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Macrophages, as a key element in innate immunity, play an
important role in the first-line defense against pathogens
and modulating inflammatory responses. From the tradi-
tional point of view, tissue macrophages are differentiated
from bone marrow myeloid progenitor-derived monocytes
in the circulation and undergo a fine-regulated process of
adaption to the local tissue microenvironment [1]. How-
ever, over the past decade, mounting evidence has demon-
strated that macrophages are also derived from embryonic
York sac and fetal liver and become a self-maintaining
population residing locally and performing organ-specific
functions [2].

Macrophages are not homogenous and consist of vari-
ably mixed populations, such as liver Kupffer cells and brain
microglial cells that carry out specific functions in the local
microenvironment [3]. In response to various physiological
or pathological cues, macrophages display an extended
life span and acquire different functional phenotypes
through polarization that are generally categorized into
two broad but distinct subsets as either classically activated
(M1) or alternatively activated (M2). In general, M1 macro-
phages have high motility and promote inflammation and
damage through a combination of transcription factors
such as NF-κB, whereas M2 macrophages help to resolve
inflammation and promote tissue remodeling [4]. Notably,
M1 and M2 only represent two extremes of macrophage

polarization, and most differentiated macrophages fall into
a full spectrum of various polarization states between M1
and M2. In addition, macrophage polarization is a dynamic
process and macrophages can switch their phenotypes
between M1 and M2 in different pathological conditions
[5]. Nevertheless, sustained macrophage infiltration in face
of injury eventually becomes pathological and causes dis-
torted repair and remodeling, leading to irreversible tissue
destruction and disease progression and deterioration. Thus,
better understanding of the regulation of macrophage differ-
entiation and polarization, as well as their roles in disease
pathogenesis, will contribute to the development of selective
and effective therapies.

In this specific issue, fourteen quality manuscripts were
selected for publication from a large number of submissions
covering various topics of macrophage functions and regu-
lation, as well as their roles in diseases and therapeutics.
Ten of these publications are review articles reflecting the
current status of knowledge and advances in understand-
ing macrophage functions and regulation. L. Parisi et al.
provided a comprehensive review regarding the role and
regulation of M1-like (killers) and M2-like (builders) mac-
rophages in various chronic diseases including cancers,
type 2 diabetes, atherosclerosis, and periodontitis. They
also discussed therapeutic approaches using cytokine antag-
onists and miRNAs. J. Yin et al. highlighted the current
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understanding of microglia and macrophage functions and
differentiation in CNS homeostasis, autoimmunity, and
cancer. Other review articles are more focused with
emphasis on an individual disease, molecule, or pathway.
J. Shi et al. discussed the roles of macrophage subsets in
bowel anastomotic leakage and healing. L. Shao et al. sum-
marized the perspectives and potential targets of macro-
phage polarization in cerebral aneurysm, and L. Zhu et al.
reviewed the roles of members of the phospholipase C family
in macrophage-mediated inflammation. T.S. Kapellos et al.
updated the current knowledge regarding macrophage dys-
function in chronic obstructive pulmonary disease with a
focus on the well-known resident alveolar macrophages,
whereas, J. Schyns et al. illuminated the important role of
the less-studied lung interstitial macrophages. Of note, there
are two review articles about macrophage tolerance and reg-
ulation from R. Huber et al. and R. Ocaña-Guzman et al. with
focus on TNF and inhibitory receptors, respectively. H. Liao
et al. provided an interesting retrospective literature analysis
regarding the role of macrophage iNOS activity in the thera-
peutic effect of Huangqi, a traditional Chinese medicine, on
diabetic nephropathy. The remaining four accepted manu-
scripts are research articles of translational significance using
various patient samples or animal models to study macro-
phage functions and regulation. M. Yamashita et al. exam-
ined the expression pattern of CD163-positive macrophages
in lung biopsy samples from patients with idiopathic intersti-
tial pneumonias. I.A. da Silva et al. investigated the role of
the platelet-activating factor in modulating the tumor-
associated macrophage phenotype, and W.R. Shen et al.
demonstrated the potential therapeutic role of targeting
osteoclast formation in LPS-induced bone loss. Y.M. Flores-
Martinez et al. established a rat model of Parkinson’s disease
with classical microglia activation, neuroinflammation, and
degeneration. These research articles all highlighted the
important role of macrophage functions and regulation in
disease pathogenesis and therapeutics.

In summary, these articles illuminate the role and regula-
tion of macrophage function and differentiation in the path-
ogenesis and therapeutics of various diseases, and provide
guidance for future research on macrophage functions and
development of selective and efficient therapeutics.

Kebin Hu
Yang Jin

Zissis Chroneos
Xiaodong Han

Hao Liu
Ling Lin
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Models of Parkinson’s disease with neurotoxins have shown that microglial activation does not evoke a typical inflammatory
response in the substantia nigra, questioning whether neuroinflammation leads to neurodegeneration. To address this issue, the
archetypal inflammatory stimulus, lipopolysaccharide (LPS), was injected into the rat substantia nigra. LPS induced fever,
sickness behavior, and microglial activation (OX42 immunoreactivity), followed by astrocyte activation and leukocyte
infiltration (GFAP and CD45 immunoreactivities). During the acute phase of neuroinflammation, pro- and anti-inflammatory
cytokines (TNF-α, IL-1β, IL-6, IL-4, and IL-10) responded differentially at mRNA and protein level. Increased NO production
and lipid peroxidation occurred at 168 h after LPS injection. At this time, evidence of neurodegeneration could be seen, entailing
decreased tyrosine hydroxylase (TH) immunoreactivity, irregular body contour, and prolongation discontinuity of TH+ cells, as
well as apparent phagocytosis of TH+ cells by OX42+ cells. Altogether, these results show that LPS evokes a typical
inflammatory response in the substantia nigra that is followed by dopaminergic neurodegeneration.

1. Introduction

Neuroinflammation plays a critical role in Parkinson’s dis-
ease and other neurodegenerative diseases [1, 2]. The main
hallmark of neuroinflammation in Parkinson’s disease is
the presence of activated microglia in the substantia nigra

of humans [3] and animal models of that disease [4–6].
Similar to macrophages, activated microglia can phagocy-
tose, present antigens through the major histocompatibility
complex (MHC) class II [2, 7], synthesize, and release
humoral factors such as cytokines, chemokines, reactive
oxygen-nitrogen species, complement cascade proteins, and
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prostaglandins [8–11]. The tumor necrosis factor- (TNF-) α,
interleukin- (IL-) 1, and IL-6 transform astrocytes into pro-
liferative immunological cells, recruited in the inflamed brain
area [12–15]. The participation of glial cells in the neuroin-
flammation of Parkinson’s disease has been characterized
to a large extent in animal models generated by neuro-
toxins such as 6-hydroxydopamine (6-OHDA), 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), or rotenone
[5, 16–19]. These potent neurotoxins primarily cause the
death of dopaminergic neurons, so they have not favored
the clarification whether neuroinflammation is the cause
or consequence of dopaminergic neurodegeneration. Lipo-
polysaccharide (LPS) appears to be a neuroinflammatory
stimulus more suitable to mimic the acute response of
microglia that might also occur in the early stage of Par-
kinson’s disease [20].

LPS is a major component of the outer membrane of
gram-negative bacteria and a potent inducer of inflamma-
tion via activation of toll-like receptor 4 (TLR4) [21], not
only in peripheral tissues and organs [22, 23] but also in
the central nervous system (CNS) [24, 25]. Studies using
systemic injection [26] or ventricular infusion of LPS [24]
in rodents have shown accumulation of activated microglia
in various brain nuclei mainly in the substantia nigra, thus
suggesting that LPS can be useful to study neurodegeneration
as a model of Parkinson’s disease [24, 25]. LPS injected
directly into the substantia nigra can elicit a strong macro-
phage/microglial local reaction that is followed by the specific
death of nigral dopaminergic neurons, thus suggesting that
LPS can cause neuronal cell death indirectly through the
inflammatory reaction [25, 27]. A recent study has confirmed
the microglial activation in the substantia nigra after the local
injection of LPS at a dose of 5μg/5μL and demonstrated the
mRNA expression of proinflammatory cytokines (TNF-α
and IL-1β) after 7 days of injection, alterations in oxidative
stress markers after 14 days postinjection, and apoptosis acti-
vation after 21 days of LPS injection [28]. However, those
inflammatory variables were evaluated in the whole midbrain
and not restrained to the substantia nigra [28]. In addition,
the time course of neuroinflammation was studied after the
end of acute neuroinflammation, in the same period where
the specific neurotoxins also cause neuroinflammation [28];
then, the possibility that neuroinflammation would precede
dopaminergic neurodegeneration has not been clarified.
Nevertheless, microglial response evaluated through OX42
immunohistochemistry has been shown as early as 6 h after
an intrastriatal injection of 22.5μg of LPS, preceding the
dopaminergic neurodegeneration [29]. However, this study
did not evaluate any proinflammatory cytokines or astro-
cyte cell markers [29]. In addition, other studies have
shown neither microglial activation in the substantia nigra
nor nigrostriatal neurodegeneration, but only transient
motor dysfunction, after an intrastriatal administration of
10μg of LPS [30]. This background information shows
that the role of microglia and astrocytes in LPS-induced
neuroinflammation is not entirely understood in the sub-
stantia nigra [25].

The astrocyte is also another key player in human dis-
eases and animal models of neuroinflammation [31].

Activated astrocytes (reactive astrogliosis) have been shown
in different models of chronic demyelinating pathology
[32] and of neurotoxin-induced Parkinson’s disease in
the rat [5, 19]. Cultured astrocytes from the cerebellum
of rats with a natural demyelinating disease can produce
high levels of nitric oxide (NO) and inducible NO syn-
thase (iNOS) mRNA and protein and release TNF-α when
stimulated with LPS; those responses are resistant to the
inhibitory effect of TGF-β1 [33]. Genomic analysis in mice
has also suggested that the reactive astrocytes induced by a
systemic LPS (5mg/kg of body weight) administration
exhibit a phenotype that may be detrimental [26]. These
results suggest that activated astrocytes produce hazardous
molecules that can prolong and aggravate neuroinflamma-
tion, which eventually will lead to neuronal death. Whether
activated astrocytes have a role in the model of intranigral
administration of LPS remains unknown.

Dopaminergic neurons of the substantia nigra are par-
ticularly vulnerable to neuroinflammation due to internal
and external factors that lead to a maintained, elevated
mitochondrial oxidant stress [34]. An internal factor, for
instance, is the decrease in glutathione levels and gluta-
mylcysteine ligase activity that are the natural antioxidant
defenses in neuronal cells [35]. This feature can account
for the inefficient neutralization of the nonenzymatic oxi-
dation products of dopamine and the powerful oxidants
resulting from Fenton reaction in the presence of iron
[36]. An external factor for the vulnerability of dopami-
nergic neurons is the relatively enriched microglial popula-
tion in the substantia nigra as compared to other brain
regions, which can mount a fast response to the minimum
imbalance of oxidative stress [37, 38]. Therefore, the evalua-
tion of the acute stage of neuroinflammation in the substan-
tia nigra should provide insight into the physiopathology of
dopaminergic neurodegeneration.

Here, we propose that a single dose of LPS in the substan-
tia nigra will activate local microglia followed by astrocyte
activation as a primary event of neuroinflammation and then
followed by the dopaminergic neurodegeneration. To test
this hypothesis, we injected a single dose of LPS (5μg/2μL
of endotoxin-free physiological saline solution) into the sub-
stantia nigra. Then, we evaluated NO production; lipid
peroxidation index; immunoreactivity of microglia (OX42),
astrocyte (GFAP), and leucocyte (CD45) markers; and pro-
and anti-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-4,
and IL-10) during the acute phase of neuroinflammation
(0 to 96 h). We also evaluated the immunoreactivity to
tyrosine hydroxylase (TH), a dopaminergic neuron marker
in the substantia nigra. We evaluated the molecular and
cellular markers at 168 h after LPS injection to determine
the end of acute neuroinflammation. Although using an
LPS animal model in the research of Parkinson’s disease
has been well documented [25], the results presented here
emphasize the timing course within the substantia nigra,
which add new evidence to support that inflammation is
the cause of dopaminergic neurodegeneration. This acute
neuroinflammation model will be useful in a fast screening
of new anti-inflammatory drugs with potential for Parkin-
son’s disease treatment.
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2. Materials and Methods

2.1. Ethics Statement. The experimental protocol (Permit
number 162-15) was approved by the Internal Committee
for the Care and Use of Laboratory Animals of the Center
for Research and Advanced Studies of the National Polytech-
nic Institute (Cinvestav-IPN) in accordance with the current
Mexican legislation, NOM-062-ZOO-1999 and NOM-087-
ECOL-1995 (Secretaría de Agricultura, Ganadería, Desar-
rollo Rural, Pesca y Alimentación (SAGARPA)). All efforts
were made to minimize suffering, and the number of animals
used was kept to a minimum by the experimental design.

2.2. Animals. Adult male Wistar rats weighing between 210 g
and 230 g were used. Five rats per cage (acrylic;
34 cm× 44 cm× 20 cm) were housed at constant room tem-
perature (22°C) and 12h-12 h light-dark cycle with food
and water ad libitum.

2.3. Stereotaxic Injection of LPS. The rats were anesthetized
with a single dose of ketamine (70mg/kg) and xylazine
(6mg/kg; intraperitoneally) and fixed in a stereotaxic appara-
tus (Stoelting, Wood Dale, IL, USA). A single dose of LPS
from Escherichia coli 055:B5 (5μg/2μL of endotoxin-free
physiological saline solution; Sigma-Aldrich, St. Louis, MO,
USA) [39, 40] was injected into the left substantia nigra.
We used the following coordinates: AP, +3.2mm from the
interaural midpoint; ML, +2.0mm from the intraparietal
suture; and DV, −6.5mm from the dura mater [19]. A micro-
pumpMod. 100 (Stoelting, Wood Dale, IL, USA) maintained
the flow rate (0.2μL/min). After the total dose was injected,
the needle was allowed to remain in the brain for 7min and
then was withdrawn in 1min steps. The mock group was
injected with 2μL of endotoxin-free physiological saline
solution into the left substantia nigra. An additional control
group was rats with no treatment (Untreated (Ut)).

2.4. Body Surface Temperature. A fine thermocouple ther-
mometer (Hanna Instruments, Woonsocket, RI, USA) was
attached to an adhesive tape and secured on the ventral
surface of the chest to measure body surface temperature.
The measurements were made at different times after
intranigral injection of LPS (1, 2, 3, 5, 8, 24, 48, 96, and
168h) in the experimental group and at 8 h in the negative
control group (mock rats).

2.5. Sickness Behavior. Sickness signs consisting of absent
exploration and locomotion, curled body posture, irregular
fur, piloerection, and closed eyes were evaluated in the LPS-
treated group and control (untreated and mock) groups over
time after the intranigral injection of LPS [41, 42]. Measure-
ments were performed while the rats were in transparent
cages and scored on a four-point scale: 0 =no signs, 1 =one
sign, 2 = two signs, and 3= three or more signs. The experi-
menter quantifying the sickness signs were blind to experi-
mental and control conditions. The overall agreement
between two “blind” raters was 95%.

2.6. Reverse Transcription-Quantitative Polymerase Chain
Reaction (RT-qPCR). Each brain was obtained free of

meninges and immediately rinsed with cold PBS. Six
0.5mm coronal slices of the brain between the anterior bor-
der of the pituitary and the anterior border of the cerebellum
were obtained using a cold metallic rat brain matrix (Stoelt-
ing, Wood Dale, IL, USA). The left substantia nigra was
quickly dissected out from every coronal slice in cold condi-
tions using a stereomicroscope (Leica ZOOM 2000, Buffalo,
NY, USA) equipped with an especial metallic stage to contain
ice. Each left substantia nigra was immediately stored in a
respective Eppendorf tube at −70°C until use. Total RNA
was isolated from the substantia nigra using Trizol (Invitro-
gen Corporation, Carlsbad, CA, USA), and then RNA treated
with RNase-free DNase I. The reverse transcription was
made with SuperScript III reverse transcriptase (200U) using
3μg of total RNA and 0.1mg of oligo dT (Invitrogen Corpo-
ration, Carlsbad, CA, USA). The reverse-transcribed product
was diluted 4 times with molecular biology-grade water. A
2.5μL sample of the diluted cDNA was mixed with 2X Taq-
Man Universal Mastermix and 20X TaqMan gene-specific
probe (Applied Biosystems, Foster City, CA, USA) in a final
volume of 5μL. cDNAs were amplified in 45 cycles using a
7900HT Fast Real-Time PCR system (Applied Biosystems,
Foster City, CA, USA). The TaqMan gene-specific probes
were Rn01525859_g1 for rat TNF-α, Rn00580432_m1 for
rat IL-1β, Rn01410330_m1 for rat IL-6, Rn01456866_m1
for rat IL-4, Rn99999012_m1 for rat IL-10, and
Rn00667869_m1 for rat β-actin, which were used as internal
controls and for normalization. The cycle threshold (Ct)
values for β-actin and rTNF-α, rIL-1β, rIL-6, rIL-4, and
rIL-10 were measured and calculated by Sequence Detection
System software (SDS 2.2; Applied Biosystems, Foster City,
CA, USA). The 2−ΔΔCt method was used to calculate the rel-
ative transcript levels expressed as fold change for gene
expression with respect to each of the probes used [5, 43, 44].

2.7. Enzyme-Linked Immunosorbent Assay (ELISA). The sub-
stantia nigra was homogenized with the protein extraction
buffer containing 100mM Tris-HCl (pH 7.4), 750mM NaCl
(sodium chloride), 10mM EDTA (ethylenediaminetetraace-
tic acid), 5mM EGTA (ethylene glycol tetraacetic acid), and
protease inhibitors (Roche, Basel, Switzerland) [5, 45]. The
samples were centrifuged at 1000g for 10min at 4°C. The
supernatant was collected and centrifuged again at 20,000g
for 40min at 4°C to remove remaining debris. ELISA was
performed using a Milliplex MAP Rat cytokine/chemokine
magnetic bead panel kit according to the provider’s protocol
(RECYTMAG_65K; Millipore, Temecula, CA, USA), and
reading was made by using the LUMINEX MAGPIX detec-
tion system with xPONET software (Millipore Corporation,
Billerica, MA, USA). The sensitivity ranges were 2.4 to
10,000 pg/mL for TNF-α and IL-1β, 73.2 to 300,000 pg/mL
for IL-6, and 7.3 to 30,000 pg/mL to IL-4 and IL-10.

2.8. NO Production. The content of nitric oxide (NO) was
determined through nitrite (NO2

−) accumulation in the
supernatant of homogenized substantia nigra samples using
the Griess reagent assay [5, 33, 46]. Briefly, tissue samples
were mechanically homogenized in PBS and centrifuged at
20,000g for 30min at 4°C. The colorimetric reaction in
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100μL of the supernatant was initiated by adding 100μL of
the Griess reagent (equal volumes of 0.1% N-(1-naphthy-
l)ethylenediamine dihydrochloride and 1.32% sulfanilamide
in 60% acetic acid). The absorbance of the samples was read
at 540nm with a SmartSpec 3000 spectrophotometer (Bio-
Rad, Hercules, CA, USA) and interpolated by using a stan-
dard curve of sodium nitrite (NaNO2; 1 to 10μM) to calcu-
late the nitrite content.

2.9. Lipid Peroxidation Assay. Lipid peroxidation was
measured through malondialdehyde (MDA) and 4-
hydroxyalkenal (4-HAE) concentration in the supernatant
of homogenized substantia nigra samples using the colori-
metric method reported previously [5, 33, 46]. Briefly, the tis-
sue samples were homogenized in PBS and centrifuged at
20,000g at 4°C for 40min. Then, 325μL of 10.3mM N-
methyl-2-phenylindole diluted in a mixture of acetonitrile : -
methanol (3 volume : 1 volume) was added to 100μL of the
supernatant. The colorimetric reaction was initiated by the
addition of 75μL of methanesulfonic acid. The reaction mix-
ture was strongly shaken and incubated at 45°C for 1 h and
then centrifuged at 1000g for 10min. The absorbance in
the supernatant was read at 586nm with a SmartSpec 3000
spectrophotometer (Bio-Rad, Hercules, CA, USA). The
absorbance values were compared to a standard curve from
0.5 to 5μM of 1,1,3,3-tetramethoxypropane to calculate the
content of MDA and 4-HAE in the samples.

2.10. Western Blot Analysis. Western blot analysis was per-
formed in substantia nigra homogenates. Total protein was
determined using the BCA protein kit (Pierce; Meridian,
Rockford, USA). Fifty micrograms of protein per line was
run on 12% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis and transferred onto PVDF membranes
(Bio-Rad Laboratories, Hercules, CA, USA). Blots were
blocked with TBS containing 5% skim milk, 1% BSA, and
0.1% Tween 20 and incubated overnight at 4°C with a mouse
monoclonal anti-CD11b/c (OX42), a marker for activated
microglia (1 : 100; Abcam, Cambridge, UK), and a rabbit
polyclonal anti-glial fibrillary acidic protein (GFAP), a
marker for astrocytes (1 : 1000; DakoCytomation, Glostrup,
Denmark). Membranes were washed and then incubated
with the secondary antibodies conjugated with horseradish
peroxidase (HRP), either goat anti-mouse IgG (1 : 5000;
Zymed, San Francisco, CA, USA) or donkey anti-rabbit IgG
(1 : 5000; Zymed, Cambridge, MA, USA) in blocking solu-
tion, for 1.5 h with continuous shaking at room temperature.
Blots were washed, and the immunolabeled proteins were
detected using the ECL Western blotting system and Hyper-
film ECL (Amersham, Buckinghamshire, UK). To normalize
the total amount of protein per lane, membranes were
stripped and incubated with a mouse monoclonal antibody
against β-actin (1 : 500; Cinvestav, Mexico) [47], followed
by a HRP-conjugated goat anti-mouse (1 : 6000; Zymed,
San Francisco, CA, USA) following the same procedure of
luminescence detection.

2.11. Immunostaining Techniques. The presence of microglia,
astrocytes, and dopaminergic neurons was shown by double

immunofluorescence techniques using the procedure
described previously [5, 48]. The rats were deeply anesthe-
tized with sodium pentobarbital (50mg/kg intraperitoneally)
and perfused through the ascending aorta with 30mL of PBS,
followed by 100mL of 4% paraformaldehyde in PBS. The
brain was then removed and maintained in the fixative for
24 h at 4°C. After an overnight incubation in PBS containing
30% sucrose at 4°C, the brain was frozen and then sectioned.
Briefly, serial coronal sections of 30μm thickness were cut
using a sliding microtome with a freezing stage (Leica
SM1100, Heidelberg, Germany) and consecutively collected
in 6 wells, using only the slices in one well for the analysis.
The slices were rinsed with PBS for 5min, permeabilized with
PBS-0.1% Triton for 20min, and incubated with 1% BSA in
PBS-0.1% Triton for 30min to block unspecific binding sites.
The primary antibodies were mouse monoclonal anti-
tyrosine hydroxylase (TH) (clone TH-2) (1 : 1000; Sigma-
Aldrich, St. Louis, MO, USA), rabbit polyclonal anti-TH
(1 : 1000; Millipore, Temecula, CA, USA), mouse monoclonal
anti-CD11b/c (OX42) (1 : 200; Abcam, Cambridge, UK),
mouse anti-CD45 (BD Bioscience, USA), and rabbit poly-
clonal anti-GFAP (1 : 500; DakoCytomation, Glostrup, Den-
mark). The secondary antibodies were Alexa Fluor 488
chicken anti-mouse H+L IgG (1 : 300; Invitrogen Molecular
Probes, Eugene, Oregon, USA), Alexa Fluor 488 chicken
anti-rabbit H+L IgG (1 : 300; Invitrogen Molecular Probes,
Eugene, Oregon), Texas red horse anti-mouse H+L IgG
(1 : 900; Vector Laboratories, Burlingame, CA, USA), and
Texas red goat anti-rabbit H+L IgG (1 : 900; Vector Laborato-
ries, Burlingame, CA, USA). The slices were washed with PBS
and mounted on glass slides using VECTASHIELD (Vector
Laboratories, Burlingame, CA, USA). Fluorescence images
were obtained with a Leica DMIRE2 microscope, using 20x
and 40x objectives and filters K3 for Alexa Fluor 488 (green
fluorescence) and TX2 for Texas red (red fluorescence).
The images were digitized with a Leica DC300F camera
(Nussloch, Germany). A multispectral confocal laser scan-
ning microscope (TCS SPE; Leica, Heidelberg, Germany)
was used to analyze through a 100x oil-immersion objective
the double immunofluorescence against TH-OX42 and TH-
GFAP at excitation-emission wavelengths of 488–522nm
(green channel) and 568–635nm (red channel). Their
consecutive 1μm optical sections were also obtained in the
Z-series (scanning rate 600Hz). The images were acquired
using LAS AF software (Leica Application Suite; Leica
Microsystems, Nussloch, Germany).

TH immunohistochemistry was made after depletion of
endogenous peroxidase using PBS-0.3% Triton X-100 solu-
tion containing 3% hydrogen peroxide and 10% methanol
at room temperature. The primary antibody was a mouse
monoclonal anti-TH clone TH-2 (1 : 1000; Sigma-Aldrich,
St. Louis, MO, USA), and the secondary antibody was a horse
biotinylated anti-mouse H+L IgG (1 : 200; Vector Laborato-
ries, Burlingame, CA, USA). The immunohistochemical
staining was developed using the avidin-biotin-peroxidase
complex (1 : 10; ABC Kit; Vector Laboratories, Burlingame,
CA, USA) and 393-diaminobenzidine (DAB; Sigma-Aldrich,
St. Louis, MO, USA) [19]. After the immunohistochemistry,
the slides were stained with hematoxylin-eosin (H&E)
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and then were mounted on glass slides using Entellan
(Merck KGaA, Darmstadt, Germany). Finally, the slides
were then examined with a light microscope equipped with
5x and 63x oil-immersion objectives (Leica Microsystems,
Nussloch, Germany).

2.12. Statistical Analysis. All results were expressed as the
mean± standard deviation (SD) values at least from 3
independent experiments (n = 3). The following statistical
tests to analyze the difference among groups were used:
repeated-measures two-way ANOVA and Bonferroni post
hoc test for temperature, sickness behavior, nitrites, and
lipid peroxidation qPCR and analysis of IF area density,
repeated-measures one-way ANOVA, and Newman-Keuls
post hoc test for OX42 and GFAP Western blot and
ELISA results. GraphPad Prism 5.0 software (GraphPad
Software Inc., La Jolla, CA, USA) was used for statistical
analysis. The accepted significance was at P < 0 05.

3. Results

3.1. Time Course of Fever and Sickness. As systemic manifes-
tations of LPS-induced neuroinflammation, the feverish
reaction (n = 45 rats) and external signs of sickness (n = 45
rats) were measured over time (1, 2, 3, 5, 8, 24, 48, 96, and
168h) after the intranigral injection of LPS. The untreated
control rats maintained their body temperature at 32.65
± 0.75°C, whereas the rats injected with LPS gradually
increased their body temperature to a maximum of 38.25
± 0.15°C detected at 8 h postinjection (Figure 1(a)). After
24 h, the body temperature was maintained at 32.7± 0.9°C
until 168 h, the end of the experiment (Figure 1(a)). The
mock rats (intranigrally injected with 2μL of endotoxin-
free physiological saline solution) showed a body tempera-
ture as low as 29.20± 0.82°C (1 h) and 31.16± 0.45°C (2h)
because of the anesthetic effect [49]. After that, the temper-
ature value attained was 32.65± 0.85°C in the untreated
control group (Figure 1(a)).

There were no sickness signs in the mock group (n = 45
rats) as compared with the untreated control rats, except
for slightly irregular fur in 1% of mock rats (score = 1) at
8 h after the vehicle injection (Figure 1(b)). When compared
with the untreated controls and mock groups, the rats intra-
nigrally injected with LPS exhibited clear signs of sickness
that followed the time course of fever. The maximum score
was reached at 8 h postinjection when the rats presented ady-
namia (absence of locomotion and exploration), curled body
posture, closed eyes, and piloerection (Figure 1(b)). The sick-
ness signs varied during their time course, although their
score was similar. At 5 h after LPS injection, the predominant
signs were the absence of locomotion and exploration, curled
body posture, and piloerection, and only closed eyes were
observed in 1% of the animals (Figure 1(b)). At 2 and 24 h
after LPS injection, the score was 2, but the signs were differ-
ent in those times. At 2 h, there was no locomotion, explora-
tion, and curled body posture, whereas at 24 h, the
locomotion and exploration were recovered, but irregular
fur with a slight degree of piloerection was seen in 1% of

the rats. At 3 h after LPS injection, the obvious signs were
adynamia and curled body posture (Figure 1(b)).

3.2. Time Course of Microglial Activation. OX42 immunode-
tection by Western blot (n = 3 rats for each time) and double
immunofluorescence with TH (n = 3 rats for each time) was
used to analyze the time course (0.2, 1, 5, 24, and 168h) of
microglial activation in the substantia nigra after LPS injec-
tion. The basal levels of OX42 immunoreactivity in the
untreated control rats were low and normalized concerning
β-actin in Western blot assays (Figures 2(a) and 2(b)).
Immunofluorescence assays showed scarce OX42 immuno-
reactivity in the substantia nigra pars compacta of both
untreated and mock groups (Figures 2(c) and 2(e) and Sup-
plementary Figure 1). OX42 immunoreactivity increased
immediately after the LPS injection, reached a maximum
value at 24 h, and still was high at the end of the experiment
(168 h) as shown by both immunodetection techniques
(Figures 2(a)–2(e)). A significant increase in OX42 immuno-
reactivity was only detected in the mock condition when
compared with the untreated condition at 168 h after the
vehicle injection (Figure 2(e) and Supplementary Figure 1),
but the increase in the LPS group was twice greater than
that in the mock group and was statistically significant
(Figure 2(e)). At this time, a significant 39% decrease in the
number of TH-immunoreactive cells occurred with respect
to the untreated control and mock condition (Figures 2(c)
and 2(d) and Supplementary Figure 1), suggesting neurode-
generation of dopaminergic neurons (Figures 2(c) and 2(d)).

It is interesting to notice the morphological changes of
microglia as the time elapses after LPS exposure (Figure 3).
The absence of OX42-immunoreactive cells in the untreated
condition suggests the resting or quiescent condition of
microglia. At 12 minutes after LPS injection (0.2 h), the cells
exhibited a strong OX42 immunoreactivity and a robust
branched morphology, with long thick branches, as well as
a regular and slightly enlarged soma (Figure 3). After 1 h,
two types of morphology were observed (Figure 3). One type
consists of long, thick branching and a well-delimited, wide
soma and nucleus (Figure 3). The second type consists of
short, stout branches and a larger soma and nucleus. From
5 to 24 h after LPS injection, the reactive-state, round-shape
cells with retracted processes and enlarged body, also referred
to as the amoeboid form, can be observed (Figure 3). At 168 h
after LPS injection, the OX42-immunoreactive cells exhibited
a round, irregular, and larger shape than the amoeboid cells
suggestive of the phagocytic state (Figure 3).

3.3. Time Course of Astrocyte Activation. GFAP immunode-
tection by Western blot (n = 3 rats for each time) and double
immunofluorescence with TH (n = 3 rats for each time) was
used to analyze the time course (0.2, 1, 5, 24, and 168h) of
astrocyte activation in the substantia nigra after the LPS
injection. Contrary to OX42 immunoreactivity, the Western
blot analysis showed that the increase in GFAP immunoreac-
tivity was belated and with statistical significance since 5 h
following LPS injection with respect to the basal levels of
untreated control rats (Figures 4(a) and 4(b)). GFAP immu-
noreactivity continued increasing until the end of the study
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(Figures 4(a) and 4(b)). The immunofluorescence assay
agrees with the time course of GFAP immunoreactivity
shown by Western blot analysis and revealed details on
changes of localization of the GFAP-immunoreactive cells
(Figures 4(c) and 4(e)). GFAP-immunoreactive cells were
scarce in the substantia nigra of untreated control rats
(Figures 4(c) and 4(e)). After LPS administration, GFAP-
immunoreactive cells started appearing in the pars reticulata
of the substantia nigra (1 h) and then in the pars compacta
(24 h). At the end of the study, the GFAP-immunoreactive
cells were abundant in both the pars compacta and pars reti-
culata of the substantia nigra (Figures 4(c) and 4(e)). These
results suggest that the astrocytes of the substantia nigra are
first activated in the pars reticulata and then recruited in
the pars compacta where the dopaminergic neurons dwell.
The vehicle injection increased GFAP-immunoreactive cells,
which was significant with the untreated controls, but the
increase in the LPS group was much greater than that in
the mock group and was statistically significant
(Figures 4(c) and 4(e) and Supplementary Figure 2). The
significant decrease in TH-immunoreactive cells in the LPS
group was also confirmed (Figures 4(c) and 4(d)).

The morphological changes in astrocytes were less
dramatic than those in microglia (Figure 4). Because GFAP-
immunoreactive cells were rarely observed in the substantia
nigra pars compacta of untreated control rats, their morpho-
logical details were shown in GFAP-immunoreactive cells in
the substantia nigra pars reticulata (Figure 5). In basal condi-
tions, the GFAP-immunoreactive cells were scarce with small
soma and few thin branches (Figure 5). The changes induced
by LPS injection mainly consisted of an increase in the cell
number, in the GFAP-immunoreactivity intensity, and in the
number of branching, which was long and robust (Figure 5).
These changes were present until the end of the study.

3.4. Nitrosative and Oxidative Stress. We evaluated nitrite
concentration as a marker of nitrosative stress (n = 5 rats
for each time) and MDA+4-HAE levels as a marker of oxi-
dative stress (n = 5 rats for each time). Mock values did not

show statistical significance when compared with those of
untreated group stress. As compared with the untreated con-
trol group, a significant 3.8-fold increase in nitrite levels was
observed at 2 h after LPS injection and a second 2.0-fold
increase from 8h to 168h (Figure 6(a)). The mock rats show
a 2.0-fold increase in nitrite levels at 2 h after injection when
compared with the untreated control group, but that increase
was significantly lesser than that caused by LPS at the
same time (Figure 6(a)). Different from nitrosative stress,
lipid peroxidation was only significant at 168 h after LPS
injection with respect to the untreated control group, sug-
gesting that lipid peroxidation follows the acute neuroin-
flammation (Figure 6(b)).

3.5. Proinflammatory and Anti-Inflammatory Cytokines.
Three proinflammatory cytokines (TNF-α, IL-1β, and IL-6)
and two anti-inflammatory cytokines (IL-4 and IL-10) were
evaluated in the substantia nigra through ELISA and qPCR
(n = 4 rats for each time and each experimental condition;
Figure 7). The LPS intranigral injection significantly
increased mRNA levels of the three proinflammatory cyto-
kines, but the onset and the peak were different for each
proinflammatory cytokine (Figures 7(a)–7(c)). TNF-α and
IL-1β mRNA levels were significant at early times and were
maximum at 5 h (Figures 7(a) and 7(b)), followed by IL-6
mRNA levels that were maximum at 8 h (Figure 7(c)), when
compared with those of the untreated and mock controls.
After that, TNF-α and IL-1βmRNA levels decreased to reach
the basal levels at 24 h; only IL-1β mRNA levels remained
significantly increased up to 168h (Figure 7(b)). mRNA
levels of the two anti-inflammatory cytokines were signifi-
cant only at late times when compared with those of the
untreated controls: at 168 h, IL-4, and from 24 to 96 h, IL-
10 (Figures 7(d) and 7(e)). We found that NO production
precedes the increase in proinflammatory cytokine levels
and that the clinical effect (fever and sickness behavior) was
associated with the time course of proinflammatory cyto-
kines (Figures 1, 6, and 8). Since the vehicle injection neither
increased NO production nor elicited clinical manifestations
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Figure 1: Clinical evolution after a single injection of LPS in the substantia nigra of the rat. (a) Fever. (b) Sickness behavior. Ut = untreated
control rats. Mock = rats injected with the vehicle (2 μL of endotoxin-free physiological saline solution) in the left substantia nigra. All values
represent the mean± SD (n = 45). ∗P < 0 001 when compared with the untreated control group. δP < 0 05 or †P < 0 001 when compared with
the respective mock. Repeated-measures two-way ANOVA and Bonferroni post hoc test.
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Figure 2: Time course of microglial activation. (a) A representative photograph of a Western blot membrane showing the electrophoretic
fractionation of OX42 and β-actin from substantia nigra homogenates of LPS-treated rats and untreated (Ut) control rats. The numbers
indicate the time of evaluation. (b) Graph of densitometry analysis showing the normalized values of OX42 bands concerning β-actin
bands. The values represent the mean± SD (n = 3 independent rats in each time of each experimental condition). ∗P < 0 001 when
compared with the untreated control group using repeated-measures one-way ANOVA and Newman-Keuls post hoc test. (c)
Representative micrographs of the double immunofluorescence of TH and OX42 in the substantia nigra of untreated (Ut) control rats and
rats at different times after LPS injection that were taken at 3.8mm from the interaural midpoint on the dorsal-ventral axes of the rat
brain atlas by Paxinos and Watson [50]. The numbers at the left side of micrographs indicate the time of evaluation. Immunofluorescence
(IF) area density for TH (d) and OX42 (e) was determined using ImageJ software v.1.46r (National Institutes of Health, Bethesda, MD).
The TH and OX42 values for the mock rats correspond to the quantification in Supplementary Figure 1. All values represent the mean
± SD (n = 3 independent rats in each time of each experimental condition). ∗P < 0 001 when compared with the untreated control group
of the respective immunostaining. †P < 0 001 when compared with the respective mock group. Repeated-measures two-way ANOVA and
Bonferroni post hoc test.
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(i.e., fever and sickness behavior) over time, the effect of the
vehicle on cytokine mRNA levels was only measured in the
period of the maximum increase in mRNA levels in the
LPS groups. There was no statistical difference from the
untreated controls (Figures 7(a)–7(e)). The basal levels of
the three proinflammatory cytokines and the two anti-
inflammatory cytokines were, in pg/mL, 5.58± 0.80 (TNF-
α), 22.14± 7.72 pg/mL (IL-1β), 1001.70± 144.01 (IL-6),
67.58± 12.80 pg/mL (IL-4), and 33.89± 11.21 (IL-10). The
LPS intranigral injection significantly increased the basal
levels of TNF-α, IL-1β, IL-6, and IL-10 with a time course
similar to that of their respective transcripts (Figures 7(a)–
7(d) and 7(f)–7(i)). IL-4 decreased at 24 and 48 h after LPS
injection (Figure 7(f)), although its transcript levels were
not significantly different over time (Figure 7(e), suggesting
posttranscriptional regulation for this anti-inflammatory
cytokine. Because the time course of protein levels was
similar to that of transcript levels, the vehicle effect on
cytokine protein levels was only determined at 3 h postin-
jection when qPCR showed the maximum increase in the
mock group (Figures 7(a)–7(e)). A statistically different
increase only occurred in TNF-α and IL-1β of the mock
group with respect to the basal values, but such increase
was statically different and 55% lower than that in the
respective LPS group (Figures 7(f)–7(h)).

3.6. Apparent Microglial Phagocytosis of Damaged
Dopaminergic Neurons. Confocal analysis with orthogonal
projections was used to evaluate whether OX42+ cells
(microglia) might engulf damaged TH+ cells (dopaminergic
neurons) in the substantia nigra at 168 h after LPS local
administration. The substantia nigra pars compacta of
untreated control rats is characterized by the absence of

active microglia and normal morphology of dopaminergic
neurons with well-defined soma and continuous prolonga-
tions (Figure 9(a)). At 168 h after LPS administration, irregu-
lar and large OX42+ cells are present in tight contact with
harmed TH+ cells (Figure 9(a)). At this time, evidence of neu-
rodegeneration could be seen, entailing the decreased num-
ber of TH+ cells (Figures 2(d), 4(d), and 9(a)), irregular
body contour, unidentifiable nuclear area, and scarce and
discontinuous prolongations. Also, there was evidence of
apparent phagocytosis of TH+ cells by OX42+ cells
(Figure 9(a)). This suggestion is further reinforced by the
confocal orthogonal views that show TH+ cell fragments
being encircled by OX42+ cell prolongations (Figure 9(b)).
These results suggest that acute neuroinflammation by LPS
local injection can lead to dopaminergic neurodegeneration
in the substantia nigra.

3.7. Leukocyte Infiltration. The H&E staining in combina-
tion with TH immunohistochemistry of the untreated sub-
stantia nigra showed the presence of TH+ and the absence
of infiltrating cells (Figure 10). At 24 and 168h after LPS
injection, two kinds of infiltrating cells can be observed in
the cerebral parenchyma: (1) macrophage-like cells with
an elongated cytoplasm and a large, eccentric nucleus
known as “rod cells” (Figure 10), a characteristic of mac-
rophages and active microglia [51], and (2) leukocyte-like
cells characterized by a small, regularly round basophilic
cytoplasm and a well-defined large nucleus (Figure 10).
The TH immunochemistry staining, besides its usefulness
to delimit the substantia nigra compacta, confirmed the
findings of the double immunofluorescence, that is, a
decrease in TH immunoreactivity and irregular TH+ cells
suggesting damage of the dopaminergic neuron population
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Figure 3: Morphological changes during activation of microglia in the substantia nigra after LPS exposure. Representative confocal
micrographs of OX42 immunofluorescence in the substantia nigra of untreated control rats and rats at different times after LPS injection.
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Figure 4: Time course of astrocyte activation. (a) A representative photograph of a Western blot membrane showing the electrophoretic
fractionation of GFAP and β-actin from substantia nigra homogenates of LPS-treated rats and untreated (Ut) control rats. The numbers
indicate the time of evaluation. (b) Graph of densitometry analysis showing the normalized values of GFAP bands with respect to β-actin
bands. The values represent the mean± SD (n = 3 independent rats for each time of each experimental condition). ∗P < 0 001 when
compared with the untreated control group using repeated-measures one-way ANOVA and Newman-Keuls post hoc test. (c)
Representative micrographs of the double immunofluorescence of GFAP and TH in the substantia nigra of untreated (Ut) control rats and
rats at different times after LPS injection that were taken at 3.7mm from the interaural midpoint on the dorsal-ventral axis of the rat
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The TH and GFAP values for the mock rats correspond to the quantification in Supplementary Figure 2. All values represent the mean
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of the respective immunostaining. †P < 0 001 when compared with the respective mock group. Repeated-measures two-way ANOVA and
Bonferroni post hoc test.
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(Figure 10). It is interesting to note that a large number of
TH+ neurons are clearly seen in the substantia nigra pars
reticulata at 24 and 48 h after LPS injection, suggesting that
those neurons are more resistant to the neuroinflammation
elicited by LPS in comparison to those of the substantia
nigra compacta (Figures 10(c) and 10(e)). The expression
of calretinin in those neurons might explain the resistance
to neuroinflammation as occurring for 6-OHDA [52].

To further support leukocyte infiltration, immunostain-
ing of CD45, a leucocyte common antigen [53], was

performed in the substantia nigra (n = 3 rats in each time
and experimental condition). The results show the absence
of CD45+ cells in the untreated control and in the mock rats
(Figure 11(c) and Supplementary Figure 3). In contrast, the
presence of CD45+ cells is abundant at 24 h and 48 h after
LPS injection (Figures 11(a) and 11(c)), as compared with
those of their respective mock and untreated controls
(Figure 11(c) and Supplementary Figure 3). These results
show that infiltration of immunological cells predominates
in the late phase of acute neuroinflammation.
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5 h 24 h 168 h
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Figure 5: Morphological changes during activation of astrocytes in the substantia nigra after LPS exposure. Representative confocal
micrographs of GFAP immunofluorescence in the substantia nigra of untreated control rats and rats at different times after LPS injection.
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4. Discussion

A leading line of research establishes that the microglial acti-
vation during neurodegeneration in the substantia nigra pars

compacta is atypical [54]; that is, microglial activation leads
to proinflammatory cytokine transcription but not transla-
tion [55]. This implies that microglial activation in certain
conditions does not lead to an inflammatory response as
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Figure 7: Levels of cytokines in the substantia nigra after LPS local injection. qPCR (a–e) and ELISA (f–j) were used to measure mRNA and
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believed. Experiments in a 6-OHDA Parkinson’s disease
model support the asseveration and truly extend the knowl-
edge that proinflammatory cytokines such as TNF-α instead
of being detrimental are beneficial for neurotoxin-induced
neurodegeneration [56]. The studies on neuroinflammation
in neurotoxin-induced Parkinson’s disease models have been
addressed in the critical period of neurodegeneration (7–21
days after neurotoxin injection) where the apoptotic process
predominates [5, 19]. During this period, it is possible that a
modulatory mechanism might be exerted on activated
microglia to restrain cytokine translation, but not transcrip-
tion, thus preventing their participation in neuroinflamma-
tion. In contrast, our results show that microglial activation
by the archetypal inflammatory stimulus LPS can lead to
transcription and translation of proinflammatory cytokines
in a similar timeframe as that observed in macrophages acti-
vated during the innate immune response (local and sys-
temic) [57–59]. Consecutively, astrocyte activation takes
place and continues increasing until the end of the study
(168 h after LPS injection). At this time, increased NO and
lipid peroxidation levels, apparent phagocytosis of TH+ cells,
and a significant decrease in TH immunoreactivity occur in
the substantia nigra, thus suggesting the onset of neurode-
generation of dopaminergic neurons. The increase in NO
already 2h after the LPS stimulus suggests that NO produc-
tion was independent of LPS-elicited proinflammatory cyto-
kines. Based on these results, we propose that the alleged
controversy on the involvement of activated microglia in
neuroinflammation can be explained by the difference in
the inflammatory stimulus used and the period where neuro-
inflammation variables are determined.

The increase in body temperature and sickness behavior
induced by LPS show the systemic impact of pyrogenic cyto-
kine production (TNF-α, IL-1β, and IL-6) in the substantia
nigra. Our results agree with the results of previous studies

showing that LPS-induced TLR4 signaling stimulates the
synthesis of pyrogenic cytokines at the site of infection
including the brain [42, 60]. The time course of fever and
sickness behavior induced by the intranigral injection of
LPS correlated with that of pyrogenic cytokines TNF-α, IL-
1β, and IL-6 [42, 60]. It is interesting to note that the end
of fever and sickness behavior coincides with the normaliza-
tion of IL-6 levels, which is an important mediator of fever
induction and a requisite in sustaining fever [60]. In this
regard, the loss of IL-6 signaling is sufficient to abrogate fever
in LPS- or IL-1-induced inflammatory models, even though
TNF and IL-1 are increased in these settings [61–64]. Also,
the time of defervescence of fever evoked by the intranigral
injection of LPS coincided with the significant expression of
IL-10, an antipyretic cytokine [65], in the substantia nigra.
The mechanism of the anti-inflammatory effect of IL-10 is
likely to be mediated through the inhibition of IL-1β which
is locally produced [66]. This suggestion is supported by
the finding that the increase in IL-10 expression accompanies
the falling of IL-1β expression in the substantia nigra 24h
after LPS intranigral injection.

Microglial cells are resident macrophages of the CNS
[67] and also bear TLR4, which can be activated by LPS
to initiate an immune response entailing a wide range of
immunomodulatory molecules such as proinflammatory
cytokine and reactive oxygen species [68]. Since astrocytes
are unresponsive to LPS [69], their activation depends on
microglial NOX2-generated H2O2 that subsequently stimu-
lates activation of transcription factors STAT1 and STAT3
[70]. This evidence indicates that microglial activation pre-
cedes astrocyte activation as supported by our results. We
found that the peak of OX42 immunoreactivity was
reached 24 h after LPS injection and was followed by a
maximum increase in GFAP immunoreactivity 168 h after
the LPS injection. At this latter time, a significant increase
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Figure 8: Schematic summary of LPS-induced acute neuroinflammation in the substantia nigra of the rat.
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in NO concentration and lipid peroxidation was also pres-
ent coinciding with the increased GFAP immunoreactivity.
These results suggest that the generation of free radicals,

mainly the radical H2O2, might participate in astrocyte
activation. This phenomenon can be seen through the
increased GFAP immunoreactivity, thickening of branches,
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Figure 9: Apparent phagocytosis of damaged dopaminergic neurons by microglia. Representative confocal micrographs of TH and OX42
double immunofluorescence. (a) Integrated projections from x-y optical stacks. (b) Orthogonal projections from a 1 μm z-confocal optical
section. The arrows show a green fluorescence dot (TH immunoreactivity) surrounded by a red fluorescence ring (OX42). The right top
panel corresponds to the integrated image where the orthogonal analysis was performed.
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and apparent mobility from the pars reticulata to the pars
compacta of the substantia nigra shown by the detailed
morphological analysis and the panoramic view of GFAP
immunofluorescence.

The detailed morphological analysis also shows the
prompt activation of microglia. The appearance of OX42
immunoreactivity and morphological changes is observed
immediately after LPS injection. Five hours later, a combina-
tion of branched microglia and amoeboid microglia can be
seen coinciding with the peak of proinflammatory cytokine
production. These results suggest that at this time, the great-
est transition state of active cells occurs. A predominant
amount of amoeboid microglia can be seen 24 h after LPS
injection, and it is possible that they also correspond to infil-
trating macrophages attracted to the inflamed area by micro-
glial chemokines as suggested by our CD45 immunostaining
results at 24 h after LPS injection and the results of previous
reports [8, 71]. This suggestion is further supported by the
H&E staining that shows the presence of “rod” cells

(characterized by the elongated and irregular nuclei and
enlarged cytoplasm). Also, the H&E staining also supports
leukocyte infiltration in the substantia nigra that can be
attracted by microglial chemokines. At 168 h after LPS injec-
tion, the large and irregular OX42-immunoreactive cells
resemble a phagocytic state of microglia. This suggestion is
supported by the confocal orthogonal views that showmicro-
glial prolongations surrounding deteriorated dopaminergic
neurons as if microglia were engulfing them for degradation.
Also, previous studies have shown that this phenotype corre-
sponds to phagocytic microglia when eliminating cellular
debris [72].

Our results provide three pieces of evidence that sustain
the degeneration of dopaminergic neurons in the substantia
nigra at 168 h after LPS injection: (1) the decrease in TH
immunoreactivity shown by TH immunofluorescence and
immunohistochemistry assays that were performed together
with glial markers (OX42 and GFAP) and H&E, respec-
tively, (2) the irregular body contour and prolongation
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Figure 10: Leukocyte infiltration. Representative micrographs showing the H&E staining and TH immunohistochemistry of the substantia
nigra of untreated control rats and experimental rats at 24 and 168 h after LPS injection. The micrographs were taken at 3.2mm from the
interaural midpoint on the dorsal-ventral axis of the rat brain atlas by Paxinos and Watson [50]. The black square on 5x micrographs
indicates the area where 63x amplification was taken. Arrowheads indicate leukocyte infiltration, and arrows indicate microglia/macrophages.
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Figure 11: Time course of leucocyte infiltration. (a) Representative micrographs of the double immunofluorescence of CD45 and TH in the
substantia nigra of untreated (Ut) control rats and rats at different times after LPS injection that were taken at 3.4mm from the interaural
midpoint on the dorsal-ventral axis of the rat brain atlas by Paxinos and Watson [50]. The numbers at the left side of micrographs
indicate the time of evaluation. Immunofluorescence (IF) area density for TH (b) and CD45 (c) was determined using ImageJ software
v.1.46r (National Institutes of Health, Bethesda, MD). The TH and CD45 values for the mock rats correspond to the quantification in
Supplementary Figure 3. All values represent the mean± SD (n = 3 rats for each time and for each experimental condition). ∗P < 0 001
when compared with the untreated control group of the respective immunostaining. †P < 0 001 when compared with the respective mock
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discontinuity of TH+ cells displayed by confocal microscope
analysis, and (3) the phagocytosis of TH+ cells by OX42+

cells. The induction of neurodegeneration cannot be
explained by a direct effect of LPS because dopaminergic
neurons lack TLR4. Since nigral dopaminergic neurons are
particularly vulnerable to nitrosative-oxidative stress [34],
we propose that LPS-induced neuroinflammation is the
cause of neurodegeneration.

5. Conclusions

Our results show that LPS evokes a typical acute inflamma-
tory response in the substantia nigra of the rat (Figure 8).
In this model of acute neuroinflammation, the microglial
activation is the first event induced by LPS that is followed
by astrocyte activation and leukocyte infiltration (Figure 8).
Contrary to the “atypical” response observed in neurotoxin
models of dopaminergic neurodegeneration, LPS leads to
transcription and translation of proinflammatory cytokines
at the initial phase of acute neuroinflammation, from 3 to
8 h (Figure 8). During this period, the increase in proinflam-
matory cytokine levels is associated with fever and sickness
behavior (Figure 8). The acute increase in nitrosative-
oxidative stress at the end of the period studied can favor
neurodegeneration of dopaminergic neurons because of their
susceptibility to neuroinflammation (Figure 8). While neuro-
inflammation in Parkinson’s disease is chronic, our results in
acute neuroinflammation can be useful to understand the
progression of this disease.
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Supplementary Materials

Supplementary 1. Supplementary Figure 1: double immuno-
fluorescence analysis against OX42 and TH in the substantia
nigra of untreated (Ut) control rats and mock rats. The rep-
resentative micrographs correspond to 3.8mm from the
interaural midpoint on the dorsal-ventral axis of the rat brain
atlas by Paxinos and Watson [50]. The graph of immunoflu-
orescence (IF) area density for TH and OX42 determined
with ImageJ software v.1.46r (National Institutes of Health,

Bethesda, MD) is shown in Figures 2(d) and 2(e),
respectively. n = 3 independent rats in each time of each
experimental condition.

Supplementary 2. Supplementary Figure 2: double immuno-
fluorescence analysis against GFAP and TH in the substantia
nigra of untreated (Ut) control rats and mock rats. The rep-
resentative micrographs correspond to 3.8mm from the
interaural midpoint on the dorsal-ventral axis of the rat brain
atlas by Paxinos and Watson [50]. The graph of immunoflu-
orescence (IF) area density for TH and GFAP determined
with ImageJ software v.1.46r (National Institutes of Health,
Bethesda, MD) is shown in Figures 4(d) and 4(e), respec-
tively. n = 3 independent rats in each time of each experi-
mental condition.

Supplementary 3. Supplementary Figure 3: double immuno-
fluorescence analysis against CD45 and TH in the substantia
nigra of untreated (Ut) control rats and mock rats. The rep-
resentative micrographs correspond to 3.4mm from the
interaural midpoint on the dorsal-ventral axis of the rat brain
atlas by Paxinos and Watson [50]. The graph of immunoflu-
orescence (IF) area density for TH and CD45 determined
with ImageJ software v.1.46r (National Institutes of Health,
Bethesda, MD) is shown in Figures 11(b) and 11(e), respec-
tively. n = 3 independent rats in each time of each experi-
mental condition.
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For a long time, investigations about the lung myeloid compartment have been mainly limited to the macrophages located within
the airways, that is, the well-known alveolar macrophages specialized in recycling of surfactant molecules and removal of debris.
However, a growing number of reports have highlighted the complexity of the lung myeloid compartment, which also
encompass different subsets of dendritic cells, tissue monocytes, and nonalveolar macrophages, called interstitial macrophages
(IM). Recent evidence supports that, in mice, IM perform important immune functions, including the maintenance of lung
homeostasis and prevention of immune-mediated allergic airway inflammation. In this article, we describe lung IM from a
historical perspective and we review current knowledge on their characteristics, ontogeny, and functions, mostly in rodents.
Finally, we emphasize some important future challenges for the field.

1. From Septal Cells to Interstitial Macrophages

Phagocytic “septal cells” were observed by Kaplan and
colleagues already in 1950 [1] and likely represented “nonal-
veolar” macrophages located in the alveolar wall. Neverthe-
less, the alveolar macrophages (AM) remained the main
macrophage population investigated in the lung until the
early 1970s. By that time, it was proposed by van Furth and
Cohn that, like any other tissue-resident macrophages, AM
originated from bone marrow promonocyte precursors,
which then circulated in the blood as monocytes and could
differentiate into macrophages within the alveoli [2]. As a
corollary, an intermediate state of AM maturation, located
in the pulmonary interstitium, presumably existed between
the blood compartment and the airways. In 1972, “mononu-
clear interstitial cells” were first proposed as precursors of the
AM lineage in cultured lung explants [3]. Since then, lung tis-
sue macrophages were long merely considered as a transition
state between circulating monocytes and AM [4–6].

The development of methods to harvest pulmonary
macrophages using mechanical and enzymatic treatments
allowed the comparison between AM (isolated by bronchoal-
veolar lavage (BAL)) and lung tissue macrophages (TM) in

rodents, even though the latter were contaminated by resid-
ual AM [7, 8]. While both AM and TM displayed classical
macrophage features such as a phagocytic potential and
expression of Fc receptors, these features were reduced in
TM as compared to AM [9–13]. Moreover, additional
differences were underscored within TM. In mice, TM exhib-
ited a higher percentage of cells positive for the complement
receptor C3 [8, 9], a higher production of arachidonic acid
metabolites following phagocytosis [14], and an increased
spreading capacity when exposed to plasma [9] as compared
to AM. In rats, TM were shown to have a higher peroxidase
activity [15], a greater major histocompatibility complex class
II (MHC-II) expression [16], and a greater number of filopo-
dia [17]. Upon ex vivo stimulation with lipopolysaccharide
(LPS), AM displayed greater cytotoxic and antimicrobial
activities than TM, while TM secreted more interleukin-
(IL-) 1 and IL-6, inmice [13] and rats [16]. Unlike AM,mouse
TM were also very potent in promoting mitogen-stimulated
spleen lymphocyte proliferation in mice [13]. Despite these
morphological, phenotypical, and functional differences,
many authors still interpreted them as being part of the tran-
sition process between blood-circulating monocytes and AM
[3–6, 13], but others raised the possibility that lung TM (also
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called interstitial macrophages (IM)) represented a distinct
and fully competent macrophage population [11, 16, 18], a
concept that is now well accepted in the field [19–21].

2. Morphological and Phenotypical Features

Most of the abovementioned studies have been performed
ex vivo and have defined TM as the cells collected from enzy-
matically digested lungs and adherent to the culture plate
in vitro. Obviously, such a technique did not allow a specific
isolation of IM, and the resulting cells were likely contami-
nated with variable amounts of other mononuclear cell types,
such as residual AM (despite extensive BAL [11, 22–24]),
conventional dendritic cells (cDCs), or monocytes [25, 26].
In addition, accepting that macrophages, once extracted
from their native microenvironment and cultured ex vivo,
undergo rapid morphological and phenotypical changes
[27], the conclusions drawn from ex vivo-cultured IM have
to be interpreted with caution.

Morphologically, Sebring and Lehnert were the first, to
our knowledge, to combine a Fc receptor-based affinity
technique with a cytometric approach to sort IM from

rat lungs and identified them as being smaller than AM,
with a smoother surface and a more irregular and
heterochromatin-containing nucleus [28]. More recently,
freshly isolated mouse IM were shown to exhibit an irregu-
larly shaped nucleus and numerous vacuoles in their cyto-
plasm, while mouse AM were larger cells [26] with more
prominent pseudopodia [29].

The availability of technologies allowing analysis of
freshly isolated single cells, such as multicolor flow or mass
cytometry, substantially improved the phenotypic characteri-
zation of lung immune cells [20, 25, 26, 29–31]. The work of
several investigators in the field has allowed, based on the
levels of expression of several surface markers, a discrimina-
tion between each of the lung myeloid mononuclear cell pop-
ulations in the steady-state lung, including IM (Figure 1).
These markers are compiled in Table 1. Both IM and AM
express the macrophage-specific markers CD64 and Mertk,
as opposed to cDCs andmonocytes.While AM are autofluor-
escent SiglecF+CD11c+CD11b−CCR2−CX3CR1− cells, IM
are non-autofluorescent SiglecF−CD11c+/−CD11b+CCR2+/−

CX3CR1+ cells [26, 31] (Figure 1). Notably, a recent report
has shown that a fraction of mouse IM, defined as
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Figure 1: Mouse lung interstitial macrophage phenotype and origin at the steady state and upon exposure to LPS, CpG-DNA, or HDM.
For clarity, the ratio between the numbers of depicted AM, IM, and monocytes does not reflect the reality. By definition, IM are located
in the lung interstitium, while AM reside in the airway lumen. IM can produce IL-10 at baseline, a phenomenon that is potentiated by
an exposure to LPS, CpG-DNA [26], or HDM [50]. Phenotypically, IM are non-autofluorescent SiglecF−CD11b+CX3CR1+Ly6C− cells,
while AM are autofluorescent SiglecF+CD11c+CD11b−CX3CR1−Ly6C− cells. Steady-state IM, as well as LPS- or HDM-induced IM,
are thought to be maintained or expanded by the recruitment of CCR2-dependent Ly6C+ classical blood monocytes, at least in part.
Local proliferation may also account for the maintenance of steady-state IM. Following exposure to CpG-DNA, CCR2-independent
lung-resident and splenic Ly6C+ monocytes contribute to a large extent to the expansion of the IM pool endowed with enhanced
immunoregulatory properties.
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Mertk+CD64+CD11b+SiglecF− cells, expressed CD11c and
MHC-II [31], like cDCs, so that both cell types may poten-
tially contaminate each other. Nevertheless, cDCs differ from
IM by their low or absent expression of macrophage markers
(e.g., CD64, Mertk, and F4/80). The situation may be more
confusing when inflammation is present and monocyte-
derived cells are infiltrating the lung, in which case IM may
be included in inflammatory subtypes of monocytes or DCs.
Nevertheless, IM may be discriminated from such cells by
their low expression of the inflammatory/classical monocyte
marker Ly6C.

3. Tissue Localization

At steady state, lung IM are primarily considered as “nonal-
veolar” macrophages and are therefore virtually absent in
the airways, while AM represent the macrophages present
in the airway lumen. To date, however, it must be noted that
information about the exact localization of IM within the
lung tissue remains scarce and is based on standard immuno-
histochemical procedures using nonspecific pan-macrophage
markers [31, 32]. Earlier studies in mice using immu-
nostainings against F4/80 and CD11c markers identified
F4/80+CD11c− cells, defined as IM, within the lung paren-
chyma, whereas AM, defined as F4/80+CD11c+ cells, were
mostly located in the lumen [32]. Experiments using intrave-
nous injection of clodronate-containing liposomes, which
efficiently depleted blood monocytes, had no impact on IM
numbers [26], supporting that steady-state IM were not asso-
ciated with blood vessels but truly located in the lung tissue.
More recently, Gibbings and colleagues have performed a
staining for Mertk on mouse lung sections from CX3CR1-
GFP reporter mice at steady state, allowing the visualization
of Mertk+CX3CR1+ IM in the bronchial interstitium, in the
vicinity of lymphatic vessels, but not in the lung parenchyma
[31]. In the same report, no Mertk+CX3CR1+ cells were
observed on the pleural surface nor in the blood vessels
[31]. Given the complexity and dynamic regulation of the
lung tissue macrophage compartment, the generation of
novel transgenic tools allowing the specific tracking and visu-
alization of IM in vivo will help solve the question of their
localization and their spatiotemporal relationships with the
local microenvironment, such as bronchial and alveolar
epithelial cells, stromal cells, endothelial cells, or lymphoid
tissues [33], at steady state and during inflammation. The fact
that distinct subpopulations of IM exist, as reported recently
[31], is consistent with the idea that they may reside in more
than one anatomical site.

4. Origin, Maintenance, and Expansion

Most tissue-resident macrophages are thought to derive from
embryonic precursors arising from different sources: the yolk
sac (i.e., erythromyeloid progenitor- (EMP-) derived prema-
crophages), the fetal liver (i.e., EMP-derived monocytes or
hematopoietic stem cell- (HSC-) derived monocytes), or the
bone marrow (i.e., HSC-derived monocytes), as reviewed
and discussed extensively elsewhere [34–36]. At steady state,
the well-characterized AM have been shown, in mice, to

originate from fetal monocytes that seed the airway lumen
around birth [20]. On the contrary, IM ontogeny seems
more complicated and less documented. In 2016, Tan and
Krasnow investigated the development of lung macrophages
by marker expression patterns and genetic lineage tracing
[21]. The authors used Runx1CreER transgenic mice express-
ing the tamoxifen-inducible Cre recombinase under the con-
trol of the Runx1 promoter (Runx1 being expressed in
primitive hematopoietic cells located exclusively in the yolk
sac between E7 and E8 [37, 38]) and found that a subset of
yolk-sac-derived premacrophages seeded the lung starting
at E10.5 and persisted as “primitive” IM at specific subme-
sothelial and perivascular locations in adults [21]. In addition,
they identified an additional wave that developed rapidly after
birth to give rise to “definitive” IM located diffusely in the
lung parenchyma and thought to originate from the bone
marrow [21]. These results are consistent with the idea that
IM have a mixed origin, both an embryonic yolk-sac-
derived origin and a postnatal bone marrow-derived origin.

During homeostasis, most embryonically derived tissue-
residentmacrophages, like AM, can self-maintain throughout
life with minimal contribution from circulating monocytes
[20, 35, 39–41]. In the case of IM, parabiosis studies have
suggested that they are, at least in part, replenished from
blood monocytes for their maintenance in adults [21, 26]
(Figure 1), like macrophages from the intestinal lamina pro-
pria [42], skin [43], and heart [44]. In the report of Tan and
Krasnow, parabiotic wild-type (WT) mice were sutured
together and exchanged their circulation with “donor” ubiq-
uitous EGFP mice for 4 months. The lungs of WT mice were
then examined for enrichment in EGFP+ cells, and 17% of
IM were EGFP+, demonstrating that circulating precursors
can maintain the IM pool in adults, as opposed to AM
[21]. Further supporting this, our group has analyzed the
lungs of parabiotic Ccr2−/− mice (in which the egress of
monocytes from the bone marrow is compromised [45])
that were sutured together with a WT “donor” for 6 months
and showed that 35% of IM derived from WT cells. The
relatively low percentage of IM replacement by circulating
“donor” cells in parabiotic studies is consistent with the
mixed origin proposed by Tan and Krasnow [21] and with
the idea that only one subpopulation of IM is maintained
by circulating monocytes after birth, whereas another sub-
population is long-lived and may be able to self-renew in
the tissue (Figure 1). This idea is further supported by the
study of Gibbings and colleagues identifying, in the mouse
steady-state lung, at least three IM subsets, with one subset
displaying a higher turnover rate and replenishment by
circulating precursors than the two others [31].

Which population is preponderant in young, adult, and
aged animals, which consequences does it have on their bio-
logical functions, and how is it influenced by the numerous
immune challenges to which the lung is exposed throughout
life remain interesting open questions for future research.
Emphasizing the complexity of IM ontogeny in response
to environmental stimuli, our group reported that local
exposure to unmethylated CpG-rich DNA (CpG-DNA)
promoted a robust TLR-9-dependent expansion of IM
unexpectedly originating from monocytes residing in the
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lung or recruited from the spleen, independently of CCR2
[26] (Figure 1).

5. Heterogeneity and Plasticity

The existence of subpopulations of IM in rats was first pro-
posed in 1986 by Chandler and colleagues [15] and further
investigated by the same group [46, 47], based on density gra-
dient fractionation. The fractions of lower density displayed
greater functional capacities (e.g., Fc-mediated binding and
phagocytic activity, production of prostaglandin and throm-
boxane, andmigration upon exposure to chemotactic stimuli)
as compared to the fractions of higher density [15, 46, 47].
However, it is unclear whether these differencesmay be attrib-
uted to a true heterogeneity within IM or to a contamination
of the higher density fractions with granulocytes, as reported
[15]. Nevertheless, several recent reports have provided
experimental evidence that IM represented a heterogeneous
population in the steady-state lung. First, the use of IL-10
reporter ITIB mice [48] supported that two subpopulations
of IM exist in terms of IL-10 expression [26]. Second, IM have
been shown to segregate in a phagocytic and a nonphagocytic
compartment in vivo [49]. Third, as stated above, Gibbings
and colleagues have recently described three distinct IM sub-
populations, based on their relative surface expression of
CD11c and MHC-II, namely, CD11clowMHC-IIlow (IM1),
CD11clowMHC-IIhigh (IM2), and CD11c+MHC-IIhigh (IM3)
[31]. Phenotypically, IM1 and IM2 expressed higher levels
of CD206, Lyve-1, and CD169 as compared to IM3, which
expressed higher levels of CCR2 and CD11c. Functionally,
IM1 and IM2 appeared to be more efficient than IM3 but less
efficient than AM in the phagocytosis of latex microbeads or
microbial bioparticles in vivo, whereas the three populations
had similar phagocytic abilities when the experiment was per-
formed ex vivo to provide a similar access to the beads for
each subset [31].

These results highlight the potential diversity of mouse
IM at steady state. It is very likely that the picture becomes
even more complex when the lungs are exposed to endoge-
nous or exogenous stress signals, such as following tissue
damage or during inflammation or infection. Under these
circumstances, IM may adapt their phenotype and function
to respond to the needs of the lung tissue, and additional
inflammatory monocytes may also be recruited into the lung
and acquire features of IM. Supporting this, Kawano and col-
leagues have shown that the numbers of IL-10-producing IM
were increased following local challenge with house dust mite
extracts (HDM) inmice [50]. In addition, we have shown that
local exposure of mice to LPS or CpG (i.e., ligands of the TLR-
4 and TLR-9, resp.) induced increases in IM numbers as well
as substantial phenotypical changes, while no change in IM
numbers was detected in response to lung infectionwith influ-
enza A virus or Staphylococcus pneumoniae, or following
intranasal exposure to ligands of TLR-1/2, TLR-3, and TLR-
2/6 [26]. Besidesmicrobial products, IMmay also be impacted
by tissue damage and hypoxia [29, 51, 52]. Indeed, increases in
IM numbers have also been observed in mouse models of
acute lung injury (ALI) based on local instillations of bleomy-
cin [29] or high doses of LPS [51]. Such IM expressed higher

levels of classically activated “M1” macrophage markers
(CD40, CD80, and CD86) as compared to basal IM. During
the later stages of tissue repair, however, IM numbers and
phenotype returned to baseline levels [51]. In response to
low oxygen levels in mice, numbers of IM transiently
increased and their transcriptome seemed to shift toward an
anti-inflammatory gene profile at a later stage [52], consistent
with a previous observation that the hypoxia-responsive tran-
scription factorHif1α promoted IM immunoregulatory activ-
ity in allergenic contexts [53].

6. Biological Functions In Vivo

Many putative functions of IM in vivo could be speculated
based on their phenotypical and functional properties. Like
AM, IM are phagocytic cells [14–16, 31, 32, 49, 54] and could
thus be considered as a second line of defense against invad-
ing microorganisms. In addition, based on their expression of
MHC-II [26, 31, 54], one can postulate that mouse IM could
exhibit some antigen-presenting cell activity, as suggested by
earlier reports [55]. So far, however, most of the functional
studies on IM in mice focused on their potential immunoreg-
ulatory properties. Indeed, mouse and human IM have been
shown to express the immunosuppressive cytokine IL-10 at
steady state [24–26, 32, 56] (Figure 1). Such IL-10 expression
increases in response to environmental stimuli such as LPS,
CpG-DNA, or HDM [26, 50, 56] (Figure 1). Knowing that
the lung mucosa is constantly exposed to a wide range of
immunostimulatory molecules and allergens, we postulated
that IM may contribute to lung homeostasis through the
alteration of lung cDC functions, which are endowed with
the ability to trigger an allergen-specific T helper type 2
(Th2) cell response orchestrating the development of aller-
gic airway inflammation in mice exposed to LPS and aller-
gens [57–60].

Using a coculture system between freshly isolated IM
and LPS- and ovalbumin- (OVA-) pulsed bone marrow-
derived DCs (BMDCs) in vitro, IM were found to impair
the ability of BMDCs to migrate to the draining lymph
node and to induce features of Th2-mediated airway allergy
once reinjected in the trachea of recipient mice through
TLR-4-, HIF1α-, and IL-10-dependent mechanisms [32].
Notably, while isolated and cocultured IM may have
encompassed other cell types such as F4/80-expressing
monocytes or resident eosinophils [26, 61], the “true” IM
were the only cells able to secrete IL-10, and the ability of
FACS-sorted pure IM to inhibit DC function has been con-
firmed later [26, 61]. In vivo, systemic treatment of WT
mice with depleting antibodies directed against F4/80
induced a depletion of IM, but not AM, and triggered
increased activation of lung cDCs and the development of
overt Th2 and allergic airway inflammation when mice
were exposed to low doses of an allergen/LPS mixture
[32], further supporting a tolerogenic role for IM in main-
taining lung homeostasis.

Mouse IM may be implicated in the control not only of
allergic asthma in mice but also of other asthma phenotypes.
Indeed, Kawano and colleagues have provided evidence
that IM contributed to the prevention of Th17-mediated
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neutrophilic airway inflammation by IL-10-dependent
mechanisms [50]. They used a neutrophilic asthma model
based on HDM instillations in Il10−/− mice, which dramat-
ically increased the number of neutrophils in the BAL
fluid and promoted lung neutrophilic infiltration and
expression of Th17-related cytokines as compared to
HDM-exposed WT mice. In this model, they showed that
the transfer of WT IM in Il10−/− mice before the HDM
challenge could inhibit the neutrophilic inflammation and
mucus production, which was associated with a decrease
of Th17-related cytokines and IL-13 [50].

The fact that IM respond to LPS and CpG-DNA, two
bacterial products omnipresent in the environment [62, 63],
suggests a link with the “hygiene hypothesis,” which postu-
lates that decreased exposure to environmental and com-
mensal microbes or their products (PAMPs), partly because
of changes associated with urban lifestyles, is responsible
for the dramatic increase in the prevalence of allergies and
asthma over the past decades [64, 65]. In line with this
assumption, several epidemiological studies have demon-
strated that growing up on a farm, where exposure to envi-
ronmental and commensal PAMPs is high, reduces the risk
of allergic sensitization [62, 65]. Exposure of humans or mice
to CpG-DNA from bacteria reproduces these protective
effects [66–71], suggesting a contribution of CpG-DNA to
microbe-induced asthma resistance. In mouse models, local
CpG-DNA exposure had the unique ability to amplify the
IM pool from monocytes residing in the lung or recruited
from the spleen, which acquired a hypersuppressive profile
[26]. Importantly, such CpG-DNA-induced IM were sug-
gested to mediate the protective effects of CpG-DNA on
allergic airway sensitization and inflammation, since adop-
tive transfer of IM isolated from CpG-DNA-treated WT
mice, unlike the Il10−/− counterparts, recapitulated the effects
of CpG when administered before allergen sensitization or
challenge [26]. While speculative at this point, these findings
provide a possible mechanistic explanation for the reduced
risk of asthma in a microbe-rich environment and for the
immunotherapeutic effects of synthetic CpG-DNA in exper-
imental models and human clinical trials.

7. IM in Human and Nonhuman Primates

IM were already observed more than three decades
ago in lungs from healthy subjects [72] or diseased
patients [73, 74]. By that time, the functional studies com-
paring human lung macrophages obtained from the BAL
and from the whole lung revealed very few differences
between BAL-derived AM and tissue IM, possibly because
tissue macrophages were heavily contaminated by residual
AM [74].

Like in rodents, IM isolated from minced and digested
human lungs are smaller and more heterogeneous in shape
[54, 56], displayed a lower phagocytic activity [54], and
expressed more surface MHC-II (HLA-DR) [56, 75] as
compared to AM. Lung IM, which were obtained from the
uninvolved lung tissue of patients undergoing a surgical
resection for lung carcinoma and put in contact with stimu-
lated T cell membranes, produced higher levels of matrix

metalloproteinases (MMPs) and of an inhibitor of MMP
(TIMP-1), whereas AM did not significantly react under
the same conditions [75], suggesting a possible contribution
of human IM in the regulation of lung tissue remodeling.

Hoppstädter and colleagues showed that the secreted
levels of IL-6, IL-10, and IL-1 receptor antagonist (IL-1Ra)
were higher in IM than in AM, both at baseline and after
stimulation with LPS [56]. Il10 gene expression was also
higher in IM at baseline and after stimulation with
LPS or DNA from certain bacteria [56], reminiscent of
what is observed in mice. On the contrary, AM secreted
higher levels of proinflammatory cytokines, such as IL-1β,
IFN-γ, IL-12p40, or IL-12p70, after LPS stimulation [56].
Altogether, these results supported a more pronounced
anti-inflammatory phenotype of IM as compared to AM
and are consistent with a potential role for IL-10-producing
IM in the maintenance of lung homeostasis in humans.
Interestingly, a recent study performed on bronchial biopsies
of asthmatic patients and healthy subjects showed that
asthmatic airways were characterized by less IL-10+ IM as
compared with healthy airways, suggesting that IM may be
functionally impaired in asthma [76].

Given the limited access to healthy human samples,
Cai and colleagues performed some studies on rhesus
macaques as a model to unravel the human lung macro-
phage identity and diversity [5]. IM were defined as
HLA-DRhighCD206−/intCD11bhigh cells and were located in
the peribronchovascular and subpleural regions, whereas
AMs were defined as CD206+CD11bint larger cells that were
located almost exclusively in the alveoli. Notably, the IM
population had probably been confounded with tissue mono-
cytes in this study, since IM and CD14+ blood monocytes
resembled each other when analyzing the expression of 27
different markers, with the exception of CCR2 being highly
expressed by blood monocytes and poorly by IM. This could
also account for the fact that “IM” were found positive for
BrdU as soon as 48 hours after its intravenous injection
and were thought to contribute to the repopulation of AM
after BAL-induced depletion [5].

Recent reports are aimed at identifying markers to dis-
criminate IM from other lung monocyte and macrophage
populations in human pulmonary tissue. In humans, AM
and monocytes can be defined as highly autofluorescent
SSChiCD169hiCD206hi and SSCloCD169−CD206−CD14+-

CD16lo/hi cells, respectively [77–79]. In addition, a popula-
tion of HLA-DR+CD169loCD206int cells was identified in
the human lung, whose size was intermediate between AM
and monocytes [77–79] and which may correspond to
human IM [77, 79]. Functional studies of these cells could
help in determining their homology with murine IM. Human
lung macrophages of COPD patients were also characterized
recently [80]. In this report, “IM” were shown to be divided
into two subpopulations: a scarce population of large macro-
phages, which expressed more CD206, and a population of
small macrophages, potentially monocyte-derived, express-
ing more HLA-DR, CD14, CD38, CD36, and proinflamma-
tory genes as compared to the other lung macrophages
[80]. While this study has mainly focused on the analysis of
pathological tissues, it emphasizes the complexity of the IM
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pool in diseased patients. It also suggests that IM can exert
either anti- or proinflammatory properties, depending on
the physiological or pathological conditions to which they
are exposed.

8. Future Challenges

While substantial progress has been made regarding the
ontogeny, phenotype, and functions of IM in mice, it is only
the beginning of the story. First, to date, IM or IM subsets
have been only characterized as bulk populations, defined
according to a limited number of markers, thus revealing
average signatures and ignoring the true and unbiased het-
erogeneity and structure of the populations of interest. There
is therefore a need for an unbiased characterization of the IM
population, both in mice and humans. Recent development
and availability of high-dimensional single-cell technologies
[81, 82] should help study highly diverse and heterogeneous
immune cells such as IM.

Second, the biological responses modulated by IM or IM
subpopulations in vivo remain rudimentarily investigated
but are likely highly diverse and complex. This is partly due
to the current lack of selective tools to track, modulate, or
deplete IM (or IM subsets) in animal models, which will be
instrumental in deciphering the biological functions of IM
in health and diseases. On the one hand, IM may contribute
to important physiological processes during lung develop-
ment, metabolism, or aging. On the other hand, IM may also
modulate several aspects of the pathological responses
observed in lung chronic inflammatory disorders such as
chronic obstructive pulmonary diseases (COPD).

Third, translational studies aimed at defining lung IM
identity, heterogeneity, and functions in humans will be
essential to find novel therapeutic targets for the prevention
or treatment of lung diseases in which IM (dys)functions
are, or will be, implicated.
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Glucagon-like peptide-1 (GLP-1) receptor agonists are an effective treatment approach for type 2 diabetes. Recently, anti-
inflammatory effects of GLP-1 receptor agonists have also been reported. Lipopolysaccharide (LPS) induces inflammation
and osteoclast formation. In this study, we investigated the effect of exendin-4, a widely used GLP-1 receptor agonist, in
LPS-induced osteoclast formation and bone resorption. LPS with or without exendin-4 was administered on mouse calvariae
by daily subcutaneous injection. The number of osteoclasts, the ratio of bone resorption pits, and the level of C-terminal
cross-linked telopeptide of type I collagen (CTX) were significantly lower in LPS- and exendin-4-coadministered mice than
in mice administered with LPS alone. RANKL and TNF-α mRNA expression levels were lower in the exendin-4- and LPS-
coadministered group than in the LPS-administered group. Our in vitro results showed no direct effects of exendin-4 on
RANKL-induced osteoclast formation, TNF-α-induced osteoclast formation, or LPS-induced RANKL expression in stromal
cells. Conversely, TNF-α mRNA expression was inhibited in the exendin-4- and LPS-cotreated macrophages compared with
cells treated with LPS alone. These results indicate that the GLP-1 receptor agonist exendin-4 may inhibit LPS-induced
osteoclast formation and bone resorption by inhibiting LPS-induced TNF-α production in macrophages.

1. Introduction

The prevalence of type 2 diabetes mellitus is increasing
worldwide, and the condition has become a major public
health problem. Individuals with type 2 diabetes have been
shown to have a higher risk of bone fracture compared with
individuals without type 2 diabetes [1]. This higher risk
might be associated with the pathobiology of type 2 diabe-
tes itself; however, the underlying mechanisms remain
unclear [2]. Additionally, increased bone fracture risk is a
consequence of therapeutic regimen used to treat hypergly-
cemia [3]. For example, patients treated with thiazolidine-
diones and human recombinant insulin have been shown
to have an increased bone fracture risk [4–7]. Conversely,
treatment with metformin is related to decreased bone frac-
ture risk [8].

Osteoclast recruitment is crucial to the pathogenesis of
diseases involving bone erosion, such as rheumatoid arthri-
tis [9]. Osteoclasts derived from bone marrow cells are
responsible for bone resorption and remodeling [10]. Recep-
tor activator of NF-kB ligand (RANKL) and macrophage
colony-stimulating factor (M-CSF) are two key factors
required for osteoclast formation and activation [11]. Inde-
pendent of RANKL, tumor necrosis factor- (TNF-) α has also
been reported to induce osteoclast formation in vitro [12–14]
and in vivo [15, 16].

Lipopolysaccharide (LPS) strongly induces inflammation
and inflammatory bone loss [17–21]. LPS has also been
found to induce production of proinflammatory cytokines,
such as TNF-α, from macrophages or other cells at the site
of inflammation [22, 23]. Such proinflammatory cytokines
have been reported to be involved in LPS-induced osteoclast
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formation and bone destruction in in vivo and in vitro studies
[18, 24–27]. Additionally, LPS can stimulate osteoblasts to
produce or secrete RANKL [28].

Glucagon-like peptide-1 (GLP-1), an intestinal hormone,
plays important roles in blood glucose control and prolifera-
tion of pancreatic islet β-cells [29, 30]. GLP-1 receptor-
deficient mice were reported to exhibit osteopenia and
increased osteoclast formation, suggesting that the GLP-1
signaling has an inhibitory effect of bone resorption on bone
metabolism [31]. An anabolic effect of GLP-1 on bonemetab-
olism has also been proposed. GLP-1 receptor activation has
been shown to induce bone formation in streptozotocin-
induced diabetic and fructose-stimulated insulin-resistant
rats [32].

It has been reported that patients with type 2 diabetes
have high risk of bone fracture [1, 2]. Furthermore, antidia-
betic medicines such as thiazolidinediones may further pro-
mote bone resorption and increase fracture risk [33–35].
However, a recent meta-analysis has reported that GLP-1
receptor agonist treatment does not affect fracture risk in
type 2 diabetic patients [36, 37].

The anabolic and antiresorptive effects of GLP-1 recep-
tor suggest that GLP-1 receptor signaling may be a promis-
ing therapeutic target for osteoporosis or other osteolytic
bone diseases; such a therapeutic approach would be facili-
tated by the fact that the first commercially available GLP-1
receptor agonist, exendin-4, has already been approved for
the treatment of diabetes for over 10 years [38]. Exendin-
4 shares similar structural and functional properties to
GLP-1 but is resistant to the degradation by dipeptidyl pep-
tidase-IV, which can degrade GLP-1 immediately in the
blood [39]. The extended half-life, improved pharmacoki-
netics, and high potency of exendin-4 make it suitable for
clinical use [39–41].

In the present study, we investigated the effects of
exendin-4 on LPS-induced osteoclast formation and bone
remodeling in mice.

2. Materials and Methods

2.1. Animals and Reagents. Eight- to ten-week-old male
C57BL6/J mice were obtained from CLEA Japan (Tokyo,
Japan) and maintained at our animal facility. All animal care
and experiments were conducted according to Tohoku Uni-
versity rules and regulations. Four mice were randomly
assigned to each experimental group. Both Escherichia coli
LPS and exendin-4 were purchased from Sigma-Aldrich (St.
Louis, MO).

2.2. Histological Analysis. A previous in vivo study demon-
strated that daily subcutaneous injections of 100μg LPS to
mouse calvariae for 5 days effectively induced osteoclast for-
mation [42]. Therefore, we followed the same protocol, dose,
and LPS administration period in this study. The mice were
divided into four experimental groups and subjected to daily
subcutaneous injections on the calvaria with phosphate-
buffered saline (PBS, negative control group), LPS alone
(100μg/day, positive control group), LPS (100μg/day) and
exendin-4 (20μg/day), and exendin-4 alone (20μg/day)

for 5 days. All mice calvariae were excised immediately after
sacrifice on the sixth day. The calvariae were fixed in 4%
PBS-buffered formaldehyde at 4°C overnight and then
demineralized with 14% ethylenediaminetetraacetic acid
(EDTA) at room temperature for three days. Each calvaria
was cut into three pieces perpendicular to the sagittal suture.
Samples were then embedded in paraffin and cut into 5μm
sections using a microtome. The paraffin sections were
stained with tartrate-resistant acid phosphatase (TRAP)
solution prepared by mixing acetate buffer (pH5.0), naph-
thol AS-MX phosphate (Sigma Chemical, St. Louis, MO,
USA), Fast Red Violet LB Salt (Sigma), and 50mM sodium
tartrate. The sections were counterstained with hematoxylin.
Osteoclasts were defined in this study as TRAP-positive
cells with three or more nuclei. We counted the number
of osteoclasts only at the suture mesenchyme of the sagittal
suture in all slides according to the method in our previous
work [43].

2.3. Preparation of Osteoclast Precursors for Osteoclastogenesis.
To isolate bone marrow cells from C57BL6/J mice, femora
and tibiae were aseptically removed after sacrifice. The
epiphyses of these long bones were removed, and the bone
marrow was flushed into a sterile Petri dish with a 25-gauge
needle and 10ml syringe filled with culture medium. The
bone marrow was then filtered with a 40μm nylon cell
strainer (Falcon, USA) and centrifuged. The harvested cells
were incubated in a culture medium comprising alpha-
modified minimal essential medium (α-MEM; Sigma) con-
taining 10% fetal bovine serum (FBS), 100 IU/ml penicillin
G (Meiji Seika, Tokyo, Japan), and 100μg/ml streptomycin
(Meiji Seika), with M-CSF added. Nonadherent cells were
removed by washing with PBS, and adherent cells were har-
vested using trypsin-EDTA solution (Sigma-Aldrich). The
harvested cells were seeded and further cultured in the pres-
ence of M-CSF. Adherent cells were used as osteoclast pre-
cursors in this study as previously reported [43]. Osteoclast
precursors were seeded at 5× 104 cells per 200μl of medium
in a 96-well plate and cultured in medium containing M-CSF
alone (100 ng/ml), M-CSF (100 ng/ml) and RANKL (100 ng/
ml) or TNF-α (100 ng/ml), M-CSF (100 ng/ml) and RANKL
(100 ng/ml) or TNF-α (100 ng/ml) with exendin-4 (100 ng/
ml), and M-CSF (100 ng/ml) with exendin-4 (100 ng/ml),
for 5 days. The cultured cells were then fixed with 10% for-
malin for 30min. After fixation, the cells were permeabilized
with 0.2% Triton X-100 for 5min at room temperature,
then incubated in TRAP staining solution prepared as
described above. TRAP-positive cells with three or more
nuclei were considered to be osteoclasts and were counted
under a light microscope.

2.4. Preparation of Bone Marrow Stromal Cells. Bone marrow
cells were obtained by the method described above and cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM;
Sigma) containing 10% FBS, 100 IU/ml penicillin G (Life
Technologies, Carlsbad, CA), and 100μg/ml streptomycin
(Life Technologies) for two weeks. Then the culture disks
were washed vigorously with PBS to remove nonadherent
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cells. Adherent cells were used as stromal cells in this study as
previously reported [43].

2.5. Isolation of Murine Macrophages. Macrophages were
obtained from the peritoneal cavity of mice. To obtain resi-
dent macrophages under resting conditions, we injected
5ml of sterile ice-cold PBS (pH7.4) into the peritoneal cavity
and aspirated the fluid to harvest peritoneal cells. The cells
were washed twice with α-MEMmedium (Sigma) containing
10% FBS. After 1 hour of culture, nonadherent cells were
removed, and after 24 hours of culture, adherent cells were
harvested and used as macrophages.

2.6. Isolation of RNA and Real-Time RT-PCR Analysis. Cal-
variae from the in vivo experiments were frozen in liquid
nitrogen and crushed by Micro Smash MS-100R (Tomy
Seiko, Tokyo, Japan) in 800μl TRIzol reagent (Invitrogen,
Carlsbad, CA) for each sample. Total RNA was extracted
with an RNeasy mini kit (Qiagen, Valencia, CA) according
to the manufacturer’s protocol. For the in vitro experiments,
bone marrow stromal cells or macrophages were incubated in
culture medium supplemented with PBS, LPS (100 ng/ml),
LPS (100 ng/ml) and exendin-4 (100 ng/ml), and exendin-4
(100 ng/ml). After three days of culture, total RNA was
isolated from adherent cells. Total RNA of stromal cells or
peritoneal macrophages was isolated using an RNeasy mini
kit (Qiagen). cDNA was synthesized for each sample from
2μg total RNA with oligo-dT primers (Invitrogen) and
reverse transcriptase in a total volume of 20μl. The corre-
sponding expression levels of RANKL and TNF-α mRNA
were evaluated by real-time RT-PCR using a Thermal Cycler
Dice Real Time System (Takara, Shiga, Japan). Each reaction
comprised a total volume of 25μl containing 2μl cDNA and
23μl of a mixture of SYBR Premix Ex Taq (Takara) and
50 pmol/μl primers. The PCR cycling conditions were as fol-
lows: 95°C for 10 s for initial denaturation followed by 45–60
amplification cycles, with each cycle comprising a denatur-
ation step of 95°C for 5 s and then an annealing step of 60°C
for 30 s. Relative expression levels of TNF-α and RANKL
mRNAs were calculated by normalization to glyceraldehyde
3-phosphate dehydrogenase (GAPDH) mRNA levels. The
primer sequences used for cDNA amplification were as fol-
lows: 5′-GGTGGAGCCAAAAGGGTCA-3′ and 5′-GGGG
GCTAAGCAGTTGGT-3′ for GAPDH; 5′-AGGCGGTGC
TTGTTCCTCA-3′ and 5′-AGGCGAGAAGATGATCTGA
CTGCC-3′ for TNF-α; and 5′-CCTGAGGCCAGCCATTT-
3′ and 5′-CTTGGCCCAGCCTCGAT-3′ for RANKL as
already reported [43].

2.7. Micro-CT Imaging and Analysis for Bone Destruction
Area. We obtained mouse calvariae immediately after
sacrifice. The calvariae were fixed in 4% PBS-buffered
formaldehyde at 4°C for 3 days. To assess the bone resorption
pits on the calvariae, samples were washed thoroughly with
PBS and scanned with microfocus computed tomography
(ScanXmate-E090, Comscan, Kanagawa, Japan). TRI/3D-
BON64 software (RATOC System Engineering, Tokyo,
Japan) was used to create three-dimensional images of the
mouse calvariae, and the ratio of bone resorption area to total

area was measured by ImageJ (NIH, Bethesda, MD) as previ-
ously reported [43].

2.8. Measurement of Serum CTX (C-Terminal Cross-Linked
Telopeptide of Type I Collagen) Value. Blood was collected
with microhematocrit tubes from the orbital sinuses of the
mice after 5 days of daily administration of PBS, LPS with
or without exendin-4, or exendin-4 alone. The levels of
CTX were determined using a mouse C-terminal telopeptide
of type I collagen assay kit (IDS, Tyne and Wear, UK). Levels
of C-terminal telopeptide of type I collagen were assessed by
measuring absorbance at 450nm with a microplate reader
(Remote Sunrise; Tecan, Japan), with 620nm as the refer-
ence wavelength.

2.9. Cell Viability Assay for Osteoclast Precursors. Osteoclast
precursors were seeded in a 96-well plate (1× 104 cells in
200μl medium per well) and incubated with M-CSF
(100 ng/ml) with or without exendin-4 (100 ng/ml). After 5
days of incubation, the cells were washed with PBS and cul-
tured in 100μl culture medium of each well. Four replicates
were assessed for each sample. Then, 10μl cell counting kit-
8 (Dojin, Kumamoto, Japan) solution was added to each well,
and the plate was further incubated for 2 h at 37°C. Absor-
bance at 450nm was measured by a microplate reader for
each well as previously reported [43].

2.10. Statistical Analysis. Data are expressed as means± stan-
dard deviation. The statistical significance of differences
between groups was determined by Scheffe’s test. P < 0 05
was considered significant.

3. Results

3.1. In Vivo Inhibitory Effect of Exendin-4 on LPS-Induced
Osteoclast Formation. We injected LPS with or without
exendin-4 on mouse calvariae to analyze the effect of
exendin-4 on LPS-induced osteoclast formation in vivo. After
LPS administration for 5 consecutive days, many large multi-
nucleated osteoclasts were observed within the suture mesen-
chyme in the histological sections. However, the mean
number of osteoclasts was significantly lower in the LPS-
and exendin-4-coadministered group than in the group
administered with LPS alone (Figures 1(a) and 1(b)).

3.2. In Vivo Inhibitory Effect of Exendin-4 on LPS-Induced
Bone Resorption. The mouse calvariae were scanned with
microfocus computed tomography, and the amount of bone
resorption areas was compared between each group. Many
bone destruction defects were noted in the LPS group. The
ratio of the bone resorption area to the total area was
significantly higher in the LPS-administered group than in
the PBS-administered and exendin-4-administered groups.
Moreover, the LPS- and exendin-4-coadministered groups
demonstrated less bone destruction than the group adminis-
tered with LPS alone (Figures 2(a) and 2(b)). Serum levels of
C-terminal telopeptide of type I collagen (CTX), a marker of
bone resorption, in mouse serum samples were analyzed by a
mouse CTX assay kit. The serum CTX level in the LPS-alone-
administered group was higher than PBS-administered
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group. However, the serum CTX level in the LPS- and
exendin-4-coadministered group was lower than that in the
LPS-alone-administered group (Figure 2(c)).

3.3. In Vivo Inhibitory Effect of Exendin-4 on the Expression of
LPS-Induced Osteoclast-Related Cytokines (TNF-α and
RANKL). Bone chips from mouse calvariae were analyzed
by real-time RT-PCR to measure expression levels of TNF-α
and RANKL mRNA. TNF-α and RANKL mRNA levels were

elevated in the LPS-administered group compared with the
PBS-administered group. Conversely, TNF-α and RANKL
mRNA expression levels were reduced in the exendin-4-
and LPS-coadministered group compared with the LPS-
administered group (Figure 3).

3.4. Exendin-4 Cannot Affect RANKL-Induced Osteoclast
Formation, TNF-α-Induced Osteoclast Formation, Cell
Viability of Osteoclast Precursor Cells, and LPS-Induced
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Figure 1: In vivo effect of exendin-4 on lipopolysaccharide- (LPS-) induced osteoclast formation. (a) Histological sections of mouse calvariae
after 5-day daily supracalvarial injections with phosphate-buffered saline (PBS), LPS (100 μg/day), LPS (100 μg/day) with exendin-4 (20 μg/
day), and exendin-4 (20μg/day). Tartrate-resistant acid phosphatase (TRAP) staining and hematoxylin counterstaining were performed.
TRAP-positive cells were stained dark red. (b) The numbers of TRAP-positive cells in the suture mesenchyme of calvaria from the mouse
groups administered with PBS, LPS, LPS with exendin-4, and exendin-4, respectively. Data is expressed as means± standard deviation
(SD). Statistical significance were determined by Scheffe’s test (n = 4; ∗∗p < 0 01).
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Figure 2: Exendin-4 inhibited LPS-induced bone resorption in vivo. (a) 3D reconstructed images of calvariae from micro-CT scanning. Mice
were subjected to 5-day daily subcutaneous injections on the calvariae with PBS, LPS (100 μg/day) with or without exendin-4 (20μg/day), and
exendin-4 (20 μg/day), and calvariae were excised on the sixth day. The red dots indicate areas of bony destruction. (b) Ratio of bone
destruction area to total bone area. Data is expressed as means± SD (n = 4; ∗p < 0 05, ∗∗p < 0 01). The statistical significance of differences
was determined by Scheffe’s test. (c) Serum levels of C-terminal telopeptide of type I collagen (CTX) determined by a mouse CTX assay
kit. Data is expressed as means± SD. The statistical significance of differences was determined using Scheffe’s test (n = 4; ∗∗p < 0 01).
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RANKL Expression in Stromal Cells. To investigate whether
exendin-4 affects osteoclast precursor cells directly, we ana-
lyzed the effects of exendin-4 on RANKL-induced osteoclast
formation, TNF-α-induced osteoclast formation, and viabil-
ity of osteoclast precursors. There were large numbers of
TRAP-positive cells among osteoclast precursor cells
cultured with M-CSF and RANKL or TNF-α. Likewise,
TRAP-positive cells were also observed among the osteoclast
precursor cells cultured with M-CSF and RANKL or TNF-α
in the presence of exendin-4 (Figures 4(a) and 4(b)).
Additionally, there was no evident difference in cell viabil-
ity between the two cultures after 5 days of culture
(Figure 4(c)). These results indicate that the inhibitory
effect of exendin-4 may not be related to a direct action of
exendin-4 on the proliferation and differentiation of
osteoclast precursors.

We next evaluated whether exendin-4 inhibited LPS-
induced RANKL expression in stromal cells in vitro. RANKL
mRNA expression levels were higher in LPS-treated stromal
cells than in control and exendin-4-treated stromal cells.
However, stromal cells treated with both LPS and exendin-
4 demonstrated similar RANKL mRNA expression levels to
those treated with LPS alone (Figure 4(d)). These results
show that the inhibitory effect of exendin-4 may not be
related to a direct action of exendin-4 on RANKL expression
in stromal cells.

3.5. Exendin-4 Suppresses LPS-Induced TNF-α Expression in
Macrophages. Real-time RT-PCR was performed to analyze
TNF-α mRNA expression levels. TNF-α mRNA expression
was elevated in macrophages treated with LPS alone com-
pared with those treated with PBS. Conversely, TNF-α
mRNA expression was inhibited in the exendin-4- and
LPS-treated macrophages, compared with those treated with
LPS alone (Figure 5).

4. Discussion

In the present study, we evaluated the effect of the GLP-1
receptor agonist exendin-4 on LPS-induced osteoclast forma-
tion and bone-resorption in vivo. We found that the GLP-1
receptor agonist inhibited LPS-induced osteoclast formation
and bone resorption and also suppressed LPS-induced
RANKL and TNF-α expression in vivo. Conversely, the
GLP-1 receptor agonist did not directly inhibit RANKL-
induced osteoclast formation, TNF-α-induced osteoclast for-
mation, osteoclast precursor cell viability, or LPS-induced
RANKL expression in stromal cells in vitro. However, the
GLP-1 receptor agonist inhibited LPS-induced TNF-α
expression in macrophages in vitro.

GLP-1 plays a crucial role in blood glucose control. To
simulate the effect of GLP-1, many GLP-1 analogues and
GLP-1 receptor agonists have been developed. The amino
acid sequence of the GLP-1 receptor agonist exendin-4 is a
modified version of the sequence of GLP-1. Exendin-4 is
resistant to degradation by dipeptidyl peptidase-IV and has
a much longer plasma half-life than GLP-1 [40], which has
a half-life of less than two minutes [39, 41]. The extended
half-life, improved pharmacokinetics, and high potency of
exendin-4 make it suitable for clinical use [39, 40].

GLP-1 receptor-deficient mice have been reported to
exhibit increased bone breakdown, which indicates that
GLP-1 receptor signaling is essential to inhibition of osteo-
clast formation and bone resorption [31]. In the present
study, exendin-4 inhibited LPS-induced osteoclast forma-
tion. Daily injections of 20μg of exendin-4 for 5 days (a
total of 100μg) were sufficient to inhibit LPS-induced oste-
oclast formation in vivo. We also evaluated the inhibitory
effect of exendin-4 on LPS-induced bone resorption. The
extent of bone destruction was determined by the ratio of
the destroyed bone area to total bone area, assessed by
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Figure 3: Exendin-4 suppressed expression of LPS-induced tumor necrosis factor- (TNF-) α and receptor activator of NF-kB ligand
(RANKL) in vivo. TNF-α and RANKL mRNA levels in mouse calvariae were determined using real-time RT-PCR. Total RNA was
isolated from mouse calvariae after 5-day daily supracalvarial injections with PBS, LPS (100 μg/day) with or without exendin-4
(20 μg/day), and exendin-4 alone (20 μg/day). TNF-α and RANKL mRNA levels were normalized to the expression of glyceraldehyde
3-phosphate dehydrogenase (GAPDH). Data is expressed as means± SD. The statistical significance of differences was determined using
Scheffe’s test (n = 4; ∗p < 0 05, ∗∗p < 0 01).
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Figure 4: Exendin-4 had no effect on RANKL-induced osteoclast formation, TNF-α-induced osteoclast formation, osteoclast precursor cell
viability, or LPS-induced RANKL expression in stromal cells in vitro. (a) Microscopic images and numbers of TRAP-positive cells. Osteoclast
precursors were treated with macrophage colony-stimulating factor (M-CSF) alone, M-CSF with RANKL, M-CSF with RANKL and exendin-
4, and M-CSF with exendin-4 for 5 days, then stained with TRAP solution. (b) Microscopic images and numbers of TRAP-positive cells.
Osteoclast precursors were treated with M-CSF alone, M-CSF with TNF-α, M-CSF with TNF-α and exendin-4, and M-CSF with exendin-
4 for 5 days, then stained with TRAP solution. (c) Cell viability of osteoclast precursor cells treated with M-CSF alone and M-CSF with
exendin-4 for 5 days. Cell viability was determined by cell counting kit-8. Data is presented as percentage activity relative to the activity in
the culture with M-CSF alone and is expressed as means± SD. (d) RANKL mRNA expression levels in stromal cells determined by real-
time RT-PCR method. Total RNA was extracted from stromal cells that were cultured with PBS, LPS with or without exendin-4, and
exendin-4 alone, respectively. RANKL mRNA levels were normalized to that of GAPDH. Statistical significance of differences was
determined by Scheffe’s test (n = 4; ∗∗P < 0 01).
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microfocus computed tomography imaging, and by the
serum CTX value of each experimental group. We found
that the extent of bone destruction was significantly lower
in the LPS- and exendin-4-coadministered group than the
group administered with LPS alone. Our results suggest that
exendin-4 inhibited LPS-induced osteoclast formation and
bone resorption in vivo.

In this study, we administered 20μg/day exendin-4 for 5
days, injected into the supracalvaria. Although previous
rodent studies used 20μg/kg exendin-4 daily for 4 weeks
[41, 44], we opted to use a higher dose to enhance the inhib-
itory effects of exendin-4. Further investigation using clini-
cally relevant doses is needed.

Our findings prompted us to explore the mechanisms
contributing to the inhibition of LPS-induced osteoclast
formation and bone resorption. We considered two possible
mechanisms. First, we considered whether exendin-4 inhib-
ited LPS-induced expression of inflammatory cytokines
related to osteoclast formation, such as TNF-α and RANKL.
Many studies have indicated that LPS induces TNF-α and
RANKL in vivo [28, 45]. RANKL is an essential cytokine
for osteoclast formation [10], and it has been reported that
TNF-α also can induce osteoclast formation in vivo [15, 16].
Therefore, it is reasonable to suspect that if levels of both of
these cytokines are decreased, osteoclast formation will be
inhibited. In the present study, TNF-α and RANKL mRNA
levels were elevated in the LPS-administered mice. However,
thisLPS-induced increase inTNF-αandRANKLmRNAlevels
was inhibited in the exendin-4- and LPS-coadministered
group, compared with the group administered LPS only. This
suggests that one of the mechanisms underlying the inhibi-
tory effect of exendin-4 on LPS-induced osteoclast formation
is the inhibition of LPS-induced osteoclast-related cytokines.
The other mechanism that we considered was that exendin-4
directly inhibited RANKL- and TNF-α-induced osteoclast

formation. In the present study, we investigated whether
exendin-4 exerted its inhibitory effect on osteoclasts by
directly acting on osteoclast precursors. However, exendin-
4 did not inhibit RANKL- or TNF-α-induced differentiation
of osteoclast precursor cells into osteoclasts. Moreover, we
investigated whether exendin-4 inhibited osteoclast precur-
sor cell viability. We observed no difference in cell viability
between the two groups after 5 days of culture. These results
suggest that the inhibitory effect of exendin-4 on osteoclast
formation is not due to a direct action of exendin-4 on
osteoclast precursors. We then evaluated whether exendin-4
inhibited LPS-induced RANKL expression in stromal cells.
Exendin-4 also failed to inhibit LPS-induced RANKL expres-
sion in stromal cells. This indicates that inhibition of RANKL
expression by exendin-4 may not be due to a direct action of
exendin-4 on stromal cells. Finally, we evaluated whether
exendin-4 inhibited LPS-induced TNF-α expression in mac-
rophages. In our study, exendin-4 inhibited LPS-induced
TNF-α expression of macrophages. Because TNF-α induces
osteoclast formation and promotes RANKL expression in
stromal cells, our results suggest that the in vivo inhibition
of LPS-induced osteoclast formation by exendin-4 may be
the result of inhibition of LPS-induced TNF-α expression in
macrophages and subsequent suppression of RANKL expres-
sion in stromal cells.

5. Conclusions

In conclusion, our results suggested that exendin-4 can
inhibit LPS-induced osteoclast formation and bone resorp-
tion in vivo. The underlying mechanism may be related to
its inhibition in the production of LPS-induced TNF-α in
macrophages but not related to its direct effect on osteoclast
precursors or RANKL expression in stromal cells.
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Figure 5: Exendin-4 inhibited LPS-induced expression of TNF-α in
macrophages. TNF-α mRNA levels in macrophages were detected
by real-time RT-PCR. Total RNA was isolated from macrophages
cultured with PBS, LPS with or without exendin-4, and exendin-4
alone. TNF-α mRNA levels were normalized to the levels of
GAPDH. Statistical significance of differences was determined by
Scheffe’s test (n = 4; ∗p < 0 05, ∗∗P < 0 01).
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Chronic obstructive pulmonary disease (COPD) is a diverse respiratory disease characterised by bronchiolitis, small airway
obstruction, and emphysema. Innate immune cells play a pivotal role in the disease’s progression, and in particular, lung
macrophages exploit their prevalence and strategic localisation to orchestrate immune responses. To date, alveolar and
interstitial resident macrophages as well as blood monocytes have been described in the lungs of patients with COPD
contributing to disease pathology by changes in their functional repertoire. In this review, we summarise recent evidence from
human studies and work with animal models of COPD with regard to altered functions of each of these myeloid cell
populations. We primarily focus on the dysregulated capacity of alveolar macrophages to secrete proinflammatory mediators
and proteases, induce oxidative stress, engulf microbes and apoptotic cells, and express surface and intracellular markers in
patients with COPD. In addition, we discuss the differences in the responses between alveolar macrophages and interstitial
macrophages/monocytes in the disease and propose how the field should advance to better understand the implications of lung
macrophage functions in COPD.

1. Lung Macrophage Populations in
Mice and Humans

The lung is constantly exposed to the host’s outer environ-
ment; therefore, constitutively active mechanisms are
required to monitor for irritants and infections with patho-
gens. This pivotal sentinel function is assumed by lung-
resident immune cell populations including macrophages,
dendritic cells (DCs), and airway epithelial cells [1]. To date,
three major myeloid cell populations have been identified
in the lung which differ in their exact localisation in the tis-
sue and their developmental origin (Figure 1): resident alve-
olar macrophages (AMs), resident interstitial macrophages
(IMs), and blood monocytes [2–4].

AMs reside in the airspaces of the lung, whereas IMs are
found in the interstitial space between the alveoli and blood

vessels. Morphological observation of these two populations
indicated that AMs are larger in size than IMs [5]. In addi-
tion, phenotypic characterisation of AMs and IMs in mice
revealed differences in the expression levels of MHC class-
II, CD11b, CD14, CD45, CD54, CD68, CD71, CD204,
CD206, and Siglec-F [5–9]. Altogether, lung-resident mac-
rophages have been characterized as CD11c+CD11blo cells
and can be distinguished from recruited cells during
endotoxin or viral-induced inflammation by the level of
CD11b expression [10]. In humans, AMs are described as
CD45+CD206+CD14loCD71+CD169+ cells, whereas IMs
are reported as CD45+CD206+CD14hiCD71−CD169− cells
[11]. However, recently a study suggested high expression
of the mannose receptor (CD206) in both macrophage pop-
ulations and revealed two AM subpopulations with differ-
ential expression of the hemoglobin-haptoglobin complex
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scavenger receptor CD163 [12]. Lastly, Desch et al. found
that human AMs (CD206+CD14loHLA-DR+CD64+CD141+

cells) could be distinguished from lung tissue monocytes
based on CD14 and CD16 surface expression [13].

Functionally, although a small fraction of AMs was
shown to be present in lymph nodes in S. pneumoniae-
infected mice [14], IMs are considered to be classical modu-
lators of adaptive immunity in human and murine lungs [7,
15–18]. In humans and rodents, AMs have been reported
to remove surfactants and debris [19], suppress adaptive
immunity [20, 21], and regulate neutrophil and monocyte
recruitment to the lung [22–24]. With regard to other typical
macrophage functions, both populations display high phago-
cytic capacity [5, 25], but AMs are considered to be more
potent phagocytes [17, 26–28] and they were shown to
secrete proinflammatory mediators and reactive oxygen spe-
cies (ROS) upon activation in animal studies [17, 27, 29, 30].

Research on both human and animal AMs challenged
the homogeneity of this population [31, 32]. Instead,
density-gradient centrifugation splits them into distinct sub-
populations with differences in the expression of surface
markers and intracellular enzymes as well as tumour lysis,
migration, cytotoxicity, phagocytosis, lymphoproliferative

response augmentation, soluble mediator release, and pro-
coagulant activity [33–42].

Under steady-state conditions, the replenishment of AMs
in humans and mice occurs mainly via self-renewal as
recently demonstrated in long-term lung transplant, parabio-
sis, and fate-mapping studies [43–45]. During lung inflam-
mation, a proportion of AMs dies by apoptosis and the cells
are replenished in part by local proliferation of local stem
cells, but also via the recruitment of blood mononuclear
phagocytes [46–48]. IMs acquire proinflammatory markers
upon activation, such as CD40, CD80, and CD86, and their
numbers are increased in mice [6]. Between the two popula-
tions, AMs secrete more TNF-α, but less IL-6, IL-1ra, and IL-
10 than IMs in rats [49]. Furthermore, in humans, the two
populations exhibit differential sensitivity to pathogen recog-
nition receptor (PRR) activation with IMs being less sensitive
to TLR9 priming [5].

IMs are not a homogeneous population either, and in the
rat lung interstitium, they are currently believed to be con-
taminated with up to 20% AMs [50]. Similar to AMs, several
density-defined populations have been identified exhibiting
differential prostaglandin secretion, migration, and phagocy-
tosis capabilities [51–53]. It has long been considered that

Interstitial macrophages
Mm: CD45+CD11b+CD64+CD24−

Hs: CD45+CD206+CD14hiCD169−CD71−

Alveolar macrophages
Mm: CD45+CD11b−CD11c+Siglec-F+

Hs: CD45+CD206+CD14loCD169+CD71+

Monocytes
Mm: CD115+CD11b+CCR2+/−Ly-6Chi/loCX3CR1−/+

Hs: CD45+CD11b+CD206−CD14++/−CD16−/++ 

Figure 1: Murine and human lung macrophage populations under steady-state conditions. AMs reside at the airspaces of the lung, while IMs
localise in the interstitial space between the alveoli and blood vessels. In both the murine and human lungs, there is also a monocyte
population which enters the tissue from blood vessels. AMs are the biggest of all three lung macrophage populations, are potent
phagocytes, and secrete a range of proinflammatory mediators. IMs are smaller than AMs but display comparable phagocytic capacity and
ability to produce soluble factors. They are believed to serve as an intermediate step in monocyte differentiation towards AMs and
demonstrate proliferative potential. Finally, monocytes are sensitive to migratory gradients and have been shown to exhibit
proinflammatory mediator capacity, but no antigen presentation. The currently acceptable nomenclatures for AMs, IMs, and monocytes
in mice (Mm) and humans (Hs) are indicated next to each population.
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IMs are an intermediate step in maturation of infiltrating
blood monocytes towards AMs [54, 55] because they display
blunt lamellipodia and fewer lamellar inclusions than AMs
and are morphologically more closely related to blood mono-
cytes [4, 56, 57]. Moreover, in mice, they seem to proliferate
more than AMs [17]. However, considering more recent
findings in macrophage ontogeny and the possibility to mea-
sure hundreds to thousands of genes at the single cell level,
these observations need to be revisited.

Monocytes are divided into subpopulations in both
humans and mice (reviewed in [58]). Fate-mapping experi-
ments in mice unraveled a CD115+CD11b+Ly-6ChiCCR2+

and a CD115+CD11b+Ly-6Clo monocyte population [59, 60].
Ly-6Clomonocytes express high levels of the fractalkine recep-
torCX3CR1, and theywere shown to crawl inside bloodvessels
via lymphocyte function-associated antigen 1 interactions
with the endothelial lining [60, 61]. Upon activation with an
inflammatory stimulus, they rapidly respond by secreting
TNF-α [62]. In contrast, Ly-6ChiCCR2+CX3CR1

−GR-1+

monocytes are actively recruited to inflamed tissues where
they can differentiate into so-called inflammatory DCs or dif-
ferent flavours of macrophages [60, 63–65]. This subset was
shown to express high levels of chemokine receptors, com-
plement peptides, and annexins, while Ly-6Clo monocytes
express more MHC class-II, growth factors, integrins, and
scavenger receptors [66, 67].

In analogy to mice, human monocytes are divided into
different subsets including CD14++CD16− (classical), CD14+

CD16+ (intermediate), and CD14−CD16+ (nonclassical) [58].
All subsets are CD206−CD64+ [13] and express CX3CR1 and
CXCR4 (CD16+ monocytes express CX3CR1 at higher levels
which allows them to adhere firmly to vessel walls [58]).
Classical monocytes also express several CC chemokine
receptors [58, 60] and are characterised by an antimicrobial
phenotype [68]. Intermediate monocytes express genes
related to antigen processing and presentation, transen-
dothelial migration, and angiogenesis and secrete higher
amounts of cytokines and ROS than other subsets [68, 69].
Human classical monocytes resemble murine Ly-6Chi mono-
cytes, whereas nonclassical monocytes were described to be
the counterparts of Ly-6Clo monocytes (reviewed in [64]).
The human blood monocyte population structure was
recently challenged by Villani et al. who, by application of
single cell RNA sequencing, suggested that peripheral blood
monocytes can be further divided in four subsets [70].
Whether this also holds true for lung monocytes awaits fur-
ther investigation.

2. Chronic Obstructive Pulmonary Disease
(COPD): Epidemiology, Pathology, and the
Role of the Immune System

COPD is a chronic disease of the lower respiratory tract and
is characterised by irreversible airway obstruction, chronic
bronchitis, and loss of alveolar parenchyma (emphysema)
[71]. It affects almost equally men and women, has its onset
in midlife, and progresses slowly during adulthood [72]
resulting in airway obstruction by mucus exudates and lung

tissue remodelling [71]. Patients with COPD are diagnosed
as stage 1 (mild) to 4 (very severe) based on spirometric grad-
ing as well as group A to D based on clinical assessment of
symptoms and exacerbation risk according to GOLD classifi-
cation [73]. Besides the well-documented increase in
patients’ disability-adjusted life years, COPD is also a huge
economic burden for countries due to its chronic nature,
the exacerbations which lead to patient hospitalisation and
the lack of effective drugs [74–76].

COPD ranked sixth globally as a leading cause of death in
1990 and is projected to rank third by 2020 accounting for
7% of total deaths worldwide [73, 77, 78]. There are several
causative factors for the disease (reviewed in [79, 80]) includ-
ing environmental factors, such as smoking (which is now
accepted as the main causal factor of the disease), the use of
biomass fuel, occupational exposure to toxic gases or dust,
infections, outdoor pollution, genetic susceptibility as exem-
plified by the deficiency of α1-antitrypsin (reviewed in [81]),
and accelerated lung ageing [82, 83].

COPD is thought to be initiated when inhaled irritants
activate innate immunity either directly by triggering com-
mon PRRs on immune and bronchial epithelial cells or indi-
rectly by inducing the release of danger signals by epithelial
and endothelial cells [84–86]. In fact, the subsequent
recruitment of blood leukocytes and the destruction of lung
tissue are TLR-dependent and macrophage activation
occurs in an inflammasome-dependent manner [87].
Patients with COPD present with elevated levels of a broad
range of proinflammatory mediators in their bronchial
lavage, such as TNF-α, IL-8, CCL2, CCL3, LTB4, myeloper-
oxidase, and eosinophilic cationic protein among others
[88–94]. In parallel, the vasculature upregulates surface
adhesion molecules [95] and becomes permeable to attract
blood neutrophils, monocytes, and eosinophils to the lung.
Secretion of the tissue remodelling cytokine TGF-β by epi-
thelial cells has also been reported to relate to small airway
obstruction in COPD [96].

Neutrophil percentages in COPD correlate with deterio-
ration of lung function and airway obstruction [97] and,
together with macrophages [98], they contribute to disease
pathology via the production of extracellular matrix-
(ECM-) degrading enzymes [99]. Disintegrated alveolar wall
components can be readily detected in the biological fluids
of patients with COPD and are significantly higher than in
healthy smokers [100]. Neutrophil elastase (NE) and metal-
loproteinases (MMPs) cause lung tissue destruction and
trigger mucus secretion which obstructs small airways
[101]. The imbalance between proteases and protease inhib-
itors in the lungs of patients with COPD causes enhanced
chemotactic factor secretion by macrophages and further
amplification of neutrophil recruitment [102].

In the healthy lung, DC sample inhaled exogenous
material or apoptotic cells to induce immune tolerance or
initiate appropriate immune responses [1]. In COPD, DCs
accumulate in the lung in an IL-1α-dependent manner fol-
lowing a CCL20-CCR6 axis [103, 104]. Recent reports have
suggested that the numbers of the various DC subsets are
differentially altered in the several lung compartments.
For example, Langerhans-type DCs have been observed
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selectively in small airways [105], whereas the numbers of
bronchial mucosal DCs in the epithelium as well as the
migratory CD83+ and CCR7+ DC subsets are reduced in
patients with COPD [106, 107]. The dysregulated localisa-
tion of these immune cells comes together with altered
immune responses regulated by the different subsets
[108]; cigarette smoke and the lung inflammatory milieu
decrease lung myeloid DC maturation [109, 110] and cause
an imbalance to the costimulatory status of these cells
[111]. In contrast, CD1c+ DCs favour tolerogenic signalling
and the induction of regulatory T cells [112].

DC-mediated CD4+ T cell activation is predominantly
skewed to a TH1 phenotype [113], although TH17 cells
have also been found in the lungs of patients with COPD
[114, 115]. However, in the epithelium, submucosa, and
adventitia of peripheral airways of patients with COPD,
CXCR3-expressing CD8+ cells are the predominant T cell
subtype [116]. CD8+ lymphocytes contribute to tissue injury
and cell death in the lung via the release of proteolytic
enzymes, such as perforin and granzymes [117–120]. Finally,
the numbers of regulatory T cells have been demonstrated to
be in decline in patients with COPD in comparison with
healthy smokers which highlights another causality factor
for the chronicity of the disease [121, 122]. Regarding the fac-
tors responsible for the increase in T cell numbers, Di Stefano
et al. showed that IL-27 secretion by CD68+ cells in the BAL
of patients with COPD may contribute to IFN-γ and gran-
zyme B secretion by CD8+ lymphocytes as well as the induc-
tion of regulatory T cells [123]. However, more studies are
needed to clarify the role of T cells as part of an efficient acute
or a dysregulated chronic response mounted by alterations in
innate immunity.

In 2006, the presence of B cells was also described in lym-
phoid follicles in small airways and lung parenchyma of
patients with COPD and animal models [124]. Supporting
evidence came from the detection of elevated levels of B
cell-activating factor in lymphoid follicles which inversely
correlated with lung function [125]. Although the nature of
the antigens that activate B cells is not fully known, it has
been speculated that they range from cigarette smoke irri-
tants [126] to cell death and ECM degradation by-products,
microbial components, and autoantigens [127].

Finally, a frequent manifestation of COPD is the colonisa-
tion of the patients’ lungs by bacteria and viruses (likely due
to impaired phagocytosis by AMs [126]) which cause exacer-
bations diminishing the patients’ quality of life [128, 129]. H.
influenzae, S. pneumoniae, and M. catarrhalis are most usu-
ally detected in patients with frequent exacerbations, while
P. aeruginosa infections account for exacerbations in patients
with severe COPD [130–132]. Furthermore, in recent years,
the role of viral infections in the worsening of patients’ health
has begun to be appreciated and research has focused on the
identification of the immune cells and mechanisms that con-
tribute to the loss of lung function. Rhinoviruses [133], picor-
navirus [134], adenoviruses, the respiratory syncytial virus,
and influenza virus are the most common viruses found in
the sputum of patients with COPD and are responsible for
about half of all exacerbations observed (reviewed in [135]).
Infections augment the innate immune responses and lung

tissue remodelling in mice [136], while human patients
present with dysregulated neutrophil and T cell mobilisation
[89, 137], increased proinflammatory mediator levels
[138, 139], and antibacterial humoral responses [140].

3. Why the Functions of Lung Macrophage
Populations in COPD Warrant
Further Investigation

The numbers of lung-resident macrophages in the lung have
been reported to be dramatically increased in COPD due to
the recruitment of blood leukocytes from the periphery
[141, 142]. Macrophages are plastic cells and respond in
several ways to accommodate changes in their microenviron-
ment. For example, AMs from smokers present with
increased expression of cytokines and chemokines, growth
factors, proteases, antioxidant proteins, adhesion molecules,
transcription regulators, and signalling pathway genes,
whereas they reduce expression of genes related to neutrophil
activation, serine protease inhibitors, and macrophage
differentiation genes [143]. Consequently, in the constantly
changing microenvironment of the COPD lung, resident
macrophages will respond accordingly and shape their effec-
tor functions to orchestrate the immune responses. Hence,
the study of the functions of lung macrophage populations
as well as their interplay with other immune cells and the
lung stroma has the potential to enhance our understanding
of COPD pathology and provide with novel biomarkers and
therapeutic targets.

4. AMs in COPD

Over the last decades, numerous studies have accumulated
knowledge about the role and functions of AMs in COPD.
Major aspects of change in cellular functions concern the
secretion of proinflammatory mediators, the induction of
oxidative stress, the deregulation of the protease-protease
inhibitor balance, and the impairment of pathogen phagocy-
tosis as well as changes in gene expression which we highlight
next (Figure 2 and Table 1). Many of these studies have been
performed in the pregenomic era and most of them prior to
the era of single cell genomics. Therefore, as for every other
field in life sciences, some of the previous findings might be
challenged once we have applied cutting-edge technologies
to better understand the basic unit of life—the cell—and its
changed functionality in complex diseases like COPD.
Nevertheless, we review the current knowledge which has
often been obtained only at the population level, but not at
the single cell level yet.

4.1. Altered Secretion of Proinflammatory Mediators. AMs
from patients with COPD present with alterations in the
secretion of cytokines and chemokines. In particular, the
levels of TNF-α, IL-1β, IL-6, IL-10, IL-12, CCL2, CCL5,
CCL7, CCL13, CCL22, IL-8, CXCL9, and CXCL10 in AM
secretions from smokers were significantly different from
healthy subjects [126, 144–152]. Similarly, the levels of the
chemokine receptors CCR2 and CCR5 were found to be
increased [153, 154]. Moreover, macrophages primed with
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endotoxin and cigarette smoke presented with delayed
IL-1β and IL-6 secretion in comparison with control
endotoxin-treated cells and a subsequent increase in IL-8
levels [155]. Finally, sputummacrophages from patients with
COPD were found to express more prostaglandin H
synthases 1 and 2 than unaffected control subjects [156].

TLR signalling is pivotal for proinflammatory mediator
secretion by macrophages in COPD as exemplified by the
TLR4-dependent cigarette smoke-mediated activation of
human macrophages [157]. Downstream of TLR activation,
lung macrophages from patients with COPD also exhibit
dysregulated signalling including p38, ERK1/2, JNK and
IRAK-1 phosphorylation, IκBα expression, and NF-κB p65
activation compared to healthy individuals [145, 147, 155].
Finally, the importance of TLR signalling for macrophage
proinflammatory mediator secretion in COPD is also illus-
trated by the downregulation of the chemokines CXCL9,
CXCL10, and CXCL11 [147, 154, 158] as a result of the atten-
uation of TLR3 activation [158]. While all these findings are
very informative, we still do not have an integrative, systemic,
and causal model of the main regulatory mechanisms opera-
tive in AMs of patients with COPD.

Therefore, more light needs to be shed on the molecular
programmers that drive these functional differences and
conclude whether these are observed in a fraction of the
AM population. To this end, microRNAs have been involved
in the regulation of proinflammatory cytokine release by
AMs [159], whereas recent investigation into the epigenetic
networks active in macrophage populations of patients with
COPD and healthy smokers revealed that the histone deace-
tylases HDAC2 and HDAC3 are downregulated in compar-
ison with healthy individuals and correlate negatively with
disease severity [160, 161]. Similarly, Yang et al. showed that
oxidative stress induces posttranslational modifications on
HDAC2 which are responsible for the loss of function of this
enzyme’s activity [162]. Taken together, it seems plausible to
hypothesise that defects in the transcriptional and epigenetic
regulation of proinflammatory genes in COPD cause dys-
regulated TLR signalling and effector biomolecule secretion
by AMs.

4.2. Induced Oxidative Stress. Inhaled cigarette smoke and
airborne pollutants induce oxidative stress in human lungs.
In more detail, cigarette smoke contains approximately

(5) Impaired
efferocytosis

(4) Defective
phagocytosis

(3) Release of
proteases
and chitinases

(1) Altered pro-
inflammatory
mediator secretion

FeFeFe
(2) Oxidative stress
and iron metabolism

Monocytes: migration to chemokine
gradients, secretion of proinflammatory
cytokines, chemokines, and proteases,
differentiation into alveolar macrophages?

secretion of proinflammatory
cytokines and chemokines,
proliferation, and differentiation
into alveolar macrophages?

Interstitial macrophages:

Figure 2: Lung macrophage population functions in COPD. AMs exhibit alterations in their physiological responses in COPD; the secretion
of proinflammatory cytokines and chemokines is dysregulated (1). The cells undergo oxidative stress and secrete ROS and nitrite species
into the lung micro-environment (2), they store intracellularly large amounts of iron (2), and they overexpress and release proteases
which cause alveolar tissue destruction (3). In contrast, processes, such as phagocytosis of microbes (4) and apoptotic neutrophils or
epithelial cells (5), are downregulated in AMs from patients with COPD, an observation which could explain the frequent colonisation
of the lungs with bacteria and viruses in exacerbations. In the meantime, monocytes are recruited from blood vessels following
chemokine gradients and contribute to disease pathology via the secretion of proinflammatory mediators and proteases. It is also
believed that monocytes differentiate into macrophages via an intermediate step of IMs which morphologically and functionally
resemble monocytes.

5Journal of Immunology Research



4000 chemicals including oxidants which impact lung phys-
iology [163, 164]. On the contrary, the antioxidant protein
glutathione (GSH) is heavily suppressed [150, 165] in macro-
phages by the actions of aldehydes in cigarette smoke [166]
and biomolecules are modified (e.g., protein carbonylation)
[147] leading to deleterious effects on living cells.

In response, AMs from patients with COPD have been
demonstrated to express the nitrite synthase gene iNOS, but
less heme oxygenase 1 (HO-1) than healthy smokers [167].
As mentioned above, other inflammation-related molecules,
such as the histone deacetylases HDAC2 and SIRT1, are
downregulated in AMs in an oxidative stress-dependent
manner [165, 168, 169]. Eventually, cigarette smoke-
induced oxidative stress and subsequent downstream gene
expression changes in AMs result in Bak/Bax and cyto-
chrome c-dependent apoptosis [170] increasing the cell
debris pool that needs to be removed from the lung tissue
to prevent secondary inflammation.

Finally, iron metabolism is dysregulated in the lungs of
patients with COPD. Iron regulatory protein 2 and hemosid-
erin overexpression cause cellular and mitochondrial deposi-
tion of iron in alveolar tissue and resident macrophages
which is associated with neutrophilia and infective exacerba-
tions [171, 172]. Indeed, a recent report showcased the
enhanced nutrient uptake and storage in AMs from patients
with COPD. Philippot et al. found that these cells present
with increased transferrin and ferritin expression important
for iron uptake and storage [173]. Iron-loaded AMs from
smokers also secrete higher amounts of ferritin than non-
smokers [174, 175] which could catalyse oxidative stress
reactions in the alveolar tissue.

It has become apparent that exacerbated oxidative
stress in AMs of patients with COPD impacts on other phys-
iological pathways. For instance, oxidation of phospholipids

in AMs impairs bacterial intracellular killing in mice [176].
To date, investigation of such concepts with available analyti-
cal tools is challenging. On the contrary, whole transcriptome
analysis approaches complemented by bioinformatic coex-
pression network analysis would allow to link the expression
patterns of dysregulated oxidative stress genes to the rest of
the transcriptome in order to uncover overlooked intercon-
nected biological pathways.

4.3. Deregulation of the Protease-Protease Inhibitor Balance.
COPD progression correlates with the persistent activation
of AMs and changes in the balance of secreted proteases
and protease inhibitors (Figure 2). The importance of these
molecules was illustrated in an experimental model of COPD
where macrophage infiltration and the expression of proin-
flammatory mediators were induced in response to released
mast cell-tryptases [177, 178].

ECM degradation enzymes, such as MMPs and cathep-
sins, are produced by macrophages and result in elastolysis
and alveolar tissue damage [179–182]. Furthermore, these
proteases have the potential to cleave small proteins and
expose chemotactic fragments or they act as chemoattrac-
tants themselves and perpetuate macrophage accumulation
in the lungs [183, 184]. On the contrary, cigarette smoking
has been shown to induce the functional inactivation of α1-
antitrypsin, a NE inhibitor, which leaves smokers vulnerable
to lung tissue destruction [185].

Monocytes and AMs are potent producers of several
proteases; MMPs including MMP-1, MMP-2, MMP-7,
MMP-9, and MMP-12, and cathepsins, such as K, L, B,
and S, [180, 181, 184, 186, 187] and study have documented
the overexpression of MMP-1, MMP-2, MMP-7, MMP-9,
and MMP-12 in the lungs of smokers compared to healthy
individuals [154, 188–194].

Table 1: Molecules differentially expressed by AMs from animals or patients with COPD compared to healthy controls.

Molecule family Encoded proteins References

Cytokines TNF-α ↓, IL-1B ↑↓, IL-6 ↓, IL-10 ↓, IL-12 ↑, Tnf-α ↓, Il-6 ↓ [126, 145, 147, 148, 150–152]

Chemokines
IL-8 ↓, CCL2 ↑, CCL5 ↓, CCL7 ↑, CCL13 ↑, CCL22 ↑, Cxcl10 ↓,

CXCL9 ↓, CXCL10 ↓, CXCL11 ↓
[126, 145, 147–149, 151–154,

158, 165]

Chemokine receptors CCR2 ↑, CCR5 ↑ [153, 154]

Prostaglandin metabolism PTGS1 ↑, PTGS2 ↑ [156]

Oxidative stress GSH ↓, Gsh ↓, iNOS ↑, HO-1 ↓ [147, 150, 155, 165, 167]

Iron metabolism Hemosiderin ↑, transferrin ↑, transferrin receptor ↓, ferritin ↑ [172–175, 219]

Proteinases
MMP-1 ↑, MMP-2 ↑, MMP-7 ↑, MMP-9 ↑ (SNPs), MMP-12 ↑,

matriptase ↑
[154, 188–194, 196]

Neutrophil proteases and inhibitors α1-Antitrypsin [185]

Chitinolytic activity CHIT1 ↑, YKL-40 ↑ [199, 200]

Recognition markers CD31 ↓, CD44 ↓, CD91 ↓, CR-3 ↑, CR-4 ↑, DC-SIGN ↑, MARCO ↓ [150, 219, 226]

Cytoskeletal rearrangements RAC1 ↓, VAV1 ↓, RhoA ↑ [216, 229]

Mitochondrial stress MCL-1 ↑ [230]

Integrins, scavenger receptors, and
adhesion molecules

CD11a ↓, CD11c ↑, CD163 ↑, CD204 ↑, CD206 ↑, MSR-1 (SNPs),
MERTK ↑

[220, 227, 234, 235]

Antigen presentation molecules MHC-I ↓, MHC-II ↓, HLA-DR ↓, CD80 ↓ [150, 233]

Fc gamma receptors, PRRs FcγR1 ↑, CD16 ↓, TLR2 ↓, TLR3 ↓, TLR4 ↓, TLR5 ↑, TLR9 (SNPs)
[126, 148, 150, 158, 165, 206,

233, 234, 236–238]
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In patients with COPD, the expression of MMP-9 by
AMs was shown to coincide with that of tissue inhibitor of
metalloproteinases 1. The balance of these two mediators
can be detrimental for the level of tissue damage in COPD
lung and is controlled by the anti-inflammatory cytokine
IL-10 [195]. Additional evidence for the current consensus
of protease-protease inhibitor deregulation in macrophages
from patients with COPD was provided by the fact that
human patients with the most common α1-antitrypsin muta-
tion have greater proteolytic activity partially due to higher
expression levels of the membrane-bound serine protease
matriptase [196].

Furthermore, patients with COPD have more MMP-12-
positive macrophages than healthy individuals in their lungs
[193]. Macrophages are the main source of MMP-12 in the
lungs of emphysematous mice [113, 182], and this MMP
was shown to be important for connective tissue breakdown
and neutrophil recruitment [99]. The mechanism MMP-12
utilises to promote inflammation was shown to involve the
cleavage of the TNF precursor on the surface of macrophages
and its release to the lung microenvironment [197].

Lastly, a perhaps not so well-documented function of
AMs in COPD is their chitinolytic activity. Chitinases are
released in the bronchoalveolar fluid of patients and are over-
expressed by AMs from patients with COPD [198]. The pres-
ence of chitinase 1 and YKL-40, a chitin-binding protein, was
found to correlate with airway obstruction and emphysema
and to promote the production of proinflammatory media-
tors, such as cytokines, chemokines, and proteases by AMs
from patients with COPD [198–200]. To date, we do not fully
understand whether the upregulation in the expression of
chitinases by AMs is a specific immune response against fun-
gal opportunistic infection of patients with COPD and this
warrants further investigation.

Given the significance of the protease activation pathway
in irreversible tissue damage, it is necessary to understand
how protease and protease inhibitor production is regulated
in AMs aiming to fully characterise potentially defective
molecular pathways that are responsible for the imbalance
in the release of these mediators. Moreover, the literature is
often contradicting with regard to the identity of protease
members expressed by AMs. Currently available genomic
techniques could settle the discrepancy noticed between
older and more recent reports and show whether genetic
polymorphisms account for the deregulation of protease-
protease inhibitor imbalance in AMs.

4.4. Impaired Pathogen Phagocytosis. Due to their strategic
localisation at the host-environment interface, AMs are key
players in sensing microbes and irritants and initiating the
phagocytosis process in order to remove and destroy them.
Macrophage phagocytosis in patients with COPD has been
extensively studied in humans and animal models, and
our current understanding is that AMs present with a
phagocytosis defect when treated with air pollutants
(Figure 2) [201, 202].

AMs from patients with COPD and cigarette smoke-
treated animals have been reported to display impaired
phagocytosis of pathogens, such as H. influenzae [203–207],

C. albicans [208, 209], E. coli, M. catarrhalis [206, 207], and
S. pneumoniae [205, 206, 210] compared to controls. Inter-
estingly, defective phagocytosis of latex particles has only
been described for murine AMs which implies that data gen-
erated from different species should be taken with caution
[211]. It is not entirely clear whether the inability of macro-
phages to efficiently uptake foreign material is tissue-
specific or whether it is the result of a global genetic defect.
For instance, in some studies, monocyte-mediated phagocy-
tosis was comparable with that of AMs [204], whereas in
others monocytes from patients with COPD demonstrated
dysregulated phagocytic abilities [212], especially when the
subjects were diagnosed with acute bronchopneumonia
[213]. Therefore, furtherwork is needed to determinewhether
the suppressed macrophage phagocytic capacity in patients
with COPD is governed by lung-specific factors.

Besides phagocytosis of external stimuli, macrophages
are also responsible for the clearance of accumulating apo-
ptotic cells to avoid the release of toxic intracellular sub-
stances which can cause secondary inflammation and
inhibit tissue repair [214]. This process, coined efferocytosis,
has been suggested by some studies to be compromised in
AMs from patients with COPD when coincubated with apo-
ptotic neutrophils [215, 216], eosinophils [217], or epithelial
cells [150, 218, 219]. Moreover, AMs from cigarette smokers
upregulate the apoptotic cell removal tyrosine kinaseMERTK,
arguably ina compensationmechanismto restore endogenous
efferocytosis levels [220]. Interestingly, macrophage efferocy-
tosis index was reversed in AMs from animals and patients
with COPD treated with native α1-antitrypsin implying a
relationship between the protease-protease inhibitor balance
and apoptotic cell engulfment [221]. Moreover, mechanistic
data provided by a number of groups support the idea that
an increased expression of genes of the sphingosine-1 phos-
phate system can explain the defective efferocytic responses
of AMs [222–225], although it is currently unclear whether
other lipid metabolism pathways also play a role.

Studies designed to provide an insight into the molecular
mechanisms that account for the suppressed AM efferocyto-
sis showed that the expression of recognition receptors, such
as CD31, CD44, CD91 [219], CR-3, CR-4, FcγR1, MARCO,
and DC-SIGN, was significantly changed in AMs from
patients with COPD [150, 226]. However, the expression of
recognition molecules was found to be similar between
smokers and patients with COPD in other reports contradic-
ting the original findings [205]. In another report, the expres-
sion of the macrophage scavenger receptor 1 in monocyte-
derived macrophages was associated with genetic variants
which also controlled in vitro cell adhesion and survival in
culture [227]. Finally, conflicting data have been published
concerning the involvement of p38, ERK1/2, PI3K, ROCK,
and p65 kinases and cytoskeletal changes in AM phagocyto-
sis in COPD [147, 228].

Recently, Richens et al. showed that Rac1 activation
inhibits RhoA kinase resulting in actin rearrangement and
lamellipodia protrusion [229], while Minematsu et al. con-
firmed that RAC1 and VAV1 kinase levels are reduced in
cigarette smoke-treated macrophages [216]. Therefore, it is
possible that the compromised phagocytic/efferocytic
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capacity of macrophages in COPD can be partially explained
by impaired effector kinase signalling. Finally, Bewley et al.
recently showed that the defective intracellular pathogen
killing exhibited by AMs from patients with COPD is caused
by a MCL-1-mediated failure to increase mitochondrial ROS
production [230]. Collectively, while enormous progress has
been made in understanding the molecular mechanisms of
altered phagocytosis in COPD, we still do not have an inte-
grated model of the pathophysiological changes operative in
AMs in this disease.

4.5. Surface and Intracellular Marker Expression. To date, the
assessment of AM surface marker expression in patients with
COPD has focused on classical M1/M2 markers [231, 232],
while our own work clearly indicated that this outdated clas-
sification cannot be applied to macrophages in COPD [144].
AMs from patients with COPD express less costimulatory
molecules, such as the T cell activation and survival signalling
molecule CD80, major histocompatibility antigens [150,
233], Fcγ receptors and integrins on their surface [234], more
CD163, and carbohydrate and lipid scavenger receptors, such
as CD206 and CD204 than non-COPD smokers and non-
smokers [235].

Similarly, as already indicated above, the expression of
surface PRRs is modulated in patients with COPD; TLR2,
TLR4, and TLR5 are expressed at lower levels in macro-
phages from patients with COPD [126, 148, 236, 237]. How-
ever, there is contradicting evidence regarding the regulation
of TLR2 expression which suggests that more work is needed
to delineate whether this PRR and subsequent downstream
signalling pathways play a role in the functional differences
observed between macrophages from healthy individuals
and patients with COPD. In contrast to the aforementioned
receptors, TLR3 expression as well as downstream effector
molecules, such as IL-8 and MMP-9, are overexpressed in
macrophages in COPD [238]. Furthermore, polymorphisms
in certain PRRs, such as TLR9, are associated with the
compromised proinflammatory mediator secretion described
above [206]. Lastly, patients with COPD have more CD163+

macrophages in their lungs [239] which is most likely the
consequence of lung microenvironment imprinting, as incu-
bation of a human macrophage cell line with sputum from
patients with acute exacerbation of COPD induced the
expression of other anti-inflammatory genes, such as
CD206 and arginase in vitro [240].

5. IMs and Monocytes in COPD

The literature has mainly focused on the role that AMs play
in COPD. However, not much is known about the functions
of IMs in the lung or monocytes in the blood (Figure 2 and
Table 2). In mice, inhaled smoke causes an accumulation of
CX3CR1

+ monocytes and lung macrophages which associate
with lung inflammation [241]. Monocytes infiltrate the lung
and were shown to replace the dying resident macrophages
[242]. In particular, CX3CR1

−GR-1hi monocytes undergo a
differentiation step into CX3CR1

+GR-1lo cells before subse-
quently differentiating into lungmacrophages after an inflam-
matory insult or the depletion of lung-resident macrophages

[243]. Whether this is also the case for humans remains an
open question.

Monocytes are believed to develop into lung paren-
chyma macrophages which in mice have been identified
as CX3CR1hiCD11b+CD11chiMHC-IIhi macrophages and
express TNF-α and IL-6 [244]. More evidence for the pres-
ence of monocytes in the human lung during inflammatory
diseases came from the characterisation of a CD14+HLA-
DR+ macrophage population in the sputum of patients with
COPD capable to produce high levels of TNF-α [245]. In
the lung, recruited monocytes have been shown to modulate
neutrophil infiltration via the secretion of proinflammatory
mediators [246].

Similar to AMs, monocyte activation in patients with
COPD presents with gene expression signatures related to
apoptosis, protease function, proliferation and differentia-
tion, glycerol metabolism, and cytosolic transport as shown
by a microarray study [247]. As a result of their activation
state, monocytes display more prominent migration towards
CCL5, CXCL1, CXCL7, or CXCR3 chemokine gradients
[248, 249], production of IL-6 and CCL2, but less IL-8,
MMP-9, and CD54 compared to controls [146]. In contrast,
the literature on phagocytosis by monocytes from healthy
individuals and patients with COPD is contradictory [205,
250]. With regard to MMP production, Pérez-Rial et al.
showed that the recruited monocytes are responsible for
the overall increase of macrophage numbers in a murine
model of COPD [251]. Interestingly, monocyte/macrophage
responses depend a lot on the causative agent of COPD as
exemplified in a diesel exhaust particle-induced study where
monocytes exhibited less CXCL8 and phagocytic responses
due to dampened CD11b, CD14, and CD86 surface expres-
sion [252], while they overexpress CCR2 in smokers [253].

There have been various mechanistic lines of evidence to
explain the augmented proinflammatory phenotype of
monocytes; Dang et al., for example, found that miRNA
expression, such as miR-24-3p and miR-93-5p, correlates
with dysregulated downstream TLR and NOD-like receptor
signalling proteins, such as IκBα [254]. On top of that, altered
epigenetic cues as exemplified by the downregulation of
HDAC levels cause an upregulation in proinflammatory gene
expression and NF-κB-mediated inflammation [160, 255].

Table 2: Molecules differentially expressed by monocytes or IMs
from animals or patients with COPD compared to healthy controls.

Molecule family Encoded proteins References

Cytokines TNF-α ↓, IL-6 ↑ [146, 245]

Chemokines CCL2 ↑, IL-8 ↓ [146, 252]

Chemokine receptors CCR2 ↑ [253]

Metalloproteinases MMP-9 ↓, Mmp-12 ↑ [146, 251]

Antigen presentation
molecules

CD86 ↓ [252]

Integrins, PRRs CD11b ↓, CD14 ↓, CD54 ↓ [146, 252]

MicroRNAs
miR-24-3p ↑, miR-93-5p ↑,
miR-320a ↑, miR-320b ↑,

miR1273g-3p ↓
[254]
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6. Concluding Remarks

COPD affects around 328 million people worldwide, and it is
projected to rank within the top four most fatal diseases by
2030 [77, 256]. Moreover, the chronic nature of the disease
and the frequently observed exacerbations and comorbidities
have major consequences on patients’ lives and countries’
economic status [256]. It is therefore important to advance
our knowledge of immune system manifestations in COPD
and uncover the molecular pathways responsible for the
cross talk between immune cells and the lung stroma in order
to provide the clinic with prognosis/diagnosis biomarkers
and the pharmaceutical industry with novel testable genes/
pathways for future drug development screenings.

Already in 1979, it had been suggested that the macro-
phage population, which comprises of lung-resident macro-
phages and blood monocytes, constitutes more than 97% of
all cells in the human bronchoalveolar lavage [257], while
two decades later, the severity in COPD was linked to the
presence of macrophages, neutrophils, NK cells, and acti-
vated epithelial cells in the lung [258]. However, due to the
lack of specific markers and respective technologies at that
time, no further subset specifications or functional subdivi-
sion could be performed and these studies remained

incomplete. This is also true for studies which suggested cor-
relation between COPD severity or small airway infiltration
and macrophages [259–261] and reports which demon-
strated less apoptosis and more proliferation in AMs
from smokers [262]. Taken together, many of the find-
ings concerning the role of certain immune cells and
their relation to disease state, severity, and outcome have
been obtained more than two decades ago. While still of
value, these findings are challenged by very recent find-
ings concerning cellular classification and function of
immune cells in general.

With regard to lung macrophage populations, the efforts
to better appreciate their role in COPD remain elusive. AMs
are the only lung-resident macrophage population that has
been extensively investigated in the past, whereas IMs have
long been considered solely as an intermediate step in mono-
cyte differentiation mainly due to limitations associated with
their harvest from human subjects. The field is missing out on
valuable information about potentially existing homogeneous
macrophage subsets with distinct phenotypes associated with
a pathological feature or clinical subgroup of COPD. In addi-
tion, the molecular mechanisms that dictate the functions of
lung macrophage populations remain poorly characterised;
for example, although there is evidence that the dysfunctions

Lung macrophage
populations

Identi�cation of macrophage subpopulations
with distinct phenotypes

Uncover of transcriptional regulatory networks
(e.g., transcription factors, epigenetics)

Ac

Ac

NF-𝜅BPU.1

Me Me

Me

Phenotypic analysis of sorted
lung macrophage populations

PU.1

PU.1

Figure 3: Future directions in COPD lung macrophage population research. Recent advances in Immunogenetics and Structural Biology
make it possible to evaluate the heterogeneity of lung macrophage populations. In particular, single cell RNA sequencing can identify
homogeneous macrophage subsets with distinct transcriptomes and functions. Mass cytometry can complement and validate initial
findings establishing prognosis/diagnosis biomarkers for human patients with COPD. Moreover, analysis of the nuclear heterochromatin
state with ATAC sequencing and subsequent validation with ChIP-sequencing can shed light on the epigenetic regulation of lung
macrophage populations and highlight the molecular mechanisms responsible for their functions in vivo. Lastly, the role of AMs, IMs, and
lung monocytes warrants further investigation in order to better understand the contributions of each macrophage population to COPD
progression and severity. Transcriptome analysis will determine whether these populations are distinct or part of a differentiation
continuum from the monocyte to the AM phenotype and will associate gene expression with unique biological processes.
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of lung macrophages in COPD are regulated epigenetically,
an unbiased evaluation of the interplay between transcription
factors and epigenetic networks active in lung macrophages
in COPD is currently lacking.

To this end, latest advances in the fields of Immunoge-
nomics and Systems Biology have been very encouraging
and can help address these open questions (Figure 3). The
deconvolution of the lung macrophage structure with high-
dimensional single cell technologies, such as RNA sequenc-
ing, could identify lung-resident macrophage subpopulations
with unique transcriptomes that reflect the niche, activation
state, or interactions with other immune cells at the time of
harvest [232]. Subset-specific genes could then be associated
with a COPD subgroup and be validated with mass cytome-
try. Such an approach could stratify COPD patient cohorts
according to new biomarkers and replace currently used
symptom-based readouts [263].

Furthermore, the early discovery of HDAC downregu-
lation in patients with COPD should be followed up by
complementary assay for transposase-accessible chromatin
(ATAC) sequencing to predict complex networks of histone-
modifying enzymes and transcription factors that direct tran-
scription in lung macrophages and link them to certain
genes/biological functions [232]. Subsequent chromatin
immunoprecipitation (ChIP) sequencing would validate
these targets and lead to new hypothesis generation and
potentially novel therapeutic interventions.

To conclude, there are many exciting research avenues to
be followed, now supported by genetic and computational
approaches made available in the last decade. The high level
of macrophage plasticity in vivo implies that there are com-
plex stimulatory and regulatory molecular circuits that act
simultaneously and result in their physiological dynamics.
Hence, to better understand the role lung macrophages play
in COPD, we will need to take advantage of these novel tools
and revisit older findings.
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Macrophages play an important role in host defense, in addition to the powerful ability to phagocytose pathogens or foreign
matters. They fulfill a variety of roles in immune regulation, wound healing, and tissue homeostasis preservation. Macrophages
are characterized by high heterogeneity, which can polarize into at least two major extremes, M1-type macrophages (classical
activation) which are normally derived from monocytes and M2-type macrophages (alternative activation) which are mostly
those tissue-resident macrophages. Based on the wound healing process in skin, the previous studies have documented how
these different subtypes of macrophages participate in tissue repair and remodeling, while the mechanism of macrophages in
bowel anastomotic healing has not yet been established. This review summarizes the currently available evidence regarding the
different roles of polarized macrophages in the physiological course of anastomotic healing and their pathological roles in
anastomotic leakage, the most dangerous complication after gastrointestinal surgery.

1. Introduction

Macrophages are myeloid immune cells that play a central
role in inflammation and host defense [1, 2]. These cells are
characterized by the powerful ability of phagocytosis and
are credited with protecting the host from infection through
a process so-called “innate immunity” [3]. In recent years,
with the accumulation of evidence, macrophages have
emerged as one of the most versatile cells. Their roles have
shifted from immune effector cells which conduct host
defense just as “trashmen” to predominant “directors” and
“executors” for regulating inflammatory response, keeping
tissue homeostasis, participating in wound healing and tissue
remodeling [4].

Macrophages are actively involved in the wound healing
process, while their role in a special surgical wound, also
known as the anastomotic wound, has not yet been fully
established. Anastomosis is constructed after removal of
gastrointestinal tumor or bowel resection by surgeons to
reconstruct the continuation of the gastrointestinal tract.
Abnormal healing of anastomosis may develop into

anastomotic leakage (AL), defined as luminal contents
leaking from a surgical bowel connection [5]. It is the most
dangerous complication after colorectal surgery [6–8],
because it is responsible for up to 40% postoperative mortal-
ity rate, prolonged hospitalization, and an increase in the cost
of healthcare due to the treatment of sepsis and the need for
reoperation [9].

From a macroscopic point of view, the cause of AL
mainly includes communication, infection, and healing dis-
turbances [10]. However, a detailed mechanism on a cellular
level is yet to be established due to the limited evidence. In
this review, basing on heterogeneous populations of macro-
phages and their opposed tendencies of polarization, we tend
to discuss the roles of different types of macrophages in an
uneventful anastomotic healing and their pathological roles
in anastomotic leakage.

1.1. Subtypes of Macrophages. Macrophages or mononuclear
phagocytes had been long thought to originate from hemato-
poietic stem cells (HSCs). The prevailing dogma has stated
that all macrophages derived from and were also replenished
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by monocytes [11]. However, macrophage family cells (cells
of the mononuclear phagocyte system) manifest remarkable
heterogeneity, in both their morphology and biological
functions [12, 13]. These recent data have challenged the
long-held conception about “HSC-monocyte-macrophage.”
Evidence showed that tissue-resident macrophages like
Kupffer cells of the liver, epidermal Langerhans cells of the
skin, and microglia of the brain derived from a yolk sac and
could persist in adult mice independent of HSCs [14–21].
Those tissue-resident macrophages can renew in situ,
although they might also be replenished by blood monocytes
in certain situations. In contrast to monocyte-derived macro-
phages which participate in an antibacterial process during
acute inflammatory response, tissue-resident macrophages
express different functional properties and play a central role
in maintaining tissue architecture, function, and homeostasis
[22–25], and their role in anastomotic healing is further
discussed below.

The diversity and plasticity were recognized as hallmarks
of macrophages, which contribute to their significant hetero-
geneity. In general, polarization of macrophages can be
divided into two major extremes, that is, the classical activa-
tion which results in M1-type macrophages (M1) and the
alternative activation which results in M2-type macrophages
(M2). Those two types of macrophages perform diverse func-
tional phenotypes in response to microenvironmental sig-
nals, like microbial products, damaged cells, and cytokines
from activated lymphocytes. Specifically, ligands of Toll-like
receptors (TLRs) and interferon-γ (IFN-γ) can induce mac-
rophages to polarize into M1-type macrophages; on the
contrary, interleukin-4 (IL-4) and interleukin-13 (IL-13)
induce macrophages to polarize into M2-type macro-
phages [26–28]. However, such explanation may not fully
illustrate all different activation scenarios. Murray et al.
proposed that there should be some other subtypes
between M1 and M2 [29], including the M2a subgroup
induced by IL-4 and IL-13, the M2b subgroup activated
by immune complexes (TLRs), and the M2c subgroup
deactivated by glucocorticoids, transforming growth factor
(TGF), or interleukin-10 (IL-10) [30, 31]. Moreover, it is
also reported that there might be a supplementary sub-
type of M2 (M2d), which is elicited by TLR agonists
and adenosine [32, 33]. It seems that the polarization of
macrophages should be viewed as a continued spectrum,
on which, two types of macrophages (M1 and M2) occu-
pied the opposite ends. Another classification of polariza-
tion proposed by Mosser and Edwards suggested that
macrophages are activated to form three populations in
charge of host defense, wound healing, and immune reg-
ulation, respectively [34]. The authors classified macro-
phages on the basis of their fundamental functions
rather than of the stimuli. Matching with the previously
discussed conception of “M1-M2” paradigm, most of
monocyte-derived macrophages are classically activated
and express the M1 phenotype, which exerts host defense;
reversely, tissue-resident macrophages are mainly acti-
vated in the alternative pathway which expresses M2-
like characteristic and preserves tissue homeostasis and
resolution of inflammation [21–23].

1.2. The Role of Polarized Macrophages in Physiological
Anastomotic Healing. The wall of the alimentary tract
contains four layers (i.e., mucosa, submucosa, muscularis
propria, and serosa). For a classic end-to-end inverted bowel
anastomosis, apposition of the serosa vanishes the gap
between the two ends of the gastrointestinal tract, providing
a barrier that insulates the sterile abdominal cavity from
luminal contents and bacteria; moreover, this layer is impor-
tant in providing a matrix for fibroblasts [35]. The sub-
mucosa consists of blood vessels, lymphatics, and nerve
fibers; this layer is the source of fibroblasts that become
active after gastrointestinal surgery and start to deposit
collagen. The stapled or sutured collagen fibers in this
layer provide most of the tensile strength of anastomosis
[36]; hence, the submucosa is of great importance in anas-
tomotic healing. The mucosal layer also plays a role in
maintaining homeostasis to allow the healing process. A
pool of macrophages in the gastrointestinal mucosa is
the largest pool of tissue macrophages in the body, and
a long-lasting macrophage absence or dysfunction impairs
anastomotic healing [37, 38].

Tissue repair and healing after injury have been
studied for centuries but remain understood to a limited
object, that is, skin. Different from that, healing of the
gastrointestinal tract is anatomically obscured from inspec-
tion, only allowing the surgeon to judge the success of the
operation only on the patient’s parameters of general well-
being [36]. There are some differences between the skin
and anastomotic healing including anatomy (e.g., no
equivalent anatomic component of the serosa in cutaneous
tissues) and collagen and collagenase activity [39]. How-
ever, classical response to injury occurs in all organs and
tissues. The physiological course of anastomotic healing
can also be divided into three overlapping but distinct
stages, which include inflammation, new tissue formation,
and remodeling (Figure 1) [40, 41].

1.2.1. Inflammation. In addition to infection of diverse
microbial factors, injuries or traumas such as surgical strike
can also lead to a non-pathogen-associated inflammation,
which can be further divided into the early inflammatory
response and the late one [42]. In the early inflammatory
phase, neutrophils are recruited from circulating blood to
local wounding tissue (the anastomotic area) at first. Those
recruited polymorphonuclear cells remove the local foreign
particles or bacteria and then undergo apoptosis or necrosis.
After that, monocytes are recruited and differentiate into
macrophages which are highly phagocytic. They phagocytose
impaired neutrophils and other tissue debris to protect from
further tissue damage. During this phase, in response to
pathogen-associated modifying patterns (PAMPs) in a con-
taminative circumstance or damage-associated modifying
patterns (DAMPs) in a sterile circumstance, macrophages
are classically activated and express the M1 phenotype
[43–45]. M1 macrophages release high concentrations of
proinflammatory cytokines such as tumor necrosis factor-α
(TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and
interleukin-12 (IL-12); protease; and reactive oxygen species
(ROS) [34], all of which are thought to be important for
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microbial killing and proinflammatory response [13]. M1
macrophages can also produce collagenase, a high-activity
enzyme that causes collagen degradation that results in
low anastomotic strength early after the formation of an
anastomosis [46]. In the late inflammation phase, with
excessive phagocytosis of apoptotic neutrophils, engage-
ment of β2 integrins on macrophages by apoptotic neutro-
phils activates macrophages to express anti-inflammatory
mediator transforming growth factor (TGF) [47]. In contrast,
the production of proinflammatory cytokines like TNF-α
and IL-1β was inhibited [48, 49]. Thus, the phenotype of
macrophages switches from proinflammatory M1-like to
anti-inflammatory M2-like. These macrophages produce
cytokines such as IL-10 and lay the foundation for new
tissue formation by secreting other growth factors such
as vascular endothelial growth factor (VEGF) [50, 51].
Because macrophages stimulated with IL-10, TGF, or glu-
cocorticoids in vitro polarize into the M2c subtype that
shares similarities with anti-inflammatory macrophages
[30, 52–58], it suggests that anti-inflammatory macrophages
belong to M2c-type macrophages and are able to amplify
their anti-inflammatory response by secreting IL-10 and
TGF in a feedforward loop. In addition, anti-inflammatory
and regenerative capacities of anti-inflammatory macro-
phages were shown to be entirely IL-10-dependent in sterile
environments, for example, in surgical wound [59].

1.2.2. New Tissue Formation. In this phase, macrophages res-
ident in tissue or recruited from peripheral blood, known as
profibrotic macrophages, generate various growth factors
such as TGF, platelet-derived growth factor (PDGF), fibro-
blast growth factor-2, or insulin-like growth factor-1 [60].
Among them, TGF is a profibrotic cytokine that exerts on
fibroblasts and activates them to differentiate into myofibro-
blasts in wound tissue. Myofibroblasts produce a mass of
extracellular matrix (ECM) components including collagen
and fibronectin to fill up the tissue defect. For the gastrointes-
tinal tract, collagen can also be produced by smooth muscle
cells [61]. Collagen subtypes in the gastrointestinal tract are
collagens I, III, and V, compared to solely collagen I and III
in the skin [62]. By efficient contractile forces frommyofibro-
blasts, fractured wound tissue can be bound together and
rebuild their integrity [63]. Meanwhile, profibrotic macro-
phages and activated fibroblasts release proangiogenic factors
like VEGF, which elicit endothelial progenitor cells crawling
towards wound tissue, to promote new vessel formation
(angiogenesis). Invasion of the capillary increases the blood
supply to local tissues and facilitates anastomotic healing.
Furthermore, studies of the healing colonic mucosa of rabbits
after experimental excision showed that an abundance of
mesenchymal cells in the healing intestinal muscle layers
accompanies capillary invasion; these cells can differentiate
into smooth muscle cells and histiocytes, which are thought
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Figure 1: Polarization of macrophages in normal healing of anastomosis. Inactivated macrophages can be stimulated by various stimuli (e.g.,
PAMP, DAMP/IL-4, and IL-13/apoptotic cell) and polarize into M1- orM2- (M2a, M2c) type macrophages during different phases of normal
anastomotic healing. Differentiated macrophages express a variety of cytokines (e.g., IL-1β, IL-6, IL-10, and TNF-α), growth factors (e.g.,
VEGF), and enzymes (MMPs). These biochemical substances acting upon tissues contribute to tissue repair and remodeling. PAMP:
pathogen-associated modifying patterns; DAMP: damage-associated modifying patterns; IL: interleukin; TNF-α: tumor necrosis factor-α;
VEGF: vascular endothelial growth factor; MMPs: matrix metalloproteinases.
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to be responsible for the reestablishment of smooth muscle
tissue [64, 65]. Profibrotic macrophages, myofibroblasts,
and neovessels all together constitute granulation tissue,
the most important fundamental compartment in the nor-
mal course of wound healing [40, 41]. These profibrotic
macrophages are functionally classified as M2a-like macro-
phages because they can be induced in vitro by IL-4 and
IL-13 [23, 30]. However, it is not clear whether anti-
inflammatory and profibrotic macrophages can be clearly
distinguished in vivo, and it appears that macrophage
plasticity creates a mixture or continuous variant shifts
during wound healing [50].

1.2.3. Remodeling. Remodeling of anastomosis is a dynamic
process of maturation within healed tissue that is based on
a balance between ECMdeposition and breakdown and tissue
remodeling [66, 67]. A part of tissue-resident macrophages
termed as fibrolytic macrophages is critical for maintaining
this dynamic balance. They produce matrix metalloprotein-
ases like matrix metalloproteinase-2 (MMP2), matrix
metalloproteinase-9 (MMP9), matrix metalloproteinase-12
(MMP12), and matrix metalloproteinase-19 (MMP19)
[42, 68], to degrade matrix macromolecules, that is, colla-
gen, one of the most important components of ECM. The
submucosa is a strength layer of the gastrointestinal tract
and made predominantly of collagen, and remodeling of
this layer predominates the strength of the anastomosis.
Depending on MMPs secreted by fibrolytic macrophages,
initially deposited collagen fibers are rearranged and
cross-linked, remodeled from type III collagen to type I
collagen; the latter one is much stronger. Besides, fibrolytic
macrophages also regulate the degradation by synthesizing
the tissue inhibitor of metalloproteinases (TIMPs), which
can inhibit the activities of MMPs. Furthermore, fibrolytic
macrophages are responsible for the induction of fibroblast
apoptosis, subsequent removal of apoptotic cells, and sup-
pression of further inflammation via IL-10 release [60].
Fibrolytic macrophages are proposed to be classified as
M2c-like macrophages which can be elicited in vitro by
apoptotic cells and IL-10 [69, 70].

Thus, macrophages participate in whole physiological
courses of anastomotic healing. Among the three main
phases of tissue repair, macrophages express different pheno-
types during different stages. There are at least four kinds of
macrophages in a condition of normal tissue repair: (1) pro-
inflammatory macrophages, (2) anti-inflammatory macro-
phages, (3) profibrotic macrophages, and (4) fibrolytic
macrophages. If we sort out those four kinds of macrophages
according to “M1-M2” paradigm, proinflammatory and
profibrotic macrophages may, respectively, correspond to
M1-type and M2a-type macrophages. Meanwhile, both
anti-inflammatory and fibrolytic macrophages probably
belong to M2c-type macrophages [42, 59].

1.3. Roles of Macrophages in Anastomotic Leakage.As we pre-
viously discussed in our review, occurrence of AL mainly
contains three factors: communication, infection, and
healing disturbances. Communication means defect of the
alimentary tract in the anastomotic region that connects the

gastrointestinal lumina and abdominal cavity. Infection indi-
cates anastomotic site bacterial infection. Healing distur-
bances include all substances that disturb a normal healing
process such as hypoxia or inflammation. These three factors
actively interact with each other: one factor takes place, and a
responsive chain that consists of all factors will be initiated,
eventually leading to AL. For example, infection provokes
inflammatory response at the anastomotic site, which
impairs collagen deposition [71, 72], then interferes with
the normal healing process, and leads to a communication
between the intra- and extraluminal gastrointestinal walls.
On the contrary, communication allows the bowel content
(including bacteria) to dislocate into the abdominal cavity,
causes intra-abdominal infection, and afterwards delays
anastomosis healing. Clinically, communication in some
extent is regarded as a macroscopic clinical outcome, while
infection and healing disturbances are durative biological
processes. For AL, macrophages are mainly involved in the
latter two mechanisms, which is also observed in other
poorly healed wounds [73–77].

Anastomotic infection may be caused by anastomotic
dehiscence (intestinal contents leak to the sterile abdominal
cavity) or pre-/intraoperative contamination. Regardless of
the cause of infection, in the contaminative infective environ-
ment, macrophages polarize into the M1 type as mentioned
above. However, instead of supporting resistance to intracel-
lular bacteria and controlling the acute phase of infection, an
excessive or prolonged M1 program is deleterious for
patients, as demonstrated in acute infections with Escherichia
coli [78]. E. coli as a resident flora of the gut can induce a
typical M1 profile through the recognition of lipopolysaccha-
rides (LPS) by TLR4 [79, 80]. Classical activated M1-type
macrophages upregulate the expression of inducible nitric
oxide synthase (iNOS), which is responsible for the genera-
tion of nitric oxide (NO). NO was first identified to mediate
arterial vasodilatation [81–83] and then was found to have
a role in host defense against pathogens [84, 85]. Moreover,
a prominent role has been described for NO in collagen
deposition, fibrosis, and scar formation [71, 72, 86, 87].
High levels of wound NO, as in infection or inflammation,
severely impair wound collagen synthesis [88]. Decreased
deposition of collagen seriously weakens the anastomotic
strength, which may lead to the failure of anastomotic heal-
ing. Therefore, improper M1 polarization of macrophages
in bacterial infection of the abdominal cavity contributes
to the occurrence of AL.

The role of macrophages in leakage with healing dis-
turbances is more complicated. During a normal condi-
tion, tissue repair initiates from clearance of tissue debris
and dead cells, efficiently phagocytosing those “tissue rub-
bish” by macrophages, and is critical for timely resolution
of inflammation and successful healing. Nevertheless, for
those patients complicated with diabetes mellitus, advancing
in years, or undergone chemotherapy, the ability of macro-
phages to phagocytose is severely influenced, which directly
leads to an accumulation of apoptotic or necrotic cells at
the anastomosis site. This accumulation of dead cells pro-
longs the inflammatory phase, disturbs the healing process,
and compromises the resolution of inflammation [73, 74].
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Other disturbances such as ischemia or anastomotic hypoxia
severely compromise the anastomotic healing [89, 90]. At a
cellular level, exposing macrophages to an anoxic environ-
ment leads to the expression of proinflammatory cytokines
like IL-1β and TNF-α and cytotoxic mediators like NO
[91–93], which indicates that hypoxia can promote macro-
phages to polarize into the M1 phenotype. Excessively acti-
vated M1 macrophages sustain proinflammatory response
and obstruct subsequent steps of the repair process that
influences proper healing and remodeling of anastomosis
[94–96], and the relevant mechanism is described above.

Based on the available evidence, it seems that classical
activated macrophages which express the M1 phenotype are
responsible for the pathological process of defective anasto-
motic healing, whereas alternative activated macrophages
which express theM2 phenotype play a critical role in inflam-
mation resolution and successful tissue repair (Figure 2).
Although M1-type macrophages participate in the early
phase of normal wound healing, the programmed transfor-
mation of their polarized orientation from M1 to M2 lays
the foundation of transient inflammatory response and the
following tissue regeneration.

2. Conclusion

Macrophages are the most versatile immune cells and possess
significant plasticity and heterogeneity. Macrophages can
polarize into two main extremes and express corresponding
phenotypes (M1 and M2). As polarization is the premise
for macrophages to exert their diverse biological functions,
different polarized macrophages play different roles in the
physiological process of anastomotic healing and patho-
genesis of AL. Reacquainting AL in the perspective of macro-
phages contributes to the exploration of new diagnostic tools
and therapeutic targets. For example, in different recovery
phases after anastomosis construction, the spectrum of cyto-
kines and inflammatory mediators such as IL-1β, IL-6, IL-10,
IL-12, TNF-α, ROS, and NO, which are secreted by

macrophages, may appear an alteration. Moreover, the
level of these substances could indirectly reflect the situa-
tion of an anastomosis. An abnormal fluctuation of these
substances probably indicates disorder and defection of
anastomosis healing, which can be regarded as premonition
of AL. Because M1-type macrophages show a stimulating
effect on AL and M2 macrophages are essential for anasto-
mosis healing, regulation of M1/M2 polarization may find
its therapeutic roles in the treatment of AL in the future.
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A variety of receptors perform the function of attenuating or inhibiting activation of cells in which they are expressed. Examples of
these kinds of receptors include TIM-3 and PD-1, among others that have been widely studied in cells of lymphoid origin and,
though to a lesser degree, in other cell lines. Today, several studies describe the function of these molecules as part of the diverse
mechanisms of immune tolerance that exist in the immune system. This review analyzes the function of some of these proteins
in monocytes and macrophages and as well as their participation as inhibitory molecules or elements of immunological
tolerance that also act in innate defense mechanisms. We chose the receptors TIM-3, PD-1, CD32b, and CD200R because these
molecules have distinct functional characteristics that provide examples of the different regulating mechanisms in monocytes
and macrophages.

1. Introduction

1.1. Macrophages. Macrophages are phagocytic cells, which
are localized through the whole human body. Monocytes give
rise to these terminally differentiated cells. Monocytes and
macrophages belong to the functional immune system
known as mononuclear phagocyte system which includes
dendritic cells, circulating monocytes, and their progenitors
in bone marrow.

Macrophages have several functions to maintain immune
homeostasis such as host protection, tissue repair, phagocyto-
sis, clearance, and secretion of diverse factors, which contrib-
ute to innate and adaptive defenses against infection and
counteract inflammatory processes, while distinct secreted
signals restore tissue homeostasis and promote subsequent
repair [1, 2]. To perform protective functions and repair
damaged tissue, monocytes and macrophages express a wide
range of surface, vacuolar and cytosolic receptors for recogni-
tion, and uptake of host-derived (damage signals) and foreign
particles; many of these receptors facilitate phagocytosis,
endocytosis, sense viral, bacterial, and parasitic molecules [3].

During organogenesis, macrophages expressed by the
embryonic yolk sac and fetal liver remain as a resident cell,
self-maintaining population, which turn over locally under
steady-state conditions and perform a variety of clearance
and organ-specific trophic functions [4]. After birth, bone
marrow-derived blood monocytes replenish resident macro-
phage populations with high turnover rate, such occurs in the
gut; larger numbers are recruited following injury, infection,
and sterile inflammation and give rise to infiltrating and
activated tissue macrophages [5].

Depending on the anatomical localization and its organ
requirements, macrophages consist of variably mixed popu-
lations of resident macrophages and blood-derived mono-
cytes. As a result of their complex origin, distribution, and
physiologic responses to endogenous and exogenous stimuli,
these cells will express a marked phenotypic heterogeneity
(reviewed by Gordon and Plüddemann) [6].

Macrophages and monocytes are characterized by a mul-
tifunctional heterogeneity. For example, macrophages can be
polarized in two main subtypes, “classical” and “alternative”
activated macrophages. Classical macrophages depend on
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the presence of proinflammatory cytokines such as INF-γ
and TNF-α secreted by activated TH1 CD4+ lymphocytes
and NK cells and secreted bacterial components such as
LPS. Classical macrophages are also known as M1 which
has enhanced antimicrobial, inflammatory, and antigen-
presenting properties [7]. Alternative macrophages are gen-
erated in presence of IL-4 and IL-13 cytokines secreted by
activated TH2 CD4+ lymphocytes. These macrophages play
an important role limiting inflammatory responses, perform
antiparasitic functions, and favor wound healing [8]. More-
over, alternative macrophages now can be classified in a
new proposed scheme M2 like M2a, M2b, and M2c subtypes
with specific functions and markers (reviewed by Martinez
and Gordon) [8].

Activation through the surface, vacuolar, and cytosolic
receptors results in signals to control or regulate functions
in their neighbors and distant target cells. Their phagocytic
capacity is variable and may even be undetectable but pro-
vides a well-developed machinery to internalize, degrade,
and store cargo such as poorly degraded foreign particles [9].

Also, macrophages expressing regulatory surface mole-
cules can attenuate or inhibit cell activation, which could be
considered a tolerance or compensation mechanism as a
result of an exacerbated immune response, so they have to
preserve tissue homeostasis to avoid an inflammatory
process which can compromise the homeostasis.

1.2. Inhibitory Receptors. Cells of the immune system are acti-
vated by endogenous or exogenous antigenic stimuli. Endog-
enous stimuli are often causal agents of autoimmune diseases
but can also come from transformed cells (cancer cells).
Exogenous stimuli include a broad range of environmental
compounds, as well as other molecules that may come from
pathogens like bacteria, fungi, parasites, and viruses that have
entered into the organism where they can, potentially, estab-
lish infections [10]. These stimuli activate diverse cellular
mechanisms whose purpose is to prevent or eliminate infec-
tions that are frequently accompanied by inflammatory
processes. It is now well-accepted that the activation of
the immune system is a process highly regulated through
the expression and functioning of inhibitory receptors that
work to prevent an exacerbated inflammatory response
that can cause tissue damage or even autoimmune
diseases.

Surface receptors are proteins that extend through the
cell membrane. Their function is to transduce signals into
the cell in response to some external stimuli. Receptors have
intracellular domains that associate with cytoplasmic pro-
teins such as adaptors, chaperone proteins, or enzymes which
are required to perform adequately signaling. These receptors
contain diverse conserved domains such as ITAM, ITIM, and
ITSM. ITAM is perhaps the one that has been described in
greatest detail. ITAM domains are found in several receptors,
including T cell receptors (TCR), B cell receptors (BCR), and
Fc region receptors (FcR). Studies of the structure of ITAM
domains have identified a conserved sequence characterized
by the presence of two tyrosine residues (Y), each one
followed by two variable residues and one residue of leucine
in the Y+3 position, which is considered as a conserved

domain that can trigger activation signals through conforma-
tional changes and phosphorylation of tyrosine residues, as
well as the direct or indirect association with enzymatic
elements present in the cytoplasm [11, 12]. Receptors with
ITAM domains are associated with cell activation in response
to stimuli or the ligands of those receptors. However, another
group of receptors exists with the function of moderating cell
activation. These are the inhibitory receptors.

The concept of the inhibitory receptor was introduced
early in the 1990s [13, 14]. These receptors have been defined
as molecules that negatively regulate the immune response to
pathogenic microorganisms [15] and contain ITIM domains
in the intracellular tail that, when phosphorylated, recruit
enzyme phosphatases such as SHP1 and SHP2, which inter-
fere with the activation pathways promoted by other activa-
tor receptors [16]. ITIM domains are similar to ITAM
domains in that both have a specific arrangement of
tyrosine/leucine [17]. This tyrosine/leucine arrangement in
inhibitory receptors is located inside of a sequence of 13
amino acid residues that usually have a hydrophobic residue
at position −2 [18].

Recent publications have demonstrated that inhibitory
receptors may, or may not, have ITIM domains in the
cytoplasmic tail [19]. Other mechanisms have also been
described that allow these receptors to regulate activation of
cells in the immune system. They include recognition and
binding to ligands that perform the function of costimulatory
molecules. In this way, inhibitory receptors block the cell
from receiving the signals necessary for cell activation in
response to specific antigens. In addition to recruiting
enzyme phosphatases and competing for ligands, they can
also be considered as a mechanism that regulates the status
of cell activation/inhibition [20]. In general, inhibitory recep-
tors can interfere in diverse stages of cell activation mediated
by antigenic stimuli, inhibit the expression of genes involved
in cell activation, and possibly induce the expression of other
genes that inhibit the function characteristic of cell activation
to produce deleterious changes at the level of cell metabolism,
proliferation, and survival [21].

Therefore, we can define inhibitory receptors as mole-
cules of the cell surface that interfere in various ways with
intracellular signaling pathways to negatively regulate cell
activation and cell function in response to tumors, infections,
allografts, and even allergens and many other antigens.
Numerous studies have described these receptors based on
the diverse mechanisms of tolerance and anergy present in
T lymphocytes and NK cells [22–26].

2. Receptors That Inhibit Macrophage-
Monocyte Functions

2.1. PD-1 Belongs to the Superfamily of Immunoglobulins, and
Its Function Is Associated with Cell Death and Regulating the
Activation of Distinct Cell Types. PD-1 (CD-279) is an
inhibitory protein made up of 288 amino acids from the
superfamily of the immunoglobulins. Initial studies were
associated with assays on cell death in the 1990s [27]. Since
then, we have learned that PD-1 is a protein whose expres-
sion is induced during the apoptosis process or after
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administration of apoptotic stimuli. Once synthetized, it is
found in the cell membrane. The structure of PD-1 contains
ITIM domains and an immunoreceptor tyrosine-based
switch motif (ITSM) (Figure 1) [27]. Because PD-1 is a
homologous protein to CD28, two ligands belonging to the
B7 family were quickly identified: PD-L1 and PD-L2 [28,
29]. The function of PD-1 has been studied widely in T lym-
phocytes and other lymphoid cells, and it is now well doc-
umented that expression of this protein is associated with
a dysfunctional state characterized by anergy in the pres-
ence of antigenic stimuli, a low rate of proliferation, and
reduced cytokine production by PD-1+ cells. This pheno-
type, in which T lymphocytes express PD-1, is known as
the phenotype of “exhausted” lymphocytes, and it has been
identified in patients with chronic viral infections and onco-
logical diseases [30, 31]. Blocking with monoclonal antibod-
ies aimed at PD-1 or its ligands, PD-L1, and PD-L2 has been
proposed as a therapeutic strategy that could revert the
exhausted state of the lymphocytes [32–34].

2.1.1. PD-1 Regulates Cell Activation and the Production of
Soluble Inflammatory Mediators. One of the mechanisms
regulated by PD-1 in macrophages is IL-12 production,
as was demonstrated in a group of patients with chronic
HCV infection. That study showed that PD-1 expression
increased in monocytes in peripheral blood and that this
increase was inversely proportional to the production of
IL-12 by those cells when compared to healthy subjects
or those whose infections had been completely cured
[35]. In vitro assays revealed that this reduction in IL-12
production is not secondary to the loss of recognition of
the virus by the macrophages but, rather, to alterations
in the intracellular signaling pathways that include a
decrease in the phosphorylation of the JAK/STAT pathway
[35]. Treatment with IFN-α and ribavirin reduced PD-1
expression, reversed the changes in STAT-1 phosphoryla-
tion, and increased production of IL-12 by macrophages
in patients infected with HCV [35]. Research using
ex vivo experimental models has demonstrated that block-
ing PD-1/PD-L1 with monoclonal antibodies in samples
from patients infected with HCV restores IL-12 produc-
tion in response to LPS [35, 36]. This mechanism is
shared by TIM-3, another inhibitory receptor, since this
molecule also negatively regulates TLR-mediated cell
activation and IL-12 production [37]. Although these mol-
ecules do not belong to the same family, several studies
have documented that blocking them is an efficient treat-
ment that makes it possible to restore the activation of
cells that are incapable of responding to antigenic stimuli.
This was observed first in T lymphocytes [30, 31, 38] and,
later, in other cells, including monocytes and macrophages
[35, 36]. Despite the fact that the PD-1 molecule was dis-
covered in the early 1990s [27], little is known about its
functions in myeloid cells. In another hand, recent studies
in the oncologic field have shown that PD-1 is expressed
by TAMs in mouse models of cancer and primary human
cancer. Gordon et al. demonstrate that PD-1 expression
increases over time and with disease stages in humans
[39]. Furthermore, PD-1 expression negatively correlates

with the phagocytic function to eliminate tumor cells. In
this way, these results support the therapy with anti-PD-
1 or PD-L1 for distinct kind of tumors [40].

While various studies describe that macrophages and
other immune cells express PD-L1 and 2 ligands and,
through these molecules, can induce the death of PD-1+ cells
[41, 42], the function of PD-1+ macrophages must be inves-
tigated deeper in another kind of pathologies such as viral,
bacterial, and autoimmune diseases.

2.2. TIM-3 Regulates Diverse Functions in Macrophages

2.2.1. Introduction to TIM-3 Signaling and Functions in
Macrophages. The TIM-3 protein was initially known as a
membrane-specific marker for Th1 and Tc1 lymphocytes
[43], but its expression was soon identified in other cell lines.
Today, we know that TIM-3 is expressed in monocytes,
macrophages, dendritic cells, NK cells, and even diverse
cells in different tumor types [31, 44–47]. The extracellular
region of TIM-3 consists of a mucin domain and an
immunoglobulin domain to which the known ligands of
TIM-3 bond, that is, galectin-9 (Gal-9) and phosphatidyl-
serine (Ps) [48, 49]. Glycosylated sites are present in both
domains [50] (Figure 1).

Scientific evidence suggests that the interaction of TIM-3
with Gal-9 functions as a negative regulation pathway in cell
activation. The absence of this pathway has been associated
with the development of autoimmune diseases [40–42]. The
way in which signals are transduced into the interior of the
cells is via the phosphorylation of tyrosine residues found
in the intracellular tail of TIM-3. Currently, we know that
there is evidence of the participation of diverse proteins and
enzymes in TIM-3 signaling. A model based on the HEK
293T cell line has shown that TIM-3-mediated signaling
begins when the intracellular portion of TIM-3 is phos-
phorylated by the enzyme interleukin inducible T cell
kinase—ITK—from the TEC family of kinases [51]. Phos-
phorylation by ITK kinase occurs in the tyrosine found at
position 265 (Y265) only in the presence of Gal-9 [51].
Another study, this one using the Jurkat, D10, and 293T
cell lines, demonstrated that the Fyn and Lck kinases,
which belong to the Src family of kinases, can perform
phosphorylation of TIM-3, and further observed that Fyn
does so more efficiently [51]. Finally, Lee et al. demon-
strated that Bat-3 protein (human leukocyte antigen B-
associated transcript 3) is associated with the intracellular
portion of TIM-3 in T lymphocytes and that it also
recruits a kinase belonging to the Src family (Lck). To
date, there are no studies of which kinase participates in
TIM-3 phosphorylation when this protein is expressed in
monocytes and macrophages. Determining which proteins
are involved in the myeloid signaling of TIM-3 could pro-
vide scientific knowledge about its function and how it can
regulate the different processes identified in this section.
Although studies about how TIM-3 function in mono-
cytes and macrophages are scarce, we do know that some
mechanisms can be regulated by TIM-3 in these cells in
various pathologies, including infectious, autoimmune, and
oncological diseases.
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Besides being a regulator of activation in macrophages,
TIM-3 participates in a process through which damaged cells
and apoptotic bodies are removed and eliminated from plur-
icellular organisms. This mechanism is called efferocytosis
[52], a term that refers to the mechanism that works to
remove and eliminate cells that have culminated their life
cycle or have been damaged by some other biological or
physical processes. Somemembers of the TIM family, includ-
ing TIM-1, TIM-3, and TIM-4, possess a binding site to
phosphatidylserine in the Ig domain, a phospholipid that
translocates to the external face of the plasmatic membrane
of apoptotic cells and constitutes the principal eat me signal,
which leads to the capture and elimination of those cells [53].
Crystallography studies have allowed us to determine that
TIM-3 binds to phosphatidylserine (PS) through the IgV
domain [54, 55]. Since PS is the principle signal for the
phagocytosis of apoptotic bodies or cells, blocking recogni-
tion of this phospholipid with TIM-3 can induce immuno-
logical abnormalities, such as generating autoantibodies,
since the detritus of apoptotic cells is not eliminated
efficiently [55, 56].

2.2.2. TIM-3 Regulates Cell Activation Via TLR. Research has
demonstrated that in addition to regulating Ps-dependent
mechanisms, TIM-3 can also regulate macrophage activation
and, later, cytokine production when it interacts with Gal-9.
Gal-9 is a lectin that recognizes carbohydrates contained in
the IgV domain of TIM-3. Based on this interaction, studies
have identified that TIM-3 negatively regulates activation of
diverse cell types through a mechanism that has been widely
studied in T cells [30, 31, 57, 58]. In macrophages, however,
little progress has been made in analyzing the process of inhi-
biting TIM-3-mediated activation. For example, we know
that the association of TIM-3 with Gal-9 expressed in other

cells (trans), or the macrophage itself (cis), has a distinct
effect as a regulator of TLR-mediated activation. The trans-
association of TIM-3 and Gal-9 negatively regulates TLR-
mediated signaling reducing IL-12 production, increasing
IL-23 production, and reducing phosphorylation of STAT-
1, while also augmenting activation of STAT-3. Meanwhile,
the association in Cis fosters corrects TLR signaling, and
there is also evidence that the expression of Gal-9 increases
through this mechanism [48]. This signaling pathway, which
impacts the intracellular proteins STAT-1 and STAT-3, also
causes alterations in cytokine production, especially IL-12,
since it is solidly documented that IL-12 production is
induced only after phosphorylation and translocation to the
nucleus of the STAT1 factor. While other nuclear factors
such as NF-κB and AP-1 exist and are activated through
TLR4, phosphorylation of STAT1 has also been shown to
occur, such that the interaction of this nuclear factor with
TRAF6 could be involved [59, 60] (Figure 2). Additionally,
research has identified that upon silencing TIM-3 expression
with siRNA, IL-12 and IL-10 production increases in macro-
phages derived from the THP-1 line [37, 61].

Together, these data indicate that the expression and
function of the TIM-3 receptor negatively regulate IL-12
production and, though to a lesser degree, other cytokines
such as IL-10 and IL-6. They further suggest the dynamic
character of inhibitory mechanisms and the fine balance
between activation and inhibition signals. Therefore, regu-
lation of activation is not restricted to lymphocytes and
mechanisms of adaptive immunity in general but is also
exerted on innate cells and must be the cause of several
pathological disorders that would not have been contem-
plated in past years.

Although we have not identified all the elements that
participate in TLR4-dependent activation, the interaction
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Figure 1: Schematic representation of the structures of inhibitory receptors. All receptors belong to the superfamily of immunoglobulins.
They have a single transmembrane portion and an intracellular tail, through which they associate with proteins or effector enzymes. The
immunoglobulin domains are represented as blue ovals for receptors and red ovals for ligands.
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of TIM-3 with kinases of the Src family must be consid-
ered. While several common adapters for different TLR
participate in TLR4 activation—such as TRAM, TRIF,
and MyD88/MAL—no direct interaction has been found
between these elements and any member of the Src family,
though interaction between the Src kinase and CD14 has
been suggested [62], the latter being an accessory molecule
in TLR4 functioning. Also, it has been shown that recogni-
tion of LPS by TLR4 is followed by induction of the acti-
vation of other members of this family of kinases,
including SFK, c-Src, Yes, and Fyn [63]. The fact that
the Src family can regulate TLR4-dependent activation as
well as TIM-3-mediated inhibition makes analysis more
complex and impedes identifying clear signaling pathways
for these two processes.

In summary, TIM-3 can simultaneously foster and regu-
late several important functions in macrophages, including
the internalization of apoptotic bodies and activation in
response to stimuli captured by TLRs and mechanisms after
activation. However, despite the accumulated scientific

evidence on the structure and function of TIM-3, it is still
not clear how it is that one protein with such distinct func-
tions can act, or exert its effects, on one single cell. In addition
to these questions, it seems that the phenomenon of activa-
tion/inhibition is being described more often each year.
While some reports have documented or proposed possible
mechanisms through which TIM-3 fosters the activation of
macrophages and lymphocytes, the majority of studies sup-
port this protein’s role as a negative regulator. This discrep-
ancy may arise from our incomplete understanding of this
protein’s function and signaling pathway. Given that TIM-3
does not have a conventional ITIM domain, its function does
not depend on an association with phosphatases. Hence, the
mechanism through which TIM-3 negatively regulates acti-
vation pathways in macrophages and T cells must corre-
spond, or perhaps be similar, to that of other inhibitor
receptors, like CD200R, which do not require an association
with phosphatases to inhibit cell activation. Discovering the
precise mechanism that allows TIM-3 to regulate cell activa-
tion will propitiate a much better understanding of
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Figure 2: Inhibition mechanism of IL-12 production through interaction of TIM-3 and Gal-9. Graphic representation of the TLR4-signaling
pathway (black arrows) when activated by LPS (to simplify, not all proteins involved are shown), which induces phosphorylation of diverse
nuclear factors, such as NF-κB (p50-p65), AP-1, and STAT1. These nuclear factors induce production of proinflammatory molecules like IL-
12. When TIM-3 interacts with Gal-9, phosphorylation of the intracellular portion of TIM-3 is induced and activates the regulatory pathway
mediated by this protein. While we do not yet know the precise inhibition mechanism in macrophages, studies have identified a decrease in
STAT1 phosphorylation and an increase in STAT3 phosphorylation (red arrows). The result of this change is reduced IL-12 production and
increased IL-23 production.
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autoimmune pathologies in whose development the loss of
tolerance to autoantigens plays a crucial role. To different
degrees, understanding the fine balance between activation
and inhibition signals will allow us to develop new therapeu-
tic strategies in diverse areas of immunology.

2.3. Fc-Gamma Receptor (CD32b), a Negative Regulator of
Macrophage Activation. The family of immunoglobulins
includes a heterogeneous group of receptors that can bind
to crystallizable regions of immunoglobulins (FcR). The
IgG receptors (IgGR) are the ones most widely expressed
and may be present in the membrane of most immune cells.
According to the functions they perform and the structural
motifs they present, these receptors can be classified as
activators—FcγRI, FcγRIIa, and FcγRIII—or inhibitors:
FcγRIIb. FcR activators can trigger diverse events in cells that
gain expression as increased intracellular Ca2+. For these
events to occur, the FcγRI, FcγRIIa, and FcγRIII receptors
must be associated with accessory chains that possess an
ITAM motif and are found in the intracellular tail of recep-
tors, as well as in accessory chains, such as the common
gamma chain. Research demonstrates that, like other recep-
tors that have no extensive intracellular tail, FcγRI and
FcγRIII receptors lose sequences that allow them to associate
with proteins or enzymes of the cytosol and so become
incapable of mediating signaling on their own once they
bond to their ligand. Studies have also shown that the recep-
tors for the Fc region with no extensive intracellular tail can
associate with the common gamma chain [64] and, in this
way, acquire the capacity to send signals to the interior of
the cell. The FcγRIIa and FcγRIIb receptors, in contrast, have
an intracellular tail with domains that allow them to initiate
signaling directly once binding to their ligand occurs, with
no need to form an association with accessory molecules.
The intracellular tails of these two receptors show substantial
changes, and alternative splicing generates more changes in
the terminal amino and carboxyl regions of FcγRIIb [65].
The main differences between the intracellular portions of
these molecules are their respective tyrosine-based activation
and inhibition motifs.

In the case of the FcγRIIb inhibitory receptor, the motif is
an off the ITIM type [66] (Figure 1). Although initially the
capacity of the FcγRIIb receptor to modulate activation in a
model of B cells was identified [17], we now know that this
receptor represents a regulation point for activation that is
found in many immune system cells. The mechanism by
which the FcγRIIb receptor performs these functions
involves enzymes that eliminate phosphate groups from
ITAM domains [67]. The phosphatases usually present in
the cytoplasm are SHP (Src homology 2-containing tyrosine
phosphatase) and SHIP (Src homology 2-containing inositol
phosphatase), which are recruited and associated with the
ITIM domain in the FcγRIIb receptor through the Sh2
domain (Src homology 2) found in these phosphatases [18]
(Figure 3). While the FCγRIIb receptor can bond to the
enzymes SHP and SHIP, the function of the association
with SHIP has been studied more widely in macrophages.
The phosphatase SHIP can inhibit signals of cell activation
by dephosphorylating phosphatidylinositol triphosphate

(PIP3) [68]. In this way, it prevents PIP3-mediated signal-
ing events, such as the translocation of kinases of the Tec
family, like Akt and Btk, which are required to activate
phospholipase C (PLC) [69, 70].

2.4. CD200R, a Receptor That Inhibits Activation of
Macrophages and Propitiates the Survival of
Intracellular Pathogens

2.4.1. Structure and Activation Mechanism. CD200R is a
glycoprotein belonging to the superfamily of the immuno-
globulins that are expressed on the surface of myeloid cells,
principally in the subpopulation of regulator macrophages
with the M2a phenotypical profile, which can be used as a
specific marker [71, 72]. The extracellular portion of
CD200R consists of two domains of immunoglobulin type
(IgV and IgC2) [73]. This receptor contains a single trans-
membrane portion, which means that it can only cross the
cell membrane through this region [73] (Figure 1). Unlike
other inhibitory receptors, CD200R does not contain an
ITIM domain in its intracytoplasmic tail; instead, studies
have identified three tyrosine residues that are important
for the function of CD200R (Y291, Y294, and Y302 in
humans and Y286, Y289, and Y297 in mice). It has been
shown that the interaction of CD200R with its ligand,
CD200, in macrophages induces phosphorylation of tyrosine
residues present in the intracellular portion of CD200R, a
phosphorylation mediated by kinases of the Src family. The
phosphorylation of these residues results in inducing recruit-
ment of the adaptor protein Dok2 through its binding
domain to the phosphorylated tyrosine (PTB), which then
initiates the cascade of inhibitory signaling [74]. Once
Dok2 has bound to the intracellular portion of CD200R, it
can recruit other proteins, such as the activator protein of
Ras-GTPase (RasGAP) [74]. In human macrophages, studies
have shown that the recruitment and ensuing activation of
RasGAP are essential for inhibiting the signaling pathway
of the Ras-ERK and PI3K kinases [74] which, in turn, are
essential for diverse, vital processes, including cell growth,
differentiation, proliferation, and metabolism by activation
of other transcriptional factor such as STAT-1 which also
is involved in macrophage activation by IFN-γ [75]. This
mechanism that regulates or inhibits activation in myeloid
cells is clearly distinct from that of the receptors that con-
tain ITIM motifs, which recruit phosphatases and are the
principle effectors of the inhibition mediated by this type
of receptor [76] (Figure 4).

Several studies have demonstrated that the interaction of
CD200 with CD200R negatively regulates the activation of
myeloid cells. This regulation may be caused by posttransla-
tional modifications, such as tyrosine phosphorylation in the
CD200R cytoplasmic tail, as well as increased expression of
the receptor itself and its ligand CD200 in endothelial,
epithelial and lymphoid cells, fibroblasts, and astrocytes
[77, 78]. Also, it has been demonstrated that the expression
of CD200 is induced by several nuclear factors such as
NF-κB(p65), STAT1a, and IRF-1 when they bind to their
corresponding cis-elements which are found in the
CD200 promoter region. Furthermore, one of these factors
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is c-Rel, the NF-κB transcription factor, which is required
for TLR-induced upregulation of CD200, probably induced
by pathogens [77, 79]. Recently, it was determined that
CD200R1 expression is regulated by C/EBPb and that
overexpression of this transcription factor due to stimula-
tion of microglia cells by LPS significantly reduces the
expression of this receptor at the protein and mRNA level,
but in the case of C/EBPb KO cells, this decrease was not seen
[80]. The authors of that study suggested that the mechanism
which inhibited CD200R expression was histone deacetyla-
tion since C/EBPb interacts with the histone deacetylase
HDAC1 which, in turn, can bind directly to the CD200R pro-
moter to inhibit transcription of the gene [80].

It has been reported that CD200R modulates the activa-
tion of cells in the microglia under conditions of acute,
chronic inflammation by interacting with its ligand CD200
[81]. At the same time, CD200R expression is modulated
by IL-4 [81]. An in vivo study with mice demonstrated that
upon decreasing CD200R expression, activation of the cells
in the microglia increases. CD200R expression decreased in

IL-4KO mice, while stimulation with this cytokine increased
expression of the receptor. These results are manifested in the
macrophages of WT and IL-4 KO mice stimulated with LPS,
as the latter showed higher production of the proinflamma-
tory cytokines IL-1, IL-6, and TNF-α, and of the expression
of CD40, while CD200R expression was null [82].

2.4.2. CD200 and Its Participation in Pathogenic Infections

(1) Parasites. In infections caused by intracellular parasites,
cells increase their expression of CD200R and its ligand,
but this has deleterious effects on the inflammatory
response. For example, in wild-type mice infected with
Toxoplasma gondii, research has documented the
overexpression of CD200R in cells in the microglia and of
CD200 in endothelial cells. This increase in CD200R
expression has been associated with reduced cell activation
and the production of molecules that are important in the
immune response, such as TNF-α, iNOS, and MHC-II [83].
In contrast, in CD200 KO mice, it has been documented
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that the cells of the microglia increase their proliferation and
activation rates, as well as the expression of MHC-II, TNF-α,
and iNOS during chronic Toxoplasma gondii infection [78].
There is also evidence of a reduction in the parasitic load
and mortality compared to WT mice that might be
explained by the fact that the CD200 KO mice exhibit an
increased inflammatory phenotype in response to ligands of
TLRs, as shown by the increase in the production of TNF-α
and IL-6, and the activation of the NF-κB pathway [78].

A mouse model of parasitic infection of bone marrow
macrophages with Leishmania amazonensis (L. amazonen-
sis) has also made it possible to evaluate the role of CD200/
CD200R. It has been identified that infections by this parasite
induce increased expression of CD200 at the protein and
mRNA level compared to uninfected macrophages [84]. It
is not clear yet, but this increase in CD200 expression favors
survival of the pathogen, perhaps because CD200 affects
normal Th1 lymphocyte development which is essential for
immune response against Leishmania; in fact, IFN-γ-

activated macrophages produce NO to kill intracellular
Leishmania major, but if CD200 is increased, it can avoid this
immune response which can lead to the development of
systemic Leishmaniasis [84]. Infected macrophages treated
with iNOS inhibitors also foster replication of the pathogen
and increase CD200 expression, suggesting, at least concern-
ing L. amazonensis infections, that the infected macrophages
can inhibit activation of neighboring macrophages by
expressing both CD200 and CD200R.

In addition to the aforementioned mechanisms in which
CD200/CD200R can regulate cell activation and the response
to intracellular pathogens, another mechanism has been
described through which infected macrophages can regulate
the activation of other cells without any direct interaction.
This is the release of exosomes and small vesicles (30–
150 nm) that contain membrane proteins and provide signals
to naive macrophages. This type of regulation was described
recently; [85] hence, it is likely that the exosomes contain the
CD200 protein and that, once secreted, the CD200 on their
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surface could bond to its receptor in neighboring macro-
phages with no need for cell-cell interaction.

(2) Bacteria. Aside from parasites, another pathogen that
induces CD200 expression in macrophages in bone marrow
is Neisseria meningitidis, through recognition of LPS by
TLR4. A study in 2010 demonstrated that CD200 :CD200R
interaction in WT mice negatively regulates the immune
response against N. meningitidis. It has been documented that
CD200 and CD200R expression is modified differentially
when administered to macrophages of mice TLR agonists
and for the inflammasome activators NOD2 andNALP3. That
work showed that induction of CD200 expression is depen-
dent on the c-Rel transcription factor and is negatively regu-
lated when there is activation of the pathways activated
through TLR and NOD2 [86]. This response turned out to
be dependent on MyD88, but independent of the scavenger
receptor A (SRA), which is considered one of the principle
receptors that permits the interaction of macrophages with
Neisseria meningitidis [87]. Additionally, agonists of pattern-
recognizing receptors, such as NALP3, also induced CD200
expression, with c-Rel a member of transcription factor NF-
κB—being essential in this signaling pathway. In contrast, an
increase in the mortality of CD200 KO mice was observed in
response to experimental meningococcal septicemia, due to
high levels of proinflammatory cytokines and activated leuco-
cytes [86]. Infection by Chlamydia trachomatis also increased
CD200R expression in macrophages of the endometrium
and CD200 expression in epithelial cells from the genital tract
by regulating inflammation and suppressing collateral damage
in the tissue during chronic infection, thus enabling persis-
tence [88]. These mechanisms are consistent with the absence
of changes in the vaginal epithelium, which complicates clini-
cal studies of infected patients. It has also been reported that
infection with Chlamydia increases the percentage of macro-
phages in the endometrium that coexpress CD200R and
CD206 (mannose receptor), both of which are markers of
alternately activated macrophages (M2) [88].

(3) Virus. Models of virus infections have also documented
the importance of the CD200/CD200R pathway and its role
as a regulator of the immune response. For example, it has
been shown that CD200 KO mice infected with the influenza
A virus manifest greater weight loss and higher mortality
rates than native mice. These effects may cause the increase
in NO levels in the lung and of the cytokines IL-6, TNF-α,
IFN-γ, and MIP-1α measured in bronchoalveolar lavage
[89]. In contrast, administering the anti-CD200R agonist
(CD200-Fc) partially reverses the phenotype of CD200 KO
mice by reducing weight loss and the number of cells com-
pared to KO mice not treated with this agonist [90]. In this
case, the function of CD200/CD200R interaction is to protect
the host from “the cytokine storm” produced in response to
the infection, which is the principal cause of the deleterious
effects seen in CD200 KO mice.

In a 2011 study, Goulding et al. used an in vivo mouse
model to show that the absence of the CD200R receptor in
macrophages initially infected with the influenza virus and
later with Streptococcus pneumoniae reduced the bacterial

load and prevented mortality in WT mice [91]. That study
suggested that the absence of CD200R is beneficial for the
host because the exacerbated inflammation that occurred in
the WT mice contributed to disease pathogenesis and
increased the viral load [91]. In this sense, the inhibition or
attenuation of cell activation by blocking the CD200R recep-
tor would provide an advantage for treating secondary infec-
tions by counteracting the exacerbated inflammatory
responses that might occur in such infections.

In another approach, Soberman et al. used a mouse
model of encephalitis by the herpes simple virus (HSV-1)
infection to demonstrate that increased morbidity and mor-
tality that had been seen previously were related with the
release of cytokines and chemokines that occurred once virus
was recognized by TLR2. In contrast, in CD200 KO mice,
observations showed a reduced inflammatory response
against HSV-1, since the production of cytokines, such as
IFN-γ, IL-6, and CCL5 (RANTES) decreased by 80% com-
pared to WT mice [92]. However, the WT and CD200R
KO mice did not differ in terms of IL-1β production, and
in both types, the study detected adequate activation of
inflammasome after stimulation with LPS and ATP [92].
This suggests that the pathway mediated by the CD200R
receptor in mouse macrophages does not interfere with the
activation of inflammasome and does not affect the produc-
tion and release of IL-1β. Hence, we can consider that the
CD200R receptor can regulate the activation mediated by
membrane receptors for PAMPs, such as TLR4, but does
not affect receptors of the NOD family. An additional way
in which virus utilize the CD200/CD200R signaling pathway
to counteract the host’s inflammatory response is by incorpo-
rating into its genome proteins that are orthologues of the
CD200 in the target cell. One of the most characteristic genes
that codifies these orthologue proteins is the K14 gene of her-
pes 8 virus (HHV8), better known as the Kaposi sarcoma-
associated herpes virus, which codifies a viral orthologue of
CD200 (vOX2), whose expression on the surface of infected
cells occurs during the lytic phase. Although vOX2 shares
36–40% of the identity of CD200 in humans, it bonds with
similar affinity to its ligand and negatively regulates the
release of TNF-α, G-CSF, and MCP-1 from macrophages
activated with IFN-γ and LPS [93]. In addition to this pro-
tein, there is another viral orthologue of CD200: the R15 pro-
tein of the adenovirus that infects rhesus monkeys (RRV)
and is a gamma herpes virus similar to HHV8. This protein
is expressed on the surface of infected cells and is released
into the supernatant of cell cultures. R15 reduces mRNA
expression and the release of TNF-α from THP-1 macro-
phages activated with PMA, as well as the primary mono-
cytes and macrophages of rhesus monkeys. These levels of
inhibition were similar to those caused by CD200 in humans
[94]. Therefore, these proteins of viral origin provide new
therapeutic targets for which we can design and synthesize
compounds to be directed against viral products of this kind
to eliminate, or counteract, infection or viral propagation.

It is clear that diverse pathogens utilize, for their ben-
efit, the signaling pathway realized by CD200/CD200R
interaction to limit the inflammatory response and so survive
inside the host cell. However, few studies have focused on
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identifying the molecules that are associated with this signal-
ing. Thus, understanding how infectious agents use this
pathway to regulate the host’s defenses may lead to the devel-
opment of new clinical tools and therapeutic strategies.
Depending on the context of the infection or pathology, a
blocking antibody, for example, directed against CD200R to
block its interaction with CD200, could be effective in coun-
teracting infections by pathogens whose survival is favored
by, or associated with, overexpression of CD200R, comple-
mented by conventional antimicrobial treatment. In contrast,
using agonists to activate the CD200/CD200R signaling
pathway, or adjacent cells, may also contribute to inducing
the effector immune response.

3. Conclusions

The nature of the innate mechanisms of the immune
response has become increasingly complex. Immunologists
used to speak of how these mechanisms, made up of cells
and receptors with some soluble elements, functioned
through nonspecific recognition, in contrast to adaptive
immunity mechanisms. Today, we know that all proteins that
participate in pathogen recognizing perform this task, in a
pathogen-associated molecular patterns recognition depen-
dent way. This recognition of patterns indicates that nonspe-
cific recognition by the innate immune response does not
exist but we consider it as nonspecific because the variety of
antigens recognized is limited when compared to adaptive
mechanisms. Something similar occurs with the regulation
of activation. While we do not yet know exactly how many
copies of an antigen must enter an organism to trigger activa-
tion of specific lymphocytes, we do know that the activation
signals generated by the presence of these antigens must
cross a threshold—or limit—in order to emit activation sig-
nals that are sufficiently intense to trigger a successful activa-
tion process. Also, the intensity of the activation signal must
exeed the signal given by the inhibitory receptors present in
the cells of immune system that, as mentioned earlier, partic-
ipate in diverse signaling mechanisms and pathways whose
purpose is to prevent an exacerbated, or even unnecessary,
activation process.

This text has focused on four receptors that are known to
have opposite functions to the receptors that mediate cell
activation. TIM-3, PD-1, CD-32b, and CD200R form a group
of receptors that use diverse mechanisms to inhibit cell
activation, such as association with phosphatases or steric
impedance in the plasmatic membrane. However, there are
other receptors like SIRP-α/CD47, which have similar role
and function recruiting phosphatases as CD32b. There is
reliable evidence that the balance between activation and
inhibition signals also occurs in cells with innate functions,
such as monocytes and macrophages, suggesting that the
function and activation of these cells are a highly regulated
process in which it has often been demonstrated that the loss
of regulation can generate such deleterious processes as
exacerbated inflammation or the loss of tolerance to auto-
antigens. Several authors refer to these regulating mecha-
nisms as response elements that are capable of generating
immunological tolerance, although others consider that we

are dealing with mechanisms that inhibit activation which,
when functioning at a high level, cause a dysfunctional state
in immune cells. In reality, we should consider that no such
frontier exists between these two descriptions but that we are
trying to define the extremes of a concept that consists of a
broad range of levels of regulation, the lowest of which is inhi-
bition. The level associated with exacerbated responses and
the opposite level of regulation would be the one that, as an
overinduced mechanism, causes lack of cell response or cell
senescence upon recognizing an antigen. Given all the possi-
ble immunological scenarios that can emerge from the pres-
ence or absence of inhibitory receptors and their functions, it
is extremely important to continue studying these proteins
in both lymphoid and myeloid cells. Obtaining a thorough
understanding of the function of these receptors may pro-
vide new ways of dealing, clinically, with diverse pathologies
and of increasing the effectiveness of current treatments.
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Macrophages are crucial members of the mononuclear phagocyte system essential to protect the host from invading
pathogens and are central to the inflammatory response with their ability to acquire specialized phenotypes of inflammatory
(M1) and anti-inflammatory (M2) and to produce a pool of inflammatory mediators. Equipped with a broad range of receptors,
such as Toll-like receptor 4 (TLR4), CD14, and Fc gamma receptors (FcγRs), macrophages can efficiently recognize and
phagocytize invading pathogens and secrete cytokines by triggering various secondary signaling pathways. Phospholipase C
(PLC) is a family of enzymes that hydrolyze phospholipids, the most significant of which is phosphatidylinositol 4,5-
bisphosphate [PI(4,5)P2]. Cleavage at the internal phosphate ester generates two second messengers, inositol 1,4,5-trisphosphate
(IP3) and diacylglycerol (DAG), both of which mediate in diverse cellular functions including the inflammatory response.
Recent studies have shown that some PLC isoforms are involved in multiple stages in TLR4-, CD14-, and FcγRs-mediated
activation of nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and interferon regulatory factors
(IRFs), all of which are associated with the regulation of the inflammatory response. Therefore, secondary signaling by PLC is
implicated in the pathogenesis of numerous inflammatory diseases. This review provides an overview of our current knowledge
on how PLC signaling regulates the macrophage-mediated inflammatory response.

1. Introduction

Inflammation is part of the complex biological response of
body tissues to harmful stimuli, such as pathogens, damaged
cells, or to molecular “irritants,” and is a protective response
involving both cellular and molecular mediators [1, 2]. Ini-
tially, both pro and anti-inflammatory signals with opposing
effects are tightly regulated in a balanced status [3]. However,
a disruption of this balance can result in an excessive
inflammatory response resulting in cellular and tissue dam-
age [4–6]. From extensive study, it has long been recognized
that macrophages play a critical role in the initiation, mainte-
nance, and resolution of inflammation.

Together with dendritic cells (DCs) and monocytes,
macrophages are major components of the mononuclear

phagocyte system. Macrophages participate in all phases of
the immune and inflammatory responses [7]. Unstimulated
macrophages are typically quiescent; however, stimulation
of these cells by local micromilieu signals, however, results
in their acquiring a polarized phenotype [8] either proin-
flammatory M1macrophages or anti-inflammatory M2mac-
rophages. M1 macrophages, generally induced by LPS and
IFNγ, generate high levels of proinflammatory cytokines
[e.g., interleukin 1β (IL-1β), interleukin 6 (IL-6), interleukin
12 (IL-12), and tumor necrosis factor (TNF-α)] and oxidative
metabolites [e.g., nitric oxide (NO) and ROS]; M2 macro-
phages stimulated by a variety of stimuli (e.g., IL-4/IL-13
and glucocorticoids) are important in the resolution of
inflammation [9, 10]. Macrophages express a repertoire of
pattern recognition receptors (PRRs) such as Toll-like

Hindawi
Journal of Immunology Research
Volume 2018, Article ID 5201759, 9 pages
https://doi.org/10.1155/2018/5201759

http://orcid.org/0000-0002-9579-2252
http://orcid.org/0000-0002-6656-4971
http://orcid.org/0000-0001-5418-9003
https://doi.org/10.1155/2018/5201759


receptors (TLRs), CD14, nucleotide-binding oligomerization
domain-like (Nod-like) receptors, and RIG-I-like receptors
[11–15]. This sensor array enables them to recognize a
diverse range of ligands and to initiate quickly appropriate
responses, such as phagocytosis, and immunomodulation
through production of various cytokines [3, 14, 16]. Macro-
phages have elaborate strategies for the regulation of the
inflammatory response.

Stimuli, such as lipopolysaccharide (LPS) and cytokines,
activate macrophages by ligation of corresponding receptors,
such as Toll-like receptors (TLRs) [14]. Upon activation, a
variety of intracellular signals are triggered to promote the
production of proinflammation cytokines [e.g., IL-1β, IL-6,
and TNF-α], chemokine [e.g., macrophage inflammatory
factor (MIP-1α) and IL-8], and toxic molecules (e.g., NO
and ROS) [17, 18]. The “cytokine storm” characterized by
the hyperinduction of proinflammatory cytokines and che-
mokines is a pathogenic mechanism resulting in some
pathogens causing tissue injury and multiorgan dysfunction
[19–21]. For example, the lethal lung inflammation due to
infection by influenza virus (e.g., 1918 H1N1 and H5N1)
and porcine reproductive and respiratory syndrome virus
(PRRSV) is mainly caused by cytokine storms induced
by these viral infections [20, 22–24]. Macrophages are
the major source of proinflammatory mediators [25–27]
and are therefore implicated in the pathogenesis of numerous
inflammatory diseases.

Members of the phospholipase C (PLC) family are thus
involved in intracellular and intercellular signal transduction.
Accumulated evidence has demonstrated that the PLC sig-
naling inhibitor U73122 attenuates both acute and chronic
inflammation mediated by macrophages both in vivo and
in vitro [28–30], linking PLC signaling to macrophage-
mediated inflammation. The involvement of PLCβ, γ, and
δ in macrophage-mediated inflammation has been exten-
sively studied, and herein the corresponding mechanisms
are summarized and discussed.

2. The Spectrum of Expression of PLC
Isoenzymes in Macrophages

PLC family enzymes are activated by numerous factors
such as neurotransmitters, growth factors, histamine, and
hormones, as reviewed by Nakamura and Fukami [31].
PI(4,5)P2 is the preferred substrate of PLC. Hydrolysis of
PI(4,5)P2 leads to the generation of IP3 into the cytoplasm
and DAG in the membrane. IP3 triggers the release of
Ca2+ from intracellular stores, and DAG mediates the activa-
tion of protein kinase C (PKC). The activation of PKC and
calcium signaling in turn activate downstream signaling
[31, 32]. Concomitantly, PI(4,5)P2 also directly regulates a
variety of cellular functions, including phagocytosis [33].

Protein kinase C (PKC) is a family of protein serine/thre-
onine kinases that are involved in the phosphorylation of
serine and threonine amino acid residues on other proteins,
or other members of this family [34]. The PKC isoforms
are divided into 3 subfamilies based on their activation
requirements: classical PKCs (calcium dependent) (PKCα,
βI, βII, and γ), novel PKCs (calcium independent) (PKCδ,

ε, η, and θ), and atypical PKCs (PKC-ζ and λ/ι) [35, 36].
According to the literature, eight PKC isoforms (PKCα, βI,
βII, δ, ε, η, ζ, and λ) are expressed in macrophages [37].
Though macrophages do not express detectable PKCθ, its
expression is upregulated in response to LPS/IFNγ stimula-
tion [38], suggesting that PKCθ expression in macrophages
is inducible by certain inflammatory stimuli. It has been
known that PKC inhibitors reduce LPS-stimulated cytokine
secretion by macrophages, linking PKC activation to TLR4
signaling. It has been further evidenced that PKCα, δ, ε,
and ζ are directly involved in multiple steps in TLR4 path-
ways, as well as in the downstream activation of inflam-
mation pertinent signaling, such as MAPK and NF-κB
[36, 39, 40]. PKCθ and PKCε also activate NF-κB-depen-
dent pathways in muscle cells to promote expression of
proinflammatory cytokines and chemokine [41]. PKCε
regulates NF-κB-mediated NO production by macrophages
in response to LPS stimulation [42]. Classical PKCs are crit-
ical components that control IRF-3-dependent gene expres-
sion downstream of TLR3 and TLR4 [43]. The role of PKC
isoforms in TLR-dependent signaling transduction has been
summarized in Figure 1. In view of the diversity of the PKC
family and that PKC signaling is regulated by PLC enzymes,
this further emphasizes the importance of PLC signaling in
macrophage-mediated inflammation.

Currently, there are a total of 6 classes of PLC isoenzymes
discovered in mammals including the PLCβ, γ, δ, ε, η, and ζ.
Each class of PLC is composed of many isotypes with distinct
functions, domains, and regulatory mechanisms [44]. Based
on the structure, they are further subdivided into 13 isoforms
including PLCβ1–4, γ1-2, δ1, δ3-4, ε, ζ, and η1–2 [31]. The
structures of these PLC isoforms show conserved domains

Not expressed in macrophages
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Atypical isoforms
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Figure 1: The expression of PKC isoforms in macrophages and
their role in TLR-mediated inflammatory response. Among them
eight, PKC isoforms (PKCα, βI, βII, δ, ε, η, ζ, and λ) are expressed
in macrophages. PKCα, δ, ε, and ζ are directly related to TLR-
induced inflammatory response. PKCθ expression in macrophages
cannot be detected, but its expression can be induced by LPS/
IFNγ stimulation.
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such as the X and Y domains that are responsible for catalytic
activity, as well as regulatory specific domains including the
PH domain, the C2 domain, and EF hand motifs involved
in various biological functions of PLC isoenzymes [44, 45].
PLC isoforms are distinct in their activation mode, expres-
sion levels, cellular localization, and tissue distribution link-
ing to a specific function for each isoform.

The spectrum of the expression of PLC isoforms in mac-
rophages is phenotype-specific. It has been reported that in
the case of human macrophages (derived from peripheral
blood mononuclear cells), PLCβ1–4, γ1-2, δ1, and η1-2 are
expressed in unstimulated macrophages, PLCβ1–3, γ1-2, δ1
and 3, and η1-2 are expressed in M1 macrophages, and
PLCβ1–3, γ1-2, δ3, and η1-2 are expressed in M2 macro-
phages. In addition, these PLC isoforms showed different
subcellular localization in differently polarized macrophages
[46]. The distinct expression spectrum and subcellular local-
ization of these PLC isoforms reflect the diverse roles that
they play in the regulation of the inflammatory response.

3. The Role of PLCβ in Macrophage-Mediated
Inflammatory Response

Macrophages express all the four PLCβ isoforms orches-
trating the Ca2+ signaling [47, 48], for example, the clostrid-
ium difficile ToxB-stimulated Ca2+ signaling in macrophages
is enhanced via PLCβ-4 signaling, but depressed by the
PLCβ-3 signaling [49]. Ca2+ and Erk1/2 signaling play
important roles in the regulation of inflammatory response.
PLCβ is involved in the activation of Erk1/2 signaling in
macrophages. It has been demonstrated that the glyceryl
ester of prostaglandins activates Erk1/2 signaling in a dose-
dependent manner through a pathway that requires PLCβ
signaling [50].

Cell adhesion is required for monocyte differentiation
into macrophages. In human cytomegalovirus- (HCMV-)
infected monocytic THP-1 cells, the viral protein US28
promotes adhesion to the endothelial cells via the activation
of PLCβ/PKC signaling cascade. Therefore, it is possible that
PLCβ signaling may promote the differentiation of mono-
cytes to macrophages via cell adhesion [51]. U73122 is a
pan inhibitor for PLC isoforms. We have demonstrated that
U73122 inhibits PMA-induced human promonocytic U937
cell adhesion, as well as the differentiation into macrophages
[29]. These two independent studies indicated that PLC
signaling regulates cell adhesion and the differentiation of
monocytes to macrophages.

It has been reported that LPS suppresses PLCβ-2 and β-1
expression in macrophages in an MyD88-dependent man-
ner, and the suppressed PLCβ-2 plays an important role in
switching M1 macrophages into an M2-like state [52, 53],
suggesting that PLCβ-2 signaling is closely involved in mac-
rophage polarization.

PLCβ signaling broadly regulates the expression of
proinflammatory cytokines or chemokines in diverse cell cul-
tures. The binding of HIV-1 envelope glycoprotein gp120 to
CCR5 leads to PLCβ-1 nuclear localization which promotes
the release of chemokine CCL2 by macrophages [54], sug-
gesting that activation of PLCβ-1 signaling stimulates the

expression of CCL2 in macrophages. PLCβ-3 regulates IL-8
expression in bronchial epithelial cells via TLR-mediated
activation of calcium signaling and NF-κB pathway [55].
However, whether PLCβ-3 regulates cytokine expression in
macrophages has not been reported.

In summary, in macrophages, PLCβ-1 signaling regulates
the expression of CCL2, and PLCβ-2 signaling regulates cell
polarization, while PLCβ-3 and PLCβ-4 signaling regulates
Ca2+ signaling with opposite effect.

4. The Involvement of PLCγ in Macrophage-
Mediated Inflammatory Response

There are two main isoforms of PLCγ expressed in humans,
PLCγ-1 and PLCγ-2, which regulate the development and
functions of various hematopoietic cells [56, 57], for example,
PLCγ1 regulates T cell activation and development through
interaction with T cell receptor (TCR), and PLCγ-2 regulates
development and maturation of B cells via interaction with
pre-B cell receptor (BCR), reviewed by Nakamura and
Fukami [31]. PLCγ-1 and PLCγ-2 are activated downstream
of receptor (RTK) and nonreceptor tyrosine kinases, with
tyrosine phosphorylation of PLCγ as the major mechanism.
However, there is a novel mechanism towards the activation
of PLCγ-2, which depends not on protein tyrosine phosphor-
ylation, but on Rac GTPases [57–59]. Ubiquitously expressed
PLCγ-1 is mainly activated by growth factors, including
platelet-derived growth factor (PDGF), vascular endothelial
growth factor (VEGF), epidermal growth factor (EGF), and
fibroblast growth factor (FGF) [60]. PLCγ-1 binds to the
tyrosine-phosphorylated receptors of EGF via its SH2
domain and downstream proteins via the SH3 domain [61].
We have recently identified that the exposure of macro-
phages to the proinflammatory cytokines TNF-α and IL-1β,
as well as to influenza virus H1N1, leads to activation of
PLCγ-1 in macrophages, which expands the spectrum of
upstream stimulators for PLCγ-1 signaling [30]. Influenza
virus H1N1 infection activates PLCγ-1 signaling through
EGR receptor (EGFR) in alveolar epithelial cell line (A549
cells) [62]. But whether EGFR or the other RTKs act as an
upstream activator for PLC signaling in macrophages is
largely unknown. PLCγ-2, being predominantly expressed
in hematopoietic cells, is activated by immune cell (T cell,
B cell, and Fc) receptors associated with multiprotein com-
plexes [60]. So PLCγ-1 and PLCγ-2 may be differentially
activated to perform diverse functions.

Upon stimulation by LPS, TLR4 signaling induces pro-
inflammatory cytokine production. Generally, TLRs regu-
late TLR-specific gene expression through the recruitment
of distinct combinations of TLR/IL1R (TIR) domain-
containing adaptor proteins, such as myeloid differentiation
primary response gene 88 (MyD88), Toll/IL-1 receptor
domain-containing adaptor protein (TIRAP), TIR domain-
containing adaptor inducing IFN-β (TRIF), TRIF-related
adaptor molecule (TRAM), and sterile α- and armadillo
motif-containing protein (SARM) to form a signalosome,
which activates downstream signals [63]. TLR4 is unique
among these TLRs in its ability to utilize all of the TIR
domain-containing adaptors and mediate activation of
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both MyD88-dependent and MyD88-independent (TRAM–
TRIF-dependent) pathways [64–66], which are required to
stimulate proinflammatory cytokine production in macro-
phages. In MyD88-dependent pathway, both MyD88 and
TIRAP are required to activate NF-κB and MAPK cascades
and proinflammatory cytokine production [67, 68]. The
MyD88-independent signaling events are controlled by TRIF
and TRAM and induce IRF3-dependent type I interferon
production [65, 69]. So in TLR4-mediated signaling, distinct
adaptors are recruited to form diverse complexes which acti-
vate various downstream inflammatory signaling.

The involvement of PLCγ signaling in TLR4-mediated
inflammation has been well identified. Currently, it is clear
that PI(4,5)P2 plays an important role in TLR4 signaling.
Mechanistically, TIRAP localizes to the plasma membrane
by binding to PI(4,5)P2; there it recruits TLR4 and MyD88
to PI(4,5)P2-rich sites on the plasma membrane to form
the TLR4 signalosome [69]. The distinct cellular localization
of TLR4 complex leads to optional activation of MyD88-
dependent or MyD88-independent signaling. Once TLR4
complex resides at the plasma membrane, the MyD88-
dependent NF-κB signaling is activated. Subsequently, the
TLR-4 is delivered to the endosome compartment where
MyD88-independent IRF3 signaling is activated [70]. The
critical role that PI(4,5)P2 plays in TLR4 signaling is in
linking TLR4 to PLCγ which controls the metabolism of
PI(4,5)P2 [71]. Mechanisms for the regulation of LPS-
induced TLR4 endocytosis and IRF3 activation by PLCγ-2
have been established: IP3, the cleavage product of
PI(4,5)P2 by PLCγ-2, binding to IP3 receptors (IP3Rs) in
the endoplasmic reticulum results in the release of Ca2+.
The increased cytosolic Ca2+ is required for translocation of
TLR4 from the plasma membrane to endosomes, where
TRIF-dependent IRF3 activation takes place. In contrast,
LPS-induced activation of NF-κB pathway did not require
PLCγ2-IP3-Ca2+ cascade [71]. Thus, signaling that affects
TLR4 endocytosis could regulate TRIF-dependent signaling
from endosome.

The LPS-binding protein CD14, together with TLR4 and
MD-2, forms a multireceptor complex on the cell membrane
[72]. CD14 controls the LPS-induced endocytosis of TLR4.
LPS-induced clustering of CD14 triggers PI(4,5)P2 genera-
tion in macrophages [73], which may result in the activation
of PLCγ2-IP3-Ca2+ cascade. The increase in cytosolic
Ca2+, released from intracellular calcium stores, promotes
the translocation of TLR4 from the plasma membrane to
endosomes and so results in the activation of downstream
inflammatory signaling. In addition, the CD14-dependent
endocytosis pathway is regulated by several cytosolic
regulators. Among them, the tyrosine kinase Syk and its
downstream effector PLCγ-2 have been identified. The
stimulation of Syk/PLCγ-2 signaling by CD14 triggers an
influx of Ca2+ from the extracellular environment, which
promotes internalization of TLR4 [72, 74]. So the endocy-
tosis of TLR4 in response to CD14 clustering is partially
regulated by the increased concentration of cytosolic
Ca2+ originating either from intracellular calcium stores
or the extracellular environment, which emphasizes the
important role of Ca2+ in TLR4-mediated inflammation.

In addition, these results support the idea that PLCγ-2 regu-
lates the inflammatory response by controlling the cytosolic
level of Ca2+. Apart from Ca2+, PKC signaling is also involved
in TLR4 signaling in macrophages. It has been reported that
the infection of both P. aeruginosa and K. pneumoniae
activates TLR4/PLCγ cascades which in turn activates the
PKCα/Jun N-terminal protein kinase (JNK)/NF-κB axis
and eventually induces the production of proinflammatory
cytokines [75].

The generation of intracellular ROS in macrophages
plays an important role in inflammation pertinent signaling
transduction. The minimally oxidized LDL (mmLDL) stimu-
lates ROS generation in macrophages through activation of
NADPH oxidase 2 (Nox2), which is a suggested pathogenic
mechanism for the development of atherosclerosis. It has
been evidenced that mmLDL induces generation of ROS in
macrophages through sequential activation of TLR4/Syk/
PLCγ-1/PKCα/Nox2 cascade and thereby stimulates expres-
sion of proinflammatory cytokines IL-1β, IL-6, and RANTES
[76, 77]. These studies indicate that PLCγ-1 regulates
inflammatory response by the activation of PKCα, which is
different from the role of PLCγ-2-dependent regulation of
cytosolic Ca2+. Interestingly, we have recently shown that
influenza virus H1N1 infection activates PLCγ-1 signaling
and triggers ROS expression in human macrophages dU937
cells, which can be blocked by the PLC inhibitor U73122
[30]. Taken together, these two independent results reveal
that PLCγ signaling regulates the generation of an important
messenger ROS.

Phagocytosis by macrophages is a process that involves
engulfment and clearing of invading microbial pathogens,
concomitantly stimulating an inflammatory response leading
to upregulation of inflammatory genes, such as TNF-α, IL-
1β, and IL-12. The mechanism for FcγR-mediated phagocy-
tosis has been extensively investigated. The ingestion of
IgG-opsonized targets is initiated by the engagement and
clustering of FcγRs, which induce receptor tyrosine phos-
phorylation and subsequent activation of multiple down-
stream signaling pathways to promote the development of
the phagocytic cup and the extension of pseudopods. The
sequential process including cup formation, phagosome
internalization, and phagolysosome formation is critical
steps in the process of phagocytosis [78]. The translocation
of PKCε to phagosome is a critical step to regulate the rate
of FcγR-dependent phagocytosis [79]. Diverse mechanisms
regarding as to how FcγR-dependent phagocytosis is regu-
lated by PLCγ signaling have been revealed, for example,
PLCγ-1 is consistently concentrated at phagosomes and pro-
vides DAG to facilitate PKCε localization to the phagosome
[80]; Syk-dependent as well as Bruton’s tyrosine kinase-
(Btk-) and Tec-dependent activation of PLCγ-2 affects early
and later stages of phagocytosis, respectively [78].

Peptidoglycan (PGN), the major cell wall component
of Gram-positive bacteria, is able to stimulate proinflam-
matory cytokine production in macrophages. Normal
human plasma from uninfected people contains low titer
of anti-PGN IgG [81]. The anti-PGN IgG and FcγRs are
the key mediators of systemic inflammation in Gram-
positive bacteria-induced sepsis [81, 82]. The binding of
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PGN to anti-PGN IgG triggers FcγR-mediated phagocytosis,
which consequently leads to an inflammatory response [81].
In this mechanism, the phagocytosis of PGN-IgG-FcγR com-
plex in macrophages is triggered by Ca2+ release from intra-
cellular Ca2+ stores controlled by PLCγ-2 signaling [82, 83],
suggesting that the regulation of intracellular calcium signal-
ing by PLCγ-2 is involved in IgG-FcγR-mediated phagocyto-
sis and cytokine production.

5. PLCδ Controls Phagocytosis

The PLCδ1-PH domain negatively regulates FcγRII-medi-
ated cell spreading and phagocytosis through destabilizing
PI(4,5)P2 availability in macrophages [84]. In addition, it
has been reported that LPS stimulation reduces PLCδ1
expression at both mRNA and protein levels, an effect which
would allow upregulation of the TLR4-induced proinflam-
matory cytokine production and FcγR-mediated phagocy-
tosis [85]. These studies suggest that PLCδ1 negatively
regulates TLR4/FcγR-mediated inflammatory response in
macrophages. The roles of the other PKCδ isoforms includ-
ing PKCδ3 and PKCδ4 in macrophage-mediated inflamma-
tion are not yet defined.

6. The Involvement of PLCε in Inflammatory
Response Has Been Characterized In Vivo,
but Not in Macrophages

PLCε is involved in a variety of signaling pathways and con-
trols different cellular functions. Its role in carcinogenesis has
been documented. With a PLCε knockout mice model
(PLCε−/−), PLCε has been identified as a novel tumor sup-
pressor [86]. Also with this mouse model, it has been revealed

that the airway inflammation induced by cigarette smoke
in vivo was partially mediated by PLCε signaling [87]. The
PLCε has also been convincingly demonstrated to regulate
Ca2+ signaling in β cells and cardiomyocytes [88]. However,
whether PLCε is expressed in macrophages, as well as it is
having any role in the macrophage-mediated inflammatory
response, has not been identified.

7. Conclusions and Perspectives

Evidence accumulating from multiple studies has indicated
that the PLC enzymes which functionally rely on the
hydrolysis of PI(4,5)P2 to produce IP3 and DAG with
subsequent modulation of calcium and PKC signaling reg-
ulate macrophage-mediated inflammatory response. The
macrophage inflammatory response, such as the expres-
sion of inflammation-related genes and endocytosis, is
controlled by calcium and/or PKC signaling. The PKC family
contains ten isoforms with individual regulatory mechanism
(summarized in Figure 1). Intracellular Ca2+ levels regulate
multiple signaling pathways. In addition, the PLC family
contains at least 13 members with specific activity for each
one. Diversity of PKC family and the versatile Ca2+ signaling
networks confers PLC enzyme multiple functions in the reg-
ulation of inflammatory response. Therefore, PLC enzymes
are promising targets for the development of novel anti-
inflammatory drugs.

Macrophages express various receptors, such as TLRs,
CD14, and FcγRs, which have been identified as important
upstream activators of PLC signaling (summarized in
Figure 2). These receptors, such as CD14 and TRL4, may
independently or collaboratively regulate the same or distinct
PLC isoforms. In addition, some PLC isoforms may have

Regulation of in�ammation
in epithelial cells 

Role in in�ammation
has not been identi�ed

Regulation of in�ammation
in macrophages 

Role in in�ammation has been
identi�ed in mouse model, but
not in macrophages 

�훽-1 �훽-2 �휁�휀 �휂1 �휂2

NF�휅B, Erk1/2,
NOXs…

In�ammatory response

TLRs CCR5 FcγRs CD14

�훽-3 �훽-4 �훾-1 �훾-2 �훿-1 �훿-3 �훿-4

Figure 2: Schematic of macrophage-mediated inflammatory response through PLC signaling. PLCβ1-2, PLCγ1-2, and PLCδ shown in black
indicated that these PLC isoforms are expressed in macrophages and are involved in macrophage-mediated inflammatory response. PLCβ3
and PLCδ3 shown in blue indicated that their involvement in inflammatory response has been identified in epithelial cell but not in
macrophages. PLCβ4, PLCδ4, PLCζ, and PLCη1-2 shown in red indicated that whether they are involved in inflammatory response has
not been identified. PLCε shown in green indicated that the involvement of inflammatory response has been identified with mouse model,
in vivo. But whether it regulates inflammatory response in macrophages has not been identified.
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opposite or synergistic effects on the same downstream
signaling, for example, the concentration of intracellular
Ca2+ is increased by PLCβ-4 signaling, but decreased by
PLCβ-3. These studies indicate the complexity of the PLC-
dependent signaling in the inflammatory response, and fur-
ther research on PLC-dependent functions will contribute
towards our understanding of the underlying mechanism of
some inflammatory diseases.
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Background. The types of cells most significantly linked to individual subtypes of idiopathic interstitial pneumonias (IIPs) remain
unclear. Few studies have examined CD163+ macrophages in IIPs. Objective. We retrospectively aimed to immunohistochemically
characterize the CD163+ macrophages in IIPs. Methods. Paraffin-embedded lung tissue samples were obtained from 47 patients
with IIPs, including idiopathic pulmonary fibrosis (IPF), idiopathic nonspecific interstitial pneumonia (NSIP), and cryptogenic
organizing pneumonia (COP), and 12 normal controls were immunohistochemically analyzed, using primary antibodies against
CD68 and CD163 as indicators of pan and M2 macrophages, respectively. Results. CD68+ macrophage density was significantly
increased in the 3 subtypes of IIPs relative to that in the control group, although no difference was detected within the different
IIPs. CD163+ macrophage density was significantly increased in NSIP and COP samples relative to that in IPF samples. The
density ratio of CD163+ macrophages to CD68+ macrophages was significantly decreased in IPF/UIP samples relative to that in
the others, while the densities in NSIP and COP were significantly higher than those in control cases. Conclusion. CD163+

macrophages show distinct profiles among IIPs, and the standardized numerical density is decreased in IPF cases that have
poor prognoses.

1. Introduction

Idiopathic interstitial pneumonias (IIPs) are a heterogeneous
group of acute and chronic disorders with varying degrees of
inflammation and fibrosis; the etiologies of which are
unknown [1]. Idiopathic pulmonary fibrosis (IPF)/usual
interstitial pneumonia (UIP), nonspecific interstitial pneu-
monia (NSIP), and cryptogenic organizing pneumonia
(COP) have gained attention because of their relatively high
incidences. The prognoses of IPF/UIP are poor relative to
those of the latter two types, and different pathological

features enable discrimination of these conditions [1]. IPF/
UIP is histopathologically characterized by temporal hetero-
geneity in the degree of interstitial fibrosis in the alveolar
septa, including in normal regions and severe fibrotic areas
[2, 3]. The presence of intraluminal fibrotic lesions, known
as fibroblastic foci, is associated with the prognosis of IPF/
UIP [3]. NSIP is mainly characterized by a dense or loose
interstitial fibrosis with a uniform appearance. COP primar-
ily shows intraluminal fibrotic involvement with a patchy
distribution [4, 5]. The background lung architecture is well
preserved in COP and NSIP, while a honeycomb lung
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represents a terminal status of tissue remodeling in IPF/UIP
[2–5]. Importantly, the types of cells most significantly linked
to differences in the pathogenesis and prognoses among the
subtypes of IIPs remain unclear.

Macrophages constitute a heterogeneous population of
cells of the innate immune system and display a variety of
functions [6]. This functional diversity of macrophages
develops from the response to local microenvironmental sig-
nals that allow them to adapt to this local environment, with
the cells typically represented as M1 and M2 types of popula-
tions [7]. M1 macrophages are characterized by the ability to
produce proinflammatory mediators, which is associated
with phagocytosis, killing of microorganisms, and tissue
injury [8–10]. In contrast, M2 macrophages have an anti-
inflammatory effect, which is linked to the phagocytosis of
apoptotic cells, tissue repair, and fibrosis [11–15]. Particu-
larly, an increasing number of studies have revealed a signif-
icant association between fibrotic diseases and macrophages
with positivity for CD163, an endocytic receptor for heme
and ferroportin and M2 marker [16–20].

We hypothesized that subpopulations of macrophages
are represented differently among the subtypes of IIPs, as
macrophages exhibit plastic responses to different microen-
vironments. Different types of subpopulations indeed partic-
ipate in individual processes corresponding to the
development and repair of fibrosis models [21, 22]. However,
limited information is available regarding the subpopulations
of macrophages in IIPs. In the present study, we immunohis-
tochemically characterized CD68+ and CD163+ macro-
phages in the three subtypes of IIPs: IPF/UIP, NSIP, and
COP. CD68 is a single-chain glycoprotein of 110 kD
expressed predominantly on the lysosomal membrane of
myeloid cells and is thought to be a pan-macrophage marker
[23]. Our findings revealed interesting characteristics for the
counting of CD163+ macrophages among IIPs.

2. Materials and Methods

2.1. Materials. A total of 87 patients who underwent video-
assisted thoracoscopic surgery biopsy for the diagnosis of
interstitial pneumonia at Iwate Medical University Hospital
(Morioka, Japan) and Tohoku University Hospital (Sendai,
Japan) from 2000 to 2010 were selected for the study. Of
these, 40 patients were excluded from the study because of
diagnoses of interstitial pneumonias other than IIPs, such
as collagen vascular diseases or hypersensitivity pneumonitis.
The remaining 47 patients were retrospectively diagnosed
with idiopathic interstitial pneumonias based on multiple
disciplinary discussions, as per international consensus
criteria [24], and consisted of 23 with IPF/UIP, 17 with NSIP,
and 7 with COP. No patient received treatment before
surgical biopsy. After diagnosis, treatment was administered
according to the guidelines in effect at the time of the
diagnosis [24]. The mean follow-up of patients alive at the
endpoint of analysis was 56.8 months. For the control lungs,
normal regions distant from the cancer lesions in lung spec-
imens obtained from 12 patients with preinvasive lung ade-
nocarcinoma were used. These specimens were obtained
from the archives of the Departments of Pathology at Iwate

Medical University and Tohoku University Hospital, the
Ethical Committees which approved the use of all samples
in this study (IRB, H24-170, and 2014-1-446). The require-
ment for informed consent was waived because of the retro-
spective nature of this study.

2.2. Immunohistochemistry. As primary antibodies, mouse
anti-human CD68 (clone PGM-1, DAKO, Glostrup,
Denmark, dilution 1 : 50), mouse anti-human CD163 (clone
5C6, BMA Biomedicals, Augst, Switzerland, dilution
1 : 200), and anti-human CD163 (clone EDhu1, Serotec,
Cambridge, UK, dilution 1 : 200) antibodies were used. As
negative controls for each antibody, normal mouse IgG1
(Dako) and normal rabbit serum (Vector Labs, Burlingame,
CA, USA) were used. The detailed protocol used for immuno-
histochemistry analysis has been previously described [25].

2.3. Morphometric Analysis. The numerical density of CD68+

[NA(CD68)] and CD163+ [NA(CD163)] mononuclear cells
was counted at 200-fold magnification in 20 randomly
sampled fields per slide [25]. Alveolar and interstitial macro-
phages were separately counted. Areas corresponding to 1–3
degrees based on Ashcroft’s fibrotic score were estimated to
compare the 3 conditions, as IPF samples exhibit temporarily
heterogeneous lesions [26]. The numerical density of macro-
phages was standardized according to the interstitial number
densities [NA(int)], which were measured by point counting
methods using a grid [25, 27]. In IPF samples, the alveolar
and interstitial numerical density of CD68+ [NA(CD68)]
and CD163+ [NA(CD163)] macrophages was estimated,
which were divided into 2 fibrotic grades including mild
and severe lesions. Densities were standardized by air space
and interstitial area density as [AA(Air)] and [AA(int)],
respectively [28]. Lung specimens were obtained from multi-
ple lobes as far apart as possible. Morphometric analyses
were performed in individual lobes, and average values were
used as representative data of each patient. Morphometric
examinations were performed independently by two pathol-
ogists (R.S., T.S.).

2.4. Pulmonary Function Tests. The forced vital capacity,
forced expiratory volume in 1 s, and diffuse capacity of the
lung for carbon monoxide were measured according to
American Thoracic Society guidelines [29]. These values
were also expressed as percentages of the predicted normal
values calculated according to sex, weight, and age [30].

2.5. Statistical Analysis. Statistical significance was evaluated
by one-way analysis of variance followed by Dunnett test or
Fisher’s exact test. Receiver operating characteristic (ROC)
curves were plotted for standardized numerical density of
CD163+ macrophages and differential diagnosis between
IPF and NSIP. A diagnostic test with an area under the curve
(AUC) above 0.75 was regarded as contributive [31]. A
p value less than 0.05 was considered to indicate statistical
significance. Statistical analyses were performed using SPSS
Statistics software (SPSS Inc., Chicago, IL, USA).
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3. Results

3.1. Patient Characteristics. Patient characteristics are shown
in Table 1. Patients with NSIP were younger than those with
IPF/UIP (p < 0 05).

3.2. Morphological and Morphometric Analyses of CD68
Macrophages in IIPs.We immunohistochemically character-
ized CD68+ and CD163+ macrophages in the 4 groups,
including normal control lungs, IPF/UIP, NSIP, and COP
(Figures 1–3). CD68+ macrophages were scattered in the
control lungs (Figure 1(a)), while high numbers were
observed in every type of IIP (Figures 1(b)–1(d)). Numerous
CD68+ macrophages were observed within airspace neigh-
boring mild and severe fibrotic lesions (Supplementary
Figure E1A and B), but were undetectable within fibroblastic
foci of IPF/UIP (Supplementary Figure E1C). The numerical
density of CD68+ macrophages was significantly increased in
the 3 types of IIPs relative to that in the control, although no
difference was observed among the 3 disease groups
(Figure 3(a)). While categorizing fibrotic lesions in IPF/UIP
into 2 severity grades, CD68+ macrophages were detected
in both lesions (Supplementary Figure E1C and D). However,
the standardized density of CD68+ alveolar macrophages
[NA(CD68)/AA(air)] showed significantly higher levels in
severe lesions relative to those in mild lesions, although no
difference was detected in interstitial density [NA(CD68)/
AA(int)] (p < 0 0001) (Supplementary Figure E2A and B).

3.3. Morphological and Morphometric Analyses of CD163+

Macrophages in IIPs. CD163+ macrophages showed a scat-
tered distribution in normal control samples (Figure 2(a)).
In the airspace neighboring the mild lesions of IPF/UIP,
numerous macrophages showed weak or no expression of
CD163, although a few CD163+ macrophages were observed
(Figure 2(b), Supplementary Figure E1E). In interstitial
lesions of IPF/UIP, very few CD163+ macrophages were
detected (Supplementary Figure E1G and H). In contrast,
these cells were abundant in NSIP and COP (Figures 2(c)
and 2(d)). The numerical density of CD163+ macrophages
was significantly increased in NSIP and COP relative to those
in the control group and IPF/UIP (Figure 3(b)). Although
CD163+ mononuclear cells locally formed cluster aggrega-
tion in the airspace neighboring severe fibrotic lesions, there
was no difference in the standardized numerical density of
CD163+ alveolar macrophages between the airspaces
adjacent to mild and severe fibrotic lesions (Supplementary
Figure E1E and F and Figure E2C). There was no difference
in the numerical densities of CD163+ interstitial macro-
phages between the two severity grades of lesions of IPF/
UIP (Supplementary Figure E2D). In the present study,
although the data are represented as the results obtained with
anti-CD163 antibody (clone EDhu1), both antibodies of
clone 5C6 and EDhu1 showed similar results.

3.4. Density Ratio of CD163+ Macrophages to CD68+

Macrophages. The density ratio of CD163+ macrophages to
CD68+ macrophages was significantly decreased in mild
lesions of IPF/UIP relative to that in the others, although
the densities in NSIP and COP were significantly higher than

those in control cases (Figure 3(c)). The significant difference
in the ratio was also observed in alveolar and interstitial mac-
rophages (Supplementary Figure E3).

3.5. Differences between Nonsmokers and Smokers. We also
explored the influence of smoking on CD68+ and CD163+

macrophage densities in normal control, IPF/UIP, and NSIP
cases. We did not determine the effects of smoking in
patients with COP because the number of patients was too
less. There was no difference in CD68+ macrophage densities
between nonsmokers and smokers in every condition
(Supplementary Figure E4). However, CD163+ macrophage
density was significantly lower in smokers with NSIP, and
the ratio of CD163+ macrophages to CD68+ macrophages
showed a decreasing trend in smokers with IPF/UIP
(Supplementary Figure E4F and H).

3.6. Diagnostic Value of CD163+ Macrophage Densities in
Differentiation between IPF/UIP and NSIP. We explored the
diagnostic value of the numerical density of CD163+ macro-
phages in the differentiation between IPF/UIP and NSIP,
using ROC analysis. The total numerical density of CD163+

macrophages showed an ROC-AUC value of 0.898 (95%
confidence interval, CI, 0.783–1.000) for the differentiation
(Figure 4). A cut-off level of 12.0 in total numerical density
of CD163+ macrophages yielded a sensitivity of 90.5% (95%
CI=78.2–96.2%) and specificity of 88.2% (95% CI= 73.1–
95.3%). Moreover, we evaluated the relation between the
response to the treatment and numerical density of CD163+

macrophages. No statistically significant relation was
detected in any group; the coefficient of correlation was
determined to be 0.49 in patients with NSIP and COP who
received corticosteroids for treatment.

4. Discussion

In the present study, we found that the numerical density of
CD68+ macrophages was higher in the 3 types of IIPs relative
to that in the normal control lungs, while CD163+ macro-
phages density was higher in NSIP and COP than in IPF/
UIP. The density ratio of CD163+ macrophages to CD68+

macrophages was significantly lower in IPF/UIP relative to
those in the other 3 groups, while the ratios in COP and NSIP
were significantly higher relative to that in the normal
control lungs.

Very limited information is available regarding the
characterization of CD163+ macrophages in IIPs. Wojtan
et al. estimated the proportion of CD163+ macrophages in
bronchoalveolar lavage fluids by immunocytochemistry
[32]. The proportion of CD163+ macrophages did not differ
between IPF/UIP and NSIP, which is inconsistent with our
results. However, as they did not use pan-macrophage
markers, the proportions represented in their study are
unclear. In addition, it is difficult to draw conclusions regard-
ing the association between IIPs and CD163+ macrophages
in their study, as they used a very small sample size of 6
patients with IPF/UIP and 8 with NSIP.

There are two mechanistic possibilities explaining how
the higher ratio of CD163+ macrophages to CD68+
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Table 1: Characteristics of healthy volunteers and patients with IIPs.

Healthy control UIP NSIP COP
n 12 23 17 7 p value

Age 64.3± 3.1 65.3± 1.6 54.3± 2.7 64.0± 3.9 0.015

Female (%) 6 (50.0) 10 (43.5) 8 (46.6) 2 (28.6) n.s

Smoke (%) 6 (50.0) 12 (52.2) 5 (29.4) 4 (57.2) n.s

Pulmonary function tests

FVC (L) 3.03± 0.24 2.48± 0.19 2.55± 0.30 2.19± 0.23 n.s

FVC (%) 112.7± 3.0 83.3± 4.2 78.4± 7.2 68.3± 5.9 n.s

FEV/FVC (%) 77.8± 2.1 87.6± 2.0 85.0± 1.41 81.4± 1.9 n.s

DLco (%) 114.2± 7.6 73.7± 5.1 67.8± 6.9 63.4± 4.8 n.s

Lung specimens obtained

Upper lobe (%) 6 (50.0) 5 (21.7) 1 (5.8) 1 (14.3) n.s

Lower lobe (%) 6 (50.0) 7 (30.4) 3 (17.6) 3 (42.9) n.s

Both lobes (%) 0 (0) 11 (47.8) 13 (76.5) 3 (42.9) <0.001
Treatments

Corticosteroid (%) 0 (0) 4 (17.4) 13 (74.5) 5 (71.4) <0.001
Immunosuppresants (%) 0 (0) 2 (8.7) 5 (29.4) 0 (0) n.s

Pirfenidone (%) 0 (0) 2 (8.7) 1 (5.9) 0 (0) n.s

None (%) 12 (100.0) 16 (69.6) 3 (17.6) 2 (28.6) <0.001
Data are shown as mean ± SD. Brackets represent percentage. IPF/UIP: idiopathic pulmonary fibrosis/usual interstitial pneumonia; NSIP: nonspecific
interstitial pneumonia; COP: cryptogenic organizing pneumonia; FVC: forced vital capacity; FEV1.0: forced expiratory volume in 1 second; DLco: diffusing
capacity of the lungs for carbon monoxide; n.s: no statistical significance.

(a) (b)

(c) (d)

Figure 1: Immunohistochemical analysis of CD68 expression in IIPs. (a) CD68+ macrophages (Brown) were scattered in the alveolar space of
normal control lungs. Numerous CD68+ macrophages were observed in the alveolar space in IIPs, including IFF/UIP (b), NSIP (c), and COP
(d). In the interstitium, CD68+ macrophages were observed in NSIP and COP, but barely detectable within the intraluminal fibrosis in COP.
Resorcin-fuchsin and hematoxylin were used as counterstains. Scale bar, 200 μm.
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macrophages is related to interstitial pneumonia, although
we could not determine the pathogenic roles of the macro-
phages in IIPs in the present study. The first possibility is that

CD163+ macrophages have a protective role against tissue
injury associated with IIPs. Ye et al. reported decreased
expression of heme oxygenase-1 in alveolar macrophages in

(a) (b)

(c) (d)

Figure 2: Immunohistochemical analysis of the expression of CD163 in IIPs. CD163+ macrophages (Brown) are observed to be scattered in
normal control lungs (a). In IPF/UIP, numerous alveolar macrophages show weak or no expression of CD163 (b). Numerous CD163+

macrophages are observed predominantly in alveolar space of NSIP (c) and COP (d) and in interstitium too. CD163+ macrophages were
rarely detected within fibroblastic foci in IPF/UIP and the intraluminal fibrosis in COP. Resorcin-fuchsin and hematoxylin were used as
counterstains. Scale bar: (a) 100 μm and (b–d) 200 μm.
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Figure 3: Comparison of CD68+ and CD163+ macrophage densities among the four groups. The numerical densities of CD68+ macrophages
standardized by interstitial density [NA(CD68)/NA(int)] were significantly increased in IPF/UIP, NSIP, and COP relative to those in normal
control lungs (a). The numerical densities of CD163 macrophages [NA(CD163)/NA(int)] were significantly increased in NSIP and COP
relative to those in normal control lungs and IPF/UIP (b). The ratio of CD163+ macrophages to CD68+ macrophages was significantly
increased in IPF/UIP and normal control lungs relative to those in the other 2 groups (c) [NA(CD163)/NA(CD68)]. The values of the
numerical densities described in the figures represent actual values multiplied by 103. ∗p < 0 05, ∗∗p < 0 01, and ∗∗∗∗p < 0 0001.
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idiopathic pulmonary fibrosis patients [33]. CD163 is a scav-
enger receptor for the heme-haptoglobin complex, which
reduces the toxicity of heme-oxygenase. Our findings and
those of previous studies suggest a protective role of
CD163+ macrophages against IIPs. In contrast, the second
possibility is that CD163 macrophages accelerate fibrosis in
non-IPF/UIP, which has a relatively better prognosis, such
as NSIP and COP. Christmann et al. reported that mRNA
expression of CD163 was upregulated in the lung specimens
obtained from patients with systemic sclerosis-associated
interstitial lung diseases (SSc-ILD), which mainly consisted
of NSIP, and that CD163 gene expression levels were corre-
lated with the progression of fibrosis based on HRCT [34].
Mathai et al. reported that mRNA expression of CD163 was
upregulated in monocytes in the peripheral blood of patients
with SSc-ILD relative to that in healthy controls [35].

Interestingly, our results showed that CD163+ macro-
phages were associated with IPF/UIP to a lesser extent,
although increasing evidence suggests a positive association
between CD163+ macrophages and fibrogenic conditions. It
is very important to consider the possibility that the develop-
ment of fibrotic lesions in IPF/UIP does not depend on accel-
eration by CD163+ macrophages, and it remains to be
elucidated which types of cells most significantly regulate
the prolonged activity of myofibroblasts in IPF/UIP.

It has been reported that smoking influences macrophage
polarization [36]. In the present study, we examined the
influence of smoking on CD68+ and CD163+ macrophage
densities in normal control lungs, IPF/UIP, and NSIP.
CD163+ macrophage density was decreased in NSIP patients

who smoked, and the ratio of CD163+ macrophages to
CD68+ macrophages showed a decreasing trend in IPF/UIP
patients who smoked. The comparative data of CD163 mac-
rophage density among the 3 groups were unlikely to be
biased by smoking because the ratios of patients with smok-
ing were equivalent in the 3 conditions.

In the clinical setting, NSIP is diagnostically differenti-
ated from IPF/UIP, and histopathologic analysis is routinely
required for diagnosis. However, it is not always easy to
differentiate between the two conditions, and multiple disci-
plinary discussions are often required to determine the diag-
nosis [37, 38]. No information is available regarding a
diagnostic marker for the differentiation of IIP subtypes. In
the present study, the high value of the ROC-AUC suggests
the potential of CD163+ macrophage density as a useful
differential marker.

The present study has some limitations. The first lim-
itation is its retrospective nature. It is unlikely that there
was selection bias in patients with IIPs because we consec-
utively enrolled patients at both institutes. Second, we
could not estimate the numerical densities of CD68+ and
CD163+ macrophages in multiple lobes in all patients with
IIPs. However, no difference in the numerical densities of
CD68+ and CD163+ macrophages was observed between
the upper and lower lobes in each group (data not shown).
Third, the study population was relatively small. Further
studies on a larger cohort of patients are needed to vali-
date the diagnostic value of CD163+ macrophage density
in IIPs.

We clearly demonstrated the distinct profiles of CD163+

macrophage counts among the subtypes of IIPs. The lower
ratio of CD163+/CD68+ macrophages was related to IPF/
UIP, and CD163+ macrophages may be diagnostically useful
markers for differentiating IIPs. Our results provide insight
into the pathogenic and clinical perspectives of IIPs and
may facilitate further investigations of the heterogeneity of
macrophages in IIPs.
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88.2% (95% CI = 73.1–95.3%) for the diagnosis of IPF/UIP.
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Supplementary Materials

Supplementary 1. Figure E1: immunohistochemical analyses
of CD68 and CD163 expression in mild and severe fibrotic
lesions of IPF/UIP. Many CD68+ macrophages with strong
expression (brown) were observed in the airspaces neighbor-
ing mild (A) and severe (B) interstitial fibrotic lesions. CD68+

macrophages were scattered within mild (C) and severe (D)
interstitial fibrotic lesions. CD68+ macrophages were not
detected within fibroblastic foci (arrows in C). In contrast,
numerous macrophages showed weak or no expression of
CD163 in the alveolar space near mild fibrotic lesions,
although few CD163+ macrophages were detected (E). In
the alveolar space near severe fibrotic lesions of IPF/UIP,
CD163+ macrophages showed cluster aggregation (F).
CD163+ macrophages with weak expression (brown) were
occasionally observed in mild (G) and severe (H) interstitial
fibrotic lesions. Resorcin-fuchsin and hematoxylin were used
as counterstains. Scale bar, 100 μm.

Supplementary 2. Figure E2: comparison of CD68+ and
CD163+ macrophage densities between mild and severe
fibrotic grades of lesions in IPF/UIP. (A) A comparison of
the numerical densities of alveolar CD68+ macrophages
between airspaces near mild and severe fibrotic lesions in
IPF/UIP. The numerical density of CD68+ alveolar macro-
phages standardized by airspace area density [NA(CD68)/
AA(air)] in severe fibrotic lesions showed a significant
increase relative to that in mild lesions. In contrast, no dif-
ference was detected in the numerical densities of CD68+

interstitial macrophages standardized by interstitial numer-
ical density [NA(CD68)/NA(int)] (B). There was no differ-
ence in the numerical densities of CD163+ alveolar
macrophages [NA(CD163)/AA(air)] and interstitial macro-
phages [NA(CD163)/NA(int)] between mild and severe
lesions (C and D). The values of the numerical densities
described in the figure represent actual values multiplied
by 103. ∗∗∗∗p<0.0001.
Supplementary 3. Figure E3: comparison of alveolar and
interstitial densities of CD68+ and CD163+ macrophages
among the 4 groups. The results of alveolar macrophages
are similar to those of total macrophages in the case of
CD68+ [NA(CD68)/NA(int)] (A), CD163+ macrophages
[NA(CD163)/NA(int)] (B), and ratio of CD68+ macrophages
to CD163+ macrophages [NA(CD68)/NA(CD163)] (C). The
interstitial density of CD68+ macrophages [NA(CD68)/
NA(int)] is similar to those of total macrophages, although
CD68+ interstitial macrophages were not detected in 9 of
12 control cases (D). The results of CD163+ interstitial
macrophages [NA(CD163)/NA(int)] are similar to those of
alveolar and total macrophages (E). The interstitial ratio of
CD68+ macrophages to CD163+ macrophages [NA(CD163)/
NA(CD68)] showed a significant increase in IPF/UIP relative
to that in the others (F). The values of numerical densities
described in the figure represent actual values multiplied by
103. ∗p<0.05, ∗∗p<0.01, ∗∗∗p<0.001, and ∗∗∗∗p<0.0001.
Supplementary 4. Figure E4: comparison of numerical densi-
ties of CD68+ and CD163+ macrophages between non-
smokers and smokers. There was no difference in CD68+

and CD163+ macrophage densities and the ratio of CD163+

macrophages to CD68+ macrophages between nonsmokers
and smokers in the normal control lungs (A–C). The ratio
of CD163+ macrophages to CD68+ macrophages showed a
decreasing trend in smoker patients with IPF/UIP relative
to that in nonsmokers (F). A significant decrease was
detected in smoker patients with NSIP relative to that in non-
smokers (H). The values of numerical densities described in
the figure represent actual values multiplied by 103. ∗p<0.05.
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Macrophages are key cellular components of the innate immunity, acting as the main player in the first-line defence against the
pathogens and modulating homeostatic and inflammatory responses. Plasticity is a major feature of macrophages resulting in
extreme heterogeneity both in normal and in pathological conditions. Macrophages are not homogenous, and they are generally
categorized into two broad but distinct subsets as either classically activated (M1) or alternatively activated (M2). However,
macrophages represent a continuum of highly plastic effector cells, resembling a spectrum of diverse phenotype states. Induction
of specific macrophage functions is closely related to the surrounding environment that acts as a relevant orchestrator of
macrophage functions. This phenomenon, termed polarization, results from cell/cell, cell/molecule interaction, governing
macrophage functionality within the hosting tissues. Here, we summarized relevant cellular and molecular mechanisms driving
macrophage polarization in “distant” pathological conditions, such as cancer, type 2 diabetes, atherosclerosis, and periodontitis
that share macrophage-driven inflammation as a key feature, playing their dual role as killers (M1-like) and/or builders
(M2-like). We also dissect the physio/pathological consequences related to macrophage polarization within selected chronic
inflammatory diseases, placing polarized macrophages as a relevant hallmark, putative biomarkers, and possible target for
prevention/therapy.

1. Introduction

Macrophages belong to the mononuclear phagocyte system
(MPS), a family of professional phagocytes that includes
monocyte and dendritic cells (DCs). Over the past few
decades, classification of the cells within the MPS system has
generated considerable controversy given the different, often
confusing, nomenclature to identify macrophages in different
physio/pathological conditions as a consequence of their
plasticity, resulting in very different phenotype/functions.

The first open debate arises already in the definition of
macrophage cell of origin. The classic scenario of the MPS
stated that monocytes recruited from the periphery, under
the influence of specific tissue-local growth factors, developed
into macrophages. According to this scenario, macrophages

derive from hematopoietic progenitors of bone marrow that
differentiate under the influence of specific growth factors
within the hosting tissues [1]. These cells primarily enter the
blood as monocytes and further infiltrate tissues as macro-
phages, where they adapt to the local microenvironment to
play out specific functions, such Kupffer cells in the liver,
microglial cells in the brain [2], and mesangial cells in
the kidney [3].

This view has been completely reconsidered over the last
decade, and the ontogeny of macrophages has been totally
rewritten, based on genetic approaches of cell fate mapping.
New evidence demonstrated that macrophages can originate
from embryonic precursor cells that colonized developing
tissues before birth (foetal tissue macrophages) and that
tissue-resident macrophages have self-maintaining abilities

Hindawi
Journal of Immunology Research
Volume 2018, Article ID 8917804, 25 pages
https://doi.org/10.1155/2018/8917804

http://orcid.org/0000-0002-3511-7992
http://orcid.org/0000-0003-3543-8777
http://orcid.org/0000-0002-8002-1607
http://orcid.org/0000-0002-4790-0861
https://doi.org/10.1155/2018/8917804


in the adulthood. Murine models allow the definition of three
main sources for tissue-resident macrophages: (i) the yolk sac
in the embryo as a source for progenitor cells by primitive
hematopoiesis; (ii) the foetal liver, where the hematopoiesis
takes places, shifting form the yolk sac, and (iii) the bone
marrow that becomes the elicit hematopoietic centre in late
embryos and adult organisms [4–6]. Another intriguing sce-
nario, concerning the origin and persistence of macrophages,
has been proposed by Gomez et al. [7]. The model proposed
that resident macrophages, developing in the embryo inde-
pendently of the hematopoietic stem cell (HSC) compart-
ment [2, 8–11], still persist in adults and can coexist with
the so termed “passenger” leucocytes that include monocytes
and DCs, which originated from bone marrow HSCs and
myeloid progenitors [1, 12, 13].

The abundance of macrophages within tissues is finely
controlled through the axis colony-stimulating factor-1 or
macrophage-colony-stimulating factor (CSF-1 or M-CSF),
IL-34, and colony-stimulating factor-1 receptor (CSF-1R) [14].

It has been reported that recruited macrophages differ
from the resident tissues in terms of transcriptional profiling.
Even if the term “macrophage activation” has been com-
monly used to describe macrophage activity in response to
diverse stimuli, several studies pointed out that the results
of cell activation deeply depend on the macrophage location
and on the stimulus that triggers their activation.

In vitro and in vivo studies have shown that the pheno-
typic heterogeneity of macrophages correlates with peculiar
functions specific to their local microenvironment [15] and
this plasticity enables the appropriate response to pathogen
or injury challenge.

Macrophage activation can be obtained in response to a
plethora of diverse stimuli, including microbial products,
damaged cells, activated lymphocytes, and inflammatory
cells, and can result in the acquisition of distinct functional
subsets undergoing different phenotypic polarizations.

Macrophage plasticity and heterogeneity give rise to a
still opened debate, concerning the nomenclature to identify
cell subsets/subtypes undergoing in such different pheno-
typic, functional (cytokine release), metabolic, regulatory
(versus other arms of innate and adaptive immunity)
rearrangements.

On the basis of the type-1/type-2 helper- T(h-) cell polar-
ization concept [16, 17], phenotypically polarized macro-
phages have been defined according to two primary
activation states, termed classically activated M1 and alterna-
tively activated M2 (Figure 1(a)). M1 and M2 nomenclature
has been long and lastly employed to define the “supposed”
main subsets of macrophages, which originates in 2000 by
Mills et al. [18]. Basically, M1 and M2 responses exemplify
the opposing activities of killing (proinflammatory, “killer
M1”) and repairing (anti-inflammatory, “builder M2”) [19].

However, macrophage polarization in many physiologic
and pathologic conditions represents a continuum, involving
high plasticity and heterogeneity of these effector cells, and
resemble mainly to a spectrum of distinct polarization states
that do not fit to the oversimplified M1/M2 classification.
Hence, in line with a consensus recommendation, we decide
to use “M1” to indicate only IFN-γ and LPS-driven

macrophage phenotypes and “M2” to refer to macrophage
phenotypes triggered only by IL 4 or IL 13. Furthermore,
we use “M1-like” to illustrate diverse signal-induced polari-
zation states that leads to cell cytotoxic function (killer) and
antitumour activities and “M2-like” in relation to distinct
phenotypes that share the functional capacity of repair,
inducing new vessels and remodelling (builder) in parallel
with tumour promotion and immunosuppressive ability
toward T-cell responses [20] (Figure 1(b)).

In a normal tissue, the ratio of M1-like/M2-like macro-
phages is highly regulated and increases during the inflam-
mation process [21]. Gene expression profile analysis
showed that M1 macrophages can release high levels of pro-
inflammatory cytokines, including tumour necrosis factor-α
(TNF-α), CCL2 also known as monocyte chemoattractant
protein-1 (MCP-1), IL-6, inducible nitric oxide synthase
(iNOS), IL-1, IL-12, type I IFNs, CXCL1–3, CXCL5, and
CXCL8–10 [22]. On the contrary, M2 macrophages have
been demonstrated to express high levels of dectin-1, DC-
SIGN (CD209), mannose receptor (CD206), scavenger
receptor A, scavenger receptor B-1, CD163, CCR2, CXCR1,
and CXCR2 [23] and to produce a large amount of IL-10,
YM1, macrophage and granulocyte inducer-form 1 (MgI1),
and arginase-1, highlighting their relevance during tissue
remodelling and repair [24].

Macrophage polarization and functions are tightly reg-
ulated through the activation of several interconnected
pathways. Among all, the balance between activation of
STAT1 and STAT3/STAT6 has been demonstrated to play
a crucial role; indeed, the predominance of STAT1 activa-
tion promotes M1 macrophage polarization, resulting in
cytotoxic and proinflammatory functions. In contrast,
STAT3 and STAT6 activation by IL-4/IL-13 and IL-10 sig-
naling increases M2 macrophage polarization, associated
with active tolerance and tissue repairing [22]. Moreover,
the downstream effector of STAT6 and KLF-4 promotes
M2 macrophage functions by suppressing the NF-κB/HIF-
1α-dependent transcription. IL-10 promotes M2 polarization
inducing p50 NF-κB homodimer, c-Maf, and STAT3 activi-
ties. In addition, IL-4 induces c-Myc that activates the IRF4
axis that inhibits IRF5-mediated M1 polarization, resulting
in the M2 promotion [22]. Bouhlel et al. also demonstrated
the relevance of PPAR-γ (peroxisome proliferator-activated
receptor gamma) in skewing human monocytes toward an
anti-inflammatory M2 phenotype. Indeed, the authors
showed that PPAR-γ is highly upregulated in M2 macro-
phages and PPAR-γ agonists have been demonstrated to
induce directly M2-like differentiation of monocytes in vivo
and in vitro [25].

In the past decade, a novel class of small noncoding
RNAs, termed microRNAs (miRs), has emerged as impor-
tant regulators in biological processes. Accumulating evi-
dence suggest a relevant role for several miRs in the
polarization process (Figure 1(a)). In particular, miR-155
and miR-223 are involved in modulating macrophage activa-
tion state by targeting SOCS1, C/EBP (a hallmark ofM2mac-
rophages), and Pknox1 [26]. Overexpression or silencing of
miR-155 has been demonstrated to drive macrophages to
M1 or M2 phenotype, respectively, confirming that miR-155
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Figure 1: Past and new concept in macrophage polarization. (a) Schematic overview of the different stimuli that can induce the diverse
macrophage polarization state. M1: classically activated phenotype; M2: alternatively activated macrophages; ATM: adipose tissue-derived
macrophages; Mox: atherosclerosis-associated macrophages; TAMs: tumour-associated macrophages. (b) The polarization landscape of
macrophages. According to the different stimulation conditions, macrophages can acquire peculiar M1 or M2 phenotype, governed by the
different surface antigen expressions, including scavenger receptors, chemokine, matrix-associated protein and cytokine release, and
different patterns of transcription factors and metabolic pathway activated. The driver stimuli include IL-4, IL-10, glucocorticoids (GC)
with TGF-β, glucocorticoids alone, LPS, LPS and IFN-γ, and IFN-γ alone.
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plays a central role in regulating Akt-dependent M1/M2
polarization of macrophages. It has been also shown that
miR-155 downregulates the expression of IL-13Rα1, sup-
pressing the polarization toward M2 phenotype [27, 28].
Some studies have observed that let-7c was expressed at a
higher level in M2 macrophages than in M1 macrophages.
Accordingly, the upregulation of let-7c in macrophages
diminishedM1phenotype and promotesM2polarization tar-
geting C/EBP-d [29, 30]. miR-146, miR-125b, miR-155, and
miR-9 can inhibit TLR4/IL-1R signaling by regulating
IRAK-1, TRAF6, IKKe, p50 NF-κB, and TNF-α [29]. Further,
miR-17, miR-20a, and miR-106a reduce the expression level
of the signal regulatory protein (SIRPa), an important mac-
rophage differentiation-related marker. miR-98 and miR-21
downregulate the expression of inflammatory genes in
monocytes and macrophages via controlling IL-10 level [31].

Emerging data have demonstrated that epigenetic mech-
anisms, including chromatin remodelling, DNA methylation
(DNAm), histone modifications, and regulation of target
gene expression, are also involved in the orchestration of
macrophage polarization in response to local environmental
signals [22, 32, 33]. M1 and M2 macrophages have been
shown to express different levels of DNA methyltransferase
(DNMT) 1, 3a, and b that are associated with gene silencing
[34]. DNMT1 drives the M1 polarization in atherosclerosis
by directly targeting the promoter of PPAR-γ in macro-
phages [35]. The DNMT3b binding of the promoter of
PPAR-γ contributes to the M1 phenotype in adipose tissue
during inflammatory process [33].

Lund et al. demonstrated that atherogenic lipoproteins
can promote global DNA hypermethylation in monocyte
[36]. Thus, DNMT inhibition or knockdown could decrease
theM1 polarization, providing novel strategies for atheroscle-
rosis prevention and therapy. Accordingly, the treatment
with 5-aza-2-deoxycytidine (decitabine), a recognized inhib-
itor of DNMTs, results in an increased M2 polarization
induced by the inhibition of the PPAR-γ promoter, which
in turn prevents obesity-induced inflammation, atherosclero-
sis, and insulin resistance [37, 38]. DNMT3a and DNMT3al
expression levels have been shown to be increased signifi-
cantly in M2 compared to M1 macrophages, and this is asso-
ciated with AMPK signaling [33]. On the contrary, DNMT3b
was significantly lower in M2 compared with M1 adipose
macrophages [39]. Histone H3 and H4 acetylations were
found to be toughly associated with the maturation of human
monocytes [40]. M1 polarization induced by IFN-γ increases
histone H4 acetylation at the TNF-α promoter throughout
the ERK and p38 mitogen-activated protein kinase (MAPK)
signaling pathways [41]. STAT3 and MAPK activation and
the simultaneous acetylation of histones H3 and H4 on the
SOCS-3 promoter suppress the inflammatory responses in
microglial cells and promote M2 polarization [42]. Histone
deacetylase 3- (HDAC3-) deficient macrophages showed a
decreased expression of IFN-β and Cox-1 showing an M2-
like phenotype and thereby ameliorate many inflammatory
diseases, such as pulmonary inflammation [43–45].

Such heterogeneity in macrophage phenotypes and func-
tions generated the still open questions of whether they act as
killers or builders. During inflammation, macrophages drive

in the autoregulatory loop characterizing this process, as they
release a wide range of biologically active molecules which
participated in both detrimental (killers) and beneficial
(builders) in inflammation [46–48]. Therefore, inflammation
stands as the typical environmental setting where macro-
phages show their “Janus” behaviour [46–48]. During the
first events occurring during inflammation, macrophages are
endowed to kill/remove pathogens and damaged cells, while
at the end of the inflammatory process, termed resolution of
inflammation, macrophages act as builders that promote
damaged tissue regeneration and return to homeostasis
[49–51]. Since inflammation represents a shared hallmark
from diverse chronic diseases and direct involvement in
insurgence and progression of these conditions, here, we
discuss whether macrophages can act as killers or builders
within the inflammatory landscape of selected and appar-
ently “distant” pathologic conditions.

2. Macrophages in Cancer: Killers or Builders?

Macrophages represent the most abundant tumour infil-
trating inflammatory cells [52, 53]. Reflecting their extreme
plasticity within healthy tissues, macrophages infiltrating
tumours can acquire distinct phenotype and functions result-
ing in the attenuation of antitumour activity and induction of
tumour-supporting functions and have been defined as
tumour-associated macrophages (TAMs) with M2-like fea-
tures (Figure 2). However, in the initial phases of carcino-
genesis, macrophages can act as protective killer cells,
cooperating with T lymphocytes in the control of early
proliferating cancer cells in the immunoediting process
[54]. Instead, in developing tumours, compelling evidence
indicate that subverted macrophages or TAMs exert a major
role in driving tumour progression by different mechanisms
and pathways, depending on the types of tumour, tissues,
and inflammatory mediators. The builder option of macro-
phages in the tumour microenvironment (TME) can lie to
conditions in which a chronic nonresolving inflammation is
established, a feature that has been defined a hallmark of can-
cer [55] and that points out TAMs as key inflammatory
mediators able to link chronic inflammation with cancer
development and progression [56, 57].

Among soluble factors that mediate their displacement,
there are CCL2, CCL5, CSF-1, VEGF, and complement ele-
ments, which are often produced by the cancer cells and stro-
mal cells in the TME. Moreover, some TAMs can derive from
differentiation of monocytic myeloid-derived suppressor
cells (M-MDSCs) via upregulation of CD45 tyrosine phos-
phatase activity in response to tumour hypoxia and following
downregulation of STAT3 [58].

Tumour promoting or builder activities exerted by
TAMs have been demonstrated by several studies. Elevated
TAM infiltration has been correlated with worse clinical
outcome in most malignant tumours, such as breast, cervi-
cal, ovarian, prostate, and thyroid cancers; Hodgkin’s lym-
phoma; hepatocellular carcinoma; lung carcinoma; and
cutaneous melanoma [56, 59–65]. In contrast to these find-
ings, some reports have instead highlighted that tumour infil-
trating macrophages correlated to increased survival in
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colorectal, prostatic, and lung cancer patients [66–70]. The
main builder features of TAM include the ability to support
tumour angiogenesis as well as lymphangiogenesis, to
increase the breakdown of extracellular matrix, to promote
tumour cell invasion and migration, and to suppress the anti-
tumour immune responses [56, 62, 71, 72]. These functions
are shared with M2-like macrophages that, in a physiological
context, are induced during vascular and matrix remodelling,
necessary for damage resolution [73–77].

TAM infiltrate is also associated with the onset of resis-
tance to different chemotherapeutic agents through the
activation of diverse pathways. In breast cancers, TAMs can

induce IL-10/STAT3/Bcl-2 signaling, leading to an inhibition
of apoptosis upon paclitaxel treatment [78]. In advanced
lung adenocarcinomas, TAMs are also reported to decrease
the responsiveness to target therapy based on the epidermal
growth factor receptor tyrosine kinase inhibitors [79].

M2-like TAMs support tumour growth directly by pro-
ducing cytokines able to stimulate the proliferation of
tumour cells or indirectly, by fostering endothelial cell (EC)
proliferation and angiogenesis (Figure 2). It has been
reported that the growth of subcutaneous Lewis lung tumour
is impaired in the CSF-1-deficient and macrophage-deficient
mice [80]. Furthermore, the treatment of tumour-bearing
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Figure 2: Macrophage polarization in tumour progression. Macrophage recruitment in tumours and their polarization are regulated by
several factors. Among all, hypoxia can induce the differentiation of monocytic myeloid-derived suppressor cells (M-MDSCs) via
upregulation of CD45 tyrosine phosphatase activity (1). Further, soluble factors, such as CCL2 and CCL5 that are produced by the cancer
cells and stroma cells, can increase macrophage infiltrate (2). In the TME, infiltrating associated to tumours (TAM/M2-like macrophages)
can orchestrate tumour progression by several mechanisms including the release of cytokine, chemokines, and tissue remodelling proteins.
Hypoxia increases the expression of CXCRs in TAMs and promotes tumour angiogenesis by enhancing the production of VEGF, TNF-α,
bFGF, IL-8, TP, and Sema4D that can induce endothelial cell proliferation, sprouting and migration, tube formation, and maturation of
new vessel, followed by its stabilization by attaching mural cells (A). TAMs can regulate the extracellular matrix degradation by producing
different types of enzymes and proteases, such as matrix metalloproteinases (MMPs), in particular MMP2, MMP9, plasmin, urokinase
plasminogen activator (uPA) and cathepsins acting on connective tissue surrounding the tumour, and allow tumour cells to detach from
the mass of origin and to disseminate, leading to the formation of distant metastases (B).
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mice with recombinant CSF-1 reestablished the tumour
growth, indicating a role for macrophages in tumour growth.
TAMs can produce IL-6, whose release impacts on cell prolif-
eration by a STAT3-dependent mechanism. Inhibition of
STAT3 signaling blocks the antiapoptotic activity of IL-6 in
human liver cancer cells [81]. TAMs are lower producers of
TNF-α, resulting in enhanced tumour growth. Hypoxia sig-
nificantly impacts on the TAM tumour cell interaction that
induces the expression of CXCR4 and its ligand, CXCL12
(SDF-1), further supporting tumour cell dissemination and
angiogenesis [82]. The number of TAMs within a tumour
has been positively correlated with its metastatic potential,
suggesting a role for TAMs in the distant dispersion of
tumour cells [52, 83, 84]. By producing different types of
enzymes and proteases, such as matrix metalloproteinases
(MMPs), in particular MMP2 and MMP9, plasmin, uroki-
nase plasminogen activator (uPA), and cathepsins [85–87]
(Figure 2), TAMs can regulate the degradation of the extra-
cellular matrix (ECM) and dictate tumour invasion and the
metastatic process [19]. These factors act by relaxing the con-
nective tissue surrounding the tumour, allowing tumour cells
to detach from the mass of origin and to disseminate, leading
to the formation of distant metastases.

TAMs sustain tumour angiogenesis by producing
VEGFA (VEGF), the master growth factor involved in the
angiogenic process. Besides VEGF, TAMs release a panel of
proangiogenic factors which include TNF-α, basic fibroblast
growth factor (bFGF), CXCL8/IL-8, thymidine phosphory-
lase (TP), adrenomedullin (ADM), and semaphorin 4D
(Sema4D) [88–91] (Figure 2). These factors released by
TAMs act by inducing endothelial cell proliferation, sprout-
ing and migration of ECs into the tumour, tube formation,
and maturation of new vessel, followed by its stabilization
by attaching mural cells [92].

It has been recently reported that the expression of
Sema3A from tumour cells is able to promote TAM accumu-
lation inside the tumour, particularly in the avascular areas
and required neuropilin-1 (NRP-1)-signaling cascade [93].
Macrophages are not only critical regulators of angiogenesis,
but also crucial participants in lymphangiogenesis via VEGFC
and VEGFD release, both in inflammatory settings and in
tumour progression [94]. Thus, TAM-derived factors can link
tumour angiogenesis and lymphangiogenesis [95–97].

Among TAMs, a relevant proangiogenic monocyte/
macrophage subset, characterized by some distinctive fea-
tures, has been further identified. These macrophages can
express the angiopoietin receptor Tie2, termed TEMs
(Tie2-expressing macrophages), and are closely associated
with the vasculature [98, 99]. These cells have been impli-
cated in the interference and in the resistance of action of
antiangiogenic therapeutics, in particular vascular disrupt-
ing agents, and experimental data support the notion that
inhibition of TEMs can foster antiangiogenic treatments
with higher inhibition of angiogenesis and tumour spread-
ing [100, 101].

Apart from their extreme plasticity, TAMs also sustain an
immunosuppressive milieu aiding tumours to escape from
immune surveillance [102]. TAM contribution to tumour
progression acts also through synergistic interaction with

other arms of the innate and adaptive immunity [46–48,
103] within the immunosuppressive TME. TAMs can inter-
act with MDSCs, neutrophils, and DCs [104, 105]. TAMs
also orchestrate the recruitment of T regulatory cells, by
secreting CCL20 [106, 107] and CCL22 [108], and their acti-
vation through a bidirectional interaction by the release of
IL-10 and TGF-β [107, 109–111].

Moreover, TAMs represent an important factor for the
establishment of the premetastatic niche [112–116].

Different therapeutic strategies have been developed to
target TAM physiology with encouraging preclinical and
clinical results, either by blocking their tumour recruitment
and functions or by redirecting their features to antitumour
effector activities [57, 81, 117–121]. In several preclinical
experimental models, including prostate, breast, and lung
cancer and melanoma, the specific inhibition by antibodies
of CCL2 has proven its promising effects, and when they
are delivered in combination with chemotherapy shown
enhancement of the effectiveness of treatment [122, 123].
However, though in a mouse model of breast cancer, it has
been reported that a rebound effect following inhibition of
CCL2 pathway resulted in the recruitment of monocytes/
macrophages into the tumour and enhancement of lung
metastasis [124]; different antibodies targeting CCL2 have
been entered phase I and II clinical trials. Regarding the
CCL5-CCR5 axis blocking strategies, a CCR5 antagonist
has been approved as a treatment for patients with liver
metastases of advanced refractory colorectal cancers and pre-
liminary results indicated that this approach can lead to clin-
ical responses [125]. Another interesting TAM-specific
therapeutic treatment involves interferences with the CSF-
1-CSF-1R axis, and in particular the receptor tyrosine kinase
CSF-1R. Several compound and antibody inhibitors have
been developed and evaluated in preclinical models and in
patients with different types of cancer [120]. Important clin-
ical regressions were obtained from patients with diffuse-type
tenosynovial giant-cell tumour, which experienced CSF-1R
tumour overexpression [120]. Interestingly, in a mouse glio-
blastoma multiforme model, CSF-1R blockade did not affect
the TAM numbers but instead the M2-like TAM polariza-
tion, which is associated with the block of glioma progression
and improvement of survival [119]. Also, bisphosphonates,
usually used to treat osteoporosis and to prevent bone
metastases-related complications, can be used to target mac-
rophages in the tumour context, although their cytotoxic
effects have been illustrated initially toward osteoclasts
[126]. Combination chemotherapy or hormonal therapy
with bisphosphonates in different types of tumour has shown
clinical synergistic effects, in particular in postmenopausal
women with breast cancer [127]. Another encouraging
therapeutic strategy is related to agonistic anti-CD40 anti-
body and gemcitabine in pancreatic ductal adenocarcinoma
patients. This approach revealed clinical responses and
importantly demonstrated that in treated mice the CD40
agonist approach is responsible for reeducation of M2-like
TAM toward an M1-like phenotype and of effective anti-
tumour responses [128, 129]. Finally, a recently identified
compound that found application in soft tissue sarcomas
and ovarian cancer patients is trabectedin, which induces
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selective TRAIL-dependent apoptosis of monocytes, macro-
phages, and M-MDSCs in the blood, spleens, and tumours
with reduction of TAMnumbers and angiogenesis [130, 131].

3. Macrophages in Type 2 Diabetes:
Killers or Builders?

Type 2 diabetes (T2D) is a metabolic disorder, and its inci-
dence has increased significantly in recent years. T2D is char-
acterized by a peripheral resistance to the action of insulin
and a failure of beta cells to compensate, leading to hypergly-
caemia. It is now widely accepted that obesity increases the
risk of T2D by inducing a chronic low-grade inflammation
[132] and progression in local adipose tissue.

Accumulating evidence supports a role for tissue macro-
phages in a broad spectrum of inflammatory conditions
[133], including obesity-associated metabolic diseases, such
as insulin resistance and T2D [68, 134].

Macrophages together with other immune cells account
almost 10% of the normal adipose tissue and play a key role
in maintaining homeostasis. However, diet-induced obesity
compromises homeostasis, resulting in an increased infiltra-
tion of macrophages representing up to 50% of the cells in
adipose tissue [135, 136].

Several studies have established the crucial role of
macrophage polarization in the development of T2D. The
M1/M2-like polarization of tissue-destructive (killers) versus
tissue-reparative (builders) macrophages is of great interest
in clinical strategies because of their role in β-cell prolifera-
tion [137]. Recent evidence demonstrate that the high plas-
ticity and phenotypic diversity of macrophages promote the
cross-talk between β-cells, non-β endocrine cells, endothelial
cells, mesenchymal cells, and other circulation-derived blood
cells [138–140]. Builder-M2-like macrophages regulate β-cell
proliferation through the release of a variety of trophic
factors such as TGF-β1, which directly induce upregula-
tion of SMAD7 in β-cells. SMAD7 in turn promotes β-cell
proliferation by increasing CyclinD1 and CyclinD2 and by
inducing nuclear exclusion of p27 [141] (Figure 3). In
addition, M2-like macrophages also secrete Wnt ligands,
thus activating the Wnt signaling pathway, and β-catenin,
supporting β-cell replication [138] (Figure 3). Conversely,
only a few studies investigating the polarization state of
macrophages in pancreatic microenvironment have been
described in literature [16–19], where an overall increase
of macrophages/islets has been detected by immunohisto-
chemistry. Eguchi et al. [142, 143] showed that Ly6c+

M1 macrophage was expanded in the diabetic mouse islet.
Ly6c+-killer-M1 macrophage has been shown to secrete
IL-1β, resulting in potent inhibition of insulin secretion,
followed by islet destruction (Figure 3). The use of IL-1R
antagonists and anti-IL-1β-neutralizing antibodies was
able to abolish these effects on pancreatic islets [21–24].

Several studies in T2D have shown that M1-like macro-
phages resulted in increased inflammation, obesity, and insu-
lin resistance, while M2-like macrophages are associated with
a reduction in both obesity and insulin resistance [144]. M2-
like macrophages are reported to not only suppress inflam-
matory cytokine IL-10 [145] but also provide a niche for

preadipocytes to keep the number and quality of them, thus
maintaining insulin sensitivity [146].

These data clearly suggest that macrophages play a
nonredundant role in the pathogenesis of T2D [147]. An
important aspect of diabetes prevention is a better under-
standing of the underlying mechanisms behind obesity-
induced visceral adipose tissue inflammation, crucial for
the development of T2D.

Obesity is associated with the accumulation of proinflam-
matory cells in visceral adipose tissue, which is an important
underlying cause of insulin resistance and progression to
T2D [148–150]. Establishing the initiating events leading to
the switch from an anti-inflammatory M2-like state to M1-
like phenotype remains elusive.

Recent studies show that obesity-induced adipocyte
hypertrophy results in upregulated surface expression of
stress markers. Adipose stress is detected by local sentinels,
such as NK cells and CD8+ T cells, which produce IFN-γ,
driving M1-like adipose tissue macrophage (ATM) polariza-
tion [148–150]. Adipocyte hypertrophy has been reported to
create hypoxic area and activates hypoxia-inducible factor-1,
which induces inflammatory cytokines and suppresses
preadipocyte-related angiogenesis and causes insulin resis-
tance [151].

Normal adipose tissue macrophages phenotypically
resemble the alternatively activated M2-like phenotype,
expressing the mannose receptor, the CD206 surface antigen,
and releasing Arg-1 and IL-10. In contrast, diet-induced obe-
sity leads to a shift toward an M1 classically activated macro-
phage, characterized by the F4/80, CD11b, and CD11c
expression [152] (Figure 3).

Low-grade inflammation in this setting is mediated by
the polarization of recruited and resident macrophages to
the M1-like phenotype in tissues, such as liver and adipose
tissues [153, 154]. In contrast, M2 macrophage activation
appears to protect against obesity-associated inflammation
and insulin resistance [155, 156]. Several cytokines and che-
mokines, such as CCL2, interleukin IL-6 and IL-1β, macro-
phage migration inhibitory factor (MIF), and TNF-α, can
be released by both adipocytes and macrophages [157, 158].
Macrophages within adipose tissue are recruited from the
bone marrow and are characterized by a wide panel of factors
that track with the degree of obesity [136, 159, 160]. Indeed,
the paracrine as far as the endocrine activity was exerted by
the proinflammatory cytokines, including TNF-α, IL-6, and
IL-1β released by ATMs can induce decreased insulin sensi-
tivity through the activation of Jun N-terminal kinase (JNK),
inhibitor of IKκB (IKK-β), and other serine kinases in insulin
target cells [161, 162].

The unbalance in the ratio between M1-like and M2-like
adipose macrophages has been considered to be directly
related to the development of insulin resistance [21, 149].
Insulin resistance resulted from a transition in macrophage
polarization from the M2-like activation state, induced by
STAT6 activation and PPAR, to a classic M1-like activation
state, further driven by NF-κB, AP1, and other related fac-
tors [163–165].

The network of molecular mediators that regulate M2
polarization in response to hypermetabolism is not fully

8 Journal of Immunology Research



understood, but peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGC-1α) and PPAR-γ target
genes, such as arginase-1 and CD36, are implicated in this
process. PPAR-γ has been proven to be essential for mac-
rophage M2 polarization with the function of anti-
inflammation and associated with metabolic dysfunction
[145, 156, 166]. PPAR-γ was found to be a miR-130b tar-
get gene in regulating macrophage polarization insulin

tolerance via repression of PPAR-γ [167]. Several studies
have shown that PPAR-γ interacts with NF-κB, in the
modulation of macrophage polarization. PPAR-γ blocked
the proinflammatory pathway of NF-κB and inhibited the
expression of relative factors, such as TNF-α [168].

Further, it was shown that IL-6 acts as a Th2-builder
cytokine in obesity by stimulating M2-like polarization and
local ATM proliferation, presumably due to upregulation of
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the IL-4 receptor α [169]. Recently, it has been reported that
adenosine monophosphate kinase (AMPK) β1 plays an
important role in protecting macrophages from inflamma-
tion under high lipid exposure resulting in a modulation of
obesity-induced insulin resistance (Figure 3). Genetic dele-
tion of the AMPK β1 subunit in mice reduced macrophage
AMPK activity, acetyl-CoA carboxylase phosphorylation,
and mitochondrial content, resulting in reduced rates of fatty
acid oxidation [170].

Inhibition of proinflammatory cytokines and chemo-
kines, such as TNF-α, IL-1β, IL-6, and CCL2, may reduce adi-
pose tissue inflammation and insulin resistance [147, 171,
172]. For instance, several studies have demonstrated that
treatment with neutralizing IL-1β antibody or blockage of
IL-1β signaling improved glycaemic control in diet-induced
obese mice and insulin sensitivity in patients with T2D
[173–176]. Other findings suggest that the CCL2-CCR2 sig-
naling pathway disruption reduces adipose tissue macro-
phage content ameliorating insulin resistance and improves
insulin sensitivity [160, 177]. CCL2 knockout mice receiving
intact monocytes or mice receiving CCR2-deficient mono-
cytes were both protected from the accumulation of macro-
phages in adipose tissue and the liver. [178] So far, targeting
the CCL2-CCR2 signaling pathway may provide the basis
for the development of novel therapies against T2D. In vivo
studies have shown that circulating levels of free fatty acid
(FFA) promote the generation of M1 macrophages via TLR4
signaling in adipocytes andmacrophages in the setting of obe-
sity [179–181]. In this context, adipose tissue inflammation is
aggravated by the secretion of TNF-α, which in turn increases
lipolysis leading to further production of FFAs establishing a
vicious circle. Resistin is another potential target to combat
insulin resistance or T2D. In fact, resistin induction which
in turn stimulates secretion of several proinflammatory cyto-
kines by increased infiltration of macrophages causes
inflammation-induced insulin resistance [182–184].

Several phase II and III clinical trials have been initiated
to inhibit key immunological processes of adipose tissue
inflammation in T2D patients, such as NF-κB signaling, IL-
1β function, or arachidonic acid metabolism, with promising
results [148].

A shift in the polarization of adipose tissue macrophages
from an M2-like state to an M-like proinflammatory state
resulting in insulin resistance favours inflammation and
insulin resistance [145]. Thus, targeting of inflammatory
M1/M2-like polarization process of obese patients appears
to be a promising future strategy for prophylaxis against dia-
betes development. For instance, adipose tissue macrophages
from CCR2 knockout mice are polarized to the M2-like mac-
rophages, even after obesity and CCR2 knockout mice were
found to be protected from diet-induced insulin resistance
[145, 160]. Furthermore, it has been shown that inhibition
of IL-10 secreted by M2-like macrophages enhances the
impairment of insulin signaling confirming its protective role
in T2D [185].

Insulin-sensitizing thiazolidinediones (TZDs), clinically
used for T2D patients [186], target the PPAR-γ that plays a
key role in the maturation of M2-like macrophage and insu-
lin sensitivity. PPAR-γ deletion prevents polarization of the

monocyte/macrophage to the M2-like phenotype, and
PPAR-γ-deficient mice exhibit glucose intolerance and insu-
lin resistance [187]. Therefore, existing and future drug
mechanisms may be involved in modulating the phenotypi-
cal and functional features of macrophages. For instance,
metformin is a drug widely used to treat T2D, to decrease
insulin resistance; it has been proposed that the benefit may
result, at least in part, from modulating macrophage dif-
ferentiation and polarization [188, 189]. How metformin
can modulate the differentiation of Ly6C monocytes into
M2-like macrophages remains the subject of ongoing inter-
esting studies. In addition to glucose-lowering drugs, T2D
patients are typically treated with low-dose aspirin (acetylsa-
licylic acid) that has off-target anti-inflammatory properties.
Aspirin exerts its anti-inflammatory effects via inhibition of
cyclooxygenase and a subsequent decrease in the proinflam-
matory prostaglandins [190]. Recently, it has been demon-
strated that aspirin-triggered resolvin D1 into a degradable
biomaterial after injury was able to significantly increase
the accumulation of anti-inflammatory monocytes and
M2-like macrophages while limiting the infiltration of
neutrophils and increase proregenerative immune subpop-
ulations [191].

Incretin-based treatments and the cannabinoid 1 recep-
tor (CB1) blocker rimonabant have anti-inflammatory effects
and may protect the pancreatic islets from IL-1β-driven.
However, this anorectic antiobesity and glucose-lowering
drug had also psychiatric side effects [164, 192, 193].

Several studies highlight the role of miRs as key regula-
tors of cell fate determination and significant contributors
to the pathogenesis of complex diseases, such as inflamma-
tory responses and T2D [194]. It was found that miR-223
inhibits Pknox1, suppressing proinflammatory activation of
macrophages, and protects against diet-induced adipose tis-
sue inflammatory response and systemic insulin resistance
[195]; miR-130b was found to be a novel regulator of macro-
phage polarization via repression of PPAR-γ and a promising
target for T2D therapy [167]; miR-27a was also proposed as a
target of intervention for inflammation and insulin resistance
in obesity [196].

In summary, M1/M2-like macrophage polarization and
switching hold the key to the regulation of insulin sensitivity
and T2D. Macrophage polarization toward the alternative
M2-like phenotype may play a preventive role and also be a
novel and useful strategy for the treatment of insulin resis-
tance and T2D.

Novel macrophage-targeted strategies that are both
tissue-specific and disease-specific hold a promise for the
future management of the chronic inflammatory disorders
that were covered in this review.

4. Macrophages in Atherosclerosis:
Killers or Builders?

Atherosclerosis is a chronic inflammatory disease driven by
an imbalance in lipid metabolism and a maladaptive immune
response [197]. This disease is characterized by the accumu-
lation of lipids in large- and medium-sized arteries forming
plaque deposits that block the flow of the blood. Several
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factors have been correlated with the development of athero-
sclerotic diseases, among which the elevated low-density
lipoprotein (LDL) cholesterol, hypertension, obesity, and
both T2D and T1D. The accumulation of LDL promotes
the recruitment of monocytes that lead to the formation of
the atherosclerotic plaques [198]. Further, the exposure to
CSF-1 and the uptake of oxidized LDL (ox-LDL) induce
monocyte differentiation into macrophage and results in

foam cell formation with the proliferation of smooth muscle
cells [199]. The scavenger receptors lead the ox-LDL recogni-
tion, and the intracellular cholesterol is metabolized and
transported to exogenous acceptors, such as high-density
lipoprotein, through efflux proteins, such as ATP-binding
cassette transporters [200] (Figure 4).

Macrophage apoptosis has been observed in patients with
defects in the Acyl-CoA:cholesterol acyltransferase (ACAT),
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Figure 4: Macrophage polarization in atherosclerosis. Macrophages are crucial players involved in the atherosclerosis development due to
their ability to regulate cholesterol efflux. In this context, the upregulation of LXRs in M2 macrophages has been found to exert a
protective role. Indeed, LRXs reduce peripheral tissue excess cholesterol that is returned to the liver by releasing HDL in the plasma (A).
Apart from M1 and M2 polarization, a third macrophage state has been described in the atherosclerosis context that is termed Mox.
Macrophages exposed to oxidized phospholipids display reduced phagocytic and chemotactic abilities compared with M1- and M2-like
macrophages and are characterized by the expression of the transcription factor NFE2L2 as far as Hmox1, Srxn1, Txnrd1, and Gsr genes.
Mox macrophages also activate TLR2dependent mechanisms in response to oxidized lipids leading to an increase of IL1β and COX-2 (B).
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the enzyme that re-esterificates free cholesterol in cholesteryl
fatty acid esters [198]. Seimon et al. showed that oxidized
phospholipids, oxidized LDL, saturated fatty acids (SFAs),
and lipoprotein(a) can induce apoptosis in ER-stressed mac-
rophages through a CD36- and TLR2-dependent mechanism
[201] (Figure 4).

Several in vivo studies have demonstrated macrophage
heterogeneity within the atherosclerotic plaque in response
to the exposition of lipids and their oxidized derivatives
[202]. Indeed, within atherosclerotic microenvironment,
macrophages adapt their phenotype activating specific tran-
scriptional programs. Cholesterol crystals that accumulate
during the early stages of the atherosclerotic process might
be involved in the activation of macrophages [202]. Choles-
terol crystals can promote the caspase1-activating NLRP3
inflammasome, which results in the cleavage and secretion
of IL-1 and may act as a M1-polarizing stimulus [203]. The
proinflammatory M1-like phenotype can also be promoted
by a mechanism that involves inhibition of the transcription
Kruppel-like factor 2 [204, 205] or the activation of the
TLR4-mediated pathway that in turn leads to the activation
of NFκB [206]. Conversely, the anti-inflammatory M2-like
phenotype is induced by 9-oxononanoyl cholesterol, a major
cholesteryl ester oxidation product that can enhance TGFβ
secretion [207]. Moreover, sphingolipid metabolites, such
sphingosine1phosphate (S1P), promote the switching pheno-
type of mouse macrophages from M1- to M2-like state, by
activating S1P1 receptor [208].

Recently, a third macrophage phenotype has been
described in the atherosclerosis context that has been termed
Mox (Figure 4) and represents macrophages exposed to oxi-
dized phospholipids [209–211]. In advanced atherosclerotic
lesions of mice, Mox macrophages comprise approximately
30% of the total number of macrophages [212]. Mox pheno-
type can be triggered by the activation of transcription factor
NFE2L2 [212, 213]. Mox macrophages display reduced
phagocytic and chemotactic abilities compared with M1-
and M2-like macrophages. In mice, Mox macrophages typi-
cally express NFE2L2-mediated redox regulatory genes,
including Hmox1, Srxn1, Txnrd1, and Gsr [212]. Neverthe-
less, in response to oxidized phospholipids, Mox macro-
phages activate TLR2-dependent mechanisms that lead to
an increase of IL-1β and COX-2 expression [214].

Circulatingmonocytes inmurinemodels have been classi-
fied into two major subsets, described as Ly6Chi and Ly6Clow

monocytes. In apolipoprotein E-deficient (ApoE−/−), mice
the increase of Ly6Chi subset (corresponding to human
M1-like subset) has been observed within atherosclerotic
plaques [215].

Several studies have also correlated macrophage polar-
ization with the clinical course of atherosclerosis. Among
all, de Gaetano et al. [216] observed a marked difference
in a macrophage subset between symptomatic and asymp-
tomatic plaques. Indeed, M1 macrophages were found to
be abundant in the developed lipid core of the symptom-
atic plaque and were rarely found in the intimal regions
of the plaque, while M2-like macrophage number was
higher in asymptomatic atherosclerotic plaques, suggesting
a potential protective role of M2-like macrophages.

Moreover, in mouse models, it has been demonstrated that
in the regressing plaque a decrease in the number of mac-
rophages occurs and, in some, a switch of their phenotypic
characteristics has been observed, with an enrichment in
M2-like phenotype, suggesting that this is a common sig-
nature of regressing plaques [217].

Despite several current standard therapies for athero-
sclerosis that may influence general immune responses,
including angiotensin-converting enzyme (ACE) inhibitors,
β-blockers, aspirin, and corticosteroids, these drugs lack
specific macrophage targeting and may only be recognized
as mild modifiers of macrophage activity [218]. Several com-
mon pharmacological agents have already been proposed to
modulate macrophage activity for the prevention as well as
the treatment of inflammatory-related diseases, including
atherosclerosis. PPAR-γ is a crucial factor involved in the
regulation of macrophage lipid metabolism and inflamma-
tory responses and, as already discussed above, is upregulated
in M2-like macrophages [25]. PPAR-γ activators might have
therapeutic potential, and studies conducted by Bai et al.
[219] suggest that mediator 1 (MED1) is required for the
PPAR-γ-induced M2 phenotype switch and showed that
MED1 in macrophages has an antiatherosclerotic activity
via PPAR-γ-regulated transactivation, suggesting MED1 as
a promising target for atherosclerosis therapy.

Natural ligands such prostaglandins and some pharma-
cological agents including anti-TZD that have been demon-
strated to activate PPAR-γ have also been shown to
decrease atherosclerosis progression. Choi et al. demon-
strated that 5-(4-hydroxy-2,3,5-trimethylbenzylidene) thia-
zolidine-2,4-dione (HMB-TZD) reduced leukotriene B4
(LTB4) production and cytokine production by RAW264.7
macrophages and attenuates atherosclerosis possibly by
reducing monocyte recruitment to the lesion [220]. In
in vivo studies, selective inactivation of macrophage PPAR-
γ impairs M2-like activation exacerbating diet-induced obe-
sity [154], suggesting that PPAR-γ inducer might have a
therapeutic potential. Likewise, liver X receptors (LXRs) have
been found to be upregulated in M2-like macrophages and
exert atheroprotective effects by modulating cholesterol
metabolism and M1 macrophage-induced inflammatory
genes, including iNOS, COX-2, and IL-6 [221] (Figure 4).
Tangirala et al. have observed that in experimental models
of atherosclerosis, LXR agonists induced a reduction of pre-
existing plaque size and this was associated with LXR macro-
phage activity. Indeed, macrophage-specific loss of LXRs
resulted in a statistically significant increase in lesion size
[222]. Moreover, the immunomodulatory drug fingolimod
(FTY720) that has been described as a S1P1 receptor mod-
ulator has been shown to increase the proportion of M2-like
macrophages in atherosclerotic lesions and reduce lesion
progression in mice [223]. Statins, effective cholesterol-
lowering agents, have also been reported to dampen immune
responses through inhibition of macrophage inflammatory
activity by increasing efferocytosis in vitro in a 3-hydroxyl-
3-methylglutaryl coenzyme A (HMG-CoA) reductase-
dependent manner, decreasing membrane localization of
RhoA and preventing impaired efferocytosis by lysophospha-
tidic acid, a potent inducer of RhoA [224].
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Stimulation of the macrophage autophagy-lysosomal sys-
tem by the natural sugar trehalose has been reported to reduce
the formation of the atherosclerotic plaque by limitingmacro-
phage apoptosis and necrosis in the plaque cores [225].

Finally, some Lactobacillus has been observed to regu-
late M1/M2-like macrophage ratio by suppressing ox-LDL
phagocytosis, thus blocking foam cell formation [226].
These data supported the employment of prebiotic or pro-
biotic in atherosclerosis.

5. Macrophages in Periodontitis: Killers
or Builders?

Gingivitis and periodontitis are two common diseases affect-
ing the oral tissues and the health of the supporting struc-
tures of a tooth that share inflammation as a common
feature. While in gingivitis the inflammatory process is lim-
ited to the soft tissues, epithelium, and connective tissue, in
periodontitis, the inflammation is extended to the supporting
tissues, including the alveolar bone [227].

Chronic periodontitis (CPD) occurs in response to spe-
cific bacteria within the oral biofilm and involves the destruc-
tion of tooth-supporting tissues. Major features for CPD are
accumulation of immune cells in gingival connective tissue,
resorption of alveolar bone, and the degradation of periodon-
tal connective tissues, which lead to increased tooth mobility
and eventual tooth loss [228, 229].

Chronic periodontitis is strongly associated with the
presence of Gram-negative anaerobic bacteria in subgingival
plaque, in particular, Porphyromonas gingivalis, Tannerella
forsythia, and Treponema denticola. Although initiated by
bacteria, the bone pathology in CPD is mediated almost
entirely by the host response that is thought to be responsible
for the local tissue destruction observed in periodontitis
[230]. In addition, the response to oral pathogens has sys-
temic consequences. For example, infection and chronic
inflammatory conditions, such as periodontitis, may influ-
ence the atherogenic process [231, 232].

It has been reported that monocyte/macrophages act as
relevant killers in periodontal diseases by contributing to tis-
sue breakdown. Elevated numbers of macrophages/mono-
cytes associated with greater collagen breakdown and
higher level of MMPs have been observed in samples from
periodontitis [233]. Studies have shown that IL-1 was
expressed predominantly by macrophages in the tissue iso-
lated from periodontal patients [234]. In addition, higher
levels of Receptor activator of nuclear factor kappa-B ligand
(RANKL) protein, associated with macrophages, have been
observed in the periodontitis tissues [235].

Activated macrophages have been found in the gingival
epithelium, lamina propria, and perivascular tissues and in
the blood vessels in human CPD. As lesions are associated
with chronic periodontitis progress, increasing numbers of
macrophages infiltrate into the gingival tissues [236]. There-
fore, the gingival tissue and crevicular fluid of patients with
chronic periodontitis have been reported to contain signifi-
cantly increased amounts of CCL3, also known as macro-
phage inflammatory protein- (MIP-) 1α and CXCL-8/IL-8,
as compared to healthy subjects [237, 238].

Porphyromonas gingivalis (Pg) is a key periodontal path-
ogen that promotes dysbiosis between host-and plaque-
associated bacteria, thus resulting in both periodontal disease
onset and progression [239, 240]. LPS from Pg activates mac-
rophages through both TLR2 and TRL4 [241], and specifi-
cally, TLR2 activation by Pg LPS triggers the downstream
stimulation of NF-κB, leading to the production of proin-
flammatory cytokines [242–244] (Figure 5).

Macrophages are frequently used as the in vitro model
cells to define immune cell function in CPD studies. Transfer
of TLR2 expressing macrophages to TLR2-deficient mice
restored host sensitivity to Pg oral challenge [245] (Figure 5).

Pg LPS, in the presence of IL-1 and TNF-α, has been
shown to induce cultured human fibroblasts and epithelial
cells to release PGE2, a factor associated with periodontal
bone resorption that promotes the proinflammatory M1-
like macrophage polarization [229, 246–250] (Figure 5).
IL-1 and TNF-α not only enhance inflammation but also
promote bone resorption, a major concern in periodontitis
[251–253]. Oral infection with Pg in BALB/c and C57BL/6
mice resulted in the influx of M1 macrophages into the
submandibular lymph node (SMLN) and gingival tissue,
together with an increase in alveolar bone resorption, as
compared with untreated mice in a murine model of peri-
odontitis [254, 255]. Selective SMLN macrophage in vivo
depletion, using liposomes containing the proapoptotic
agent clodronate, resulted in decreased Pg-induced alveolar
bone in vivo resorption.

Pg infection enhances the secretion of the cytokines IL-
1β, IL-6, IL-12, TNF-α, CSF-3 (G-CSF), and CSF-2 (GM-
CSF), in addition to the chemokines eotaxin and CCL2–4
from macrophages, reflecting a M1 proinflammatory
response (Figure 5). These cytokines and chemokines are
known to act as proinflammatory mediators, to induce
monocytes to migrate from the bloodstream into the gingival
tissue, and to act synergistically to further stimulate proin-
flammatory cytokine production [246, 248, 249, 256]. IL-
10, which is mainly produced by macrophages, was detected
among the wide array of cytokines released during Pg infec-
tion [257]. IL-10 strongly supports M2-like macrophage
and polarized functions including increased production of
arginase-1, higher collagen deposition, and induction of
fibrosis in gingival tissue, all common clinical features of
chronic periodontitis [258–260].

In a recent study, Lam et al. observed that Pg can persist
in naïve and M2-like, but not M1-like, macrophages for 24
hours. Phagocytosis of Pg also induced high levels of TNF-
α, IL-12, and iNOS in M1 macrophages, but not in naïve
macrophages (MØ) or M2 macrophages [254].

T. forsythia expresses a well-characterized TLR2 ligand,
the BspA protein, and N- and O-glycan-linked glycoproteins
that comprise its surface- (S-) layer, covering the outer mem-
brane [261]. This S-layer has been shown to be important in
delaying the cytokine responses of monocyte and macro-
phage cells in vitro [262, 263]. BspA and other ligands
of T. forsythia induce TLR2 signaling favoring the devel-
opment of Th2-type inflammatory responses detrimental
to the alveolar bone that has been shown to be limited
in TLR2−/− mice [242].

13Journal of Immunology Research



T. forsythia whole cells induced significantly greater
amounts of IL-6 and IL-10 in wild-type (BALB/c) bone
marrow-derived dendritic cells (BM-DCs) and macrophages,
markers related to an M2-like polarization, as compared with
TLR2−/− cells. The macrophage-inducible C-type lectin recep-
tor (Mincle), a FcγR-coupled pathogen recognition receptor
(PRR) [263, 264], has been reported to contribute to

macrophage polarization [265]. THP-1 macrophages infected
with the purified S-layer on whole wild-type T. forsythia elicit
aM2-like polarization (IL-10, TNF-α) that is limited inMincle
knockdown macrophages or where infection is performed
with the S-layer TfΔtfsAB-mutated form [265] (Figure 5).

Treponema denticola is among the most frequently iso-
lated oral spirochetal species in patients with periodontitis
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Figure 5: Macrophage polarization in periodontitis. Macrophages that have been found in the gingival epithelium can be activated by several
microorganisms able to induce macrophage polarization toward M1- or M2-like phenotype. P. gingivalis releases LPS, IL-1, and TNF-α that
promote the proinflammatory M1 macrophage polarization (A). Moreover, Pg infection enhances the secretion of IL-1β, IL-6, IL-12, TNF-α,
G-CSF, GM-CSF, and the chemokines eotaxin, MCP1, MIP-1α, and MIP-1β from macrophages, reflecting a M1-like proinflammatory
response (B). In spite of this, it has also been reported that Pg infection can also be associated with the increase of IL10, supporting M2
macrophage and increasing arginase-1 production and collagen deposition, leading to periodontitis (C). T. forsythia releases BspA and
other ligands that induce TLR2 signaling favouring the development of Th2-type inflammatory responses (D). T. denticola induces TLR2
signaling that stimulates the prolonged activation of both ERK1/2 p38 and JNK1/2 in monocytes (E).
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[266, 267]. Major surface protein complex (MSPc), which is
expressed on the envelope of this treponema, plays a key role
in the interaction between T. denticola and gingival cells and
the related cytopathic effects [268]. Treponema denticola
within the periodontium of the host has been reported to
be associated with localized inflammation. MSPc has been
showed to stimulate the release of the proinflammatory cyto-
kines NO, TNF-α, and IL-1β from murine macrophages,
both in LPS-responsive and LPS-nonresponsive murine mac-
rophages [269]. Furthermore, IL-1β, IL-6, and TNF-α secre-
tion by T. denticola-activated macrophages has been shown
to exhibit potent bone reabsorption effects due to their proos-
teoclastic properties [270].

T. denticola-mediated macrophage response is mainly
mediated by TLR2 and via MAP kinases [271]. One of the
most highly conserved signaling cascades activated in both
the innate and the adaptive immune systems involves a fam-
ily of MAPKs including ERK1/2, p38, and JNK1/2 [272].

T. denticola stimulates the prolonged activation of both
ERK1/2 and p38 in monocytes, and pharmacological inhibi-
tion of these pathways plays major roles in regulating both
pro- and anti-inflammatory cytokine productions by T. den-
ticola-stimulated monocytes [271] (Figure 5).

A study from Miyajima et al. reported a correlation
between periodontitis-activated monocytes/macrophages
and aortic inflammation in an in vivo ligature-induced exper-
imental model of periodontitis. Gene expression profiling in
circulating monocytes in this experimental model showed
that periodontitis induced a M1-like specific signature with
high levels of TNF-α and IL-6 as compared to controls, indi-
cating that a M1-like phenotype of macrophages is induced
by periodontitis [273]. This in turn supports the hypothesis
that periodontitis-induced M1-like macrophages are the
inflammatory orchestrators driving specific proinflammatory
messages to the systemic vasculature [273]. The work from
Miyajima et al. also showed that periodontitis-induced M1
macrophages can increase macrophage adhesion to aortic
endothelial cells through the NF-κB/VCAM-1 axis [273].
These results clearly suggest that local-tissue alterations of
macrophages during periodontitis can impact on circulating
monocyte polarization and are associated to vascular alter-
ations involved in apparently distant pathologies that shares
inflammatory cell polarization as common features.

6. Conclusion

It is now widely accepted that inflammation represents a
host hallmark of diverse chronic diseases, ranging from
cancer, diabetes, and metabolic, cardiovascular, and neuro-
logical/neurodegenerative disorders. In the sameway, inflam-
mation has been recognized as a relevant condition for
insurgence, maintenance, and progression of such disorders.
Cell plasticity is a key and shared feature of inflammatory
cells within the host organism that can potentially acquire
killer (M1-like) or builder (M2-like) properties, based on
the surrounding environment. Macrophages are the clearest
example of immune cells that can be switched from killers
to builders and vice versa, and this has been observed in all
the inflammatory-based/associated disorders. Here we

discussed the cellular and molecular mechanisms involved
in macrophage switching to killers or builders in differ-
ently and apparently distant disorders, pointing out the
attention on how the macrophages/microenvironment
reciprocal interaction shape their polarization and distinct
functional states.

Further, we discussed some approaches aimed at resolv-
ing this process, by interfering with aberrant macrophage
killer/builder reciprocal switch. With this knowledge, it is
clear that the identification of novel preventive and interven-
tion strategies, along with effective compounds able in
targeting/limiting/reverting proinflammatory macrophage
polarization, are urgently needed and may represent a rele-
vant tool to shape macrophage function action directly on
them or on the hosting/surrounding environment.
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Cerebral aneurysms (CAs) have become a health burden not only because their rupture is life threatening, but for a series of
devastating complications left in survivors. It is well accepted that sustained chronic inflammation plays a crucial role in the
pathology of cerebral aneurysms. In particular, macrophages have been identified as critical effector cells orchestrating
inflammation in CAs. In recent years, dysregulated M1/M2 polarization has been proposed to participate in the progression of
CAs. Although the pathological mechanisms of M1/M2 imbalance in CAs remain largely unknown, recent advances have been
made in the understanding of the molecular basis and other immune cells involving in this sophisticated network. We provide a
concise overview of the mechanisms associated with macrophage plasticity and the emerging molecular targets.

1. Introduction

Cerebral aneurysms (CAs) are a major cause of subarach-
noid hemorrhage (SAH) [1]. Up to 50% of SAH patients
die within the first 30 days after aneurysm rupture, and
30–50% survivors suffer frommoderate-to-severe disabilities
[2]. Clarification of mechanisms underlying the pathogenesis
of CA is fundamental for developing effective therapies. In
recent years, it is well recognized that inflammation plays
an etiological role in the formation and rupture of CAs
[3, 4], though several other factors mainly hemodynamic,
genetic, environmental, and hormonal have been identified
[5–8]. In particular, macrophages have been confirmed as
critical effector cells in the progression of CAs [9]. In animal
models, both macrophage depletion and inhibition of mono-
cyte chemotactic protein-1 (MCP-1), a key chemoattractant
of macrophages, are associated with a reduced incidence of
CAs [10]. Macrophages are not homogeneous, and they are
generally categorized into two subsets known as classically
activated macrophages (M1-like) and alternatively activated
macrophages (M2-like), respectively [11]. In general, M1
cells exhibit a proinflammatory effect while M2 cells facilitate
resolution of inflammation and promote tissue repair. In
response to various environmental cues (e.g., microbial

products, damaged cells, and activated lymphocytes), mac-
rophages can acquire distinct functional phenotypes via
undergoing different phenotypic polarization, which are
finely regulated processes [12, 13]. Their imbalances have
been thought to be associated with various diseases [14].
Hasan et al. found that M1 andM2 cells were present in equal
proportions in unruptured aneurysms; however, a marked
predominance of M1 over M2 cells was documented in
ruptured aneurysms [15]. Therapies targeting macrophage
activation or preventing the M1/M2 imbalance may poten-
tially halt aneurysm formation and rupture. In this review,
we will focus on the factors that influence macrophage
polarization in CAs. We will also discuss potential targets
for CA therapies.

2. Molecular Mechanisms of Macrophage
Polarization in Cerebral Aneurysm

Extensive research efforts have been made in defining the
molecular networks underlying macrophage polarization.
As shown in Figure 1, IRF/STAT (interferon-regulatory
factor/signal transducer and activator of transcription) sig-
naling is a central pathway in modulating macrophage M1-
M2 polarization. A detailed description of these processes is
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provided in the excellent recent reviews on this subject
[12, 16]. Here, we focus on the molecular mechanisms of
macrophage polarization in cerebral aneurysm.

Toll-like receptor signaling, particularly the activation of
TLR4 (Toll-like receptor 4), drives macrophages to a prefer-
ential M1 phenotype in cerebral aneurysms [17, 18]. The sig-
naling pathway through the Myd88 (myeloid differentiation
primary response gene-88) adaptor results in the activation
of IKKβ (inhibitor kappa B kinase β). In addition, the activa-
tion of IKKβ leads to the phosphorylation and degradation
of IκB (inhibitor kappa B), which permits the translocation of
free NF-κB (nuclear factor kappa-light-chain-enhancer of
activated B cells) to the nucleus. As a key transcription factor
related to macrophage M1 polarization, NF-κB activates the
expression of a large number of inflammatory genes, result-
ing in tissue damage [19]. On the other hand, M2 phenotype
is promoted by several transcription factors. For example, a
recent study has shown that the activation of PPARγ (perox-
isome proliferator-activated receptor γ) by pioglitazone pro-
moted M2 activation to protect mice from CAs [20]. Besides,
it has been reported that ERK5 (extracellular signal-regulated
kinase 5) activation reduced the M1/M2 ratio by inhibiting
the NF-κB pathway in CAs [21]. Although these promising
results expand our knowledge of macrophage polarization
in CAs, the molecular mechanisms that govern the pheno-
type switch of macrophages remain largely unknown.
Recently, NLRP3 (nucleotide-binding domain and leucine-

rich-repeat-containing protein 3) inflammasome has been
detected in T cells and macrophages in the tissue of human
CAs [22]; however, it remains unclear how NLRP3 inflam-
masome further regulates macrophage polarization. In
addition, the role of miRNA (microRNA) in the develop-
ment of cerebral aneurysm has been of particular interest.
Several miRNAs (e.g., miRNA-133, miRNA-140-3p, and
miRNA-145-5p) involved in the differentiation of macro-
phages have been identified in CAs, but their targets need
further investigation [23].

3. Classically Activated Macrophages in
Cerebral Aneurysm

Cerebral aneurysms are characterized by disruption of the
internal elastic lamina (IEL), phenotypic modulation of
smooth muscle cells (SMCs), apoptosis of mural cells, and
extracellular matrix (ECM) degradation, which are consid-
ered as the hallmarks of CA [24]. Mechanistic links between
chronic inflammatory response and these features have
been provided by repeated animal studies [25, 26]. Cerebral
aneurysm development is characterized by increasing polar-
ization towards the M1 macrophage phenotype. Nowicki
and coworkers have reported that the M1 to M2 macrophage
phenotype ratio increased during the 2-week period as aneu-
rysms developed in mice [27]. Inflammatory cytokines
derived from M1 cells initiate the pathological changes of
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Figure 1: Mechanisms of macrophage polarization. Activation of IRF/STAT signaling pathways by IFN and TLR signaling skews
macrophage function toward the M1 phenotype (via STAT1), while activation of IRF/STAT (via STAT6) signaling pathways by IL-4 and
IL-13 skews macrophage function toward the M2 phenotype. PPARγ and ERK 5 participate in the promotion of M2 macrophage in
cerebral aneurysms. NLRP3 inflammasome may contribute to M1 polarization.
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aneurysmal walls, especially mediated by tumor necrosis fac-
tor α (TNF-α) [28, 29] and interleukin-1β (IL-1β) [30]. For
example, TNF-α, an essential cytokine in the pathogenesis
of CAs, initiates SMC phenotypic modulation that is an alter-
ation from contractile to a proinflammatory and matrix
remodeling phenotype [31]. In addition, IL-1β inhibits
ECM biosynthesis in SMCs, thereby exacerbating degenera-
tion of CA walls [32]. Sustained inflammatory response
may eventually trigger apoptosis of mural cells, which ulti-
mately leads to aneurysm rupture. On the other hand, the
irritated SMCs further propagate the inflammatory cascades
by secreting cytokines [31], which drive macrophages to
M1 polarization. The interaction between M1 macrophages
and SMCs may exacerbate the progression of CA through a
positive feedback loop.

4. Inducing Alternative Activation of
Macrophages Relieves Inflammation in CAs

Sustained chronic inflammation may result from dysregu-
lated macrophage polarization. Macrophages can be driven
to M2 phenotype not only by canonical M2 stimuli (e.g., IL-
4, IL-13, and IL-10) but also by several transcription factors,
including PPARγ and Kruppel-like factor 4 (KLF-4) [13].
PPARγ was identified as a critical factor in modulating mac-
rophage M2 polarization induced by IL-4 or IL-13 [33, 34].
Recent study indicated that a PPARγ agonist, pioglitazone,
exhibited a protective effect on preventing CA rupture in
mice [35]. Moreover, Shimada et al. reported that decreased
infiltration of M1 macrophage into the CAs and the macro-
phage M1/M2 ratio were documented following pioglitazone
treatment. Interestingly, the beneficial effect of pioglitazone
treatment was abolished in macrophage-specific PPARγ
knockout mice. The authors concluded that activation of
PPARγ in macrophages may act against CA rupture through
reducing macrophage-related cytokines, including IL-1, IL-6,
and MCP-1 [20]. Their study sheds light on noninvasive
treatment of CAs by inducing inflammation regression, such
as promotingM2 shift. However, the underlying mechanisms
governing these processes remain to be elucidated.

5. Regulation of Macrophage Plasticity by Other
Immune Cells

Besides macrophages, the representation of several other
immune cell populations, such as neutrophils, natural killer
(NK) cells, mast cells, and lymphocytes, is altered in CA walls
[36]. As the initial responder to cellular stress, macrophages
can contribute to the further recruitment and activation of
adaptive immune cells. These immune populations elicit their
effects on the potentiation or repression of inflammation by
altering the activation state of macrophages, suggesting a
highly complex regulation of the inflammatory processes in
vascular wall (Figure 2). Over the last decade, orchestration
of inflammation by these immune cells in CAs has been
extensively investigated. For example, it has been reported
that neutrophil blockade using anti-CXCL1 (C-X-C motif
ligand 1) antibody attenuated polarization towards the M1
phenotype during the 2 weeks postaneurysm induction in

mice, suggesting that CXCL1-dependent neutrophil inflam-
mation may have an important role in macrophage polari-
zation to M1 phenotype in the development of CAs [27].

Although best known for the contribution of mast cells in
microbial defense and allergy, previous study has found that
mast cells were invariably present in CA walls and were more
pronounced in ruptured than in unruptured human CAs
[15]. Reduced infiltration and activation of mast cells effec-
tively attenuate destruction in aneurysmal walls, suggesting
their roles in CA development [37]. Degranulation of mast
cells led to increased expression of MMP-2 (matrix metallo-
proteinase-2) and MMP-9 and induced nitric oxide synthase,
which result in damage to the vascular wall [38]. Moreover,
they release cytokines, including TNF-α, IL-1β, and MCP-
1, which potently activate M1 macrophages. By using mast
cell degranulation inhibitors, decreased macrophage infiltra-
tion was evident in a rat model [37]. However, the biological
mechanisms underlying interaction between M1 macro-
phages and mast cells remain unclear. Further studies are
needed to determine the potential role of mast cells in macro-
phage polarization and the pathology of CAs.

Studies of specimens of human CAs have shown that
both T and B lymphocytes robustly infiltrate the vessel wall,
especially around the site of CA rupture; presumably, they
are involved in the progression of CAs [36]. Nonetheless,
the role of lymphocytes in the pathogenesis of CAs is contro-
versial. Sawyer et al. found that CA formation and rupture in
lymphocyte-deficient mice were significantly less prevalent
than that in wild-type group, though they were equally sub-
jected to a robust CA induction protocol [39]. Conversely, a
recent study indicated that deficiency of T cells in rats failed
to affect CA progression, degenerative changes of arterial
walls, and macrophage infiltration in lesions [40]. As T lym-
phocytes can differentiate into distinct subsets following the
local stimuli within the CA walls, it is tempting to speculate
that a certain subset of T cells may contribute to the patho-
genesis of CAs. In clinical, patients with CAs exhibited a
CD4+ T cell skewing in their peripheral blood, with more
Th17 (T helper cell 17) and fewer Th2 cells. In line with these
findings, IL-17 level was elevated while IL-10 was decreased.
Although the representation of Th1 and Treg cells (regula-
tory T cells) in CA patients was not distinguished from that
of healthy controls, altered cytokine profiles were detected.
In patients suffered from CAs, the Th1 cytokines (IFN-γ,
TNF-α) were increased whereas the production of IL-10
was declined significantly [41]. The imbalance of CD4+ T cell
was likely to facilitate inflammation in CAs. Their findings
do not fully describe the range of functions that activated
macrophages exert, but specialized T cells (Th1, Th2, Th17,
and Treg cells) presumably participate in macrophage polar-
ized activation [42, 43]. Considering their crucial roles in
adaptive immune response, the effect of specific T subsets
on macrophage polarization remains to be revealed.

6. Current Antiinflammatory Therapeutic
Strategies and Future Directions

Since chronic inflammation is a key etiologic factor in CA
formation and rupture, therapeutic attempts to interfere with
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inflammatory response have potential importance. Several
clinical agents have been investigated with varied success,
perhaps the most promising one being aspirin [44]. Both
direct macrophage imaging and histological examination
have confirmed that aspirin ameliorates the inflammation
of CA walls in human [45, 46]. Growing evidences indicate
that administration of aspirin is associated with the reduced
risk of CA rupture in humans [47, 48]. A detailed discussion
of this subject can be found in recent reviews [49, 50].

Given the critical role of macrophages in the etiology
of cerebral aneurysm to rupture, macrophage-mediated
therapies, by directly effecting on macrophages or indi-
rectly targeting other immune cells that regulate M1/M2
polarization, are likely to represent novel strategies for
CA treatment [16]. As mentioned above, PPARγ was identi-
fied as a key factor inducing alternative M2 phenotype. In
human atherosclerotic lesion, PPARγ activation primes
monocyte toward an alternative M2 phenotype [51]. In
parallel, reduced infiltration of M1 macrophage and the
M1/M2 ratio are observed following pioglitazone in mouse
model, raising the possibility that inflammatory cell PPARγ
is emerging as a potential target for preventing CA rupture.
Recently, NLRP3 inflammasome, a multiprotein complex
initiating the maturation of pro-IL-1β and pro-IL-18, is
detected in T cells and macrophages within the wall of
human CAs [22]. Activation of NLRP3 inflammasome

results in IL-1β and IL-18 production, which potently induce
M1 polarization. It has been confirmed that Nlrp3-knockout
mice show decreased M1 but increased M2 gene expression
in adipose tissue macrophages [52]. These studies implicate
that genetic elimination of the components of NLRP3
inflammasome may dampen the inflammatory response
mediated by M1 macrophage. In contrast to recruitment of
monocytes to arterial walls, the process of macrophage emi-
gration from CAs may be impaired. In murine models of ath-
erosclerosis, Netrin-1 was found to block macrophage
movement by inhibiting actin reorganization, making cells
refractory to emigration from plaques [53]. The mechanisms
preventing macrophage egress from CAs warrant further
exploration. Finally, with our refined recognition of the
complex interactions between macrophages and other
immune cells in CA wall, we are likely to enter a new era in
which immune modulation can be proposed as a therapeutic
strategy against cerebral aneurysm.

7. Concluding Remarks

In recent years, progress has been made in our understanding
of dysregulated macrophage polarization in CAs; however,
detailed processes remain fragmentary. It is likely that in
the next few years, ongoing work in this field will continue.
Future studies to delineate the mechanisms involving
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macrophage plasticity in the environment of aneurysmal
walls will enable new strategies for attacking CAs.
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Platelet-activating factor (PAF) plays an important role in the pathogenesis of several types of tumors. The biological effects of PAF
are mediated by the PAF receptor (PAFR), which can be expressed by tumor cells and host cells that infiltrate the tumor
microenvironment. In the present study, we investigated the role of PAFR expressed by leukocytes that infiltrate two types of
tumors, one that expresses PAFR (TC-1 carcinoma) and another that does not express the receptor (B16F10 melanoma)
implanted in mice that express the receptor or not (PAFR KO). It was found that both tumors grew significantly less in PAFR
KO than in wild-type (WT) mice. Analysis of the leukocyte infiltration shown in PAFR KO increased the frequency of
neutrophils (Gr1+) and of CD8+ lymphocytes in B16F10 tumors and of CD4+ lymphocytes in TC-1 tumors. PAFR KO also had
a higher frequency of M1-like (CD11c+) and lower M2-like (CD206+) macrophages infiltrated in both tumors. This was
confirmed in macrophages isolated from the tumors that showed higher iNOS, lower arginase activity, and lower IL10
expression in PAFR KO tumors than WT mice. These data suggest that in the tumor microenvironment, endogenous PAF-like
activity molecules bind PAFR in macrophages which acquire an M2-like profile and this promotes tumor growth.

1. Introduction

Platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-gly-
cero-3-phosphocholine) is an inflammatory lipid mediator
produced through the activation of A2 phospholipase in
response to different stimuli [1]. PAF is secreted by many dif-
ferent cell types, and the biological effects of this molecule are
mediated by the activation of PAF receptor (PAFR), a G
protein-coupled receptor expressed in monocytes/macro-
phages, polymorphonuclear leukocytes, platelets, endothelial
cells, and other cell types as well as tumor cells [2–5].

Emerging evidence indicates that PAFR plays an impor-
tant role in tumor growth [6–8]. Systemic treatment with
PAFR antagonists resulted in the inhibition of tumor growth
in murine melanoma, B16F10, and the human melanoma
cell line, SK-MEL-37, engrafted in nude mice [9]. Trans-
genic mice overexpressing PAFR spontaneously developed

melanocytic tumors [10]. In the tumor microenvironment,
PAFR ligands can promote tumor growth, either by sup-
pressing antitumor immune responses or by inducing
tumor cell proliferation angiogenesis and production of
growth factors [11, 12].

TAMs (tumor-associated macrophages) have been the
subject of study for many research groups through the last
few years. These are plastic cells that respond to the environ-
ment displaying a large phenotypic heterogeneity but that
have been classified into two distinct extreme populations:
classically activated macrophages (M1), which are character-
ized by high production of nitric oxide (NO) and reactive
oxygen intermediates (ROI) and CD11c/IL-12 expression,
and the alternatively activated macrophages (M2), identi-
fied by the expression of CD206 (mannose receptor) and
IL-10, with high arginase activity and low NO production.
In murine and human tumors, TAM generally exhibits an
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alternatively activated phenotype which is associated with
the promotion of tumor growth, extracellular matrix
remodeling, angiogenesis, and the suppression of adaptive
immunity [13, 14].

Some tumor cells also express PAFR; upon activation
of the receptor, intracellular programs are switched in
tumor cells that promote their survival and proliferation
[11, 15, 16]. We have recently shown that TC-1 carcinomas
express PAFR and the addition of PAF increased tumor cell
proliferation in vitro. Moreover, the addition of PAF to
human carcinoma cells transfected with PAFR (KBP)
increased cell proliferation, whereas in KBM cells, devoid of
the receptor, PAF had no effect [17]. Human cancer cells
derived from uterine adenocarcinoma (HEC-1A) have been
shown to secrete PAF, and treatment with PAF receptor
antagonists inhibited their proliferation [18]. There is also
evidence that leukemia cell lines and cells derived from
esophageal cancer express PAFR since the addition of PAF
was able to stimulate transcription of the cyclooxygenase-2
enzyme, the activity of which was associated with tumor
growth [19].

The tumor-promoting effect of PAF-like activity mol-
ecules generated in the tumor microenvironment can be
dependent either on their effect on host cells or on tumor
cells. The experiments that showed a reduction of tumor
growth after in vivo treatment with PAFR antagonists do
not allow to discriminate whether they blocked the recep-
tor in host or tumor cells. Experiments by Sahu et al.
[20] favor the first hypothesis. The authors showed that
melanoma cells treated in vitro with PAF before implan-
tation potentiated tumor growth in wild-type but not in
PAFR KO mice.

In an attempt to understand the relative contribution of
PAFR in the tumor microenvironment, we used two different
tumor cell lines, B16F10 and TC-1 to inoculate wild-type
mice (WT) or genetically deficient PAFR mice (PAFR KO).
These tumor cells have different embryonic origins, generate
subcutaneous tumors in 100% of the inoculated mice, and are
very well characterized in the literature. Using these experi-
mental models, we investigated tumor growth, tumor leuko-
cyte infiltrate, and the TAM phenotype.

2. Methods

2.1. Cell Lines and Animals. The B16F10 melanoma cell
lineage was purchased from the American Type Culture
Collection (ATCC CRL6475™, Manassas, VA, USA) and
was maintained in DMEM (Dulbecco’s Modified Eagle’s
Medium, GIBCO, Waltham, MA, USA) supplemented with
10% fetal calf serum (GIBCO), penicillin (100 units/mL),
and streptomycin (100μg/mL). The TC-1 cell line was kindly
donated by Dr. Wu (John Hopkins, Baltimore), this cell line
is a murine carcinoma derived from lung epithelium, trans-
duced with HPV16 E6/E7 and c-Ha-ras oncogenes [21].
TC-1 cell line was maintained in 10% FCS in RPMI supple-
mented with 400μg/mL neomycin. Cells have been regularly
tested for mycoplasma and were free of this contamination.
All cell cultures were incubated at 37°C under a humidified
atmosphere of air containing 5% CO2.

C57BL/6 wild-type mice (WT, PAFR expressing; age
6–8 week) and age-matched PAFR-deficient (PAFR KO)
mice on a C57BL/6 background, generated as described
[22], were a kind gift of Professor Takao Shimizu (Depart-
ment of Biochemistry, University of Tokyo). All mice were
housed in the Department of Immunology’s Animal Facility
at the University of São Paulo. The animals were maintained
in specific pathogen-free conditions, with 12h light/dark
cycles and water and chow ad libitum. All experimental pro-
cedures were performed following the guidelines adopted by
the Brazilian College of Animal Experimentation (COCEA)
and were approved by the Ethical Committee for Animal
Research of the Institute of Biomedical Sciences of the Uni-
versity of São Paulo (protocol number 130/2015).

2.2. Mouse Tumor Model. Tumor cells lines (B16F10 or
TC-1) were injected subcutaneously in the dorsal flank of
C57BL/6 WT and PAFR KO mice as single cell suspensions
(5× 105 in 100μL) in PBS++ (phosphate-buffered saline sup-
plemented with 1mMCaCl2, 0.5mMMgCl2). Tumor forma-
tion and size were measured with a caliper until the 15th day.
Mice were observed and measured with intervals of 2 or 3
days from the day when they were injected. Tumor volume
was calculated using the equation: V=D∗d2/2, where V is
the tumor volume, D is the largest measured diameter, and
d is the smallest measured diameter of the tumor.

2.3. Cell Suspension Preparations. All cell preparations were
made using ice-cold 1x Hanks’ solution with 15mM HEPES,
pH7.4, 0.5U/mL DNase I (Worthington Biochemical,
Lakewood, NJ, USA) and 5% FBS. Tumors were harvested
after mouse euthanasia. The tumor cell suspensions were
obtained by the digestion of finely minced tissue with
1mg/mL collagenase I and IV (Worthington Biochemical
Corp., Lakewood, NJ) in the buffer described above in a
ThermoMixer (Eppendorf, Germany) at 37°C for 45min.
Spleen-nucleated cell suspensions were obtained by tissue
dissociation through a 70μm metal mesh and red cell lysis
with ACK (ammonium-chloride-potassium) Lysis Buffer
(Invitrogen, Invitrogen-Life Technologies, Carlsbad, CA,
USA). Peritoneal macrophages were harvested after mouse
euthanasia, by washing the peritoneal cavity with 5mL ice-
cold PBS. Cell viability, accessed by trypan blue staining,
in the final suspensions was between 90% and 95%.

2.4. Flow Cytometry Analysis. Single cell suspensions were
stained with different fluorochrome-conjugated antibodies
(indicated in each figure). The antibodies used in this work
were anti-CD4 (clone GK1.5), anti-CD8 (clone 53-6.7),
antiGr1 (clone RB6-8C5), anti-CD11b (clone M1/70), anti-
CD45 (clone 30-F11), and anti-F4/80 (clone BM8) purchased
from BD Biosciences (San Diego, CA). Flow cytometry was
performed in a FACSCanto II (BD Biosciences, San Jose,
CA, USA), where 30,000–50,000 events were acquired. Dur-
ing data acquisition, debris and doublets were excluded. Data
obtained were analyzed with the FlowJo software version 5.0
(TreeStar, Ashland, OR, USA).

2.5. Cell Sorting. CD45+ cells and leukocytes were sorted
from total tumor suspensions by positive selection after
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incubation with biotin-conjugated anti-CD45 magnetic
beads (Miltenyi Biotec, Germany) and loading in columns
exposed to a magnetic field (MACS LS+ Separation Columns,
Miltenyi Biotec). In general, we obtained 80–95% pure cells
with at least 90% viability.

2.6. Quantification of Nitric Oxide, Arginase Activity, and
IL-10. CD45+-sorted cells were seeded in 6-well culture plate
(106 cells/mL) in 10% RPMI treated with 10ng/mL LPS
(Sigma-Aldrich, St Louis, MO, USA) at 37°C for 72 h. Super-
natants were then harvested for NO production and assessed
by nitrite production in culture using the Griess reaction
[23]. Arginase activity assay in total cell lysates was done as
previously described [24] Aliquots of cell lysates were used

for protein quantification by the Bradford assay (Bio-Rad;
ref. 32). Murine IL-10 production was determined by ELISA
(BD Biosciences, San Diego, CA, USA) according to the man-
ufacturer’s specifications.

2.7. Statistical Analyses. Tumor growth kinetics experiments
were tested using the nonparametric Mann–Whitney U
test. Data from all other experiments were tested by t-test,
using the Prism 5.0 statistical program (GraphPad Software,
San Diego, CA, USA). In all cases, p < 0 05 was considered
significant. The number of animals or samples used in
each experiment is indicated in the figure legends. Each
experiment was repeated at least three times. Mostly, our
data are represented as the average value of parameters
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Figure 1: PAFR is important for B16F10 melanoma and TC-1 tumor growth. B16F10 melanoma cells and TC-1 tumor cells were injected
(5× 105 cells) into the dorsal flank of C57BL/6 WT or PAFR KO mice. The left panel shows the tumor growth kinetics of B16F10
melanoma (a) and TC-1 (b). Representative macroscopic images of the tumors at 15 days postinoculation are shown to the right of the
tumor growth kinetics; each tumor depicted in the images correspond to the tumors displayed in the adjacent curve. ∗ indicates p < 0 05
(Mann–Whitney U test). In the right panels, we show the average weight of the tumors at 15 days postinoculation. Data were obtained
from 3 independent experiments with 4 animals per experimental group. ∗ indicates p < 0 05 (t-test).
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obtained per experiment± standard deviation (s.d.) unless
otherwise indicated.

2.8. Data Availability. The datasets generated during and
analyzed during the current study are available from the cor-
responding author on reasonable request.

3. Results

3.1. PAFR and Tumor Growth. We injected B16F10 mela-
noma and TC-1 carcinoma cells subcutaneously in WT and
PAFR KO mice and followed tumor growth for 15 days.
TC-1 cells express PAFR [17] whereas B16F10 do not [20].
After 6 days of cell inoculation, it was possible to detect pal-
pable tumors in both mouse strains. However, in PAFR KO
animals, the tumors were significantly smaller than in the
WT. These results were consistently observed throughout

the experiments for both, melanoma (Figure 1(a)) and for
TC-1 carcinomas (Figure 1(b)). At the end of the experiment
(day 15), tumor weight was also significantly smaller in PAFR
KO mice. It is noteworthy that melanoma tumors had higher
volume/weight rate (3.2) compared to TC-1 (1.2), which was
compatible with the observation that melanoma was more
edematous. Thus, the presence of PAFR in host cells seems
to be relevant for tumor growth.

3.2. PAFR and Tumor Inflammatory Infiltrate. Our previous
data suggest that PAFR signaling in the host plays a role in
tumor growth. The tumor microenvironment is not only
constituted by neoplastic cells but also several cell types
recruited from the bloodstream, constituting the tumor
inflammatory infiltrate. The inflammatory infiltrate can
provide signals that inhibit or favor tumor growth [25].
Moreover, several of the cell types present in the tumor
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Figure 2: Inflammatory infiltrate in B16F10 melanoma and TC-1 tumors. Single cell suspensions of TC-1 (a) or B16F10 (b) tumors fromWT
and PAFR KO animals injected 15 days earlier were analyzed by flow cytometry. Cells were labeled with anti-CD45 antibody and 50,000
events were acquired per sample, using a FACSCanto cytometer. In the left panel: dot plots depicting SSC-A X CD45 expression
(panleukocyte marker) of tumors from WT and PAFR KO animals. These plots were obtained by previously gating out debris and
doublets. The gates indicate the CD45+ populations. In the right panels, we show the average percentage of CD45+ cells in each
experimental group. Data were obtained from 3 independent experiments with 4 animals per experimental group. ∗ indicates p < 0 05.
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microenvironment express PAFR and can be modulated
by its ligands. Therefore, we decided to investigate whether
PAFR could control the tumor inflammatory infiltrate in
our experimental models.

We harvested and digested tumors from wild-type
and PAFR KO mice 15 days after tumor cells inoculation
and analyzed the inflammatory infiltrate by flow cytometry.
In melanoma tumors, the tumor inflammatory infiltrate
(CD45+ cells) corresponded to 1.6± 0.3% of the total cells
and there was no difference in the percentage of CD45+ cells
between the two groups of animals (WT versus PAFR KO;
Figure 2(a)). In TC-1 tumors, however, the inflammatory
infiltrate was almost 10 times higher than in B16F10 mela-
noma and a significant reduction in the number of infiltrated
cells was observed in PAFR KO (Figure 2(b)).

Next, we evaluated the frequency of lymphocyte popula-
tions in the tumors. We observed a twofold increase in the
frequency of CD8+ T cells, within the CD45+ population in
PAFR KO animals injected with melanoma when compared
to WT animals (Figure 3(a)). In contrast, in TC-1 tumors,
it was the CD4+ cell population that was increased in PAFR
KO (Figure 3(b)).

Regarding the myeloid populations (macrophages and
neutrophils) that were recruited to the tumors, we found that
B16F10 melanoma recruited more macrophages (F4/80+

cells) than TC-1 tumors; macrophages corresponded to
42± 3% of the CD45+CD11b+ population whereas in TC-
1 tumors, macrophages corresponded to 28.7± 2.6% of this
population (Figure 4). Interestingly, in both tumor models,
the frequency of neutrophils (CD45+CD11b+Gr1+) was
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Figure 3: Characterization of lymphoid tumor infiltrate. Total single cell suspensions of B16F10 (a) or TC-1 (b) tumor from WT and PAFR
KO animals were analyzed by flow cytometry (50,000 events). The left panels show a representative analysis of the lymphocyte (CD4+ and
CD8+) populations. The CD4 and CD8 populations were analyzed within the CD45+CD11b− gate, after gating out debris and doublets.
The panels to the right show the quantification of these experiments, represented as the average percentage of cells expressing CD4 or
CD8, within the CD45+CD11b− population. Data were obtained from 3 independent experiments with 4 animals per experimental group.
∗ indicates p < 0 05.
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significantly higher in PAFR KO mice than in WT mice
(Figures 4(a) and 4(b)). Together, these results indicate
that the absence of PAFR in the host cell determines the
recruitment of different leukocyte populations into the
tumor stroma.

3.3. PAFR and Tumor-Associated Macrophages (TAM)
Phenotype. We have previously shown that the activation of
PAFR reprogram mice and human macrophages towards
an anti-inflammatory phenotype [26]. We therefore decided
to investigate the phenotype of TAM in our experimental
models. Although these cells are highly heterogeneous,
they are classified into two extreme subtypes: the classi-
cally activated M1, which has a proinflammatory profile
and expresses CD11c as a phenotypic marker, and the

alternatively activated macrophages M2, which exhibit an
anti-inflammatory profile and express CD206 [27]. Thus,
we determined the frequency of CD11c and CD206 cells
within the CD45+CD11b+F4/80+ macrophage population.

Figure 5 shows that PAFR KO mice had a significantly
higher frequency of TAM expressing the CD11c (M1-like)
and a lower frequency of cells expressing CD206 (M2-like)
molecule in both melanoma (Figure 5(a)) and TC-1
(Figure 5(b)) tumors when compared to the WT groups
of each strain.

This was confirmed in macrophages (CD45+ cells) iso-
lated from the tumors and stimulated with 10ng LPS for
72 hours in culture. We observed that macrophages from
PAFR KO animals produced significantly higher concentra-
tion of nitrite (Figure 6(a)), indicative of iNOS activity, and
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Figure 4: Characterization of myeloid tumor infiltrate. Total single cell suspensions of B16F10 (a) or TC-1 (b) tumors from WT and PAFR
KO animals were labeled with antibodies against the indicated markers plus anti-CD45 and anti-CD11b and analyzed in a FACSCanto, where
50,000 events were acquired. In the left panels, we show a representative analysis of the myeloid populations from 3 independent experiments
with 4 animals per group. The cells were analyzed within the CD45+CD11b+ gate, after exclusion of debris and doublets. In the right panel, we
show the mean percentage of the frequency of Gr1+ and F4/80+ cells within the CD45+CD11b+ population. ∗p < 0 05.
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had lower arginase activity (Figure 6(b)) than cells from WT
animals. There was also lower concentration of IL-10 in the
supernatant of cultures of leukocytes from tumors from
PAFR KO mice (Figure 6(c)). Thus, in the WT mice, the
TAMs are predominantly M2 whereas in PAFR KO mice,
the TAMs are predominantly M1. It can be suggested that
during tumor growth, the generation of PAFR ligands by
activating the receptor reprograms the macrophages towards
the M2 phenotype which favors tumor growth. In the
absence of PAFR, the activated M1 macrophages are able to
control tumor growth.

4. Discussion

In the present study, we showed that the growth of B16F10
melanoma and TC-1 carcinoma is reduced in mice lacking
the PAF receptor when we compared to WT mice. Our

results indicate that during the growth of melanoma
B16F10 and TC-1 carcinoma PAF receptor ligands are pro-
duced in the tumor microenvironment and control the
recruitment and phenotype of inflammatory cells to the
tumor, promoting the accumulation of M2 macrophages
and stimulating tumor growth. Our observations are made
even more robust in light of the different PAFR status of
B16F10 and TC-1 cell lines. TC-1 cells express PAFR
[17], whereas B16F10 do not [20], which indicates that
PAFR signaling in the tumor cells was not important in
our experimental context.

Evidence from a previous work showed that PAFR has
an important role in tumor growth based on studies
employing selective antagonists of PAFR. Blockade of
PAFR with the antagonist, WEB2170, reduced the growth
of Ehrlich ascites tumor (EAT) [28] and melanoma
B16F10 growth in C57BL/6 mice [29]. PAF receptor
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Figure 5: PAFR-modulated TAM phenotype. In a (B16F10) and b (TC-1), we show a representative analysis of the macrophage populations
(CD45+CD11b+ F4/80+) expressing the M1-like marker, CD11c, or the M2-like marker, CD206, fromWT and PAFR KO tumors. ∗ indicates
p < 0 05 for WT compared with PAFR KO tumors. Each experimental group contained 4 animals.
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antagonist ginkgolide B inhibits tumorigenesis and angio-
genesis in colitis-associated cancer [30]. Several tumor
cells express PAFR and its activation is involved in tumor
cell survival and proliferation. In the present work, we
showed that the protumoral effect of PAF ligands was due
to the modulation of TAM phenotype rather than on tumor
cell proliferation.

Interestingly, while we observed that deficiency in PAFR
expression caused a reduction in total leukocyte recruitment
(CD45+ population), this effect was directed to specific
populations, as within the CD45+ infiltrate, neutrophils and
T cells still had higher frequency in tumors from PAFR-
deficient mice than in tumors fromWTmice, suggesting that
PAFR mediated the recruitment of monocytes/macrophages.
Our results also indicate that during tumor growth, chemo-
kines that promote leukocytes migration to the tumor are
produced in response of PAFR activation inside the tumor
microenvironment. Previous work has shown that in PAFR
KO animals with Ehrlich tumor ascites, elevated levels of
CXCL2 and CCL2 chemokines controlled the recruitment
of myeloid cells to the tumor [31].

In our study, the increased frequency of neutrophils and
intratumoral CD4+/CD8+ lymphocytes correlated with the
inhibition of tumor growth, suggesting that PAFR may be
involved in the recruitment of these cells into the tumor
stroma. Although we did not investigate the phenotype of
these lymphocytes specifically, our data suggest that in PAFR
KO mice, these cells might have an antitumor function.
Indeed, when macrophages were depleted from TC-1
tumors, not only was an increase in the T cell tumor infiltra-
tion found but also the presence of antitumor-specific CD8
cells in the infiltrate [32].

PAF appears to have a pivotal role in macrophage func-
tion. Macrophages undergo functional and phenotypic
changes in response to signals from the tumor microenviron-
ment. The role played by macrophages in the biology of
neoplasias is complex, because macrophages may assume

anti- or protumor phenotype [27, 33–35]. M1 phenotype or
“classically activated” macrophages have antitumor activity
and macrophages of the M2 phenotype are considered protu-
mor [36–38]. In our study, we found no significant differ-
ences in the frequency of macrophages that infiltrate
melanoma and TC-1 tumors when comparing PAFR KO
and WT animals. However, when we analyzed the activation
profile of these cells, we observed that in the PAFR KO
animals there was a significant shift in the frequency of mac-
rophages fromM1 toM2 phenotype. Previous work from our
group showed that during EAT growth, macrophages in the
ascites presented morphology of nonactivated macro-
phages and after treatment in vivo with PAFR antagonists
(BN52021 or SRI63441), the macrophages acquired an acti-
vated morphology, and this was accompanied by a significant
reduction in EAT growth [28, 39]. The clearance of apoptotic
cells by macrophages requires the scavenger receptor CD36
and PAFR and induces macrophage reprogramming towards
the M2 phenotype [26]. De Oliveira et al. [29] showed that
PAFR antagonist decreased the phagocytosis of apoptotic
cells by macrophages and inhibit the production of anti-
inflammatory cytokines and mediators. These results suggest
that during tumor growth, the clearance of apoptotic cells by
TAM as well as the generation of PAF or PAF-like activity
molecules in the tumor microenvironment modulates the
macrophages into the M2 suppressor phenotype.

Solid tumors can display systemic effects on leukocyte
populations, modulating the immune response even before
cells reach the tumor microenvironment or promoting the
proliferation of protumoral cells, such as myeloid-derived
suppressor cells [40]. This is an important aspect to be con-
sidered during tumor growth since molecules produced in
the tumor microenvironment can circulate and signal to lym-
phoid organs, increasing hematopoiesis, leading to accumu-
lation, mainly of myeloid cells, in secondary lymphoid
organs [41, 42]. We have previously shown that myeloid cells
accumulate in the spleen of TC-1 tumor-bearing mice [32].
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Figure 6: TAMs from PAFR KO tumors show the M1-like phenotype. CD45+ cells were purified from tumor suspensions from animals by
positive selection using CD45-coated magnetic beads (Miltenyi Biotec) and stimulated with 10 ng/mL of LPS. After 72 hours of incubation at
37°C in 10% SFB RPMI, the culture supernatants were harvested for nitric oxide (nitrite) production detection by Griess reaction (a) and
IL-10 detection by ELISA (c). The cellular extracts were used for determination of arginase activity (b) normalized by the total protein
concentration measured by BCA kit. ∗ indicates p < 0 05 for WT compared with PAFR KO tumors. Each experimental group contained
4 animals. pM are peritoneal macrophages treated in exactly the same way as tumor infiltrating cells, used as control for NO detection
and arginase activity assays.
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Here, we also observed that mice bearing tumors have larger
spleens and significantly higher cellularity than those without
tumors. Interestingly, this tumor-associated splenomegaly
did not occur in PAFR KO mice (Supplementary Figure
S1). Whether this was a direct effect on cell proliferation
and survival in lymphoid organs or a result of the diminished
tumor growth, with concomitant reduction in the secretion
of molecules that could stimulate leukocytosis, is yet to be
investigated. Either way, it seems that the activation of
PAFR-dependent pathways can interfere with the balance
of leukocyte populations in the spleen and thus potentially
modulate the adaptive immune responses to the tumor.

Together with the data presented in this manuscript, we
can assume that part of this mechanism may relate to the sig-
naling through PAFR. Interestingly, STAT3 upregulation is a
hallmark of many cancer models, not only in cancer cells but
also in the inflammatory infiltrate [43]. For instance, cervical
carcinoma cells can induce the tolerogenic phenotype in
macrophages through the secretion of IL-6 and PGE2 [44].
PAF/PAFR can activate the IL-6/STAT3 axis contributing
to the epithelial-mesenchymal transition in nonsmall lung
cancer cells [45]. Therefore, the idea that PAFR signaling
may have direct and indirect effects in promoting cancer pro-
gression and growth seems consistent.

Our results clearly show that PAFR ligands modulate
inflammatory cells in the tumor microenvironment, mainly
macrophages, promoting protumoral effects, through the
induction of the M2 macrophage phenotype.
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Macrophages are major cell types of the immune system, and they comprise both tissue-resident populations and circulating
monocyte-derived subsets. Here, we discuss microglia, the resident macrophage within the central nervous system (CNS), and
CNS-infiltrating macrophages. Under steady state, microglia play important roles in the regulation of CNS homeostasis through
the removal of damaged or unnecessary neurons and synapses. In the face of inflammatory or pathological insults, microglia
and CNS-infiltrating macrophages not only constitute the first line of defense against pathogens by regulating components of
innate immunity, but they also regulate the adaptive arms of immune responses. Dysregulation of these responses contributes to
many CNS disorders. In this overview, we summarize the current knowledge regarding the highly diverse and complex function
of microglia and macrophages during CNS autoimmunity—multiple sclerosis and cancer—malignant glioma. We emphasize
how the crosstalk between natural killer (NK) cells or glioma cells or glioma stem cells and CNS macrophages impacts on the
pathological processes. Given the essential role of CNS microglia and macrophages in the regulation of all types of CNS
disorders, agents targeting these subsets are currently applied in preclinical and clinical trials. We believe that a better
understanding of the biology of these macrophage subsets offers new exciting paths for therapeutic intervention.

1. Introduction

The central nervous system (CNS) has been long recognized
as an immune-privileged site [1]. But over the last several
years, evidence has accrued suggesting that the CNS contains
resident immune cells that actively participate in immune
surveillance and shape the CNS development and neuronal
function under steady states. These resident cells include
various types of macrophages, including the most abundant
and best studied population, microglia [2]. In the face
of pathological insults, CNS microglia and macrophages,
including CNS-infiltrating macrophages derived from cir-
culating monocytes, constitute the first line of defense
against pathogens by regulating components of both innate
and adaptive immune responses. Dysregulation of these
responses underlies the pathogenesis of many CNS disorders.
Here, we summarize the current understanding of CNS
microglia and macrophages, including their development,

homeostasis, and functions in physiological and pathological
status (autoimmune disease and tumor), the interaction of
CNS microglia and macrophages with other immune com-
ponents (innate and adaptive immune cells), and the
therapeutic potential of CNS microglia and macrophages
as drug targets.

2. The Development, Homeostasis, and
Function of CNS Microglia and Macrophages

Macrophages are myeloid cells that survey their immediate
and local environment by ingesting and degrading dead cells,
debris, and potentially hazardous agents, such as pathogens
[3, 4]. As part of the mononuclear phagocyte system, macro-
phages are present in almost all tissues and have a crucial role
in maintaining tissue homeostasis during development and
in adulthood. Tissue-resident macrophages are nonmigra-
tory cells that comprise many subsets, including microglia
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(brain), osteoclasts (bone), alveolar macrophages (lung),
histiocytes (interstitial connective tissue), and Kupffer cells
(liver). There are also various mononuclear phagocyte
subpopulations in the circulation that can differentiate
into macrophages once they migrate into tissues, called
monocyte-derived macrophages [5, 6]. Although the pheno-
types and names of these macrophage populations vary on
the basis of their anatomical location, they all acquire similar
functional capability when stimulated appropriately [7].
Here, we summarize the current view of the developmental
requirement and functional specialization of CNS microglia
and macrophages.

2.1. The Development and Homeostasis of CNS Microglia and
Macrophages. Most tissue-resident macrophages are prena-
tally established and then maintained through adulthood
[8]. Embryonic yolk sac and fetal liver-derived macrophage
precursors are the origin of all tissue-resident macrophages,
although the contributions of these two progenitors vary
among different tissues [8]. Primitive macrophages in the
yolk sac appear around embryonic day 7 (E7) and dis-
seminate throughout embryonic tissues following the estab-
lishment of blood circulation around E9.5. Fetal liver
monocytes infiltrate peripheral tissues, except the CNS, and
give rise to tissue-resident macrophages. While macrophages
from both origins usually coexist, the fetal liver-derived
cells can progressively outcompete yolk sac-derived tissue
macrophages. Thus, the generation and maintenance of
tissue-resident macrophages are independent from ongoing
hematopoiesis, despite the fact that these cells can be comple-
mented by adult monocyte-derived macrophages [9]. For
example, during adulthood, bone marrow-derived circulat-
ing Ly6Chi monocytes can give rise to relatively short-lived,
non-self-renewing tissue-resident macrophages in organs,
such as the intestine, heart, and remodeling mammary glands
[5, 6]. Despite the similarities of microglia with various other
tissue-resident macrophages, two remarkable properties of
microglia are their restricted prenatal origin and their
capacity for self-renewal and longevity. After birth, myeloid
progenitors from the circulation cannot significantly contrib-
ute to the pool of adult microglia, and the increase in micro-
glial cell number results from the expansion of resident
microglia [10, 11]. While the numbers of microglia increase
during aging, their structure changes from a highly ramified
shape to a morphology with less elaborate processes accom-
panied by an irregular tissue distribution pattern and slower
responses to environmental signals [12, 13]. In contrast to
microglia, circulating monocytes and other tissue macro-
phages are continually replaced by circulating myeloid cells
after birth [14].

In the steady state, the CNS hosts several myeloid popu-
lations, including parenchymal microglia, perivascular cells,
meningeal macrophages, and choroid plexus macrophages
[15]. CNS macrophages have been characterized and classi-
fied mainly according to their localization, morphology and
surface-marker expression, and in vitro responses. Despite
the fact that all of these macrophage populations share
numerous myeloid- and macrophage-specific markers, such
as ionized calcium binding adaptor molecule 1 (Iba1),

F4/80 (mouse) (or EMR1 (human)), and CX3CR1, microglia
have their unique signatures. Transcriptome analyses com-
paring microglia, myeloid, and other immune cells have
identified 239 genes and 8 microRNAs that are highly
expressed and unique to microglia. These molecular signa-
tures include Sall1, Tgfbr1, P2ry12, Fcrls, and Gpr34 genes
that are dependent on the transforming growth factor-β
(TGFβ) signaling—an essential pathway required for the
development of microglia [16]. Moreover, the same analyses
have identified the purinergic receptor P2y12 (P2ry12) as
a specific marker for microglia [16]. In addition to the
varying markers among different macrophage subsets,
CNS-associated myeloid populations also have distinct
ontogenesis. Current view supports that microglia originate
exclusively from yolk sac-derived hematopoietic progenitors,
whereas the other CNS resident macrophage subsets arise
later during embryonic development [10, 11, 17]. This view
is supported by a series of elegant genetic fate-mapping and
parabiosis studies. By injection of tamoxifen into pregnant
mice between E7 and E8.5, when embryonic hematopoiesis
is limited to the yolk sac, to induce Cre recombinase activity
from the runt-related transcription factor 1 (Runx1) locus
[10] or from the colony-stimulating factor 1 receptor (Csf1r)
locus, these fate-mapping experiments have demonstrated
that the majority of adult microglia are derived from the yolk
sac [11]. A similar pattern of microglial cell development also
occurs in humans [18]. Parabiosis experiments have also
recently shown that the other CNS macrophage subsets,
except choroid plexus macrophages, arise from hematopoi-
etic precursors later during embryonic development and
become stable populations [19]. Due to the blood-brain bar-
rier, circulating leukocytes (e.g., monocytes, T, B, and natural
killer (NK) cells) normally stay within the blood vessels and
do not enter the healthy brain, unless the blood-brain barrier
is disrupted during CNS diseases, including inflammation,
autoimmunity, and cancer. The CNS-infiltrating monocytes
give rise to disease-related macrophages and execute distinct
functions that differ from resident microglia [20], which we
will discuss in Sections 3 and 4.

The development of microglia is controlled by many
molecular elements including transcription factors, growth
factors, chemokines, microRNAs, and others [21]. One of
the important factors that control the microglia population
are the signals emanating from the binding of colony-
stimulating factor 1 (CSF1) and interleukin 34 (IL-34) to
the microglial CSF1 receptor (CSF1R). Mice deficient in the
CSF1R or IL-34 or the CSF1R adaptor protein DNAX
activation protein of 12 kDa (DAP12) contain substantially
reduced numbers of tissue macrophages, including microglia
[22, 23]. The transcription factor interferon regulatory factor
(IRF)-8 is also essential for the development of microglia, as
IRF8-deficient mice show a significantly reduced microglia
density in adults [17]. Once the CNS is fully developed, the
population size of microglia is maintained via a balance
between mitosis and apoptosis [24]. In contrast, the genera-
tion of other CNS macrophages relies on the transcription
factor PU.1, but not MYB, BATF3, and NR4A1 [19]. A more
complete understanding of molecular circuits that regulate
the development and homeostasis of CNS microglia and
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macrophages may lead to improved strategies for better
modulating the size of these cellular populations.

2.2. Physiological Functions of CNS Microglia and
Macrophages. Generic effector functions of macrophages
include activities associated with their highly developed
lysosomal compartment that bears critical protease and
bactericidal activity [25]. Microglia and macrophages are
phagocytic cells that constitutively express several families
of receptors that facilitate the removal of aged, necrotic
tissues, and toxic molecules from the circulation and their
surroundings [5, 8]. These receptors include scavenger
receptors (e.g., CD36, SR1, and macrophage receptor with
collagenous structure (MARCO)), low-density lipoprotein
(LDL) receptor family members (e.g., LDLR, ApoER2,
and VLDL), and three receptor tyrosine kinases ( Tyro3,
Axl, and Mertk) [5, 26]. Mertk and Axl are expressed in
resting and activated macrophages, respectively [5]. Engage-
ment of Tyro3, Axl, and Mertk by binding to soluble
proteins, growth arrest-specific 6 (GAS6) and protein-S,
results in opsonization of apoptotic cells [5, 21]. Macro-
phages also capture and endocytose immune complexes
and complement-opsonized protein complexes through Fc
receptors and complement receptors [5, 8, 21, 25]. In
addition, macrophages often express chemokine receptors
(e.g., CX3CR1 and CXCR4) and integrins (e.g., CD11b and
CD11c), which control the migration and positioning of
microglia and macrophages within the CNS and enhance
their capacity to phagocytose and eliminate bound target
cells [21].

Microglia interact with neurons and constitute important
components that support the development of the healthy
brain [27]. Disruption of these interactions can have a severe
negative impact on the functioning of the CNS. Here, we
summarize several vital microglia-mediated homeostatic
functions that help establish and maintain the overall health
of the nervous system, including regulation of neuronal
survival and death as well as synaptogenesis. During embry-
onic development, microglia and perivascular macrophages
are uniquely positioned through the pial surface and migrate
along the abluminal surface of penetrating vessels to influ-
ence the early sprouting, migration, anastomosis, and refine-
ment of the growing CNS vasculature [10]. Microglia also
produce various neurotrophic factors that promote the dif-
ferentiation and survival of neurons. For example, insulin-
like growth factor 1 (IGF-1) is released by surrounding
microglia to promote the survival of layer V cortical neurons
during postnatal development [28]. In adulthood, IGF-1
induces multipotent rat hippocampus-derived neural pro-
genitor cells to differentiate into oligodendrocytes [29].
IGF-1 can also protect immature oligodendrocytes from
glutamate-mediated apoptosis [30]. In addition to IGF-1,
microglia also secrete other trophic factors, such as basic
fibroblast growth factors (FGF), hepatocyte growth factors
(HGF), platelet-derived growth factors (PDGF), epidermal
growth factor (EGF), nerve growth factor (NGF), and
brain-derived neurotrophic factor (BDNF). All of these
factors play significant roles in neuronal development,
maintenance, and function throughout life [31]. Microglia

not only support neuronal survival, but also function as
a scavenger to eliminate immature faulty neurons result-
ing from defective differentiation and/or migration [32].
Microglia induce such neuronal death through the release
of soluble factors, such as NGF and reactive oxygen species
(ROS) [33, 34].

In addition, microglia play a crucial role in shaping and
maintaining the neuronal synaptic network, which occurs
constantly throughout life [35]. This type of microglia-
mediated remodeling of synapses, called synaptic pruning,
is a process in that damaged or unnecessary synapses are
eliminated in order for the developing neurons to establish
the mature CNS circuit and maintain synaptic homeostasis
[35, 36]. The synaptic pruning occurs when an “eat me
signal” is created by the engagement of microglial receptor
CR3 by the complement protein C3 [37]. In addition to syn-
aptic pruning, microglia also produce various trophic factors
and synaptogenic signals to properly regulate synaptic func-
tion and plasticity [38]. As a result, reduced microglia in
the brain may result in aberrantly increased synaptic activity
and a delay in synaptic pruning, leading to cognitive impair-
ments [36, 39]. Finally, the release of neurotransmitters and
neuropeptides by neurons promotes neuron-glia communi-
cations that fine-tune the homeostatic regulation by microg-
lia [40, 41]. Taken together, the establishment and
maintenance of a healthy nervous system requires a tight
control of microglia function.

2.3. Pathological Function of CNS Microglia and
Macrophages.Microglia and macrophages normally function
independently of activating stimuli. However, to meet with
greater demand for the control of infection or tissue injury,
the functional activity of microglia and macrophages can be
increased by a variety of stimuli. The nature of these stimuli
often determines the distinct morphology and movement of
activated microglia to better cooperate their function, as
reviewed by others [42–44]. Although this enhanced function
allows microglia and macrophages to become more respon-
sive to changes in their surroundings, it also bears the
inherent risk of hyperactivation and the ensuing collateral
tissue damage. To counterbalance the activatory program,
microglia and macrophages are subjected to silencing pro-
grams that set tissue-specific thresholds for their activation
and allow them to gradually respond to and gauge the quality
and intensity of the stimulus [8]. The intensity and duration
of this activation or inhibition are balanced through the
activating or inhibitory receptors they express. For example,
the immunoglobulin superfamily (Ig-SF) molecules deliver
either activating or inhibitory signals through protein tyro-
sine kinase and protein tyrosine phosphatase pathways,
respectively. The triggering receptor expressed on myeloid
cells 2 (TREM2) is an activating receptor that binds to
phospholipids [45], while binding TGFβ receptor (TGFβR),
CD33, CD200R1, and signal regulatory protein α (SIRPα)
to TGFβ, sialic acids, CD200, and CD47 delivers inhibitory
signals, respectively [32]. However, less is understood about
the roles of tumor necrosis factor (TNF) receptor (TNFR)
family members and signaling lymphocytic activation
molecule (SLAM) family members in the regulation of
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macrophage activity [46]. Thus, the imbalance between the
activating and inhibitory signals that regulate the activity of
microglia and macrophages may pertain to the occurrence
of tissue pathology, including both CNS autoimmunity
and tumor.

Plasticity and diversity are hallmarks of cells in the mac-
rophage lineage. In response to different stimuli, microglia
and macrophages undergo either classical (M1) or alternative
(M2) activation [47]. This type of polarized activation of
macrophages is often controlled by intrinsic (e.g., epigenetic
program) or extrinsic (e.g., inflammatory cytokines) regula-
tory factors [48]. The M1/M2 continuum has been applied
to CNS infiltrating macrophage/monocytes in the context
of inflammation or tumor. M1 activation is a proinflamma-
tory and neurotoxic state typically induced by simultaneous
triggering of toll-like receptors (TLRs) and interferon
(IFN)-γ signaling pathways, which is generally associated
with immunity to bacteria and intracellular pathogens. These
M1 macrophages produce proinflammatory cytokines and
chemokines, such as TNF-α, interleukin (IL)-6, IL-1β,
IL-12, and C-C chemokine ligand 2 (CCL2) [47]. M1 macro-
phages also express the nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase, which in turn generates
superoxide and ROS, as well as inducible nitric oxidase
that converts arginase into nitric oxide (NO) [49]. NO
increases the toxic effect of glutamate, thereby potentiating
N-methyl-d-aspartate (NMDA) receptor-mediated neuro-
toxicity [47, 49]. Another important inflammatory mediator
produced by M1 macrophage is matrix metalloproteinase
(MMP)-12 [47]. Lastly, M1 macrophages often express high
amounts of MHC class I or II, costimulatory molecules, Fc
receptors, and integrins, which also facilitate induction of
inflammation and neurotoxicity [49].

M2 activation describes the anti-inflammatory and tissue
remodeling activities of macrophages, which are usually
observed in settings dominated by type 2 responses, such
as helminth immunity, asthma, and allergy [48]. It can
be induced by IL-4, IL-10, IL-13, ligation of Fc receptors
by immunocomplexes, and detection of apoptotic cells.
Moreover, activation of the transcription factors peroxi-
some proliferator-activated receptor gamma (PPARγ), liver
X receptor (LXR), and retinoic acid receptor (RXR) by
fatty acids, oxysterols, and 9-cis-retinoic acid can also trigger
the M2 activation state [47]. M2 activation promotes the
release of prosurvival factor progranulin [50, 51] and anti-
inflammatory cytokines, such as IL-10 and TGFβ, and
induces arginase 1, which promotes the conversion of argi-
nine into polyamines [47, 49]. M2 macrophages secrete
growth factors such as IGF-I, FGF, and CSF1, as well as
neurotrophic factors such as NGF, BDNF, neurotrophin
4/5, and glial cell-derived neurotrophic factor (GDNF).
In turn, these neurotrophic factors engage a family of
receptor tyrosine kinases known as tropomyosin-receptor-
kinase (Trk) receptors, which regulate synaptic strength
and plasticity [27].

Although theM1 andM2 categories have been helpful for
conceptualizing macrophage activities in vitro, it is increas-
ingly accepted that the M1/M2 paradigm is inadequate to
describe microglia and macrophage activation in vivo, as they

rarely display a significant bias toward either the M1 or M2
phenotype. Indeed, a recent study based on single-cell
transcriptome analysis has described a novel microglial
cell type associated with neurodegenerative diseases, called
disease-associated macrophage (DAM). The genetic pro-
gramming of this microglial subset involves downregulation
of microglial inhibitory-checkpoint pathways in a TREM2-
independent manner and subsequent activation of the
TREM2-dependent program [52]. This new microglial cell
has the potential to restrict neurodegeneration. Another
recent study has also identified a type of microglial cell from
models of amyotrophic lateral sclerosis (ALS), multiple scle-
rosis (MS), and Alzheimer’s disease (AD) and from tissues
surrounding neuritic β-amyloid (Aβ)-plaques in the brains
of people with AD. This microglial cell carries a specific
apolipoprotein E- (APOE-) dependent molecular signature
that depends on TREM2-induced APOE signaling pathway,
which switches the microglia from a homeostatic to a neu-
rodegenerative phenotype after phagocytosing apoptotic
neurons. Targeting the TREM2-APOE pathway has pre-
vented neurodegeneration by restoring the homeostatic
signature of microglia [53]. These findings suggest that
microglia may have a disease-associated signature common
to many CNS disorders, including neurodegenerative dis-
eases, autoimmunity, and possibly cancer, which is worth
further investigation.

3. CNS Microglia and Macrophages in
Autoimmunity: Multiple Sclerosis

CNS microglia and macrophages play important roles in
communication between the systemic immune system and
the brain. These cells not only regulate the innate immune
responses to mediate host defense against cellular or patho-
genic components [32, 54], but also modulate the adaptive
immune components functioning as antigen-presenting
cells [55, 56], or accessory helper cells [32]. Here, we sum-
marize the roles of CNS microglia and macrophages in the
regulation of both aspects of immune responses and discuss
the contribution of these dysregulated responses to the
pathogenesis of CNS disorders, exemplified by multiple
sclerosis here.

3.1. Microglia and Macrophages in Innate Immunity. As a
component of innate immunity, macrophages are critical
players in the first line of defenses against infection or tissue
injury. This is largely attributed to the vast array of recep-
tors expressed on macrophages. These receptors include
pattern recognition receptors (PRRs) that detect pathogen-
associated molecular patterns (PAMPs) or tissue damage-
associated molecular patterns (DAMPs). PRRs include TLRs
(e.g., TLR4 and TLR1/2) and their coreceptors, such as
CD14, nucleotide-binding oligomerization domain (NOD)-
like receptors (NLRs), receptors for nucleic acids, retinoic
acid-inducible gene I (RIG-I)-like receptors, and C-type
lectin receptors (CLRs) (e.g., CLEC7A) [57]. Microglia and
macrophages also express the receptors for proinflammatory
and anti-inflammatory cytokines, such as IFNα/β, IFNγ,
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TNFα, IL-1β, IL-10, and TGFβ, to regulate the intensity of
the inflammatory responses [57].

Although the repertoire of these receptors varies among
different tissue macrophages and likely reflects local adapta-
tion, these receptors all have important roles in the induction
of innate immune responses. They enable microglia and
macrophages to engulf and destroy foreign particles and
dying cells to promote an M1-like phenotype [57]. Engage-
ment of these receptors also connects to the adaptor myeloid
differentiation primary response gene 88 (MyD88). This
relays activating signals to regulate inflammasome formation
and induce the production of cytokines (e.g., TNFα and
IL-1β), which can further enhance the functional activity
of M1 cells [58]. Microglia and macrophages with the
M2 phenotype are intimately involved in CNS repair and
regeneration, as demonstrated by the role of growth factors,
cytokines, and chemokines released by these cells in response
to the CNS injury [59, 60]. Microglia and macrophages also
secrete MMPs that regulate the deposition of extracellular
matrix components at the injured sites [60]. In addition,
the protective role of M2 cells may reflect their expression
of the IL-4 receptor. Engagement of this cytokine receptor
by IL-4 prevents a proinflammatory skew of microglia and
macrophages, which influences normal neuronal function
and behavior [61, 62]. Finally, microglia and macrophages
play a critical role in orchestrating the inflammatory
response by provision of chemokines and cytokines, which
recruit and activate neutrophils, monocytes, and lympho-
cytes, to intensify the inflammation [57].

3.2. Microglia and Macrophages in Adaptive Immunity.
Besides functioning as sentinels, macrophages also function
as antigen-presenting cells and participate in the activation
of the adaptive arm of the immune response [5]. Upon
immunological insults, other innate immune cells, such as
NK cells, often provide the initial source of IFNγ that enables
macrophages to develop a classical activated M1 phenotype
[63]. These M1 macrophages then produce large amounts
of TNFα, IL-12, and IL-23, which are important drivers of
type 1 helper T (TH1) cell and type 17 helper T (TH17) cell
responses [64]. T cell-derived IFNγ provides a positive
amplification feedback loop that expands the M1 cells while
increasing their microbicidal and tumoricidal activities [63].
M1 cells are generally believed to display antitumor proper-
ties by antagonizing the suppressive activities of tumor-
associated macrophages (TAM), myeloid-derived suppressor
cells (MDSC), and alternatively activated macrophages and
regulatory macrophages, which in turn promote tumor
growth, invasion, and metastasis by suppressing adaptive
antitumor immune responses [65] (see Section 4). Because
M1 macrophages secrete large amounts of TNFα and IL-1β
that contribute to the differentiation of TH17 cells, they are
also believed to be important drivers of chronic inflamma-
tory and autoimmune diseases, including multiple sclerosis,
rheumatoid arthritis, atherosclerosis, pulmonary fibrosis,
and Crohn’s disease [66–68] (see Section 3.3).

In contrast to M1 cells, M2 cells mainly display sup-
pressive or immunoregulatory activity. They antagonize
M1 responses, dampen inflammation, suppress antitumor

immunity, and promote wound healing, tissue remodeling,
and angiogenesis [5, 69]. Regulatory macrophages that
secrete IL-10 have similar roles in adaptive immune
responses, although they are particularly adept at suppress-
ing antimicrobial immunity [63]. Regulatory macrophages
also facilitate the maintenance of immune homeostasis in
the gut by inducing the development of regulatory T cells
(Treg) [70], whereas M2 cells mediate secondary immunity
to gastrointestinal worms [71]. Although alternatively acti-
vated macrophages are induced by a variety of innate
IL-4- and IL-13-producing cells, including basophils [72],
TH2 cells are thought to serve as the main inducers of M2
cells when the adaptive immune response is activated, as in
many chronic inflammatory and fibrotic diseases [73, 74].
In the CNS, IL-4 produced by T cells in the meninges and
cerebrospinal fluid prevents local inflammation, possibly
benefiting cognition through regulation of M2 cells [75].

3.3. CNS Microglia and Macrophages in Multiple Sclerosis. As
discussed in Section 2.3, M1 macrophages may contribute to
many autoimmune diseases. Here, we focus on multiple
sclerosis (MS) (Figure 1). MS is a CNS disease that affects
over 2 million people and has no known cure. MS is consid-
ered as a chronic autoimmune inflammatory disease affecting
brain, nerve, and spinal cord tissues, which causes demye-
lination of neurons, axonal damage, and neurodegeneration
[76]. Myelin-specific TH17 and TH1 cells and B cells are
believed to help initiate and/or promote the development of
MS [76]. Experimental autoimmune encephalomyelitis
(EAE) is the most commonly used animal model for MS
and is induced by CD4+ T cells specific for myelin-derived
antigens, either generated after immunization or injected
directly [77]. Studies using this EAE model have shown that
microglia and macrophages contribute to aggravating the
CNS pathology [78]. In mice with the deletion and/or inacti-
vation of microglia, delayed EAE onset and reduced severity
of clinical symptoms are observed along with decreased
inflammation, confirming the crucial role of microglia in
the pathogenesis of MS [78].

Microglia contribute to EAE disease initiation by pre-
senting antigens to naive T cells and secreting cytokines, such
as IL-6, IL-23, IL-1β, and TGFβ, that are required for the
differentiation and activation of encephalitogenic TH17 cells.
It remains unclear if microglia and macrophages regulate the
other TH cells that modulate EAE and MS progression. It is
known, however, that activation or inhibition of effector T
cells by microglia is controlled by other neighboring immune
cells. For example, a subset of microglia has the capacity to
suppress effector T cell proliferation by inducing FoxP3+

Treg, leading to attenuation of EAE disease progression
[79]. Although it is believed that microglia have a neurotoxic
role in MS and EAE, there is conflicting evidence that
suggests microglia exert a neuroprotective function in MS
and EAE [42]. Potential beneficial effects of microglia in
EAE and MS are thought to occur in at least three major
ways: (1) microglia clear myelin debris and apoptotic cells;
(2) microglia release protective cytokines and mediators for
remyelination; and (3) microglia trigger recruitment of oligo-
dendrocyte precursors and stimulate neurogenesis [27, 32].
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The neurotoxic and neuroprotective functions of microglia
may depend on the CNS disease stages and activation status
of microglia, which awaits further investigation. Interest-
ingly, a recent study using the parabiosis model combined
with highly efficient permanent labeling of blood monocytes
has elegantly revealed that circulating monocytes invade
the inflamed CNS during EAE pathogenesis and have an
essential role in promoting disease progression [80]. A
precise understanding of these two pools of CNS macro-
phage subsets during CNS inflammation and autoimmunity
may provide insights into better strategies for the treatment
of these disorders.

4. CNS Microglia and Macrophages in Cancer:
Malignant Glioma

As discussed in Section 2.3, M1 macrophages display antitu-
mor activity while M2 cells are protumorigenic. Here, we
discuss one of the most deadly brain cancers, malignant
glioma (Figure 1). Gliomas, a type of brain tumor that grows
from glial cells, include astrocytoma, oligodendroglioma,
and glioblastoma. Gliomas are complex tumors composed
of both neoplastic and nonneoplastic cells. The majority
of nonneoplastic cells are TAMs, which account for 50% of
the cellular fraction of gliomas. TAMs include infiltrated

Multiple sclerosis (MS)

Microglia
M�휑

Pathogenic (M1) Protective (M2)
Invading T cell

(CD4/CD8)

Activation and
expansion

Antigen
presentation
via MHC

TH1 or TH17
polarizing
cytokines

Autoreactive
TH1 or TH17
cells

Clear myelin debris
and apoptotic cells

Recruit oligodendrocyte
precursors and
stimulate
neurogenesis

Protective
cytokines and
mediators

Remyelination

NK cell
Kill

IL-16
Recruit Treg cell

M�휑

IFN�훾

(a)

Malignant glioma

Glioma

CCL2, CSF-1, versican, etc.

STI1, EGF, IL-6,
TGF�훽, etc.

Chemoattraction
Growth/
invasion

KillNK cell

Priming M1 cells

Protumor (M2)Antitumor (M1)

M2 cells

Microglia

NK cell

T cell

M�휑

M�휑

IFN
�훾

(b)

Figure 1: Immune regulation of MS and malignant gliomas by CNS microglia and macrophages. (a) CNS microglia and macrophages (M1)
activate autoreactive T cells and program encephalitogenic TH1 and TH17 cells to induce and exacerbate MS, while NK cells reduce numbers
of M1 cells, and M2 cells recruit Treg, contributing to disease amelioration. Microglia also provide protective roles by helping remyelination
and neurogenesis. (b) NK cells may prime M1 macrophage and microglia or reduce numbers of M2 cells to promote antitumor response. M2
cells are regulated by factors derived from glioma and further produce suppressive factors to intensify the immunosuppressive environment
within the glioma, contributing to the tumor growth and invasiveness.
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monocyte-derived macrophages and brain-resident microg-
lia. These cells constitute a supportive stroma for neoplastic
cell expansion and invasion [81]. Therefore, understanding
the cellular and molecular mechanisms for the regulation of
microglia and macrophages may suggest novel strategies to
target these cells for immunotherapy of gliomas.

The importance of microglia and macrophages in glioma
is underscored by clinical observations. The number of infil-
trated TAMs and microglia, identified by CD68 and Iba-1
antibodies, respectively, is positively correlated with tumor
grade [82] and inversely correlated with the recurrence-
free survival of patients [83]. While monocytes represent
10–15% of the cell population in normal nonneoplastic
brain specimens, 15–30% of cells in low-grade gliomas are
TAMs [84]. Moreover, the proportion of microglia can reach
35–50% within the gliomas, depending on the region in
which the tumor arises and the degree of tumor invasiveness
[85]. Microarray analyses have revealed approximately 1000
transcripts that are highly enriched in glioma-associated
microglia and macrophages relative to control microglia.
Interestingly, these genes show little overlap with reported
gene signatures for M1 or M2 phenotypes [86].

Despite the positive correlation between the number of
intratumoral TAM and microglia with glioma malignancy,
it remains controversial and to be determined whether these
cells display antitumor activity or protumorigenic properties.
Understanding these mechanisms is important for directing
future therapeutic strategies for glioma. Deletion of microglia
and macrophages increases glioma tumor volume by 33%,
suggesting that these cells may contribute to the antitumor
response [87]. In contrast, pharmacological activation of
microglia and macrophages results in increased glioma size,
indicating that these cells may promote tumor growth and
invasion [88]. Moreover, in the presence of microglia, the
motility of the murine glioma cells is increased threefold
in vitro [89]. Using transgenic mice expressing the herpes
simplex virus thymidine kinase gene under the control of
the Cd11b promoter, Galarneau et al. have shown that
targeted reduction of CD11b+ microglia and macrophages
concomitantly results in attenuated glioma growth in vivo
[44, 90]. Within the tumor microenvironment, the crosstalk
between glioma cells and microglia/macrophages may
determine the glioma aggressiveness and invasiveness.
Microglia release several factors to promote glioma prolifer-
ation and/or migration. Microglia synthesize and release
stress-inducible protein 1 (STI1), a cellular prion protein
ligand that increases the proliferation and migration of
glioblastomas in vitro and in vivo [91], as well as EGF, which
stimulates glioblastoma cell invasion [92]. TGFβ, predomi-
nantly released from microglia, also increases the migration
of glioma cells; moreover, blocking TGFβ signaling impairs
glioma growth [93]. In addition, TGFβ2 induces the expres-
sion of MMP2 in glioma cells and suppresses the expression
of tissue inhibitor of metalloproteinases (TIMP)-2, which
degrades the extracellular matrix and subsequently promotes
glioma invasion [94]. TAMs not only target glioma cells,
but also indirectly affect tumor growth through angiogen-
esis. This likely occurs via expression of the receptor for
advanced glycation end product (RAGE) and vascular

endothelial growth factor (VEGF), an important proangio-
genic factor [95].

On the other hand, factors produced from glioma cells
facilitate the glioma-promoting activity of microglia. CSF1,
constitutively released by the glioma cells, acts as a chemoat-
tractant for microglia and also converts microglia into a pro-
tumorigenic phenotype [96]. CCL2 is another factor released
from glioma cell lines and acts on the CCL2 receptor (CCR2)
expressed on microglia [97]. CCL2 can trigger the release of
IL-6 from microglia, promoting the glioma invasiveness
[98]. Glioma-derived versican interacts with TLR2, inducing
CNS microglia and macrophages to express membrane
type 1-matrix metalloproteinase 1 (MT1-MMP) that acti-
vates MMP2 [99]. In its active form, MMP2 amplifies the
glioma-brain macrophage interaction network and potenti-
ates glioma growth and invasiveness [99]. Furthermore, the
suppressive factors produced from both glioma and microg-
lia or TAMs inhibit the antitumor activity of effector CD4+

and CD8+ T cells and NK cells, but promote the recruitment
and suppressive activity of Treg and MDSC, which constitute
the immunosuppressive microenvironment and enhance
glioma growth [100].

Glioblastomas contain a subpopulation of cells with stem
cell-like properties, called glioma stem cells (GSCs), which
have the capacity for self-renewal, the potential for multiline-
age differentiation, and are capable of reconstituting the
native tumor following implantation into naive hosts [101].
However, these GSCs reside in the perivascular niche and
are highly resistant to radiation and chemotherapy [101].
There is a positive correlation between the density of GSCs
and TAMs, indicating that GSCs may recruit TAMs more
efficiently than their more differentiated neoplastic counter-
parts [102]. GSCs also release periostin, which acts as a
chemoattractant for TAMs through interactions with TAM’s
integrin receptor αvβ3 [103]. TAMs also influence the prop-
erties of GSCs, in that TGFβ released from TAMs induces
MMP-9 expression and increases GSC invasiveness [104].
In addition, naive microglia can reduce the sphere-forming
ability of human stem cells and in turn, suppress glioma
growth. In contrast, microglia or TAMs cultured from glioma
patients lack this antitumorigenic potential [105]. It is likely
that GSCs secrete factors, which inhibit the phagocytosis
activity of TAMs and induce the secretion of cytokines to
prevent antitumor responses [106].

Due to the importance of microglia and TAMs in glioma
growth and invasiveness, these cells are currently considered
as therapeutic targets. Interfering with CSF1 signaling by
antibody-mediated blockade or use of CSF1R inhibitors is a
potential approach to regulate glioma growth by targeting
TAMs [96]. Periostin has also emerged as an interesting
target for attenuating the tumor-supportive phenotype of
TAMs by interrupting integrin αvβ3 signaling [103]. Interfer-
ing with this pathway via a blocking peptide impairs TAM
recruitment. Finally, Minocycline, an antibiotic that inter-
feres with the process of microglia activation and has the
unknown effects on tumor growth, is currently being tested
in a clinical trial of MS patients [107]. However, as discussed
above, the dual antitumoral and protumoral activities of
microglia and macrophages should be taken into account
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when the therapeutic strategy for malignant glioma is con-
figured. Additionally, therapeutic strategies should evaluate
the crosstalk of microglia and macrophages with other
immune cells, as reviewed below.

5. Regulation of CNS Disorders:
Crosstalk between Macrophage and NK Cells

We have discussed the highly diverse and complex function
of microglia and macrophages during CNS autoimmunity—
multiple sclerosis and cancer—malignant glioma. Consider-
ing the important roles of innate immune components in
host defenses against these two types of CNS disorders,
here we emphasize the crosstalk between CNS microglia/
macrophages and NK cells, one of the important compo-
nents of innate immunity, which has not been reviewed
elsewhere. We focus on the discussion of how this type of
cellular interactions impact on the pathological processes
of both CNS disorders.

Macrophages regulate the functional activity of various
innate immune subsets, including neutrophils, innate
lymphocyte cells, and NK cells. NK cells exhibit potent
cytotoxicity and produce cytokines in response to inflamma-
tion and stressed conditions, contributing to many facets of
immune surveillance and tolerance [108]. It is well-
recognized that the macrophage-NK interaction is a major
first-line defense against pathogens. However, the crosstalk
between macrophages, particularly microglia, and NK cells
in the regulation of tissue-specific immune responses
remains largely unknown.

Macrophages can activate or inhibit NK cell activity
through either direct cell-to-cell contact via a diverse
receptor-ligand interaction or soluble mediators, such as
cytokines [109]. Conversely, NK cells also regulate the popu-
lation size and functional activity of macrophages [109]. The
outcome of the macrophage-NK interaction depends on the
tissue origin of macrophages [110]. Interestingly, macro-
phages derived from peripheral blood mononuclear cell
(PBMC) do not display the similar regulatory property as
tissue-resident macrophages. The intensity and duration of
macrophage-NK crosstalk depend on the nature of stimuli.
For example, high doses of lipopolysaccharide (LPS) induce
the expression of various ligands of the activating receptor
NKG2D in human macrophages, UL16-binding proteins
(ULBP1, ULBP2, and ULBP3) and MHC class I-related
chain A (MICA) [111]. Human NK cells that are in contact
with LPS-activated macrophages express increased levels of
NKG2D. Consequently, NK cells lyse these macrophages
stimulated with high doses of LPS to prevent endotoxic shock
[111]. In contrast, LPS-stimulated microglia are less sus-
ceptible to NK cell-mediated cytotoxicity compared to
resting microglia, likely due to reduced NKG2D expression
in NK cells upon interactions with LPS-stimulated microglia
[111]. Subsequently, this may help microglia present antigens
to infiltrating T cells and initiate the immune response in the
brain [112]. Other receptor-ligand pairs, including 2B4-
CD48, NKp46-NKp46 ligand, CD226-CD112/CD155, and
NKp80-AICL, also induce similar crosstalk effects as the
NKG2D-NKG2D ligand on macrophage-NK cells, but only

NKp46 engagement has been implicated in the NK-
mediated killing of microglia [112]. Besides increased NK
cytotoxicity, activated macrophages may also induce the
release of IFNγ by NK cells that further amplifies the ongoing
immune responses. In addition to activating interactions
between NK cells and macrophages, there is also inhibitory
crosstalk. We and others have previously reported that Qa-
1, the homologue of human HLA-E and a ligand for the
NK cell inhibitory receptor NKG2A, is upregulated on
the surface of activated macrophages. Despite the unal-
tered NKG2A expression, the NKG2A-Qa-1 interactions
allow the macrophages to escape NK cell-mediated lysis
[113–115]. Consequently, blockade of the interaction between
NKG2A on NK cells and Qa-1 on microglia by an anti-
NKG2A antibody unleashes NK cell activity, reduces microg-
lia activation, and decreases T cell infiltration into the CNS,
leading to amelioration of EAE [114]. Due to the enhanced
NK cell activity via the anti-NKG2A-mediated blockade, this
antibody has also been applied in the clinical trials of multiple
cancers (e.g., NCT02331875 and NCT02557516). It will be
worthy to test the therapeutic efficacy of anti-NKG2A as a
new generation of checkpoint inhibitors in the treatment of
malignant glioma. Besides direct contact between macro-
phages and NK cells, their crosstalk is also regulated by
the cytokines they produce. Macrophages produce IL-12,
IL-15, IL-18, and IL-23 to induce the production of IFNγ,
TNFα, or granzyme B by NK cells [109], whereas TGFβ1
and IL-10 released by macrophages, especially TAMs, inhibit
NK cell function [109]. The latter may contribute to the
exhausted or dysfunctional phenotype of NK cells, as
observed in many tumors, including malignant glioma
[100], which promotes tumor growth and invasion. Given
the dynamic interaction between microglia/macrophages
and NK cells that regulates the CNS inflammation, autoim-
munity, and tumor, a more complete understanding of their
molecular interplay may guide the development of optimal
interventions of these CNS disorders.

6. Conclusion

As a resident macrophage population, microglia are critical
components in the establishment and maintenance of a
healthy nervous system. They not only purge damaged or
unnecessary neurons and synapses, but also act as the pri-
mary form of active immune defense against infectious and
stress-derived agents. Microglia and the CNS-infiltrating
monocyte-derived macrophages actively participate in the
regulation of innate and adaptive immune responses under
pathological insults. We have discussed two types of CNS
disorders here, multiple sclerosis with excessive immune
responses and glioma with extreme immunosuppression.
Although the cellular components share similarities between
these two types of diseases (Figure 1), the mechanistic actions
of CNS microglia and macrophages and their interactions
with other immune cells are fully context-dependent. Addi-
tional studies are needed to dissect the differential contribu-
tion of microglia versus CNS-infiltrating monocyte-derived
macrophages to these disorders. The discovery of P2ry12 as
a specific marker for microglia definitely facilitates a more
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precise understanding of these macrophage populations. In
the future, a better understanding of molecular circuits
that regulate the homeostasis and function of these macro-
phage populations may also direct more effective therapeu-
tic strategies that specifically target individual subsets for
better therapy of CNS autoimmunity, cancer, and other
neurodegenerative disorders.
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Tumor necrosis factor (TNF) tolerance in monocytes and macrophages means that preexposure to TNF reduces the sensitivity in
these cells to a subsequent restimulation with this cytokine. Differential effects arise following preincubation with both low and high
doses of TNF resulting in absolute as well as induction tolerance affecting specific immunologically relevant gene sets. In this review
article, we summarize the relevance of TNF tolerance in vivo and the molecular mechanisms underlying these forms of tolerance
including the role of transcription factors and signaling systems. In addition, the characteristics of cross-tolerance between TNF
and lipopolysaccharide (LPS) as well as pathophysiological aspects of TNF tolerance are discussed. We conclude that TNF
tolerance may represent a protective mechanism involved in the termination of inflammation and preventing excessive or
prolonged inflammation. Otherwise, tolerance may also be a trigger of immune paralysis thus contributing to severe
inflammatory diseases such as sepsis. An improved understanding of TNF tolerance will presumably facilitate the implementation
of diagnostic or therapeutic approaches to more precisely assess and treat inflammation-related diseases.

1. Introduction

TNF is a potent proinflammatory master cytokine modulat-
ing inflammatory processes, and its rapid induction is funda-
mental for the orchestration of the immune response [1]. The
application of TNF over a certain time period can result in a
reduced sensitivity of cells, organs, or organisms towards a
subsequent stimulation with the same cytokine, a phenome-
non known as tolerance [2, 3]. TNF tolerance can be induced
by a pretreatment of monocytes and macrophages with both
low and high doses of TNF and can occur as absolute toler-
ance or induction tolerance following restimulation [3, 4].
In addition to pure TNF tolerance, several forms of TNF/
LPS cross-tolerance have been described [5-7]. In this
review, we will summarize the in vivo relevance of TNF tol-
erance as assessed in different animal models. In addition,
we will refer to general features and the known molecular
mechanisms underlying different forms of tolerance includ-
ing the role of transcription factors, signaling systems, and
receptors. Finally, the pathophysiological impact of TNF
tolerance on both the resolution of inflammation and

immune paralysis as well as potential diagnostic and thera-
peutic aspects targeting tolerance-associated mechanisms or
molecules will be discussed.

2. TNF Tolerance In Vivo

TNF tolerance was first described in rats and mice on the
basis of reduced physiological responsiveness towards a sub-
sequent stimulation with TNF following a repeated applica-
tion of sublethal doses of this cytokine within a certain time
period [2, 8]. Monocytes and macrophages were early sup-
posed to be important cellular mediators of TNF tolerance
[2], and later experiments confirmed that assumption [3, 9]
although other cell types (e.g., hepatocytes, cardiomyocytes,
or epithelial cells) also proved to be prone to tolerization
[10, 11]. In vivo, TNF tolerance is characterized by organo-
and cytoprotective effects, as represented by the protection
of tolerized mice against subsequent injections of normally
lethal TNF doses [12]. Appropriately treated mice, rats,
and guinea pigs are protected from inflammation-related
symptoms such as fever [13, 14], gastrointestinal toxicity
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[15], liver injury [16], anorexia [17], hypertension, hypo-
thermia, and lethality [18, 19]. Apoptosis, an important
and common feature of inflammation-related diseases such
as sepsis [20], is also suppressed in tolerant cells [16, 21].
In addition, disease-related alterations of physiological func-
tions such as food intake normalized faster in TNF-tolerized
mice than in control individuals [18, 22]. Since in vitro stud-
ies demonstrated in Hep G2 cells that TNF-associated cyto-
toxicity was more severe at fever-like temperatures, it has
been speculated that TNF tolerance may be of importance
for hepatic decompensation during febrile episodes [23]. In
a sarcoma mouse model, it has been shown that the pretreat-
ment with sublethal TNF doses may not only prevent the
toxic effects of lethal doses of TNF but also reduce its antitu-
mour effects, even when further increased doses were
applied in tolerant mice [8]. An infection with adenoviruses
can induce a tolerant-like state towards TNF, an effect which
prevents LPS-induced mortality and liver injury/failure of
the affected mice [24]. In addition, acquisition of TNF toler-
ance has been presumed in the case of malaria-infected mice,
in which Plasmodium infection and released TNF did not
result in perceivable symptoms of disease [25].

3. Molecular Characteristics

3.1. General Features of TNF Tolerance. TNF tolerance can be
induced by a pretreatment of monocytes and macrophages
(or other eligible cells) with both low and high doses of
TNF [3, 4, 26]. Typically, low-dose preexposure/incubation
was performed using up to 10 μg/kg (mostly human) TNF
in animal experiments or up to 20ng/ml in cell culture exper-
iments [3, 27], while high doses included up to 100 μg/kg in
animal studies [2]. It also has to be taken into account that
human TNF can induce tolerance in animal experiments
using higher doses due to a reduced cytotoxicity, for example,
in comparison to murine TNF which proved to be lethal at
significantly lower doses [19]. Since the biological activity
of different TNF samples and batches could vary signifi-
cantly, TNF is latterly applied for cell culture studies in
amounts standardized to the biological activity, that is,
≤40U/ml for low and >40U/ml for high TNF doses [4].

Following restimulation which is always performed using
higher TNF concentrations, tolerance can be observed as
absolute tolerance or induction tolerance. In absolute toler-
ance, a low expression of immunologically relevant genes
can be found following TNF preincubation which remains
on this level even in the case of a subsequent restimulation
when compared to the short-term stimulation of naïve cells
(Figure 1). Induction tolerance is characterized by an
increased expression of genes following long-term preincu-
bation with TNFwhich is in general roughly comparable with
the level observed in naïve cells after short-term stimulation.
Following TNF restimulation, the expression of these genes is
“frozen” on this level and cannot be further induced
(Figure 1). Gene groups affected by absolute and/or induction
tolerance are related to cellular functions such as inflamma-
tion, growth/differentiation, chemotaxis/migration, signal-
ing/transcription, and metabolism [4]. For instance, genes
such as TNF, interleukin (IL-) 1β, IL-6, IL-8, or tissue factor
are affected by absolute tolerance, whereas IL-18, IL-28A,
IL-32, or toll-like receptor (TLR) 2 are prone to induction
tolerance. Although TNF is normally applied for 48–72h
during preincubation [4, 26], a time period of 18 to 24 h
has been generally described to be minimally required for
the induction of TNF tolerance [5, 12] and enables the
maintenance of the tolerized state for several days [12].
However, under certain conditions, even a TNF pretreat-
ment for 2 h appears to be sufficient to induce protection
from TNF-dependent cell/organ damage [21]. The signaling
network involved in development, consolidation, and regu-
lation of monocytic/macrophagic TNF tolerance is only par-
tially investigated, and only a limited number of cell culture
studies characterizing the molecular basis of TNF tolerance
exist yet. Currently, it is realized that TNF tolerance is based
on a variety of distinct but connected and mutually depend-
ing molecular events covering several regulatory spectra of
intracellular signal transduction. In the following, the
known molecular mechanisms determining TNF tolerance
are discussed.

3.2. Low-Dose-Induced Tolerance. Long-term preincubation
with low doses of TNF predominantly leads to the
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Figure 1: Two forms of TNF tolerance. TNF preincubation (pre) leads to reduced sensitivity towards further restimulation (re) with TNF
(absolute tolerance) or causes elevated gene expression levels resistant to further upregulation following TNF restimulation (induction
tolerance) in comparison to medium preincubated cells (naïve).
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development of absolute tolerance [4]. The expression of
most of the genes suppressed under these conditions is regu-
lated by the transcription factors nuclear factor κB (NF-κB)
and/or activator protein (AP-) 1 [4, 28] indicating that their
limitation is an essential step in restricting the expression of
these tolerance-sensitive genes. In low-dose-tolerized and
restimulated monocytic cells, IκBα proteolysis, nuclear trans-
location of p65, and NF-κB DNA binding activity are only
weakly affected [26]. However, following restimulation of
low-dose-tolerized cells, activation of IL-8 promoter- and
κB-dependent transcription is inhibited and p65 phosphory-
lation at the activating site Ser536 is markedly reduced in
murine macrophage-like and monocytic THP-1 cells
(“Tohoku Hospital Pediatrics-1”, [29]) [4, 9] (Figure 2). The
latter effect may be ascribed to an increased association of
p65 with the transcription factor CCAAT/enhancer binding
protein (C/EBP) β in low-dose-tolerized cells [9]. In this
context, protein-protein interaction of p65 and C/EBPβ,
which is an important regulator of proliferation and differ-
entiation in myelomonocytic cells [30], results in a blockade
of p65-Ser536 (and possibly other activating phosphoryla-
tion sites) [9, 31]. In addition, under these conditions (but
also in high-dose-tolerized cells), p65 phosphorylation is
intensified at Ser468 [4], a phosphorylation site negatively
regulating p65 activity [32]. Interestingly, p65-Ser536 phos-
phorylation is resumed and low-dose TNF-induced toler-
ance is reversed by glycogen synthesis kinase (GSK) 3
inhibition using SB6763 [4], an effect also described within
TNF-induced cross-tolerance towards LPS [6]. Furthermore,
it has been reported that GSK3 phosphorylates C/EBPβ [33]
as well as p65-Ser468 [32] which suggests a multistep
influence of this kinase in TNF tolerance.

Moreover, both low- and high-dose TNF-preincubated
THP-1 cells are characterized by attenuated phosphorylation
of c-Jun N-terminal kinase (JNK), extracellular signal-
regulated kinase (ERK), and p38 [4, 5], that is, kinases target-
ing (amongst others)AP-1 subunits of the Jun and Fos protein
families [34]. Total levels of these kinases, however, appear
not to be significantly affected [4, 5]. As a consequence,

concentrations of phosphorylated c-Jun were considerably
lower in tolerized and restimulated monocytic cells than in
stimulated naïve cells [4].

In murine models, it has been shown that a blockade of
the glucocorticoid receptor (GR) using the antagonist RU-
38486 can prevent the occurrence of low-dose-induced
TNF tolerance in vivo suggesting that glucocorticoids and
their receptor(s) contribute to the formation of tolerance
[19]. This might be due to GR-dependent functions such
as inhibition of proinflammatory signaling pathways, reduc-
tion of AP-1 DNA binding and NF-κB translocation, and
induction of anti-inflammatory (e.g., IL-10) as well as down-
regulation of proinflammatory cytokine/chemokine (e.g., IL-
6, IL-8) expression [35]. For other transcription factors, a
role within TNF tolerance has not been established yet.
TNF-inducible factors such as activating transcription factor
(ATF) or suppressor of cytokine signaling (SOCS-) 1, 2, and
3 have also been discussed with respect to an association
with TNF tolerance [21]. However, ATF has not been
analysed yet and for SOCS1-3, no influence on tolerance
formation could be shown [21].

Taken together, the reported findings indicate that
low-dose TNF-induced absolute tolerance is predominantly
controlled via transcriptional mechanisms, that is, C/
EBPβ-dependent suppression of p65 phosphorylation and
potential GSK3 activity (Figure 2). In addition, reduced c-
Jun/AP-1 activation and GR-dependent transcriptional
repression may contribute to the development of low-dose-
induced tolerance.

3.3. High-Dose-Induced Tolerance. Long-term preincubation
with high TNF concentrations may result in the development
of both absolute and induction tolerance [4]. Following
restimulation, nuclear levels of p65 and NF-κB DNA binding
activity are significantly reduced in high-dose-tolerized
monocytic cells [4] in comparison to naïve and low-dose-
tolerized cells [26]. In cells, long-term pretreated with high-
dose TNF, IκBα turnover is increased and IκBα amounts
are reduced to a lower level [4]. Following restimulation,
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Figure 2: Transcriptional repression during low-dose-induced TNF tolerance. In low-dose TNF preincubated cells, p65 phosphorylation of
the activating phosphorylation site Ser536 is blocked via direct protein-protein interaction with C/EBPβ. In addition, an increased
phosphorylation of the inhibitory site p65-Ser468 can be observed. Both events may be influenced by GSK3 and negatively regulate the
transcription of immunologically relevant genes in low-dose TNF-tolerant cells.
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however, no further stimulus-induced proteolysis of IκBα
can be observed. Consistently, it has also been observed that
IκB kinase (IKK) phosphorylation is completely inhibited in
high-dose pretreated and restimulated cells when compared
to naïve cells [4, 36]. In TNF-overexpressing murine cardio-
myocytes, additional activation of p50 homodimers has also
been found in comparison to control cells and it was specu-
lated that this effect might represent an adaptive response
to reduce the detrimental inflammatory consequences of
the permanent presence of TNF [11].

Due to the observation that A20 is a key molecule in the
establishment of TNF/LPS cross-tolerance [6], its impor-
tance within TNF tolerance has also been assessed. A20 is
a ubiquitinase/deubiquitinase known for its role as a repres-
sor of NF-κB signaling [37, 38] and characterized by three
major functionalities, that is, noncatalytic mechanisms
mediating the repression of IKK activation, ubiquitin ligase
activity leading to K48-labeling of proteins such as receptor
interacting protein (RIP) to induce their proteasomal degra-
dation, and protease activity towards K63 and M1 polyubi-
quitins [39]. A20 mRNA and protein amounts are markedly
upregulated in THP-1 cells as well as primary human
monocytes and macrophages pretreated with high TNF
doses [4, 36], an effect equivalently occurring in cross-
tolerance [6]. The siRNA-dependent knockdown of A20
leads to a strong upregulation of IKK phosphorylation and
proinflammatory gene expression inmonocytic cells in which
TNF tolerance was induced by a high TNF dose [4, 36] indi-
cating that A20 is a major regulator of high-dose-induced tol-
erance (Figure 3).

A20 interacts and cooperates with additional factors to
form the A20 ubiquitin-editing complex, that is, the adap-
tor molecules Tax1-binding protein 1 (TAX1BP1) and
RING-finger protein (RNF) 11 [40, 41] as well as the E3
ubiquitin protein-ligase Itchy homolog (Itch) [42] which
have been described to support A20 during the regulation
of ubiquitin-dependent TNF signaling [43]. Due to their
essential contribution to A20 activity, these three proteins
appear to be promising candidates in the initiation of
TNF tolerance, but neither TAX1BP1 nor RNF11 or Itch
was significantly regulated on the mRNA level in mono-
cytic cells incubated with the high TNF dose for 48h [4,
36]. Beyond initial mRNA expression analyses, however,
an involvement of TAX1BP1, RNF11, and Itch in TNF
tolerance has not been addressed yet and remains to be
established. In contrast, mRNA and protein expression of
two other regulators cooperating with A20 is increased in
high-dose TNF pretreated monocytic cells [36]: A20 bind-
ing inhibitor of NF-κB (ABIN) 1, an A20 adjuvant protein
[44], and cylindromatosis susceptibility gene (CYLD), a
deubiquitinase possessing activities partly overlapping with
A20 [39]. ABIN1 knockdown induced a modest elevation
in IL-8 mRNA in TNF long-term-incubated cells which
also could not be further elevated by TNF restimulation
[36] indicating that ABIN1 cooperates with A20 in medi-
ating TNF tolerance (Figure 3). CYLD knockdown results
in an elevation of IL-8 mRNA in TNF long-term preincu-
bated cells which was not further increased when the cells
were restimulated with TNF. Effects of A20-siRNA

application can be slightly further enhanced using a com-
bination of A20- and CYLD-siRNA [36] suggesting that
CYLD contributes to the A20-induced development of
TNF tolerance and provides a certain amount of additive
effects (Figure 3).

It has also been demonstrated in high-dose-tolerized pri-
mary human monocytes that protein phosphorylation is
affected by protein phosphatase (PP) 1, an enzyme [45] char-
acterized under these conditions by increased mRNA expres-
sion of the catalytic subunit PP1CB and downregulation of
the regulatory subunit PP1R14C. Repression of PP1 activity
by PP1R14C overexpression or calyculin A treatment
resulted in an abolition of high-dose TNF-induced absolute
tolerance [4].

Together, these data suggest a model in which high-dose
TNF-induced tolerance especially depends on the suppres-
sion of NF-κB-associated signaling by A20 which is
supported by CYLD and ABIN1 (Figure 3). In addition,
phosphatases may also be involved in the formation of TNF
tolerance by reducing the global phosphorylation level in
TNF preincubated cells.
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TRAF2

TAB2/3
NEMO

A20
ABIN

CYLD

Plasma
membrane
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TAK1

a, b

RIP1

IKK
�훽
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�훼
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Figure 3: Inhibition of NF-κB-associated signaling during high-
dose-induced TNF tolerance. The signaling complex at the TNFR1
consists of tumor necrosis factor receptor type 1-associated
DEATH domain protein (TRADD), TNF receptor-associated
factor 2 (TRAF2), and RIP1. Via RIP-associated K63-linked
polyubiquitin chains (blue dots), other proteins are recruited,
especially the IKK complex (consisting of NF-κB essential
modulator (NEMO), IKKα, and IKKβ) and the TGF-β-activated
kinase (TAK) 1/TAK 1 binding protein (TAB) 2/3 complex. In
high-dose TNF preincubated cells, IKK phosphorylation is
inhibited by A20 presumably via noncatalytic binding of NEMO,
induction of RIP degradation by K48-polyubiquitination (purple
dots), and/or hydrolyzation of K63 polyubiquitins on several
signaling proteins. A20-mediated restriction of IKK activity is
supported by ABIN1 and CYLD and results in modulated IκBα
proteolysis: a, during pre-incubation, an increased IκBα turnover
leads to lower IκBα levels; b, following restimulation, no further
decrease of IκBα levels occurs.
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3.4. Additional Mechanisms. In murine models, TNF toler-
ance can be induced by human TNF which acts as a selective
inducer of murine TNFR1 but not murine TNFR2 [19].
Moreover, tolerance can be induced in TNFR2 knockout
mice [16, 21] and the expression of glucocorticoids which
may be involved in low-dose-induced TNF tolerance is acti-
vated by TNFR1-dependent signaling [19]. Thus, TNF toler-
ance appears to be mediated via TNFR1 [16, 19]. While total
amounts of TNFR1 were not significantly affected during
long-term treatment in monocytic THP-1 (high-dose TNF)
or SW480 epithelial cells (low-dose TNF) [27, 36], TNF stim-
ulation led to an internalization of the receptor within 2 h
irrespective of the dose used [36]. Application of low-dose
TNF during the preincubation phase, however, resulted in a
(slow) recurrence of the initial level of TNFR1 within 48h.
In contrast, the use of high-dose TNF led to a permanent
reduction of the receptor on the cell surface during the entire
preincubation period, which could be reversed within 24 h
when TNF was removed from the medium [36]. This sug-
gests that receptor scarcity at the cell surface is another point
restricting TNF-dependent signaling in tolerant cells, at least
in primary human monocytes, since TNF pretreatment did
not result in the downregulation of TNFR1 at the surface of
tolerant murine hepatocytes [16]. However, the major func-
tional role within the establishment of high-dose-induced
TNF tolerance appears to be mediated by A20 as discussed
above (see Section 3.3).

In mice and primary murine hepatocytes, low-dose TNF
preexposure yields decreased amounts of hepatic ubiquitin-
specific protease (USP) 2 [10]. Downregulation of USP2,
either induced by TNF treatment or artificially using siRNA,
resulted in the prevention of TNF-induced apoptosis, an
effect occurring in combination with increased levels of cellu-
lar FLICE-like inhibitory protein (cFLIP), an antiapoptotic
molecule [46], and downregulation of Itch [10], which acts
as a cFLIP inhibitor in that context [47]. Vice versa, USP2
overexpression inhibited the establishment of TNF tolerance
[10] indicating that USP2 represents a powerful inhibitor of
tolerization, at least in the murine hepatic system.

4. Cross-Tolerance

The TNF-tolerant state may further include the refractori-
ness towards other stimuli. For instance, cells or animals tol-
erized with TNF are cross-tolerant towards gram-negative
bacteria [7, 18], LPS [2, 6, 27], or other bacteria-derived
agents such as lipophilic outer membrane vesicles [7]. Vice
versa pretreatment with LPS [5, 48] or macrophage-
activating lipopeptide 2 [49] induced the development of tol-
erance towards subsequent TNF application in THP-1 cells
or mice and rats. Interestingly, tolerance may also be a result
of certain infections, since adenoviral infection of mice has
been described to yield a tolerance-like condition towards
TNF treatment [24].

Due to the equivalent conditions they are creating espe-
cially in monocytes and macrophages, TNF tolerance and
cross-tolerance appear to be based in part on overlapping
or at least similarly operating molecular mechanisms. This
assumption is already well substantiated in the literature

revealing that both TNF- and LPS-induced tolerance/cross-
tolerance are characterized by (1) decreased NF-κB activity
in the nucleus under certain conditions [4, 50], (2) GR-
dependent gene regulation [19, 51], (3) attenuated mitogen-
activated protein kinase phosphorylation [4, 5], (4) regulatory
influence of GSK3 activity [4, 6], (5) upregulation of A20
[6, 36], and (6) receptor downregulation at the cell surface
[36, 51]. Together, these events finally lead to an inhibition
of (primarily NF-κB-dependent) proinflammatory gene
expression and the manifestation of a widely inert cellular
state. However, since TNF tolerance and LPS/TNF cross-
tolerance are established via different receptors (TNFR1 ver-
sus TLR4) [19, 50] and TNF tolerance is induced less rapidly
by TNF than by LPS [22], specific mechanisms (depending
on the respective inducer) influencing the unique features
of both phenomena also have to exist.

Moreover, it has been described that the application of
further agents can positively or negatively modulate the
occurrence of TNF tolerance. For instance, the combined
treatment of mice with TNF and leukemia inhibitory factor
results in a significantly increased protective effect against a
(generally lethal) LPS dose when compared to TNF applica-
tion alone [52]. In contrast, the addition of human IL-1
completely prevented the development of TNF tolerance in
mice normally induced by human TNF [19]. This indicates
that an interaction or cross-reaction with other signaling
pathways and regulatory events may modulate the events
determining the occurrence of tolerance.

5. Pathophysiological Aspects of TNF Tolerance

To prevent deleterious consequences of inflammatory events
such as excessive or chronic inflammation, a strictly con-
trolled and fine-tuned termination of inflammatory pro-
cesses is required [53-55]. As illustrated in this review,
different forms of TNF tolerance can be observed following
long-term (>24 h) preexposure to TNF [4, 5, 26]. The signal-
ing quality occurring during the development of TNF toler-
ance significantly differs from the massive temporary
activation of TNF-dependent signaling within the first 12 h
of stimulation which has been characterized extensively
[1, 56] and designated as phases I and II of TNF signaling
[57]. Thus, TNF tolerance may play a role as a mechanism
mediating refractoriness of monocytes and macrophages
towards sustained proinflammatory cell activation in phase
III (>12 h) of cytokine stimulation [36].

Due to its immunomodulatory effects, TNF tolerance
may comprise several clinical implications in inflammatory
and malignant diseases and represents a “Jekyll and Hyde”-
like cellular process. On the one hand, tolerance may be a
beneficial mechanism contributing to the resolution of
inflammation and the protection from sepsis-associated
hyperinflammation or prolonged chronic inflammatory dis-
eases. In this context, loss of tolerance may favour the forma-
tion of chronic TNF-dependent inflammatory diseases in
which NF-κB is activated such as rheumatoid arthritis [58],
inflammatory bowel disease [59], or autoimmunity [60]. On
the other hand, “too much tolerance” may be regarded as a
deleterious event presumably involved in the development
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of immune paralysis and the shutdown of the immune sys-
tem observed during certain phases of sepsis [61-63]
(Figure 4). The balance between protection against excessive
inflammation and immune paralysis may finally determine a
patient’s fate [62]. In malignant diseases, refractoriness
towards TNF may also play a role [64]. For instance, it has
been observed that tumour formation may occur as an
adverse event of anti-TNF treatment in several inflammatory
diseases [1].

6. Conclusions

As summarized in this review, TNF tolerance is generally
characterized by the inability of affected cells, organs, or
organisms to fully respond to a restimulation with TNF
following a preceding long-term incubation with the same
stimulus. Thus, TNF tolerance may play a role in severe acute
or chronic inflammatory diseases in which TNF is present in
large amounts. As such, TNF tolerance appears to be an
interesting target within the efforts to improve the therapeu-
tic modulation of exaggerated and/or prolonged dysregulated
immune responses. However, despite a variety of experimen-
tal approaches and considerable progress in the characteriza-
tion of its molecular regulation in recent years, the complex
network of mechanisms determining occurrence and
establishment of TNF tolerance is not completely eluci-
dated yet. In addition, the distinct role of TNF tolerance
in development and progression of inflammation-related
diseases as well as its clinical relevance has to be precisely
established [65].

A better characterization of the mechanisms determining
TNF tolerance will improve the understanding of its clinical
relevance and presumably facilitate the development of
diagnostic approaches to assess different forms and states of

tolerance. In addition, increased knowledge on TNF toler-
ance potentially offers the implementation of therapeutic
approaches to treat inflammation-related diseases either by
initiating or breaking the establishment of TNF tolerance.
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Objective. To investigate the correlation between the clinical effects of Huangqi (Astragalus membranaceus) on different stages of
diabetic nephropathy (DN) and the pharmacological effect of Huangqi on the activity of inducible nitric oxide synthase (iNOS)
in macrophages in different states. Methods. The PubMed, China National Knowledge Infrastructure, and Wanfang databases
were searched. Clinical data was sourced from papers on treatment of different stages of DN with Huangqi, and
pharmacological data was from papers on the effects of Huangqi on the iNOS activity of macrophages in a resting or an
activated state. Results. Meta-analysis of Huangqi injections on stages III and III-IV DN and randomized controlled trials on
other stages showed that Huangqi had therapeutic effects on different stages of DN and on macrophages in different states:
inducing normal macrophages in a resting state to generate nitric oxide (NO), tumor necrosis factor-α, and so forth upon iNOS
activation; inhibiting NO generation by normal lipopolysaccharide- (LPS-) activated macrophages; and enhancing NO
generation by LPS-induced macrophages from patients with renal failure. Conclusions. Huangqi can regulate iNOS activity of
macrophages in different states in vitro. These biphasic or antagonistic effects may explain why Huangqi can be used to treat
different stages of DN.

1. Introduction

Diabetic nephropathy (DN) is one of the most serious
chronic microvascular complications of diabetes mellitus
(DM) and is also the main cause of renal failure in end-
stage chronic kidney disease (CKD). Mogensen et al.
divide DN into five stages, according to the course and
pathophysiological process of the disease (Table 1) [1].

Proteinuria is a hallmark of diabetic kidney disease and is
also an independent risk factor for the progression of renal
failure [2]. A pharmacological study showed that Huangqi
(Astragalus membranaceus), a traditional Chinese medicine
(TCM), attenuates proteinuria in a streptozotocin- (STZ-)
induced model of diabetes [3].

Recent research showed that there are significant differ-
ences between urinary mRNA of podocyte-associated
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molecules in relation with albuminuria stage [4], and the
activation of macrophages causes podocyte damage in DN
[5]. Macrophages in a resting state appear to have no obvious
effect on renal injury, and macrophages in an activated state
are very important to the disease progression. After inducible
nitric oxide synthase (iNOS, nitric oxide synthase type II) is
induced by lipopolysaccharide (LPS), high glucose, or the
like, a large amount of nitric oxide (NO) is generated, a
marker of macrophage activation [6].

There has been extensive research on Huangqi in the
clinical treatment of DN, and Huangqi has been shown to
exhibit particular therapeutic effects on different stages of
DN [7–28]. Existing studies have shown that Huangqi has
an inhibitory effect on the generation of NO by LPS-
induced macrophages [29–42] and also that Huangqi itself
can induce macrophages to generate NO [41–49]. This article
attempts to analyze the correlation between these apparently
antagonistic pharmacological effects of Huangqi on macro-
phages and the clinical effect of Huangqi in the treatment
of different stages of DN, based on existing clinical data and
the results of relevant pharmacological studies.

2. Materials and Methods

2.1. Literature Retrieval Strategy. The Chinese journal full-
text database of China National Knowledge Infrastructure
(CNKI), Wanfang database (Wanfang), and Medline were
electronically searched, from the inception of the databases
until August 2017. (Astragalus membranaceus OR Huangqi)
AND (diabetic nephropathies OR renal failure) were selected
as MeSH terms for clinical data. (Astragalus membranaceus
OR Huangqi) AND macrophages AND nitric oxide syn-
thase type II were selected as the MeSH terms for pharma-
cological studies.

2.2. Incorporation of Literature. Clinical data was incorpo-
rated from articles satisfying the following criteria: papers
that demonstrate the therapeutic effects of Huangqi on differ-
ent stages of DN, involving randomized controlled trial
(RCT), semirandomized controlled trial (CCT), and meta-
analyses of RCTs and CCTs. In such data, the DM should
be diagnosed according to the diagnostic criteria of the
WHO (1980, 1985, or 1999) or the American Diabetes Asso-
ciation (1997 or 2010), and the stages of DN should be

diagnosed according to Mogensen’s criteria for stage
diagnosis [1].

Pharmacological studies were incorporated from articles
satisfying the following criteria: in vitro pharmacological
studies on the influence of Huangqi on the generation of
NO, tumor necrosis factor-α (TNF-α), and so forth by mac-
rophages upon iNOS expression. The macrophages include
normal macrophages and immunocompromised macro-
phages, in either resting state or activated state.

3. Results

3.1. Preliminary Analysis of Clinical Studies on Treatment of
DN with Huangqi. In this study, CNKI was initially used
for a preliminary analysis of the clinical reports of treatment
of different stages of DN with Huangqi. The retrieval results
show that therapeutic effects of Huangqi on all stages of DN
have been reported. 484 clinical research papers relate to
treatment of different stages of DN with Huangqi, with the
majority of these (243) referring to Huangqi injections.

3.2. Clinical Studies on Treatment of Different Stages of
DN with Huangqi Injections. Based on the preliminary
retrieval results of Section 3.1, Medline, Wanfang, and
CNKI were searched. The papers involving treatment of
DN with Huangqi injections were classified, collected,
and summarized according to different stages: meta-
analyses of therapeutic effects on different stages were first
selected, and then relevant RCT or CCT studies were
selected, so as to clarify the therapeutic effects of Huangqi
injections on the five stages of DN. As shown in the flow-
chart in Figure 1, ultimately 22 references were chosen
from a total of 356 references, including 5 meta-analyses
and 17 RCTs [7–28].

There was only one RCT report about Huangqi injections
against stages I-II of DN, with a relatively small sample
size (28 in total, 13 in control group and 15 in Huangqi
injection treatment group). The main improvement indi-
cators reported on included urine albumin excretion rate
(UAER), transforming growth factor β1 (TGF-β1), amongst
others [7].

There are four meta-analyses that demonstrate the thera-
peutic effects of Huangqi injections on stage III DN. The
studies incorporated into these four meta-analyses on stage
III were conducted from 1998 to 2015, including 49 RCTs

Table 1: Mogensen’s criteria for stages of DN [1].

Stage Features

I
Hyperfunction, hypertrophy.

Increased urinary albumin excretion (microalbuminuria).

II
Morphologic lesions without clinical signs of disease. Increased GFR.

Poor diabetic control or exercise increase microalbuminuria.

III Incipient DN. Persistent proteinuria (30–300) mg/24 h. Microalbuminuria slowly increasing over the years. Increased GFR.

IV Overt DN. Persistent proteinuria (>0.5 g/24 h). Untreated hypertension leads to decreased GFR.

V End-stage renal failure with uremia due to DN.

Note. DN: diabetic nephropathy; GFR: glomerular filtration rate.
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(29 RCTs were cited in more than one meta-analysis). The
total cases were 3368 in which 1644 cases were in the control
group and 1724 in the treatment group. UAER improved in
these four meta-analyses. Both 24-hour urinary protein and
serum creatinine (Scr) were reported in three analyses, and
blood urea nitrogen (BUN) in two [8–11].

One meta-analysis related to stages III-IV was reported
in 2011, including 21 RCTs and 4 CCTs [12]. A report about
Huangqi injections at stage IV included five RCTs. The total
cases were 455 (199 in the control group and 256 in the treat-
ment group [13–17]). The improvement indicators included
24-hour urinary protein, Scr, BUN, and creatinine clearance
rate (CCr).

An RCT report about stage V included 32 cases in the
treatment group and 30 in the control group [18]. There
are another 10 RCT papers related to renal failure research
using Huangqi injections. We extracted 210 cases of renal
failure due to DN (120 cases in the treatment group and
90 cases in the control group) from a total of 1372 cases
[19–28]. All these were included in Table 2 stage V, and
Scr, BUN, and CCr were improved [18–28].

3.3. Pharmacological Studies on Regulation of iNOS Activity
of Macrophages in Different States by Huangqi. There are 21
articles about the influence of Huangqi on the generation of
NO, TNF-α, and so forth by normal macrophages upon
iNOS expression in vitro [29–49], including 9 in Chinese
[29–32, 41–45], and 12 in English [33–40, 46–49], as shown
in Table 3. The macrophages used in the studies were derived

from either RAW264.7 macrophage cell line, peritoneal mac-
rophages, or human mononuclear macrophage line U937.

Twelve articles reported that Huangqi could inhibit the
generation of NO by LPS-activated macrophages [29–40];
eight studies were performed on Huangqi extracts, including
crude extracts, active fractions, and compounds [31, 34–40],
two studies on polysaccharides [29, 30], and another two
on saponins and total flavonoids separately [32, 33]. Seven
articles separately reported that Huangqi could induce nor-
mal macrophages in a resting state to generate NO, focus-
ing on polysaccharides and saponins, with polysaccharides
(6 studies) being the most studied [43–49]. Two articles
reported that Huangqi could both induce the generation
of NO by macrophages in a resting state and inhibit the
generation of NO by macrophages in an activated state
(polysaccharides and various combinations of polysaccha-
rides with saponins) [41, 42].

Only one study concerned immunocompromised macro-
phages, derived from macrophages isolated from the dialy-
sate of dialysis patients with renal failure. The results
showed increased ability of macrophages to generate NO in
the presence of LPS induction after Huangqi injection was
administered to patients with renal failure for 9 days [50].

4. Discussion

In China, the estimated prevalence of DM in adults aged 18
and older is 11.6%, equating to about 114 million patients
[51]. A study indicates that diabetes-related CKD has become

Total references#

(n = 356)
Excluded
Repeat (n = 21)
Review (n = 2)
Abstract (n = 4)
Not meta & not RCT (n = 89)

References
(n = 240)

Excluded
If meta, not RCT (n = 200)

Stages I‐II
(RCT, n = 2)

Stage III
(meta, n = 6)

Stages III‐IV
(meta, n = 1)

Stage IV
(RCT, n = 14)

Stage V
(RCT, n = 17)

Stages I‐II
(RCT, n = 1)

Stage III
(meta, n = 4)

Stages III‐IV
(meta, n = 1)

Stage IV
(RCT, n = 5)

Stage V
(RCT, n = 11)

Excluded according to
diagnosis description⁎

Stages I‐II (n = 1)
Stage III (n = 2)
Stage IV (n = 9)
Stage V (n = 6)

Figure 1: Flowchart on clinical trials. Note. #Total references included 243 from the Chinese journal full-text database of China National
Knowledge Infrastructure and 113 from Wanfang database. ∗The diabetes mellitus should be diagnosed according to the diagnostic
criteria of the WHO (1980, 1985, or 1999) or the American Diabetes Association (1997 or 2010), and the stages of diabetic nephropathy
should be diagnosed according to Mogensen’s criteria for stage diagnosis [1].
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the main substantial effect on the observed spectrum of CKD
[52]. Clinicians are facing the challenge of how to effectively
control the occurrence and progression of DN.

The recommended therapeutic regimens for DN world-
wide include controlling blood glucose and hypertension
and reducing urinary albumin and blood lipids. In recent
years, attempts to treat DN with TCM in combination with
western medicine in China have achieved some efficacy. In
a national basic research and development project, the effi-
cacy and safety of conventional western medicine combined
with TCM in the treatment of DN were evaluated by a mul-
ticenter, prospective cohort study, to investigate syndrome-
based use of TCM for DN. The results showed that the rule
of prescription of TCM was based on supplementing qi and
nourishing yin and promoting blood circulation to remove
blood stasis, for which Huangqi was used most frequently
[53]. Based on this research, the results retrieved from CNKI
showed that simple recipes, compound recipes, and other dif-
ferent formulations of Huangqi all have therapeutic effects on

different stages of DN, and the majority of the papers con-
cern Huangqi injections.

Huangqi injection was initially used clinically to treat
hepatitis B in 1979 [54], and now is widely used in the
treatment of leukopenia [55], viral myocarditis [56], and
DN [7–28]. The quality standard for preparation of Huangqi
injection, revised by the China Food and Drug Administra-
tion in 2002, specified that the amount of Astragaloside IV
should be above 0.08mg/mL [57]. Since Huangqi polysac-
charides have many reported pharmacological effects, some
of the existing studies investigate the molecular weights and
distribution of polysaccharides in Huangqi injection, to pro-
vide further basis for the improvement of the quality
standard for Huangqi injection [58]. A quantitative assay
for simultaneously measuring saponins, such as Astragalo-
side IV, and flavonoids, such as calycosin and formononetin,
contained in Huangqi injection is also being further
improved [59, 60]. A pharmacokinetic study on Huangqi
injection combined with other drugs such as gliquidone has

Table 2: Analyses of clinical studies on treatment of different stages of diabetic nephropathy with Huangqi (Astragalus membranaceus)
injections.

Stage
Number of cases

Study design Main improvement indicators Publication yearControl
group

Treatment
group

I-II [7] 13 15 RCT UAER, TGF-β1, HbA1c, C-IV 2004

III [8–11] 1644 1724
4 metas, including

49 RCTs

UAER [8–11], 24-hour urinary protein [8–10],
Scr [8, 10, 11], BUN [8, 10], TG [8, 9],

TC [8, 9], FBG [9, 10]

2013 (2004–2012)∗

2013 (2005–2011)∗

2014 (1998–2012)∗

2017 (1998–2015)∗

III-IV [12] 859 945
Meta, including 21
RCTs, 4 CCTs

24-hour urinary protein, Scr, BUN, CCr 2011 (1999–2006)∗

IV [13–17] 199 256 5 RCTs
24-hour urinary protein [13–17], Scr [14, 16], BUN [14, 15],

CCr [13, 17], TG [13, 16, 17], TC [13, 16, 17]
2000–2015

V [18–28] 120 152 11 RCTs
Scr [18, 20, 22, 23, 25–28], BUN [18, 22, 23, 25–28],

CCr [22, 26, 27]
1997–2016

Note. ∗Publication year of cited paper of RCT or CCT. UAER: urine albumin excretion rate; TGF-β1: transforming growth factor β1; HbA1c: glycosylated
hemoglobin; C-IV: type IV collagen; Scr: serum creatinine; BUN: blood urea nitrogen; TG: glycerin trilaurate; TC: total cholesterol; FBG: fasting blood
glucose; CCr: creatinine clearance rate.

Table 3: Number of papers on Huangqi (Astragalus membranaceus) regulation of inducible nitric oxide synthase activity in different states of
MΦ.

Sample type On resting MΦ On LPS-activated MΦ On resting and
LPS-activated MΦ

On LPS-activated immune
compromised MΦ

Polysaccharides 6 [43, 45–49] 2 [29–30] 1 [41]

Saponins 1 [44] 1 [33]

Total flavonoids 1 [32]

Extracts 8 [31, 34–40]

Polysaccharides and saponins 1 [42]

Injection 1 [50]

Note. On resting MΦ: effects of Huangqi on resting MΦ; On LPS-activated MΦ: effects of Huangqi on MΦ after LPS activation; On resting and LPS-activated
MΦ: effects of Huangqi on restingMΦ and LPS-activatedMΦ; On LPS-activated immune compromisedMΦ: effects of Huangqi on immune compromisedMΦ
after LPS activation; MΦ: macrophages; LPS: lipopolysaccharide.
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also provided further reference and basis for the clinical use
of Huangqi injection [61]. An effective usage and manage-
ment system has been established for Huangqi injection with
respect to clinical dosage, course of treatment, monitoring of
adverse reactions, and so forth through more than 30 years of
formulation standardization and gradual improvement of the
measurement of various effective ingredients.

The use of Huangqi injection for the treatment of DNwas
first reported in 1998 [62]. According to our research,
Huangqi injection is mainly used on stages III and IV. After
many years of multiple RCT observations, meta-analyses as a
secondary evaluation can help us more accurately and objec-
tively assess the therapeutic effects of Huangqi injection. Five
meta-analyses related to stages III and III-IV were chosen in
this paper (Figure 1).

Microalbuminuria occurs in stage III patients, and clini-
cally stage III is normally called the “early stage” of DN. Per-
sistent proteinuria, 30–300mg/24 h, is a main feature in this
stage [1]. If an effective intervention is delivered in this stage,
the progression of DN is likely to be delayed or even reversed.
This could explain why Huangqi injections are used far more
in stage III than other stages. Research showed that Astraga-
loside IV improved proteinuria, UARE, and BUN in the rat
STZ-induced model of diabetes [3]. In Table 2, in total, 70
RCTs and 4 CCTs in stages III and III-IV also showed
improvement in indicators including 24-hour urinary pro-
tein, UARE, and BUN, and the therapeutic effect of Huangqi
injection plus a conventional therapy was better than that
of the control group receiving the conventional therapy
alone [8–12].

The pathogenesis of DN involves many aspects, such as
oxidative stress and immune inflammation. It is considered
that macrophages play an important role in the development
and progression of DN [5, 6]. In a mouse model of renal
ischemia-reperfusion injury (IRI), macrophages were found
to highly express iNOS in early IRI, which induced the apo-
ptosis of renal tubular epithelial cells [63].

LPS is a potent inducer and activator of iNOS of mac-
rophages to generate NO. The effect of Huangqi on the
generation of NO by macrophages upon activation has
been a focus of studies. The 14 articles [29–42] incorpo-
rated into this study separately reported that Huangqi
extracts and the active ingredients thereof, including poly-
saccharides, saponins, and total flavonoids, had inhibitory
effects on the generation of NO by normal macrophages
induced by LPS. Three of these studies simultaneously
reported that Huangqi can inhibit the LPS-induced gener-
ation of TNF-α [29, 30, 38], another specific indicator for
activation of macrophage iNOS. The studies above showed
that Huangqi inhibited the generation of NO by inhibiting
LPS-induced iNOS activity.

Some animal experiments supported the view that the
therapeutic effect of Huangqi injection on early DN might
be achieved by inhibiting the activity of iNOS. Renal blood
flow and glomerular filtration rate were significantly
increased in diabetic mice after 4 weeks of STZ induction,
with increased expression of iNOS in the renal cortex and
medulla. The expression of iNOS was significantly decreased
after administration of Huangqi injection [64].

A clinical study showed that after administration of
Huangqi injection to patients with renal failure, the secretion
of both NO and TNF-α from the macrophages isolated from
their dialysate was enhanced upon LPS induction [50]. This
study suggests that after Huangqi is administered to DN
patients with end-stage renal failure, their immunocom-
promised macrophages in an LPS-activated state may pres-
ent different functions from normal macrophages in an
activated state.

DN is a progressive, chronic metabolic disease. There is
still a question as to whether iNOS has a pathogenic effect
or protective effect upon activation according to different
periods of the disease and different states of the body. A study
on different courses of DN in an animal model of STZ-
induced DN indicated that iNOS might have different effects
in different stages of the disease: in a model of very early stage
DN induced by STZ for one week, glomerular hypertrophy
and high filtration were associated with the high expression
of insulin-like growth factor-1 (IGF-1) in the kidney. It was
confirmed that the increase in IGF-1 was associated with an
increase in NO, the source of which might be eNOS and
iNOS [65].

A number of studies also demonstrated the protective
effect of iNOS during the progression of DN. A study in a
model of chronic DN for 40 weeks showed that iNOS-
derived NO modulates glomerulosclerosis and tubulointer-
stitial fibrosis in chronic STZ nephropathy [66]. The drugs
for treating DN such as pentoxifylline could exert therapeutic
effects by increasing the expression of iNOS protein in the
kidneys of a mouse model of STZ-induced DN [67].

Of the studies on Huangqi regulation of iNOS activity
shown in Table 3, two studies compare the effects of Huangqi
polysaccharides and polysaccharides plus saponins on nor-
mal macrophages in a resting state and macrophages acti-
vated by LPS induction. The results showed that Huangqi
polysaccharides and saponins could not only inhibit the pro-
duction of NO in LPS-induced macrophages but also induce
macrophages to generate NO [41, 42]. Seven papers incorpo-
rated into this article reported that Huangqi could induce
macrophages to generate NO and were focused on polysac-
charides and saponins [43–49].

The results of a mechanistic study showed that Huangqi
polysaccharides could significantly induce RAW264.7 cells
to release NO and enhance iNOS activity. The nuclear
factor-kappa B (NF-кB) cell signaling pathway was involved
in the induction of NO generation and TNF-α secretion in
macrophages by Huangqi polysaccharides, but NF-кB inhib-
itors did not completely inhibit the induction by Huangqi
polysaccharides, suggesting that the NF-кB cell signaling
pathway may not be the only pathway for this function
[45]. Huangqi polysaccharides could induce the generation
of NO and improve the phagocytosis of macrophages, which
could be blocked by iNOS inhibitors [46]. The studies above
suggest that Huangqi can increase the generation of NO by
inducing the expression of iNOS in macrophages, thereby
exerting pharmacological effects.

It is known that NO exerts biphasic and often antago-
nistic effects in many processes, depending on factors such
as the local tissue concentrations and cell types and the

5Journal of Immunology Research



intensity and duration of the inflammatory phase where
iNOS is initially produced [68]. Therefore, our first
hypothesis is that the pathogenic or protective effect of
iNOS generated upon induction may be related to differ-
ent pathological stages of the same disease and different
states of the same patient. The role of iNOS in the initia-
tion, progression, and renal failure of DN still needs to be
further clarified.

At present, we are interested in different effects of
Huangqi on macrophages in different states: activated or
resting and normal or compromised, as shown in the exist-
ing literature. Huangqi has different effects on the genera-
tion of NO by normal and compromised macrophages
upon iNOS activation; it also has different effects on iNOS
of macrophages in a resting state and an activated state.
Based on the biphasic regulating effects of Huangqi on the
generation of NO by macrophages in vitro, a second hypoth-
esis is proposed: the therapeutic effects of Huangqi on differ-
ent stages of DN may be due to effective intervention with
some processes of the disease, such as activation or inactiva-
tion of iNOS in macrophages and increase or decrease in
NO production, at different stages of DN, and at different
states of the patient, thereby reversing the imbalances of
the disease condition.

The existing preliminary studies support the clinically
therapeutic effects of Huangqi on different stages of DN.
On the basis of the accumulation of clinical data, clinicians
in China are exploring how to obtain high-quality RCT
research reports according to the CONSORT standard
including standardizing randomized studies, establishing
endpoint measures, and particularly strengthening the flow-
chart of subjects [69].

The pharmacological studies on treatment of DN with
Huangqi by regulating the iNOS activity of macrophages
are mostly based on in vitro experiments, and more
in vivo studies are required. A recent in vivo study suggested
that Astragalus polysaccharides may modulate the immu-
nity of the host organism through activation of toll-like
receptor- (TLR-) 4 mediated myeloid differentiation factor
88-dependent signaling pathway [70]. Another report sug-
gests that Astragaloside IV might have anti-inflammatory
effects in vivo by inhibiting the TLR4 signaling pathway
[71]. The research showed that blocking TLR4 suppressed
LPS-induced iNOS expression, and its role in kidney dis-
ease is being explored [72]. Based on this related research,
further in vivo studies on iNOS/TLR4 pathway involve-
ment might assist our understanding of the role of macro-
phages in the clinical mechanism of the effect of Huangqi
on DN.

Following renal injury and repair in the different stages of
DN, macrophages have been shown to exhibit critical regula-
tory activity. Disturbances in macrophage function can lead
to aberrant repair, with uncontrolled inflammatory mediator
and growth factor production [73]. Along with the develop-
ment of phenotypic and functional changes in macrophages,
clinical observations, and pharmacological research into
Huangqi, further evidence is required to understand the
possible biphasic or antagonistic effect of Huangqi on the
regulation of macrophage differentiation and polarization,

to clarify the roles of Huangqi and macrophages and their
interaction in kidney disease.
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