Also, as can be seen in Appendix H.4, the shear strength parameters of the Phase IIIA liner system were assumed to lie between its peak and residual values since the slope will be temporary and the portion of the Phase IIIA liner modeled in the stability analyses will be graded at only 10 percent, thereby making it similar to a base liner from a shear strength standpoint.

Figure 5.3 illustrates the potential failure mechanism considered for the south-facing $2 \mathrm{H}: 1 \mathrm{~V}$ Phase IIIA temporary fill slope. This critical potential sliding mechanism involves shearing down through
the waste and then along the Phase IIIA liner toward the toe of the south-facing $2 \mathrm{H}: 1 \mathrm{~V}$ temporary waste slope, resulting in a wedge-shaped slide mass. This mechanism is critical because the liner interface shear strength is much lower than that of the underlying foundation or the overlying waste materials. The result in Table 5.2 for this interim case indicates a static factor of safety of 1.5, which is considered acceptable for this temporary condition.

The potential for a shallow circular failure to occur through the south-facing $2 \mathrm{H}: 1 \mathrm{~V}$ Phase IIIA intermediate fill slope without intersecting the liner system was not performed since analyses for the Phase I temporary waste slopes indicated that a temporary waste fill slope inclined at $1.5 \mathrm{H}: 1 \mathrm{~V}$ would be adequately stable (Section 5.3.4) with respect to this potential sliding mechanism. Since the Phase IIIA intermediate waste fill slope will be inclined at $2 \mathrm{H}: 1 \mathrm{~V}$, it will be expected to be more stable than the Phase I temporary waste slopes were. In addition, the Phase I temporary waste slopes were observed to perform well after their construction, which further demonstrates that the $2 \mathrm{H}: 1 \mathrm{~V}$ Phase IIIA intermediate fill slope should be adequately stable with respect to a circular failure entirely through waste.

5.3.6 Final Closure Conditions

The three potential failure scenarios of importance for the final closure configuration, as shown conceptually on Figure 5.3, are:

- Displacement of the final cover system on the $3.5 \mathrm{H}: 1 \mathrm{~V}$ sideslopes between benches.
- A large wedge failure through the waste and along the base and perimeter sideslope liner systems.
- A circular failure entirely through the waste.

The stability analyses for the final closure conditions were performed by HAI, under subcontract to Golder, as part of the current design. Appendix H. 5 contains HAI's slope stability report while the results of HAI's stability analyses are summarized in Table 5.2 and discussed in the following paragraphs.

The weakest interface in the B-18 final cover system is the nonwoven geotextile/40-mil textured HDPE geomembrane interface. Large seismic displacements at this interface could result in a tensile failure of the HDPE geomembrane. The current state-of-practice is to generally limit seismic displacements of the cover system to less than about 12 inches. Table 5.2 shows that the static factor of safety for veneer-type sliding of the cover system along the geotextile/HDPE geomembrane interface is 1.6 , which is well above the allowable 1.5. The estimated seismic displacement along this interface was calculated to be about 2.7 inches for the updated MCE event (Section 2.5.3). Hence, the final cover system of $\mathrm{B}-18$ is considered to be adequately stable under the design static and seismic loading. Minor repairs to the cover system may be required if the seismic displacement of the cover system exceeds about 2 to 3 inches.

In order to evaluate a deep, wedge-shaped failure mechanism (along the base liner) for the final closure condition, HAI evaluated 6 representative cross-sections (A-A' to F-F') through B-18. The locations of these 6 cross-sections are shown in Appendix H.5. For each cross-section, multiple sliding mechanisms were considered.

HAI reviewed the interface shear strength test data for B-18 to determine the weakest interface for each phase of construction. The original design report for B-18 (ESI, 1990) assumed the most critical interface would be located at the interface of the textured geomembrane and the geonet side of the geocomposite. The interface was found to have a residual friction angle of 9 degrees and 800 psf adhesion. However, during construction of Phase II, a bonded geotextile was included below the geocomposite to increase the shear strength of the liner system (i.e., a geocomposite with geotextiles heat bonded to both sides of the geonet was used during construction). Therefore, the lower shear strength properties used for the Phase I side slope liner were based on a different critical interface in the liner system. Based on the URS 2005 report, archived samples of the existing Phase II liner system components were recovered from storage and tested for interface shear strength. Two shear tests were performed on multiple components that represented all of the possible interfaces in the existing B-18 Phase II liner systems. Tests performed on these "sandwich-like" specimens of the Phase II liner system demonstrated that failure occurred along the clay/textured geomembrane interface in one test and the clay/geotextile interface in the other test. The results of these tests yielded a peak interface friction angle of 20 degrees with an adhesion of approximately $1,900 \mathrm{psf}$, and a residual interface friction angle of 19 degrees with approximately 1,800 psf adhesion. For the stability analysis the adhesion was conservatively considered to be 0 psf .

It should be noted that failure in a liner system occurs along the interface with the lowest peak shear strength. Therefore, the weakest interface in the liner system is the interface with the lowest peak strength. Based on the direct shear testing performed by SGI Testing Services, LLC (2003) on the archived Phase II liner system materials (see Appendix A of the URS 2005 report), the lowest peak shear strength is along either the textured geomembrane/compacted clay liner interface or the geotextile/compacted clay interface (peak friction angle of 20 degrees). Even though the clay liner has a lower residual friction angle of 13 degrees with lower adhesion (SGI, 2003), the higher internal peak shear strength of the clay (26 degrees) in comparison with the two above-mentioned interfaces (20 degrees) results in detrimental shear displacements occurring along either of the two geosynthetic liner/clay interfaces and not within the clay liner itself. The "sandwich-like" specimen tests presented in the URS 2005 report demonstrated this.

To confirm the friction angles for the B-18 Phase III liner system, similar "conformance" testing was completed on stock materials from geosynthetic manufacturer's that will supply materials for the Phase III expansion. Based on the testing conducted by Precision Geosynthetic Laboratories (results included in Appendix H.5), the weakest interface is the geocomposite to textured HDPE geomembrane. The measured peak friction angle was approximately 28 degrees with a residual friction angle of 12 degrees. For the stability analysis, the 12 degree residual friction angle was used for the Phase III expansion area. The initial stability report by HAI assumed that the friction angle for Phase III would be similar to Phase II. Based on the recent testing, HAI lowered the Phase III friction angle. An addendum to the original report is included in Appendix H. 5 to address the stability analysis using the lower strength values.

Using the above interface shear strengths, Sections D-D' and F-F' were found to be the most critical of the 6 cross-sections considered since their potential failure mechanisms had the lowest static factor of safety and lowest yield accelerations. HAI therefore performed two-dimensional site response analyses (using QUAD4M) and seismic displacement analyses for sections D-D' and F-F'. In the twodimensional response analyses, four different input ground motion time histories were used to provide a range of anticipated waste mass accelerations (both from the near-field and far-field events). The results of the seismic displacement analyses performed for section D-D' and F-F' indicate that, under the updated MCE ground motions (Section 2.5.3), the maximum seismic displacements will be less
than I inch. Therefore, the overall final landfill configuration is considered to be adequately stable with respect to deep, wedge-shaped failure mechanisms.

The last closure configuration condition analyzed was a circular failure entirely through the waste. Section D-D' contained the critical circular shear surface. As can be seen on Table 5.2 , the calculated static factor of safety for this case was 2.2 and the seismic displacement during the updated MCE event (Section 2.5.3) is anticipated to be less than 12 inch. Hence, the final landfill configuration is considered to be acceptable with regards to static and seismic stability of circular shear surfaces through the waste.

Finally, the need for a three-dimensional stability analysis for the final landfill configuration was not deemed necessary since no conceivable three-dimensional movements could be hypothesized that would lead to significantly lower factors of safety than those for the two-dimensional cases discussed above.

5.4 Cover Soil Erosion

Appendix I contains the analyses performed to assess the erosion rate of the B-18 vegetative cover soil layer based on the planned vegetation, slope steepness, slope length, and climatological conditions. The soil erosion analyses were performed using the computer program RUSLE2 (NRCS, 2004), which uses the Revised Universal Soil Loss Equation (RUSLE) along with the appropriate site-specific parameters listed above to calculate the potential soil erosion loss in tons per acre per year.

The results of the soil erosion analyses indicate a maximum cover soil erosion rate of about 1 ton per acre per year for the typical $3.5 \mathrm{H}: 1 \mathrm{~V}$ closure slopes between benches. This maximum rate is approximately half of the maximum allowable rate of 2 tons per acre per year suggested by the USEPA (1989). This cover soil erosion rate assumes that vegetation is established on the final cover. If no vegetation (i.e., bare ground) is assumed, the calculated cover soil erosion rate is about 9 tons per acre per year. Hence, it will be important to establish and maintain an acceptable amount of vegetation on the B-18 final cover to control soil erosion losses. As such, a specification for revegetation of the final landfill slopes is provided for in Appendix O .

5.5 Surface Water Drainage

5.5.1 General

The surface water analyses presented in Appendix J are divided into sections that address the following requirements:

- The general hydrology and design criteria.
- Phases I and II run-on control.
- Phases I and II run-off control.
- Phase III run-on control.
- Phase III run-off control.
- Closure drainage control.

The B-18 surface water drainage control systems are described in Section 4.9. As discussed in Section 4.9, run-on control refers to the collection and off-site diversion of surface water that has originated outside of the B-18 limits and, therefore, has not been affected by the active disposal area. Run-off control refers to the collection of surface water from roads used for waste truck or landfill equipment access and from portions of the waste area with intermediate cover. This run-off does not come into direct contact with the waste disposal area, but it will be retained on-site in accordance with the KHF permitting requirements.

The basic surface water drainage control design criteria for B-18 are:

- Hydraulic structures should be capable of conveying the 6-hour PMP storm event that is considered to have maximum intensities based on the rainfall-duration curve data shown Appendix J. Culverts may be designed for flows as low as those from the 25 -year storm event as long as water overtopping the culvert is contained within a drainage control system that has been designed for the peak PMP discharge.
- All run-off containment basins, except the temporary one for the Phase I intermediate condition, are designed for the 24-hour PMP event, which is 10.3 inches of rainfall (NOAA, 1998). It is noted that during the original design of B-18 (ESI, 1990a), the 24-hour PMP event used in the analyses was only 7.4 inches based on the available data at that time (CDWR, 1976). The temporary Phase I intermediate basin was required only during the Phase II construction period and was designed for the 25 year, 24-hour storm.
- During the original design of B-18 (ESI, 1990a), peak storm run-offs were calculated using the rational method for small watersheds along with run-off coefficients of 0.40 for natural areas, 0.90 for roads, and 0.60 for interior cover areas. Volume requirements for the former and existing containment basins were also based on these run-off coefficients. These methods and parameters are applicable for the Phases I and II run-on and run-off calculations presented in Appendices J. 2 and J.3.
- For the current design, peak storm run-offs were calculated using the computer program HEC-HMS version 3.1.0, developed by the United States Army Corps of Engineers. In the HEC-HMS analyses, an SCS curve number of 81 was used to model the final cover soil and areas surrounding B-18, except a SCS curve number of 74 was used for the natural terrain west of $\mathrm{B}-18$. The volume requirement for the proposed South Containment Basin was based on the design flows calculated from the HEC-HMS analyses. These methods and parameters are applicable for the closure drainage control calculations presented in Appendix J.4.
- In the original B-18 design (ESI, 1990a), Manning's roughness coefficients used in the design of ditches and culverts were 0.013 for smooth asphalt, 0.018 for earth channels (which extend onto roadway slopes), and 0.019 for CMP. In the current design for the closure condition, the following Manning's roughness coefficients (i.e., "n" values) were used:

Channel Lining	Manning's n for Stability	Manning's n for Capacity
Grass	0.030	0.035
Turf Reinforcement Mat	0.030	0.035
Rip-rap	0.035	0.040
Asphalt or Shotcrete	0.016	0.016

5.5.2 Phases I and II Run-On Control

Figure 5.5 shows individual water shed areas that contribute run-on flow to the diversion ditches located along the outside edge of the B-18 Perimeter Road. These ditches intercept the run-on and direct it away from the B-18 active area. Table 5.3 summarizes the previously calculated maximum flows for Phase I and II during the PMP event at key locations along the diversion ditch system and shows the estimated peak flow in comparison with the ditch capacity. In each case, the asphalt-lined ditch is capable of containing the design flow.

A 24-inch diameter CMP runs beneath the B-18 stockpile access road to convey the computed 25year peak flow. The roadway above the culvert is graded as a swale to convey higher flows for the PMP event, across the road and into a natural drainage channel at the toe of the B-18 Perimeter Road fill slope, which eventually discharges back into the asphalt V-ditch system.

5.5.3 Phases I and II Run-Off Control

Table 5.4 summarizes previously calculated run-off conditions for Phase I and II at each of the hydraulic structures required to convey the PMP run-off from roads used for waste truck or landfill equipment access. In each case, the ditch or culvert capacity exceeds the appropriate estimated peak flow.

Table 5.5 compares the capacity of the former temporary Phase I containment basin and the Northeast Containment Basin (see Sheets 5 and 10, respectively, in Appendix A.1) with the estimated run-off volumes from the respective design storms. The capacity shown for the temporary Phase I containment basin in the clay borrow pit is for a height to the top of the lined area. Freeboard is not required for this basin because the basin could not be overtopped above the clay pit walls which extend high above the lined area.

The Phase I Intermediate Closure basin was on the top of a liner that was installed to prevent infiltration into the waste. This containment basin was sized only for run-off from the interim closure slope. This basin was only required until the Phase II construction was completed.

The capacity for the Northeast Containment Basin is based on allowance for a 2 -foot freeboard because embankment overtopping could occur at this location.

5.5.4 Phase III Run-on Control

Run-on control during Phase III will be performed in a similar manner as it has historically been performed during Phase I and II with the use of ditches on the outside of the perimeter road as well as brow ditches at the top of cut slopes. Figure 5.5 shows individual water shed areas that contribute run-on flow for Phase III and at Closure to the diversion ditches located along the outside edge of the B-18 Perimeter Road. These ditches intercept the run-on and direct it away from the B-18 active area. The run-on areas have decreased in size compared to Phases I and II; however, the run-on
control ditches have remained the same size. To avoid ponding around the southeast side of B-18 some additional fill is added to provide positive drainage from localized low points. Buried 18 -inch diameter HDPE solid wall pipe is to be installed below the B-18 south berm to provide drainage of two localized low points. The drainage pipe is maintained outside the limits of the landfill.

The permanent stormwater run-on controls, such as the brow ditches, within the Phase IIIA watershed will be constructed as part of Phase IIIA. During the subsequent placement of waste in Phase IIIA (while Phase IIIB is being constructed), a temporary lined stormwater containment berm will be utilized to prevent stormwater run-on from contacting the Phase IIIA waste. The configuration of this temporary lined containment berm is shown on Sheet C-4A in Appendix A.2. The top of this berm will be approximately 8 feet higher than the nearby high point on the Phase IIIB "bench floor"; therefore, overtopping of this berm by stormwater run-on from the south will not occur. If necessary, portable pumps will be used by site personnel to convey the clean ponded stormwater run-on retained on the south side of the temporary berm to just south of the nearby high point on the Phase IIIB "bench floor," where it can then gravity flow to the Northeast Containment Basin. A maximum of approximately 2 feet of stormwater could pool against the south side of the temporary berm. However, it should be noted that only small amounts of stormwater are anticipated since Phase IIIB is planned to be constructed during the dry season and, once Phase IIIB is completed, run-on control between Phase IIIA and Phase IIIB will no longer be required.

5.5.5 Phase III Run-Off Control

Run-off control during Phase III operations will be very similar to the current operations. The existing B-18 waste fill is above the existing perimeter road and capable of diverting flows to the Northeast Containment Basin. Initially Phase III waste will be placed in the "valley" formed by the existing waste and the Phase III lined slope. Active areas will control run-off with soil berms to keep stormwater from reaching the basin. Areas covered with interim soil cover will drain within the "valley" to the Northeast Containment Basin. In the event of a PMP prior to the Phase III waste fill reaching the elevation of the perimeter road, where run-off can be diverted to the South Containment Basin, active pumping from the Northeast Containment Basin to the South Containment Basin would be required to maintain adequate capacity.

Appendix J.4, Table 4 summarizes run-off conditions at each of the hydraulic structures required to convey the PMP run-off. In each case, the ditch capacity exceeds the appropriate estimated peak flow.

Table 5.5 compares the capacity of the Northeast Containment Basin and South Containment Basin (see Sheets C-3 and C-4 in Appendix A.2) with the estimated run-off volumes from the 24-hour PMP design storm. Sufficient on-site storage capacity exists to contain all run-off within the basins, however, some active pumping during the 24 -hour PMP storm will be required (approximately 1 acre foot) from the northeast basin to the south basin.

The permanent stormwater run-off controls, such as the perimeter channels, within the Phase IIIA watershed will be constructed as part of Phase IIIA. During subsequent placement of waste in Phase IIIA (while Phase IIIB is being constructed), a temporary lined stormwater containment berm will be utilized to contain stormwater flowing off of the south-facing Phase IIIA temporary waste fill slope. This temporary berm will be 10 feet tall (see Sheet C-4A in Appendix A.2). As shown in the Phase IIIA hydrology calculations in Appendix J.3, the basin that will be formed on the north side of this berm will have sufficient capacity to contain the entire run-off volume generated by the 24 -hour PMP event while maintaining a freeboard of greater than 1 foot. Stormwater run-off that is impounded on the north side of the temporary berm will be considered leachate and will be managed in an
appropriate manner by site personnel (i.e., through the use of portable pumps to convey the stormwater into tanker trucks for transportation to an on-site treatment facility). Stormwater run-off from the north, east, and west facing waste slopes of Phase IIIA will flow to the Northeast Containment Basin. It should be noted that only small amounts of stormwater are anticipated for this temporary case as Phase IIIB is planned to be constructed during the dry season and, once Phase IIIB is completed, run-off control between Phase IIIA and Phase IIIB will no longer be required.

As described in the Phase IIIA hydrology calculations in Appendix J.3, during the construction of Phase III (i.e., before the South Containment Basin is constructed), the existing Northeast Containment Basin will not have sufficient capacity to contain the stormwater volume generated by the 24-hour PMP event. Specifically, there will be approximately 14 acre-feet of water that will have to be conveyed from the Northeast Containment Basin to the site’s existing East Retention Basin (located approximately 2,000 feet north of the Northeast Containment Basin, as shown on Sheet C-1 in Appendix A.2). A 21-inch orifice outlet device will be set 3 feet below the top of the existing embankment of the Northeast Containment Basin. Water will flow through this orifice and into a pipeline (preliminarily sized at 21-inch inside diameter) that will convey this overflow by gravity to the East Retention Basin. During the Phase III construction, the orifice outlet device and gravity flow pipeline will prevent the overtopping of the existing Northeast Containment Basin during the 24-hour PMP event.

5.5.6 Closure Drainage

At closure, the trapezoidal earthen ditches along benches and the Cover Access Road are designed to convey the flow from the 6-hour PMP event as shown in Appendix J, Table 4. As previously discussed, the 6-hour PMP event has a higher rainfall intensity than the 24-hour PMP and is therefore more conservative for sizing the conveyance structures. Conveyance of surface water from the cover and the adjacent areas will occur along the final B-18 Perimeter Road, which will be graded to slope into the closure cover as shown in Detail 4 on Sheet C-7 in Appendix A.2. The peak surface water run-off generated by the 24-hour PMP event will be contained in either the Northeast Containment Basin or the South Containment Basin.

5.6 Leachate Collection and Removal

In accordance with USEPA guidance for landfill geosynthetic designs (USEPA, 1987), Appendix K includes the following calculations to support the design of the B-18 LCRS:

- The capacity of the primary LCRS at each area to transmit the mean annual precipitation during the operating period.
- The capacity of the primary LCRS at each sump to convey significantly greater volumes of leachate than historically measured without the build-up of 12 inches of hydrostatic head on the base liner system.
- The suitability of the geotextile to act as a filter between the base operations layer and the primary LCRS drainage gravel layer.

The calculations are based on the conservative assumption that, during operations, all rainfall will percolate through the waste and into the primary LCRS.

The calculations show that the transmissivity of the existing Trevira 1125/Polynet 3000 geocomposite drainage layer used on the sideslopes will have a transmissivity greater than that required to convey the mean annual precipitation considering the maximum waste overburden pressure of nearly 25,000 psf.

The transmissivity of the existing base geocomposite is approximately equal to that required to convey the mean annual precipitation drainage case. However, considerable redundant capacity is provided by the 12 inches of drainage gravel above the base geocomposite in the primary LCRS. The base portion of the secondary LCRS also includes a redundant, 12-inch-thick drainage gravel layer. Furthermore, a geonet layer was provided for a width of 80 feet above the vadose trench to provide drainage in this area.

Filter calculations for the geotextile between the base operations layer and the primary LCRS drainage gravel indicate that the existing Trevira 1125 geotextile is adequate.

Historic records (January 2001 to December 2007) indicate that the primary LCRS generates an average of 360 gallons per day for all four sumps. This volume is significantly less than the 36,000 gallon per day system capacity.

The secondary LCRS, has averaged 10 gallons per day over the period of January 2001 to December 2007. Peak flows have approached 150 gallons per day. Recent monitoring has indicated that no liquids are being collected in the secondary LCRS. The Response Action Plan (RAP) (SEC Donohue 1992a) determined that the Action Leakage Rate (ALR) for each sump ranged from 1,250 to 3,500 gallons per day. These values have a minimum calculated safety factor of 3 . Liquids collected in the secondary LCRS have not approached the ALR. The current ALRs remain valid for the proposed expansion since the limiting factor was the length of geocomposite at the toe of slope and this length remains unchanged, conservative transmissivity values are used in the calculations.

The vadose zone collection system has not collected any liquids during the period January 2001 to December 2007. The Vadose Zone Response Plan (SEC Donohue 1992b) allows from 3.5 to 6.6 gallons per day to be collected in the vadose sumps based on a de minimus leakage rate of 20 gallons per acre per day. The vadose system will not be modified by the proposed expansion: therefore, the allowable leakage rates remain valid.

In the event leakage in the secondary or vadose collection systems exceeds the ALR, then appropriate actions in accordance with the RAP will be implemented.

5.7 Riser Pipe Designs

Appendix L includes the engineering calculations performed to support the following riser pipe requirements:

- Design of the main 24 -inch diameter steel vertical riser pipe and its foundation, located about 6.5 feet above the primary liner system in the sump area, as illustrated in Section B on Sheet 21 in Appendix A.1.
- \quad Provision of adequate crushing strength for the lower 18-inch diameter stainless steel vertical riser pipe that is approximately 7 feet long and is located immediately below the 24 -inch diameter steel vertical riser pipe.
- Assurance that the pressure exerted by the main vertical riser pipe foundation will not create a bearing capacity failure in the underlying clay liners.
- Evaluation of the stresses and deflections in the bottom portions of the sideslope riser pipes.

As shown in Section B on Sheet 21 in Appendix A.1, the main vertical riser pipe will be placed inside of a larger, 30-inch diameter corrugated HDPE pipe to avoid the development of high drag loads on the 24 -inch diameter steel pipe. The corrugated pipe will not develop significant vertical stresses because it will readily deflect in an accordion-like manner in the longitudinal direction as the surrounding waste settles. The corrugated pipe will be held away from the steel pipe with flexible spacers at about 10 -foot centers to avoid long sections where the two pipes would otherwise be in continuous contact. To be conservative, the calculations assume that a contact area of 10 percent of the total contact area between the two pipes develops and that it is capable of transferring drag loads to the inner steel pipe. In addition, significant factors of safety are provided for each of the key components of the system to minimize the potential for large deformation of the riser pipe to occur.

The 6-foot by 6-foot by 1.5 -foot-thick reinforced concrete foundation for the main riser pipe was designed to spread any load on the pipe over a sufficient area so that there is a high factor of safety against potential bearing capacity deformations of the underlying clay liner. This is accomplished because the minimum bearing capacity factor of safety is estimated to be between 7 and 10 when using a conservative estimate of the strength of the clay liner. A slip connection has been included in the riser pipe at approximately elevation $900 \mathrm{ft}-\mathrm{MSL}$ to reduce the load on the foundation. The loads above the slip connection will be transferred within the waste.

Compression loading on the lower stainless steel pipe is calculated considering at-rest pressures resulting from the main riser pipe foundation loading. The factor of safety against crushing is greater than 5 , which is considered appropriately conservative for this system.

Finally, calculations of deflection for the lower portions of the sideslope riser pipes show that:

- The carbon and stainless steel pipe deflections will be on the order of 0.1 inches, which is relatively small with regard to the allowable deflections for these pipes.
- The maximum deflection of the 8 -inch diameter HDPE SDR 8.3 pipe is estimated to be on the order of 20 to 30 percent of its diameter.

Although the deflection of the HDPE pipe is higher than would normally be desirable, it is considered to be acceptable because this pipe is included as a second (i.e., redundant) system for pumping from the secondary LCRS. From an operations viewpoint, it was determined that it would be better to have these two redundant types of pipes to minimize the potential for pump access loss because of material deterioration.

5.8 Cover Infiltration

Appendix M includes calculations similar to those performed to support the design of the currentlypermitted final closure cover system for B-18 (DTSC, 2003). These calculations were performed using the updated computer program HELP version 3.07 (Schroeder et al., 1994) to estimate the amount of infiltration through and head on the final cover system. The infiltration analyses were conducted by assuming the following parameters:

- The vegetative cover soil layer is 2.5 -feet-thick with a permeability of $2 \times 10^{-4} \mathrm{~cm} / \mathrm{s}$, based on past experience with this type of material at the KHF.
- The HELP program's default climate data for Fresno, California and Bakersfield, California were used to model the climatological conditions at the KHF. Use of Fresno climate is a conservative assumption since Fresno receives approximately 50 percent more rainfall annually than the KHF, based on historic precipitation data.
- The HDPE geomembrane will have 0.50 holes per acre resulting from manufacturer's flaws (where each hole has a 1 mm diameter), 1.0 hole per acre resulting from installation defects (where each hole has an area of $1 \mathrm{~cm}^{2}$), and "excellent" placement quality.
- The nonwoven geotextile component of the final cover system has an in-plane permeability of 0.25 to $0.40 \mathrm{~cm} / \mathrm{s}$.
- The foundation layer has a permeability of $1 \times 10^{-5} \mathrm{~cm} / \mathrm{sec}$
- The slope of the final cover system is 25 percent (i.e., $4 \mathrm{H}: 1 \mathrm{~V}$).

Based on the above assumptions, the results of the HELP analyses indicate that a maximum head of about 3 to 4 inches will develop on the geomembrane during extended rainy seasons (similar to Fresno) and that acceptably low infiltration rates will occur through the HDPE geomembrane. Since a head of only 3 to 4 inches on the geomembrane is not anticipated to compromise the stability of the final cover system, the permitted final cover system is considered adequate for B-18. Additionally, the permitted cover system has been used to close other facilities at KHF since 1994 without failure or apparent build up of liquids within the cover.

5.9 Frost and Biotic Protection

The effects of frost penetration on the B-18 final closure cover were evaluated. Appendix N. 1 provides two maps that each show estimated depths of frost penetration for the United States. Both of these maps indicate that the maximum depth of frost penetration at the KHF is less than 6 inches. Past experience and observations at the KHF corroborate this finding. Hence, any frost penetration that occurs is anticipated to be confined to the uppermost portions of the 2.5 -foot-thick vegetative cover soil layer and should not present a significant potential to deteriorate the cover system or to cause special maintenance requirements.

The effects of burrowing animals on the B-18 final cover system were also evaluated. Information presented in Appendix N. 2 indicates that burrowing animals will be confined to the vegetative cover soil layer due to the presence of the underlying HDPE geomembrane. Past experience at the KHF indicates that HDPE geomembranes are effective barriers to burrowing animals. Hence, the performance of the B-18 final cover is not expected to be impacted by burrowing animals.

6.0 REFERENCES

California Department of Water Resources (CDWR), 1976, Rainfall Analysis for Drainage Design Volume I, Short-Duration Precipitation Frequency Data, October.
Department of Toxic Substances Control (DTSC), 2003, Hazardous Waste Facility Permit, Kettleman Hills Facility, June 16.
Donohue and Associates, Inc., 1988a, Engineering Report, Chemical Waste Management, Inc., Kettleman Hills Facility, Landfill B-19, Phases II and III, Kings County, California, October.
Donovan, N., 1983, A Practitioner's View of Site Effects on Strong Ground Motion, Proceedings of Conference XXII on Site-Specific Effects of Soil and Rock on Ground Motion and the Implications for Earthquake-Resistant Design, July 25-27, USGS.
Duncan, J.M., and Buchignani, A.L., 1976, An Engineering Manual for Settlement Studies, Department of Civil Engineering, University of California - Berkeley, June.
EMCON Associates, 1989, Progress Report, Soil/Waste Compatibility Testing, Kettleman Hills Facility, Kettleman City, California, December 26.
EMCON Associates, 1986, Hydrogeologic Characterization, Kettleman Hills Facility, Kings County, California, December.

Environmental Construction Services, Inc. (ECS), 1992a, Clay Source, Landfill B-18, Phases IA and IB, Kettleman Hills Facility, Kettleman City, California, January 9.
Environmental Construction Services, Inc. (ECS), 1992b, Secondary Clay Liner, Landfill B-18, Phases IA and IB, Kettleman Hills Facility, Kettleman City, California, March 30.
Environmental Construction Services, Inc. (ECS), 1992c, Secondary HDPE Liner and Leachate Collection System, Landfill B-18, Phases IA and IB, Kettleman Hills Facility, Kettleman City, California, March 30.

Environmental Construction Services, Inc. (ECS), 1992d, Primary Clay Liner, Landfill B-18, Phases IA and IB, Kettleman Hills Facility, Kettleman City, California, March 30.
Environmental Construction Services, Inc. (ECS), 1992e, Primary HDPE Liner and Leachate Collection System, Landfill B-18, Phases IA and IB, Kettleman Hills Facility, Kettleman City, California, March 30.

Environmental Construction Services, Inc. (ECS), 1992f, Summary Construction Observation, Landfill B-18, Phases IA and IB, Kettleman Hills Facility, Kettleman City, California, March 30.
Environmental Construction Services, Inc. (ECS), 1992g, Operational Features, Landfill B-18, Phases IA and IB, Kettleman Hills Facility, Kettleman City, California, June.
Environmental Construction Services, Inc. (ECS), 1992h, Design Changes and Design Clarifications, Landfill B-18, Phases IA and IB, Kettleman Hills Facility, Kettleman City, California, February 18.

Environmental Solutions, Inc. (ESI), 1992, Test Fill and Infiltrometer Test Results, Landfill Unit B18, Phases I and II and Final Closure, January 23.
Environmental Solutions, Inc. (ESI), 1990a, Engineering and Design Report, Landfill Unit B-18, Phases I and II and Final Closure, Kettleman Hills Facility, Kings County, California, Volumes I and II, August.

Environmental Solutions, Inc. (ESI), 1990b, Construction Specifications and Quality Assurance Plan, Landfill Unit B-18, Phases I and II and Final Closure, Kettleman Hills Facility, Kings County, California, July 31.
Franklin, A.G., and Chang, F.K., 1977, Permanent Displacements of Earth Embankments by Newmark Sliding Block Analysis, Earthquake Resistance of Earth and Rock-Fill Dams, Report 5, U.S. Army Engineer Waterways Experiment Station, November.

Geosyntec Consultants, 2008a, Clay Stockpile and Test Pad Report, Kettleman Hills Facility, Kettleman City, California, December.

Geosyntec Consultants, 2008b, Clay Source Testing: Summary of Field and Laboratory Test Results, Kettleman Hills Facility, Kettleman City, California, February 11.
Geosyntec Consultants, 2001, Site-Specific Groundwater Monitoring Plan, Kettleman Hills Facility, Kings County, California, May.
Golder Associates Inc., 1992, Subgrade Geologic Mapping and Chemical Analysis for Landfill B-18, Phase I, Kettleman Hills Facility, Kettleman City, California, March 30.

Golder Associates Inc., 1989a, Supporting Calculations for the Landfill B-15 Closure Plan, Kettleman Hills Facility, December.
Golder Associates Inc., 1989c, Waste Settlement Report for Final Landfill Cover Design, Kettleman Hills Facility, July.
Golder Associates Inc., 1988, Updated Evaluation of Site Design Ground Motions for the CWM Kettleman Hills Facility, September.
Golder Construction Services, Inc. (GCS), 1993a, Clay Liner Source Report (Volume 1), Landfill B18, Phases IIA and IIB, Kettleman Hills Facility, Kettleman City, California, May.
Golder Construction Services, Inc. (GCS), 1993b, Subgrade Geologic Mapping and Chemical Analysis Report (Volume 2), Landfill B-18, Phases IIA and IIB, Kettleman Hills Facility, Kettleman City, California, May.
Golder Construction Services, Inc. (GCS), 1993c, Excavation and Structural Fill Placement Construction Report (Volume 3), Landfill B-18, Phases IIA and IIB, Kettleman Hills Facility, Kettleman City, California, August.

Golder Construction Services, Inc. (GCS), 1993d, Secondary Clay Liner Construction Report (Volume 4), Landfill B-18, Phases IIA and IIB, Kettleman Hills Facility, Kettleman City, California, September.

Golder Construction Services, Inc. (GCS), 1993e, Secondary and Vadose HDPE Liner and Leachate Collection System Report (Volume 5), Landfill B-18, Phases IIA and IIB, Kettleman Hills Facility, Kettleman City, California, October.

Golder Construction Services, Inc. (GCS), 1993f, Primary Clay Liner Construction Report (Volume 6), Landfill B-18, Phases IIA and IIB, Kettleman Hills Facility, Kettleman City, California, October.

Golder Construction Services, Inc. (GCS), 1993g, Primary HDPE Liner and Leachate Collection System Construction Report (Volume 7), Landfill B-18, Phases IIA and IIB, Kettleman Hills Facility, Kettleman City, California, November.

Golder Construction Services, Inc. (GCS), 1993h, Summary Construction Report (Volume 8), Landfill B-18, Phases IIA and IIB, Kettleman Hills Facility, Kettleman City, California, November 8.

Golder Construction Services, Inc. (GCS), 1993i, Operational Features Report (Volume 9), Landfill B-18, Phases IIA and IIB, Kettleman Hills Facility, Kettleman City, California, December 6.

Hudson, M.B., Beikae, M., and Idriss, I.M., 1994, QUAD4M, a Computer Program to Evaluate the Seismic Response of Soil Structures Using Finite Element Procedures and Incorporating a Compliant Base, Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis, 1994-05.

J\&L Testing Company, 1991a, Leachate Compatibility of Geosynthetic Materials Kettleman Hills Facility, Final Report, November 4.

J\&L Testing Company, 1991b, Geotechnical Laboratory Test Results Aggregate/Leachate Compatibility Testing, Kettleman Hills Facility, November 7.

J\&L Testing Company, 1992, NSC 60 mil Textured HDPE Chemical Compatibility Testing EPA Method 9090 - Kettleman Hills Facility, September 8.

Kings County, 1990, Chemical Waste Management, Kettleman Hills Facility, B-18 Administrative Approval Permits 90-23 and 90-24, Kings County Planning Agency, August.
Makdisi, F.I., and Seed, H.B., 1978, Simplified Procedure for Estimating Dam and Embankment Earthquake-Induced Deformation, Journal of the Geotechnical Engineering Division, ASCE, Vol. 104, No. GT7, July, pp. 849-868.

National Oceanic and Atmospheric Administration (NOAA), 1998, Hydrometeorogical Report No. 58, Probable Maximum Precipitation for California - Calculation Procedures.

Natural Resources Conservation Service (NRCS), 2004, RUSLE2 - Instructions \& User Guide, United States Department of Agriculture, May.

Newmark, N.M., 1965, Effects of Earthquakes on Dams and Embankments, Fifth Rankine Lecture.
Purdue University (Ronald A. Siegel), 1986, STABL User Manual, West Lafayette, Indiana, June 4.
Regional Water Quality Control Board (RWQCB), Central Valley Region, 1998, Order No. 98-058, Waste Discharge Requirements for Chemical Waste Management, Inc., Kettleman Hills Facility, Kings County, February 27.

Roger Foott and Associates, Inc., 1990a, Final Report, Unit B-18 Landfill, Holocene Fault Investigation, Kettleman Hills Facility, August 14.

Roger Foott and Associates, Inc., 1990b, Phase I Holocene Surface Faulting Study, Nunez Fault and Kettleman Hills Facility, April 2.

Schroeder, P.R., Aziz, N.M., Lloyd, C.M., and Zappi, P.A., 1994, The Hydrologic Evaluation of Landfill Performance (HELP) Model: User’s Guide for Version 3, EPA/600/R-94/168a, September.

SEC Donohue Environment \& Infrastructure, 1992a, Response Action Plan, Landfill B-18, Kettleman Hills Facility, June.

SEC Donohue Environment \& Infrastructure, 1992a, Vadose Response Plan, Landfill B-18, Kettleman Hills Facility, June.

Seed, R.B., and Bonaparte, R., 1992, Seismic Analysis and Design of Lined Waste Fills: Current Practice, ASCE Geotechnical Special Publication No. 31, Stability and Performance of Slopes and Embankments, June 29-July 1.

Seed, R.B., Mitchell, J.K., and Seed, H.B., 1988, Slope Stability Failure Investigation: Landfill Unit B-19, Phase I-A, Kettleman Hills, California, Report No. UCB/GT/88-01, Department of Civil Engineering, University of California, Berkeley, July.
TRI/Environmental, Inc., 1991, Chemical Compatibility Testing of National Seal 60 mil Geomembrane with Kettleman Hills Waste Leachate, Soltex Resin, NSC\#CO2A, Final Report, October 14.

United States Environmental Protection Agency (USEPA), 1989, Technical Guidance Document: Final Covers on Hazardous Waste Landfills and Surface Impoundments, EPA/530-SW-89-047, July.
United States Environmental Protection Agency (USEPA), 1987, Minimum Technology Guidance on Double Liner Systems for Landfills and Surface Impoundments - Design, Construction and Operation, EPA/530/SW-85/014, April.
Woodring, W.P., Stewart, R., and Richards, R.W., 1940, Geology of the Kettleman Hills Oil Field, California; Stratigraphy, Paleontology, and Structure, United States Geological Survey Professional Paper No. 195, 170 p.
Woodward-Clyde Consultants, 1987, Seismic Stability Evaluation for the Toe Buttress Construction, Operating Industries, Inc. Site, Monterey Park, California, Document No. 120-R12-RT-EPNN-1, Prepared for U.S. EPA, May 27.

The following references were used in the Phase I and Phase II engineering report but have not specifically been included in the Phase III and Closure. The references are included herein for completeness:
Chemical Waste Management, Inc. (CWMI), 1989, Operation Plan for Landfill Unit B-19, Kettleman Hills Facility. June.

Donohue and Associates, Inc., 1988b, Construction Documents, Landfill Unit B-19, Phases II and III, Kettleman Hills Facility. September.
Geoservices, Inc., 1990, Consulting Engineers. Direct Shear Interface Strength Testing Selected Geotextile Interfaces. April 5.

Geosyntec, Inc., 1988, Final Report on the Direct Shear Testing for the Chemical Waste Management, Inc. New Milford, Connecticut Landfill. Prepared for Geoservices, Inc. Consulting Engineers. October 11.

Golder Associates Inc., 1990a, Combined Closure Plan for Landfills B-1/4/S/6/7, B-8/9/9 Expansion /9 Extension /10/11, Surface Impoundments P-5/12/12A/13/17 and Area S-3, Kettleman Hills Facility. Revision 2, Draft. June.
Golder Associates Inc., 1990b, Direct Shear Testing Program for Landfill Cover Design, Kettleman Hills Facility. June 29.

Golder Associates Inc., 1990c, Closure Plan for Landfill B16, Kettleman Hills Facility, Kettleman City, California. April 23.

Golder Associates Inc., 1989b, Feasibility Study for Final Landfill Cover Systems, Kettleman Hills Facility (Draft), August.

Golder Associates Inc., 1989d, Filling Plan, Landfill B-19, Phases II and III, Kettleman Hills Facility, May.

Golder Associates Inc., 1988a, Filling Plan, Phase IB and III, Kettleman Hills Facility, August.
Golder Associates Inc., 1988a, Dynamic Stability of Cut Slopes in Bedrock, Landfill B-19, Kettleman Hills Facility, June.
Golder Associates Inc., 1988c, Filling Plan, Phase IB and III, Kettleman Hills Facility, August.
Gundle Lining Systems, Inc., 1989, Direct Shear Friction Testing, Gundle Friction Sheet, Mirafi 140N Geotextile, March 26.
Gundle Lining Systems, Inc., 1988a, Direct Shear Test Results, Textured HDPE and Soil, October.
Gundle Lining Systems, Inc., 1988b, Direct Shear Test Results, Gundle HDT and Fabric, Covered XL-4, Dry and Saturated Conditions, September.
Gundle Lining Systems, Inc., 1988c, Direct Shear Test Results, Textural HDPE and Sand, Dry and Saturated Conditions, June 15.
Gundle Lining Systems, Inc., 1988d, Lab Report \#2683.
Gundle Lining Systems, Inc., 1987a, Direct Shear Testing of Friction Liner Material, March 11.
Gundle Lining Systems, Inc., 1987b, Direct Shear Friction Testing, Gundnet XL-4 versus 80 mil Gundline, November.

Gundle Lining Systems, Inc., (not dated), Polyethylene VS. PVC Liners.
Gundle Lining Systems, Inc., (not dated), Direct Shear Testing of Friction Liner Materials (Several Separate Reports).
Koerner, R., 1986, Designing with Geosynthetics.
Lambe, T.W., and Whitman, R.V., 1969, Soil Mechanics, New York: John Wiley \& Sons, Inc.
Murphy, W.L. and Gilbert, P.A., 1985, Settlement and Cover Subsidence of Hazardous Waste Landfills, Prepared for U.S. EPA. Document No. 600/2-85-035, April.
SLT North America, Inc., (not dated), Physical Properties of Textured HDPE Liners, Friction Flex Application Data.
U.S. Department of Agriculture, 1987, Agriculture Handbook 537, Predicting Rainfall Erosion Losses, December.
U.S. Department of the Navy, Naval Facilities Engineering Command, 1986, Soil Mechanics Design Manual 7.01, September.
U.S. EPA, 1990, RCRA Hazardous Waste Facility Permit (Part B) for Kettleman Hills Facility, March.
U.S. EPA, 1988, Lining of Waste Containment and Other Impoundment Facilities, EPA-600/288/052, September.
U.S. EPA, 1979, Design and Construction of Covers for Solid Waste Landfills, EPA-600/2-79-165, August.
U.S. EPA, 1983, The Hydrologic Evaluation of Landfill Performance (HELP) Model, Version 2, EPA/530-SW-84-OlO, August.
Water Resources Engineers, Inc., 1977, County of Solano, Hydrology and Drainage Design Procedure, October.

Winterkorn, H.F., and Fang, H.-Y. (eds.), 1975, Foundation Engineering Handbook, Chapter 23, Buried Structures, Van Nostrand Reinhold Company.
Yen, B.C., and Scanlan, B., 1975, Sanitary Landfill Settlement Rates, ASCE Journal of the Geotechnical Engineering Division, May.

TABLES

TABLE 3.1
KEY BORING INFORMATION

BORENG	$\frac{\text { SORTHRO }}{\text { EASTING }}$	$\begin{aligned} & \text { GROUND } \\ & \text { EIEVATION } \\ & \text { TOTALDEPTH } \end{aligned}$	SAMPLE number (Mode) ${ }^{(11)}$	SAMPLE DEPTH (Feat)	STRATIORAPHE UNIT DESCRIPTION(2)	STRATIGRAPFIC UNTT NUMBER	RECOVERY (क)	PURPOSE
LJS-A	$\begin{gathered} 8.943 \\ 840 \end{gathered}$	$\begin{gathered} 856 \\ 38.7 \end{gathered}$	$\begin{aligned} & \mathrm{S}-1(\mathrm{~PB}) \\ & \mathrm{S}-2(\mathrm{~PB}) \\ & \mathrm{S}-3(\mathrm{~PB}) \\ & \mathrm{S}-4(\mathrm{~PB}) \\ & \mathrm{S}-5(\mathrm{~PB}) \\ & \mathrm{S}-6(\mathrm{~PB}) \end{aligned}$	$\begin{gathered} 5.6 .3 \\ 10-12.5 \\ 17.19 .5 \\ 25.27 .5 \\ 33-35.5 \\ 37.38 .7 \\ \hline \end{gathered}$	15 cs/ix celu silty ss silty as w/a silry es whes	$18-10$ 18-10 18-10 18-30 18.30 18-30	$\begin{aligned} & \hline 91 \\ & 84 \\ & 96 \\ & 300 \\ & 88 \\ & 88 \end{aligned}$	- Otetin satoples of Unit 18 -30. This unit ocours at tho we of the western aut mbpe and bormom of exenvelion, Phase I/LI (See Sectional and 14). Unit 18-10 also ocnar at lee und middle tertion of eastep cut plope at Section 18.
L18-B	$\begin{gathered} 8,755 \\ 860 \end{gathered}$	$\begin{gathered} 861 \\ 39.5 \end{gathered}$	$\begin{aligned} & \mathrm{S}-1(\mathrm{~PB}) \\ & 5-2(\mathrm{~PB}) \\ & \mathrm{S} .3(\mathrm{~PB}) \\ & \mathrm{S}-\mathrm{PBB}) \\ & \mathrm{S}-\mathrm{S}(\mathrm{~PB}) \end{aligned}$	$\begin{gathered} 6.8 .5 \\ 11.5 \cdot 14 \\ 20-22.5 \\ 28.30 .5 \\ 37.39 .5 \end{gathered}$	© tilly it 4 Esw/ci/sh 4	$\begin{aligned} & 18.12 \\ & 18.11 \\ & 18-11 \\ & 18-11 \\ & 18-11 \end{aligned}$	$\begin{aligned} & 92 \\ & 96 \\ & 64 \\ & 88 \\ & 80 \end{aligned}$	- Deveraine deph to top of sily is (Cinit 18-11). - Otain secaples of Unir 18-12. This unit pocurs neer be tre of wectern cun slope, Phase L/II (See Sections 14+00 and $18+(0)$). - Otenin samples of Unit 18-31. This unit cocurt at tee of wertem cul tlope . See Semions $14+00$ and $18+00$.
L18-C	$\begin{aligned} & 8,623 \\ & 2,120 \end{aligned}$	$\begin{aligned} & 754 \\ & 89 \end{aligned}$	$\begin{aligned} & \mathrm{B}-1(\mathrm{PR}) \\ & \mathrm{B}-2(\mathrm{PR}) \\ & \mathrm{S}-1(\mathrm{~PB}) \\ & \mathrm{S}-2(\mathrm{~PB}) \\ & \mathrm{S}-3 \text { (PB) } \\ & \mathrm{S}-4(\mathrm{~PB}) \\ & \mathrm{S}-5(\mathrm{~PB}) \\ & \mathrm{S}-6 \text { (PB) } \\ & \mathrm{S}-7(\mathrm{~PB}) \\ & \mathrm{S}-8(\mathrm{~PB}) \\ & \mathrm{S}-9(\mathrm{~PB}) \\ & \mathrm{S}-10(\mathrm{~PB}) \\ & \mathrm{S}-11(\mathrm{~PB}) \end{aligned}$	6.7 .5 12.13 .5 $15-17.3$ $20-27.5$ $25-27.5$ $33-35$ $41-43.1$ $48-50.1$ $56-58$ 6466.3 72.74 .3 $80-82$ $87-89$	colluwium (cll) coljurium (cl) s. 1 116 st cs/hit silty ss th clayey sh 1 l claycy th ss, silty ss th/e $s+16$	$\begin{aligned} & Q \\ & Q \subset \\ & 18.7 \\ & 18.7 \\ & 18.7 \\ & 18.7 \\ & 18.7 \\ & 18.7 \\ & 18.7 \\ & 18.7 \\ & 18.7 \\ & 18.7 \\ & 18.7 \end{aligned}$	87 53 91 92 88 95 95 , 0 90 76 100 95 85	- Delermine colluviurd thickress. - Obuin iagpler of st, the (Ginil 18-7). This unin oceurs at bonem of exeswation, Phase III/V (See Secions $14+00$ and $18+00$) and an toe of western in dipping cut shope, Phases III \& JV (Sec Section $(4+00)$.
L18-D	$\begin{aligned} & 8.785 \\ & 2,480 \end{aligned}$	$\begin{aligned} & 740 \\ & 86 \end{aligned}$	$\begin{aligned} & \mathrm{B}-1(\mathrm{DR}) \\ & \mathrm{B}-2(\mathrm{DR}) \\ & \mathrm{B}-3(\mathrm{Pag}) \\ & 5-1(\mathrm{~PB}) \\ & \mathrm{S}-2(\mathrm{~PB}) \\ & \mathrm{S}-3(\mathrm{~PB}) \\ & 5-4(\mathrm{~PB}) \\ & 5-5(\mathrm{~PB}) \\ & 5-6(\mathrm{~PB}) \\ & 5-7(\mathrm{~PB}) \\ & \mathrm{S}-8(\mathrm{~PB}) \\ & 5-9(\mathrm{~PB}) \\ & \mathrm{S}-10(\mathrm{~PB}) \\ & 5-11(\mathrm{~PB}) \end{aligned}$	$\begin{gathered} 5-6.5 \\ 10-11.5 \\ 14 \\ 15-17.3 \\ 22 \cdot 24.3 \\ 29.31 .5 \\ 36-38.5 \\ 44-4.5 \\ 52-54.3 \\ 60-6.5 \\ 68.70 .5 \\ 76-7.5 \\ 81-8.5 \\ 83.5-8.5 \\ \hline \end{gathered}$	colluvius colluvium silty 4 slt ca/sh ca/sit $\stackrel{5}{6}$ $⿷$ 6/4. © tily 4 sllty as silty as	$\begin{gathered} \cdots \\ 78 \\ 18-5 \\ 18-5 \\ 18-4 \\ 18-4 \\ 18-4 \\ 18-4 \\ 18-4 \\ 18-4 \\ 18-3 \\ 18-3 \\ 18-3 \end{gathered}$		- Devermine colluyium hicherst. * Clarify conuac of Linits 18-4 and 18-3. - Cinrify comact of Lious 18 -4 and 18.5 . - Oblain sumples of these units. - Linics 18 -d and 18.5 oceur at earicrn ous. dipping cut tlope, Phase H and N^{\prime} (See Sections $14+00$ and $18+00$).
L18.E	$\begin{aligned} & 8,895 \\ & 2,670 \end{aligned}$	$\begin{gathered} 727 \\ 62.5 \end{gathered}$	$\begin{aligned} & \mathrm{B} .1 \text { (DR) } \\ & \mathrm{S}-1 \text { (PB) } \\ & \mathrm{S} .2 \text { (PB) } \\ & \mathrm{S} .3 \text { (PB) } \\ & \mathrm{S}-4 \text { (PB) } \\ & \mathrm{S}-5 \text { (PB) } \\ & \mathrm{S}-6 \text { (PB) } \\ & \mathrm{S} .7 \text { (PB) } \\ & \mathrm{S} 8 \text { (PB) } \end{aligned}$	$\begin{gathered} 5-6.5 \\ 16-12.5 \\ 15-17.5 \\ 20-22.5 \\ 28.302 \\ 35-37.5 \\ 43-4.5 \\ 51-53 \\ 60-62.5 \end{gathered}$	colluriuno (c) colluvium (c) 4 12 * enendy ith tundy in cs sundy eq	$18-3$ $18-3$ 38-3 18.3 38-3 18-2 $18-2$		- Deumine colthvium thicioness. Clarify conuct of Units 18.2 and 18.3. Obuin mamplec of colluvium Unis 18.3 and 18-2. These wisk may serve as foumation materiak or run-off resenion bermis of litge berin for Phuse Ill \& J configuration.

(1) $\mathrm{PB}=$ Piccher $\mathrm{Bamel} ; \mathrm{DR}=$ Drive Sampler
(2) $\mathrm{c}=$ Ciayndnc; tu $=$ Sudronc; slt $=$ Silusione

TABLE 3.1
KEY BORING INFORMATION
(Contioued)

BORDNO	$\begin{aligned} & \text { NORTHNO } \\ & \text { EASTINO } \end{aligned}$	OROUND ELEVATION (fin) TOTAL DEFTH	SAMPLE MJMER (Madef(l)	SAMPLE DEPTH (Feas)	STRATTGRAPHIC UNIT DESCRIFTION(2)	STRATICRAPFIC UNTT NUMGER	RECOVERY (体)	PURPOSE
LLEF	$\begin{aligned} & 8,930 \\ & 1,538 \end{aligned}$	$\begin{aligned} & 8.1 \\ & 58.5 \end{aligned}$	$\begin{aligned} & \mathrm{S}-1(\mathrm{~PB}) \\ & \mathrm{S}-2(\mathrm{~PB}) \\ & 5.3(\mathrm{~PB}) \\ & \mathrm{S}-4(\mathrm{~PB}) \\ & \mathrm{S}-5(\mathrm{~PB}) \\ & \mathrm{S} .6(\mathrm{~PB}) \end{aligned}$	6.8 .5 16.185 26-28.5 36-38.5 46-48. 1 56-58.5		$\begin{aligned} & 188 \\ & 18.8 \\ & 18.8 \\ & 18.8 \\ & 18.8 \\ & 18.8 \end{aligned}$	$\begin{gathered} 100 \\ 68 \\ 92 \\ 76 \\ 100 \\ 84 \end{gathered}$	- Ovenim empice of Uail 18-8 (chay). This nitil ocane to mane oun-dipping cut slope, Phere LII (See Soajion 8+00).
L480	$\begin{aligned} & 7,500 \\ & 1,914 \end{aligned}$	$\begin{aligned} & 85 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \mathrm{S}-1(\mathrm{~PB}) \\ & \mathrm{S}-2(\mathrm{~PB}) \\ & \mathrm{S}-3(\mathrm{FB}) \\ & \mathrm{S}-\mathrm{FB}) \\ & \mathrm{S}-5(\mathrm{~PB}) \\ & \mathrm{S}-6(\mathrm{~PB}) \\ & \mathrm{S}-7(\mathrm{FB}) \\ & \mathrm{S}-8(\mathrm{~PB}) \\ & \mathrm{S}-9(\mathrm{~PB}) \\ & \mathrm{S}-10(\mathrm{~PB}) \end{aligned}$	6-8.5 14-16.5 22.23.7 30.32 40-4.3 $45-475$ 50-512 60-625 65-67 75-775		$\begin{aligned} & 18-13 \\ & 18.13 \\ & 18-13 \\ & 18-13 \\ & 18-13 \\ & 18-12 \\ & 18-12 \\ & 18-12 \\ & 18-12 \\ & 18-12 \end{aligned}$	$\begin{aligned} & 56 \\ & 56 \\ & 88 \\ & 60 \\ & 92 \\ & 60 \\ & 72 \\ & 40 \\ & 70 \\ & 38 \end{aligned}$	- Oostim mampler of Uoiut 18-13 add 18 12. Uniti 18-13 (sandstane) comprise the weaterd cul sjope, Phate I/II. Uoil 18.12 (elaypose) docurs pere the toe of the an alope, Phare I / I, if Sectico $18+00$.
L88-H	$\begin{aligned} & 8,065 \\ & 2,055 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 57.5 \end{aligned}$	$\mathrm{S}-1$ (PB) S-2 (PB) S-3 (FB) 54 (PB) S-5 (PB) S-6 (PB)	6-8. 5 15-175 25.275 35-37.5 45-47.5 55-57.5	es sity m Widh saxd sily as ct with and	$\begin{aligned} & \hline 18-10 \\ & 18.10 \\ & 18.10 \\ & 18-10 \\ & 18-10 \\ & 18-10 \end{aligned}$	$\begin{aligned} & 72 \\ & 76 \\ & 66 \\ & 92 \\ & 96 \\ & 48 \end{aligned}$	- Obsim campler of Uait 18-10 underlying the forlll bed This win octur st ouldipping out tlope, otrantid cide, Phese L/L (sec \$eaiont 14+00 add 18*00). In Seation $8+00$ Uail 18.10 gotur at bonom of excavalion
L48-1	$\begin{aligned} & 8.0022 \\ & 2.415 \end{aligned}$	$\begin{aligned} & 766 \\ & 18.5 \end{aligned}$	$\begin{aligned} & \mathrm{B}-1(\mathrm{DR}) \\ & 5-1(\mathrm{~PB}) \\ & \mathrm{S}-2(\mathrm{~PB}) \end{aligned}$	$\begin{gathered} 6-7.5 \\ 12-138 \\ 16-18.5 \end{gathered}$	molluviam (cl) collywion (cl) E	$18-8$	$\begin{aligned} & 87 \\ & 78 \\ & 92 \end{aligned}$	- Devermine colluvium thichness. * Obuim amingic of Unil 18-5 (clayrione).
L18-3	$\begin{gathered} 228,390 \\ 1,704,985 \end{gathered}$	$\begin{gathered} 820 \\ 172.5 \end{gathered}$		$\begin{gathered} 5-7.5 \\ 10-12.5 \\ 15-17.5 \\ 20-22 \\ 25-27.5 \\ 30-32.5 \\ 35-37.5 \\ 40-42.5 \\ 45-47.5 \\ 50-52.5 \\ 55-57.5 \\ 60-62.5 \\ 65-67.5 \\ 70-72.5 \\ 75-7.5 \\ 30-82.5 \\ 85-87.5 \\ 90-92.5 \\ 95-97.5 \\ 100-101.5 \\ 105-107.5 \\ 110-112.5 \\ 115-117.5 \\ 120-122.5 \\ 125-127.5 \end{gathered}$	a a a $c a / u$ a e a a a a a a a a a	18.8 18.8 188 18-8 188 18-8 18.8 188 18.8 18-8 18.8 18.8 188 18.8 188 18-8 18.8 188 188	68 88 88 75 76 96 100 72 92 92 92 96 64 88 100 96 88 84 32 60 100 100 96 100 96	- Otrais a miples of Unit 18-8. Thil unil will be und a liner matrial - The primery purpose is to evalune the coatinuiry of the elaynore tide io dearmine the exirunce end thidinto of thin mandacoe straun eu colvad oo be log of Monitoring Well K-8.

(1) $\mathrm{PB}=$ Piteher Hertel; $\mathrm{DR}=$ Drive Smpler

TABLE 3.1
KEY BORING INFORMATION
(Contloued)

EORPNO	$\begin{aligned} & \text { NORTHINO } \\ & \text { EASTINC } \end{aligned}$	\qquad	SAMPLE NDMORR (Moden)	SAMPLE DEPTH (Fea)	STRATIIRAPHIC UNIT DESCRIPTIOND	STRATIGRAPHIC UNIT NUMDER	RECOVERY (\%)	PURPOSE
(Cont)			S.26(PB) $5-27$ (PB) S-28 (FB) S-29 (PB) $5.30(\mathrm{~PB})$ S-31 (PG) S-32 (PB) 5.33 (PB) $\mathrm{S} .34(\mathrm{~PB})$	$\begin{aligned} & 130-132: \\ & 135-137.5 \\ & 140-1425 \\ & 145-1475 \\ & 150-152.5 \\ & 155-157.5 \\ & 160-162.5 \\ & 165-167.5 \\ & 170-172.5 \end{aligned}$		18.8 188 18.8 18-8 18.8 18.8 18.8 18.7 18.7	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 92 \\ & \hline 8 \end{aligned}$	
L88-K	$\begin{gathered} 228,390 \\ 1,701,722 \end{gathered}$	$\begin{aligned} & 804 \\ & 97.5 \end{aligned}$	$\begin{aligned} & \mathrm{S}-1(\mathrm{~PB}) \\ & \mathrm{S}-2(\mathrm{~PB}) \\ & \mathrm{S}-3(\mathrm{~PB}) \\ & \mathrm{S}-1(\mathrm{~PB}) \\ & \mathrm{S}-5(\mathrm{~PB}) \\ & \mathrm{S}-6(\mathrm{~PB}) \\ & \mathrm{S}-7(\mathrm{~PB}) \\ & \mathrm{S}-8(\mathrm{PA}) \\ & \mathrm{S}-9(\mathrm{~PB}) \\ & \mathrm{S}-10(\mathrm{~PB}) \\ & \mathrm{S}-11(\mathrm{~PB}) \\ & \mathrm{S}-12(\mathrm{~PB}) \\ & \mathrm{S}-13(\mathrm{~PB}) \\ & \mathrm{S}-14(\mathrm{~PB}) \\ & \mathrm{S}-15(\mathrm{~PB}) \\ & \mathrm{S}-16(\mathrm{~PB}) \\ & \mathrm{S}-17(\mathrm{~PB}) \\ & \mathrm{S} \end{aligned}$	$\begin{gathered} 5-7.5 \\ 10 \cdot 12.5 \\ 15-17.5 \\ 20-22.5 \\ 25-27.5 \\ 30-32.5 \\ 35-37.2 \\ 40-42.5 \\ 45-47 \\ 50-52.5 \\ 55-57.5 \\ 60-62.5 \\ 65-67.2 \\ 70-72.5 \\ 75-76.8 \\ 80-82.3 \\ 85-87.5 \\ 90-92.5 \\ 95-97.5 \end{gathered}$	H0ty is sity 5 E 41 ty \pm mady in dity : *iby \pm mady an satedy sh seandy ch * sitry se cily 3 *	18.9 18.9 18.9 18 -9 $18-9$ 18.9 18-9 18.9 18.9 18 -9 18.9 $18-9$ 18-9 18.9 18-9 18-9 18.8 18-8 18.8	88 92 100 60 96 100 86 92 95 88 68 56 86 100 94 52 88 100 100	- Oxcitin matriples of Unit 18-9. This mruen will be eremelted coocartenty with the cheynose in ordor wo develop the chy bantow pil - Semplea from this boring will be urilized for variout combitationt of elaytione to daermine the porminl for mixing of the rwo roct typer as they are exervitiod from the borrow pil

(t) $\mathrm{PB}=$ Piucher Berch; $\mathrm{DR}=$ Drive Sempler
[2] $a=$ Claymone; us $=$ Senderote; 报 $=$ Silutione
TABLE 3.2
matrix of investigation activity vs. rock structure

INVESTIGATION ACTIVITY				
STRATIGRAPHIC UNIT	TEST TRENCHES	TEST PITS	BORINGS	EXISTING AND PREVIOUS MONITORING WELLS
Colluvium	All Test Trenches	All Test Pits	L18-C, L18-D, L18-E, L18-1	-
18-1	-	-	-	K-19, K-29
18-2	-	-	L18-E	K-19, K-29
18.3	-	-	L18-D, L18-E	K2, K-19
18-4	DT-E	-	L18.D	K-1, K-2, K-26
18.5	DT-E	-	L18-D	K-1, K-2, K-26, K-38
18-6	DT-E	-	-	K-1, K-2, K-26, K-38
18.7	DT-B, DT-E, T-1, T-2	$\begin{gathered} \text { TP-5, TP-6, TP-20, TP-21, } \\ \text { TP-28 } \end{gathered}$	L18-C, L18-F	$\begin{gathered} \mathrm{K}-1, \mathrm{~K}-2, \mathrm{~K}-8, \mathrm{~K}-26, \mathrm{~K}-32, \\ \mathrm{~K}-38 \end{gathered}$
18-8	DT-A, DT-B, DT-C, T-3	TP-1, TP-6, TP-7, TP-8, TP-9, TP-27, TP-36, TP-37, TP-38, TP-39, TP-40, TP-41	L18-F, L18-1, L18-J	K-8, K-32, K-33, K-38
18.9	DT-A, DT-D	$\begin{aligned} & \mathrm{TP}-1, \mathrm{TP}-2, \mathrm{TP}-3, \mathrm{TP}-4, \\ & \mathrm{TP}-26, \mathrm{TP}-42, \mathrm{TP}-43 \\ & \hline \end{aligned}$	L.18-K	K-8, K-33
18-10	DT-A, DT-D	$\begin{gathered} \text { TP-4, TP-12, TP-13, TP-18, } \\ \text { TP- } 29, \text { TP- } 35, \text { TP-35A } \end{gathered}$	L18-A, L18-H	K-8, K-33
18-11	DT-A, DT-D	TP-11, TP-19, TP-25, TP-30	L18-B	K-8, K-18, K-33
18.12	DT-A, DT-D	$\frac{\mathrm{TP}-10, \mathrm{TP}-16, \mathrm{TP}-17, \mathrm{TP}-31,}{\text { TP-34 }}$	L18-B, L18-G	K-21, K-33
18-13	DT-A, DT-D, DT-F	$\begin{gathered} \text { TP-14, TP-15, TP-22, TP-23, } \\ \text { TP-24, TP-32, TP- } 33 \\ \hline \end{gathered}$	L18-G	K-18, K-21, K-33
18-14	-	-	-	K-18, K-2I

TABLE 3.3

Page I of 2

[^2]TABLE 3.3

GEOTECHNICAL PARAMETERS FROM PRIOR INVESTIGATIONS (Continued)

Page 2 of 2

Parameter	PHASES II \& III B-19LANDFLI DESION	SEED, RAYMOND B. ETAL INVESTIGATION OF PHASE I R-19 LANDFUL FAIEURE	GENERC EVALUATIONS OF KHF LANDFLI closures	EMPIRJCAR OR MEASURED DATA FROM PUBLISHED IITERATURE
	--	8° (Residual)	$9^{(6)}$	$\begin{gathered} 9^{(9)} \\ 32^{(9)} \end{gathered}$
HDPE/Soil - Smooth HDPE \varnothing (Degrees) - Texbred HDPE \varnothing (Degrees)	-			$\begin{gathered} 18,18,26,23,15,21,15 \\ 29.8,34,33,35,29,27 \\ 26,25,35 \end{gathered}$
HDPE/Geocomposite \varnothing (Degrees) - Smooth HDPE \varnothing (Degrees) - Textured HDPE \varnothing	-			$\begin{aligned} & 11^{\circ}, 16.6 \\ & 42^{\circ}, 38.5^{(10)} \end{aligned}$
II. CONSOLIDATION PROPERTIES SANDSTONE E (KSF) Recompression Ratio (Petcent) ${ }^{(1)}$	0			
SILTSTONE e。 E(KSF) Recompression Ratio (Percent) ${ }^{(1)}$	$\begin{gathered} .74 \\ .- \\ 1.4 \end{gathered}$			$(250-500)\left(\sigma_{1}-a_{3}\right) f^{(11)}$
CLAYSTONE e_{0} $E(K S F)$ ${ }^{\text {Recompression Ratio (Percem) }{ }^{(1)}}$	$\begin{gathered} .93 \\ . . \\ 1.4 \end{gathered}$			$(250-500)\left(\sigma_{1}-\sigma_{3}\right) f^{(11)}$
COMPACTED FILL Typical Value of Compression (percent of original heighl)				$4^{(7)}$
CLAYLINER Second Compression Index $\mathrm{Cv}(\mathrm{Fr} / \mathrm{Yr})$		$.82, .83, .87$ 2	. 005 to 03	
WASTE Typical Value of Compression (percent or original height) Second Compression Index			$10,14.5{ }^{(6)}$. 1 to.4 ${ }^{(7)} .09^{(12)}$
(1) Donohue 1988, Appendix F. (2) EMCON (Pond P-9 levees). Reference 3. (3) Donohue 1988. Appendix F. Figure V.9. (4) Koemer, 1986. (5) Seed, en 11., 1988) ${ }^{(6)}$ Golder, 1988c. (7) Mivy. 1982. (8) SLT. Friclion Flex.	${ }^{\text {(9) }}$ Gund (10) Gundie (11) Winue (12) Yen, (13) Gundic	88a. 88e. et al., 1975 1975. 87.		89-977 (8/14/90)

TABLE 3 A
LABORATORY TESTS
OF BORDNG SAMPLES

P8 = Pitcher Barrel
OR = Drive Sacople
Qe - Colluvium
$\mathrm{C}=\mathrm{Crysiore}$
A.T = Silasione

TABLE34
LABORATORYTESTS OF BORING SAMPLES
(Continued)

${ }^{\text {a }}$ c) $30=4,8.16 \mathrm{~K} 5 \mathrm{~F}$
C) $=\mathrm{A}, \mathrm{b}, 12 \mathrm{~K} 5 \mathrm{~F}$

 M Compaction and 2\% above ophimum meistare corvers.

TABLE 35
LABORATORY TESTS OF
TEST PIT SAMPLES

TABLE 3.5

LABORATORY TESTS OF
 TEST PIT SAMPLES

（Continued）
age 2 or 2

							IND	Pro	ER			COMP PROP	$\begin{aligned} & \text { TION } \\ & \text { TIES } \end{aligned}$	STRE	NGTH	MISC	LAN	OUS
$\begin{aligned} & \text { 号 } \\ & \text { 要 } \\ & \frac{5}{2} \end{aligned}$	$$	壁	0 2 2 $\frac{2}{2}$ \sum_{6}^{2} 0					肴			$\begin{aligned} & \text { E } \\ & \text { S } \\ & \text { E } \\ & \text { U } \\ & \text { E } \\ & \text { U } \end{aligned}$							
22	TP－29	Sack	B－1	4－65	18.10	CS												
23	TP． 30	Sack	B－1	7	18－11	SS／Cs												
24	TP－31	Sack	B－1	35	18－12	CS												
25	TP－32	Sack	B－1	5	18－13	SS												
26	TP－33	Sack	B－1	8	18－13	SS												
27	TP－34	Sack	B．1	4	18－12	CS												
28	TP－35A	Sack	B－1	7	18－10	SS												
29	TP． 36	Sack	B－1	4	18.8	CS				$1 \times$								
30	TP－37	Sack	B－1	6	18－8	CS							x					
31	TP－38	Sack	B－1	9	18－8	CS												
32	TP－39	Sack	B－1	10	18．8	cs												
33	TP－40	Sack	B－1	3	18－8	CS												
34	TP－41	Sack	B－1	3.5	18－8	CS												
35	TP－42	Sack	B－1	6	18－9	SS								1				
36	TP－43	Sack	B－1	6	18.9	SS／SLT												
TEST TOTALS TP29 THROUGH TP－43							4	4	－	3	\cdots	－		－	－		－－	－－
TEST TOTALS ALL TEST PITS							16	6	9	6		3		4	$1 \text { (Series) }$	3	2	3

NOTES：
（1）$\sigma_{3}=4,8,12 \mathrm{k} . \mathrm{sf}$ ．
（2）Sample a： 90% retaive comptcion and opimum moistur content
（3）If permeability criterie is satisfied，sample at 90% relative compaction and optimum moisture content
（4）Sample al 95\％relative compaction at optimum moisture content
（5）Loding sequence： $05,1,2,4,8,16,32 \mathrm{k}$ ．s．f．
（6）Based oa the percentage passing no． 200 lest recults prepare a composite sample usitg the threc samples with maller percenlage of fines．Ruti compaction．
permeability and shrink／swell potential at 90 gelative compaction and optimum moisture content．Mixing with elaystone samples will be considered upon review－ of preliminary results．
（7）Sieve analysis if percentage passing no． 200 sieve is less than 40% ．Hydromeler analy yis if greaver than $\mathbf{4 0 \%}$ ．
（8）Time readings requested．

TABLE 3.6

GEOTECHNICAL/GEOCHEMICAL ANALYSIS METHODS

TYPE OF TEST	STANDARD
Geotechnical	
Moisture Content	ASTM D2216-80
Liquid and Plastic Limits	ASTM D4318-84
Shrinkage Limit	ASTM D427-83
Grain Size Analysis	ASTM D422-63
Specific Gravity	ASTM D854-83
Moisture Density Relations:	
\quad Modified Proctor)	ASTM D1557-78, Method A
• Standard Proctor)	ASTM D698-78, Method A
Direct Shear	ASTM D3080-72
Unconsolidated Undrained Triaxial	Corps of Engineers EM 1110-2-1906
Hydraulic Conductivity	Corps of Engineers EM 1110-2-1906
Back ground Geochemistry	EPA 8240
Priority Pollutants:	EPA 8270
Volarile Organics	EPA 8080
Semi-Volatile Organics	Pesticides
California Regulated Metals	EPA 9060
Total Organic Carbon	EPA 9050
Specific Conductance	EPA 9045
pH	EPA 9200
Nirate	EPA 9035
Sulfate	EPA 9010
Cyanide	EPA 9250
Chloride	

TABLE 3.7

SUMMARY OF PLASTICITY INDEX DATA BY STRATIGRAPHIC UNIT

STRATIGRAPHIC UNIT	$\begin{gathered} \text { BORING } \\ \text { NO. } \end{gathered}$	$\begin{aligned} & \text { SAMPLE } \\ & \text { NO. } \end{aligned}$	DEPTH (ft)	$\begin{aligned} & \text { LIQUID } \\ & \text { LIMIT (\%) } \end{aligned}$	PLASTICITY INDEX (\%)	USC SYMBOL
COLLUVIUM	L18-C	B-1	6.0-7.5	35	19	CL
COLLUVIUM	L18-D	B-2	10.0-11.5	29	13	CL
18-2	L18-E	S.8	$60.0-62.5$	53	32	CH
18-3 ,	L18-E	S-6	43.0-45.0	32	6	ML
18-4	L18-D	S-6	52.0-54.3	67	42	CH
18-5	L18-D	S-2	22.0-24.3	49	29	CL/CH
18.7	L18-C	S-1	15.0-17.3	38	17	CL
18.7	L18-C	S-3	25.0-27.5	46	23	CL
18-7	L18-C	S-7	56.0-58.0	60	36	CH
18.7	L18-C	S-11	87.0-89.0	41	17	CL
18-9	L18-K	S-10	80.0-82.3	30	11	CL
18-10	L18-H	S-1	6.0-8.5	81	50	CH
18-10	L18-H	S-4	35.0-37.5	78	51	CH
18-10	L18-H	S-6	55.0-57.5	71	49	CH
18-12	L18-B	S-1	6.0-8.5	64	36	CH
18-12	L18-G	S-7	50.0-51.8	78	49	CH
18-12	L18-G	S-9	65.0-67.0	60	36	CH
18-12	TP-31	B-1	3.5	70	49	CH
18-8	L18-F	S-1	6.0-8.5	78	55	CH
18-8	L18-F	S-3	26.0-28.5	69	57	CH
18-8	L18-F	S-6	56.0-58.5	59	39	CH
18.8	L18-1	S-2	16.0-18.5	58	36	CH
18-8	L18-J	S-1	5.0-7.5	55	30	CH
18-8	L18-J	S.3	15.0-17.5	67	41	CH
18-8	L18-J	S-5	25.0-27.5	79	50	CH
18-8	L18-J	S-7	35.0-37.5	64	40	CH
18-8	L18-J	S-9	45.0-47.5	74	49	CH
18-8	L18-J	S-11	55.0-57.5	69	46	CH
18-8	L18-J	S-13	65.0-67.5	74	50	CH
18-8	L18-J	S-15	75.0-77.5	33	17	CL
18-8	L18-J	S-17	85.0-87.5	56	38	CH
18-8	L18-J	S-22	110.0-112.5	71	47	CH
18-8	L18-J	S-24	120.0-122.5	70	42	CH
18-8	L18-J	S-26	130.0-132.8	88	60	CH
18-8	L18-J	S-28	140.0-142.5	85	53	CH
18-8	L18-J	S. 30	150.0-152.5	88	62	CH
18-8	L18-J	S-32	160.0-162.5	55	30	CH

TABLE 3.8
PERCENT PASSING NO. 200 SIEVE

STRATIGRAPHIC UNTT	MATERIAL TYPE	BORING/ TEST PIT NO.	SAMPLE NO.	DEPTH (f.)	PERCENT PASSING NO. 200 SIEVE
Colluvium	Soil	TP-2	B-1	10	57
Colluvium	Soil	TP-8	B-1	7	81
Colluvium	Soil	TP-11	B-1	7	39
Colluvium	Soil	TP-13	B-1	4	48
Colluvium	Soil	TP-18	B-1	2	58
Colluvium	Soil	TP-23	B-1	$0-4$	33
Colluvium	Soil	TP-25	B-1	$0-7$	57
Colluvium	Soil	TP-26	B-1	$0-10.5$	52
Colluvium	Soil	TP-27	B-1	$0-12$	69
$18-3$	ss/slt	L18-D	S-10	$81-83.5$	24
$18-3$	ss	L18-E	S-2	$15-17.5$	24
$18-9$	ss	L18-K	S-1	$5-7.5$	11
$18-9$	ss/slt	L18-K	S-4	$20-22.5$	26
$18-9$	ss/slt	L18-K	S-8	$40-42.5$	21
$18-9$	ss	L18-K	S-13	$65-67.5$	19
$18-10$	sl/cs	L18-A	S-3	$17-19.5$	55
$18-10$	ss/slt	L18-A	S-4	$25-27.5$	73
$18-10$	cs/ss	L18-A	S-6	$37-38.7$	47
$18-10$	ss	L-18H	S-2	$15-17.5$	37
$18-13$	ss	L18-G	S-1	$6-8.5$	11
$18-13$	ss	L18-G	S-5	$40-41.3$	11
				$89-977(8 / 1290)$	

TABLE 3.9
COMPACTION TEST RESULTS (MODIFIED PROCTOR, ASTM D1557-78)

BORING NO. TEST PIT NO.	COMPOSITE SAMPLENO.	MATERIAL TYPE	SAMPLE PREPARATION	OPTIMUM MOISTURE CONTENT (\%)	$\begin{aligned} & \text { MAXDMUM } \\ & \text { DRY DENSITY } \\ & \text { (PCF) } \end{aligned}$
1. Modified Proctor Test (ASTM D1557-78)					
	No. 1	Claystone	S-1, S-2, S-3, S-5, and S-6	22.8	98.7
L18-J	No. 2	Claystone	S-9, S-10, S-11, S-12, S-14, and S-15	21.7	100.7
L18-J	No. 3	Claystone	S-22, S-24, S-26, S-28, and S-30	24.9	96.2
L18-J/L18-K	No. 4	30\% Sandstone' 70% Claystone	S-1 through S-5. Boring L18-14 plus claystone from Boring L.18-J	20.8	104.9
L18-J/L18-K	No. 5	50\% Sandstone/ 50\% Claystone	S-1 through S-5, Boring L18-K plus claystone from Boring L18-J	19.6	106.6
L18-J/L18-K	No. 6	30\% Sandstone/ 70% Claystone	S-6 through S-10, Boring L18-K phus claystone from Boring L18-J	21.9	102.9
LI8-J/L18-K	No. 7	50\% Sandstone/ 50% Claysione	S-6 through S-10, Boring L18-K plus claystone from Boring L18-J	20.4	103.7
L18-J/L18-K	No. 8	30\% Sandstone/ 70% Claystone	S-11 through S-15, Boring L18-K plus claystone from Boring L18-J	19.8	104.0
L18-J/L18-K	No. 9	50\% Sandstone/ 50\% Claystone	S-11 through S-15, Boring L18-K plus claystonc from Boring L18-J	19.4	104.8
$\begin{aligned} & \text { TP-11, TP-25, } \\ & \text { TP-26 } \end{aligned}$	No. 10	Colluvium (Silly Clay)	Mixture from all test pits	12.3	123.3
TP-42, B-1	-	Sandstone	--	15.0	114.8
DT-A, B-2	\cdots	Claystone	\cdots	21.5	104.2
DT-C, B-1	---	Claystone	-	23.5	99.0
2. Standard Proctor, ASTM D698					
$\begin{aligned} & \text { TP-36, TP-37, } \\ & \text { TP-38 } \end{aligned}$	No. 11	Claysione	Mixture from all test pits	29.7*	87.7*
L18-J/L18-K	No. 4	30\% Sandstone/ 70\% Claysione	S-1 through S-5, Boring L18-K plus claystone from Boring L18-J	27.0*	94.2*

TABLE 3.10

PERMEABILITY TEST	（00s／mb） X	$\begin{aligned} & \text { ei } \\ & \stackrel{O}{x} \\ & \stackrel{y}{i} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 $\stackrel{0}{0}$ -	a 0 0 0	－
	12：ITVAD	$\stackrel{\text { ¢ }}{+}$	N	－	J	－
	34nsscad dininuno	昌	\％	\％	아ํ	융
	NOLIOVAWOP GALVTEY TVNH	8	§	σ	$\bar{\square}$	0
	人HSNGO Ada TVNTH	$\overline{\text { ®in }}$	水	荈	$\bar{\infty}$	\％
	INELNOJ \％્CIVM TVNH	$\begin{aligned} & \text { O } \\ & \text { en } \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { gin } \end{aligned}$	N	$\stackrel{\rightharpoonup}{\mathrm{N}}$	ず
	NOLLVYOWOO GNLIVTG\＆TVLNNI	ふ	8	8	8	8
	גUSNAG 人AG TVLUN！	$\frac{0}{0}$	$\bar{ু}$	Hi	n	$\stackrel{2}{2}$
	$\begin{array}{r} \text { (\%) } \\ \text { INGINOS } \\ \text { YGIVA TVLUN } \end{array}$	\＃	운	－	oo	＋
	（SH2DN） GZIS ETDIL\＆Y WกWDXY	e	∞	\pm	\pm	三
	（SHTOND） gas a7ow	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	च	\pm	＋
	$\operatorname{sos} n$	J	马	J	J	J
	XGON ભшכLSVTd	\％	\＃	\cdots	\sim	\cdots
	$\begin{array}{r} (\%) \\ \text { LWNIT ainon } \end{array}$	S	N	\cdots	\bigcirc	\because
	God RUSNGO NYO WחWIXVW	$\stackrel{\bar{\delta}}{\mathbf{B}}$	$\underset{\sim}{\underset{O}{U}}$	용	O	8
	LNEUNOJ ganlsiow wnwito（\％）	$\stackrel{\Gamma}{\text { ® }}$	$\frac{n}{N}$	ल్	$\begin{aligned} & \text { ले } \end{aligned}$	$\frac{a}{\text { N }}$
	LNO Jihavasurals	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{\infty}{\infty}$	－
	Gddi TVẏlvw		$\begin{aligned} & \text { 炭 } \\ & \text { 岂 } \\ & \text { H } \end{aligned}$	$$		唇
	－On ETawrs zusodwos	N	1	$=$	ニ	！
	ON ONi	$\stackrel{\square}{\square}$	N			

（1）Weathered by repeated wetting and drying for two weeks．Maximum particle size resufted from the weathering process only．
TABLE 3.11

BORING NO.	SAMPLE No.	SAMPLE DEPTII (ft.)	STRAT1GRAPIIIC UNIT	MATERIAL TYPE	LIQUID LIMIT (\%)	PLASTICITY INDEX (\%)	NATURAL		APPLIED PRESSURE (PSF)	SWELL ${ }^{(1)}$ (\%)
							WATER CONTENT (\%)	$\begin{aligned} & \text { DRY } \\ & \text { DENSITY } \\ & \text { (PCF) } \end{aligned}$		
$\begin{aligned} & \text { 18-J } \\ & 18-\mathrm{J} \end{aligned}$	$\begin{aligned} & S-1 \\ & S-1 \end{aligned}$	$\begin{aligned} & 5.0-7.5 \\ & 5.0-7.5 \end{aligned}$	$\begin{aligned} & 18-8 \\ & 18-8 \end{aligned}$	Claystone Claysione	55 55	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 23.4 \\ & 20.6 \end{aligned}$	$\begin{aligned} & 87.7 \\ & 89.6 \end{aligned}$	$\begin{gathered} 600 \\ 12,000 \end{gathered}$	$\begin{array}{r} 4.0 \\ -1.0 \end{array}$
$18-J$ $18-\mathrm{J}$	$\begin{aligned} & S-7 \\ & S-7 \end{aligned}$	$\begin{aligned} & 35.0-37.5 \\ & 35.0-37.5 \end{aligned}$	$\begin{aligned} & 18-8 \\ & 18-8 \end{aligned}$	Claystone Claystone	$\begin{aligned} & 64 \\ & 64 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 26.5 \end{aligned}$	$\begin{aligned} & 96.0 \\ & 93.9 \end{aligned}$	$\begin{gathered} 600 \\ 12,000 \end{gathered}$	1.8 0.7
$\begin{aligned} & 18-\mathrm{J} \\ & 18-\mathrm{J} \end{aligned}$	$\begin{aligned} & S-24 \\ & S-24 \end{aligned}$	$\begin{aligned} & 120.0-122.5 \\ & 120.0-122.5 \end{aligned}$	$\begin{aligned} & 18-8 \\ & 18-8 \end{aligned}$	Claystone Claystone	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & 42 \\ & 42 \end{aligned}$	$\begin{aligned} & 29.4 \\ & 29.7 \end{aligned}$	$\begin{aligned} & 93.2 \\ & 94.0 \end{aligned}$	$\begin{gathered} 600 \\ 12,000 \end{gathered}$	$\begin{aligned} & 1.6 \\ & 0.7 \end{aligned}$
$18-\mathrm{J}$ 18 J	S-32 $\mathrm{S}-32$	$\begin{aligned} & 160.0 \cdot 162.5 \\ & 160.0 \cdot 162.5 \end{aligned}$	$\begin{aligned} & 18-8 \\ & 18.8 \end{aligned}$	Claystone Claystone	$\begin{aligned} & 55 \\ & 55 \end{aligned}$	30 30	$\begin{aligned} & 21.2 \\ & 20.6 \end{aligned}$	$\begin{aligned} & 96.7 \\ & 97.6 \end{aligned}$	$\begin{gathered} 600 \\ 12,000 \end{gathered}$	$\begin{gathered} 0.4 \\ -0.4 \end{gathered}$

(1) As a percent of the sample height after application of the pressure.
TABLE 3.12
SUMMARY OF SWELL TEST RESULTS

MIORNGG TIST MTNO.	COMPOSTEE	material TYPE	STRAT1GRAMITC UNTT	SAMPLE PREPARATION	OMTMUMM MOISTUR CONTENT	$\begin{aligned} & \text { MAXIMUM } \\ & \text { DRYY DFNSITY } \\ & \text { (RCF) } \end{aligned}$	$\begin{aligned} & \text { UQUID } \\ & \text { UMIT } \\ & (\% ;) \end{aligned}$	Plastictity index (\%)	$\begin{aligned} & \mathbf{u} \\ & s \\ & \mathbf{c} \\ & \mathbf{s} \end{aligned}$	DNTIAL water CONTENT (\%)	INTIAL DRY DENSTTY (PCF)	INTTMAL RFLATIVB COMPACTION (\%)	APPLITDD PRESSURH (PSF)	$\text { sweur }{ }^{(1)}$
Dr-A. b. 2	-	Claysione	18.8	-	21.5	104.2	82	54	C11	24.3	93.1	8	0	220
	.	Claysone	18.8	-	21.5	1042	82	54	Cl1	24.1	93.1	8	1,200	7.1
	-	Claytore	18.8	-	21.5	104.2	82	54	C11	27.3	93.1	89	6,000	1.0
DT.C. B. 1	.	Claystone	18.8	-	23.5	99.0	76	45	CH	26.0	88.7	90	0	129
	\cdots	Claysoone	18.8	-	23.5	99.0	76	45	CH	25.6	88.8	90	1,200	3.1
		Clayctone	18.8	\cdots	23.5	99.0	76	45	CH	28.1	39.4	90	3,000	1.0
L18.J/LIE-K	4	30\% Sundstone 70\% Claystone	18.9/18-8	S-1 through S. 3. Boring Lis-K plus claystone from Roring LI8-J	20.8	104.9	..	-	CL	23.3	9.1	90	0	9.7
	4	30\% Sundstone 70\% Claysione	18.978.8		20.8	100.9	..	-	CL.	23.0	94.2	90	1.200	27
1.18.3/.18 K	6	30\% Sandstone 70\% Claystone	18.9718.8		21.9	1029	*	..	CL.	24.3	923	90	0	11.8
	6	30\% Sandstones 70\% Claystone	18.978.8	$\begin{gathered} \text { S-6 trough S-10 } \\ \text { Boring LIB-K plus } \\ \text { clayytone from } \\ \text { Boring L18-.- } \end{gathered}$	21.9	1029	-	-	cl.	24.2	923	90	1.200	3.2
LI8.jh.18-K	8	30\% Smadstonet 70\% Clayctone	18.918.8	S-11 unrough S-15 Boring L18-K plus claysione from Boring LIE-S.	19.8	104.0	..	-		221	93.4	90	0	13.4
	8	30\% Sandertone/ 70\% Claystone	18.9/18-8		19.8	104.0	-	-		21.3	93.8	90	1,200	3.9
$\left.\right\|_{\text {TP. } 26} ^{\text {TP. TP. } 25 .}$	10	Colluvium (filty thay)	-.	Mixture from all lest ples.	123	123.3	-	-	cl.	14.9	1103	8	0	4.5
	10	Colluvium (slity clay)	..	Mixture from all test pits.	12.3	123.3	.	.		15.0	110.3	89	1,200	0.2

(1) As a pereent of the somple height after application of pressure.
TABLE 3.13

第		$\begin{aligned} & \text { +iel } \\ & \text { B } \\ & \text { N } \\ & + \end{aligned}$						\％ 8 ¢ N + +					$\begin{aligned} & \stackrel{\sim}{6} \\ & \underset{\sim}{\circ} \\ & \stackrel{\sim}{*} \end{aligned}$		＋		隹	＋		＋ 8 \sim +	（ce	
$\begin{gathered} \frac{0}{3} \\ \frac{2}{2} \\ \frac{2}{9} \\ \hline \end{gathered}$	$\begin{aligned} & \text { 淢 } \\ & \hline \end{aligned}$						$\left.\begin{array}{\|c} \mathbf{8} \\ \mathbf{u} \end{array} \right\rvert\,$						$\underset{\sim}{\stackrel{8}{\underset{\sim}{4}}}$				$\left. \right\rvert\,$	$\begin{array}{\|l\|l} \hline \text { 䍐 } \\ \stackrel{\text { H }}{~} \end{array}$		$\begin{aligned} & \text { 品 } \\ & \underset{\sim}{0} \end{aligned}$		
號				N									$\stackrel{\leftrightarrow}{0}$								－	N
				N									$\stackrel{-}{\stackrel{m}{5}}$								－	－
是	－	8	4	$\stackrel{\square}{m}$		\bigcirc			\cdots	\％	8		8	88	8.8	8	$5{ }^{\circ}$	N		\％	\％${ }^{6}$	$\overline{5}$
最哭	$\square 8$	9	ल	$\stackrel{\sim}{\sim}$		\％ 7	＋	9	\cdots	0	N		¢	M	∞	m	$\mathrm{m}_{\mathrm{m}}^{\mathrm{m}}$	\％		于	ल	产产产
$\frac{1}{4}$	」	\％	∞	88		風			∞	\％	\％		ㅇ	\%	∞	8	\bigcirc	\％		$\stackrel{\text { N }}{\sim}$	\bigcirc	N ${ }^{2}$
$\left.\left\lvert\, \begin{array}{l} 0 \\ \frac{0}{2} \\ \frac{0}{9} \end{array}\right.\right)$		$\begin{aligned} & \underset{\sim}{\mathbb{N}} \\ & \underset{\sim}{\circ} \end{aligned}$	\mid	$\stackrel{0}{0}$		－\％			\mathfrak{c}		$\stackrel{\mathrm{N}}{\mathrm{~N}}$	$\underset{\sim}{\underset{\sim}{*}}$	$\stackrel{\bigoplus}{\mathscr{8}}$	Nom	\％	－	\％	©		$\overline{\dot{\sigma}}$		
$\begin{array}{\|} 4 \\ 0 \\ 0 \\ 0 \\ 8 \\ 0 \\ 0 \end{array}$			$\left\|\begin{array}{l} 0 \\ \hline 8 \end{array}\right\|$				$\left\|\begin{array}{c} \infty \\ \infty \\ \infty \\ \hline \end{array}\right\|$			$\left\|\begin{array}{c} \mathbf{y} \\ \\ \end{array}\right\|$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \end{aligned}$			－	－	\％	8	－				
		－	${ }^{\circ}$	$\stackrel{\square}{\text { Ṅ }}$		¢ ${ }^{0}$		$\overline{\mathfrak{N}}$	$\underset{\sim}{N}$	$\|\overrightarrow{\vec{N}}\|$	$\begin{aligned} & 0 \\ & \stackrel{0}{\infty} \end{aligned}$	$\stackrel{\text { cid }}{ }$	F	10				땞		$\stackrel{\square}{N}$		
			\mid																			
	$\underset{\text { E }}{\text { E }}$	N0		\bigcirc				$\stackrel{c}{\infty}$	2		$\begin{aligned} & 0 \\ & 0 \\ & 8 \end{aligned}$		$30 \left\lvert\, \begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}\right.$	$0 \sim$				$\stackrel{4}{4}$	$\stackrel{10}{\text { ¢ }}$	－	$\bigcirc \infty$	∞
	完 它定	0	－			± 12	\sim_{2}	0	안	4	8		0	10	80	8	8150	0	8	8）	0.0	$0-0$.
		\cdots				3 4 4 4 4	4	$\underset{y}{4}$	4	－	$\frac{7}{4}$	$\stackrel{m}{\square}$	-信		ন			$\stackrel{\circ}{\sim} \stackrel{\square}{\square}$	$\stackrel{0}{\sim}$	$\stackrel{\text { N }}{ }$	号京	
	$\begin{aligned} & \text { 믕 } \\ & \text { 응 } \end{aligned}$	50				$\begin{array}{l\|l\|} 4 \\ \frac{3}{d} & \frac{5}{d} \\ \hline \end{array}$	$\begin{array}{c\|c} 9 \\ \vdots \\ 0 \\ 0 & 0 \\ \hline \end{array}$				$\begin{aligned} & 5 \\ & \dot{8} \end{aligned}$	$\frac{4}{d}$	\mathfrak{N}		0			$\begin{array}{l\|l\|} \hline & 8 \\ 0 & 0 \\ 0 \end{array}$	N	N0	$\stackrel{\sim}{i}$	（1）

Note：＂Samples coliected with a Califormla type sampler tested for hydraulic conductivity were compacted at 90% relative compaction of the maximum dry density
of simllar materials 1 rom the test pad construction of Landfill E－18 Phases 1 A 1 B （Environmental Construction Services， 199 t ）
TABLE 5.1
MATERIAL AND INTERFACE PROPERTIES USED FOR STABILITY CALCULATIONS

Material or Interface	Material/Interface Properties			Source/Remarks
	Total Unit Weight (pcf)	\qquad	Friction Angle, ϕ (degrees)	
Used by ESI (1990a) for the analysis of temporary rock cut slopes, compacted fill slopes, and temporary Phase I intermediate fill slopes:				
Hazardous Waste and Operations Layer (Shallow Sliding)	115	300	27	conservative parameters due to lack of sitespecific testing
Hazardous Waste and Operations Layer (Deep Sliding)	115	0	31	Golder (1989a), conservative
Bedrock (Cross Bedding Strength)	130	800	40	Donohue \& Associates (1988) and direct shear test results in Appendix D. 8
Bedrock (Along Bedding Strength)	130	0	36	Donohue \& Associates (1988) and UU triaxial test results in Appendix D. 5
Structural Fill	125	2,000	30	UU triaxial test results on compacted sandstone in Appendix D. 5
Clay Liner and Clay Liner/Textured HDPE Geomembrane Interface (Long Term)	125	1,150	20	CU triaxial test results on compacted claystone in Appendix D. 7
Clay Liner and Clay Liner/Textured HDPE Geomembrane Interface (Short Term or Low Confining Stress)	125	3,600	0	UU triaxial test results on compacted claystone in Appendix D. 6
Textured HDPE Geomembrane/Geonet Interface	-	0	15	Gundle (1987a) and Geosyntec (1988)
Geonet/Geotextile (Heat Bonded) Interface	-	0	>30	Fluid Systems, Inc. (Appendix F)
Geotextile/Drainage Gravel Interface	-	0	>21	expected to be stronger than the geotextile/clay liner interface
Geotextile/Clay Liner Interface	-	0	21	Golder (1990b)
Textured HDPE Geomembrane/Geocomposite Interface	-	0	24	Golder (1990b)
Geocomposite/Drainage Gravel Interface	-	0	>21	expected to be stronger than the geotextile/clay liner interface
Geotextile/Operations Layer Interface (Shallow Sliding)	-	300	27	the strength of the operations layer controls
Geotextile/Operations Layer Interface (Deep Sliding)	-	0	31	the strength of the operations layer controls
Used by HAI (Appendix H.4) for the analysis of the temporary Phase IIIA intermediate fill slope:				
Hazardous Waste	115	0	31	ESI (1990a), Rust E\&I (1998), URS (2005)
Bedrock	150	800	40	ESI (1990a), Rust E\&I (1998), URS (2005)
Phase IIIA Liner Interface	-	0	22	HAI (Appendix H.4)

TABLE 5.1 (continued)

Material or Interface	Material/Interface Properties			Source/Remarks
	Total Unit Weight (pcf)	$\begin{gathered} \hline \text { Cohesion } \\ \text { Intercept, } \\ \text { c } \\ \text { (psf) } \\ \hline \end{gathered}$	Friction Angle, ϕ (degrees)	
Used by HAI (Appendix H.5) for the analysis of the final closure configuration:				
Hazardous Waste	115	0	31	ESI (1990a), Rust E\&I (1998), URS (2005)
Clay Liner	115	1,150	20	ESI (1990a), Rust E\&I (1998), URS (2005)
Bedrock	150	800	40	ESI (1990a), Rust E\&I (1998), URS (2005)
Phase I Bottom Liner Interface	-	0	17	ESI (1990a), Rust E\&I (1998), URS (2005)
Phase I Sideslope Liner Interface	-	800	9	ESI (1990a), Rust E\&I (1998), URS (2005)
Phase II Bottom Liner Interface	-	0	19	ESI (1990a), Rust E\&I (1998), URS (2005)
Phase II Sideslope Liner Interface	-	0	19	ESI (1990a), Rust E\&I (1998), URS (2005)
Phase III Liner Interface	-	0	12	HAI (Appendix H.5)
Vegetative Cover Soil/Geotextile Interface	110	100	21	HAI (Appendix H.5)
Geotextile/40-mil Textured HDPE Geomembrane Interface	110	0	25	HAI (Appendix H.5), conservative based on site-specific direct shear laboratory testing
40-mil Textured HDPE Geomembrane/Foundation Layer Interface	110	0	28	HAI (Appendix H.5)
Foundation Layer/Hazardous Waste Interface	110	0	31	HAI (Appendix H.5)

MATERIAL AND INTERFACE PROPERTIES USED FOR STABILITY CALCULATIONS
TABLE 5.2

Case ${ }^{1}$	Static Factor of Safety ${ }^{2}$	Seismic Stability	
		Allowable Design Displacement for the MCE (inches)	Estimated Displacement for the MCE (inches)
Temporary Rock Cut Slopes (see Figure 5.1 and Appendix H.2):			
2H:1V Slopes Across Bedding Planes	2.4	1	0
3H:1V Slopes Subparallel to Bedding Planes	2.2	1	<0.1
Compacted Fill Slopes (see Appendix H.3):			
Northeast Containment Basin Embankment	2.2	3	0
Temporary Phase I Intermediate Fill Slopes (see Figure 5.2 and Appendix H.4):			
Wedge Sliding Along Landfill Base and Phase I/II Berm Slope	2.5	6	<0.1
Circular Sliding Entirely Through Waste	1.5	12	0.5
Temporary Phase IIIA Intermediate Fill Slope (see Figure 5.3 and Appendix H.4):			
Wedge Sliding Along Phase IIIA Liner System	1.5	N/A	N/A
Final Closure Configuration (see Figure 5.3 and Appendix H.5):			
3.5H:1V Cover Slopes Between Benches (i.e., Veneer Stability)	1.6	12	2.7
Wedge Sliding Along Base and Sideslope of Landfill	2.3	6	<1
Circular Sliding Entirely Through Waste	2.2	12	<12

[^3]TABLE 5.3
PERIMETER RUN-ON DIVERSION DITCH FLOW
AND CAPACITY SUMMARY

DITCH LOCATION	ASPHALT V-DITCH DIMENSIONS		MINIMUM DITCH SLOPE (\%)	PMP FLOW ESTIMATE (cfs)	\qquad
	$\begin{aligned} & \text { WIDTH } \\ & \text { (fex) } \end{aligned}$	$\begin{gathered} \text { DEPTH } \\ \text { (minimum) } \end{gathered}$			
Phase 1 Area (see Sheet 5 in Appendix A.1)					
Brow Dilches	2	1	5.6	8.5	13.5
North Portion of West Perimeter Road	5	1	0.6	10.4	13.3
South Portion of West Perimeter Road	5	3	0.6	61.5	64,6
South Perimeter Road to South Borrow Pit Road	5	2	8.3	121.5	139.6
West Portion of North Perimeter Road	5	1.25	1.0	24.0	24.3
East Portion of North Perimeter Road	5	1.0	8.0	26.4	48.5
Phase II Area (see Sheet 10 in Appendix A.1)					
North Portion of South Perimeter Road	5	2.5	3.6	121.5	124.8

TABLE 5.4

ACTIVE ROAD RUN-OFF CONTROL SUMMARY

STRUCTURE	STRUCTURE DESCRIPTION	MINIMUMSLOPE (\%)	ESTLMATEDFLOW(cfs)		$\begin{aligned} & \text { FLOW } \\ & \text { CAPACITY } \\ & \text { (cfs) } \end{aligned}$
			$\begin{array}{\|c\|} \hline 25 \text {-YEAR } \\ \text { STORM } \end{array}$	PMP	
I. Phase I $\begin{gathered}\text { (see Sheet } 5 \text { in } \\ \text { Appendix A.1) }\end{gathered}$ Inside Perimeter Road \checkmark-ditch	5-feet wide x 1.25-feet deep	0.6	N/A	14.4	18.8
Concrete-enclosed CMP pipe along West Perimeter Road at access ramp.	12-inch diameter	0.6	2	N/A	4.7
CMP cuivert down south landfill slope to the Phase I/II Berm.	18-inch diameter	50	N/A	14.4	15.1
Concrete-encased CMP pipe at Phase 1/II Berm Access Road.	18-inch diameter	0.5	3.9	N/A	4.8
Top of Phase L/II Berm V-Ditch.	5-feet wide x 1.25 -foot deep	0.5	N/A	14.4	17.2
CMP culver beneath Phase I/LI Berm crest toward the clay pit retention basin.	30-inch diameter	0.5	N/A	15.6	33.8
Corrugated pipe at top of Phase I/II Berm to convey run-off into the clay pit containment basin.	30-inch diameter	50	N/A	15.6	33.8
Corrugated pipe to convey run-off from North Bench Road into the clay pit.	18 -inch diameter	50	N/A	7.8	8.5
II. Phase II (see Sheet 10 in Appendix A.1) CMP culvers to convey run-off from Bench Road to northeast containment basin at the following locations:					
- End of South Bench Road	30-inch diameter	0.5	N/A	21.0	33.9
- End of North Bench Road	24-inch diameter	0.5	N/A	11.2	21.3

$\mathrm{N} / \mathrm{A}=$ Nol Applicable
TABLE 5.5
CONTAINMENT BASIN CAPACITY SUMMARY

Basin	Estimated 24-hour PMP Run-off Volume (acre-feet)	Basin Capacity (acre-feet)
Temporary Basins:		
Phase I Containment Basin (see Sheet 6 in Appendix A.1)	8	33
Phase I Intermediate Closure Basin (see Sheet 6 in Appendix A.1)	5	5
Permanent Basins:		
Northeast Containment Basin (see Sheet C-3 in Appendix A.2)	34*	33
South Containment Basin (see Sheet C-3 in Appendix A.2)	32	48

TABLE 5.6
FINAL CLOSURE RUN-OFF CONTROL SUMMARY

Structure	Dimensions		Minimum Slope (\%)	Estimated Peak PMP Flow (cfs)	Mottom Width (feet)
Final Drainage Benches (see Detail 2 on Sheet C-10 in Appendix A.2): trapezoidal, earthen	12	Depth (feet)	2	2	51
Cover Access Road (see Detail 5 on Sheet C-10 in Appendix A.2): Asphalt-Lined V-Ditch + Earthen Road	43.5	2 to 3.5	8	104	1.6
New B-18 Perimeter Road (see Detail 4 on Sheet C-7 in Appendix A.2): Asphalt-Lined Trapezoidal Ditch + Earthen Road + Earthen V-Ditch/2-Foot-Tall Earthen Berm)	37	2 to 3.5	1.4	270	2.9

FIGURES

SYMBOL	STRATIGRAPHIC UNIT	$\begin{aligned} & \text { BORING } \\ & \text { NO. } \end{aligned}$	SAMPLE NO．	$\begin{aligned} & \text { DEPTH } \\ & \text { (FT.) } \end{aligned}$	LIQUID LIMIT（\％）	PLASTICITY INDEX（\％）	$\begin{gathered} \text { USC } \\ \text { SYMBOL } \end{gathered}$
\bigcirc	18－8	L18－J	S－1	5．0－7．5	55	30	CH
0	18－8	L18．J	S－3	15．0－17．5	67	41	CH
\triangle	18.8	L18－J	S． 5	25．0－27．5	79	50	CH
\square	18－8	L18．J	S．7	35．0－37．5	64	40	CH
\bigcirc	18.8	L．18－J	S－9	45．0－47．5	74	49	CH
\bigcirc	18－8	L18－J	S－11	55．0－57．5	69	46	CH
A	18.8	L18－J	S－13	65．0－67．5	74	50	CH
$\underline{ }$	18.8	L18－J	S－15	75.0 － 77.5	33	17	CL
©	18－8	L18－J	S－17	85．0－87．5	56	38	CH
©	18.8	L18－J	S－22	110．0－112．5	71	47	CH
会	18.8	L18－J	S－24	120．0－122．5	70	42	CH
回	18－8	L18－J	S－26	130．0－132．8	88	60	CH
ϕ	18.8	L18－J	S－28	140．0－142．5	85	53	CH
¢	18.8	L18－J	S．30	150．0－152．5	88	62	CH
母	18－8	L18－J	S． 32	160．0－162．5	55	30	CH

COBBLES	GRAVEL		SAND			SILT AND CLAY FRACTION
	coarse	fine	coarse	medium	fine	

MATERIAL WIGURE 3.5 WATER CONTENT
VS.
PLASTICITY INDEX
STRATUM $18-8$
LANDFILLUNIT B-18
KETILEMAN HILS FACILITY
ENVIRONMENTAL SOLUTIONS, INC.

CURBENTINVESTIGATION (B-18, PHASES \& \& Il
. L18-B, S-3 @20-22.5' (SANDSTONE)

- L18-C, S-7 @56-58' (CLAYSTONE)

L18-D, S-2 @22-24.5' (CLAYSTONE) L18-F, S-6 @56-58.5' (CLAYSTONE)

PREVIOUS INVESTIGATION (B-19. PHASES $1 \& \& 1 / 1)$

- CLAYSTONE - DIRECT SHEAR
- SILTSTONE - DIRECT SHEAR

ム SANDSTONE-DIRECT SHEAR

FIGURE 5.1
STABILITY CONSIDERATIONS
FOR
ROCK CUT SLOPES
LANDFILL UNIT B-18
KETTLEMAN HILLS FACILITY
ENVIRONMENTAL SOLUTIONS, INC.

$$
\begin{aligned}
& \text { CASE A2: MOST REASONABLE POTENTIAL LINER INTERFACE } \\
& \text { WEDGE FAILURE PLANE WITH SIMULATED }
\end{aligned}
$$

 POTENTIAL FATE
THROUGH WASTE

A. PHASE IIIA INTERMEDIATE FILL SLOPE

B. FINAL CLOSURE

APPENDIX A CONSTRUCTION DRAWINGS

APPENDIX A. 1 PHASES I AND II DRAWINGS
APPENDIX A. 2
PHASE III AND FINAL CLOSURE DRAWINGS

APPENDIX A. 1

PHASES I AND II DRAWINGS

CONSTRUCTION DRAWINGS
 LANDFILL UNIT B-18
 PHASES I AND II
 AND
 FINAL CLOSURE

KETTLEMAN HILLS FACILITY
KINGS COUNTY, CALIFORNIA

PREPARED FOR:
CHEMICAL WASTE MANAGEMENT, INC. - (CWMI)

PREPARED BY:
ENVIRONMENTAL SOLUTIONS, INC.
JANUARY, 1991

six witio

notes

notes

$\frac{\text { DETALL PLAN }}{\text { Sceamen Sup IM }}$ (g)

$\frac{\text { DETALL PLAN (2) }}{\text { SECOMOW}}$
$\therefore=\frac{20}{\text { SORE }} \quad$ REET

昰

mots

3 limam	Issere	
2:10x	ISsuef	
	Kut bexta	
	Constiverio	
	scellanous cross sect	
vir	ronaental solutions,	
-877		

APPENDIX A. 2
PHASE TI AND EINAL CLOSURE DRAWINGS

CONSTRUCTION DRAWINGS FOR THE B-18 CLASS I LANDFILL PHASE III EXPANSION AND FINAL CLOSURE

KETTLEMAN HILLS FACILITY
 KINGS COUNTY, CALIFORNIA NOVEMBER 2008

PREPARED FOR: CHEMICAL WASTE MANAGEMENT

SHEET INDEX

DRAWING NO.	TITLE	SHEET NO.
083-91887EXP-T1	TITLE SHEET	T-1
083-91887EXP-C1	SITE PLAN	C-1
083-91887EXP-C2	EXISTING CONDITIONS (AS OF MARCH 28, 2008)	C-2
083-91887EXP-C3	base liner plan	C-3
083-91887EXP-C4A	PHASE IIIA FILL PLAN	C-4A
083-91887EXP-C4	FINAL CLOSURE PLAN	C-4
083-91887EXP-C5	CROSS SECTIONS A TO D	C-5
083-91887EXP-C6	CROSS SECTIONS ETOI	C-6
083-91887EXP-C7	PHASE III BASE LINER CONSTRUCITON DETAILS	C-7
083-91887EXP-C8	PHASE III LCRS SYSTEM DETAILS	C-8
083-91887EXP-C9	DRAINAGE DETAILS	C-9
083-91887EXP-C10	CLOSURE DETAILS	C-10

general notes

ABBREVIATION
A.C. ASPHALT Concrere

CWM CHEMCALL LASTE MANAGEMENT
EL elevation
MIDE HIGHDENSIT POUYETMTENE
н.p. HIGH poont

o dameter

APPENDIX B

BORING LOGS

LOG OF BORING L18-A

LOG OF BORING L18-A

LOG OF BORING L18-A

- TOTAL DEPTH $=38.7^{\circ}$
- NO GROUND WATER ENCOUNTERED
- BACKFILLED WITH CEMENT GROUT VIA TREMIE

LOG OF BORING L18-B

LOG OF BORING L18-B

LOG OF BORING L18-B

PROJECT NUMBER: 89-977								PROJECT NAME: B-18 LANDFILL, KHF				
BORING NUMBER: L18-B								ELEVATION: 861'	DATE			
$\text { COORDINATES: } \begin{gathered} \text { N. } 228,750 \\ \text { E. } 1,700,860 \\ \hline \end{gathered}$								BORING DIA.: 5"	STARTED	COMPLETED		
DRILLING METHODS: MUD ROTARY								WATER DEPTH: NONE	3/13/90	3/13/90		
ENG/GEO: R. HARLAN (WAHLER ASSOCIATES)								CHECKED BY: J. BADEL	PAGE: 3		3	
	$\begin{aligned} & \underset{\sim}{山} \\ & \underset{\sim}{2} \\ & \underset{\sim}{u} \\ & \sum_{\substack{0}}^{\infty} \end{aligned}$			$\begin{aligned} & \stackrel{\rightharpoonup}{\underset{\sim}{4}} \\ & \stackrel{\rightharpoonup}{\sim} \\ & \underset{\sim}{U} \\ & \underset{\sim}{\sim} \end{aligned}$			DESCRIPTION					
						E	SAN	STONE, tan, fine to medium gra	ained, clean			
$\left.\right\|_{-39} ^{-38}$	PB	S-5		$\frac{2.0}{2.5}$	ss					14	106	\%200

- TOTAL DEPTH $=39.5^{\circ}$
- NO GROUND WATER ENCOUNTERED
- BACKFILLED WITH CEMENT GROUT VIA TREMIE

LOG OF BORING L18-C

LOG OF BORING L18-D

LOG OF BORING L18-D

LOG OF BORING L18-D

LOG OF BORING L18-D

LOG OF BORING L18-D

LOG OF BORING L18－E

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{PROJECT NUMBER：89－977} \& \multicolumn{5}{|l|}{PROJECT NAME：B－18 LANDFILL，KHF} \\
\hline \multicolumn{7}{|l|}{BORING NUMBER：L18－E} \& ELEVATION：727＇ \& \multicolumn{4}{|c|}{DATE} \\
\hline \multicolumn{7}{|l|}{COORDINATES： \begin{tabular}{c}
N． 228,890 \\
E． \(1,702,670\)
\end{tabular}} \& BORING DIA．：5＂ \& STARTED \& \multicolumn{3}{|l|}{COMPLETED} \\
\hline \multicolumn{7}{|l|}{DRILLING METHODS：MUD ROTARY} \& WATER DEPTH：NONE \& 3／19／90 \& \multicolumn{3}{|c|}{3／20／90} \\
\hline \multicolumn{7}{|l|}{ENG／GEO：R．HARLAN（WAHLER ASSOCIATES）} \& CHECKED BY：J．BADEL \& \multicolumn{2}{|l|}{PAGE： 1 OF 4} \& \& \\
\hline \multicolumn{12}{|c|}{LEGEND} \\
\hline \multicolumn{7}{|l|}{} \& \begin{tabular}{l}
PB－Pitcher Barrel \\
DR－Drive Ring Sample \\
CHEM－Chemical Test \\
PI－Atterberg Limits Test \\
COMP－Compaction Test \\
DIR－Direct Shear Test \\
TX－Triaxial Test
\end{tabular} \& \multicolumn{4}{|l|}{\begin{tabular}{l}
PER－Permeability Test \\
SW－Swelling Test \\
SI－Sieve Analysis Test \\
\％200－Percentage Passing \\
HYD－Hydrometer Test \\
SG－Specific Gravity Test
\end{tabular}} \\
\hline \[
\begin{aligned}
\& \text { 出 } \\
\& \text { 岂 } \\
\& \text { る } \\
\& \text { 工 } \\
\& \text { 㟔 }
\end{aligned}
\] \& \& \[
\begin{aligned}
\& \stackrel{0}{2} \\
\& \underset{\sim}{u} \\
\& \sum_{\infty}^{n}
\end{aligned}
\] \& \& \& \& \& DESCRIPTION \& \& \& \& \\
\hline \& \begin{tabular}{|c}
1 \\
8 \\
8 \\
8 \\
8
\end{tabular} \& B－1 \& 19 \& \(\frac{1.3}{1.5}\)

$\frac{1.7}{2.5}$ \& cl

coser \& \& \begin{tabular}{l}
COLLUVIUM

DY CLAY，light brown，dry，low to icity， 10 to 40% very fine grained erous thin interbeds／laminae of s ably intermittent alluvial deposits

y stift

merous cemented sandstone frag rd，orange brown，to $1 / 2^{\prime \prime} \varnothing$ ），occ y claystone fragments from 8 ＇to

mented sandstone fragments

y stiff to hard，light brown sandy ystone fragments，moderate plas

SAN JOAQUIN FORMATIO

DSTONE，tan，very fine to fine， one，claystone laminae，occasion

 \&

moderate sand． and（sp），

ments asional 13^{\prime}

clay with sticity

N

occasional nal orange
\end{tabular} \& 16 \& 106 \&

\hline
\end{tabular}

REV．8／10／90

LOG OF BORING L18-E

LOG OF BORING L18-E

LOG OF BORING L18-E

LOG OF BORING L18-F

PROJECT NUMBER: 89-977							PROJECT NAME: B-18 LANDFILL, KHF				
BORING NUMBER: L18-F							ELEVATION: 821'	DATE			
$\text { COORDINATES: } \begin{gathered} \text { N. } 228,930 \\ \text { E. } 1,701,540 \\ \hline \end{gathered}$							BORING DIA: $5^{\prime \prime}$	STARTED	COMPLETED		
DRILLING METHODS: MUD ROTARY							WATER DEPTH: NONE	3/20/90	3/21/90		
ENG/GEO: R. HARLAN (WAHLER ASSOCIATES)							CHECKED BY: J. BADEL	PAGE: 1 OF 4			
LEGEND											
							PB - Pitcher Barrel PER - Permeability Test DR - Drive Ring Sample SW - Swelling Test CHEM - Chemical Test SI - Sieve Analysis Test PI - Atterberg Limits Test \%200 - Percentage Passing COMP - Compaction Test HYD - Hydrometer Test DIR - Direct Shear Test SG - Specific Gravity Test TX - Triaxial Test	PER - Permeability Test SW - Swelling Test Si - Sieve Analysis Test \%200 - Percentage Passing HYD - Hydrometer Test SG - Specific Gravity Test			
	$\begin{aligned} & \stackrel{\mu}{n} \\ & \underset{\Sigma}{\underset{N}{u}} \\ & \stackrel{\rightharpoonup}{n} \\ & \sum_{\delta}^{N} \end{aligned}$	$\begin{aligned} & \stackrel{0}{z} \\ & \underset{\sim}{u} \\ & \stackrel{n}{\infty} \\ & \sum_{\infty}^{2} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\sim} \\ & \underset{\sim}{\sim} \\ & \text { O} \\ & \underset{\sim}{x} \end{aligned}$			DESCRIPTION				
	${ }^{8}$	S-1		$\frac{2.5}{2.5}$	Cs		SAN JOAQUIN FORMATIO YSTONE, gray, brown with orang ily weathered, soft, weak, laminat ded, occasional very fine sand lam sional siltstone interbeds/laminae ic e brown, silty claystone, moderat sticity	N ge laminae, ated to thin minae, e; highly te to high	20	103	Pl-

LOG OF BORING L18-F

LOG OF BORING L18-F

LOG OF BORING L18-F

PROJECT NUMBER: 89-977								PROJECT NAME: B-18 LANDFILL, KHF				
BORING NUMBER: L18-F								ELEVATION: 821'	DATE			
COORDINATES:N. 228,930 E. $1,701,540$								BORING DIA.: 5"	STARTED	COMPLETED		
DRILLING METHODS: MUD ROTARY								WATER DEPTH: NONE	3/20/90	3/21/90		
ENG/GEO: R. HARLAN (WAHLER ASSOCIATES)								CHECKED BY: J. BADEL	PAGE: 4	4		
	$\begin{aligned} & \underset{\sim}{u} \\ & \stackrel{y}{c} \\ & \underset{\sim}{u} \\ & \sum_{\substack{0}}^{\infty} \end{aligned}$						DESCRIPTION					
-57- -58	,	S-6		$\frac{2.1}{2.5}$			$\begin{aligned} & \text { gray } \\ & \text { orar } \end{aligned}$ lam	claystone, highly plastic with $1 / 2$ ge (iron oxide cemented) sandst nation and several sandy bioturb	" thick one ation pockets	26	95	PI HYD TX DIR

- TOTAL DEPTH $=58.5^{\circ}$
- NO GROUND WATER ENCOUNTERED
- backfilled with cement grout via tremie

LOG OF BORING L18-G

REV. 8/10/90

LOG OF BORING L18-G

LOG OF BORING L18-G

LOG OF BORING L18-G

LOG OF BORING L18-G

PROJECT NUMBER: $89-977$								PROJECT NAME: B-18 LANDFILL, KHF				
BORING NUMBER: L18-G								ELEVATION: $853{ }^{\prime}$	DATE			
								BORING DIA.: $5^{\prime \prime}$	STARTED	COMPLETED		
DRILLING METHODS: MUD ROTARY								WATER DEPTH: NONE	3/21/90	3/22/90		
ENG/GEO: r. HARLAN (WAHLER ASSOCIATES)								CHECKED BY: J. BADEL	PAGE: 5 OF 5	5 OF 5		
						$\begin{aligned} & \text { 山 } \\ & \stackrel{\rightharpoonup}{\vec{~}} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$		DESCRIPTION			彦	$\stackrel{\sim}{\sim}$
		S-10		$\frac{0.8}{2.5}$				sandstone with silty sandsto brown claystone lamination	e pockets			

- TOTAL DEPTH = 77.5
- NO GROUND WATER ENCOUNTERED
- BACKFILLED WITH CEMENT GROUT VIA TREMIE

LOG OF BORING L18-H

REV. 8/10/90

LOG OF BORING L18-H

LOG OF BORING L18-H

LOG OF BORING L18-H

PROJECT NUMBER: 89-977								PROJECT NAME: B-18 LANDFILL, KHF				
BORING NUMBER: L18-H								ELEVATION: 865'	DATE			
COORDINATES:N. 228,060 E. $1,702,050$								BORING DIA.: 5"	STARTED	COMPLETED		
DRILLING METHODS: MUD ROTARY								WATER DEPTH: NONE	3/22/90	3/22/90		
ENG/GEO: R. HARLAN (WAHLER ASSOCIATES)								CHECKED BY: J. BADEL	PAGE: 4		4	
						$\begin{aligned} & \text { س } \\ & \frac{1}{1} \\ & 0 \\ & \frac{\pi}{2} \end{aligned}$	DESCRIPTION					
	PB	S.6		$\frac{1.2}{2.5}$				y claystone with sand filled pock turbation)		25	96	PI-

- TOTAL DEPTH $=57.5^{\prime}$
- NO GROUND WATER ENCOUNTERED
- BACKFILLED WITH CEMENT GROUT VIA TREMIE

LOG OF BORING L18-I

PROJECT NUMBER: 89-977							PROJECT NAME: B-18 LANDFILL, KHF				
BORING NUMBER: L18-1							ELEVATION: 766'	DATE			
COORDINATES: $\begin{aligned} & \text { N. } 228,020 \\ & \text { E. } 1,702,410\end{aligned}$							BORING DIA.: 5"	STARTED	COMPLETED		
DRILLING METHODS: MUD ROTARY							WATER DEPTH: NONE	3/23/90	3/23/90		
ENG/GEO: R. HARLAN (WAHLER ASSOCIATES)							CHECKED BY: J. BADEL	PAGE: 1			
LEGEND											
							PB . Pitcher Barre DR - Drive Ring Sample CHEM - Chemical Test Pl - Atterberg Limits Test COMP - Compaction Test DIR - Direct Shear Test TX - Triaxial Test	PER - Permeability Test SW - Swelling Test SI - Sieve Analysis Test \%200 - Percentage Passing HYD - Hydrometer Test SG - Specific Gravity Test			
						$\begin{aligned} & \text { 山 } \\ & \text { 닐 } \\ & \text { 뭄 } \end{aligned}$	DESCRIPTION				
		B-1	35	$\frac{1.3}{1.5}$	c		COLLUVIUM TY CLAY, light brown, dry (to 13 derate plasticity, minor very fine s asional root voids (pin-holes), mi rd casional hard, gray claystone fra (dital) to $1 / 2^{\prime \prime} \varnothing$, from 7 ' to 10° ndy clay, light brown, dry, low to asticity, 20 to 40% very fine sand casional claystone fragments	low to and, or caliche gments moderate			

REV. 8/10/90

LOG OF BORING L18-I

PROJECT NUMBER: 89-977								PROJECT NAME: B-18 LANDFILL, KHF				
BORING NUMBER: L18.1								ELEVATION: 766°	DATE			
$\text { COORDINATES: } \begin{gathered} \text { N. } 228,020 \\ \text { E. } 1,702,410 \\ \hline \end{gathered}$								BORING DIA.: 5"	STARTED	COMPLETED		
DRILLING METHODS: MUD ROTARY								WATER DEPTH: NONE	3/23/90	3/23/90		
ENG/GEO: R. HARLAN (WAHLER ASSOCIATES)								CHECKED BY: J. BADEL	PAGE: 20			
		$\dot{2}$ $\underset{\sim}{2}$ $\stackrel{n}{2}$ $\stackrel{n}{\omega}$				$\begin{aligned} & \text { щ } \\ & \underset{\underline{u}}{0} \\ & \text { 문 } \end{aligned}$	DESCRIPTION					
	PB	S-2		$\frac{2.3}{2.5}$	cs		CLA lami lami - la lam	SAN JOAQUIN FORMAT STONE, gray, highly plastic, inc ae, occasional siltstone, very fin ae inated claystone/siltstone with ver inae	10 N ludes brown e sand very fine sand	19	92	$\mathrm{Cl}_{\mathrm{PI}}^{\mathrm{HYD}}$

- TOTAL DEPTH $=18.5^{\prime}$
- NO GROUND WATER ENCOUNTERED
- BACKFILLED WITH CEMENT GROUT VIA TREMIE

LOG OF BORING L18-J

REV. 8/10/90

LOG OF BORING L18-J

LOG OF BORING L18-K

REV. B/40/90

LOG OF BORING L18-K

LOG OF BORING L18-K

LOG OF BORING L18-K

LOG OF BORING L18-K

LOG OF BORING L18-K

PROJECT NUMBER: 89-977								PROJECT NAME: B-18 LANDFILL, KHF				
BORING NUMBER: L18-K								ELEVATION: 740'	DATE			
COORDINATES:N. 228,780 E. $1,702,480$								BORING DIA.: 5"	STARTED	COMPLETED		
DRILLING METHODS: MUD ROTARY								WATER DEPTH: NONE	3/14/90	3/15/90		
ENG/GEO: R. HARLAN (WAHLER ASSOCIATES)								CHECKED BY: J. BADEL	PAGE: 6 OF 6			
		$\begin{aligned} & \dot{0} \\ & \underset{u}{u} \\ & \underset{\sim}{n} \\ & \sum_{\infty}^{\infty} \end{aligned}$						DESCRIPTION				
-96 -97		S-19		$\frac{2.5}{2.5}$			- da	k gray claystone				

- TOTAL DEPTH = 97.5
- NO GROUND WATER ENCOUNTERED
- BACKFILLED WITH CEMENT GROUT VIA TREMIE

APPENDIX C TRENCH AND TEST PIT LOGS

Golder Associates

CLIENT CHEMICAL WASTE MANAGEMENT, INC.

CLIENT CHEMICAL WASTE MANAGEMENT. INC.
PROJECT NO. 89-977
LOCATION KETTLEMAN, CALIFORNIA

TRENCH NO. T. 3						SHEET $1 \quad$ OF $\frac{1}{1}$ DATE $3 / 23 / 90^{i}$			
EQUIPMENT:		DOZER	LOCATION: SEE FIGURE 2.3 - SITE GEOLOGIC MAP						
BEARING:		S720 W	NOTES:			FIELD ENGINEER: R. H. (WAHLER)			
UNITS				SAMPLE NO.	$\begin{gathered} \text { LAB } \\ \text { TESTS } \end{gathered}$	STRUCTURE			
DEPTH	NO.		DESCRIPTION			NO.	STRIKE	DIP	TYPE
	(1)	SANDY CLA	COLLUVIUM Ight brown; dry; low-moderate plasticity; 20-40\% very fine sand;			Δ	N46 ${ }^{\circ} \mathrm{W}$	$26^{\circ} \mathrm{SW}$	bedding
			SAN JOAQUIN FOBMATION			2	N55*W	$73^{\circ} \mathrm{SW}$	bedding
	(2)	CLAYSTONE slighty weath fine sandston	Grayforown; severly weathered to about 1 ' bolow contact with (D) epth. soft; weak; laminated to thin bedded; occasional siltstone; very o.			3	$\mathrm{N} 68^{\circ} \mathrm{W}$	$40^{\circ} \mathrm{SW}$	bedding
						4	$\mathrm{N} 43^{\circ} \mathrm{W}$	$24^{\circ} \mathrm{SW}$	bedding

CLIENT CHEMICAL WASTE MANAGEMENT, INC.

TEST PIT NO. TP-1

CLIENT CHEMICAL WASTE MANAGEMENT, INC.
PROJECT NO. 89-977
LOCATION KETTLEMAN, CALIFORNIA

TEST PIT NO. TP-2

SCALE: $1^{*=5}$

TEST PIT NO. TP-3

SHEET 1 OF 1			LOCATION: SEE FIGURE 2.3 - SITE GEOLOGIC MAP			BEARING: $555^{\circ} \mathrm{W}$		
			PIT WIDTH: 24*		DATE: 2/20/90	LOGGED BY: R.H. (WAHLER)		
$\begin{gathered} \text { TEST } \\ \text { PIT NO. } \end{gathered}$	DEPTH INTERVAL	SOIL	$\begin{aligned} & \text { WATER } \\ & \text { DEPTH } \\ & \hline \end{aligned}$	MATERIAL DESCRIPTION EXCAVATION CHARACTERISTICS			SAMPLE	
							NUMBER	DEPTH
TP. 3 .	$0^{\prime}-18^{\prime}$		NONE	COLUVIUM (1) SANDY CLAY (cl): Light brown; damp; low-moderate plasticity; 10.20% very fine sand, occasional lenses of fine, clayey sand; $10-40 \%$ fines; stiff; excavates easily. SANJOAQUIN FORMATION (2) SANDSTONE (SS): Tan, stained white (precipitation/gypsum?), some orange mottling; soft; friable; very fine.			$\frac{\sqrt{1}}{B-1}$	~ 15

CLIENT CHEMICAL WASTE MANAGEMENT, INC.
PROJECT NO. 89-977
LOCATION KETTLEMAN, CALIFORNIA

TEST PIT NO. TP-4

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{$$
\frac{\text { SHEET } 1 \text { OF } 1}{\text { RIG: CAT } 426 \text { BACKHOE }}
$$}} \& \multicolumn{3}{|l|}{LOCATION: SEE FIGURE 2.3 - SITE GEOLOGIC MAP} \& \multicolumn{3}{|l|}{BEARING: $553{ }^{\circ} \mathrm{W}$}

\hline \& \& \& \multicolumn{2}{|l|}{PIT WIDTH: 24^{*}} \& DATE: 2/20/90 \& \multicolumn{3}{|l|}{LOGGED BY: R. H. (WAHLEA)}

\hline TEST \& DEPTH \& SOIL \& WATER \& \multicolumn{3}{|c|}{\multirow[t]{2}{*}{MATEAIAL DESCRIPTION EXCAVATION CHARACTERISTICS}} \& \multicolumn{2}{|l|}{SAMPIE}

\hline PIT NO. \& INTERVAL \& TYPE \& DEPTH \& \& \& \& NUMBER \& DEPTH

\hline TP 4 \& \begin{tabular}{l}
$$
0^{\circ}-\sim 6.5 @
$$

NE end 0-~3.5`@ SW end (Thickens to NE towards channel)

 \& \& NONE \& \multicolumn{3}{|l|}{

COLLUVUM

(1) SANDY CLAY (cl): Light brown; dry-damp; low-moderate plasticity; $10-40 \%$ very fine sand; appears firm-stiff; excavates easily.

SAN JOAQUIN FORMATION

(2) SANDSTONE (SS): Tan/white, minor orange mottling; very fine; $5-30 \%$ fines; sott; friable; slightly weatered; very thick bedded. Excavates with slight difficulty.

(3) CLAYSTONE (CS): Gray, motlied white (gypsum?); slightly meathered; laminated to very thin bedded; soft; weak; occastional fossils; sand content varies along laminae and in-filled pockets (bioturbation). Excavates with slight difticulty as hard, angular chunks of clay up to $\sim 2^{\prime \prime}$ dia.
\end{tabular}} \& \&

\hline
\end{tabular}

TEST PIT NO. TP. 5

CLIENT CHEMICAL WASTE MANAGEMENT, INC.
PROJECT NO. 89-977
LOCATION KETTLEMAN, CALIFORNIA

TEST PIT NO. TP-6

SCALE: 1" $^{\prime \prime}{ }^{\circ}$

CLIENT CHEMICAL WASTE MANAGEMENT, INC.
PROJECT NO. 89-977

TEST PIT NO. TP-7

CLIENT CHEMICAL WASTE MANAGEMENT, INC,

PROJECT NO. 89-977

LOCATION KETTLEMAN, CALIFORNIA

TEST PIT NO. TP-8

TEST PIT NO. TP-9

CLIENT CHEMICAL WASTE MANAGEMENT, INC.
PROJECT NO. 89-977
LOCATION KETTLEMAN, CALIFORNIA

TEST PIT NO. TP-10

SCALE: $1^{\prime \prime}=5^{\circ}$

CLIENT CHEMICAL WASTE MANAGEMENT, INC.
PROJECT NO. 89-977
LOCATION KETTLEMAN, CALIFORNIA

TEST PIT NO. TP-11

CLIENT CHEMICAL WASTE MANAGEMENT, INC.
PROJECT NO. 89-977
LOCATION KETTLEMAN, CALIFORNIA

TEST PIT NO. TP-12

TEST PIT NO. TP-14

CLIENT CHEMICAL WASTE MANAGEMENT, INC.
PROJECT NO. 89-977
LOCATION KETTLEMAN CALIFORNIA

TEST PIT NO. TP-15.

CLIENT CHEMICAL WASTE MANAGEMENT, INC.
PROJECT NO, 89-977
LOCATION KETTLEMAN, CALIFORNIA

TEST PIT NO. TP-16

SCALE: $1^{\prime \prime}=5^{\prime}$

CLIENT CHEMICAL WASTE MANAGEMENT, INC.
PROJECT NO. 89-977
LOCATION KETTLEMAN, CALIFORNIA

TEST PIT NO. TP-17

CLIENT CHEMICAL WASTE MANAGEMENT, INC.

TEST PIT NO. TP-18

CLIENT CHEMICAL WASTE MANAGEMENT, INC

PROJECT NO. 89-977

TEST PIT NO. TP-19

CLIENT CHEMICAL WASTE MANAGEMENT, INC.
PROJECT NO. 89-977
LOCATION KETTLEMAN, CALIFORNIA

TEST PIT NO. TP-20

GROUND SURFACE

CLIENT CHEMICAL WASTE MANAGEMENT, INC.
PROJECT NO. 89-977

TEST PIT NO. TP-21

SCALE: $\gamma^{\prime \prime}=5^{\circ}$

TEST PIT NO. TP-22
BEDDING A $: N 50^{\circ} W, 28^{\circ} S W$

TEST PIT NO. TP- 23
STRIKE A: N40 ${ }^{\circ} \mathrm{W}, 31^{\circ} \mathrm{SW}$ DIP

SCALE: 1" ${ }^{\prime \prime}{ }^{\prime \prime}$

CLIENT CHEMICAL WASTE MANAGEMENT. INC.

PROJECT NO. 89-977
LOCATION KETTLEMAN, CALIFORNIA

TEST PIT NO. TP-25

CLIENT CHEMICAL WASTE MANAGEMENT, INC.
PROJECT NO. 89-977
LOCATION KETTLEMAN, CALIFORNIA

TEST PIT NO. TP-26

SCALE: $1^{\prime \prime}=5{ }^{\circ}$

CLIENT CHEMICAL WASTE MANAGEMENT, INC.

PROJECT NO. 89-977

TEST PIT NO. TP-27

CLIENT CHEMICAL WASTE MANAGEMENT, INC.

TEST PIT NO. TP-28

SHEET	1 OF	1	LOCATION: SEE FIGURE 2.3 - SITE GEOLOGIC MAP			BEARING:		
RIG: CAT 426 BACKHOE			PIT WIDTH: 30"		DATE: 3/19/90	LOGGED BY: A. S. B. (WAHLER)		
$\begin{array}{r} \text { TEST } \\ \text { PIT NO. } \end{array}$	DEPTH INTERVAL	$\begin{aligned} & \text { SOIL } \\ & \text { TYPE } \end{aligned}$	WATER	MATERIAL DESCRIPTION EXCAVATION CHARACTERISTICS			SAMPLE	
							NUMBER	DEPTH
TP=28	0-12.5'			(1) CLA	COLLUVUM Moderate yellow-br	to very fine	B-1	0-12.5
	12.5'13.5			(2) 1 N	YSTONEISILTSTO llow-orange lamina	LT): Light y bedded.	B-2	12.5'13.5

CLIENT CHEMICAL WASTE MANAGEMENT, INC.
PROJECT NO. 89-977
LOCATION KETTLEMAN, CALIFORNIA

TEST PIT NO. TP-29

CLIENT CHEMICAL WASTE MANAGEMENT, INC.
PROJECT NO. 89-977

TEST PIT NO. TP-30

CLIENT CHEMICAL WASTE MANAGEMENT, INC.
PROJECT NO. 89-977

LOCATION KETTLEMAN, CALIFORNIA

TEST PIT NO. TP-31

SCALE: $1^{*}=5$

TEST PIT NO. TP-32

SHEET	1 OF	1	LOCATION: SEE FIGURE 2.3-SITE GEOLOGIC MAP			BEARING:		
RIG: CAT 426 BACKHOE			PIT WIDTH: 24^{*}		DATE: 5/10/90	LOGGED EY: R. H. (WAHLER)		
$\begin{aligned} & \text { TEST } \\ & \text { PIT NO. } \end{aligned}$	DEPTH INTERVAL	$\begin{aligned} & \text { SOIL } \\ & \text { TYPE } \\ & \hline \end{aligned}$	WATER DEPTH	MATERIAL DESCRIPTION EXCAVATION CHARACTERISTICS			SAMPLE	
							NUMBER	DEPTH
TP-32	$0 \cdot 3^{*}$			(1) C	COLLUVIUM			
					JOAQUIN FORMA			
	$3^{\prime} \cdot 5^{\prime}$			(2) Unin SAN whit very	an-white; occasiona up 10 ~. $5^{\text {" thick) }}$; P).	raliche (thin, s as clean,	B-1	~ 5

SCALE: $1^{\prime \prime}=5^{\circ}$

TEST PIT NO. TP-33

SCALE: $1 \times{ }^{\circ} \mathbf{- S}^{\prime}$

CLIENT CHEMICAL WASTE MANAGEMENT, INC.

PROJECT NO. 89-977

LOCATION KETTLEMAN, CALIFORNIA

TEST PIT NO. TP-34

SCALE: $1^{\prime \prime}=5^{\prime}$

CLIENT CHEMICAL WASTE MANAGEMENT, INC.
PROJECT NO. 89-977

TEST PIT NO. TP-35

CLIENT CHEMICAL WASTE MANAGEMENT, INC.
PROJECT NO. 89-977
LOCATION KETTLEMAN, CALIFORNIA

TEST PIT NO. TP. 36

CLIENT CHEMICAL WASTE MANAGEMENT, INC.
PROJECT NO. 89-977

TEST PIT NO. TP-37

TEST PIT NO. TP-38

SHEET 1 OF 1 RIG: CAT 426 BACKHOE			LOCATION: SEE FIGURE 2.3 - SITE GEOLOGIC MAP			BEARING:		
			PIT WIDTH: $24 *$		DATE: $5 / 11 / 30$ LOGGED BY:		R. H. (WAHLER)	
$\begin{aligned} & \text { TEST } \\ & \text { PITNO. } \end{aligned}$	DEPTHINTERVAL	$\begin{aligned} & \text { SOIL } \\ & \text { TYPE } \\ & \hline \end{aligned}$	WATER DEPTH	MATERIAL DESCRIPTION EXCAVATION CHARACTERISTICS			SAMPLE	
							NUMBER	DEPTH
TP-38	0.555			COLUVIUM (1) SANDY CLAY (cl) SAN JOAQUIN FOBMATION (2) Unlt 18-8 CLAYSTONE (CS): Gray, orange-brown, light brown; laminated to thin bedded; occasional sand taminae (very minor); excavates as gravel-cobble-sized blocks.				
	$5^{\prime} \cdot 9$							

CLIENT CHEMICAL WASTE MANAGEMENT, INC.
PROJECT NO. 89-977
LOCATION KETTLEMAN CALIFORNIA

TEST PIT NO. TP-39

TEST PIT NO. TP-40

SCALE: $1^{\prime \prime}=5^{+}$

TEST PIT NO. TP-41

SHEET $\frac{1}{}$ OF 1			LOCATION: SEE FIGURE 2.3-SITE GEOLOGIC MAP			BEARING:		
			PIT WIDTH: $24{ }^{*}$		DATE: $5 / 11 / 90$	LOGGED BY: R. H. (WAHLER)		
$\begin{gathered} \text { TEST } \\ \text { PIT NO. } \end{gathered}$	DEPTH	$\begin{aligned} & \text { SOIL } \\ & \text { TYPE } \end{aligned}$	WATER DEPTH	MATERIAL DESCRIPTION EXCAVATION CHARACTERISTICS			SAMPLE	
							NUMBEA	DEPTH
					OAQUIN FORMATI			
TP-41	0-3.5			(1) Unit CLA oran chunk NOT	oderate brown - gr plastic; excavates very fine sand lami cut slope.	n, occasional i-cobble-sized	B-1	~ 3.5

TEST PIT NO. TP-42

TEST PIT NO. TP-43

APPENDIX D
 LABORATORY DATA

APPENDIX D. 1	PLASTICITY CHARTS
APPENDIX D. 2	GRAIN SIZE DISTRIBUTIONS
APPENDIX D. 3	MODIFIED PROCTOR COMPACTION TESTS
APPENDIX D. 4	STANDARD PROCTOR COMPACTION TESTS
APPENDIX D. 5	UU TRIAXIAL COMPRESSION TESTS
	(UNDISTURBED SAMPLES)
APPENDIX D. 6	UU TRIAXIAL COMPRESSION TESTS
APPENDIX D. 7	(REMOLDED SAMPLES)
APPENDIX D. 8	CU TRIAXIAL COMPRESSION TESTS
APPENDIX D. 9	COMMARY OF DIRECT SHEAR TESTS
APPENDIX D. 10	GEOCHEMICAL TESTS

APPENDIX D. 1 PLASTICITY CHARTS

SYMBOL	STRATIGRAPHIC UNIT	BORING NO.	SAMPLE NO.	DEPTH $($ FT.)	LIQUID LIMIT (\%)	PLASTICITY INDEX (\%)	USC SYMBOL
0	$18-2$	L18-E	S-8	$60.0-62.5$	53	32	CH
0	$18-3$	L18-E	S-6	$43.0-45.0$	32	6	ML
\triangle	$18-4$	L18-D	S-6	$52.0-54.3$	67	42	CH
\square	$18-5$	L18-D	S-2	$22.0-24.3$	49	29	$\mathrm{CL} / \mathrm{CH}$

SYMBOL	STRATIGRAPHIC UNIT	BORING NO.	SAMPLE NO.	DEPTH (FT.)	LIQUID LIMIT (\%)	PLASTICITY INDEX (\%)	USC SYMBOL
O	$18-7$	L18-C	S-1	$15.0-17.3$	38	17	CL
0	$18-7$	L18-C	S-3	$25.0-27.5$	46	23	CL
\triangle	$18-7$	L18-C	S-7	$56.0-58.0$	60	36	CH
\square	$18-7$	L18-C	S-11	$87.0-89.0$	41	17	CL

FIGURE D.1.2
PLASTICITY CHART STRATIGRAPHIC UNIT 18-7

SYMBOL	STRATIGRAPHIC UNIT	$\begin{aligned} & \text { BORING } \\ & \text { NO. } \end{aligned}$	SAMPLE NO.	$\begin{gathered} \text { DEPTH } \\ \text { (FT.) } \end{gathered}$	LIQUID LIMIT (\%)	PLASTICITY INDEX (\%)	$\begin{gathered} \text { USC } \\ \text { SYMBOL } \end{gathered}$
0	18-8	L18.J	S-1	5.0-7.5	55	30	CH
0	18.8	L18-J	S-3	15.0-17.5	67	41	CH
\triangle	18-8	L18-J	S-5	25.0-27.5	79	50	CH
\square	18-8	L18-J	S-7	35.0-37.5	64	40	CH
-	18-8	L18-J	S-9	45.0-47.5	74	49	CH
-	18.8	L18-J	S. 11	55.0-57.5	69	46	CH
A	18-8	L18-J	S-13	65.0-67.5	74	50	CH
	18-8	L18-J	S-15	75.0-77.5	33	17	CL
\bigcirc	18-8	L18-J	S-17	85.0-87.5	56	38	CH
-	18.8	L18-J	S-22	110.0-112.5	71	47	CH
\triangle	18-8	L18-J	S-24	120.0-122.5	70	42	CH
\square	18.8	L18-J	S-26	130.0-132.8	88	60	CH
\bigcirc	18-8	L18-J	S-28	140.0-142.5	85	53	CH
\%	18-8	L18-J	S-30	150.0-152.5	88	62	CH
\square	18.8	L18-J	S-32	160.0-162.5	55	30	CH

PLASTICITY CHART STRATIGRAPHIC UNIT 18-8

LANDFILL UNIT B-18 KETTLEMAN HILLS FACILITY

SYMBOL	STRATIGRAPHIC UNIT	BORING NO.	SAMPLE NQ.	DEPTH (FT.)	LIQUID LIMIT (\%)	PLASTICITY INDEX (\%)	USC SYMBOL
0	$18-9$	$18-K$	$\mathrm{~S}-10$	$80.0-82.3$	30	11	CL

LANDFILL UNIT B-18
KETTLEMAN HILLS FACILITY

SYMBOL	STRATIGRAPHIC UNIT	BORING NO.	SAMPLE NO.	DEPTH (FT.)	LIQUID LIMIT (\%)	PLASTICITY INDEX (\%)	USC SYMBOL
0	$18-10$	L18-H	S-1	$6.0-8.5$	81	50	CH
\triangle	$18-10$	L18-H	S-4	$35.0-37.5$	78	51	CH
\triangle	$18-10$	L18-H	S-6	$55.0-57.5$	71	49	CH

FIGURE D.1.6

PLASTICITY CHART

 STRATIGRAPHIC UNIT 18-10LANDFILL UNIT B-18
KETTLEMAN HILLS FACILITY

SYMBOL	STRATIGRAPHIC UNIT	BORING NO.	SAMPLE NO.	DEPTH (FT.)	LIQUID LIMIT (\%)	PLASTICITY INDEX (\%)	USC SYMBOL
0	$18-12$	L18-B	$\mathrm{S}-1$	$6.0-8.5$	64	36	CH
\square	$18-12$	L18-G	$\mathrm{S}-7$	$50.0-51.8$	78	49	CH
\triangle	$18-12$	L18-G	$\mathrm{S}-9$	$65.0-67.0$	60	36	CH
\square	$18-12$	TP-31	B-1	3.5	70	49	CH

FIGURE D.1. 7
PLASTICITY CHART STRATIGRAPHIC UNIT 18-12

LANDFILL UNIT B-18 KETTLEMAN HILLS FACILITY

SYMBOL	STRATIGRAPHIC UNIT	BORING NO.	SAMPLE NO.	DEPTH $($ FT.)	LIQUID LIMIT (\%)	PLASTICITY INDEX (\%)	USC SYMBOL
O	COLLUVIUM	L18-C	B-1	$6.0-7.5$	35	19	CL
0	COLLUVIUM	L18-D	B-2	$10.0-11.5$	29	13	CL

FIGURE D.1.8
PLASTICITY CHART
COLLUVIUM
LANDFILL UNIT B-18
KETTLEMAN HILLS FACILITY
ENVIRONMENTAL SOLUTIONS, INC.

APPENDIX D. 2

GRAIN SIZE DISTRIBUTIONS

SYMBOL	BORING	DEPTH (fL)	LIQUID LIMIT (\%)	PLASTICITY INDEX (\%)	STRATIGRAPHIC UNIT	MATERIAL TYPE	USCS
O-O	LI8-D	$10.0-11.5$	29	13	Colluvium	Clayey Sand	SC

COBBLES	GRAVEL		SAND		
	coarse	fine	coarse	medium	fine

FIGURE D.2.1
GRAIN SIZE DISTRIBUTION COLLUVIUM

SYMBOL	BORING	DEPTH (ft.)	LIQUID LIMIT (\%)	PLASTICITY INDEX (\%)	STRATIGRAPHIC UNIT	MATERIAL TYPE	USCS
$+\mathbf{+}$	L18-D	$22.0-24.3$	49	29	$18-5$	Claystone	CL-CH

COBBLES	GRAVEL		SAND			SILT AND CLAY FRACTION
	coarse	rine	coarse	medium	rine	

SYMBOL	BORING	DEPTH (ft.)	LIQUID LIMT (\%)	PLASTICITY INDEX (\%)	STRATIGRAPHIC UNIT	MATERIAL TYPE	USCS
$-\longrightarrow-0$	L18-C	$15.0-17.3$	38	17	$18-7$	Claystone	CH
$\Delta \cdots-\Delta$	L18-C	$56.0-58.0$	60	36	$18-7$	Claystone	CH

COBBLES	GRAVEL		SAND		SILT AND CLAY FRACTION	
	coarse	fine	coarse	medium		

FIGURE D.2.3
GRAIN SIZE DISTRIBUTION STRATIGRAPHIC UNIT 18-7

LANDFILL UNIT B-18 KETTLEMAN HILLS FACILITY
ENVIRONMENTAL SOLUTIONS, INC.

SYMBOL	BORING	DEPTH (fL)	$\begin{array}{\|c\|} \hline \text { LIQUID } \\ \text { LIMIT }(\%) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { PLASTICITY } \\ \text { INDEX (\%) } \\ \hline \end{array}$	STRATIGRAPHIC UNIT	MATERIAL TYPE	USCS
$0-0$	L18-I	16.0-18.5	58	36	18-8	Claystone	CH
$\Delta \cdots \cdots$	L18-F	6.0-8.5	78	55	18-8	Claystone	CH
$\square \square$	L18-F	26.0-28.5	59	47	18-8	Claystone	CH
$\underline{+\cdots \cdots \cdots}+$	L18-F	56.0-58.5	59	39	18-8	Claystone	CH

COBBLES	GRAVEL		SAND		SILT AND CLAY FRACTION	
	coarse	fine	coarse	medium		

FIGURE D.2.4
GRAIN SIZE DISTRIBUTION STRATIGRAPHIC UNIT 18-8

LANDFILL UNIT B-18
KETTLEMAN HILLS FACILITY

SYMBOL	BORING	DEPTH (fL)	$\begin{gathered} \text { LIQUID } \\ \text { LIMIT (\%) } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { PLASTICITY } \\ \text { INDEX (\%) } \\ \hline \end{array}$	STRATIGRAPHIC	MATERIAL TYPE	USCS
\bigcirc	L18-J	5-7.5	55	30	18-8	Claystone	CH
$\Delta \cdots \cdots$	L18-J	35-37.5	64	40	18-8	Claystone	CH
$\square \square$	L18-J	75-77.5	33	17	18-8	Claystone	CH
0	L18-J	120-122.5	70	42	18-8	Claystone	CH
$\stackrel{\sim}{0}$	L18-J	160-162.5	55	30	18-8	Claystone	CH

COBBLES	GRAVEL		SAND			SILT AND CLAY FRACTION
	coarse	fine	coarse	medium	fine	

GRAIN SIZE DISTRIBUTION STRATIGRAPHIC UNIT 18-8

LANDFILL UNIT B-18 KETTLEMAN HILLS FACILITY

SYMBOL	TEST PIT	DEPTH (fl)	$\begin{gathered} \text { LIQUID } \\ \text { LIMIT (\%) } \end{gathered}$	$\begin{aligned} & \text { PLASTICITY } \\ & \text { INDEX (\%) } \\ & \hline \end{aligned}$	STRATIGRAPHIC UNIT	MATERIAL TYPE	USCS
$0-0$	DT-A,B-2	5.0	82	54	18-8	Claystone	CH
+ - - -	DT-C,B-1	8.0	78	56	18-8	Claystone	CH
$\Delta-\triangle$	TP-36,B-1	4.0	78	56	18-8	Claystone	CH
\square	TP-38,B-1	9.0	52	34	18-8	Claystone	CH
$\bigcirc-\infty$	TP-40,B-1	3.0	28	7	18-8	Claystone	CH

COBBLES	GRAVEL		SAND			SILT AND CLAY FRACTION
	coarse	fine	coarse	medium	fine	

FIGURE D.2.6
GRAIN SIZE DISTRIBUTION STRATIGRAPHIC UNIT 18-8

LANDFILL UNIT B-18
KETTLEMAN HILLS FACILITY
ENVIRONMENTAL SOLUTIONS, INC.

SYMBOL	TEST PIT TYPE	DEPTH (ft)	LIQUID LIMIT (\%)	PLASTICITY INDEX (\%)	STRATIGRAPHIC UNIT	MATERIAL TYPE	USCS
$+-+\boldsymbol{T P - 1 , B - 1 ~}$	7.0	--	-	$18-9$	Sandstone	SM	
$\Delta \cdots--\Delta$	TP-42, B-1	6.0	-	-	$18-9$	Sandstone	SM

COBBLES	GRAVEL		SAND			SILT AND CLAY FRACTION
	coarse	fine	coarse	medium	fine	

FIGURE D.2.7
GRAIN SIZE DISTRIBUTION STRATIGRAPHIC UNIT 18-9

LANDFILL UNIT B-18
KETTLEMAN HILLS FACILITY

SYMBOL	BORING	DEPTH (fL)	LIQUID LIMIT (\%)	PLASTICITY INDEX (\%)	STRATIGRAPHIC UNIT	MATERIAL TYPE	USCS
$0-0$	L18-B	$37.0-39.5$	-	-	$18-11$	Sandstone	SM

COBBLES	GRAVEL		SAND			
	coarse	fine	coarse	medium	fine	

FIGURE D.2.8
GRAIN SIZE DISTRIBUTION STRATIGRAPHIC UNIT 18-11

LANDFILL UNIT B-18
KETTLEMAN HILLS FACILITY

SYMBOL	BORING	DEPTH (ft.)	LIQUID LIMIT (\%)	PLASTICITY INDEX (\%)	STRATIGRAPHIC UNIT	MATERIAL TYPE	USCS
--0	L18-B	$6.0-8.5$	64	36	$18-12$	Claystone	CH
$\Delta \cdots-\cdots$	L18-G	$50.0-51.8$	78	44	$18-12$	Claystone	CH
+-+	L18-G	$65.0-67.0$	60	36	$18-12$	Claystone	CH

COBBLES	GRAVEL		SAND			SILT AND CLAY FRACTION
	coarse	fine	coarse	medium	fine	

FIGURE D. 2.9

GRAIN SIZE DISTRIBUTION STRATIGRAPHIC UNIT 18-12

LANDFILL UNIT B-18
KETTLEMAN HILLS FACILITY
ENVIRONMENTAL SOLUTIONS, INC.

APPENDIX D. 3 MODIFIED PROCTOR COMPACTION TESTS

SUMMARY OF COMPACTION TEST RESULTS			
SYMBOL	\bigcirc	\triangle	\square
SAMPLE NO.	COMP. NO. 4	COMP. NO. 6	COMP. NO. 8
MATEPIAL TYPE	70\% cs/30\% ss	70\% cs/30\% ss	70\% cs/30\% ss
TEST METHOD	ASTM	D1557, METHO	D 78A
MAXIMUM DAY DENSITY (PCF)	104.9	102.9	104.0
OPTIMUM MOISTURE CONTENT (\%)	20.8	21.9	19.8
LIQUID LIMIT	**	--	--
PLASTICITY INDEX	\cdots	-	*
SPECIFIC GRAVITY	2.7	2.7	2.7
UNIFIED SOILS CLASSIFICATION	CL	CL	Cl

FIGURE D.3.4
MODIFIED PROCTOR TESTS
LANDFILL UNIT B-18 KETTLEMAN HILLS FACILITY

APPENDIX D. 4

STANDARD PROCTOR COMPACTION TESTS

SLMMARY OF COMPACTION TEST RESULTS		
SYMBOL	O	\triangle
SAMPLE NO.	COMP. NO. 1	COMP. NO. 11
MATERIAL TYPE	70% CS 30% SS	CLAYSTONE
TEST METHOD	ASTM DESE (STANDARD PROCTOR)	
MAXIMUM DAY DENSITY (PCF)	94.2	87.7
OPTIMUM MOISTURE CONTENT (\%)	27.0	29.7
LIQUID LIMIT	-	76
PLASTICITY INDEX	-	45
SPECIFIC GRAVITY	2.8	2.8
UNIFIED SOILS CLASSIFICATION	$C L$	$C H$

FIGURE D.4.1

STANDARD PROCTOR TESTS

LANDFILL UNIT B-18
KETTLEMAN HILLS FACILITY
ENVIRONMENTAL SOLUTIONS, INC.

APPENDIX D. 5

UU TRIAXIAL COMPRESSION TESTS (UNDISTURBED SAMPLES)

TABLE D．5．1
SUMMARY OF UNCONSOLIDATED UNDRAINED（UU）TRIAXIAL TEST

	（\％） NIVYLS	$\because \therefore$		∞ 응	$\infty \wedge$	으으N	人 in
	$\begin{gathered} \text { (ISd) } \\ \text { TVחளISBy } \end{gathered}$		$\left\|\begin{array}{lll} \sigma & 0 \\ \infty & \underset{~ y}{y} & \underset{y}{c} \end{array}\right\|$		$\underset{\sim}{\circ}$	$\begin{array}{ccc} \vec{\infty} & \overrightarrow{0} & \stackrel{y}{n} \\ \infty & = & \underset{N}{n} \end{array}$	$\overrightarrow{i n} \underset{\sim}{\infty}$
	（\％） NJVZLS	$\bullet \infty$	＊+ ＊	mun	N N M	$m * *$	$\mathrm{N} N$
	$\begin{aligned} & \text { (ISd) } \\ & \text { YVFAd } \end{aligned}$		$\begin{array}{lll} \underset{\sim}{\mathrm{N}} & \underset{\sim}{\mathrm{~N}} & \underset{2}{\Sigma} \end{array}$	$\begin{array}{ll} \infty & 0 \\ \underset{\sim}{\dot{j}} \underset{\sim}{~} \\ \underset{\sim}{4} \end{array}$	$\left\|\begin{array}{lll} \sim & 0 & 0 \\ \infty & 0 & 0 \\ \infty & 0 & 0 \end{array}\right\|$	$\left\lvert\, \begin{array}{lll} n & 0 & \infty \\ \cdots & \underset{\sim}{n} & 0 \\ & \underset{N}{2} \end{array}\right.$	
$\begin{gathered} \text { (ISd) } \\ \text { GHASSJZd } \\ \text { ONINHNOD } \end{gathered}$		$$		$\begin{array}{ccc} \infty & 0 & n \\ \underset{N}{n} & n & \infty \\ \hline \end{array}$	$\left\|\right\|$	$\infty \quad 0$. ה淂	$\infty \quad 0$ へin
	$\begin{gathered} \text { (GOd) } \\ \text { XLISNBG } \\ \text { X\&G } \end{gathered}$		$$	$\begin{array}{lll} -7 & 0 \\ \hdashline i & 8 \\ \hline \end{array}$	$\left\|\begin{array}{ccc} 0 & \alpha & 0 \\ \alpha & \vdots \\ \alpha & \infty \\ \hline \end{array}\right\|$	$\left\lvert\, \begin{array}{lll} n & n & 0 \\ 0 & 0 & 0 \\ 0 & 0 \end{array}\right.$	$\begin{array}{lll} \cdots & \infty \\ \cdots & \underset{\alpha}{2} \end{array}$
	$\begin{gathered} \text { (\%) } \\ \text { INGINOD } \\ \text { YGIVMM } \end{gathered}$	$\cdots \infty$	ํㅡํ	09 근	우숫	$\bigcirc \pm$	¢웃
GdXI TVIYヨLVW					$\left\|\right\|$		
LINn OIHdVZOLLVZLS		$\begin{array}{lll} 7 & 7 & 7 \\ \infty & \infty \\ \hline \end{array}$		$\left\|\begin{array}{ccc} \infty & 6 & 0 \\ \infty & \infty & 0 \\ - & \infty & \infty \end{array}\right\|$	$\begin{array}{lll} \infty & \infty & \infty \\ \infty & \infty \\ -1 & \infty \\ \hline \end{array}$	$\begin{array}{lll} m & m & m \\ \infty & \infty & \infty \end{array}$	$$
（LH）HLdAG GTdNVS					$\left\|\begin{array}{lll} n & - & n \\ \infty & \infty & 0 \\ n & + & n \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ n & 0 & 6 \\ n & n \end{array}\right\|$		
$\begin{gathered} \text { ON } \\ \text { GTAWVS } \end{gathered}$		$\begin{array}{lll} \dot{m} & \sim & n \\ \dot{n} & \dot{n} \end{array}$	$\begin{array}{lll} \infty & 0 & \infty \\ \dot{n} & \dot{b} & \dot{b} \end{array}$	$\begin{array}{ccc} N & m & N \\ \dot{c} & \dot{b} & \dot{x} \end{array}$	$\begin{array}{lll}0 & 6 & 0 \\ 0 & x_{0}\end{array}$		
ON ONIYOG		$$		$\left\|\begin{array}{lll} 0 & 0 & 0 \\ \infty & \infty \\ \boldsymbol{\infty} & -1 & \infty \\ \end{array}\right\|$		$\begin{array}{ccc} 0 & 0 & 0 \\ \infty & 0 & 0 \\ =1 & 1 & 0 \end{array}$	$\left\|\begin{array}{lll} 0 & 0 & 0 \\ \infty & \infty \\ \hdashline & \infty & \dot{\alpha} \\ & =1 \end{array}\right\|$

APPENDIX D. 6

UU TRIAXIAL COMPRESSION TESTS (REMOLDED SAMPLES)

TABLE D．6． 1
SUMMARY OF UNCONSOLIDATED UNDRAINED（UU）TRIAXIAL TEST

$\begin{aligned} & \text { E } \\ & \text { Ho } \\ & \text { Hz } \\ & \text { M } \end{aligned}$	岂			$\begin{aligned} & \text { MATERIAL } \\ & \text { TYPE } \end{aligned}$	INITIAL STATE			DEVIATOR STRESS			
								$\begin{aligned} & \text { 覓会 } \end{aligned}$	$\frac{z}{\stackrel{z}{6}} \widehat{\sigma_{0}}$		$\begin{aligned} & z \\ & \frac{z}{6} \\ & \frac{g}{6} \end{aligned}$
DT－A	B－2	5	18－8	Claystone compacted to	26.7	93.4	27.8	65.3	14	65.1	15
DT－A	B－2	5	18－8	（Modified Proctor）and 5\％above optimum．	26.5	93.7	55.6	74.1	14	74.0	15
DT－A	B－2	5	18－8		26.6	93.7	88.3	81.3	13	80.8	15
TP－42	B－1	6	18－9	Sandstone compacted to 95% relative compaction	14.9	108.7	27.8	127.2	4	108.0	10
TP－42	B－1	6	18－9	（Modified Proctor）at optimum．	14.8	109.0	55.6	186.8	6	179.0	12
TP－42	B－1	6	18－9		14.8	109.0	83.3	244.6	8	201.9	15

APPENDIX D. 7

 CU TRIAXIAL COMPRESSION TESTS
TABLE D.7.1

SUMMARY OF CONSOLIDATED UNDRAINED (CU) TRIAXIAL TEST
(REMOLDED SAMPLES)

$\begin{gathered} \text { TEST PIT } \\ \text { NO. } \end{gathered}$	SAMPLE NO.	SAMPLE DEPTH (ft)	S'TRATIGRAPHIC UNIT	MATERIAL TYPE	INITIAL STATE		$\begin{gathered} \text { CONFINING } \\ \text { PRESSURE } \\ \text { (PSI) } \end{gathered}$	DEVIATOR STRESS		STRAIN RATE (\%/Hour)
					WATER CONTENT (\%)	$\begin{gathered} \text { DRY } \\ \text { DENSITY } \\ \text { (PCF) } \end{gathered}$		PEAK (PSI)	STRAIN (\%)	
DT-A	B-2	5	18-8	Claystone compacted to 90% relative compaction	26.4	93.8	34.7	42.38	5.01	3.87
DT-A	B-2	5	18-8	(Modificd Proctor) and	26.3	94.0	69.4	64.76	3.02	3.89
DT-A	B-2	5	18-8		26.7	93.6	138.9	97.44	8.99	3.97
DT-C	B-1	8	18-8	Claystone compacted to 90% relative compaction	28.2	89.1	34.7	40.18	6.0	3.90
DT-C	B-1	8	18-8	(Modified Proctor) at 5\% above optimum.	28.2	89.3	69.4	62.73	7.99	3.91
DT-C	B-1	8	18-8		28.2	89.3	138.9	108.75	6.97	3.95

	$\begin{aligned} & \text { BORING/ } \\ & \text { SAMPLE } \\ & \text { NO. } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { SPECMMEN } \\ \text { NO. } \end{gathered}\right.$	$\underset{\substack{\text { DEPTH } \\ \text { (FEET) }}}{ }$	SAMPLE TTPE	SOLL TPPE	Intilal state			Final stat			EFFECTIVECONFINING PRESSURE (PSI)	$\begin{gathered} \text { BACK } \\ \text { PRESSURE } \\ (\text { PSIt } \end{gathered}$	faltu		sifain fate ALE
						${ }_{\text {PCF }}^{\text {¢ }}$	(\%)	$\begin{gathered} \text { SATUPATION } \\ (\%) \\ \hline \end{gathered}$	${ }_{\text {PCF }}^{\text {¢ }}$	$(\%)$	SATtuation			OEV.STRESS	${ }_{\text {Strank }}$	
-	DTC.C, Q-1	1	${ }^{8}$	CLAYSTONE COMPACTED TO 90% RELATIVE COMPACTION (MODIFEDPROCTOA) AND 5% ABOVE OPTIMUM AND \% ABOVEOPTIMUM	clatstone	88.1	28.2	82.6	Q9.5	33.9	100.00	34.7	50.0			
\triangle	DTC. $\mathrm{B}-1$	2	8		claystone	89.3	28.2	82.8	82.0	32.0	100.00	69.4	50.		7	3.90
\square	рт-C. $\mathrm{B}-\mathrm{F}$	3	8		clarstone	89.3	28.2	82.8	957	2	120					

šu8a	$\begin{gathered} \begin{array}{c} \text { Boinged } \\ \text { SAMMPLE. } \\ \text { No. } \end{array} \end{gathered}$	SPECIMEN	DEPTH(FEET)	SAMPLETTPE	SOML TYPE	intial state			final state			EFFECTIVE CNFANNG PRESSURE (PSII		fallure		
							$\%$	$\begin{gathered} \text { SATURATiON } \\ (\%) \end{gathered}$	$\begin{aligned} & \mathrm{y} \\ & \mathrm{pcch}) \\ & \hline \end{aligned}$	$\left.\omega_{(}^{\infty}\right)$	$\left\lvert\, \begin{gathered} \text { Saturation } \\ (\%) \end{gathered}\right.$			DEV. STRESS (PSI)	strain	
0	DT-A $\mathrm{B}^{\text {- }}$	1	5	CLAYSTONE COMPACTED TO 00\% RELATIVE COMPACTION (MODIFIED PROCTOF) AND S\% ABOVE OPTIMUM	Claystone	23.8	26.4	84.5	94.0	31.1	${ }^{100.00}$	- (50.0	${ }_{4238}$	5.01	3.87
\triangle	DTA日的	2	5		claystone	8.0	26.3	84.2	${ }^{95.8}$	29.9	100.00	69.4	50.0	6476	8	${ }_{3} .89$
\square	DT-A B_{2}	3	5		clarstone	83.6	26.7	${ }_{85}$.	98.7	28.0	100.00	138.9				3.89

APPENDIX D. 8 SUMMARY OF DIRECT SHEAR TESTS

TABLE D．8．1

	（\％） NIVYLS	$\simeq \simeq \pm$	ミミ	ミミ』	ミへこさ
	$\begin{gathered} \text { (HSd) } \\ \text { TVחASJy } \end{gathered}$			$\left\|\begin{array}{cccc} n & \underset{y}{c} & \hat{y} & \underset{y}{c} \\ \hdashline & \text { in } & 0 & 0 \end{array}\right\|$	
	（\％） NIVYLS	$\wedge \sim$ ro	$0 \rightarrow m \mathrm{n}$	$\cdots 6 \sim 6$	のヘot
	$\begin{aligned} & (H S d) \\ & \text { (HJGd } \end{aligned}$			$\left\|\begin{array}{llll} 0 & 0 & n & \infty \\ n & \underset{y y}{c} & 0 \\ n & 0 \\ n & -1 & 0 \end{array}\right\|$	
$\begin{gathered} \text { (GSd) } \\ \text { GVOT } \\ \text { TVWYON } \end{gathered}$		$\begin{array}{lll} 8 \\ 8 & 8 & 0 \\ 8 \\ 0 & 8 \\ 0 & 0 \\ 0 \end{array}$	$$	$\left\|\begin{array}{cccc} 8 & 8 & 8 & 0 \\ 8 & 8 & 8 & 8 \\ -8 & 0 & 0 \\ \hline \end{array}\right\|$	$\left\lvert\, \begin{array}{lll} 8888 \\ 8 & 8 \\ 7 & 0 \\ \hline \end{array}\right.$
$\frac{\underset{2}{2}}{\stackrel{\rightharpoonup}{2}}$	$\begin{gathered} \text { (GOd) } \\ \text { रIISNGa } \\ \text { रya } \end{gathered}$	$\begin{array}{llll} \infty & r & \infty & \infty \\ \dot{心} & \infty & \infty & \infty \\ \alpha & \alpha & \alpha \\ \hline \end{array}$	$\left\lvert\, \begin{array}{lll} \forall & n & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ \hline \end{array}\right.$		
	$\begin{gathered} (\%) \\ \text { LNGLNOO } \\ \text { YGVVM } \end{gathered}$	\approx ¢	－へ～入		
Gdx TVICヨLVN					
LINก		$\bar{\exists}=\bar{\infty}$	$\hat{\dot{\alpha}} \underset{\sim}{\infty}$	$\begin{array}{\|cccc} \mathfrak{n} & 6 & 6 & n \\ \infty & \infty & \infty & 0 \\ & 0 & 0 \end{array}$	$\infty \infty \infty$ $\infty \propto \infty$
（LH）HIdGa コTdNVS					$\begin{array}{llll} n & n & n & n \\ \infty & \infty & \infty & \infty \\ 1 & n & n & n \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ n & 0 & 0 & 6 \end{array}$
$\begin{gathered} \text { ON } \\ \text { andW } \end{gathered}$		$\begin{array}{llll} \dot{1} & \cdots & m \\ \dot{n} & \dot{n} & \dot{n} & \dot{n} \end{array}$			
－ON פNIZOG			$\begin{array}{\|cccc} u & U & u & u \\ \propto & \infty & \infty & \infty \\ & \frac{\infty}{2} & \frac{0}{2} \\ \hline \end{array}$		

$89-977$（8П／50）

APPENDIX D. 9
 CONSOLIDATION TESTS

Remark : July 1990

Project ESK-101A	Kettleman	
Wahler	CONSOLIDATION TEST	Figure No.

BORING : DT-A, B-2
DEPTH (ft) : 5
SPEC. GRAVITY : 2.84

DESCRIPTION : silty CLAYSTONE, yellow brn (CH)
LIQUD LIMIT : 82
PLASTIC LIMIT : 54

| DRY DENSITY
 (pCf) | PERCENT
 SATURATION | |
| :---: | :---: | :---: | | VOID |
| :--- |
| 93.1 |

Remark : July 1990

Project ESK-101A	Kettleman	
Wahler	CONSOLIDATION TEST	Figure No.

APPENDIX D. 10 GEOCHEMICAL TESTS

Analytical Report

LOG NO: A90-06-087
Received: 15 JUN 90
Reported: 29 JUN 90

Mr. Julio Badel
Environmental Solutions,Inc.
21 Technology Drive
Irvine, California 92718

Project: 89-977

REPORT OF ANALYTICAL RESULTS
Page 1
DATE SAMPLED
LOG NO
SAMPLE DESCRIPTION, SOLL SAMPLES
28 MAY 90

$06-087-1$	L18-A S-5	28 MAY 90
$06-087-2$	L18-C S-2	28 MAY 90

06-087-3 L18-F S-1

PARAMETER	06-087-1	06-087-2	06-087-3
Antimony, mg/kg	<0.2	<0.2	<0.2
Arsenic, mg/kg	6.8	9.9	11
Barium, mg/kg	15	27	17
Beryllium, mg/kg	<0.02	<0.02	<0.02
Cadmium, mg/kg	<0.06	<0.06	<0.06
Chromium, mg/kg	42	55	42
Cobalt, mg/kg	10	13	9.0
Copper, mg/kg	15	30	25
Lead, mg/kg	1.0	<0.8	<0.8
Hercury, mg/kg	<0.3	<0.3	<0.3
Molybdenum, mg/kg	<0.08	<0.08	<0.08
Nickel, mg/kg	55	88	56
Selenium, mg/kg	<0.4	<0.4	<0.4
Silver, mg/kg	<0.02	<0.02	<0.02
Thallium, mg/kg	31	42	36
Vanadium, mg/kg	23	34	20
Zinc, mg/kg	51	58	58
Cyanide, mg/kg	<0.5	<0.5	<0.5
Nitrate + Nitrite (as N03), mg/kg	6	120	24
Total Organic Carbon, mg/kg	800	1900	870
Specific Conductance, umhos/cm	1500	3300	40000
pH , Units	8.4	7.4	7.2
Chloride, mg/kg	11	68	170
Sulfate, mg/kg	360	1800	28000
Nitric Acid Digestion, Date	06/22/90	06/22/90	06/22/90

Analytical Report

LOG NO: A90-06-087
Received: 15 JUN 90
Reported: 29 JUN 90

Mr. Julio Badel
Environmental Solutions,Inc. 21 Technology Drive
Irvine, California 92718

Project: 89-977

REPORT OF ANALYTICAL RESULTS
LOG NO
SAMPLE DESCRIPTION, SOIL SAMPLES

06-087-1 L18-A S-5			28 MAY 90
06-087-2 L18-C S-2			28 MAY 90
06-087-3 L18-F S-1			28 MAY 90
PARAMETER	06-087-1	06-087-2	06-087-3
B/N,A Ext.Pri.Poll. (EPA-8270)			
Date Analyzed	06/21/90	06/21/90	06.21 .90
Date Extracted	06/20/90	06/20/90	06.20 .90
Dilution Factor, Times	1	- 1	- 1
1,2,4-Trichlorobenzene, mg/kg	<0.3	<0.3	<0.3
1,2-Dichlorobenzene, mg/kg	<0.3	<0.3	<0.3
1,2-Diphenylhydrazine, mg/kg	<0.3	<0.3	<0.3
1,3-Dichlorobenzene, mg/kg	<0.3	<0.3	<0.3
1,4-Dichlorobenzene, mg/kg	<0.3	<0.3	<0.3
2,4,5-Trichlorophenol, mg/kg	<0.3	<0.3	<0.3
2,4,6-Trichlorophenol, mg/kg	<0.3	<0.3	<0.3
2,4-Dichlorophenol, mg/kg	<0.3	<0.3	<0.3
2,4-Dimethylphenol, mg/kg	<0.3	<0.3	<0.3
2,4-Dinitrophenol, mg/kg	<0.8	<0.8	<0.8
2,4-Dinitrotoluene, mg/kg	<0.3	<0.3	<0.3
2,6-Dinitrotoluene, mg/kg	<0.3	<0.3	<0.3
2-Chloronaphthalene, mg/kg	<0.3	<0.3	<0.3
2-Chlorophenol, mg/kg	<0.3	<0.3	<0.3
2-Methyl-4,6-dinitrophenol, mg/kg	<2	<2	<2
2-Methylnaphthalene, mg/kg	<0.3	<0.3	<0.3
2-Methylphenol, mg/kg	<0.3	<0.3	<0.3
2-Nitroaniline, mg/kg	<2	<2	<2
2-Nitrophenol, mg/kg	<0.3	<0.3	<0.3
3,3'-Dichlorobenzidine, mg/kg	<0.3	<0.3	<0.3
3-Nitroaniline, mg/kg	<2	<2	<2

Analytical Report

LOG NO: A90-06-087
Received: 15 JUN 90
Reported: 29 JUN 90

Mr. Julio Badel
Environmental Solutions,Inc.
21 Technology Drive
Irvine, California 92718

Project: 89-977

REPORT OF ANALYTICAL RESULTS
LOG NO
SAMPLE DESCRIPTION, SOIL SAMPLES

$-18-087-1$	L18-A S-5	28 MAY 90
$06-087-2$	L18-C S-2	28 MAY 90

06-087-3 L18-F S-1 28 MAY 90

PARAMETER	06-087-1	06-087-2	06-087-3
4-Bromophenylphenylether, mg/kg	<0.3	<0.3	<0.3
4-Chloro-3-methylphenol, mg/kg	<0.3	<0.3	<0.3
4-Chloroaniline, mg/kg	<0.6	<0.6	<0.6
4-Chlorophenylphenylether, mg/kg	<0.3	<0.3	<0.3
4-Methylphenol, mg/kg	<0.3	<0.3	<0.3
4-Nitroaniline, mg/kg	<2	<2	<2
4-Nitrophenol, mg/kg	<0.8	<0.8	<0.8
Acenaph thene, mg/kg	<0.3	<0.3	<0.3
Acenaphthylene, mg/kg	<0.3	<0.3	<0.3
Aniline, mg/kg	<0.6	<0.6	<0.6
Anthracene, mg/kg	<0.3	<0.3	<0.3
Benzidine, mg/kg	<1	<1	<1
Benzo(a)anthracene, mg/kg	<0.3	<0.3	<0.3
Benzo(a)pyrene, mg/kg	<0.3	<0.3	<0.3
Benzo(b) fluoranthene, mg/kg	<0.3	<0.3	<0.3
Benzo(g, h,i) perylene, mg/kg	<0.3	<0.3	<0.3
Benzo(k) fluoranthene, mg/kg	<0.3	<0.3	<0.3
Benzyl Alcohol, mg/kg	<0.6	<0.6	<0.6
Benzoic acid, mg/kg	<2	<2	<2
Butylbenzylphthalate, mg/kg	<0.3	<0.3	<0.3
Chrysene, mg/kg	<0.3	<0.3	<0.3
Di-n-octylphthalate, mg/kg	<0.3	<0.3	<0.3
Dibenzo(a, h)anthracene, mg/kg	<0.3	<0.3	<0.3
Dibenzofuran, mg/kg	<0.3	<0.3	<0.3
Dibutylphthalate, mg/kg	<2	<2	<2

Analytical Report

LOG NO: A90-06-087

Received: 15 JUN 90
Reported: 29 JUN 90

Mr. Julio Badel
Environmental Solutions,Inc.
21 Technology Drive
Irvine, California 92718

Project: 89-977

REPORT OF ANALYTICAL RESULTS
Page 4
DATE SAMPLED
LOG NO
SAMPLE DESCRIPTION, SOIL SAMPLES
28 MAY 90

06-087-1 L18-A S-5			28 MAY 90
06-087-2 L18-C S-2			28 MAY 90
06-087-3 LI8-F S-I			28 MAY 90
PARAMETER	06-087-1	06-087-2	06-087-3
Diethylphthalate, mg/kg	<0.3	<0.3	<0.3
Dimethylphthalate, mg/kg	<0.8	<0.8	<0.8
Fluoranthene, mg/kg	<0.3	<0.3	<0.3
Fluorene, mg/kg	<0.3	<0.3	<0.3
Hexachlorobenzene, mg/kg	<0.3	<0.3	<0.3
Eexachlorobutadiene, mg/kg	<0.3	<0.3	<0.3
Hexachlorocyclopentadiene, mg/kg	<0.3	<0.3	<0.3
Hexachloroethane, mg/kg	<0.3	<0.3	<0.3
Indeno(1,2,3-c, d) pyrene, mg/kg	<0.3	<0.3	<0.3
Isophorone, mg/kg	<0.3	<0.3	<0.3
N-Nitrosodimethylamine, mg/kg	<2	<2	<2
$\mathrm{N}-\mathrm{Ni}$ trosodiphenylamine, mg/kg	<0.3	<0.3	<0.3
$\mathrm{N}-\mathrm{Nitrosodi-n-propylamine} \mathrm{mg} /$,	<1	<1	<1
Nitrobenzene, mg/kg	<0.3	<0.3	<0.3
Naphthalene, mg/kg	<0.3	<0.3	<0.3
Phenanthrene, mg/kg	<0.3	<0.3	<0.3
Phenol, mg/kg	<0.3	<0.3	<0.3
Pentachlorophenol, mg/kg	<0.3	<0.3	<0.3
Pyrene, mg/kg	<0.3	<0.3	<0.3
Bis(2-chloroethoxy)methane, mg/kg	<0.3	<0.3	<0.3
Bis(2-chloroethyl)ether, mg/kg	<0.3	<0.3	<0.3
Bis(2-chloroisopropyl)ether, mg/kg	<0.3	<0.3	<0.3
Bis(2-ethylhexyl)phthalate, mg/kg	<0.3	0.4	<0.3

Semi-Quantified Results **

Analytical Report

Mr. Julio Badel
Environmental Solutions,Inc. 21 Technology Drive
Irvine, California 92718

Project: 89-977

Analytical Report

LOG NO: A90-06-087

Received: 15 JUN 90
Reported: 29 JUN 90

Mr. Julio Badel
Environmental Solutions, Inc.
21 Technology Drive
Irvine, California 92718

Project: 89-977

Page 6
DATE SAMPLED
LOG NO SAMPLE DESCRIPTION, SOIL SAMPLES
28 MAY 90
06-087-1 L18-A S-5 28 MAY 90

06-087-2 L18-C S-2 28 MAY 90
06-087-3 L18-F S-1 28 MAY 90

PARAMETER	06-087-1	06-087-2	06-087-3
Pesticides/PCBS (EPA 8080)			
Date Analyzed	06/22/90	06/22/90	06/22/90
Date Extracted	06/21/90	06/21/90	06/21/90
Dilution Factor, Times	1	- 1	
Aldrin, mg/kg	<0.001	<0.001	<0.001
Chlordane, mg/kg	<0.01	<0.01	<0.01
p, p '-DDD, $\mathrm{mg} / \mathrm{kg}$	<0.001	<0.001	<0.001
p, p '-DDE, $\mathrm{mg} / \mathrm{kg}$	<0.001	<0.001	<0.001
$\mathrm{p}, \mathrm{p}^{\prime}-\mathrm{DDT}, \mathrm{mg} / \mathrm{kg}$	<0.002	<0.002	<0.001
Dieldrin, mg/kg	<0.001	<0.001	<0.001
Endosulfan I, mg/kg	<0.001	<0.001	<0.001
Endosulfan II, mg/kg	<0.002	<0.002	<0.002
Endosulfan Sulfate, mg/kg	<0.002	<0.002	<0.002
Endrin, mg/kg	<0.002	<0.002	<0.002
Endrin Aldehyde, mg/kg	<0.001	<0.001	<0.001
Heptachlor epoxide, mg/kg	<0.001	<0.001	<0.001
Heptachlor, mg/kg	<0.001	<0.001	<0.001
Methoxychlor, mg/kg	<0.007	<0.007	<0.007
Aroclor 1016, mg/kg	<0.02	<0.02	<0.02
Aroclor 1221, mg/kg	<0.02	<0.02	<0.02
Aroclor 1232, mg/kg	<0.02	<0.02	<0.02
Aroclor 1242, mg/kg	<0.02	<0.02	<0.02
Aroclor 1248, mg/kg	<0.02	<0.02	<0.02
Aroclor 1254, mg/kg	<0.02	<0.02	<0.02
Aroclor 1260, mg/kg	<0.02	<0.02	<0.02

Analytical Report

```
Mr. Julio Badel
Environmental Solutions,Inc.
21 Technology Drive
Irvine, California 92718
```

Project: 89-977

REPORT OF ANALYTICAL RESULTS
Page 7

LOG NO	SAMPLE DESCRIPTION, SOIL SAMPLES		DATE SAMPLED	
06-087-1	L18-A S-5			28 MAY 90
06-087-2	L18-C S-2			28 MAY 90
06-087-3	L18-F S-1			28 MAY 90
PARAMETER		06-087-1	06-087-2	06-087-3
Aroclor	2, mg/kg	<0.02	<0.02	<0.02
Toxaphen	mg/kg	<0.02	<0.02	<0.02
BHC, al	isomer, mg/kg	<0.001	<0.001	<0.001
BHC, be	isomer, mg/kg	<0.001	<0.001	<0.001
BHC, del	isomer, mg/kg	<0.001	<0.001	<0.001
BEC, ga	isomer (Lindane), mg/kg	<0.001	<0.001	<0.001

Analytical Report

LOG NO: A90-06-087
Received: 15 JUN 90
Reported: 29 JUN 90

Mr. Julio Badel
Environmental Solutions,Inc.
21 Technology Drive
Irvine, California 92718

Project: 89-977

REPORT OF ANALYTICAL RESULTS
Page 8

Analytical Report

LOG NO: A90-06-087
Received: 15 JUN 90 Reported: 29 JUN 90

Mr. Julio Badel
Environmental Solutions,Inc.
21 Technology Drive
Irvine, California 92718
Project: 89-977

REPORT OF ANALYTICAL RESULTS

LOG NO SAMPLE DESCRIPTION, S		DATE SAMPLED	
06-087-1 L18-A S-5			28 MAY 90
06-087-2 L18-C S-2			28 MAY 90
06-087-3 L18-F S-1			28 MAY 90
PARAMETER	06-087-1	06-087-2	06-087-3
Carbon Tetrachloride, ug/kg	<	<5	<
Chloroethane, ug/kg	<5	<	<
Chloroform, ug/kg	< 5	<5	< 5
Chloromethane, ug/kg	<10	<10	<10
Carbon Disulfide, ug/kg	<10	<10	<10
Dibromochloromethane, ug/kg	<	<5	<
Ethylbenzene, ug/kg	<5	<5	<5
Freon 113, ug/kg	<5	<5	<5
Hethyl ethyl ketone, ug/kg	<50	<50	<50
Methyl isobutyl ketone, ug/kg	<25	<25	<25
Methylene chloride, ug/kg	<5	<5	<5
Styrene, ug/kg	<5	<	<
Trichloroethene, ug/kg	<5	<5	<
Trichlorofluoromethane, ug/kg	<5	<5	<5
Toluene, $\mathrm{ug} / \mathrm{kg}$	<5	<5 <25	<5 <25
Vinyl acetate, ug/kg	<25	<25	<25
Vinyl chloride, ug/kg	<5	<5	<5
Total Xylene Isomers, $\mathrm{ug} / \mathrm{kg}$	<25	<25	<25
cis-1,3-Dichloropropene, ug/kg	<5	<5	<
trans-1,2-Dichloroethene, ug/kg	<5	<5	<5
trans-1,3-Dichloropropene, ug/kg	<5	<5	<
Other Vol.Pri.Poll. (EPA-8240)	---	--	

Analytical Report

Mr. Julio Badel
Environmental Solutions,Inc.
21 Technology Drive
Irvine, California 92718

The detection limit for $\mathrm{p}, \mathrm{p}^{\prime}$-DDT on samples A90-06-087 -1 and -2 "L18-A S-5 and L18-C S-2" analyzed by EPA-8080 was elevated to $0.002 \mathrm{mg} / \mathrm{kg}$. This was due to trace level contamination which carried over from the extraction of a sample containing high levels of p, P' DDT .
.- G. Havalias 06/22/90
Based on historical data, the bis(2-ethylhexyl)phthalate found in the samples on the EPA-8270 analysis could have been introduced as a random laboratory contamination.
-- G. Havalias 06/29/90

APPENDIX E

CLAY LINER TEST PAD DATA

APPENDIX E. 1	PHASES I AND II TEST PAD REPORT
APPENDIX E. 2	PHASE III CLAY SOURCE TESTING REPORT
APPENDIX E. 3	CLAY STOCKPILE AND TEST PAD REPORT
APPENDIX E. 4	PHASES I AND II CLAY LINER COMPACTION
	SPECIFICATIONS

APPENDIX E. 1

PHASES I AND II TEST PAD REPORT

TEST FILL AND TNHLTROMETER TEST RESULTS
 LANDFILL UNTT B-18 PHASES I AND II AND FINAI CLOSURE

Prepared For: CHEMCAL WASTE MANAGEMENT, INC, (CWMI)

January 23, 1992

ENVIRONMENTAL SOLUTIONS, INC.

January 23, 1992

Project No. 89-977
Mr. Robert Henry
Project Manager
Chemical Waste Management, Inc.
35251 Old Skyline Road
Kettleman City, California 93239
Transmittal
Test Fill and Infiltrometer Test Results Report
Landfill Unit B-18
Phases I and II and Final Closure
Kettleman Hills Facility
Kings County, California
Dear Mr. Henry:
Enclosed are 15 copies of the report entitled Test Fill and Infiltrometer Test Results, Landfill Unit $B-18$, Phases I and II and Final Closure.

Field measured permeabilities coupled with laboratory permeability tests indicate that the claystone used for the test fill and proposed for use as the liner/cap provides an adequate low permeability soil layer for the B-18 Landfill, Phases I and II and Final Closure.

We will be pleased to provide any clarifications necessary in response to reviews by the agencies or your staff.

Very truly yours,

Kerry K. Parkinson, P.E.
Civil Engineer (License No. 41021)
KKP:hs
Enclosures
cc: Dick Ellison
Ken Floom
Julio Badel

TABLE OF CONTENTS

PAGE NO.
LIST OF TABLES/LIST OF FIGURES ii
1.0 INTRODUCTION 1
2.0 CONSTRUCTION OF THE TEST FILL 1
2.1 Subgrade Preparation 2
2.2 Equipment 2
2.3 Construction Sequence 2
2.4 Field and Laboratory Testing 3
2.4.1 Field Tests 3
2.4.2 Laboratory Tests 4
3.0 INFILTROMETER (SDRI) TEST 5
3.1 SDRI Description 5
3.2 Site Preparation and Installation 5
3.3 Data Collection 6
4.0 THEORY 6
5.0 SDRI TEST RESULTS AND CONCLUSIONS 10
6.0 REFERENCES 11
TABLES
FIGURES
APPENDIX A: ONE-DIMENSIONAL SWELL TEST RESULTS
APPENDIX B: SDRI FIELD DATA SHEETS

[^4]
TABLE OF CONTENTS (Continued)

LIST OF TABLES

TABLE NO.

1
2
3

FIGURE NO.

1

2
3
4
5
6
7
8
9
10
11

TITLE

Equipment Utilized in the Test Fill Construction
Estimate of Swell Flow Volume
Infiltrometer Test Results

LIST OF FIGURES

TITLE

Site Vicinity Map
B-18 Landfill Test Fill Location
Test Fill Plan, Cross Section and Detail
Compaction Data - Test Fill
Atterberg Limits - Test Fill Soil
Grain Size Distribution - Test Fill Soil
Laboratory Permeability Versus Water Content
Schematic of Infiltrometer Test Model
12-Inch Soil Tension/Suction Versus Time
18-Inch Soil Tension/Suction Versus Time
Infiltration Versus Time

1.0 INTRODUCTION

1. This report presents the Sealed Double Ring Infiltrometer (SDRI) test results and the geotechnical data associated with the construction of the test fill at the Kettleman Hills Facility (see Figure 1). The purposes of the test fill were to model placement and compaction procedures for the construction of the B-18 Landfill clay liner/cap and to verify that these procedures will achieve the specified compaction and permeability criteria.
2. The objective of the SDRI test is to evaluate the saturated, vertical permeability of the clay liner material to verify that it meets the specification for permeability of less than or equal to $1 \times 10^{-7} \mathrm{~cm} / \mathrm{sec}$ and to assess if laboratory permeability values are comparable to field permeabilities. In this report, the terms permeability and hydraulic conductivity are used interchangeably.
3. The methods used to construct the test fill including field and laboratory testing, are presented in Chapter 2.0. The design and installation of the infiltrometer are described in Chapter 3.0. The theory and data analyses are presented in Chapter 4.0. The results of the test, analyses and conclusions are presented in Chapter 5.0. References are included in Chapter 6.0.

2.0 CONSTRUCTION OF THE TEST FILL

1. The test fill was constructed between January 22 and February 1, 1991, at the location shown in Figure 2. The test fill plan, cross section, and detail are presented in Figure 3.
2. Material used as fill consisted of onsite clay hauled from the B-18 Clay Processing Area. Moisture conditioning in conjunction with weathering and particle size reduction were performed in the Clay Processing Area prior to hauling and placement. The procedures used for processing and construction of the test fill are considered similar to those that would be used for the B-18 Landfill.
3. The clay was originally derived from the Stratum 18-8 (claystone) previously characterized during the design phase (see Section 3.5 of the Engineering and Design Report, Landfill Unit B-18, August, 1990 [Environmental Solutions, Inc., 1990a]) as a suitable clay source for clay liner construction.

2.1 SUBGRADE PREPARATION

1. The area within the test fill was initially cleared of vegetation and loose soil. The surface soils were then graded to form a smooth, firm subgrade surface. Finally, a drainage system consisting of geonet (Polynet 3000) and a layer of geotextile (Trevira 1155) was placed over the subgrade as shown in Figure 3.

2.2 EQUIPMENT

1. In order to simulate clay liner/cap construction conditions for Phases I and II and Final Closure, the test fill was constructed using equipment similar to that which would be used during the B-18 Landfill bottom and final closure liner/cap construction. The equipment used and their respective functions are listed in Table 1.

2.3 CONSTRUCTION SEQUENCE

1. Initially, a 1 -foot thick base lift of clay was placed and compacted to provide protection for the geonet/geotextile drainage system. Then, each of the five lifts comprising the test fill was constructed according to the following steps:

- Moisture conditioning, weathering, and particle size reduction were performed in the B-18 Clay Processing Area to meet the revised specification from the Construction Specifications and Quality Assurance Plan, Landfill Unit B-18, Phases I and II, and Final Closure, which specifies the following:
- Moisture Content: Within the range defined by the area formed by connecting the following points for the Modified Proctor Compaction curve:
- 2 to 5 percent above the optimum moisture content for a density equal to 90 percent of the maximum Modified Proctor density.
- 3 percent above the optimum moisture content at 97 percent of the maximum Modified Proctor density.
- 1 percent above the optimum moisture content at 98 percent of the maximum Modified Proctor density.
- This criterion, which allows a lower water content for higher compactive efforts, was established to: (1) assure that both the required strength and permeability characteristics are realized; and (2) provide flexibility for the contractor and CQA engineer to work with a range of water contents without having a clay which is either too wet or dry. This flexibility is desirable in hot, dry areas where exact water content is difficult to control. This specification is represented by the area designated as "Specified Window" in Figure 4.
- The moisture conditioned clay was hauled to the test fill area by a scraper and unloaded in loose lifts approximately 8 inches thick. A motor grader was utilized to smooth the uneven lifts and to maintain a 2 percent slope in the longitudinal direction.
- After the entire test fill area was covered with a loose lift of clay, a Caterpillar 825C compactor made four passes for each lift. Compacted lift thicknesses were approximately 6 inches. Four passes were determined during the initial testing to achieve approximately the minimum specified density of 90 percent of Modified Proctor maximum dry density. The infiltrometer test was performed on a fill compacted near the lower, acceptable dry density to assure that the permeability criteria $\left(\approx 10^{-7} \mathrm{~cm} / \mathrm{sec}\right)$ could be achieved for the more conservative, lower density.
- Each lift was tested to verify the as-built moisture content and density.

2.4 FIELD AND LABORATORY TESTING

1. Field and laboratory tests were conducted on the test fill to evaluate if the construction equipment and procedures would meet the specifications for compaction and permeability of the clay liner.
2. These tests were performed in accordance with the procedures and frequencies outlined in the following documents:

- Appendix E (Test Fill and Infiltrometer Test Plan) of the Engineering and Design Report, Landfill Unit B-18, Phases I and II, and Final Closure (Environmental Solutions, Inc., 1990a).
- Construction Specifications and Quality Assurance Plan, Landfill

Unit B-18, Phases I and II, and Final Closure (Environmental Solutions, Inc., 1990b).

2.4.1 FIELD TESTS

1. Initially, the first lift had to be constructed several times until the procedure to achieve the required water content and density was developed. After the appropriate procedure was developed, the moisture density specifications were achieved for the majority of tests.
2. Field density (compaction) tests, consisting of a minimum of two nuclear density tests and one sand cone density test for each lift, were conducted at the locations shown in Figure 3. The compaction test results within the tested zone are shown in Figure 4.
3. The majority of the density tests fall within the lower portion of the specified moisture-density window. Also, except for point $18(5)$ the tests are within or very close to the specified range. Because point 18(5) has a lower density, its effects on the results, if any, would be in the conservative direction.

2.4.2 LABORATORY TESTS

1. Laboratory tests were conducted on soil samples recovered in six thin-walled Shelby tube samplers collected after the construction of the test fill. These tests include:

- Atterberg Limits
- Grain Size Analyses
- One-Dimensional Swell Test
- Permeability

The Shelby Tube sample locations are shown in Figure 3.
2. Atterberg Limits test results are presented in Figure 5. The material consistently had a plasticity in the CH (highly plastic clay) range with liquid limits varying between 65 and 79 percent, and a plasticity index between 44 and 55 percent.
3. Figure 6 shows the grain size distribution determined from the hydrometer tests for the six samples. These data show the relative uniformity of the clay with 80 percent or greater of the soil by weight passing the No. 200 sieve.
4. Appendix A provides a summary table of the One-Dimensional Swell tests. These results indicate that the compacted clay has a high potential to swell with an average swell of 16.5 percent under low confining pressure (70 psf , average value).
5. Laboratory permeability test results are shown in Figure 7 as a function of the initial moisture content. These tests indicate that under laboratory conditions (with applied consolidation pressures from 2.2 ksf to 6.2 ksf to prevent swelling) measured permeability values varied from $1.5 \times 10^{-8} \mathrm{~cm} / \mathrm{sec}$ to $2.8 \times 10^{-10} \mathrm{~cm} / \mathrm{sec}$. These values, in conjunction with the infiltrometer test results discussed below, provide the basis to conclude that the clay used for the construction of the test fill adequately meets the permeability criterion of $10^{-7} \mathrm{~cm} / \mathrm{sec}$ or less.

3.0 INFILTROMETER (SDRI) TEST

1. An SDRI, developed by Trautwein Soil Testing Equipment of Houston, Texas, was used to assess the in situ permeability of the test fill constructed with onsite clay which is to be used for the B-18 Landfill clay liner. Eight tensiometer probes were installed around the inner ring to measure the soil suction. The SDRI test layout is shown in Figure 3. The schematic of the infiltrometer test model is presented in Figure 8. The theory and analysis of the test are described in Section 4.0. A summary of the SDRI system installation and data collection is presented in the following sections.

3.1 SDRI DESCRIPTION

1. The SDRI consists of two rings: a fiberglass, 5 -feet by 5 -feet ring (inner ring) which is positioned in the center of a second aluminum 12 -feet by 12 -feet ring (outer ring) as shown in Figure 8. The inner ring is sealed over the top to avoid evaporation losses. Both rings are filled with water, and the loss of water from the inner ring is measured periodically. This water loss is the sum of the flow due to infiltration (Qi), filling of pore space due to swelling of the clay (Qs), and volumetric changes of water within the inner ring due to temperature variations. The water head in the inner and outer ring is maintained at a constant level slightly above the top of the inner ring.

3.2 SITE PREPARATION AND INSTALLATION

1. The surface of the test fill was prepared for the installation of the SDRI by using a motor grader and a smooth drum roller to level and smooth the upper lift. The entire test fill area was lightly sprayed with water and covered with a black plastic tarp to prevent cracking.
2. The outer ring was positioned on the tarp and its outline was marked on the tarp to locate the trenches for the ring. The outer ring trench was cut with a Ditch Witch Series 1420 to a depth of 18 inches. The inner ring was positioned in the center of the outer ring and its outline was marked. The 5 -inch-deep trench for the inner ring was cut by hand using small tools.
3. The outer ring trench was sealed with bentonite pellets surrounding the ring at the bottom and vertical sides. The trench for the inner ring was grouted with viscous Volclay grout.
4. After the installation of both rings was completed, a topographic survey was made to establish the original horizontal and vertical positions of the test fill surface including selected points on and around the inner ring. The primary purpose of the survey was to monitor the amount of swelling during the test.
5. The outer ring was flooded until the inner ring was slightly submerged, then the inner ring was partially filled through one plastic tube while air was removed through a second tube connected to the highest point of the cover. Then, the outer ring was filled to its final depth and the inner ring was topped off. Finally, plastic bags for measuring water flow within the inner ring were installed, and the test commenced.

3.3 DATA COLLECTION

1. The volume change of water within the flexible bag (shown in Figure 3) was indicative of the volume of water infiltrating through (the volume of water lost) the inner ring. The volume change was determined by calculating the change in the weight of the bag over a known time period (usually once per day). During the early days of the test, several bags of water were needed to account for higher flow rates due to minor surface desiccation cracking. The infiltration flow rates stabilized after several days. SDRI field data sheets are presented in Appendix B.

4.0 THEORY

1. The objective of the infiltrometer test is to measure the saturated permeability of the clay material for the $\mathrm{B}-18$ Landfill under very low confining stresses. The test is performed by measuring the seepage of water through saturated soil.
2. In addition to being driven by the hydraulic gradient caused by the ponded water, seepage of water into the test fill also occurs due to high capillary suction of the partially saturated clay, as opposed to fully saturated conditions associated with laboratory tests. Performance of the field tests must also account for swelling of the clay at low confining stresses, which decreases the compacted density and increases permeability, as opposed to laboratory testing when higher confining stresses preclude swelling of the clay.
3. The saturated permeability is computed using a form of Darcy's Law which includes terms for the total hydraulic gradient. The governing equation that describes the infiltration of water through the compacted clay is developed below, based on the terms and sign convention shown in Figure $8^{(1)}$:

$$
\begin{equation*}
\mathrm{q}=-\mathrm{K} \frac{\Delta \mathrm{~h}}{\Delta \mathrm{~L}} \tag{1}
\end{equation*}
$$

where:
$\mathrm{q}=$ Infiltration rate per unit area and time (L/T)
$\mathrm{K}=$ Saturated permeability (L/T)
$\frac{\Delta h}{\Delta L}=$ Total hydraulic gradient (L / L)
$\Delta h=h_{1}-h_{2}$
$\Delta \mathrm{L}=\mathrm{z}_{1}-\mathrm{z}_{2}$
$h=$ Total head
$\mathrm{h}=\mathrm{z}+\bar{\varphi}$
$z=$ Elevation head
$\bar{\varphi}=$ Pressure head (due to hydraulic head or soil suction/tension)
In Figure 8, substituting for Δh and ΔL, yields the equation:

$$
\begin{equation*}
\mathrm{q}=-\mathrm{K}\left[\frac{\left(\mathrm{z}_{1}+\phi_{1}\right)-\left(\mathrm{z}_{2}+\Phi_{2}\right)}{\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right)}\right] \tag{2}
\end{equation*}
$$

For any given wetting front, $L_{f}=z_{1}-z_{2}$. Substituting this into Equation (2), the infiltration rate at any wetting front is calculated as:

$$
\begin{equation*}
q=-K\left[\frac{\bar{\varphi}_{1}}{L_{f}}-\frac{\varphi_{2}}{L_{f}}+1\right] \tag{3}
\end{equation*}
$$

4. As shown in Figure 8, at Point 1 the pressure head is equal to the depth of water in the outer ring, D_{f}, with soil suction/tension equal to zero, i.e., the soil is saturated. At this point, the pressure head, $\mathrm{Df}=\bar{\varphi}_{1}$. Also, since the clay fill is unsaturated below the wetting front, the in situ pressure head at Point 2 will be equal to the soil suction and negative in sign convention, and can be designated simply as $\bar{\varphi}$, i.e., $\bar{\varphi}=-\bar{\varphi}_{2}$. Substituting into Equation 3:

$$
\begin{equation*}
q=-K\left[\frac{D_{f}}{L_{f}}+\frac{\varphi}{L_{f}}+1\right] \tag{4}
\end{equation*}
$$

5. Equation 4 is time dependent. That is, the infiltration flow rate per unit area (q) and the depth of the wetting front $\left(L_{f}\right)$ are interrelated and vary with time. As the wetting front advances,
[^5]Equation 4 can be rearranged to calculate permeability at various wetting front depths, determined by tensiometer measurements, as follows:

$$
\begin{equation*}
K=-\frac{q}{1+\frac{D_{f}}{L_{f}}+\frac{\bar{\varphi}}{L_{f}}} \tag{5}
\end{equation*}
$$

The length of the wetting front $\left(\mathrm{L}_{\mathrm{f}}\right)$ is known by noting the depth to which tensiometers indicate moisture content increases. The depth of flooding $\left(\mathrm{D}_{\mathrm{f}}\right)$ is taken as an average value of readings measured during the test. The soil suction $(\bar{\varphi})$ is set equal to the stabilized or weighted soil tension value, measured prior to the passage of the wetting front, and is dependent on the shape of the suction versus time plot. The infiltration rate (q) is determined by weighing the flexible bag periodically to determine the volume of water lost.
6. The measured volume of water lost is corrected to account for swelling of the soil and temperature changes. The total water lost is the sum of the following:

- $\mathrm{Q}=\mathrm{Q}_{\mathrm{i}}+\mathrm{Q}_{\mathrm{s}}+\mathrm{Q}_{\mathrm{t}}$
- $\mathrm{Q}=$ measured water loss
- $\mathrm{Q}_{\mathrm{i}}=$ flow due to infiltration
- Q_{s} = flow due to swell
- $\quad \mathrm{Q}_{\mathrm{t}}=$ flow due to temperature changes (considered to be insignificant)

7. The infiltration rate per unit area (q) is:

$$
\begin{equation*}
\mathrm{q}=\frac{\mathrm{Q}_{\mathrm{i}}}{\mathrm{~A}}=\frac{\mathrm{Q}-\mathrm{Q}_{\mathrm{s}}-\mathrm{Q}_{\mathrm{t}}}{A}=\frac{\mathrm{Q}-\mathrm{Q}_{\mathrm{s}}}{A} \tag{7}
\end{equation*}
$$

A close estimate of Q_{s} can be obtained by assuming that any volume change that occurs is due to vertical swelling and that the additional volume generated by the swelling is water filling the soil pores. Based on these two assumptions:

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{s}}=\Delta \mathrm{s} \times \mathrm{A} \tag{8}
\end{equation*}
$$

where:
$\Delta s=\underset{\text { given tensiometer }}{\text { amount of swelling (as surveyed) at the time the water front passes a }}$
$A=$ area of inner ring
A plot of total water lost versus time is used to determine the total flow (Q) at the time the wetting front passes the tensiometer.
8. The test procedure and analysis methodology described above is based on the following assumptions:

- Darcy's Law applies.
- A sharp wetting front exists between the saturated soil and the unsaturated soil.
- The measured water loss from the flexible bag represents the water lost due primarily to infiltration through the inner ring, and soil swelling. Changes due to temperature variations are not significant.
- The test fill is homogeneous and isoropic.
- Flow through the inner ring is vertically downward.
- Any volume change that occurs is vertical.
- The wetting front under the outer ring reaches a given depth L_{f} at the same time as the wetting front under the inner ring.

9. The first assumption that Darcy's Law applies is valid due to the fact that the ground water flow is laminar when the wetting front reaches the tensiometer tip. The second assumption of a sharp wetting front is valid early during the test. At later times a transition zone between the saturated and partially-saturated soil is likely to exist.
10. The assumption concerning the measured water loss is based on the fact that the inner ring is completely purged of air, additional volume generated by swelling is water filling the soil pores, and water temperature variations are relatively small due to measuring flow volumes at similar times each day of the test. Considering that the fill was placed under controlled conditions, the assumptions that the test fill is homogeneous and isotropic is appropriate.
11. The assumption that any volume change that occurs is vertical is based on the very low magnitude of the confining stresses in the upper 18 inches of the test fill. There are practically no constraints for vertical swelling.
12. The assumption of vertical flow through the inner ring is based on the fact that an equal head is maintained between the inner and outer ring, and as a result the only driving force is vertically downward. This basis, in effect, also assumes that the wetting fronts for the inner and outer rings advance at the same rate, which would eliminate the possibility of soil suction causing lateral movement.
13. The last assumption is necessary due to the fact that the sealed inner ring apparatus precludes the installation of soil tensiometers under the inner ring to monitor the advance of the wetting front within the inner ring.

5.0 SDRI TEST RESULTS AND CONCLUSIONS

1. The infiltrometer test was conducted over a period of approximately two months to evaluate the permeability of the upper 18 inches of test fill. Based on the tensiometer readings (Figures 9 and 10), the wetting front (zone of saturation) reached depths of 12 and 18 inches in about 18 and 53 days, respectively. The tensiometers installed at a depth of 6 inches were damaged by wind and consequently no readings were taken at this depth as originally intended.
2. Figure 11 presents the accumulated total water flow, Q, as a function of time. The initial flow rate over the time interval of 0 to 5,000 minutes was about two times the average flow rate that occurred during saturation of the top 12 inches. This higher flow rate was likely due to water filling small surface cracks/voids. This condition was accounted for in determining the rate of flow.
3. Table 2 summarizes the survey data indicating the swell of the test fill soil, when the wetting front had reached 12 and 18 inches, respectively. Table 2 also shows the calculated flow due to swell (Qs) for these periods.
4. The suction pressure for both sets of tensiometers (Figures 9 and 10) was approximately 70 centibars, or 280 inches of water pressure.
5. The results of the infiltrometer test using Equation 5 are summarized in Table 3. The field measured permeabilities for both the 0 - to 12 -inches and 0 - to 18 -inches increments are less than $1 \times 10^{-7} \mathrm{~cm} / \mathrm{sec}$. Based on these results, coupled with the laboratory permeability tests, it is concluded that the claystone, used for the test fill and proposed for use as the liner/cap, provides an adequate low permeability soil layer for the B-18 Landfill.
6. The test fill results are one to two orders of magnitude higher than laboratory permeabilities. These differences are expected and are primarily due to the unrestrained swelling of the clay which occurs during field testing (Chen and Yamamoto, 1987). The low hydraulic conductivity measured in the laboratory is a function of the consolidation pressure used in the test to prevent swelling. This consolidation pressure simulates the effect of the waste fill overburden on the clay liner. The SDRI test is more indicative of the stress condition for the cover system (very low confining stresses).

6.0 REFERENCES

Chen, Hsien W. and Leonard O. Yamamoto. Permeability Tests for Hazardous Waste Management Unit Clay Liners, Proceedings of Geotechnical and Geohydrologic Aspects of Waste Management; 1987.

Environmental Solutions, Inc., 1990a. Engineering and Design Report, Landfill Unit B-18, Phases I and II and Final Closure, Kettleman Hills Facility, Kings County, California, August 1990.

Environmental Solutions, Inc., 1990b. Construction Specifications and Quality Assurance Plan, Landfill Unit B-I8, Phases I and II and Final Closure, Kettleman Hills Facility, Kings County, California, September 24, 1990.

Golder Associates. Test Fill and Infiltrometer Test Results, Landfill B-19, Phase IA, Kettleman Hills Facility, Kettleman City, California, January 1987.

Trautwein Soil Testing Equipment. Installation and Operating Instruction for the Sealed-Double Ring Infiltrometer, March 1989.

TABLE 1
 EQUIPMENT UTILIZED IN THE TEST FILL CONSTRUCTION

EQUIPMENT	FUNCTION
Caterpillar D8N Dozer	Grading test fill
Caterpillar 14G Motor Grader	Grading test fill; scarifying previous lifts
Caterpillar 631E Scraper	Hauling clay from B-18 Clay Processing Area
Caterpillar 825C Compactor	Compacting lifts;
Ingersoll-Rand SP-56 Smooth Drum Roller	Dressing test fill
Water Truck	Moisture conditioning

$89-977$ ($1 / 23 / 92 / \mathrm{hs}$)

TABLE 2
ESTIMATE OF SWELL FLOW VOLUME

TEST INTERVAL	AVERAGE SURVEYED VERTICAL SWELLING (ft)	AREA OF TEST $\left(\mathrm{ft}^{2}\right)$	SWELL FLOW VOLUME (cc)
0 to 12 inches	0.17	25	120,300
0 to 18 inches	0.20	25	141,600

TABLE 3

TESTINTERVAL	CUMULATIVE WATER LOSS $\underset{(\mathrm{cc})}{\mathrm{Q}}$	Fow dUe To SWELL. Qs (c)	FLOW DUE To infiltration Q_{i} (c)	inflltration RATE PER UNIT AREA $\underset{(\mathrm{cm} / \mathrm{scc})}{\mathrm{q}}$	DEPTH OF WATER IN outside ring D_{f} (in)	DEPTH OF WETTED FRONT 14 (in)	SUCTION PRESSURE	$K=\frac{q}{1+\frac{p_{f}}{L_{f}}+\frac{\Phi}{L_{f}}}$
DEPTH: 0 to 12 INCHES Tensiometers: TN-2, TN-3, TN-6, TN-7 Total Swelling: 1.98 inches \% of Swelling - Field: 17.0 \% of Swelling - Lab: 16.5	180,000	120,300	59.700	1.3×10^{-6}	15	12	280	5.1×10^{-8}
DEPTH: 0 to 18 INCHES Tensiometers: TN-4, TN-5 Total Swelling: 2.40 inches \% of Swelling - Field: 13.3 \% of Swelling - Lab: 16.5	280,000	141,600	140,400	1.20×10^{-6}	15	18	280	6.9×10^{-8}

LEGEND
 18(5) NUCLEAR DENSITY TEST
 LIFT NUMBER test number
 $\underset{16(4)}{\Delta}$
 SAND CONE TEST
 LIFT NUMBER
 TEST NUMBER
 © MODIFIED PROCTOR (ASTM DI557-78) COMPACTION POINTS

m. m man . SPECIFIED MOISTURE-DENSITY WINDOW USED FOR CONSTRUCTION CONTROL

FIGURE 4

COMPACTION DATA

 TEST FILLLANDFILL UNIT B-18 KETTLEMAN HILLS FACILITY
ENVIRONMENTAL SOLUTIONS, INC.

SYMBOL	SHELBY TUBE NO.	LIQUID LIMIT $\%$)	PLASTICITY INDEX (\%)	OIL TYPE (USCS SOIL CLASSIFICATION)
\propto	ST-1	78	54	OLIVE CLAY (CH)
\odot	ST-2	76	51	OLIVE CLAY (CH)
\times	ST-3	79	54	OLIVE CLAY (CH)
\square	ST-4	79	55	OLIVE CLAY (CH)
+	ST-5	76	52	OLIVE CLAY (CH)
\bullet	ST-6	65	44	OLIVE CLAY (CH)

FIGURE 5
ATTERBERG LIMIT TEST FILL SOIL

LANDFILL UNIT B-18

SYMBOL	SAMPLE NO.	LIQUII LIMIT(\%)	PLASTICITY INDEX (\%)	SOIL TYPE
Δ	ST-1	78	54	OLIVE CLAY (CH)
\odot	ST-2	76	51	OLIVE CLAY (CH)
\mathbf{X}	ST-3	79	54	OLIVE CLAY (CH)
\square	ST-4	79	55	OLIVE CLAY (CH)
+	ST-5	76	52	OLIVE CLAY (CH)
\square	ST-6	65	44	OLIVE CLAY (CH)

COBBLES	GRAVEL		SAND			SILT AND CLAY FRACTION
	coarse	fine	coarse	medium	fine	

FIGURE 6
GRAIN SIZE DISTRIBUTION TEST FILL SOIL

LANDFILL UNIT B-18
KETTLEMAN HILLS FACILITY

LEGEND
ST-2
${ }^{-}$-2 LABORATORY PERMEABILITY AND SAMPLE NUMBER

FIGURE 7
LABORATORY PERMEABILITY VERSUS WATER CONTENT

LANDFILL UNIT B-18
KETTLEMAN HILLS FACILITY

TN-4

$+$

APPENDIX A
ONE-DIMENSIONAL SWELL TEST RESULTS

ONE DIMENTIONAL SWELL TEST

ASTM 4546-85

Project Name: B-18 Landfill
Project No.:
89-977H
Tested By:
Input Checked By:
GH
Date: 03/08/91
GH
Date: 03/13/91
Dete: 4/5/91

Vertical Stress (psi):	0.470	0.467	0.467	0.468	0.465	0.464
Frame No.:	1	2	3	4	5	6
Sample No.:	ST-1	ST-2	ST-3	ST-4	ST-5	ST-6
Deph (f):	---	---	---	---	---	---
Liquid Limit (LL):	78	76	79	79	76	65
Plasticity Index (P1):	54	51	54	55	52	44

WATER CONTENT	Trim	Final	Trim	Finai	Trim	Final	Trim	Fing	Trim	Final	Trim	Final
Wet Wi, Tare $^{\text {(2m) }}$:	219.35	309.43	284.96	316.34	175.14	264.93	150.53	294.07	143.39	271.65	208.92	315.20
Dry W_{1}, Tere (gm):	194.56	253.75	248.23	261.60	158.94	211.22	140.33	238.76	133.51	219.52	187.15	262.55
W_{1}. of Tare (gm):	92.08	114.49	91.99	126.32	89.76	76.62	90.16	105.23	92.18	81.31	89.82	115.62
Moisture Content (\%):	24.19	39.98	23.51	40.46	23.42	39.90	20.33	41.42	23.91	37.72	22.37	35.83

DENSITY AND SATURATION	Initial	Finel	Initid	Final	Initial	Final	Initial	Final	Initial	Final	Lititial	Final
Wet Soill + ere (gm):	1141.40	309.43	1130.70	316.34	1132.40	264.93	1131.00	294.07	1140.20	271.65	1148.70	315.20
Ring Tare (gm):	967.30	114.49	962.60	126.32	966.20	76.62	969.00	105.23	969.30	81.31	. 80	62
Wet Soil (gm):	174.10	194.94	168.10	190.02	166.20	188.31	162.00	188.84	170.90	190.34	177.9	199.58
Moisture Content (\%):	25.02	39.98	24.26	40.46	23.48	39.90	21.32	41.42	23.65	37.72	21.08	3
Dry Soil (gm):	139.26	139.26	135.28	135.28	134.60	134.60	133.53	133.53	138.21	138.21	146.93	146.93
Length of Sample (in):	0.8750	1.0323	0.8750	1.0270	0.8750	1.0035	0.8750	1.0291	0.8750	0.9995	0.87	1.0243
Dismeter of Sample (in):	2.870	2.870	2.870	2.870	2.870	2.870	2.870	2.870	2.870	2.870	2.870	2.87
Volume of Sample (c.c.):	92.760	109.436	92.760	108.874	92.760	106.383	92.760	109.097	92.760	105.959	92.760	108.588
Wea Density (PCF):	117.1	111.2	113.1	108.9	111.8	110.5	109.0	108.0	115.0	112.1	119.7	7
Dry Density (PCF):	93.7	79.4	91.0	77.5	90	79.0	89.8	76.4	93.0	81.4	98.8	84.4
Specific Graviry	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	70
Yolume of Solids (f):	55.60	47.13	54.01	46.02	53.74	46.86	53.32	45.33	55.18	48.31	58.67	50.11
Volume of Liquid (x):	37.56	50.88	35.38	50.28	34.07	50.49	30.69	50.70	35.24	49.20	33.39	48.49
Volume of Ais (\mathcal{F}):	6.84	1.99	10.60	3.70	12.19	2.65	15.99	3.97	9.57	2.49	7.95	1.40
Deg of Sturation (\%):	84.00	96.24	76.94	93:14	73.65	95.01	65.74	92.74	78.64	95.18	80.77	97.20

SUMMARY	Initial	Finel	Lnitis	Final	linimel	Fins	Bnitiol	Final	Lnitiad	Final	Initial	Final
Moisture Content (\%):	25.02	39.98	24.26	40.46	23.48	39.90	21.32	41.42	23.65	37.72	21.08	35.83
Dry Density (PCF):	93.7	79.4	91.0	77.5	90.5	79.0	89.8	76.4	93.0	81.4	98.8	84.4
Deg. of Saturation ($\%$):	84.60	96.24	76.94	93.14	73.65	95.01	65.74	92.74	78.64	95.18	80.77	97.20
Final Swell ($\%$):	17.98		17.37		14.69		17.61		14.23		17.06	

Note: 1. Specific gravity is assumed.
2. Demineralized water used.

APPENDIX B
SDRI FIELD DATA SHEETS

Chemical Waste Management, Inc.
Post Office Box 471
Kettleman City. California 93239
209 386-9711

TRANSMITTAL LETTER

To Environmental Solutions, Ine 21 Technology Drive I rvine, CA 92718
ATTN: Julio Badel

Date $3 / 28 / 91$
Project No. 89-83

Sent by
Mail
\square Air Freight

- Under Separate Cover
\square Hand Carried
- Enclosed

Quantity	Hem	Description
4	B-18 Testill Field	(a) Originals
	Data Sheets	(a) Copies
Remarks		

Remarks
perlien Perez

INFILTROMETER FIELD DATA

Stin	STATIO	N I-1	INFILTROMETER READINGS								SWELL DATA			
	DATE	FIELD	WATER TEMP.	WATER DEPTH	INITIAL TIME	$\begin{aligned} & \text { FINAL } \\ & \text { TIME } \end{aligned}$	$\begin{gathered} \text { TIME } \\ \text { INTERVAL } \\ \hline \end{gathered}$	INTHUL WT of bacc (GRMMS)	$\begin{aligned} & \text { FINM WT WT } \\ & \text { of RAC } \\ & \text { GGRMMS) } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { CHANGE } \\ \text { IN WW } \\ \text { (GRAMS) } \\ \hline \end{array}$	$\begin{gathered} \text { Nw CORNER } \\ \Delta h \end{gathered}$	$\begin{gathered} \text { NE CORNER } \\ \Delta h \end{gathered}$	$\begin{gathered} \text { SE CORNER } \\ \Delta h \\ \hline \end{gathered}$	SW CORNER Δh
	$2 / 3 / 91$	VOP	$13{ }^{\circ}$	$5^{\prime \prime}$	1540	0.6745	15.5	450×3	22008		938.03	436.11	936.38	936.28
								4161^{-5}	1935					
								4158	2890					
								$4202^{* 6}$	1754	82.48				
MON	2/4191	VOP	$11^{\circ} \mathrm{C}$	15^{11}	$\varnothing 710$	1624 4	9.5	$142{ }^{* 8}$	1217		2.88	2.92	2.96	2.9
								$1400{ }^{\text {- }}$	1119					
								4377	2248					
								4113^{44}	2384	4343				
MON	2/4191	VOP	$14^{\circ} \mathrm{C}$	15^{11}	1643	(250)	23.2	$4160^{\text {W5 }}$	1912		288	2.92	2.96	2.9
								44.21^{46}	2292					
								43088	1295					
								$40884^{4.12}$	10,49	7448				
TUE	$2 / 5 / 91$	VOP	$15^{\circ} \mathrm{C}$	15^{11}	1555	$\left(\begin{array}{l}276 \\ 430\end{array}\right.$	22.7	$13+9$	677					
								1367^{+8}	947					
								3993	924					
								4694**	1155	7730				
WED	2691	yop	$14^{\circ} \mathrm{C}$	15^{11}	1435	16700	25.4	$1416{ }^{-8}$	$1 / 67$		2.74	2.81	2.75	2.75
						1600		4372	2530					
						1600		4263^{+4}	1623					
						1600		4195^{76}	1463	7483				
	job NO. 89-03					PROJECT E-18 Infiltrometer								

INFILTROMETER FIELD DATA

INFILTROMETER FIELD DATA

INFILTROMETER FIELD DATA

	STATION I-1		INFILTROMETER READINGS								SWELL DATA			
	DATE	FIELD ENGR	WATER TEMP.	WATER DEPTH	INITIAL TIME	$\begin{aligned} & \text { FINAL } \\ & \text { TMME } \\ & \hline \end{aligned}$	TIME INTERVAL	inflal $^{\text {Of BIC }}$ (GRAMS)	$\begin{aligned} & \text { fNaL WT } \\ & \text { OF RAMG } \\ & \text { (GRMS) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CHNNGE } \\ & \text { (GNWT WT } \\ & \text { (GRAMS) } \end{aligned}$	NW CORNER	$\begin{gathered} \text { NE CORNER } \\ \Delta h \\ \hline \end{gathered}$	$\begin{gathered} \text { SE CORNER } \\ \Delta h \end{gathered}$	SW CORNER Δh
TUE A	P1991	VOP	$16^{\circ} \mathrm{C}$	$138^{\prime \prime}$	1510	1351	22.6	4537	2997		-	-	-	-
								$58.50^{* 11}$	1264	5332				
WED	Lex/91	VOP	$16^{\circ} \mathrm{C}$	$14.8{ }^{11}$	1351	145×8	250	$4734^{* 5}$	2535		\cdots	-	-	\square
								$4586{ }^{\circ}$	1911	4874				
TH	22190	VOP	$16^{\circ} \mathrm{C}$	14.75^{11}	$1+50$	425	23.6	$49+817$	1736					
								4561^{+16}	2881	\$4884	1.44	1.48	1.45	1.42
$F Q$	2/22911	VOP	$16^{\circ} \mathrm{C}$	$14.5{ }^{11}$	1425	$\begin{aligned} & (2.25) \\ & 17 \phi \infty \end{aligned}$	74.6	4503^{11}	1371					
								$4920{ }^{65}$	21084		1.44	1.48	1.45	1.42
								4679	1984					
								$49+2{ }^{-3}$	2251					
								1459^{-8}	1075					
								14.42^{49}	1151	12029				
MOU	$2 / 2591$	VOP	$15^{\circ} \mathrm{C}$	$14 \not D^{\prime \prime}$	$17 \phi 0$	$\begin{gathered} (3-76) \\ 1555 \end{gathered}$	22.9	4713	1802		1.43	1.460	1.45	1.40
								4351^{-2}	3384	3878			1.15	
TUE (8)	scagal	VOP	$15^{\circ} \mathrm{C}$	$16 . \square^{\prime \prime}$	1555	$\begin{aligned} & (2.27) \\ & 1515 \end{aligned}$	23.3	$132^{* 16}$	1174		1.42	1.46	1.45	1.4ϕ
								$4528^{\text {¢ }}$	1996	3346				
WED	212701	VOP	$13^{\circ} \mathrm{C}$	16.011	1515	$1180)$	43.8	4814^{44}	15008		1.42	1.46	1.45	1.40
								4567 *1	1536	6345				

INFILTROMETER FIELD DATA

STATION	N-1	INFILTROMETER READINGS								SWELL DATA			
DATE	$\begin{aligned} & \text { FIELD } \\ & \text { ENR R } \end{aligned}$	$\begin{aligned} & \text { WATER } \\ & \text { TEMP. } \end{aligned}$	WATER DEPTH	$\begin{aligned} & \text { INITAL } \\ & \text { TIME } \end{aligned}$	$\begin{aligned} & \text { FINAL } \\ & \text { TIME } \end{aligned}$	$\begin{gathered} \text { TIME } \\ \text { INTERVAL } \\ \hline \end{gathered}$				$\begin{array}{c\|} \hline N w \\ \Delta \mathrm{CORNER} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { NE CORNER } \\ \Delta h \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \text { SE CORNER } \\ \Delta \mathrm{An} \end{array}$	$\begin{gathered} \text { SW CORNER } \\ \Delta h \end{gathered}$
31191	VOP	$13^{\circ} \mathrm{C}$	$16.0{ }^{\prime \prime}$	11808	(8) ${ }^{5}$	95.2	4368^{6}	1010		1.42	1.46	1.45	1.48
							$4982^{* 3}$	993					
							5812^{*+2}	797					
							$1376{ }^{\text {10 }}$	938	12008				
$3 / 591$	Vop	$12^{\circ} \mathrm{C}$	$16 \not \chi^{\prime \prime}$	1810	(3) $\left.{ }^{4}\right)^{4}$	24.5	4510^{*+0}	3299		1.41	1.46	1.45	1.40
							$5166^{\text {*1 }}$	25253	3853				
36191	VOP	$12^{\circ} \mathrm{C}$	15.01	1941	980	46.3	$4560{ }^{-5}$	8697		1.41	1.44	1.43	. 39
							$1425 * 9$	9873	4134				
$3 / 8 / 91$	VOP	$11^{\circ} \mathrm{C}$	14.911	9 ± 0	13736	78.5	1457^{+8}	671		1.40	1.42	1.41	1.39
					1530		4511^{+4}	705					
							$4136{ }^{* 1}$	772	7956				
31119	B	$11^{\circ} \mathrm{C}$	$14.2{ }^{\prime \prime}$	1530	$(3-13)$ 11.05	43.6	$4474{ }^{2}$	1840		16.2	15,8	15.4	16.9
							$4569{ }^{11}$	23305	4873				
3/9/9	RA	$10^{\circ} \mathrm{C}$	$14.2{ }^{11}$	1105	1330	122.4	$400{ }^{4}$	570		wine	s bro	te	
							3848	581	6697				
3/18/91	RA	$10^{\circ} \mathrm{C}$	$14.3{ }^{11}$	d330	1405	48.6	4459	1196		wint	es br	-ke	
				1330			3937^{2}	2091	5109°	swell	Dsts	meas	sed
3/2.46	RA/VP	$11^{\circ} \mathrm{C}$	$15^{\prime \prime}$	1405	$(3-22)$ 1548	49.6	4167^{-66}	1811°		by	oposor	ephic	
							$4998{ }^{1 / 2}$	1322	68823	SCIO	vey		

INFILTROMETER FIELD DATA

INFILTROMETER FIELD DATA

* =rsu

Refilled
лав No. 89.63
PROJECT B-18 InCiltrometer
TENSIOMETER FIELD DATA

JOB NO. 89-0.
project B-18 Testfill

APPENDIX E. 2
 PHASE III CLAY SOURCE TESTING REPORT

Geosyntec ${ }^{\triangleright}$

Rodney Walter
Waste Management, Inc.
5903 Spring Blossom Street
Bakersfield, California 93313

Subject: Clay Source Testing: Summary of Field and Laboratory Test Results Kettleman Hills Facility
Kettleman City, California

Dear Rodney:

Geosyntec Consultants (Geosyntec) is pleased to provide Waste Management, Inc. (WMI) with the results of our recent investigation of a proposed clay source at the Kettleman Hills Facility (KHF), located in Kings County, California. The Pecten Claystone, a clay layer located in the San Joaquin Formation on the eastern boundary of Landfill B-17 has been identified as a potential clay source for use in the liner system of the proposed Class I/II (hazardous waste) Landfill B-18 expansion (see Figure 1). Clay from this clay layer has been used for clay liners on site successfully in the past. Based on discussions with you and a review of preliminary designs for the expansion of Landfill B-18, we understand approximately 35,000 cubic yards (cy) of clay material will be needed for the first phase of the Landfill B-18 expansion.

PROJECT DESCRIPTION

The Code of Federal Regulations Part 264 (Subtitle C) and the California Code of Regulations (CCR) Titles 23 and 22 have the following requirements for the clay liner component of a hazardous waste landfill:

- The compacted soil material shall have a hydraulic conductivity of no more than 1×10^{-7} centimeters per second $(\mathrm{cm} / \mathrm{s})$,

Geosyntec ${ }^{\triangleright}$ consultants

- The clay liner shall consist of materials with at least 30 percent of the material, by weight, passing a No. 200 U.S. Standard sieve, and
- The materials shall be fine-grained soils with a significant clay content and without organic matter, in the " SC " (clayey sand), "CL" (clay, sandy or silty clay), or " CH " (clay, sandy clay) classes of the Unified Soil Classification System.

The purpose of our investigation was to evaluate whether the earthen material in the proposed clay source meets the requirements stated above and to determine the geographic extent of these materials. Our scope for this phase of work included performing a field investigation to evaluate the limit of the claystone material and collect samples, laboratory testing, and preparation of this letter report. We have also prepared plans, specifications and construction quality assurance recommendations for construction of a test pad; these documents have been provided under separate cover.

REVIEW OF EXISTING DOCUMENTATION

We have reviewed existing borings performed by others in the general vicinity of the proposed clay source. Copies of relevant and available borings in the vicinity are included in Attachment 1. We have also reviewed the following documents summarizing laboratory and field testing of clay materials used at the site in the past:

- Environmental Construction Services, Inc.., 1991, "Clay Source Report, Landfill B-18, Phase IA and IB, Kettleman Hills Faciltiy, Kettleman City, California," dated 25 November 1991.
- Environmental Solutions, Inc., 1990 "Engineering and Design Report, Landfill Unit B18, Phases I and II and Final Closure, Kettleman Hills Facility, Kings County, California," dated August 1990.
- Environmental Solutions, Inc., 1992, "Test Fill and Infiltrometer Test Results, Landfill Unit B-18, Phases I and II and Final Closure," dated 23 January 1992.
- Golder Construction Services, 1993, "Construction Reports for Landfill B-18, Phase IIA and IIB, Volume I - Clay Source Report, Kettleman Hills Facility, Kettleman City, California," dated May I993.

Geosyntec ${ }^{\triangleright}$
 consultants

FIELD INVESTIGATION

Our field investigation was performed at the site by Layne Christensen Company on 27 November and 28 November 2008. Three borings (CS-1, CS-1A, and CS-2) were advanced to depths ranging from 21 feet to 91 feet using the hollow stem auger (HSA) drilling method. The borings were sampled at approximately 5 foot intervals with a California sampler; bulk samples of soil cuttings were also collected. Locations of the borings are shown on Figure 1. Four test pits were also excavated to depths ranging from 10 to 12 feet by KHF staff. The borings and test pits were sampled and logged in accordance with the Unified Soil Classification System by an engineer from our firm. Boring and test pit logs are provided in Attachment 2.

LABORATORY TESTING

Samples from the borings and test pits were collected and returned to our office for review. Based on a review of the boring logs and samples, laboratory tests were assigned and select soil samples were delivered to Excel Geotechnical Testing, Inc. for laboratory testing. Potential clay source material was tested for the plasticity characteristics, grain size analyses, compaction, and permeability. Results of these tests are summarized in Table 1 and are presented in Attachment 3. Laboratory testing was performed in general accordance with American Society for Testing and Materials (ASTM) standards. Hydraulic conductivity tests performed on samples collected with a California sampler were based on maximum dry density results of similar clay materials from the test pad construction for Landfill B-18 Phase I/II (Environmental Construction Services, Inc., 1991); the actual degree of relative compaction may vary for these samples. During hydraulic conductivity testing of these samples, under a confinement of 5 pounds per square inch (psi), significant swelling was noted. This suggests that the Pecten claystone materials may be considered highly expansive.

CONCLUSIONS

Based on our field investigation and a review of previous work at the site, the Pecten Claystone ranges in depth from a few feet (at the northeastern boundary) to more than 90 feet deep at the western boundary of the clay layer. The clay layer is estimated to dip to the southwest at approximately 32 degrees. The surface of this clay layer may be expected to be weathered and may contain some disturbance due to previous grading at the site in some areas.

Based on a review of the available data and the results of our field and laboratory tests, the proposed clay source is generally classified as fat clay (CH) with approximately 90 percent of

Geosyntec ${ }^{\triangleright}$
 consultants

material passing the No. 200 sieve. Based on preliminary laboratory testing, the laboratory hydraulic conductivity of the compacted clay is on the order of $5 \times 10^{-9} \mathrm{~cm} / \mathrm{s}$ to $1 \times 10^{-8} \mathrm{~cm} / \mathrm{s}$ when compacted to a minimum relative compaction of approximately 92 percent and at least two percent wet of the optimum moisture content. The proposed material is anticipated to generally meet the state and federal requirements for a compacted clay liner and to be suitable for use in the construction of the expansion of Landfill B-18. However, field hydraulic conductivity and laboratory hydraulic conductivity can often vary by more than an order of magnitude. Results of the test pad Sealed Double Ring Infiltrometer test, which will be performed during construction of landfill B-17 Phase Al on material excavated from the Pecten Claystone, will provide more conclusive results on the in-situ hydraulic conductivity of the proposed material. Specifications, drawings, and construction quality assurance testing recommendations for the test pad construction have been provided under separate cover.

We appreciate the opportunity to work on this project. If you have any questions, please call Jane Soule at 619.297.1530 x 208.

Attachments:
Table 1: Summary of Geotechnical Laboratory Test Results
Figure 1: Site Plan
Attachment 1: Previous lnvestigations
Attachment 2: Current Field Investigation
Attachment 3: Laboratory Test Results
TABLE 1
SUMMARY OF GEOTECHNICAL LABORATORY TEST RESULTS
KETTLEMAN HILLS FACILITY, KETTLEMAN CITY, CALIFORNIA

Note: *Samples collected with a California type sampler tested for hydraulic conductivity were compacted at 90% relative compaction of the maximum dry density of similar materials from the test pad construction of Landfill B-18 Phases 1A/1B (Environmental Construction Services, 1991).

Attachment 1: Previous Investigations

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

PROJECT NUMBER 224-01.36
BY JK/SW DATE 6/1/84-6/24/84

LOG OF EXPLORATORY BORING

PROJECT NUMBER 224-01. 36
BY JK/SW DATE 6/1/84-6/14/84

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

PLATE A- 26

LOG OF EXPLORATORY BORIMG

LOG OF EXPLORRTORY BORING

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

PROJECT NUMBER 224-01.3E

PLAIE A-28

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

PROJECT NUMBER 224-01.36
BY JK/SW DATE 6/1/84-6/14/84

BORING NO K- 5
SURFACE ELEV. $900^{\circ} \mathrm{MS}$:

KEKARE゙S

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

PROJECT NUMBER 244-01.35
BY JK/SW DATE 6/1/84 - 6/14/84

BORING NO.K-5
SURFACE ELEV. 900^{\prime} MSL

Classification data			FIELD DATA				description
$\left.\begin{array}{\|c\|} \hline x \\ x \\ \hline \text { Finez } \\ \text { NO. } 2000 \end{array} \right\rvert\,$	Linuid	$\begin{aligned} & \text { Pistaty } \\ & \text { Part } \\ & \text { tratex } \end{aligned}$		Ponetro fion (Blows Ft.			
\leqslant							Blue gray (N6) fine sandy SILTSTONE (very 5andy) Blue gray (NS) silty fine to mecium SARDESTONE Blue gray (N6) CLAYSTONE (very sardy)

FEMAARKS
mimon

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

PROJECT NUMBER 224~01. 36
BY IK
DATE 6/12/84

BORING NO. K- 5

SURFACE ELEV.

LOG OF EXPLORATORY BORING

REわれRKS:

PABA:

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

					ATORY SORING: BORING NO. K-30 PAGE 11 OF 24 SURFACE ELEV. 878.0^{\prime}
Toma	(e)POCKET PENTRO METER STF)			UTHO- CRAPHK COIUMN	CRIPTI
REMARKS					

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

		NUMBER NAME DA	$224 m$ Kettlen TE $7 / 21-$	man Hills $7 / 24 / 85$	$\begin{array}{r} \text { BORING NO. } \mathrm{K} 30 \\ \text { PAGE } 17 \text { OF } \\ \text { SURFACE ELEV. } 878.0^{\prime} \end{array}$
	$\begin{gathered} \text { POCKET } \\ \text { PENETRO } \\ \text { METER } \\ \text { (TSF) } \end{gathered}$	$\begin{gathered} \text { PENETRA } \\ \text { THON } \\ \text { (Blowsi } \\ \text { ft. } \end{gathered}$		ITHO- GPAPHIC COLUMN	DESCRIPTION
					CLAYSTONE and SILTSTONE interbedded (continued). siltstone portion becomes sandy; limonitic staining. gypsum stringers.
REMARKS					

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

KETTLEMAN HILLS MONITORING WELL SUMMARY
MONITORING WELL. K-30

LOG OF EXPLORATORY BORING

PROJECT NUMBER $224-56.33$
BORING NO. K-46(RD-2)
PACE 1 OF
BY MAC, BB DATE 10/9-10/10/85

TORVANE (TSF)	$\begin{gathered} \text { POCKET } \\ \text { PENETRO- } \\ \text { METER } \end{gathered}$ (TSF)	$\left\lvert\, \begin{aligned} & \text { PENETRA }- \\ & \text { TBON } \\ & \text { (BIOWS/ } \\ & \text { FES } \end{aligned}\right.$		ІтноCRAPHK columa	DESCRIPTION
			$\begin{array}{ll}0 & \square \\ & \square \\ & \square \\ & \square\end{array}$		SILTY CLAYSTONE; grayish olive (10Y,4/2); 30% silt; 10% very fine sandstone laminae with limonitic staining. 10^{\prime} with gypsum viening; very poorly indurated.

REMARKS Borings $K-46$ and $K-46(R D-1)$ were plugged and abandoned as a result of swollen claystone beds blocking the passage of PVC casing. Well K-46(RD-2) was located 65 feet east of $K-46(R D-1)$. K-46(RD-2) was drified with air-rotary drilling equipment to a total depth of 461 feet. During the completion procedures mudrotary drilling metbods were employed. The borehole was converted to a ground-water monitoring welld see Completyon. Diagram.

LOG OF EXPLORATORY BORING

PROJECT NUMBER 224-56.33
PROJECT NAME Kettleman Hills
BY MAC, BB DATE 10/9-10/10/85

TORVANE	$\left.\begin{gathered} \text { POCKEF } \\ \text { PENETRO } \\ \text { METER } \\ \text { TTSF } \end{gathered} \right\rvert\,$	PENETRA TKON (Blows) FL			苞	LTHO- GRAPHKC COHUMA

BORING NO. K-46(RD-:
PAGE 2 OF 24
SURFACE ELEV. 871.30^{1} M.S.L.

DESCRIPTION

SILTY GLAYSTOAE (Continued). 20% disseminated silt.
occasional gypsum stringers.

REMARKS (B) denotes bag sample.
Began water injection at 32 feet.

LOG OF EXPLORATORY BORING

PROJECT NUMBER $224-56.33$
PROJECT NAME Kettleman Hills
BY MAC, BB DATE 10/9-10/10/85

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

PROJECT NUMBER 22456.33
PROIECT NAME Kettleman Hills
BY MAC, BB DATE 10/9-10/10/85

$\begin{gathered} \text { TORVANE } \\ \text { (TSF) } \end{gathered}$	POCKET meter (TSF)	$\begin{gathered} \text { PENETRAA } \\ \text { TON } \\ \text { (Blows } / \\ \text { FU) } \end{gathered}$		$\begin{aligned} & \dot{L} \\ & \underline{z} \\ & \underline{z} \\ & \mathbf{z} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	訔	ІІтНGRAPHKC COHUAN

BORING NO, K-46(RD-1
PAGE 8 OF 24
SURFACE ELEV, 871.30

DESCRIPTION

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

PROJECT NUMBER 224-56.33
PROJECT NAME Kettleman Hills
BORING NO. $K-46($ RD- 2
PACE 14 OF 24

TORVANE (TSF)	POCKET METER METRT (TSF)	PENETRA TKON (Blows) F, J			ᄂтноCRAPHK COLUMA	OESCRIPTION
						CLAYSTONE and SILTSTONE interbedded (Continued). CLAYSTONE and SANDSTONE interbedded. SANDSTONE and SILTSTONE interbedded, 3:2. sandstone: light olive-brown (5Y, 5/6); fine-to medium grained; quartzose; lithic. siltstone: grayish olive (10Y, 4/2).

REMARKS

PLATE

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

Project number $224-56.33$ PROJECT NAME Kettleman Hills by MAC, BB DATE 10/9-10/10/85						BORING NO. K-46(RD-2 PACE 16OF 24 SURFACE ELEV. $7.5: 30^{\prime}$
					LTHO-	DESCRIPTION
REMARK5						

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

$\begin{array}{ll}\text { PROJECT NUMBER } & 22456.33 \\ \text { PROIECT NAME Kettleman Hills } \\ \text { BY MAC, BB DATE } 10 / 9-10 / 85\end{array}$

REMARKS

LOG OF EXPLORATORY BORING

$\begin{array}{ll}\text { PROJECT NUMBER } & 224-56.33 \\ \text { PROJECT NAME Kettleman Hills }\end{array}$
BY MAC, BB DATE 10/9-10/10/85

TORVANE	POCKET penetroMETER (T5F)	PENETRA TION (Blows) Ft)		$\begin{aligned} & \frac{H}{2} \\ & z \\ & \frac{T}{N} \\ & H \end{aligned}$		LTHOGRAPHIC COLUMA

BORING NO. K-46(RD-2
PAGE 20 OF 24
SURFACE ELEV. 871.30^{\prime}
MSS

DESCRIPTION

LAYSTONE: dark greenish gray (5G, 4/1): 5% sand; 10% sandstone laminae; 15-20\% siltstone laminae; black organic laminae; pyrite nodules; occasional gypsum veins.
harder drilling.

LOG OF EXPLORATORY BORING

LOG OF EXPLORATORY BORING

PROJECT NUMBER 224-56.33
PROJECT NAME Kettleman Hills
BY MAC,BB DATE 10/9-10/10/85

TORVANE (TSF)	POCKET PENETROMETER (TSF)	PENETRA- THON (Blows/ Ft.			$\begin{aligned} & \dot{y} \\ & \frac{2}{2} \\ & \frac{2}{2} \\ & 0 \end{aligned}$	LTTHOGRAPHIC COLUAN

BORING NO. K-46(RD-2
PAGE 22 OF 24
SURFACE ELEV. 871.30^{\prime} MS. 1

DESCRIPTION

CLAYSTONE (Continued). (420^{\prime} : color change to greenish black ($5 \mathrm{GY}, 2 / 1$); 40% fine to medium, quartzose, 50% lithics, moderate to well graded, angular to subangular sand. moderately bioturbated; minor slickensides; abundant Mya; poorly indurated; damp.
-SANDY SILTSTONE; dark greenish gray (5G, 4/1): 20% very fine sand.
ILTSTONE and SANDSTONE interbedded, 1:1. siltstone: dark greenish gray ($5 \mathrm{G}, 4 / 1$) very thinly laminated; well indurated. sandstone: medium light gray (N6); very fine grained; very thinly laminated.
@ 431.5': SLST:SS $=7: 3$.
siltstone: medium dark gray (N4): poorty indurated.
sandstone: medium gray (N5); occasional oraganic fragments; rare pyrite nodules. @ 433^{\prime}. brownish black (5YR, 2/1) to black (N1) organic laminae.
(440'-442': low degree of slumping.

REMARKS The borehote was continuousty cored from 420-to 461 - feet.

emon
4030cintis

LOG OF EXPLORATORY BORING

PROJECT NUMBER 224-56.33
PROJECT NAME Kettleman Hills
BY MAC, BB DATE 10/9 - 10/10/85
TORVANE

	POCKET	penetra	
ORVANE	PENETRO-	THON	루눈
(TSF)	(TSF)	$\begin{aligned} & \text { (Biows/) } \\ & \text { Ft. } \end{aligned}$	

BORING NO. K-46(RD-2
PAGE 23 OF.
SURFACE ELEV. 871.30^{\prime}

DESCRIPTION

@ 451'-452' occasional organic laminae and fragments.
© $452.5^{\text {: }}$: change of grain size to fine to medium.
@ 455': very poorly indurated; minor friable sandstone. (0 456': 1.0"-thick siltstone interbeds.

SILTSTONE; dark greenish gray (5GY, 4/1). very fine silty sandstone to sandy siltstone interbeds with 60% silt and clay; organic laminae.
© $459.5^{\prime}: 10 \%$ silty sandstone to sandy siltstone interbeds.

REMARKS (P) denotes a 5 -to 6 -inch preserved sample.

Project: Kettieman Hills Facility Expansion
Project Location: Kettieman City, California
Project Number: 27644618.10006

Log of Boring 17-2

Sheet 1 of 10

Project: Kettleman Hills Facility Expansion
Project Location: Kettleman City, California
Project Number: 27644618.10006

Log of Boring 17-2
Sheet 2 of 10

Project: Kettleman Hills Facility Expansion
Project Location: Ketdeman City, California
Project Number: 27644618.10006

Log of Boring 17-2
Sheet 3 of 10

Project: Kettleman Hills Facility Expansion
Project Location: Kettleman City, California
Project Number: 27644618.10006

Log of Boring 17-2

Sheet 4 of 10

URS

Project: Kettleman Hills Facility Expansion
Project Location: Kettleman City, California
Project Number: 27644618.10006

Log of Boring 17-2

Sheet 6 of 10

Project: Kettleman Hills Facility Expansion Project Location: Kettleman City, Callfornia
Project Number: 27644618.10006

Log of Boring 17-2

Sheet 7 of 10

Project: Kettieman Hills Facility Expansion
Project Location: Ketteman City, California
Log of Boring 17-2
Project Number: 27644618.10006
Sheet 9 of 10

Project: Kettleman Hills Facility Expansion
Project Location: Kettleman City, California
Project Number: 27644618.10006

Log of Boring 17-2

Sheet 10 of 10
URS

Project: Kettleman Hilis Facility Expansion Project Location: Kettleman City, California
Project Number: 27644618.10006

Log of Boring 17.3

Sheet 1 of 9

Project: Kettleman Hills Facility Expansion Project Location: Kettleman City, California
Project Number: 27644618.10006

Log of Boring 17-3

Sheet 2 of 9

Project: Kettleman Hills Facility Expansion
Project Location: Kettleman City, California
Project Number: 27644618.10006

Log of Boring 17.3

Sheet 3 of 9

Project: Kettleman Hills Facility Expansion Project Location: Kettleman City, California
Project Number: 27644618.10006

Log of Boring 17-3

Sheet 4 of 9

Project: Kettleman Hills Facility Expansion Project Location: Kettleman City, California Project Number: 27644618.10006

Log of Boring 17.3
 Sheet 7 of 9

Project: Kettlernan Hills Facility Expansion
Project Location: Kettleman City, California
Project Number: 27644618.10006

Log of Boring $17-3$

Sheet 8 of 9

Geosyntec ${ }^{D}$

 consulants

 consulants}

Attachment 2: Current Field Investigation

Geosyntec ${ }^{\triangleright}$
consultants

10875 Rancho Bernardo Rd, Suite 200
San Diego, CA 92127
Tel: (858) 674-6559
Fax: (858) 674-6586

PROJECT Kettleman Hiils Facility
PROJECT LOCATION Ketteman City PROJECT NUMBER SC0458-01

KEY SHEET - CLASSIFICATIONS AND SYMBOLS

EMPIRICAL CORRELATIONS WITH STANDARD PENETRATION RESISTANCE N VALUES *

NVALUE *
CONSISTENC
UNCONFINED COMPRESSIVE
STRENGTH (TONS/SQFT)

NVALUE
(BLOWS/FT)
RELATIVE
(BLOWS/FT)
VERY SOFT
SOFT
FIRM
STIFF
VERY STIFF
HARD
VERY HARD
<0.25
$0.25-0.50$
$0.50-1.00$
$1.00-2.00$
$2.00-4.00$
>4.00
$0-4$
$5-10$
$11-30$
$31-50$
>50

VERY LOOSE LOOSE MEDIUM DENSE DENSE VERY DENSE
*ASTM D 1586: NUMBER OF BLOWS OF 140 POUND HAMMER FALLING 30 INCHES TO DRIVE A 2 IN. O.D., 1.4 IN ID. SAMPLER ONE FOOT.

UNIFIED SOIL CLASSIFICATION AND SYMBOL CHART

COARSE

GRAINED | OR DIVISIONS | SYMBOLS | DESCRIPTIONS | |
| :--- | :--- | :--- | :--- |
| GRAVEL | CLEAN | 8 | WELIGRADD GRVEES: | GRAVEL CLEAN GW GELDRADED GRAVELS, GRA SOIL

PARTICLE SIZE IDENTIFICATION

GSFORM:
BORE $1 / 99$ BOREHOLE RECORD

BORING
CS-1A
START DATE Nov 26, 07
FINISH DATE Nov 27, 07
PROJECT Kettleman Hills Facility LOCATION Kettleman City
PROJECT NUMBER SC0458-01

| BOM |
| ---: | :--- | \(\begin{aligned} \& 10875 Rancho Bernardo Rd, Suite 200

\& San Diego, CA 92127

\& Tel:(858) 674-6559

\& consultants

\& Fax: (858) 674-6586\end{aligned}\)

GSFORM:
BORE $1 / 99$ BOREHOLERECORD

BORING	TP-2	SHEET 1 OF
START DATE	Nov 27, 07	ELEVATION 900 FT MSL
FINISH DATE	Nov 27, 07	
PROJECT	Kettleman Hils Facility	
LOCATION Kettleman City		
PROJECT NUMBER SC0458-01		

Geosyntec ${ }^{\triangleright}$

consultants

Attachment 3: Laboratory Test Results

Excel Geotechnical Testing, Inc. "Excellence in Testing"

941 Forrest Street, Ros well, Georgia 30075 Tel: (770) 6501666 Fax: (770) 6505786

Test Results Summary

 Client Name: Geasyntec

Index Test Results

Sample Enformation		Testinformation						Remartes
Site ID	Labin No.	As Reci. Maisture Contem	As Reci Bry Unit	Grain Size Anslyses			Engiarering Chassification $(-)$	
					Smad	Fines		
			Weight	Contert	Content	Content		
(-)	(-)	(\%)	(PCF)	(\%)	(\%)	($\mathrm{n} \times$)		
C5.1-4	1072	18.5	100.6					
CS-1A-2	L074	19.3	100.3					
CS-1A-S	1.077	20.9	98.6					
CS-1A-9	1081	24.4	98.2					
CS-1Am11	L083	18.6	95.8					
CS-2-2	L087	16.5	106.4					
CS-2-7	1092	21.0	100.6					
CS-2-9	L094	24.7	99.7					
CS-2-14	L098	25.1	97.7	!				

Client/Site Sample ID.	Lab Sample No:	Maximum Dry Unit Weight (pcf)	Optimum Moisture Content $(\%)$	Remarks
IP-1	L105	109.9	17.8	

Notews)

Grain Size (mme)

Excel Geotechnical Testing. \qquad "Excelfente in Jesting" 941 Forrest Street, Roswell, Georgia 30075 Tel: (770) 6507666 Fax: $(770) 6505786$										
Project Name: Project Number: Chen Name: Stue Sample 110 : Lab Saraple Namber: Naterial rype Specilied Vatre (misec): Wore Test Sturked:		Krre Clay Source Evaluation								
		289								
		Geosyntec Consulcans								
		cs-1A								
		L103								
		Soil								
		N/A								
		12/21/2007								
Kemolded Specimen	$\text { Proctor }{ }^{(5)}$ Compaction		Specimen Initial Condicions ${ }^{\text {(6) }}$		Test Cordiaons					Hydranic Conductivity (cri/s)
	Max. DUW (pof)	Opt MC (\%)	Dry Unit Weight (por)	Moisture	Cell Press. (psi)	Back Press. (psi)	Consolid. Press. (psi)	Permeant Ligind ${ }^{179}$ $(-)$	Average ${ }_{\text {Gradient }}$	
Wotes 2, 3 g 4	122.0	12.5	108.0	15.4	75.0	70.0	5.0	DTW	6	9.21-9
180^{56}										
Notas: 2. Method C. "Falling-head hereasnge-Tainater" ust proceshres were followed during the testing. 2. Alt particles larger than s/aineh, if any, were discarded when forming the vemolded specimen. 2 Rercolded specimen was formed ty tamping the soil in one-gentimene-hich: layers. 4. Etenalded specinen approxinately 2.87 inches in diameter and 236 inches in theight. 6. Based on the target values of B9\% of the seatimuar dry unit weigh mat the opomum meisure content plas 3%. 7. Type of perneamt liquid: DTW = Deaired Tap Water, DDI = Deafed Deionized Water										
* Deviations: Labontoty tenperature an $22+3^{\circ} \mathrm{C}$, Tast speciman find condtions are no prasented.										

Excel Geotechnical Testing, \qquad "Excellence in Testing" 941 Forrest Street, Roswell, Geprgia 30075 Tel: (770) 6501666 Fax: (770) 6505786										
ASTM DS0 4*										
Project Name: Project Number: Client Name: Site Sample M: Lab Sample Namber: Material Type: Specified Value ($\mathrm{cm} / \mathrm{sec}$): Pate Test Started:		KHF Clay Source Evaluation								
		289								
		Geosyntec Consultants								
		CS-1,								
		L103								
		Soil								
		NA								
		12/21/2007								
Remolded Specimen (-)	Proctor ${ }^{\text {(5) }}$ Compaction		Specimen Initial Conditions ${ }^{61}$		Test Conditions					Hydrautic Conductivity (cn / s)
	Max. DUW (pcf)	Opt. MC (\%)	Dry Unit Weight (paf)	Moisture Content $(\%)$	Cell Press. (psi)	Back Press. (psi)	Consolid. Press. (psi)	Permeant Liquid ${ }^{\text {(7) }}$ $(-)$	Average Gradient (-)	
Notes 2, 3 \& 4	122.0	12.5	112.4	15.4	75.0	70.0	5.0	DTW	6	7.4E-9
92.9										
Notes: 1. Method C, "Faliing-Head, Increasing-Tailwater" test procedures were followed daring the fesing. 2. All partictes larger than $3 / 8$ inch. if atty, were discarded when fonming the eemolded specimen. 3. Retnolded specinen was fonmed by tamping the soil in one-centimeter-tick layers. 4. Renolded specimen approximately 2.87 jncles in diametar and 2.36 inches in lizeight. 5. Maximum Dry Unit Weight (DUWi) and Optimum Moisture Conient (MC) based on Modified Proctor Cordpaction Test (ASTMD (S57). 6 Based on the target values of 92% of the maximum dry unit weight and the optimum moisture content phus 3%. 7. Type of permean! liquid: DTW = Deaired Tap Wuter, DDI m Deaired Deionized Waict										
- Deviations. Laboratory temperature at $22 \pm 3^{\circ} \mathrm{C}$. Test spezimen kinal conditions are not plesented										

Excel Geotechnical Testing, \qquad "Excellence in Testing" 941 Forrest Streot, Roswell Georgia 30075 Tel: (770) $\mathbf{6} 50$ 16ab Fox: 1770) 6505786										
Project:Nawe: Project Number: Cilent Norne: Site Sample TD: Lab Smaple Number: Material Tyes: Specifid Vaibe (cmigech Dene Test Startect		KHP Clay Source Evaluation								
		289								
		Geosyatec Consuhtants								
		Cs-2								
		L104								
		Soil								
		NA								
		12/21/2007								
Kemolded Specimen(\cdot)	$\begin{aligned} & \text { Procter }{ }^{(5)} \\ & \text { Compacioni } \end{aligned}$		Specimen Intial Conditions ${ }^{\text {(6) }}$		Test Conditions					Hydraulic Conductivity$(\mathrm{crt} / \mathrm{s})$
	Max. DUw (pet)	Opt WC (\%)	Dry Unit Weighit (pef)	Moisture Content $(\%)$	Cell Press. (psil)	Back Press. (psi)	Consolid. Press. (psi)	Permeant ${ }_{\text {Licuid }}{ }^{\text {a }}$	Avernge Oradient (-)	
Notes 2, 3\% 4	113.1	15.6	104.0	18.5	75.0	70.0	5.0	DTW	12	3.78-9
$02^{\circ 10}$										
Nates: 1. Metiod C. "Paling-Head, hicreasing-Toilwater" test procedures were followed duritg the eesting. 2. All paricles larger than 3 /名 inch, if any, were disearded when forming the remolded specimen. 3. Renoided specingen was formed by tariping the sofl in one-centimeter-thide loyers. 4. Remodied specimen approxinately $2: 87$ mothes in diameter wid 2,36 wethes in height. 5. Maximum Dry Unit Weigh (DUW and Optimum Moisture Coneni MMC based on Modified Procor Compantion Teric ASTM D LSY7). 										
- Eeviations: Latrantory femparature ai $22_{2}+3^{\circ} \mathrm{C}$. Teit specimen final conditers are not prestritex.										

Excel Geotechnical Testing, \qquad "Excellence in Testang" 941 Forrest Street, Roswell, Georgia 30075 Tel: (770) 6501656 Fax: (770) 6505786										
roject Name: Project Number: Client Name: Site Gample 1D: Lab Sample Number: Material Type: Specified Value (cxa/sec): Dase Test Started:		KRF Clay Source Evaluation								
		289								
		Geosyntoc Consultants								
		TP-1								
		L105								
		Soll								
		NA								
		12/21/2007								
Remolded Specimen$(-)$	Proctor ${ }^{\text {ts }}$ Compaction		Specimen Initial Conditions ${ }^{\text {(6) }}$		Test Conditions					Hydraulic Conductivity $(\mathrm{cm} / \mathrm{s})$
	Max. DUw (pcf)	Opt. MC $(\%)$	Dry Unit Weight (pcf)	Moisture Content (\%)	Cell Press. (psi)	Back Press. (psi)	Consolid. Press. ($p s i$)	Permeant Liquid ${ }^{73}$ $(-)$	Average Gradient $(-)$	
Notes 2, 3 \& 4	109.9	17.8	101.0	20.7	75.0	70.0	5.0	DTW	4	[.IE-8

Notes:

1. Metiod C. "Falling-Head, thereasiag-Tailwater" test procedures were followed during the testing.
2. All particles larger than $3 / 8$ inelh if ary, were discarded when forming the remolded specimen.
3. Remohded specimen was tromed by tamping the soil in one-centimeter-thick layers.
4. Renolded specimen approximately 2.87 iaches is dianteter and 2,36 inches in beight.
5. Maximum Dry Unit Weinht (DUW) and Optimum Moisture Content (MC) based on Modifitd Proctor Compaction Test (ASTM D [S57).
6. Based on the target values of 92% of the maximuon dry unit weighe and the optinutn moisture content plus 3%.
7. Type of permeant liquid: DTW = Deaired Tap Water, DDI menired Doionized Water

*Deviatinns:

Labsratory temperahire al $22 \pm 3^{\circ} \mathrm{C}$.
Test specimen final concitions are not presented.

Excel Geotechnical Testing, "Excellence in Testing" 941 Forrest Street, Roswell, Georgia 30075 Tel: (770) 6501686 Fax: (770) 6505786										
Project Nome: Project Nuriber: Client Name: Site Sample ID; Lab Sample Number: Material Type; Specified Value ($6 \mathrm{~m} / \mathrm{sec}$): Date Test Srarted:		EHF Clay Source Evaluation								
		289								
		Geosyntec Consultants								
		TP-2								
		L. 106								
		Soil								
		NA								
		12/21/2007								
Remolded Specimen$(-)$	$\text { Proctor }{ }^{(5)}$ Compaction		Specimen Initial Conditions ${ }^{(6)}$		Test Conditions					Hydraulic Conductivity (cm / s)
	Max. DUW (pcf)	Opt MC $(\%)$	Dry Unit Weight ($\mathrm{p} \subset \mathrm{f}$)	Moisture Contens (\%)	Cell Press. (psi)	Back Press. (psi)	Consolid. Press. (psi)	Permeant Liquíd ${ }^{(7)}$ (-)	Average Gradient $(-)$	
Notes 2, 3 \& 4	111.7	16.2	102.8	19.1	75.0	70.0	5.0	DTW	9	5.0E-9

Notes:

1. Method C. "Fsiling-Head, focreasing-Tuihwater" test procedures were followed during the testing.
2. All pariciles larger thar $3 / 8$ inch, if faty, were discarded when forming the remolded specimen.
3. Remolded specinen wras formed by tampiag the soil in one-centimetertick layers.
4. Renoided specimen approximately 2.87 inches in diameter and 2.36 inches in lecight.
5. Maximem Dry Unit Weipht (DLU') and Optinum Moisture Content (MC) based on Modified Proter Compaction Test (ASTM D 1557).
6. Based on the target values of 92% of the maxintun dry unit weight and the aptimusn reoisture content ptus 3%.
7. Type of permeant liquid: DTW w Deaired Tap Water, DDI $=$ Deaired Dejonized Water

* Deviations:

Labomtory femperature of $32 \pm 3^{\circ} \mathrm{C}$.
Test spacinen fical conditions are not presemed.

Notes:

1. Medtod C. "Fallingntrad. Increasing-Tailwater" test procedures were followed durige the testing.
2. AU jarticles larger than $3 / 8$ inch, if any, were discarded when fontming the remokded specinen.
3. Remolded specinen was fonued by tamping the soil in one-centimeterntich layers.
4. Remolded specimen approximately 2.87 inches is diameter and 2.36 inches in height.
5. Maximum Dry Unit Weight (DUW) and Optimum Moisture Content (MC) based on Nowified Proctor Compaction Test (ASTM U 1557).
6. Based on the target values of 92% of the naximurn dry unit weight and the optimum moisture content ples 3%.
7. Type of perancan liquid: DTW = Deaired Tap Water, DDA = Deaired Deionized Water

- Deviations:

Laboratory temperature at $2243^{\circ} \mathrm{C}$.
Test specimen final conditions are not presented.

Notes:

1. Method $\mathrm{C}_{\text {, }}$ "FallingrHead. Lscreasing-Tailwater" test procedures were followed daring the testing.
2. Alf particles lacger than $3 / 8$ izche if any, swere discarded when forming the zemalded specinen.
3. Renolded specimen was formed by tamping the soil in one-centimeter-thick byers.
4. Renotded specimen approximataly 2.87 inches in diameter and 2.36 juches in height.
5. Maximum Dry Uait Weight (DLW) and Opcimm Moisture Content (MC) based ou Modified Proctor Compaction Test (ASTM D 1557).
6. Based on the target values of 92% or the maxinum dry unit weight and the optiuntm moisture content plas 3%.
7. Type of permeant liquid: DTW = Deaired Tap Water, DDI weaired Deionized Whater

* Deviatims

Laborntory tempectiture at $23 x^{2}{ }^{\circ} \mathrm{C}$
Test specimen finai conditions are not presented.

Excel Geotechnical Testing, "Exceffence in Testing" 941 Forrest Street, Roswefl, Georgia 30075 Tel: (770) 6501666 Fax: (770) 6505786										
Project Name: Project Number: Client Name: Site Sample ID: Lab Sample Numeer: Material Type: Specified Value (cro/sec): Date Test Started:		KHF Clay Source Evaluation .								
		289								
		Qeosyntec Consultants								
		CSI-2 \& CSI 1 3								
		L070 \& L071								
		Soil								
		NA								
		1/23/2008								
Remolded Specimen$(-)$	$\text { Proctor }{ }^{(s)}$ Compaction		Specimen Initial Conditions ${ }^{\text {(6) }}$		Test Conditions					Hydraulic Conductivity$(\mathrm{cm} / \mathrm{s})$
	Max. DUW (pcf)	Opt. MC $(\%)$	Dry Unit Weight ($p \subset f$)	Moisture Content (\%)	Cell Press. (psi)	Back Press. (psi)	Consolid. Press. (psi)	Permeant Liquid ${ }^{(7)}$ (-)	Average Gradient (-)	
Notes 2, 3 \& 4	104.0	20.0	93.6	21.9	75.0	70.0	5.0	DTW	14	7.0E~8

Notes:

1. Method C, "Falling-Head, Incrassing-Tailwater" test procedures were foliowed during the testing
2. All particies larger than $3 / 8$ inch, if ary, were disearded when forming the remolded specimen.
3. Remolded specinien was formed by tamping the sail in one-ensimeter-thick layers.
4. Remolded specimen approximately 2.87 inchos in diameter and 2.36 itches in heidilut.
5. Assumed Maximura Dry Unit Weight (DUW) and Optimum Mcisture Content (MC) based on Modified Procior Compaction Test (ASTMD IS57).
6. Besed on the rarget values of 90% of the maximum dry unit weight and the optintum moisture centeat plus 2%.
7. Type of permeant liquid: $\quad D T W=$ Desired Tap Water, DD $=$ Deaired Deionized Water

- Deviations:

Laboratory temperature at $22 \pm 3^{\circ} \mathrm{C}$.
Test specimen final conditions are sox presemed.

Excel Geotechnical Testing, "Excellence in Testing" 941 Forrest Street, Roswell, Georgia 30075 Tel: (770) 6501666 Fax: (770) 6505786										
Project Name: Project Number: Client Name: Site Sample ID: Lab Sample Number: Material Type: Specinied Value (cm/sec): Date Tesl Siarted:		KIFF Clay Source Evaluation								
		289								
		Geosyntec Consultants								
		CSIA-5								
		L077								
		Soil								
		NA								
		1/23/2008								
Remolded Speciment $(-)$	$\text { Proctor }{ }^{(5)}$ Compaction		Specimen Initial Conditions ${ }^{(0)}$		Test Conditions					Hydraulic Conductivity (cm/s)
	Max. DUw (pcf)	Opt. MC $(\%)$	Dry Unit Weight (pef)	Moistare Cortent (\%)	Cell Press. (psi)	Back Press. (psi)	Consolid. Press. (psi)	Permeant Liquid ${ }^{(7)}$ $(-)$	Average Gradient (-)	
Notes 2, 3 \& 4	104.0	20.0	93,4	21.9	75.0	70.0	5.0	DTW	18	$6.2 \mathrm{E}-8$

Nates:

:. Method C, "Falling-Head, lncreasing-Tailwater" test procedures were followed during the testing.
2. All paricles larger than $3 / 8$ inch, if any, were discarded when forming the remolded specimen.
3. Renolded specimen was formed by tamping the soil in one-centimeter-thick layers.
4. Remolded specimen approximately 2.87 inches in diameter and 2.36 inches in height.
5. Assumed Maximum Dry Unit Weight (DUW) and Optimum Rfoisture Content (MC) based on Madified Procior Compaction Tess (ASTM D 1557).
6. Based on لte tagge valuts of 90% of the maximum dry unit weight and the optimum moisture content plus 2%.
7. Type of permeant liquid: DTW = Deaired Iap Water, DDI = Deaired Deionized Water

- Deviations:

Laboratory temperature at $22 \pm 3^{\circ} \mathrm{C}$.
Test specimen final conditions are not presented.

Excel Geotechnical Testing, "Exceflence in Testing" 941 Forrest Street, Roswell, Georgia 30075 Tel: (770) 6501666 Fax: (770) 6505786										
Project Name: Project Number: Client Name: Site Sample ID: Lab Sample Number: Material Type: Specified Value (cra/sec): Date Test Started:		KHF Clay Source Evaluation								
		289								
		Geosyntec Consultants								
		CSIA.6 \& CSIA-7								
		L078 \& L079								
		Soil								
		NA								
		1/22/2008								
Remolded Specimen$(-)$	$\text { Proctor }{ }^{(5)}$ Compaction		Specimen Initial Conditions ${ }^{(a)}$		Test Conditions					Hydraulic Conductivity ($\mathrm{Em} \mathrm{m}^{\prime}$)
	Max. DUW (pct)	Opt. MC (\%)	Dry Unit Weight (pcf)	Moisture Conteni (\%)	Cell Press. (psi)	Back Press. (psi)	Consolid. Press. (psi)	Permeant Liquid (*)	Average Gradient (-)	
Notes 2,3\&4	104.0	20.0	93.5	21.9	75.0	70.0	5.0	DTW	15	9.6E-8

Notes:

1. Method C, "Falling-Head, Increasing-Taiwater" test procedures were followed during the testing.
2. All paricles larger than $3 / B$ inch, if any, were discarded when forming the remoided specimen.
3. Renolded specimen was formed by tamping the soil in one-centimeter thiak layers.
4. Remoided specimen approximately 2.87 inches in dismeter and 2.36 inches in height.
5. Assumed Maximum Dry Unit Weight (DUW) and Optimum Moisure Content (MC) bsed on Modified Proctor Compaction Test (ASTM D 1ss7).
6. Aased on the target values or 90% of the maximum dry unit weight and the optimum moisture contert plus 2%.
7. Type of permeant liquid: DTW = Deaired Tap Water, DDI m Denired Deionized Water

4 Deviations:
Latoratory temperalure at $22 \pm 3{ }^{\circ} \mathrm{C}$.
Test specimea fnal conditions are not presented.

Excel Geotechnical Testing, "Excellerce in Tosting" 941 Forrest Street, Rosweil, Georgia 30075 Tell: (770) 6501666 Fax: (770) 6505786										
Project Name: Project Number: Client Name: Site Sample ID: Lab Sample Number: Material Type: Specified Value ($\mathrm{cm} / \mathrm{sec}$): Date Test Started:										
		289								
		Geosyntec Consultants								
		CS2-4								
		L089								
		Soil								
		NA								
		1/22/2008								
Remolded Specimen$(-)$	$\text { Proctor }{ }^{(s)}$ Compaction		Specimen Inãtial Conditions ${ }^{(6)}$		Test Conditions					Hydraulic Conductivity (cm / s)
	Max. DLW (pcf)	Opt. MC (\%)	Dry Unit Weight ($p \subset f$)	Moisture Consent $(\%)$	Cell Press. (psi)	Back Press. (psi)	Consolid. Press. (psi)	Permeant Liquid ${ }^{(7)}$ (-)	Average Gradient (-)	
Notes $2,3 \& 4$	104.0	20.0	93.6	21.9	75.0	70.0	5.0	DTW	16	8.6E-8

Notes:

1. Method C, "Falling-Fead, Increasing-Teilwater" test procedures were followed during tite testing.
2. All particles larger than $3 / 8$ inch, if any. were discarded when forming the remoided specimen.
3. Remolded specimen was fommed by tamping the soil in onementimeter-thick layers.
4. Remolded specimen approkimately 2.87 inches in diancter and 2.36 inches in height.
5. Assunsed Maximum Dry Unit Weight (DUW) and Optinum: Moisture Content (MC) based on Modified Proctor Compaction Test (ASTM D 1557),
6. Bosed on the target values of 90% of the maximum dry unit weight and the optimum moisture content pius 2%.
7. Type of permeant liquid: DTV = Deaired Tap Water, DDI $=$ Deained Deionized Water

- Devistions:

Latoratory tempstante al $22 \pm 3^{\circ} \mathrm{C}$.
Tes specimen fint sondisions are not presented.

Excel Geotechnical Testing, "Excenlence in Testing" 941 Forrest Street, Roswell, Georgia 30075 Tel: (770) 6501566 Fax: (770) 6505786										
$\frac{\text { ELEXIALEMALL PERMEABSLITY TEST }}{}{ }^{(1)}$										
Project Name: Project Number: Client Name: Site Sample ID: Lab Sample Number: Material Type: Specified Value (cm/sec): Date Test Started:		KHF Clay Source Evaluation								
		289								
		Geosyntec Consultants								
		CS2-13 \& CS2-14								
		L097 \& L098								
		Soil								
		NA								
		1/22/2008								
Remolded Specimen (-)	Proctor ${ }^{(s)}$ Compaction		Specimen Initial Condations ${ }^{\text {(b) }}$		Test Conditions					Hydraulic Conductivity
	Max. DUW (pcf)	Opt. MC $(\%)$	$\begin{gathered} \text { Dry Unit } \\ \text { Weight } \\ (p \mathrm{pf}) \end{gathered}$	Moisture Content (\%)	Cell Press. (psi)	Back Press. ($p \mathrm{pi}$)	Consolid. Press. (psi)	Permeant Liquid ${ }^{(7)}$ (-)	Average Gradient (-)	$(\mathrm{cm} / \mathrm{s})$
Notes 2, 3E4	104.0	20.0	93.4	22.0	75.0	70.0	5.0	DTW	16	1.7E-8

Nates:

1. Method C , "Falling-Hesci fncereasing-Tailwater" test procedures were followed during the testing.
2. Al particles larger than $3 / 8$ inch, if any, were discarded when forming the remolded specimen.
3. Remolded specimen was formed by tamping the soil in one-cedtimeter-chick layers.
4. Remolded specimen approximatoly 2.87 inches in diameter and 2.36 inches in teiefo.
5. Assumed Maximum Dry Unit Weight (DUNW) and Optimum Moisture Content (MC) based on Modified Proctor Compaction Test (ASTMD : SS7).
6. Based on the target values of 90% of the maximurn dry unit weight and the optimum moisture content plus 2%.
7. Type of permeant liquid: DTW = Deairef Tap Water, DDI = Deaired Deionized Water
${ }^{4}$ Deviatiars:
Laboraspy timperature at $22+3^{\circ} \mathrm{C}$.
Test specimen final conditions are not presented.

Excel Geotechnical Testing, "Excelbnce in Testing" 941 Forrest Street, Roswell, Georgia 30075 Tel: (770) 6501666 Fax: (770) 6505786										
FLEXIBLE WALL PERMEABILITY TEST ${ }^{\text {(1) }}$ ASTM D5084*										
Project Name: Project Number: Client Name: Site Sample ID: Lab Sample Number: Material Type: Specified Valuc (cm/zec): Date Test Started:		KHF C 289 Geosy CS2-16 L100 Soil NA $1 / 22 / 20$	(ec Consult	Evaluation tants						
Remolded Specimen	$\text { Proctor }{ }^{(s)}$ Compaction		Specimen Enitial Conditions ${ }^{\text {10 }}$		Test Conditions					Hydraulic Conducrivity (cm / s)
(-)	Max. DUW $(p c f)$	Opt. MC (\%)	Dry Unit Weight (pcf)	Moisture Content (\%)	Cell Press. (psi)	Back Press. (psi)	Consolid. Press. (psi)	Permeant Liquid ${ }^{(3)}$ (-)	Average Gradient $(-)$	
Notes 2, 3 \& 4	104.0	20.0	93.5	$21.9{ }^{\circ}$	75.0	70.0	5.0	DTW	15	5.3E-8

Notes:

1. Method C, "Falling-Head, Increasing-Tailwater" west procedures were followed during the testing,
2. All partictes iarger than $3 / 8$ inch, if any, were discarded when forming the remolded specinen.
3. Ranolded specimen was formed by trmping the soil in onc-centineter-thick layers.
4. Remolded specinen approximately 2.87 inches in diameter and 2.36 inches in height. Mont C
5. Maximum Dry Unit Weight (DCW) and Optimum Moisturs Content (MC) based on Standard Proctor Compaction Test (ASTMD:698).
6. Based on the carget rolues of 95% of the maximum dry unit weight and the optinum moisture content plus 2%.
7. Type of permeant liquid: $\begin{aligned} D T M & =\text { Deaired } \\ & \text { Tap Water, } D D=\text { Dequred Deionized Water } \\ & \end{aligned}$

- Deviations:

Lsboratory temperature at $22 \pm 3^{\circ} \mathrm{C}$.
Test specimen finsi conditions are not presented.

APPENDIX E. 3
 CLAY STOCKPILE AND TEST PAD REPORT

Prepared for
Chemical Waste Management, Inc. 35251 Old Skyline Road Kettleman City, CA 92139

CLAY STOCKPILE AND TEST PAD REPORT

KETTLEMAN HILLS FACILITY KINGS COUNTY, CALIFORNIA

Prepared by
 Geosyntec ${ }^{\triangleright}$
 consultants

engineers | scientists | innovators

3990 Old Town Avenue, Suite B101 San Diego, California 92110

Project Number SC0472

Geosyntec ${ }^{\circ}$
 consultants

TABLE OF CONTENTS

Page

1. INTRODUCTION 1
1.1 Terms of Reference. 1
1.2 Project Description 1
1.3 Purpose and Scope of Work 2
2. PREVIOUS ONSITE CLAY EVALUATIONS 3
3. CLAY STOCKPILE 4
3.1 General 4
3.2 Stockpile Activities - CQA Monitoring 4
3.3 Clay Stockpile Pre-Construction Activities - CQA Testing 4
4. CLAY TEST PAD CONSTRUCTION 6
4.1 Overview 6
4.2 Clay Liner Test Pad Construction 6
4.2.1 General. 6
4.2.2 Test Pad Construction. 6
4.2.2.1 Site Preparation 6
4.2.2.2 Stockpile Material Processing 6
4.2.2.3 In-situ Material Processing, Placement and Compaction 7
4.2.3 Test Pad Construction - CQA Testing 7
5. SDRI TESTING 9
5.1 Overview 9
5.2 Site Preparation and Equipment Installation 9
5.3 Data Collection 10
5.3.1 Outer Ring Water Depth (D_{f}) 10
5.3.2 Water Temperature (T) 10
5.3.3 Depth to Inner Ring $\left(\mathrm{H}_{5}\right)$ 11
5.3.4 Inner Ring Infiltration ($\mathrm{M}_{\mathrm{i}}-\mathrm{M}_{\mathrm{f}}$) 11
5.3.5 Soil Moisture Content (MC) 12
5.4 Theory 12
5.5 Results 13
5.5.1 Infiltration Rate 13
5.5.2 Wetting Front 14
SC0472 CLAY CQA f 121708 .docx i

Geosyntec ${ }^{\text {D }}$

consultants
TABLE OF CONTENTS (continued)
Page
5.5.3 Soil Suction... 14
5.5.4 Hydraulic Conductivity .. 15
5.5.5 Laboratory Data and Comparison to Field Data......................... 15
6. SUMMARY AND CONCLUSIONS ... 17
REFERENCES ... 18

Geosyntec ${ }^{\text {® }}$

consultants
TABLE OF CONTENTS (continued)

TABLES

$$
\begin{array}{ll}
\text { Table } 1 & \text { Clay Stockpile Testing Frequencies } \\
\text { Table 2 } & \text { Clay Test Pad Testing Frequencies } \\
\text { Table } 3 & \text { SDRI Measurements } \\
\text { Table 4 } & \text { Comparison of Current and Previous Laboratory Test Results of Pecten } \\
& \text { Claystone }
\end{array}
$$

FIGURES

Figure 1 Site Plan
Figure 2 SDRI Test Setup
Figure 3 SDRI Infiltration Rate and Recorded Swell
Figure 4 Moisture Content versus Depth below SDRI Inner Ring

APPENDICES

A. Project Documents

A-1 Project Specifications - Section 02220
A-2 CQA Plan - Addendum 1
B. Construction Documentation

B-1 Photo Log
B-2 Compaction Equipment Specification Sheet
C. Clay Stockpile and Test Pad Results

C-1 Laboratory Test Summary Table and Results
C-2 Test Pad Compaction Test Results
D. SDRI Test Results

Geosyntec ${ }^{\text {D }}$

consultants

CLAY STOCKPILE AND TEST PAD REPORT
 KETTLEMAN HILLS FACILITY KINGS COUNTY, CALIFORNIA

I certify that this document and attachments presented in this report are accurate and complete. This report was prepared by the staff of Geosyntec Consultants under my supervision to ensure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who are directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete.

Jane Soul California Professional Civil Engineer No. 59815

Date

1. INTRODUCTION

1.1 Terms of Reference

This report presents the results of the clay stockpile and test pad evaluation for Chemical Waste Management, Inc. (CWMI) at the Kettleman Hills Facility in Kings County, California. This report was prepared by Ms. Jane Soule, G.E., and has been reviewed by Mr. Michael J. Minch, G.E., of Geosyntec Consultants, Inc. (Geosyntec), in accordance with the peer review policies of the firm.

1.2 Project Description

The Kettleman Hills Facility is approximately 1,600 acres with approximately 474 acres within the active operation area. The site is located in Kings County, California and is owned and operated by CWMI. Three waste management units are currently permitted and operated at the site, Landfill B-17 (Class II/III), Landfill B-19 (II/III) and Landfill B-18 (Class I/II). The planned expansion of Landfill B-18 will require construction of compacted clay liner (CCL) meeting the requirements of Subtitle C of Title 40 of the Code of Federal Requirements (CFR) §264.301 and California Code of Regulations (CCR), Title $23 \S 2541$. These regulations specify that the CCL meet the following requirements:

- an in-situ (field) hydraulic conductivity no greater than 1×10^{-7} centimeters per second (cm / s);
- at least 30 percent of the material, by weight, shall pass a No. 200 U.S. Standard Sieve (0.075 mm); and
- be fine grained soil with a significant clay content without organic matter, in the "SC" (clayey sand), "CL" (clay, sandy or silty clay) or "CH" (clay, sandy clay) classes of the Unified Soil Classification System (USCS).

An onsite clay source was identified on the eastern boundaries of the Landfill B-17 project area (see Figure 1). The potential clay source is part of the Pecten claystone which has been used as a CCL for previous hazardous landfill liner construction projects at the site and has been demonstrated to meet the regulatory requirements. Previous clay investigations and testing programs on the Pecten claystone are summarized in the following reports:

- Environmental Construction Services (ECS), 1991, "Clay Source Report, Landfill B-18, Phases IA and IB, Kettleman Hills Facility, Kettleman City, California, Prepared for Chemical Waste Management, Inc., 25 November 1991.
- Environmental Solutions, Inc. (ESI), 1992, "Test Fill and Infiltrometer Test Results, Landfill B-18 Phases I and II and Final Closure," Prepared for Chemical Waste Management, Inc., 23 January 1992.
- Golder Construction Services (GSC), 1993, "Landfill B-18, Phases IIA and IIB Construction Reports Volume 1 - Clay Liner Source Report," Prepared for Chemical Waste Management, Inc., May 1993.
.These previous investigations are summarized in Section 2 of this report.
During the recent construction of Landfill B-17 Phase A1, approximately 24,000 cubic yards (cy) of soil from the Pecten claystone located northeast of Landfill B-17 Phase A1 was excavated and stockpiled for future use in construction of a CCL for the proposed Landfill B-18 expansion. Material from the stockpile was used to construct a test pad for field hydraulic conductivity testing. The requirements of the test pad construction are summarized in the project specifications Section 02220 (Geosyntec, 2007, see Appendix A-1). Construction quality assurance (CQA) testing requirements for the clay stockpile and test pad are summarized in the CQA Plan, Addendum 1 (Geosyntec, 2008, see Appendix A-2). Appendix B contains photographic documentation detailing activities during test pad construction and testing.

1.3 Purpose and Scope of Work

The purpose of this report is to document the method and equipment used during construction of the test pad as a minimum basis for future construction, that the test pad was constructed in accordance with the project specifications, and to evaluate whether the soil from the identified clay source meets the regulatory requirements for a CCL. Geosyntec's scope of work included the following tasks:

- Visual observation and laboratory testing of the clay excavation and stockpiling;
- Observing and documenting construction of the test pad;
- Performing in-place density and moisture content testing of the clay test pad;
- Laboratory testing of the clay test pad; and
- Providing, installing, and monitoring a sealed double-ring infiltrometer (SDRI) test on the clay test pad.

Geosyntec's services also included preparation of this CQA report summarizing the results of field observations and laboratory data.

2. PREVIOUS ONSITE CLAY EVALUATIONS

Previous clay source evaluations have been performed at the Kettleman Hills Facility for CCLs in Landfill B-18. Geosyntec has reviewed available reports on these activities. A summary of these reports is provided below.

Material was excavated onsite from the Pecten claystone for use in the Phase I and II clay liner for Landfill B-18. Field and laboratory testing from a SDRI test, site source evaluation and liner construction was reviewed (ESI, 1992; ECS, 1991; and GSC, 1993). These reports indicate that the clay material used in construction of the Phase I and II compacted clay liners had the following properties:

- Unified Soil Classification System description as a fat clay (CH) with an average of more than 80 percent or greater passing the No. 200 sieve (ranging from 48-94 percent);
- High swell potential (ESI reported an average swell of 16.5 percent under a low confining pressure);
- Average Liquid Limit (LL) of approximately 76 (ranging from 35 to 90) and an average Plasticity Index (PI) of approximately 55 (ranging from 18 to 68);
- Laboratory bydraulic conductivity ranging from approximately 2×10^{-10} centimeters/second (cm / s) to $2 \times 10^{-7} \mathrm{~cm} / \mathrm{s}$ with an average on the order of $8 \times 10^{-9} \mathrm{~cm} / \mathrm{s}$.

These reports indicate that the Pecten claystone material, when compacted to greater than 90 percent of the maximum dry density per ASTM D1557 at a moisture content between $+2 \%$ and $+5 \%$ of the optimum moisture content, has a laboratory and field hydraulic conductivity less than $1 \times 10^{-7} \mathrm{~cm} / \mathrm{s}$.

Geosyntec ${ }^{\text {® }}$
 consultants

3. CLAY STOCKPILE

3.1 General

Clay material was excavated and stockpiled during July and August 2008 by Wood Brothers, Inc., (WBI). The clay material was excavated from the Pecten claystone located northeast of the Landfill B-17 area (see Figure 1). An engineering geologist from Geosyntec identified the limits of the claystone in the field with WBI prior to excavation. WBI stockpiled the low-permeability soil north of Landfill B-17 Phase A1 as approved by CWMI. Geosyntec monitored the excavation and performed conformance tests on the low-permeability soil as described in the following sections.

3.2 Stockpile Activities - COA Monitoring

Geosyntec monitored that the borrow and stockpile areas were cleared and grubbed prior to excavation. Geosyntec personnel documented the activities during the clay soil excavation and stockpiling, and observed that material placed in the clay stockpile did not contain significant quantities of sandy soils or other unsuitable material.

3.3 Clay Stockpile Pre-Construction Activities - COA Testing

The project specifications (Appendix A-1) require that the material to be placed in the clay stockpile meet the following specifications:

- Free of debris, rocks, gravel greater than 1 inch in any direction and other deleterious material;
- At least 30 percent of the material, by weight, shall pass the No. 200 sieve;
- Be classified as CL, SC, or CH in accordance with ASTM D2487; and
- Have a compacted field hydraulic conductivity of less than or equal to $1 \times 10^{-7} \mathrm{~cm} / \mathrm{sec}^{1}$.

As the soil was excavated, Geosyntec collected representative samples and shipped them to Excel Geotechnical Testing (Excel) for laboratory testing in accordance with the CQA Plan. The following CQA tests were performed, at a minimum frequency of 1

[^6]
Geosyntec ${ }^{\text {D }}$

consultants
per 5,000 cubic yards (cy), to evaluate compliance of the clay stockpile with the requirements specified for the clay source material:

- Moisture-Density Relationship (ASTM D 1557);
- Sieve Analysis (ASTM D 422);
- Atterberg Limits (ASTM D 4318);
- Classification (ASTM D 2487); and
- Hydraulic Conductivity (ASTM D 5084), remolded sample.

The required testing frequencies are presented in Table 2.
The moisture-density relationship (modified Proctor) testing results (ASTM D 1557), documented in Appendix C-1, indicate that the low-permeability soil had a maximum dry unit weight ranging from approximately 106 to 120 pcf with an optimum moisture content varying from approximately 13 to 18 percent.

Atterberg limits (ASTM D 4318) testing performed on the clay stockpile is documented in Appendix C-1. Results of this testing indicate a Liquid Limit (LL) varying from 61 to 110 percent and a Plasticity Index (PI) ranging from 38 to 69 percent. The sieve analysis (ASTM D 422) test results indicate that the low-permeability soil had a fines content ranging from 74 to 94 percent. These tests cited above indicate that the soil is classified as fat clay (CH) according to ASTM D 2487 soil classifications.

As required by the technical specification, Geosyntec obtained bulk samples of the clay stockpile at the specified frequency for hydraulic conductivity testing (ASTM D 5084). The samples were compacted to a minimum of 92 percent relative compaction with moisture contents ranging from 2 to 5 percent wet of the optimum moisture content. Hydraulic conductivity test results ranged from 2×10^{-8} to $9 \times 10^{-8} \mathrm{~cm} / \mathrm{s}$. The hydraulic conductivity test results are presented in Appendix C-1.

Geosyntec ${ }^{\text {D }}$
 consultants

4. CLAY TEST PAD CONSTRUCTION

4.1 Overview

CQA testing was performed during the construction of the clay test pad by using methods and frequencies specified in the Project Documents, as presented in Table 2. Laboratory and field test results performed on the clay stockpile and test pad are included in Appendix C. Appendix B contains photographic documentation detailing activities during test pad construction and testing.

4.2 Clay Liner Test Pad Construction

4.2.1 General

The construction of the clay test pad began on 28 July 2008 and was completed on 7 August 2008. The test pad was constructed approximately 50 feet wide by 50 feet long and consisted of six 6 -in lifts. Observations and testing conducted on the clay liner test pad by Geosyntec are described in the following sections. SDRI testing is described in Section 5.

4.2.2 Test Pad Construction

Geosyntec CQA personnel continuously monitored activities performed prior to and during construction of the clay test pad. CQA monitoring activities performed during clay test pad construction included monitoring of processed material placement, measurement of lift thickness, documentation of the number of passes performed by compaction equipment, and a visual assessment of incoming soil. The following sections describe construction test pad.

4.2.2.1 Site Preparation

Prior to construction of the test pad, the area was cleared and grubbed. The subgrade was then proof-rolled to eliminate soft zones, irregularities, and abrupt changes in grade. The subgrade was graded to slope a grade of approximately 2 to 3 percent to provide positive drainage.

4.2.2.2 Stockpile Material Processing

WBI moisture conditioned the clay in the stockpile prior to placement in lifts for the test pad. Moisture conditioning typically included applying water to the surface with a water truck. Due to cementation in the formational soil, significant quantities of oversize particles were present in the stockpile. Further, due to the high plasticity of the clay material, significant clods were present upon wetting. The material was processed in the stockpile to reduce particle/clod size by mixing using a tractor with a rotary disc
and a bushog ${ }^{2}$. In addition, one to three laborers were present to manually remove oversize particles.

4.2.2.3 In-situ Material Processing, Placement and Compaction

Soil was transported to the test pad area from the adjacent stockpile area with paddlewheel scrapers. The test pad was constructed in six lifts, each with a compacted lift height of no greater than 6 inches. Loose lift thickness was on the order of 8 inches. Moisture was added periodically with a water truck to maintain the clay's moisture content.

Each lift was compacted with approximately 16 passes using a Rex 3-35 pad foot compactor (specification sheet for compactor is provided in Appendix B-2). After placement and compaction of each lift, a series of field density test were conducted to measure the soil density and compaction (See Section 4.2.3). In order to improve the bonding between layers, the surface of each lift was scarified and wetted with the disc and bushog prior to placement of a new lift.

The surface of the test fill was graded level with a motor grader, and rolled with two passes of a single drum smooth roller. The test pad was covered in an additional lift of clay and visqueen to minimize desiccation until installation of the SDRI was initiated. The visqueen and additional lift were removed prior to construction of the SDRI.

4.2.3 Test Pad Construction - CQA Testing

Compaction and moisture content specifications for the clay test pad are as follows:
"The clay shall be compacted to at least 92 percent relative compaction. The moisture content shall be uniform and shall be 2% to 5% wet of optimum moisture content."

CQA testing was conducted on the clay test pad to control the amount of moisture in the fill, monitor the effectiveness of the compaction procedures, and to evaluate the properties of the low-permeability soil. Geosyntec performed the following tests during and after the construction of the clay test pad:

- Nuclear Density and Water Content (ASTM D 6938);
- Moisture-Density Relationship (ASTM D 1557);

[^7]
Geosyntec ${ }^{\text {D }}$
 consultants

- Sieve Analysis (ASTM D 422);
- Thin-wall, Drive Tube Density (ASTM D 2937);
- Atterberg Limits (AST D4318);
- Hydraulic Conductivity (ASTM D 5084); and
- SDRI (ASTM D 5093) (described in Section 4.4.3.4).

The required frequencies and the number of tests taken during construction of the clay test pad are listed in Table 2.

In-place field density/moisture was monitored by the nuclear gauge (ASTM D 6938) and the drive cylinder test (ASTMD 2937). Areas with failing moisture content or compaction tests were reworked or replaced. Holes from nuclear gauge or drive cylinder testing were filled with powdered bentonite.

Results obtained from the nuclear density gauge indicated that the low-permeability soil was compacted with an average moisture content of 21 percent and an average relative compaction of 94 percent. Drive cylinder test and in-place density/moisture test results are included in Appendices C-1 and C-2, respectively.

Saturated hydraulic conductivity was measured by laboratory flexible wall permeability testing (ASTM D 5084). Samples were obtained by using thin wall tubing and sent to Excel for testing. Saturated hydraulic conductivity measured in the laboratory ranged from 3×10^{-9} to $1 \times 10^{-8} \mathrm{~cm} / \mathrm{s}$. The hydraulic conductivity test results performed on the clay test pad are summarized in Table C-3 of Appendix C-1.

5. SDRI TESTING

$5.1 \quad$ Overview

A SDRI test (ASTM D-5093) was performed to evaluate the field hydraulic conductivity of the clay test pad and to provide a correlation between field and laboratory hydraulic conductivity.

The SDRI test provides a direct measurement of the vertical, one-dimensional, infiltration rate of water through soil at very low confining stresses. The SDRI apparatus includes a 2 - ft square inner ring and a 6 -ft square outer ring. This large size allows for the testing of both micro (i.e., inter-granular) and macro (i.e., through discontinuities) effects on the infiltration rate of liquid flow through a soil layer. The infiltration rate (q) is defined as the quantity of liquid entering a porous material per unit area per unit time. The hydraulic conductivity (\mathbf{k}), which is not a direct measurement from this test, is defined as the flux of liquid per unit hydraulic gradient. Derivation of equations relating infiltration rate to hydraulic conductivity is provided in Section 5.4.

5.2 Site Preparation and Equipment Installation

The SDRI was installed by Geosyntec personnel on 12 August 2008. The SDRI test apparatus consists of an open-air, square shaped, metal outer ring and a covered, square shaped, fiberglass inner ring. The outer ring measures 6 ft on a side, and 3 ft high. The inner ring measures 2 ft on each side and 10 -inches high at its peak. The outer ring was embedded in a bentonite chip filled trench to an average depth of 18 in . The inner ring was embedded in a bentonite grout filled trench to an average depth of about 3 in . Both the inner and the outer rings were then filled with water. The outer ring was filled with water to a depth of approximately 12 to 13 in ., completely submerging the inner ring. A flexible bag was attached to the inner ring with flexible Tygon tubing and barbed nylon hose fittings. The infiltration rate was measured for the $4 \mathrm{ft}^{2}$ section of the test pad soil directly underlying the inner ring. During the test, the outer ring served only as a water reservoir for inducing a uniform hydraulic head and a flow boundary to produce onedimensional vertical flow beneath the inner ring. Floating panels of insulation were placed in the water reservoir to reduce evaporation. This insulation also minimized changes in water temperature. The SDRI set up is shown schematically in Figure 2.

Water-filled flexible bags were attached to the inlet port of the inner ring. The flexible bags were submerged underwater in the outer ring reservoir. This allowed the hydraulic head on the inner ring to equalize with that of the outer ring without flow between the two rings. Flow into the inner ring was measured over discrete time intervals by measuring the change in mass of the bags. The SDRI was installed 12 August 2008 and
data was collected between 13 August and 13 October 2008, when the test was terminated and the equipment was removed.

5.3 Data Collection

Geosyntec personnel collected the SDRI data during the majority of the testing period however, CWMI personnel collected data while Geosyntec was not on-site and supplied the data to Geosyntec. The data recorded included the following:

- Outer Ring Water Depth ($\mathbf{D}_{\mathbf{f}}$) - measured using a stationary scale as the depth of standing water in the outer ring,
- Water Temperature (T) - measured with a thermometer as the water temperature in the outer ring,
- Depth to the Inner Ring $\left(\mathbf{H}_{5}\right)$ - measured depth from a point on the top of the inner ring to a stationary string hung across the outer ring. This measurement evaluates swelling of the clay in test area.
- Inner Ring Infiltration ($\mathbf{M}_{\mathbf{i}} \mathbf{-} \mathbf{M}_{\boldsymbol{t}}$) - measured as the difference between initial and final weight of the water in the flexible bags for a given period of time, and
- Soil Moisture Content (MC) - measured after completion of the test for the soil column beneath the inner ring; the profile of MC vs. depth was used to estimate the depth of the wetting front.

5.3.1 Outer Ring Water Depth (D_{i})

The water depth in the outer ring ($\mathbf{D}_{\boldsymbol{f}}$) was recorded using a ruler fixed to the outer ring. The ring was filled up to 12.1 to 13.8 in . above the test fill pad surface. The depth of water was used to estimate the total hydraulic head to induce flow. Table 3 presents the measured outer ring water depths.

5.3.2 Water Temperature (T)

The temperature of the water (\mathbf{T}) was measured with a thermometer placed in the outer ring reservoir. Temperature was measured to estimate the effects of thermal expansion and contraction of the water on the infiltration rate. Water within the inner ring could expand and contract slightly with changes in temperature. As the water cools, it contracts and more water is pulled out of the flexible bags and into the space within the
inner ring; as the water warms, it expands and is pushed out of the ring into the bag. The density of water is non-linearly related to its temperature. Table 3 also presents the measured water temperatures.

Based on the field measurements, the temperature changes are considered negligible between initial and final readings. Therefore, the space within the inner ring above the test section remained relatively constant between these readings.

5.3.3 Depth to Inner Ring (\mathbf{H}_{5})

The depth to the inner ring $\left(\mathbf{H}_{\mathbf{s}}\right)$ was recorded using a ruler measuring the distance between a point on the top of the inner ring to a stationary string fastened across the outer ring. This value corresponds to the height of swell of the clay in the test area. Total swell was estimated to be greater than 3.5 inches. Table 3 presents the measured outer ring water depths.

5.3.4 Inner Ring Infiltration ($\mathbf{M}_{\mathbf{i}}-\mathbf{M}_{\mathbf{i}}$)

Flexible bags were used to measure the volume of water infiltrating through the test section underlying the inner ring. The inner ring infiltration data were collected by the following procedure for each time interval:

- flexible bags were filled with water and their valves were closed. The exterior of the bags were then dried and weighed to the nearest tenth of a gram ($\mathbf{M}_{\mathbf{i}}$);
- each bag was submerged in the outer ring with the valves still closed;
- each time interval for infiltration monitoring was started by attaching the flexible bags to the inner ring inlet tube connected to the lower flow port and the valves opened; the date and time was recorded;
- each time interval for infiltration was ended by closing the valve on the flexible bag, disconnecting the bag from the inner ring inlet tubing, and recording the date and time;
- the use of multiple bags allowed for the beginning of one interval to be concurrent with the end of the previous interval as a full bag was swapped out for partially emptied bag;
- the flexible tubing was secured so that it remained submerged; and
- the flexible bags were removed from the outer ring reservoir, dried, and weighed to the nearest tenth of a gram $\left(\mathbf{M}_{\mathrm{f}}\right)$;

The volume of water infiltrating the test section during a particular time interval was computed by subtracting the final bag mass from the initial bag mass (i.e., $\mathbf{M}_{\mathbf{r}}-\mathbf{M}_{\mathbf{i}}$). Table 3 presents the measured masses of the bags.

5.3.5 Soil Moisture Content (MC)

At the end of the test, the soil moisture profile was evaluated by taking soil samples from below the inner ring. The water from within the inner and outer rings was first evacuated and the inner ring removed to allow sampling of the test section soil.

Soil samples were obtained by cutting 6 -in by 6 -in block samples with 0.1 foot and 0.2 foot thicknesses down to a maximum depth of 2 feet (24 inches) below the surface. Each 0.1 ft or 0.2 ft . interval was placed in a sealed plastic bag to preserve the in-situ moisture content. The soil moisture content was tested in the laboratory in accordance with ASTM D 2216. Results of the moisture content tests are discussed in Section 5.5.2 and are presented in Appendix D.

5.4 Theory

The seepage of water into the test area is driven by the hydraulic gradient caused by the ponded water and high capillary suction of the partially saturated clay (as opposed to fully saturated conditions associated with laboratory tests).

The saturated hydraulic conductivity can be computed using a form of Darcy's Law which includes terms for the total hydraulic gradient. The governing equation that describes the infiltration of water through the compacted clay is developed below, based on the terms and sign convention in Figure 2.

$$
\begin{equation*}
q=-k i=-k \frac{\Delta h}{\Delta L} \tag{1}
\end{equation*}
$$

Where,
$\mathrm{q}=$ infiltration rate per unit area and time (L / T)
$\mathrm{k}=$ saturated hydraulic conductivity (L / T)
$\frac{\Delta h}{\Delta L}=$ total hydraulic gradient (L / L), or i
$\Delta h=h_{1}-h_{2}$
$\Delta \mathrm{L}=\mathrm{z}_{1}-\mathrm{z}_{2}$
h = Total Head
$\mathrm{h}=\mathrm{z}+\varphi$
$z=$ elevation head
consultants
$\varphi=$ pressure head due to hydraulic head or soil suction/tension

$$
\begin{equation*}
q=-k\left[\frac{\left(z_{1}+\varphi_{1}\right)-\left(z_{2}+\varphi_{2}\right)}{\left(z_{1}-z_{2}\right)}\right] \tag{2}
\end{equation*}
$$

For any given wetting front, $L_{f}=z_{1}-z_{2}$. Substituting this into Equation (2), the infiltration rate at any wetting front is calculated as:

$$
\begin{equation*}
q=-k\left[\frac{\varphi_{1}}{L_{f}}-\frac{\varphi_{2}}{L_{f}}+1\right] \tag{3}
\end{equation*}
$$

As shown in Figure 2, at Point 1 , the pressure head is equal to the depth of water in the outer ring, D_{f}, with soil suction/tension equal to zero (i.e., the soil is saturated). At Point 1 , the pressure head is $\mathrm{D}_{\mathrm{f}}=\varphi_{1}$. Also, since the clay fill is unsaturated below the wetting front, the in situ pressure head at Point 2 will be equal to the soil suction and negative in sign convention, and can be designated simply at φ, i.e., $\varphi=-\varphi_{2}$. Substituting into Equation (3):

$$
\begin{equation*}
q=-k\left\lfloor\frac{D_{f}}{L_{f}}+\frac{\varphi}{L_{f}}+1\right] \tag{4}
\end{equation*}
$$

Equation (4) is time dependent. That is, the infiltration flow rate per unit area (q) and the depth of the wetting front $\left(\mathbf{L}_{\mathbf{f}}\right)$ are interrelated and vary with time. As the wetting front advances, Equation 4 can be rearranged to calculate hydraulic conductivity as the infiltration rate appears to stabilize from daily readings:

$$
\begin{equation*}
k=-\frac{q}{\frac{D_{f}}{L_{f}}+\frac{\varphi}{L_{f}}+1} \tag{5}
\end{equation*}
$$

Equation 5 was used to calculate the hydraulic conductivity of the compacted clay liner. Results of the test are presented below in Section 5.5.

5.5 Results

5.5.1 Infiltration Rate

The infiltration rate per unit area (\mathbf{q}) is calculated as the total water lost during a measured time increment. The calculated infiltration rate (\mathbf{q}) is presented in Table 3. The infiltration rate at the end of the test was measured at $8 \times 10^{-7} \mathrm{~cm} / \mathrm{s}$ and was observed to generally decrease over time (see Figure 3).

5.5.2 Wetting Front

The conventional method to estimate the depth to the wetting front $\left(\mathbf{D}_{f}\right)$ at the end of the test requires obtaining moisture content samples along a vertical column of soil below the inner ring. The moisture profile with depth is then compared against the saturation line and the original moisture content to estimate the depth of the wetting front.

Geosyntec collected moisture samples at 0.1 to 0.2 feet increments along two moisture columns. Figure 4 presents a plot of this moisture content versus depth. As shown in Figure 4, the moisture content decreases with depth as would be expected when significant swelling of the clay occurs ${ }^{3}$. Based on the results of the moisture content testing and visual observation of the soil upon excavation ${ }^{4}$, the wetting front $\left(\mathbf{L}_{f}\right)$ is estimated to be approximately 1.4 feet (17 inches). At a depth of approximately 1.9 feet (23 inches), the moisture content of the soil beneath the inner ring is equivalent to the as-compacted conditions. The soil between depths of 1.4 feet and 1.9 feet represent an area where increased moisture content, but not saturated, due to soil suction.

5.5.3 Soil Suction

Soil suction was not directly measured as part of this field work. However, lysimeters installed as part of the SDRI constructed for development of Phase I/II of Landfill B-18 (ESI, 1992) measured a soil suction of 280 inches of pressure with tensiometers in unsaturated soil below the SDRI inner ring.

Geosyntec developed a soil-moisture characteristic curve for the soil at the wetting front, relating the volumetric water content of the soil to the suction head, using the van Genuchten function (van Genuchten, 1980). The van Genuchten curve-fitting parameters used in the function were back-calculated from the water retention parameters recommended in the Hydraulic Evaluation of Landfill Performance (HELP) model documentation (Schroeder et al. 1994) for moderately compacted clays of high plasticity. Based on the moisture content measured in the laboratory for the soil just below the wetting front, the soil-moisture characteristic curve results in an unsaturated soil suction of approximately 33 feet (396 inches). This value is on the same order of magnitude with the suction pressures measured in the field during previous

[^8]investigations. For use in these calculations, Geosyntec has assumed a soil suction of 280 inches (23 feet) consistent with that previously monitored at the site.

5.5.4 Hydraulic Conductivity

Using Equation 5, the hydraulic conductivity is calculated using the data from the last testing interval, as follows:

$$
k=-\frac{q}{\frac{D_{f}}{L_{f}}+\frac{\varphi}{L_{f}}+1}=\frac{7.6 \times 10^{-7} \mathrm{~cm} / \mathrm{s}}{\frac{12.5}{17}+\frac{280}{17}+1}=4.2 \times 10^{-8} \mathrm{~cm} / \mathrm{s}
$$

The results of this test indicate that the field hydraulic conductivity of the Pecten claystone, when compacted to the specifications presented in Appendix A, meet the hydraulic conductivity requirements of a compacted clay liner as outlined in Section 1.2.

5.5.5 Laboratory Data and Comparison to Field Data

As discussed in Section 4.2.3, Geosyntec tested the hydraulic conductivity of 10 samples collected using 3 -inch diameter thin-wall Shelby tubes from the test pad area. These samples were tested at a minimum confining pressure of 2 psi . The average hydraulic conductivity of the laboratory testing on the test pad samples is approximately $5.1 \times 10^{-9} \mathrm{~cm} / \mathrm{s}$ (see Appendix C).

The field test results are approximately one order of magnitude higher than laboratory results. These differences are expected and may be attributed to the unrestrained swelling of the clay which occurs during field testing when compared to laboratory results which have small consolidation pressures preventing some of the swelling. The low hydraulic conductivity measured in the laboratory is a function of the consolidation pressure used in the test to prevent swelling.

By comparing laboratory and field hydraulic conductivity testing, the following correlation factor $\left(\mathrm{CF}_{\mathrm{k}}\right)$ is calculated:

$$
C F_{k}=\frac{k_{\text {field }}}{k_{\text {lab }}}=\frac{4.2 \times 10^{-8} \mathrm{~cm} / \mathrm{s}}{5.1 \times 10^{-9} \mathrm{~cm} / \mathrm{s}}=8.2
$$

Geosyntec ${ }^{\text {D }}$
 consultants

Therefore, during future construction a correlation factor of 8.2 should be applied against laboratory test results to estimate field hydraulic conductivity of the CCL.

Geosyntec ${ }^{\text {D }}$
 consultants

6. SUMMARY AND CONCLUSIONS

Excavation and stockpiling of clay from the Pecten Claystone, as well as test pad construction, was performed in general accordance with the requirements presented in Appendix A. The excavated clay was classified as a fat clay (CH) with more than 30 percent of the material, by weight, passing the No. 200 sieve. This material, when tested in the both the laboratory and field, has a hydraulic conductivity no greater than $1 \times 10^{-7} \mathrm{~cm} / \mathrm{s}$. Therefore, this material meets the requirements of a CCL as defined by 40 CFR $\S 264.301$ and CCR Title $23 \S 2541$. Further, this material is similar to the material previously used as CCL for Landfill B-18 at the Kettleman Hills Facility (see Table 4).

During future construction a correlation factor of 8.2 should be applied against laboratory test results to estimate field hydraulic conductivity of the CCL.

REFERENCES

Environmental Construction Services (ECS), 1991, "Clay Source Report, Landfill B-18, Phases IA and IB, Kettleman Hills Facility, Kettleman City, California, Prepared for Chemical Waste Management, Inc.., 25 November 1991.

Environmental Solutions, Inc. (ESI), 1992, "Test Fill and Infiltrometer Test Results, Landfill B-18 Phases I and II and Final Closure," Prepared for Chemical Waste Management, Inc., 23 January 1992.

Geosyntec Consultants (2007), "Construction Quality Assurance (CQA) Plan for Landfill B-17, Phase A1, Kettleman Hills Facility, Kings County, California," Prepared for Chemical Waste Management, Inc., July 2007.

Geosyntec Consultants (2008), "Technical Specifications for Landfill B-17, Phase A1, Kettleman Hills Facility, Kings County, California," Prepared for Chemical Waste Management, Inc., January 2008.

Golder Construction Services (GSC), 1993, "Landfill B-18, Phases IIA and IIB Construction Reports Volume 1 - Clay Liner Source Report," Prepared for Chemical Waste Management, Inc., May 1993.

Schroeder, P.R., Lloyd, C.M., and Zappi, P.A., 1994, "The hydrologic evaluation of landfill performance (HELP) model, user's guide for version 3," U.S. Environmental Protection Agency, Office of Research and Development, Washington, D.C., Report No. EPA/600/R-94/168a.

Van Genuchten, M. T., 1980, 'A closed form equation for predicting the hydraulic conductivity of unsaturated soils," Soil Science Society of America Journal, 44, 892-898.

Geosyntec ${ }^{\circ}$
consultants

TABLE 1
CLAY STOCKPILE TESTING FREQUENCIES

Test	ASTM Standard	Required Frequency	Number of Tests	Actual Frequency 1
Moisture-Density Relationship	ASTM D 1557	1 per $5,000 \mathrm{CY}$	7	1 per 3,371 CY
Sieve Analysis	ASTM D 422	1 per 5,000 CY	7	1 per 3,371 CY
Atterberg Limits	ASTM D 4318	1 per $5,000 \mathrm{CY}$	7	1 per 3,371 CY
Hydraulic Conductivity	ASTM D 5094	1 per $5,000 \mathrm{CY}$	7	1 per 3,371 CY

Notes

1. Based on approximately 23,600 cy of clay material stockpiled.

TABLE 2
CLAY TEST PAD TESTING FREQUENCIES

Test	ASTM Standard	Required Number of Tests	Number of Tests
Bulk Samples:			
Moisture-Density Relationship	ASTM D 1557	3	3
In-Situ Density/Moisture:			
Nuclear Density	ASTM 6938	5 per lift	40 (min 5 per lift)
Shelby Tube Samples:			
Sieve Analysis	ASTM D 422	6	6
Density	ASTM D 2937	6	10
Atterberg Limits	ASTM D 4318	6	10
Hydraulic Conductivity	ASTM D 5094	6	10

Ceosyntec consultants

Date	Time	Water Level, Df (in)	Water Temp. (${ }^{\circ} \mathrm{F}$)	Rain?	Inner Ring Height, Hs (in)	Initial (full) Bag Mass (grams)		Final (empty) Bag Mass (grams)		Elapsed Time (hours)	$\begin{gathered} \text { Flow } \\ \mathrm{Q}\left(\mathrm{~cm}^{3} / \mathrm{s}\right) \end{gathered}$	Infiltration Rate $\mathrm{q}(\mathrm{cm} / \mathrm{s})$
8/13/2008	8:00	12.75	76	N		1485.1	0					
8/14/2008	8:04	12.75	80	N		1618.7	0	175.6	0	24.07		
8/14/2008	12:54	12.75	82	N		2023.3	1865.1	179	0	28.90		
8/15/2008	8:34	12.75	84	N	9.8	0	1885.1	?	1703.1	48.57		
8/16/2008	7:40	12.63	84	N	9.6	2167.8	2049.5	203.9	189.3	71.67		
8/17/2008	8:50	12.50	86	N	9.4	1914.6	1834.5	256.2	854.7	96.83	0.0343	9.2E-06
8/18/2008	8:27	12.44	84	N	9.2	2272.4	1944.1	462.8	548.9	120.45	0.0322	8.7E-06
8/19/2008	7:55	12.38	83	N	9.0	2110.8	1740.5	638.7	958.9	143.92	0.0310	8.3E-06
8/20/2008	8:07	12.25	81	N	8.8	1848.3	1852.2	1600.7	318.2	168.12	0.0222	6.0E-06
8/21/2008	8:10	12.25	82	N	8.6	2099.7	2137.4	621.8	1581	192.17	0.0173	4.7E-06
8/22/2008	8:03	12.38	82	N	8.5	2031	2056.7	2012.4	940.7	216.05	0.0149	4.0E-06
8/23/2008	8:18	12.25	82	N	8.4	2014.8	2074	1169.2	1666.4	240.30	0.0143	3.9E-06
8/25/2008	8:32	12.13	84	N	8.3	1984.6	1998.5	393.9	1554.6	288.53	0.01233	3.3E-06
8/26/2008	7:02	13.25	84	N	8.2	1956.3	1978	1126.4	1784.4	311.03	0.01324	3.6E-06
8/27/2008	8:09	13.13	84	N	8.1	2035	2032.4	1070.2	1802.9	336.15	0.01174	3.2E-06
8/29/2008	8: 12	13	86	N	7.9	2027.3		2079.2	1204.6	384.20	0.00453	*See Note
8/30/2008	8:49	12.9375	88	N	7.8	2018.6		968.3		408.82	0.01 t95	3.2E-06
8/31/2008	8:37	12.9375	86	N	7.7	2057.4	1804.4	1076.2		432.62	0.01 t00	3.0E-06
9/2/2008	8:57	12.75	80	N	7.6	2088.4		907.9	748.1	480.95	0.013	3.4E-06
9/3/2008	9:11	12.628	80	N	7.5	2078.2		1027.9		505.18	0.012	3.3E-06
9/4/2008	8:15	12.5	81	N	7.5	2119.4		1191.4		528.25	0.011	2.9E-06
9/5/2008	9:05	13.8	82	N	7.4	2220.5	2297.6	1 t31.3		553.08	0.011	3.0E-06
9/8/2008	8:30	13.7	85	N	7.2	2098.5		2013.2	909	624.50	0.00621	1.7E-06
9/9/2008	8:30	13.5	84	N	7.2	2227.8				648.50		
9/10/2008	8:35	13.5	82	N	7.1	2226.6		1625.7		672.58	0.00694	1.9E-06
9/11/2008	8:25	13.1	80	N	7.1	4262.8	2329.8	1761.4		696.42	0.005	1.5E-06
9/15/2008	10:10	13.313	82	N	7	2246.4		3730.2	1466	794.17	0.004	1.1E-06

Date	Time	Water Level, Df (in)	Water Temp. (${ }^{\circ} \mathrm{F}$)	Rain?	Inner Ring Height, Hs (in)	Initial (full) Bag Mass (grams)		$\begin{gathered} \text { Final (empty) } \\ \text { Bag Mass } \\ \text { (grams) } \\ \hline \end{gathered}$		Elapsed Time (hours)	$\begin{aligned} & \text { Flow } \\ & Q\left(\mathrm{~cm}^{3} / \mathrm{s}\right) \end{aligned}$	Infiltration Rate $\mathrm{q}(\mathrm{cm} / \mathrm{s})$
9/16/2008	8:20	13.25	82	N	6.9	2142.4		1788.2		816.33	0.006	1.5E-06
9/17/2008	8:35	13.125	82	N	6.9	2175.8		1718.9		840.58	0.005	1.3E-06
9/18/2008	8:06	13	79	N	6.9	2045.3		1760.4		864.10	0.005	1.3E-06
9/19/2008	8:37	13	78	N	6.9	1946.9		1663.9		888.62	0.004	1.2E-06
9/22/2008	8:31	12.75	76	N	6.8	1970		1087.7		960.52	0.003	8.9E-07
9/23/2008	8:28	12.6875	75	N	6.8	1984.6		1666.9		984.47	0.004	9.5E-07
9/24/2008	8:33	12.625	76	N	6.8	1722.2		1596.5		1008.55	0.004	1.2E-06
9/25/2008	8:10	12.375	78	N	6.7	1590.1		1498.8		1032.17	0.003	7.1E-07
9/26/2008	8:20	12.25	78	N	6.6	1498.1	1756.2	1281.2		1056.33	0.004	9.6E-07
9/29/2008	9:00	13.375	82	N	6.6	2293.3		1157.2	1410.2	1129.00	0.003	7.1E-07
9/30/2008	9:30	12.25	80	N	6.6	2284.8		1951.2		1153.50	0.004	1.0E-06
10/1/2008	9:10	12.25	82	N	6.6	2305.4		2269.8		1177.17	0.000	4.7E-08
10/2/2008	8:45	13.25	80	N	6.6	2212.1		1968.3		1200.75	0.004	1.1E-06
10/3/2008	9:30	13.25	77	N	6.5	2166.4	2237.1	1759		1225.50	0.005	$1.4 \mathrm{E}-06$
10/6/2008	9:50	13	72	N	6.5	2303.2		2161.3	1587.9	1297.83	0.003	6.8E-07
10/7/2008	8:25	13	72	N	6.4	2219.1		2161		1320.42	0.002	4.7E-07
10/8/2008	11:00	12.875	74	N	6.4	2164.5		1958.5		1347.00	0.003	7.3E-07
10/9/2008	10:30	12.75	72	N	6.4	2159.3		1731		1370.50	0.005	1.4E-06
10/10/2008	9:30	12.50	68	N	6.4	2297.5	2184.9	1810.1		1393.50	0.004	1.1E-06
10/13/2008	9:01	12.5	61	N	6.3			1915.6	1837.6	1465.02	0.003	7.6E-07
Field data fr	8/28 =Empty	108 unclear bag, data	No bag not used	weight	recorded. Data	t used.						

Geosyntec ${ }^{\text {D }}$
consultants

TABLE 4

COMPARISON OF CURRENT AND PREVIOUS LABORATORY TEST RESULTS OF PECTEN CLAYSTONE

	Soil Classification	Percent Passing No. 200 Sieve $(\%)$	LL/PI $(\%)^{2}$	Laboratory Hydraulic Conductivity ${ }^{1}$ $(\mathrm{~cm} / \mathrm{s})$
Current Investigation	CH	89 $(74-94)$	$93 / 64$	3×10^{-8} $\left(9 \times 10^{-8}\right.$ to $\left.3 \times 10^{-9}\right)$
Previous Landfill B-18 CCL Testing 3	CH	>80 $(48-94)$	$76 / 55$	8×10^{-9} $\left(2 \times 10^{-7}\right.$ to $\left.2 \times 10^{-10}\right)$

Notes:

1. First value reported is approximate average test results. Values in parentheses are ranges of data results.
2. Values reported are approximate averages.
3. Based on ECS (1991), ESI (1992), and GSC (1993).

Geosyntec ${ }^{\text {D }}$
consultants

APPENDIXA PROJECT DOCUMENTS

Geosyntec ${ }^{\text {D }}$
 consultants

APPENDIX A-1

Project Specifications - Section 02220

SECTION 02220

COMPACTED CLAY LINER

PART 1 - GENERAL

1.1 SCOPE OF WORK

A. Furnishing all labor, materials, tools, supervision, transportation, and installation equipment necessary for the construction of the Compacted Clay Liner (CCL) test pad, as specified herein, as shown on the Construction Drawings and in accordance with the Construction Quality Assurance (CQA) Plan.
B. Earthwork Contractor shall construct the CCL test pad to the elevations, lines, grades, and dimensions as shown on the Plans and described in the Specifications, unless otherwise directed by the Engineer.
C. Earthwork Contractor shall use clay from the source(s) selected by the owner.
D. The clay borrow source may contain some debris and oversize particles. The Earthwork Contractor shall remove large and easily recognizable debris. This debris must be removed prior to clay placement. Debris removal is considered part of the cost of clay placement.

1.2 RELATED SECTIONS

A. Section 02200 - Earthwork

1.3 REFERENCES

A. ASTM D422 - Standard Test Method for Particle Size Analysis of Soils
B. ASTM D854 - Standard Test Methods for Specific Gravity of Soils
C. ASTM DI140 - Standard Test Methods for Amount of Material in Soils Finer than the No. 200 Sieve.
D. ASTM D1556-Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method.
E. ASTM DI557-Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort
F. ASTM D1587 - Standard Practice for Thin-Walled Tube Geotechnical Sampling of Soils
G. ASTM D2216 - Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil, Rock, and Soil-Aggregate Mixtures.
H. ASTM D2434 - Standard Test Method for Permeability of Granular Soils (Constant Head).
I. ASTM D2487- Standard Test Method for Classification of Soils for Engineering Purposes.
J. ASTM D2922 - Standard Test Methods for Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth).
K. ASTM D3017 - Standard Test Method for Water Content of Soil and Rock in Place by Nuclear Methods (Shallow Depth).
L. ASTM D4318 - Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils.
M. ASTM D5084 - Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter.
N. ASTM D5093 - Standard Test Method for Field Measurement of Infiltration Rate Using a Double-Ring Infiltrometer with a Sealed Inner Ring
O. Landfill B-17 Phase A1, Kettleman Hills Facility, Construction Quality Assurance Plan (CQA Plan).

1.4 QUALITY ASSURANCE

A. Construction Quality Assurance (CQA) monitoring shall be the responsibility of the Owner or Owner's Representative in accordance with the approved CQA Plan.
B. Quality control testing associated with filling and compaction operations shall be performed by the Owner or Owner's Representative in compliance with the CQA Plan and this Specification. The Contractor shall assist the Owner or Owner's Representative in obtaining clay samples at the frequencies provided in the CQA Plan.
C. Contractor shall provide labor, materials (granular bentonite), and equipment (chain trencher) necessary for the installation of the QA Monitor supplied Sealed Double Ring Infiltrometer equipment in accordance with ASTM D5093.
D. Earthwork Contractor shall give advance notice of at least 24 hours to the Owner or Owner's Representative when ready for compaction testing and inspection.

PART 2 - PRODUCTS

2.1 CLAY

A. Clay at the borrow source may not meet the contract specification for moisture content. Drying and/or wetting of this material may be required prior to placement.
B. Clay shall be free of debris, rocks, gravel greater than 1 inch in any direction, and other deleterious material.
C. At least 30 percent of the material, by weight, shall pass the No. 200 sieve.
D. Acceptable soils are those meeting the requirements of ASTM D 2487 for CL, SC, or CH with a compacted field permeability of less than or equal to $1 \times 10^{-7} \mathrm{~cm} / \mathrm{sec}$.

2.3 EQUIPMENT

A. Provide equipment to excavate and transport clay from borrow source to test pad area.
B. Compaction equipment shall be of suitable mechanical type and adequate to obtain the densities specified, and shall provide satisfactory breakdown of materials to form a dense fill. Flooding or jetting methods of compaction shall not be used.
C. Locations inaccessible to heavy equipment shall be compacted by means of manually controlled pneumatic or vibrating tampers or by approved equivalent methods to achieve specified densities.
D. Compaction equipment shall be operated in strict accordance with the manufacturer's instructions and recommendations. Equipment shall be maintained in such condition that it shall deliver the manufacturer's rated compactive effort. If inadequate relative compaction is obtained, the Earthwork Contractor shall provide larger and/or different types of additional equipment at no additional cost. Hand-operated equipment shall be capable of achieving the specified densities.
E. Operate compaction equipment in strict accordance with the manufacturer's instructions and recommendations. If inadequate densities are obtained, provide larger and/or different types of additional equipment at no cost to the Owner.
F. Provide water application equipment free of leaks and equipped with a distributor bar or other accepted device to ensure uniform application.
G. Provide processing equipment suitable for providing a material that has a uniform moisture content.
H. On-site water source shall be made available for the EARTHWORK CONTRACTOR for the work included in this Section. The water source is located approximately 1.25 miles north of the project area and shall be identified in the prebid meeting at the site.

PART 3 - EXECUTION

3.1 GENERAL

The Earthwork Contractor shall:
A. Verify that the survey control system is installed and properly protected from construction operations prior to all earthwork, including clay placement.
B. Fill and compact all holes and other depressions prior to placement of clay.
C. Maintain surface of clay at minimum 2 percent grades for drainage.
D. Material incorporated into clay, determined by the Owner or Owner's Representative to be in violation of Specification requirements, shall be removed by the Earthwork Contractor at the Earthwork Contractor's expense.

3.2 TEST PAD CONSTRUCTION

A. Fill and compact all holes and other depressions prior to placement of clay.
B. Test pad area shall be cleared and grubbed.
C. Construct a test pad on the prepared subgrade. Surface of the test pad subgrade shall be proof-rolled to eliminate soft zones, irregularities, and abrupt changes in grade. Slope the finished subgrade surface at a grade of approximately 2 to 3 percent. No standing water or excessive moisture is allowed to accumulate on the surface of the subgrade.
D. The test pad shall be 50 feet long, 50 feet wide, and 3.5 feet deep. Some of the techniques to be monitored include: moisture conditioning, clod removal, scarification between lifts, number of equipment passes, lift thicknesses, and compactive effort.
E. The Earthwork Contractor will be responsible for verification that material that does not meet the Specifications is removed from the clay prior to placement.
F. Material incorporated into clay, determined by the Owner or Owner's Representative to be in violation of Specification requirements, shall be removed by the Earthwork Contractor at the Earthwork Contractor's expense.
G. Contractor shall breakdown claystone materials as necessary to meet maximum particle size requirements.
H. The clay material shall be compacted to at least 92 percent relative compaction. The moisture content shall be uniform and shall be 2% to 5% wet of the optimum moisture content.
I. Clay material shall be compacted in lifts with a compacted thickness of no greater than 6 inches.
J. Maintain surface of clay at minimum 2 percent grades for drainage.
K. Earthwork Contractor shall take adequate measurements to prevent moisture loss from the CCL.
L. Placement of successive clay layers shall not begin until the Owner or Owner's Representative has accepted the previous layer. Any damage to the previous layer or deterioration subsequent to acceptance shail be repaired by the Earthwork Contractor to the satisfaction of the Owner or Owner's Representative at the expense of the Earthwork Contractor.
M. Earthwork Contractor shall scarify the top of each lift and correct moisture content prior to placement of overlying lift.
N. Clay shall not be placed and compacted if the ambient air temperature drops below $32^{\circ} \mathrm{F}$.
O. Earthwork Contractor shall seal the last and uppermost layer of CCL, after achieving the compaction requirements, with two passes of a single drum smooth roller.
P. Where test results indicate that the lift thickness, maximum particle size, in-place density/moisture content and or permeability of any portion of the clay does not meet the specified requirements, that particular portion shall be re-tested by the Owner or Owner's Representative and/or re-worked or replaced by the Earthwork Contractor at his expense until the required condition has been attained and the resulting product meets or exceeds the Specification requirements. No additional fill shall be placed over an area until the existing fill has been tested horizontally and vertically and determined by the Owner or Owner's Representative to meet the Compacted Clay Liner Specifications of this document.
Q. Assist the QA Monitor in obtaining cylinder push samples of the test fill per ASTM D1587 for laboratory permeability testing. These samples will be used to correlate field to laboratory permeability results.
R. Provide equipment and personnel to assist the QA Monitor in installing the Double Ring Infiltrometer per ASTM D 5093. The Infiltrometer has a 6 -foot square outer ring and a 2 -foot square inner ring. It is assumed that the assistance will require two laborers for one working day. Equipment needed includes:
a. grout mixer
b. $\quad 2050-\mathrm{lb}$ bags of bentonite grout (Volclay or similar)
c. wheelbarrow and shovels for placing grout in trenches
d. 1200 gallons of potable water for test
S. Keep personnel and equipment away from test area while test in running (estimated to be six weeks).

3.3 FIELD QUALITY CONTROL

A. The minimum frequency and details of quality assurance testing are provided in the CQA Plan. The Earthwork Contractor shall be aware of all field quality assurance requirements and activities, and shall incorporate these into his schedule.
B. All test holes, pits or other perforations resulting from testing of soils shall be filled with soil compacted to the satisfaction of the Owner or Owner's Representative.
C. If a defective area is discovered in the earthwork, the Owner or Owner's Representative will determine the extent and nature of the defect by performing additional tests, observations, a review of records, or other means that the Owner or Owner's Representative deems appropriate.
D. After the Owner or Owner's Representative determines the extent and nature of a defect, the Earthwork Contractor shall correct the deficiency at his expense to the satisfaction of the Owner or Owner's Representative.
E. Additional testing will be performed to verify that the defect has been corrected before the Earthwork Contractor performs any additional work in the area of the deficiency.
F. The Owner or Owner's Representative will determine in-place density and moisture content by any one or combination of the following methods: ASTM D1556, D2922, D2216, D3017, or other methods selected by the Owner or Owner's Representative. The Earthwork Contractor shall cooperate with this testing work by leveling small test areas designated by the Owner or Owner's

Representative. Backfilling of test areas shall be at Earthwork Contractor's sole expense. The frequency and location of testing shall be determined solely by the Owner or Owner's Representative. The Owner or Owner's Representative may test any lift of fill at any time, location, or elevation.
END OF SECTION 02220

Geosyntec ${ }^{\triangleright}$

consultants

APPENDIX A-1

 CQA Plan - Addendum 1
LANDFILL B-17 PHASE A1
 KETTLEMAN HILLS FACILITY
 CONSTRUCTION QUALITY ASSURANCE PLAN

ADDENDUM NO. 1

1.1 Clay Liner Excavation

- Monitor that limits of borrow area are staked before work.
- Monitor that borrow area is cleared and grubbed prior to excavation.
- Visually observe excavated material for consistency with specifications.
- Monitor that upper 2 vertical feet of excavated material and material not meeting clay material specifications is stockpiled in general fill stockpile.
- Sample excavated material at a frequency of one sample per $5,000 \mathrm{cy}$ of material excavated and perform the following laboratory tests:
- Moisture-Density Relationship (ASTM D1557)
- Sieve Analysis (ASTM D422)
- Atterberg Limits (ASTM D4318)
- Hydraulic Conductivity (ASTM D5094), remolded sample, compacted at a minimum of 90% relative compaction and at $+2 \%$ optimum moisture content per ASTM D1557, at confining stress of 2 psi.

1.2 Clay Liner Test Pad

A compacted clay test pad will be constructed to evaluate the excavated material's performance as a compacted clay liner with a maximum hydraulic conductivity of 1×10^{-7} $\mathrm{cm} / \mathrm{sec}$.

- Monitor that limits of borrow area are staked before work.
- Determine correlation between number of passes with compaction equipment and relative density.
- Document equipment used to construct test pad.
- Monitor that clay material meets the particle size requirements in the project specifications (1 -inch maximum).
- Monitor that material is placed in lifts with a compacted thickness no greater than 6 inches.
- Monitor that moisture content is uniform and meets the project specifications.
- Document number of passes for each lift.
- Perform nuclear density tests (ASTM D2922 and D3017) at a frequency of five tests per lift being placed.
- Collect a minimum of three bulk samples to be tested for Moisture-Density Relationship (ASTM D1557)
- Collect a minimum of six in-situ samples using thin-wall samplers (Shelby Tubes) from the completed compacted clay to be tested for the following:
- Sieve Analysis (ASTM D422)
- Density (ASTM D2937)
- Atterberg Limits (ASTM D4318)
- Hydraulic Conductivity (ASTM D5094)

Geosyntec ${ }^{\text {D }}$
consultants

APPENDIX B CONSTRUCTION DOCUMENTATION

Geosyntec ${ }^{\text {D }}$
consultants

APPENDIX B-1
Photo Log

Photo No.:	2	Date:	$07-31-08$
Photographer:	David Williams		
Subject:	Documenting FDT on clay test pad		
Project:	Kettleman Hills Facility	City/State:	Kings County, California

Photo No.:	3	Date:	$08-07-08$
Photographer:	Jane Soule		
Subject:	Compaction of clay test pad with REX 3-35		
Project:	Kettleman Hills Facility	City/State:	Kings County, California

Photo No.:	4	Date:	$08-07-08$
Photographer:	Jane Soule		
Subject:	Preparing to take Shelby tube samples on final clay test pad lift		
Project:	Kettleman Hills Facility	City/State:	Kings County, Califomia

Photo No.:	5	Date:	08-12-08			
Photographer:	David Williams					
Subject:	Removal of visqueen layer used to maintain moisture of clay test pad prior to SDRI installation					
Project:	Kettleman Hills Facility				City/State:	Kings County, California

Photo No::	6	Date:	$08-12-08$
Photographer:	David Williams		
Subject:	SDRI Installation, cutting trench for inner ring		
Project:	Kettleman Hills Facility	City/State:	Kings County, California

Photo No.:	7	Date:	$08-12-08$					
Photographer:	David Williams							
Subject:	SDRI Installation, inner ring in place							
Project:	Kettleman Hills Facility	City/State:	Kings County, California					

Photo No.:	8	Date:	$08-12-08$
Photographer:	David Williams		
Subject:	SDRI Installation, filling outer ring with water		
Project:	Kettleman Hills Facility	City/State:	Kings County, California

Photo No.:	9	Date:	$08-12-08$
Photographer:	David Williams		
Subject:	SDRI installation complete		
Project:	Kettleman Hills Facility	City/State:	Kings County, California

Photo No.:	10	Date:	$08-27-08$
Photographer:	Jane Soule		
Subject:	SDRI during monitoring with insulating cover.		
Project:	Kettleman Hills Facility	City/State:	Kings County, California

Photo No.:	11	Date:	10-13-08
Photographer:	Jane Soule		
Subject:	SDRI Setup, showing measurement of depth of water \& thermometer, string used to evaluate swell (depth to top of inner ring).		
Project:	Kettleman Hills Facility	City/State:	Kings County, California

Photo No.:	12	Date:	10-13-08
Photographer:	Jane Soule		
Subject:	Edge of outer ring, showing extensive swell of clay (beyond that of bentonite installed along seam), after draining of water.	City/State:	Kings County, Califomia
Project:	Kettleman Hills Facility		

Photo No.:	13	Date:	10-13-08
Photographer:	Jane Soule		
Subject:	SDRI removal, stakes placed on ground surfaces to show extent of swell (approximately 5-6 inches)		
Project:	Kettleman Hills Facility	City/State:	Kings County, California

Photo No.:	14	Date:	$10-13-08$
Photographer:	Jane Soule		
Subject:	Excavation of trench around SDRI for removal		
Project:	Kettleman Hills Facility Landfill B-17, Phase A1	City/State:	Kings County, California

Photo No.:	15	Date:	$10-13-08$
Photographer:	Mike Minch		
Subject:	Sampling of soil for moisture content testing from inner ring area		
Project:	Kettleman Hills Facility	City/State:	Kings County, California

Photo No.:	16	Date:	$10-13-08$
Photographer:	Jane Soule		
Subject:	Excavated trench within inner ring area, significant moisture evident to depth of 1.3-1.4 feet, increase in moisture from as-compacted condition evident to depth of 1.8 to 1.9 feet.		
Project:	Kettleman Hills Facility	City/State:	Kings County, California

Geosyntec ${ }^{\text {D }}$
 consultants

APPENDIX B-2
Compaction Equipment Specification Sheet

ENGINE
Model 6V53 Detroit Diesel, 185 H:P. @ 2500 RPM, variable speed governor, $22^{\prime \prime}$ (559 mm) blower type fan, two stage dry type replaceable element air cleaner with service indicator, fuel and oil filters.

TRANSMISSION AND TORQUE CONVERTER

Clark C-28000 series 3 -speed forward and reverse power shift matched to a Clark C-270 series converter. Speeds:
1st-3.75; 2nd-7.25; 3rd-10.5.

DRIVE

3-Wheel configuration for effective full width compaction and stability. all wheels drive. No Spin front differential; Mechanical driveline with eavy duty universals.

AXLES AND WHEELS

Clark 33810 series heavy duty axles front and wear. Wheels: Open ring segmented pad type, $3^{\prime \prime} \times 5^{\prime \prime}(76.2 \mathrm{~mm} \times 127 \mathrm{~mm}$) pads with raker bars.

STEERING

Articulated front steer actuated by two hydraulic rams. Inside türning radius; 11'3' (3429 mm): Outside turning radius; $22^{\prime} 6^{\prime \prime}$ (6858 mm).

BRAKES
Hydraulically operated, multiple disc service כrakes running in oil.

Mechanically operated multiple disc parking brake.

SHOCK PROTECTION AND SHELDING

Rear axle is shock absorber mounted. All wheels equipped with rubber cushions mounted between outer ring and inner ring to reduce shock and eliminate metal-to-metal contact. Fenders, guards, and railings designed for maximum operator protection. Engine compartment protected by heavy gauge hood which opens fully with spring assist

BLADE

9^{\prime} Wide. Large full width blade. Hydraulically operated with up, down, and float positions. Blade raise above grade: $34^{\prime \prime}(864 \mathrm{~mm})$; Blade down below grade: 4" (102 mm).

ELECTRICAL

12 Volt system, 62 amp alternator. voltage regulator, starter. emergency and service shutoff.

HYDRAULICS

A fully filtered system with service indicator, gear type pump, and spool valves

LIGHTS

Two front, two rear.

GAUGES

Ammeter, engine oil pressure, transmission temperature and

pressure, water temperature, hour meter, fuel, air cleaner service indicator, and tachometer.

OPERATOR CONTROLS

 \& POSITIONINGSide facing, four way adjustable seating for full visibility front and rear. Travel direction and range and blade positioning hand controls. Braking and travel speed pedal controls. All located for operator comfort.
Operaling weight less
ROPS . . . 36,000\# (16330 KG)
Operating weight with
ROPS . . 37,500\# (17010 KG)

COMPACTIVE EFFORT
 343 PSI ($24.11 \mathrm{KG} / \mathrm{cm}^{2}$)

CAPACITIES

Fuel 125 gal. (473 liters), hydraulic system 55 gal. (208 liters),
cooling system 13 gal. (49 liters). transmission and torque converter 8.5 gal . (32 liters), engine crankcase 4 gal. (15 liters), wheel ends 16 pts. (7.5 liters) ea. differential 34 pts. (16 liters) ea.

OPTIONS

1. Enclosed cab with built in ROPS, windshield wipers, front and rear tinted glass, dome light, lockable doors
2. Open ROPS
3. Heater and defroster fan -
4. Air conditioning
5. Cold weather starting kit

MOT 3 We reserve the right to amend these specifications at any time without notice
The only warranty applicable is our standard written warranty. We make no other warranty, expreased or impled.

PO. Box 2037
Milwaukee, Wisconsiri 5320t
TELEX 26-9576
International Offices: Milwaukee, Bogota, Miami, Athens, Sirigapore, Paris
Distributors in all principal cties of the worid

MXONEOLEMRMMETE Mocio Gin

APPENDIX C
 CLAY STOCKPILE AND TEST PAD RESULTS

APPENDIX C-1

Laboratory Test Summary Table and Results
TABLE C-1
SUAMMARY OF GEOTECHNICAL LABORATORY TEST RESULTS
KETTLEMAN HILLS FACILITY, KINGS COUNTY, CALIFORNIA

Site Sample No.	Date Sampled	Source	Atterberg Limits			Soil Classification (ASTM D 2487)	Fines Content$\%<\# 200$ Sieve	Natural Moisture Content\%\qquad	Laboratory		Permeability (ASTM D5084)		
			LL \%	PL	P1				Maximum Dry Density $\mathrm{lb} / \mathrm{Ht}^{3}$	Optimum Moisture $\%$	Dry Unit Weight $\mathrm{lb} / \mathrm{ft}^{3}$	Moisture Content $\%$	Hydraulic Conductivity cm / s
CL-1	$07 / 16 / 08$	Clay stockpile	95	33	62	CH	87.4	15.3	111.0	17.3	99.1	19.1	9.3E-08
CL-2	07124/08	Clay stockpile	61	23	38	CH	73.8	8.1	119.7	12.5	107.6	14.7	$6.3 \mathrm{E}-08$
CL-3	07124/08	Clay slockpile	110	41	69	CH	93.5	22.6	106.0	18.0	96.9	20.1	4.0E-08
CL-4	07/27/08	Clay stockpile	88	27	61	CH	90.7	12.4	111.9	15.4	103.0	17.2	4.9E-08
CL-5	07127/08	Clay test pad							113.6	16.0			
CL-6	07131/08	Clay tesi pad	92	21	71						105.6	18.4	5.3E-09
CL-7	07131/08	Clay test pad	90	23	67						100.0	20.6	3.6E-09
CL-8	07/31/08	Clay test pad	88	27	61						103.1	20.9	$1.0 \mathrm{E}-08$
$\mathrm{CL}-9$	07131/08	Clay test pad	88	29	59						104.6	21.2	3.1E-09
CL-10	08/03/08	Clay test pad							113.1	17.9			
CL-11	08/03/08	Clay stockpile	94	30	64	CH	89.8	16.2	112.8	16.6	103.5	18.3	2.3E-08
CL-12	08/04/08	Test Pad/ FDT 5						20.4					
CL-13	08/04/08	Test Pad / FDT 8						18.9					
CL-14	08/04/08	Test Pad/ FDT 14						20.6					
CL-15	08/07/08	Clay test pad							140.0	17.4			
Cl-16	08/07/08	Clay tesipad	98	31	67	CH	89.5	19.2			103.3	19.2	$9.0 \mathrm{E}-09$
CL-17	08/07/08	Clay test pad	99	30	69	CH	87.8	18.4			109.4	17.7	2.6E-09
CL-18	08/07/08	Clay test pad	95	27	68	CH	90.3	18.7			105.1	19.5	5.8E-09
CL-19	08107/08	Clay test pad	98	32	66	CH	91.2	17.7			109.0	18.3	4.4E-09
CL-20	08/07/08	Clay tesi pad	95	28	67	CH	93.6	20			109.3	18.0	4.7E-09
CL-21	08/07/08	Clay tesi pad	103	29	74	CH	91.4	18.5			108.4	18.7	2.7E-09
CL-22	08/08/08	Clay stockpile	98	32	66	CH	87.2	15.7	107.4	18.1	98.7	20.3	5.8E-08
CL-23	08/11/08	Clay stockpile	89	27	62	CH	85.8	9.9	112.1	15.2	103.0	17.4	$6.4 \mathrm{E}-08$

$\begin{aligned} \text { FDT } & =\text { Field Density Test } \\ \mathrm{L} & =\text { Lift Number }\end{aligned}$
SUMMARY OF GEOTECHNICAL LABORATORY TEST RESULTS - STOCKPILE SAMPLES
CLAY SOURCE TESTING - PECTEN CLAYSTONE

TABLE C-3
SUMMARY OF GEOTECHNICAL LABORATORY TE
SUMMARY OF GEOTECHNHCAL LABORATORY TEST RESULTS - TEST PAD SAMPLES CLAY SOURCE TESTING - PECTEN CLAYSTONE
KETTLENAN HILLS FACILITY, KINGS COUNTY, CALIFO

Site Sample No.	Date Sampled	Source	Atterberg Limits			Soil Classification (ASTM D 2487)	$\begin{gathered} \text { Fines Content } \\ \%<\# 200 \\ \text { Sieve } \end{gathered}$	Natural Moisture Content \%\qquad	Laboratory		Permeability (ASTM D5084)		
			$\begin{aligned} & \text { LL } \\ & \% \\ & \hline \end{aligned}$	PL $\%$	PI				Maximum Dry Density $\mathrm{H} / \mathrm{/f} \mathrm{~m}^{3}$	Optimum Moisture $\%$	Dry Unit Weight $\mathrm{H} / \mathrm{ft}^{3}$	Moisture Content $\%$	Hydraulic Conductivity cm / s
CL-5	07/27/08	Clay test pad							113.6	16.0			
CL-6	07/31/08	Clay test pad	92	21	71						105.6	18.4	5.3E-09
CL-7	07/31/08	Clay test pad	90	23	67						100.0	20.6	3.6E-09
CL-8	07/31/08	Clay test pad	88	27	61						103.1	20.9	1.0E-08
CL-9	07/31/08	Clay test pad	88	29	59						104.6	21.2	3.1E-09
CL-10	08/03/08	Clay test pad							113.1	17.9			
CL-12	08/04/08	Test Pad/FDT 5						20.4					
CL-13	08/04/08	Test Pad/FDT 8						18.9					
CL-14	08/04/08	Test Pad / FDT 14						20.6					
CL-15	08/07/08	Clay test pad							110.0	17.4			
CL-16	08/07/08	Clay test pad	98	31	67	CH	89.5	19.2			103.3	19.2	9.0E-09
$\mathrm{CL}-17$	08107/08	Clay test pad	99	30	69	CH	87.8	18.4			109.4	17.7	2.6E-09
CL-18	08107/08	Clay test pad	95	27	68	CH	90.3	18.7			105.1	19.5	5.8E-09
CL-19	08/07/08	Clay test pad	98	32	66	CH	91.2	17.7			109.0	18.3	4.4E-09
CL-20	08/07/08	Clay test pad	95	28	67	CH	93.6	20			109.3	18.0	4.7E-09
CL-21	08/07/08	Clay test pad	103	29	74	CH	91.4	18.5			108.4	18.7	2.7E-09

[^9]

Client/Site Sample ID.	Lab Sample No:	Maximum Dry Unit Weight (pcf)	Optimum Moisture Content $(\%)$	Remarks
CL-03	GI47	106.0	18.0	

Note(s):

Client/Site Sample D.	Lab Sample No:	Maximum Dry Unit Weight (pcf)	Optimum Moisture Content $(\%)$	Remarks
CL-10	$H 042$	113.1	17.9	

Note(s):

Excel Geotechnical Testing, "Excellence in Testing" 941 Forrest Street, Roswell, Georgia 30075 Tel: (770) 6501666 Fax: (770) 6505786										
FLEXIBLE WALL PERMEABILITY TEST ${ }^{(1)}$										
Project Name: Project Number: Client Name: Site Sample ID: Lab Sample Number: Material Type: Specified Value ($\mathrm{cm} / \mathrm{sec}$): Date Test Started:		Kettem 309 Geosyn CL-02 G124 Soil NA $7 / 27 / 20$	ec Consulta	ndfill						
Remolded Specimen	Proctor ${ }^{(5)}$ Compaction		Specimen Initial Conditions ${ }^{(6)}$		Test Conditions					Hydraulic Conductivity (cm / s)
(-)	Max. DUW (pcf)	Opt. MC (\%)	Dry Unit Weight (pcf)	Moisture Content (\%)	Cell Press. (psi)	Back Press. (psi)	Consolid. Press. (psi)	Permeant Liquid ${ }^{(7)}$ (-)	Average Gradient $(-)$	
Notes 2, 3\& 4	119.7	12.5	107.6	14.7	72.0	70.0	2.0	DTW	14	6.3E-8

Notes:

1. Method C , "Falling-Head, Increasing-Tailwater" test procedures were followed during the testing.
2. All particles larger than $3 / 8$ inch, if any, were discarded when forming the remolded specimen.
3. Remolded specimen was formed by tamping the soil in one-centimeter-thick layers.
4. Remolded specimen approximately 2.87 inches in diameter and 2.36 inches in height.
5. Maximum Dry Unit Weight (DUW) and Optimum Moisture Content (MC) based on Modified Proctor Compaction Test (ASTM D I557)
6. Based on the target valıes of 90% of the maximum dry unit weight and the optimum moisture content plus 2%.
7. Type of permeant liquid: DTW = Deaired Tap Water, DDI = Deaired Deionized Water

* Deviations:

Laboralory temperature al $22 \pm 3^{\circ} \mathrm{C}$.
Test specimen final conditions are nol presented.

Excel Geotechnical Testing, Inc. "Excellence in Trasting" 941 Forrest Street, Roswell, Georgla 30075 Tel: (770) 6501666 Fax: (770) 6505786										
FLEXIBLE WALL PERMEABILTTY TEST ${ }^{(1)}$										
Project Name: Project Number: Client Name: Site Sample ID: Lab Sample Number: Material Type: Specified Value ($\mathrm{cm} / \mathrm{sec}$): Date Test Started:		Kettleman B-17 Landfill								
		309								
		Geosyntec Consultants								
		CL-03								
		G147								
		Soil								
		NA								
		8/01/2008								
Remolded Specimen $(-)$	$\begin{gathered} \text { Proctor }{ }^{(5)} \\ \text { Compaction } \\ \hline \end{gathered}$		Specimen Initial Conditions ${ }^{(6)}$		Test Conditions					Hydraulic Conductivity
	Max. DUW (pcf)	Opt. MC (\%)	$\begin{array}{\|c\|} \hline \text { Dry Unit } \\ \text { Weight } \\ \text { (pcf) } \end{array}$	Moisture Content (\%)	Cell Press. (psi)	Back Press. (psi)	Consolid. Press. (psi)	Permeant Liquid ${ }^{(7)}$ (-)	Average Gradient $(-)$	$(\mathrm{cm} / \mathrm{s})$
Notes 2, 3\% 4	106.0	18.0	96.9	20.1	72.0	70.0	2.0	DTW	14	4.0E-8

Notes:

1. Method C, "Falling-Head, Increasing-Tailwater" test procedures were followed during the testing.
2. All particles larger than $3 / 8$ inch, if any, were discarded when forming the remolded specimen.
3. Remolded specimen was forned by tamping the soil in one-centimeter-thick layers.
4. Remolded specimen approximately 2.87 inches in diameter and 2.36 inches in height.
5. Maximum Dry Unit Weight (DUW) and Optimum Moisture Content (MC) based on Modified Proctor Compaction Test (ASTM D 1557).
6. Based on the target values of 92% of the maximum dry unit weight and the optimum moisture content plus 2%.
7. Type of permeant liquid: DTW $=$ Deaired Tap Water, $\mathrm{DDI}=$ Deaired Deionized Water

* Deviations.

Laboratory temperature at $22 \pm 3^{\circ} \mathrm{C}$.
Test specimen final conditions are not presented.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \& \& \& \begin{tabular}{l}
cel G \\
941 Forre Tel: (770)
\end{tabular} \& \begin{tabular}{l}
ote \\
"Excel \\
St Stre \\
650
\end{tabular} \& \begin{tabular}{l}
hnic \\
nce in \\
Rosw \\
66 Fax
\end{tabular} \& \begin{tabular}{l}
al Tes \\
Testing" \\
II, Georgi \\
(770) 650
\end{tabular} \& \[
\begin{aligned}
\& 30075 \\
\& 5786
\end{aligned}
\] \& \& \\
\hline \multicolumn{11}{|c|}{FLEXIBLE WALL PERMEABILITY TEST ()} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{8}{*}{\begin{tabular}{l}
Project Name: \\
Project Number: \\
Cllent Name: \\
Site Sample ID: \\
Lab Sample Number: \\
Material Type: \\
Specified Value (\(\mathrm{cm} / \mathrm{sec}\)): \\
Date Test Started:
\end{tabular}}} \& \multicolumn{7}{|l|}{Ketteman B-17 Landfill} \& \& \\
\hline \& \& \multicolumn{7}{|l|}{309} \& \& \\
\hline \& \& \multicolumn{7}{|l|}{Geosyntec Consultants} \& \& \\
\hline \& \& \multicolumn{7}{|l|}{CL-04} \& \& \\
\hline \& \& \multicolumn{7}{|l|}{Gl66} \& \& \\
\hline \& \& \multicolumn{7}{|l|}{Soil} \& \& \\
\hline \& \& \multicolumn{7}{|l|}{NA} \& \& \\
\hline \& \& \multicolumn{7}{|l|}{8/02/2008} \& \& \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Remolded \\
Specimen
\end{tabular}} \& \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Proctor }{ }^{(5)} \\
\text { Compaction } \\
\hline
\end{gathered}
\]} \& \multicolumn{2}{|l|}{Specimen Initial Conditions \({ }^{(6)}\)} \& \multicolumn{5}{|c|}{Test Conditions} \& \multirow[t]{2}{*}{Hydraultc Conductivity
\[
(\mathrm{cm} / \mathrm{s})
\]} \\
\hline \& Max.
DUW
(pcf) \& Opt.
MC
(\%) \& Dry Unit
Weight
(pcf) \& Moisture
Content
(\%) \& Cell
Press.
(psi) \& Back Press. (psi) \& Consolid. Press. (psi) \& Permeant
Liquid

(7)

$(-)$ \& | Average |
| :--- |
| Gradient |
| (-) | \&

\hline Notes 2, 3 \& 4 \& 111.9 \& 15.4 \& 103.0 \& 17.2 \& 72.0 \& 70.0 \& 2.0 \& DTW \& 16 \& $4.9 \mathrm{E}-8$

\hline \multicolumn{11}{|l|}{| Notes: |
| :--- |
| 1. Method C, "Falling-Head, Increasing-Tailwater" test procedures were followed during the testing. |
| 2. All particles larger than $3 / 8$ inch, if any, were discarded when forming the remolded specimen. |
| 3. Remolded specimen was formed by tamping the soil in one-centimeter-thick layers. |
| 4. Remolded specimen approximately 2.87 inches in diameter and 2.36 inches in height. |
| 5. Maximum Dry Unit Weight (DUW) and Optimum Moisture Content (MC) based on Modified Proctor Compaction Test (ASTM D 1557). |
| 6. Based on the target values of 92% of the maximum dry unit weight and the optimum moisture content plus 2%. |
| 7. Type of permeant liquid: \quad TW $=$ Deaired Tap Water, $\mathrm{DDI}=$ Deaired Deionized Water |}

\hline \multicolumn{11}{|l|}{| * Deviations' |
| :--- |
| Laboratory temperature at $22 \pm 3^{\circ} \mathrm{C}$. Test specimen final conditions are not presented. |}

\hline
\end{tabular}

			$=\mathrm{B}$	Excel Geotechnical Testing, Inc. "Excellence in Testing" 941 Forrest Street, Roswell, Georgia 30075 Tel: (770) 6501666 Fax: (770) 6505786							
FLEXIBLE WALL PERMEABLLTTY TEST ${ }^{(1)}$											
Project Name: Project Number: Client Name: Site Sample ID: Lab Sample Number: Material Type: Specified Value ($\mathrm{cm} / \mathrm{sec}$): Date Test Started:			Kettleman B-17 Landfill								
			309								
			Geosyntec Consultants								
			CL-06								
			H02I								
			Soil								
			NA								
			8/04/2008								
Specimen No.	Test Specimen Initial Condition					Test Conditions					Hydraulic Conductivity $(\mathrm{cm} / \mathrm{s})$
	Spec. Prep. ${ }^{(2)}$ $(-)$	Spec. Length (cm)	Spec. Diameter (cm)	$\begin{gathered} \text { Dry Unit } \\ \text { Weight } \\ (\text { pcf }) \end{gathered}$	Moisture Content (\%)	Cell Press. (psi)	Back Press. (psi)	Consolid. Press. (psi)	Permeant Liquid (3) $(-)$	Average Gradient $(-)$	
1	ST	5.67	7.21	105.6	18.4	72.0	70.0	2.0	DTW	13	5.3E-9
Atterberg Test Results (LL, PL, PI) - ASTM D 4318:						92	21	71			

Notes:

1. Method C, "Falling-Head, Increasing-Tailwater" test procedures were followed during the testing.
2. Specimen preparation: $\quad \mathrm{ST}=$ Shelby Tube, $\mathrm{R}=$ Remolded, $\mathrm{B}=$ Block Sample.
3. Type of permeant liquid: DTW = Deaired Tap Water, DDI a Deaired Deionized Water

- Deviations:

Laboratory temperature al $22 \pm 3^{\circ} \mathrm{C}$
Test specimen final conditions are not presented.

Notes:

1. Method C, "Falling-Head, Increasing-Tailwater" test procedures were followed during the testing.
2. Specimen preparation: $\mathrm{ST}=$ Shelby Tube, $\mathrm{R}=$ Remolded, $\mathrm{B}=$ Block Sample.
3. Type of perneant liquid: DTW = Deaired Tap Water, DDI = Deaired Deionized Water

* Deviations:

Laboratory temperature at $22 \pm 3^{\circ} \mathrm{C}$
Test specimen final conditions are not presented

					xcel G 941 Forr Tel: (770)	eote "Exce Stre 0) 650	hni lence in t, Rosw 666 F	cal Tes Testing" vell, Georgi $x:(770) 65$		c.	
FLEXIBLE WALL PERMEABILTTY TEST ${ }^{(1)}$											
Project Name: Project Number: Client Name: Site Sample ID: Lab Sample Number: Material Type: Specified Value ($\mathrm{cm} / \mathrm{sec}$): Date Test Started:			Kettleman B-17 Landfill								
			309								
			Geosyntec Consultants								
			CL-09								
			H027								
			Soil								
			NA								
			8/04/2008								
Specimen No.	Test Specimen Initial Condition					Test Conditions					Hydraulic Conductivity $(\mathrm{cm} / \mathrm{s})$
	Spec. Prep. ${ }^{(2)}$ (-)	Spec. Length (cm)	Spec. Diameter (cm)	Dry Unit Weight (pcf)	Moisture Content (\%)	Cell Press. (psi)	Back Press. (psi)	Consolid. Press. (psi)	Permeant Liquid ${ }^{(3)}$ $(-)$	Average Gradient $(-)$	
1	ST	5.64	7.18	104.6	21.2	72.0	70.0	2.0	DTW	16	3.1E-9
Atterberg Test Results (LL, PL, PI) - ASTM D 4318:						88	29	59			
Notes: 1. Method C , "Falling-Head, increasing-Tailwater" test procedures were followed during the testing. 2. Specimen preparalion: $\quad \$ T=$ Shelby Tube, $R=$ Remolded, $B=$ Block Sample. 3. Type of permeant liquid: $\mathrm{DTW}=$ Deaired Tap Water, $\mathrm{DDI}=$ Deaired Deionized Water											
- Devialions: Laboratory temperanure al $22 \pm 3^{\circ} \mathrm{C}$. Tesi specimen final conditions are nol presented.											

Notes:

1. Metbod C. "Falling-Head, lncreasing-Tailowater" est procedures were followed during the texting.
2. All patickes larger than $3 / 8$ ibech, if my, were discarded when forming the remolded specimen.
3. Remolded specimen was formed by temping the soil in one-centimeter-thick layers.
4. Remolded specimen approximately 2.87 inches in diameter and 2.36 inches in heigh.
5. Maximum Dry Unit Wefght (DUW) and Opdimum Moisture Coalent (MC) based en Modified Proctor Comppaction Test (ASTM D 1557).
6. Based on the larget val ues of 92% of the maximum thy unit weight and the optimum moisture content plus 2%
7. Type of permeant liquid \quad DTW $=$ Desired Tap Water, DDi m Deairod Deioniced Water

- Devizuions:

Labormory temperaure $422+3{ }^{\circ} \mathrm{C}$.
Twas specimen final conditions are not preseated.

Notes:

1. Methad C, "Falling-Hesd, tncreasing-Tailwater"test procedures were followed during the itsting.
2. Specimen preparation: $S T=$ Shelby Tube, $R=$ Remolded, $B=$ Block Saraple.
3. Type of permeani liquid: DTW $=$ Deaised Top Water, DDI = Deaired Deionized Water

- Deviations:

Laboratory iemperature at 22*3 ${ }^{\circ} \mathrm{C}$.
Test specimen final conditions are not presented.

Atterberg Test Results (LL, PL, Pl) - ASTM D 4318:

99	30	69

Notes:

1. Method C, "Falling-Head, locreasing-Tailwater" test procedures were followed daring the testing.
2. Specimen prepuration: $\mathrm{ST}=$ Shelby Tube, $\mathrm{R}=$ Remoided, $\mathrm{B}=$ Block Straple.
3. Type of permeant liquid: DTW = Deaired Tap Water, DDI = Desired Deiorized Water

* Deviditions:

Laboratory temperafure ot 22-3 ${ }^{\circ} \mathrm{C}$.
Tett specinten fint condilions are not prescrued.

Notes:

1. Method C, "Falling-Head, Lncreasiog-Tailwaler" test procedures were fallowed daring the terting.
2. Specirsen preparstion; ST $=$ Shellby Tube, $R=$ Remolded, $B=$ Block Sample.
3. Type of permeant liquid: DTW = Deaired Tap Water. DDI = Detaied Deionized Water

* Deviations:

Laboretory temperature at $22+3{ }^{\circ} \mathrm{C}$.
Test specimen final conditions are not presentad.

Atterberg Test Results ($\mathrm{LI}_{\mathbf{\prime}}$ PL, PD - ASTM $\mathbf{1}$ 4318:

98	32	66

Notes:

1. Mithod C, "Falling-Head, lncreasing-Tailwater" test procedures were followed dwing the testing.
2. Specimen preparation; $S T \times$ Shelby Tube, $R=$ Reroolded, B $=$ Block Sample.
3. Type of perneant liquid: DTW - Deaired Tap Water. DDI = Deaired Dcionized Water

- Deviations:

Laboratory cempersture at $22 \pm 3{ }^{\circ} \mathrm{C}$.
Test specimen finel coaditions se not presented.

Atterberg Test Results (LL, PL, PI) - ASTM D 4318:

95	28	67

Notes:

1. Method C, "Falling-Head Increasing-Taikwater" test procediures were followed during the teating.
2. Specimen preparation: $S T=$ Stelby Tube, $R=$ Remolded, $B=$ Block Sample.
3. Type of permeant Liquid: DTW $=$ Deaired Tap Water, $\mathrm{DDI}=$ Deaired Deionized Water

- Devialions

Laboratory tumperalurc al $2203^{\circ} \mathrm{C}$.
Tent specimen fimal conditions are not presented.

[^10]
Notes:

1. Method C, "Falling-Head, increasing-Tailwher" test procedures were followed during the testing.
2. Specimen preparation: ST $=$ Sheiby Tube, $\mathbf{R}=$ Remolded, $\mathbf{B}=$ Block Smple.
3. Type of permeant Jiquid: DTW = Deaired Tap Waler, DDI = Deaired Deionized Weder

- Deviations:

Libortery temperalure at $22 \pm 3{ }^{\circ} \mathrm{C}$
Test specimen final coaditions are not preseaned.

				col Ge 941 Forre Tel: (770)	otec "Excot st Street D) 6501	hnic orce in Rosw 66 Fax	al Test Testing ${ }^{\text {n }}$ all, Georgita : (770) 650	$\text { a } 30075$ 6785		
FLEXIBLEWAYL PERMIEABILITY TEST ${ }^{(1)}$										
Project Name: Project Number: Client Name: Site Sample ID: Leb Sample Number: Material Type: Specified Vafue (cm/sec): Date Test Started:		Ketteman B-17 Landfill								
		309								
		Geosyntec Consultants								
		CL-22								
		H078								
		Soil								
		NA								
		8:22/2008								
Remolded Specimen (-)	Proctor ${ }^{(5)}$ Compaction		Specimen lnitial Conditions ${ }^{(6)}$		Test Conditions					Hydraulic Conductivity (cm / s)
	Max. DUW (pcf)	Opt. MC (\%)	$\begin{array}{c\|} \hline \text { Dry Unit } \\ \text { Weight } \\ \text { (pcf) } \end{array}$	Moisture Content (\%)	Cell Press. (psi)	Back Press. (psi)	Consolid. Press. (psi)	Perroeant Liquid ${ }^{\text {(n }}$ $(-)$	Average Gradient (-)	
Notes 2, 3 \& 4	107.4	18.1	98.7	20.3	72.0	70.0	2.0	DTW	14	$5.8 \mathrm{E}-8$

Notes:

1. Method C, "Falling-Head, lncreasing-Tailwater" lest procodures were followed during the testing.
2. All panticles larger than $3 / 8$ inch, if any, were discarded when forning the remolded specimen.
3. Remolded specimea was formed by tamping the seil in opeocentimetor-thick layess.
4. Retroided specimen approximately 2.87 inches in diameter and 2.36 incturs in heighe.
5. Maximum Dry Unit Weight (DUW) and Optimum Moisture Content (MC) based on Modified Proctor Compoctioa Test (ASTM D 1557).
6. Based on the carget values of 92% of the maximum dry unit weight and the optimum moisture content plus 2%.
7. Type of perneant liquid: DTW = Deaired Tap Weter, DDI $=$ Deaited Deionized Water

- Devisulont:

Leboratory tempetature al 22+3 ${ }^{\circ} \mathrm{C}$.
Test specimen final conditions ane not presented.

Excel Geotechnical Testing, Inc.
 "Excoflonce in Testing"

941 Forrest Street, Roswell, Georgla 30075
Tel: (770) 6501666 Fax: (770) 6505786

FLEXIBLE WALL PERMEABILITY TEST ${ }^{(1)}$ ASTM D5084*

	Project Name:
Project Number:	Ketleman B-17 Landfill
Client Name:	309
Site Sample ID:	
Lab Sample Number:	Closyntec Consultants
Material Type:	H080
Specified Value (cm/sec):	Soil
Date Test Started:	$8 / 22 / 2008$

Remolded Specimen	Proctor ${ }^{(3)}$ Compaction		Specimen Initial Conditions ${ }^{(6)}$		Test Conditions					Hydraulic Conductivity$(\mathrm{cm} / \mathrm{s})$
	Max. DUW (pef)	Opt. MC (\%)	Dry Unit Weight (pcf)	Moisture Content (\%)	Cell Press. (psi)	Back Press. (psi)	Consolid. Press. (psi)	Permeant Liquid ${ }^{(n)}$ (-)	Average Gradient (-)	
Notes 2, 3 \& 4	112.1	15.2	103.0	17.4	72.0	70.0	2.0	DTW	13	$6.4 \mathrm{E}-8$

Notes:

1. Method C, "Falling-Head, Increasing-Tailwater" 1ese procedures were followed during the lesting.
2. Ald paticles larger thm $3 / 8$ inch, if any, were discarded when forming the remolded specimon.
3. Remoldod spocinen was formed by manping the soil in coe-centuncte-thick layers.
4. Remolded specimen approximately 2.87 inchess in diameter and 2.36 inches in theieth
5. Maxianra Dry Unil Weight (DUW) and Optinum Moisture Conteat (MC) based on Modified Proctor Compsation Tesi (ASTM D 1557).
6. Bessed on tha target values of 92% of the muximum dry unit weight and the optimum raoisture conten plus 2%.
7. Type of permeant liquid: DTW = Deaired Tap Water, DDI $=$ Deaired Deionized Water
[^11]
APPENDIX C-2

Test Pad Compaction Test Results

Geosyntec ${ }^{\text {P }}$
 concextmans

DATE OF TEST (dayimo)	$\begin{aligned} & \text { TEST } \\ & \text { NO. } \end{aligned}$	TESTL LOCATION	LAB WESULTS			TYP限 OFTKST		FIELD TEST RESULTS				PERCENT COMPNCT (\%)	PASSIEAIL	$\begin{aligned} & \text { RETEST } \\ & \text { NO } \end{aligned}$	QA 11
			SAMPLE NO.	MAX UNJTJ WT (pef)	OM.C. (\%)	$\begin{aligned} & \text { ASTM } \\ & \text { D-2922 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { ASTM } \\ & \mathrm{D} .1556 \end{aligned}\right.$	DEPTH/ ELEV (f)	WIT UNTT WT (pel)	DRY UNIT WT (per)	F.M.C. (\%)				
297	11	B-2 $\quad 0.6{ }^{6}$	CL- 1	11.0	17.3			0.5	125.3	100.8	24.4	90.8	Faij	17	JD
297	12	B.4 0.6"	$\mathrm{Cl}-1$	111.0	17.3			0.5	125.2	102.1	22.7	92.0	Pass**	.	JD
297	13	C.3 30.6	CLI	111.0	17.3			0.5	125.0	103.8	21.4	93.5	Pass	-r	D
2977	14	D-4 0-6	CL 1	111.0	17.3			0.5	123.1	98.6	25.6	88.3	[ai]	18	1 m
2977	15	E-2 ${ }^{0}$	CL. 1	111.0	17.3			0.5	1255	102.7	22.2	92.5	Pass	--	DD
$20 / 7$	16	D. 4 0.6*	Cl. 1	111.0	17.3			0.5	123.8	100.9	22.7	20.9	Fai]	18	JD
2977	17	B.2 06*	C1.-1	111.0	17.3			0.5	123.1	1001	22.9	90.2	Fai]	19	D
$29 / 7$	18	D.4 0.6 ${ }^{-1}$	CL-1	111.0	173			0.5	125.6	103.3	21.6	93.0	Ptss	*	JD
29.7	19	B. 2 - 0.6	CL. 1	111.0	173			0.5	123.3	90.9	23.4	90.0	Fail	20	ID
297	30	B-2 0.6	CL. 1	111.0	173			0.5	122.5	102.4	19.6	22.3	Pass	--	$\sqrt{10}$
307	21	D.5 6".12	CL-1	111.0	173			0.5	121.7	101.5	19.9	91.4	$\mathrm{F}_{\text {gij }}$	27	ID
3077	22	C-2 $6^{*}-12^{\text {² }}$	Cll-1	111.0	17.3			0.5	123.3	101.2	21.8	91.2	lat	30	$1{ }^{1}$
3077	33	B.2 ${ }^{\text {a }}$ - $12^{\text {m }}$	CL. 1	111.0	17.3			0.5	123.2	101.6	21.2	91.5	172il	28	D
$30 / 7$	24		$\mathrm{Cl}-1$	111.0	17.3			0.5	117.7	97.3	20.9	87.7	Jail	29	ID
30/7	25	D-4 $6^{*} \cdot 12^{\prime \prime}$	Cl-	111.0	173			0.5	114.4	97.8	23.2	88.1	Fibil	26	JD
3017	26	D-4 $6^{\prime \prime}-12^{\prime \prime}$	CLI	111.0	17.3			0.5	127.5	106.2	20.0	95.7	Pats	-	11
$30 / 7$	27	E-5 $6^{*}=12^{\prime \prime}$	CL-1	111.0	17.3			0.5	124.0	102.8	20.6	926	Pass	.-	II
$30 / 7$	28		CL-1	111.0	17.3			0.5	124.0	102.5	20.9	92.4	Pass	-.	I)
3077	29		CL-1	111.0	17.3			0.5	129.7	103.1	20.9	92.9	Pas	..	J
307	30	C. 2 6 $6^{*}=12^{\prime \prime}$	CL-1	111.0	17.3			0.5	125.3	103.4	21.2	93.1	Pasa	.-	J
$30 / 7$	31		CL-1	111.0	17.3			0.5	124.6	102.9	20.5	92.7	Pass	\cdots	JD
$30 / 7$	32	B-4 ${ }^{\text {a }}$ - $12^{4 \prime}-18^{\circ}$	Cl_{-1}	111.0	17.3			0.5	125.2	103.2	21.3	93.0	Pass	.-	10
307	33	D. 2 - $12^{*} \cdot 18^{+}$	CL-	111.0	17.3			0.5	125.2	103.8	20.6	93.5	Past	..	113
$30 / 7$	34	A. $5 \quad 12^{\prime \prime} \cdot 18^{*}$	CL-1	111.0	17.3			0.5	125.3	102.5	22.2	92.4	Pass	..	I)
3017	35	13-2 $12^{\prime \prime} \cdot 18^{\circ}$	CLT	111.0	17.3			0.5	127.0	107.5	18.1	96.9	Fail	NR	, 1D
3077	36	C.3 180.24*	CL-1	111.0	17.3			0.5	123.8	101.0	22.6	91.0	Fail	37	J
3077	37	C. 3 18 $8^{\circ}-24^{4}$	$\mathrm{Cl}_{2}-1$	111.0	17.3			0.5	124.8	102.0	22.4	91.9	jail	57	D
307	3*	D. $3118^{*}-24^{-1}$	Cll -1	111.0	17.3			0.5	125.6	102.6	21.8	92.4	Paxs	\because	d
$30 / 7$	39		CL-1	111.0	17.3			0.5	120.9	97.8	23.7	88.1	Fail	45	ID
3 W 7	40	E.3 12**18*	Cla -1	111.0	17.3			0.5	123.8	101.0	22.6	91.0	Fail	42	J
30.7	41	C.2 120.18*	CL- 1	111.0	17.3			0.5	124.7	102.8	21.4	92.6	Pats	\cdots	J
$30 / 7$	42	E.3 12** 18^{*}	$\mathrm{CL}=1$	111.0	17.3			0.5	125.3	102.2	22.9	92.1	Fail	46	1 L
3017	43		CLI- 1	111.0	17.3			0.5	127.4	104.2	21.8	93.9	Pass	-.	JD
307	44	B-4 ${ }^{\text {c }}$ 12** 18^{*}	CL- 1	111.0	17.3			0.5	126.4	103.6	220	93.4	Pass	..	J
$31 / 7$	45	E.5 12*-18*	CL-1	111.0	17.3			0.5	120.9	97.8	23.7	88.1	Fail	51	JD
$31 / 7$	46	$5-3 \quad 12^{*} \times 18^{\circ}$	$\mathrm{CL}-1$	111.0	17.3			0.5	123.8	101.0	22.6	91.0	Fail	48	ID
$31 / 7$	47	C-2 12* ${ }^{\circ}$	CL-1	111.0	17.3			0.5	124.7	102.8	21.4	92.6	Pass	-.	D
31/7	48	E-3 12"-18"	$\mathrm{Cl}-1$	111.0	17.3			0.5	125.3	102.2	22.9	92.1	Pass*	..	10
$31 / 7$	49	C-4 12"-18	CL-1	1110	17.3			0.5	1274	104.2	21.8	93.9	Pass	..	JD
$31 / 7$	50	$13-4{ }^{12} \times 18^{\prime \prime}$	CLI	111.0	17.3			0.5	126.4	103.6	22.0	93.4	Pars	..	JD
0118	51	E.5 12*.18 ${ }^{\text {m }}$	CL-1	111.0	17.3			0.5	120.9	97.8	23.7	88.1	Fail	-	D
$01 / 8$	52	E. $3122^{*} \cdot 18^{+}$	CL, l	1110	17.3			0.5	123.8	101.0	22.6	91.0	Fail	54	JD
01/8	53		CL-1	111.0	17.3			0.5	124.7	102.8	21.4	92.6	Pass	..	J
01/8	5	1:3 12"-18"	CL -1	111.0	17.3			0.5	125.3	102.2	22.9	92.1	Piss*	-	
$01 / 8$	55	C4 $42^{\text {" }} \cdot 18^{\prime \prime}$	CL. 1	111.0	17.3			0.5	127.4	104.2	21.8	93.9	Pass	--	JD
$01 / 8$	50	B-4 ${ }^{\text {c }}$ - $2^{*} .18^{\prime \prime}$	Clo-1	111.0	17.3			0.5	126.4	103.6	22.0	93.4	Pass	\cdots	J
040\%	51	C.3 18-. $34^{\text {r }}$	CL.I	111.0	17.3			0.5	125.3	101.0	24.9	91.0	Fai)	58	JD
0408	58	C.3 18 ${ }^{\text {\% }}$ - $34^{\prime \prime}$	CL-1	111.0	17.3			0.5	126.2	102.0	23.7	91.9	Fai]	63	D
05108	61	D-4 184	Cl. 5	113.6	16.0			0.5	128.2	105.9	23.7	93.3	Fail	NR	ID
05108	62		CL-S	111.0	17.3			0.5	125.5	104.3	22.6	94.0	Pass**	--	J
05108	63	C-3 18* ${ }^{\text {\% }}$ - 24^{*}	CL-5	113.6	160			0.5	128.2	106.0	21.4	93.3	Past	-	JD
05108	64	B-4 18 $8^{\circ} \cdot 24^{4}$	CL-S	113.6	160			0.5	127.5	105.9	22.9	93.2	Pass*	.-	JD
05/08	65	B-2 $\quad 18^{* \prime}-24^{\prime \prime}$	CL-S	113.6	16.0			0.5	127.0	105.3	21.8	92.7	Pass	\cdots	J
$07 / 08$	66	C-3 $34^{4{ }^{\text {a }} \text { - } 30^{\prime \prime}}$	CL-S	113.6	16.0			0.5	126.7	104.8	20.9	92.3	Pass	\because	JD
07708.	67	13.4	CL-5.	113.6	16.0			0.5	124.5	104.9	196	92.4	Pass	.-	JD
$07 / 08$	68	C. $2324^{4} \cdot 30^{\circ}$	Cl-5	113.6	16.0			0.5	127.2	1062	19.8	93.5	Pass	-	JD
07/08	69	A.1 $\quad 24^{4}-30^{\prime \prime}$	CL. 5	113.6	16.0			0.5	125.0	105.4	18.6	92.8	Pass	--	JD
07/08	70	E-5 $24^{n} \cdot 30^{\prime \prime}$	CL. 5	113.6	16.0			0.5	126.4	105.1	20.3	92.4	Pass	\cdots	12

DATE OF TEST (day/mos)	$\begin{aligned} & \text { TEST } \\ & \text { NO. } \end{aligned}$	TEST LOCATION		LAB RESUTTS			TYFEE OF TEST		FIELD TESTRESULTS				PERCENT COMPACT (\%)	PASS/FAll	RETEST no.	QA 10
				SAMPLE No.	MAX UNIT WI (per)	O.M.C. (\%)	$\begin{aligned} & \text { ASTM } \\ & \text { D-2922 } \end{aligned}$	$\begin{aligned} & \text { ASTM } \\ & \text { D. } 1556 \end{aligned}$	DEPTH ELEV (n)	$\begin{aligned} & \text { WET } \\ & \text { UNIT } \\ & \text { WT } \\ & \text { (pef) } \end{aligned}$	DRY UNIT WT (peC)	F.M.C. (\%)				
07108	71	D.4	$30^{\circ} \cdot 36^{\circ}$	CL-5	113.6	16.0			0.5	130.4	109.9	18.6	96.8	Pass	\cdots	D
07/08	72	B-4	$30^{\circ}-36^{\prime \prime}$	CL. 5	113.6	16.0			0.5	126.4	105.5	20.0	22.8	Phas	.-	D
07108	73	C. 3	$30^{\circ}+36^{\prime \prime}$	CL. 5	113.6	16.0			0.5	136.8	104.1	21.4	91.6	Finil	NR	D
07708	74	D. 2	$30^{-1}+36^{4}$	CL. 5	113.6	16.0			0.5	127.9	107.3	12.2	94.4	Pass	-	1
07708	75	A. 2	$30^{*}-36^{\prime \prime}$	CL. 5	113.6	16.0			0.5	127.6	106.0	20.5	93.3	Pass	..	J
$07 / 08$	76	D. 4	$30^{*}-36^{\prime \prime}$	CL-5	113.6	16.0			0.5	127.5	1068	19.4	94.1	Pass	-	ת

Tests 1-9: First Ifit was removed ancr sipnificant railing tests.
Tests 59 and 60 were not recorded due to nuelear gauge malifunction.
Re-lest of FDT 51 not recorded
Pass* Moisture cantent was outside of range, but lij7 was pmesed by Enginear.
Pass ** Pievious practor used for this lest.
NR No Retes!

Figure C-1: Location of Passing Field Density Tests
Clay Testpad
Kettleman Hills Facility, Kings County, California

Lift I-0 to $6^{\prime \prime}$					
	1	2	3	4	5
A					
B		X		X	
C			X		
D				x	
E		X			

Lift 2.610 12:					
	1	2	3	4	5
A					
B		X		X	
C		X			
D				X	
E					X

Lift 3-12 to 18"					
	1	2	3	4	5
A					X
B				xxxx	
C		xxx		xxx	
D		X			X
E			XX		

Lif 4-18 to 24"					
	1	2	3	4	5
A					
B		X		X	
C			X		
D		X	X		
E					

Lif $5-24$ to $30^{\prime \prime}$					
	1	2	3	4	5
A	X				
B				X	
C		X	X		
D					
E					X

Lift 6-30 to 36"					
	1	2	3	4	5
A		X			
B				X	
C					
D		X		$X X$	
E					

Note: Each box represents approximately $10 \mathrm{ft} \times 10 \mathrm{ft}$ in the field X^{\prime} represents a passing field density test

APPENDIX D

SDRI Test Results

APPENDIX E. 4
 PHASES I AND II CLAY LINER COMPACTION SPECIFICATIONS

Design Change Form

Date: May 29, 1991

KETTLEMAN HILLS FACILITY

LANDFILL B-18
Number: \qquad 3

Location/Reference of Change: Construction Specifications and Quality Assurance Plan, Landfill Unit B-18, Phases I/II and Final Closure. Page 02924-6. Section B. Item d, which specifies the following:
d. Minimum Moisture Content: Within the range defined by the area formed by connecting the following points for the Mollified Proctor Compaction curve.

- 3 to 5 percent above the optimum moisture content for a density equal to 90 percent of the maximum Modified Proctor density.
- 0 in 3 percent above the optimum moisture content for a density equal to 95 percent of the maximum Modified Proctor density.

Change: Change Section B. Item d, e le the following:
d. Moisture Content: Within the range defined by the area formed by connecting the following points for the Modified Proctor Compaction curve.

- 2105 percent above the optimum moisture content for a density equal to 90 percent of the maximum Modified Proctor density.
- 3 percent above the optimum moisture content at 97 percent of the maximum Modified

Proctor density.

- 1 percent above the optimum moisture content at 98 percent of the maximum Modified

Proctor density.

APPROVAL FROM DESIGNER

Date: $5 / 29 / 91$
Engineer:

Time: \qquad
Type of Correspondence: \square Letter cleAt, 0 May 3), 199 \square b_{7}

ACKNOWLEDGEMENT FROM OWNER

Date: $6-5-91$
Engineer:

Mr. Scott Brown
Engincering and Construction Manager
Chemical Waste Management, Inc.
35251 Old Skyline Road
Kettleman City, California 93239
Revised Compaction Relationshins
Clay Liner Material from
B-18 Clay Processing Area
Landfill Unit B-18
Kettleman Hills Facility

Dcar Mr. Brown:
Pursuant to your request we have recvaluated the compaction specification for the Phase I clay liner construction at Landfill Unit B-18. This evaluation is based on compaction data from the testfill construction and interface testing program collected over the last six months. Additionally, we have reviewed the field density test results from the initial 10,000 cubic yards of clay liner placement.

The original specification from the Construction Specifications and Quality Assurance Plan, Landfill Unit B-18, Phases I and II, and Final Closure (Page 02924-6, Section B, Item d) specifics the following:

- Minimum Moisture Content: Within the range defined by the area formed by connecting the following points for the Modificd Proctor Compaction curve.
- 3 to 5 percent above the optimum moisture content for a density equal to 90 percent of the maximum Modificd Proctor density.
- 0 to 3 percent above the optimum moisture content for a density equal to 95 percent of the maximum Modified Proctor density.

This criterion, which allows a lower water content for higher compactive efforts, is established to: (1) assure that both the required strength and permeability characteristics are realized; and (2) provide flexibility for the contractor and CQA enginecr to work with a range of water contents without having a clay which is too wet or dry, or too close to saturation. This flexibility is desirable in hot dry areas where exact water content is difficult to control. This specification is represented by the area designated as "Original Specification" in Figure 1, attached.

To further facilitate construction control of water content and quality assurance/quality control activitics during clay liner placement, the moisture-density relationship graph is being changed to that shown by the "Revised Specification" in Figure 1. The revised moisture-density window is defined by the area encompassed by connecting the following water content density points:

- 2percent above the optimum moisture content for a density equal to 90 percent of the maximum Modified Proctor density.
- 5 pereent above the optimum moisture content for a density equal to 90 percent of the maximum Modified Proctor density.
- 3 percent above the optimum moisture content at 97 percent of the maximum Modified Proctor density.
- I percent above the optimum moisture content at 98 percent of the maximum Modified Proctor density.

The majority of material placed in the initial 10,000 cubic yards of clay liner is within the revised specification range. Test results indicate that a portion of the initial clay liner placement was at higher densities and moisture contents than the specification range. Due to the relatively low volume, minor deviation from the specification, and discontinuous placement of the material outside of this range, no planes of weakness or other detrimental features have been developed. Consequently, the clay liner placed to date is acceptable.

Please call us if you need further information regarding this material.
Very truly yours,
Tansy T Tateixarn
Kerry K. Parkinson, P.E.
Civil Engineer
KKP:RDE: dk
Attachments
cc: Bob Henry
Richard Ellison
Miro Knezevic

KETTLEMAN HILLS FACILITY
 LANDFRL B-18

Number: \qquad
Date: \qquad Originating Engineer: \qquad
Kerry K. Parkinson
Location/Reference of Change: Construction Specifications and Quality Assurance Plan, Landfill Unit B-18,
Phases $1 / 11$ and Final Closure. Page 02924-6, Section B, fem d, which specifics the following:
d. Minimum Moisture Content: Within the range defined by the area formed by connecting the following points for wee Modified Proctor Compaction curve.

- 3 to 5 percent above the optimum moisture content for a density equal to 90 percent of the maximum Modified Proctor density.
- 0 to 3 percent above the optimum moisture content for a density equal to 95 percent of the maximum Modified Proctor density.
\because
Change: Change Section B, Item d, to the following:
d. Moisture Content: Within the range defined by the area formed by connecting the following points for the Modified Proctor Compaction curve.
- 2 percent above the optimum moisture content for a density equal to 90 percent of the maximum Modified Proctor density.
- 5 percent above the optimum moisture content for a density equal to 90 percent of the maximum Modified Proctor density.
- 3 percent above the optimum moisture content at 97 percent of the maximum Modified Proctor density.
- I percent above the optimum moisture content at 98 percent of the maximum Modified Proctor density.

The following tolerance criteria has been established for clay compaction at the B-18 Landfill:

- Twenty percent of the tests per equipment spread per day may be outside the specified moisture-density window by the following amount:
- Moisture Content $\pm 0.5 \%$
- Percent Compaction -0.5\%
- So long as the average of all acceptable tests for that equipment spread per day falls within the moisture-density window.

APPROVAL FROM DESIGNER

Date:

Engineer:
Time: \qquad

Type of Correspondence:

ACKNOWI, EDGEMENT FROM OWNER

Date: \qquad Engineer:

CC: CWMKETHEMAN

ENVIRONMENTAL SOLUTIONS, INC.

June 28, 1991
Project No. 89-9771
Mr. Scout Brown
Engineering and Construction Manager
Chemical Waste Management, Inc.
35251 Old Skyline Road
Kettleman City, Califomia 93239

Moisture-Density Tolerance Criteria
 Clay Liner Material
 Landfill Unit B-18
 Ketleman Hills Facility

Dear Mr. Brown:
The purpose of this letter is to document the compaction test tolerance criteria established during our site visit on June 18, 1991. The tolerance criteria was developed based on our discussions with the CQA engineer and your staff, and review of the clay compaction results being realized. Those discussions and data indicated that a small percentage of tests were being considered as failures, even though they were just outside of the moisture-density window provided in our May 31, 1991, letter.

Your staff and the CQA Engineer requested that consideration be given to enlarging the window, if possible, without affecting necessary engineering properties of the material. We concluded that the window should not be changed without additional laboratory testing and analyses. However, it was also concluded that it would be acceptable for a small percentage of tests to lie just outside of the window, so long as average conditions were well within the basic criteria. This arrangement assures that the contractor continues to prepare and place the clay in a manner which provides the desired results, but also eliminates schedule delays and operational disruptions when the criteria is only occasionally missed by a small amount.

Accordingly, the following tolerance criteria, illusfated in the enclosed revision to Figure 1, has been established for clay compaction at the B-18 Landfill:

- Twenty percent of the tests per equipment spread per day may be outside the specified moisture-density window by the following amount:
- Moisture Content $\pm 0.5 \%$
- Percent Compaction - 0.5%
- - So long as the average of all acceptable tests for that equipment spread per day falls within the moisture-density window.

Please call us if you require additional information regarding this matter.
Very' truly yours,
Ferret weblesionon
Kerry K. Parkinson, P.E. Civil Engineer

KKP: hd
Enclosure
cc: Bobllenry
Richard Ellison
Miro Kncrevic

APPENDIX F

LINER SYSTEM MATERIAL DATA

Objective:

To provide data on the existing and proposed geosynthetic liner system materials for Landfill B-18.

Given:

Existing B-18 Liner Systems:
The existing (Phases | and II) B-18 base and sideslope liner systems contain the following geosynthetic components:

- 60-mil textured high-density polyethylene (HDPE) geomembrane;
- 80-mil smooth HDPE geomembrane;
- 8-ounce/square yard (oz/sy) nonwoven geotextile;
- 16-oz/sy nonwoven geotextile; and
- 200-mil geonet.

Product data sheets for the above-listed existing geosynthetic components of the B-18 liner systems were provided by ESI (1990). Copies of these product data sheets are provided in Attachment \#1.

Proposed B-18 Liner Systems:
The proposed B-18 expansion area sideslope liner system contains the following geosynthetic components:

- 60-mil textured HDPE geomembrane;
- 16-oz/sy nonwoven geotextile; and
- geocomposite.

The proposed $\mathrm{B}-18$ final closure cover system contains the following geosynthetic components:

- 40-mil textured HDPE geomembrane; and
- 12-oz/sy nonwoven geotextile.

Product data sheets that contain typical specified properties for the above-listed proposed geosynthetic components of the B-18 sideslope liner and cover systems are provided in Attachment \#2. The data sheets provided in Attachment \#2 were obtained from the Agru America, GSE Lining Technology, Inc. (GSE), Polyflex and Scaps. Inclusion of these data sheets does not imply that these materials will be used exclusively for the proposed B-18 expansion and/or final closure. However, the actual geosynthetics used for the B-18 expansion and final closure are anticipated to have properties that are very similar to or the same as those given in Attachment \#2. Attachment \#3 provides EPA 9090 test results for products similar to the proposed liner materials. Results of the testing, similar to previous site specific testing, indicate the products are compatible with leachate. No additional EPA 9090 testing is proposed.

Reference:

Environmental Solutions, Inc. (ESI), "Engineering and Design Report, Landfill Unit B-18, Phases I and II and Final Closure, Kettleman Hills Facility, Kings County, California," August 1990.

ATTACHMENT \#1 LINER SYSTEM MATERIAL DATA

NATIONAL BEAL COMPANY
 SUGGESTED THICKNESS SPECIFICATIONS

Thickness shall be measured in accordance with ASTM D 1593, paragraph 9.1.3 and ASTM D 751. The minimum average roll thickness shall be as specified with no individual thickness measurement on the sheet falling more than 5% below the specified value.

	MINIMUM AVERAGE	MINIMUM SPECIFIED THICKNESS
	ROLL VALUE RLI_OWED	
40 mil	40 mil	38 mil
60 mil	60 mil	57 mil
80 mil	80 mil	76 mil
100 mil	100 mil	95 mil

NATIONAL EEAL COMPANY
 ROLLSTOCK SPECIFICATIONS

I. RESIN SPECIFICATION:

NSC will use Union Carbide or Soltex resin or the equivalent.

Each lot of resin will be analyzed by National Seal Company's Laboratory as follows:

SPECIFICATION	TEST METHOD
Density	ASTM D 1505
Carbon Black Content	ASTM D 1603
Melt Flow Index	ASTM D 1238
Moisture Content	

II. SHEET SPECIFICATION:

Gauge	$\pm 5 \%$
Width	15% Nominal
Carbon Black	2% to 3%
Appearance	smooth surface, minimal haze.

III. QUALITY ASSURANCE and TESTING:

1. Sheet appearance will be monitored continuously by production personnel and at least once per hour by a member of our Laboratory.
2. Sheet thickness will be continuously monitored by automatic gauging equipment located on the extruder.
3. Production will hold sheet thickness to within $\pm 3 \%$ whenever possible. $\pm 5 \%$ is our advertised tolerance.
4. National Seal Company's Laboratory will perform the following tests every 10,000 pounds of material produced:

SPECIFICATION	TEST METHOD
Tensile Properties	ASTM D 638
Carbon Black Dispersion	ASTM D 3015
Thickness	ASTM D 1593
Dimensional Stability	ASTM D 1204

See National Seal Company's Quality Control Manual for full listing of the tests which our Laboratory can perform. Please contact your sales representative for a pricing.

HIGH DENSITY POLYETHYLENE

PHYSICAL PROPERTIES

ALL PROPERTIES MEET OR EXCEED NSF STANDARD 54 SPECIFICATIONS FOR HDPE

PROPERTY	UNITS	TEST METHOD	value
GAUGE OF MATERIAL	MILS	ASTM D 1593	40 ($\pm 5 \%$)
SPECIFIC GRAVITY, MINIMUM		ASTM D 792 A	0.94
MINIMUM TENSILE PROPERTIES		ASTM D 638	
TENSILE STRENGTH AT YIELD	PSI		2200
TENSILE STRENGTH AT BREAK	PSI		3800
ELONGATION AT YIELD	\%		13
ELONGATION AT BREAK	\%		600
MODULUS OF ELASTICITY	PSI		80,000
TEAR RESISTANCE, MINIMUM	PPI	ASTM D 1004	700
LOW TEMP. BRITTLENESS	DEG C.	ASTM D 746 B	$-75^{\circ} \mathrm{C}$.
SOIL BURIAL RESISTANCE MAX. CHANGE	\%	ASTM D 3083 ${ }^{1}$	
TENSILE STRENGTH AT YIELD			10
TENSILE STRENGTH AT BREAK			10
ELONGATION AT YiELD			10
ELONGATION AT BREAK			10
MODULUS OF ELASTICITY			10
ENVIRONMENTAL STRESS CRACK RES.	HRS.	ASTM D $1693{ }^{1}$	1500
CARBON BLACK CONTENT	\%	ASTM D 1603	2-3
CARBON BLACK DISPERSION	RATING	ASTM D 3015	A-2
MELT INDEX, CONDITION E, MAXIMUM	$\mathrm{g} / 10 \mathrm{~m}$	ASTM D 1238	1.0
Puncture resistance	LBS	FTMS 101, 2065	60
WATER VAPOR TRANSMISSION	$\mathrm{g} / \mathrm{M}^{2} \mathrm{hr}$.	ASTM E 96	0.008
HYDROSTATIC RESISTANCE	PSI	ASTM D 751 A	300

NATIONAL SEAL SEAMING PROPERTIES

BONDED SEAM STRENGTH, MINIMUM	PPI	ASTM D 3083:	80 \& FTB 2
SEAM PEEL ADHESION, MINIMUM	PPI	ASTM D 4131	60 \& FTB ${ }^{2}$
SOIL BURIAL RESISTANCE		ASTM D 3083:	
BONDED SEAM STRENGTH, MAX. CHANGE	$\%$		-10
SEAM PEEL ADHESION			FTB 2

1. AS MODIFIED IN NSF STANDARD NUMBER 54.
2. FILM TEARING BOND.

HIGH DENSITY POLYETHYLENE

PHYSICAL PROPERTIES

ALL PROPERTIES MEET OR EXCEED NSF STANDARD 54 SPECIFICATIONS FOR HDPE
PROPERTY
GAUGE OF MATERIAL
SPECIFIC GRAVITY, MINIMUM
MINIMUM TENSILE PROPERTIES
TENSILE STRENGTH AT YIELD
TENSILE STRENGTH AT BREAK
ELONGATION AT YIELD
ELONGATION AT BREAK
MODULUS OF ELASTICITY
TEAR RESISTANCE, MINIMUM
LOW TEMP. BRITTLENESS
SOIL BURIAL RESISTANCE MAX. CHANGE
TENSILE STRENGTH AT YIELD
TENSILE STRENGTH AT BREAK
ELONGATION AT YIELD
ELONGATION AT BREAK
MODULUS OF ELASTICITY
ENVIRONMENTAL STRESS CRACK RES.
CARBON BLACK CONTENT
CARBON BLACK DISPERSION
MELT INDEX, CONDITION E, MAXIMUM
PUNCTURE RESISTANCE
WATER VAPOR TRANSMISSION
HYDROSTATIC RESISTANCE

UNTTS	TEST METHOD	value
MILS	ASTM D 1593	$60(\pm 5 \%)$
	ASTM D 792 A	0.94
	ASTM D 638	
PSI		2200
PSI		3800
\%		13
\%		600
PSI		80,000
PPI	ASTM D 1004	700
DEG C.	ASTM D 746 B	$-75^{\circ} \mathrm{C}$
\%	ASTM D 3083 ${ }^{\circ}$	
		10
		10
		10
		10
		10
HRS.	ASTM D 1693 ${ }^{1}$	1500
\%	ASTM D 1603	2-3
RATING	ASTM D 3015	A-2
$\mathrm{g} / 10 \mathrm{~m}$	ASTM D 1238	1.0
LBS	FTMS 101, 2065	90
$\mathrm{g} / \mathrm{M}^{2} \mathrm{hr}$.	ASTM E 96	0.005
PSI	ASTM D 751 A	450

NATIONAL SEAL SEAMING PROPERTIES

BONDED SEAM STRENGTH, MINIMUM	PPI	ASTM D 30831	$120 \&$ FTB 2
SEAM PEEL ADHESION, MINIMUM	PPI	ASTM D 413	$90 \& \mathrm{FTB}^{2}$
SOIL BURIAL RESISTANCE		ASTM D 30831	
BONDED SEAM STRENGTH, MAX. CHANGE	$\%$		-10
SEAM PEEL ADHESION		FTB² 2	

1. AS MODIFIED IN NSF STANDARD NUMBEF 54.
2. FILM TEARING BOND.

HIGH DENSITY POLYETHYLENE

PHYSICAL PROPERTIES

ALL PROPERTIES MEET OR EXCEED NSF STANDARD 54 SPECIFICATIONS FOR HDPE

PROPERTY	UNITS	TEST METHOD	VALUE
GAUGE OF MATERIAL	MILS	ASTM D 1593	$80(\pm 5 \%)$
SPECIFIC GRAVITY, MINIMUM		ASTM D 792 A	0.94
MINIMUM TENSILE PROPERTIES		ASTM D 638	
TENSILE STRENGTH AT YIELD	PSI		2200
TENSILE STRENGTH AT BREAK	PSI		3800
ELONGATION AT YIELD	$\%$		13
FLONGATION AT EREAK	\%		600
MODULUS OF ELASTICITY	PSI		30,000
TEAR RESISTANCE, MINIMUM	PPI	ASTM D 1004	700
LOW TEMP. BRITTLENESS	DEG C.	ASTM D 746 B	$-75^{\circ} \mathrm{C}$.
SOIL BURIAL RESISTANCE MAX. CHANGE	\%	ASTM D 30831	
TENSILE STRENGTH AT YIELD			10
TENSILE STRENGTH AT BREAK			10
ELONGATION AT YIELD			10
EIONGATION AT BREAK			10
MODLILUS OF ELASTICITY			10
ENVIRONMENTAL STRESS CRACK RES.	HRS.	ASTM D 16931	:500
CAREON BLACK CONTENT	$\%$	ASTM D 1603	2-3
CARBON ELACK DISPERSION	FATING	ASTM D 3015	A-2
MELT INOEX, CONDITION E, MAXIMUM	$\mathrm{g} / 10 \mathrm{~m}$	ASTM D 1238	1.0
PLINCTURE RESISTANCE	LBS	FTMS 101: 2065	110
WATEA VAPOR TRANSMISSION	$g / M^{2} \mathrm{hr}$.	ASTM E 96	2.004
AYDROSTATIC RESISTANCE	PS	ASTM O 751 A	500

NATIONAL SEAL SEAMING PROPERTIES

BONDED SEAM STRENGTH, MINIMUM
SEAM PEEL ADHESION, MINIMUM
SOIL SURIAL RESISTANCE
BCNDED SEAM STRENGTH, MAX. CHANGE
SEAM PEEL ADHESION

ASTM D 3083^{1}	$150 \&$ FTB 2
ASTM D 413	$120 \&$ FTB 2

ASTM D 3083^{1}
\%
PP1 -10

FTB2

1. AS MODIFIED IN NSF STANDARD NUMBER 54.
2. FILM TEARING BOND.
```
HIGH DENSITY POLYETHYLENE
```

PHYSICAL PROPERTIES
ALL PROPERTIES MEET OR EXCEED NSF STANDARD 54 SPECIFICATIONS FOR HDPE

PROPERTY	UNITS	TEST METHOD	VAlue
GAUGE OF MATERIAL	MILS	ASTM D 1593	$100(\pm 5 \%)$
SPECIFIC GRAVITY, MINIMUM		ASTM D 792 A	0.94
MINIMUM TENSILE PROPERTIES		ASTM D 638	
TENSILE STRENGTH AT YIELD	PSt		2200
TENSILE STRENGTH AT BREAK	PSI		3800
ELONGATION AT YIELD	\%		13
ELONGATION AT BREAK	\%		600
MODULUS OF ELASTICITY	PSI		80,000
TEAR RESISTANCE, MINIMUM	PPI	ASTM D 1004	700
LOW TEMP. BRITTLENESS	DEG C.	ASTM D 746 B	$-75^{\circ} \mathrm{C}$.
SOIL BURIAL RESISTANCE MAX. CHANGE	\%	ASTM D $3083{ }^{1}$	
TENSILE STRENGTH AT YIELD			10
TENSILE STRENGTH AT BREAK			10
ELONGATION AT YIELD			10
ELONGATION AT BREAK			10
MODULUS OF ELASTICITY			10
ENVIRONMENTAL STRESS CRACK RES.	HRS.	ASTM D 1693 ${ }^{1}$	1500
CARBON BLACK CONTENT	\%	ASTM D 1603	2-3
CARBON BLACK DISPERSION	RATING	ASTM D 3015	A-2
MELT INDEX, CONDITION E, MAXIMUM	$\mathrm{g} / 10 \mathrm{~m}$	ASTM D 1238	1.0
PUNCTURE RESISTANCE	LBS	FTMS 101, 2065	130
WATER VAPOR TRANSMISSION	$\mathrm{g} / \mathrm{M}^{2} \mathrm{hr}$.	ASTM E 96	0.003
hyorostatic Resistance	PSI	ASTM D 751 A	750

NATIONAL SEAL SEAMING PROPERTIES

BONDED SEAM STRENGTH, MINIMUM
SEAM PEEL ADHESION, MINIMUM
SOIL BURIAL RESISTANCE
BONDED SEAM STRENGTH, MAX. CHANGE SEAM PEEL ADHESION

ASTM D 3083^{1}
200 \& FTB ${ }^{2}$
ASTM D 413° ASTM D 3083^{1}
-10
FTB ${ }^{2}$

1. AS MODIFIED \mathbb{N} NSF STANDARD NUMBER 54.
2. FHM TEARING BOND.

Trevira ${ }^{\circ}$ Spunbonds are highly needled nonwoven engineering fabrics with excellent tensile properties, high filtration potential and outstanding permeability.

Trevira Spunbond Type 11 products are 100% continuous filament polyester nonwoven needlepunched engineering fabrics. They deliver a combination of advantages unmatched by any other spunbonded geotextiles. They're resistant to freeze-thaw, soil chemicals and ultraviolet light exposure.

Trevira* Spunbonds are excellent where the requirement is (1) tensile reinforcement, (2) planar flow, (3) filtration, and (4) separation. For example, in roadways, railbeds, drainage systems, pondliners, retaining walls. And much more. Trevira ${ }^{8}$ Spunbonds are extraordinary engineering fabrics.

TYPICAL PHYSICAL PROPERTIES OF TREVIRA TYPE 11 PRODUCTS

Fabric Property	Unit	Test Method	1112	1114	1120	1125	1135	1145	1155
Fabric Weight	Oz/ydi	ASTM D-3776	3.6	4.2	6.0	7.4	10.5	13.5	16.2
Thickness, t	mils	ASTM D1777	60	65	90	110	150	175	210
Grab Strength (MO/CD) ${ }^{1 /}$	lbs	ASTM D-4632	110190	135/110	205/175	2701225	390/330	500/425	625/560
Grab Elongation (MD/CD)	\%	ASTM D-4632	70185	70185	75/85	75/85	75/85	90195	$90 / 95$
Trapezoid Tear Strength (MD/CD)	libs	ASTM D.4533	$50 / 40$	$60 / 50$	$80 / 75$	105/95	135/120	1751170	205/200
Puncture Resistance ($5 / 16^{*}$ hemispherical tip)	Ibs	ASTM D-3787	50	60	90	115	155	175	240
Mullen Burst Strength	psi	ASTM D3786	180	210	315	390	550	625	840
Water Flow Rate (5 cm . hd.)	gpm/ft ${ }^{\text {c }}$	ASTM D-4491	200	200	170	150	110	90	70
Permitivity, ψ	sec^{-1}	ASTM D-4491	2.72	2.72	2.31	1.77	1.50	1.22	0.95
Permeability k	$\mathrm{cm} / \mathrm{sec}$	$K=4 \%$	0.41	0.45	0.53	$0: 49$	0.57	0.54	0.51
AOS	$\begin{gathered} \text { Sieve Size } \\ \mathrm{mm} \end{gathered}$	ASTM D-4751	$\begin{gathered} 70-100 \\ .210-149 \\ \hline \end{gathered}$	$\begin{gathered} 70-100 \\ .210 .149 \\ \hline \end{gathered}$	$\begin{gathered} 70-100 \\ .210-149 \\ \hline \end{gathered}$	$\begin{array}{r} 70-120 \\ .210 .125 \\ \hline \end{array}$	$\begin{gathered} 70.120 \\ .210,125 \end{gathered}$	$\begin{gathered} 100-140 \\ .149 .105 \\ \hline \end{gathered}$	$\begin{array}{r} 100-170 \\ .149 .088 \\ \hline \end{array}$
Standard Roll Widths ${ }^{2}$	ft					12.5 and	5.0		
Standard Roll Lengtha	f		400	400	300	300	300	300	300

in MD $=$ Machine Direction, $C D=$ Cross Machine Direction.
${ }^{21}$ Other width and fength rolls are available upon request.
MINIMUM AVERAGE ROLL VALUES (WEAKEST PRINCIPAL DIRECTION) OF TREVIRA TYPE 11 PRODUCTS

Fabric Property	Unit	Test Method	1112	1114	1120	1125	1135	1145	1155
Fabric Weight	ozyda ${ }^{2}$	ASTM 0.3776	3.4	4.0	5.7	7.1	10.0	13.0	16.0
Thickness, t	mils	ASTM D-1T7]	50	55	80	100	135	160	200
Grab Strength	Ibs	ASTM D-4632	80	100	155	200	290	375	500
Grab Elongation	\%	ASTM D-4632	60	60	65	60	65	65	65
Trapezoid Tear Strength	lbs	ASTM D-4533	30	40	60	75	100	140	170
Puncture Resistance ($5 / 16^{*}$ tiemispherical tip)	lbs	ASTM D-3787	35	45	75	95	130	155	200
Mullen Burst Sitength	psi	ASTM D. 3786	160	190	285	360	500	575	765
Water Flow Rate ${ }^{\text {3 }}$ (5 cm . hc.)	gpm/ti ${ }^{2}$	ASTM D-4491	170	170	140	100	80	60	40
Permitivity ψ^{33}	$\mathrm{sec}{ }^{-1}$	ASTM D-4491	231	2.31	1.90	1.36	1.09	0.82	0.54
Permeability, k^{31}	$\mathrm{cm} / \mathrm{sec}$	$K=4 / 1$	0.29	0.32	0.39	0.35	0.37	0.33	0.27
AOS^{3}	Sieve Size mm	ASTM D-475	$\begin{array}{r} 70 \\ .210 \end{array}$	$\begin{array}{r} 70 \\ .210 \\ \hline \end{array}$	$\begin{gathered} 70 \\ .210 \end{gathered}$	$\begin{array}{r} 70 \\ 210 \\ \hline \end{array}$	$\begin{array}{r} 70 \\ .210 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & .149 \end{aligned}$	$\begin{aligned} & 100 \\ & .149 \end{aligned}$

${ }^{31}$ AOS "minimum average roll value" is a measure of the largest opening size in the fabric.

Hoechst Celanese Corporation
Spunbond Business Group
P.O. Box 5887

Spartanburg, SC 29304-5887 U.S.A.
1 (800) 845-7597
1 (803) 579:5479
Telex: 9102404053

TREVIRA ${ }^{\oplus}$ Spunbond Engineering Fabric Geotextile Selection Guide

INTRODUCTION

Designers, owners, and contractors are now forced to choose from a multitude of geosynthetic products. The December 1987 issue of "Geotechnical Fabrics Report" listed 26 manufacturers or suppliers of geotextiles, and each supplier had several different products listed. When geonets, geogrids, and geocomposites are included, the list becomes very lengthy.

This brochure will only discuss geotextiles and will provide data to assist the specifier or user in selecting the proper fabrie(s) for their application. Most data will be presented in a generic tormat; however, TREVIRA ${ }^{\oplus}$ Spunbond will be used to illustrate some of the presentation.

Polyester or Polypropylene?
Almost all geotextiles available in the United States are manufactured from either polyester or polypropylene. Both polymers are synthetic "manmade" materials, but they display significantly different physical properties. Table 1 lists important characteristics for both polymers expressed as actual test results or as "excellent, good, fair, and poor".

As Table 1 illustrates, polyester and polypropylene display important differences in physical properties. These differences should always be considered when selecting geotextiles for any application.

Woven or Nonwoven?

Woven geotextiles can be placed in two general categories by manufacturing method - Slit Film and Filament. All woven fabrics display high strength/low

Table 1

CHARACTERISTICS		
	Polyester	Polypropylene
Melting Point	$478.490^{\circ} \mathrm{F}$	$320.350^{\circ} \mathrm{F}$
UV Resistance	Excellent	Poor (Unstabilized) Fair-Excellent (Stabilizad)
Creep Resistance	Excellent	Falr
Low Temperature (below $32^{\circ} \mathrm{F}$), Workability	Excellent	Falr-Poor
Biological Resistance	Exceltent	Excellent
Chemical Resistance*	Good	Good
Specific Gravity	1.36	0.9

*Chemical resistance is difficult to generalize. Both polyester and polypropylene are unaffected by most chemicals, particularly in the concentrations commonly found in soli. However, if the fabric is being used in a waste confainment facilty or tank farm, and will therefore be exposed to higher con. centrations, specific compatibility data sthould be requested from the geoex. tile manufacturers. If this data is unavallable, which is often the case with leachates, compatibility testing is suggested.

Figure 1
LOAD-ELONGATION CURVE (MD)

Tebie 2

INDEX TESTS

PHYSICAL PROPERTY	TEST PROCEDURE
1) Weight	per ASTM D.3776
2) Thickness	per ASTM D-1777
3) Grab Strength	per ASTM D-4632
4) Grab Elongation	per ASTM D-4632
5) Trapazoid Tear Strength	per ASTM D-4533
6) Puncture Strength (modified) (this test is currently being balloted at ASTM for approval of a $5 / 16^{\prime \prime}$ flat tip with $1 / 32^{\prime \prime} \times$ 45° chamfer)	per ASTM D-3787
7) Mullen Burst Strength	per ASTM D-3786
8) Permitivity	per ASTM D-4491
9) Apparent Opening Size (AOS)	per ASTM D-4751

"Typical" and "minimum average roll" results are listed on the TREVIRA Spunbond sample cards.

Hoechst Celanese Corporation also routinely performs or has independent testing labs perform the following in dex and design tests:

PHYSICAL PROPERTY	TEST PAOCEDURE
1) Ultraviolet Degradation	per ASTM D-4355
2) Transmissivity - fabric and fabric-net or fabric-core (Bepending on boundary conditions, this test can be used as an index or design test.)	per ASTA D-4716
3) Abrasion Resistance	ASTM is currentiy balioting on an Abrasion Testing procedure utilizing the SBS (Siiding Block/Sandpaper Abrasion Test.)
4) Wide Width Tersile Test - This test is actually a design fest but can be used for comparing fabrics.	per ASTM.4595
5) Friction Testing per the direct shear method - This test may be used as an index or design test.	This test is cusrently being balloted at ASTM.
6) Gradient Ratio Tess - This test may be used as an index or design test.	This test is currentiy being balloted at ASTM.
7 Chemical Compatibility - This fest may be used as an index or destign test.	ASTM is currently working on this testing procedure.
8) Creep - This test may be used as an index or design fest.	This test is currently being balloted at ASTM.

Table 3

PHYSICAL PROPERTIES FOR PERFORMANCE

APPLICATION

i. Drainage

- Underdrains
- Recharge drains
- Structure drains

2. Erosion Protection

- Rip rap slope protection
- Gabion bank protection

3. Stabilization

- Aggregate roads and yards
- Paved roads and parking lots
- मailroad tracks

4. Soll Reinforcement - "Wrap around" walls

- Reintorced slopes
- Embankments over weak foundations

5. Lining Systems

- Gas Reliet Layer
- Cushion Layer
- Leachate Collection
Systems

6. Asphalt Pavement

- Asphialt Oyerlay
- Chip Seal
- Full depth asphatt

FABRIC FUNCTION
Filtration Separation

Filtrakion Separation

Separation Reinforcement Filtration Planar Transport

Reinforcement
Planar transport
Separation
Reinforcement

Filtration
Separation
Planar Transport

Waterproofing (after absorbing tack coat) Reinforcement

IMPORTANT GEOTEXTILE PHYSICAL PROPERTY for PERFORMANCE

- Permittivity
- Coefficient of Permeability
- AOS
- Resistance to Clogging or Blinding (Gradient Ratio Test or Long-Term Soil-Fabric Filtration Test)
- Trapezold Tear Strength
- Puncture Strength
- Permittivity
- Coefficient of Permeebility
- AOS
- Resistance to Clogging or Blinding
- Frictlon Angle (Direct Shear Test)
- Puncture Strength
- Trapezold Tear Strength
- Mutlen Burst Sirength
- Grab Tensile Strength
- Mullen Burst Strength
- Trapezold Tear Strength
- Puncture Strength
- Permittivity
- Transmissivity
- Abrasion Resistance
- Fitction Angle (Direct Shear Test)
- Wide Width Tensile Strength
- Secant Modulus (confined)
- Direct Shear or Puil Out Friction Angle
- Transmissivity
- Multen Burst Strength
- Puncture Strength
- Trapezoid Tear Strength
- Permittivity
- Coeffictent of Permeablify
- AOS
- Resistance to Clogging and Blinding
- Friction Angle (Direct Shear Test)
- Transmissivity (if fabric is used as the drain)
- Asphalt Retention/Absorption
- Shrinkage Tempereture

The Composite-Drainage-System

Solid and Hazardous Waste Containment Drainage

Primary Leachate Collection

TEX-NET, a composite of a drainage net and one or two layers of geotextile fabric, can provide a desired planar flow of liquids down the steep slopes of the walls and across the floor of waste containments to collection standpipes. The fabric acts as a filter to keep soil or fines from inhibiting any planar flow of leachate through the drainage net. It also acts as a cushion protecting the liner from damage. By having the fabric heat-laminated to the net, superior frictional resistance is achieved. Shear tests of TEX-NET with clayey soils indicate realistic friction angles in excess of 30°.

Landfill Cap

There are two applications of TEX-NET in a typical landfill cap. One,
as the medium to drain surface water off the geomembrane cap...and two, under the landfill cap as a gas collector: TEX-NET with a geotextile on one side only is ideal for installation over the cap. TEX-NET with fabric on both sides is suggested for under the cap to reduce generated gas buildup. Gases will flow along the grid as freely as fluids.

Gas Collection Within The Landfill

TEX-NET works very well in the collection and release of methane and other gases commonly generated in solid waste landfills. Strips of doublefaced TEX-NET, if appropriately positioned throughout the refuse, will collect generated gas and direct its flow toward manifold pipes and onto the surface for collection and use, or flaring.

TEX-NETIN A
LANDFILL CAP

TEX-NET WITHIN LANDFILL
FOR GAS COLLECTION

\square

TRANSMISSIVITY - CHARTS

SPECIFICATION	PN-4000	PN-3000 CN
ROLL LENGTH (MAXIMUM) (FT.)	300	300
ROLLWIDTH (+1 in. -0 in.) (FT.)	6.9	6.9
THICKNESS (IN.)	. 300	. 200
S.F.INROLL	2025	2025
WEIGHT PER ROLL (LBS.)	500	233
WEIGHT PER S.F.	. 245	. 115
- Available to Lengths of 400 Feet		
PROPERTY	PN-4000	PN-3000 CN
RAWMATERIAL (ALL DOMESTIC)	POLYETHYLENE (VIRGIN MATERIAL)	POLYETHYLENE (VIRGINMATERIAL)
MANUFACTURING	FOAMED + EXTRUDED	FOAMED + EXTRUDED
COLOR	BLACK	BLACK
CARBONBLACK	2%	2\%
DENSITY \& POLYMER ($\mathrm{g} / \mathrm{cm}^{3}$)	. 936	. 936
MELT INDEX (g/10 MIN)	1.10	1.10
TENSILE STRENGTH (LBS./IN.) (MACH: DIRECTION)	58	24
TENSILE STRENGTH (LBS./IN.) (TRANS DIRECTION)	33	11
ELONGATIONTO BREAK (MACH. DIRECTION)	175\%	180\%
ELONGATIONTOBREAK (TRANS DIRECTION	165\%	150\%
POROSITY	.81-.84	.81-.84
U.V. RESISTANCE	STABLE	STABLE
TRANSMISSIVITY	- SEETABLES-	-SEETABLES -
513/771-5656		
800/346-9107 FAX $513 / 771-4844$	POLY-NET IS PROUDLY MANUFACTURED IN THE U.S.	32 Triangle Park Drive Suite 3201 Cincinnati. Ohio 45246

POLYNET PN-3000 PRODUCT DESCRIPTION

PN-3000 is a profiled geonet manufactured by extruding two sets of polyethylene strands to form a diamond shape. The resuting net provides superior planar water flow, is inert to biological and naturally encountered chemicals, alkalics, and acids and is resistant to UV light exposure. Polynet PN-3000 conforms to the property values listed below.

PROPERTY	METHOD	UNITS	OUALIFIER	VALUE
Roll Length	*	ft	Nornal	300
Roll Width	-	ft	Normal	7.54
Thickness	ASTM D1777	inches	Range	0.220 ± 0.022
Area per Roll	-	ft^{2}	Normal	2262
Weight per Roll		lbs	Normal	407
Weight per Square Foot	ASTM D3776 (option C)	$\mathrm{lbs} / \mathrm{ft}^{2}$	Range	0.180 ± 0.018
Carbon Black Content	ASTM D1603	percent	Range	2.5 ± 0.5
Polymer Density	ASTM D1505	$\mathrm{g} / \mathrm{cm}^{3}$	Range	0.937 ± 0.002
Melt Flow Index	ASTM D1238 (condition E)	$\mathrm{g} / 10 \mathrm{~min}$.	Maximum	1.0
Tensile Strength (Machine Direction)	ASTM D1682 (modified)	ppi	Range	50 ± 10
Transmissivity ${ }^{1}$ (gradient $=1.0$ at $15,000 \mathrm{psf}$)	ASTM D4716	$\mathrm{M}^{2} / \mathrm{sec}$	Minimum	1×10^{-3}

[^12]
POLYNET PN-3000-CN

PRODUCT DESCRIPTION

PN-3000 CN is a foamed profled geonet manufactured by extruding two sets of polyethylene strands to form a diamond shape. The resulting net provides superior plamar water flow, is inert to biological and naturally encountered chemicals, alkalics, and acids and is resistant to UV light exposure. Polynet PN-3000-CN conforms to the property values listed below.

PROPERTY	METHOD	UNITS	QUALIFIER	VALUE
Roll Length	-	$f \mathrm{f}$	Normal	300
Roll Width	-	ft	Normial	7.54
Thickness	ASTM D1777	inches	Range	0.220 ± 0.022
Area per Roll	-	ft^{2}	Normal	2262
Weight per Roll	-	lbs	Normal	260
Weight per Square Foot	ASTM D3776 (option C)	$1 \mathrm{bs} / \mathrm{ft}^{2}$	Range	0.115 ± 0.011
Carbon Black Content	ASTM D1603	nercent	Range	2.5 ± 0.5
Polymer Density	ASTM D1505	$\mathrm{g} / \mathrm{cm}^{3}$	Range	0.937 ± 0.002
Melt Flow Index	ASTM D1238 (condition E)	$\mathrm{g} / 10 \mathrm{~min}$.	Maximum	1.0
Tensile Strength (Machine Dircction)	ASTM D1682 (modified)	ppi	Range	28 ± 10
Transmissivity ${ }^{1}$ (gradiem: $=1.0$ at $4,000 \mathrm{\rho sf}$)	ASTM D4716	$\mathrm{M}^{2} / \mathrm{sec}$	Minimum	1×10^{-3}

[^13]| $\frac{\mathrm{P} O L V \mathrm{~N} \text { S }}{\text { TRANSMISSIVITY }}$ | INSTALLATION METHOD
 LEAK DETECTION
 HDPE LINER/POLY-NET/HDPE LINER | HYDRAULIC PRESSURE |
| :---: | :---: | :---: |

PN-3000 CN CAP-NET

1000 PSF 2000 PSF 4000 PSF 7000 PSF - 10000 PSF

- 14000 PSF
- 20000 PSF

	INSTALLATION METHOD LEACHATE COLLECTION CLAY SUBGRADE GEOTEXTLE POLY NETHDPE LINER	HYDRAULIC PRESSURE

LEACHATE COLLECTION

FOR CLAY LINED FACILITY PN-4000 SANDWICHED BETWEEN GEOTEXTILES

TABLE 5. HYDRAULIC TRANSMISSIVTIY $\left(\mathrm{M}^{2} /\right.$ SEC $\left.\times 10^{.3}\right)$
BN4000 GEONET

GRADIENT $=0.25$					
Specimen	5,000psf	10.000055	15,000 pgf	20,000 255°	25000055
1.	3.67	2.16	1.07	0.43	0.67
2.	4.54	3.02	1.27	0.58	0.19
3.	4.54	3.07	1.34	0.63	0.18
Avg:	4.25	2.75	1.23	0.55	0.18
SD:	0.50	0.51	0.14	0.10	0.01

GRADIENT $=0.50$

Specimen	5000085	10,000 p5:	15,000-55	20000ps	25000746
1.	2.36	1.65	0.78	0.30	0.13
1.	3.05	2.09	1.04	0.66	0.17
3.	2.94	2.05	1.08	0.46	0.18
Avg: SD:	2.85 0.26	1.93 0.24	$\begin{aligned} & 0.97 \\ & 0.16 \end{aligned}$	$\begin{aligned} & 0.41 \\ & 0.09 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.03 \end{aligned}$

GRADIENT $=0.75$					
Specimen	500008	10.000 psf	15.000ps	20,000 psf	250009 jusf
1.	2.01	1.36	0.67	0.25	0.11
2.	2.69	1.94	0.85	0.37	0.14
3.	2.66	1.78	0.86	0.38	0.14
Avg: SD:	2.45 0.38	1.53 0.23	0.79 0.11	$\begin{aligned} & 0.33 \\ & 0.07 \end{aligned}$	$\begin{aligned} & 0.13 \\ & 0.02 \end{aligned}$
GRADIENT 1.0					
Specimen	500085	10,000 psf	15,000 756	20000ns:	25,000 [8f
1.	1.83	1.22	0.57	0.22	0.80
2.	2.23	1.56	0.75	0.34	0.43
3.	2.26	1.49	0.76	0.34	0.33
AvF:	2,11 0.84	1.42 0.18	0.69 0.11	$\begin{array}{r} 0.30 \\ 0.07 \end{array}$	$\frac{0.12}{0.12}$

GRADIENT $=0.35$					
Specinen	2,000 $\mathbf{S i}^{1}$	10.000784	15,000886	20,000 pat	25,000954
1.	2.85	2.19	1.84	137	0.32
2.	2.13	2.81	229	1.45	0.80
9	3.04	2.46	2.08	1.03	0.52
Avg:	2.67	2.49	2.07	1.28	0.54
SD:	0.48	031	0.23	0.22	0.25
GRADIENT 0.50					
Soccmen	2000050	10,000 ${ }^{\text {d }}$	$15.000188^{\prime \prime}$	20.000 28.	25,000 $78{ }^{\text {a }}$
1.	2.21	1.84	1.44	0.92	0.26
2.	1.78	2.09	1.72	1.20	0.59
3.	2.23	1.97	2.45	0.78	0.38
Avg:	2.07	1.97	1.54	0.97	0.41
\$D:	0.25	0.13	0.16	0.21	0.17

GRADIENT $=0.75$					
Specimen	50000 psf	10.000 08	15,000 psf	20,000085	25.000 pg
1.	2.02	1.47	1.11	0.88	$0.2{ }^{2}$
2.	1.61	1.72	1.44	1.04	0.54
3.	1.81	1.68	1.24	0.64	0.35
Avg:	1.81 0.21	1.62 0.13	1.26 0.17	$\begin{aligned} & 0.85 \\ & 0.20 \end{aligned}$	$\begin{aligned} & 0.397 \\ & 0.15 \end{aligned}$

GRADIENT = 1.0					
Spesimer	5,000 psf	10,000psit	15,000 pes	20.000.05f	25002055
1.	1.75	1.46	${ }^{1.20}$	0.81	0.42 0.49
2.	1.56	${ }_{1.47}^{1.51}$	1.10	0.98 0.58	0.30
Av:	1.58 0.20	1.48 0.03	1.19 0.08	$\begin{gathered} 0.78 \\ 0.18 \end{gathered}$	$\begin{aligned} & 0.344 \\ & 0.14 \end{aligned}$

TABLE 3．HYDRAULIC TRANSMISSIVIX（ $\mathrm{M}^{2} / \operatorname{Sec} \times 10^{-3}$ ） SOIL／TREVIRA II20／RN3000 GEONET／TREVIRA 1120／SOIL

		GRADIENT $=0.25$			
specimen	50000 psi	10，000．85：	15，000 250	$20,000 \mathrm{psf}$	25.000 gef
1.	0.41	0.16	0.07	0.04	0.02
2	0.42	0.17	0.08	0.05	0.04
3	0.48	0.23	0.14	0.11	0.09
Av： SD：	0.44	0.19	0.10	0.09	0.05
	$0,04$	0.04	0.04		
		GRADIENT $=0.50$			
Specinen	5000 psf	10，000 prs	15，000 psf	30.000808	25．000 R2f
1.	0.36	0.14	0.08	0.03	0.02
2.	0.37	0.14	0.08	0.04	0.0 .3
3.	0.40	0.18	0.11	0.07	0.06
Avg： SD：	0.38 0.02	0.15 0.02	0.09 0.02	0.05 0.10	0．104

GRADIENT＊0．75					
Specimen	5000 nif	10．000 pes	1500080	30.0095059	2500005
1.	0,32	0.14	0.06	0.04	0.09
2.	0.32	0.14	0.06	0.05	0.03
3.	0.35	0.16	0.08	0.0	0.02
Avg：	0.33	0.15	0.07	0.05	0.04
SD：	0.02	0.01	0.01	0.01	0.01

GRADIENT $=1.0$					
Specimed	5000 psf	10,000 R．5．	1500005	200000 pss	25，0019［5f
1.	0.26	0.12	0.05	0.03	0.03
2.	0.26	0.12	0.06	0.04	0.03
3.	0.29	0.14	0.07	0.05	0.04
Avg：	0.27	0.13	0,06	0.04	0.03
SD：	0.02	0.01	0.01	0.01	（0， 11

TABLE S, HYDRAULICTRANSMISSIVITY ($\left.M^{3} / \mathrm{Sec} \times 10^{-3}\right)$ SOIL/TREVIRA $1120 / P N 4000$ GEONET/TREVIRA $1120 /$ SOII.

GRADIENT 90.35					
Specimen	50000ps	10.000.059	15000 psf	20,000 pes	25.000 pef
1	0.63	0.17	0.03	0,00	0.00
2.	0.66	0.19	0.05	0.02	0.02
3.	0.76	0.29	0.15	0.11	0.11
Ave:	0.68	0.22	0.08	0.104	0.04
SD:	0.07	0.06	0.06	0.06	0.06

GRADIENT $=0.50$					
Specimen	2000 osf	10.00005	15.000 0.58	20,000pss	25000nat
1.	0.62	0.18	0.02	0.00	0.00
$\ddot{2}$	0.64	0.19	0.03	0.01	0.01
3.	0.71	0.24	0.08	0.06	0.05
	0.66	0.20	0.04	0.02	0.02
AvP:	0.05	0.03	0.03	0.0 .3	0.03

GRADIENT $=0.75$					
Specimen	5,000055	10,000-85	15,000 pes	21,000 10.5	25,0000091
1.	0.51	0.15	0.02	0.00	0.00
2	0.53	0.16	0.03	0.01	n.()
3.	0.59	0.20	0.06	0.04	0.09
Avg:	0.54	0.17	0.04	0.02	0.022
SD:	0.04	0.03	0.02	0.02	0.0.

GRADIENT $=1.0$					
Spesimen	2000 prif	10,000 $05 f$	150000.5	200000 psi	$25000.0 \times i$
1.	0.46	0.13	0.02	0.01	0.60
2.	0.47	0.13	0.03	0.02	0.01
3.	0.53	0.16	0.05	0.104	0.0
Ave:	0.49	0.14	0.03	0.02	0.118
SD:	0.04	0.02	0.02	0.02	

ATTACHMENT \#2

LINER SYSTEM MATERIAL DATA

High Density Polyethylene Micro Spike Liner

Product Data

Property
Thickness, nominal (mm)
Thickness (min. ave.), mil (mm) ASTM D5994*
Thickness (lowest indiv. for 8 of 10 spec .), mil (mm)
Thickness (lowest indiv. for 1 of 10 spec .), mill (mm)

Test Method

ASTM D5994*
ASTM D5994*

Values

$30(.75)$	$40(1.0)$	$60(1.5)$	$80(2.0)$	$100(2.5)$
$29(.71)$	$38(.95)$	$57(1.43)$	$76(1.90)$	$95(2.38)$
$27(.68)$	$36(.90)$	$54(1.35)$	$72(1.80)$	$90(2.25)$
$26(.64)$	$34(.85)$	$51(1.28)$	$68(1.70)$	$85(2.13)$

Whe thickness values may be changed due to project specifications (i.e., absolute minimum thickness)

Asperity Height (min, ave), mil (mm)	GRI GM12	$10(.41)$	$16(.41)$	16 (.41)	16 (41)	$16(41)$
Density, g/cc, minimum	ASTM D792, Method 6	0.94	0.94	0.94	0.94	0.94
Tensile Properties (ave both directions)	ASTM 06693, Type IV					
Strength @ Yield (min. ave.), blin width (N/mm)	2 infminute	66 (11.6)	88 (15.4)	132 (23.1)	176 (30.8)	220 (38.5)
Elongation @ Yield (min. ave.), \% (GL=1.3im)	5 specimens in each direction	13	13	13	13	13
Strength @ Break (rin. ave.), b/in width (N/mmi)		66 (19.6)	$88(15.4)$	132 (23.1)	176 (30.8)	220 (38.5)
Elongation @ Break (min. ave.), \% (GL=2.0in)		350	350	350	350	350
Tear Resistance (min. ave.), bs, (N)	ASTM D1004	23 (102)	30 (133)	45 (200)	60 (267)	$72(320)$
Puncture Resistance (min. ave.), ibs, (N)	ASTM D4833	60 (267)	$90(400)$	120 (534)	150 (667)	180 (801)
Carbon Black Content (range in \%)	ASTM D4218	2-3	2-3	2-3	2-3	2-3
Caton Black Dispersion (Category)	ASTM D5596	Only near spherical agglomerates for 10 views: 9 views in Cat. 1 or 2 , and 1 view in Cat. 3				
Stress Crack Resistance (Single Point NCTL), hours	ASTM D5397, Appendix	300	300	300	300	300
Oxidative Induction Time, minutes	ASTM D3885, $200^{\circ} \mathrm{C}, 1 \mathrm{~atm} 02$	≥ 100				
Melt Flow Index, g/10 minutes	ASTM D1238, $190^{\circ} \mathrm{C}, 2.16 \mathrm{~kg}$	≤ 1.0				
Oven Aging	ASTM D5721	80	80	80	80	80
with HP OIT, (\% retained after 90 days)	ASTM D5885, $150^{\circ} \mathrm{C}, 500 \mathrm{psi} \mathrm{O}_{2}$					
UV Resistance	GRI GM11	20hr. Cycle @ $75^{\circ} \mathrm{C} / 4 \mathrm{hr}$ dark condensation @ 60 ${ }^{\circ} \mathrm{C}$				
with HP OIT, (\% retained after 1600 hours)	ASTM D5885, $150^{\circ} \mathrm{C}, 500 \mathrm{psi} \mathrm{O}_{2}$	50	50	50	50	50

These product specifications meet or exceed GRI's GMI 3
Supply Information (Standard Roll Dimensions)

Thickness		Width		Length		Area (approx.)		Weight (average)	
mil	$\mathbf{m m}$	$\mathbf{f t}$	\mathbf{m}	$\mathbf{f t}$	\mathbf{m}	$\mathbf{f t}^{\mathbf{2}}$	\mathbf{m}^{2}	$\mathbf{l b s}$	$\mathbf{k g}$
30	.75	23	7	600.1	182.9	13,782	1,280	3,325	1,510
40	1,0	23	7	600.1	182.9	13,782	1,280	3,325	1,510
60	1.5	23	7	410.1	125	9,419	875	3,356	1,522
80	2.0	23	7	328.1	100	7,535	700	3,306	1,500
100	2.5	23	7	246.1	75	5,651	525	3,167	1,436

Notes:

All rolls are supplied with two shygs. All wolls mre wownd on a 6 inch cone. Special roll teng the awe whilable or request.
All information, recommendations and suggestions appearing in this literature concerning the use of our products are based upon tests and data believed to be reliable; however, it is the users responsibity to detemine the sutability for their own use of the products described herein. Since the actual. use by others is beyond our control, no guarantee or warranty of any kind, expressed or implied, is made by Agru/America as to the effects of such use or the results to be obtained, nor does Agru/America assume any libility in connecrion herewith. Any statement made herem may not be absolutely complete since additional information may be necessary or desirable when particular or exceptional conditions or circumstances exist or because of applicable laws or govermment regutations. Nothing herem is to be construed as permission or as a recommendation to infinge any patent.

Micro Spike Textured Geomembrane

Applications for $M D P E$ and $L X D P E$ Micro Spike ${ }^{*}$, textured geomembranes include projects where slope stability is critical. Micro Spike is the only HDPE or LLDPE geomembrane that exhibits reproducble texture and friction angle values with the highest interface surface friction values in the industry.

Agru America's structured Geomembranes are produced on state-of-the-art equipment using a flat die-cast extrusion manufacturing process as opposed to blown film extrusion. Agru America is the only manufacturer of structured and embossed Geomembranes in North America.

Comparative properties for Design Consideration
Blown film co-extruded textured surfaces vs. Miro Spike strutured surfaces

Design Consideration	Blown film co-extruded	Micro Spikes structured
Consistent core thickness	no	yes
Consistent surface texture	no	yes
Consistent asperity height	no	yes
Consistent interface friction	no	yes
Affect on mechanical properties	yes	no
Affect on stress crack potential	yes	no
Affect on multiaxial stress-strain	yes	no
Reduction in CQA program costs (less testing required)	no	yes

The calendared structured liner manufacturing process allows production of the only textured her with a consistent core thickness, resulting in unchanged mechanical properties from that of smooth sheet. The consistent surface structuring or texture gives Micro Spike Geomembranes reproducible friction angle values with efficiencies of over 95%.

Micro Spike geomembranes are manufactured to meet or exceed current industry standards including GRI GM 13 (HDPE) and GRI GM 17 (LLDPE) test values, frequency of testing and functional requirements. Micro Spike textured Geomembranes have smooth edges to allow for high quality thermal fusion welding between adjacent sheets. All Agru Geomembrane material is rolled on plastic pipe cores to ensure ease of installation without damage to the roll material.

Micro Spike textured HDPE and LLDPE geomembrane has a decided advantage over blown film textured geomembrane:

Reliability: Micro Spike's reproducible friction angles gives the design engineer the confidence that he has designed a system that will be built co meet or exceed the project design requirements.

Cost Savings: Micro Spike is comperitively priced with value added advantages including consistent core thickness and texture which reduces the on-site Quality Control and third party Quality Assurance costs.

Consistent Material: The structured "Micro Spikes" are totally integrated with the Geomembrane.
High Interface shear: Exceptional shear resistance between soil and geotextile components allows flexibilicy and stahility during protective cover material placement. 'The textured asperity height is not only consistent but higher than competitive textured products.

TWhy specify or use anything else!

Agru has over 20 years experience with Geomembranes and 50 years experience with Thermoplastic Extrusion Agru offers a wide range of concrete protective liners (Sure Grip), pipe fittings and semi-finished materials.

843-546-0600
$800-321-1379$
Fax: 843-546-0516:
whwagramerica.com

GSE HD Texfured Geomembranes

GSE HD Textured is the textured version of GSE HD. It is a high quality, high density polyethylene (HDPE) geomembrane with one or two coextruded, textured surfaces, and consisting of appraximately 97.5% polyethylene, 2.5% carbon black and trace amaunts af antioxidants and heat stabilizers; no other additives, fillers or extenders are used. The resin used is specially formulated, virgin polyethylene and is designed specifically far flexible geomembrane applications. GSE HD Textured has excellent resistance to UV radiotion and is suitable for exposed conditions. This product allows projects with greater slopes to be designed since frictional chorocteristics are enhanced. These product specifications meet or exceed GRI GM13.
Produci Specifications

TESTED PROPERTY	TEST METHOD	FREQUENCY		MINIMUM VALUE			
Product Code			$\begin{gathered} \text { HDT } \\ 030 \mathrm{G} 000 \end{gathered}$	$\begin{gathered} \text { HDT } \\ 040 \mathrm{G} 000 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { HDT } \\ 060 \mathrm{G} 000 \end{array}$	$\begin{gathered} \text { HDT } \\ 080 \mathrm{G} 000 \end{gathered}$	$\begin{gathered} \text { HDT } \\ 100 \mathrm{G} 000 \end{gathered}$
$\begin{aligned} & \text { Thickness, (minimum average) mil (} \mathrm{mm} \text {) } \\ & \text { Lowest individual for } 8 \text { out of } 10 \text { values } \\ & \text { Lowest individual for any of the } 10 \text { values } \end{aligned}$	ASTM D 5994	every roll		$38(0.96)$ $36(0.91)$ $34(0.86)$			
Density, $\mathrm{g} / \mathrm{cm}^{3}$	ASTM D 1505	200,000 lb	0.94	0.94	0.94	0.94	0.94
Tensile Properties (each direction) ${ }^{\text {? }}$ Strength at Break, Ib/in-width (N / mm) Strength at Yield, $\mathrm{lb} / \mathrm{in}$-width (N / mm) Elongation at Break, \% Elongation at Yield, \%	ASTM D 6693, Type IV Dumbell, 2 ipm $\begin{aligned} & \text { G.L. }=2.0 \text { in }(51 \mathrm{~mm}) \\ & \text { G.L. }=1.3 \text { in }(33 \mathrm{~mm}) \end{aligned}$	20,000 lb	$\begin{gathered} 45(8) \\ 63(11) \\ 100 \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} 60(11) \\ 84(15) \\ 100 \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} 90(16) \\ 126(22) \\ 100 \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} 120(21) \\ 168(29) \\ 100 \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} 150(27) \\ 210(37) \\ 100 \\ 12 \end{gathered}$
Tear Resistance, lb (N)	ASTM D 1004	45,000 lb	21 (93)	28 (125)	42 (187)	56 (249)	70 (311)
Puncture Resistance, lb (N)	ASTM D 4833	$45,000 \mathrm{lb}$	45 (200)	$60(267)$	90 (400)	120 (534)	$150(667)$
Carbon Black Content, \%	ASTM D 1603*/4218	20,000 lb	2.0	2.0	2.0	2.0	2.0
Carbon Black Dispersion	ASTM D 5596	$45,000 \mathrm{lb}$	+Note 1	+ Note 1	+ Note 1	+Note 1	+Note 1
Asperity Height	GRI CM 12	second roll	+Note 2	+ Note 2	+ Note 2	+Note 2	+Note 2
Notched Constant Tensile Load ${ }^{\text {d2] }}$, hr	ASTM D 5397, Appendix	$200,000 \mathrm{lb}$	300	300	300	300	300
REFERENCE PROPERTY	TEST METHOD	FREQUENCY		NOMINAL VALUE			
Oxidative Induction Time, min	ASTM D $3895,200^{\circ} \mathrm{C}$; $\mathrm{O}_{2}, 1 \mathrm{~atm}$	200,000 lb	>100	>100	>100	>100	>100
Roll Length ${ }^{\text {P1 }}$ (approximate), $\mathrm{ft}(\mathrm{m})$	Standard Textured		830 (253)	700 (213)	520 (158)	400 (122)	330 (101)
Roll Width ${ }^{\text {B1, }}$, ft (m)			22.5 (6.9)	22.5 (6.9)	22.5 (6.9)	22.5 (6.9)	22.5 (6.9)
Roll Area, $\mathrm{ft}^{2}\left(\mathrm{~m}^{2}\right)$			$\begin{aligned} & \hline 18,674 \\ & (1,735) \end{aligned}$	$\begin{aligned} & 15,750 \\ & (1,463) \end{aligned}$	$\begin{aligned} & 11,700 \\ & (1,087) \end{aligned}$	$\begin{aligned} & 9,000 \\ & (836) \end{aligned}$	$\begin{aligned} & 7,425 \\ & (690) \end{aligned}$

NOTES:

- +Nota 1: Dispersion anly applies ta near spherical agglomerates. 9 of 10 views shall be Cafegary 1 or 2 . No more thon 1 view fram Cotegary 3 .
- +Note 2: 10 mil overage. 8 of 10 readings ≥ 7 mils. Lowest individuol ≥ 5 mils.
- GSE HD Stondard Textured is available in rolls weighing about $4,000 \mathrm{lb}(1,800 \mathrm{~kg})$.
- "ithe combination of stress concentrations due to coextrusion texture geometry and the small specimen size results in large variation of test results. Therefare, these tensile properties are minimum average values.
- ${ }^{2}$ NCTL for HD Textured is conducted on representative smooth membrane samples.
- All GSE geomembranes have dimensional stability of $\pm 2 \%$ when tested with ASTM D 1204 and LTB of $<-77^{\circ} \mathrm{C}$ when fested with ASTM D 746 .
- ${ }^{13}$ Roll lengths and widths have a talerance of $\pm 1 \%$.
- Modified.

This information is provided for reference purposes only and is not intended as a warranty or guarontee. GSE assumes no liability in connection with the use of this information. Please check with GSE for curent, standard minimum quality assurance procedures and specifications.
GSE and other tradematks in this document are registered tradematks of GSE Lining Technology, inc. in the United States and certain foreign countries.

North America	GSE Lining Tecthodogy, Inc.	Houston, Texas	800.435.2008	281.443.8564	Fax: 281.230.6739
South Ammerica	GSE Lining Technology Chile S.A.	Santiago, Chile		56.2.595.4200	Fax: 56.2.595.4290
Asia Pucific	GSE Lining Technology Company Limiled	Bangkok, Thailend		66.2.937.0091	Fax: 66.2.937.0097
Europe \& Africa	GSE Lining Tectnology GmbH	Hamburg, Germany		49.40 .767420	Fax: 49.40 .7674234
Middle East	GSE Lining Technology-Egypt	The 6ith of October Ciny, Egypt		20,2.828.8888	Fax: 20.2.828.8889

GSE HD is a smooth, high quality, high density polyeithlene (HDPE) geomembrane produced from specially formulated, virgin polyethylene resin. This polyethylene resin is designed specifically for flexible geomembrane applications. It contains approximately 97.5% polyethylene, 2.5% carbon black and trace amounts of ontioxidants and heat stabilizers; no other additives, fillers or extenders ore used. GSE HD has outstanding chemical resistance, mechanical properties, environmental stress crack resistance, dimensional stability and thermal aging characteristics. GSE HD has excellent resistance to UV rodiation and is suitable for exposed conditions. These product specifications meet or exceed GRI GM13.

Product Specifications

TESTED PROPERTY	TEST METHOD	FREQUENCY		MINIMUM VALUE			
Product Code			HDE 030A000	HDE 040A000	HDE 060A000	$\begin{gathered} \text { HDE } \\ 080 \mathrm{~A} 000 \end{gathered}$	$\begin{gathered} \text { HDE } \\ 100 \mathrm{~A} 000 \end{gathered}$
Thickness, (minimum average) mil (mm) Lowest individual reading (-10\%)	ASTM D 5199	every roll	$\begin{aligned} & 30(0.75) \\ & 27(0.69) \end{aligned}$	$\begin{aligned} & 40(1.00) \\ & 36(0.91) \end{aligned}$	$\begin{aligned} & 60(1.50) \\ & 54(1.40) \end{aligned}$	$\begin{aligned} & 80(2.00) \\ & 72(1.80) \end{aligned}$	$\begin{aligned} & 100(2.50) \\ & 90(2.30) \end{aligned}$
Density, $\mathrm{g} / \mathrm{cm}^{3}$	ASTM D 1505	$200,000 \mathrm{lb}$	0.94	0.94	0.94	0.94	0.94
Tensile Properties (each direction) Strength at Break, lb / m-width (N / mm) Strength at Yield, $\mathrm{Ib} / \mathrm{in}$-width (N / mm) Elongation at Break, $\%$ Elongation at Yield, $\%$	$\begin{aligned} & \text { ASTM D 6693, Type IV } \\ & \text { Dumbell, } 2 \mathrm{ipm} \\ & \text { G.L. } 2.0 \text { in }(51 \mathrm{~mm}) \\ & \text { G.L. } 1.3 \text { in }(33 \mathrm{~mm}) \end{aligned}$	20,000 lb	$\begin{gathered} 114(20) \\ 63(11) \\ 700 \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} 152(27) \\ 84(15) \\ 700 \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} 228(40) \\ 126(22) \\ 700 \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} 304(53) \\ 168(29) \\ 700 \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} 380(67) \\ 210(37) \\ 700 \\ 12 \\ \hline \end{gathered}$
Tear Resistance, fib (N)	ASTM D 1004	45,000 lb	$21(93)$	28 (125)	42 (187)	56 (249)	70 (311)
Puncture Resistance, $\mathrm{lb}(\mathrm{N})$	ASTM D 4833	$45,000 \mathrm{lb}$	54 (240)	72 (320)	108 (480)	144 (640)	180 (800)
Carbon Black Content, \%	ASTM D 1603*/4218	20,000 lb	2.0	2.0	2.0	2.0	2.0
Carbon Black Dispersion	ASTM D 5596	$45,000 \mathrm{lb}$	+ Note 1	+Note 1	+ Note 1	+Note 1	+Note 1
Notched Constant Tensile Load, hr	ASTM D 5397, Appendix	200,000 1b	300	300	300	300	300
REFERENCE PROPERTY	TEST METHOD	FREQUENCY		NOMINAL VALUE			
Oxidative Induction Time, min	ASTM D $3895,200^{\circ} \mathrm{C}$; $\mathrm{O}_{2}, 1 \mathrm{~atm}$	$200,000 \mathrm{lb}$	>100	>100	>100	>100	>100
Roll Length ${ }^{(1)}$ (approximate), $\mathrm{ft}(\mathrm{m})$			1,120(341)	870 (265)	560 (171)	430 (131)	340 (104)
Roll Width ${ }^{(1)}$, ft (m)			22.5 (6.9)	22.5 (6.9)	22.5 (6.9)	22.5 (6.9)	22.5 (6.9)
Roll Area, $\mathrm{ft}^{2}\left(\mathrm{~m}^{2}\right)$			$\begin{aligned} & 25,200 \\ & (2,341) \end{aligned}$	$\begin{aligned} & 19,575 \\ & (1,819) \end{aligned}$	$\begin{aligned} & 12,600 \\ & (1,171) \end{aligned}$	$\begin{aligned} & \hline 9,675 \\ & (899) \end{aligned}$	$\begin{aligned} & \hline 7,650 \\ & (711) \end{aligned}$

NOTES:

- +Note 1: Dispersion only opplies to near spherical agglomerates. 9 of 10 views shall be Cotegory 1 or 2 . No more than 1 view from Category 3.
- GSE HD is ovailable in rolls weighing about $3,900 \mathrm{lb}(1,769 \mathrm{~kg})$
- All GSE geomembranes have dimensional stability of $\pm 2 \%$ when tested with ASTM D 1204 and LTB of $<77^{\circ} \mathrm{C}$ when tested with ASTM D 746 .
- "Roll lengths and widths have a talerance of $\pm 1 \%$.
- Modified.

This information is provided for reference purposes only and is not intended as a warranty or guaranfee. GSE assumes no liability in connection with the use of this information. Please check with GSE for current, standard minimum quality assurance procedures and specificotions.
GSE and other trademarks in this document are registered tradecraaks of GSE Lining Technology, finc, in the United States and cerlain foreign countries.

North America	GSE Lining Tecthology, Inc.	Housion, Texcs	800.435.2008	281.443.8564	fax: 281.230 .6739
South America	GSE Lining Tectrology Chile S.A.	Santiago, Chile		56.2.595.4200	Fax: 56.2.595.4290
Asia Paxific	GSE Lining Technology Company Limited	Bangkok, Thoilind		66.2.937.0091	Fox: 65.2.937.0097
Europe \& Africa	GSE Lining Tedhology GmbH	Hamburg, Germany		49.40 .767420	Fax: 49.40.7674234
Midide East	GSE Eining Technology-Egypt	The 6th of Ocrober City, Egypt		20.2.828.8888	Fax: 20.2.828.8889

O:
Product Data Sheet

GSE STANDART PRODUCTS

GSE Nonwoven Geotextiles

GSE Nonwoven Geotextiles is a family of polypropylene, staple fiber, nonwoven, needlepunched geotextiles. Manufactured using an advanced manufacturing and quality system, these products are the most uniform and consistent nonwoven, neediepunched geotextile currently available in the industry. GSE combines a fiber selection and approval system with in-line quality confrol and a state-of-the-art laboratory to ensure that every roll shipped meets customer specifications. The company has performed extensive performance festing to evaluate suitability of its nonwovens for various applications. GSE Nonwoven Geofextiles are available in a range af weights to meet your specific project needs. These product specifications meet or exceed GRI GT12, GRI GI13 and AASHTO M288.

Product Specificotions

TESTED PROPERTY	TEST METHOD	FREQUENCY	NW4	NW6	NW8	NW10	NW12	NW16
Product Code			$\begin{gathered} \text { GEO } \\ 0408002 \end{gathered}$	$\begin{gathered} \text { GEO } \\ 0608002 \end{gathered}$	$\begin{gathered} \text { GEO } \\ 0808002 \end{gathered}$	$\begin{gathered} \text { GEO } \\ 1008002 \end{gathered}$	$\begin{gathered} \text { GEO } \\ 1208002 \end{gathered}$	$\begin{aligned} & \text { GEO } \\ & 1608002 \end{aligned}$
AASHTO M288 Class			3	2	1	>1	>>1	>>1
Mass per Unit Area, oz/yd ${ }^{2}\left(g / \mathrm{m}^{2}\right)$	ASTM D 5261	90,000 ft^{2}	$\begin{gathered} 4 \\ (135) \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ (200) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (270) \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ (335) \end{gathered}$	$\begin{gathered} 12 \\ (405) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (540) \\ \hline \end{gathered}$
Grab Tensile Strength, Ib (N)	ASTM D 4632	90,000 ft ${ }^{2}$	$\begin{gathered} 120 \\ (530) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 170 \\ & (755) \end{aligned}$	$\begin{gathered} \hline 220 \\ (975) \\ \hline \end{gathered}$	$\begin{gathered} 260 \\ (1,155) \end{gathered}$	$\begin{gathered} 320 \\ (1,420) \end{gathered}$	$\begin{gathered} 390 \\ (1,735) \end{gathered}$
Grab Elongation, \%	ASTM D 4632	90,000 ft ${ }^{2}$	50	50	50	50	50	50
Puncture Strength, $\mathrm{lb}(\mathrm{N})$	ASTM D 4833	90,000 ft ${ }^{2}$	$\begin{gathered} 60 \\ (265) \end{gathered}$	$\begin{gathered} 90 \\ (395) \end{gathered}$	$\begin{aligned} & 120 \\ & \\ & \hline(525) \end{aligned}$	$\begin{aligned} & 165 \\ & (725) \end{aligned}$	$\begin{aligned} & 190 \\ & (835) \end{aligned}$	$\begin{gathered} 240 \\ (1,055) \end{gathered}$
Trapezoidal Tear Strength, ib (N)	ASTM D 4533	90,000 ft^{2}	$\begin{gathered} 50 \\ (220) \end{gathered}$	$\begin{gathered} 70 \\ (310) \end{gathered}$	$\begin{gathered} 95 \\ (420) \end{gathered}$	$\begin{gathered} 100 \\ (445) \end{gathered}$	$\begin{array}{r} 125 \\ (555) \end{array}$	$\begin{aligned} & \hline 150 \\ & (665) \end{aligned}$
Apparent Opening Size, Sieve No. (mm)	ASTM D 4751	540,000 ft	$\begin{gathered} 70 \\ (0.212) \end{gathered}$	$\begin{gathered} 70 \\ (0.212) \end{gathered}$	$\begin{gathered} 80 \\ (0.180) \end{gathered}$	$\begin{gathered} 100 \\ (0.150) \end{gathered}$	$\begin{gathered} 100 \\ (0.150) \end{gathered}$	$\begin{gathered} 100 \\ (0.150) \end{gathered}$
Permittivity, sec^{-1}	ASTM D 4491	540,000 ft^{2}	1.50	1.50	1.50	1.20	0.80	0.70
Permeability, cm/sec	ASTM D 4491	540,000 ft^{2}	0.22	0.30	0.30	0.30	0.29	0.27
Water Flow Rate, gpm/tt ${ }^{2}\left(\mathrm{~min} / \mathrm{m}^{2}\right)$	ASTM D 4491	540,000 ft ${ }^{2}$	$\begin{gathered} 120 \\ (4,885) \\ \hline \end{gathered}$	$\begin{gathered} 110 \\ (4,480) \\ \hline \end{gathered}$	$\begin{gathered} 110 \\ (4,480) \end{gathered}$	$\begin{gathered} 85 \\ (3,460) \end{gathered}$	$\begin{gathered} 60 \\ (2,440) \\ \hline \end{gathered}$	$\begin{array}{r} 50 \\ (2,035) \\ \hline \end{array}$
UV Resistance (\% retained after 500 hours)	ASTM D 4355	per formulation	70	70	70	70	70	70
Roll Length ${ }^{\text {(i), }}$ ft (m)			$\begin{gathered} 600 \\ (182) \end{gathered}$	$\begin{gathered} 600 \\ (182) \end{gathered}$	$\begin{gathered} 600 \\ (182) \end{gathered}$	$\begin{aligned} & \hline 300 \\ & (91) \end{aligned}$	$\begin{aligned} & 300 \\ & (91) \end{aligned}$	$\begin{aligned} & 300 \\ & (91) \end{aligned}$
Roll Width ${ }^{\text {(12), }} \mathrm{ft}$ (m)			$\begin{gathered} 15 \\ (4.6) \\ \hline \end{gathered}$	$\begin{array}{r} 15 \\ (4.6) \\ \hline \end{array}$	$\begin{gathered} 15 \\ (4.6) \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ (4.6) \end{gathered}$	$\begin{gathered} 15 \\ (4.6) \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ (4.6) \\ \hline \end{gathered}$
Roll Area, $\mathrm{ft}^{2}\left(\mathrm{~m}^{2}\right)$			$\begin{aligned} & 9,000 \\ & (836) \end{aligned}$	$\begin{aligned} & 9,000 \\ & (836) \end{aligned}$	$\begin{aligned} & 9,000 \\ & (836) \end{aligned}$	$\begin{aligned} & 4,500 \\ & (418) \end{aligned}$	$\begin{aligned} & \hline 4,500 \\ & (418) \end{aligned}$	$\begin{aligned} & 4,500 \\ & (418) \end{aligned}$

NOTES:

- The properly values listed are in weoker principal direction. All values listed are Minimum Average Roll Volues (MARV) except apparent opening size in mm and UV resistance. Apparent opening size (mm) is a Maximum Average Roll Value. UV is a typical value.
- MRall lengths and widths have a tolerance of $\pm 1 \%$.

This information is provided for reference purposes only and is not infended as a worronty or guarantee. GSE assumes no liability in connection with the use of this information. Piease check with GSE for current, sandard minimum quality assurance procedures and specifications.
GSE and other trademarks in this document are registered trademarks of GSE Lining Technology, inc. in the United States and certain foreign countries.

North America	GSE Lining Tectnology, Inc.	Kouston, Texas	800.435.2008	281.443 .8564	Fax: 281.230 .6739
South America	GSE Lining Iechnology chile S.A.	Sontiago, Clijile		56.2.595.4200	Fax: 56.2.595.4290
Asia Pacific	GSE Lining Technology Company Limited	Bangkok, Thailand		66.2.937.0091	Fax: 66.2.937.0097
Europe a Africa	GSE Lining Tedinology GmbH	Hamburg, Germany		49.40 .767420	Fax: 49.40.7674234
Midide East	GSE Lining Yedhnology-Egypt	The 6th of October City, Egypt		20.2.828.8888	Fax: 20.2.828.8889

\square
Product Data Sheef

GSE STANOAME PROUUTS
GSE FabriNet Geocomposites (Double-Sided)
GSE FabriNet geocomposite consists of GSE HyperNet geonet heatlaminated on both sides with a GSE nonwoven needlepunched geotextile. GSE HyperNet is a 200 mil thick geonet manufactured from a premium grade high density polyethylene resin. For the purpose of lamination to geonets, GSE nonwoven needlepunched geotextiles are available in mass per unit area range of $6 \mathrm{oz} / \mathrm{yd}^{2}\left(200 \mathrm{~g} / \mathrm{m}^{2}\right)$ to $16 \mathrm{oz} / \mathrm{yd}^{2}\left(540 \mathrm{~g} / \mathrm{m}^{2}\right)$. GSE FabriNet geocomposites are designed and formulated to perform drainage function under o range of anticipated site laads, gradients and boundary conditions. Index properties for the product are provided in the toble below. Please contact GSE for further information regarding performance under site-specific conditions.

Product Specifications

TESTED PROPERTY Geocomposite	TEST METHOD	FREQUENCY	MINIMUM AVERAGE ROLL VALUE ${ }^{(3)}$		
			$6 \mathrm{oz} / \mathrm{yd}^{2}$	$8 \mathrm{oz} / \mathrm{yd}^{2}$	$10 \mathrm{oz} / \mathrm{yd}^{2}$
Product Code			F42060060S	F42080080S	F42100100S
Transmissivity ${ }^{(t)}$, $\mathrm{gal} / \mathrm{min} / \mathrm{ft}\left(\mathrm{m}^{2} / \mathrm{sec}\right)$	ASTM D 4716	1/540,000 ft^{2}	0.48 (7×10^{-4})	$0.48\left(1 \times 10^{4}\right)$	0.43 ($\left.9 \times 10^{.9}\right)$
Ply Adhesion, $\mathrm{l} / \mathrm{in}(\mathrm{g} / \mathrm{cm})$	ASTM D 7005	$1 / 50,000 \mathrm{ft}^{2}$	1.0 (178)	1.0 (178)	1.0 (178)
Roll Width ${ }^{\text {(ri) }}$, ft (m)			14.5 (4.4)	14.5 (4.4)	14.5 (4.4)
Roll Length ${ }^{(\mathrm{ct}}, \mathrm{ft}(\mathrm{m})$			230 (70.1)	200 (60.9)	190 (58.0)
Roll Area, $\mathrm{ft}^{2}\left(\mathrm{~m}^{2}\right)$			3,335 (310)	2,900 (269)	2,755 (256)
Geonet core ${ }^{(d)}$					
Transmissivity ${ }^{(6)} \mathrm{gal}^{(1)} / \mathrm{min} / \mathrm{ft}\left(\mathrm{m}^{2} / \mathrm{sec}\right)$	ASTM D 4716		$9.66\left(2 \times 10^{-3}\right)$	9.66 (2 $\times 10^{3}$)	$9.66\left(2 \times 10^{-3}\right)$
Thickness, mil (mm)	ASTM D 5199	1/50,000 ft^{2}	200 (5)	200 (5)	200 (5)
Density, g/cm ${ }^{3}$	ASTM D 1505	1/50,000 ft^{2}	0.94	0.94	0.94
Tensile Strength (MD), $\mathrm{l} / \mathrm{in}(\mathrm{N} / \mathrm{mm}$)	ASTM D 5035	$1 / 50,000 \mathrm{ft}^{2}$	45 (7.9)	45 (7.9)	45 (7.9)
Carbon Black Content, \%	ASTM D 1603*/4218	$1 / 50,000 \mathrm{ft}^{2}$	2.0	2.0	2.0
Geotextile (prior to lamination) ${ }^{(\mathrm{d}, e)}$					
Mass per Unit Area, oz/ $/ \mathrm{d} \mathrm{d}^{2}\left(\mathrm{~g} / \mathrm{m}^{2}\right)$	ASTM D 5261	1/90,000 ft^{2}	6 (200)	8 (270)	10 (335)
Grab Tensile, lb (N)	ASTM D 4632	$1 / 90,000 \mathrm{ft}^{2}$	170 (755)	220 (975)	$260(1,155)$
Puncture Sirength, $\mathrm{lb}(\mathrm{N})$	ASTM D 4833	1/90,000 ft^{2}	90 (395)	120 (525)	165 (725)
AOS, US sieve (mm)	ASTM D 4751	1/540,000 ft^{2}	70 (0.212)	80 (0.180)	100 (0.150)
Permittivity, $\mathrm{sec}^{\text {3 }}$)	ASTM D 4491	1/540,000 ft^{2}	1.5	1.5	1.2
Flow Rate, gpm/ft ${ }^{2}\left(\mathrm{lpm} / \mathrm{m}^{2}\right)$	ASTM D 4491	1/540,000 ft	$110(4,480)$	$110(4,480)$	$85(3,460)$
UV Resistance, \% retained	ASTM D 4355 (after 500 hours)	once per formulation	70	70	70

NOTES:

- "These are MARV values that are based on the cumulative results of specimens tested and determined by GSE. AOS in mm is a maximum averoge roll value.
- Gadient of 0.1, normal load of 10,000 pst, water of $70^{\circ} \mathrm{F}$ between steel plates for 15 minutes.
- "Roll widths ond lengths have a tolerance of $\pm 1 \%$.
- ${ }^{\text {[d] }}$ Component properties prior to lamination.
- ${ }^{(e)}$ Refer to geotextile product dota sheet for odditional specifications.
- Modified.

This information is provided for reference purposes only and is not intended as o warronty of guarantee. GSE assumes no liability in connectian with the use of this intormation. Please check with GSE for current, standard minimum quality assurance procedures and specifications.
GSE and other trademarks in this document are registered tracemarks of GSE Lining Technology, Inc, in the United Slates and cerlain foreign countries.

North America	GSE Lining Technology, inc.	Houston, Texas	800.435.2008	281.443 .8564	Fux: 281.230 .6739
South Americe	GSE Lining Technology Chile S.A.	Santiaga, Chile		56.2.595.4200	Fax: 56.2.595.4290
Asia Pacific	GSE Lining Technology Company Limited	Bongkok, Ihailand		66.2.937.0091	Fax: 66.2.937.0097
Europe \& Africo	GSE Lining Technology GmbH	Hamburg, Germany		49.40 .767420	Fax: 49,40,7674234
Middle East	GSE Lining Technology-Egypt	The bth of October City, Egypt		20.2.828.9888	Fax: 20.2.828.8889

An Engineering
Approach to
Groundwater
Protection
REFERENCE
MANUAL

1.4 Meeting
A daily meeting shall be held at the work area just prior to commencement of the work to discuss wofk activi-
ties. The earthwork contractor, the liner installer and the inspector shall be present.
A written Warranty shall be obtained from the manufacturer (for material) and the installation contractor (for
 duration of time

GENERAL REQUIREMENTS

Property	Test Method	Minimum Average Values				
		30 mil	40 mil	60 mil	80 mil	100 mil
Thickness, mils minimum average lowest individual reading	ASTM D 5199	$\begin{aligned} & 30 \\ & 27 \end{aligned}$	$\begin{aligned} & 40 \\ & 36 \end{aligned}$	$\begin{aligned} & 60 \\ & 54 \end{aligned}$	$\begin{aligned} & 80 \\ & 72 \end{aligned}$	100 90
Sheet Density, g/ce	ASTM D 1505/D 792.	0.940	0.940	0.940	0.940	0.940
Tensile Properties ${ }^{\text {² }}$	ASTM D 6693					
1. Yield Strength, $\mathrm{lb} / \mathrm{in}$		63	84	126	168	210
2. Break Strength, ib/in		174	152	228	304	380
3. Yield Elongation, \%		12	12	12	72	12
4. Break Elongation, \%		700	700	700	700	700
Tear Resistance, ib	ASTM D 1004	21	28	42	56	70

| Puncture Resistance, Ib | ASTM 04833 | 54 | 72 | 108 | 144 | 180 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Stress Crack Resistance ${ }^{2}$, hrs	ASTM D 5397 (App.)	300	300	300	300	300												
:---	:---	:---	:---	:---	:---	:---	:---	:---		Carban Black Content ${ }^{3}, ~ \% ~$	ASTM D 1603	$2.0-3.0$	$2.0-3.0$	$2.0-3.0$	$2.0-3.0$	$2.0-3.0$		
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	$\begin{array}{lll}\text { Carbon Black Dispersion } & \text { ASTM 10 } 5596 & - \text { Note 4 }\end{array}$	$\begin{array}{l}\text { Oxidative Induction Time (OiT) } \\ \text { Standard OrT, minutes }\end{array}$	ASTM D 3895	100	100	100	100	100
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | |
| :---: |
| |
| |
| |
| |

UV Resistance ${ }^{5}$ CRI CM11						
High fressure Off 6 - \% retained after 1600 hrs	ASTM DS8BS	50	50	50	50	50
Seam Properties	A5TM D 6392 (@) $2 \mathrm{in} / \mathrm{min}$)					
1. Shear Strength, $\mathrm{lb} / \mathrm{in}$		57	80	120	160	200
2. Peel Strength, b/in - Hot Wedge		45	60	91	121	151
- Extrusion Fillet		39	52.	78	104	130

Machine drection (MD) and cross maching direction (XMD) average values shoutd be on the basis of 5 test specimens each direction.
Yield elongation is cakeutated using a gauge length of 1.3 inches; Break elongation is calkullated using a gatge fetngth of 2.0 inctes.

 ∇

2. MATERIAL SPECIFICATIONS

1. The geomembrane shall be High-Density Polyethylene (HDPE) or Linear Low Density Polyethylene
(LLDPE).
2. Gasket material shall be neoprene, closed cell medium, $1 / 4$-inch thick, 2 inches wide with adhesive on 3. Metal battens or banding and hardware shall be stainless steel.
3. Water cut-off mastic shall be Neoprene Flashing Cement as supplied by Poly-Flex, Inc., or as required. 5. Sealant shall be General Electric Silicone, RTV 103, or equivalent.
2.2 Geomembrane Raw Materials

The geomembrane shall be manufactured of pofyethylene resins produced in the United States and shall be compounded and manufactured specifically for the intended purpose. The resin manufacturer shall certily each
lot for the following properties.

The natural polyethylene resin without the carbon black shail meet the following requirements:

Property	Test Method	$\begin{array}{c}\text { HDPE } \\ \text { Requirements }\end{array}$	$\begin{array}{c}\text { LI.DPE } \\ \text { Requirements }\end{array}$
Density, g / cc	ASTM D 150S or ASTM D 792	$0.935-0.940$	$0.915-0.926$
Melt Index, $9 / 10 \mathrm{~min}$.	ASTM D 1238	<0.4	<0.6

The gemmembrane shall be a minimum 23.0 ft seamless width, as manufactured by Poly-Flex, Inc. (2000 W .
Marshall Dr, Grand Prairie, TX $75051,888-765-9359$). Carbon black shall be added to the resin if the resin is Marshall Dr, Grand Prairie, IX 75051 , 888 not compounded for ultra-violet resistance.

The surface of the smooth geomembrane shall not have striations, roughness, pinholes, or bubbles.
The geomembrane shall be supplied in rolls. Labels on each roll shall identify the thickness of the material, the length and width of the roll, tot and roll numbers, and name of manufacturer.

The geomembrane rolls shall meet the following specifications:

Minimum Average Values

 Tensile Properties ${ }^{2}$ ASTM D 6693

 | Catbon Black Content ${ }^{4}$, \% | ASTM D 1603 | $2.0-3.0$ | $2.0-3.0$ | $2.0-3.0$ | $2.0-3.0$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Cartbon Black Dispersion | ASTM D 5596 | -Note 5.w | | | |

 \circ

Abstract

 $2=2=-2$Coxitite

Tensile Properties ${ }^{1}$ ASTM D 6693

$\begin{array}{llllllll} & & & & & & & \\ \text { Tear Resistance, } N & \text { ASTM D } 1004 & 93 & 125 & 187 & 249 & 311\end{array}$							
Puncture Resistance, N	ASTM D 4833	240	320	480	640	B00	
:---	:---	:---	:---	:---	:---	:---	:---
:---	:---	:---	:---	:---	:---	:---	:---
:---	:---	:---		Oxidative tinduction Time (OIT)			
---	---	---	---	---	---	---	---
Slandard OIT minues		$\begin{array}{l}\text { Oxidatve tiduction Tme (On) } \\ \text { Standard OTT, minutes }\end{array}$	ASTM D 3895	100	100	100	100
:---	:---	:---	:---	:---	:---	:---	:---

 ——_ 5 _

Seam Properties	ASTM D 6392 (曾 $5 \mathrm{~cm} / \mathrm{min}$)					
1. Shear Strength, $\mathrm{kN} / \mathrm{mm}$		0	14	21	28	35
2. Peel Strength, kN / m - Hot Wedge		7.9	10.5	15.9	21.2	26.4
- Extrusion fillet		6.8	9.1	13.6	18.2	22.8

| Mof Dimensions | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

SMOOTH HDPE GEEMEMBRANE METRIC UNITS

Minimum Average Values
雨
SMOOTH LLDPE GEOMEMBRANE ENGLISH UNITS
Minimum Average Values
 Test Method ASTM D 5199

 | leet Density， g / cc（max．） | ASTM D 1505／D 792 | 0.939 | 0.939 | 0.939 | 0.939 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Tensile Properties ${ }^{1} \quad$ ASTM D 6693

 \begin{tabular}{lllllll}
\& ASTM D 4833 \& 42 \& 56 \& 84 \& 112

\hline Uncture Resistance，Ib \& ASTM D 5617 \& 30 \& 30 \& 30 \& 30

\hline

\hline Carbon Black Content ${ }^{2}$ ，\％6 \& ASTM D T603 \& $2.0-3.0$ \& $2.0-3.0$ \& $2.0+3.0$ \& $2.0-3.0$

\hline Carbon Black Dispersion \& ASTM D SS96

 Ond

$\begin{array}{l}\text { Oxidative Induction Time（OIT）} \\
\text { Standard OIT，minutes }\end{array}$ \& ASTM D 3895 \& 100 \& 100 \& 100 \& 100

\hline

 Oven Aging at $85^{\circ} \mathrm{C}$ ASTM D S721

$\begin{array}{l}\text { Oven Aging at } 85^{\circ} \mathrm{C} \\
\text { High Pressure OIT }-\% \text { retained after } 90 \text { days }\end{array}$ \& $\begin{array}{l}\text { ASTM D } 5721 \\
\text { ASTM D } 5885\end{array}$ \& 60 \& 60 \& 60 \& 60

\hline
\end{tabular}

 $\begin{array}{ll}\text { Seam Properties } & \text { ASTM D 6392 }\end{array}$

 ∞

TEXTURED HDPE GEOMEMBRANE
 METRIC UNITS

	$\stackrel{C}{8}$	응
888	융	앙
等品式	\％	尤
웅웅웅	号	¢
	$\frac{\sum_{0}^{2}}{\frac{N}{S}}$	

ASTMD663

Property
Thickness，microns
minimum average
lowest individual of 8 of 10 readings
lowest individual of 10 readings
lowest individual of 10 readings Asperity Height ${ }^{1}$ ，microns Teries ${ }^{2}$
ensile Properties ${ }^{2}$
1．Yield Strength，$k N / m$ 3．Yield Elongation，\％$\%$ ，
4．Break Elongation，\％
lear Resistance， N
Puncture Resistance， N
Puncture Resistance， N Stress Crack Resistance ${ }^{3}$ ，hrs Car

| Carbon Black Cortent ${ }^{4}$ ，\％ | ASTM D 5397 （App．） |
| :--- | :--- | Carbon Black Dispersion ASTM D 5596

7

mo

$\begin{array}{l}\text { Oxidative Induction Time (OTt) } \\ \text { Standarad Ort, minutes }\end{array}$	ASTM D 3895	100	100	100

 앙
SMOOTH LLDPE GEOMEMBRANE

METRIC UNITS

	Minimum Average Values
Test Method	$0.75 \mathrm{~mm} \mathrm{1.00} \mathrm{~mm} 1.50 \mathrm{~mm} \mathrm{2.00} \mathrm{~mm}$

750	1,000	1,500	2,000
675	900	1,350	1,800

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Sheet Dersity, g/cc (max.) | ASTM D 1505/D 792 | 0.939 | 0.939 | 0.939 | 0.939 |
| Tensile Properties ${ }^{1}$ | ASTM D 6693 | | | | |

1. Break Strength, $\mathrm{kN} / \mathrm{m} \quad 20 \quad 27 \quad 40 \quad 53$
2. Break Strength, kN / m

		800	800	800	800
2% Moctulus, MPa (max.)	ASTM D 5323	414	414	414	414

| 2% | Modulus, MPa (max.) | ASTM D 5323 | 414 | 414 | 414 | 414 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | TCar Resistance, N | ASTM D 1004 | 70 | 100 | 150 | 200 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Puncture Resistance, N | ASTM D 4833 | 190 | 250 | 370 | 500 |

| Axi-Symetric Break Suain, \% | ASTM D S617 | 30 | 30 | 30 | 30 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Carban Black Content2, \% ASTM D $1603 \quad 2.0-3.0 \quad 2.0-3.0 \quad 2.0-3.0 \quad 2.0-3.0$
Carbon Black Dispersion \quad ASTM D 5596

$\begin{array}{l}\text { Oxidative Induction Time (OI) } \\ \text { Standard OIT, minutes }\end{array}$	ASTM D 3895	100	100	100	100

Oven Aging at $85^{\circ} \mathrm{C}$ ASTM D 5721 .

| High Pressure OIT - $\%$ retained after 90 days | ASTM D 5885 | 60 | 60 | 60 | 60 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 $\begin{array}{ll}\text { Seam Properties } & \begin{array}{l}\text { ASTM D } 6392 \\ \text { (} \Phi \text { (} 5 \mathrm{~cm} / \mathrm{min})\end{array}\end{array}$
Seam Properties

1. Shear Strength, kN / m	7.9	10.5	15.8	21.0
2. Peel Strength, $\mathrm{kN} / \mathrm{m} \cdot$ Hot Wedge	6.9	8.7	13.1	17.5
	- Extrusion Fillet	5.9	7.7	11.5

Roll Dimensions				
1. Width (meters):	7	7	7	7
2. Length (meters):	304.9	228.7	$152 . .4$	114.3
3. Area (square meters):	2,137	1,603	1,068	801
4. Gross weight (kilograms, approx.):	1,558	1,558	1,558	1,558
1,				

1 Macthine direction (MD) and (rixs maachine direction (XMD) average values should be on the basis of S test specimens each direction.

POLY-FLEX LINER SPECIFICATIONS

$$
\begin{aligned}
& \text { 2.4 Quality Control Specifications } \\
& \text { 2.4.1 Raw Materials } \\
& \text { A. Resin } \\
& \text { All resins for use in geomembrane must pass a candidate pre-approval process before being elf. } \\
& \text { gible for use. Elach incoming railcar shall be sampled with the following testing performed and } \\
& \text { compared to the manufacturer's specifications: } \\
& \text { 1. Density: ASTM D } 1505 \text {. } \\
& \text { 2. Melt index: ASTM D } 1238 \text {. } \\
& \text { 3. Oxidative Induction Time (Om): ASTM D } 3895 \text {. } \\
& \text { B. Additives } \\
& \text { All incoming materials are to be tested and approved prior to use with the following testing } \\
& \text { performed and compared to the manuffacturer's specifications: } \\
& \text { 1. Carbon Black Content: ASTM D } 1 \text { s03. } \\
& \text { 2. Oxidative induction Time (olt): ASTM D } 3895 \text {. } \\
& \text { 2.4.2 Finished Product: During Production } \\
& \text { A. Inspection } \\
& \text { Performed on each roll during manufacturing. } \\
& \text { 1. Appearance } \\
& \text { Sheet surface appearance shall be monitored for flaws. } \\
& \text { 2. Thickness } \\
& \text { A full width sample shall be cut from the end of each roll for thickness measurement. } \\
& \text { B. Roll ldentification } \\
& \text { Four tags per roll shall be used. } \\
& \text { 1. Outside the core. } \\
& \text { 2. On the core plug. } \\
& \text { 3. On the roll surface. } \\
& \text { 4. On the production roll sample. } \\
& \text { C. Out-of-Spec. Material } \\
& \text { Any roll not meeting the specification for any of the above inspections shall be separated from } \\
& \text { other rolls and placed on hold. }
\end{aligned}
$$

\pm

Property	Test Method	DPE						
		Minimum Average Values						
		1.00 mm	1.50 mm	2.00 mm				
Thickness, microns	ASTM D 5994							
minimum average		950	1,425	1,900				
lowest individual of 8 of 10 readings		900	1,350	1,800				
lowest individual of 10 readings		850	1,275	1,700				
Asperity ffeight', microns	GRIGM12	250	250	250				
Sheet Density, g/ee (max.)	ASTM D 1505/D 792	0.939	0.939	0.939				
Tensile Properties ${ }^{2}$	ASTM D 6693	$\begin{gathered} 11 \\ 250 \end{gathered}$	$\begin{gathered} 16 \\ 250 \end{gathered}$	$\begin{gathered} 27 \\ 250 \end{gathered}$				
1. Break Strength, kN/m								
2. Break Elengation, \%								
2\% Modulus, MPa (max.)	ASTM D S323	414	414	414				
Tear Resistance, N	ASTM D 1004	100	150	200				
Puncture Resistance, N	ASTM D 4833	200	300	400				
Axi-Symetric Break Strain, \%	ASTM D 5617	30	30	30				
Carbon Black Content ${ }^{3}$, \%	ASTM D 1603	$2.0-3.0$	2.0-3.0	2.0-3.0				
Carbon Black Dispersion	ASTM D 5596	- Note 4						
Oxidative induction Time (OR) standard orr, minutes	ASTM D 3895	100	100	100				
Over Aging at $85^{\circ} \mathrm{C}$	ASTM D 5721ASTM D 5885	60	60	60				
High Pressure OfT - \% retained after 90 days								
UV Resislance ${ }^{5}$	GR1 GM11	35	35	35				
High Pressure OT^{6}. $\%$ \% retained after 1600 hrs								
Seam Properties	ASTM D 6392 (@ $5 \mathrm{~cm} / \mathrm{min}$)							
1. Shear Strength, kN / m		10.5	15.8	21.0				
2. Peel Strength, $\mathrm{kN} / \mathrm{m}-\mathrm{Hot}$ Wedge		8.7	13.1	17.5				
- Extrusion Fillet		5.9	7.7	11.5				
Roll Dinensions								
1. Width (meters):		7	7	7				
2. Length (meters):		228.7	152.4	114.3				
3. Area (square meters):		1,603	1,068	801				
4. Cross weight (kilograms, approx.):		1,572	1,572	1,S5B				
11								

POLY-FLEX LINER SPECIFICATIONS

C. Welding Rod
A sample of welding rod shall be tested at a frequency of once per 25 rolls of welding rod. The
following tests shall be performed on the sample:

1. Diameter	ASTM D 5199
2. Density	ASTM D 1505
3. Melt Index	ASTM D 1238

4. Carborn Black Content	ASTM D 1603

D. Reporting	

Results from the testing shall be reviewed by the quality control manager. The test data shall
then be transferred to the product data file for roll certification. Material that does not meet
specifications shall be identified and placed on hold.

3. GEOMEMBRANE INSTALLATION

3.1 Materials Logistics

3.1.1 Transportation and On-site Storage

The geomemhrane rolls shall be shipped by flatbed trailer to the joh site. The geomembrane shall he stored so as to be protected from puncture, dirt, grease, moisture and excessive heat. Oamaged material
shall be stored separately for repair or replacement. The rolls shall be stored on a prepared smooth surface (not wonden pallets) and should not be stacked more than two rolls high.
3.2 Earthwork
The owner or his representative (soil quality assurance inspector) shall inspect the subgrade preparation. Prior to iner installation the subgrade shair be compacted in accordance with the project spectications.
Weak or compressible areas which cannot be satisfactorily compacted should be removed and replaced with properly compacted fill. All surfaces to be lined shall be smooth and free of all toreign and organic material, sharp objects, or debris of any kind. The subgrade shall provide a firm, unyielding foundaThe instaler, on a daily besis, shall approve the surface on which the geomembrane will be installed After The installer, on a daily basis, shall approve the surface on which the geomembrane will
the supporting soil surface has been approved, it shall be the installer's responsibility to indicate to the inspector any changes to its condition that may require repair work.
The anchor trench shall be excavated to the line, grade, and width shown on the project construction
drawings, prior to liner system placement. Slightly rounded corners shall be provided in the trench to avoid sharp bends in the geomenbrane.
2.4.3 Manufacturer's Quality Control \& Quality Assurance Testing

Covicis
All test seams shall be made in contact with the subgrade. Welding rod used for extrusion welding shall be 10 feet long for fusion welding and 3 feet long for extrusion welding with the seam centered lengthwise. Three specimens shall be cut from each end of the test seams by the inspector. The inspector shall wide with a grip separation of 4 inches plus the width of the seam. The searn shall be centered between the clamps. The rate of grip separation shall be 2 inches per minute. 3.4.3 Assessment of Seam Test Results
For both smooth and textured seams the strength of two out of three 1.0 inch $(2.5 \mathrm{~mm})$ wide strip speci-
mens should meet or exceed values given in this specification. The third must meet or exceed 80% of the

 tion of area of separated bond to the area of the original bonding. Regarding the locus-of-break patterns
of the different seaming methods in shear and peel, the following are unacceptable break codes per their description in the ASTM D 6392. In this regard, SIP is an acceptable break code. Unacceptable Break Codes
Hot Wedge: $A D$ and $A D-B R K>25 \%$
Extrusion Fillet: $A D 1, A D 2$ and $A D$-Weld (unjess strength is achieved)
3.4.4 Non-Destructive Seam Testing
The Installer shall non-destructively test all field seams over their full length.
staller shall non-destructively test all field seams over their full length
A. Vacuum Box Testing Equipment for testing extrusion seams shall be comprised of the following:

1. A vacuum hox assembly consisting of a rigid housing, a transparent viewing window, a
soft rubber gasket attached to the bottom, port hole or valve assembly, and a vacuum
gauge-
2. Soapy solution in a plastic bucket with a mop.
The following procentures shall be followed by the installer:
3. Excess sheet overlap shall be trimmed away.
4. Wet a strip of geomembrane approximately 12 inches wide by the length of box with the
soapy solution.
5. Place the box over the wetted area and compress.
6. Create a vacuum of $3-5$ psig.
S. Ensure that a leak-tight seal is created.
7. For a period of approximately 10 seconds, examine the geomembrane through the view-
ing window for the presence of animated soap bubbles.

Fexpite

3.3 Method of Placement
The rolls shall be deployed using a spreader bar assembly attached to a loader bucket or by other methods approved by the project engineer.

1. Equipment or tools shall not damage the geomembrane during handling, transportation and deploy-
ment.
Personnel working on the geomembrane shall not smoke or wear damaging shoes.
2. The method used to urroll the panels shall not cause scratches or crimps in the geomembrane and
shall not damage the supporting soil.
3. Adequate loading (e.g., sand hags or similar items that will not damage the geomembrane) shall be placed to prevent uplift by wind (in case of high winds, continuous loading is recommended along
edges of panels to minimize risk of wind flow under the panels).
3.3.1 Weather Conditions
Geomembrane deployment shall proceed between ambient temperatures of $32^{\circ} \mathrm{F}$ and $104^{\circ} \mathrm{F}$. Placement according to the specification. Geomembrane placement shall not be done during any precipitation, in the presence of excessive moisture (e.g., fog, rain, dew) or in the presence of excessive winds, as determined
by the installation supervisor. 3.4 Field Seaming
Approved seaming processes are fusion and extrusion welding. On side slopes, seams shalf be oriented in the general direction of maximum slope, i.e., oriented down, not across the slope. In corners and odd-shaped geo-
metric locations, the number of fietd seams shall be minimized.
No base T -seam shall be closer than 5 feet from the toe of the slope. Searns shall be aligned with the least possi-
ble number of wrinkles and "fishmoulhs." If a fishmouth or wrinkle is found, it shall be relieved and cap-stripped. 3.4.1 Seam Overlap
Geomembrane panels must have a finished minimum overlap of 4 inches for fusion welding and 6 inches
for extrusion welding.
Cleaning solvents may not be used unless the product is approved by the liner manufacturer.
Field test seams shall be conducted on the liner to verity that seaming conditions are satisfactory. Test seams shall be conducted at the beginning of each seaming period and at least once every 4 hours, for
eacb seaming apparatus and personnel used that day.

B. Size and Disposition of Samples

The samples shall be 12 inches wide by 36 inches long with the seam centered lengthwise. The sample shall be cut into three equal-length pieces, one to be given to the inspector, one c. Field Laboratory Testing
The inspector shail test ten 1 -inch wide specimens from his sample, five specimens for shear
strength and five for peel strength. D. Independent Laboratory Testing The owner, at his discretion and expense, may send seam samples to a laboratory for testing.
The test method and procedures to be used by the independent laboratory shall be the same as used in field testing.
E. Procedures for Destructive Test Failure
The following procedures shall apply whenever a sample fails the field destructive test:
. The installer shall cap strip the seam between the failed location and any passed test loca-
tions.
2. The installer can retrace the welding path to an intermediate location (usually 10 feet from
the location of the failed test), and take a sample for an additional field test. If this test
passes, then the seam shall be cap stripped between that location and the original failed location. If the test fails, then the process is repeated the panel and reseam, or add a cap strip.
All seams and nond hepairs Alisters, undispersed raw materials, and any sign of contamination by foreign matter. The surface of the gromembrane shall be clean at the time of inspection.
Each suspect location in seam and non-seam areas shall be non-destrurtively tested as appro-
priate in the presence of the inspector. Each location that fails the non-destructive testing shall
be marked by the inspector, and repaired accordingly.
B. Repair Procedures

1. Defective seams shall be cap stripped or replaced.
2. Small holes shall be repaired by extrusion welling a bead of extrudate over the hole. If the

 and has a sharp end it must be rounded prior to patching. 4. Blisters, large cuts and undispersed raw naterials shaill be repaired by patcher
If no animated bubbles appear after 10 seconds, close the vacuum valve and open the
bleed valve, move the box over the next adjoining area with a minimum 3 inches overlap
3. All areas where animated soap bubbles appear shall be marked, repaired and then retested. The following procedures shall apply to locations where seams cannot be non-destructively
tested.
4. If the seam is accessible to testing equipment prior to final installation, the seam shall be
5. If the seam cannot be tested prior to final installation, the seams shall be spark tested according to the spark tester manufactufer's procedurcs.
Equipment for testing double fusion seams shall be comprised of the following:
6. An air pump equipped with pressure gauge capable of generating and sustaining a pres-
7. Insert needle or other approved pressure feed device through the sealed end of the chan-
nel created by the double wedge fusion weld.
8. Energize the air pump to verify the unobstructed passage of air through the channel.
9. Seal the other end of the channel.
10. Energize the air pump to a pressure between 25 and 30 psi, close valve, allow 2 minutes
tor the injected air to come to equilibrium in the channel, and sustain pressure for approx-
If loss of pressure exceeds 4 psi, or pressure does not stabilize, locate faulty area, repair
and retest.
11. If pressure does not drop below the acceptable value after five minutes, cut the air channel open at the opposite end from the pressure gauge. The air channel should deflate
immediately indicating that the entire length of the seam has been tested.
3.4.5 Destructive Seam Testing
Destructive seam testing should be minimized to preserve the integrity of the liner. The installer shall provide the inspector with one destructive test sample per project specifications (usually once per 500 feet of
seain length) from a location specified by the inspector.
In order to obtain test results prior to completion of finer installation, samples shall be cut by the installer as the seaming progresses. The installer shall also record the date, location, and ples shall be immediately patched and vacuum tested.
12. A pressure gauge equipped with
13. A pressure gauge equipped with a sharp hollow needle.
The following procedures shall be followed by the installer:
14. Seal one end of the seam to be tested.

 than 10 minutes prior to welding. No more than 10% of the thickness shall be removed
by grinding. Welding shall commence where the grinding started and must overlap the previnus seam by at least 2 inches. Reseaming over an existing seam without, regrind-
ing shall not be permitted. The welding shall restart by grinding the existing seam and rewelding a new seam. Patches shall be round or oval in shape, made of the same geomembrane, and extend a
minimum of 6 inches beyond the edge of defects. c. Verification of Repairs Each repair shall be non-destructively tested. Repairs that pass the nor-destructive test shall
be taken as an indication of an adequate repair. Failed tests indicate thal the repair shall be
repeated and retested until passing test results are achieved.
The inspector shall keep daily documentation of all non-destructive and destructive testing.
This documentation shall identify all seams that initially failed the test and include evidence
that these seams were repaired and successfully retested. 3.5 Cover Material and Backfilling of Anchor Trench The geomembrane shall be covered as soon as possible. The covering operation shall not damage the geomemThe geomembrane shall be covered as soon as possible. The covering operation shall not damage the geomem-
brane. The cover soil material shall be free of foreign and organic material, sharp objects, or debris of any kind, which could potentially damage the geomembrane. No construction equipment or machinery shall operate
directly on the geomembrane. The use of lightweight machinery (i.e., generator, etc.) with low ground pressure The anchor trench shall be backfilled by the earthwork contractor. Trench backfill material shall be placed and
compacted in accordance with the project specifications. compacted in accordance with the project specifications. Care shall be taken when backilling the trenches to prevent any damage to the geomembrane. If clamage
occurs, it shall be repaired prior to backilling.

[^14]

Property	Test Method	Minimum Average Values	
		GN-200	GN-250
Thickness	ASTM D 5199	200 mils	250 mils
Density, min.	ASTM D 1505	$0.940 \mathrm{~g} / \mathrm{cc}$	$0.940 \mathrm{~g} / \mathrm{cc}$
Carbon Black Content	ASTM D 1603	1.5-3.0\%	1.5-3.0\%
Tensile Strength, (Peak, MD)	ASTM D 7179	$45 \mathrm{lb} / \mathrm{in}$	$60 \mathrm{lb} / \mathrm{in}$
Transmissivity, (MD) metai plate/net/metal plate hydraulic gradient, $1=1$ normal pressure $=10,000 \mathrm{lb} / \mathrm{ft}^{2}$ seat time $=15$ minutes	ASTM D 4716	$5.0 \mathrm{gal} / \mathrm{min} \cdot \mathrm{ft}$	$7.2 \mathrm{ga} / \mathrm{min} \cdot \mathrm{ft}$

[^15]
HDPE DRAINAGE NET
 ENGLISH UNITS

geocomposite properties			imum	arage V	
Property	Test Method	Gc.065-2.0	cc.085-2.0	oc.a6s-2.5	cc.oss-2.5
nsmissivily (MD), gal/min ft	ASTM D 4716	1.2	1.0	2.4	1.4

 hydraulic. gradient, $i=1$
normal pressure $=10,000 \mathrm{lb} / \mathrm{ft}^{2}$
seat time $=15$ minutes
Ply Adhesion, lb/in

1. Wisth, ft
COMPONENT PROPERTIES

Geonet					
Thickness, mil	ASTM D 5199	200	200	250	250
Density, min., g/ce	ASTM D 1505	0.940	0.940	0.940	0.940
Carborn Black Content, \%	ASTM D 1603	1.5-3.0	1.5-3.0	1.5-3.0	1.5-3.0
Tensile Strength, (Peak, MD), D//in	ASTM D 7179	45	45	60	60
Transmissivity, (MD), gal/min'ft metal plate/net/metal plate hydraulic gradient, $i=1$ normal pressure $=10,000 \mathrm{lb} / \mathrm{ft}^{2}$ seat time $=15$ minutes	ASTM D 4716	$\left(1.0 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{sec}\right)\left(1.0 \times 10^{1.3} \mathrm{~m}^{2} / \mathrm{sec}\right)\left(1.5 \times 10^{-3} \mathrm{~m}^{2} \mathrm{sec}\right)\left(1.5 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{sec}\right)$			
Geotextile					
Unit Weight, oz/yd ${ }^{\text {2 }}$	ASTM D 5261	6	8	6	8
Crab Strength, lb	ASTM D 4632	160	220	160	220
Crab Elorgation, \%	ASTM 04632	50	50	so	50
Tear Strength, it	ASTM D 4533	65	80	65	${ }^{80}$
Puncture Strength, it	ASTM D 4833	90	12.0	90	120
Perrmitivity, sec-1	ASTM D 4491	1.3	1.3	1.3	1.3
AOS, MaxARV	ASTM D 1751	70 sieve	B0 sieve	70 sieve	80 sieve
UV Stability, \% ret. (500 hr.)	ASTM D 4355	70	70	70	70

[^16]Coser
HDPE DRAINAGE NET METRIC UNITS

Property	Test Method	Minimum Average Values	
		GN-200	GN-250
Thickness	ASTM D 5199	5.1 mm	6.3 mm
Density, min.	ASTM D 1505	$0.940 \mathrm{~g} / \mathrm{cc}$	$0.940 \mathrm{~g} / \mathrm{cc}$
Carbon Black Content	ASTM 01603	1.5-3.0\%	1.5-3.0\%
Tensile Strength (Peak, MD)	ASTM D 7179	$7.9 \mathrm{kN} / \mathrm{m}$	$10.5 \mathrm{kN} / \mathrm{m}$
Transmissivity, (MD) metal plate/nel/metal plate hydraulic gradient, $i=1$ normal pressure $=480 \mathrm{kPa}$ seat time $=15$ minutes	ASTM D 4716	$\begin{gathered} 1.0 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{sec} \\ (62 \mathrm{l} / \mathrm{min} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} 1.5 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{sec} \\ (89 \mathrm{l} / \mathrm{min}-\mathrm{m}) \end{gathered}$

$\stackrel{N}{N}$

geocomposite properies		Minimum Average Values							
Property	Test Method	GC.06D-2.0	Gc.obd-2. ${ }^{\text {a }}$	Gc-06D-2.5	CC-08D-2.5				
Transmissivit, (MD), ga//min fi	ASTM D 4716	$\begin{gathered} 0.4 \\ \left(0.8 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{sec}\right)\left(4.0 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{sec}\right)\left(2.0 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{sec}\right)\left(1.0 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{sec}\right) \end{gathered}$							
hydraulic gradient, $i=1$ normal pressure $=10,000 \mathrm{lb} / \mathrm{ft}^{2}$ seat time $=15$ minutes									
Ply Adhesion, li/in	ASTM D 7005	1	1	1	1				
Roll Dimensions									
1. Roll Width, it		13.5	13.5	13.5	13.5				
2. Roll lengt, it		250	200	175	150				

COMPONENT PROPERTIES

Geonet					
Thickness, mil	ASTM D 5199	200	200	250	250
Density, mun., g/ce	ASTM D 1505	0.940	0.940	0.940	0.940
Carbon Black Content, \%	ASTM D 1603	1.5-3.0	1.5-3.0	1.5-3.0	1.5-3.0
Tensile Strength, (Peak, MD), ib/in	ASTM D 7179	45	15	60	60
Transmissivity, (MD), gal/min.ft	ASTM D 4716	5.0	5.0	7.2	7.2
metal plate/net/metal plate liydraulic gradient, ; $=1$ normal pressure $=10,000 \mathrm{lb} / \mathrm{ft}^{2}$ seat time $=15$ minutes	$\left(1.0 \times 10^{\left.1.3 \mathrm{~m}^{2} / \mathrm{sec}\right)\left(1.0 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{sec}\right)\left(1.5 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{sec}\right)\left(1.5 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{sec}\right)}\right.$				
Geatextile					
Unit Weight, oz/yd ${ }^{2}$	ASTM D 5261	6	8	6	8
Crab Strength, ib	ASTM D 4632	160	220	160	220
Grab Elongation, \%	ASTM 04632	50	50	50	50
Tear Strength, it	ASTM D 4533	65	80	65	80
Puncture Strength, ib	ASTM D 4833	90	120	90	120
Perrmititivit, sec ${ }^{\text {³}}$	ASTM D 4499	1.3	1.3	1.3	1.3
AOS, MaxARV	ASTM D 4751	70 sieve	${ }_{80}$ sieve	70 sieve	80 sieve
UV Stability, \%\% ret. (500 hr.)	ASTM D 4355	70	70	70	70

[^17]

SINGLE-SIDED GEOCOMPOSITES METRIC UNITS

Geonet						
Thickness, mm	ASTM O Si9s	5.1	5.1	6.3	6.3	
Density, min., g/cc	ASTM D 1505	0.940	0.940	0.940	0.940	
Carbon Black Content, \%	ASTM D 1603	$1.5-3.0$	1.5-3.0	1.5-3.0	1.5-3.0	
Tensile Strength, (Peak, MD), kN/m	ASTMD 7179	7.9	7.9	10.5	10.5	
Transmissivity, (MD), $\mathrm{m}^{2} / \mathrm{sec}$	ASTM 04716	1.0×10^{-3}	1.0×10^{-3}	1.5×10^{-3}	1.5×10^{-3}	
metal plate/net/metal plate hydrastic gradient, $i=1$ normal pressure $=480 \mathrm{kPa}$ seat time $=15$ minutes		($621 / \mathrm{min} \cdot \mathrm{m}$)	($62 \mathrm{l} / \mathrm{min} \cdot \mathrm{m}$)	(891/min.m)	(89/mmin m)	
Geotextile						
Unil Weight, $\mathrm{g} / \mathrm{m}^{2}$	ASTM D 5261	203	271	203	271	
Grab Strength, N	ASTM D 4632	712	979	712	979	
Grab Elongation, \%	ASTM D 4632	50	so	50	50	
Tear Strength, N	ASTM D 4533	289	356	289	356	
Puncture Strength, N	ASTM D 1833	400	534	400	534	
Permititivity, sec- ${ }^{-1}$	ASTM D 4491	1.3	1.3	1.3	1.3	
AOS, Maxakv, mm	ASTM D 4751	0.212	0.180	0.212	0.180	
UV Stability, \% ret. (500 hr.)	ASTM D 4335	70	70	70	70	сомяа Minimum Average Values

2.2 Manufacturer's Quality Control Testing
The Drainage Nevt shall be tested byis manutacturer once every 50,000 square feet for Isted properties, except
the transmissivity which stall be tested once ever 100,00 square teet. The geotextile shall be tested by is manuffacturer once every 100,000 squ
 turer historicial date.
The geocomposite shi
The geocomposite shall be tested by is manutacture once every 100,000 square feet for the listed properties.
Any rolls not meeting the requirements of the specification shall be eejected. The manutactures shall prepare a quality control seport to be submitted to the project engineer upon request.

3. INSTALLATION

3.1 Transportation and On-site Storage
The drainage net and geocomposite rolls shall be wrapped in a plastic cover. The drainage net and geocompos-
ite rolls shall be shipped to the fob site in a manner not to damage the rolls. 3.2 Method of Placement
The subgrade shall be free of foreign and organic. material, sharp objects, or debris of any kind, which could potentially damage the geocomposite. The rolls shall be deployed using a spreader bar assembly attached to a
loader bucket or by other methods approved by the project engineer. On side slopes, the rolls shall be deployed in the general direction of the maximum stope. The deployment equipment shall not damage the underly-
ing subgrade or geosynthetics. A smooth rub sheet may be needed for installation of the geocomposite over
 to prevent damage to geocomposite during positioning. The rub sheet is removed anter depliyyment. Drianage
net and geocomposite shall be placed and secured in an anchoo trench as shown on the project drawing.
 are staggered.
3.3 Field Seaming
Drainage net panels shall be overlapped by a minimum of 2 inches. Non-black plastic ties shall be used at S-foot
 The geotextile flaps of the adjacent panels shail be heat-bonded or sewn on all sides in accordance with the
project specfication.
3.4 Cover Material
The drainage net and geocomposite shall be covered as soon as possible. The covering operation shall not dam-

 3.5 Repairs
All panels shall be inspected for damage. Any damaged area shall be repaired by a patch of the same material
extending one foot beyond the edges of the damaged area.

Coxatice

DOUBLE-SIDED GEOCOMPOSITES METRIC UNITS

geocomposite properties		Minimum Average Values			
Property	Test Method	GC.06D-2.0	GC.08D-2.0	cc.06D-2.5	cc.obd-2.5
Transmissivity, (MD), $\mathrm{m}^{2} / \mathrm{sec}$	ATM D 4716	0.8×10^{-1}	$4.0 \times 10^{\text {. }}$	2.0×10^{-4}	1.0×10^{-4}
metal plate/geocomposite/metal plate. hydrausic. graclient, $\mathrm{i}=1$ normal pressure $=480 \mathrm{kPa}$ seat time $=15$ minutes		($5.01 \mathrm{l} / \mathrm{min} \cdot \mathrm{m}$)	(2.51/min.m)		(6.2 1 (min.m)
Ply Adhesion, kN / m	ASTM D \% 005	0.17	0.17	0.17	0.17
Roll Ditumsions					
1. Roll Width, m		4.1	4.1	4.1	4.1
2. Roll length, m		76.2	61	53.4	45.7
COMPONENT PROPERTHES					

Geonet					

INSTALLATION

PEC can be nailed to wooden forms or pushed or vibrated into poured concrete. A 3-inch clearance is recom-
mended from concrete edges or corners.
3.1 Installation in concrete forms
PEC shall be installed inside the concrete forms in accordance with the shop drawings prior to pouring concrete.
Place PEC in the designated locations with the surface of PEC in contact with the form PEC shall be secured Place PEC in the designated locations with the surface of PEC in contact with the form. PEC shall be secured
to the wooden forms by means of nails driven from the inside of PEC into the forms (see Step 1 drawing). All to the wooden forms by means of nails driven from the inside of PEC into the forms (see Step 1 drawing). All
exposed nails shall be clipped at the surface of PEC after removal of the forms (see Step 2 drawing). 3.2 Fabrication
PEC can be prefabricated into frames and vibrated into fresbly poured concrete. Small air vent holes shall be
drilled in approximately 3-foot intervals in the surface of PEC prior to its placement into fresh concrete. Butt welded connections are made by extrusion welding the back side of the 3.5 -inch surface and the outside of the fegs. Backup HDPE plates are sometimes used behind the sufface to be butt welded to reinforce the connec-

 3.3 Seaming
All searning shall be done in accordance with the Poly-Flex extrusion seaming procedures, as outlined in this
manual, and by experienced technicians who are qualified by Poly-flex, Inc. to seam Poly-Flex liners. manual, and by experienced technicians who are qualified by Poly-flex, Inc. to seam Poly-Flex liners.
The following steps shall be followed prior to welding Poly-flex liners to the PEC:

1. Remove cement paste, form oils, curing compound or other contaminants from the surface of PEC.
The 3.5 -inch wide surface shall be clean and dry. The welding surfaces of the PEC can he taped prior
to its installation. The tape is removed after the concrete is hardened to expose the clean surfaces of
Use a bot air gun to tack liner to PEC in a straight line in the center of the PEC surface.
2. A grinder with 80 -grit disc shall be used to remove the surtace contamination and oxidation from the

All seams shall be non-destructively tested, whenever possihke, by using a vacuum box apparatus if the PEC con-
nection is designed to be waterproof.
since destructive seam testing is not possible, it is very important that seaming be done by qualified technicians.
\bar{m}

POLYETHYLENE EMBED CHANNEL

GENERAL

The following describes parameters for the manufacture, supply, and installation of Poly-Flex High Density
Polyethylene Embed Channel (PEC). All procedures, operations, and methods shall be in strict accordance with Polyethylene Embed Channel (PEC). All procedures, operations, and methods shall be in strict accordance with
the engineer's specifications and drawings.
1.2 References
American Society for Testing and Materials
1.3 Submittals
The manufacturer shall maintain test records of the resins used to manufacture the PEC. This record
shall be made available to the Engineer upon request.
The contractor shall submit shop drawings showing the exact location and installation procedures. 3. At the engineer's request, sample(s) of PEC shall be submitted.
1.4 Manufacturer's Quality Control Testing
All resins for use in PEC must pass the Poly-Flex raw material specifications before being eligible for use. Each lot shall be sampled and tested in the Poly-Flex, thc, lahoratory. The tests shall include density, melt index, and car-
bon black content. Alf additives and concentrates must pass Poly-Flex specifications.

PRODUCT

2.1 Product manu The PEC shall be manufactured by Poly-Flex, Inc. The raw material shall be made of polyethylene resins mannu-uitra-violet resistance. The final product shall meet the following values: Density:
Melt index. Tensile Strength at Yield: Dimensions:
Weight:
2.2 Shipment and Storage

[^18]POLYETHYLENE EMBED CHANNEL NOILVOIHIOGdS

n

Chemical fflect (see distussion on Chemicaf Resistance)

$\begin{aligned} & \text { 1. No Effect-Most chemicals of this class have no or minar effect. } \\ & \text { 2. Oxifizer-Cherniculs of this class will cause ineversible degradation. } \\ & \text { 3. Plasticizet-Chernicals of this class will cause a reversible drange tit phystal properties. }\end{aligned}$
Chart Rating
$\begin{aligned} & \text { A. Most cherricals of this class have little or no effect on the liner. } \\ & \text { Recommended regardless of concentration or temperature (below } 150^{\circ} \mathrm{F} \text {). }\end{aligned}$
$\begin{aligned} & \text { B. Chemicals of this elass will affect the liner to various degrees. } \\ & \text { Recommendations are based on the specific ctuentical, concentation anis temperature. }\end{aligned}$
$\begin{aligned} & \text { C. Chemicals of this class at high concentrations will have significant effect on the physical propertios of the linet. } \\ & \text { Generaly not recommented tuit may be acceptable at low concentratirns and wifh epecial design enonsiferations. } \\ & \text { Consult with Poly-Flex, Inc. }\end{aligned}$
$\begin{aligned} & \text { The data in this table is provided for informational puposes only and is not intended as a warranty or guarantere, Poly-flex, inc. assumes no } \\ & \text { responsibility in connection with the use of this data. Consult with Poly-flex, Inc. for specific chemical resistance information and liner } \\ & \text { selection. }\end{aligned}$
CHEMICAL RESISTANCE INFORMATION

Cорлит:

CHEMICAL COMPATIBILITY OF POLY-FLEX LINERS

Chemical compatibility or resistance, as applied to geomembranes, is a relative term. Actual compatibility
would mean that one material dissolves in the other such as alcohol in water or grease in gasoline. An example would mean that one material dissolves in the other such as alcohol in water or grease in gasoline. An example hence the term compatibility is the reverse of what is normally meant in the chemical industry. In the strictest sense and from a laboratory perspective, chemical compatibility, as the term applies to this industry, would
imply that the chemical has no effect on the finer. On the other hand, from an engineering perspective, chemiimply that the chemical has no effect on the finer. On the other hand, from an engineering perspective, chemihave some effect on the performance of the liner, but not enough to cause failure. Therefore, one must understand and define chemical compatibility for a specific project.
Generally polyethylene is eflected by chemicals in one of three ways.
No effect-This mears that the chemical in question and the polyethylene do not interact. The poly2. Oxidizes (cross linking)-Chemicals classed as oxidizing agents cause the polyethylene molecules to cross link and cause irreversible changes to the physical properties of the liner. Basically they make the
liner brittle. 3. Plasticizes-
Plasticizes-Chemicals in this classification are soluble in the polyethylene structure. They do not
change the structure of the polyethylene itself but act as a plasticizer. In doing so, the liner experiences
weight gain of $3-15 \%$, may swell by up to 10%, and has measurable changes in physical properties (e.g. the tersile strength at yield may decrease by up to 20\%). Even under these conditions the finer

 dependent primarily on liner type, contact time, chemical solubility, temperature, thickness, and concentration gradient, but not on hydraulic head or pressure. Transmission through the liner can occur in as little as $1-2$ days. Normally, a small amount of chemical is transmitted. Generally HDPE has the lowest permeation rate of the lin-
ers that are commercially available.
As stated above chemical compatibility is a relative term. For example, the use of HDPE as a primary contain-
ment of chlorinated hydrocarbons at a concentration of 100% may not be recommended, but it may be acceptable at 0.1% concentration for a limited time period or may be acceptable for secondary containment. factors that go into assessinent of chemical compatibility are type of chemical(s), concentration, ternperature and the type of application. No hard and fast rules are available to make decisions on chemical compatibility. Even the EPA 9090 test is just a method to generate data so that an opinion on chemical compatibility can be
A simplified table on chemical resistance is provided to act as a screening process for chemical containment applications

GEOMEMBRANE MANUFACTURING
QUALITY CONTROL \& QUALITY ASSURANCE

Revaite

1. DEFINITIONS

Manufacturing Quality Control (MQC) is a planned system of routine inspections that is used to directly monitor and control the quality of a material.

Manufacturing Quality Assurance (MQA) is independent of the MQC and includes inspections, verifications,
audits, and evaluations of materiats and workmanship necessary to determine and document the quality of a material.

2. MANUFACTURING OUALITY CONTROL

2.1 Raw Material

Poly-Flex, Inc.'s quabity control and quality assurance for HDPE and LLDPE geomembrane manufacturing starts with the testing of the raw materials. The resin manufacturers provide documentation confirming that the raw materials comply with Poly-Flex, Inc. speciffications.

Resin manufacturers report the following properties with each resin shipment:
wing properties with each resin shipment:
This property is a measure of unit weight and is an indicator of the degree
of crystallinity. It can be related to the material's chemical resistance, of crystallinity. It can be related to the material's chemical resistance,
rigidity, permeability, tensile strength, and deformation characteristics. This property is an indication of the molecular weight and rheological This property is an indication of the molecular weight and rheological
properties of the polymer and can be related to the processability. The carbon black content is an important property to ensure protection The carbon black content is an important property th ensure protection with the carbon black. However, it resins are not pre-compounded,
Poly-Flex, inc. will supplement them with the appropriate quantity of carbon black before manufacturing liner.
2.1.1 Geomembrane Material Railcar Acceptance

All resins, additives and concentrates used in Poly-flex geomembranes must have their physical integ-
rity validated before they can be released into the production material stream. All incoming railcars are sampled; inceming materials not delivered by railcar are statistically sampled. Upon verification of the resin compliance with the specifications, the resin is pumped from the railcar into the silos dedicated to the pro-
duction of the geomembrane. duction of the geomembrane.
2. Resin samples are sent to the laboratory. Using state of the art equipment, highly trained Quality Assurance personnel test the resin to ensure that it meets the specifications for producing Poly-Flex
geomembranes. The following tests are performed and compared against Poly-Flex specifications:
GEOMEMBRANE MANUFACTURING
QUALITY CONTROL \& QUALITY ASSURANCE
Geosynthetic Research institute (GRI) Standards
The process conditions during manufacturing have been optimized for each resin formulation. These conditions
are kept in a log book which is available to the line operator. These process conditions must be maintained throughout the production run. Any variation of process parameters from the set point range recorded on the process log book are immediately reported to the production supervisor by the on-line quality control represen-
tative. If the variation exceeds the control range, the quality control representative places the material being The on-line quality monitor can also place material on hold if the material has any visual defect (holes, water spots, or scratches) or dimensional abnormalities (width, length, and thickness).
 stock. If the material fails to pass specification or does not get approval of eithes the quality control manager or production manager then the material will be reclassified or scrapped. In either case it cannot be sold as a
prime Poly-Fliex geomembrane. prime Poly-Flex geomembrane.
Poly-Flex geomembranes are contio
Poly-Flex geomembranes are continuously monitored for pinhotes during the manufacturing process by spark
texting equipment. The spark tester unit is a perpetual monitor of any holes that could sufface in the sheet. testing equipment. The spark tester unit is a perpetual monitor of any holes that could surface in the sheet.
The spark tester monitors the entire layllat width of the sheet as it is being marufactured. The detector operates from a 120 VAC power supply. The 120 volts are transformed to a higher voltage that ranges from $0-24$
kilovolts. The electrode is made up of a long semiconductor blanket that is positioned to lay over the sheet as it passes over a steel rofler prior to tinal winding. A grounding conductor is connected to the roller with a return

 quaity control. technician restarts the winder and cuts out the entire layflat area of the pinhole.
After a roll of material has been produced it is labeled and a retain is cut for latoratory evaluation. 3.3 Roll Labeling
Three labels are affixed to each roll, as described below:

1. One labei on the outside of the core.
2. One label on the core plug.
3. One label on the roll surface
An additional fabel is attached to the faboratory sample.
3.4 Storage, Staging and Shipping of Geomembrane Rolls
Finisbed rolls (verified and labeled) are moved to the storage area using a specially designed cart and remain in are held for a truck. Before loading the order for shipment, all documentation is checked against the information on the roill alabels. Rolls are lifted and moved using a ooding amm equipped with rigging and hooks. Fork-
lifting machinery are never to be used to lift or move geomembrane rolls.

4. MANUFACTURING QUALITY CONTROL PROGRAM FLOW CHART

Based on the philosophy that quality cannot be inspected into a product and that a consistent raw material and
3.5 Laboratory Quality Control \& Quality Assurance a consistent process will yield a consistent liner, laboratory testing of Poly.-Flex geomembrane is provided pri-
marily for roll certification.

A retain from each roll is provided for the laboratory. Testing is conducted on the retains as indicated below. \begin{tabular}{|l|l|}
\hline Property \& Test Method

\hline

 Thickness (smoth sheet) (textured sheet)

\& ASTM D 5994

Asperity Height (fextured sheet only) \& GRI GM12

\hline
\end{tabular} GRP GM12

Asperty Height (textured sheet only)
Alternate the measurement sidfe for double-sided textured sheet.

| Sheet Density | ASTM D 1505/0 792 | $200,000 \mathrm{H}(90,000 \mathrm{~kg})$ |
| :--- | :--- | :--- | :--- | Tensile Properties 1. Yield Strength (HDPE. only) 2. Break Strength (HDPE only) 2\% Modulus (aLDPE only)

2\% Modulus (LLDPE only)	ASTM D 5323	per each larmulation			
:---	:---	:---	Tear Resistance	Tear Resistance	ASTM D 1004
:---	:---	$\begin{array}{ll}\text { Puncture Resistance } & \text { ASTM D } 4833 \\ 45,000 \mathrm{tb}(20,000 \mathrm{~kg})\end{array}$ Axi-Sympertic Break Strain (LLDPE only) ASTM D 5617 per each formulation Stress Crack Resistance (HDPE only) ASTM D 5.397 (APP.) per GRI GM10.	Carbon Black Content	ASTM D 1603	$20,000 \mathrm{lb}(9,000 \mathrm{~kg})$
:---	:---	:---	Carbon Black Dispersion \quad ASTM D $5596 \quad 45,000 \mathrm{lb}(20,000 \mathrm{~kg})$ Oxidative induction Tíne (OIT) ASTM D $3895 \quad 200,00016(90,000 \mathrm{~kg})$ $\begin{array}{ll}\text { ASTM D S721 } & \text { per each formulation } \\ \text { ASTM D S88S }\end{array}$ CRI GM1 1		

ASTM D 5885
After the testing has been completed, the data is reviewed by the quality control manager. If any rolls do not meet specifications, additional testing is conducted on that roll. It the roll still does not meet specifications the
Atter the data has been reviewed it is entered into a product file which is used for roll certification.

GEOMEMBRANE MANUFACTURING
QUALITY CONTROL \& QUALITY ASSURANCE
5.2 Railcar Resin Report
 These results are checked again
by the material manufacturer.

माMPDCinformathos

5. PAPER FLOW FORMS

This report documents the raw material manufacturer's test results for the physical properties of the incoming
resin. Each incoming shipment to Poly-Flex

Certificate of Analysis
\qquad "

Let Number: 3131212
q
GEOMEMBRANE MANUFACTURING
QUALITY CONTROL \& QUALITY ASSURANCE

[^19]
5.3 Quality Contral Report
This report is sent to the engineer/dient as Poly-Flex, Inc's standard quality control report. It documents the
property values of the specific rolls shipped to a project.

\[

$$
\begin{aligned}
& \hline \text { DRAINAGE NET } \\
& \text { AND } \\
& \text { GEOCOMPOSITE } \\
& \text { MANUFACTURING } \\
& \text { QUALITY CONTROL } \\
& \text { \& QUALITY } \\
& \text { ASSURANCE }
\end{aligned}
$$
\]

NET \& GEOCOMPOSITE MANUFACTURING
QUALITY CONTROL \& QUALITY ASSURANCE

3. MANUFACTURING

 fives. The drainage net is continuously monitored during the manufacturing process. The key elernent to sucprocess. Raw material consistency is established in the laboratory when the resin is finitially received and tested.
 process. The on-line quality monitor can place material on hold if the material has any visual defects or dimenspecification and is approved by the quality control manager and/or production manager, the material will then trol manager or production manager then the
be sold as a prime Poly-flex drainage net.

3.2 Drainage Net/Geotextile Geocomposite

 lizes a heat bonding process to laminate the geotextne to the drainage net. An on-line quality control monior

 3.3 Roll Labeling

Three labels are affixed to each roll as described below: 1. Onc label on the inside of the core
2. One label on the face on the roll.
3. One label on the end of the roll.

Arl additional label is attached to the laboratory sample.
3.4 Storage, Staging and Shipping of Drainage Net and Geocomposite Rolls

All drainage net and geocomposite rolls are stretch wrapped prior to moving them to the storage area. Before
shipment, all documentation is checked against the information on the roll labels. A full truckload consists of 24 shipment, all documentation is checked against the
rolls of drainage net and/or geocomposite material.

1. MANUFACTURING QUALITY CONTROL AND QUALITY ASSURANCE geocomposite products.

1.1 Applicable Test Methods

 American Society forASTMD 105 ASTM D 4355

ASTM D 4491 ASTM D 4533 ASTM D 4632 ASTM D 4716

ASTM D 4751
ASTM D 4833
ASTM D 5199
ASTM D 5261
ASTMD 7005 ASTMD 7179

2. RAW MATERIAL

[^20]NET \& GEOCOMPOSITE MANUFACTURING
QUALITY CONTROL \& QUALITY ASSURANCE
3.5.3. Geocomposite
A.5. 15 inch wide sample is cut across the width of every 20th roll and brought to the Poly-Flex faboratory for testing. The sample is checked for visual defects and then tested according to the following:

Property Transmissivity ${ }^{1}$	Test Method ASTM D 4716	Testing Frequency 100,000 sf
Ply Adhesion	ASTM D 7005	100,000 sf

1. Transmissivity test is performed with the drainage net or the geocomposite between two metal plates at
a hydraulic gradient of 1.0 and a normaf pressure of $10,000 \mathrm{psf}(480 \mathrm{kPa}$). The seating time is 15 minutes. The laboratory manager reviews alf test results to ensure the product meets the specification. Any roll that
does not meet the specification is immediately reported to the on-line quality control manager and the does not meet the specification is immediately reported to the on-line quality control manager and the
roll(s) is placed on hold for further evaluation. 3.6 Quality Control Report

The following reports are sent to the engineer/ciient as Poly-flex, Inc.'s standard quality control reports. They
document the property values of the specific rolls shipped to the project. 3.6. 1 Drainage Nat Certification Sheet

in
3.5.1. Drainage Net
$\begin{aligned} & \text { A } 15 \text { inch wide sample is cut across the width of every 10th roll and brought to the Poly-Flex laboratory } \\
& \text { for testing. The sample is checked for visual defects and then tested according to the following: }\end{aligned}$
Property Test Method Testing Frequency

Thickness	ASTM 0.5199	50,000 sf

Density \quad ASTM D 1505 50,000 sf
ASTM D $1603 \quad 50,000$ si
ASTM D $1603 \quad 50,000$ 51
ASTM D $7179 \quad 50,000$ sf
ASTM D $4716 \quad 100,000$ st

Carbon Black Cont
Tensile Strenght
Transmissivity ${ }^{1}$

The laboratory manager reviews all test results to insure the product meets the specification. Any roll that
does not meet the specification is immediately reported to the on-line quality control manager and the does not meet the specification is immediately reported to the on-line quality control manager and the
rollf(s) is placed on hold for further evaluation. 3.5.2. Geotextile

The manufacturer of the geotextile shall submit quality control test results for the geotextile rolls. The rolls
must meet the specifications before they are accepted for production of geocomposites. The geolextile manufacturer shall perform the lollowing tests:

$$
\begin{array}{|lcc|}
\hline \text { Property } & \text { Test Method } & \text { Testing Frequency } \\
\hline \text { Unit Weight } & \text { ASTM D 5261 } & 100,000 \text { sf } \\
\hline \text { Grab Strength } & \text { ASTM D 4632 } & 100,000 \text { sf } \\
\hline \text { Grab flongation } & \text { ASTM D 4632 } & 100,000 \text { sf } \\
\hline \text { Tear Strength } & \text { ASTM D 4533 } & 100,000 \text { sf } \\
\hline \text { Puncture Resistance } & \text { ASTM D 4833 } & 100,000 \text { st } \\
\hline \text { Permittivity } & \text { ASTM D 4491 } & 500,000 \text { sf } \\
\hline \text { AOS } & \text { ASTM D 4751 } & 500,000 \text { sf } \\
\hline \text { UV Stability } & \text { ASTM D 4355 } & \text { Manuffacturer Historical Data } \\
\hline
\end{array}
$$

NET \& GEOCOMPOSITE MANUFACTURING
QUALITY CONTROL \& QUALITY ASSURANCE
3.6.2 Geocomposite Certification Sheet

ATTACHMENT \#3

EPA 9090 LABORATORY TESTING ON LINER SYSTEM MATERIALS

May 30, 1997
Mr. Paul Barker
AGRU/Anaerica, Inc.
300 West Davis, Suite 520
Conroe, Texas 77305

Dear Mr. Barker,
TRI/Environmental, Inc. (TRD) is pleased to present this 120 Day Final Report for geosynthetic chemical compatibility studies via EPA Method performed on AGRU smooth 60 mil HDPE geomembrane.

TRI thanks AGRU/Anerica for the opportunity to work on this project. please call me if you have any questions or require buy additional information.

Respectably submitted,

Martin D. Nelson
Project Manager: Geosynthetic Technologies
ce: Mr. Sam R Allen
Program Manager

FOREWORD

The testing reported herein is based upon accepted industry practice as well as the test method listed. TRI/Enyironmental Inc. (TRD) meither accepts responsibility for mor makes claim as to the final use and purpose of the materials tested.

Tests were performed under laboratory conditions and not under actual usage conditions. TRI can give no conclusions as to the serviceability, life expectancy or general durnbility of the products tested when used in a lining and/or leachate collection system.

A 120 Day Final Report:
 Laboratory Testing of Geosynthetics for Waste Contaioment
 EPA Method 9090

May 1997

Submited to:
AGRU/America, Inc.
300 West Davis, Suite 520
Couroe, Texas 77305
Atta: Mr. Paul Barker

Subraitted by:
TRL/Environmental, Inc.
9063 Bee Caves Rd.
Austin. Texas 78733

1.0
 INTRODUCTION

This report describes the work performed by TRI/Environmental, Inc. (TRD) to determine the chemical compatibility of one geomembrane produce with one waste leachate. The objective was to determine the resistance of the geomembrane to changes caused by exposure to leachate. Changes in physical and mechanical properties were measured after exposure to the leachate at $23^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ for $30,60,90$ and 120 days. Exposures were performed in accordance with the exposure regimen specified in United States Environmental Protection Agency (EPA) Method 9090A.

Methods, results and discassion are provided in the sections which follow. Test results are provided in the Tables of Results which aceompany this report.

2.0 METHODS

2.1 Materials

The marerial selected for evaluation in this chemical compatibility study was 60 mil smooth High Density Polyethylene (HDPE) geomembrane marufactured by Agru/America, Thc. Roll \#638571 was provided by Agru/America.

2.2 Leachate

The exposure leachate used during the testing was a synthetic municipal solid waste (MSW) leachate. TRI generated the syntheric municipal waste leachare by spiking a quantity of acual MSW leachate (secured from the NENT Landfill in Hong Kong) with various chermical constituents as required by the Pennsylvania Deparment of Environmental Regulation (PADER). Spiking was accomplished using standard solutions used for instrument catibration for organics and salts used for the inorganics. Spiking was performed to assure a minimum concentration as detined by the PADER requirements. The exposure media met all requirements as defined by PADER.

After spiking, the leachate, contained in a fifty-five gallon drum, was stirred for twenty four hours and allowed to settle. Leachate was then transferred to exposure cells for chemical resistance testing.

2.3 Exposure Conditions

Geomembrane specimens were exposed to the waste leachate following the specifications of EPA Method 9090A as they relate to exposure to waste fluids. The tanks used for these exposures were msintained at $23 \pm 2^{\circ} \mathrm{C}$ and $50 \pm 2^{\circ} \mathrm{C}$ chroughout the 120 -day exposure period. Tanks were consmucted from chemically resistant glass, fitted with stirrers and heated with a circulating hor

AGRU/Ametica 9090A Final Report
water heat exchanger systern. The $50^{\circ} \mathrm{C}$ tanks were sealed with a lid, and a reflux condenser was installed to minimize loss of volatile leachate components.

2.4 Testing Procedures

Table 2 liss tests performed on the geomembrane. The number of test replicates was doubled for baseline determinations on unexposed material.

Table 2. Tests performed on geomembranes		
Test or Paysical Property	Method	Nuxibar of replicate specimens
Dintensions and weight	EPA 9090	3 readings
Hardness	ASTM D 2240 D scale	5
Yolaties and Extratables	EPA SW 870 Appendix III	2
Spesific Gravity	ASTM D 792	3
Tennile Properties	ASTM D 638	3
Modulus of Elasticity	ASTM D 882 Tangential Modulus	3
Hydrostatic Resistance	ASTM D 751 Method A	3
Tear Strength	ASTM D 1004	3
Pruature Resiskance	FTMS IO1C Method 2065	3
Enviformental Stress Crack Resistance	ASTM D 1693	2

Where appropriate testing was performed in both the machine and transverse directons.

> AGRU/Ameriea 9090A. Final Report Page 3

3.0 Rerults and Discussion

Test results are presented in the Test Results section which is included with this report. Test results are presented in tabular form as well as graphical form.

In considering these results, it must be determined through engineering judgment whether observed differences in the value of test results measured before and after inmersion are due to product variability, unidentiffed factors relating to the test procedure, or leachate interaction with the products. Any significant chemical interaction with leachate would be expected to result in degradation trends which are consistent across the various properties being evaluated, and not isolated to one set of test results only. However, with each type of material there may be specific properties which are highly seasitive to leachate-induced effects. These factors must be considered in evaluating the various test results for a given profuct.

Also of critical importance is the issue of product variability. With geomembranes, a range of physical and mecbanical index test vaiues covering 15% or more of the average is not uncommon. This can be traced to variability inherent in the product, and the randomoess associated with the onset of failure under the specified testing conditions. However, in chemical conmatibility testing the statistical sampling of a broad range of manufactured produce is not possible. Therefore, the small size of the sample population tested at each time point must be taken into consideration. The criteria to be applied in evalunting data measured before and atter leachate innmersion should be that property changes, if observed, are consistent and so great that product variability and experimental factors can be ruled out.

In this report, standard deviations (STD) are reporned for most measurements involving three or more replicare spectmens. In statistics, the standard deviation is defined as root of the mean squared deviations of individual test results about the mean value. The standard deviation is a quantitative measure of variability within a group of measurements.

One related measure of varibiuity observed within a sample set, relative to the magnitude of the mean value isself, is the coeffcient of variotion or variance (COV). The coefficient of variance is defined as the standard deviation divided by the mean associated with a group of specimens, and may be expressed as a percentage. The COV provides an indication of what proportion of the meam value may be attributable to random experimental factors or product variability. It is useful to consider apparent changes in property values against the ertrexion of COV since observed changes which fall below the COV may not be significant. This approach was used in preparing the tables in the next sections.

The term range refers to the difference between the extreme highest and lowest points within a group of measured values. Considering range as a percentage of the mean values provides another measure of variability within a datasec.

In the tables, the high and low extremes for percentage change in mean values are listed for comparison against COV and range as a perceatage of mean from the baseline sample group. The high and low percentage changes are the extremes from data measured at $30,60,90$ and 120 days.

Agru/America 60 mil smooth HDPE Geomembrane

Table 3 illuscrates the range of variability in baseline data compared with some of the observed changes in average test values measured after immersion for the HDPE geomembrane.

Test	$\begin{gathered} \text { Haseline } \operatorname{COV} \\ (\%)^{*} \end{gathered}$	Baseline Range as \% of Mean	Figh Observed \% Change	Low Observed \% Change
Stress os yield (Mm)	3	8	$\div 5$	4
Elangation 感yield (MD)	5	12	+20	$+1$
Stress break (MD)	5	14	+14	-13
Hiotrgation@ break (M0)	4	11.	$+8$	- 8
Tangential Modutios (MD)	4	12	$+9$	6
Tear Strength (MD)	2	6	+4	-2
Puncture Resistames	2	6	+ $\$$	0
Hydrostatic Kesistance	2	$\underline{5}$	+4	0

[^21]
4.0 CONCLUSION

Changes in certain measured physical and mechanical properties were noted for the geomemorane. However, the observed changes were random and are believed to be the effects of product variability and experimental factors. In the opinion of the authors, the data, considered together. support the conclusion that observed changes were not caused by exposure to the test leachate.

TRI/Enviromemal, Inc. is pleased to have been selected to participate in this project. We trust that the information provided in chis report meets your requirements for technical documentation of this chemical compatibility study. Please do not hesitate to call if you have any questions or require any additional information.

Respectfully submitted,

Sam R. Allen
Program Manager
Geosynchetics Technologies
TRUEnvirommental, Inc.

TRI GEOSYNTHETICS SERVICES DIVISION
 PaDEP Leachate Analysis
 Testing performed by TRI/Environmental, Inc.

		PaDEP Analysis: March 02-27, 1999 Analyies	LOQ (ug/L)

Organics: SW 846 Methods 624, 625, 608

Acenaphthene	10	ND	113
Acenaphthylene	25	ND	67
Anthracene	10	ND	52
Benzene	10	ND	811
Benzo(a)anthracene	10	ND	28
Benzo(a)pyrene	10	ND	52
Benzo(ghi)perylene	10	ND	45
Benzo(k)flouranthene	50	ND	33
3,4-benzofluoranthene	25	ND	49
Chrysene	10	ND	52
Dibenzo(a,h)anthracene	10	ND	48
Ethyl benzene	10	ND	2600
Fluoranthene	10	ND	54
Fluorene	10	ND	52
Indeno(1,2,3,c,d)pyrene	50	ND	63
Naphthalene	10	ND	288
Phenanthrene	10	ND	65
Pyrene	10	ND	45
Styrene	10	ND	170
Toluene	10	ND	15000
Xylenes	10	ND	280
PCBs	10	ND	ND
Aldrin	10	ND	ND
1,2-Dichiorobenzene	10	ND	1200
1,4-Dichlorobenzene	10	ND	700
Hexachlorobenzene	10	ND	300
Pentachlorobenzene	10	ND	170
Trichlorobenzene**	50	ND	160
Tetrachlorobenzene**	10	ND	150
2-chloronaphthalene	10	ND	100
Chlorobenzene	10	ND	19000
4,4DDT	10	ND	ND
4,4-DDE	50	ND	ND
4,4-DDD	10	$N D$	ND

TRI GEOSYNTHETICS SERVICES DIVISION

PaDEP Leachate Analysis

Testing performed by TRI/Environmental, Inc.

Analysis: March 02-27, 1999			PaDEP
Analytes	$\begin{gathered} \text { LOQ } \\ (\mathrm{ug} / \mathrm{L}) \end{gathered}$	Blank (ug/L)	Synthetic Leachate (ug/L)

Organics: SW 846 Methods 624, 625, 608 (Continued)

Heptane	10	ND	70
Hexane	10	ND	70
Octane	10	ND	60
Bromoform	10	ND	1200
Carbon tetrachioride	25	ND	500
Chlorodibromomethane	10	ND	30
Chloroethane	10	ND	1000
Chloroform	10	ND	6800
Dichlorobromomethane	10	ND	140
Dichlorodifluoromethane	30	ND	600
1,1 -Dichloroethane	50	ND	10300
$1,2-D i c h l o r o e t h a n e$	25	ND	16050
Dichloropropane	10	ND	1300
cis-Dichloroethene	10	ND	350
trans-Dichloroethene	40	ND	700
Ethylene dichloride *12DCA	10	ND	ND
Hexachloroethane	10	ND	600
Methyl bromide	50	ND	120
Methyl chloride	10	ND	120
Methylene chloride	50	ND	12000
Tetrachloroethene	50	ND	700
Tetrachloroethane**	50	ND	800
$1,1,1$ Trichloroethane	10	ND	900
$1,1,2$-Trichloroethane	10	ND	500
Trichloroethene	10	ND	800
Trichlorofluoromethane	10	ND	75
Vinyl chioride	10	ND	185

TRI GEOSYNTHETICS SERVICES DIVISION

PaDEP Leachate Analysis

Testing performed by TRI/Environmental, Inc.

Analysis: March 02-27, 1999	LOQ (ug/L)	PaDEP Blank (ug/L)	Synthetic Leachate (ug/L)

Organics: SW 846 Methods 624, 625, 608 (Continued)

Acrolein	10	ND	345
Acrylonitrile	25	ND	45
Acetone	10	ND	15000
Amyl acetate	10	ND	70
Benzidine	10	ND	70
Butyl alcoho***	10	ND	220
Bis(2-chloroethoxy)methane	10	ND	32
Bis(2-chloroethoxy)ether	50	ND	70
Bis(2-chloroisopropyl)ether	25	ND	70
Bis(2-ethylhexyl)phthalate	10	ND	900
4-bromophenyl phenyl ether	10	ND	60
Butyl benzyl phthaiate	10	ND	200
cresol**	10	ND	425
Chlordane	10	ND	ND
alpha-BHC	50	ND	ND
beta-BHC	10	ND	ND
gamma-BHC	10	ND	ND
delta-BHC	10	ND	ND
Dieldrin	10	ND	ND
Dichlorobenzidine	10	ND	100
Diethyl phthalate	10	ND	30
Dibutyi phthalate	10	ND	70
Dimethyl phthalate	10	ND	70
Isobutyl alcohol	10	ND	12000
Isopropyl alcohol	10	ND	200
Methyl aicohol	10	ND	160
2-chloroethyl vinyl ether	10	ND	700
2-chlorophenol	50	ND	1400
Dichlorophenol**	10	ND	1300
Dimethyl phenol**	10	ND	50
Dinitro-o-cresol	10	ND	60
Dinitrophenot**	10	ND	60
Dinitrotoluene**	10	ND	100
Diphenylhydrazine	10	ND	50
Ethyl acetate	10	ND	110
Ethyl ether	10	ND	100
Ethyl alcohol	10	ND	25000
Endosulfan	10	ND	50
Endrin	10	ND	19

Page 3 of 5

TRI GEOSYNTHETICS SERVICES DIVISION

PaDEP Leachate Analysis

Testing performed by TR//Environmental, inc.

Analysis: March 02-27, 1999	PaDEP LOQ	Blank Analytes	Synthetic Leachate (ug/L) (ug/L)

Organics: SW 846 Methods 624, 625, 608 (Continued)

Formaldehyde	10	ND	ND
Heptachior	50	ND	ND
Hexachlorocyclopentadiene	10	ND	80
Haxachlorobutadiene	10	ND	500
Isophorone	10	ND	6000
Methyl ethyl ketone	10	ND	13500
Methyl isobutyl ketone	10	ND	750
Nitrophenol**	10	ND	20
N -nitrosodimethylamine	10	ND	120
N -nitrosodi-n-propylamine	10	ND	120
Nitrobenzene	10	ND	600
Pentachiorophenol	10	ND	450
Phenol	10	ND	15000
Pyridine	10	ND	700
Toluene	50	ND	1260
Toxophene	50	ND	300
Trichlorophenot**	10	ND	400
2,4,5-TP	10	ND	50
METALS (EPA Method 200 Series)			(mg/L)
Aluminum (202.1)	1	ND	15
Antimony (204.1)	1	ND	20
Arsenic (206.2)	1	ND	5
Barium (208.1)	1	ND	120
Beryllium (210.1)	1	ND	2
Boron (212.3)	1	ND	15
Cadmium (213.1)	1	ND	15
Chromium (218.1)	1	ND	10
Copper (220.1)	1	ND	10
Iron (236.1)	1	$N D$	800
Lead (239.1)	1	$N D$	10
Manganese (243.1)	1	ND	1000
Mercury (245.1)	1	ND	ND
Molybdenum (246.1)	1	ND	5
Nickel (249.1)	1	ND	ND
Silver (272.1)	1	$N D$	8
Selenium (270.2)	1	$N D$	ND
Tin (282.1)	1	ND	ND
Titanium (283.1)	1	ND	ND
Thalium (279.1)	1	ND	ND
Zinc (289.1)	1	ND	25
CONVENTIONALS (EPA Methods)			(mg / L)
Oil and Grease (413.1)	20	ND	500
Total petroleum hydrocarbons (418.1)	10	ND	9000
Ammonia-nitrogen (350.2)	50	ND	600
Cyanide (335.2)	15	ND	ND
Flouride (340.1-340.2)	15	ND	500
Chloride (325.3)	10	ND	8000
Nitrate (353.3)	1	ND	3
Nitrite (353.3)	1	ND	ND
Suffate (375.4)		ND	250
TDS	1	$N D$	13400
pH	NA	ND	7.2

TRI GEOSYNTHETICS SERVICES DIVISION

PaDEP Leachate Analysis
Testing performed by TRI/Environmental, Inc.

QUALITY ASSURANCE REPORT

Analysis: March 02-27, 1999 Analytes	$\begin{aligned} & \text { Blank } \\ & (u g / L) \end{aligned}$	PaDEP Synthetic Leachate (ug/L)
Surrogate Recoveries		
1,2-Dichloroethane-d4	156\%	124\%
Toluene-d8	100\%	95\%
Bromofluorobenzene	117\%	73\%
Trifluorotoluene	120\%	113\%
2-Fluorophenol (Acid Surr)	110\%	110\%
Phenol-d6 (Acid Surr)	98\%	123\%
Nitrobenzene-d5 (BN Surr)	68\%	74\%
2-Fiuorobiphenyl (BN Surr)	124\%	102\%
2,4,6-Tribomophenol (Acid Surr)	92\%	76\%
p -Terphenyl-d14 (BN Surr)	90\%	96\%
	Matrix	Matrix
Compounds	Spike	Spike Dup
Phenot	17\%	32\%
2-Chlorophenol	30\%	89\%
1,4-Dichlorobenzene	26\%	97\%
N-Nitroso-Di-N-Propylamine	69\%	105\%
1,2,4-Trichiorobenzene	39\%	86\%
4-Chioro-3-Methyiphenol	83\%	100\%
Acenaphthene	88\%	120\%
4-Nitrophenol	17\%	13\%
2,4-Dinitrotoluene	72\%	96\%
Pentachlorophenol	71\%	73\%
Pyrene	88\%	118\%
METALS		
Arsenic	90\%	87\%
Barium	98\%	101\%
Cadmium	92\%	93\%
Chromium	84\%	86\%
Lead	79\%	80\%
Mercury	94\%	98\%
Selenium	82\%	89\%
Silver		

A Final Report:
 Laboratory Testing of Geomembrane
 for Waste Containment EPA Method 9090A

October 1999

Submitted to:

Poly-Flex Inc.
2000 W. Marshall Drive
Grand Prairie, Texas 75051

Attn: Mr. Lou Jacobsen

Submitted by:

TRI/Environmental, Inc.
9063 Bee Caves Rd.
Austin, Texas 78733

October 24, 1999
Mr. Lou Jacousen
Poly-Flex, Inc.
2000 W. Marshall Drive
Grand Prairie, Texas 75051
Dear Mr. Jacobsen:

TRI/Environmental, Inc. (TRD is pleased to present this Final Report for geomembrane chemical compatibility studies via EPA. Method 9090A.

TRI thanks Poly-Flex, Inc. for the opportunity to participate in this project and trists this report fully documents all testing performed. Please call me if you have any questions or require any additional information.

Respectfully submitted,
\sum Pam Alle
Sam R. Allen
Vice President and Division Manager
Geosynthetic Services

1.0

INTRODUCTION
This report describes the work performed by TRI/Environmental, Inc. (TRD) to determine the chemical compatibility of one geomembrane product with one waste leachate. The objective was to determine the resistance of the geomembrane to changes caused by exposure to leachate. Changes in physical and mechanical properties were measured after exposure to the leachate at $23^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ for $30,60,90$ and 120 days. Exposures were performed in accordance with the exposure regimen specified in United States Environmental Protection Agency (EPA) Mechod 9090A.

Methods, results and discussion are provided in the sections which follow. Test results are provided in the Tables of Results which accompany this report.

2.0
 METHODS

2.1 Materials

The material selected for evaluation in this chemical compatibility study was 60 mil smooth high density polyethylene (HDPE) geomembrane manufactured by PolyFlex, Inc..

2.2 Leachate

The exposure leachate used during the testing was a synthetic municipal solid waste (MSW) leachate. TRI generated the synthetic municipal waste leachate by spiking a quantity of actual MSW leachate (secured from the NENT Landfill in Hong Kong) with various chemical constituents as required by the Pennsylvania Deparment of Environmental Regulation (PADER). Spiking was accomplished using standard solutions used for instrument calibration for organics and salts used for the inorganics. Spiking was performed to assure a minimum concentration as defined by the PADER requirements. The exposure media met all requirements as defined by PADER.

After spiking, the leachate, contained in a fifty-five gallon drum, was stirred for twenty four hours and allowed to settle. Leachate was then transferred to exposure cells for chemical resistance testing.

2.3 Exposure Conditions

Geomembrane specimens were exposed to the waste leachate following the specifications of EPA Method 9090A as they relate to exposure to waste fluids. The tanks used for these exposures were maintained at $23 \pm 2^{\circ} \mathrm{C}$ and $50 \pm 2^{\circ} \mathrm{C}$ throughout the 120 -day exposure period. Tanks were constructed from chemically resistant glass, fitted with stirrers and heated with a circulating hot
water heat exchanger system. The $50^{\circ} \mathrm{C}$ tanks were sealed with a lid, and a reflux condenser was installed to minimize loss of volatile leachate components.

2.4
 Testing Procedures

Table 1 lists tests performed on the geomembrane. The number of test replicates was doubled for baseline determinations on unexposed material.

Table 1. Tests performed on geomembranes		
Test or Physical Property	Method	Number of replicate specimens
Dimensions and weight	EPA 9090	3 readings
Hardness	ASTM D 2240 D scale	5
Volatiles and Extractables	EPA SW 870 Appendix III	2
Specific Graviry	ASTM D 792	3
Tensile Properties	ASTM D 638	3
Modulus of Elasticity	ASTM D 882 Tangential Modulus	3
Hydrostatic Resistance	ASTM D 751 Merhod A	3
Tear Strength	ASTM D 1004	3
Puncture Resistance	FTMS 101C Method 2065	3
Environmental Stress Crack	ASTM D 1693	2
Resistance		

Where appropriate testing was performed in both the machine and transverse directions.

$3.0 \quad$ Results and Discussion

Test results are presented in the Test Results section which is included with this report. Test results are presented in tabular form as well as graphical form.

In considering these results, it must be determined through engineering judgment whether observed differences in the value of test results measured before and after immersion are due to product variability, unidentified factors relating to the test procedure, or leachate interaction with the products. Any significant chemical interaction with leachate would be expected to result in degradation trends which are consistent across the various properties being evaluated, and not isolated to one set of test results only. However, with each type of material there may be specific properties which are highly sensitive to leachate-induced effects. These factors must be considered in evaluating the various test results for a given product.

Also of critical importance is the issue of product variability. With geomembranes, a range of physical and mechanical index test values covering 15% or more of the average is not uncommon. This can be traced to variability inherent in the product, and the randomness associated with the onset of failure under the specified testing conditions. However, in chemical compatibility testing the statistical sampling of a broad range of manufactured product is not possible. Therefore, the small size of the sample population tested at each time point must be taken into consideration. The criteria to be applied in evaluating data measured before and after leachate immersion should be that property changes, if observed, are consistent and so great that product variability and experimental factors can be ruled out.

In this report, standard deviations (STD) are reported for most measurements involving three or more replicate specimens. In statistics, the standard deviation is defined as root of the mean squared deviations of individual test results about the mean value. The standard deviation is a quantitative measure of variability within a group of measurements.

One related measure of variability observed within a sample set, relative to the magnitude of the mean value itself, is the coefficient of variation or variance (COV). The coefficient of variance is defined as the standard deviation divided by the mean associated with a group of specimens, and may be expressed as a percentage. The COV provides an indication of what proportion of the mean value may be atributable to random experimental factors or product variability. It is useful to consider apparent changes in property values against the criterion of COV since observed changes which fall below the COV may not be significant. This approach was used in preparing the tables in the next sections.

The term range refers to the difference between the extreme highest and lowest points within a group of measured values. Considering range as a percentage of the mean values provides another measure of variability within a dataset.

In the tables, the high and low extremes for percentage change in mean values are listed for comparison against COV and range as a percentage of mean from the baseline sample group. The high and low percentage changes are the extremes from data measured at 30,60,90 and 120 days.

Poly-Flex 60 mil smooth EDPE Geomembrane

Table 2 illustrates the range of variability in baseline data compared with some of the observed changes in average test values measured after immersion for the HDPE geomembrane.

Table 2. Baseline coefficients of variation and range of percentage change results for PolyFlex 60 mil ADPE Geomembrane (mechanical properties testing only)				
Test	$\begin{gathered} \text { Baseline COV } \\ (\%)^{*} \end{gathered}$	Baseline Range as \% of Mean ${ }^{*}$	High Observed \% Change	Low Observed \% Change
Stress © y yield (MD)	2	5	$+5$	1
Elongation (0) yield (MD)	2	6	+6	-1
Stress © break (MD)	6	16	$+7$	-1
Elongation @ break (MD)	6	22	+4	4
Tangential Modulus (MD)	13	33	$+7$	-9
Tear Strength (MD)	2	6	+1	-2
Puncture Resistance	2	4	+4	-3
Hydrostatic Resistance	1	3	+1	-3

[^22]
4.0 CONCLUSION

Changes in certain measured physical and mechanical properties were noted for the geomembrane. However, the observed changes were random and are believed to be the effects of product variability and experimental factors. In the opinion of the authors, the data, considered together, support the conclusion that observed changes were not caused by exposure to the test leacbate.

TRIEnvironmental, Inc. is pleased to have been selected to participate in this project. We trust that the information provided in this report meets your requirements for technical documentation of this chemical compatibility study. Please do not hesitate to call if you have any questions or require any additional information.

Respectfully submitted,

Sam R. Allen
Vice President and Division Manager
Geosynthetics Technologies
TRI/Enviromental, Inc.

FOREWORD

The testing reported herein is based upon accepted industry practice as well as the test method listed. TRI/Environmental Inc. (TRD) neither accepts responsibility for nor makes claim as to the final use and purpose of the materials tested.

Tests were performed under laboratory conditions and not under actual usage conditions. TRI can give no conclusions as to the serviceability, life expectancy or general durability of the products tested when used in a lining and/or leachate collection system.

EPA METHOD 9090A TEST RESULTS GEOSYNTHETIC DIMENSIONS

TABLE OF CHEMICAL COMPATIBILTY TEST RESULTS
Exposure to PADER Wasto Lazehate
Dimensional Slability Data
:Date: Ocraber, 1ase
Exposure Tirne and Temperature
$-5 \mathrm{~F}$
Quadty Review

Test Parameters	Tentig.	Baseling	30 Day Expesed	\% Change	Bmeine	60 Day Exposed	\% Change	Assafline	90 Day Exposed			120 Dey	
				H Giange	Baceina		mamanga	Dasante	Exposed	\% Crange	Baselite	Exposed	\% Change

POLYFLEX GEOMEMBRANE: 60 mil HDPE

Thickness (mils)	230	58	59	9.7	81	61	0.0	58	58	0.0	BS	64	-1.5
	50 C	61	81	0.0	81	64	0.0	8	61	0.0	61	61	0.0
Lenglh (inches)	23 C	10.03	40.02	-0.9	10.04	80.04	0.0	10.04	10.04	0.0	10.02	10.01	
	50 C	10.02	10.02	0.0	10,00	80.00	0.0	10.0)	10.01	0.0	. 10.01	\$0.00	-0.1
Width (inches)	${ }^{23 C}$	8.02	8.01	-0.1	8.00	8.00	0.0	8.02	8.02	0.0	8.09	8.01	0.0
	500	8.01	8.01	0.0	8.00	8.00	0.0	8.01	8.01	0.0	8.00	8.00	0.0
Mass (g)	236	71.98	72.06	0.1	78.34	76.81	0.8	72,65	72.89	0.3	79.39	78.62	
	50 C	76.29	78.35	0.1	75.03	75.26	0.3	75.89	75.91	0.3	78.43	78.82	0.5

Page 1 of 1

EPA METHOD 9090A TEST

POLY-FLEX 60 mil SMOOTH HDPE GEOMEMBRANE

Exposurx Tona and Tempantury

Tost Paranderic	Eateling	30 Dzy $23 C$	$50 C$	Onestive	80 Day 230	50C	Baspling	500° 23C	SOC	Efseline	$\begin{aligned} & 120 \text { Day } \\ & 23 c \end{aligned}$	50 C
POLYFLEX GEOMEMERANE: 60 mil HDPE												
Tensite Propartles:	2597	2818	2675	2656	2082	2752	2454	2582	2524	2829	2717	2514
Tenslie Stress (\% Yeid (psi)	2925	2754	2693	2540	2777	2988	2476	2422	2498	235\%	2824	2789
ASTM D638	2561	2573	2866	2505	2583	2685	2365	2447	2511	2711	2839	2771
Machine Direction	2873			2590			2402			2674		
	2593			2570			2380			2317		
	2537			2522			2419			2540		
Average	2508	2¢49	2578	2576	2867	2705	2416	3484	2504	2637	2660	2584
STD	44	7	11	51	67	36	39	70	20	53	41	120
Coefficient of Variation	2	J	0	2	3	1	2	3	1	2	2	4
\% Change		2	3		4	5		3	4		1	2
Tensila Propertas:	4839	4822	4508	3614	4737	4238	48.19	4674	4808	4215	4773	4990
Tensile Strength Ereak (0si)	4454	4411	4814	3521	*4459	4705	4529	4765	4789	4850	4438	4922
ASTM D638	3842	4215	4358	4781	4022	4193	4470	4497	4780	4034	4803	4720
Machine Diraction	4638			3767			4377			5055		
	4672			4994			4510			4295		
	4520			4312			4374			4684		
Average	4478	4418	4492	432A	4405	4389	4480	4845	4788	4538	4605	4577
STD	251	166	108	589	294	228	88	111	20	360	137	277
Coefticient of Varlation	8	4	2	13	7	5	2	2	0	8	3	6
\% Change		- 1	0		2	1		4	7		-1	- 1
nsila Propartles:	13.8	13.8	13.8	11,1	13.4	13.0	13.4	14.0	14.2	13.1	13.6	13.8
-iongation 6 Yield (\%)	13.8	43.8	13,8	140	14.0	13.0	12 B	13.6	14.0	13,3	13.6	13.6
ASTM D638	129	13.1	129	127	15.4	14.2	12.3	13.8	14,0	13.1	127	13.6
Machine Direction	13, B	.		14.0			13.5			13.8		
	13.8			125			13.0			13,6		
	13.4			14.2			14.1			125		
Average	\$3.6	13.6	13.5	13.4	13.6	13.4	13.3	13.8	14.1	13.3	\$3,3	13.6
STD	0.3	0.3	0.4	0.7	0.3	0.6	0.6	0.2	0.1	0.3	0.4	0.0
Coefficient of Variakion	2	2	3	5	2	4	5	1	1	2	3	0
\% Change		0	\bullet -		1	-0		4	6		0	2
Page 1 of 7 Quaity ReviawiDate												

TABLE OF CHEMICAL CORAPATIBLLITY TEST RESULTS
 Exposure to PADER Wasto Lexichato

Report Date: October 189u
Exposure Tinve and Temperature

	30 Day			80 Day			EODay. ...			120089		
Teat Paramelers	Aseatice	23C	50 C	Bazelina	$23 C$	500	Brseling	23C	50C	Berefline	230	50 C

POLYFLEX GEOMEMERANE: 60 mil HDPE

Tansile Properthes:	605	584	809	478	630	568	838	609	625	682	508	\$81
Elongation Braak (\%)	602	585	612	528	588	594	697	018	637	623	558	819
ASTM D638	532	559	850	620	523	585	848	855	827	518	588	59
Machine Direction	603			516			596			544		
	599			638			814			588		
	864			642			689			819		
Average	601	579	524	571	584	574	642	B27	830	601	584	597
STD	38	45	19	65	45	94	38	20	5	4	20	12
Coefficient of Variation	6	3	3	11	8	2	5	3	1	7	3	2
\% Change		4	4		2	1		-2	-2		\checkmark	-1
Tenslle Properties:	875	600	800	575	- 700	625	730	650	870	650	630	885
Set after Break (\%)	584	580	620	670	670	850	720	710	740	700	575	085
ASTM D638	642	580	885	880	580	880	720	760	68	585	700	860
Machine Direction	691			610			720			720		
	605			700			750			720		
	465			750			740			680		
Averaga	825	587	635	654	650	655	730	720	897	884	635	673
STO	77	9	36	57	51	23	12	29	31	42	51	15
Coefflient of Varlation:	12	2	6	9	8	3	2	4	4	B	5	2
\% Change		-	2		2	- 4		-1	- 5		-7	2
Tanslie Properties:	2113	2122	2152	2181	2081	2195	1939	2155	2140	2178	2187	2030
Tenslie Stress 100\% Elongation (p i)	2112	2130	2144	2730	2030	2150	1880	2188	2031	2153	2929	23.40
ASTM D638	$21: 2$	2111	2187	2122	2081	2123	1978	1868	2152	2204	2175	2307
Machine Diraction	2236			2092			1885			2210		
	2132			2138			1983			2147		
	2085			2150			2013			2135		
Average	2128	2421	2184	2132	2057	2129	1803	2003	2108	2171	2164	2192
STO	52	8	19	22	25	45	18	133	54	28	25	188
Coefficient of Variation	2	0	1	\uparrow	+	1	1	6	3	1	1	5
\% Change		∞	2		4	∞		5	6		0	1
Tenslie Propertios:	2451	2958	2184	2281	2107	2217	2049	2249	217	2271	2233	2057
Tensille Stress (1) 200\% Elongation (psi)	2144	2171	2188	2245	1933	2148	2132	2193	2089	2214	2164	2318
ASTM D638	2130	2135	2180	2208	2084	2983	2110	1989	2140	2309	2176	2275
Machine Direction	2252			2183			2119			2220		
	2185			2244			2114			2180		
	2107			2144			1829			2170		
Average	2150	2155	2181	2213	2041	2185	2075	2137	2135	2229	2191	2230
STD	48	15	12	33	7	29	70	90	38	48	30	96
Coefficient of Variation	2	i	;	2	4	1	3	5	2	2	1	4
\% Change		0	1		$\&$	- 1		3	3		-2	0

Client: WCS. File: 418-wCs WE1

TABLE OF CHE開ICAL COAAPATPEILITY TEST RESULTS
 Exposura to PADER Wasto Laachato

Client: WCS. Fike: 418wes WB1

Exposurs Time and Temparature

POLYFLEX GEORAEMBRANE: 60 mil HDPE

Tonstle Propartes:	632	B2S	630	780	800	740	750	870	640	710	720	645
Sol affer Break (\%)	604	850	840	750	700	700	740	770	740	830	670	890
ASTM D638	64)	680	675	780	770	730	740	720	780	E80	880	740
Transverse Direction	605			710			770			695		
	815			740			750			080		
	848			800			790			740		
Average	638	845	848	780	757	723	743	720	720	688	B90	082
STD	15	45	19	30	42	17	18	41	59	35	22	39
Coefficient of Variation	2	2	3	4	8	2	2	6	8	5	3	6
\% Change		1	1		\bigcirc	5		3	\checkmark		1	1
Tensile Proparties: Tenslie Stress © 100\% Elongation (psi) ASTM D638 Transverse Diraction	1884	1970	4819	\$906	4893	1817	1923	1856	2013	1853	1899	1897
	1028	1819	1803	1848	2002	2026	1502	1828	2006	1895	2013	2079
	2003	1949	2021	1907	1952	1895	1824	1857	1971	1978	18 Sc	1992
	+604			1815			1832			189		
	2074			1888			1845			2000		
	1872			1863			4829			1854		
Average	1884	1986	1588	1909	1882	1879	1893	1947	1997	1876	2001	2023
STD	46	13	42	21	27	45	43	13	18	17	7	40
Confficient of Variallon	2	1	2	1	:	2	2	!	'	+	0	2
\% Crange		- 1	- 1		4	4		3	6		1	2
ensile Properties: Tensile Stress 0200% Elongation (psi) ASTM D638 Transverse Direction	2076	2022	1977	1972	2038	2003	fissa	1988	2075	2024	2025	2144
	1895	2095	2174	2088	2080	2180	1808	1973	2018	2129	2149	2122
	2033	1878	2045	1952	1970	2014	1881	1956	1985	2146	2123	2148
	2072			2058			1989			2049		
	2232			1941			1694			2184		
	2021			1807			1828			1975		
Average STD Cosfficient of Variation	2072	2032	2056	1883	2042	2069	1921	1972	2026	2073	2099	2137
	77	48	82	59	52	65	38	13	37	62	53	11
	4	2	4	3	3	3	2	1	2	3	3	1
\% Change		-2	0		3	4		3	5		1	3
Miodulus of Elasticity: Tangential (psi) ASTM D882 Machine Direction	124744	91394	103184	81704	7:107	78785	78833	67653	73895	124744	108123	103476
	104279	103855	㣙建	78006	77275	71089	65292	83822	T8912	104279	59124	110352
	177219	93445	130590	86535	74467	01524	68525	82388	77912	117218	103275	89878
	90144			77189			73605			90144		
	96237			75676			78201			96237		
	98788			72185			69819			96786		
Average STD Coefficient of Variation	105232	88231	107347	78713	74.883	77269	72846	77958	76208	105232	10284	
	13274	6581	21850	4558	2521	4553	3059	7303	1695	\$2081	2874	4338
	13	7	20	${ }^{6}$	3	S	T	9	2	11	3	4
\% Change		-9	2		\bigcirc	- 2		7	5		-2	-1
Page 4 of 7									$\frac{284}{\text { Qual }}$	0.24.	ate	

TAELE OF CHEMICAL CORPATIEILITY TEST RESULTS
 Exposupe to PADER Waste Leachate

Exposura

Test Parameters	Basgatine	$\begin{aligned} & 30 \mathrm{Day} \\ & 23 \mathrm{C} \end{aligned}$	50.5	Bessuine	$\begin{gathered} \mathrm{BO} \text { Day } \\ 23 \mathrm{C} \\ \hline \end{gathered}$	50 C	Esgetine	oo Day $23 \mathrm{C}$	500	Easelina	$\begin{gathered} 120 \text { Day } \\ 23 \mathrm{C} \end{gathered}$	50 C
POLYFLEX GEOMEMERANE; 60 mIl HDPE												
Modulus of Efasulcty: Tangential (psi) ASTM D982 Transverse Direction	432583	133255	196760	gegs	72702	75935	70206					
	139878	129458	126450	84888	88561	Q4ass	87874	73789	66801	132588	138515	150392
	-287893	121289	112879	77750	8:029	85404	76074	83782	66801 85340	938879 461238	144267	129457
	122310			77047			78012			161236 $\$ 88135$	145970	146805
	123568			65833			75933			183050		
	129848			95784			31697			123848		
Average STD Coefficlent of Vanation	129314	120898	118385	84718	80387	85145	75238	82125	82084	147119		
	8438	6003	8104	8527	6584	8039	4849	6B34	11361	13520	$\begin{aligned} & 141838 \\ & 4660 \end{aligned}$	142215 8138
	5	5	7	8	0	9	6	s	14	\square	3	
\% Change		-2	-8		-5	1		9	9		\rightarrow	-3
Indentation Hardness: Reading ASTM 02240 (with TYPE D DUROMETER)	84	61	62	6	$\cdot \mathbf{6 2}$	63	8S	84	82	82	63	
	80	61	82	82	62	82	BS	${ }^{8} 3$	84	03	84	84
	8_{1}	62	63	82	62	82	45	63	B3	83	84 53	${ }^{53}$
	62			64			63			63		
	62			63			83			${ }^{2}$		
	62			82			64			63		
Average STD Coefficient of Variation	81	61	82	63	82	62	89	63	63	65		
	4	1	1	1	0	0	1	0	1	80 0	63 0	63 0
	1	1	1	1	0	1	1	1	1	1	1	1
\% Change		0	2		- 1	-1		- 9	2		1	1
effle Gravity: Specific Gravity (grams/cu.cm) ASTM D792, Method A	0.949	0.950	0.950	0.950	0.948	0,948	0,850	0.948	0.950	0.949		
	0.849	0.949	0.950	0.950	0.949	0.950	0.849	0.049	0.948	-0.849	0.548	-289
	0.850	0.850	0.950	0.840	0.849	0.987	0.848	0.048	0.948	0.948	0.849	0.849
	0.859			0.948			0.849			0.849		
	0.549			0.948			0.045			0.948		
	0.850			0.847			0,948			0.950		
Average STD Coefficient of Variadon	0.950	0.850	0.530	0.840	0.049	0.849	0.049	0.848	0,949	0.849	0.048	
	0.001	0.007	0.000	0.004	0.000	0.009	0.001	0.000	0.001	0.001	0.808 0.000	0.988 0.000
	0.088	0.081	0.000	0.118	0.050	0.131	0.072	0.050	0.039	0.081	0.050	0.000
\% Change		0.00	0.04		0.02	0.02		-0.05	-0,02		0.004	0.00
Enviponmantal Strease Crack Resistance: ASTM D1693, Condition B Machine Direction (\% Failed) Transverse Direction (\% Failed)												
	N/A	0	0	N/A	0	0	N/A	0	0	NAA	0	
	NAA	0	0	H/A	0	0	N/A	0	0	N/A	0	0
Page 5 of 7									$\frac{S R}{\text { Qualit }}$	$\frac{10 \cdot 24}{\text { Revicw/0 }}$	$\frac{49}{a t e}$	

TABLE OF CHEMACAL COMPATIEILITY TEST RESULTS
Exposure to PADER Wmsto Leachate

Report Dast: Oeraber 1999	Expoeura Time and Tomperature											
Tsit Peramotert	Esassinta	$\begin{aligned} & 30 \text { Day } \\ & 2 a c \end{aligned}$	Soc	Aasaline	$\begin{aligned} & 60 \text { Day } \\ & 23 c \end{aligned}$	50 C	Smanne	$\begin{aligned} & 90 \text { Day } \\ & 23 \mathrm{C} \end{aligned}$	SOC	Easefing	$\begin{aligned} & 120 \text { Day } \\ & 23 \mathrm{C} \end{aligned}$	50 c

POLYFLEX GEOMEMBRANE: 60 mil HDFE

Punctura Rosituance:	91	∞	95	${ }^{6}$	93	95	87	89	91	88	81	92
Load 22 Rupture (lbs)	09	91	94	68	92	94	89	86	80	82	92	98
FTMS 104C Method 2055	92	92	03	91	89	84	87	88	50	67	89	\$7
	93			E2			94			6		
	83			83			∞			6		
	89			84			응					
Average	92	94	94	91	81	4	50	88	90	4	81	B
STD	1	1	1	3	2	0	2	1	0	3	1	2
Coefficient of Variation	2	1	1	3	2	0	3	1	1	4	1	2
\% Change		- 1	3		;	4		4	¢		\checkmark	1
Volatles and Extractabies:	-0.05	-0.05	0.09	-0.03	* 0.00	0.10	-0.05	-0.45	-0.05	0.03	0.05	0.00
Diameter Change (\%)	-0.05	-0.08	0.03	0.00	-0.05	-0.08	0.03	0.00	-0.05	-0.05	-0.03	-0.05
SW 870 - Appendix IIt-D	0.00			-0.70			-0.05			-0.05		
Machine Direction	0.00		.	-0.08			-0.20			0.00		
Average	-0.03	-0.07	0.00	0.05	0.03	-0.08	0.07	-0.09	-0,05	-0.02	0.04	-0.03
STD	0.03	0.02	0.03	0.04	0.03	0.01	б. 08	0.00	0.00	0.03	0.01	. 100
Volaties and Extractables:	0.28	0.18	0.15	0.40	0.13	0.20	0.85	0.25	0.80	0.18	0.20	0.08
Diameter Change (\%)	0.08	0.23	0.18	0.15	0.05	0.95	0.00	0.05	0.18	0.18	0.18	0.10
SW 870 - Appendix $111-0$	0.23			0.03			0.13			0.03		
Transverse Dircetion	0.05			0.25			0.38			0.73		
Average	0.98	0.21	0.17	0.13	0.09	0.17	0.17	0.14	0.16	0.28	0.48	0.69
STO	0.90	0.02	0.02	0.08	0.04	0.04	0.14	0.11	0.04	0.27	0.01	0.04
Volatilas and Extractabies:	0.07	0.06	0.10	0.08	0.07	0.08	0.05	0.07	0.08	0.05	0.05	0.09
\% Volatiles	0.07	0.08	0.08	0.08	0.08	0.00	0.08	0.00	0.07	0.05	0.05	0.05
SW 870 - Appendix 111-D	0.08			0.07			0.08			0.05		
	0.08			0.07			0.04			0.05		
Average	0.08	0.07	0.09	0.07	0.08	0.58	0.05	0.08	0.89	0.05	0.05	0.08
STD	0.00	0.01	0.09	0.01	0.00	0.00	0.09	0.00	$0 . \infty 0$	0.00	0.00	0.01
Volatles and Extractables:	0.21	0.24	0.22	0.20	0.21	0.25	0.28	0.22	0.22	0.21	0.22	0.22
\% Extractables	0.20	0.22	0.21	0.22	0.19	0.18	0.25	0.21	0.22	0.19	0.21	0.22
SW 870 - Appendix :11-D	0.20			0.20			0.31			0.22		
	0.21			0.18			0.32			0.20		
Average	0.21	0.22	0.22	0.20	0.20	0.22	0.28	0.22	0.22	0.21	0.22	0.22
STD	0.00	0.01	0.01	0.01	0.01	0.04	0.03	0.01	0.00	0.01	0.01	0.00
Page 6 of 7									Sp	10.2		

TABLE OF CHEAICAL COMPATIBILITY TEST RESULTS
 Exposure to PADER Waste Laachato

Rsport Date: Odober 1899
Expasure Time sind Temparaturs

	30 Day			50 Day			50 Day			120 Day		
Tagt Parameters	Basmine	23 C	$50 c$	Agstine	23 C	50 c		238	soce	Baseline	23 C	50 C

POLYFLEX GEORAEMBRANE: 60 mil HDPE

Toar Restiskneay	55	54	54	S5	50	53	57	55	55	65	8	58
Tear Resimtance (lbs)	54	54	54	53	54	52	55	${ }_{5}$	54	55	63	54
ASTM DIOO4	54	52	55	54	54	55	55	57	55	53	53	53
Machine Direction	54			52			57			54		
	52			52			54			34		
	55			53			57			57		
Average	54	53	54	53	54	53	56	58	55	55	57	54
STD	1	1	1	1	0	1	1	1	0	1	0	1
Copflicient of Variation	2	2	1	2	1	2	2	2	1	2	1	2
\% Change		-1	1		9	0		\bigcirc	-2		-2	- 1
Tear Rosietance:	51	54	53	52	55	51	ss	51	54	51	53	59
Tear Resistance (ibs)	50	54	51	52	5	51	53	51	51	50	59	52
ASTM D1004	51	51	52	50	58	55.	53	59	52	50	52	52
Transverse Direction	50			48			59			so		
	49			48			55			50		
	54			48			54			52		
Average	51	55	52	40	53	52	54	54	51	51	53	52
STD	2	2	1	2	2	2	2	4	0	1	0	0
Coefficient of Variation	3	3	2	4	3	4	3	7	1	2	1	1
\% Change		4	2		8	6		0	4		4	4
Hydroststie Resistance:	480	455	500	500	485	500	500	485	495	500	485	505
Load al Rupture (psi)	300	510	510	450	485	480	515	505	485	485	510	305
ASTM D75!	505	500	500	505	450	490	520	450	485	510	500	300
	500			510			545	-		480		
	495			495			505			500		
	500						510			500		
Average	498	502	503	500	483	483	514	497	495	499	502	503
STD	5	8	8	7	2	5	7	θ	0	6	5	2
Coefficient of Vanation	1	2	1	;	0	1	1	\%	0	1	1	0
\% Change		1	1		- 1	-1		3	4		1	1
Page 7 of 7									$\frac{51}{}$	10.		

Client: POLYFLEX, File: 770-poly.wb1
Client: POLYFLEX, File: 770-poly.wb1

POLYFLEX EPA METHOD 9090A
60 mil smooth HDPE GM/PADER Leachate

Client: POLYFLEX, File: 770-poly.wb1
POLYFLEX EPA METHOD 9090A

POLYFLEX EPA METHOD 9090A

Client: POLYFLEX, File: 770-poly.wb1

Client: POLYFLEX, File: 770-poly.wb1

A Final Report:
 Laboratory Testing of SKAPS Industries HDPE Geonet EPA Method 9090A

January 2003

Submitted to:

SKAPS industries

571 Industrial Parkway
Commerce, GA 30529

Attn: Mr. Perry Vyas

Submitted by:
TRI/Environmental, Inc.
9063 Bee Caves Rd.
Austin, Texas 78733

Mr. Perry Vyas
SKAPS Industries
571 Industrial Parkway
Commerce, GA 30529

Dear Mr. Vyas:
TRI/Environmental, Inc. (TRI) is pleased to present this Final Report for a geonet chemical compatibility study performed in general accordance with EPA Method 9090A.

TRI is very pleased to be of service to SKAPS Industries. Please call me if you have any questions or require any additional information.

Respectfully submitted,

Sam R. Allen
Vice President and Division Manager
Geosynthetic Services Division

FOREWORD

The testing reported herein is based upon accepted industry practice as well as the test method listed. TRI/Environmental Inc. (TRI) neither accepts responsibility for nor makes claim as to the final use and purpose of the materials tested.

Tests were performed under laboratory conditions and not under actual usage conditions. TRI can give no conclusions as to the serviceability, life expectancy or general durability of the products tested when used in a lining and/or leachate collection system.

1.0 INTRODUCTION

This report describes the work performed by TRI/Environmental, Inc. (TRI) to determine the chemical compatibility of one HDPE geonet product with one waste leachate. The objective was to determine the resistance of the geonet to changes caused by exposure to leachate. Changes in physical, mechanical and hydraulic properties were measured after exposure to the leachate at $23^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ for $30,60,90$ and 120 days. Exposures were performed in accordance with the exposure regimen specified in United States Environmental Protection Agency (EPA) Method 9090A.

All samples were logged in and all testing performed under TRI log number E2173-46-05. Methods, results and discussion are provided in the sections which follow. Test results are provided in the Tables of Results which accompany this report.

2.0 METHODS

2.1 Materials

The material selected for evaluation in this chemical compatibility study was Skaps Industries HDPE biplaner geonet.

2.2 Leachate

The waste leachate used was supplied by TRI and was a synthetic MSW leachate approximating the PaDER leachate recipe.

2.3 Exposure Conditions

Geonet specimens were exposed to the waste leachate following the specifications of EPA Method 9090A as they relate to exposure to waste fluids. The tanks used for these exposures were maintained at $23 \pm 2^{\circ} \mathrm{C}$ and $50 \pm 2^{\circ} \mathrm{C}$ throughout the 120 -day exposure period. Tanks were constructed from chemically resistant glass fitted with stirrers. The $50^{\circ} \mathrm{C}$ tanks were heated with a circulating hot water heat exchanger system. They were also sealed with a lid, and a reflux condenser was installed to minimize loss of volatile leachate components.

2.4 Testing Procedures

Table 1 lists tests performed on the geonet. The number of test replicates was doubled for baseline determinations on unexposed material.

Table 1. Tests performed on Skaps Industries HDPE Geonet		
Test or Physical Property	Method	Number of replicate specimens
	EPA 9090	2 readings
Dimensions and weight	ASTM D 5035	3 MD \& TD readings
Strip Tensile Strength	ASTM D 5035	3 MD \& TD readings
Strip Tensile Elongation	ASTM D 1621	3 readings
Compressive Strength	ASTM D 4716	3 readings
Transmissivity	ASTM D 6241	3 readings
CBR Puncture	SW870 - Appendix III-D	2 readings
Volatiles and Extractables		

3.0 RESULTS AND DISCUSSION

Test results are presented in the Test Results section which is included with this report. Test results are presented in tabular form as well as graphical form.

In considering these results, it must be determined through engineering judgment whether observed differences in the value of test results measured before and after immersion are due to product variability, unidentified factors relating to the test procedure, or leachate interaction with the product. Any significant chemical interaction with leachate would be expected to result in degradation trends which are consistent across the various properties being evaluated, and not isolated to one set of test results only. However, with each type of material there may be specific properties which are highly sensitive to leachate-induced effects. These factors must be considered in evaluating the various test results for a given product.

Also of critical importance is the issue of product variability. With HDPE geonets, a range of physical and mechanical index test values covering 20% or more of the average is not uncommon. This can be traced to variability inherent in the product, and the randomness associated with the onset of failure under the specified testing conditions. However, in chemical compatibility testing the statistical sampling of a broad range of manufactured product is not possible. Therefore, the small size of the sample population tested at each time point must be taken into consideration. The criteria to be applied in evaluating data measured before and after leachate immersion should be that property changes, if observed, are consistent and so great that product variability and experimental factors can be ruled out.

In this report, standard deviations (STD) are reported for measurements involving three or more replicate specimens. In statistics, the standard deviation is defined as root of the mean squared deviations of individual test results about the mean value. The standard deviation is a quantitative measure of variability within a group of measurements.

One related measure of variability observed within a sample set, relative to the magnitude of the mean value itself, is the coefficient of variation or variance (COV). The coefficient of variance is defined as the standard deviation divided by the mean associated with a group of specimens, and may be expressed as a percentage. The COV provides an indication of what proportion of the mean value may be attributable to random experimental factors or product variability. It is useful to consider apparent changes in property values against the criterion of COV since observed changes which fall below the COV may not be significant. This approach was used in preparing the tables in the next section.

The term range refers to the difference between the extreme highest and lowest points within a group of measured values. Considering range as a percentage of the mean values provides another measure of variability within a dataset.

In the tables, the high and low extremes for percentage change in mean values are listed for comparison against COV and range as a percentage of mean from the baseline sample group. The high and low percentage changes are the extremes from data measured at $30,60,90$ and 120 days.

Skaps Industries HDPE Biplaner Geonet

Table 2 illustrates the range of variability in baseline data compared with some of the observed changes in average test values measured after immersion for the geonet.

Table 2. Baseline coefficients of variation and range of percentage change results					
Test	Baseline COV $(\%)^{*}$	Baseline Range as \% of Mean*	High Observed \% Change	Low Observed $\%$ Change	
Strip Tensile Strength (MD)	7	17	9	-9	
Strip Tensile Elongation @ Maximum Load (MD)	6	18	9	-8	
Compressive Strength	6	17	4	-6	
Transmissivity	2.18	6.63	-0.17	-9.54	
CBR Puncture	7	20	9	-9	

4.0 CONCLUSION

Changes in certain measured physical and mechanical properties were noted for the geonet. However, the observed variances were random and are believed to be the effects of product variability and experimental factors. In the opinion of the authors, the data, considered together, support the conclusion that observed variances were not caused by exposure to the test leachate.

TRI/Environmental, Inc. is pleased to have been selected to participate in this project. We trust that the information provided in this report meets your requirements for technical documentation of this chemical compatibility study. Please do not hesitate to call if you have any questions or require any additional information.

Respectfully submitted,

Sme Allen

Sam R. Allen
Vice President and Division Manager
Geosynthetic Services Division
TRI/Environmental, Inc.

APPENDIX:

EPA METHOD 9090A TEST RESULTS

SKAPS INDUSTRIES HDPE GEONET TEST RESULTS

Dimensions
TRI LOG NUMBER: E2173-46-05

TABLE OF CHEMICAL COMPA TIBILITY TEST RESULTS
 Client: Skaps Industries

Report Date: January 2003					Expos	Time	Tempera						
TRI Log Number: E2173-46-05													
Test Paremeters	Temp.	Baseline	30 Day Exposed	\% Change	Baseline	60 Day Exposed	\% Change	Baseline	90 Day Exposed	\% Change	Baseline	120 Day Exposed	\% Change

GEONET: HDPE GEONET EXPOSED TO PADER MSW SYNTHETIC LEACHATE

Thickness (mils)	$23 C$	224	228	1.8	234	234	0.0	230	230	0.0	228	228	0.0
	50 C	232	232	0.0	228	229	0.4	230	231	0.4	229	229	0.0
Length (inches)	230	6.00	6.00	0.0	6.00	5.85	-2.5	6.00	5.96	-0.7	6.02	6.01	-0.2
	50 C	6.00	5.83	-2.8	6.00	5.89	- 1.8	6.00	6.00	0.0	5.99	6.00	0.2
Width (inches)	23 C	4.04	4.06	0.5	4.01	4.02	0.2	4.01	4.04	0.7	4.02	4.04	0.5
	50C	4.02	4.02	0.0	4.01	4.01	0.0	4.03	4.03	0.0	4.03	4.01	-0.5
Mass (g)	23 C	14.94	14.92	0.1	15.46	15.47	0.1	15.30	15.31	0.1	15.23	15.25	0.1
	50 C	17.06	17.06	0.0	16.86	16.86	0.0	17.05	17.05	0.0	14.93	14.93	0.0

Page 1 of 1

EPA METHOD 9090A TEST RESULTS

SKAPS INDUSTRIES HDPE GEONET TEST RESULTS

TRI LOG NUMBER: E2173-46-05

NOTE ON TEST RESULTS

This section includes generated test data provided in both tabular and graphical form. Each graph is represented by a series of "l" beam plots. Each "I" beam represents a single test population and illustrates the high and low value as the end points, and the mean as a central box on the beam.

At each testing period, two "l" beams are shown. The left beam represents the $23^{\circ} \mathrm{C}$ exposed specimens while the right beam represents the $50^{\circ} \mathrm{C}$ specimens. The initial "I" beam represents the baseline or unexposed test specimens.

TABLE OF CHEMICAL COMPATIBILITY TEST RESULTS
 Client: Skaps Industries

Report Date: January 2003 TRI Log Number: E2173-46-05		Exposure Time and Temperature							
		30 Day		60 Day		90 Day		120 Day	
Test Parameters	Baseline	23 C	50 C						

GEONET: HDPE GEONET EXPOSED TO PaDER MSW SYNTHETIC LEACHATE

Strip Tensile Properties:	143	158	173	130	167	131	166	168	133
Maximum Strength (lbs).	167	144	162	153	152	167	148	165	150
ASTM D5035	153	151	147	149	173	126	157	172	144
Machine Direction	150								
	170								
	144								
Average	155	151	161	144	164	141	157	168	142
STD	11	6	11	10	9	18	7	3	7
Coefficient of Variation	7	4	7	7	5	13	5	2	5
\% Change		-2	4	-7	6	-9	2	9	-8
Strip Tensile Properties:	33	34	35	30	35	35	31	35	33
Elongation@ Max. Strength (\%)	36	28	32	35	42	34	33	36	28
ASTM D5035	35	33	24	32	31	31	35	33	31
Machine Direction	30								
	31								
	33								
Average	33	32	30	32	36	33	33.	35	31
STD	2	3	5	2	5	2	2	1	2
Coefficient of Variation	6	8	15	6	13	5	5	4	7
\% Change		-4	-8	-2	9	1	0	5	-7

Page 1 of 4

TABLE OF CHEMICAL COMPATIBILITY TEST RESULTS
 Client: Skaps Industries

Report Date: January 2003
TRI Log Number: E2173-46-05

Test Parameters

GEONET: HDPE GEONET EXPOSED TO PaDER MSW SYNTHETIC LEACHATE

Strip Tensile Properties:	56	55	60	57	49	59	53	60	47
Maximum Strength (lbs)	57	53	59	57	56	54	53	61	59
ASTM D5035	64	51	60	56	62	51	52	58	56
Transverse Direction	57								
	51								
	53								
Average	56	53	60	57	56	55	53	60	54
STD	4	2	0	0	5	3	0	1	5
Coefficient of Variation	7	3	1	1	10	6	1	2	9
\% Change		-6	6	1	-1	-3	-7	6	-4
Strip Tensile Properties:	129	171	163	151	169	148	155	135	165
Elongation @ Max. Strength (\%)	172	160	139	159	157	141	168	147	177
ASTM D5035	153	115	133	160	189	149	167	149	148
Transverse Direction	133								
	151								
	149								
Average	148	149	145	157	172	146	163	144	163
STD	14	24	13	4	13	4	6	6	12
Coefficient of Variation	10	16	9	3	8	2	4	4	7
\% Change		1	-2	6	16	-1	10	-3	10

Page 2 of 4

TABLE OF CHEMICAL COMPATIBILITY TEST RESULTS
 Client: Skaps Industries

Report Date: January 2003					posur	and T	ature		
TRI Log Number: E2\$73-46-05									
Test Parameters	Baseline	23 C	50 C						

GEONET: HDPE GEONET EXPOSED TO PaDER RASW SYNTHETIC LEACHATE

Compressive Strength:	35951	36083	33732	25141	34508	39672	33045	35164	31349
Strength at Rib Layover (psf)	35677	31833	39106	40149	23798	32742	32879	34119	33234
ASTM D1621	38252	34801	31922	37048	42045	37877	39494	40486	36492
	36837								
	32100								
	33888								
Average	35451	34239	34920	34113	33450	36764	35139	36590	33692
STD	1989	1780	3051	6469	7487	2937	3080	2788	2124
Coefficient of Variation	6	5	9	19	22	8	9	8	6
\% Change		-3	-1	-4	-6	4	-1	3	-5
Transmissivity:	1.96E-03	1.88E-03	1.91E-03	1.77E-03	1.94E-03	1.87E-03	1.90E-03	1.96E-03	1.90E-03
(m2/sec)	1.95E-03	1.88E-03	1,89E-03	$1.76 \mathrm{E}-03$	1.91E-03	1.84E-03	1.93E-03	1.96E-03	1.96E-03
ASTM D4716	2.01E-03	1.89E-03	1.94 Em 03	$1.78 \mathrm{E}-03$	$1.84 \mathrm{E}-03$	1.82E-03	1.95E-03	$1.94 \mathrm{E}-03$	1.89E-03
	1.94E-03								
	$2.00 \mathrm{E}-03$								
	$1.88 \mathrm{E}-03$								
Average	1.96E-03	1.88E-03	1.91E-03	1.77E-03	1.90E-03	1.84E-03	1.93E-03	1.95E-03	1.92E-03
STD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Coefficient of Variation	2.18	0.25	1.07	0.46	2.21	1.11	1.07	0.48	1.61
\% Change		-3.75	-2.21	-9.54	-3.07	-5.79	-1.53	-0.17	-2.04
CBR Puncture:	292	238	292	279	345	296	308	279	256
Puncture Resistance (lbs)	235	247	298	289	276	278	311	265	275
ASTM D6241	280	270	265	240	273	255	289	246	288
	285								
	286								
	284								
Average	277	252	285	269	298	276	303	263	273
STD	19	13	14	21	33	17	10	14	13
Coefficient of Variation	7	5	5	8	11	6	3	5	5
\% Change		-9	3	-3	8	-0	9	-5	-1

Page 3 of 4

TRI Geosynthetics Division Client: Skaps Industries, File: 465-skaps-gn .WB1

TABLE OF CHEMICAL COMPATIBILITY TEST RESULTS
 Client: Skaps Industries

Report Date: January 2003 Exposure Time and Temperature
TRI Log Number: E2173-46-05

Test Parameters		30 Day		60 Day		90 Day		120 Day	
	Baseline	23 C	50 C						

GEONET: HDPE GEONET EXPOSED TO PaDER MSW SYNTHETIC LEACHATE

Volatiles and Extractables:	-1.51	-1.51	-1.01	-2.00	-0.51	0.00	-1.00	-0.50	-1.01
Machine Diameter Change (\%)	-3.02	-2.51	-1.51	-1.01	-1.50	-1.01	-2.01	-2.53	-0.51
SW 870 - Appendix III-D	-2.51								
	-1.01								
Average	-2.01	-2.01	-1.26	-1.51	-1.01	-0.51	-1.51	-1.52	-0.76
STD	0.79	0.50	0.25	0.50	0.50	0.51	0.50	1.02	0.25
Volatiles and Extractables:	-3.02	-3.48	-1.51	-1.04	-1.01	-1.49	-0.51	-1.03	-1.54
Transverse Diameter Change (\%)	-3.98	-3.48	-1.00	-3.05	-1.00	-1.52	-1.02	-1.54	-1.53
SW 870 - Appendix III-D	-1.99								
	-0.50								
Average	-2.37	-3.48	${ }^{-1.26}$	-2.05	-1.01	-1.51	-0.77	-1.29	-1.54
STD	1.29	0.00	0.26	1.01	0.01	0.02	0.26	0.25	0.00
Volatiles and Extractables:	0.07	0.11	0.09	0.11	0.16	0.12	0.11	0.12	0.11
\% Volatijes	0.07	0.11	0.12	0.10	0.16	0.08	0.10	0.13	0.08
SW 870 - Appendix III-D	0.07								
	0.07								
Average	0.07	0.11	0.11	0.11	0.16	0.10	0.11	0.13	0.10
STD	0.00	0.00	0.02	0.00	0.00	0.02	0.00	0.01	0.01
Volatiles and Extractables:	0.16	0.25	0.21	0.16	0.13	0.22	0.08	0.18	0.10
\% Extractables	0.14	0.18	0.25	0.32	0.30	0.27	0.19	0.35	0.30
SW 870 - Appendix III-D	0.16								
	0.25								
Average	0.18	0.22	0.23	0.24	0.22	0.25	0.14	0.27	0.20
STD	0.04	0.04	0.02	0.08	0.09	0.03	0.05	0.08	0.10

Page 4 of 4

TRI Geosynthetics Division Client: Skaps Industries, File: 465-skaps-gn .WB1

February 11, 2004

Mr. Anarag
 Skaps Industries

571 Industrial Parkway
Commerce, GA 30529

Dear Mr. Anarag:
TRI/Environmental, Inc. (TRI) is pleased to present this Final Report for a geotextile chemical resistance study performed in general accordance with EPA Method 9090A as applied by ASTM D 6389-99, Standard Practice for Tests to Evaluate the Chemical Resistance of Geotextiles to Liquids.

TRI is very pleased to be of service to Skips Industries. Please call me if you have any questions or require any additional information (800 8808378).

Respectfully submitted,

Sam R. Allen
Vice President and Division Manager
Geosynthetic Services Division
www.GeosyntheticTesting.com

A Final Report:
 Laboratory Testing of Geotextile for Waste Containment EPA Method 9090A

February 2004

Submitted to:
Skaps Industries

571 Industrial Parkway
Commerce, GA 30529
Attn: Mr. Anarag

Submitted by:
TRI/Environmental, Inc.
9063 Bee Caves Rd.
Austin, Texas 78733

FOREWORD

The testing reported herein is based upon accepted industry practice as well as the test method listed. TRI/Environmental Inc. (TRI) neither accepts responsibility for nor makes claim as to the final use and purpose of the materials tested.

Tests were performed under laboratory conditions and not under actual usage conditions. TRI can give no conclusions as to the serviceability, life expectancy or general durability of the products tested when used in a lining and/or leachate collection system.

1.0 INTRODUCTION

This report describes the work performed by TRI/Environmental, Inc. (TRI) to determine the chemical compatibility of one geotextile product with one synthetic waste leachate. The objective was to determine the resistance of the geotextile to changes caused by exposure to leachate. Changes in physical, mechanical and hydraulic properties were measured after exposure to the leachate at $23^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ for $30,60,90$ and 120 days. Exposures were performed in accordance with the exposure regimen specified in United States Environmental Protection Agency (EPA) Method 9090A.

All samples were logged in and all testing performed under TRI log number E2183-79-10. Methods, results and discussion are provided in the sections which follow. Test results are provided in the Tables of Results which accompany this report.

2.0 METHODS

2.1 Materials

The material selected for evaluation in this chemical compatibility study was Skaps.GTE 160 polypropylene staple fiber nonwoven needlepunched geotextile.

2.2 Leachate

The waste leachate used was supplied by TRI and was a synthetic MSW leachate approximating the PaDER leachate recipe.

2.3 Exposure Conditions

Geotextile specimens were exposed to the waste leachate following the specifications of EPA Method 9090A as they relate to exposure to waste fluids. The tanks used for these exposures were maintained at $23 \pm 2^{\circ} \mathrm{C}$ and $50 \pm 2^{\circ} \mathrm{C}$ throughout the 120 -day exposure period. Tanks were constructed from chemically resistant glass fitted with stirrers. The $50^{\circ} \mathrm{C}$ tanks were heated with a circulating hot water heat exchanger system. They were also sealed with a lid, and a reflux condenser was installed to minimize loss of volatile leachate components.

2.4 Testing Procedures

Table 1 lists tests performed on the geotextile. The number of test replicates was doubled for baseline determinations on unexposed material.

Table 1. Tests performed on TNS - Nevown, Inc. nonwoven geotextile		
Test or Physical Property	Method	Number of replicate specimens
Dimensions and weight	EPA 9090A	2 readings
Grab Tensile Strength	ASTM D 4632	3 MD \& TD readings
Grab Tensile Elongation	ASTM D 4632	3 MD \& TD readings
Trapezoidal Tear Strength	ASTM D 4533	3 MD \& TD readings
Puncture Resistance	ASTM D 4833	3 readings
Mullen Burst	ASTM D 3786	3 readings
Permittivity	ASTM D 4491	3 readings

3.0 RESULTS AND DISCUSSION

Test results are presented in the Test Results section which is included with this report. Test results are presented in tabular form as well as graphical form.

In considering these results, it must be determined through engineering judgment whether observed differences in the value of test results measured before and after immersion are due to product variability, unidentified factors relating to the test procedure, or leachate interaction with the product. Any significant chemical interaction with leachate would be expected to result in degradation trends which are consistent across the various properties being evaluated, and not isolated to one set of test results only. However, with each type of material there may be specific properties which are highly sensitive to leachate-induced effects. These factors must be considered in evaluating the various test results for a given product.

Also of critical importance is the issue of product variability. With nonwoven geotextiles, a range of physical and mechanical index test values covering 20% or more of the average is not uncommon. This can be traced to variability inherent in the product, and the randomness associated with the onset of failure under the specified testing conditions. However, in chemical compatibility testing the statistical sampling of a broad range of manufactured product is not possible. Therefore, the small size of the sample population tested at each time point must be taken into consideration. The criteria to be applied in evaluating data measured before and after leachate immersion should be that property changes, if observed, are consistent and so great that product variability and experimental factors can be ruled out.

In this report, standard deviations (STD) are reported for measurements involving three or more replicate specimens. In statistics, the standard deviation is defined as root of the mean squared deviations of
individual test results about the mean value. The standard deviation is a quantitative measure of variability within a group of measurements.

One related measure of variability observed within a sample set, relative to the magnitude of the mean value itself, is the coefficient of variation or variance (COV). The coefficient of variance is defined as the standard deviation divided by the mean associated with a group of specimens, and may be expressed as a percentage. The COV provides an indication of what proportion of the mean value may be attributable to random experimental factors or product variability. It is useful to consider apparent changes in property values against the criterion of COV since observed changes which fall below the COV may not be significant. This approach was used in preparing the tables in the next section.

The term range refers to the difference between the extreme highest and lowest points within a group of measured values. Considering range as a percentage of the mean values provides another measure of variability within a dataset.

In the tables, the high and low extremes for percentage change in mean values are listed for comparison against COV and range as a percentage of mean from the baseline sample group. The high and low percentage changes are the extremes from data measured at 30,60,90 and 120 days.

SKAPS GTE 160 nonwoven polypropylene geotextile

Table 2 illustrates the range of variability in baseline data compared with some of the observed changes in average test values measured after immersion for the geotextile.

Table 2. Baseline coefficients of variation and range of percentage change results for geotextile				
Test	Baseline COV $(\%)^{*}$	Baseline Range as \% of Mean*	High Observed $\%$ Change	Low Observed $\%$ Change
Grab Tensile Strength (MD)	8	22	12	-1
Grab Tensile Elongation @ Maximum Load (MD)	8	24	2	-4
Trapezoidal Tear Strength (MD)	8	22	7	-8
Puncture Strength	17	50	3	-9
Mullen Burst Strength	8	26	5	-9

4.0 CONCLUSION

While some changes in certain measured physical and mechanical properties were noted for the geotextile, the observed variances were random and are believed to be the effects of product variability and experimental factors.

TRI/Environmental, Inc. is pleased to have been selected to participate in this project. We trust that the information provided in this report meets your requirements for technical documentation of this chemical compatibility study. Please do not hesitate to call if you have any questions or require any additional information.

Respectfully submitted,

Eman Alar

Sam R. Allen
Vice President and Division Manager
Geosynthetic Services Division
TRI/Environmental, Inc.

APPENDIX:

EPA METHOD 9090A TEST RESULTS
 SKAPS GTE 160 Nonwoven Geotextile TEST RESULTS

Dimensions
TRI LOG NUMBER: E2183-79-10

TABLE OF CHEMICAL COMPATIBILITY TEST RESULTS
 Client: Skaps Industries

Report Date: February 2004
TRI Log Number: E2189-79-10
Test Parameters
Tenameters

Exposure Time and Temperature

		30 Day			60 Day			90 Day			120 Day	
Temp.	Baseline	Exposed	\% Change									

GEOTEXTILE: POLYPROPYLENE NONWOVEN EXPOSED TO PaDER SYNTHETIC MSW LEACHATE GEOTEXTILE ROLL ID: GTE-160

Thickness (mils)	23 C	115	112	-2.6	112	112	0.0	118	118	0.0	108	107	-0.9
	50 C	107	104	-2.8	118	117	-0.8	117	113	-3.4	114	117	2.6
Length (inches)	23C	8.06	8.04	-0.2	8.07	8.03	-0.5	8.10	8.00	-1.2	8.05	8.00	-0.6
	50 C	8.08	7.97	-1.4	B.06	7.96	-1.2	8.08	7.95	-1.6	8.01	7.94	-0.9
Width (inches)	23 C	4.05	4.01	-1.0	4.02	4.00	-0.5	4.00	3.96	-1.0	3.98	3.95	-0.8
	50 C	4.00	3.92	-2.0	4.01	3.99	-0.5	4.06	4.02	-1.0	4.06	4.04	-0.5
Mass (g)	23C	4.88	4.87	-0.2	4.88	4.95	1.4	5.01	5.01	0.0	6.55	6.51	-0.6
	50 C	4.38	4.38	0.0	5.15	5.08	-1.4	5.08	5.05	-0.6	5.60	5.53	-1.2

Page 1 of 1

EPA METHOD 9090A TEST RESULTS

SKAPS GTE 160 Nonwoven Geotextile TEST RESULTS

TRI LOG NUMBER: E2183-79-10

NOTE ON TEST RESULTS

This section includes generated test data provided in both tabular and graphical form. Each graph is represented by a series of "l" beam plots. Each "l" beam represents a single test population and illustrates the high and low value as the end points, and the mean as a central box on the beam.

At each testing period, two "I" beams are shown. The left beam represents the $23^{\circ} \mathrm{C}$ exposed specimens while the right beam represents the $50^{\circ} \mathrm{C}$ specimens. The initial "I" beam represents the baseline or unexposed test specimens.

TABLE OF CHEMICAL COMPATBILITY TEST RESULTS
 Client: Skaps Industries

Report Date: February 2004
TRI Log Number: E2183-79-10
Test Parameters

GEOTEXTILE: POLYPROPYLENE NONWOVEN EXPOSED TO PADER SYNTHETIC MSW LEACHATE GEOTEXTLLE ROLL ID: GTE-160

Grab Tensile Properties: 164
Maximum Strength (lbs)
ASTM D4632
Machine Direction
Average 180
Coefficient of Variation
\% Change

Grab Tensile Properties:
Elongation @ Max. Strength (\%)
ASTM D4632
Machine Direction
180
19
11

201
11
204
16
199
23
226
206
198

198	207	218
5	35	10
2	17	5
10	15	21

109	93	119	94
105	100	106	95

107
106
95
91
98
9195
$99 \quad 10$

108

$$
107
$$

113

101
98 104 109 155

Average	108	107	98	113	93	97	92	102	103
STD	22	2	4	5	2	4	5	5	4
Coefficient of Variation	20	2	4	5	2	4	5	5	4
\% Change									

TABLE OF CHEPMICAL COMPATIBILITY TEST RESULTS

Client: Skaps Industries

GEOTEXTILE: POLYPROPYLENE NONWOVEN EXPOSED TO PADER SYNTHETIC MSW LEACHATE GEOTEXTLE ROLL ID: GTE-160

Grab Tensile Properties:	321	345	289	308	338	323	290	285
Maximum Strength (bs)	325	343	310	338	277	317	309	303
ASTM D4632	282	252	282	287	252	329	292	310
Transverse Direction	288							
	220							
	258							

Average	282	313	294	311	289	323	297	299	294
STD	36	43	12	21	36	5	9	11	15
Coefficient of Variation	13	14	4	7	12	2	3	4	5
\% Change		11	4	10	2	14	5	6	4
Grab Tensile Properties:	98	97	93	97	98	93	99	91	93
Elongation @ Max. Strength (\%)	115	112	104	109	99	100	99	103	104
ASTM D4632	94	94	103	97	85	93	92	94	95
Transverse Direction	83								
	95								
	99								

Average	97	101	100	101	94	95	97	96	97
STD	9	8	5	6	6	3	3	5	5
Coefficient of Variation	10	8	5	6	7	3	3	5	5
\% Change		4	3	4	-3	-2	-1	-1	0

Page 2 of 3

table of chemical compatibility test results
 Client: Skaps Industries

Exposure Time and Temperature
Report Date: February 2004 TRI Log Number: E2183-79-10 Test Parameters\quad Baseline

GEOTEXTLLE: POLYPROPYLENE NONWOVEN EXPOSED TO PADER SYNTHETIC MSW LEACHATE GEOTEXTILE ROLL ID: GTE-160

Mullen Burst Strength:	455	380	415	390	450	450	435	415	380
Burst Strength (psi)	420	400	380	400	430	415	410	405	385
ASTM D3786	425	345	415	400	410	410	380	365	
	400								
	350								

Average	409	375	403	397	430	425	408	395	372
STD	32	23	16	5	16	18	22	22	15
Coefficient of Variation	8	6	4	1	4	4	6	5	4
\% Change		-8	-1	-3	5	4	-0	-3	-9
Permittivity:	1.63	1.61	1.79	1.53	1.66	1.97	1.83	2.06	1.72
(sec-1)	1.81	1.64	1.64	1.97	1.97	2.18	1.97	1.67	7.61
ASTM D4491	1.63	1.53	1.88	1.97	1.83	1.88	1.91	1.91	2.00
	1.79								
	1.76								
	1.68								

Average	1.72	1.59	1.77	1.82	1.82	2.01	1.90	1.88	1.78
STD	0.07	0.05	0.10	0.21	0.13	0.13	0.06	0.16	0.16
Coefficient of Variation	4.28	2.91	5.59	11.38	6.96	6.25	3.01	8.54	9.24
			-7.18	3.11	6.21	6.02	17.09	10.87	9.51
\% Change						3.50			
Trapezoidal Tear	87	97	78	85	106	61	85	102	101
Tear Strength - (lbs)	86	87	94	82	91	78	101	70	104

APPENDIX G

SETTLEMENT ANALYSES

APPENDIX G. 1 FOUNDATION SETTLEMENT APPENDIX G. 2 APPENDIX G. 3 APPENDIX G. 4
CLAY LINER RATE OF CONSOLIDATION
CLAY LINER CONSOLIDATION SETTLEMENT POST-CLOSURE WASTE SETTLEMENT

APPENDIX G. 1 FOUNDATION SETTLEMENT

Objectives:

1. To estimate the magnitude and distribution of settlement of the Landfill $B-18$ foundation due to the overlying waste.
2. To evaluate whether the final gradient of the Landfill B-18 foundation after settlement is the required minimum of 2% to maintain adequate drainage.

Given:

The Landfill B-18 expansion geometry and as-built landfill configuration used to generate the evaluated sections were obtained from AutoCAD drawings (see Drawings). All other data used for these calculations are based on the original Environmental Solutions, Inc. (ESI, 1990) calculations, including site geology and foundation stratigraphy (see Attachment 1). The original calculation was performed utilizing the computer program SETTLG developed by Geosoft Inc.; however, this program is no longer available. Golder programmed the settlement equations into Microsoft Excel to perform the foundation settlement calculations.

Assumptions (Assumptions are consistent with those used by ESI):

1. Claystone and siltstone are considered the same. Previous investigations indicate that the compression characteristics of the claystone and siltstone are practically the same.
2. Foundation materials are highly overconsolidated, therefore the stress-strain relationship under loading is considered to be within the elastic range of materials.
3. Rebound and settlement of foundation will occur during excavation and waste placement. Therefore the gross weight, rather than the net weight of the waste fill will be used.
4. Sandstone under the landfill foundation is considered to be incompressible.
5. The foundation materials are considered to be homogeneous and isotropic. The stress-strain behavior of the materials under load is characterized by the Young's Modulus and the Poisson's Ratio.

Method:

1. Determination of Young's Modulus (E)

The elastic modulus may be expressed in terms of the shear strength of the soil:

$$
E=k S_{u}
$$

Where k is a function of the Plasticity Index (PI). Values for the on-site claystone materials at various depths are shown in Figure 1. By using the linear progression method, the scattered data may be represented by a straight line. The best fit straight line takes the form of:

Project No.: 083-91887	Made By: LAQ
Date: $05-20-2008$	Checked By: EH
Sheet: 2 of 6	Reviewed By:

$$
\operatorname{PI}(\%)=37.2+0.05 y(\mathrm{ft})
$$

where y is equal to the depth below ground surface. The results of the above statistical analysis indicate that the variation of PI with depth is not significant.

Figure 1: PI vs. Depth for claystone material.

Kettleman Hills Facility - Landfill Unit B-18 FOUNDATION SETTLEMENT

Project No.: 083-91887	Made By: LAQ
Date: $05-20-2008$	Checked By: EH
Sheet: 3 of 6	Reviewed By:

Therefore, it was assumed that the Pl is constant with depth. Taking the average depth for all data, the PI value for the foundation material was estimated to be approximately 41. By assuming the overconsolidation ratio (OCR) of the claystone is 2 , the value of K was estimated to be 420 as shown in the Figure 2.

Figure 2: Chart for estimating Undrained Modulus of Clay.

$$
\begin{aligned}
& E_{u}=K S_{u} \\
& E_{u}=\text { UNDRANED MODULUS OF CLAY } \\
& K=\text { FACTOR FROM CHART ABOVE } \\
& S_{u}=\text { UNDRAINED SHEAR STRENGTH } \\
& =\text { OF CLAY }
\end{aligned}
$$

Kettleman Hills Facility - Landfill Unit B-18
FOUNDATION SETTLEMENT

Project No.: 083-91887	Made By: LAQ
Date: 05-20-2008	Checked By: EH
Sheet: 4 of 6	Reviewed By:

The shear strength of the foundation material is summarized in the following table:

Geologic Unit	Shear Strength $(\mathbf{p s i})^{1}$
$18-5$	127.0
$18-7$	110.6
$18-8$	91.1
$18-12$	72.2
Average	100.2

${ }^{7}$ Obtained from UU triaxial test results
Taking the average shear strength $\left(S_{u}\right)$, the elastic modulus $\left(E_{u}\right)$ is estimated to be:
$\mathrm{Eu}=\mathrm{K} \times \mathrm{Su}=420 \times\left(100 \mathrm{lb} / \mathrm{in}^{2} \times 144 \mathrm{in}^{2} / \mathrm{ft}^{2} / 1000 \mathrm{lb} / \mathrm{kip}\right)=6,048 \mathrm{kip} / \mathrm{ft}^{2}$, round to $6,000 \mathrm{ksf}$.
2. Determination of Poisson's Ratio (v)

The value of Poisson's Ratio was found to be insensitive to the compressibility coefficient used to calculate the settlement. Poisson's Ratio was back-calculated using the average compressibility coefficient determined by using a value of the Poisson's Ratio from 0 to 0.5 . The resulting Poisson's Ratio was estimated to be 0.38 .
3. Determination of Compressibility Index ($\left.\mathrm{C}_{\mathrm{u}}\right)$

The Compressibility coefficient is related to E and v by:

$$
C_{u}=\frac{1-v^{2}}{E}
$$

4. Determination of changes in stress with depth $(\Delta \sigma)$

Since it was assumed that the deformation of the foundation is elastic under the waste loading, the Boussinesq Equation was used to determine $\Delta \sigma$. To calculate $\Delta \sigma$ under the center of a rectangular loaded area:

$$
\Delta \sigma=\sigma_{0} m I
$$

Where:
$\sigma_{0}=$ initial stress at a specific depth
$\mathrm{m}=$ number of influences, for the center of a foundation $\mathrm{m}=4$
$\sigma_{0}=\gamma \mathrm{z}$
$\quad \gamma=$ soil unit weight
$\quad \mathrm{z}=$ depth to the middle of layer to be evaluated

$$
I=\frac{1}{4 \pi}\left[\frac{2 \mathrm{MN} \sqrt{\mathrm{~V}}}{V+V_{1}} \frac{\mathrm{~V}+1}{\mathrm{~V}}+\tan ^{-1}\left(\frac{2 \mathrm{MN} \sqrt{\mathrm{~V}}}{\mathrm{~V}-\mathrm{V}_{1}}\right)\right]
$$

Kettleman Hills Facility - Landfill Unit B-18 FOUNDATION SETTLEMENT

Golder Associates

Project No.: 083-91887	Made By: LAQ
Date: $05-20-2008$	Checked By: EH
Sheet: 5 of 6	Reviewed By:

$$
M=\frac{\mathrm{B}}{\mathrm{z}} ; \mathrm{N}=\frac{\mathrm{L}}{\mathrm{z}}
$$

$V=M^{2}+\mathrm{N}+1 ; \mathrm{V}_{1}=(M N)^{2}$
$B=$ Base of foundation
$L=$ Length of foundation
To calculate $\Delta \sigma$ under a point that is not at the center of the rectangular loaded area, the following is used:

$$
\Delta \sigma=\sigma_{0} I_{1}+\sigma_{0} I_{2}+\sigma_{0} I_{3}+\sigma_{0} I_{4}
$$

5. Calculation of Settlement ($\Delta \mathrm{H}$)

The foundation settlement can then be calculated by:

$$
\Delta H=\varepsilon H
$$

Where:

$$
\begin{aligned}
& \varepsilon=\text { vertical strain determined by } \varepsilon=\Delta \sigma C_{u} \\
& H=\text { thickness of the layer where settlement is calculated }
\end{aligned}
$$

The total settlement is determined by $\sum \Delta H$ under the point being evaluated.

Calculations and Results:

1. Settlement Calculation

Foundation settlement calculations were performed for Sections 1-1', 2-2', and 3-3' for each of the points shown on Drawing 1, Cross sections are shown on Drawings 3, 4 and 5, respectively. All settlement results are summarized in the Table 1 through Table 3 in the Tables Section of this calculation brief. Settlement along the landfill foundation ranges from 0.74 inches (Section 2-2' Point 2A) to 13.55 inches (Section 2-2 Point $2 \mathrm{~K}_{1}$)).
2. Final Gradient Computation

The formula utilized for the final gradient calculation is defined as follows:

$$
G_{f}=\frac{\left(E L_{2}-\Delta H_{2}\right)-\left(E L_{1}-\Delta H_{1}\right)}{\left(\Delta X_{2}-\Delta X_{1}\right)}
$$

Where:
$E L_{2}=$ elevation at point 2
$E L_{1}=$ elevation at point 1
$\Delta H_{2}=$ settlement at point 2
$\Delta H_{1}=$ settlement at point 1
$\left(\Delta X_{2}-\Delta X_{1}\right)=$ Distance between two points

Project No.: 083-91887	Made By: LAQ
Date: $05-20-2008$	Checked By: EH
Sheet: 6 of 6	Reviewed By:

Final gradient calculations were performed in Sections 2-2' and 3-3'(as shown on Drawing 4 and 5) since the two sections are the ones along the drainage direction. All final gradient results are summarized in Table 4 and Table 5 in the Tables Section of this report.

In all cases the gradient remains in excess of 2% when measured in the direction of flow. Some locations in the sections are not perpendicular to the contours and therefore the slope is not reported; however, the computed settlement at these locations are observed to be of similar magnitude and the original grade would be maintained.

3. Strain Difference Computation

The formula utilized for the final gradient calculation is defined as follows:

$$
\Delta \varepsilon=\frac{G_{f}-G_{i}}{d}
$$

In where:

$$
\begin{aligned}
& G_{\mathrm{f}}=\text { final gradient } \\
& G_{\mathrm{i}}=\text { initial gradient } \\
& d=\text { distance between two points }
\end{aligned}
$$

Final strain calculations were performed in Sections 2-2' and 3-3'since these two sections are the ones along the drainage direction. All strain difference results are summarized in Table 6 through Table 7 in the Tables Section of this report.

The result all points have less than the design maximum strain of 0.1%.

Conclusions:

Based on the foundation settlement calculations for the selected sections, we can assume that the bottom gradient of the landfill along the critical sections will be maintained at a minimum of 2% meeting the minimum requirement for drainage.

Based on the foundation settlement calculations for the selected sections, we can assume that there will be no abrupt changes along the surface of the foundation due to settlement. The maximum allowable strain due to settlement is less than 0.1% which is less than the yield strain of the synthetic liner. Therefore the liner stays intact.

Reference:

Environmental Solutions, Inc. (ESI), "Engineering and Design Report, Landfill Unit B-18, Phases I and II and Final Closure, Kettleman Hills Facility," August 1990, Appendix G.1.

Bowles, J.E., "Foundation Analysis and Design," Fifth Edition, 1996, pp. 291-296.

Table 1

Settlement Calculation Summary

Section 1-1'

Point No.	A Geoligic Unit	B \% Clayin A	C Calculated settlement lassumed a 100% (lay Content) In	BxC Estimated Settlement (in)	Total Setlement (in)
1 A	18-7	30\%	11.90	3.57	3.57
1 B	18-7	30\%	13.85	4.16	4.16
1 C	18-8	100\%	3.14	3.14	7.74
	18-7	30\%	15.35	4.60	
1 D	18-8	100\%	5.71	5.71	8.52
	18-7	30\%	9.38	2.82	
1 E	18-9	0\%	0.00	0.00	8.99
	18-8	100\%	6.24	6.24	
	18-7	30\%	9.17	2.75	
1 F	18-9	0\%	0.00	0.00	11.18
	18-8	100\%	8.26	8.26	
	18-7	30\%	9.75	2.93	
1 G	18-9	0\%	0.00	0.00	12.63
	18-8	100\%	9.50	9.50	
	18-7	30\%	10.43	3.13	
1 H	18-10	50\%	4.72	2.36	9.63
	18-9	0\%	0.00	0.00	
	18-8	100\%	6.24	6.24	
	18-7	30\%	3.41	1.02	
11	18-10	50\%	6.55	3.28	5.47
	18-9	0\%	0.00	0.00	
	18-8	100\%	2.10	2.10	
	18-7	30\%	0.33	0.10	
1 J	18-12	100\%	0.69	0.69	1.80
	18-11	10\%	1.48	0.15	
	18-10	50\%	1.27	0.63	
	18-9	0\%	0.00	0.00	
	18-8	100\%	0.32	0.32	
1 K	18-13	10\%	1.46	0.15	1.20
	18-12	100\%	0.01	0.01	
	18-11	10\%	0.99	0.10	
	18-10	50\%	1.25	0.63	
	18-9	0\%	0.00	0.00	
	18-8	100\%	0.32	0.32	

Table 2

Settlement Calculation Summary

Section 2-2'

Point No.	A Geoligic Unit	B $\%$ Clay 11 A	C Calculated Settlement (assumed a 100% (lay Content) (in)	BxC Estimated Settlement (ii)	Total Settlement (ii)
2 A	18-4	100\%	0.28	0.28	0.74
	18-3	20\%	2.32	0.46	
2 B	18-5	20\%	0.61	0.12	2.43
	18-4	100\%	0.62	0.62	
	18-3	20\%	8.43	1.69	
2 C	18-5	20\%	2.56	0.51	2.90
	18-4	100\%	0.81	0.81	
	18-3	20\%	7.91	1.58	
2 D	18-6	20\%	1.33	0.27	3.62
	18-5	20\%	2.78	0.56	
	18-4	100\%	0.96	0.96	
	18-3	20\%	9.18	1.84	
2 E	18-7	30\%	3.15	0.95	4.62
	18-6	20\%	1.63	0.33	
	18-5	20\%	3.14	0.63	
	18-4	100\%	1.21	1.21	
	18-3	20\%	7.57	1.51	
2 F	18-7	30\%	7.57	2.27	5.92
	18-6	20\%	1.90	0.38	
	18-5	20\%	3.38	0.68	
	18-4	100\%	1.49	1.49	
	18-3	20\%	5.54	1.11	
2 G	18-8	100\%	8.96	8.96	11.94
	18-7	30\%	8.55	2.57	
	18-6	20\%	2.07	0.41	
	18-5	20\%	3.10	0.62	
	18-4	100\%	1.22	1.22	
2 H	18-8	100\%	1.22	1.22	5.14
	18-7	30\%	9.21	2.76	
	18-6	20\%	2.32	0.46	
	18-5	20\%	3.47	0.69	
21	18-10	50\%	0.63	0.31	6.45
	18-9	0\%	0.00	0.00	
	18-8	100\%	5.17	5.17	
	18-7	30\%	2.74	0.82	
	18-6	20\%	0.71	0.14	
2 J	18-10	50\%	4.46	2.23	13.32
	18-9	0\%	0.00	0.00	
	18-8	100\%	9.10	9.10	
	18-7	30\%	6.63	1.99	

Table 2

Settlement Calculation Summary

Section 2-2'

Point No.	$\begin{gathered} \text { A } \\ \text { Geoligic } \\ \text { Unit } \end{gathered}$	\% Clay in A	Calculated Settlement lassumed a 100% Clay Content) (in)	$\mathrm{B} \times \mathrm{C}$ Estimated Settlement (in)	Total Settlement (ii)
2 K	18-10	50\%	6.71	3.36	11.58
	18-9	0\%	0.00	0.00	
	18-8	100\%	7.54	7.54	
	18-7	30\%	2.28	0.68	
$2 \mathrm{~K}_{1}$	18-10	50\%	8.39	4.20	13.55
	18-9	0\%	0.00	0.00	
	18-8	100\%	7.81	7.81	
	18-7	30\%	5.13	1.54	
2 L	18-10	50\%	9.20	4.60	9.89
	18-9	0\%	0.00	0.00	
	18-8	100\%	5.09	5.09	
	18-7	30\%	0.65	0.19	
2 M	18-11	10\%	2.45	0.25	5.83
	18-10	50\%	6.24	3.12	
	18-9	0\%	0.00	0.00	
	18-8	100\%	2.47	2.47	
2 N	18-12	100\%	1.36	1.36	5.29
	18-11	10\%	1.92	0.19	
	18-10	50\%	3.23	1.62	
	18-9	0\%	0.00	0.00	
	18-8	100\%	2.12	2.12	
20	18-13	10\%	2.91	0.29	1.25
	18-12	100\%	0.42	0.42	
	18-11	10\%	0.55	0.06	
	18-10	50\%	0.97	0.48	
	18-9	0\%	0.00	0.00	

Table 3
Settlement Calculation

Section 3-3'

$\begin{aligned} & \text { Point } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { A } \\ \begin{array}{c} \text { Geoligic } \\ \text { Unit } \end{array} \end{gathered}$	$\%$ Clay in A	(alculated Setliement lassumed a 100% (lay (ontent) (in).	BxC. Estimated Settlement (ii)	Total Settlement (in)
3 A	18-13	10\%	14.10	1.41	1.41
3 B	18-13	10\%	22.54	2.25	2.25
3 C	18-12	100\%	4.07	4.07	5.79
	18-13	10\%	17.24	1.72	
3 D	18-11	10\%	10.13	1.01	4.89
	18-12	100\%	3.73	3.73	
	18-13	10\%	1.53	0.15	
$3 \mathrm{D}_{1}$	18-10	50\%	8.40	4.20	8.37
	18-11	10\%	6.98	0.70	
	18-12	100\%	3.18	3.18	
	18-13	10\%	2.97	0.30	
$3 \mathrm{D}_{2}$	18-10	50\%	10.00	5.00	8.46
	18-11	10\%	7.72	0.77	
	18-12	100\%	2.55	2.55	
	18-13	10\%	1.39	0.14	
$3 \mathrm{D}_{3}$	18-10	50\%	11.36	5.68	9.09
	18-11	10\%	7.95	0.79	
	18-12	100\%	2.61	2.61	
	18-13	10\%	0.78	0.08	
3 E	18-10	50\%	13.23	6.61	9.65
	18-11	10\%	7.39	0.74	
	18-12	100\%	2.29	2.29	
3 F	18-10	50\%	11.58	5.79	5.79

Table 4
Grade Calculation
Section 2-2'

$\begin{aligned} & \text { Point } \\ & \text { No. } \end{aligned}$	Initial Elevation (ft)	Settlement (ft)	Final Elevation (ft)	Distance (ft)	Initial Grade (\%)	Final Grade (\%)	$\begin{gathered} \hline \hline \text { Allowable } \\ \text { Grade } \\ 2.0 \% \\ \hline \end{gathered}$			
2 A	739.09	0.06	739.03	108.83	29.41\%	29.54\%	OK			
2 B	707.08	0.20	706.88	112.14	2.18\%	2.15\%	OK			
	709.53									
2 C		0.24	709.29							
2 D	710.65	0.30	710.35	Not connected with same slope						
				139.54	2.34\%	2.28\%	OK			
2 E	713.91	0.39	713.52							
				Not perpendicular to the slope						
2 F	716.55	0.49	716.06							
2 G	723.75		722.76	297.93	2.42\%	2.25\%	OK			
		0.99								
			724.32	41.39	2.42\%	3.78\%	OK			
2 H	724.75	0.43								
21	767.51	0.54	766.97	95.62	44.72\%	44.61\%	OK			
			741.65	Not connected with same slope						
2 J	742.76	1.11								
2 K	735.66		734.70	85.61	8.29\%	8.12\%	OK			
		0.96		58.91	2.29\%	2.01\%	OK			
$2 \mathrm{~K}_{1}$	737.01	1.13	735.88							
2 L	752.87	0.82	752.05	35.67	44.46\%	45.32\%	OK			
				60.9	44.55\%	45.10\%	OK			
2 M	780.00	0.49	779.51							
2 N	796.86		796.42	33.99	49.60\%	49.73\%	OK			
		0.44	837.17	Not connected with same slope						

Table 5
Grade Calculation

Section 3-3'

Point No.	Initial Elevation (ft)	Settlement (ft)	Final Elevation (ft)	Distance (ft)	Initial Grade (\%)	Final Grade (\%)	$\begin{gathered} \hline \text { Allowable } \\ \text { Grade } \\ 2.0 \% \end{gathered}$			
3 A	745.79	0.12	745.67	144.24	2.49\%	2.54\%	OK			
3 B	742.2	0.19	742.01	130.45						
3 C	739.04	0.48	738.56		2.42\%	2.65\%	OK			
				320.67	2.33\%		OK			
3 D	731.57	0.41	731.16			2.31\%				
				266.92	2.32\%	2.43\%	OK			
$3 \mathrm{D}_{1}$	725.37	0.70	724.67							
				Not connected with same slope						
$3 \mathrm{D}_{2}$	734.00	0.70	733.30							
				Not connected with same slope						
$3 \mathrm{D}_{3}$	725.27	0.76	724.51	63.73	2.10\%	2.10\%	OK			
3 E			725.85							
	726.61	0.76		396.01	2.46\%	2.45\%	OK			
3 F	736.35	0.80	735.55							
			836.79	Not connected with same slope						

Table 6
Strain Calculation
Section 2-2'

Point No.	Initial Elevation (ft)	Distance (ft)	Initial Grade (\%)	Final Grade (\%)	$\Delta \varepsilon$	Allowable Strain 0.1\%
2 A	739.09	108.83	29.41\%	29.54\%	0.0012\%	OK
2 B	707.08					
		112.14	2.18\%	2.15\%	0.0003\%	OK
2 C	709.53	70.61	1.59\%	1.50\%	0.0012\%	OK
2 D	710.65	139.54	2.34\%	2.28\%	0.0004\%	OK
2 E	713.91	147.10	1.79\%	1.72\%	0.0005\%	OK
2 F	716.55	297.93	2.42\%	2.25\%	0.0006\%	OK
2 G	723.75					
		41.39	2.42\%	3.78\%	0.0331\%	OK
2 H	724.75					
		95.62	44.72\%	44.61\%	0.0012\%	OK
21	767.51					
2 J	742.76	Not connected with same slope				
		85.61	8.29\%	8.12\%	0.0020\%	OK
2 K	735.66					
		58.91	2.29\%	2.01\%	0.0047\%	OK
$2 \mathrm{~K}_{1}$	737.01	35.67	44.46\%	45.32\%	0.0240\%	OK
2 L	752.87					
		60.90	44.55\%	45.10\%	0.0091\%	OK
2 M	780.00	33.99	49.60\%	49.73\%	0.0039\%	OK
2 N	796.86					
		Not connected with same slope				
20	837.27	162.7	44.70\%	50.85\%	0.0378\%	OK
8	910.00					

Table 7
Strain Calculation

Section 3-3'

Point No.	Initial Elevation (ft)	Distance (ft)	Initial Grade (\%)	Final Grade (\%)	$\Delta \varepsilon$	Allowable Strain 0.1\%				
3 A	745.79	144.24	2.49\%	2.54\%	0.0003\%	OK				
3 B	742.2									
		130.45	2.42\%	2.65\%	0.0018\%	OK				
	739.04	320.67	2.33\%	2.31\%	0.0001\%	OK				
3 D	731.57	266.92	2.20\%	2.43\%	0.0009\%	OK				
$3 \mathrm{D}_{1}$	725.37									
		Not connected with same slope								
$3 \mathrm{D}_{2}$	734.00									
		Not connected with same slope								
$3 \mathrm{D}_{3}$	725.27	63.73	1.96\%	2.10\%	0.0022\%	OK				
3 E	726.61	396.01	2.46\%	2.45\%	0.0000\%	OK				
3 F	736.35	Not connected with same slope								
8	837.27									

SITE GEOLOGIC AND EXPLORATION MAP

LANDFILL UNIT B-18

LEGEND

LEGEND

	2008 design (fNAL Closure)
- - - -	1990 DESIGN (ESI)
-	Existing ground (MARCH 2008)
- - -	Asbuilt subgrade
	Existing subsurate geology
¢	SUBGRADE ANalysis point
$\stackrel{2}{\dagger}$	cover analysis station

WASTE MANAGEMENT LANDFILL UNIT B-18 KETTLEMAN HILLS FACILITY			
SETTLEMENT CROSS-SECTION 2-2'			
	俍		
	${ }_{\text {chicex }} \mathrm{EH}$		DWG 4

LEGEND

LEGEND

APPENDIX G. 2

CLAY LINER RATE OF CONSOLIDATION

ENVIRONMENTAL SOLUTIONS, INC.

By GSC Date f/f/90 Subject CONSOLIDATION of
Chad. By gi Date

Sheet No. 1 of 6
Prop. No. 29-977

KETTLEMAN HILL B-18 LANDFILL

24 THICKNESS OF UPPER CLAY LINER : $1.5^{\prime}+0.2^{\prime}$ (TOLERANCE)
25 LOWER CLAY LINER $=3.5^{\prime}+0.35^{\prime}$ (TOLERANCE)
DRAINAGE PATH = ONE WAY DOWNWARD
CONSOLIDATION COEFFICIENT C_{V} : BASED ON CONSOLIDATION TESTS RESULTS ON TWO COMPACTED CLAY FROW KETTLEMAN HILL BORROW AREA (SEE FIGS 283)

BASED ON PRESENT INCOMING WASTE RATE OF $500,000 \mathrm{CM} / \mathrm{YR}$
FILL OPERATION PERIOD $=16$ yrs to 19 yrs TO FULL HEGHT FOR TOTAL VOLUME OF 9.7×10^{6} C.Y.

ENVIRONMENTAL SOLUTIONS, INC.
By GSC Date $\frac{8 / 1 / 80}{}$ Subject COUSOLIDATION of BOTTOM Sheet No. 2 of \qquad
Chad. By 7 pi Date \qquad $8 / 15 / 90$ CLAY LINER FOR KEITLEMAN

Proj. No. \qquad 89-977 HILL B-If LANDFILL

ENVIRONMENTAL SOLUTIONS, INC.

Chad. By Ifni Date $8 / 15 / 90$ KETTLEMAN HILL B-I8 LANDFILLProj. No. 89-977
BASED ON THE TEST RESULTS, A CONSERVATIVE VALUE OF $C_{V}=0.0021 \mathrm{NZ} / \mathrm{MN}, \mathrm{S}: ~ U S E D$ FOR THE FOLLOWING calculations.

UPPER CLAY LINER

$$
T_{0}=\frac{c_{V} t_{0}}{H^{2}} \cdots(\operatorname{lEF} 2)
$$

WHERE $T_{0}=$ TIME FACTOR AT END OF CONSTRUCTION $t_{0}=$ END OF LANDFILL OPERATION (USE 16 yrs) $H=$ THICILNESS OF CLAY LAYER $=1.7^{\prime}$

$$
T_{0}=\frac{0.0021 \times 16 \times(365 \times 24 \times 60)}{(1.7 \times 12)^{2}}=42.3
$$

DEGREE OF CONSOLIDATION $U>96 \%$ - SEE REF (2), FIG. 6.6
DURING AND AT END OF LANDFILL OPERATION eSE ATTACHMENT

LOWER CLAY LINER

$$
T_{0}=\frac{0.0021 \times 16 \times(365 \times 24 \times 60)}{(3.9 \times 12)^{2}}=8.1
$$

DEGREE OF CONSOLIDATION $U=96 \%$ SEE REF (2) DURING AND AT END OF LANDFIL OPERATION... FIG. 6-6 (SEE ATTACHMEST/ 1)
$T=10$ when $U=100 \%$

$$
t=\frac{T H^{2}}{C_{V}}=\frac{10 \times(3.9 \times 12)^{2}}{0.0021} \times \frac{1}{365 \times 24 \times 60}=19.8 \mathrm{grs}
$$

\therefore THE LONER LAYER OF CLAY LINER IS EXPECTED TO REACHED 100\% CONSOLIDATIAN IN 3 YEARS AFTER THE FINAL FILL OPERATION.

ENVIRONMENTAL SOLUTIONS, INC.
By SC Date $8 / 2 / 90$ Subject CONSOLIDATION Sheet No. 4 of \qquad Chad. By Ppi Date $8 / 15190-\frac{K \in T T L E M A N ~ H L L L}{E-18 ~ L A N D F I L L}$
\square
CHECK CONSOLIDATION OF CLAY LINER BENEATH RISER

THE THICKEST CLAY LINER BENEATH THE RISER WILL BE $5.0^{\prime}+0.35^{\prime}$ (TOLERANCE) FOR THE LOWER CLAY LAYER.

$$
T_{0}=\frac{0.0021 \times 16 \times(365 \times 24 \times 60)}{(5.35 \times 12)^{2}}
$$

$$
=4.28
$$

SEE REF. (2) FIG.6-6 (SEE ATTACHMENT 1)
THE LOWEST DEGREE OF CONSOLIDATION WOULD BE NEAR THE END OF LANDFILL OPERATION AND WOULD HAVE AT LEAST ABOUT 92% DEGREE of CONSOLIDATION AND REACH 100\% DEGIREE CONSOLIDATION IN WITHIN A FEW YEARS

TIME TO REALS 100% CONSOLIDATION $T=6$-Ref. (2)

$$
\begin{aligned}
t & =\frac{T H^{2}}{C_{V}}=\frac{6 \times(5.35 \times 12)^{2}}{0.0021} \times \frac{1}{365 \times 24 \times 60} \\
& =22.3 \text { yrs }
\end{aligned}
$$

THAT Is $(22.3-16)$ yrs $=6.3$ yrs AFTER CONSTRUCTION

ENVIRONMENTAL SOLUTIONS, INC.
By GSC Date 8/2/90 Subject CONSOLIDATION Sheet No. 5 of \qquad
Chad. By Ti Date $8 / 15190 \quad \frac{\text { KETTLEMAN HILL }}{B-18 \text { LANDFILL }}$ Prof. No. 89-977
\qquad

EVALUATE PHASE I LANDFILL OPERATION V.S. CONSOLIDATION

PHASE I OPERATION PERIOD ABOUT TWO YEARS

$$
T_{0}=\frac{0.0021 \times 2 \times(365 \times 24 \times 60)}{(5.35 \times 12)^{2}}
$$

$$
=0.53
$$

KEF (2) FIG. 6-6
AT THE END OF LANDFILL OPERATION, THE DEGREE OF CONSOLIDATION WOULD BE APPROXIMATELY 5% FOR THE OVERALL THICKNESS OF CLAY

FOR $\begin{aligned} U & =55 \% \\ T & \approx 0.25\end{aligned} \quad$ REF (I) FIG. 27.3

$$
T \approx 0.25
$$

FOR T ≈ 0.25 REF () FIG 27.2

$$
z=1
$$

$$
U \text { (AT HDPE/CLAY INTERFACE) } \approx 30 \% \text { CONSOLIDATION }
$$

AT INTERFACE
CONCLUSION:
(1) CONSOLIDATION HAS REACHED ABOUT 96% FOR THE TWO CLAY LINERS AT THE BOTTOM OF THE LANDFILL WHEN THE FINAL LANDFILL OPERATION IS COMPLETED. THE DEGREE OF CONSOLIDATION IS FOUND TO BE AT LEAST 96% THROUGH OUT THE OPERATION PERIOD. BECAUSE THIS DEGREE of CONSOLIDATION IS CLOSE TO THE 100% MARK, THE CLAYS ARE PRACTICALLY FULLY CONCOLIDATED AND THE CLAY STRENGTH COULD BE ESTIMATED FROM THE CONSOLIDATED UNDRANED TRIAXIAL COMPRESSION RESUTS.

ENVIRONMENTAL SOLUTIONS, INC.

By GLC Date
Chad. By 2 Date \qquad $8 / 2 / 90$
$8 / 15 / 90$ Subject CONSOL $D 2 A I D N$ Sheet No. 6 of \qquad
Prop. No. \qquad
 PHASE I FILL OPERATION, THE LOWEST DEGREE OF CONSOLIDATION AT THE INTERFACE OF THE CLAY LIEN AND THE HOPE 15 ABOUT 30% AT THE END OF PHASE I OPERATION: THEREFORE, THE STRENGTH OF THE CLAY LINER SHOULD SE ESTIMATED FROM THE UNCONSOLIDATED - UNDRAINED TRIAXIAL COMPRESSION TEST RESULTS FOR PHASE I STABILITY ANALYSIS. 17 SHOULD ALSO BE REALIZED THAT THE STRENGTH FROM. UV TEST OF AN UNSATURATED SAMPLE: MAY BE HIGHER THAN THAT OF A SATURATED SAMPLE BECAUSE OF CAPILLARY ACTION. BASED ON THE UL TEST RESULTS, THE STRENGTH OF RECOMPACTED $\angle L A Y$ WAS REPORTED TO $B E \quad \phi=Q^{\circ} \& C=3600$. $\%$. IN CONSIDERATION OF THE SATURATED CONDITION. THE \varnothing WAS NOT INCLUDED IN THE STRENGTH PAMEMETER IN ANALYILING THE STABILITY OF THE PHASE I $\angle A N D F I L C$

FIG. I

Flg. 3
DT-A, B-2, 5

CONSOLIDATION TEST
TIME - COMPRESSION CURVES
WCAlleman

FIGURE 6.6
Time Factors for Consolidation Analysis
7-6-13

Fig. 27.3 Average consolidation ratio: linear initial excess pore pressure. (a) Graphical interpretation of average consolidaion ratio, (b) U versus T.
value for c_{v}. This is generally done by observing the rate of compression of an undisturbed sample during an odometer (or consolidation) test (see Sections 9.1 and 20.2).

Figure 27.4 shows a typical set of dial readings, showing change in thickness with time, obtained during one increment of load. The form of such actual time versus compression curves is similar to, but not exactly the same as, the theoretical curves predicted from consolidation theory. The following fitting methods are commonly used to determine c_{η} from such test results (Lambe, 1951).

Square root method. Extend a tangent to the straightline portion of the observed curve back to intersect zero time and obtain the corrected zero point d_{s}. Through d_{s} draw a straight line having an inverse slope 1.15 times the tangent. Theoretically, this straight line should cut the observed compression-time curve at 90% compression. Thus the time to 90% compression is 12.3 minutes. From Fig. 27.3, the dimensionless time T for 90% compression is 0.848 . Substituting these results, with H equal to the thickness of the sample per drainage surface (1.31 cm in this case) into Eq. $27.8 b, c_{v}$ is determined to be $26.2 \times 10^{-4} \mathrm{~cm}^{2} / \mathrm{sec}$.

Log method. As shown in Fig. 27.4b, tangents are drawn to the two straight-line portions of the observed curve. The intersection of these curves defines the d_{100} point. The corrected zero point d_{s} is located by laying off above a point in the neighborhood of 0.1 minute a distance equal to the vertical distance between this point and one at a time which is four times greater. The 50% compression point is halfway between d_{s} and d_{100}, or at a time of 3.3 minutes. From the theoretical curve, $T=0.197$ for 50% compression. Using Eq. $27.8 \mathrm{~b}, c_{v}$ is then computed at $22.7 \times 10^{-4} \mathrm{~cm}^{2} / \mathrm{sec}$.

Discussion of results. Obviously, these fitting methods contain arbitrary steps that compensate for differences
between actual and theoretical behavior. A correction for the initial point is usually required because of apparatus errors or the presence of a small amount of air in the specimen. An arbitrary determination of d_{80} or d_{100} is required because compression continues to occur even after excess pore pressures are dissipated. This secondary compression occurs because the mineral skeleton has time-dependent stress-strain properties (Chapter 20); the importance of secondary compression will be discussed in Section 27.7. The fitting methods have been developed to provide the best possible estimates for c_{v}. It is hardly surprising that the two methods yield somewhat different results. The square root method usually gives a larger value of c_{v} than does the log method, and this method is usually preferred.

In addition to the problems involved in evaluating c_{v} from a given increment, c_{v} varies from increment to increment and is different for loading and unloading. Figure 27.5 shows typical results. Moreover, c_{v} usually varies considerably among samples of the same soil.

Thus it is quite difficult to select a value of c_{v} for use in a particular engineering problem and hence it is difficult to predict accurately the rate of settlement or heave. Often the actual observed rate of settlement or heave of a structure is two to four times faster than the rate predicted on the basis of c_{v} as measured using undisturbed samples (e.g., see Bromwell and Lambe, 1968). Such differences arise partially because of the difficulties in measuring c_{v}, partially because of shortcomings in the linear theory of consolidation, and partially because of the two- and three-dimensional effects discussed in Section 27.6. Predictions of rate of consolidation are useful only to indicate in advance of construction the approximate time required for consolidaton. If the actual rate of consolidation is critical to the design, as in certain stability problems where the excess
equation applicable to numerous physical problems. In particular, the equations for transient heat flow are basically identical to these equations for consolidation, with temperature replacing excess pore pressure. Solutions have been obtained for many problems in heat flow involving a variety of initial and boundary conditions, and these solutions often may be used to considerable advantage in the study of consolidation.

27.2 SOLUTION FOR UNIFORM INITIAL EXCESS PORE PRESSURE

The simplest case of consolidation is the onedimensional problem in which: (a) the total stress is constant with time, so that $\partial \sigma_{v} / \partial t=0$; (b) the initial excess pore pressure is uniform with depth; and (c) there is drainage at both the top and bottom of the consolidating stratum. These conditions are met by the loading in Fig. 26.2 provided that the loading is applied in a time that is very small compared to the consolidation time so that literally no consolidation occurs before the loading is complete. The total vertical stress at any point will then be constant during the consolidation process.

For this problem, it is convenient to convert Eq. 27.4
by introducing nondimensional variables:

$$
\begin{gather*}
Z=\frac{z}{H} \tag{27.8a}\\
T=\frac{c_{v} t}{H^{2}} \tag{27.8b}
\end{gather*}
$$

where z and Z are measured from the top of the consolidating stratum and H is one-half of the thickness of the consolidating stratum. (The reason for this choice of H will be apparent later.) The nondimensional time T is called the time factor. With these variables, Eq. 27.4 becomes

$$
\begin{equation*}
\cdot \quad \frac{\partial^{2} u_{e}}{\partial Z^{2}}=\frac{\partial u_{e}}{\partial T} \tag{27.9}
\end{equation*}
$$

We now need a solution to Eq. 27.9 satisfying the following conditions:

Initial condition at $t=0$:

$$
u_{e}=u_{0} \text { for } 0 \leq Z \leq 2
$$

Boundary condition at all t :

$$
u_{\varepsilon}=0 \text { for } Z=0 \text { and } Z=2
$$

Fig. 27.2 Consolidation ratio as function of depth and time factor: uniform initial excess pore pressure.

APPENDIX G. 3
 CLAY LINER CONSOLIDATION SETTLEMENT

Project No.: 083-91887	Made By: EH
Date: 10/28/08	Checked By: RH
Sheet: 1 of 2	Reviewed By:

Oblective:

Estimate the additional settlement due to the increased waste loads from the Phase III expansion.

Reference:

Environmental Solutions Inc. (ESI) Engineering Report Settlement Calculations (Attached).

Discussion:

ESI previously calculated the settlement of the clay liner due to placement of 230 feet of waste. The expansion project will increase the waste height to approximately 300 feet. This additional load will result in further compression of the clay.

Calculation:

1) Primary consolidation settlement

- The maximum load due to waste: $\operatorname{Max} . \sigma_{v}=300^{\prime} \times 115 \mathrm{pcf}=34.5 \mathrm{ksf}$
- The consolidation settlement at 34.5 ksf is approximately 9.5% of the total thickness (see Figures 1 and 2).

Clay Liner	Primary	Secondary
Initial clay liner thickness	1.5^{\prime}	3.5^{\prime}
Consolidation settlement (9.5%)	0.14^{\prime}	0.33^{\prime}
Post Consolidation Thickness	1.36^{\prime}	3.17^{\prime}

2) Secondary consolidation settlement (or creep settlement)

Secondary consolidation settlement will occur after the closure of the landfill. The secondary settlement can be computed using the following equation:
$\Delta_{s}=C_{\alpha}\left(H_{t}\right) \log \left(t_{s} / t_{p}\right)$
$\Delta_{\mathrm{s}}=$ secondary settlement (ft)
$\mathrm{C}_{\alpha}=$ coefficient of secondary compression, 0.005 per ESI
$H_{t}=$ initial thickness
$t_{s}=$ duration of secondary compression assuming to be 30 years post closure period.
$\mathrm{t}_{\mathrm{s}}=$ time to complete primary consolidation conservatively assumed to be 20 years (1994-
2014) to fill landfill.

Primary Clay Liner: $\Delta_{s}=0.005(1.36) \log (30 / 20)=0.0012 \mathrm{ft}$
Secondary Clay Liner: $\Delta_{\mathrm{s}}=0.005(3.17) \log (30 / 20)=0.0028 \mathrm{ft}$
3) Final Clay Liner Thickness

Primary clay liner: $1.5^{\prime}-0.14^{\prime}-0.0012^{\prime}=1.36^{\prime}>1.0^{\prime}$ OK
Secondary liner: $3.5^{\prime}-0.33^{\prime}-0.0028^{\prime}>3.0^{\prime}$ OK
4) Settlement for clay liner beneath vertical riser

Settlement of the clay liner beneath the vertical riser is estimated to increase by an additional 5% due to riser imposed loads.

Thus, settlement of the clay below the riser will be $9.5 \%+5.0 \%=14.5 \%$ of the original thickness. Secondary compression is considered to be negligible based on previous calculation.

Settlement in the secondary clay liner $=14.5 \% \times 5^{\prime}=0.725^{\prime}$
The final secondary clay liner thickness is estimated to be $5^{\prime}-0.725^{\prime} \cong 4.3^{\prime}>3^{\prime}$ OK
Settlement in the primary clay liner $=14.5 \% \times 3^{\prime}=0.44^{\prime}$
The final primary clay liner thickness is estimated to be $3^{\prime}-0.44^{\prime} \cong 2.5^{\prime}>1^{\prime}$ OK

ENVIRONMENTAL SOLUTIONS, INC.
By $S S C$ Date $6 / S /$ So Subject SETTLEMENT OF Sheet No. 1 of \qquad Chad. By Mn Date dIS 190 CLAY LINER CLAY LINER Proj. No. \qquad $89-977$
ejective : to estimate settlement of clay LINER FOR KETTLEMAN HILL E-If LANDFILL EASE IN DETERMINING COMPLIANCE WITH MINIMIUM THICKNESS (3') REQUIREMENT TOR BOTTOM CLAY U
REFERENCE: (1) LAMBE \& WHITEMAN (1969) SOIL NIECHANICS" PUBLISHED BY JOHN WILEY \& SONS, INC
(2) DEFT. of NAVY, NAVAL FACIWTIES ENGUEEKNG COMAMAND (1971)' "DESTN MPNUAL, DM-7 MARCH.

DISCUSSION: TOTAL SETTLEMENT OF EASE CLAY LINER WILL NCLUDE PNMMAYY AND SECH? SETTLEMENT. THE ME NARY SETTLEMENT 15 Associate war The consotiratiou
 IS ASSOCIATED HaTH THE CREEP MOVEMENT AFTER THE COMPLETION OF PRIMARY SETIENEVI GR CONSOLIDATION.

$$
\begin{aligned}
\Delta_{7}=\Delta_{p}+ & \Delta_{s} \\
\text { WHERE } \Delta_{T}= & \text { TOTAL SETTLEMENT } \\
\Delta_{P}= & \text { PRIMARY SETLEMENT DUE TO } \\
& \text { CONSOLIDATION } \\
\Delta_{S}= & \text { SECONDARY SETTLEMENT SUE } \\
& \text { TO CREEP AFTER } \triangle P
\end{aligned}
$$

MAX. FILL (OVERBURDEN PRESSURE) AT COMPLETION OF LANDFILL OPERATION IS ESTIMATED TO BE APPROXIMATELY 210-FEET OF IVASTE ABOVE THE LINER SYSEAA.

$$
\therefore \text { Mra. } v_{0}=230^{\prime} \times 115 \mathrm{pt}=26450 \mathrm{fs} \text { er } 26.4 \mathrm{ks}
$$

ENVIRONMENTAL SOLUTIONS, INC.
By CSC Date $8 / 3 / 90$ Subject
Date \qquad
\qquad
 CLAY LINER

Sheet No. 2 of
Prof. No. \qquad

BASED ON CONSOLIDATION TEST RESULTS ON COMPACTED CLAY SAMPLES FROM CLAY BORROW MATERIAL AT THE SITE. FOR MAX. \% $=24.2 \mathrm{KSF}$. THE CONSOLIDATION SETTLEMENT IS ESTIMATED TO BE APPROXIMATELY 7% OF THE TOTAL THICKNESS

HOWEVER, BASED ON THE CALCULATION ON CONSOLIDATION CHARACTERISTIC OF CLAY LINER FOR E -IO LANDFILL, IT MAS FOUND THAT AT LEAST PG\% OF THE CONSOLIDATIOn ISL DE COMPLETE? HT THE END OF THE FINAL LANDFILL OPERATION THEREFORE, SETTLEMENT AFTER THE FINAL LANDFILL CLOSURE WILL BE MAINLY FROM THE SCCOMPARY SETTLEMENT OR CREEP SETTLEMENT. THE SECONDARY SETTLEMENT CAN BE COMPUTED USING THE FOLLOWING EQUATION:

$$
\Delta_{s}=C_{\alpha}\left(H_{t}\right) \log \frac{t_{\text {sec }}}{t_{p}} \quad(R F F 2)
$$

WHERE $\Delta_{s}=$ SETTLEMENT FROM SECONDARY COMRRES
$C_{x}=$ COEFFICIENT OF SECONDARY COMPRESSION
$H_{t}=$ INITIAL THICKNESs OF COMPRESISLE STRATUM
$t_{\text {sec }}=$ USEFUL LIFE OF STRUCTURE.
$t_{p}=$ TIME 70 COMPLETION OF PRIMARY CONSOLIDATION

ENVIRONMENTAL SOLUTIONS, INC.

By $C S C$ Date $8 / 3 / 80$ Subject \qquad CLAY LINER
\qquad Sheet No. \qquad 3 of \qquad
Prof. No. \qquad

REF 2 FIGURE 3.5 (SEE ATTACHMENT 1)
FOR COMPLETELY REMOLDED SAMPLES USING $W \%=28 \%$ (FIG. 18.2

$$
C_{\alpha}=0.003 \text { To } 0.005
$$

BASED ON LIE RESULTS FROM LOG. TIME CURVE OF THE CONSOLIDA/IAS TEL: (SEE FIG: 3 \& 4)
$C \alpha=0.0015$ TO 0.006 FOR APRICTRIATE PRESAGES
USE $C_{C}=0.0 O E$ FEN ESTIMATE
EASED ON CALCULATM FF CONSOLIDATION DEHAUOB FF

 THE FINAL LANDFILL CLOSURE. THEREFORE SEGWAY SETTLEMENT COMMENCE AFTER THAT. THE SETTEVKLV DURING THE POST -CLOSURE PERIOD=

SECONDARY SETTLEMENT FOR CLAY LINER AT LANDFH JITOM

$$
\begin{array}{l|l}
\text { PRIMARY CLAY LINER (REDUNDANT) } & \text { SECONDARY CLAY LINER } \\
=0.005(1.5-0.105) \log \frac{30}{18} & =0.005(3.5-0.245) \log \frac{30}{18} \\
=0.0015,
\end{array}
$$

$$
=0.0036^{\prime}
$$

FINAL THICKNESS FOR:
PRIMARY CLAY LINER (REDUNDANT)

$$
=1.5-0.105-0.0015
$$

SECONDARY CLAY LINER

$$
=1.39^{\prime}
$$

$$
\begin{aligned}
& =3.5-0.245-0.0036 \\
& =3.25
\end{aligned}
$$

ENVIRONMENTAL SOLUTIONS, INC.

By GSC
Chad. By
\qquad Subject \qquad SETTLEMENT OF CLAY LINER Sheet No. 4 Prof. No. \qquad $89-971$
conculsion:

1. EASED ON THE AEOVE CALCULATIONS, AT THE LANDFKL BASE THE TOTAL SETTLEMENT OF THE SECONDARY CLAY LINER AT THE BOTTOM OF THE $\angle A N P F I L L:$

$$
\begin{aligned}
\Delta_{T} & =\Delta P+\Delta_{S} \\
& =0.245+0.0036 \\
& =0.25
\end{aligned}
$$

THEREFORE, THE 3.5-TOOT CLAY LAYER BENEATH THE LEACHATE COLLECTION SYSTEM MIL MAINTAIN A MINIMIUM THICKNESS REQUIREMENT OF 3-FOOT DURING THE POTF-CLOSNE FEND.
2. TOTAL SETTLEMENT AT THE VEKTIGAL RISER BASE FOR THE SECONDARY CLAY LINER IS COMPUTED IN THE FOLLOWING:

$$
\begin{aligned}
\Delta_{T} & =\Delta_{P}+\Delta_{s} \\
& =0.375+0.0051^{\prime} \\
& =0.38^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \text { THEREFOR THE 5-FOOT SECONDARY CNS } \\
& \text { CLAY LINER WILL MAINTAIN ITS THINNESS } \\
& \text { OF NO LESS THAN } 3 \text {-FOOT. FOR THE PRINIUN. }
\end{aligned}
$$

FIG. 3

```
DT-C,B-1, 8
```

ai 816.9.

FIGURE 3.5
Approximate Correlations for Consolidation Characteristics of Silts and Clays

Ref : NAVFAC, DM-7

APPENDIX G. 4
 POST-CLOSURE WASTE SETTLEMENT

Project No.: 083-91887	Made By: LAQ
Date: $05-28-2008$	Checked By: EH
Sheet: 1 of 1	Reviewed By:

Objective:

1. To estimate the effects of secondary settlement of the waste fill on the landfill cover postclosure grade for drainage.
2. Utilize Environmental Solutions Inc. (ESI) original calculation methods and assumptions and apply them to the new expansion configuration.

Given:

For the new landfill expansion geometry and as-built landfill configuration used to generate the evaluated sections where obtained from AutoCAD drawings (see Drawings 1 through 6 in Appendix G-1). All other data used for these calculations are based on the original Environmental Solutions inc. (ESI) calculation, including site geology and foundation stratigraphy (see Attachment 1).

Assumptions and Methods:

All assumptions and methods utilized on this calculation are based on the ESI original calculation dated August 14, 1990. ESI calculations are included in Attachment 1.

Calculations and Results:

Calculation methods are described on ESI original calculation dated August 14, 1990. Calculations are shown in Attachment 1. Results for the new calculations are attached in Table 1 to 4. The calculations indicate the post-closure settlement will be approximately 9.3% of the waste thickness.

Conclusions:

As stated by ESI in their original calculation; "Based on the final cover post-closure settlement calculations for the selected sections, the results indicate that the changes of the grade after settlement will have no adverse effect on the surface drainage. After settlement, the gradients are still more than 3% which is the minimum requirement for drainage." Based on a review of ESI's calculations, Golder agrees with their original conclusions. In some cases shown in Table 3 the apparent gradient is less than 3%. The locations resulting in a value less than the required 3% are due to the location of the selected section not being nearly perpendicular to the new cover drainage slope. By observation and comparison with Section 2-2', these locations maintain a minimum 3% true slope.

As stated by ESI in their original calculation, "Due to the geometry of the final cover it is expected that the length of the slopes in the soil cover and liner systems will be reduced due to settlement. A minimal reduction strain is expected and should be readily absorbed by the soil cover and the liner systems without causing any damage".

Reference:

Environmental Solutions Inc. "Engineering and Design report Landfill Unit B-18 Phase 1, 2 and Final Closure, Kettleman Hills Facility". August 1990. Appendix G. 4
Table 1
Post－Closure Waste Settiement
Section 1－1＇

푼 융			$\begin{aligned} & \text { ٌे } \\ & \text { הे } \end{aligned}$						$\begin{aligned} & \text { oेo } \\ & \text { un } \end{aligned}$		－800
	$\stackrel{\circ}{\stackrel{\circ}{\sim}}$		$\begin{aligned} & \stackrel{i}{n} \\ & \stackrel{N}{n} \end{aligned}$		$\begin{aligned} & \text { ふे } \\ & \underset{\sim}{2} \end{aligned}$		oે		$\stackrel{\stackrel{i}{\dagger}}{\stackrel{1}{\mathrm{~N}}}$		－
			$\begin{aligned} & \underset{0}{0} \\ & \underset{子}{\mathrm{~g}} \end{aligned}$		$\begin{aligned} & L \\ & \underset{\sim}{\infty} \\ & \dot{q} \end{aligned}$		$\begin{aligned} & \text { in } \\ & \text { g } \end{aligned}$		$\underset{\sim}{\underset{\sim}{\mathrm{N}}}$		\％
	$\left\|\begin{array}{c} \infty \\ \widehat{8} \\ \infty \\ \infty \end{array}\right\|$	$\begin{aligned} & \underset{\sim}{\lambda} \\ & \underset{\infty}{\infty} \end{aligned}$		$\underset{\underset{\sim}{N}}{\underset{\sim}{N}}$		$\begin{aligned} & \text { or } \\ & \underset{\sim}{\circ} \end{aligned}$		$\stackrel{M}{\underset{\sim}{\underset{N}{N}}}$		$\begin{aligned} & \circ \\ & \stackrel{\infty}{\infty} \\ & \underset{\sim}{n} \end{aligned}$	N ∞ 0 ∞
$\text { I } \begin{gathered} \text { I } \\ \hline 0 \\ O \end{gathered}$	$\left\lvert\, \begin{array}{\|c\|} 8 \\ 0 \end{array}\right.$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$		$\underset{\sim}{\underset{\sim}{\sim}}$		$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$		$\begin{gathered} \underset{\sim}{\lambda} \\ \underset{\sim}{c} \end{gathered}$		$\underset{\underset{\sim}{\mathrm{N}}}{\substack{\mathrm{~N}}}$	8
	－	$\begin{aligned} & \text { n } \\ & \stackrel{1}{7} \end{aligned}$		$\begin{gathered} \substack{n \\ \underset{\sim}{\infty} \\ \underset{\sim}{\infty}} \end{gathered}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$		$\begin{aligned} & 6 \\ & \stackrel{6}{0} \\ & \stackrel{\sim}{0} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{6} \\ & \stackrel{n}{7} \end{aligned}$	－
	$\left\|\begin{array}{l} \infty \\ 0 \\ 0 \\ \infty \end{array}\right\|$	$\begin{aligned} & \mathbb{N} \\ & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$				$\begin{aligned} & \infty \\ & \infty \\ & \stackrel{\infty}{0} \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\dot{S}} \\ & \text { 俞 } \end{aligned}$		$\begin{aligned} & \infty \\ & \infty \\ & \dot{\circ} \\ & \text { 心. } \end{aligned}$	$\stackrel{N}{\sim}$
$\begin{aligned} & \text { 드́ } \\ & \text {. } \\ & \text { Win } \end{aligned}$	\cdots	\sim		m		＊		in		\bigcirc	－

Note：See Drawing 1 and 2 in Appendix G－1 for Section location and
Drawing 3 for Cross Section profile．

Table 2
Post－Closure Waste Settlement
Section 2－2＇

	$\begin{aligned} & \hline \stackrel{\circ}{\infty} \\ & \text { a } \end{aligned}$		$\begin{aligned} & \hline \stackrel{\circ}{4} \\ & \stackrel{i}{2} \end{aligned}$		$\begin{aligned} & \text { ※. } \\ & \text { ๗ٌ } \end{aligned}$			¢ّ		$\begin{aligned} & \circ 8 \mathrm{~B} \\ & \stackrel{1}{2} \end{aligned}$	－
为	さेँ		$\stackrel{\stackrel{\circ}{\oplus}}{\stackrel{1}{j}}$		$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \underset{\sim}{n} \end{aligned}$			$\stackrel{\text { ¢ }}{\substack{\text { ® }}}$		$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\sim}{n} \end{aligned}$	¢ ¢ ¢
苞	익		$\begin{gathered} \text { N } \\ \underset{\sim}{0} \\ \hline \end{gathered}$					$\begin{aligned} & \text { un } \\ & \tilde{Z} \end{aligned}$		$\underset{\sim}{\underset{\sim}{\infty}}$	$\underset{\sim}{\sim}$
	－	$\underset{\infty}{\text { og }}$				$\underset{\text { §̃ }}{\underset{\sim}{\circ}}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\circ}{\circ} \end{aligned}$		$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { oion } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{7} \\ & \stackrel{i}{0} \end{aligned}$	－
水営式	8	$\underset{\sim}{7}$		$\underset{\sim}{\tilde{\sim}}$		$\stackrel{\sim}{\sim}$	ت̃		$\stackrel{\vec{m}}{\underset{\sim}{*}}$	$\stackrel{\stackrel{\rightharpoonup}{\tilde{j}}}{ }$	\bigcirc
	－			$\begin{aligned} & \text { No } \\ & \text { on } \\ & \text { on } \end{aligned}$			$\stackrel{\sim}{\sim}$		$\begin{gathered} \infty \\ \stackrel{\infty}{0} \\ \hline \sim \end{gathered}$	$\frac{\underset{7}{J}}{\underset{J}{7}}$	，
资亮	$\begin{aligned} & 0 \\ & \mathbf{a} \\ & \mathbf{n} \\ & \hline \end{aligned}$	$\stackrel{\underset{\sim}{\dot{\infty}}}{\substack{\text { N}}}$		$\begin{aligned} & \infty \\ & \text { 世 } \\ & \text { Non } \end{aligned}$		$\begin{aligned} & \text { O} \\ & \stackrel{\circ}{\mathrm{O}} \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{8}{0} \\ & \stackrel{\rightharpoonup}{d} \end{aligned}$			$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \end{aligned}$	\％
$\begin{aligned} & \hline \overline{0} \\ & \text { 号 } \\ & \hline \stackrel{n}{n} \end{aligned}$	－	～		m		－	in		\bigcirc	\wedge	－

[^23]

Assumptions：	
Containers in waste：	0.15 \％
Containers Voids：	0．10 \％
$\mathrm{H}_{\text {waste }}$ ：	280 ft
$\gamma_{\text {waste }}$ ：	115 pcf
$E_{\text {waste }}$ ：	40，000 psf
$\mathrm{C}_{\text {c2 }}$ ：	0.02
$\mathrm{W}_{\text {waste }}$ ：	14，500，000 cy^{3}
Incoming Waste：	$550,000 \mathrm{cy}^{3} / \mathrm{yr}$
Stages：	5
Post－Closure period：	30 yr
$\mathrm{S}_{\mathrm{T}}=\mathrm{S}_{\mathrm{C}}+\mathrm{S}_{\mathrm{V}}+\mathrm{S}_{\mathrm{D}}+\mathrm{S}_{5}$	

Station	Finish Elevation (ft)	Waste Thickness (ft)	$\begin{gathered} \Delta H \\ 0.093 \mathrm{H} \end{gathered}$ (ft)		Distance (ft)	Initial Grade (\%)	Final Grade ${ }^{1}$ (\%)	
1	890.51	0	0.00	890.51	252.19	23.7\%	17.4\%	
2	950.18	169.36	15.71	934.47				
					252.17	19.8\%	16.1\%	
3	1000.00	268.31	24.89	975.11	227.75	6.3\%	5.9\%	
4	1014.46	278.29	25.82	988.64				
					181.73	crossing ridge of top deck		
5	1012.84	285.82	26.52	986.32				
					341.58	crossing ridge of top deck		
6	1007.53	273.53	25.38	982.15				
					146.71	crossing ridge of top deck		
7	1006.62	279.34	25.92	980.70				
8	923.48	185.27	17.19	906.29	364.03	22.8\%	20.4\%	
					301.74	24.4\%	18.7\%	
9	850	0		850.00				
Notes:	See Drawing 1 and 2 in Appendix G-1 for Section location and Drawing 5 for Cross Section profile.							
	Points 4,5 and 6 currently cross the ridge line of the top deck and therefore do not reflect true slope. Secion 2-2' provides points across the top deck that are along true slope.							

$\frac{\pi}{5}$			$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{1}{1} \end{aligned}$		ふo		$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\rightharpoonup}{-} \end{aligned}$		$\stackrel{\rightharpoonup}{\mathrm{N}}$ N		刽
			$\begin{gathered} \stackrel{\text { Nे }}{\text { N }} \end{gathered}$		80		$\begin{gathered} \stackrel{\rightharpoonup}{7} \\ \underset{~}{7} \end{gathered}$		$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{N}{N} \end{aligned}$		\％̊ํ
烒	$\stackrel{\ominus}{8}$		$\begin{aligned} & \text { Z } \\ & \underset{\sim}{+} \end{aligned}$		$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \underset{\sim}{I} \end{aligned}$		$\begin{aligned} & \text { g} \\ & \stackrel{\infty}{0} \\ & \text { in } \end{aligned}$		$\stackrel{0}{6}$ $\stackrel{0}{6}$ ¢
	$\left\|\begin{array}{c} \infty \\ \infty \\ \infty \\ \infty \\ \infty \end{array}\right\|$	$\begin{aligned} & \text { - } \\ & \underset{\infty}{\infty} \\ & \underset{\infty}{\infty} \end{aligned}$		$\begin{aligned} & \stackrel{⿺}{0} \\ & \dot{0} \\ & \text { Non } \end{aligned}$		$\begin{aligned} & \text { y } \\ & \infty \\ & \text { d } \end{aligned}$		$\begin{aligned} & \text { O} \\ & \stackrel{0}{6} \\ & \stackrel{N}{2} \end{aligned}$		$\stackrel{\sim}{\sim}$	N
$\text { 工甹鳏 } \pm$	\bigcirc	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{n} \end{aligned}$		$\begin{aligned} & \underset{\sim}{N} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { No } \\ & \stackrel{\sim}{\mathrm{N}} \end{aligned}$		$\begin{aligned} & \text { ® } \\ & \underset{\sim}{*} \end{aligned}$		$\begin{aligned} & \text {-0 } \\ & \text { مٌ } \end{aligned}$	8
	$\left\|\begin{array}{l} 8 \\ 0 \\ 0 \end{array}\right\|$	$\begin{aligned} & \infty \\ & \infty \\ & \dot{m} \end{aligned}$		$\begin{aligned} & \underset{\sim}{\dot{N}} \\ & \underset{\sim}{2} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{U} \\ & \underset{\sim}{N} \end{aligned}$		$\underset{\underset{\sim}{\sim}}{\underset{\sim}{N}}$		$\begin{aligned} & \underset{\sim}{\underset{\sim}{n}} \\ & \underset{\sim}{2} \end{aligned}$	8
	$\left\|\begin{array}{c} \infty \\ \infty \\ \infty \\ \infty \end{array}\right\|$	$\begin{gathered} \hat{0} \\ \underset{\infty}{i} \end{gathered}$		$\begin{aligned} & \text { Jo } \\ & 0 . \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \infty \\ & \underset{i}{\infty} \\ & \underset{i}{\prime} \end{aligned}$		$\begin{aligned} & \dot{8} \\ & \infty \\ & \infty \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{\dot{\sim}} \\ & \infty \\ & \infty \end{aligned}$	$\xrightarrow{3}$
$\begin{aligned} & \text { 䯧 } \\ & \text { H } \end{aligned}$	\cdots	\sim		m		\checkmark		\cdots		6	－

See Drawing 1 and 2 in Appendix G－1 for Section location and Drawing 6
for Cross Section profile．
Assumptions：

$\mathrm{S}_{\mathrm{T}}=\mathrm{S}_{\mathrm{C}}+\mathrm{S}_{\mathrm{V}}+\mathrm{S}_{\mathrm{D}}+\mathrm{S}_{\mathrm{s}}$

Attachment 1

ESI Settlement Calculations

ENVIRONMENTAL SOLUTIONS, INC.
By NA. Date $\frac{8-10-90}{8}$ subject $\angle A N D F I L \angle B-18$ FINAL Sheet No.
Chad. By G-SC Date \qquad COVER
\qquad
\qquad of \qquad 89-977

TABLE OF CONTENTS

Purpose and References
Total settlement of Landfill
Post closure Grade Evaluation
for sections $1,2,3 \leqslant 4$
Conclusion

Attachment
A. Drawing's showing plan and sections for post-closure settlement analyses

ENVIRONMENTAL SOLUTIONS, INC.

PURPOSE : TO EVALUATE THE ETTECT OF SECONDEYY SETTLEUENT
3 OF THE WASTE FILL ON THE LANDFIL COUER
3 POST- CLOSURE GRUDE FRR DPAINAGE.

REFERENCE:

1. SOLL MECHANCS, LANSE \& WHITHEN (Figure 1)
2. NAVFAC DM.7-1, (Figure 2)
3. waste seftement report tor finse landFill coner DESGR, GOLDER ASSOCRTES THE. JULY 1989
4. W.L. Murphy and P.A. Gilbert 11985) "seftlement and cover subsidence Hazardues waste Lendfilb"

ENVIRONMENTAL SOLUTIONS, INC.
By GSC Date $8 / 10 / 90$ Subject WASTE SETTLEMENT Sheet No. 2 of _14 Chad. By \qquad Date \qquad KETTLEMAN HILL ,B-18 Prof. No. \qquad LANDFILL
${ }^{1}$ Objective: To evaluate The waste settlement behavior and parameters for waste settlement analyst The results of the waste settlement analysis will be used to determine the infliemee of final grade of the final cover after closwe of the landfill.

REF: (1) W.L. Murphy and PA. Gilbert (1885) "Settlement" and Cover Subsidence of Hagardors Waste Landfills".

DISCUSSION: TOTAL SETTLEMENT OF LANDFILL

$$
S_{T}=S_{C}+S_{r}+S_{D}+S_{S}
$$

WHERE $S_{c}=$ CONSOLIDATION SETTLEMENT OF BULK WASTE
$S_{r}=$ SETTLEMENT DUE TO COLLAPSE OF VOIDS INSIDE WASTE CONTAINERS $S_{D}=$ SETTLEMENT DUE TO CONTAINER WASTES AFTER CONTAINERS CORRODED AND COLLAPSE

$$
S_{S}=\text { SECONDARY SETTLEMENT OF }
$$ WASTE DUE TO CREEP.

OTIS EXPECTED THAT THE CONSOLIDATION SETTLEMENT WILL BE ESSENTIALLY COMPLETE BEFORE. THE FINAL CLOSURE. THEREFORE THE CONSOLIDATION SETTLEMENT 15 NOT NECESSARY TO BE INCLUDED IN THIS EVALUATION WHICH WILL BE USED TO DETERMINE THE FINAL COVER INFLUENCE. THE FOLLOWING EVALUATION WILL ONLY INCLUDE THE DETERMINATION OF JV \& SD. SS WAS DETERMINED PREVIOUSLY (SEE ATTACHMENT)

ENVIRONMENTAL SOLUTIONS, INC.
By F. Cues Date \qquad Subject Waste settlement Date \qquad Kettlemen Hill, B-18 Landfill \qquad
Prop. No. Chad. By \qquad

NORMALLY CONSOLIDATED CLAY.
ASSUMPTION: (1) BASED ON CHEM. WASTE OFFICALS, THE AMOUNT OF CONTAINERIZED WASTE CONTAINED IN THE B-IB LANDFILL IS EXPECTED TO BE APPROXIMATELY 15\%
(2) THE \% OF VOIDS IN THE CONTAINER 15 EXPECTED TO HAVE AT MOST 10\% OF THE CONTAINER VOLUME.
(3) ASSUNE THE DRUM CONTAINEK WILL BE EVENLY DISTRIBUTED IN THE LANDFILL DURING THE LIFE OF THE LANDFILL DPERTION.
(4) ASSUME ALL CONTAINER WILL BE INTACTED DURING THE PERIOD OF LANDFILL OPERATION. THEREFORE AL SETTLEMENT CAUSED BY DRUM WASTE WILL OCCUR AFTER CLOSURE AND WILL DIRECTLY AFFECT THE FINAL COVER.

CALCULATION:

* Sr (collapse of containers voids)

$$
=0.10 \times 0.15
$$

$=0.015$ Or 1.5% OF THE TOTAL WASTE HEIGHT

* So (settlement of waste inside drums)
bECAUSE THE WASTE DRUM ARE EVENLY DISTRIBUTED, THE AVERAGE STRESS TO THE WASTE INSIDE THE DRUMS AFTER THE DRUMS COKRODED IS $115 \mathrm{PC} \times 20\left(\frac{1}{2}\right)$ WHERE 210^{\prime} IS THE TOTAL Expected HEIGAT Of WASTE

ENVIRONMENTAL SOLUTIONS, INC.
By G.CHOer Date S/lo/se Subject Waste settlement Chad. By \qquad Date \qquad Keftlemen Hill, $B-18$ Landfill \qquad

$$
\therefore S_{D}=115 \times \frac{210}{2} \times \frac{1}{E}
$$

WHERE $E=4,000$ SS (REF. 1)
$S_{D}=\frac{115 \times 105}{40000}=0.30$ or 30% of $74 E$ DRUM WANT

SINCE THE DRUM WASTE IS ONLY IS O: OF THE WAITE

$$
S_{D}=0.30 \times 0.15=0.045 \text { or } 4.5 \% \text { OF THE }
$$ TOTAL WASTE HEIGHT

* $S_{S}=0.02$ or 2% OF THE TOTAL WASTE FHEIGITY (see page $5 \leqslant C$)

TOTAL SETTLEMENT AFTER CLOSURE

$$
S_{T}=0.015+0.045+0.02
$$

$=0.075$ or 7.5% of THE TOTAL HEIGHT
CONCLUSION:
USE 7.5\% OF THE TOTAL HEIGHT TO CALCULATE SETTLEMENT AFTER CLOSURE.
\qquad

ENVIRONMENTAL SOLUTIONS, INC.
By upi Date 7-17.90 Subject LANDFLLC BY F FINAL Sheet No. 5 of 14
 THE BEHAVIOR OF NORMALCY CONSOLiDATED CLAY.

THE SECONDARY SETTLEMENT MAY BE ESTMATED BY
FOLLOWING EQUATION

$$
\Delta s=C_{y} H \log \frac{t_{2}}{t_{1}}
$$

WHERE
C CATE OF SECONDARY COMPRESSION
$H=$ THCKNESS OF THE SOIL LAYER
$t_{2}=$ HAL TIME
$t_{1}=\ldots$ IHTAL TIME (time when primuly consolidation completes)
TYPICAL VALUES OF........ CO. FOR NORMALLY CONSOLIATED CLAY
VARY FROM 0.005 TO 0.02 RCFil(seefig.l)BY ASSUMANG THE NATURAL
MOISTURE CONTENT OF THE WASTE FILL RANGES FROM 30 TO 40%, THE VALUE OF CA IS ESTMATED. TO BE ABOUT
0.003 TO. $0.004 . \operatorname{Lef} 2($ sectig.2) TO BE CONSERVATUE, A CONSTANT

VALUE OF : 0.02 WILL BE USED.

ENVIRONMENTAL SOLUTIONS, INC.
By Opi Date 7-17-90 Subject LANDFLL B.18 FINAL COUER Sheet No. 6 of 14 Chkd. By GSC Date $f / 14 / 90$ pOST-CLOSURE GPADE EVALUAIION Proj.
ESTIMOTE OF SEEONDARY CONSOLIDOTION OF WASTE THU

ESTIMOTE OF SEEONDARY CONSOLIDOTIDN OF
TOTAL VOLUME OF B-18 $\simeq 9.5 \times 10^{6} \mathrm{cy}$
ASSUME INCOMAG WASTE IS ABO07 500,000 CY/YEAR.
\therefore OPERATONAL LIFE OF B-18

$$
T=\frac{9.5 \times 10^{6}}{500,000}=19 \text { yetks }
$$

15: DNITE THE FULL OPERATIONAL LIFE OF THE LANOFLL HTO
5 STAGES, THE OPERATONAL LIFE FOR EACH STAGE
${ }^{19} \quad t=\frac{19}{5}=3.6$ yerrs Assuming primary consolidetion 21: completed a the end of each staye
23 TOR A TYDICAC 30 - YEAR POST-CLOSURE TPERIOD, THE
24 THE SECONDARY SETTEMENT OF EACH STOGE

time rate of secondary compression is largest for highly plastic soils and especially for organic soils.

The ratio of secondary to primary compression is largest when the ratio of stress increment to initial stress is small. This is illustrated in Fig. 27.18, which shows that the usual form of time-compression curve occurs only when the stress increment is large. Fortunately, most problems involving important settlements involve relatively large increments of stress.

Taylor (1942) was the first person to propose a rational theory of secondary compression. This theory modeled the soil skeleton as a viscoelastic material. Recent work in this area is directed at the developing models of behavior and numerical techniques for solving secondary compression problems with complicated rheologic models.

The phenomenon of secondary compression greatly complicates prediction of the time history and final magnitude of settlement. Bjerrum (1967) has discussed this subject. Secondary compression also makes it difficult to determine c_{v} accurately from laboratory tests.

27.8 SUMMARY OF MAIN POINTS

1. The differential equation of continuity, which is the basis for the study of consolidation, equates the net flow to the change in volume of the soil.

Table 27.2 Typical Values for Rate of Secondary Compression C_{a}

Fig. $27.15 e$ versus $\log \bar{\sigma}_{v}$ as function of duration of secondany compression (After Bjerrum, 1967).

Fig. 27.16 Relation of instantaneous and delayed compression to primary and secondary compression. (a) For different thicknesses. (b) For a given thickness.

FIGURE 16
Coefficient of Secondary Compression as Related to
Natural Water Content
Natural Water Content

Ref! NAVFAC DM >-1

ENVIRONMENTAL SOLUTIONS, INC.
By Ypi Date $\frac{716.90}{}$ Subject LANDFILC B-18 FINBL COVEL Sheet No. 9 of 14
Chkd. By GSC Date \qquad

ENVIRONMENTAL SOLUTIONS, INC.
By N.A. Date 8-10-90 Subject $\angle A N D F I L \angle B-18$ FINAL COVER Sheet No. 10 of 14 Chkd. By CSS Date POST-GLOSURF ORADE EVALUATIORPROI. No. $89-977$ SECTION 1

ENVIRONMENTAL SOLUTIONS, INC.
By N.A. Date 8-10-90 Subject LANDFILLB-18 FINALCOVFR Sheet No. 11 of 14 inkd. By GSC Date. D/14/9. POST-CLOSURF ERADE EVAUATIOAProj. No. 89-977

ENVIRONMENTAL SOLUTIONS, INC.
By N.A. Date 8-10-90 Subject $\angle A N D F I L \angle B-18$ FINALCOVFR Sheet No. 12 of 14 Shed. By CSC Date $\frac{8 / 14 / 90}{\text { POST-CLOSURE GR }}$ SECTION 3

ENVIRONMENTAL SOLUTIONS, INC.
By N.A. Date 8-10-40 Subject LANDFILL B-18 FINAL COVFR Sheet No. 13 of 14 Shed. By CSC Date. $/ / 14 / 90$ POST-CLOSURE GRADE EVAUATIONProj. No. $89-977$ SECTION 4

ENVIRONMENTAL SOLUTIONS, INC.
By N.A. Date 8-10-90 Subject Conclusion
Sheet No. 14 of 14
Chad. By f SC Date $8 / 14 / 90$ \qquad Prof. No. \qquad 89.977

calculations for the four sections. The results indicate change of grade after settlement will have no adverse effect on surface drainage. After settlement the gradients are still more than 3\% which is the mine. reyuirement for drainage. A summary for final cover post-ccosure grade evaluation is shown on pages 10-13 for sections 1-4

Due to the geometry of the final cover, the length of the slope will be reduced due to the settlement and thus the liner. The reduce in strain is expected to be small and will be readily absorbted by the soil cover and the liner without causing damage to the system.

APPENDIX H
 STABILITY ANALYSES

APPENDIX H. 1	GENERAL METHODOLOGY FOR ROCK CUTSLOPE, COMPACTED FILL SLOPE, AND INTERMEDIATE PHASE I CLOSURE STABILITY ANALYSES
APPENDIX H .2	ROCK CUTSLOPE STABILITY
APPENDIX H. 3	COMPACTED FILL SLOPE STABILITY
APPENDIX H. 4	INTERMEDIATE PHASE I CLOSURE AND INTERMEDIATE PHASE IIIA WASTE SLOPE STABILITY
APPENDIX H. 5	FINAL CLOSURE STABILITY

APPENDIX H. 1

GENERAL METHODOLOGY FOR ROCK CUTSLOPE, COMPACTED FILL SLOPE, AND INTERMEDIATE PHASE I CLOSURE STABILITY ANALYSES

ENVIRONMENTAL SOLUTIONS, INC.
By J.B
Date $8 / 10 / 90$
Subject Sheet No. 0 of 28
Chad. By ese Date $8 / 13 / \%$ \qquad Proj. No. 89.979

ENVIRONMENTAL SOLUTIONS, INC.
By JB Date $8 / 9 / 90$ Subject B-18 LAUDFILL Sheet No. $\frac{1}{89-977}$ of 28
Chkd. ByGSC Date $8 / 13 / 90$ SLOPE STABILITY $\triangle U \Delta C Y S I S$
SLOPE STABILITY AUACYSIS
objective Evaluate the static and seisuic stability OF THE SLOPES FOR THE FOLCOWING CASES:

- Rock cuts
- COMPSCTED FILL EUBAUKLEUTS.
- TEMPORAOY PHASE I INTERUEDIATE WASTE FILL
- closure conditions

REFEDENCES.
1- PERUDUEUT DISPLACFuENTS OF EARTH EMBAUKMEUTS By Newusay SLIDING BCOCK SNACYSIS. FDAUKLIN AND CHAUG, U.S. $\triangle O M Y$ Engiveeas Waterways Expeaimeñ STATIOU, NOVEUBER 1997.
2. FIFTH RANKIUE (ECTURE, EFFECTS OF EARTHQUIDES ON DSMS AUD EYBANKMENTS, N.M NEWHAQK, 1965
3. A PQACTITIOUER'S VIEW OF SITE EFFECTS OU STDOUG GROUND HOTION. NEVIIIE DONOVAN. PDOCEEDIUGS OF COUFERENCE XXII. US DEPDQTUENT OF THE INTERIOR GEOLOGICAC SURVEy, SAUTD FE NEW HEXICO, JULY 1983.
4. SEISUIC STABILITY EUSLUATION FOD THE TOE BUTTRES COUSTQUCTION, OPERATING IUDUSTRIES, INC. SITE, MONTEREY POQK, CDCIFORNIA. DOCUUENNT No 120-R12-AT-EPNN-1, PDEPDQED FOR U.S. EPA by Woodwasd-Clyde Conseltan's

ENVIRONMENTAL SOLUTIONS, INC.
\qquad By J.B Date $\frac{8 / 9 / 90}{8}$ subject B-18 LDNDFILC. Chkd. ByGSC Date $8 / 1 \mathrm{~s} / 90$ SLODE STABILITY $\triangle N A C Y S I S$ 2 -
 UUIT B-19, PHASE I-A, KETTLEHAD HillS, CALIFORNIA, SEED R.B ET AL U.C.B, JULY 1988.
7 OPERATIOUS PLAN FOR LAUDFILL UNIT B-19, CWI, kettlenad hills facility, qevision 0, JChe 25, 1989.

8 FEASIBIGITY STuDY FOR FIUAL LIUDFILL COUER SYSELA, KETTLEMDN HIIS FACICITY - DRAFT- GOLDER DSSOCIDTES INC., SUGUST 1989

9 DIDECT SHEAR TESTIUG PROGDAY FOR LSUDFILL COUER DESIGO KETTLEHDU HIILS FACIVITY, GOLDER ASSOCIDTES, JUNE $2 a, 1990$

10 UPDATED EUACUATION OF SITE DESIGN GDOUUD LOTIOUS FOR THE CWM KETTLEMDO HIIIS FACILITY, GOLDER $\triangle S S O C I A T E S, ~ S E P T E U B E R ~ 1988$.

11 FILLIUG PLAN LDNOFIII B-19, DHASES II $\triangle U D$ III, KETTLEUAD HIILS FACILITY, GOLOER ASSOCIBTES, MAY 1989.

12 SUPPORTIUG CACCULATIONS FOR THE LAUDFILL B-15 CIOSURE PLON, KETTLEMAN HIIIS EACILITY, GOLDER ASSOCIATES, DECEMBER 1989.
13. CIOSURE PLAN FOR LAUDFILL B-16, KETTLEMAN HILLS FACILITY, KETTLENAN CITY, CALIFORDIS. GOLDER $\triangle S S O C I \Delta T E S$, APRIC 23,1990

ENVIRONMENTAL SOLUTIONS, INC.
By J.B Date 8/9/90 subject B-18 CAUDFFiCl Sheet No. 3 of 28 Chkd. ByGSE Date 8/liz/go SCOPE STDBILITY $\triangle U \Delta L 4 S 15$ Proj. No. 89-977

14	COMBINED CLOSURE PLDU FOD LDNDFIIIS B-I/4/5/6/7, B-8/9/9 Expousiou /a ExteUsiod / $10 / 11$, SUBEACE IMPOCNDLEENTS P-5/12/12A/13/17 AUD AOEA S-3. REVISION 2 - draft - kemleudi hills facility, golder \triangle SSOCIATES JCNE 198
15	DIRECT SHELR. INTERFACE STRENGTH TESTING selected geotextile interfaces, geoservices INC. COUSULTING EUGIVEERS, APRIC 51990.
16	GEOSYNTEC PROJECT G88-383, FINAC REPORT on the direct shedr testing for the waste MAULGELENT, INC. NEW MILFORD, CONUECTICUT, lavdFill, geoseavices inc. cousulting engilueers, Cotober 11, 1988
17	FRICTIONFLEY ${ }^{\text {TM }}$ APPLICATION DATA, SLT Nodth Du ERICA, IUC
18	DIDECT shedr testivg of friction liver materials, gundle liniug systems, Iuc, (SEVERAL SEPSADTE DEPOOTS)
19	TECHUICAL GUIDANCE DOCUMENT: FINAL COVEES ON H $H Z Z R D O U S$ WASTE LAUDFIILS $\triangle N O ~ S U R F A C E ~$ 14 POUNDUENTS, EDA/530-SW-89-047 JULY. 1989.
20	STABL5 USER MAUUBL - SCHCOL OF CIVIL Engilleerilu, indigul department of highways, rouald A. Siegel, June 4,1975

ENVIRONMENTAL SOLUTIONS, INC.
By J.B Date 8/9/90 Subject B-18 LSUDFILL Sheet No. 4 of 28
Chad. By 5 Se Date $\% / 13 / 80$ SLOPE STABILITY $\Delta U \Delta C y S I S$

Prof. No. \qquad
21. DYNAMIC STOBILITY OF CUT SLOPES IN BEDROCK, LANDFILL E-19, bOLDER ASSOCIATES JUNE 1989

22 Lambe, WhiTusu, SoiL Mechanics, John Wiley 8 Sens. Incs, 1969

ENVIRONMENTAL SOLUTIONS, INC.
By $\perp B$ Date \qquad Subject $B-18$ L $\triangle N D F I C L$ Sheet No. 5 of 28 Cnkd. By Cse Date $/ / 13 / \mathrm{se}$ SLOPE STABILITY Proj. No. 89.977

- THE SFISMIC DESIGU OF THE B-18 LAUDFILL SHOULD BE BASED 3. O) THE MAXIUUM CQEDIBE EADTH QUAKE (NICE) ACCOQDIUG 70 - 22 CAC G7IO8(b). THE MCE IS THE L $\triangle E G E S T$ EDRTHQUAKE - COUSIDERED pOSSIBLE TO OCCUR OU \triangle FAUUT LNDER : PRESEUT GEOLOGIC CONDITIOUS WITHOCII DEGSQD TO : RECUORENCE INTEQVAL.
": THE IDENTIFICATIOU AND CHAROCTERIZATION OF FOTEUTIAL
12: SOURCES OF ELRTHQUALES iS PRESENTED I DEFEQNCE 10
is. FOOU DEFEREUCE 10, THE DOMIUQUT SEISUIC SOURCE is:
- Coolinga. TypE EADTHQuAKe
- NORTH DOUE SEGLENT OF THE RAUP-THOUST
$-M_{S}=7.0$
- FOCAC DEPTH 10 KM
- hIGHEST DOTEUTILC MEAU DEDL $\triangle C C E L E D T I O N ~$ is 0.43 g . THE 0.43 g V $\triangle C U E ~ I S ~ T H E ~$ DESCLT OF $\triangle D D I U S$ A FACTOE OF 20% TO THE BASE ACCELEDATION OF O.36 g EECACSE THE SOUNCE STDUCTURE IS \triangle THRUST FSULT. (DEFEDEUCE 10)

ENVIRONMENTAL SOLUTIONS, INC.
By J. 3 Date 8/9/90 Subject \qquad B-18 LAUDFILC Chkd. ByGEC Date $8 / 13 / \%_{0}$ SLOPE STABILITY SUACHS/S

THE SUPLITUDE OF SEISHICALLY-IUDUCED PEQUDUENT DISPLACEMENT IS CALCULGTED USIUG THE UETHOD SUGGESTED by New MCURK (DEFEQENCE 2) ANO EXPAUDED BY FQAUKLIN \& CHAO (DEFERENCE I).
 E $\triangle R T H$ QUAKE. INDUCED IUERTIA FORCE (THE DRIVING FORCE) ON \& POTENTIAC SLIDIUS LASS ANO COUPADING THIS DOIVINS FOOCE WITH THE RESISTIUS FORCE DUE TO THE SHEAE STREUGTH OF THE MATERIALS THE SEIS MICALLY- IUDUCED PEQUANENT DISPLACEMEUT OF THE POTEUTIAL SLIDE MASS OCCURS WHEUEVER THE DRIVIUG FORCE EXCEED THE DESISTIUG FORCE . THEDEFORE, IF THE AVEQAGE INDUCED $\triangle C C E L E D A T I O D ~ O U ~ \triangle ~ P O T E N T T A L ~ S L I D E ~ U A S S ~$ IS LADGER THAN ITS YIELD $\triangle C C E L E D A T I O N$ (THE ACCELERATIOU AT WHICH TAE POTEUTILL MASS WILL JUST BEGIN TO MOVE), THE MOVELENT WILL STAQT AND STOP WHEU THE DIDECTION OF THE GDOUND

ENVIRONMENTAL SOLUTIONS, INC.
$B y=$. B \qquad Date $8 / 9 / 90$ Subject \qquad B-18 LDUDFILC Sheet No. 7 of 28 Chkd. By \qquad Date \qquad SLODE STAEILITY SUACySIS Proj. No. 89-979
\qquad
\qquad
\qquad

- ACCELEDATION IS DEYEDSED AUD THE $\angle V E Q A G E$
- ACCELEQATION BECOMES LESS THAN THE YIELO
: $\triangle C C E E A \triangle T T O N . ~ B Y$ DOUBLE INTEGRATION OF THE DIAT OF THE AVEQ $G E$ SCCELEDATION TIUE HISTOQY THAT ExCEEDS THE YIELD ACCELEDATION, PEDUANEUT DISPLDCEMENTS CAN BE CACCULDTED. THIS PDOCEDURE IS SHOWU IU FIGURE 1.

FHE YIELD ACCELERATION FOR A GIVEN SLOPE COUFIGURATION IS DETERUIUED BY ESTIUATING "THE HORIZOUTAL EARTHQUAKE LOADIUG COEFFICIENI "K" WHICH RESULTS U A PSEUDOSTATIC FACTOR OF SAFETY EQUBL TO I.
K is givev IU TERUS OF g, ThedefODE DEPDESEUTS THE HORIZONTAL aCCELEQATIOU appLIED TO The SUDING UASS.

PERUIUUEUT DISPLDCEHEUTS ADE CACCULDTED AS A function of the yield $\triangle C C E L E D A T I O N$ usivg Frouklius Chan upper bouud edyelope curves SHOWN IN FISURE Z. (DEFEDENKE I)
FQankuiu cud Chan expauded Newhark's data BASE. ALL EAOTHGUAKE DECOROS WERE SCALED TO 0.5 g PEAK $\triangle C E E E D O T I O N$ LLD 30 -In. /Scc PEAK VELOCITY AND THE DESULTING SCAED PEQMANENT DISPLACELIENTS ADE PLOTTED AGAIUST THE QSTTO N/A OU A LOSADITAMIC PIOT. IU THIS PLOT UPPED BOUND CUOVES ADE PRESEDTED FOR VADIOUS DNUSES 1 IUTHE V $\triangle C L E$ OF N/A WHEDE N IS THE YIELD ACCELERATIOU SUD A is THE HAYIUUM EDRTHQUALE ACCELERATIOU $\triangle C T I U G$ UPON THE POTENTILC UOUING UASS : THE PROPOSED UPDER BOUND CUQVES $\triangle Q E$ DESCDIBED 10 ThE LEGEUD OF FIGUOE 2 (UPDER DIGHT HAUD CURVES)

Figure 16. Upper bound envelope curves of permanent displacements for all natural and synthetic records analyzed
(Deference 1)

ENVIRONMENTAL SOLUTIONS, INC.
By J. B Datiola/90 subiect B-18 LDNDFiLL Sheet No. $\frac{10}{89}$ of 28
Chkd. BySC Date $f / 15 / 9=$ SLOPE STABILITY $\triangle U \Delta C y S I S$. Proj. No. 89-977
SOIC PDOFILE AVAILABLE SUBSUIEFACE INFOQHATION
: COUSE QUENTLY THE UPPEQ ROMUD CURVE IN FIGUREZ
: DESIGUATED AS DOCK SITE DECORDS IS USED is This Auslysis.
ANACYSIS PROCEDURE DISPLACEMENTS FOR A GIVEN SLODE CONFIGUQATION is As FOUNOUS:

ENVIRONMENTAL SOLUTIONS, INC.
By $1 B$ Date $8 / 9 / 90$ Subject B-18 LANDFiLL Sheet No. 11 of 28
Chad. By Gee
Date \qquad $5 / 15 / 90$ SLOPE STABIUTY $\triangle U \Delta C Y S I S$ \qquad $89-979$

ENVIRONMENTAL SOLUTIONS, INC.
By $1 B$ Date 8/a/90 Subject B-18 LAUDFILL Sheet No. 12 of 28 Chkd. By Gse Date $8 / 13 /$ / SLOPE STABILITY ANALYSIS Proj. No. 89-477
\square
Foom Reference 3. Donovan proposes delationships for sTE dependent $\frac{V}{A}$ datios: Davge of $\frac{y}{A}$ values for ROCK LUD SOIL $\bar{A}_{\text {STES CIL }}$ SHOWU IN \bar{A} FIGCIRE 3

A COUSERVATIVE ESTILIATE OF $\frac{Y}{A}$ RATIO FOR The KHF is OBTIIDED BY

$$
\begin{aligned}
& \left(\frac{V}{A}\right)_{K H F}=\frac{\left(\frac{V}{A}\right)_{\text {dock sites }}^{\text {aYedase }}+\left(\frac{V}{A}\right)^{\text {aVerdge }} \text { Soic sites }}{\substack{\text { site }}} \\
& \left(\frac{V}{A}\right)_{K H F}=\frac{37+23}{2}=30
\end{aligned}
$$

\Rightarrow ESTIUATE PERUAUENT DISPLACELUENTS FOR A RAUGE OF PEAK GDONUD ACCELEDATIOUS (.3q TO. 5 g) FOR The SITE SPECIFIC $\frac{V}{A}$ DATIO OF 30.

72

ENVIRONMENTAL SOLUTIONS, INC.
\qquad
Chkd. ByGSC Date $8 / 14 / 9 \cdot$ SLOPE STBBILITY $\triangle U \Delta L y S I S$ Sheet No. 14 of 28 Proj. No. $89-977$

UNSCDLED PERMANENT DISPLDCEMENTS
FDOM DEFEDENCE 1 (PAGE 20)

$$
\begin{aligned}
& U_{m}=U_{s} \times \frac{V^{2}}{1,800 \mathrm{~A}} \\
& U_{m}=\text { UNSCALED PEDMADENT DISPLDCEMENT } \\
& A=\text { MAXIGUM GROUND ACCELEDATION } \\
& V \text { = NIAYIMUU GDOUUD VELOCITY } \\
& \text { Us = STAUDADIZED UAXIMuM DISpCDCENENT (FRou Fí 2) } \\
& \text { FOR } \frac{V}{A}=30 \\
& V=30 \cdot A
\end{aligned}
$$

ENVIRONMENTAL SOLUTIONS, INC.
 Chad. ByGSC Date $8 / 14 / 90$ SLOPE STABILITY AUACYS/' Proj. No. 89
ALLOWABLE DESIGN DISPLACEMENT FOR THE ICE

FOR EACH CONDITION THE PEAK EADTHQUAEEDCCELEROTION WHICH WILL CAUSE THE ALLOWABLE DESIGN DISPLACEMENT IS ESTIMATED AS FOLLOWS

BECDUSE OF The wAY SEISUIC WAUES PDOPDGATE, ATEUUATIOU FACTORS $\triangle \triangle E$ CONSIDERED TO TALE $10 T 0$ SCCOUNT The EFFECT OF The WISTE DILE OU The SeIsMic DEFORUSTIOSS.

FOR DEEP FAILURE MODE. THE ICELEOATIOU: IO THE SLIDIUS UASS is $\triangle S S U L E D$ TO BE . 8 TIMES THE pear base acceleration (A0)

$$
A=.8 A_{0}
$$

ENVIRONMENTAL SOLUTIONS, INC.
By 1 . B Date $8 / 9 / 90$ subject B-18 LAUDFFILL sheet No. $\frac{16}{89}$ of 28 Chad. By GRe Date $8 / \mathrm{B} / \mathrm{RO}$ SLOPE STABICITY SUALYS'S Prof. No. $89-977$

this delationship is conservative based on the RESULTS OF DYNAMIC DESPOUSE SUSCYSIS FOR THE OPEDATING IUDUSTRIES LSNDFILL (DEFEDENCE 4) FOR 0.50 g AUD 0.25 g . AS SHOWN 10 FIGURES 5 AUD 6 RESPECTIVELY.

- NOTE THAT FOUNDATION CONDITIONS FOR BOTH CSUDFICLS abe sillilar. denser waste hatedials will be PLACED AT THE B-18 LANDFILL, THEDEFORE A HIGHER $\triangle T$ TENUATION FACTOR is COUSIDEDED 1.8 AS OPPOSED TO .7 FOR .25 gl
- THE ACCELEQ $\triangle T I O N$ in the SLIDIUG MASS (A) is $\triangle S S U L E D$ TO $B E$ The SAME AS The PEAK BASE ACCELERATION FOR SHALLOW FAILURE LODE SUCH AS THE COVER LINER SLIDING. (see figure 6)

FIGURE 5

ENVIRONMENTAL SOLUTIONS, INC.
By JB Date 8/ako subject B-18 LSUDFFiLL Sheet No. 19 of 28 chkd. By \ddagger Se Date $8 / 14 / 20$ SCOPE STABIIITY Selscysi's Proj. No. $89-977$

DISK $\triangle S S E S S U E N T$ FOR DYNDUIC CONDITIONS

A PDOBABIUSTIC DSSESSUENT OF DESIGN GROUUD HOTIOUS FOR THE KETTLEUDU HILLS FACILITY IS PDESEUTED 10 DEFEQEUGE 10 (GOLDER \triangle SSOCI'STES)
FIGUQE 4 (FDOU DEFERENCE 10) PDESENTS THE RELATIOUSHIP BETWEEU THE PDDOBABILITY OF EYCEED $\triangle U C E ~ \triangle U D ~ P E D K ~ \triangle C C E L E D A T I O N ~(g) ~ F O R ~$ TILLE PERIOAS OF $1,20, ~ \triangle U D ~ E O ~ Y E A E S . ~$

B $\triangle S E D$ OU THIS FIGURE THE DROBABILITY OF EXCEEDOUCE

ENVIRONMENTAL SOLUTIONS, INC.
By J. B \qquad Date 8/9/50 Subject B-18 CANDFILL. Sheet No. 20 of 28
Chkd. By Gec Date \qquad SLOPE STABICITY AUBCyg's Proj. No. 89-977

(A0) DEDK $\triangle C C E L E R \triangle T I O U$

Figure 3. Probability of exceedance as a function of time period

ENVIRONMENTAL SOLUTIONS, INC.
By J.B Date 8/9/90 subject B-18 LADDFiCL Sheet No. 22 of 28 Chkd. By GSC Date $8 / 14 / 90$ SLOPE STLBICITY SUDCySS Proj. No. 89-997

CASES TO BE $\triangle U \triangle C Y Z E D$

I - DOCK CUTS
a- 2:1 SLOPES WITH POTENTIAC SLIDIUG ACCOOSS BEDDING PLANES
b-3:1 SLOPES WITH POTENTIDC SLIDIUG ALONG BEDDIUG PLADES.

II COMPQTED FILL EUBANKLENTS
a- DUNOFF DETENTION BASIN
b. SMAII EMBANKMEN TO COMPLETE PHASEI/\# BEOM

ENVIRONMENTAL SOLUTIONS, INC.
By J. B. Date $8 / 9 / 90$ subiect B-18, LSNDFFiCL sheet No. $\frac{22.4}{89}-977$

IV FINAL CLOSURE COUDITIONS
a- 3.6:1 SLOPE BETWEED benches (IUFINITE SCOPE MODEL)
1- at clay / operation layer iuterface
2. AT DOUGHEDED HDPE/CLAY INTERFACE

3- AT GEOCOUPOSTE /ROUSHEDEO HDDE IOTTR Face (no cohesion blowance)

- - AT GEOCOMPOSITE fDOUGHELED HDAE UUEERACE ($c=50$ ps+5)
b- WEDGE MOVELEUT DLOUG THE LINER SUREACE.

1. EUTIDELY $\triangle L O D G$ IUTEEFICE

2 - THDOUGH W $\triangle S T I$ AT BASE/SGDE intedsection.
c. ciocular flillug withiu the waste

ENVIRONMENTAL SOLUTIONS, INC.
By $1 . B$ Date $8 / 9 / 90$ subject $B-18$ LANDFill sheet No. 23 ot 28 Chkd By GSe Date $8 / 1 / 3 / 8$ Slope stability sualysis Proj. No. \qquad 89-977

17

ENVIRONMENTAL SOLUTIONS, INC.
 Chkd. By ase Date $8 / 18 / 20$ SLODE STOBILITY $\operatorname{ANSCYSIS}$
\qquad Proj. No. 89-999

ENVIRONMENTAL SOLUTIONS, INC.
 Chkd. By Ges Date 8/r/\%O SLOPE STDBILITY SUDCySis Sheet No. 25 of 28 Proj. No. 89-977

ENVIRONMENTAL SOLUTIONS, INC. By J. B Date 8/9/90 Subject B-18 LAUDFILL Sheet No. 26 of 28 Chkd. By GK Date \qquad P75\%e SLCDE STLBBLCTY AUCLYSIS

Proj. No. \qquad 89.977

ENVIRONMENTAL SOLUTIONS, INC.
 Chkd. By Date $\mathrm{g} / \mathrm{g} / \mathrm{p}$ SLOPE STABICITY $\Delta U \Delta C y S I S$

Proj. No. \qquad 89.977

${ }_{30}^{29}$ (1) BASEO OU DT-A, B-2 TEST DESuLTS. DT-C, B-1 is LESS plastic and sToousee

ENVIRONMENTAL SOLUTIONS, INC.

STATIC FACTOR OF SAFETY: 1.5 (MINIMUM).
ALLOWABLE SEISMIC DEFORMATION: 1 INCH FOR FAICURE SURFACE ThROUGH The LINER SYSTFU. langer deformations abe acceptable for
FAICUDE UODES THROUGH The wASTE PILE DR VEGETATIVE COVER

COMPUTER OUTPUT REFER TO COMPUTER OUTPUT FOR EACH CASE. (CONTAINED in a sepadote volume. File name, failure NODE, CALCULATED FACTORS OF SAFETY AVO YIELD ACCELERATION ARE LISTED FOR EACH SPECIFIC CASE.

APPENDIX H. 2

ROCK CUTSLOPE STABILITY

ENVIRONMENTAL SOLUTIONS, INC.

By J. B
Date 8/9/90
Subject B-18 LAUDFILL.
Chis. By \qquad Date \qquad SLOPE STABILITY ANALYSIS
\qquad Prof. No. 89-977

CASE I
stability of cut slopes

ENVIRONMENTAL SOLUTIONS, INC.
By J. B Date $8 / 9 / 90$ subject B-18 L $\triangle U D F I L L$. Sheet No. 1 of 13 Chad. By CSS Date s/i3/90 SLOPE STABILITY ANALYSIS Prof. No. 89-977

ENVIRONMENTAL SOLUTIONS, INC.
By $1 . B$ Date 8 al 90 subject B- 18 LandFill Sheet No. 2 . of 13 Chis. Byre Date $8 / 13 / 2$ SLOPE STABILITY AUACYSIS Prof. No. 89-977
: CASE I-A

- miniluul static factor of safety: 1.5
- allowable maxiuul displacement for the design earthquake peak acceleration: 1 inch

Plat view of phase I excavation is showed in figure 7
slope stability model is show u in figure 8

(1) hodizonal earthquake loading coefficient
(2) PSEUDOSTATIC
(3) STATIC

ENVIRONMENTAL SOLUTIONS, INC.

\Rightarrow Frou Figure 2, $N / A=.77$ THE STAUDADIZED MAXILUM DISPLOCEMENT is LESS THAU 1 INCH . TNO pequanent seisuic displacemeñ $A=A_{0}$,
\Rightarrow Froul Figure 9 POE is $<4.0 \times 10^{-4}$
CONCIUSION
FOR 5 YEDQS:

- S.F >1.5 OK.
- negligible seismic displacement
. $K_{y}=.54$
- POE $<\triangle O \times 10^{-4}$ FOR 5 YESOS WHICH IS THE DESIGN DECUDRENCE PEDIOO

Figure 3. Probability of exceedance as a function of time period

ENVIRONMENTAL SOLUTIONS, INC.
By $1 B$ Date $\frac{8 / 9 / 90}{}$ subject $\frac{B-18 \text { LANDFiLL }}{\text { Sheet No. } \frac{7}{89} \text { of } 13}$ Chad. By lose Date $f / \mathrm{m} / \mathrm{ge}$ SLOPE STABILITY AUSCYSI'S Prof. No. 89-977

```
            CASE IB
            ROCK CUT
            3:1 SCOPE
(ALONG BEDDING STDENGTH)
    (DESIGN PERIOD 5 YEDOS).
```

ENVIRONMENTAL SOLUTIONS, INC.

CASE IB
PERFORMANCE CRITERIA SAME AS CASE IA

- plan view of phase II excavation is show u in figure 10
- SlOPE STABILITY MODEL IS SHOWN IN FIGURE II

(1) HODIZONTAL EADTHQUAAVE LOADIUG COEFFICIENT
(2) PSELIDOSTATIC FACTOR OF SAFETY. USED TO ESTIUDTE YIELD

ESTIMATE SEISMIC DEFORUATIOUS FOR A=.5,.6 SUD. 7

ENVIRONMENTAL SOLUTIONS, INC.
By J.B
Date $8 / 9 / 90$ Subject B-18 L \triangle UDFILC Sheet No. 11 of 13 Chkd. By GSC Date $\mathrm{d} / \mathrm{mg} / \mathrm{g}$. SLOPE STABILITY $\Delta U \Delta C y s i s$ Proj. No. 89-977
CASE I-b

* FDon figude 2.
* * pequauent displacenent

ENVIRONMENTAL SOLUTIONS, INC.
 chad. By Gie Date $8 / \mathrm{s} / 80$

$$
A_{0}=A .
$$

FROM FIG 12 PO $=8.0 \times 10^{-4}$ FOR 5 YEARS FOR 1 INCH DEPORUDTIOU: $.58 \mathrm{~g}>.43 \mathrm{~g}$ OK.
CONClUSION.
STATIC SAFETY FACTOR $=2.2>1.5$ OK.

- seismic displacement : minimal
- POE FOR 1. IUCH displacement $=8.0 \times 10^{-4}$ (5 yeas)
- $K_{y}=.32$ (YIELD)

CASE I-b.

Figure 3. Probability of exceedance as a function of time period

FIGURE 12

APPENDIX H. 3
 COMPACTED FILL SLOPE STABILITY

ENVIRONMENTAL SOLUTIONS, INC.
By 1 B Date $8 / 10 / 90$ subject B-18 LANDFILL sheet No. 0 of 12 Chad. By iRe Datefliflge SLOPE STABILITY BUALYSIS Prof. No. $89-977$

CASE II

STABILITY OF COMPACTED FILL EMBANKMENT.

ENVIRONMENTAL SOLUTIONS, INC.
By J.B Date $\frac{8 \text { l10910 }}{}$ subject B-18 LAUDFFiLC sheet No. 1 of 12 Chad. By G sC Date $8 / \mathrm{M} / \mathrm{se}$ SLOPE STABILITY $\triangle N \triangle C Y S I S$ Prof. No. 89-979

```
    CASE II-A
dUNOFF DETENTION BASIN
    (DESIGD PERIOD:20 YELQS)
```

ENVIRONMENTAL SOLUTIONS, INC.
\qquad chad. By \& $\frac{1}{}$ Date $\frac{8 / n / 80}{}$ SLOPE STABILITY. Sheet No. $\frac{2}{89}$ of 12 Prof. No. 89-977

CASE II-A
PERFORUSUCE CRITERIA

- minium static factor of safety: 1.5
- allowable maximum displacement for the desigu EARTH QUALE PEAK ACCELERATION: 3.1 NCH
plat view of the retention basil is show u in FIGURE 13

SLOPE STABILITY MODEL (SECTION A) IS PRESENTED in Figure 14

As shown in figure 14. The critical slope is on the south waste side for deed failure mode

COMPUTED FACTOR OF SAFETY IDE PRESENTED IN sheet 5 .

- THE yIELD ACCELERATION FOR THE sOuTH wEST slope IS ABOUT . 5 (FILE NAME RNIBM2S.SW)

Sheet 3 OFI2

ENVIRONMENTAL SOLUTIONS, INC.

ENVIRONMENTAL SOLUTIONS, INC.
By J. B
\qquad Date 8/10/90 Subject \qquad Sheet No. 6 of 12 Chad. By ic Date \qquad SLOPE STABILITY Prof. No. 89-977

FDOM Sheet 2. Um (PRQuSUENT dISplacements) ADE NEGLIGIBLE

FROM FIGURE $15, \quad D O E<30 \times 10^{-3}(20 y R S)$
conclusions
STATIC FACTOR OF SAFETY? 1.5

- PERUDUENT SEISUIC displacements: nONe
$\therefore K_{y}=.5 g$
- POE 30×10^{-3} FOR 20 YEANS
case II-A
CASE II-B

Figure 3. Probability of exceedance as a function of time period

$$
\text { FIGURE } 15
$$

ENVIRONMENTAL SOLUTIONS, INC.
By J.B Date 8/10/90 subject B-18 LANDFilC Sheet No. 8 of 12 Chkd. By Gex Date $8 / 11 / 90$ SLODE STABICITY DUSCySIS Proj. No. $89-997$
CASE II-B.
(SUALL EMBAULK LENT TO COMPLETE PHASEI/II BEQM)

$$
\text { (DESIGN PERIOD } 5 \text { YEARS) }
$$

ENVIRONMENTAL SOLUTIONS, INC.
\qquad By $\frac{J B}{\text { Date } \frac{8 / 10 / 90}{8 / 180}}$ Subject $B-18$ LANDFILL Sheet No. 9 of 12 Chad. By GSC Date $8 / 1 / / 80$ SLOPE STABILITY $\triangle U \Delta C y S I S$ Prof. No. \qquad 84-977 Chad. By GSC Date 8/11/90
$=C A S E I-B$

PERFORMANCE CRITERIA.
1- MINIMUM STATIC FACTOR OF SAFETY $=1.5$
2- $\operatorname{\text {Lllomabreu}}$ uximum displacement tor The design EARTHQUAKE PEAK $\operatorname{ICCELEDATIOD}=1.10 G 1$
: PLAD VIEW OF The CLAY BOROOW ADED IS SHOWN'

- in figure 16
". SLOPE STABILITY MODEL IS SHOWN IN FIGURE 17.
${ }^{12}$ - FIUAC BENCH ELeVATION IS 720° LS OPPOSED TO 710^{\prime} AS SHOWN ID THE MODEL. THIS MINOR DISCREPANCY SHOULD NOT $\triangle F F E C T$ The analysis Desults
- benches between the fill and native material wear not included in The MODEL FOR SIMPlicITY. THIS SHOCID NOT $\triangle F F E C T$ The \triangle UDCYSIS DESALTS.
CALCULATED FACTORS OF SAFETY ADE ShOWN in sheeT il
THE YIELD ACCELEDOTION is GDEATER ThU $0.6 \Rightarrow$ THE PEAK ACCELERATIOU TO INDUCE A PEQLAVENT DISplaCeHEUT IS GREATEL THAL 0.7. BASED OU POEVIOUS DESUCTS \Rightarrow SEISMIC DISplacenevts ADE NEGLIGIBLE DOE $\ll 3.0 \times 10^{-4}$ (5 yos)AS SHOWU IU FIGURE 15 FOR The DUNOFF DETEUTIOA BASIU EUDAUKMEUT. ACTUAL LIFE OF CLAY BODDOW IDEA ELBADKKUENT IS $\triangle B O U T$ 5 YEARS

$$
\begin{aligned}
& \therefore \text { STATIC FACTOR OF SAFETY }>15 \\
& \text { SEISMiC DISPLDCEUEUTS: NEGLIGIBLE } \\
& -K_{Y}>.6<3.0 \times 10^{-3} \text { FOR } 5 \text { y EDSS } \\
& P O E \ll 3: 0
\end{aligned}
$$

CASE II-B'
(CLDY BORRON $\triangle D E A$)

ENVIRONMENTAL SOLUTIONS, INC.

 By J Date $\frac{8 / 10 / 90^{\circ}}{}$ Subject B-18L $\triangle U D F i L C$ Sheet No. 12 of 12 Chad. By \&se Date $\frac{8 / 11 / 90}{}$ SLOPE STABiLITY $\Delta U \Delta C y s i s$ Prof. No. 89-979

APPENDIX H. 4
 INTERMEDIATE PHASE I CLOSURE AND INTERMEDIATE PHASE IIIA WASTE SLOPE STABILITY

ENVIRONMENTAL SOLUTIONS, INC.
By 1 D Date 8/0/90 subject B-18 LANDFill Sheet No. 0 of 24 Ching. Bye Date $8 / 13 / 8$ SLOPE stabicity auslysis Prof. No. 89-977

CASE TIT

STABILITY OF TEMPORARY PHASE I INTERMEDIATE WASTE FILL

ENVIRONMENTAL SOLUTIONS, INC.
By J. B
Date $8 / 10 / 90$
Subject
B-18 LAUDFILL Sheet No. $\frac{1}{29}$ of 24 Chkd. By GSC Date 9/13/50 SLOPE STABIUTY SUBCYSIS Proj. No. 89-997

```
        C\triangleSE III - A
WEDGE mOVELEUT alove the
LINER SURF\triangleCE.
    (DESIGN PEDIOD 10 YRS)
```

ENVIRONMENTAL SOLUTIONS，INC．
By JB Date 8／10／90 subject B－18 GOUDFiLl
Chad．ByGSC Date 多／z／go SLOPE STDBILITY Sheet No．$\frac{2}{89-977}$ of 21 Prof．No． $89-977$

CASE ㅍ．-1.1
PERFOOUSUCE CRITERIA
－minimum static factor of safety： 1.5
－maximum allowable displacement for the design E ADTHQUAKE PEAK $\triangle C C E L E R S T I O D: 1$－INCH

PLAN VIEW OF THE TOP OF THE LINER $\triangle N D$ TEUPODADY COVER ARE SHOWN IN FIGURES 18 AUD 19 RESPECTIVELY．
－SLOPE STABIUTY mODEL is ShOWN in FIGURE 20 computed factors of safety are：

（I）HORIZOUTAL EARTHquAKE COADIUG CDEFFICIENT

ENVIRONMENTAL SOLUTIONS, INC.
By $1 . B$ \qquad Date $8 / 10 / 90$ Subject B-18 (SUDFILL Sheet No. 3 of 24 Chad. By \qquad Date \qquad SCOPE STABILITY Prof. No. 89-979
(2) STATIC
(3) PSEUDOSTATIC. A VALuE less THAN 1 does not necessarily imply FAILURE. THEY $\triangle D E$ USED TO estimate the yield acceledation which related To THE perulanent displacement by The n/a patio shown in figure 2.

hodizoutal earthquake loading coefficient

$$
K_{y}=.33 \text { (COUSERVATIVE) }
$$

FIGUDE 18

ENVIRONMENTAL SOLUTIONS, INC.
By J. B
Date 8/10/90
subject
B-18 LandFill Sheet No. 7 of 24
Chin. EyESC Date $\mathrm{e} / \mathrm{z} / \mathrm{z} / \mathrm{ge}$ SLOPE STABility Prof. No. $89-977$
\qquad
CRITICAL interface on $3: 1$ slope is poushened hope/ GEOCOMPOSTE, $\phi=20^{\circ}$ (see Sheet 21)
critical iutelacle at the bottom part of the LANDFILL GEOVET / DOUGHEUEO HDPE, $d=15^{\circ}$. (SEE SHEET 21)

$$
k_{y} \approx .33
$$

case III -A(1)

ENVIRONMENTAL SOLUTIONS, INC.
By JB Date $8 / 10 / 90$ subject B-18 L $\triangle N D F I L L$ Sheet No. 8 of 24 Chad. By GSC

Date $8 / 13 / 9=$ SLOPE STABILITY Prof. No. 89-97)

CASE III-A. 1

Figure 3. Probability of exceedance as a function of time period
FIGURE 20-A

ENVIRONMENTAL SOLUTIONS, INC.
By J B Date $8 / 13 / 90$ subject B-18 L \triangle UD Fill. Sheet No. 10 or 24
 Prof. No. 8997)

PERFORUDNCE CRITERIA
Sale as case III-A.I

SLOPE STABILITY MODEL IS SHOWN IN FIGURE 20-A
COMPUTED FACTORS OF SAFETY DE

ENVIRONMENTAL SOLUTIONS, INC.
By J. B Date $8 / 14 / 90$ subject B-18 LAUDFILC Sheet No. 12 of 24 chkd. BYCE Date-8/15/90 SLODE STDBICITY Proj. No. 84-97).
$K_{y}=.49$ (Frou SheeT 59-A, Fice nهUE: NHTBL. $3 E$

CASE III $-\triangle \cdot 2$
SEISUIC OISPLDCEMEUT

* FDOM FIGCIOE 2

YEAU DEAK ACCELEDATION.
DEAK ACCELERATION (A)

ENVIRONMENTAL SOLUTIONS, INC.
By $1, B$ Date $8 / 14 / 90$ Subject B-18 LANDFill. Sheet No. 13. of 24 Chad. By Sse Date 8/15/90 \qquad SLOPE STABILITY Prof. No. 89-977

FOR 1 INCH DISPLACEMENT $A>.7$

$$
A_{0} \gg .7
$$

OPERATION PERIOD: $\triangle B O C T$ T 10 YEARS

$$
\text { FROM FIGURE } 20-C ; \text { POE } \angle 6.0 \times 10^{-4}
$$

conclusion
STATIC SAFETY FACTOR >1.5.
SEISMIC DISPLACEMENT: Q

$$
P O E<6.0 \times 10^{-4}
$$

Figure 3. Probability of exceedance as a function of time period

$$
\text { FIGURE } 20-C
$$

ENVIRONMENTAL SOLUTIONS, INC.
By $\xlongequal{ } \mathrm{B}$
Date 8/10/90
Subject
B-18 LANDFILL Sheet No. 15 of 24 chad. By GSC Date SLOPE STABILITY suACYSIS Prof. No. 89-977

CASE III-B
(CIRCULAR FIGURE THROUGH THE WASTE).
IT B-1. NO COHESION SLOWED FOR WASTE
III B. 2. COHESIOU AUOWED FOR WASTE
(DESIGN PERIOD 10 YEARS)

ENVIRONMENTAL SOLUTIONS, INC.
By J.B Date 8/10/90 subject B-18 LANDFiLL Sheet No. 16 of 24 Chad. By CX Date $8 / 13 / 9_{0}$ SLOPE STABILITY Prof. No. 89-977

Sheet No 17 of 24

FIGure 21

ENVIRONMENTAL SOLUTIONS, INC.
\qquad Chad. By GSC Date $8 / 13 / 90$ SLOPE STABILITY Sheet No. 18 Proj. No. $89-977$

ENVIRONMENTAL SOLUTIONS, INC.
By J. B \qquad Date $8 / 10 / 90$ Subject \qquad Sheet No. 19 of 24 Chad. ByE Date $8 / 13 / 90$ \qquad SLOPE STABILITY Prof. No. 89-977

FOR SHALLOW FAURE $A=A_{0}$
DESiGn-PEDIOD $=10$ years
$A=.5$ FOR AN Sllousble design perunvedt displacement of G INches.

FROM FIGURE $22 \quad P O E=3.0 \times 10^{-3}$
conclusion
1- STATIC FACTOR OF SAFETY $=1.3<1.5$. SHALLOW failure. Conservative since cohesion is not allowed for
The WASTE. IU DESCITY, SOME COHESION (300 PSF) SHOULD BE CONSIDERED FOR WASTE LATERIDCS

$$
k_{y} \cdot .145
$$

- POE $=30 \times 10^{-3}$ FOR G.IUCH DISPlacement
 IU The waste pile is ACCEPTIBLE bASED OU The SLOPE COUFISUESTION AT The TOE AOD The FACT THAT HIGHER FACTORS OF SAFETY WERE CALCulaTED FOR The CASE II-A.
- STATIC FACTOR OF SAFETY FOR $C=300 \mathrm{pSf}$ and $\phi=27^{\circ}$ (wasTe) $=1.5$ ok.

Figure 3. Probability of exceedance as a function of time period

$$
\text { FIGURE } 22
$$

ENVIRONMENTAL SOLUTIONS, INC.
By \lrcorner. B \qquad Date $8 / 13 / 90$ subject B-18 LAUDFILL. Sheet No. 21 of 21 Chad By GSC Date $8 / 15 / 90$ \qquad slope stability Prof. No. 89-977

ENVIRONMENTAL SOLUTIONS, INC.
By J.B Date 8 / $13 / 90$ subject B-18 L \triangle UDALl Sheet No. 22 of 21 chad. By Gs e Date $8 / 15 / 10$ SLOPE STABILITY Prof. No. \qquad 89.977

$$
\begin{aligned}
& \text { HORIZONTAL EARTH QUALE LOADING COEFFICIENT } \\
& K_{y}=.24
\end{aligned}
$$

$$
k_{y}=.24
$$

CASE III-B(2)

K_{y}	A	$\frac{k_{y}}{A}$	U_{s}^{*} $(I N C H E S)$	$\frac{V}{A}$	$U_{m}=\frac{U_{s} Y^{2}}{1,800 A}$	U_{m} (INCHES
.24	.3	.80	0	30	$U_{m}=.15 U_{s}$	0
.24	.4	.60	1	30	$U_{m}=.20 U_{s}$.2
.24	.5	.48	6	30	$U_{m}=.25 U_{s}$	1.50

* FROM FIGURE?

ENVIRONMENTAL SOLUTIONS, INC.
\qquad Chad. By GSC Date $8 / 15 / 90$ Subject Sheer No. 23 of 24
\qquad SLOPE STABILITY Prof. No. 84-977

FOR SHALLOW FAILURE $A=A O$
FROM FIGURE 22 A.
$A=.6$ FOR 6-INCH DISPlACEMENT COOSEQVATIVE $A=A_{0}$

$$
\text { POE }=10^{-3} \text { (DESIGN PERIOD } 10 \text { YRS) }
$$

CONClUSION

$$
\text { - STATIC FACTOR OF SAFETY } 1.5
$$

- ESTI UATED DISPLACE LENT FOR THE MCE = 0.5" < 6"OK
$\therefore D O E=10^{-3}(10$ yRS $)$

CASE III -B(2)

Figure 3. Probability of exceedance as a function of time period

May 2, 2011

Golder Associates Inc.
230 Commerce, Suite 200
Irvine, California, USA 92602
Mr. Ryan Hillman, P.E.

SUBJECT: SLOPE STABILITY ANALYSIS
 KETTLEMAN HILLS FACILITY
 LANDFILL UNIT B-18, PHASE IIIA EXPANSION
 KETTLEMAN CITY, KINGS COUNTY, CALIFORNIA

HAI PROJECT NO. GLD-11-001
This letter report summarizes the results of Hushmand Associates, Inc. (HAI) slope stability analyses for the proposed Phase IIIA temporary waste slopes of the Class I/II (hazardous and designated wastes) Landfill Unit B-18 at Chemical Waste Management (CWM) Kettleman Hills Facility (KHF). The KHF is located in Kettleman City, Kings County, California approximately one mile north of State Route 41 and 2.5 miles west of Interstate Freeway 5.

CWM is planning to construct the proposed Landfill B-18 Phase III expansion in 2 phases Phase IIIA and Phase IIIB. The proposed final cover grades analyzed previously (HAI 2008 and 2009) are not changing; however, CWM has requested a static stability analysis be conducted for the temporary waste slope that would be formed at the Phase IIIA-IIIB interface.

This report presents the results of static slope stability evaluations for the most critical slope cross section of the temporary Phase IIIA expansion area of the landfill, identified and provided by Golder Associates Inc. (Golder). More details on the project background, project description, and regulatory requirements are provided in Golder's report (2011).

Material Properties

Key material properties of various components of the landfill needed to perform static slope stability analyses are: (1) unit weight, and (2) shear strength parameters.

Detailed site-specific information on waste, existing liner systems, and foundation bedrock material properties are provided in the design and conformance testing reports prepared during early 1990’s (Golder, 1990, 1991; ESI, 1990, 1992, 1993), and more recent reports prepared for Kettleman Hills Facility (Rust, 1998; URS, 2005; HAI, 2008, 2009). HAI (2008) recommended that assumed properties used for design be further verified by performing site-specific tests on the actual materials that would be used during construction. Golder performed site-specific laboratory testing on the proposed liner system materials for the landfill expansion area to verify the interface properties. The proposed Phase III liner system configuration is shown in Appendix
A. Interface shear strength testing was performed on the sandwich-like multilayer structure of the Phase III liner system. The test results indicated that the weakest interface was the double sided (DS) geocomposite and 60-mil textured HDPE geomembrane for all applied normal loads. The peak interface shear strength properties were measured as approximately $\phi=26^{\circ}$ and $\mathrm{C}=0$. Additional testing also confirmed these results. Appendix A provides results of the interface shear tests performed on the Phase III proposed liner system materials. To be conservative reduced shear strength properties of $\phi=22^{\circ}$ and $\mathrm{C}=0$ were chosen for this static slope stability analyses. The material properties of the waste and liner interfaces used in the static stability analyses of Phase IIIA temporary slopes are shown in Table 1.

Table 1. Selected Material Properties for Static Stability Analysis

Material/Interface	Unit Weight	ϕ (degree)	\mathbf{C} (psf)
HW 1	115 pcf	31	0
Bedrock 1	150 pcf	40	800
Expansion Area Liner Interface 2	----	22	0

(1) Environmental Solutions, Inc. (1990, 1992, 1993); Rust Environmental \& Infrastructure, Inc. (1998); URS (2005).
(2) Golder Associates, Inc. (2011).

Stability Analysis

Conventional two-dimensional (2-D) limit-equilibrium stability analyses were performed for the existing bottom/side slope liner and waste fill slopes using landfill cross section B-B' (see Figure 1). The computer program GSTABL7 v. 2.005 developed by Gregory Geotechnical Software was used to calculate the factors of safety against potential failure. The program uses 2-D limit equilibrium theory to provide general solutions for slope stability problems with provisions of using the Modified Bishop, Modified Janbu, or Spencer Methods. Both circular and non-circular potential sliding surfaces can be prespecified or randomly generated. The Spencer, and Modified Janbu methods were used for this study. The minimum factor of safety was obtained by varying the initiation and exit points of the trial failure planes.

The Modified Janbu Method of analysis, which normally provides conservative results, was initially used to evaluate a large number of potential failure mechanisms for each cross section analyzed. At least hundred (100) potential failure surfaces are randomly generated by the program and the most critical surface resulting in the lowest factor of safety is identified. The most critical failure plane determined by the Modified Janbu Method is then reanalyzed using the Spencer Method. This method satisfies both force and moment equilibrium and thus provides more realistic (usually higher) estimates of the factors of safety. The Janbu method is generally more conservative compared with the more rigorous Spencer Method and typically results in lower factors of safety than the Spencer Method.

The GSTABL7 output plots, presented in Appendix B, illustrate the 2-D cross section, various potential failure surface conditions considered, and the most critical failure surfaces analyzed in the stability analysis of the proposed landfill temporary fill slopes. The failure surface with the lowest factor of safety is identified with two arrows at its initiation and termination points. The factor of safety for the most critical potential failure plane (a deep failure plane along the Phase IIIA liner) computed using Spencer method was equal to 1.52 .

Conclusion

This report addresses static stability of the landfill slopes for the proposed temporary Phase IIIA fill configuration of the Landfill B-18. The presented analyses demonstrated that computed static factors of safety is higher than 1.5 for the analyzed section. The analyses indicated that the proposed Phase IIIA temporary landfill configuration would result in a stable configuration under static loading conditions in compliance with applicable regulations.

Closure

We trust this report meets your present requirements. If you have any questions regarding this report, please contact this office at your convenience. We appreciate this opportunity to provide our professional services to Golder.

Sincerely yours,
Very truly yours,
HUSHMAND ASSOCIATES, INC.

Naz Mokarram, Ph.D. Senior Staff Engineer

Ben Hushmand, Ph.D., P.E. 44777 President, Principal Engineer

References

Environmental Solutions, Inc., 1990. "Engineering and Design Report, Landfill Unit B-18, Phase I and II and Final Closure, Kettleman Hills Facility, Kings County, California, Volumes I and II," report prepared for Chemical Waste Management, Inc., August.

Environmental Solutions, Inc., 1992. "Backup Calculations Supporting the Interface testing Program for Landfill Unit B-18, Kettleman Hills Facility, Kings County, California," report prepared for Chemical Waste Management, Inc., Februrary.

Environmental Solutions, Inc., 1993. "Revised Intermediate Waste Fill Plan, Landfill Unit B-18, Phase I, Kettleman Hills Facility, Kings County, California, Volumes I and II," report prepared for Chemical Waste Management, Inc., August.

Golder Associates, Inc. (1990) "Direct Shear Testing Program for Landfill Cover Design, Kettleman Hills Facility", June 29, 1990.

Golder Associates, Inc. (1991) "Landfill B-19, Phase IA Redesign and Closure Plan, Kettleman Hills Facility, Kettleman City, Californica," Volumes I-IV, April 15, 1991.

Golder Associates, Inc. (2011) "Engineering and Design Report, Landfill Unit B-18, Ketteleman Hilles Facility, Kettleman City, California" Report to Kettleman Hills Facility.

Hushmand Associates, Inc. (2008) "Slope Stability Analysis Report, Kettleman Hills Facility, Hazardous Waste Landfill Unit B-18 Expansion, Kettleman City, Kings County, California," Report to Kettleman Hills Facility, September.

Hushmand Associates, Inc. (2009) "Addendum Report- Slope Stability Analysis, Kettleman Hills Facility, Hazardous Waste Landfill Unit B-18 Expansion, Kettleman City, Kings County, California," Report to Kettleman Hills Facility, December.

Rust Environment \& Infrastructure, Inc., 1997 (Rev 1: 1998) "Preliminary Stability Evaluation, Municipal Solid Waste Landfill Unit B-19, Kettleman Hills Facility, Kettleman City, Kings County, California," Technical Report prepared for Chemical West Management, Inc., July.

URS (2005) "Preliminary Stability Analyses, Kettleman Hills Facility Expansion, Kettleman City, California," prepared for Chemical West Management, Inc.

FIGURES

APPENDIX A

INTERFACE SHEAR TEST RESULTS

TABLE 1
CLIENT: GOLDER \& ASSOCIATES PROJECT: KETTLEMAN HILLS

INTERFACE SHEAR TEST RESULT (ASTM D5321/6243)

Date: 2-Oct-09
test Configuration
1

NORMAL LOAD		
		$\downarrow \square$
TOP BOX		
SKAPS, 8oz DS Geocomposite, TN 220-2-8	NA	62070
(Floating) GSE, 60 mil DS Textured HDPE	(as shown)	44500
(Floating) SKAPS, 8oz DS Geocomposite, TN 220-2-8	(NA)	62070
(Floating) GSE, 60 mil DS Textured HDPE	(as shown)	44501
Clay Soil	(NA)	62009
BOTTOM BOX		

TEST CONDITIONS:

SAMPLE PREPARATION:

1. Specimens were cut along machine direction to $14^{\prime \prime} \times 17^{\prime \prime}$ for the upper box, and 14 " $\times 19$ " for the lower box,
with an effective test area of $12^{\prime \prime} \times 12$ ".
2. The Maximum Dry Density (MDD) of the soil is $\quad 111.8$ pcf at $16.4 \% \quad$ Optimum Moisture Content (OMC).
3. Soil specimen was remolded to $\quad \mathbf{1 0 2 . 8 6}$ pcf;i.e.. $\underline{\mathbf{9 2 . 0} \%} \quad \overline{\text { of MDD at }} \quad \underline{20.5 \%}$ moisture content.
(forming 2 inch layer in the TOP and BOTTOM boxes).
4. The three intermediate geosynthetic specimens were floating during shear run.

CONSOLIDATION:

1. Each set of specimen was consolidated under Dry condition for $\quad \underline{24}$ hrs @ normal load before shearing.
2. Normal loads were applied using Hydraulics for the highest load, Bladder for the intermediate and lowest loads.

SHEAR TEST:

1. Shear test was conducted @ $0.040 \mathrm{in} / \mathrm{min}$.
2. Sheared @ minimı 3.0 inch horizontal displacement.
3. Test specimens were sheared i Dry condition.
4. Test were performed in general accordance with ASTM D6243 / ASTM D5321
using Brainard-Kilman LG-112 Direct Shear machine with effective test area of 12 in X 12 in.

TEST RESULTS:

Normal Stresses Applied		Asperity Heights (C\#44500)				Asperity Heights (C\# 44501)				Moisture Content (Soil)		PEAK Streng th		OST- Peak strength at 3.0 InCHES		
		UP		DOWN		UP		DOWN				Shear Stress	Secant Angle	Shear Stress	Secant Angle	
		Before	After													
(psi)	(psf)	(mils)	(\%)	(\%)	(pst)	(degrees)	(pst)	(degrees)								
34.7	5,000	23.7	23.1	24.4	23.2	23.5	19.4	24.4	23.7	20.5	18.6	2,709	28	1,148	13	
69.4	10,000	23.7	22.9	23.7	22.3	22.9	17.7	24.3	22.1	20.5	19.8	4,737	25	2,032	11	
104.2	15,000	24.6	22.8	25.3	24.6	24.8	16.3	24.0	23.0	20.5	20.1	7,953	28	3,283	12	
Note: N/A - Not Applicable						COHESION (psf) : COEFFICIENT OF FRICTION FRICTION ANGLE (degrees)						0		19		
		0.52	0.21													
		27.7	12.1													

NOTE: The friction angles and cohesion results given here are based on mathematically determined best fit line.
OBSERVATIONS:

1. No tilting of the system or any abnormalities observed during and after the test.
2. Superficial abrasion on the geosynthetics interfacing sides (typical to all loads).
3. Sliding occurred between the DS Geocomposite (C\# 62070) and 60 mil HDPE (C\# 44501) on all loads.

See attached photos (907-1-15,000 psf / 907-1-10,000 psf / 907-1-5,000 psf).
 $4 \mathrm{~A})$

+ 青

TABLE 1-A
CLIENT: GOLDER \& ASSOCIATES
PROJECT: KETTLEMAN HILLS

INTERFACE SHEAR TEST RESULT (ASTM D5321/6243)
PGL Job No. G091078
Reviewed By: \qquad
test configuration 1-A

TEST CONDITIONS:
SAMPLE PREPARATION:

1. Specimens were cut along machine direction to $14^{\prime \prime} \times 17^{\prime \prime}$ for the upper box, and $14 " \times 19$ " for the lower box, with an effective test area of $12^{\prime \prime} \times 12^{\prime \prime}$.
2. Geosynthetic specimens were secured via flat bar clamping mechanisms complete with bolts and nuts (7-pairs). CONSOLIDATION:
3. The specimen was consolidated under
4. Normal load was applied using SHEAR TEST:
Dry
Bladder condition for $\mathbf{2}$ hrs $@$ normal load before shearing.
5. Shear test was conducted @
6. Sheared @ minimum 3.
7. The test specimens were sheared at Dry condition.
8. Test were performed in general accordance with ASTM D6243 / ASTM D5321 using Brainard-Kilman LG-112 Direct Shear machine with effective test area of 12 in X 12 in.

TEST RESULTS:

Normal Stresses Applied		Asperity Heights		PEAK STRENGTH		POST- PEAK STRENGTH AT 3.0 INCHES			
		Shear Stress	Secant Angle	Shear Stress	Secant Angle				
		mils							
(psi)	(psf)		Before	After	(psf)	(degrees)	(psf)	(deg	es)
69.44	10,000	25.5	18.4	4940	26	2135			

[^24]in/min.
ch horizontal displacement.

1. No tilting of the system or any abnormalities observed during and after the test.
2. Superficial abrasion on the geosynthetics interfacing sides (typical to all loads).
3. Sliding occurred between the two interfacing surfaces.

Shear Stress/ Displacement Curve

Precision Geosynthetic Laboratories

TABLE 1-B
CLIENT: GOLDER \& ASSOCIATES
PROJECT: KETTLEMAN HILLS

Reviewed By:

PGL Job No. G091078
Date: \qquad

TEST CONDITIONS:

SAMPLE PREPARATION:

1. Specimens were cut along machine direction to 14 " $\times 17^{\prime \prime}$ for the upper box, and 14 " $\times 19$ " for the lower box, with an effective test area of 12 " $\times 12$ ".
2. Geosynthetic specimens were secured via flat bar clamping mechanisms complete with bolts and nuts (7-pairs). CONSOLIDATION:
3. The specimen was consolidated under Dry condition for $\quad \underline{\text { hrs }}$ @ normal load before shearing.
4. Normal load was applied using
5. Normal load was applied using

SHEAR TEST:

1. Shear test was conducted @
2. Sheared @ minimum

3
3.0
0.04
in/ min.
ne test specimens were sheared at
4. Test were performed in general accordance with ASTM D6243 / ASTM D5321 using Brainard-Kilman LG-112 Direct Shear machine with effective test area of 12 in X 12 in.

TEST RESULTS:

OBSERVATIONS:

1. No tilting of the system or any abnormalities observed during and after the test.
2. Superficial abrasion on the geosynthetics interfacing sides (typical to all loads).
3. Sliding occurred between the two interfacing surfaces.

Figure \#2
Shear Stress/ Displacement Curve

Precision Geosynthetic Laboratories

@ 15,000 psf

@ 10,000 psf

APPENDIX B

SLOPE STABILITY ANALYSIS PLOTS

Kettleman Hills Landfill B-18 Phase IIIA Interim Slope

Kettleman Hills Landfill B-18 Phase IIIA Interim Slope

APPENDIX H. 5

FINAL CLOSURE STABILITY

Hushmand Associates, Incorporated
Geotechnical, Earthquake and Environmental Engineers

SLOPE STABILITY ANALYSIS REPORT

KETTLEMAN HILLS FACILITY HAZARDOUS WASTE LANDFILL UNIT B-18 EXPANSION KETTLEMAN CITY, KINGS COUNTY, CALIFORNIA

Prepared for:
Chemical Waste Management, Inc.
Kettleman Hills Facility, 35251 Old Skyline Road
Kettleman City, California 93239

Prepared by:
Hushmand Associates, Inc.
250 Goddard
Irvine, California 92618

September 2008

HAI

September 15, 2008

Golder Associates Inc.
230 Commerce, Suite 200
Irvine, California, USA 92602
Attn: Mr. Scott Sumner, P.E. Principal

SUBJECT: SLOPE STABILITY ANALYSIS REPORT KETTLEMAN HILLS FACILITY
 HAZARDOUS WASTE LANDFILL UNIT B-18 EXPANSION KETTLEMAN CITY, KINGS COUNTY, CALIFORNIA HAI PROJECT No. 08-0228

Dear Mr. Sumner:
Hushmand Associates, Inc. (HAI) is pleased to submit to Golder Associates, Inc. (Golder) four (4) copies of the slope stability evaluation report for the Class I/II hazardous waste landfill unit B-18 (Landfill B-18) expansion at Waste Management, Inc. (WMI) Kettleman Hills Facility.

We trust this report meets your present requirements. If you have any questions regarding this report, please contact this office at your convenience. We appreciate this opportunity to provide our professional services to Golder.

Sincerely yours,
HUSHMAND ASSOCIATES, INC.

Ben Hushmand, PhD, PE 44777 President, Principal Engineer

S. Ali Bastani, $\mathrm{PhD}, \mathrm{PE}, 4 \mathrm{c}_{2}$ s $4 \mathrm{RO}+\mathrm{N}$

Vice President, Principal Engineerall

TABLE OF CONTENTS

Page
INTRODUCTION 1
1.1 GENERAL 1
1.2 BACKGROUND AND PROJECT DESCRIPTION 2
1.2.1 Background 2
1.2.2 Project Description and Scope 2
1.3 REGULATORY REQUIREMENTS FOR STATIC AND SEISMIC STABILITY 3
2.0 SITE DESIGN GROUND MOTIONS 4
2.1 PREVIOUS SITE DESIGN GROUND MOTIONS 4
2.2 SITE DESIGN GROUND MOTIONS UPDATE 5
2.2.1 Site Design Response Spectra. 5
2.2.2 Design Ground Motions 6
2.3 LIQUEFACTION 8
2.4 SEISMIC SETTLEMENT 8
3.0 SLOPE STABILITY AND LANDFILL DISPLACEMENT ANALYSIS 9
3.1 GENERAL 9
3.2 LANDFILL GEOMETRY AND ANALYSIS SECTIONS 9
3.3 LANDFILL LINER DESIGN 10
3.4 MATERIAL PROPERTIES 10
3.5 ANALYSIS APPROACH 12
3.6 STATIC AND PSEUDO-STATIC STABILITY ANALYSES 13
3.6.1 Liner and Waste Mass Static Stability 14
3.6.2 Pseudo-Static Stability Analyses. 14
3.7 SEISMIC DEFORMATION ANALYSES 15
3.7.1 Simplified Analysis of Landfill Slopes Seismic Deformations 15
3.7.2 Site Response and Newmark Slope Deformation Analyses 17
3.8 STATIC AND SEISMIC STABILITY OF FINAL COVER 19
4.0 CONCLUSIONS 21
5.0 REFERENCES 22

TABLES

Table $1 \quad$ Selected Material Properties for Static and Seismic Stability Analyses
Table 2 Summary of Slope Stability Analysis Results
Table $3 \quad$ Results of Simplified Seismic Deformation Analyses for Landfill Liner
Table 4 Seismically-Induced Permanent Displacements from Newmark Deformation Analyses (Cross Section D-D’, Failure Surface 1 along Landfill Liner)
Table 5 Seismically-Induced Permanent Displacements from Newmark Deformation Analyses (Cross Section F-F', Failure Surface 3 along Landfill Liner)
Table 6 Seismically-Induced Permanent Displacements from Newmark Deformation Analyses (Cross Section D-D’, Cover Analysis)

FIGURES

Figure 1 Proposed B-18 Landfill Liner Grades
Figure 2 Proposed B-18 Landfill Final Grading
Figure 3 Analysis Cross Sections A-A’, B-B', C-C’ and Potential Failure Planes
Figure 4 Analysis Cross Sections D-D', E-E', F-F’ and Potential Failure Planes
Figure 5 5-Percent Damped Site Design Response Spectra for Near-Field and Far-Field Earthquakes
Figure $6 \quad$ Original Horizontal Acceleration Record \& Response Spectrum Matched to Design Response Spectrum - 1994 Northridge Eq. Castaic 090
Figure $7 \quad$ Original Corrected Time Histories - 1994 Northridge Earthquake Station: Castaic Old Ridge_090

FIGURES (continued)

Figure 8 Spectrum Compatible Time Histories - 1994 Northridge Earthquake Station: Castaic Old Ridge_090
Figure $9 \quad$ Original Horizontal Acceleration Record \& Response Spectrum Matched to Design Response Spectrum - 1989 Loma Prieta Eq. Gilroy Array 090 Record
Figure 10 Original Corrected Time Histories - 1989 Loma Prieta Eq. Record Station: Gilroy Array 090
Figure 11 Spectrum Compatible Time Histories - 1989 Loma Prieta Eq. Station: Gilroy Array 090
Figure 12 Original Horizontal Acceleration Record \& Response Spectrum Matched to Design Response Spectrum - 1994 Northridge Eq. Pacoima Kagel Canyon 360 Record
Figure 13 Original Corrected Time Histories - 1994 Northridge Eq. Record Station: Pacoima Kagel Canyon 360 Record
Figure 14 Spectrum Compatible Time Histories - 1994 Northridge Eq. Station: Pacoima Kagel Canyon 360 Record
Figure 15 Original Horizontal Acceleration Record \& Response Spectrum Matched to Design Response Spectrum - 1999 Chi Chi Eq. CHY042 N Record
Figure 16 Original Corrected Time Histories - 1999 Chi Chi Eq. Record Station: CHY042 N
Figure 17 Spectrum Compatible Time Histories - 1999 Chi Chi Eq. Station: CHY042 N
Figure 18 Proposed Landfill Liner System
Figure 19 Shear Modulus Reduction and Damping (Hazardous Waste) and Clay (Liner) Used in This Study
Figure 20a Section D-D', Finite Element (Quad4M) Mesh
Figure 20b Section F-F', Finite Element (Quad4M) Mesh
Figure 20c Section D-D', Finite Element (Quad4M) Mesh
Figure 21 Earthquake Induced Displacements, Section D-D' - Failure Plane 1 2-D Quad4m Dynamic Response Analysis (Previous Ground Moutions)
Figure 22 Earthquake Induced Displacements, Section D-D' - Failure Plane 1 2-D Quad4m Dynamic Response Analysis (Recent Ground Moutions)
Figure 23 Earthquake Induced Displacements, Section F-F' - Failure Plane 3
2-D Quad4m Dynamic Response Analysis (Previous Ground Moutions)
Figure 24 Earthquake Induced Displacements, Section F-F' - Failure Plane 3 2-D Quad4m Dynamic Response Analysis (Recent Ground Moutions)
Figure 25 Proposed Landfill Final Cover

APPENDICES

Appendix A Figures from ESI 1993 and RUST 1998 Reports (Design Earthquake Ground Motions and Landfill Liner Systems)
Appendix B Slope Stability Analysis Results
Appendix C Static and Seismic Stability of Final Cover

SLOPE STABILITY ANALYSIS REPORT

KETTLEMAN HILLS FACILITY
HAZARDOUS WASTE LANDFILL UNIT B-18 EXPANSION KETTLEMAN CITY, KINGS COUNTY, CALIFORNIA

1.0 INTRODUCTION

1.1 GENERAL

This report summarizes the results of Hushmand Associates, Inc. (HAI) slope stability analyses for the proposed expansion of the existing Class I/II (hazardous and designated wastes) Landfill Unit B18 at Chemical Waste Management (CWM) Kettleman Hills Facility (KHF). The KHF is located in Kettleman City, Kings County, California approximately one mile north of State Route 41 and 2.5 miles west of Interstate Freeway 5.

In 2005, URS Corporation (URS) prepared a stability analysis report as part of an Environmental Impact Report (EIR) for the proposed Landfill Unit B-18 expansion (URS, 2005). To improve the proposed landfill expansion design, Golder Associates, Inc. (Golder) recently proposed some modifications to the URS final fill plan (Golder, 2008a, 2008b). These modifications required additional slope stability evaluations to demonstrate conformance of the proposed revised fill plan with regulatory requirements. A preliminary slope stability analysis report was then prepared by HAI (2008) in support of the EIR preparation for the proposed landfill expansion (CH2M Hill, 2008).

This report provides detailed stability evaluations for design of the revised landfill expansion fill plan, and is an appendix to a comprehensive design report prepared by Golder for the proposed landfill expansion (Golder, 2008b). The scope of this report is to evaluate static and seismic slope stability for the proposed Landfill Unit B-18 expansion fill plan configuration geometry as provided by Golder. Stability of landfill liner and waste slopes were analyzed to meet the design criteria discussed in Section 1.3. More details on the project background, project description, and regulatory requirements are provided in the landfill expansion EIR and design report (CH2M Hill, 2008; Golder, 2008b).

The following sections discuss the site design criteria, design earthquake motions, material properties used in static and pseudo-static slope stability and seismic deformation analyses, static slope stability and seismic deformation analysis methods, and results of the analyses.

1.2 BACKGROUND AND PROJECT DESCRIPTION

1.2.1 Background

The presently permitted design of the Class I/II Landfill Unit B-18 was developed in 1990 based on the results of detailed seismicity and static and dynamic slope stability analyses (Environmental Solutions, Inc. [ESI], 1990 and 1992). The landfill was constructed in two phases in early 1990’s, designated as Phases I and II (see Figure A-1 of Appendix A) with corresponding leachate collection and removal systems (LCRSs). The existing liner systems in the Phase I and II areas meet applicable California Code of Regulations (CCR) Title 22 requirements. The configuration of the final fill plan for the 1990 design and existing liner systems for the landfill Phases I and II are provided in Appendix A (Figures A-2 to A-4).

1.2.2 Project Description and Scope

The CWM has proposed to expand the existing Class I/II Landfill Unit B-18 to provide an additional 5.0 million cubic yards of air space for a total capacity of approximately 15.7 million cubic yards. The proposed expansion design modifications to the 1990 ESI landfill liner grades and final grading plans includes expansion of the landfill footprint (mainly to the west and northwest of the site) requiring placement of approximately 12 acres of new composite liner, and increasing the landfill height and slope steepness (Figures 1 and 2, respectively). The expansion will also require rerouting of surface water and development of a new lined retention basin southeast of the landfill. Expansion of the site requires performing new analyses to demonstrate its conformance with applicable federal and state regulations for design of Class I/II landfills. These analyses include:

- Updating site seismicity and design ground motions using the recent attenuation relationships,
- Static and seismic stability of landfill slopes and liner system for final fill configuration,
- Landfill final cover stability, and
- Waste settlement and its effects on landfill final cover performance.

This report addresses the first three analysis items listed above (seismicity and ground motions, static and seismic stability of landfill slopes and liner system, and landfill final cover stability) and includes effects of increased landfill height and slope steepness on stability evaluations. The stability report presented here will be included as part of the Design Report being prepared by Golder for the proposed landfill expansion evaluation. The design issues associated with the landfill settlement and its effects on landfill cover performance are addressed in the Design Report.

The proposed final fill plan and landfill cover grades modified from the 1990 ESI final fill plan design are shown in Figure 2. A preliminary fill plan for the proposed Landfill B-18 expansion was initially developed, which was then refined based on the results of slope stability analysis iterations to arrive at the final fill plan design shown in Figure 2. Locations and configurations of the cross sections, which were evaluated for stability, are shown in Figures 1 through 4.

1.3 REGULATORY REQUIREMENTS FOR STATIC AND SEISMIC STABILITY

The existing Class I/II Landfill B-18 was designed in accordance with applicable regulations in CCR Titles 22 and 23 and the specific conditions in the site hazardous waste facility permit. CCR Titles 22 and 23 require consideration of the Maximum Credible Earthquake (MCE) for Class I landfills.

MCE is defined by California Geological Survey (CGS) as "the maximum earthquake that appears capable of occurring under the presently known tectonic framework." Thus, for stability evaluations of the expanded Landfill Unit B-18, the MCE is used as the design earthquake and is evaluated for faults determined to produce potentially damaging ground motions at the site. Near- and far-field seismic events are evaluated to assure that both higher intensity and lower intensity earthquakes are considered. Near-field events at this site generate shorter duration, higher intensity, and higher frequency ground shaking compared to far-field earthquakes that result in longer duration but lower intensity and lower frequency ground shaking.

For seismic stability, the present state-of-the-practice is to estimate landfill slope displacements for design earthquakes, using a Newmark (Newmark, 1965) equivalent method, and demonstrate that they are below an allowable value that maintains the integrity of the landfill. Current engineering practice for slope stability evaluation along the landfill liner is to allow a maximum seismicallyinduced permanent slope displacement of six to twelve inches to correspond to acceptable performance for well-designed liner systems (Seed and Bonaparte, 1992). Class I landfills at KHF are designed to meet the lower bound displacement (more conservative) by limiting the maximum allowable slope displacement along the landfill liner to only six inches, which is also used in the design of the Class I/II Landfill Unit B-18 in this report. The criteria commonly used for landfill cover design, which allows a maximum seismically-induced permanent displacement of up to twenty four inches (2 feet) of the final covers, is based on the understanding that these would be relatively easily accessible and thus quickly repairable in the event of damage by a major seismic occurrence.

2.0 SITE DESIGN GROUND MOTIONS

2.1 PREVIOUS SITE DESIGN GROUND MOTIONS

A detailed discussion of the site geology, faulting, and seismicity was presented in the design report prepared for Landfill Unit B-18 (ESI, 1990) and more recent reports prepared for Landfill Unit B-19 at Kettleman Hills Facility (Rust Environment \& Infrastructure [Rust], 1998; URS, 2005; HAI, 2006). Deterministic and probabilistic seismic hazard evaluations of the site were performed by Rust (1998), and also independently by William Lettis \& Associates (WLA), reported as Appendix A of the 1998 Rust report. The ground motions and seismic design parameters presented in the 1998 Rust report were used in the 2005 URS and 2006 HAI reports, which were also used in the preliminary seismic deformation analyses performed for the Landfill B-18 expansion EIR preparation (HAI, 2008a). The following summarizes results of the 1998 seismic ground shaking evaluations and the selected ground motions used in two-dimensional seismic response analyses at the KHF site:

- The closest seismic sources to the site are segments of the blind Ramp Thrust Fault that is present beneath the site at approximate distances of 8 to 27 km , while the most active sources in the site area are associated with the San Andreas Fault zone at a distance of about 35 km from the site.
- No evidence of fault rupture hazard is known to exist at the project site (i.e., within 200 feet of Landfill Unit B-18).
- The Ramp Thrust Kettleman Hills North Dome segment (Magnitude $\left[M_{w}\right] 6.6$) of the blind Ramp Thrust faults and the San Andreas Slack Canyon-Cajon Pass segment ($\mathrm{M}_{\mathrm{w}} 7.8$) will produce the highest near-field and far-field ground motions at the site, respectively. The MCE's associated with these faults were selected as the site design events.
- The deterministic values of peak horizontal ground accelerations (PHGA) for the near-field and far-field design events were estimated as 0.57 g and 0.21 g , respectively. The calculated PHGA of 0.57 g approximately corresponds to an average probabilistic return period of 1,000 years (RUST, 1998).
- Duration of ground shaking is a major factor influencing the level of seismic-induced slope displacements. Empirical relations are available that provide an estimate of earthquake shaking duration as a function of earthquake magnitude, distance, and site condition (Abrahamson and Silva, 1996). Using the Abrahamson and Silva empirical relationship the ground shaking duration for Landfill Unit B-18, which is characterized as rock site, is estimated to be about 10 seconds and 32 seconds for the near-field design event ($M=6.6, r$ $=10 \mathrm{~km})$ and far-field design event $(\mathrm{M}=7.8, \mathrm{r}=35 \mathrm{~km})$, respectively. Duration of the ground shaking was used in the simplified Newmark-type seismic deformation analyses for the proposed site expansion EIR (HAI, 2008a).
- One "distant" (far-field) and three "local" (near-field) earthquake records were selected and scaled to correspond to the design peak horizontal accelerations in rock as design input motions. These records have a peak acceleration, frequency content, and duration representative of the expected earthquake motions at the site. The selected records were:

1) Caltech A-1 synthetic acceleration time history simulating a M 8+ earthquake on the San Andreas Fault, scaled to peak amplitude 0.21g,
2) Seed-Hayward synthetic acceleration time history simulating a $M \sim 7$ earthquake matched to the site design response spectrum to approximate the near-field MCE,
3) Castaic Old Ridge Route, sedimentary rock outcrop, Ch 1 (90 deg Component) acceleration record from the $1994\left(\mathrm{M}_{\mathrm{W}} \approx 6.7\right)$ Northridge, California earthquake scaled to a peak amplitude of 0.57 g , and
4) Pacoima-Kagel Canyon, sedimentary rock outcrop, Ch 3 (360 deg Component) acceleration record from the $1994\left(\mathrm{M}_{\mathrm{W}} \approx 6.7\right)$ Northridge, California earthquake scaled to a peak amplitude of 0.57 g .

Details of the above site design earthquake parameters derivation, including figures illustrating time histories of the selected acceleration records and a comparison of their response spectra with the site design response spectrum are provided in the 1998 Rust report. The 1998 ground motion time history and response spectrum plots are also provided in Appendix A of this report. These acceleration time histories were adjusted by scaling the peak ground acceleration (PGA).

2.2 SITE DESIGN GROUND MOTIONS UPDATE

2.2.1 Site Design Response Spectra

Deterministic seismic hazard analyses (DSHA) were performed for the Ramp Thrust Kettleman Hills North Dome segment of the blind Ramp Thrust faults (Great Valley Fault, Segment 14) and an earthquake scenario similar to the San Andreas 1857 earthquake using the latest attenuation relationships and the site faulting and seismicity data. As discussed above, these faults produce the highest near-field and far-field ground motions at the site, respectively. The MCE's associated with these faults were selected as the site design events. The MCE magnitude and closest source to site distance for these faults were updated based on the latest information on the site faulting and seismicity. For the near-field source two different fault geometry models were used in the analyses. The first one was based on the fault database developed for the 2008 update of the national seismic hazard maps (Petersen et al., 2008) representing the site with averaged seismicity parameters from adjacent faults around the site, while the second one was based on an older but site-specific local seismicity investigation (Stein and Ekstrom, 1992; Ekstrom et al., 1992). The magnitude and distance values used in the deterministic seismic hazard analyses were:

- Ramp Thrust Kettleman Hills North Dome:
- (Case 1) $\mathrm{M}_{\mathrm{w}} \cong 7, \mathrm{Rx} \cong 6.5 \mathrm{~km}$, Rrup $\cong 10 \mathrm{~km}$, Rupture Width $\cong 38.4 \mathrm{~km}$, Top of Rupture $\cong 8.1 \mathrm{~km}$, and Dip Angle $\cong 22$ degrees (Petersen et al., 2008)
- (Case 2) $\mathrm{M}_{\mathrm{w}} \cong 7, \mathrm{Rx} \cong 8 \mathrm{~km}$, Rrup $\cong 8 \mathrm{~km}$, Rupture Width $\cong 17 \mathrm{~km}$, Top of Rupture $\cong 6 \mathrm{~km}$ and Dip Angle $\cong 45$ degrees (Stein and Ekstrom, 1992; Ekstrom et al., 1992)
- San Andreas 1857 Earthquake: $\mathrm{M}_{\mathrm{w}} \cong 8$ and Distance $\cong 35 \mathrm{~km}$ (Petersen et al., 2008)

For the near-field source, using the above fault geometries, initially two different deterministic design response spectra were developed, and then the site final design response spectrum was generated by averaging these two response spectra. Based on the subsurface geology and results of exploratory borings drilled at the site (ESI, 1990; Rust, 1998), ground motion evaluations for the project site were performed using four recently developed attenuation relationships for an average shear wave velocity of approximately $760 \mathrm{~m} / \mathrm{s}$ ($\sim 2500 \mathrm{ft} / \mathrm{sec}$) estimated for the upper 30 meters (~ 100 feet) of the site.

Attenuation relationships describe the relation of ground motion levels with earthquake magnitude and distance (closest distance between site and earthquake rupture plane). These empirical relationships are used to describe the variation of response spectral accelerations at specific structural periods of vibration and damping ratios with earthquake magnitude and distance, and to incorporate the local geologic conditions and the near-source effects. The selected attenuation relationships are based on the Next Generation Attenuation (NGA) relationships as listed below:

- Abrahamson and Silva, 2008
- Campbell and Bozorgnia, 2008
- Boore and Atkinson, 2007
- Chiou and Young, 2006

Figure 5 presents the estimated site design response spectra for the near-field and far-field seismic sources (Ramp Thrust Kettleman Hills North Dome and San Andreas faults, respectively). Based on this figure, the deterministic values of PHGA for the near-field and far-field design events were estimated as 0.62 g and 0.16 g , respectively.

2.2.2 Design Ground Motions

One "distant" (far-field) and three "local" (near-field) earthquake records were selected and matched to the respective site design response spectrum to be used as input motions in site response analysis for the landfill. These records have a peak acceleration, frequency content, and duration approximately representative of the expected earthquake motions at the site. The selected records were from the Strong Motion Database of Pacific Earthquake Engineering Research (PEER) Center (http://peer.berkeley.edu/smcat/search.html) as listed below:

- The CHY042, USGS Class B site $\left(\mathrm{Vs}^{*}=360-750 \mathrm{~m} / \mathrm{s}\right)$, north component acceleration record from the 1999 ($\mathrm{M}_{\mathrm{W}} \approx 7.6$) Chi-Chi, Taiwan earthquake
- The Castaic Old Ridge Route, sedimentary rock outcrop (USGS Class B site, Vs ${ }^{*}=360-750$ m / s), Ch 1 (90 deg Component) acceleration record from the 1994 ($\mathrm{M}_{\mathrm{W}} \approx 6.7$) Northridge, California earthquake
- The Gilroy Array \#1, sedimentary rock outcrop (USGS Class A site, Vs ${ }^{*}>750 \mathrm{~m} / \mathrm{s}$), 90 deg component acceleration record from the $1989\left(\mathrm{M}_{\mathrm{W}} \approx 6.9\right)$ Loma Prieta, California earthquake
- The Pacoima-Kagel Canyon, sedimentary rock outcrop (USGS Class B site, Vs ${ }^{*}=360-750$ m / s), Ch 3 (360 deg Component) acceleration record from the 1994 ($\mathrm{M}_{\mathrm{W}} \approx 6.7$) Northridge, California earthquake

Where Vs^{*} is the average shear wave velocity to a depth of $30 \mathrm{~m}(\sim 100 \mathrm{ft})$.
The above candidate earthquake records were selected based on the following seismological properties:

- Spectral content (initial recordings with energy in the matching frequency band),
- Magnitude of the design earthquake ± 0.5,
- Source to site distance (source to recording station distances of 8 to 35 km), and
- Rupture directivity.

Once the reference time histories were selected, they were adjusted to provide the response spectrum compatible time histories according to the following approach and criteria:

1. Adjustment of the response spectrum of the reference time histories was performed using a time-domain procedure described by Abrahamson $(1991,1998)$.
2. The response spectrum of the spectrum compatible time histories should follow reasonably the recommended design response spectra.

The program EZ-FRISK version 7.26 spectral matching routine (Risk Engineering, 2008) was used to develop spectrum-compatible horizontal motions using the above-mentioned startup motions. The spectral matching was performed within the frequency range of PGA to 10.0 seconds. In order to remove the drift induced in displacement time histories as a result of spectral matching, the baseline correction module of EZ-FRISK was applied to the spectrally-matched ground motions. The final design ground motions are baseline-corrected.

Figures 6 through 17 illustrate plots of the original natural records and the final (the response spectrum compatible) time histories and response spectra for the selected earthquake records. Acceleration, velocity, and displacement time histories and 5-percent damped acceleration response spectra are provided in these plots.

These four spectrum compatible records were selected as the updated input ground motions for the landfill dynamic response analysis based on the site design spectra and seismological properties. These motions provide an estimate of the landfill median dynamic response. The selected records were used as input motion in two-dimensional seismic response analysis of the proposed Landfill Unit B-18 expansion. Digitized time history data for the spectrum compatible earthquake records are provided in electronic format for use in the analysis.

2.3 LIQUEFACTION

The potential for liquefaction occurrence in the area of the proposed landfill expansion is considered to be very low or non-existent. The KHF site is underlain by Tertiary sedimentary rocks of the Etchegoin-Jacalitos (Te), San Joaquin (Ts), and Tulare (Tt) Formations. The Landfill Unit B-18 is located within the San Joaquin Formation sedimentary bedrock. The San Joaquin Formation consists primarily of fine-grained sedimentary rocks, principally shale, claystone, and sandstone, which are not susceptible to liquefaction. Groundwater at the site is also deeper than 50 feet. Therefore, based on the site subsurface geology, the potential for liquefaction at the site is very low.

2.4 SEISMIC SETTLEMENT

Similarly, the potential for seismically-induced settlements of the landfill foundation materials was estimated to be negligible based on the subsurface geology and cemented nature of the bedrock. The site foundation materials are classified primarily as the Tertiary sedimentary rocks, which are not susceptible to seismically-induced settlement.

3.0 SLOPE STABILITY AND LANDFILL DISPLACEMENT ANALYSIS

3.1 GENERAL

The slopes of the proposed Class I/II Landfill B-18 expansion were evaluated for stability under both static and dynamic loading conditions. As part of this evaluation, the effects of dynamic landfill deformations were considered relative to performance of the base liner system during the estimated design ground motions due to the MCE as required by the California Code of Regulations for seismic design of Class I and Class II landfills (see Section 1.3 of the report). The approach used in evaluating the stability and deformation of the slopes involved conventional analytical methods of slope stability evaluation and a refined Newmark-type (Newmark, 1965) seismic deformation analysis including dynamic site response analysis using two-dimensional (2-D) equivalent-linear wave propagation and finite element models.

The information required for the slope stability and landfill deformation analyses consisted of the site geology and seismicity, geometry of the fill plan and landfill bottom excavation and side slopes, and material parameters for waste, the liner systems, and the foundation bedrock. This information was based on the site-specific data gathered for the analysis including laboratory test data (ESI, 1990, 1992; Rust, 1998; URS, 2005; HAI, 2006), design of preliminary proposed fill plans for expanded landfill configuration (URS, 2005; CH2M Hill, 2008; HAI, 2008; Golder, 2008a), inhouse compiled database of material properties, and a literature survey of published data on slope stability and seismic deformation analysis of landfills.

The site geology and seismicity is described in detail in the ESI (1990) and Rust (1998) reports. The landfill bottom excavation and side slopes, and proposed new fill plan and cover grades are shown in Figures 1 and 2. A fill plan for the proposed new design of Landfill Unit B-18 expansion was developed by Golder. This fill plan shown in Figure 2, is evaluated for stability using the results of static and seismic slope stability analyses presented in this report.

3.2 LANDFILL GEOMETRY AND ANALYSIS SECTIONS

Figures 1 and 2 present plan views of the Landfill Unit B-18 base and the proposed final fill plan contours, respectively. Six cross sections of the landfill were analyzed for slope stability including waste slopes and landfill liner system. These cross sections (A-A', B-B', C-C', D-D', E-E', and FF^{\prime}) are shown in Figures 3 and 4, and their locations are shown on Figures 1 and 2.

Stability of the bottom/side slope and waste fill slopes were analyzed using representative cross sections selected through critical areas of the landfill. Locations of the stability analysis sections were selected based on variations in the landfill geometry such as height and steepness of waste slopes, orientation, height, and steepness of landfill bottom and side slopes around the landfill perimeter.

3.3 LANDFILL LINER DESIGN

Configurations of the existing landfill bottom/side slope liners that comply with state and federal regulations are provided in the ESI 1990 and 2005 URS reports. Figures from the 1990 and 2005 reports are presented in Appendix A of this report illustrating the liner designs for the bottom/side slopes. Figure 18 presents configuration of the proposed liner system for the expansion areas of the landfill. In the slope stability analyses, for each liner configuration, the weakest interface in the composite liner system is expected to provide the preferred failure path for potential failure planes.

3.4 MATERIAL PROPERTIES

Key material properties of various components of the landfill needed to perform static and seismic slope stability analyses are: (1) unit weight, (2) shear strength parameters (static and dynamic), (3) dynamic small-strain shear modulus (or shear wave velocity) and damping ratio properties, and (4) variation of the shear modulus and damping ratio with shear strain during shaking.

Detailed site-specific information on waste, existing liner systems, and foundation bedrock material properties are provided in the Golder and ESI design and conformance testing reports prepared during early 1990's (Golder, 1990, 1991; ESI, 1990, 1992, 1993), and more recent reports prepared for Kettleman Hills Facility (Rust, 1998; URS, 2005; HAI, 2006). The preliminary stability evaluations performed in support of the EIR preparation for the proposed Landfill Unit B-18 expansion (URS, 2005; HAI, 2008) used the same material properties as in the earlier investigations listed above except for the liner interface shear strength properties in the Phase II area of the landfill. In 2003, URS obtained samples of the landfill Phase II liner system that were archived at the KHF site. Interface shear strength testing was performed on the sandwich-like multilayer structure of the liner system and the results were used to refine the interface properties reported in the previous investigations (URS, 2005). In this report, the material properties from the previous investigations (Phase I liner system) and the URS (2005) report for the Phase II liner system were used for the static and seismic slope stability analyses. The Class I waste and foundation bedrock shear strength and unit weight properties, liner interface shear strength values, and dynamic waste, clay liner, and bedrock properties used in the analyses presented in this report are provided in Table 1. The assumed properties used for design should be further verified by performing site-specific tests on the actual materials that will be used during construction. More detailed discussion of the material properties used is provided below.

Hazardous Waste Material Properties

The unit weight, shear strength, and dynamic properties of the existing hazardous (Class I) waste materials in the landfill were based on the prior KHF landfill investigations by Golder (1990, 1991), ESI (1990, 1993), and HAI (2006). The landfill Class I waste material was characterized as having static and dynamic properties similar to those for relatively dense cohesionless sand material with a Poisson's ratio of 0.35 . The total unit weight of the waste was assumed as 115 pcf in stability and dynamic response analyses, and its shear strength parameters (friction angle and cohesion) were assumed to be 31 degrees and 0 psf , respectively.

The low-strain shear modulus of the Class I waste was assumed to be a function of the mean effective confining pressure as shown below (Seed and Idriss, 1970):
$\mathrm{G}_{\text {max }}=1000 \mathrm{~K}_{2}\left(\sigma_{\mathrm{m}}\right)^{1 / 2}$
Where $\mathrm{G}_{\mathrm{max}}$ and σ_{m} represent the soil maximum (low-strain) shear modulus and mean effective stress, respectively, and are in psf. The dimensionless parameter K_{2} is determined from the void ratio or relative density. The K_{2} was assumed as 60 , which is a typical value for relatively dense sands (Seed and Idriss, 1970).

Liner Interface Shear Strength and Dynamic Properties

In the slope stability analyses for Landfill Unit B-18, potential failure surfaces pass through the waste and the weakest interface in the liner above the landfill foundation bedrock due to relatively low interface shear strength properties of the liner and high strength of the bedrock. Based on the site-specific data from the earlier studies at Kettleman Hills Facility (Golder, 1990, 1991; ESI, 1990, 1992) and our in-house database and literature survey for existing liner system configurations, an interface friction angle of 17 and 9 degrees for the Phase I base liner and slope liner were used, respectively. An interface friction angle of 19 degrees was measured in the recent interface shear tests performed on the "sandwich-like" specimens of the Phase II liner system (URS, 2005). The same type of liner as in the Phase II liner system was assumed to be used for the proposed landfill expansion area. Adhesion coefficient for the liner interfaces is assumed to be zero except for the Phase I slope liner where an adhesion value of 800 psf was used (ESI, 1992). The assumed interface strength properties for the proposed new liner in the expanded landfill areas should be further evaluated by conformance testing on the materials used during construction.

The total unit weight of the clay used in the liner system was assumed as 115 pcf in stability and dynamic response analyses. The clay material used in the liner system was characterized as having a Poisson's ratio of 0.35 and a nonlinear shear modulus given by the relation shown below for the low-strain conditions (Hardin and Drenevich, 1972):
$\mathrm{G}_{\max }=14760\left[(2.973-\mathrm{e})^{2} /(1+\mathrm{e})\right](\mathrm{OCR})^{\mathrm{a}}\left(\sigma_{\mathrm{m}}\right)^{1 / 2}$
Where $\mathrm{G}_{\mathrm{max}}$ and $\sigma_{\mathrm{m}}^{\prime}$ represent the soil maximum shear modulus and mean effective stress, respectively, and are in psf, "e" is void ratio and OCR is overconsolidation ratio, and the value of power " a " depends on the plasticity index of soil.

Bedrock Properties

Shear strength parameters for the foundation bedrock materials were estimated based on the previous KHF landfill investigations. A cohesion value of 800 psf and friction angle of 40 degrees were used in the stability analyses. The shear wave velocity and unit weight of the foundation rock were estimated to be about 2,500 fps and 150 pcf , respectively.

Modulus and Damping Ratio Variation

The nonlinear modulus reduction and damping ratio increase curves used in the dynamic response analyses for the landfill waste, clay liner, and foundation bedrock materials are the same as those used in the previous KHF investigations and are presented in Figure 19. The figure illustrates how the shear modulus and damping ratio change with the level of induced cyclic shear strains for different landfill materials.

3.5 ANALYSIS APPROACH

Landfill liners in seismically active areas such as California undergo dynamic loads during earthquakes in addition to static loads generated by the dead weight of the waste. Liners, particularly along landfill side slopes, are subjected to tensile stresses due to settlement and creepinduced downward movement of the waste mass. During earthquakes, the landfill mass moves dynamically under the effects of ground accelerations and generates additional stresses in the landfill liner.

CCR Title 22 requires that slopes of a landfill and the foundation beneath the slopes maintain a minimum factor of safety of 1.5 under seismic loading conditions. The factor of safety is usually calculated using pseudo-static limit equilibrium analytical methods. Since achieving a pseudo-static factor of safety of 1.5 for relatively high accelerations generated during MCE events is difficult and costly, the regulations allow for an alternate, more rigorous and detailed design approach involving quantified evaluation of the seismic deformations and displacements of the landfill mass in lieu of the pseudo-static analysis. At present the evaluation of seismic deformations is the most common approach for seismic design of waste fills in California.

The present state-of-practice in seismic design of landfills is based on Newmark (Newmark, 1965) or a simplified Newmark-type method (e.g. Franklin and Chang, 1977; Makdisi-Seed, 1978; Bray et al., 1998) to estimate the order of magnitude of seismically-induced permanent displacements of landfill slopes. Additionally, the current practice relies on engineering judgment by establishing an allowable deformation (about 6 inches) to compare with displacements computed from Newmark method along the liner system.

Our analyses were conducted in the following evaluation/computational sequence:

- Static slope stability and selection of critical failure surfaces;
- Evaluation of yield acceleration coefficients for the critical failure surfaces determined from static slope stability analyses;
- Dynamic site response analysis and calculation of potential slide mass average acceleration; and
- Estimation of seismically-induced permanent deformations for the design "local" and "distant" MCE events.

The above approach originally developed by Seed and Martin (1966) and later used by Makdisi and Seed (1978) for seismic analysis of earth dams, generally results in conservative (larger) permanent displacements, compared to more rigorous fully coupled nonlinear dynamic deformation analysis (Lin and Whitman, 1983).
The four stages of the approach used in this study are further described in the following sections.

3.6 STATIC AND PSEUDO-STATIC STABILITY ANALYSES

Analysis Method

Conventional two-dimensional (2-D) limit-equilibrium stability analyses were performed for the existing and proposed bottom/side slope liner and waste fill slopes using landfill cross sections AA', B-B', C-C’, D-D', E-E', and F-F'.

The computer program GSTABL7 v. 2.003 developed by Gregory Geotechnical Software was used to calculate the factors of safety against potential failure. This program was originally developed based on the computer program PC STABL 5M (Achilleos, 1988). The program uses 2-D limit equilibrium theory to provide general solutions for slope stability problems with provisions of using the Modified Bishop, Modified Janbu, or Spencer Methods. Both circular and non-circular potential sliding surfaces can be prespecified or randomly generated. The Spencer, Modified Janbu and Modified Bishop methods were used for this study. The minimum factor of safety was obtained by varying the initiation and exit points of the trial failure planes.

The Modified Janbu Method of analysis, which normally provides conservative results, was initially used to evaluate a large number of potential failure mechanisms for each cross section analyzed. In each analysis case, at least one thousand (1000) potential failure surfaces were randomly generated by the program and the most critical surface resulting in the lowest factor of safety was identified. The most critical failure plane determined by the Modified Janbu Method was then reanalyzed using the Spencer Method. This method satisfies both force and moment equilibrium and thus provides more realistic (usually higher) estimates of the factors of safety and yield acceleration coefficients. The Janbu method is generally more conservative compared with the more rigorous Spencer Method and typically results in lower factors of safety than the Spencer Method (Duncan, 1992). The modified Bishop method was used to analyze circular failure surfaces.

The GSTABL7 output plots, presented in Appendix B, illustrate the 2-D cross sections, various potential failure surface conditions considered, and the most critical failure surfaces analyzed in the stability analysis of the final fill slopes of the proposed landfill expansion.

The appendix presents computer plots for all the cases analyzed illustrating geometry of landfill cross-sections and the ten most critical potential failure planes searched by the program, as well as computed factors of safety. The failure surface with the lowest factor of safety is identified with two arrows at its initiation and termination points.

The material properties of the waste and liner interfaces used in the static and pseudo-static stability analyses are shown in Table 1 and the results of the analyses are summarized in Table 2 and on Figures 3 and 4.

3.6.1 Liner and Waste Mass Static Stability

Slope stability analyses were performed for the final fill plan geometry. Six cross sections at different locations across the landfill were selected for analysis. Figures 1 and 2 show plan views of the Landfill B-18 excavation and the final fill/landfill cover geometry, respectively, and the locations of the cross sections selected for the analysis. In each part of the landfill where its cross section configuration changes, one or more sections were selected for two-dimensional stability evaluations. The configuration of the proposed landfill expansion final fill slopes are illustrated by the selected cross sections shown in Figures 3 and 4.

The most important potential failure mechanism considered was for a wedge (block failure) sliding through the waste mass and along the existing and expanded landfill base liner system. Potential failure surfaces were assumed to pass along the weakest interface in the lining system and then through the landfill mass to the surface. Stability of the slopes against circular failure through the waste mass was also investigated.

The slope stability analyses for Landfill Unit B-18 showed that sliding along the liner systems and/or waste mass was consistently more critical than a sliding surface through the foundation material. Therefore, in the stability analyses, the foundation bedrock was modeled as being impenetrable.

3.6.2 Pseudo-Static Stability Analyses

Pseudo-static analyses, necessary to compute yield acceleration coefficient (K_{y}), were performed for the critical potential failure surfaces through waste and base liner system, identified from results of the static slope stability analyses discussed in Section 3.6.1 for the selected cross sections (Table 2 and Figures 3 and 4). The yield acceleration is defined as the acceleration which results in a pseudostatic factor of safety of 1.0. The computed yield acceleration, K_{y}, represents limiting value of the horizontal seismic coefficient beyond which movement of a potential slide mass will occur.

For each cross section, pseudo-static analysis using the Spencer Method was performed to compute an estimate of yield acceleration coefficient (K_{y}) for the most critical potential failure plane identified from the static slope stability analysis for that section. Density and shear strength properties summarized in Table 1 were also used for the pseudo-static stability analyses.

Stability Results

Table 2 presents a summary of the computed static factors of safety and yield acceleration coefficients for the critical cases analyzed in this study.

Appendix B presents plots of all the cases analyzed illustrating geometry of landfill cross-sections, the most critical potential failure surfaces, and values of computed static factors of safety and yield accelerations for these surfaces searched by the program. Sample printouts of input and output files providing details of the analysis results are also presented in Appendix B.

For all final (long-term) static conditions, the minimum acceptable factor of safety is 1.5. This criterion was satisfied by the potential failure surfaces analyzed for the proposed fill plan, base liner designs, and the estimated material properties.

The results of the pseudo-static stability analyses show that the lowest yield acceleration coefficient was approximately equal to 0.23 for failure along the liner and waste mass in cross sections $\mathrm{A}-\mathrm{A}$ ' (east), D-D' (east), E-E' (east), and F-F' (east).

The combination of yield acceleration coefficient and slide mass geometry that could potentially result in the largest estimates of the seismically-induced displacements were used in the site response and Newmark displacement analyses described in the following sections. Based on the computed yield accelerations presented in Table 2 and landfill cross sections geometry (Figure 4), the potential failure planes \#1 and \#3 associated with cross sections D-D’ and F-F', respectively were judged to produce the largest seismic displacements and thus, were selected for dynamic site response and seismic deformation analyses.

3.7 SEISMIC DEFORMATION ANALYSES

The acceptability of a slope for earthquake conditions is generally determined by the magnitude of the seismically-induced permanent displacement resulting from the design earthquake.

A small allowable displacement is intended to preclude the possibility of large displacements that might disrupt the flexible membrane liner (FML)/clay composite layers or other components of the leachate collection and removal (LCR) system. A conservative value of the allowable displacement along the landfill liner on the order of 6 inches was considered acceptable for Landfill B-18. This is equal to the lower bound of the allowable displacement range commonly used in the industry (6 to 12 inches) as suggested by Seed and Bonaparte (1992).

Preliminary estimates of the landfill slopes seismic deformations were obtained previously (HAI, 2008) using the simplified analysis method by Bray et al. (1998) and are presented in the following section. A more detailed evaluation of the seismic deformations using two-dimensional site response analyses and Newmark (1965) slope displacement calculation method was performed for this study and is presented in Section 3.7.2 below.

3.7.1 Simplified Analysis of Landfill Slopes Seismic Deformations

Preliminary estimates of the landfill slopes seismic deformations were obtained using the simplified analysis method by Bray et al. (1998).

This method requires estimating the yield acceleration $\left(\mathrm{k}_{\mathrm{y}}\right)$ for the potential slide mass, the ground motion parameters ($\mathrm{MHA}_{\mathrm{r}}, \mathrm{T}_{\mathrm{m}}$, and D_{5-95}), fundamental period of equivalent 1-D slide mass at small strains $\left(\mathrm{T}_{\mathrm{s}}\right)$, and maximum horizontal equivalent acceleration (MHEA) for the potential slide mass. The ground motion parameters are defined as:
$\mathrm{MHA}_{\mathrm{r}}=$ Maximum Horizontal Acceleration expected at the site at rock level (g),
$\mathrm{T}_{\mathrm{m}}=\quad$ Mean period of input rock motion (sec), and
$D_{5-95}=$ Significant duration of shaking, i.e., 5-95\% normalized Arias intensity (sec).
The $\mathrm{MHA}_{\mathrm{r}}$ and D_{5-95} values for the site design ground motions are provided in Section 2.0 and T_{m} can be estimated from the following relationships:

$$
\begin{array}{ll}
\ln \left(T_{m}\right)=\ln \left(C_{1}+C_{2} \cdot(M-6)+C_{3} \cdot r\right) & M \leq 7.25 \\
\ln \left(T_{m}\right)=\ln \left(C_{1}+1.25 \cdot C_{2}+C_{3} \cdot r\right) & 7.25 \leq M \leq 8.0
\end{array}
$$

where M and r are the earthquake magnitude and distance and parameters C_{1}, C_{2}, and C_{3} and the standard error $\left(\varepsilon_{\mathrm{r}}\right)$ for a rock site condition are as listed below:

$$
C_{1}=0.411, C_{2}=0.0837, C_{3}=0.00208, \text { and } \varepsilon_{\mathrm{r}}=0.437
$$

The fundamental period of slide mass $\left(T_{s}\right)$ is calculated using the equation $T_{s}=4 H / V_{s}$, where H is the maximum vertical distance between the ground surface and slip surface used to determine k_{y} and V_{s} is representative small-strain shear wave velocity of materials above sliding mass. The landfill shear wave velocity profile provided in the 2005 URS report was used to calculate the values of parameter T_{s} for this study.

Charts provided by Bray et al. (1998) were then used to estimate the normalized MHEA and sliding mass displacement for deep-seated slide surfaces. The normalized MHEA is defined as a function of the normalized fundamental period of slide mass $\left(\mathrm{T}_{s} / \mathrm{T}_{\mathrm{m}}\right)$. The normalized displacement of the potential slide mass is correlated to the ratio of $k_{y} / k_{\max }$, where $k_{\max }=\mathrm{MHEA} / \mathrm{g}$.

Table 3 provides results of the simplified seismic deformation analyses. The table provides yield accelerations, maximum horizontal equivalent accelerations (MHEA), $\mathrm{k}_{\mathrm{y}} / \mathrm{k}_{\max }$ ratios, and estimated slope displacements for the cross sections analyzed.

As seen from Table 3, for potential deep failure planes along the landfill bottom liner the estimated permanent displacements are consistently less than 1 inch except for the western part of cross section B-B' where a slope displacement of about 1 inch was estimated. These preliminary estimated values of the seismic displacements are considerably smaller than the maximum allowable displacement of 6 inches commonly used in the industry (Seed and Bonaparte, 1992). These displacements are also in agreement with the seismic displacements estimated by URS (2005).

3.7.2 Site Response and Newmark Slope Deformation Analyses

Two-Dimensional Dynamic Site Response Analyses

After yield acceleration coefficients were determined, dynamic response of the landfill and average acceleration time histories of the potential sliding masses were evaluated for three representative "local" (near-field) and one "distant" (far-field) input ground motions. The analyses provide a measure of earthquake energy attenuation/amplification characteristics of the landfill.

To account for the uncertainties introduced by variation of the landfill geometry, two-dimensional finite element computer program QUAD4M (Hudson et al., 1994) was used to evaluate dynamic response of the landfill and average acceleration time histories of the potential sliding waste masses identified from the stability analyses. The two-dimensional analyses provide a more realistic estimate of the seismically-induced displacements of waste slopes compared to one-dimensional site response analysis computer codes such as SHAKE91 (Schnabel et al., 1972; Idriss and Sun, 1991). However, it should be noted that because the landfill geometry is three-dimensional, the use of twodimensional site response analyses generally provides a conservative estimate of the landfill dynamic response.

QUAD4M was recently developed by modifying and improving QUAD4 program which was initially developed in 1973 (Idriss et al., 1973). The main changes in QUAD4M are: 1) addition of energy absorbing boundaries that can be used to model the material underlying the finite element model as a linear elastic half space, 2) computing average acceleration time history (seismic coefficients) of a defined potential failure mass, and 3) a new method for formulation of damping. QUAD4M approximately incorporates the nonlinear material properties of soil and waste in the analyses by using the equivalent linear method (Seed and Idriss, 1970). In this method, the straindependent shear modulus and damping ratio of the material are selected to be compatible with the computed level of strain in each element. The dynamic response is computed repeatedly until the dynamic properties determined from the two sequential cycles differ by less than a specified value. This analysis is done in the time domain, and for any set of properties it is a linear analysis.

QUAD4M analyses were performed for Cross Sections D-D' and F-F' and their most critical failure planes (failure planes 1 and 3 in Figure 4, respectively). These cross sections represent the most critical cases based on their geometry, factor of safeties and the minimum K_{y} values computed from the pseudo-static stability analyses. The finite element meshes used to model these cross sections are shown in Figures 20a and 20b. The "seismic coefficient" option in QUAD4M was used to calculate the average acceleration time history of potential deep failure mass sliding along the landfill bottom. This is done using the computed time histories of the shear forces for the elements along the bottom and dividing the resultant shear force by the mass of the waste bounded by the potential failure plane along the liner (Seed and Martin, 1966).

The input design ground motions were applied as outcrop motions at the top of the bedrock underlying the landfill, i.e., the "elastic halfspace" below the finite element mesh. The analyses were performed for two sets of ground motions:

1 - The near-field and far-field MCE ground motions used previously (see Section 2.1) for seismic deformation analyses of the KHF landfill units B-19 and B-18 (RUST, 1998; URS, 2005, and HAI, 2006), and

2 - The updated site design near-field and far-field MCE ground motions developed in this study (see Section 2.2.2).

This provides a comparison of the new landfill design seismic deformations for the old and updated ground motions, and also a comparison of the landfill response for scaled versus spectrally matched ground motions.

The finite element meshes for the cross sections analyzed (Figures 20a and 20b) show the critical potential failure surfaces that were specified for calculation of the average acceleration time histories (seismic coefficients) in the QUAD4M analyses. These seismic coefficient time histories were later used in a Newmark-type analysis method (Newmark, 1965) as described in the following section to estimate the order of magnitude of the permanent seismically-induced displacements along the liner.

Seismically-Induced Permanent Displacements

The consequences of earthquake shaking on the landfill slopes were evaluated using Makdisi and Seed's procedure (1978) which is a type of Newmark pseudo-dynamic double-integration displacement analysis. This approach is most appropriate for slopes consisting of materials that are not likely to suffer any significant loss of their shear strength due to seismic shaking. The waste and liner materials in the Landfill B-18 are such materials.

During an earthquake, over numerous cycles of loading, a slide mass can move incrementally along a potential failure plane through displacement accumulation. Based on this concept, the Newmark method computes, from a series of pseudo-static analyses, the yield acceleration, K_{y} beyond which movement of a slide mass will occur. The permanent displacement resulting from an earthquake is then computed by double integration of the slide mass average acceleration time history whenever the acceleration exceeds K_{y}.

The average acceleration time histories computed in the QUAD4M response analyses for the most critical potential failure mass identified in the pseudo-static analyses were used as input for Newmark deformation analyses to evaluate the permanent seismically-induced displacements along the liner system. The displacement calculated by this method is a function of the yield accelerations which were computed in the pseudo-static stability analyses. Figures 21 and 22 illustrate variation of potential slide mass displacement (δ) versus the yield acceleration K_{y} for Cross Section D-D' and for the two sets of design ground motions used in the analyses (the RUST 1998 design ground motions and the updated ground motions developed for this study). Figures 23 and 24 illustrate variation of potential slide mass displacement (δ) versus the yield acceleration K_{y} for Cross Section F-F' and for the two sets of design ground motions discussed above. Tables 4 and 5 and Figures 21 through 24 summarize the results of calculated seismically-induced permanent displacement (δ) using the average acceleration time history of the waste mass computed from the QUAD4M analyses as input in the Newmark double-integration method for cross sections D-D' and F-F'.

As seen from Figures 21 through 24, for the potential deep failure plane \# 1 located in the northeastern part of cross section D-D', and the potential deep failure plane \# 3 located in the northeastern part of cross section F-F' (Figure 4) the largest permanent displacements are induced for the 1994 Northridge earthquake Pacoima-Kagel Canyon and Castaic Old Ridge Route accelerograms scaled to a PHGA of 0.57 g . However, calculated displacements for K_{y} values larger than 0.12 are less than 1 inch. Additionally, the Newmark deformation analyses show that the calculated seismically-induced permanent displacements of the critical potential slide mass are nearly zero for K_{y} values larger than 0.12 for the "distant" Caltech $\mathrm{A}-1$ synthetic record and CHY042N Chi-Chi earthquake record scaled to 0.21 g and 0.16 g , respectively. These estimated values of the seismic displacements are considerably smaller than the maximum allowable displacement of 6 inches commonly used in the industry (Seed and Bonaparte, 1992).

3.8 STATIC AND SEISMIC STABILITY OF FINAL COVER

A preliminary estimate of the final cover seismic deformations was obtained by using the simplified analysis method by Franklin and Chang (1977). A more detailed evaluation of the landfill cover seismic deformations using two-dimensional site response analysis and Newmark (1965) displacement calculation method was also performed. The above analyses are presented below.

Simplified Analysis of Landfill Cover

Static and seismic stability of the landfill final cover were evaluated using the infinite slope stability analysis model. Effect of the slope benches were also considered in the analyses. The landfill final cover slope will have an overall inclination of $4.0 \mathrm{H}: 1 \mathrm{~V}$ with localized inclinations of approximately $3.5 \mathrm{H}: 1 \mathrm{~V}$ to allow for benching. The cover soils will not become fully saturated given the low annual rate of precipitation in the area, drainage through geotextile in the cover, and the steepness of the final cover slopes.

The proposed final cover for Landfill B-18, shown in Figure 25, includes a 40-mil textured HDPE geomembrane overlain by a geotextile and an approximately 2.5 -foot-thick vegetative soil cover over the geosynthetics. The geotextile is a $12-\mathrm{oz} /$ sy non-woven layer that cushions the HDEP geomembrane and provides some drainage. The slope stability analyses were performed for the weakest interface strength in the final cover. The weakest interface is assumed to be along the geomemberane/geotextile interface (see Appendix C).

Peak strength values were used for analysis of seismic loading and the partially saturated final cover condition. Access is available for the final cover to make any necessary repairs after a seismic event; therefore, residual strengths to evaluate short-term impacts are not appropriate.

Appendix C provides the cover soil and interface properties used in the stability analyses, and the detailed static and seismic stability calculations for the cover system described above. The appendix shows that the cover system is stable for both static and seismic loading conditions; however, the estimated permanent displacement is about 12 inches. Hence, a more rigorous two-dimensional dynamic site response and Newmark displacement analysis was performed to more accurately calculate the final cover displacement.

Two-Dimensional Dynamic Cover Response Analyses

After yield acceleration coefficient for the cover was determined (see Appendix C), dynamic response of the landfill and average acceleration time histories of the potential sliding cover section were evaluated for three representative "local" (near-field) and one "distant" (far-field) input ground motions. To account for the uncertainties introduced by variation of the landfill geometry, twodimensional finite element computer program QUAD4M was used to evaluate dynamic response of the landfill and average acceleration time histories of the potential sliding cover section identified from the stability analyses. The two-dimensional analyses provide a more realistic estimate of the seismically-induced displacements of the cover compared to the simplified methods.

QUAD4M analysis was performed for the cover section of Cross Section D-D'. The finite element mesh used to model the cross section is shown in Figure 20c. The input design ground motions were applied as outcrop motions at the top of the bedrock underlying the landfill, i.e., the "elastic halfspace" below the finite element mesh. The analyses were performed for the same ground motions used for the liner stability analysis discussed in Section 3.7.2.

The finite element mesh for the cross section analyzed (Figure 20c) shows the critical potential failure surface through the landfill cover that was specified for calculation of the average acceleration time histories in the QUAD4M analyses. The computed average acceleration time history of the specified cover section was then used in a Newmark-type analysis method (Newmark, 1965) as described in the following section to estimate the order of magnitude of the seismicallyinduced permanent displacements of the cover.

Seismically-Induced Permanent Displacements

The permanent displacement resulting from the earthquakes are then computed by double integration of the slide mass average acceleration time history whenever the acceleration exceeds K_{y}.

The average acceleration time history computed from the QUAD4M dynamic response analyses for the most critical potential failure mass identified in the pseudo-static analyses was used as input for Newmark deformation analyses to evaluate the permanent seismically-induced displacements of the failure mass. The displacement calculated by this method is a function of the yield acceleration computed in the Appendix $\mathrm{C}\left(\mathrm{K}_{\mathrm{y}} \sim 0.2 \mathrm{~g}\right)$. Table 6 summarizes the results of calculated landfill cover seismically-induced permanent displacement (δ) using the average acceleration time history of the potential failure section computed from the QUAD4M analyses as input in the Newmark doubleintegration method for cross section D-D'.

The Newmark deformation analyses show that the calculated seismically-induced permanent displacements of the landfill cover are considerably less than the maximum allowable displacement of 12 inches commonly used in the industry (Seed and Bonaparte, 1992).

4.0 CONCLUSIONS

This report addresses static and seismic stability of the landfill slopes for a proposed expansion of the Landfill B-18. The stability report presented here will be included as part of the design report, being prepared by Golder Associates, Inc. for the proposed Landfill B-18 expansion.

The following changes from the original design were implemented and evaluated in this report:

- Final fill plan geometry was modified to enhance landfill capacity while maintaining staticand seismic stability of the landfill slopes.
- The landfill footprint was expanded in the west-northwestern area, using the existing cut slopes in the hills west and northwest of the site to buttress the landfill slopes and enhance stability.

A deterministic seismic hazard analysis was performed to update the site seismic design response spectrum and ground motions. Static and seismic stability evaluations of the proposed final fill slopes and landfill base liner and cover systems were conducted for the new Landfill B-18 fill design. The presented analyses demonstrated that computed static factors of safety were higher than 1.5 for all analyzed sections.

The seismic stability analyses were conducted for the MCE design ground motions. The postulated near-field and far-field MCEs for Landfill B-18 were characterized by a peak horizontal acceleration in lithified earth material of approximately 0.62 g and 0.16 g , respectively.

The analyses indicated that the proposed new landfill expansion design (Golder, 2008) would result in a stable configuration under both static and seismic loading conditions in compliance with applicable regulations. The acceptability of the landfill slopes for earthquake loading conditions was determined by the relatively small magnitude of the seismically-induced permanent displacements resulting from the local and distant MCE design earthquake events. The results of the conservative Newmark-type permanent displacement analyses presented in this study indicated that computed maximum displacements along the liner system during the design earthquake events are less than 1 inch. Maximum seismically-induced permanent displacement within the waste prism in the cover/gas collection system is about 6 inches which is less than the maximum allowable value of 12 inches.

The analyses were performed for the landfill final fill configurations. Slope stability analyses are required for design of the proposed landfill expansion interim fill conditions. Site-specific laboratory testing of the proposed materials to be used in the liner systems should be performed for design of the landfill expansion. Additionally, conformance testing of the liner materials should be performed during construction to verify properties used in the design of the landfill expansion.

5.0 REFERENCES

Abrahamson, N.A. (1991) "Non-stationary spectral matching," Seismological Research Letters, Vol. 62, No. 1.

Abrahamson, N.A. and Silva, W.J. (1996) "Empirical Ground Motion Models," Report Prepared for Brookhaven National Laboratory, New York, NY, May, 144 pp.

Abrahamson, N.A. (1998) "Non-stationary spectral matching program RSPMATCH," PG\&E Internal Report, February.

Abrahamson, N.A., 2000, Effects of rupture directivity on probabilistic seismic hazard analysis: proceedings of the Sixth International Conference on Seismic Zonation, Earthquake Engineering Research Institute, CD-ROM, Paper No. 50.

Abrahamson, N. A. and W. J. Silva (2008) "Summary of the Abrahamson and Silva NGA groundmotion relations", Earthquake Spectra, in Press

Achilleos, E. (1988) "User's Guide for PC STABL 5M," Purdue University, West Lafayette, Indiana, 132 p.

Boore, D. M., and Atkinson, G., M., 2007, Boore-Atkinson NGA Ground Motion Relations for the Geometric Mean Horizontal Component of Peak and Spectral Ground Motion Parameters, Pacific Earthquake Engineering Research Center (PEER) report, 2007/01.

Bozorgnia, Y., and Campbell, K., 2008, NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5\% damped linear elastic response spectra for periods ranging from 0.01 to 10 s, Earthquake Spectra, in Press

Bray, J. D., Rathjie, E. M., Augello, A. J., Merry, S. M. (1998) "Simplified Seismic Design Procedure of Geosynthetic-Lined Solid Waste Landfills," Geosynthetics International, Vol. 5.

California Geological Survey, 2003, The Revised 2002 California Probabilistic Seismic Hazard Maps, by T. Cao, W. A. Bryant, B. Rowshandel, D. Branum, and C. J. Wills, June 2003.

Chiou, B. S.-J., and Young, R., R., 2006, Chiou and Youngs PEER-NGA Empirical Ground Motion Model for the Average Horizontal Component of Peak Acceleration and Pseudo-Spectral Acceleration for Spectral Periods of 0.01 to 10 Seconds, Pacific Earthquake Engineering Research Center (PEER) report.

CH2MHILL (2008) "B-18/B-20 Hazardous Waste Disposal Project, Kettleman Hills Facility, Chemical Waste Management, Inc.", prepared for Kings County Planning Agency, State Clearinghouse No. 2005041064, March.

Duncan, M. (1992) "State-of-the-Art: Static Stability and Deformation Analysis," ASCE Geotechnical Special Publication No. 31, Stability and Performance of Slopes and Embankments-II, pp. 222-266.

Ekstrom, G., R. S. Stein, J. P. Eaton, and D. Eberhart-Phillips (1992) "Seismicity and Geometry of a 110-km-Long Blind Thrust Fault. The 1985 Ketteleman Hills, California, Earthquake," Journal of Geophysical Research, Vol. 97, No. B4, pages 4843-4864, April 10, 1992.

Environmental Solutions, Inc., 1990. "Engineering and Design Report, Landfill Unit B-18, Phase I and II and Final Closure, Kettleman Hills Facility, Kings County, California, Volumes I and II," report prepared for Chemical Waste Management, Inc., August.

Environmental Solutions, Inc., 1992. "Backup Calculations Supporting the Interface testing Program for Landfill Unit B-18, Kettleman Hills Facility, Kings County, California," report prepared for Chemical Waste Management, Inc., Februrary.

Environmental Solutions, Inc., 1993. "Revised Intermediate Waste Fill Plan, Landfill Unit B-18, Phase I, Kettleman Hills Facility, Kings County, California, Volumes I and II," report prepared for Chemical Waste Management, Inc., August.

Franklin, A. G. and F. K. Chang (1977) "Permanent Displacements of Earth Embankments by Newmark Sliding Block Analysis," Earthquake Resistance of Earth and Rock-Fill Dams, Report 5, U. S. Depart. of the Army, Corps of Engineers, Waterways Experiment Station, November.

Golder Associates, Inc. (1990) "Direct Shear Testing Program for Landfill Cover Design, Kettleman Hills Facility", June 29, 1990.

Golder Associates, Inc. (1991) "Landfill B-19, Phase IA Redesign and Closure Plan, Kettleman Hills Facility, Kettleman City, Californica," Volumes I-IV, April 15, 1991.

Golder Associates, Inc. (2003) "Shear Strength Testing on Compacted Fill Material, Landfill B-19, Phase 1B, Kettleman Hills Facility," performed for Waste Management, Inc.

Golder Associates, Inc. (2008a) "Proposed Modifications to Landfill B-18 Expansion Project," Report to Kettleman Hills Facility, April.

Golder Associates, Inc. (2008b) ".....," Report to Kettleman Hills Facility, September.
Hardin, B.O., and Drenevich, V.P. (1972) "Shear Modulus and Damping in Soils: Design Equations and Curves," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.98, No.SM7, pp.667-692.

Hudson, M., I.M. Idriss, and M. Beikae (1994) "A Computer Program To Evaluate the Seismic Response of Soil Structures Using Finite Element Procedures and Incorporating A Compliant Base," Report from the Center of Geotechnical Modeling, Department of civil and Environmental Engineering, University of California, Davis

Hushmand Associates, Inc., 2003, revised 2006. "Slope Stability Analysis for Cell Redesign and Bioreactor Evaluation, Kettleman Hills Facility Municipal Solid Waste Landfill Unit B-19, Kettleman City, Kings County, California," November 2003, revised November 2006.

Hushmand Associates, Inc., 2008. "Preliminary Slope Stability, Kettleman Hills Facility, Hazardous Waste Landfill Unit B-18 Expansion, Kettleman City, Kings County, California," April.

Idriss, I.M., et al. (1973) "QUAD-4, A Computer Program for Evaluating the Seismic Response of Soil Structures by Variable Damping Finite Elements," Report No. EERC 73-16, Earthquake Engineering Research Center, University of California, Berkeley, California, June.

Idriss, I.M. and Sun, (1991) "A Computer Program for Conducting Equivalent Linear Seismic Response Analyses of Horizontally Layered Soil Deposits- Program modified based on the Original SHAKE program published in December 1972 by Schnabel, Lysmer and Seed".

Lin, J.S. and Whitman, R.V. (1983) "Decoupling Approximation to the Evaluation of Earthquake Induced Plastic Slip in Earth Dams," J. Earthquake Engineering Structural Dynamics, Vol. 11, pp. 667-678

Makdisi, F. I. and H. B. Seed (1978) "Simplified Procedure for Estimating Dam and Embankment Earthquake-Induced Deformation," Journal of the Geotechnical Engineering Division, ASCE, Vol. 104, No. GT7, July, pp. 849-868.

Newmark, N. M. (1965) "Effects of Earthquakes on Dams and Embankments," 5th Rankine Lecture, Geotechnique, Vol. 15, No. 2, pp. 139-160.

Petersen, Mark D., Frankel, Arthur D., Harmsen, Stephen C., Mueller, Charles S., Haller, Kathleen M., Wheeler, Russell L., Wesson, Robert L., Zeng, Yuehua, Boyd, Oliver S., Perkins, David M., Luco, Nicolas, Field, Edward H., Wills, Chris J., and Rukstales, Kenneth S., 2008, "Documentation for the 2008 Update of the United States National Seismic Hazard Maps: U.S. Geological Survey Open-File" Report 2008-1128, 61 p.

Rust Environment \& Infrastructure, Inc., 1997 (Rev 1: 1998) "Preliminary Stability Evaluation, Municipal Solid Waste Landfill Unit B-19, Kettleman Hills Facility, Kettleman City, Kings County, California," Technical Report prepared for Chemical West Management, Inc., July.

Seed, H.B., and R. Bonaparte, 1992. "Seismic Analysis and Design of Lined Waste Fills: Current Practice," ASCE Geotechnical Special Publication No. 31, Stability and Performance of Slopes and Embankments, June 29-July 1, 1992.

Seed H.B., and I.M. Idriss, 1970. "Soil Moduli and Damping Factors for Dynamic Response Analysis," Report No. EERC 70-10, University of California, Berekely, December.

Seed and Martin, G.R. (1966) "The Seismic Coefficient in Earth Dam Design," ASCE, Vol.92, No. SM3, Proc. Paper 4824, May 1966, pp. 25-58.

Seed H.B., R.T. Wong, I.M. Idriss, and K. Tokimatsu, 1984. "Moduli and Damping Factors for Dynamic Analyses of Cohesionless Soils," Earthquake Engineering Research Center, Report No. UCB/EERC-84/14.

Schnabel P. B., J. Lysmer, and H. B. Seed (1972) "SHAKE: A Computer Program for Earthquake Response Analysis of Horizontally Layered Sites," Report No. EERC 72-12, College of Engineering, Earthquake Engineering Research Center, University of California, Berkeley, California, December.

Somerville, P.G., Smith, N.F., Graves R.W. and Abrahamson, N.A., 1997, Modification of Empirical Strong Ground Motion Attenuation Relations to Include the Amplitude and Duration Effects of Rupture Directivity, Seismological Research Letters, Volume 68, Number 1, January/February.

Stein, R. S., and Ekstrom, G. (1992), Seismicity and Geometry of a 110-km-Long Blind Thrust Fault 2. Synthesis of the 1982-1985 California Earthquake Sequence, J. Geophys. Res., 97(B4), 4865-4883.

URS (2005) "Preliminary Stability Analyses, Kettleman Hills Facility Expansion, Kettleman City, California," prepared for Chemical West Management, Inc.
Slope Stability Evaluation, Kettleman Hills Facility, Landfill Unit B-18, Kings County, California

Material/Interface	Unit Weight	Shear Strength Properties		Shear Wave Velocity ($\mathrm{V}_{\mathrm{s}}-\mathrm{ft} / \mathrm{sec}$) or Shear Modulus (G, psf) Relation	Modulus Reduction \& Damping Curves
		Friction Angle (degree)	Cohesion (psf)		
HW ${ }^{1}$	115 pcf	31	0	$\begin{aligned} & \mathrm{G}=1000 \mathrm{~K}_{2}\left(\sigma_{\mathrm{m}}^{\prime}\right)^{1 / 2} \\ & \mathrm{~K}_{2}=60 \text { for relatively dense sands (Seed } \\ & \text { and Idriss, 1970) } \end{aligned}$	See Figure 19 Relatively dense sand (Seed et al., 1984)
Clay Liner ${ }^{1,2}$	115 pcf	20	1,150	$G=\frac{14,760(2.97-e)^{2}}{1+e}(O C R)^{K} \sigma_{m}^{0.5}$ (Hardin and Drenvich, 1972)	See Figure 19 (Seed and Idriss, 1970)
Bedrock ${ }^{1}$	150 pcf	40	800	$\mathrm{V}_{\mathrm{s}}=2500 \mathrm{fps}$	See Figure 19 (Schnabel et al. 1972)
Phase I Bottom Liner Interface ${ }^{1}$	----	17	0	----	----
Phase I Side Slope Liner Interface ${ }^{1}$	----	9	800	----	----
Phase II Bottom Liner Interface ${ }^{1}$	--	19	0	----	----
Phase II Side Slope Liner Interface ${ }^{1}$	----	19	0	----	----
Expansion Area Liner Interface ${ }^{3}$	----	19	0	----	----

[^25]Slope Stability Evaluation, Kettleman Hills Facility, Landfill Unit B-18, Kings County, California
Table 2a. Summary of Slope Stability Analysis Results

Cross Section	Failure Plane Number	Description	Static Factor of Safety	Yield Acceleration, k_{y} (g)
A-A'	1	Deep Block Failure through Bottom Liner	2.589	0.254
	2	Deep Block Failure through Bottom Liner	2.689	0.225
	3	Deep Block Failure through Bottom Liner	2.722	0.237
B-B'	1	Deep Block Failure through Bottom Liner	6.8	0.453
	2	Deep Block Failure through Bottom Liner	8.59	0.385
	3	Deep Block Failure through Bottom Liner	6.54	0.356
C-C'	1	Deep Block Failure through Bottom Liner	3.06	0.395
	2	Deep Block Failure through Bottom Liner	4.35	0.47
D-D'	1	Deep Block Failure through Bottom Liner	2.34	0.232
	2	Deep Block Failure through Bottom Liner	2.82	0.273
E-E'	1	Deep Block Failure through Bottom Liner	2.743	0.265
	2	Deep Block Failure through Bottom Liner	2.747	0.23
	3	Deep Block Failure through Bottom Liner	2.73	0.237
F-F'	1	Deep Block Failure through Bottom Liner	2.805	0.252
	2	Deep Block Failure through Bottom Liner	2.467	0.225
	3	Deep Block Failure through Bottom Liner	2.46	0.225

Slope Stability Evaluation, Kettleman Hills Facility, Landfill Unit B-18, Kings County, California
Table 2b. Summary of Slope Stability Analysis Results (Landfill West and South Sides)

Cross Section	Failure Plane Numbe	Description	Static Factor of Safety	Yield Acceleration, k_{y} (g)
A-A'	I	Deep Block Failure through Bottom Liner	4.194	0.42
	II	Deep Block Failure through Bottom Liner	7.249	0.315
B-B'	I	Deep Block Failure through Bottom Liner	3.5	0.395
	II	Deep Block Failure through Bottom Liner	8.93	0.487
C-C'	I	Deep Block Failure through Bottom Liner	4.92	0.345
	II	Deep Block Failure through Bottom Liner	5.64	0.34
D-D'	I	Deep Block Failure through Bottom Liner	3.88	0.375
	II	Circular Failure	2.5	0.32
	III	Circular Failure	2.18	0.26
E-E'	I	Deep Block Failure through Bottom Liner	5.431	0.425
	II	Deep Block Failure through Bottom Liner	8.879	0.344
F-F'	I	Circular Failure	2.578	0.325
	II	Deep Block Failure through Bottom Liner	5.894	0.435
	III	Deep Block Failure through Bottom Liner	7.205	0.375

Slope Stability Evaluation, Kettleman Hills Facility, Landfill Unit B-18, Kings County, California

(1) Estimated seismic deformations in above table are for the local design earthquake on the blind Ramp Thrust at a distance of 10 km . Seismic deformations computed for

(Cross Section D-D', Failure Surface 1 along Landfill Liner)				
	Ground Motion	Yield Acceleration Ky (g)	Maximum Acceleration Kmax (g)	Permanent Displacement (in)
Old Records ${ }^{1}$	Pacoima	0.232	0.187	<1
	Castaic	0.232	0.192	<1
	Seed Hayward	0.232	0.133	<1
	Caltech Synthetic Record A1	0.232	0.109	<1
New Records ${ }^{2}$	Pacoima	0.232	0.189	<1
	Castaic	0.232	0.145	<1
	Gilroy	0.232	0.183	<1
	Chi Chi	0.232	0.074	<1

[^26]Table 4. Seismically-Induced Permanent Displacements from Newmark Deformation Analyses
(Cross Section D-D', Failure Surface 1 along Landfill Liner)

	Ground Motion	Yield Acceleration Ky (g)	Maximum Acceleration Kmax (g)	Permanent Displacement (in)
Old Records ${ }^{1}$	Pacoima	0.225	0.184	<1
	Castaic	0.225	0.189	<1
	Seed Hayward	0.225	0.128	<1
	Caltech Synthetic Record A1	0.225	0.104	<1
New Records ${ }^{2}$	Pacoima	0.225	0.179	<1
	Castaic	0.225	0.137	<1
	Gilroy	0.225	0.175	<1
	Chi Chi	0.225	0.068	<1

[^27]Table 5. Seismically-Induced Permanent Displacements from Newmark Deformation Analyses
(Cross Section F-F’, Failure Surface 3 along Landfill Liner)
(Cross Section D-D', Cover Analysis)

Record Sets	Ground Motion	Yield Acceleration Ky (g)	Maximum Acceleration $K_{m a x}$ (g)	Permanent Displacement (in)
Old Records ${ }^{1}$	Pacoima	0.2	0.58	6.29
	Castaic	0.2	0.42	3.73
	Seed Hayward	0.2	0.29	<1
	Caltech Synthetic Record A1	0.2	0.23	<1
New Records ${ }^{2}$	Pacoima	0.2	0.51	2.71
	Castaic	0.2	0.31	~ 1
	Gilroy	0.2	0.40	1.36
	Chi Chi	0.2	0.15	<1

[^28]
FIGURES

Project No. $08-0228$	Landfill B-18 Expansion Project Kettleman City, Kings County, CA
	HUSHMAND ASSOCIATES INC. Geotechnical and Earthquake Engineers

Figure

Project No. $08-0228$	Landfill B-18 Expansion Project Kettleman City, Kings County, CA
	HUSHMAND ASSOCIATES INC.
Geotechnical and Earthquake Engineers	

ORIGINAL HORIZONTAL ACCELERATION RECORD \&

ORIGINAL CORRECTED TIME HISTORIES 1994 NORTHRIDGE EARTHQUAKE STATION: PACOIMA KAGEL CANYON 360

Figure 13

Figure

HW: Hazardous Waste

Project No. $08-0228$

Kettleman City, Kings County, California
HUSHMAND ASSOCIATES INC. Geotechnical and Earthquake Engineers

$\begin{array}{c}\text { Project No. } \\ \text { 08-0228 }\end{array}$	$\begin{array}{c}\text { Landfill B-18 Expansion Project } \\ \text { Kettleman City, Kings County, California }\end{array}$

HUSHMAND ASSOCIATES INC.

$\begin{array}{c}\text { Project No. } \\ \text { 08-0228 }\end{array}$	$\begin{array}{c}\text { Landfill B-18 Expansion Project } \\ \text { Kettleman City, Kings County, California }\end{array}$

APPENDIX A

$\begin{gathered} t-\forall \\ \text { ansedr } \end{gathered}$	WGLSAS YGNIT dasodota					s00z 'sun : \ddagger ¢y	
				!!う иешәПәу व II!			
	प्ञnil			\qquad			

(a) Caltech A-1 Synthetic Record Scaled to 0.21 g Peak Acceleration

(b) Comparison of Pseudo-Acceleration Response Spectrum of Caltech A-1 Synthetic Earthquake Record and Target Design Spectrum (Peak Acceleration Scaled to 0.21 g)

SOURCE: RUST, 1998

Figure

(a) Modified Seed-Hayward Synthetic Record Scaled to 0.57g Peak Acceleration

(b) Comparison of Pseudo-Acceleration Response Spectrum of the Modified Seed-Hayward Synthetic Earthquake Accelerogram and Target Design Spectrum (Peak Acceleration of Synthetic Record Scaled to 0.57 g)

SOURCE: RUST, 1998

Landfill B-18 Expansion Project Kettleman City, Kings County, California

Figure

(a) Northridge Castaic Old Ridge Route CH 1 Record Scaled to 0.57g Peak Acceleration

(b) Comparison of Pseudo-Acceleration Response Spectrum of M6.7 January 17, 1994 Northridge Earthquake Castaic - Old Ridge Route, CHN 1:90 DEG Record and Target Design Spectrum (Peak Acceleration Scaled to 0.57g)

SOURCE: RUST, 1998

Figure

(a) Northridge Pacoima - Kagel Canyon CH 3 Record Scaled to 0.57g Peak Acceleration

(b) Comparison of Pseudo-Acceleration Response Spectrum of M6.7 January 17, 1994 Northridge Earthquake Pacoima - Kagel Canyon, CHN 3:360 DEG Record and Target Design Spectrum (Peak Acceleration Scaled to 0.57g)

SOURCE: RUST, 1998

Figure

APPENDIX B

KHF, SECTION A-A', EAST, STATIC, FAILURE PLANE 2
c:Islopelseca-esj2.pl2 Run By: Jason Lee, Hushmand Associates, Inc 7/11/2008 10:16AM

GSTABL7 v. 2 FSmin=2.466

KHF, SECTION A-A', EAST, STATIC, FAILURE PLANE 2
c:Islopelseca-ess2.plt Run By: Jason Lee, Hushmand Associates, Inc 7/24/2008 12:13PM

KHF, SECTION A-A', EAST, PSEUD-STATIC, FAILURE PLANE 2
c:Islopelseca-ees2.plt Run By: Jason Lee, Hushmand Associates, Inc 7/11/2008 04:28PM

KHF, SECTION A-A', EAST, PSEUD-STATIC, FAILURE PLANE 3
c:Islopelseca-ees3.plt Run By: Jason Lee, Hushmand Associates, Inc 7/11/2008 04:42PM

GSTABL7 V. 2 FSmin $=1.005$
Factor Of Safety Is Calculated By GLE (Spencer`s) Method (0-2) KHF, SECTION A-A', WEST, STATIC, FAILURE PLANE II c:Islopelseca-wsj ii.pl2 Run By: Jason Lee, Hushmand Associates, Inc 7/14/2008 09:19AM Factor Of Safety Is Calculated By GLE (Spencer`s) Method (0-2)

GSTABL7 v. 2 FSmin=7.317
Safety Factors Are Calculated By The Simplified anb Method

GSTABL7 v. 2 FSmin $=8.590$
Factor Of Safety Is Calculated By GLE (Spencers) Method (0-2)
KHF, SEC. B-B', EAST, PSEUD-STATIC, FAILURE PLANE 2
:lkhflslopelsecb-ees2.plt Run By: BH 7/11/2008 03:37PM

Factor Of Safety Is Calculated By GLE (Spencer`s) Method (0-2) KHF, SEC. B-B', EAST, PSEUD-STATIC, FAILURE PLANE 3 Factor Of Safety Is Calculated By GLE (Spencer`s) Method (0-2)

GSTABL7 v. 2 FSmin=8.928
Factor Of Safety Is Calculated By GLE (Spencer`s) Method (0-2) \(249 \forall 159\) GSTABL7 v. 2 FSmin \(=1.099\) Factor Of Safety Is Calculated By GLE (Spencer`s) Method (0-2)
KHF, SEC. C-C', ©RTH, STATIC, FAILURE SURFACE 1 c:lkhflslopelsecc-nsj1.pl2 Run By: BH 7/10/2008 06:51PM

Safety Factors Are Calculated By The Simplified anb Method
KHF, SEC. C-C', ©RTH, STATIC, FAILURE SURFACE 1

Factor Of Safety Is Calculated By GLE (Spencer`s) Method (0-2)

KHF, SEC. C-C', DRTH, STATIC, FAILURE SURFACE 2

KHF, SEC. C-C', DRTH, STATIC, FAILURE SURFACE 2

Factor Of Safety Is Calculated By GLE (Spencer`s) Method (0-2) \(2 \angle 19 \forall \angle S 9\) Factor Of Safety Is Calculated By GLE (Spencer`s) Method (0-2)

Factor Of Safety Is Calculated By GLE (Spencer`s) Method (0-2)

GSTABL7 v. 2 FSmin=1.004
Factor Of Safety Is Calculated By GLE (Spencers) Method (0-2)
$\int \angle 78 \forall 159$
KHF，SEC．$⿴ 囗 十 一$ EAST，STATIC，FAILURE SURFACE 2

KHF, SEC. DEAST, PSEUD-STATIC, FAILURE SURFACE 2

Factor Of Safety Is Calculated By GLE (Spencer`s) Method (0-2)

KHF, SECTION E-E' WEST, STATIC, FAILURE PLANE I
c:|slopelsece-wsj i.pl2 Run By: Jason Lee, Hushmand Associates, Inc 7/14/2008 09:27AM

KHF, SECTION E-E', WEST, STATIC, FAILURE PLANE I

KHF, SECTION F-F', EAST, STATIC, FAILURE PLANE 1

 $0^{\circ} 0^{\circ} 0^{\circ}$

 Noininconder

 0.000000000000000000000000000

Nペ్లnjor

n $8888888888888888888888888888880^{\text {品 }}$

$48880^{\text {n }}$

4 288 冗

 ぱ ヘininnini

48888888888888888888888888,8888888888888888888888888888888888888 に

4888 II

```

```

NNTNNNNNNNNNMMNNNNNTNNNNNNNMMNNNNNNNNNNNNNMMNNNNNNNNNNNNNMMNNNN

```





 \(0^{\circ} 0^{\circ \circ} 0^{\circ} 0^{\circ}\)

 OMけ দ্রু


 ๕
\(488888888888888888,888888888888888888888888888888888888888888888^{\circ}\)



-
 に


mmmay





4888888888888888888888888888888888888888888888888888888888888888 冗0

















\(4888888888888888888888888888,888888888888888888888888888888888880^{\text {® }}\)
















4888888888888888888888888888888888888888888888888888888888888888⿱艹见

T్లM 앵
 デM












4 488888888888888888888888888888888888888888888888888888888888888 见


ఆitiogi in

 గొinininininininininin









4888888888888888888888888888888888888888888888888888888888888888 冗


















\(\qquad\)














廿888888888888888888888888888888888888888888888888888888888888888 冗0 0





 어NuMthiniono



 NMM








－



世888888888888888888888888888888888888888888888888888888888888888 ઁㅡㄴ






 T్Tి










 000000000000000000000000000000000000000000000000000000000000000
\％
4 488888888888888888888888888888888888888888888888888888888888888 冗














世888888888888888888888888888888888888888888888888888888888888888 冗0


NNNNNNNNMMMNNNNNNNNTNNNNNNNNNNNMMNNNNNNNNNNNNNNNNNNNNNMMNNNNNNN


 Аનન



 ヘNはn









 \(0000000000000000000000000000000000000000000000000000000000000^{\circ 0} 00^{\circ 0} 00^{\circ 0}\)




















世888888888888888888888888888888888888888888888888888888888888888 冗










 ニ્નૈન્ન્નૈન











4 488888888888888888888888888888888888888888888888888888888888888 冗



NNNNNNNNNNNNNMMNNNNNNNNNNNNNNNNNNNNMMNNNNNNNNNNNNNNNNNNNNMMNNNN










4०888888888888888888888888888888888888888888888888888888888888880.0


NMMNNNNNNNNNNNNNMMNNNNNNNNNNNNMMNNNNNNNNNNNMMNNNNNNNNNNMMNNNNNN
















 00000000000000000000000000000000000000000000000000000000000000000000000000000














```

妾

```





```

NMMM⿱一⿻口⿰丨丨⿱二小

```

```

000000000000000000000000000% 工, N0.
~~
8888888888888888888888888 先

```



``` Hannunn ○へ
```





```的
```













000000000000000000000000000000000000000000000000000000000000000
\％




NNNMMNNNNNNNNNMMNNNNNNNNMMNNNNNNNMMNNNNNNNMMNNNNNNNMMNNNNNNMMNN









$00000+000000000+0000000000+0000000000+00000000000+00000000000+0$





$00000000000+000000000000+0000000000000+0000000000000+0000000000$










$00000000000000+000000000000004000000000000004000000000000000+00$





Ninninininionotiontione














$000000+00000000000000000+00000000000000000700000000000000000 \% 00$
 かんmタべ




$0000+0000000000000000040000000000000000040000000000000000040000$





$00000000+0000000000000000000+00000000000000000000 寸 0000000000000$


, ono $\infty$ ต Mmツ ศสन

 नฟन
$00000000000000+000000000000000000000040000000000000000000000040$






000000040000000000000000000000040000000000000000000000040000000







000000000000000000000040000000000000000000000040000000000000000





$\$ 00000000000000000000004000000000000000000000070000000000000000$







$\underset{\sim}{\tilde{N}}$
$\underset{\sim}{4}$
 かomoon




$000000+000000000000000000+0000000000000000070000000000000000 \downarrow 00$
প্লmmম






$0000400000000000+0000000000400000000040000000004000000000+00000$


 우웅 O्नㅇ्ᅲ：

 が

 ఇすべかかorno

毋ヌセ

 NiN





#  

## 



# 㪣 




#  




#  <br>  <br>  

#  




#  




#  <br>  




#  




#  


$\dot{\sim}$

# 站 <br>  <br>  

#  




#  




# , <br>  <br>  

#  <br>  <br>  

## APPENDIX C

Subject: Cover Slope Stability By: N.M.
Checked By: B.H.

Project Name: Kettleman B-18
Project No: 08-0228
Sheet: 1 of 8

## CLASS I WASTE FINAL COVER STABILITY

## Objective:

Evaluate static and seismic stability (long term condition) and temporary stability during construction of the final landfill cover for Class I waste area at Kettleman Hills Facility (KHF) Landfill Unit B-18.

## Performance Criteria:

- Static Loading: Minimum Factor of Safety of 1.5.
- Dynamic Loading: Allowable seismic displacements up to 12 inches.
- Temporary Loading Case during Construction: Minimum Factor of Safety 1.25.


## Geometry:

The typical cover system for Class I waste is shown in Figure 1.


Figure 1. Typical Cover System for Class I Waste

# HAI 

Subject: Cover Slope Stability By: N.M.
Checked By: B.H.

Date: 7/21/08
Date: 7/21/08

Project Name: Kettleman B-18
Project No: 08-0228
Sheet: 2 of 8

The shear strength parameters of the cover interfaces are shown in Table 1. The site-specific values of these parameters should be verified prior to the construction of the cover.

Table 1. Shear Strength Properties for Interfaces in Figure 1

INTERFACE	STRENGTH PARAMETERS		
	$\gamma$   $\mathbf{( p c f )}$	$\mathbf{c}$   $(\mathbf{p s f})$	$\phi$   (degrees)
Cover Soil / Geotextile	110	100	21
Geotextile / 40-Mil HDPE	110	0	$25^{*}$
40-Mil HDPE / Intermediate Soil	110	0	28
Foundation Soil / Class I Waste	110	0	31

* Results of site-specific laboratory interface direct shear tests performed on textured geomembrane and geotextile materials to be used for Class I waste cover construction under low confining pressures (pressure due to the weight of cover soil) indicate a residual friction angle of approximately 28 degrees for this interface (see attached). A conservative value of 25 degrees, however, was used in our analyses.


## Design Theory:

The long-term stability of the cover (stability analysis for static case) is based on the infinite slope model shown in Figure 2.


Figure 2. Equilibrium of Loads for a Unit Length of Cover

# HAI 

Subject: Cover Slope Stability By: N.M.
Checked By: B.H.

Project Name: Kettleman B-18
Project No: 08-0228
Sheet: 3 of 8

The safety factor against sliding can be evaluated using the following equation (Huang, 1983):

$$
F . S .=\frac{c}{\gamma_{T} H \cos ^{2} \beta \tan \beta}+\frac{\tan \phi}{\tan \beta}
$$

If $c=0$, then: $F . S .=\frac{\tan \phi}{\tan \beta}$
For seismic case ( $\mathrm{k}_{\mathrm{y}}>0$ ):

$$
F . S .=\frac{c(L / \cos \beta)+\gamma_{T} L H \cos \beta \tan \phi-k_{y} \gamma_{T} L H \sin \beta \tan \phi}{\gamma_{T} L H \sin \beta+k_{y} \gamma_{T} L H \cos \beta}
$$

Note: This analysis is conservative since the effect of finite slope length and passive resistance wedge at the toe of the slope is not included.

## Long-Term Static Stability:

Based on the interface and material properties shown in Table 1, for Class I waste cover the weakest interface of the cover is the Geotextile / HDPE geomembrane interface. The following presents the infinite slope stability analysis performed for the Class I waste cover.

Static Stability for Geotextile / HDPE geomembrane interface:

$$
\mathrm{c}=0 \mathrm{psf}, \phi=25^{\circ}, \beta=16^{\circ}, \mathrm{H}=2.5 /(\cos 16)=2.60 \mathrm{ft}, \gamma=110 \mathrm{pcf}
$$

$$
F . S .=\frac{0}{110 \cdot 2.60 \cdot \cos ^{2} 16 \cdot \tan 16}+\frac{\tan 25}{\tan 16}=1.63>1.5 \text { o.k. }
$$

## Construction Stage/Temporary Loading (Short-Term) Static Stability:

The stability of cover needs to be evaluated for the temporary condition during cover placement. It is assumed that the cover is placed from bottom to top (backfilling up slope). When the equipment weight is considered, the stability is evaluated for a finite length of the slope, usually the distance between two benches. The equilibrium of forces for a finite length of the slope is shown on Figure 3 (Qian, Koerner, Gray, 2002). Figure 3 illustrates the forces applied on the cover for this case. The following symbols are used in this figure:
$\mathrm{W}_{\mathrm{A}}=$ total weight of the active wedge including additional weight of soil wedge from the upper bench ( $\mathrm{W}_{\mathrm{A} 1}$ and $\mathrm{W}_{\mathrm{A} 2}$ ) plus equipment weights on the slope and upper bench ( $\mathrm{W}_{\mathrm{e} 1}$ and $\mathrm{W}_{\mathrm{e} 2}$ );
$\mathrm{W}_{\mathrm{A} 1}=$ weight of soil cover on the slope (included in $\mathrm{W}_{\mathrm{A}}$ );
$\mathrm{W}_{\mathrm{A} 2}=$ weight of soil wedge from the upper bench (included in $\mathrm{W}_{\mathrm{A}}$ );
$\mathrm{W}_{\mathrm{e} 1}=$ weight of equipment on slope (included in $\mathrm{W}_{\mathrm{A}}$ );

Subject: Cover Slope Stability By: N.M.
Checked By: B.H.

Date: 7/21/08
Date: 7/21/08

Project Name: Kettleman B-18
Project No: 08-0228
Sheet: 4 of 8
$\mathrm{W}_{\mathrm{e} 2}=$ weight of equipment on upper bench (included in $\mathrm{W}_{\mathrm{A}}$ );
$\mathrm{W}_{\mathrm{P}}=$ total weight of the passive wedge;
$\mathrm{N}_{\mathrm{A}}=$ effective force normal to the failure plane of the active wedge;
$\mathrm{N}_{\mathrm{P}}=$ effective force normal to the failure plane of the passive wedge;
$\gamma=$ unit weight of the cover soil;
h = thickness of the cover;
$\mathrm{L}=$ length of the slope measured along the slip plane;
$\beta$ = soil slope angle;
$\phi=$ friction angle of cover soil;
$\delta=$ interface friction angle;
$\mathrm{C}_{\mathrm{a}}=$ adhesion force between cover soil of the active wedge and geo-membrane or foundation;
$c_{a}=$ adhesion between cover soil of the active wedge and geo-membrane or foundation;
$\mathrm{C}=$ cohesion force along the failure plane of the passive wedge;
$\mathrm{c}=$ cohesion of the cover soil;
$\mathrm{E}_{\mathrm{A}}=$ inter-wedge force acting on the active wedge from the passive wedge;
$\mathrm{E}_{\mathrm{P}}$ = inter-wedge force acting on the passive wedge from the active wedge;
FS $=$ factor of safety against cover soil sliding.


Figure 3. Equilibrium of Forces for a Finite Length Slope of a Uniformly Thick Cover Soil

HUSHMAND ASSOCIATES, INCORPORATED Geotechnical, Earthquake and Environmental Engineers

Subject: Cover Slope Stability
By: N.M.
Checked By: B.H.

Date: 7/21/08
Date: 7/21/08

Project Name: Kettleman B-18
Project No: 08-0228
Sheet: 5 of 8

For this condition the stability of the cover can be evaluated using the following equation:

$$
F S=\frac{-b \pm \sqrt{b^{2}-4 \times a \times c c}}{2 \times a}
$$

Where:

$$
\begin{aligned}
& \mathrm{a}=\left(\mathrm{W}_{\mathrm{A}}-\mathrm{N}_{\mathrm{A}} \times \cos \beta\right) \times \cos \beta \\
& \mathrm{b}=-\left[\left(\mathrm{W}_{\mathrm{A}}-\mathrm{N}_{\mathrm{A}} \times \cos \beta\right) \times \sin \beta \times \tan \phi+\left(\mathrm{N}_{\mathrm{A}} \times \tan \delta+\mathrm{C}_{\mathrm{a}}\right) \times \sin \beta \times \cos \beta\right. \\
& \left.\quad \quad \quad\left(\mathrm{C}+\mathrm{W}_{\mathrm{P}} \times \tan \phi\right) \times \sin \beta\right] \\
& \mathrm{cc}=\left(\mathrm{N}_{\mathrm{A}} \times \tan \delta+\mathrm{C}_{\mathrm{a}}\right) \times \sin ^{2} \beta \times \tan \phi \\
& \mathrm{W}_{\mathrm{A}}= \\
& \mathrm{W}_{\mathrm{A} 1}+\mathrm{W}_{\mathrm{A} 2}+\mathrm{W}_{\mathrm{e} 1}+\mathrm{W}_{\mathrm{e} 2} \\
& \mathrm{~W}_{\mathrm{A} 1}=\left(\gamma \times \mathrm{h}^{2}\right) \times[\mathrm{L} / \mathrm{h}-1 / \sin \beta-\tan (\beta / 2)] \\
& \mathrm{W}_{\mathrm{A} 2}=\left(\gamma \times \mathrm{h}^{2}\right) /(\sin 2 \beta) \\
& \mathrm{W}_{\mathrm{P}}=\left(\gamma \times \mathrm{h}^{2}\right) /(\sin 2 \beta) \\
& \mathrm{N}_{\mathrm{A}}=\mathrm{W}_{\mathrm{A}} \times \cos \beta \\
& \mathrm{C}_{\mathrm{a}}=\mathrm{C}_{\mathrm{a}} \times(\mathrm{L}-\mathrm{h} / \sin \beta) \\
& \mathrm{C}=(\mathrm{c} \times \mathrm{h}) /(\sin \beta)
\end{aligned}
$$

For the up slope backfilling, the dynamic force resulting from acceleration and braking of the construction equipment is not considered. The weight of the equipment is added to the weight of the cover soil.

The pressure at the potential slip interface can be calculated from the following equation:
Equivalent equipment force per unit width at slip plane interface: $\mathrm{W}_{\mathrm{e}}=\mathrm{q} \times \mathrm{W} \times \mathrm{I}$
Where:

$$
\begin{aligned}
& \mathrm{q}=\mathrm{W}_{\mathrm{b}} /(2 \times \mathrm{w} \times \mathrm{b}) ; \\
& \mathrm{W}_{\mathrm{b}}=\text { operating weight of equipment; } \\
& \mathrm{w}=\text { length of equipment track; } \\
& \mathrm{b}=\text { width of equipment track; } \\
& \mathrm{I}=\text { influence factor at slip plane interface. }
\end{aligned}
$$

The contact pressure for a CAT D6N LGP tractor is 4.8 psi , with an operating weight of $40,000 \mathrm{lbs}$. The track dimensions are length $(\mathrm{w})=122$ in and width $(\mathrm{b})=34 \mathrm{in}$. The track gauge (distance between centers of tracks) is 85 inches.

The influence factor for cover thickness (h) of 2.5 ft can be calculated as:

$$
\mathrm{b} / \mathrm{h}=34 /(2.5 \times 12)=1.13 \rightarrow \mathrm{I}=0.92
$$

Subject: Cover Slope Stability
By: N.M.
Checked By: B.H.

Date: 7/21/08
Date: 7/21/08

Project Name: Kettleman B-18
Project No: 08-0228
Sheet: 6 of 8

Using this influence factor, the equivalent pressure is evaluated below:

$$
\begin{aligned}
& \mathrm{q}=40,000 /(2 \times 122 \times 34)=4.8 \mathrm{psi}=695 \mathrm{psf} \\
& \mathrm{~h}=2.5 \mathrm{ft} \rightarrow \mathrm{~W}_{\mathrm{e} 1}=695 \times(122 / 12) \times 0.92=6,500 \mathrm{lbs}
\end{aligned}
$$

We have also included additional surcharge of the construction equipment on the upper bench of the cover veneer. This load is estimated as a 500 psf uniform pressure acting on a length equal to $\mathrm{h} / \sin \beta$.

$$
\beta=16^{\circ} \rightarrow \mathrm{W}_{\mathrm{e} 2}=500 \times 2.5 / \sin \left(16^{\circ}\right)=4,550 \mathrm{lbs}
$$

Using these equipment weights, the safety factor for temporary stability of geotextile / HDPE interface is calculated below:

$$
\begin{aligned}
& \gamma=110 \mathrm{pcf} ; \\
& \mathrm{h}=2.5 \mathrm{ft} ; \\
& \mathrm{L}=182 \mathrm{ft}(\text { Section D-D'); } \\
& \beta=16^{\circ} ; \\
& \phi=28^{\circ} ; \\
& \delta=25^{\circ} ; \\
& \mathrm{c}_{\mathrm{a}}=0 \mathrm{psf} ; \\
& \mathrm{c}=100 \mathrm{psf} ; \\
& \mathrm{W}_{\mathrm{e}}=6,500+4,550=11,050 \mathrm{lbs} .
\end{aligned}
$$

The following values are calculated using above parameters:

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{A}}=59,801 \mathrm{lbs} \\
& \mathrm{~W}_{\mathrm{P}}=1,301 \mathrm{lbs} \\
& \mathrm{~N}_{\mathrm{A}}=57,500 \mathrm{lbs} \\
& \mathrm{C}_{\mathrm{a}}=0 \mathrm{lbs} \\
& \mathrm{C}=910.0 \mathrm{lbs} \\
& \mathrm{a}=4339.4 \mathrm{lb} / \mathrm{ft} \\
& \mathrm{~b}=-8181.7 \mathrm{lb} / \mathrm{ft} \\
& \mathrm{cc}=1075.9 \mathrm{lb} / \mathrm{ft}
\end{aligned}
$$

These values result in a factor of safety of 1.74 for finite length cover slope. This value is higher than the factor of safety of 1.63 for infinite slope analysis without the construction equipment weight.

## Seismic Stability:

Seismic stability is evaluated for a finite length of the slope, usually the distance between two benches. This provides a more realistic analytical model of the cover stability since it includes the effect of passive

Subject: Cover Slope Stability By: N.M.
Checked By: B.H.

Project Name: Kettleman B-18
Project No: 08-0228
Sheet: 7 of 8
resistance wedge at the toe of the slope. For this case equipment forces shown in Figure 3 will be set equal to zero and seismic acceleration will be applied on the cover mass. For this condition the stability of the cover can be evaluated using the following equation:

$$
F S=\frac{-b \pm \sqrt{b^{2}-4 \times a \times c c}}{2 \times a}
$$

Where:

$$
\begin{aligned}
& \mathrm{a}=\left(\mathrm{C}_{\mathrm{S}} \times \mathrm{W}_{\mathrm{A}}+\mathrm{N}_{\mathrm{A}} \times \sin \beta\right) \times \cos \beta+\mathrm{C}_{\mathrm{s}} \times \mathrm{W}_{\mathrm{P}} \times \cos \beta \\
& \mathrm{b}= \\
& \quad-\left[\left(\mathrm{C}_{\mathrm{S}} \times \mathrm{W}_{\mathrm{A}}+\mathrm{N}_{\mathrm{A}} \times \sin \beta\right) \times \sin \beta \times \tan \phi+\left(\mathrm{N}_{\mathrm{A}} \times \tan \delta+\mathrm{C}_{\mathrm{a}}\right) \times \cos ^{2} \beta\right. \\
& \left.\quad \quad \quad\left(\mathrm{C}+\mathrm{W}_{\mathrm{P}} \times \tan \phi\right) \times \cos \beta\right] \\
& \mathrm{cc}=\left(\mathrm{N}_{\mathrm{A}} \times \tan \delta+\mathrm{C}_{\mathrm{a}}\right) \times \sin \beta \times \cos \beta \times \tan \phi \\
& \mathrm{C}_{\mathrm{S}}= \\
& \text { Seismic Coefficient } \\
& \mathrm{W}_{\mathrm{A}}=\text { total weight of the active wedge }=\gamma \times \mathrm{h}^{2} \times[\mathrm{L} / \mathrm{h}-1 / \sin \beta-\tan (\beta / 2)]+\left(\gamma \times \mathrm{h}^{2}\right) /(\sin 2 \beta) \\
& \mathrm{W}_{\mathrm{P}}=\left(\gamma \times \mathrm{h}^{2}\right) /(\sin 2 \beta) \\
& \mathrm{N}_{\mathrm{A}}=\mathrm{W}_{\mathrm{A}} \times \cos \beta \\
& \mathrm{C}_{\mathrm{a}}=\mathrm{c}_{\mathrm{a}} \times(\mathrm{L}-\mathrm{h} / \sin \beta) \\
& \mathrm{C}=(\mathrm{c} \times \mathrm{h}) /(\sin \beta)
\end{aligned}
$$

Using the above equations, the Yield Acceleration $\left(k_{y}\right)$, corresponding to factor of safety of 1.0 was calculated for Geotextile / HDPE geomembrane interface (weakest interface in Class I waste cover):
$\mathrm{L}=182 \mathrm{ft}, \mathrm{h}=2.5 \mathrm{ft}, \gamma=110 \mathrm{pcf}, \mathrm{c}_{\mathrm{a}}=0 \mathrm{psf}, \mathrm{c}=100 \mathrm{psf}, \beta=16^{\circ}, \phi=28^{\circ}, \delta=25^{\circ}$,
$\mathrm{H}=2.5 /(\cos 16)=2.60 \mathrm{ft}, F . S .=1.0==>\mathrm{k}_{\mathrm{y}}=0.20$
The Newmark Displacement Correlations developed by Franklin and Chang (1977) were used to estimate the permanent seismic deformation of the cover system.
$U_{m}=U_{S} \times \frac{V^{2}}{1800 A}$
$\begin{array}{ll}\text { Where: } & \mathrm{U}_{\mathrm{m}}=\text { Unscaled Permanent Displacement (in.) } \\ & \mathrm{U}_{\mathrm{s}}=\text { Standardized Maximum Displacement (in.) } \\ & \mathrm{A}=\text { Maximum Ground Acceleration (as fraction of g) } \\ & \mathrm{V}=\text { Maximum Ground Velocity (in/s) }\end{array}$
A conservative V/A ratio of 60 was used in the analyses, resulting in a maximum ground velocity of 34.8 $\mathrm{in} / \mathrm{s}$. $\mathrm{U}_{\mathrm{s}}$ was obtained from standard displacement chart based on $\mathrm{k}_{\mathrm{y}} / \mathrm{A}$ ratio.

Based on these assumptions, the seismic displacement value in Table 2 was obtained for Class I waste landfill cover system. Based on our calculation it appears that the permanent seismic displacement is in the

Subject: Cover Slope Stability By: N.M.
Checked By: B.H.
allowable range for the weakest interface of the cover, therefore the cover system meets the static and seismic stability criteria.

Table 2. Permanent Seismic Displacement Evaluation for Class I Waste Cover

Interface	$\mathbf{k}_{\mathbf{y}}{ }^{*}$   $(\mathbf{g})$	$\mathbf{A}$   $(\mathbf{g})$	$\mathbf{V}$   $(\mathbf{i n} / \mathbf{s})$	$\mathbf{k}_{\mathbf{y}} / \mathbf{A}$	$\mathbf{U}_{\mathbf{s}}$   (in)	$\mathbf{U}_{\mathbf{m}}$   (in)
${\text { Geotextile } / \mathrm{HDPE}^{*}}$	0.20	0.58	34.8	0.35	$\sim 10.5$	$\sim 12$

## References:

Huang, Y. H. (1983), "Stability Analysis of Earth Slopes".
Franklin, A. G. and Chang, F. K. (1977), "Permanent Displacements of Earth Embankments by Newmark Sliding Block Analysis", Report 5, Miscellaneous Papers S-71-17, U.S. Army Corps of Engineers Waterway Experiment Station, Vicksburg, Mississippi.

Qian, X., Koerner, R. M., Gray, D. H. (2002), "Geotechnical Aspects of Landfill Design and Construction".

Hushmand Associates, Incorporated
Geotechnical, Earthquake and Environmental Engineers

December 15, 2009

Golder Associates Inc.
230 Commerce, Suite 200
Irvine, California, USA 92602
Mr. Scott Sumner, P.E., Principal

## SUBJECT: ADDENDUM REPORT - PHASE III SLOPE STABILITY ANALYSIS KETTLEMAN HILLS FACILITY, HAZARDOUS WASTE LANDFILL UNIT B-18 EXPANSION, KETTLEMAN CITY, KINGS COUNTY, CALIFORNIA - HAI PROJECT No. 08-0228

Dear Mr. Sumner:
Hushmand Associates, Inc. (HAI) is pleased to submit to Golder Associates, lnc. (Golder) this addendum letter report of the slope stability evaluations for the Class I/II hazardous waste landfill unit B-18 (Landfill B-18) expansion at Waste Management, Inc. (WMI) Kettleman Hills Facility.

This addendum updates portions of the HAI "Slope Stability Analysis Report, Kettleman Hills Facility, Hazardous Waste Landfill Unit B-18 Expansion, Kettleman City, Kings County, California," Report to Kettleman Hills Facility, September 2008. The addendum report has been prepared to incorporate revised interface shear strength testing results for the proposed liner system. The addendum report updates only those portions of the original report that are effected by the change in interface shear strength, references are included to sections of the original report as appropriate. This report should therefore be used in conjunction with the original HAI (2008) report.

## Introduction

The existing Class I/II (hazardous and designated wastes) Landfill Unit B-18 at Chemical Waste Management (CWM) Kettleman Hills Facility (KHF) in Kettleman City, Kings County, California is proposed to be expanded. The existing landfill was constructed in phases (Phase I and II) in 1990's. For the proposed expansion (Phase III), URS Corporation and Hushmand Associates, Inc. performed slope stability and seismic deformation analyses in support of the EIR
preparation and design of the landfill expansion, respectively (URS, 2005; HAI, 2008). The results of these analyses were provided in a comprehensive design report by Golder Associates (Golder, 2008).

A number of investigations including site-specific testing on the landfill material properties were performed for design and construction of the earlier phases of the landfill (Golder, 1990, 1991; ESI, 1990, 1992, 1993). In 2003, URS obtained samples of the landfill Phase II liner system that were archived at the KHF site. Interface shear strength testing was performed on the sandwichlike multilayer structure of the liner system and the results (friction angle, $\phi=19^{\circ}$ and cohesion/adhesion, $\mathrm{C}=0$ ) were used to refine the interface properties reported in the previous investigations (URS, 2005).

## Landfill Geometry and Analysis Sections

HAI (2008) developed six cross sections for the proposed landfill expansion (see Figures 1 and 2 of the HAI 2008 Report). These same six cross sections are evaluated in the addendum report using the updated interface shear strength properties.

This addendum report summarizes the results of the slope stability and seismic deformation analyses for the proposed landfill expansion area, extending from the landfill's southeast corner to northwest corner, along its southern and western boundaries.

The expansion area is located on the western and southern sides of cross sections A-A' through F-F' that were used in the previous stability analyses (HAI, 2008). Additionally, east side of Cross Section B-B' also passes through the expansion area and was also analyzed in the addendum. The interface shear strength of Phase I was not modified and therefore analysis of the northern and eastern boundaries for all cross sections except B-B' remains valid.

## Liner Interface Shear Strength Properties

HAI (2008), Section 3.4, used the material properties from the previous investigations for Phase I liner system and the URS (2005) report for Phase II liner system for static and seismic slope stability and deformation analyses. For the proposed expansion area liner system, the same interface properties ( $\phi=19^{\circ}, \mathrm{C}=0$ ) measured for the Phase II liner system were used (URS, 2005).

HAI (2008) recommended that assumed properties used for design be further verified by performing site-specific tests on the actual materials that would be used during construction. Golder recently performed site-specific laboratory testing on the proposed standard liner system materials for the landfill expansion area to determine the interface properties for the expansion liner system design.

Interface shear strength testing was performed by Precision Geosynthetic Laboratories of Anaheim, California on the sandwich-like multilayer structure of the liner system. The test results indicated that the weakest interface was the double sided (DS) geocomposite and $60-\mathrm{mil}$

HDPE for all applied normal loads. The ultimate interface shear strength properties at 3 inch displacement were measured as approximately $\phi=12^{\circ}$ and $\mathrm{C}=0$. Attachment A provides results of the interface shear tests performed on the Phase III proposed liner system materials. The results were used to refine the slope stability and seismic deformation analyses performed previously (HAI, 2008) for the landfill expansion design.

In the revised slope stability analyses presented here, residual interface shear strength properties measured by URS (2005) and Golder (2009) were used for the Phase II and Phase III slopes, respectively. The Phase I slopes have a slightly different liner system and a residual interface friction angle of 9 degrees was used for the analysis. The material properties for static and seismic stability analyses are summarized in Table I (updated version of HAI 2008 Table 1).

Table 1. Selected Material Properties for Static and Seismic Stability Analysis (Replaces Table 1 of HAI 2008)

Material/Interface	Unit Weight	Shear Strength Properties		Shear Wave Velocity ( $\mathbf{V}_{\mathbf{s}}-\mathrm{ft} / \mathrm{sec}$ ) or Shear Modulus (G, psf) Relation	Modulus   Reduction \& Damping Curves
		$\begin{gathered} \phi \\ \text { (degree) } \end{gathered}$	$\underset{\text { (psf) }}{\mathbf{C}}$		
HW ${ }^{\prime}$	115 pcf	31	0	$G=1000 K_{2}\left(\sigma_{m}^{\prime}\right)^{1 / 2}$   $\mathrm{K}_{2}=60$ for relatively dense sands (Seed and Idriss, 1970)	See Figure 19 Relatively dense sand (Seed et al., 1984)
Clay Liner ${ }^{1,2}$	115 pcf	20	1,150	$G=\frac{14,760(2.97-e)^{2}}{1+e}(O C R)^{k} \sigma_{m}^{0.5}$   (Hardin and Drenvich, 1972)	See Figure 19 (Seed and Idriss, 1970)
Bedrock ${ }^{1}$	150 pcf	40	800	$\mathrm{V}_{\mathrm{s}}=2500 \mathrm{fps}$	See Figure 19 (Schnabel et al. 1972)
Phase 1 Bottom Liner Interface ${ }^{1}$	--.	17	0	----	----
Phase 1 Side Slope Liner Interface	----	9	800	--	----
Phase Il Bottom Liner Interface ${ }^{1}$	----	19	0	--.-	----
Phase Il Side Slope   Liner Interface ${ }^{3}$	----	19	0	----	----
Revised Expansion Area Liner lnterface ${ }^{4}$	--.-	12	0	-..-	----

(1) Environmental Solutions, Inc. (1990, 1992, 1993); Rust Environment \& Infrastructure, Inc. (1998); URS (2005).
(2) Modeled as a layer in site dynamic response analysis to include effects of softer clay layer on ground motion.
(3) The residual interface shear strength properties measured by URS (2005) were used for the Phase 11 slopes.
(4) Golder Associates, lnc. (2009).

## Static and Pseudo-Static Slope Stability Analyses

The analysis approach discussed in Section 3.5 of the original stability report (HAI 2008) remains unchanged in the addendum report.

As discussed in Section 3.6 of the HAI 2008 report, slope stability analyses were performed for the six cross sections analyzed in the 2008 report. Since the landfill is planned to be expanded mainly along its western and southern boundaries, and the new liner system properties only apply to these areas, potential failure planes on the west and south sides of Cross Sections A-A', B-B', C-C', D-D', E-E', and F-F' were analyzed. Additionally potential failure planes on the east side of Cross Section B-B' were analyzed. The most important potential failure mechanism considered was for a wedge (block failure) sliding through the waste mass and along the existing and expanded landfill base liner system. Potential failure surfaces were assumed to pass along the weakest interface in the lining system and then through the landfill mass to the surface.

Pseudo-static analyses, necessary to compute yield acceleration coefficient ( $\mathrm{K}_{\mathrm{y}}$ ), were also performed for the critical potential failure surfaces through waste and base liner system, identified from resuits of the static slope stability analyses for the selected cross sections. The yield acceleration is defined as the acceleration which results in a pseudo-static factor of safety of 1.0 . The computed yield acceleration, $\mathrm{K}_{\mathrm{y}}$, represents limiting value of the horizontal seismic coefficient beyond which movement of a potential slide mass will occur.

For each cross section, pseudo-static analysis using the Spencer or Janbu Method was performed to compute an estimate of yield acceleration coefficient ( $\mathrm{K}_{\mathrm{y}}$ ) for the most critical potential failure plane identified from the static slope stability analysis for that section. The GSTABL7 output plots are presented in Attachment B for the various potential failure surface conditions considered, and the most critical failure surfaces analyzed in the stability analysis of the final fill slopes of the proposed landfill expansion.

Table 2 b (replaces Table 2 b of HAI 2008) below presents the results of the updated slope stability analyses (computed static factors of safety and yield acceleration coefficients) for the most critical potential failure surfaces using the new interface properties of $\phi=12^{\circ}$ and $\mathrm{C}=0$.

Table 2b. Summary of Slope Stability Analysis Results (Landfill West and South Sides)
(Replaces Table 2b of HAI 2008)

Cross   Section	Failure Plane Number	Description	Static Factor of Safety	Yield Acceleration, $\mathbf{K}_{\mathbf{y}}$ (g)
$\begin{aligned} & \mathrm{A}-\mathrm{A}^{\prime} \\ & \text { (west) } \end{aligned}$	I	Deep Block Failure through Bottom Liner	$2.55{ }^{*}$	$0.27{ }^{*}$
	II	Deep Block Failure through Bottom Liner	$5.41^{*}$	0.30 *
$\begin{gathered} \text { B-B' } \\ \text { (west) } \end{gathered}$	1	Deep Block Failure through Bottom Liner	2.41	0.20
	II	Deep Block Failure through Bottom Liner	6.44	0.31
$\begin{gathered} \mathrm{C}-\mathrm{C}^{\prime} \\ \text { (south) } \end{gathered}$	I	Deep Block Failure through Bottom Liner	3.74	0.23
	11	Deep Block Failure through Bottom Liner	$3.62{ }^{*}$	$0.23 *$
$\begin{aligned} & \text { D-D' } \\ & \text { (west) } \end{aligned}$	I	Deep Block Failure through Bottom Liner	3.73	0.27
	$11^{* *}$	Circular Failure	2.50	0.32
	III**	Circular Failure	2.18	0.26
$\begin{aligned} & \text { E-E' } \\ & \text { (west) } \end{aligned}$	1	Deep Block Failure through Bottom Liner	3.42*	$0.28{ }^{*}$
	II	Deep Block Failure through Bottom Liner	$3.90{ }^{*}$	$0.32{ }^{*}$
$\begin{aligned} & \text { F-F' } \\ & \text { (west) } \end{aligned}$	I**	Circular Failure	2.58	0.33
	11	Deep Block Failure through Bottom Liner	4.40	0.29
	111	Deep Block Failure through Bottom Liner	$3.31{ }^{\circ}$	$0.28{ }^{*}$

Notes: * Static Factor of Safety and $\mathrm{K}_{\mathrm{y}}$ compured using Janbu's method.
** Circular failure analysis from HAI 2008 included for completeness. Static factor of safety and $\mathrm{K}_{\mathrm{V}}$ for section $\mathrm{B}-\mathrm{B}$ ' (east) changed only slightly and thus are not reported. Static factors of safety and $K_{y}$ values for Section B-B' are larger than 3.0 and 0.3 , respectively.

For all final (long-term) static conditions, the minimum acceptable factor of safety is 1.5. This criterion was satisfied by the potential failure surfaces analyzed for the proposed fill plan, base liner designs, and the site-specific and estimated landfill material properties.

The results of the pseudo-static stability analyses show that the lowest yield acceleration coefficient was approximately equal to 0.20 for failure along the liner and waste mass in cross sections B-B' (west).

The combination of yield acceleration coefficient and slide mass geometry that could potentially result in the largest estimates of the seismically-induced displacements were used in the site response and Newmark displacement analyses as described in detail in the 2008 report (Golder,
2008). Based on the computed yield accelerations presented in Table 2 b and landfill cross sections geometry, the potential failure plane \#I for cross section B-B' and failure plane \#I associated with cross section D-D' were judged to produce the largest seismic displacements and thus, were selected for dynamic site response and seismic deformation analyses. The estimated displacements were calculated based on updated 2008 site specific ground motions for the Kettleman Hills Landfill (HAF 2008).

## Seismically-Induced Permanent Displacements

A detailed evaluation of the seismic deformations using two-dimensional finite element site response analyses and Newmark (1965) slope displacement calculation method was performed for this study. The analyses were performed for the most critical combinations of $\mathrm{K}_{\mathrm{y}}$ values and failure plane geometries (Sections B-B', Failure Plane I, West and Section D-D', Failure Plane I, West) and the two sets of design earthquake motions used in the 2008 analyses ( 1994 Northridge Earthquake and 1979 Loma Prieta Earthquake records).

The average acceleration time histories computed in the QUAD4M response analyses for the most critical potential failure mass identified in the pseudo-static analyses were used as input for Newmark deformation analyses to evaluate the permanent seismically-induced displacements along the liner system. The displacement calculated by this method is a function of the yield accelerations which were computed in the pseudo-static stability analyses. Figures 1 through 4 (replace Figures 21 to 24 in HAI 2008) illustrate variation of potential slide mass displacement ( $\delta$ ) versus the yield acceleration $\mathrm{K}_{\mathrm{y}}$ for cross sections B-B' and D-D' and for the two sets of design ground motions used in the analyses (Golder, 2008). Based on the $\mathrm{K}_{\mathrm{y}}$ values in Table 2 b and Figures 1 through 4, for the potential failure plane \# I, located in the northwestern part of cross section B-B' the largest permanent displacement ( $\sim 1.5$ inch) is induced for the 1994 Northridge earthquake Castaic Old Ridge Route accelerograms scaled to a PHGA of 0.57 g . For all other sections and potential failure planes for $K_{y}$ values larger than 0.2 seismic induced liner displacements are less than 1 inch. These estimated values of the seismic displacements are considerably smaller than the maximum allowable displacement of 6 inches commonly used in the industry (Seed and Bonaparte, 1992). Therefore, the landfill will be stable both statically and seismically for the updated site-specific liner interface properties.

## Conclusion

This addendum report summarizes the site specific liner interface shear strength testing performed by Golder and the updated slope stability and seismic deformation analyses for the proposed landfill expansion area slopes using the new strength properties. The site specific testing was performed to verify the strength properties originally used in the landfill expansion design in the HAI 2008 report. The measured liner interface friction angle $\left(\phi=12^{\circ}\right)$ was found to be lower than the original value used in the design $\left(\phi=19^{\circ}\right)$. Using this new interface friction angle, static and dynamic stability analyses were conducted for various cross sections of the proposed landfill expansion area.

The analyses indicated that the proposed new landfill expansion design (Golder, 2008) would result in a stable configuration under both static and seismic loading conditions in compliance with applicable regulations. The acceptability of the landfill slopes for earthquake loading conditions was determined by the relatively small magnitude of the seismically-induced permanent displacements resulting from the local and distant design earthquake events. The resuits of the analysis show that the computed static factors of safety are greater than 1.5 for all analyzed sections. The results of the conservative Newmark-type permanent displacement analyses presented in this study indicated that computed maximum displacements along the liner system during the design earthquake events are less than 1.5 inches.

## References

Environmental Solutions, Inc., 1990. "Engineering and Design Report, Landfill Unit B-18, Phase I and II and Final Closure, Kettleman Hills Facility, Kings County, California, Volumes I and II," report prepared for Chemical Waste Management, Inc., August.

Environmental Solutions, Inc., 1992. "Backup Calculations Supporting the Interface testing Program for Landfill Unit B-18, Kettleman Hills Facility, Kings County, California," report prepared for Chemical Waste Management, Inc., Februrary.

Environmental Solutions, Inc., 1993. "Revised Intermediate Waste Fill Plan, Landfill Unit B-18, Phase I, Kettleman Hills Facility, Kings County, California, Volumes I and II," report prepared for Chemical Waste Management, Inc., August.

Golder Associates, Inc. (1990) "Direct Shear Testing Program for Landfill Cover Design, Kettleman Hills Facility", June 29, 1990.

Golder Associates, Inc. (1991) "Landfill B-19, Phase IA Redesign and Closure Plan, Kettleman Hills Facility, Kettleman City, Californica," Volumes 1-IV, April 15, 1991.

Golder Associates, Inc. (2008) "Engineering and Design Report, Landfill Unit B-18, Ketteleman Hilles Facility, Kettleman City, California" Report to Kettleman Hills Facility.

Hushmand Associates, Inc. (2008) "Slope Stability Anaysis Report, Kettleman Hills Facility, Hazardous Waste Landfill Unit B-18 Expansion, Kettleman City, Kings County, California," Report to Kettleman Hills Facility, September.

Newmark, N. M. (1965) "Effects of Earthquakes on Dams and Embankments," 5th Rankine Lecture, Geotechnique, Vol. 15, No. 2, pp. 139-160.

URS (2005) "Preliminary Stability Analyses, Kettleman Hills Facility Expansion, Kettleman City, California," prepared for Chemical West Management, Inc.

## Closure

We trust this addendum report meets your present requirements. If you have any questions regarding this report, please contact this office at your convenience. We appreciate this opportunity to provide our professional services to Golder.

Sincerely yours,
Very truly yours,
HUSHMAND ASSOCIATES, INC.


Ben Hushmand, Ph.D., P.E. 44777


President, Principal Engineer

## FIGURES






## APPENDIX A

## INTERFACE SHEAR TEST RESULTS


CLENT: GOLDER A ASSOCATES
PfOUECT: KETTLEMAN HILLS



## TEST CONDITIDNS:

SAMPLE PREPARATION:

1. Specimens were cut along machine direction to $14^{*} \times 17^{\prime \prime}$ for the upper box, and $14^{\prime \prime} \times 19^{n}$ tor the lower box,
with an effective test area of $12 \times 12$.
2. The Maximum Dry Density (MDD) oi the soil is 111.8 pef at 16, 4\% Optimum Moistura Content (OMC).

(forming 2 inch layer in the TOP and BOTTOM boxes)
3. The three intermediate geosynthetic specimens were lloating during shear run.

CONSOLIDATION:

1. Each set of specimen was consolidated under Dry condion for atime nomel bas bitore ehaeing.
2. Normal loads were applled using Hydrpuliga for the highest load, Bladder for the intermediate and lowest loads.

SHEAR TEST:

1. Shear test was conducter (all $0.040 \mathrm{in} / \mathrm{min}$
2. Sheared minimi 3.0 inch horizontal displacement.
3. Test specimens were sheared i Bny condition,
4. Test were performed in general accordance with ASTM D6243 / ASTM D5321
using Erainard-Kilman LG-i t2 Direct Shear machine with effective lest area of 12 in $\times 12 \mathrm{in}$.


NOTE The friction andes and cohasion resiuta given here are basod ce mathematiculty diolontined bsat fil lis.
oeservations:
t No tilting of the system or any abnomalities observed during and after the fest,
2 Superficial abrasion on the peosymthelics interifacing sides (typical to all loads).
3. Sliding occurred between the DS Geocomposite (C) 62070) and 60 mi HDPE (C\# 44501) on all loads.

See attached photos (907-t-15,000 psf/ 907-1-10,000 psf / 907-t-5,000 psi)



table 1－E
CLIENT：GOLDER \＆ASSOCIATES
PROJECT：KETTLEMAN HILLS

TEST COnfiguration 1－B		
SKAPS，DS Goocompoalte，TN 220－2－8	（NA）	62071
VS．	Intertact	Contral Ma．
QSE， 80 mit DS Tebxured HDPE	（as shown）	44504
BOTFOMPQX		

## TEST CONDITIONS：

## SAMPLE PREPARATION：

t．Spectmens were cut along machine direction to $14^{-1} \times 17^{7}$ for the upper box，and $14^{*} \times 19^{\prime \prime}$ for the iower box， wth an effective test area of $12^{\prime \prime} \times 12^{\prime \prime}$ ．
2．Geosynthetic specimens were secured via flat bar clamping mechanisms complete with bolts and nuts（7－pairs）．

## CONSOLIDATHON：

1．The specimen was consolidaied under Dry condition for 2 hrs （e）nermal load before shearing．
2．Normal load was applled using

## SHEAR TEST：

1．Shear lest was conducted $9 \quad 0.04 \quad \mathrm{in} / \mathrm{min}$ ．
2．Sheared minimum $\mathbf{3 . 0}$ inch horizontai displacement
3．The tesi specimens were sheared all Dry condition．
4．Test were performed in general accordance with ASTM D6243／ASTM D5321
using Brainard－Kilman LG－t12 Direct Shear machine with elfective test area of 12 in $\times 12$ in，

Normal Stressas Applied		Asperity Helghts		PEAK STREMGTH		POST．．PEAK STRENGTH AT 3.0 INCHES			
		$\begin{aligned} & \text { Shear } \\ & \text { Suress } \end{aligned}$	Secant   Angle	Shear Streas	Secant Angie				
（psi）	（psi）			Before	Atter	（psf）	（degrees）	（psi）	（degrees）
69.44	10，000	24.8	19.3	4903	26	2282	13		

OBSERVATIONS：I．No tilting of the sysiem or any abnormalities observed during and after the lesi．
2．Superficial abrasion on the geosynthetics intertacing sides（typical to all ioads）．
3．Sllding occurred between the two interfacing surfaces．

Figure ${ }^{2} 2$
Shew Stroae Diapiecoment Gurve


@ 15,000 psf

@ 10,000 psf

@ 5,000 psf

## APPENDIX B

## SLOPE STABILITY ANALYSIS PLOTS



KHF, SECTION A-A', WEST, STATIC, FAILURE PLANE II (REVISED) -09la- west $(10-16)$ /sea-w-2.pl2


KHF, SEC. B-B', WEST, STATIC, FAILURE PLANE I (REVISED)
c:lslopelcross sections111-09b-b west (oct 09)/secb-ws1 surface \#1.plt Run By: Ashkaan, Hushmand Associates, Inc 11/10/2009 12:02PM


Factor Of Safety is Calculated By GLE (Spencer's) Method (0-2)
KHF, SEC. B-B', WEST, STATIC, FAILURE PLANE II (REVISED)
c:1slopelcross sections111-09lb-b west (oct 09)lsecb-wsjii.pl2 Run By: Ashkaan, Hushmand Associates, Inc 11/10/2009 05:37PM

KHF, SEC. B-B, WEST, STATIC, FAILURE PLANE II (REVISED)
c::slopelcross sections 111 1-09b-b west (oct 09) isecb-ws2s surface \#1.plt Run By: Ashkaan, Hushmand Associates, Inc 11/10/2009 05:39PM

Factor Of Safety Is Calculated By GLE (Spencer's) Method ( $0-2$ )
Safety Factors Are Calculated By The Simplified Janbu Method
KHF, SEC. B-B', EAST, STATIC, FAILURE PLANE 1 (REVISED)
c:lslopetcross sections111-09lb-b east (oct 09)/secb-esj1.pl2 Run By: Ashkaan, Hushmand Associates, Inc 11/10/2009 05:07PM

KHF, SEC. B-B', EAST, PSEUDO-STATIC, FAILURE PLANE 1 (REVISED)
c:islopelcross sections111-091b-b east (oct 09) 1 secb-ep1.plt Run By: Ashkaan, Hushmand Associates, Inc 11/10/2009 05:13PM

Factor Of Safety Is Calculated By GLE (Spencer's) Method (0-2)
KHF, SEC. B-B', EAST, STATIC, FAILURE PLANE 2 (REVISED)
c:islopelcross sections111-091b-b east (oct 09) ssecbees2 sufface \#1.plt Run By: Ashkaan, Hushmand Associates, Inc 11/10/2009 05:16PM

Factor Of Safety Is Calculated By GLE (Spencer's) Method (0-2)
KHF, SEC. B-B', EAST, PSEUDO-STATIC, FAILURE PLANE 2 (REVISED)
c:lslopelcross sections111-091b-b east (oct 09) lsecb-eps2.ph Run By: Ashkaan, Hushmand Associates, Inc 11/10/2009 04:30PM

Factor Of Safety is Calculated By GLE (Spencer's) Method (0-2)
KHF, SEC. B-B', EAST, STATIC, FAILURE PLANE 3 (REVISED)
c: Islopelcross sections141-091b-b east (oct 09) isecb-es3.pl2 Run By: Ashkaan, Hushmand Associates, Inc 11/10/2009 05:18PM

KHF, SEC. B-B', EAST, PSEUDO-STATIC, FAILURE PLANE 3 (REVISED) c:islopelcross sectionsi11-09lb-b east (oct 09) isecb-esps3.plt Run By: Ashkaan, Hushmand Associales, Inc 11/10/2009 05:28PM


KHF, SEC. C-C',SOUTH, STATIC, FAILURE SURFACE I (REVISED) c: islopelcross sections 111 -0910-c south (oct 09)/secc-ses1.plt Run By: Ashkaan, Hushmand Associates, Inc 11/10/2009 02:24PM

KHF, SEC. C-C',SOUTH, PSEUDO-STATIC, FAILURE SURFACE I (REVISED)

KHF, SEC. C-C',SOUTH, STATIC, FAILURE SURFACE II (REVISED)





KHF, SECTION E-E', WEST, PSEUDO-STATIC, FAILURE PLANE II (REVISED)
c:lslopelcross sections111-09le-e west (oct 09)/sece-wp2 surface \#1.plt Run By: Ashkaan, Hushmand Associates, Inc 11/10/2009 06:22PM





KHF, SECTION F-F', WEST,PSEUDO-STATIC, FAILURE PLANE III (REVISED)


## APPENDIX I <br> SOIL EROSION ANALYSES

	Kettleman Hills Facility - Landfill Unit B-18 SOIL EROSION	
	Project No.: 083-91887	Made By: RH
	Date: 4-18-2008	Checked By: SS
	Sheet: 1 of 3	Reviewed By: SS

## Objective:

To estimate and evaluate the soil loss due to surface water erosion from the proposed final closure cover slopes of Landfill B-18.

## Given:

The proposed final closure cover slopes of Landfill B-18 will generally consist of benches every 50 vertical feet (maximum) with $3.5 \mathrm{H}: 1 \mathrm{~V}$ (horizontal:vertical) slopes between benches. Therefore, the worst case cover slope with regard to soil erosion is:

Slope Inclination $=3.5 \mathrm{H}: 1 \mathrm{~V}$
Slope $=\frac{1}{3.5}=28.6 \%$
Slope Vertical Height $=50$ feet
Slope Horizontal Length $=50 \times 3.5=175$ feet
Slope Length $=\sqrt{50^{2}+175^{2}}=182$ feet
This worst case cover slope was analyzed as described below.
Based on guidance from the United States Environmental Protection Agency (USEPA, 1989), the soil erosion loss should be less than 2 tons/acre/year (t/ac/yr), as shown in Attachment \#1.

## Method:

In order to estimate the amount of soil loss on the Landfill B-18 cover due to water erosion, the Revised Universal Soil Loss Equation (RUSLE) was used. The RUSLE was developed by the United States Department of Agriculture, Natural Resources Conservation Service (NRCS) to estimate sheet-rill (both rill and inter-rill) erosion and it considers soil and vegetation type as well as physical and climatic features of the landfill area. The RUSLE is expressed mathematically as:

$$
a=r \times k \times 1 \times s \times c \times p
$$

where:
$a=$ daily soil loss due to erosion (units of tons/acre/day);
$r=$ rainfall and runoff erosivity factor;
$k=$ soil erodibility factor;
I = slope length factor;
$\mathrm{s}=$ slope steepness factor;
$c=$ cover-management factor; and
$p=$ supporting practices factor.
The daily values of soil erosion loss ("a" values) are summed over an entire year to calculate the estimated annual soil erosion loss (in t/ac/yr). These soil erosion calculations are best made using a computer program.

	Kettleman Hills Facility - Landfill Unit B-18 SOIL EROSION	
	Project No.: 083-91887	Made By: RH
	Date: 4-18-2008	Checked By: SS
	Sheet: 2 of 3	Reviewed By: SS

The RUSLE - Version 2 (RUSLE2) computer program, developed by the NRCS, was used to calculate the potential soil erosion loss from the Landfill B-18 worst-case cover slope described above. The RUSLE2 program was downloaded from the following URL:
http://fargo.nserl.purdue.edu/rusle2_dataweb/RUSLE2_Index.htm
Assumptions:
Climate: The default climate "CA_Kings_R6" was selected from the Kings County climate zones in RUSLE2 as most accurately representing the climate at the Kettleman Hills Facility. The CA_Kings_R6 climate has an annual precipitation of 6.9 inches. For the period of July 1948 through December 2001, the mean annual precipitation for the site was 6.82 inches according to data obtained from the Western Regional Climate Center data base for the Kettleman Climatological Station (see Attachment \#2).

Soils: The NRCS has identified three types of soils at the Kettleman Hills Facility. These soils are: Kettleman Loam ( $5-15 \%$ slopes), Kettleman Loam ( $15-30 \%$ slopes), and Kettleman-Cantua Complex ( $30-50 \%$ slopes). The properties of these three soil types, as listed in the RUSLE2 program files, are as follows:

Soil Property	Kettleman Loam   $(5-15 \%$ Slopes $)$	Kettleman Loam   $(15-30 \%$ Slopes $)$	Kettleman-Cantua   $(30-50 \%$ Slopes)
Sand Content	$40 \%$	$40 \%$	$40 \%$
Silt Content	$38 \%$	$38 \%$	$38 \%$
Clay Content	$23 \%$	$23 \%$	$23 \%$
Erodibility Factor (k)	0.37	0.37	0.37
RUSLE2 Soil No.	$\# 127$	$\# 128$	$\# 129$

Based on the similarity of the above-listed soils at the Kettleman Hills Facility, Kettleman Loam (15$30 \%$ Slopes, RUSLE2 Soil No. 128) was selected to model the Landfill B-18 cover soil. Sensitivity analyses indicated that the three soil types listed above result in the same calculated soil loss if all other variables are held constant.

## Calculations:

The soil erosion calculations were performed using the RUSLE2 computer program downloaded from the above-listed URL. The calculations were performed for two scenarios:

1) Bare Slope - the final cover slope was modeled as a construction site with bare ground.
2) Vegetated Slope - the final cover slope was modeled as having permanent ground cover consisting of warm season grass that is not harvested. The amount of grass canopy was reduced $50 \%$ from the default (base) value, which increased the amount of calculated erosion.

Kettleman Hills Facility - Landfill Unit B-18
SOIL EROSION

Project No.: 083-91887	Made By: RH
Date: 4-18-2008	Checked By: SS
Sheet: 3 of 3	Reviewed By: SS

## Results:

The results of the RUSLE2 calculations are shown in Attachment \#3, which contains the RUSLE2 Worksheet Erosion Calculation Record sheets for each of the two scenarios analyzed. A summary of the results is given in the table below:

Scenario	Final Cover   Slope Inclination	Computed Soil   Erosion Loss   (tac/yr)
Bare Ground	$3.5 \mathrm{H}: 1 \mathrm{~V}$	9.2
Vegetated Ground	$3.5 \mathrm{H}: 1 \mathrm{~V}$	0.97

## Conclusions:

Once vegetation is established on the Landfill B-18 final cover slopes, the amount of soil erosion loss is estimated to be approximately half of the recommended maximum of $2 \mathrm{t} / \mathrm{ac} / \mathrm{yr}$ (USEPA, 1989). As discussed in the RUSLE2 program documentation, the results obtained from RUSLE2 are to be used as guides in evaluating soil erosion potential and mitigation measures for soil erosion. As shown in the current case for Landfill B-18, maintaining vegetative cover on the final landfill sideslopes is essential for limiting soil erosion loss to an acceptable amount.

## Commentary:

Golder has been providing engineering services at the Kettleman Hills Facility for over 20 years, including over 10 years of annual post-closure inspections. During this period, several landfill units have been closed. Unit B-13, Unit B-15, and the Combined Closure Area (totaling over 100 acres) were closed in the early- to mid- 1990's. Based on observations of the final cover slopes of these areas, soil erosion does not appear to be a problem at the Kettleman Hills Facility when vegetation is present.

## Reference:

United States Environmental Protection Agency, "Technical Guidance Document: Final Covers on Hazardous Waste Landfills and Surface Impoundments," EPA/530-SW-89-047, July 1989.

## ATTACHMENT \#1

SOIL EROSION ANALYSES

EPA/530-SW-89-047
July 1989

Technical Guidance Document:

## Final Covers on

 Hazardous Waste Landfills and Surface Impoundments

Table 2. Synopsis of Minimum Technology Guidance for Covers

Layer	Thickness	slope	Requirements
Top Layer			
Vegetation	--	--	Persistent, drought-resistant, adapted to local conditions.
OR			
Surface Armor	$\begin{array}{r} 5-10 \mathrm{in} . \\ (13-25 \mathrm{~cm}) \end{array}$		Cobbles, gravel.
ON			
Soil	$\begin{aligned} & \geq 24 \mathrm{in} \\ & (\geq 60 \mathrm{~cm}) \end{aligned}$	3-5\%	$\left.\begin{array}{l}\text { Erosion rate } \\ <2 \text { ton/acre/yr } \\ (5.5 \mathrm{MT} / \mathrm{ha} / \mathrm{yr})\end{array}\right\}$
Drainage Layer			
Soil	$\begin{aligned} & \geq 12 \mathrm{in} . \\ & (\geq 30 \mathrm{~cm}) \end{aligned}$	$\geq 3 \%$	SP (USCS) soil $\mathrm{K}>1 \times 10^{-2} \mathrm{~cm} / \mathrm{s}$; gravel toe drain.
OR			
Geosynthetic	variable	$\geq 3 \%$	Performance equivalent to soil, hydraulic transmissivity $\geq 3 \times 10^{-5}$ $\mathrm{m}^{2} / \mathrm{sec}$.
Low-Permeability Layer			
FML	$\underset{(\geq 0.5 \mathrm{~mm})}{\geq 20 \mathrm{mils}}$	$\geq 3 \%$	In EPA Report No. EPA 600/2-88-052.
ON			
Low-Permeability Soil	$\begin{aligned} & \geq 24 \text { in. } \\ & (\geq 60 \mathrm{~cm}) \end{aligned}$	$\geq 3 \%$	$\begin{aligned} & \text { In-place } \\ & \mathrm{k}<1 \times 10^{-7} \mathrm{~cm} / \mathrm{s} \\ & \text { and test fill. } \end{aligned}$
Optional Lavers (site-specific design)			
Gas Vent Layer	$\geq 12 \mathrm{in} .$	$\geq 2 \%$	similar to drainage layer.
Biotic Barrie	animal or root-depend	dent	Large materials, e.g., cobbles.

The Agency recommends a two-component top layer for a landfill cover system (Figure 1). The upper component should be vegetation or other surface treatment, designed to impede erosion but allowing surface runoff from major storm events. The Agency believes that, in most cases, vegetation underlain by soil, at least part of which is topsoil, will best accomplish these objectives. However, in some areas the prevailing climate may inhibit the establishment and maintenance of vegetation, or a planned alternative use of the site may preclude vegetation. In those cases, an armored surface without vegetation (Figure 2), and underlain by fill soil, might be used if it will minimize. erosion and abrasion of the cover and allow, to the maximum practicable extent, surface drainage off the cover.

### 2.1 DESIGN

The Agency recommends that the vegetation component of the top layer meet the following specifications:

- Locally adapted perennial plants.
- Resistant to drought and temperature extremes.
- Roots that will not disrupt the low-permeability layer.
- Capable of thriving in low-nutrient soil with minimum nutrient addition.
- Sufficient plant density to minimize cover soil erosion to no more than 2 tons/acre/year (5.5 MT/ha/yr), calculated using the USDA Universal Soil Loss Equation.
- Capable of surviving and functioning with little or no maintenance.

In landfill situations where the environment or other considerations make it inappropriate for maintaining sufficiently dense vegetation, armoring material may be substituted as the upper component of the top layer or in rare cases the whole layer. It is recommended that the material possess the following characteristics:

- capable of remaining in place and minimizing erosion of itself and the underlying soil component during extreme weather events of rainfall and/or wind;
- capable of accommodating settlement of the underlying material without compromising the purpose of the component;
- surface slope approximately the same as the underlying soil (at least 3 percent slope): and
- capable of controlling the rate of soil erosion from the cover to no more than 2 tons/acre/year (5.5 MT/ha/Yr), calculated by using the USDA Universal Soil Loss Equation.

Agency-recommended specifications for the lower soil component of the top layer include the following:

- for vegetation support, a minimum thickness of 60 cm ( 24 in.) including at least 15 cm ( 6 in. ) of topsoil (soil of lower quality may be used beneath an armored surface); greater total thickness where required, e.g., where maximum frost penetration exceeds this depth, or where greater plant-available water storage is necessary or desirable;
- medium texture to facilitate seed germination and plant root development;
- final top slope, after allowance for settling and subsidence, of at least 3 percent, but no greater than 5 percent, to facilitate runoff while minimizing erosion; and
- minimum compaction to facilitate root development and sufficient infiltration to maintain growth through . drier periods.

The owner or operator of the landfill should prepare a separate section specific to monitoring construction of the top layer to be included in the construction quality assurance (CQA) plan.

### 2.2 DISCUSSION

### 2.2.1 Upper Component of Top Layer

As noted in the design recommendations above, the upper component of the top layer may be vegetation (Agency-preferred where possible) or other erosion-impeding materials. These are discussed separately below.
and, in general, increase the long-term maintenance of the cover system. Owners and operators using final slopes based on site-specific conditions should determine that the slopes will not result in the formation of erosion rills and gullies and will limit total erosion to less than 2.0 tons/acre/year (5.5 $\mathrm{MT} / \mathrm{ha} / \mathrm{Yr}$ ). The U.S. Department of Agriculture ${ }^{\text {i }} \mathrm{S}$ Universal Soil Loss Equation (USLE) is recommended as the tool for use in evaluating erosion potential (EPA, 1982a). The Agency believes that a maximum erosion rate of 2.0 tons/acre/year (5.5 MT/ha/yr) is realistically achievable for a wide range of soils, climates, and vegetation. The Agency also believes that reliance on this criterion will minimize gully development and cover maintenance.

## ATTACHMENT \#2 SOIL EROSION ANALYSES

$$
\underset{\sim}{2} \underset{\sim}{m} \underset{0}{\cdots} \stackrel{0}{0} 0
$$

KETTLEMAN STN, CALIFORNIA (044536)
Period of Record Monthly Climate Summary
Period of Record Monthly Climate Summary
Period of Record : 7/ $1 / 1948$ to 12/31/2001
Feb

Average Snow Depth (in.) $\quad 0 \quad 0$
Percent of possible observations for period of record.
Max. Temp.: $60.6 \%$ Min. Temp.: $60.1 \%$ Precipitation: $97.2 \%$ Snowfall: $97.4 \%$ Snow Depth: $97.4 \%$ Check Station Metadata or Metadata graphics for more detail about data completeness.

[^29]
## ATTACHMENT \#3

## SOIL EROSION ANALYSES

RUSLE2 Worksheet Erosion Calculation Record
Info: Kettleman Hills Facility - Landfill Unit B-18
3.5H:1V, 50-foot-tall final cover slopes (vegetated)
Inputs:


# APPENDIX J <br> SURFACE WATER DRAINAGE ANALYSES 

APPENDIX J.1	PHASES I AND II HYDROLOGY AND DESIGN   CRITERIA
APPENDIX J.2	PHASES I AND II RUN-ON CONTROL
APPENDIX J.3	PHASES I AND II RUN-OFF CONTROL AND   RUN-OFF CONTROL FOR PHASE IIIA
APPENDIX J.4	FINAL CLOSURE DRAINAGE

APPENDHX. I. 1
PHASES IANDIIHYDROLOGV ANQ DESIGN CRITERLA

ENVIRONMENTAL SOLUTIONS, INC.
By 75mDate $8-15-90$ Subject LANDFLL By Sheet No. $\qquad$ 1 of 59 shed. By $\qquad$ Date $\qquad$ DRAINAGE DESIGN) Prop. No. 80.09)
$\qquad$


ENVIRONMENTAL SOLUTIONS, INC.

Chkd. By N.A. Date $\frac{8-14-90}{}$ SySTES Proi. No.
$=$ DFIGN LANDFILL BHE $=$ DRALUAGE SYSTEM
: IESSEN 1 MAJOR DROINGE FEATURES APE SIEED FOR PROBCSTE
: CRTTERA: MAYIMOM PRESITITATON.
2. LESS CRITICAL DRAINAGE. FEATURE ARE SIZED FOR 25-yEAR STORL.
TAKES THE ZORU OF

$$
Q=C i A
$$

WHENE

DUERSION PPUS/DTGES UTLL EE SIZED USIMG THE WANKING'S FORUUL WHCH TAKES THE FORN OF

$$
Q=\frac{1.405}{n} A R^{2 / 3} S^{1 / 2} \quad W H E P=
$$

$$
\begin{aligned}
& R=\text { tyDRAUC RROUS } \\
& S=2 T-550 \text { SHE }
\end{aligned}
$$

$Q$ : WARLUDM DSCHARSE CAPACTY
$n=$ ROUSHESS COETFEEUT


$$
\begin{aligned}
& Q: \text { NAxpent DBCHAREA (GS) } \\
& i=\text { RAMTAL MTEGMY (HR) } \\
& A=\text { DRANAGE AFES } \\
& C=\text { RUNOFF COEFHCENT }
\end{aligned}
$$

ENVIRONMENTAL SOLUTIONS, INC.
By upi Date 7-24-90 Subject LANDFILL B-18. RUNON \& Sheer No. 3 of 59 hkd. By N.A. Date. $8-14-90$ PONDFF CONTEOL Proj. No. 89-977

DETEPYUATION OF THE OF CONCENTEATION

THE OF CONCEHTROTION MAY SE DETERUMED EY

$$
\text { 1. } \quad T_{c}=\left(\frac{11.9 L^{3}}{H}\right)^{0.255} \quad \text { WHEEE }
$$

$$
\begin{aligned}
& \text { Tc: THE OF CONCENTRETON } \\
& L=15 S^{2} H \text { OF FLOW PTH (CILES) } \\
& H \text { : ELEVATION DIFIGELE (FET) }
\end{aligned}
$$

patenget

WHERE

$$
\begin{aligned}
& L=\text { LENSTH of FLOW PATH } \\
& n=\text { ROOGHRES COEFCuEMT } \\
& R=\text { HyDRAUDE RROM } \\
& E \text { DTHE BEO ELOPE }
\end{aligned}
$$

19 DETERINATON of FONOT COETECST

21 IF THE DRKNAGE BASIN ONDER CONSIDNATOU GIGMTS OT 24 RONOFF COEFFIENT WHL EE USED. THE COLPOSTE RUNOTF 25 MAY BE DETERXINED EY:

$$
C_{c}=\frac{\sum C_{2} A_{i}}{\sum A_{i}}
$$

WHERE Ci \& Ai ik TE RUNOFF COSTHCENT AND DE SUPRE
 COETFCTENT VALUES TOR DITEKENT HAFEROLS AFE SHON IN ExHBTT 1

WITH THE ONSITE HOTERIUL IS SHMISR TO THE TYIE C


ENVIRONMENTAL SOLUTIONS, INC.
By Dhi Date 8-12.90 Subject LANDFLLE B.18
Sheet No. 4 of 59
Chkd. By N.A. Date $\qquad$ $8-14-90$ $\qquad$ Drainge Design Prol. No. 83.977
$\qquad$


SHORT-TERM REINFAUL INTENSITY I DURATWN RELATIONCAMS ARE
BASED ON PMP RECOKD FOR COALINGA STETION (EKHIRTY)
THE ROINFALL IWTENGTY DURETLON CURUE IS SHOWN ONT
EXHIBIT 4. EXHIRIT 5 ALSO SHOWS THE THE 25-YEHR STORU

FOR CULVERT DESTRAS. EXHIBTT 6. SHOWS THE REWTUE
LOCATION BETWEEN THE STE AND HE CORLNOAA STATION.
EXHIBT 7 SHOWS THE PRECIPTOTION TERTH-DNROTION-FREQUENCY
DATA USED. TO DEVELORE THE RAUTEL IMTERIV COPUE.


ENVIRONMENTAL SOLUTIONS, INC.
By $7 T \dot{\sim}$ Date $\qquad$ $7.31-90$ Subject $\qquad$ LANDFILC BHB DRANEGE

Sheet No. $5 \quad 0$ of 59 Mokd. By N.A. Date. $\qquad$ $8-14-90$ TEStion $\qquad$ 6997
$\qquad$ Proj. No
$\qquad$
$\square$

$$
(w=5 \mathrm{ft})
$$

$$
A F=F L O W \text { AREA (ASSUUE FLOW FU(L) }
$$

$$
P_{W}=W E T E D \text { DERHETER }=2 \times \sqrt{2.5^{2}+H^{2}}
$$

$$
R=\text { HYDRAUUC RADIUS }=A T / P W
$$

$$
Q=\frac{1.486}{n} A R^{2 / 3} s^{1 / 2}
$$

$n=0.013$ FOR SMOOTH ASPHALT: (ExHIRHT 9)


24 BROW DITCH (ser paqe17)

$$
\begin{aligned}
& W=2 f t \quad T Y P E 1 \\
& A F=1 F T^{2} \\
& P_{W}=2 \times 1 \times \sqrt{2}=2.85 \mathrm{FT} \\
& R=0.35 \mathrm{FT} \\
& Q=57.1 \mathrm{~S}^{1 / 2}(C F S)
\end{aligned}
$$

$\omega=2^{\prime}$

$\qquad$
Chad. By $\Delta \perp A$ Date $\qquad$

Subject LANDTLL B-18 DRAWEE DESIGN

Sheet No._- 6 of 59
Prof. No. $\qquad$ 89917


ENVIRONMENTAL SOLUTIONS, INC.
 Chkd. By $H_{1} A$ Date $8-14 \cdot 10$ $\qquad$ Proj. No. \& 2.977

: FOR LANDFILC BHB PHASE I AND PHESE I DEVELOPLENT.

: TISCHERGE FOR THE RUN-OFF EFERS.
10 .



## Run-off Drainage design calculation for <br> Phase 1 and Phase II

by 7 Ppi date $86-90$ subject LAMDFuL E-18 DRDMAGE sheet no 10 of 59



## Notes

1. Assumed minimum time of concentration. (5mumudico)
2. See Figure 1.

## DRAINAGE DESIGN CALCULATION

by 15 pe date B-6.90 subject LANDFLL B-18 _sheet no II of 59 cKKD N.A.DATE 8-14-92 DRAINGEE DESGY ——_-_ PROJECT No 89.997


[^30]
## DRAINAGE DESIGN CALCULATION

By UPM DATE B-8.90 subJECT LANDFILL B-18 SHEET no 12 of FI


$\underset{\substack{\text { drainage } \\ \text { area }}}{ }$	AREA ( $A C)$	$\begin{aligned} & \text { LONGEST } \\ & \text { FLOW PATH } \\ & \text { (MI) } \end{aligned}$	$\begin{aligned} & \text { ELEVATION } \\ & \text { DIFFERENCE } \\ & \text { IFO } \end{aligned}$ (Fi)	$\begin{gathered} \text { TIME OF } \\ \text { CONCENTRATON } \\ \text { (MID) } \end{gathered}$	RAINFALL   INTENSITY   (2) ${ }^{\text {NTHENSTIT}}$	RUNOFF COEFFICENT	$\begin{aligned} & \text { MAXIMUM } \\ & \text { DISCHARGE } \\ & \text { (cts) } \end{aligned}$
Al	4.08	0.14	66	3	$7.92{ }^{(1)}$	0.4	2.9
A 18	3.14				$7.92^{11}$	0.4	10
A19	1.29				$7.92^{(1)}$	0.4	4.1
$\mathrm{A}_{20}$	0.42				$7.92{ }^{\circ}$	0.4	1.3
A 21	0.54				7.92	0.4	1.71
		.					

Notes:

1. Assumed minimum time of concentration. (Smainutis)
2. See Figure 2

## APPENDIX J. 2

PHASES I AND II RUN-ON CONTROL

ENVIRONMENTAL SOLUTIONS, INC.
By 7 Ppi Date 8.6-90 Subject LANDFILL B-18
Sheet No. 13 of 51
Dike. By NA. Date $8-14-90$ Drainage Design
Prof. No. $\qquad$ 0.9 .977
$\qquad$
DRAyAGE AREAS ALIAS DESIGN POINT. A

TOTAL AREA: 3.30 ACRES (ser page 10)
Flow LEKGTH: 890 tot
USE TYPE 2 V DITCH AND $0.6 \%$ - SLOPE $D=1.0^{-}$

$$
V=68.525^{2}=6852 \times \sqrt{0.006}=5.3 \mathrm{fps}
$$

ThE OF CONCENTKEFLON $\tau_{2}=2+\frac{B 90}{5.3}=4.8$ mim. SAY 5

$Q=0.4 \times 3.3 \times 7.92=10.4 \mathrm{cfs}$
$Q$ DEsign $=\frac{71.3 s^{y / 2}}{(\text { Secpeger } 5)}=171.3 \times \sqrt{0.006}=13.3>10.4 \mathrm{ft} \quad 0 . K$.
DRAINAGE AREAS AI,A3VAG DESIGN DONN: B.
TOTAL AREA: 13:61 ACRES
Flow LENGTH: 2270 /
USE TYPE 5 V.DICH ND $0.6 \%$ sLept $D=2.0 \mathrm{f}$

$$
V=965 \mathrm{sk}=96.9 \times \sqrt{0.006}=7.5 \mathrm{fps}
$$

$t_{c}=4.8+\frac{1380}{7.5}=7.5$ min

ENVIRONMENTAL SOLUTIONS, INC.
By $7 \pi n$ Date 8.6.90 Subject LAMDFIC B-18

Sheet No. 14 of 59 Chked. By N.A $\qquad$
$\qquad$
$\qquad$
$y=6.2 \quad \operatorname{in} / 4 k$

$$
\begin{aligned}
& Q=0.4 \times 13.61 \times 62=33.04 \mathrm{~s} . \\
& Q_{\text {BEGMH }}=484.5 \mathrm{~s}^{\prime / 2}=484.5 \times \sqrt{0.006}=37.5 \mathrm{fs}>33.8 \mathrm{fs} 0 . \mathrm{K} .
\end{aligned}
$$

DREWGESE AREAS A1,A3UA7 DESIGN PONT $C$
TOTAL AREA: 17.62 XRES
How LengTH: 2750 dt
USE THRE 6 VITTCH AND $0.6 \%$ SLORE D:Z.
$V=1053 \mathrm{~s}^{1 / 2}=105.3 \times \sqrt{0.006}=8.15$.
$t_{c}=7.8+\frac{480}{8.15}=8.8 \mathrm{~min}$
RAINFALL INTESITY: 58 in/HR
$Q=0.4 \times 17.62 \times 5.8=40.9 \quad \mathrm{cfs}$
QDESAK: $658.0 \times \sqrt{0.006}=50.9$ afs $>40.9 \quad 0 . K_{1}$

ENVIRONMENTAL SOLUTIONS, INC.
By $70<$
Date $5-6-90$ Subject $\qquad$ $\angle A N D F L L B-B$ Sheet No. $\qquad$ 15 of 59 Soke. By $\mathcal{L} A$. $\qquad$ DRAINAGE DESIGN Prop. No. 89.917
$\qquad$
$\qquad$
DRAYAGE AREAS AIABNAB DESIGN POUT D
TOTAL AREA: 26.53. AC.

FLOW LENGTH: $2930 \mu$.
USE TYPE 7 V-DITCH AND $0.6 \%$ SLOPE $D=3$

$$
\begin{aligned}
& V=111.25^{1 / 2}=111.2 \times \sqrt{0.0075}=9.6 \mathrm{tps} \\
& t_{c}=8.8+\frac{180}{9.6}=9.1 \mathrm{~min}
\end{aligned}
$$

RANFFECL INTENSITY $=5.8 \quad \mathrm{iN} / \mathrm{HR}$

$$
\begin{aligned}
& Q=0.4 \times 26.53 \times 5 . B: 61.5 \mathrm{cfs} \\
& Q_{\text {DESIGN }}=834.2 \times \sqrt{0.006}=64.6 \mathrm{cts} \quad \text { OK. }
\end{aligned}
$$

DPANQGE AREAS AL, AS UAM
DESIGN: POINT :E
TOTAL AREA $=31.64 \mathrm{AC}$

FLOW LENGTH: $2945 \ldots$
$t_{2}=9.7$ min
RBINFGL INTENGTY $=5.8 \mathrm{iN} / \mathrm{HR}$
$Q=31.64 \times 0.4 \times 5.8=73.4 \mathrm{cts}$
TYPE 7 V-MTCH AND OB SLOPE


ENVIRONMENTAL SOLUTIONS, INC.
By $92 r$ LANDFaLL B-18

Sheet No. $\qquad$ $16 \quad$ of 59 Chad. By UA.

DRENAGE ARES AL,A2VA9, AI, AR, ALA, AIS, ALG DEIGN DOIT F

Areas $A_{1}, A 3 \sim A_{11}$.

$$
T_{c}=9.1 \text { inn, } L=5.8 \mathrm{in} / \mathrm{R} R, Q=66.8 \mathrm{c} / \mathrm{s}
$$

AREAS A12 $\& A_{14}$

$$
\begin{aligned}
& A_{12}=T_{c}=6 \quad i=7 \quad Q=11.3 \quad(\sec p .11) \\
& A_{c}=5 \quad i=7.92 \quad Q=74.3 \quad(\mathrm{sec} p .11) \\
& Q_{12-14}=24.3+\frac{7.92}{7} \times \frac{5}{6} \times 11.3=34.9 \mathrm{cs}
\end{aligned}
$$

$Q$ FOR $A_{1}, A_{3} \backsim A_{11} \quad, A_{2}, A_{4}$

$$
Q=73.4+\frac{5.8}{7.92} \times 34.9=98.9 \mathrm{c} / \mathrm{s}
$$

$Q$ FoR $A_{1}, A_{3} \times A_{11}, A_{12}, A_{14}, A_{12} 0 A_{5}$

$$
\hat{A}=98.9+\frac{58}{7.92} \times 34.2=123.9 \mathrm{c} . \mathrm{s}
$$

Q: FOR $A_{1}, A_{5} A_{11}, \quad A_{12}, A_{14}, A_{15}$ AND $A_{16}$
$Q=123.9+\frac{5.8}{7.92} \times 5.73=128.1 \quad \frac{1}{5}$

USE TYPE 5 -MICH WITH $8.3 \%$ SLope

$$
Q=484=\sqrt{0.083}=130.6 \mathrm{H}=128.1 \mathrm{H}
$$

## DRAINAGE DESIGN CALCULATION

for Brow ditches \& drop inlet
Phase 1
 ChKD NLA DATE 8-14-90 DRAINAEE DESIGN PROJECT No 39.977

notes
Existing

1. ONLY CONGAER DITCHES WITH THE SHALLOWEST SLOTEIN THE DRGNAGE AREA,


ENVIRONMENTAL SOLUTIONS, INC.
By opis $\qquad$ 8.7 .90 Subject LANDFLL E-B TPRMAGE Sheet No. 18 of 51 Chkd. By N.A. Date. $\qquad$ $9-14-90$ DEcish Proj. No. 89.977
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$ Desagn point $G$. SWALE DESIGN

$$
\text { RUN-OFF COEFPGEM: } \frac{1.08 \times 0.4+0.58 \times 0.4+0.71 \times 0.9}{2.37}=0.55
$$


a4. $Q=0.55 \times 237 \times 7.92=10.3 \mathrm{cts}$
6
TRY SWkLE As SHowN:
AF $0.5 \times 5 * 0.5=1.25 / h^{2}$

$$
P_{\omega}=2 \times \sqrt{0.5^{2}+2.5^{2}}=5.1 \mathrm{H}
$$

$$
R=\frac{1.25}{5 n}=0.25 \mathrm{H}
$$

stope $=0.09$ (Existing shellowest slope in the drainage urea)

$$
Q=\frac{1.486}{0.013} \times 1.25 \times 0.25^{\frac{1}{3}} \times \sqrt{0.09} \quad n=0.013 \text { EXH1BT }
$$

TROWEL FWISH CONGEET

$$
=16.7 \text { ifs }>10.3 \text { is 0.k. }
$$ or. EOVIUELEHT -



$$
\begin{aligned}
& \text { ABEA: } A 2=1.05 \quad(\sec p .1) \\
& \text { Sunt }=0.58 \\
& \text { RokD }=0.71 \\
& \text { 70746 }=2.27
\end{aligned}
$$

ENVIRONMENTAL SOLUTIONS, INC.
By URL Date B-7-90 Subject LANDFilL B-18 Sheet No. 19 of 5 Thad. By ALA. Date 8-14-90 DRAIWAGE DESIGN Prop. No. 89.917


ENVIRONMENTAL SOLUTIONS, INC.
By 7 y Date $8-7.90$ Subject $\qquad$ $\angle A N D F U \quad B+B$ Sheet No. 20 of $\qquad$
Chked. By NA, Date $\qquad$ $1-14-90$ DRANAGE DESTEN

Proj. No. 89.977
Design pl. J SWALE OESIGN USE SWSEE SIZE LS SWWN IN CLAY PROCESAMG AREA

$$
\begin{aligned}
& A_{T}=0.5 \times 40 \times 1=20 \mu^{2} \\
& P_{\omega}=2 \times \sqrt{1+20^{2}}=40 \mathrm{H}
\end{aligned}
$$



$$
\begin{gathered}
\text { slopt }=0.015 \\
n=0.022
\end{gathered}
$$

FOR EAFTH CUSAN, AFTER WEOTERMG

$$
=104 \mathrm{c} / 5>26.4 \mathrm{k} \quad \mathrm{~s} \quad \mathrm{~K}
$$

COTSLODE AND ACCSS ROAD EAST OF B-1B STOCKDUE ACCES ROAD
TOTRL AREA: 1.47 AC JEAGN NNINT $K$

$C=\frac{0.99 \times 0.4+0.48 \times 0.9}{1.47}=0.56$

$$
Q=0.56 \times 1.47 \times 7.92=6.55
$$

USE TYPE 2 V -DTCH $\& \quad 6 \mathrm{y}$ sLone (5er P.5)

$$
\begin{aligned}
Q & =171.3 \times \sqrt{0.06} \\
& =419 \mathrm{cts}>6.55 \mathrm{cts} \quad 0 . k .
\end{aligned}
$$



ENVIRONMENTAL SOLUTIONS, INC.
By $\qquad$ $356^{2}$ 8-8.90 Subject LANOFLL B-18 Sheet No. 21 of 59 hkd. By $\angle A A$ $\qquad$ P-14.90 DRGHEGE DESIGN Proi. No. e 0.077


5 USE TYPE 2 V. DITCH $70.5 \%$ shopt (seep.5)
$\therefore \quad Q_{\text {ExME }}=171.3 \times \sqrt{0.005}=12.1$ ofs $>10 \mathrm{cjs}$ O.K.
10 DRANAGE AREAS A18 \& A 99
12 \&
design point M

$$
Q=10+41=14.1 \quad T_{10}=T_{19}=5 \text { min }(\sec p .12)
$$

$$
\text { USE TYDE } 2 \text { V-DTCH \& } 1 \text { of supe (seep.5) }
$$

$Q_{\text {Desichus }}=171.3 \times \sqrt{0.01}=17.1$ ifs $>14.1 \mathrm{ofs}$ oK

DREMESE AREAS AT~A2O DEAEN POINT $N$

DREMECE RREA ADVAZ1 DEFGN POIMT O
$\theta=12.0+10+4.1+1.3+1.71=30.01$ is (see (2)
USE TYPE 4 V.DTCH AND $1 \%$ SLopE seep. 5

$$
Q_{\text {ntsions }}=310.4 \times \sqrt{0.01}=31.9 \mathrm{cs} 730.01 \mathrm{~g} \mathrm{~s} 05
$$

$$
\begin{aligned}
& \theta=12.9+10+4.1+1.3=28.3 \text { ots } \\
& T_{17}=T_{18}=T_{10}=T_{20}=5 \min \left(\sec p_{1} / 2\right) \\
& \text { USE TYPE } 4 \text { V-DICH AND } 0.8 \% \text { sLope (seep.5) } \\
& \text { Questen }=319.4 \times \sqrt{0.008}=28.6 \mathrm{gs}>28.3 \mathrm{Hs} \text { ok }
\end{aligned}
$$

ENVIRONMENTAL SOLUTIONS, INC.
By 1 Di i Date $8.8-90$ Subject Lanofice B.18
Sheet No. 22 of 59
Chad. By $A_{1} A$ Date Y-14-90 DPAINAGE DES(ES)
Prof. No. 50.977


$$
\begin{aligned}
& \text { 哣———nn }
\end{aligned}
$$

ENVIRONMENTAL SOLUTIONS, INC.



# APPENDIX J. 3 <br> PHASES I AND II RUN-OFF CONTROL AND RUN-OFF CONTROL FOR PHASE IIIA 

ENVIRONMENTAL SOLUTIONS, INC.
By $70 i$ Date 5.F.00 Subject LANDFIL E- 18 Sheet No. 25 of 59 inked. By $\angle 1 A$ Date $8-14-10$ DPhuham DESIGN 89.977


WESTER \& SOUTHERN BENCH ROAD DESIGN MONT A

$$
\begin{aligned}
& \text { LEnGTH }=2600 \mathrm{dt} \quad \text { WIDTH }=40 \mathrm{dt} \\
& \text { AREA }=2.38 \text { ACRES RONOTF COEFICLEUT }=0.9 \\
& \text { USE TYpE } 3 \text { V-DITCH \& } 0.6 \% \text { SLope } D=1.25 \text { (sec p.5) } \\
& V=77.6 \times \sqrt{0.006} \\
& =6 \mathrm{fp} \\
& T_{C}=\frac{2600}{6}=4324 \mathrm{Ac}=7.2 \mathrm{~km} \\
& \tau=6.7 \text { in/HR See Exhibit } 4 \\
& \therefore Q=0.9 \times 6.7 \times 2.38=14.4 \mathrm{cts} \\
& \text { QDestinn }=2.43 \times \sqrt{0.006}=18.8 \mathrm{chs}>14.4 \mathrm{cts} 0 . \mathrm{K} .
\end{aligned}
$$

DROP MEET AT END OF DITCH
USE TB \& CUP \& 3 ft HEAD
$Q=15.1 \mathrm{c} / \mathrm{s}>14.4$ us ok.


ENVIRONMENTAL SOLUTIONS, INC.
By Trpi Date O-8-90 Subject LANDFILL B-18
Chkd. By $\mathbb{C} A$
Date $8-14 \cdot 90$ DPAIGAGE TEL64 Sheet No. $\qquad$ 26 of 59
$\qquad$

RORTLERN BEKCH POAD TO CLAY DIT DESGN POINT B (SNe LigS)
LEGTH: 1200 te wIOTH $=40^{\circ}$
GREA $=1.1$ GCRE POKOFF COEFFICIENT $=0.9$
$t_{c}=5$ min $\quad i=7.92^{\circ} \mathrm{NN} / \mathrm{RR}$
$Q=0.9 \times 7.92 \times 1.1=7.8 \mathrm{cts}$
USE TYE 2 V-DITH AND $1 \%$ SLope $=1$
$Q_{\text {DESEN }}=171.3 \times \sqrt{0.01}=17.1 \mathrm{cts} 77.8 \mathrm{cs}$
DROP INLET
DROP INLET
USE $18^{11}$ \& CMp \& $12^{\prime \prime} 460$
$Q=8.5 \sqrt{11}=8.5 \mathrm{fs}>7.8 \mathrm{cs} \quad 0 \mathrm{~K}$
$\mathrm{HH}=\mathrm{I} / \mathrm{A}$ DUIDUS ExL
SOUTHEN SECTOL
LenGT: 850 , $\quad$ HRTH $=40$
Aneb . 78 Ace LumF coflcuan - d

$t=0.9 \times 72 \cdot 78=5.56 \cdot F=$
TT $14.4+5.56<+5 \cdots 19.96$



ENVIRONMENTAL SOLUTIONS, INC.
By uric $\qquad$ $B-16$
$\qquad$ 89.977

RUN - OFF CONTROL PERIGEE DICH THESE II FGURE 6 SOUTHERN BENCH PRED DESIGN POINT A

LENGTH: 1600 te WITH $=40^{\circ}$
$A R E A=1.47$ ACRES
RON-OTF COEFFICIENT $=0.9$
USE TYPE 2 V-DITCH $D=1.25$

Along $6.1 \%$ slope portions

$$
\begin{aligned}
& V=68.5 \sqrt{0.061}=17 \mathrm{fps} \\
& t_{x}=\frac{830}{17}=0.8 \mathrm{~min}
\end{aligned}
$$

ALONG $3.6 \%$ SLopE PORTION

```
 V = 6 8 . 5 \times \sqrt { 0 . 0 3 6 } = 1 3 \mathrm { tfs }
 tc}=\frac{520}{13}=0.7\textrm{mm
Tc}=7.2+0.8+0.7=8.7
L}=6.1\quad\textrm{W}/\textrm{HR
Q}=0.9\times6.1\times(2.38+1.47)=21.1 4/
QDESTNN=171.3 v\sqrt{}{0.036}=32.5 c/s>21.t ofs O.K.
```

ENVIRONMENTAL SOLUTIONS, INC.

By 740 Date $\qquad$ $8-8-90$ Subject $\qquad$ LANDFILL B-18

Sheet No. 29 29 of 50 had. By $\Delta \perp A$ Date $\qquad$ $5 \cdot 14 \cdot 90$ DRAINAGE DESIGN Prop. No. 89.977




ENVIRONMENTAL SOLUTIONS, INC.

By True Date B
Thee. By MM Date $8-14-90$ DRAINAGE DEIGN

Sheet No. 31 of 59
Prop. No. 829.097

COURT DESIGN FRORE 7 \& F GONE B

ALL CULVERT WILL BE DESIGNED FOR INLET CONTROL.


LOCATION = PHASE I PRISM ACCESS ROAD \& WEST PERIMETER BENCH ROAD

$$
\text { ENGTH }=150 \mathrm{t}
$$

$$
\text { DIAMETER }=12^{\prime \prime} \phi \text { CORLREE ENCaSED }
$$

DRAIWRE AREA = NORTHERN HALF OF WEST PERIMETER ROAD


ENVIRONMENTAL SOLUTIONS, INC.
By $\qquad$
$\qquad$ $8 \cdot 9-90$ Subject $\qquad$ $\angle A N D F C C B-18$

Sheet No. 32 of 51 Chad. By $\qquad$ $8-14-50$ DRAINAGE DESIGN

Prof. No. $\qquad$ 89.977
$\qquad$
: LOCATION: SOUTH STOCKPILE ROAD AND SOUTH PERIMETER ROAD

$$
\begin{aligned}
& \text { LENGTH }=120 \mathrm{t} \\
& \text { DIAMETER }=24^{\prime \prime} \phi \mathrm{CMP} \\
& \text { DRAINAGE AREAS }=A 1, \text { AS } \cup A G, \text { AND II } \\
& \text { AREA }=28.82 \text { ACRES } \\
& \text { SLOPE }=0.5 \%
\end{aligned}
$$

$$
\text { Approset VELocity: : } V=111.2 \sqrt{0.006}=8.6 \mathrm{fps}
$$

$$
\text { TIME of concentration to culvert ta } 9,1 \text { min }
$$

$$
i=1.7 \mathrm{iN} / \mathrm{HR} \text { (25-yEbR sTorm) }
$$

$$
Q=0.4 \times 1.7 \times 28.82=19.6 \mathrm{cs}
$$

FROM INLET CONTROL MONOGRAPH:

$$
H \omega / D=1.39 \quad \therefore H_{w}=1.39 \times 24=33.36^{\prime \prime}
$$

USE $24^{\prime \prime} \phi$ cup IHLET \& $\&$ 庆 HEAD

$$
Q=15.1 \sqrt{3}=26.2 \mathrm{fs}>19.6 \mathrm{fs} \text { OK }
$$

ENVIRONMENTAL SOLUTIONS, INC.
By $30 \sim$ Date B.9-90 Subject $\qquad$ LANDFILL $B+8$

Sheet No. 33 of $\leq 9$ ike. By $M$ Date $\qquad$ $8.14-90$ $\qquad$ DRGIHAGE DE S164 Prof. No. 89.977


LOCATION = ENTRANCE OF THE PHRASE I/II BERM ROAD AND PHASE I TRIM ACCESS ROAD

$$
\begin{aligned}
& \text { LENGTH }=220 \mathrm{tt} \\
& \text { DIAMETR }: \mathrm{BB}^{\prime \prime} \mathrm{CMP}
\end{aligned}
$$

DRAINAGE AREA $=$ WESTON BENCH ROAD

$$
\text { AREA }=2.3 B \text { ACRES }
$$

SLOPE $=0.5 \%$
TAME OF CONCENTRATION TO INLET $=7.2 \mathrm{~min}$
$\begin{array}{ll}20 & L=1.8 \mathrm{in} / H R \quad(25-Y E S R \\ 22 & Q=0.9 \times 1.8 \times 2.38=3.9 \mathrm{cHs} \\ 23 & Q\end{array}$
24 FROM INLET CONTROL HONOGRETH


ENVIRONMENTAL SOLUTIONS, INC.
By Tppi, Date $\frac{8-10-90}{8}$ Subject_LANDficl B-18 $8-14.90$ DRAINAGE DESTEN Sheet No. 34 of 59 Proj. No. 89-977
$\qquad$
LOCATION : PHASE I/T BERY CREST AT TOP OF CLAY PT.
: LENGTH: 60 ft
: DAMETER $=30^{\prime \prime} \phi \mathrm{cmP}$
": DRAKBGE AREA = DETERN BENCH FOAD AND TOP OF PHASE I/I BERM
AREA 3.75 ACRES
$45 \quad$ FLopr $=0.5 \%$
${ }^{17}$ TIUE OF CONEENTRETION TO WLET $=9.5 \mathrm{~min}$
18. $i=5.8$ N/HR PMP STORL
${ }^{21} \quad \quad C=\frac{1.37 \times 0.4+2.38 \times 0.9}{3.75}=0.72$
${ }^{23} \quad Q=0.72 \times 5.8 \times 3.75=15.6 \mathrm{cts}$
25 FROM INLET CONTROL HOHVGRAPH
${ }_{27}^{27} \quad H \omega / D=0.79 \quad \therefore H \omega=0.79 \times 30=23.7$
2 USE 30 \& CHP DROP INLET \& 2 ft HESD
$32 \quad Q=24 \sqrt{2}=33.8 \mathrm{fs}>15.64 \mathrm{~s} \quad$ O.K



ENVIRONMENTAL SOLUTIONS, INC.
$\qquad$ Date B-10-90 Subject $\angle A N D F 14 \quad B+18$ Sheet No. 35 of sg
By $\qquad$ Date 8-14-90 DRONAGE DEISM Prof. No. E9.977
$\qquad$

CULVERT 5

LOCATION: EASTERN END OF SOUTH PERIMETER BENCH ROAD
LENGTH: 70 Ht
DIAMETER = $30^{\circ} \$ \mathrm{CMP}$
DRAMLGE AREA: WESTERN \& SOUTHERN BENCH ROAD
AREA: 3.85 ACRES

SLope $\quad 0.5 \%$
THE OF COKCENTRETON $=0.7 \mathrm{~min}$
$i=6.2 \mathrm{iN} / \mathrm{HR}$
$Q=0.9 \times 6.2 \times 3.85=2145$
FROM INLET CONTROL MONOGRAPH
$H_{\omega} / D=0.95 \quad \therefore \quad H_{w}=28.5$
USE $30^{\circ} \phi$ CMP DROP INLET \& 2:5 - HEAD

$$
Q=24 \times \sqrt{25} \quad 329 \mathrm{Hs}>21.45 \quad \text { OK. }
$$

ENVIRONMENTAL SOLUTIONS, INC.
By Dpi Date $8+10-90$ Subject LANDFaLL B 18
Sheet No. 36 of 59
Chad. By $1 / 2$ Date 8-14-90 DRGINGGE DESIGN Prof, No. 89.977



## RUNOFF COEFFICIENT FOR 10-YEAR* RETURN PERIOD

## I. LAND USE



## Agricultural/ Open Space



## II. SURFACE TYPE

## Character of Surface

## Coefficient C

## Pavement <br> Asphaltic and Concrete <br> Brick <br> Roofs <br> Lawns, sandy soil

0.70 to 0.95

Flat, 2 percent or Tess
0.70 to 0.85

Average, 2 to 7 percent
Steep, 7 percent or more
0.75 to 0.95

Lawns, heavy soil
Flat, 2 percent
Average, 2 to 7 percent
Steep, 7 percent
0.05 to 0.10
0.10 to 0.15
0.15 to 0.20
0.13 to 0.17


FHWA HES 5

Figure 4-28 Inlet control homograph for corrugated steel pipe culverts. The manifacturers recommended keeping $H W / D$ to $a$ maximum of 1.5 and preferably to no more than 1.0.



			station		NamF	ELEV	SFC	TMP	PNG	LOT	19m	LATITURF	Lthnigtuee	Cminty
85M	FFTER	\$1吅												
COC	$2 \mathrm{AB} \mathrm{\%}$	0	comalinea	\$5F		© A3	0.4	245	15E	$\pm$	$\cdots$	36.120	120.344	Fresmin



Kuprosis	2.573	20435	4087	30644	7.232	5 -620	3.239	3.792	6.249	5.112	5.176
N	31	31	31	32	38	35	35	35	35	35	35
Mectrn Yeak	1965	1952	$105 \%$	1096 6	1955	$10 \times 5$	1095	1960	1989	1969	2041
RECORO RAXIMMA	0.210	Catro	0.470	0.340	0.980	10040	1.070	1.530	2.270		14.210
PREMHILIzF6 max	$1 \times 9 \mathrm{Nb}$	2.029	2.966	2.330	3.678	$3.4 n 7$	2.546	2*749	3.429	3.139	2.448
CALC. CMFF. VAT	ne: 68	0.300	0.540	$0 \cdot 4184$	$0-450$	0.348	0.323	0.353	0.396	0.4 .05	0.492
RFGN. CTEF, VAR	0.376	0.376	0.376	0.376	0.378	0.378	0.376	0.376	0.276	0.376	0.38 ?
USED ETER.VAR	0.376	0.378	0.376	0.376	0.3776	0.376	0.396	0.376	0.376	$\mathrm{O}_{4} 376$	0.362
MEENfa	C.0149	0.0202	0.0262	0.0368	0.0503	0.0704	0.009 2	0.115e	0.1400	0.1800	1.0000
mbinca	n.0215	neoso3	0.0394	6. 0.554	C.0757	0.1058	0.1279	0.1743	0.2105	0.32594	1.9107
RF25/k	0.0757	0.0362	0.0.740	0.0860	0.0402	0.1262	0.1525	0.2078	0.2510	$\mathrm{m}=3065$	1.7783
Hpsors	0.0287	0.0454	0.0525	0.0873	0.1008	0.1410	0.1702	0.2321	0.2004	0.3401	1.9885
WP100/8	0.0328	6.00445	0.0579	0.0 [15 3	O.1111	0.1594	O. 2187	0.2.259	0.3090	0.3769	2.1518
Relocora	0.0410	t30.0.78	0.0751	0.4052	0.8441	0.2016	0.2436	0.3510	0.4004	0.4863	2.7264
Eproonora	H.0501	0.0705	0.045 ${ }^{\text {a }}$	$0 \times 1267$	0.1780	0.8461	0.29975	0.6053	0.0 .4895	0.geze	3.2696
PR ${ }^{\text {P/ }}$	0.0951	0.1340	0.1740	O. $2 \times 4$	0.3342	0.2674	ก. 5646	0.7897	0.9796	1.127f	6.7150

PEARSTA THDE IJT DTSTRTBUTION USEO
PFREAPLE MARIMUN PRETYPITATIDN ESTYAATE BASEO ON YS STANDABD DEVIATIONS
MFRE N IS SRALL $1<2 S$ F BESULTS ARE MOT OEPENEAELE

ENVIRONMENTAL SOLUTIONS, INC.
By VOI Date G-1.90 Subject LANDFLL B+8 DPBINAGE Sheet No. 54 of 59 Thkd. By AD Date DESIGW Proj. No. 80. 927




$\angle H E$
(-) LOCATIDN OF SIFE

RESIDENTIAL AREAS:<br>HOTEL-APARTMENT AREAS:<br>BUSINESS AREAS:<br>INDUSTRIAL AREAS:

$c=0.550 .70$
$c=0.70$ to 0.90
$C=0.90$ to .90
$C=0.80$ to 0.90

The type of soil. the type of open space and ground cover and the slope of the ground shall be considered in arriving at reasonable and acceptable runoff// coefficients.

## APPROXIMATE AVERAGE VELOCITIES OF RUNOFF FOR CALCULATING TIME OF CONCENTRATION

TYPE OF FLOW
OVERLAND FLOW:
Woodlands
Pastures
Cultivated
Pavement a

VELOCITY IN FPS FOR SLOPES (in percent) INDICATED

$0-3 \%$	$4-7 \%$	$8-11 \%$	$12-15 \%$
1.0	2.0	3.0	3.5
1.5	3.0	4.0	4.5
2.0	4.0	5.0	6.0
5.0	120	15.0	88.0

OPEN CHANNEL FLOW:
improved Channels
Natural Channel*
(nat will defined)

${ }^{-}$These values wary with the channel size and other conditions so stat the ones given are be averages of a wide range. Whereever possible, wore accurate determinations should be made for particular conditions by Aicmminges formula.
FRECIPIPATION OPPTITDURATIOR-FREQUENCY TAOLC


Type of channel and description	Minimum	Normal	Meximum
B. Lined or Built-up Channela			
B-1. Metal			
a. Smooth steel surface			
1. Unpainted	0.011	0.012	0.014
2. Painted	0.012	0.013	0.017
b. Corrugated	0.021	0.025	0.030
B-2. Nonmetal			
a. Cement			
1. Neat, surface	0.010	0.011	0.013
2. Mortar	0.011	0.013	0.015
b. Wood			
1. Planed, untrested	0.010	0.012	
2. Planed, creosoted	0.011	0.012	0.015
3. Unplaned	0.011	0.013	0.015
4. Plank with battens	0.012	0.015	0.018
5. Lined with roofing paper	0.010	0.014	0.017
c. Concrete			
1. Trowel finish	0.011	0.013	0.015
2. Float finish	0.013	0.015	,0.016
3. Finished, with gravel on bottom	0.015	0.017	0.020
4. Unfinished	0.014	0.017	0.020
5. Gunite, good section	0.016	0.019	0.023
6. Gunite, wavy section	0.018	0.022	0.025
7. On good excavated rock	0.017	0.020	
8. On irregular excavated rock	0,022	0.027	
d. Concrete bottom float finished with sides of			
1. Dressed stone in mortar	0.015	00.017	0.020
2. Random stone in mortar	0.017	0.020	0.024
3. Cement rubble masonry, plastered	0.016	0.020	0.024
4. Cement rubble masonry	0.020	0.025	0.030
5. Dry rubble or riprap	0.020	0.030	0.035
e. Gravel bottom with sides of   1. Formed concrete	0.017	0.020	0.025
2. Eeadom stone in mortar	0.020	0.023	0.026
3. Dry rubble or riprap	0.023	0.033	0.036
$f$. Brick			
1. Glazed	0.011	0.013	0.015
2. In ecment mortar	0.012	0.015	0.018
g. Masonry   1. Cemented rubble	0.017	0.025	0.030
2. Dry rubble	0.023	0.032	0.035
h. Dressed ashlar	0.013	0.015	0.017
i. Asphalt			
1. Smooth	0.013	0.013	
2. Rough	0:016	0.016	
j. Vegetal lining	0.030		0.500



Project Number: 083-91887	MADE BY: PM   CHECK BY: RH	Date: 8-1-2011
Project Name: Kettleman Hills B-18 Phase IIIA	REVIEW BY: RH	SHEET 1 OF 3

## RE: TEMPORARY PHASE IIIA STORMWATER BERM AND CAPACITY OF NE B-18 CONTAINMENT BASIN DURING PHASE III CONSTRUCTION

### 1.0 OBJECTIVES

- Design the height of the proposed Phase IIIA temporary stormwater containment berm. This berm is required to be designed to function without failure to capture and retain the volume from the 24 -hour, Probable Maximum Precipitation (PMP) storm event on the north side of the berm (i.e., this berm will contain stormwater run-off from the lower portion of the interim Phase IIIA waste slope and the surrounding areas).
- Evaluate the capacity versus demand of the existing NE B-18 Containment Basin during construction of Phase III. During the Phase III construction (i.e., before the South Containment Basin comes online), an outlet control system will be required during the 24hour, PMP storm to prevent overtopping of the existing NE B-18 Containment Basin.


### 2.0 METHODOLOGY

The SCS Runoff Curve Number method was used to calculate the Phase IIIA interim drainage berm retention volume demand for the 24 -hour, PMP storm event. This was compared to the proposed storage capacity of the Phase IIIA temporary basin to evaluate if the proposed berm is tall enough.

HEC-HMS modeling software (USACE) was used to evaluate the required outlet control peak flow rate to prevent overtopping of the existing NE B-18 Containment Basin during the Phase III construction.

### 3.0 ASSUMPTIONS

■ The 24-hour PMP rainfall event equals 10.3 inches

- SCS Type 1 rainfall synthetic distribution was used
- SCS Curve Number (CN) of 81 was used for all basins


### 4.0 INTERIM PHASE IIIA DRAINAGE BERM CALCULATIONS

### 4.1 Storage Capacity

The interim Phase IIIA drainage berm will be constructed 10 feet high and have a maximum storage capacity of 52,100 cubic feet on its north side. This storage capacity assumes a freeboard of 1 foot (i.e., the 52,100 cubic feet of storage capacity is for a 9 -foot depth of water contained by the berm on its north side).

It should be noted that stormwater run-on contained by the interim Phase IIIA drainage berm on its south side will be clean stormwater and will have a maximum depth of approximately 2 feet during the 24 -hour PMP. This maximum depth corresponds to the elevation difference between the toe of the south side of the berm and the local high point on the Phase IIIB lined "floor bench" that lies to the south. It follows that the south side of the interim Phase IIIA drainage berm has an unlimited stormwater run-on storage capacity since the top of this berm is much higher than the local high point to the south.


### 4.2 PMP Volume Calculation

The SCS Curve Number method was used to evaluate the runoff volume from the 24 -hour, PMP storm event for the north side of the Phase IIIA interim drainage berm. This interim drainage berm will capture 0.85 acres of storm water (see Figure 1). A Curve Number, CN, of 81 was used.

$$
\mathrm{Q}=(\mathrm{P}-0.2 \mathrm{~S})^{2} /(\mathrm{P}+0.8 \mathrm{~S})
$$

Where: $\mathrm{Q}=$ runoff, in
$\mathrm{P}=$ rainfall (10.3 in)
$\mathrm{S}=$ potential maximum retention after runoff, in
Where: $S=1000 / C N-10$
The estimated runoff was calculated to be 7.94 inches over the 0.85 -acre drainage basin. The minimum required volume for the Phase IIIA interim drainage basin to contain the 24 -hour PMP is therefore 24,500 cubic feet.

### 5.0 EXISTING NE B-18 CONTAINMENT BASIN CALCULATIONS

The existing NE B-18 Containment Basin is approximately 25 feet deep with a capacity of approximately 30 acre-feet. A HEC-HMS analysis was performed using the existing conditions of the basin. If the 24hour, PMP storm event was to occur during the Phase III construction (i.e., before the South Containment Basin is online), it is predicted that runoff to the NE B-18 Containment Basin will exceed capacity by approximately 14 acre-feet. Therefore, an outlet control device will be used to prevent overtopping of this basin during the 24-hour, PMP storm event. Excess water will be conveyed through the outlet and into a gravity pipe that will convey the overflow to the site's existing East Retention Basin located approximately 2,000 feet to the north.

### 5.1 Outlet Control System

HEC-HMS modeling software was used to calculate the peak flow rate required for an outlet control device set approximately 3 feet below the top of the existing NE B-18 Containment Basin embankment. Using a 21 -inch orifice outlet device, it was calculated that a peak flow of 17 cfs was sufficient to prevent the basin from overtopping during the 24-hour PMP.

A preliminary minimum pipe size was calculated to convey the required 17 cfs from the NE B-18 Containment Basin. Pipe calculations were performed using the Federal Highway Administration software program Hydraulic Toolbox 2.1. A pipeline with a minimum slope of $1 \%$ and a Manning's coefficient of 0.010 was used to calculate the minimum size required to convey the required flow rate of 17 cfs . A minimum 21 -inch inside diameter pipe is needed to convey the flow rate of 17 cfs .

### 6.0 CONCLUSIONS

The stormwater run-off volume from the 24 -hour, PMP storm event captured on the north side of the proposed interim Phase IIIA drainage berm was calculated to be 24,500 cubic feet. The proposed interim Phase IIIA berm will be constructed to a height of 10 feet and will have a capacity of 52,100 cubic feet (assuming 1 foot of freeboard). Therefore, the proposed interim Phase IIIA drainage berm will have sufficient capacity to contain the flows from the 24 -hour, PMP event with a freeboard greater than 1 foot.

The existing NE B-18 Containment Basin has a capacity of approximately 30 acre-feet. If the 24 -hour, PMP storm event occurs during the construction of Phase III (i.e., before the South Containment Basin comes online), it is predicted that runoff to the existing NE B-18 Containment Basin will exceed its capacity by approximately 14 acre-feet. A 21-inch orifice outlet set approximately 3 feet below the top of the existing NE B-18 Containment Basin berm will prevent overtopping of this basin during the 24-hour,

METHOD OF CALCULATION
PMP event. The peak flows from the orifice outlet will be 17 cfs. The excess water from the outlet system will be conveyed by gravity pipe to the site's existing East Retention Basin located approximately 2,000 feet to the north.

### 7.0 REFERENCES

Hydraulic Toolbox [computer software] 2011 Federal Highway Administration (FHWA), Version 2.1
Ernest F. Brater and Horace H. King 1976. Handbook of Hydraulics, $6^{\text {th }}$ edition. McGraw-Hill Inc.
U.S Department of Commerce, National Oceanic and Atmospheric Administration, U.S. Army Corps of Engineers. 1999. Hydrometeorological Report No. 59 Probable Maximum Precipitation for California.

HEC-HMS Hydrologic Modeling System [computer software] US Army Corps of Engineers Version 3.1.0

### 8.0 ATTACHMENTS

Figure 1: Watershed Area for Phase IIIA Temporary Stormwater Berm
Attachment 1: HEC-HMS Kettleman B-18 Basin Schematic
Attachment 2: HEC-HMS NE B-18 Containment Basin Outlet Control Discharge Results
Attachment 3: NE B-18 Containment Basin Conveyance Pipe Calculation Results


METHOD OF CALCULATION

Attachment 1

HEC-HMS Kettleman B-18 Basin Schematic


Page 1 of 1

METHOD OF CALCULATION

Attachment 2
HEC-HMS NE B-18 Containment Basin Outlet Control Discharge Results
Project: Kettleman_B18_Rev2Simulation Run: PMP24hr.-Outlet Control Reservoir: NE B-18 Basin
Start of Run: 01Feb2020, 01:00
End of Run: $\quad$ 02Feb2020, 13:00
Compute Time: 10Aug2011, 10:15:53
Basin Model: B-18 Cover-Outlet Control
Meteorologic Model LocalPMP24hr
Volume Units: ..... $A C-F T$
Computed Results

Peak Inflow:	$65.7(\mathrm{CFS})$	Date/Time of Peak Inflow:	01Feb2020, 08:00
Peak Outflow:	$17.2(\mathrm{CFS})$	Date/Time of Peak Outflow:	02Feb2020,01:00
Total Inflow:	$43.8(\mathrm{AC}-\mathrm{FT})$	Peak Storage:	$28.3(\mathrm{AC}-\mathrm{FT})$
Total Outflow:	$19.9(\mathrm{AC}-\mathrm{FT})$	Peak Elevation:	$769.1(\mathrm{FT})$

Reservoir "NE B-18 Basin" Resulis for Run "PMP24hr-Outlet Control"


..... Run:PMP24hr-Outlet Control Element:NE B-18 BASIN Result:Storage

- Run:PMP24hr-Outlet Control Element:NE B-18 BASIN Result:Outtiow
- Run:PMP24hr-Outlet Control Element:NE B-18 BASIN Result:Pool Elevation
--- Run:PMP24hr-Outtet Control Element:NE B-18 BASIN Result:Combined Flow

Project: Kettleman_B18_Rev2
Simulation Run: PMP24hr-Outlet Control Reservoir: NE B-18 Basin
Start of Run: 01Feb2020, 01:00 Basin Model: B-18 Cover-Outlet C End of Run: 02Feb2020, 13:00 Meteorologic Model: LocalPMP24hr Compute Time: 10Aug2011, 10:15:53 Control Specifications: 1 Hr 36 Hr

Date	Time	Inflow   (CFS $)$	Storage   (AC-FT)	Elevation   (FT)	Outflow   (CFS $)$
01Feb2020	$01: 00$	0.0	0.0	746.0	0.0
01Feb2020	$02: 00$	0.0	0.0	746.0	0.0
01Feb2020	$03: 00$	1.3	0.1	746.2	0.0
01Feb2020	$04: 00$	7.4	0.4	747.2	0.0
01Feb2020	$05: 00$	14.9	1.3	749.3	0.0
01Feb2020	$06: 00$	22.7	2.9	751.7	0.0
01Feb2020	$07: 00$	32.4	5.2	754.2	0.0
01Feb2020	$08: 00$	65.7	9.2	757.8	0.0
01Feb2020	$09: 00$	44.1	13.7	761.1	0.0
01Feb2020	$10: 00$	33.0	16.9	763.1	0.0
01Feb2020	$11: 00$	27.6	19.4	764.6	0.0
01Feb2020	$12: 00$	25.0	21.6	765.8	0.0
01Feb2020	$13: 00$	23.3	23.6	766.8	0.0
01Feb2020	$14: 00$	21.4	25.0	767.6	8.9
01Feb2020	$15: 00$	20.7	25.9	768.0	11.9
01Feb2020	$16: 00$	20.2	26.5	768.3	13.5
01Feb2020	$17: 00$	19.8	27.0	768.5	14.6
01Feb2020	$18: 00$	19.4	27.4	768.7	15.4
01Feb2020	$19: 00$	19.0	27.7	768.9	16.0
01Feb2020	$20: 00$	18.6	27.9	769.0	16.5
01Feb2020	$21: 00$	18.3	28.0	769.0	16.8
01Feb2020	$22: 00$	18.0	28.1	769.1	17.0
01Feb2020	$23: 00$	17.7	28.2	769.1	17.1
02Feb2020	$00: 00$	17.5	28.2	769.1	17.2
02Feb2020	$01: 00$	17.1	28.3	769.1	17.2


Date	Time	Inflow   $($ CFS $)$	Storage   $($ AC-FT $)$	Elevation   $($ FT $)$	Outflow   (CFS)
02Feb2020	$02: 00$	4.3	27.8	768.9	16.2
02Feb2020	$03: 00$	1.0	26.7	768.4	14.0
02Feb2020	$04: 00$	0.2	25.7	767.9	11.4
02Feb2020	$05: 00$	0.1	24.9	767.5	8.5
02Feb2020	$06: 00$	0.0	24.3	767.2	5.6
02Feb2020	$07: 00$	0.0	24.0	767.0	2.6
02Feb2020	$08: 00$	0.0	23.9	767.0	0.0
02Feb2020	$09: 00$	0.0	23.9	767.0	0.0
02Feb2020	$10: 00$	0.0	23.9	767.0	0.0
02Feb2020	$11: 00$	0.0	23.9	767.0	0.0
02Feb2020	$12: 00$	0.0	23.9	767.0	0.0
02Feb2020	$13: 00$	0.0	23.9	767.0	0.0

Page 2

METHOD OF CALCULATION

Attachment 3
NE B-18 Containment Basin Conveyance Pipe Calculation Results

## Pipe Flow Results

## Project Data

Project Title: Kettleman B-18 Phase IIIA
Designer: Golder
Project Date: Wednesday, August 10, 2011
Project Units: U.S. Customary Units

## Channel Analysis: 18" Pipe - 10 cfs

## Input Parameters

Channel Type: Circular
Pipe Diameter: 1.5000 (ft)
Longitudinal Slope: 0.0100 (ft/ft)
Manning's n: 0.0100
Flow: 10.0000 (cfs)

## Result Parameters

Depth: 0.9533 (ft)
Area of Flow: 1.1848 ( ft ^2)
Wetted Perimeter: 2.7680 (ft)
Hydraulic Radius: 0.4280 (ft)
Average Velocity: 8.4402 ( ft/s)
Top Width: 1.4438 (ft)
Froude Number: 1.6419
Critical Depth: 1.2188 (ft)
Critical Velocity: 8.8096 (ft/s)
Critical Slope: 0.0054 (ft/ft)
Critical Top Width: 1.1709 (ft)
Calculated Max Shear Stress: 0.5949 ( $\mathrm{lb} / \mathrm{ft}^{\wedge} 2$ )
Calculated Avg Shear Stress: 0.2671 (lb/ft^2)

## Channel Analysis: 21" Pipe - 18 cfs

## Input Parameters

Channel Type: Circular
Pipe Diameter: 1.7500 (ft)
Longitudinal Slope: 0.0100 (ft/ft)
Manning's n: 0.0100
Flow: 18.0000 (cfs)

## Result Parameters

Depth: 1.2668 (ft)
Area of Flow: 1.8647 ( ft^2)
Wetted Perimeter: 3.5614 (ft)
Hydraulic Radius: 0.5236 (ft)
Average Velocity: 9.6531 (ft/s)
Top Width: 1.5647 (ft)
Froude Number: 1.5583
Critical Depth: 1.5441 (ft)
Critical Velocity: 9.6806 (ft/s)
Critical Slope: 0.0069 (ft/ft)
Critical Top Width: 1.1278 (ft)
Calculated Max Shear Stress: 0.7905 ( $\mathrm{lb} / \mathrm{tt}^{\wedge} 2$ )
Calculated Avg Shear Stress: 0.3267 ( $\mathrm{lb} / \mathrm{tt}^{\wedge} 2$ )

APPENDIX $\$ .4$
FINAL CLOSURE DRATNAGE

Subject $\quad$ Kettleman Hills
Landfill-B-18 Cover
Hydrologic \& Hydraulics



Job	$083-91887$
Date	$11 / 21 / 2008$
Sheet	1 of 2

## OBJECTIVE:

The cover system and drainage control systems for the existing Landfill B-18 are required to be designed to function without failure when subjected to capacity, hydrostatic and hydrodynamic loads resulting from a 24 -hour, Probable Maximum Precipitation storm [CCR 22, 66264.25]. Design surface water conveyance channels and bench channels, design the proposed retention pond (Reservoir 1) and analyze the existing retention pond (Reservoir 2) for the Kettleman Hills B-18 Landfill cover configuration. All runoff from the B-18 Landfill configuration is to be routed to the proposed retention pond (Reservoir 1) located on the southeast section of the landfill or to the existing retention pond (Reservoir 2) located on the northeast section of the landfill.

## METHOD:

The local PMP (Probable Maximum Precipitation) storm event results in a higher precipitation intensity and thus higher peak channel flow, the 6 -hour PMP, was used to evaluate all channels. The 24 -hour rainfall event for the PMP was used for evaluating retention volume. The 6 -hour and 24 -hour PMPs were derived from the Hydrometeorological Report No. 59 (Reference Attachment C). The surface water parameters as described below were used to model the Kettleman Hills B-18 Landfill. Figure 1 presents the watershed delineation map for sub-basin boundaries. Figures $2 \& 3$ present typical drainage channel geometries. Basin areas and curve numbers (CNs) were entered into HEC-HMS modeling software (USACE) and routed to calculate the peak flows for each basin. Kinematic wave transform methodology was used to develop hydrographs for each sub-basin except for offsite sub-basins Offsite 3, Offsite 4, and Offsite 5 which were modeled using the SCS unit hydrograph method. The peak flows were then used to size the landfill perimeter and bench channels, assuming normal depth. All model output can be found attached in this appendix.

## ASSUMPTIONS:

- The 6-hour rainfall event for the local PMP equals 6.5 inches (used for designing channels). Ref. Attachment C.
- The 24-hour rainfall event for the PMP equals 10.3 inches (used for checking retention volume). Ref. Attachment $C$.
- SCS Type I rainfall synthetic distribution.
- Landfill final cover SCS Curve Numbers (CN)

Location	Soil	Hydrologic   Soil Group	Assumed Cover:	SCS CN
Landfill Final Cover	Mercey   Loam	C	Herbaceous: fair cover	81
Natural Terrain (south)	Mercey   Loam	C	Herbaceous: fair cover	81
Natural Terrain (west)	Mercey   Loam	C	Herbaceous: good   cover	74

- Manning's $n$ for routing and channel design:

Channel Lining	Manning's n for Stability	Manning's n for Capacity,
Grass	0.030	0.035
Turf Reinf, Mat	0.030	0.035
Rip-rap	0.035	0.040
Asphalt	0.016	0.016

- Grass lining was used with velocities up to 7 fps , turf reinforcement mat was used with velocities up to 10 fps or at directional changes in grass lined channels, and hard lined (asphalt or shotcrete) or riprap for velocities higher than 10 fps. Given the short term nature of the peak velocity during the conservatively assumed Local PMP, these velocities are considered acceptable.

Subject $\quad$ Kettleman Hills
Landfill - B-18 Cover
Hydrologic \& Hydraulics



Job	$083-91887$
Date	$11 / 21 / 2008$
Sheet	2 of 2

## CALCULATIONS:

The HEC-HMS modeling software (USACE) was used to ca lculate flows at design points and the retention volume. All channel calculations were performed using a spreadsheet to calculate normal depth for both stability and capacity and FlowMaster to evaluate road/ditch sections.

## CONCLUSIONS/RESULTS:

The proposed retention pond (Reservoir 1) and the existing retention pond (Reservoir 2) have the capacity to contain the PMP (Probable Maximum Precipitation) flows. Subbasin delineation can be found in Figure 1. Attached are spreadsheet and other calculations. A summary of subbasins can be found in Table 1, times of concentration can be found in Table 2, flow results from HEC-HMS in Table 3. Also attached are pond sizing calculations, HEC-HMS input \& routing diagrams, and Flowmaster calculations for channels.

Based on the calculations, the maximum velocity for the bench channel on the landfill is 6.1 feet per second. This is below the design criteria of 7 feet per second for grass-lined channels. The closure access road will contain stormwater flows within the asphalt lined channel. The peak velocity within the asphalt-lined channel during a PMP, 6-hour event will be 23.4 feet per second which is below the maximum allowable velocity of 25 feet per second. The perimeter road channel will exceed the flow capacity of the roadside asphalt-lined channel. The peak PMP, 6-hour stormwater flows will be contained within the roadway. Velocities within the channel will be less than the maximum allowable 25 feet per second. During the 24 -hour PMP, it is predicted that run-off to the existing retention basin (Reservoir 2) located on the north side of the proposed landfill will exceed capacity by approximately 2 AC -FT. In the event of a PMP storm event, the excese stormwater will have to be pumped to the proposed retention basin (Reservoir 1).

## REFERENCES:

HEC-HMS Hydrologic Modeling System [computer software] US Army Corps of Engineers Version 3.1.0
Bentley FlowMaster [computer software] 2005 Bentley Systems Inc. Service Pack 3
Natural Resource Conservation Service. 1986. Technical Release 55: Urban Hydrology for Small Watersheds. United States Department of Agriculture.
U.S. Bureau of Reclamation (USBR). 1977. Design of small dams $2^{\text {nd }}$ ed. Washington D.C. : United States Government Printing Office.

Ernest F. Brater and Horace H. King 1976. Handbook of Hydraulics, $6^{\text {th }}$ edition. McGraw-Hill Inc.
U.S Department of Commerce, National Oceanic and Atmospheric Administration, U.S. Army Corps of Engineers. 1999. Hydrometeorological Report No. 59 Probable Maximum Precipitation for California.


Golder
Associates

Jon No.   Ref, $14 H F B 18$	Made by $S \underset{\text { Cheol }}{E!}$   Reviewed	$\begin{aligned} & \text { Date } 9-11-08 \\ & \text { sheat } 1 \text { of } 1 \end{aligned}$



Cutur			
	Job No.   Ret. KHAF $\operatorname{Bl}$	Made by Cheoked   Revinwind	




Subbasin ID	Subbasin   Area   （fi）	Subbasin   Area   （acres）	Subbasin Area   E．（sq mile）	Coverd Candill GSG （acres）	Qipen Rangeland HSGC （acces）		Composite SCS Curve No．	$S=\frac{1000}{10}-$	$\begin{aligned} & \text { Unit Runoff } \\ & Q \\ & \text { (iig) } \\ & \hline \end{aligned}$	Runoff Volume （ac－fi）	Runoff Volume （fis）
Nothiot	43.996	1.01	600616	701		34，＋3，	$\overline{C N}=81$	235	794	0.67	29100
Notitioz	－17514	T／ 402	－0．0063	402	1 51.		$\mathrm{CN}=81$	2.35	7.94	2.66	115，822
North $03 \times$	87555	201	1． 0.0031	4 ${ }^{2}$ 20］	\％	H2］	$\mathrm{CN}=61$	235	794	133	57.911
Norit $04 \%$ \％	133，294	306	000048	Ha＝306		23	$\mathrm{CN}=81$	235	794	202	88， 163
Wortios	108，020	矿䂙	0.0039	W40		52344	$\mathrm{CH}=81$	235	794	164	71453
North $06 \times$	159450	366\％	6005 ${ }^{\text {2 }}$	－${ }^{2}$ 31663	＊+3	二 4 W	$\mathrm{CN}=81$	235	794	242	105.450
	159． 4 30	－ 3 S6	－765057：	7366\％	\％	7	CN－81	235	794	242	105,450
Noithoid．	－157562	－3．61	W30．0056				$\mathrm{CH}=81$	2.35	7.94	239	164.010
	－ 300928	－ 671	5－600011	W ${ }^{\text {div }}$			CN 81	2，35	7.94	0.47	20，456
Norith 10．．．．	212137	437	－ 100076	487			$\mathrm{CN}=81$	2.35	794	3.22	140312
North $11{ }^{\text {a }}$	11712	269	0.0072	－${ }^{269}$	Wix ${ }^{\text {a }}$	W，w	CN 81	2.35	794	178	17.503
	－ 5 59， 242	－ 1136	－6021	1－136		Hit	$\mathrm{CN}=81$	235	7.94	0.90	39，184
	6－47480	－ 109	140007\％	1085		（ix	CN $=81$	235	7.94	072	31.405
Norifly ${ }^{\text {a }}$	－ 59667	133	0．0．002	113	W	3：$=$ det	CN $=61$	235	794	091	39，472
Souitiou	1797574	22．24	9 68035	3． 22.24	4．as ${ }^{\text {a }}$		$\mathrm{CN}=81$	2.35	794	1.48	64．538
Souill 02	99\％3iz	228 粎	200036	228 ，	M．${ }^{\text {a }}$	3	$\mathrm{CN}=81$	235	\％ 94	151	65.690
Sbuith 03－	401059	－ 2.32 C	10036	W4．${ }^{\text {ajs }}$	4 L	，	$\mathrm{CN}=81$	235	7.94	153	66.843
Soutio 04 \％	8232	1 1189	－00036	\＃\＃ 110	43 ${ }^{\text {a }}$	3t	$\mathrm{CN}=81$	2.35	7.94	125	54，454
Soliti 05．	174725	－ 408	0.0064	－ 4 4 488		2．	$\mathrm{CH}=81$	235	7.94	2.70	17， 551
South ob	－ 6 68309	－ 157	68025	－ $\mathrm{H}^{4}$＋ 1 57			$\mathrm{CN}=81$	235	7.94	1.64	45,234
South or＝．at：	－ 1153331	－3552	0 0 055	Whis 3 2	$3{ }^{3}+4$		$\mathrm{CN}=81$	$2 ; 35$	794	2.33	101417
Soutio 08．．．．	158.55	3．64\％	0005\％\％	－${ }^{364}$	1）	3－3	$\mathrm{CH}=81$	235	7．94	2.41	104，874
South 09		4，314	0 gog 7	24 431	$1{ }^{\text {arax }}$		$\mathrm{CN}=81$	235	794	285	124，178
South 10	－ 717612	270	00042	2 276	1		$\mathrm{CN}=81$	235	794	1.79	77791
S6uith 11 w－M	7170，320	391	－ 0.0081	3，974	，	3）${ }^{\text {a }}$	$\mathrm{CN}=81$	235	7.94	259	112653
Southiz	－ 230886	W 533		$530 \%$	\％		$\mathrm{CN}=81$	235	794	3.5	152.701
Soulin	23.522	0.54	－ 000008	0.54	W	＊	$\mathrm{CN}=81$	235	7.94	0.36	15 558
－ 0 Sifitet	3554750	616．	E－ 0614	W	4816		$\mathrm{CN}^{7} 4$	351	7.3	4.78	208.097
Ofisite ${ }^{\text {a }}$ 24	21.202	W4486：	W 50.0076	W2atict	Ju4866		$\mathrm{CN}=81$	235	7.94	3.21	140,024
Ofiste 03 2	6． $6377{ }^{4}$	－1784\％	W00229			1）	CN 581	235	794	9.68	421，800
Qrisit oun	399010	316	＝$=0.0148$				$\mathrm{CH}=84$	190	8.32	6.35	276.684
Qisiteos	153767	353	0.0055				$\mathrm{CN}=84$	1,90	832	2.45	106.626
	4，976，730	$\frac{14}{118.25}$	$\frac{1+18}{0.18}$	1		$14+2$				75．35	3；282；402

[^31]
TABLE 2

Date:	1033108
By:	
Chkit	R
Appirvd	\%


(1) Refer to Attachment A for Roughness Condition descriptions and Te Coefficients.
BASIN TIME OF CONCENTRATION CALCULATIONS

TABLE 3
FLOW RESULTS FROM HEC.HMS

Kettleman B-18 Hydrology Project Number: 083-91887	Date:	10/31/08
	By:	PM
	Chkd:	KH0\%6
	Agprudx	C40
HECMHFS Basin Model Ketieman B-18		
HEC*HMS Met. Wodel Litedrphe Git		
HEC-HASS Control Specs; 15 min 24 hr		\%


Hydrologic Element	Drainage Area (scmile)	$\qquad$	Time of Peak	Total Volume (ac-ft)
Wortiot	0.002	9.1	2.45	0.4
North 02	0.006	358	2:45	15
North 03	0.003	17.6	245	07
Norit 04	0005	27.4	2,45	11
North 05	0004	22.2	2.45	0.9
Worth 06	0006	32.4	2.45	1.6
Norih 07	0.006	325	2.45	18
North 08	0006	318	2.45	13
North Q9	0.001	63	2.45	03
Nartio 10	0.008	433	245	1.8
Narth 11	0,004	296	24.5	1.0
North 12	0.002	120	2.45	05
Noth 14	0.002	97	$2: 45$	0.4
North 14	0.002	118	2.45	0.5
Southor	0.004	199	2.45	0.9
Southo2	0004	20.5	$2: 45$	0.8
South 03	0,004	20.6	$2: 45$	0.8
South 04	0,003	17.1	2,45	07
South 05	0,006	364	246	15
South 06	0,003	143	$2: 46$	0.6
South 07	0.006	314	2.45	313
Sputh 08	0.006	325	245	13
South 09	0:007	38.2	245	16
South 10	0.004	23.9	245	10
South 11	0.006	34.8	2.45	1.4
South 12	0008	473	2.45	18
South 10	0.001	4.6	$2: 45$	0.2
Offite OI	0.013	58.1	2.45	25
Offite 02	0.008	43.3	2:45	1.8
Offsite 03	0.023	1042	$2: 45$	63
Dffisite 04	0.014	69.6	2/45	3.6
Offite 05	0.006	268	2.45	1.4
- NO1-NO2	0.008	450	2.45	18
U. NO3-NO4	0016	074	$2: 45$	3.7
WNOS	0.040	188.7	2.45	8.9
1NOC-NT4	0048	2280	245	108
WNOE	0.011	59.3	245	26
, NOP	0.012	85.6	2.45	28
NN1	0012	63.6	2.45	28
HN12	0.026	1389	2.46	6.2
UNI3	0,028	1428	2.45	66
-01-02	0,036	1872	2.45	90
1, 503	0.007	37.3	2.45	17
H 1504	0.007	301	2.45	15
1.505	0.020	10 L 2	2.46	47
1506	0.041	206.8	$2: 45$	2.6
, 508	0.014	58.9	2:45	26
$1 \mathrm{S00}$	0.018	88.6	245	4.2
W 510	0.059	2771	$2: 45$	141
-S12	0014	75.0	$2: 45$	34
JS13	0,060	273,7	245	14.4
Reach-1	0,004	19.0	245	4.4
Peach-2	0.020	1039	245	4.4
Reach-3	0.000	423	$2 \times 6$	4.4
Peach-4	0.036	1764	2145	4.1
Reach-5	0.040	1836	$2: 45$	4.2
Freache	0.004	16.7	2.45	44
1 Reach7 7	0.006	26.3	2:45	4.4
Reacher	0011	504	2.45	45
Reschy 9	0,006	878	745	4.4
Reach-10	0.041	178.3	245	45
Feach-11	0.050	269,1	2.45	4.6
Reacher 12	0.006	27.4	2.45	44
Feach-13	0.012	61.7	2.45	4.5
Ceach-4	0.008	39.3	2.46	44
Reach-15	0.026	1332	2,45	45
Rract-10	0.007	36	2ts	4.4
Peathl7	0018	$\underline{96}$	\%as	4

Page 10 of 1
Golder Associates

## TABLE 3

FLOW RESULTS FROM HEC-HMS


Hydrologic Element	Drainege   Area   (samile)	Peak Discharge (cis)	Time of Peak	Totel Volume (achft
fvorth	0.002	9.	2:45	0.4
North 02	0.006	359	2)45	5
Norih 03	0.003	17.6	2.45	0.7
North 04	0005	27.4	2:45	11
North 05	0.004	22.2	$2: 45$	0.9
Worth 08	0.006	32.4	2:45	1.3
Worth 07	0.006	32.5	2;45	13
North 08	0.006	31.9	2.45	1.3
Noth 09	0.001	6.3	2.45	Q. 3
North 10	0.008	493	$2: 45$	18
Norti 11	0.004	23.9	$2: 45$	10
North 12	0.002	120	2:45	0.5
North 13	0.002	9.7	2.45	04
North 14	0.002	11.9	$2: 45$	0.5
South 01	0.004	19.9	$2: 45$	0,9
South 02	0.004	20.6	$2: 45$	0,8
South 03	0.004	20.6	2.45	0,8
South 04	0002	177	245	0.7
South 06	0.006	36.4	245	1.5
South 00	0.003	143	245	0.6
South 07	0.000	314	2145	13
South 08	0.006	325	$2 \cdot 46$	1.8
South 09	0.007	38.2	245	1.6
South 10	0,004	23.9	2.45	10
South 11	0.006	348	2.45	14
South 12	0008	473	2.45	18
South 10	0.001	46	$2: 45$	0.2
Offite 0,	0.013	58.1	245	2.5
Dffite 02	0.008	43.3	245	18
Offitte 03	0.023	1042	245	53
Cftite 04	0.014	69.6	$2: 45$	38
Offite 05	0.006	20.	245	14
$1 \mathrm{NOT-NO}$	0.008	45.0	2.45	18
$1 \mathrm{SNO3-N04}$	0.016	87.4	$2: 45$	37
W N05	0.040	1987	2.45	89
$1 \mathrm{NOG-N14}$	0.048	2280	245	108
1N08	0.011	59.3	245	2.6
INNOS	0.012	85.6	$2: 45$	29
JN11	0.012	636	2.45	28
HN12	0.026	1368	2:45	6.2
NN13	0:028	142.8	$2: 45$	6.6
O1102	0.036	187.2	$2: 45$	80
1503	0.007	37.3	2:45	17
$\therefore \mathrm{CO} 4$	0,007	36.1	$2: 45$	15
$\cdots 505$	0.020	109.2	$2: 45$	4.7
J506	0.041	206 B	2,45	9.8
1508	0.011	58.	$2: 45$	26
〕SOE	0.018	38.6	2.45	42
S10	0.058	2771	2.45	14.1
W12	0.014	75.0	2:45	54
1513	0.060	2737	295	14.4
Feach-1	0.004	19.0	246	4.4
Rescht2	0.020	1039	245	44
Reactis	0.008	423	245	4.4
Preache	0.086	1764	2:45	41
Resch-5	0.040	183.6	$2: 45$	4.2
Reactio	0.004	16.7	245	44
Reach-7	0.006	26.3	2:45	44
Reache	0.011	504	2.45	45
Resch-9	D, 008	276	$2: 45$	44
Reach-10	0.041	178.3	$2: 45$	4.5
Reach-11	0059	269.	2.45	4.5
\|Raach-12	0,006	27.4	2,45	44
Reach-13	0.012	01.7	2:45	45
Reach 94	0.008	38,3	2.45	14
Reach 15	0.026	1332	2:45	4.5
Treachlb	0.007	86.7	$2 \times 45$	4.4
Beachty	01016	867	248	44

Page 10 of 1
Golder Associates

## Table 4


Attacnment 8
HEC-HMS Screen Captures and Inputs



A. ....fment B



Page 3 of 3
Golder Associates, inc.


Wigure 13.21. Califormia local-storm PMP precipitation estimates for $1 \mathrm{mi}^{2}$, 1 hour (inches). Dashed lines are drainage divides. Same as Figure 9.23.

Figure 13.21 from HMR No. 59 is used to derive the 6 hour PMP.


	Project: Kettleman_Final_10-08		
	Simulation Run: PMP2	Reservoir: Reservoir-1	
Start of Run:	01Feb2020, 01:00	Basin Model:	Final Cover
End of Run:	02Feb2020, 13:00	Metearologic Modal:	LocalPMP24hr
Compute Time:	03Nov2008, 09:31:12	Control Specifications:	1 Hr 36 Hr
	Volume Units:	AC-FT	

```
Computed Results
```

    ……
    Peak infiow: 47.1 (OFS) Date/Time of Peak inflow: OF Feb2020,08:00
    Peak Outfiow: 00 (CFS) Date/Time of Peak Outfiow: OTFeb2020, 01:00
    
Total Outfiow: 00 (AOFT) Peak Elevation: 857 (FT)

Project: Kettleman_Final_10-08			
Start of Rum:	01Feb2020,01:00	Basin Model:	Final Cover
End of Run:	02Feb2020, 13:00	Meteorologic Model:	LocalPMP24hr
Compute Time:	03Nov2008, 09:31:12	12 Control Specifications:	$\mathrm{iHrSh}^{\text {Hr }}$
Volume Units:			
Computed Results			
Peak Inflow:	52.0 (CFS) Dat	Date/Time of Peak Inflow :	01Feb2020, 08:00
Peak Outflow:	: 19.0 (GFS) Da	Date/Time of Peak Outflow :	02Feb2020, 01:00
Total Inflow:	34.1 (AC-FT) Pe	Peak Storage:	32.5 (AC-FT)
Total Outflow :	: 2.2 (AC-FT) Peak	Peak Elevation :	771.0 (FT)

## Worksheet for Cover Road Reach 1

Project Description


Roughness Segment Definitions

Start Station
Ending Station
Roughness Coefficient
$(0+00.0,820.00)$
$(0+02.0,818.00)$
$(0+37.0,818.00)$
$(0+45.3,818.00)$

$(0+02.0,818.00)$	0.030
$(0+37.0,818.00)$	0.030
$(0+45.3,818.00)$	0.016
$(0+52.3,820.00)$	0.030

## Results

Normal Depth	0.73	ft
Elevation Range	816.50 to 820.00 ft	
Flow Area	1.48	$\mathrm{ft}^{2}$
Wetted Perimeter	4.32	ft
Top Width	4.04	ft
Normal Depth	0.73 ft	
Critical Depth	1.54 ft	
Critical Slope	0.00671	$\mathrm{ft} / \mathrm{ft}$
Velocity	$12.85 \mathrm{ft} / \mathrm{s}$	

## Worksheet for Cover Road Reach 1

## Results

Velocity Head	2.57	ft
Specific Energy	3.30	ft
Froude Number	3.75	
Flow Type		
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description	0.00	ft
Profile Headloss	Ininity	$\mathrm{ft} / \mathrm{s}$
Downstream Velocity	Ininity	$\mathrm{ft} / \mathrm{s}$
Upstream Velocity	0.73	ft
Normal Depth	1.54	ft
Critical Depth	0.08000	ftff
Channel Slope	0.00671	ftft
Critical Slope		

## Cross Section for Cover Road Reach 1

## Project Description

Friction Method	Manning Formula   Normal Depth	
Solve For		
Input Data		
Channel Slope	0.08000	$\mathrm{ft} / \mathrm{ft}$
Normal Depth	0.73	ft
Discharge	19.0	$\mathrm{ft}^{1 / s}$

## Cross Section Image



## Worksheet for Cover Road Reach 2

## Project Description

Friction Method	Manning Formula   Normal Depth
Solve For	
Input Data	$0.08000 \mathrm{ft} / \mathrm{ft}$
Channel Slope	$103.9 \mathrm{ft} / \mathrm{s}$

Section Definitions

Station (ft)
Elevation (ft)

$0+00.0$	820.00
$0+02.0$	818.00
$0+37.0$	818.00
$0+40.0$	816.50
$0+45.3$	818.00
$0+52.3$	820.00

Roughness Segment Definitions

## Start Station

Ending Station
Roughness Coefficient

$(0+00.0,820.00)$	$(0+02.0,818.00)$	0.030
$(0+02.0,818.00)$	$(0+37.0,818.00)$	0.022
$(0+37.0,818.00)$	$(0+45.3,818.00)$	0.016
$(0+45.3,818.00)$	$(0+52.3,820.00)$	0.030

Results

Normal Depth	1.64 ft	
Elevation Range	816.50 to 820.00 ft	
Flow Area	12.30	$\mathrm{ft}^{2}$
Wetted Perimeter	44.57	ft
Top Width	43.93	ft
Normal Depth	1.64	ft
Critical Depth	1.92 ft	
Critical Slope	0.00812	$\mathrm{ft} / \mathrm{ft}$
Velociry	8.45	$\mathrm{f} / \mathrm{s}$

## Worksheet for Cover Road Reach 2

Results

Velocity Head	1.11	ft	
Specific Energy		2.75	ft
Froude Number		2.81	
Flow Type	Supercritical		
CVF Input Data			
Downstream Depth	0.00	ft	
Length	0.00	ft	
Number Of Steps	0		

## GVF Output Data

Upstream Depth	0.00	ft
Profile Description		
Profile Headioss	0.00	ft
Downstream Velocity	Infinity	$\mathrm{ft} / \mathrm{s}$
Upstream Velocity	infinity	$\mathrm{f} / \mathrm{s}$
Normal Depth	1.64	ft
Critical Depth	1.92	ft
Channel Slope	0.08000	$\mathrm{ft/f}$
Critical Slope	0.00812	$\mathrm{ft} / \mathrm{t}$

## Cross Section for Cover Road Reach 2

## Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Channel Slope
Normal Depth
Discharge
$0.08000 \mathrm{ft} / \mathrm{ft}$
1.64 ft
$103.9 \mathrm{ft}^{3} / \mathrm{s}$

Cross Section Image


## Worksheet for Perimeter Road Reach 3

## Project Description

Friction Method	Man		
Solve For	Norm		
Input Data			
Channel Slope		0.06000	
Discharge		42.3	$\mathrm{ft}^{3} / \mathrm{s}$
Section Definitions			
Station (ft)		Elevation (f)	
	$0+00.0$		820.00
	$0+08.0$		816:00
	$0+10.0$		817.00
	$0+35.0$		816.50
	$0+38.0$		814.50
	$0+40.0$		814.50
	$0+43.0$		816.50
	$0+50.0$		818.50

Roughness Segment Definitions

Start Station
Ending Station
Roughness Coefficient

$(0+00.0,820.00)$	$(0+10.0,817.00)$	0.035
$(0+10.0,817.00)$	$(0+35.0,816.50)$	0.035
$(0+35.0,816.50)$	$(0+43.0,816.50)$	0.016
$(0+43.0,816.50)$	$(0+50.0,818.50)$	0.035

Results

Normal Depth	0.85 ft	
Elevation Range	814.50 to 820.00 ft	
Flow Area	$2.77 \mathrm{ft}^{2}$	
Wetted Perimeter	5.06 ft	
Top Width	4.54 ft	
Normal Depth	0.85 ft	
Critical Depth	1.66 ft	

## Worksheet for Perimeter Road Reach 3

## Results

Critical Slope	0.00447	$\mathrm{ff} / \mathrm{ft}$
Velocity	15.25	$\mathrm{ff} / \mathrm{s}$
Velocity Head	3.61	ft
Specific Energy	4.46	ft
Froude Number	3.44	

## Flow Type <br> Supercritical

GVF Input Data
Downstream Depth 0.00 ft
Length
0.00 ft

Number Of Steps
0
GVF Output Data
Upstream Depth 0.00 ft
Profile Description
Profile Headloss
Downstream Velocity
Upstream Velocity
Normal Depth
Critical Depth
Channel Slope
0.00 ft

Critical Slope
infinity ftts
Infinity ft/s
0.85 ft
1.66 ft
$0.06000 \mathrm{ft} / \mathrm{ft}$
0.00447 ft/ft

## Cross Section for Perimeter Road Reach 3

Project Description

| Friction Method | Manning Formula |  |
| :--- | :--- | ---: | :--- |
| Solve For | Normal Depth |  |
|  |  |  |
| Input Data |  |  |
| Channel Slope | 0.06000 | $\mathrm{ft} / \mathrm{ft}$ |
| Normal Depth | 0.85 | ft |
| Discharge | 42.3 | $\mathrm{tt} / \mathrm{s}$ |

Cross Section Image


## Worksheet for Perimeter Road Reach 4

## Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Channel Slope		0.02600	ft/ft
Discharge		176.4	$\mathrm{ft}^{3} / \mathrm{s}$
Section Definitions			
Station (ft)		(ft)	
	0+00.0		820.00
	0+08.0		816.00
	$0+10.0$		817.00
	0+35.0		816.50
	$0+38.0$		814.50
	$0+40.0$		814.50
	$0+43.0$		816.50
	$0+50.0$		818.50

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
$(0+00.0,820.00)$	$(0+10.0,817.00)$	0.035
$(0+10.0,817.00)$	$(0+35.0,816.50)$	0.035
$(0+35.0,816.50)$	$(0+43.0,816.50)$	0.016
$(0+43.0,816.50)$	$(0+50.0,818.50)$	0.035


| Results |  |  |
| :--- | ---: | ---: | :--- |
| Normal Depth |  |  |
| Elevation Range | 814.50 to 820.00 ft |  |
| Flow Area | 29.67 | ft |
| Wetted Perimeter | 41.52 | $\mathrm{ft}^{2}$ |
| Top Width | 39.70 | ft |
| Normal Depth | 2.67 | ft |
| Critical Depth | 2.78 | ft |

## Worksheet for Perimeter Road Reach 4

## Results

Critical Slope		0.01656	ft/ft
Velocity		5.99	$\mathrm{ft} / \mathrm{s}$
Velocity Head		0.56	ft
Specific Energy		3.23	$f$
Froude Number		1.23	
Flow Type	Supercritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headioss		0.00	$f t$
Downstream Velocity		Infinity	H/s
Upstream Velocity		Infinity	$\mathrm{f} / \mathrm{s}$
Normal Depth		2.67	ft
Critical Depth		2.78	ft
Channel Slope		0.02600	ft/ft
Critical Slope		0.01656	H/ft

## Cross Section for Perimeter Road Reach 4

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Channel Slope	0.02600	$\mathrm{ft} / \mathrm{ft}$
Normal Depth	2.67	ft
Discharge	176.4	$\mathrm{ft}^{3} / \mathrm{s}$

## Cross Section Image



## Worksheet for Perimeter Road Reach 5

Project Description


Roughness Segment Definitions

Start Station
Ending Station
Roughness Coefficient

$(0+00.0,820.00)$	$(0+10.0,817.00)$	0.035
$(0+10.0,817.00)$	$(0+35.0,816.50)$	0.035
$(0+35.0,816.50)$	$(0+43.0,816.50)$	0.016
$(0+43.0,816.50)$	$(0+50.0,818.50)$	0.035

Results

Normal Depth	2.51	ft
Elevation Range	814.50 to 820.00 ft	
Flow Ares	23.21	$\mathrm{ft}^{2}$
Wetted Perimeter	40.59	ft
Top Width	38.82	ft
Normal Depth	2.51	ft
Critical Depth	2.61	ft

Bentley Systems, Inc. Haestad Methods Solution Center Bentiey Flowfiaster [08.06.066.00]
11/26/2008 1:44:47 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

## Worksheet for Perimeter Road Reach 5

## Results

Critical Slope
Velocity
Velocity Head
Specific Energy
Froude Number
Flow Type
GVF Input Data
Downstream Depth
Length
Number Of Steps
GVF Output Data
Upstream Depth
Profile Description
Profile Headioss
Downstream Velocity
Upstream Velocity
Normal Depth
Critical Depth
Channel Slope
Critical Slope

0.01635	$\mathrm{ft} / \mathrm{ft}$
7.91	$\mathrm{ft} / \mathrm{s}$
0.97	ft
3.49	ft
1.80	
0.00	ft
0.00	ft
0	

0.00 ft
0.00 ft

Infinity fuls
Infinity $\mathrm{t} / \mathrm{s}$
2.51 ft
2.81 ft
0.06000 fyft
$0.01635 \mathrm{ft} / \mathrm{ft}$

## Cross Section for Perimeter Road Reach 5

## Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Date
Channel Siope
$0.06000 \mathrm{ft} / \mathrm{ft}$
Normal Depth
Discharge
2.51 \#
$183.6 \mathrm{tt}^{\mathrm{t} / \mathrm{s}}$

Cross Section Image


## Worksheet for Bench Reach 6

## Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Date			
Roughness Coefficient		0.035	
Channel Slope		0.02000	ft/f
Left Side Stope		2.00	$\mathrm{ft} / \mathrm{ft}(\mathrm{H}: \mathrm{V})$
Right Side Slope		3.50	$\mathrm{ft} / \mathrm{ft}(\mathrm{H}: \mathrm{V})$
Bottom Width		12.00	
Discharge		16.7	$\mathrm{ft}^{2} / \mathrm{s}$
Results			
Normal Depth		0.41	ft
Flow Area		5.37	$\mathrm{ft}^{2}$
Wetted Perimeter		14.41	ft
Top Width		14.25	ft
Critical Depth		0.38	ft
Critical Slope		0.02562	$\mathrm{ft} / \mathrm{t}$
Velocity		3.11	$\mathrm{ft} / \mathrm{s}$
Velocity Head		0.15	ft
Specific Energy		0.56	$f t$
Froude Number		0.89	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	$f t$
Length		0.00	$f$
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profle Description			
Profile Headloss		0.00	ft
Downstream Velocity		infinity	ft/s
Upstream Velocity		Infinity	fts
Normal Depth		0.41	ft
Critical Depth		0.38	ft
Channel Slope		0.02000	$\mathrm{ft} / \mathrm{tt}$
Critical Slope		0.02562	$\mathrm{ft} / \mathrm{ft}$

## Cross Section for Bench Reach 6

Project Description

Friction Method	Manning Formula   Normal Depth
Solve For	
Input Data	0.035
Roughness Coefficient	$0.02000 \mathrm{f} / \mathrm{ft}$
Channel Slope	0.41 ft
Normal Depth	$2.00 \mathrm{f} / \mathrm{ft}(\mathrm{H}: \mathrm{V})$
Left Side Slope	$3.50 \mathrm{ft/ft}(\mathrm{H}: \mathrm{V})$
Right Side Slope	12.00 ft
Bottom Width	$16.7 \mathrm{ft} / \mathrm{s}$
Discharge	
Cross Sectionlmage	


$V: 1 \frac{\Delta}{H 1}$

## Worksheet for Bench Reach 7

## Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.035	
Channel Slope		0.02000	fift
Left Side Slope		2.00	fift (H:V)
Right Side Slope		3.50	ftft ( $\mathrm{H}: \mathrm{V}$ )
Bottom Width		12.00	
Discharge		26.3	$\mathrm{ft}^{\mathbf{9} / \mathrm{s}}$
Results			
Normal Depth		0.53	ft
Flow Area		7.20	$\mathrm{ft}^{\text {2 }}$
Wetted Perimeter		15.14	ft
Top Width		14.94	H
Critical Depth		0.51	$f$
Critical Slope		0.02351	ft/ft
Velocity		3.66	$\mathrm{ft} / \mathrm{s}$
Velocity Head		0.21	ft
Specific Energy		0.74	ft
Froude Number		0.93	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	

GVF Output Data

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	infinity	$\mathrm{ff} / \mathrm{s}$
Upstream Velocity	infinity	fts
Normal Depth	0.53	ft
Critical Depth	0.51	ft
Channel Slope	0.02000	$\mathrm{ft} / \mathrm{ft}$
Critical Slope	0.02351	$\mathrm{ft} / \mathrm{ft}$

## Cross Section for Bench Reach 7

## Project Description

Friction Method	Manning Formula Normal Depth		
Solve For			
Input Data			
Roughness Coefficient		0.035	
Channel Slope		0.02000	fuft
Normal Depth		0.53	$f t$
Left Side Slope		2.00	ft/t (H:V)
Right Side Slope		3.50	ft/ft (H:V)
Bottom Width		12.00	$f t$
Discharge		26.3	
Cross Section Image			
	\%		

$$
V: \frac{D}{H i}
$$

## Worksheet for Bench Reach 8

## Project Description

Friction Method	Manning Formule		
Solve For	Normal Depth		
Input Date			
Roughness Coefficient		0.035	
Channel Slope		0.02000	ft/ft
Left Side Slope		2.00	ftft ( $\mathrm{H}: \mathrm{V}$ )
Right Side Slope		3.50	$\mathrm{ft} / \mathrm{ft}(\mathrm{H}: \mathrm{V})$
Bottom Width		12.00	
Discharge		50.4	$f^{3} / \mathrm{s}$
Results			
Normal Depth		0.78	ft
Flow Area		11.03	$\mathrm{ft}^{2}$
Wetted Perimeter		16.58	ft
Top Width		16.29	ft
Critical Depth		0.77	t
Critical Slope		0.02089	ftift
Velocity		4.57	$\mathrm{ft} / \mathrm{s}$
Velocity Head		0.32	ft
Specific Energy		1.10	ft
Froude Number		0.98	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps.		0	
GVF Output Data			
Upstream Depth		0.00	$f$
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	fts
Upstream Velocity		Infinity	fts
Normal Depth		0.78	ft
Critical Depth		0.77	A
Channel Slope		0.02000	ft/ft
Critical Slope		0.02089	ft/ft

## Cross Section for Bench Reach 8

## Project Description



[^32]
## Worksheet for Bench Reach 9

## Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.035	
Channel Slope		0.02000	ftat
Left Side Slope		2.00	f/ft ( $\mathrm{H}: \mathrm{V}$ )
Right Side Slope		3.50	ft/ft (H:V)
Bottorn Width		12.00	
Discharge		27.6	$\mathrm{ft} / \mathrm{s}$
Results			
Normal Depth		0.55	ft
Flow Area		7.42	$\mathrm{tt}^{2}$
Wetted Perimeter		15.23	ft
Top Width		15.02	f
Critical Depth		0.53	ft
Critical Slope		0.02329	fift
Velocity		3.72	$\mathrm{ft} / \mathrm{s}$
Velocity Head		0.21	ft
Specific Energy		0.76	$f$
Froude Number		0.93	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	$f$
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	$f$
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	$\mathrm{ft} / \mathrm{s}$
Upstream Velocity		Infinity	ft/s
Normal Depth		0.55	ft
Critical Depth		0.53	ft
Channel Slope		0.02000	$\mathrm{ft} / \mathrm{ft}$
Critical Slope		0.02329	ftift

## Cross Section for Bench Reach 9

## Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.035	
Channel Slope		0.02000	ftft
Normal Depth		0.55	ft
Left Side Slope		2.00	flft (H:V)
Right Side Slope		3.50	$\mathrm{ft/4}(\mathrm{H}: \mathrm{V})$
Bottom Width		12.00	$f$
Discharge		27.6	$\mathrm{f}^{3} / \mathrm{s}$
Cross Section Image			


$V \cdot 1 \frac{\Delta}{H}$

## Worksheet for Perimeter Road Reach 10

## Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data
Channel Slope
$0.01400 \mathrm{ft} / \mathrm{ft}$
Discharge
Section Definitions

Station ( ft )
Elevation (ft)

$0+00.0$	820.00
$0+08.0$	816.00
$0+10.0$	817.00
$0+35.0$	816.50
$0+38.0$	814.50
$0+40.0$	814.50
$0+43.0$	816.50
$0+50.0$	818.50

Roughness Segment Definitions

## Start Station

Ending Station
Roughness Coefficient

$(0+00.0,820.00)$	$(0+10.0,817.00)$	0.035
$(0+10.0,817.00)$	$(0+35.0,816.50)$	0.035
$(0+35.0,816.50)$	$(0+43.0,816.50)$	0.016
$(0+43.0,816.50)$	$(0+50.0,818.50)$	0.035

Results

Normal Depth		2.84	ft
Elevation Range	814.50 to 820.00 ft		
Fiow Area		36.05	$\mathrm{ft}^{2}$
Wetted Perimeter		42.49	ft
Top Width	40.60	ft	
Normal Depth	2.84	ft	
Critical Depth	2.79	ft	

## Worksheet for Perimeter Road Reach 10

## Results

Critical Slope
Velocity
Velocity Head
Specific Energy
Froude Number
Flow Type
GVF input Data
Downstream Depth
Length
Number Of Steps
GVF Output Data
Upstream Depth
Profile Description
Profile Headioss
Downstream Velocity
Upstream Velocity
Normal Depth
Critical Depth
Channel Slope
Critical Slope

0.01660	$\mathrm{ft} / \mathrm{ft}$
4.95	fts
0.38	ft
3.22	ft
0.93	

0.00 ft
0.00 ft

0
$0: 00 \mathrm{ft}$
0.00 ft

Infinity fys
Infinity ft/s
2.84 ft
2.79 ft
$0.01400 \mathrm{ff} / \mathrm{ft}$
0.01660 fuft

## Cross Section for Perimeter Road Reach 10

## Project Description

Frietion Method	Manning Formula   Solve For   Normal Depth	
Input Data		
Channel Slope	0.01400	$\mathrm{ft} / \mathrm{ft}$
Normal Depth	2.84	ft
Discharge	178.3	$\mathrm{ft}^{3} / \mathrm{s}$
Cross Section lmage	$\ddots$	



## Worksheet for Perimeter Road Reach 11

## Project Description

Friction Method
Solve For

Input Data

Channel Slope
Discharge
Section Definitions

Manning Formula
Normal Depth

Station (fi)
Elevation (fi)

$0+00.0$	820.00
$0+08.0$	816.00
$0+10.0$	817.00
$0+35.0$	816.50
$0+38.0$	814.50
$0+40.0$	814.50
$0+43.0$	816.50
$0+50.0$	818.50

Roughness:Segment Definitions

Start Station	Roughness Coefficient	
$(0+00.0,820.00)$	$(0+10.0,817.00)$	0.035
$(0+10.0,817.00)$	$(0+35.0,816.50)$	0.035
$(0+35.0,816.50)$	$(0+43.0,816.50)$	0.016
$(0+43.0,816.50)$	$(0+50.0,818.50)$	0.035

Results

Normal Depth	2.73 ft	
Elevation Range	814.50 to 820.00 ft	
Flow Area	31.87	$\mathrm{ft}^{2}$
Wetted Perimeter	41.88	ft
Top.Width	40.03	ft
Normal Depth	2.73	ft
Critical Depth	3.07	ft

## Worksheet for Perimeter Road Reach 11

## Results

Gritical Slope

Velocity
Velocity Head
Specific Energy
Froude Number
0.01525 ftht
$8.44 \mathrm{ft} / \mathrm{s}$
1.11 ft
3.84 ft

Flow Type Supercritical
GVF Input Data
Downstream Depth
0.00 ft

Length
Number Of Steps
0.00 ft

0
GVF Output Data
Upstream Depth
0.00 ft

Profile Description
Profle Headioss
Downstream Velocity
Upstream Velocity
Normal Depth
Critical Depth
Channel Slope
Critical Slope
0.00 ft

Infinity ft/s
Infinity ft/s
2.73 ft
3.07 ft
$0.04700 \mathrm{ft} / \mathrm{ft}$
$0.01525 \mathrm{ft} / \mathrm{ft}$

## Cross Section for Perimeter Road Reach 11

Project Description

Friction Method	Manning Fornula
Solve For	Normal Depth

Input Date
Channel Slope
Normal Depth
Discharge
$0.04700 \mathrm{f} / \mathrm{ft}$
273 ft
$2693 \mathrm{ft} / \mathrm{s}$
Cross Section Image


## Worksheet for Bench Reach 12

## Project Description



## Cross Section for Bench Reach 12

## Project Description

Friction Method	Manning Formula		
Solve For	Normal Dopth		
Input Data			
Roughness Coefficient		0.035	
Channel Slope		0.02000	f/ft
Normal Depth		0.55	ft
Left Side Slope		2.00	ft/f (H:V)
Right Side Slope		3.50	$\mathrm{ffft}(\mathrm{H}: \mathrm{V})$
Bottom Width		12.00	f
Discharge		27.4	$\mathrm{fl}^{3 / \mathrm{s}}$

Cross Section Image


## Worksheet for Perimeter Road Reach 13

## Project Description

Friction Method
Solve For
Input Data

## Channel Slope

Discharge
Section Definitions

## Manning Formula

Normal Depth

Station (ft)
Elevation (f)

$0+00.0$	820.00
$0+08.0$	816.00
$0+10.0$	817.00
$0+35.0$	816.50
$0+38.0$	814.50
$0+40.0$	814.50
$0+43.0$	816.50
$0+50.0$	818.50

## Roughness Segment Definitions

Start Station
Ending Station
Roughness Coefficient

$(0+00.0,820.00)$	$(0+10.0,817.00)$	0.035
$(0+10.0,817.00)$	$(0+35.0,816.50)$	0.035
$(0+35.0,816.50)$	$(0+43.0,816.50)$	0.016
$(0+43.0,816.50)$	$(0+50.0,818.50)$	0.035

Results

Normal Depth	1.00	ft	
Elevation Range	814.50 to 820.00 ft		
Flow Area		3.51	$\mathrm{ft}^{2}$
Wetted Perimeter	5.61	ft	
Top Width	5.01	ft	
Normal Depth	1.00	ft	
Critical Depth	2.20	ft	

## Worksheet for Perimeter Road Reach 13

Results

Critical Slape		0.00477	flft
Velocity		17.58	fts
Velocity Head		4.80	A
Specific Energy		5.80	ft
Froude Number		3.70	
Flow Type	Supercritical		
GVF Input Data			
Downstream Depth		0.00	f
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headioss		0.00	ft
Downstream Velocity		Infinity	$\mathrm{ft} / \mathrm{s}$
Upstream Velocity		Infinity	fts
Normal Depth		1.00	ft
Critical Depth		2.20	$f$
Channel Slope		0.06700	ft ft
Critical Slope		0.00477	fift

## Cross Section for Perimeter Road Reach 13

## ProjectDescription

Friction Methoo Manning Formula
Solve For Normal Depth

Input Data

Channel Siope
Normal Depth
Discharge
Cross Section Image


## Worksheet for Bench Reach 14

## Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.035	
Channel Slope		0.02000	ftff
Left Side Slope		2.00	fi/ft (H:V)
Right Side Slope		3.50	ft/it (H:V)
Bottom Width		12.00	
Discharge		39.3	$\mathrm{ft}^{3} / \mathrm{s}$
Results			
Normal Depth		0.68	ft
Flow Area		9.35	$\mathrm{ft}^{2}$
Wetted Perimeter		15.97	$f$
Top Width		15.71	ft
Critical Depth		0.66	ft
Critical Slope		0.02184	
Velocity		4.20	$\mathrm{ft} /{ }^{\text {c }}$
Velocity Head		0.27	ft
Specific Energy		0.95	ft
Froude Number		0.96	
Flow Type	Suberitical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	$f t$
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	$f$
Profila Description			
Profile Headloss		0.00	$f$
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		0.68	ft
Critical Depth		0.66	ft
Channel Slope		0.02000	f1/ft
Critical Slope		0.02184	ti/ft

## Cross Section for Bench Reach 14

## Project Description

Friction Method	Manning Formula   Normal Depth
Solve For	
Input Data	0.035
Roughness Coefficient	0.02000 ftft
Channel Siope	0.68 ft
Normal Depth	$2.00 \mathrm{ft} / \mathrm{f}(\mathrm{H}: \mathrm{V})$
Left Side Slope	$3.50 \mathrm{ft} / \mathrm{H}(\mathrm{H}: \mathrm{V})$
Right Side Slope	12.00 ft
Bottom Width	$39.3 \mathrm{ft} / \mathrm{s}$
Discharge	
Cross Section lmage	


$V 1 \Delta$

## Worksheet for Perimeter Road Reach 15

## Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Channel Slope		0.08000	ftft
Discharge		133.2	$\mathrm{ft}^{3} / \mathrm{s}$
Section Definitions			
Station (ft)		(tt)	
	$0+00.0$		820.00
	0+08.0		816.00
	0+10.0		817.00
	$0+35.0$		816.50
	$0+38.0$		814.50
	$0+40.0$		814.50
	$0+43.0$		816.50
	$0 \div 50.0$		818.50


$(0+00.0,820.00)$	$(0+10.0,817.00)$	0.035
$(0+10.0,817.00)$	$(0+35.0,816.50)$	0.035
$(0+35.0,816.50)$	$(0+43.0,816.50)$	0.016
$(0+43.0,816.50)$	$(0+50.0,818.50)$	0.035

## Results

| Normal Depth | 1.41 ft |  |
| :--- | :--- | :--- | :--- |
| Elevation Range | 814.50 to 820.00 ft |  |
| Flow Area | 5.80 | $\mathrm{ft}^{2}$ |
| Wetted Perimeter | 7.08 | ft |
| Top Widin | 6.23 | ft |
| Normal Depth | 1.41 ft |  |
| Critical Depth | 2.63 ft |  |

## Worksheet for Perimeter Road Reach 15

## Results

Critical Slope	0.00444	$\mathrm{ft} / \mathrm{ft}$
Velocity	22.98	$\mathrm{f} / \mathrm{s}$
Velocity Head	8.21	ft
Specific Energy	9.62	ft
Froude Number	4.20	

Flow Type Supercritical
GVF Input Data
Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps
0
GVF Output Data
Upstream Depth
Profile Description
Profile. Headioss
Downstream Velocity
Upstream Velocity
Normal Depth
Critical Depth
Channel Slope 0.00 ft

Critical Slope
0.00 ft

Infinity $\mathrm{H} / \mathrm{s}$
Infinity fi/s
1.41 ft
2.63 ft
$0.08000 \mathrm{ft} / \mathrm{ft}$
0.00444 ft/ft

## Cross Section for Perimeter Road Reach 15

## Project Description

$\left.\begin{array}{lll}\text { Friction Method } & \text { Manning Formula } \\ \text { Solve For } & \text { Normal Depth }\end{array}\right]$


## Worksheet for Bench Reach 16

Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.035	
Channel Slope		0.08000	ftet
Left Side Slope		2.00	ftft (HiV)
Right Side Slope		3.50	ft/f (H:V)
Bottom Width		12.00	
Discharge		36.7	$\mathrm{ft} / \mathrm{s}$
Results			
Normal Depth		0.43	ft
Flow Area		5.70	$\mathrm{ft}^{2}$
Wetted Perimeter		14.54	ft
Top Width		14.38	ft
Critical Depth		0,63	f
Critical Slope		0.02211	fift
Velocity		6.43	fi/s
Velocity Head		0.64	$f$
Specific Energy		1.08	ft
Froude Number		1.80	
Flow Type	Supercritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	

GVF Output Data

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	$\mathrm{ft} / \mathrm{s}$
Upstram Velocity	Infinity	$\mathrm{ft} / \mathrm{s}$
Normal Depth	0.43	ft
Critical Depth	0.63	ft
Channel Slope	0.08000	$\mathrm{ft} / \mathrm{ft}$
Critical Slope	0.02211	$\mathrm{ft} / \mathrm{tt}$

## Cross Section for Bench Reach 16

## Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

## Input Data

Roughness Coefficient	0.035	
Channel Slope	0.08000	ffft
Normal Depth	0.43	ft
Left Side Slope	2.00	$\mathrm{ft} / \mathrm{ft}(\mathrm{H}: \mathrm{V})$
Right Side Slope	3.50	$\mathrm{ft} / \mathrm{ft}(\mathrm{H}: \mathrm{V})$
Bottom Width	12.00	ft
Discharge	36.7	$\mathrm{ft} / \mathrm{s}$

## Cross Section Image

Normal Depth


## Worksheet for Perimeter Road Reach 17

## Project Description



Roughness Segment Definitions

## Stant Station

Ending Station
Roughness Coefficient

$(0+00.0,820.00)$	$(0+10.0,817.00)$	0.035
$(0+10.0,817.00)$	$(0+35.0,816.50)$	0.035
$(0+35.0,816.50)$	$(0+43.0,816.50)$	0.016
$(0+43.0,816.50)$	$(0+50.0,818.50)$	0.035

Results

Normal Depth	1.24	ft	
Elevation Range	814.50 to 820.00 ft		
Fiow Area		4.77	$\mathrm{ft}^{2}$
Wetted Perimeter	6.46	ft	
Top Width	5.71	ft	
Normal Depth	1.24	ft	
Critical Depth	2.42	ft	

## Worksheet for Perimeter Road Reach 17

## Results

Critical Slope		0.00478	$\mathrm{ft} / \mathrm{t}$
Velocity		17.96	$\mathrm{ft} / \mathrm{s}$
Velocity Head		5.01	ft
Specific Energy		6.25	H
Froude Number		3.46	
Flow Type	Supercritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	4
Profile Description			
Profile Headioss		0.00	f
Downstream Velocity		Infinity	ft /
Upstream Velocity		Infinity	$\mathrm{ft} / \mathrm{s}$
Normal Depth		1.24	ft
Critical Depth		2.42	f
Channel Slope		0.05600	f/ft
Critical Slope		0.00478	$\mathrm{ft} / \mathrm{ft}$

## Cross Section for Perimeter Road Reach 17

Project Description

Friction Method	Manning Formula   Normal Depth	
Solve For		
Input Data		0.05600
	$\mathrm{f} / \mathrm{tt}$	
Channel Slope	1.24	ft
Normal Depth	85.7	$\mathrm{ft} / \mathrm{s}$

Cross Section Image


## HY-8 Culvert Analysis Report

Water Surface Profile Plot for Culvert: Culvert 1
Crossing - JSO5, Design Discharge - 110.0 cfs Culvert - Culvert 1, Culvert Discharge - 110.0 cfs


## Site Data - Culvert 1

Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 914.00 ft
Outlet Station: 70.00 ft
Outlet Elevation: 910.00 ft
Number of Barreis: 2

## Culvert Data Summary - Culvert 1

Barrel Shape: Circular
Barrel Diameter: 3.00 ft
Barrel Material: Smooth HDPE
Embedment: 0.00 in
Barrel Manning's n: 0.0120
Inlet Type: Conventional
Inlet Edge Condition: Square Edge with Headwall
Inlet Depression: None

Table 1 - Culvert Summary Table: Culvert 1

Total Discharge (cfis)	Culvert Discharge (cts)	Headwater Elevation ( t )	Inlet Control Depth ( Ht )	Outter   Control Depth (fi)	Flow Type	Normal Depth (f)	Critical Depth ( ft )	Outiet Depth (ft)	Tailwater Depth (tt)	Outiet Velocity (fiv)	Tailwater Velocity (fus)
110.00	110.00	918,32	4.320	3.173	4-FFf	1159	2.405	1.159	7.385	21793	18.665
110.00	11000	918.32	4.320	3,173	4 FFF	1159	2.405	1159	1365	21.793	19.665
110.00	110.00	918,32	4.320	3,173	4-FFf	1758	2.405	1.159	1365	21,793	19.665
110.00	110.00	918.32	4.320	3.173	4 FFF	1158	2.405	4.159	1365	21.793	49.665
110.00	110.00	918.32	4.320	3,173	4 FFF	1.159	2.405	1,459	1365	21.793	19.865
110:00	11000	916.32	4.320	3.173	4-FFf	7158	2.405	1:159	1365	21.793	19,665
11000	110.00	918:32	4.320	3.173	4 FFFf	1159	2405	1,159	3.365	21.793	19665
110.00	110.00	918.32	4.320	3.173	4-FFf	1.159	2.405	1.158	1.365	21793	19.665
110.00	110.00	916.32	4.320	3.173	4-FFf	1.159	2,405	1.159	1.365	21.793	19.685
110.00	110.00	918,32	4.320	3.173	4-FFf	1.159	2.405	1.153	1.365	21.793	19.665
110,00	110.00	918.32	4.320	3.173	$4 . \mathrm{FFf}$	1.459	2.405	1.159	1385	21.793	19.685

Inlet Elevation (invert); $914.00 \mathrm{ft} \quad$ Outlet Elevation (invent); 910.00 ft
Culvert Length: $70.11 \mathrm{ft}_{1} \quad$ Culvert Slope: 0.0571

Table 2 - Summary of Culvert Flows at Crossing: JSO5

Headwater Elevation   (ft)	Total Discharge (cfs)	Culvert 1 Discharge   (cfs)	Roadway Discharge   (cfs)	Iterations
918.32	110.00	110.00	0.00	
916.32	110.00	110.00	0.00	1
918.32	110.00	110.00	0.00	1
918.32	110.00	110.00	0.00	1
918.32	110.00	110.00	0.00	1
918.32	110.00	110.00	0.00	1
918.32	110.00	110.00	0.00	1
918.32	110.00	110.00	0.00	1
918.32	110.00	110.00	0.00	1
918.32	110.00	110.00	0.00	1
918.32	110.00	110.00	0.00	1
919.00	124.80	124.86	0.00	1
			$0 v e r \mid$	

## Water Surface Profile Plot for Culvert: Culvert 1

## Crossing - J 01-02, Design Discharge - 188.0 cfs

Culvert - Culvert 1, Culvert Discharge - 78.0 cfs


## Site Data - Culvert 1

Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 854.00 ft
Outlet Station: 60.00 ft
Outlet Elevation: 853.00 ft
Number of Barrels: 1

## Culvert Data Summary - Culvert 1

Barrel Shape: Circular
Barrel Diameter: 3.00 ft
Barrel Material: Smooth HDPE
Embedment: 0.00 in
Barrel Manning's $\mathrm{n}: ~ 0.0120$
Inlet Type: Conventional
Inlet Edge Condition: Square Edge with Headwall
Inlet Depression: None

Table 3 - Culvert Summary Table: Culvert 1

Total Discharge (cis)	Culvert Discharge (cis)	Headwater Elevation   ( f )	Iniet Control Depth (fi)	Outlet   Control Depth (ft)	Flow Type	Normal Depth (fi)	Critical Depth (ft)	Outet Depth (ft)	Tailwater Depth (fi)	Outlet velocity (ftis)	Tailwater Velocity (fils)
188.00	78.04	860.81	6.807	6.807	5-52n	2.096	2.775	2.310	1959	13,387	12.185
188.00	78.04	860.81	6.807	6.807	5-S2n	2.096	2.775	2300	4859	13.387	12,185
188.00	78.04	860.81	6.807	6.807	5-S2n	2.096	2.775	2.370	1.959	13.387	12.185
188.00	78.04	860.81	6.807	6.807	5.52 n	2.096	2775	2310	4959	13.387	12.185
188.00	78.04	860.81	6.807	6.807	5 S 2 n	2.096	2775	2.310	1959	13,387	12.185
188.00	78.04	860.81	6.807	6.807	5-S2n	2.096	2.775	2310	1.959	13.387	12.185
188.00	78.04	860.81	68.807	6.807	$5-52 n$	2.096	2.775	2310	+859	13.387	12.185
188.00	78.04	860,81	6.80?	6.807	5-S2n	2.096	2775	2310	19959	13.387	12.185
188.00	78.04	860.81	6.807	6.807	5-S2n	2.096	2775	2.310	4959	13.387	12.185
198.00	78.04	860.81	6.807	6.807	$5-82 n$	2096	2.775	2.310	1.959	13.387	12.185
188,00	78.04	860,81	6:807	6.807	5-52n	2096	2.775	2.310	1.959	13.387	12.185


Inlet Elevation (invert): 854.00 ft , Outlet Elevation (invert): 853.00 ft
Culvert Length; $60.01 \mathrm{ft}, \quad$ Culvert Slope: 0.0167


Table 4 - Summary of Culvert Flows at Crossing: J 01-02

Headwater Elevation   (ft)	Total Discharge (cfs)	Culvert 1 Discharge   (ffs)	Roadway Discharge   (cfs)	Iterations
860.81	188.00	78.04	109.94	
860.81	188.00	78.04	109.94	8
860.81	188.00	78.04	109.94	2
860.81	188.00	78.04	109.94	2
860.81	188.00	78.04	109.94	2
860.81	188.00	78.04	109.94	2
860.81	188.00	78.04	109.94	2
860.81	188.00	78.04	109.94	2
860.81	188.00	78.04	109.94	2
860.81	188.00	78.04	109.94	2
860.81	188.00	78.04	109.94	2
860.00	71.29	71.29	0.00	Overtopping

## Water Surface Profile Plot for Culvert: Culvert

Crossing - JS13, Design Discharge - 274.0 cfs Culvert - Culvert, Culvert Discharge -274.0 cfs


## Site Data - Culvert

Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 869.00 ft
Outlet Station: 70.00 ft
Outlet Elevation: 868.00 ft
Number of Barrels: 4

## Culvert Data Summary - Cuivert

Barrel Shape: Circular
Barrel Diameter: 3.00 ft
Barrel Material: Smooth HDPE
Embedment: 0.00 in
Barrel Manning's n : 0.0120
Inlet Type: Conventional
Inlet Edge Condition: Square Edge with Headwall
inlet Depression: None

Table 5 - Culvert Summary Table: Culvert

Total Discharge (cfo)	Culvert Discharge (cis)	Headwater Elevation   (ft)	Inter Control Depth ( t )	Outiet Conirol Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outiel Depth ( tt )	Tailwater Depth (ft)	Outlet Veloctity ( $\mathrm{H} / \mathrm{s}$ )	Tailwater velocily (tt/s)
274,00	274,00	874.69	5.692	5.094	4 FFF	2.017	2622	2017	2.271	13,568	22,317
274.00	274,00	874.69	5.692	5.084	4-Fff	2.017	2.622	2.017	2,271	13.568	22.317
274.00	274.00	874.69	5.692	5,084	4-FFf	2.017	2.622	2,017	2.271	13.568	22.317
274.00	274.00	974.65	5.692	5.084	4 FFt	2.017	2.622	2.047	2.279	13.568	22.317
27400	274,00	874.69	5.692	5.084	4 FFFi	2.017	2.622	2.017	2.271	13.568	22.317
27400	27400	374.69	5,692	5.084	4-FFf	2.017	2.622	2.017	2.271	13.568	22.317
274.00	274.00	874.69	5.692	5.084	4-FFf	2.017	2.622	2.017	2.271	13.568	22:317
274.00	274.00	874.69	5.692	5.084	4 FFf	2017	2622	2.017	2.271	13.568	22:317
274.00	274.00	874.69	5.692	5.084	4-FFf	2,017	2.622	2.017	2271	13.568	22.317
274.00	274.00	874,69	5.692	5.084	4 FFF	2.017	2.622	2.017	2.271	13.568	22.317
274.00	274.00	874.69	5.692	5.084	4-FFf	2.017	2.622	2.017	2.271	13.568	22,317

Inlet Elevation (invert): 869.00 ft , Outiet Elevation (invert); 868.00 ft
Culvert Length: $70.01 \mathrm{ft}, \quad$ Culvert Slope: 0.0143
$\qquad$

Table 6 - Summary of Culvert Flows at Crossing: JS13

Headwater Elevation   (ft)	Total Discharge (cfs)	Culvert Discharge   (cfs)	Roadway Discharge   (cfs)	Iterations
874.69	274.00	274.00	0.00	
874.69	274.00	274.00	0.00	1
874.69	274.00	274.00	0.00	1
874.69	274.00	274.00	0.00	1
874.69	274.00	274.00	0.00	1
874.69	274.00	274.00	0.00	1
874.69	$274: 00$	274.00	0.00	1
874.69	274.00	274.00	0.00	1
874.69	274.00	274.00	0.00	1
874.68	274.00	274.00	0.00	1
874.69	274.00	274.00	0.00	1
875.00	285.05	285.05	0.00	1

## Water Surface Profile Plot for Culvert: Cuivert 1

Crossing - JN06-N14, Design Discharge - 228.0 cfs Culvert - Culvert 1, Culvert Discharge - 97.1 cfs


## Site Data - Culvert 1

Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 762.00 ft
Outlet Station: 60.00 ft
Outlet Elevation: 760.00 ft
Number of Barrels: 1

## Culvert Data Summary - Culvert 1

Barrel Shape: Circular
Barrel Diameter: 3.00 ft
Barrel Material: Smooth HDPE
Embedment: 0.00 in
Barrel Manning's n: 0.0120
Inlet Type: Conventional
Inlet Edge Condition: Square Edge with Headwall
Inlet Depression: None

Table 7 - Culvert Summary Table: Culvert 1

Total Discharge (cís)	Cuivert Discharge (cfs)	Headwater Elevation (ft)	Iniet Control Depth (fi)	Outiet   Control   Depth (fi)	Fiow Type	Normal Depth (fit)	Critical Dapth (ft)	Outhet Depth (ft)	Tailwater Dopth (ft)	Outlet velocity (fits)	Tallwater Velocity ( $\mathrm{f} / \mathrm{s}$ )
228.00	97.07	771.48	9480	7.420	5-52n	12913	3.000	2253	1.952	17.085	23.710
228.00	97.07	771.48	9.480	7.420	5-S2n	1.813	3,000	2.253	1.952	17.085	23.710
228.00	97.07	771.48	8.480	7.420	5-52n	1.913	3.000	2,253	1.952	17.085	23.710
228.00	97.07	771.48	9.480	7.420	5-52n	1.813	3.000	2.253	1.952	17.085	23.710
228.00	97.07	771.46	9.480	7.420	5.52 n	4.913	3.000	2.253	1.952	17.085	23.710
228.00	97.07	77148	9.460	7.420	5-S2n	1813	3.000	2.253	1952	17.085	23.710
228,00	97.07	771.48	9480	7.420	5-S2n	1.913	3.000	2.253	1.952	17.085	23.710
228.00	97.07	771.48	9480	7.420	5-52n	1.913	3.000	2253	4.952	17.085	23.710
228.00	97.07	771.48	9.480	7.420	5-82n	1.913	3000	2,253	1952	17.085	23.740
228.00	97.07	771.48	9.480	7.420	5-52n	1.513	3000	2,253	1.952	17.085	23.710
228.00	97.07	771.48	9480	7.420	5-32n	1913	3000	2.253	1.952	17.085	23.710



Intet Elevation (invert): $762.00 \mathrm{ft}, \quad$ Outlet Elevation (invert): 760.00 ft
Culvert Lengith: $60.03 \mathrm{ft}, \quad$ Culvert Slope: 0.0333


Table 8-Summary of Culvert Flows at Crossing: JN06-N14

Headwater Elevation   (ft)	Total Discharge (cfs)	Culvert 1 Discharge   (cfs)	Roadway Discharge   (cfs)	Iterations
771.48	228.00	97.07	130.89	11
771.48	228.00	97.07	130.89	2
771.48	228.00	97.07	130.89	2
771.48	228.00	97.07	130.89	2
771.48	228.00	97.07	130.89	2
771.48	228.00	97.07	130.89	2
771.48	228.00	97.07	130.89	2
771.48	228.00	97.07	130.89	2
771.48	228.00	97.07	130.89	2
771.48	228.00	97.07	130.89	2
771.48	228.00	97.07	130.89	2
770.00	87.19	87.19	0.00	Overtopping

## Water Surface Profile Plot for Culvert: Culvert 1

Crossing - JN13, Design Discharge - 143.0 cfs Culvert - Culvert 1, Cukert Discharge - 92.6 cfs


## Site Data - Culvert 1

Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 767.00 ft
Outlet Station: 60.00 ft
Outiet Elevation: 766.00 ft
Number of Barrels: 1

## Culvert Data Summary - Culvert 1

Barrel Shape: Circular
Barrel Diameter: 3.00 ft
Barrel Material: Smooth HDPE
Embedment: 0.00 in
Barrel Manning's n: 0.0120
Inlet Type: Conventional Inlet Edge Condition: Square Edge with Headwall Inlet Depression: None

Table 9 - Culvert Summary Table: Culvert 1

Total Discharge (efs)	Culvert Discharge (cfs)	Headwater Elevation ( f )	Intet Control Depth (fi)	Outlet   Control Depth (ft)	Flow Type	Nomal Depth (fl)	Critical Depth ( f )	Outle Depth (ft)	Tailwater Depth (ti)	Outlei Velocity (flis)	Tallwater Velocity ( 4 ( $/ \mathrm{s}$ )
143:00	\$2.62	775.81	9807	6.979	5. $52 n$	2.446	3.000	2.587	1458	14.337	23.424
143.00	82,62	775.81	8,807	6.978	5-S2n	2,446	3.000	2.587	1.458	14.337	23.424
143.00	92.62	775.81	8.807	6.979	5-S2n	2.446	3.000	2.587	1.458	14:337	23.424
143:00	92.62	775:81	8,807	6,979	5-52n	2.446	3.000	2.587	f. 456	14.337	23.424
143.00	92.62	775.84	B.807	6.979	5-S2n	2.446	3.000	2.587	7.468	14,337	23.424
143.00	92.62	775:81	8,807	6,979	5-S2n	2.446	3000	2.587	1.458	14:337	23.424
143:00	92.62	775:81	8.807	6.979	5-S2n	2.446	3.000	2.587	1:458	14,337	23.424
143:00	82.62	775.81	8.807	6.979	5-52n	2.446	3.000	2.587	1.458	14.337	23.424
143,00	92.62	775.81	8.807	6.979	5-S2n	2.446	3,000	2,587	1.456	14.337	23.424
14300	92.62	775.81	8.807	6.979	5-52n	2,446	3.000	2.587	1.458	14,337	23.424
143.00	92.62	775.81	8.807	6.979	5-S2n	2.446	3.000	2,587	1.458	14337	23.424

Inlet Elevation (invert); $767.00 \mathrm{ft} \quad$ Outlet Elevation (invert): 766.00 ft
Culvert Length: 60.01 ft . Culvert Slope: 0.0 .167


Table 10 - Summary of Cuivert Flows at Crossing: JN13

Headwater Elevation   (ft)	Total Discharge (cfs)	Culvert 1 Discharge   (cis)	Roadway Discharge   (cis)	Iterations
775.81	143.00	92.62	50.35	12
775.81	143.00	92.62	50.35	2
775.81	143.00	92.62	50.35	2
775.81	143.00	92.62	50.35	2
775.81	143.00	92.62	50.35	2
775.81	143.00	92.62	50.35	2
775.81	143.00	92.62	50.35	2
775.81	143.00	92.62	50.35	2
775.81	143.00	92.62	50.35	2
775.81	143.00	92.62	50.35	2
775.81	143.00	92.62	50.35	2
775.00	87.02	87.02	0.00	0
				2

## APPENDIX K

## LCRS ANALYSES

## APPENDIX K. 1 <br> APPENDIX K. 2 <br> LCRS CAPACITY <br> GEOTEXTILE FILTER CAPACITY

APPENDIX K. 1
LCRS CAPACITY

Subject:
Kettleman Hills Facility
Landfill Unit B-18
LCRS Calculations


Made by:	RJS
Checked by:	RH
Reviewed by:	SS No.:

## OBJECTIVE:

Evaluate if the existing Landfill B-18 Leachate Collection and Removal System (LCRS) will be sufficient to support the proposed Phase III expansion. Also confirm that the maximum head on the base liner will not exceed 12 inches at any point.

Compare capacity calculations with measured leachate volumes.

## METHOD:

The original LCRS calculations performed by ESI (1990) assumed that $100 \%$ of the rainwater falling on B-18 would infiltrate into the LCRS. This assumption is very conservative and no longer valid as the current B-18 waste mass has significant absorptive capacity and given the climatic conditions much of the rainfall will either runoff and be collected or evaporate.

Perform calculations similar to the Phase I and II LCRS calculations to confirm the transmissivity of the LCRS geocomposite is adequate to convey the potential leachate (equal to rainfall volume) to the sump. Compute the capacity of the LCRS gravel around the sump to convey leachate and compare to potential maximum leachate volumes and historical recorded leachate generation rates.

## CALCULATIONS:

Following the calculation approach used by ESI (see Pages 3 to 5 in Attachment 1), confirm the increased slope length (i.e. greater capture area) is able to convey the annualized average leachate volume (assuming all rainfall becomes leachate). The flow length for the base considers the contributory flow from the upstream slope. Flow paths are shown on Figure 1 in Attachment 2. Based on the calculations the geocomposite is capable of conveying the annual rainfall to the sump.

Sump capacity was determined by Darcy's Law where the capacity $(Q)$ is equal to the permeability ( $k$ ) multiplied by the cross sectional area of the LCRS gravel (A) multiplied by the gradient of the floor (i). The capacity of the B-18 sump perimeter is approximately 9,000 gallons per day for each sump. Historic records (see Figure 2 ) indicate that the average flow is approximately 200 gallons per day maximum (Sump IB) with a maximum measured generation rate of approximately 6,000 gallons per day. The maximum flow rate resulted from exposing an area of geocomposite during a storm event allowing runoff to enter the LCRS system. The geocomposite is typically covered by protective geomembrane, operations layer and waste which limit the flow. Based on the observation the LCRS system is capable of conveying much larger volumes than typically encountered.

## CONCLUSIONS/RESULTS:

The LCRS system is capable of conveying the expected leachate volumes. The geocomposite is shown to be capable of conveying the leachate to the sump without exceeding 12 inches of head on the liner. The original calculations are shown in Attachment 1, and the updated calculations are shown in Attachment 2.



## Attachment 1

## Original LCRS Calculations

ENVIRONMENTAL SOLUTIONS, INC.
By Ofic Date $8-13-70$ Subject $\qquad$ LAMDFILL B-18 LCRS EVALUA 1001

Sheet No. $\qquad$ 1 of 22 Chkd. By Gsc Date

$\qquad$ Proj. No. $\qquad$ 80.977

TABCE OF CONTEHT

DENG CRTERA
$2 / 23$
$3 / 23$
$10 / 23$
$13 / 23$
$16 / 23$
GEOTEXTLE DUNCTORE RESITANGE COHCLUSNON
$18 / 23$
$19 / 23$
22
23
24
25

26
27
28
29

ENVIRONMENTAL SOLUTIONS, INC.
$\qquad$
Chkd. By Gre Date $\qquad$ Subject $\qquad$ LANDFILC $B+8$ LCES

Sheet No. 2 of 23
Proj. No. 89.977 Evaloatiog $\qquad$
PURPOSE: TO EUALOUFE THE CAPMCITY OF THE LCR

SySTEM. AND THE GEOTEXTLE DESIGA IN THE PRINEYYLRS.
7
7 CRTERLA : THE LCR SYSTEM APPCITY SHOULO BE
: SOFFLCENT TO HAHDLE THE FLOW OF
"1. LEACHOTE GENERATEO BY ANNDAC prec.pitafion.


$$
\text { RETDLACE }=1 \text { GEOSYITHETC DESIGN GUIDANCE FOR HAEARO: }
$$

WASTE LANDFLL CELL AND SUFPAE MPOMDEAS
EPA/600/2-37/097 By SOL \& MAFERL EXGOESS SWC

2 ENGINEETNG RERORT, LANDFLL B-19, THETE II \& II

3. SOL MECHAN LbHES \& WHTHEN
4. DESIGN WITH GEOSYNTHETICS KOERRER 1986

ENVIRONMENTAL SOLUTIONS, INC.
By $7 \underset{\sim}{x}$ Date 7-30-90 Subject $\qquad$ LANDFlll B. Sheet No. 3 of 23
Chkd. By Gse Date $C / 1 ; / 2$ 6/13/2 EUALUATION Proj. No. 89.07
$\qquad$
1
LCR SYSTE CADACITY FOR ANHOAL LEACHITE SESE:TOU
 Precipitaton rote is 6.0 .8 is to be conservatie,

ASSUME $100 \%$ OF DEINFALL WILL DEFCOLATE

15 THuTpio

$$
y=\frac{6.48}{365 \times 24 \times 60 \times 60 \times 12}=1.71 \times 10^{-8} \mathrm{tt} / \mathrm{sec}^{2}
$$


20 WDERENDENLY, THE REQURED TRMAMSSIVITY OF A STRP
22 ALONG THE LONGEST. FLOW POTL 14 EACH CELL MAY


ENVIRONMENTAL SOLUTIONS, INC.
By $\qquad$ $2 \pi$ Date 7-30-90 Subject ANDRE B HB, CPS Sheet No. $\qquad$ 4 of 23
Chad. By CSC Date $f / 13 / s_{n}$ Tusicia7me Prof. No. $\qquad$ 60.977
$\qquad$


TEST RENTS FOR A GEOCOMPOATE (GEOEXTLL/GEOMT/GESEVIE)
PUREE BETWEEN TWO LAYERS OF SOILS ARE AS FOLLOW $i \quad \theta$ PET
$0.5 \quad 5 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{sec}$
/ace $\}$
SEE EXHBTZ AT Pressure of 25000 ps

By CONPRRING THE TEST RESULTS USING HIGHER GRADENT
34: FOR THE SLOPES AND LOWER GPOIENT FOR THE BOITOUS


ENVIRONMENTAL SOLUTIONS, INC.
By $\qquad$ 2500 Date $5-11-90$, Subject $\qquad$ $13 \cdot 8$ Sheet No. 5 of 23 Chad. By Cfc Date $8 / 2 / 7 \%$ EVALURTON
$\qquad$ Chad. By LSC Date eft y EVALOKTION Prof. No. -89.977

THE TEST RESUlTS ARE MUCH HIGHER FOR THE SLOPE MORTON BOT ONLY SLIGHTLY HuGER FOR THE BOTTOM PORTION HOWEVER, DIE - REsorption of 100 o/ of the ppeapitation will percolate through the waste is very conservatue.
 Gercouposte system is Expiate To be tight e Then the reporter values berceuse the geocouporite SysteM for tie bis landfill will be plated below a granule. LAyER AND ATOP A HOPE LAYER; WHICH WILL BE LESS restrictive for fluid flow than the sol layers used IN THE TEST. THEREFORE, THE CAPABLY OF TH LCRS IS COMSMERED ADEQUATE. (results are couprreo Do ToEvira 112 )

ENVIRONMENTAL SOLUTIONS, INC.
$\qquad$
Chkd. By

Date 8 -0.90 Subject $\qquad$ Landfic
$\qquad$ LCRS EVOLUATION
$\qquad$ Sheet No. 6 of 23
Proj. No. 89.077

TRR DARCY'S LAW, THE REQURED TRANSMISNVI?,
THE PERMETER
EXPRESED BY

HAY BE EXPRESED BY

$$
Q=k i A
$$

$$
=k i \omega t
$$

$$
\theta_{R E \hat{X}}=\frac{Q}{w i}
$$

WHERE $\omega$ IS THE PERMETER OF THE LEACHE SMMP.
based on the average annual preapitajion of 6.48 in
THE ROH-OFF VOLUME FOR EECH SUup is

IE

$q$	RUN-OFF
fthen	AREA
$17190^{-8}$	9.0
7	12.5
	16.9
	15.1

younde
(cfs)

$$
6.7 \times 10^{-3}
$$

$$
9.2 \times 10^{-3}
$$

$$
1.3 \times 10^{-2}
$$

$$
1.1 \times 10^{-2}
$$

(i) VOLUME $=C$ IA

WHERE $i=\frac{6.48}{365 \times 24}=7.4 \times 10^{-4} \mathrm{k} / \mathrm{HR}$

ENVIRONMENTAL SOLUTIONS, INC.
By TYic Date 8-10.90 Subject LANDFLL B.8
Chkd. ByGSC Date $1 / 13 / 90$ LCRS EVALUATION Sheet No. 7 of 23 Proj. No. 89-977

BASEO ON THE ANNUAL EACHATE GEHEROTON PAFE, TIE PESUNED Trensulsinty for ebch soup is calculated as Fouous:

(1) EXHISIT 2

QTest $\rightarrow$ ODA HMC Os

BESED ON THE ABONE cBlCuLATON, THE GEOCOMpOSTE OPNCITY
ALONE IN PHASE IB sUup whl NOT BE SOTFICIENT To ?
HANRE THE FLOW THEREGRE, HyDRGOLC HESD is
Expecter to buILD up in the granular Dranlee LAYER BOSED ON MINIMOM TECHNOLGY GOLIDBNEE, THE HyORAULC HEAD BULDD UP DTOP THE LCRS CANHOT EXCEED 12" AT ALL TME.

ENVIRONMENTAL SOLUTIONS, INC.
$\qquad$ Subject Sheet No. $\qquad$ 8 of $\qquad$ 23

Chad. By GCC Date $\qquad$ EvALUATION Pros. No. 8977


By 3 Vic Date $\frac{8-14.90}{}$ Subject LAHDFIL B-18
Chkd. By $65 C$ Date. $\qquad$
$\qquad$ 9
Proj. No. 09.977
blgeo on augrge anhure preapatata of bas in, the
MFITRRTON RATE $e$ is

$$
e=\frac{6.48}{365 \times 24 \times 3600}=2.1 \times 10^{-7} \text { in/sec }
$$

0
5
10
11

$$
L=110 \quad d=0.02
$$

12
13
14
15
18
17
18
19
20
21
22
23
24
25

26

27

28
29

ENVIRONMENTAL SOLUTIONS, INC.
By upi Date $\frac{7-30-90}{}$ Subject $\angle A X D F L C L B-18 \quad L C R C \quad$ Sheet No. 10 of 23

$\qquad$
basio on kquenal sidion cecro, the 24 -hour pandal
of A $100^{\circ}$ - yeir stocu is 2.34 in (Eximil 1).
THE SURFELE WATER RON-OFF IN EXCH CELL IS CALNOGED
AS FOLLOW:

$21 \quad$ (1) Vo.vut $=C i A \quad i=\frac{2.34}{24}=0.0910 / H R$
23 BASEO ON THE 24 -HR $100-Y R$ STGRM RUN-OFT VOLOME, THE


36


ENVIRONMENTAL SOLUTIONS, INC.

By $750<$
Chkd. By
$\qquad$ Subject $\qquad$ CANDTICL B-B Sheet No. 11 of 33 Proj. No. 59.97
$\qquad$ $3 / 13 / 6$ $\qquad$
$\qquad$ BOSED ON THE ABOUE CALCULETION, TEE GEOOMROTE ALODE is NOT CAPDBLE TO HANDLE THE SURFACE wopre
5
© FPOM A 100 -yEAR STOPM. THEREFORE, HyOPAVLC HESD is

13
14

$$
e=\frac{2.34}{24 \times 3600}=2.71 \times 10^{-5} \mathrm{~N} / \mathrm{hec}
$$

46


ENVIRONMENTAL SOLUTIONS, INC.
By Tri
Date 7.30 .90 Subject LANDFICL B-18, ICRS
$\qquad$ $8 / 15 / 90$ Date Evacuation Sheet No. 12 of 23 Chkd. By GSC Da Proj. No. $\qquad$ 20.977

BAEED ON A $100-Y R$ STORM in A 24 HUR PERID,
THE HyDRALIC hebo EUYY up in EACH SOM IS
CLCNLTED AS FOLlOW =

(1) L: EF

THE HYDRAULC HEAD BULT UP IN THE SRA日, AK
LAYER WILL BE LES THON 12", TIEREFORE, THE Hypanuc HeAd BUlIT-UP WILL BE LESS THAN THE MTG CMINMUM TECNOLOQY GUIDANLE CRITERIA OF NO HORE THAN 1 FOOT OF LEACHATE ACTMG ON TAE UNER et all time.

## Attachment 2

## Updated LCRS Calculations

LCRS Calculations


Area	$\Delta \mathrm{L}$	i	Required Transmissivity ( $\mathrm{m}^{2} / \mathrm{sec}$ )	Geocomposite transmisivity (m2/sec)	Drainage layer Transmissivity (m2/sec)	Total Transmisivity (m2/sec)	Required Capacity met?
IA Slope	400	0.411	$1.55 \mathrm{E}-06$	$4.00 \mathrm{E}-05$		$4.00 \mathrm{E}-05$	yes
IA Bottom	675	0.024	$4.51 \mathrm{E}-05$	$5.00 \mathrm{E}-05$	$3.05 \mathrm{E}-05$	$8.05 \mathrm{E}-05$	yes
IB Slope	425	0.363	1.86E-06	$4.00 \mathrm{E}-05$		$4.00 \mathrm{E}-05$	yes
IB Bottom	1100	0.026	$6.78 \mathrm{E}-05$	$5.00 \mathrm{E}-05$	3.05E-05	$8.05 \mathrm{E}-05$	yes
IIA Slope	275	0.354	$1.24 \mathrm{E}-06$	4.00E-05		$4.00 \mathrm{E}-05$	yes
IIA Bottom	850	0.026	5.18E-05	$5.00 \mathrm{E}-05$	3.05E-05	$8.05 \mathrm{E}-05$	yes
Ili Slope	450	0.406	$1.76 \mathrm{E}-06$	$4.00 \mathrm{E}-05$		4.00E-05	yes
IIB Bottom	875	0.028	$5.06 \mathrm{E}-05$	$5.00 \mathrm{E}-05$	3.05E-05	$8.05 \mathrm{E}-05$	yes

[^33]6.48 in
$1.71 \mathrm{E}-08 \mathrm{ft} / \mathrm{sec} / \mathrm{ft}^{2}$
Adequacy of system along perimeter of leachate sump

APPENDIXK. 2

## GEOTEXTLLE FILTER CAPACITY

ENVIRONMENTAL SOLUTIONS, INC.
By inis
Date $8+10.90$ Subject Lnadi: B4 L LPS Sheet No. $\qquad$ 13 of 23 Chkd. By GSC Date $f / 13 / 70$ Evaluntion Proj. No. $\qquad$ 89.91 - .

FIER - RETENTON
capeoty
 GOOTEXILE PLACD IN THE SECONPRY LCRS BECAUSE

INSOTHIEUT WATER FLOW IS EXPETED iN THE LCPS TOCAOS
Soll prptices moverent. FOR the DPuAMy lecs,


bytr wogrial wiel be nox. chesive, it is Assuned
THAT THE GHEN SIE CHARACTERSTICS APE SMMAR
to THE OH-SIE SANDSTONE MATERILSS.
THE CALCUATON IS NOT REQURED FOR TE SIOPE POMEX
OF THE LANDFLL BECOUSE THE POTENTOE FOR TYDRANLC HERD BULT-UP ON SLOPE is UNLIKELY.

CRTTERION 1- RETEUTION CADACIIY
FOR SOIL LESS THAN $50 \%$ PASSANG 200 SIEUE
 sneve
AOS OF FAGRCC (TREVIRA 1155 ) = $120-170730$ O< (TREVIRA 1120 ) $=70-100>30$ OK REF $=$ Ex+11317 4

ENVIRONMENTAL SOLUTIONS, INC.
$\qquad$ Subject Sheet No. $\qquad$ 14 of 23

- $\rightarrow$

Chkd. By GSC Date $8 / 13 / 9$ Evacur an
$\qquad$ 89.917


$$
<j=\frac{O_{95}}{d_{65}}<2 \text { FLOWMG THOUG+1 CRITERON (REF } 1 \text { EQ: i) }
$$

$$
\langle T\rangle \frac{0.5}{0 . G}>2 \text { CLOGGING CRITERION (REF1 EQ. 3.:2) }
$$

FOR THE OANDCTOUE METERESS, (EXHIBITS), TE AVEREE
des ${ }^{2}$ dis is 0.46 wnA AND 0.075 OR LESS, PESTLTULY;
AMD O95, FOR TREVIRA 1155 RANGES FPOM 0.125 ~ 0.083.
THEPEFORE

$$
\frac{0.5}{d e 5}=\frac{0.125}{0.46}=0.27<2 \quad 0 \mathrm{~K}
$$

$21 \quad \frac{0.5}{d .5}=\frac{0.086}{<0.075}=1.17$ OR GREATER $\operatorname{SHOCLO}, 2$


ENVIRONMENTAL SOLUTIONS, INC.

By 7 Pi
Chad. By Ge Date $\qquad$ Date $\qquad$ Subject $\qquad$ LANDFUC B.8 LCRS EvetueTion

Sheet No. $\qquad$ 15 of
Prof. No. $\qquad$ 89.977
$\qquad$ . $\qquad$
$\qquad$

ASSUME THE SANDSTONE HATERUL WILL BECOME DENSE (DY >BOO)
AFTER WATER PERCOLATING THOUGH TUE LAYER ( JETING EFFET).
COEFFICiENT OF UNIFORMITY OF THE MATERIAL

$$
C V: \frac{d_{60}}{d_{10}} 73 \quad \begin{array}{lll}
d_{60}=0.25-0.28 \mathrm{mn} & C_{V}=\frac{0.39}{0.06}=4.7
\end{array}
$$


20 SAndSTONE IS LOOSE, THOS

$$
23 \quad \frac{9 d_{50}}{c U}=\frac{9 \times 0.21}{4.7}=0.38>095 \quad \text { OK. }
$$

ENVIRONMENTAL SOLUTIONS, INC.
By 3 fic
Date $\qquad$ $8-13-90$ Subject $\qquad$ LANDFILC B-18

Sheet No. 16 of 23
Chkd. By 65
Date $\qquad$ $6 / 12 / 20$ Suble LeR EveUuTON

Proj. No. $\qquad$ 89.977

PERUEASLliy
THE perverbiuty of tit geofextile shoutd be GRESTER THEN THE pERMESGIUTy OF THE OPERATON LAYER BASED ON GPBN SUE CHCPCTENSTCS OF THE OPERTON
 BE ETHOTSO AS:

$$
\begin{array}{rlrl}
k_{\text {SOLL }} & =C D_{10}^{2} & C=100 \text { (REF } 3 & E Q 19.9) \\
& =100 \times 0.006^{2} & & D_{10}<0.006 \mathrm{~cm} \\
& =0.00 \geqslant 6 \mathrm{~cm} / \mathrm{Ac} & \text { EX+1131T } 3
\end{array}
$$

$\therefore k_{\text {soin }}<0.0036 \mathrm{~cm} / \mathrm{Ace}<k$ faluc. (TREVIRA $1125=0.50 \mathrm{cmpus}$

PUNCTURE RESISTANC
DSSOD ON REFERENLE 4. TAL TENSALE FORCE IN
The geotextice $T$ MAY be estimated AS

$$
T=\pi\left(d_{i} d_{a}\right) p^{\prime} s^{\prime}
$$

WHERE
di: INTILL AVERAGE VOID DIAUETER OF F'E GEOTETME $=0.21 \mathrm{~mm}=0.008$ in (TREMRA 1120) (EXH:ST

$d_{a}=$ AUERAGE DAMETEK OF TIE MATERAL:USE $d_{50}=0.2 \mathrm{~m}$ $=0.008 \mathrm{in}$
29

ENVIRONMENTAL SOLUTIONS, INC.
By $\frac{2 \pi i}{1}$ Date_8-13.90 Subject LAN0fill B-18
Shkd. By gre Date $\qquad$ $8 / 19 / 90$ $\qquad$ EUALOETICN

Sheet No. $\qquad$ 17 of 23 Proj. No. 89.977

$$
P^{\prime}=\text { OUERBURDERN } \quad \text { PPESSURE }=210 \times 115=168 \mathrm{pSi}
$$

$$
S^{\prime}=\text { SHAPE FACTOR USE } 1 \text { FOR SHARP OBJECT (COMRRNTE) }
$$

$$
\therefore \quad T=\pi \times 0.008 \times 0.008 \times 168 \times 1=0.03 \mathrm{lb}
$$

${ }^{10}$ PUNCTURE STRENGTA TOR TFEVES $1120=1001 \mathrm{~b} \geqslant 0.031 \mathrm{~B}$ G.K.
 LBYER

18
$20 \quad \therefore \quad T=T \times 0.008 \times 0.25 \times 168 \times 0.6=0.6 \mathrm{lb} \ll 100 \mathrm{~b}$

23 RETENTON CAPACITYAND POTENTLL FOR CLOGGNG AND EXCS'E
${ }_{25} 25$ LUS OF FINES ARE NO CONCERN FOR THE GESTETLE
UNDER TUE GRAWULR DFDIHAGE LAYER BEEAOSE OF
LACK OF FINES IL THE GPLDDTION OF THE GPANULAR
MKTERIMLS SEE SPEUTMAON 2.03 , LESS THN $5 \%$
of THE NETENS WUL TESS \& 100 SIEVJ)
34

$$
\begin{aligned}
& S^{\prime}=0.6 \quad \text { choser stovz (ry 2) } \\
& d_{a}=0.25 \quad \text { (RUSHTO STOU } \quad \text { (PEF 2) }
\end{aligned}
$$

ENVIRONMENTAL SOLUTIONS, INC.
$\qquad$ Date $B-13-90$ Subject $\qquad$ CANDFIL E. 18 Sheet No. 18 of 23 Chkd. By GSC Date $8 / 13 / 90$ LCRS EVALUATIOJ Proj. No. 80.977

CONCLUSION

THE CAPDCITY OF THE LCRS AND THE GEOFXTILE DESGN IN THE TRIMARY LCRS HAVE BEEN EUAUNTEO.

BASED GN THE CALCULSTON DERFORUED, THE LCRS

LEACHETE FLOW THT UAY GENEHRED DURING LANDILC operation. the calculaton also hotcetel tent (TREVIR 1125 )
THE GEOTETLE USEO IN THE PRIMARY LLPS
HAS NET THE CRTERLE FOR PEFENTDN, CLOQGMA,
AND PREVENTION of EXCESUE LOSS of PINES.

TABLE 3. HYDRAULIC TRANSMISSIVITY ( $M^{2} /$ SEC $X 10^{3}$ )

## SOIL/TREYIRA $120 / P N 3000$ GEONET/TREVIRA $1120 /$ SOIL

 By FLUID SYSTEM, IHC, CIHCINNETI, OH 10.




SYMBOL	TEST PIT   TYPE	DEPTH (ft)	LIQUID   LIMIT (\%)	PLASTICITY   INDEX (\%)	STRATIGRAPHIC   UNIT	MATERIAL TYPE	USCS
$+\cdots++$	TP-1, B-1	7.0	-	-	$18-9$	Sandstone	SM
$\Delta \cdots-\Delta$	TP-42, B-1	6.0	--	$\cdots$	$18-9$	Sandstone	SM



COBBLES	GRAVEL		SAND			SLLT AND CLAY FRACTION
	coarse	fine	coarse	medium	fine	

FIGURE D. 2.7

## GRAIN SIZE DISTRIBUTION

 STRATIGRAPHIC UNIT 18-9LANDFILL UNIT B-18
KETTLEMAN HILLS FACILITY
ENVIRONMENTAL SOLUTIONS, INC.

SYMBOL	BORING	DEPTH (ft.)	LIQUID   LIMIT (\%)	PLASTICITY   INDEX (\%)	STRATIGRAPHIC   UNIT	MATERIAL TYPE	USCS
$0-0$	L18-B	$37.0-39.5$	-	-	$18-11$	Sandstone	SM



COBBLES	GRAVEL		SAND			SILT AND CLAY FRACTION
	coarse	fine	coarse	medium	fine	

Ex+181T 5
$23 / 23$


## APPENDIX L

## RISER PIPE ANALYSES

## Kettleman Hills Facility - Landfill Unit B-18 <br> RISER PIPES

Project No.: 083-91887	Made By: EH
Date: 02-23-2010 (Revision 1)	Checked By: RH
Sheet: 1 of 2	Reviewed By: SS

## Objectives:

1. Evaluate the ability of the existing vertical LCRS riser pipes and underlying clay liner to withstand loading from an additional 90 vertical feet of waste placed above the original top of waste grade to the proposed Phase III top of waste grade.
2. Evaluate the ability of the existing sideslope riser pipes to withstand loading from an additional 90 vertical feet of waste placed above the original top of waste grade to the proposed Phase III top of waste grade.

## Given:

The currently-permitted maximum waste height in the vicinity of the vertical and sideslope riser pipes is approximately 210 feet. The proposed Phase III expansion will increase this maximum waste height to approximately 300 feet (i.e., an approximately 90 -foot increase). The as-built locations and configurations of the existing piping as well as the pipe materials and properties are shown on the Phases I and II construction drawings in Appendix A.1. The construction drawings in Appendix A. 2 show the proposed final waste configuration.

## Assumptions and Methodology:

The assumptions and methodology used to evaluate the existing vertical and sideslope riser pipes follows that of ESI (1990) for the original design of B-18. Golder has updated ESI's previous calculations to reflect the increased waste height (the methods utilized in the calculations are taken directly from the 1990 ESI calculations).

## Summary of Results:

The calculations for the riser pipes are presented in Attachment A. The vertical riser pipe calculations are shown on pages 1 thru 11 while the sideslope riser pipe calculations are shown on pages 12 thru 17. The calculations indicate the following:

1. Vertical niser pipes: the existing vertical riser pipes and underlying clay liner are anticipated to have sufficient strength to resist the additional pressures from 90 extra feet of waste.
2. Sideslope riser pipes: the existing 8-inch-diameter steel riser pipes are anticipated to deflect a maximum of approximately $0.9 \%$ of their diameter under the full height of waste ( 300 feet), which is an acceptable deflection. As in the original design (ESI, 1990), the 8 -inch-diameter HDPE riser pipes are anticipated to deflect more than $20 \%$ of their diameter (i.e., $21 \%$ to $34 \%$ ). This amount of deflection exceeds the manufacturer's recommended maximum, but since the HDPE pipe is a backup to the steel pipe, it is considered acceptable for the sideslope riser application.
3. The proposed design provides for a transition from carbon steel pipe to a HDPE pipe. During the B-18 Phases I and II construction in the early 1990s, steel pipes were used due to the anticipated high loads and relatively new use of HPDE pipe. Since this time, however,

	Kettleman Hills Facility - Landfill Unit B-18 RISER PIPES	
	Project No.: 083-91887	Made By: EH
	Date: 02-23-2010 (Revision 1)	Checked By: RH
	Sheet: 2 of 2	Reviewed By: SS

HDPE pipes are commonly used for LCRS riser pipes, including Landfill B-17 and Landfill B19 Phase 1A at the Kettleman Hills Facility. Based on Golder's experience, there is little movement of the LCRS riser pipes once these pipes have been confined by soil cover/operations layer. This would be particularly true for the vadose and secondary riser pipes which are placed within excavated trenches and are below the weakest liner interface. For the primary riser pipe, movement of the waste could result in deflection of the LCRS riser. However, the movement of the waste (due to settlement) would primarily be down slope. Down slope movement would not result in significant shear on the LCRS riser; in fact the slip connection between the HDPE and steel pipes would allow for stress release if compression forces develop due to waste settlement. Additionally, it should be noted that the magnitude of settlement for the Class I waste in B-18 is relatively small compared with that of Class III municipal solid wastes. In summary, Golder believes that the riser pipes will not be subjected to shear forces that could damage the pipes and, therefore, the pipes will perform as designed. In the unlikely event of a failure at the steel/HDPE transition, the design includes redundant primary and secondary riser pipe systems which do not include the transition from steel to HDPE.

## Reference:

Environmental Solutions Inc. (ESI), "Engineering and Design Report, Landfill Unit B-18, Phases I and II and Final Closure, Kettleman Hills Facility," August 1990.

## Attachment A

Riser Pipe Calculations

ENVIRONMENTAL SOLUTIONS, INC.
$\qquad$

By Gee
Date 7/27/90 Subject $\qquad$ BEARING CAPACITY VERTICAL RISER FOR
Chad. By $\frac{\text { Bi }}{}$ Date $1 / 15190$
Modified By: GZRTICAL ROO $5 / 18 / 08$ KETTLEMAN LANDFILL bearing capacity of the clay linear and design the riser base dimension

- RESULTS FROM UV TEST OF MODIFIED

9 PROCTOR FOR CLAYSTONE
$10 \quad$ INDICATE $\quad \phi=8^{\circ} \quad C=3600 \beta 5 F$ USE $C=3600$ pSF for design

Sheet No. 3

Prog. No. $89-47$
conipestion top of mate -
WASTE $r=115 \mathrm{pcf}$

ENVIRONMENTAL SOLUTIONS, INC. ${ }_{2}^{\text {Attachment }} 26$ By GSC Date7/27/fa Subject BEARNG CAPALITY Sheet No. \& of 29 This. By api Date y15190 VERTICAL RISER BASE Prof. No. $\qquad$ Modified By: Golden 5/18/08

Use factor of safety of 2.0
Allovadole bearing pressure at top of imper liner

$$
=\frac{32.6}{2}=16.3 \mathrm{ksf}
$$

Assume use $8 \times 8$ riser base, and $30^{\circ}$ Tranfer of load from the base at top of gravel to top of clay liner

$$
\begin{aligned}
\text { Area at top of cloy linen } & =(8+8)^{2}-\left(\frac{2+8}{2}\right)^{2} \pi \\
& =256-78.5 \\
& =177.5
\end{aligned}
$$

Top load at base include weight of base

Plos.owne exerted on top of upper clay liner

$$
=\frac{1844^{302.5}}{177.5}=1.7<16.3 \mathrm{kSF}
$$ OK.

For worst case if clay strength be $c=2000 \mathrm{pst}$

$$
\begin{aligned}
& q_{n}=9 \times 2000+(115-62.4) 2 \\
& =18000+105 \\
& =18105 \mathrm{psf} \text { or } 18.1 \mathrm{ksF} \\
& \text { Inelowable }=\frac{18.1}{2}=\frac{9.1 \mathrm{kif}}{1.7} \\
& \text { Applied pressure }=\text { bo kif }<9.1 \text { kif O.K. }
\end{aligned}
$$

ENVIRONMENTAL SOLUTIONS, INC.
By GSC Date $7 / 27 / 80$ Subject BEARING CAPACITY
This. By 1 pi Date $8 / 15190$
Modified By: Golden 5/18/08

For $6 \times 6$ riser brese

$$
\begin{aligned}
\text { Area at top clay liner } & =(6+8)^{2}-\left(\frac{2+8}{2}\right)^{2} \pi \\
& =196-78.5 \\
& =117.5 \mathrm{ft}^{2} \frac{\text { Golder }}{2.2}
\end{aligned}
$$

Pressure exerted on clay liner $=\frac{184.4}{117.5}=1.502 \mathrm{kSF}<9.1 \mathrm{ksF}$

- Check consolidation settlement

The weight of fill above the cloy liner

$$
\begin{aligned}
& =300 \times 115+7 \times 130 \\
& =35410 \mathrm{PSF}(35.4 \mathrm{kSF})
\end{aligned}
$$

Additional pressure die to riser $=1.56 \mathrm{ksf}$


An additional selllemert of 0.5 percent may be expected

$$
\therefore 0.5 \% \times 8^{\prime}=0.04 \text { inch (at base of riser) }
$$

ENVIRONMENTAL SOLUTIONS, INC. ${ }^{\text {Attachment }}$
$\qquad$ Thad. By 7 Pi Date $8 / 5 / 90$ KETTLEMAN LANDFILL Sheet No. $b^{4}$ of 29
By GSC Date 7/L2/90 Subject VEKTICAL RISER Proj. No. $\qquad$ Modified By: (50 )der) 5/18/08

- Check settlement in the gravel layer belons the back of vertical riser

Elastic settlement:
vertical stress at bottom of riser bose

$$
\begin{aligned}
\sigma & =324^{300} \times 0.115+184.4 /\left[6 \times 6-\left(\frac{2}{2}\right)^{2} \pi\right] \quad \text { ks } \\
\text { Code } & =273^{345} 5.6 \\
& =32.40 .1
\end{aligned}
$$

p. 26

Typical value of $E_{S}$ for sand and graval (see orthechaok,
Assume $E_{S}=14$ si Assume $E_{s}=14 \mathrm{ksi}$

$$
=2016 \mathrm{ksf}
$$

$$
\epsilon=\frac{\sigma_{x}}{E}=\frac{32990 .}{2016}=0.816^{0.02}
$$

$$
\begin{aligned}
\therefore \text { Elastin settlement } & =0.02 \\
& =1.07^{\prime}\left(0.139^{\prime}\right) \\
& =1.37 \text { inches }
\end{aligned}
$$

Golden

CONCLUSIONS:
1). WITH A G'xG' VERTICAL RISER EASE, THE PRESURE EXERTED ON CLAY LINER BENEATH THE EASE 15 ABOUT
GOllor) FKKSF. THIS COMPARES WITH A ULTIMATE EEARING CAPACITY OF AT LEAST I8.1 NSF FOR THE CLAY LINER. $T$ PROVIDES A FACTOR OF SAFETY OF AT LEAST H 7 AGAINST BEARING FAILURE FOR THE RISER BASE Golden
2.) 17 IS ANTICIPATED THAT THERE WILL BE A DIFFERENTAL MOVEMENT BETWEEN THE RISER BASE AND THE BOTTOM STEEL PIPE INSERT. THE MOVEMENT IS EXPECTED TO BE ABOUT LS INCHES DUE TO THE ELASTIC DEFORMATION OF THE GARVEL LAYER BENEATH THE BASE.

Golder
Associates


TO BE COMSEDVATTUG ITTS ASSMMED THAT DOWNORAG FORCE DUE TO WASTE
 BETMEEN TE TUS PEPES WSENG A AREA OF $10 \%$ GF THE STEL PTHE, THE DOWNDRAG FORCE IS:

$$
\begin{aligned}
& F_{8}=\int_{H_{2}}\left(p k_{0} \operatorname{Han}_{1}\right) z d z
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(1-\sin 27) \cdot 15 \cdot(10+300)}{2}+(50-10 \%-\pi \cdot 2 \quad \operatorname{con} 6 d \theta / 0 \\
& =2 \operatorname{tg} 5 \mathrm{kt}
\end{aligned}
$$

WETGHT DF STEGK DEE SEHGO

$$
u_{p}=1719+10=359 k p s
$$

WEFAHT OF HORE DEPE

$$
W_{M}=15.5 \cdot 210=3.3 k p
$$

THTAL F-WCE

$$
F=25 s+1+35-9+3+3-295 \operatorname{cip}
$$

A $6 \times 6 \times 15$ CONLEELE, $A$ USED

Colder
Associates

SubjEct	Attachment $A-B-18$	Riser Pipes
Job No.   Ret. $083-91887$	Made by   Checked   Reviewed	RH

CHECK ON ORIGINAL DESIGN OF THE RISER FOUNDATON

Be由RTUG PLAT FOR THESTEL PIE
CIRCUMEERNCE DR UEPTECAL RISER

$$
\begin{aligned}
& C=(24-0.697) x \pi-73.24 \operatorname{in} \\
& C O N T A C T A 2 E A=13.24 \cdot 0.617=50.3 \operatorname{in}^{2}
\end{aligned}
$$

WEIGH DE DONE + DOWNDRAE $=359+255.8=2917$ kP
BEARING PRESsURE AT TEL PLATE $=\frac{2917}{7324}-3.91$ kip/ in
BEARING PRESSURE@ CONCRETE $=\frac{295}{\left.\sqrt{26}-19^{2}\right)}=0.401 \mathrm{ksi}$
3000 PS CONCRETE USED
ALLOWABLE BEAR ING PRESSURE $=0.5 \cdot 3000=1500$ PSi $>401$ pSi ALLOWABLE SHEAR STRESS IN BEARING PLATE = 0.4 Fy
USE A36 STEEL Fy= 36 ksi

$$
\left.\therefore F_{v}=0.4 \cdot 36=144 k s\right\rangle \frac{2117}{50.3}=5.8 \mathrm{ksi} \quad 0 k
$$



A $6 \times 6 \times 15$ CONCRETE PAD USED

$$
\begin{aligned}
W & =6 \cdot 6 \cdot 1.5 \cdot 144-\frac{\pi}{4}(1 / 12)^{2} \cdot 1.5 \cdot 144 \\
& =7.35 \mathrm{kips}
\end{aligned}
$$

TOTAL DEAR: $295+7.35=$ 20235 kips


$$
\begin{aligned}
& f_{c}=3000 p s i, f y=60,000 p 5,0 d-1.5-0.25-\left(\frac{05}{2}\right) / m^{2}=1.43^{\prime}-14.7611 \\
& q_{u}=\frac{14 \cdot 302.55}{3403}=1244 \mathrm{ks}
\end{aligned}
$$

CRITICAL SHEAR:
QUE WAY SHEAR

$$
\begin{aligned}
& \left.V_{u}=q_{u} \cdot b \cdot(2,2)-d\right) \\
& =1244 \cdot 6 \cdot(2+1-123) \\
& =73+5 \operatorname{kips} \\
& V_{c}=\phi \cdot 2 \sqrt{f_{c}} b d \\
& =0.85 \cdot 2 \cdot \sqrt{3000} \cdot(6 \cdot 12) \cdot(1.23 \times 12) \\
& =989 \text { Rips }>V_{u} O K
\end{aligned}
$$

TWO-WAY SHEAR

$$
\begin{aligned}
V u & \left.=a_{u} \cdot\left(b^{2}-\frac{(19+d}{12}\right)^{2}\right) \\
& =1244 \cdot\left(6^{2}-\frac{(1+1476)^{2}}{12}\right) \\
& =349 \cdot 4198
\end{aligned}
$$



$$
\begin{aligned}
& V_{t}=Q_{0} \cdot 4 \sqrt{f_{c}+b_{0}} \\
& b_{0}=4(1 /+d)=4 \cdot(19+1476)=135.04 \\
& V_{t}=0.85 \cdot 4 \cdot \sqrt{3000} \cdot 135.04 \cdot 14.76 \\
& =311 \mathrm{kips}>349.4 k i p s
\end{aligned}
$$

度END $N G$
Clictla bending moment:

$$
\begin{aligned}
& M_{u}=\frac{1 u \cdot \frac{(2121-d)^{2}}{2}}{} \\
&=1244 \cdot \frac{(2-21-123)^{2}}{2} \\
&=5.97 \text { f-k1ps }
\end{aligned}
$$

Percutaga of stél RebuIRE

$$
\rho=\frac{1}{m}\left(1-\sqrt{1-\frac{2 m m}{f y}}\right)
$$

wHER $m=\frac{f_{y}}{0.85+2}=\frac{60000}{0.85 \cdot 0.060}=235$

$$
\begin{aligned}
& \quad R_{u}=\frac{M_{u}}{\phi .61^{2}}=\frac{5.99 \cdot 12 \cdot 1000}{9.9 \cdot 12 \cdot 14.76}=30.45 \\
& 0 \cdot \quad=\frac{1}{23.5}\left(1-\sqrt{1-\frac{2 \cdot 235 \cdot 30.45}{60000}}\right) \\
& \quad=0.00051=0.051 \%
\end{aligned}
$$

Golder
Associates


* 5 RE-BAR © $6^{\prime \prime}$ c/ RW USED

$$
\begin{aligned}
& A s=0.62 \mathrm{~m}^{2} \\
& \rho=\frac{0.62}{b 4}=\frac{0.62}{12 \cdot 1426}=0.55 \%>0.051 \% \quad \mathrm{~K}
\end{aligned}
$$

Colder
Associates


LOWER VERTICAL RISER
PRESSURE IT TOP OE PIPE

$$
\begin{aligned}
& \text { OVERBURDEN }=300 \cdot 115=34500 \text { PSf } \\
& \text { BEARING PRESSURE }=4950 \text { P仵 }
\end{aligned}
$$

PRESSURE AT BOTTOM OF PIPE

$$
\begin{aligned}
& \text { OVERBURDEN }=34500+7 \cdot 130=35410 \text { PSF } \\
& \text { BEARING PRESSURE }=101 \mathrm{hPS}
\end{aligned}
$$

LATERAL PRESSURE UNDER AT -REST CONDITION

$$
K_{0}=(1-\sin \phi)=\left(1-\sin 40^{\circ}\right)=0.35
$$

63

$$
\begin{aligned}
& P_{T}=0.35 \cdot(34500+4950)=1308 p s f \\
& P_{0}=0.35 \cdot(35410+111)=12747 p 5
\end{aligned}
$$

RING COMPRESSED AT TOR OF PIPE

$$
\begin{aligned}
P & =\frac{13800}{2} \cdot D \\
& =69040
\end{aligned}
$$

Golder
Associates

$18^{\prime \prime}$ STARNLESS STEEL DIPE $\left(E=28 \times 10^{6} p S i\right)$ USED

NOMTNAL
DIAMETE OD ID $t$ I r I
$18 \quad 12 \quad 16.5 \quad 055 \quad 8.65 \quad 0.035$

$$
\because p=6904 \cdot\left(\frac{11}{2}\right)=10356 \mathrm{e6/6t}=863 \mathrm{ke} / \mathrm{hi}
$$

STRESS IN DIDE WAL $=86 / 0.75=1150.7 \mathrm{pSI}$
A FS of 3 IS REQUIRED TO AVOL COLAPSING OF THE PLPE
THEMAX CRITIGAC PRESSURE IS:

$$
\begin{aligned}
& P_{C R}=\frac{3 E I}{R^{3}}=\frac{24 E I}{R^{2}} \\
& F S=\frac{P_{C R}}{P}=\frac{24 \cdot 28 \times 10^{6} \cdot 0.035}{(8.1452)^{3} \cdot 1100.7}=3.9823 .
\end{aligned}
$$

Golder
Associates


PIPE DEFLETLUN MAY BE DETERMENED BY THE LOWA'S EQUATRN:

$$
\Delta_{x}=\frac{k w r^{3}}{E+0.06 E^{3}} \cdot D_{e}=\text { ppe defletim }
$$

WHERE:

$$
\begin{aligned}
& D e=D E F E C T I O N \text { FACTOR }(=15) \\
& K=\text { BENDENG OEFFECEENT }(=0.1) \\
& W=D E S G N \text { LOAD } \\
& r=\text { MEAN RALIUS OF \&IPE }\left(=\frac{00-2}{2}\right) \\
& E=\text { MODULUS OF PIPE }(=20,000 \text { PSi } \\
& I=\text { MOMENT INPETIA OF IIPE }\left(=\frac{t^{3}}{12}\right) \\
& E^{\prime}=\text { MODULLS OF SOTL REACTION ( }=1000 \text { psi) } \\
& \text { (COARSE GRUVE MODERATELY COMPACTED) }
\end{aligned}
$$

Golder
Associates


DEFECTEUN OR THE SLOPE RESER
(1) 88 DHCTIE IRON PIPG (SCH 80 )

NOMENAL

OD In

$$
0
$$

$$
r \quad I
$$

$8^{4}-8.625165 \quad 0.5 \quad 4.063 \quad 0.010$

$$
E=24 \times 10^{6} \text { FOR DUCTILE IRON PIDE }
$$



TrENCH CONDETEN
WASTE FILL ONE SUBORN

$$
q_{5}=115 \times 300=34500 p s f
$$

PRESQREAT TOLOFPIPES DUE TO WASTE FILL

$$
\begin{aligned}
\sigma_{v_{1}} & =q_{\mu} c_{\mu s} \\
& =q_{f} e^{-2 k_{\mu}(q 1 B d)} \\
& =34500 \cdot e^{-2 \cdot 0.165} \cdot\left(\frac{18-3-8.65}{18}\right) \\
& =30694 p s
\end{aligned}
$$

PRESSURE AT TOR OF PIPE DUE TO TRENCH BACKFILL

$$
\begin{aligned}
\sigma_{V_{2}} & =B_{d} \cdot 8 \cdot C_{q} \\
& =15 \cdot 130 \cdot \frac{1-e^{-2 \cdot 0165 \cdot(6.375 / 18)}}{2 \cdot 0165} \\
& =65 \text { ps 5 }
\end{aligned}
$$

Total RRESSURE AT TOP O PIPE

$$
\sigma_{40}=30694+65=30759195
$$

INCREASE OF STRESS DUE TO VEDTACAC RISER:

$$
\begin{aligned}
& \Delta \sigma=\frac{1837}{13^{2}-\left(\frac{7+11}{1}\right)^{2} \frac{\pi}{4}}=111 \text { psf } \\
& \theta u=30759+111=31070 p s f
\end{aligned}
$$

Golder
Associates


Fonct pcr unt Length of PIPE

$$
\begin{aligned}
& \omega=\sigma_{v}+B_{c} \\
& =31870 \cdot 8.65 / 12 \\
& =2290 \mathrm{lb/ft} \\
& =1909 \text { eb/in } \\
& \therefore \quad q=\frac{K \omega r^{3}}{E I+0.061 E r^{3}} \cdot D_{e} \\
& =\frac{0.1 \times 1909 \times 4.063^{3}}{24.10^{6} \times \frac{03^{3}}{12}+0.061 \times 1000 \times 4.063^{3}}+1.5 \\
& =0.019 \\
& 0 . \frac{64}{D}=\frac{0.079}{8.625}=0.9 \% \ll 5 \% \quad 0 k
\end{aligned}
$$

POSTTUE PROJECTLON

TOTAL VERTLCAL STRESS AT TOP OF PSPE

$$
\sigma_{y}=\sigma_{01}+00=34500+1017=35517
$$

FDRCE PER UNET LENGTH OF PIDE

$$
\begin{aligned}
w & =0.8 c \\
& =35517 \cdot \frac{8655}{12} \\
& =25537 \ln / 8 t \\
& =2127 \mathrm{lb} / 14
\end{aligned}
$$

Colder
Associates

(2)

CHECKEEETTON OF THE Y HP P PIPE (SDR=83), THE HDPEPSPE HAS THE FOCLOWING properties:

IN TRENO CONDItION, THE NOMINAL PRESSURE AT TOP OF PIPE Is $30759 \mathrm{ps}(=2136 \mathrm{psi})$

O FORCE PER UNIT LENGTH O PDPE

$$
\begin{aligned}
& w=30459 \cdot \frac{18}{2}=2210886 / 5 \\
& =1842.3 \quad 04 / 6
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\Delta 4}{D}=\frac{2.4}{6.15}=34 \%
\end{aligned}
$$

THE FOCOUSNQ IS BASE ON THE PROCGWURS GUGGUTEDBY THE Hope I PE MAvupactuned (page $18-2 Z$ )

Golder
Associates

TOTAL EXTERNAL PRESSURE AT TOR OF PIPPE:

$$
P t=213.6 \text { psi (see page } 16)
$$

ERAMENE SHORT+TERM WALL CHLSHING:

$$
S_{A}+\frac{(50 R-1) P}{2}=\frac{(83-1) \times 213.6}{2}=780 \mathrm{p}=1<150085 i
$$

CALCULATE THE CR TTCAL COLLADSE PRESSURE:

$$
P_{c}=\frac{234 \cdot 20000}{83}-81
$$

EAMMUE WAL-BHCKLIN OF THE PIPE SOIL SYSTEM

$$
\text { ASSUME } l_{c}=P_{t}
$$

THE Requrbe soIt Mopucus E' To RESIST BUCKCING IS:

$$
E^{\prime}=\frac{213 \cdot 5^{2}}{264 \cdot 81}=880 \mathrm{psi}
$$

SIDOE THE PIPE IS SURROWNDE BY GRAVAL. TO BE COUSEVATVU A SotL MoDuLus of 1000 psi Is usey:

$$
\text { PI Pe vefectuon }=\% \operatorname{son} \operatorname{STRATN}=\frac{23.6}{1000} \quad 100=21 \% 7 \%
$$

THE DEGECTRO EKEEDS THE MANURATMRERS RECOMMENEO ALNWABLE DEHLETION. SINCE THE HDPE PIPE STSTEM IS A REDUMANT SYTEMM. ITCAN BE REQACE B TRE STECY PIPE ALONGSTE THE HDPE PIPE.
$\qquad$
$\qquad$
$\qquad$

# DRISCOPIPE 8600 

ULTRA-HIGH MOLECULAR WEIGHT HIGH DENSITY POLYETHYLENE

## Dimensions and Pressure Ratings



FOR ADDITIONAL INFORMATION ON PRICES, SIZES OR FUSION EQUPMENT CONTACT:


To Request Additional Product Literature Only: Phone: (214) 783-2690
To Place an Order, Verify the Status of an Order, or Request Contact by a Sales Representative:

Mail: Attn: Customer Service Department
P.O. Box 83-3866

2929 North Central Expressway Suite 100
Richardson, TX, USA 75083
Phone: U.S. Domestic Toll Free 800 527-0662
Texas Toll Free 800 442-3802
TWX: 910-867-4818 • Telecopier: 214 783-2617
PLANT LOCATIONS: Watsonville, CA • Pryor, OK

- Williamstown, KY •

Brownwood, TX • Startex, SC
YOUR LOCAL DISTRIBUTOR
PIPE LINE SALES
23761 Via Calzada
Mission Viejo, CA 92691
$714770-1875$

LOW PRESSURE

NOMANAL． SIZE	DIMENSIONS－INCHES			SDR	NORINAL WEIGHT LES／100＇	JOINT LENGTH FT．	DESIGN pressure PSI． $73.4^{\circ} \mathrm{F}$
	$\begin{gathered} \text { NOMAINAL } \\ 00 \end{gathered}$	APPROK． 10	RAINIMURA WALL				
$3^{*}$	3.500	3.300	0.100	35	46	40	47
$4^{\prime \prime}$	4.500	4.200	0.150	30	88	40	55
＊4＊	4.500	4.026	0.237	19.0	135	40	89
$5{ }^{\prime \prime}$	5.250	4.926	0.162	32.5	111	40	51
＂5＂	5.563	5.047	0.258	21.5	183	40	78
$6^{\prime \prime}$	6．625	6.217	0.204	32.5	176	40.	51
$7{ }^{7}$	7.125	6.687	0.219	32.5	203	40	51
${ }^{*} 7$＂	7.125	6.333	0.398	18	357	40	94
$8^{*}$	8.625	8.095	0.265	32.5	297	40	51
$10^{\circ}$	10.750	10.088	0.331	32.5	483	40	51
${ }^{10} 0^{\prime}$	10.750	10.022	0.364	29.5	507	40	56
＊ $12{ }^{\text {² }}$	12.750	11.940	0.405	31.5	671	40	52
＂74＂	14.000	13.138	0.431	32.5	788	40	51
$18^{*}$	16.000	15.018	0.492	32.5	1023	40	51
＊18＂	18.000	15.000	0.500	32.0	1039	40	52
$18^{*}$	18.000	16.892	0.554	32.5	1298	40	51
20＂	20.000	18.808	0.597	33.5	1554	40	49
$20^{\circ}$	20.000	18.770	0.815	32.5	1599	40	51
$22^{*}$	21.500	20.178	0.862	32.5	1850	40	51
24＊	24.000	22.524	0.738	32.5	2303	40	51
$28^{\prime \prime}$	27．953（1）	28．233	0.860	32.5	3125	40	51
$32^{*}$	31．496（2）	29.558	0.969	32.5	3987	40	51
$36^{\prime \prime}$	36.000	33.784	1.108	32.5	5185	40	51
$42^{*}$	42.000	39.416	1.292	32.5	7054	40	54
$48^{\prime \prime}$	47．24413）	44.338	1.454	32.51	8930	40	51

（1） 710 AAM
（2） 800 H
（3） 1200 时

## 65 psi

NOAMINAL SIZE	OIARENSIONS			SDA	NOPATNAL WEIGHT LBS／400	$\begin{gathered} \text { JOANT } \\ \text { LENGTH } \\ \text { FT. } \end{gathered}$
	$\begin{gathered} \text { NOAANAL } \\ O D \end{gathered}$	APPROX． 10	RANI㲘U銯 WALL			
＂8＂	6.625	6.065	0.280	23．5（71 psi）	238	40
＊8＂	8.625	7.981	0.322	27 （62 psi）	359	40
$10^{\prime \prime}$	10.750	9.900	0.425	25.3	589	40
$20^{\prime \prime}$	20.000	18.418	0.791	25.3	2037	40
$24^{4}$	24，000	22．102	0.949	25.3	2933	40
$28^{\prime \prime}$	$27.953(1)$	25.743	1.905	25.3	3978	40
$36^{\prime \prime}$	36.000	32.572	1.714	21	7877	40
$48^{*}$	47．244（3）	43.610	1.817	26	11068	40

$\begin{array}{ll}\text {（1）} 710 \mathrm{~mm} & \text {（3）} 1200 \mathrm{~mm}\end{array}$

## 110 psi

NOMANAL SIZE	DIAAENSIONS－TNCHES			SDR	$\begin{aligned} & \text { NORAINAL } \\ & \text { WEIGHT } \\ & \text { LBS/100' } \end{aligned}$	$\begin{gathered} \text { COHL OR } \\ \text { JOINT } \\ \text { LENGTH FTI } \end{gathered}$
	NOMINAL 00	$\begin{gathered} A P P A O X \\ \text { ID } \end{gathered}$	MINIAUUA WALL			
＂11／2＂	1.900	1.610	0.145	13.1	34	500
＂2＂	2.375	2.069	0.153	15.5	46	300
＊3＂	3.500	3.068	0.218	16 （907 psi）	95	40
3＂	3.500	3.048	0.226	15.5	99	40
4＂	4.500	3.920	0.290	15.5	164	40
6 6＇	6.625	5.771	0.427	15.5	355	40
$8^{\prime \prime}$	8.625	7.513	0.556	15.5	601	40
$10^{\prime \prime}$	10.750	9.362	0.694	15.5	935	40
$12^{\prime \prime}$	12.750	11.104	0.823	$15.5 \times$	1315	40
14＂	14.000	12.194	0.503	15.5	1584	40
$16^{\prime \prime}$	16.000	13.938	4.032	15.5	2069	40
$18{ }^{\prime \prime}$	18.000	\＄5．678	1.161	15.5	2619	40
22＂	21.500	18.726	1.387	15.5	3737	40
24＊	24.000	20.304	1.548	15.5	4656	40

## 130 psi

NOMINALSIZE	DIMENSIONS－INCHES			SDR	NORANAL WEIGHT LBS／100＇		DESIGN PRESSURE PSI－73．4 ${ }^{\circ} \mathrm{F}$
	$\begin{gathered} \text { NOMINAL } \\ 00 \end{gathered}$	APPROX． 10	minimuna WALL				
$3^{\prime \prime}$	3.500	2.982	0.259	13.5	112	40	130
4 ＂	4.500	3.834	0.333	13.5	186	40	130
$6^{\prime \prime}$	6.625	5.643	0.491	13.5	403	40	130
$8{ }^{\prime \prime}$	8.625	7.347	0.639	13.5	683	40	130

160 psi

NOHHANAL SIZE	DIMENSIONS－INCHES			SDA	NORINAL wElatit LBS／100＇	COIL OR JOINT LENGTH FT
	$\begin{gathered} \text { NORAINAL } \\ O D \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { APPROX. } \\ 10 \\ \hline \end{array}$	NIN：MOUA WALL			
3／4＊	11.050	0.860	0.095	11	12	500
$1 / 1$	1.315	1.075	0.120	11	18	500
11／4 ${ }^{\text {a }}$	1.680	1.348	0.351	11	31	500
$11 / 2^{\prime \prime}$	11.900	1.554	0.173	11	40	500
$2^{\prime \prime}$	2.375	1.943	0.218	11	62	350
$3^{\prime \prime}$	3.500	2.864	0.318	11	135	40
4＂	4.500	3.682	0.409	11	224	40
$5^{\prime \prime}$	5.563	4.551	0.508	11	342	40
$8^{\prime \prime}$	6.625	5.427	0.602	14	485	40
$8{ }^{\prime \prime}$	8.625	7.057	0.784	11	823	40
$10^{\prime \prime}$	10.750	8.796	0.977	11	1278	40.
$12^{\prime \prime}$	12.750	10.432	1.159	$11 \times$	1798：	40
$14^{*}$	14.000	11．454	8.273	11	2186	40
$16^{\prime \prime}$	18.000	13.090	1.455	11	2833 ：	40
$18{ }^{*}$	\＄8．000	14.728	1.838	11	3583 ：	40
$22^{*}$	21.500	17.580	1.955	11	5114	40
$24 *$	24.000	19.636	2.182	11	8372	40

190 psi

NORARAL SIZE	DIMENSIONS－IMCHES			SDR	NOMAMAL WEIGHT LES／100	$\text { COIL OR } \begin{gathered} \text { JOINT } \\ \text { LEMGTHFT } \end{gathered}$
	$\begin{gathered} \text { NORAINAL } \\ \text { OD } \\ \hline \end{gathered}$	$\begin{gathered} \text { APPROX. } \\ 10 \end{gathered}$	Manimuk WALL			
3／4＂	1.050	0.824	0.113	9.33	14.	300
$1{ }^{\prime \prime}$	1.315	1.033	0.141	9.33	221	300
11／4＂	4.680	1.304	0.178	9.33	35	500
$2^{\prime \prime}$	2.375	1.865	0.255	3.33	72	350
$3^{\prime \prime}$	3.500	2.750	0.375	9.33	15\％．	40
$4^{\prime \prime}$	4.500	3.536	0.482	9.33	259	40
$6^{\prime \prime}$	6.625	5.205	0.710	9：33	582.	40

## 220 psi

NOMTANALSIZE	DIMENSIONS－INCHES			SDR	NOMINAL WEIGHT LBS／100＊	JOINT LENGTH FT．
	$\begin{aligned} & \text { NOMAINAL } \\ & O D \\ & \hline \end{aligned}$	$\begin{gathered} \text { APPROK. } \\ \text { ID } \\ \hline \end{gathered}$	MINIMUPA WALL			
（8＇）	8.625	6.547	1.039	8.3	1054	40
$14^{\prime \prime}$	14.000	10.164	1.918	7.3 （254 psif）	3098.	40

STANDARD PACKAGING FOR DRISCOPIPE 8600 INDUSTRIAL PIPE

PIPE DESCAIPTION		BUNDKE		TRUCK LOAD SUNDEED		40＇FT．FLOAT TRUCKLOAD－ LOOSE	
$\begin{gathered} \text { NORINAA } \\ \text { SIZE } \end{gathered}$	O．D．	JOINTS	LINEAR FEET	BUNDUES	LINEAR FEET	JOINTS	LINEAR FEET
$2^{\prime \prime}$	2.375	88	3，520	14	49，280		
$3{ }^{\text {N }}$	3，500	46	1，940	14	25，780：		
$4^{\prime \prime}$	4.500	27	1，080	14	15，120．		
$5^{\prime \prime}$	5.563	15	600	14	8.400		
$6{ }^{*}$	6.625	11	440	14	6，160	，	
$7{ }^{\prime \prime}$	7.125	11	440	12	5，280		
$8{ }^{\text {N }}$	8.625	8	320	12	3，840		
$10^{*}$	10.750					80	3，200
12＊	12.750					59	2，360
$14^{\prime \prime}$	14.000					48	1，920
16 ＂	16.000					35	1，400
$18^{\prime \prime}$	18.000					28	1，120
$20^{\prime \prime}$	20.000					20	800
22＊＊	21.500					18	720
24＊	24.000					16	640
$28^{\prime \prime}$	27.953					10	400
$32^{\prime \prime}$	31.498					9	360
$38^{\prime \prime}$	36.000					6	240
42＊＊	42.000					4	160
$48^{\prime \prime}$	47.244					4	150

NOTE：OBTAIN TRUCK LOAD WEIGAT BY MULTIPLYING LINEAR FEET TIAES PIPE WEIGHT PER FOOT．

NOTE：Approximate ID $=$ Nominal $O D-2 \times$ Fhinimum Wall SDR（Standard Dimension Ratio）$=\mathrm{OD} \div$ Minimum Wal ＊These sizes are also Schedule do dimensions． Pressure rating computed on the basis of the following： $P=\frac{2 S}{S D R-1} @ 73.4^{\circ} \mathrm{F}$

Where：
Op $=$ Nominal OO of Pipe，Inches
$\uparrow=$ Minimum Wall Thickness
$\mathrm{S}=$ Hydrostatic Design Stress， 800 psi
$\mathrm{P}=$ Pressure Rating，psi＠173．4．\％
NOTE：
Approximate $1 \mathrm{D}=\mathrm{Dp}-2 \mathrm{t}$
SDR（Standard Dimension Ratio）$=\mathrm{Dp}$

Burial Design Guidelines: By combining the Burial Design Considerations with the Total External Soil Pressure, calculated by components, the designer can select the proper pipe SDR and specify the soil density to engineer into the pipeline the desired performance of the "pipe-soil" system. The following guidelines are presented for evaluation when designing a specific Driscopipe system. Because various parameters are available, in different situations, the guidelines may be approached in a mixed order or the equations may require mathematical re-arrangement. These guidelines, along with the following notes and sample problem, should be helpful:

1. Calculate by components the total external soil pressure $P$; at the top of the pipe.
2. Examine Short Term Wall Crushing by calculating the compressive stress in the wall of the pipe at the springline
$\begin{array}{ll}S_{A}=\frac{(S D R-1) P_{A}}{2} & \begin{array}{l}\text { (a) If } S_{A}<\end{array}<1500 \text { psi proceed to } \# 3 \\ \text { (b) If } S_{A} & >1500 \text { psi consider a heavier } \\ & \end{array}$
3. Calculate the critical-collapse pressure, $P_{\text {.. }}$ from this formula using the time dependent modulus of elasticity, $E$, rated at the stress level calculated above in $\% 2$ (see Chart 25). $P_{c}=\frac{2.32 E}{\left(S_{D R}\right)^{3}}$
4. Examine Wall-Buckling of the pipe-soil system. By assuming the critical-buckling pressure, $P_{c b}$, equals the pressure at the top of the pipe, $P_{t}$ ( see \#1), and by using the critical pressure, $P_{c}$, calculated in $\# 3$, the basic soil modulus, $E^{\prime}$, required to resist buckling can be calculated by:

$$
E^{\prime}=\frac{\left(P_{c b}\right)^{2}}{64\left(P_{c}\right)}
$$

5. To safeguard against wall buckling, multiply $\mathrm{E}^{\prime}$ by a reasonable safety factor (S.F) equal to or greater than 2.0 . $E_{\text {MIN }}^{\prime}=\left(E^{\prime}\right)(S . F)$
6. Calculate pipe deflection based upon the principle that its deflection will be the same as the backfill surrounding the pipe under the influence of the soil pressure at the top of the pipe:
$\%$ Soil Strain $=\xi_{\mathrm{s}}=\frac{P_{i}}{E^{\prime} \text { Min }} \times 100$
7. Examine allowable Ring Deflection for the specific SDR under consideration to insure the pipe deflection $(\# 6)$ is less than the allowable deflection for that SDR. (See Chart 27).

- If the actual deflection exceeds the permissable value, increase $E^{\prime}$, the soil strength modulus, and re-calculate $\# 6$. The other alternative is to consider another SDR at \#1.

Design by Ring Deflection: Ring deflection is defined as the ratio of the vertical change in diameter to the original diameter. It is often expressed as a percentage. Ring deflection for buried Driscopipe is conservatively the same as (no more than) the vertical compression of the soil envelope around the pipe. Design by ring deflection matches the ability of Driscopipe to accommodate, without structural distress, the vertical compression of the soil enveloping the buried pipeline. Design by ring deflection comprises a calculation of vertical soil strain to insure it will be less than the allowable ring deflection of the pipe. See Chart 27. The tabulation shows that with lower values of SDR, the allowable deflection is less. For installations which require this thicker wall to resist the external soil pressure, actual ring deflection can easily be limited to the tabular values by proper compaction of the backfill around the pipe. The recommended allowable deflection for the various SDR's are:

CHART 27

SDR	ALLOWABLE RING DEFLECTION
32.5	$8.1 \%$
26.0	$6.5 \%$
21.0	$5.2 \%$
19.0	$4.7 \%$
17.0	$4.2 \%$
15.5	$3.9 \%$
13.5	$3.4 \%$
11.0	$2.7 \%$

The allowable ring deflection of polyethylene pipe is a function of the allowable tangential strain in the outer surface of the pipe wall. A conservative limit of $1-1 / 2 \%$ tangential strain in the outer surface of the pipe wall due to vertical deflection of the pipe "ring" by soil compression can be understood by comparing two pipes of the same diarneter but different wall thickness.

Assume each of the pipes is equally deflected under loads required to achieve that result. The tangential surface strain developed in the thickwall pipe is much greater than the surface strain in the thinwall pipe. The tangential strain varies directly as the wall thickness (ie.: distance from the neutral axis) and is proportional to the amount of ring deflection. For a given ring deflection, the thicker the wall, the higher the strain.
Alternately, assume that each of the pipes are subjected to loads such that the tangential surface strain in the pipe's wall surface is equal for both pipes. For equal surface strain, the degree of vertical deflection of the pipe ring is different for the two pipes. Under these circumstances, the degree of deflection would be less for the thickwall pipe and greater for the thinwall pipe.

CHART 25
CHART 26
PHOT OF vR
 EXAMPLE

FIND: E' (@) 2000 PSF AND 80\% DENSITY FORMULA: $E^{\prime}=P \mathrm{Pt} / \mathrm{s}_{\mathrm{s}}$

CALCULATIONS: $E^{\prime}=2000 \mathrm{PSF} / .018=111111 \mathrm{PSF}=771 \mathrm{psi}$
ypes of soll are used for backfill such as camperves for a granular soll. If other from laboratory test dat ackill, such as clay or clay loam, curves should be developed be examined by extrapolating the slope of the curve orsures greater than 4000 psf may at those higher soul pressures Probable error of curves is about half the distance testing between adjacent lines.

NOTE: The short term modulus of elast
NOTE. The short term modulus of elasticity of Driscopipe per ASTM D 638 characteristicly 100,000 psi. Due to the cold flow (creep)
the stress intensity and the titerial, this modulus is dependent upon the stress intensity and the time duration of the applied stress.
$23 / 26$

Spread Foundations	
Foundations Constructed on a Thin Clay Stratum	

When foundations are constructed on a thin surface stratum of clay overlying a relatively rigid stratum, there may be a tendency for the thin layer to be squeezed from beneath the foundation, particularly if the soft layer is of varying thickness. Fig. 4.4 shows a foundation of width $B$ on a thin
 different characteristics and ap-

 thin clay layer is given by the formulae-

For a strip foundation of width $B$ :
$q_{n f}=\left(\frac{B}{2 d}+\pi+1\right) c \quad$ for $\frac{B}{d} \geqslant 2$
$q_{n t}=\left(\frac{B}{3 d}+\pi+1\right) c \quad$ for $\frac{B}{d} \geqslant 6$.

 thick clay layer.

It should also be noted that, with a thin clay layer, plastic deformation resulting from overstressing begins at a lower foundion pressure than with a thick clay layer. For both strip and circular foundations, the maximum shear stress induced in the clay stratum is approximately $\frac{1}{2} q_{n}$.
eccentric loading are column Examples of foundations subject to eccentric loading are column
foundations to tall buildings where wind pressures cause appreciable bending moments at the base of the columns, foundations of stanchions carrying brackets supporting travelling crane girders, and the foundations of retaining walls.
The pressure distribution below eccentrically loaded foundations is assumed to be linear as shown in Fig: 4.5 (a), and the maximum pressure must not exceed the maximum pressure permissible for a centrally loaded foundation. For the pad foundation shown in Fig. 4.5 (a), where the resultant falls within the middle third of the base, Maximum pressure $=q_{\max }=\frac{W}{B L}+\frac{M y}{l}$

snolivannoz azobds-asoty ert 'mit
 procedure-
$\begin{aligned} & \text { Pressure on surface of buried soft stratum }= q \\ & W-p\end{aligned}$

$$
\begin{aligned}
& =\text { peripheral area of stiff clay } \times \text { shear strength of stiff clay } \\
A & =\text { base area of foundation. }
\end{aligned}
$$

The value of $q$ should not exceed the safe bearing capacity of the soft clay. Also, as in all cases of foundations on clay soils, the settlement of the foundation due to consolidation within both the stiff and the soft strata should be considered. The peripheral area of stiff clay is obtained by multiplying the peripheral length of the inadvisable to allow for any stiff clay below foundation level. It is sides to the stiff clay because shrinkage of the soil or of the foundation concrete, or a combination of both, will open up a gap between the soil and the concrete. If the zone of soil affected by seasonal moisture
 'วoukisisas Bu! Therefore, the latter should be calculated only over the thickness of the clay layer below the zone of seasonal moisture changes.

COMPRESSIVE STRESS IN KSF



$26 / 26$
(

## APPENDIX M <br> COVER INFILTRATION ANALYSES

Golder Associates	Kettleman Hills Facility - Landfill Unit B-18 COVER INFILTRATION	
	Project No.: 083-91887	Made By: RH
	Date: 5-15-2008	Checked By: SS
	Sheet: 1 of 2	Reviewed By: SS Uty

## Objective:

To estimate the amount of infilitration into and through the proposed (and permitted) final cover system for Landfill B-18.

## Given:

The proposed B-18 final cover system consists of the following components (from top to bottom):

- 2.5 -foot-thick (minimum) vegetative cover soil;
- $12-\mathrm{oz} /$ sy nonwoven geotextile (transmissivity $\geq 0.03$ gallons/minute/foot);
- 40-mil textured high-density polyethylene (HDPE) geomembrane; and
- 1-foot-thick (minimum) foundation layer soil (permeability $\leq 1 \times 10^{-5} \mathrm{~cm} / \mathrm{sec}$ ).

The proposed B-18 final cover slopes have an inclination of 3.5 H : 1 V (horizontal:vertical), or $28.6 \%$, between benches and an average overall inclination of approximately $4 \mathrm{H}: 1 \mathrm{~V}$, or $25 \%$, including the benches.

## Method:

In May 1995, Golder performed water balance analyses for the cover system of the Combined Closure Area at the Kettleman Hills Facility (KHF). These analyses are also applicable to the proposed B-18 closure cover since: 1) the cover system of the Combined Closure Area is identical to that proposed for B-18, 2) the Combined Closure Area and B-18 are both located at the KHF, and 3) the water balance analyses are conducted on a per-acre basis. The results of Golder's May 1995 water balance analyses were previously presented and approved for closure of the Combined Closure Area. For this evaluation, Golder has followed the same approach useing the Hydrologic Evaluation of Landfill Performance (HELP) Version 3.07 computer program (Schroeder et al., 1997) to perform the water balance modeling of the final cover system. The HELP program performs water balance calculations by taking into account factors such as infiltration, evapotranspiration, runoff, soil moisture storage, and lateral subsurface drainage.

## Assumptions:

The primary assumptions used by Golder in performing the water balance modeling of the Combined Closure Area (1995) and Landfill B-18's final cover system were:

1. The HELP program's default climate data for Fresno, CA were used to model the climate conditions at the KHF. This is considered a conservative assumption since the mean annual rainfall in Fresno is approximately $50 \%$ greater than at the KHF (RUST E\&I, 1995). For comparison Golder also evaluated the cover using the default climate data for Bakersfield, CA which has an mean annual rainfall of 5.72 inches, slightly less than KHF.
2. The permeability of the vegetative cover soil ranges from $1.9 \times 10^{-4} \mathrm{~cm} / \mathrm{sec}$ (Soil Texture 9).
3. The HDPE geomembrane has 0.50 holes per acre resulting from manufacturing flaws (where the hole diameter $=1 \mathrm{~mm}$ ), has 1.0 hole per acre resulting from installation defects (where the hole area $=1 \mathrm{~cm}^{2}$ ), and has an "excellent" placement quality.

Golder Associates		Kettleman Hills Facility - Landfill Unit B-18 COVER INFILTRATION			
		Project No.: 083-91887		Made By: RH	
		Date: 5-15-2008		Checked By: SS	
		Sheet: 2 of 2		Reviewed By: SS	
Calculations and Results:					
The output files from the HELP program runs are contained in Attachment\#1. The results of the water balance calculations performed using the HELP program are summarized in the table below.					
Cover Slope (\%)	Vegetative Soil Perme (cm/s	$\begin{aligned} & \text { Cover } \\ & \text { ability } \\ & \text { c) } \end{aligned}$	Geotextile Permeability ( $\mathrm{cm} / \mathrm{sec}$ )	Avg. /Max. Head on Geomembrane (inches)	Average Infiltration Rate Through Cover (inches/year)
Fresno Climate Data					
25	$1.9 \times 1$		0.25	0.012/3.84	0.00003
Bakersfield Climate Data					
25	$1.9 \times 1$		0.25	0.00/0.03	0.00000

## Conclusions:

Based on the above-tabulated results of the water balance analyses conducted using the HELP Model 3.07, the proposed cover system for B-18 is anticipated to have a maximum head of between 3 and 4 inches on the geomembrane during peak precipitation years (i.e. comparable to Fresno). This amount of head is considered acceptable and is not anticipated to compromise the stability of the final cover system. Furthermore, the average infiltration rate through the geomembrane is anticipated to be approximately 0.00003 inches/year. This infiltration rate is very low and therefore considered acceptable and consistent with prior approvals. As expected, the Bakersfield climate data results in lower head on the geomembrane and less infiltration; however, both provide acceptable results.

## References:

RUST Environment \& Infrastructure (RUST E\&I), "Kettleman Hills Facility, Combined Closure Plan," June 1995.
Schroeder, P.R., Aziz, N.M., Lloyd, C.M., and Zappi, P.A., 1994, "The Hydrologic Evaluation of Landfill Performance (HELP) Model: User's Guide for Version 3," EPA/600/R-94/168a, September 1994, U.S. Environmental Protection Agency Office of Research and Development, Washington, DC.

```
**
```

PRECIPITATION DATA FILE:	$C: \backslash H E L P 3 \backslash P 4 B 18 . D 4$
TEMPERATURE DATA FILE:	$C: \backslash H E L P 3 \backslash T 7 B 18 . D 7$
SOLAR RADIATION DATA FILE:	$C: \backslash H E L P 3 \backslash S R 13 B 18 . D 13$
EVAPOTRANSPIRATION DATA:	$C: \backslash H E L P 3 \backslash E 11 B 18 . D 11$
SOIL AND DESIGN DATA FILE:	$C: \backslash H E L P 3 \backslash S D D 10 B 18 . D 10$
OUTPUT DATA FILE:	$C: \backslash H E L P 3 \backslash B 18$ CC.OUT

TIME: 23:22 DATE: 11/17/2008

TITLE: Landfill B-18 Closure Infiltration Evaluation
(Fresno Climate Data)

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1
--------

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 9
THICKNESS $=30.00$ INCHES POROSITY $=0.5010 \mathrm{VOL} / \mathrm{VOL}$ FIELD CAPACITY $=0.2840 \mathrm{VOL} / \mathrm{VOL}$ WILTING POINT $=0.1350 \mathrm{VOL} / \mathrm{VOL}$ INITIAL SOIL WATER CONTENT $=0.1684 \mathrm{VOL} / \mathrm{VOL}$ EFFECTIVE SAT. HYD. COND. $=0.19 \mathrm{E}-03 \mathrm{CM} / \mathrm{SEC}$
NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 2.36 EOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

## LAYER 2

-...........--

```
TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 0
\begin{tabular}{llll}
THICKNESS & \(=\) & 0.15 INCHES \\
POROSITY & \(=\) & \(0.3510 \mathrm{VOL} / \mathrm{VOL}\) \\
FIELD CAPACITY & \(=\) & \(0.1740 \mathrm{VOL} / \mathrm{VOL}\) \\
WILTING POINT & \(=\) & \(0.1070 \mathrm{VOL} / \mathrm{VOL}\) \\
INITIAL SOIL WATER CONTENT & \(=\) & \(0.1474 \mathrm{VOL} / \mathrm{VOL}\) \\
EFFECTIVE SAT. HYD. COND. & \(=\) & \(0.25000 \mathrm{CM} / \mathrm{SEC}\) \\
SLOPE & \(=25.00 \mathrm{PERCENT}\) \\
DRAINAGE LENGTH & \(=300.0\) & EEET
\end{tabular}
```

LAYER 3
--------

TYPE 4 - FLEXIBLE MEMBRANE LINER
MATERIAL TEXTURE NUMBER 0

THICKNESS	$=$	0.04	INCHES
POROSITY	$=$	0.0000	VOL/VOL
EIELD CAPACITY	$=$	0.0000	VOL/VOL
WIETING POINT	$=$	0.0000	VOL/VOL
INITIAL SOIL WATER CONTENT	$=$	0.0000	VOL/VOL
EFFECTIVE SAT. HYD. COND.	$=$	$1.00 \mathrm{E}-1$	$12 \mathrm{CM} / \mathrm{SEC}$
EML PINHOLE DENSITY	$=$	0.50	HOLES/ACRE
FML INSTALLATION DEFECTS	$=$	1.00	HOLES/ACRE
FML PLACEMENT QUALITY	$=$	$2-\mathrm{EX}$	CELLENT

LAYER 4
----w--..--

TYPE 3 - BARRIER SOIL LINER
MATERIAL TEXTURE NUMBER O

| THICKNESS | $=$ | 24.00 INCHES |
| :--- | :--- | ---: | :--- |
| POROSITY | $=$ | $0.4190 \mathrm{VOL} / \mathrm{VOL}$ |
| FIELD CAPACITY | $=$ | $0.3070 \mathrm{VOL} / \mathrm{VOL}$ |
| WILTING POINT | $=0.1800 \mathrm{VOL} / \mathrm{VOL}$ |  |
| INITIAL SOIL WATER CONTENT | $=$ |  |
| EFFECTIVE SAT. HYD. COND. | $=0.4190 \mathrm{VOL} / \mathrm{VOL}$ |  |

## GENERAL DESIGN AND EVAPORATIVE ZONE DATA



```
 NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT
 SOIL DATA BASE USING SOIL TEXTURE # 9 WITH A
 POOR STAND OF GRASS, A SURFACE SLOPE OF 25.%
 AND A SLOPE LENGTH OF 300. EEET.
```

SCS RUNOEF CURVE NUMBER $=88.10$
ERACTION OF AREA ALLOWING RUNOFF $=100.0$ PERCENT
AREA PROJECTED ON HORIZONTAL PIANE $=1.000$ ACRES
EVAPORATIVE ZONE DEPTH $=30.1$ INCHES
INITIAL WATER IN EVAPORATIVE ZONE $=5.064$ INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE $=15.065$ INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE $=4.061$ INCHES
INITIAL SNOW WATER $=0.000$ INCHES
INITIAL WATER IN LAYER MATERIALS $=15.129$ INCHES
TOTAL INITIAL WATER $=15.129$ INCHES
TOTAL SUBSURFACE INELOW $=0.00$ INCHES/YEAR
EVAPOTRANSPIRATION AND WEATHER DATA
NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED EROM
ERESNO CALIFORNIA

STATION LATITUDE	$=36.46$ DEGREES
MAXIMUM LEAF AREA INDEX	$=1.50$
START OF GROWING SEASON (JUIIAN DATE)	$=65$
END OF GROWING SEASON (JUIIAN DATE)	$=320$
EVAPORATIVE ZONE DEPTH	$=30.1$ INCHES
AVERAGE ANNUAL WIND SPEED	$=6.40 \mathrm{MPH}$
AVERAGE 1ST QUARTER RELATIVE HUMIDITY	$=70.00 \%$
AVERAGE 2ND QUARTER REIATIVE HUMIDITY	$=49.00 \%$
AVERAGE 3RD QUARTER REIATIVE HUMIDITY	$=46.00 \%$
AVERAGE 4TH QUARTER RELATIVE HUMIDITY	$=72.00 \%$

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR FRESNO CALIFORNIA

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
$-\cdots$	-1.85	1.61	--1.15	0.31	0.08
2.05	0.02	0.16	0.43	1.24	1.61

Mean Annual Precipitation (Inches) $=10.52$

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR ERESNO CALIFORNIA

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR / SEP	APR/OCT	MAY/NOV	JUN / DEC
45.50	50.50	54.30	60.10	67.70	75.00
81.00	78.90	74.10	64.80	53.20	45.30

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFEICIENTS FOR FRESNO CALIFORNIA AND STATION LATITUDE $=36.46$ DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 100

	JAN/JUL	EEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN / DEC
PRECIPITATION						
TOTALS	2.23	1.93	1.68	1.12	0.34	0.08
	0.02	0.02	0.21	0.45	1.12	1.57
STD. DEVIATIONS	1.31	1.28	1.03	0.90	0.38	0.13
	0.04	0.06	0.32	0.54	0.96	0.86

RUNOFE

--_---						
TOTALS	0.062	0.056	0.035	0.015	0.000	0.000
	0.000	0.000	0.001	0.007	0.019	0.013
STD. DEVIATIONS	0.128	0.110	0.093	0.040	0.001	0.000
	0.000	0.000	0.004	0.021	0.069	0.033

EVAPOTRANSPIRATION

TOTALS	1.143	1.626	2.091	1.581	1.582	0.145	
	0.015	0.016	0.144	0.280	0.542	0.787	
STD. DEVIATIONS	0.165	0.268	0.658	0.775	0.888	0.214	
	0.036	0.059	0.257	0.377	0.369	0.252	

## Page 4 of 6

	JAN / JUL	EEB/AUG	MAR / SEP	APR/OCT	MAY/NOV	JUN / DEC
LATERAL DRAINAGE COLLECTED FROM LAYER 2						
TOTALS	0.0749	0.2288	0.1979	0.0664	0.0208	0.0006
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0039
STD. DEVIATIONS	0.3161	0.5221	0.4164	0.1268	0.0293	0.0046
	0.0000	0.0000	0.0001	0.0001	0.0000	0.0271
PERCOLATION/LEAKAGE THROUGH LAYER 4						
TOTALS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
STD. DEVIATIONS	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
AVERAGES OF MONTHLY AVERAGED DAILY HEADS (INCHES)						
DAILY AVERAGE HEAD ON TOP OF LAYER 3						
AVERAGES	0.0272	0.0787	0.0332	0.0020	0.0006	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001
STD. DEVIATIONS	0.1435	0.3015	0.1517	0.0038	0.0008	0.0001
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0009
AVERAGE ANNUAL TOTALS \& (STD. DEVIATIONS) FOR YEARS 1 THROUGH 100						
INCHES				CU. FEET PE		RCENT
PRECIPITATION	10.76		2.688)	39053.7100		. 00
RUNOFF	0.208	$0.2277)$		755.31	1.934	
EVAPOTRANSPIRATIO	N 9.951	1.9427)		36121.62	92.492	
LATERAL DRAINAGE FROM LAYER 2	0.59327 ( 1.06331$)$			$2153.569 \quad 5.51$		1438
	001 mm			Ration Throver Covero.		
$\begin{aligned} & \text { PERCOLATION THROUGH } 0.00003 \text { ( } 0 \\ & \text { LAYER } 4 \end{aligned}$			. 00008 )	0.09	50.0	00024
AVERAGE HEAD ON OF LAYER 3	TOP	$0.012$	$0.036)$	AVERAGE HEAD		
CHANGE IN WATER S	STORAGE	0.006	( 1.5550		23.11	0.059

Page 5 of 6


## Page 6 of 6



```
**
HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE
** HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) **
** DEVELOPED BY ENVIRONMENTAL LABORATORY **
** USAE WATERWAYS EXPERIMENT STATION **
** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY
**
\star * t *
**
```


PRECIPITATION DATA FILE: C: \HELP3\P4B18B.D4
TEMPERATURE DATA FILE: C: \HELP3\T7B18B.D7
SOLAR RADIATION DATA FILE: C: \HELP3\SR13B18B.D13
EVAPOTRANSPIRATION DATA: C: $\mathrm{CHELP} 3 \backslash E 11 B 18 B . D 11$
SOIL AND DESIGN DATA FILE: C: \HELP3\SD10B18B.D10
OUTPUT DATA FILE: C: \HELP3\B18 BKS.OUT
TIME: 10:21 DATE: 11/18/2008

TITLE: Landfill B-18 Closure Infiltration Evaluation (Bakersfield Climate Data)

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

## LAYER 1

--------

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 9

| THICKNESS | $=$ | 30.00 INCHES |
| ---: | :--- | ---: | :--- |
| POROSITY | $=$ | $0.5010 \mathrm{VOL} / \mathrm{VOL}$ |
| FIELD CAPACITY | $=$ | $0.2840 \mathrm{VOL} / \mathrm{VOL}$ |
| WILTING POINT | $=$ | $0.1350 \mathrm{VOL} / \mathrm{VOL}$ |
| INITIAL SOIL WATER CONTENT | $=$ | $0.1456 \mathrm{VOL} / \mathrm{VOL}$ |
| EFFECTIVE SAT. HYD. COND. | $=0.190000006000 \mathrm{E}-03 \mathrm{CM} / \mathrm{SEC}$ |  |
| NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPIIED BY 2.36 |  |  |
| FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE. |  |  |

```
LAYER 2
```

---------

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAI TEXTURE NUMBER O

| THICKNESS | $=$ | 0.15 INCHES |
| :--- | :--- | :---: | :--- |
| POROSITY | $=0.3510 \mathrm{VOL} / \mathrm{VOL}$ |  |
| EIELD CAPACITY | $=0.1740 \mathrm{VOL} / \mathrm{VOL}$ |  |
| WIITING POINT | $=0.1070 \mathrm{VOL} / \mathrm{VOL}$ |  |
| INITIAL SOIL WATER CONTENT | $=0.1478 \mathrm{VOL} / \mathrm{VOL}$ |  |
| EEFECTIVE SAT. HYD. COND. | $=0.250000000000$ |  |
| SLOPE | $=25.00 \mathrm{PERCENT} / \mathrm{SEC}$ |  |
| DRAINAGE LENGTH | $=300.0 \mathrm{EEET}$ |  |

LAYER 3

TYPE 4 - FLEXIBLE MEMBRANE LINER
MATERIAL TEXTURE NUMBER 0

| THICKNESS | $=$ | 0.04 INCHES |
| :--- | :--- | :---: | :--- |
| POROSITY | $=$ | $0.0000 \mathrm{VOL} / \mathrm{VOL}$ |
| FIELD CAPACITY | $=$ | $0.0000 \mathrm{VOL} / \mathrm{VOL}$ |
| WILTING POINT | $=$ | $0.0000 \mathrm{VOL} / \mathrm{VOL}$ |
| INITIAL SOIL WATER CONTENT | $=$ | $0.0000 \mathrm{VOL} / \mathrm{VOL}$ |
| EFFECTIVE SAT. HYD. COND. | $=0.999999982000 \mathrm{E}-13 \mathrm{CM} / \mathrm{SEC}$ |  |
| FML PINHOLE DENSITY | $=0.50 \mathrm{HOLES} / \mathrm{ACRE}$ |  |
| EML INSTALIATION DEFECTS | $=1.00 \mathrm{HOLES} / \mathrm{ACRE}$ |  |
| FML PLACEMENT QUALITY | $=2-$ EXCELIENT |  |

LAYER 4
---------


NOTE: SCS RUNOEF CURVE NUMBER WAS USER-SPECIFIED.

SCS RUNOFF CURVE NUMBER	=	88.10	
ERACTION OF AREA ALIOWING RUNOFF	$=$	100.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	$=$	30.1	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	4.381	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	$=$	15.065	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	$=$	4.061	INCHES
INITIAL SNOW WATER	$=$	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	$=$	14.446	INCHES
TOTAL INITIAL WATER	$=$	14.446	INCHES
TOTAL SUBSURFACE INFLOW	$=$	0.00	INCHES/YEAR

## EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM BAKERSEIELD CALIFORNIA

STATION LATITUDE	$=35.42$ DEGREES
MAXIMUM LEAF AREA INDEX	$=1.50$
START OF GROWING SEASON (JULIAN DATE)	$=44$
END OF GROWING SEASON (JULIAN DATE)	$=331$
EVAPORATIVE ZONE DEPTH	$=30.1$ INCHES
AVERAGE ANNUAL WIND SPEED	$=6.40 \mathrm{MPH}$
AVERAGE IST QUARTER REIATIVE HUMIDITY	$=67.00 \%$
AVERAGE 2ND QUARTER REIATIVE HUMIDITY	$=42.00 \%$
AVERAGE 3RD QUARTER RELATIVE HUMIDITY	$=38.00 \%$
AVERAGE 4TH QUARTER RELATIVE HUMIDITY	$=63.00 \%$

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFEICIENTS FOR BAKERSFIELD CALIFORNIA

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

JAN / JUL	EEB/AUG	MAR / SEP	APR/OCT	MAY/NOV	JUN / DEC
0.98	1.07	0.87	0.70	0.24	0.07
0.01	0.05	0.13	0.30	0.65	0.65

Mean Annual Precipitation (Inches) $=5.72$

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR BAKERSFIELD CALIFORNIA NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN / JUL	FEB/AUG	MAR / SEP	APR/OCT	MAY/NOV	JUN / DEC
48.20	53.20	57.10	62.70	70.80	78.30
84.50	82.40	77.30	68.00	56.20	48.20

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR BAKERSFIELD CALIFORNIA AND STATION LATITUDE $=35.42$ DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS					THROUGH	100
	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN / DEC
PRECIPITATION						
TOTALS	1.10	1.13	0.93	0.72	0.24	0.08
	0.01	0.05	0.14	0.27	0.70	0.65
STD. DEVIATIONS	0.65	0.82	0.61	0.56	0.28	0.23
	0.04	0.20	0.22	0.45	0.64	0.43
RUNOFE						
TOTALS	0.002	0.005	0.005	0.001	0.000	0.001
	0.000	0.002	0.000	0.001	0.004	0.000
STD. DEVIATIONS	0.009	0.017	0.018	0.007	0.002	0.007
	0.000	0.019	0.000	0.009	0.021	0.001
EVAPOTRANSPIRATION						
TOTALS	0.654	0.961	1.377	1.236	0.472	0.082
	0.022	0.045	0.116	0.160	0.382	0.451
STD. DEVIATIONS	0.249	0.303	0.556	0.805	0.476	0.208
	0.088	0.185	0.190	0.244	0.303	0.243


	JAN / JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN / DEC
LATERAI DRAINAGE COLLECTED EROM LAYER 2						
TOTALS	0.0000	0.0007	0.0072	0.0048	0.0009	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
STD. DEVIATIONS	0.0000	0.0072	0.0509	0.0323	0.0056	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
PERCOLATION/LEAKAGE THROUGH LAYER 4						
TOTALS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
STD. DEVIATIONS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
AVERAGES OF MONTHLY AVERAGED DATLY HEADS (INCHES)						
DAIEY AVERAGE HEAD ON TOP OF LAYER 3						
AVERAGES	0.0000	0.0000	0.0002	0.0001	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
STD. DEVIATIONS	0.0000	0.0002	0.0015	0.0010	0.0002	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
*************************************************************************						
AVERAGE ANNUAL TOTALS \& (STD. DEVIATIONS) FOR YEARS 1 THROUGH 100						
INCHES				CU .	EEET	PERCENT
PRECIPITATION		6.00	1.635)		768.7	100.00
RUNOEF		0.021	$0.0412)$		77.75	0.357
EVAPOTRANSPIRATION		5.958	1.5587)	216	628.86	99.357
LATERAL DRAINAGE   EROM LAYER 2		. 01381	$0.09400)$		0.141	0.23034
		0	0 Ine	TRSTIOW	Hrever	Cover
PERCOLATION THROUGH   LAYER 4			$0.00000)$		0.001	0.00000
AVERAGE HEAD ON TOP OF LAYER 3			AVERACE HEAD$0.0001$			
CHANGE IN WATER STORAGE 0.003			$0.6911)$	1	2.00	0.055

## Page 5 of 6



# APPENDIX N <br> FROST AND BIOTIC PROTECTION EVALUATION 

APPENDIX N. 1	FROST PENETRATION EVALUATION
APPENDIX N. 2	BIOTIC PROTECTION EVALUATION

## APPENDIX N. 1 FROST PENETRATION EVALUATION

Golder Associates	Kettleman Hills Facility - Landfill Unit B-18   FROST PENETRATION	
	Project No.: 083-91887	Made By: RH
	Date: 5-19-2008	Checked By: SS
	Sheet: 1 of 1	Reviewed By: SS

## Objective:

To evaluate the potential frost penetration effects on the proposed (and permitted) cover system for Landfill B-18.

## Given:

The proposed B-18 final cover system consists of the following components (from top to bottom):

- 2.5 -foot-thick (minimum) vegetative cover soil;
- 12-oz/sy nonwoven geotextile (transmissivity $\geq 0.03$ gallons/minute/foot);
- 40-mil textured high-density polyethylene (HDPE) geomembrane; and
- 1-foot-thick (minimum) foundation layer soil (permeability $\leq 1 \times 10^{-5} \mathrm{~cm} / \mathrm{sec}$ ).


## Findings:

Based on a regional published map (USEPA, 1989) of frost penetration depths for the United States shown in Attachment \#1, the average depth of frost penetration at the Kettleman Hills Facility (KHF) is anticipated to be approximately 2 inches. Another regional published map (NAVFAC, 1986) of frost penetration depths for the United States shows the extreme frost penetration depth at the KHF to be between 0 and 5 inches (see Attachment \#2).

## Conclusions:

Since the proposed B-18 final cover does not contain a clay liner component, degradation of the final cover due to frost penetration is not a concern. Furthermore, available data on frost penetration depths (USEPA, 1989; NAVFAC, 1986) indicate that no more than approximately 0.5 feet of frost penetration is anticipated at the KHF. Hence, any frost penetration will be confined to the uppermost portion of the vegetative cover soil layer. This degree of frost penetration is not anticipated to affect the performance of the B-18 final cover system.

## References:

United States Environmental Protection Agency (USEPA), "Technical Guidance Document: Final Covers on Hazardous Waste Landfills and Surface Impoundments," EPA/530-SW-89-047, July 1989.

Naval Facilities Engineering Command (NAVFAC), "Design Manual 7.01 - Soil Mechanics," September 1, 1986.

## ATTACHMENT \#1 <br> FROST PENETRATION EVALUATION

## Technical Guidance Document:

## Final Covers on

 Hazardous Waste Landfills and Surface Impoundments


FINAL COVERS ON HAZARDOUS WASTE LANDFILLS AND SURFACE IMPOUNDMENTS

Office of Solid Waste and Emergency Response U.S. Environmental Protection Agency

Washington, DC 20460

In cooperation with

RISK REDUCTION ENGINEERING LABORATORY OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY CINCINNATI, OHIO 45268

Ketleman
Hills
Facility


Figure 6. Regional average depth of frost penetration in inches (Stewart, et al., 1975).

Stewart, B. A., et al. 1975. control of Water Pollution from Cropland: Volume 1 - A Manual for Guideline Development. USDA Report No. ARS-H-5-1. U. S. Dept. of Agriculture, Hyattsville, MD.

Thornburg, A. A. 1979. Plant Materials for Use on Surface Mined Lands. TP-157 and EPA-600/7-79-134. Soil Conservation Service, U.S. Department of Agriculture, Washington, D.C.

Wright, M. J. (Ed.) 1976. Plant Aclaptation to Mineral stress in Problem Soils. Cornell University Agricultural Experiment station. Ithaca, NY.

# ATTACHMENT \#2 <br> FROST PENETRATION EVALUATION 

```
Naval Facilities Engineering Command
200 Stovall Street
Alexandria, Virginia 22322-2300 APPROVED FOR PUBLIC RELEASE
```



```
Soil Mechanics
DESTGN MANUAL 7.01
```

Attachment $\# 2$ p. $2 / 2$


## APPENDIX N. 2

 BIOTIC PROTECTION EVALUATION|  | Kettleman Hills Facility - Landfill Unit B-18 BIOTIC PROTECTION |  |
| :---: | :---: | :---: |
|  | Project No.: 083-91887 | Made By: RH |
|  | Date: 5-19-2008 | Checked By: SS |
|  | Sheet: 1 of 1 | Reviewed By: SS |

## Objective:

To evaluate the effects of burrowing rodents on the proposed (and permitted) cover system for Landfill B-18.

## Given:

The proposed B-18 final cover system consists of the following components (from top to bottom):

- 2.5-foot-thick (minimum) vegetative cover soil;
- 12-oz/sy nonwoven geotextile (transmissivity $\geq 0.03$ gallons/minute/foot);
- 40-mil textured high-density polyethylene (HDPE) geomembrane; and
- 1-foot-thick (minimum) foundation layer soil (permeability $\leq 1 \times 10^{-5} \mathrm{~cm} / \mathrm{sec}$ ).


## Conclusions:

Based on the recommendations provided by Biosystems Analysis, Inc. in their August 4, 1989 letter to the Kettleman Hills Facility (KHF), the 40-mil HDPE geomembrane component of the B-18 final cover is expected to constrain any rodent burrowing to the overlying vegetative cover soil layer. A copy of the Biosystems Analysis, Inc. August 4, 1989 letter is presented in Attachment \#1. Past experience at the KHF indicates that HDPE geomembrane is an effective barrier to rodent burrowing. Hence, the 40 -mil HDPE geomembrane component of the B-18 final cover is anticipated to fully discourage and/or prevent animals from burrowing through the final cover system.

ATTACHMENT \#1 BIOTIC PROTECTION EVALUATION

Christopher W. Hansen
Chemical Waste Management, Inc.
Ketteman Hills Facility
P.O. Box 471

Kettleman City, CA 93239
RE: Mitigation for Rodent Burrowing in Closure Cape
Dear Chris:
We talked this morning about rodents burrowing into cover systems of closed waste management units at the Kettleman Hills Facility. I understand that some of your cover system cross sections contain compacted clay overlain by 1.5 feet or more of vegetative soil. You are concerned about rodents burrowing through the clay and impacting the integrity of the cover system.

As we discussed, the placement of a layer of HDPE geonet between the clay and the vegetative soil should completely discourage or prevent the animals from burrowing into the compacted clay. These animals will encounter the geonet, and will then constrain any burrowing to the overlying vegetative layer.

Please call if you have any questions.
Sincerely, BIOSYSTEMS ANALYSIS, INC.


Sue G. Orloff Wildife Biologist



# APPENDIX 0 TECHNICAL SPECIFICATIONS 

## APPENDIX 0.1 APPENDIX 0.2

## APPENDIX 0.1

## PHASE III SPECIFICATIONS

# TECHNICAL SPECIFICATIONS <br> LANDFILL UNIT B-18 PHASE III <br> KETTLEMAN HILLS FACILITY KETTLEMAN CITY, CALIFORNIA 

## Prepared for:

Chemical Waste Management, Inc.
Kettleman Hills Facility
35251 Old Skyline Road
Kettleman City, California 93239

## Prepared by:

Golder Associates Inc.
230 Commerce, Suite 200
Irvine, California 92602

## SECTION 01010

## SUMMARY OF WORK

## PART 1 GENERAL

### 1.01 SUMMARY

A. The section describes the general requirements for the construction of Phase III of Landfill Unit B-18 at the Kettleman Hills Facility located outside of Kettleman City, California. The Work will consist of excavation, engineered fill placement, subgrade preparation, installation of a double-composite geosynthetic sideslope liner system, placement of operations layer soil, extending sideslope riser pipes, and installing surface water drainage structures.

### 1.02 CONTRACTOR'S RESPONSIBILITIES:

A. Start, lay out, construct, and complete the Project in accordance with the Contract Documents;
B. Provide a competent superintendent, capable of reading and understanding the Contract Documents, who shall receive instructions from the OWNER or his authorized representative. The superintendent shall have full authority to execute the Work in accordance with the Contract Documents;
C. The CONTRACTOR shall be responsible for transporting, permitting, and/or conveying all required construction water.
D. Pay costs of legally required sales, consumer, and use taxes, and governmental fees.
E. Forward submittals and communications to the CONSTRUCTION MANAGER. Where applicable, the CONSTRUCTION MANAGER will coordinate submittals and communications with the representatives who will give approvals and directions through the CONSTRUCTION MANAGER.
F. Maintain order, safe practices and proper conduct at all times among CONTRACTOR's employees. The OWNER, and its authorized representative, may require that disciplinary action be taken against an employee of the CONTRACTOR for disorderly, improper, and unsafe conduct. Should an employee of the CONTRACTOR be dismissed from his duties for misconduct, incompetence, or unsafe practice, or combination thereof, that employee should not be rehired for the duration of the Work.
G. Coordinate prosecution of the Work with the utilities, private utilities, or OWNER performing work on or adjacent to the work site; either eliminate, or minimize as far as possible, delays in the Work and conflicts with those utilities or contractors. Coordinate utility activities, and activities of OWNER, with the CONSTRUCTION MANAGER. Schedule private utility and public utility work relying on survey points, lines, and grades established by the CONTRACTOR to occur immediately after those points, lines and grades have been established. Confirm coordinate
measures for each individual case with the CONSTRUCTION MANAGER by memorandum.
J. Coordinate activities of the several trades, suppliers, and subcontractors, if any, performing the Work.
K. Obtain all necessary building and construction permits. Permit fees will be paid by the OWNER.

### 1.03 RESERVED

### 1.04 CONFORMANCE

A. Work shall conform to the following Drawings that form a part of these Contract Documents.
SHEETNO. TITLE

T-1 TITLE SHEET
C-1 SITE PLAN
C-2 EXISTING CONDITIONS (AS OF MARCH 28, 2008)
C-3 BASE LINER PLAN
C-4 FINAL CLOSURE PLAN
C-5 CROSS-SECTIONS A TO D
C-6 CROSS-SECTIONS E TO I
C-7 PHASE III BASE LINER CONSTRUCTION DETAILS
C-8 PHASE III LCRS DETALLS
C-9 DRAINAGE DETAILS
C-10 CLOSURE DETAILS

### 1.05 DEFINITIONS

OWNER
The term OWNER means Kettleman Hills Facility with whom the CONTRACTOR has entered into the Agreement and for whom the Work is to be provided.

CONSTRUCTION MANAGER

DESIGN ENGINEER
The term CONSTRUCTION MANAGER means the representative of the OWNER for the purpose of administration and inspection of the Work. The CONSTRUCTION MANAGER may be a member or group of the staff or may be an external firm. The OWNER will inform the CONTRACTOR in writing at the start of the Work who the CONSTRUCTION MANAGER will be. During the period of Work the CONSTRUCTION MANAGER will act as an authorized representative of the OWNER.

The term DESIGN ENGINEER means Golder Associates Inc., the firm responsible for the design and preparation of the construction drawings and specifications. The

CQA CONSULTANT

CONTRACTOR

Geosynthetics
CONTRACTOR

Work

Working day

Regular
Working Hours Between 6:30 a.m. and 6:00 p.m. on allowable work days.

Calendar Days

Each day of the year including all OWNER approved holidays.

### 1.06 CONTRACT TIMES

A. The CONTRACTOR shall commence Work in accordance with Section 18 of the General Conditions and Section 7 of the Standard Contract.

### 1.07 CONTRACTOR USE OF WORK SITE

A. Confine work site operations to areas permitted by law, ordinances, permits, and the Contract Documents. The CONTRACTOR shall ensure that all persons under his control (including Subcontractors, their workers and agents) are kept within the boundaries of the Site and shall be responsible for any acts of trespass or damage to property by persons who are under his control. Consider the safety of the Work, and that of people and property on and adjacent to work site, when determining amount, location, movement, and use of materials and equipment on work site.
B. The CONTRACTOR shall be responsible for protecting private and public property including pavements, drainage culverts, electricity, highway, telephone and similar property and making good of, or paying for, all damage caused thereto. Control of erosion throughout the project is of prime importance and is the responsibility of the CONTRACTOR. The CONTRACTOR shall comply with the requirements of the Storm Water Pollution Prevention Plan (SWPPP) provided by the OWNER for the Kettleman Hills Facility and prepare and submit a SWPPP specific to the Work in accordance with requirements of local or state agencies (see Section 01300). The CONTRACTOR shall provide and maintain all necessary measures to control erosion during progress of the Work to the satisfaction of the CONSTRUCTION MANAGER and all applicable Laws and Regulations and remove such measures and debris upon completion of the project. All provisions for erosion and sedimentation control apply equally to all areas of the Work.
C. CONTRACTOR shall promptly notify OWNER and CONSTRUCTION MANAGER in writing of any subsurface or latent physical conditions at the Site which differ materially from those indicated or referred to in the Contract Documents. CONSTRUCTION MANAGER will promptly review those conditions and advise OWNER in writing if further investigations or tests are necessary. Promptly thereafter, OWNER shall obtain the necessary additional investigations and tests and furnish copies to the CONSTRUCTION MANAGER and CONTRACTOR. If CONSTRUCTION MANAGER finds that the results of such investigations or tests indicate that there are subsurface and latent physical conditions which differ materially from those intended in the Contract Documents, and which could not reasonably have been anticipated by CONTRACTOR, a Change Order shall be issued incorporating the necessary revisions.

### 1.08 PRESERVATION OF SCIENTIFIC INFORMATION

A. Federal and State legislation provides for the protection, preservation, and collection of data having scientific, prehistoric, historical, or archaeological value (including relics and specimens) which might otherwise be lost due to alteration of the terrain as a result of any construction work.
B. If evidence of such information is discovered during the course of the Work, the CONTRACTOR shall notify the CONSTRUCTION MANAGER immediately, giving the location and nature of the findings. Written confirmation shall be forwarded within two (2) working days. The CONTRACTOR shall exercise care so as not to damage artifacts uncovered during excavation operations, and shall provide such cooperation and assistance as may be necessary to preserve the findings for removal or other disposition by the OWNER's representative or Government agency.
C. Where appropriate, by reason of a discovery, the OWNER may order delays in the time of performance, or changes in the Work, or both. If such delays, or changes, or both, are ordered, the time of performance and contract price shall be adjusted in accordance with the applicable clauses of the Contract.

### 1.09 EXISTING UTILITIES

A. The CONTRACTOR shall be responsible for locating, protecting, flagging, and identifying all existing utilities. The CONTRACTOR shall request that Underground Service Alert (USA) locate and identify the existing utilities. The request shall be made 48 hours in advance.
B. Costs resulting from damage to utilities shall be borne by the CONTRACTOR. Costs of damage shall include repair and incidental costs resulting from the unscheduled loss of utility service to affected parties.
C. The CONTRACTOR shall immediately stop work and notify the CONSTRUCTION MANAGER of all utilities encountered or damaged. The CONTRACTOR shall also provide the CONSTRUCTION MANAGER with the exact location of any utilities encountered during construction.
D. If specified by the CONSTRUCTION MANAGER, utility pot holes shall be carefully dug by the CONTRACTOR to identify the presence of underground utilities.
E. Damage to utilities by the CONTRACTOR during pothole operations shall be born by the CONTRACTOR.

## PART 2 PRODUCTS

(Not Used)
PART 3 EXECUTION
(Not Used)

## END OF SECTION

## SECTION 01032

## INTENT OF DRAWINGS AND SPECIFICATIONS

## PART 1 GENERAL

### 1.01 CONTRACT DRAWINGS ASND SPECIFICATIONS

A. The intent of the Drawings and Specifications is to prescribe a complete work which the CONTRACTOR shall perform in a manner acceptable to the OWNER and in full compliance with the terms of the Contract.
B. The Drawings show general arrangements for the work which shall be used by the CONTRACTOR in the preparation of shop and field drawings. Particular care shall be given to all layouts to make sure all equipment is accessible for operation.
C. The CONTRACTOR shall provide the OWNER with a complete and operable system, even though the Drawings and Specifications may not specifically call out all items of work required of the CONTRACTOR to complete his tasks, incidental appurtenances, materials, and the like and maintenance.
D. The CONTRACTOR is to perform the Work in accordance with the cross-sections, thickness, gradients and dimensions shown on the Drawings. Any deviations must be approved by the DESIGN ENGINEER prior to doing the work.
E. The dimensions on the Drawings are presumed to be correct, but the CONTRACTOR shall be required to check carefully all dimensions prior to beginning the Work. If errors or omissions are discovered by the CONTRACTOR, the CONTRACTOR shall immediately notify the CONSTRUCTION MANAGER in writing and await the CONSTRUCTION MANAGER's notification before proceeding.

### 1.02 PRECENDENCE OF CONTRACT DOCUMENTS

A. If there is a conflict between Contract Documents, the document highest in precedence shall control. The precedence, unless otherwise stipulated by the OWNER, shall be:

1. Permits.
2. Special Provisions.
3. General Terms and Conditions.
4. Construction Drawings.
5. Technical Specifications.
6. Construction Quality Assurance (CQA) Plan.

### 1.03 CHANGES TO DRAWINGS, SPECIFICATIONS AND CQA PLAN

A. It is inherent in the nature of construction that some changes in the Drawings, Specifications, and/or CQA Plan may be necessary during the course of construction to adjust them to field conditions, and it is the essence of the Contract to recognize a normal and expected margin of change. The CONSTRUCTION MANAGER shall have the right to make such changes, from time to time, in the Drawings, in the character of the Work as may be necessary or desirable to insure the completion of the Work in the most satisfactory manner without invalidating the Contract.
B. Design and specification changes will only be made with written agreement of the Design Engineer, Owner and Contractor. Design and specification changes which affect the containment or environmental controls shall also require approval of the Regional Water Quality Control Board (RWQCB).

## PART 2 PRODUCTS

(Not Used)
PART 3 EXECUTION
(Not Used)

## END OF SECTION

## SECTION 01300

## SUBMITTALS

## PART 1 GENERAL

### 1.01 SUBMITTAL PROCEDURES

A. Transmit each submittal with cover letter to the OWNER.
B. Each submittal shall have a unique submittal number.
C. Submittals shall be numbered sequentially. Re-submittals shall have original number with an alphabetic suffix (A, B, C, etc.) to indicate the sequence of the re-submittal.
D. Identify Project, CONTRACTOR, Subcontractor or supplier; pertinent Drawing sheet and detail number(s), and specification Section number, as appropriate.
E. Identify variations from Contract Documents and Product or system limitations that may be detrimental to successful performance of the completed Work.
F. Provide space for DESIGN ENGINEER and/or CQA CONSULTANT review stamps.
G. Revise and resubmit submittals as required, identify all changes made since previous submittal.
H. Distribute copies of reviewed submittals to concerned parties. Instruct parties to promptly report any inability to comply with provisions.
I. When catalog pages are submitted, applicable items shall be clearly identified.
J. An electronic copy (preferred) or three (3) hard copies of each submittal shall be provided to the OWNER. The OWNER will not accept submittals from anyone other than the CONTRACTOR.
K. The CONTRACTOR shall review all submittal packages prior to transmittal to OWNER for completeness and accuracy.

### 1.02 CHECK OF RETURNED SUBMITTALS AND WAIVER OF CLAIMS

A. The CONTRACTOR shall check and review the submittals returned for correction and ascertain whether the required corrections result in extra cost above that included in the Contract, and shall give written notice to the CONSTRUCTION MANAGER within five (5) working days if, in the CONTRACTOR's estimation, extra costs result from the corrections. The CONTRACTOR's failure to give such written notice before the starting of the Work covered by returned submittal constitutes a waiver by the CONTRACTOR of claims for extra costs resulting from required corrections. Payment based on such written notice is not approved until authorized by the OWNER.

### 1.03 PRODUCT DATA SUBMISSION

A. For each product item included in the Work, include the manufacturer's name and address, the trade or brand name, all conditions of manufacturer's guarantee and warranty, information to fully describe each item, and supplementary information as may be required for approval. Mark catalog cuts, brochures, and data to indicate the items proposed and the intended use. Clearly mark product parameters which were specifically called out on the original specifications.

### 1.04 EQUIPMENT DATA SUBMISSION

A. Submit complete technical, performance, and catalog information for every item of civil, mechanical, and electrical equipment and machinery proposed for installation in the Work. Include information on performance and operating curves, ratings, capacities, characteristics, power efficiencies, manufacturers' standard guarantees and warranties with the terms and conditions fully described, and all other information to fully illustrate and describe the items as may be specified or required for approval.

### 1.05 SUBMITTAL REVIEW AND ACCEPTANCE

A. The submittal review period shall be ten (10) consecutive work days in length and shall commence on the first working day immediately following the date of arrival of the submittal or re-submittal in the OWNER's office. The time required for mail delivery of the submittal or re-submittal back to the CONTRACTOR shall not be considered a part of the submittal review period.
B. The acceptance of drawings and data submitted by the CONTRACTOR will cover only general conformity to the Drawings and Specifications, external connections, and dimensions which affect the layout. The DESIGN ENGINEER's and/or CQA CONSULTANT's review of submittals shall not relieve the CONTRACTOR from responsibility for errors, omissions, or deviations, nor responsibility for compliance with the contract documents.

### 1.06 RE-SUBMITTALS

A. When the drawings and data are returned marked "AMEND AND RESUBMIT" or "REJECTED, SEE REMARKS," the corrections shall be made as noted thereon and as instructed by the DESIGN ENGINEER's and/or CQA CONSULTANT's and shall be resubmitted.
B. When corrected copies are resubmitted, the CONTRACTOR shall highlight or otherwise direct specific attention to all revisions and shall list separately those revisions made other than those called for on previous submissions.
C. The need for more than one resubmission shall not entitle the CONTRACTOR to extension of the Contract Time.

### 1.07 COSTS FOR SUBMITTALS

A. All costs for the preparation, correction, and delivery of the submittals are considered incidental to the contract and shall be included in CONTRACTOR's costs.

## PART 2 PRODUCTS

(Not Used)

## PART 3 EXECUTION

### 3.01 MATERIALS REQUIRING SUBMITTALS

A. The following materials shall require submittals.

1. Material certifications and product data for all geosynthetics;
2. Material quality control data for all geosynthetics;
3. Material certifications and product data for piping;
4. Material quality control data for piping; and
5. Items not fully detailed and specified in the Contract Drawings or these Specifications.

### 3.02 ITEMS NOT REQUIRING SUBMITTALS

A. A submittal is not required for products and equipment completely specified or salvaged onsite. A submittal is required if the product has not been completely specified or when the specified product is not available within the construction schedule. Substitutions requested by the CONTRACTOR require a submittal.

### 3.03 CONSTRUCTION SCHEDULE

A. At the pre-construction meeting, the CONTRACTOR shall submit to the CONSTRUCTION MANAGER for review a schedule of the proposed construction operations. The construction schedule shall indicate the sequence of the Work indicating the time of completion of each component of the Work.
B. Submit initial progress schedule in duplicate within ten (10) days after Effective Date of Agreement for CONSTRUCTION MANAGER to review.
C. Revise and resubmit as required.
D. Submit revised schedules with each Application for Payment, identifying changes since previous version.
E. Submit a horizontal bar chart with separate line for each major section of Work or operation, identifying first work day of each week. Include on the bar chart construction/placement rates for all the major items of Work. CONTRACTOR shall develop proposed Construction Schedule on basis of a five or six day working week. Sufficient labor, equipment, and materials shall be provided by CONTRACTOR to complete the Work on a five or six day per week basis. Night work and work on Sundays will only be approved by the OWNER if the Work falls behind the approved Construction Schedule.
F. Show complete sequence of construction by activity, identifying Work of separate stages and other logically grouped activities. Indicate the start date, finish date, and duration. At a minimum, the following activities must be shown on the project schedule:

1. Mobilization;
2. Excavation;
3. Subgrade preparation;
4. Placement of the clay liner;
5. Installation of the geomembranes;
6. Installation of the geocomposites;
7. Placement of the operations layer soil;
8. Construction of surface water controls;
9. Construction of new riser pipes and pads; and
10. Demobilization and site clean-up.
G. Indicate estimated percentage of completion for each item of Work at each submission with Application for Payment.
H. Indicate submittal dates required for shop drawings, product data, samples and product delivery dates.
I. The Construction Schedule as approved by the OWNER will be an integral part of the Contract, and will establish interim Contract completion dates for various activities. Should an activity not be completed within ten (10) days after the stated Schedule date, the CONSTRUCTION MANAGER shall have the option to recommend to the CONTRACTOR to expedite completion of the activity by whatever means deemed appropriate and necessary, without additional compensation to the CONTRACTOR.
J. Should any activity be twenty (20) or more working days behind Schedule, the OWNER shall have the right to perform the activity or to have the activity performed by whatever method the OWNER deems appropriate. Costs incurred by the OWNER in connection with expediting construction activities under this Paragraph shall be reimbursed to the OWNER by the CONTRACTOR.
K. It is expressly understood and agreed that failure by the OWNER to exercise the option to either order the CONTRACTOR to expedite an activity or to expedite the activity by other means shall not be considered precedent-setting for any other activities. The Work shall be executed in strict accordance with the Construction Schedule unless a variance has been received by the CONSTRUCTION MANAGER and approved by the OWNER.

### 3.04 PROGRESS REPORTS

A. The CONTRACTOR shall submit progress reports as requested indicating work performed and completed that week, quantity of material used, and equipment used to perform the Work.
B. A progress report shall also be furnished to the ENGINEER with each application for progress payment. If the Work falls behind schedule, the CONTRACTOR shall submit additional progress reports at such intervals as the CONSTRUCTION MANAGER may request.
C. Each progress report shall include sufficient narrative to describe current and anticipated delaying factors, their effect on the construction schedule, and proposed corrective actions.

Work reported complete, but which is not readily apparent as complete to the CONSTRUCTION MANAGER, must be substantiated with satisfactory evidence.
D. Each progress report shall also include a graphic schedule marked to indicate actual progress. Revised schedules shall be included when warranted.

### 3.05 MANUFACTURER'S CERTIFICATES

A. When specified in individual Specification Sections, submit manufacturers' certificate to the CQA CONSULTANT for review, in quantities specified for Product Data.
B. Indicate whether material or product conforms to or exceeds specified requirements. Submit supporting reference date, affidavits, and certifications as appropriate.
C. Certificates may be recent or previous test results on material or Product, but must be acceptable to the CONSTRUCTION MANAGER.

### 3.06 RECORD SURVEY AND DRAWINGS

A. The CONTRACTOR shall keep a set of construction drawings on the job and mark in red pencil the as-built conditions.
B. A complete and accurate set of record drawings shall be signed and dated by the CONTRACTOR and shall be labeled with the following, "These record drawings completely and truly represent the contract work as installed."
C. Record drawings shall be delivered to the CONSTRUCTION MANAGER prior to final acceptance of the work by the CONSTRUCTION MANAGER.
D. Record drawings shall show all changes in "clouds" to clearly identify any deviations from the plans.
E. Any utilities uncovered during construction shall be identified on the record drawings.
F. The record survey shall be performed by the CONTRACTOR in accordance with Section 01400 , Part 1.04 and shall meet the requirements of these Specifications and the CQA Plan and include, but not be limited to:

1. edges, bottom, and limits of anchor trenches;
2. limits of excavation and fill;
3. final subgrades (including geologic mapping developed by CQA Consultant);
4. top of compacted clay liner;
5. HDPE geomembrane panel layouts and intersections;
6. destructive seam test locations on HDPE geomembranes;
7. location and crown elevations of piping;
8. top of operations layer soil;
9. grade breaks;
10. appurtenant structures (e.g., riser pads); and
11. layout and flow line elevations of surface water control structures.
G. Survey of the excavated subgrades (including geologic mapping), Clay Liner, and Operations Layer surfaces shall be on a grid with a maximum spacing of 50 feet or an equivalent method approved by the CQA CONSULTANT, with additional elevations at slope change locations. The elevations for the subgrade, top of Clay Liner, and top of Operations Layer shall be at the same grid locations and shall be used to document thickness conformance. The record survey shall include locations and elevations of all other work as directed by the CONSTRUCTION MANAGER.
H. Record drawings shall be prepared to scale, with the scale clearly marked. Record drawings of details may not be to scale, but all dimensions shall be clearly identified. Record drawings shall be submitted to the CQA CONSULTANT for review and approval. Record drawings shall be provided on Bond and electronically in AutoCAD 2005 format or more recent. The DESIGN ENGINEER will provide the base AutoCAD file map. Different elements of the work shall be presented on different layers in the base AutoCAD file provided by the DESIGN ENGINEER.

### 3.07 HEALTH AND SAFETY PLAN

A. The CONTRACTOR shall submit a Health and Safety Plan in accordance with Section 01810 of these Specifications.

### 3.08 STORM WATER POLLUTION PREVENTION PLAN (SWPPP)

A. The CONTRACTOR shall prepare and submit a SWPPP specific to the work to the OWNER for approval. The SWPPP shall be consistent with the provisions of the "California Construction Best Management Practice Handbook," the site National Pollutant Discharge Elimination System (NPDES) site permit, and the Kettleman Hills Facility SWPPP. The SWPPP shall include specific measures to protect the Work and comply with the regulations, including specific erosion and sediment controls. The CONTRACTOR is responsible to control storm water run-on, run-off, erosion, and sediment to such an extent as needed to maintain compliance with the SWPPP and protect the Work, protect adjacent landfill operations, and adjacent structures.

## END OF SECTION

## SECTION 01400

## CONSTRUCTION QUALITY CONTROL

## PART 1 GENERAL

### 1.01 CONSTRUCTION QUALITY CONTROL

A. The CONTRACTOR shall be responsible for construction quality control of the Work and all appurtenances as described in these Specifications.
B. The CONTRACTOR shall monitor quality control over suppliers, manufacturers, products, services, site conditions, and workmanship, to produce Work of specified quality.
C. The CONTRACTOR shall comply fully with manufacturers' instructions, including each step in sequence.
D. Should manufacturers' instructions conflict with Contract Documents, the CONTRACTOR shall request clarification from CONSTRUCTION MANAGER before proceeding.
E. The CONTRACTOR shall comply with specified standards as a minimum quality for the Work except when more stringent tolerances, codes, or specified requirements indicate higher standards or more precise workmanship.
F. The CONTRACTOR shall perform work using persons qualified to produce workmanship of specified quality.
G. The CONTRACTOR shall secure products in place with positive anchorage devices designed and sized to withstand stresses, vibration, physical distortion or disfigurement.
H. The CONSTRUCTION MANAGER shall determine and decide all questions which may arise as to the quality and acceptability of materials and Work performed; the manner of performance and the rate of progress of said Work; the interpretations of the Contract Documents relating to the Work; the acceptable fulfillment of the Contract Documents on the part of the CONTRACTOR; and the amount and quantity of the several kinds of Work performed and materials which are to be paid for under the Contract.
I. All materials and equipment shall be new and of the specified quality and equal to the samples found to be acceptable by the CQA CONSULTANT, if samples have been submitted.
J. The Work shall be done and completed in a thorough, workmanlike manner, notwithstanding omissions in the Contract Documents; and it shall be the duty of the CONTRACTOR to call the CONSTRUCTION MANAGER's attention to apparent errors or omissions and request instructions in writing before proceeding with the Work.
K. The CONSTRUCTION MANAGER may, by appropriate written instructions, correct errors and omissions. Instructions and corrections shall be as binding upon the CONTRACTOR as though contained in the original Contract Documents.

### 1.02 CONSTRUCTION QUALITY ASSURANCE

A. Materials, equipment, methods of construction and workmanship shall be subject to the inspection of the CQA CONSULTANT as outlined in the CQA Plan. Defective materials, equipment, or work shall be replaced, corrected or otherwise made good by the CONTRACTOR at the CONTRACTOR's own expense.
B. On all questions concerning the acceptability of materials or equipment, execution of the Work, and the determination of costs, the decision of the CONSTRUCTION MANAGER shall be final and binding upon all parties.
C. The CONTRACTOR shall at all times maintain proper facilities and provide safe access to all parts of the Work, to the shops wherein the Work is in preparation, and to all warehouses and storage yards wherein materials and equipment are stored, for purposes of inspection by the CQA CONSULTANT.
D. The CONTRACTOR shall provide incidental labor and facilities to provide access to Work to be tested, to obtain and handle samples at the Site or at source of products to be tested, and to facilitate tests and inspections.
E. Notify CQA CONSULTANT 24 hours prior to expected time for operations requiring inspection services.
F. Retesting required because of non-conformance to specified requirements shall be performed by the CQA CONSULTANT on instructions by the CONSTRUCTION MANAGER. Payment for retesting will be charged to the CONTRACTOR by deducting inspection or testing charges from the Contract Price.
G. Employment of CQA CONSULTANT by OWNER shall in no way relieve the CONTRACTOR of obligations to perform Work in accordance with requirements of Contract Documents.

### 1.03 MANUFACTURERS' FIELD SERVICES AND REPORTS

A. When specified in individual Specification Sections, required material or Product suppliers or manufacturers shall provide qualified staff personnel to observe site conditions, conditions of surfaces and installation, and quality of workmanship as applicable, and to initiate instructions when necessary.
B. Individuals shall report observations and site decisions or instructions given to applicators or installers that are supplemental or contrary to manufacturers' written instructions.

### 1.04 SURVEYING

A. At least two control monuments shall be established by the CONTRACTOR at locations convenfent for daily tie-in. The vertical and horizontal controls for these
control points shall be established within normal land surveying standards. The CONTRACTOR shall use these control points in laying out and providing ongoing geometric control of the work. The control monuments shall be shown on all record drawings.
B. Surveying shall be performed under the direct supervision of a licensed land surveyor or registered civil engineer authorized to practice land surveying under Chapter 15, Article 3, Section 8731 of the Professional Engineering Act of California, as amended January 1, 1992 who may also be the senior surveyor on site. The survey crew shall consist of the senior surveyor and as many surveying assistants as required to satisfactorily undertake the work. Personnel shall be experienced in all aspects of surveying, including detailed, accurate documentation.
C. The survey instruments used for this work shall be sufficiently precise and accurate to meet the needs of the project. Survey instruments shall be capable of reading to a precision of 0.01 feet and with a setting accuracy of 10 seconds. Calibration certificates for survey instruments shall be submitted on request to the CQA CONSULTANT prior to the initiation of surveying activities.
D. It shall be the CONTRACTOR's sole responsibility to control the Work so that all of the geometric requirements of the project are met. The CONTRACTOR shall immediately notify the CONSTRUCTION MANAGER and the CQA CONSULTANT of any discrepancy found in the Work. It will be the CONSTRUCTION MANAGER's sole prerogative to approve or reject work which does not meet the requirements contained in these Specifications and the Drawings, but which, in the CONSTRUCTION MANAGER's sole opinion, may nevertheless meet the intention of the Contract Documents.
E. The CONTRACTOR shall be responsible for the accuracy of all work and shall maintain all reference points, stakes, etc., throughout the life of the project. Damaged or destroyed points, bench marks or stakes, or any reference points made inaccessible by the progress of the construction shall be replaced or transferred by the CONTRACTOR. Any of the above points shall be referenced by ties to acceptable objects and recorded. Any alternations or revisions in the ties shall be so noted and the information furnished to the CONSTRUCTION MANAGER immediately. All computations necessary to establish the exact position of the work from control points shall be made and preserved by the CONTRACTOR. All computations, survey notes and other records necessary to accomplish the work shall be neatly made and shall be made available onsite for review by the CQA CONSULTANT.
F. During the progress of the construction work, the CONTRACTOR shall be required to furnish all of the surveying and state-out incidental to the proper location by line and grade for each phase of the work. For any operation requiring extreme accuracy, the CONTRACTOR shall restake with pins or other acceptable hubs located directly adjacent to the work at a spacing approved by the CONSTRUCTION MANAGER.

## PART 2 PRODUCTS

(Not Used)

## PART 3 EXECUTION

(Not Used)

## END OF SECTION

## SECTION 01402

## CONTROL OF WORK

## PART 1 GENERAL

### 1.01 AUTHORITY OF THE CONSTRUCTION MANAGER

A. The CONSTRUCTION MANAGER will decide all questions which may arise as to the quality and acceptability of materials furnished and work performed; all questions which may arise as to the interpretation of the Drawings and Specifications; and all questions as to the satisfactory and acceptable fulfillment of the Contract on the part of the CONTRACTOR.
B. The OWNER shall have the authority to stop the Work if odor or dust becomes a nuisance.

### 1.02 AUTHORITY OF THE CQA CONSULTANT

A. The CQA CONSULTANT employed by the OWNER shall be authorized to monitor all work done and materials and equipment furnished. Such monitoring may extend to all or part of the Work, and to the preparation, fabrication, or manufacture of the materials and equipment to be used. The CQA CONSULTANT will not alter or waive the provisions of the Contract Documents.
B. The CQA CONSULTANT will keep the CONSTRUCTION MANAGER informed as to the progress of the Work and the manner in which it is being done; also, the CQA CONSULTANT will call the CONTRACTOR's attention to non-conformance with the Contract Documents that the CQA CONSULTANT may have observed. The CQA CONSULTANT will not approve or accept any portion of the Work, issue instructions contrary to the Contract Documents, or act as foreman for the CONTRACTOR. The CQA CONSULTANT may reject defective materials, equipment, or work subject to final decision of the CONSTRUCTION MANAGER.
C. The CONSTRUCTION MANAGER may delegate additional authority to the CQA CONSULTANT. In such cases, the CONSTRUCTION MANAGER will notify the CONTRACTOR of such action.

### 1.03 COORDINATION AND INTERPRETATION OF DRAWINGS AND SPECIFICATIONS

A. The Specifications, General Conditions, Special Conditions, CQA Plan, Contract Change Orders, and all supplementary documents are essential parts of the Contract, and a requirement occurring in one is as binding as though occurring in all. They are intended to be coordinated and to describe and provide for a complete work.
B. Should it appear that the Work or other matters relative thereto are not sufficiently detailed or explained in the Contract Documents, the CONTRACTOR shall apply to the CONSTRUCTION MANAGER for such further explanations as may be necessary and shall conform to them as part of the Contract.
C. In the event of a doubt or question arising regarding the true meaning of the Contract Document, reference shall be made to the CONSTRUCTION MANAGER, whose decision thereon shall be final.
D. In the event of a discrepancy between a drawing and the figures written thereon, and/or the Drawings and the Specifications, the CONTRACTOR shall notify the CONSTRUCTION MANAGER in writing and wait for approval before proceeding. Scaled dimensions shall not be used in the performance of the Work.

PART 2 PRODUCTS
(Not Used)
PART 3 EXECUTION

### 3.01 PERFORMANCE REQUIREMENTS

A. The CONTRACTOR shall furnish the CONSTRUCTION MANAGER with every reasonable facility for ascertaining whether or not the Work as performed is in accordance with the requirements and intent of the Specifications and Contract.
B. Should a work be covered before acceptance or consent of the CONSTRUCTION MANAGER, it must, if required by the CONSTRUCTION MANAGER, be uncovered for examination at the CONTRACTOR's expense.

END OF SECTION

## SECTION 01565

## TEMPORARY FACILITIES

## PART 1 GENERAL

### 1.01 SUMMARY

A. The CONTRACTOR shall provide all temporary facilities and utilities required for prosecuting the Work, protection of employees and the public, protection of the Work from damage by fire, weather or vandalism, and such other facilities as may be specified or required by an applicable law, ordinance, rule, or regulation.
B. The CONTRACTOR must provide their own office space for their needs if necessary. The location of the office shall be approved by the OWNER.

### 1.02 ELECTRICAL SERVICE

A. Electrical power is not available at the site. The CONTRACTOR shall arrange for temporary electric connection or supply a generator capable of providing the power required to operate tools or equipment or to provide area lighting as needed. Temporary power whether supplied by a utility company or by a generator shall conform to the requirements of the 1993 National Electrical Code, the 1993 National Electrical Safety Code, and all applicable national standards, local regulations and ordinances.
B. The allowable hours of generator operation is the same as the regular working hours for the project. All generators shall be fitted with a residential quality muffler.

### 1.03 FIRST AID

A. First aid kits meeting the minimum requirements of the Occupational Safety and Health Administration shall be provided in a readily accessible location or locations indicated in the CONTRACTOR's Health and Safety Plan as outlined in Section 01810 of these Specifications.

### 1.04 CONSTRUCTION FACILITIES

A. Construction hoists, elevators, scaffolds, stages, shoring and. similar temporary facilities shall be of ample size and capacity to adequately support and move the loads to which they will be subjected. Railings, enclosures, safety devices, and controls required by law or for adequate protection of life and property shall be provided.

### 1.05 STAGING AND SHORING

A. Temporary supports shall be designed with an adequate safety factor to assure stability and adequate load bearing capacity.
B. Trenches greater in depth than four (4) feet shall be shored or sloped according to OSHA requirements.

### 1.06 TEMPORARY ENCLOSURES

A. When any activity hazardous to property or the health of employees and the public is in progress, the area of activity shall be enclosed adequately to contain the dust, overspray, or other hazard. In the event there are not permanent enclosures in the area, or such enclosures are incomplete or inadequate, the CONTRACTOR shall provide suitable temporary enclosures.

### 1.07 WARNING DEVICES AND BARRICADES

A. The CONTRACTORs shall adequately identify and guard all hazardous areas, holes, pits, and conditions by visual warning devices and physical barriers. Such devices shall, as a minimum, conform to the requirements of OSHA and Cal-OSHA.

### 1.08 HAZARDS IN PUBLIC ACCESS AREAS

A. Trenches and other essentially continuous excavations in public access areas, running parallel to the general flow of traffic, shall be marked at reasonable intervals by traffic cones, barricades, or other suitable visual markers during daylight hours. During hours of darkness, these markers shall be provided with either torches, flashers or other adequate lights.

### 1.09 FIRE EXTINGUISHERS

A. A sufficient number of fire extinguishers of the type and capacity required to protect the site and ancillary facilities shall be provided in readily accessible locations.

### 1.10 ODOR CONTROL

A. The CONTRACTOR shall comply with the provisions for control of odor and emissions as required by the MDAQMD or the OWNER.

### 1.11 SANITATION FACILITIES

A. CONTRACTOR shall provide and maintain ample field latrines and ablution accommodations in accordance with OSHA requirements for all workers employed on the project under the contract. Field latrines and ablution accommodations shall be provided and maintained in a sanitary condition at all times during the work on this project.

### 1.12 MATERIAL STORAGE

A. A materials storage area shall be designated to the CONTRACTOR by the CONSTRUCTION MANAGER. The CONTRACTOR is responsible for security of all of his materials and equipment.

PART 2 PRODUCTS
(Not Used)

## PART 3 EXECUTION

(Not Used)

## END OF SECTION

## SECTION 01810

## SAFETY PROCEDURES

## PART 1 GENERAL

### 1.01 SUMMARY

A. This section establishes minimum safety requirements and guidelines for the performance of the Work.
B. The CONTRACTOR is advised that decomposing waste produces landfill gas which is potentially flammable or explosive.
C. The CONTRACTOR shall submit a Health and Safety Plan and a copy of their Injury and Illness Prevention Program to the OWNER for review prior to beginning work.
D. The CONTRACTOR shall hold mandatory daily tailgate safety meetings on the site, as well as formal weekly safety meetings.

### 1.02 GENERAL REQUIREMENTS

A. The CONTRACTOR shall have sole responsibility and liability for the safety, efficiency, and adequacy of the CONTRACTOR's personnel, equipment and methods, and for any damage or injury resulting from their failure, or improper maintenance, use, or operation.
B. The CONTRACTOR shall be solely and completely responsible for the conditions at the Work area arising from the CONTRACTOR's execution of the Work. This requirement shall apply continuously and not be limited to normal working hours.
C. The CONTRACTOR shall provide all personnel working on the project with orientation and training on the potential hazards anticipated and the appropriate use of safety equipment.
D. Neither the OWNER nor the CONSTRUCTION MANAGER shall have liability resulting from injury or death to CONTRACTOR's employees or subcontractors and their employees.
E. A health and safety officer, employed by the CONTRACTOR, shall be present at all times during construction of underground facilities. The health and safety officer may be the site superintendent or other responsible regular employee of the CONTRACTOR provided he has had special health and safety training, and shall have responsibility for the enforcement of the Health and Safety Plan, particularly as it applies to drilling activities. The health and safety officer shall be identified by name in the Health and Safety Plan.
F. Many gases are heavier than air and settle in low areas such as trenches and excavations, therefore additional precautions shall be observed in these areas. Specifically, the need for constant $\mathrm{O}_{2}$ monitoring, forced ventilation, combustible gas monitoring, VOC monitoring, respiratory protective equipment, etc. shall be
determined by the CONTRACTOR. The CONSTRUCTION MANAGER may impose additional requirements when deemed necessary for worker safety.

### 1.03 HEALTH AND SAFETY PLAN

A. The CONTRACTOR shall develop and maintain for the duration of work activities at the site, a written, site specific Health and Safety Plan for landfill operations that will effectively incorporate and implement all applicable requirements. The plan will meet the requirements of CCR Title 8 Section 5192.
B. In addition to requirements set forth in other sections, the CONTRACTOR's Health and Safety Plan shall contain provisions for aspects of protection against bodily injury from heavy construction equipment, tools and equipment required to construct the system.
C. The Health and Safety Plan shall include the location and route to the nearest hospital or emergency facility. All CONTRACTOR employees and subcontractors working on the project shall be thoroughly familiar with the emergency route.
D. In the event the Health and Safety Plan is determined by the CONSTRUCTION MANAGER, OWNER or the State or Federal Regulatory Agencies to be inadequate to protect the employees and the public, the plan shall be modified prior to the beginning of the Work to meet the minimum requirements of the OWNER or the State or Federal Regulatory Agencies at no additional cost to the OWNER.
E. Acceptance of the CONTRACTOR's Health and Safety Plan by the OWNER does not release the CONTRACTOR of liability in the event of an accident or injury, nor does it place any liability on the CONSTRUCTION MANAGER or OWNER.
F. Provisions shall be made to protect against ingestion, absorption or inhalation of hazardous compounds and for the handling of refuse in a safe, sanitary, and proper manner.
G. The CONTRACTOR's Health and Safety Plan shall contain trenching and excavation safety guidelines particular to landfill work.

### 1.04 REGULATORY REQUIREMENTS

A. The CONTRACTOR shall comply with provisions of safety regulatory bodies including, but not necessarily limited to:

1. OSHA/Cal-OSHA regulations for construction
2. 29 Code of Federal Regulations (CFR) 1926/1910 and CFR 1910.120
3. Title 8 California Code of Regulations, in particular Section 5192.
4. All other applicable federal, state, county and local laws, ordinances, codes, the requirements
B. If any of these requirements are in conflict, the more stringent requirement shall apply. The CONTRACTOR's failure to be thoroughly familiarized with the aforementioned safety and health provisions shall not relieve the CONTRACTOR of
responsibility for full compliance with the obligations and requirements set forth herein.
C. The CONTRACTOR shall conform to the rules and regulations of the State Construction Safety regulations pertaining to excavations and trenches. A copy of the regulations is available at the OWNER.

### 1.05 SPECLAL SAFETY CONSIDERATION RELATED TO LANDFILL WORK

A. Portions of the Work involve excavation and removal of and construction near hazardous waste.
B. The landfill may contain leachate water contaminated with substances found in the landfill which may be corrosive, toxic, carcinogenic, mutanogenic or otherwise hazardous.

## PART 2 PRODUCTS

(Not Used)

## PART 3 EXECUTION

### 3.01 GENERAL REQUIREMENTS

A. The CONTRACTOR shall assume full responsibility to assure that during construction his employees, subcontractors and their employees follow the Health and Safety Plan.
B. The CONTRACTOR shall hold mandatory weekly safety meetings on the site. The CONTRACTOR shall notify the CONSTRUCTION MANAGER of the time and place of all meetings and allow the CONSTRUCTION MANAGER to participate. Meetings should reiterate safety measures to be taken and discuss any violations committed and preventive measures to avoid future violations.
C. The CONTRACTOR shall require all personnel on the site to wear the appropriate personnel protective equipment such as steel toe boots, hard hats, orange safety vests, safety belts and lanyards, and others.
D. The CONTRACTOR shall provide appropriate fall protection (i.e., harness and shock absorbing lanyard) that must be worn and secured to a stationary object when working within a distance of ten 10 feet of an excavation greater than eight (8) inches in diameter or deeper than four (4) feet.
E. No smoking or consumption of alcohol or any drug which could impair sight, balance or judgment is permitted on the job.

### 3.02 TRENCHING SAFETY

A. The CONTRACTOR shall complete each excavated trench prior to the end of the working day. A trench shall be considered complete if it has been backfilled to the landfill surface.
B. Any time excavations and trenching exceed four (4) feet in depth, shoring, bracing or sloping of the side walls is required prior to entry. If sloping is the method used, side walls of the trench shall be sloped at a $2 \mathrm{H}: 1 \mathrm{~V}$ slope (Cal-OSHA requirement).
C. Welding is to be avoided within the barricaded area. If HDPE pipe welding is performed in the trench, continuous methane monitoring shall be performed.
D. Solvent cleaning, gluing or bonding of pipe shall be done, to the extent practicable, outside the trench.
E. All trenches shall be backfilled as soon as practical after excavation, and under no circumstances shall a trench remain open after the crew has left the vicinity of the trench. A maximum of 300 feet of trench may be exposed at any one time. All exposed refuse must be covered at the end of each day using cover soil or a tarp.
F. Electric motors shall not be used in trenches. Pneumatic operated tools shall be used in the trench.

### 3.03 VIOLATIONS

A. Should any health and safety violations be called to the CONTRACTOR's attention by anyone, the CONTRACTOR shall immediately correct the violations.
B. If the CONTRACTOR violates any health and safety rule or regulation, the OWNER may issue an order to stop all work until the violations are remedied. The CONTRACTOR shall not be entitled to any extension of the time or any claim for damage or to any compensation for either the directive or the work suspension order. A decision by the OWNER not to order discontinuance of any or all of the CONTRACTOR's operations shall not relieve the CONTRACTOR of responsibility for safety.

## END OF SECTION

## SECTION 02105

## EROSION CONTROL

## PART 1 GENERAL

### 1.01 DESCRIPTION

A. This section describes the general requirements for erosion control measures associated with lining materials for drainage channels.

## PART 2 PRODUCTS

### 2.01 EROSION CONTROL BLANKET

Permanent Turf Reinforcement Mat shall be Propex Landlok 407, or equivalent. To be used in drainage channels at the locations shown on the Plans.

## PART 3 EXECUTION

### 3.01 GENERAL

A. Grade and compact area of installation and remove all rocks, clods, vegetation or other obstructions so that the installed mat will have direct contact with soil surface. Prepare seedbed by loosening 2-3 inches of topsoil. Incorporate amendments such as fertilizer into soil.
B. For temporary erosion control mat, apply seed to soil surface before installing blanket/mat. For permanent erosion control mat, apply seeding after installation and prior to filling mat with soil.
C. The CONTRACTOR shall install the permanent and temporary control mats in accordance with the manufacturer's recommendations. In general the installation should include:

1. Anchor trenches or check slots (6-inches deep) at 30 foot intervals along the trench.
2. Longitudinal anchor trenches (4-inches deep) to secure outside edges.
3. Anchor erosion control mat with U-shaped wire staples. Staples shall be a minimum of 6 -inches in length and have sufficient ground penetration to resist pullout. Longer anchors may be required. Anchors for the permanent erosion control mat shall be installed with a minimum of 2 anchors per square yard. Temporary erosion control mats shall be installed with a minimum of 1.5 anchors per square yard.
4. After installation of permanent erosion control mat, apply seed and apply $1 / 2$ to $3 / 4$ inches of fine soil into the mat to completely fill the voids. Use backside of rake, or similar, to smooth soil fill in order to just expose the top netting.

## END OF SECTION

## SECTION 02110

## SITE CLEARING, GRUBBING AND STRIPPING

## PART 1 GENERAL

### 1.01 DESCRIPTION

A. This section describes the general requirements for site clearing, grubbing and stripping associated with the construction of Phase III of Landfill B-18 at the Kettleman Hills Facility.
B. Clearing, grubbing and stripping shall be performed to remove organic, soft, loose, and deleterious materials and expose a firm, unyielding subgrade.

### 1.02 RELATED SECTIONS

A. Section 02200 - Earthwork
B. Section 02751-HDPE Geomembranes

## PART 2 PRODUCTS

A. Organic, soft, loose and deleterious materials includes, but is not limited to, vegetative growth, non-engineered fills, alluvial deposits, soft, loose, or saturated subgrade soils, refuse, and construction debris.

## PART 3 EXECUTION

### 3.01 PROTECTION

A. Locate, identify, and protect utilities that remain from damage.
B. Protect existing groundwater monitoring wells and piezometers from damage or displacement.

### 3.02 CLEARING

A. Clear areas required for access to site and execution of work.
B. Earthwork CONTRACTOR shall remove all organic and deleterious material, and trash from the subgrade surface. Vegetative growth greater than 1 inch in dimension shall be removed to a depth of 6 inches below the subgrade surface.
C. The Earthwork CONTRACTOR shall consider that clearing, grubbing, and stripping will necessitate the use of manual labor to remove all organic and deleterious material from the subgrade surface.
D. The Earthwork CONTRACTOR shall remove soft, loose, or saturated materials as approved by the CQA CONSULTANT. The materials shall be removed until a firm, unyielding subgrade, approved by the CQA CONSULTANT, is exposed.
E. All removed materials shall be disposed of onsite in an area designated by the PROJECT MANAGER. No accumulation of flammable material shall remain on or adjacent to the construction area.
F. The Earthwork CONTRACTOR shall expose existing liner terminations as required on the Drawings. The Work may require hand excavation to avoid damage to the existing liner. Any damage to the existing liner shall be repaired by the Earthwork CONTRACTOR at no additional cost to the OWNER.

END OF SECTION

## SECTION 02200

## EARTHWORK

## PART 1 GENERAL

### 1.01 SUMMARY

A. The Earthwork CONTRACTOR shall furnish all labor, materials, equipment and incidentals necessary to perform all excavation, backfilling, compaction and grading required to complete the work shown on the Drawings and specified herein. The Work shall include, but not necessarily be limited to, survey and staking, borrow excavation and hauling, excavation for trenches, fill placement and compaction, grading, and all related work.
B. The Earthwork CONTRACTOR shall comply with the safety procedures given in Section 01810 of these Specifications.

### 1.02 RELATED SECTIONS

A. Section 01300 -Submittals
B. Section 01400 - Construction Quality Control
C. Section 02110 - Site Clearing, Grubbing and Stripping.
D. Section 02220 - Compacted Clay Liner
E. Section 02751-HDPE Geomembranes

### 1.03 REFERENCE STANDARDS

A. American Society for Testing and Materials (ASTM), latest editions:

1. ASTM D422-Test Method for Particle Size Analysis of Soils.
2. ASTM D1556 - Test Method for Density of Soil In-Place by the Sand Cone Method.
3. ASTM D1557 - Test Methods for Moisture-Density Relations of Soils and Soil Aggregate Mixtures Using $10-\mathrm{lb}$. Rammer and 18 -inch Drop.
4. ASTM D2216 - Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass.
5. ASTM D2419-Test Method for Sand Equivalent Value of Soil/Fine Aggregate.
6. ASTM D2497-Standard Test Method for Classification of Soils for Engineering Purposes.
7. ASTM D2937 - Standard Test Method for Density of Soil in Place by the DriveCylinder Method.
8. ASTM D6938 - In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth).
B. Standard Specifications for Public Works Construction (SSPWC).

### 1.04 QUALITY ASSURANCE/CONTROL

A. The Earthwork CONTRACTOR shall adhere to the requirements of Section 01400 of these Specifications.
B. Compaction testing of engineered fill and backfill shall be performed by the CQA CONSULTANT. Testing shall be performed at locations to be determined by the CQA CONSULTANT, in order to determine if the soils meet the compaction requirements. Costs for testing to verify compaction and soil moisture content will be assumed by the OWNER. The cost of retesting, should corrections to construction be required, shall be the responsibility of the Earthwork CONTRACTOR.
C. The OWNER shall have complete authority to order immediate stoppage of work due to use of improper construction procedures, or for any reason that in his sole opinion, may result in a defective work.

### 1.05 DEFINITIONS

A. Excavation: Consists of the removal of material encountered to subgrade elevations and the reuse or disposal of materials removed.
B. Subgrade: The surface upon which structures/systems/fills are constructed.
C. Borrow: Soil material obtained from other than the excavation.
D. Unauthorized excavation consists of removing materials beyond indicated subgrade elevations or dimensions without direction by the PROJECT MANAGER. Unauthorized excavation, as well as remedial work directed by the PROJECT MANAGER, shall solely be at the Earthwork CONTRACTOR's expense.
E. Utilities include on-site above ground and underground pipes, conduits, ducts, and cables, as well as underground services.
1.06 SAFETY
A. CONTRACTOR is solely responsible for performing work in a safe manner and complying with all applicable local, state and federal codes, ordinances, laws, and regulations.
B. CONTRACTOR shall comply with the requirements of the Health and Safety Plan.

## PART 2 PRODUCTS

### 2.01 MATERIALS

A. Structural Fill

1. Structural Fill shall be removed from the on-site borrow area(s) designated by the OWNER. Material shall be predominantly free from roots, wood, organic matter,
refuse or other deleterious matter, and shall not contain particles over 6 inches in greatest dimension.
2. The OWNER has designated on-site borrow source(s) for the CONTRACTOR. The CONTRACTOR shall be responsible for excavating, loading, hauling, placing and compacting the material from the designated borrow source(s).
B. Clay Liner (see Section 02220)
C. Operations Layer (see Section 02228)
D. Trench Backfill
3. Trench Backfill shall be removed from the on-site borrow area(s) designated by the OWNER. Material shall be predominantly free from roots, wood, organic matter, refuse or other deleterious matter, and shall not contain particles over 1 inch in greatest dimension.
4. The OWNER has designated on-site borrow source(s) for the CONTRACTOR. The CONTRACTOR shall be responsible for excavating, loading, hauling, placing and compacting the material from the designated borrow source(s).
E. Water
5. Water shall be potable water or reclaimed water approved for use by OWNER.
6. The OWNER will provide water for dust control and soil preparation to the Earthwork CONTRACTOR at no cost to the Earthwork CONTRACTOR.
7. The CONTRACTOR shall only obtain water from sources designated by the OWNER.

## PART 3 EXECUTION

### 3.01 GENERAL

A. The Earthwork CONTRACTOR shall be solely responsible for the satisfactory completion of all earthwork in accordance with the Drawings and Specifications.
B. Equipment used in the excavation, transport, placement and compaction of all materials used in construction will be standard of practice grading machinery of known specifications suitable for performing the required work in a timely and efficient manner.
C. All material considered by the CQA CONSULTANT to be unsuitable for use in the construction of the earthwork shall be removed. All materials incorporated as part of engineered fill must be inspected and placement must be observed by the CQA CONSULTANT. Unsuitable material shall be disposed of in the designated area.
D. Where work is interrupted by heavy rains, earthwork operations shall not be resumed until observations and field tests by the CQA CONSULTANT indicate the moisture
content and density of the in-place fills and/or materials intended for placement are within the specified requirements.
E. If any unanticipated earth conditions of an adverse or potentially adverse nature are encountered during grading, the Earthwork CONTRACTOR shall immediately notify the CQA CONSULTANT. The CQA CONSULTANT and DESIGN ENGINEER shall investigate, analyze, and make recommendations to mitigate these conditions.
F. Throughout construction, all excavated and/or fill areas shall be graded to provide positive drainage and prevent ponding of water. Surface water shall be controlled to avoid damage to adjoining properties or to finished work on the site.
G. No heavy equipment shall be permitted to operate within 3 feet of existing wellheads or piping. Compaction of material within these limits shall be completed with hand equipment.
H. The Earthwork CONTRACTOR shall apply water to any exposed earthen areas during construction to minimize airborne dust. This shall include active and inactive excavation areas, haul roads, and any non-vegetated stockpiles. The Earthwork CONTRACTOR shall be responsible for complying with all state and local regulations regarding dust and/or air quality.
I. Earthwork CONTRACTOR shall not use "paddle-wheel" (i.e., Caterpillar 613 or equivalent) equipment to excavate soils.
J. Earthwork CONTRACTOR shall provide manned traffic control (e.g., flagman) at locations identified by Owner and/or Contractor as being a potential safety hazard.

### 3.02 CONTROL OF WATER

A. The Earthwork CONTRACTOR shall excavate and backfill in a manner and sequence that will provide proper drainage at all times. The Earthwork CONTRACTOR shall remove all water, including runoff and run-on collected from rainwater encountered during excavation, to a location approved by the PROJECT MANAGER, by pumps, drains, and other approved methods.
B. The Earthwork CONTRACTOR shall take all necessary precautions to preclude the accidental discharge of fuel, oil, etc. and to prevent such accidents that may endanger the environment. The Earthwork CONTRACTOR will be responsible for the cost of remediating the results of any such discharges or accidents.

### 3.03 BORROW

A. CONTRACTOR shall submit the proposed limits of the borrow area to the OWNER for approval prior to the commencement of the Work. The maximum limits of the borrow area are shown on the Drawings.
B. The gradients of the borrow slopes and the depth of the borrow excavation should not exceed those specified on the Drawings. If the slopes are constructed steeper or the depth of the borrow excavation is greater than that specified on the Drawings, the CONTRACTOR shall reconstruct the slopes/refill the bottom to the gradients/depth
specified by backfilling and compacting material in accordance with the requirements for engineered fill in this Section. The cost to reconstruct the slopes/refill the bottom will be borne solely by the CONTRACTOR.
C. The CONTRACTOR shall maintain a secure work site at all times.

### 3.04 STRUCTURAL FILL

A. Prior to placing structural fill, CONTRACTOR shall clear and grub the area in accordance with Section 02110 of these Specifications. CONTRACTOR shall also remove uncertified existing fills, disturbed soils and deleterious materials from the area to the satisfaction of the CQA CONSULTANT.
B. The ground surface (i.e. areas with less than $10 \%$ slope) to receive fill shall be over excavated a minimum of 2 feet. The base of the excavation shall be scarified to a depth of 8 inches. The scarified ground surface shall then be brought to within 3 percent of optimum moisture content, mixed as required, and compacted to a minimum of 90 percent of the maximum dry density as determined by ASTM D1557. Excavated soil may be used for filling the excavation if placed in accordance with the structural fill requirements. If the scarified zone is greater than 12 inches in depth, the excess shall be removed, placed in loose lifts not to exceed 8 inches in loose thickness. Prior to fill placement, the ground surface to receive fill shall be stabilized and inspected by the CQA CONSULTANT.
C. Fill placed against existing slopes (i.e., areas with greater than $10 \%$ slope) shall be keyed into the slope. Keys shall extend a minimum of 6 feet horizontally into the existing slope. The keys shall form a series of steps in the existing fill.
D. Fill shall be placed in loose lifts not to exceed 8 -inches thick, brought to a uniform moisture content within 3 percent of optimum, and compacted to 90 percent of the maximum dry density as determined by ASTM DI557.
E. Where tests indicate the moisture content or density of any layer of fill or portion thereof is below the Project requirements, the particular layer or portion thereof shall be reworked until the required moisture or density has been attained. No additional fill shall be placed over an area until the prior fill lift has been tested and meets the present requirements to the satisfaction of the CQA CONSULTANT.
F. In the event of rain or other reason, if the moisture content of previously placed fill material or processed soils intended for placement is more than 3 percent above optimum as determined by ASTM D1557, the fill material shall be aerated by blading, disking, or other satisfactory method until the moisture content complies with the requirements of this Section. Any previously compacted materials which are disturbed (aerated, bladed, etc.) to reduce or increase the moisture content must be recompacted to the Specifications and to the satisfaction of the CQA CONSULTANT once specified moisture contents are attained.

### 3.05 SURFACE PREPARATION

A. All surfaces to be overlain by geosynthetics shall be smooth, uniformly sloped (minimum 5\%), firm, and free of rocks, protrusions, or depressions greater than $0.5-$
inch in maximum dimension. The Earthwork CONTRACTOR shall consider that manual removal/repair of unacceptable areas may be required and shall be considered inherent to the work described herein.

### 3.06 TRENCH EXCAVATION AND BACKFILL

A. All trenches shall be excavated to lines and grades and dimensions indicated on the Drawings. All trench excavation, backfill, and compaction shall be in accordance with pertinent provisions of this Section.
B. All pipe work placed inside the trenches shall have a minimum of 8 -inch clearance from any protrusions from the trench side walls or bottom.
C. The Earthwork CONTRACTOR shall backfill excavated trenches as promptly as progress of the work permits and immediately after the pipe has been laid, jointed, and tested.
D. The trench bottom shall be compacted to provide a uniform bed for the pipe. Backfill material shall be placed around the pipe and shall be compacted by hand-tamping, or methods acceptable to the CQA CONSULTANT.
E. The Earthwork CONTRACTOR shall compact the select engineered fill for trench backfill to at least 90 percent of the maximum dry density and within 3 percent of the optimum moisture content as determined in accordance with ASTM D1557.
F. Trench backfill shall be placed as shown on the Drawings. The backfill shall not be placed at ambient temperatures below $41^{\circ} \mathrm{F}$ nor above $100^{\circ} \mathrm{F}$ unless otherwise specified. The material shall be placed in a manner that does not cause movement or excessive wrinkling of, or induce excessive wrinkling of the geosynthetics. The CONTACTOR shall not operate equipment directly on any geosynthetics.

### 3.07 TOLERANCES

A. All material limits shall be constructed within a tolerance of $\pm 1.0 \mathrm{ft}$ for horizontal State Plane coordinates, 0 to +0.1 ft vertical for reference to mean sea level (MSL), and 0 to +0.1 ft where dimensions are shown or specified as a minimum. The plane of the surface shall not vary more than 0.10 feet when measured with a 10 -foot straight edge.

### 3.08 EXCAVATION BELOW GRADE

A. All excavation shall be performed within the limits of the work to the lines, grades, and elevations indicated and specified herein. The Earthwork CONTRACTOR shall not excavate or remove materials beyond indicated subgrade elevations or dimensions without the approval of the PROJECT MANAGER. The Earthwork CONTRACTOR shall backfill and compact any unauthorized excavation to the satisfaction of the PROJECT MANAGER at no additional cost to the OWNER.
B. When acceptable to the PROJECT MANAGER, lean concrete may be used to bring the bottom elevation of excavations under footings or trenches to correct elevations.

## END OF SECTION

## SECTION 02220

## COMPACTED CLAY LINER

## PART 1 GENERAL

### 1.01 SCOPE OF WORK

A. Furnish all labor, materials, tools, supervision, transportation, and installation equipment necessary for the construction of the Compacted Clay Liner (CCL), as specified herein, as shown on the Construction Drawings, and in accordance with the Construction Quality Assurance (CQA) Plan.
B. Contractor shall construct the CCL to the elevations, lines, grades, and dimensions as shown on the Plans and described in the Specifications, unless otherwise directed by the Engineer.
C. Process, moisture condition, and transport clay from stockpiled low permeability clay source.
D. Construct the CCL in conjunction with the installation and construction of the other components of the liner system.
E. Contractor shall use clay from the approved Pecten claystone borrow source shown on the Construction Drawings. Alternate clay sources which meet the requirements of this Section may be used if approved by the Owner and Engineer, the Regional Water Quality Control Board (RWQCB), and the Department of Toxic Substances Control (DTSC).
F. The clay borrow source may contain some gypsum debris. The Contractor shall remove large and easily recognizable pieces of gypsum and debris. Gypsum and debris must be removed prior to clay placement. Removal is considered part of the cost of clay placement.

### 1.02 RELATED SECTIONS

A. Section 01300 - Submittals.
B. Section 01402 - Control of the Work.
C. Section 02200 - Earthwork.
D. Section 02751 - HDPE Geomembranes.

### 1.03 REFERENCES

A. ASTM D422 - Standard Test Method for Particle Size Analysis of Soils.
B. ASTM D854-Standard Test Methods for Specific Gravity of Soils.
C. ASTM D1140 - Standard Test Methods for Amount of Material in Soils Finer than the No. 200 Sieve.
D. ASTM D1556 - Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method.
E. ASTM D1557 - Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort.
F. ASTM D1587 - Standard Practice for Thin-Walled Tube Geotechnical Sampling of Soils.
G. ASTM D2216 - Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil, Rock, and Soil-Aggregate Mixtures.
H. ASTM D2487 - Standard Test Method for Classification of Soils for Engineering Purposes (Unified Soil Classification System).
I. ASTM D4318 - Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils.
J. ASTM D5084 - Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter.
K. ASTM D6938 - Standard Test Method for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth).

### 1.04 REGULATORY REQUIREMENTS

Permits: Contractor shall obtain and comply with the appropriate local, state, and federal permits and licenses required for all Work performed on the site.

### 1.05 QUALITY ASSURANCE

A. Construction Quality Assurance (CQA) monitoring shall be the responsibility of the Owner or Owner's Representative in accordance with the approved CQA Plan.
B. Quality control testing associated with filling and compaction operations shall be performed by the Owner or Owner's Representative in compliance with the CQA Plan and this Specification. The Contractor shall assist the Owner or Owner's Representative in obtaining clay samples at the frequencies provided in the CQA Plan.
C. Contractor shall give advance notice of at least 24 hours to the Owner or Owner's Representative when ready for compaction or subgrade testing and inspection.
D. Contractor shall give advance notice of at least 24 hours to the Owner or Owner's Representative prior to commencement of proof rolling.

### 1.06 TOLERANCES

A. The final surface of the finished clay liner shall be within +0.0 feet to +0.2 feet of the design thickness. The Contractor shall not be reimbursed for material that exceeds +0.2 feet.

## PART 2 PRODUCTS

### 2.01 CLAY

A. The clay liner material shall be obtained from the Pecten Claystone borrow source as shown on the Construction Drawings. Based on field permeability testing completed by Geosyntec in 2008, the Pecten Claystone, when processed, has a field permeability of less than $1 \times 10^{-7} \mathrm{~cm} / \mathrm{sec}$.
B. Clay liner material shall:

1. Be clean soil free of debris, rocks, any particles greater than 1 inch in maximum dimension, and other deleterious material.
2. Be classified as CH, CL, ML, SM, or SC in accordance with ASTM D2487.
3. Have a minimum of 30 percent passing the \#200 sieve.
C. The in-situ Pecten Claystone may not meet the requirements of this Specification for moisture content. Processing of this material shall be required prior to its placement. At a minimum, the Contractor shall process and moisture condition the clay in accordance with the "Test Fill and Infiltrometer Test Results" report for the Phases I and II clay liner (Environmental Solutions, Inc.; 1992). The Contractor may elect to use alternative processing and moisture conditioning methods. Alternative methods may require a test pad and field permeability test (i.e., Sealed Double-Ring Infiltrometer) to demonstrate that this Specification is met as well as to evaluate the appropriate compaction specification and associated correction factor.
D. If another clay source (other than the Pecten Claystone) is required to complete the work, that alternative clay source shall be approved by the Owner, Engineer, RWQCB, and DTSC. In order to obtain said approval, clay material obtained from the alternative source shall be laboratory and field tested to demonstrate that the clay meets the requirements in items 2.01 A and B of this Section. It should be noted that the field permeability test requires a minimum of 8 weeks to complete.

### 2.02 EQUIPMENT

A. Provide equipment to transport clay from borrow source to project site.
B. Provide heavy compaction equipment sufficient to obtain the densities specified. Equipment shall be similar to that used for the Phases I and II clay liner test pad construction (reference Environmental Solutions, Inc. 1992 report).
C. Locations inaccessible to heavy equipment shall be compacted by means of manually controlled pneumatic or vibrating tampers or by Owner-approved equivalent methods to achieve specified densities.
D. Operate compaction equipment in strict accordance with the manufacturer's instructions and recommendations. If inadequate densities are obtained, provide larger and/or different types of additional equipment at no cost to the Owner.
E. Provide water application equipment free of leaks and equipped with a distributor bar or other accepted device to ensure uniform application.
F. Provide processing equipment suitable for providing a material that has uniform moisture content.

## PART 3 EXECUTION

### 3.01 GENERAL

## The Contractor shall:

A. Excavate, process for size and moisture content, and stockpile clay from the approved borrow source.
B. Transport processed and moisture conditioned clay from stockpile to the project area.
C. Verify that the survey control system is installed and properly protected from construction operations prior to all earthwork, including clay placement.
D. Placement of successive clay layers shall not begin until the Owner or CQA Consultant has accepted the previous layer. Any damage to the previous layer or deterioration subsequent to acceptance shall be repaired by the Contractor to the satisfaction of the Owner or CQA Consultant at the expense of the Contractor.
E. Fill and compact all holes and other depressions prior to placement of clay.
F. Fill areas to contours and elevations shown on the Drawings.
G. Maintain surface of clay at the minimum grades for drainage shown on the Drawings.
H. Place and compact clay in continuous layers not exceeding 6 inches in compacted thickness. The CONTRACTOR shall implement a systematic method to ensure lift thickness is in compliance with this Specification. Preferred systems include laser levels and global positioning system (GPS). If lath stakes are utilized in the control of grades / thickness then the CONTRACTOR shall ensure recovery of all stakes by implementing a control numbering system. Grade control systems shall be approved by the CQA CONSULTANT.
I. Material incorporated into clay, determined by the OWNER or CQA CONSULTANT to be in violation of Specification requirements, shall be removed by the CONTRACTOR at the CONTRACTOR's expense.
J. Protect stockpiles so that stockpiled material remains in a condition suitable for use on the project.
K. Transport borrow materials over land or roads designated by the OWNER or CQA CONSULTANT. Perform perimeter/access road maintenance including dust control by sprinkling with water as needed or by other suitable means accepted by the Owner or CQA CONSULTANT. Additionally, road maintenance shall include periodic grading, as necessary, to remove ruts and to maintain construction access roads in a safe and sound condition.
L. Obey all applicable laws where borrow materials are transported along public roads, including but not limited to, laws relating to vehicle speed, vehicle weight, and covering of loads.

### 3.02 COMPACTED CLAY LINER

A. Work associated with construction of the CCL includes: processing and moisture conditioning clay from borrow sources, any supplementary processing and moisture conditioning of clay at the area of placement to achieve the required moisture content and texture, spreading and compaction of clay layers, and protection of the completed work. The work also includes supplying of all labor and equipment necessary to achieve the construction in accordance with the Drawings and Specifications or as directed by the OWNER or CQA CONSULTANT.
B. The CONTRACTOR shall be responsible for verification that material that does not meet the Specifications is removed from the clay prior to placement.
C. The clay material shall be compacted to a dry density and moisture content that lies within the compaction window bounded by the following 4 points on a moisture contentdry density plot (where optimum moisture and maximum dry density are obtained using the ASTM D1557 test method):
a. 2 percent above the optimum moisture content for a relative compaction of 90 percent.
b. 5 percent above the optimum moisture content for a relative compaction of 90 percent.
c. 3 percent above the optimum moisture content for a relative compaction of 97 percent.
d. 1 percent above the optimum moisture content for a relative compaction of 98 percent.

Up to 20 percent of the moisture content-dry density compaction tests per equipment spread per day are allowed to lie slightly outside of the compaction window defined above if the following conditions are met:
a. The moisture content is within $\pm 0.5$ percent of the specified compaction window.
b. The relative compaction is within -0.5 percent of the specified compaction window.
c. The average for all acceptable tests per equipment spread per day falls within the compaction window described above.

Moisture content and dry density shall be used as an indicator, but the primary requirement for the clay liner is a maximum permeability of $1 \times 10^{-7} \mathrm{~cm} / \mathrm{sec}$.
D. Changes to the above compaction specification shall require approval of the Owner, Engineer, CQA Consultant, RWQCB, and DTSC. Modifications will likely require demonstration through a test pad and field permeability test that the modified procedures are acceptable.
E. Clay shall be compacted with a Caterpillar 825 Sheepsfoot Compactor or Rex 3-35 Pad Foot Compactor (or heavier equipment) with a minimum of four complete passes.
F. CONTRACTOR shall take adequate measurements to prevent moisture loss from and desiccation of the CCL.
G. CONTRACTOR shall scarify the top of each lift and confirm the moisture content is acceptable prior to placement of the overlying lift.
H. Clay shall not be placed and compacted if the ambient air temperature drops below $32^{\circ} \mathrm{F}$.
I. CONTRACTOR shall seal the last and uppermost layer of CCL, after achieving the compaction and permeability requirements, with two passes of a single drum smooth roller. The final lift shall be suitable for placement of the geomembrane liner (Section 02751).
J. Where test results indicate that the lift thickness, maximum particle size, in-place density/moisture content, and/or permeability of any portion of the clay does not meet the specified requirements, that particular portion shall be re-tested by the OWNER or CQA CONSULTANT and/or re-worked or replaced by the CONTRACTOR at his expense until the required condition has been attained and the resulting product meets or exceeds the Specification requirements. No additional fill shall be placed over an area until the existing fill has been tested horizontally and vertically and determined by the OWNER or CQA CONSULTANT to meet the requirements of this Specification.
K. Upon placement, if test results indicate densities or moisture contents outside the specified compaction window, then two additional field density/moisture content tests shall be conducted in the immediate area. If either of these tests fail to meet the compaction requirements, the area shall be considered inadequate and shall be reworked by the CONTRACTOR. Any reworked areas shall be re-tested by the OWNER or CQA CONSULTANT to assure the reworked area meets the density and moisture content requirements.
L. If the laboratory permeability value exceeds $1.0 \times 10^{-7} \mathrm{~cm} / \mathrm{sec}$, then two (2) additional tests of the same type shall be taken by the OWNER or CQA CONSULTANT in the immediate vicinity. If either of the additional tests fails to meet the minimum requirements, the area represented by the test shall be considered inadequate and shall be removed or reprocessed and recompacted by the CONTRACTOR at his expense.
M. If at any time the OWNER or CQA CONSULTANT observes an uncompacted lift thickness in excess of eight inches or observes materials being placed without the required mixing, processing, or stockpiling, the CONTRACTOR shall immediately discontinue placing additional fills in that area. For an over-thick lift, the CONTRACTOR shall immediately blade the surface to reduce the lift to an acceptable thickness at his expense.
N. Prior to placement of the geomembrane liner, all clay surfaces shall be observed for any particles greater than 1 inch in size, and oversize materials shall be removed. The final surface shall be rolled smooth to remove protrusions of $1 / 2$ inch or greater, to the satisfaction of the CQA Consultant and the Geosynthetics CONTRACTOR.

## END OF SECTION

[ THIS PAGE WAS INTENTIONALLY LEFT BLANK ]

## SECTION 02228

## OPERATIONS LAYER

## PART 1: GENERAL

### 1.01 DESCRIPTION

A. This section describes the requirements for placement of operations layer material associated with the performance of the Work.

### 1.02 SUBMITTALS

A. An earthwork operations plan and schedule shall be submitted to the Owner.
1.03 QUALITY ASSURANCE
A. The Contractor shall make allowances for sampling and testing by the CQA Engineer in both his production operations and schedule.

### 1.04 TOLERANCES

A. The final surface of the finished operations layer shall be within +0.0 feet to +0.2 feet of the design thickness. The Contractor shall not be reimbursed for material that exceeds +0.2 feet.

PART 2: PRODUCTS

### 2.01 OPERATIONS LAYER MATERIAL

A. Materials shall consist of on-site soil materials meeting the requirements for Structural Fill in Section 02200 of these Specifications with the additional particle size requirements in Articles 2.01.B and 2.01.C below.
B. The maximum particle size for the operations layer material shall be as follows:

- Material to be placed on or within 0.5 -feet of the geosynthetic liner: 1-inch in largest dimension;
- Material to be placed at a distance greater than 0.5 feet of geosynthetic liner: 2 -inches in largest dimension.
C. Material shall form a firm and stable base when placed.


## PART 3: EXECUTION

### 3.01 PLACEMENT OF OPERATIONS LAYER

A. Operations layer shall be placed over the geocomposite across the base area to the extent and thicknesses shown on the drawings. On the sideslopes, operations layer shall be placed up the slopes a maximum of 10 vertical feet ahead of the rising waste mass. The final elevation of the operations layer shall be approximately 2 feet above the permitted waste level.
B. Prior to placement of operations layer material, final inspection of the geocomposite by the CQA Engineer will be made to verify integrity.
C. Hauling and placing equipment shall operate on a minimum of 3 feet of material over any geosynthetic layer. Equipment with maximum ground pressure of 6 psi may operate on a minimum of 1 foot of material.
D. The Contractor shall take steps to minimize wrinkle generation in the geosynthetic materials during placement of the operations layer. These measures may include placing material in the early morning hours when the geosynthetic materials are cool and monitoring and walking out wrinkles in the geosynthetic materials that appear at the face of the placement operation. Wrinkles which may fold and or crease shall be removed and repaired in accordance with the specifications.
E. There is no compaction requirement for operations layer placement.

## END OF SECTION

## SECTION 02725

HDPPE PIPE

## PART 1 GENERAL

### 1.01 DESCRIPTION

A. This section describes the requirements for the manufacture, supply, installation, and quality control (QC) of high density polyethylene (HDPE) pipes, fittings and connections.

### 1.02 SUBMITTALS

A. Prior to the delivery of any HDPE pipe to the site, Earthwork CONTRACTOR shall submit to ENGINEER for review and approval complete, detailed shop drawings of all HDPE pipe and fittings, a list of materials to be furnished, the name of the pipe manufacturer, and the manufacturer's recommendations for handling, storage, and installation.
B. Earthwork CONTRACTOR shall also submit the pipe manufacturer's certification of compliance with the Specifications, including certification that stress regression testing has been performed in accordance with ASTM D2837, for all HDPE pipe materials delivered to the site.
C. In addition to the certification cited above, Earthwork CONTRACTOR shall submit in writing the following documentation of the pipe manufacturer on the raw materials used to manufacture the pipe and fittings:

1. certificate of compliance stating the specific resin, its source, and the information required by ASTM D3350; if in-plant blending of the resin is performed, the pipe manufacturer shall provide a certificate of compliance stating that the blended resin meets the requirements of ASTM D3350; and
2. certificate of compliance stating that no recycled resin was used in manufacturing the pipe except for a small percentage (i.e., less than 10 percent) of resin generated in the pipe manufacturer's own plan from production using the same resin as the recycled material.

### 1.03 REFERENCES

A. The American Society for Testing and Materials (ASTM), latest editions:

1. ASTM D1603 - Standard Test Method for Carbon Black in Olefin Plastics
2. ASTM D1693 - Standard Test Method for Environmental Stress-Cracking of Ethylene Plastics
3. ASTM D2657 - Standard Practice for Heat-Joining for Polyolefin Pie and Fittings
4. ASTM D2837 - Test Method for Obtaining Hydrostatic Design Basis for Thermoplastic Pipe Materials

## 5. ASTM D3350 - Standard Specification for Polyethylene Plastics Pipe and Fittings Materials

6. ASTM F714 - Standard Specification for Polyethylene (PE) Plastics Pipe (SDR-PR) Based on Outside Diameter

### 1.04 RELATED SECTIONS

A. Section 02200 - Earthwork

## PART 2 PRODUCTS

### 2.01 MATERIALS

A. HDPE pipe shall be of the diameter and SDR rating (per ASTM F714) as indicated on the plans.
B. The HDPE pipe and fittings shall be manufactured from new, high molecular weight, high density polyethylene (HDPE) resin conforming to ASTM D3350 (Type III, Class C Category 5, Grade P 64), pipe cell classification PE 345464C according to ASTM D3350, and having a Plastic Pipe Institute (PPI) Rating of PE 3408. The resin shall be precompounded. In plant blending of non-compounded resins shall be permitted if the manufacturer provides a certificate of compliance that the blended resin conforms to the requirements of the Specifications. Pipe and fittings shall be manufactured from the same resin and by the same manufacturer.
C. The polyethylene compound shall contain a minimum of 2 percent carbon black (per ASTM D1603) to withstand outdoor exposure without loss of properties.
D. The polyethylene compound shall have a minimum resistance of 5,000 hours when tested for environmental stress crack in accordance with requirements of ASTM D1693.

### 2.02 HDPE PIPE AND PIPE FITTINGS

A. Earthwork CONTRACTOR shall provide HDPE pipe having the nominal diameters specified herein and shown on the Drawings.
B. HDPE pipe and fittings shall have a minimum hydrostatic design basis (HDB) of 1,600 pounds per square inch (psi) when determined in accordance with ASTM D2837 unless otherwise indicated herein or on the Drawings.
C. HDPE pipe shall be supplied in standard laying lengths not exceeding 50 feet.
D. HDPE pipes and fittings shall be homogeneous throughout and free of visible cracks, holes, (i.e., other than intentional manufactured perforations), foreign inclusions, or other deleterious effects, and shall be uniform in color, density, melt index, and other physical properties.
E. Fittings at each end of pipes shall consist of HDPE end caps unless indicated otherwise herein or on the Drawings.

### 2.03 LABELING

A. The following shall be continuously indent-printed on the HDPE pipe, or spaced at intervals not exceeding 5 feet:

1. name and/or trademark of the pipe manufacturer;
2. nominal pipe size;
3. pipe stiffness;
4. the letters PE followed by the polyethylene grade per ASTM D3350, and by the Hydrostatic Design Basis in 100's of psi (e.g., PE 3408);
5. test method references (e.g., ASTM D2412); and
6. a production code from which the date and place of manufacture can be determined.

## PART 3 EXECUTION

### 3.01 GENERAL

A. Transportation of HDPE pipe and fittings shall be the responsibility of Earthwork CONTRACTOR. Earthwork CONTRACTOR shall be liable for all damage incurred prior to and during transportation to the site.
B. Handling, storage, and care of the HDPE pipe and fittings prior to and following installation at the site is the responsibility of Earthwork CONTRACTOR. Earthwork CONTRACTOR shall be liable for all damage to the material incurred prior to final acceptance of the project by OWNER.
C. Earthwork CONTRACTOR shall be responsible for storage of HDPE pipe and fittings at the site. Pipe and fittings shall be stored on clean level ground, preferable turf or sand, free of sharp objects which could damage the pipe. Stacking shall be limited to a height that will not cause excessive deformation of the bottom layers of pipe under anticipated temperature conditions. Where necessary, due to ground conditions, the pipe shall be stored on wooden sleepers, spaced suitable and of such width as not to allow deformation of the pipe at the point of contact with the sleeper or between supports. The pipe shall be stored out of direct sunlight (i.e., to minimize pipe bowing). Earthwork CONTRACTOR shall also comply with the pipe manufacturer's recommendations for handling, storage, and installation of HDPE pipe and fittings.
D. Earthwork CONTRACTOR shall exercise care when transporting, handling and placing HDPE pipe and fittings such that they will not be cut, kinked, twisted, or otherwise damaged. Ropes, fabric, or rubber-protected slings and straps shall be used when handling pipe. Slings, straps, etc., shall not be positioned at butt-fused joints. Chains, cables or hooks shall not be inserted into the pipe ends as a means of handling pipe. Pipe or fittings shall not be dropped onto rocky or unprepared ground. Under no circumstances shall pipe or fittings be dropped into trenches, or dragged over sharp objects.
E. Earthwork CONTRACTOR shall carefully examine all pipe and fittings for cracks, damage, or defects before installation. Defective or damaged materials shall be immediately removed from the site and replaced at no additional cost to OWNER.
F. The maximum allowable depth of cuts, gouges or scratches on the exterior surface of pipe or fittings is 10 percent of the wall thickness. The interior of the pipe and fittings shall be
free of cuts, gouges and scratches. CQA CONSULTANT will inspect all pipes. Sections of pipe with excessive cuts, gouges or scratches will be rejected and Earthwork CONTRACTOR shall be required to remove and replace the rejected pipe, at no additional cost to OWNER.
G. Whenever pipe laying is not actively in progress, the open end of pipe that has been placed shall be closed using a watertight cap.
H. The interior of all pipe and fittings shall be inspected and any foreign material shall be completely removed from the pipe interior before it is moved into final position.
I. Field-cutting of pipes, when required, shall be made with a machine specifically designed for cutting pipe. Cuts shall be carefully made, without damage to pipe or lining, so as to leave a smooth end at right angles to the axis of pipe. Cutter ends shall be tapered and sharp edges filed off smooth. Flame cutting will not be allowed.
J. No pipe shall be laid until CQA CONSULTANT has observed the condition of the pipe.
K. No pipe shall be brought into position until the preceding length has been bedded and secured in its final position.
L. Blocking under piping shall not be permitted unless specifically accepted by PROJECT MANAGER for special conditions or as indicated on the Drawings.
M. Pipe will be inspected in the field before and after placement in the trench. If upon inspection, pipe is found not to be in compliance with the Specifications, it shall be subject to rejection. Any corrective work shall be approved by CQA CONSULTANT. The costs for the corrective work shall be at Earthwork CONTRACTOR's sole expense. Pipe shall be laid to the line and grade shown on the Drawings, with uniform bearing under the full length of the barrel of the pipe. Any pipe which is not in true alignment or shows any undue settlement after laying shall be taken up and relaid at Earthwork CONTRACTOR's sole expense. The joining of the pipe shall be in accordance with the manufacturer's written instructions and the Specifications, as approved by PROJECT MANAGER.
N. All placed pipes shall be surveyed along the top of the pipe to complete the record drawings prior to backfilling. All start points, angle joints, junctions, connections, and end points of the pipe shall be surveyed. All survey work shall conform to the quality and practice required by CQA CONSULTANT, specified herein, and in the CQA Plan.
O. Both during the construction period and immediately prior to acceptance of the construction work by OWNER, Earthwork CONTRACTOR shall keep the pipe freedraining and free of rocks, soil, and debris.
P. Earthwork CONTRACTOR shall provide all necessary adapters and/or pipe connection pieces required when connecting different types and sizes of pipe or when connecting pipe made by different manufacturers. Earthwork CONTRACTOR shall weld flanges to existing Stainless Steel pipes in Phase II for connection of new HDPE pipe.
Q. HDPE pipe shall be jointed with butt fusion joints or eletro-fusion couplers. All joints shall be made in strict compliance with the pipe manufacturer's recommendations and ASTM D2657. Use of adhesives or solvents in the joints will not be allowed.
R. Testing of the HDPE pipe after backfilling and compaction shall be required. Testing shall be performed by Earthwork CONTRACTOR and shall include pulling a test mandrel through the pipe, as specified in Section 306-1.2.12 of the SSPWC. This test will be used to ensure that the pipe has not been excessively deformed, crushed, or blocked during backfilling. Alternative test procedures will require approval by PROJECT MANAGER. Any corrections required due to test failure as evaluated by CQA CONSULTANT, shall be at Earthwork CONTRACTOR's sole expense.

END OF SECTION

## SECTION 02751

## HDPE GEOMEMBRANES

## PART 1 GENERAL

### 1.01 SUMMARY

A. This Section describes the requirements for the manufacture, supply, installation, and quality assurance/quality control (QA/QC) of high density polyethylene (HDPE) geomembranes associated with the construction of Phase 111 of Landfill Unit B-18 at the Kettleman Hills Facility.
B. The following two types of HDPE geomembranes shall be used for the Project:

1. 60 -mil double-sided textured HDPE geomembrane shall be used for the primary and secondary geomembranes in the Phase III composite sideslope base liner system.
2. 40-mil smooth HDPE geomembrane for the protective cover shall be used for:
i. White protective liner for the Phase 111 composite sideslope liner system.
ii. The liner for the South Stormwater Containment Basin.

### 1.02 RELATED SECTIONS

A. Section 1300-Submittals.
B. Section 02200 - Earthworks.
C. Section 02752-Geotextiles.
D. Section 02774 - Geocomposite.

### 1.03 REFERENCES

A. "Construction Quality Assurance (CQA) Plan for Landfill Unit B-18, Phase III Construction, Kettleman Hills Facility, Kettleman City, California," prepared by Golder Associates Inc., Revision 1, dated February 2010.
B. Latest version of the following American Society for Testing and Materials (ASTM) standards:

1. ASTM D792-Specific Gravity (Relative Density) and Density of Plastics by Displacement.
2. ASTM D1004 - Test Method for Initial Tear Resistance of Plastic Film and Sheeting.
3. ASTM D1238 - Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer.
4. ASTM D1505 - Test Method for Density of Plastics by the Density-Gradient Technique.
5. ASTM D1603 - Test Method for Carbon Black in Olefin Plastics.
6. ASTM D3895 - Test Method for Oxidative Induction Time of Polyolefins by Thermal Analysis.
7. ASTM D4218 - Test Method for Determination of Carbon Black Content in Polyethylene Compounds by the Muffle-Furnace Technique.
8. ASTM D4833 - Test Method for Index Puncture Resistance of Geotextiles, Geomembranes and Related Products.
9. ASTM D5199 - Test Method for Measuring Nominal Thickness of Geotextiles and Geomembranes.
10. ASTM D5321 - Test Method for Determining the Coefficient of Soil and Geosynthetic or Geosynthetic and Geosynthetic Friction by the Direct Shear Method.
11. ASTM D5397 - Procedure to Perform a Single Point Notched Constant Tensile Load - (SP-NCTL) Test: Appendix.
12. ASTM D5596 - Test Method for Microscopic Evaluation of the Dispersion of Carbon Black in Polyolefin Geosynthetics.
13. ASTM D5721 - Practice for Air-Oven Aging of Polyolefin Geomembranes.
14. ASTM D5885 - Test Method of Oxidative Induction Time of Polyolefin Geosynthetics by High Pressure Differential Scanning Calorimetry.
15. ASTM D5994 - Test Method for Measuring the Core Thickness of Textured Geomembranes.
16. ASTM D6693 - Test Method for Determining Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes.
17. ASTM D7238 - Test Method for Effect of Exposure of Unreinforced Polyolefin Geomembrane Using Fluorescent UV Condensation Apparatus.
18. ASTM D7466 - Test Method for Measuring the Asperity Height of Textured Geomembranes.
C. Latest version of the following Geosynthetic Research Institute (GRI) standards:
19. GMIO - The Stress Crack Resistance of HDPE Geomembrane Sheet.
20. GM13 - Test Methods, Test Properties and Testing Frequency for High Density Polyethylene (HDPE) Smooth and Textured Geomembranes.

### 1.04 PRE-QUALIFICATION

A. The Geosynthetic CONTRACTOR shall pre-qualify for geomembrane installation by providing the following documentation:

1. The Geosynthetic CONTRACTOR shall have a minimum of $10,000,000$ square feet (sf) of polyethylene geomembrane cumulative installation experience.
2. The Geosynthetic CONTRACTOR shall provide at least three references from prior geomembrane installation projects in excess of 500,000 sf including the following information:
a. Client's name, address, phone number, and contact/representative's name.
b. Project site name, location, and description.
c. Geomembrane type and quantity installed.

### 1.05 SUBMITTALS

A. Submittals shall be provided in general accordance with Section 01300.
B. HDPE Resin: Furnish the following in writing to the CQA CONSULTANT a minimum of 7 calendar days prior to geomembrane shipment to the site:

1. Statement of production dates and origin of resin used to manufacture the geomembrane for the Project.
2. Certification stating all resin is from the same Manufacturer and that no reclaimed polymer was added to the resin during the manufacturing of the geomembrane and that recycled polymer does not exceed 2 percent by weight.
3. Copies of the quality control certificates issued by the Manufacturer and resin supplier indicating that the resin used to manufacture the geomembrane meets the requirements of these Specifications. These certifications shall contain manufacturing quality control test results, including specific gravity (ASTM D792 or D1505) and melt index (ASTM D1238, Condition E).
C. Manufacturing Quality Control: A copy of the Manufacturer's quality control program shall be submitted to the CQA CONSULTANT a minimum of 7 calendar days prior to geomembrane shipment to the site. Quality control testing shall be performed by the Manufacturer in accordance with GRI-GM13 and as approved by the CQA CONSULTANT. Prior to delivery, the following shall be submitted to the CQA CONSULTANT for review:
4. Certificates for each shift's production of geomembrane.
5. Copies of quality control certificates issued by the Manufacturer. The quality control certificates shall include:
a. Roll numbers, lot numbers, and identification;
b. Sampling procedures; and
c. Results of quality control tests, including descriptions of the test methods used.
6. The results of the manufacturing quality control tests shall meet or exceed the property values listed in Table 02751-1.
7. Geomembrane delivery, storage, handling, and installation instructions.
8. Extrudate Beads and/or Rod:
a. Statement of production dates.
b. Certification stating all extrudate is from one Manufacturer, is the same resin type, and was obtained from the same resin supplier as the resin used to manufacture the geomembrane rolls.
c. Copies of quality control certificates issued by the Manufacturer including test results for specific gravity (ASTM D792 or D1505) and melt index (ASTM D1238, Condition E).
D. Geomembrane Installer: Prior to mobilization of the Geosynthetic CONTRACTOR to the site, the following information shall be submitted:
9. Shop drawings indicating panel layout and field seams at least 14 calendar days prior to installation of geomembrane.
10. Installation schedule.
11. Copy of Geosynthetic CONTRACTOR's letter of approval or license by the geomembrane Manufacturer.
12. Installation capabilities, including:
a. Information on equipment proposed for the Project;
b. Average daily production anticipated for the Project; and
c. Quality control procedures.
13. Copy of the geomembrane Manufacturer's quality control/quality assurance program.
14. Resume of the Field Superintendent to be assigned to the Project, including dates and duration of employment.
15. Resumes of all personnel who will perform seaming operations on the Project, including dates and duration of employment.
16. The geomembrane installation crew shall have the following experience:
a. The Field Superintendent shall have supervised the installation of a minimum of $2,000,000 \mathrm{sf}$ of polyethylene geomembrane.
b. The Master Seamer shall have seamed a minimum of $1,000,000$ sf of polyethylene geomembrane using the same type of seaming apparatus to be used for the Project.
c. All other seaming personnel shall have seamed at least 100,000 sf of polyethylene geomembrane using the same type of seaming apparatus to be used for the Project. Personnel who have seamed less than 100,000 sf of polyethylene geomembrane shall be allowed to seam only under the direct supervision of the Master Seamer or Field Superintendent.
E. During the installation, the Geosynthetic CONTRACTOR shall be responsible for the timely submission to the CQA CONSULTANT of subgrade acceptance certificates, signed by the Geosynthetic CONTRACTOR, for each area to be covered by geomembrane.
F. The Geosynthetic CONTRACTOR shall furnish the OWNER upon completion of the Project:
17. A warranty provided by the Manufacturer against defects in material. Warranty conditions concerning limits of liability shall be evaluated and must be acceptable to the OWNER.
18. A 1-year warranty provided by the Geosynthetic CONTRACTOR against defects in workmanship. Warranty conditions concerning limits of liability shall be evaluated and must be acceptable to the OWNER.
19. As-built panel drawings in compliance with Section 01052.
G. Certificate of calibration less than 12 months old shall be submitted prior to installation for all field tensiometers to be used for the Project.

### 1.06 QUALITY ASSURANCE

A. Perform work in accordance with Section 01400, Section 01410, the Geosynthetic CONTRACTOR'S Quality Control Program, and the Project's CQA Plan.

## PART 2 PRODUCTS

### 2.01 MATERIALS

A. The geomembrane shall be comprised of high density polyethylene (HDPE) material as indicated on the Drawings, manufactured of new, first-quality products designed and manufactured specifically for the purpose of liquid containment in hydraulic structures.
B. The geomembrane shall be produced free of holes, blisters, undispersed raw materials, or any sign of contamination by foreign matter. Any such defect shall be repaired in accordance with the repair procedures in Item 3.06 of this Section.
C. The geomembrane shall be manufactured with a minimum 15.0 -foot seamless width. There shall be no factory seams.
D. The geomembrane shall be either HDPE 60 -mils thick and textured on both sides or HDPE 40 -mils thick and smooth on both sides, as indicated on the Drawings. White liner shall be provided for the protective cover.
E. The geomembrane shall be supplied in rolls. Folds shall not be permitted.
F. Requirements for the HDPE geomembrane properties are presented in Table 02751-1..
G. Resin:

1. Shall be HDPE, new, first-quality, compounded and manufactured specifically for producing HDPE geomembrane.
2. Do not intermix resin types.
3. Shall meet the following additional requirements:

Property	Test Method	Minimum Test   Frequency	Required
Specific Gravity ${ }^{(1)}$	ASTM D792, Method B   or   ASTM D1505	1 per resin batch	$\geq 0.932$
Melt Index	ASTM D1238, Condition E	1 per resin batch	$\leq 1.0$ g per 10   minutes
Note:   (1) Resin without carbon black			

H. Extrudate Rod or Bead:

1. Shall be made from same resin as the geomembrane.
2. Additives shall be thoroughly dispersed.
3. Shall be free of contamination by moisture or foreign matter.
4. Shall meet the following requirements:

Property	Test Method	Minimum Test   Frequency	Required
Specific Gravity	ASTM D792, Method B   or	1 per resin batch	$\geq 0.940$
Carbon Black Content	ASTM DI603	1 per resin batch	$2.0-3.0 \%$
Melt Index	ASTM D1238, Condition E	1 per resin batch	$\leq 1.0 \mathrm{~g}$ per 10   minutes

### 2.02 DELIVERY, STORAGE, AND HANDLING

A. Handling, storage, and care of the geomembrane following transportation to the site shall be the responsibility of the Geosynthetic CONTRACTOR. The Geosynthetic CONTRACTOR shall be liable for all damage to the materials incurred prior to final acceptance of the liner system by the CQA CONSULTANT and OWNER.
B. Conform to the Manufacturer's requirements to prevent damage to the geomembrane.
C. Delivery:

1. Deliver materials to the site only after the CQA CONSULTANT and the OWNER approve all of the required submittals.
2. All rolls of geomembrane delivered to the site shall be identified at the factory with the following:
a. Manufacturer's name.
b. Product identification and thickness.
c. Lot number.
d. Roll number.
e. Roll dimensions and weight.
3. Separate damaged rolls from undamaged rolls and store at locations designated by the OWNER until proper disposition of material is determined by the OWNER and CQA CONSULTANT.
4. The OWNER shall be the final authority regarding damage.
5. Separate rolls without proper documentation and store until CQA CONSULTANT and OWNER approval is received.
D. On-Site Storage:
6. Store in space allocated by the OWNER.
7. Protect from puncture, dirt, grease, water, moisture, mud, mechanical abrasions, excessive heat, and any other damage.
8. Store on a level prepared surface (not on wooden pallets).
9. Stack per Manufacturer's recommendations but no more than three rolls high.
E. On-Site Handling:
10. Use appropriate handling equipment to load, move, or deploy geomembrane rolls. Appropriate handling equipment includes cloth chokers and spreader bar for loading and spreader and roll bars for deployment. Dragging panels on the ground surface shall not be permitted.
11. Do not fold geomembrane material; folded material shall be rejected.
12. The Geosynthetic CONTRACTOR is responsible for storage and transporting material from the storage area to the work area.
F. Damaged Geomembrane:
13. Geomembrane damage shall be documented by the CQA CONSULTANT.
14. Damaged geomembrane shall be repaired, if possible, in accordance with this Section or shall be replaced at no additional cost to the OWNER.

### 2.03 EQUIPMENT

A. Welding equipment and accessories shall meet the following requirements:

1. Equipped with gauges showing temperatures both in apparatus and at nozzle (extrusion welders) or at wedge (fusion welders).
2. Maintain adequate number of welding machines to avoid delaying the Work.
3. Use power source(s) capable of providing constant voltage under combined-line load.
4. Provide secondary containment to catch spilled fuel under electric generators, if located on geomembrane.
B. Provide calibrated tensiometer(s) capable of quantitatively measuring geomembrane seam strength:
5. Equipped with gauge accurate to $\pm 2 \mathrm{lbs}$ per inch of geomembrane width and capable of pulling at 2 inches per minute and 20 inches per minute.
6. Provide one-inch wide die for cutting test specimens.
7. Provide a certificate of calibration for each tensiometer showing that each tensiometer has been calibrated within the past 12 months.

## PART 3 EXECUTION

### 3.01 EXAMINATION

A. The Geosynthetic CONTRACTOR shall document in writing that the surface upon which the geomembrane will be installed is acceptable. In so doing, the Geosynthetic CONTRACTOR shall assume full liability for the accepted surface.
B. The beginning of geomembrane installation means acceptance of existing conditions. The Geosynthetic CONTRACTOR shall be responsible for maintenance of the geomembrane-covered subgrade once installation of geomembrane begins.

### 3.02 PREPARATION

A. Maintain the surface suitability and integrity until the lining installation is completed and accepted.
B. Repair rough areas and any damage to the subgrade caused by installation of the lining and fill any ruts in subgrade caused by equipment prior to geomembrane deployment.
C. To avoid sharp bends in the geomembrane, bevel the leading edges of the anchor trenches.
D. Subgrade shall be smooth, uniform, firm, and free of rocks or other debris. For deployment over soil subgrade, the subgrade shall not contain any protrusions that are greater than 0.25 inches in height from the finished subgrade surface.

### 3.03 DEPLOYMENT

A. Geomembrane shall not be deployed:

1. During precipitation.
2. In the presence of excessive moisture.
3. In areas of ponded water.
4. In the presence of excessive winds (i.e., greater than 20 mph ).
5. In excessive heat (i.e., greater than $I 10^{\circ} \mathrm{F}$ ) or cold (i.e., less than $40^{\circ} \mathrm{F}$ ), unless the Geosynthetic CONTRACTOR is able to demonstrate (i.e., through trial
seams) to the satisfaction of the CQA CONSULTANT that acceptable welds can be made in these temperatures. See 1tems 3.04 .0 and 3.04.P of this Section for cold weather and hot weather seaming procedures, respectively.
B. Each panel shall be marked with an "identification code" (number and/or letter) consistent with the layout plan. The identification code shall be simple and logical. The number of panels deployed in one day shall be limited by the number of panels which can be seamed on that same day. All deployed panels shall be seamed to adjacent panels by the end of each day.
C. The following is the acceptable method of deployment:
6. Use equipment which will not damage geomembrane by handling, trafficking, leakage of hydrocarbons, or any other means.
7. Do not allow personnel working on geomembrane to wear damaging shoes or engage in activities that could damage geomembrane.
8. Smoking on the geomembrane is prohibited.
9. Round sharp comers of clamps and other metal tools used in the work area.
10. Do not allow clamps and other metal tools to be tossed or thrown.
11. Unroll panels using a method that protects geomembrane from scratches and crimps and protects the soil surface and any underlying geosynthetics from damage.
12. Use a method to minimize geomembrane wrinkles, especially differential wrinkles between adjacent panels.
13. Place adequate hold-downs to prevent uplift by wind.
14. Use hold-downs that will not damage geomembrane (such as sandbags).
15. Use continuous hold-downs along leading edges to minimize risk of wind flow under panels.
16. Panels shall be deployed perpendicular to slope elevation contours and the number of seams shall be minimized.
17. Protect geomembrane in heavy traffic areas by geotextile, extra geomembrane, or other suitable materials.
18. Vehicular traffic shall not be allowed on the geomembrane.
19. Panels deployed on grades steeper than $12 \%$ shall extend a minimum of 3 feet beyond the crest or toe of that grade.
20. Shingle or overlap panels in a downward direction to facilitate drainage.
21. Rub sheets used during installation shall be removed prior to placement of subsequent panels.
D. Visually inspect sheet surface during unrolling of geomembrane and mark faulty or suspect areas for repair or testing. Replace faulty (requires more than one patch per 200 square feet) geomembrane stock at no additional cost to the OWNER.

### 3.04 FIELD SEAMING

A. Orient seams perpendicular to slope elevation contours, i.e., orient down (not across) slope and use seam numbering system compatible with panel number system.
B. Minimize the number of field seams, especially in corners, odd-shaped geometric locations, sumps, and outside corners.
C. Overlap panels by a minimum of 3 inches for extrusion welding and 4 inches for fusion welding. Use procedures to temporarily bond adjacent panels together that do not damage the geomembrane and that are not detrimental to the material to be seamed.
D. Do not use solvents or adhesives unless product is approved in writing by the OWNER.
E. For the base liners, no horizontal seams shall be allowed on grades steeper than $12 \%$ or within 3 feet of the crest or toe of slopes. A horizontal seam is defined as more than half of the panel width.
F. Clean geomembrane surface of grease, moisture, dust, dirt, debris, or other foreign material prior to welding.
G. Prior to any extrusion welding, the geomembrane seam or repair shall be prepared as follows:

1. Clean surface of oxidation by disc grinder or equivalent not more than $1 / 2$ hour before seaming; use number 80 grit sandpaper for the disc grinder. Bevel edges of geomembrane before bonding and provide continuous tacking in repair areas.
2. Repair area where excessive grinding substantially reduces sheet thickness by more than 4 mils beyond extent of weld.
3. Clean grinding dust around weld area after grinding.
4. The following procedure shall be followed for wrinkles and fishmouths:
a. Cut along the ridge of the wrinkle or fishmouth.
b. Overlap a minimum of 3 inches and weld.
c. Any portion where the overlap is less than 3 inches shall be patched with an oval or round patch of geomembrane that extends a minimum of 6 inches beyond the cut in all directions.
5. If required, a firm, dry substrate (piece of geomembrane or other material) may be placed directly under the seam overlap to achieve proper support.
6. Keep water from intercepting the weld during and immediately after welding the seam.
7. For existing welds, or welds that are over 3 minutes old, grind the existing weld two inches back from point of termination and restart welding on ground weld.
H. At least one spare operable seaming apparatus shall be maintained for every three seaming teams. Place protective fabric or piece of geomembrane beneath hot welding apparatus when resting on geomembrane lining and use an electric generator capable of providing constant voltage under combined line load. The electric generator shall generally be located outside of the lined area. Provide protective lining and secondary containment large enough to catch spilled fuel under electric generators when located on the geomembrane. The welding apparatus shall be equipped with gauges giving temperatures in apparatus and at nozzle/wedge.
8. For extrusion welding, purge welding apparatus of heat-degraded extrudate before welding if extruder is stopped for longer than two minutes. All purged extrudate shall be disposed of off the geomembrane. Each extruder shoe shall be inspected daily for wear to assure that its offset is the same as the geomembrane thickness. Repair or replace worn shoes, damaged or misaligned armature brushes, nozzle contamination, or other worn or damaged parts. Avoid stop-start welding. Remove extrudate rod from welder when not using welder for long periods (over two hours). No welding may commence on the liner until the field trial seam sample made by that equipment and seamer passes destructive testing.
J. Test and set "hot air system" using scrap material at least each day prior to commencing seaming and adjust hot air velocity to preclude wind effects. Adjust contact pressure rollers to prevent surface ripples in sheet. No equipment shall be used for welding the geomembrane until a field trial seam sample made by that equipment and seamer has passed destructive testing.
K. In performing hot wedge welding, the welding machines shall be dual-tracked automated vehicular mounted devices equipped with gauges giving applicable temperatures and pressures. The edge of cross seams shall be ground to a smooth incline (top and bottom) prior to welding. A smooth insulating plate or fabric shall be placed beneath the hot welding apparatus after usage. Protect against moisture buildup between sheets. If welding across cross seams, conduct field trial seams at least every two hours.
L. Field trial seams shall be performed, per seaming apparatus and per seamer, on pieces of geomembrane to verify adequate seaming conditions at the following frequency:
9. At the beginning of each seaming period.
10. At least once every five hours.
11. At the discretion of the CQA CONSULTANT.
M. Make the trial seams at the work area and in contact with the soil subgrade or the geosynthetic component that the geomembrane will be deployed over (i.e., the same condition as the geomembrane to be seamed). The trial seam sample shall be at least 42 -inches long and 12 -inches wide with the seam centered lengthwise. A one-foot length of each trial seam sample shall be submitted to the CQA CONSULTANT for archive. Cut 1 -inch wide specimens and test at least three for peel adhesion and two for bonded seam strength (shear). Specimens that will be subjected to peel and shear tests shall be selected alternately from the trial weld sample. Each double wedge welded seam specimen shall be tested for peel on both sides of the weld. A specimen passes when:
12. The break is film-tear bond (FTB), as defined in publication EPA/600/2-88/052 ("Lining of Waste Containment and Other Impoundment Facilities"), Appendix N .
13. The break is ductile.
14. The strength of breaks for the trial seam testing shall conform to the values listed in Table 02751-1, included at the end of this Section.
N. A trial seam sample passes when all specimens have passing results in peel and shear tests. If a specimen fails (one of the specimens fails in either peel or shear mode), the trial seam procedure shall be repeated in its entirety. If the repeated trial seam fails, the seaming apparatus or operator may not weld until the deficiencies or conditions are corrected and two consecutive passing field trial seams are achieved.
O. The following procedures shall by followed during cold weather conditions.
15. Geomembrane surface temperatures shall be determined by the CQA CONSULTANT at intervals of at lease once per 100 feet of seam length to determine if preheating is required. For extrusion welding, preheating is required if the surface temperature of the geomembrane is below $32^{\circ} \mathrm{F}$.
16. For fusion welding, preheating may be waived by the OWNER based upon a recommendation by the CQA CONSULTANT, if the Geosynthetic CONTRACTOR demonstrates to the CQA CONSULTANT'S satisfaction that welds of equivalent quality may be obtained without preheating at the expected temperature of installation.
17. If preheating is required, the CQA CONSULTANT shall observe all areas of geomembrane that have been preheated by a hot air device prior to seaming to ensure that they have not been overheated.
18. Care shall be taken to confirm that the surface temperatures are not lowered below the minimum surface temperatures specified for welding due to winds or other adverse conditions. It may be necessary to provide wind protection for the seam area.
19. All preheating devices shall receive approval by the CQA CONSULTANT prior to use.
20. Additional destructive tests shall be taken at an interval between 250 and 500 feet of seam length, at the discretion of the CQA CONSULTANT.
21. Sheet grinding may be performed before preheating, if applicable.
22. Trial seaming shall be conducted under the same ambient temperature and preheating conditions as the production seams. Under cold weather conditions, new trial seams shall be conducted if the ambient temperature drops by more than $10^{\circ} \mathrm{F}$ from the initial trial seam test conditions. Such new trial seams shall be conducted upon completion of seams in progress during the temperature drop.
P. The following procedures shall be followed during hot weather conditions.
23. At ambient temperatures above $110^{\circ} \mathrm{F}$, no seaming of the geomembrane shall be permitted unless the Geosynthetic CONTRACTOR can demonstrate to the satisfaction of the CQA CONSULTANT that the geomembrane seam quality is not compromised. Trial seaming shall be conducted under the same ambient
temperature conditions as the production seams. At the option of the CQA CONSULTANT, additional destructive testing may be required for any suspect areas.

### 3.05 FIELD QUALITY CONTROL

A. The Geosynthetic CONTRACTOR shall designate a full-time Quality Control (QC) Technician who shall be responsible for supervising and/or conducting the field quality control program. The QC Technician shall not be replaced without written authorization by the OWNER.
B. Non-Destructive Seam Testing

1. The Geosynthetic CONTRACTOR shall non-destructively test field welds for continuity over their full length. The non-destructive testing shall be performed concurrently with seaming work progress, not at the completion of all seaming. Any defects located in the seam shall be repaired in accordance with ltem 3.06 of this Section. The following non-destructive testing procedures shall be used to test the field seams for continuity.
a. Vacuum box testing for extrusion welds.
b. Air pressure testing for dual-wedge fusion seams.
2. Vacuum Box Testing
a. The vacuum box testing equipment shall consist of the following:
i. Rigid housing; transparent viewing window; a soft rubber gasket attached to the bottom of the housing; porthole or valve assembly; and a vacuum gauge.
ii. A vacuum pump capable of applying 5 psi gage pressure of vacuum to the box.
iii. A bucket of soapy solution and applicator.
b. The procedure for vacuum testing shall be as follows:
i. Clean window, gasket surfaces, and check box assembly for leaks.
ii. Energize vacuum pump and reduce tank pressure to approximately 5 psi.
iii. Wet a strip of geomembrane seam approximately 12 inches by 30 inches (length of box) with soapy solution.
iv. Place box over wetted area and compress.
v. Close bleed valve and open vacuum valve.
vi. Ensure that a leak-tight seal is created.
vii. Examine length of weld through viewing window for presence of soap bubbles for a period of not less than 10 seconds.
viii. If no bubbles appear after 10 seconds, close vacuum valve and open bleed valve, move box over next adjoining area with minimum three inches overlap from the previous tested area and repeat process.
ix. Areas where soap bubbles appear shall be marked by the CQA CONSULTANT with a defect code. The Geosynthetic

CONTRACTOR shall then repair these areas in accordance with Item 3.06 of this Section and then retest the repaired area.
3. Air Pressure Testing (Dual-Wedge Fusion Seams Only)
a. The air pressure testing equipment shall consist of the following:
i. An air pump, equipped with pressure gauge having an accuracy of 1 psi , capable of generating and sustaining a pressure of 30 psi , and mounted on a cushion to protect the geomembrane.
ii. Rubber hose with fittings and connections.
iii. Sharp hollow needle or other pressure feed device approved by the OWNER.
b. To perform the test:
i. Seal both ends of the seam to be tested.
ii. Insert a needle or other approved pressure feed device into air tunnel created by dual-wedge seaming and insert a protective cushion between air pump and underlying geomembrane.
iii. Energize air pump to 28 to 30 psi , close valve, and sustain pressure for a minimum of 5 minutes.
iv. If loss of air pressure in the tunnel exceeds 2 psi over 5 minutes or if this pressure does not stabilize, locate the faulty seam area and repair in accordance with Item 3.06 of this Section.
v. Release pressure at opposite end of seam from gauge (i.e., by cutting the seam) to verify that the seam is not blocked.
vi. Remove approved pressure feed device and seal penetration holes by extrusion welding.

## C. Destructive Seam Testing

1. For destructive seam testing, the CQA CONSULTANT shall be provided with a minimum of one sample per 500 feet of seam length by each welding apparatus. The location shall be selected by the CQA CONSULTANT; the Geosynthetic CONTRACTOR shall not be informed of the destructive sample location in advance. The Geosynthetic CONTRACTOR shall visually observe, mark, and repair suspect welds before release of a section to the CQA CONSULTANT for destructive sample marking. Cut destructive samples as seaming and nondestructive testing progresses, prior to completion of geomembrane installation. The CQA CONSULTANT shall mark destructive samples with consecutive numbering, location, apparatus I.D., technician I.D., Engineer I.D., and apparatus settings and date. Record, in written form, weld and test date, time, location, seam number, ambient temperatures, machine settings, technician I.D., apparatus I.D., and pass or fail description. The Geosynthetic CONTRACTOR shall immediately repair holes in geomembrane resulting from obtaining destructive samples and shall vacuum test the resulting patches. The size of destructive samples shall be 12 inches wide by 44 inches long with the seam centered lengthwise.
2. Two 1-inch wide specimens shall be taken, one at each end of the sample, and tested by the Geosynthetic CONTRACTOR for peel and shear in the field prior
to CQA destructive testing. If any of these specimens fail, the Geosynthetic CONTRACTOR shall track the failure immediately. The remaining sample shall be cut into three 14 -inch long by 12 -inch wide pieces and distributed as follows:
a. To the CQA CONSULTANT for destructive testing.
b. To the CQA CONSULTANT for archive.
c. To the Geosynthetic CONTRACTOR for its use.
3. Ten 1 -inch wide specimens shall be taken from one piece. Five specimens shall be tested for peel and five for shear in accordance with the CQA Plan. Specimens that will be subjected to peel and shear tests shall be selected alternately from the sample. Each fusion wedge welded seam specimen shall be tested for peel on both sides of the weld. A destructive sample shall be considered passing when all 10 specimens meet the following criteria:
a. The break is FTB.
b. The break is ductile.
c. The strength of breaks for the trial seam testing shall conform to the values listed in Table 02751-1, included at the end of this Section.
4. In the event of sample failure, the procedures for failed seam tracking are:
a. Retrace welding path a minimum of 10 feet in both directions from the failed test location and remove (at these locations) a one inch wide specimen for testing. Repeat tracking procedures until the Geosynthetic CONTRACTOR is confident of seam quality.
b. Obtain destructive samples from each side of the welding path and give samples to the CQA CONSULTANT for destructive testing.
c. Repeat process if additional tests fail.
d. Reconstruct seam between passing test locations to the satisfaction of the CQA CONSULTANT.
e. Reconstruction may be one of the following:
i. Cut out old seam, reposition panel and re-seam,
ii. Add cap strip.
f. Cut additional destructive samples from reconstruction at discretion of CQA CONSULTANT.
g. If additional destructive sample results are not acceptable, repeat process until reconstructed seam is judged satisfactory by the CQA CONSULTANT.
D. For final seaming inspection, check the seams and surface of geomembrane for defects, holes, blisters, undispersed raw materials, or signs of contamination by foreign matter. Brush, blow, or wash geomembrane surface if dirt inhibits inspection.

The CQA CONSULTANT shall decide if cleaning of geomembrane surface and welds is needed to facilitate inspection. Distinctively mark repair areas and indicate required type of repair.
E. At the discretion of the OWNER, the 40 -mil smooth HDPE geomembrane seams may not require non-destructive or destructive testing.

### 3.06 REPAIR PROCEDURES

A. The geomembrane shall be inspected before and after seaming for evidence of defects, holes, blisters, undispersed raw materials, and any sign of contamination by foreign matter. The surface of the geomembrane shall be clean at the time of inspection. The geomembrane surface shall be swept or washed by the Geosynthetic CONTRACTOR if surface contamination inhibits inspection. The Geosynthetic CONTRACTOR shall ensure that an inspection of the geomembrane precedes any seaming of that section.
B. Remove damaged geomembrane and replace with acceptable geomembrane materials if damage cannot be satisfactorily repaired.
C. Repair, removal, and replacement shall be at the Geosynthetic CONTRACTOR'S expense.
D. Repair any portion of the geomembrane exhibiting a flaw, or failing a destructive or non-destructive test. The Geosynthetic CONTRACTOR shall be responsible for repair of damaged or defective areas. Agreement upon the appropriate repair method shall be decided between the CQA CONSULTANT and the Geosynthetic CONTRACTOR. Procedures available include:

1. Patching: Used to repair holes (over $1 / 4$-inch diameter), tears (over $1 / 4$-inch long), undispersed raw materials, and contamination by foreign matter.
2. Grinding and welding: Used to repair pinholes, blemishes, and over-grinding.
3. Capping: Used to repair large lengths of failed seams.
4. Removing the seam and replacing with a strip of new material.
E. In addition, the following procedures shall be observed:
5. Geomembrane surfaces to be repaired shall be abraded (extrusion welds only) no more than $1 / 2$ hour prior to the repair.
6. All geomembrane surfaces shall be clean and dry at the time of repair.
7. The repair procedures, materials, and techniques shall be approved in advance of the specific repair by the CQA CONSULTANT.
8. Extend patches or caps at least 6 inches beyond the edge of the defect, i.e., be a minimum of 12 inches in diameter, and round all corners of material to be patched.
9. Bevel the edge of the patch and do not cut patch with repair sheet in contact with geomembrane. Temporary bond the patch to the geomembrane with an approved method, extrusion weld the patch, and then vacuum test the repair.
F. Repair Verification:
10. The CQA CONSULTANT shall number and log each repair.
11. Non-destructively test each repair using methods specified in this Section.
12. Provide daily documentation of non-destructive and destructive testing to the CQA CONSULTANT. The documentation shall identify seams that initially failed testing and include any evidence that these seams were repaired and retested successfully.

### 3.07 ACCEPTANCE

A. The Geosynthetic CONTRACTOR shall retain ownership and responsibility for the geomembrane until acceptance by the OWNER.
B. Acceptance Criteria: The following shall be completed:

1. Verification of adequacy of field seams, repairs, and testing by the CQA CONSULTANT.
2. All submittals.
3. "As-built" drawings approved and final drawings submitted.
4. Construction area cleaned.
5. Final field inspection.
6. Warranty signed over to the OWNER.
C. Field Inspections: Inspect the completed work with the OWNER; defects, wrinkles, suspicious looking welds shall be noted and marked; document, correct, and arrange further field inspections until no further corrective action is necessary.

TABLE 02751-1
REQUIRED PHYSICAL PROPERTIES OF 40- and 60-MIL HDPE GEOMEMBRANE

PROPERTY	METHOD	VALUE	
		60 mil Textured HDPE	40 mil Smooth HDPE
Thickness, mil	ASTM D 5994	-57 mils minimum average - 54 mils lowest individual value for 8 out of 10 specimens - 51 mils lowest individual value for any of the 10 specimens	- 36 minimum average
Sheet Density (min. avg.)	ASTM D 792 or ASTM D 1505	$0.940 \mathrm{~g} / \mathrm{cc}$	0.940
Asperity Height, mil ${ }^{(1)}$	ASTM D7466	-10 mils minimum average   -8 of 10 readings $\geq 7$ mils   - lowest individual reading   $\geq 5$ mils	Not Applicable (N/A)
Tensile Properties ${ }^{\prime}$ min. avg. $)^{(2)}$   - Tension at Yield (lb/in)   - Strain at Yield (\%)   - Tension at Break (lb/in)   - Strain at Break (\%)	$\begin{aligned} & \text { ASTM D6693 } \\ & \text { Type IV } \end{aligned}$	$\begin{gathered} 126 \mathrm{lb} / \mathrm{in} \\ 12 \% \\ 90 \mathrm{lb} / \mathrm{in} \\ 100 \% \\ \hline \end{gathered}$	$84 \mathrm{lb} / \mathrm{in}$ 12\% $60 \mathrm{lb} / \mathrm{in}$ 100\%
Tear Resistance, lbs. (min. avg.)	ASTM D1004, Die C	42 lbs	28 lbs
Oxidative Induction Time (OIT) (min. avg.)   - Standard OIT, or   - High Pressure OIT	ASTM D3895 ASTM D5885	100 minutes 400 minutes	100 minutes 400 minutes
Oven Aging at $85^{\circ} \mathrm{C}$ (min. avg.)   - Standard OIT (min. avg.), \% retained after 90 days, or   - High Pressure OIT (min. avg.), $\%$ retained after 90 days	ASTM D5721 ASTM D3895 ASTM D5885	$55 \%$ retained after 90 days $80 \%$ retained after 90 days	$55 \%$ retained after 90 days $80 \%$ retained after 90 days
UV Resistance (min. avg.)   - High Pressure OIT (min. avg.), retained after $1,600 \mathrm{hr}$	GRI-GM1I   ASTM D5885	$50 \%$ retained after 1,600 hours	$50 \%$ retained after 1,600 hours
Stress Crack Resistance (min.) ${ }^{(3)}$	ASTM D5397   (Appendix)	300 hours with no failures	300 hours with no failures
Puncture Resistance, lbs. (min. avg.)	ASTM D4833	90 lbs	60 lbs
Carbon Black Content (range)	ASTM D1603	2.0-3.0\%	N/A
Carbon Black Dispersion	ASTM D5596	$-\min 9$ out of 10 specimens in Cat. 1 or 2   - all in Cat. 1, 2, or 3	N/A
Seam Strength (min. avg.)    $\bullet$ Peel (lb/in)   $\cdot$ Shear (lb/in)	ASTM D6392	$90 \mathrm{lb} / \mathrm{in}$ $120 \mathrm{lb} / \mathrm{in}$	$60 \mathrm{lb} / \mathrm{in}$ $80 \mathrm{lb} / \mathrm{in}$
Notes: (1) Alternate the measurement side for double-sided fextured sheets.   (2) Elongation at yield and elongation at break shall be calculated using a gage length of 1.3 inches and 2.0 inches,    respectively.     (3) Test is not applicable for textured geomembranes. Tess should be performed on the smooth edges of textured    rolls or on smooth rolls made from same formulation as textured rolls.			

## END OF SECTION

## SECTION 02752

## GEOTEXTILES

## PART 1 GENERAL

### 1.01 DESCRIPTION

A. This section describes the general requirements for the manufacture, supply, installation, and quality control (QC) of geotextiles.

### 1.02 RELATED SECTIONS

A. Section $\mathbf{0 2 2 0 0}$ - Earthwork
B. Section 02751 - HDPE Geomembranes

### 1.03 REFERENCES

A. Latest version of the following American Society for Testing and Materials (ASTM) standards:

1. ASTM D4355. Standard Test Method for Deterioration of Geotextiles by Exposure to Light, Moisture and Heat in a Xenon Arc Type Apparatus.
2. ASTM D4632. Standard Test Method for Breaking Load and Elongation of Geotextiles (Grab Method).
3. ASTM D4833. Test Method for Index Puncture Resistance of Geotextiles, Geomembranes, and Related Products.
4. ASTM D4873. Standard Guide for Identification, Storage, and Handling of Geotextiles.
5. ASTM D5199. Standard Test Method for Measuring Geotextiles.
6. ASTM D5261. Standard Test Method for Measuring Mass Per Unit Area of Geotextiles.

### 1.04 SUBMITTALS

A. Quality Control Submittals:

1. A copy of the manufacturer's quality control (QC) plan.
2. Manufacturing QC certificates for each production run. The certificates shall identify the origin and the manufacturer of the resin. The certificates shall be signed by responsible parties employed by the manufacturer (such as the production manager). Tests shall be performed at the frequency indicated in the manufacturer's QC Plan.
3. The QC certificates shall include roll numbers and identification, sampling procedures, and results of quality control tests verifying that each of the properties
listed in Table 02752-1 is met. Samples shall be tested at a minimum frequency of once every 100,000 sf. The manufacturer quality control tests to be performed include the tests specified in Article 2.01 of this section.
4. Manufacturer's certification that the geotextile products meet or exceed specified requirements and are $100 \%$ free of needles.
B. The Geosynthetic CONTRACTOR shall submit the following.
5. Installation plan; and
6. Proposed seam stitching methods.
C. Submittals shall be in accordance with Section 01300.

### 1.05 QUALITY ASSURANCE

A. Perform work in accordance with the CQA Plan.

### 1.06 QUALIFICATIONS

A. Geotextile shall be supplied by a geotextile manufacturer meeting the following qualification requirements:

1. The geotextile manufacturer shall be responsible for the production and delivery of geotextile rolls and shall be a well-established firm with more than two years experience in the manufacture of geotextiles. The geotextile manufacturer shall submit a statement to the CQA CONSULTANT listing:
a. Certified minimum average roll property values of the proposed geotextiles and the test methods used to determine those properties.
b. Projected delivery date of the material for this project.
B. The Geosynthetic CONTRACTOR shall meet the requirements of the CQA Plan.

## PART 2 PRODUCTS

### 2.01 MATERIALS

A. Non-woven geotextiles shall have the following minimum average roll value (MARV) properties:

TABLE 02752-1

## REQUIRED PHYSICAL PROPERTIES OF GEOTEXTILE

Fabric Property	ASTM   Test Method	Manufacturer QC   Test Frequency      (1)	Required Test   Values
Mass Per Unit Area (min. ave.)	D5261	1 per $100,000 \mathrm{sf}$	$12 \mathrm{oz} / \mathrm{sy}$
Grab Strength (min. ave.)	D4632	1 per $100,000 \mathrm{sf}$	30 lbs
Puncture Strength (min. ave.)	D4833	1 per $100,000 \mathrm{sf}$	150 lbs
UV Resistance (min.)	D4355	1 per resin formulation	70 percent ${ }^{(2)}$

Notes: (1) Manufacturer may elect to provide certification of values for geotextiles.
(2) After 500 hours of exposure.
B. Geotextile shall be non-woven, needle-punched polyester or polypropylene fabric free from needles or other foreign material.

### 2.02 DELIVERY, STORAGE, AND HANDLING

A. Handling, storage, and care of the geotextiles following transportation to the site shall be the responsibility of the CONTRACTOR. The CONTRACTOR shall be liable for all damage to the materials incurred prior to final acceptance of the liner system by the CQA CONSULTANT.
B. The CONTRACTOR shall be responsible for storage of the geotextile at the site after the material is delivered. The geotextile shall be stored off the ground and out of direct sunlight, and shall be protected from mud, dirt, dust, and any additional storage procedures required by the Geotextile manufacturer.
C. All rolls of geotextile shall be identified at the factory with the following:

1. Manufacturer's name
2. Product identification
3. Lot Number
4. Roll number
5. Roll dimensions
D. Geotextiles shall be handled in a manner as to ensure they are not damaged in any way.
E. Precautions shall be taken to prevent damage to underlying materials during placement of the geotextile.
F. After unwrapping the geotextile from its cover, the geotextile shall not be left exposed for a period in excess of 30 days.

## PART 3 EXECUTION

### 3.01 INSTALLATION

A. Geotextile seams shall be continuously sewn or heat bonded. Geotextile seams shall be overlapped a minimum of 6 inches prior to sewing. No horizontal seams shall be allowed on slopes steeper than 5 horizontal to 1 vertical.
B. Polymeric thread, with chemical resistance properties equal to or exceeding those of the geotextile, shall be used for all sewing. The seams shall be sewn using Stitch Type 401. The seam type shall be Federal Standard Type SSa-1.
C. The CONTRACTOR shall examine the entire geotextile surface after installation to ensure that no potentially harmful foreign objects are present. Such foreign objects shall be removed and damaged geotextile shall be repaired or replaced at no cost to OWNER.
D. Use care not to damage underlying materials during installation.
E. Prevent the geotextile from accumulating excessive dust.
F. The CONTRACTOR shall be responsible for field handling, storing, deploying, seaming or connecting, temporary restraining (against wind), anchoring, and other aspects of geotextile installation. Specifically, the CONTRACTOR shall follow the guidelines in ASTM D4873 regarding the placement, handling and storage or geotextiles.
G. The CONTRACTOR shall accept and retain full responsibility for all materials and installation and shall be held responsible for any defects in the completed system.
H. No equipment shall operate directly on the geotextile.
I. Use sandbags or other acceptable anchorage to prevent wind uplift.

### 3.02 REPAIRS

A. Any holes or tears in the geotextile shall be repaired using a geotextile patch consisting of the same geotextile.

1. On slopes inclined steeper than 10 horizontal to 1 vertical, patches shall be sewn into place with a minimum 6 -inch overlap.
2. On slopes inclined at 10 horizontal to 1 vertical or less, patches may be heat-bonded with a 6 -inch overlap in all directions.

## END OF SECTION

## SECTION 02774

## GEOCOMPOSITE

## PART 1 GENERAL

### 1.01 DESCRIPTION

A. This section describes the general requirements for the manufacture, supply, installation, and quality control ( QC ) of geocomposite.

### 1.02 RELATED SECTIONS

A. Section 02200 - Earthworks
B. Section 02751-HDPE Geomembranes
C. Section 02752 -Geotextiles

### 1.03 REFERENCES

A. Latest version of the following American Society for Testing and Materials (ASTM) standards:

1. ASTM D413. Standard Test Method for Rubber Property-Adhesion to Flexible Substrate
2. ASTM D792. Test Method for Specific Gravity and Density of Plastics by Displacement
3. ASTM F904. Standard Test Method for Comparison of Bond Strength or Ply Adhesion of Similar Laminates Made from Flexible Materials
4. ASTM D1238. Standard Test Method for Flow Rates of Thermoplastics by Extrusion Plastometer
5. ASTM D1505. Standard Test Method for Density of Plastics by Density Gradient Technique
6. ASTM D1603. Test Method for Carbon Black in Olefin Plastics
7. ASTM D3786. Standard Text Method for Hydraulic Bursting Strength of Knitted Goods and Non-woven Fabrics: Diaphragm Bursting Strength Test Method
8. ASTM D4491. Standard Test Methods for Water Permeability of Geotextiles by Permittivity
9. ASTM D4533. Standard Test Method for Trapezoid Testing Strength of Geotextiles
10. ASTM D4632. Standard Test Method for Breaking Load and Elongation of Geotextiles (Grab Method)
11. ASTM D4716. Standard Test Method for Constant Head Hydraulic Transmissivity (in-plane flow) of Geotextiles and Geotextile Related Products
12. ASTM D4751. Standard Test Method for Determining Apparent Opening Size of a Geotextile
13. ASTM D4833. Test Method for Index Puncture Resistance of Geotextiles, Geomembranes, and Related Products
14. ASTM D5199. Standard Test Method for Measuring Nominal Thickness of Geotextiles and Geomembranes
15. ASTM D5261. Standard Test Method for Weight (Mass) Per Unit Area of Geotextiles

### 1.04 SUBMITTALS

A. Geosynthetic CONTRACTOR shall submit to the CQA CONSULTANT the following documentation on the raw materials used to manufacture the geocomposite:

1. Quality control certificates issued by the raw material supplier including the production dates of the raw material used to manufacture geocomposite for the project.
2. Results of tests conducted by the manufacturer to verify the quality of the resin used to manufacture the geocomposite rolls assigned to the project and the origin of the resin and quality control certificates issued by the resin supplier.
3. Certification that no reclaimed polymer was used in the manufacturing of the geocomposite to be used for the project and that recycled material reworked from the manufacturing process does not exceed 10 percent by weight.
B. A copy of the manufacturer's Quality Control (QC) Program.
C. Quality control certificates for test results at the sampling frequency indicated by the manufacturer's QC Plan shall be submitted.
4. Manufacturing quality control certificates for each shift's production shall be signed by responsible parties employed by the manufacturer (such as the production manager).
5. The quality control certificates shall include:
a. Roll numbers and identification;
b. Sampling procedures; and
c. Results of the quality control tests verifying each of the properties listed in Table 02774-1.
D. Submittals shall be provided in general accordance with Section 01300 .

### 1.05 QUALITY ASSURANCE

A. Perform work in accordance with manufacturer's instructions and the CQA Plan.

### 1.06 QUALIFICATIONS

A. Manufacturer shall be a well-established firm with more than two years of experience in the manufacture of geocomposites.
B. Geosynthetic CONTRACTOR shall meet the requirements of the CQA Plan.

## PART 2 PRODUCTS

### 2.01 MATERIALS

A. The geocomposite to be used on the project shall comprise HDPE bi-planar geonet drainage material with a non-woven, needle-punched geotextile bonded to the top and bottom. The geotextile will be thermally bonded to the geonet component of the geocomposite. Chemical bonding is not allowed.
B. Geocomposite shall meet the minimum properties listed in Table 02774-1.

### 2.02 DELIVERY, STORAGE, AND HANDLING

A. The Geosynthetic CONTRACTOR shall be responsible for handling, storage, and care of the geocomposites following transportation to the site. The Geosynthetic CONTRACTOR shall be liable for all damage to the materials incurred prior to final acceptance of the liner system by the CQA CONSULTANT.
B. The geocomposite shall be stored off the ground and out of direct sunlight, and shall be protected from mud, dirt, dust, and any additional storage procedures required by the manufacturer.
C. All rolls of geocomposite shall be identified at the factory with the following:

1. Manufacturer's name
2. Product identification
3. Lot Number
4. Roll number
5. Roll dimensions
D. The geocomposites shall be handled in such a manner as to ensure they are not damaged in any way.
E. Precautions shall be taken to prevent damage to underlying layers during placement of the geocomposite.
F. After unwrapping the geocomposite from its cover, the geocomposite shall not be left exposed for a period in excess of 30 days.

## PART 3 EXECUTION

### 3.01 EXAMINATION

A. Verify that other work is complete over the areas where the geocomposite is to be deployed.

### 3.02 PREPARATION

A. Protect elements surrounding the work of this section from damage.

### 3.03 INSTALLATION

A. The geocomposite shall be installed in accordance with the manufacturer's recommended procedures and the CQA Plan.
B. The CQA CONSULTANT shall verify that all geocomposite rolls and underlying layers are free from deleterious material or debris prior to the geocomposite deployment. Dirt entrapped in the geocomposite following deployment shall be cleaned or affected geocomposite removed and replaced prior to placement of successive layers.
C. The Geosynthetic CONTRACTOR is responsible for anchoring exposed geocomposite to protect against wind damage until subsequent layers are placed.
D. The geocomposite shall not be welded to the geomembrane unless specified otherwise.
E. The geocomposite shall only be cut utilizing methods and tools (i.e., a hooked utility blade) which will not damage the geocomposite.
F. The geonet component of the geocomposite shall be overlapped a minimum of 4 inches between adjacent panels and shall be fastened by nylon ties. Ties shall be yellow or white for easy inspection. No metallic materials are allowed. Ties shall be placed every 5 feet along the lengths of adjacent panels, every 6 in . across butt-seams, and every 6 in. in any anchor trench.
G. In general, butt-seams will only be allowed on grades less than $15 \%$. Butt-seams shall be overlapped a minimum of two feet and be secured with two rows of ties a minimum of 6 in . apart. Ties shall be spaced at six inch intervals and staggered between rows.
H. The top geotextile component shall be overlapped a minimum of 6 in . and shall be continuously sewn. Leister seaming shall be allowed following a field demonstration of performance and approval by the Design Engineer.
I. Polymeric thread, with chemical resistance properties equal to or exceeding those of the geotextile, shall be used for all sewing. The seams shall be sewn using Stitch Type 401. The seam type shall be Federal Standard Type SSa-1.
J. The Geosynthetic CONTRACTOR shall be responsible for field handling, storing, deploying, seaming or joining, temporary restraining (against wind), anchoring, and other aspects of geocomposite installation.
K. The Geosynthetic CONTRACTOR shall accept and retain full responsibility for all materials and installation and shall be held responsible for any defects in the completed systems.

### 3.04 REPAIRS

A. Any defects observed in the geocomposite shall be brought to the attention of the CQA CONSULTANT.
B. Holes or tears in the geocomposite shall be repaired with geocomposite patches extending 2 feet beyond the edges of the hole or tear. The patch shall be secured in place by using approved ties spaced at 6 inches. The ties shall extend though the geonet component of the patch and through the geotextile and geonet components of the geocomposite requiring repair. The upper geotextile component of the patch shall be heat bonded to the geotextile component of the geocomposite requiring repair.
C. If only the upper geotextile is damaged, then it may be repaired by heat-bonding a geotextile patch of equal weight.

### 3.05 FIELD QUALITY CONTROL

A. Field inspection and testing shall be performed in accordance with the CQA Plan.

### 3.06 PROTECTION

A. Do not permit traffic over any of the Products related to this Section.
B. The CONTRACTOR shall place all soil materials in such a manner as to ensure that:

1. The geocomposite and underlying materials are not damaged;
2. Minimal slippage occurs between the geocomposite and the underlying geosynthetic layers; and
3. Excess tensile stresses are not developed in the geocomposite.

TABLE 02774-1 GEOCOMPOSITE PROPERTY VALUES

Geonet Component:			
Thickness	mils	200	ASTM D-751 or ASTM D-5199
Density	$\mathrm{g} / \mathrm{cc}$	0.940	ASTM D-792 or ASTM D-1505
Carbon Black Content (range)	\%	2-3	ASTM D-1603
Geotextile Component:			
Mass	$0 \mathrm{z} / \mathrm{yd}^{\text {2 }}$	8	ASTM D-5261
Grab Tensile	Lb	220	ASTM D-4632
Puncture	Lb	120	ASTM D-4833
AOS	Mm	0.180	ASTM D-4751
Permeability	$\mathrm{Sec}^{-1}$	1.5	ASTM D-4491
UV Resistance)	\% retained after 500 hr .	70	ASTM D-4355
Finished Geocomposite:			
Transmissivity	$\mathrm{m}^{2} / \mathrm{sec}$	$1 \times 10^{-3}$ (see notes 1 and 2 below)	ASTM D-4716
Peel Strength	lb/in.	0.75	GRI GC7

## Notes:

1. Required value shall be taken from manufacturer's standard material specification sheet for the selected geonet/geocomposite material. Geonet/geocomposite selection shall be based on the material's ability to meet or exceed the transmissivity identified in the site's design.
2. Transmissivity shall be measured in a 12 -inch by 12 -inch box with the geocomposite between steel plates under a normal stress of 15,000 psf and a hydraulic gradient of 0.1 . A seating time of 15 minutes shall be used.
3. The geotextile component shall conform to the requirements contained in Section 02752 of these Specifications, except that the values listed in Table 02774-1 above take precedence over those in Section 02752.

## END OF SECTION

APPENDIX 0.2

## FINAL CLOSURE SPECIFICATIONS

## Prepared for:

Waste Management, Inc.<br>Kettleman Hills Facility<br>35251 Old Skyline Road<br>Kettleman City, California 93239

## Prepared by:

Golder Associates Inc. 230 Commerce, Suite 200
Irvine, California 92602

## TABLE OF CONTENTS

SECTION PAGE
Section 01010 - Summary of Work ..... 01010-1
Section 01032 - Intent of Drawings and Specifications ..... 01032-1
Section 01300 - Submittals ..... 01300-1
Section 01400 - Construction Quality Control ..... 01400-1
Section 01402 - Control of Work ..... 01402-1
Section 01565 - Temporary Facilities ..... 01565-1
Section 01810 - Safety Procedures ..... 01810-1
Section 02105 - Erosion Control. ..... 02105-1
Section 02110 - Site Clearing, Grubbing, and Stripping ..... $02110-1$
Section 02200 - Earthworks ..... 02200-1
Section 02751 - HDPE Geomembranes ..... 02751-1
Section 02752 - Geotextiles ..... 02752-1
Section 02932 - Revegetation ..... 02932-1

## SECTION 01010

## SUMMARY OF WORK

## PART 1 GENERAL

### 1.01 SUMMARY

A. The section describes the general requirements for the final closure construction of Landfill Unit B-18 at the Kettleman Hills Facility located outside of Kettleman City, California. The Work will consist of excavation, engineered fill placement, subgrade preparation, installation of a composite geosynthetic liner system, and placement of a vegetative cover soil layer.

### 1.02 CONTRACTOR'S RESPONSIBILITIES:

A. Start, lay out, construct, and complete the Project in accordance with the Contract Documents;
B. Provide a competent superintendent, capable of reading and understanding the Contract Documents, who shall receive instructions from the OWNER or his authorized representative. The superintendent shall have full authority to execute the Work in accordance with the Contract Documents;
C. The CONTRACTOR shall be responsible for transporting, permitting, and/or conveying all required construction water.
D. Pay costs of legally required sales, consumer, and use taxes, and governmental fees.
E. Forward submittals and communications to the CONSTRUCTION MANAGER. Where applicable, the CONSTRUCTION MANAGER will coordinate submittals and communications with the representatives who will give approvals and directions through the CONSTRUCTION MANAGER.
F. Maintain order, safe practices and proper conduct at all times among CONTRACTOR's employees. The OWNER, and its authorized representative, may require that disciplinary action be taken against an employee of the CONTRACTOR for disorderly, improper, and unsafe conduct. Should an employee of the CONTRACTOR be dismissed from his duties for misconduct, incompetence, or unsafe practice, or combination thereof, that employee should not be rehired for the duration of the Work.
G. Coordinate prosecution of the Work with the utilities, private utilities, or OWNER performing work on or adjacent to the work site; either eliminate, or minimize as far as possible, delays in the Work and conflicts with those utilities or contractors. Coordinate utility activities, and activities of OWNER, with the CONSTRUCTION MANAGER. Schedule private utility and public utility work relying on survey points, lines, and grades established by the CONTRACTOR to occur immediately after those points, lines and grades have been established. Confirm coordinate measures for each individual case with the CONSTRUCTION MANAGER by memorandum.
J. Coordinate activities of the several trades, suppliers, and subcontractors, if any, performing the Work.
K. Obtain all necessary building and construction permits. Permit fees will be paid by the OWNER.

### 1.03 RESERVED

### 1.04 CONFORMANCE

A. Work shall conform to the following Drawings that form a part of these Contract Documents.
SHEET NO. TITLE

T-1	TITLE SHEET
C-1	SITE PLAN
C-2	EXISTING CONDITIONS (AS OF MARCH 28, 2008)
C-3	BASE LINER PLAN
C-4	FINAL CLOSURE PLAN
C-5	CROSS-SECTIONS A TO D
C-6	CROSS-SECTIONS E TO I
C-7	PHASE III BASE LINER CONSTRUCTION DETAILS
C-8	PHASE III LCRS DETAILS
C-9	DRAINAGE DETAILS
C-10	CLOSURE DETAILS

### 1.05 DEFINITIONS

OWNER

CONSTRUCTION MANAGER

DESIGN ENGINEER

The term OWNER means Kettleman Hills Facility with whom the CONTRACTOR has entered into the Agreement and for whom the Work is to be provided.

The term CONSTRUCTION MANAGER means the representative of the OWNER for the purpose of administration and inspection of the Work. The CONSTRUCTION MANAGER may be a member or group of the staff or may be an external firm. The OWNER will inform the CONTRACTOR in writing at the start of the Work who the CONSTRUCTION MANAGER will be. During the period of Work the CONSTRUCTION MANAGER will act as an authorized representative of the OWNER.

The term DESIGN ENGINEER means Golder Associates Inc., the firm responsible for the design and preparation of the construction drawings and specifications. The DESIGN ENGINEER is responsible for approving all design changes, modifications, or clarifications encountered during construction.

Geosynthetics
CONTRACTOR

Work

Working day

Regular
Working Hours

Calendar Days

The term CQA CONSULTANT means the representative of the OWNER for the purpose of conducting CQA testing, monitoring, documenting, and reporting.

The term CONTRACTOR means the firm that is responsible prosecuting the Work. The CONTRACTOR's responsibilities include the Work of any and all subcontractors and suppliers.

The term Geosynthetics CONTRACTOR means the firm that is responsible for the supply and installation of all geosynthetics including the Work of all of the subcontractors and suppliers. The Geosynthetics Installer may work directly for the OWNER or as a subcontractor to the CONTRACTOR. The Geosynthetics CONTRACTOR is also referred to as the CONTRACTOR.

The term Work means the entire completed construction or various separately identifiable parts, thereof, required to be furnished under the Contract Documents. Work includes any and all labor, services, materials, equipment, tools, supplies, and facilities required by the Contract Documents and necessary for the completion of the project. Work is the result of performing services, furnishing labor and furnishing and incorporating materials and equipment into the construction, all as required by the Contract Documents.

A calendar day, exclusive of Saturdays, Sundays, and OWNER's recognized legal holidays, on which weather and other conditions not under the control of the CONTRACTOR will permit construction operations to proceed for the major part of the day with the normal working force engaged in performing the controlling item or items of work which would be in progress at that time. The working day is subject to the conditions and work restrictions outlined in these Specifications.

Between 6:30 a.m. and 6:00 p.m. on allowable work days.

Each day of the year including all OWNER approved holidays.

### 1.06 CONTRACT TIMES

A. The CONTRACTOR shall commence Work in accordance with Section 18 of the General Conditions and Section 7 of the Standard Contract.

### 1.07 CONTRACTOR USE OF WORK SITE

A. Confine work site operations to areas permitted by law, ordinances, permits, and the Contract Documents. The CONTRACTOR shall ensure that all persons under his control (including Subcontractors, their workers and agents) are kept within the boundaries of the Site and shall be responsible for any acts of trespass or damage to property by persons who are under his control. Consider the safety of the Work, and that of people and property on and adjacent to work site, when determining amount, location, movement, and use of materials and equipment on work site.
B. The CONTRACTOR shall be responsible for protecting private and public property including pavements, drainage culverts, electricity, highway, telephone and similar property and making good of, or paying for, all damage caused thereto. Control of erosion throughout the project is of prime importance and is the responsibility of the CONTRACTOR. The CONTRACTOR shall comply with the requirements of the Storm Water Pollution Prevention Plan (SWPPP) provided by the OWNER for the Kettleman Hills Facility and prepare and submit a SWPPP specific to the Work in accordance with requirements of local or state agencies (see Section 01300). The CONTRACTOR shall provide and maintain all necessary measures to control erosion during progress of the Work to the satisfaction of the CONSTRUCTION MANAGER and all applicable Laws and Regulations and remove such measures and debris upon completion of the project. All provisions for erosion and sedimentation control apply equally to all areas of the Work.
C. CONTRACTOR shall promptly notify OWNER and CONSTRUCTION MANAGER in writing of any subsurface or latent physical conditions at the Site which differ materially from those indicated or referred to in the Contract Documents. CONSTRUCTION MANAGER will promptly review those conditions and advise OWNER in writing if further investigations or tests are necessary. Promptly thereafter, OWNER shall obtain the necessary additional investigations and tests and furnish copies to the CONSTRUCTION MANAGER and CONTRACTOR. If CONSTRUCTION MANAGER finds that the results of such investigations or tests indicate that there are subsurface and latent physical conditious which differ materially from those intended in the Contract Documents, and which could not reasonably have been anticipated by CONTRACTOR, a Change Order shall be issued incorporating the necessary revisions.

### 1.08 PRESERVATION OF SCIENTIFIC INFORMATION

A. Federal and State legislation provides for the protection, preservation, and collection of data having scientific, prehistoric, historical, or archaeological value (including relics and specimens) which might otherwise be lost due to alteration of the terrain as a result of any construction work.
B. If evidence of such information is discovered during the course of the Work, the CONTRACTOR shall notify the CONSTRUCTION MANAGER immediately, giving
the location and nature of the findings. Written confirmation shall be forwarded within two (2) working days. The CONTRACTOR shall exercise care so as not to damage artifacts uncovered during excavation operations, and shall provide such cooperation and assistance as may be necessary to preserve the findings for removal or other disposition by the OWNER's representative or Government agency.
C. Where appropriate, by reason of a discovery, the OWNER may order delays in the time of performance, or changes in the Work, or both. If such delays, or changes, or both, are ordered, the time of performance and contract price shall be adjusted in accordance with the applicable clauses of the Contract.

### 1.09 EXISTING UTILITIES

A. The CONTRACTOR shall be responsible for locating, protecting, flagging, and identifying all existing utilities. The CONTRACTOR shall request that Underground Service Alert (USA) locate and identify the existing utilities. The request shall be made 48 hours in advance.
B. Costs resulting from damage to utilities shall be borne by the CONTRACTOR. Costs of damage shall include repair and incidental costs resulting from the unscheduled loss of utility service to affected parties.
C. The CONTRACTOR shall immediately stop work and notify the CONSTRUCTION MANAGER of all utilities encountered or damaged. The CONTRACTOR shall also provide the CONSTRUCTION MANAGER with the exact location of any utilities encountered during construction.
D. If specified by the CONSTRUCTION MANAGER, utility pot holes shall be carefully dug by the CONTRACTOR to identify the presence of underground utilities.
E. Damage to utilities by the CONTRACTOR during pothole operations shall be born by the CONTRACTOR.

## PART 2 PRODUCTS

(Not Used)

## PART 3 EXECUTION

(Not Used)

## END OF SECTION

## SECTION 01032

## INTENT OF DRAWINGS AND SPECIFICATIONS

PART 1 GENERAL

### 1.01 CONTRACT DRAWINGS ASND SPECIFICATIONS

A. The intent of the Drawings and Specifications is to prescribe a complete work which the CONTRACTOR shall perform in a manner acceptable to the OWNER and in full compliance with the terms of the Contract.
B. The Drawings show general arrangements for the work which shall be used by the CONTRACTOR in the preparation of shop and field drawings. Particular care shall be given to all layouts to make sure all equipment is accessible for operation.
C. The CONTRACTOR shall provide the OWNER with a complete and operable system, even though the Drawings and Specifications may not specifically call out all items of work required of the CONTRACTOR to complete his tasks, incidental appurtenances, materials, and the like and maintenance.
D. The CONTRACTOR is to perform the Work in accordance with the cross-sections, thickness, gradients and dimensions shown on the Drawings. Any deviations must be approved by the DESIGN ENGINEER prior to doing the work.
E. The dimensions on the Drawings are presumed to be correct, but the CONTRACTOR shall be required to check carefully all dimensions prior to beginning the Work. If errors or omissions are discovered by the CONTRACTOR, the CONTRACTOR shall immediately notify the CONSTRUCTION MANAGER in writing and await the CONSTRUCTION MANAGER's notification before proceeding.

### 1.02 PRECENDENCE OF CONTRACT DOCUMENTS

A. If there is a conflict between Contract Documents, the document highest in precedence shall control. The precedence shall be:

1. Permits.
2. Special Provisions.
3. General Terms and Conditions,
4. Construction Drawings.
5. Technical Specifications.

### 1.03 CHANGES TO DRAWINGS

A. It is inherent in the nature of construction that some changes in the Drawings and Specifications may be necessary during the course of construction to adjust them to field conditions, and it is the essence of the Contract to recognize a normal and expected margin of change. The CONSTRUCTION MANAGER shall have the right
to make such changes, from time to time, in the Drawings, in the character of the Work as may be necessary or desirable to insure the completion of the Work in the most satisfactory manner without invalidating the Contract.

## PART 2 PRODUCTS

(Not Used)

## PART 3 EXECUTION

(Not Used)

## END OF SECTION

## SECTION 01300

## SUBMITTALS

## PART 1 GENERAL

### 1.01 SUBMITTAL PROCEDURES

A. Transmit each submittal with cover letter to the OWNER.
B. Each submittal shall have a unique submittal number.
C. Submittals shall be numbered sequentially. Re-submittals shall have original number with an alphabetic suffix ( $\mathrm{A}, \mathrm{B}, \mathrm{C}$, etc.) to indicate the sequence of the re-submittal.
D. Identify Project, CONTRACTOR, Subcontractor or supplier; pertinent Drawing sheet and detail number(s), and specification Section number, as appropriate.
E. Identify variations from Contract Documents and Product or system limitations that may be detrimental to successful performance of the completed Work.
F. Provide space for DESIGN ENGINEER and/or CQA CONSULTANT review stamps.
G. Revise and resubmit submittals as required, identify all changes made since previous submittal.
H. Distribute copies of reviewed submittals to concerned parties. Instruct parties to promptly report any inability to comply with provisions.
I. When catalog pages are submitted, applicable items shall be clearly identified.
J. An electronic copy (preferred) or three (3) hard copies of each submittal shall be provided to the OWNER. The OWNER will not accept submittals from anyone other than the CONTRACTOR.
K. The CONTRACTOR shall review all submittal packages prior to transmittal to OWNER for completeness and accuracy.

### 1.02 CHECK OF RETURNED SUBMITTALS AND WAIVER OF CLAIMS

A. The CONTRACTOR shall check and review the submittals returned for correction and ascertain whether the required corrections result in extra cost above that included in the Contract, and shall give written notice to the CONSTRUCTION MANAGER within five (5) working days if, in the CONTRACTOR's estimation, extra costs result from the corrections. The CONTRACTOR's failure to give such written notice before the starting of the Work covered by returned submittal constitutes a waiver by the CONTRACTOR of claims for extra costs resulting from required corrections. Payment based on such written notice is not approved until authorized by the OWNER.

### 1.03 PRODUCT DATA SUBMISSION

A. For each product item included in the Work, include the manufacturer's name and address, the trade or brand name, all conditions of manufacturer's guarantee and warranty, information to fully describe each item, and supplementary information as may be required for approval. Mark catalog cuts, brochures, and data to indicate the items proposed and the intended use. Clearly mark product parameters which were specifically called out on the original specifications.

### 1.04 EQUIPMENT DATA SUBMISSION

A. Submit complete technical, performance, and catalog information for every item of civil, mechanical, and electrical equipment and machinery proposed for installation in the Work. Include information on performance and operating curves, ratings, capacities, characteristics, power efficiencies, manufacturers' standard guarantees and warranties with the terms and conditions fully described, and all other information to fully illustrate and describe the items as may be specified or required for approval.

### 1.05 SUBMITTAL REVIEW AND ACCEPTANCE

A. The submittal review period shall be ten (10) consecutive work days in length and shall commence on the first working day immediately following the date of arrival of the submittal or re-submittal in the OWNER's office. The time required for mail delivery of the submittal or re-submittal back to the CONTRACTOR shall not be considered a part of the submittal review period.
B. The acceptance of drawings and data submitted by the CONTRACTOR will cover only general conformity to the Drawings and Specifications, external comections, and dimensions which affect the layout. The DESIGN ENGINEER's and/or CQA CONSULTANT's review of submittals shall not relieve the CONTRACTOR from responsibility for errors, omissions, or deviations, nor responsibility for compliance with the contract documents.

### 1.06 RE-SUBMITTALS

A. When the drawings and data are returned marked "AMEND AND RESUBMIT" or "REJECTED, SEE REMARKS," the corrections shall be made as noted thereon and as instructed by the DESIGN ENGINEER's and/or CQA CONSULTANT's and shall be resubmitted.
B. When corrected copies are resubmitted, the CONTRACTOR shall highlight or otherwise direct specific attention to all revisions and shall list separately those revisions made other than those called for on previous submissions.
C. The need for more than one resubmission shall not entitle the CONTRACTOR to extension of the Contract Time.

### 1.07 COSTS FOR SUBMITTALS

A. All costs for the preparation, correction, and delivery of the submittals are considered incidental to the contract and shall be included in CONTRACTOR's costs.

## PART 2 PRODUCTS

(Not Used)

## PART 3 EXECUTION

### 3.01 MATERIALS REQUIRING SUBMITTALS

A. The following materials shall require submittals.

1. Material certifications and product data for all geosynthetics;
2. Material quality control data for all geosynthetics;
3. Material certifications and product data for piping;
4. Material quality control data for piping; and
5. Items not fully detailed and specified in the Contract Drawings or these Specifications.

### 3.02 ITEMS NOT REQUIRING SUBMITTALS

A. A submittal is not required for products and equipment completely specified or salvaged onsite. A submittal is required if the product has not been completely specified or when the specified product is not available within the construction schedule. Substitutions requested by the CONTRACTOR require a submittal.

### 3.03 CONSTRUCTION SCHEDULE

A. At the pre-construction meeting, the CONTRACTOR shall submit to the CONSTRUCTION MANAGER for review a schedule of the proposed construction operations. The construction schedule shall indicate the sequence of the Work indicating the time of completion of each component of the Work.
B. Submit initial progress schedule in duplicate within ten (10) days after Effective Date of Agreement for CONSTRUCTION MANAGER to review.
C. Revise and resubmit as required.
D. Submit revised schedules with each Application for Payment, identifying chauges since previous version.
E. Submit a horizontal bar chart with separate line for each major section of Work or operation, identifying first work day of each week. Include on the bar chart construction/placement rates for all the major items of Work. CONTRACTOR shall develop proposed Construction Schedule on basis of a five or six day working week. Sufficient labor, equipment, and materials shall be provided by CONTRACTOR to complete the Work on a five or six day per week basis. Night work and work on Sundays will only be approved by the OWNER if the Work falls behind the approved Construction Schedule.
F. Show complete sequence of construction by activity, identifying Work of separate stages and other logically grouped activities. Indicate the start date, finish date, and duration. At a minimum, the following activities must be shown on the project schedule:

1. Mobilization;
2. Excavation;
3. Subgrade preparation;
4. Placement of the geomembrane;
5. Installation of the geotextile;
6. Placement of the vegetative cover soil;
7. Hydroseeding of the final cover; and
8. Demobilization and site clean-up.
G. Indicate estimated percentage of completion for each item of Work at each submission with Application for Payment.
H. Indicate submittal dates required for shop drawings, product data, samples and product delivery dates.
I. The Construction Schedule as approved by the OWNER will be an integral part of the Contract, and will establish interim Contract completion dates for various activities. Should an activity not be completed within ten (10) days after the stated Schedule date, the CONSTRUCTION MANAGER shall have the option to recommend to the CONTRACTOR to expedite completion of the activity by whatever means deemed appropriate and necessary, without additional compensation to the CONTRACTOR.
J. Should any activity be twenty (20) or more working days behind Schedule, the OWNER shall have the right to perform the activity or to have the activity performed by whatever method the OWNER deems appropriate. Costs incurred by the OWNER in connection with expediting construction activities under this Paragraph shall be reimbursed to the OWNER by the CONTRACTOR.
K. It is expressly understood and agreed that failure by the OWNER to exercise the option to either order the CONTRACTOR to expedite an activity or to expedite the activity by other means shall not be considered precedent-setting for any other activities. The Work shall be executed in strict accordance with the Construction Schedule unless a variance has been received by the CONSTRUCTION MANAGER and approved by the OWNER.

### 3.04 PROGRESS REPORTS

A. The CONTRACTOR shall submit progress reports as requested indicating work performed and completed that week, quantity of material used, and equipment used to perform the Work.
B. A progress report shall also be furnished to the ENGINEER with each application for progress payment. If the Work falls behind schedule, the CONTRACTOR shall submit additional progress reports at such intervals as the CONSTRUCTION MANAGER may request.
C. Each progress report shall include sufficient narrative to describe current and anticipated delaying factors, their effect on the construction schedule, and proposed corrective actions. Work reported complete, but which is not readily apparent as complete to the CONSTRUCTION MANAGER, must be substantiated with satisfactory evidence.
D. Each progress report shall also include a graphic schedule marked to indicate actual progress. Revised schedules shall be included when warranted.

### 3.05 MANUFACTURER'S CERTIFICATES

A. When specified in individual Specification Sections, submit manufacturers' certificate to the CQA CONSULTANT for review, in quantities specified for Product Data.
B. Indicate whether material or product conforms to or exceeds specified requirements. Submit supporting reference date, affidavits, and certifications as appropriate.
C. Certificates may be recent or previous test results on material or Product, but must be acceptable to the CONSTRUCTION MANAGER.

### 3.06 RECORD SURVEY AND DRAWINGS

A. The CONTRACTOR shall keep a set of construction drawings on the job and mark in red pencil the as-built conditions.
B. A complete and accurate set of record drawings shall be signed and dated by the CONTRACTOR and shall be labeled with the following, "These record drawings completely and truly represent the contract work as installed."
C. Record drawings shall be delivered to the CONSTRUCTION MANAGER prior to final acceptance of the work by the CONSTRUCTION MANAGER.
D. Record drawings shall show all changes in "clouds" to clearly identify any deviations from the plans.
E. Any utilities uncovered during construction shall be identified on the record drawings.
F. The record survey shall be performed by the CONTRACTOR in accordance with Section 01400 , Part 1.04 and shall meet the requirements of these Specifications and the CQA Plan and include, but not be limited to:

1. edges, bottom, and limits of anchor trenches;
2. limits of excavation and fill;
3. subgrades;
4. HDPE panel layout, intersections;
5. destructive test locations on HDPE geomembrane;
6. location and crown elevations of piping;
7. top of the vegetative cover soil layer;
8. grade breaks; and
9. layout and flow line elevations of surface water control structures.
G. Survey of the excavated subgrades and Operations Layer surfaces shall be on a grid with a maximum spacing of 50 feet or an equivalent method approved by the CQA CONSULTANT, with additional elevations at slope change locations. The elevations for the subgrade and top of the Operations Layer shall be at the same grid locations and shall be used to document thickness conformance. The record survey shall include locations and elevations of all other work as directed by the CONSTRUCTION MANAGER.
H. Record drawings shall be prepared to seale, with the scale clearly marked. Record drawings of details may not be to scale, but all dimensions shall be clearly identified. Record drawings shall be submitted to the CQA CONSULTANT for review and approval. Record drawings shall be provided on Bond and electronically in AutoCAD 2005 format or more recent. The DESIGN ENGINEER will provide the base AutoCAD file map. Different elements of the work shall be presented on different layers in the base AutoCAD file provided by the DESIGN ENGINEER.

### 3.07 HEALTH AND SAFETY PLAN

A. The CONTRACTOR shall submit a Health and Safety Plan in accordance with Section 01810 of these Specifications.

### 3.08 STORM WATER POLLUTION PREVENTION PLAN (SWPPP)

A. The CONTRACTOR shall prepare and submit a SWPPP specific to the work to the OWNER for approval. The SWPPP shall be consistent with the provisions of the "California Construction Best Management Practice Handbook," the site National Pollutant Discharge Elimination System (NPDES) site permit, and the Kettleman Hills Facility SWPPP. The SWPPP shall include specific measures to protect the Work and comply with the regulations, including specific erosion and sediment controls. The CONTRACTOR is responsible to control storm water run-on, run-off, erosion, and sediment to such an extent as needed to maintain compliance with the SWPPP and protect the Work, protect adjacent landfill operations, and adjacent structures.

## END OF SECTION

## SECTION 01400

## CONSTRUCTION QUALITY CONTROL

## PART 1 GENERAL

### 1.01 CONSTRUCTION QUALITY CONTROL

A. The CONTRACTOR shall be responsible for construction quality control of the Work and all appurtenances as described in these Specifications.
B. The CONTRACTOR shall monitor quality control over suppliers, manufacturers, products, services, site conditions, and workmanship, to produce Work of specified quality.
C. The CONTRACTOR shall comply fully with manufacturers' instructions, including each step in sequence.
D. Should manufacturers' instructions conflict with Contract Documents, the CONTRACTOR shall request clarification from CONSTRUCTION MANAGER before proceeding.
E. The CONTRACTOR shall comply with specified standards as a minimum quality for the Work except when more stringent tolerances, codes, or specified requirements indicate higher standards or more precise workmanship.
F. The CONTRACTOR shall perform work using persons qualified to produce workmanship of specified quality.
G. The CONTRACTOR shall secure products in place with positive anchorage devices designed and sized to withstand stresses, vibration, physical distortion or disfigurement.
H. The CONSTRUCTION MANAGER shall determine and decide all questions which may arise as to the quality and acceptability of materials and Work performed; the manner of performance and the rate of progress of said Work; the interpretations of the Contract Documents relating to the Work; the acceptable fulfillment of the Contract Documents on the part of the CONTRACTOR; and the amount and quantity of the several kinds of Work performed and materials which are to be paid for under the Contract.
I. All materials and equipment shall be new and of the specified quality and equal to the samples found to be acceptable by the CQA CONSULTANT, if samples have been submitted.
J. The Work shall be done and completed in a thorough, workmanlike manner, notwithstanding omissions in the Contract Documents; and it shall be the duty of the CONTRACTOR to call the CONSTRUCTION MANAGER's attention to apparent errors or omissions and request instructions in writing before proceeding with the Work.
K. The CONSTRUCTION MANAGER may, by appropriate written instructions, correct errors and omissions. Instructions and corrections shall be as binding upon the CONTRACTOR as though contained in the original Contract Documents.

### 1.02 CONSTRUCTION QUALITY ASSURANCE

A. Materials, equipment, methods of construction and workmanship shall be subject to the inspection of the CQA CONSULTANT as outlined in the CQA Plan. Defective materials, equipment, or work shall be replaced, corrected or otherwise made good by the CONTRACTOR at the CONTRACTOR's own expense.
B. On all questions concerning the acceptability of materials or equipment, execution of the Work, and the determination of costs, the decision of the CONSTRUCTION MANAGER shall be final and binding upon all parties.
C. The CONTRACTOR shall at all times maintain proper facilities and provide safe access to all parts of the Work, to the shops wherein the Work is in preparation, and to all warehouses and storage yards wherein materials and equipment are stored, for purposes of inspection by the CQA CONSULTANT.
D. The CONTRACTOR shall provide incidental labor and facilities to provide access to Work to be tested, to obtain and handle samples at the Site or at source of products to be tested, and to facilitate tests and inspections.
E. Notify CQA CONSULTANT 24 hours prior to expected time for operations requiring inspection services.
F. Retesting required because of non-conformance to specified requirements shall be performed by the CQA CONSULTANT on instructions by the CONSTRUCTION MANAGER. Payment for retesting will be charged to the CONTRACTOR by deducting inspection or testing charges from the Contract Price.
G. Employment of CQA CONSULTANT by OWNER shall in no way relieve the CONTRACTOR of obligations to perform Work in accordance with requirements of Contract Documents.

### 1.03 MANUFACTURERS' FIELD SERVICES AND REPORTS

A. When specified in individual Specification Sections, required material or Product suppliers or manufacturers shall provide qualified staff personnel to observe site conditions, conditions of surfaces and installation, and quality of workmanship as applicable, and to initiate instructions when necessary.
B. Individuals shall report observations and site decisions or instructions given to applicators or installers that are supplemental or contrary to manufacturers' written instructions.

### 1.04 SURVEYING

A. At least two control monuments shall be established by the CONTRACTOR at locations convenient for daily tie-in. The vertical and horizontal controls for these
control points shall be established within normal land surveying standards. The CONTRACTOR shall use these control points in laying out and providing ongoing geometric control of the work. The control monuments shall be shown on all record drawings.
B. Surveying shall be performed under the direct supervision of a licensed land surveyor or registered civil engineer authorized to practice land surveying under Chapter 15, Article 3, Section 8731 of the Professional Engineering Act of California, as amended January 1, 1992 who may also be the senior surveyor on site. The survey crew shall consist of the senior surveyor and as many surveying assistants as required to satisfactorily undertake the work. Personnel shall be experienced in all aspects of surveying, including detailed, accurate documentation.
C. The survey instruments used for this work shall be sufficiently precise and accurate to meet the needs of the project. Survey instruments shall be capable of reading to a precision of 0.01 feet and with a setting accuracy of 10 seconds. Calibration certificates for survey instruments shall be submitted on request to the CQA CONSULTANT prior to the initiation of surveying activities.
D. It shall be the CONTRACTOR's sole responsibility to control the Work so that all of the geometric requirements of the project are met. The CONTRACTOR shall immediately notify the CONSTRUCTION MANAGER and the CQA CONSULTANT of any discrepancy found in the Work. It will be the CONSTRUCTION MANAGER's sole prerogative to approve or reject work which does not meet the requirements contained in these Specifications and the Drawings, but which, in the CONSTRUCTION MANAGER's sole opinion, may nevertheless meet the intention of the Contract Documents.
E. The CONTRACTOR shall be responsible for the accuracy of all work and shall maintain all reference points, stakes, etc., throughout the life of the project. Damaged or destroyed points, bench marks or stakes, or any reference points made inaccessible by the progress of the construction shall be replaced or transferred by the CONTRACTOR. Any of the above points shall be referenced by ties to acceptable objects and recorded. Any alternations or revisions in the ties shall be so noted and the information furnished to the CONSTRUCTION MANAGER immediately. All computations necessary to establish the exact position of the work from control points shall be made and preserved by the CONTRACTOR. All computations, survey notes and other records necessary to accomplish the work shall be neatly made and shall be made available onsite for review by the CQA CONSULTANT.
F. During the progress of the construction work, the CONTRACTOR shall be required to furnish all of the surveying and state-out incidental to the proper location by line and grade for each phase of the work. For any operation requiring extreme accuracy, the CONTRACTOR shall restake with pins or other acceptable hubs located directly adjacent to the work at a spacing approved by the CONSTRUCTION MANAGER.

## PART 2 PRODUCTS

(Not Used)

## PART 3 EXECUTION

(Not Used)

## END OF SECTION

## SECTION 01402

## CONTROL OF WORK

## PART 1 GENERAL

### 1.01 AUTHORITY OF THE CONSTRUCTION MANAGER

A. The CONSTRUCTION MANAGER will decide all questions which may arise as to the quality and acceptability of materials furnished and work performed; all questions which may arise as to the interpretation of the Drawings and Specifications; and all questions as to the satisfactory and acceptable fulfillment of the Contract on the part of the CONTRACTOR.
B. The OWNER shall have the authority to stop the Work if odor or dust becomes a nuisance.

### 1.02 AUTHORITY OF THE CQA CONSULTANT

A. The CQA CONSULTANT employed by the OWNER shall be authorized to monitor all work done and materials and equipment furnished. Such monitoring may extend to all or part of the Work, and to the preparation, fabrication, or manufacture of the materials and equipment to be used. The CQA CONSULTANT will not alter or waive the provisions of the Contract Documents.
B. The CQA CONSULTANT will keep the CONSTRUCTION MANAGER informed as to the progress of the Work and the manner in which it is being done; also, the CQA CONSULTANT will call the CONTRACTOR's attention to non-conformance with the Contract Documents that the CQA CONSULTANT may have observed. The CQA CONSULTANT will not approve or accept any portion of the Work, issue instructions contrary to the Contract Documents, or act as foreman for the CONTRACTOR. The CQA CONSULTANT may reject defective materials, equipment, or work subject to final decision of the CONSTRUCTION MANAGER.
C. The CONSTRUCTION MANAGER may delegate additional authority to the CQA CONSULTANT. In such cases, the CONSTRUCTION MANAGER will notify the CONTRACTOR of such action.

### 1.03 COORDINATION AND INTERPRETATION OF DRAWINGS AND SPECIFICATIONS

A. The Specifications, General Conditions, Special Conditions, CQA Plan, Contract Change Orders, and all supplementary documents are essential parts of the Contract, and a requirement occurring in one is as binding as though occurring in all. They are intended to be coordinated and to describe and provide for a complete work.
B. Should it appear that the Work or other matters relative thereto are not sufficiently detailed or explained in the Contract Documents, the CONTRACTOR shall apply to the CONSTRUCTION MANAGER for such further explanations as may be necessary and shall conform to them as part of the Contract.
C. In the event of a doubt or question arising regarding the true meaning of the Contract Document, reference shall be made to the CONSTRUCTION MANAGER, whose decision thereon shall be final.
D. In the event of a discrepancy between a drawing and the figures written thereon, and/or the Drawings and the Specifications, the CONTRACTOR shall notify the CONSTRUCTION MANAGER in writing and wait for approval before proceeding. Scaled dimensions shall not be used in the performance of the Work.

## PART 2 PRODUCTS

(Not Used)

## PART 3 EXECUTION

### 3.01 PERFORMANCE REQUIREMENTS

A. The CONTRACTOR shall furnish the CONSTRUCTION MANAGER with every reasonable facility for ascertaining whether or not the Work as performed is in accordance with the requirements and intent of the Specifications and Contract.
B. Should a work be covered before acceptance or consent of the CONSTRUCTION MANAGER, it must, if required by the CONSTRUCTION MANAGER, be uncovered for examination at the CONTRACTOR's expense.

## END OF SECTION

## SECTION 01565

## TEMPORARY FACILITIES

## PART 1 GENERAL

### 1.01 SUMMARY

A. The CONTRACTOR shall provide all temporary facilities and utilities required for prosecuting the Work, protection of employees and the public, protection of the Work from damage by fire, weather or vandalism, and such other facilities as may be specified or required by an applicable law, ordinance, rule, or regulation.
B. The CONTRACTOR must provide their own office space for their needs if necessary. The location of the office shall be approved by the OWNER.

### 1.02 ELECTRICAL SERVICE

A. Electrical power is not available at the site. The CONTRACTOR shall arrange for temporary electric connection or supply a generator capable of providing the power required to operate tools or equipment or to provide area lighting as needed. Temporary power whether supplied by a utility company or by a generator shall conform to the requirements of the 1993 National Electrical Code, the 1993 National Electrical Safety Code, and all applicable national standards, local regulations and ordinances.
B. The allowable hours of generator operation is the same as the regular working hours for the project. All generators shall be fitted with a residential quality muffler.

### 1.03 FIRST AID

A. First aid kits meeting the minimum requirements of the Occupational Safety and Health Administration shall be provided in a readily accessible location or locations indicated in the CONTRACTOR's Health and Safety Plan as outlined in Section 01810 of these Specifications.

### 1.04 CONSTRUCTION FACILITIES

A. Construction hoists, elevators, scaffolds, stages, shoring and. similar temporary facilities shall be of ample size and capacity to adequately support and move the loads to which they will be subjected. Railings, enclosures, safety devices, and controls required by law or for adequate protection of life and property shall be provided.

### 1.05 STAGING AND SHORING

A. Temporary supports shall be designed with an adequate safety factor to assure stability and adequate load bearing capacity.
B. Trenches greater in depth than four (4) feet shall be shored or sloped according to OSHA requirements.

### 1.06 TEMPORARY ENCLOSURES

A. When any activity hazardous to property or the health of employees and the public is in progress, the area of activity shall be enclosed adequately to contain the dust, overspray, or other hazard. In the event there are not permanent enclosures in the area, or such enclosures are incomplete or inadequate, the CONTRACTOR shall provide suitable temporary enclosures.

### 1.07 WARNING DEVICES AND BARRICADES

A. The CONTRACTORs shall adequately identify and guard all hazardous areas, holes, pits, and conditions by visual warning devices and physical barriers. Such devices shall, as a minimum, conform to the requirements of OSHA and Cal-OSHA.

## I. 08 HAZARDS IN PUBLIC ACCESS AREAS

A. Trenches and other essentially continuous excavations in public access areas, running parallel to the general flow of traffic, shall be marked at reasonable intervals by traffic cones, barricades, or other suitable visual markers during daylight hours. During hours of darkness, these markers shall be provided with either torches, flashers or other adequate lights.

### 1.09 FIRE EXTINGUISHERS

A. A sufficient number of fire extinguishers of the type and capacity required to protect the site and ancillary facilities shall be provided in readily accessible locations.

### 1.10 ODOR CONTROL

A. The CONTRACTOR shall comply with the provisions for control of odor and emissions as required by the MDAQMD or the OWNER.

### 1.11 SANITATION FACILITIES

A. CONTRACTOR shall provide and maintain ample field latrines and ablution accommodations in accordance with OSHA requirements for all workers employed on the project under the contract. Field latrines and ablution accommodations shall be provided and maintained in a sanitary condition at all times during the work on this project.

### 1.12 MATERIAL STORAGE

A. A materials storage area shall be designated to the CONTRACTOR by the CONSTRUCTION MANAGER. The CONTRACTOR is responsible for security of all of his materials and equipment.

## PART 2 PRODUCTS

(Not Used)

## PART 3 EXECUTION

(Not Used)

## END OF SECTION

## SECTION 01810

## SAFETY PROCEDURES

## PART 1 GENERAL

### 1.01 SUMMARY

A. This section establishes minimum safety requirements and guidelines for the performance of the Work.
B. The CONTRACTOR is advised that decomposing refuse produces landfill gas which is approximately 50 percent methane (natural gas) by volume, and is potentially flammable or explosive.
C. The CONTRACTOR shall submit a Health and Safety Plan and a copy of their Injury and Illness Prevention Program to the OWNER for review prior to beginning work.
D. The CONTRACTOR shall hold mandatory daily tailgate safety meetings on the site, as well as formal weekly safety meetings.

### 1.02 GENERAL REQUIREMENTS

A. The CONTRACTOR shall have sole responsibility and liability for the safety, efficiency, and adequacy of the CONTRACTOR's personnel, equipment and methods, and for any damage or injury resulting from their failure, or improper maintenance, use, or operation.
B. The CONTRACTOR shall be solely and completely responsible for the conditions at the Work area arising from the CONTRACTOR's execution of the Work. This requirement shall apply continuously and not be limited to normal working hours.
C. The CONTRACTOR shall provide all personnel working on the project with orientation and training on the potential hazards anticipated and the appropriate use of safety equipment.
D. Neither the OWNER nor the CONSTRUCTION MANAGER shall have liability resulting from injury or death to CONTRACTOR's employees or subcontractors and their employees.
E. A health and safety officer, employed by the CONTRACTOR, shall be present at all times during construction of underground facilities. The health and safety officer may be the site superintendent or other responsible regular employee of the CONTRACTOR provided he has had special health and safety training, and shall have responsibility for the enforcement of the Health and Safety Plan, particularly as it applies to drilling activities. The health and safety officer shall be identified by name in the Health and Safety Plan.
F. Many gases are heavier than air and settle in low areas such as trenches and excavations, therefore additional precautions shall be observed in these areas. Specifically, the need for constant $\mathrm{O}_{2}$ monitoring, forced ventilation, combustible gas
monitoring, VOC monitoring, respiratory protective equipment, etc. shall be determined by the CONTRACTOR. The CONSTRUCTION MANAGER may impose additional requirements when deemed necessary for worker safety.

### 1.03 HEALTH AND SAFETY PLAN

A. The CONTRACTOR shall develop and maintain for the duration of work activities at the site, a written, site specific Health and Safety Plan for landfill operations that will effectively incorporate and implement all applicable requirements. The plan will meet the requirements of CCR Title 8 Section 5192.
B. In addition to requirements set forth in other sections, the CONTRACTOR's Health and Safety Plan shall contain provisions for aspects of protection against bodily injury from heavy construction equipment, tools and equipment required to construct the system.
C. The Health and Safety Plan shall include the location and route to the nearest hospital or emergency facility. All CONTRACTOR employees and subcontractors working on the project shall be thoroughly familiar with the emergency route.
D. In the event the Health and Safety Plan is determined by the CONSTRUCTION MANAGER, OWNER or the State or Federal Regulatory Agencies to be inadequate to protect the employees and the public, the plan shall be modified prior to the beginning of the Work to meet the minimum requirements of the OWNER or the State or Federal Regulatory Agencies at no additional cost to the OWNER.
E. Acceptance of the CONTRACTOR's Health and Safety Plan by the OWNER does not release the CONTRACTOR of liability in the event of an accident or injury, nor does it place any liability on the CONSTRUCTION MANAGER or OWNER.
F. Provisions shall be made to protect against ingestion, absorption or inhalation of hazardous compounds and for the handling of refuse in a safe, sanitary, and proper manner.
G. The CONTRACTOR's Health and Safety Plan shall contain trenching and excavation safety guidelines particular to landfill work.

### 1.04 REGULATORY REQUIREMENTS

A. The CONTRACTOR shall comply with provisions of safety regulatory bodies including, but not necessarily limited to:

1. OSHA/Cal-OSHA regulations for construction
2. 29 Code of Federal Regulations (CFR) 1926/1910 and CFR 1910.120
3. Title 8 California Code of Regulations, in particular Section 5192.
4. All other applicable federal, state, county and local laws, ordinances, codes, the requirements
B. If any of these requirements are in conflict, the more stringent requirement shall apply. The CONTRACTOR's failure to be thoroughly familiarized with the aforementioned safety and health provisions shall not relieve the CONTRACTOR of
responsibility for full compliance with the obligations and requirements set forth herein.
C. The CONTRACTOR shall conform to the rules and regulations of the State Construction Safety regulations pertaining to excavations and trenches. A copy of the regulations is available at the OWNER.

### 1.05 SPECIAL SAFETY CONSIDERATION RELATED TO LANDFILL WORK

A. Portions of the Work involve excavation and removal of and construction near hazardous waste.
B. The landfill may contain leachate water contaminated with substances found in the landfill which may be corrosive, toxic, carcinogenic, mutanogenic or otherwise hazardous.

## PART 2 PRODUCTS

(Not Used)

## PART 3 EXECUTION

### 3.01 GENERAL REQUIREMENTS

A. The CONTRACTOR shall assume full responsibility to assure that during construction his employees, subcontractors and their employees follow the Health and Safety Plan.
B. The CONTRACTOR shall hold mandatory weekly safety meetings on the site. The CONTRACTOR shall notify the CONSTRUCTION MANAGER of the time and place of all meetings and allow the CONSTRUCTION MANAGER to participate. Meetings should reiterate safety measures to be taken and discuss any violations committed and preventive measures to avoid future violations.
C. The CONTRACTOR shall require all personnel on the site to wear the appropriate personnel protective equipment such as steel toe boots, hard hats, orange safety vests, safety belts and lanyards, and others.
D. The CONTRACTOR shall provide appropriate fall protection (i.e., harness and shock absorbing lanyard) that must be worn and secured to a stationary object when working within a distance of ten 10 feet of an excavation greater than eight (8) inches in diameter or deeper than four (4) feet.
E. No smoking or consumption of alcohol or any drug which could impair sight, balance or judgment is permitted on the job.

### 3.02 TRENCHING SAFETY

A. The CONTRACTOR shall complete each excavated trench prior to the end of the working day. A trench shall be considered complete if it has been backfilled to the landfill surface.
B. Any time excavations and trenching exceed four (4) feet in depth, shoring, bracing or sloping of the side walls is required prior to entry. If sloping is the method used, side walls of the trench shall be sloped at a $2: 1$ slope (Cal-OSHA requirement).
C. Welding is to be avoided within the barricaded area. If HDPE pipe welding is performed in the trench, continuous methane monitoring shall be performed.
D. Solvent cleaning, gluing or bonding of pipe shall be done, to the extent practicable, outside the trench.
E. All trenches shall be backfilled as soon as practical after excavation, and under no circumstances shall a trench remain open after the crew has left the vicinity of the trench. A maximum of 300 feet of trench may be exposed at any one time. All exposed refuse must be covered at the end of each day using cover soil or a tarp.
F. Electric motors shall not be used in trenches. Pneumatic operated tools shall be used in the trench.

### 3.03 VIOLATIONS

A. Should any health and safety violations be called to the CONTRACTOR's attention by anyone, the CONTRACTOR shall immediately correct the violations.
B. If the CONTRACTOR violates any health and safety rule or regulation, the OWNER may issue an order to stop all work until the violations are remedied. The CONTRACTOR shall not be entitled to any extension of the time or any claim for damage or to any compensation for either the directive or the work suspension order. A decision by the OWNER not to order discontinuance of any or all of the CONTRACTOR's operations shall not relieve the CONTRACTOR of responsibility for safety.

## END OF SECTION

## SECTION 02105

## EROSION CONTROL

## PART 1 GENERAL

### 1.01 DESCRIPTION

A. This section describes the general requirements for erosion control measures associated with lining materials for drainage channels.

## PART 2 PRODUCTS

### 2.01 EROSION CONTROL BLANKET

Permanent Turf Reinforcement Mat shall be Propex Landlok 407, or equivalent. To be used in Type IB, II and IV channels.

Temporary Erosion Control Mat shall be SI Geosolutions ECB CS2, or equivalent. To be used in Type IA channels.

## PART 3 EXECUTION

### 3.01 GENERAL

A. Grade and compact area of installation and remove all rocks, clods, vegetation or other obstructions so that the installed mat will have direct contact with soil surface. Prepare seedbed by loosening 2-3 inches of topsoil. Incorporate amendments such as fertilizer into soil.
B. For temporary erosion control mat, apply seed to soil surface before installing blanket/mat. For permanent erosion control mat, apply seeding after installation and prior to filling mat with soil.
C. The CONTRACTOR shall install the permanent and temporary control mats in accordance with the manufacturer's recommendations. In general the installation should include:

1. Anchor trenches or check slots ( 6 -inches deep) at 30 foot intervals along the trench.
2. Longitudinal anchor trenches (4-inches deep) to secure outside edges.
3. Anchor erosion control mat with U-shaped wire staples. Staples shall be a minimum of 6 -inches in length and have sufficient ground penetration to resist pullout. Longer anchors may be required. Anchors for the permanent erosion control mat shall be installed with a minimum of 2 anchors per
square yard. Temporary erosion control mats shall be installed with a minimum of 1.5 anchors per square yard.
4. After installation of permanent erosion control mat, apply seed and apply $1 / 2$ to $3 / 4$ inches of fine soil into the mat to completely fill the voids. Use backside of rake, or similar, to smooth soil fill in order to just expose the top netting.

## END OF SECTION

## SECTION 02110

## SITE CLEARING, GRUBBING AND STRIPPING

## PART 1 GENERAL

### 1.01 DESCRIPTION

A. This section describes the general requirements for site clearing, grubbing and stripping associated with final closure construction of Landfill B-18 at the Kettleman Hills Facility.
B. Clearing, grubbing and stripping shall be performed to remove organic, soft, loose, and deleterious materials and expose a firm, unyielding subgrade.

### 1.02 RELATED SECTIONS

A. Section 02200 - Earthwork
B. Section 02751 - HDPE Geomembrane

## PART 2 PRODUCTS

A. Organic, soft, loose and deleterious materials includes, but is not limited to, vegetative growth, non-engineered fills, alluvial deposits, soft, loose, or saturated subgrade soils, refuse, and construction debris.

## PART 3 EXECUTION

### 3.01 PROTECTION

A. Locate, identify, and protect utilities that remain from damage.
B. Protect groundwater monitoring wells and piezometers, and landfill gas extraction wells and monitoring probes from damage or displacement.

### 3.02 CLEARING

A. Clear areas required for access to site and execution of work.
B. Earthwork CONTRACTOR shall remove all organic and deleterious material, and trash from the subgrade surface. Vegetative growth greater than 1 inch in dimension shall be removed to a depth of 6 inches below the subgrade surface.
C. The Earthwork CONTRACTOR shall consider that clearing, grubbing, and stripping will necessitate the use of manual labor to remove all organic and deleterious material from the subgrade surface.
D. The Earthwork CONTRACTOR shall remove soft, loose, or saturated materials as approved by the CQA CONSULTANT. The materials shall be removed until a firm, unyielding subgrade, approved by the CQA CONSULTANT, is exposed.
E. All removed materials shall be disposed of onsite in an area designated by the PROJECT MANAGER. No accumulation of flammable material shall remain on or adjacent to the construction area.
F. The Earthwork CONTRACTOR shall expose existing liner terminations as required on the Drawings. The Work may require hand excavation to avoid damage to the existing liner. Any damage to the existing liner shall be repaired by the Earthwork CONTRACTOR at no additional cost to the OWNER.

## END OF SECTION

## SECTION 02200

## EARTHWORK

## PART 1 GENERAL

### 1.01 SUMMARY

A. This section describes the general requirements for earthworks associated with the final closure construction of Landfill B-18 at the Kettleman Hills Facility.
B. The Earthwork CONTRACTOR shall furnish all labor, materials, equipment and incidentals necessary to perform all excavation, backfilling, compaction and grading required to complete the work shown on the Drawings and specified herein. The Work shall include, but not necessarily be limited to, survey and staking, borrow excavation and hauling, excavation for trenches, fill placement and compaction, grading, and all related work.
C. The Earthwork CONTRACTOR shall comply with the safety procedures given in Section 01810 of these Specifications.

### 1.02 RELATED SECTIONS

A. Section 01300 - Submittals
B. Section 01400 - Construction Quality Control
C. Section 02110 - Site Clearing, Grubbing and Stripping.
D. Section 02720 - Drainage Facilities
E. Section 02751 - HDPE Geomembranes

### 1.03 REFERENCE STANDARDS

A. American Society for Testing and Materials (ASTM), latest editions:

1. ASTM D422-Test Method for Particle Size Analysis of Soils.
2. ASTM D1556 - Test Method for Density of Soil In-Place by the Sand Cone Method.
3. ASTM D1557 - Test Methods for Moisture-Density Relations of Soils and Soil Aggregate Mixtures Using $10-\mathrm{lb}$. Rammer and 18 -inch Drop.
4. ASTM D2216 - Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass
5. ASTM D2419-Test Method for Sand Equivalent Value of Soil/Fine Aggregate.
6. ASTM D2497-Standard Test Method for Classification of Soils for Engineering Purposes.
7. ASTM D2922 - Test Methods for Density of Soil and Soil Aggregate in Place by Nuclear Methods (Shallow Depth).
8. ASTM D2937 - Standard Test Method for Density of Soil in Place by the DriveCylinder Method
9. ASTM D3017 - Water Content of Soil and Rock in Place by Nuclear Methods (Shallow Depth).
B. Standard Specifications for Public Works Construction (SSPWC).

### 1.04 QUALITY ASSURANCE/CONTROL

A. The Earthwork CONTRACTOR shall adhere to the requirements of Section 01400 of these Specifications.
B. Compaction testing of engineered fill and backfill shall be performed by the CQA CONSULTANT. Testing shall be performed at locations to be determined by the CQA CONSULTANT, in order to determine if the soils meet the compaction requirements. Costs for testing to verify compaction and soil moisture content will be assumed by the OWNER. The cost of retesting, should corrections to construction be required, shall be the responsibility of the Earthwork CONTRACTOR.
C. The OWNER shall have complete authority to order immediate stoppage of work due to use of improper construction procedures, or for any reason that in his sole opinion, may result in a defective work.

### 1.05 DEFINITIONS

A. Excavation: Consists of the removal of material encountered to subgrade elevations and the reuse or disposal of materials removed.
B. Subgrade: The surface upon which structures/systems/fills are constructed.
C. Borrow: Soil material obtained from other than the excavation.
D. Unauthorized excavation consists of removing materials beyond indicated subgrade elevations or dimensions without direction by the PROJECT MANAGER. Unauthorized excavation, as well as remedial work directed by the PROJECT MANAGER, shall solely be at the Earthwork CONTRACTOR's expense.
E. Utilities include on-site above ground and underground pipes, conduits, ducts, and cables, as well as underground services.

### 1.06 SAFETY

A. CONTRACTOR is solely responsible for performing work in a safe manner and complying with all applicable local, state and federal codes, ordinances, laws, and regulations.
B. CONTRACTOR shall comply with the requirements of the Health and Safety Plan.

## PART 2 PRODUCTS

### 2.01 MATERIALS

## A. Structural Fill

1. Structural Fill shall be removed from the on-site borrow area(s) designated by the OWNER. Material shall be predominantly free from roots, wood, organic matter, refuse or other deleterious matter, and shall not contain particles over 6 inches in greatest dimension.
2. The OWNER has designated on-site borrow source(s) for the CONTRACTOR. The CONTRACTOR shall be responsible for excavating, loading, hauling, placing and compacting the material from the designated borrow source(s).
B. Foundation Layer
3. Foundation Layer is structural fill placed within 1-foot of HDPE geomembrane.
4. In addition to the structural fill requirements, Foundation layer shall not contain particles over 1 inch in greatest dimension and have a hydraulic conductivity of less than or equal to $1 \times 10^{-5} \mathrm{~cm} / \mathrm{sec}$ as determined by ASTM D5084.
C. Vegetative Cover
5. Vegetative Cover shall be removed from the on-site borrow area(s) designated by the OWNER. Material shall contain no particles over 3 inches in greatest dimension.
6. The OWNER has designated on-site borrow source(s) for the CONTRACTOR. The CONTRACTOR shall be responsible for excavating, loading, hauling, placing and compacting the material from the designated borrow source(s).
D. Trench Backfill
7. Trench Backfill shall be removed from the on-site borrow area(s) designated by the OWNER. Material shall be predominantly free from roots, wood, organic matter, refuse or other deleterious matter, and shall not contain particles over 1 inch in greatest dimension.
8. The OWNER has designated on-site borrow source(s) for the CONTRACTOR. The CONTRACTOR shall be responsible for excavating, loading, hauling, placing and compacting the material from the designated borrow source(s).
E. Water
9. Water shall be potable water or reclaimed water approved for use by OWNER.
10. The OWNER will provide water for dust control and soil preparation to the Earthwork CONTRACTOR at no cost to the Earthwork CONTRACTOR.
11. The CONTRACTOR shall only obtain water from sources designated by the OWNER.

## PART 3 EXECUTION

### 3.01 GENERAL

A. The Earthwork CONTRACTOR shall be solely responsible for the satisfactory completion of all earthwork in accordance with the Drawings and Specifications.
B. Equipment used in the excavation, transport, placement and compaction of all materials used in construction will be standard of practice grading machinery of known specifications suitable for performing the required work in a timely and efficient manner.
C. All material considered by the CQA CONSULTANT to be unsuitable for use in the construction of the earthwork shall be removed. All materials incorporated as part of engineered fill must be inspected and placement must be observed by the CQA CONSULTANT. Unsuitable material shall be disposed of in the designated area.
D. Where work is interrupted by heavy rains, earthwork operations shall not be resumed until observations and field tests by the CQA CONSULTANT indicate the moisture content and density of the in-place fills and/or materials intended for placement are within the specified requirements.
E. If any unanticipated earth conditions of an adverse or potentially adverse nature are encountered during grading, the Earthwork CONTRACTOR shall immediately notify the CQA CONSULTANT. The CQA CONSULTANT and DESIGN ENGINEER shall investigate, analyze, and make recommendations to mitigate these conditions.
F. Throughout construction, all excavated and/or fill areas shall be graded to provide positive drainage and prevent ponding of water. Surface water shall be controlled to avoid damage to adjoining properties or to finished work on the site.
G. No heavy equipment shall be permitted to operate within 3 feet of existing wellheads or piping. Compaction of material within these limits shall be completed with hand equipment.
H. The Earthwork CONTRACTOR shall apply water to any exposed earthen areas during construction to minimize airborne dust. This shall include active and inactive excavation areas, haul roads, and any nonvegetated stockpiles. The Earthwork CONTRACTOR shall be responsible for complying with all state and local regulations regarding dust and/or air quality.
I. Earthwork CONTRACTOR shall not use "paddle-wheel" (i.e., Caterpillar 613 or equivalent) equipment to excavate soils.
J. Earthwork CONTRACTOR shall provide manned traffic control (e.g., flagman) at locations identified by Owner and/or Contractor as being a potential safety hazard.

### 3.02 CONTROL OF WATER

A. The Earthwork CONTRACTOR shall excavate and backfill in a manner and sequence that will provide proper drainage at all times. The Earthwork CONTRACTOR shall remove all water, including runoff and run-on collected from rainwater encountered during excavation, to a location approved by the PROJECT MANAGER, by pumps, drains, and other approved methods.
B. The Earthwork CONTRACTOR shall take all necessary precautions to preclude the accidental discharge of fuel, oil, etc. and to prevent such accidents that may endanger the environment. The Earthwork CONTRACTOR will be responsible for the cost of remediating the results of any such discharges or accidents.

### 3.03 BORROW

A. CONTRACTOR shall submit the proposed limits of the borrow area to the OWNER for approval prior to the commencement of the Work. The maximum limits of the borrow area are shown on the Drawings.
B. The gradients of the borrow slopes and the depth of the borrow excavation should not exceed those specified on the Drawings. If the slopes are constructed steeper or the depth of the borrow excavation is greater than that specified on the Drawings, the CONTRACTOR shall reconstruct the slopes/refill the bottom to the gradients/depth specified by backfilling and compacting material in accordance with the requirements for engineered fill in this Section. The cost to reconstruct the slopes/refill the bottom will be borne solely by the CONTRACTOR.
C. The CONTRACTOR shall maintain a secure work site at all times.

### 3.04 STRUCTURAL FILL

A. Prior to placing structural fill, CONTRACTOR shall clear and grub the area in accordance with Section 02110 of these Specifications. CONTRACTOR shall also remove uncertified existing fills, disturbed soils and deleterious materials from the area to the satisfaction of the CQA CONSULTANT.
B. The ground surface (i.e areas with less than $10 \%$ slope) to receive fill shall be over excavated a minimum of 2 feet. The base of the excavation shall be scarified to a depth of 8 inches. The scarified ground surface shall then be brought to within 3 percent of optimum moisture content, mixed as required, and compacted to a minimum of 90 percent of the maximum dry density as determined by ASTM D1557. Excavated soil may be used for filling the excavation if placed in accordance with the structural fill requirements. If the scarified zone is greater than 12 inches in depth, the excess shall be removed, placed in loose lifts not to exceed 8 inches in loose thickness. Prior to fill placement, the ground surface to receive fill shall be stabilized and inspected by the CQA CONSULTANT.
C. Fill placed against existing slopes (i.e. areas with greater than $10 \%$ slope) shall be keyed into the slope. Keys shall extend a minimum of 6 feet horizontally into the existing slope. The keys shall form a series of steps in the existing fill.
D. Fill shall be placed in loose lifts not to exceed 8 -inches thick, brought to a uniform moisture content within 4 percent of optimum ( 3 percent for Foundation Layer), and compacted to 90 percent of the maximum dry density as determined by ASTM D1557.
E. Where tests indicate the moisture content or density of any layer of fill or portion thereof is below the Project requirements, the particular layer or portion thereof shall be reworked until the required moisture or density has been attained. No additional fill shall be placed over an area until the prior fill lift has been tested and meets the present requirements to the satisfaction of the CQA CONSULTANT.
F. In the event of rain or other reason, if the moisture content of previously placed fill material or processed soils intended for placement is more than 4 percent above optimum as determined by ASTM D1557, the fill material shall be aerated by blading, disking, or other satisfactory method until the moisture content complies with the requirements of this Section. Any previously compacted materials which are disturbed (aerated, bladed, etc.) to reduce or increase the moisture content must be recompacted to the Specifications and to the satisfaction of the CQA CONSULTANT once specified moisture contents are attained.

### 3.05 VEGETATIVE COVER

A. Vegetative cover layer shall be placed as shown on the Drawings. Soils shall not be placed over geosynthetic materials at ambient temperatures below 41 degrees F nor above 100 degrees $F$ unless otherwise specified. The soils shall be placed in a manner which does not cause excessive movement or wrinkling of the geosynthetics.
B. Vegetative cover layer shall be placed and compacted by tracking with the low groundpressure pressure dozer used for placement or other relatively light-compaction equipment wherever the soil thickness is less than 3 feet. The equipment used to spread and compact the backfill shall not exert a ground pressure in excess of 6 psi on no less than 1 foot of material. Manually operated compaction equipment may be required in constricted locations and directly adjacent to sensitive structures.
C. Hauling and spreading equipment for the vegetative cover layer shall operate on a minimum of 3 feet of soil above a geosynthetic layer. Low-ground pressure (i.e., less than 6 psi) spreading equipment may operate on a minimum of one foot of soil above a geosynthetic layer.
D. Fill shall be placed in loose lifts not to exceed 8 -inches thick, brought to a uniform moisture content within 3 percent of optimum, and compacted between 85 to 90 percent of the maximum dry density as determined by ASTM D1557.
E. Where tests indicate the moisture content or density of any layer of fill or portion thereof is below the Project requirements, the particular layer or portion thereof shall be reworked until the required moisture or density has been attained. No additional fill shall be placed over an area until the prior fill lift has been tested and meets the present requirements to the satisfaction of the CQA CONSULTANT.
F. In the event of rain or other reason, if the moisture content of previously placed fill material or processed soils intended for placement is more than 3 percent above
optimum as determined by ASTM D1557, the fill material shall be aerated by blading, disking, or other satisfactory method until the moisture content is within four percent of optimum moisture content as determined by ASTM D1557. Any previously compacted materials which are disturbed (aerated, bladed, etc.) to reduce or increase the moisture content must be recompacted to the Specifications and to the satisfaction of the CQA CONSULTANT once specified moisture contents are attained.

### 3.06 SURFACE PREPARATION

A. All surfaces to be overlain by geosynthetics shall be smooth, uniformly sloped (minimum $5 \%$ ), firm, and free of rocks, protrusions, or depressions greater than $0.5-$ inch in maximum dimension. The Earthwork CONTRACTOR shall consider that manual removal/repair of unacceptable areas may be required and shall be considered inherent to the work described herein.

### 3.07 TRENCH EXCAVATION AND BACKFILL

A. All trenches shall be excavated to lines and grades and dimensions indicated on the Drawings. All trench excavation, backfill, and compaction shall be in accordance with pertinent provisions of this Section.
B. All pipe work placed inside the trenches shall have a minimum of 8 -inch clearance from any protrusions from the trench side walls or bottom.
C. The Earthwork CONTRACTOR shall backfill excavated trenches as promptly as progress of the work permits and immediately after the pipe has been laid, jointed, and tested.
D. The trench bottom shall be compacted to provide a uniform bed for the pipe. Backfill material shall be placed around the pipe and shall be compacted by hand-tamping, or methods acceptable to the CQA CONSULTANT.
E. The Earthwork CONTRACTOR shall compact the select engineered fill for trench backfill to at least 90 percent of the maximum dry density and within 4 percent of the optimum moisture content as determined in accordance with ASTM D1557.
F. Trench backfill shall be placed as shown on the Drawings. The backfill shall not be placed at ambient temperatures below $41^{\circ} \mathrm{F}$ nor above $100^{\circ} \mathrm{F}$ unless otherwise specified. The material shall be placed in a manner that does not cause movement or excessive wrinkling of, or induce excessive wrinkling of the geosynthetics. The CONTACTOR shall not operate equipment directly on any geosynthetics.

### 3.08 TOLERANCES

A. All material limits shall be constructed within a tolerance of $\pm 1.0 \mathrm{ft}$ for horizontal state plan coordinates, 0 to +0.1 ft vertical for reference to mean sea level (MSL), and 0 to +0.1 ft where dimensions are shown or specified as a minimum. The plane of the surface shall not vary more than 0.10 feet when measured with a 10 -foot straight edge.

### 3.09 EXCAVATION BELOW GRADE

A. All excavation shall be performed within the limits of the work to the lines, grades, and elevations indicated and specified herein. The Earthwork CONTRACTOR shall not excavate or remove materials beyond indicated subgrade elevations or dimensions without the approval of the PROJECT MANAGER. The Earthwork CONTRACTOR shall backfill and compact any unauthorized excavation to the satisfaction of the PROJECT MANAGER at no additional cost to the OWNER.
B. When acceptable to the PROJECT MANAGER, lean concrete may be used to bring the bottom elevation of excavations under footings or trenches to correct elevations.

## END OF SECTION

## SECTION 02751

## HDPE GEOMEMBRANES

## PART 1 GENERAL

### 1.01 SUMMARY

A. This section describes the requirements for the manufacture, supply, installation, and quality control (QC) of high density polyethylene (HDPE) geomembrane associated with the final closure construction at the Kettleman Hills Facility, Landfill B-18.

### 1.02 RELATED SECTIONS

A. Section 02200 - Earthwork

### 1.03 REFERENCES

A. Latest Version of American Society for Testing and Materials (ASTM) standards:

1. ASTM D638-Test Method for Tensile Properties of Plastics
2. ASTM D792 - Specific Gravity (Relative Density) and Density of Plastics
3. ASTM D1004 - Test Method for Initial Tear Resistance of Plastic File and Sheeting
4. ASTM D1238 - Test Method for Flow Rates of Thermoplastics by Extrusion Plastometer
5. ASTM D1505 - Test Method for Density of Plastics by Density-Gradient Technique
6. ASTM D1603 - Test Method for Carbon Black in Olefin Plastics
7. ASTM D3895 - Test Method for Oxidative Induction Time of Polyolefins by Thermal Analysis
8. ASTM D4218 - Test Method for Determination of Carbon Black Content in Polyethylene Compounds by the Muffle-Furnace Technique
9. ASTM D4833 - Test Method for Index Puncture Resistance of Geotextiles, Geomembranes and Related Products
10. ASTM D5199 - Test Method for Measuring Nominal Thickness of Geotextiles and Geomembranes
11. ASTM D5321 - Test Method for Determining the Coefficient of Soil and Geosynthetic or Geosynthetic and Geosynthetic Friction by the Direct Shear Method
12. ASTM D 5397 - Procedure to Perform a Single Point Notched Content Tensile Load - Appendix (SP-NCTL) Test
13. ASTM D5596 - Test Method for Microscopic Evaluation of the Dispersion of Carbon Black in Polyolefin Geosynthetics
14. ASTM D5721 - Practice for Air-Oven Aging of Polyolefin Geomembranes
15. ASTM D5885 - Test Method of Oxidative Induction Time of Polyolefin Geosynthetics by High Pressure Differential Scanning Colorimetry
16. ASTM D5994 - Test Method for Measuring Core Thickness of Textured Geomembranes
B. Geosynthetics Research Institute (GRI):
17. GRI-GM 10-Specification for the Stress Crack Resistance of Geomembrane Sheet
18. GRI-GM11 - Accelerated Weathering of Geomembranes Using a Fluorescent UVA - Condensation Exposure Device
19. GRI-GM12 - Measurement of the Asparity Height of Textured Geomembranes Using a Depth Gage.
20. GRI-GM13 - Test Properties, Testing Frequency and Recommended Warranty for High Density Polyethylene (HDPE) Smooth and Textured Geomembranes

### 1.04 PRE-QUALIFICATION

A. The Geosynthetic CONTRACTOR shall pre-qualify for geomembrane installation by providing the following documentation:

1. The Geosynthetic CONTRACTOR shall have a minimum of $10,000,000$ square feet (sf) of polyethylene geomembrane cumulative installation experience.
2. The Geosynthetic CONTRACTOR shall provide at least three references from prior installation projects in excess of 500,000 sf including the following information:
a. Client's name, address, phone number and contact or representatives name.
b. Project site and description.
c. Geomembrane type and quantity installed.

### 1.05 SUBMITTALS

A. Submittals shall be provided in general accordance with Section 01300.
B. HDPE Resin: Furnish the following in writing to the CQA CONSULTANT a minimum of seven calendar days prior to geomembrane shipment to the site:

1. Statement of production dates and origin of resin used to manufacture the geomembrane for the project.
2. Certification stating all resin is from the same manufacturer and that no reclaimed polymer was added to the resin during the manufacturing of the geomembrane and that recycled polymer does not exceed 2 percent by weight.
3. Copies of the quality control certificates issued by the manufacturer and resin supplier indicating that the resin used to manufacture the geomembrane meets these specifications. These shall contain manufacturing quality control test results including specific gravity (ASTM D792 or D1505) and melt index (ASTM D1238, Condition E).
C. Manufacturing Quality Control: A copy of the manufacturer's quality control program shall be submitted to the CQA CONSULTANT a minimum of seven calendar days prior to geomembrane shipment to the site. Quality control testing shall be performed by the manufacturer in accordance with GRI-GM13 and as approved by the CQA CONSULTANT. Prior to delivery the following shall be submitted to the CQA CONSULTANT for review:
4. Certificates for each shift's production of geomembrane.
5. Copies of quality control certificates issued by the manufacturer. The quality control certificates shall include:
a. Roll numbers and identification;
b. Sampling procedures; and
c. Results of quality control tests, including descriptions of the test methods used.
6. The results of the manufacturing quality control tests shall meet or exceed the property values listed in Table 02751-1.
7. Geomembrane delivery, storage, handling and installation instructions.
8. Extrudate Beads and/or Rod:
a. Statement of production dates.
b. Certification stating all extrudate is from one manufacturer, is the same resin type, and was obtained from the same resin supplier as the resin used to manufacture the geomembrane rolls.
c. Copies of quality control certificates issued by the manufacturer including test results for specific gravity ASTM D792 and melt index ASTM 1288 Condition E.
D. Geomembrane Installer: Prior to mobilization of the Geosynthetic CONTRACTOR to the site, the following information shall be submitted:
9. Shop drawings indicating panel layout and field seams 14 calendar days prior to installation of geomembrane.
10. Installation schedule.
11. Copy of Geosynthetic CONTRACTOR's letter of approval or license by the geomembrane manufacturer.
12. Installation capabilities, including:
a. Information on equipment proposed for this project;
b. Average daily production anticipated for this project; and
c. Quality control procedures.
13. Provide copies of the quality control/quality assurance program for the manufacturer of the geomembrane liner.
14. Resume of the superintendent to be assigned to this project, including dates and duration of employment.
15. Resumes of all personnel who will perform seaming operations on this project, including dates and duration of employment.
16. The installation crew shall have the following experience.
a. The superintendent shall have supervised the installation of a minimum of $2,000,000 \mathrm{ft}^{2}$ of polyethylene geomembrane and $500,000 \mathrm{ft}^{2}$ of geotextile.
b. The master seamer shall have experience seaming a minimum of $1,000,000$ $\mathrm{ft}^{2}$ of polyethylene geomembrane using the same type of seaming apparatus to be used at this site.
c. All other seaming personnel shall have seamed at least $100,000 \mathrm{ft}^{2}$ of polyethylene geomembrane using the same type of seaming apparatus to be used at this site. Personnel who have seamed less than $100,000 \mathrm{ft}^{2}$ of polyethylene geomembrane shall be allowed to seam only under the direct supervision of the master seamer or Superintendent.
E. During the installation, the Geosynthetic CONTRACTOR shall be responsible for the timely submission to the CQA CONSULTANT of subgrade acceptance certificates, signed by the Installer, for each area to be covered by geomembrane.
F. The Geosynthetic CONTRACTOR shall furnish the OWNER upon completion of the project:
17. A warranty provided by the manufacturer in accordance with GRI-GM13 against defects in material. Warranty conditions concerning limits of liability will be evaluated and must be acceptable to the OWNER.
18. A 1-year warranty provided by the Geosynthetic CONTRACTOR against defects in workinanship. Warranty conditions concerning limits of liability will be evaluated and must be acceptable to the OWNER.
19. As-built panel drawings in compliance with Section 01400.
E. Certificate of calibration less than 12 months old shall be submitted prior to installation for all field tensiometers.

### 1.06 QUALITY ASSURANCE

A. Perform work in accordance with Section 01400 , the Geosynthetic CONTRACTOR's Quality Control Program, and CQA Plan.

## PART 2 PRODUCTS

### 2.01 MATERIALS

A. The geomembrane shall be comprised of high density polyethylene (HDPE) material as indicated on the drawings, manufactured of new, first-quality products designed and manufactured specifically for the purpose of liquid containment in hydraulic structures.
B. The geomembrane shall be produced free of holes, blisters, undispersed raw materials, or any sign of contamination by foreign matter. Any such defect shall be repaired in accordance with the repair procedures in Article 3.06.
C. The geomembrane shall be manufactured with a minimum of 15.0 feet seamless width. There shall be no factory seams.
D. The geomembrane shall be HDPE 40 -mil thick and textured on both sides as indicated on the Drawings.
E. The geomembrane shall be supplied in rolls. Folds will not be permitted.
F. Specifications for the HDPE geomembrane properties are presented in Table 02751-1.
G. Resin:

1. Shall be HDPE, new, first quality, compounded and manufactured specifically for producing HDPE geomembrane.
2. Do not intermix resin types.
3. Shall meet the following additional requirements:

Test	Test Designation	Minimum   Frequency	Requirements
Specific Gravity ${ }^{(1)}$	ASTM D 792 Method A	$(2)$	$\geq 0.932$
Melt Index	ASTM D 1238 Condition E	$(2)$	$\leq 1.0$ g per 10   minutes

Notes:
(1) Resin without carbon black
(2) I test per resin batch
H. Extrudate Rod or Bead:

1. Shall be made from same resin as the geomembrane.
2. Additives shall be thoroughly dispersed.
3. Shall be free of contamination by moisture or foreign matter.
4. Shall meet the following requirements:

Test	Test Designation	Minimnm   Frequency	Requirements
Specific Gravity	ASTM D 792 Method A	$(1)$	$\geq 0.940$
Carbon Black   Content	ASTM D 1603	$(1)$	$2-3 \%$
Melt Index	ASTM D 1238 Condition E	$(1)$	$\leq 1.0$ g per 10   minutes
Notes:   (1) 1 test per resin batch.			

### 2.02 DELIVERY, STORAGE AND HANDLING

A. Handling, storage, and care of the geomembrane following transportation to the site shall be the responsibility of the Geosynthetic CONTRACTOR. The Geosynthetic CONTRACTOR shall be liable for all damage to the materials incurred prior to final acceptance of the liner system by the CQA ENGINEER.
B. Conform to the manufacturer's requirements to prevent damage to geomembrane.
C. Delivery:

1. Deliver materials to the site only after the CQA CONSULTANT and the OWNER approve required submittals.
2. All rolls of geomembrane delivered to the site shall be identified at the factory with the following:
a. Manufacturer's name
b. Product identification and thickness
c. Lot number
d. Roll number
e. Roll dimensions
3. Separate damaged rolls from undamaged rolls and store at locations designated by the OWNER until proper disposition of material is determined by the OWNER the CQA CONSULTANT.
4. The OWNER will be the final authority regarding damage.
5. Separate rolls without proper documentation and store until CQA CONSULTANT approval is received.
D. On-Site Storage:
6. Store in space allocated by the OWNER.
7. Protect from puncture, dirt, grease, water, moisture, mud, mechanical abrasions, excessive heat or other damage.
8. Store on level prepared surface (not on wooden pallets).
9. Stack per manufacturer's recommendation but no more than three rolls high.
E. On-Site Handling:
10. Use appropriate handling equipment to load, move or deploy geomembrane rolls. Appropriate handling equipment includes cloth chokers and spreader bar for loading, spreader and roll bars for deployment. Dragging panels on ground surface will not be permitted.
11. Do not fold geomembrane material; folded material shall be rejected.
12. The Geosynthetic CONTRACTOR is responsible for storage, and transporting material from storage area to liner facility.
F. Damaged Geomembrane:
13. Geomembrane damage will be documented by the CQA CONSULTANT.
14. Damaged geomembrane shall be repaired, if possible, in accordance with these specifications or shall be replaced at no additional cost to the OWNER.

### 2.03 EQUIPMENT

A. Welding equipment and accessories shall meet the following requirements:

1. Equipped with gauges showing temperatures both in apparatus and at nozzle (extrusion welder) or at wedge (fusion welder).
2. Maintain adequate number of welding apparatus to avoid delaying work.
3. Use power source capable of providing constant voltage under combined-line load.
4. Provide secondary containment to catch spilled fuel under electric generator, if located on geomembrane.
B. Provide calibrated tensiometer capable of quantitatively measuring geomembrane strength:
5. Equipped with gauge accurate to $\pm 2 \mathrm{lbs}$ per inch of geomembrane width and capable of pulling at 2 inches per minute and 20 inches per minute.
6. Provide one inch die for cutting sample specimens.
7. Provide certificate of tensiometer calibration within the past 12 months.

## PART 3 EXECUTION

### 3.01 EXAMINATION

A. The Geosynthetic CONTRACTOR shall document in writing that the surface on which the geomembrane will be installed is acceptable. In so doing the Geosynthetic CONTRACTOR shall assume full liability for the accepted surface.
B. The beginning of installation means acceptance of existing conditions. The Geosynthetic CONTRACTOR shall be responsible for maintenance of the geomembrane covered subgrade once installation of geomembrane begins.

### 3.02 PREPARATION

A. Maintain the surface suitability and integrity until the lining installation is completed and accepted.
B. Repair rough areas and any damage to the subgrade caused by installation of the lining and fill any ruts in subgrade caused by equipment prior to geomembrane deployment.
C. To avoid sharp bends in the geomembrane, bevel the leading edges of the anchor trench.
D. Subgrade shall be smooth, uniform, firm and free from rocks or other debris. For deployment over soil subgrade, no rocks or protrusions greater than 0.5 inch in diameter shall be exposed at the subgrade surface.

### 3.03 DEPLOYMENT

A. Geomembrane shall not be deployed:

1. During precipitation;
2. In the presence of excessive moisture;
3. In areas of ponded water;
4. In the presence of excessive winds (i.e., greater than 20 mph ); and
5. In excessive heat (i.e., greater than $110^{\circ} \mathrm{F}$ ) or cold (i.e., less than $40^{\circ} \mathrm{F}$ ).
B. Each panel shall be marked with an "identification code" (number or letter) consistent with the layout plan. The identification code shall be simple and logical. The number of panels deployed in one day shall be limited by the number of panels which can be seamed on the same day. All deployed panels shall be seamed to adjacent panels by the end of each day.
C. The following is the acceptable method of deployment:
6. Use equipment which will not damage geomembrane by handling, trafficking, leakage of hydrocarbons or other means.
7. Do not allow personnel working on geomembrane to wear damaging shoes, or engage in activities that could damage geomembrane.
8. Smoking on the liner is prohibited.
9. Round sharp comers of clamps and other metal tools used in the work area.
10. Do not allow clamps and other metal tools to be tossed or thrown.
11. Unroll panels with a method that protects geomembrane from scratches and crimps and protects soil surface and underlying geotextile from damage.
12. Use a method to minimize wrinkles, especially differential wrinkles between adjacent panels.
13. Place adequate hold-downs to prevent uplift by wind.
14. Use hold-downs that will not damage geomembrane such as sandbags.
15. Use continuous hold-downs along leading edges to minimize risk of wind flow under panels.
16. Panels shall be deployed perpendicular to slope elevation contours and the generation of seams shall be minimized.
17. Protect geomembrane in heavy traffic areas by geotextile, extra geomembrane or other suitable materials.
18. Do not allow vehicular traffic on geomembrane surface.
19. Panels deployed on grades steeper than $12 \%$ shall extend a minimum of 3 feet beyond the crest or toe of that grade.
20. Shingles or overlap panels in a downward direction to facilitate drainage.
21. Rub sheets used during installation shall be removed prior to placement of subsequent panels.
D. Visually inspect sheet surface during unrolling of geomembrane and mark faulty or suspect areas for repair or test. Replace faulty (requires more than one patch per 200 square feet) geomembrane stock at no additional cost to the OWNER.

### 3.04 FIELD SEAMING

A. Orient seams perpendicular to slope elevation contours, i.e., orient down (not across) slope and use seam numbering system compatible with panel number system.
B. Minimize the number of field seams in corners, odd-shaped geometric locations, sumps, and outside corners.
C. Overlap panels by a minimum of 3 inches for extrusion welding and 4 inches for fusion welding. Use procedures to temporarily bond adjacent panels together that do not damage the geomembrane and that are not detrimental to seam weld material for extension welding.
D. Do not use solvent or adhesive unless product is approved in writing by the OWNER.
E. No horizontal seams shall be allowed on grades steeper than $12 \%$ or within 3 feet of the crest or toe of slopes. A horizontal seam is defined as more than half of the panel width.
F. Clean surface of grease, moisture, dust, dirt, debris or other foreign material.
G. Prior to any extrusion welding, the geomembrane seam or repair shall be prepared as follows:

1. Clean surface of oxidation by disc grinder or equivalent not more than one hour before seaming; use number 80 grit sandpaper for the disc grinder. Bevel edges of geomembrane before bonding and provide continuous tacking in repair areas.
2. Repair area where excessive grinding substantially reduces sheet thickness by more than 4 mils beyond extent of weld.
3. Clean grinding dust around weld area after grinding.
4. The following procedure shall be followed for wrinkles and fislmouths.
a. Cut along the ridge of the wrinkle or fishmouth.
b. Overlap a minimum of 3 inches and seam.
c. Any portion where the overlap is less than 3 inches shall be patched with an oval or round patch of geomembrane that extends a minimum of 6 inches beyond the cut in all directions.
5. If required, a firm, dry substrate (piece of geomembrane or other material) may be placed directly under the seam overlap to achieve proper support.
6. Keep water from intercepting the weld during and immediately after welding the seam.
7. For existing welds, or welds that are over 3 minutes old, grind the existing weld two inches back from point of termination and restart welding on ground weld.
H. At least one spare operable seaming apparatus shall be maintained for every three seaming teams. Place protective fabric or piece of geomembrane beneath hot welding apparatus when resting on geomembrane lining and use an electric generator capable of providing constant voltage under combined line load. The electric generator shall generally be located outside of liner. Provide protective lining and secondary containment large enough to catch spilled fuel under electric generators when located on the liner. The welding apparatus shall be equipped with gauges giving temperatures in apparatus and at nozzle.
I. For extrusion welding, purge welding apparatus of heat-degraded extrudate before welding if extruder is stopped for longer than five minutes. All purged extrudate shall be disposed of off the geomembrane. Each extruder shoe shall be inspected daily for wear to assure that its offset is the same as the geomembrane thickness. Repair or replace worn shoes, damaged or misaligned armature brushes, nozzle contamination, or other worn or damaged parts. Avoid stop-start welding. Remove extrudate rod from welder when not using welder for long period (over two hours). No welding may commence on the liner until the field trial seam sample, made by that equipment and seamer, passes destructive testing.
J. Test and set "hot air system" using scrap matcrial at least each day prior to commencing seaming and adjust hot air velocity to preclude wind effects. Adjust contact pressure rollers to prevent surface ripples in sheet. No equipment shall be used for welding the geomembrane until a field trial seam sample made by that equipment has passed destructive testing.
K. In performing hot wedge welding, the welding apparatus shall be automated vehicular mounted devices equipped with gauges giving applicable temperatures and pressures. The edge of cross seams shall be ground to a smooth incline (top and bottom) prior to welding. A smooth insulating plate or fabric shall be placed beneath the hot welding apparatus after usage. Protect against moisture buildup between sheets. If welding across cross seams, conduct field test seams at least every two hours, otherwise once prior to start of work and once at mid-day. No equipment is allowed to commence welding on geomembrane until the field trial seam sample made by that equipment has passed destructive testing.
L. Field trial seams shall be conducted, per seaming apparatus and per seamer, on pieces of geomembrane liner to verify adequate seaming conditions at the following frequency:
8. At beginning of each seaming period.
9. At least once every five hours.
10. At the discretion of the CQA CONSULTANT.
M. Make the trial seams at area of seaming and in contact with subgrade or GCL (same condition as the liner to be seamed). The seam sample shall be at least 42 -inches long and 12 -inches wide with the seam centered lengthwise. A one foot length of each trial seam sample shall be submitted to the CQA CONSULTANT for archive. Cut three 1inch wide specimens and test two for peel adhesion, and one for bonded seam strength (shear). Each double wedge fusion seam specimen shall be tested for peel on both sides of the weld. A specimen passes when:
11. The break is film tearing bond (FTB) conforming to National Sanitation Foundation (NSF) Standard 54, Definition 2.15.
12. The break is ductile.
13. The strength of breaks for the trial seam testing shall conform to the values listed in Table 02751-1, included at the end of this section.
N. A trial seam sample passes when all specimens have passing results in peel and shear tests. If a specimen fails (one of the specimens fails in either peel or shear mode), the trial seam procedure shall be repeated in its entirety. If the repeated trial seam fails, the seaming apparatus or operator may not weld until the deficiencies or conditions are corrected and two consecutive passing field trial seams are achieved.
O. The following procedures shall by followed during cold weather conditions.
14. Geomembrane surface temperatures shall be determined by the CQA CONSULTANT at intervals of at lease once per 100 feet of seam length to determine if preheating is required. For extrusion welding, preheating is required if the surface temperature of the geomembrane is below $32^{\circ} \mathrm{F}$.
15. For fusion welding, preheating may be waived by the OWNER based upon a recommendation by the CQA CONSULTANT, if the Geosynthetic CONTRACTOR demonstrates to the CQA CONSULTANT's satisfaction that welds of equivalent quality may be obtained without preheating at the expected temperature of installation.
16. If preheating is required, the CQA CONSULTANT will observe all areas of geomembrane that have been preheated by a hot air device prior to seaming, to ensure that they have not been overheated.
17. Care shall be taken to confirm that the surface temperatures are not lowered below the minimum surface temperatures specified for welding due to winds or other adverse conditions. It may be necessary to provide wind protection for the seam area.
18. All preheating devices shall receive approval by the CQA CONSULTANT prior to use.
19. Additional destructive tests will be taken at an interval between 250 and 500 feet of seam length, at the discretion of the CQA CONSULTANT.
20. Sheet grinding may be performed before preheating, if applicable.
21. Trial seaming shall be conducted under the same ambient temperature and preheating conditions as the production seams. Under cold weather conditions, new trial seams shall be conducted if the ambient temperature drops by more than $10^{\circ} \mathrm{F}$ from the initial trial seam test conditions. Such new trial seams shall be conducted upon completion of seams in progress during the temperature drop.
P. The following procedures shall by followed during warm weather conditions.
22. At ambient temperatures above $104^{\circ} \mathrm{F}$, no seaming of the geomembrane shall be permitted unless the Geosynthetic CONTRACTOR can demonstrate to the satisfaction of the CQA CONSULTANT that the geomembrane seam quality is not compromised. Trial seaming shall be conducted under the same ambient temperature conditions as the production seams. At the option of the CQA CONSULTANT, additional destructive testing may be required for any suspected areas.

### 3.05 FIELD QUALITY CONTROL

A. The Geosynthetic CONTRACTOR shall designate a full-time quality control (QC) technician who shall be responsible for supervising and/or conducting the field quality control program. The QC technician may not be replaced without written authorization by the OWNER.
B. Non-Destructive Seam Testing

1. The Geosynthetic CONTRACTOR shall non-destructively test field welds for continuity over their full length using vacuum test units. The non-destructive testing shall be performed concurrently with seaming work progress, not at the completion of all seaming. Any defects located in the seam shall he repaired in accordance with Article 3.06. The following non-destructive testing procedures shall be used to test the field seams for continuity.
a. Vacuum box testing for extrusion welds.
b. Air pressure testing for double fusion seams.
2. Vacuum Box Testing
a. The vacuum box testing equipment shall comprise the following.
i. Rigid housing; transparent viewing window; a soft rubber gasket attached to bottom of housing; porthole or valve assembly; and a vacuum gauge.
ii. A vacuum pump capahle of applying 5 psi gage pressure of vacuum to the box.
iii. A bucket of soapy solution and applicator.
b. The procedure for vacuum testing is as follows:
i. Clean window, gasket surfaces, and check for leaks.
sample marking. Cut destructive samples as seaming and nondestructive testing progresses, prior to completion of liner installation. The CQA CONSULTANT will mark destructive samples with consecutive numbering, location, apparatus I.D., technician I.D., Engineer I.D., and apparatus settings and date. Record, in written form, weld and test date, time, location, seam number, ambient temperatures, machine settings, technician I.D., apparatus I.D., and pass or fail description. The Geosynthetic CONTRACTOR shall immediately repair holes in geomembrane resulting from obtaining destructive samples and vacuum test patches. The size of destructive samples shall be 12 inches wide by 44 inches long with seam centered lengthwise.
3. Two 1 -inch wide specimens shall be taken from each side of the sample and tested by the Geosynthetic CONTRACTOR for peel and shear in the field prior to CQA destructive testing. If any of these specimens fail, the Geosynthetic CONTRACTOR shall track the failure immediately. The remaining sample shall be cut into three 14 -inch long by 12 inches wide pieces and distributed as follows:
a. To the CQA CONSULTANT for destructive testing.
b. To the CQA CONSULTANT for archive
c. To the Geosynthetic CONTRACTOR for its use.
4. Ten 1 -inch wide specimens shall be taken from one piece. Five specimens shall be tested for peel and five for shear in accordance with the CQA Plan, with test results meeting the requirements of Table $02751-1$, included at the end of this section. In the event of failure, the procedures for failed seam tracking are:
a. Retrace welding path a minimum of 10 feet in both directions from the failed test location and remove (at these locations) a one inch wide specimen for testing. Repeat tracking procedures until the Geosynthetic CONTRACTOR is confident of seam quality.
b. Obtain destructive samples from each side of the welding path and give samples to the CQA CONSULTANT for destructive testing.
c. Repeat process if additional tests fail.
d. Reconstruct seam between passing test locations to satisfaction of the CQA CONSULTANT.
e. Reconstruction may be one of the following:
i. Cut out old seam, reposition panel and re-seam.
ii. Add cap strip.
f. Cut additional destructive samples from reconstruction at discretion of CQA CONSULTANT.
g. If additional destructive sample results are not acceptable, repeat process until reconstructed seam is judged satisfactory by the CQA CONSULTANT.
D. For final seaming inspection, check the seams and surface of geomembrane for defects, holes, blisters, undispersed raw materials, or signs of contamination by foreign matter. Brush, blow, or wash geomembrane surface if dirt inhibits inspection. The CQA CONSULTANT shall decide if cleaning of geomembrane surface and welds is needed to facilitate inspection. Distinctively mark repair areas and indicate required type of repair.

### 3.06 REPAIR PROCEDURES

A. The geomembrane will be inspected before and after seaming for evidence of defects, holes, blisters, undispersed raw materials, and any sign of contamination by foreign matter. The surface of the geomembrane shall be clean at the time of inspection. The geomembrane surface shall be swept or washed by the Geosynthetic CONTRACTOR if surface contamination inhibits inspection. The Geosynthetic CONTRACTOR shall ensure that an inspection of the geomembrane precedes any seaming of that section.
B. Remove damaged geomembrane and replace with acceptable geomembrane materials if damage cannot be satisfactorily repaired.
C. Repair, removal and replacement shall be at the Geosynthetic CONTRACTOR's expense.
D. Repair any portion of the geomembrane exhibiting a flaw, or failing a destructive or non-destructive test. The Geosynthetic CONTRACTOR shall be responsible for repair of damaged or defective areas. Agreement upon the appropriate repair method shall be decided between the CQA CONSULTANT and the Geosynthetic CONTRACTOR. Procedures available include:

1. Patching: Used to repair holes (over $1 / 4$-inch diameter), tears (over $1 / 4$ inch long), undispersed raw materials, and contamination by foreign matter.
2. Grinding and welding: Used to repair pinholes, blemishes and over-grinding.
3. Capping: Used to repair large lengths of failed seams.
4. Removing the seam and replacing with a strip of new material.
E. In addition, the following procedures shall be observed.
5. Geomembrane surfaces to be repaired shall be abraded (extrusion welds only) no more than $1 / 2$ hour prior to the repair.
6. All geomembrane surfaces shall be clean and dry at the time of repair.
7. The repair procedures, materials, and techniques shall be approved in advance of the specific repair by the CQA CONSULTANT
8. Extend patches or caps at least 6 inches beyond the edge of the defect, i.e., be a minimum of 12 inches in diameter, and round all corners of material to be patched.
9. Bevel the edge of the patch and do not cut patch with repair sheet in contact with geomembrane. Temporary bond the patch to the geomembrane with an approved method, extrusion weld the patch and then vacuum test the repair.
F. Repair Verification:
10. Number and $\log$ each patch repair (performed by the CQA CONSULTANT).
11. Non-destructively test each repair using methods specified in this Section.
12. Provide daily documentation of non-destructive and destructive testing to the CQA CONSULTANT. The documentation shall identify seams that initially failed the test and include the evidence that these seams were repaired and retested successfully.

### 3.07 ACCEPTANCE

A. The Geosynthetic CONTRACTOR shall retain OWNERSHIP and responsibility for the geomembrane until acceptance by the OWNER.
B. Acceptance Criteria: The following shall be completed:

1. Verification of adequacy of field seams, repairs and testing by the CQA CONSULTANT.
2. All submittals.
3. "As-built" drawings, approved and final drawings submitted.
4. Construction area cleaned.
5. Final field inspection
6. Warranty signed over to the OWNER.
C. Field Inspections: Inspect the completed work with the OWNER; defects, wrinkles, suspicious looking welds shall be noted and marked; document, correct and arrange further field inspections until no corrective action is necessary.

TABLE 02751-1
REQUIRED PHYSICAL PROPERTIES OF 40-MIL TEXTURED HDPE GEOMEMBRANE

PROPERTY	METHOD	VALUE
Thickness, mil.	ASTM D 5994	- 38 minimum average   - 36 lowest indiv. value for 8 out of 10 specimens   - 34 lowest indiv. value for any of the 10 specimens
Sheet Density (min.)	ASTM D 792 or ASTM D 1505	0.940
Asperity Height (min. ave.)	GM12	10 mil
Min. Ave. Tensile Properties ${ }^{(1)}$   - Tension at Yield ( $\mathrm{lb} / \mathrm{in}$ )   - Strain at Yield (\%)   - Tension at Break ( $\mathrm{lb} / \mathrm{in}$ )   - Strain at Break (\%)	ASTM D 6693	$\begin{gathered} 84 \\ 12 \\ 60 \\ 100 \end{gathered}$
Tear Resistance, lbs. (min. ave.)	ASTM D1004, Die C	28
Oxidative Induction Time (OIT) (min. ave.)   - Standard OIT, or   - High Pressure OIT	ASTM D3895 ASTM D5885	100 minutes 400 minutes
Oven Aging at $85^{\circ} \mathrm{C}$   - Standard OIT (min. ave.), $\%$ retained after 90 days, or   - High Pressure OIT (min. ave.), \% retained after 90 days	ASTM D5721   ASTM D3895   ASTM D5885	$\begin{aligned} & 55 \% \\ & 80 \% \end{aligned}$
UV Resistance   - High Pressure OIT (min. ave.)	GRI-GM11   ASTM D5885	50\%
Stress Crack Resistance (min. hours with no failures)	ASTM D5397 (Appendix)	300
Puncture Resistance, Ibs. (min. ave.)	ASTM D4833	60
Carbon Black Content (allowable range in percent)	ASTM D1603	$2.0-3.0$
Carbon Black Dispersion	ASTM D5596	- minimum 9 out of 10 specimens in category 1 or 2   - all 10 specimens in Category 1, 2 , or 3
Seam Strength   - Peel ( $\mathrm{lb} / \mathrm{in}$ ) (fusiou/ ext.)   - $\quad$ Shear ( $\mathrm{lb} / \mathrm{in}$ )	ASTM D4437	$\begin{gathered} 65 / 52 \\ 81 \end{gathered}$

Notes: (1) Elongation at yield and elongation at break shall be calculated using a gage length of 1.3 inches and 2.0 inches, respectively.

## END OF SECTION

## SECTION 02752

## GEOTEXTILES

## PART 1 GENERAL

### 1.01 DESCRIPTION

A. This section describes the general requirements for the manufacture, supply, installation, and quality control (QC) of geotextiles.

### 1.02 RELATED SECTIONS

A. Section 02220 - Earthwork
B. Section 02751 - HDPE Geomembranes

### 1.03 REFERENCES

A. Latest version of the American Society for Testing and Materials (ASTM) standards:

1. ASTM D4355. Standard Test Method for Deterioration of Geotextiles by Exposure to Light, Moisture and Heat in a Xenon Arc Type Apparatus.
2. ASTM D4632. Standard Test Method for Breaking Load and Elongation of Geotextiles (Grab Method)
3. ASTM D4833. Test Method for Index Puncture Resistance of Geotextiles, Geomembranes, and Related Products
4. ASTM D4873. Standard Guide for Identification, Storage, and Handling of Geotextiles.
5. ASTM D5199. Standard Test Method for Measuring Geotextiles
6. ASTM D5261. Standard Test Method for Measuring Mass Per Unit Area of Geotextiles.

### 1.04 SUBMITTALS

A. Quality Control Submittals:

1. A copy of the manufacturer's quality control (QC) plan.
2. Manufacturing QC certificates for each production run. The certificates shall identify the origin and the manufacturer of the resin. The certificates shall be signed by responsible parties employed by the manufacturer (such as the production manager). Tests shall be performed at the frequency indicated in the manufacturer's QC Plan.
3. The QC certificates shall include roll numbers and identification, sampling procedures, and results of quality control tests verifying that each of the properties listed in Table 02752-1 is met. Samples shall be tested at a minimum frequency of
once every $100,000 \mathrm{sf}$. The manufacturer quality control tests to be performed include the tests specified in Article 2.01 of this section.
4. Manufacturer's certification that the geotextile products meet or exceed specified requirements and are $100 \%$ free of needles.
B. The Geosynthetic CONTRACTOR shall submit the following.
5. Installation plan; and
6. Proposed seam stitching methods.
C. Submittals shall be in accordance with Section 01300 .

### 1.05 QUALITY ASSURANCE

A. Perform work in accordance with the CQA Plan.

### 1.06 QUALIFICATIONS

A. Geotextile shall be supplied by a geotextile manufacturer meeting the following qualification requirements:

1. The geotextile manufacturer shall be responsible for the production and delivery of geotextile rolls and shall be a well-established firm with more than two years experience in the manufacture of geotextiles. The geotextile manufacturer shall submit a statement to the CQA CONSULTANT listing:
a. Certified minimum average roll property values of the proposed geotextiles and the test methods used to determine those properties.
b. Projected delivery date of the material for this project.
B. The Geosynthetic CONTRACTOR shall meet the requirements of the CQA Plan.

## PART 2 PRODUCTS

### 2.01 MATERIALS

A. Non-woven geotextiles shall have the following minimum average roll value (MARV) properties:

TABLE 02752-1
REQUIRED PHYSICAL PROPERTIES OF GEOTEXTILE

Fabric Property	ASTM   Test Method	Manufacturer QC   Test Frequency ${ }^{(1)}$	Required Test   Values
Mass Per Unit Area (min. ave.)	D-5261	1 per $100,000 \mathrm{sf}$	$12 \mathrm{oz} / \mathrm{sy}$
Grab Strength (min. ave.)	D-4632	1 per $100,000 \mathrm{sf}$	300 lbs
Puncture Strength (min. ave.)	D-4833	1 per $100,000 \mathrm{sf}$	180 lbs
UV Resistance	D-4355	1 per resin formulation	70 percent $^{(2)}$

Notes: (1) Manufacturer may elect to provide certification of values for geotextiles.
(2) After 500 hours of exposure.
B. Geotextile shall be non-woven, needle-punched polyester or polypropylene fabric free from needles or other foreign material.

### 2.02 DELIVERY, STORAGE, AND HANDLING

A. Handling, storage, and care of the geotextiles following transportation to the site shall be the responsibility of the CONTRACTOR. The CONTRACTOR shall be liable for all damage to the materials incurred prior to final acceptance of the liner system by the CQA CONSULTANT.
B. The CONTRACTOR shall be responsible for storage of the geotextile at the site after the material is delivered. The geotextile shall be stored off the ground and out of direct sunlight, and shall be protected from mud, dirt, dust, and any additional storage procedures required by the Geotextile manufacturer.
C. All rolls of geotextile shall be identified at the factory with the following:

1. Manufacturer's name
2. Product identification
3. Lot Number
4. Roll number
5. Roll dimensions
D. Geotextiles shall be handled in a manner as to ensure they are not damaged in any way.
E. Precautions shall be taken to prevent damage to underlying materials during placement of the geotextile.
F. After unwrapping the geotextile from its cover, the geotextile shall not be left exposed for a period in excess of 30 days.

## PART 3 EXECUTION

### 3.01 INSTALLATION

A. Geotextile seams shall be continuously sewn or heat bonded. Geotextile seams shall be overlapped a minimum of 6 inches prior to sewing. No horizontal seams shall be allowed on slopes steeper than 5 horizontal to 1 vertical.
B. Polymeric thread, with chemical resistance properties equal to or exceeding those of the geotextile, shall be used for all sewing. The seams shall be sewn using Stitch Type 401. The seam type shall be Federal Standard Type SSa-1.
C. The CONTRACTOR shall examine the entire geotextile surface after installation to ensure that no potentially harmful foreign objects are present. Such foreign objects shall be removed and damaged geotextile shall be repaired or replaced at no cost to OWNER.
D. Use care not to damage underlying materials during installation.
E. Prevent the geotextile from accumulating excessive dust.
F. The CONTRACTOR shall be responsible for field handling, storing, deploying, seaming or connecting, temporary restraining (against wind), anchoring, and other aspects of geotextile installation. Specifically, the CONTRACTOR shall follow the guidelines in ASTM D 4873 regarding the placement, handling and storage or geotextiles.
G. The CONTRACTOR shall accept and retain full responsibility for all materials and installation and shall be held responsible for any defects in the completed system.
H. No equipment shall operate directly on the geotextile.
I. Use sandbags or other acceptable anchorage to prevent wind uplift.

### 3.02 REPAIRS

A. Any holes or tears in the geotextile shall be repaired using a geotextile patch consisting of the same geotextile.

1. On slopes inclined steeper than 10 horizontal to 1 vertical, patches shall be sewn into place with a minimum 6 -inch overlap.
2. On slopes inclined at 10 horizontal to 1 vertical or less, patches may be heat-bonded with a 6 -inch overlap in all directions.

## END OF SECTION

## SECTION 02932

## REVEGETATION

## PART 1 GENERAL

### 1.01 SUMMARY

A. This section describes the general requirements for vegetating areas associated with the final closure construction at the Kettleman Hills Facility Landfill B-18.
B. The CONTRACTOR shall furnish all labor, materials, tools, equipment, supervision, transportation, manufacturing and installation services necessary to vegetate areas of the final cover as required.

### 1.02 RELATED SECTIONS

A. Section $01300-$ Submittals
B. Section 02200 - Earthwork

### 1.03 REFERENCES

A. State of California Department of Transportation (CALTRANS) Standard Specifications, latest editions.

### 1.04 SUBMITTALS

A. Submit the seed mix a minimum of 2 weeks prior to starting of vegetation work for review by the CQA Consultant.
B. Submittals shall be in accordance with Section 01300 .

### 1.05 QUALITY ASSURANCE

CQA Consultant to verify adequate seed application.

## PART 2 PRODUCTS

### 2.01 SEED/ FERTILIZER

A. The seed shall be a mixture of Zorro Fescue (Festuca megalura) at a rate of $4.0 \mathrm{lbs} /$ acre and Panoche Red Brome (Bromus rubens) as a rate of $12.0 \mathrm{lbs} / \mathrm{acre}$. Seed shall have been tested for purity and germination not more than 12 months prior to the application of the seed. The test results from seed testing shall be delivered to the Owner prior to applying the seed. Seed labels furnished by the seed vendors supplying the seed shall indicate the purity, germination and pure live seed as determined by testing.
B. Fertilizer shall be either 15-15-15 or 16-20-0 applied at a rate of $500 \mathrm{lbs} /$ acre.

## PART 3 EXECUTION

### 3.01 PREPARATION

A. The area to be seeded should be weed free and have a firm seed bed which has previously been roughened by scarifying, disking, harrowing, or otherwise worked to a depth of two to four inches. The seed bed may be prepared when earth moving work is completed.
B. The vegetated soil layer should be seeded with the seed mix listed in Section 2.01.
C. The vegetated soil layer should be fertilized with the fertilizer listed in Section 2.01. The fertilizer should be distributed uniformly over the seed bed and incorporated into the soil. Incorporation of the fertilizer may be done as part of the seedbed preparation or as part of the seeding operation unless the seed is broadcast. If fertilizing is a part of the seed bed preparation, it should not be performed more than 15 days prior to seeding.
D. If the Contractor elects to Drill/Cultipacker, a straw mulch shall be applied at a rate of $4,000 \mathrm{lbs} /$ acre to stabilize the soil and retain moisture during seed germination. At least 50 percent of the applied straw should be more than six inches in length. The mulch should be applied immediately after seeding. To prevent removal of straw by wind, the mulch shall be anchored using either mulching rollers or disks. If disks are used for anchoring they should be dull and run straight.
E. If the Contractor elects to hydro-seed, a minimum of 525 pounds of fiber per acre shall be mixed and applied with the seed, and fertilizer may be mixed with the seed and fiber and applied in the hydro-seeding operation. The fiber shall be furnished and applied at the Contractor's expense. Mixing of materials for application with hydro-seeding equipment shall be performed in a tank with a built-in continuous agitation system of sufficient operating capacity to produce a homogeneous mixture and a discharge system which will apply the mixture at a continuous and uniform rate. The tank shall have a minimum capacity of 1,000 gallons. A dispersing agent may be added to the mixture provided the Contractor furnishes evidence that the additive is not harmful. Any material considered harmful, as determined by the Engineer, shall not be used. Any mixture containing stabilizing emulsion shall not be applied during rainy weather or when soil temperatures are below $40^{\circ} \mathrm{F}$. Pedestrians or equipment shall not be permitted to enter areas where mixtures containing stabilizing emulsion have been applied.

## END OF SECTION

# APPENDIX P <br> CQA PLAN 

## APPENDIX P. 1 PHASE III CQA PLAN

APPENDIX P. 2
FINAL CLOSURE CQA PLAN

APPENDIX P. 1
PHASE II CQA PLAN

# CONSTRUCTION QUALITY ASSURANCE (CQA) PLAN FOR <br> LANDFILL UNIT B-18 PHASE III EXPANSION <br> KETTLEMAN HILLS FACILITY <br> KETTLEMAN CITY, CALIFORNIA 

Prepared for:<br>Chemical Waste Management, Inc.<br>Kettleman Hills Facility<br>35251 Old Skyline Road<br>Kettleman City, California 93239

Prepared by:
Golder Associates Inc.
230 Commerce, Suite 200
Irvine, California 92602

## TABLE OF CONTENTS

SECTION PAGE
Engineer's Certification ..... iv

1. INTRODUCTION ..... 1
1.1 Purpose ..... 1
1.2 CQA Consultant ..... 2
1.3 Project Organization. ..... 2
1.4 Reference Documents ..... 2
1.5 Definitions .....  2
2. GENERAL REQUIREMENTS ..... 5
2.1 Meetings ..... 5
2.1.1 Pre-Construction Meeting ..... 5
2.1.2 Progress Meetings ..... 6
2.1.3 Weekly Meetings ..... 6
2.1.4 Other Meetings ..... 6
2.2 Responsibilities of Construction Quality Assurance Staff ..... 6
2.2.1 Communications with the Contractor ..... 6
2.2.2 Communications with the Owner ..... 6
2.2.3 Responsibilities of the CQA Manager ..... 6
2.2.4 Responsibilities of the CQA Officer ..... 7
2.2.5 Responsibilities of the Design Engineer ..... 7
2.2.6 Responsibilities of the CQA Monitors ..... 7
2.3 Control of Documents, Records, and Forms ..... 7
2.3.1 Project Control of Contract Documents ..... 7
2.3.2 Project Control of As-Built Information ..... 7
2.3.3 Project Control of Forms ..... 8
2.3.4 Processing Daily Reports ..... 8
2.3.5 Processing Test Reports ..... 8
2.3.6 Processing Project Records ..... 8
2.4 Documentation and Control of Non-Conformance ..... 8
2.4.1 Observation of Non-Conformance ..... 8
2.4.2 Determining Extent of Non-Conformance ..... 8
2.4.3 Documenting Non-Conformance ..... 8
2.4.4 Corrective Measures ..... 9
2.4.5 Verification of Corrective Measures ..... 9
2.5 Construction Monitoring ..... 9
2.5.1 Monitoring Priorities ..... 9
2.5.2 Discrepancies ..... 9
2.6 Materials Quality Verification ..... 9
2.6.1 General ..... 9
2.6.2 Material Submittals ..... 10
2.6.3 Certificates of Compliance and Conformance. ..... 10
2.7 Equipment Control ..... 10
2.7.1 Equipment List ..... 10
2.7.2 Calibration of Equipment and Materials ..... 10

## TABLE OF CONTENTS (continued)

SECTION ..... PAGE
3. CONSTRUCTION QUALITY ASSURANCE FOR EARTHWORK ..... 11
3.1 General. ..... 11
3.2 Earthwork Construction Testing ..... 11
3.2.1 Test Standards ..... 11
3.2.2 Test Frequencies ..... 12
3.2.3 Soil Sample Numbering ..... 13
3.2.4 Soil Sample Tagging ..... 14
3.2.5 Soil Sample Processing ..... 14
3.3 Field Density Tests ..... 14
3.3.1 Test Numbering ..... 14
3.3.2 Test Locations ..... 15
3.4 Monitoring and Testing Requirements ..... 15
3.4.1 Clearing, Grubbing, and Stripping ..... 15
3.4.2 Stockpiling and Soil Management ..... 15
3.4.3 Excavation ..... 16
3.4.4 Structural Fill ..... 16
3.4.5 Compacted Clay Liner ..... 17
3.4.6 Geosynthetics Subgrade Preparation ..... 17
3.4.7 Operations Layer ..... 18
3.4.8 Trenching and Backfilling ..... 18
4. CONSTRUCTION QUALITY ASSURANCE FOR GEOSYNTHETICS ..... 19
4.1 General ..... 19
4.2 Geomembrane ..... 19
4.2.1 Delivery, Storage, and Handling ..... 19
4.2.2 Conformance Testing ..... 20
4.2.3 Geomembrane Installation. ..... 21
4.2.4 Construction Testing ..... 24
4.2.5 Repairs ..... 26
4.2.6 Folded Material ..... 27
4.2.7 Geomembrane Anchor Trench ..... 27
4.2.8 Geomembrane Acceptance ..... 27
4.2.9 Qualifications ..... 28
4.3 Geotextiles ..... 29
4.3.1 Delivery, Storage, and Handling ..... 29
4.3.2 Conformance Testing ..... 29
4.3.3 Geotextile Installation ..... 30
4.3.4 Repairs ..... 31
4.4 Geocomposite ..... 31
4.4.1 Delivery, Storage, and Handling ..... 31
4.4.2 Conformance Testing ..... 31
4.4.3 Geocomposite Installation ..... 32
4.4.4 Repairs ..... 33
5. CONSTRUCTION QUALITY ASSURANCE FOR HDPE PIPE ..... 34
5.1 General. ..... 34

## TABLE OF CONTENTS (continued)

SECTION PAGE
5.2 Construction Monitoring. ..... 34
5.2.1 Delivery, Handling, and Storage ..... 34
5.2.2 Fusion Welding ..... 34
5.2.3 Slip Joints ..... 35
6. CONSTRUCTION QUALITY ASSURANCE FOR EROSION CONTROL ..... 36
6.1 Introduction ..... 36
6.2 Construction Monitoring ..... 36
6.2.1 Temporary Erosion Control ..... 36
6.2.2 Permanent Erosion Control Measures ..... 36
7. CONSTRUCTION QUALITY ASSURANCE FOR DRAINAGE FACILITIES ..... 37
7.1 Introduction ..... 37
7.2 Construction Monitoring. ..... 37
7.2.1 Drainage Channels ..... 37
7.2.2 Drop Inlets and Culverts ..... 37
7.2.3 Diversion Berms ..... 37
8. DOCUMENTATION ..... 38
8.1 Daily Record Keeping ..... 38
8.1.1 Daily Record of Construction Progress ..... 38
8.1.2 Observation and Test Data Sheets ..... 39
8.1.3 Non-Conformance Reports ..... 39
8.2 Weekly Progress Reports ..... 39
8.3 Photographs ..... 40
8.4 Design and Specification Changes ..... 40
8.5 Final Construction Quality Assurance Report ..... 40
LIST OF TABLES
Table 3-1 Structural Fill Conformance Testing Frequencies ..... 12
Table 3-2 Clay Liner Conformance Testing Frequencies ..... 13
Table 4-1 High Density Polyethylene (HDPE) Geomembrane Conformance Testing Frequencies ..... 20
Table 4-2 Non-woven Geotextile Conformance Testing Frequencies ..... 29
Table 4-3 Geocomposite Conformance Testing Frequencies ..... 32

## ENGINEER'S CERTIFICATION

In accordance with the requirements of California Code of Regulations (CCR) Title 22 Section 66264.19, this Construction Quality Assurance (CQA) Plan has been developed under the direction of a Civil Engineer registered in the State of California.

I hereby certify that this CQA Plan was developed under my direct supervision.


## 1. INTRODUCTION

### 1.1 Purpose

The purpose of this document is to describe the Construction Quality Assurance (CQA) procedures required during the Phase III expansion of Landfill Unit B-18 (B-18) at the Kettleman Hills Facility in Kettleman City, California. This CQA Plan establishes procedures to document that the construction is performed in accordance with the approved engineering standards and specifications, meets the appropriate regulatory requirements (i.e., California Code of Regulations Title 22 §66264.19 and Title $27 \$ 20323$ and $\S 20324$ ), and that the necessary documentation is developed for submittal to the regulators. This CQA Plan shall be implemented under the direction of a CQA Officer who is a registered Civil Engineer in the State of California.

This CQA Plan is a guidance document that contains general and specific work element requirements for monitoring construction. General requirements include the organization and responsibilities of CQA personnel, documentation control, and reporting procedures. Specific work elements include the following:

- Clearing, Grubbing, and Stripping;
- Stockpiling and Soil Management;
- Excavation;
- Subgrade Preparation;
- Earthfill;
- Compacted Clay Liner;
- Geomembranes;
- Geotextiles;
- Drainage Geocomposites;
- Operations Layer;
- Piping; and
- Culverts/Drainage Channels.

The CQA Consultant will prepare a Final CQA Report upon completion of construction. The Final CQA Report will include information generated through the CQA program and will document the extent to which construction was performed in accordance with the intent of the Contract Documents and design. The CQA Consultant will be required to submit the Final CQA Report within one week of substantial completion of construction.

### 1.2 CQA Consultant

The CQA Consultant has the primary responsibility of implementing and managing the CQA program described herein and will document to the appropriate regulatory agencies that construction of the facility was performed in accordance with the design and the Contract Documents. Specific responsibilities for the CQA Consultant's site personnel are presented in Section 2.2.

### 1.3 Project Organization

The project will be completed by Contractors performing earthworks construction, geosynthetic materials installation, and construction of associated ancillary facilities. The CQA Consultant will be independent of the Contractors and will report directly to the Owner's Project Manager.

### 1.4 Reference Documents

The latest editions of the following reference documents provide background information and support this CQA Plan:

American Society for Testing and Materials (ASTM), Annual Book of ASTM Standards, Section 4, Construction, Volume 04.02, Concrete and Aggregates.

American Society for Testing and Materials (ASTM), Annual Book of ASTM Standards, Section 4, Construction, Volume 04.08, Soil and Rock(I), and Volume 04.09, Soil and Rock (II); Geosynthetics.

American Society for Testing and Materials (ASTM), Annual Book of ASTM Standards, Section 8, Plastics, Volumes 08.01, Plastics (I), Volume 08.02, Plastics (II), and Volume 08.03, Plastics (III).

California Code of Regulations (CCR), Titles 22 (Social Security) and 27 (Environmental Protection).

Standard Specifications for Public Works Construction, Joint Cooperative Committee of the Southern California Chapter, American Public Works Association And Southern California Districts, Associated General Contractors of California, Building News.

### 1.5 Definitions

Whenever the terms listed below are used, the intent and meaning shall be interpreted as indicated.
ACI: American Concrete Institute.
AISC: American Institute of Steel Construction.
ASTM: American Society for Testing and Materials.
Construction Manager: The individual or firm responsible for administering the construction contract and providing overall construction management for the project. The construction manager is the primary contact on the project site representing the Owner.

Construction Quality Assurance (CQA): A planned and systematic pattern of procedures and documentation designed to provide confidence that items of work or services meet the requirements of the Contract Documents. Construction quality assurance includes verifying that the Contractor is performing the quality control requirements of the Specifications.

## CQA Consultant: See Section 1.2

CQA Manager: Authorized representative of the CQA Consultant responsible for managing the CQA program.

CQA Monitors: Authorized representatives of the CQA Consultant responsible for observing and documenting activities related to CQA during construction.

CQA Officer: Authorized representative of the CQA Consultant and a California-Registered Civil Engineer responsible for certifying that construction was performed in accordance with the intent of the Contract Documents and design.

Construction Quality Control: Those actions which provide a means to measure and regulate the characteristics of an item or service to comply with the requirements of the Contract Documents. Quality control will be performed by the Contractor/Geosynthetics Contractor, except where designated in the Specifications.

Contract Drawings: The official plans, profiles, typical cross-sections, elevations, and details, as well as their amendments and supplemental drawings, that show the locations, character, dimensions, and details of the work to be performed. Contract Drawings are also referred to as the "Plans."

Contract Documents: The official set of documents issued by the Owner, which includes bidding requirements, contract forms, contract conditions, Specifications, Contract Drawings, addenda, and contract modifications.

Contractor: The person or persons, firm, partnership, corporation, or any combination of these or any combination of private, municipal, or public entities who, as an independent Contractor, has entered into a contract with the Owner and who is referred to throughout the Contract Documents by singular number and masculine gender.

Contract Specifications: The requirements for products, materials, and workmanship upon which the contract is based. Contract Specifications are also referred to as the "Specifications."

Design Engineer: The individuals or firms responsible for the project's design and preparation of the Plans and Specifications. The Design Engineer is also referred to as the "Designer" or "Engineer." The Design Engineer for the Phase III expansion of Landfill Unit B-18 is Golder Associates Inc. of Irvine, California.

Earthwork: A construction activity involving the use of soil materials as defined in the Specifications and Section 3 of this document.

Flexible Membrane Liner (FML): A synthetic lining material, also referred to as geomembrane, membrane, liner, or sheet.

Geosynthetics Contractor: Also referred to as the "Installer." The person or firm responsible for installation of geosynthetic components. This definition applies to any party installing geomembrane,
geotextile, geocomposite, geosynthetic clay liner, or any other geosynthetic material, even if it is not their primary function.

GRI: Geosynthetics Research Institute.
Non-Conformance: A deficiency in characteristic, documentation, or procedure that renders the quality of an item or activity unacceptable or indeterminate. Examples of non-conformance include, but are not limited to, physical defects, test failures, and inadequate documentation.

Owner: Waste Management, Inc. - Kettleman Hills Facility.
Owner's Project Manager: Authorized representative of the Owner responsible for planning, organizing, and control of the design and construction activities. Responsibilities include scheduling, cost control, engineering, procurement, and contracting functions. Referred to as the "Project Manager" in this document.

Panel: A unit area of the FML that is seamed in the field or in the fabricator's plant.
Procedure: A document that specifies or describes how an activity is to be performed.
Project Documents: Contractor submittals, Construction Drawings, Record Drawings, Specifications, shop drawings, construction quality control and quality assurance plans, health and safety plans, and project schedules.

Record Drawings: Drawings recording the constructed dimensions, details, and coordinates of the project. Also referred to as "as-builts."

SSPWC: Standard Specifications for Public Works Construction.
Testing: Verification that an item meets specified requirements by subjecting that item to a set of physical, chemical, environmental, or operating conditions.

Testing Laboratory: A laboratory capable of conducting the tests required by this CQA Plan and the Specifications.

## 2. GENERAL REQUIREMENTS

### 2.1 Meetings

In order to facilitate construction and to clearly define construction goals and activities, close coordination between the Owner, Design Engineer, CQA Consultant, and Contractor is essential. To meet this objective, pre-construction and progress meetings will be held.

### 2.1.1 Pre-Construction Meeting

Following the bid award, a pre-construction meeting will be held at the site. Attendees at this meeting will include the Owner, Contractor, Design Engineer, CQA Consultant, agencies, and others designated by the Owner. The primary purposes of the pre-construction meeting will be to:

- Review the Plans, Specifications, this CQA Plan, work area security, health and safety procedures, and related issues.
- Provide all parties with relevant project documents.
- Review responsibilities and qualifications of each party.
- Define lines of communication and authority.
- Establish reporting and documenting procedures.
- Review procedures for handling submittals.
- Review testing equipment and procedures.
- Review procedures for field directives and change orders.
- Establish testing protocols and procedures for correcting and documenting construction or non-conformance.
- Establish the weekly meeting schedule.
- Discuss work areas, stockpile areas, lay down areas, access roads, haul roads, and related items.
- Review the project schedule and critical path items.
- Review the Contractor's work plan.

The pre-construction meeting will be documented by the CQA Manager. Copies of the minutes and other pertinent material will be prepared and provided to the relevant parties.

### 2.1.2 Progress Meetings

Informal progress meetings will be held each morning before the start of work. At a minimum, these meetings will be attended by the CQA Monitor and Contractor. The purpose of these meetings will be to:

- Discuss problems and resolutions.
- Review test data.
- Discuss the Contractor's personnel and equipment assignments for the day.
- Review the previous day's activities and accomplishments.
- Resolve any outstanding problems or disputes.


### 2.1.3 Weekly Meetings

Throughout the duration of construction, scheduled weekly meetings will be held. The Project Manager, Construction Manager, CQA Manager, and Contractor will be present. These meetings will be held to discuss progress, problems, construction schedule, changes, test data, health and safety, environmental issues, and any other issues necessary. The Project Manager will prepare the agenda for each meeting and prepare meeting minutes for distribution to the relevant parties.

### 2.1.4 Other Meetings

As required, other meetings may be held to plan work items and/or to discuss problems or nonconformance. These meetings will be attended by parties as directed by the Owner. If the problem requires a design modification and subsequent change order, the Engineer and Project Manager should be present. These meetings will be documented as directed by the Project Manager.

### 2.2 Responsibilities of Construction Quality Assurance Staff

### 2.2.1 Communications with the Contractor

Only the individuals assigned to this project, as defined in this document, can communicate with the Contractor. Communications of an official nature must be clear, direct, and professional. When written communications are required, they must be documented on the appropriate forms. Formal letters to the Contractor should normally be signed by the CQA Manager and reviewed by the Owner.

### 2.2.2 Communications with the Owner

Only those individuals assigned to this project, as defined in this document, can communicate with representatives of the Owner. All communications must be through proper channels as defined during the project's pre-construction meeting. Communications of an official nature must be written, clear, direct, and professional.

### 2.2.3 Responsibilities of the CQA Manager

The CQA Manager administers the CQA program. CQA procedures and reports must be reviewed by the CQA Manager for compliance with this CQA Plan. The CQA Manager acts as an auditor to
monitor and document the proper and complete implementation of the CQA program. The CQA Manager has authority to identify deficiencies and implement corrective action to the CQA program. The CQA Manager collects, distributes, and addresses the disposition of Contractor submittals approved by the Design Engineer. The CQA Manager coordinates testing with independent testing laboratories and maintains the Record Drawings. The CQA Manager reports directly to the Construction Manager. The CQA Manager will aid in preparing the Final CQA Report for the project under the direction of the CQA Officer.

### 2.2.4 Responsibilities of the CQA Officer

The CQA Officer is responsible for documenting and certifying to the Department of Toxic Substances Control (DTSC) and the Regional Water Quality Control Board (RWQCB) that the construction was performed in accordance with the intent of the design and the Contract Documents. The CQA Officer may also be the CQA Manager.

### 2.2.5 Responsibilities of the Design Engineer

The Design Engineer is responsible for site engineering services related to the project's design. Those services include reviewing Contractor submittals, resolving technical issues related to construction, providing interpretation of the Plans and Specifications, and approving substantial design modifications and technical revisions.

### 2.2.6 Responsibilities of the CQA Monitors

The CQA Monitors implement the CQA program under the direction of the CQA Manager. The CQA Monitors perform the construction monitoring and construction materials testing. The CQA Monitors maintain the documentation and test data summaries related to construction monitoring and construction materials testing. The CQA Monitors report directly to the CQA Manager.

### 2.3 Control of Documents, Records, and Forms

### 2.3.1 Project Control of Contract Documents

The Contract Documents, including the Specifications, Plans, and change orders, are controlled by the Construction Manager. The Construction Manager maintains one or more copies of the most current set of Contract Documents for use by the CQA Consultant. Upon issuance of new copies or revisions, it is the responsibility of the Construction Manager to notify the Contractor of the revisions, provide revised Contract Documents, and order the recall of superseded copies of the Contract Documents. The Construction Manager also provides the latest revised set of Contract Documents to the CQA Consultant.

### 2.3.2 Project Control of As-Built Information

As-built information generated by the Contractor and CQA Consultant is controlled by the CQA Manager. During the progress of the work, the CQA Manager obtains as-built information provided from the CQA Monitors, Contractor, surveyors, or others and compiles the as-built data into one set of drawings. The as-built drawing set must be maintained on site and be clearly marked as "Record Drawings."

### 2.3.3 Project Control of Forms

Daily report forms, test report forms, and other project forms are controlled by the CQA Manager, who maintains a master of each form for copies. Upon issuance of a new form, the CQA Manager must recall and remove all superseded copies along with the master, notify the CQA Monitors, and provide new copies for their use.

### 2.3.4 Processing Daily Reports

The CQA Monitors write a daily record of work progress. These daily reports are reviewed by the CQA Manager for legibility, clarity, traceability, and completeness. The review must be evidenced by a signature of the reviewer. Daily reports are submitted to the Construction Manager on a daily basis and are maintained at the site. A weekly summary construction report will be prepared by the CQA Manager and submitted on a weekly basis to the Construction Manager.

### 2.3.5 Processing Test Reports

A test report must be completed by the CQA Monitors whenever testing is performed. The test reports must be reviewed by the CQA Manager. The review includes a check for mathematical accuracy, conformance to test requirements, conformance to the Specifications, and for clarity, legibility, traceability, and completeness. The review must be evidenced by a signature of the reviewer. Test reports (or summaries) from independent testing laboratories will also be transmitted to the CQA Manager for review.

### 2.3.6 Processing Project Records

Project records are completed as needed. Use of the project records is limited to the scope for which they are intended. The record must be completed by filling in all of the blanks provided on the form, followed by the signature of the individual completing the form. All project records must be maintained at the site.

### 2.4 Documentation and Control of Non-Conformance

### 2.4.1 Observation of Non-Conformance

Whenever a non-conformance is discovered or observed in the construction process, product, jobrelated materials, documentation, or elsewhere, the CQA Manager and CQA Monitors should first notify the Contractor's foreman/superintendent supervising the work in question. The CQA Manager should then notify the Construction Manager.

### 2.4.2 Determining Extent of Non-Conformance

Whenever a non-conformance is discovered or observed in the construction process, product, jobrelated materials, documentation, or elsewhere, the CQA Consultant will determine the extent of the non-conformance. The extent of the deficiency may be determined by additional sampling, testing, observations, review of records, or any other means deemed appropriate.

### 2.4.3 Documenting Non-Conformance

All non-conformance must be documented in writing on the daily records, logs, and elsewhere, as appropriate. This documentation must occur immediately upon determining the extent of the non-
conformance. For a non-conformance that is considered serious or complex in nature, or which requires an engineering evaluation, a Non-Conformance Report will be prepared and issued to the Construction Manager and Contractor.

### 2.4.4 Corrective Measures

For a straightforward or routine non-conformance, corrective measures will be determined by direction from the Specifications. If no direction exists in the Specifications, the Construction Manager, CQA Manager, and Contractor will discuss construction methods to correct the deficiency. For Non-Conformance Reports that require an engineering evaluation, the Design Engineer must determine corrective measures. A copy of the Non-Conformance Report, with the Design Engineer's corrective measure determination, will be forwarded to the Construction Manager, CQA Manager, and Contractor for implementation of the corrective action.

### 2.4.5 Verification of Corrective Measures

Upon notification by the Contractor that a corrective measure is complete, the CQA Manager will verify its completion. The verification must be accomplished by observations or re-testing and documented photographically. Written documentation of the corrective measures must be made by the CQA Manager on daily reports, logs, forms, and, if applicable, the Non-Conformance Report. Verification of corrective measures will be reviewed by the Construction Manager. Corrective action measures that require an engineering evaluation will be reviewed and verified by the Design Engineer.

### 2.5 Construction Monitoring

### 2.5.1 Monitoring Priorities

Before commencement of construction, the CQA Manager will establish a list of monitoring priorities. This list will include the various construction activities and the monitoring priority of those activities. The monitoring priorities may change during construction, based upon the Contractor's performance and/or the Owner's request. Changes in the monitoring priorities must be approved by the CQA Manager.

### 2.5.2 Discrepancies

CQA testing must be conducted in accordance with this CQA Plan. However, discrepancies that occur between this document and other construction documents must be resolved. The document that requires the most frequent tests or more stringent requirements will govern, unless otherwise specified by the Design Engineer and/or CQA Manager.

### 2.6 Materials Quality Verification

### 2.6.1 General

Material sources will be identified and samples tested to determine if the material meets the requirements of the Specifications. Definitions and requirements of materials are provided in the Specifications. Test samples will be obtained in accordance with applicable ASTM and GRI standards. Archive samples and test results of the test samples will be maintained and stored at the project site. The CQA Monitors will establish and maintain a materials quality verification list. This
list will include material sources, sample locations, testing requirements, test results, and verification action items.

### 2.6.2 Material Submittals

Material submittals may be used by the CQA Consultant to establish the acceptability of materials. When material sample submittals are required, they will be made available to the CQA Consultant by the Contractor. Acceptance and proper review of material submittals are the responsibility of the CQA Manager.

### 2.6.3 Certificates of Compliance and Conformance

Certificates of compliance and conformance may be used by the CQA Manager to establish the acceptability of materials. These certificates generally state that the material is in compliance or conformance with a particular code, standard, or specification. These certificates may be used for acceptance of a product before or in lieu of testing, if allowed by the Specifications.

### 2.7 Equipment Control

### 2.7.1 Equipment List

Before the start of construction, the CQA Manager will complete a list of all measuring, sampling, and testing equipment being used at the site. As new equipment becomes available during the course of the project, it must be added to the list. When more than one type of equipment is available, a unique number will be affixed to each piece to maintain identity. The equipment list will be maintained in the project files and contains the following information:

- Type of equipment;
- Serial number or identifying number;
- Date item received at site;
- Use of the equipment; and
- Date removed from service.


### 2.7.2 Calibration of Equipment and Materials

Before placing a piece of testing equipment into service, its accuracy must be established and calibrated by the CQA Manager or CQA Monitor. Types of equipment requiring calibration include: nuclear gauges, sand cone devices, sand to be used in sand cones, and scales. The calibration procedures and frequencies must be per the equipment manufacturer's instructions or ASTM standards. Whenever the equipment is suspect or is producing questionable results, it must be removed from service immediately and re-calibrated.

## 3. CONSTRUCTION QUALITY ASSURANCE FOR EARTHWORK

### 3.1 General

This section describes CQA procedures for earthwork operations. The scope of earthwork and related CQA includes the following elements:

- Clearing, Grubbing, and Stripping;
- Stockpiling and Soil Management;
- Excavation;
- Structural Fill;
- Subgrade Preparation;
- Compacted Clay Liner,
- Operations Layer; and
- Trench Excavation and Backfill.


### 3.2 Earthwork Construction Testing

### 3.2.1 Test Standards

The latest editions of the following test standards apply as called out in this document or the Specifications:

Standard	Test Description
ASTM D422	Standard Test Method for Particle Size Analysis of Soils
ASTM D1556	Standard Test Method for Density and Unit Weight of Soil in   Place by the Sand Cone Method
ASTM D1557	Standard Test Method for Laboratory Compaction   Characteristics of Soil Using Modified Effort
ASTM D1587	Standard Practice for Thin-Walled Tube Geotechnical Sampling   of Soils
ASTM D2216	Standard Test Method of Laboratory Determination of Water   (Moisture) Content of Soil and Rock by Mass
ASTM D2487	Standard Practice for Classification of Soils for Engineering   Purposes (Unified Soil Classification System)
ASTM D2488	Standard Practice for Description and Identification of Soils   (Visual-Manual Procedure)
ASTM D2937	Standard Test Method for Density of Soil in Place by the Drive-   Cylinder Method

ASTM D4318

ASTM D5084

ASTM D6938

Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter

Standard Test Method for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)

### 3.2.2 Test Frequencies

Tables 3-1 and 3-2 establish the test frequencies for earthwork CQA. The test frequencies listed establish a minimum number of required tests. Extra testing must be conducted whenever work or materials are suspect, marginal, or of poor quality. Extra testing may also be performed to provide additional data for engineering evaluation. Any re-tests performed as a result of a failing test do not contribute to the total number of tests performed in satisfying the minimum test frequency.

The Final CQA Report shall include tables similar to Tables 3-1 and 3-2 that document compliance with the testing frequencies and that document test results that comply with the Specifications.

TABLE 3-1
STRUCTURAL FILL CONFORMANCE TESTING FREQUENCIES

ASIM Tent Method		Fregaency	Trequency (Bench anillreacii)
Prior to Placement:			
Moisture-Density Relationship ${ }^{1}$	D1557	1 Per 10,000 CY or Each Material Type (minimum of 2)	1 Per Material Type
Sieve Analysis	D422	1 Per 10,000 CY or Each Material Type	1 Per Material Type
Atterberg Limits	D4318	1 Per 10,000 CY or Each Material Type	1 Per Material Type
During / After Placement:			
Nuclear Water Content and Density ${ }^{2}$	D6938	1 Per 1,000 CY Per 1.5 Vertical Feet	1 Per Lift Per 200 Linear Feet
Sand Cone Test or Drive Cylinder Test ${ }^{3}$	$\begin{aligned} & \text { D1556 } \\ & \text { D2937 } \end{aligned}$	1 Per 20 Nuclear Density Tests	1 Per 10 Nuclear Density Tests

Notes to Table 3-1:

1. Perform a Check Point (one point selected at near optimum and compared to the ASTM D1557 curve) at least once for every 10,000 cubic yards of material placed.
2. Tests shall be performed on an even grid to provide adequate testing coverage. For large fills in small areas, the testing frequency shall be increased as necessary to ensure testing for each lift of soil placed.
3. Drive cylinder tests may be performed on clay or silt samples only.

TABLE 3-2
CLAY LINER CONFORMANCE TESTING FREQUENCIES

ASIM Test Method	Designation	Frequency	Frequency (Benchitellisireach)
Prior to Placement:			
Moisture-Density Relationship ${ }^{1}$	D1557	1 Per 5,000 CY or Each Material Type (minimum of 2)	1 Per Material Type
Sieve Analysis	D422	1 Per 5,000 CY or Each Material Type	1 Per Material Type
Atterberg Limits	D4318	1 Per 5,000 CY or Each Material Type	1 Per Material Type
Hydraulic Conductivity	D5084	1 Per 5,000 CY or Each Material Type	1 Per Material Type
During / After Placement:			
Nuclear Water Content and Density ${ }^{2}$	D6938	1 Per 500 CY or Per Lift, whichever is greater	1 Per Lift Per 200 Linear Feet
Sand Cone Test or Drive Cylinder Test	$\begin{aligned} & \hline \text { D1556 } \\ & \text { D2937 } \end{aligned}$	1 Per 20 Nuclear Density Tests	1 Per 10 Nuclear Density Tests
Hydraulic Conductivity	D5084	1 Per $1,000 \mathrm{CY}$ or Per Lift, whichever is greater	1 Per 200 Linear Feet

Notes to Table 3-2:

1. Perform a Check Point (one point selected at near optimum and compared to the ASTM D1557 curve) at least once for every 10,000 cubic yards of material placed.
2. Tests shall be performed on an even grid to provide adequate testing coverage. For large fills in small areas, the testing frequency shall be increased as necessary to ensure testing for each lift of soil placed.

### 3.2.3 Soil Sample Numbering

The CQA Monitor will maintain soil sample numbers in a master log to be maintained at the site. Sample numbers will begin at 001 and proceed upward. No sample number can be repeated and retests of a failing sample will be given the original number with a letter suffix (i.e., re-tests for a failing sample 021 would be: $021 \mathrm{~A}, 021 \mathrm{~B}$, etc.). Information contained in the master $\log$ of test samples will include:

- Sample number;
- Test(s) to be performed;
- Dated sampled;
- CQA Monitor obtaining sample;
- Location sampled;
- Location of testing (on-site vs. off-site);
- Date sample sent off-site;
- Date test results received;
- Site testing CQA Monitor;
- Date testing completed at site; and
- Test results and remarks.


### 3.2.4 Soil Sample Tagging

The CQA Monitor is responsible for maintaining sample identification for all soil samples while on site, from the time of sampling through the completion of testing. The CQA Monitor must place a sample tag on the soil sample container immediately upon sampling. This tag must remain with the soil sample throughout processing. The tag will contain the following information:

- Sample number;
- Material type;
- Project name and project number;
- Sampling CQA Monitor;
- Date sampled; and
- Test(s) to be performed.


### 3.2.5 Soil Sample Processing

The CQA Monitor is responsible for the timely processing of soil test samples. The CQA Manager will determine which samples are tested on-site and which are tested off-site. This determination will be made based on available manpower, available equipment, complexity of testing, and the desired turnaround time for results. For expediency, samples to be tested off-site should be shipped the same day they are collected.

### 3.3 Field Density Tests

### 3.3.1 Test Numbering

The CQA Monitor is responsible for maintaining test numbers and results for field density tests performed using the nuclear gauge (ASTM D6938), sand cone (ASTM D1556), and drive cylinder (ASTM D2937). All other testing is identified through the sample number (Section 3.2.3). The CQA Monitor will maintain field books that identify soil segments, test data, the CQA Monitor performing the test, and the sequential test number. Each soil segment will have a unique series of numbers. No test number can be repeated for a given soil segment, and re-tests of failing tests must be given a letter suffix along with the original test number (i.e., re-tests for a failing test 1201 would be: 1201A, 1201B, etc.). Test data and results must be filled out on the field density test form.

### 3.3.2 Test Locations

The intent of the CQA program is to provide confidence that the earthwork materials and work conform to the requirements of the Specifications. To meet this intent, the CQA Monitor will perform density tests of earthfills during construction. Density tests must be located at various elevations and uniformly dispersed throughout the entire plan dimensions of the fill. Density test locations must be chosen without bias; however, additional testing can be performed in any areas that are suspect, marginal, or appear to be of poor quality. During the progress of the work, density test locations will be plotted on a drawing by the CQA Monitor to document that no significant areas are left untested. This drawing will be included in the Final CQA Report.

### 3.4 Monitoring and Testing Requirements

Earthwork components of the construction are summarized in Section 3.1. Each component has specific construction requirements that must be monitored. The following sections list monitoring requirements for each type of earthwork.

### 3.4.1 Clearing, Grubbing, and Stripping

- Document that erosion and sediment control silt fences, straw bale barriers, and other measures are securely in place prior to initiating clearing, grubbing, and stripping operations in any area.
- Document that existing plant life designated to remain is protected against damage during construction.
- Document that clearing and stripping in areas required for site access and execution of the work is complete.
- Document that vegetation, roots, and highly organic soil within the work area are removed to the appropriate extent.


### 3.4.2 Stockpiling and Soil Management

- Review the Contractor's approved work plan submittal. Verify stockpile locations, stockpile dimensions, clay mixing areas, haul routes, material segregation procedures, and erosion, sediment, and drainage control measures. Determine and note corrective action items, if applicable.
- Document that stockpile locations have been cleared, grubbed, and stripped in accordance with Section 3.4.1 of this CQA Plan and the Specifications.
- Document that stockpile subgrades are surveyed prior to stockpiling.

The CQA Monitor will maintain a separate soil test data summary sheet for the specific purpose of soil classification of stockpiled materials.

- During excavation, hauling, and stockpiling operations, continually identify and verify material classifications in general accordance with ASTM D2487 (Unified Soil Classification System) and ASTM D2488 as necessary to characterize material stockpile designations.
- Observe that stockpiles are constructed with slopes no greater than $2 \mathrm{H}: 1 \mathrm{~V}$ (horizontal:vertical) and that the top surface maintains a minimum 5 percent grade. The Contractor shall include 15 -foot-wide drainage benches every 50 vertical feet on all stockpiles.


### 3.4.3 Excavation

- Document that construction staking is performed before work and that survey bench marks with elevations are secured outside the work area.
- If applicable, document that the Contractor has notified Underground Service Alert to identify and locate underground utilities.
- Document that excavated materials are segregated into proper stockpiles.
- Coordinate with the Contractor to perform excavation verification surveys upon completion of excavating operations. Verify corrective action measures as determined by verification surveys. Verification surveys will also be used to determine limits of excavation for measurement and payment applications. Submit a copy of verification surveys to the Construction Manager.
- Document that unsuitable materials are removed from areas that will receive earthfill. Unsuitable materials include uncertified existing fills, disturbed soils, weak/highly compressible soils, and deleterious materials.
- Prepare a geologic map and geotechnical report of the subgrade for inclusion in the final certification report. Mapping shall be performed by a competent person under the supervision of a California Certified Engineering Geologist.


### 3.4.4 Structural Fill

- Monitor that subgrade for placement of soil is consistent with the Specifications.
- Monitor that construction staking is performed before the beginning of the work and that survey bench marks with elevations are secured outside the work area.
- Perform visual and manual soil classifications (ASTM D2488) to verify that the material source is suitable for structural fill. Verify that the material is free of organic and oversized materials and perform classifications continually during excavation of borrow materials.
- Perform moisture-density relationship testing (ASTM D1557) to determine the maximum dry density and optimum moisture content for structural fill materials. Perform tests at the testing frequencies specified in Table 3-1.
- Monitor that structural fill materials are placed in loose lifts not exceeding 8-inches thick and are then properly compacted.
- Perform nuclear density-moisture tests (ASTM D6938) to document that each lift is compacted to the appropriate relative compaction, as stipulated in the Specifications. Perform tests at the testing frequencies specified in Table 3-1.
- Monitor that soil materials are kept within the specified moisture content range listed in the Specifications. Monitor that soil materials that are wet and over the optimum moisture content (as determined by ASTM D1557) are properly aerated and processed to
bring the moisture content of the material into the acceptable range. Monitor that soils that are dry and below the optimum moisture content (as determined by ASTM D1557) are properly moisture conditioned and processed to bring the moisture content into the acceptable range.
- Monitor that desiccated structural fills are properly repaired or removed before placing subsequent lifts.
- Monitor that final structural fill surfaces are free of ruts, gouges, and other features that might contribute to erosion and sediment run-off.
- During fill operations, field-verify lines, grades, and dimensions using hand-held levels, range poles, and measuring tapes.
- Coordinate with the Contractor to perform verification surveys at the completion of structural fill placement. Verify corrective action measures as determined by verification surveys. Verification surveys will also be used to determine the limits of structural fill for measurement and payment applications. Submit copies of verification surveys to the Construction Manager.


### 3.4.5 Compacted Clay Liner

- Monitor that material borrow sources are suitable for compacted clay liner.
- Monitor that processing and moisture conditioning of the compacted clay liner are in conformance with the Specifications.
- Monitor that grade control construction staking is performed before the work.
- Monitor that the proper number of passes are made with an approved compactor.
- Monitor lift thickness and other construction procedures as covered in the Specifications and verify that test results are in accordance with the Specifications.
- Perform tests at the frequencies specified in Table 3-2.


### 3.4.6 Geosynthetics Subgrade Preparation

- Monitor that the subgrade is free of organic and oversized materials and meets the requirements of the Specifications.
- Monitor that grade control construction staking is performed prior to the work.
- Perform moisture-density relationship testing (ASTM D1557) to determine the maximum dry density and optimum moisture content of subgrade materials.
- Monitor that angular or sharp rocks, rocks that protrude more than 0.5 inches, and other debris that could damage the overlying geomembrane are removed from the surface of the subgrade. Verify that the subgrade is free of irregularities and is steel drum rolled smooth prior to geomembrane placement.
- Monitor that the final surface provides continuous and intimate contact with the overlying geomembrane.
- Coordinate with the Contractor to perform subgrade verification surveys upon completion of the subgrade preparation. Verify corrective action measures as determined by the verification surveys. Verification surveys will also be used to determine the limits of the subgrade preparation for measurement and payment applications. Submit copies of verification surveys to the Construction Manager.


### 3.4.7 Operations Layer

- Monitor that the material source is suitable for the operations layer and is free of organic or other deleterious materials and free of oversized particles, as defined by the Specifications.
- Monitor that grade control construction staking is performed before the work.
- Verify that the operations layer and is placed in a manner that does not damage the underlying geosynthetic layers.
- Coordinate with the Contractor to perform operations layer verification surveys upon completion of placement operations. Verify corrective action measures as determined by the verification surveys. Verification surveys will also be used to determine the limits of the operations layer for measurement and payment applications. Submit a copy of verification surveys to the Construction Manager.


### 3.4.8 Trenching and Backfilling

- Monitor that construction staking is performed before the work and that survey bench marks with elevations are secured outside the work area.
- Monitor that trenches are excavated in accordance with the dimensional cross-sections and design elevations shown on the Plans.
- Monitor profile surveys conducted by the Contractor during trenching operations.
- Perform moisture-density relationship testing (ASTM D1557) to determine the maximum dry density and optimum moisture content of soil materials that will be used as backfill.
- Perform nuclear density-moisture tests (ASTM D6938) to verify that backfill materials are moisture conditioned and compacted in accordance with the Specifications.


## 4. CONSTRUCTION QUALITY ASSURANCE FOR GEOSYNTHETICS

### 4.1 General

The objectives of the geosynthetics CQA program are to assure that: (i) proper construction techniques and procedures are used, and (ii) the project is completed in accordance with the Plans and Specifications. The intents of the CQA program are to: (i) identify and define problems that may occur during construction, and (ii) document that these problems are corrected before construction is complete.

This section describes CQA procedures for the installation of geosynthetic components. The following geosynthetics will be utilized for this project:

- 60-mil HDPE geomembrane (textured on both sides);
- Non-woven geotextile; and
- Double-sided geocomposite.

CQA for the geosynthetics installations will be performed to monitor that geosynthetics are installed in accordance with the design. Construction must be conducted in accordance with the Plans and Specifications. To monitor compliance, the CQA Manager will: (i) review the Contractor's quality control submittals; (ii) perform material conformance testing; (iii) monitor construction testing; and (iv) monitor installations. Conformance testing refers to activities that take place before geosynthetics installation. Construction testing includes activities that occur during geosynthetics installation.

The CQA testing will be conducted in accordance with this CQA Plan and the project's Plans and Specifications. If a discrepancy exists in the testing requirements, the document that requires the most stringent testing will govern.

### 4.2 Geomembrane

### 4.2.1 Delivery, Storage, and Handling

Upon delivery of geomembrane, the CQA Monitor will:

- Observe geomembrane rolls for damage during shipping and handling, identify and mark any damaged materials, and document that damaged materials are set aside.
- Observe that the geomembrane is stored in accordance with the Specifications and is protected from puncture, dirt, grease, water, moisture, mud, mechanical abrasions, excessive heat, direct sunlight, and other damage.
- Document that all manufacturing documentation required by the Specifications has been received.
- Complete the geosynthetics inventory form for all geomembrane materials received.

Damaged geomembrane may be rejected. If rejected, document that material is removed from the site or stored at a location separate from accepted geomembrane. Geomembrane that does not have
proper documentation from the manufacturer must be stored at a separate location until all documentation has been received, reviewed, and accepted.

### 4.2.2 Conformance Testing

Geomembrane Material Tests. Geomembrane samples will be obtained for conformance testing in accordance with Table 4-1. The material will be sampled at the site by the CQA Monitor or at the manufacturing plant under the direction of the CQA Consultant. The samples will be forwarded to an independent testing laboratory for the following conformance tests:

## TABLE 4-1 <br> HIGH DENSITY POLYETHYLENE (HDPE) GEOMEMBRANE CONFORMANCE TESTING FREQUENCIES

Preporty	TeatMechoo	mance itsetime
Thickness (min. avg.)	ASTM D5994	1 per $250,000 \mathrm{sf}$
Asperity Height $(\text { min. avg. })^{(1)}$	GRI GM 12	1 per $250,000 \mathrm{sf}$
Melt Flow Index	ASTM 1238	1 per $250,000 \mathrm{sf}$
Sheet Density (min avg.)	ASTM D792 or ASTM D1505	1 per $250,000 \mathrm{sf}$
Tensile Properties ${ }^{(2)}$ (min. avg.)   - Yield strength   - Break strength   - Yield elongation   - Break elongation	ASTM D6693 Type IV	1 per $250,000 \mathrm{sf}$
Puncture Resistance (min. avg.)	ASTM D4833	1 per $250,000 \mathrm{sf}$
Carbon Black Content (range)	ASTM D1603 ${ }^{(3)}$	1 per $250,000 \mathrm{sf}$
Carbon Black Dispersion ${ }^{(4)}$	$\begin{aligned} & \hline \text { ASTM D2663 } \\ & \text { ASTM D5596 } \end{aligned}$	1 per $250,000 \mathrm{sf}$
Interface Shear Strength ${ }^{(5)}$   - geocomposite / geomembrane   - clay liner / geomembrane	ASTM D6243	1 per project

Notes to Table 4-1:
(1) Applies only to textured geomembranes. Alternate the measurement side for double-sided textured sheets.
(2) Machine direction (MD) and cross machine direction (XMD) average values shall be on the basis of 5 test specimens in each direction:

- Yield elongation is calculated using a gage length of 1.3 inches.
- Break elongation is calculated using a gage length of 2.0 inches.
(3) Other methods such as D4218 (muffle furnace) or microwave methods are acceptable if an appropriate correlation to D1603 (tube furnace) can be established.
(4) Carbon black dispersion (only near spherical agglomerates) for 10 different views.
(5) Interface shear strength tests shall be tested at normal loads of 1,$000 ; 4,000 ; 8,000$; and 15,000 pounds per square foot. Results of the testing shall be forwarded to the Engineer for review and approval. Test reports shall include peak and large-displacement ( 2.5 inches) shear stress values.
(6) Minimum testing frequency shall be one sample per lot.

The CQA Manager will review all conformance test results and report any non-conformance to the Construction Manager and Contractor.

The Final CQA Report shall include a table similar to Table 4-1 documenting compliance with the testing frequencies and results documenting compliance with the Specifications.

Sampling Procedure. Samples will be taken across the entire roll width. Samples may be cut for shipping purposes, but a minimum of five square feet must be sent to the testing laboratory. Samplers must mark the machine direction and the manufacturer's roll identification number on the sample (each piece). Samplers will also assign a conformance test number to the sample and mark the sample with that number.

### 4.2.3 Geomembrane Installation

Surface Preparation. The soil surface must be prepared in accordance with the Specifications. Before geomembrane installation, the subgrade will be inspected by the CQA Monitor and Geosynthetics Contractor. The CQA Monitor must check the following:

- All lines and grades for the soil surface have been verified by the Contractor.
- The soil surface has been rolled/compacted and is free of surface irregularities, loose soil, and protrusions.
- The soil surface is firm and does not contain stones or other objects that could damage the geomembrane.
- The anchor trench dimensions have been checked and the trenches are free of sharp objects and stones.
- There are no excessively soft areas.
- The soil surface is not saturated and no standing water is present.
- The soil surface is not desiccated.
- All construction stakes, if utilized, have been removed and accounted for and there is no debris, rocks, or any other objects in or on the soil surface.
- The Geosynthetics Contractor has certified in writing that the surface on which the geomembrane will be installed is acceptable.

Panel Placement. Before installing any of the geomembrane, the Geosynthetics Contractor must submit drawings in accordance with the Specifications. These drawings will show the proposed layout of the panels, including panel identification numbers, field seams, and any other details that do not conform to the Plans.

The CQA Monitor will maintain an up to date panel layout drawing that shows the following: (i) roll numbers; (ii) panel numbers; (iii) seam numbers; (iv) test locations; (v) repair locations; and, (vi) non-destructive testing information.

During panel placement operations, the CQA Monitor will:

- Record panel numbers and dimensions on the panel/seam log.
- Observe the panel surface as it is deployed and record all panel defects and defect corrective actions (panel rejected, patch installed, extrudate placed over the defect, etc.) on the repair sheet. Verify that corrective actions are made in accordance with the Specifications.
- Monitor that equipment used during deployment operations does not damage the geomembrane. Verify that equipment used on the geomembrane does not leak hydrocarbons onto the geomembrane or that corrective measures are taken to prevent leakage.
- Observe that the surface beneath the geomembrane has not deteriorated since previous acceptance. Verify that no stones, construction debris, or other items are beneath the geomembrane that could damage the geomembrane.
- Monitor that the geomembrane is not dragged across an unprotected surface. If the geomembrane is dragged across an unprotected surface, the geomembrane must be inspected for scratches and repaired or rejected, if necessary.
- Record weather conditions including temperature, wind speed and direction, and humidity. Verify that the geomembrane is not deployed in the presence of excess moisture (fog, dew, mist, etc.). In addition, verify that the geomembrane is not placed when the air temperature is less than $40^{\circ} \mathrm{F}$ or when standing water or frost is on the ground.
- Monitor that crews working on the geomembrane do not smoke, do not wear shoes that could damage the liner, and do not engage in activities that could damage the geomembrane.
- Monitor that methods used to deploy the geomembrane minimize wrinkles and that panels are anchored to prevent movement by the wind. Verify that the Geosynthetics Contractor corrects any damage resulting to or from windblown geomembrane.
- Monitor that no more panels are deployed than can be seamed on the same day.
- The CQA Monitor must inform both the Geosynthetics Contractor and the CQA Manager if any of the above conditions are not met.

Field Seaming. Before the start of geomembrane welding and during welding operations, each welder and welding apparatus will be tested in accordance with the Specifications to verify that the equipment is functioning properly. One trial weld will be taken before the start of work and one at mid-shift. The trial weld sample will be at least 42 -inches-long and 12 -inches-wide, with the seam centered lengthwise. The CQA Monitor will observe all welding operations and verify that the Geosynthetics Contractor quantitatively tests each trial weld for peel adhesion and bonded seam strength (ASTM D6392). (Peel adhesion tests will be referred to as "peel" and bonded seam strength tests will be referred to as "shear" in this document.) The main purposes of the trial weld tests are to evaluate seam strength and to confirm that each welding machine is working properly. Shear tests measure the continuity of tensile strength through the seam and into the parent material. Peel tests measure the strength of the bond created by the welding process.

The results of the peel and shear tests on trial welds will be recorded on the trial weld form. Trial welds must be completed under conditions similar to those under which the panels will be welded.

Trial welds must meet specified requirements for peel and shear and the failure must be ductile or a film tearing bond (FTB) for a wedge weld. An FTB failure occurs when the test specimen breaks at the edge of the outside of the seam but not within that seam. If at any time the CQA Monitor believes that a welding machine is not functioning properly, a trial weld by that machine must be performed and tested. If there are wide changes in temperature ( $>30^{\circ} \mathrm{F}$ ), humidity, or wind speed, another trial weld must be performed and tested. The trial weld must be allowed to cool to ambient temperature before it is tested.

During geomembrane welding operations, the CQA Monitor will:

- Monitor that the Geosynthetics Contractor has an appropriate number of welding machines and spare parts necessary to perform the work.
- Monitor that equipment used for welding will not damage the geomembrane.
- Monitor that extrusion welders are purged before beginning a weld so that all heatdegraded extrudate is removed from the nozzle of the extrusion welder.
- Monitor that seam grinding is completed less than 1 hour before seam welding and that the upper sheet is beveled (extrusion welding only).
- Monitor that the ambient temperature measured 6-inches above the geomembrane surface is between $40^{\circ} \mathrm{F}$ and $110^{\circ} \mathrm{F}$.
- Monitor that the ends of extrusion welds that are more than 5 minutes old are ground to expose new material before restarting a weld.
- Monitor that contact surfaces of the panels are clean and free of dust, grease, dirt, debris, and moisture before welding.
- Monitor that welds are free of dust, rocks, and other debris.
- Monitor that cross seams are ground to a smooth incline before welding (fusion welding only).
- Monitor that all seams are overlapped a minimum of 3 inches or in accordance with the manufacturer's recommendations, whichever is more stringent.
- Monitor that solvents or adhesives are not present in the seam area.
- Monitor that procedures used to temporarily hold the panels together do not damage the panels and do not preclude CQA testing.
- Monitor that strips of geomembrane, wide enough and long enough to protect the hot wedge welder from running on the subgrade, are placed below the geomembrane. These strips may be as long as the seam itself or shorter and moved with the seaming equipment. If necessary, a firm material such as a flat board or similar hard surface may be placed directly under the weld overlap to achieve firm support.
- Monitor that panels are being welded in accordance with the Plans and Specifications.
- Monitor that there is no free moisture in the weld area.
- Measure surface temperature of the panels every 2 hours.


### 4.2.4 Construction Testing

Nondestructive Seam Testing. The purpose of nondestructive geomembrane seam testing is to detect discontinuities or holes in the seams. Nondestructive geomembrane seam tests include vacuum box and air pressure testing. Nondestructive testing must be performed over the entire length of each seam.

It is the Geosynthetics Contractor's responsibility to perform all nondestructive testing as part of their quality control (QC) program. The CQA Monitor's responsibility is to observe and document that the Geosynthetics Contractor's QC testing is in compliance with the Specifications and to document seam defects and repairs.

Nondestructive seam testing procedures are described below:

- For welds tested by the vacuum box method, the weld is placed under suction utilizing a vacuum box constructed with rigid sides, a transparent top for viewing the seams, a neoprene rubber gasket attached to the bottom of the rigid sides, a vacuum gauge on the inside, and a valve assembly attached to a vacuum hose connection. The box is placed over a seam section which has been thoroughly saturated with a soapy water solution (1 oz. soap to 1 gallon water). The rubber gasket on the bottom of the box must fit snugly against the soaped seam section of the panel to ensure a leak-tight seal.
- A vacuum pump is energized and the vacuum box pressure reduced to approximately 5 psi gauge. Any pinholes, porosity, or non-bonded areas are detected by the appearance of soap bubbles in the vicinity of the defect. Dwell time must not be less than 10 seconds.
- Air pressure testing is used to test double wedge seams that have an enclosed air channel between them. Both ends of the air channel must be sealed. A pressure feed device, usually a hollow needle equipped with a pressure gauge, is inserted into one end of the channel. Air is then pumped into the channel to a minimum pressure of 25 to 30 psi . The air channel must sustain this pressure for 5 minutes without losing more than 2 psi . Following the 5 -minute hold time, the opposite end of the tested seam must be punctured to release the air. The pressure gauge must return to zero; if it does not return to zero a blockage is likely present in the seam channel. Locate the blockage and test the seam on both sides of the blockage. The penetration holes must be sealed after testing.

During nondestructive seam testing, the CQA Monitor will:

- Review the Specifications regarding test procedures.
- Monitor that equipment operators are fully trained and qualified to perform their work.
- Monitor that test equipment meets the Specifications.
- Monitor that the entire length of each seam is tested in accordance with the Specifications.
- Observe testing and record results on the panel/seam $\log$ and the panel layout drawing.
- Identify any failed areas by marking the area with a waterproof marker compatible with the geomembrane, inform the Geosynthetics Contractor of any required repairs, and record the repair on the panel/seam log.
- Monitor that all repairs are completed and tested in accordance with the Specifications.
- Record all completed and tested repairs on a repair sheet and the panel layout drawing.

Destructive Seam Sampling Procedures and Field Testing. Destructive seam samples will be taken at intervals of at least one per 500 linear feet of geomembrane seam. However, additional samples will be taken if the CQA Monitor suspects that a seam does not meet the Specification's requirements. Reasons for taking additional samples may include, but are not limited to:

1. Wrinkling in the seam area.
2. Excess crystallinity.
3. Suspect seaming equipment or techniques.
4. Weld contamination.
5. Insufficient overlap.
6. Adverse weather conditions.
7. Failing tests.

The CQA Monitor will select the locations from where seam samples will be cut for destructive laboratory testing as follows:

- A minimum of one test per 500 feet of seam length. This is an average frequency for the entire installation; individual samples may be taken at greater or lesser intervals. The testing frequency will be increased if welding operations are conducted in temperatures below $40^{\circ} \mathrm{F}$. This increase will be agreed to by the Construction Manager, CQA Manager, and Geosynthetics Contractor.
- A maximum frequency must be agreed to by the Construction Manager, CQA Manager, and Geosynthetics Contractor at the pre-construction meeting. However, if the number of failed samples exceeds 5 percent of the tested samples, this frequency may be increased at the discretion of the CQA Manager. Samples taken as the result of failed tests do not count toward the total number of required tests.

The CQA Monitor will not inform the Geosynthetics Contractor in advance of selecting the destructive sample locations.

The Geosynthetics Contractor will remove the destructive samples at locations identified by the CQA Monitor and field test the specimens for peel and shear before the samples are shipped off-site for laboratory testing. During sampling procedures the CQA Monitor will:

- Observe sample cutting.
- Mark each specimen and sample with an identifying number which contains the seam number, destructive sample test number, welder, and date and time welded.
- Record sample locations on the panel layout drawing and panel-seam logs.
- Record the sample locations, weather conditions, and reasons samples were taken (e.g., random sample, visual appearance, result of a previous failure, etc.) in the destructive seam test form.

At each location, obtain two seam specimens that are 44 -inches apart. The specimens should be 1 inch wide and 12 -inches long with the weld centered across the length of the specimen. The Geosynthetics Contractor must test these samples to failure in the field using a tensiometer capable of quantitatively measuring shear and peel strengths. For double wedge welding, the Geosynthetics Contractor must test both welds. The CQA Monitor will observe the tests. Geomembrane seam specimens pass when the break is a ductile FTB and the seam strength meets the specified values.

If one or both of the 1 -inch specimens fails in either peel or shear, the Geosynthetics Contractor can, at his discretion: (1) reconstruct the entire seam between passed test locations; or (2) take another test sample 10 feet from the point of the failed test and repeat this procedure. If the second test passes, the Geosynthetics Contractor can either reconstruct or cap strip the seam between the two passed test locations. If subsequent tests fail, the sampling and testing procedure is repeated until the length of the poor quality seam is established. Repeated failures indicate that either the seaming equipment or operator is not performing properly and that appropriate corrective action must be taken immediately.

Once the field test specimens have passed, a sample must be recovered for laboratory testing from between the passing field specimen locations. The sample must be 42 -inches long and 12 -inches wide, with the weld centered along the length of the sample. The sample must be divided into three sections: one 12 -inch by 12 -inch section for the Geosynthetics Contractor, one 12 -inch by 18 -inch section for laboratory testing, and one 12 -inch by 12 -inch section for the Owner to archive. Record the results of field testing on the destructive seam test form and the panel/seam log.

Third Party Laboratory Testing. The CQA destructive seam samples can be shipped to the testing laboratory to verify seam quality. The laboratory will test five specimens from each sample in both shear and peel modes of failure. Minimum required test values are presented in the Specifications. The testing laboratory must provide verbal test results within 24 hours to the CQA Manager and written certified test results within 5 days.

The CQA Manager must immediately notify the Construction Manager and Geosynthetics Contractor in the event of failed seam test results.

If a laboratory test fails in either peel or shear, the Geosynthetics Contractor must either reconstruct the entire seam or recover additional samples at least 10 feet on either side of the failed sample for retesting. This process is repeated until passed tests bracket the failed seam section. All seams must be bounded by locations from which passing laboratory tests have been taken. Laboratory testing governs seam acceptance. In no case can field testing of repaired seams be used for final acceptance.

### 4.2.5 Repairs

Portions of geomembrane panels and seams that contain: (1) a flaw; (2) a destructive test; or (3) nondestructive test cuts or holes must be repaired in accordance with the Specifications. The CQA Monitor must locate and record all repairs on the repair sheet and panel layout drawing. Acceptable repair techniques include the following:

- Patching: used to repair large holes, tears, large panel defects, undispersed raw materials, welds, contamination by foreign matter, and destructive sample locations.
- Extrusion: used to repair small defects in the panels and seams. In general, this procedure should be used for defects less than 2-inches in the largest dimension.
- Capping: used to repair failed welds or to cover seams where welds cannot be nondestructively tested.
- Removal: used to replace areas with large defects where preceding methods are not appropriate. Also used to remove excess material (wrinkles, fishmouths, intersections, etc.) from the installed geomembrane. Areas of removal shall be patched or capped.

Repair procedures include the following:

- Abrade geomembrane surfaces to be repaired (extrusion welds only) no more than 1 hour before the repair.
- Clean and dry all surfaces at the time of repair.
- Monitor acceptance of the repair procedures, materials, and techniques by the CQA Monitor in advance of the specific repair.
- Extend patches or caps at least 6 inches beyond the edge of the defect and round all corners of material to be patched and the patches to a radius of at least 3 inches. Bevel the top edges of patches before extrusion welding.


### 4.2.6 Folded Material

Geomembrane with excessive folding (i.e., creased), as determined by the CQA Consultant, must be removed.

### 4.2.7 Geomembrane Anchor Trench

The geomembrane anchor trench should be left open until seaming is completed. Expansion and contraction of the geomembrane should be accounted for in the liner placement. The anchor trench should be filled in the morning when temperatures are coolest to reduce bridging of the geomembrane.

### 4.2.8 Geomembrane Acceptance

The Contractor retains all ownership and responsibility for the geomembrane until acceptance by the Owner. In the event the Contractor is responsible for placing cover over the geomembrane, the Contractor retains all ownership and responsibility for the geomembrane until all required documentation is complete and the cover material is placed. After panels are placed, seamed, tested successfully, and repairs made, the completed installation will be walked by the CQA Monitor and Contractor. Any damage or defects found during this inspection will be repaired by the Geosynthetics Contractor. The installation will not be accepted until it meets the requirements of both parties. In addition, the geomembrane will be recommended for acceptance by the CQA Manager only when the following have been completed:

- The installation is finished.
- All seams have been inspected and verified to be acceptable and all required laboratory and field tests have been completed and reviewed.
- All required Contractor-supplied documentation has been received and reviewed.
- All as-built drawings have been reviewed and verified by the CQA Manager to show the true panel dimensions, the locations of all seams, trenches, pipes, appurtenances, and destructive test locations.


### 4.2.9 Qualifications

Proper layout, seaming, and testing of the geomembrane requires skill and experience. As such, the integrity of the geomembrane is dependent upon the installers. In order to assure a minimum level of experience and expertise, the following experience standards have been established in the Specifications:

Manufacturer/Fabricator/Installer. The Specifications list the required qualifications for the geomembrane manufacturer / fabricator / installer companies. The CQA Manager must verify qualifications of the manufacturer, fabricator, and installer through review of Engineer-approved project submittals.

Installation Superintendent. The installation field superintendent must have been responsible for the completed installation of a minimum of $5,000,000$ square feet of polyethylene geomembrane in the past 5 years utilizing the type of seaming techniques and apparatus proposed for use on this project. A resume with references and phone numbers of satisfactory installations is required. Any superintendent proposed for this project must be present whenever geomembrane is installed.

Master Seamer and Other Welders. The master seamer must have demonstrated expertise on previous geomembrane installations. The master seamer must have successfully welded a minimum of $1,000,000$ square feet of polyethylene geomembrane within the past 3 years. A resume for this work, with references and phone numbers, is required. Other welders are required to have welded a minimum of 100,000 square feet of geomembrane within the past 3 years. Resumes for all welders, with references and phone numbers, are required. Personnel that have welded less than 100,000 square feet of geomembrane within the past 3 years will only be allowed to weld under the direct supervision of either the master seamer or the installation superintendent.

CQA Manager Qualifications. The CQA Manager must have provided CQA services on a minimum of $1,000,000$ square feet of polyethylene installations or be level II certified in geosynthetics installations by National Institute for Certification in Engineering Technologies (NICET). The CQA Manager must provide verification of this experience by references in a current resume.

### 4.3 Geotextiles

### 4.3.1 Delivery, Storage, and Handling

During delivery of geotextiles the CQA Monitor will:

- Monitor that equipment used to unload the rolls does not damage the geotextile.
- Monitor that rolls are wrapped in impermeable and opaque protective covers.
- Monitor that care is used to unload the rolls.
- Monitor that all documentation required by the Specifications has been received.
- Monitor that each roll is marked or tagged with the following information: manufacturer's name; project identification; lot number; roll number; and roll dimensions. Log this information on the geosynthetic inventory form.
- Monitor that materials are stored in a location that will protect the rolls from ultraviolet light exposure, precipitation, mud, dirt, dust, puncture, cutting, or any other damaging or deleterious conditions.

Any damaged rolls may be rejected. Monitor that rejected material is removed from the site and stored at a location separate from accepted rolls. Geotextile rolls which do not have proper manufacturer's documentation must also be stored at a separate location until all documentation has been received and approved.

### 4.3.2 Conformance Testing

Geotextile Material Tests. The CQA Manager will arrange to obtain geotextile conformance test samples as indicated in Table 4-2. These samples will be sent to the testing laboratory for the following conformance tests:

TABLE 4-2
NON-WOVEN GEOTEXTILE CONFORMANCE TESTING FREQUENCIES

Property	TestMethod	ConformancexieatiFreguency ${ }^{(1)}$
Mass/Unit Area (min. avg.)	ASTM D5261	1 per 250,000 sf
Apparent Opening Size ${ }^{2}$ (max.)	ASTM D4751	1 per project
Grab Strength (min. avg.)	ASTM D4632	1 per 250,000 sf
Permittivity ${ }^{2}$ (min.)	ASTM D4491	1 per project
Puncture Strength (min. avg.)	ASTM D4833	1 per 250,000 sf

Notes to Table 4-2:
(1) Minimum testing frequency shall be one sample per lot.
(2) AOS and permittivity shall only be tested for geotextiles used in filter applications.

The CQA Manager will review all conformance test results and report any non-conformance to the Construction Manager and Contractor.

The Final CQA Report shall include a table similar to Table 4-2 documenting compliance with the testing frequencies and results documenting compliance with the Specifications.

Sampling Procedure. Samples will be obtained across the entire roll width and will be 3 -feet long. Samplers must mark the manufacturer's roll identification number and the machine direction on the sample. Samplers will also assign a conformance test number to the sample and mark the sample with that number.

### 4.3.3 Geotextile Installation

Surface Preparation. Before geotextile installation, the CQA Monitor will:

- Monitor that all lines and grades have been verified by the Contractor.
- Monitor that the subgrade has been prepared in accordance with the Specifications and that the geomembrane installation and all associated documentation has been completed.
- Monitor that soil or geomembrane surfaces do not contain stones that could damage the geotextile.
- Monitor that there are no excessively soft areas in soil surfaces that could damage the geotextile.

Geotextile Placement and Seaming. During geotextile placement and seaming operations, the CQA Monitor will:

- Observe the geotextile as it is deployed and record all defects and defect corrective actions (panel rejected, patch installed, etc.). Verify that corrective actions are performed in accordance with the Specifications.
- Monitor that equipment used does not damage the geotextile by handling, equipment transit, leakage of hydrocarbons, or other means.
- Monitor that crews working on the geotextile do not smoke, do not wear shoes that could damage the geotextile, and do not engage in activities that could damage the geotextile.
- Monitor that the geotextile is securely anchored in an anchor trench and is temporarily anchored to prevent movement by the wind.
- Monitor that adjacent panels are overlapped and seamed in accordance with the Specifications.
- Monitor that the geotextile is not exposed to direct sunlight for more than 5 days.
- Examine the geotextile after installation to ensure that no potentially harmful foreign objects are present.
- The CQA Monitor must inform both the CQA Manager and Contractor if the above conditions are not met.


### 4.3.4 Repairs

Repair procedures include:

- Patching: used to repair large holes, tears, and small defective areas.
- Removal: used to replace large defective areas where the preceding method is not appropriate.


### 4.4 Geocomposite

### 4.4.1 Delivery, Storage, and Handling

During delivery of geocomposite the CQA Monitor will:

- Monitor that equipment used to unload the rolls does not damage the geocomposite.
- Monitor that care is used to unload the rolls.
- Monitor that all documentation required by the Specifications has been received.
- Monitor that each roll is marked or tagged with the following information: manufacturer's name; project identification; lot number; roll number; and roll dimensions. Record this information on the geosynthetic inventory log.
- Monitor that the geosynthetic inventory $\log$ is completed.
- Monitor that materials are stored in a location that will protect the rolls from ultraviolet light exposure, precipitation, mud, dirt, dust, puncture, cutting, or any other damaging or deleterious conditions.

Any damaged rolls may be rejected. Verify that rejected material is removed from the site or stored at a location separate from accepted rolls. Geocomposite rolls that do not have proper manufacturer's documentation must also be stored at a separate location until all documentation has been received and approved.

### 4.4.2 Conformance Testing

Geocomposite Material Tests. The CQA Manager will arrange to obtain geocomposite conformance test samples as indicated in Table 4-3. These samples will be sent to the testing laboratory for the following conformance tests:

TABLE 4-3
GEOCOMPOSITE CONFORMANCE TESTING FREQUENCIES

Property	Test Mefhoi	Conformanoe Treatifregaency
Density (min. avg.)	ASTM D792 or ASTM D1505	1 per 250,000 sf
Thickness (min. avg.)	ASTM D751 or ASTM D5199	1 per $250,000 \mathrm{sf}$
Carbon Black Content (range)	ASTM D1603	1 per $250,000 \mathrm{sf}$
Mass/Unit Area (min. avg.)	ASTM D5261	1 per $250,000 \mathrm{sf}$
Peel Strength (min. avg.)	GRI GC7	1 per $250,000 \mathrm{sf}$
Transmissivity ${ }^{(1)}$ (min. avg.)	ASTM D4716	1 per project

Note to Table 4-3:
(1) Transmissivity shall be measured in a 12 -inch by 12 -inch box between steel plates under a normal stress of $15,000 \mathrm{psf}$ and a hydraulic gradient of 0.1 . A seating time of 15 minutes shall be used.

The CQA Manager will review all conformance test results and report any non-conformance to the Construction Manager.

The Final CQA Report shall include a table similar to Table 4-3 documenting compliance with the testing frequencies and results documenting compliance with the Specifications.

Sampling Procedure. Samples will be obtained across the entire roll width and will be 3 -feet long. Samplers must mark the manufacturer's roll identification number and the machine direction on the sample. Samplers will also assign a conformance test number to the sample and mark the sample with that number.

### 4.4.3 Geocomposite Installation

Surface Preparation. Before geocomposite installation, the CQA Monitor will:

- Monitor that all lines and grades have been verified by the Contractor.
- Monitor that the geomembrane has been prepared in accordance with the Specifications and all associated documentation has been completed.
- Monitor that soil or geomembrane surfaces do not contain stones that could damage the geocomposite.
- Monitor that there are no excessively soft areas in soil surfaces that could damage the geocomposite.
- Observe that all construction stakes have been removed.
- Monitor that all aspects of surface preparation have been performed according to the Specifications.

Geocomposite Placement. During geocomposite placement, the CQA Monitor will:

- Observe the geocomposite as it is deployed and record all defects and defect corrective actions (panel rejected, patch installed, etc.). Verify that corrective actions are performed in accordance with the Specifications.
- Monitor that equipment used does not damage the geocomposite by handling, equipment transit, leakage of hydrocarbons, or other means.
- Monitor that crews working on the geocomposite do not smoke, do not wear shoes that could damage the geocomposite, and do not engage in activities that could damage the geocomposite.
- Monitor that the geocomposite is securely anchored to prevent movement by the wind.
- Monitor that adjacent panels are overlapped and seamed in accordance with the Specifications.
- Examine the geocomposite after installation to ensure that no potentially harmful foreign objects are present.

The CQA Monitor must inform both the CQA Manager and Contractor if the above conditions are not met.

### 4.4.4 Repairs

Repair procedures for geocomposite include:

- Patching: used to repair large holes, tears, and small defective areas.
- Removal: used to replace large defective areas where the preceding method is not appropriate.


## 5. CONSTRUCTION QUALITY ASSURANCE FOR HDPE PIPE

### 5.1 General

This section describes CQA procedures for HDPE pipe installations. Solid HDPE pipe will be utilized to construct the LCRS riser extensions.

CQA for the HDPE pipe installations will be performed to verify that HDPE pipe systems are installed in accordance with the design. Construction must be conducted in accordance with the Plans and Specifications. To monitor compliance, the CQA Consultant will: (1) review the Contractor's quality control submittals; (2) monitor construction testing; and (3) monitor installations.

All construction testing will be conducted in accordance with the Specifications.

### 5.2 Construction Monitoring

The following sections list monitoring requirements during HDPE pipe operations.

### 5.2.1 Delivery, Handling, and Storage

- Monitor that chains, end hooks, cable slings, or any other devices that may scar the pipe are not used to handle pipe. Wide nylon web slings are recommended to handle the pipe.
- Monitor that the pipe is not damaged during handling operations and that damaged pipe is separated from accepted pipe.
- Monitor that pipe out-of-roundness will not occur due to excessive stacking heights when the pipe is stored at the site.
- Monitor that the pipe is not damaged by sharp rocks or excessive abrasion when the pipe is pulled into place during fusion welding and installation operations.


### 5.2.2 Fusion Welding

- Before pipe fusion welding operations and installations, verify that solid pipe, perforated pipe, fittings, and flanged couplings comply with the product requirements of the Specifications.
- Monitor that certified fusion welding operators will be performing the welding.
- Monitor that caution is taken to prevent water from coming in contact with the pipe and heater plates during welding operations. A shelter may be required for the fusion welding machine to allow operations to continue in adverse weather conditions.
- Monitor that heater plate surface temperatures are maintained between $375^{\circ} \mathrm{F}$ and $400^{\circ} \mathrm{F}$ for both coated plates and uncoated plates. Monitor that the operator checks the heater plate surface temperatures with a pyrometer.
- Monitor that inside and outside of pipe ends are cleaned to remove dirt, water, grease, and other foreign material.
- Monitor that pipe ends are squarely faced with the facing tool of the fusion welding machine.
- Monitor that pipe ends line up in the fusion welding machine and that the pipe ends meet squarely and completely over the entire surface to be welded. Monitor at this point that the pipe is securely clamped into place so that the pipe does not move during the fusion welding process.
- Monitor that the heater plate is clean and maintains the appropriate temperature. Monitor that the heater plate is inserted between the aligned pipe ends and that the pipe ends are firmly brought into contact with the heater plate. NO PRESSURE should be applied to achieve the melt pattern.
- Monitor that the pipe ends are allowed to heat and soften. As the pipe heats and softens a melt bead begins to roll back from the contact point of the heater plate and the pipe ends.
- Monitor that the heater plate is removed quickly and cleanly when the appropriate melt bead is achieved and that no melted pipe material sticks to the heater plate. If melted material sticks to the heater plate, Monitor that this joint is discontinued, the heater plate is cleaned, the pipe ends are re-faced, and that the joint is re-started.
- Monitor that the melted pipe ends are rapidly joined together and that enough pressure is applied to the joint to form a melt bead $1 / 8$-inch to $3 / 16$-inch in diameter around the entire circumference of the pipe. Pressure is critical to cause the heated material of each pipe end to flow together.
- Monitor that the joint is allowed to cool and solidify properly before the pipe is released from the fusion welding machine. Cooling and solidification is completed when a person's finger can remain comfortably on the bead.
- Examine the joint when the pipe is released from the fusion welding machine to verify that the weld is completely around the entire circumference of the pipe.
5.2.3 Slip Joints
- Monitor that all joints extend to the minimum overlap and comply with the requirements of the Plans and Specifications.
- Monitor that there is a snug fit with zero air gaps surrounding the connection.


## 6. CONSTRUCTION QUALITY ASSURANCE FOR EROSION CONTROL

### 6.1 Introduction

This section describes CQA procedures for temporary and permanent erosion control installations.
CQA for the temporary and permanent erosion control measures will be performed to verify that the Contractor complies with the requirements of the project's Stormwater Pollution Prevention Plan (SWPPP) and that the permanent erosion control measures are installed in accordance with the design. Construction must be conducted in accordance with the Plans and Specifications. To monitor compliance, the CQA Consultant will: (1) review the Contractor's quality control submittals, and (2) monitor installations.

### 6.2 Construction Monitoring

### 6.2.1 Temporary Erosion Control

- Monitor that the Contractor implements temporary erosion control measures in compliance with the project's SWPPP.


### 6.2.2 Permanent Erosion Control Measures

## Straw Wattles

- Review the Contractor's submittals for the straw wattles and verify that the material complies with the manufacturer's recommendations and the Specifications.
- Monitor that the Contractor installs the straw wattles at the locations indicated on the Plans.
- Monitor that the Contractor installs the straw wattles in accordance with the manufacturer's recommendations.


## 7. CONSTRUCTION QUALITY ASSURANCE FOR DRAINAGE FACILITIES

### 7.1 Introduction

This section describes CQA procedures for the surface water drainage facilities. The drainage facilities consist of various types of drainage channels, drop inlets, culverts, and diversion berms.

CQA for the drainage facilities installation will be performed to verify that these facilities are constructed in accordance with the Plans and Specifications. To monitor compliance, the CQA program will: (1) review the Contractor's quality control submittals; (2) monitor construction testing; and (3) monitor installations.

Construction testing will be conducted in accordance with the Specifications.

### 7.2 Construction Monitoring

### 7.2.1 Drainage Channels

- Monitor that grade control construction staking for the drainage channels is performed before the work.
- Monitor that the drainage channels are constructed in accordance with the Drawings and Specifications.
- Monitor that the subgrades of the drainage channels are dry, firm, and unyielding and do not have loose or extraneous material.
- Document that drainage ditches are graded and sloped in accordance with the Plans and Specifications. Review verification surveys and notify the Contractor of areas needing repair. Submit copies of verification surveys to the Construction Manager.


### 7.2.2 Drop Inlets and Culverts

- Review the Contractor's submittals for the piping and drop inlets for compliance with the Specifications.
- Monitor that the Contractor has excavated pipe trenches to the proper depth.
- Monitor that the Contractor has graded the slope of the pipe trenches to uniform gradient.
- Monitor that the pipe subgrades are firm and unyielding and do not have loose or extraneous material.
- Monitor and test backfilling of pipe trenches.
- Verify that inlets to drainage structures are smooth and prevent ponding.


### 7.2.3 Diversion Berms

- Monitor that the material used to construct the diversion berms complies with the Specifications for structural fill.


## 8. DOCUMENTATION

This CQA Plan requires thorough monitoring and documentation of the construction activities. The CQA Manager will document that the CQA requirements have been addressed and satisfied. Documentation will consist of daily record keeping, testing and installation reports, non-conformance reports (if necessary), progress reports, photographic records, design and Specification revisions, and a Final CQA Report.

### 8.1 Daily Record Keeping

At a minimum, daily records will consist of a daily record of construction progress, daily construction report, observation and test data sheets, and, as needed, non-conformance/corrective measure reports. All forms will have peer review.

### 8.1.1 Daily Record of Construction Progress

The daily field report will summarize ongoing construction and discussions with the Contractor and will be prepared by the CQA Manager and CQA Monitor. At a minimum, the report will include the following:

1. Date, project name, project number, and location.
2. A unique number for cross-referencing and document control.
3. Weather data.
4. A description of ongoing construction for the day in the area of the CQA Monitor's responsibility.
5. An inventory of equipment utilized by the Contractor.
6. Significant items of discussion and names of parties involved in these discussions.
7. A brief description of tests and observations, identified as passing or failing, or, in the event of failure, a retest.
8. Areas of non-conformance/corrective actions, if any (non-conformance/corrective action form to be attached).
9. Summary of materials received and quality control documentation.
10. Follow-up information on previously reported problems or deficiencies.
11. Record of site visitors involved with the project.
12. Signature of CQA Manager and/or CQA Monitor.
13. Signature of the peer reviewer.

### 8.1.2 Observation and Test Data Sheets

Observation and test data sheets should include the following information as is appropriate for the form being used.

1. Date, project name, project number, and location.
2. A unique number for cross-referencing and document control.
3. Weather data, as applicable.
4. A reduced scale site plan showing sample and test locations.
5. Test equipment calibrations, if applicable.
6. A summary of test results identified as passing, failing, or, in the event of a failed test, retest.
7. Completed calculations.
8. Signature of the CQA Manager and/or CQA Monitor.
9. Signature of the peer reviewer.

### 8.1.3 Non-Conformance Reports

In the event of a non-conformance event, a non-conformance verification report form will be included with the daily report. Procedures for implementing and resolving any non-conformities to the Contract Documents are outlined in Section 2.4 of this CQA Plan.

### 8.2 Weekly Progress Reports

The CQA Manager will prepare weekly progress reports summarizing construction and CQA activities. These reports will contain, at a minimum, the following information:

- The date, project name, project number, and location.
- A summary of work activities completed in the last week and those expected to be performed in the next week.
- A summary of deficiencies and/or defects and resolutions.
- Ongoing summary of changes and/or change orders to the work.
- The signature of the CQA Manager.
- On the fourth week of each month the report will include a summary of on-site and third party laboratory test results.


### 8.3 Photographs

Construction activities will be photographed. Photographs will show any significant problems encountered and corrective actions and will document the construction progress. The photographs will be identified by location, date, and photographer. The photographer should document the subject or the photograph, either on the back of the picture or in a photograph log.

### 8.4 Design and Specification Changes

Design and Specification changes may be required during construction. Design and Specification changes will only be made with the written agreement of the Design Engineer, Owner, and Contractor. Design and specification changes which affect the containment system or environmental controls shall also require approval of the Regional Water Quality Control Board (RWQCB). These changes will be made by change order to the contract. When change orders are issued, they will be prepared by the Construction Manager. The Construction Manager will distribute change orders for signature and execution to the required parties.

### 8.5 Final Construction Quality Assurance Report

The CQA Manager and CQA Officer shall submit two Final CQA Reports for Phase III: one report for the Phase IIIA construction and one report for the Phase IIIB construction. These reports shall be submitted at the completion of construction of each Phase and shall document that the work for each Phase has been performed in compliance with the Plans and Specifications.

At a minimum, each Final CQA Report will contain:

- Daily Field Reports per Section 8.1.1.
- Inspection data sheets that contain observations and a record of field and laboratory tests per Section 8.1.2.
- A summary of the construction activities.
- A tabular summary of the laboratory and field test results demonstrating construction is in compliance with the Specifications.
- Sampling and testing location drawings.
- A description of significant construction problems and the resolution of these problems.
- A list of changes from the Plans and Specifications and the justifications for these changes.
- As-built (record) drawings.
- A statement of compliance with the Contract Documents and design intent that is signed and stamped by the CQA Officer.

The as-built drawings will accurately show the constructed location of the work items, including the location of piping, anchor trenches, etc. All surveying and base maps required for the development of the as-built drawings will be prepared by the Contractor. The CQA Manager will review and verify that the as-builts are correct.

## APPENDIX P. 2

FINAL CLOSURE CQA PLAN

# CONSTRUCTION QUALITY ASSURANCE (CQA) PLAN <br> FOR <br> LANDFILL UNIT B-18 FINAL CLOSURE <br> KETTLEMAN HILLS FACILITY <br> KETTLEMAN CITY, CALIFORNIA 

## Prepared for:

## Chemical Waste Management, Inc.

Kettleman Hills Facility
35251 Old Skyline Road
Kettleman City, California 93239

## Prepared by:

Golder Associates Inc.
230 Commerce, Suite 200
Irvine, California 92602

## TABLE OF CONTENTS

SECTION PAGE
Engineer's Certification ..... iv

1. INTRODUCTION .....  .1
1.1 Purpose ..... 1
1.2 CQA Consultant .....  1
1.3 Project Organization ..... 2
1.4 Reference Documents ..... 2
1.5 Definitions ..... 2
2. GENERAL REQUIREMENTS ..... 5
2.1 Meetings .....  5
2.1.1 Pre-Construction Meeting ..... 5
2.1.2 Progress Meetings ..... 6
2.I. 3 Weekly Meetings ..... 6
2.1.4 Other Meetings ..... 6
2.2 Responsibilities of Construction Quality Assurance Staff ..... 6
2.2.1 Communications with the Contractor ..... 6
2.2.2 Communications with the Owner ..... 6
2.2.3 Responsibilities of the CQA Manager ..... 6
2.2.4 Responsibilities of the CQA Officer ..... 7
2.2.5 Responsibilities of the Design Engineer ..... 7
2.2.6 Responsibilities of the CQA Monitors ..... 7
2.3 Control of Documents, Records, and Forms ..... 7
2.3.1 Project Control of Contract Documents ..... 7
2.3.2 Project Control of As-Built Information ..... 7
2.3.3 Project Control of Forms ..... 8
2.3.4 Processing Daily Reports ..... 8
2.3.5 Processing Test Reports ..... 8
2.3.6 Processing Project Records ..... 8
2.4 Documentation and Control of Non-Conformance ..... 8
2.4.1 Observation of Non-Conformance ..... 8
2.4.2 Determining Extent of Non-Conformance ..... 8
2.4.3 Documenting Non-Conformance ..... 8
2.4.4 Corrective Measures ..... 9
2.4.5 Verification of Corrective Measures ..... 9
2.5 Construction Monitoring ..... 9
2.5.1 Monitoring Priorities ..... 9
2.5.2 Discrepancies ..... 9
2.6 Materials Quality Verification ..... 9
2.6.1 General ..... 9
2.6.2 Material Submittals ..... 10
2.6.3 Certificates of Compliance and Conformance ..... 10
2.7 Equipment Control ..... 10
2.7.1 Equipment List ..... 10
2.7.2 Calibration of Equipment and Materials ..... 10

## TABLE OF CONTENTS (continued)

SECTION PAGE
3. CONSTRUCTION QUALITY ASSURANCE FOR EARTHWORK ..... 11
3.1 General ..... 11
3.2 Earthwork Construction Testing ..... 11
3.2.1 Test Standards ..... 11
3.2.2 Test Frequencies ..... 12
3.2.3 Soil Sample Numbering ..... 14
3.2.4 Soil Sample Tagging ..... 15
3.2.5 Soil Sample Processing ..... 15
3.3 Field Density Tests ..... 15
3.3.1 Test Numbering ..... 15
3.3.2 Test Locations ..... 15
3.4 Monitoring and Testing Requirements ..... 16
3.4.1 Clearing, Grubbing, and Stripping ..... 16
3.4.2 Stockpiling and Soil Management ..... 16
3.4.3 Excavation ..... 17
3.4.4 Structural Fill/Foundation Layer ..... 17
3.4.5 Geosynthetics Subgrade Preparation ..... 18
3.4.6 Vegetative Cover Soil ..... 18
3.4.7 Trenching and Backfilling ..... 19
4. CONSTRUCTION QUALITY ASSURANCE FOR GEOSYNTHETICS ..... 20
4.1 General ..... 20
4.2 Geomembrane ..... 20
4.2.1 Delivery, Storage, and Handling ..... 20
4.2.2 Conformance Testing ..... 21
4.2.3 Geomembrane Installation ..... 22
4.2.4 Construction Testing ..... 25
4.2.5 Repairs ..... 27
4.2.6 Folded Material ..... 28
4.2.7 Geomembrane Anchor Trench ..... 28
4.2.8 Geomembrane Acceptance ..... 28
4.2.9 Qualifications ..... 29
4.3 Geotextiles ..... 30
4.3.1 Delivery, Storage, and Handling ..... 30
4.3.2 Conformance Testing ..... 30
4.3.3 Geotextile Installation ..... 31
4.3.4 Repairs ..... 32
5. CONSTRUCTION QUALITY ASSURANCE FOR EROSION CONTROL ..... 33
5.1 Introduction ..... 33
5.2 Construction Monitoring ..... 33
5.2.1 Temporary Erosion Control ..... 33
5.2.2 Permanent Erosion Control Measures ..... 33
6. CONSTRUCTION QUALITY ASSURANCE FOR DRAINAGE FACILITIES ..... 35
6.1 Introduction ..... 35

## TABLE OF CONTENTS (continued)

SECTION ..... PAGE
6.2 Construction Monitoring ..... 35
6.2.1 Drainage Channels ..... 35
6.2.2 Drop Inlets and Culverts ..... 35
6.2.3 Diversion Berms ..... 35
7. DOCUMENTATION ..... 36
7.1 Daily Record Keeping ..... 36
7.1.1 Daily Record of Construction Progress ..... 36
7.1.2 Observation and Test Data Sheets ..... 37
7.1.3 Non-Conformance Reports ..... 37
7.2 Weekly Progress Reports ..... 37
7.3 Photographs ..... 38
7.4 Design and Specification Changes ..... 38
7.5 Final Construction Quality Assurance Report ..... 38

## LIST OF TABLES

Table 3-1 Structural Fill and Foundation Layer Conformance Testing Frequencies ..... 13
Table 3-2 Vegetative Cover Soil Conformance Testing Frequencies ..... 14
Table 4-1 High Density Polyethylene (HDPE) Geomembrane Conformance Testing Frequencies ..... 21
Table 4-2 Non-woven Geotextile Conformance Testing Frequencies ..... 30

## ENGINEER'S CERTIFICATION

In accordance with the requirements of California Code of Regulations (CCR) Title 22 Section 66264.19 , this Construction Quality Assurance (CQA) Plan has been developed under the direction of a Civil Engineer registered in the State of California.

I hereby certify that this CQA Plan was developed under my direct supervision.


## 1. INTRODUCTION

### 1.1 Purpose

The purpose of this document is to describe the Construction Quality Assurance (CQA) procedures required during the final closure construction of Landfill Unit B-18 (B-18) at the Kettleman Hills Facility in Kettleman City, California. This CQA Plan establishes procedures to document that the construction is performed in accordance with the approved engineering standards and specifications, meets the appropriate regulatory requirements (i.e., California Code of Regulations Title 22 $\$ 66264.19$ and Title $27 \$ 20323$ and $\S 20324$ ), and that the necessary documentation is developed for submittal to the regulators. This CQA Plan shall be implemented under the direction of a CQA Officer who is a registered Civil Engineer in the State of California.

This CQA Plan is a guidance document that contains general and specific work element requirements for monitoring construction. General requirements include the organization and responsibilities of CQA personnel, documentation control, and reporting procedures. Specific work elements include the following:

- Clearing, Grubbing, and Stripping;
- Stockpiling and Soil Management;
- Excavation;
- Subgrade Preparation;
- Earthfill;
- Geomembranes;
- Geotextiles; and
- Culverts/Drainage Channels.

The CQA Consultant will prepare a Final CQA Report upon completion of construction. The Final CQA Report will include information generated through the CQA program and will document the extent to which construction was performed in accordance with the intent of the Contract Documents and design. The CQA Consultant will be required to submit the Final CQA Report within one week of substantial completion of construction.

### 1.2 CQA Consultant

The CQA Consultant has the primary responsibility of implementing and managing the CQA program described herein and will document to the appropriate regulatory agencies that construction of the facility was performed in accordance with the design and the Contract Documents. Specific responsibilities for the CQA Consultant's site personnel are presented in Section 2.2.

### 1.3 Project Organization

The project will be completed by Contractors performing earthworks construction, geosynthetic materials installation, and construction of associated ancillary facilities. The CQA Consultant will be independent of the Contractors and will report directly to the Owner's Project Manager.

### 1.4 Reference Documents

The latest editions of the following reference documents provide background information and support this CQA Plan:

American Society for Testing and Materials (ASTM), Annual Book of ASTM Standards, Section 4, Construction, Volume 04.02, Concrete and Aggregates.

American Society for Testing and Materials (ASTM), Annual Book of ASTM Standards, Section 4, Construction, Volume 04.08, Soil and Rock(I), and Volume 04.09, Soil and Rock (II); Geosynthetics.

American Society for Testing and Materials (ASTM), Annual Book of ASTM Standards, Section 8, Plastics, Volumes 08.01, Plastics (I), Volume 08.02, Plastics (II), and Volume 08.03, Plastics (III).

California Code of Regulations (CCR), Titles 22 (Social Security) and 27 (Environmental Protection).

Standard Specifications for Public Works Construction, Joint Cooperative Committee of the Southern California Chapter, American Public Works Association And Southern California Districts, Associated General Contractors of California, Building News.

### 1.5 Definitions

Whenever the terms listed below are used, the intent and meaning shall be interpreted as indicated.
ACI: American Concrete Institute.
AISC: American Institute of Steel Construction.
ASTM: American Society for Testing and Materials.
Construction Manager: The individual or firm responsible for administering the construction contract and providing overall construction management for the project. The construction manager is the primary contact on the project site representing the Owner.

Construction Quality Assurance (CQA): A planned and systematic pattern of procedures and documentation designed to provide confidence that items of work or services meet the requirements of the Contract Documents. Construction quality assurance includes verifying that the Contractor is performing the quality control requirements of the Specifications.

CQA Consultant: See Section 1.2

CQA Manager: Authorized representative of the CQA Consultant responsible for managing the CQA program.

CQA Monitors: Authorized representatives of the CQA Consultant responsible for observing and documenting activities related to CQA during construction.

CQA Officer: Authorized representative of the CQA Consultant and a California-Registered Civil Engineer responsible for certifying that construction was performed in accordance with the intent of the Contract Documents and design.

Construction Quality Control: Those actions which provide a means to measure and regulate the characteristics of an item or service to comply with the requirements of the Contract Documents. Quality control will be performed by the Contractor/Geosynthetics Contractor, except where designated in the Specifications.

Contract Drawings: The official plans, profiles, typical cross-sections, elevations, and details, as well as their amendments and supplemental drawings, that show the locations, character, dimensions, and details of the work to be performed. Contract Drawings are also referred to as the "Plans."

Contract Documents: The official set of documents issued by the Owner, which includes bidding requirements, contract forms, contract conditions, Specifications, Contract Drawings, addenda, and contract modifications.

Contractor: The person or persons, firm, partnership, corporation, or any combination of these or any combination of private, municipal, or public entities who, as an independent Contractor, has entered into a contract with the Owner and who is referred to throughout the Contract Documents by singular number and masculine gender.

Contract Specifications: The requirements for products, materials, and workmanship upon which the contract is based. Contract Specifications are also referred to as the "Specifications."

Design Engineer: The individuals or firms responsible for the project's design and preparation of the Plans and Specifications. The Design Engineer is also referred to as the "Designer" or "Engineer." The Design Engineer for the Final Closure of Landfill Unit B-18 is Golder Associates Inc. of Irvine, California.

Earthwork: A construction activity involving the use of soil materials as defined in the Specifications and Section 3 of this document.

Flexible Membrane Liner (FML): A synthetic lining material, also referred to as geomembrane, membrane, liner, or sheet.

Geosynthetics Contractor: Also referred to as the "Installer." The person or firm responsible for installation of geosynthetic components. This definition applies to any party installing geomembrane, geotextile, geocomposite, geosynthetic clay liner, or any other geosynthetic material, even if it is not their primary function.

GRI: Geosynthetics Research Institute.

Non-Conformance: A deficiency in characteristic, documentation, or procedure that renders the quality of an item or activity unacceptable or indeterminate. Examples of non-conformance include, but are not limited to, physical defects, test failures, and inadequate documentation.

Owner: Waste Management, Inc. - Kettleman Hills Facility.
Owner's Project Manager: Authorized representative of the Owner responsible for planning, organizing, and control of the design and construction activities. Responsibilities include scheduling, cost control, engineering, procurement, and contracting functions. Referred to as the "Project Manager" in this document.

Panel: A unit area of the FML that is seamed in the field or in the fabricator's plant.
Procedure: A document that specifies or describes how an activity is to be performed.
Project Documents: Contractor submittals, Construction Drawings, Record Drawings, Specifications, shop drawings, construction quality control and quality assurance plans, health and safety plans, and project schedules.

Record Drawings: Drawings recording the constructed dimensions, details, and coordinates of the project. Also referred to as "as-builts."

SSPWC: Standard Specifications for Public Works Construction.
Testing: Verification that an item meets specified requirements by subjecting that item to a set of physical, chemical, environmental, or operating conditions.

Testing Laboratory: A laboratory capable of conducting the tests required by this CQA Plan and the Specifications.

## 2. GENERAL REQUIREMENTS

### 2.1 Meetings

In order to facilitate construction and to clearly define construction goals and activities, close coordination between the Owner, Design Engineer, CQA Consultant, and Contractor is essential. To meet this objective, pre-construction and progress meetings will be held.

### 2.1.1 Pre-Construction Meeting

Following the bid award, a pre-construction meeting will be held at the site. Attendees at this meeting will include the Owner, Contractor, Design Engineer, CQA Consultant, agencies, and others designated by the Owner. The primary purposes of the pre-construction meeting will be to:

- Review the Plans, Specifications, this CQA Plan, work area security, health and safety procedures, and related issues.
- Provide all parties with relevant project documents.
- Review responsibilities and qualifications of each party.
- Define lines of communication and authority.
- Establish reporting and documenting procedures.
- Review procedures for handling submittals.
- Review testing equipment and procedures.
- Review procedures for field directives and change orders.
- Establish testing protocols and procedures for correcting and documenting construction or non-conformance.
- Establish the weekly meeting schedule.
- Discuss work areas, stockpile areas, lay down areas, access roads, haul roads, and related items.
- Review the project schedule and critical path items.
- Review the Contractor's work plan.

The pre-construction meeting will be documented by the CQA Manager. Copies of the minutes and other pertinent material will be prepared and provided to the relevant parties.

### 2.1.2 Progress Meetings

Informal progress meetings will be held each morning before the start of work. At a minimum, these meetings will be attended by the CQA Monitor and Contractor. The purpose of these meetings will be to:

- Discuss problems and resolutions.
- Review test data.
- Discuss the Contractor's personnel and equipment assignments for the day.
- Review the previous day's activities and accomplishments.
- Resolve any outstanding problems or disputes.


### 2.1.3 Weekly Meetings

Throughout the duration of construction, scheduled weekly meetings will be held. The Project Manager, Construction Manager, CQA Manager, and Contractor will be present. These meetings will be held to discuss progress, problems, construction schedule, changes, test data, health and safety, environmental issues, and any other issues necessary. The Project Manager will prepare the agenda for each meeting and prepare meeting minutes for distribution to the relevant parties.

### 2.1.4 Other Meetings

As required, other meetings may be held to plan work items and/or to discuss problems or nonconformance. These meetings will be attended by parties as directed by the Owner. If the problem requires a design modification and subsequent change order, the Engineer and Project Manager should be present. These meetings will be documented as directed by the Project Manager.

### 2.2 Responsibilities of Construction Quality Assurance Staff

### 2.2.1 Communications with the Contractor

Only the individuals assigned to this project, as defined in this document, can communicate with the Contractor. Communications of an official nature must be clear, direct, and professional. When written communications are required, they must be documented on the appropriate forms. Formal letters to the Contractor should normally be signed by the CQA Manager and reviewed by the Owner.

### 2.2.2 Communications with the Owner

Only those individuals assigned to this project, as defined in this document, can communicate with representatives of the Owner. All communications must be through proper channels as defined during the project's pre-construction meeting. Communications of an official nature must be written, clear, direct, and professional.

### 2.2.3 Responsibilities of the CQA Manager

The CQA Manager administers the CQA program. CQA procedures and reports must be reviewed by the CQA Manager for compliance with this CQA Plan. The CQA Manager acts as an auditor to
monitor and document the proper and complete implementation of the CQA program. The CQA Manager has authority to identify deficiencies and implement corrective action to the CQA program. The CQA Manager collects, distributes, and addresses the disposition of Contractor submittals approved by the Design Engineer. The CQA Manager coordinates testing with independent testing laboratories and maintains the Record Drawings. The CQA Manager reports directly to the Construction Manager. The CQA Manager will aid in preparing the Final CQA Report for the project under the direction of the CQA Officer.

### 2.2.4 Responsibilities of the CQA Officer

The CQA Officer is responsible for documenting and certifying to the Department of Toxic Substances Control (DTSC) and the Regional Water Quality Control Board (RWQCB) that the construction was performed in accordance with the intent of the design and the Contract Documents. The CQA Officer may also be the CQA Manager.

### 2.2.5 Responsibilities of the Design Engineer

The Design Engineer is responsible for site engineering services related to the project's design. Those services include reviewing Contractor submittals, resolving technical issues related to construction, providing interpretation of the Plans and Specifications, and approving substantial design modifications and technical revisions.

### 2.2.6 Responsibilities of the CQA Monitors

The CQA Monitors implement the CQA program under the direction of the CQA Manager. The CQA Monitors perform the construction monitoring and construction materials testing. The CQA Monitors maintain the documentation and test data summaries related to construction monitoring and construction materials testing. The CQA Monitors report directly to the CQA Manager.

### 2.3 Control of Documents, Records, and Forms

### 2.3.1 Project Control of Contract Documents

The Contract Documents, including the Specifications, Plans, and change orders, are controlled by the Construction Manager. The Construction Manager maintains one or more copies of the most current set of Contract Documents for use by the CQA Consultant. Upon issuance of new copies or revisions, it is the responsibility of the Construction Manager to notify the Contractor of the revisions, provide revised Contract Documents, and order the recall of superseded copies of the Contract Documents. The Construction Manager also provides the latest revised set of Contract Documents to the CQA Consultant.

### 2.3.2 Project Control of As-Built Information

As-built information generated by the Contractor and CQA Consultant is controlled by the CQA Manager. During the progress of the work, the CQA Manager obtains as-built information provided from the CQA Monitors, Contractor, surveyors, or others and compiles the as-built data into one set of drawings. The as-built drawing set must be maintained on site and be clearly marked as "Record Drawings."

### 2.3.3 Project Control of Forms

Daily report forms, test report forms, and other project forms are controlled by the CQA Manager, who maintains a master of each form for copies. Upon issuance of a new form, the CQA Manager must recall and remove all superseded copies along with the master, notify the CQA Monitors, and provide new copies for their use.

### 2.3.4 Processing Daily Reports

The CQA Monitors write a daily record of work progress. These daily reports are reviewed by the CQA Manager for legibility, clarity, traceability, and completeness. The review must be evidenced by a signature of the reviewer. Daily reports are submitted to the Construction Manager on a daily basis and are maintained at the site. A weekly summary construction report will be prepared by the CQA Manager and submitted on a weekly basis to the Construction Manager.

### 2.3.5 Processing Test Reports

A test report must be completed by the CQA Monitors whenever testing is performed. The test reports must be reviewed by the CQA Manager. The review includes a check for mathematical accuracy, conformance to test requirements, conformance to the Specifications, and for clarity, legibility, traceability, and completeness. The review must be evidenced by a signature of the reviewer. Test reports (or summaries) from independent testing laboratories will also be transmitted to the CQA Manager for review.

### 2.3.6 Processing Project Records

Project records are completed as needed. Use of the project records is limited to the scope for which they are intended. The record must be completed by filling in all of the blanks provided on the form, followed by the signature of the individual completing the form. All project records must be maintained at the site.

### 2.4 Documentation and Control of Non-Conformance

### 2.4.1 Observation of Non-Conformance

Whenever a non-conformance is discovered or observed in the construction process, product, jobrelated materials, documentation, or elsewhere, the CQA Manager and CQA Monitors should first notify the Contractor's foreman/superintendent supervising the work in question. The CQA Manager should then notify the Construction Manager.

### 2.4.2 Determining Extent of Non-Conformance

Whenever a non-conformance is discovered or observed in the construction process, product, jobrelated materials, documentation, or elsewhere, the CQA Consultant will determine the extent of the non-conformance. The extent of the deficiency may be determined by additional sampling, testing, observations, review of records, or any other means deemed appropriate.

### 2.4.3 Documenting Non-Conformance

All non-conformance must be documented in writing on the daily records, logs, and elsewhere, as appropriate. This documentation must occur immediately upon determining the extent of the non-
conformance. For a non-conformance that is considered serious or complex in nature, or which requires an engineering evaluation, a Non-Conformance Report will be prepared and issued to the Construction Manager and Contractor.

### 2.4.4 Corrective Measures

For a straightforward or routine non-conformance, corrective measures will be determined by direction from the Specifications. If no direction exists in the Specifications, the Construction Manager, CQA Manager, and Contractor will discuss construction methods to correct the deficiency. For Non-Conformance Reports that require an engineering evaluation, the Design Engineer must determine corrective measures. A copy of the Non-Conformance Report, with the Design Engineer's corrective measure determination, will be forwarded to the Construction Manager, CQA Manager, and Contractor for implementation of the corrective action.

### 2.4.5 Verification of Corrective Measures

Upon notification by the Contractor that a corrective measure is complete, the CQA Manager will verify its completion. The verification must be accomplished by observations or re-testing and documented photographically. Written documentation of the corrective measures must be made by the CQA Manager on daily reports, logs, forms, and, if applicable, the Non-Conformance Report. Verification of corrective measures will be reviewed by the Construction Manager. Corrective action measures that require an engineering evaluation will be reviewed and verified by the Design Engineer.

### 2.5 Construction Monitoring

### 2.5.1 Monitoring Priorities

Before commencement of construction, the CQA Manager will establish a list of monitoring priorities. This list will include the various construction activities and the monitoring priority of those activities. The monitoring priorities may change during construction, based upon the Contractor's performance and/or the Owner's request. Changes in the monitoring priorities must be approved by the CQA Manager.

### 2.5.2 Discrepancies

CQA testing must be conducted in accordance with this CQA Plan. However, discrepancies that occur between this document and other construction documents must be resolved. The document that requires the most frequent tests or more stringent requirements will govern, unless otherwise specified by the Design Engineer and/or CQA Manager.

### 2.6 Materials Quality Verification

### 2.6.1 General

Material sources will be identified and samples tested to determine if the material meets the requirements of the Specifications. Definitions and requirements of materials are provided in the Specifications. Test samples will be obtained in accordance with applicable ASTM and GRI standards. Archive samples and test results of the test samples will be maintained and stored at the project site. The CQA Monitors will establish and maintain a materials quality verification list. This
list will include material sources, sample locations, testing requirements, test results, and verification action items.

### 2.6.2 Material Submittals

Material submittals may be used by the CQA Consultant to establish the acceptability of materials. When material sample submittals are required, they will be made available to the CQA Consultant by the Contractor. Acceptance and proper review of material submittals are the responsibility of the CQA Manager.

### 2.6.3 Certificates of Compliance and Conformance

Certificates of compliance and conformance may be used by the CQA Manager to establish the acceptability of materials. These certificates generally state that the material is in compliance or conformance with a particular code, standard, or specification. These certificates may be used for acceptance of a product before or in lieu of testing, if allowed by the Specifications.

### 2.7 Equipment Control

### 2.7.1 Equipment List

Before the start of construction, the CQA Manager will complete a list of all measuring, sampling, and testing equipment being used at the site. As new equipment becomes available during the course of the project, it must be added to the list. When more than one type of equipment is available, a unique number will be affixed to each piece to maintain identity. The equipment list will be maintained in the project files and contains the following information:

- Type of equipment;
- Serial number or identifying number;
- Date item received at site;
- Use of the equipment; and
- Date removed from service.


### 2.7.2 Calibration of Equipment and Materials

Before placing a piece of testing equipment into service, its accuracy must be established and calibrated by the CQA Manager or CQA Monitor. Types of equipment requiring calibration include: nuclear gauges, sand cone devices, sand to be used in sand cones, and scales. The calibration procedures and frequencies must be per the equipment manufacturer's instructions or ASTM standards. Whenever the equipment is suspect or is producing questionable results, it must be removed from service immediately and re-calibrated.

## 3. CONSTRUCTION QUALITY ASSURANCE FOR EARTHWORK

### 3.1 General

This section describes CQA procedures for earthwork operations. The scope of earthwork and related CQA includes the following elements:

- Clearing, Grubbing, and Stripping;
- Stockpiling and Soil Management;
- Excavation;
- Structural Fill/Foundation Layer;
- Subgrade Preparation;
- Vegetative Cover Soil; and
- Trench Excavation and Backfill.


### 3.2 Earthwork Construction Testing

### 3.2.1 Test Standards

The latest editions of the following test standards apply as called out in this document or the Specifications:

Standard

ASTM D422
ASTM D1556

ASTM D1557

ASTM D1587

ASTM D2216

ASTM D2487

ASTM D2488

ASTM D2937

ASTM D4318

## Test Description

Standard Test Method for Particle Size Analysis of Soils
Standard Test Method for Density and Unit Weight of Soil in Place by the Sand Cone Method
Standard Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort
Standard Practice for Thin-Walled Tube Geotechnical Sampling of Soils

Standard Test Method of Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass
Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)
Standard Practice for Description and Identification of Soils (Visual-Manual Procedure)
Standard Test Method for Density of Soil in Place by the DriveCylinder Method
Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

ASTM D5084 Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter

ASTM D6938
Standard Test Method for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)

### 3.2.2 Test Frequencies

Tables 3-1 and 3-2 establish the test frequencies for earthwork CQA. The test frequencies listed establish a minimum number of required tests. Extra testing must be conducted whenever work or materials are suspect, marginal, or of poor quality. Extra testing may also be performed to provide additional data for engineering evaluation. Any re-tests performed as a result of a failing test do not contribute to the total number of tests performed in satisfying the minimum test frequency.

The Final CQA Report shall include tables similar to Tables 3-1 and 3-2 that document compliance with the testing frequencies and that document test results that comply with the Specifications.

TABLE 3-1
STRUCTURAL FILL AND FOUNDATION LAYER CONFORMANCE TESTING FREQUENCIES

ASTM Test Method	ASTM   Designation	Frequency (Structural Fill and Foundation Layer)	Frequency (Bench Fill/Trench)
Prior to Placement:			
Moisture-Density Relationship ${ }^{1}$	D1557	1 Per $10,000 \mathrm{CY}$ or Each Material Type (minimum of 2)	1 Per Material Type
Sieve Analysis	D422	1 Per 30,000 CY or Each Material Type	-
Atterberg Limits	D4318	1 Per 30,000 CY or Each Material Type	-
During / After Placement:			
Nuclear Water Content and Density ${ }^{2}$	D6938	1 Per 1,000 CY Per 1.5 Vertical Feet	1 Per Lift Per 200 Linear Feet
Sand Cone Test or Drive Cylinder Test ${ }^{3}$	$\begin{aligned} & \hline \text { D1556 } \\ & \text { D2937 } \\ & \hline \end{aligned}$	1 Per 20 Nuclear Density Tests	1 Per 10 Nuclear Density Tests
Test Pit to Confirm Cover Thickness (for existing Interim Cover Only)	-	1 per $100,000 \mathrm{SF}$	-
Hydraulic Conductivity (Foundation Layer Only) ${ }^{4}$	D5084	1 per 100,000 SF	-

Notes to Table 3-1:

1. Perform a Check Point (one point selected at near optimum and compared to the ASTM D1557 curve) at least once for every 10,000 cubic yards of material placed.
2. Tests shall be performed on an even grid to provide adequate testing coverage. For large fills in small areas, the testing frequency shall be increased as necessary to ensure testing for each lift of soil placed.
3. Drive cylinder tests may be performed on clay or silt samples only.
4. Hydraulic conductivity tests shall be conducted on relatively undisturbed samples obtained using a thin-walled sampler (i.e., Shelby tube) with a minimum diameter of 3 inches.

## TABLE 3-2 <br> VEGETATIVE COVER SOIL CONFORMANCE TESTING FREQUENCIES

ASTM Test Method	ASTM Designation	Frequency	Frequency (Bench Fill/Trench)
Prior to Placement:			
Moisture-Density Relationship ${ }^{1}$	D1557	1 Per 10,000 CY or Each Material Type (minimum of 2)	1 Per Material Type
During / After Placement:			
Nuclear Water Content and Density ${ }^{2}$	D6938	1 Per 1,000 CY Per 1.5   Vertical Feet	1 Per Lift Per 200 Linear Feet
Sand Cone Test or Drive Cylinder Test ${ }^{3}$	$\begin{aligned} & \hline \text { D1556 } \\ & \text { D2937 } \\ & \hline \end{aligned}$	1 Per 20 Nuclear Density Tests	1 Per 10 Nuclear Density Tests

Notes to Table 3-2:

1. Perform a Check Point (one point selected at near optimum and compared to the ASTM D1557 curve) at least once for every 10,000 cubic yards of material placed.
2. Tests shall be performed on an even grid to provide adequate testing coverage. For large fills in small areas, the testing frequency shall be increased as necessary to ensure testing for each lift of soil placed.
3. Drive cylinder tests may be performed on clay or silt samples only.

### 3.2.3 Soil Sample Numbering

The CQA Monitor will maintain soil sample numbers in a master log to be maintained at the site. Sample numbers will begin at 001 and proceed upward. No sample number can be repeated and retests of a failing sample will be given the original number with a letter suffix (i.e., re-tests for a failing sample 021 would be: $021 \mathrm{~A}, 021 \mathrm{~B}$, etc.). Information contained in the master $\log$ of test samples will include:

- Sample number;
- Test(s) to be performed;
- Dated sampled;
- CQA Monitor obtaining sample;
- Location sampled;
- Location of testing (on-site vs. off-site);
- Date sample sent off-site;
- Date test results received;
- Site testing CQA Monitor;
- Date testing completed at site; and
- Test results and remarks.


### 3.2.4 Soil Sample Tagging

The CQA Monitor is responsible for maintaining sample identification for all soil samples while on site, from the time of sampling through the completion of testing. The CQA Monitor must place a sample tag on the soil sample container immediately upon sampling. This tag must remain with the soil sample throughout processing. The tag will contain the following information:

- Sample number;
- Material type;
- Project name and project number;
- Sampling CQA Monitor;
- Date sampled; and
- Test(s) to be performed.


### 3.2.5 Soil Sample Processing

The CQA Monitor is responsible for the timely processing of soil test samples. The CQA Manager will determine which samples are tested on-site and which are tested off-site. This determination will be made based on available manpower, available equipment, complexity of testing, and the desired turnaround time for results. For expediency, samples to be tested off-site should be shipped the same day they are collected.

### 3.3 Field Density Tests

### 3.3.1 Test Numbering

The CQA Monitor is responsible for maintaining test numbers and results for field density tests performed using the nuclear gauge (ASTM D6938), sand cone (ASTM D1556), and drive cylinder (ASTM D2937). All other testing is identified through the sample number (Section 3.2.3). The CQA Monitor will maintain field books that identify soil segments, test data, the CQA Monitor performing the test, and the sequential test number. Each soil segment will have a unique series of numbers. No test number can be repeated for a given soil segment, and re-tests of failing tests must be given a letter suffix along with the original test number (i.e., re-tests for a failing test 1201 would be: 1201 A , 1201 B, etc.). Test data and results must be filled out on the field density test form.

### 3.3.2 Test Locations

The intent of the CQA program is to provide confidence that the earthwork materials and work conform to the requirements of the Specifications. To meet this intent, the CQA Monitor will perform density tests of earthfills during construction. Density tests must be located at various elevations and uniformly dispersed throughout the entire plan dimensions of the fill. Density test locations must be chosen without bias; however, additional testing can be performed in any areas that are suspect, marginal, or appear to be of poor quality. During the progress of the work, density test
locations will be plotted on a drawing by the CQA Monitor to document that no significant areas are left untested. This drawing will be included in the Final CQA Report.

### 3.4 Monitoring and Testing Requirements

Earthwork components of the construction are summarized in Section 3.1. Each component has specific construction requirements that must be monitored. The following sections list monitoring requirements for each type of earthwork.

### 3.4.1 Clearing, Grubbing, and Stripping

- Document that erosion and sediment control silt fences, straw bale barriers, and other measures are securely in place prior to initiating clearing, grubbing, and stripping operations in any area.
- Document that existing plant life designated to remain is protected against damage during construction.
- Document that clearing and stripping in areas required for site access and execution of the work is complete.
- Document that vegetation, roots, and highly organic soil within the work area are removed to the appropriate extent.


### 3.4.2 Stockpiling and Soil Management

- Review the Contractor's approved work plan submittal. Verify stockpile locations, stockpile dimensions, haul routes, material segregation procedures, and erosion, sediment, and drainage control measures. Determine and note corrective action items, if applicable.
- Document that stockpile locations have been cleared, grubbed, and stripped in accordance with Section 3.4.1 of this CQA Plan and the Specifications.
- Document that stockpile subgrades are surveyed prior to stockpiling.

The CQA Monitor will maintain a separate soil test data summary sheet for the specific purpose of soil classification of stockpiled materials.

- During excavation, hauling, and stockpiling operations, continually identify and verify material classifications in general accordance with ASTM D2487 (Unified Soil Classification System) and ASTM D2488 as necessary to characterize material stockpile designations.
- Observe that stockpiles are constructed with slopes no greater than 2H:1V (horizontal:vertical) and that the top surface maintains a minimum 5 percent grade. The Contractor shall include 15 -foot-wide drainage benches every 50 vertical feet on all stockpiles.


### 3.4.3 Excavation

- Document that construction staking is performed before work and that survey bench marks with elevations are secured outside the work area.
- If applicable, document that the Contractor has notified Underground Service Alert to identify and locate underground utilities.
- Document that excavated materials are segregated into proper stockpiles.
- Coordinate with the Contractor to perform excavation verification surveys upon completion of excavating operations. Verify corrective action measures as determined by verification surveys. Verification surveys will also be used to determine limits of excavation for measurement and payment applications. Submit a copy of verification surveys to the Construction Manager.
- Document that unsuitable materials are removed from areas that will receive earthfill. Unsuitable materials include uncertified existing fills, disturbed soils, weak/highly compressible soils, and deleterious materials.


### 3.4.4 Structural Fill/Foundation Layer

- Monitor that subgrade for placement of soil is consistent with the Specifications.
- Monitor that construction staking is performed before the beginning of the work and that survey bench marks with elevations are secured outside the work area.
- Perform visual and manual soil classifications (ASTM D2488) to verify that the material source is suitable for structural fill. Verify that the material is free of organic and oversized materials and perform classifications continually during excavation of borrow materials.
- Perform moisture-density relationship testing (ASTM D1557) to determine the maximum dry density and optimum moisture content for structural fill/foundation layer materials. Perform tests at the testing frequencies specified in Table 3-1.
- Monitor that structural fill materials are placed in loose lifts not exceeding 8 -inches thick and are then properly compacted.
- Perform nuclear density-moisture tests (ASTM D6938) to document that each lift is compacted to the appropriate relative compaction, as stipulated in the Specifications. Perform tests at the testing frequencies specified in Table 3-1.
- Monitor that soil materials are kept within the specified moisture content range listed in the Specifications. Monitor that soil materials that are wet and over the optimum moisture content (as determined by ASTM D1557) are properly aerated and processed to bring the moisture content of the material into the acceptable range. Monitor that soils that are dry and below the optimum moisture content (as determined by ASTM D1557) are properly moisture conditioned and processed to bring the moisture content into the acceptable range.
- Monitor that desiccated structural fills are properly repaired or removed before placing subsequent lifts.
- Monitor that final structural fill/foundation layer surfaces are free of ruts, gouges, and other features that might contribute to erosion and sediment run-off.
- During fill operations, field-verify lines, grades, and dimensions using hand-held levels, range poles, and measuring tapes.
- Coordinate with the Contractor to perform verification surveys at the completion of structural fill/foundation layer operations. Verify corrective action measures as determined by verification surveys. Verification surveys will also be used to determine the limits of structural fill/foundation layer for measurement and payment applications. Submit copies of verification surveys to the Construction Manager.


### 3.4.5 Geosynthetics Subgrade Preparation

- Monitor that the subgrade is free of organic and oversized materials and meets the requirements of the Specifications.
- Monitor that grade control construction staking is performed prior to the work.
- Perform moisture-density relationship testing (ASTM D1557) to determine the maximum dry density and optimum moisture content of subgrade materials.
- Monitor that angular or sharp rocks, rocks that protrude more than 0.5 inches, and other debris that could damage the overlying geomembrane are removed from the surface of the subgrade. Verify that the subgrade is free of irregularities and is steel drum rolled smooth prior to geomembrane placement.
- Monitor that the final surface provides continuous and intimate contact with the overlying geomembrane.
- Coordinate with the Contractor to perform subgrade verification surveys upon completion of the subgrade preparation. Verify corrective action measures as determined by the verification surveys. Verification surveys will also be used to determine the limits of the subgrade preparation for measurement and payment applications. Submit copies of verification surveys to the Construction Manager.


### 3.4.6 Vegetative Cover Soil

- Monitor that the material source is suitable for the vegetative cover soil layer and is free of organic or other deleterious materials and free of over-sized particles as described in the Specifications.
- Monitor that grade control construction staking is performed before the work.
- Verify that the vegetative cover soil is placed in a manner that does not damage the underlying geosynthetic layers.
- Coordinate with the Contractor to perform vegetative cover soil verification surveys upon completion of placement operations. Verify corrective action measures as determined by the verification surveys. Verification surveys will also be used to determine the limits of the vegetative cover soil for measurement and payment applications. Submit copies of verification surveys to the Construction Manager.


### 3.4.7 Trenching and Backfilling

- Monitor that construction staking is performed before the work and that survey bench marks with elevations are secured outside the work area.
- Monitor that trenches are excavated in accordance with the dimensional cross-sections and design elevations shown on the Plans.
- Monitor profile surveys conducted by the Contractor during trenching operations.
- Perform moisture-density relationship testing (ASTM D1557) to determine the maximum dry density and optimum moisture content of soil materials that will be used as backfill.
- Perform nuclear density-moisture tests (ASTM D6938) to verify that backfill materials are moisture conditioned and compacted in accordance with the Specifications.


## 4. CONSTRUCTION QUALITY ASSURANCE FOR GEOSYNTHETICS

### 4.1 General

The objectives of the geosynthetics CQA program are to assure that: (i) proper construction techniques and procedures are used, and (ii) the project is completed in accordance with the Plans and Specifications. The intents of the CQA program are to: (i) identify and define problems that may occur during construction, and (ii) document that these problems are corrected before construction is complete.

This section describes CQA procedures for the installation of geosynthetic components. The following geosynthetics will be utilized for this project:

- Non-woven geotextile; and
- 40 -mil HDPE geomembrane (textured on both sides).

CQA for the geosynthetics installations will be performed to monitor that geosynthetics are installed in accordance with the design. Construction must be conducted in accordance with the Plans and Specifications. To monitor compliance, the CQA Manager will: (i) review the Contractor's quality control submittals; (ii) perform material conformance testing; (iii) monitor construction testing; and (iv) monitor installations. Conformance testing refers to activities that take place before geosynthetics installation. Construction testing includes activities that occur during geosynthetics installation.

The CQA testing will be conducted in accordance with this CQA Plan and the project's Plans and Specifications. If a discrepancy exists in the testing requirements, the document that requires the most stringent testing will govern.

### 4.2 Geomembrane

### 4.2.1 Delivery, Storage, and Handling

Upon delivery of geomembrane, the CQA Monitor will:

- Observe geomembrane rolls for damage during shipping and handling, identify and mark any damaged materials, and document that damaged materials are set aside.
- Observe that the geomembrane is stored in accordance with the Specifications and is protected from puncture, dirt, grease, water, moisture, mud, mechanical abrasions, excessive heat, direct sunlight, and other damage.
- Document that all manufacturing documentation required by the Specifications has been received.
- Complete the geosynthetics inventory form for all geomembrane materials received.

Damaged geomembrane may be rejected. If rejected, document that material is removed from the site or stored at a location separate from accepted geomembrane. Geomembrane that does not have proper documentation from the manufacturer must be stored at a separate location until all documentation has been received, reviewed, and accepted.

### 4.2.2 Conformance Testing

Geomembrane Material Tests. Geomembrane samples will be obtained for conformance testing in accordance with Table 4-1. The material will be sampled at the site by the CQA Monitor or at the manufacturing plant under the direction of the CQA Consultant. The samples will be forwarded to an independent testing laboratory for the following conformance tests:

## TABLE 4-1 <br> HIGH DENSITY POLYETHYLENE (HDPE) GEOMEMBRANE CONFORMANCE TESTING FREQUENCIES

Property	Test Method	Conformance Test Frequency ${ }^{(6)}$
Thickness (min. avg.)	ASTM D5994	1 per 250,000 sf
Asperity Height (min. avg.) ${ }^{(1)}$	GRI GM 12	1 per $250,000 \mathrm{sf}$
Melt Flow Index	ASTM 1238	1 per $250,000 \mathrm{sf}$
Sheet Density (min avg.)	ASTM D792 or ASTM D1505	1 per 250,000 sf
Tensile Properties ${ }^{(2)}$ (min. avg.)   - Yield strength   - Break strength   - Yield elongation   - Break eiongation	ASTM D6693   Type IV	1 per $250,000 \mathrm{sf}$
Puncture Resistance (min. avg.)	ASTM D4833	1 per $250,000 \mathrm{sf}$
Carbon Black Content (range)	ASTM D1603 ${ }^{(3)}$	1 per 250,000 sf
Carbon Black Dispersion ${ }^{(4)}$	$\begin{aligned} & \text { ASTM D2663 } \\ & \text { ASTM D5596 } \end{aligned}$	1 per $250,000 \mathrm{sf}$
Interface Shear Strength ${ }^{(5)}$   - cover soil / geotextile   - geotextile / geomembrane   - geomembrane / foundation layer	ASTM D6243	1 per project

Notes to Table 4-1:
(1) Alternate the measurement side for double sided textured sheets.
(2) Machine direction (MD) and cross machine direction (XMD) average values shall be on the basis of 5 test specimens in each direction:

- Yield clongation is calculated using a gage length of 1.3 inches.
- Break elongation is calculated using a gage length of 2.0 inches.
(3) Other methods such as D4218 (muffle furnace) or microwave methods are acceptable if an appropriate correlation to D1603 (tube furnace) can be established.
(4) Carbon black dispersion (only near spherical agglomerates) for 10 different views.
(5) Interface shear strength tests shall be tested at normal loads of 200;500; 1.000; and 2,000 pounds per square foot. Results of the testing shall be forwarded to the Engineer for review and approval. Test reports shall include peak and large-displacement ( 2.5 inches) shear stress values.
(6) Minimum testing frequency shall be one sample per lot.

The CQA Manager will review all conformance test results and report any non-conformance to the Construction Manager and Contractor.

The Final CQA Report shall include a table similar to Table 4-1 documenting compliance with the testing frequencies and results documenting compliance with the Specifications.

Sampling Procedure. Samples will be taken across the entire roll width. Samples may be cut for shipping purposes, but a minimum of five square feet must be sent to the testing laboratory. Samplers must mark the machine direction and the manufacturer's roll identification number on the sample (each piece). Samplers will also assign a conformance test number to the sample and mark the sample with that number.

### 4.2.3 Geomembrane Installation

Surface Preparation. The soil surface must be prepared in accordance with the Specifications. Before geomembrane installation, the subgrade will be inspected by the CQA Monitor and Geosynthetics Contractor. The CQA Monitor must check the following:

- All lines and grades for the soil surface have been verified by the Contractor.
- The soil surface has been rolled/compacted and is free of surface irregularities, loose soil, and protrusions.
- The soil surface is firm and does not contain stones or other objects that could damage the geomembrane.
- The anchor trench dimensions have been checked and the trenches are free of sharp objects and stones.
- There are no excessively soft areas.
- The soil surface is not saturated and no standing water is present.
- The soil surface is not desiccated.
- All construction stakes, if utilized, have been removed and accounted for and there is no debris, rocks, or any other objects in or on the soil surface.
- The Geosynthetics Contractor has certified in writing that the surface on which the geomembrane will be installed is acceptable.

Panel Placement. Before installing any of the geomembrane, the Geosynthetics Contractor must submit drawings in accordance with the Specifications. These drawings will show the proposed layout of the panels, including panel identification numbers, field seams, and any other details that do not conform to the Plans.

The CQA Monitor will maintain an up to date panel layout drawing that shows the following: (i) roll numbers; (ii) panel numbers; (iii) seam numbers; (iv) test locations; (v) repair locations; and, (vi) non-destructive testing information.

During panel placement operations, the CQA Monitor will:

- Record panel numbers and dimensions on the panel/seam log.
- Observe the panel surface as it is deployed and record all panel defects and defect corrective actions (panel rejected, patch installed, extrudate placed over the defect, etc.)
on the repair sheet. Verify that corrective actions are made in accordance with the Specifications.
- Monitor that equipment used during deployment operations does not damage the geomembrane. Verify that equipment used on the geomembrane does not leak hydrocarbons onto the geomembrane or that corrective measures are taken to prevent leakage.
- Observe that the surface beneath the geomembrane has not deteriorated since previous acceptance. Verify that no stones, construction debris, or other items are beneath the geomembrane that could damage the geomembrane.
- Monitor that the geomembrane is not dragged across an unprotected surface. If the geomembrane is dragged across an unprotected surface, the geomembrane must be inspected for scratches and repaired or rejected, if necessary.
- Record weather conditions including temperature, wind speed and direction, and humidity. Verify that the geomembrane is not deployed in the presence of excess moisture (fog, dew, mist, etc.). In addition, verify that the geomembrane is not placed when the air temperature is less than $40^{\circ} \mathrm{F}$ or when standing water or frost is on the ground.
- Monitor that crews working on the geomembrane do not smoke, do not wear shoes that could damage the liner, and do not engage in activities that could damage the geomembrane.
- Monitor that methods used to deploy the geomembrane minimize wrinkles and that panels are anchored to prevent movement by the wind. Verify that the Geosynthetics Contractor corrects any damage resulting to or from windblown geomembrane.
- Monitor that no more panels are deployed than can be seamed on the same day.
- The CQA Monitor must inform both the Geosynthetics Contractor and the CQA Manager if any of the above conditions are not met.

Field Seaming. Before the start of geomembrane welding and during welding operations, each welder and welding apparatus will be tested in accordance with the Specifications to verify that the equipment is functioning properly. One trial weld will be taken before the start of work and one at mid-shift. The trial weld sample will be at least 42 -inches-long and 12 -inches-wide, with the seam centered lengthwise. The CQA Monitor will observe all welding operations and verify that the Geosynthetics Contractor quantitatively tests each trial weld for peel adhesion and bonded seam strength (ASTM D6392). (Peel adhesion tests will be referred to as "peel" and bonded seam strength tests will be referred to as "shear" in this document.) The main purposes of the trial weld tests are to evaluate seam strength and to confirm that each welding machine is working properly. Shear tests measure the continuity of tensile strength through the seam and into the parent material. Peel tests measure the strength of the bond created by the welding process.

The results of the peel and shear tests on trial welds will be recorded on the trial weld form. Trial welds must be completed under conditions similar to those under which the panels will be welded. Trial welds must meet specified requirements for peel and shear and the failure must be ductile or a film tearing bond (FTB) for a wedge weld. An FTB failure occurs when the test specimen breaks at
the edge of the outside of the seam but not within that seam. If at any time the CQA Monitor believes that a welding machine is not functioning properly, a trial weld by that machine must be performed and tested. If there are wide changes in temperature ( $>30^{\circ} \mathrm{F}$ ), humidity, or wind speed, another trial weld must be performed and tested. The trial weld must be allowed to cool to ambient temperature before it is tested.

During geomembrane welding operations, the CQA Monitor will:

- Monitor that the Geosynthetics Contractor has an appropriate number of welding machines and spare parts necessary to perform the work.
- Monitor that equipment used for welding will not damage the geomembrane.
- Monitor that extrusion welders are purged before beginning a weld so that all heatdegraded extrudate is removed from the nozzle of the extrusion welder.
- Monitor that seam grinding is completed less than 1 hour before seam welding and that the upper sheet is beveled (extrusion welding only).
- Monitor that the ambient temperature measured 6-inches above the geomembrane surface is between $40^{\circ} \mathrm{F}$ and $110^{\circ} \mathrm{F}$.
- Monitor that the ends of extrusion welds that are more than 5 minutes old are ground to expose new material before restarting a weld.
- Monitor that contact surfaces of the panels are clean and free of dust, grease, dirt, debris, and moisture before welding.
- Monitor that welds are free of dust, rocks, and other debris.
- Monitor that cross seams are ground to a smooth incline before welding (fusion welding only).
- Monitor that all seams are overlapped a minimum of 3 inches or in accordance with the manufacturer's recommendations, whichever is more stringent.
- Monitor that solvents or adhesives are not present in the seam area.
- Monitor that procedures used to temporarily hold the panels together do not damage the panels and do not preclude CQA testing.
- Monitor that strips of geomembrane, wide enough and long enough to protect the hot wedge welder from running on the subgrade, are placed below the geomembrane. These strips may be as long as the seam itself or shorter and moved with the seaming equipment. If necessary, a firm material such as a flat board or similar hard surface may be placed directly under the weld overlap to achieve firm support.
- Monitor that panels are being welded in accordance with the Plans and Specifications.
- Monitor that there is no free moisture in the weld area.
- Measure surface temperature of the panels every 2 hours.


### 4.2.4 Construction Testing

Nondestructive Seam Testing. The purpose of nondestructive geomembrane seam testing is to detect discontinuities or holes in the seams. Nondestructive geomembrane seam tests include vacuum box and air pressure testing. Nondestructive testing must be performed over the entire length of each seam.

It is the Geosynthetics Contractor's responsibility to perform all nondestructive testing as part of their quality control (QC) program. The CQA Monitor's responsibility is to observe and document that the Geosynthetics Contractor's QC testing is in compliance with the Specifications and to document seam defects and repairs.

Nondestructive seam testing procedures are described below:

- For welds tested by the vacuum box method, the weld is placed under suction utilizing a vacuum box constructed with rigid sides, a transparent top for viewing the seams, a neoprene rubber gasket attached to the bottom of the rigid sides, a vacuum gauge on the inside, and a valve assembly attached to a vacuum hose connection. The box is placed over a seam section which has been thoroughly saturated with a soapy water solution (1 oz. soap to 1 gallon water). The rubber gasket on the bottom of the box must fit snugly against the soaped seam section of the panel to ensure a leak-tight seal.
- A vacuum pump is energized and the vacuum box pressure reduced to approximately 5 psi gauge. Any pinholes, porosity, or non-bonded areas are detected by the appearance of soap bubbles in the vicinity of the defect. Dwell time must not be less than 10 seconds.
- Air pressure testing is used to test double wedge seams that have an enclosed air channel between them. Both ends of the air channel must be sealed. A pressure feed device, usually a hollow needle equipped with a pressure gauge, is inserted into one end of the channel. Air is then pumped into the channel to a minimum pressure of 25 to 30 psi . The air channel must sustain this pressure for 5 minutes without losing more than 2 psi . Following the 5 -minute hold time, the opposite end of the tested seam must be punctured to release the air. The pressure gauge must return to zero; if it does not return to zero a blockage is likely present in the seam channel. Locate the blockage and test the seam on both sides of the blockage. The penetration holes must be sealed after testing.

During nondestructive seam testing, the CQA Monitor will:

- Review the Specifications regarding test procedures.
- Monitor that equipment operators are fully trained and qualified to perform their work.
- Monitor that test equipment meets the Specifications.
- Monitor that the entire length of each seam is tested in accordance with the Specifications.
- Observe testing and record results on the panel/seam log and the panel layout drawing.
- Identify any failed areas by marking the area with a waterproof marker compatible with the geomembrane, inform the Geosynthetics Contractor of any required repairs, and record the repair on the panel/seam log.
- Monitor that all repairs are completed and tested in accordance with the Specifications.
- Record all completed and tested repairs on a repair sheet and the panel layout drawing.

Destructive Seam Sampling Procedures and Field Testing. Destructive seam samples will be taken at intervals of at least one per 500 linear feet of geomembrane seam. However, additional samples will be taken if the CQA Monitor suspects that a seam does not meet the Specification's requirements. Reasons for taking additional samples may include, but are not limited to:

1. Wrinkling in the seam area.
2. Excess crystallinity.
3. Suspect seaming equipment or techniques.
4. Weld contamination.
5. Insufficient overlap.
6. Adverse weather conditions.
7. Failing tests.

The CQA Monitor will select the locations from where seam samples will be cut for destructive laboratory testing as follows:

- A minimum of one test per 500 feet of seam length. This is an average frequency for the entire installation; individual samples may be taken at greater or lesser intervals. The testing frequency will be increased if welding operations are conducted in temperatures below $40^{\circ} \mathrm{F}$. This increase will be agreed to by the Construction Manager, CQA Manager, and Geosynthetics Contractor.
- A maximum frequency must be agreed to by the Construction Manager, CQA Manager, and Geosynthetics Contractor at the pre-construction meeting. However, if the number of failed samples exceeds 5 percent of the tested samples, this frequency may be increased at the discretion of the CQA Manager. Samples taken as the result of failed tests do not count toward the total number of required tests.

The CQA Monitor will not inform the Geosynthetics Contractor in advance of selecting the destructive sample locations.

The Geosynthetics Contractor will remove the destructive samples at locations identified by the CQA Monitor and field test the specimens for peel and shear before the samples are shipped off-site for laboratory testing. During sampling procedures the CQA Monitor will:

- Observe sample cutting.
- Mark each specimen and sample with an identifying number which contains the seam number, destructive sample test number, welder, and date and time welded.
- Record sample locations on the panel layout drawing and panel-seam logs.
- Record the sample locations, weather conditions, and reasons samples were taken (e.g., random sample, visual appearance, result of a previous failure, etc.) in the destructive seam test form.

At each location, obtain two seam specimens that are 44 -inches apart. The specimens should be 1 inch wide and 12 -inches long with the weld centered across the length of the specimen. The Geosynthetics Contractor must test these samples to failure in the field using a tensiometer capable of quantitatively measuring shear and peel strengths. For double wedge welding, the Geosynthetics Contractor must test both welds. The CQA Monitor will observe the tests. Geomembrane seam specimens pass when the break is a ductile FTB and the seam strength meets the specified values.

If one or both of the 1 -inch specimens fails in either peel or shear, the Geosynthetics Contractor can, at his discretion: (1) reconstruct the entire seam between passed test locations; or (2) take another test sample 10 feet from the point of the failed test and repeat this procedure. If the second test passes, the Geosynthetics Contractor can either reconstruct or cap strip the seam between the two passed test locations. If subsequent tests fail, the sampling and testing procedure is repeated until the length of the poor quality seam is established. Repeated failures indicate that either the seaming equipment or operator is not performing properly and that appropriate corrective action must be taken immediately.

Once the field test specimens have passed, a sample must be recovered for laboratory testing from between the passing field specimen locations. The sample must be 42 -inches long and 12 -inches wide, with the weld centered along the length of the sample. The sample must be divided into three sections: one 12 -inch by 12 -inch section for the Geosynthetics Contractor, one 12 -inch by 18 -inch section for laboratory testing, and one 12 -inch by 12 -inch section for the Owner to archive. Record the results of field testing on the destructive seam test form and the panel/seam log.

Third Party Laboratory Testing. The CQA destructive seam samples can be shipped to the testing laboratory to verify seam quality. The laboratory will test five specimens from each sample in both shear and peel modes of failure. Minimum required test values are presented in the Specifications. The testing laboratory must provide verbal test results within 24 hours to the CQA Manager and written certified test results within 5 days.

The CQA Manager must immediately notify the Construction Manager and Geosynthetics Contractor in the event of failed seam test results.

If a laboratory test fails in either peel or shear, the Geosynthetics Contractor must either reconstruct the entire seam or recover additional samples at least 10 feet on either side of the failed sample for retesting. This process is repeated until passed tests bracket the failed seam section. All seams must be bounded by locations from which passing laboratory tests have been taken. Laboratory testing governs seam acceptance. In no case can field testing of repaired seams be used for final acceptance.

### 4.2.5 Repairs

Portions of geomembrane panels and seams that contain: (1) a flaw; (2) a destructive test; or (3) nondestructive test cuts or holes must be repaired in accordance with the Specifications. The CQA Monitor must locate and record all repairs on the repair sheet and panel layout drawing. Acceptable repair techniques include the following:

- Patching: used to repair large holes, tears, large panel defects, undispersed raw materials, welds, contamination by foreign matter, and destructive sample locations.
- Extrusion: used to repair small defects in the panels and seams. In general, this procedure should be used for defects less than 2 -inches in the largest dimension.
- Capping: used to repair failed welds or to cover seams where welds cannot be nondestructively tested.
- Removal: used to replace areas with large defects where preceding methods are not appropriate. Also used to remove excess material (wrinkles, fishmouths, intersections, etc.) from the installed geomembrane. Areas of removal shall be patched or capped.

Repair procedures include the following:

- Abrade geomembrane surfaces to be repaired (extrusion welds only) no more than 1 hour before the repair.
- Clean and dry all surfaces at the time of repair.
- Monitor acceptance of the repair procedures, materials, and techniques by the CQA Monitor in advance of the specific repair.
- Extend patches or caps at least 6 inches beyond the edge of the defect and round all corners of material to be patched and the patches to a radius of at least 3 inches. Bevel the top edges of patches before extrusion welding.


### 4.2.6 Folded Material

Geomembrane with excessive folding (i.e., creased), as determined by the CQA Consultant, must be removed.

### 4.2.7 Geomembrane Anchor Trench

The geomembrane anchor trench should be left open until seaming is completed. Expansion and contraction of the geomembrane should be accounted for in the liner placement. The anchor trench should be filled in the morning when temperatures are coolest to reduce bridging of the geomembrane.

### 4.2.8 Geomembrane Acceptance

The Contractor retains all ownership and responsibility for the geomembrane until acceptance by the Owner. In the event the Contractor is responsible for placing cover over the geomembrane, the Contractor retains all ownership and responsibility for the geomembrane until all required documentation is complete and the cover material is placed. After panels are placed, seamed, tested successfully, and repairs made, the completed installation will be walked by the CQA Monitor and Contractor. Any damage or defects fonnd during this inspection will be repaired by the Geosynthetics Contractor. The installation will not be accepted until it meets the requirements of both parties. In addition, the geomembrane will be recommended for acceptance by the CQA Manager only when the following have been completed:

- The installation is finished.
- All seams have been inspected and verified to be acceptable and all required laboratory and field tests have been completed and reviewed.
- All required Contractor-supplied documentation has been received and reviewed.
- All as-built drawings have been reviewed and verified by the CQA Manager to show the true panel dimensions, the locations of all seams, trenches, pipes, appurtenances, and destructive test locations.


### 4.2.9 Qualifications

Proper layout, seaming, and testing of the geomembrane requires skill and experience. As such, the integrity of the geomembrane is dependent upon the installers. In order to assure a minimum level of experience and expertise, the following experience standards have been established in the Specifications:

Manufacturer/Fabricator/Installer. The Specifications list the required qualifications for the geomembrane manufacturer / fabricator / installer companies. The CQA Manager must verify qualifications of the manufacturer, fabricator, and installer through review of Engineer-approved project submittals.

Installation Superintendent. The installation field superintendent must have been responsible for the completed installation of a minimum of $5,000,000$ square feet of polyethylene geomembrane in the past 5 years utilizing the type of seaming techniques and apparatus proposed for use on this project. A resume with references and phone numbers of satisfactory installations is required. Any superintendent proposed for this project must be present whenever geomembrane is installed.

Master Seamer and Other Welders. The master seamer must have demonstrated expertise on previous geomembrane installations. The master seamer must have successfully welded a minimum of $1,000,000$ square feet of polyethylene geomembrane within the past 3 years. A resume for this work, witb references and phone numbers, is required. Other welders are required to have welded a minimum of 100,000 square feet of geomembrane within the past 3 years. Resumes for all welders, with references and phone numbers, are required. Personnel that have welded less than 100,000 square feet of geomembrane within the past 3 years will only be allowed to weld under the direct supervision of either the master seamer or the installation superintendent.

CQA Manager Qualifications. The CQA Manager must have provided CQA services on a minimum of $1,000,000$ square feet of polyethylene installations or be level II certified in geosynthetics installations by National Institute for Certification in Engineering Technologies (NICET). The CQA Manager must provide verification of this experience by references in a current resume.

### 4.3 Geotextiles

### 4.3.1 Delivery, Storage, and Handling

During delivery of geotextiles the CQA Monitor will:

- Monitor that equipment used to unload the rolls does not damage the geotextile.
- Monitor that rolls are wrapped in impermeable and opaque protective covers.
- Monitor that care is used to unload the rolls.
- Monitor that all documentation required by the Specifications has been received.
- Monitor that each roll is marked or tagged with the following information: manufacturer's name; project identification; lot number; roll number; and roll dimensions. Log this information on the geosynthetic inventory form.
- Monitor that materials are stored in a location that will protect the rolls from ultraviolet light exposure, precipitation, mud, dirt, dust, puncture, cutting, or any other damaging or deleterious conditions.

Any damaged rolls may be rejected. Monitor that rejected material is removed from the site and stored at a location separate from accepted rolls. Geotextile rolls which do not have proper manufacturer's documentation must also be stored at a separate location until all documentation has been received and approved.

### 4.3.2 Conformance Testing

Geotextile Material Tests. The CQA Manager will arrange to obtain geotextile conformance test samples as indicated in Table 4-2. These samples will be sent to the testing laboratory for the following conformance tests:

TABLE 4-2
NON-WOVEN GEOTEXTILE CONFORMANCE TESTING FREQUENCIES

Property	Test Method	Conformance Test Frequency ${ }^{(1)}$
Mass/Unit Area (min. avg.)	ASTM D5261	1 per 250,000 sf
Apparent Opening Size (max.)	ASTM D4751	1 per project
Grab Strength (min. avg.)	ASTM D4632	1 per 250,000 sf
Permittivity (min.)	ASTM D4491	1 per project
Puncture Strength (min. avg.)	ASTM D4833	1 per 250,000 sf

Note to Table 4-2:
(1) Minimum testing frequency shall be one sample per lot.

The CQA Manager will review all conformance test results and report any non-conformance to the Construction Manager and Contractor.

The Final CQA Report shall include a table similar to Table 4-2 documenting compliance with the testing frequencies and results documenting compliance with the Specifications.

Sampling Procedure. Samples will be obtained across the entire roll width and will be 3 -feet long. Samplers must mark the manufacturer's roll identification number and the machine direction on the sample. Samplers will also assign a conformance test number to the sample and mark the sample with that number.

### 4.3.3 Geotextile Installation

Surface Preparation. Before geotextile installation, the CQA Monitor will:

- Monitor that all lines and grades have been verified by the Contractor.
- Monitor that the subgrade has been prepared in accordance with the Specifications and that the geomembrane installation and all associated documentation has been completed.
- Monitor that soil or geomembrane surfaces do not contain stones that could damage the geotextile.
- Monitor that there are no excessively soft areas in soil surfaces that could damage the geotextile.

Geotextile Placement and Seaming. During geotextile placement and seaming operations, the CQA Monitor will:

- Observe the geotextile as it is deployed and record all defects and defect corrective actions (panel rejected, patch installed, etc.). Verify that corrective actions are performed in accordance with the Specifications.
- Monitor that equipment used does not damage the geotextile by handling, equipment transit, leakage of hydrocarbons, or other means.
- Monitor that crews working on the geotextile do not smoke, do not wear shoes that could damage the geotextile, and do not engage in activities that could damage the geotextile.
- Monitor that the geotextile is securely anchored in an anchor trench and is temporarily anchored to prevent movement by the wind.
- Monitor that adjacent panels are overlapped and seamed in accordance with the Specifications.
- Monitor that the geotextile is not exposed to direct sunlight for more than 5 days.
- Examine the geotextile after installation to ensure that no potentially harmful foreign objects are present.
- The CQA Monitor must inform both the CQA Manager and Contractor if the above conditions are not met.


### 4.3.4 Repairs

Repair procedures include:

- Patching: used to repair large holes, tears, and small defective areas.
- Removal: used to replace large defective areas where the preceding method is not appropriate.


## 5. CONSTRUCTION QUALITY ASSURANCE FOR EROSION CONTROL

### 5.1 Introduction

This section describes CQA procedures for temporary and permanent erosion control installations.
CQA for the temporary and permanent erosion control measures will be performed to verify that the Contractor complies with the requirements of the project's Stormwater Pollution Prevention Plan (SWPPP) and that the permanent erosion control measures are installed in accordance with the design. Construction must be conducted in accordance with the Plans and Specifications. To monitor compliance, the CQA Consultant will: (1) review the Contractor's quality control submittals, and (2) monitor installations.

### 5.2 Construction Monitoring

### 5.2.1 Temporary Erosion Control

- Monitor that the Contractor implements temporary erosion control measures in compliance with the project's SWPPP.


### 5.2.2 Permanent Erosion Control Measures

## Erosion Mats

- Review the Contractor's submittals for the erosion mats and verify that the material complies with the manufacturer's recommendations and the Specifications.
- Monitor that the Contractor installs the erosion mats at the locations indicated on the Plans.
- Monitor that the Contractor installs the erosion mats prior to revegetation of the final cover.
- Monitor that the Contractor installs the erosion mats in accordance with the manufacturer's recommendations.


## Straw Wattles

- Review the Contractor's submittals for the straw watties and verify that the material complies with the manufacturer's recommendations and the Specifications.
- Monitor that the Contractor installs the straw wattles at the locations indicated on the Plans.
- Monitor that the Contractor installs the straw wattles prior to revegetation of the final cover.
- Monitor that the Contractor installs the straw wattles in accordance with the manufacturer's recommendations.


## Revegetation

- Review the Contractor's submittals for the hydroseed mix design and straw mulch for compliance with the Specifications.
- Monitor that the Contractor evenly and uniformly distributes the hydroseed mixture over the final cover and that there are no bare spots.
- Monitor that the Contractor evenly and uniformly distributes the straw mulch in accordance with the Specifications.
- Monitor that the Contractor irrigates the revegetated areas during construction.


## 6. CONSTRUCTION QUALITY ASSURANCE FOR DRAINAGE FACILITIES

### 6.1 Introduction

This section describes CQA procedures for the surface water drainage facilities. The drainage facilities consist of various types of drainage channels, drop inlets, culverts, and diversion berms.

CQA for the drainage facilities installation will be performed to verify that these facilities are constructed in accordance with the Plans and Specifications. To monitor compliance, the CQA program will: (1) review the Contractor's quality control submittals; (2) monitor construction testing; and (3) monitor installations.

Construction testing will be conducted in accordance with the Specifications.

### 6.2 Construction Monitoring

### 6.2.1 Drainage Channels

- Monitor that grade control construction staking for the drainage channels is performed before the work.
- Monitor that the drainage channels are constructed in accordance with the Drawings and Specifications.
- Monitor that the subgrades of the drainage channels are dry, firm, and unyielding and do not have loose or extraneous material.
- Document that drainage ditches are graded and sloped in accordance with the Plans and Specifications. Review verification surveys and notify the Contractor of areas needing repair. Submit copies of verification surveys to the Construction Manager.
6.2.2 Drop Inlets and Culverts
- Review the Contractor's submittals for the piping and drop inlets for compliance with the Specifications.
- Monitor that the Contractor has excavated pipe trenches to the proper depth.
- Monitor that the Contractor has graded the slope of the pipe trenches to uniform gradient.
- Monitor that the pipe subgrades are firm and unyielding and do not have loose or extraneous material.
- Monitor and test backfilling of pipe trenches.
- Verify that inlets to drainage structures are smooth and prevent ponding.


### 6.2.3 Diversion Berms

- Monitor that the material used to construct the diversion berms complies with the Specifications for structural fill.


## 7. DOCUMENTATION

This CQA Plan requires thorough monitoring and documentation of the construction activities. The CQA Manager will document that the CQA requirements have been addressed and satisfied. Documentation will consist of daily record keeping, testing and installation reports, non-conformance reports (if necessary), progress reports, photographic records, design and Specification revisions, and a Final CQA Report.

### 7.1 Daily Record Keeping

At a minimum, daily records will consist of a daily record of construction progress, daily construction report, observation and test data sheets, and, as needed, non-conformance/corrective measure reports. All forms will have peer review.

### 7.1.1 Daily Record of Construction Progress

The daily field report will summarize ongoing construction and discussions with the Contractor and will be prepared by the CQA Manager and CQA Monitor. At a minimum, the report will include the following:

1. Date, project name, project number, and location.
2. A unique number for cross-referencing and document control.
3. Weather data.
4. A description of ongoing construction for the day in the area of the CQA Monitor's responsibility.
5. An inventory of equipment utilized by the Contractor.
6. Significant items of discussion and names of parties involved in these discussions.
7. A brief description of tests and observations, identified as passing or failing, or, in the event of failure, a retest.
8. Areas of non-conformance/corrective actions, if any (non-conformance/corrective action form to be attached).
9. Summary of materials received and quality control documentation.
10. Follow-up information on previously reported problems or deficiencies.
11. Record of site visitors involved with the project.
12. Signature of CQA Manager and/or CQA Monitor.
13. Signature of the peer reviewer.

### 7.1.2 Observation and Test Data Sheets

Observation and test data sheets should include the following information as is appropriate for the form being used.

1. Date, project name, project number, and location.
2. A unique number for cross-referencing and document control.
3. Weather data, as applicable.
4. A reduced scale site plan showing sample and test locations.
5. Test equipment calibrations, if applicable.
6. A summary of test results identified as passing, failing, or, in the event of a failed test, retest.
7. Completed calculations.
8. Signature of the CQA Manager and/or CQA Monitor.
9. Signature of the peer reviewer.

### 7.1.3 Non-Conformance Reports

In the event of a non-conformance event, a non-conformance verification report form will be included with the daily report. Procedures for implementing and resolving any non-conformities to the Contract Documents are outlined in Section 2.4 of this CQA Plan.

### 7.2 Weekly Progress Reports

The CQA Manager will prepare weekly progress reports summarizing construction and CQA activities. These reports will contain, at a minimum, the following information:

- The date, project name, project number, and location.
- A summary of work activities completed in the last week and those expected to be performed in the next week.
- A summary of deficiencies and/or defects and resolutions.
- Ongoing summary of changes and/or change orders to the work.
- The signature of the CQA Manager.
- On the fourth week of each month the report will include a summary of on-site and third party laboratory test results.


### 7.3 Photographs

Construction activities will be photographed. Photographs will show any significant problems encountered and corrective actions and will document the construction progress. The photographs will be identified by location, date, and photographer. The photographer should document the subject or the photograph, either on the back of the picture or in a photograph log.

### 7.4 Design and Specification Changes

Design and Specification changes may be required during construction. Design and Specification changes will only be made with the written agreement of the Design Engineer, Owner, and Contractor. These changes will be made by change order to the contract. When change orders are issued, they will be prepared by the Construction Manager. The Construction Manager will distribute change orders for signature and execution to the required parties.

### 7.5 Final Construction Quality Assurance Report

At the completion of the project, the CQA Manager and CQA Officer will submit a Final CQA Report. This report will document that the work has been performed in compliance with the Plans and Specifications.

At a minimum, the Final CQA Report will contain:

- Daily Field Reports per Section 7.1.1.
- Inspection data sheets that contain observations and a record of field and laboratory tests per Section 7.1.2.
- A summary of the construction activities.
- A tabular summary of the laboratory and field test results demonstrating construction is in compliance with the Specifications.
- Sampling and testing location drawings.
- A description of significant construction problems and the resolution of these problems.
- A list of changes from the Plans and Specifications and the justifications for these changes.
- As-built (record) drawings.
- A statement of compliance with the Contract Documents and design intent that is signed and stamped by the CQA Officer.

The as-built drawings will accurately show the constructed location of the work items, including the location of piping, anchor trenches, etc. All surveying and base maps required for the development of the as-built drawings will be prepared by the Contractor. The CQA Manager will review and verify that the as-builts are correct.


[^0]:    ${ }^{1}$ The term "Sheet" refers to the specific page of the Drawings in Appendix A
    ${ }^{2}$ References are provided in Section 6

[^1]:    ${ }^{3}$ This reference is applicable only to Phases I and II.
    ${ }^{4}$ This reference is applicable only to Phases I and II.

[^2]:    ${ }^{(1)}$ See Foounoles next page.

[^3]:    Several scenarios were analyzed for most of the cases but only the critical values (i.e., lowest factors of safety and highest seismic displacements) for each case are shown. See Appendix H for complete results. The minimum acceptable static factor of safety is considered to be 1.5 .
    3. N/A = not analyzed.

[^4]:    All Environmental Solutions, Inc. letterhead and second sheet are recycled paper.

[^5]:    ${ }^{(1)}$ The minus sign indicates that the flow is in the negative Z-direction (downward).

[^6]:    ${ }^{1}$ Field hydraulic conductivity of soils was evaluated using the SDRI (see Section 5).

[^7]:    ${ }^{2}$ A bushog is typically used in agricultural applications to clear weeds between rows.

[^8]:    ${ }^{3}$ Moisture content at saturation is a function of the dry density of the soil (i.e., the volume of void space). As soil swells and becomes less dense, the volume of void increases, thereby increasing the moisture content at saturation.
    ${ }^{4}$ Free water was observed in the voids of the soil matrix to a depth of approximately 1.4 feet. From approximately 1.4 feet to 1.9 feet, the material was softened and visually wetter. At a depth of approximately 1.9 feet and below, the soil was hard visually similar to areas outside the SDRI area.

[^9]:    | Average: | 95 | 28 | 67 |  | 91 | 19 | 112 | 17 | 106 | 19 | $5.1 \mathrm{E}-09$ |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Max: | 103 | 32 | 74 |  | 94 | 21 | 114 | 18 | 109 | 21 | $1.0 \mathrm{E}-08$ |
    | Min: | 88 | 21 | 59 |  | 88 | 18 | 110 | 16 | 100 | 18 | $26 \mathrm{E}-09$ | MEAN

[^10]:    Atterberg Test Resuls (LL, PL, PI) - ASTM D 4318:

    | 103 | 29 | 74 |
    | :--- | :--- | :--- |

[^11]:    - Deviztions:

    Lemoratory tamperature al $22 \pm 3^{\circ} \mathrm{C}$.
    Test specimen final conditions are not presenled.

[^12]:    1 Measured between two steel plates one hour after application of the confining pressure. Values may vary based on transmissivity specinsen dimensions and specific laboratory.

[^13]:    1 Measured between two stecl plates one hour after application of the confining pressure. Values may vary based on tratsmissivity specimen dimensions and specific laboratory.

[^14]:    3.6 Geomembrane Acceptance
    The installer shall retain all ownership and responsibility for the geomembrane until accepted by the owner. Final acceptance is when all of the following conditions are met:
    'arapdwo st

[^15]:    

[^16]:    

[^17]:    

[^18]:    PEC shall be shipped in a manner not to be damaged by packaging or handling and shall be stored in a clean
    environment.

[^19]:    5.4 Hold Tag

    During production, any roll found to be defective is tagged and immediately removed. The roll will not be
    released for shipment, but it will be studied to determine the cause of the defect.

[^20]:    Al resins, additives and concentrates used in Poly-Flex draimage net must meet Poly-flex speciftications before resin density, melt index and carbon black content (for precompounded resins) are determined in the Poly-flex | resin density, melt index and carbon black content (for precompounded resins) are determined in the poly-fex |
    | :--- |
    | laboratory. Upon verification of the resin compliance with the specifications, the resin is pumped from its railcar | into a silo dedicated to production of the drainage net.

[^21]:    * Note that the grearest bageline change for the four exposure periods was reported.

[^22]:    * Note that the greatest baseline change for the four exposure periods was reported.

[^23]:    Note：See Drawing 1 and 2 in Appendix G－1 for Section location and Drawing 4 for Cross Section profile．

[^24]:    OBSERVATIONS:

[^25]:    Environmental Solutions, Inc. (1990, 1992, 1993); Rust Environmental \& Infrastructure, Inc. (1998); URS (2005).
    Modeled as a layer in site dynamic response analysis to include effects of softer clay layer on ground motion.
    Golder Associates, Inc. (2008b).
    $(1)$
    $1(1)$
    1

[^26]:    Records scaled to design PGA used in the previous analyses of KHF Landfills (Rust, 1998; URS, 2005; HAI, 2006).
    シ̈
    (1)

[^27]:    Records scaled to design PGA used in the previous analyses of KHF Landfills (Rust, 1998; URS, 2005; HAI, 2006).
    シ̈ (2) Spectrally matched records developed based on an updated seismic hazard analysis in 2008 used for this project.
    (1)
    (2)

[^28]:    Records scaled to design PGA used in the previous analyses of KHF Landfills (Rust, 1998; URS, 2005; HAI, 2006). Spectrally matched records developed based on an updated seismic hazard analysis in 2008 used for this project.

    Notes:
    (1)
    (2)

[^29]:    Western Regional Climate Center, wrec@dri.edu

[^30]:    Notes:

    1. Assumed minimum time of concentration. (5 menourto)
    2. See Figure 1.
[^31]:    TOTAL RUNOFF TO RESERVOIR 1 DURING PMP STORM： $31.8 \mathrm{AC}-F T$
    TOTAL RUNOFF TO RESERVORR 2 DURING PMP STORM： $\begin{aligned} & 34.1 \\ & \text { STORAGE CAPACITY OF RESERVOIR 2：}\end{aligned} \quad 32.5 \mathrm{AC}-\mathrm{FT}$ STORAGE CAPACITY OF RESERVOIR 2：$\quad 32.5$ AC－FT
    EXCESS RUNOFF TO BE PUMPED OR DIVERTED OFF－STE： $\mathbf{2 . 2}$ AC－FT

[^32]:    $V 1 \frac{\Delta}{H 1}$

[^33]:    

      Volume (cfs) | $M$ |
    | :---: | $\underset{\sim}{N}$ $1.3 \mathrm{E}-02$

    $1.3 \mathrm{E}-02$ Leachate generation assumes all rainfall will be collected as leachate.
    Run-off Area
    

    Note: the leachate flow capacity for each sump is in excess of 9,000 gallons per day. Based on historic measurements the maximum leachate generation rate has been approximatley 6,000 gallons per day. This peak generation was measured during a one month period and can be attributed to an exposure of the geocomposite. Leachate generation has typically been less than 200 gallons per day, on average (January 2001 to December 2007). Given the dry nature of the facility and that the existing waste is below field capacity, the leachate generation rate is expected to remain in the 200 to 300 gallons per day per sump (maximum). The construction of Phase III is not expected to result in significantly larger volumes of leachate.

