

HUNTER CEMENT PLANT

U.S. ENVIRONMENTAL PROTECTION AGENCY INFORMATION REQUEST SECTION 114 OF THE CAA (42 U.S.C. section 7414)

MERCURY AND TOC CONTENT ANALYSIS OF PORTLAND CEMENT KILN FEED MATERIALS, FUELS, CEMENT KILN DUST

(PART I OF II – TOC ANALYSIS)

JULY 2007

PREPARED BY:

Soc Lindholm TXI Operations, LP 7781 FMR 1102 New Braunfels, Texas 78132 Phone: (512) 396-4244 ext. 263

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

RESEARCH TRIANGLE PARK, NC 27711

8 MAY 2007

OFFICE OF AIR QUALITY PLANNING AND STANDARDS

Mr. Leo Faciane TXI 1341 West Mocking Bird Lane Dallas, Texas 75247-6913

Re: Requirement to provide information according to Title 42 of the Unites States Code, Chapter 85, Subchapter I, Part A, section 7414 (42 U.S.C 7414)

Dear Mr. Faciane:

The U.S. Environmental Protection Agency (EPA) is collecting additional information about your industry, Portland Cement Manufacturing. This information is for the purpose of developing standards under Section 112 (d) of the Clean Air Act (CAA) for the industry, and assessing the Section 112(d) standards which EPA has already promulgated for the industry. Specifically, EPA is reconsidering the new and existing source mercury and total hydrocarbon standards in the Portland Cement Manufacturing NESHAP amendments promulgated on December 20, 2007. See 71 FR 76553. Based on comments raised in the reconsideration, and a recent decision by the D.C. Circuit Court of Appeals in Sierra Club v. EPA, no. 03-1230 (D.C. Cir. March 14, 2007), EPA is gathering data to better assess the variability of mercury and total hydrocarbon emissions for individual kilns.

We are requesting this information under the authority of Section 114 of the CAA (42 U.S.C. section 7414), and, as also authorized by Section 114, require that you send your completed surveys to us by 75 days from the receipt of this letter. Specifically, Section 114(g) allows EPA to require source owners to furnish "such other information as the Administrator may reasonably require." Because this information relates directly to a critical issue for the Portland Cement Manufacturing NESHAP, namely the amount of intra-kiln variability associated with mercury and hydrocarbon emissions from Portland cement kilns, it is reasonable to require Portland cement facilities to generate and submit this information.

In the enclosed survey, we request information on mercury and total organic carbon (TOC) content of portland cement kiln feed materials (including fly ash), fuels, cement kiln dust, and (for facilities with continuous monitors) total hydrocarbon emissions. We are also asking for copies of mercury and hydrogen chloride (HCl) emission test reports and any associated plant operation data obtained during the test necessary for evaluating that data. We are not requiring you perform any mercury or HCl stack tests as part of this request, we are only asking for reports of tests that have already been performed. Enclosure 1 includes survey forms that you should use to provide the information to us. Please complete one of the survey forms in Enclosure 1

for each of your facilities unless any of those facilities is part of another company and is separately incorporated as a subsidiary or affiliate of your company. If any one of your facilities is separately incorporated, please <u>do not</u> complete any of the surveys in Enclosure 1 for that facility.

As noted in Enclosure 1, we are requiring the data on the mercury and TOC contents of the kiln feed be provided for each facility operated by your company. For facilities with multiple kilns, you may choose to sample the feed to any one kiln if all kilns have exactly the same feed materials. However, please provide the feed material usage by individual kiln. For kilns with total hydrocarbon monitors, please provide the data for each individual kiln. Detailed instructions are included within the enclosure.

Using the information you provide to us in these surveys, along with similar information we receive from other companies in your industry, we will determine the amount of mercury and total hydrocarbons typically emitted from cement kilns and the intra-kiln variability of those emissions. We are sensitive to the amount of time and effort required to complete these surveys. Therefore, we have tried to limit the information requested to only those features important to developing and reassessing the regulation so as to minimize the time you need to spend. I would like to assure you that nothing is being requested that we do not feel is necessary to achieve our goals stated above. You may respond "Not Applicable" to questions that do not apply to your facilities.

Enclosure 2 contains a summary of our legal authority in Section 114 of the CAA to obtain the information requested in these surveys. If you believe that providing any specific information to us would reveal a trade secret, please identify this information clearly in your response. However, please do not label your entire response "Confidential" if only a portion includes trade secrets. You can see in Enclosure 2 the type of information that EPA may ask of you at a later time to prove that any information you have so identified is truly confidential. Any information determined to be a trade secret will be protected by 18 U.S.C. 1905. If you do not claim as confidential any of the information in your returned survey, we can make this information available to the public without notifying you further (40 CFR Part 2.203, September 1, 1976). Because Section 114 of the CAA does not allow emission data to be claimed as confidential, the emission data you provide to us can be made available to the public. A detailed explanation of what we consider to be emission data is contained in Enclosure 3.

We have contracted RTI International (RTI) (Contract No. EP-D-06-118) to help us gather information about your industry. As noted in Enclosure 4, we have designated RTI to be our authorized representatives. Therefore, RTI has the same rights discussed above and in Enclosure 2 as EPA has. This means that RTI will have access to all information provided to us in your completed survey. As a designated representative of the Agency, RTI must, by law, also abide by the requirements of 42 U.S.C. 7414(c) in regard to the confidentiality of what you claim to be trade secrets.

Enclosure 5 summarizes our policies and procedures for handling trade secret information and describes how our contractor also is required to use the same procedures as we do. Because our contractors or other authorized representatives are required to follow the requirements in Enclosure 4, we believe that we can ensure your rights and protect any privileged information you submit to us.

Copies of these survey forms have been given to representatives of your industry for their comments. We have attempted to incorporate their comments and suggestions into the final version. If you have questions regarding the need for this survey or need clarification on the information we are requesting, please contact Mr. Keith Barnett with EPA's Office of Air Quality Planning and Standards at 919-541-5605 (e-mail <u>barnett.keith@epa.gov</u>). Questions relating to how to gather the data we are requesting (such as sampling locations, sampling intervals, and the like) also should be addressed to Mr. Barnett. As we discussed at our May 3, 2007 meeting, it is natural that such interpretive questions will arise, and EPA will work with affected plants to mutually and reasonably resolve these questions.

Please return the completed survey form(s) to Mr. Barnett at the following address by **75 days from the receipt of this letter.** However, if you can not meet this date due to unavoidable delays (such as a plant outage) we will grant an extension. Should you need an extension, please contact Mr. Barnett by phone or email with an estimated completion date and the reason(s) for the unavoidable delay. Mr. Barnett's address and other contact information are:

Mr. Keith Barnett U.S. EPA Mailroom (D243-02) United States Environmental Protection Agency Office of Air Quality Planning and Standards Research Triangle Park, NC 27711 919-541-5605 Barnett.keith@epa.gov

I am sure you understand how important it is for the EPA to use the very best information available to develop the most meaningful standard. Your help in providing this information is greatly appreciated.

Sincerely. . Chesitae,

Peter Tsirigotis Director Sector Policies and Programs Division

5 Enclosures

cc: John Steib, Texas Commission on Environmental Quality Tom Diggs, EPA Region VI

Enclosure 1

PORTLAND CEMENT MANUFACTURING MERCURY AND THC EMISSIONS INFORMATION COLLECTION

GENERAL INSTRUCTIONS

Please provide the information requested in the following forms. If you are unable to provide the information requested, please provide any information you believe may be relevant. Use additional copies of the request forms, as needed, for your response.

If you believe the disclosure of the information requested would compromise a trade secret, clearly identify such information as discussed in the cover letter. Any information subsequently determined to constitute a trade secret will be protected under 18 U.S.C. 1905. If no claim of confidentiality accompanies the information when it is received by EPA, it may be made available to the public by EPA without further notice (40 CFR 2.203, September 1, 1976). Because section 114(c) of the Clean Air Act exempts emission data from claims of confidentiality, the emission data you provide may be made available to the public. A definition of what the EPA considers emissions data is provided in 40 CFR 2.301(a)(2)(i) and in Enclosure 3.

This request for information is divided into three parts:

Part I - General Facility Information. Complete this part once for each facility.

Part II - Mercury and total organic carbon (TOC) contents of kiln feed materials and mercury and total hydrocarbon (THC) test data.

Part III -THC continuous monitor Data.

Part IV - HCl Test Data.

Parts I and II are to be completed for all facilities. Part III is to be completed for those facilities that operate a continuous emissions monitor for THC emissions. Part IV is to be completed for facilities that have performed emission tests for HCl. Detailed instructions for each part follow.

Questions regarding this information request should be directed to Mr. Keith Barnett at (919) 541-5605.

Return this information request and any additional information to:

Mr. Keith Barnett U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Mail Code D234-02 Research Triangle Park, North Carolina 27711

PART I: GENERAL FACILITY INFORMATION (Please fill out a separate form for each of your facilities)

1. Name of legal owner of facility: TXI Operations, LP

- 2. Name of legal operator of facility, if different from legal owner: same as above
- 3. Address of <u>✓</u> legal owner or <u>_____operator</u>: <u>1341 W Mockingbird LN STE 700W</u> Dallas, TX 75247-6913

4. Complete street address of facility (physical location): 7781 FMR 1102

New Braunfels, TX 78132-3412

5. Provide facility mailing address if different from physical location: same as above

6. Name and title of contact(s) able to answer technical questions about the completed survey: Soc Lindholm

.

- 7. Contact(s) telephone number(s): (512) 396-4244 ext. 263 cell:(830) 708-9987 and e-mail address(es): slindholm@txi.com
- 8. What fuels are fired in the cement kilns (if you have multiple kilns at this facility, note which kilns burn which fuels)

<u>✓</u> coal <u>✓</u> pet coke <u>✓</u> TDF <u>✓</u> natural gas ____ other (specify_____)

3

If coal is fired, indicate which type of coal is utilized:

9.

__ lignite __ subbituminous (including waste coal) ✓ bituminous (including waste coal or gob) __ anthracite (including waste coal or culm) 10. Kiln identification (or designation), design kiln capacity (tpy of clinker production) for each kiln located at this facility (do not include any kilns that burn hazardous waste).

Kiln ID	Design kiln capacity (Tons per year)	Does this kiln have an alkali bypass? If so, what percentage of the exhaust goes to bypass?	Kiln Type (Wet, long dry, preheater, preheater/precalciner)	Does the kiln have an in-line raw mill? If so, what percentage of the time does the raw mill operate?
1-DE-3	1,042,002	YES 40% contribution	Preheater/Precalciner	YES roller mill operation percentage 90%
	··			

4

· · · · · · · · · · · ·

(

Kiln ID	$NO_x \text{ control}^1$	$SO_2 \text{ control}^2$	PM control ³	THC/VOC control ⁴
1-DE-3	(SNCR) Selective non-catalytic Reduction	Compliance with low-sulfur coal	(ESP) Electrostatic Precipitator	none

For each kiln noted in Part I, question 10, provide the following information: 11.

¹Examples: low-NO_x burners; selective catalytic reduction (SCR); selective non-catalytic reduction (SNCR) ²Examples: wet flue gas desulfurization (FGD; any type); dry scrubbing (any type); compliance (low sulfur) coal ³Examples: fabric filter; cold-side electrostatic precipitator (ESP) ⁴ Examples: thermal oxidizer; carbon injection

PART II. MERCURY AND TOTAL ORGANIC CARBON CONTENT OF KILN FEED MATERIALS AND EMISSIONS TEST DATA

For each individual raw material used in each of your cement kilns, collect and analyze a daily sample for mercury and total organic carbon for 30 days. The sampling does not have to be for 30 continuous days, but we need a total of 30 days of data. For example, if your facility uses coal and petroleum coke as fuels, and limestone, shale, sand, and iron ore as feed materials, you would report the mercury concentration in each of these materials for each day. You should include all feed materials, both mined materials and materials that might be perceived as waste materials, such as fly ash, cement kiln dust and mill scale. Also provide the amounts of each material used. You can report annual materials usage if daily usage figures are not available.

For mercury the analysis methods should be EPA Method 7471 with sample preparation by methods 7473 or 3052. The mercury detection limit should be 20 parts per <u>billion</u> or less. The analysis method for TOC should be EPA Method 9060 or 9060A. If for any reason you have concerns or questions about these methods, you must (preferably by phone or email) contact:

Mr. Keith Barnett U.S. Environmental Protection Agency <u>barnett.keith@epa.gov</u> 919-541-5605

You should report materials usage separately for each kiln. If more than one kiln uses exactly the same raw materials you may provide one set of mercury analysis data per day for the kilns using identical feed materials, but materials usage figures need to be provided for each individual kiln.

We are also requesting daily <u>mercury</u> analyses for the cement kiln dust collected in a control device, regardless of whether the dust is returned to the process. If some cement kiln dust is not returned to process we need the annual quantity of the dust that is not returned to the process. Please sample, analyze, and report any collected cement kiln dust from the alkali bypass (if installed) separately from the cement kiln dust collected in the PM control device. Also, report

the amounts of alkali bypass cement kiln dust not returned to process separately from any other dust not returned to the process.

All analyses and materials usage figures should be for the same time period, but note that you may report annual materials usage and dust removal figures if they are representative of the 30 days of sampling.

Concurrent fuel, raw material, and cement kiln dust sampling and analysis should be done by taking samples at approximately 8 hour intervals each day, for a total of three samples of each material each day. The samples need not be exactly 8 hours apart, and may be taken concurrently, rather than all at exactly the same time. Take the samples prior to blending the different raw materials, but as close to the blending step as possible. For each material sampled, the three 8-hour samples should be combined and analyzed as the daily sample for that material.

Sample size, ID protocols, sampling methods, etc. are left to your discretion. As long as we can identify the material, sample day, kiln and analysis results and you can meet the mercury detection limit. Variations in these instructions due to site specific conditions are allowed, but we ask you notify the contact person previously noted prior to beginning the sampling. You may exceed the 75 day response requirement if it the result of unavoidable delay, but you must notify us of the delay and the reason(s).

An example of what we need in your data submission on mercury is shown below. In this case there is no alkali bypass, but it is estimated that 30,000 tons per year of the materials collected in the baghouse is not returned to the kiln.

Example Data - Daily Analysis of Fuel and Feed for Kiln No. 1

Sample Date	Mercury Content in ppm							
	Cement Kiln Dust	Limestone	Shale	Clay	Coal	Iron ore		
5/20/2007	0.03	0.38	0.3	0.4	<0.01	<0.02		
5/21/2007	0.1	0.4	0.4	0.2	0.01	<0.02		
5/22/2007	0.05	0.05	0.4	0.3	0.07	<0.02		
5/23/2007	0.05	0.03	1.7	0.5	1.7	<0.02		

5/24/2007	0.3	0.08	0.5	0.3	<0.01	<0.02
5/25/2007	0.2	0.4	0.3	0.3	0.3	<0.02
5/26/2007	0.3	0.35	0.5	0.3	0.01	<0.02
5/27/2007	0.08	0.21	0.7	0.4	0.2	<0.02
5/28/2007	0.05	0.02	0.6	0.5	0.01	<0.02
5/29/2007	0.1	0.1	0.4	0.2	0.01	<0.02
5/30/2007	0.2	0.08	0.4	0.3	0.01	<0.02
5/31/2007	0.09	0.06	0.4	0.3	0.02	<0.02
Outage	-	- '	-	-	-	-
6/3/2007	0.3	0.5	0.3	0.3	0.01	<0.02
6/4/2007	0.5	0.35	0.2	0.1	0.01	<0.02
6/5/2007	0.06	0.2	0.5	0.4	. 0.01	<0.02
6/6/2007	0.08	0.09	0.7	0.4	0.01	<0.02
6/7/2007	0.3	0.1	0.8	0.2	0.03	<0.02
6/8/2007	0.4	0.5	0.6	0.3	0.01	<0.02
6/9/2007	0.3	0.09	0.7	0.6	0.01	<0.02
6/10/2007	0.02	0.1 ·	0.5	0.3	0.02	<0.02
6/11/2007	0.08	0.1	0.4	0.4	0.02	<0.02
6/12/2007	0.5	0.02	0.02	0.02	0.03	<0.02
6/13/2007	0.09	0.01	0.01	0.01	0.01	<0.02
6/14/2007	0.07	0.02	0.02	0.02	0.02	<0.02
6/15/2007	0.1	<0.01	< 0.01	0.01	0.01	<0.02
6/16/2007	0.3	0.4	1.1	0.5	0.02	<0.02
6/17/2007	0.08	0.3	0.5	0.4	0.01	<0.02
6/18/2007	0.06	0.4	0.3	0.5	0.01	<0.02
6/19/2007	0.2	0.7	0.4	0.3	0.01	<0.02
6/20/2007	0.3	0.4	0.02	0.3	0.01	<0.02

Note that when you are below the detection limit you should use a < sign. Also note in this example that there was one 2-day outage, and that the detection limit was typically 20 ppb, but in a few cases was reported as 10 ppb.

Kiln materials usage can be reported as shown below as long as the annual usage figures are representative of usage during the sampling period. If not, report usage during the sampling period.

Annual Usage (tons/yr)
83,120
141,100
91,840

Iron Ore	90,400
Coal	90,100
Materials collected in baghouse not returned to the kiln	30,000

In addition, we are asking for complete copies of any mercury and/or total hydrocarbons emission stack tests performed on your cement kilns. We need a copy of the complete test report including test protocols, field data sheets, lab analysis sheets, and operating conditions of the kiln during testing. Note that we are asking for reports of tests already performed. We are not asking you to perform a stack test at this time. If the kiln has been modified since the test and no longer matches the information in section 1, please provide information on the kiln as it was configured at the time of the emissions test. The operating conditions of interest are kiln feed rate or production rate, condition of the raw mill (on/off), amounts of cement kiln dust wasted (if any) during the tests, fuels fired and fuel firing rates, and any other operating conditions that you think may have affected the measured mercury and THC emissions during the test.

PART III. THC CONTINUOUS MONITOR DATA

If your facility is equipped with a monitor for total hydrocarbons, we need daily average THC emissions measured with the monitor over a 30-day period. The monitor should be installed and certified according to protocol PS-8A of Appendix B to 40 CFR Part 60 or the equivalent. We also need to know the fuels fired during that period. If the types of fuels varied, we also need to know during what time periods the different fuels were fired, and any other variations in kiln operating parameters that may have affected THC emissions.

PART IV. HCI DATA

We are asking for complete copies of any HCl emission stack tests performed on your cement kilns. We need a copy of the complete test report including test protocols, field data sheets, lab analysis sheets, and operating conditions of the kiln. The operating conditions of interest are kiln feed rate, production rate, condition of the raw mill (on/off), amounts of cement kiln dust wasted

(if any) during the tests, fuels fired and fuel firing rates, and any other operating conditions that you think may have affected the measured HCl emissions during the test.

Enclosure 2

EPA's Information Gathering Authority Under Section 114 of the Clean Air Act

Under Section 114 of the Act (42 U.S.C. 7414), Congress has given the U.S. Environmental Protection Agency broad authority to secure information needed "for the purpose of (i) developing or assisting in the development of any implementation plan under Section 110 or 111(d), any standard of performance under Section 111, or any emission standard under Section 112, (ii) determining whether any person is in violation of any such standard of any requirement of such a plan, or (iii) carrying out any provision of this Act." Amount other things, Section 114 authorizes EPA to make inspections, conduct tests, examine records, and require owners or operators of emission sources to submit information reasonably required for the purpose of developing such standards. In addition, the EPA Office of General Counsel has interpreted Section 114 to include authority to photograph or require submission of photographs of pertinent equipment, emissions, or both.

Under Section 114, EPA is empowered to obtain information described by that section even if you consider it to be confidential. You may, however, request that EPA treat such information as confidential. Information obtained under Section 114 and covered by such a request will ordinarily be released to the public only if EPA determines that the information is not entitled to confidential treatment.¹ Procedures to be used for making confidentiality determinations, substantive criteria to be used in such determinations, and special rules governing information obtained under Section 114 are set forth in 40 CFR Part 2 published in the Federal Register on September 1, 1976 (40 FR 36902).

Pursuant to § 2.204(a) of EPA's Freedom of Information Act (FOIA) regulation, in the event a request is received, or it is determined that a request is likely to be received, or EPA desires to determine whether business information in its possession is entitled to confidential treatment even though no request for release of the information has been received, please be advised that EPA will seek, at that time, the following information to support your claim as required by § 2.204(e)(4) of EPA's FOIA regulations:

- 1. Measures taken by your company to guard against undesired disclosure of the information to others;
- 2. The extent to which the information has been disclosed to others, and the precautions taken in connection therewith;
- 3. Pertinent confidentiality determinations, if any, by EPA or other Federal agencies, and a copy of any such determinations, or reference to it, if available; and
- 4. Whether your company asserts that disclosure of the information would be likely to result in substantial harmful effects on the business' competitive position, and if so, what those harmful effects would be, why they should be viewed as substantial, and an explanation of the causal relationship between disclosure and such harmful effects.

¹Section 114 requires public availability of all emission data and authorizes disclosure of confidential information in certain circumstances. See 40 FR 36902 - 36912 (September 1, 1976).

7042 Federal Register / Vol 56. No. 35 / Thursday, February 21, 1991 / Notices

Dated: February 14, 1991. Paul Lapsley, Director, Regulatory Management Division. [FR Doc 91-4113 Filed 2-20-91; 8:45 am] BLLING CODE 8580-50-M

[AD-FRL-3906-3]

Disclosure of Emission Data Claimed as Confidential Under Sections 110 and 114(c) of the Clean Air Act

AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of policy on public release of certain emission data submitted under sections 110 and 114(c) of the Clean Air Act (CAA).

SUMMARY: Section 114(c) of the CAA excludes emission data from the general definition of trade secret information. Certain classes of data submitted to the EPA under sections 110 and 114(a) of the CAA are emission data, and, as such, cannot be withheld from disclosure as confidential pursuant to section 1905 of title 18 of the United States Code. This notice clarifies EPA's current policy, and solicits comment regarding that policy and categories of data which it considers excluded from a trade secret definition. DATES: Written comments pertaining to this notice are requested by April 22, 1991. ADDRESSES: Submit comments to: Nancy D. Riley, U.S. Environmental Protection Agency, Emission Standards Division, Pollutant Assessment Branch (MD-13), Research Triangle Park, NC 27711. FOR FURTHER INFORMATION CONTACT: Timothy Mohin (telephone: (919) 541-5349 commercial/FTS 629-5349) or Karen Blanchard (telephone: (919) 541-5503 commercial/FTS 629-5503), Pollutant Assessment Branch (MD-13), Emission Standards Division; or Thomas Rosendahl (telephone: (919) 541-5404 commercial/FTS 629-5404), National Air Data Branch (MD-14), Technical Support Division; U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711.

SUPPLEMENTARY INFORMATION: The EPA routinely uses the authority of sections 110 and 114(a) of the CAA to gather technical information from industries involved in operations that lead to emission of pollutants to the ambient air. This information has been used, among other things, to better characterize emitting facilities and to evaluate the need for and impacts of potential regulation.

Information requests under sections 110 and 114(a) of the CAA typically include questions on uncontrolled and controlled emission rates and emission parameters of the pollutant or group of pollutants of concern.

The respondents sometimes claim that its response constitutes trade secret information. and thus, should be treated as confidential. Claims of confidentiality may be made under section 114(c) of the CAA, which states "* * * upon a showing satisfactory to the Administrator by any person that records, reports, or information, or a particular part thereof, (other than emission data) to which the Administrator has access under this section if made public, would divulge methods or processes entitled to protection as trade secrets of such person, the Administrator shall consider such * * * confidential in accordance with the purposes of section 1905 of title 18 of the United States Code * * *." If the Administrator so determines, the information is not disclosable to the public.

However, section 114(c) of the CAA provides that information claimed to be a trade secret but which constitutes emission data may not be withheld as confidential. Although typically the EPA evaluates whether information constitutes emission data on a case-by-case basis, it believes that some kinds of data will always constitute emission data within the meaning of section 114(c). The purpose of this notice is to describe, without attempting to be comprehensive, that information which the EPA generally considers to be emission data, and which cannot qualify as confidential under either section 114(c) or section 110 (as set forth in 41 CFR 51.321, 51.322, and 51.323) of the CAA. The EPA is issuing this notice to clarify its policy and procedures, to facilitate the use of these data in automated data systems and computer-based simulation models, and to expedite processing of claims for confidentiality or requests for disclosure.

The EPA presently determines that data submitted to it as emission data does not qualify as confidential if it meets the following definition under 40 CFR 2.301(a)(2)(i):

a. Definitions. For the purpose of this section, (1) Act means the Clean Air Act, as amended, 42 U.S.C. 7401 et seq. (2)(f) *Emission data* means, with reference to any source of emission of any substance into the air—

(A) Information necessary to determine the identity, amount, frequency, concentration, or other characteristics (to the extend related to air quality) of any emission which has been emitted by the source (or of any pollutant resulting from any emission by the source), or any combination of the foregoing:

(B) Information necessary to determine the identity, amount, frequency, concentration, or other characteristics (to the extent related to air quality) of the emission

which, under an applicable standard or limitation, the source was authorized to emit (including, to the extent necessary for such purposes, a description of the manner or rate of operation of the source), or any combination of the foregoing. (C) A general description of the location and/or nature of the source to the extent necessary to identify the sources and to distinguish it from other sources (including, to the extent necessary for such purposes, a description of the device, installation, or operation constituting the source).

The table below lists the specific data fields which the EPA presently considers to constitute emission data and provides a brief description of what each data field describes. The descriptions are intended to provide general information. This list is not exhaustive, and, therefore, other data might be found, in a proper case, to constitute emission data.

Emission Data Fields

Facility Identification: The following data fields are needed to establish the identity and location of emission sources. This shall also include a description or an identifier of the device, installation, or operation constituting the source. These data are used to locate sources for dispersion evaluation and exposure modeling. Plant Name and related point identifiers Address City County AQCR (Air Quality Control Region) MSA, PMSA, CMSA (Metropolitan Statistical Areas) State Zip Code Ownership and point of contact information Locational Identifiers: Latitude & Longitude, or UTM Grid Coordinates SIC (Standard Industrial Classification) Emission point, device or operation description information SCC (Source Classification Codes) Emission Parameters: The following data fields are needed to establish the characteristics of the emissions. This information is needed for the analyses of dispersion and potential control equipment. Emission type (e.g., nature of emissions such as CO2), particulate or a specific toxic compound,

and origin of emissions such as process vents, storage tanks or equipment leaks) Emission rate

(e.g., the amount released to the atmosphere over time such as kg/yr or lbs/yr)

Release height

(e.g., height above ground level where the pollutant is emitted to the atmosphere) Description of terrain and surrounding

structures (e.g., the size of the area associated with

(e.g., us size of the area associated with adjacent structures in square meters and terrain descriptions such as mountainous, urban, or rural)

Stack or vent diameter at point of emissions (e.g., the inside diameter of vent at the point of emission to the atmosphere in meters)

Release velocity (e.g., velocity of release in m/sec) Release temperature (e.g., temperature of release at point of release in degrees Kelvin) Frequency of release (e.g., how often a release occurs in events per year) Duration of release (e.g., the time associated with a release to the atmosphere) Concentration (e.g., the amount of an emission stream constituent relative to other stream constituents expressed as parts per million (ppm), volume percent, or weight percent) Density of the emissions stream or average molecular weight (e.g., density expressed as fraction or multiple of the density of air: molecular weight in g/g-mole) Boiler or process design capacity (e.g., the gross heating value of fuel input to a boiler at its maximum design rate) Emission estimation method (e.g., the method by which an emission estimate has been calculated such as material balance, source test, use of AP-42 emission factors, etc.) Percent space heat (e.g., the percent of fuel used for space heating)

Hourly maximum design rate (e.g., the greatest operating rate that would be expected for a source in a 1-hour

period) The EPA has determined that these data are emission data and releasable upon request. This determination applies to data currently

held by EPA as well as to information submitted to EPA in the future. Future requests for information under sections 110 and 114 of the CAA will indicate that these emission data will not be held confidential. This determination applies only to the data listed in the table. Determinations will continue to be made on a case-by-case basis for data not specified in this generic determination.

After consideration of comments on this policy, a revised policy/determination may be published.

Dated: February 8, 1991.

Michael Shapiro.

Acting Assistant Administrator for Air and Radiation.

[FR Doc. 91-4114 Filed 2-20-91: 8:45 am]

WHER STARE

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

RESEARCH TRIANGLE PARK, NC 27711

Enclosure 4

JAN - 5 2007

OFFICE OF AND QUALITY PLANNING AND STANDARDS

DESIGNATION OF AUTHORIZED REPRESENTATIVE FOR STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES (SECTION 111), NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (SECTION 112), SOLID WASTE COMBUSTION (SECTION 129), AND FEDERAL OZONE MEASURES (SECTION 183)

Under contract EPD-06-118, Research Triangle Institute (RTI) (prime contractor) and EC/R, Inc.; BCS, Inc.; Eastern Research Group, Inc.; Innovar Environmental, Inc.; MACTEC Federal Programs, Inc. (subcontractors) are hereby designated Authorized Representatives of the Administrator of the United States Environmental Protection Agency for the purpose of assisting in the development of standards of performance for new stationary sources under 42.U.S.C. 7411, national emission standards for hazardous air pollutants under 42 U.S.C. 7412, solid waste combustion under 42 U.S.C. 7429, and Federal ozone measures under 42 U.S.C. 7511 (b).

This designation is made pursuant to the Clean Air Act, 42 U.S.C. 7414. The United States Code provides that, upon presentation of this credential, the Authorized Representatives named herein: (1) shall have a right of entry to, upon, or through any premises in which an emission source is located or in which records required to be maintained under 42 U.S.C. 7414 (a) (1) are located and (2) may at reasonable times have access to and copy any records, inspect any monitoring equipment or method required under 42 U.S.C. 7414 (a) (1), and sample any emissions that the owner or operator of such source is required to sample.

Authorized Representatives of the Administrator are subject to the provisions of 42 U.S.C. 7414 (c) respecting confidentiality of methods or processes entitled to protection as trade secrets, as implemented by 40 CFR 2.301 (h) (41 FR 36912, September 1, 1976).

Designation Expires: March 31, 2011

Sincerely, en tephen D. Page

Director Office of Air Quality Planning and Standards

Internet Address (URL) + http://www.epa.gov

Recycled/Recyclettle - Printed with Vegeleban (* Based Inks on Recycled Paper (Minkmuin 25% Publickisumer)

January 2002

Summary of Procedures for Safeguarding Clean Air Act Confidential Business Information

1. Purpose

This memorandum describes U.S. Environmental Protection Agency (EPA), Office of Air Quality Planning and Standards (OAQPS) policy and procedures set forth for the handling of information claimed as Confidential Business Information (CBI), whether submitted voluntarily or obtained under Section 114 of the Clean Air Act (CAA), and governed by EPA regulations in 40 Code of Federal Regulations (CFR), Part 2, Subpart B, and other EPA regulations and policies.

2. Reference Documents:

- a. Clean Air Act, as amended.
- b. 40 CFR, Chapter 1, Part 2, Subpart B Confidentiality of Business Information.
- c. EPA Information Security Manual.
- d. Clean Air Act Confidential Business Information Security Manual (January 2002).

3. Exception:

This document was prepared as a summary of data gathering and handling procedures used by the OAQPS of the EPA. Nothing in this document shall be construed as superseding or being in conflict with any applicable regulations, statutes, or policies to which EPA is subject.

4. Definition:

Confidential Business Information - Information claimed by the provider to be confidential. This information may be identified with such titles as trade secret, secret, administrative secret, company secret, secret proprietary, privileged, administrative confidential, company confidential, confidential proprietary, or proprietary. NOTE: These markings should not be confused with the classification markings of national security information identified in Executive Order 11652.

5. Background

Section 114 (c) of the CAA, as amended, reads as follows:

"Any records, reports, or information obtained under subsection (a) shall be available to the public, except that upon a showing satisfactory to the Administrator by any person that records, reports, or information, or particular part thereof (other than emission data), to which the Administrator has access under this section if made public, would divulge methods or processes entitled to protection as trade secrets of such person, the Administrator shall consider such record, report, or information or particular portion thereof confidential in accordance with the purposes of Section 1905 of Title 18 of the United States Code, except that such record, report, or information may be disclosed to other officers, employees, or authorized representatives of the United States concerned with carrying out this Act or when relevant in any proceeding under this Act."

The treatment of CBI by EPA, including data obtained under Section 114 of the CAA, is governed by 40 CFR Part 2. These regulations require EPA offices to include a notice with each request for information to inform the business of: (1) its right to assert a claim of confidentiality covering part or all of the information, (2) the method for asserting a claim, and (3) the effect of failure to assert a claim at time of submission. In addition, the regulations: (1) set forth procedures for the safeguarding of confidential information, (2) contain provisions for providing confidential information to authorize representatives, (3) contain provisions for the release of information to the Congress, Comptroller General, other Federal agencies, State and local governments, and Courts, (4) permit the disclosure of information within EPA to employees with an official need for the information, and (5) prohibit wrongful use of such information and cite penalties for wrongful disclosure. Further, the regulations contain the Agency's basic rule concerning the treatment of requests for information under the Freedom of Information Act (FOIA) (5 U.S.C. 552).

6. Procedures:

a. Request for Information.

Each request for information made under the provisions of Section 114(a) is signed by the Division Director. The request includes standard enclosure "EPA's Information Gathering Authority under Section 114 of the Clean Air Act" which was designed to meet the requirement of 40 CFR Part 2 discussed above.

b. Receipt of CAA CBI.

Upon receipt of information for which confidential treatment has been requested, the OAQPS Document Control Officer (DCO) logs in the material and a permanent file is established. If part of the material is claimed to be confidential, that portion should be marked "Subject to Confidentiality Claim." In compliance with Sections 2.204 and 2.208 of 40 CFR

Part 2, the Group Leader responsible for the requested information reviews the information to determine the validity of the confidentiality claim as prescribed by the sections. If the information is clearly not confidential, the Group Leader prepares a letter for the signature of the responsible Division Director to notify the business of this finding. Information claimed as confidential is hand carried to the OAQPS CBI Office to be logged into the OAQPS CAA CBI tracking system and filed for safekeeping. The OAQPS CAA CBI tracking system provides a brief description of the material (submitter, subject, number of pages, etc.), identifies it with the correct project number or work assignment number, and lists those persons who are authorized to have access to the information. A record of personnel accessing the information (Attachment A) is also kept on filed. By regulation, confidential information must be so marked or designated by the originator. The EPA takes additional measures to ensure that the proprietary designation is uniformly indicated and immediately observable. All unmarked or undesignated information (except as noted below) may be authorized for public release.

c. Storage of CAA CBI.

Folders, documents, or material containing CAA CBI (as defined) shall be secured according to the instructions listed in the OAQPS Security Manual. In addition, the CBI storage area that has been identified specifically for that purpose is equipped with a supplementary locking device. The storage area and files are under the direct control of the OAQPS DCO.

Access to the storage area is limited to the DCO, Document Control Assistant, and the minimum number of persons required to effectively maintain normal business operations as directed by the Director, Planning, Resources, and Regional Management Staff (PRRMS).

Files may be issued upon confirmation that the requesting individual is authorized to receive the information. All confidential files must be returned no later than close of business on the same day. The intended user must sign the CBI Control Record when checking out files.

Individuals signing out confidential files are responsible for their safekeeping. Files must never be left unattended. The information must not be disclosed to any non-authorized personnel.

Storage procedures for CAA CBI by an authorized representative of EPA (see Section d. below) must be, at a minimum, as secure as those established for EPA offices within OAQPS. Whenever CBI is removed from the EPA files to be transmitted to an authorized representative, a notation is made in the file's control record and transfer log indicating what information was transmitted, the date, and the recipient. The authorized representative returns a signed receipt to the DCO.

d. Access to CAA CBI.

Only authorized EPA employees may open or distribute CAA CBI.

Only employees who require, have a need to know, and are authorized access to CAA CBI in the performance of their official duties are permitted to review documents and, upon receiving a confidential document, must sign and date the form shown in Attachment A to certify their access to the document.

The Group Leader having primary responsibility for the CAA CBI provides a memorandum to the DCO designating those personnel authorized to access specific CBI. No person is automatically entitled to access based solely on grade, position, or security clearance. The names of persons granted access to CAA CBI are placed on the CAA CBI access list. The CAA CBI access list indicates the "specific" CBI each person is permitted to see. The access list is reviewed and updated periodically.

Companies under contract to perform work for the EPA may be designated authorized representatives of EPA. As authorized representatives, contractors may be granted access to CAA CBI. The following conditions apply when it has been determined that disclosure is necessary:

(1) The contractor designated as a representative and its employees (a) may use such confidential information only for the purpose of carrying out the work required, (b) must refrain from disclosing the information to anyone other than EPA without having received from EPA prior written approval of each affected business or of an EPA legal office, and (c) must return to EPA all copies of the information (and any abstracts or excerpts there from) upon request or whenever the information is no longer required for the performance of the work.

(2) The authorized contractor designated as a representative must obtain a written confidentiality agreement from each of its employees who will have access to the information. A copy of each employee agreement (Attachment B) must be furnished to EPA before access is permitted.

(3) The contractor designated as an authorized representative must agree that the conditions in the contract concerning the use and disclosure of CAA CBI are included for the benefit of, and shall be enforceable by, both EPA and any affected business having a proprietary interest in the information.

Information may be released to or accessed by EPA employees other than OAQPS employees only upon approval of the Director, PRRMS.

Requests for CAA CBI from other Federal agencies, Congress, the Comptroller General, Courts, etc., are processed in accordance with 40 CFR Part 2, Subpart B.

Requests under the FOIA are handled in accordance with 40 CFR Part 2, Subpart A. The FOIA Coordinator must be consulted prior to responding to any request for information if a claim of confidentiality has been asserted or if there is reason to believe that a claim might be made if the business knew release was intended.

e. Use and Disclosure of CAA CBI.

The CAA CBI, as defined, may not be used in publications, supporting documentation, memoranda, etc., that become a part of the public domain, except as provided for in 40 CFR Part 2, Subpart B. The CAA CBI may not be summarized without the approval of the Group Leader responsible for the CAA CBI. Any authorized reproductions must be logged into the CAA CBI document tracking system and treated according to the same procedures applicable to the original confidential material. Documents, materials, or extracts of information generated by EPA which contain CAA CBI must be stamped "Subject to Confidentiality Claim" and a cover sheet must be attached to identify the material as CBI.

f. Handling of Other Information.

Reports, memoranda, documents, etc., prepared by EPA or its authorized representatives are not normally circulated outside EPA for comment or review prior to publication except in such cases as described in section 6 above. However, because industrial-data-gathering visits, plant inspections, and source testing can involve inadvertent receipt of CAA CBI, it is the policy of OAQPS to protect all parties involved in the following manner:

(1) Prior to or at the inception of a plant inspection, data-gathering visit, or source test, EPA or its authorized representative discusses with a responsible industry official the information sought, how it is to be used, and how it is to be protected. A copy of this summary is usually provided to the industry official being consulted.

(2) Following an inspection, visit, or test, a trip report is prepared to include, as practicable, all information received by EPA or its authorized representative during the visit or test. The report may be prepared by either EPA or its authorized representative. The draft report is clearly identified with an attached yellow cover sheet. A second copy of the draft trip report is forwarded by EPA to the responsible industry official for review. The responsible industry official is requested by cover letter to review the report, clearly mark any information considered to be confidential, and return the edited copy to the responsible EPA employee within the time specified. The original draft is kept in the CBI file until the edited copy is returned by the business firm.

(3) When the reviewed copy is returned to EPA, information designated confidential is placed in the CBI files as described above. The original draft of the trip report is edited to delete the confidential information and the trip report is authorized for release.

Attachments (2)

ENCLOSURE 5

ATTACHMENT A: EXAMPLE RECORD FORM FOR CBI ACCESS

CAA CBI Security Manual (Appendix H)

CAA CONFIDENTIAL BUSINESS INFORMATION CONTROL RECORD									
DATE RECEIVED:	DATE RECEIVED: RESPONSIBLE GRO				R:				
DATE OF DOCUMENT:	DOCL	CUMENT AUTHOR:							
I DESCRIPTION (PROVIDING ORGANIZATION, TITLE, SUBJECT, NUMBER OF COPIES, NUMBER OF PAGES)									
RETURN DATE:		DESTRUCTIO	ON DATE:	1	NITIALS:				
EACH PERSON WHO IS GIVEN AG	CCESS 1	O THIS DOCU	JMENT MUST	FILL IN THE INFOR	MATION BE	LOW.			
CHECK-OL	JT			CHECK	IN				
SIGNATURE	DATE	TIME		BIGNATURE	DATE	TIME			
		_							
					ļ				
	,								
		-			ļ				
			· · · · · · · · · · · · · · · · · · ·						
		· · ·							
· · · · · · · · · · · · · · · · · · ·									
		· .							
					•				
				<u> </u>					
				• •					

CAA Form 1 (Rev. 01/02)

•

ENCLOSURE 5

ATTACHMENT B: EXAMPLE AUTHORIZATION FORM FOR CBI ACCESS

CAA CRI Sa rity Manual (Appendix A)

1. AU	FULL NAME ROSITION										
FULL	NAME	<u> </u>				POSITION					
SSN	SSN OFFICE										
It is the require 1. S 2. A 3. C	responsib access to ign the Co are fully in Obtain acce	ility of ea CAA CBI onfidential formed re ess only to	ch Author : lity Agree garding the that CAA	rizing Offi ment for I heir securi A CBI req	icial [*] to o Federal E ity respon uired to p	ensure that imployees asibilities f perform the	the emplo for CAA C ir official	oyees unde CBI. duties	er his/her	supervisio	n who
SIGNA	TURE OF	' AUTHO	RIZING (OFFICIAI	_ *	TELEPHONE NO. DATE					
TITLE						LOCAT	ON				
II. CO	ONFIDE	INTIAL	JTY AC	GREEM	IENT F	OR FE	DERAL	EMPL	OYEES	5	
I understand that, in accordance with my official duties, I will have access to certain Confidential Business Information submitted under the Clean Air Act (CAA) (42 U.S.C. 7401 et seq.) I understand that, under 18 U.S.C. 1905 and 18 U.S.C 1924I am liable for a possible fine of up to \$1,000 and/or imprisonment for up to one year, if I willfully disclose CAA Confidential Business Information to any person not authorized to receive it. Additionally, I understand that, I may be subject to disciplinary action for violation of this agreement with penalties ranging up to and including dismissal. I am aware that, I may be subject to criminal penalties under 18 U.S.C. 1001 if I have made any statement of material facts knowing that such statement is false or if I willfully conceal any material fact. I agree that, upon the termination of my duties, transfer or departure from the Environmental Protection Agency, I will return all materials containing CAA Confidential Business Information in my possession to the OAQPS CBI Office. I certify that I have read and understand these procedures and those outlined in the CAA CBI Security Manual.											
III. THE UNDERSIGNED CERTIFIES THE ALL TRAINING AND TEST REQUIREMENTS HAVE BEEN MET BY THE EMPLOYEE. SIGNATURE CBI MANAGER/DCO TELEPHONE NO. IV. ANNUAL RE-CERTIFICATION: L certify that, in conjunction with my duties. L require access to											
CAA CE Security	CAA CBI. I am current with all CBI handling procedures and security guidelines as outlined in the CCA CBI Security Manual.										
Date		Date ·		Date		Date		Date		Date	
Initial		Initial		Initial		Initial		Initial		Initial	

Inital CAA CBI From 2 (Rev. 01/02) * Must be Division Director (or equivalent) or above. A-1

Date

Date

Initial

Date

Initial

Date

Initial

Date

Initial

Date

Initial

. •

METHOD 9060A

TOTAL ORGANIC CARBON

1.0 SCOPE AND APPLICATION

1.1 This method is used to determine the concentration of organic carbon in ground water, surface and saline waters, and domestic and industrial wastes. Some restrictions are noted in Secs. 2.0 and 3.0.

1.2 This method is most applicable to measurement of organic carbon above 1 mg/L.

2.0 SUMMARY OF METHOD

2.1 Organic carbon is measured using a carbonaceous analyzer. This instrument converts the organic carbon in a sample to carbon dioxide (CO_2) by either catalytic combustion or wet chemical oxidation. The CO_2 formed is then either measured directly by an infrared detector or converted to methane (CH_4) and measured by a flame ionization detector. The amount of CO_2 or CH_4 in a sample is directly proportional to the concentration of carbonaceous material in the sample.

2.2 Carbonaceous analyzers are capable of measuring all forms of carbon in a sample. However, because of various properties of carbon-containing compounds in liquid samples, the manner of preliminary sample treatment as well as the instrument settings will determine which forms of carbon are actually measured. The forms of carbon that can be measured by this method are:

- 1. Soluble, nonvolatile organic carbon: e.g., natural sugars.
- 2. Soluble, volatile organic carbon: e.g., mercaptans, alkanes, low molecular weight alcohols.
- 3. Insoluble, partially volatile carbon: e.g., low molecular weight oils.
- 4. Insoluble, particulate carbonaceous materials: e.g., cellulose fibers.
- 5. Soluble or insoluble carbonaceous materials adsorbed or entrapped on insoluble inorganic suspended matter: e.g., oily matter adsorbed on silt particles.

2.3 Carbonate and bicarbonate are inorganic forms of carbon and must be separated from the total organic carbon value. Depending on the instrument manufacturer's instructions, this separation can be accomplished by either a simple mathematical subtraction, or by removing the carbonate and bicarbonate by converting them to CO_2 with degassing prior to analysis.

3.0 INTERFERENCES

3.1 Carbonate and bicarbonate carbon represent an interference under the terms of this test and must be removed or accounted for in the final calculation.

3.2 This procedure is applicable only to homogeneous samples which can be injected into the apparatus reproducibly by means of a microliter-type syringe or pipet. The openings of the syringe or pipet limit the maximum size of particle which may be included in the sample.

3.3 Removal of carbonate and bicarbonate by acidification and purging with nitrogen, or other inert gas, can result in the loss of volatile organic substances.

4.0 APPARATUS AND MATERIALS

4.1 Apparatus for blending or homogenizing samples -- Generally, a Waring-type blender is satisfactory.

4.2 Apparatus for total and dissolved organic carbon

4.2.1 Several companies manufacture analyzers for measuring carbonaceous material in liquid samples. The most appropriate system should be selected based on consideration of the types of samples to be analyzed, the expected concentration range, and the forms of carbon to be measured.

4.2.2 No specific analyzer is recommended as superior. If the technique of chemical oxidation is used, the laboratory must be certain that the instrument is capable of achieving good carbon recoveries in samples containing particulates.

5.0 REAGENTS

5.1 <u>ASTM Type II water</u> (ASTM D1193) -- Water should be monitored for impurities, and should be boiled and cooled to remove CO₂.

5.2 <u>Potassium hydrogen phthalate, stock solution</u>, 1,000 mg/L carbon -- Dissolve 0.2128 g of potassium hydrogen phthalate (primary standard grade) in Type II water and dilute to 100.0 mL.

<u>NOTE</u>: Sodium oxalate and acetic acid are not recommended as stock solutions.

5.3 <u>Potassium hydrogen phthalate, standard solutions</u> -- Prepare standard solutions from the stock solution by dilution with Type II water.

5.4 <u>Carbonate-bicarbonate, stock solution</u>, 1,000 mg/L carbon -- Weigh 0.3500 g of sodium bicarbonate and 0.4418 g of sodium carbonate and transfer both to the same 100-mL volumetric flask. Dissolve with Type II water.

5.5 <u>Carbonate-bicarbonate, standard solution</u> -- Prepare a series of standards similar to Step 5.3.

<u>NOTE</u>: This standard is not required by some instruments.

5.6 <u>Blank solution</u> -- Use the same Type II water as was used to prepare the standard solutions.

6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING

6.1 Sampling and storage of samples in glass bottles is preferable. Sampling and storage in plastic bottles such as conventional polyethylene and cubitainers is permissible if it is established that the containers do not contribute contaminating organics to the samples.

<u>NOTE</u>: A brief study performed in the EPA Laboratory indicated that Type II water stored in new, 1-qt cubitainers did not show any increase in organic carbon after 2 weeks' exposure.

6.2 Because of the possibility of oxidation or bacterial decomposition of some components of aqueous samples, the time between sample collection and the start of analysis should be minimized. Also, samples should be kept cool (4 °C) and protected from sunlight and atmospheric oxygen.

6.3 In instances where analysis cannot be performed within 2 hr from time of sampling, the sample is acidified (pH \leq 2) with HCl or H₂SO₄.

7.0 PROCEDURE

- 7.1 Homogenize the sample in a blender.
- <u>NOTE</u>: To avoid erroneously high results, inorganic carbon must be accounted for. The preferred method is to measure total carbon and inorganic carbon and to obtain the organic carbon by subtraction. If this is not possible, follow Steps 7.2 and 7.3 prior to analysis; however, volatile organic carbon may be lost.
 - 7.2 Lower the pH of the sample to 2.
 - 7.3 Purge the sample with nitrogen for 10 min.

7.4 Follow instrument manufacturer's instructions for calibration, procedure, and calculations.

7.5 For calibration of the instrument, a series of standards should be used that encompasses the expected concentration range of the samples.

7.6 Quadruplicate analysis is required. Report both the average and the range.

8.0 QUALITY CONTROL

8.1 All quality control data should be maintained and available for easy reference or inspection.

8.2 Employ a minimum of one blank per sample batch to determine if contamination or any memory effects are occurring.

8.3 Verify calibration with an independently prepared check standard every 15 samples.

8.4 Run one spike duplicate sample for every 10 samples. A duplicate sample is a sample brought through the whole sample preparation and analytical process.

9.0 METHOD PERFORMANCE

9.1 Precision and accuracy data are available in Method 415.1 of Methods for Chemical Analysis of Water and Wastes.

10.0 REFERENCES

- 1. Annual Book of ASTM Standards, Part 31, "Water," Standard D 2574-79, p. 469 (1976).
- 2. Standard Methods for the Examination of Water and Wastewater, 14th ed., p. 532, Method 505 (1975).

Method 9060A TOTAL ORGANIC CARBON

Determination of Total Organic Carbon in Sediment (Lloyd Kahn Method) July 27, 1988

Prepared by: Lloyd Kahn, Quality Assurance Specialist

Affiliation: U.S. Environmental Protection Agency, Region II Environmental Services Division Monitoring Management Branch Edison, New Jersey 08837

Determination of Total Organic Carbon in Sediment

1. Scope and Application

- 1.1 This method describes protocols for the determination of organic carbon in ocean sediments.
- 1.2 Although the detection limit ma vary with procedure or instrument, a minimum reporting value of 100 mg/kg will be required for the ocean dumping/dredging program.
- 1.3 Several types of determinations, which are considered equivalent are presented.
- 1.4 Data are reported in mg/kg on a dry weight basis.
- 1.5 Wet combustion methods are not considered to be equivalent to the pyrolytic methods herein described.

2. Summary of Method

- 2.1 Inorganic carbon from carbonates and bicarbonates is removed by acid treatment.
- 2.2 The organic compounds are decomposed by pyrolysis in the presence of oxygen or air.
- 2.3 The carbon dioxide that is formed is determined by direct nondispersive infrared detection, flame ionization gas chromatography after catalytic conversion of the carbon dioxide to methane; thermal conductivity gas chromatography, differential thermal conductivity detection by sequential removal of water and carbon dioxide; or thermal conductivity detection following removal of water with magnesium perchlorate.

3. Sample Handling and Preservation

3.1 Collect sediments in glass jars with Teflon or aluminum foil. Cool and maintain at 4°C. Analyze within 14 days.

4. Interferences

- 4.1 Volatile organics in the sediments may be lost in the decarbonation step resulting in a low bias.
- 4.2 Bacterial decomposition and volatilization of the organic compounds are minimized by maintaining the sample at 4°C, analyzing within the specified holding time, and analyzing the wet sample.

5. Apparatus

- 5.1 Drying oven maintained at 103°-105°C.
- 5.2 Analytical instrument options:
- 5.2.1 Perkin Elmer Model 240C Elemental Analyzer or equivalent.
- 5.2.1.1 In this instrument, the sample from Section 7.2 is pyrolyzed under pure oxygen, water is removed by magnesium perchlorate and the carbon dioxide is removed by ascarite. The decrease in signal obtained by differential thermal conductivity detectors placed between the combustion gas stream before and after the ascarite tube is a measure of the organic carbon content.
- 5.2.2 Carlo Erba Model 1106-CHN Analyzer or equivalent.
- 5.2.2.1 In this apparatus, the sample is pyrolyzed in an induction type furnace, and the resultant carbon dioxide is chromatographically separated and analyzed by a differential thermal conductivity detector.
- 5.2.3 LECO Models WR-12, WR-112, or CR-12 carbon determinators or Models 600 or 800 CHN analyzers.
- 5.2.3.1 In the LECO WR-12, the sample is burned in a high frequency induction furnace, the carbon dioxide is selectively adsorbed at room temperature in a molecular sieve. It is subsequently released by heating and is measured by a thermal conductivity detector. The WR-112 is an upgraded WR-12 employing microprocessor electronics and a printer to replace the electronic digital voltmeter.
- 5.2.3.2 In the LECO CR-12 carbon determinator, the sample is combusted in oxygen, moisture and dust are removed by appropriate traps and the carbon dioxide is measured by a selective, solid state, infrared microprocessor and the carbon content is displayed on a digital readout and recorded on an integral printer.
- 5.2.3.3 In the LECO CHN-600 and CHN-800 elemental analyzers, the sample is burned under oxygen in a resistance furnace and the carbon dioxide is measured by a selective infrared detector.
- 5.2.4 Dohrman Model DC-85 Digital High Temperature TOC Analyzer
- 5.2.4.1 In this instrument, the sample is burned in a resistance furnace under oxygen, the interfering gases are removed by a sparger/scrubber system and the carbon dioxide is measured by non-dispersive infrared detectors and shown on a digital display in concentration units.

- 5.3 No specific analyzer is recommended as superior. The above listing is for information only and is not intended to restrict the use of other unlisted instruments capable of analyzing TOC. The instruments to be used must have the following specifications:
- 5.3.1 A combustion boat which is heated in a stream of oxygen or air in a resistance or induction-type furnace to completely convert organic substances to CO_2 and water.
- 5.3.2 A means to physically or by measurement technique to separate water and other interferants from CO_2 .
- 5.3.3 A means to quantitatively determine CO2 with adequate sensitivity (100 mg/kg), and precision (25% at the 95% confidence level as demonstrated by repetitive measurements of a well mixed ocean sediment sample).
- 5.4 A strip chart or other permanent recording device to document the analysis.

6. Reagents

- 6.1 Distilled water used in preparation of standards and for dilution of samples should be ultra pure to reduce the carbon concentration of the blank.
- 6.2 Potassium hydrogen phthalate, stock solution, 100 mg carbon/liter: Dissolve 0.2128 g of potassium hydrogen phthalate (Primary standard Grade) in distilled water and dilute to 100.0 ml.
- 6.3 Potassium hydrogen phthalate, standard solutions: prepare standard solutions from the stock solution by dilutions with distilled water.
- 6.4 Phosphoric acid solution, 1:1 by volume.

7. Procedure

- 7.1 Weigh the well mixed sample (up to 500 mg) into the combustion boat or cup. Add 1:1 phosphoric acid drop-wise until effervescence stops. Heat to 75°C.
- 7.2 Analyze the residue according to the instrument manufacturer's instructions.
- 7.3 Determine percent residue on a separate sample aliquot as follows:
- 7.3.1 Heat a clean 25 ml beaker at 103-105°C for one hour. Cool in desiccator, weigh to the nearest mg and store in desiccator until use.
- 7.3.2 Add 1 g, weighed to the nearest mg, of an aliquot of the well-mixed sample.
7.3.3 Dry and heat in the 103-105°C oven for 1 hour. Cool in desiccator. Weigh to the nearest mg.

8. Calibration

- 8.1 Follow instrument manufacturer's instructions.
- 8.2 Prepare calibration curve plotting mg carbon vs. instrument response, using 4 standards and a blank covering the analytical range of interest.

9. Precision and Accuracy:

- 9.1 The precision and accuracy will differ with the various instruments and matrices and must be determined by the laboratories reporting the data. To initiate a control chart, a representative sample of well-mixed sediment should be analyzed 15 times to determine the analytical precision. Set up a control chart showing 3 times the standard deviation limits for precision.
- 9.2 Subsequently during analysis of environmental samples, take one sample per batch of 20 or less and run in quadruplicate. Calculate standard deviation and report with initial control chart data.
- 9.3 If the sample being run in quadruplicate exceeds the 3 standard deviation limit, identify error and rerun environmental samples in that batch alone with the quadruplicate sample.

Receiving Facility: Analysys Inc.

Sample submitted to: <u>Analysys, INC</u>.

Phone: (512) 385-5886

Analysys, Inc. Fax: (512)385-7411

Chain of Custody

Sending Facility:

Company Name:	TXI Hunter Cement	Contact: <u>H. Borchers / T. Wigley</u>
Address:	7781 FM 1102	Phone: <u>512-396-4244 (x 229 or x270)</u>
City / State:	New Braunfels, TX	Fax: <u>512-396-7064</u>
Zip Code:	78132	
Reason for Request:	EPA Request	

Date	Time	Sample Description	P - Analysis Required	R.R.
6/01/07	7:001	A Sand composite	TOC 297055	
6/01/07		Limestone composite	TOC 297054	
6/01/07		Calcium sludge composite	TOG 297855	
6/01/07		Filter cake composite	TOC 297056	
6/01/07		Clay composite	TOC-297057	322
6/01/07		FCC (catalyst) composite	TOC 297058	10. Million
6/01/07		Slag composite	TOC 297059	
6/01/07		Alakali bypass composite	TOC 297060	
6/01/07	7:00	ESP dust (CKD) composite	TOC 297061	

Samples shipped to lab by:	Date: 6, 07. 2007	Time: 11:200-
Samples relinquished to lab by:	Date: 6: 07. 2007	Time: 12:25/
Samples received at lab by: Minshing	Date: 6-7-2007	Time: 12:25
TLO'C Wellen allew	4-8-207	9:30

Receiving Facility: Analysys Inc.

Sample submitted to: <u>Analysys, Inc.</u>

Phone: (512) 385-5886

Analysys, Inc. Fax: (512)385-7411

Chain of Custody

Sending Facility:

Company Name:	TXI Hunter Cemen		Contact: <u>H. Borchers / T. Wigley</u>
Address:	7781 FM 1102		Phone: <u>512-396-4244 (x 229 or x270)</u>
City / State:	New Braunfels, TX	, 	Fax: <u>512-396-7064</u>
Zip Code:	78132		
Reason for Request:	EP	PA Request	

Date	Tim	e	Sample Description		malysis Conuned	RR
6/2/07	7:00	Au	Sand composite	TOC	297062	1.10
6/2/07			Limestone composite	TOC	297863	
6/2/07			Calcium sludge composite	TOC	297064	1.14
6/2/07			Filter cake composite	TOC	297065	142.2
6/2/07			Clay composite	TOC	297066	
6/2/07			FCC (catalyst) composite	TOC	297067	
6/2/07			Slag composite	TOC	297968	1880
6/2/07			Alakali bypass composite	TOC	297969	
6/2/07	7:00	An	ESP dust (CKD) composite	TOC	297070	Sort
					•	
	1					

Samples shipped to lab by:	Date: 6, 07.2007	Time: 11: Ean
Samples relinquished to lab by:	Date: 1. 07. 2017	Time: / # ! # sin
Samples received at lab by: Watanath	Date: 6-7-2007	Time: /2:25
The c Muninallen	Q-8-2007	9:30

Receiving Facility: <u>Analysys Inc.</u>

Sample submitted to: Analysys. Inc.

Phone: (512) 385-5886

Analysys, Inc. Fax: (512)385-7411

Chain of Custody

Sending Facility:

Company Name:	TXI Hunter Cement	Contact: H. Borchers / T. Wigley
Address:	7781 FM 1102	Phone: 512-396-4244 (x 229 or x270)
City / State:	New Braunfels, TX	Fax: <u>512-396-7064</u>
Zip Code:	78132	
Reason for Request:	EPA Request	

Date	Time	Sample Description	curs Analysis Required as	R.R.
6/03/07	7:00 An	Sand composite	тос 297071	
6/03/07		Limestone composite	TOC 297072	
6/03/07		Calcium sludge composite	TOC 297073	
6/03/07		Filter cake composite	TOC 297074	
6/03/07		Clay composite	TOC 297075	
6/03/07		Slag composite	TOC 297076	
6/03/07		Alakali bypass composite	TOC 297077	
6/03/07	7:00M	ESP dust (CKD) composite	тос 297078	
		· · · · · ·		

Samples shipped to lab by:	Date: 6. 07. 2007	Time: 11:20-
Samples relinquished to lab by:	Date: 6.07. 2007	Time:/2:25
Samples received at lab by: Mhunshury	Date: 6.07.2007	Time: 12:25
TLOOC MILLIN Allun	4-8-2007	9:30

Receiving Facility: Analysys Inc.

Sample submitted to: Analysys, Inc. Phone: (512) 385-5886

Analysys, Inc. Fax: (512)385-7411

Chain of Custody

Sending Facility:

Company Name:	TXI Hunter Cerr	nent	Contact: H. Borchers / T. Wigley
Address:	7781 FM 1102		Phone: 512-396-4244 (x 229 or x270)
City / State:	New Braunfels,	ТХ	Fax: <u>512-396-7064</u>
Zip Code:	78132		
Reason for Request:		EPA Request	

Date	ST	me -	Sample:Description		Malysis Received	RR
6/04/07	7:00	An	Sand composite	TOC	297079	
6/04/07			Limestone composite	TOC	247084	
6/04/07			Calcium sludge composite	TOC	297081	
6/04/07			Filter cake composite	TOC	297082	
6/04/07			Clay composite	TOC	297083	
6/04/07			FCC (catalyst) composite	TOC	297084	
6/04/07			Slag composite	TOC	297085	
6/04/07	Π		Alakali bypass composite	TOC	297086	
6/04/07	7.1	MAM	ESP dust (CKD) composite	TOC	297087	
						2.505

Samples shipped to lab by:	Date: 6, 07, 2007	Time: 11:20
Samples relinquished to lab by:	Date: 6. 07. 2007	Time: 12:25
Samples received at lab by: Withmphy	Date: 6-7-2007	Time: 12:25
TLLOC Muin allen	4-8-2007	9:30

Receiving Facility: Analysys Inc.

Sample submitted to: Analysys, Inc.

Phone (512) 385-5886

Analysys, Inc. Fax: (512)385-7411

Chain of Custody

Sending Facility:

Company Name:	TXI Hunter Cement	Contact: H. Borchers / T. Wigley
Address:	7781 FM 1102	Phone: 512-396-4244 (x 229 or x270)
City / State:	New Braunfels, TX	Fax: <u>512-396-7064</u>
Zip Code:	78132	
Reason for Request:	EPA Request	

Date	ZTh	ne	Sample Description		mailes Recht	red R.R.
6/5/07	7:00	for	Limestone composite	TOC	297088	200 C
6/5/07			Sand composite	TOC	297889	
6/5/07			Slag composite	TOC	297090	
6/5/07			FCC (catalyst) composite	TOC	297691	
6/5/07			Calcium sludge composite	TOC	297092	
6/5/07			Filter cake composite	TOC	297093	
6/5/07			Clay composite	TOC	297694	
6/5/07	Π		Alakali bypass composite	TOC	297095	
6/5/07	7,00	An	ESP dust (CKD) composite	тос	297096	
					<u>,</u>	
						NO.

Samples shipped to lab by:	Date: 6, 07, 2007	Time: 11:20
Samples relinquished to lab by:	Date: 07, 2007	Time:/z:zsp
Samples received at lab by: Manythy	Date: 6-7-2007	Time: 12:25
The's Milling	4-8-2007	9:20

Please send copy(s) with each batch of sample(s) to the designated facility.

1

Receiving Facility: Analysys Inc.

Sample submitted to: Analysys, Inc.

Phone (512) 385-5886

Analysys, Inc. Fax: (512)385-7411

Chain of Custody

Sending Facility:

Company Name:	TXI Hunter Cement	Contact: <u>H. Borchers / T. Wigley</u>
Address:	7781 FM 1102	Phone: <u>512-396-4244 (x 229 or x270)</u>
City / State:	New Braunfels, TX	Fax: <u>512-396-7064</u>
Zip Code:	78132	
Reason for Request:	EPA Request	

Date	Time	Sample Description	Analysis Required	R.R.
6/6/07	7:00 AU	Limestone composite	тос 297097	
6/6/07		Sand composite	TOC 297098	
6/6/07		Slag.composite	TOC 297099	
6/6/07)		(FGC (catalyst) composite)	the not received	
6/6/07		Calcium sludge composite	TOC 297100	
6/6/07		Filter cake composite	TOS 297101	100
6/6/07		Clay composite	TOC 297102	
6/6/07		Alakali bypass composite	TOC 297103	5.000
6/6/07	7:00 An	ESP dust (CKD) composite	TOC 297104	
			`	

Samples shipped to lab by:	Date: 6.07.2007	Time: 11:2an
Samples relinquished to lab by:	Date: 6. 07. 2007	Time: 12125
Samples received at lab by: Mahmyohing	Date: 6.7-2007	Time: 12:25
Tile C Millin allun	1-8-07	9:30

Receiving Facility: Analysys Inc.

Sample submitted to: <u>Analysys, Inc.</u>

Phone (512) 385-5886

Analysys, Inc. Fax: (512)385-7411

Chain of Custody

Sending Facility:

Company Name:	TXI Hunter Cement	Contact: H. Borchers / T. Wigley
Address:	7781 FM 1102	Phone: 512-396-4244 (x 229 or x270)
City / State:	New Braunfels, TX	Fax: <u>512-396-7064</u>
Zip Code:	78132	
Reason for Request:	EPA Request	

	les Rines			
6/07/07	7:00am	Limestone composite	тос 195970	
6/07/07	7:00am	Sand composite	TOC 195971	
6/07/07	7:00am	Slag composite	тос 195972	
6/07/07	7:00am	Calcium sludge composite	тос 195973	
6/07/07	7:00am	Filter cake composite	TOC 195974	
6/07/07	7:00am	Clay composite	тос 195975	
6/07/07	7:00am	Alakali bypass composite	тос 195976	
6/07/07	7:00am	ESP dust (CKD) composite	тос 195977	
6/07/07	7:00am	FCC composite	тос 195978	

	and the second	
Samples shipped to lab by:	Date: 6 /14 /07	Time: 10 28~
Samples relinquished to lab by:	Date: 0 /14/07	Time: /1:#3.
Samples received at lab by: Withmony	Date: 6/14/07	Time: //:23

Receiving Facility: Analysys Inc.

Sample submitted to: Joe Levo Phone: Joe Levo (512) 555-555 Analysys, Inc. Fax: (512)555-5555

Chain of Custody

Sending Facility:

Company Name:	TXI Hunter Cement	Contact: H. Borchers / T. Wigley
Address:	7781 FM 1102	Phone: <u>512-396-4244 (x 229 or x270)</u>
City / State:	New Braunfels, TX	Fax: <u>512-396-7064</u>
Zip Code:	78132	
Reason for Request:	EPA Request	

1910-1910-1910-1910-1910-1910-1910-1910				
6/8/07	7:00am	Sand composite	тос 195979	
6/8/07	7:00am	Limestone composite	тос 195980	
6/8/07	7:00am	Calcium sludge composite	TOC 195981	
6/8/07	7:00am	Filter cake composite	тос 195982	
6/8/07	7:00am	Clay composite	тос 195983	
6/8/07	7:00am	FCC (catalyst) composite	TOC 195984	
6/8/07	7:00am	Slag composite	тос 195985	
6/8/07	7:00am	Alakali bypass composite	тос 195986	
6/8/07	7:00am	ESP dust (CKD) composite	тос 195987	

		1 1	
Samples shipped to lab by:	Date: 6	4/07	Time: 10.28
Samples relinquished to lab by	Date: E//	4/07	Time: 11:23
Samples received at lab by: WHmm	phy Date: 4	114/07	Time: //23

Please send copy(s) with each batch of sample(s) to the designated facility.

1

.

Receiving Facility: Analysys Inc.

Sample submitted to: Joe Levo Phone: <u>Joe Levo (512) 555-555</u> Analysys, Inc. Fax: <u>(512)555-5655</u>

Chain of Custody

Sending Facility:

Company Name:	TXI Hunter Cement	Contact: H. Borchers / T. Wigley
Address:	7781 FM 1102	Phone: 512-396-4244 (x 229 or x270)
City / State:	New Braunfels, TX	Fax: <u>512-396-7064</u>
Zip Code:	78132	
Reason for Request:	EPA Request	

	- Armer 1	service and an		nilla deservations de	
6/9/07	7:00am	Sand composite	TOC	195988	
6/9/07	7:00am	Limestone composite	TOC	195989	
6/9/07	7:00am	Calcium sludge composite	TOC	195990	
6/9/07	7:00am	Filter cake composite	TOC	195901	
6/9/07	7:00am	Clay composite	TOC	195992	
6/9/07	7:00am	FCC (catalyst) composite	TOC	195993	
6/9/07	7:00am	Slag composite	TOC	195994	
6/9/07	7:00am	Alakali bypass composite	TOC	195995	
6/9/07	7:00am	ESP dust (CKD) composite	TOC	195996	

Samples shipped to lab by:	Date: 6/14/07	Time: 10:20-
Samples relinquished to lab by:	Date: 6/14/04	Time: //.23
Samples received at lab by: MHumphun	Date: 4/14/07	Time: 11:23

Receiving Facility: Analysys Inc.

Sample submitted to: Joe Levo Phone: Joe Levo (512) 555-555 Analysys, Inc. Fax: (512)555-5555

Chain of Custody

Sending Facility:

Reason for Request: _	EPA Request	
Zip Code:	78132	
City / State:	New Braunfels, TX	Fax: <u>512-396-7064</u>
Address:	7781 FM 1102	Phone: <u>512-396-4244 (x 229 or x270)</u>
Company Name:	TXI Hunter Cement	Contact: H. Borchers / T. Wigley

Gare		Semiple-Deeviption 1-4		
6/10/07	7:00am	Sand composite	тос 195997	
6/10/07	7:00am	Limestone composite	TOC 195998	
6/10/07	7:00am	Calcium sludge composite	тос 195999	
6/10/07	7:00am	Filter cake composite	TOC 196000	
6/10/07	7:00am	Clay composite	TOC 196001	
		FCC (catalyst) composite	TOC	
6/10/07	7:00am	Slag composite	TOC 196002	
6/10/07	7:00am	Alakali bypass composite	TOC 196003	
6/10/07	7:00am	ESP dust (CKD) composite	тос 196004	
			·	an a

4/07	Time: 10.28
4/07	Time: 11:252-
14/07	Time: /1:25
	4/07 14/07-

Receiving Facility: Analysys Inc.

Sample submitted to: Joe Levo Phone: Joe Levo (512) 555-555 Analysys, Inc. Fax: (512)555-5555

Chain of Custody

Sending Facility:

Company Name:	TXI Hunter Cement	Contact: H. Borchers / T. Wigley
Address:	7781 FM 1102	Phone: 512-396-4244 (x 229 or x270)
City / State:	New Braunfels, TX	Fax: <u>512-396-7064</u>
Zip Code:	78132	
Reason for Request:	EPA Request	

Contract of the second		Sample Concurring			
6/11/07	7:00am	Sand composite	TOC 1	96005	
6/11/07	7:00am	Limestone composite	TOC	196006	C STOLE
6/11/07	7:00am	Calcium sludge composite	TOC	196007	
6/11/07	7:00am	Filter cake composite	TOC	196008	
6/11/07	7:00am	Clay composite	TOC	196009	
6/11/07	7:00am	FCC (catalyst) composite	DOT	196010	
6/11/07	7:00am	Slag composite	TOC	196011	
6/11/07	7:00am	Alakali bypass composite	TOC	196012	
6/11/07	7:00am	ESP dust (CKD) composite	TOC	196013	

Samples shipped to lab by:	Date: 6 /11/07	Time: 10:282
Samples relinquished to lab by:	Date: 6/14/07	Time: 11:25
Samples received at lab by: Mamohm	Date: 10/15/07-	Time: 11:23

Receiving Facility: Analysys Inc.

Sample submitted to: Joe Levo Phone: Joe Levo (512) 555-555 Analysys, Inc. Fax: (512)555-5555

Chain of Custody

Sending Facility:

Company Name:	TXI Hunter Cement	Contact: H. Borchers / T. Wigley
Address:	7781 FM 1102	Phone: 512-396-4244 (x 229 or x270)
City / State:	New Braunfels, TX	Fax: <u>512-396-7064</u>
Zip Code:	78132	
Reason for Request:	EPA Request	

P. Dates Sto	- Enne	Sande Description		auk gennemente	
6/12/07	7:00am	Sand composite	TOC	196030	
6/12/07	7:00am	Limestone composite	TOC	196014	
6/12/07	7:00am	Calcium sludge composite	TOC	196015	
6/12/07	7:00am	Filter cake composite	TOC	196016	
6/12/07	7:00am	Clay composite	TOC	196017	
6/12/07	7:00am	FCC (catalyst) composite	TOC	196018	
6/12/07	7:00am	Stag composite	TOC	196019	
6/12/07	7:00am	Alakali bypass composite	TOC	196020	
6/12/07	7:00am	ESP dust (CKD) composite	TOC	196021	
			1		

Samples snipped to lab by:	me: 10 2
Samples relinquished to lab by: Date: C/14/07 Tir	ime: 11 - 232
Samples received at lab by: Witmohn Date: 10/14/07 Tir	ime: 11:25

Receiving Facility: Analysys Inc.

Sample submitted to: Joe Levo Phone: Joe Levo (512) 555-555 Analysys, Inc. Fax: (512)555-5555

Chain of Custody

Sending Facility:

Company Name:	TXI Hunter Cement	Contact: H. Borchers / T. Wigley
Address:	7781 FM 1102	Phone: <u>512-396-4244 (x 229 or x270)</u>
City / State:	New Braunfels, TX	Fax: <u>512-396-7064</u>
Zip Code:	78132	
Reason for Request:	EPA Request	

1			Sample Description			
	6/13/07	7:00am	Sand composite	TOC	196022	
	6/13/07	7:00am	Limestone composite	TOC	196023	
	6/13/07	7:00am	Calcium sludge composite	TOC	196024	
	6/13/07	7:00am	Filter cake composite	TOC	196025	
	6/13/07	7:00am	Clay composite	TOC	<u> 196026 </u>	
NP	-6/13/07	-7:00am-	-FCC (catalyst) composite	TOC	and the second s	M
<i>,</i> • •	6/13/07	7:00am	Slag composite	TOC	<u> 196027 </u>	
	6/13/07	7:00am	Alakali bypass composite	TOC	<u>196028</u>	
	6/13/07	7:00am	ESP dust (CKD) composite	TOC	<u> 196029</u>	
		·				

Samples shipped to lab by:	Date: 6/14/07	Time: 10:200-
Samples relinquished to lab by:	Date: 6/14/07	Time: /1:25-
Samples received at lab by: Munshing	Date: 4/14/07	Time: //:23
the second		

Receiving Facility: Analysys Inc.

Sample submitted to: Analysys, Inc.

Phone: (512) 385-5886

Analysys, Inc. Fax: (512)385-7411

Chain of Custody

Sending Facility:

Company Name:	TXI Hunter Cement	Contact: H. Borchers / T. Wigley
Address:	7781 FM 1102	Phone: <u>512-396-4244 (x 229 or x270)</u>
City / State:	New Braunfels, TX	Fax: <u>512-396-7064</u>
Zip Code:	78132	
Reason for Request:	EPA Request	

	Date	Time	Sample Description	Analysis Required	R.R.
196376	6/14/07	7:00 am	Limestone composite	TOC	
196377	6/14/07	7:00 am	Sand composite	тос	
196378	6/14/07	7:00 am	Slag composite	тос	
196379	6/14/07	7:00 am	FCC (catalyst) composite	тос	
196380	6/14/07	7:00 am	Calcium sludge composite	тос	
196381	6/14/07	7:00 am	Filter cake composite	тос	
196382	6/14/07	7:00 am	Clay composite	тос	
196383	6/14/07	7:00 am	Alakali bypass composite	тос	30383 A
196384	6/14/07	7:00 am	ESP dust (CKD) composite	тос	<u> 2355 (</u>
					13-64
			1		

Samples shipped to lab by:	Date: 6.21.07	Time: 5-25
Samples relinquished to lab by	Date: 6.22,07	Time: 11.52
Samples received at lab by: Cerumo	Date: 6.22-07	Time: //:37

Receiving Facility: Analysys Inc.

Sample submitted to: Analysys, Inc.

Phone: (512) 385-5886

Analysys, Inc. Fax: (512)385-7411

Chain of Custody

Sending Facility:

Company Name:	TXI Hunter Cement	Contact: <u>H. Borchers / T. Wigley</u>
Address:	7781 FM 1102	Phone: <u>512-396-4244 (x 229 or x270)</u>
City / State:	New Braunfels, TX	Fax: <u>512-396-7064</u>
Zip Code:	78132	
Reason for Request:	EPA Request	

	Dafe	Time	Sample Description	Analysis Required	RR.
196385	6/15/07	7:00 am	Limestone composite	тос	
196386	6/15/07	7:00 am	Sand composite	тос	
196387	6/15/07	7:00 am	Slag composite	тос	
196388	6/15/07	7:00 am	FCC (catalyst) composite	ТОС	
196389	6/15/07	7:00 am	Calcium sludge composite	тос	
196390	6/15/07	7:00 am	Filter cake composite	тос	
196391	6/15/07	7:00 am	Clay composite	тос	
196392	6/15/07	7:00 am	Alakali bypass composite	тос	
196393	6/15/07	7:00 am	ESP dust (CKD) composite	тос	

-

1

Samples shipped to lab by:	Date: 6. \$1.07	Time: 5:05
Samples relinquished to lab by	Date: 6. 22.07	Time: /1:57
Samples received at lab by:	Date: 6.22-07	Time: /1:37

Receiving Facility: Analysys Inc.

Sample submitted to: <u>Analysys, Inc.</u>

Phone: (512) 385-5886

Analysys, Inc. Fax: (512)385-7411

Chain of Custody

Sending Facility:

Company Name:	TXI Hunter Cen	nent	Contact: H. Borchers / T. Wigley
Address:	7781 FM 1102		Phone: <u>512-396-4244 (x 229 or x270)</u>
City / State:	New Braunfels,	ТХ	Fax: <u>512-396-7064</u>
Zip Code:	78132		
Reason for Request:		EPA Request	

	Date	Time	Sample Description	Analysis Required	RR
196394	6/16/07	7:00 am	Limestone composite	тос	
196395	6/16/07	7:00 am	Sand composite	TOC	
196396	6/16/07	7:00 am	Slag composite	тос	
196397	6/16/07	7:00 am	FCC (catalyst) composite	тос	
196398	6/16/07	7:00 am	Calcium sludge composite	тос	
196399	6/16/07	7:00 am	Filter cake composite	TOC	
196400	6/16/07	7:00 am	Clay composite	TOC	
196401	6/16/07	7:00 am	Alakali bypass composite	TOC	
196402	6/16/07	7:00 am	ESP dust (CKD) composite	тос	
			1		
	••••••••••••••••••••••••••••••••••••••	•			

Samples shipped to lab by:	Date: 6. 21.07	Time: 5 25
Samples relinquished to lab by:	Date: 6. 22.07	Time: 11:5%
Samples received at lab by: Pomme p	Date: 6.22.07	Time: //:37

TXI Hunter Plant 7781 FM 1102

New Braunfels, TX 78132

Receiving Facility: Analysys Inc.

Sample submitted to: <u>Analysys, Inc.</u>

Phone: (512) 385-5886

Analysys, Inc. Fax: (512)385-7411

Chain of Custody

Sending Facility:

Company Name:	TXI Hunter Cement	Contact: <u>H. Borchers / T. Wigley</u>
Address:	7781 FM 1102	Phone: <u>512-396-4244 (x 229 or x270)</u>
City / State:	New Braunfels, TX	Fax: <u>512-396-7064</u>
Zip Code:	78132	
Reason for Request:	EPA Request	

			Samole Description	Hest Analysis Required	RR
196403	6/17/07	7:00 am	Limestone composite	ТОС	
196404	6/17/07	7:00 am	Sand composite	тос	
196405	6/17/07	7:00 am	Slag composite	ТОС	
196406	6/17/07	7:00 am	Calcium sludge composite	тос	
196407	6/17/07	7:00 am	Filter cake composite	тос	
196408	6/17/07	7:00 am	Clay composite	тос	
196409	6/17/07	7:00 am	Alakali bypass composite	тос	
196410	6/17/07	7:00 am	ESP dust (CKD) composite	тос	
			* Note: No FCC available to sample		
-			111		

Samples shipped to lab by:	Date: 6. 21.07	Time: 5-25
Samples relinquished to lab by:	Date: 6.22 07	Time: 11:57
Samples received at lab by:	Date: 6-2-2-07	Time: (1:37

Receiving Facility: Analysys Inc.

Sample submitted to: Analysys, Inc.

Phone: (512) 385-5886

Analysys, Inc. Fax: (512)385-7411

Chain of Custody

Sending Facility:

Company Name:	TXI Hunter Cement	Contact: H. Borchers / T. Wigley
Address:	7781 FM 1102	Phone: <u>512-396-4244 (x 229 or x270)</u>
City / State:	New Braunfels, TX	Fax: <u>512-396-7064</u>
Zip Code:	78132	
Reason for Request:	EPA Request	

	Dates	Time	Sample Description	Analysis Required	RR
196411	6/18/07	7:00 am	Limestone composite	тос	
196412	6/18/07	7:00 am	Sand composite	TOC	王朝皇
196413	6/18/07	7:00 am	Slag composite	тос	
196414	6/18/07	7:00 am	FCC (catalyst) composite	TOC	
196415	6/18/07	7:00 am	Calcium sludge composite	TOC	
196416	6/18/07	7:00 am	Filter cake composite	ТОС	
196417	6/18/07	7:00 am	Clay composite	TOC	1
196418	6/18/07	7:00 am	Alakali bypass composite	тос	
196419	6/18/07	7:00 am	ESP dust (CKD) composite	TOC	
					12

1/0		
Samples shipped to lab by	Date: 6. 21.07	Time: 5-25
Samples relinquished to lab by:	Date: 6, 22,07	Time: /1. 52
Samples received at lab by:	Date: 6-2-2-7	Time: //:37

Receiving Facility: Analysys Inc.

Sample submitted to: Analysys, Inc.

Phone: (512) 385-5886

Analysys, Inc. Fax: (512)385-7411

Chain of Custody

Sending Facility:

Company Name:	TXI Hunter Cement	Contact: H. Borchers / T. Wigley
Address:	7781 FM 1102	Phone: <u>512-396-4244 (x 229 or x270)</u>
City / State:	New Braunfels, TX	Fax: <u>512-396-7064</u>
Zip Code:	78132	
Reason for Request: _	EPA Request	

	Date	Time	Sample Description	Analysis Required	RR
196420	6/19/07	7:00 am	Limestone composite	TOC	
196421	6/19/07	7:00 am	Sand composite	TOC	
196422	6/19/07	7:00 am	Slag composite	TOC	
196423	6/19/07	7:00 am	FCC (catalyst) composite	ТОС	
196424	6/19/07	7:00 am	Calcium sludge composite	TOC	
196425	6/19/07	7:00 am	Filter cake composite	TOC	
196426	6/19/07	7:00 am	Clay composite	ТОС	
196427	6/19/07	7:00 am	Alakali bypass composite	тос	
196428	6/19/07	7:00 am	ESP dust (CKD) composite	тос	
					SAG

Samples shipped to lab by:	Date: 6, 21. 07	Time: 5.7.
Samples relinquished to lab by:	Date: 6.22.07	Time: 11:37
Samples received at lab by:	Date: 6-2-2-17	Time: //:37

Receiving Facility: Analysys Inc.

Sample submitted to: Analysys, Inc.

Phone: (512) 385-5886

Analysys, Inc. Fax: (512)385-7411

Chain of Custody

Sending Facility:

Company Name:	TXI Hunter Cement	Contact: H. Borchers / T. Wigley
Address:	7781 FM 1102	Phone: 512-396-4244 (x 229 or x270)
City / State:	New Braunfels, TX	Fax: <u>512-396-7064</u>
Zip Code:	78132	
Reason for Request: _	EPA Request	

	Date	Time	Sample Description	Analysis Required	R.R.
196429	6/20/07	7:00 am	Limestone composite	TOC	
196430	6/20/07	7:00 am	Sand composite	TOC	REAL
196431	6/20/07	7:00 am	Slag composite	TOC	
196432	6/20/07	7:00 am	FCC (catalyst) composite	TOC	
196433	6/20/07	7:00 am	Calcium sludge composite	ТОС	
196434	6/20/07	7:00 am	Filter cake composite	тос	
196435	6/20/07	7:00 am	Clay composite	TOC	
196436	6/20/07	7:00 am	Alakali bypass composite	ТОС	
196437	6/20/07	7:00 am	ESP dust (CKD) composite	тос	

.

Samples shipped to lab by:	Date: 6. 21.07	Time: 5-25
Samples relinquished to lab by:	Date: 6.22.07	Time: 11:37
Samples received at lab by	Date: 6, 2-2-07	Time: 11:37

Receiving Facility: Analysys Inc.

Sample submitted to: Analysys, Inc.

Phone: (512) 385-5886

Analysys, Inc. Fax: (512)385-7411

Chain of Custody

Sending Facility:

Company Name:	TXI Hunter Cement	Contact: <u>H. Borchers / T. Wigley</u>
Address:	7781 FM 1102	Phone: <u>512-396-4244 (x 229 or x270)</u>
City / State	New Braunfels, TX	Fax: 512-396-7064
Zin Code:	78132	
	70132	
Reason for Request:	EPA Reque	st

Date	Time	Sample Description	Analysis Required	R.R.
6/21/07	7:00 am	Limestone composite	TOC 297815	
6/21/07	7:00 am	Sand composite	TOC 297816	
6/21/07	7:00 am	Slag composite	TOC 297817	
6/21/07	7:00 am	FCC (catalyst) composite	TOC 297818	100
6/21/07	7:00 am	Calcium sludge composite	TOC 297819	
6/21/07	7:00 am	Filter cake composite	TOC 297520	
6/21/07	7:00 am	Clay composite	TOC 297.24	建設
6/21/07	7:00 am	Alakali bypass composite	TOC 297822	
6/21/07	7:00 am	ESP dust (CKD) composite	ј тос 297823	

Samples shipped to lab by:	Date: 6. 28.07	Time: 3.33
Samples relinquished to lab by	Date: 6. 28.07	Time: 9:23
Samples received at lab by: Withmahm	Date: 6-28-07	Time: / 4:23

TIGC

Receiving Facility: Analysys Inc.

Sample submitted to: <u>Analysys, Inc.</u>

Phone: (512) 385-5886

Analysys, Inc. Fax: (512)385-7411

Chain of Custody

Sending Facility:

Company Name:	TXI Hunter Cement	Contact: <u>H. Borchers / T. Wigley</u>
Address:	7781 FM 1102	Phone: <u>512-396-4244 (x 229 or x270)</u>
City / State:	New Braunfels, TX	Fax: <u>512-396-7064</u>
Zip Code:	78132	
Reason for Request:	EPA Reques	st

Date	Time	Sample Description	Analysis Required	R.R.
6/22/07	7:00 am	Limestone composite	TOC 297824	
6/22/07	7:00 am	Sand composite	TOC 29/825	
6/22/07	7:00 am	Slag composite	TOC 297826	
6/22/07	7:00 am	FCC (catalyst) composite	TOC 297827	國務
6/22/07	7:00 am	Calcium sludge composite	TOC 297828	
6/22/07	7:00 am	Filter cake composite	TOG 297829	
6/22/07	7:00 am	Clay composite	TOC 297830	
6/22/07	7:00 am	Alakali bypass composite	TOC 29783	
6/22/07	7:00 am	ESP dust (CKD) composite	тос 297832	
•				
				70-90-7-144

Samples shipped to lab by:	Date: 6.28.07	Time: 3:3
Samples relinquished to lab by:	Date: C. 27.07	Time: 4:23
Samples received at lab by: Mimphy	Date: 6-28.07	Time: 16:23
7		

Receiving Facility: <u>Analysys Inc.</u>

Sample submitted to: Analysys, Inc.

Phone: (512) 385-5886

Analysys, Inc. Fax: (512)385-7411

Chain of Custody

Sending Facility:

Company Name:	TXI Hunter Cement	Contact: <u>H. Borchers / T. Wigley</u>
Address:	7781 FM 1102	Phone: <u>512-396-4244 (x 229 or x270)</u>
City / State:	New Braunfels, TX	Fax: <u>512-396-7064</u>
Zip Code:	78132	
Reason for Request:	EPA Request	

Date	Time	Sample Description		iterse name	RE
6/23/07	7:00 am	Limestone composite	TOC	297833	
6/23/07	7:00 am	Sand composite	TOC	297834	
6/23/07	7:00 am	Slag composite	TOC	297825	
6/23/07	7:00 am	Calcium sludge composite	TOC	297836	
6/23/07	7:00 am	Filter cake composite	TOC	297837	
6/23/07	7:00 am	Clay composite	TOC	297838	
6/23/07	7:00 am	Alakali bypass composite	TOC	297839	
6/23/07	7:00 am	ESP dust (CKD) composite	TOC	297840	
		* Note: No FCC available to sample			

Samples shipped to lab by:	Date: 6. 28. 07	Time: 3:50
Samples relinquished to lab by:	Date: 6.23.07	Time: 9:23
Samples received at lab by: mfimphn	Date: 6-28-07	Time: 14:23

Please send copy(s) with each batch of sample(s) to the designated facility.

TLBC

Receiving Facility: Analysys Inc.

Sample submitted to: <u>Analysys, Inc.</u>

Phone: (512) 385-5886

Analysys, Inc. Fax: (512)385-7411

Chain of Custody

Sending Facility:

Company Name:	TXI Hunter Cement	Contact: <u>H. Borchers / T. Wigley</u>
Address:	7781 FM 1102	Phone: <u>512-396-4244 (x 229 or x270)</u>
City / State:	New Braunfels, TX	Fax: <u>512-396-7064</u>
Zip Code:	78132	
Reason for Request:	EPA Request	

Dale	Time	Sample Description			12.P
6/24/07	7:00 am	Limestone composite	TOC	297841	
6/24/07	7:00 am	Sand composite	TOC	297842	
6/24/07	7:00 am	Slag composite	TOC	297843	
6/24/07	7:00 am	Calcium sludge composite	TOC	297844	
6/24/07	7:00 am	Filter cake composite	TOC	297845	
6/24/07	7:00 am	Clay composite	TOC	297846	
6/24/07	7:00 am	Alakali bypass composite	TOC	297847	
6/24/07	7:00 am	ESP dust (CKD) composite	TOC	297848	
		* Note: No FCC available to sample			

Samples shipped to lab by:	Date: 6. 28.07	Time: 3.35
Samples relinquished to lab by:	Date: 6. 28.07	Time: 5/:232
Samples received at lab by: Mamohy	Date: 6.28.07	Time: 16:23

Please send copy(s) with each batch of sample(s) to the designated facility.

TL6 C

Receiving Facility: Analysys Inc.

Sample submitted to: <u>Analysys, Inc.</u>

Phone: (512) 385-5886

Analysys, Inc. Fax: (512)385-7411

Chain of Custody

Sending Facility:

Company Name:	TXI Hunter Cement	Contact: H. Borchers / T. Wigley
Address:	7781 FM 1102	Phone: <u>512-396-4244 (x 229 or x270)</u>
City / State:	New Braunfels, TX	Fax: <u>512-396-7064</u>
Zip Code:	78132	
Reason for Request	EPA Request	

Date	Time	Sample Description			R R
6/25/07	7:00 am	Limestone composite	TOC	297849	
6/25/07	7:00 am	Sand composite	TOC	297850	
6/25/07	7:00 am	Slag composite	TOC	297851	
6/25/07	7:00 am	Calcium sludge composite	TOC	297852	
6/25/07	7:00 am	Filter cake composite	TOC	297853	
6/25/07	7:00 am	Clay composite	TOC	297854	
6/25/07	7:00 am	Alakali bypass composite	TOC	297855	
6/25/07	7:00 am	ESP dust (CKD) composite	TOC	297856	
		* Note: No FCC available to sample			

Samples shipped to lab by:	Date: 5. 27.07	Time: 3. 30
Samples relinquished to lab by:	Date: 6, 28,07	Time: \$1:23
Samples received at lab by: Mimohn	Date: 6-28-07	Time: /1:23

Receiving Facility: <u>Analysys Inc.</u>

Sample submitted to: <u>Analysys, Inc.</u>

Phone: (512) 385-5886

Analysys, Inc. Fax: (512)385-7411

Chain of Custody

Sending Facility:

Company Name:	TXI Hunter Cement	Contact: H. Borchers / T. Wigley
Address:	7781 FM 1102	Phone: <u>512-396-4244 (x 229 or x270)</u>
City / State:	New Braunfels, TX	Fax: <u>512-396-7064</u>
Zip Code:	78132	
Reason for Request:	EPA Request	

Date n	Time	Sur Sample Description		alvisis Refinite	R
6/26/07	7:00 am	Limestone composite	TOC	297857	
6/26/07	7:00 am	Sand composite	TOC	297858	
6/26/07	7:00 am	Slag composite	TOC	297859	
6/26/07	7:00 am	Calcium sludge composite	TOC	297860	
6/26/07	7:00 am	Filter cake composite	TOC	297861	
6/26/07	7:00 am	Clay composite	TOC	297862	
6/26/07	7:00 am	Alakali bypass composite	TOC	297863	
6/26/07	7:00 am	ESP dust (CKD) composite	тос	297864	
		* Note: No FCC available to sample			
				······································	

Samples shipped to lab by:	Date: 6, 28. 07	Time: 3. Jan
Samples relinquished to lab by	Date: 6.28.07	Time: 4. 23
Samples received at lab by: mfumping	Date: 6 28 07	Time: 16:23

Receiving Facility: Analysys Inc.

Sample submitted to: <u>Analysys, Inc.</u>

Phone: (512) 385-5886

Analysys, Inc. Fax: (512)385-7411

Chain of Custody

Sending Facility:

Company Name:	TXI Hunter Cement	Contact: <u>H. Borchers / T. Wigley</u>
Address:	7781 FM 1102	Phone: 512-396-4244 (x 229 or x270)
City / State:	New Braunfels, TX	Fax: <u>512-396-7064</u>
Zip Code:	78132	
Reason for Request:	EPA Request	

Date	Time	Sample Description		i porsi de l	ned) BRR
6/27/07	7:00 am	Limestone composite	TOC	297865	
6/27/07	7:00 am	Sand composite	TOC	297866	1.2.5
6/27/07	7:00 am	Slag composite	TOC	297867	
6/27/07	7:00 am	Calcium sludge composite	TOC	297868	
6/27/07	7:00 am	Filter cake composite	TOC	297869	
6/27/07	7:00 am	Clay composite	TOC	297870	
6/27/07	7:00 am	Alakali bypass composite	TOC	297871	
6/27/07	7:00 am	ESP dust (CKD) composite	тос	297872	
		* Note: No FCC available to sample			
					1.5
		1			

Samples shipped to lab by:	Date: 28.07	Time: 3:30
Samples relinquished to lab by:	Date: C. 27.07	Time: 4:25
Samples received at lab by: mtumohy	Date: 10-28-07	Time: 16 23

Receiving Facility: Analysys Inc.

Sample submitted to: <u>Analysys, Inc.</u>

Phone: (512) 385-5886

Analysys, Inc. Fax: (512)385-7411

Chain of Custody

Sending Facility:

Company Name:	TXI Hunter Cement	Contact: <u>H. Borchers / T. Wigley</u>
Address:	7781 FM 1102	Phone: <u>512-396-4244 (x 229 or x270)</u>
City / State:	New Braunfels, TX	Fax: <u>512-396-7064</u>
Zip Code:	78132	
Reason for Request:	EPA Request	

	Soul Date 2	Time	Sample Description	Analysis Required	RR
196700	6/28/07	7:00 am	Limestone composite	TOC	
196701	6/28/07	7:00 am	Sand composite	TOC	
196702	6/28/07	7:00 am	Slag composite	тос	
196703	6/28/07	7:00 am	Calcium sludge composite	TOC	
196704	6/28/07	7:00 am	Filter cake composite	TOC	
196705	6/28/07	7:00 am	Clay composite	тос	
196706	6/28/07	7:00 am	Alakali bypass composite	TOC	
196707	6/28/07	7:00 am	ESP dust (CKD) composite	тос	2.548
			* Note: No FCC available to sample		
			/		

Samples shipped to lab by:	Date: 7,06.07	Time: RITA
Samples relinquished to lab by:	Date: 7.06.07	Time: Stran
Samples received at lab by: Manahm	Date: 7/6/07	Time: 1600

Please send copy(s) with each batch of sample(s) to the designated facility.

T16°C

Receiving Facility: Analysys Inc.

Sample submitted to: <u>Analysys, Inc.</u>

Phone: (512) 385-5886

Analysys, Inc. Fax: (512)385-7411

Chain of Custody

Sending Facility:

Company Name:	TXI Hunter Cement	Contact: <u>H. Borchers / T. Wigley</u>
Address:	7781 FM 1102	Phone: <u>512-396-4244 (x 229 or x270)</u>
City / State:	New Braunfels, TX	Fax: <u>512-396-7064</u>
Zip Code:	78132	
Reason for Request:	EPA Request	

	ar pare	Time	Sample Description	Analysis Required	R
196708	6/29/07	7:00 am	Limestone composite	ТОС	
196709	6/29/07	7:00 am	Sand composite	TOC	
196716	6/29/07	7:00 am	Slag composite	TOC	
196711	6/29/07	7:00 am	Calcium sludge composite	TOC	
196712	6/29/07	7:00 am	Filter cake composite	TOC	
196713	6/29/07	7:00 am	Clay composite	тос	
196714	6/29/07	7:00 am	Alakali bypass composite	TOC	
196715	6/29/07	7:00 am	ESP dust (CKD) composite	тос	
			* Note: No FCC available to sample		
•					

Samples shipped to lab by:	Date: 7.06.07	Time: 2:17
Samples relinquished to lab by:	Date: 7 06, 17	Time: y'ap
Samples received at lab by: hstrophy	Date: 7/10/07	Time: 1600

Please send copy(s) with each batch of sample(s) to the designated facility.

TL6°C

Receiving Facility: Analysys Inc.

.

Sample submitted to: <u>Analysys, Inc.</u>

Phone: (512) 385-5886

Analysys, Inc. Fax: (512)385-7411

Chain of Custody

Sending Facility:

Company Name:	TXI Hunter Cement	Contact: H. Borchers / T. Wigley
Address:	7781 FM 1102	Phone: <u>512-396-4244 (x 229 or x270)</u>
City / State:	New Braunfels, TX	Fax: <u>512-396-7064</u>
Zip Code:	78132	
Reason for Request:	EPA Request	

	Date	Time	Sample Description	Analysis Required	R.R.
196716	7/04/07	7:00 am	Limestone composite	тос	
196717	7/04/07	7:00 am	Sand composite	тос	
196718	7/04/07	7:00 am	Slag composite	тос	
196719	7/04/07	7:00 am	Calcium sludge composite	тос	\$ 7 255
196720	7/04/07	7:00 am	Filter cake composite	тос	
196721	7/04/07	7:00 am	Clay composite	тос	
196722	7/04/07	7:00 am	Alakali bypass composite	тос	ALC: NO
196723	7/04/07	7:00 am	ESP dust (CKD) composite	тос	
196724	7/04/07	7:00 am	FCC composite	тос	
					1. A A A
			1		

4 -

Samples shipped to lab by:	Date: 7, 06.07	Time: 2:17
Samples relinquished to lab by:	Date: 7.05.07	Time: 9:20
Samples received at lab by Mtm.ovm	Date: 7/10/07	Time: 1600

300 Bryce Canyon Drive Cedar Park, Texas 78613-2308 Phone: (512) 335-4467 Fax: (512) 335-5774 e-mail: en-tellect@austin.rr.com

February 13, 2002

En rtellect

Mr. Peter Goerdel EPA Region VI 1445 Ross Avenue Dallas, TX 75202-2733

RE: TXI Operations, L.P. Hunter Cement Plant Notification of Source Status Testing

Dear Mr. Goerdel:

The purpose of this letter is to provide you notification that TXI Operations, LP intends to conduct area source status testing at the Hunter Cement Plant during the week of April 15, 2002. The testing will be conducted pursuant to 40 CFR §63.1352. The testing will be conducted by Clean Air Engineering, Inc. which is based out of Palantine, Illinois and Houston, Texas.

Name and Mailing Address of Owner/Operator

TXI Operations, L.P. Hunter Cement Plant 7781 FM 1102 New Braunfels, Texas 78132

Address (physical location)

7781 FM 1102; 8 miles north of New Braunfels

Identification of the relevant standard and the source's compliance date

The purpose of this test is to determine the sources status using the methods specified in §63.1352 for HCl and Organic HAPs.

Compliance Date: June 10, 2002

Source Description and Pollutant Identification

TXI Operations, L.P. operates a dry process cement manufacturing plant in Comal County near Hunter, Texas. The facility was permitted in 1979 and began operations in

1980. The kiln is equipped with a preheater and alkali bypass system. The facility is currently permitted to utilize coal, petroleum coke, natural gas and tire derived fuel and currently produces up to 101.2 tons/hr and 886,351 tons/yr of clinker.

The plant also includes an in-line roller mill, finish mill, clinker cooler and other material handling equipment typical of a portland cement plant.

The point source (EPN 1-DE-3) is the only source associated with emissions of organic HAPs, D/F and HCl. Metal HAPs are emitted from this source as-well-as various particulate emitting material processing and handling sources throughout the plant. \sim

If you have any questions concerning this notification, please do not hesitate to contact either Gene Pettey at (512) 396-4244 or me at (512) 335-4467.

Sincerely,

Inlu

Jay Lindholm Vice President

cc:

Mr. Steve Hagle, TNRCC - Operating Permits Division, Austin, Texas Mr. Richard Garcia, TNRCC - Region 13, San Antonio, Texas Mr. Gene Pettey, TXI - Hunter Cement Plant, New Braunfels, Texas Entellect Environmental For TXI Operations, L.P. Hunter Cement Plant 7781 FM 1102 New Braunfels, Texas 78132

PROTOCOL ON PC MACT COMPLIANCE TESTING

Performed for: ENTELLECT ENVIRONMENTAL FOR TXI OPERATIONS, L.P. HUNTER CEMENT PLANT KILN STACK

> Client Reference No: 63927 CAE Protocol No: 9101 Revision 0: March 19, 2002

Submitted by,

Brenton Berridge, P.E. Manager, Houston Regional Office
Client Reference No: 63927 CAE Project No: 9101

CONTENTS 1 PROJECT OVERVIEW......1-1 Table 1-2: Proposed Testing Schedule 1-2 DESCRIPTION OF INSTALLATION......2-1 2 3 GAS COMPOSITION AND MOI FOULAR WEIGHT - FPA METHOD 3

•	JAS COMPOSITION AND MOLECULAR WEIGHT - EPA METHOD 5	3-4
Ì	MOISTURE CONTENT - EPA METHOD 4	3-4
	Figure 3-2: Moisture Sampling Apparatus (EPA Method 4)	3-5
s	speciated volatile organic compounds - EPA METHOD 18	3-6
	Figure 3-3: Stack Sampling Apparatus (EPA Method 18)	3-7
I	Hydrogen Chloride and HAPS TESTING - EPA METHOD 320/321	3-8
	Figure 3-4: FTIR Hydrogen Chloride Sampling Apparatus (EPA Method 321)	3-9

ii

1-1

PROJECT OVERVIEW

TXI Operations, L.P. contracted Clean Air Engineering to perform PC MACT (40 CFR Part 63, Subpart LLL) testing at their facility located in New Braunfels, Texas for compliance purposes. The testing will be performed to help in determining whether the plant can be considered an area source or a major source.

The test parameters will include the following HAP pollutants:

- volatile organic compounds* (VOC);
- hydrogen chloride (HCl)
- flue gas composition (e.g., O₂, CO₂, H₂O);
- flue gas temperature;
- flue gas flow rate.

The testing will be performed using both a GC/FID as well as an FTIR. The specific compounds to be analyzed for will be:

- Benzene by GC/FID
- Toluene by GC/FID
- Hexane by GC/FID
- Naphthalene by GC/FID or FTIR
- Phenol by GC/FID or FTIR
- Xylene by GC/FID or FTIR
- Hydrogen Chloride by FTIR
- Formaldehyde by FTIR

*The analytical method used will be determined based on detection limits of the GC/FID and FTIR after the preliminary concentrations of the compounds is determined.

Client Reference No: 63927 CAE Project No: 9101

PROJECT OVERVIEW

The testing will take place at the Kiln Stack during the week of April 15, 2002. Coordinating the field testing will be:

Rex Coffman – TXI Operations, L.P. Edgar Sawyer - TNRCC Brenton Berridge - Clean Air Engineering

Table 1-1: Summary of Testing

Summary of Testing							
<u>Source</u> Constituent	Sampling Method	Permit Limit ¹					
<u>Kiln Stack</u> Total HCl & HAPs (ton/yr)	EPA M18, M320/321	25					
		<u> </u>					

¹ Permit limits obtained from PC MACT requirements.

Day	Activity	Location	Test Method	Repli- cates	Sample Time
1-2	Mobilization/Set-Up				
•3	Calibrations and Preliminary Sampling	Kiln Stack	1-4, 18, 320/321		
4	HAP Compounds	Kiln Stack Raw Mill On	1-4, 18, 320/321	3	60 min
5	HAP Compounds	Kiln Stack Raw Mill Off	1-4, 18, 320/321	3	60 min

Revision 0

Client Reference No: 63927 CAE Project No: 9101

DESCRIPTION OF INSTALLATION

TXI Operations, L.P. operates a dry process portland cement manufacturing plant in Comal County near Hunter, Texas. The facility will be permitted in 1979 and began operations in 1980. The kiln is equipped with a preheater alkali bypass system which is combined with the kiln exhaust into a single stack. The facility is currently permitted to utilize coal, petroleum coke, natural gas and tire derived fuel. The current production rate is up to 101.2 tons/hr and 886,351 tons/yr of clinker. There is also an in line roller/raw mill which normally operates, but the kiln can operate for a limited time with it out of operation.

The testing will be performed at the Kiln Stack.

A schematic of the process indicating sampling locations is shown in Figure 2-1.

Figure 2-1: Process Schematic

2-1

METHODOLOGY

The sampling will follow procedures as detailed in U.S. Environmental Protection Agency (EPA) Methods 1, 2, 3, 4, 18 and 320. The following table summarizes the methods and their respective sources.

	Т	able	3-1:	
Summarv	of	Sam	plina	Procedures

Title 40 CFR Part 60 Appendix A

Method 1	"Sample and Velocity Traverses for Stationary Sources"
Method 2	"Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)"
Method 3	"Gas Analysis for the Determination of Dry Molecular Weight"
Method 4	"Determination of Moisture Content in Stack Gases"
Method 18	"Measurement of Gaseous Organic Compound Emissions by Gas Chromatography"
Title 40 CFR P	art 63 Appendix A
Method 320	"Measurement of Vapor Phase Organic and Inorganic Emissions by Extractive Fourier
	Transform Infrared (FTIR) Spectroscopy"
Method 321	"Measurement of Gaseous Hydrogen Chloride Emissions at Portland Cement Kilns by
	Fourier Transform Infrared (FTIR) Spectroscopy"

These methods appear in detail in Title 40 of the Code of Federal Regulations (CFR).

These sampling, recovery and analytical procedures are summarized on pages 3-2 through 3-9.

All equipment will be calibrated at the Clean Air Engineering laboratory prior to shipment to the job site. The GC/FID will be pre-calibrated at the laboratory to develop response times and detection limits. A post-test calibration will be performed on the meter boxes at the conclusion of testing to verify that calibration will be maintained throughout the test program.

METHODOLOGY

SAMPLING POINT DETERMINATION

Sampling point locations will be determined according to EPA Method 1.

Table 3-2 outlines the sampling point configurations. Figure 3-1 through illustrates the sampling points and orientation of sampling ports for each of the sources tested in the program.

Table	3-2:
Sampling	Points

Location	Constituent	Method	Run No,	Ports	Points per Port	Minutes per Point	Total Minutes	Figure
Unit 1 Stack	Flows/Moistur	es 1-4	1-6	4	3	5	60	4-1

The pollutant sampling will occur at the approximate center of the stack.

METHODOLOGY

VELOCITY AND VOLUMETRIC FLOW RATE - EPA METHOD 2

EPA Method 2 will be used to determine the gas velocity and flow rate at the Stack. Figure 3-2 includes the components of the EPA Method 2 sampling apparatus.

Each set of velocity determinations includes the measurement of gas velocity pressure and gas temperature at each of the EPA Method 1 traverse points. The velocity pressures are measured with a Type S pitot tube. Gas temperature measurements are made using a Type K thermocouple and digital pyrometer.

GAS COMPOSITION AND MOLECULAR WEIGHT - EPA METHOD 3

In order to determine the oxygen (O_2) concentration, carbon dioxide (CO_2) concentration and gas molecular weight, a time-integrated sample of the gas will be obtained and analyzed in accordance with EPA Method 3. The gas sample will be collected into a vinyl sample bag from the moisture testing. The contents of the bag will be analyzed for O_2 and CO_2 concentrations using an Orsat gas analyzer.

MOISTURE CONTENT - EPA METHOD 4

The flue gas moisture content at the Stack will be determined in accordance with EPA Method 4. Figure 3-2 shows the major components of the EPA Method 4 sampling apparatus. The gas moisture will be determined by quantitatively condensing the water in a chilled knock-out jar train. The amount of moisture condensed is determined both volumetrically and gravimetrically. A dry gas meter will be used to measure the volume of gas sampled. The amount of water condensed and the volume of gas sampled is used to calculate the gas moisture content in accordance with EPA Method 4 calculations.

After passing through the probe, the sample gas enters a knock-out jar condenser system for drying of the gas. The condenser system consists of four leak-free glass knock-out jars and rubber leak-free connectors. The first two knockout jars each contain 100 milliliters of distilled water. The third knock-out jar will be empty, and the fourth contains 300 grams of silica gel. All four of the knock-out jars will be placed in an ice bath for the duration of the test.

The metering system includes a vacuum gauge, a leak-free pump, thermometers accurate to within $\pm 5.0^{\circ}$ F and a dry gas meter accurate to within 2%.

Before and after each test, the sample apparatus will be leak checked. A leakage rate of less than the 0.02 cfm will be considered acceptable.

Client Reference No: 63927 CAE Project No: 9101

3-5

METHODOLOGY

SPECIATED VOLATILE ORGANIC COMPOUNDS -EPA METHOD 18

EPA Method 18 will be used to measure concentrations of benzene, toluene, hexane, naphthalene, phenol and xylene. This method specifies the use of a variety of sampling techniques coupled with analysis by Gas Chromatography (GC) with a Flame Ionization Detector (FID).

At the Stack a VOST sampling meter will be used to pull gas through one charcoal and one XAD sample tubes in order to concentrate the sample to obtain lower detection limits. Figure 3-3 illustrates the sampling train which will be used. The sample tubes will be desorbed on-site using carbon disulfide.

An aliquot of the desorbed sample will then be injected into the GC injection port for analysis. The chromatographic method (e.g. oven temperature program) will simultaneously begin.

The Recovery Study required by Method 18 will be performed by running a colocated train simultaneously with the sample train for 3 runs. The second train will have the adsorbent tubes spiked with the compounds of interest to show the recovery efficiency.

Data from the chromatograms will be reduced by identifying peaks and matching their retention times with those of the known standards. Peak areas will be calculated using computer integration. Results will be calculated by mathematically comparing the area of the sample to the area of the standards using a least-squares regression analysis.. Results will be calculated as total micrograms of each analyte.

Standards for the GC/FID analysis will be made by dissolving known amounts of each analyte in carbon disulfide. Concentrations will be determined as micrograms/milliliter for each analyte.

Calibration response curves will be prepared using a least-squares regression analysis. At least three calibration points will be generated for the response curves for each compound. At least three injections will be performed for each calibration point. The percent difference of each injection from the mean of all injections will be less than $\pm 5\%$. The relative standard deviation for the results of each injection for each calibration point will be less than $\pm 5\%$.

3-6

Client Reference No: 63927 CAE Project No: 9101

Figure 3-3: Stack Sampling Apparatus (EPA Method 18)

METHODOLOGY

HYDROGEN CHLORIDE AND HAPS TESTING -EPA METHOD 320/321

The gaseous hydrogen chloride, formaldehyde and the tentative 3 additional HAP compound emissions will be determined using procedures detailed in EPA Method 320/321. Figure 3-4 illustrates the EPA Method 320/321 sampling apparatus. An integrated sample will be extracted from the gas stream through a heated probe, heated filter, Teflon sample line and heated pump. The sample then enters a heated manifold that introduces a known quantity of sample into the FTIR cell. FTIR performance will be verified using a 20 ppm ethylene calibration transfer standard (CTS) prior to and after each sampling event per Method 320 and 321. A calibration gas containing sulfur hexafluoride and hydrogen chloride will be used for analyte spiking. The calibration gas and CTS will be introduced into the probe tip. All flows will be controlled with calibrated flow meters. The sample will be continuously extracted with FTIR absorbance scans every six minutes or less.

Infrared absorption spectroscopy is performed by directing an infrared beam through a sample to a detector. The frequency-dependent infrared absorbance of the sample is measured by comparing this detector signal to a signal obtained without a sample in the beam path (background). There is a linear relationship between infrared absorption and compound concentration. This frequency dependent relationship is known as absorptivity. The absorptivity is measured by preparing standard samples in the laboratory of compounds at known concentrations and detector conditions. A correlation is then made between the standards (reference spectra) and the sample gas analysis. The relative intensities determine the sample gas concentrations.

The FTIR analyzer consists of a medium-high resolution interferometer, heated fixed path absorption cell, a mercury cadmium telluride (MCT) detector (liquid nitrogen cooled), electronics package and computer. The gas transport path inside the FTIR is heated to 180°C, while the absorption cell is maintained at 150°C.

The interferometer/electronics package is operated at a nominal spectral resolution of 0.5 wavenumber (0.5 cm⁻¹). The heated absorption cell is a fixed pathlength of 10 meters. The mirrors and cell interior are gold plated. The IR beam splitter and all optical windows are made of zinc selenide.

The method is self-validating by performing field spikes with a known concentration of the target compound. The QA/QC procedures can be found in reference in Methods 320 and 321.

.

3-9

CleanAir Engineering 321 Century Plaza Suite 130 Houston, TX 77073-6041 800-723-0362 www.cleanair.com

TXI Operations, L.P. Hunter Cement Plant 7781 FM 1102 New Braunfels, Texas 78132

REPORT ON PC MACT COMPLIANCE TESTING

Performed for: TXI OPERATIONS, L.P. KILN STACK HUNTER CEMENT PLANT

Client Reference No: 63927 CAE Project No: 9101 Revision 0: May 26, 2002

To the best of our knowledge, the data presented in this report are accurate and complete.

Submitted by,

Brenton E. Berridge, P.E. Manager, Houston Regional Office

Reviewed by,

Eric Rodriguez Project Manager

TXI OPERATIONS, L.P. HUNTER CEMENT PLANT

Client Reference No: 63927 CAE Project No: 9101

ii

CONTENTS

1	PROJECT OVERVIEW 1-1 Table 1-1: Summary of Test Results 1-2
2	RESULTS 2-1Table 2-1: Kiln Stack – HAP Concentrations by Method 18, Raw Mill On2-1Table 2-2: Kiln Stack – HAP Concentrations by Method 320 & 321, Raw Mill On2-3Table 2-3: Kiln Stack – HAP Concentrations by Method 18, Raw Mill Off2-4Table 2-4: Kiln Stack – HAP Concentrations by Method 320 & 321, Raw Mill Off2-4
3	DESCRIPTION OF INSTALLATION
4	METHODOLOGY.4-1Table 4-1: Summary of Sampling Procedures.4-1Sampling Point Determination4-2Table 4-2: Sampling Points4-2Figure 4-1: Kiln Stack Sampling Point Determination (EPA Method 1).4-3VELOCITY AND VOLUMETRIC FLOW RATE - EPA METHOD 2.4-4GAS COMPOSITION AND MOLECULAR WEIGHT - EPA METHOD 3.4-4Figure 4-2: Moisture Sampling Apparatus (EPA Method 4).4-5speciated volatile organic compounds - EPA METHOD 18.4-6Figure 4-3: Stack Sampling Apparatus (EPA Method 18).4-7Hydrogen Chloride and FORMALDEHYDE TESTING - EPA METHOD 320/321.4-8Figure 4-4: FTIR Hydrogen Chloride Sampling Apparatus (EPA Method 321).4-9
5	APPENDIX5-1SAMPLE CALCULATIONSAPARAMETERSBCALIBRATION DATACFIELD DATADFIELD DATA PRINTOUTSELABORATORY DATAFOPERATING DATAGPROTOCOLHRESUMESI

TXI OPERATIONS, L.P. HUNTER CEMENT PLANT

Client Reference No: 63927 CAE Project No: 9101

PROJECT OVERVIEW

TXI Operations, L.P. contracted Clean Air Engineering to perform PC MACT (40 CFR Part 63, Subpart LLL) testing at their facility located in New Braunfels, Texas for compliance purposes. The testing was performed to help in determining whether the plant can be considered an area source or a major source.

- volatile organic compounds (VOC);
- hydrogen chloride (HCl)
- flue gas composition (e.g., O₂, CO₂, H₂O);
- flue gas temperature;
- flue gas flow rate.

The testing was performed using both a GC/FID as well as an FTIR. The specific compounds analyzed for were:

Compound	Analyzer	Method	
Benzene	GC/FID	18	
Hexane	GC/FID	18	
Naphthalene	GC/FID	18	
Phenol	GC/FID	18	
Toluene	GC/FID	18	
Xylene	GC/FID	18	
Hydrogen Chloride	FTIR	321	
Formaldehyde	FTIR	320	

The testing took place at the Kiln Stack on April 17 through 19. Coordinating the field testing were:

Kerri Kerr – TXI Operations, L.P. Jay Lindholm – Entellect Environmental Brenton Berridge - Clean Air Engineering

TXI OPERATIONS, L.P. HUNTER CEMENT PLANT

PROJECT OVERVIEW

I able 1-1: Summary of Test Results					
<u>Source, Condition</u> Constituent	Sampling Method	Average Emission	Permit Limit ¹		
<u>Kiln Stack, Raw Mill On</u> Total HAPs (ton/yr)	EPA M18, M320/321	12.20	25		
<u>Kiln Stack, Raw Mill Off</u> Total HAPs (ton/yr)	EPA M18, M320/321	13.72	25		

¹ Permit limits obtained from PC MACT requirements.

The Method 18 testing was performed using sorbent tubes and anlyzed on-site with a GC/FID. The first 3 runs (Raw Mill On) were performed with a charcoal tube followed with an XAD tube. During the analysis it was found that the phenol was trapped in the charcoal tube and an acceptable spike recovery was not obtained. It was decided to change the order of the tubes (XAD followed by charcoal) in order to solve the problem. A trial spike showed that this would work. The Raw Mill On condition was sampled again (Runs 7 through 9) in order to get the recoveries. The duplicate trains were run during Runs 1 through 6 and are numbered as 1B through 6B. The spike recoveries are shown in the Appendix, Section B.

The majority of the compounds analyzed for with the GC/FID were at non-detect levels. The results are reported using these minimum detect values calculated according to Method 18. Due to the low detection levels obtained by using the sorbent tube procedure, the emissions were in compliance with the area source requirements.

Runs 1A through 6A and 7 through 9 were used in the averages. The "B" runs are only used to show the recovery percentages. Only the Phenol results from Runs 1 through 3 are not used in the average as they did not pass the recovery requirements.

The duplicate trains were operated at the same point 4 feet into the stack a the same location. The setup used for both trains is shown in Section 4.

The results of the Method 18 data are shown in the Appendix Section F, however due to the size of the backup data, it is provided on CD-ROM at the end of the report. The FTIR data is provided in this section as well with the actual spectra archived at Clean Air Engineering.

The test conditions and results of analysis are presented in Tables 2-1 through 2-4 on pages 2-1 through 2-4.

Bryce Canyon Drive

Cedar Park, Texas 78613-2308 Phone: (512) 335-4467 Fa

35-4467 Fax: (512) 335-5774 e-mail: en-tellect@austin.rr.com

June 3, 2002

Mr. Peter Goerdel EPA Region VI 1445 Ross Avenue Dallas, TX 75202-2733

RE: TXI Operations, L.P. Hunter Cement Plant TNRCC Account No. CS-0018-B Area Source Determination Results

Dear Mr. Goerdel:

The purpose of this letter is to provide you notification that TXI Operations, LP's Hunter Cement Plant has conducted the required testing to show that this facility is an area source under the PC MACT rules (40 CFR Part 63, Subpart LLL). The testing was conducted during the week of April 15, 2002. The testing was conducted pursuant to 40 CFR §63.1352 by Clean Air Engineering, Inc. which is based out of Palantine, Illinois and Houston, Texas. Following testing all potental HAP emissions including organic HAPs, HCl, metal HAPs and dioxin and furan emissions were totaled. The total HAP potential emissions at this facility were determined to be 14 tons/yr. No individual HAP emissions exceeded 10 tons/yr and the aggregate emissions are less than 25 tons/yr. Therefore, this facility is defined as an area source. A summary of HAP emissions and the determination of the roller mill up versus the roller mill down is provided in Attachment A of this document. The determination of metal HAP emissions is provided in Attachment B of this document. Finally, the test report from the organic HAPs and HCl testing is included as Attachment C.

Name and Mailing Address of Owner/Operator

TXI Operations, L.P. Hunter Cement Plant 7781 FM 1102 New Braunfels, Texas 78132

Address (physical location)

7781 FM 1102; 8 miles north of New Braunfels

Identification of the relevant standard and the source's compliance date

The purpose of this test is to determine the sources status using the methods specified in §63.1352 for HCl and Organic HAPs.

Compliance Date: June 14, 2002

Source Description and Pollutant Identification

TXI Operations, L.P. operates a dry process cement manufacturing plant in Comal County near Hunter, Texas. The facility was permitted in 1979 and began operations in 1980. The kiln is equipped with a preheater and alkali bypass system. The facility is currently permitted to utilize coal, petroleum coke, natural gas and tire derived fuel and currently produces up to 101.2 tons/hr and 886,351 tons/yr of clinker.

The plant also includes an in-line roller mill, finish mill, clinker cooler and other material handling equipment typical of a portland cement plant.

The point source (EPN 1-DE-3) is the only source associated with emissions of organic HAPs, D/F and HCl. Metal HAPs are emitted from this source as-well-as various particulate emitting material processing and handling sources throughout the plant.

If you have any questions concerning this notification, please do not hesitate to contact either Gene Pettey at (512) 396-4244 or me at (512) 335-4467.

Sincerely,

Julash

Jay Lindholm Vice President

Mr. Steve Hagle, TNRCC - Operating Permits Division, Austin, Texas
 Mr. Edgar Sawyer, TNRCC - Region 13, San Antonio, Texas
 Mr. Gene Pettey, TXI - Hunter Cement Plant, New Braunfels, Texas
 Mr. Rex Coffman, TXI - Midlothian Cement Plant, Midlothian, Texas

Attachment A Emission Summary of HAPs

(

EMISSION SUMMARY OF HAPS FOR THE HUNTER CEMENT PLANT

Description	PTE Mill up tons/yr	PTE Mill Down tons/yr	Total [*] tons/yr
Organic HAPs + HCl	12.2	13.72	12.352
Metals From all Sources			1.653
Dioxin and Furan Emissions			1.1156E-06
Total HAPs Emissions			14.005

* - Mill up Versus Mill down equals 90% mill up to 10% mill down

Historical Mill Up Versus Mill Down Hunter Cement Plant

Year	Months	Kiln Hours	Roller Mill Hours	Roller Mill % of Kiln Operation
1996-1997 1997-1998	June-May June-May	8063.7 8361.2	7179.3 7611.5	89.03% 91.03%
1998-1999	June-May	7657 7725	6887	89.94% 88.40%
2000-2001	June-May	7983	7313	88.49% 91.61%
Average		7957.98	7165.36	90.04%

Attachment B HAP Metals Emissions Summary TXI OPER INS, LP HUNTER CEN PLANT METALS SUMMARY Plant Description: TXI Operations, LP Ilunter Centent Plant Account Number: CS-0018-B

			Material & : Utiliza	Solid Paci tion	Particuluie Estimbos					MAC	T Ideatified (II.) Mistals	(SZ)				
dans?	NAS	Activity	Type [Throughper Reacy?	TSP (belyt)	Astimus) (total)	Armels faitht	Beryman	Constants San Dy Le		Conste (RUNN)	Lead of the second s		Menuty [[uuty]]	Nickel Headers	U.S.
	, L		-													
Trades	=	Truck Unioading to Apron Feeder Conveyor Transfer	Limestone	AFT. FAL	11100.0	0.000000000	10000000000						2 10000001			SUNXXXXXXXXX
	6	6x20 Belly Pan to Stacker Belt	Limestone	483.736	0,00399	0.00000002	0.0000001	I OKNANANA) O	D.CKOKKKKB4	0.0000001	0.00000000	0.0000002 0	21000000	0.0000000002	0.00000001	OKNOKOOK
	2	5x15 Belly Pan to Stacker Belt	Limestone	33,862	0.00028	O.CONMANADOO	O, CKKKKKKK	O, CH KKKKKKKK	0.000000000	O,OKKOKKO,O	0.000000000	O CHRNNNNNO.C	100000000	0.000000000000	D.OKKKKKK	LOXANONOOD.
	1	Recycle Conveyor to Conveyor	Limestone	33,862	0.00028	0.000000000	O, OKKKKKKK	O,OKKNOKNO)	0.000000000	O, OKKNOOKKO	0.000000000 0	D.OKNIKKOO 0	10000000.0	O.GKNKKKKKK	0.000000000	LOONNOONNO.
	27	Conveyor Transfer	Limestone	320,976	0.00265	LONNXXXXXX 0.0	0.00000001	O, OKKKKKKK	ECKNAMMANO.O	LONNWAND,O	0.0XXXXXXX010	0 LONNNNND.C	110000000	U.OKKKKKKKUI	D. CHMMMMD I	SUXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Brin	1-4E-1	F E louder dmn to truck	Linestone	1 127 819	1 (1877	O CKRWM LGRO	0 (KKKK753	SKEUDINNIO	NAOTOWNNO O	0.00000772	0.00000772	0 10210000	19061000	0.0000001235	D DODODODA	CONDOMANT 175
-	1-AF-6	Clinker dam faun Inick	Clinker	5.077	10707	U UNNNJSCRA	CTUNNNN O	STURSAND U	COMMAND 0	0.00008715	O CHUNNIN22	0 FFL200000	00016426	EEOOXXXXX 0	D (MKKKKKG	0.00001244
	I-9E-II	L S drop to crusher	Limestone	1.147,819	0.9263	1020000000	0.00000226	0,00000145	0.00000026	0.00000232	0.00000232	0 115000000	81650000	175000000000	0.00000272	610000000
	1-AE-12	Clav hopper	Clav	137.456	0.0147	CONDUCTION CONDUCTION	LOXXXXXX0.0	LONOXXXXX 0	0,00000001	0.00000012	0.(MXXXXXI)7	0 0000000000000000000000000000000000000	000000000000000000000000000000000000000	1000000000	0.00000017	EOOXXXXXXXXX
	1-AE-14	Clay Inick drop	Clay	9\$1.761	0.0147	COMMMMM0.0	D.CMNKKKD4	0.0MMMM010	0.00000001	0.0000012	0.00000007	0 0200000000000000000000000000000000000	000000166	D.CONKKKKKOI	0,0000017	EINXXXXXXXXXX
	1-AE-15	Clinker drop to hopper	Clinker	5,077	0.0594	0,00011372	0.00000154	O.CKKKKKN95	0,0000065	0.00017430	1210000000	0.0000549 0	00032852	0.00000065	0910000000	0.0000249
	1-AE-16	Hopper to stacker	Clinker	5.077	0.0594	0.00011372	0.00000154	0,00000095	0.00000065	0.00017430	0.00000184	0,0000549 0	L(KK)32852	0.00000065	0,000000.0	0,0000249
	1-AE-17	Clinker drop to truck	Clinker	3,216	0.0376	0.00007204	BUNKKKK	O.CONKNOKAD	0.00000041	1401100010	0.00000117	0 84£000070	00020811	0.00000041	0.00000102	0.0000158
	1-AE-18	Clinker crusher hopper	Clinker	3.216	0.0376	0.00007204	RUGKIKKKO.O	0.000000000	0.00000041	0.00011041	0.00000117	0.0000348 0	0,00020811	0.0000041	0.00000102	0,0000158
	1-AE-20	Reclaimed clinker drop	Clinker	3.216	0,0376	0.00007204	NUNNNN).()	D. CNNKKKKG	0.00000041	0.00011041	0.00000117	0.0000348 0.	00020811	1 FORMANNO O	0.00000102	0,0000158
	1-4E-21	Reclaimed clinker drop to Feed Hopper #1	Clinker	3.216	0.0188	0.00003602	OLONONOLO	0.00000000.0	0.00000021	0,00005521	O.OKKKKKS&	0.0000174 0.	2010101030	0.00000021	0.0000051	0.00000788
	1-AE-22	Feed Hopper Drop to Screw Conveyor 1	Clinker	3.216	9500.0	0.00000720	0100000000	O.OKNNNNKG	D.COOKKNOL	1011000010	0.00000012 0	O SECONNOIO	00002081	LONOXXXX 0.0	0.00000000	0.00000158
	1-AE-23	Reclaimed clinker drop to Feed Hopper #2	Clinker	3.216	0.0188	0.00003602	0.0000049	0.00000030	0.00000021	0.00005521	0.00000058	0.0000174 0	20101000	D.(NUKKNIZ]	D.OKOKOOSI	0.00000788
	1-AE-24	Feed Hopper Drop to Screw Conveyor 2	Clinker	3,216	AEUO.O	0.00000720	0.000000.0	0.00000006	DOCKNOCK	10100000	0.00000012	0 815000000	18020000	D.ONKNWAL	0100000000	0.00000158
	1-86-3	Sand dump fughives	Sand	96,501	0.020K	0.00000003	0.00000000	0.00000002	0.00000006	0.00007504	D. GROKKKANS	0 FOLOMMAD	011290001	I CHNNNNNN O.O	D.CHKKKKKS	COOKKANNO, O
	1-BE-6	Iron Additive dump to pile	Slag	48,406	0.0286	ECKNAKKA).()	0.00000012	COMMANN)	0.0000008	0.00010322	0.00000007	0 64100000.0	00092352	0.000000001	2110000010	0.00000012
	1-86-10	Iron Additive Drop	Slag	4X'102	0.0086	10000000000	D.(KKKKKKA4	D.ONNONADI.O	0.00000002	0.00003097	0.00000002	O CHONNONICO	00027706	O.OKKWWWW	SEUNXXXXXX 0.0	CONNUMBER OF
	1-DE-5	CKD drop to outbaul truck	CKD	16.915	0.0020	0.00000002	0.00000003	D.OXXXXXX0.0	100000000	0100000010	VIN	1.0000014	VIN	0.00000000002	COMMONIALO	0.00000013
	1-EE-3	Drop to pile fugitives	Coal	114,803	0.0273	0.(ИМИИИО).()	O.(MKKKKN4	0.04444405	0.0KKKKKISS	0,00000136	0.00000136	0.00000273 0	81 I (XXXXX)	CONNONNO.O	9610000000	COMMANNO O
			Coke	•	0.08880	().(KKKKKKK)	O.(WNKNNK)	O,CKINKKKKO	O.OKKKKKKK	O.CHARMONN	O, CHNKKKKK	O. (NOKKNON) O	(NNNNNN)	O.ONNXXXXO	O.ONNONNO	0.000000000
	1-88-1	Louder to coul hopper	Coul	114,803	0,0082	0.00000000	D.GKKKKKKD1	0.00000002	0.00000016	0.0000041	0.0000041	D.(KONKKOK2 0	11000000	0.000000001	11000000010	0,00000001
	I-EE-the	Louder to coke hopper	Cuke	-	() (NXXI)	O, OKNANNA)	O,ONNHHKKO	O,ONNOONO,O	O.OKNOONNO	0.000KKNNN	0,00000000	0.0000000.0	CONDONNO)	0.000000000	O.ONNXXXXXX	O.ONNOONNO.O
	1-EE-5	Hopper to coal belt	Coal	114,803	0.0545	0.00000002	CONNERS OF CONTRACTOR	0.00000011	0.00000109	0.00000273	0.00000273	0 SERVICES 0	00000295	0.000000005	0.00000273	0.CONNOCHOG
	I-EE-Spc	Hopper to coke belt	Coke	-	0,0000	O.OKKKKKK	O.CKNXXXXXI	0.00000000	0.0KKKKKKK	0.00000000	0.00000000 0	O, OKNONNOO, O	CONNONNO.	OLOKKOOKKO .O	DICONDOCONDO, CI	O.CHNKKKKKO
	1-EE-6hc	Coke belt to coke feeder	Coke	0	0.0000	0.0000000	O,OXXXXXXXX	O.OKNNNNN)	0.00000000	0.00000000	0.00000000	0. (NXXXXXXX 0	CONCOCIONO)	0.00000000	0,0000000	0,0000000
	1-EE-7pc	Coke leader to coal belt	Coke	-	0(000)	O.(XXXXXXXX)	O,ONKKNOKN)	O.CKXKKKK)	0.0000000	O.CONCENTRATION	O.CHANKKAND			U.UKAMAKAKA		U, LAKANANU
			Coal	508.411	7800'0	O.UNKKANAKU		CINNANA) U	01000000	U, UN MANANA I						
	1 55 14	Clinker solelin finities	Cialian	510 F11	201010							1 11111121	SULLINAN	I CIMANNO U	1 SUNANANA U	RECOMMEND OF
	1-1-1-1	Current Polid End underect unlender	Clinker	017'0	EXAND V		CININAMA) U			CONSIGNATION OF	CIRANNANA U		CCOMMAND 0	D OKKNONNAND?		00000000
			Coal	78,447	0.0102	0,00000000	0.00000002	0,00000002	0,00000020	0.0000051	0.00000051	0.00000102 0	0000055	0.00000001	12000000.0	LOUNNING,0
	1-GE-10	Gypsum / Solid Fuel drop to beit	Gynsum	162.64	1-2KN/CO	0.00000003	0.00000002	I CREMMANNEN).()	0.000000000	0.0000002	0.0000002	0 1000000000000000000000000000000000000	1.00000027	EUNOXXXXXXXX	0,00000002 0	£1000000000
			Coul	78,447	0.0102	0.0КММКИМО	0.046666032	0.00000002	0.00000020	0.00000051	0.00000051	0,00000102 0	1.00000055	D.OKWWWWDI	0,00000051	0,00000001
	1-30-1	Drop clutte fugitives	Coal	78,447	0.0373	0.00000001	0.00000006	0.00000007	0.00000075	0.00000186	0.00000186	0.00000373 0	0.00000202	O.OKKNIKKUH	0,00000186	D.CKNKKKN4
			Coke	•	0.0000	0.00000000	O,ONNONNO,O	O.OKKOKKO	O,OKKOKKO	0.00000000.0	0,000000000	D, OKKKKKKK	000000000000000000000000000000000000000	O.ONNONNO	0.00000000	O.(NKKKKKK)
	1-GE-12	Gypsum anhydrite dumps	Gypsum	14,634	0.0126	0.000000007	CONNERS O	0.0000000000	0.00000013	CONXXXXXX 0.0	CONNOUND:0	0.00000007 0	0,0000054	0.0000000005	O.OKKKKKK	CONNENSION 25
	PC-IA	FE Loader Drop to Grizzley Screen	Clinker	5.077	0.0297	0,00005686	0,00000077	0.0000048	0,0000033	0.00008715	0.00000092	0.00002744	0.000164	ECONOMO O.O	O.ONONNONO	0,00001244
	PC-IB	Grizzley Drop to Pile	Clinker	5.077	0.0297	0.00005686	0.00000077	0.0000048	0.0000033	0.0KKWK715	CUMMMM0.0	0.0WW02744	0.000164	LEUXXXXXX O	O, CKOKKODKO	0.00001244
	PC:2	Drop to Storage	Clinker	5,077	0.0297	0.080005686	0.000888077	O.CHWWWHAR	CLOONOND,0	0.00008715	0.00000092	0.00002744	0.000164	0.00000033	O.KINNINUKO	0.00001244
	02	Apron Feeder Drop to Grizzly Feeder	Limestone	483.736	0.6506	1200000000	0.000000159	0.000000000	0.000000651	0.00000163	0.00000163	0.00000359 0	0.00002752	0.000000026	0.00000191	0.00000013
	80	Stacker Belt Drop to Screenings Stkple.	Limextone	56,238	0.0756	1 FORMANNO'O	0.00000018	0.00000012	0.00000076	O.(NXXXXXI)9	0.00000019	0.0000042 0	0,00000320	OCOMMANNOO,O	0.00000022	0.00000015
	a 1	Stacker Bell Drop to Common Base Stkple.	Limestone	253.169	0.3405	0.000000185	CROOODOOO	0.000000053	0.00000341	0.00000085	O.CHNNNNS	0.00000188 0	0.000001440	DELONNONNO.0	0.00000100	0.00000068
	Ifa	Stacker Belt Drop to Grade 1 Base	Limestone	67,807	0.0912	0.000000050	0.000000022	FIGHMMMM)	16000000000	0.00000033	0.00000023	0.00000050 G	0.00000386	SECONDONNOUS	0.00000027	0.00000018

INS, LP	PLANT	IMARY
TXI OPER	HUNTER CEN.	METALS SUM

Plant Description: TXI Operations, LP Hunter Cement Plant Account Number: CS-0018-B

			Muertal & S. Unitanti	abd Ruci con	Particulate Enturions					LIVW	Identifed (HA Metals	83				
(straup	N23	Artivity	The	Throughpor (fom.yt)	TSF [bulyr]	(carbs) (carbs)	Arrente (hadiye)	Recyllium (ten/yr)	Cadraluum (thual)ri)	Chrumhun (ton/sr)	Cubati (kist/sc)	Lead A (teniye)	taupanese ((uml)e)	Mercury (too)r1)	Nickel (idačse)	Selecture (teal/yr)
l				(истея)												
Purs	÷	Ontside Clinker Storage	Clinker	1.78	0.6251	0.00119706	0.00001625	0,00010000,0	O.CONNINGINS	0.00183465 () 85.010000.0	0 00057759 0	00345802	0.00000688	0.00001688	0.00026191
	1-86-3	Sand Stockpile	Sand	01'0	0.0421	0.00000005	0.00000018	O.CHANNANDS	0.00000012	0.00015213- 0	0.0000011	0 1120000000000000000000000000000000000	91192100	0.000000002 (0.00000172	0.0000018
	1-86-6	Iron Additive Stockpile	Slag	0.50	0.0527	0.00000066	0.00000023	0.00000006	0.00000015	0.00019016 (0 (000000)	0 6000000000000000000000000000000000000	5110/100	0.000000002 0	0.00000215	0.00000022
	1-86-7	Coal Pilc Wind Erosion	Limextune	6.6.3	0.3053	0.000000166	0.00000074	D.CKKKKKKALK	0,00000305	0.00000076).(XXXXXX)76	0 691000000	0001291 0	0.0000000122 (0.000000000	119000000001
	3d/-39-1	Cose File Wind Erosion Gracini Frackaila Guilthue	Coke	00.0	0,0000	(),(KKKKKKKK)	O,CHORMHAND, CO	O.CHKKKKKKK	0.000000000	OXXXXXXXXXXX) (NKKKKKKK)	000000000000000000000000000000000000000	CHOCHOCHO	0.(KKKKKKKKU) (000000000000000000000000000000000000000	(NNNNNNNN)
		Oppoint sociapite ruginyes	Achteleite	07.0	10000	unnannan u	144444444	100000000000000000000000000000000000000		100000000000000000000000000000000000000			UNNANANA.	100000000		
		Common Bree Stockelle		000	0.012.0								TANKANANA,		ANANANAN,	
	. 9	Grade I Base Stocknike	Luncatore 1 imestore	0.50	LEBU U						I CINANAN I				S COMPANYING	PERMANANANA
	17	Screening Stockpile	Limestone	0.20	0.0337	0.0KKKKKK18	NUCKNOWN O	COMMONNOS	0.00000034	O.OKKOKKOB) (NOODOOD)	0 61000000	00000113	CICKNAMAMAND.0	0.00000000	CHANNANA C
JĽ																
Se treating & Crushing	1-AE-19	Hopper to enisticatemething	Clinker	8,293	0.000	O. CRXXXXX55	D.CHNKKKN1	CHMMMMMM).O	OXMANANOO.O	0.00000085) LONNENNO).	.000000027	191000000	O, (NIXKNNN)	LOOMKNONO, C	O, CHMMMU 12
	PC-I	Portuble Crusher	Clinker	1,293	E000.0	0.00000056	D.CKNWWWD1	O.OKKKKKK	O, OKNOKNOKO .	O.(NKKKKKS (0.000000000	0.00000027 0	10100000	0.00000000 0	LOOMMAND.	0.00000012
	5	Horizoutal Impact Crisher	Limestone	483,736	0.0051	EUXINIXINIXI).0	O.CHMMMMD1	D.OKKINKKNI	0,00000005	0.00000001 (0.00000001 0	O EUNNMANN)	00000021	0.056000000032 0	0.0000001	01000000000
	05	6x2tl/ 3-Deck Screen	Limestone	483,736	0.0427	0.000000023	0,0000000,0	D.ONKONKOO7	CHOOMMONO O	0.00000011) [[[((((((((((((((((((((((((((((((((((0 10000001 0	000001800	0.0000000017	0.0000003	SBOKKKKKKKKK
]	60	5x15/ 2 Dcck Screen	Limestone	483.736	0.0427	0.0444444023	0.00000000.0	0.000000000	CHONORONO O	0.00000011	110000000	0 1000000000000000000000000000000000000	08100000	D.CHMMMMM17	COMMONIA (CKOKWANNAS
Beghouses	1-YE-1	Rock Crushing and Transfer	Limestane	617 211	1 (0)1	0 (XXXXXXXXXX72	LUTINGWO D	D (XXXXXX)252	20210000000	O DURINHUI (00000885 0	00000781		CHORNELT (CONCOUNTS 2016
	1-AE-2	Sampling Tower	Limestone '	1.147.819	0.3728	0,0000000303	D.CKKKKKUJ	D_CKOKKOKN59	0.000000373	0.00000000	CUNNINU)	0 0000000000000000000000000000000000000	00001577 0) (0100000000	011000000	91200000000
	1-38-1	Raw Feed	Limestone	1,152,059	1.2624	0.(NHNNNKK7	NOTONNANO,O	0.0XXXXXX198	0.000001262	91500000.0) OLEWAND,	O TUNKKKAD	0102340	D.(KKKKKK050505	0.00000371 0	0000002525
			Clay	137,456	0.1506	O.COMMANANA).O	O.CKNXXXA15	D.CKKWKK014	0.00000015	0.000000126	0.00000074 0	00000294 0	20210000.	0.0000000000	0.00000173	OECONOMOCO'C
			Sand	96,501	0.1058	0.0000013	O.CHMNRN4G	O.OKNOKNO11	0.00000031	0.0003819K).(XXXXXX26 (0 0000529 0	00111200	O.OKKOOKKA4	CELONOMO,0	0,0000045
			FCC	19,847	0,0217	DODODODI	O.(NUKKNUK	D.CRIMMMOI	0.00000002	0,00000014 (). OXXXXXXXXXX	0 80100000	000000000000000000000000000000000000000) CONNANNANNO, ()	SECONNOO.	0.00000001
			Slag	18,406	1.620.0	0.00000006	0.00000023	O.ONNONNOS	0.00000015	0.00019156) CLONNONO,	0.00000265 0	00171399	0.000000002 0	0,00000217	0.00000023
	1-136-2	Raw Bins	Limestone	1.152,059	1.2624	0.000000687	0.00000308	NORMANN 198	0.000001262	0.00000316	0.00000316 (00000697 0	00003340 (0.0000000505 0	D.CORMO371 0	(KKOOKO2525
			Clay	137,456	0,1506	OFOXMONONO,O	STONMAND'O	0.0000014	0.0000015	0.00000126) 170000000.0	00000294 0	20210000	0.00000000000	£71000003	000000000000000000000000000000000000000
			Sand	96.501	0.1058	CTORMONO.0	0.CKKKKKHG	0.00000011	0,0000031	0.00018198	0.00000026 0	0.00000529 0	692111200	0.000000004 0	100000133	0.0000045
			FCC	19.847	0.0217	LINNINNALO.	NUXXXXXXX	0.00000001	O.CHUNNIN12	0.00000014) (NUKKNYKK) (COMMOUTOR 0	00000000000) (UKKKNNNNN) ()	DODROT36	0.0000000
			Slag	901°.100	1620,0	O.(NAKKANKA	0.00000023	0.CKNKKKKK	0.00000015	95161000'0	510000001	0 292(XXXX) 0	6651/100		/ 12000000	57000000000
	1-30-1		Limestone	1.147.819	1.9122	OPOTOXXXX O	1010000000	CHOROMONO, CO	0,0000001912	R/HINKIND'D	N/ HONDON		CONSCIENT.		TOCININAL CONTRACT	+79CIMPROV
	1-DE-2a	Air Slide Feed Bucket Elevator	Limestone	618 271 1	1072'n	CONNENSIO	GREUXXXX D	D (NUMBER 250)	F6510000000	NOT DOMAND D	3000000		1 1/2/900001	0.000000637		0000003187
	1-33-1	Coal Mill	Coal	114,803	1.7083	0,0000068	0.00000268	0.00000342	0.00003417	0,00000541) (Itsbook)	0 00012083 0	00009242) ENTOWNING O	142800000	0.00000188
	1-FE-I	Clinker Bin	Clinker	819,143	1.7194	0.00329271	0.00004471	0.00002751	0.00001891	0.00504652 (0.00005330 0	0.00158875 0	1881186400	0.00001891	21-040046-12	0.00072044
	I-FE-2	Clinker Barn	Clinker	£11,018	1.7543	0,00718946	0.00009761	0.00000007	0.00000130	0.01101883 0	0.00011638 (0 968910000	02076871	0.0004130	100010137	0.00157305
	I-FE-J	Gypsum Transfer	Gypsum	19.231	1.7194	SEGONOMOD.O	0.00000420	0.000000270	0.000001719	0.00000030	001000000000000000000000000000000000000	0 616000000	00007273	D.(INNINNASIS). (KIKIKIKI (CELECONNOND.
	1-FE-1	Gypsun Bins	Gypsum	162.64	1.7375	0.00000045	0.0000424	0,0444440273	0.000001737	0 TETODOOO) +(+00000).	0.0000059 0	000007350	0.000000005	112000001	0000003475
			Clinker	K45.K62	1110'1	t61t6100'0	0.00002637	0,00001623	S11100001	0.00297629	++150000'	00/56000.0	S.NUOOCIND.	ST LOOMOO	BC/ 2000010	6947HWW/0
	434-1		Clinker Cir -	798'618	1.708.5	551/250000	I tttt	277 20000 0	0.000010/0	0/51050010 0	067600001	++9/CIM/	7100+600		710400000	0/C1/100/0
	1-34-1	Clinker Iransfer Point No. Ecture Bin	Clinker	208,648	2014.1	CONTECTION OF	U.MANUARA.	UNECIMANI U	1101000000	1c/7minnin	1 CULINAL C	1130/1001	1711/7000	1 In LAWAY	10/10/00/00/00	INVECTION O
	6-3.3.1	Frinc Bin	Clinber	CUR STR	T612-1	12695700.0	I LETTINANI U	I SE CIMMAD II	0.00001891	659T0500.0	OF FRANKING O	100158875	00951188	0.0001891	0 00004642	0.00072044
	H-34-1	Gypsun/Anhydrite Merrick Feeder	Gynaum	19.231	1.7083	0.00000029	0,00000417	O,CHMMMU268	0.000001708	0.00000427	D.00000427	0 C1600000'0	0,00007226	0.000000083	0.000000000	7146000000.0
	1-FE-16	Clinker Bin	Clinker	845,862	1.7375	0.00332730	0.00004517	0.00002780	1161000070	0.0050954	0,000053%6	0 0000000000000000000000000000000000000	181196000	1161000000	0.00004691	0.00072801
	1-FE-17	Clinker Into Hopper	Clinker	5.077	0.0435	0.00008334	0.00000113	0.000000000	0.0000048	0.00012773	0.00000135	0.00004021	1,00024074	0.00000048	0.00000117	0.00001823
	1-GE-1	#1 Gypsum Transfer	Gypsum	19.231	1.0425	0.000000567	0.00000254	0,000000164	0.000001042	0.00000261	0.00000261	0.00000575 (00004410	0.0000000417	0.00000306	0,0000002085
	I-GE-S	#2 Gypsum Transfer	Gypsum	11(2,64	1.0317	0.000000561	0.00000252	0.0XXXXX0162	0.000001032	0.00000258	0.00000258	0.00000569 (1.00004364	CI MAXANANO O	0.000000000.0	0.0000002063
	1-1112-1	Finish Silo Vent	Clinker	£££,024	10691	0.00323657	0.00004394	0.00002704	0,00001859	0.00496049	0.00005239	0.00156167	120150000	0.00001859	0,00004563	0.00070816
	1-116-2	Finish Silo Vent	Clinker	124,265	1069'1	0.00323657	16110000	0.00002704	0,00001859	0.00496049	0.00000000	0.00156167	17945000.0	0.00001859	1.00000.0	0,00070816
	L-HE-J	FK Nunp	Clinker	10,915	0.1137	0.00021776	0.000000	0.00000182	0.00000125	0.00001	ESECONDO'O	0.00010000	506290000	\$21000000	0.0000000	CO/ HINKO'O

٦

TXI OPER INS, LP IIUNTER CENAL PLANT METALS SUMMARY

> Plant Description: TXI Operations, LP Hunter Cement Plant Account Number: CS-0018-B

			Murcrial & Sol Vidiatio	ld Paci n	Particulule Reduktes					MAC	r Ideouried (II.) Metale	tea				
ţ	E RN	Articuts	C Die	Throughput ((on.31)		Antieroes (foadyr)	Amerik (touly t)	Beryllium (ten/yr)	Cedistus: (thut); ()	Chromium (fon/5r)	Cubali (fox/51)	Lead (fun(ye)	Manganese (turdye)	Mercury (tuetyr)	Niekoj (Ign/31)	Seleature (teal/yr)
Bughuttars (cost.)	1-11E-1	Load Bin	Clinker	582,169	0,9880	80198100.0	0.00002569	0.00001581	0.00001087	674942M0.0	0.00000030	0.0001289	0.00546551	0.00001087), (MMN)2668	0.00041396
	1-11E-5	Loud Bln	Clinker	691.587	0.1895	0.00036293	0.00000493	EOE000000.0	0.00000208	0.00055624	O.(NXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0.00017512	0.00104842	0.0NMKN)208	D.OKONKOS12	0.00007941
	1-HE-6	PK Pump	Cliaker	691.587	0.5928	61361100.0	0.00001541	O.CKKKKP348	O.GNNNNAS2	0.00173984	0.0000181M	1 17743000.0	11.0727.00.0	U.CHMMM.52	0.00001601	0.00024838
	1-HE-7	Loadout	Clinker	691.587	0,9880	86168100.0	0.040002569	0.00001581	0.00001087	0.00289973	0.00003063	0.00001289	0.00546551	0.00001087	D.CHNKHD2666K	0.00041396
	8-3H-1	Loudout	Clinker	691.587	0.1895	0.00036293	COLONOMO,O	COEGNOMIO,O	0.00000208	0.00055624	0.00000588	0.00017512	0.00104842	0.00000208	D.(MMM0512	0,00007941
	01-311-1	1 #3 Londout Bin	Clinker	691.587	0.9880	0,00189198	0,000002569	0.00001581	0.00001087	0.00289973	0.00003063	0.08091289	0.00546551	0.00001087	0.00002668	0.00041396
Finish Aggs	1-95-1	Finish Mill Stack #1	Clinker	150,333	6.3047	0.01207343	0.00016392	0.000100007	0.00006935	0.01850418	0.00019544	0.00582551	0.03487739	0.0000035	0.00017023	0.00264165
	1-GE-2	Finish Mill Stack #2	Clinker	424.265	5,0397	121137454	0.00015443	D.CKKKP2504	0.00006534	0.01743305	0.00018413	0.00548829	0.03285848	0.00000534	0.00016037	0.00248874
	1-GE-7	Mill Stack	Clinker	£££,084	1.8013	\$56110000	ESALANNI,U	0.00002082	0.00001981	0.00528691	0.00005584	0.00166443	0.00096497	0.00001981	0.00004864	0.00075476
	1-GE-8	Mill Stack	Clinker	124,265	1.6971	0.00324987	0.00004412	0.00002715	0.00001867	28086100'0	0.00005261	0.00156808	1188E000'0	0.00001867	D.(KKKH4582	0.00071107
(Tinker ('soler	1-DE-4	Clinker Cooler	Clinker	819,143	12.2767	0.02350993	010150000	0.00019643	0.00013504	0.03603219	0.00038058	0.01134369	0.06791485	0.00013504	0.00033147	0.00514395
Nurth	1-DE-3	Main Stack	Clinker	819,143	84.5819	0.16197426	0.00219913	0.00135331	010000000	0.24824776	0.00262204	0.07815364	0.46790684	01050000.0	0.00228371	039543980
					Totals:	0.26413327	0.00364565	0.00221478	0.00157828	0.40665011	0.00442816	0.12778017	0.77924739	0.00151825	031160000	0.05779782
					Total Metal Emissions	1.65290568										

Attachment C Organic and HCl HAP Test Report

TXI OPERATIONS, L.P. HUNTER CEMENT PLANT

Client Reference No: 63927 CAE Project No: 9101

2-1

RE	รบ	LT	S

	Kiln Stack – HAP Conc	Table 2-1: entrations by	Method 18,	Raw Mill Or)
Run N	ο.	1 A	2 A	3 A	Average
Date (20 Start Tir Stop Tir	002) ne (approx.) ne (approx.)	April 17 12:00 13:00	April 17 13:58 14:58	April 17 15:42 16:47	
Gas C O2 CO2 Bwo Q std	onditions Oxygen (dry volume %) Carbon dioxide (dry volume %) Moisture (% by volume) Volumetric flow rate, standard (dscfm)	10.5 16.5 18.48 151,900	10.5 16.1 18.95 161,300	10.4 16.3 18.71 168,900	10.5 16.3 18.71 160,700
REN7	ENE				
C E E	Concentration (ppmdv) Emission rate (lb/hr) Emission rate(tons/yr) ¹	<0.10 0.19 0.85	<0.04 0.09 0.38	<0.05 0.11 0.46	<0.07 0.13 0.56
HEXA	NE				
C E E	Concentration (ppmdv) Emission rate (lb/hr) Emission rate(tons/yr) ¹	<0.02 0.04 0.16	<0.02 0.04 0.16	<0.02 0.04 0.19	<0.02 0.04 0.17
NAPH	THALENE				
C E E	Concentration (ppmdv) Emission rate (lb/hr) Emission rate(tons/yr) ¹	<0.01 0.03 0.13	<0.01 0.03 0.13	<0.01 0.04 0.16	<0.01 0.03 0.14
PHENC	DL ²				
C E E	Concentration (ppmdv) Emission rate (lb/hr) Emission rate(tons/yr) ¹	<0.06 0.14 0.61	<0.06 0.14 0.60	<0.07 0.17 0.74	
TOLU	ENE				
C E E	Concentration (ppmdv) Emission rate (lb/hr) Emission rate(tons/yr) ¹	<0.03 0.07 0.32	<0.03 0.07 0.31	<0.04 0.09 0.38	<0.03 0.08 0.34
XYLEN	E (m-, p-)				
C E E	Concentration (ppmdv) Emission rate (lb/hr) Emission rate(tons/yr) ¹	<0.07 0.18 0.77	<0.07 0.17 0.76	<0.08 0.21 0.94	<0.07 0.19 0.82
XYLEN	E (o-)				
C E E	Concentration (ppmdv) Emission rate (lb/hr) Emission rate(tons/yr) ¹	<0.03 0.09 0.38	<0.03 0.09 0.38	<0.04 0.11 0.47	<0.04 0.09 0.41

< Indicates the value was below the detection limit. These values are used in the calculations. ¹ Calculation based on 8,760 operating hours per year

² Phenol did not pass the spike recovery requirements and is not used in the average.

TXI OPERATIONS, L.P. HUNTER CEMENT PLANT

Client Reference No: 63927 CAE Project No: 9101

RES	ULTS				
	Table Kiln Stack – HAP Conce	2-1 (continu ntrations by M	ed): Iethod 18, F	Raw Mill Or	n
Run N	lo.	7	8	9	Average
Date (2	002)	April 19	April 19	April 19	
Start Ti	me (approx.)	08:45	10:00	11:11	
Stop Ti	me (approx.)	09:52	11:03	12:15	
<u>Gas</u> C	conditions				
O₂	Oxygen (dry volume %)	10.5	10.5	10.5	10.5
CO₂	Carbon dioxide (dry volume %)	16.4	16.3	16.3	16.3
Bwo	Moisture (% by volume)	17.89	17.59	17.49	17.66
Q _{std}	Volumetric flow rate, standard (dscfm)	171,200	169,000	167,700	169,300
BENZ	ENE				
С	Concentration (ppmdv)	<0.78	<0.39	<0.11	<0.43
E	Emission rate (lb/hr)	1.63	0.80	0.23	0.89
Е	Emission rate(tons/yr) ¹	7.15	3.51	1.02	3.89
HEXA	NE				
С	Concentration (ppmdv)	<0.01	<0.01	<0.01	<0.01
Е	Emission rate (lb/hr)	0.03	0.03	0.03	0.03
Е	Emission rate(tons/yr) ¹	0.14	0.15	0.14	0.14
NAPH	THALENE				
С	Concentration (ppmdv)	<0.02	<0.01	<0.01	<0.01
Е	Emission rate (lb/hr)	0.06	0.03	0.03	0.04
E	Emission rate(tons/yr) ¹	0.27	0.12	0.11	0.17
PHEN	OL				
С	Concentration (ppmdv)	<0.02	<0.02	<0.02	<0.02
Е	Emission rate (lb/hr)	0.04	0.04	0.04	0.04
E	Emission rate(tons/yr) ¹	0.18	0.19	0.18	0.18
TOLU	ENE				
С	Concentration (ppmdv)	<0.05	<0.03	<0.03	<0.04
Е	Emission rate (lb/hr)	0.13	0.07	0.06	0.09
Е	Emission rate(tons/yr) ¹	0.57	0.29	0.27	0.38
XYLEN	IE (m-, p-)				
С	Concentration (ppmdv)	<0.05	<0.06	<0.05	<0.06
Е	Emission rate (lb/hr)	0.15	0.16	0.15	0.15
Е	Emission rate(tons/yr) ¹	0.66	0.71	0.66	0.68
XYLEN	IE (o-)				
С	Concentration (ppmdv)	<0.05	<0.03	<0.03	<0.04
Е	Emission rate (lb/hr)	0.15	0.08	0.08	0.10
E	Emission rate(tons/yr) ¹	0.66	0.35	0.33	0.45

2-2

Indicates the value was below the detection limit. These values are used in the calculations.
 ¹ Calculation based on 8,760 operating hours per year

TXI OPERATIONS, L.P. HUNTER CEMENT PLANT

Client Reference No: 63927 CAE Project No: 9101

RESULTS

Та	bl	e	2-	2	:

Kiln Stack - HAP Concentrations by Method 320 & 321, Raw Mill On

Run N	0.	1	2	3	Average
Date (20	002)	April 17	April 17	April 17	
Start Tin	ne	10:51	13:42	15:30	
Stop Tir	me	12:58	14:48	16:31	
Gas C	onditions				
O2	Oxygen (dry volume %)	10.5	10.5	10.4	10.5
B _{wo}	Moisture in sample (% by volume)	18.48	18.48	18.48	18.48
Q _{std}	Volumetric flow rate, standard (dscfm) ¹	151,900	161,300	168,900	160,700
HYDRO	GEN CHLORIDE (M321)				
Coas	Concentration from FTIR analysis (ppmwv)	0.51	0.83	0.37	0.57
Coas	Concentration moisture corrected (ppmdv)	0.63	1.02	0.45	0.70
E	Emission rate (lb/hr)	0.54	0.93	0.44	0.64
Е	Emission rate (ton/ýr) ²	2.36	4.08	1.91	2.78
FORMA	ALDEHYDE (M320)				
C _{cas}	Concentration from FTIR analysis (ppmwv)	1.39	1.37	1.08	1.28
C _{gas}	Concentration moisture corrected (ppmdv)	1.71	1.68	1.32	1.57
E	Emission rate (lb/hr)	1.21	1.27	1.05	1.18
E	Emission rate (ton/yr) ²	5.31	5.55	4.58	5.15
	• • •				

¹ Volumetric flow rates obtained from concurrent Methods 1-4 testing.

² Based on 8,760 hours/year of operation.

TXI OPERATIONS, L.P. HUNTER CEMENT PLANT

Client Reference No: 63927 CAE Project No: 9101

RES	ULTS				
	Kiln Stack – HAP Cond	Table 2-3: entrations by N	lethod 18. I	Raw Mill Of	if
Run N	0.	4A	5A	6A	Average
Date (2	002)	April 18	April 18	April 18	
Start Ti	me (approx.)	10:05	12:10	14:36	
Stop Ti	me (approx.)	11:11	13:18	15:40	
<u>Gas</u> C	onditions				
O₂	Oxygen (dry volume %)	9.90	10.1	10.0	10.0
CO2	Carbon dioxide (dry volume %)	15.5	15.6	15.6	15.6
Bwo	Moisture (% by volume)	20.35	19.20	18.27	19.27
Q _{std}	Volumetric flow rate, standard (dscfm)	121,800	118,000	122,000	120,600
BENZ	ENE				
С	Concentration (ppmdv)	<0.15	<0.06	<0.16	<0.12
Е	Emission rate (lb/hr)	0.22	0.09	0.24	0.18
E	Emission rate(tons/yr) ¹	0.94	0.38	1.07	0.80
HEXA	NE				
С	Concentration (ppmdv)	<0.02	<0.02	<0.01	<0.02
Е	Emission rate (lb/hr)	0.03	0.04	0.02	0.03
Е	Emission rate(tons/yr)1	0.14	0.16	0.10	0.13
NAPH	THALENE				
С	Concentration (ppmdv)	<0.01	<0.01	<0.01	<0.01
Е	Emission rate (lb/hr)	0.03	0.03	0.02	0.03
Е	Emission rate(tons/yr) ¹	0.12	0.13	0.08	0.11
PHEN	OL				
С	Concentration (ppmdv)	<0.02	<0.03	<0.02	<0.02
Ε	Emission rate (lb/hr)	0.04	• 0.05	0.03	0.04
Е	Emission rate(tons/yr) ¹	0.18	0.21	0.13	0.18
TOLU	ENE				
С	Concentration (ppmdv)	<0.04	<0.04	<0.03	<0.04
Е	Emission rate (Ib/hr)	0.06	0.07	0.05	0.06
Е	Emission rate(tons/yr) ¹	0.28	0.32	0.20	0.26
XYLEN	E (m-, p-)				
С	Concentration (ppmdv)	<0.08	<0.09	<0.05	<0.07
Е	Emission rate (Ib/hr)	0.15	0.18	0.11	0.15
Е	Emission rate(tons/yr) ¹	0.68	0.78	0.48	0.65
XYLEN	E (o-)		•		
С	Concentration (ppmdv)	<0.04	<0.05	<0.03	<0.04
Е	Emission rate (lb/hr)	0.08	0.09	0.06	0.07
Е	Emission rate(tons/yr) ¹	0.34	0.39	0.24	0.32
	· · · ·				

< Indicates the value was below the detection limit. These values are used in the calculations. ¹ Calculation based on 8,760 operating hours per year

TXI OPERATIONS, L.P. HUNTER CEMENT PLANT

Client Reference No: 63927 CAE Project No: 9101

RESULTS Kiln Stack - HAP Concentrations by Method 320 & 321, Raw Mill Off

Run N	0.	4	5	6	Average
Date (20	002)	April 18	April 18	April 18	
Start Tin	ne	10:05	12:10	14:36	
Stop Tin	ne	11:11	13:18	15:40	
Gas Co	onditions				
O2	Oxygen (dry volume %)	9.9	10.1	10.0	10.0
Bwo	Moisture in sample (% by volume)	20.35	19.20	18.27	19.27
Q _{std}	Volumetric flow rate, standard (dscfm) ¹	121,800	118,000	122,000	120,600
HYDRO	GEN CHLORIDE (M321)				
C_{gas}	Concentration from FTIR analysis (ppmwv)	1.33	2.13	2.18	1.88
	Concentration moisture corrected (ppmdv)	1.67	2.64	2.67	2.32
E	Emission rate (lb/hr)	1.15	1.77	1.85	1.59
E	Emission rate (ton/yr) ²	5.06	7.74	8.09	6.96
FORMA	ALDEHYDE (M320)				
Cgas	Concentration from FTIR analysis (ppmwv)	1.28	1.05	1.28	1.20
Cgas	Concentration moisture corrected (ppmdv)	1.61	1.30	1.57	1.49
E	Emission rate (lb/hr)	0.92	0.72	0.89	0.84
E	Emission rate (ton/vr) ²	4 01	2 14	3 01	3 69

Table 2-4:

¹ Volumetric flow rates obtained from concurrent Methods 1-4 testing.

² Based on 8,760 hours/year of operation.

TXI OPERATIONS, L.P. HUNTER CEMENT PLANT

Client Reference No: 63927 CAE Project No: 9101

RES	ULTS				
		Table 2-1:			
	Kiln Stack – HAP Cor	ncentrations by	Method 18,	Raw Mill On	
Run N	lo.	1A	2A	3 A	Average
Date (2 Start Tii Stop Tii	002) me (approx.) me (approx.)	· April 17 12:00 13:00	April 17 13:58 14:58	April 17 15:42 16:47	
Gae C	onditions				
02 CO2 Bwo Qstd	Oxygen (dry volume %) Carbon dioxide (dry volume %) Moisture (% by volume) Volumetric flow rate, standard (dscfm)	10.5 16.5 18.48 151,900	10.5 16.1 18.95 161,300	10.4 16.3 18.71 168,900	10.5 16.3 18.71 160,700
BENZ	ENE				
C E E	Concentration (ppmdv) Emission rate (lb/hr) Emission rate(tons/yr) ¹	<0.10 0.19 0.85	<0.04 0.09 0.38	<0.05 0.11 0.46	<0.07 0.13 0.56
HEXA	NE				
C E E	Concentration (ppmdv) Emission rate (lb/hr) Emission rate(tons/yr) ¹	<0.02 0.04 0.16	<0.02 0.04 0.16	<0.02 0.04 0.19	<0.02 0.04 0.17
NAPH	THALENE				
C E E	Concentration (ppmdv) Emission rate (lb/hr) Emission rate(tons/yr) ¹	<0.01 0.03 0.13	<0.01 0.03 0.13	<0.01 0.04 0.16	<0.01 0.03 0.14
PHEN	OL ²				
C E E	Concentration (ppmdv) Emission rate (lb/hr) Emission rate(tons/yr) ¹	<0.06 0.14 0.61	<0.06 0.14 0.60	<0.07 0.17 0.74	
TOLUI	ENE				
C E E	Concentration (ppmdv) Emission rate (lb/hr) Emission rate(tons/yr) ¹	<0.03 0.07 0.32	<0.03 0.07 0.31	<0.04 0.09 0.38	<0.03 0.08 0.34
XYLEN	E (m-, p-)				
C E E	Concentration (ppmdv) Emission rate (lb/hr) Emission rate(tons/yr) ¹	<0.07 0.18 0.77	<0.07 0.17 0.76	<0.08 0.21 0.94	<0.07 0.19 0.82
XYLEN	E (o-)				
C E E	Concentration (ppmdv) Emission rate (lb/hr) Emission rate(tons/yr) ¹	<0.03 0.09 0.38	<0.03 0.09 0.38	<0.04 0.11 0.47	<0.04 0.09 0.41

< Indicates the value was below the detection limit. These values are used in the calculations. ¹ Calculation based on 8,760 operating hours per year

² Phenol did not pass the spike recovery requirements and is not used in the average.

TXI OPERATIONS, L.P. HUNTER CEMENT PLANT

Client Reference No: 63927 CAE Project No: 9101

0.68

<0.04

0.10

0.45

RESULTS								
	Table Kiln Stack – HAP Concer	2-1 (continu	ed): Method 18, F	Raw Mill O	n			
		7	8	9	Average			
		•	•	-				
Date (2	2002)	April 19	April 19	April 19				
Start Ti	me (approx.)	08:45	10:00	11:11				
Stop Ti	me (approx.)	09:52	11:03	12:15				
Gas C	conditions							
0,	Oxygen (dry volume %)	10.5	10.5	10.5	10.5			
CŌ₂	Carbon dioxide (dry volume %)	16.4	16.3	16.3	16.3			
Bwo	Moisture (% by volume)	17.89	17.59	17.49	17.66			
Q _{std}	Volumetric flow rate, standard (dscfm)	171,200	169,000	167,700	169,300			
BEN7	ENE							
C	Concentration (ppmdv)	<0.78	<0.39	<0.11	<0.43			
Ē	Emission rate (lb/hr)	1.63	0.80	0.23	0.89			
Ē	Emission rate(tons/yr) ¹	7.15	3.51	1.02	3.89			
HEXA	NE							
C	Concentration (ppmdv)	<0.01	<0.01	<0.01	< 0.01			
Ē	Emission rate (lb/hr)	0.03	0.03	0.03	0.03			
Е	Emission rate(tons/yr) ¹	0.14	0.15	0.14	0.14			
NAPH	THALENE							
С	Concentration (ppmdv)	<0.02	<0.01	<0.01	<0.01			
Е	Emission rate (lb/hr)	0.06	0.03	0.03	0.04			
Е	Emission rate(tons/yr)1	0.27	0.12	0.11	0.17			
PHEN	01							
C	Concentration (ppmdv)	<0.02	<0.02	<0.02	< 0.02			
Ē	Emission rate (lb/hr)	0.04	0.04	0.04	0.04			
Е	Emission rate(tons/yr) ¹	0.18	0.19	0.18	0.18			
TOLU	ENE							
C	Concentration (ppmdv)	<0.05	<0.03	<0.03	< 0.04			
Ē	Emission rate (lb/hr)	0.13	0.07	0.06	0.09			
Е	Emission rate(tons/yr) ¹	0.57	0.29	0.27	0.38			
	IF (m-, n-)							
C	Concentration (ppmdv)	<0.05	<0.06	<0.05	<0.06			
Ē	Emission rate (lb/hr)	0.15	0.16	0.15	0.15			

0.66

<0.05

0.15

0.66

0.71

< 0.03

0.08

0.35

0.66

< 0.03

0.08

0.33

2-2

< Indicates the value was below the detection limit. These values are used in the calculations.

¹ Calculation based on 8,760 operating hours per year

Emission rate(tons/yr)1

Concentration (ppmdv)

Emission rate(tons/yr)1

Emission rate (lb/hr)

Е

С

Е

Ε

XYLENE (o-)

TXI OPERATIONS, L.P. HUNTER CEMENT PLANT

Client Reference No: 63927 CAE Project No: 9101

2-3

ncoulio			ТС	
	- 3	UL	13	2

Table 2-2:											
Kiln	Stack -	HAP	Concentrations	by	Method	320	&	321,	Raw	Mill	On

Run Ne	0.	1	2	3	Average
Date (2002)		April 17	April 17	April 17	
Start Time		10:51	13:42	15:30	
Stop Time		12:58	14:48	16:31	
Gas Co	onditions				
O ₂	Oxygen (dry volume %)	10.5	10.5	10.4	. 10.5
Bwo	Moisture in sample (% by volume)	18.48	18.48	18.48	18.48
\mathbf{Q}_{std}	Volumetric flow rate, standard (dscfm) ¹	151,900	161,300	168,900	160,700
HYDRO	GEN CHLORIDE (M321)				
Coas	Concentration from FTIR analysis (ppmwv)	0.51	0.83	0.37	0.57
Caas	Concentration moisture corrected (ppmdv)	0.63	1.02	0.45	0.70
E	Emission rate (lb/hr)	0.54	0.93	0.44	0.64
E	Emission rate (ton/yr) ²	2.36	4.08	1.91	2.78
FORMA	ALDEHYDE (M320)				
Cgas	Concentration from FTIR analysis (ppmwv)	1.39	1.37	1.08	1.28
Cgas	Concentration moisture corrected (ppmdv)	1.71	1.68	1.32	1.57
E	Emission rate (lb/hr)	1.21	1.27	1.05	1.18
E	Emission rate (ton/yr) ²	5.31	5.55	4.58	5.15

¹ Volumetric flow rates obtained from concurrent Methods 1-4 testing. ² Based on 8,760 hours/year of operation.

TXI OPERATIONS, L.P. HUNTER CEMENT PLANT

Client Reference No: 63927 CAE Project No: 9101

RESULTS							
		Table 2-3:					
	Kiln Stack – HAP Concer	ntrations by M	lethod 18, I	Raw Mill Of	if		
Run N	lo.	4A	5A	6A	Average		
Date (2	002)	April 18	April 18	April 18			
Start Ti	me (approx.)	10:05	12:10	14:36			
Stop Ti	me (approx.)	11:11	13:18	15:40			
<u>Gas C</u>	onditions						
O2	Oxygen (dry volume %)	9.90	10.1	10.0	10.0		
CO₂	Carbon dioxide (dry volume %)	15.5	15.6	15.6	15.6		
Bwo	Moisture (% by volume)	20.35	19.20	18.27	19.27		
Q _{std}	Volumetric flow rate, standard (dscfm)	121,800	118,000	122,000	120,600		
BENZ	ENE .						
С	Concentration (ppmdv)	<0.15	<0.06	<0.16	<0.12		
Е	Emission rate (lb/hr)	0.22	0.09	0.24	0.18		
Е	Emission rate(tons/yr) ¹	0.94	0.38	1.07	0.80		
HEXA	NE						
С	Concentration (ppmdv)	<0.02	<0.02	<0.01	<0.02		
Е	Emission rate (lb/hr)	0.03	0.04	0.02	0.03		
Е	Emission rate(tons/yr) ¹	0.14	0.16	0.10	0.13		
NAPH	THALENE						
С	Concentration (ppmdv)	<0.01	<0.01	<0.01	<0.01		
Е	Emission rate (lb/hr)	0.03	0.03	0.02	0.03		
Е	Emission rate(tons/yr) ¹	0.12	0.13	0.08	0.11		
PHEN	OL						
С	Concentration (ppmdv)	<0.02	<0.03	<0.02	<0.02		
Е	Emission rate (lb/hr)	0.04	0.05	0.03	0.04		
Е	Emission rate(tons/yr) ¹	0.18	0.21	0.13	0.18		
TOLU	ENE						
С	Concentration (ppmdv)	<0.04	<0.04	<0.03	<0.04		
Е	Emission rate (lb/hr)	0.06	0.07	0.05	0.06		
Е	Emission rate(tons/yr) ¹	0.28	0.32	0.20	0.26		
XYLEN	E (m-, p-)						
С	Concentration (ppmdy)	<0.08	<0.09	<0.05	<0.07		
E	Emission rate (lb/hr)	0.15	0.18	0.11	0.15		
Е	Emission rate(tons/yr) ¹	0.68	0.78	0.48	0.65		
XYLEN	E (o-)						
С	Concentration (ppmdv)	<0.04	<0.05	<0.03	<0.04		
Е	Emission rate (lb/hr)	0.08	0.09	0.06	0.07		
Е	Emission rate(tons/yr) ¹	0.34	0.39	0.24	0.32		
	······································		5.00				

< Indicates the value was below the detection limit. These values are used in the calculations. ¹ Calculation based on 8,760 operating hours per year
TXI OPERATIONS, L.P. HUNTER CEMENT PLANT

Client Reference No: 63927 CAE Project No: 9101

Table 2-4:Kiln Stack – HAP Concentrations by Method 320 & 321, Raw Mill Off					
lun No	•	4	5	6	Average
Date (200	02)	April 18	April 18	April 18	
Start Time	e	10:05	12:10	14:36	
Stop Tim	e	11:11	13:18	15:40	
as Co	nditions				
O2	Oxygen (dry volume %)	9.9	10.1	10.0	10.0
B _{wo}	Moisture in sample (% by volume)	20.35	19.20	18.27	19.27
Q _{std}	Volumetric flow rate, standard (dscfm) ¹	121,800	118,000	122,000	120,600
IYDROG	GEN CHLORIDE (M321)				
Cgas	Concentration from FTIR analysis (ppmwv)	1.33	2.13	2.18	1.88
Cgas	Concentration moisture corrected (ppmdv)	1.67	2.64	2.67	2.32
Е	Emission rate (lb/hr)	1.15	1.77	1.85	1.59
E	Emission rate (ton/yr) ²	5.06	7.74	8.09	6.96
ORMAI	LDEHYDE (M320)				
Cgas	Concentration from FTIR analysis (ppmwv)	1.28	1.05	1.28	1.20
C_{gas}	Concentration moisture corrected (ppmdv)	1.61	1.30	1.57	1.49
Е	Emission rate (lb/hr)	0.92	0.72	0.89	0.84
Е	Emission rate (ton/yr) ²	4.01	3.14	3.91	3.69
E E	Emission rate (lb/hr) Emission rate (ton/yr) ²	0.92 4.01	0.72 3.14	0.89 3.91	

¹ Volumetric flow rates obtained from concurrent Methods 1-4 testing. ² Based on 8,760 hours/year of operation.

2-5

TXI OPERATIONS, L.P. HUNTER CEMENT PLANT

DESCRIPTION OF INSTALLATION

TXI Operations, L.P. operates a dry process portland cement manufacturing plant in Comal County near Hunter, Texas. The facility was permitted in 1979 and began operations in 1980. The kiln is equipped with a preheater alkali bypass system which is combined with the kiln exhaust into a single stack. The facility is currently permitted to utilize coal, petroleum coke, natural gas and tire derived fuel. The current production rate is up to 101.2 tons/hr and 886,351 tons/yr of clinker. There is also an in line roller/raw mill which normally operates, but the kiln can operate for a limited time with it out of operation.

The testing will be performed at the Kiln Stack.

A schematic of the process indicating sampling locations is shown in Figure 3-1.

Figure 3-1: Process Schematic

3-1

Revision 0

METHODOLOGY

The sampling followed procedures as detailed in U.S. Environmental Protection Agency (EPA) Methods 1, 2, 3, 4, 18, 320 and 321. The following table summarizes the methods and their respective sources.

Table 4-1: Summary of Sampling Procedures		
TITLE 40 CFR P	art 60 Appendix A	
Method 1	"Sample and Velocity Traverses for Stationary Sources"	
Method 2	"Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)"	
Method 3	"Gas Analysis for the Determination of Dry Molecular Weight"	
Method 4	"Determination of Moisture Content in Stack Gases"	
Method 18	"Measurement of Gaseous Organic Compound Emissions by Gas Chromatography"	
Title 40 CFR P	art 63 Appendix A	
Method 320	"Measurement of Vapor Phase Organic and Inorganic Emissions by Extractive Fourier	
	Transform Infrared (FTIR) Spectroscopy"	
Method 321	"Measurement of Gaseous Hydrogen Chloride Emissions at Portland Cement Kilns by	
	Fourier Transform Infrared (FTIR) Spectroscopy"	

These methods appear in detail in Title 40 of the Code of Federal Regulations (CFR).

Major aspects of the sampling, recovery and analytical procedures are summarized on pages 4-2 through 4-9.

All equipment was calibrated at the Clean Air Engineering laboratory prior to shipment to the job site. A post calibration was performed on each meter box at the conclusion of testing to verify that calibration was maintained throughout the test program. Calibration sheets can be found in Appendix Section C.

4-1

TXI OPERATIONS, L.P. HUNTER CEMENT PLANT

Client Reference No: 63927 CAE Project No: 9101

METHODOLOGY

SAMPLING POINT DETERMINATION

Sampling point locations were determined according to EPA Method 1.

Table 4-2 outlines the sampling point configurations. Figure 4-1 illustrates the sampling points and orientation of sampling ports for each of the sources tested in the program.

Run	Borto	Points	Minutes	Total	Figure
1-6	4	<u>9</u> 3	<u>per Poinc</u> 5	60	4-1
1	Run <u>No.</u> 1-6	Run <u>No. Ports</u> 1-6 4	Run Points <u>No. Ports per Port</u> 1-6 4 3	Run Points Minutes <u>No. Ports per Port per Point</u> 1-6 4 3 5	Run Points Minutes Total <u>No. Ports per Port per Point Minutes</u> 1-6 4 3 5 60

TXI OPERATIONS, L.P. HUNTER CEMENT PLANT

METHODOLOGY

VELOCITY AND VOLUMETRIC FLOW RATE - EPA METHOD 2

EPA Method 2 was used to determine the gas velocity and flow rate at the Stack. Figure 4-2 includes the components of the EPA Method 2 sampling apparatus.

Each set of velocity determinations included the measurement of gas velocity pressure and gas temperature at each of the EPA Method 1 traverse points. The velocity pressures were measured with a Type S pitot tube. Gas temperature measurements were made using a Type K thermocouple and digital pyrometer.

GAS COMPOSITION AND MOLECULAR WEIGHT - EPA METHOD 3

In order to determine the oxygen (O_2) concentration, carbon dioxide (CO_2) concentration and gas molecular weight, a time-integrated sample of the gas was obtained and analyzed in accordance with EPA Method 3. The gas sample was collected into a vinyl sample bag from the moisture testing. The contents of the bag was analyzed for O_2 and CO_2 concentrations using an Orsat gas analyzer.

MOISTURE CONTENT - EPA METHOD 4

The flue gas moisture content at the Stack was determined in accordance with EPA Method 4. Figure 4-2 shows the major components of the EPA Method 4 sampling apparatus. The gas moisture was determined by quantitatively condensing the water in a chilled knock-out jar train. The amount of moisture condensed was determined both volumetrically and gravimetrically. A dry gas meter was used to measure the volume of gas sampled. The amount of water condensed and the volume of gas sampled was used to calculate the gas moisture content in accordance with EPA Method 4 calculations.

After passing through the probe, the sample gas entered a knock-out jar condenser system for drying of the gas. The condenser system consisted of four leak-free glass knock-out jars and rubber leak-free connectors. The first two knockout jars each contained 100 milliliters of distilled water. The third knock-out jar was empty, and the fourth contained 300 grams of silica gel. All four of the knock-out jars were placed in an ice bath for the duration of the test.

The metering system included a vacuum gauge, a leak-free pump, thermometers accurate to within $\pm 5.0^{\circ}$ F and a dry gas meter accurate to within 2%.

Before and after each test, the sample apparatus was leak checked. A leakage rate of less than the 0.02 cfm was considered acceptable.

4-4

TXI OPERATIONS, L.P. HUNTER CEMENT PLANT

Client Reference No: 63927 CAE Project No: 9101

Client Reference No: 63927 CAE Project No: 9101

METHODOLOGY

SPECIATED VOLATILE ORGANIC COMPOUNDS -EPA METHOD 18

EPA Method 18 was used to measure concentrations of benzene, toluene, hexane, naphthalene, phenol and xylene. This method specifies the use of a variety of sampling techniques coupled with analysis by Gas Chromatography (GC) with a Flame Ionization Detector (FID).

At the Stack a VOST sampling meter was used to pull gas through one XAD and one charcoal sorbent sample tubes in order to concentrate the sample to obtain lower detection limits. Figure 4-3 illustrates the sampling train which was used. The sample tubes were desorbed on-site using methanol and carbon disulfide, respectively.

An aliquot of the desorbed sample was then injected into the GC injection port for analysis. The chromatographic method (e.g. oven temperature program) was simultaneously begin.

The Recovery Study required by Method 18 was performed by running a colocated train simultaneously with the sample train for 3 runs. Three additional runs were performed at the Raw Mill On condition due a poor spike recovery for Phenol during the first 3 runs. The second train had the sorbent tubes spiked with the compounds of interest to show the recovery efficiency.

Data from the chromatograms was reduced by identifying peaks and matching their retention times with those of the known standards. Peak areas were then calculated using computer integration. Results are calculated by mathematically comparing the area of the sample to the area of the standards using a least-squares regression analysis. Results were calculated as total micrograms of each analyte.

Standards for the GC/FID analysis were made by dissolving known amounts of each analyte in methanol or carbon disulfide. Concentrations were determined as micrograms/milliliter for each analyte.

Calibration response curves were prepared using a least-squares regression analysis. At least three calibration points were generated for the response curves for each compound. At least three injections were performed for each calibration point. The percent difference of each injection from the mean of all injections was less than $\pm 5\%$. The relative standard deviation for the results of each injection for each calibration point was less than $\pm 5\%$.

4-6

TXI OPERATIONS, L.P. HUNTER CEMENT PLANT Client Reference No: 63927 CAE Project No: 9101

Figure 4-3: Stack Sampling Apparatus (EPA Method 18)

TXI OPERATIONS, L.P. HUNTER CEMENT PLANT

METHODOLOGY

HYDROGEN CHLORIDE AND FORMALDEHYDE TESTING -EPA METHOD 320/321

The gaseous hydrogen chloride and formaldehyde emissions were determined using procedures detailed in EPA Method 320/321. Figure 4-4 illustrates the EPA Method 320/321 sampling apparatus. An integrated sample was extracted from the gas stream through a heated probe, heated filter, Teflon sample line and heated pump. The sample then entered a heated manifold that introduced a known quantity of sample into the FTIR cell. FTIR performance was verified using an ethylene calibration transfer standard (CTS) prior to and after each sampling event per Method 320 and 321. A calibration gas containing sulfur hexafluoride and hydrogen chloride was used for analyte spiking. The calibration gas and CTS were introduced into the probe tip. All flows were controlled with calibrated flow meters. The sample was continuously extracted with FTIR absorbance scans every six minutes or less.

Infrared absorption spectroscopy is performed by directing an infrared beam through a sample to a detector. The frequency-dependent infrared absorbance of the sample is measured by comparing this detector signal to a signal obtained without a sample in the beam path (background). There is a linear relationship between infrared absorption and compound concentration. This frequency dependent relationship is known as absorptivity. The absorptivity is measured by preparing standard samples in the laboratory of compounds at known concentrations and detector conditions. A correlation is then made between the standards (reference spectra) and the sample gas analysis. The relative intensities determine the sample gas concentrations.

The FTIR analyzer consists of a medium-high resolution interferometer, heated fixed path absorption cell, a mercury cadmium telluride (MCT) detector (liquid nitrogen cooled), electronics package and computer. The gas transport path inside the FTIR is heated to 180°C, while the absorption cell is maintained at 150°C.

The interferometer/electronics package is operated at a nominal spectral resolution of 0.5 wavenumber (0.5 cm⁻¹). The heated absorption cell is a fixed pathlength of 10 meters. The mirrors and cell interior are gold plated. The IR beam splitter and all optical windows are made of zinc selenide.

The method is self-validating by performing field spikes with a known concentration of the target compound. The QA/QC procedures can be found in reference in Methods 320 and 321.

TXI OPERATIONS, L.P. HUNTER CEMENT PLANT

Client Reference No: 63927 CAE Project No: 9101

TXI OPERATIONS, L.P. HUNTER CEMENT PLANT

Client Reference No: 63927 CAE Project No: 9101

APPENDIX

SAMPLE CALCULATIONS	A
PARAMETERS	B
CALIBRATION DATA	C
FIELD DATA	D
FIELD DATA PRINTOUTS	Е
LABORATORY DATA	F
OPERATING DATA	G
PROTOCOL	Н
RESUMES	T

TXI OPERATIONS, L.P. HUNTER CEMENT PLANT

Client Reference No: 63927 CAE Project No: 9101

А

SAMPLE CALCULATIONS

Revision 0

Client Reference No: 63927 CAE Project No: 9101

SAMPLE CALCULATIONS **KILN STACK, RAW MILL OFF, RUN 4**

The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

1. Volume of water collected (wscf)

 V_{wstd}

 $= (0.04707)(V_{k})$ = (0.04707)(176.0)

= 8.28 wscf

Where:

v wstd 0.04707

total volume of liquid collected in impingers and silica gel (ml) volume of water collected at standard conditions (ft^3) conversion factor (ft^3/ml)

2. Volume of gas metered, standard conditions (dscf)

 V_{mstd}

$$= \frac{(17.64)(v_m)(r_{bar} + \frac{1}{13.6})(r_d)}{(460 + r_m)}$$
$$= \frac{(17.64)(33.92)(29.92 + \frac{1.00}{13.6})(1.0015)}{(460 + 82)}$$

 $(17.64)(\mathbf{V})(\mathbf{p} + \Delta \mathbf{H})(\mathbf{V})$

 $= 32.43 \, dscf$

=

Whe

	· · · ·
P _{bar}	barometric pressure (in. Hg)
T _m	average dry gas meter temperature (°F)
V _m	volume of gas sample through the dry gas meter at meter conditions (ft^3)
V _{mstd}	volume of gas sample through the dry gas meter at standard conditions (ft^3)
Y _d	gas meter correction factor (dimensionless)
ΔŇ	average pressure drop across meter box orifice (in. H_2O)
17.64	conversion factor (°R/in. Hg)
13.6	conversion factor (in. H ₂ O/in. Hg)
460	°F to °R conversion constant

- 3. Sample gas pressure (in. Hg)
 - P_s

$$= P_{bar} + \left(\frac{8}{13.6}\right)$$
$$= 29.25 + \left(\frac{0.1}{13.6}\right)$$
$$= 29.26 \text{ in. Hg}$$

 $(\mathbf{P}_{\mathbf{N}})$

Where:

 P_{bar} P_{a}

 $\mathbf{\hat{P}}^{\mathbf{g}}$

-13.6

barometric pressure (in. Hg) sample gas static pressure (in. H_2O) absolute sample gas pressure (in. Hg) conversion factor (in. H₂O/in. Hg)

Client Reference No: 63927 CAE Project No: 9101

SAMPLE CALCULATIONS (CONTINUED)

4. Actual vapor pressure (in. Hg)¹

 $= P_{c}$

P_v

= 29.26 in. Hg

Where:

P_vapor pressure, actual (in. Hg)P_sabsolute sample gas pressure (in. Hg)

5. Moisture content (%)

 \mathbf{B}_{wo}

$$= \frac{\mathbf{v}_{wstd}}{\mathbf{V}_{mstd} + \mathbf{V}_{wstd}} \times 100\%$$
$$= \frac{8.28}{32.43 + 8.28}$$
$$= 0.2035$$

37

Where:

$$egin{array}{c} \mathbf{B}_{wo} \ \mathbf{V}_{mstd} \ \mathbf{V}_{wstd} \end{array}$$

proportion of water vapor in the gas stream by volume (%) volume of gas sample through the dry gas meter at standard conditions (ft^3) volume of water collected at standard conditions (ft^3)

6. Saturated moisture content (%)

$$\mathbf{B}_{ws}$$

$$= \frac{(-7)}{(P_s)} \times 100\%$$
$$= \frac{(29.26)}{(29.26)}$$
$$= 1.00$$
$$\times 100\% = 100\%$$

(P)

Where:

B_{ws}	
P,	
P	

proportion of water vapor in the gas stream by volume at saturated conditions (%) absolute sample gas pressure (in. Hg) vapor pressure, actual (in. Hg)

Whichever moisture value is smaller is used for B_{wo} in the following calculations.

Revision 0

¹ For effluent gas temperatures over 212°F, P_v is assumed to be equal to P_s .

SAMPLE CALCULATIONS (CONTINUED)

7. Molecular weight of dry gas stream (lb/lb·mole)

(co)

 M_d

$$= M_{CO_2} \frac{(CO_2)}{(100)} + M_{O_2} \frac{(O_2)}{(100)} + M_{CO+N_2} \frac{(CO+N_2)}{(100)}$$
$$= 44.0 \frac{(15.5)}{(100)} + 32.0 \frac{(9.9)}{(100)} + 28.0 \frac{(74.6)}{(100)}$$
$$= 30.88 \frac{lb}{lb \cdot mole}$$

(n)

Where:

<i>.</i>	
M,	dry molecular weight of sample gas (lb/lb·mole)
M _{co}	molecular weight of carbon dioxide (lb/lb mole)
M _o	molecular weight of oxygen (lb/lb·mole)
M _{CO+N}	molecular weight of carbon monoxide and nitrogen (lb/lb-mole)
CO, ²	proportion of carbon dioxide in the gas stream by volume (%)
0, ⁻	proportion of oxygen in the gas stream by volume (%)
CÕ+N ₂	proportion of carbon monoxide and nitrogen in the gas stream by volume (%)
100	conversion factor (%)

8. Molecular weight of sample gas (lb/lb·mole)

M_s

$$= (M_d)(1 - B_{wo}) + (M_{H_2O})(B_{wo})$$

= (30.88)(1 - 0.2035) + (18.0)(0.2035)

$$= 28.26 \frac{\text{lb}}{\text{lb} \cdot \text{mole}}$$

Where:

B	
M	
M _{H-0}	
M ¹²	

proportion of water vapor in the gas stream by volume dry molecular weight of sample gas (lb/lb·mole) molecular weight of water (lb/lb·mole) molecular weight of sample gas, wet basis (lb/lb·mole)

SAMPLE CALCULATIONS (CONTINUED)

9. Velocity of sample gas (ft/sec)

$$V_{s} = (K_{p})(C_{p})(\sqrt{\Delta P})\left(\sqrt{\frac{(\overline{T_{s}} + 460)}{(M_{s})(P_{s})}}\right)$$
$$= (85.49)(0.84)(0.291)\left(\sqrt{\frac{(288 + 460)}{(28.26)(29.26)}}\right)$$
$$= 19.9 \frac{ft}{sec}$$

Where:

10. Total flow of sample gas (acfm)

$$= (60)(A_s)(V_s)$$

= (60)(185.66)(19.9)
= 221,800 acfm

Where:

cross sectional area of sampling location (ft²) volumetric flow rate at actual conditions (acfm) sample gas velocity (ft/sec) conversion factor (sec/min)

SAMPLE CALCULATIONS (CONTINUED)

11. Total flow of sample gas (dscfm)

 Q_{std}

$$= \frac{(Q_a)(P_s)(17.64)(1 - B_{wo})}{(\overline{T_s} + 460)}$$
$$= \frac{(221,800)(29.26)(17.64)(1 - 0.2035)}{(288 + 460)}$$

 $= 121,800 \, dscfm$

Where:

B _{wo}	proportion of water vapor in the gas stream by vo	olume
P,""	absolute sample gas pressure (in. Hg)	· .
Q	volumetric flow rate at actual conditions (acfm)	
Q _{std}	volumetric flow rate at standard conditions, dry l	basis (dscfm)
T	average sample gas temperature (°F)	i ji
17. 6 4	conversion factor (°R/in. Hg)	
460	°F to °R conversion constant	

12. Volatile organic concentration, benzene (ppmdv)¹

 \mathbf{C}_{ppmdv}

$$= \frac{(m_i)(385.3)(1E6)}{(453590000)(V_{mstd})(MW_i)}$$
$$= \frac{(8.69)(385.3)(1E6)}{(453.59E6)(0.65)(78.12)}$$
$$= 0.15 \text{ ppmdv}$$

Where:

C _{ppmdv}	concentration of compound i (ppmdv)
m _i ·	mass of compound 1 (µg)
V _{mstd}	volume of gas sample through the dry gas meter at standard conditions (ft^3)
MW _i	molecular weight of compound i (lb/lb-mol)
385.3	conversion factor (dscf/lb-mol)
1E6	conversion factor (ppm)
453.59E6	conversion factor (µg/lb)

Hexane	86.18 (lb/lb-mol)
Naphthalene	128.17 (lb/lb-mol)
Phenol	94.11 (lb/lb-mol)
Toluene	92.14 (lb/lb-mol)
Xylene	106.2 (lb/lb-mol)

¹ The calculations for the other M18 compounds are done in a similar manner

Revision 0

5

Client Reference No: 63927 CAE Project No: 9101

SAMPLE CALCULATIONS (CONTINUED)

13. Concentration correction, Benzene (moisture corrected to ppmwv)¹

$$= \frac{(C_{ppmdv})}{(1 - B_{wo})}$$
$$= \frac{(0.15)}{(1 - 0.2035)}$$
$$= 0.12 \text{ ppmw}$$

Where:

Cppmwv

 $egin{array}{c} B_{wo} \ C_{ppmdv} \ C_{ppmwv} \end{array}$

proportion of water vapor in the gas stream by volume concentration calibrated for drift (ppmdv) concentration calibrated for drift (ppmwv)

14. Emissions rate, Benzene (lb/hr)¹

E_{lb/hr}

$$= \frac{(C_{ppmdv})(M_i)(Q_{std})(60)}{(385.3)(1E6)}$$
$$= \frac{(0.15)(78.12)(121,800)(60)}{(385.3)(1E6)}$$
$$= 0.22 \frac{lb}{hr}$$

Where:

 $\overset{C_{ppmdv}}{\overset{E_{lb/hr}}{\leftarrow}}$

Q_{std} M_i 1E6

385.3 60 measured concentration of compound i (ppmwv) emission rate (lb/hr) volumetric flow rate at standard conditions, dry basis (dscfm) molecular weight of compound i conversion factor (ppm) conversion factor (ft'/lb-mole) conversion factor (min/hr)

¹ The calculations for all the other compounds are done in a similar manner

SAMPLE CALCULATIONS (CONTINUED)

15. Emissions rate, Benzene (ton/yr)¹

E_{ton/yr}

$$= \frac{(E_{lb/hr})(8,760)}{(2,000)}$$
$$= \frac{(0.22)(8,760)}{(2,000)}$$
$$= 0.94 \frac{ton}{yr}$$

Where:

E _{ton/yr} E _{ib/br}	emission rate (lb/hr) emission rate (lb/hr)
8,760	conversion factor (hr/yr)
2,000	conversion factor (lb/ton)

16. Spike recovery, Benzene $(\%)^2$

SR

$$= \frac{(C_{\text{spiked,i}})}{(C_{\text{spike,i}} + C_{\text{unspiked,i}})} (100)$$
$$= \frac{(0.75)}{(0.55 + 0.15)} (100)$$
$$= 106.9 \%$$

 $\left(\mathbf{C}_{\mathsf{spiked},\mathsf{i}}\right)$

Where:

SR $\underset{\textbf{C}}{C}_{\text{spiked},i}$ spike,i $C_{unspiked,i}$ spike recovery for compound i (%) concentration of spiked train, compound i (ppmdv) concentration of spike, compound i (ppmdv) concentration of unspiked train, compound i (ppmdv)

¹ The calculations for all the other compounds are done in a similar manner ² The calculations for the other M18 compounds are done in a similar manner

TXI OPERATIONS, L.P. HUNTER CEMENT PLANT

Client Reference No: 63927 CAE Project No: 9101

В

		·			
·					
			·		
				·	
	·				
			•		

TXI - HUNTER Clean Air Project No. 9101 Kiln Stack

Raw Mill On

VELOCITY AND MOISTURE PARAMETERS

Run No	b	1	2	3
Date (20	002)	April 17	April 17	April 17
Start Tir	me (approx.)	12:00	13:58	15:42
Stop Tir	ne (approx.)	13:10	15:04	16:47
Sampli	ng Conditions			
Yd	Dry gas meter correction factor	1.0015	1.0015	1.0015
C,	Pitot tube coefficient	0.84	0.84	0.84
P	Static pressure (in. H₂O)	0.1	0.1	0.1
· A _s	Sample location area (ft ²)	185.66	185.66	185.66
P_{bar}	Barometric pressure (in. Hg)	29.25	29.25	29.25
O ₂	Oxygen (dry volume %)	10.5	10.5	10.4
CO_2	Carbon dioxide (dry volume %)	16.5	16.1	16.3
Vkc	Liquid collected (ml)	170.3	157.6	154.7
Vm	Volume metered, meter conditions (ft ³)	37.37	33.53	33.48
Tm	Dry gas meter temperature (°F)	88	87	88
T _s	Sample temperature (°F)	247	246	246
ΔH	Meter box orifice pressure drop (in. H₂O)	1.25	1.00	1.00
Θ	Total sampling time (min)	60	60	60
Flow Re	esults			
V _{wstd}	Volume of water collected (ft ³)	8.02	7.42	7.28
V _{mstd}	Volume metered, standard (ft ³)	35.35	31.74	31.65
P _s	Sample gas pressure, absolute (in. Hg)	29.26	29.26	29.26
P,	Vapor pressure, actual (in. Hg)	29.26	29.26	29.26
Bwo	Moisture in sample (% by volume)	18.48	18.95	18.71
B _{ws}	Saturated moisture (% by volume)	100.00	100.00	100.00
√∆P	Velocity head (√in. H₂O)	0.347	0.370	0.387
Mď	MW of sample gas, dry (lb/lb-mole)	31.06	31.00	31.02
Ms	MW of sample gas, wet (lb/lb-mole)	28.65	28.53	28.59
٧s	Velocity of sample (ft/sec)	22.9	24.5	25.5
Qa	Volumetric flow rate, actual (acfm)	255,300	272,400	284,000
	Volumetric flow rate, standard (dscfm)	151,900	161,300	168,900

VELOCITY AND MOISTURE PARAMETERS

Run No	D.	4	5	6
Date (2	002)	April 18	April 18	April 18
Start Ti	me (approx.)	10:05	12:10	14:36
Stop Ti	me (approx.)	11:11	13:18	15:40
Sampli	ng Conditions			
Yď	Dry gas meter correction factor	1.0015	1.0015	1.0015
Cp	Pitot tube coefficient	0.84	0.84	0.84
P,	Static pressure (in. H₂O)	0.1	0.1	0.1
A _s	Sample location area (ft ²)	185.66	185.66	185.66
Pber	Barometric pressure (in. Hg)	29.25	29.25	29.25
Ô2	Oxygen (dry volume %)	9.9	10.1	10.0
CO2	Carbon dioxide (dry volume %)	15.5	15.6	15.6
V _{kc}	Liquid collected (ml)	176.0	154.7	145.2
Vm	Volume metered, meter conditions (ft ³)	33.92	32.35	32.27
Tm	Dry gas meter temperature (°F)	82	87	87
T,	Sample temperature (°F)	288	295	296
ΔH	Meter box orifice pressure drop (in. H ₂ O)	1.00	1.00	1.00
Θ	Total sampling time (min)	60	60	60
Flow R	esults			
V_{wstd}	Volume of water collected (ft ³)	8.28	7.28	6.83
V _{mstd}	Volume metered, standard (ft ³)	32.43	30.65	30.58
Ps	Sample gas pressure, absolute (in. Hg)	29.26	29.26	29.26
P,	Vapor pressure, actual (in. Hg)	29.26	29.26	29.26
B _{wo}	Moisture in sample (% by volume)	20.35	19.20	18.27
B _{ws}	Saturated moisture (% by volume)	100.00	100.00	100.00
√∆Ρ	Velocity head (√in. H₂O)	0.291	0.280	0.287
Md	MW of sample gas, dry (lb/lb-mole)	30.88	30.90	30.90
Ms	MW of sample gas, wet (lb/lb-mole)	28.26	28.42	28.54
Vs	Velocity of sample (ft/sec)	19.9	19.2	19.6
Qa	Volumetric flow rate, actual (acfm)	221,800	213,600	218,700
Q_{std}	Volumetric flow rate, standard (dscfm)	121,800	118,000	122,000

TXI - HUNTER Clean Air Project No. 9101 Kiln Stack

VELOCITY AND MOISTURE PARAMETERS

Run No	D.	7	8	9	
Date (2	2002)	April 19	April 19	April 19	
Start Ti	me (approx.)	08:45	10:00	11:11	
Stop Ti	me (approx.)	09:52	11:03	12:15	
Sampli	ng Conditions			•	
Yd	Dry gas meter correction factor	1.0015	1.0015	1.0015	
C _p	Pitot tube coefficient	0.84	0.84	0.84	
P	Static pressure (in. H₂O)	0.1	0.1	0.1	
As	Sample location area (ft ²)	185.66	185.66	185.66	
P_{bar}	Barometric pressure (in. Hg)	29.25	29.25	29.25	
O2	Oxygen (dry volume %)	10.5	10.5	10.5	
CO2	Carbon dioxide (dry volume %)	16.4	16.3	16.3	
V _{ic}	Liquid collected (ml)	148.5	146.4	144.8	
Vm	Volume metered, meter conditions (ft ³)	33.17	33.49	33.72	
Tm	Dry gas meter temperature (°F)	76	78	83	
T _s	Sample temperature (°F)	247	246	246	
ΔH	Meter box orifice pressure drop (in. H ₂ O)	1.00	1.00	1.00	
Θ	Total sampling time (min)	60	60	60	
Flow R	esults				
V_{wstd}	Volume of water collected (ft ³)	6.99	6.89	6.82	
V_{mstd}	Volume metered, standard (ft3)	32.08	32.28	32.15	
P۶	Sample gas pressure, absolute (in. Hg)	29.26	29.26	29.26	
Pv	Vapor pressure, actual (in. Hg)	29.26	29.26	29.26	
B _{wo}	Moisture in sample (% by volume)	17.89	17.59	17.49	
B _{ws}	Saturated moisture (% by volume)	100.00	100.00	100.00	
√∆Ρ	Velocity head (√in. H₂O)	0.389	0.383	0.380	
M₀	MW of sample gas, dry (lb/lb-mole)	31.04	31.03	31.03	
Ms	MW of sample gas, wet (lb/lb-mole)	28.71	28.74	28.75	
Vs	Velocity of sample (ft/sec)	25.6	25.2	25.0	
Qa	Volumetric flow rate, actual (acfm)	285,600	280,600	278,200	
	Volumetric flow rate, standard (dscfm)	171,200	169,000	167,700	

(

VOLATILE ORGANICS PARAMETERS

Run No).	1A	2A	3A
Date (2	002)	April 17	April 17	April 17
Start Ti	me (approx.)	12:00	13:58	15:42
Stop Ti	me (approx.)	13:00	14:58	16:47
<u>Sampli</u>	ng Locations			
P₀	Barometric pressure (in. Hg)	29.25	29.25	29.25
Vm	Volume metered, meter conditions (liter)	21.40	23.00	19.70
Vm	Volume metered, meter conditions (ft ³)	0.76	0.81	0.70
ΔH	Meter box orifice pressure drop (in. H ₂ O)	1.20	1.00	1.10
Yď	Dry gas meter correction factor	0.9935	0.9935	0.9935
Tm	Dry gas meter temperature (°F)	88	89	90
	ated Results			
V _{m,std}	Volume metered, standard (ft ³)	0.71	0.76 ·	0.65
Result	s from Velocity and Moisture Parameters			
O ₂	Oxygen (dry volume %)	10.5	10.5	10.4
CO₂	Carbon dioxide (dry volume %)	16.5	16.1	16.3
Bwo	Moisture (% by volume)	18.48	18.95	18.71
Q,	Volumetric flow rate, actual (acfm)	255,300	272,400	284,000
Q _{std}	Volumetric flow rate, standard (dscfm)	151,900	161,300	168,900
BENZE	NE			
	hð	<6.84	<3.06	<3.06
С	Concentration (ppmdv)	<0.10	<0.04	<0.05
С	Concentration (ppmwv)	<0.09	<0.04	<0.04
Е	Emission rate(lb/hr)	<0.19	<0.09	<0.11
Е	Emission rate(tons/yr) ¹	<0.85	<0.38	<0.46
HEXAN	IE			
	hð	<1.29	<1.29	<1.29
С	Concentration (ppmdv)	<0.02	<0.02	<0.02
С	Concentration (ppmwv)	<0.01	<0.01	<0.02
Е	Emission rate(lb/hr)	<0.04	<0.04	<0.04
Е	Emission rate(tons/yr) ¹	<0.16	<0.16	<0.19
NAPH1	THALENE			
	μg .	<1.06	<1.06	<1.06
С	Concentration (ppmdv)	<0.01	<0.01	<0.01
С	Concentration (ppmwv)	<0.01	<0.01	<0.01
Е	Emission rate(lb/hr)	<0.03	<0.03	<0.04
Е	Emission rate(tons/yr) ¹	<0.13	<0.13	<0.16

< Indicates the value was below the detection limit. These values are used in the calculations.

1 Calculation based on 8,760 operating hours per year

VOLATILE ORGANICS PARAMETERS

ಹೆ

2

Run No). .	1A	2A	3 A
Date (2	002)	April 17	April 17	April 17
Start Ti	me (approx.)	12:00	13:58	15:42
Stop Tir	me (approx.)	13:00	14:58	16:47
Sampli	ng Locations			
Pb	Barometric pressure (in. Hg)	29.25	29.25	29.25
Vm	Volume metered, meter conditions (liter)	21.40	23.00	19.70
Vm	Volume metered, meter conditions (ft ³)	0.76	0.81	0.70
ΔH	Meter box orifice pressure drop (in. H ₂ O)	1.20	1.00	1.10
Yd	Dry gas meter correction factor	0.9935	0.9935	0.9935
T _m	Dry gas meter temperature (°F)	88	89	90
Calcula	ited Results			
V _{m,std}	Volume metered, standard (ft ³)	0.71	0.76	0.65
Results	s from Velocity and Moisture Parameters			
O ₂	Oxygen (dry volume %)	10.5	10.5	10.4
CO₂	Carbon dioxide (dry volume %)	16.5	16.1	16.3
Bwo	Moisture (% by volume)	18.48	18.95	18.71
Q	Volumetric flow rate, actual (acfm)	255,300	272,400	284,000
Q _{std}	Volumetric flow rate, standard (dscfm)	151,900	161,300	168,900
PHENO	L			
	hð	<4.91	<4.91	<4.91
С	Concentration (ppmdv)	<0.06	<0.06	<0.07
С	Concentration (ppmwv)	<0.05	<0.05	<0.06
Е	Emission rate(lb/hr)	<0.14	<0.14	<0.17
Е	Emission rate(tons/yr)1	<0.61	<0.60	<0.74
TOLUE	NE			
	hà	<2.55	<2.55	<2.55
С	Concentration (ppmdv)	<0.03	<0.03	<0.04
С	Concentration (ppmwv)	<0.03	<0.03	<0.03
E	Emission rate(lb/hr)	<0.07	<0.07	<0.09
Е	Emission rate(tons/yr) ¹	<0.32	<0.31	<0.38
XYLEN	E (m-, p-)			
	hà	<6.22	<6.22	<6.22
С	Concentration (ppmdv)	<0.07	<0.07	<0.08
С	Concentration (ppmwv)	<0.06	<0.05	<0.06
Е	Emission rate(lb/hr)	<0.18	<0.17	<0.21
Е	Emission rate(tons/yr) ¹	<0.77	<0.76	<0.94

< Indicates the value was below the detection limit. These values are used in the calculations.

1 Calculation based on 8,760 operating hours per year

VOLATILE ORGANICS PARAMETERS

Run No		1A	2A	3 A
Date (20	002)	April 17	April 17	April 17
Start Tir	ne (approx.)	12:00	13:58	15:42
Stop Tin	ne (approx.)	13:00	14:58	16:47
<u>Samplir</u>	ng Locations			
₽₀	Barometric pressure (in. Hg)	29.25	29.25	29.25
Vm	Volume metered, meter conditions (liter)	21.40	23.00	19.70
Vm	Volume metered, meter conditions (ft ³)	0.76	0.81	0.70
ΔH	Meter box orifice pressure drop (in. H ₂ O)	1.20	1.00	1.10
Yd	Dry gas meter correction factor	0.9935	0.9935	0.9935
T _m	Dry gas meter temperature (°F)	88	89	90
Calcula	ted Results			
$V_{m,std}$	Volume metered, standard (ft ³)	0.71	0.76	0.65
Results	from Velocity and Moisture Parameters			
O ₂	Oxygen (dry volume %)	10.5	10.5	10.4
CO2	Carbon dioxide (dry volume %)	16.5	16.1	16.3
Bwo	Moisture (% by volume)	18.48	18.95	18.71
Qa	Volumetric flow rate, actual (acfm)	255,300	272,400	284,000
Q_{std}	Volumetric flow rate, standard (dscfm)	151,900	161,300	168,900
XYLEN	E (o-)			
	hð	<3.10	<3.10	<3.10
С	Concentration (ppmdv)	<0.03	<0.03	<0.04
С	Concentration (ppmwv)	<0.03	<0.03	<0.03
Е	Emission rate(lb/hr)	<0.09	<0.09	<0.11
E	Emission rate(tons/yr) ¹	<0.38	<0.38	<0.47

< Indicates the value was below the detection limit. These values are used in the calculations.

1 Calculation based on 8,760 operating hours per year

5

Run No.		1B	2B	3B
Date (2	2002)	April 17	April 17	April 17
Start T	ime (approx.)	12:00	13:58	15:42
Stop T	ime (approx.)	13:00	14:58	16:47
Sampl	ing Conditions			• · · · · ·
Pb	Barometric pressure (in. Hg)	29.25	29.25	29.25
Vm	Volume metered, meter conditions (liter)	22.80	22.80	22.80
Vm	Volume metered, meter conditions (ft ³)	0.81	0.81	0.81
ΔH	Meter box orifice pressure drop (in. H ₂ O)	1.20	1.00	1.10
Y₄	Dry gas meter correction factor	0.9896	0.9896	0.9896
T _m	Dry gas meter temperature (°F)	90	92	94
<u>Calcul</u>	ated Results			
V _{m,str}	, Volume metered, standard (ft ³)	0.75	0.75	0.74
BENZI	ENE	•		
	µg (spike plus actual concentration)	27.46	31.31	40.21
	µg (spike concentration)	23.36	24.53	47.90
С	Concentration of spiked train (ppmdv)	0.40	0.46	0.59
С	Concentration of spike (ppmdv)	0.34	0.36	0.70
С	Concentration of unspiked train (ppmdv)	0.10	0.04	0.05
	Spike Recovery (%)	89.8%	113.7%	78.2%
HEXA	NE			
	µg (spike plus actual concentration)	13.93	19.68	30.62
	µg (spike concentration)	16.36	18.18	28.18
С	Concentration of spiked train (ppmdv)	0.18	0.26	0.41
С	Concentration of spike (ppmdv)	0.22	0.24	0.37
С	Concentration of unspiked train (ppmdv)	0.02	0.02	0.02
	Spike Recovery (%)	78.6%	101.2%	103.2%
NAPH	THALENE			
	µg (spike plus actual concentration)	15.75	14.27	21.11
	µg (spike concentration)	20.02	17.79	26.69
С	Concentration of spiked train (ppmdv)	0.14	0.13	0.19
С	Concentration of spike (ppmdv)	0.18	0.16	0.24
С	Concentration of unspiked train (ppmdv)	0.01	0.01	0.01
	Spike Recovery (%)	74.5%	75.8%	75.7%

Run No	D.	1B	2B	3B
Date (2		April 17	April 17	April 17
Start Ti	me (approx.)	12:00	13:58	15:42
Stop Ti	me (approx.)	13:00	14:58	16:47
<u>Sampli</u>	ing Conditions			
P⊾	Barometric pressure (in. Hg)	29.25	29.25	29.25
Vm	Volume metered, meter conditions (liter)	22.80	22.80	22.80
Vm	Volume metered, meter conditions (ft ³)	0.81	0.81	0.81
ΔH	Meter box orifice pressure drop (in. H ₂ O)	1.20	1.00	1.10
Y₀	Dry gas meter correction factor	0.9896	0.9896	0.9896
T _m	Dry gas meter temperature (°F)	90	92	94
Calcula	ated Results			
V _{m,std}	Volume metered, standard (ft ³)	0.75	0.75	0.74
PHENC	DL			
	µg (spike plus actual concentration)	4.91	4.91	4.91
	µg (spike concentration)	27.49	27.49	45.36
С	Concentration of spiked train (ppmdv)	0.06	0.06	0.06
С	Concentration of spike (ppmdv)	0.33	0.33	0.55
С	Concentration of unspiked train (ppmdv)	0.06	0.06	0.07
	Spike Recovery (%)	15.0%	15.2%	9.6%
TOLUE	NE			
	µg (spike plus actual concentration)	27.46	24.16	37.06
	µg (spike concentration)	24.76	22.51	36.01
С	Concentration of spiked train (ppmdv)	0.34	0.30	0.46
С	Concentration of spike (ppmdv)	0.30	0.28	0.45
С	Concentration of unspiked train (ppmdv)	0.03	0.03	0.04
	Spike Recovery (%)	100.0%	96.6%	95.2%
XYLEN	IE (m-, p-)			
	µg (spike plus actual concentration)	35.36	48.80	68.96
	µg (spike concentration)	39.65	43.07	67.93
С	Concentration of spiked train (ppmdv)	0.38	0.52	0.74
С	Concentration of spike (ppmdv)	0.42	0.46	0.73
С	Concentration of unspiked train (ppmdv)	0.07	0.07	0.08
	Spike Recovery (%)	76.5%	99.2%	91,9%

Run No	•	1B	2B	3B
Date (20	002)	April 17	April 17	April 17
Start Tir	ne (approx.)	12:00	13:58	15:42
Stop Tir	ne (approx.)	13:00	14:58	16:47
Samplii	ng Conditions	•		
P₀	Barometric pressure (in. Hg)	29.25	29.25	29.25
Vm	Volume metered, meter conditions (liter)	22.80	22.80	22.80
Vm	Volume metered, meter conditions (ft ³)	0.81	0.81	0.81
ΔH	Meter box orifice pressure drop (in. H ₂ O)	1.20	1.00	1.10
Yd	Dry gas meter correction factor	0.9896	0.9896	0.9896
T _m	Dry gas meter temperature (°F)	90	92	94
Calcula	ted Results			
$V_{\rm m,std}$	Volume metered, standard (ft ³)	0.75	0.75	0.74
XYLEN	E (o-)			
	ug (spike plus actual concentration)	23.22	27.13	45.25
	μg (spike concentration)	25.12	25.12	46.48
С	Concentration of spiked train (ppmdv)	0.25	0.29	0.49
С	Concentration of spike (ppmdv)	0.27	0.27	0.50
С	Concentration of unspiked train (ppmdv)	0.03	0.03	0.04
	Spike Recovery (%)	81.8%	96 .3%	90.4%

VOLATILE ORGANICS PARAMETERS

Run N	0.	4A	5A	6A
Date (2	2002)	April 18	April 18	April 18
Start T	ime (a ppr ox.)	10:05	12:10	14:36
Stop Ti	ime (a ppr ox.)	11:11	13:18	15:40
Sampl	ing Conditions			
P	Barometric pressure (in. Hg)	29.25	29.25	29.25
Vm	Volume metered, meter conditions (liter)	19.40	16.50	27.40
Vm	Volume metered, meter conditions (ft ³)	0.69	0.58	0.97
ΔH	Meter box orifice pressure drop (in. H ₂ O)	1.10	1.10	1.20
Yd	Dry gas meter correction factor	0.9935	0.9935	0.9935
T _m	Dry gas meter temperature (°F)	82	88	88
Calcul	ated Results		н М	
V _{m,std}	Volume metered, standard (ft ³)	0.65	0.55	0.91
<u>Result</u>	s from Velocity and Moisture Parameters			
O ₂	Oxygen (dry volume %)	9.90	10.1	10.0
CO2	Carbon dioxide (dry volume %)	15.5	15.6	15.6
Bwo	Moisture (% by volume)	20.35	19.20	18.27
Q	Volumetric flow rate, actual (acfm)	221,800	213,600	218,700
\mathbf{Q}_{std}	Volumetric flow rate, standard (dscfm)	121,800	118,000	122,000
BENZE	NE			
	μg	<8.69	<3.06	<13.73
, C	Concentration (ppmdv)	<0.15	<0.06	<0.16
С	Concentration (ppmwv)	<0.12	<0.05	<0.13
Е	Emission rate(lb/hr)	<0.22	<0.09	<0.24
Е	Emission rate(tons/yr) ¹	<0.94	<0.38	<1.07
HEXAN	1E			
•	μg	<1.29	<1.29	<1.29
С	Concentration (ppmdv)	<0.02	<0.02	<0.01
С	Concentration (ppmwv)	<0.02	<0.02	<0.01
E	Emission rate(lb/hr)	<0.03	<0.04	<0.02
E	Emission rate(tons/yr) ¹	<0.14	<0.16	<0.10
NAPHI	HALENE			
	μg	<1.06	<1.06	<1.06
С	Concentration (ppmdv)	<0.01	<0.01	<0.01
С	Concentration (ppmwv)	<0.01	<0.01	<0.01
E	Emission rate(lb/hr)	<0.03	<0.03	<0.02
E	Emission rate(tons/yr) ¹	<0.12	<0.13	<0.08

< Indicates the value was below the detection limit. These values are used in the calculations. 1 Calculation based on 8,760 operating hours per year

[1

VOLATILE ORGANICS PARAMETERS

Run No).	4A	5A	6A
Date (2	002)	April 18	April 18	April 18
Start Ti	me (approx.)	10:05	12:10	14:36
Stop Ti	me (approx.)	11:11	13:18	15:40
<u>Sampli</u>	ng Conditions			
Pb	Barometric pressure (in. Hg)	29.25	29.25	29.25
Vm	Volume metered, meter conditions (liter)	19.40	16.50	27.40
Vm	Volume metered, meter conditions (ft ³)	0.69	0.58	0.97
ΔH	Meter box orifice pressure drop (in. H ₂ O)	1.10	1.10	1.20
Yd	Dry gas meter correction factor	0.9935	0.9935	0.9935
Tm	Dry gas meter temperature (°F)	82	88	88
Calcula	ated Results			
V _{m,std}	Volume metered, standard (ft ³)	0.65	0.55	0.91
Results	s from Velocity and Moisture Parameters			
O ₂	Oxygen (dry volume %)	9.90	10.1	10.0
CO2	Carbon dioxide (dry volume %)	15.5	15.6	15.6
Bwo	Moisture (% by volume)	20.35	19.20	18.27
Qa	Volumetric flow rate, actual (acfm)	221,800	213,600	218,700
Q _{std}	Volumetric flow rate, standard (dscfm)	121,800	118,000	122,000
PHENC	DL			
	μg	<1.70	<1.70	<1.70
С	Concentration (ppmdv)	<0.02	<0.03	<0.02
С	Concentration (ppmwv)	<0.02	<0.02	<0.01
Е	Emission rate(lb/hr)	<0.04	<0.05	<0.03
Е	Emission rate(tons/yr) ¹	<0.18	<0.21	<0.13
TOLUE	NE			
	μg	<2.55	<2.55	<2.55
С	Concentration (ppmdv)	<0.04	<0.04	<0.03
С	Concentration (ppmwv)	<0.03	<0.03	<0.02
Е	Emission rate(lb/hr)	<0.06	<0.07	<0.05
Е	Emission rate(tons/yr) ¹	<0.28	<0.32	<0.20
XYLEN	E (m-, p-)			
	μg .	<6.22	<6.22	<6.22
С	Concentration (ppmdv)	<0.08	<0.09	<0.05
С	Concentration (ppmwv)	<0.06	<0.07	<0.04
Е	Emission rate(lb/hr)	<0.15	<0.18	<0.11
Е	Emission rate(tons/yr) ¹	<0.68	<0.78	<0.48

< Indicates the value was below the detection limit. These values are used in the calculations. 1 Calculation based on 8,760 operating hours per year

VOLATILE ORGANICS PARAMETERS

Run No		4 A	5A	6A
Date (2	002)	April 18	April 18	April 18
Start Ti	e (approx.) 10:05 12:10		14:36	
Stop Tir	me (approx.)	11:11	13:18	15:40
<u>Sampli</u>	ng Conditions			
P₀	Barometric pressure (in. Hg)	29.25	29.25	29.25
Vm	Volume metered, meter conditions (liter)	19.40	16.50	27.40
Vm	Volume metered, meter conditions (ft ³)	0.69	0.58	0.97
ΔH	Meter box orifice pressure drop (in. H ₂ O)	1.10	1.10	1.20
Yd	Dry gas meter correction factor	0.9935	0.9935	0.9935
T _m	Dry gas meter temperature (°F)	82	88	88
Calcula	ted Results			
V _{m,std}	Volume metered, standard (ft ³)	0.65	0.55	0.91
Results	s from Velocity and Moisture Parameters			
O ₂	Oxygen (dry volume %)	9.90	10.1	10.0
CO₂	Carbon dioxide (dry volume %)	15.5	15.6	15.6
B _{wo}	Moisture (% by volume)	20.35	19.20	18.27
Qa	Volumetric flow rate, actual (acfm)	221,800	213,600	218,700
\mathbf{Q}_{std}	Volumetric flow rate, standard (dscfm)	121,800	118,000	122,000
XYLEN	E (o-)			
	μg	<3.10	<3.10	<3.10
С	Concentration (ppmdv)	<0.04	<0.05	<0.03
С	Concentration (ppmwv)	<0.03	<0.04	<0.02
Е	Emission rate(lb/hr)	<0.08	<0.09	<0.06
Е	Emission rate(tons/yr) ¹	<0.34	<0.39	<0.24

< Indicates the value was below the detection limit. These values are used in the calculations. 1 Calculation based on 8,760 operating hours per year

Run N	0.	4B	5B	6B
Date (2002)	April 18	April 18	April 18
Start T	ime (app rox .)	10:05	12:10	14:36
Stop T	ïme (appr ox.)	11:11	13:18	15:40
Samp	ing Conditions			
P	Barometric pressure (in. Hg)	29.25	29.25	29.25
Vm	Volume metered, meter conditions (liter)	21.80	23.60	28.90
Vm	Volume metered, meter conditions (ft ³)	0.77	0.83	1.02
ΔH	Meter box orifice pressure drop (in. H ₂ O)	1.10	1.10	1.20
Yd	Dry gas meter correction factor	0.9896	0.9896	0.9896
Tm	Dry gas meter temperature (°F)	85	88	att - 1 92 -
<u>Calcul</u>	ated Results			
V _{m,str}	Volume metered, standard (ft ³)	0.72	0.78	0.95
BENZI	ENE	- 		
	µg (spike plus actual concentration)	49.81	41.15	44.26
	µg (spike concentration)	36.93	35.45	31.02
С	Concentration of spiked train (ppmdv)	0.75	0.57	0.51
С	Concentration of spike (ppmdv)	0.55	0.49	0.36
С	Concentration of unspiked train (ppmdv)	0.15	0.06	0.16
	Spike Recovery (%)	106.9%	103.4%	97.6%
HEXA	NE			
	µg (spike plus actual concentration)	19.98	19.89	32.23
	µg (spike concentration)	24.99	21.04	28.93
С	Concentration of spiked train (ppmdv)	0.27	0.25	0.34
С	Concentration of spike (ppmdv)	0.34	0.27	0.30
С	Concentration of unspiked train (ppmdv)	0.02	0.02	0.01
	Spike Recovery (%)	75.6%	86.9%	106.5%
NAPH	THALENE			
	µg (spike plus actual concentration)	9.02	14.91	23.98
	µg (spike concentration)	10.34	18.60	23.77
С	Concentration of spiked train (ppmdv)	0.08	0.13	0.17
С	Concentration of spike (ppmdv)	0.09	0.16	0.17
С	Concentration of unspiked train (ppmdv)	0.01	0.01	0.01
	Spike Recovery (%)	78.3%	74.1%	96.4%

Run N	0.	4B	5B	6B
Date (2	2002)	April 18	April 18	April 18
Start T	ime (approx.)	10:05 11:11	12:10 13:18	14:36 15:40
Stop T	ime (approx.)			
<u>Sampl</u>	ing Conditions			
P₅	Barometric pressure (in. Hg)	29.25	29.25	29.25
Vm	Volume metered, meter conditions (liter)	21.80	23.60	28.90
Vm	Volume metered, meter conditions (ft ³)	0.77	0.83	1.02
ΔH	Meter box orifice pressure drop (in. H ₂ O)	1.10	1.10	1.20
Y₀	Dry gas meter correction factor	0.9896	0.9896	0.9896
T _m	Dry gas meter temperature (°F)	85	88	92
Calcul	ated Results			
V _{m,stc}	Volume metered, standard (ft ³)	0.72	0.78	0.95
PHENO	DL			
	µg (spike plus actual concentration)	18.50	16.41	21.61
	µg (spike concentration)	21.67	19.26	24.07
С	Concentration of spiked train (ppmdv)	0.23	0.19	0.21
С	Concentration of spike (ppmdv)	0.27	0.22	0.23
С	Concentration of unspiked train (ppmdv)	0.02	0.03	0.02
	Spike Recovery (%)	78.5%	75.7%	83.6%
TOLUE	ENE			
	µg (spike plus actual concentration)	26.44	22.93	17.04
	µg (spike concentration)	27.76	22.72	17.67
С	Concentration of spiked train (ppmdv)	0.34	0.27	0.17
С	Concentration of spike (ppmdv)	0.35	0.27	0.17
C	Concentration of unspiked train (ppmdv)	0.04	0.04	0.03
	Spike Recovery (%)	86.4%	87.0%	83.8%
XYLEN	IE (m-, p-)			
	µg (spike plus actual concentration)	43.98	43.51	55.64
	µg (spike concentration)	47.00	41.78	52.23
С	Concentration of spiked train (ppmdv)	0.49	0.45	0.47
С	Concentration of spike (ppmdv)	0.52	0.43	0.44
С	Concentration of unspiked train (ppmdv)	0.08	0.09	0.05
	Spike Recovery (%)	81.5%	85.9%	94.8%

Run No.		4B	5B	6B
Date (20	002)	April 18	April 18	April 18
Start Tir	ne (approx.)	10:05	12:10	14:36
Stop Time (approx.)		11:11	13:18	15:40
<u>Samplir</u>	ng Conditions			
P₀	Barometric pressure (in. Hg)	29.25	29.25	29.25
Vm	Volume metered, meter conditions (liter)	21.80	23.60	28.90
Vm	Volume metered, meter conditions (ft ³)	0.77	0.83	1.02
ΔH	Meter box orifice pressure drop (in. H ₂ O)	1.10	1.10	1.20
Y₀	Dry gas meter correction factor	0.9896	0.9896	0.9896
T _m	Dry gas meter temperature (°F)	85	88	92
<u>Calcula</u>	ted Results			
$V_{m,std}$	Volume metered, standard (ft ³)	0.72	0.78	0.95
XYLEN	Ξ (ο-)			
	µg (spike plus actual concentration)	19.20	22.05	23.60
	µg (spike concentration)	21.15	21.15	22.47
С	Concentration of spiked train (ppmdv)	0.21	0.23	0.20
С	Concentration of spike (ppmdv)	0.23	0.22	0.19
С	Concentration of unspiked train (ppmdv)	0.04	0.05	0.03
	Spike Recovery (%)	78.0%	86.2%	91.8%
VOLATILE ORGANICS PARAMETERS

Run No).	7	8	9
Date (2	002)	April 19	April 19	April 19
Start Ti	me (approx.)	08:45	10:00	11:11
Stop Ti	me (approx.)	09:52	11:03	12:15
<u>Sampli</u>	ng Conditions			
₽ь	Barometric pressure (in. Hg)	29.25	29.25	29.25
Vm	Volume metered, meter conditions (liter)	28.20	25.90	27.60
Vm	Volume metered, meter conditions (ft ³)	1.00	0.91	0.97
ΔH	Meter box orifice pressure drop (in. H ₂ O)	1.10	1.10	1.10
Yď	Dry gas meter correction factor	0.9896	0.9896	0.9896
T _m	Dry gas meter temperature (°F)	85	. 84	87
Calcula	ated Results			
V _{m,std}	Volume metered, standard (ft ³)	0.94	0.86	0.91
Result:	s from Velocity and Moisture Parameters			
O ₂	Oxygen (dry volume %)	10.5	10.5	10.5
CO₂	Carbon dioxide (dry volume %)	16.4	16.3	16.3
B _{wo}	Moisture (% by volume)	17.89	17.59	17.49
Qa	Volumetric flow rate, actual (acfm)	285,600	280,600	278,200
Q _{std}	Volumetric flow rate, standard (dscfm)	171,200	169,000	167,700
BENZE	NE	•		
	μg	<67.45	<30.85	<9.56
С	Concentration (ppmdv)	<0.78	<0.39	<0.11
С	Concentration (ppmwv)	<0.64	<0.32	<0.09
Е	Emission rate(lb/hr)	<1.63	<0.80	<0.23
E	Emission rate(tons/yr)	<7.15	<3.51	<1.02
HEXAN	IE			
	μg	<1.29	<1.29	<1.29
С	Concentration (ppmdv)	<0.01	<0.01	<0.01
С	Concentration (ppmwv)	<0.01	<0.01	<0.01
Е	Emission rate(lb/hr)	<0.03	<0.03	<0.03
Е	Emission rate(tons/yr)	<0.14	<0.15	<0.14
NAPHT	HALENE			
	μg	<2.57	<1.06	<1.06
С	Concentration (ppmdv)	<0.02	<0.01	<0.01
С	Concentration (ppmwv)	<0.01	<0.01	<0.01
E	Emission rate(lb/hr)	<0.06	<0.03	<0.03
E	Emission rate(tons/yr)	<0.27	<0.12	<0.11

< Indicates the value was below the detection limit. These values are used in the calculations.

1 Calculation based on 8,760 operating hours per year

VOLATILE ORGANICS PARAMETERS

Run N	0.	7	8	9
Date (2	2002)	April 19	April 19	April 19
Start Ti	ime (approx.)	08:45	10:00	11:11
Stop Ti	me (approx.)	09:52	11:03	12:15
Sampl	ing Conditions			
P₀	Barometric pressure (in. Hg)	29.25	29.25	29.25
Vm	Volume metered, meter conditions (liter)	28.20	25.90	27.60
Vm	Volume metered, meter conditions (ft ³)	1.00	0.91	0.97
ΔH	Meter box orifice pressure drop (in. H ₂ O)	1.10	1.10	1.10
Yd	Dry gas meter correction factor	0.9896	0.9896	0.9896
Tm	Dry gas meter temperature (°F)	85	84	87
<u>Calcula</u>	ated Results			
V _{m,std}	Volume metered, standard (ft ³)	0.94	0.86	0.91
Result	s from Velocity and Moisture Parameters			
O ₂	Oxygen (dry volume %)	10.5	10.5	10.5
CO2	Carbon dioxide (dry volume %)	16.4	16.3	16.3
Bwo	Moisture (% by volume)	17.89	17.59	17.49
Qa	Volumetric flow rate, actual (acfm)	285,600	280,600	278,200
Q _{std}	Volumetric flow rate, standard (dscfm)	171,200	169,000	167,700
PHENO	DL			
	hð	<1.70	<1.70	<1.70
С	Concentration (ppmdv)	<0.02	<0.02	<0.02
С	Concentration (ppmwv)	<0.01	<0.01	<0.01
Е	Emission rate(lb/hr)	<0.04	<0.04	<0.04
E	Emission rate(tons/yr)	<0.18	<0.19	<0.18
TOLUE	NE			
	hð	<5.36	<2.55	<2.55
С	Concentration (ppmdv)	<0.05	<0.03	<0.03
С	Concentration (ppmwv)	<0.04	<0.02	<0.02
E	Emission rate(lb/hr)	<0.13	<0.07	<0.06
E	Emission rate(tons/yr)	<0.57	<0.29	<0.27
XYLEN	IE (m-, p-)			
	μg .	<6.22	<6.22	<6.22
С	Concentration (ppmdv)	<0.05	<0.06	<0.05
С	Concentration (ppmwv)	<0.04	<0.05	<0.05
E	Emission rate(lb/hr)	<0.15	<0.16	<0.15
Е	Emission rate(tons/yr)	<0.66	<0.71	<0.66

< Indicates the value was below the detection limit. These values are used in the calculations.

.

1 Calculation based on 8,760 operating hours per year

VOLATILE ORGANICS PARAMETERS

Run No).	7	8	9
Date (2)	002)	April 19	April 19	April 19
Start Tir	me (approx.)	08:45	10:00	11:11
Stop Tir	ne (approx.)	09:52	11:03	12:15
Sampli	na Conditions			
P	Barometric pressure (in. Hg)	29.25	29.25	29.25
V	Volume metered, meter conditions (liter)	28.20	25.90	27.60
V	Volume metered, meter conditions (ft ³)	1.00	0.91	0.97
ΔH	Meter box orifice pressure drop (in, H ₂ O)	1.10	1.10	1.10
Ya	Dry gas meter correction factor	0.9896	0.9896	0.9896
T _m	Dry gas meter temperature (°F)	85	84	87
Calcula	ted Results			
V _{m,std}	Volume metered, standard (ft ³)	0.94	0.86	0.91
Results	from Velocity and Moisture Parameters			
O ₂	Oxygen (dry volume %)	10.5	10.5	10.5
CO ₂	Carbon dioxide (dry volume %)	16.4	16.3	16.3
Bwo	Moisture (% by volume)	17.89	17.59	17.49
Q,	Volumetric flow rate, actual (acfm)	285,600	280,600	278,200
Q _{std}	Volumetric flow rate, standard (dscfm)	171,200	169,000	167,700
XYLEN	E (o-)			•
	hð	<6.27	<3.10	<3.10
С	Concentration (ppmdv)	<0.05	<0.03	<0.03
С	Concentration (ppmwv)	<0.04	<0.02	<0.02
Е	Emission rate(lb/hr)	<0.15	<0.08	<0.08
Е	Emission rate(tons/yr)	<0.66	<0.35	<0.33

< Indicates the value was below the detection limit. These values are used in the calculations.

1 Calculation based on 8,760 operating hours per year

FTIR PARAMETERS

Run No).	• 1	2	3	Average
Date (2) Start Til Stop Tir	002) me ne	April 17 10:51 12:58	April 17 13:42 14:48	April 17 15:30 16:31	
Gas Co	nditions				
T۵	Temperature (°F)	247	246	246	246
O ₂	Oxygen (dry volume %)	10.5	10.5	10.4	10.5
CO2	Carbon Dioxide (dry volume %)	16.5	16.1	16.3	16.3
B _{wo}	Moisture in sample (% by volume)	18.48	18.48	18.48	18.48
Q_a	Volumetric flow rate, actual (acfm) ¹	255,300	272,400	284,000	270,567
\mathbf{Q}_{std}	Volumetric flow rate, standard (dscfm) ¹	151,900	161,300	168,900	160,700
HYDRO	GEN CHLORIDE (M321)				
	Concentration from FTIR analysis (ppmwv)	0.51	0.83	0.37	0.57
Cgas	Concentration moisture corrected (ppmdv)	0.63	1.02	0.45	0.70
Ę	Emission rate (lb/hr)	0.54	0.93	0.44	0.64
E	Emission rate (ton/yr) ²	2.36	4.08	1.91	2.78
FORMA	LDEHYDE (M320)				
Cgas	Concentration from FTIR analysis (ppmwv)	1.39	1.37	1.08	1.28
Cgas	Concentration moisture corrected (ppmdv)	1.71	1.68	1.32	1.57
E	Emission rate (lb/hr)	1.21	1.27	1.05	1.18
E	Emission rate (ton/yr) ²	5.31	5.55	4.58	5.15

¹ Volumetric flow rates obtained from concurrent Methods 1-4 testing.
 ² Based on 8,760 hours/year of operation.

FTIR PARAMETERS

Run No	•	4	5	6	Average
Date (20	002)	April 18	April 18	April 18	
Start Tir	ne	10:05	12:10	14:36	
Stop Tir	ne	11:11	13:18	15:40	
<u>Gas Co</u>	nditions				
Τs	Temperature (°F)	288	295	296	293
O ₂	Oxygen (dry volume %)	9.9	10.1	10.0	10.0
CO2	Carbon Dioxide (dry volume %)	15.5	15.6	15.6	15.6
Bwo	Moisture in sample (% by volume)	20.35	19.20	18.27	19.27
Q_a	Volumetric flow rate, actual (acfm) ¹	221,800	213,600	218,700	218,033
Q _{std}	Volumetric flow rate, standard (dscfm) ¹	121,800	118,000	122,000	120,600
HYDRO	GEN CHLORIDE (M321)				
C _{oas}	Concentration from FTIR analysis (ppmwv)	1.33	2.13	2.18	1.88
Cgas	Concentration moisture corrected (ppmdv)	1.67	2.64	2.67	2.32
E	Emission rate (lb/hr)	1.15	1.77	1.85	1.59
E	Emission rate (ton/yr) ²	5.06	7.74	8.09	6.96
FORMA	LDEHYDE (M320)				
C _{µas}	Concentration from FTIR analysis (ppmwv)	1.28	1.05	1.28	1.20
Cgas	Concentration moisture corrected (ppmdv)	1.61	1.30	1.57	1.49
Е	Emission rate (lb/hr)	0.92	0.72	0.89	0.84
E	Emission rate (ton/yr) ²	4.01	3.14	3.91	3.69

¹ Volumetric flow rates obtained from concurrent Methods 1-4 testing.
 ² Based on 8,760 hours/year of operation.

CleanAir

TXI OPERATIONS, L.P. HUNTER CEMENT PLANT

[

Client Reference No: 63927 CAE Project No: 9101

С

CALIBRATION DATA

SAMPLE PROBE CALIBRATION DATA

CS 011 Probe/Pitot Cal BB, Dpt 67-4/1/98

Meter Box Full Test Calibration

DATE: 4/11/02

Operator:

R.R.

Meter	Meter Box No: 85-1				Meter Box $\Delta H@:$ 1.7793 N				Meter 1	Meter Box Y _d : 1				Barometi	ric Press	ure:	29.52	
Stand		Standa	ard Meter Gas Volume		Me Va	eter Box (blume (ft	Gas ³)	Std. Meter Temperature (°F)			Meter Bo Temperatur		ox e (°F)					
Q	ΔH	ΔΡ	Y _{ds}	Initial	Final	$V_{\sf ds}$	Initial	Final	V _d	Inlet	Outlet	T _{ds}	Inlet	To	T _d	Time	Yd	H@
0.949	3.00	-1.80	1.0000	0.0	10.000	10.000	237.120	247.224	10.104	68.5	68.5	68.5	86.0	76.0	81.0	10.38	1.0011	1.8202
0.951	3.00	-1.80	1.0000	0.0	10.000	10.000	247.224	257.350	10.126	68.5	68.5	68.5	86.0	76.0	81.0	10.36	0.9989	1.8132
0.393	0.50	-1.20	1.0000	0.0	5.000	5.000	260.814	265.874	5.060	68.5	68.5	68.5	80.0	76.0	78.0	12.53	1.0017	1.7682
0.395	0.50	-1.20	1.0000	0.0	5.000	5.000	265.874	270.922	5.048	68.5	68.5	68.5	80.0	76.0	78.0	12.48	1.0040	1.7541
0.681	1.50	-1.50	1.0000	0.0	10.000	10.000	274.511	284.632	10.121	68.5	68.5	68.5	84.0	76.0	80.0	14.46	1.0020	1.7661
0.684	1.50	-1.50	1.0000	0.0	10.000	10.000	284.632	294.769	10.137	68.5	68.5	68.5	85.0	76.0	80.5	14.41	1.0014	1.7540
															AVERA	GE	1.0015	1.7793

	Nomenclature							-	Equations
Pb Q	Barometric Pressure (in. Hg) Flow Rate (cfm) Orifice Pressure Differential (in Ha0)	Vacuum	Gauge	Ther	momet	ers	Y,		$(Y_{+})\left[\frac{V_{ds}}{T_{d}}\right]\left[\frac{T_{d} + 460}{T_{b} + \Delta P / 136}\right]$
ΔP Vd	Inlet Pressure Differential (in: $H_2^{(0)}$) Gas Meter Volume - Dry (ft^3)	Standard (in. Hg)	Vacuum Gauge	Standard (°F)	Inlet	Outlet	u u		$\sum \left[V_{d} \right] T_{ds} + 460 P_{b} + \Delta H / 13.6$
V _{ds} Ta	Standard Meter Volume - Dry (ft ³) Average Meter Box Temperature (°F)	4.7	5.0				ΔH	@_=	$= \frac{0.0319(\Delta H)}{P(T + 460)} \left[\frac{(T_{ds} + 460)\Theta}{(V_{s})(Y_{s})} \right]^{2}$
To	Outlet Meter Box Temperature (°F)	15.1	15.0						
T _{ds} Y _d	Average Standard Meter Temperature (°F) Meter Correction Factor (unitless)	20.0	20.0 25.0				Q	-	$\frac{17.64 (V_{ds}) (P_b)}{(T_b + 460) (\Theta)}$
Y _{ds} ∆H@	Standard Meter Correction Factor (unitless) Orifice Pressure Differential giving 0.75 cfm								(1ds + 100) (0)
	of air at 68°F and 29.92 in. Hg (in. H_2 0)								· · · ·

Pyrometer Calibration Test Report

	······		
Pyrometer No.:	85-1	Office:	Palatine, Il
Calibrated By:	R.R.	Client:	
Date:	4/11/02	Job Number:	
	······································		

Calibration Reference Settings for Fahrenheit Scale	Pyrometer Reading
50 °F	50 °F
100 °F	100 °F
150 °F	150 °F
200 °F	201 °F
250 °F	252 °F
300 °F	302 °F
350 °F	351 °F
400 °F	401 °F
450 °F	450 °F
500 °F	500 °F
550 °F	550 °F
600 °F	602 °F

Calibration Reference Information

Omega CL23A	Serial No:	T-225950
ga Engineering;Inc.	Date:	3/15/02
RF-T-225950	-	
	Omega CL23A ega Engineering;Inc. RF-T-225950	Omega CL23ASerial No:ega Engineering;Inc.Date:RF-T-225950

4-23-02

Meter Box Critical Orifice Post-Test Calibration Data

CAE Proj Location Date Of	ject No. Of Test Test	9113 Houston 4/23/02	-		Meter No. Y₀ delta H	85-1 1.0015 1.7793	•	Orifice I.D Orifice K' Orifice	84-A-3 0.5679 11/20/01	-	Leak Checks Neg. Press.	<u>x Pass</u> Fail
Operator	Name	C. Bechtold	Ļ		Full-Test Cal.Date	4/11/02	-	Cal. Date		-	Pos. Press.	x Pass Fail
	Barom. Press	s.(P _b)	29.10	_in.Hg		•	Leak Chec	ks Must Hav All Leak Ch	e No Movem ecks Must Pa	ent Of Manom ass In Order fo	leter For One I or Test to be V	<i>Minute.</i> 'alid.
			Meter Te	emp.					Net Meter	Avg.		
	Elapsed	Meter			Ambient				Volume	Meter		Percent
	Time	Volume	Inlet	Outlet	Temp.	Orifice		Net Run	for Run-	Temp. for	DGM	Variation
RUN	(minutes)	(dcf)	(F)	(F)	Tamb	delta H	Vacuum	Time	Vm	Run-Tm	Calibration	for
	0.0	619.11	78	77	(F)	(in.W.C)	(in.H.G)	(minutes)	(dcf)	(F)	Factor-Yi	delta Yi
1	5	622.92	78	77	77	1.8	16	5	3.81	77.5	0.9755	-0.2167
2	10	626.72	81	78	78	1.8	16	5	3.8	79.5	0.9808	0.3248
3	15	630.54	82	78	78	1.8	16	5	3.82	80	0.9766	-0.1080
					<u>deita Yı m</u>	<u>ust be less</u>	<u>than or eq</u>	ual to 2 %		Average Yi Cal. Error	0.9776 -2.3819	·
					Cal. Error	must be les	<u>s than or e</u>	equal to 5 %				
								Operator Si	gnature :	C. Bechtold		<u></u>

DATE:

9/5/01

Vost Meter Full Cst Calibration

Operator:

M.V.

Meter	Meter Box No: 71-		71-VI	5						Meter I	Box Y _d :		0.9935		Baromet	ric Press	ure:	29.60
			Standard Meter Gas Volume			Meter Box Gas Volume (ft ³)			Std. Meter Temperature (°F)			Meter Box Temperature (°F)						
Q	ΔH	ΔΡ	Y _{ds}	Initial	Final	V _{ds}	Initial	Final	Vd	Inlet	Outlet	T _{ds}	Inlet	To	T _d	Time	Yd	
0.035	1.70	-1.00	1.0000	0.0	1.030	1.030	6565.59	6595.12	1.0429	76.0	76.0	76.0	82.0	82.0	82.0	28.44	0.9920	
0.035	1.70	-1.00	1.0000	0.0	1.250	1.250	6595.12	6631.01	1.2675	76.0	76.0	76.0	84.0	84.0	84.0	34.38	0.9942	
0.035	1.70	-1.00	1.0000	0.0	1.000	1.200	6697.45	6732.00	1.2202	7 <u>6</u> .0	76.0	76.0	86.0	85.0	85.5	33.17	0.9942	
								· · ·	•						AVERA	GE	0.9935	

	Nomenclature	Vacuum	Gauge	Ther	mome	ters		Equations
РЪ	Barometric Pressure (in. Hg)	•	Ũ					
Q AH	Flow Rate (cfm) Orifice Pressure Differential (in. H ₂ 0)	Standard	Vacuum	Standard	Inlet	Outlet	Y _d	$= (Y_{ds}) \left[\frac{V_{ds}}{V_{ds}} \right] \left[\frac{T_{d} + 460}{T_{a} + 460} \right] \left[\frac{P_{b} + \Delta P / 136}{P_{b} + \Delta H / 126} \right]$
ΔP	Inlet Pressure Differential (in. H ₂ 0)	(in. Hg)	Gauge	(°F)		0		$\begin{bmatrix} V_d \end{bmatrix} \begin{bmatrix} I_{ds} + 400 \end{bmatrix} \begin{bmatrix} P_b + \Delta P_l / 13.0 \end{bmatrix}$
Vd	Gas Meter Volume - Dry (ft ³)	4.4	5.0					
V _{ds}	Standard Meter Volume - Dry (ft ³)	07	10.0				ΔH@	$=\frac{0.0319(\Delta H)}{D}\left[\frac{(1_{ds} + 460)\Theta}{M}\right]$
Td	Average Meter Box Temperature (°F)	9.1	10.0					$P_{b}(I_{o} + 460) \lfloor (V_{ds})(Y_{ds}) \rfloor$
To	Outlet Meter Box Temperature (°F)	14.0	15.0					
Tds	Average Standard Meter Temperature (°F)	19.5	20.0				0	$-17.64 (V_{ds}) (P_b)$
Yd	Meter Correction Factor (unitless)		25.0				V V	$-\frac{1}{(T_{ds} + 460)(\Theta)}$
Yds	Standard Meter Correction Factor (unitless)							
∆H@	Orifice Pressure Differential giving 0.75cfm of air at 68°F and 29.92 in. Hg (in. H ₂ 0)			· · ·				

÷J

Pyrometer Calibration Test Report

Pyrometer No.:	71-V15	Office:	Palatine, Il
Calibrated By:	M.V.	Client:	
Date:	9/5/01	Job Number:	
		•	

Calibration Reference Settings for Fahrenheit Scale	Pyrometer Reading
50 °F	48 °F
100 °F	98 °F
150 °F	148 °F
200 °F	199 °F
250 °F	249 °F
300 °F	299 °F
350 °F	349 °F
400 °F	399 °F
450 °F	449 °F
500 °F	499 °F
550 °F	549 °F
600 °F	599 °F

Calibration Reference Information

Reference Used	l: Omega CL23A	Serial No:	T-225950
Calibrated By:	Omega Engineering;Inc.	Date:	3/15/01
Report No:	RF-T-225950	_	

Calit
lest
Full
Meter
/ost]

L			a re tis int				:	
	•	29.52						
		lure:		Y _d	10600	0.9889	0.9893	0.9896
	M.V.	ic Press		Time	27.60	Z1.51	27.62	E
		Barometr		Td	76.5	76.5	76.5	AVERA
	erator:			T.	16.0	76.0	76.0	
tion	Ö	9686.0		Inlet	0.17.0	17.0	0717	
libra				T _{ds}	69.0	69.0	69.0	
t Cal		Sox Y _d		Outlet	0'69	0.69	69.0	
lest		Meter I		Inlet	0.69	69:0	69.0	
r Full				Vd	1.0182	6610.1	9610.1	
Mete			a di	Final	2301.41	2330.29	2416.15	
Vost				Initial	2277.58	2301.41	2387.28	
				ک _{طه}	000"	1.000	1.000	
				Final	000.1	000'1	000.1	
				Initial	00	0.0	0.0	
		<u>84-VI</u>		Y _{ds}	1.0000	1,000	1.0000	
	3/20/0	ö		ЧÞ	06'0-	-0.90	-0,90	
		Box N		HΔ	1.30	Ъ. Г.	001	
	DATE:	Meter		Ø	0.036	0.036	0.036	

 H. Orifice Pressure Differential (in. H₂0) Standa Inlet Pressatre Differential (in. H₂0) Gas Meter Volume - Dry (fP) Average Meter Volume - Dry (fP) Gas Meter Volume - Dry (fP) Average Meter Volume - Dry (fP) Gas Meter Connection Factor (untilees) He Ontick Pressure Differential graving 0.75 cfm d pit et (6P1 sund 2992 in Fig (in. H₂0) 	ig) Cauge 3, 5,0 3, 5,0 3, 5,0 3, 10,0 3, 15,0 3, 24,0 3, 24,0 3, 24,0 3, 24,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5	Thermonuclens Standard Inlet Outlet (F)	$Y_{d} = (Y_{d}) \left[\frac{Y_{d}}{V_{d}} \left[\frac{T_{d}}{T_{d}} + \frac{460}{T_{d}} \right] \frac{P_{d}}{P_{d}} + \frac{460}{T_{d}} \left[\frac{P_{d}}{P_{d}} + \frac{460}{V_{d}} \right] \frac{P_{d}}{P_{d}} + \frac{460}{V_{d}} \frac{P_{d}}{P_{d}} \right]^{2}$ $\Delta HG = \frac{0.0319(\Delta H)}{P_{d}(T_{o}} + \frac{460}{460}) \left[\frac{(T_{d}}{V_{dd}} + \frac{460}{V_{d}}) \frac{P_{d}}{P_{d}} \right]^{2}$ $Q = \frac{17.64}{(T_{d}} + \frac{460}{V_{d}}) \frac{(Q)}{(Q)}$
an Al Engineeting	8		

.

18412218274

IT PHOTE. 047 03

*

: : :

***** ŀ

•

.

ł .

÷

. •

÷

÷

04/1//2002 10:20 104/3310354

WEHN HIR ENTREDD

•.^•

Pyrometer No.:	84-V1	Office:	Palatine, Il
Calibrated By:	M.V.	Client:	
Date:	3/20/02	Job Number:	
	دون الأ لي محمد اليكن الألك من مستحد اليكن المرا عد المارك من عن المارك من عن المارك من عن المارك من عن المارك م	•	

Calibration Reference Settings for Fahrenheit Scale	Pyrometer Reading
50 °F	50 °F
100 °F	100 °F
150 'F	150 °F
200 °F	201 °F
250 °F	251 °F
300 ° F	301 °F
350 °F	351 °F
400 °F	401 °F
450 °F	451 F
500 °F	501 °F
550 °F	551 °F
600 °F	601 °F

Calibration Reference Information

Serial No:	T-225950
Date:	3/15/01
_	
	Serial No: Date:

Clean Alt Engineering

CERTIFIED MASTER CLASS

Single-Certified Calibration Standard

د.

Scott Specialty Gases Ŝ

Phone: 248-589-2950 Fax: 248-589-2134

CERTIFICATE OF ACCURACY: Certified Master Class Calibration Standard

Product Information Project No.: 05-88771-001 Item No.: 05020001290PA P.O. No.: 51499-71-65000

Cylinder Number: 1A7839 Cylinder Size: A Certification Date: 02/12/2002 Expiration Date: 02/12/2004

CERTIFIED CONCENTRATION

Component Name

ETHYLENE NITROGEN

TRACEABILITY

Traceable To

NIST

Concentration (Moles)

20.1 PPM BALANCE Accuracy (+/-%) 2

CLEAN AIR ENGINEERING DON ALLEN 500 W. WOOD STREET PALATINE, IL 60067

Customer

DATE: Z-12-02

APPROVED BY:

Bel Patt

Shipped	1290 COMBERMEN	RE STREET	
From:	TROY Phone: 248-589	MI 480 9-2950	83 Fax: 248-589-2134
	CERTIF	ICATE OF	ANALYSIS
CLEAN AIR DON ALLEN 500 W. WOO	ENGINEERING		PROJECT #: 05-88241-003 PO#: 51471-71-65000 ITEM #: 0501813 AL
PALATINE		IL 60067	DATE: 1/28/02
CYLINDER FILL PRE	A #: ALM058557 ESSURE: 02000 1	PSIG	
CONDE.	TAL: NIIROGEN	-	CAS# //2/-3/-9
GRADE:	ZERU GA	2	
FORITI: 93		MAYTMIM	
	IMPURITY THC	CONCENTRATIO	NS
		· ·	
		· · · · · · · · · · · · · · · · · · ·	
	RIDL		
ANALYST: _	-Du harf	, 	

Ì

•

CUSTOM CLASS

CLEAN AIR ENGINEERING DON ALLEN 500 W. WOOD STREET PALATINE, IL 60067

Scott Specialty Gases (S)

1290 COMBERMERE STREET, TROY, MI 48083

Phone: 248-589-2950

Customer

Fax: 248-589-2134

CERTIFICATE OF ACCURACY: Custom Class Calibration Standard

Product Information Project No.: 05-90122-003 Item No.: 0502H303485ZA P.O. No.: 51569-71-65000

Cylinder Number: NXA9354 Cylinder Size: A Certification Date: 04/02/2002 Expiration Date: 10/01/2002

CERTIFIED CONCENTRATION

Component Name

HYDROGEN CHLORIDE SULFUR HEXAFLUORIDE NITROGEN

TRACEABILITY

Description

BLEND PROCESS TRACEABILITY ANALYTICAL TRACEABILITY

Traceability Type

PPM

PPM

BALANCE

Concentration

(Moles)

5.11

149.

WEIGHT GAS STANDARDS

Traceable To

Accuracy

(+/-%)

5 10

NIST

APPROVED BY:

Bl Patff

DATE: 4-2-02

CleanAir

TXI OPERATIONS, L.P. HUNTER CEMENT PLANT

Client Reference No: 63927 CAE Project No: 9101

Revision 0

TEST LOCATION: 5TACK

CYCLONIC FLOW CHECK **FIELD DATA SHEET**

PAGE \

UNIT: STACK 1

Client TX	Project No. 7109					
Plant ITUNIER	Date 4/18/02					
Meter Operator R. Heracole E						
Probe Operator D. B.J.K.						
Probe I.D. No. 6759-70-Pi	tot Cp 0.84					
Pitot Leak Check Before:	ter: Good Ø Bad					

ions (in.)	18450	
Port Len. (in.)	Gas Flow [In] [Out]	Point No. 1 all the way
24	or page	
	Port Len. (in.) 2(Port Len. Gas Flow (in.) [In] [Out] 2.4 of page

Amb Temp (°F) (2, 0 Bar, Press, 29 74 [if Ho] [mbar]

Traverse Point Number	Velocity Pressure at 0° (in H2O)	Rotation Angle α giving 0 v.p.	Traverse Point Number	Velocity Pressure at 0° (in H2O)	Rotation Angle α giving 0 v.p.	Traverse Point Number	Velocity Pressure at 0° (in H2O)	Rotation Angle α giving 0 v.p.	Traverse Point Number	Velocity Pressure at 0° (in H2O)	Rotation Angle α giving 0 v.p.	Notes
3-1	0.00	ð							\backslash			
2	0.03	10										·····
. 3	0.00	0								\mathbf{n}		
2-1	10.03	-15										
2	0.03	-15										-
3	0.01	-10										
1-1	0.00	0										
Ζ	0-07	10										
3	0.02	10										· · ·
4-1	0.03	10										
2	0-00	0										
3	0.00	0										

Total of abosulute values of α

Average of abosulute values of a

Procedure: Position the pitot perpendicular to the expected direction of gas flow (0 degrees reference). Note the velocity pressure. If zero, acceptable flow condition exists, if not zero, rotate the pitot up to +/-90 degrees (rotation angle called alpha α .) Determine and record the value of the rotation angle (α) to the nearest degree. See reference method 1, section 2.4. Calculate the average of the absolute values of α . Assign values of zero to points which require no rotation. If the average of α is

greater than 20 degrees, the overall condition of the flow is unacceptable and an alternative method of velocity and sample traversing must be used.

Clean Air Engineering

DS 002C Cyclonic Check CNVS/TRG.R2-1/12/95

ORSAT READINGS

TEST LO		HIN	STAC	CK			P/						
Client -	TX1			Project	Number	9101	Eo :	20.9 - %	02				
Plant	HUNTER			Unit	1			%CO	2				
Orsat ID	39-507	(MIG	in Romas) Fuel Ty	pe CoA	2+	Leak	Leak Check Passed					
Run	Method	Trial	Percent	Percent	Percent	Fo	Apalvet	Ana	lysis				
Number	Number			02+C02	02			Date	Time				
18	3/4	1	16.4	26.8	104		1B	19/17/02	1530				
Produce M	nic on	2	16.5	27.0	10-5								
10100		3	16.5	27.0	10.5								
		Avg.	(16-5)		(10.5)								
2	3/4	1	16.Z	26.6	10.4		nb	4/17/02	1630				
	MILL ON	2	16.2	26.6	10.4								
Pair		3	160	26.6	10.6								
		Avg/	(6.1)		10.5)								
3	3/4	1	HE.2	26.6	104		bb	4/1702	1730				
		2	16.2	26.6	10.4								
and '	MICON	3	16.4	26.8	104								
		Avg	16.3)		10.4)								
4	3/4	1	15.6	25.21	9.8		ns	7/18/02					
	~16	2	15.6	25.4	9.8	· .		· · · · · · · ·					
RAN	MILL OFT	3	15.4	25.7	12			•					
•	•	Avg.	15.5)		9.9)								
5	3/4	1	19.6	25.6	10.0		Pro	4/18/02					
		2	15.6	25.6	10.0	· · ·		(<u>/</u> (
PAN M	nice off	3	5.6	25.8	10.2								
		Avg	15.6	· · · /	10.1								
4	314	1	15.6	125.4	10.0		Pm	4/18/02					
		2	15.6	75.6	10.0		LT.						
Rpm "	nu off	3	15.5	25.5	10.0								
-		Avg,	15.6		10.0	\mathbf{b}							

Repeat the analysis procedure until the results of any three analyses differ by no more than 0.2 percent by volume. Average the three acceptable values and report the results to the nearest 0.1 percent. Calculate Fo to verify results.

Acceptable ranges for Fo:

Coal: Oil:	Anthracite and lignite Bituminous Distillate Besidual	1.016-1.130 1.083-1.230 1.260-1.413 1.210-1.370	Gas: Wood:	Natural Propane Butane	1.600-1.836 1.434-1.586 1.405-1.553 1.000-1.120
1	nesiuuai	1.210-1.070	110000.		1.000 1.120

Clean Air Engineering

DS 012 Orsat

ORSAT READINGS

TEST LOCATION: 1CILN STACK PAGE OF $F_0 = \frac{20.9 - \%O_2}{100}$ Client Project Number 9101 %C02 Plant. Unit · .i HUNTER 1 Orsat ID 29 -507 HIGH Fuel Type Leak Check Passed : COAL+ Run[®] Analysis Method Percent Percent Percent Trial Fo : Analyst Number Number CO_2 02+CO2 02 Date Time 1 10.5 KH 4/18/02 3 7.6.B 10 2 26.9 6.4 10.5 PAN MILLON 3 26.9 6 4 10.4 Avg 6.6 10.4 RΗ 1 26. 18/02 2 10.4 Ý 2 26B 3 10 10. RAW MILL ON 3 26.9 Avg 10. 5 10 ¥Μ 1 Z4-8 4 15/02 10.5 2 24.B 16. 3 10 PAW MILLON 3 6. 26.7 ıD. Avg 10 16.3 1 2 3 Avg. 1 2 3 Avg. 1 2 3 Avg.

Repeat the analysis procedure until the results of any three analyses differ by no more than 0.2 percent by volume. Avera the three acceptable values and report the results to the nearest 0.1 percent. Calculate Fo to verify results.

Acceptable ranges for Fo:

Coal:	Anthracite and lignite	1.016-1.130	Gas:	Natural	1.600-1.836
	Bituminous	1.083-1.230		Propane	1.434-1.586
Oil:	Distillate	1.260-1.413		Butane	1.405-1.553
	Residual	1.210-1.370	Wood:		1.000-1.120

AGE OF	5. 29.25 ter Hal Imcarl	Load Siok-Trite Siok-Trite H5O) Xieitt-Pait- [] - Fail- []	A. Veiochy A. Head A. Head A. Head A. Norse A. N	Clean Air Englineering
P	c. Jerro. (7) Orl (Bar-Pres 21 Cb. O. B.4 Probel (12 Diameters Iron Disturban wristream Upsit 10 point an me. way (In) (Out) 10 mage . 10 menisions (fin) - 18 4.	llo : 30 Start Timp 10 : 30 Start Timp 10 State Press. (in. 14:	Nctes Picture Number	
TERMINATION A SHEET	of Test Location	Start Trans (Load Start Trans (JS, 5 D Stop. Trans Statt Press. (nr. 2420) ()	Treverse Saar Velocity Point Terra Nead Point Terra Nead Point Terra Nead Point Terra Nead Number 3 (47) In HyDi Z Z45 0.14 Z Z46 0.12 Z Z46 0.13 Z Z46 0.14 Z Z46 0.12	d units on care sheet
VELOCITY DET - FIELD DAT		1 - 10 [5:00 Fime 14. 20] (m:H20) 0.10 at Check Poss 17 - 2011	Stack Velocity Stack Velocity 1 (*7) (n.H.O. 2 (*7) (n.H.O.	Gircle correct trackeler
STACK	Pronectivo: 9101 Dane: 11762 Inuter No: K.ar Boulat Weight Data	me 11. 30 Star Trine 1 2.10 Static Press	Number	of square roots.
TEST LOCATION:	UNIT: Cliem TXI Plani: Auth Lhudhr Meter Operator: R. Hh Probe Doerator: D. B Spurce of Mojsture and Mo	Ruo Load Stan Time U. 16 Stop Ti Static Press (in 14-0) (Prest Test Dise	Ганеза Рон	Average 1241.00 0.5474

Engineering	Clean Al			en kriger eg	3	25:5 2799	ל החוש סח	elsýcsið 🕽	Sircle corre		°S	square roo!	ן צחש פן י	5711757 432	י אאי האכ.
			1		L/82.0	(IPA)' 94?		.	2082'0	Kigo' chi	<u>}</u>		13000	44'881	र्ज्ड र.
		1	·····		2844.8		·····		5095 8		1		1 594.9		1.1
		1		· · · · · ·				<u> · · · · · ·</u>					í		1
										Ì			1		1
						1	1			I			1		+
													1		T_
					80.0	162			900	1462	î.		00.0	102	15
					1 90.0	192			180.0	5.2	17		f0.0	566	2
					1820	1962	11-2	•	4.0.0	886	11-2		80.0	865	17-
					80.9	1756			K. O. O	0)66	12		00.0	1856	15
	:		· ·		01-0	936	<u> </u>		10.0	360	12		80.0	666	12
						166	1-1	ļ		195	1-2		80.0	866	11-
					30 0	166			80.0	166			0 9 9 V	102	1×
			<u> </u>		80.0	1156	ļ	· · · · · ·	60.0	967			1 20.0	202	12
	·				11.0	0160	1-17	ļ	100.0	100	11-1		E	066	¥
	•				60.0	156	ļ		50,0	366			1.0	800	12
					29.0	166			80 0	160	1			act	12
					+0.0	1-66	1 1-2			ERC	1-11	*****		050	<u>, 17</u>
- man	(0.H j)	G	Nember			(<u>(</u> ,), ,,)) Comulting		109H W	·(NUEDEC.	~10) I	0	(da) - 3	{ .
-200N	DE H	NDEC.] تعمقنكة	solo N.	. head .		11516120	. saruh	. beaH.	YOUC.	العمددد	-seinu	beatt .	JOES.] 6 67
	Yficoisy.				Viboley.		[·····		Velocity		••••••		· Vėlócity ·		<u></u>
].2259.36	262.3692	railach	□· His T· [<u> 7 219 25</u>	Leak Che	isətrad		<u>7. vz9. x</u>	Per Che	Post-Test		d. ezed ab		iss.
	(0)	÷Н.и).22	हायाराज्य		10	M. M. 22	टःचाट धार	1	1 0 10	•Н.Щ):22	and other of	11.01		-H 111.22	ard:
	Stick Trips	4	am Thail	12:51	ena Tique	Vh'.hle	Sed Tries	EE:21	einii, qora	51.01	amT'A63	54:01	śrinTdo)Z		<u> imi</u>
L	.ceo.l		ហ្វ្រ				ະພາກ	l	.bezj	<u>ح</u>	Run		tec.1	<u>''</u>	
	f	5 461	•(تi⊭;si	oisinà mig.	DÝQ									14	W
	9 77	1.1929	IS CITIEN		23			م			96/9	istigut) ein	HOW RUD	MOREDUE	ib ha
.·.·	:091 ncg	PIONI	TILVEW.AN	1-115 Julioo 19			Zd	p m	lani k			" del	pg. Q	10:519	<u>iQ ə</u>
		, UDŠÝEX B	5-5-11-5-11-5-1	meadenw			5	\langle	1			-des	Ritter	• .0129	<u>, ()</u>
200-921	15 + 21	1 77 1 200					· · · · ·		*		20181 1	•ંસ દુવ	74	Twitt	1
		v. U. Jacio		20.0010		· · · · · · · · · · · · · · · · · · ·				: [1019:013	291019		1×1	ับ

1		·											1		<u>.</u>)
OF (120-002		- Fail	Notes					-						Engineeri	
- ш	1.25 For 0:. (27,4	Load SipA-Trie	-iersi	Veiocity. Head.					•						Clean Alr	
PAG	L. Press: 2 obe 1. D. M. tipoente . Upstrear	24.50	Leak-Cheo	Succ Succ Perp.									-	7		
	19-20-18-	Run Slait Time Stait Time	Past Test	Jrzverse Point Namber												
		015111111	< Faii.□	Ncies.												
NO	Am Dov Dov Dov	Loud Loud	r 0. 1 r Pess II	Velocity Head Mrs.	0.15	0.14	010	0.13	2.0	1-	0.13		575-1	ALEN		
EET	ocation	1115	Leak Chec	Sacr tenn. 15 (ff)	245	246	247	547	246	246	2461		. 5462	246.41	10012 21001	
TERM TA SH	of Test L	ਜਿਸ ਤਿਖ਼ਸ ਸਾਨ ਵਾਜ਼ਸ ਸਾਨ	Pish Jesi	i reverso Point	2-1-7	2-1-1	2.	1 - v	24	6-1	3			Ψ	co siun pi	
Υ DE		10 48	لاردى 11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	53.C (1											ct brackets	
LOCIT		Lcad.		Velocity Head	0.15	0.14	0.16	0.14	5.14	0.15	0.17 0.17		4 834	0.342	Circle corre	
L VEI			t'Leak.Ché	Têmp. (€ (°F)	81-2	248	246	244	47 4	240	246		542		0	
S.	111/07 11/07 11/07	Run Sein Tin Schie Pr	Post-Tes	Traverse Polar Number	2-1	5-1	2	4 - 1	25	~	15				ų	
STAN	Profes	60:30	Fail C	Notes											square roo	
NOI:	Alone Role	Load Stop Tim	che Pass I	Vėkočių Head AP's	0.15 0.14	0.14	0.16	0-10	0.15	6.16	51.0		4.67	2.2.0	• Sum cl	
LOCAT	HUNTE HUNTE Derator	1 0 0 1	these Che	. Stack	246	442	248	942	シート	246	246		3		⇒ch =3.11,254	
TEST	UNIT: Client Ptant: Meter O Ptobe D Ptobe D	Ruo. Stan Tim	Pist Tes	Frank Port	2-1		44	4	2 4	3-1	'er		Joral	AVE: BOOK	DS 0C2 Vei CNVS/TAG	

.

-

•

Elean Air Engineering		.19	AUS 19190 U	i I Salau Delevi	טופרו חומו			3.6/1/1/2/94	CNVS/TRO
		(%)	13					egerevA	W 700 SQ
		૬ ૪ 98	20.18			(LE'LE)		letoT	
	7	48	39	カト		51 75 8	Λ	0°]	દ
	h	38	23	91		12.725	1	25	1
	h	56	୩୫	hh		59.956		65	1.2
	4	38	18	44		LETTE		Sh	u u
	h	98	88	Sh		88 hZC		gh	2
	h	28	58	sh		51 228	<u>G</u> .1	56	1
	h	23	96	七日		319.34		42	2
	र्ष	58	al	GH		१०-११२		SL.	2
(TITE O) - PLOY	5 h	88	26	81		25.212		ol	1.4
(80 00. Lhil) = "	= h	78	26	20	Å	F1 P0E		51	4
	h	96	26	25		18.205		01	2
	F	06	26	h.\$	41/N	51.208	1	5	1 - 2
		(H)	(42)	(4.)	(ಚಿಕಿ)	28.82	(0,5H .M)	• emil	
SEICH	(6H .n)	μαι	ષષ્	ુ	SI.	(² ft) , JoV , fini	H⊽ 6umes	5	Number
	dund	DGW	Dew Dew	Condensor	Stack	elqma3 san	eoitiO	aqvilim	Tizverse
									s possesses
CAL: 61 SemiT doll? CIC: 6 SemiT hel2	(moldup		em .				$\frac{(up)}{2}$		
me E. OFI SIVIAIOT	FON NOG	WOH SED	Pod Len.	(0.4H off)					
<u>μ. εν (mg) (bez abilitz</u> (mg) [lm] ρ.μεί ΟςΗ		S.181	('U) suc	uct Dimensi		6210		- 1 - 58 · 00	Meter Yd
				/			Y-PH4 >		
· · ·			с б	Lauk in		Ł	M. CI		Meter Oper
		^ر م	٩ ٦)	' L	2	OJLI / D BIEC	<u>, , , ,</u>	127 14	/ Jriefy
. C. S lahelela			¥.	V		01 01 0N Delai		17	Client 7
[Indm] [6H-11] 37 25 see Press 29 26(1) que T dmA	nous	ood iseT i	io nolioez	cross-	-				-
	ا ا	ane A						١	• TIM
		V. 6ne				712410	> :N	OILADE	ملرا
			TIA 1	101179				J.	Cur.

. .

OS 004 Moistur OS 004 Moistur Circle correct bracketed units on data sheet Circle correct bracketed units on data sheet													
		રિંદ	18)			\sim	01	AVERDE					
		24:98	دي 88			69.88		leloT					
	Ę.	18	68	ファ	\uparrow	08.4.2	$\langle i \rangle$	QN	4				
	2	.99	2										
	٤	+8	68	54		52.4.98		0	1-1				
	٤	-18	463	EH.		54.198		54	٤				
	2	- 65	68	24		17.852		07	7				
2018.0 = 244	4	ୀର୍	- 68	E.f.		18.550		32	1-2				
	2	<u> ク8</u>	83	EH		6.252		• %	٤				
2h'9h2 = ""	5	98	इ 8	ht.		04.256			7				
	E	୍ରଞ	85	_sh		15the		26	1-2				
	٤	9B	-18	tp		67-445		51	2				
	3	୍ୟ	18	84		18-14-2		0)	2				
	2	78	-18	64	~\v	20.122	01	2)-h				
Noles	Pump Vacuum Pump	(LL) Priorit DGW	(g) um Met DCW	Condensor Outlet J (3°)	Stack Temp. Is (°F)	42 62 (1) 10/ 10/ W/- employ eldmag sais	eofinO BoitheS HA (0 ₂ H, m)	IqVIIN besgel3	Traverse Point Number				
Po.71 semiToole B7.51 semiThele	10] [(II]	of build	<u> </u>	1:0		41u) <u>8</u> a) (WD) Z Ø	.O Jeill	Loak Flate				
B9'LST PLAINON	BW OCH IIS	(mol/ul)	('U)	(U ² H ² U)		Hu) LI e	(wp) 2 @		I OSK L'ALO				
H20 (146,0 [mi] (gm] Silica Gel (gm) 1/ نوم	<u> </u>	5.481	(.nl) and I ge I ho ^g	liznemiCl tou		EPFF, DH	7 S10 J.	- 78 :0N	Meter Box Meter Yd				
			E Contraction	(JUP)			Herner Bed.K:	rator D	Meter Ope Prope Ope				
Pluerent 52 States and 52 (manual (Strates) 52 (manual (Strates) 52)			1X	Cilent 1									
	RUN: Costion of Test Location												
	TEST LOCATION: STACK MOISTURE DETERMINATION TEST LOCATION: STACK MOISTURE DETERMINATION												

•

Briteenign∃ tiA nselO								46/2/11-1A.£	силелтва
		ho.	88) ene eteb no	stinu betex:	ortect brac	Circle c	67	egarevA eture	DS 004 M
		05'28	35'83			(34.28) — —	leioT	
	12	£8.	ଷନ୍ତ୍ର	15	1	£2.20h	A	୦୩	Ŷ.
	2	18	88	84		25.00%.		. 35	2
	2	-18	88	op		EE : 269		CS	1-2
	2	88	bB	Sh		86.462		Sh	٤
· · · · · · · · · · · · · · · · · · ·	2	ନ୍ତ୍ରଷ୍ପ	-68	643		61.225		h	٦
5986.0 = 200	Z	68	48	<u>9</u> h		24.985		32	1-1
	2	88	68	424		80.288		az.	4
Ih'Sh7 = ANA 4	2	ଞ୍ଚ	<i>b</i> 8	4.4		78 682		52	2
	2	88	69	54		1-0-102		n	1 2
	6	£8	- 88	21		56.868		اي	٤
	2	F8.	88	th	1	hh Str		01	Z
	2	E8	- 58	67	₩/N	17748	0.1	2	1-4
		(H)	(41)	(년)	(4.)	198.9.15	(0 ² Н л)	besgel3 emiT	IBCILLIDAL
Noies	(0H .n))	BILLO	uiun Meista		sl .qnei	(² ft) .(vV .1in)	HV 6uppes	2	Point
	dund	DGM	DEM	Condensor	Slack	elqma2 zaD	eoitto	IqvilM	Traverse
-17: 2/ semi dois 21-: 2/ semi heis		og bege	75	170		则上回	9 5 (CIW)	Aner O.o	oibH Ase.
	ew ort lie	(III) (III)	('U)	(OsH.n)	(6)	ru) 6 o	(WD) Ea	7.0 elotes	enst lae
		Mold sed 5 7 81	(.n) aro	istientica rouo issen ^e l olibit	्र दि	BUL 1 737	15,00	$\frac{1}{2}$	by Telev
			<u> </u>		┩└			×\$ ≊on	
				(JU) [N	וו		10 Bas	IOIBI	edo edory
		२ २	Ph	1		Dale 4/15/0	<u>لي با</u>	arrigh	line 2
2.2 InheteM neril			Ī	V		a (L ion toelor		171	- jneilo
[nedm] (CH. C) -25 2 see 9 neg 2 1/2(1) done 1 done	noits:	iTestLoc	o uonoes	-ssonO		<u> </u>	พกษ	}	:TINU
	TET	A SHE	TAD	FIELC			π 		
	OITAV	IIW' J	E DET	RUTS	OW	J 24	-> •N		17237
								- A	

			ênz sisb n	o siinu beiek	mect brac	Circle co		entrio	CNAS/LH
		220	18				`	OBEIOVA	
		<u> <u></u> <u></u></u>	5'28			25.65		leloT	
	2	28	58	5+	$-\uparrow$	012. tz 17		Q0)	<u>E'</u>
		20	32	hh		75.426		22	2
		18	20	Sh		12 121] - C
		18	28	64	_	25 86 17		3/1	ſ
	4	18	20	11		biorlin		4N	2
		18	04	1 1/		98.864		36	1-1
	17	18	- A	42		21-024		<u> </u>	2
919710 - 2NY AST		18	04	27		ESLA		<u> </u>	2
			28	13		BE FIN			1-17
	. 4	6t.	1. 2. 8)	610		201700			2
	1	BE	10	54		07:001		<u> </u>	6
		OZ	12	17	•//•	BEINA	0		1-2
	(6.1.2.2)	(H)	G) G	(J°)	(H) S'	11 2 2 0 A	H∆ (OcH.ni)	besqel3	Number
zejoN	muusev (nH di)		10iril	1ethuO	.qmeT	mV - emulov	primez	2	Point
	dund	DGM	DGM	Condensor	Slack	eldma3 saD	eotinO	1qviM	-
			6	D.				0 <i>0</i>	01014 V1207
	BW 600 IIG TOT IOT		(:u)	1. En un	(6)		(WID) 2 G	0.0 Belote	eibfi Agel
P.G. SI	ONNO	WOLT SED	Port Len.	.2260 ⁴ offet	S 6		SIDA.	1	T. L. 191014
C L1 (UB) HAD BOILS [UD] [UD] 0 201 OCH	P	5.481	('uj) suc	bisnemid tou	3	E gin	1/	SES ION	Meter Box
Γ				[]/		~~.X.	pro -	C JOIRI	Prope Ope
			۲ ۲		4	mdey	wit	7 Toter	Meter Ope
		<u>۲</u> ۲ ۲	م ح	L	2	0/81/ P elec]	Jainat	(Insig
Line Material 2 5 5			Ľ,			CIP ON Delong		12	- Inella
[nedm][off_n]> < {5 sent ned (50(3) ame] dmA	noile:	ood i zeet i	o notoez	cross-	-		พกษ		
	13	ahe a		רוברח		p •		-	* 117 1 1 alla *
N(IIMAE	EDET	IRUTE	OM	X24	N :N	OITACC	TEST L

PAGE (OF 1	to (FDB4) [Bar Press 29.25 Jin: 149] [mbar]	lenal 3.5.	8.0 [m] [gm] Silica Gel (gm) 6.7 154.79 12:40 Stop Time 13:18	Notes			295.0833	0.2802						Clean Air Engineering
N	Amb. Ter	Liner Ma	H20 1 N Start Tir				Ts ANG -	107 AVG						• •
VATIO	ation		all the we	Pump Vacuum (in. Hg)	2	N N		0	2	2	NU	ч	N	
	f Test Loc		$\left \frac{\mathcal{G}^{\mathcal{H}}}{\mathcal{G}^{\mathcal{B}}}\right $ Gas Flow (i) $\left \frac{\mathcal{G}^{\mathcal{B}}}{\mathcal{G}^{\mathcal{B}}}\right $	DGM Outet (F)	es,	000	вв	53	07 85	82	$\hat{\alpha}^{\prime}\hat{\mu}$	85	5	85,50 al.
E DET	Section o		ns (h) Port Lan (h) 2 4	DGM Thirt (Thir	899	n n n n n n n n n n n n n n n n n n n	9-	0-19 19	n Bla	8le	200	67	5	88.08 n data she
STURE	Cross-E	€ Inni	uct Dimensio atto Pross (In. H2O)), 10	Condensor Outlat tc (*F)	T C	20	£4	10	43	43	127	46	45	keted units o
MO				Slack Temp. ts (°F)	N/A		$\left \right\rangle$						-1	irrect brac
L. L.	5	rolact No 110 hale 4/18/02	111) 21 111) 21 111) 21	Gas Sample Volume - V _m Init Vol. (m ³) 4 37-45	440.13	44.81	448.31	451.05	454.56	454,16	4104.57	·167.20	44780	Circle co
N: SJA	RUN	R II	-1 -00(5]	Orifice Setting AH (in: H ₂ O)	0					-			Þ	
CATU		HUNIE HUNIE ator B	No. 955 3etona 0	Min/pt Slapsed Time	2	0 15	20	52	sh Sh	22	57 S	¥:-	8)	Average Average sture
TEST L(UNIT:	Client Plant Meter Oper Probe Oper	Mater Box Mater Yd Leak Rate I Leak Rate /	Traverse Point Number	3,1	24	1.1	6) K	1/1	<u>ب</u> ب	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	Ċ	DS 004 Mo

1

DAGE C OF	Amb. Temp. (*F), Ant. 2 Bar. Press, 24-07 [td. Ho] [mbar]	Liner Material 3 5 .	H ₂ O 131.2 [ml] [m] Silica Gel (gm) 14.0 Total Vic 145.2 g Start Time (4:30 Stop Time 5:40	Notes			TS ANG = 296. 1667	AP AUG - 0,2874											Clean Air ^I neering	
NATIO	cation		Point No. 1 all the wa	Pump Vacuum (in. Hg)	2	2	2	2	2	2	$\overline{\gamma}$	1	2	2	2	\wedge				
ERMII A SHE	f Test Loc	- ~~~	(194.5) (194.5) (111.10011) of page	DGM Outet thout (FF)	B	35	85	85	ĝ	93	BC	Br,	B7	07	67	87	85.9L	Cst.	10	j
E DET	Section o	4	Dins (In.) Port Len. (In.) Z.c.(DGM Inie (F)	85	87	87	55	67	87	1 1	88	69	89	Bol	84	81.58	86.	n data <u>she</u>	
STURI	Cross-	↓	ct Dimensi Itic Press n. H2O)	ondensor Outiet t _c (°F)	1 13	46	5'	11	42	43	45	45	46	46	47	47			ated units o	
NOW 1				Stack C Temp. Is (°F)	NIN	. /		_	-		-	_	_			Z			rrect brack	
	ى	rojact No 9109 ala 4/12/02 e2	5 子子子 (m+++++) (m+++++) (m++++) (m++++) (m++++) (m++++) (m++++) (m+++++) (m++++++) (m+++++++) (m+++++++++) (m++++++++++	Gas Sample Volume - V _m Init. Vol. (11 ³) H (LQ , 972)	472.63	475.32	478.02	180.69	483.38	486.05	100.76	191.42	494.12	496.81	499.5 [202-19	32.72	/	Circle co	
N: SH	RUN	- Hrind	or (cm)	Orifice Setting AH (In. H ₂ O)	1,0						-					5	Y	7	`	
CATIOI	4	Note 2	ther 0.04	Mitvpt Etapsed Time	2	01	اک	74	52	30	35	40	لأح	20	К К	(Je	Total	Average	sture .R '2/94	
TEST LC	UNIT:	Client 7 Plant 1 Meter Oper Probe Oper	Mater Box Mater Yd Leak Rate I Leak Rate <i>I</i>	Traverse Point Number	3~ (2	r	- / 7	2	2		1	Μ	1-1	2	ĉ			DS 004 Mol CNVS/TRG	

Clean Air Engineering			ori ē eteb no	stinu bele x I	orrect brac	၁ ဓည၊၂၂		viute 2.81-11/2/94	CNVS/TRO
		289	·9L)				$\left(\begin{array}{c} \\ \\ \end{array} \right)$	obriova	
		85'HL	85·9L		Λ	41.55		lejoT	
	2	5E	ŁŁ	54		45. 5E -5		91	٤
	2	52	ŁŁ	hh		26:225		55	2
	2	SE	ŁŁ	EH.		11.985		25	1-2
	2	SE	EE	Zh	· ·	ne tzs		Sh	5
	2	12	ŁŁ	14		19.425		0h	2
	2	SE	ŁŁ	24	1	98.125		38	1-1
	2	SŁ	84	4		11.615		сę.	٤
2682 0 = 210	u z	ht	ŁŁ	54		56.012	· .	N	2
1.042 = 240 2	2	ht	9E	٦٢	\mathbf{N}	85.515		or	1-1-
	2	μ	· 9t	Sh		18.015		51	٤
	2	ht	SE.	21	·	P0.802		01	7
	2	っと	SE	th	て、李	~{·ses	a.]	5	1-5
		(H9)	(49)	(3.)	(88)	54.502	(0×H :n)		
SBION	(6H .n)	mu	૫૦	ગ	S	(⁶ ff) , (vol. (ff ⁵)	HV	\$	Number
	dund	DGW	DCW	Condensor	Stack.	ettime seri	eoiho	JQVIIM	erieverse
						010003000			
emil hats SHIS semil hats	[100] [ct]	og bøðe (<i>F</i> -2	1.0	(6)		(ctm)	After 0 -	oidfi Arol
6 5.841 MANDOL	YEW OUT ILE	-(140) [u]	('U')	(0 ² H .n)				- v eiole8	etsfi Asel
H2O 138.2 [m] [m] Silica Gel (gm) 10.39	Ρζ	1231		Isterile jos		C2FF.1 9+	1 Sic	0.1	Meler Vd
			(up sec	izcemi(] tru				20 ON	Meter Box
•			F	(JUP) (1	\$₽	اھ می	7.62.0		Proce Ope
· · · ·		مر	AL.	1			TI	HUNCH	Meter Ope
			N. A.			Project No. 710			Client
Amb Temp (F) 20. J Bar Press 7, 35 (G. Mg) (mbar)	Nonz		~				8		
51	noiter	n [19aT]	o golloge	-2201:0		上:	หมุก	١	_:TINU
PAGE (OF (E1	A SHE	TAG (FIELD		77	IS IN	ດມະສາດ	11571
	IOITAN	IIW J	E DET	IAUTS	IOM	Y	- 11		

•

PAGE OF	Amb. Temp. (*F) 24, 4 [Bar: Press, 24, 25 [6. Buj] [mbar]	Litrar Material 5.5.	H20 137.1 (mil [gm] Silica Gel (gm) 9.3 Total Vic 144.4		Notes				TS A10 = 246	TTO AUG = 0.3828										Clean Air neering	
	cation		Port No. 1 all the way		Pump Vacuum (in. Hg)	2	N	٢	2	2	2	2	2	2	2	2	4				
A SHE	of Test Lo	N	184. Gas Flow	afied in	DGM Outlet thou (F5)	75	75	25	K	<i>3</i> %	76	36	ZE	77	78	8E	DE	917	5.2		
	Section c	Ţ,	lons (In.) Port Len (In.)	3	DGM Hite Hite	36	75	R	78	36	1 1 1	38	ଟ୍ସ	Bó	18	ā	5, IS	943	Ψ,	on data she	
SI UH	Cross-		uct Dimens atto Press (In. H ₂ O)	2	Condensor Outlet Lc (°F)	49	46	45	43	42	41	4 3	47	43	44	5	45			keted units	
		(J)			Stack Temp. 15 (°F)	キン	_		_	-							Ð			orrect brac	
Jek	8	mart No 910 ala 41/19/0 Kièn	26221	0	Gas Sample Volume - V _m Init Vol. (It ³) 535 - (JR	538.81	541.62	544.40	×43.32	549.90	552.64	555.54	558.25	560,94	563163	546.45	から	7349		Circle c	
15	BUN	Hurry D	C (m)		Orifice Setting AH In H ₂ O)	1,0							_				\rightarrow	A			
OCATION	_	TZ/ HUNTET rator R	No 85- [1001 Belore 2.60	ATO DIS	Minvpt Minvpt Elapsed Tilme	2	0/	51	3	26	R	35	4	4	Ø	£	(a)	Total	Average	jisture ≩.R_1 ∕94	
TEST L(UNIT:	Client Plant Meter Opei Probe Opei	Mater Box Meter Yd Leak Rate I	I CON L'AIO	Traverse Point Number	- ~	2	б	ī 5	N	~	- 1 -	2	б	2,1	2	3			DS 004 Mc CNVS/TRG	

•

PAGE / OF	(19) Ard Bar Press Zr. 55 [16:349] [mbar] Hal 5.5	35.6(millom) sitica Gel (gm) 9.8 144.8 11511 Stop Time 12:15	Notes				2.76.6	0.3795							Clean Air Engineering	
N	Amb Tem Liher Mat	H20 H20 Start Time				ſ	15 MG =	TAP ME								
VATIO	ation	Poert No. all the w	Pump Vacuum (In. Hg)	Ņ	N.	2	とこ	2	Ň	Nr	5 1	っ	2			
A SHE	i TestLoc P د	1845 Gas Flow [In] JOG of page	DGM Cutat In au (F)	5E	ઝ	&	28	28	83	8 8 8	68	33	83	ú87	A H	
DET		ns (In) Port Lan (In)	DGM Iniet (mn (P)	91	@3	83	B3 R4	90	B.	84	200	87	27	1019	n data she	
ISTURE FIELD	Cross-s	uct Dimensio antic Pross. 1 (in H2O)	Condensor Outlat tc (°F)	45	45	67	14	14	42	4 22	43	44	44		keted units o	
Ŭ Ŭ U			Stack Temp. ¹ s	NN		+	_		-	+	┝)		rrect brac	
PCK 0	mlect No 910 ale 1/19/07	11 11 11 11 11 11 11	Gas Sample Volume - Vm Init Vol (It ³) 576 9 - 3 2	41.265	53564	28.EES	780.64 583.47	564.32	581.12	541.93	547.51	(200.20 l	603.04	JF.FF	Circle co	
51	ALL N	<u> </u>	Onffice Setting AH 1, H ₂ O)	٥										٣		
Charlon:		1001 1001 2 3000 1000 2 1100 200	Minvjat Elapsed Time	5	0	<i>ب</i> ر	25 25	R	35	46	2	55	Ś	Total	Average isture R1-11/2/94	
TEST LC	Client	Meter Box Mater Yd Loak Rate I Loak Rate <i>I</i>	Traverse Point Number	1-5	2	m .		Ъ		n a	1-2	N	3		DS 004 Mol	

• •

·

				and the second se								
		88/88	E'LIS	8 52.9	0')	8	્રદ					
		88/88	0.915	8 52.6	Q.I	t	वर					
52 = 99		86/32	BUISS	3 52.0	e']	1	SI.					
ł		<i>88 88</i>	2 2 5	\$ 20	27	ک	02					
		88/88	6.015	0 20	27	5	51					
01:49		66/88	6.805	2 00	11	4	01					
22 = 99	21:	88/88	62058	5.0	2:0	h	5					
səion.		Cars Sample	emulov leijin emulovelqma2.s 		. eəjiyə . paitee (O ₂ H rij)	Runna . Yacuum	: Mín? pt: . Clock. Time					
MAYMACOS (1 :emiT gotS MAYMA co: 5) :emiT hetc												
		10 J.Z	19758	6H), m. Q . m	A eleA XeeJ					
Q-AX :eqyT AIS :oN edu		Port Len (ini) Ga	Агөа (ft ³)	6H. 47	ອ ແ/ງວ	J. O. O BIOLE	leak Rate Be					
UDe No: RIA AIR CARCOS	L			[52.66	О рл					
IS ~ BIM .oN OI 668 30				Meter Box Number 71 - 015								
Probe Material 5. >. (Tules		اد که ک	- an/@	Meter Operator R. Humber								
		, in the second	1	BUSCH	Inlet/Outlet/		Date H					
The Property of the Property o		ection of Test Local	S-szord	10/10/	Project Num	1	Client TX					
Location: SARKK Run: 1A Field Data Sheet Page 1 of 1												

6,8/39

8188

68 188

88/58

68/87

Λ

Bineering A nselO

CNVS/KVSP.R2-2/7/94 CNVS/KVSP.R2-2/7/94

Average

09

SS

as

Sh

oh

le to T

11

TT

01

21

6

Ahi

フレ

50

529

47

-0

0.1

0,1

91

a')

01

01:12

29258

n: h2 58

9.2258

9 8158

		·				seduT oin	DS 018T Organ
							Average
			12.60	>	·		Total
		06/06	1 22 02	51.0	0'1	Ø	<i>yr</i>
		46/06	5.02.92	X'N	0.1	8	5
		05/05	96172	51'0	0.)	8	Ø
		96106	62172	529	<u>a</u> 1	モ	5h
		06/06	J. EIM	- 51.0	0.1	ť	On
		02)05	L-E19T	3L·Q	0.1	9	56
		96/06	8.1192	\$2.0	0.1	5	oh
52:49		96/9[2.012	. 52'0	0.)	ى	
		00/95	- 2 0 92	, Z.Q	21	h	01
		05) . 001	2.0	2.,	Ь	<u> </u>
्राः १५		05/96	ston 6 0050	HO 2.0	21	h	0
. 55 - 99		06 /ol) 2007	· ~ ~ ()	2.1	h	5
	. न °			ш·/1	(0 ² H ui)	• (6H • .ni)	Clock Time
	. Temp	. Dry' Çaş Metar		Hate	. primee.	. Vacuum.	· nd nuo ·
· · · · · · · · · · · · · · · · · · ·	. 9•94 	· · · eldmas 280 · ·	Ag anulov leitin				
MAMAQuert :emiT qot2 MAMA 60:51 :emiT thet2		:					
Tube No:	i page	54 0	29-581	б н	@ m/to		Leak Rate A
Q.A.X :eqyT & A.A. ov eduT	Woft a	Port Len (ini) Ga	Area (ft ³)	6Н.	1 @ m/to	Store D. D.	Leak Rate Be
Tube No: RI & Type: Change city		٤				9686	<i>Ю</i> РА
See ID No. M.A. P. C.				<u>e</u>	11-1	R redmul	Meter Box N
Probe Length R		~ ~ / /	an(N	NOB10		101	Meter Opers
Bar. Press. 29.25 (H. Ha) / mbar)		v				1 Ar	Nation 11
Ambient TreidmA. (۹°). qmeT treidmA	noit	ection of Test Loca	S-seon	101 9 101	Project Num		Client 141
Fage t o' (1	Data Shee	bləiT	gi:	uny –	- Staull	Location:
S S	eduT [pnid pbA	- 81 bodte	Ň			¢.
		r 8					

•

CNAS/KASP.H2-2/1/94

Clean Air Engineering

			027	2				Average			
								ls to T			
	fe h	63/60	76/758	3		\land	6	୦୭			
	54	68/68	L LABSE	3			Ŷ	55			
	24	68) 68	B'_Sh_Se	3			8	05			
	٤٢	68/68	8 24 58	5			E	5n			
	44	68/58	1.24-25	2			k	ah			
	42	64/50	0,58	'			E	92			
	۶h	66168	1.82.58				0]	०८			
	242	68168	6°5858	?			5	Я			
	14	68/6.8	95258				4	OL			
	43	58/68	91558				E	31			
	Sh	18168	2.05.38				7	()			
<u></u>	のケ	68/68	5.87,58		sh.O	ما	2	S			
səjoy.	i dinp Bath : Bath :	Temperature at. . Temperature at. . Dry Cas Meter 	emuloV isitini. ອດາປັດທີ່ອີດເມືອງ ເຊິ່ງ ອດເມເດັນ ອີດເມືອງ ເຊິ່ງ ອດເມເດັນ ອີດເມືອງ ເຊິ່ງ ອີດເມັນ ອີດເມັນ		wo⊓ ettañ m.∖.J	. Grifice : . Genting (Ó.H. ni)	. :qmu9 . munosv . . (9M · .ni) .	. Min? pt			
O-WX :eqv1 A S A :oN edu1 :eqv1 :oN edu1 :oN edu1 :oN edu1 :oN edu1 :oN edu1	i bage CUTD st Fow	e⊃ (.ni) neJ ho9 Ni o ├-∑	(^E 11) B91A JJ. 281	^б Н. ⁶ Н.	गर	@ w/ja) 0, 0, 0 eiole) 101	Lesk Rate Be Lesk Ra te A			
Ambient Temp. (°F) SG	MMA Maint Maint Maint Register Namber 7.01 Register Namber 7.01 Register Namber 7.01 Register Namber 7.01 Register Namber 1.01 Register Namber 7.01 Register Namber Namber Register Nambe										
Page (of (səduT (Pata Shee	- 81 bodfəM bləi7	V	2 :1	uny	Jrack.	Location			

CNVS/KVSP.R2-2/7/94 CNVS/KVSP.R2-2/7/94

Clean A gineering
Page / c. /	F) 31. (o 25. 17 of lor 53. 17 of lor Thurse of Lor	Type: XAD Type: XAD Type: 745 (19)														
es	Ambient Temp. (° Bar. Press. 74. Probe Length Probe Material 138 Bag ID No. 6 7 0.	Tube No: A. P. Tube No: A. P. Start Time: 13		52 - 99										_		
ig Tub et	cation	Cas Row IN CUTP of page	Batt	47	\mathcal{F}	1 1 1 1 1 1 1 1	43	21-	1	1 1 1 1	14	h h	45			•
- Age strbin Data She	Section of Test Lo	Port Len (in.) 2 4	· · · GasSample · . Temperature at . Dry: Gas Meter . · . T _m · (°F) · ·	26/26	92/92	16/16 20/26	20192	26/20	26/20	92/92	26/26	26/26	92/92	•		
Method 18		Area (ft 3)		2624.9	2424.9	2629.0	2632.3	2634.3	2636.0	2637.B	24444	2442.B	2444.5	•	212	
28	احال کارہ ا	₹ ₹	Riow	040	_								>			
- Bun:	Project Numi Unit [Inlet/OutletK Land CT	st/m @ 1 2	Orifíce Setting (in H ₂ O)	0')	-+	+				-			\rightarrow			
J.W.L	kr Lo T Itor Uumber D SSS	fore D. D	Pump Vacuum . (in. Hg) .	7	2	22	Ц	6	, v/	2	2	5	5			ric Tubes 2-2/7/94
Location:	Client TX Plant HVA Date U17 Meter Obera Meter Box N	Leak Rate Be L oek Rate Ai	. Mín? pí.	۶.	01	22	35	20	35	40	30	5 S	09	Total	Average	DS 018T Orgai CNVS/KVSP.R

Clean Air Engineering

.

- _

							ls to T
	SH	06/05	9.695	ST I		ł	(%)
	42	06/06	0.89.59	7		Ę	25
	44	06/95	1.2058	8		t	er A
	Efr	96/05	h-6958	8		0	Th
	Σþ	96/96	£ 225	8		0	oh
	5h	96/06	£ 9258	3		5	9h
· · · · · · · · · · · · · · · · · · ·	54	95/06	1.655	8		5	42
	42	02/02	0.8558	3		5	32
	ب ا کے '	05/06	0.0 55	8		Ч	ol
	21	06/06	23 5-50	8	1	E	51
	543	68/68	2255	8		٤	01
	七月	68/68	£ 1558	8 55.0	1.1	8	S
səłoN	Path: Bath: Bath:	. Temperature at. Dry: Casi Meter T	entulov. Ethnin entulov elqme2.s	,, wo.l. ваЭ	Crifice. 'Orifiee' (O_H ni)	qmu9 . . munae∨ . (ehni) .	. Mínì pi Siock Time
alf (م): (م): (م): (م): (م): (م): (م): (م):			997381	бн	<u></u>		A 015A460 A 015A460
	MoH s	Port Len (in.) Gar	Area (ft 3)	[
		4			510-1		
Probe Material 55, / Judior		24	77 HOLN			To je	Meter Opera
Probe Length		*		CASE) tel tuO \ tel nl	20/61	Date 4
Bar. Press. 24 29 (in. 84)					/ iinU	121	Plant H
ていた (3°) ameT theidmA		tero I trat to no itra	5-5501)	91 91 19	Project Numb	<u> </u>	Client
Page ⁽ of ⁽	səqn	paidrosbA Data Sheel	- 81 bodt91 bl9i7	VE	:ung	7-245	noitsoo-

+E'bl

)

CUVS/KVSP.G2.2/7/94 CUVS/KVSP.G2-2/7/94

Average

Clest Engineering

			7.02				9 0619VA
			4				ls to T
	76	h6/h6	5.2012			6	Ų)
	54	h6/h6	5 4192			8	35
	तर	46/46	4.5005			8	N
	he	46/46	F. 0.1015			Ł	54
	44	46/46	5.922			k	on
	7h	h6/ hb	12572			9	56
	44	20156	+ '5572			ں ا	
	4.4	25/20	0.4225			ى ا	YL .
	Sh	26/26	1-2525			5	M
	54	26/26	8-9-2			1	19
	Sh	26/22	o.Bt. 22]	1.1	5	01
	のか	26/26	2 gh 02	250	רין	٤	5
		. Diy Ges Meter 	embloV elqme2 set		(in H ₂ O)	Vacuum ((in · · Hg) ·	Clock.Time
	: : Bàth : :	· · · Gar Sample · · · . Temperature at .	Amilov leinini.	wofi	. Orifice .	: duma	: iq (ni)Ni :
MANNA TH' (1): OMIT GOIS MANNA_14:21 : OMIT THAT	S				,		
pe No:	bage I	10 H-Z	0.1	6 		191	Leak Rate A
De No: R 3 (3 Type: C+1)	1 Mays	Port Len (in.) Gas	Area (t ^{. 3})	БН. С	ct/m @ m/to	etore w O	Leak Rate B
All No: ٤٦٤ () (All Starter	11	<u> </u>				748	6.0 PA
Bag ID No. M. 18 - 12 - 2	IC				11-4	Inmber 8	Meter Box 1
obe Material & L T L L		st b			Her way	101 5 1	Meter Opers
ar. Press. 27, 25 (in. By / mbat)	8	P		QUERS		TILN	TH Alan
2 . M (- (-)	A noi	ection of Test Locat	101 L 101	Project Num	0-	Client TX	
				a:	uny —	724IC	rocation
	səqn	pnid bA	- 81 bodisM	<i>v</i> -	J		

-

Clean Air Engineering

.

.

DS 018T Organic Tubes CNVS/KVSP.R2-2/7/94

	11.	E8152	£'585	8			B	Sh
		68160	2:1.2					05
	76	<u> </u>	1900				T.	
· · · · · · · · · · · · · · · · · · ·		60/20	6 607	a g				- 22
		20/20	2 103				t	-2
	<u> 7 H</u>	-20)-20	66-	58			の	32
	<u> </u> -	28/28	7 8t s	8			ク	°7
	54	28/245	SiH S	\$			Ŋ	12
	<u>d</u>	08/08	9.5£58	5			ŋ	01
52 = 99	クト	28/08	6.2ESE	3 22	0	11	Ŋ	2
	я.		∙ emuloVelqme∂s : : : : : (⊔) ,,,,V: :		····	(O ₂ H ni)	. (6Hni) .	omiT.Nook
	Bath	Cas Sample . Temperature at .		<u>я с с с с с с с с с с с с с с с с с с с</u>	ġЩ :	. Orifice.	: duna :	: Jợ VuiNi ;
Maywa]/;)] :emiT qot2 Maywa 20:01 :emiT that2	7	· · · · · · · · · · · · · · · · · · ·						
	bede	10 1-2	9.381	6н.		@ w/j>	1eth	Leak Rate A
Tube No: E. 4 M YPe: Qirat col	Mol s	Port Len (ini) neJ hog	Area (ft ⁵)	6Н.	2	1 D m/lo	efore Q. Q	Leak Rate B
Type: هې کې A No: دې ۲ کې Type: ۲ کې	.	<u></u>			<u>.</u>		ζ	bb Q PA
ICE Bag ID No. Mrs-성식 V	īl	£				- 112	Aumber 7	Meter Box 1
Probe Material C. T. T. Work] [s an en		्	es brows	BIOL & H	Meter Oper
Probe Length		24		4	223/1	Inlet/Outle	20/81	Date 4
Bar. Press. 29 27 (in: Hd / mbar)				101	<u></u>) tinU	14	Plant 14
、		icco I tooT to no itoo	5-3302	101	2 Jedm	Project Nu		Client TL
Page / of /	1	Data Sheet	Field	4 k	:u	ny	77415-:	noitsoo-
	səqn1	enidrosbA ·	- 81 bodisi	N				
		<u> </u>						

28/28

£8/E8

68/83

26

र,उ

2.6

62

 $\mathbf{\Lambda}$

4

2.9658

82 88 त

5.68.58

DS 018T Organic Tubes CNVS/KVSP.R2-2/7/94

8

Ø

8

λ

Average

941

55

25

le to T

	7.H	28/48	5.04.00	2		ي	۶٤
	14	68/68	1 42 17			ک	52
	9h	5 8/58	र'हरेल	2		6	्ट
	Ih	£8/ <u>5</u> 8	172277	2		4	5
	43	£8/£8	1 1202	2	J	F	01
52-99	42	£8/£8	2'6900	2 22.0	1.1	4	گر
sełoN	. dinəT Bath	GarsSample . Temperature at. . Dry:Ces:Meter. TT	eminio¥. lisinini emino¥ elqmes ar . (1) mV.	ю́н Эная Эная Эная Эная Эная Эная Эная Эна	. GəjfirQ. . gniffee: (Ö ₅ H ni)	. :qriu:9. : . Vacuum : . (pHni) .	. Mín? pt Clock Time
M9MA)]?]]:emit gots M9MA ?0:01 :emit thets							
Tube No:	bede	NI hZ	9-581				Leak Rate
Nedul Charles Row to Stand	WOR S	Port Len (in.) Ga	Area (f ^{. 3})	ин.	<u>, 6 m\}</u>	· · · · · · · · · · · · · · · · · · ·	A etc A yea
CrthX :eavT & P. Log :oV eduT		٤ C				7686.0	PA
					- 1(- 2	Humber Ry	Meter Box
			TAUP	ELEC.	Inlet/Outlet/	20/0	Date d/l2
Bar. Press. 29 25 (12)		N	↓		/ tinU	712	Plant Hup
A C S (۲°). (۳۶) Ameint TeneidmA	noi	ection of Test Local	2-seoto	lolp 101	Project Num		Client TXI
Page (0. (, I	Data Sheet	bləiT		սղվ —	THE :	Location
	səduT (enid bA	- 81 bodis	V			

18/98

98/98

78/18

98198 58158

28128

hh

नेत

हम

24

24

74

(08·13

5 6977

5.7821

0.5872

0.6812

0.18 02

8.8FUL

 \mathbf{h}

 \square

Clean Air Engineering

CUVS/KVSP.R2-2/7/94 CUVS/KVSP.R2-2/7/94

9

ŋ

0)

Ŋ

0

2

Average

99

35

25

54

5

Æ

le to T

Clean y almooring						~	
				`		12-2/7/94	DS 018T Organ
			65.71				Average
							^o ls to T
	27	88/88	6'8072			مر	00)
	24	\$86C	A 2'LAO 98			<u>y</u>	43
	Eþ	88/88	H 1 . 50 0/2	3		2	9
	27	88198	1 4078			5	SN
	27	88/88	1 20018			4	Oh
	17	JS 186	0240)8	5		5	52.
	7/-	6/96	6.0008	5	_	2	42
	257	4614B	8 6558	<u> </u>	<u> </u>		90
		68/68	-5 86-54		<u> </u>		
	++	00100	2 25-5	2		<u> </u>	Sit
(7,00		40 J 88	6 2 6 2 6	20 . 4.0		1	
	<u>۲۳ (۲۳)</u>	C ¹ (020				PI	لحر
	· · · H. · · ·	····(4•)····	• embloV elqmə2·sı	æ∋m./J.	(0 ² H ui)	· (6H · .ni)	Clock.Time
· · · · · · · · · · · · · · · · · · ·	Bith .	. Car Sample	entukov leinal	<u>, , , , , , , , , , , , , , , , , , , </u>	. Orifice .	. Rump.	: Min? pr
Manne 81, 7] : emiT qote Manne 01 (1) : emiT hete	5						
npa.ko:	bede	0 42	- اهر. ر	бн.	D UIJO	ļ is t.	Leak Rate A
UDB NO: KUN SA TYPE: Cher coul		Port Len (ini) neJ hog	(⁵ 11) 601A	6н.	/ @ u/jo	a , O e lote	Leak Rate Be
WAX :eqy1 A 244 0 :on edu	Ĩ					52	bb Q PA
58 Bag ID No. M. 6 Bag					511-	IE redmul	Meter Box N
robe Length St 17 16 16 16 16 16 16 16 16 16 16 16 16 16	뷔	2 ()	H an Kar	VORIE		101 1 2 4 4	bled Operate
اعد. ۲۰۵۶. <u>۲۲</u> ، ۲۶ (است Hg) (moat)		,		1		- Jayre	H meld
رهجا) .qmp. (۹۰) یک از از م	lion	ection of Test Loca	S-ssor)	loir fiol	Project Num	1	Client TA
Page (of)	1	Data Shee	bləiT	45	։սղ	77445	Location:
	səduT	Adsorbing	- 81 bodis	U			

Location: TXK Bun 58	Method 18 - Ad bing Field Data Shee	Tube:	S Page t of
Client Y_{k} Project Number 101 Plant $ Y_{k} _{C}$ Unit 1 Date $4/19/02$ Inlet/Outlet/Stack Meter Operator T_{k} $ Y_{l}$ Meter Box Number $B'_{l} - V$ Yd 9891 13 " Leak Rate Before 0.0 c1/m 13 "	Cross-Section of Test Loca \mathbf{N}/\mathbf{UP} \mathbf{Hg} \mathbf{Hg} \mathbf{Hg} \mathbf{Hg} 185.6 $\mathbf{Z4}$ Cross-Section of Test Loca $1185.6\mathbf{Z4}185.6\mathbf{Z4}$	tion Is Flow OUT f page	Ambient Temp. (°F) \mathcal{O} \mathcal{Q} Bar. Press. $\mathcal{29.25}$ \mathcal{O} Bar. Press. $\mathcal{29.25}$ \mathcal{O} Probe Length $\mathcal{5}'$ Probe Material $\mathcal{5.5}$ \mathcal{I}_{14} IGS Bag ID No. $\mathcal{NB}^{-}R5$ Tube No: $\mathcal{R}_{VF}56$ Tube No: $\mathcal{R}_{VF}66$ Tube No: $\mathcal{R}_{VF}666$ Tube No: $\mathcal{R}_{VF}666666666666666666666666666666666666$
Min/pt. Pump. Orifice How Vacuum Setting Pate Ckock.Time (in. Hg) (in H ₂ O) L/.m	Initial .Volume. Gas Sample	Bath. Temp:	Notes
5 4 1. 0.33	2693.0 91/91	47	bb=25
	2694 5 91/91	44	
20 5	71.97.2 91.91	4 4	
15 5	1.90.8 90/90	43	
30 Ce	2760.0 83/88	43	·
35 6	2701.5 88/88	42	
<u></u>	2705.5 86/86	42	
45 7	2708.6 81/89	49	ė
	2710.5 84/94	43	
	1. F(3, 89/84 27160 04 104	42	
Total		73	
Average	13.4		

DS 018T Organic Tubes CNVS/KVSP.R2-2/7/94

Clean Air Engineering

	t		······	~ +		+	// M
	44	50/68	5'829	1 18		F	<i>w</i>]
	44	68/68	5.929	8			35
	Sp	68/68	5.450	8		L t	ls
	5h	68/68	5729	8		E	तर
	Sh	£81£8	5,020	8	1 /	о,	07
	Sto	£81£8	6-22 g	3		o)	32
	٤٦	28/28	E 527.	8		5	æ
	643	£8/£8	5.220	B		t,	R
	54	18/28	6.020	8		ŀ	N
	Z.f.	£8/28	1.610	8		E	ابي ا
	13	£8/£8	0'±17	8.)	17	Ę	01
RE - 91	Sto	£SHB	5.41%	3 50	21	E	5
səjon.	∵hisal ∵qm∋T 	Gars Sample	emuloV listin Segmple Volume , , , , , , , , , , , , , , , , , , ,	89	Orifice: (O ₂ H ii)	, Pump Vacuum . (in. Hg) .	Miny pt.
Manna Of: ?1:9miT gois manna Jr. / pj:9miT thei	S]	· · · · · · · · · · · · · · · · · · ·					~
.edVT			7' S.	<u>6</u> H.		101	A-eleR Nee-A
iegyT And Stored : Chanced	Mold s	Port Len (ini) neJ hof	Area (ft ³)	PH.	<u>.</u> Al D m\}o		A ated yea !
TYPe: Condition of the second	<u>и</u>	_				, 56 b.	JO PA
2 Bag ID No. NOI BEA		Se al			511-1.	F redmini	Meter Box I
		20	Da / UP v.c			n 0 1016	vedO te feM
ar. Pross. 29-25 (in-Hig/ mbar)				200015		<u>بر</u>	Man have
S - 18 (1-9) .qmeT theidm	A noil	ection of Test Local	S-seon	1016101	Project Numb		Client 741
Page (of	səduT	Adsorbing Data Sheel	- 81 bodteN bleiT	<u>لم</u>	:uny	72415	noitsoo.

bith

CNVS/KVSP.R2-2/7/94 CNVS/KVSP.R2-2/7/94

Average

ls to T

Page (Ambient Temp. (°F) デリ・こ Bar. Press. 2分・2 (M. Hg / mbar) Probe Length 5' Probe Material 3. / T. // / / / / / / / / / / / / / / /	Tube No: Kun Le B Type: Chenced Type: Chenced Start Time: 14:36 AMPM Stop Time: 15:40 AMPM		653								Clean Air Engineering
3 - Aching Tubes Id Da., Sheet	is-Section of Test Location	Port Len (in.) Gas How IN CUP 24 of page	 CasSample Temperature at. Dry: Gas Meter Dry: Gas Meter T.m. (°F) 	44 26126 44 26126	92192 42 97,192 43	26 26/16	92/92 42	74 26/26	92/92 43	72/92 43		
Method 18		Area (f1 ³) 	How	0.5 27W.2	1725.6	2730.0	2734.7	27372	0 THE C	Ø 2.746.2	(19)	
tion. <u>STACL</u> Run:	T+1 Project Numb Hundrer Unit (Hille/22 Inter/Outlet/8 Operator 2, Hr. rauker Box Number 34-1/1	late Before 2 cl/m @ 12 late After cl/m @	pt : Pump. : Orifíce. : . Vacuum : Setting : Time : (in. Hg) : (in H ₂ O)	- 3 1 ₆ 2		3-	7 2	9		D &	age	r Organic Tubes .VSP.R2-2/7/94

Clean Air Jineering)
						\frown	2-2/7/94	CNVS/KVSP.R DS 018T Organ
Γ		SA	(nt:S	t		$(\overline{(\gamma)})$		Average
				<u></u>				letoT
	तन	581,58	Sinte	2	T		Ø	911
	٤h	58158	2 226	22			B	55
	hh	\$8/_S\$	0-021	EL			B	23
	ofet	81-18	と、との+	ET			E	3"
	£] r	28/58	5.59	Ł2			Ł	oh
	En	58/58	8.29	£2			t	SE
	24	_58/_58	2.006	-2			0)	R
	24	58/58	t tst	6			()	92
	Lh	58158	LOF	2				σ_{l}
	14	50/38	0.720	2		<u>\</u>		
26 - Día	EA	50158	EISE	56	1 (-0	·····		5
22_99	510			-6				
		(H°)	· emeloVolume2		: ш·/Л :	(0 ² H ui)	·(9H · .ni) ·	Clock.Time
satoN.	Bath	. Temperature at.	····· E·· OFit	2	. мо	. Oritice.	qmuA	iq \niki .
		· · elqme22a. ·	emuloV. leiti		•••••			
MAMA & 21: 9 Stone The Stone String : 9: 8 : 45	5							<u> </u>
be Mo:		o hz	182 (*	DH.	<u> </u>			A eteR yee I
1 Solver 1 Solver 1 Solver 1 Solver	MoH a	Port Len (in.) Ge	Area (ft ³)			· @/,5		
							Ne le	665 0 PA
robe Material 3.5 / 4/0~		E.				Livender		Meter Opers
tobe Length 5 ⁻¹		2 () h			(DE)S	tel tuO \telnl	20/61	Date 4/
ar. Press. 2.9. Art. Main Mart		(1 JinU	24rc	Plant H
·····································						Project Num		
lto , engl	e a a a a a a a a a a a a a a a a a a a	ead2 sted	blei T	141	Ł .		1/112	noiteon l
	and iT i	aidrosh A .	. at hodta	VV				

!

		(18)	1029	121		().1/		Average
		\bigcirc						le to T
	5h	16/18	E 108	32	\uparrow	\wedge		9)
	Sh	48/ 48	9 °65E	-2				لال
	トケ	h81 h8	896l	2			B	23
	Eh	h8/h8	7 'h6t	-2		·	Å	Sh
	27	61/29	£ 7,6	2			t	9}n
	र)न	48/48	0-0h	2			1	Я
	2/1	8418	七 七 8-1	12			t	عد
)],	hB/hB	2'38-	EZ			の	R
	40	p8/ h8	m Eles	12			بكر	2
	11-	18/28	8,18-	£2			4	
	£ h	78/18	P. 08-1	52		1-1	, A	ରା
<i>₽E = 99</i>	Sh	h8/h8	2 8K	62	ه کر)^]	4	L.
	Baith Baith Baith	Temperature at. Dry Cas Sample Dry Cas Weter (Pen).	emuloV leij	sæg		. Orifíce (Ó ₂ H ni)	. :Pump. : Vacuum : (in. · Hg) .	. [Mín/ pí. Clock∵Time
Mana & 6:11 :9miT qol 2 Mana 00:01 :9miT hal								
	i page	° }-Z	2.681	6н.		@ W/ID	1eft.	Leak Rate A
No No: Low 24 Type: Charles		Port Len (ini) neJ tro9	Агөз (ft ³)	6н.	12	@ m\to	O.O etote	Leak Rate B
vbe No: K~∾ & A Type: MH	L				÷		9	6860 PA
GE Bag ID No. M 18 - R 8 C		· ·	,			11-	-18 redmun	Meter Box I
Tobe Material 5,5 / July 184		2 a)				در مورج	ator R. H	Meter Oper
Safe Landth 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			L I		VIDE S /	tel tuO \ telni	121.00	Fi mer
P. PF (Pr). (PP) P. P.	, noit	ection of Test Loca	S-seot)		IOIP Tedr	Project Nun	17-	Client 7
Page (t Tubes	bridr bA	- 81 bodtə bləi٦	 W	- 3:ı	nufi	DUC.	Location

Clean Air Engineering

DS 018T Organic Tubes CNVS/KVSP.R2-2/7/94

			G	Method 18	- Adsorbin	g Tube	S Demo L ()					
Locatior	1: SUKCK	Pur	n: <u> </u>	Field	Data She	et	Pageot					
Client T X	21	Project Nun	nber 9109	Cross-	Section of Test Loc	cation	Ambient Temp. (°F) <u>84.0</u>					
Plant H	untic	Unit y		•	Å		Bar. Press. 29.25 (in. Bg / mbar)					
Date 4/	19/02	Inlet/Outlet	Stack		דק א א		Probe Length 5					
Meter Ope	rator K.A	krnande Z					Probe Material 5.5 (lefter					
Meter Box	Number 89	- 11			- 3		IGS Bag ID No. M. G - KU					
<u>Ya</u> 0.9	996				B		Tube No: Lung A Type: XIAD					
Leak Rate E	Before O. O	cf/m @	15 "+	lg Area (It ³)	Port Len (in.)	Gas How	Tube No: RJN9A Type: Cher wool					
Leak Pate	After	ct/m @	***	19 185.6	24	of page	Tube No:					
						· · · · ·	Start Time: 11:11 -AMAPM Stop Time: 1218 AMAPM					
Úní pt.	:	Orifice Setting (in H ₂ O)	. Flów Pate L∕⋅m	Initial Volume 7.80.2 I Gas Sample Volume V _m (L)	Gas Sample Temperature at Dry Gas Meter	Bath. Temp	·Notes					
5	9	1.1	0.5	2804-8	87/87	43						
16	5			2806.9	87187	42						
5	4			2809.4	87187	43						
20	5			2811.6	87 (87	43						
25	6			2813.7	87/87	42						
30	4			2816,8	87/87	41						
35	4			2810.5	37/87	42						
40	4			ZB ZO, 3	87/87	42						
45	4			2.BZZ. 3	88/29	42						
50	4			2824.9	88 / 88	43						
55	Ì.			2827.2	BB/88	43						
60	Le		\downarrow	2829.7	\$8/ BB	43						
Total		\bigcirc										
Average		$\left(\left(\cdot \right) \right)$		(27.60)	(81)							

DS 018T Organic Tubes CNVS/KVSP.R2-2/7/94

• •• •••

CleanAir

TXI OPERATIONS, L.P. HUNTER CEMENT PLANT

Client Reference No: 63927 CAE Project No: 9101

Location: Kiln Stack Test Run: 1 - Raw Mill On Client: TXI - Hunter Project No: 9101 Test Date: 4/17/02Meter ΔH @: 1.7793 Meter Y_d: 1.0015 Pitot C_p: 0.84 Static P: 0.1 Leak Rate Before: 0.002 cfm @ 18"Hg

Method: 1-4 Testing Type: Flow/Moisture

Area (ft2): 185.66

 O_2 (dry volume %): 10.5 CO_2 (dry volume %): 16.5 Start Time (approx.): 12:00 Stop Time (approx.): 13:10 H₂O (condensate, ml): 154.9 H₂O (silica, g): 15.4

Bar. Press. (in. Hg): 29.25

Actual Moisture (%): 18.5

Leak Rate After: 0.002 cfm @ 10"Hg

	Traverse	Run	Pitot	Sample	Metered	Stack	Dry Ga	s Meter	√∆P,	Volume
	Point	Time	· AP,	ΔH	(ft³)	T,	T _{min}	T _{mout}	(calculated)	(calculated)
		0.0	(in. H₂O)	(in. H₂O)	298.82	_(°F)	(°F)	(°F)	(√in. H₂O)	(ft?)
	2-01	5.0	0.14	1.50	302.47	248	92	90	0.37	3.65
	2-02	10.0	0.13	1.50	305.87	248	92	90	0.36	3.40
	2-03	15.0	0.19	1.50	309.17	246	92	89	0.44	3.30
	1-01	20.0	0.14	1.50	312.52	247	92	88	0.37	3.35
	1-02	25.0	0.12	1.50	316.03	247	90	88	0.35	3.51
	1-03	30.0	0.23	1.50	319.34	246	90	86	0.48	3.31
	4-01	35.0	0.10	1.00	322.15	247	89	86	0.32	2.81
	4-02	40.0	0.09	1.00	324.88	247	88	86	0.30	2.73
	4-03	45.0	0.08	1.00	327.77	246	87	85	0.28	2.89
	3-01	50.0	0.10	1.00	330.65	247	86	85	0.32	2.88
	3-02	55.0	0.08	1.00	333.37	248	86	85	0.28	2.72
	3-03	60.0	0.09	1.00	336.19	247	85	84	0.30	2.82
ł	Final	60.0	0.3474	1.25	37.37	247	88	3		

Location: Kiln Stack		Bar. Press. (in. Hg): 29.25	
Test Run: 2 - Raw Mill On		Actual Moisture (%): 18.9	
Client: TXI - Hunter			
Project No: 9101	Method: 1-4		
Test Date: 4/17/02	Testing Type: Flow/Moisture	O₂ (dry volume %): 10.5	
Meter ∆H@: 1.7793		CO2 (dry volume %): 16.1	
Meter Y _d : 1.0015	Area (ft²): 185.66	Start Time (approx.): 13:58	
Pitot C _p : 0.84		Stop Time (approx.): 15:04	
Static P: 0.1		H ₂ O (condensate, ml): 146.0	
Leak Rate Before: 0.002 cfm @ 12"Hg		H₂O (silica, g): 11.6	
Leak Rate After: 0.002 cfm @ 8"Hg			

Traverse	Run	Pitot	Sample	Metered	Stack	Dry Ga	s Meter	√∆ Ρ .	Volume
Point	Time	ΔP,	ΔН	(ft³)	T.	T _{min}	T _{mout}	(calculated)	(calculated)
	0.0	(in. H₂O)	(in. H₂O)	336.27	(°F)	(°F)	(°F)	(√in. H₂O)	(ft³)
2-01	5.0	0.13	1.00	339.07	246	87	86	0.36	2.80
2-02	10.0	0.12	1.00	341.89	246	87	86	0.35	2.82
2-03	15.0	0.21	1.00	344.69	246	87	86	0.46	2.80
1-01	20.0	0.15	1.00	347.51	247	88	8 6 ·	0.39	2.82
1-02	25.0	0.15	1.00	350.30	247	88	86	0.39	2.79
1-03	30.0	0.25	1.00	353.09	246	88	86	0.50	2.79
4-01	35.0	0.12	1.00	355.89	247	89	86	0.35	2.80
4-02	40.0	0.10	1.00	358.67	246	89	87	0.32	2.78
4-03	45.0	0.10	1.00	361.45	246	89	87	0.32	2.78
3-01	50.0	0.13	1.00	364.25	247	89	87	0.36	2.80
3-02	55.0	0.12	1.00	367.02	247	89	87	0.35	2.77
3-03	60.0	0.10	1.00	369.80	246	89	87	0.32	2.78
								•	
Final	60.0	0.37	1.00	33.53	246	. 8	7		

Bar. Press. (in. Hg): 29.25 Actual Moisture (%): 18.7

H₂O (condensate, ml): 140.4

H₂O (silica, g): 14.3

Location: Kiln Stack Test Run: 3 - Raw Mill On Client: TXI - Hunter Project No: 9101 Test Date: 4/17/02Meter $\Delta H @$: 1.7793 Meter Y_d: 1.0015 Pitot C_p: 0.84 Static P: 0.1 Leak Rate Before: 0.003 cfm @ 9"Hg

Method: 1-4 Testing Type: Flow/Moisture Area (ft²): 185.66 CO₂ (dry volume %): 10.4 CO₂ (dry volume %): 16.3 Start Time (approx.): 15:42 Stop Time (approx.): 16:47

Leak Rate Before: 0.003 cfm @ 9"Hg Leak Rate After: 0.002 cfm @ 7"Hg

	Traverse	Run	Pitot	Sample	Metered	Stack	Dry Ga	s Meter	√∆ Ρ , ^α	Volume
	Point	Time	ΔP _s	ΔH	(ft³)	T.	T _{min}	T _{mout}	(calculated)	(calculated)
		0.0	(in. H₂O)	(in. H₂O)	369.89	(°F)	(°F)	(°F)	(√in. H₂O)	(ft ³)
	2-01	5.0	0.14	1.00	372.64	245	89	87	0.37	2.75
- 1	2-02	10.0	0.14	1.00	375.44	245	88	87	0.37	2.80
	2-03	15.0	0.23	1.00	378.25	244	88	87	0.48	2.81
	1-01	20.0	0.15	1.00	381.04	246	89	88	0.39	2.79
	1-02	25.0	0.16	1.00	383.82	245	89	88	0.40	2.78
	1-03	30.0	0.27	1.00	386.63	245	89	88	0.52	2.81
	4-01	35.0	0.14	1.00	389.42	245	89	88	0.37	2.79
	4-02	40.0	0.12	1.00	392.19	247	89	88	0.35	2.77
	4-03	45.0	0.10	1.00	394.98	245	89	88	0.32	2.79
	3-01	50.0	0.14	1.00	397.77	247	88	87	0.37	2.79
	3-02	55.0	0.13	1.00	400.56	246	88	87	0.36	2.79
	3-03	60.0	0.11	1.00	403.37	246	88	87	0.33	2.81
					-					
			•							
						· · · · · · ·				
		1								
l										
	Final	60.0	0.39	1.0 0	33.48	246	88	B		-

Location:	Kiln Stack		Bar. Press. (in. Hg): 29.25			
Test Run:	4 - Raw Mill Off		Actual Moisture (%): 20.3			
Client:	TXI - Hunter			·		
Project No:	9101	Method: 1-4			:	`~aaaa
Test Date:	4/18/02	Testing Type: Flow/Moisture	O₂ (dry volume %): 9.9			
Meter ∆H@:	1.7793		CO ₂ (dry volume %): 15.5			
Meter Y _d :	1.0015	Area (ft ²): 185.66	Start Time (approx.): 10:05			
Pitot C _p :	0.84		Stop Time (approx.): 11:11			
Static P:	0.1		H ₂ O (condensate, ml): 158.8			
Leak Rate Before:	0.002 cfm @ 9"Hg		H₂O (silica, g): 17.2		•	
Leak Rate After:	0.002 cfm @ 10"Hg					
I -					1	

Traverse	Run	Pilot	Sample	Metered	Stack	Dry Ga	s Meter	VAP,	voiume
Point	Time	ΔΡ,	ΔH	(ft°)	T₅	T _{min}	T _{mout}	(calculated)	(calculated)
	0.0	(in. H₂O)	(in. H₂O)	403.44	<u>(°F)</u>	(°F)	(°F)	(√in. H₂O)	(ft³)
3-01	5.0	0.13	1.00	406.28	258	81	78	0.36	2.84
3-02	10.0	0.12	1.00	409.10	260	81	78	0.35	2.82
3-03	15.0	0.17	1.00	411.93	258	83	79	0.41	2.83
2-01	20.0	0.07	1.00	414.78	298	83	80	0.26	2.85
2-02	25.0	0.07	1.00	417.57	302	84	80	0.26	2.79
2-03	30.0	0.06	1.00	420.42	301	86	81	0.24	2.85
1-01	35.0	0.08	1.00	423.36	298	85	81	0.28	2.94
1-02	40.0	0.08	1.00	426.19	299	83	81	0.28	2.83
1-03	45.0	0.06	1.00	428.93	298	83	81	0.24	2.74
4-01	50.0	0.08	1.00	431.76	298	83	81	0.28	2.83
4-02	55.0	0.07	1.00	434.57	295	85	82	0.26	2.81
4-03	.60.0	0.06	1.00	437.36	295	85	82	0.24	2.79
	1								
									1
									1
									1
								1	
								1	
Final	60.0	0.2914	1.00	33.92	288	8	2		

Location: Kiln Stack Bar. Press. (in. Hg): 29.25 Test Run: 5 - Raw Mill Off Actual Moisture (%): 19.2 Client: TXI - Hunter Project No: 9101 Method: 1-4 Test Date: 4/18/02 Testing Type: Flow/Moisture O2 (dry volume %): 10.1 Meter ∆H@: 1.7793 CO₂ (dry volume %): 15.6 Meter Y_d: 1.0015 Area (ft²): 185.66 Start Time (approx.): 12:10 Pitot C_p: 0.84 Stop Time (approx.): 13:18 Static P: 0.1 H₂O (condensate, ml): 148.0 H₂O (silica, g): 6.7 Leak Rate Before: 0.002 cfm @ 12"Hg Leak Rate After: 0.002 cfm @ 9"Hg

	Traverse	Run	Pitot	Sample	Metered	Stack	Dry Ga	s Meter	√∆P 。	Volume
	Point	Time	ΔP _s	ΔH	(ft³)	Т.	T _{min}	Trn out	(calculated)	(calculated)
		0.0	(in. H₂O)	(in. H₂O)	437.45	(°F)	(°F)	<u>(°F)</u>	(√in. H₂O)	(ft³)
	4-01	5.0	0.10	1.00	440.13	297	89	. 85	0.32	2.68
	4-02	10.0	0.08	1.00	442.87	297	89	85	0.28	2.74
1	4-03	15.0	0.05	1.00	445.59	295	89	86	0.22	2.72
	1-01	20.0	0.09	1.00	448.31	297	91	86	0.30	2.72
	1-02	25.0	0.09	1.00	451.05	296	91	87	0.30	- 2.74
	1-03	30.0	0.08	1.00	453.72	296	88	87	0.28	2.67
	2-01	35.0	0.09	1.00	456.56	295	86	85	0.30	2.84
	2-02	40.0	0.09	1.00	459.16	295	86	85	0.30	2.60
	2-03	45.0	0.07	1.00	461.83	296	87	85	0.26	2.67
ľ	3-01	50.0	0.07	1.00	464.57	288	87	85	0.26	2.74
	3-02	55.0	0.08	1.00	467.20	295	87	85	0.28	2.63
	3-03	60.0	0.06	1.00	469.80	294	87	85	0.24	2.60
	Final	60.0	0.28	1.00	32.35	295	8	7		

Location:	Kiln Stack	·		Bar. Press. (in. Hg):	29.25
Test Run:	6 - Raw Mill Off			Actual Moisture (%):	18.3
Client:	TXI - Hunter				
Project No:	9101	Method:	1-4		
Test Date:	4/18/02	Testing Type:	Flow/Moisture	O ₂ (dry volume %):	10.0
Meter ∆H@:	1.7793			CO ₂ (dry volume %):	15.6
Meter Y _d :	1.0015.	Area (ft ²):	185.66	Start Time (approx.):	14:36
Pitot C _p :	0.84			Stop Time (approx.):	15:40
Static P:	0.1			H ₂ O (condensate, ml):	131.2
Leak Rate Before:	0.002 cfm @ 14"Hg			H₂O (silica, g):	14.0
Leak Rate After:	0.004 cfm @ 11"Hg				

Traverse	Run	Pitot	Sample	Metered	Stack	Dry Ga	s Meter	√∆P .	Volume
Point	Time			(ft ³)	T _s	T _{min}		(calculated)	(calculated)
1.01	0.0	$(In. H_2O)$	(In. H ₂ O)	469.92		(°F)	(°F)	(vin. H₂O)	(11°)
1-01	5.0	0.07	1.00	472.03	295	85	85	0.26	2.71
1-02	15.0	0.07	1.00	475.32	290	07	65	0.20	2.09
2-01	20.0	0.05	1.00	470.02	290	87	85	0.22	2.70
2-02	25.0	0.08	1.00	483.38	297	87	85	0.33	2.67
2-03	30.0	0.08	1.00	486.05	297	87	86	0.28	2.67
3-01	35.0	0.10	1.00	488.76	297	87	86	0.32	2.71
3-02	40.0	0.10	1.00	491.42	296	88	86	0.32	2.66
3-03	45.0	0.08	1.00	494.12	296	89	86	0.28	2.70
4-01	50.0	0.09	1.00	496.81	296	89	87	0.30	2.69
4-02	55.0	0.09	1.00	499.51	296	89	87	0.30	2.70
4-03	60.0	0.08	1.00	502.19	296	89	87	0.28	2.68
Final	60.0	0.29	1.00	32.27	296	8	7		

Location: Kiln Stack Test Run: 7 - Raw Mill On Client: TXI - Hunter Project No: 9101 Test Date: 4/19/02Meter ΔH @: 1.7793 Meter Y_d: 1.0015 Pitot C_p: 0.84 Static P: 0.1 Leak Rate Before: 0.002 cfm @ 10"Hg Bar. Press. (in. Hg): 29.25 Actual Moisture (%): 17.9

Method: 1-4 Testing Type: Flow/Moisture

Area (ft²): 185.66

 O_2 (dry volume %): 10.5 CO_2 (dry volume %): 16.4 Start Time (approx.): 08:45 Stop Time (approx.): 09:52 H₂O (condensate, ml): 138.2 H₂O (silica, g): 10.3

Leak Rate After: 0.002 cfm @ 10"Hg

ı.

ſ	Final	60.0	0.3892	1.00	33.17	247	70	6		
	Final	22.0	0.0000		00.47					
	2-01 2-02 2-03 1-01 1-02 1-03 4-01 4-02 4-03 3-01 3-02 3-03	5.0 10.0 15.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0	0.15 0.14 0.14 0.17 0.16 0.15 0.16 0.13 0.16 0.15 0.15 0.15	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	505.30 508.09 510.81 513.58 516.35 519.11 521.86 524.61 527.36 530.11 532.92 535.59	246 247 247 248 247 246 246 247 246 247 246	75 75 76 77 78 77 77 77 77 77 77 77	74 74 74 75 75 75 75 75 75 75 75	0.39 0.37 0.41 0.40 0.39 0.40 0.40 0.36 0.40 0.39 0.39 0.39	2.88 2.79 2.72 2.77 2.76 2.75 2.75 2.75 2.75 2.75 2.81 2.67
	Point	Time 0.0	Pποτ ΔP _s (in. H ₂ O)	Sample ∆H (in. H₂O)	метегед (ft ³) 502.42	Stack T _s (°F)	Dry Ga T _{min} (°F)	s meter T _{mout} (°F)	v∆P₅ (calculated) (√in. H₂O)	(calculated) (ft ³)
	l raverse Point	Run Time 0.0	Pitot ΔPs (in, H ₂ O)	Sample ∆H (in. H ₂ O)	Metered (ft ³)	Stack T, (°F)	Dry Ga	S Meter	iut D	v∆P _s (calculated)

Location: Kiln Stack Bar. Press. (in. Hg): 29.25 Test Run: 8 - Raw Mill On Actual Moisture (%): 17.6 Client: TXI - Hunter Project No: 9101 Method: 1-4 Test Date: 4/19/02 Testing Type: Flow/Moisture O₂ (dry volume %): 10.5 Meter ∆H@: 1.7793 CO2 (dry volume %): 16.3 Meter Y_d: 1.0015 Area (ft2): 185.66 Start Time (approx.): 10:00 Pitot Cp: 0.84 Stop Time (approx.): 11:03 Static P: 0.1 H₂O (condensate, ml): 137.1 Leak Rate Before: 0.002 cfm @ 12"Hg H₂O (silica, g): 9.3 Leak Rate After: 0.002 cfm @ 10"Hg . . .

Point Time ΔP_{1} ΔH (\mathbb{P}) T_{1} T_{net} $(celutated)$	Traverse	Run	Pitot	Sample	Metered	Stack	Dry Ga	s Meter	√∆ Ρ	Volume	
0.0 (in. H ₂ O) (in. H ₂ O) 535.68 (*F) (*F) </td <td>Point</td> <td>Time</td> <td>∆P₅</td> <td>ΔH</td> <td>(ft³)</td> <td>T₅</td> <td>T_{min}</td> <td>T_{mout}</td> <td>(calculated)</td> <td>(calculated)</td> <td>l</td>	Point	Time	∆P₅	ΔH	(ft³)	T₅	T _{min}	T _{mout}	(calculated)	(calculated)	l
2-01 5.0 0.15 1.00 538.81 244 76 75 0.39 3.13 2-02 10.0 0.15 1.00 541.63 248 76 75 0.39 2.82 2-03 15.0 0.14 1.00 544.63 248 76 75 0.37 2.77 1-01 2.00 0.16 1.00 547.32 245 78 76 0.40 2.52 1-02 25.0 0.16 1.00 545.92 245 78 76 0.40 2.58 1-03 30.0 0.14 1.00 555.54 246 78 76 0.40 2.90 4-02 40.0 0.13 1.00 556.54 246 78 76 0.40 2.90 4-03 45.0 0.15 1.00 566.87 246 81 78 0.37 2.72 3-03 60.0 0.14 1.00 569.17 246 81<	1	0.0	(in. H₂O)	(in. H₂O)	535.68	(°F)	(°F)	(°F)	(√in. H₂O)	(ft ^s)	
2-02 10.0 0.15 1.00 541.63 248 76 75 0.39 2.82 2-03 15.0 0.14 1.00 544.40 248 76 75 0.37 2.77 1-01 20.0 0.16 1.00 549.90 246 78 76 0.40 2.92 1-02 25.0 0.16 1.00 549.90 246 78 76 0.40 2.92 1-03 30.0 0.14 1.00 555.54 246 78 76 0.37 2.74 4-01 35.0 0.16 1.00 555.54 246 78 76 0.40 2.90 4-02 40.0 0.13 1.00 560.97 246 81 78 0.37 2.73 3-01 50.0 0.15 1.00 569.67 246 81 78 0.37 2.72 3-03 60.0 0.14 1.00 569.17 246 81	2-01	5.0	0.15	1.00	538.81	244	76	75	0.39	3.13	
2-03 15.0 0.14 1.00 544.40 248 76 75 0.37 2.77 1-01 20.0 0.16 1.00 547.32 245 78 76 0.40 2.92 1-02 25.0 0.16 1.00 549.90 246 78 76 0.40 2.92 1-03 30.0 0.14 1.00 552.64 246 78 76 0.40 2.92 4-01 35.0 0.16 1.00 555.54 246 78 76 0.40 2.90 4-02 40.0 0.14 1.00 556.94 246 78 76 0.40 2.90 3-01 50.0 0.15 1.00 566.67 246 81 78 0.37 2.73 3-03 60.0 0.14 1.00 569.17 246 81 78 0.37 2.72	2-02	10.0	0.15	1.00	541.63	248	76	75	0.39	2.82	l
1-01 20.0 0.16 1.00 547.32 245 78 76 0.40 2.58 1-02 25.0 0.16 1.00 559.90 246 78 76 0.40 2.58 1-03 30.0 0.14 1.00 552.64 246 78 76 0.40 2.58 4-01 35.0 0.16 1.00 555.54 246 78 76 0.40 2.59 4-02 40.0 0.14 1.00 556.54 246 78 76 0.40 2.90 4-03 45.0 0.13 1.00 568.04 247 80 77 0.37 2.73 3-01 50.0 0.14 1.00 566.45 246 81 78 0.37 2.78 3-03 60.0 0.14 1.00 569.17 246 81 78 0.37 2.72	2-03	15.0	0.14	1.00	544.40	248	76	75	0.37	2.77	
1-02 25.0 0.16 1.00 549.90 246 78 76 0.40 2.54 1-03 30.0 0.14 1.00 552.64 246 78 76 0.37 2.74 4-01 35.0 0.16 1.00 555.64 246 78 76 0.37 2.71 4-02 40.0 0.14 1.00 558.25 247 80 77 0.37 2.71 4-03 45.0 0.13 1.00 560.94 246 81 78 0.37 2.76 3-02 55.0 0.14 1.00 566.45 246 81 78 0.37 2.78 3-03 60.0 0.14 1.00 569.17 246 81 78 0.37 2.72 3-03 60.0 0.14 1.00 569.17 246 81 78 0.37 2.72	1-01	20.0	0.16	1.00	547.32	245	78	76	0.40	2.92	
1-03 30.0 0.14 1.00 552.64 246 78 76 0.37 2.74 4-01 35.0 0.16 1.00 555.54 246 78 76 0.40 2.90 4-02 40.0 0.14 1.00 555.25 247 80 77 0.37 2.71 4-03 45.0 0.13 1.00 560.94 247 80 77 0.36 2.69 3-01 50.0 0.15 1.00 566.45 246 81 78 0.37 2.78 3-02 55.0 0.14 1.00 569.17 246 81 78 0.37 2.72 3-03 60.0 0.14 1.00 569.17 246 81 78 0.37 2.72	1-02	25.0	0.16	1.00	549.90	246	78	76	0.40	2.58	
4-01 35.0 0.16 1.00 555.54 246 78 76 0.40 2.90 4-02 40.0 0.13 1.00 568.25 247 80 77 0.37 2.71 4-03 45.0 0.13 1.00 560.94 247 80 77 0.36 2.89 3-01 50.0 0.14 1.00 566.67 246 81 78 0.39 2.73 3-02 55.0 0.14 1.00 566.45 246 81 78 0.37 2.78 3-03 60.0 0.14 1.00 569.17 246 81 78 0.37 2.72	1-03	30.0	0.14	1.00	552.64	246	78	76	0.37	2.74	
4-02 40.0 0.14 1.00 558.25 247 80 77 0.37 2.71 4-03 45.0 0.13 1.00 560.94 247 80 77 0.36 2.69 3-01 50.0 0.15 1.00 563.67 246 81 78 0.39 2.73 3-02 55.0 0.14 1.00 566.45 246 81 78 0.37 2.78 3-03 60.0 0.14 1.00 569.17 246 81 78 0.37 2.72	4-01	35.0	0.16	1.00	555.54	246	78	76	0.40	2.90	
4-03 45.0 0.13 1.00 560.94 247 80 77 0.36 2.69 3-01 50.0 0.15 1.00 563.67 246 81 78 0.39 2.73 3-02 55.0 0.14 1.00 566.45 246 81 78 0.37 2.78 3-03 60.0 0.14 1.00 569.17 246 81 78 0.37 2.72	4-02	40.0	0.14	1.00	558.25	247	80	77	0.37	2.71	
3-01 50.0 0.15 1.00 563.67 246 81 78 0.39 2.73 3-02 55.0 0.14 1.00 566.45 246 81 78 0.37 2.78 3-03 60.0 0.14 1.00 569.17 246 81 78 0.37 2.72	4-03	45.0	0.13	1.00	560.94	247	80	77	0.36	2.69	
3-02 55.0 0.14 1.00 566.45 246 81 78 0.37 2.78 3-03 60.0 0.14 1.00 569.17 246 81 78 0.37 2.72	3-01	50.0	0.15	1.00	563.67	246	81	78	0.39	2.73	ĺ
3-03 60.0 0.14 1.00 569.17 246 81 78 0.37 2.72	3-02	55.0 ·	0.14	1.00	566.45	246	81	78	0.37	2.78	
Final 60.0 0.38 1.00 33.49 246 78	3-03	60.0	0.14	1.00	569.17	246	81	78	0.37	2.72	
Final 60.0 0.38 1.00 33.49 246 78											
	Final	60.0	0.38	1.00	33.49	246	7	3			

Location: Kiln Stack Test Run: 9 - Raw Mill On Client: TXI - Hunter Project No: 9101 Test Date: 4/19/02 Test Meter ΔH @: 1.7793 Meter Y_d: 1.0015 Pitot C_p: 0.84 Static P: 0.1 Leak Rate Before: 0.003 cfm @ 11"Hg Leak Rate After: 0.002 cfm @ 8"Hg Bar. Press. (in. Hg): 29.25 Actual Moisture (%): 17.5

Method: 1-4 Testing Type: Flow/Moisture

Area (ft2): 185.66

 O_2 (dry volume %): 10.5 CO_2 (dry volume %): 16.3 Start Time (approx.): 11:11 Stop Time (approx.): 12:15 H_2O (condensate, ml): 135.0 H_2O (silica, g): 9.8

	Traverse	Run	Pitot	Sample	Metered	Stack	Dry Ga	s Meter	√∆ ρ .	Volume
	Point	Time	ΔPs	ΔH	(ft³)	T.	T _{min}	T _{mout}	(calculated)	(calculated)
		0.0	(in. H₂O)	(in. H₂O)	569.32	(°F)	(°F)	(°F)	(√in. H₂O)	(ft ³)
	2-01	5.0	0.15	1.00	572.14	245	81	79	0.39	2.82
	2-02	10.0	0.14	1.00	575.04	246	83	80	0.37	2.90
	2-03	15.0	0.14	1.00	577.82	245	83	80	0.37	2.78
	1-01	20.0	0.15	1.00	580.64	246	83	81	0.39	2.82
	1-02	25.0	0.16	1.00	583.47	247	84	82	0.40	2.83
	1-03	30.0	0.15	1.00	586.32	247	86	82	0.39	2.85
	4-01	35.0	0.15	1.00	589.12	247	86	83	0.39	2.80
	4-02	40.0	0.15	1.00	591.93	246	87	83	0.39	2.81
	4-03	45.0	0.14	1.00	594.73	247	86	83	0.37	2.80
	3-01	50.0	0.14	1.00	597.51	246	86	83	0.37	2.78
	3-02	55.0	0.13	1.00	600.28	246	87	83	0.36	2.77
	3-03	60.0	0.13	1.00	603.04	246	87	83	0.36	2.76
					1					
	i									
										•
					н. - С					
		-								
t	Final	60.0	0.38	1.00	33.72	246	83	3		

Location: Kiln Stack Test Run: 1A - Raw Mill On Client: TXI - Hunter Project No: 9101

Method: 18 **Collection Medium: Sorbent Tubes** Bar. Press. (in. Hg): 29.25

Test Date: 4/17/02

Meter Yd: 0.9935

Start Time (approx.): 12:00 Stop Time (approx.): 13:00

Leak Rate Before:

0.0 Lpm @ 10"Hg

Run	Sample	Metered	Dry Ga	s Meter	Volume
Time	ΔH	(L)	T _{m,in}	T _{m,out}	(calculated)
0.0	(in. H₂O)	8504.80	(°F) ′	(°F)	(L)
5.0	1.2	8507.90	88	88	3.10
10.0	1.2	8 508.90	88	88	1.00
15.0	1.2	8510.30	88	88	1.40
20.0	1.2	8512.20	88	88	1.90
25.0	1.2	8514.00	88	88	1.80
30.0	1.2	8516.00	88	88	2.00
35.0	1.2	8517.30	88	88	1.30
40.0	1.2	8518.60	88	88	1.30
45.0	1.2	8520.60	88	88	2.00
50.0	1.2	8522.60	88	88	2.00
55.0	1.2	8524.40	88	88	1.80
60.0	1.2	8526.20	88	88	1.80
				-	
60.0	1.20	21.40		3	

Location: Kiln Stack Test Run: 1B - Raw Mill O Client: TXI - Hunter Project No: 9101 Test Date: 4/17/02

Meter Yd: 0.9896

Location: Kiln StackMethod: 18Test Run: 1B - Raw Mill OnCollection Medium: Sorbent Tubes

Bar. Press. (in. Hg): 29.25

Start Time (approx.): 12:00 Stop Time (approx.): 13:00

Leak Rate Before:

0.0 Lpm @ 10"Hg

Run Time 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0	Sample ΔH (in. H₂O) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	Metered (L) 2599.6 2602.1 2604.5 2606.1 2607.8 2610.2 2611.8 2613.7 2615.5 2617.7 2619.0 2620.5 2622.4	Dry Ga T _{m.in} (°F) 90 90 90 90 90 90 90 90 90 90 90 90 90	s Meter T _{m,out} (°F) 90 90 90 90 90 90 90 90 90 90 90 90	Volume (calculated) (L) 2.50 2.40 1.60 1.70 2.40 1.60 1.90 1.80 2.20 1.30 1.50 1.90
5.0	1.2	2002.1	90	90	2.50
10.0	1.2	2604.5	90	90	2.40
15.0	1.2	2606.1	90	90	1.60
20.0	1.2	2007.0	90	90	1.70
25.0	1.2	2010.2	90	90	2.40
35.0	1.2	2613.7	90	90	1.00
40.0	12	2615.5	90	90	1.80
45.0	1.2	2617.7	90	90	2.20
50.0	1.2	2619.0	· 90	90	1.30
55.0	1.2	2620.5	90	90	1.50
60.0	1.2	2622.4	90	90	1.90
60.0	1.20	22.80	90	0	

Location: Kiln Stack Test Run: 2A - Raw Mill On **Client: TXI - Hunter** Project No: 9101

Method: 18 **Collection Medium: Sorbent Tubes** Bar. Press. (in. Hg): 29.25

Test Date: 4/17/02

Meter Yd: 0.9935

Start Time (approx.): 13:58 Stop Time (approx.): 14:58

Leak Rate Before: 0.0 Lpm @ 15"Hg

> Run Sample Metered **Dry Gas Meter** Volume Time ΔH (L) T_{m,in} (calculated) T_{m,out} 0.0 (in. H₂O) 8526.6 (°F) (°F) (L) 5.0 8528.5 1.0 89 89 1.90 10.0 8530.2 1.70 1.0 89 89 15.0 1.0 8531.6 89 89 1.40 20.0 1.0 8533.6 89 89 2.00 25.0 1.0 8535.9 89 89 2.30 30.0 2.20 1.0 8538.1 89 89 35.0 1.0 8540.0 89 89 1.90 40.0 1.0 8542.1 89 89 2.10 45.0 1.0 8543.8 89 89 1.70 50.0 1.0 8545.8 89 89 2.00 55.0 1.0 8547.7 89 89 1.90 60.0 1.0 8549.6 89 89 1.90 60.0 1.00 23.00 89

Location: Kiln Stack Test Run: 2B - Raw Mill On Client: TXI - Hunter Project No: 9101 Test Date: 4/17/02 Method: 18 Collection Medium: Sorbent Tubes Bar. Press. (in. Hg): 29.25

Meter Yd: 0.9896

Start Time (approx.): 13:58 Stop Time (approx.): 14:58

Leak Rate Before:

0.0 Lpm @ 10"Hg

Run Timo	Sample		Dry Ga T	s Meter	Volume
0.0	⊔ (in H₀O)	2622 80	(°F)	(°F)	
0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 55.0 60.0	(in. H₂O) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2622.80 2624.90 2628.80 2630.50 2632.30 2634.30 2636.00 2637.80 2639.70 2641.40 2642.80 2644.50	(°F) 92 92 92 92 92 92 92 92 92 92 92	(°F) 92 92 92 92 92 92 92 92 92 92	(L) 2.10 2.00 1.90 1.70 1.80 2.00 1.70 1.80 1.90 1.70 1.40 1.70
60.0	1.00	21.70	92	2	

Location: Kiln Stack Test Run: 3A - Raw Mill On Client: TXI - Hunter Project No: 9101 Test Date: 4/17/02

Method: 18 Collection Medium: Sorbent Tubes Bar. Press. (in. Hg): 29.25

Meter Yd: 0.9935

Start Time (approx.): 15:42 Stop Time (approx.): 16:47

Leak Rate Before:

0.0 Lpm @ 10"Hg

Run	Sample	Metered	Dry Ga	s Meter	Volume
Time	ΔН	(L)	T _{m,in}	T _{m,out}	(calculated)
0.0	(in. H₂O)	8549.90	(°F)	(°F)	(L)
5.0	1.1	8551.70	89	89	1.80
10.0	1.1	8553.20	89	89	1.50
15.0	1.1	8554.60	90	90	1.40
20.0	1.1	8556.00	90	90	1.40
25.0	1.1	8558.00	90	90	2.00
30.0	1.1	8559.10	90	90	1.10
35.0	1.1	8560.70	90	90	1.60
40.0	1.1	8562.70	90	90	2.00
45.0	1.1	8564.40	90	90	1.70
50.0	1.1	8566.10	90	90	1.70
55.0	1.1	8568.00	90	90	1.90
60.0	1.1	8569.60	90	90	1.60
60.0	1.10	19.70	Q()	
				-	1 1

Location: Kiln Stack Test Run: 3B - Raw Mill On Client: TXI - Hunter Project No: 9101 Test Date: 4/17/02

Method: 18 **Collection Medium: Sorbent Tubes** Bar. Press. (in. Hg): 29.25

Meter Yd: 0.9896

Start Time (approx.): 15:42 Stop Time (approx.): 16:47

Leak Rate Before:

0.0 Lpm @ 10"Hg

Run	Sample	Metered	Dry Ga	s Meter	Volume
Time	ΔH	(L)	T _{m,in}	T _{m,out}	(calculated)
0.0	(in. H₂O)	2644.70	(°F)	(°F)	(L)
5.0	1.1	2646.20	93	93	1.50
10.0	1.1	2648.00	93	93	1.80
15.0	1.1	2649.80	93	93	1.80
20.0	1.1	2652.10	93	93	2.30
25.0	1.1	2654.00	93	93	1.90
30.0	1.1	2655.40	93	93	1.40
35.0	1.1	2657.10	94	94	1.70
40.0	1.1	2659.30	94	94	2.20
45.0	1.1	2660.70	94	94	1.40
50.0	1.1	2662.40	94	94	1.70
55.0	1.1	2664.30	94	94	1.90
60.0	1.1	2665.30	94	94	1.00
60.0	1.10	20.60		L	

Location: Kiln Stack Test Run: 4A - Raw Mill Off Client: TXI - Hunter

Method: 18 **Collection Medium: Sorbent Tubes** Bar. Press. (in. Hg): 29.25

Project No: 9101 Test Date: 4/18/02

Meter Yd: 0.9935

Start Time (approx.): 10:05 Stop Time (approx.): 11:11

Leak Rate Before:

0.0 Lm @ 12"Hg

Run	Sample	Metered	Dry Ga	s Meter	Volume
Time	ΔH	(L)	T _{m,in}	T _{m,out}	(calculated)
0.0	(in. H₂O)	8570.8	(°F)	(°F)	(L)
5.0	1 .1 %	8572.9	80	80	2.10
10.0	1.1	8575.0	80	80	2.10
15.0	1.1	8576.5	82	82	1.50
20.0	1.1	8578.2	82	82	1.70
25.0	1.1	8579.9	82	82	1.70
30.0	1.1	8581.3	83	83	1.40
35.0	1.1	8582.9	83	83	1.60
40.0	1.1	0004.2	63 92	00	1.50
45.0	1.1	8587.3	83	83	1.50
55.0	1.1	8588.9	83	83	1.60
60.0	1.1	8590.2	83	83	1.30
60.0	1.10	19.40	8	2	

Location: Kiln Stack Test Run: 4B - Raw Mill Off Client: TXI - Hunter Project No: 9101

Method: 18 **Collection Medium: Sorbent Tubes** Bar. Press. (in. Hg): 29.25

Test Date: 4/18/02

Meter Yd: 0.9896

Start Time (approx.): 10:05 Stop Time (approx.): 11:11

Leak Rate Before:

0.0 Lpm @ 15"Hg

Run	Sample		Dry Ga T	s Meter	Volume
0.0	ΔΠ (in, H ₄ Ω)	2667.7	(°F)	(°F)	
Run Time 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0	Sample ΔH (in. H₂O) 1.1	Metered (L) 2667.7 2669.0 2671.1 2672.1 2673.3 2674.4 2676.9 2678.8 2681.0 2683.0 2685.0 2687.3 2689.5	Dry Ga T _{min} (°F) 83 83 83 83 83 83 83 83 83 83 83 83 83	s Meter T _{mout} (°F) 83 83 83 83 83 83 83 83 83 83 83 83 83	Volume (calculated) (L) 1.30 2.10 1.00 1.20 1.10 2.50 1.90 2.20 2.00 2.30 2.20 2.30 2.20
60.0	1.10	21.80	Ri Ri	5	
00.0	1.10	21.00	0		1 1

Location: Kiln Stack Test Run: 5A - Raw Mill Off Client: TXI - Hunter Project No: 9101

Method: 18 **Collection Medium: Sorbent Tubes** Bar. Press. (in. Hg): 29.25

Test Date: 4/18/02

Meter Yd: 0.9935

Start Time (approx.): 12:10 Stop Time (approx.): 13:18

Leak Rate Before:

0.0 Lm @ 10"Hg

Run Time 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0	Sample ΔH (in. H₂O) 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	Metered (L) 8592.4 8594.2 8595.9 8597.3 8598.5 8599.8 8600.9 8602.0 8603.1 8604.1 8605.4 8607.3 8608.9	Dry Ga T _{m,in} (°F) 88 88 89 90 90 88 88 88 88 88 88 88 88	s Meter T _{m.out} (°F) 88 88 89 90 90 88 88 88 88 88 88 88 88 88	Volume (calculated) (L) 1.80 1.70 1.40 1.20 1.30 1.10 1.10 1.00 1.30 1.90 1.60
60.0	1.10	16.50	88	3	

Method: 18

Location: Kiln Stack Test Run: 5B - Raw Mill Off Collection Medium: Sorbent Tubes Client: TXI - Hunter Project No: 9101 Test Date: 4/18/02

Meter Yd: 0.9896

Start Time (approx.): 12:10

Stop Time (approx.): 13:18

Bar. Press. (in. Hg): 29.25

Leak Rate Before:

0.0 Lpm @ 13"Hg

Run	Sample		Dry Ga	s Meter	Volume
		(L) 2601.4	ι _{m,in} (ο⊑\	m,out (°E1)	
5.0	(III. II ₂ U)	2091.4	01	01	
5.0	1.1	2693.0	01	- 91 01	1.00
15.0	1.1	2695.0	01	91	1.00
20.0	1.1	2697.2	91	91	1.30
25.0	1.1	2698.8	90	90	1.60
30.0	1.1	2700.0	88	88	1.20
35.0	1.1	2701.5	88	88	1.50
40.0	1.1	2705.5	86	86	4.00
45.0	1.1	2708.6	84	84	3.10
50.0	1.1	2710.5	84	84	1.90
55.0	1.1	2713.4	84	84	2.90
60.0	1.1	2715.0	84	84	1.60
60.0	1.10	23.60	88	3	

Location: Kiln Stack Test Run: 6A - Raw Mill Off Client: TXI - Hunter Project No: 9101 Test Date: 4/18/02

Meter Yd: 0.9935

Method: 18 Collection Medium: Sorbent Tubes Bar. Press. (in. Hg): 29.25

Start Time (approx.): 14:36 Stop Time (approx.): 15:40

Leak Rate Before:

0.0 Lm @ 10"Hg

Run	Sample	Metered	Dry Ga	s Meter	Volume
Time	ΔH	(L)	T _{m,in}	T _{m,out}	(calculated)
0.0	(in. H₂O)	8611.10	(°F)	(°F) ·	(L)
5.0	1.20	8614.30	87	87	3.20
10.0	1.20	8617.00	87	87	2.70
15.0	1.20	8619.10	87	87	2.10
20.0	1.20	8620.90	87	87	1.80
25.0	1.20	8623.30	87	87	2.40
30.0	1.20	8625.70	87	87	2.40
35.0	1.20	8627.90	87	87	2.20
40.0	1.20	8630.30	87	87	2.40
45.0	1.20	8632.50	89	89	2.20
50.0	1.20	8634.50	89	89	2.00
55.0	1.20	8030.50	89	89	2.00
60.0	1.20	6036.50	09	09	2.00
			*		
			•		
60.0	1.20	27.40	8	8	

Location: Kiln Stack Test Run: 6B Raw Mill Off. Client: TXI - Hunter Project No: 9101 Test Date: 4/18/02

Meter Yd: 0.9896

Method: 18 Collection Medium: Sorbent Tubes Bar. Press. (in. Hg): 29.25

Start Time (approx.): 14:36 Stop Time (approx.): 15:40

Leak Rate Before:

0.0 Lpm @ 10"Hg

Run	Sample	Metered	Dry Ga	s Meter	Volume
Time	ΔH	(L)	T _{m,in}	T _{m,out}	(calculated)
. 0.0	(in. H₂O)	2717.3	(°F)	(°F)	(L)
5.0	1.20	2720.2	92	92	2.90
10.0	1.20	2723.0	92	92	2.80
15.0	1.20	2725.6	92	92	2.60
20.0	1.20	2728.0	92	92	2.40
25.0	1.20	2730.0	92	92	2.00
30.0	1.20	2732.2	92	92	2.20
35.0	1.20	2734.7	92	92	2.50
40.0	1.20	2737.2	92	92	2.50
45.0	1.20	2739.6	92	92	2.40
50.0	1.20	2741.8	92	92	2.20
55.0	1.20	2744.0	92	92	2.20
60.0	1.20	2746.2	92	92	2.20
					•
60.0	1.20	28.90	9	2	

Location: Kiln Stack Test Run: 7 - Raw Mill On **Client: TXI - Hunter** Project No: 9101 Test Date: 4/19/02

Method: 18 Collection Medium: Sorbent Tubes

Bar. Press. (in. Hg): 29.25

Meter Yd: 0.9896

Start Time (approx.): 08:45 Stop Time (approx.): 09:52

Leak Rate Before:

0.0 Lpm @ 14"Hg

Run	Sample	Metered	Dry Ga	s Meter	Volume
Time	ΔH	(L)	T _{m,in}	T _{m,out}	(calculated)
0.0	(in. H₂O)	2746.3	(°F)	(°F)	(L)
5.0	1.1	2749.1	85	85	2.80
10.0	1.1	2751.7	85	85	2.60
15.0	1.1	2754.0	85	85	2.30
20.0	1.1	2756.0	85	85	2.00
25.0	1.1	2757.7	85	85	1.70
30.0	1.1	2760.2	85	85	2.50
35.0	1.1	2763.8	85	85	3.60
40.0	1.1	2765.5	85	85	1.70
45.0	1.1	2767.7	85	85	2.20
50.0	1.1	2770.0	85	85	2.30
55.0	1.1	2772.2	85	85	2.20
60.0	1.1	2774.5	85	85	2.30
		•			
60.0	1.10	28.20	8	5	

Location: Kiln Stack Test Run: 8 - Raw Mill On Client: TXI - Hunter Project No: 9101 Test Date: 4/19/02

Meter Yd: 0.9896

Method: Collection Medium: Sorbent Tubes Bar. Press. (in. Hg): 29.25

Start Time (approx.): 10:00 Stop Time (approx.): 11:03

Leak Rate Before:

0.0 Lpm @ 15"Hg

Run	Sample	Metered	Dry Gas Meter		Volume
	ΔΗ		m,in	m,out	(calculated)
0.0	(in. H ₂ O)	2775.4	(°F)	(°F)	(L)
5.0	1.1	2778.2	84	84	2.80
10.0	1.1	2780.1	84	84	1.90
15.0	1.1	2781.8	84	84	1.70
20.0	1.1	2783.7	84	84	1.90
25.0	1.1	2785.3	84	84	1.60
30.0	1.1	2787.7	84	84	2.40
35.0	1.1	2790.0	84	84	2.30
40.0	1.1	2792.3	84	84	2.30
45.0	1.1	2794.6	84	84	2.30
50.0	1.1	2796.8	84	84	2.20
55.0	1.1	2799.0	84	84	2.20
60.0	1.1	2801.3	84	84	2.30
60.0	1.10	25.90	8	4	
Field Data Printout

Location: Kiln Stack Test Run: 9 - Raw Mill On Client: TXI - Hunter Project No: 9101 Test Date: 4/19/02

Method: **Collection Medium: Sorbent Tubes** Bar. Press. (in. Hg): 29.25

Meter Yd: 0.9896

Start Time (approx.): 11:11 Stop Time (approx.): 12:15

Leak Rate Before:

0.0 Lpm @ 15"Hg

Run	Sample	Metered	Dry Ga	s Meter	Volume
Time	ΔH	(L)	T _{m,in}	· T _{m,out}	(calculated)
0.0	(in. H₂O)	2802.1	(°F)	(°F)	(L)
5.0	1.1	2804.8	87	87	2.70
10.0	1.1	2806.9	87	87	2.10
15.0	1.1	2809.4	87	87	2.50
20.0	1.1	2811.6	87	87	2.20
25.0	1.1	2813.7	87	87	2.10
30.0	1.1	2815.8	87	87	2.10
35.0	1.1	2818.5	87	87	2.70
40.0	1.1	2820.3	87	87	1.80
45.0	1.1	2822.3	88	88	2.00
50.0	1.1	2824.9	88	88 -	2.60
55.0	1.1	2827.2	88	88	2.30
60.0	1.1	2829.7	88	88	2.50
60.0	1.10	27.60	8	7	

CleanAir

TXI OPERATIONS, L.P. HUNTER CEMENT PLANT

F

LABORATORY DATA

TXI Hunter Cement Clean Air Project No: 9101

.

.

Summary of Results Laboratory Analyses

· · · ·	Run Number	1A	2A	3A	4A	5A	6A	7	8	9
ne (total µg)	XAD Front 1/2	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17
and the second s	XAD Back 1/2	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17
	Charcoal Front 1/2	<1.29	<1.29	<1.29	<1.29	<1.29	<1.29	<1.29	<1.29	<1.29
	Charcoal Back 1/2	<1.29	<1.29	<1.29	<1.29	<1.29	<1.29	<1.29	<1.29	<1.29
-	Total (µg)	<1.29	<1.29	<1.29	<1.29	<1.29	<1.29	<1.29	<1.29	<1.29
Benzene (total µg)	XAD Front 1/2	<1.07	<1.07	<1.07	<1.07	<1.07	<1.07	<1.07	<1.07	<1.07
	XAD Back 1/2	<1.07	<1.07	<1.07	<1.07	<1.07	<1.07	<1.07	<1.07	<1.07
	Charcoal Front 1/2	3.78	<3.06	<3.06	5.63	<3.06	10.66	62.98	26.71	6.50
	Charcoal Back 1/2	<3.06	<3.06	<3.06	<3.06	<3.06	<3.06	4.47	<3.06	<3.06
•	Total (μg)	<6.84	<3.06	<3.06	<8.69	<3.06	<13.73	67.45	<30.85	<9.56
Toluene (total µg)	XAD Front 1/2	<1.78	<1.78	<1.78	<1.78	<1.78	<1.78	<1.78	<1.78	<1.78
	XAD Back 1/2	<1.78	<1.78	<1.78	<1.78	<1.78	<1.78	<1.78	<1.78	<1.78
	Charcoal Front 1/2	<2.55	<2.55	<2.55	<2.55	<2.55	<2.55	2.81	<2.55	<2.55
	Charcoal Back 1/2	<2.55	<2.55	<2.55	<2.55	<2.55	<2.55	<2.55	<2.55	<2.55
-	Total (μg)	<2.55	<2.55	<2.55	<2.55	<2.55	<2.55	<5.36	<2.55	<2.55
m, p-Xylenes (total µg)	XAD Front 1/2	<3.01	<3.01	<3.01	<3.01	<3.01	<3.01	<3.01	<3.01	<3.01
	XAD Back 1/2	<3.01	<3.01	<3.01	<3.01	<3.01	<3.01	<3.01	<3.01	<3.01
	Charcoal Front 1/2	<6.22	<6.22	<6.22	<6.22	<6.22	<6.22	<6.22	<6.22	<6.22
	Charcoal Back 1/2	<6.22	<6.22	<6.22	<6.22	<6.22	<6.22	<6.22	<6.22	<6.22
-	Total (µg)	<6.22	<6.22	<6.22	<6.22	<6.22	<6.22	<6.22	<6.22	<6.22
o-Xylene (total μg)	XAD Front 1/2	<0.81	<0.81	<0.81	<0.81	<0.81	<0.81	<0.81	<0.81	<0.81
	XAD Back 1/2	<0.81	<0.81	<0.81	<0.81	<0.81	<0.81	<0.81	<0.81	<0.81
	Charcoal Front 1/2	<3.10	<3.10	<3.10	<3.10	<3.10	<3.10	3.16	<3.10	<3.10
	Charcoal Back 1/2	<3.10	<3.10	<3.10	<3.10	<3.10	<3.10	<3.10	<3.10	<3.10
	Total (µg)	<3.10	<3.10	<3.10	<3.10	<3.10	<3.10	<6.27	<3.10	<3.10
oi (totai μg)	XAD Front 1/2	<1.70	<1.70	<1.70	<1.70	<1.70	<1.70	<1.70	<1.70	<1.70
	XAD Back 1/2	<1.70	<1.70	<1.70	<1.70	<1.70	<1.70	<1.70	<1.70	<1.70
	Charcoal Front 1/2	<4.91	<4.91	<4.91	<4.91	<4.91	<4.91	<4.91	<4.91	<4.91
	Charcoal Back 1/2	<4.91	<4.91	<4.91	<4.91	<4.91	<4.91	<4.91	<4.91	<4.91
-	Total (µg)	<4.91	<4.91	<4.91	<1.70	<1.70	<1.70	<1.70	<1.70	<1.70
Naphthalene (total µg)	XAD Front 1/2	<1.06	<1.06	<1.06	<1.06	<1.06	<1.06	<1.06	<1.06	<1.06
	XAD Back 1/2	<1.06	<1.06	<1.06	<1.06	<1.06	<1.06	<1.06	<1.06	<1.06
	Charcoal Front 1/2	<0.87	<0.87	<0.87	<0.87	<0.87	<0.87	1.69	<0.87	<0.87
-	Charcoal Back 1/2	<0.87	<0.87	<0.87	<0.87	<0.87	<0.87	<0.87	<0.87	<0.87
-	Total (µg)	<1.06	<1.06	<1.06	<1.06	<1.06	<1.06	<2.57	<1.06	<1.06

.

.

TXI Hunter Cement Clean Air Project No: 9101

Summary of Results Spiked Run Laboratory Analyses and Spike Recoveries

	Run Number	1B	2B	3B	4B	58	6B
Hexane (total µg)	XAD Front 1/2	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17
	XAD Back 1/2 Chargest Erect 1/2	<1.17	<1.17	<1.17	<1.17	<1.17	<1.17
	Charcoal Back 1/2	12.64	18.39	29.34	18.70	18.01	30.94 ~1.29
. —	Total (µg)	<13.93	<19.68	<30.62	<19.98	<19.89	<32.23
Regular Run Amount (ug)		.1.00	.1.00	.1.00	.1.00		.1 00
Spike Amount (µg)		<1.29	<1.29 18.18	<1.29 28.18	<1.29 24.99	21.04	<1.29 28.93
Spike Recovery (%)		77.3%	101.1%	104.1%	74.8%	88.4%	108.9%
Is Recovery Between 70%	and 130%?	Yes	Yes	Yes	Yes	Yes	Yes
Benzene (total ug)	XAD Front 1/2	<1.07	<1.07	<1.07	2 40	2 70	<1.07
201120110 (10121 µg)	XAD Back 1/2	<1.07	<1.07	<1.07	2.40	4.46	<1.07
	Charcoal Front 1/2	24.40	28.24	40.21	42.13	30.83	41.20
	Charcoal Back 1/2	<3.06	<3.06	<3.06	<3.06	<3.06	<3.06
	Total (µg)	<27.46	<31.31	<40.21	<49.81	<41.15	<44.26
Regular Run Arnount (µg)		<6.84	<3.06	<3.06	<8.69	<3.06	<13.73
Spike Amount (µg)		23.36	24.53	47.90	36.93	35.45	31.02
Spike Recovery (%)		88.2%	118.1%	7.95	1112%	107.4%	98.4%
Is Recovery Between 70%	and 130%?	Yes	Yes	Yes	Yes	Yes	Yes
Toluene (total µg)	XAD Front 1/2	<1.78	<1.78	<1.78	5.18	6,26	<1.78
	XAD Back 1/2	<1.78	<1.78	<1.78	4.04	6.12	<1.78
	Charcoal Front 1/2	24.91	21.61	34.52	14.67	8.00	14.49
_	Charcoal Back 1/2	<2.55	<2.55	<2.55	<2.55	<2.55	<2.55
_	Total (µg)	<27.46	<24.16	<37.06	<26.44	<22.93	<17.04
Regular Run Amount (µg)		<2.55	<2.55	<2.55	<2.55	<2.55	<2.55
Spike Amount (µg)		24.76	22.51	36.01	27.76	22.72	17.67
Spike Recovery (%)			98.0%	36.8%	B8.1%	89.7%	82.0%
Is Recovery Between 70%	and 130%?	Yes	Yes	Yes	Yes	Yes	Yes
m, p-Xylenes (total µg)	XAD Front 1/2	<3.01	<3.01	<3.01	25.18	28.00	23.45
	XAD Back 1/2	<3.01	<3.01	<3.01	4.41	3.20	15.53
	Charcoal Front 1/2	29.89	42.58	62.74	8.11	6.09	10.45
·	Charcoal Back 1/2	2.45	<6.22	<6.22	<6.22	<6.22	<6.22
	i otal (µg)	<35.36	<48.80	<68.96	<43.93	<43.51	<55.64
Regular Run Amount (µg)		<6.22	<6.22	<6.22	<6.22	<6.22	<6.22
Spike Amount (µg)	an a	39.65	43.07	67.93	47.00	41.78	52.23
Spike Recovery (%) Is Recovery Between 70%	and 130%?	73.5% Yes	98,9% Yes	92.4% Yes	¥es	89.2% Yes	Yes
o-Xylene (total µg)	XAD Front 1/2	<0.81	<0.81	<0.81	8.97	14.74	11.13
	XAD Back 1/2	<0.81	<0.81	<0.81	3.19	0.69	4.63
	Charcoal Front 1/2	20.12	24.03	42.15	3.93	3.52	4.74
_	Total (ug)	<3.10	<3.10	<3.10	<3.10	<3.10	<3.10
Regular Run Amount (µg)		<3.10	<3.10	<3.10	<3.10	<3.10	<3.10
Spike Amount (µg)	Na trucción a rúbica anvéas factar en entre	25.12	25.12	46.48	21.15	21.15	22.47
Spike Recovery (%) Is Recovery Between 70%	and 130%?	60.1% Yes	95.6% Yes	90.7% Yes	76,1% Yes	E9.5% Yes	91.2% Yes
Phenol (total µg)	XAD Front 1/2	<1.70	<1.70	<1.70	16.80	14.71	19.91
	Charcoal Front 1/2	<1.70	<1.70	<1.70	<1.70	<1.70	<1.70
	Charcoal Back 1/2	<4.91	<4.91	<4.91	<4.91	<4.91	<4.91
-	Total (μg)	<4.91	<4.91	<4.91	<18.50	<16.41	<21.61
Regular Bun Amount (ug)		c4 Q1	c4 Q1	c4 91	<1 70	<1 70	c1 70
Spike Amount (uo)		27.49	27.49	45.36	21.67	19.26	24.07
Spike Recovery (%)		0.0%	0.0%	0.0%	77.5%	78.4%	B2.7%
Is Recovery Between 70%	and 130%?	No	No	No	Yes	Yes	Yes
Naphthalene (total ug)	XAD Front 1/2	<1.06	<1.06	<1.08	7.96	13.85	22.92
	XAD Rack 1/2	~1.00	~1.00	~1.00	~1 0A	-1 04	~1 NR
	Charcoal Front 1/2	14.87	13.40	20.24	<0.87	<0.87	<0.87
	Charcoal Back 1/2	<0.87	<0.87	<0.87	<0.87	<0.87	<0.87
-	Total (µg)	<15.75	<14.27	<21.11	<9.02	<14.91	<23.98
Regular Bun Amount ()		-1 00	1 06	~1.06	<1.06	~1.06	~1.06
Spike Amount (µg)		<1.06	<1.00 17.79	<1.00	10.34	< 1.00	<1.00
Solka Recovery /%)	er ve graa seen	73.44	74.2%	75.1%	77.04	74.4%	98.4%
	Van de Gerter Stadstation in Berger	চলে। প্ৰায় হয়কৈ আন্দ	लागस् अवस् वित्यकी हेल्ल	NEW POTENTIAL AND	anter a subscription and a subscription of the subscription of the subscription of the subscription of the subs		10 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Is Recovery Between 70% and 130%? Yes Yes Yes Yes Yes

,

.

Spike Calc	ulations
Charcoal Tube Number	16
Date	17-Ap
Analyst	D. Rhoades
Client	TXI Hunter Cemen
Project Number	9101

			Compound
		Spike	Spike
	Concentration	Amount	Amount
Compound	(µg/ml)	(µl)	(µg)
Hexane	9,091	1.8	16.4
Benzene	11,682	2.0	23.4
Toluene	11,254	2.2	24.8
m-Xylene	11,069	1.7	18.8
p-Xylene	11,575	1.8	20.8
o-Xylene	12,561	2.0	25.1
Phenol	13,746	2.0	27.5
Naphthalene	11,120	1.8	20.0

Spike Calculations

Charcoal Tube Number	3B
Date	17-Apr
Analyst	D. Rhoades
Client	TXI Hunter Cement
Project Number	9101

			Compound
		Spike	Spike
	Concentration	Amount	Amount
Compound	(µg/ml)	(µl)	(μg)
Hexane	9,091	3.1	28.2
Benzene	11,682	4.1	47.9
Toluene	11,254	3.2	36.0
m-Xylene	11,069	3.0	33.2
p-Xylene	11,575	3.0	34.7
o-Xylene	12,561	3.7	46.5
Phenol	13,746	3.3	45.4
Naphthalene	11,120	2.4	26.7

Spike Calculations

Charcoal Tube Number	2B
Date	17-Apr
Analyst	D. Rhoades
Client	TXI Hunter Cement
Project Number	9101

			Compound
		Spike	Spike
	Concentration	Amount	Amount
Compound	(µg/ml)	(µl)	<u>(μg)</u>
Hexane	9,091	2.0	18.2
Benzene	11,682	2.1	24. <u>5</u>
Toluene	11,254	2.0	22.5
m-Xylene	11,069	1.8	19.9
p-Xylene	11,575	2.0	23.2
o-Xylene	12,561	2.0	25.1
Phenol	13,746	2.0	27.5
Naphthalene	11,120	1.6	17.8

Spike Ca	liculations
XAD Tube Number	Sample -26
Date	18-Apr
Analyst	D. Rhoades
Client	TXI Hunter Cement
Project Number	9101

			Compound
		Spike	Spike
	Concentration	Amount	Amount
Compound	(µg/ml)	(μl)	(μg)
Hexane	13,152	2.5	32.9
Benzene	14,771	3.0	44.3
Toluene	12,620	2.6	32.8
m-Xylene	14,209	2.5	35.5
p-Xylene	11,904	2.6	31.0
o-Xylene	13,219	2.5	33.0
Phenol	12,037	2.8	33.7
Naphthalene	10.336	2.4	24.8

Spike Calculations				
XAD Tube Number	5B			
Date	18-Apr			
Analyst	D. Rhoades			
Client	TXI Hunter Cement			
Project Number	9101			

			Compound
		Spike	Spike
	Concentration	Amount	Amount
Compound	(µg/ml)	(µl)	(μg)
Hexane	13,152	1.6	21.0
Benzene	14,771	2.4	35.5
Toluene	12,620	1.8	22.7
m-Xylene	14,209	1.6	22.7
p-Xylene	11,904	1.6	19.0
o-Xylene	13,219	1.6	21.2
Phenol	12,037	1.6	19.3
Naphthalene	10,336	1.8	18.6

Spike Calculations

XAD Tube Number	4B
Date	18-Apr
Analyst	D. Rhoades
Client	TXI Hunter Cement
Project Number	9101

			Compound
		Spike	Spike
	Concentration	Amount	Amount
Compound	(µg/ml)	(µl)	(µg)
Hexane	13,152	1.9	25.0
Benzene	14,771	2.5	36.9
Toluene	12,620	2.2	27.8
m-Xylene	14,209	1.8	25.6
p-Xylene	11,904	1.8	21.4
o-Xylene	13,219	1.6	21.2
Phenol	12,037	1.8	21.7
Naphthalene	10,336	1.0	10.3

Spike Calcu	lations
XAD Tube Number	6B
Date	18-Apr
Analyst	D. Rhoades
Client	TXI Hunter Cement
Project Number	9101

			Compound
		Spike	Spike
	Concentration	Amount	Amount
Compound	(µg/ml)	(µl)	(μg)
Hexane	13,152	2.2	28.9
Benzene	14,771	2.1	31.0
Toluene	12,620	1.4	17.7
m-Xylene	14,209	2.0	28.4
p-Xylene	11,904	2.0	23.8
o-Xylene	13,219	1.7	22.5
Phenol	12,037	2.0	24.1
Naphthalene	10,336	2.3	23.8

TXI-Hunter Kiln Stack Raw Mill On

Summary of FTIR Results

Run No. Start Date/Time End Date/Time	1 4/17/02 12:00 4/17/02 13:01	2 4/17/02 13:58 4/17/02 15:01	3 4/17/02 15:43 4/17/02 16:47
<u>Method 321</u> Hydrogen Chloride (ppmwv)	0.51	0.83	0.37
<u>Method 320</u> Formaldehyde (ppmwv)	1.39	1.37	1.08

FTIR METHOD SETUP

Method Name: HCI Kansas Method Path: C:\JOBS\TXI\KANSAS\HCL KANSAS.ME Method Type: AutoQuant 3.0

Non-Linear Analysis mode Temperature & Pressure Adjustments: ON Mass Emission Computations: OFF

Method Parameters:

Wavenumber range:	650.00 - 4500.00
Fingerprint zoom:	650.00 - 1400.00
Path Length =	7.2
Interfere Criterion =	2500
Gain number =	1

Apodization =	Triangl	e .
Phase Correct =	Mertz	
Resolution =		0.5
Baseline Correction:	Linear	

Compound: Ammonia

Reference Temperature = 25 Reference Pressure = 1 Alarms: Disabled Output: Disabled

Spectrum: NH3_12.SPC

Primary: Yes Reference concentration = 52.60 Region #1: 1043.04 - 1057.22 Region #2: 1061.38 - 1078.68 Region #3: 1083.18 - 1098.76 Region #4: 1101.70 - 1106.14 Region #5: 1120.94 - 1124.20

Compound: CO2

Reference Temperature = 180 Reference Pressure = 0.973741 Alarms: Disabled Output: Disabled

Spectrum: CO2-20%.SPC

Primary: Yes Reference concentration = 155.60 Region #1: 1006.01 - 1114.47 Region #2: 3417.52 - 3521.07

Compound: Ethylene

Reference Temperature = 121 Reference Pressure = 1 Alarms: Disabled Output: Disabled

Spectrum: ETY_H19A.SPC

Primary: Yes Reference concentration = 207.60 Region #1: 819.51 - 936.81 Region #2: 990.16 - 1115.33

FTIR METHOD SETUP

TXI-Hunter Kiln Stack, Raw Mill On Methods 320/321

Compound: Formaldehyde

Reference Temperature = 150 Reference Pressure = 1 Alarms: Disabled Output: Disabled

Spectrum: FORM-21.SPC

Reference concentration = 79.00 Region #1: 2731.00 - 2747.00 Region #2: 2755.00 - 2770.00 Region #3: 2803.00 - 2816.00

Spectrum: FORM-20.SPC

Reference concentration = 135.00 Region #1: 2731.00 - 2747.00 Region #2: 2755.00 - 2770.00 Region #3: 2803.00 - 2816.00

Spectrum: FORM-19.SPC

Primary: Yes Reference concentration = 237.00 Region #1: 2731.00 - 2747.00 Region #2: 2755.00 - 2770.00 Region #3: 2803.00 - 2816.00 TXI-Hunter Kiln Stack, Raw Mill On Methods 320/321

FTIR METHOD SETUP

Compound: HCI

Reference Temperature = 180 Reference Pressure = 1 Alarms: Disabled Output: Disabled

Spectrum: HCL-180-7PPMM.SPC

Reference concentration = 7.30 Region #1: 2696.05 - 2708.94 Region #2: 2723.11 - 2732.14 Region #3: 2746.31 - 2757.91 Region #4: 2766.94 - 2781.11 Region #5: 2792.71 - 2805.60 Region #6: 2813.34 - 2828.80 Region #7: 2836.54 - 2849.43

Spectrum: HCL-180-19PPMM.SPC

Reference concentration = 18.60 Region #1: 2697.79 - 2707.23 Region #2: 2722.33 - 2734.60 Region #3: 2745.92 - 2758.19 Region #4: 2769.51 - 2782.73 Region #5: 2792.16 - 2802.54 Region #6: 2816.70 - 2825.19 Region #7: 2838.40 - 2847.84

Spectrum: HCL-180-42PPMM.SPC

Primary: Yes Reference concentration = 42.40 Region #1: 2698.12 - 2708.43 Region #2: 2723.16 - 2731.26 Region #3: 2747.46 - 2754.83 Region #4: 2769.56 - 2779.87 Region #5: 2792.39 - 2801.97 Region #6: 2815.96 - 2824.80 Region #7: 2837.32 - 2846.89

Spectrum: HCL_H1A.SPC

Reference concentration = 161.70 Region #1: 2697.14 - 2707.01 Region #2: 2723.17 - 2732.14 Region #3: 2746.50 - 2757.28 Region #4: 2768.94 - 2782.41 Region #5: 2793.18 - 2805.74 Region #6: 2814.72 - 2828.18 Region #7: 2838.96 - 2846.14 TXI-Hunter Kiln Stack, Raw Mill On Methods 320/321

FTIR METHOD SETUP

Compound: SF6

Reference Temperature = 121 Reference Pressure = 1 Alarms: Disabled Output: Disabled

Spectrum: SF6_H5A.SPC Primary: Yes Reference concentration = 3.86 Region #1: 907.35 - 996.47

Spectrum: SF6_H13A.SPC

Reference concentration = 11.02 Region #1: 907.35 - 996.47

Spectrum: SF6_H17A.SPC

Reference concentration = 33.10 Region #1: 907.35 - 1016.28

Compound: Water

Reference Temperature = 181 Reference Pressure = 1.00164 Alarms: Disabled Output: Disabled

Spectrum: 10PCTH2O.SPC

Reference concentration = 70.00 Region #1: 1108.00 - 1151.00 Region #2: 2951.00 - 2999.61

Spectrum: 20PCTH2O.SPC

Primary: Yes Reference concentration = 140.00 Region #1: 1108.00 - 1151.00 Region #2: 2952.00 - 2998.00

•

•

Raw Mill Or	า	Temperatu	re & Pressure	Adju	sted Conce	ntrations i	n ppm									
		Ammonia	Error+- CO2	•	Error+-	Ethylene	Error+-	Formaldehyde	Error+-	HCI	Error+-	SF6	Error+-	Water	Error+-	
C0001	4/17/02 7:30	0.015	0.03	Ò	5.37E-03	· (0.08	0.166	0.08	0.052	0.06	0	7.23E-04	0	5.16E-03	
C0002	4/17/02 7:30	0	0.03	0	5.95E-03	(0.08	0.245	0.08	0	0.07	0.001	7.38E-04	0	5.55E-03	
C0003	4/17/02 7:35	0.056	0.02	0	5.27E-03	0.044	4 0.06	0.032	0.08	0	0.08	0	5.61E-04	0.008	4.39E-03	
C0004	4/17/02 7:36	0	0.02	0	4.86E-03	0.003	3 0.07	0.15	0.09	0.007	0.11	0	6.23E-04	0.003	3.60E-03	
C0005	4/17/02 7:36	0.001	0.03	Ō	5.45E-03	0.095	5 0.06	0.193	0.1	0.05	0.11	0	6.36E-04	0.002	4.23E-03	
C0006	4/17/02 7:37	0.034	0.02	Ō	6.24E-03	0.069	9 0.1	0.016	0.07	0.083	0.14	Ō	8.05E-04	0.007	4.37E-03	
C0007	4/17/02 7:39	0	0.06	0	0.01	19.822	2 0.16	0.202	0.21	0.178	0.15	0.014	4.86E-03	0.016	9.08E-03	•
C0008	4/17/02 7:40	Ō	0.06	Ō	0.01	20.029	9 0.16	0.397	0.21	0.113	0.14	0.012	4.96E-03	0.012	9.17E-03	
C0009	4/17/02 7:40	Ō	0.06	Ō	0.01	20 189	9 0.15	0	0.2	0.19	0.11	0.012	4.99E-03	0.012	8.55E-03	
C0010	4/17/02 7:41	Ő	0.06	ō	9.79E-03	20 305	5 0.16	0 077	0 22	0.243	0.11	0.014	5.12E-03	0.012	0.01	
C0011	4/17/02 7.42	Ő	0.06	ō	0.01	20 239	0.18	0 233	0.22	0 253	0.08	0.013	5 23E-03	0.002	8 35F-03	Ethylene to Cell
C0012	4/17/02 7:45	ő	0.06	ŏ	0.01	19 924	1 0.17	0.200	0.24	0.187	0.00	0.013	5.31E-03	0.004	0.01	
C0013	4/17/02 7:46	ő	0.06	ő	0.01	20 14	5 0.17	0.132	0.24	0.107	0.00	0.012	5 29E-03	0.004	8 61E-03	
C0014	4/17/02 7:46	Ő	0.06	ŏ	0.01	19 938	3 0.17	0.077	0.20	0.140	0.03	0.012	5 25E-03	0.004	0.01	
C0015	4/17/02 7:47	0	0.06	- ŏ	0.01	19.863	3 0.16	0.23	0.22	0.212	0.11	0.012	5 15E-03	0.002	8 74E-03	
C0016	4/17/02 7:50	ő	0.06	ň	0.01	10.000) 0.10 1 0.3	0.407	0.22	2 592	0.12	0.595	9 02E-03	0.007	0.01	
C0017	4/17/02 7:50	0.050	0.00	ň	0.02		0.0 0 0.3	0.021	0.20	2.552	. 0.10	0.535	8 875-03	0.007	0.01	
C0018	4/17/02 7:50	0.009	0.00	ň	0.01		0.0	0.400	0.22	4 956	0.15	0.505	8 7/E-03		0.01	
C0010	A/17/02 7:51	0	0.00	0	0.01	0.01	0.29	0.001	0.22	5 762	0.15	0.502	8 845-03		0.01	
C0020	A/17/02 7:51	0	0.05	ň	0.01	0.01	+ 0.20 0 0.29	0.059	0.21	673	0.15	0.50	8 70 =_03		0.01	
C0020	A/17/02 7:52	0.015	0.00	ň	0.01	0.01	0.20	0.332	0.2	7.57	0.13	0.50	8 61F-03		0.01	
C0021	A/17/02 7:52	0.013	0.05	ň	0.01	0.07-	+ 0.27 S 0.27	0.442	0.19	8 117	0.17	0.576	8 66E-03		0.01	
C0022	A/17/02 7:53	0.022	0.05	ň	0.01	0.100	0.27	0.330	0.17	8 4 4 8	0.25	0.570	8 57E-03		0.01	
C0023	A/17/02 7:53	0	0.05	ň	0.01		0.27	0.417	0.17	9.952	0.20	0.575	8 50 5-03		0.01	
C0024	A/17/02 7:5A	0	0.05	ň	0.01		0.27	0.300	0.10	0.002	0.20	0.575	8 54 5-03		0.01	
C0026	A/17/02 7:54	0.058	0.05	ň	3.33E-03		0.27	0.701	0.17	12 781	0.25	0.575	8 52 -03		0.01	
C0027	4/17/02 7:54	0.000	0.06	ň	9 76E-03		0.27	0.323	0.17	15.002	0.30	0.574	8 48F-03		0.07	
C0028	A/17/02 7:55	0.000	0.00	ň	0 40E-03		0.27	0.275	0.10	17 66/		0.574	8 385-03		0.02	
C0020	4/17/02 7:55	0.047	0.00	ň	9.49L-03		0.27	0.123	0.10	18 511	0.51	0.574	8 37E-03		0.02	
C0020	4/17/02 7:56	0.047	0.05	ň	0.99L-03		0.27	0.330	0.10	20.17/	0.51	0.573	8 42E-03		0.02	
C0031	4/17/02 7:56	0 042	0.00	ň	9.002-03		0.20	0.149	0.10	20.17-	5 0.63	0.573	8 38F-03	i õ	0.02	
C0032	4/17/02 7:57	0.042	0.05	ň	9.15E-03		0.27	0.155	0.10	21.10	0.00	0.572	8 34F-03	i o	0.02	
C0033	4/17/02 7:57	0	0.06	ő	9 91F-03		0.27	0.210	0.10	21.57	0.00	0.572	8 27E-03	i õ	0.02	
C0034	4/17/02 7:57	0 043	0.06	ň	9 15 -03		0.20	0.134	0.10	21.02	8 0.68	0.571	8.33E-03	i õ	0.02	
C0035	4/17/02 7:58	0,069	0.00	ň	8 76E-03		0.27	0.024	0.16	20.685	5 0.66	0.553	8 09F-03	i õ	0.02	
C0036	4/17/02 7:58	0.003	0.05	ő	9 13E-03		0.20	0.100	0.10	7 907	0.00	0.42	6.09E-03	0	0.01	
C0037	4/17/02 7:59	0.018	0.05	ŏ	8 59E-03		0.17	0.011	0.12	6.052	> 0.13	0.349	5 10E-03	i o	8 64F-03	
C0038	4/17/02 7:59	0.010	0.05	ŏ	8 11E-03		0.17	0.245	0.12	5 628	8 0 13	0.326	4 68F-03	0.002	7.09E-03	
C0039	4/17/02 8:00	ő	0.00	ŏ	8 20E-03		0.16	0.064	0.12	5 449	0.15	0.32	4 68E-03	0.004	7 46E-03	
C0040	4/17/02 8:00	0.023	0.05	ŏ	8 29E-03		0.10	0.004	0.12	5 399	0.15	0.319	4 60E-03	0.003	7 83E-03	
C0041	4/17/02 8:00	0.005	0.05	ŏ	8 97E-03	Č	0.17	0.073	0.11	5 218	0.16	0.318	4 53E-03	0.001	7.06E-03	
C0042	4/17/02 8:01	0.000	0.05	ŏ	8 20E-03		0.17	0.070	0.11	5 297	7 0 15	0.316	4 62F-03	0.002	6.96E-03	
C0043	4/17/02 8:01	ő	0.05	ŏ	8 23E-03		0.17	. 0	0.11	5 271	0.16	0.317	4 67E-03	0.005	8 51E-03	
C0044	4/17/02 8:02	õ	0.05	ŏ	7 995-03		0.17	ů n	0.11	5 101	0.16	0.317	4.54E-03	0.000	6 77E-03	
C0045	4/17/02 8:02	ů n	0.06	ň	8 15F-03		0.17		0.11	A 46	5 015	0.28	4 14F-03	0.001	6.69F-03	
C0046	4/17/02 8:03	ň	0.06	ő	8.04F-03) 0.14	0 0	0.12	3 70	5 0.13	0 239	3.49F-03	3 0.006	5.89F-03	
C0047	4/17/02 8:03	0	0.05	ň	7 685-03		0.14	0	0.11	3 570	0.13	0 221	3 25F-03	3 0.008	7.65F-03	
C0048	4/17/02 8:03	0.049	0.06	ň	7 93E-03		0.13			3 300	0.21	0.216	3 10F-03	3 0.003	5.83E-03	
C0049	4/17/02 8:04	0.005	0.05	ň	7 06E-03		0.13	0 Fan 0	0.03	3 21	3 02	0.213	3 11F-03	3 0.000	5.86E-03	
C0050	4/17/02 8:04	0	0.05	õ	7 39F-03		0.12	0.000	0.1	3 276	5 0 19	0 212	3.10E-03	3 0.001	7.16E-03	
	6	Ŭ	0.00					(0.1	0.27	0.10					(

.

Raw Mill O	n	Temperatu	re & Pres	ssure Adju	sted Conce	ntrations in	ppm		_			_		_		_	
		Ammonia	Error+-	CO2	Error+-	Ethylene	Error+-	Formaldehyde	Error+-	HCI		Error+- S	SF6	Error+-	Water	Error+-	
C0051	4/17/02 8:05	0	0.05	0	7.28E-03	0	0.13	0	0.1	:	3.14	0.16	0.211	3.14E-03	0.01	7.63E-03	
C0052	4/17/02 8:05	0	0.05	0	7.30E-03	0	0.13	0	0.1	3.	.271	0.16	0.212	3.08E-03	0.003	5.61E-03	
C0053	4/17/02 8:06	0	0.05	0	7.16E-03	0	0.12	0	0.08	3.	.254	0.17	0.21	3.08E-03	0.004	7.03E-03	
C0054	4/17/02 8:06	0	0.05	0	7.42E-03	· 0	0.13	0	0.1	3.	.141	0.17	0.21	3.14E-03	0.008	6.51E-03	
C0055	4/17/02 8:13	0	0.05	0	6.60E-03	0	0.08	0	0.09		0	0.25	0.001	1.23E-03	0.006	4.80E-03	
C0056	4/17/02 8:16	0	0.02	0.001	4.61E-03	0	0.06	0.05	0.07	0.	.024	0.06	0	5.51E-04	0	4.48E-03	
C0057	4/17/02 8:17	0.071	0.02	0.01	4.25E-03	0	0.07	0.105	0.08		0	0.07	0	7.39E-04	0	4.05E-03	
C0058	4/17/02 8:17	0.079	0.03	0	5.51E-03	0	0.07	0	0.11	(0.13	0.07	0	8.53E-04	· 0	5.42E-03	
C0059	4/17/02 8:17	0.044	0.02	0	4.94E-03	0	0.06	0.014	0.08		0	0.07	0	7.43E-04	.0	4.24E-03	
C0060	4/17/02 8:18	0	0.02	0	5.07E-03	0	0.07	0.103	0.07		0	0.08	0	7.11E-04	0	4.32E-03	
C0061	4/17/02 8:21	0	0.02	0	4.28E-03	0.053	0.05	0.161	0.08	0	.033	0.04	0.001	4.91E-04	0	4.34E-03	
C0062	4/17/02 8:21	0	0.02	0	4.61E-03	0.318	0.06	0.107	0.08	0	.077	0.06	0	8.53E-04	0	3.91E-03	
C0063	4/17/02 8:27	0.196	0.12	0.001	0.05	0	0.31	1.288	0.3	0	.402	0.17	0	3.31E-03	0.032	0.02	
C0064	4/17/02 8:27	0.186	0.13	0	0.05	0	0.31	1.27	0.29	0	.379	0.16	0	3.18E-03	0.036	0.02	
C0065	4/17/02 8:28	0.21	0.13	0.003	0.05	0	0.3	1.159	0.29	0	.317	0.16	0	3.10E-03	0.038	0.02	
C0066	4/17/02 8:30	0.223	0.13	0	0.07	20.178	0.37	1.429	0.33	0	.537	0.18	0.004	5.62E-03	0.083	0.03	
C0067	4/17/02 8:30	0.237	0.13	0	0.05	20.476	0.33	1.305	0.31	0	.378	0.16	0.004	5.44E-03	0.037	0.02	
C0068	4/17/02 8:31	0.274	0.13	0	0.05	20.419	0.32	1.289	0.29	Ó	.356	0.16	0.004	5.48E-03	0.032	0.02	Ethylene to Probe
C0069	4/17/02 8:31	0.215	0.14	0	0.05	20.438	0.33	1.34	0.31	0	.327	0.18	0.004	5.50E-03	0.022	0.02	-
C0070	4/17/02 8:32	0.263	0.13	0	0.05	20.267	0.32	1.338	0.29	0	.308	0.17	0.005	5.47E-03	0.038	0.02	
C0071	4/17/02 8:37	0.055	0.28	0	0.32	0	2	1.724	0.43	1	.302	0.73	1.203	0.03	2.638	0.06	
C0072	4/17/02 8:37	0.023	0.28	0	0.33	0	2	1.524	0.43	5 1	.581	0.65	1.201	0.03	2.641	0.06	
C0073	4/17/02 8:38	0	0.28	0	0.33	0	2.03	1.754	0.44	2	2.038	0.64	0.991	0.03	2.728	0.06	
C0074	4/17/02 8:38	0	0.29	0	0.33	0	2.06	1.714	0.45	i 2	2.076	0.64	0.451	0.02	2.982	0.06	
C0075	4/17/02 8:38	0	0.28	0	0.33	0	2.09	1.69	0.45	i	1.88	0.64	0.353	0.02	3.024	0.06	
C0076	4/17/02 8:39	0	0.28	0	0.33	0	2.1	1.782	0.45	; 1	;693	0.66	0.336	0.02	3.039	0.06	
C0077	4/17/02 8:39	0	0.28	0	0.33	· 0	2.1	1.63	0.46	; 1	.635	0.66	0.333	0.02	3.057	0.06	
C0078	4/17/02 8:40	0	0.28	0	0.33	0	2.08	1.656	6 0.44	1	.582	0.62	0.331	0.02	3.061	0.06	
C0079	4/17/02 8:40	0	0.28	0	0.33	0	2.12	1.652	. 0.45	5 1	.589	0.64	0.33	0.02	3.068	0.06	
C0080	4/17/02 8:41	0	0.28	0	0.33	0	2.13	1.659	0.45	i 1	.621	0.66	0.329	0.02	3.08	0.06	
C0081	4/17/02 8:41	0	0.29	0	0.33	0	2.17	1.576	6 0. 4 6	; 1	.533	0.67	0.329	0.02	3.08	0.06	
C0082	4/17/02 8:50	0	0.29	0	0.33	0	2.27	1.58	0.45	i 1	.919	0.69	0.323	0.02	3.073	0.06	
C0083	4/17/02 8:57	0.536	0.72	10.496	0.16	7.589	2.38	0.964	0.5	5 1	.875	0.6	0.257	0.02	8.485	0.13	
C0084	4/17/02 8:57	1.292	1.07	12.696	0.22	3.991	2.48	0.638	0.57	' 2	2.034	0.49	0.251	0.02	17.976	0.13	
C0085	4/17/02 9:01	7.447	1.28	12.798	0.24	0	2.37	1.615	5 0.58	3 1	.459	0.37	0.256	0.02	19.25	0.08	
C0086	4/17/02 9:02	7.123	1.26	12.961	0.24	0	2.38	1.543	0.58	31	.421	0.45	0.254	0.02	19.208	0.08	
C0087	4/17/02 9:05	6.879	1.28	12.777	0.24	0.756	2.47	1.5	5 0.59)1	.461	0.43	0.254	0.02	19.301	0.08	
C0088	4/17/02 9:06	7.085	1.35	12.619	0.25	1.018	2.52	1.48	0.58	31	.487	0.43	0.254	0.02	19.58	0.1	
C0089	4/17/02 9:08	6.717	' 1.11	12.297	0.22	0.729	2.28	1.709	0.57	' 1	.822	0.41	0.606	0.02	17.941	0.1	
C0090	4/17/02 9:10	6.292	0.95	12.116	0.21	0.772	2.14	1.644	0.55	53	3.806	0.28	1.039	0.03	16.612	0.08	
C0091	4/17/02 9:12	6.389	0.93	12.001	0.2	1.753	2.17	1.59	0.56	55	5.322	0.3	1.044	0.03	16.52	0.09	
C0092	4/17/02 9:13	6.754	0.92	11.856	0.2	5.928	2.29	1.954	I 0.6	66	6.705	0.36	1.05	0.03	16.085	0.17	
C0093	4/17/02 9:15	6.864	0.95	5 12.128	0.21	5.889	2.33	2.061	0.6	57	7.348	0.39	1.045	0.03	16.04	0.18	
C0094	4/17/02 9:17	6.941	0.91	12.063	0.2	2.927	2.23	1.742	2 0.57	77	7.331	0.38	1.044	0.03	16.561	0.09	
C0095	4/17/02 9:19	7.16	0.94	12.102	0.21	2.851	2.23	1.739	9 0.57	77	7.739	0.37	1.047	0.03	16.68	0.09	
C0096	4/17/02 9:20	7.126	0.95	5 11.993	0.21	2.893	2.23	1.832	2 0.57	7 8	3.231	0.61	1.043	0.03	16.69	0.1	
C0097	4/17/02 9:22	6.961	0.93	12.128	0.21	2.059	2.19	1.892	2 0.56	68	3.304	0.64	1.037	0.03	16.507	0.08	
C0098	4/17/02 9:24	7.019	0.95	5 12.159	0.21	2.469	2.24	1.887	7 0.57	78	3.795	0.74	1.034	0.03	16.418	0.09	
C0099	4/17/02 9:26	6.967	0.9	12.007	0.2	1.884	2.2	1.892	2 0.57	79	9.068	0.74	1.036	0.03	16.251	0.12	
C0100	4/17/02 9:27	6.959	0.9	12.031	0.2	2.142	2.25	1.903	3 0.56	5	9.25	0.74	1.035	0.03	16.447	0.09	

ı İ

..

4

Raw Mill C	Dn	Temperatu	re & Pres	sure Adju	sted Conce	Intrations in	ppm									
		Ammonia	Error+-	CO2	Error+-	Ethylene	Error+-	Formaldehyde	Error+-	HCI	Error+-	SF6	Error+-	Water	Error+-	
C0101	4/17/02 9:29	7.043	0.96	11.832	0.21	2.245	2.29	1.943	0.57	10.134	0.77	1.028	0.03	16.791	0.1	
C0102	4/17/02 9:31	6.893	0.91	12.044	0.2	1.525	2.2	1.939	0.56	9.919	0.72	1.03	0.03	16.599	0.08	
C0103	4/17/02 9:33	7.147	0.94	11.942	0.2	1.949	2.27	1.985	0.57	12.732	0.97	1.024	0.03	16.557	0.1	
C0104	4/17/02 9:34	6.816	0.91	12.004	· 0.2	2.346	2.25	2.089	0.57	14.432	1.08	1.023	0.03	16.279	0.11	
C0105	4/17/02 9:36	6.676	0.88	12.127	0.19	0.972	2.14	1.95	0.55	14.114	1	1.024	0.03	16.401	0.08	
C0106	4/17/02 9:38	7.234	1.14	12.28	0.22	0.39	2.3	1.938	0.57	8.192	0.64	0.464	0.02	18.308	. 0.08	
C0107	4/17/02 9:40	7.471	1.41	12.493	0.28	0	2.44	1.829	0.57	3.166	0.44	0	0.02	20.061	0.07	•
C0108	4/17/02 9:41	7.952	1.46	12.245	0.3	0.212	2.5	1.79	0.58	2,173	0.43	0	0.02	20.49	0.08	
C0109	4/17/02 9:43	7.922	1.46	12.381	0.28	1.53	2.56	1.817	0.6	1.815	0.46	0	0.02	20.315	0.11	
C0110	4/17/02 9:45	7.828	1.42	12.557	0.27	6.338	2.64	2.061	0.64	1.754	0.5	0	0.02	19.961	0.25	
C0111	4/17/02 9:46	7.734	1.45	12.588	0.28	0	2.5	1.683	0.58	1.317	0.53	0	0.02	20.164	0.08	
C0112	4/17/02 9:48	7.602	1.42	12.496	0.27	0.623	2.47	1.821	0.59	1.234	0.49	- <u>0</u>	0.02	20.075	0.12	
C0113	4/17/02 9:50	5.059	0.85	10.918	0.27	1.913	1.77	1.703	0.55	5.829	0.32	1.478	0.03	13.808	0.09	
C0114	4/17/02 9:52	6.806	0.92	12.009	0.19	1.916	2.18	1.854	0.59	7.601	0.38	0.959	0.02	16.537	0.11	
C0115	4/17/02 9:53	7.46	0.98	11.976	0.2	5.176	2.3	2.491	0.63	8,875	0.74	0.961	0.03	16.322	0.22	
C0116	4/17/02 9:55	7.505	0.94	12.035	0.2	3.589	2.24	2.254	0.6	9.275	0.74	0.957	0.03	16.397	0.16	
C0117	4/17/02 9:57	7.453	0.96	11.931	0.2	2.681	2.23	2.118	0.59	11.492	0.84	0.96	0.03	16.388	0.12	
C0118	4/17/02 9:59	7.292	0.94	12.038	0.2	1.584	2.17	1.921	0.57	13.326	0.88	0.959	0.02	16.435	0.09	
C0119	4/17/02 10:00	7.248	0.96	11.876	0.2	2.006	2.19	2.122	0.58	16.097	1.05	0.956	0.02	16.316	0.12	
C0120	4/17/02 10:02	7.171	0.9	12.185	0.2	0.773	2.15	1.88	0.56	16.419	1.08	0.954	0.02	16.433	0.08	
C0121	4/17/02 10:04	7.04	0.9	12.038	0.2	1.193	2.21	1.862	0.56	18.194	1.27	0.953	0.02	16.542	0.09	
C0122	4/17/02 10:06	6.984	0.94	11.795	0.2	1.793	2.26	1.991	0.58	20. 09 6	1.38	0.954	0.02	16.713	0.1	
C0123	4/17/02 10:07	6.877	0.92	11.943	0.2	0.985	2.17	1.912	0.55	20.008	1.18	0.956	0.02	16.849	0.07	
C0124	4/17/02 10:09	6.649	0.9	12.145	0.2	1.285	2.16	1.876	0.56	20.446	1.2	0.952	0.02	16.601	0.08	
C0125	4/17/02 10:11	6.841	0.97	11.89	0.2	4.917	2.3	2.392	0.6	22.285	1.31	0.948	0.03	16.296	0.19	
C0126	4/17/02 10:13	6.973	0.94	11.946	0.2	2.186	2.24	2.069	0.57	21.91	1.34	0.946	0.02	16.411	0.11	
C0127	4/17/02 10:14	6.69	0.9	12.071	.0.2	1.281	2.2	1.854	0.56	21.801	1.34	0.947	0.02	16.417	0.08	
C0128	4/17/02 10:16	6.73	0.92	11.966	0.2	1.757	2.21	1.912	0.57	21.62	1.31	0.943	0.02	16.374	0.09	
C0129	4/17/02 10:18	6.817	0.9	11.996	0.19	1.217	2.14	1.889	0.56	21.662	1.15	0.949	0.02	16.442	0.08	
C0130	4/17/02 10:20	6.615	0.91	11.965	0.2	1.699	2.18	1.802	0.56	22.337	1.19	0.943	0.02	16.389	0.09	
C0131	4/17/02 10:21	6.556	0.9	12.132	0.2	0.944	2.16	1.751	0.55	22.307	1.24	0.942	0.02	16.553	0.07	
C0132	4/17/02 10:23	6.547	0.96	11.997	0.21	1.42	2.25	1.793	0.55	23.04	1.39	0.937	0.02	16.593	0.08 F	ICI Spike to Probe
C0133	4/17/02 10:25	6.438	0.95	11.844	0.2	2.064	2.26	1.941	0.57	23.177	1.4/	0.939	0.02	16.482	0.1	
C0134	4/17/02 10:27	6.607	0.92	11.8/4	0.2	2.604	2.23	2.067	0.57	23.352	1.41	0.938	0.02	16.43/	0.12	
C0135	4/17/02 10:28	6.534	0.95	11.831	0.2	1.944	2.2	1.982	0.57	23.352	1.31	0.943	0.02	16.581	0.1	
C0136	4/1//02 10:31	6.769	1.17	12.333	0.22	1.83	2.33	1.971	0.59	8.058	0.6	0.381	0.02	18.594	0.11	
C0137	4/17/02 10:33	6.953	1.16	12.199	0.22	1.861	2.37	۲ ۵۰۵۵	0.0	6.003	0.35	0.359	0.02	18.631	0.11	
0138	4/17/02 10:34	0.727	1.2	12.3//	0.22	1.221	2.30	1.020	0.56	J.203	0.35	0.300	0.02	10.000	0.08	
C0139	4/1//02 10:30	6.717	1.10	12.200	0.23	0.370	2.33	1.30	0.50	4.023	0.34	0.303	0.02	10.000	0.07	
C0140	4/17/02 10:38	0.793	1.10	12.300	0.23	0.593	2.32	1.00/	0.50	4.001	0.33	0.352	0.02	10.09/	0.08	
C0141	4/17/02 10:40	6.090	1.17	12.307	0.23	0.09/	2.29	1.040	0.50	4.000	0.32	0.352	0.02	10.000	0.07	
C0142	4/17/02 10.41	6.044	1.10	12.202	0.23	0.904	2.33	1.4//	0.50	4.220	0.33	0.33	0.02	19 507	0.07	
C0143	4/17/02 10:43	0.902	4 4 0	12.003	0.22	1 472	2.21	1./ 14	0.55	3.990	0.33	0.347	0.02	10.09/	0.07	
C0145	4/17/02 10.45	6 994	1.10	12.01	0.23	0.747	2.30	1.302	0.57	4.007	0.34	0.344	0.02	10.007	0.08	
C0145	4/17/02 10.47	0.004	1.10	12.000	0.23	0.747	2.3	1.010	0.57	3.500	0.33	0.345	0.02	19 509	0.07	
C0140	4/17/02 10.40	0.97	1.10	12.4/0	0.23	0.709	2.3	1.024	0.00	J.54J 3 893	0.31	0.34/	0.02	18 600	0.07	
C0149	A/17/02 10.50	6 795	1.10	12.42	0.23	0.704 A 916	2.3 2.20	1.40	0.50	3.003	0.31	0.340	0.02	18 5	0.07	
C0140	4/17/02 10:52	6 633	1 14	12 501	0.22	0.010	2.29	1 710	0.53	3 522	0.50	0.542	0.02	19 009	0.07	
C0150	4/17/02 11:04	6 698	1.14	12.001	0.22	1 207	2.23	15	0.59	1.305	0.77	0.100	0.02	19.955	0.08	,
30100	6	0.000	1.07	. 2.00	0.20	1.207	2.40	1.0	0.00	1.000	5	J	0.02	. 5.000	0.00	í.

Raw Mill	On	Temperatu	ure & Pres	ssure Adju	sted Conce	entrations ir	ı ppm										
		Ammonia	Error+-	CO2	Error+-	Ethylene	Error+-	Formaldehyde	Error+-	HCI	Error+-	SF6	Error+	- '	Water	Error+-	
C0151	4/17/02 11:08	6.765	5 1.36	12.654	0.26	0.999	2.45	1.428	0.57	1.189	0.75	i	0 (0.02	20.035	0.08	
C0152	4/17/02 11:08	6.98	3 1.34	12.622	0.26	2.401	2.45	1.5	0.58	1.207	0.72	2	0 0	0.02	19.941	0.12	
C0153	4/17/02 11:09	6.98	3 1.33	12.535	0.25	5.159	2.49	1.833	0.61	1.287	' 0.7	,	0	0.02	19.806	0.2	
C0154	4/17/02 11:11	7.244	l 1.34	12.752	0.25	8.511	2.56	2.149	0.65	1.469	0.64	↓ · ·	0 (0.02	19.752	0.31	
C0155	4/17/02 11:13	7.263	3 1.34	12.647	0.25	5.756	2.54	1.821	0.61	1.214	0.77		0	0.02	19.861	0.2	
C0156	4/17/02 11:14	7.29	9 1.34	12.674	0.25	6.51	2.53	1.833	0.62	1.221	0.66	;	0	0.02	19.916	0.23	
C0157	4/17/02 11:16	5 7.546	5 1.32	12.633	0.25	5.989	2.42	1.784	0,62	1.134	0.56	;	0	0.02	19.899	0.21	
C0158	4/17/02 11:18	3 7.61	1.35	12.515	0.25	4.262	2.39	1.51	0.6	1.013	0.55	i	0 (0.02	19.909	0.15	
C0159	4/17/02 11:20) 7.509	9 1.36	12.508	0.25	4.562	2.45	1.586	0.6	1.029	0.57	•	0. (0.02	19.898	0.18	
C0160	4/17/02 11:21	7.749	9 1.38	12.532	0.26	5.13	2.5	1.651	0.6	1.019	0.61		0 (0.02	19.963	0.18	
C0161	4/17/02 11:23	3 7.548	3 1.37	' 12.483	0.25	6.294	2.54	1.705	0.61	1.099	0.64	ļ	0 .	0.02	19.906	0.22	
C0162	4/17/02 11:25	5 7.256	5 1.4	12.383	0.26	4.385	i 2.55	1.627	0.6	0.958	8 0.65	;	0	0.02	20.079	0.16	
C0163	4/17/02 11:27	7.049	9 1.38	12.508	0.25	i 4.416	5 2.49	1.572	0.6	0.948	0.64		0	0.02	20.046	0.16	
C0164	4/17/02 11:28	3 7.14	4 1.39	12.39	0.25	3.572	2.46	1.643	0.59	0.896	6 0.6	;	0	0.02	20.083	0.15	
C0165	4/17/02 11:30	7.037	7 1.4	12.265	0.26	5.142	2.51	1.82	0.61	0.988	8 0.63	6	0 (0.02	20.048	0.21	
C0166	4/17/02 11:32	2 7.124	4 1.41	12.303	0.26	2.881	2.49	1.551	0.58	0.853	8 0.67	· .	0	0.02	20.165	0.14	
C0167	4/17/02 11:34	4 7.032	2 1.4	12.428	0.25	i 4.492	2.54	1.918	0.61	0.997	0.72	2	0 (0.02	20.055	0.21	
C0168	4/17/02 11:3	5 7.09	5 1.39	12.286	0.25	5.386	5 2.52	2.003	0.62	0.947	0.7	,	0 (0.02	19.952	0.22	
C0169	4/17/02 11:3	7 7.218	B 1.44	12.26	0.27	3.058	2.49	1.577	0.58	0.792	2 0.66	5	0 (0.02	20.382	0.15	
C0170	4/17/02 11:3	9 6.964	4 1.42	2 12.341	0.26	3.40 1	2.5	1.653	0.59	0.815	5 0.67	,	0 (0.02	20.145	0.15	
C0171	4/17/02 11:4	1 6.779	9 1.41	12.339	0.25	5 2.991	2.49	1.589	0.58	0.812	2 0.68	1	0 (0.02	20.128	0.13	
C0172	4/17/02 11:42	2 6.883	3 1.44	12.256	0.26	3.521	2.55	1.676	0.59	0.849	9 0.71		0 (0.02	20.197	0.17	
C0173	4/17/02 11:4	4 6.99	9 1.4	12.193	0.26	6 8.947	2.66	2.779	0.71	1.383	3 0.8	}	0	0.02	19.711	0.44	
C0174	4/17/02 11:4	5 7.08	9 1.43	3 12.132	0.25	5 4.754	2.58	1.996	0.61	0.955	5 0.76	;	0 (0.02	20.056	0.23	
C0175	4/17/02 11:4	B 6.75 ⁴	1 1.42	2 12.101	0.26	5 2.545	5 2.5	1.67	0.58	0.749	0.72	2	0 .(0.02	20.228	0.13	
C0176	4/17/02 11:4	9 6.494	4 1.42	2 12.259	0.26	6 4.349	2.52	1.828	0.61	0.887	0.72	!	Ó (0.02	20.149	0.22	
C0177	4/17/02 11:5	1 6.862	2 1.4	12.373	0.26	6.112	2.53	2.179	0.65	1.048	B 0.73	1	0 (0.02	20.019	0.3	
C0178	4/17/02 11:5	3 7.16	5 1.43	3 12.337	0.26	6.7	2.56	2.279	0.64	1.052	2 0.77	,	0	0.02	20.015	0.3	
C0179	4/17/02 11:5	5 6.993	2 1.38	3 12.297	0.26	5 2.942	2.46	1.88	0.59	0.794	0.77		0.0	0.02	20.051	0.18	
C0180	4/17/02 11:5	6 7.19	3 1.48	3 12.05	0.27	7 1.072	2.51	1.525	0.57	0.696	6 0.74	Ļ	0	0.02	20.233	0.09	
C0181	4/17/02 11:5	B 7.21	3 1.43	3 12.342	0.27	2.256	6 2.5	1.457	0.6	0.752	2 0.76	i	0	0.02	20.174	0.14	
C0182	4/17/02 12:0	0 7.19	2 1.43	3 12.317	0.27	2.94	5 2.54	1.585	0.61	0.834	0.81		0	0.02	20.067	0.21	Run 1
C0183	4/17/02 12:0	2 7.46	4 1.48	3 12.269	0.26	5 1.274	2.56	1.371	0.58	0.662	2 0.85	j	0	0.02	20.205	0.1	Run 1 12:00 - 13:00
C0184	4/17/02 12:0	3 7.19	9 1.43	3 12.325	i 0.26	6 0.06	l 2.45	1.418	0.57	0.601	0.84	t i	0	0.02	20.147	0.08	
C0185	4/17/02 12:0	5 7.17	1 1.43	3 12.278	0.26	6 () 2.41	1.406	0.57	0.558	8.0	}	Ó (0.02	20.229	0.07	
C0186	4/17/02 12:0	7 7.2	5 1.39	9 12.222	2 0.25	5 0.623	3 2.4	1.509	0.57	0.647	0.79)	0	0.02	20.072	0.09	
C0187	4/17/02 12:0	9 7.11	7 1.44	12.336	6 0.26	6 0.468	3 2.44	1.494	0.58	0.608	8 0.81		0	0.02	20.15	0.08	
C0188	4/17/02 12:1	0 6.94	9 1.4 [.]	1 12.398	3 0.26	5 () 2.4	1.474	0.57	0.6	5 0.87	,	0	0.02	20.164	0.07	
C0189	4/17/02 12:1	2 6.80	5 1.3	8 12.357	0.26	5 () 2.35	1.445	0.55	0.543	8 0.89)	0	0.02	20.124	0.06	
C0190	4/17/02 12:1	4 6.5	6 1.36	5 12.224	0.26	6 () 2.35	1.302	0.55	0.52	2 0.86	;	0	0.02	20.012	0.06	
C0191	4/17/02 12:1	6 6.53	3 1.3 [.]	1 12.433	0.25	5 0.108	3 2.28	1.391	0.54	0.49	0.82	2	0	0.02	20.065	0.06	
C0192	4/17/02 12:1	7 6.60	2 1.3 [.]	1 12.48	0.2	5 0.29 [.]	1 2.28	1.423	0.55	0.492	2 0.82	2	0	0.02	19.99	0.06	
C0193	4/17/02 12:1	9 6.37	1 1.3	2 12.457	0.24	4 0.538	3 2.31	1.537	0.55	0.515	5 0.85	i	0	0.02	19.95	0.07	
C0194	4/17/02 12:2	1 6.44	1 1.3	2 12.523	3 0.2	5 0.643	3 2.33	1.386	0.55	0,514	0.89)	0	0.02	19.929	0.07	
C0195	4/17/02 12:2	3 6.5	1 1.2	5 12.757	0.24	4 0.38	1 2.26	i 1.57	0.55	0.483	8 0.91		0	0.02	19.868	0.07	
C0196	4/17/02 12:2	4 6.33	8 1.2	2 12.777	0.24	4) 2.21	1.633	0.54	0.463	9.87	7 .	0 .	0.02	19.768	0.06	
C0197	4/17/02 12:2	6 6.47	81.3	3 12.65	5 0.2	5 0.07	5 2.27	1.397	0.55	0.512	2 0.86	;	Q (0.02	19.913	0.06	
C0198	4/17/02 12:2	8 6.55	1 1.30	6 12.456	6 0.26	6 (0.3 9	9 2.34	1.43	0.56	0.514	0.85	5 ()	Ģ (0.02	19.916	0.07	
C0199	4/17/02 12:3	0 6.34	2 1.3	3 12.627	0.2	5 0.03	3 2.27	1.364	0.56	0.478	3 0.84	ŀ	0	0.02	19.934	0.06	
C0200	4/17/02 12:3	1 6.50	7 1.2	6 12.804	0.2	5 0.10	3 2.22	2 1.64	0.55	0.405	5 0.86	5	0	0.02	19.933	0.06	

•

		0.00	0.06	0.06	0.00	0.00	0.00	0.00	0.00	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.02	0.02	0.02 Ethylene to Cell	0.01	0.05	0.03	0.03	0.03	0.02	0.02 Ethylene to Probe	0.02	0.02	0.0		0.05	0.06	0.06 HCI Spike to Probe	0.06	0.06	0.06	0.06	0.06	0.06	0.06		
L		476	<u>5</u> 1	192	797	66.	218		010	503	169	129	157	107	504	260	101	111	049	.95	922	109	129	181	581	0	0	0	0	963	253	123	085	076	075 2.1		50	000 005		200	608	981	807	765	789	847	833 51	874 201	865 837	3	
	vvate		19.0	201	2.6	51 0				20.	20.	20.0	20.	20.	20.0	20.	20.	20.	20.	2 19	2 19.	20.	20.	20.	2 19.		с	e	6	0	0 0	0 0	0 0	0		00	50			0 ¢		2 18.	2 18.	2 18.	2 18.	2 18.	2 9 9 9 9	2 18	2 0 29 0 20 0	; 1	
	-+1011		0.0							0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.02E-0	6.20E-0;	6.34E-0;	6.53E-0;	0.0	7.24E-0	5.63E-0;	5.66E-0	5.60E-0	5.53E-0	5.64E-0	0./46-0	5 6				0.0	0.0	00	00	0.0	00		50	•	
ç	ר נ	> (0 0	0 0	0	0) () (> (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.017	0.017	0.018	0.017	0.068	0.008	0	0	0.002	0.003	0.002	210.0	0.001 e 11e		0.009 0.840	0.364	0.332	0.332	0.334	0.333	0.331	0.322	0.324	0.323	, , , , , , , , , , , , , , , , , , , ,	
•	101+- 0	0.0	0.83	0.81	0.82	0.83	0.0 7	5 C	0.0	0.77	0.8	0.83	0.84	0.82	0.77	0.77	0.78	0.84	0.87	0.85	0.83	0.81	0.85	0.87	0.91	0.49	0.46	0.48	0.4	1.08	0.8	0.69	0.62	0.61	0.58	0.54	5			4 7 A	1.52	0.42	0.39	0.37	0.36	0.37	0.37	0.37	0.36	>	
ĩ		0.4/2	0.473	0.457	0.52	0.474	0.454	0.0 0	1.4.0	0.447	0.476	0.473	0.455	0.411	0.409	0.434	0.444	0.45	0.423	0.431	0.405	0.368	0.402	0.442	0.36	0.334	0.031	0	0.055	1.073	0.812	0.685	0.619	0.537	0.532	0.514	/10.0	44.203 64 224	01.224 65 777	121.CO	20.106	7.245	5.843	5.259	4.841	4.619	4.47	4.344	4.147 4 085	>>> F	
	-+1011:	0.00	0.56	0.55	0.55	0.56	0.55	0.55	00	0.55	0.54	0.54	0.55	0.54	0.54	0.55	0.55	0.55	0.55	0.55	0.54	0.55	0.55	0.54	0.54	0.27	0.26	0.25	0.26	0.38	0.34	0.32	0.32	0.3	0.31	0.31	1.5.0	99.0 9	2470		0.56	0.57	0.55	0.54	0.55	0.57	0.57	0.57	0.57 0.57		• . ```
	Formalgenyge	/cc.r	1.282	1.386	1.279	1.355	1.322	1.281	1.188	1.287	1.294	1.281	1.206	1.348	1.378	1.322	1.315	1.228	1.319	1.369	1.468	1.439	. 1.39	1.49	1.493	0.515	0.554	0.506	0.181	1.9	1.43	1.261	1.231	1.536	1.451	1.314	1.5.1	190.1 10.1	10.1	1 500	1.621	1.527	1.547	1.641	1.577	1.354	1.597	1.579	1.582		
шdo		87.2	2.3	2.24	2.28	17.7	2.26	87.7	2.2	2.23	2.27	2.26	2.31	2.23	2.18	2.22	2.26	2.31	2.3	2.23	2.18	2.2	2.2	2.21	2.25	0.28	0.27	0.28	0.29	1.56	0.77	0.45	0.36	0.35	0.34	0.33	0.33	67.7		75	191	1.93	1.89	1.83	1.83	1.94	1.96	1.93	1.91 1.93	2	
Itrations in	=tuylene		0.143	0 0		0.163	0.544	CU8.0	0.129	0.091	0.1	0.329	0.381	0.273	0.176	0.346	0.417	0.388	0.267	0	0	0	0	0	0	19.974	20.229	20.165	20.133	20.533	21.043	20.883	20.627	20.59	20.635	20.652	20.223	2 0		0.4.0	, c		0	0	0	0.126	0.206	0	50	>	
ed Concer		0.20	0.26	0.25	0.25	0.25	0.25	0.20	07.0	0.26	0.26	0.25	0.25	0.25	0.25	0.26	0.26	0.26	0.25	0.25	0.24	0.25	0.25	0.25	0.22	0.02	0.02	0.02	0.02	0.23	0.11	0.07	0.06	0.06	0.06	0.06	50	0.24	0.44	0.0	0.21	0.23	0.21	0.21	0.22	0.23	0.23	0.23	0.23		
sure Adjust		CZ/.ZL	12.64	12.67	12.434	12.529	12.643	5/.2L	12./01	12.681	12.452	12.564	12.501	12.663	12.792	12.703	12.716	12.659	12.794	12.79	12.774	12.754	12.822	12.74	12.946	0	0	0	0	0.157	0	0		0	0	0 0		0.120	0.131	3.0/0 11 063	12,497	12.415	12.457	12.58	12.548	12.57	12.511	12.652	12.709	}	
& Pres	-+ Joli	1.31	1.33	1.29	1.34	1.31	1.31	5	す う -	1.31	1.34	1.31	1.35	1.28	1.27	1.31	1.34	1.38	1.36	1.31	1.27	1.32	1.32	1.32	1.23	0.1	0.1	0.1	0.1	0.24	0.16	0.15	0.16	0.16	0.16	0.16		0.20	0 4 0	0.70	1.11	1.14	1.12	1.08	1.08	1.15	1.16	1.15	1.12 41	-	
emperature		670.0	6.386	6.451	6.384	6.334	6.391	0.322	0.44/	6.564	6.502	6.607	6.756	6.451	6.427	6.618	6.533	6.78	6.994	6.763	6.867	6.761	6.47	6.562	6.183	0.128	0.214	0.232	0.198	0.766	0.495	0.383	0.354	0.375	0.322	0.353	0.349	1/0.0		166.1	6.834	7.032	6.933	6.859	6.873	6.936	6.958	7.038	0.912 7.074		
	4 10-01 10-01	4/1//02 12:33	4/17/02 12:35	4/1//02 12:36	4/1//02 12:38	4/1//02 12:40	4/1//02 12:42	4/1//UZ 12:43	C4:71 Z0/11/4	4/17/02 12:47	4/17/02 12:49	4/17/02 12:50	4/17/02 12:52	4/17/02 12:54	4/17/02 12:56	4/17/02 12:57	4/17/02 12:59	4/17/02 13:01	4/17/02 13:03	4/17/02 13:04	4/17/02 13:06	4/17/02 13:08	4/17/02 13:10	4/17/02 13:11	4/17/02 13:13	4/17/02 13:16	4/17/02 13:16	4/17/02 13:17	4/17/02 13:17	4/17/02 13:19	4/17/02 13:20	4/17/02 13:20	4/17/02 13:21	4/17/02 13:21	4/17/02 13:22	4/17/02 13:22	4/1//02 15:22	4/1//02 13:24 4/17/02 13:24	47:01 20/11/4	4/17/02 13.25	4/17/02 13:25	4/17/02 13:26	4/17/02 13:26	4/17/02 13:27	4/17/02 13:27	4/17/02 13:28	4/17/02 13:28	4/1//02 13:28	4/17/02 13:29	J	Ĵ
Raw Mill			C0202	C0203	C0204	60200	C0206	20200	CUZUO	C0209	C0210	C0211	C0212	C0213	C0214	C0215	C0216	C0217	C0218	C0219	C0220	C0221	C0222	C0223	C0224	C0225	C0226	C0227	C0228	C0229	C0230	C0231	C0232	C0233	C0234	CU235	00202	C0238	00500	C0233	C0241	C0242	C0243	C0244	C0245	C0246	C0247	C0248	CU249		

1

Raw Mill O	n	Temperat	ure & Pre	ssure Adj	usted Conce	entrations in	ppm									
		Ammonia	Error+-	CO2 .	Error+-	Ethylene	Error+-	Formaldehyde	Error+-	HCI	Error+-	SF6	Error+-	Water	Error+-	
C0251	4/17/02 13:3	30 7.08	2 1.11	12.818	3 0.22	0	1.92	1.455	0.57	3.935	0.37	0.32	0.02	18.818	0.06	
C0252	4/17/02 13:3	50 7.01	9 1.12	12.593	3 0.23	0	1.92	1.686	0.55	3.879	0.37	0.322	0.02	18.856	0.06	
C0253	4/17/02 13:3	6.97	1 1.12	12,506	6 0.23	0	1.92	1.654	0.55	3.79	0.37	0.321	0.02	18.876	0.06	
C0254	4/17/02 13:3	6.93	2 1.09	12.619	0.21	0	1.88	1.555	0.55	3,733	0.37	0.32	0.02	18.86	0.06	
C0255	4/17/02 13:3	6.72	9 1.05	12.607	7 0.21	0	1.84	1.773	0.55	3.566	0.63	0.323	0.02	18.812	0.06	
C0256	4/17/02 13:3	6.60	6 1.05	12.538	3 0.21	0	1.86	1.797	0.53	3.545	0.64	0.322	0.02	18.767	0.06	
C0257	4/17/02 13:3	6.58	6 1.09	12.513	3 0.21	0.008	1.87	1.593	0.54	3.543	0.61	0.323	0.02	18.734	0.06	
C0258	4/17/02 13:3	6.47	3 1.08	12.603	3 0.22	0	1.86	1.557	0.54	3.542	0.6	0.323	0.02	18.713	0.06	
C0259	4/17/02 13:3	6.53	8 1.14	12.491	l 0.23	0	1.94	1.454	0.55	3.425	0.6	0.322	0.02	18.647	0.06	·
C0260	4/17/02 13:3	6.62	9 1.12	12.626	6 0.23	0.017	1.92	1.491	0.56	3.404	0.6	0.323	0.02	18.693	0.06	
C0261	4/17/02 13:3	6.48	4 1.07	12.576	6 0.22	0.028	1.87	1.613	0.55	3.387	0.59	0.323	0.02	18.668	0.06	
C0262	4/17/02 13:3	35 6.5	2 1.12	12.334	0.22	0.033	1.89	1.637	0.53	3.315	0.57	0.323	0.02	18.618	0.06	
C0263	4/17/02 13:3	6.53	4 1.1	12.604	0.22	0.126	1.9	1.507	0.54	3.405	0.57	0.321	0.02	18.656	0.06	
C0264	4/17/02 13:3	6.58	7 1.1	12.68	3 0.22	0.121	1.89	1.591	0.54	3.424	0.57	0.319	0.02	18.781	0.06	
C0265	4/17/02 13:3	36 6.44	6 1.09	12.598	3 0.22	0.213	1.87	1.639	0.54	3.281	0.55	0.321	0.02	18.731	0.06	
C0266	4/17/02 13:3	6.45	9 1.08	12.465	5 0.22	0.196	1.87	1.749	0.54	3.304	0.57	0.321	0.02	18.708	0.06	
C0267	4/17/02 13:3	6.60	4 1.09	12.567	7 0.22	0.111	1.87	1.644	0.54	3.353	0.55	0.319	0.02	18.874	0.06	
C0268	4/17/02 13:3	37 6.4	4 1.14	12.48	3 0.23	0.363	1.94	1.429	0.54	3.374	0.57	0.316	0.02	18.901	0.06	
C0269	4/17/02 13:	38 6.21	9 1.08	12.737	7 0.22	0.505	1.88	1.538	0.54	3.337	0.56	0.316	0.02	18.8	0.06	
C0270	4/17/02 13:3	38 6.13	6 1.06	5 12.70	5 0.22	0.371	1.88	1.624	0.54	3.271	0.59	0.316	0.02	18.678	0.06	
C0271	4/17/02 13:	38 6.16	7 1.08	3 12.60 ⁻	i 0.21	0.388	1.92	1.536	0.54	3.246	0.6	0.317	0.02	18.71	0.06	
C0272	4/17/02 13:	. 6.15	1 1.05	5 12.53	I 0.21	0.376	1.88	1.586	0.54	3.209	0.58	0.315	0.02	18.616	0.06	
C0273	4/17/02 13:3	39 6.18	7 1.08	3 12.444	0.22	0.302	1.9	1.589	0.53	3.213	0.61	0.317	0.02	18.642	0.06	
C0274	4/17/02 13:4	40 6.26	1 1.07	12.597	7 0.22	0.609	1.9	1.507	0.54	3.307	0.6	0.318	0.02	18.764	0.06	
C0275	4/17/02 13:4	40 6.37	7 1.11	12.46	1 0.22	0.629	1.98	1.394	0.55	3.287	0.64	0.316	0.02	18.786	0.06	
C0276	4/17/02 13:4	41 6.35	2 1.08	5 12.56	6 0.22	0.508	1.94	1.509	0.54	3.221	0,63	0.319	0.02	18.834	0.06	
C0277	4/17/02 13:4	41 <u>6.31</u>	9 1.08	<u>12.57</u>	9 0.22	0.643	1.93	1.414	0.54	3.302	0.61	0.315	0.02	18.934	0.06	
C0278	4/17/02 13:4	41 6.44	2 1.05	5 12.682	2 0.23	0.556	1.91	1.353	0.55	3.314	0.62	0.318	0.02	18.766	0.06	
C0279	4/17/02 13:	42 6.32	6 1.05	5 12.48	3 0.23	0.837	1.93	1.511	0.55	3.247	0.63	0.318	0.02	18.624	0.06	
C0280	4/17/02 13:	42 6.32	4 1.1	12.53	6 0.22	0.937	1.96	1.44	0.56	3.291	0.62	0.319	0.02	18.778	0.06	
C0281	4/17/02 13:	43 6.1	4 1. 1	I 12.589	9 0.23	0.63	1.93	1.422	0.55	3.248	0.59	0.318	0.02	18.783	0.06	
C0282	4/17/02 13:	43 6.05	1 1.07	7 12.64	3 0.22	0.526	1.9	1.464	0.55	3.211	0.57	0.319	0.02	18.742	0.06	
C0283	4/17/02 13:	44 <u>5.87</u>	2 0.99	12.07	3 0.2	0.863	1.81	1.451	0.53	3.259	0.58	0.62	0.02	17.523	0.06	
C0284	4/17/02 13:	46 0.47	8 0.16	6 (0.06	20.512	0.34	1.259	0.32	2.655	0.43	0.004	5.79E-03	0.075	0.02	
C0285	4/17/02 13:	47 0.43	5 0.16	5 (0.06	20.569	0.34	1.303	0.31	2.457	0.42	0.004	5.78E-03	0.061	0.02	
C0286	4/17/02 13:	47 0.39	1 0.17		0.06	20.332	0.34	1.284	0.32	2.303	0.42	0.002	6.05E-03	0.068	0.03	Ethylene to Probe
C0287	4/17/02 13:	48 0.42	8 0.16	5 (0.06	20.23	0.34	1.285	0.32	2.115	0.41	0.002	6.10E-03	0.07	0.02	
C0288	4/17/02 13:	48	6 0.17		0.06	20.31	0.34	1.494	0.32	2.032	0.4	0.003	6.06E-03	0.064	0.02	
C0289	4/17/02 13:	48 1.30	9 0.37	1.520	0.18	18.525	1.84	1.611	0.36	3.375	0.98	0.002	0.02	2.809	0.05	
C0290	4/1//02 13:	49 2.31	2 0.38	5 4.52	1 0.32	10.773	2.19	1.200	0.44	3.15/	0.54	0	0.02	5./49	0.06	
C0291	4/1//02 13:	49 2.46	0.35	5.00	0.29	10.0	2.14	1.32	0.44	3.114	0.97		0.02	6.231	0.06	
C0292	4/1//02 13:	50 2.50	0.3	J 5.00	5 U.J	10./4	2.10	1.329	0.43	2.07	0.96	0 000	0.02	6.295	0.06	
<u>C0293</u>	4/17/02 13:	50 1.87	0 0.37		9 0.31	20 100	2.10	1.340	0.41	2.4/3	1.00	0.002	0.02	4.072	0.06	
00294	4/1//02 13:	51 0.76	9 U.23	2 0.14	i U.22 h ∩4	20.109	06.1	1.//4	0.30	2.030	0.85	0.004	7.045.00	0.8/8	0.04	
00295	4/1//02 13:	51 0.5	0,10	, (, 1	0.1	20.310	0.04	1.100	0.00	1.01/	0.0		7.01E-03	0,215	0.03	Ethylana ta Call
0290	4/1//02 13:	51 U.40			, <u>1,0</u> /	20.73	0.4	1,329	0.32	1.444	0.0	0.004	5.922-03	0,102	0.03	curylene to Cell
C0208	4/1//02 13:	52 0.43		0.87	<u>, 0.00</u>	18 724	0.35	1.200	0.32	1.335	0.53	0.001	0.215.02	1.063	0.03	······································
C0290	4/1//02 13:	52 U.S 54 6.74	0.00 0 11	3 12 57	- 0.00 6 0.26	10.724	2 06	1.410	0.27	2 25	0.07	0	J.ZIC-03	10 049	0.03	
C0300	4/17/02 13:	UH 0./1 EE 2.70	2 1.0	3 12.57	S 0.20		2.00	1.04	0.04	2.20	0.00	0	0.02	19.940	0.00	
C0300	4/1//UZ 13:	JJ 0,/0	5 1.20	12.03	0.20	U	2.02	1.005	0.00	2.009	0.52	U	U.UZ	19.94	0.00	

Raw Mill On	Temperature & Pressure Ad	diusted Concentrations in ppm
	i chipciatule di l'iessule A	

CG301 417/02 135 6.87 1.3 12.83 0.26 0.265 1.565 0.53 1.800 0.53 0.53 0.50 0.02 19.843 0.06 C0302 417702 135 6.877 13 12.447 0.25 0 2.02 1.407 0.54 1.74 0.54 0.02 16.86 0.06 C0304 417702 1355 6.844 1.32 12.444 0.25 0 2.0 1.647 0.55 1.519 0.54 0 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.02 1.986 0.08 0.02 1.986 0.08 0.02 1.986 0.08 0.02 1.986 0.08 0.02 1.986 0.08 0.02 1.986 0.08 0.02 1.986 0.08 0.02 1.986 0.08 0.02 1.986 0.08 0.02 1.986 0.08 0.02 1.986 0.08 0.02 1.986 0.08<			Ammonia	Error+-	CO2	Error+-	Ethylene	Error+-	Formaldehyde	Error+-	HCI	Error+- \$	SF6	Error+-	Water	Error+-	• .
C302 41702 1356 6.87 1.80 0.53 1.808 0.54 1.0 0.02 18.89 0.06 C303 41702 1356 6.83 1.80 0.54 1.718 0.54 1.718 0.64 0.002 18.98 0.06 C3036 41702 1357 6.824 1.3 12.446 0.25 0.201 1.477 0.53 1.58 0.54 0.002 18.98 0.06 C3036 41702 1338 6.824 1.3 12.446 0.25 0 2.05 1.417 0.53 1.618 0.54 0.002 19.986 0.06 C3036 41702 13.86 6.808 1.3 12.844 0.26 0 2.07 1.468 0.54 1.312 0.66 0.002 1.986 0.06 C3031 441702 1.308 6.808 1.23 1.264 0.25 0.208 1.438 0.54 1.327 0.02 1.898 0.06 <	C0301	4/17/02 13:55	6.878	1.3	12.533	0.26	0	2.05	1.565	0.53	1.93	1 0.53	C	0.02	19.943	0.06	
C3030 4/17/02 13.58 6.82 1.37 12.422 0.22 1.497 0.64 0.62 0.02 19.83 0.05 C3030 4/17/02 13.57 6.82 1.38 12.446 0.22 0.23 1.574 0.64 0 0.02 19.946 0.06 C3036 4/17/02 13.56 6.52 1.33 12.448 0.22 0 2.01 1.447 0.83 1.581 0.55 0 0.02 19.981 0.06 Num 2.158 C3030 4/17/02 13.58 6.652 1.31 12.448 0.25 0 2.05 1.423 0.88 0 0.02 19.995 0.06 Run 2.33 1.342 0.24 19.995 0.05 Num 2.33 1.342 0.22 0.02 19.995 0.05 Num 2.33 1.342 0.24 19.995 0.05 Num 2.33 1.344 0.35 1.323 0.72 0.00 0.02 19.996 0.05 1.33 1.342	C0302	4/17/02 13:55	6.877	1.31	12.447	0.25	0	2.06	1.505	0.53	1.80	9 0.54	C	0.02	19.891	0.06	
C0304 4/17/02 13:56 6.84 1.3 12.465 0.26 1.502 0.53 1.502 0.54 0 0.02 19.997 0.05 C0305 4/17/02 13:57 6.744 1.32 1.244 0.25 0 2.08 1.547 0.53 1.591 0.54 0 0.02 19.995 0.05 C0306 4/17/02 13:56 6.756 1.31 1.2448 0.25 1.513 0.54 0 0.02 19.995 0.05 No C0308 4/17/02 13:56 6.756 1.31 1.2448 0.25 0 2.07 1.482 0.84 1.432 0.02 19.995 0.05 Nu<2 C0311 4/17/02 14:00 6.75 1.31 1.2447 0.25 0 2.06 1.371 0.41 1.422 0.72 0 0.02 19.995 0.05 C0311 4/17/02 14:01 6.75 1.31 1.264 0.25 0.26 1.381 0.34 1.176 0.72	C0303	4/17/02 13:56	6.929	1.27	12.542	0.25	0	2.02	1.497	0.54	1.71	8 0.52	C	0.02	19.93	0.06	
C0305 41702 13:57 6.28 1.26 1.26 1 1.64 0.54 0 0.02 1.99 0.06 C0306 41702 13:58 6.652 1.33 1.244 0.25 0 2.08 1.54 0.55 1.513 0.56 0 0.02 1.995 0.06 Run 2 C0308 41702 13:58 6.652 1.33 1.248 0.26 0 2.07 1.482 0.55 1.432 0.68 0 0.06 Num 21:55 0.06 C0301 41702 13:58 6.666 1.31 1.264 0.26 0 2.07 1.46 0.55 1.422 0.68 0 0.02 1.935 0.06 C0311 41702 13:56 6.686 1.31 1.264 0.26 0 2.08 1.438 0.54 1.27 0.64 1.376 0.02 1.835 0.05 C0314 41702 14:0 6.75 1.32 2.87 0.2 0.2 1.845 0.54 1.75 0.7 <td>C0304</td> <td>4/17/02 13:56</td> <td>6.884</td> <td>1.3</td> <td>12.466</td> <td>0.26</td> <td>0</td> <td>2.05</td> <td>1.502</td> <td>0.53</td> <td>1.67</td> <td>4 0.54</td> <td>C</td> <td>0.02</td> <td>19.997</td> <td>0.05</td> <td></td>	C0304	4/17/02 13:56	6.884	1.3	12.466	0.26	0	2.05	1.502	0.53	1.67	4 0.54	C	0.02	19.997	0.05	
C0306 4/1702 15:7 6.744 13:2 12:346 0.25 0 2.08 1.561 0.54 0 0.02 20:041 0.06 C0309 4/1702 13:58 6.736 1.31 12:688 0.26 0 2.07 1.482 0.58 0 0.02 19:955 0.06 Num 2 C0309 4/1702 15:58 6.586 1.31 12:647 0.25 0 2.06 1.371 0.54 1.482 0.52 0 0.02 19:955 0.05 C0311 4/1702 15:59 6.586 1.31 12:647 0.23 0.56 1.342 0.72 0 0.02 19:956 0.05 C0313 4/1702 14:00 6.88 1.29 12:83 0.54 1.292 0.71 0 0.02 19:83 0.06 C0313 4/1702 14:01 6.715 1.29 12:75 0.24 0 2.01 1.533 1.616 1.22 <td>C0305</td> <td>4/17/02 13:57</td> <td>6.826</td> <td>1.26</td> <td>12.615</td> <td>0.25</td> <td>0</td> <td>2</td> <td>1.647</td> <td>0.53</td> <td>1.5</td> <td>9 0.54</td> <td>C</td> <td>0.02</td> <td>19.946</td> <td>0.06</td> <td></td>	C0305	4/17/02 13:57	6.826	1.26	12.615	0.25	0	2	1.647	0.53	1.5	9 0.54	C	0.02	19.946	0.06	
CC0307 4/1702 15.88 6.662 1.33 12.448 0.25 0 2.11 1.466 0.55 1.452 0.66 0 0.02 19.965 0.06 None C0309 4/1702 15.56 6.765 1.31 12.647 0.26 0 2.07 1.450 0.56 0 0.02 19.965 0.06 C0310 4/1702 15.56 6.686 1.31 12.643 0.26 0 2.07 1.465 0.55 1.422 0.72 0 0.02 19.966 0.05 C0312 4/1702 1.405 0.55 1.272 0.7 1.453 0.55 1.272 0 0.02 19.878 0.06 C0314 4/1702 1.400 6.75 1.37 1.264 0.26 1.414 1.453 0.54 1.179 0.72 0 0.02 19.828 0.06 C0314 4/1702 1.406 1.53 1.53 1.53 1.51 0.72<	C0306	4/17/02 13:57	6.744	1.32	12.346	0.25	0	2.08	1.547	0.53	1.56	1 0.54	C	0.02	20.034	0.06	
C0308 4/1702 1:5:8 6.736 1.31 1.2688 0 2.07 1.482 0.68 1.08 0 0.02 19.995 0.06 N 13:58 - 15:04 C0309 4/1702 1:58 6.686 1.31 1.2514 0.26 0 2.07 1.695 5.3 1.342 0.72 0 0.02 19.977 0.06 C0311 4/1702 1:50 6.806 1.32 1.2613 0.24 0.27 1.6 0.54 1.22 0.72 0.02 19.986 0.05 C0313 4/1702 1:400 6.88 1.29 1.284 0.24 0 2.07 1.43 0.54 1.15 0.72 0.02 19.838 0.06 C0314 4/1702 1:401 6.75 1.3 12.662 0 2.14 1.563 0.54 1.15 0.72 0.02 19.989 0.06 C0314 4/1702 1:401 6.57 1.31 12.691 0 2.14 1.563 0.54 1.139 0.73	C0307	4/17/02 13:58	6.652	1.33	12.448	0.25	0	2.11	1.496	0.55	1.51	3 0.56	C	0.02	19.961	0.06 Run	2
C0309 4/1702 158 6.765 1.3 1.254 0.25 0 2.06 1.371 0.54 1.423 0.69 0 0.02 19.995 0.06 C0311 4/1702 159 6.58 1.34 0.72 0.02 19.966 0.05 C0314 4/1702 1400 6.75 1.3 1.283 0.24 0 2.07 1.46 0.54 1.22 0.71 0.02 19.976 0.06 C0314 4/1702 14.00 6.75 1.3 1.284 0.25 0 2.08 1.451 0.54 1.176 0.72 0 0.22 19.838 0.06 C0314 4/1702 14.01 6.81 1.31 1.2602 0.25 0 2.14 1.458 0.54 1.159 0.73 0 0.02 19.938 0.06 C0314 4/1702 14.02 6.544 1.28 0.54 1.159 0.73 0 0.02 19.78 0.06 C0314 4/1702 14.03 6.509 1.31 1.2875 <	C0308	4/17/02 13:58	6.736	1.31	12.688	0.26	0	2.07	1.482	0.55	1.45	2 0.68	C	0.02	19.995	0.06 Run	2 13:58 - 15:04
C0310 4/17/02 13:58 6.686 1.31 12.613 0.26 0 2.07 1.865 0.53 1.442 0.72 0 0.02 19.977 0.06 C0311 4/1702 13:56 6.808 1.32 12.613 0.24 0 2.07 1.86 0.55 1.272 0 0.02 19.936 0.06 C0313 4/1702 14:01 6.75 1.3 12.684 0.25 0 2.08 1.438 0.54 1.182 0.72 0 0.02 19.938 0.06 C0315 4/1702 14:01 6.81 1.31 12.605 0.2 0.8 1.54 0.54 1.158 0.72 0 0.02 19.938 0.06 C0314 4/1702 14:01 6.84 1.34 1.257 0.24 0 2.14 1.859 0.54 1.128 0.71 0 0.02 19.778 0.08 C0314 4/1702 14:03 6.444 1.28 0.54 1.128 0.71 0<	C0309	4/17/02 13:58	6.765	1.3	12.647	0.25	Ó	2.06	1.371	0.54	1.42	3 0.69	C	0.02	19.995	0.06	
C0311 4/1702 13:59 6.80 1.32 12.81 0.28 0 2.07 1.6 0.54 1.29 0.69 0 0.22 1.936 0.06 C0312 4/1702 14:00 6.75 1.3 12.88 0.25 0 2.08 1.453 0.54 1.292 0.72 0 0.02 19.393 0.06 C0314 4/1702 14:01 6.81 1.3 12.606 0.25 0 2.08 1.54 0.54 1.29 0.02 19.823 0.06 C0315 4/1702 14:01 6.89 1.34 12.57 0.24 0 2.14 1.563 0.54 1.34 0.02 19.813 0.06 C0316 4/1702 14:04 6.594 1.34 12.57 0.24 0 2.14 1.563 0.54 1.34 0.02 19.913 0.06 C0314 4/1702 14:04 6.521 1.32 12.280 0.24 0.201 1.537 0.53 1.105 0.7 0.02 19.78 0.06 C0314 4/1702 14:04 6.557 1.27	C0310	4/17/02 13:59	6.686	1.31	12.514	0.26	0	2.07	1.595	0.53	1.34	2 0.72	Ċ	0.02	19.977	0.06	
C0312 4/1702 14:00 6.88 1.28 1.283 0.24 0 2.07 1.483 0.55 1.272 0.71 0 0.02 19.938 0.06 C0313 4/1702 14:01 6.75 1.3 12.684 0.25 0 2.08 1.327 0.54 1.176 0.72 0 0.02 19.938 0.06 C0314 4/1702 14:01 6.881 1.3 12.606 0.25 0 2.08 1.56 0.54 1.176 0.72 0 0.02 19.938 0.06 C0314 4/1702 14:02 6.834 1.34 12.57 0.24 0 2.14 1.868 0.54 1.139 0.71 0 0.02 19.785 0.06 C0314 4/1702 14:03 6.494 1.28 0.246 0 2.06 1.438 0.54 1.119 0.71 0 0.02 19.775 0.06 C0324 4/1702 14:04 6.57 1.31 12.664 0.25 0.054 1.012 0.71 0 0.02 19.775 0.06 C0324 </td <td>C0311</td> <td>4/17/02 13:59</td> <td>6.808</td> <td>1.32</td> <td>12.613</td> <td>0.26</td> <td>Ő</td> <td>2.07</td> <td>1.6</td> <td>0.54</td> <td>1.2</td> <td>9 0.69</td> <td>Ċ</td> <td>0.02</td> <td>19.966</td> <td>0.05</td> <td></td>	C0311	4/17/02 13:59	6.808	1.32	12.613	0.26	Ő	2.07	1.6	0.54	1.2	9 0.69	Ċ	0.02	19.966	0.05	
C0313 4/1702 1400 6.75 13 1284 0.25 0 2.08 1.438 0.54 1282 0.72 0 0.02 19.774 0.06 C0314 4/1702 1401 6.81 1.3 12506 0.25 0 2.08 1.527 0.54 1.176 0.72 0 0.02 19.828 0.06 C0315 4/1702 1401 6.819 1.35 12.502 0.26 0 2.14 1.458 0.54 1.179 0.73 0 0.02 19.928 0.06 C0316 4/1702 1402 6.524 1.32 12.575 0.24 0 2.11 1.488 0.54 1.123 0.71 0 0.02 19.795 0.06 C0318 4/1702 1403 6.448 1.28 0.24 0 2.00 1.474 0.53 1.065 0.02 19.776 0.06 1.02 19.776 0.06 1.02 19.776 0.06 1.02 19.776 0.06 1.02 1.07 0 0.02 19.776 0.06 1.02 1.071 0.06	C0312	4/17/02 14:00	6.88	1.29	12 83	0.24	0	2 07	1.453	0 55	1.27	2 0.71	Ċ) 0.02	19.938	0.06	
C0314 41/702 1407 6.715 129 12.752 0.26 0 2.08 1.527 0.54 1.176 0.72 0 0.02 19.883 0.06 C0315 41/702 14:01 6.88 1.33 12.606 0.25 0 2.08 1.64 0.53 1.15 0.72 0 0.02 19.983 0.06 C0316 41/702 14:02 6.634 1.34 12.57 0.24 0 2.14 1.489 0.54 1.159 0.73 0 0.02 19.789 0.06 C0318 41/702 14:03 6.509 1.23 12.889 0.24 0 2.01 1.537 0.53 1.105 0.7 0 0.02 19.776 0.06 C0320 41/702 14:04 6.557 1.31 12.640 0.25 0.34 1.11 1.629 0.7 0 0.02 19.776 0.06 C0324 41/702 14:04 6.571 1.31 12.640 0.25 0.34 1.149 0.53 0.997 0.02	C0313	4/17/02 14:00	6 75	1.3	12 684	0.25	0	2.08	1 4 3 8	0.54	1 28	2 0.72	Ċ	0.02	19 774	0.06	
C0315 41702 1401 6.89 1.3 12.606 0.26 0 2.08 1.64 0.53 1.15 0.72 0 0.02 19.928 0.08 C0316 411702 14:01 6.889 1.35 12.502 0.26 0 2.14 1.583 0.54 1.179 0.73 0 0.02 19.913 0.06 C0317 411702 14:02 6.509 1.23 12.575 0.24 0 2.11 1.588 0.54 1.133 0.71 0 0.02 19.778 0.06 C0319 411702 14:03 6.484 1.28 12.726 0.24 0 2.06 14.438 0.54 1.111 0.7 0 0.02 19.778 0.06 C0321 411702 14:04 6.57 1.21 12.726 0.24 0 2.06 14.489 0.53 1.089 0.7 0 0.02 19.778 0.06 C0322 411702 14:04 6.57 1.27 12.664 0.25 0.25 0.234 2.11	C0314	4/17/02 14:01	6 715	1 29	12 752	0.26	Ő	2.08	1 527	0.54	1.17	6 0 72	č	0.02	19 883	0.06	
C0316 4/17/02 14:01 6.889 1.35 1.2.50 0.26 0 2.14 1.563 0.54 1.179 0.73 0 0.02 20.97 0.06 C0317 4/17/02 14:02 6.534 1.34 12.57 0.25 0 2.14 1.489 0.54 1.159 0.73 0 0.02 19.713 0.06 C0318 4/17/02 14:03 6.591 1.32 12.898 0.24 0 2.01 1.537 0.53 1.105 0.7 0 0.02 19.758 0.06 C0320 4/17/02 14:03 6.567 1.31 12.642 0.207 1.474 0.53 1.069 0.71 0 0.02 19.747 0.06 C0324 4/17/02 14:04 6.557 1.31 12.640 0.25 0.034 2.1 1.529 0.54 1.026 0.7 0 0.02 19.742 0.06 C0324 4/17/02 14:05 6.574 1.27 12.509 0.25 0.026 1.41 1.512 0.53 0.961 0.70 0.002 19.742 0.0	C0315	4/17/02 14:01	6.81	13	12 606	0.25	Ő	2.00	1.64	0.53	11	5 0.72	Č	0.02	19 928	0.06	
C0317 417/02 14.02 6.534 1.24 1.257 0.25 0 2.14 1.456 0.54 1.158 0.73 0 0.02 19.913 0.06 C0318 417/02 14.02 6.521 1.32 12.575 0.24 0 2.11 1.566 0.54 1.195 0.73 0 0.02 19.978 0.06 C0319 417/02 14.03 6.484 1.28 12.725 0.24 0 2.06 1.438 0.54 1.19 0 0.02 19.776 0.06 C0321 417/02 14.04 6.557 1.31 12.646 0.25 0.034 2.1 1.529 0.54 1.056 0.7 0.002 19.787 0.06 C0323 417/02 14.05 6.547 1.27 12.646 0.25 0.024 1.469 0.53 1.066 0.7 0.022 19.742 0.06 C0325 417/02 14.05 6.547 1.27 12.666 0.24 0.344 2.05 1.44 0.53 0.981 0.7	C0316	4/17/02 14:01	6 889	1 35	12.000	0.25	0	2.00	1 563	0.50	1 17	9 0.72	Č	0.02	20 097	0.06	
CONST CHING CONST CONST <th< td=""><td>C0317</td><td>4/17/02 14:02</td><td>6 634</td><td>1.33</td><td>12.502</td><td>0.20</td><td></td><td>2.14</td><td>1.505</td><td>0.54</td><td>1 15</td><td>9 0.73</td><td>Č</td><td>0.02</td><td>10 013</td><td>0.00</td><td></td></th<>	C0317	4/17/02 14:02	6 634	1.33	12.502	0.20		2.14	1.505	0.54	1 15	9 0.73	Č	0.02	10 013	0.00	
C0319 41702 14.02 C.21 1.300 C.24 0 2.11 1.300 C.34 1.12 C.03 0.02 19.758 0.06 C0320 417702 14.03 6.484 1.28 12.726 0.24 0 2.06 1.438 0.54 1.111 0.7 0 0.02 19.776 0.06 C0321 417702 14.04 6.557 1.31 12.646 0.25 0.034 2.1 1.529 0.54 1.005 0.7 0 0.02 19.778 0.06 C0322 417702 14.04 6.557 1.31 12.646 0.25 0.24 1.364 0.53 1.065 0.7 0 0.02 19.712 0.06 C0323 417702 14.05 6.571 1.27 12.609 0.25 0.24 1.364 0.53 1.008 0.71 0 0.02 19.712 0.06 C0326 417702 14.05 6.571 1.31 12.660 0.24 0.34 2.05 1.4 0.53 1.015 0.7 0 <td>C0318</td> <td>A/17/02 14:02</td> <td>6 521</td> <td>1 32</td> <td>12.57</td> <td>0.23</td> <td>0</td> <td>2.14</td> <td>1.455</td> <td>0.54</td> <td>1.10</td> <td>3 0.75</td> <td></td> <td></td> <td>10.780</td> <td>0.00</td> <td></td>	C0318	A/17/02 14:02	6 521	1 32	12.57	0.23	0	2.14	1.455	0.54	1.10	3 0.75			10.780	0.00	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C0310	A/17/02 14:02	6 500	1.32	12.070	0.24	0	2.11	1.500	0.54	1.14	5 0.71 E 0.7			10 758	0.00	
C0321 411702 14:00 6.55 1.21 1.2621 0.24 0 2.007 1.443 0.24 0.071 0 0.02 19:718 0.06 C0322 411702 14:04 6.557 1.31 12:646 0.25 0.034 2.1 1.529 0.54 1.069 0.71 0 0.02 19:718 0.06 C0323 411702 14:06 6.501 1.27 12:79 0.25 0 2.05 1.489 0.54 1.065 0.71 0 0.02 19:742 0.06 C0324 411702 14:05 6.571 1.21 12:750 0.25 0.260 1.469 0.53 1.098 0.71 0 0.02 19:742 0.06 C0325 411702 14:06 6.411 1.2 12:260 0.25 0.234 2.11 1.512 0.53 0.991 0.002 19:742 0.06 C0326 41702 14:06 6.241 1.2 12:260 0.24 0.325 2.11 1.364 0.53 0.907 0.73	C0320	4/17/02 14:03	6 494	1.20	12.090	0.24	0	2.01	1.007	0.55	4 4 4	J 0.7 1 0.7			10.750	0.00	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C0321	4/17/02 14:03	0.404	1.20	12.720	0.24	0	2.00	1.430	0.54	4.05	0 0 71			10 719	0.00	
C0322 4/17/02 14:04 6.601 1.27 12.779 0.25 0.034 2.11 1.348 0.54 1.062 0.02 19.846 0.05 C0324 4/17/02 14:05 6.534 1.27 12.779 0.25 0.205 1.4489 0.53 1.0997 0.699 0 0.02 19.742 0.06 C0325 4/17/02 14:05 6.534 1.27 12.708 0.26 0.205 0.699 0.602 19.711 0.06 C0325 4/17/02 14:06 6.411 1.32 12.426 0.24 0.344 2.05 1.44 0.53 1.015 0.7 0 0.02 19.742 0.06 C0328 4/17/02 14:07 6.329 1.31 12.503 0.24 0.352 2.11 1.364 0.53 0.907 0.73 0 0.02 19.742 0.06 C0330 4/17/02 14:07 6.29 1.31 12.503 0.24 0.352 2.07 1.44 0.53 0.907 0.77 0 0.02 19.781	C0322	4/17/02 14:04	6.5	1.27	12.021	0.24	0.024	2.07	1,4/4	0.55	1.00	9 0.71 2 07			10 797	0.00	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C0322	4/17/02 14:04	0.557	1.31	12.040	0.25	0.034	2.1	1.023	0.54	1.0	Z 0.7 E 0.7			10 946	0.00	
C0325 4/17/02 14:05 6.534 1.23 12:365 0.24 0.026 2.04 1.364 0.53 0.697 0.03 0 0.02 19:721 0.06 C0325 4/17/02 14:06 6.411 1.32 12:2666 0.25 0.294 2.11 1.512 0.53 0.961 0.71 0 0.02 19:721 0.06 C0326 4/17/02 14:06 6.424 1.27 12:566 0.24 0.344 2.05 1.4 0.53 0.927 0.72 0.02 19:742 0.06 C0328 4/17/02 14:07 6.326 1.31 12:601 0.24 0.35 2.11 1.364 0.53 0.907 0.73 0 0.02 19:757 0.06 C0330 4/17/02 14:08 6.219 1.2624 0.24 0.332 2.11 1.366 0.53 0.907 0.77 0 0.02 19:757 0.06 C0331 4/17/02 14:11 6.432 1.25 12:718 0.24 0.336 2.07 1.44	C0324	4/17/02 14:04	6.534	1.27	12.119	0.25	0 026	2.05	1.403	0.04	0.00	J 0.7			10 740	0.00	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C0325	4/17/02 14:05	0.534	1.20	12.000	0.24	0.020	2.04	1.304	0.53	4.00	0.09 0.71			10 711	0.00	
C0320 4/17/02 14:16 0.411 1.32 12:420 0.23 0.234 2.11 1.512 0.33 0.901 0.7 0 0.02 19:721 0.006 C0327 4/17/02 14:07 6.326 1.3 12:660 0.24 0.344 2.05 1.4 0.53 0.927 0.72 0 0.02 19:742 0.06 C0328 4/17/02 14:07 6.326 1.31 12:601 0.24 0.352 2:11 1.364 0.53 0.907 0.73 0 0.02 19:757 0.06 C0330 4/17/02 14:08 6.248 1.28 12:626 0.24 0.352 2:11 1.356 0.53 0.907 0.77 0 0.02 19:755 0.06 C0332 4/17/02 14:16 6.424 1.28 12:626 0.24 0.352 2:07 1.44 0.53 0.802 0.78 0 0.02 19:753 0.06 C0333 4/17/02 14:16 6.311 1.28 12:738 0.24 0.641 2:06<	C0325	4/17/02 14:05	0.372	1.27	12.009	0.25	0.009	2.00	1.403	0.55	0.00	0 U.71			10 721	0.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C0320	4/17/02 14.00	0.411	1.32	12.420	0.25	0.234	2.11	1,514	0.53	0.90				40.740	0.00	
C0320 4/17/02 1.4/14 0.53 0.8020 0.7/8 0.002 19.7/84 0.06 C0333 4/17/02 1.4/14 6.3/11 1.2/8 1.2/834 0.24 0.54/8 2.0/11 1.4/33 0.53	C0329	4/17/02 14.00	0.424	1.27	12.000	0.24	0.344	2.05	1.4	0.53	1.01	5 U.7			40 705	0.00	
C0329 4/17/02 14:07 6.29 1.31 12.601 0.24 0.35 2.11 1.364 0.53 0.907 0.73 0 0.02 19.757 0.06 C0330 4/17/02 14:08 6.248 1.28 12.626 0.24 0.442 2.09 1.516 0.53 0.907 0.77 0 0.02 19.731 0.06 C0331 4/17/02 14:11 6.432 1.25 12.718 0.24 0.326 2.07 1.44 0.53 0.802 0.78 0 0.02 19.784 0.06 C0333 4/17/02 14:14 6.311 1.28 12.673 0.23 0.412 2.06 1.401 0.53 0.802 0.78 0 0.02 19.713 0.06 C0334 4/17/02 14:14 6.311 1.28 12.663 0.24 0.543 2.09 1.435 0.52 0.718 0.75 0 0.02 19.713 0.06 C0335 4/17/02 14:16 6.401 1.29 12.634 0.24 0.548 2.11 1.433 0.53 0.672 0.77	C0320	4/17/02 14:07	0.320	1.3	12.503	0.24	0.258	2.09	1.405	0.53	0.94	7 0.72			19.700	0.00	
C0330 4/1/1/02 14:06 6.219 1.29 1.2624 0.24 0.42 2.09 1.516 0.54 0.586 0.74 0 0.02 19.731 0.06 C0331 4/17/02 14:10 6.432 1.25 12.718 0.24 0.322 2.1 1.356 0.53 0.907 0 0.02 19.784 0.06 C0333 4/17/02 14:13 6.182 1.24 12.735 0.24 0.641 2.06 1.401 0.53 0.829 0.79 0 0.02 19.733 0.06 C0333 4/17/02 14:13 6.182 1.24 12.735 0.24 0.641 2.06 1.401 0.53 0.829 0.78 0 0.02 19.733 0.06 C0335 4/17/02 14:16 6.401 1.29 12.634 0.24 0.543 2.09 1.435 0.52 0.718 0.75 0 0.02 19.772 0.06 C0336 4/17/02 14:20 6.128 1.28 12.548 0.24 0.548 2.11 1.	C0329	4/17/02 14.07	0.29	1.31	12.001	0.24	0.35	2.11	1.304	0.53	0.90	0.73			40 724	0.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C0330	4/17/02 14.00	0.219	1.29	12.024	0.24	0.442	2.09	1.510	0.54	0.03	0 0.74			19.731	0.00	
C0332 4/17/02 14.11 6.432 1.24 12.715 0.24 0.536 2.07 1.44 0.53 0.625 0.78 0 0.02 19.674 0.06 C0333 4/17/02 14:14 6.311 1.28 12.673 0.23 0.412 2.08 1.386 0.53 0.74 0.75 0 0.02 19.673 0.06 C0334 4/17/02 14:16 6.401 1.29 12.634 0.24 0.543 2.09 1.435 0.52 0.718 0.73 0 0.02 19.673 0.06 C0335 4/17/02 14:16 6.401 1.29 12.634 0.24 0.548 2.01 1.435 0.52 0.718 0.73 0 0.02 19.673 0.06 C0336 4/17/02 14:21 6.2 1.29 12.597 0.24 0.517 2.09 1.458 0.52 0.677 0.79 0 0.02 19.736 0.06 C0339 4/17/02 14:23 6.018 1.28 12.641 0.24 0.772 2.09<	C0337	4/17/02 14.00	0.240	1.20	12.020	0.24	0.522	2.1	1.330	0.55	0.90	0.77			19.703	0.00	
C0333 4/17/02 14:13 6.182 1.24 12.735 0.24 0.041 2.06 1.401 0.53 0.802 0.78 0 0.02 19.673 0.06 C0334 4/17/02 14:14 6.311 1.28 12.673 0.23 0.412 2.08 1.386 0.53 0.74 0.75 0 0.02 19.713 0.06 C0335 4/17/02 14:16 6.401 1.29 12.634 0.24 0.543 2.09 1.435 0.52 0.718 0.73 0 0.02 19.772 0.06 C0336 4/17/02 14:18 6.177 1.3 12.548 0.24 0.548 2.11 1.433 0.53 0.693 0.75 0 0.02 19.772 0.06 C0337 4/17/02 14:20 6.128 1.28 12.597 0.24 0.716 2.1 1.442 0.53 0.677 0.79 0 0.02 19.736 0.06 C0334 4/17/02 14:25 6.143 1.29 12.722 0.24 0.685 2.09	C0332	4/17/02 14.11	0.432	1.20	12.710	0.24	0.530	2.07	1.44	0.53	0.04	9 0.79			19.704	0.00	
C0334 4/17/02 14:14 6.311 1.28 12.673 0.23 0.412 2.08 1.386 0.53 0.74 0.75 0 0.02 19.713 0.06 C0335 4/17/02 14:16 6.401 1.29 12.634 0.24 0.543 2.09 1.435 0.52 0.718 0.73 0 0.02 19.844 0.06 C0336 4/17/02 14:18 6.177 1.3 12.548 0.24 0.548 2.11 1.433 0.53 0.693 0.77 0 0.02 19.698 0.06 C0337 4/17/02 14:21 6.2 1.29 12.597 0.24 0.716 2.1 1.442 0.53 0.677 0.79 0 0.02 19.736 0.06 C0339 4/17/02 14:25 6.143 1.29 12.722 0.24 0.685 2.09 1.307 0.53 0.627 0.75 0 0.02 19.711 0.06 C0340 4/17/02 14:26 6.185 1.31 12.673 0.24 0.945 2.1 <td>C0333</td> <td>4/17/02 14:13</td> <td>0.102</td> <td>1.24</td> <td>12.735</td> <td>0.24</td> <td>0.041</td> <td>2.00</td> <td>1.401</td> <td>0.53</td> <td>0.80</td> <td>Z U.76</td> <td></td> <td></td> <td>19.0/3</td> <td>0.00</td> <td></td>	C0333	4/17/02 14:13	0.102	1.24	12.735	0.24	0.041	2.00	1.401	0.53	0.80	Z U.76			19.0/3	0.00	
C0335 4/17/02 14:16 6.401 1.29 12:634 0.24 0.543 2.09 1.435 0.52 0.718 0.73 0 0.02 19:644 0.06 C0336 4/17/02 14:18 6.177 1.3 12:548 0.24 0.548 2.11 1.433 0.53 0.693 0.75 0 0.02 19:644 0.06 C0337 4/17/02 14:20 6.128 1.28 12:655 0.23 0.517 2.09 1.458 0.52 0.672 0.77 0 0.02 19:698 0.06 C0338 4/17/02 14:23 6.018 1.28 12:641 0.24 0.772 2.09 1.356 0.53 0.655 0.77 0 0.02 19:708 0.06 C0340 4/17/02 14:26 6.185 1.31 12:708 0.24 0.945 2.1 1.273 0.54 0.626 0.73 0 0.02 19:671 0.06 C0342 4/17/02 14:28 5.896 1.31 12:673 0.24 0.971 2.1	C0334	4/17/02 14:14	0.311	1.20	12.0/3	0.23	0.412	2.08	1.386	0.53	0.7	4 0.75			19./13	0.00	
C0336 4/17/02 14:18 6.17/7 1.3 12:548 0.24 0.548 2.11 1.433 0.53 0.693 0.75 0 0.02 19:772 0.06 C0337 4/17/02 14:20 6.128 1.28 12:565 0.23 0.517 2.09 1.458 0.52 0.672 0.77 0 0.02 19:798 0.06 C0338 4/17/02 14:23 6.018 1.28 12:641 0.24 0.772 2.09 1.356 0.53 0.655 0.77 0 0.02 19:708 0.06 C0340 4/17/02 14:25 6.143 1.29 12:722 0.24 0.685 2.09 1.307 0.53 0.627 0.75 0 0.02 19:711 0.06 C0341 4/17/02 14:26 6.185 1.31 12:673 0.24 0.971 2.11 1.273 0.54 0.626 0.73 0 0.02 19:711 0.06 C0342 4/17/02 14:28 5.896 1.31 12:673 0.24 0.971 2	C0335	4/17/02 14:16	6.401	1.29	12.634	0.24	0.543	2.09	1.435	0.52	0.71	8 0.73		0.02	19.844	0.00	
C0337 4/17/02 14:20 6.128 1.28 12.565 0.23 0.517 2.09 1.458 0.52 0.672 0.77 0 0.02 19.598 0.06 C0338 4/17/02 14:21 6.2 1.29 12.597 0.24 0.716 2.1 1.442 0.53 0.677 0.79 0 0.02 19.736 0.06 C0339 4/17/02 14:23 6.018 1.28 12.641 0.24 0.772 2.09 1.356 0.53 0.655 0.77 0 0.02 19.708 0.06 C0340 4/17/02 14:25 6.143 1.29 12.722 0.24 0.685 2.09 1.307 0.53 0.627 0.75 0 0.02 19.711 0.06 C0341 4/17/02 14:26 6.185 1.31 12.673 0.24 0.945 2.1 1.273 0.54 0.626 0.73 0 0.02 19.711 0.06 C0342 4/17/02 14:28 5.896 1.31 12.673 0.24 0.823 2.1 1.356 0.53 0.618 0.77	C0330	4/17/02 14:18	6.177	1.3	12.548	0.24	0.548	2.11	1.433	0.53	0.69	3 0.75		0.02	19.//2	0.00	
C0336 4/1//02 14:21 6.2 1.29 12.597 0.24 0.716 2.1 1.442 0.53 0.677 0.79 0 0.02 19.736 0.06 C0339 4/17/02 14:23 6.018 1.28 12.641 0.24 0.772 2.09 1.356 0.53 0.655 0.77 0 0.02 19.708 0.06 C0340 4/17/02 14:25 6.143 1.29 12.722 0.24 0.685 2.09 1.307 0.53 0.627 0.75 0 0.02 19.711 0.06 C0341 4/17/02 14:26 6.185 1.31 12.708 0.24 0.945 2.1 1.273 0.54 0.626 0.73 0 0.02 19.711 0.06 C0342 4/17/02 14:28 5.896 1.31 12.673 0.24 0.971 2.11 1.294 0.53 0.622 0.76 0 0.02 19.712 0.06 C0343 4/17/02 14:30 6.155 1.3 12.648 0.24 0.823 2.1 1.364 0.52 0.563 0.75	C0337	4/1//02 14:20	6.128	1.28	12.565	0.23	0.51/	2.09	1.458	0.52	0.67	2 0.77		0.02	19.698	0.05	
C0339 4/1//02 14:23 6.018 1.28 12.641 0.24 0.772 2.09 1.366 0.53 0.655 0.77 0 0.02 19.708 0.06 C0340 4/17/02 14:25 6.143 1.29 12.722 0.24 0.685 2.09 1.307 0.53 0.627 0.75 0 0.02 19.711 0.06 C0341 4/17/02 14:26 6.185 1.31 12.708 0.24 0.945 2.1 1.273 0.54 0.626 0.73 0 0.02 19.711 0.06 C0342 4/17/02 14:28 5.896 1.31 12.673 0.24 0.971 2.11 1.294 0.53 0.622 0.76 0 0.02 19.711 0.06 C0343 4/17/02 14:30 6.155 1.3 12.648 0.24 0.823 2.1 1.364 0.52 0.563 0.75 0 0.02 19.712 0.06 C0344 4/17/02 14:32 6.188 1.29 12.603 0.24 0.879 2.1 1.364 0.52 0.563 0.75	C0338	4/17/02 14:21	6.2	1.29	12.597	0.24	0.716	2.1	1.442	0.53	0.67	7 0.79		0.02	19.730	0.06	
C0340 4/17/02 14:25 6.143 1.29 12.722 0.24 0.685 2.09 1.307 0.53 0.627 0.75 0 0.02 19.711 0.06 C0341 4/17/02 14:26 6.185 1.31 12.708 0.24 0.945 2.1 1.273 0.54 0.626 0.73 0 0.02 19.711 0.06 C0342 4/17/02 14:28 5.896 1.31 12.673 0.24 0.971 2.11 1.294 0.53 0.622 0.76 0 0.02 19.671 0.06 C0343 4/17/02 14:30 6.155 1.3 12.648 0.24 0.823 2.1 1.356 0.53 0.618 0.77 0 0.02 19.712 0.06 C0344 4/17/02 14:32 6.188 1.29 12.603 0.24 0.879 2.1 1.364 0.52 0.563 0.75 0 0.02 19.623 0.06 C0345 4/17/02 14:33 6.079 1.24 12.611 0.23 0.783 2.03 1.42 0.52 0.535 0.68	C0339	4/1//02 14:23	6.018	1.28	12.641	0.24	0.772	2.09	1.356	0.53	0.65	5 0.77		0.02	19,708	0.05	
C0341 4/17/02 14:26 6.185 1.31 12.708 0.24 0.945 2.1 1.273 0.54 0.626 0.73 0 0.02 19.781 0.06 C0342 4/17/02 14:28 5.896 1.31 12.673 0.24 0.971 2.11 1.294 0.53 0.622 0.76 0 0.02 19.671 0.06 C0343 4/17/02 14:30 6.155 1.3 12.648 0.24 0.823 2.1 1.356 0.53 0.618 0.77 0 0.02 19.712 0.06 C0344 4/17/02 14:32 6.188 1.29 12.603 0.24 0.879 2.1 1.364 0.52 0.563 0.75 0 0.02 19.623 0.06 C0345 4/17/02 14:33 6.079 1.24 12.611 0.23 0.783 2.03 1.42 0.52 0.537 0.72 0 0.02 19.568 0.06 C0345 4/17/02 14:35 6.277 1.21 12.628 0.23 0.662 1.99 1.431 0.52 0.535 0.68	C0340	4/1//02 14:25	6.143	1.29	12.722	0.24	0.685	2.09	1.307	0.53	0.62	7 0.75		0.02	19.711	0.06	
C0342 4/17/02 14:28 5.896 1.31 12.673 0.24 0.971 2.11 1.294 0.53 0.622 0.76 0 0.02 19.671 0.06 C0343 4/17/02 14:30 6.155 1.3 12.648 0.24 0.823 2.1 1.356 0.53 0.618 0.77 0 0.02 19.712 0.06 C0344 4/17/02 14:32 6.188 1.29 12.603 0.24 0.879 2.1 1.364 0.52 0.563 0.75 0 0.02 19.623 0.06 C0345 4/17/02 14:33 6.079 1.24 12.611 0.23 0.783 2.03 1.42 0.52 0.537 0.72 0 0.02 19.568 0.06 C0346 4/17/02 14:35 6.277 1.21 12.628 0.23 0.662 1.99 1.431 0.52 0.535 0.68 0 0.02 19.555 0.06 C0346 4/17/02 14:35 6.277 1.21 12.628 0.23 0.662 1.99 1.431 0.52 0.535 0.68	C0341	4/1//02 14:26	6.185	1.31	12.708	0.24	0.945	2.1	1.273	0.54	0.62	6 0.73		0.02	19.781	0.05	
C0343 4/17/02 14:30 6.155 1.3 12.648 0.24 0.823 2.1 1.356 0.53 0.618 0.77 0 0.02 19.712 0.06 C0344 4/17/02 14:32 6.188 1.29 12.603 0.24 0.879 2.1 1.364 0.52 0.563 0.75 0 0.02 19.623 0.06 C0345 4/17/02 14:33 6.079 1.24 12.611 0.23 0.783 2.03 1.42 0.52 0.537 0.72 0 0.02 19.568 0.06 C0346 4/17/02 14:35 6.277 1.21 12.628 0.23 0.662 1.99 1.431 0.52 0.535 0.68 0 0.02 19.555 0.06 C0346 4/17/02 14:35 6.277 1.21 12.628 0.23 0.662 1.99 1.431 0.52 0.535 0.68 0 0.02 19.555 0.06 C0347 .125 1.25 0.23 0.264 1.25 0.27 0.535 0.68	CU342	4/1//02 14:28	5.896	1.31	12.673	0.24	0.971	2.11	1.294	0.53	0.62	2 0.76	(0.02	19.6/1	0.06	
C0344 4/17/02 14:32 6.188 1.29 12:603 0.24 0.879 2.1 1.364 0.52 0.563 0.75 0 0.02 19:623 0.06 C0345 4/17/02 14:33 6.079 1.24 12:611 0.23 0.783 2.03 1.42 0.52 0.537 0.72 0 0.02 19:568 0.06 C0346 4/17/02 14:35 6.277 1.21 12:628 0.23 0.662 1.99 1.431 0.52 0.535 0.68 0 0.02 19:555 0.06 C0347 4/17/02 14:37 6.24 1.25 1.2577 0.22 0.24 0.254 1.205 1.431 0.52 0.535 0.68 0 0.02 19:555 0.06	C0343	4/1//02 14:30	6.155	1.3	12.648	0.24	0.823	2.1	1.356	0.53	0.61	8 0.77	0	0.02	19./12	0.06	
C0345 4/17/02 14:33 6.079 1.24 12.611 0.23 0.783 2.03 1.42 0.52 0.537 0.72 0 0.02 19.568 0.06 C0346 4/17/02 14:35 6.277 1.21 12.628 0.23 0.662 1.99 1.431 0.52 0.535 0.68 0 0.02 19.555 0.06 C0347 4/17/02 14:35 6.24 1.25 1.2577 0.20 0.744 0.65	CU344	4/1//02 14:32	6.188	1.29	12.603	0.24	0.879	2.1	1.364	0.52	0.56	3 0.75	(0.02	19.623	0.06	
C0346 4/17/02 14:35 6.277 1.21 12.628 0.23 0.662 1.99 1.431 0.52 0.535 0.68 0 0.02 19.555 0.06 C0347 4/17/02 14:37 6.24 1.25 12.677 0.22 0.744 2.05 4.394 0.53 0.57 0.68 0 0.02 19.404 0.06	00345	4/1//02 14:33	6.079	1.24	12.611	0.23	0.783	2.03	1.42	0.52	0.53	0.72	(0.02	19.568	0.06	
	0346	4/17/02 14:35	6.277	1.21	12.628	0.23	0.662	1.99	1.431	0.52	0.53	5 0.68	9	0.02	19.555	0.06	
		4/17/02 14:37	6.24	1.25	12.677	0.23	0.741	2.05	1.381	0.53	0.5	7 0.68	(0.02	19.494	0.06	
CU346 4/1//UZ 14:39 6.182 1.22 12.694 0.23 0.774 2.02 1.447 0.53 0.565 0.72 0 0.02 19.474 0.06	00348	4/17/02 14:39	6.182	1.22	12.694	0.23	0.774	2.02	1.447	0.53	0.56	5 0.72	(0.02	19.474	0.05	
CU349 4/17/02 14:40 6.4/4 1.25 12.781 0.24 0.989 2.06 1.371 0.53 0.526 0.74 0 0.02 19.598 0.06	00349	4/17/02 14:40	6.474	1.25	12.781	0.24	0.989	2.06	1.371	0.53	0.52	6 0.74	(0.02	2 19.598	0.06	
$50350 \frac{4}{1}/\frac{102}{14} = 1.27 \frac{12.754}{1.27} 0.24 1.134 2.08 1.272 0.54 0.537 0.72 0 0.02 19.668 0.06 (1.134) (1.134) 0.06 (1.134) $	0350	4/17/02 14:42	6.484	1.27	12.754	0.24	1.134	2.08	1.272	. 0.54	0.53	0.72	(J 0.02	19.668	0.05	í l

Raw Mill O	n	Temperatu	re & Pres	sure Adju	isted Conce	ntrations in	ppm								
		Ammonia	Error+-	CO2	Error+-	Ethylene	Error+-	Formaldehyde	Error+-	HCI	Error+-	SF6	Error+-	Water	Error+-
C0351	4/17/02 14:44	6.351	1.28	12.659	0.24	1.037	2.08	1.319	0.53	0.484	0.7	0	0.02	19.673	0.06
C0352	4/17/02 14:46	6.469	1.25	12.829	0.24	1.071	2.05	1.277	0.53	0.504	0.72	0	0.02	19.628	0.06
C0353	4/17/02 14:47	6.289	1.27	12.739	0.24	0.947	2.09	1.33	0.54	0.471	0.78	0	0.02	19.678	0.06
C0354	4/17/02 14:49	6.337	1.26	12.817	0.24	1.316	2.11	1.267	0.54	0.522	0.85	0	0.02	19,709	0.06
C0355	4/17/02 14:51	6.348	1.25	12.718	0.23	1.121	2.1	1.333	0.53	0.452	0.87	Ō	0.02	19.647	0.06
C0356	4/17/02 14:53	6.225	1.23	12.829	0.23	1.167	2.07	1.396	0.53	0.441	0.86	Ō	0.02	19.606	0.06
C0357	4/17/02 14:54	6.311	1.27	12.879	0.24	1.095	2.09	1.322	0.54	0.477	0.84	Ő	0.02	19 663	0.06
C0358	4/17/02 14:56	6.357	1.28	12.8	0.24	1.047	2.1	1.276	0.54	0.427	0.84	Ő	0.02	19.674	0.06
C0359	4/17/02 14:58	6.194	1.26	13.01	0.24	1.305	2.1	1.262	0.55	0.464	0.9	ō	0.02	19 703	0.06
C0360	4/17/02 15:00	6.361	1.28	12.892	0.24	1.494	2.13	1.223	0.55	0.422	0.95	ō	0.02	19.647	0.06
C0361	4/17/02 15:01	6.318	1.26	12.84	0.24	0.99	2.1	1.322	0.54	0.423	0.96	Ō	0.02	19 554	0.06
C0362	4/17/02 15:03	0.943	0.33	0.706	0.3	2.155	2.53	2.064	0.4	24.332	3.54	5.499	0.08	1,926	0.07
C0363	4/17/02 15:04	0.924	0.59	2.235	0.14	0.934	2.36	1.657	0.33	53.461	3.56	4.627	0.07	4.038	0.06
C0364	4/17/02 15:04	3.834	0.81	11.809	0.18	1.136	1.6	1.654	0.52	36.461	2.45	1.038	0.02	15 184	0.06
C0365	4/17/02 15:05	5.233	1.02	12.69	0.22	0.588	1.8	1.485	0.54	15.451	1.76	0.402	0.02	17.821	0.06
C0366	4/17/02 15:05	5.752	1.04	12.875	0.21	0.677	1.82	1.45	0.55	6.503	0.54	0.316	0.02	18 112	0.06 HCI Spike to Probe
C0367	4/17/02 15:05	5.986	1.03	13.015	0.21	0.704	1.8	1.539	0.56	5.3	0.5	0.303	0.02	18 144	0.06
C0368	4/17/02 15:06	6.137	1.07	12.893	0.22	0.839	1.83	1.412	0.55	4.667	0.49	0.3	0.02	18 115	0.06
C0369	4/17/02 15:06	6.103	1.04	13.028	0.22	0.848	1.8	1.624	0.55	4.2	0.48	0.32	0.02	18 062	0.06
C0370	4/17/02 15:07	6.02	1.01	12.853	0.22	0.535	1.78	1.658	0.54	4.003	0.48	0.346	0.02	17 936	0.06
C0371	4/17/02 15:07	5.93	1	12.88	0.21	0.822	1.76	1.531	0.54	4.011	0 48	0.333	0.02	17 895	0.06
C0372	4/17/02 15:08	5.997	1.02	12.663	0.21	1.128	1.8	1.566	0.55	3.918	0.48	0.336	0.02	17.9	0.06
C0373	4/17/02 15:08	5.92	0.99	12.784	0.21	1.329	1.77	1.567	0.54	3.866	0.48	0.338	0.02	17 817	0.06
C0374	4/17/02 15:08	6.051	1.02	12.712	0.21	1.2	1.81	1.572	0.54	3.824	0.49	0.338	0.02	17 886	0.06
C0375	4/17/02 15:09	6.201	1	12.684	0.22	1.301	1.8	1.639	0.54	3.723	0.49	0.337	0.02	17,809	0.06
C0376	4/17/02 15:09	6.283	1.02	12.733	0.22	1.27	1.82	1.639	0.56	3.636	0.49	0.339	0.02	17.93	0.06
C0377	4/17/02 15:10	6.344	1.02	12.707	0.21	1.227	1.82	1.533	0.54	3.558	0.9	0.338	0.02	17 872	0.06
C0378	4/17/02 15:10	6.285	1.01	12.707	0.21	1.191	1.81	1.71	0.55	3.544	0.91	0.337	0.02	17.818	0.06
C0379	4/17/02 15:11	6.257	1.04	12.772	0.22	1.279	1.84	1.627	0.54	3.601	0.9	0.337	0.02	17.766	0.06
C0380	4/17/02 15:11	6.176	1.05	12.554	0.22	1,294	1.85	1.53	0.54	3.482	0.89	0.335	0.02	17.768	0.06
C0381	4/17/02 15:12	0.921	0.28	0.337	0.26	19.115	1.59	1.892	0.37	7.7	0.77	0.353	0.02	1.298	0.05
C0382	4/17/02 15:13	0.646	0.17	C	0.13	20.807	0.75	1.464	0.33	4.655	0.54	0.054	6.98E-03	0.312	0.03
C0383	4/17/02 15:13	0.475	0.16	C	0.08	21.186	0.44	1.267	0.31	3.428	0.81	0.009	5.29E-03	0.129	0.03
C0384	4/17/02 15:14	0.4	0.17	C	0.07	21.046	0.36	1.253	0.31	2.876	0.74	0.001	5.32E-03	0.082	0.02
C0385	4/17/02 15:14	0.363	0.17	C	0.06	21.021	0.34	1.347	0.31	2.566	0.69	0.001	5.53E-03	0.075	0.02
C0386	4/17/02 15:15	0.347	0.17	C	0.06	21.058	0.34	1.223	0.31	2.406	0.66	0	5.57E-03	0.061	0.02
C0387	4/17/02 15:15	i 0.405	0.17	C	0.06	20.877	0.34	1.289	0.31	2.165	0.65	0	5.75E-03	0.061	0.02
C0388	4/17/02 15:15	0.325	0.17	C	0.06	20.795	0.34	1.4	0.32	2.079	0.62	0	6.19E-03	0.057	0.02
C0389	4/17/02 15:16	0.393	0.17	. 0	0.06	20.835	0.34	1.285	0.32	1.978	0.63	0	6.03E-03	0.051	0.02
C0390	4/17/02 15:16	i 0.354	0.17	C	0.06	20.812	0.33	1.396	0.32	1.921	0.62	0	6.02E-03	0.061	0.02 Ethviene to Probe
C0391	4/17/02 15:17	0.31	0.18	C	0.06	20.584	0.39	1.209	0.3	1.813	0.62	0	6.59E-03	0.05	0.02
C0392	4/17/02 15:17	0.893	0.33	0.676	0.06	19.607	0.96	1.352	0.28	2.141	0.87	0	8.96E-03	1.579	0.03
C0393	4/17/02 15:18	3.306	0.64	10.054	0.15	11.338	1.47	1.844	0.49	3.83	0.51	0	0.01	11.066	0.05
C0394	4/17/02 15:18	3.355	0.66	10.596	6 0.15	9.974	1.48	1.759	0.5	4.051	0.52	0	0.01	11.739	0.05
C0395	4/17/02 15:18	3.359	0.66	10.263	0.15	9.605	1.52	1.756	0.49	4.044	0.54	0	0.01	11.465	0.05
C0396	4/17/02 15:19	2.463	0.48	6.674	0.23	14.365	2.17	1.535	0.41	2.652	1.23	0	0.02	7.655	0.06
C0397	4/17/02 15:20	0.547	0.32	0.34	0.29	20.362	2.23	1.504	0.36	1.375	1.59	0.003	0.02	1.343	0.06
C0398	4/17/02 15:20	0.472	0.22	0.016	6 0.2	20.589	1.73	1.489	0.35	1.054	1.38	0.003	0.01	0.621	0.05
C0399	4/17/02 15:21	0.306	0.17	C	0.12	21.119	1.22	1.061	0.35	0.936	1.19	0.002	8.91E-03	0.298	0.04
C0400	4/17/02 15:21	0.135	6 0.16	C) 0.07	21.332	0.82	0.851	0.33	0.561	1.02	0	6.22E-03	0.123	0.03

- - ----

1

Raw Mill On	Temperature & Pressure Adjuste	ed Concentrations in ppm
	remperature & riessure Aujuste	su concentrations in ppin

.

_		Ammonia	Error+-	CO2 .	Error+-	Ethylene	Error+-	Formaldehyde	Error+-	HCI	E	Error+- \$	SF6	Error+-	Water	Error+-	
C0401	4/17/02 15:22	0.077	0.17	0	0.04	20.89	0.5	1.168	0.29		0.51	0.87	0.003	5.02E-03	0.027	0.02	
C0402	4/17/02 15:22	0.144	0.14	0	0.03	20.405	0.31	1.132	0.27	0).532	0.75	0.007	6.08E-03	0	0.02	
C0403	4/17/02 15:23	0.164	0.11	0	· 0.02	20.418	0.31	0.618	0.28	0).383	0.65	0.016	7.04E-03	0	0.02	
C0404	4/17/02 15:23	0.166	0.1	0	0.02	20.215	0.37	0.598	0.26	0).233	0.57	0.018	7.91E-03	0	0.02	Ethylene to Cell
C0405	4/17/02 15:23	0.207	0.1	0	0.02	20.326	0.45	C	0.25	0).218	0.51	0.013	8.50E-03	0	0.02	
C0406	4/17/02 15:24	0.11	0.1	0	0.02	20.496	0.49	0.202	0.24	0).165	0.47	0.015	8.67E-03	0	0.02	
C0407	4/17/02 15:24	0.003	0.11	0	0.02	20.325	0.53	0.157	0.22	0).228	0.45	0.013	8.98E-03	0	0.02	· · · · · · · · · · · · · · · · · · ·
C0408	4/17/02 15:27	0.218	0.1	0	0.02	0.38	0.45	0.069	0.24	0).158	0.47	0	6.61E-03	0	0.02	
C0409	4/17/02 15:27	0.011	0.1	0	0.02	0.172	0.45	0.5	0.21	0),117	0.49	0	6.97E-03	0	0.02	
C0410	4/17/02 15:28	0.181	0.1	0	0.02	0.066	0.43	0.381	0.19	0).205	0.5	0	6.78E-03	0	0.02	
C0411	4/17/02 15:28	0.155	0.09	0	0.02	0	0.43	0.315	0.19	0).085	0.51	0	6.74E-03	0	0.02	
C0412	4/17/02 15:29	0.184	0.09	0	0.02	0.069	0.41	0.404	0.17	0).131	0.51	0	6.58E-03	0	0.01	
C0413	4/17/02 15:29	0.19	0.09	0	0.02	0.03	0.4	0.477	0.17	0	0.093	0.5	0	6.51E-03	0	0.01	
C0414	4/17/02 15:30	0.175	0.09	0	0.02	0.047	0.42	0.167	' 0.17	0).221	0.49	0	6.66E-03	0	0.01	
C0415	4/17/02 15:30	0.149	0.09	0	0.02	0	0.42	0.443	0.16	0).142	0.49	0	6.75E-03	0	0.01	
C0416	4/17/02 15:34	0	0.02	0.003	3.93E-03	0.085	0.06	0.033	0.07	0	0.012	0.04	0	5.05E-04	0	3.85E-03	
C0417	4/17/02 15:36	0	0.03	0.001	5.04E-03	0.142	0.07	C	0.08		0	0.05	0	5.95E-04	0	4.67E-03	
C0418	4/17/02 15:38	0	0.03	0	5.19E-03	0.13	0.07	0.063	0.09	0	0.069	0.04	0	6.17E-04	0	5.32E-03	
C0419	4/17/02 15:43	6.669	1.05	12.763	0.23	1.504	1.87	0.935	0.56	1	1.019	0.32	0	0.02	18.403	0.06	Run 3
C0420	4/17/02 15:43	7.576	1.07	13.08	0.23	0.866	1.84	0.964	0.55	1	1.345	0.3	0	0.02	19.012	0.06	
C0421	4/17/02 15:44	7.809	1.11	12.875	0.24	0.832	1.86	0.857	0.55	i 1	1.376	0.28	0	0.02	19.156	0.06	Run 3 15:42 - 16:47
C0422	4/17/02 15:46	6.758	1.11	12.873	0.23	0.904	1.81	0.902	0.54	. 0	0.651	0.26	0	0.02	19.073	0.06	
C0423	4/17/02 15:48	6.577	1.15	12.804	0.24	0.816	1.86	0.918	0.54	. 0).501	0.26	0	0.02	19.429	0.06	
C0424	4/17/02 15:50	6.648	1.16	12.932	0.24	0.766	1.87	0.915	0.55	;	0.48	0.27	0	0.02	19.582	0.06	
C0425	4/17/02 15:51	6.468	1.14	13.108	0.24	0.321	1.85	0.923	0.55	;	0.42	0.27	0	0.02	19.535	0.06	
C0426	4/17/02 15:53	6.294	1.11	13.154	0.24	0.388	1.83	0.917	0.55	; C).434	0.26	0	0.02	19.559	0.06	
C0427	4/17/02 15:55	6.3 59	1.13	13.023	0.24	0.555	1.84	0.868	0.54	. C	0.402	0.24	0	0.02	19.601	0.06	
C0428	4/17/02 15:57	6.269	1.07	12.794	0.23	0.818	1.79	0.977	0.54	- C	0.395	0.24	0	0.02	19.331	0.06	
C0429	4/17/02 15:58	6.316	1.07	12.782	0.23	0.668	1.8	0.946	6 0.54	C	0.395	0.24	0	0.02	19.208	0.06	
C0430	4/17/02 16:00	6.648	1.08	12.78	0.24	0.854	1.84	0.891	0.54	- C	0.384	0.25	0	0.02	19.228	0.06	
C0431	4/17/02 16:02	<u>6.1</u>	2.04	13.734	0.59	2.676	4.69	1.064	0.61	C	0.005	0.57	0	0.03	19.881	0.43	
C0432	4/17/02 16:03	5.481	2	13.857	0.58	2.885	4.63	1.17	' 0.6	;	0	0.53	0	0.03	19.497	0.42	
C0433	4/17/02 16:05	5.54	2.01	13.772	0.58	2.893	4.65	1.158	0.6	;	0	0.48	0	0.03	19.586	0.42	
C0434	4/17/02 16:07	5.306	2.01	13.833	0.58	2.768	4.64	1.169	0.6	;	0	0.47	0	0.03	19.595	0.42	
C0435	4/17/02 16:09	5.444	2.01	13.827	0.58	2.792	4.64	1.226	6 0.6	;	0	0.47	0	0.03	19.558	0.42	
C0436	4/17/02 16:10	5.499	2.01	13.918	0.58	2.586	4.65	1.227	' 0.6	5	0	0.52	0	0.03	19.589	0.42	
C0437	4/17/02 16:12	5.456	2.01	13.782	0.58	2.753	4.65	1.263	0.6	;	0	0.57	0	0.03	19.448	0.42	
C0438	4/17/02 16:14	5,709	0.97	13.931	0.24	2.788	1.73	1.26	6 0.57	' C	0.014	0.28	0	0.01	19.42	0.07	
C0439	4/17/02 16:16	5.774	0.96	13.947	0.25	2.596	1.69	1.272	. 0.57	' C	0.003	0.28	0	0.01	19.433	0.07	
C0440	4/17/02 16:17	6.558	1.14	12.807	0.24	0	1.84	1.157	0.55	6 C	0.374	0.24	0	0.02	19.361	0.07	
C0441	4/17/02 16:19	6.804	1.2	12.789	0.24	0	1.87	1.016	6 0.55	6 C	0.331	0.25	0	0.02	19.713	0.07	
C0442	4/17/02 16:21	6.607	1.24	12.937	0.25	0	1.92	0.944	0.55	5 C	0.272	0.26	0	0.02	19.794	0.06	
C0443	4/17/02 16:23	6.316	1.22	13.212	0.25	0	1.9	1.021	0.56	6 C	0.299	0.28	0	0.02	19.738	0.06	
C0444	4/17/02 16:24	6.494	1.22	12.966	0.25	0	1.92	1.116	0.55	5 (0.376	0.27	0	0.02	19.78	0.07	
0445	4/17/02 16:26	6.589	1.27	12.744	0.25	1.154	2.02	1.21	0.56	5 (0.482	0.27	0	0.02	19.812	0.08	
C0446	4/17/02 16:28	6.484	1.24	12.857	0.24	1.04	1.99	1.214	0.56	5 C	0.472	0.25	0	0.02	19.664	0.07	
C0447	4/17/02 16:30	6.912	1.24	12.696	0.24	2.347	2	1.266	5 0.57		0.6	0.24	0	0.02	19.678	0.1	
00448	4/1//02 16:31	6.949	1.21	12.852	0.25	1.193	1.93	1.156	0.56) (0.466	0.23	0	0.02	19.645	0.07	
C0449	4/1//02 16:33	7.071	1.23	12,751	0.25	1.707	1.96	1.167	0.55) (0.461	0.24	0	0.02	19.011	0.08	
CU45U	4/17/02 16:35	7.17	1.25	12.774	0.25	1.245	1.97	1.10	0.55)	0.43	0.24	U	0.02	19.700	0.07	۰. ۲
	1																f

Raw Mill O	n	Temperatu	ire & Pres	ssure Adju	usted Conce	entrations in	ppm		_		_					
		Ammonia	Error+-	CO2	Error+-	Ethylene	Error+-	Formaldehyde	Error+-	HCI	Error+-	SF6	Error+-	Water	Error+-	
C0451	4/17/02 16:37	6.883	1.24	12.827	0.25	1.878	2	1.286	0.56	0.53	0.25	0	0.02	19.707	0.08	
C0452	4/17/02 16:38	6.901	1.27	12.799	0.25	1.007	1.99	1.072	0.56	0.441	0.24	0	0.02	20.029	0.07	
C0453	4/17/02 16:40	5.485	5 2.04	13.838	0.58	2.062	4.71	1.168	0.59	0	0.46	0	0.03	19.772	0.43	
C0454	4/17/02 16:42	2 6.107	1.18	13.076	0.24	0.549	1.86	1.034	0.55	0.36	0.25	0	0.02	19.759	0.06	
C0455	4/17/02 16:44	1 5.274	2.05	14.092	0.59	2.23	4.72	1.148	0.61	0	0.45	0	0.03	19.853	0.43	
C0456	4/17/02 16:4	5 6.479) 1.21	13.021	0.25	0.331	1.89	0.946	0.55	0.359	0.24	0	0.02	19.918	0.06	•
<u>C0457</u>	4/17/02 16:4	6.558	1.28	12.948	0.26	0.231	1.99	1.027	0.55	0.352	0.24	0	0.02	20.029	0.06	
C0458	4/17/02 16:49	9 0.556	5 0.18	0.299	0.2	0	2.17	1.405	0.36	47.967	1.28	6.075	0.08	0.774	0.05	
C0459	4/17/02 16:49	9 0.35	0.14	0.10	0.09	0	1.92	0.668	0.33	05.296	1.22	6.19	0.08	0.22	0.05	
C0460	4/17/02 16:50	0.2	0.15	0.133 E 004	0.07	0 2 595	1.00	1.015	0.35	/5./42	1.39	6.191	0.07	0.121	0.05	
C0461	4/1//02 16:50	J 1.083	0.74	0.004	0.25	2.300	2.02	0.909	0.42	03.000	1.75	3.200	0.06	1.141	0,07	
C0462	4/1//02 16:5	1 4.787	0.70	12.300	0.2	1.337	1.57	1.390	0.00	35.005	0.99	1.072	0.02	15.90	0.07	
C0463	4/17/02 10:5		0.04	12.000	0.22	1 1 2 2	1.0	1.309	0.50	20.090	0.77	0.770	0.02	17.01	0.07	
C0464	4/17/02 10.5	2 0.00	0.00	12.013	0.22	1.123	1.0	1.150	0.55	20.079	0.73	0.74	0.02	47 494	0.07	
C0465	4/17/02 10.5	2 0.110	7 0.85	12.559	0.22 0.22	1 795	1.02	1 360	0.50	20.152	0.71	0.755	0.02	16 094	0.07	
C0467	4/17/02 10.5	2 0.17	0.00	12.040	0.22	2 144	1.55	1.309	0.50	24.730	0.7	0.704	0.02	10.904	0.07	
C0467	4/17/02 10:5	3 6 4 87	7 0.3	12.002	0.21	1 835	1.00	1 438	0.50	20.007	0.7	0.70	0.02	17.000	0.07	
C0460	4/17/02 10:5	0.407 1 654	1 0.81	12 953	0.21	1 275	1.00	1.400	0.57	22.400	0.69	0.750	0.02	17.104	0.07	HCI Spika ta Praha
C0409	4/17/02 10:5	4 66'	0.00	12.000	6 0.21	0.82	1 64	1 222	0.56	21 754	0.00	0.748	0.02	17.100	0.07	noi spike to Probe
C0471	4/17/02 16:5	5 66'	1 0.88	12,701	0.21	0.723	1.59	1,189	0.57	20.858	0.66	0.748	0.02	17 144	0.00	
C0472	4/17/02 16:5	5 6.65	5 0.87	12.62	0.22	0.663	1.59	1.323	0.56	20.874	0.65	0.744	0.02	17 114	0.06	
C0473	4/17/02 16:5	5 6.570	5 0.88	12.454	0.21	1.54	1.63	1.354	0.56	21.161	0.64	0.749	0.02	17	0.09	
C0474	4/17/02 16:5	6 6.83	5 0.9	12.545	5 0.22	2.701	1.68	1.483	0.58	21.628	0.65	0.752	0.02	17.182	0.12	
C0475	4/17/02 16:5	6 6.910	6 0.89	12.384	0.21	1.365	1.66	1.444	0.56	20.989	0.62	0.749	0.02	17.501	0.08	
C0476	4/17/02 16:5	7 6.837	7 0.86	5 12.355	5 0.21	0.91	1.61	1.204	0.55	20.207	0.6	0.744	0.02	17.194	0.07	
C0477	4/17/02 16:5	7 7.02	9 0.92	2 12.407	0.22	3.038	1.7	1.514	0.56	21.361	0.63	0.752	0.02	17.11	0.11	
C0478	4/17/02 16:5	8 7.074	4 0.93	3 12.48	3 0.22	3.32	1.74	1.451	0.58	20.965	0.63	0.75	0.02	17.152	0.1	
C0479	4/17/02 16:5	8 7.084	4 0.93	3 12.473	3 0.22	2.523	1.73	1.45	0.56	20.883	0.63	0.743	0.02	17.192	0.08	
C0480	4/17/02 16:5	8 6.974	4 0.93	3 12.593	3 0.22	2.526	1.73	1.478	0.56	20.647	0.62	0.742	0.02	17.119	0.09	
C0481	4/17/02 16:5	9 6.88	6 0.89	9 12.778	3 0.21	1.856	1.67	1.436	0.57	20.565	0.62	0.74	0.02	17.144	0.08	
C0482	4/17/02 16:5	9 6.82	2 0.9	12.537	0.22	1.453	1.67	1.296	0.56	20.484	0.61	0.744	0.02	17.063	0.07	
C0483	4/17/02 17:0	0 6.75	8 0.86	5 12.731	0,21	1.039	1.61	1.351	0.56	20.467	0.62	0.749	0.02	17.115	0.06	
C0484	4/17/02 17:0	0 6.66	4 0.85	5 12.734	0.22	1.132	1.59	1.214	0.55	20.539	0.63	0.742	0.02	17.05	0.06	
C0485	4/17/02 17:0	1 6.62	8 0.92	2 12.766	5 0.22	1.07	1.64	1.288	0.55	15.936	0.51	0.579	0.02	17.619	0.06	
C0486	4/17/02 17:0	1 6.51	1 0.89	12.583	3 0.21	1.338	1.63	1.2//	0.56	15.149	0.47	0.693	0.02	17.227	0.07	
C0487	4/17/02 17:0	2 6.43	6 0.86 0 0 00			1.592	1.59	1.385	0.55	18.408	0.59	0.734	0.02	16.988	0.07	
C0488	4/17/02 17:0	2 6.31	B 0.80	3 12.372 = 40.720	2 0.21	1.009	1.02	1.242	0.50	20.122	0.05	0.744	0.02	16.992	0.07	
C0489	4/1//02 17:0	2 0.3/	9 0.00	12.730	0.21	2 245	1.59	1.200	0.50	20.014	0.07	0.741	0.02	10.992	0.07	
C0490	4/17/02 17.0	3 6 40	0.00 2 0.00	12.000	3 0.21	1 745	1 61	1 337	0.50	20.434	00.0	0.745	0.02	10.902	0.08	
C0491	4/17/02 17.0	0.49 A 6.46	3 0.00	12.000	3 0.21	1 130	1.51	1.007	0.50	20.442	0.00	0.742	0.02	10.900	0.07	
C0492	4/17/02 17:0	4 0.40	1 0.87	7 12 63	3 0.21	1 278	1.54	1 179	0.50	20.000	0.00	0.730	0.02	16 012	0.00	
C0493	A/17/02 17:0	5 649	7 0.86	5 12 731	0.21	1.559	1.6	1 216	0.57	20.636	0.65	0.734	0.02	16 896	0.00	
C0494	4/17/02 17:0	5 6.52	4 0.89	12.975	5 0.21	1.589	1.6	1.319	0.56	19.005	0.63	0.588	0.02	17 358	0.06	
C0496	4/17/02 17:0	5 6	5 0.92	2 13.054	0.23	1.62	1.64	1.396	0.56	9.311	0.33	0.469	0.02	17 743	0.00	
C0497	4/17/02 17:0	6 6.67	1 0.94	13.157	7 0.22	1.498	1.66	1.415	0.56	8.72	0.33	0.474	0.02	17 934	0.07	
C0498	4/17/02 17:0	6 6.75	9 1	13.096	5 0.23	1.285	1.69	1.235	0.56	8.179	0.32	0.472	0.02	17.953	0.06	
C0499	4/17/02 17:0	6.91	2 0.97	7 13.165	5 0.22	1.406	1.69	1.32	0.57	8.226	0.31	0.473	0.02	18.017	0.07	
C0500	4/17/02 17:0	7.04	7 1.01	1 12.735	5 0.21	1.19	1.72	1.278	0.56	8.041	0.27	0.474	0.02	18.045	0.07	
•																

Raw Mill C	On	Temperatu	re & Pres	ssure Adju	isted Conce	ntrations in	ppm								
		Ammonia	Error+-	CO2	Error+-	Ethylene	Error+-	Formaldehyde	Error+-	HCI	Error+-	SF6	Error+-	Water	Error+-
C0501	4/17/02 17:08	7.2	1	12.9	0.22	1.146	1.72	1.312	0.58	7.952	0.27	0.472	0.02	18.052	0.07
C0502	4/17/02 17:08	7.093	0.97	13.092	0.22	0.769	1.66	1.4	0.57	7.798	0.27	0.494	0.02	18.092	0.07
C0503	4/17/02 17:08	6.974	0.93	12.78	0.22	0.428	1.63	1.263	0.56	7.972	0.27	0.585	0.02	17.733	0.06
C0504	4/17/02 17:09	6.832	0.88	12.848	0.21	0.425	1.58	1.17	0.57	8.507	0.32	0.606	0.02	17.583	0.06
C0505	4/17/02 17:09	6.822	0.93	12.682	0.21	0.652	1.64	1.223	0.55	8.764	0.32	0.61	0.02	17.616	0.06
C0506	4/17/02 17:10	6.703	0.93	12.54	0.21	0.401	1.63	1.115	0.55	8.814	0.32	0.611	0.02	17.64	0.06
C0507	4/17/02 17:10	6.584	0.89	12.758	0.21	0.717	1.6	1.123	0.56	8.873	0.33	0.607	0.02	17.631	0.06
C0508	4/17/02 17:11	6.493	0.89	12.757	0.22	0.908	1.61	0.99	0.55	9.044	0.34	0.603	0.02	17.536	0.06
C0509	4/17/02 17:11	6.478	0.91	12.766	0.21	0.944	1.62	1.216	0.55	9.012	0.35	0.608	0.02	17.617	0.06
C0510	4/17/02 17:11	6.439	0.92	12.778	0.21	1.164	1.63	1.134	0.55	8.994	0.35	0.604	0.02	17.581	0.06
C0511	4/17/02 17:12	6.485	0.9	12.883	0.22	1.166	1.6	1.263	0.57	9.096	0.36	0.607	0.02	17.591	0.06
C0512	4/17/02 17:12	6.569	0.89	12.864	0.22	1.646	1.61	1.329	0.56	9.217	0.35	0.606	0.02	17.554	0.07
C0513	4/17/02 17:13	6.644	0.95	12.62	0.22	1.817	1.69	1.308	0.55	9.158	0.35	0.606	0.02	17.519	0.07
C0514	4/17/02 17:13	6.661	0.96	12.653	0.22	1.63	1.68	1.315	0.55	9.405	0.37	0.635	0.02	17.546	0.07
C0515	4/17/02 17:14	6.553	0.88	12.82	0.21	1.311	. 1.6	1.255	0.57	12.771	0.48	0.721	0.02	17.255	0.06
C0516	4/17/02 17:14	6.582	0.86	12.926	0.22	1.277	1.59	1.074	0.56	15.463	0.59	0.738	0.02	17.137	0.06
C0517	4/17/02 17:14	6.592	0.89	12.726	0.21	0.951	1.61	1.246	0.55	16.489	0.59	0.745	0.02	17.175	0.06
C0518	4/17/02 17:15	6.538	0.88	12.814	0.22	0.951	1.58	1.128	0.57	19.47	0.72	0.745	0.02	17.137	0.06
C0519	4/17/02 17:15	6.416	0.85	13.045	0.21	1.121	1.56	1.339	0.57	20.549	0.75	0.745	0.02	17.172	0.07
C0520	4/17/02 17:16	6.361	0.86	13.013	0.21	1.061	1.57	1.228	0.56	20.723	0.74	0.747	0.02	17.136	0.06
C0521	4/17/02 17:16	6.426	0.87	12.812	0.21	0.932	1.59	1.097	0.56	20.864	0.73	0.744	0.02	17.035	0.06
C0522	4/17/02 17:17	6.455	0.83	12.981	0.21	0.943	1.54	1.092	0.57	21.012	0.74	0.744	0.02	17.051	0.06
C0523	4/17/02 17:17	6.622	0.86	12.801	0.21	1.57	1.61	1.267	0.57	21.648	0.7	0.676	0.02	17.304	0.07
C0524	4/17/02 17:17	7.415	1.07	13.46	0.23	0.902	1.76	1.302	0.56	8.819	0.39	0.149	0.02	19.324	0.07
C0525	4/17/02 17:18	7.694	1.1	13.502	0.24	0.165	1.79	1.175	0.58	5.864	0.27	0.034	0.02	19.619	0.06
C0526	4/17/02 17:18	7.69	1.1	13.515	0.23	0.221	1.78	1.219	0.57	4.817	0.25	0.012	0.02	19.653	0.06
C0527	4/17/02 17:19	7.736	1.15	13.316	0.25	0.439	1.85	1.194	0.57	4.216	0.24	0	0.02	19.756	0.06
C0528	4/17/02 17:19	7.506	1.04	13.125	0.23	0.977	1.76	1.159	0.56	3.957	0.23	0.24	0.02	18.87	0.06
C0529	4/17/02 17:20	6.889	0.81	13.046	0.21	1.608	1.55	1.288	0.58	5.837	0.25	0.764	0.02	16.894	0.06
C0530	4/17/02 17:20	6.668	0.8	12.818	0.21	1.947	1.56	1.188	0.57	8.627	0.34	0.854	0.02	16.556	0.06
C0531	4/17/02 17:20	6.6	0.82	12.762	0.2	1.715	1.58	1.173	0.57	13.593	0.46	0.718	0.02	16.569	0.06
C0532	4/17/02 17:21	6.621	0.8	12.911	0.21	1.463	1.57	1.308	0.56	12,108	0.43	0.81	0.02	16.475	0.06
C0533	4/17/02 17:21	6.632	0.83	12.85	0.22	1.533	1.58	1.213	0.57	14.46	0.51	0.826	0.02	16,641	0.06
C0534	4/17/02 17:22	6.701	0.83	12.805	0.21	1.839	1.59	1.29	0.56	16.922	0.57	0.776	0.02	16.695	0.07
C0535	4/17/02 17:22	6.864	0.84	12.914	0.21	1.645	1.6	1.401	0.57	18.114	0.62	0.769	0.02	16.804	0.07
C0536	4/17/02 17:23	6.962	0.84	12.965	· 0.21	1.671	1.59	1.353	0.57	19.729	0.7	0.762	0.02	16.827	0.07
C0537	4/17/02 17:23	6.917	0.85	13.009	0.21	1.75	1.6	1.363	0.57	20.312	0.72	0.76	0.02	16.819	0.07
C0538	4/17/02 17:24	7.011	0.87	12.669	0.21	1.507	1.63	1.35	0.56	20.476	0.72	0.755	0.02	16.946	0.07
C0539	4/17/02 17:24	7.079	0.84	12.692	0.21	1.439	1.59	1.308	0.56	20.661	0.71	0.756	0.02	16.977	0.06
C0540	4/17/02 17:24	7.142	0.83	12.585	0.2	1.425	1.58	1.187	0.56	21.011	0.72	0.75	0.02	16.939	0.06
C0541	4/17/02 17:25	6.947	0.82	12.619	0.21	1.833	1.58	1.168	0.56	21.541	0.73	0.751	0.02	16.912	0.07
C0542	4/17/02 17:25	6.949	0.83	12.737	0.21	1.58	1.58	1.247	0.56	21.659	0.73	0.746	0.02	16.924	0.07
C0543	4/17/02 17:26	6.851	0.85	12.663	0.21	1.651	1.61	1.217	0.55	21.679	0.71	0.745	0.02	17.027	0.06
C0544	4/17/02 17:26	6.982	0.83	12.662	0.21	1.47	1.59	1.134	0.56	21.411	0.69	0.74	0.02	16.966	0.06
CU545	4/17/02 17:27	6.931	0.83	12.667	0.22	1.421	1.59	1.173	0.55	21.816	0.69	0.738	0.02	16.932	0.07
00546	4/17/02 17:27	7.142	0.91	12.703	0.21	1.815	1.67	1.309	0.55	21.394	0.66	0.66	0.02	17.291	0.07
00547	4/17/02 17:27	7.38	0.95	13.066	0.21	1.346	1.71	1.325	0.56	14.158	0.46	0.502	0.02	17.813	0.07
00548	4/1//02 17:28	7.352	0.99	13.099	0.22	1.561	1.72	1.327	0.57	9.316	0.32	0.463	0.02	17.995	0.07
00549	4/1//02 17:28	7.285	1.01	13.038	0.21	1.456	1.74	1.336	0.56	8.758	0.31	0.451	0.02	17.996	0.07
00000	4/1//02 17:29	7.101	0.96	13.121	0.21	1.121	1.67	1.156	0.56	8.377	0.32	0.451	0.02	. 17.900	0.00
	1							· 6							

Raw Mill On Temperature & Pressure Adjusted Concentrations in ppm

		Ammonia	Error+-	CO2	Error+-	Ethylene	Error+-	Formaldehyde	Error+-	HCI	Error+-	SF6	Error+-	Water	Error+-	
C0551	4/17/02 17:29	7.023	0.93	13.255	0.21	1.109	1.65	1.228	0.57	8.107	0.28	0.447	0.02	17.945	0.06	
C0552	4/17/02 17:30	6.94	0.94	13.384	0.22	1.051	1.65	1.106	0.58	7.684	0.28	0.358	0.02	18.24	0.06	
C0553	4/17/02 17:33	0.284	0.15	0.129	0.05	20.705	0.36	0.726	0.33	3.233	0.28	0.005	5.51E-03	0,078	0.02	
C0554	4/17/02 17:33	0.183	0.15	0.11	0.05	20.614	0.36	0.602	0.33	2.999	0.27	0.004	5.41E-03	0.076	0.02	
C0555	4/17/02 17:34	0.21	0.15	0.112	0.05	20.637	0.37	0.659	0.31	2.715	0.29	0.004	5.46E-03	0.077	0.02	
C0556	4/17/02 17:34	0.212	0.15	0.107	0.05	20.408	0.38	0.791	0.33	2.639	0.29	0.002	5.64E-03	0.071	0.02	
C0557	4/17/02 17:35	0.201	0.15	0.123	0.05	20.331	0.38	0.595	0.33	2.469	0.29	0.002	5.60E-03	0.068	0.02 Ethylene to Probe	
C0558	4/17/02 17:35	0.206	0.15	0.126	0.05	20.361	0.39	0.788	0.32	2.413	0.3	0.002	5.62E-03	0.065	0.02	
C0559	4/17/02 17:36	0 166	0.15	0.128	0.05	20.315	0.38	0.529	0.32	2.269	0.29	0.002	5.68E-03	0.068	0.02	
C0560	4/17/02 17:38	6.68	0.84	12.823	0.2	5.687	1.67	1.278	0.57	4.417	0.24	0	0.01	16 781	0.08	ليسيب
C0561	4/17/02 17·38	6 768	0.86	12,491	0.21	4.815	1.63	1.277	0.56	3.82	0.22	Ō	0.01	16 829	0.07	
C0562	4/17/02 17:39	6.784	0.81	12.715	0.2	3.684	1.57	1.3	0.56	3.607	0.22	0.168	0.01	16 808	0.06	
C0563	4/17/02 17:39	6 746	0.8	12,748	0.2	2.214	1.57	1.321	0.56	3.441	0.24	0.674	0.02	16 724	0.06	
C0564	4/17/02 17:39	6 623	0.76	12,836	0.2	1.626	1.54	1.266	0.57	3,263	0.25	0.762	0.02	16 698	0.06	
C0565	4/17/02 17:40	6 689	0.82	12 764	0.21	2.008	1.61	1.329	0.57	3.047	0.24	0 775	0.02	16 783	0.06	
C0566	A/17/02 17:40	6 643	0.77	12 945	0.21	1 671	1.56	1 151	0.58	2 913	0.25	0 782	0.02	16 842	0.06	
C0567	A/17/02 17:40	6 762	0.78	12 897	0.2	1 641	1 54	1 271	0.57	2 774	0.24	0.786	0.02	16 767	0.06	
C0568	4/17/02 17:41	6 671	0.75	13 022	0.2	1.331	1.04	1 135	0.57	2 702	0.24	0.700	0.02	16.716	0.06	•
C0560	4/17/02 17:41	6.85	0.70	12 522	0.22	1 480	1 56	1.100	0.56	2 572	0.20	0.70	0.02	16 653	0.06	
C0509	4/17/02 17:42	6 967	0.02	12.022	0.22	1 354	1.50	1.20	0.50	2.572	0.24	0.79	0.02	16 777	0.00	
C0570	4/17/02 17:42	6673	0.0	12.752	0.10	1 541	1.50	1 318	0.55	2.430	0.20	1 113	0.02	15.63	0.06	
C0571	4/17/02 17:42	. 0.073	0.70	10 737	0.13	3 173	1.33	1.010	0.53	2.440	0.24	2 155	0.02	11 657	0.00	
C0572	4/17/02 17:43	4.912 A 674	0.0	10.737	0.10	3.084	1 37	1.100	0.55	3 326	0.25	2.100	0.04	10.000	0.05	
C0573	4/17/02 17:43	4.074	0.50	10.319	0.10	3.084	1.37	1.113	0.51	7 002	0.25	2.37	0.04	10.550	0.05	
C0574	4/17/02 17.44	4.500	0.57	10.390	0.10	3 155	1.30	1.000	0.53	22 604	0.2.0	2.392	0.05	10.95	0.05	
C0575	4/17/02 17:44	·	0.50	10.400	0.10	3 254	1 38	1.000	0.52	28 531	0.0	2 370	0.05	10.900	0.05	
C0576	4/17/02 17:45	·	0.50	10.444	0.15	3 3 16	1.30	1 005	0.52	33 30	0.00	2.313	0.05	10.972	0.05	
C0577	4/17/02 17:45	4.404	0.50	10.333	0.10	3 474	1 41	1.000	0.53	37 268	0.00	2 3 8 1	0.05	10.900	0.05	
C0570	4/17/02 17.40	4.339 A 344	0.50	10.302	0.17	3 671	1 42	1.03	0.53	40 415	0.91	2.301	0.05	11 005	0.05	
C0579	4/17/02 17:40	· · · · · · · · · · · · · · · · · · ·	0.50	10.23	0.10	3 979	1 40	1 146	0.55	43 471	0.97	2.374	0.05	11.000	0.05	
C0500	4/17/02 17:40	7 4.303 7 A 37	0.50	10.333	0.10	3.654	1.45	1.140	0.57	45 614	0.95	2.391	0.05	11.002	0.05	
C0581	4/11/02 11.4/	4.J/	0.59	10.303	0.10	3 503	1 /5	1.073	0.52	47 579	1 05	2.000	0.05	11,024	0.05	
C0502	4/1//02 17.4/	4.373	0.59	10.432	0.10	3 760	1.43	1.032	0.55	40,668	1.05	2.301	0.05	11 110	0.05	
00583	4/1//02 17.40	0 4.040 0 4.201	0.59	10.510	0.13	3 072	1 44	1 166	0.53	51 299	1.07	2.375	0.05	11.119	0.05	
C0504	4/1//02 17.40		0.0	10.507	0.17	3,872	1 44	1.100	0.53	52 51	1 13	2.373	0.05	11,100	0.00	
C0585	4/17/02 17:43	3 / 5	0.55	6 929	0.10	2 404	2 03	0.844	0.04	62 355	1 28	3 643	0.00	7 808	0.06	
C0500	4/17/02 17.45	2 185	0.44	3 353	0,10	2.404	2.00	0.044	0.44	84 801	1 04	5 1 17	0.07	1.000	0.00	
C0587	4/17/02 17:50	183	0.04	2 503	0.38	0.658	28	1 049	0.47	97 131	22	5 360	0.00	3 568	0.08	
C0580	4/17/02 17:50	1 602	0.32	2.000	0.00	0.628	2.81	1.040	0.48	103 545	2.31	5 400	0.00	3 454	0.00	
C0509	4/17/02 17:50	1.032	0.32	2.400	0.38	0.020	2.01	1.072	0.40	107 621	2.38	5 397	0.00	3 43	0.05	
C0590	A/17/02 17:51	1 1 639	0.32	2 502	0.00	0.853	2.83	0.975	0.40	110 531	2 45	5 404	0.00	3 436	0.09	
C0591	4/17/02 17:52	1.000	0.31	2 497	0.38	0.000	2.83	1 077	0.40	112 646	25	5 398	0.03	3 456	0.05	
C0592	4/17/02 17:52	2 1.670	0.32	2 485	0.00	0.865	2.80	0.919	0.5	114 908	2.51	5 403	0.03	3 446	0.05	
C0595	A/17/02 17:52	2 1.002	0.02	2 488	0.38	0.000	2.85	0.010	0.49	116 253	2 55	5 402	0.00	3 462	0.09	
C0594	A/17/02 17:52	- 1./12	0.32	2 512	0.38	0.967	2.00	1 148	0.49	117 562	2.58	5 394	0.09	3 462	0.09	
C0506	4/17/02 17:53	1.704	0.32	2 452	0.30	0.007	2.00	1 030	0.51	118 698	2 50	5 301	0.09	3 459	01	
C0597	A/17/02 17:54	1 1 7 2 2	0.32	2 434	0.38	1.095	2.88	0 952	0.49	119 903	2.00	5 300	0.09	3 454	0.1	
C05097	A/17/02 17.54	- 1.734 1 1.754	0.32	2 439	0.38	1 237	2 88	1 013	0.45	120 549	2.5	5.553 5 A	0.09	3 437	01	
C0500	4/17/02 17:55	5 2 022	0.32	3 672	0.3	2 046	27	1 051	0.47	120 777	2 51	4 754	0.09	A 707	0.09	
C0600	4/17/02 17:55	, 2.032 , A 302	0.03	11 488	0.22	4 596	14	1 487	0.57	92 624	1.81	1 653	0.00 0 02	12 269	0.08	
0000	-11/02 17.50		. 0.00						0.07	02.027	1.01		0.00	12.000	v.vv	

Raw Mill (On	Temperatu	re & Pres	sure Adjı	isted Conce	ntrations in	ppm								
	•	Ammonia	Error+-	CO2	Error+-	Ethylene	Error+-	Formaldehyde	Error+-	HCI	Error+-	SF6	Error+-	Water	Error+-
C0601	4/17/02 17:55	5.479	0.74	12.975	0.21	3.704	1.65	1.479	0.58	65.96	1.38	0.945	0.02	16.098	0.08
C0602	4/17/02 17:56	6.525	0.86	12.539	0.22	2.312	1.72	1.414	0.56	55.011	1.19	0.85	0.02	16.464	0.08
C0603	4/17/02 17:56	6.623	0.84	12.637	0.23	2.049	1.65	1.422	0.56	48.543	1.16	0.84	0.02	16.436	0.08
C0604	4/17/02 17:57	6.747	0.8	12.703	0.22	1.687	1.6	1.325	0.57	44.409	1.17	0.841	0.02	16.412	0.07
C0605	4/17/02 17:57	6.715	0.8	12.632	0.21	1.5	1.58	1.277	0.57	41.461	1.19	0.854	0.02	16.356	0.07
C0606	4/17/02 17:58	6.746	0.83	12.456	0.21	1.965	1.61	1.324	0.55	39.201	1.18	0.848	0.02	16.333	0.07
C0607	4/17/02 17:58	6.7 8 6	0.85	12.651	0.21	2.087	1.62	1.507	0.57	37.792	1.21	0.846	0.02	16.393	0.07
C0608	4/17/02 17:58	6.721	0.84	12.531	0.21	1.711	1.58	1.409	0.55	36.264	1.24	0.842	0.02	16.405	0.07
C0609	4/17/02 17:59	6.74	0.82	12.532	0.22	1.649	1.59	1.465	0.55	35.068	1.21	0.844	0.02	16.366	0.07
C0610	4/17/02 17:59	6.615	0.83	12.654	0.21	1.441	1.57	1.269	0.56	34.489	1.27	0.843	0.02	16.41	0.07
C0611	4/17/02 18:00	6.473	0.8	12.894	0.22	1.647	1.52	1.382	0.56	33.735	1.33	0.842	0.02	16.476	0.07
C0612	4/17/02 18:00	6.483	0.84	12.624	0.21	1.586	1.56	1.312	0.56	32.934	1.29	0.841	0.02	16.403	0.07
C0613	4/17/02 18:01	6.496	0.81	12.871	0.21	1.8	1.51	1.342	0.57	32.514	1.33	0.84	0.02	16.486	0.07
C0614	4/17/02 18:01	6.62	0.8	12.821	0.21	1.713	1.51	1.396	0.57	32.011	1.31	0.837	0.02	16.448	0.07
C0615	4/17/02 18:02	6.686	0.84	12.582	0.21	2.157	1.6	1.176	0.56	31.596	1.24	0,837	0.02	16.421	0.07
C0616	4/17/02 18:02	6.922	0.82	12.778	0.2	2.587	1.59	1.274	0.58	31,443	1.21	0.788	0.02	16.582	0.09
C0617	4/17/02 18:02	7.145	0.91	12.69	0.21	2.259	1.66	1.431	0.56	28.897	1.17	0.591	0.02	17.26	0.08
C0618	4/17/02 18:03	7.254	0.93	12.88	0.23	2.244	1.69	1.29	0.57	26.624	1.11	0.545	0.02	17.487	0.08
C0619	4/17/02 18:03	7.14	0.91	12.729	0.22	1.801	1.66	1.363	0.55	25.292	1.14	0.54	0.02	17.462	0.07
C0620	4/17/02 18:04	7.126	0.9	13.021	0.22	1.8	1.63	1.387	0.56	24.393	1.15	0.54	0.02	17.481	0.07
C0621	4/17/02 18:04	6.989	0.91	12.868	0.22	1.802	1.64	1.17	0.56	23.424	1.17	0.538	0.02	17.468	0.07
C0622	4/17/02 18:05	6.89	0.89	12.83	0.21	1.687	1.64	1.179	0.55	23.137	1.17	0.54	0.02	17.492	0.07
C0623	4/17/02 18:05	6.944	0.88	12.645	0.21	1.419	1.62	1.169	0.56	22.012	1.16	0.539	0.02	17.451	0.07
C0624	4/17/02 18:05	7.001	0.9	12.588	0.22	2.721	1.67	1.323	0.57	21.889	1.14	0.541	0.02	17.351	0.09
C0625	4/17/02 18:06	7.241	0.92	12.775	0.22	. 5.55	1.74	1.301	0.58	21.722	1.13	0.543	0.02	17.355	0.15
C0626	4/17/02 18:06	7.217	0.94	12.779	0.22	3.041	1.71	1.359	0.57	21.333	1.1	0.536	0.02	17.433	0.09
C0627	4/17/02 18:07	7.186	0.95	12.616	0.23	. 1.95	1.68	1.246	0.56	20.643	1.13	0.538	0.02	17.527	0.08
C0628	4/17/02 18:07	7.105	0.9	12.846	0.21	1.584	1.62	1.364	0.56	20.308	1.13	0.541	0.02	17.454	0.07
C0629	4/17/02 18:08	7.18	0.89	12.717	0.22	1.597	1.61	1.346	0.57	20.02	1.15	0.546	0.02	17.359	0.07
C0630	4/17/02 18:08	7.146	0.89	12.613	0.22	1.354	1.61	1.209	0.55	18.168	1.04	0.541	0.02	17.397	0.07
C0631	4/17/02 18:08	7.227	0.93	12.468	0.22	2.394	1.65	1.28	0.57	19.318	1.08	0.542	0.02	17.335	0.09
C0632	4/17/02 18:09	7.204	0.88	12.758	0.21	1.405	1.58	1.254	0.55	16.868	1.03	0.543	0.02	17.4	0.07
C0633	4/17/02 18:09	7.034	0.88	12.725	0.22	1.172	1.56	1.213	0.56	14.981	0.96	0.541	0.02	17.475	0.07
C0634	4/17/02 18:10	7.092	0.88	12.691	0.21	2.067	1.6	1.355	0.56	16.88	1.04	0.541	0.02	17.441	0.09
C0635	4/17/02 18:10	7.295	0.9	12.695	0.22	3.248	1.65	1.47	0.59	16.399	1.01	0.545	0.02	17.41	0.12
C0636	4/17/02 18:11	7.204	0.92	12.62	0.22	1.735	1.6	1.399	0.57	14.877	0.96	0.54	0.02	17.427	0.08
C0637	4/17/02 18:11	7.029	0.87	12.753	0.22	1.163	1.54	1.256	0.56	13.068	0.88	0.541	0.02	17.365	0.07
C0638	4/17/02 18:11	7.03	0.88	12.73	0.22	1.231	1.55	1.088	0.57	13.123	0.89	0.54	0.02	17.479	0.07
C0639	4/17/02 18:12	7.081	0.91	12.539	0.22	1.388	1.6	1.238	0.56	13.143	0.84	0.537	0.02	17.649	0.07
C0640	4/17/02 18:12	7.124	0.92	12.531	0.22	3.061	1.66	1.449	0.56	i 14.054	0.85	0.54	0.02	17.537	0.11
C0641	4/17/02 18:13	7.225	0.93	12.347	0.21	4.469	1.7	1.305	0.57	15.078	0.84	0.542	0.02	17.331	0.14
C0642	4/17/02 18:13	7.283	0.94	12.366	0.23	4.397	1.71	1.341	0.58	14.685	0.8	0.543	0.02	17.377	0.14
C0643	4/17/02 18:14	7.222	0.94	12.424	0.21	3.116	1.69	1,48	0.57	' 13.819	0.76	0.537	0.02	17.384	0.13
C0644	4/17/02 18:14	6.963	0.9	12.516	0.21	1.687	1.63	1.336	0.55	11.518	0.63	0.536	0.02	17.456	0.08
C0645	4/17/02 18:15	6.933	0.89	12.441	0.21	1.642	1.64	1.274	0.56	5 11.753	0.59	0.534	0.02	2 17.574	0.08
C0646	4/17/02 18:15	7.001	0.94	12.347	0.21	1.227	1.67	1.177	0.55	9.995	0.53	0.53	0.02	17.679	0.07
C0647	4/17/02 18:15	6.951	0.91	12.681	0.22	1.411	1.63	1.082	0.56	10.197	0.56	0.534	0.02	17.657	0.07
C0648	4/17/02 18:16	6.888	0.9	12.606	0.21	1.282	1.63	1.162	0.55	9.519	0.51	0.533	0.02	17.547	0.07
C0649	4/17/02 18:16	6.981	0.87	12.84	0.22	2.127	1.64	1.307	0.57	' 11.514	0.57	0.533	0.02	17.315	0.09
C0650	4/17/02 18:17	7.005	0.91	12.751	0.22	2.169	1.66	1.271	0.57	11.504	0.56	0.535	0.02	17.355	0.09
	1							6							

Raw Mill C	Dn	Temperatu	re & Pres	sure Adju	usted Conce	ntrations in	ppm									
		Ammonia	Error+-	CO2	Error+-	Ethylene	Error+-	Formaldehyde	Error+-	HCI	Error+-	SF6	Error+-	Water	Error+-	
C0651	4/17/02 18:17	6.819	0.92	12.6	0.22	1.222	1.64	1.109	0.56	10.339	0.54	0.534	0.02	17.356	0.07	
C0652	4/17/02 18:18	6.881	0.89	12.744	0.21	1.088	1.59	1.057	0.57	9.402	0.53	0.538	0.02	17.295	0.07	
C0653	4/17/02 18:18	6.8	0.85	12.803	0.21	1.049	1.57	1.144	0.56	9.507	0.53	0.535	0.02	17.216	0.07	
C0654	4/17/02 18:18	6.749	0.89	12.584	0.21	1.744	1.63	1.168	0.56	10,125	0.53	0.537	0.02	17.17	0.07	
C0655	4/17/02 18:19	6.686	0.89	12.483	0.21	2.249	1.65	1.208	0.55	11.993	0.6	0.538	0.02	17.077	0.08	
C0656	4/17/02 18:19	6.498	0.88	12.556	0.22	2.111	1.61	1.356	0.55	11.241	0.61	0.568	0.02	16.986	0.08	
C0657	4/17/02 18:20	6.421	0.81	12.337	0.21	2.127	1.58	1.248	0.56	19.543	0.96	0.782	0.02	16.249	0.07	
C0658	4/17/02 18:20	6.394	0.77	12.482	0.2	1.738	1.55	1.141	0.56	22.225	1.05	0.843	0.02	16.109	0.07	
C0659	4/17/02 18:21	6.36	0.77	12.463	0.2	1.784	1.52	1.263	0.56	24.005	1.07	0.855	0.02	16.062	0.07	
C0660	4/17/02 18:21	6.334	0.81	12.457	0.21	1.825	1.57	1.209	0.55	24.884	1.08	0.861	0.02	15.977	0.07	
C0661	4/17/02 18:21	6.34	0.78	12.687	' 0.2	1.568	1.52	1.301	0.55	25.425	1.11	0.856	0.02	15.963	0.07	
C0662	4/17/02 18:22	6.369	0.76	12.542	0.21	1.355	1.48	1.235	0.55	25.786	1.11	0.855	0.02	15.905	0.07	
C0663	4/17/02 18:22	6.325	0.74	12.634	0.21	1.374	1.49	1.029	0.55	26.326	1.11	0.861	0.02	15.907	0.07	
C0664	4/17/02 18:23	6.351	0.76	12.644	0.21	1.594	1.51	1,173	0.55	26.983	1.1	0.857	0.02	16.005	0.07	
C0665	4/17/02 18:23	6.46	0.81	12.569	0.21	2.243	1.57	1.218	0.57	27.243	1.07	0.854	0.02	16.215	0.08	
C0666	4/17/02 18:24	6.363	0.81	12.489	0.2	1.97	1.57	1.128	0.56	27.34	1.04	0.852	0.02	16.154	0.08	
C0667	4/17/02 18:24	6.234	0.76	12.724	0.21	1.479	1.5	0.997	0.55	27.427	1.11	0.849	0.02	16.152	0.07	
C0668	4/17/02 18:24	6.151	0.79	12.527	′ 0.21	1.618	1.55	1.269	0.55	27.413	1.03	0.846	0.02	16.056	0.07	
C0669	4/17/02 18:25	6.238	0.81	12.421	0.2	3.485	1.6	1.295	0.57	27.876	0.98	0.851	0.02	15.972	0.11	
C0670	4/17/02 18:25	6.329	0.82	12.316	6 · 0.22	5.442	1.64	1.515	0.58	28.38	0.96	0.858	0.02	15,903	0.16	
C0671	4/17/02 18:26	6.413	0.84	12.507	' 0.2	4.401	1.64	1.404	0.58	28.218	0.94	0.856	0.02	15.959	0.13	
C0672	4/17/02 18:26	6.46	0.82	12.741	0.2	2.784	1.61	1.237	0.58	28.397	0.93	0.853	0.02	16.098	0.1	
C0673	4/17/02 18:27	6.523	0.79	12.806	0.2	1.33	1.57	1.103	0.56	28.288	0.9	0.848	0.02	16.202	0.08	
C0674	4/17/02 18:27	6.547	0.78	12.683	0.2	0.577	1.52	1.095	0.55	28.145	0.92	0.847	0.02	16.235	0.07	
C0675	4/17/02 18:28	6.487	0.79	12.73	0.21	0.009	1.5	0.986	0.55	28.245	0.94	0.848	0.02	16.197	0.07	
C0676	4/17/02 18:28	6.439	0.74	13.168	0.2	0.039	1.47	1.016	0.56	28.306	0.96	0.854	0.02	16.157	0.07	
C0677	4/17/02 18:28	6.498	0.77	12.83	0.2	0.192	1.53	1.047	0.56	28.824	0.92	0.855	0.02	16.188	0.07	
C0678	4/17/02 18:29	6.347	0.82	12.578	0.2	1.089	1.61	1.07	0.57	28.947	0.86	0.853	0.02	16.226	0.09	
C0679	4/17/02 18:29	6.355	0.82	12.426	0.2	2.122	1.62	- 1.259	0.57	29.078	0.86	0.859	0.02	16.036	0.12	
C0680	4/1//02 18:30	6.513	0.79	12.718	s 0.21	3.161	1.59	1.435	0.58	29.479	0.91	0.862	0.02	15.92	0.16	
C0681	4/1//02 18:30	6.381	0.82	12.791	0.19	0.743	1.55	1.253	0.57	29.31	0.97	0.859	0.02	16.234	0.1	
C0682	4/1//02 18:31	6.413	0.84	12.034	0.2	0.621	1.50	1.245	0.57	29.253	0.94	0.856	0.02	16.223	0.1	
C0683	4/1//02 18:31	6.501	0.82	12.000	0.2	0.547	1.54	1.123	0.57	29.430	0.96	0.855	0.02	16.309	0.1	
C0684	4/1//02 18:31	0.490	0.82	12.005	0.19	0.347	1.04	1.075	0.55	29.072	0.95	0.84/	0.02	16.359	80.0	
00085	4/1//02 18:32	0.4/4	0.01	12.030	0.2	1 200	1.04	1.144	0.55	29.309	0.97	0.851	0.02	10.38/	0.08	
00000	4/17/02 10:32		0.75	12.40/	0.19	2 002	1.0	1.1/0	0.50	30.33	0.90	1.01	0.02	15.593	0.1	
	4/1//02 10.33	0.407	0.9	12.02/	0.2	2.002	1.73	1.301	0.50	30.130	1.02	0.537	0.02	10.987	0.1	
C0680	4/17/02 10.33		0.07	2 401	0.21	18 453	2.57	1.233	0.57	20.009	0.00	0.302	0.01	10.049	0.11	
C0009	4/17/02 10.34	1.440 0.910	0.32	0 967	0.30	10.400	2.37	0.917	0.44	2,303	0.40	0.000	0.02	3.417	0.07	
C0090	4/17/02 10:30	5 0.019 5 0.478	0.20	0.007	0.01 0.21	19.005	1 66	1 000	0.72	1 261	0.39	0.039	0.02	0.70	0.00	
C0091	4/17/02 10.30	0.470 0.323	0.19	0.340	0.21	20 274	1 14	0.540	0.33	0.858	0.20	0.021	0.02	0.79	0.05	Ethylone to Coll
C06032	4/17/02 10.30	0.323 0 171	0.10	0.21	, 0.13 ; 0.07	20.27	0.73	0.049	0.33	0.000 0 A79	0.19	0.014	7 085 02	0.371	0.04	Curylene to Cell
C0604	4/17/02 18:30		0.10	0.120	0.07	20.72	0.75	0.24	0.33	0، - ،0 ۸ ۸	0.22	0.000	5 925-03	0.103	0.03	
C0695	4/17/02 18:30	7 0.040	0.13	0.033	/ 0.04 0.04	19 986	0.40	0.014	0.32	0.4 0 354	0.23	0.000	5 465-03	0.004	0.02	
C0696	A/17/02 18:37	1 0.097	0.13	0.015	5 0.00	19 580	0.35	0.410	0.32	0.004	0.57	0.018	5 84E.02	0.013	0.02	
00030		0.004	0.1	0.010	0.02	10.000	0.00	0.140	0.01	0.204	0.40	0.010	0.046-00	0	0.02	

1

TXI-Hunter Kiln Stack Raw Mill Off

Summary of FTIR Results

Run No. Start Date/Time End Date/Time	4 4/18/02 10:01 4/18/02 11:06	5 4/18/02 12:10 4/18/02 13:17	6 4/18/02 14:44 4/18/02 15:44
<u>Method 321</u> Hydrogen Chloride (ppmwv)	1.33	2.13	2.18
Method 320 Formaldehyde (ppmwv)	1.28	1.05	1.28

TXI - Hunter Kiln Stack, Raw Million Method 320/321

FTIR METHOD SETUP

Method Name: HCKinsas Method Path: C:\JOBATXI\KANSAS\HCL KANSAS.ME Method Type: Automant 3.0

Non-Linear Analysismode Temperature & Pressure Adjustments: ON Mass Emission Computations: OFF

Method Parameters:

Wavenumber range:	650.00 - 4500.00
Fingernint zoom:	650.00 - 1400.00
Path Length =	7.2
InterfereCriterion =	2500
Gain number =	1

	•
Apodization =	Triangle
PhaseCorrect =	Mertz
Resolution =	0.5
BaselineCorrection:	Linear

Compound: Ammonia

Reference Temperature = 25 Reference Pressure = 1 Alarms: Disabled Output Disabled

Spectrum: NH3_12.SPC

Primary: Yes Reference concentration = 52.60 Region #1: 1043.04 - 1057.22 Region #2: 1061.38 - 1078.68 Region #3: 1083.18 - 1098.76 Region #4: 1101.70 - 1106.14 Region #5: 1120.94 - 1124.20

Compound: CO2

Reference Temperature = 180 Reference Pressure = 0.973741 Alarms: Disabled Output: Disabled

Spectrum: CO2-20%.SPC

Primary: Yes Reference concentration = 155.60 Region #1: 1006.01 - 1114.47 Region #2: 3417.52 - 3521.07

TXI - Hunter Kiln Stack, Raw Mill Off Method 320/321

FTIR METHOD SETUP

Compound: Ethylene

Reference Temperature = 121 Reference Pressure = 1 Alarms: Disabled Output: Disabled

Spectrum: ETY_H19A.SPC

Primary: Yes Reference concentration = 207.60 Region #1: 819.51 - 936.81 Region #2: 990.16 - 1115.33

Compound: Formaldehyde

Reference Temperature = 150 Reference Pressure = 1 Alarms: Disabled Output: Disabled

Spectrum: FORM-21.SPC

Reference concentration = 79.00 Region #1: 2731.00 - 2747.00 Region #2: 2755.00 - 2770.00 Region #3: 2803.00 - 2816.00

Spectrum: FORM-20.SPC

Reference concentration = 135.00 Region #1: 2731.00 - 2747.00 Region #2: 2755.00 - 2770.00 Region #3: 2803.00 - 2816.00

Spectrum: FORM-19.SPC

Primary: Yes Reference concentration = 237.00 Region #1: 2731.00 - 2747.00 Region #2: 2755.00 - 2770.00 Region #3: 2803.00 - 2816.00 TXI - Hunter Kiln Stack, Raw Mill Off Method 320/321

FTIR METHOD SETUP

Compound: HCI

Reference Temperature = 180 Reference Pressure = 1 Alarms: Disabled Output: Disabled

Spectrum: HCL-180-7PPMM.SPC

Reference concentration = 7.30 Region #1: 2696.05 - 2708.94 Region #2: 2723.11 - 2732.14 Region #3: 2746.31 - 2757.91 Region #4: 2766.94 - 2781.11 Region #5: 2792.71 - 2805.60 Region #6: 2813.34 - 2828.80 Region #7: 2836.54 - 2849.43

Spectrum: HCL-180-19PPMM.SPC

Reference concentration = 18.60 Region #1: 2697.79 - 2707.23 Region #2: 2722.33 - 2734.60 Region #3: 2745.92 - 2758.19 Region #4: 2769.51 - 2782.73 Region #5: 2792.16 - 2802.54 Region #6: 2816.70 - 2825.19 Region #7: 2838.40 - 2847.84

Spectrum: HCL-180-42PPMM.SPC

Primary: Yes Reference concentration = 42.40 Region #1: 2698.12 - 2708.43 Region #2: 2723.16 - 2731.26 Region #3: 2747.46 - 2754.83 Region #4: 2769.56 - 2779.87 Region #5: 2792.39 - 2801.97 Region #6: 2815.96 - 2824.80 Region #7: 2837.32 - 2846.89

Spectrum: HCL_H1A.SPC

Reference concentration = 161.70 Region #1: 2697.14 - 2707.01 Region #2: 2723.17 - 2732.14 Region #3: 2746.50 - 2757.28 Region #4: 2768.94 - 2782.41 Region #5: 2793.18 - 2805.74 Region #6: 2814.72 - 2828.18 Region #7: 2838.96 - 2846.14 TXI - Hunter Kiln Stack, Raw Mill Off Method 320/321

FTIR METHOD SETUP

Compound: SF6

Reference Temperature = 121 Reference Pressure = 1 Alarms: Disabled Output: Disabled

Spectrum: SF6_H5A.SPC

Primary: Yes Reference concentration = 3.86 Region #1: 907.35 - 996.47

Spectrum: SF6_H13A.SPC

Reference concentration = 11.02 Region #1: 907.35 - 996.47

Spectrum: SF6_H17A.SPC

Reference concentration = 33.10 Region #1: 907.35 - 1016.28

Compound: Water

Reference Temperature = 181 Reference Pressure = 1.00164 Alarms: Disabled Output: Disabled

Spectrum: 10PCTH2O.SPC

Reference concentration = 70.00 Region #1: 1108.00 - 1151.00 Region #2: 2951.00 - 2999.61

Spectrum: 20PCTH2O.SPC

Primary: Yes Reference concentration = 140.00 Region #1: 1108.00 - 1151.00 Region #2: 2952.00 - 2998.00

Temperature & Pressure Adjusted Concentrations in ppm

Raw Mill	Off	Temperatu	re & Pres	sure Adju	sted Conce	ntrations in	ppm									
		Ammonia	Error+-	CO2	Error+-	Ethylene	Error+-	Formaldehyde	Error+-	HCI	Error+-	SF6	Error+-	Water	Error+-	
C0001	4/18/02 7:53	0.026	0.02	0	3.45E-03	0	0.06	0.015	0.04	0.057	0.02	0	9.57E-04	0	2.41E-03	
C0002	4/18/02 8:02	0.154	0.06	0	0.02	20.245	0.18	0	0.26	0.204	0.16	0.014	5.11E-03	0.036	0.02	
C0003	4/18/02 8:04	0.136	0.06	0	0.02	20.151	0.18	0	0.26	0.15	0.14	0.015	5.21E-03	0.036	0.01	
C0004	4/18/02 8:05	0.122	0.06	0	0.02	20.013	0.18	0.034	0.25	0.143	0.18	0.016	5.31E-03	0.03	0.01 Ethy	lene to Cell
C0005	4/18/02 8:07	0.128	0.06	0	0.02	20.05	0.18	0	0.24	0.164	0.22	0.016	5.31E-03	0.032	0.01	
C0006	4/18/02 8:09	0.166	0.05	0	0.02	20.097	0.16	0	0.21	0.136	0.28	0.016	5.27E-03	0.02	0.01	
C0007	4/18/02 8:16	0.176	0.06	0	9.98E-03	0	0.33	.0	0.14	28.023	0.75	0.723	0.01	. 0	0.02	
C0008	4/18/02 8:18	0.159	0.05	0	8.52E-03	0	0.32	0	0.13	29.24	0.78	0.722	0.01	· 0	0.02	
C0009	4/18/02 8:19	0.167	0.05	0	7.93E-03	0	0.32	0	0.13	29.827	0.85	0.723	0.01	0	0.02	•
C0010	4/18/02 8:21	0.152	0.05	0	7.63E-03	0	0.31	0	0.13	29.75	0.83	0.714	9.85E-03	. 0	0.02	
C0011	4/18/02 8:23	0.141	0.05	0	7.78E-03	0	0.33	0	0.13	29.882	0.66	0.714	9.87E-03	0	0.02	
C0012	4/18/02 8:28	0.099	0.04	0	0.01	0	0.29	0	0.11	7.996	0.16	0.392	5.71E-03	Ó	9.78E-03	
C0013	4/18/02 8:30	0.076	0.05	0	9.99E-03	0	0.26	0	0.12	7.97	0.25	0.392	5.60E-03	0	8.57E-03	
C0014	4/18/02 8:32	0.102	0.05	0	9.30E-03	0	0.24	0	0.11	8.018	0.32	0.392	5.53E-03	0	7.92E-03	
C0015	4/18/02 8:33	0.095	0.05	0	8.68E-03	0	0.23	0	0.1	8.013	0.34	0.392	5.56E-03	0.002	7.61E-03	
C0016	4/18/02 8:38	0.05	0.04	0	8.86E-03	0	0.19	0	0.06	0	0.16	0	3.04E-03	0	6.56E-03	
C0017	4/18/02 8:39	0.048	0.04	0	0.01	0	0.24	0	0.05	0	0.14	0	3.54E-03	0	6.38E-03	
C0018	4/18/02 8:45	4.207	0.14	0.09	0.08	0	0.83	0.884	0.28	2.273	0.56	0	8.25E-03	0.208	0.03	
C0019	4/18/02 8:47	5.278	0.15	0.04	0.05	0	0.51	0.775	0.32	2.837	0.42	0	6.05E-03	0.073	0.02	
C0020	4/18/02 8:48	5.927	0.15	0.022	0.04	0	0.47	0.784	0.31	3.269	0.38	0	6.00E-03	0.063	0.02	
C0021	4/18/02 8:50	5.511	0.15	0.014	0.04	0	0.47	0.736	0.32	3.042	0.38	0	6.01E-03	0.06	0.02	
C0022	4/18/02 8:52	4,403	0.14	0.013	0.04	0	0.48	0.86	0.31	2.472	0.42	0	5.80E-03	0.053	0.02	
C0023	4/18/02 8:54	3.251	0.13	0.003	0.04	0	0.48	0.865	0.31	1.838	0.45	0	5.46E-03	0.056	0.02	
C0024	4/18/02 8:55	2.835	0.13	0.01	0.04	0	0.53	0.911	0.31	1.564	0.48	0	5.56E-03	0.055	0.02	
C0025	4/18/02 8:57	2.58	0.13	0.009	0.04	0	0.54	0.902	0.31	1.439	0.58	0	5.67E-03	0.057	0.02	
C0026	4/18/02 8:59	2.4/	0.13	0.013	0.04	. 0	0.51	0.881	0.3	1.403	0.52	0	5.66E-03	0.063	0.02	
C0027	4/18/02 9:01	2.439	0.13	0.020	0.04	. 0	0.49	0.952	0.31	1.3//	0.47	0	5.68E-03	0.06	0.02	
C0028	4/18/02 9:02	2.418	0.14	1 555	0.04	12 060	. 0.47	0.909	0.31	1.291	0.40	0	0.00E-U3	0.054	0.02	
C0029	4/10/02 9.07	3.054	0.43	0.033	0.11	19.604	0.52	1.190	0.20	1.097	0.64	0.001	7 475 02	2.003	0.05	
0030	4/10/02 9.09	1 916	0.14	0.000	0.03	10 730	0.52	0.907	0.29	0.027	0.50	0.001	7 275 02	0.000	0.02	dens to Dasha
0032	4/10/02 9.11	1.010	0.14	0.023	0.04	19.759	0.5	0.911	0.3	0.927	0.55	0.002	7 315-03	0.002		liene to Probe
C0032	4/18/02 9:16	1.351	0.10	0.079	0.04	0	0.40	0.032	0.27	0.894	0.51	0.005	8.43E-03	0.000	0.02	
C0033	4/18/02 9.18	1.001	0.13	0.001	0.04	õ	0.5	0.855	0.21	0.652	0.57	ň	5 51F-03	0.251	0.03	
C0034	4/18/02 9:20	0.867	0.13	0.001	0.04	õ	0.52	0.869	0.3	0.52	0.65	ŏ	5.46F-03	0.055	0.02	
C0036	4/18/02 9:21	0.804	0.13	Ō	0.04	Ő	0.55	0.903	0.3	0.5	0.66	ŏ	5.57E-03	0.057	0.02	
C0037	4/18/02 9:23	0.749	0.13	Ō	0.04	Ō	0.51	0.983	0.3	0.442	0.62	ŏ	5.31E-03	0.059	0.02	
C0038	4/18/02 9:25	0.679	0.13	Ō	0.04	0	0.48	0.826	0.3	0.436	0.57	ŏ	5.19E-03	0.00	0.02	
C0039	4/18/02 9:27	0.659	0.13	Ō	0.04	Ō	0.49	0.87	0.29	0.39	0.56	ŏ	5.27E-03	0.059	0.02	•
C0040	4/18/02 9:30	4.906	1.63	8.959	0.54	0	4.66	0.965	0.56	32.837	1.94	3.404	0.07	8.617	0.3	
C0041	4/18/02 9:32	4.931	1.63	8.957	0.54	0	4.7	0.941	0.56	55.223	2.18	3.435	0.07	8.592	0.3	
C0042	4/18/02 9:34	7.027	0.88	13.37	0.27	4.192	2.01	1.293	0.58	33.592	2.02	1.14	0.03	15.04	0.1	
C0043	4/18/02 9:36	7.509	0.96	13.466	0.23	0.77	2.11	1.15	0.56	24.126	1.85	0.885	0.02	15.914	0.08 HCI	Spike to Probe
C0044	4/18/02 9:37	6.802	2 0.81	13.689	0.33	2.297	1.68	1.262	0.59	23.176	1.52	0.885	0.02	13.378	0.07	
C0045	4/18/02 9:39	11.95	5 0.84	13.488	0.31	0	1.66	0.986	0.59	23.507	1.61	0.884	0.02	13.368	0.06	
C0046	4/18/02 9:41	17.775	5 0.9	13.212	0.31	0	1.77	0.94	0.59	24.63	1.83	0.88	0.02	13.34	0.08	
C0047	4/18/02 9:43	3 21.842	2 0.92	13.273	0.3	0	1.81	0.91	0.6	25.172	1.95	0.875	0.02	13.233	0.07	
C0048	4/18/02 9:44	25.759	0.95	13.326	0.3	0.084	1.89	0.893	0.6	25.806	1.96	0.878	0.02	13.296	0.07	
C0049	4/18/02 9:50	32.001	1.03	13.369	0.3	0	1.86	0.781	0.6	7.535	0.43	0.44	0.02	14.411	0.07	
C0050	4/18/02 9:52	33.063	3 1.06	13.389	0.24	0	2.05	0.777	0.6	7.347	0.44	0.438	0.02	15.524	0.08]

•

1

Raw Mill Off Temperature & Pressure Adjusted Concentrations in ppm

_		Ammonia	Error+-	CO2	Error+-	Ethylene	Error+-	Formaldehyde	Error+-	HCI	Error+-	SF6	Error+-	Water	Error+-
C0051	4/18/02 9:54	33.701	1.05	14.152	0.22	0	2.12	0.965	0.62	6.686	0.45	0.439	0.03	16.026	0.09
C0052	4/18/02 9:58	46.84	2.45	15.975	0.6	0	5.15	1.184	0.68	2.866	0.99	0	0.05	20.801	0.45
C0053	4/18/02 9:59	51.023	2.54	16.043	0.61	0	5.3	1.161	0.69	2.193	0.91	0	0.05	21.174	0.46
C0054	4/18/02 10:01	52.379	2.55	15.798	0.6	0	5.31	1.216	0.68	1.875	0.86	0	0.05	21.194	0.46 Run 4
C0055	4/18/02 10:03	53.368	2.56	15.927	0.6	0	5.3	1.123	0.68	1.695	0.71	0	0.05	21.19	0.46
C0056	4/18/02 10:05	53.578	2.55	15.858	0.6	0	5.29	1.315	0.68	1.585	0.74	0	0.05	21.19	0.46 Run 4 10:05 - 11:11
C0057	4/18/02 10:06	53.579	2.56	15.835	0.6	. 0	5.3	1.112	0.68	1.522	0.79	0	0.05	21.11	0.46
C0058	4/18/02 10:08	55.333	2.58	16.11	0.59	0	5.32	1.136	0.69	1.397	0.97	0	0.05	20.861	0.46
C0059	4/18/02 10:10	55.76	2.57	16.375	0.59	0	5.3	1.145	0.69	1.238	0.88	0	0.05	20.807	0.46
C0060	4/18/02 10:12	56.243	2.57	16.15	0.58	0	5.29	1.126	0.68	1.222	0.81	0	0.06	20.783	0.46
C0061	4/18/02 10:13	56.868	2.61	16.224	0.6	0	5.36	1.278	0.69	1.182	0.79	0	0.06	20.937	0.46
C0062	4/18/02 10:15	56.614	2.59	16.145	0.59	0	5.31	1.265	0.69	1.17	0.82	0	0.06	20.903	0.46
C0063	4/18/02 10:17	55.084	2.53	16.065	0.58	Ó	5.2	1.32	0.68	1.195	0.88	0	0.05	20.592	0.46
C0064	4/18/02 10:19	55.928	2.64	15.786	0.61	Ő	5.41	1.161	0.68	1.299	0.96	0	0.06	21.34	0.47
C0065	4/18/02 10:20	55.181	2.61	15.83	0.62	0	5.41	1,186	0.67	1.249	0.95	0	0.05	21.466	0.47
C0066	4/18/02 10:22	55.471	2.64	15.932	0.63	Ő	5.47	0.946	0.68	1.201	0.95	Ó	0.05	21.662	0.47
C0067	4/18/02 10:24	56.067	2.69	15.741	0.65	Ő	5.57	0.982	0.68	1.141	0.94	Ō	0.06	22.06	0.48
C0068	4/18/02 10:26	55.528	2.74	15,292	0.68	0	5.64	1.194	0.68	1.114	0.99	Ő	0.06	22.396	0.49
C0069	4/18/02 10:27	54.207	2.7	15 311	0.67	0	5.58	1.179	0.66	1.36	1.07	Ő	0.06	22.307	0.49
C0070	4/18/02 10:29	53,197	2.67	15 44	0.66	0	5 53	1.203	0.67	1.344	1.09	Ō	0.05	22.253	0.49
C0071	4/18/02 10:31	52 697	2.63	15 709	0.65	0	5 47	1.179	0.68	1.312	11	Ō	0.05	21,953	0.48
C0072	4/18/02 10:32	52 968	2.59	15 746	0.62	0	5 38	1.253	0.00	1.271	1.11	ŏ	0.05	21.403	0.47
C0073	4/18/02 10:34	53.012	2.57	15 858	0.61	0	5.36	1.273	0.68	1.278	1.11	Ō	0.05	21.359	0.47
C0074	4/18/02 10:36	53 144	2.58	15 996	0.61	0	5.37	1.275	0.68	1.307	1.17	Ō	0.05	21.426	0.47
C0075	4/18/02 10:38	55.612	2.66	16 181	0.64	0	5.5	1.29	0.69	1.152	1.24	ō	0.06	21.499	0.49
C0076	4/18/02 10:39	57.891	2.7	15 958	0.64		5 52	1.306	0.7	1.145	1.3	Ő	0.06	21.364	0.49
C0077	4/18/02 10:41	61.591	2.78	16.304	0.64	0	5 69	1.635	072	1.545	1.13	ŏ	0.07	21.115	0.55
C0078	4/18/02 10:43	60.66	2.76	16 151	0.64	0	5.64	1.672	0.72	1.422	1.34	ŏ	0.07	21.227	0.52
C0079	4/18/02 10:45	60.79	2.77	16.138	0.64	0	5.68	1.474	0.71	1.503	1.09	Ō	0.07	21.367	0.52
C0080	4/18/02 10:46	61,293	2.78	15.83	0.64	0	5.69	1.578	0.71	1.559	1.13	Ō	0.07	21.385	0.52
C0081	4/18/02 10:48	59.67	2.72	16.245	0.63	Ő	5.57	1.417	0.71	1.417	1.43	Ō	0.07	21.266	0.5
C0082	4/18/02 10:50	58.126	2.65	16 271	0.61	0	5 43	1.348	0.7	1.323	1.39	Ō	0.06	21.172	0.48
C0083	4/18/02 10:52	58.341	2.68	16.146	0.63	Ő	5 52	1.428	0.7	1.45	1.36	Ō	0.06	21.237	0.49
C0084	4/18/02 10:53	59,134	2.69	16 417	0.62	0	5.53	1.316	0.71	1.344	1.31	Ō	0.06	21.351	0.49
C0085	4/18/02 10:55	58,819	2.63	16 134	0.61	Ő	5.4	1.355	0.7	1.225	1.32	ŏ	0.06	21.048	0.47
C0086	4/18/02 10:57	58.567	2.62	15 961	0.61	Ő	5 38	1.329	0.7	1.206	1.38	ō	0.06	21.101	0.47
C0087	4/18/02 10:59	56 858	2 62	16 101	0.61	0	5 41	1.361	0.69	1.275	1.39	ŏ	0.06	21.089	0.48
C0088	4/18/02 11:00	57.368	2.62	16 143	0.61	Ő	5 41	1.307	0.69	1.149	1.34	ō	0.06	21.122	0.47
C0089	4/18/02 11:02	55.298	2.58	15.97	0.6	Ő	5.32	1.276	0.68	1.379	1.32	Ō	0.06	21.087	0.46
C0090	4/18/02 11:04	55.039	2.6	16.236	0.61	0	5.36	1.292	0.69	1.371	1.29	ŏ	0.06	21.252	0.47
C0091	4/18/02 11:06	54,803	2.58	16.278	0.61	Ő	5.37	1.223	0.69	1.046	1.25	Ō	0.05	21.213	0.47
C0092	4/18/02 11:12	47.811	1.34	15,306	0.01	0	2 44	1 128	0.64	28.81	2.63	0.956	0.04	17.887	0.12
C0093	4/18/02 11:14	48.412	1.34	15.155	0.24	Ő	2 44	1 155	0.63	27.231	2.62	0.92	0.04	17.9	0.12
C0094	4/18/02 11:16	47,505	1.31	15.032	0.24	0	2 42	0.992	0.62	28.113	2.72	0.913	0.04	17.979	0.11
C0095	4/18/02 11:18	47.452	1.33	15.103	0.24	ň	2 48	1.105	0.63	29.205	2.75	0.916	0.04	18.026	0.11 HCI Spike to Probe
C0096	4/18/02 11:19	47.217	1.32	14,914	0.24	0	2.47	1 015	0.62	29,997	2.74	0.918	0.04	18.035	0.1
C0097	4/18/02 11:21	48.424	1.34	15,186	0.24	0	2.5	1.173	0.64	30.69	2.72	0.919	0.04	17.796	0.16
C0098	4/18/02 11:26	58.444	1.62	16.005	0.29	4 06	2 88	1.967	0.75	21.706	2.71	0.413	0.05	19.545	0.44
C0099	4/18/02 11:28	55.798	2.51	16,108	0.57	JO	52	1 186	0.69	10.063	2.03	0.391	0.05	20.226	0.46
C0100	4/18/02 11:30	55.403	2 54	16 064	0.57	n	5 24	1.213	0.69	10.487	2.13	0.4	0.05	20.07	0.48
	/		2.04		0.07	Ŭ	0.27								6

Temperature & Pressure Adjusted Concentrations in ppm Raw Mill Off Ethylene Error+- Formaldehyde Error+- HCI Ammonia Error+- CO2 Error+-Error+- SF6 Error+-Water Error+-9.142 20.211 5.13 0.67 1.91 0.391 0.05 0.45 4/18/02 11:31 53.76 2.48 16.103 0.55 0 1.109 C0101 20.222 52.746 2.46 15.974 0.56 0 5.11 1.136 0.67 9.043 1.86 0.386 0.05 0.45 C0102 4/18/02 11:33 0 5.1 1.076 0.69 8.943 1.87 0.378 0.05 20.092 0.45 52.717 2.46 16.219 0.56 C0103 4/18/02 11:35 16.361 0 2.5 1.189 0.68 9.097 1.46 0.376 0.05 19.454 0.17 53.899 1.53 0.27 C0104 4/18/02 11:37 3.062 6.93E-03 1.534 0.16 0 0.06 20.65 0.71 0.79 0.31 0.99 0.001 0.094 0.03 C0105 4/18/02 11:42 0.69 0.31 2.409 0.91 0.002 6.80E-03 0.09 0 20.672 0.752 0.03 1.212 0.16 0.05 C0106 4/18/02 11:44 0.68 0.954 0.31 2.203 0.84 0.002 6.87E-03 0.089 1.053 0.16 0 0.05 20.613 0.03 Ethylene to Probe C0107 4/18/02 11:46 0.61 0.988 0.3 2.049 0.72 0.002 6.90E-03 0.086 0 0.05 20.368 0.03 1.003 0.16 C0108 4/18/02 11:47 0.16 0 0.05 20.166 0.63 1.027 0.3 1.919 0.69 0.002 7.12E-03 0.094 0.03 C0109 4/18/02 11:49 0.942 0.64 0.3 1.863 0.002 7.11E-03 0 20.183 0.938 0.7 0.089 0.03 0.917 0.16 0.05 C0110 4/18/02 11:51 19.816 0.24 0 0.2 0.223 0.58 0.014 6.45E-03 0.01 0.417 0.11 0 0.02 0 4/18/02 11:56 C0111 0.24 0.22 0.284 0 0.02 19.699 0 0.55 0.015 6.59E-03 0 0.01 C0112 4/18/02 11:57 0.461 0.11 0 19.557 0.26 0 0.22 0.261 0.49 0.014 6.91E-03 0 0.01 Ethylene to Cell 0.02 C0113 4/18/02 11:59 0.404 0.11 19.426 0.28 0 0.22 0.211 0.47 0.014 7.28E-03 0.38 0.11 0 0.02 0 0.01 C0114 4/18/02 12:01 0.22 19.41 0.28 0.195 0.5 0.014 7.35E-03 0.3 0.11 0 0.02 0 0 0.01 4/18/02 12:03 C0115 0.68 2.144 53.878 2.59 16.3 0.61 0 5.39 1.338 1.07 0 0.06 21.183 0.47 C0116 4/18/02 12:07 5.43 1.153 0.69 2.789 1.09 0 0 0.06 21.191 0.47 55.412 2.6 16.391 0.61 C0117 4/18/02 12:09 0.62 0 5.51 1.149 0.69 3.657 1.1 0 0.06 21.3 0.48 Run 5 56.703 2.66 16.237 C0118 4/18/02 12:10 16.301 0.63 0 5.57 0.976 0.71 4.867 0.67 0 0.06 21.401 0.48 C0119 4/18/02 12:12 58.666 2.69 5.59 1.024 0.7 5.489 0.71 0 21.475 2.71 16.005 0.63 0 0.06 0.49 Run 5 12:10 - 13:18 C0120 4/18/02 12:14 59.129 0 5.65 1.098 0.71 4.638 0.72 0 0.06 21.586 0.5 C0121 4/18/02 12:16 58.705 2.73 15.982 0.65 5.58 1.272 0.7 2.961 1.21 0 0.06 21.49 0.49 58.264 2.69 16,163 0.63 0 4/18/02 12:17 C0122 0.66 54.829 2.62 15.799 0.62 0 5.44 1.365 2.156 1.15 0 0.06 21.449 0.48 C0123 4/18/02 12:19 0 5.44 1.32 0.67 1.987 1.09 0 21.471 0.48 2.61 15.938 0.62 0.06 53.798 C0124 4/18/02 12:21 2.6 15.7 0.61 0 5.43 1.383 0.66 1.925 1.05 0 0.06 21.446 0.48 C0125 4/18/02 12:23 53.116 0.67 1.04 15.848 0.62 0 5.47 1.306 1.908 0 0.06 21.601 0.48 53.306 2.62 C0126 4/18/02 12:24 2.69 15.788 0.64 0 5.57 1.309 0.69 2.136 1.11 0 0.06 21.56 0.5 4/18/02 12:26 55.41 C0127 5.54 0.67 1.885 54.794 2.67 15.717 0.64 0 1.256 1.13 0 0.06 21.799 0.49 C0128 4/18/02 12:28 0 5.53 1.204 0.68 1.882 1.17 0 0.06 21.755 0.48 0.64 4/18/02 12:29 54.756 2.66 15.792 C0129 0.67 0 5.49 1.23 1.869 1.15 0 0.06 21.679 0.48 4/18/02 12:31 54.106 2.64 15.759 0.64 C0130 2.64 15.736 0.64 0 5.5 1.221 0.67 1.793 1.1 0 0.06 21.724 0.48 54.277 C0131 4/18/02 12:33 54,187 2.64 15.805 0.63 0 5.49 1.269 0.68 1.831 1.1 0 0.06 21.663 0.48 4/18/02 12:35 C0132 5.42 1.268 0.66 1.735 21.585 0.47 0 1.13 0 0.05 53.271 2.6 15.639 0.62 C0133 4/18/02 12:36 15.573 0.62 0 5.41 1.324 0.66 1.73 1.15 0 0.05 21.558 0.47 52.943 2.6 C0134 4/18/02 12:38 5.43 1.265 0.67 21.604 53.164 2.6 15.748 0.62 0 1.669 1.15 0 0.05 0.47 C0135 4/18/02 12:40 0 5.43 1.299 0.66 1.606 1.13 0 0.05 21.651 0.47 53.275 2.6 15.687 0.63 4/18/02 12:42 C0136 5.48 0.66 1.561 Ò 21.689 0 1.182 1.1 0.05 0.48 C0137 4/18/02 12:43 53.624 2.61 15.649 0.64 5.48 1.12 0.67 1.473 1.27 0.06 21.699 0.48 53.754 2.61 15.936 0.64 0 0 C0138 4/18/02 12:45 5.49 1.235 0.67 1.523 0.06 21.677 0.48 53.31 2.61 15.87 0.63 0 1 0 C0139 4/18/02 12:47 5.51 0.66 2.64 15.537 0.64 0 1.205 1.594 1.01 0 0.06 21.743 0.48 53.22 C0140 4/18/02 12:49 0 5.51 1.215 0.67 1.662 1.03 0 0.06 21.812 0.48 4/18/02 12:50 53.533 2.64 15.617 0.64 C0141 0.65 0 5.5 1.153 0.67 1.67 1.06 0 0.06 21.821 0.48 2.63 15.553 4/18/02 12:52 53.67 C0142 5.5 0.68 4/18/02 12:54 53.947 2.63 15.716 0.65 0 1.048 1.639 1.03 0 0.06 21.858 0.48 C0143 5.5 1.139 0.67 1.703 1.02 0 0.06 21.741 0.48 2.64 15.649 0.64 0 4/18/02 12:56 53.613 C0144 5.46 0.67 2.62 15.667 0.63 0 1.233 1.768 1 0 0.06 21.719 0.48 C0145 4/18/02 12:57 53.629 15.577 0.66 0 5.5 1.007 0.68 1.737 1.05 0 0.06 21.933 0.48 2.64 C0146 4/18/02 12:59 53.89 15.501 0.63 0 5.44 1.076 0.66 1.789 1.11 0 0.06 21.696 0.48 C0147 53.535 2.62 4/18/02 13:01 5.49 0.68 0.48 0 1.816 21.803 2.64 15.772 0.65 1.016 1.14 0 0.06 C0148 4/18/02 13:03 54.205

15.784

15.796

2.63

2.65

54.444

54.755

4/18/02 13:04

4/18/02 13:06

C0149

C0150

0.65

0.64

5.47

5.52

0

0

0.68

0.68

1.121

0.965

1.754

1.788

1.13

1.12

0.06

0.06

0

0

21.767

21.855

0.48

0.48

Raw Mill	Raw Mill Off Temperature & Pressure Adjusted Concentrations in ppm														
		Ammonia	Error+-	CO2	Error+-	Ethylene	Error+-	Formaldehyde	Error+-	HCI	Error+-	SF6	Error+-	Water	Error+-
C0151	4/18/02 13:08	55.419	2.68	15.669	0.66	0	5.57	1.005	0.69	1.839	1.09		0 0.0	5 21.907	0.49
C0152	4/18/02 13:10	55.43	2.69	15.715	0.66	0	5.56	0.936	0.69	1.808	1.03		0 0.0	5 21.939	0.48
00152	4/40/00 40.44	FF 070		45 074		•				4 0 - 4	4 00		<u> </u>	04 004	0.40

C0152	4/18/02 13:10	55.43	2.69	15.715	0.66	0	5.56	0.936	0.69	1.808	1.03	0	0.06	21.939	0.48
C0153	4/18/02 13:11	55.873	2.68	15.674	0.65	0	5.55	1.061	0.69	1.874	1.03	0	0.06	21.981	0.49
C0154	4/18/02 13:13	54.83	2.65	15.639	0.64	0	5.48	1.326	0.67	1.773	1.07	0	0.06	21.819	0.48
C0155	4/18/02 13:15	54.643	2.66	15.551	0.64	0	5.49	1.141	0.67	1.795	1.11	0	0.06	21.784	0.48
C0156	4/18/02 13:17	54.632	2.65	15.474	0.64	. 0	5.49	1.187	0.68	1.838	1.14	0	0.06	21.759	0.48
C0157	4/18/02 13:20	38.011	1.11	12.081	0.32	0	2.04	0.817	0.55	33.229	2.28	1.878	0.04	13.446	0.07
C0158	4/18/02 13:22	46.489	1.34	14.591	0.24	Ō	2.37	1.037	0.61	25.437	2.06	0.901	0.04	18,193	0.1
C0159	4/18/02 13:24	46.623	1.34	14.567	0.25	Ō	2.38	0.998	0.61	27.522	1.99	0.904	0.04	18.097	0.1
C0160	4/18/02 13:25	47.149	1.35	14.829	0.24	0	2.36	0.977	0.62	29,936	1.99	0.927	0.04	18,178	0.11
C0161	4/18/02 13:27	47,709	1.37	14 728	0.25	Ő	24	0.996	0.63	31.57	2.11	0.931	0.04	18,102	0.11 HCI Spike to Probe
C0162	4/18/02 13:29	47 885	1.36	14 812	0.24	õ	2 39	1 128	0.63	33 039	2 24	0.935	0.04	18.05	0.11
C0163	4/18/02 13:31	48 309	1.39	14 849	0.25	õ	2 41	1.086	0.63	34 155	2.32	0.942	0.04	18 016	0.12
C0164	4/18/02 13:32	48.624	1 30	15 044	0.25	ő	2,41	1.000	0.00	35 35	2.02	0.042	0.04	18 068	0.12
C0165	4/18/02 13:34	48 573	1 39	14 502	0.25	0	2.4	1.033	0.04	36.452	2 19	0.050	0.04	17 787	0.12
C0166	4/18/02 13:30	51 716	1.50	15 002	0.24	0	2.45	1.097	0.02	22 040	2.10	0.909	0.04	10 911	0.12
C0167	4/18/02 13:33	51.710	1.00	10.000	0.29	0	2.01	1.095	0.05	20.949	1.0	0.4	0.04	10.07	0.12
C0168	4/10/02 13:41	52.305	1.00	10.701	0.29	0	2.00	1.000	0.05	22.097	1.09	0.390	0.04	19.97	0.11
C0160	4/10/02 13.42	52.010	1.52	15.005	0.29	0	2.58	1.049	0.64	20.842	1.99	0.397	0.04	19.009	0,12
C0109	4/10/02 13:44	52.582	1.50	15.596	0.28	0	2.62	1.118	0.66	20.636	2.04	0.399	0.04	19.800	0.13
C0170	4/10/02 13:40	54.964	1.63	15.486	0.27	0	2.73	1.556	0.67	21.459	2.09	0.405	0.05	19.764	0.22
C0171	4/18/02 13:48	53.481	2.47	15.51/	0.56	0	5.08	1.021	0.65	18.661	2.48	0.395	0.05	20.016	0.45
C0172	4/18/02 13:49	53.444	2.48	15.569	0.57	0	5.11	1.084	0.67	19.518	2.14	0.401	0.05	20.066	0.45
C0173	4/18/02 13:57	1.618	0.17	0	0.05	20.338	0.43	0.919	0.29	3.103	0.38	0.003	7.06E-03	0.091	0.02
00174	4/18/02 13:58	1.2/4	0.17	0	0.05	20.212	0.42	0.906	0.29	2.526	0.39	0.003	7.14E-03	0.087	0.02
C0175	4/18/02 14:00	1.132	0.17	0	0.05	19.742	0.43	0.85	0.29	2.304	0.4	0.002	7.57E-03	0.082	0.02
00176	4/18/02 14:02	1.003	0.17	0	0.05	19.496	0.45	0.731	0.29	2.098	0.42	0.002	7.78E-03	0.09	0.02 Ethylene to Probe
	4/18/02 14:04	0.963	0.17	0	0.05	19.308	0.47	0.958	0.3	2.014	0.46	0.002	7.99E-03	0.084	0.02
00178	4/18/02 14:05	0.96	0.17	0	0.05	19.344	0.54	0.896	0.29	2.016	0.55	0.001	7.79E-03	0.078	0.02
C01/9	4/18/02 14:10	2	0.25	0	0.17	14.601	1.49	1.19	0.33	2.298	1.07	0.001	0.01	0.533	0.04
<u>C0180</u>	<u>4/18/02 14:12</u>	1.493	0.21	0	0.1	16.593	1.13	1	0.25	1.471	1.16	0.005	8.46E-03	0.339	0.03
C0181	4/18/02 14:14	0.458	0.13	0	0.02	18.817	0.3	0.228	0.22	0.301	0.78	0.014	8.38E-03	0.02	0.01
C0182	4/18/02 14:16	0.264	0.12	0	0.02	19.125	0.3	. 0.061	0.16	0.215	0.81	0.01	8.50E-03	0	0.01
C0183	4/18/02 14:17	0.207	0.12	0	0.02	19.367	0.29	0.122	0.15	0.207	0.9	0.01	8.24E-03	0	1.00E-02 Ethylene to Cell
<u>C0184</u>	4/18/02 14:19	0.18	0.12	0	0.02	19.402	0.28	0.041	0.15	0.22	0.95	0.011	8.01E-03	0	9.62E-03
C0185	4/18/02 14:23	0.121	0.12	0	0.02	0	0.49	0.011	0.05	0.06	0.76	0	8.39E-03	0	0.01
C0186	4/18/02 14:25	0.095	0.12	0	0.02	0	0.47	0.018	0.05	0.017	0.83	0	8.45E-03	0	0.01
C0187	4/18/02 14:27	4.27	0.33	0.295	0.06	0	1.13	0.456	0:16	0.486	1.45	0	8.17E-03	1.343	0.03
C0188	4/18/02 14:32	21.182	1.89	1.064	0.66	0	3.04	1.484	0.32	3.52	0.57	0	0.04	5.386	0.2
C0189	4/18/02 14:33	59.109	2.69	15.853	0.67	0	5.47	1.047	0.7	4.29	1.07	0	0.06	21.568	0.48
C0190	4/18/02 14:35	61.7 6	2.76	15.659	0.68	0	5.59	1.211	0.7	6.305	1.2	0	0.07	21.413	0.49
C0191	4/18/02 14:37	62.724	2.79	15.711	0.68	0	5.65	1.336	0.7	6.918	1.26	0	0.07	21.53	0.5
C0192	4/18/02 14:39	61.083	2.73	15.796	0.67	0	5.56	1.192	0.69	4.91	1.18	0	0.07	21.512	0.5
C0193	4/18/02 14:40	59.027	2.69	15.842	0.67	0	5.49	1.12	0.69	3.606	2.06	0	0.06	21.559	0.49
C0194	4/18/02 14:42	58.078	2.66	15.897	0.66	0	5.53	1.263	0.69	3.137	0.41	0	0.06	21.603	0.48
C0195	4/18/02 14:44	57.172	2.62	16.294	0.64	0	5.46	1.309	0.69	2.975	0.35	0	0.06	21.492	0.48 Run 6
C0196	4/18/02 14:46	56.84	2.62	16.317	0.64	0	5.48	1.134	0.69	2.914	0.44	0	0.06	21.472	0.48
C0197	4/18/02 14:47	56.644	2.63	16.171	0.64	0	5.51	1.259	0.7	2.825	0.56	0	0.06	21.554	0.48 Run 6 14:36 - 15:40
C0198	4/18/02 14:49	57.526	2.68	16.523	0.65	0	5.51	1.331	0.71	2.985	1.26	0	0.06	21.454	0.48
C0199	4/18/02 14:51	57.077	2.63	16.247	0.64	0	5.42	1.259	0.7	2.763	1.63	0	0.06	21.462	0.48
C0200	4/18/02 14:53	57.019	2.64	16.333	0.64	0	5.43	1.216	0.7	2.656	1.64	0	0.06	21.549	0.48
															6

Raw Mill	Off	Temperatu	re & Pres	sure Adju	usted Conce	ntrations ir	n ppm									
		Ammonia	Error+-	CO2	Error+-	Ethylene	Error+-	Formaldehyde	Error+-	HCI	Error+- S	F6	Error+-	Water	Error+-	
C0201	4/18/02 14:55	56.928	2.63	16.42	0.64	0	5.49	1.305	0.7	2.682	0.36	0	0.06	21.423	0.48	
C0202	4/18/02 14:57	57.322	2.63	16.325	0.65	0	5.44	1.153	0.7	2.583	1.49	0	0.06	21.3	0.47	
C0203	4/18/02 14:59	57.297	2.62	16.225	0.66	0	5.39	1.219	0.7	2.573	1.77	0	0.06	21.224	0.47	
C0204	4/18/02 15:01	57.929	2.67	16.085	0.66	0	5.45	1.398	0.69	2.697	1.95	0	0.06	21.137	0.49	
C0205	4/18/02 15:02	59.488	2.7	16.174	0.67	0	5.51	1.57	0.7	2.794	1.99	0	0.06	21.156	0.5	
C0206	4/18/02 15:04	58.064	2.67	16.292	0.66	0	5.47	1.291	0.7	2.589	2	0	0.06	21.219	0.48	
C0207	4/18/02 15:06	57.651	2.66	16.152	0.66	0	5.44	1.162	0.69	2.608	2.02	0	0.06	21.335	0.48	
C0208	4/18/02 15:08	57.348	2.65	16.196	0.66	0	5.41	1.285	0.69	2.737	2.11	0	0.06	21.04	0.48	
C0209	4/18/02 15:09	50.889	1.48	15	0.25	0	2.48	1.808	0.66	2.884	1.91	0	0.04	17.35	0.27	
C0210	4/18/02 15:11	45.277	1.47	15.732	0.25	. 0	2.4	1.321	0.63	2.29	1.75	0	0.04	19.181	0.13	
C0211	4/18/02 15:13	36.103	1.28	15.197	0.23	0	2.12	1.465	0.6	2.041	1.71	0	0.03	18.506	0.11	
C0212	4/18/02 15:15	34.045	1.21	15.057	0.22	0	2.08	1.404	0.59	1.874	1.71	0	0.03	18.063	0.1	
C0213	4/18/02 15:16	34.932	1.23	15.233	0.23	0	2.16	1.334	0.59	1.794	1.74	0	0.03	18.029	0.09	
C0214	4/18/02 15:18	35.527	1.21	15.072	0.21	0	2.14	1.296	0.59	1.732	1.76	0	0.03	17.894	0.09	
C0215	4/18/02 15:20	36.022	1.2	14.683	0.21	0	2.14	1.312	0.58	1.696	1.79	0	0.03	17.559	0.09	
C0216	4/18/02 15:22	36.695	1.19	14.545	i 0.21	0	2.12	1.332	0.59	1.728	1.79	0	0.03	17.276	0.09	
C0217	4/18/02 15:23	38.026	1.22	14.684	0.21	0	2.17	1.297	0.59	1.705	1.75	0	0.03	17.254	0.09	
C0218	4/18/02 15:25	39.661	1.23	14.789	0.22	0	2.26	1.227	0.6	1.72	1.74	0	0.03	17.3	0.09	
C0219	4/18/02 15:27	40.928	1.29	14.605	0.22	0	2.31	1.221	0.6	1.623	1.75	0	0.03	17.333	0.09	
C0220	4/18/02 15:29	41.646	1.28	14.894	0.23	0	2.24	1.233	0.61	1.601	1.77	0	0.03	17.413	0.1	
C0221	4/18/02 15:30	41.562	1.29	14.877	0.22	0	2.21	1.218	0.61	1.63	1.57	0	0.03	17.569	0.09	
C0222	4/18/02 15:32	39.271	1.26	15.019	0.23	0	2.08	1.218	0.62	1.612	1.32	0	0.03	17.73	0.09	
C0223	4/18/02 15:34	44.47	1.39	15.576	0.24	0	2.28	1.167	0.63	1.642	1.69	0	0.04	19.052	0.1	
C0224	4/18/02 15:35	5 53.189	2.45	16,48	0.59	0	5.11	1.278	0.69	1.839	2	0	0.05	20.631	0.45	
C0225	4/18/02 15:37	55.568	2.47	16.354	0.59	. 0	5.15	1.133	0.69	2,044	2.04	0	0.05	20.609	0.45	
C0226	4/18/02 15:39	56.958	2.5	16.3	0.6	0	5.21	1.258	0.68	2.247	2.14	0	0.05	20.457	0.46	
C0227	4/18/02 15:41	58.12	2.51	10.190	0.59		5.21	1.1/2	0.68	2.223	2.16	0	0.06	20.389	0.45	
C0228	4/18/02 15:42	2 56.274	2.40	10.210	0.58	0	5,11	1.088	0.08	2,169	2.12	0	0.05	20.345	0.45	
<u>C0229</u>	4/18/02 15:44	55.041	2.40	16.203	0.57		5.1	1.241	0.00	2.209	2.07	0	0.05	20.384	0.45	
00230	4/10/02 15.40	55.045	2.40	16 232	0.59	0	5 16	1.240	0.07	2.104	2.05	0	0.05	20.3	0.45	
C0231	4/10/02 10.40	55.312	2.47	16 010	0.53		5 14	1.230	0.07	2.100	2 02	0	0.05	20.000	0.45	
C0232	4/10/02 15.4	5 53.031	2.40	15 996	0.59 0.59		5 11	1.195	0.07	2.007	2.02	0	0.05	20.370	0.45	
C0233	4/18/02 15:5	7 <u>45</u> 723	1 2.44	14 708	0.03	0 028	2.35	1.200	0.07	9 239	2.00	0 014	0.05	16 681	0.45	
C0235	4/18/02 15:59	46.376	1.2	14 962	0.22	0.020	2.38	1 041	0.61	24 303	5.09	0.875	0.04	16 859	. 0.09	
C0236	4/18/02 16:00	47.757	1.37	14.485	0.23	C	2.5	0.938	0.61	27.53	5.23	0.852	0.04	17 014	01	
C0237	4/18/02 16:02	47.199	1.31	15.024	0.23	Ċ	2.41	1.025	0.62	28.966	5.15	0.854	0.04	16,997	0.1 HCl Spike to Pr	ohe
C0238	4/18/02 16:04	46.602	1.28	14.941	0.22	Ċ	2.35	1.038	0.62	30.804	5.09	0.862	0.04	16.944	0.09	
C0239	4/18/02 16:07	7 48.12	1.35	15.167	0.24	C	2.33	1.069	0.62	22.8	4.75	0.399	0.04	17.936	0.1	
C0240	4/18/02 16:09	9 42.119	1.21	14.298	0.22	0	2.07	1.183	0.59	19.716	4.3	0.4	0.03	16.463	0.09	
C0241	4/18/02 16:1 ⁻	1 39.879	1.22	14.512	0.23	0	2.04	1.344	0.6	16.359	3.72	0.4	0.03	16.591	0.09	
C0242	4/18/02 16:12	2 40.171	1.19	14.415	5 0.22	0	2.04	1.373	0.6	14.714	3.44	0.403	0.03	16.425	0.11	
C0243	4/18/02 16:14	40.026	5 1.23	13.97	0.24	0	2.03	1.146	0.58	13.617	3.25	0.404	0.03	16.885	0.1	
C0244	4/18/02 16:10	<u> </u>	1.28	13.952	2 0.25	0	2.07	1.125	0.59	15.927	3.61	0.409	0.03	17.035	0.11	
C0245	4/18/02 16:18	<u> </u>	2 1.25	14.129	0.25	C	2.12	1.498	0.6	18.624	3.96	0.41	0.03	16.777	0.14	
C0246	4/18/02 16:22	2 2.284	0.21	C	0.06	19.797	0.68	0.745	0.28	4.628	0.86	0.126	6.95E-03	0.105	0.03	
C0247	4/18/02 16:2	5 1.11	0.21	C	0.05	19.881	0.59	0.744	0.26	3.461	1.54	0.118	6.79E-03	0.063	0.02 Ethylene to Pro	be
C0248	4/18/02 16:2	7 0.907	0.21	C	0.05	20.105	0.53	0.777	0.27	2.854	1.37	0.007	7.26E-03	0.06	0.02	
C0249	4/18/02 16:3	2 0.429	0.16	<u> </u>	0.02	19.583	0.33	0	0.2	0.275	1.33	0.014	8.76E-03	0	0.01	
C0250	4/18/02 16:34	4 0.388	0.16	; C	0.02	19.787	0.33	0	0.2	0.187	1.32	0.012	8.90E-03	0	0.01	

Raw Mill	Off	Temperatu													
		Ammonia	Error+- C	02 E	Error+-	Ethylene	Error+-	Formaldehyde	Error+-	HCI	Error+-	SF6	Error+-	Water	Error+-
C0251	4/18/02 16:36	0.349	0.15	0	0.02	19.888	0.33	Č	0.2	0.182	1.27	0.012	9.07E-03	(0.01 Ethylene to Cell
C0252	4/18/02 16:38	0.312	0.15	0	0.02	19.848	0.35	C	0.19	0.143	1.2	0.012	9.37E-03		0.01
C0253	4/18/02 16:41	0.091	0.09	0	0.01	0	0.24	C	0.06	0.041	0.75	0	3.04E-03	(0 8.73E-03
C0254	4/18/02 16:43	0.089	0.09	0	0.02	0	0.59	C	0.05	0.017	0.97	0	2.52E-03	(0 0.02

.

.

1

1

3

HCI Spikes

RUN File No	Raw Mill On Pre Run 1 C0132	Raw Mill On Post Run 1 C0242	Raw Mill On Post Run 2 C0366	Raw Mill On Post Run 3 C0469
Date/Time	4/17/02 10:23	4/17/02 13:26	4/17/02 15:05	4/17/02 16:54
SE6 TANK	5.1	5.1	5.1	5.1
SF6 FLOW	0.8	0.3	0.3	0.7
CELL PRESSURE	1	1	1	1
SF6 MEASURED IN SAMPLE	0.94	0.33	0.32	0.75
DILUTION FACTOR	0.184	0.065	0.062	0.147
SAMPLE FLOW	4.4	4.6	4.8	4.7
HCI				
PPM HCI. IN TANK	149	149	149	149
HCI Expected in sample, from spike	28.44	9.70	9.23	22.27
HCI Measured in sample, including spike	23.04	7.25	6.50	- 22.52
HCI Measured in sample, prespike	1.305	0	0	0.352
HCI Measured in sample, postspike	1.305	0	0	0.352
Native HCI Measured in sample, Avg	1.305	0	0	0.352
% RECOVERY	80.3%	74.7%	70.4%	101.1%
(Acceptable= 70% - 130%)				

Raw Mill On Pre Run 1

7

20.2

20.4

4/17/02 7:42

4/17/02 8:31

C0011

C0068

Calibration Transfer Standard

CTS RUN |To Cell File # Date, time Effective Pathlength, meters

CTS, Ethylene, ppm v PPM Ethylene in tank = 20.1 (Acceptable=19.1 - 21.1) To probe tip File # Date, time

CTS, Ethylene, ppm v PPM Ethylene in tank = 20.1 (Acceptable=19.1 - 21.1)

Raw Mill On Post Run 1	Raw Mill On Post Run 2	Raw Mill On Post Run 3
C0227 4/17/02 13:17	C0404 4/17/02 15:23	C0692 4/17/02 18:35
7	7	7
20.2	20.2	20.3
C0234 4/17/02 13:22	C0390 4/17/02 15:16	C0557 4/17/02 17:35
20.6	20.8	20.3

TXI - Hunter Kiln Stack Method 320/321

QA SUMMARY

HCI Spikes

RUN File No.	Raw Mill Off Pre Run 4 C0043]	Raw Mill Off Post Run 4 C0095	Raw Mill Off Post Run 5 C0161		Raw Mill Off Post Run 6 C0237
Date/Time	4/18/02 9:36		4/18/02 11:18	4/18/02 13:27		4/18/02 16:02
SF6 TANK	5.1		5.1	5.1		5.1
SF6 FLOW	0.8		1	1		1
CELL PRESSURE	1		1	, 1		1
SF6 MEASURED IN SAMPLE	0.89		0.92	0.93		0.85
DILUTION FACTOR	0.174		0.180	0.183		0.167
SAMPLE FLOW	4.6		5.6	5.5		6.0
НСІ						
PPM HCI. IN TANK	149		149	149		149
HCI Expected in sample, from spike	27.41		28.47	29.15		26.67
HCI Measured in sample, including spike	24.13		29.21	31.57		28.97
HCI Measured in sample, prespike	1.875		1.371	1.795		2.067
HCI Measured in sample, postspike	1.875		2.789	2.985		2.067
Native HCI Measured in sample, Avg	1.875		2.08	2.39		2.067
% RECOVERY	87.3%		102.8%	108.9%		109.2%
(Acceptable= 70% - 130%)		-	L earne ann an Anna an			
Calibration Transfer Standard CTS	•					
RUN	Raw Mill Off Pre Run 4].	Raw Mill Off Post Run 4	Raw Mill Off Post Run 5	1	Raw Mill Off Post Run 6
To Cell						
File #	C0004		C0113	C0183		C0251
Date, time	4/18/02 8:05		4/18/02 11:59	4/18/02 14:17		4/18/02 16:36
Effective Pathlength, meters	7.2		7.6	7.6		7.6
CTS, Ethylene, ppm v PPM Ethylene in tank = 20.1	20.0		19.6	19.4		19.9
/ · · · · · · · · · ·						

C0107

4/18/02 11:46

20.6

(Acceptable=19.1 - 21.1) To probe tip File # Date, time

C0031

4/18/02 9:11

19.7

CTS, Ethylene, ppm v PPM Ethylene in tank = 20.1 (Acceptable=19.1 - 21.1)

C0176 4/18/02 14:02 19.5

C0251 4/18/02 16:36	
7.6	
19.9	
C0247 4/18/02 16:25 19.9	

2

CleanAir

TXI OPERATIONS, L.P. HUNTER CEMENT PLANT

Client Reference No: 63927 CAE Project No: 9101

Revision 0

TXI OPERATIONS, LP HUNTER CEMENT PLANT AREA SOURCE DEMONSTRATION PROCESS DATA SUMMARY

Date	Time	Test Condition	Run	Kiln Feed tons/hr	Iron tons/hr	Precip Inlet ¡F	Gas cf/min	Coal Mill A Coal tons/hr	Coal Mill B Coal/Coke tons/hr	Twr Aux Fuel gal/min	TDF tons/hr	Coal Mill B Coal tons/hr	Coal Mill B Coke tons/hr
									· · · · · · · · · · · · · · · · · · ·				
4/17/02	1200-1300	Mill Up	1	174.78	9.45	251.30	84.21	2.92	6.14	0.00	0.07	4.91	1.23
4/17/02	1358-1458	Mill Up	2	174.88	9.44	253.28	76.82	3.49	6.03	0.00	0.07	4.82	1.21
4/17/02	1542-1647	Mill Up	3	174.78	9.42	247.67	82.94	3.43	6.02	0.00	0.06	4.82	1.20
4/18/02	1005-1111	Mill Down	4	148.67	7.71	332.80	33.31	3.35	6.08	5.99	0.07	4.86	1.22
4/18/02	1210-1318	Mill Down	5	148.67	7.71	332.80	33.31	3.35	6.08	5.99	0.07	4.86	1.22
4/18/02	1436-1540	Mill Down	6	150.16	6.50	309.43	33.61	3.44	6.04	6.01	0.07	4.83	1.21
4/19/02	0845-0952	Mill Up	7	174.70	7.57	252.37	35.62	2.92	6.22	5.99	0.54	4.97	1.24
4/19/02	1000-1103	Mill Up	8	180.38	7.94	250.01	26.44	2.90	6.16	5.99	0.83	4.93	1.23
4/19/02	1111-1215	Mill Up	9	177.63	7.74	244.08	18.89	3.45	6.13	6.00	1.02	4.91	1.23

CleanAir

TXI OPERATIONS, L.P. HUNTER CEMENT PLANT

Client Reference No: 63927 CAE Project No: 9101

Entellect Environmental For TXI Operations, L.P. Hunter Cement Plant 7781 FM 1102 New Braunfels, Texas 78132

PROTOCOL ON PC MACT COMPLIANCE TESTING

Performed for: ENTELLECT ENVIRONMENTAL FOR TXI OPERATIONS, L.P. HUNTER CEMENT PLANT KILN STACK

> Client Reference No: 63927 CAE Protocol No: 9101 Revision 0: March 19, 2002

Submitted by,

Brenton Berridge, P.E. Manager, Houston Regional Office

PROJECT OVERVIEW

TXI Operations, L.P. contracted Clean Air Engineering to perform PC MACT (40 CFR Part 63, Subpart LLL) testing at their facility located in New Braunfels, Texas for compliance purposes. The testing will be performed to help in determining whether the plant can be considered an area source or a major source.

The test parameters will include the following HAP pollutants:

- volatile organic compounds* (VOC);
- hydrogen chloride (HCl)
- flue gas composition (e.g., O₂, CO₂, H₂O);
- flue gas temperature;
- flue gas flow rate.

The testing will be performed using both a GC/FID as well as an FTIR. The specific compounds to be analyzed for will be:

- Benzene by GC/FID
- Toluene by GC/FID
- Hexane by GC/FID
- Naphthalene by GC/FID or FTIR
- Phenol by GC/FID or FTIR
- Xylene by GC/FID or FTIR
- Hydrogen Chloride by FTIR
- Formaldehyde by FTIR

*The analytical method used will be determined based on detection limits of the GC/FID and FTIR after the preliminary concentrations of the compounds is determined.

i **1 - 1**

2-1

DESCRIPTION OF INSTALLATION

TXI Operations, L.P. operates a dry process portland cement manufacturing plant in Comal County near Hunter, Texas. The facility will be permitted in 1979 and began operations in 1980. The kiln is equipped with a preheater alkali bypass system which is combined with the kiln exhaust into a single stack. The facility is currently permitted to utilize coal, petroleum coke, natural gas and tire derived fuel. The current production rate is up to 101.2 tons/hr and 886,351 tons/yr of clinker. There is also an in line roller/raw mill which normally operates, but the kiln can operate for a limited time with it out of operation.

The testing will be performed at the Kiln Stack.

A schematic of the process indicating sampling locations is shown in Figure 2-1.

Figure 2-1: Process Schematic

3-2

METHODOLOGY

SAMPLING POINT DETERMINATION

Sampling point locations will be determined according to EPA Method 1.

Table 3-2 outlines the sampling point configurations. Figure 3-1 through illustrates the sampling points and orientation of sampling ports for each of the sources tested in the program.

Table 3-2: Sampling Points								
Location	Constituent	Method	Run	Ports	Points	Minutes	Total Minutes	Figure
Unit 1 Stack	Flows/Moistur	es 1-4	1-6	4	3	5	60	4-1

The pollutant sampling will occur at the approximate center of the stack.

METHODOLOGY

VELOCITY AND VOLUMETRIC FLOW RATE - EPA METHOD 2

EPA Method 2 will be used to determine the gas velocity and flow rate at the Stack. Figure 3-2 includes the components of the EPA Method 2 sampling apparatus.

Each set of velocity determinations includes the measurement of gas velocity pressure and gas temperature at each of the EPA Method 1 traverse points. The velocity pressures are measured with a Type S pitot tube. Gas temperature measurements are made using a Type K thermocouple and digital pyrometer.

GAS COMPOSITION AND MOLECULAR WEIGHT - EPA METHOD 3

In order to determine the oxygen (O_2) concentration, carbon dioxide (CO_2) concentration and gas molecular weight, a time-integrated sample of the gas will be obtained and analyzed in accordance with EPA Method 3. The gas sample will be collected into a vinyl sample bag from the moisture testing. The contents of the bag will be analyzed for O_2 and CO_2 concentrations using an Orsat gas analyzer.

MOISTURE CONTENT - EPA METHOD 4

The flue gas moisture content at the Stack will be determined in accordance with EPA Method 4. Figure 3-2 shows the major components of the EPA Method 4 sampling apparatus. The gas moisture will be determined by quantitatively condensing the water in a chilled knock-out jar train. The amount of moisture condensed is determined both volumetrically and gravimetrically. A dry gas meter will be used to measure the volume of gas sampled. The amount of water condensed and the volume of gas sampled is used to calculate the gas moisture content in accordance with EPA Method 4 calculations.

After passing through the probe, the sample gas enters a knock-out jar condenser system for drying of the gas. The condenser system consists of four leak-free glass knock-out jars and rubber leak-free connectors. The first two knockout jars each contain 100 milliliters of distilled water. The third knock-out jar will be empty, and the fourth contains 300 grams of silica gel. All four of the knock-out jars will be placed in an ice bath for the duration of the test.

The metering system includes a vacuum gauge, a leak-free pump, thermometers accurate to within $\pm 5.0^{\circ}$ F and a dry gas meter accurate to within 2%.

Before and after each test, the sample apparatus will be leak checked. A leakage rate of less than the 0.02 cfm will be considered acceptable.

3-4

METHODOLOGY

SPECIATED VOLATILE ORGANIC COMPOUNDS -EPA METHOD 18

EPA Method 18 will be used to measure concentrations of benzene, toluene, hexane, naphthalene, phenol and xylene. This method specifies the use of a variety of sampling techniques coupled with analysis by Gas Chromatography (GC) with a Flame Ionization Detector (FID).

At the Stack a VOST sampling meter will be used to pull gas through one charcoal and one XAD sample tubes in order to concentrate the sample to obtain lower detection limits. Figure 3-3 illustrates the sampling train which will be used. The sample tubes will be desorbed on-site using carbon disulfide.

An aliquot of the desorbed sample will then be injected into the GC injection port for analysis. The chromatographic method (e.g. oven temperature program) will simultaneously begin.

The Recovery Study required by Method 18 will be performed by running a colocated train simultaneously with the sample train for 3 runs. The second train will have the adsorbent tubes spiked with the compounds of interest to show the recovery efficiency.

Data from the chromatograms will be reduced by identifying peaks and matching their retention times with those of the known standards. Peak areas will be calculated using computer integration. Results will be calculated by mathematically comparing the area of the sample to the area of the standards using a least-squares regression analysis.. Results will be calculated as total micrograms of each analyte.

Standards for the GC/FID analysis will be made by dissolving known amounts of each analyte in carbon disulfide. Concentrations will be determined as micrograms/milliliter for each analyte.

Calibration response curves will be prepared using a least-squares regression analysis. At least three calibration points will be generated for the response curves for each compound. At least three injections will be performed for each calibration point. The percent difference of each injection from the mean of all injections will be less than \pm 5%. The relative standard deviation for the results of each injection for each calibration point will be less than \pm 5%.

3-6

METHODOLOGY

HYDROGEN CHLORIDE AND HAPS TESTING -EPA METHOD 320/321

The gaseous hydrogen chloride, formaldehyde and the tentative 3 additional HAP compound emissions will be determined using procedures detailed in EPA Method 320/321. Figure 3-4 illustrates the EPA Method 320/321 sampling apparatus. An integrated sample will be extracted from the gas stream through a heated probe, heated filter, Teflon sample line and heated pump. The sample then enters a heated manifold that introduces a known quantity of sample into the FTIR cell. FTIR performance will be verified using a 20 ppm ethylene calibration transfer standard (CTS) prior to and after each sampling event per Method 320 and 321. A calibration gas containing sulfur hexafluoride and hydrogen chloride will be used for analyte spiking. The calibration gas and CTS will be introduced into the probe tip. All flows will be controlled with calibrated flow meters. The sample will be continuously extracted with FTIR absorbance scans every six minutes or less.

Infrared absorption spectroscopy is performed by directing an infrared beam through a sample to a detector. The frequency-dependent infrared absorbance of the sample is measured by comparing this detector signal to a signal obtained without a sample in the eam path (background). There is a linear relationship between infrared absorption and compound concentration. This frequency dependent relationship is known as absorptivity. The absorptivity is measured by preparing standard samples in the laboratory of compounds at known concentrations and detector conditions. A correlation is then made between the standards (reference spectra) and the sample gas analysis. The relative intensities determine the sample gas concentrations.

The FTIR analyzer consists of a medium-high resolution interferometer, heated fixed path absorption cell, a mercury cadmium telluride (MCT) detector (liquid nitrogen cooled), electronics package and computer. The gas transport path inside the FTIR is heated to 180°C, while the absorption cell is maintained at 150°C.

The interferometer/electronics package is operated at a nominal spectral resolution of 0.5 wavenumber (0.5 cm^{-1}) . The heated absorption cell is a fixed pathlength of 10 meters. The mirrors and cell interior are gold plated. The IR beam splitter and all optical windows are made of zinc selenide.

The method is self-validating by performing field spikes with a known concentration of the target compound. The QA/QC procedures can be found in reference in Methods 320 and 321.

CleanAir

TXI OPERATIONS, L.P. HUNTER CEMENT PLANT

Client Reference No: 63927 CAE Project No: 9101

Brenton E. Berridge, P.E. Manager, Houston Regional Office

Professional Profile

Mr. Berridge has nine years of experience in both compliance and diagnostic Environmental Protection Agency (EPA) source testing. He has been involved in projects utilizing EPA Part 60, 63 and 75 methods as well as NIOSH, SW, OSHA and ASTM methods. Mr. Berridge has been involved with all aspects of compliance projects, ranging from selection of appropriate testing methods to data reduction and reporting. Diagnostic projects have involved process optimization to improve emissions, reduce raw material and fuel usage and quality improvements for production lines. He has been involved in many negotiations with Regulatory Agencies including new method development.

Relevant Experience

Bayer Corporation; Orange Plant, TX

Diagnostic projects aimed toward increased production rates through adjustments in process conditions. This project included gas chromatography, EPA Methods 1-4, 25A and specialized flow techniques to measure difficult gas streams. The plant boilers were also optimized to prepare for upcoming state NOx RACT regulations. Yearly compliance tests are also performed on several production lines to keep the plant in compliance.

ENRON Engineering and Construction, Republic of Turkey

Responsible for development and implementation of a combined compliance and performance guarantee test program for a combined cycle power plant in accordance with EPA and World Bank regulations as well as procedures acceptable to the Turkish Government. Managed project following EPA Methods 1, 2, 3, 3A, 4, 5, 6C, 7E and 10 as well as Specifications 2, 3 and 4. Also, handled international shipping and travel. Involved in expert testimony for seller/owner negotiations involving plant CEM system.

Ogden Martin Systems; Hennepin, MN

HWI Compliance testing was performed for lead (BIF Method 0012), mercury (NIOSH Method 101A), particulate (Method 5), dioxin/furans (Method 23/0010), hydrogen chloride (EPA Method 26) and emission monitor certification for O_2 , CO_2 , SO_2 , NO_x , CO and THC (EPA Methods 3A, 6C, 7E, 10 and 25A).

Fleischmann's Yeast; Memphis Plant, TN

Performed around the clock hydrocarbon and hydrogen sulfide testing for two weeks in order to model entire batch cycle. This allowed us to calculate the total batch emissions so that an appropriate permit could be written as an industry standard. A continuous flow monitoring system was developed to provide real-time volumetric flow rate data.

Diamond Shamrock; McKee Facility, TX

Compliance work aimed at quantifying plant emissions form process heaters and sulfur recovery units. Performed EPA Methods 1-5, 6C, 7E, 8, 10 and 19. Also negotiated with state to allow deviation from standard methods.

Professional Certifications/Licenses and Affiliations

Professional Engineering Liscence No. 85383 Certified Visual Emissions Reader in the State of Texas Member of the Society for Professional Engineers 40 Hour OSHA training

Education

Bachelor of Science in General Engineering, 1991 University of Illinois, Urbana, Illinois

David Bedikian Field Technician

Professional Profile

Mr. Bedikian has just under six months of field testing experience involving Environmental Protection Agency (EPA) Methods 1 through 29. Mr. Bedikian's responsibilities include pre & post-test equipment calibration, packing, laboratory set up and analysis, shipping, maintenance, equipment setup and field testing.

Relevant Experience

Reliant Energy; Jewett, Texas

Performed RATA compliance testing on the Plant CEM systems for CO_2 , SO_2 , and NO_X constituents following EPA Methods 3A, 6, and 7E on one unit in the plant. RATA testing was also performed for the flow meter following EPA Method 2H.

Forney Corporation; Channelview Power Plant

Compliance testing was performed on two natural gas fired turbines with HRSG using Methods 1-4, 5/202, and Conditional Test Method (CTM) 27 for ammonia.

Education

Texas A&M University, College Station, Texas Mechanical Engineering

Chapman, J.

Relevant Experience

Enviropace Ltd.

Project Location: Hong Kong Chemical Waste Treatment Facility, Tsing Yi, Hong Kong A trial burn was performed to demonstrate the destruction removal efficiency of certain POHCs as well as the air emissions of a commercial hazardous waste incinerator. The following sampling was performed: SW846 Method 0030 & 0050 and EPA Methods 1-5, 8, 11, 23 and 29 under two different load conditions. The Hong Kong Productivity Council was also trained in stack emission sampling for their future air testing projects.

Vertac Site Contractors

Project Location: Dioxin Superfund Site, Jacksonville, Arkansas

A trial burn on a rotary kiln Thermal Destruction Unit (TDU) was performed as well as waste feed sampling and flue gas sampling. Aqueous and solid feeds were sampled at nine locations. The flue gas sampling took place at the stack and the following emissions were determined: particulate, hydrogen chloride, dioxin/furans, and hexachlorobenzene.

Continental Cement

Project Location: Hannibal, Missouri

A trial burn on a cement kiln burning hazardous waste was performed. Flue gas sampling, Principal Organic Hazardous Constituent (POHC) spiking of SF6, and certification of the Continuous Emission Monitoring (CEM) system was conducted. The constituents sampled in the flue gas were particulates, HCl, metals, hexavalent chromium, dioxin/furan, SF6, semivolatile organics and volatile organics. In addition to the flue gas sampling, Clean Air Engineering also conducted the sulfur hexafluoride (SF6) spiking and CEM certification of their oxygen, carbon monoxide and total hydrocarbons monitoring system.

Ogden Martin Systems

Project Location: Kent County Resource Recovery Facility; Grand Rapids, Michigan Compliance testing was performed on two units of the 625 ton-per-day Kent County Waste-to-Energy facility. The testing included particulate, sulfur dioxide, nitrogen oxides, opacity, carbon dioxide, hydrogen fluoride, total hydrocarbons, hydrogen chloride, sulfuric acid mist, metals, hexavalent chromium and dioxin/furan determinations.

Ogden Martin Systems

Project Location: Huntington Resource Recovery Facility

Compliance/start-up testing was conducted at the municipal solid waste-to-energy facility. The compliance testing was performed at the SDA inlet and the FF outlet.

Gossman Consulting, Inc.

for a Portland Cement Association facility

Performed compliance and diagnostic testing on a cement kiln. Particulate, PCDDs/PCDFs, metals, THC and methane testing was conducted. In addition, gaseous monitoring of HCl, NH_3 and VOC emissions from the stack was performed using FTIR HCl and VOC Methods for Cement Kilns. A gas sample was continuously extracted from the stack and delivered to an FTIR analyzer which measured the concentration of HCl, NH_3 , acetaldehyde, benzene, chlorobenzene, ethylene, formaldehyde, hexane, methylene chloride, naphthalene, phenol, styrene, toluene, o-xylene, m-xylene and p-xylene in the gas on a wet volumetric basis.

US Army ACWA Project

Designed and maintained continuous emission monitoring system to detect products of decompostion from nerve agent/chemical weapons decommissioning phase I demonstration projects. Projects utilized remotely operated systems for gas dilution conditioning and online gas chromatography.

Douglas D. Rhoades Senior Project Manager

Professional Profile

Mr. Rhoades has been with Clean Air Engineering since September 1983. In that time, he has been involved with hundreds of testing projects. Some examples of the types of projects include:

- Boiler Efficiency Testing
- Performance Improvement Projects Developed for Particulate Control Devices
- Scrubber Performance Guarantee Work
- Plume and Opacity Investigations
- Directional Gas Flow Traverse Work
- Hazardous Waste Trial Burn Test Projects

Recently, Mr. Rhoades was the Project Manager for a test program conducting boiler efficiency testing for Babcock & Wilcox at the Kincaid Energy LLC. Testing was performed to measure the levels of NOx, O_2 , CO and CO_2 as well as the air heater leak rate. In addition, NOx and CO at 3% O_2 and at $1b/10^6$ Btu as well as the air heater leak rate was generated realtime.

Mr. Rhoades also spent four years (beginning in 1990) working with Dr. Roy Bickelhaupt in Clean Air Engineering's particulate characterization laboratory. This work incorporated both laboratory investigations and field evaluations of problems encountered with electrostatic precipitators (ESPs) and other particulate collection devices. The laboratory portion of this work includes:

- Particle Size Distribution Determinations
- Computer Modeling and Consultations on Modifying Ash Chemistry and Resistivity for Enhancement of Particulate Collection Efficiency
- Computer Modeling and Consultations on Improving ESP Performance
- Consultations and Problem Solving

The field portion of this work included:

- In-Situ Determinations of Ash Resistivity and Particle Size Distribution
- Consultations on Improving Particulate Collection Performance

Prior to this position, Mr. Rhoades initialized the Clean Air Engineering Project Planning and Quality Assurance Department. This included the planning and scheduling of each Clean Air Engineering field test project and training personnel involved with testing. He also worked in the Research and Development Group initializing a VOC laboratory. During this time, the Clean Air Engineering Method 25 (Non-Methane Organics) analysis laboratory was developed.

Before joining Clean Air Engineering, Mr. Rhoades worked for the University of Missouri at their hazardous waste treatment, storage and disposal facility. He developed a program to sample all university-owned transformers for PCB contamination. He was also involved with a dioxin task force addressing various contaminated sites in the state of Missouri.