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Didier Felbacq, France
Ricardo Femat, Mexico
Antonio J. M. Ferreira, Portugal
George Fikioris, Greece
Michel Fliess, France
Marco A. Fontelos, Spain
Dimitris Fotakis, Serbia
Tomonari Furukawa, USA
Maria Gandarias, Spain
Naiping Gao, China
Xiao-wei Gao, China
Huijun Gao, China
Xin-Lin Gao, USA
Laura Gardini, Italy
Winston Garira, South Africa
Leonidas N. Gergidis, Greece
Bernard J. Geurts, The Netherlands
Sandip Ghosal, USA
Dibakar Ghosh, India
Pablo Gonzlez-Vera, Spain
Alexander N. Gorban, UK
Keshlan S. Govinder, South Africa
Said R. Grace, Egypt
Jose L. Gracia, Spain
Maurizio Grasselli, Italy
Zhi-Hong Guan, China
Nicola Guglielmi, Italy
Frédéric Guichard, Canada
Kerim Guney, Turkey
Shu-Xiang Guo, China
Vijay Gupta, India
Saman K. Halgamuge, Australia
Ridha Hambli, France



Abdelmagid S. Hamouda, Qatar
Bo Han, China
Maoan Han, China
Pierre Hansen, Canada
Ferenc Hartung, Hungary
Xiao-Qiao He, China
Yuqing He, China
Nicolae Herisanu, Romania
O. Hernandez-Lerma, Mexico
Luis J. Herrera, Spain
J. Hoenderkamp,The Netherlands
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The interdisciplinary approach is becoming an increasing
need in scientific and industrial communities. The most
evident example of such a need is the strong intercon-
nection between applied mathematics and biomedical sci-
ences/engineering. Indeed, biomedical sciences and engi-
neering have become one of the most important application
areas of applied mathematics.

This annual issue includes seven high-quality, peer-
reviewed articles that might provide researchers in the field
of applied mathematics with the current state-of-the-art
knowledge of this emerging interdisciplinary research field.
With this annual issue, we hope to stimulate the contin-
uing efforts to solve real-world biomedical problems with
advanced theories and technologies of applied mathematics.

The paper “Continuous nondestructivemonitoringmethod
using the reconstructed three-dimensional conductivity images
via GREIT for tissue engineering” by S. Ahn et al. presents a
data collection strategy for microscale electrical impedance
tomography (EIT). The authors modified Graz consensus
reconstruction (GREIT) algorithm that has advantages to be
applied to the microscale EIT structure and applied it to the
micro-EIT cuboid container with the specific current driving
method.

Thepaper “Neuronal ensemble decoding using a dynamical
maximum entropy model” by D. Sin et al. proposes a new
decoder for extracting the dynamical neuronal information,
which is based on the conventional maximum entropy

decoding that can consider correlations between neurons and
firing rates of individual neurons. Two simulation studieswell
demonstrate that the proposed dynamic maximum entropy
decoder is capable of capturing the time-varying feature of
neuronal ensemble activity.

The paper “Modeling TB-HIV syndemic and treatment”
by C. J. Silva and D. F. M. Torres describes the formulation
of a model for tuberculosis and HIV transmission dynamics,
considering individuals that pass from HIV to AIDS and
giving simulations for the evolution of infection, considering
treatments of both or each of the diseases separately.

The paper “Regularization of DT-MRI using 3D median
filtering methods” by S. Kwon et al. proposes a new regu-
larization strategy for diffusion tensor magnetic resonance
imaging (DT-MRI) tractography. The authors extended two-
dimensional median filters to three-dimensional medial fil-
ters and compared their performances with real human MRI
data.

The paper “A constitutive model for the annulus of human
intervertebral disc: implications for developing a degeneration
model and its influence on lumbar spine functioning” by
J. Cegonino et al. proposes a mathematical model for the
annulus of human intervertebral disc containing porous
matrix, water, proteoglycan, and collagen fibres network.
Finite element analysis, numerical characterization, and the
validation based on experimental results were carried out for
the proposed model.
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The paper “Removal of muscle artifacts from single-
channel EEGbased on ensemble empiricalmode decomposition
and multiset canonical correlation analysis” by X. Chen et al.
proposes an effective method to removemuscle artifacts con-
taminating EEG signals based on ensemble empirical mode
decomposition (EEMD) and multiset canonical correlation
analysis (MCCA). The performance of the proposed method
was validated using numerical simulations and real EEG data
analyses.

The paper “Enhanced template matching using dynamic
positional warping for identification of specific patterns in
electroencephalogram” by W.-D. Chang and C.-H. Im treats
an improved template matching approach for signal pattern
recognition for EEG. In the approach, they adopted dynamic
positional warping technique developed recently for hand-
writing pattern analysis.
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A continuous Nondestructive monitoring method is required to apply proper feedback controls during tissue regeneration.
Conductivity is one of valuable information to assess the physiological function and structural formation of regenerated tissues or
cultured cells. However, conductivity imaging methods suffered from inherited ill-posed characteristics in image reconstruction,
unknown boundary geometry, uncertainty in electrode position, and systematic artifacts. In order to overcome the limitation of
microscopic electrical impedance tomography (micro-EIT), we applied a 3D-specific container with a fixed boundary geometry and
electrode configuration tomaximize the performance of Graz consensus reconstruction algorithm for EIT (GREIT).The separation
of driving and sensing electrodes allows us to simplify the hardware complexity and obtain higher measurement accuracy from a
large number of small sensing electrodes. We investigated the applicability of the GREIT to 3D micro-EIT images via numerical
simulations and large-scale phantom experiments. We could reconstruct multiple objects regardless of the location.The resolution
was 5mm3 with 30 dB SNR and the position error was less than 2.54mm. This shows that the new micro-EIT system integrated
with GREIT is robust with the intended resolution. With further refinement and scaling down to a microscale container, it may be
a continuous nondestructive monitoring tool for tissue engineering applications.

1. Introduction

There are many reports that nerve or tissue regeneration is
a successful treatment modality in skin, muscle, nerve, and
periodontal reconstruction [1–5]. In order to implant a regen-
erated tissue, there must be a systematic and stable method
to cultivate. For efficient cytothesis, they extract potentially
autologous regenerative cells and expand cells in vitro before
replacing degenerated tissue. However, current monitoring
methods such as histological analysis and quantification of
various components using a microscope and chemical dye
are invasive and the examined tissue sample may be not
reused for implanting. Considering the shortage of donor

tissues, it requires the real-time, continuous nondestructive
monitoring methods for proper feedback controls inside
a bioreactor to enhance the quality of the final implant.
When we consider the monitoring of three-dimensional
(3D) tissue growth inside a 3D scaffold for bone or tissue
formation, conventional molecular imaging methods using
optical fluorescent and bioluminescent markers are difficult
to represent the functionality deep inside regenerative tissues
[6]. The micro-CT provides high-throughput images with
high spatial resolution to describe the appearance of bone
regeneration and structural changes; however, it has limita-
tions of continuous monitoring and functional imaging of
regenerative tissues [7, 8]. Simultaneous PET-MRI is a new
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Figure 1: The structure of sample container and the method used for the primary (E
𝑝±
) and secondary injection currents (E

𝑠±
).

approach with synergizing for functional and morphological
imaging [9]. However, it is too expensive and cannot be
installed inside the bioreactor.

Bioelectromagnetic phenomena are fairly correlated with
physiological functions and structural formation of cells
and tissues directly. Therefore, the distribution of electric
field generated by induced currents inside biological tissue
can be used for monitoring tissue growth and its func-
tions noninvasively [10, 11]. We would like to develop the
continuous monitoring method to find the functionality
of the ingrowth neotissue in the scaffold using bioelectric
properties. Electrical impedance tomography (EIT) can pro-
duce cross-sectional images of conductivity and permittivity
distributions inside a tissue using pairs of injection currents
and induced boundary voltages [12]. There have been sev-
eral attempts to develop EIT systems on the microscopic
scale (micro-EIT systems) with high spatial resolution using
conventional EIT approaches [13–17]. They inherited some
technical difficulties, suffering from the ill-posed problem
with limited electrode measurements, and were affected by
unknown boundary geometry, uncertainty in electrode posi-
tion, and systematic artifacts, even though EIT is uniquely
able to show conductivity time variations with high temporal
resolution, nondestructive, label-free, and multidimensional
in space, time, and frequency.

To solve the difficulties in developing micro-EIT, Lee
et al. [18] and Liu et al. [19] suggested a mathematical
framework and system for a new micro-EIT method with
a rectangular cuboid container that included two pairs of
current injection electrodes and numerous voltage sensing
electrodes, as shown in Figure 1. They applied a projected
image reconstruction algorithm to produce conductivity
images from the front, bottom, and back sides; they were
combined to make a 3D conductivity image using a back-
projection algorithm. Although this method showed better
resolution than that found from the conventional micro-EIT
methods, it required an automatic estimation of the position
and volume of a regenerated tissue and a fast detection for

physiological changes. In this study, we used theGraz consen-
sus reconstruction algorithm for EIT (GREIT) to reconstruct
the 3D conductivity images representing the tissue status
or morphological changes [20]. Since a specific container
has a fixed boundary geometry and electrode configurations,
electrode movement or the deformation of the boundary
shape does not need to be considered. The modified GREIT
algorithm based on the concept of the equivalent homoge-
neous complex conductivity may be able to provide real-time
3D reconstructed images without significant artifacts [21, 22].
This can be achieved through a matrix-vector multiplication
after precomputation of the reconstruction matrix R. We
investigated the applicability of the GREIT to 3D micro-EIT
images via numerical simulations and large-scale phantom
experiments using five figures of merit.

2. Methods

2.1. The Mathematical Framework. We chose the rectangular
cuboid container of Ω to maximize the performance of
GREIT. Two pairs of driving electrodes E

𝑝±
and E

𝑠±
are

assigned to the primary and secondary current injections,
respectively. Each pair of electrodes takes turns in injecting
current. After applying a low-frequency current of amplitude
𝐼, the electrical potential, 𝑢

𝑗
(𝑗 = 𝑝, 𝑠), satisfies the following:

∇ ⋅ (𝜎∇𝑢
𝑗
) = 0 in Ω

∫
E𝑗±

𝜎

𝜕𝑢
𝑗

𝜕n
= ±𝐼, ∫

E𝑘±

𝜎

𝜕𝑢
𝑗

𝜕n
= 0 for 𝑘 ̸= 𝑗 (𝑘 = 𝑝, 𝑠)

n × ∇𝑢
𝑗
= 0 on E

𝑝±
⋃E
𝑠±

𝜎

𝜕𝑢
𝑗

𝜕n
= 0 on 𝜕Ω \ (E

𝑝±
⋃E
𝑠±
) ,

(1)

where 𝜎 is the conductivity and n is the outer unit normal
vector on the boundary [18]. The container is designed for
separated current driving electrodes from voltage sensing
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electrodes, which means that the contact impedance of
the sensing electrodes can be ignored. Since we adopt the
tetrapolar measurement, we exclude the electrode proper-
ties and reduce the channel dependent characteristics. One
therefore can use the simple electrode model instead of the
complete electrode model to minimize the error induced by
inappropriate modeling and differences between channels.
The separation of the driving and sensing electrodes allows
us to simplify the hardware complexity and obtain higher
measurement accuracy from a large number of small elec-
trodes. In addition, only two driving patterns are created,
which makes for simple boundary conditions.

2.2. Image Reconstruction Algorithm. We adopted the GREIT
in order to reconstruct the conductivity distribution [20].
This linear reconstruction algorithm was developed to over-
come several issues regarding the reconstructed EIT images,
which cause a poor spatial resolution: amplitude, position
error, shape deformation, and ringing effect. Adler et al.
[20] applied the GREIT to two-dimensional (2D) EIT of the
lungs employing a single-ring electrode configuration using
adjacent current injection and measurement. In their study,
the 2D conductivity change could be obtained by the GREIT
based on a 3D forward model. For the micro-EIT system, we
use the “3D desired volume” instead of the 2D desired image
to recover the 3D volume of conductivity change.

The linear EIT image reconstruction can be represented
by computing the reconstruction matrix R, which corre-
sponds to measurement y in order to produce the recon-
structed image x̂, as follows:

x̂ = Ry. (2)

The GREIT procedure depends on the forward model, a
noise model, and the desired performance metrics. When a
𝑘th anomaly is positioned in the domain, we can compute
the EIT measurement data y(𝑘) from the change in the
conductivity distribution x(𝑘)

𝑡
= 𝜎
(𝑘)
−𝜎
(𝑘)

𝑟
, where 𝜎, 𝜎

𝑟
are the

present and reference conductivity distributions, respectively.
For a given anomaly position, a reconstructed object in the
desired image, x̃(𝑘)

𝑡
, is located at the same center of the

conductivity target in the model. However, its shape would
be circular because of the blurring effect inherent in EIT.
To tune the relative importance of the performance metrics,
image weighting factor, w(𝑘), is used for each pixel in x̃(𝑘)

𝑡
.

When the transition zone is defined as the pixels in which
the conductivity change gradually converges to zero, the
weighting w(𝑘) allows us to have a small error outside the
transition zone and a large one inside. The reconstruction
matrix R can be obtained by minimizing the total weighted
sum of residual errors 𝜖2; one has

𝜖
2
= ∑

𝑘


x̃(𝑘) − Ry(𝑘)

2

W(𝑘) , (3)

whereW(𝑘) = (diagw(𝑘))2.
The existing GREIT algorithm was restricted to the

cylinder model and mainly focused on the 2D imaging plane

at the same level as the height of the single-ring electrodes.
Therefore, a reconstruction matrix R was required for the
imaging plane. If one would obtain another image at a
different height from electrodes, the reconstruction matrix R
needs to be recomputed, corresponding to the other imaging
plane. Since we use the “3D desired volume” for the training
data set in the micro-EIT system, we do not need to calculate
R repeatedly; the R will allow us to obtain any volume inside
the container or for several slice images at different positions.
The EIT measurement data y(𝑘) is also calculated using the
3D forward model employing governing equation (1) when
the change in conductivity x(𝑘)

𝑡
= 𝜎
(𝑘)
− 𝜎
(𝑘)

𝑟
is given. Most of

the noise is introduced from electronic noise, shape change,
and electrode positioning error. However, we do not need
to consider the shape of the imaging domain and electrode
movement in the micro-EIT system due to the use of a
container with fixed dimensions and shape. Therefore, the
measurement data is only degraded by the electronic noise in
the system.The 3D desired volume z̃(𝑘)

𝑡
corresponding to x(𝑘)

𝑡

is created at the position with the same center as the center
of gravity (CoG) of x(𝑘)

𝑡
. The shape of the volume is defined

by the spherical volume due to the blurring effect inherent
in EIT. We assume that the volume weighting factor, w(𝑘),
is the same for each training data set in order to simplify
the algorithm.Therefore, the reconstruction matrix R can be
computed byminimizing ‖[Z̃t | 0] − R[Yt | Yn]‖

2
W as follows:

R = [Z̃t | 0] [Yt | Yn]
T
([Yt | Yn] [Yt | Yn]

T
)
−1
, (4)

where [⋅ | ⋅] stands for the matrix concatenation, Yt =

(1/N)[y(1)t ⋅ ⋅ ⋅ y
(N)
t ], Z̃t = (1/N)[z̃(1)t ⋅ ⋅ ⋅ z̃

(N)
t ], and Yn =

(1/N)[y(1)n ⋅ ⋅ ⋅ y
(N)
n ]. The noise y(𝑘)

𝑛
is an estimate of the noise

amplitude variance var(y(𝑘)
𝑛
) = 𝐸[‖y(𝑘)

𝑛
‖
2

]with amean of zero.

2.3. Performance Figures of Merit. In order to evaluate the
performance of the reconstructionmethod andmeasurement
configuration, we compute five figures of merit: ampli-
tude response (AR), position error (PE), resolution (RES),
shape deformation (SD), and ringing artifacts (RNG). They
are described well in the reference paper [20]. Here, we
summarized them with simple equations and the desired
characteristics. [x̂

𝑞
] is defined by the voxels in which the

absolute values of the conductivity change are bigger than
one-fourth of the maximum change as follows:

[x̂
𝑞
]
𝑖
=
{

{

{

1, if [x̂]𝑖
 ≥
1

4
⋅max (x̂)

0, otherwise.
(5)

(i) Amplitude response (AR): this parameter gives us a
quantitative result related to the ratio of conductivity
amplitude on pixels in the region of interest (ROI; x̂

𝑘
)

to the reference conductivity. Considering a spherical
perturbation with conductivity of 𝜎

𝑡
and volume of𝑉

𝑡
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Figure 2: (a) Tetrahedral elements for numerical simulation within the domain, (b) grid voxels for image reconstruction, and (c) an example
of simulation of sample target (red voxels) and reconstructed object (green voxels).

inside a homogenous medium with conductivity 𝜎
𝑟
,

the AR is

AR =
∑
𝑘
[x̂]𝑘

𝑉
𝑡
⋅ ((𝜎
𝑡
− 𝜎
𝑟
) /𝜎
𝑟
)
. (6)

It should be uniformwithin the region of any homog-
enous target.

(ii) Position error (PE): this quantitative parameter repre-
sents the difference of CoG between the actual posi-
tion of object, r

𝑜
, and the estimated center position, r

𝑞
,

using pixels greater than one-fourth of the maximum
amplitude, [x̂

𝑞
]. Consider

PE = r𝑞 − r𝑜

. (7)

Ideally, it should be zero. It provides accuracy regard-
ing the positional information for a target object. The
PE should be small and possess little variability within
the 3D domain.

(iii) Resolution (RES): it means the relative volume of the
reconstructed point target compared to the size of
total medium which is equal to the value of the point
spread function (PSF). Consider

RES = √
𝑉
𝑞

𝑉
0

, (8)

where 𝑉
𝑞
is the volume of {[x̂

𝑞
]
𝑘
= 1} and 𝑉

0
is the

volume of the whole domain,Ω. It should be uniform
and small.

(iv) Shape deformation (SD): when we consider the
spherical object in the homogenous medium, we can
define an index set S representing the indices of [x̂

𝑞
]

inside a sphere centered at the CoG of [x̂
𝑞
] with the

same volume as 𝑉
𝑞
. The SD measures the portion of

{[x̂
𝑞
]
𝑘
| 𝑘 ∉ S} over the reconstructed target as

follows:

SD =
(∑
𝑘∉S [x̂𝑞]𝑘)

(∑
𝑘
[x̂
𝑞
]
𝑘
)

. (9)

(v) Ringing artifact (RNG): it measures the portion of
voxels with the opposite sign of image amplitude
which is called undershoot or overshoot surrounding
the main reconstructed target. For an index set OV
representing the voxels as follows:

RNG =
(∑
𝑘∈OV&𝑘∉S [x̂𝑞]𝑘)

(∑
𝑘∈𝑆
[x̂
𝑞
]
𝑘
)

. (10)

3. Numerical Experiments

Weconstructed the large-scale computationalmodel to be the
same size as the container (48 × 24 × 24mm3) for phantom
experiments shown in Figure 1. The results for numerical
simulation in a container of this size are the same as ones of
microscopic container except of scaling effect, and phantom
experiments are easily performed in that size. The whole
domain was decomposed into 646,781 tetrahedral elements
in Figure 2(a). We computed the boundary voltages and
added white Gaussian noise at various levels from noise
free to 15 dB signal-to-noise ratio (SNR). In order to obtain
reconstructed images with a 1mm spatial resolution, we
defined the 27,648 (= 48 × 24 × 24) grid voxels used for
reconstruction as in Figure 2(b). When we considered the
number of grid points with the spatial resolution of 0.7mm
for each direction, we could get 80,606 possible targets for
training. 981 objects were removed because they were too
close to injection electrodes or less sensitive to contribute
to the reconstruction matrix R. We chose 79,625 training
targets for the computation of matrix R in (4). There were
a pair of electrodes fully covering the left and right sides
of the container used for the primary current injection, a
pair of thin vertical electrodes at the middle of the front
and back sides for the secondary current injection, and 360
gold-coated voltage sensing electrodes with 1mm diameter
on the front, bottom, and back sides. A planar array of 8 × 15
electrodes was placed on each of the three sides. The voltage
difference was measured between two horizontally adjacent
electrodes for each current injection pattern; the last column
of each row measured the voltage reference to the circuit
ground [19]. There were 360 measured differential voltages
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Figure 3: Single object placed at (a) (12, 12, 12), (b) (24, 12, 12), and (c) (36, 12, 12), respectively, with noise of 40 dB.

along the horizontal direction for each injection current.
We generated the vertically measured voltage data using the
last measurement channel in each row. The total number of
measured voltages was 1,410 including 690 additional vertical
measurements. Figure 2(c) shows an example of target object
(red voxels) and reconstructed object (green voxels). For the
numerical experiments, we considered the following cases:
(1) a single object at different positions, (2) two objects to the
left and right, and (3)multiple objects.

3.1. Case 1: Single Object. A single object was located at
(12, 12, 12) (left), (24, 12, 12) (center), and (36, 12, 12) (right)
(unit: mm) in the container, as shown in Figure 3. The con-
ductivity of the object was ten times greater than that of the
background. Figure 3 shows the real position of each object,
the reconstructed volume above one-fourth amplitude ([x̂

𝑞
]),

and the cross-sectional images at the height passing through
the object. Here, we defined the reconstructed volume as
where the absolute values of the conductivity change were

greater than one-fourth of the maximum change. The center
of the reconstructed anomaly ranged within 1 to 2mm from
the original center.The shape of the one-fourth amplitude set
was ellipsoid with a longer radius along the 𝑧-axis. Since the
primary and secondary currents were parallel to the 𝑥- and
𝑦-axes, information along the 𝑧-axis was lacking. Therefore,
the shapes along the 𝑥- and 𝑦-directions were relatively exact;
however, the shape along the 𝑧-direction was blurred.

We computed five figures of merit explained in Section
2.3 to evaluate the performance of the algorithm and mea-
surement configuration. We moved a single 5mm radius
object from 6 to 42mmwith 3mm intervals along the 𝑥-axis.
Lee et al. [18] and Liu et al. [19] used horizontally measured
boundary voltages (H-data) in their studies. However, we
found that the method using H-data only did not yield an
image with high quality when using the GREIT. We thus
decided to use vertically measured boundary voltage data
(V-data) as well as H-data since V-data was independent
on H-data. The strategy using both H-data and V-data can
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Figure 4: Five figures of merit (AR, PE, RES, SD, and RNG) for the results in the numerical experiment with SNR of 40 dB.

increase the rank of the reconstruction matrix R; therefore,
the solution of matrix inversion was closer to the desired
one.This method was compared with one using only H-data.
When the additional V-data was used, we obtained a flatter
AR, a smaller PE with slight variations, and a more uniform
and smaller RES, SD, and RNG in Figure 4. We examined
these figures of merit for SNR of 60 dB to 15 dB and found a
significant deviation began to appear PE, RES, and SD when
the SNR degraded to 30 dB. Further, with the SNR set at
40 dB we simulated the case where there was a 1%mismatch
between the 360 channels and found that all figures of merit
did not deviate more than 2.5%.

3.2. Case 2: Two Objects. Two objects that had ten times
higher conductivity than the background conductivity and
the same 5mm radius were simultaneously located on the
left and the right, as shown in Figure 5(a). The radius of
the right object was altered to 3.75 and 2.5mm in order
to observe the distinguishability of two objects of different
sizes in Figures 5(b)-5(c). We also assigned two different
conductivity values to two objects having the same size: one
was ten times greater than the background conductivity; the
other was ten times less than the background conductivity, as
shown in Figure 5(d).

As the right object became smaller, the amplitude of
the reconstructed image also decreased. In the case of the
smallest object of 2.5mm radius, the reconstructed amplitude
of the right object was so small that it was beneath the similar
level of undershoot of large left object. However, we can
make a distinction of small object in the profile. The GREIT
reconstructed the two objects even for the case when the two
objects had opposite conductivity values. Overall, the GREIT
was able to distinguish two separated objects and reconstruct
them, but it had difficulties in reconstructing an object with
a 2.5mm radius, which was roughly 1/20 of the largest edge
length of the container.

3.3. Case 3: Multiple Objects. We used the modified Shepp-
Logan model to implement more than eight objects. All of
the objects had the same conductivity, which was ten times
higher than the background conductivity. Figure 6 shows
that the different sized multiple objects were reasonably
reconstructed by the GREIT. However, it was not possible
to reconstruct three small objects with diameters less than
5mm, and this was a similar result found in Figure 5(c).
According to the profile along line (b) in Figure 6 for the
middle cross section of the container, three small objects were
detected; however, their amplitudes were as lower than the
undershoot threshold level. They were not visible directly
in the images due to high amplitude contrast of the larger
objects.

4. Phantom Experiments

We used a container with the same size as that laid out in the
numerical experiments. The container was filled with saline
having 0.2 S/m conductivity. We tested the new method in
two different configurations.

(i) A biological object of 0.02 S/m size 10 × 10 × 10mm3
was placed at (12, 12, 12) (left), (24, 12, 12) (center), and
(36, 12, 12) (right), respectively (unit: mm), as shown
in Figure 7.

(ii) One biological object was positioned on the left side
and another biological object was simultaneously
placed on the right side. The object on the left side
was 6 × 6 × 6mm3 and the object on the right was
10 × 10 × 10mm3, as shown in Figure 8.

We measured the voltages from the container without any
object in it subjected to the primary and secondary current,
separately, as a baseline. We compared the measurements of
voltage data to the simulated data with different gains in each
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Figure 5: Two objects placed at (12, 12, 12) and (36, 12, 12).The radius of the left object was 5mm.The radius of the right object was (a) 5mm,
(b) 3.75mm, (c) 2.5mm, and (d) 5mm, respectively. The two objects had the same conductivity for (a)–(c) and a different conductivity for
(d).

voltmeter.This allowed us to perform a calibration to remove
the channel characteristics of the micro-EIT system.

As shown in Figure 7, the single object was clearly recon-
structed at the expected location.We evaluated reconstructed
images using five figures of merit. They tended to have
similar results as the simulation except for the case of the
right position. The magnitude of the reconstructed images
gradually decreased as the location moved to the right.
Figure 8 shows two reconstructed objects when the left
object was smaller than the other. The left object with
216mm3 volume was reconstructed as one with 337.05mm3,
whereas the right one with 1,000mm3 was reconstructed
as 545.94mm3. The position dependent volume variation
may be caused by the measurement system which used
same ground for both current source and voltmeters. The
common mode voltage can produce the gradient of voltage
measurements. Also, there was a large artifact (overshoot)
on the left side when positioning an object close to the
current injection electrode. Artifacts around the objects were
ringing effects of the reconstructed anomaly combined with

current injection method. We observed small artifacts near
the secondary electrodes, which were not observed in the
numerical simulations. These may be caused by the highly
conductive voltage sensing electrode array and secondary
current injection electrodes used to produce the equipotential
region.

5. Discussions and Conclusions

The new method for the micro-EIT system is focused on
generating a uniform parallel current density inside the
container when we apply the primary injection current in
order to improve the image quality and achieve a high spatial
resolution. The system is useful to measure the boundary
voltage following the current flow because the equipotential
lines are perpendicular to the current streamlines. The
secondary current is used for finding a unique solution
from the measurement data. It has advantages when we use
dedicated current injection electrodes and a large number of
separated voltage sensing electrodes. This configuration may
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Figure 6: The reconstructed multiple objects from the modified Shepp-Logan model.

also provide better spatial resolution and simplified system
design. The distance between two adjacent electrodes and
the number of electrodes are limited by the system noise
level. Since a container has a fixed boundary geometry and
electrode configuration, the developed micro-EIT system is
best suited for applying 3D GREIT algorithm. Therefore, we
can generate the computational forward model as precisely
as possible to obtain a training data set. In addition, one can
create a suitable amount of synthetic training data and use
it to construct the reconstruction matrix R before the 3D
reconstruction of conductivity distributions. After obtaining
the reconstruction matrix, one can create the reconstructed
image by performing the simplematrix-vectormultiplication
of R and the boundary voltage data. This will be advanta-
geous to detect fast physiological changes in tissue with a
high temporal and spatial resolution.The spatial resolution is
determined by the number and spacing of the voltage sensing
electrodes.

We need to consider a few issues related to the optimal
number of training data and the determination of the image
voxel weighting matrix W. Adler et al. [20] discussed that
the number of training sets was limited to the number of
independent measurements. In order to generate conduc-
tivity values for all voxels, we needed more training targets
than the number of voxel grid points to yield a sufficiently
accurate spatial resolution for the reconstructed image. In
this study, we used three-times more target positions than

voxel grid points on the reconstructed images. The image
weightingWmay play an important role in deciding the error
level of the voxels. The allowable error could be suppressed
on the outside and inside of the desired target and alleviated
on the transition zone, which is the boundary area near the
target. We applied a uniform weight in this study; however,
seeking the optimal weight W may result in improving the
performance. In the numerical experiments, we used 1,410
boundary voltage values. From the observations regarding
the five figures of merit, we infer that the strategy using the
combined H-data and V-data may yield better images in the
micro-EIT system. The differential voltage between the 15th
electrode in each row and the ground was easily saturated
in the phantom experiments. Therefore, we need to apply
different gains for each voltmeter channel.

When the object was located on the right side near
the ground electrode, there was a 50% underestimation
regarding the original volume. This might stem from the
common circuit ground for current source and voltmeter,
the highly conductive voltage sensing electrode array, and
secondary current injection electrode used to produce the
equipotential region. This produced significant artifacts in
the phantom experimental data. We did not consider the
electrode effects and system characteristics in the numerical
experiments. To diminish this effect, we may use a float-
ing current injection method without employing a pair of
secondary current injection electrodes and reduce the size
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Figure 7: Carrot object placed at (a) (12, 12, 12), (b) (24, 12, 12), and (c) (36, 12, 12) in the saline container, respectively.
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Figure 8:The two objects were placed at (12, 12, 12) and (36, 12, 12) at the same time.The edge length of the bigger object was 10mm and that
of the smaller object was 6mm.

of the voltage sensing electrodes. Even though the phantom
experiments did not produce enough performance, we veri-
fied that the three-dimensional GREIT using a well-trained
reconstruction matrix was able to reconstruct micro-EIT

conductivity images and found the practical consideration for
the improvements of system.

When the object was placed near the sensing electrodes,
the resolution was 5mm3 and position error was less than
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2.54mm. The SNR was 63 dB when using a biological object
of 10 × 10 × 10mm3. Considering both simulation and
experimental results, we may find the specification of the
micro-EIT system to detect conductivity changes during
tissue culture. Total volume of a container was 27,648 𝜇L in
the large scale model. It will be reduced below 256 𝜇L under
the reasonable amount for cell growth. Therefore, the size
and distance of sensing electrodes will be smaller and closer.
From the pilot test using the developed micro-EIT system,
the contact impedance of sensing electrode was increased
from 38 kΩ to 553 kΩ measured at 10Hz when the diameter
of electrode was reduced from 1mm to 0.4mm. Noise will
be increased from 48𝜇V to 134 𝜇V. We need to overcome
the thermal noise due to the small size of electrodes. It can
be studied more using the developed micro-EIT system. We
might detect the continuous conductivity changes in the
region when we reduced the size of container below 2mm
length including the same number of measuring electrodes.

By applying an optimal weighting matrix, we may expect
further improvement in the image quality. In our subsequent
work, their performance will be compared with regards to
computation time and image quality under the same config-
urations. Several tissue experiments using the same method
and aminiaturized container are in progress.Thismonitoring
system can be applied to evaluate the quality of the in
vitro grown cartilage tissue since the conductivity greatly
depends on the extracellular matrix composition, structure,
and functionality during the tissue formation process [23].
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As advances in neurotechnology allow us to access the ensemble activity of multiple neurons simultaneously, many neurophys-
iologic studies have investigated how to decode neuronal ensemble activity. Neuronal ensemble activity from different brain
regions exhibits a variety of characteristics, requiring substantially different decoding approaches. Among various models, a
maximum entropy decoder is known to exploit not only individual firing activity but also interactions between neurons, extracting
informationmore accurately for the caseswith persistent neuronal activity and/or low-frequency firing activity.However, it does not
consider temporal changes in neuronal states and therefore would be susceptible to poor performance for nonstationary neuronal
information processing. To address this issue, we develop a novel decoder that extends a maximum entropy decoder to take time-
varying neural information into account. This decoder blends a dynamical system model of neural networks into the maximum
entropy model to better suit for nonstationary circumstances. From two simulation studies, we demonstrate that the proposed
dynamic maximum entropy decoder could cope well with time-varying information, which the conventional maximum entropy
decoder could not achieve. The results suggest that the proposed decoder may be able to infer neural information more effectively
as it exploits dynamical properties of underlying neural networks.

1. Introduction

Ensemble data derived from neuronal population activities
have been subject to numerous decoding attempts [1]. Tra-
ditional methods mainly focused on neural information of
a single neuron averaged over multiple trials, consequently
suffering from intertrial variations and neglecting ensemble
information stemming from interactions between multiple
neurons. Thus, decoding methods that directly tackle neu-
ronal ensemble activity as a whole aremore desirable in those
terms [2].

To this end, an ensemble decoding method called the
population vector (PV) model was proposed where the
ensemble state was represented as a weighted sum of the
preferred directions of individual neurons’ firing rates [3].
Originally aimed for the analysis of primary motor cortical
activity, the PV model was also utilized for the analysis of
data from various regions such as primary visual cortex [1, 4].

The idea of the vector representation of neuronal ensemble
activity was further extended in a form of the optimal linear
estimator (OLE) [5].

Both PV and OLE, categorized as structural analysis
methods for ensemble data, can be applied when covariate
events lie in a single space such as the direction of movement.
But in many real cases, where such a condition is not met,
a Bayesian decoding method may provide a better decoding
solution. Rather than simply merging the ensemble data
structurally, a Bayesian method chooses the event with the
maximum a posteriori probability. This recursive Bayesian
decoding method has been proposed for neuronal ensemble
decoding in various forms such as the point process [6],
the Kalman filter, or the Particle filter [7, 8]. By considering
the fact that neuronal ensemble data contain vital informa-
tion regarding correlations between multiple neurons [9],
different Bayesian decoding approaches utilize such correla-
tions directly for probability distribution estimation [10] via
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the statistical dynamics analysis [11–13], based on the maxi-
mum entropy principle. Being capable of extracting informa-
tion from the data with a temporal resolution of millisecond
[12], the maximum entropy decoding approach is known to
be robust even to the neural data with a low firing rate [11, 14].

The maximum entropy decoding method directly draws
upon the stability of neuronal states under certain condition
and is well known for its simplicity and consistent perfor-
mance. It is especially known to well represent collective
behavior of neural networks. However, it does not take
temporal patterns of neuronal ensemble activity into con-
sideration. Therefore, we propose a novel maximum entropy
decoder that can embrace information regarding temporal
dynamics of neuronal ensemble activity and thus enhance
decoding performance. Especially, our newmodel is expected
to play a vital role in the decoding of neuronal ensemble
signals in prefrontal regions of the brain where persistence
firing activity with a low firing rate is often observed.

The paper is organized as follows. First we illustrate the
basic concept of maximum entropy decoding for neuronal
ensemble data and the computational models to implement
this concept. Then, we describe an extended Ising decoder
that has been recently proposed as an effective maximum
entropy decoding method for various neuronal representa-
tions. Next, we propose a new decoder that incorporates
temporal dynamics of neuronal ensemble into the maximum
entropy decoding model. Simulation studies illustrating
advantages of using the proposed model follow. Finally, we
discuss advantages and limitations of the proposedmodel and
possible future research directions.

2. Methods

2.1. Maximum Entropy Decoding. Let multivariate neuronal
ensemble data 𝑅 be observed in response to stimuli 𝑆. Our
objective is to determine which stimulus 𝑠 ∈ 𝑆 was applied
by decoding a given neuronal data 𝑟 ∈ 𝑅. One possible
methodwould be to find 𝑠 ∈ 𝑆 thatmaximizes the conditional
probability of 𝑠 given 𝑟:

𝑠 = argmax
𝑠∈𝑆

𝑃 (𝑠 | 𝑟) . (1)

Due to the difficulty of completely describing such a
conditional probability, the Bayes Rule is applied to represent
the conditional probability in terms of likelihood and prior,

𝑠 = argmax
𝑠∈𝑆

𝑃 (𝑟 | 𝑠) 𝑃 (𝑠)

𝑃 (𝑟)
. (2)

In most cases, the likelihood of 𝑃(𝑟 | 𝑠) describing a
generative relationship between a specific stimulus and its
consequential response can be determined. Also, since 𝑃(𝑟)
is irrelevant to the inference of 𝑠 ∈ 𝑆, the equation above can
be reduced as follows:

𝑠 = argmax
𝑠∈𝑆

𝑃 (𝑟 | 𝑠) 𝑃 (𝑠) . (3)

When estimating 𝑃(𝑟 | 𝑠), not only individual neuronal
activity in response to a specific stimulus but also correlations

among neurons should carry important information. By
utilizing a measure that maximizes entropy, which can be
applied with the information regarding neuronal correla-
tions, we obtain a Bayesian model called the Ising model
[14] and a method of decoding neuronal ensemble activity
based on this model is called the Ising decoder [12].The Ising
decoder can be briefly described as follows.

Let us assume that the firing rate of the 𝑖th neuron at a
given time instant is represented in a binary form: 𝑟

𝑖
= +1

when fired and 𝑟
𝑖
= −1 when silent. With a correlation

between a specific stimulus 𝑠 and the firing rate (Hz) of
the 𝑖th neuron, denoted as {ℎ

𝑖
}, together with {𝐽

𝑖𝑗
} as the

Lagrange multiplier and ∑
𝑟∈𝑅

𝑃(𝑟 | 𝑠) = 1 as the constraint,
the probability that yields the maximum entropy is given by
[12, 14]

𝑃 (𝑟 | 𝑠) =
1

∑
𝑟∈𝑅

𝑒−𝐻(𝑟|𝑠)
𝑒
−𝐻(𝑟|𝑠)

. (4)

Here Hamiltonian𝐻 is defined by

𝐻(𝑟 | 𝑠) = −
1

2
∑

𝑖,𝑗

𝐽
𝑖𝑗
(𝑠) 𝑟
𝑖
𝑟
𝑗
−∑

𝑖

ℎ
𝑖
(𝑠) 𝑟
𝑖
. (5)

The denominator in (4) will be henceforth referred to as a
partition function denoted as 𝑍.

In order to solve (4) with the Ising model, the partition
function 𝑍 regarding 𝑠 for given {𝐽

𝑖𝑗
, ℎ
𝑖
} must be calculated

in advance. A direct approach, however, would require 2
𝑁

calculations for 𝑁 neurons, rendering it intractable with a
large number of neurons. Instead, one can use an approxi-
mation solution via theMarkov chainMonte Carlo (MCMC)
method [15, 16] or mean field approximation [17, 18]. In
particular, mean field approximation of 𝑍 for given {𝐽

𝑖𝑗
, ℎ
𝑖
}

can be expressed as [12]

log𝑍 = ∑

𝑖

log (2 cosh (ℎ
𝑖
+𝑊
𝑖
))

−∑

𝑖

𝑊
𝑖
⟨𝑟
𝑖
⟩ +∑

𝑖<𝑗

𝐽
𝑖𝑗
⟨𝑟
𝑖
⟩ ⟨𝑟
𝑗
⟩ .

(6)

Here, ⟨𝑟
𝑗
⟩ indicates themean firing rate of the 𝑗th neuron and

𝑊
𝑖
= ∑
𝑖 ̸=𝑗

𝐽
𝑖𝑗
⟨𝑟
𝑗
⟩.

The next problemwould be to find {𝐽
𝑖𝑗
, ℎ
𝑖
} that minimizes

the Hamiltonian 𝐻 in order to obtain a maximum entropy
distribution. TheThouless-Anderson-Palmer method can be
utilized to approximate computation [11, 12, 18, 19]. Using this
method we can find 𝐽

𝑖𝑗
that satisfies

(𝐶
−1
)
𝑖𝑗
= −𝐽
𝑖𝑗
− 2𝐽
2

𝑖𝑗
⟨𝑟
𝑖
⟩ ⟨𝑟
𝑗
⟩ , (7)

where 𝐶
𝑖𝑗
= ⟨𝑟
𝑖
𝑟
𝑗
⟩ − ⟨𝑟
𝑖
⟩⟨𝑟
𝑗
⟩. Then, ℎ

𝑖
can be computed by

ℎ
𝑖
= tanh−1 ⟨𝑟

𝑖
⟩ −∑

𝑖

𝐽
𝑖𝑗
⟨𝑟
𝑗
⟩ + ⟨𝑟

𝑖
⟩∑

𝑗

𝐽
2

𝑖𝑗
(1 − ⟨𝑟

𝑗
⟩
2

) . (8)

2.2. Extended Ising Decoder. One of the biggest advantages
of using the Ising decoder is its temporal resolution of one-
thousandth of a second [12]. But there may be occasions
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where a bigger bin size than 1ms is required. In such cases,
there would be multiple firings of a neuron within a single
bin and thus resulting in information loss in the simple
binary representation of firing activity (i.e., {−1, +1}). Hence,
we should consider a system where a state of a neuron is
represented in more diverse classes. Since the Ising model
only takes binary states into consideration, a model with an
extended flexibility is required; one of such models can be
found in the Potts model.

The Potts model is a generalized version of the Ising
model that embraces a state space of∑ = {1, 2, . . . , 𝑞}

𝑉, where
an integer 𝑞 ≥ 2. Hamiltonian 𝐻 for an arbitrary 𝜎 ∈ ∑ is
defined as

𝐻(𝜎) = −𝐽 ∑

(𝑖,𝑗)∈𝐸

𝛿 (𝜎
𝑖
, 𝜎
𝑗
) − ℎ∑

𝑖∈𝑉

𝜎
𝑖
. (9)

Here, 𝛿 represents the kronecker delta function and 𝜎
𝑖
is the

firing state of a neuron 𝑖 in the neuronal ensemble 𝑉. The
subset of 𝑉, denoted as 𝐸, represents a set of neurons that
are correlated with others.The Ising model is a special case of
the Potts model with 𝑞 = 2, 𝜎

𝑖
, 𝜎
𝑗
∈ {−1, +1}, and 𝛿(𝜎

𝑖
, 𝜎
𝑗
) =

(1/2)(1 + 𝜎
𝑖
𝜎
𝑗
) [20]. We can generalize the equation even

further to reflect differing levels of interaction depending on
the class of state such as

𝐻(𝜎) = −
1

2
∑

𝑖,𝑗∈𝑉

𝑞

∑

𝑘,𝑙=1

𝐽
𝑘𝑙

𝑖𝑗
𝑚
𝜎𝑖 ,𝑘

𝑚
𝜎𝑗 ,𝑙

− ∑

𝑖∈𝑉

ℎ
𝑖
𝜎
𝑖
, (10)

where𝑚
𝜎𝑖 ,𝑟

= 𝑞𝛿(𝜎
𝑖
𝑟) − 1 [21].

Representation of a neuronal state as a variable for the
Potts model can be realized in multiple approaches: counting
the total number of firings within a bin or measuring the
ratio of a current firing rate with respect to a maximum firing
rate for each neuron. The state space size would be equal to
the maximum number of firings within a bin for the former,
whereas the latter would yield an arbitrary size depending on
a way of quantizing the firing rates.

In the same line with the Ising model, the Potts model
requires approximation of the partition function. Unfortu-
nately, it is not easy to provide a closed-form solution for the
partition function in the Potts model. Instead, we utilize the
MCMCmethod as follows [15, 16, 22].

Let 𝑠 represent a Hamiltonian parameter pair (𝐽, ℎ) and
let 𝐻(𝜎; 𝑠) be 𝐻(𝜎) conditioned on 𝑠; we would like to
approximate 𝑍(𝑠) via the MCMC method. Suppose that we
know the information of 𝑍(𝑠

0
) for 𝑠

0
= (0, 0) and we want to

estimate𝑍(𝑠
1
) from it. If we define𝐻(𝜎; 𝑠) = 𝐻(𝜎; 𝑠

0
+𝜆(𝑠
1
−

𝑠
0
)), 𝑍(𝑠

𝜆
) = 𝑍(𝑠

0
+ 𝜆(𝑠
1
− 𝑠
0
)), then

log𝑍 (𝑠
1
) = log𝑍 (𝑠

0
) + ∫

1

0

𝑑

𝑑𝜆
log𝑍 (𝑠

𝜆
) 𝑑𝜆. (11)

Taking a closer look inside the integral term:

𝑑

𝑑𝜆
log𝑍 (𝑠

𝜆
) =

1

𝑍 (𝑠
𝜆
)

𝑑

𝑑𝜆
𝑍 (𝑠
𝜆
)

=
1

𝑍 (𝑠
𝜆
)
∑

𝜎∈Σ

𝑑

𝑑𝜆
𝑒
−𝐻(𝜎;𝑠𝜆)

=
1

𝑍 (𝑠
𝜆
)
∑

𝜎∈Σ

𝑒
−𝐻(𝜎;𝑠𝜆)

𝑑

𝑑𝜆
(−𝐻 (𝜎; 𝑠

𝜆
))

= 𝐸(
𝑑

𝑑𝜆
(−𝐻 (𝜎; 𝑠

𝜆
))) .

(12)

We can apply themean ofMarkov chain generated by a Gibbs
sampler to obtain the expected value in (12). For a sufficiently
large 𝐾, the integral is approximated by the trapezoidal rule
as

∫

1

0

𝑑

𝑑𝜆
log𝑍 (𝑠

𝜆
) 𝑑𝜆 ≈

𝐾

∑

𝑛=0

𝑛

𝐾 + 1
𝐸(

𝑑

𝑑𝜆
(−𝐻 (𝜎; 𝑠

𝑛/𝐾
))) .

(13)

Therefore,

𝑍 (𝑠
1
) ≈ 𝑍 (𝑠

0
) exp(

𝐾

∑

𝑛=0

𝑛

𝐾 + 1
𝐸(

𝑑

𝑑𝜆
(−𝐻 (𝜎; 𝑠

𝑛/𝐾
)))) .

(14)

The extended Ising decoder based on the Potts model
will be henceforth referred to as the conventional maximum
entropy decoder.

2.3. Dynamical Maximum Entropy Decoder. One of the
neural network models exploiting statistical dynamics is the
Hopfield network [23, 24]. It shows a distinct difference
when compared to Perceptron [25, 26] models. Perceptron
is aimed at physical systems and does not consider abstract
population characteristics where the Hopfield model does.
Moreover, while Perceptron is focused on synchronized
systems, the Hopfield network can also be applied to more
general dynamical systems.

In the Hopfield network, a state of each neuron is
represented as 𝜎 ∈ {0, 1}, determined with a threshold 𝜃 and
a synaptic connection strength 𝐽:

𝜎
𝑖
=

{{{

{{{

{

1, if ∑
𝑗

𝐽
𝑖𝑗
𝜎
𝑗
+ ℎ
𝑖
≥ 𝜃
𝑖
,

0, if ∑
𝑗

𝐽
𝑖𝑗
𝜎
𝑗
+ ℎ
𝑖
< 𝜃
𝑖
,

(15)

where 𝑖 and 𝑗 are index neurons and ℎ represents an external
input. The synaptic strength 𝐽 is updated in a specific time
range 𝑠 as follows:

𝐽
𝑖𝑗
= ∑

𝑠

(2𝜎
𝑠

𝑖
− 1) (2𝜎

𝑠

𝑗
− 1) . (16)

In case of 𝑖 = 𝑗, 𝐽
𝑖𝑗
= 0.
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Themost important feature is that if we assume symmetry
such that 𝐽

𝑖𝑗
= 𝐽
𝑗𝑖
, the Lyapunov function exists for this neural

network.TheLyapunov function, also referred to as an energy
function, is given by

𝐿 (𝜎) = −
1

2
∑

𝑖,𝑗

𝐽
𝑖𝑗
𝜎
𝑖
𝜎
𝑗
−∑

𝑖

ℎ
𝑖
𝜎
𝑖
. (17)

The existence of the Lyapunov function is important
because it analytically presents how the state of a system
is likely to change. In such cases, the Lyapunov function is
identical to Hamiltonian of the Ising model.

The Hopfield network has been generalized based on the
Potts model [21]. In this case, along with various degrees of
interactions depending ondiverse neural states, the Lyapunov
function becomes

𝐿 (𝜎) = −
1

2
∑

𝑖,𝑗∈𝑉

𝑞

∑

𝑘,𝑙=1

𝐽
𝑘𝑙

𝑖𝑗
𝑚
𝜎𝑖 ,𝑘

𝑚
𝜎𝑗 ,𝑙

− ∑

𝑖∈𝑉

ℎ
𝑖
𝜎
𝑖
, (18)

where𝑚
𝜎𝑖 ,𝑟

= 𝑞𝛿(𝜎
𝑖
𝑟) − 1. Note that Hamiltonian in the Potts

model can be obtained from this Lyapunov function.
Now, we describe how to build a dynamical maximum

entropy decoder. First, let us consider some basic aspects
of a dynamical system. Let a dynamical system receiving an
external input 𝑠 be described by

𝑓
𝑠
: Σ → Σ, (19)

with a set of all possible neuronal states as Σ. We then make
two basic assumptions on this dynamical system as follows.

Assumption 1. The dynamical system is assumed to approach
a stable state over time with no input. Then, for every 𝑠 ∈ 𝑆,
𝜎 ∈ Σ, and time 𝑡 ∈ 𝑍

+,

𝐿 (𝑓
𝑡

𝑠
(𝜎)) ≤ 𝐿 (𝜎) . (20)

Assumption 2. Let Ω
𝑠
𝑓 ⊆ Σ be a pseudo-periodic set in

response to an external input 𝑠. Then, we assume that
Ω𝑠𝑓

 < ∞, 𝑓
𝑛

𝑠
(𝜎) ∈ Ω

𝑠
𝑓. (21)

Here 𝑛 is an integer and can be sufficiently small. We
also assume that an external stimulus 𝑠 is static during its
stimulation period.

Next, we consider two cases when there is sufficient time
for the system to be stabilized (Case 1) and when there is
not (Case 2). For both cases, we need to estimate Ω

𝑠
𝑓 with

the assumptions above, which allow us to conjecture that
any 𝜎

1
and 𝜎

2
are close to each other if 𝜎

1
= 𝑤 = 𝜎

2
for

𝑤 ∈ Ω
𝑠
𝑓. Here 𝑤 represents a pseudo-periodic discretized

set belonging to Ω
𝑠
𝑓.

2.3.1. Case 1. In this case, we first define a probability that a
state 𝜎 belongs to certain 𝑤:

𝑃 (𝜎 = 𝑤 ∈ Ω
𝑠
𝑓) . (22)

Using Hamiltonian based on the Lyapunov function, we can
compute a probability that 𝜎 belongs to 𝑤 as

𝑃 (𝜎 = 𝑤) =
𝑃
𝑤
(𝜎)

∑
𝑤
 𝑃𝑤 (𝜎)

. (23)

The next step is to define a statistical state transition
function. We represent every possible pair of states given a
change of input from 𝑠 to 𝑠

 as Σ̃; that is, ⟨𝜎
𝑡
, 𝜎
𝑡+1

⟩ = �̃� = Σ̃.
Then, the transition function is defined as

Φ
𝑤,𝑤
 (𝑤, 𝑤


) =

1


Σ̃


∑

𝜎∈Σ̃

𝑃 (𝜎
𝑡
= 𝑤)𝑃 (𝜎

𝑡+1
= 𝑤

) . (24)

Decoding an input 𝑆
𝑡+1

with the knowledge of 𝑆
𝑡
from

neuronal ensemble data is stated as the following problem:

𝑆
𝑡+1

= argmax
𝑠∈𝑆

𝑃 (𝑆
𝑡+1

= 𝑠 | 𝜎
𝑡
, 𝜎
𝑡+1

, 𝑆
𝑡
) . (25)

This problem can be solved using the transition function and
probabilities described above:

𝑃 (𝑆
𝑡+1

= 𝑠 | 𝜎
𝑡
, 𝜎
𝑡+1

, 𝑆
𝑡
)

= ∑

𝑤𝑡+1∈Ω𝑠𝑓

𝑃 (𝜎
𝑡+1

= 𝑤
𝑡+1

)

× ( ∑

𝑤𝑡∈Ω𝑠𝑓

𝑃 (𝜎
𝑡
= 𝑤
𝑡
)Φ
𝑆𝑡+1 ,𝑠

(𝑤
𝑡
, 𝑤
𝑡+1

)) .

(26)

Note that we can also use a simplified version of this
formula given by

𝑃 (𝑆
𝑡+1

= 𝑠 | 𝜎
𝑡
, 𝜎
𝑡+1

)

= ∑

𝑤𝑡+1 ,𝑤𝑡∈Ω𝑠𝑓

𝑃 (𝜎
𝑡
= 𝑤
𝑡
) 𝑃 (𝜎

𝑡+1
= 𝑤
𝑡+1

)Φ
𝑠
(𝑤
𝑡
, 𝑤
𝑡+1

) .

(27)

2.3.2. Case 2. Let∑ be a set of all possible neuronal ensemble
states. Suppose there is a function on ∑ such as

0 : ∑×𝑆 → ∑. (28)

0 can be seen as the restrictive function 𝑓|
∑
of a dynam-

ical system 𝑓 and also as a reconstruction of 𝑓 with
respect to ∑. What this entails is the fact that 𝑓(𝜎) =

⟨𝑓
1
(𝜎), 𝑓

2
(𝜎), . . . , 𝑓

𝑛+1
(𝜎)⟩ can be found if 𝑠 ∈ ∏

𝑛

𝑖=0
𝑆
𝑖
is given

for all 𝜎 ∈ ∑. Since solving the problem with every possible
𝜎 ∈ ∑ and 𝑠 ∈ 𝑆 is difficult, we use a technique that limits the
length of the sequence to𝑁.

Rather than estimating Ω
𝑠
𝑓 as defined, we estimate the

neural trajectory of a specific 𝜎. For a small enough 𝑁, we
substitute𝜔 for 𝑠 ∈ ∏

𝑛

𝑖=0
𝑆
𝑖
, therefore acquiring the probability

𝑃(𝜎 = 𝜔) from (23). Now let Ω = {𝜔}, a temporary set that
retains its elements but not further down the line. With this
set, we redefine the function 0 as

0 : Ω × 𝑆 → Ω (29)
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and also in terms of Φ as

0 (Ω, 𝑠 ∈ 𝑆) = Φ
𝑠∈𝑆

(Ω,Ω) ∈ [0, 1] , (30)

such that the condition of ∑
𝜔,𝜔

∈Ω

Φ
𝑠
(𝜔, 𝜔

) = 1 is satisfied.

Hence, now our goal is to find a dynamical function Φ over
time. The initial value of Φ can be assumed to follow the
uniform distribution.

As time elapses, 𝜎 = ⟨𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑁
⟩ and 𝑠 = 𝜔 turns into

𝜎 = ⟨𝜎
2
, . . . , 𝜎

𝑁
, 𝜎
𝑁+1

⟩ and 𝑠 = 𝜔
. Then, we update Φ with

the result of (26) as follows:

𝑑

𝑑𝑡
Φ
𝑠
(𝜔, 𝜔

) = 𝜂
1
(val − Φ

𝑠
(𝜔, 𝜔

)) . (31)

The “val” in above equation can be regarded as either 1 or 0.
OnceΦ

𝑠
is properly normalized, we accept and normalize the

transformationwith a probability 𝜂
2
if the updated𝑃(𝜎 = 𝜔


)

enhances the performance of (26). 𝜂
1
and 𝜂
2
introduced here

are time-varying and converge to 0 when 𝑡 → ∞.
This method is partially in line with the simulated

annealing technique. Hence, it is expected to approach to a
right solution but, on the other hand, can consume longer
computational time.Themain characteristic of thismethod is
that𝜔 is not limited only to stable states. If not enough time is
given to reach a stable state after each external input, it might
be better to consider the temporary states generated during
the process. The proposed method realizes such temporary
states. Even the trajectory of state transition as a result of
change in external input can be represented in 𝜔. Although
each 𝜔 does not necessarily represent the stable state of a
neural network in such cases, it can be advantageous for the
decoding system that involves temporal dynamics since it can
represent the most likely state in response to the change.

2.4. Simulation Procedure. A synthetic neuronal ensemble
data set was generated in order to test the new decoding
method for both cases, “Case 1” and “Case 2,” discussed above.

2.4.1. Case 1. A model capable of representing persistence
activity of neurons is generally complex [27]; thus, for the
sake of the simplicity of experiment, we generated neuronal
ensemble data with fixed firing rates of sixteen neurons for
each external stimulus, based on Poisson process. Stimuli
were limited to two classes, 𝑆

1
and 𝑆
2
, where two stable states

existed for each. In short, for each stimulus, 𝑆 = {𝑆
1
, 𝑆
2
}, stable

states Ω
𝑆1
𝑓 = {𝑤

1,1
, 𝑤
1,2
} and Ω

𝑆2
𝑓 = {𝑤

2,1
, 𝑤
2,2
} exist (see

Figure 2(a)).
While four out of sixteen neurons represented the actual

state, the rest were set to have random mean firing rates
between 0Hz to 10Hz to represent irrelevant activity in
the ensemble data. Those four state-representing neurons
were divided into two pairs with neurons that were assigned
the same mean firing rate. Thus, each state could be
expressed as the following pairs: 𝑤

1,1
:= (10, 10, 0, 0)Hz,

𝑤
1,2

:= (0, 0, 10, 10)Hz, 𝑤
2,1

:= (0, 0, 0, 0)Hz, and 𝑤
2,2

:=

(10, 10, 10, 10)Hz.

2.4.2. Case 2. In order to generate neuronal ensemble data
for Case 2, we utilized the orientation tuning model [28] that
represents a biological neural network model for directional
coding [29, 30]. Similar to an excitatory-inhibitory neural
network model, the model contains an ensemble of neurons
that respond to the angular direction 𝜃 and delivers excitatory
or inhibitory signals among neurons depending on the
directional similarity. In our simulation, we defined a signal
passed on from one population of direction 𝜃 to another
population of 𝜃 as

𝐽
𝜃

𝜃
= −𝐽
0
+ 𝐽
2
cos (𝜃 − 𝜃


) . (32)

Here, 𝐽
0
and 𝐽
2
as a balancing parameter were set as 𝐽

0
= 0.14

and 𝐽
2
= 0.5 for our simulation. The actual input that the

neurons tuned to 𝜃
 received from an external input with an

angle 𝜃 was given by

ℎ
ext
𝜃

𝜃
= 𝑐 (1 − 𝜖 + 𝜖 cos (𝜃 − 𝜃


)) , (33)

where 𝜖 and 𝑐 were parameters representing the degree of
input focus and overall intensity of the input, respectively.The
range of 𝜖 was given as [0, 1/2]; 𝜖 = 0 indicated that every
neuron received uniform input regardless of their inherent
direction, and 𝜖 = 1/2 indicated that less input was given if
𝜃
 was more distant from 𝜃. Hence, a condition |𝜃


− 𝜃| = 𝜋

left neurons of 𝜃 unaffected. For this simulation, 𝜖 = 0.5 and
𝑐 = 0.4 were used (see Figure 1).

A temporal change of a neural network was expressed as
a firing rate based on the neural network model. The firing
rate 𝑈

𝑖
of the 𝑖th neuron was

𝜏
𝑖

𝑑𝑈
𝑖

𝑑𝑡
= −𝑈
𝑖
+ 𝑆
𝑖
(∑

𝑖

𝐽
𝑗𝑖
𝑈
𝑗
) . (34)

Here, 𝜏
𝑖
was a time constant representing a synaptic delay

between neurons, 𝐽
𝑗𝑖
was the synaptic strength between the

𝑖th and 𝑗th neurons, and 𝑆
𝑖
was a threshold function [31].This

part of the simulation utilized a total of 29 = 512 neurons
as well as a synaptic delay constant, 𝜏 = 10ms. A threshold
function for the firing rate was defined with the scale of
10
2Hz:

𝑆 (𝑈) =

{{

{{

{

0, if 𝑈 < 0,

𝑈, if 0 ≤ 𝑈 ≤ 4,

4, if 𝑈 > 4.

(35)

The number of neurons for each of eight directions was equal
(2
9−3

= 64) and the synaptic strength 𝐽 and the external input
ℎ were identical to the setting of orientation tuning model
of Case 1.The probability that neuronal connections between
neurons exist was set below 0.5.

3. Results and Discussion

Performance of the decoders was assessed by means of
“decoding error rate” and “decoding uncertainty” for the
given dataset. Error rate calculated as a ratio of incorrectly
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Figure 1: Simulated data generated from the orientation tuningmodel. For each of 8 directional stimuli provided to each neuron (a), simulated
neuronal responses are generated (b). Horizontal axis for each box represents time-flow (for 200ms, from left to right), and vertical axis
represents single neurons. Magnitude of stimulation and neuronal response is represented by a greyscale colormap.
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Figure 3: (a) Decoding error rates and (b) uncertainty represented by entropy of decoding output using two decodingmodels from simulated
neural data (see text). The maximum entropy is 1 bit in this case since there are two possible external events. In both categories, there
is significant difference in error rates (𝑡-test, 𝑃 < 0.00001) between the dynamical maximum entropy decoder (new) and the traditional
maximum entropy decoder (traditional).

classified samples to the total number of samples tested
served as a directmeasure of decoder performance.Decoding
uncertainty was represented with the entropy of the normal-
ized distribution of Bayesian probabilities for each class gen-
erated by the decoder. Small amount of entropy indicates less
uncertainty of decoding performance, analogous to smaller
variance of estimates of a model. Using these performance
measures, we compared our proposed decoder (dynamical
maximum entropy decoder) with the conventional decoder
(the extended Ising decoder).

3.1. Case 1. The dynamical maximum entropy decoder esti-
matedΦ

𝑠,𝑠
(𝑤, 𝑤


) as the first step of decoding.We examin ed

whether this transition estimation was correctly represented
by the decoder. Figure 2(b) demonstrates that the estimation
results well represent state changes for a given external event
(see Figure 2(a)). When there were more than two stable
states for each event, the proposed method outperformed
the conventional maximum entropy decoder in terms of
both error rate and uncertainty (see Figure 3). The proposed
decoder generated approximately 0.25 error rate and 0.12
bit of entropy which is a significant improvement over 0.45
error rate and 0.78 bit entropy by the conventional decoder.
Superior performance of the dynamical maximum entropy
decoder was based on its ability to alleviate signals from those
neurons which were regarded as irrelevant to the event.

3.2. Case 2. The second study considered a case where the
external stimulus changes before the system converges to a
stable state. For each of 8 uniformly separated directions, the
stimuluswas changed after the first 200ms and then lasted for
another 200ms period.The succeeding direction could either

be different from or same as the former. A small number of
neurons were randomly chosen out of 512 total neurons and
were discretized within a bin size of 10ms (see Figure 4).

For these data with temporal changes of stimuli, the
proposed decoder was evidently superior compared to the
conventional decoder in terms of error rates with 0.07-,
0.07-, 0.01-, and 0.11-point advantage for respective scenarios
(see Figure 5(a)). However, decoding uncertainty was also
significantly (difference range 0.3∼0.8 bits; 𝑡-test, 𝑃 < 0.01)
higher in the proposed decoder than the conventional one in
all scenarios (Figure 5(b)).This issuewill be further discussed
below.

3.3. Discussion. Decoding neuronal ensemble activity
recorded from brain signals provides insights on how neural
networks process information. Decoding models based
on computational models for biological neural networks
can provide these insights to deepen our understanding of
neural network mechanisms. However, approaches directly
using neural network models are not easily realized because
it is challenging to know every synaptic strength between
neurons and to obtain full information of all the neurons in a
network.Therefore, the present study proposes an alternative
approach to leveraging dynamical and collective behavior
of an ensemble of neurons in response to various stimuli.
From simple assumptions on the model, we blend neural
dynamics into a decoder with which we are able to inspect
the functions and roles of a neural network.

To the assessment of the performance of a decoder, the
uncertainty of decoding outcome as well as the error rate is
crucial. This uncertainty measures how robust the decision
made by a decoder is regarding the information inferred
from neuronal activity. Our proposed decoder exhibited a
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512 neurons (a) and then discretized in a 10ms resolution (100Hz) (b). Stimulation direction was 0.5𝜋 for the first 120ms and 𝜋 for the next
240ms.

0.8

0.7

0.6

0.5

0.4

0.3

0.1

0.2

0

∗

∗

∗

Traditional
New

Er
ro

r

Input difference
0𝜋 𝜋/4 𝜋/2 3𝜋/4 𝜋

(a) Decoding error

∗

∗∗∗∗

Traditional
New

Input difference

3

2.5

2

1.5

1

0.5

0

En
tro

py

0𝜋 𝜋/4 𝜋/2 3𝜋/4 𝜋

(b) Decoding uncertainty
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significantly low error rate and small uncertainty in the first
case study (see Figure 3). However, it generated significantly
larger uncertainty than the conventional maximum entropy
decoder in the second case study despite its lower error rate
(Figure 5). We speculate that such larger uncertainty may
be due to model complexity in our decoder. More complex
decoding procedure in our model includes uniformly dis-
tributed transition probabilities that may in turn equalize
prior probabilities of individual stimuli, thus increasing
uncertainty of a decoded stimulus. However, it may not be
solely the result of model structure because the proposed
decoder could also reduce uncertainty in the first case.
Consequently, we suspect that increased uncertainty in the
second casemay indicate a particular outcome resulting from
specific data properties, which need further investigation in
the future.

Yet, we also recognize that there is plenty of room to
improve in our model. In particular, more rigorous ways of
obtaining information about neural dynamics may be neces-
sary. For instance, ourmethod to estimate stabilized states of a
neuronal ensemble may be suboptimal to many different real
data. Also, we need to apply our decoder to ensemble data
from many different brain regions to generalize it further.
Finally, continuous efforts to reduce computational loads in
the proposed decoder will be required.

4. Conclusions

A number of methods have been continuously developed to
decode neuronal ensemble activity. The design of decoding
models draws upon the properties of a target brain region,
a recording technique, neural signals, and the objectives of
decoding. Among them, the maximum entropy decoding
method takes into account correlations between neurons
as well as firing rates of individual neurons. In particular,
it produces good decoding performance when there exist
marginal but clear interactions between neurons. However,
the current maximum entropy decoder does not capture
time-varying characteristics of neuronal ensemble activity,
which often deliver essential information about underly-
ing brain functions. Hence, the present study addresses
this issue by developing a novel decoder that incorporates
dynamical properties of a neuronal ensemble in the model
while maintains the key functions of the maximum entropy
decoder. We demonstrate that more information can be
successfully decoded using the proposed decoder compared
to the conventional maximum entropy decoder.
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Tuberculosis (TB) and human immunodeficiency virus (HIV) can be considered a deadly human syndemic. In this paper, we
formulate a model for TB and HIV transmission dynamics. The model considers both TB and acquired immune deficiency
syndrome (AIDS) treatment for individuals with only one of the two infectious diseases or both. The basic reproduction number
and equilibrium points are determined and stability is analyzed. Through simulations, we show that TB treatment for individuals
with only TB infection reduces the number of individuals that become coinfected with TB and HIV/AIDS and reduces the diseases
(TB and AIDS) induced deaths. Analogously, the treatment of individuals with only AIDS also reduces the number of coinfected
individuals. Further, TB treatment for coinfected individuals in the active and latent stage of TB disease implies a decrease of the
number of individuals that passes from HIV-positive to AIDS.

1. Introduction

Tuberculosis (TB) and human immunodeficiency virus/
acquired immune deficiency syndrome (HIV/AIDS) are the
leading causes of death from an infectious disease worldwide
[1]. Individuals infected with HIV are more likely to develop
TB disease because of their immunodeficiency, and HIV
infection is the most powerful risk factor for progression
from TB infection to disease [2]. This interaction justifies
the fact that HIV and TB can be considered a deadly human
syndemic, where syndemic refers to the convergence of two or
more diseases that act synergistically to magnify the burden
of disease [3].

Following UNAIDS global report on AIDS epidemic
2013 [4], globally, an estimated 35.3 million people were
living with HIV in 2012, an increase from previous years
as more people are receiving the life-saving antiretroviral
therapy (ART). There were approximately 2.3 million new
HIV infections globally, showing a 33%decline in the number
of new infections with respect to 2001. At the same time,
the number of AIDS deaths is also declining with around 1.6
million AIDS deaths in 2012, down from about 2.3 million in
2005. In 2012, 1.1 million of 8.6 million people who developed
TB worldwide were HIV-positive. The number of people
dying from HIV-associated TB has been falling since 2003.

However, there were still 320 000 deaths fromHIV-associated
TB in 2012 and further efforts are needed to reduce this
burden [1]. ART is a critical intervention for reducing the risk
of TBmorbidity andmortality among people living withHIV
and, when combined with isoniazid preventive therapy, it can
have a significant impact on TB prevention [1].

Collaborative TB/HIV activities (including HIV testing,
ART therapy, and TB preventive measures) are crucial for
the reduction of TB-HIV coinfected individuals. The World
Health Organization (WHO) estimates that these collabora-
tive activities prevented 1.3 million people from dying, from
2005 to 2012. However, significant challenges remain: the
reduction of tuberculosis related deaths among people living
with HIV has slowed in recent years; the ART therapy is
not being delivered to TB-HIV coinfected patients in the
majority of the countries with the largest number of TB/HIV
patients; the pace of treatment scale-up for TB/HIV patients
has slowed; less than half of notified TB patients were tested
forHIV in 2012; and only a small fraction of TB/HIV-infected
individuals received TB preventive therapy [4].

The study of the joint dynamics of TB and HIV presents
formidable mathematical challenges due to the fact that the
models of transmission are quite distinct [5]. Few mathe-
matical models have been proposed for TB-HIV coinfection
(see, e.g., [5–9]). Kirschner [7] developed a cellular model
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for HIV-1 and TB coinfection inside a host. Roeger et al. [5]
proposed a population model for TB-HIV/AIDS coinfection
transmission dynamics, assuming that TB-infected individ-
uals in the active stage of the disease are too ill to remain
sexually active and therefore they are unable to transmit HIV.
In this work, we assume that active TB-infected individuals
are susceptible to HIV infection. Naresh and Tripathi [8]
proposed a model for TB-HIV coinfection in a variable
size population with only TB treatment. Here we consider
TB and HIV treatment in different stages of the disease.
Bhunu et al. [6] studied a TB-HIV coinfection model with
both TB and HIV treatment. The authors did not take into
account that an individual coinfected with TB and HIV can
effectively recover from TB infection. We assume that TB
can be cured, even in HIV-positive individuals [1]. Sharomi
et al. [9] also considered these assumptions, subdividing the
total population into 15 classes. It is our aim in this work to
develop amodel that balances two goals: simplicity and useful
information.

The paper is organized as follows. Section 2 describes our
model for TB-HIV syndemic with TB and HIV treatment.
In Section 3, the positivity and boundedness of solutions of
the model are proved and in Section 4 equilibrium points
and respective stability are analyzed. Section 5 is devoted to
numerical simulations and discussion of results.

2. TB-HIV/AIDS Model

Themodel subdivides the human population into 10mutually
exclusive compartments, namely, susceptible individuals (𝑆),
TB-latently infected individuals, who have no symptoms of
TB disease and are not infectious (𝐿

𝑇
), TB-infected individ-

uals, who have active TB disease and are infectious (𝐼
𝑇
), TB-

recovered individuals (𝑅
𝑇
), HIV-infected individuals with no

clinical symptoms of AIDS (𝐼
𝐻
), HIV-infected individuals

with AIDS clinical symptoms (𝐴), TB-latent individuals
coinfected with HIV (pre-AIDS) (𝐿

𝑇𝐻
), HIV-infected indi-

viduals (pre-AIDS) coinfected with active TB disease (𝐼
𝑇𝐻

),
TB-recovered individuals with HIV infection without AIDS
symptoms (𝑅

𝑇𝐻
), and HIV-infected individuals with AIDS

symptoms coinfected with TB (𝐴
𝑇
). The total population at

time 𝑡, denoted by𝑁(𝑡), is given by

𝑁(𝑡) = 𝑆 (𝑡) + 𝐿
𝑇
(𝑡) + 𝐼

𝑇
(𝑡) + 𝑅

𝑇
(𝑡) + 𝐼

𝐻
(𝑡) + 𝐴 (𝑡)

+ 𝐼
𝑇𝐻

(𝑡) + 𝐿
𝑇𝐻

(𝑡) + 𝑅
𝑇𝐻

(𝑡) + 𝐴
𝑇
(𝑡) .

(1)

The susceptible population is increased by the recruitment
of individuals (assumed susceptible) into the population, at a
rateΛ. All individuals suffer from natural death, at a constant
rate 𝜇. Susceptible individuals acquire TB infection from
individuals with active TB at a rate 𝜆

𝑇
, given by

𝜆
𝑇
=
𝛽
1

𝑁
(𝐼
𝑇
+ 𝐼
𝑇𝐻

+ 𝐴
𝑇
) , (2)

where 𝛽
1
is the effective contact rate for TB infection. Simi-

larly, susceptible individuals acquireHIV infection, following
effective contact with people infected with HIV at a rate 𝜆

𝐻
,

given by
𝜆
𝐻
=
𝛽
2

𝑁
[𝐼
𝐻
+ 𝐼
𝑇𝐻

+ 𝐿
𝑇𝐻

+ 𝑅
𝑇𝐻

+ 𝜂 (𝐴 + 𝐴
𝑇
)] , (3)

where 𝛽
2
is the effective contact rate for HIV transmission

and the modification parameter 𝜂 ⩾ 1 accounts for the
relative infectiousness of individuals withAIDS symptoms, in
comparison to those infected with HIV with no AIDS symp-
toms. Individuals with AIDS symptoms are more infectious
than HIV-infected individuals (pre-AIDS) because they have
a higher viral load and there is a positive correlation between
viral load and infectiousness [14].

Individuals leave the latent TB class 𝐿
𝑇
by becoming

infectious, at a rate 𝑘
1
, or recovered, with a treatment rate

𝜏
1
. The treatment rate for active TB-infected individuals is 𝜏

2
.

We assume that TB-recovered individuals 𝑅
𝑇
acquire partial

immunity and the transmission rate for this class is given
by 𝛽
1
𝜆
𝑇
with 𝛽



1
⩽ 1. Individuals with active TB disease

suffer induced death at a rate 𝑑
𝑇
. We assume that individuals

in the class 𝑅
𝑇
are susceptible to HIV infection at a rate

𝜆
𝐻
. On the other hand, TB-active infected individuals 𝐼

𝑇

are susceptible to HIV infection, at a rate 𝛿𝜆
𝐻
, where the

modification parameter 𝛿 ⩾ 1 accounts for higher probability
of individuals in class 𝐼

𝑇
to become HIV-positive.

HIV-infected individuals (with no AIDS symptoms)
progress to the AIDS class 𝐴, at a rate 𝜌

1
. HIV-infected

individuals with AIDS symptoms are treated for HIV at the
rate𝛼
1
and suffer induced death at a rate𝑑

𝐴
. Individuals in the

class 𝐼
𝐻
are susceptible to TB infection at a rate 𝜓𝜆

𝑇
, where

𝜓 ⩾ 1 is amodification parameter traducing the fact thatHIV
infection is a driver of TB epidemic [3].

HIV-infected individuals (pre-AIDS) coinfectedwith TB-
disease, in the active stage 𝐼

𝑇𝐻
, are treated for TB at the

rate 𝜏
3
and progress to the AIDS-TB coinfection class 𝐴

𝑇

at a rate 𝜌
2
. Individuals in the class 𝐼

𝑇𝐻
suffer TB induced

death at a rate 𝑑
𝑇
. The anti-TB drugs can prevent or decrease

the likelihood of TB infection progression to active TB
disease in individuals in the class 𝐿

𝑇𝐻
[13]. The treatment

rate for individuals in this class is given by 𝜏
4
. However,

individuals in the class 𝐿
𝑇𝐻

are more likely to progress to
active TB disease than individuals infected only with latent
TB. In our model, this progression rate is given by 𝑘

2
.

Similarly, HIV infection makes individuals more susceptible
to TB reinfection when compared with non-HIV-positive
patients. The modification parameter associated with the TB
reinfection rate, for individuals in the class 𝑅

𝑇𝐻
, is given by

𝛽


2
, where 𝛽

2
⩾ 1. Individuals in this class progress to class

𝐴
𝑇
, at a rate 𝜌

3
.

HIV-infected individuals (with AIDS symptoms), coin-
fected with TB, are treated for HIV, at a rate 𝛼

2
. Individuals in

the class 𝐴
𝑇
suffer from AIDS-TB coinfection induced death

rate, at a rate 𝑑
𝑇𝐴
.

The aforementioned assumptions result in the follow-
ing system of differential equations that describes the
transmission dynamics of TB and HIV disease:

̇𝑆 (𝑡) = Λ − 𝜆
𝑇
𝑆 (𝑡) − 𝜆

𝐻
𝑆 (𝑡) − 𝜇𝑆 (𝑡) ,

̇𝐿
𝑇
(𝑡) = 𝜆

𝑇
𝑆 (𝑡) + 𝛽



1
𝜆
𝑇
𝑅
𝑇
(𝑡) − (𝑘

1
+ 𝜏
1
+ 𝜇) 𝐿

𝑇
(𝑡) ,

̇𝐼
𝑇
(𝑡) = 𝑘

1
𝐿
𝑇
(𝑡) − (𝜏

2
+ 𝑑
𝑇
+ 𝜇 + 𝛿𝜆

𝐻
) 𝐼
𝑇
(𝑡) ,

̇𝑅
𝑇
(𝑡) = 𝜏

1
𝐿
𝑇
(𝑡) + 𝜏

2
𝐼
𝑇
(𝑡) − (𝛽



1
𝜆
𝑇
+ 𝜆
𝐻
+ 𝜇)𝑅

𝑇
(𝑡) ,
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Figure 1: Model for TB-HIV/AIDS transmission with treatment.

̇𝐼
𝐻
(𝑡) = 𝜆

𝐻
𝑆 (𝑡) − (𝜌

1
+ 𝜓𝜆
𝑇
+ 𝜇) 𝐼

𝐻
(𝑡)

+ 𝛼
1
𝐴 (𝑡) + 𝜆

𝐻
𝑅
𝑇
(𝑡) ,

̇𝐴 (𝑡) = 𝜌
1
𝐼
𝐻
(𝑡) − 𝛼

1
𝐴 (𝑡) − (𝜇 + 𝑑

𝐴
) 𝐴 (𝑡) ,

̇𝐿
𝑇𝐻 (𝑡) = 𝛽



2
𝜆
𝑇
𝑅
𝑇𝐻 (𝑡) − (𝑘2 + 𝜏4 + 𝜇) 𝐿𝑇𝐻 (𝑡) ,

̇𝐼
𝑇𝐻

(𝑡) = 𝛿𝜆
𝐻
𝐼
𝑇
(𝑡) + 𝜓𝜆

𝑇
𝐼
𝐻
(𝑡) + 𝛼

2
𝐴
𝑇
(𝑡)

+ 𝑘
2
𝐿
𝑇𝐻

(𝑡) − (𝜏
3
+ 𝜌
2
+ 𝜇 + 𝑑

𝑇
) 𝐼
𝑇𝐻

(𝑡) ,

̇𝑅
𝑇𝐻

(𝑡) = 𝜏
3
𝐼
𝑇𝐻

(𝑡) + 𝜏
4
𝐿
𝑇𝐻

(𝑡) − (𝛽


2
𝜆
𝑇
+ 𝜌
3
+ 𝜇)𝑅

𝑇𝐻
,

̇𝐴
𝑇
(𝑡) = 𝜌

2
𝐼
𝑇𝐻

(𝑡) + 𝜌
3
𝑅
𝑇𝐻

− (𝛼
2
+ 𝜇 + 𝑑

𝑇𝐴
) 𝐴
𝑇
(𝑡) .

(4)

Themodel flow is described in Figure 1.The initial conditions
of model (4) satisfy

𝑆 (0) = 𝑆
0
⩾ 0, 𝐿

𝑇
(0) = 𝐿

𝑇0
⩾ 0, 𝐼

𝑇
(0) = 𝐼

𝑇0
⩾ 0,

𝑅
𝑇 (0) = 𝑅𝑇0 ⩾ 0,

𝐼
𝐻
(0) = 𝐼

𝐻0
⩾ 0, 𝐴 (0) = 𝐴

0
⩾ 0,

𝐿
𝑇𝐻 (0) = 𝐿𝑇𝐻0 ⩾ 0,

𝐼
𝑇𝐻

(0) = 𝐼
𝑇𝐻0

⩾ 0, 𝑅
𝑇𝐻

(0) = 𝑅
𝑇𝐻0

⩾ 0,

𝐴
𝑇
(0) = 𝐴

𝑇0
⩾ 0.

(5)

Note that if we consider the submodel of (4) with no HIV/
AIDS disease, that is, 𝐼

𝐻
= 𝐴 = 𝐿

𝑇𝐻
= 𝐼
𝑇𝐻

= 𝑅
𝑇𝐻

=

𝐴
𝑇
= 0, then we obtain the TB model from [12]. On the

other hand, if we consider the submodel with no TB, that is,

𝐿
𝑇
= 𝐼
𝑇
= 𝑅
𝑇
= 𝐿
𝑇𝐻

= 𝐼
𝑇𝐻

= 𝑅
𝑇𝐻

= 𝐴
𝑇
= 0, then we obtain

anHIV/AIDSmodel based on themodels proposed in [6, 15].

3. Positivity and Boundedness of Solutions

Let (𝑆, 𝐿
𝑇
, 𝐼
𝑇
, 𝑅
𝑇
, 𝐼
𝐻
, 𝐴, 𝐿
𝑇𝐻
, 𝐼
𝑇𝐻
, 𝑅
𝑇𝐻
, 𝐴
𝑇
) ∈ R10

+
be any

solution of (4) with initial conditions (5). Consider the
biologically feasible region given by

Ω = { (𝑆, 𝐿
𝑇
, 𝐼
𝑇
, 𝑅
𝑇
, 𝐼
𝐻
, 𝐴, 𝐿
𝑇𝐻
, 𝐼
𝑇𝐻
, 𝑅
𝑇𝐻
, 𝐴
𝑇
)

∈ R
10

+
: 0 ⩽ 𝑁 (𝑡) ⩽

Λ

𝜇
} .

(6)

For themodel system (4) to be epidemiologicallymeaningful,
it is important to prove that all its state variables are non-
negative for all time 𝑡 > 0. Suppose, for example, that at
some 𝑡 > 0 the variable 𝐿

𝑇
becomes zero, that is, 𝐿

𝑇
(𝑡) =

0, while all other variables are positive. Then, from the 𝐿
𝑇

equation we have 𝑑𝐿
𝑇
(𝑡)/𝑑𝑡 > 0. Thus, 𝐿

𝑇
(𝑡) ⩾ 0 for all

𝑡 > 0. Analogously, we can prove that all variables remain
nonnegative for all time 𝑡 > 0.

Adding all equations in model (4) gives

𝑑𝑁

𝑑𝑡
(𝑡) = Λ − 𝜇𝑁 (𝑡) − 𝑑

𝑇
𝐼
𝑇
(𝑡) − 𝑑

𝐴
𝐴 (𝑡)

− 𝑑
𝑇
𝐼
𝑇𝐻

(𝑡) − 𝑑
𝑇𝐴
𝐴
𝑇
(𝑡) .

(7)

Since𝑁(𝑡) ⩾ 𝐼
𝑇
(𝑡) + 𝐴(𝑡) + 𝐼

𝑇𝐻
(𝑡) + 𝐴

𝑇
(𝑡), then

Λ − (𝜇 + 𝑑
𝑇
+ 𝑑
𝐴
+ 𝑑
𝑇𝐴
)𝑁 (𝑡) ⩽

𝑑𝑁

𝑑𝑡
(𝑡) ⩽ Λ − 𝜇𝑁 (𝑡) .

(8)
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Therefore, we conclude that 𝑁(𝑡) is bounded for all 𝑡 > 0

and every solution of system (4) with initial condition in Ω
remains inΩ. This result is summarized below.

Lemma 1. The region Ω is positively invariant for model (4)
with nonnegative initial conditions in R10

+
.

4. Stability Analysis

Model (4) has four nonnegative equilibria, namely,

(i) the disease-free equilibrium (no disease):

Σ
0
= (𝑆
0
, 𝐿
𝑇0
, 𝐼
𝑇0
, 𝑅
𝑇0
, 𝐼
𝐻0
, 𝐴
0
, 𝐿
𝑇𝐻0

, 𝐼
𝑇𝐻0

, 𝑅
𝑇𝐻0

, 𝐴
𝑇0
)

= (
Λ

𝜇
, 0, 0, 0, 0, 0, 0, 0, 0, 0) ,

(9)

(ii) the HIV-AIDS free equilibrium:

Σ
𝑇
= (𝑆
⬦
, 𝐿
⬦

𝑇
, 𝐼
⬦

𝑇
, 𝑅
⬦

𝑇
, 𝐼
⬦

𝐻
, 𝐴
⬦
, 𝐿
⬦

𝑇𝐻
, 𝐼
⬦

𝑇𝐻
, 𝑅
⬦

𝑇𝐻
, 𝐴
⬦

𝑇
) (10)

with 𝐼⬦
𝑇
> 0 and 𝐼⬦

𝐻
= 𝐴
⬦
= 𝐿
⬦

𝑇𝐻
= 𝐼
⬦

𝑇𝐻
= 𝑅
⬦

𝑇𝐻
=

𝐴
⬦

𝑇
= 0 for 𝑅

1
> 1, where 𝑅

1
is the basic reproduction

number of model (4) with 𝐼
𝐻
= 𝐴 = 𝐿

𝑇𝐻
= 𝐼
𝑇𝐻

=

𝑅
𝑇𝐻

= 𝐴
𝑇
= 0 (only TB model) that is given by

𝑅
1
=

Λ

𝑁𝜇
(

𝛽
1

𝑑
𝑇
+ 𝜇 + 𝜏

2

)(
𝑘
1

𝑘
1
+ 𝜏
1
+ 𝜇

) (11)

(see [12]),
(iii) the TB-free equilibrium:

Σ
𝐻
= (𝑆
⋆
, 𝐿
⋆

𝑇
, 𝐼
⋆

𝑇
, 𝑅
⋆

𝑇
, 𝐼
⋆

𝐻
, 𝐴
⋆
, 𝐿
⋆

𝑇𝐻
, 𝐼
⋆

𝑇𝐻
, 𝑅
⋆

𝑇𝐻
, 𝐴
⋆

𝑇
) (12)

with 𝐿⋆
𝑇
= 𝐼
⋆

𝑇
= 𝑅
⋆

𝑇
= 𝐿
⋆

𝑇𝐻
= 𝐼
⋆

𝑇𝐻
= 𝑅
⋆

𝑇𝐻
= 𝐴
⋆

𝑇
= 0

and

𝑆
⋆
=

Λ

𝜇𝑅
2

, (13)

𝐼
⋆

𝐻
= (𝑅
2
− 1)

𝜇𝑁
𝐻
(𝛼
1
+ 𝑑
𝐴
+ 𝜇)

𝛽
2
(𝛼
1
+ 𝑑
𝐴
+ 𝜇 + 𝜂𝜌

1
)
, (14)

𝐴
⋆
= (𝑅
2
− 1)

𝜌
1
𝜇𝑁
𝐻

𝛽
2
(𝛼
1
+ 𝑑
𝐴
+ 𝜇 + 𝜂𝜌

1
)
, (15)

for𝑅
2
> 1, where𝑅

2
is the basic reproduction number

of model (4) with 𝐿
𝑇
= 𝐼
𝑇
= 𝑅
𝑇
= 𝐿
𝑇𝐻

= 𝐼
𝑇𝐻

=

𝑅
𝑇𝐻

= 𝐴
𝑇
= 0 (only HIV-AIDS model); that is,

𝑅
2
=

Λ

𝑁𝜇
𝛽
2
(

𝜇 + 𝛼
1
+ 𝑑
𝐴
+ 𝜂𝜌
1

𝜇𝛼
1
+ (𝜇 + 𝜌

1
) (𝜇 + 𝑑

𝐴
)
) , (16)

(iv) the syndemic equilibrium:

Σ
∗
= (𝑆
∗
, 𝐿
∗

𝑇
, 𝐼
∗

𝑇
, 𝑅
∗

𝑇
, 𝐼
∗

𝐻
, 𝐴
∗
, 𝐿
∗

𝑇𝐻
, 𝐼
∗

𝑇𝐻
, 𝑅
∗

𝑇𝐻
, 𝐴
∗

𝑇
) (17)

with 𝐼∗
𝑇
> 0, 𝐼∗

𝐻
> 0, 𝐴∗ > 0, 𝐿∗

𝑇𝐻
> 0, 𝐼∗

𝑇𝐻
> 0,

𝑅
∗

𝑇𝐻
> 0, and 𝐴∗

𝑇
> 0, for 𝑅

0
> 1, where 𝑅

0
is the

basic reproduction number of model (4); that is,

𝑅
0
= max {𝑅

1
, 𝑅
2
} . (18)

The details of the computation of the basic reproduction
number 𝑅

0
are given in Appendix A.

The following theorem states the stability of the equilib-
rium points.

Theorem 2. The disease-free equilibrium Σ
0
is locally asymp-

totically stable if 𝑅
0
< 1 and unstable if either 𝑅

𝑖
> 1

with 𝑖 = 1, 2. The HIV-AIDS free equilibrium Σ
𝑇
is locally

asymptotically stable if 𝑅
1
> 1, and the TB-free equilibrium

Σ
𝐻
is locally asymptotically stable for 𝑅

2
near 1.

Details of the proof of Theorem 2 are given in
Appendix B.

Explicit expressions for the coinfection endemic equi-
librium Σ

∗ are very difficult to compute analytically. In
Section 5, we consider an example, with 𝑅

0
> 1, for which

there exists a syndemic equilibrium, and analyze, num-
erically, the local asymptotical stability of the syndemic equi-
librium Σ

∗.

5. Numerical Analysis and Discussion

For numerical simulations, we consider the following initial
conditions for system (4):

(𝑆 (0) , 𝐿
𝑇
(0) , 𝐼
𝑇
(0) , 𝑅

𝑇
(0) , 𝐼
𝐻
(0) , 𝐴 (0) ,

𝐿
𝑇𝐻

(0) , 𝐼
𝑇𝐻

(0) , 𝑅
𝑇𝐻

(0) , 𝐴
𝑇
(0))

= (
60𝑁

100
,
14𝑁

100
,
3𝑁

100
, 0,

4𝑁

100
,
𝑁

100
,
12𝑁

100
,
5𝑁

100
, 0,

𝑁

100
)

(19)

with𝑁 = 50000. The parameters of model (4) take the values
of Table 1.

5.1. Equilibrium Points and Stability Analysis. In Table 2 we
show the effect of the transmission coefficient 𝛽

1
on the

state 𝐼⬦
𝑇

of the HIV-free equilibrium Σ
𝑇
and on the basic

reproduction number 𝑅
1
. Table 3 shows the effect of the

transmission coefficient 𝛽
2
on the states 𝐼⋆

𝐻
and 𝐴

⋆ of the
TB-free equilibrium Σ

𝐻
and on the basic reproduction num-

ber 𝑅
2
. We conclude that the equilibrium states 𝐼⬦

𝑇
and

(𝐼
⋆

𝐻
, 𝐴
⋆
) increasewith the transmission coefficients𝛽

1
and𝛽
2
,

respectively.
In Figure 2 we considered different initial conditions in

a neighborhood of the initial conditions given by (19) and
𝑅
0
< 1 (𝑅

1
< 1 and 𝑅

2
< 1) to illustrate the stability of

the disease-free equilibrium Σ
0
given by (9). In these numer-

ical simulations we considered 𝛽
1
= 2.7 and 𝛽

2
= 0.03,

corresponding to 𝑅
1
= 0.62632 and 𝑅

2
= 0.55077, while the

rest of the parameters take the values in Table 1.
Figure 3 shows that, for𝑅

0
> 1, the syndemic equilibrium

Σ
∗ exists. We considered different initial conditions for the

state variables of system (4) in a neighborhood of (19), 𝛽
1
= 6

and 𝛽
2
= 0.1, corresponding to 𝑅

1
= 1.39239 and 𝑅

2
=

1.83593, and the rest of the parameters take the values in



Journal of Applied Mathematics 5

Table 1: Parameters of the TB-HIV/AIDS model (4).

Symbol Value References Symbol Value References
Λ 714 𝜏

4
1 yr−1

𝜇 1/70 yr−1 𝜌
1

0.1 yr−1 [10, 11]
𝛽
1

Variable 𝜌
2

0.25 yr−1

𝛽
2

Variable 𝜌
3

0.125 yr−1

𝛽


1
0.9 𝛼

1
0.33 yr−1 [6]

𝛽


2
1.1 𝛼

2
0.33 yr−1

𝑘
1

1 [12] 𝜓 1.07

𝑘
2

1.3𝑘
1

[13] 𝑑
𝑇

1/8 yr−1

𝜏
1

1 yr−1 [12] 𝑑
𝐴

0.3 yr−1

𝜏
2

2 yr−1 [12] 𝑑
𝑇𝐴

0.33 yr−1

𝜏
3

2 yr−1 𝜂 1.02

𝛿 1.03

Table 2: Effect of 𝛽
1
on 𝐼⬦
𝑇
and 𝑅

1
.

𝛽
1

4.3 6 10 15 50
𝑅
1

0.99788 1.39239 2.32065 3.48097 11.60326
𝐼
⬦

𝑇
0.00397 903.93492 2206.57268 2870.72755 3804.50589

Table 3: Effect of 𝛽
2
on 𝐼⋆
𝐻
, 𝐴⋆, and 𝑅

2
.

𝛽
2

0.051 0.055 0.07 0.09 0.99
𝑅
2

0.93669 1.01016 1.28566 1.65299 1.81829
𝐼
⋆

𝐻
0.01708 135.73817 2516.54721 4472.84980 4930.48696

𝐴
⋆ 0.00266 21.07182 390.59491 694.23361 765.26396

Table 1. We observe that the state variables converge to Σ∗
when 𝑡 → ∞. In this case, Σ∗ is given by

Σ
∗
= (𝑆
∗
, 𝐿
∗

𝑇
, 𝐼
∗

𝑇
, 𝑅
∗

𝑇
, 𝐼
∗

𝐻
, 𝐴
∗
, 𝐿
∗

𝑇𝐻
, 𝐼
∗

𝑇𝐻
, 𝑅
∗

𝑇𝐻
, 𝐴
∗

𝑇
)

= (4766.84, 2019.66, 943.06, 28621.89, 362.66, 56.29,

31.39, 55.15, 495.68, 112.33) .

(20)

5.2. Treatment Impact on TB-HIV/AIDS Coinfection. Con-
sider 𝛽

1
= 13 and 𝛽

2
= 0.06, while the rest of the parameters

take the values of Table 1. Figure 4 shows the impact of treat-
ing the individuals with active and latent TB on the number of
individuals coinfected with TB-HIV/AIDS. The treatment of
individuals with only TB, 𝐼

𝑇
and 𝐿

𝑇
, has a positive impact on

the reduction of the number of individuals coinfected with
TB-HIV/AIDS. Moreover, the number of individuals that
suffered from disease (TB and AIDS) induced death is higher
when individuals with TB-single infection are not treated. In
this case, the total population at the end of 20 years is around
10509 and, in the case where individuals with only TB are
treated, the total population at the end of 20 years is around
29758 individuals. In Figure 5, we assume that there are no
disease induced deaths; that is, 𝑑

𝑇
= 𝑑
𝐴
= 𝑑
𝑇𝐴

= 0. The
impact of treating individuals with only TB on the reduction
of the number of coinfected individuals is more evident.

Figure 6 illustrates the case where we compare the num-
ber of individuals coinfected with TB-HIV/AIDS when indi-
viduals with only AIDS symptoms 𝐴

𝑇
are or are not treated.

We observe that treating this class of individuals is important
for the reduction of the number of individuals that become
coinfected, with special attention to the individuals that have
AIDS symptoms and TB infection. In Figure 7, we considered
that there are no disease induced deaths (𝑑

𝑇
= 𝑑
𝐴
= 𝑑
𝑇𝐴

=

0). It is crucial that TB-infected individuals (in the latent
and active stage), which are also HIV-positive, take anti-
TB drugs, since they can recover from TB. We analyze the
impact of treating TB-HIV/AIDS coinfected individuals𝐿

𝑇𝐻
,

𝐼
𝑇𝐻

, and 𝐴
𝑇
on the reduction of the number of individuals

coinfection. If anti-TB drugs are supplied, then latent and
active TB individuals with HIV can recover and pass to the
class 𝑅

𝑇𝐻
(the number of individuals in the class 𝑅

𝑇𝐻
tends

to zero when TB is not treated). In Figure 8, we observe that,
after 7 years, the number of individuals infected with active
TB and HIV, in the case without treatment, becomes lower
than in the case with treatment. This is due to the fact that
coinfection precipitates AIDS symptoms.

Appendices

A. Computation of 𝑅
0

Thebasic reproduction number represents the expected aver-
age number of new infections produced by a single infectious
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Figure 2: Stability of the disease-free equilibrium (9).
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Figure 3: Stability of the syndemic equilibrium Σ
∗.

individualwhen in contactwith a completely susceptible pop-
ulation [16]. Following [16], the basic reproduction number

𝑅
0
is obtained as the spectral radius of thematrix𝐹⋅𝑉−1 at the

disease-free equilibrium Σ
0
, given by (9), with 𝐹 = [𝐹1 𝐹2],
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Figure 4: Impact of TB treatment on single-infected individuals with disease induced death.
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Figure 5: Impact of TB treatment on single-infected individuals with no disease induced death.
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Figure 6: Impact of AIDS treatment on single-infected individuals with disease induced death.
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0

1000

2000

3000

4000

5000

6000

0 5 10 15 20
Time (years)

L
T
H

𝜏3 = 2, 𝜏4 = 1, 𝛼2 = 0.33

𝜏3 = 𝜏4 = 𝛼2 = 0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20
Time (years)

I T
H

𝜏3 = 2, 𝜏4 = 1, 𝛼2 = 0.33

𝜏3 = 𝜏4 = 𝛼2 = 0

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20
Time (years)

A
T

𝜏3 = 2, 𝜏4 = 1, 𝛼2 = 0.33

𝜏3 = 𝜏4 = 𝛼2 = 0

Figure 8: Impact of TB and AIDS treatment on coinfected individuals with no disease induced death.
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𝛽


1
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1
𝑅
𝑇

𝑁
𝛽


1
𝜆
𝑇
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0 0 0 0 0
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𝛽
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𝛽
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𝑅
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0 0
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2
𝛽
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𝑇𝐻

𝑁
0 0

0 0 𝛿𝜆
𝐻
+
𝜓𝛽
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,
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𝐹
2
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 0 0 0 0

0 0
𝛽
1
𝑆

𝑁
+
𝛽


1
𝛽
1
𝑅
𝑇

𝑁
0

𝛽
1
𝑆

𝑁
+
𝛽


1
𝛽
1
𝑅
𝑇

𝑁
0 0 0 0 0

0 0 0 0 0

𝛽
2
𝜂𝑆

𝑁
+
𝛽
2
𝜂𝑅
𝑇

𝑁

𝛽
2
𝑆

𝑁
+
𝛽
2
𝑅
𝑇

𝑁

𝛽
2
𝑆

𝑁
+
𝛽
2
𝑅
𝑇

𝑁

𝛽
2
𝑆

𝑁
+
𝛽
2
𝑅
𝑇

𝑁

𝛽
2
𝑆𝜂

𝑁
+
𝑅
𝑇
𝛽
2
𝜂

𝑁
0 0 0 0 0

0 0
𝛽


2
𝛽1𝑅
𝑇𝐻

𝑁
𝛽


2
𝜆
𝑇

𝛽


2
𝛽
1
𝑅
𝑇𝐻

𝑁
𝛿𝛽
2
𝜂𝐼
𝑇

𝑁

𝛿𝛽
2
𝐼
𝑇

𝑁

𝛿𝛽
2
𝐼
𝑇

𝑁
+
𝜓𝛽
1
𝐼
𝐻

𝑁

𝛿𝛽
2
𝐼
𝑇

𝑁

𝛿𝛽
2
𝜂𝐼
𝑇

𝑁
+
𝜓𝛽
1
𝐼
𝐻

𝑁
0 0 0 0 0

0 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(A.1)

and 𝑉 = [𝑉1 𝑉2] with

𝑉
1
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝜆
𝑇
+ 𝜆
𝐻
+ 𝜇 0

𝛽
1
𝑆

𝑁
0

𝛽
2
𝑆

𝑁

0 𝑘
1
𝜏
1
+ 𝜇 0 0 0

0 −𝑘
1

𝜏
2
+ 𝛿𝜆
𝐻
+ 𝜇 + 𝑑

𝑇
0

𝛿𝛽
2
𝐼
𝑇

𝑁

0 −𝜏
1

−𝜏
2
+
𝛽


1
𝛽
1
𝑅
𝑇

𝑁
𝛽


1
𝜆
𝑇
+ 𝜆
𝐻
+ 𝜇

𝛽
2
𝑅
𝑇

𝑁

0 0
𝜓𝛽
1
𝐼
𝐻

𝑁
0 𝜌

1
+ 𝜓𝜆
𝑇
+ 𝜇

0 0 0 0 −𝜌
1

0 0 0 0 0

0 0 0 0 0

0 0
𝛽


2
𝛽
1
𝑅
𝑇𝐻

𝑁
0 0

0 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑉
2
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝛽
2
𝜂𝑆

𝑁

𝛽
2
𝑆

𝑁

𝛽
1
𝑆

𝑁
+
𝛽
2
𝑆

𝑁

𝛽
2
𝑆

𝑁

𝛽
1
𝑆

𝑁
+
𝛽
2
𝑆𝜂

𝑁

0 0 0 0 0

𝛿𝛽
2
𝜂𝐼
𝑇

𝑁

𝛿𝛽
2
𝐼
𝑇

𝑁

𝛿𝛽
2
𝐼
𝑇

𝑁

𝛿𝛽
2
𝐼
𝑇

𝑁

𝛿𝛽
2
𝜂𝐼
𝑇

𝑁

𝛽
2
𝜂𝑅
𝑇

𝑁

𝛽
2
𝑅
𝑇

𝑁
(
𝛽


1
𝛽
1

𝑁
+
𝛽
2

𝑁
)𝑅
𝑇

𝛽
2
𝑅
𝑇

𝑁
(
𝛽


1
𝛽
1

𝑁
+
𝛽
2
𝜂

𝑁
)𝑅
𝑇

−𝛼
1

0
𝜓𝛽
1
𝐼
𝐻

𝑁
0

𝜓𝛽
1
𝐼
𝐻

𝑁

𝛼
1
+ 𝜇 + 𝑑

𝐴
0 0 0 0

0 𝑘
2
+ 𝜏
4
+ 𝜇 0 0 0

0 −𝑘
2

𝜌
2
+ 𝜏
3
+ 𝜇 + 𝑑

𝑇
0 −𝛼

2

0 −𝜏
4

−𝜏
3
+
𝛽


2
𝛽
1
𝑅
𝑇𝐻

𝑁
𝛽


2
𝜆
𝑇
+ 𝜌
3
+ 𝜇

𝛽


2
𝛽
1
𝑅
𝑇𝐻

𝑁

0 0 −𝜌
2

−𝜌
3

𝛼
2
+ 𝑑
𝑇𝐴
+ 𝜇

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(A.2)
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The dominant eigenvalues of the matrix 𝐹 ⋅ 𝑉−1 are

𝑅
1
=

Λ

𝑁𝜇
(

𝛽
1

𝑑
𝑇
+ 𝜇 + 𝜏

2

)(
𝑘
1

𝑘
1
+ 𝜏
1
+ 𝜇

) ,

𝑅
2
=

Λ

𝑁𝜇
𝛽
2
(

𝜇 + 𝛼
1
+ 𝑑
𝐴
+ 𝜂𝜌
1

𝜇𝛼
1
+ (𝜇 + 𝜌

1
) (𝜇 + 𝑑

𝐴
)
) .

(A.3)

Thus, the basic reproduction number𝑅
0
of model (4) is given

by

𝑅
0
= max {𝑅

1
, 𝑅
2
} . (A.4)

Note that 𝑅
1
is the basic reproduction number of model (4)

with 𝐼
𝑇
= 𝐴 = 𝐿

𝑇𝐻
= 𝐼
𝑇𝐻

= 𝑅
𝑇𝐻

= 𝐴
𝑇
= 0 (only TB model),

and 𝑅
2
is the basic reproduction number of model (4) with

𝐿
𝑇
= 𝐼
𝑇
= 𝑅
𝑇
= 𝐿
𝑇𝐻

= 𝐼
𝑇𝐻

= 𝑅
𝑇𝐻

= 𝐴
𝑇
= 0 (only HIV-

AIDS model).

B. Proof of Theorem 2

In this Appendix, we provide details of the proof of
Theorem 2.

Local Asymptotical Stability of the Disease-Free Equilibrium
Σ
0
. FollowingTheorem 2 of [16], the disease-free equilibrium,

Σ
0
, is locally asymptotically stable if all the eigenvalues of the

Jacobian matrix of the system (4), here denoted by 𝑀
𝑇
(Σ
0
),

computed at the disease-free equilibrium Σ
0
, given by (9),

have negative real parts.
The Jacobian matrix of the system (4) at disease-free

equilibrium Σ
0
is given by

𝑀
𝑇
(Σ
0
) = [𝑀𝑇1 (Σ0) 𝑀

𝑇2
(Σ
0
)] (B.1)

with

𝑀
𝑇1
(Σ
0
) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝜇 0 −
𝛽
1
Λ

𝜇𝑁
0 −

𝛽
2
Λ

𝜇𝑁

0 −𝑑
1

𝛽
1
Λ

𝜇𝑁
0 0

0 𝑘
1

−𝑑
2

0 0

0 𝜏
1

𝜏
2

−𝜇 0

0 0 0 0
𝛽
2
Λ

𝜇𝑁
− 𝑑
3

0 0 0 0 𝜌
1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑀
𝑇2
(Σ
0
) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−
𝛽
2
𝜂Λ

𝜇𝑁
−
𝛽
2
Λ

𝜇𝑁
−
𝛽
1
Λ

𝜇𝑁
−
𝛽
2
Λ

𝜇𝑁
−
𝛽
2
Λ

𝜇𝑁
−
𝛽
1
Λ

𝜇𝑁
−
𝛽
2
𝜂Λ

𝜇𝑁

0 0
𝛽
1
Λ

𝜇𝑁
0

𝛽
1
Λ

𝜇𝑁

0 0 0 0 0

0 0 0 0 0

𝛽
2
𝜂Λ

𝜇𝑁
+ 𝛼
1

𝛽
2
Λ

𝜇𝑁

𝛽
2
Λ

𝜇𝑁

𝛽
2
Λ

𝜇𝑁

𝛽
2
𝜂Λ

𝜇𝑁

−𝑑
4

0 0 0 0

0 −𝑑
5

0 0 0

0 𝑘
2

−𝑑
6

0 𝛼
2

0 𝜏
4

𝜏
3

−𝑑
7

0

0 0 𝜌
2

𝜌
3

−𝑑
8

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(B.2)
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where 𝑑
1
= 𝑘
1
+ 𝜏
1
+ 𝜇; 𝑑

2
= 𝜏
2
+ 𝜇 + 𝑑

𝑇
; 𝑑
3
= 𝜌
1
+ 𝜇;

𝑑
4
= 𝛼
1
+ 𝜇 + 𝑑

𝐴
; 𝑑
5
= 𝑘
2
+ 𝜇 + 𝜏

4
; 𝑑
6
= 𝜌
2
+ 𝜏
3
+ 𝜇 + 𝑑

𝑇
;

𝑑
7
= 𝜌
3
+ 𝜇; 𝑑

8
= 𝛼
2
+ 𝑑
𝑇𝐴
+ 𝜇. One has

trace [𝑀
𝑇
(Σ
0
)]

= −2𝜇 − (𝑑
1
+ 𝑑
2
+ 𝑑
3
+ 𝑑
4
+ 𝑑
5
+ 𝑑
6
+ 𝑑
7
+ 𝑑
8
) < 0,

det [𝑀
𝑇
(Σ
0
)]

=
1

𝑁2
(𝑑
5
(𝑑
6
𝑑
7
+ 𝑑
𝑇
(𝛼
2
+ 𝜇) 𝑑

7
+ 𝛼
2
𝜇𝑑
6
+ 𝑑
𝑇
𝑑
𝑇𝐴
𝑑
7
)

× (𝑁𝜇 (𝛼
1
𝜇 + (𝜇 + 𝜌

1
) (𝜇 + 𝑑

𝐴
))

− 𝛽
2
Λ (𝛼
1
+ 𝜇 + 𝑑

𝐴
+ 𝜌
1
𝜂))

× (𝑁𝜇 (𝑑
𝑇
+ 𝜇 + 𝜏

2
) (𝑘
1
+ 𝜏
1
+ 𝜇) − 𝑘

1
𝛽
1
Λ) > 0

(B.3)

for

𝑅
1
=

Λ

𝑁𝜇
(

𝛽
1

𝑑
𝑇
+ 𝜇 + 𝜏

2

)(
𝑘
1

𝑘
1
+ 𝜏
1
+ 𝜇

) < 1,

𝑅
2
=

Λ

𝑁𝜇
𝛽
2
(

𝜇 + 𝛼
1
+ 𝑑
𝐴
+ 𝜂𝜌
1

𝜇𝛼
1
+ (𝜇 + 𝜌

1
) (𝜇 + 𝑑

𝐴
)
) < 1.

(B.4)

We have just proved that the disease-free equilibrium Σ
0
of

model (4) is locally asymptotically stable if 𝑅
0
< 1 and

unstable if either 𝑅
𝑖
> 1, 𝑖 = 1, 2.

Global Asymptotical Stability of the Disease-Free Equilibrium
Σ
0
. For convenience, let us rewrite the model system (4) as

𝑑𝑋

𝑑𝑡
= 𝐹 (𝑋, 𝑍) ,

𝑑𝑍

𝑑𝑡
= 𝐺 (𝑋, 𝑍) , 𝐺 (𝑋, 0) = 0,

(B.5)

where𝑋 = (𝑆, 𝑅
𝑇
) and𝑍= (𝐿

𝑇
, 𝐼
𝑇
, 𝐼
𝐻
, 𝐴, 𝐿
𝑇𝐻
, 𝐼
𝑇𝐻
, 𝑅
𝑇𝐻
, 𝐴
𝑇
),

with𝑋 ∈ R2
+
denoting (its components) the number of unin-

fected individuals and 𝑍 ∈ R8
+
denoting (its components)

the number of infected individuals including the latent and
infectious.

The disease-free equilibrium is denoted by

𝐸
0
= (𝑋
0
, 0) , where 𝑋

0
= (

Λ

𝜇
, 0) . (B.6)

Following [6], if

(H1) 𝐸
0
is globally asymptotically stable for 𝑑𝑋/𝑑𝑡 =

𝐹(𝑋, 0),
(H2) 𝐺(𝑋,𝑍) ⩾ 0 for (𝑋, 𝑍) ∈ Ω, where 𝐺(𝑋,𝑍) = 𝐴𝑍 −

𝐺(𝑋,𝑍), 𝐴 = 𝐷
𝑍
𝐺(𝐸
0
, 0) is a Metzler matrix, and Ω

is given by (6),

then the fixed point 𝐸
0
= (𝑋
0
, 0) is a globally asymptotically

stable equilibrium of system (B.5). We have

𝑑𝑋

𝑑𝑡
= 𝐹 (𝑋, 𝑍) = [

Λ − 𝜆
𝑇
𝑆 − 𝜆
𝐻
𝑆 − 𝜇𝑆

𝜏
1
𝐿
𝑇
+ 𝜏
2
𝐼
𝑇
− (𝛽


1
𝜆
𝑇
+ 𝜆
𝐻
+ 𝜇)𝑅

𝑇

] ,

𝐹 (𝑋, 0) = [
Λ − 𝜇𝑆

−𝜇𝑅
𝑇

] ,

𝑑𝑍

𝑑𝑡
= 𝐺 (𝑋, 𝑍)

=

[
[
[
[
[
[
[
[
[
[
[

[

𝜆
𝑇
𝑆 + 𝛽


1
𝜆
𝑇
𝑅
𝑇
− (𝑘
1
+ 𝜏
1
+ 𝜇) 𝐿

𝑇

𝑘
1
𝐿
𝑇
− (𝜏
2
+ 𝑑
𝑇
+ 𝜇 + 𝛿𝜆

𝐻
) 𝐼
𝑇

𝜆
𝐻
𝑆 − (𝜌

1
+ 𝜓𝜆
𝑇
+ 𝜇) 𝐼

𝐻
+ 𝛼
1
𝐴 + 𝜆

𝐻
𝑅
𝑇

𝜌
1
𝐼
𝐻
− 𝛼
1
𝐴 − (𝜇 + 𝑑

𝐴
) 𝐴

𝛽


2
𝜆
𝑇
𝑅
𝑇𝐻

− (𝑘
2
+ 𝜏
4
+ 𝜇) 𝐿

𝑇𝐻

𝛿𝜆
𝐻
𝐼
𝑇
+ 𝜓𝜆
𝑇
𝐼
𝐻
+ 𝛼
2
𝐴
𝑇
+ 𝑘
2
𝐿
𝑇𝐻

− (𝜏
3
+ 𝜌
2
+ 𝜇 + 𝑑

𝑇
) 𝐼
𝑇𝐻

𝜏
3
𝐼
𝑇𝐻

+ 𝜏
4
𝐿
𝑇𝐻

− (𝛽


2
𝜆
𝑇
+ 𝜌
3
+ 𝜇)𝑅

𝑇𝐻

𝜌
2
𝐼
𝑇𝐻

+ 𝜌
3
𝑅
𝑇𝐻

− (𝛼
2
+ 𝜇 + 𝑑

𝑇𝐴
) 𝐴
𝑇

]
]
]
]
]
]
]
]
]
]
]

]

,

(B.7)

and 𝐺(𝑋, 0) = 0. Thus,

𝑑𝑋

𝑑𝑡
= 𝐹 (𝑋, 0) = [

Λ − 𝜇𝑆

−𝜇𝑅
𝑇

] ,

𝐴 = 𝐷
𝑍
𝐺 (𝑋
0
, 0) = [𝐷1 𝐷2]

(B.8)

with



12 Journal of Applied Mathematics

𝐷
1
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑘
1
− 𝜏
1
− 𝜇

𝛽
1
Λ

𝜇𝑁
0 0

𝑘
1

−𝜏
2
− 𝜇 − 𝑑

𝑇
0 0

0 0
𝛽
2
Λ

𝜇𝑁
− 𝜌
1
− 𝜇

𝛽
2
𝜂Λ

𝜇𝑁
+ 𝛼
1

0 0 𝜌
1

−𝛼
1
− 𝜇 − 𝑑

𝐴

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝐷
2
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0
𝛽
1
Λ

𝜇𝑁
0

𝛽
1
Λ

𝜇𝑁

0 0 0 0

𝛽
2
Λ

𝜇𝑁

𝛽
2
Λ

𝜇𝑁

𝛽
2
Λ

𝜇𝑁

𝛽
2
𝜂Λ

𝜇𝑁

0 0 0 0

−𝑘
2
− 𝜏
4
− 𝜇 0 0 0

𝑘
2

−𝜌
2
− 𝜏
3
− 𝜇 − 𝑑

𝑇
0 𝛼

2

𝜏
4

𝜏
3

−𝜌
3
− 𝜇 0

0 𝜌
2

𝜌
3

−𝛼
2
− 𝑑
𝑇𝐴
− 𝜇

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝐺 (𝑋, 𝑍) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝜆
𝑇
(
Λ

𝜇
− 𝑆 − 𝛽



1
𝑅
𝑇
)

−𝛿𝜆
𝐻
𝐼
𝑇

𝜆
𝐻
(
Λ

𝜇
− 𝑆 − 𝑅

𝑇
− 𝜓𝐼
𝐻
)

0

−𝛽


2
𝜆
𝑇
𝑅
𝑇𝐻

− (𝛿𝜆
𝐻
𝐼
𝑇
+ 𝜓𝜆
𝑇
𝐼
𝐻
)

𝛽


2
𝜆
𝑇
𝑅
𝑇𝐻

0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(B.9)

From (B.9) the condition (H2) is not satisfied, since𝐺(𝑋,𝑍) ⩾
0 is not true. Therefore, the disease-free equilibrium 𝐸

0
may

not be globally asymptotically stable. Following [17], the
backward bifurcation occurs at 𝑅

0
= 1 and the double

endemic equilibria can be supported for 𝑅
𝑐
< 𝑅
0
< 1, where

𝑅
𝑐
is a positive constant.

Existence and Stability of HIV-AIDS Free Equilibrium Σ
𝑇
. The

expressions for 𝑆⬦, 𝐿⬦
𝑇
, 𝐼⬦
𝑇
, and𝑅⬦

𝑇
are obtained if we consider

a submodel of (4) for which 𝐼
𝐻

= 𝐴 = 𝐿
𝑇𝐻

= 𝐼
𝑇𝐻

=

𝑅
𝑇𝐻

= 𝐴
𝑇
= 0 and the total population 𝑁 is given by

𝑁
𝑇
= 𝑆+𝐿

𝑇
+𝐼
𝑇
+𝑅
𝑇
.The basic reproduction number of this

submodel is given by 𝑅
1
(11). The existence, uniqueness, and

local asymptotic stability of Σ
𝑇
are proven in [12,Theorem 1].

Existence and Stability of TB-Free Equilibrium Σ
𝐻
. To prove

the existence of Σ
𝑇
, consider the submodel of (4) for which

𝐿
𝑇
= 𝐼
𝑇
= 𝑅
𝑇
= 𝐿
𝑇𝐻

= 𝐼
𝑇𝐻

= 𝑅
𝑇𝐻

= 𝐴
𝑇
= 0 and the total

population𝑁
𝐻
is given by𝑁

𝐻
= 𝑆+ 𝐼

𝐻
+𝐴. The equations of

this submodel are

̇𝑆 (𝑡) = Λ − 𝜆
𝐻
𝑆 (𝑡) − 𝜇𝑆 (𝑡) ,

̇𝐼
𝐻
(𝑡) = 𝜆

𝐻
𝑆 (𝑡) − (𝜌

1
+ 𝜇) 𝐼

𝐻
(𝑡) + 𝛼

1
𝐴 (𝑡) ,

̇𝐴 (𝑡) = 𝜌
1
𝐼
𝐻
(𝑡) − 𝛼

1
𝐴 (𝑡) − (𝜇 + 𝑑

𝐴
) 𝐴,

(B.10)

where𝜆
𝐻
= 𝛽
2
((𝐼
𝐻
+𝜂𝐴)/𝑁

𝐻
). Setting the right-hand sides of

submodel (B.10) to zero, we obtain the endemic equilibrium
Σ
⋆

𝐻
= (𝑆
⋆
, 𝐼
⋆

𝐻
, 𝐴
⋆
) given by

𝑆
⋆
=

Λ

𝜇𝑅
2

,
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𝐼
⋆

𝐻
= (𝑅
2
− 1)

𝜇𝑁
𝐻
(𝛼
1
+ 𝑑
𝐴
+ 𝜇)

𝛽
2
(𝛼
1
+ 𝑑
𝐴
+ 𝜇 + 𝜂𝜌

1
)
,

𝐴
⋆
= (𝑅
2
− 1)

𝜌
1
𝜇𝑁
𝐻

𝛽
2
(𝛼
1
+ 𝑑
𝐴
+ 𝜇 + 𝜂𝜌

1
)
,

(B.11)

where 𝐼⋆
𝐻
> 0 and 𝐴⋆ > 0, whenever 𝑅

2
> 1.

In what follows we prove the local asymptotic stability
of the endemic equilibrium Σ

⋆

𝐻
, using the center manifold

theory [18], as described in [19, Theorem 4.1] (see also [16]),
considering ART treatment. The basic reproduction number
of this submodel 𝑅

2
is given by (16). Choose bifurcation

parameter, 𝛽∗, by solving for 𝛽
2
from 𝑅

2
= 1:

𝛽
∗
=
𝜇𝛼
1
+ (𝜇 + 𝜌

1
) (𝜇 + 𝑑

𝐴
)

𝛼 + 𝑑
𝐴
+ 𝜇 + 𝜂𝜌

. (B.12)

Submodel (B.10) has a disease-free equilibrium given by
Σ
∗

𝐻0
= (𝑥
10
, 𝑥
20
, 𝑥
30
) = (Λ/𝜇, 0, 0).

The Jacobian of the system (B.10), evaluated at Σ∗
𝐻0

and
with 𝛽

2
= 𝛽
∗, is given by

𝐽 (Σ
∗

𝐻0
) = [

[

−𝜇 −𝛽
2

−𝛽
2
𝜂

0 𝛽
2
− 𝜌 − 𝜇 𝛽

2
𝜂 + 𝛼

0 𝜌 −𝛼 − 𝑑
𝐴
− 𝜇

]

]

. (B.13)

The eigenvalues of the linearized system (B.13) are

𝜆
1
= 0, 𝜆

2
= −𝜇,

𝜆
3
= − (𝜂𝜌 (2𝜇

2
+ 𝜌 + 𝑑

𝐴
+ 𝛼) + 𝑑

𝐴
(2𝛼 + 2𝜇 + 𝑑

𝐴
)

+𝜌𝛼 + (𝜇 + 𝛼)
2
) (𝛼 + 𝑑

𝐴
+ 𝜇 + 𝜂𝜌)

−1
.

(B.14)

We observe that there is a simple eigenvalue with zero real
part and the other two eigenvalues have negative real part.
Thus, the system (B.10), with 𝛽

2
= 𝛽
∗, has a hyperbolic

equilibrium point and the center manifold theory [18] can
be used to analyze the dynamics of submodel (B.10) near
𝛽
2
= 𝛽
∗.

The Jacobian 𝐽(Σ
∗

𝐻0
) at 𝛽

2
= 𝛽
∗ has a right eigen-

vector (associated with the zero eigenvalue) given by 𝑤 =

[𝑤
1
, 𝑤
2
, 𝑤
3
]
𝑇, where

𝑤
1
= −

(𝜇𝛼
1
+ (𝜇 + 𝜌

1
) (𝜇 + 𝑑

𝐴
)) 𝑤
3

𝜌
1
𝜇

,

𝑤
2
=
(𝛼
1
+ 𝑑
𝐴
+ 𝜇)𝑤

3

𝜌
1

,

𝑤
3
= 𝑤
3
> 0.

(B.15)

Further, 𝐽(Σ∗
𝐻0
) for 𝛽

2
= 𝛽
∗ has a left eigenvector V =

[V
1
, V
2
, V
3
] (associated with the zero eigenvalue), where

V
1
= 0,

V
2
=
V
3
(𝛼
1
+ 𝑑
𝐴
+ 𝜇 + 𝜂𝜌

1
)

𝛼
1
+ 𝜂𝜌
1
+ 𝜇𝜂

,

V
3
= V
3
> 0.

(B.16)

To applyTheorem4.1 in [19] it is convenient to let𝑓
𝑘
represent

the right-hand side of the 𝑘th equation of the system (B.10)
and let 𝑥

𝑘
be the state variable whose derivative is given by

the 𝑘th equation for 𝑘 = 1, 2, 3. The local stability near the
bifurcation point 𝛽

2
= 𝛽
∗ is then determined by the signs

of two associated constants, denoted by 𝑎 and 𝑏, defined
(respectively) by

𝑎 =

3

∑

𝑘,𝑖,𝑗=1

V
𝑘
𝑤
𝑖
𝑤
𝑗

𝜕
2
𝑓
𝑘

𝜕𝑥
𝑖
𝜕𝑥
𝑗

(0, 0) ,

𝑏 =

3

∑

𝑘,𝑖=1

V
𝑘
𝑤
𝑖

𝜕
2
𝑓
𝑘

𝜕𝑥
𝑖
𝜕𝜙

(0, 0)

(B.17)

with 𝜙 = 𝛽
2
− 𝛽
∗.

For the system (B.10), the associated partial derivatives at
the disease-free equilibrium Σ

𝐻0
are given by

𝜕
2
𝑓
1

𝜕𝑥
2

2

=
2𝛽
∗
𝜇

Λ
,

𝜕
2
𝑓
1

𝜕𝑥
2
𝜕𝑥
3

=
𝛽
∗
𝜇 (1 + 𝜂)

Λ
,

𝜕
2
𝑓
1

𝜕𝑥
2

3

=
2𝛽
∗
𝜇𝜂

Λ
,

𝜕
2
𝑓
2

𝜕𝑥
2

2

=
−2𝛽
∗
𝜇

Λ
,

𝜕
2
𝑓
2

𝜕𝑥
2
𝜕𝑥
3

=
−𝛽
∗
𝜇 (1 + 𝜂)

Λ
,

𝜕
2
𝑓
2

𝜕𝑥
2

3

=
−2𝛽
∗
𝜇𝜂

Λ
.

(B.18)

It follows from the above expressions that

𝑎 = −V
3
𝑤
2

3
𝛽
∗
𝜇 (𝑘
1
+ 𝜇 + 𝜂𝜌

1
)

× (2𝑘
2

1
+ 4𝜇𝑘

1
+ 2𝜇
2
+ 𝜌
1
(𝛼
1
+ 𝜂 (𝛼

1
+ 𝜇 + 2𝜌

1
)

+𝑑
𝐴
(1 + 𝜂) + 𝜇))

× (𝜌
2

1
Λ (𝛼
1
+ 𝜂𝜌
1
+ 𝜇𝜂))

−1

< 0

(B.19)

with 𝑘
1
= 𝛼
1
+ 𝑑
𝐴
.

For the sign of 𝑏, it can be shown that the associated
nonvanishing partial derivatives are

𝜕
2
𝑓
1

𝜕𝑥
2
𝜕𝛽∗

= −1,
𝜕
2
𝑓
1

𝜕𝑥
3
𝜕𝛽∗

= −𝜂,

𝜕
2
𝑓
2

𝜕𝑥
2
𝜕𝛽∗

= 1,
𝜕
2
𝑓
2

𝜕𝑥
3
𝜕𝛽∗

= 𝜂.

(B.20)

It also follows from the above expressions that

𝑏 =
V
3
𝑤
3
(𝑘
1
+ 𝜇 + 𝜂𝜌

1
) (𝑘
1
+ 𝜇)

(𝛼
1
+ 𝜂𝜌
1
+ 𝜇𝜂) 𝜌

1

+
𝜂V
3
𝑤
3
(𝑘
1
+ 𝜇 + 𝜂𝜌

1
)

𝛼
1
+ 𝜂𝜌
1
+ 𝜇𝜂

> 0.

(B.21)

Thus, 𝑎 < 0 and 𝑏 > 0. UsingTheorem 4.1 of [19], the endemic
equilibrium Σ

⋆

𝐻
is locally asymptotically stable for 𝑅

2
near 1.
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DT-MRI (diffusion tensor magnetic resonance imaging) tractography is a method to determine the architecture of axonal fibers
in the central nervous system by computing the direction of the principal eigenvectors obtained from tensor matrix, which is
different from the conventional isotropic MRI. Tractography based on DT-MRI is known to needmany computations and is highly
sensitive to noise. Hence, adequate regularization methods, such as image processing techniques, are in demand. Among many
regularizationmethods we are interested in themedian filteringmethod. In this paper, we extended two-dimensional median filters
already developed to three-dimensional median filters. We compared four median filtering methods which are two-dimensional
simple median method (SM2D), two-dimensional successive Fermat method (SF2D), three-dimensional simple median method
(SM3D), and three-dimensional successive Fermat method (SF3D). Three kinds of synthetic data with different altitude angles
from axial slices and one kind of human data from MR scanner are considered for numerical implementation by the four filtering
methods.

1. Introduction

DT-MRI tractography is a method of noninvasively tracing
neuronal fiber bundles. DT-MRI measures anisotropy per
pixel and provides the directional information of eigenvectors
relevant for fiber tractography. Since DT-MRI data which
eigenvectors are computed from usually contain noise, the
calculated principal eigenvector direction assumed to be the
fiber direction may be different from the real direction in the
voxel. As the propagation becomes longer, these differences
in the voxels, how small it is, make the whole computed fiber
direction deviate far away from the real fiber direction [1].
Since in vivo field maps are usually corrupted by noise, the
tractography problem turns out to be a mathematically “ill-
posed” problem which means that the tracking results are
very sensitive to perturbations by noise. The mathematical
attempt to stabilize the solution is known as regularization
[2].

Many approaches have been attempted to stabilize the
noise problem. The approaches are to stabilize six or more
diffusion weighted tensors. Since a diffusion-weighted image

is a scalar image, there are many conventional image process-
ing techniques [3–5]. The diffusion weighted images make
one diffusion tensor for each voxel using Stejskal-Tanner
formula. There are conflicting opinions for using more than
six diffusion-weighed images to make a diffusion tensor for
each voxel [6–9]. Diffusion tensor regularization shows dif-
ferent aspects than conventional scalar image regularization
[10, 11]. In fiber tractography, the information about PEV
(principal eigenvector) and FA (fractional anisotropy) from
the diffusion tensor for each voxel is required. PEV and
FA are stabilized using many assumptions or facts including
low curvature, small total variation, and orthogonality of
eigenpairs [12–15].

Among many regularization techniques we are interested
in the median filtering of diffusion tensor data [16–18]. It
is known that the median filtering for anisotropic tensor
data preserves the good property of denoising and structure-
preserving, which is well known for median filtering of
isotropic data [18]. In addition, Kwon et al. devised a suc-
cessive Fermat filtering for tensor data [19]. Tensor-valued
median filter is computed using minimization problem such
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as gradient descent method or Newton type method in
general. Unlike the conventional minimization algorithm,
more simple methods, simple median (SM) and successive
Fermat (SF) methods, are suggested in [18, 19], respectively.
In the papers, only one slice filtering method, that is to
say, two-dimensional method for three-dimensional tensor,
is considered. In this regard, we call these two-dimensional
methods SM2D and SF2D, respectively. But the real DT-
MR tensor data are composed of numerous axial, coronal,
or sagittal slices. In this paper, we extend SM2D and SF2D
to three-dimensional methods SM3D and SF3D, respectively,
finding median tensor from 3 × 3 × 3 neighbor tensors. That
is to say, the SF3D/SM3Dmedian tensor is the Fermat/simple
median of the three SF2D/SM2D medians from the three
consecutive slices.

This paper is organized as follows. Section 2 describes
the three-dimensional extension (SM3D and SF3D) of the
two-dimensional median algorithms (SM2D and SF2D). In
Section 3, we generate the synthetic data and describe MR
data for numerical simulations of DT-MR tractography. And
we also explained the error measures to test the numerical
experiment. In Section 4, a performance characterization of
the four-median filtering is presented. Section 5 is devoted to
concluding remarks.

2. 3D Median Filtering Methods

In this section, we describe general median filtering and
explain briefly SM2D and SF2D. We also extend the two-
dimensional methods to the three-dimensional methods:
SM3D and SF3D. In this paper, we use the following Frobe-
nius norm as a matrix norm of a matrix 𝐴 = {𝑎

𝑗𝑘
}
𝑗,𝑘=1,...,3

:

‖𝐴‖ = √

3

∑

𝑗,𝑘=1

𝑎
2

𝑗𝑘
. (1)

Let𝐵 be an admissible set ofmatrices and let 𝑆 = {𝐴
1
, . . . , 𝐴

𝑛
}

be any set of 𝑛 matrices. Then the median 𝐴Median of the set 𝑆

is defined as

𝐴Median = argmin
𝑋∈𝐵

𝐸
𝑆

(𝑋) , 𝐸
𝑆

(𝑋) =

𝑛

∑

𝑖=1

𝑋 − 𝐴
𝑖

 . (2)

In general median filtering method, 𝐵 is chosen as the set of
symmetric positive-definite 3 × 3 matrices. The neighboring
set 𝑆 can be chosen arbitrarily in general, but we specify
just two neighboring sets 𝑆

2
and 𝑆
3
for two-dimensional and

three-dimensional cases. That is to say, in two-dimensional
methods, 𝑆

2
has chosen nine neighboring matrices in each

axial (or sagital or coronal) slice as in Figure 1(a) and, in three-
dimensional cases, 𝑆

3
has chosen 27 neighboring matrices

which is 9 matrices for every consecutive three axial slices as
in Figure 1(b). After themedian filtering,𝐴Median, replaces𝐴

5

in two-dimensional methods and 𝐴
14

in three-dimensional
methods as in Figure 1, the Frobenius norm matrix median
filter𝐴Median defined in (2) preserves the following properties
[16–18].

(1) If all matrices in 𝑆 are symmetric, scalar-valued,
and positive-definite, then 𝐴Median is also symmetric,
scalar-valued, and positive-definite, respectively.

(2) If 𝐴Median is Frobenius matrix median of 𝑆, 𝑘𝐴Median
and 𝐵

𝜃
𝐴Median are Frobenius matrix median of 𝑘𝑆

and 𝐵
𝜃
𝑆, respectively, where 𝑘 is a given positive

constant and𝐵
𝜃
is amatrix rotating all vectors in three

dimensions by angle 𝜃 for some given orientation.

2.1. SimpleMedian FilteringMethods (SM2Dand SM3D). The
SM2Dmethod is to find a simple approximation𝐴SM2D of the
median 𝐴Median as in the following equation:

𝐴SM2D = argmin
𝑋∈𝑆2

𝐸
𝑆2

. (3)

It is well known that 𝐴Median is contained in the convex hull
of the set neighboring set 𝑆

2
, whereas 𝐴SM2D is a member of

𝑆
2
, which is one of the nine vertices 𝐴

𝑖
, 𝑖 = 1, 2, . . . , 9, of

the convex hull. We extend the SM filter to three dimensions.
While the two-dimensional SM filter uses a 3 × 3 mask for
filtering, we propose three-dimensional SM (SM3D) filtering
using a 3 × 3 × 3 sized mask that covers above (𝑛 − 1)th slice
and below (𝑛 + 1)th slice in addition to the current 𝑛th slice,
9 tensors for each. Consequently, the neighboring matrix
set 𝑆
3
is defined as {𝐴

1
, 𝐴
2
, 𝐴
3
, . . . , 𝐴

27
} as in Figure 1(b).

More explicitly, SM3D is to find the solution of the following
minimization problem:

𝐴SM3D = argmin
𝑋∈𝑆3

𝐸
𝑆3

(𝑋) , (4)

and SM3Dfiltering returns better results than SM2Dfiltering,
because it uses all the three-dimensional neighboring tensor
matrices; however, it is more computationally intensive. The
SM3D method is explained in Figure 1.

2.2. Successive Fermat Median Filtering Methods (SF2D
and SF3D). Fermat median filtering algorithm proposed by
Kwon et al. [19] is extended to three dimensions. Fermat
median filtering method is based on the Fermat-Torricelli
problem, which is raised by Pierre de Fermat in 1643 to
Evangelista Torricelli:

“Given three points in the two-dimensional plane,
find the point having theminimal sum of distances
to these three points.”

The above problem is the same as the minimizing solu-
tion of (2) for three two-dimensional vectors, since any
three points in Euclidean space form a two-dimensional
hyperplane in the Euclidean space. Several solutions and
generalizations are given in [20–22]. The algorithm to find
Fermat point is obtained by the following properties (see
Figure 2).

(1) If one of the three angles in the triangle is greater than
or equal to 120∘, the Fermat point is the vertex at that
angle (Figure 2(a)).
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A1 A2 A3

A4 A5 A6

A7 A8 A9

ASM2D = Ai, i ∈ {1, 2, . . . , 9}

A1 A2 A3

A4 A5 A6

A7 A8 A9

A10 A11 A12

A13 A14 A15

A16 A17 A18

A19 A20 A21

A22 A23 A24

A25 A26 A27

ASM3D = Ai, i ∈ {1, 2, . . . , 27}

(n − 1)th slice

nth slice

(n + 1)th slice

(a) (b)

Figure 1: Computations of (a) SM2D and (b) SM3D medians.

(2) If all the three angles in the triangle are less than
120∘, the Fermat point is the intersection of the two
straight lines joining any vertex of the triangle and
its symmetrical point. The symmetrical point of 𝐴

1
,

for example, is computed as follows: the symmetrical
point (𝐴



1
) of a point (𝐴

1
) of the triangle (Δ𝐴

1
𝐴
2
𝐴
3
)

is chosen by making equilateral triangle (Δ𝐴


1
𝐴
2
𝐴
3
)

at the outside of the triangle but contacting the
opposite side (𝐴

2
𝐴
3
) of the point (𝐴

1
) (Figure 2(b)).

We call the algorithm to find Fermat point for three
tensors using the above properties, Fermat algorithm. Then,
SF2D is a method to find the approximation of 𝐴Median for
neighboring set 𝑆

2
by using Fermat algorithms successively

as follows:
𝐴SF2D = argmin

𝑋∈𝐵

𝐸SF (𝑋) , SF = {SF
1
, SF
2
, SF
3
} ,

SF
𝑖
= argmin
𝑋∈𝐵

𝐸
𝐹𝑖

(𝑋) ,

𝐹
𝑖
= {𝐴
3(𝑖−1)+1

, 𝐴
3(𝑖−1)+2

, 𝐴
3(𝑖−1)+2

} , 𝑖 = 1, 2, 3.

(5)

For the illustration of (5), see Figure 3(a). The error between
𝐴Median and 𝐴SF2D is analyzed in [19].

To define a three-dimensional SF3D, we divided 27 points
in 𝑆
3
into three groups with nine tensors in three consecutive

slices. A tensor computed by SF3D is the Fermat point of the
three tensors which are SF2D solutions for each slice. Let us
assume that𝐴

14
in 𝑆
3
is contained in 𝑛th axial slice.The SF3D

method is depicted in Figure 2(b) and mathematically it is
formulated as follows:

𝐴SF3D = argmin
𝑋∈𝐵

𝐸SF (𝑋) ,

SF = {SF𝑛−1, SF𝑛, SF𝑛+1} ,

SF𝑚 = argmin
𝑋∈𝐵

𝐸
𝐹
𝑚 (𝑋) , 𝑚 = 𝑛 − 1, 𝑛, 𝑛 + 1,

𝐹
𝑚

= {𝐴
9(𝑚−𝑛+1)+𝑖

}
𝑖=1,2,...,9

.

(6)

See Figure 3(b) for the illustration of SF3D.

3. Numerical Experiments

To evaluate the four filtering methods, we prepared three
kinds of synthetic data depending on the angle deviating from
each axial slice and human data from the MR scanner. These
data are three-dimensional.

The flowchart of our numerical experiment is given in
Figure 4. Given synthetic or human data, diffusion tensor is
computed. In order to compare the filtering methods with
respect to noise level, we added Gaussian noise with mean 0
and standard deviation 𝜎 = 0.001, 0.01, and 0.1 to the original
data. The noisy images were reconstructed using the four
methods: SM2D, SM3D, SF2D, and SF3D. The eigenvalues
(𝜆
1
, 𝜆
2
, 𝜆
3
) and eigenvectors were calculated by using the

power method [23]. Fractional anisotropy (FA) of the tensor
𝐴 for each voxel is given in relation to the three eigenvalues
by

FA (𝐴) =

√3(𝜆
1

− 𝑚)
2

+ (𝜆
2

− 𝑚)
2

+ (𝜆
3

− 𝑚)
2

√2 (𝜆
1

2
+ 𝜆
2

2
+ 𝜆
3

2
)

,

𝑚 =
𝜆
1

+ 𝜆
2

+ 𝜆
3

3
.

(7)

The fiber tracking was based on the fiber assignment
continuous tracking (FACT) algorithm and a brute-force
reconstruction approach [24]. Following the analysis in [1,
24], the fiber tracking was started at the center of an every
voxel with FA value greater than 0.3, and terminated at the
voxel with an FA less than 0.3 and a tract turning-angle less
than 70∘ in our numerical implementation. Computing FA
value, FACT algorithm, and brute-force approach are done
using DTI-Studio (CMRM, Johns Hopkins Medical Institute,
USA).

3.1. Error Measures. Error measures used in the analysis of
numerical examples are also given in this section. Let us
define the followings:

𝑁 : The number of voxels
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Figure 2: Computing Fermat point 𝐹 (a) when one of the three angles is greater than 120
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∘.
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Figure 3: Computations of (a) SF2D and (b) SF3D medians.

𝐴 = {𝐴
𝑛
}
𝑛=1,...,𝑁

: The set of original neighboring
tensors
𝐴
𝜎: The set of tensors disturbed by Gaussian noise

with mean 0 and variance 𝜎
2

𝑋:The set of tensors whose error from original tensor
set 𝐴 should be computed.

In this paper, 𝑋 can be reconstructed tensor sets using one
of the four filtering method or 𝐴

𝜎. The error measures used
in this paper are the average angular error (AAE) and the
average fractional anisotropy (AFA) defined as follows:

AAE (𝑋 : 𝐴) =
1

𝑁

𝑁

∑

𝑛=1

cos−1 (PEV (𝑋
𝑛
) ⋅ PEV (𝐴

𝑛
)) ,

FA (𝑋 : 𝐴) =
1

𝑁

𝑁

∑

𝑛=1

FA (𝑋
𝑛
) − FA (𝐴

𝑛
)
 .

(8)

3.2. Synthetic DataGeneration. The tensor data for each voxel
was constructed using the following diagonalization with a
diagonal matrix having three eigenvalues (1, 0.2, 0.2) and an
orthogonal matrix parameterized by azimuth angle 𝜃 and
altitude angle 𝜑 as follows:

𝐴
𝜃,𝜑

= 𝑇
𝑡

𝜃,𝜑
(

1 0 0

0 0.2 0

0 0 0.2

) 𝑇
𝜃,𝜑

,

𝑇
𝜃,𝜑

= (

cos𝜙 cos 𝜃 cos𝜙 sin 𝜃 sin𝜙

sin𝜙 cos 𝜃 sin𝜙 sin 𝜃 − cos𝜙

sin 𝜃 − cos 𝜃 0

) .

(9)

We designed PEV, the first eigenvector, of 𝐴
𝜃,𝜙

to have
azimuth angle 𝜃 and altitude angle 𝜙, since the first, second,
and third row of 𝑇

𝜃,𝜙
corresponds to the corresponding

eigenvector for the first, second, and third diagonal elements,
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End

Start

Load image from synthetic  
data (Section 3.2) or MR data (Section 3.3)

Calculate diffusion tensor 

Add Gaussian noise 

Regularization using median filtering 
methods: SM2D, SM3D, SF2D, and SF3D

Calculate eigenvectors and eigenvalues 

Calculate fractional anisotropy from  
eigenvalues (using DTI Studio)

Fiber tracking with brute force approach 
(using DTI Studio)

Figure 4: Flowchart of the fiber tractography loaded from synthetic data (Section 3.2) or DTI data (Section 3.3).

respectively. The second and third row of 𝑇
𝜃,𝜙

is chosen to
make 𝑇

𝜃,𝜙
orthogonal matrix.

The number of voxels for the synthesized data was chosen
128 × 128 × 3 just to verify the efficiency of the filtering in the
middle slice for three consecutive slices.The generalization to
more slices is not so difficult. Let (𝑖

𝑥
, 𝑖
𝑦
) be the position of the

voxel in the xy-plane.
We have considered three kinds of synthetic data, with

different altitude angles 𝜙 = 30
∘
, 45
∘
, 60
∘. We set azimuth

angle 𝜃 = 45
∘ and make synthetic data zero matrices except

19 continuous diagonal lines as follows:

𝐴
𝐼

=

{{{{{{{

{{{{{{{

{

𝐴
𝜋/4, 𝜋/6

= (

0.500 0.300 0.245

0.300 0.500 0.245

0.245 0.245 0.400

) ,

𝑖
𝑦

− 10 < 𝑖
𝑥

< 𝑖
𝑦

+ 10,

𝑂, otherwise,

(10)

𝐴
𝐼𝐼

=

{{{{{{{

{{{{{{{

{

𝐴
𝜋/4, 𝜋/4

= (

0.400 0.200 0.283

0.200 0.400 0.283

0.283 0.283 0.600

) ,

𝑖
𝑦

− 10 < 𝑖
𝑥

< 𝑖
𝑦

+ 10,

𝑂, otherwise,

(11)

𝐴
𝐼𝐼𝐼

=

{{{{{{{

{{{{{{{

{

𝐴
𝜋/4, 𝜋/3

= (

0.500 0.300 0.245

0.300 0.500 0.245

0.245 0.400 0.400

) ,

𝑖
𝑦

− 10 < 𝑖
𝑥

< 𝑖
𝑦

+ 10,

𝑂, otherwise,

(12)

where O is the zero matrix.
The synthesized data and their projection to xy- and yz-

plane are depicted in Figure 5.

3.3. Human Data from MR Scanner. The whole procedure
obtaining fiber tracts for DT-MR images from the MR
scanner data is as follows. The single-shot spin echo is used
in the image acquisition and data preprocessing from MR
scanner. Echo planar imaging (SE-EPI) pulse sequence with
two diffusion sensitizing gradients placed on both sides of
the 180∘ refocusing pulse. Fifty contiguous DT-MR images

were obtained at 1.5 T Philips Gyroscan MR scanner with
the following imaging parameters: field of view = 224 ×

224mm2, slice thickness = 3mm, acquisition matrix = 96,
reconstruction matrix = 128, TR = 10,000ms, TE = 76ms,
𝑏 factor = 1000 s/mm2, the number of diffusion sensitizing
gradients = 6.

To correct subject head motion and the image distortion
due to eddy current, every DTI 3D volume image was
realigned to 𝑏

0
image in FSL (Analysis Group, FMRIB,

Oxford, UK). The diffusion tensor was calculated from the
7- volume images (six diffusion weighted images and one
image with 𝑏 = 0). To assess the effects of median filtering
on the regularization of the noise in DT-MRI tractography, a
noisy data was generated by adding the Gaussian noise with
0 mean and 0.0001 standard deviation to the original human
DTI data. Fiber tracking for the original data and noisy
data with no filtering, SM3D, SF3D, SM2D and SF2D was
performed using the DTI-Studio (CMRM, Johns Hopkins
Medical Institute, USA). To select the corticospinal tract
(CST), a ROI (Region Of Interest) was drawn on the known
anatomical CST area in the pons as shown in Figure 6 and the
fibers passing through the ROI were considered as the CST.

4. Numerical Results and Discussion

The numerical results about the three synthetic data in
Section 3.2, are given in Figures 7, 8, and 9. Gaussian
noise with 0 mean and various standard deviations 𝜎 =
0.1, 0.01, 0.001 are added to the synthesized data 𝐴

𝐼𝐼
in

(11). And we compared the performance of the four median
filtering regularization algorithms (SM2D, SF2D, SM3D, and
SF3D) with respect to AAE and AFA errors in Figure 7. As
shown in the figure, three-dimensional filters are superior
to two-dimensional filters and SF3D/SF2D is superior to
SM3D/SM2D. It is remarkable that SF2D is superior to SM3D
in the figure. This shows that the simple median is not so
close the median point, whereas the successive median point
is much close to the median point even in two-dimension.
The xy-plane projection as in Figure 5(a) of the original data
𝐴
𝐼𝐼
, the disturbed image with Gaussian noise having 0 mean

and standard deviation 0.01, and reconstructed images by the
four methods are pictured in Figure 8. The reconstructed
image in Figure 8(c) from SM2D is slightly improved from
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Figure 5: Synthesized data 𝐴
𝐼
, 𝐴
𝐼𝐼
, and 𝐴

𝐼𝐼𝐼
given in (10), (11), and (12): (a) three-dimensional representation of 𝐴

𝐼
and its projection to

xy-plane, (b) another three-dimensional representation of 𝐴
𝐼
and its projection to yz-plane, and resulting two-dimensional representation

of the synthetic data (c) 𝐴
𝐼
, (d) 𝐴

𝐼𝐼
, and (e) 𝐴

𝐼𝐼𝐼
.

the disturbed image in Figure 8(b), but still many distorted
and broken lines are observed. The distortion and breakage
of lines from the original image Figure 8(a) is more improved
in Figure 8(d) (SF2D) or Figure 8(e) (SM3D) than the image
from Figure 8(b) (SM2D). However, most improved image is
found in Figure 8(f), the reconstructed image using SF3D.

In Section 3.2, we considered three kinds of synthetic data
𝐴
𝐼
, 𝐴
𝐼𝐼
, 𝐴
𝐼𝐼𝐼

with different altitude angles 𝜙 = 30
∘
, 45
∘
, 60
∘.

In Figure 9, the reconstructed image using the four methods
are compared for the three kinds of synthetic data. In the 𝑥-
axis label, the altitude angle in degree of the three synthetic
data is considered. Added Gaussin noise in the disturbed
image has zero mean and 𝜎 = 0.01. The two-dimensional
filters show no change of errors with respect to altitude
angle. However, three-dimensional filters decreased when
altitude angle increases: this phenomenon is observed not
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(a) (b)

Figure 6: MRI data for the pons in the (a) sagittal and (b) axial planes.The rectangle in (b) was chosen as ROI to select the corticospinal tract
(CST).
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Figure 7: Errors with respect to 𝜎 = 0.1, 0.01, and 0.001 when we recover the synthetic data 𝐴
𝐼𝐼
using the four median filtering methods: (a)

Log (AAE) error and (b) Log (AFA) error.

so outstandingly for SM3D, but very remarkably for SF3D.
The increase of altitude angle means that fiber tract strays
out of xy-plane and propagates in the direction close to the
𝑧-axis. Due to this fact, three dimensional filters shows more
sensitive to the altitude angle whereas two-dimensional filters
shows no change of the errors with respect to the altitude
angle.

In Figures 10, 11, and 12, the reconstruction for human
data is considered. Gaussian noise with 0 mean and 0.0001
standard deviation are added. As shown in Figure 10, SF
methods show better results than SM methods and three-
dimensionalmethods are better than two-dimensionalmeth-
ods. It is remarkable that SF2D make smaller error than
SM3D as in Figure 7. In Figures 11(a)–11(c) show the CSTs
from the original DTI data and Figures 11(d)–11(f), 11(h) and
11(i) from noisy ones (𝜎 = 0.0001) with no median filtering,
SM3D and SF3D, SM2D and SF2D, respectively. And the
green rectangular regions in Figures 11(b) and 11(h) were

magnified and arranged on the left and the right in Fig-
ure 11(g), respectively. The images in the bottom left corners
in Figure 11 show the CSTs in the axial planes represented
by the horizontal line in Figure 11(a). Not knowing the true
CST, we couldn’t tell which one among Figures 11(a)–11(c)
was closest to the true CSTs. Therefore, Figures 11(a)–11(c)
were used as the standards to assess the effect of the median
filtering in the CST fiber tracking from noisy data: the CSTs
in Figures 11(d)–11(f) were comparedwith Figures 11(a)–11(c),
respectively. In case of no filtering, the number of fibers in the
CST in Figure 11(d) is considerably decreased, while the CST
in Figure 11(d) shows a similar shape to the one in Figure 11(a).
For the SM3D filtering, the CST in Figure 11(e) shows distinct
differences in the region enclosed by the blue circles: In the
axial image, the fiber tracts indicated by two yellow arrows in
Figure 11(b) disappear in Figure 11(e). For the SF3D filtering,
although the CSTs in Figures 11(c) and 11(f) show a few
differences, they are similar in shape and the fiber tracts in
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Figure 8: Filtering of synthetic data𝐴
𝐼𝐼
corruptedwithGaussian noise having zeromean and𝜎= 0.01: (a) the original image, (b) the disturbed

image, and the reconstructed images using (c) SM2D, (d) SF2D, (e) SM3D, and (f) SF3D.
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Figure 9: Errors with respect to 𝐴
𝐼
, 𝐴
𝐼𝐼
, and 𝐴

𝐼𝐼𝐼
with 𝜑 = 30

∘
, 45
∘
, 60
∘, respectively, when we recover the synthetic data with Gaussian noise

having mean 0 and 𝜎 = 0.01 using the four median filtering methods: (a) Log (AAE) error and (b) Log (AFA) error.

the axial images show little difference. In comparison with 2-
dimensional filters, SF3D Figure 11(f) is closer to Figure 11(c)
than SF2DFigure 11(i). On the other hand, SM2DFigure 11(h)
appears to be closer to Figure 11(b) than SM3D Figure 11(e),
however, as one can see in Figure 11(g), the fibers in SM2D
(right) show complicate fiber connections by comparison

with the left image, which was not realistic and caused from
the poor regularization of the noise in the region. Therefore,
the SF3D filter shows best regularization of the noise in CST
tracking.

The calculation time average and standard deviation for
the fourmethods are graphed in Figure 12. Intel Pentiumwith
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Figure 10: Errors when we recover human data fromMR scanner corrupted with Gaussian noise having zero mean and 𝜎 = 0.0001 by using
the four median filtering methods: (a) Log (AAE) error and (b) Log (AFA) error.
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Figure 11: CSTs passing through the pons of a human subject: corticospinal tracts obtained from the original data with (a) no filter, (b) SM3D,
and (c) SF3D and the CSTs obtained from the disturbed data (𝜎 = 0.0001) with (d) no filter, (e) SM3D, (f) SF3D, (h) SM2D, and (i) SF2D.The
images in the bottom left corners show the CSTs in the axial planes represented by the horizontal line in (a). And the left figure and the right
one in (g) are magnified images of the green rectangular regions in (b) and (h), respectively.
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Figure 12: Computation time for the four methods to reconstruct
the DT-MR data: the blue solid bar and small vertical bar at the
top end of the blue bar represent the average and the standard
deviation of computational times for the four methods, respectively,
after testing the four median filters five times for each.

3 GHz CPU and 2GB RAM was used for the simulation. The
difference of calculation times for SM2D and SF2D is not
so remarkable, as we know how exactly SF2D recover fiber
tracts than SM2D from Figures 7 and 11. And the difference
of computation times between SF2D and SF3D is not so
outstanding, since we also know the efficiency of SF3D from
previous figures. That is to say, even though SF3D needs a
little more computation time than SF2D, SF3D recover DT-
MR image far better than SF2D. However, SM3D needs too
much time than the other threemethods and recovering error
is larger than SF2D and slightly better than SM2D.

5. Conclusion

In this study, we developed three-dimensional median filters
SM3D and SF3D, extending previously developed SM2D
and SF2D in [19]. We implemented three kinds of syn-
thetic data with different altitude angle deviating from the
axial slices and one human data form MR scanner. As
altitude angle increase from the xy-plane we observed that
three dimensional median filters more efficient than two-
dimensional filters. For all four synthetic and human data,
the four median filters (SM2D, SF2D, SM3D, and SF3D) have
same tendency with respect to AAE and AFA errors: three-
dimensional filters show superior results to corresponding
two-dimensional median filters and SF filters show better
reconstruction than SM filters. With respect to computation
time, SF2D or SF3D filters need not so much time compared
to SM2D filter but SM3D filter needs far more computation
time than the other three filters. Therefore, SF3D is proved to
be the most efficient median filters and is supposed to be one
of powerful regularization methods.
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The study of themechanical properties of the annulus fibrosus of the intervertebral discs is significant to the study on the diseases of
lumbar intervertebral discs in terms of both theoretical modelling and clinical application value. The annulus fibrosus tissue of the
human intervertebral disc (IVD) has a very distinctive structure and behaviour. It consists of a solid porous matrix, saturated with
water, which mainly contains proteoglycan and collagen fibres network. In this work a mathematical model for a fibred reinforced
material including the osmotic pressure contribution was developed. This behaviour was implemented in a finite element (FE)
model and numerical characterization and validation, based on experimental results, were carried out for the normal annulus tissue.
The characterization of the model for a degenerated annulus was performed, and this was capable of reproducing the increase of
stiffness and the reduction of its nonlinearmaterial response and of its hydrophilic nature. Finally, thismodel was used to reproduce
the degeneration of the L4L5 disc in a complete finite element lumbar spine model proving that a single level degenerationmodifies
the motion patterns and the loading of the segments above and below the degenerated disc.

1. Introduction

The annulus fibrosus (AF) of the human intervertebral disc
(IVD) presents a complex structure. Located on the radial
periphery of the IVD, the AF is believed to experience
a combination of compressive, tensile, and shear stresses
during weight-bearing and intervertebral joint motions [1, 2].
For these reasons, its structure combines a highly orientated
fibres network with a multiphasic behaviour [3–5]. Further-
more, the presence of osmotic forces, due to the hydrophilic
nature of the proteoglycans aggregates (PGs) [1, 2], ensures
that the fibre network of the tissue works under tensile
prestress and that the fluid inside the tissue is under pressure.
This is essential for the correct functioning of the tissue since

the fluid typically resists compression and fibres resist tension
[6].

In the last years several analytical and numerical models
have been developed to simulate the AF tissue behaviour.
Some of them, like those proposed by Simon and coworkers
[7], implemented its poroelastic behaviour and swelling. Oth-
ers authors, like Lai et al. [8] and Sun et al. [9], or Frijns et al.
[10] and van Loon et al. [11], developed multiphasic mixture
models that permit a good modelling of poromechanics
of the tissue. All these models, nevertheless, neglected the
mechanical behaviour of the extracellular matrix related to
collagen network. In this regard, others authors [12, 13], who
considered that the fibres network implies a linear viscoelastic
response, did not consider the high nonlinearity behaviour of
the fibres, though.
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Furthermore, in spite of the fact thatAF tissue is subjected
to several changes during life [1, 14–16], there are not many
models to simulate the effects of degeneration. Some of them
[17] simply removed some elements from the annulus. Oth-
ers, like Rohlmann et al. [18], Polikeit et al. [19], andNatarajan
et al. [20], showed the influence of geometrical, mechanical,
or poromechanical parameters on disc behaviour but did
not show clearly how the mechanical properties change with
degeneration. More recently, Schmidt et al. [21] developed
a poroelastic finite element model of the lumbar spine to
investigate spinal response during physiological activities.
In any case, nobody of the aforementioned authors has
directly validated the influence of these changes on AF tissue
behaviour.

On the other hand, the degenerative disc disease seems
to be related to the modification of the biomechanical
functioning of the spine. Abnormal mechanical loads and/or
motion patterns have been related to risk of injury to the
spine [22, 23]. Despite numerous studies on the mechanics
of the degenerated disc, there is limited data on how this
condition affects the adjacent caudal and cephalic segments
or the lumbar spine stability contributing to the progression
of disc degeneration [1, 4, 14, 15, 18, 20, 24–28]. The results of
these studies vary considerably. Similarly to Kirkaldy-Willis
and Farfan [29], some authors report instability during the
early stages of degeneration [30, 31] while others rather show
the opposite [32, 33]. These partial contradictive results are
probably enforced by the relative small number of specimens.
Recently, Kettler et al. [34] analyze the influence of the
degree of disc degeneration on the flexibility of lumbar
spine segments based on the data from a large in vitro
database. There are several studies that numerically analyze
the degeneration of the adjacent levels after lumbar fusion
[35, 36] but not much has been done to computationally
reproduce the influence of a single-level lumbar degenerative
disc disease on the behaviour of the adjacent segments except
from the work of Ruberte et al. [37].

In this work a constitutivemodel to describe themechan-
ical behaviour of the normal and degenerated AF tissue of
human IVD has been developed.The complete mathematical
formulation is presented with particular focusing on the
PGs behaviour modelling. Then, complete characterization
and validation of the osmotic and elastic response for a
normal and degeneratedAFhave been carried out [4, 38–40].
Afterwards, a complete finite element model of the lumbar
spinewas analyzed inferring themechanical consequences on
the overall behaviour of the spine taking into account some
degree of degeneration at a single-level.

2. Methods

The annulus fibrosus (AF) of human IVD presents a very
particular structure. It consists of a solid porous matrix,
saturated with water, which mainly contains proteoglycans
and collagen fibres. To simulate its behaviour a 3D osmo-
hyperelastic model reinforced with two families of fibres was
constructed and implemented. Several validation tests were

performed in order to validate the accuracy of this model
and its ability of reproducing some of the consequences of
degeneration.

2.1. Constitutive Modeling of the Annulus Fibrosus. The strain
energy density function (1), initially presented by Eberlein
et al. [17] to characterize fiber reinforcedmaterials extensively
used for biological tissues, was modified to introduce the
contribution of the osmotic pressure. This term takes into
account the effect of the electric charged proteoglycans and
it can be coupled with biphasic formulation.

As widely known, the Helmholtz free energy function Ψ

can be divided into different components corresponding to
the ground substance, the fibres network, and the material
compressibility (see Nomenclature for notation). In this case
it can be written as

Ψ (C,A1,A2) = Ψgs (C) + Ψ
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It can be seen that in (5), the term relative to the material
compressibility has beenmodified to incorporate the osmotic
pressure contribution. Thus, in agreement with Wilson et al.
[13, 40], the water chemical potential 𝜇

𝑓
can be defined as

𝜇
𝑓
= 𝑝 − ΔΠ (6)

while the osmotic pressure gradient ΔΠ is calculated by
means of the external and internal osmotic pressure:

ΔΠ = Πint − Πext. (7)
Both external and internal osmotic pressures depend on the
external and internal osmotic coefficients, respectively, and
on the external salt concentration, while the internal osmotic
pressure depends also on the fixed charged density that is
related to the proteoglycans content,

Πext = 2𝜙ext𝑅𝑇𝑐ext, (8)

Πint = 𝜙int𝑅𝑇√𝑐
2

𝐹
+ 4𝑐2ext. (9)

Furthermore in (9), the fixed charged density 𝑐
𝐹
associated

with the affinity to water is calculated as:

𝑐
𝐹
= 𝑐
𝐹,0

(

𝑛
𝑓,0

𝑛
𝑓,0

− 1 + 𝐽
) . (10)

Finally, it can be considered that the hydraulic permeability 𝑘
of the ground substance matrix also decreases as the tissue is
compressed. It can be assumed to be dependent on porosity
changes in the following way [41]; therefore,

𝑘 = 𝑘
0
(
𝑛

𝑛
0

)

𝑚

, (11)

where𝑚 is a positive coefficient equal to 15.

2.2. Material and Testing Simulations for Healthy Annulus
Fibrosus Tissue. To characterize and validate the model
presented in the previous section, we reproduced in silico
some in vitro experimental results available in the literature
for healthy samples of annulus.

2.2.1. Osmotic Swelling Behaviour. To point out the principal
effects of the osmotic swelling on the behaviour of soft
hydrated tissues, the most common validation test to assess
the contribution of electrochemical effects to the response of
the tissue is a pure swelling test.

A 1D simplified numerical model was run in ABAQUS
6.11 (Figure 1(a)). The constitutive equations were imple-
mented in a user defined UMAT subroutine. A specimen of
tissue (ℎ = 0.5mm), equilibrated in a NaCl solution with a
salt concentration of 𝑐ext, was placed inside an impermeable
confined compression chamber (Figure 1(b)). After an equi-
librium phase, at 𝑡 = 0 the external salt concentration was
changed to 𝑐

∗ (Figure 1(c)) and, at 𝑡 = 𝑡
∗, the external salt

concentration was returned to 𝑐ext. To simulate the swelling
effect, only the axial displacements were allowed for all nodes
while free flux condition (𝑝 = 0 bar) was assumed only at the
lower nodes. See Table 1 for material properties.

2.2.2. Characterization of the Normal IVD Annulus Tissue.
To characterize the solid matrix AF behaviour, the poly-
nomial strain energy function shown before was used. The
values of the elastic constants (𝐶

10
, 𝐶
20
, 𝐷,𝐾

1
, and 𝐾

2
) were

determined using the stress-strain response under a traction
axial load for a specimen with two families of fibres, placed
at ±30∘ [42]. The theoretical model behaviour was fitted to
experimental data presented by Ebara et al. [38] usingMatLab
v.7.1. It can be observed (Figure 2) how the resultant curve can
be considered a good average fit of experimental data of the
whole annulus [17, 43, 44]. These constants are summarized
in Table 2. Here, we have to point out that each part of the
disc could have been considered with different mechanical
properties but we were interested in the overall behaviour of
the annulus.

To validate the global behaviour of the proposed model
two different compression tests were performed in order to
compare our results with previous data in the literature [4,
39]. A 3D finite element (FE) mesh was created (Figure 3(a)).
The chosen geometry was in agreement with that proposed
byWilson et al. [13]. Each family of fibres was placed radially
with an angle orientation 𝜙 of ±30∘ with respect to the 𝑥𝑧-
plane [39, 42] (Figure 3(b)). In both tests the displacements
for the lower nodes were restricted in the 𝑧-direction while
for lateral perimetric nodes the radial displacements were
confined. In the first test, a zero pore pressure condition
was imposed at the top while the remaining surfaces were
assumed to be impermeable. In this case, the loading protocol
implied that the mesh was axially compressed by 5% strain
followed by a relaxation period (Figure 3(c)). The second test
was conducted following the guidelines proposed by Iatridis
et al. [4]. In this case, free flux condition (𝑝 = 0 bar) was
assumed on the bottom surface. Initially a compression strain
of 10% (velocity strain ratio 0.001 s−1) was applied on top
followed by 2500 s of relaxation at fixed displacement. Then,
this loading cycle was repeated three times adding a 5% of
deformation strain at each increment (Figure 3(d)).

2.3.Material and Testing Simulations for Degenerated Annulus
Fibrosus Tissue. Several experimental studies have shown
how degeneration process produces serious changes on AF
tissue behaviour [14, 15, 24, 28]. Particularly, Iatridis et al. [4]
showed that the residual stress at the equilibrium point under
a compression strain of 20% for the degenerated (grade IV)
AF tissue was nearly twice in comparison with the normal AF
tissue. Therefore, the same test procedure made for normal
tissue was done for the degenerated one.

Some authors [4, 15, 27] agree with relating the reduction
of proteoglycans content to disc degeneration. In our simula-
tions, this phenomenon was taken into account reducing the
tissue initial fixed charge density 𝑐

𝐹,0
. Furthermore, AF tissue

permeability 𝑘
0
has also shown a decrease with degeneration

process [4] that also was considered into this model.
For sure, also the elastic behaviour of the AF would be

subjected to changes [4, 14, 24]. In particular, an increase
of the stiffness has been addressed [4, 24]. However, it has
been seen that annulus fibrosus stiffening is not due to
the reduction of water content which slightly changes with



4 Journal of Applied Mathematics

X

Y
Z

(a)

Rigid impermeable
piston

Impermeable
frictionless confining
chamber

Permeable filter

h
=
0
.5

m
m

(b)

Ex
te

rn
al

 sa
lt 

co
nc

en
tr

at
io

n

c∗

cext

t = t∗t = 0

Time

(c)

Figure 1: Finite element model (24 poroelastic three-dimensional elements of ABAQUS, C3D8P) for the free-swelling test (a), applied
boundary conditions (b), and external salt concentration history (c).

Table 1: Material properties of the reference case [40].

Material parameters Input value Description
𝑐
𝐹,0

[meq/mm3] 2.0 × 10
−4 Initial fix charge density

𝑐ext [mmol/mm3] 1.5 × 10
−4 Initial external salt concentration

𝑐
∗ [mmol/mm3] 1.0 × 10

−4 External salt concentration at 𝑡 = 0

𝑘
0
[m4/Ns] 1.0 × 10

−15 Initial permeability
𝑛
𝑓,0

0.75 Initial fluid fraction

degeneration [15]. Furthermore, other experimental works
[45] have shown that this stiffening is not related either
to fibres behaviour. Therefore, one reasonable assumption
would be to suppose that this increase could be related
to the ground substance material behaviour. To simulate
this phenomenon the value of the elastic constant 𝐶

10
was

modified in order to reproduce a stress increase of 100% for a
compression strain of −0.20 at equilibrium [4] (see Table 2).

To validate these assumptions the same test procedure as
for healthy AF was done for the degenerated one following
Iatridis et al. [4] simulating a Grade IV degeneration.

2.4. FE Simulation of the Complete Lumbar Spine. A complete
finite element of the lumbar spine (see [43] for model
details) was used.Thismodel is composed of the lumbosacral
segment (L1-S1) including the five intervertebral discs and
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Figure 2: Comparison between experimental data, measured by
Ebara et al. [38], and the response of the present model under a
traction axial load (AO = anterior outer annulus; PO = posterior
outer annulus; AI = anterior inner annulus; PI = posterior inner
annulus).

the most important ligaments. The validation of this model
with experimental data of the literature is presented [46].The
degeneration of the AF of the L4L5 disc as in the previous
section was simulated and the movement and tensional
response of the overall spine were compared with those of the
healthy one during flexion-extension loading (see Figure 4).

The mechanical properties of the different tissues
involved are summarized in Tables 3 and 4. It can be seen
that degeneration of L4L5 disc has been considered by
modifying the permeability, the void ratio, and the stiffness
of the annulus fibrosus as in previous section.

3. Results

3.1. Healthy Annulus Fibrosus. Regarding the free swelling
test, an excellent agreement between these calculations and
those presented by Wilson et al. [40] for human cartilage
was achieved (Figure 5). It can be seen that our simulations
are almost equal to the mechanoelectrochemical model of
Wilson et al. [40]. Only a slight difference can be appreciated
in the swelling part of the test, since the shrinking part
perfectly fits.

For the complete validation set described in Section 2.2.2,
two different simulations were performed. In the first, a
relaxation test, the stress-time behaviour, was compared with
experimental results presented by Schroeder et al. [39]. The
trends of the numerical and experimental curves showed
a very good agreement (Figure 6(a)). It can be noted how
the numerical curve is almost completely falling within
the experimental interval found by Schroeder et al. [39].
The differences between numerical and experimental results
could be related to the permeability value not measured in
the experimental set-up and the neglecting of the intrinsic
viscoelasticity of the matrix and collagen fibres in our
numerical model.

Table 2: Material properties used for the normal and degenerated
AF [4, 15, 17, 26, 39, 43, 44, 47].

Normal Degenerated
Biphasic material parameters

𝑐
𝐹,0

[meq/mm3] 1.8 × 10
−4

0.9 × 10
−4

𝑘
0
[m4/Ns] 1.924 × 10

−16
1.5 × 10

−16

𝑛
𝑓,0

0.75 0.7
𝑒 (void ratio) 3.0 2.33

Elastic material parameters
𝐶
10
[MPa] 0.1 0.45

𝐶
20
[MPa] 2.5

𝐷 [MPa−1] 4.8
𝐾
1
[MPa] 1.8

𝐾
2

11.0

The second test, which implies a cycled loading to the
sample, was conducted following the guidelines proposed
by Iatridis et al. [4]. In this test, the normalized stress-time
behaviour of the material was recorded. The comparison
between the experimental results, reported by Iatridis et al.
[4], and our calculations are shown in Figure 7(b). In general
a good agreement can be found. Furthermore, if we consider
the ratio between the pick and the valley of each cycle, it can
be noted that it is quite perfect for the second cycle (exp. 4.07,
FE 4.11) while the maximal difference was found for the last
cycle (exp. 2.55, FE 3.13).

3.2. Degenerated Annulus Fibrosus. Using the same consti-
tutive equations for healthy AF but taking into account
some modifications of different constants as mentioned in
Section 2.3, the same experimental test performed by Iatridis
et al. [4] was numerically reproduced.The equilibrium elastic
stress-stretch responses of a normal and degenerated model
are shown in Figure 8. The numerical results showed a
good fit with experimental data, and these prove the matrix
stiffening with degeneration.

Subsequently, the stress-strain curves in traction for
normal and degenerated cases are plotted in Figure 9. The
results showed an increase of the elastic modulus (+91%)

in the first part of the curve but no important changes are
observed in the second part (+7%). These results were in
agreement with the experimental ones found by Guerin and
Elliott [24], who obtained an increase of +124% and −0.8%,
respectively.

3.3. Finite Element Simulation of Healthy and Degenerated
Lumbar Spine. First of all the finite element model of the
healthy lumbar spine [43] was validated using data from the
literature.Thedegree of rotation of the different segmentswas
compared with Guan et al. [46]. It can be seen in Figure 10
how this model mimics the behaviour of the healthy spine
both under flexion and extensionmoments.The relative rota-
tion between each pair of vertebrae is plotted and compared
with the experimental results obtained from the literature. It
can be seen that the response of the numerical simulation fits
within the dispersion limits of the experimental protocol.
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Figure 3: (a) 3D finite element model mesh (16800 hexaedrical porous elements C3D8P). 𝑟
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0
= 1.281mm. (b) Fibres direction

in the 𝑥-𝑧 plane. (c) Mesh axially compressed by 5% strain followed by a relaxation period. (d) Compression strain of 10% followed by 2500 s
of relaxation, loading cycle repeated three times adding a 5% of deformation at each increment.

Now the influence of the degeneration of the disc at the
L4L5 level is analyzed. First of all, the movement of the
spine when the D45 disc is degenerated is compared with the
healthy spine shown before. The comparison between both
models is presented in Figure 11. It can be seen that the effect
of degeneration is not only located at the damaged level L45
since the adjacent levels are also modified with respect to the
healthy scenario. It can be appreciated that with degeneration
the pair L4L5 gets stiffer and the degree of rotation is smaller
in both flexion and extension. This effect also extends to the
adjacent levels (L3L4 and L5S1) but the loss of rotation is less
pronounced.

Moreover, the stresses in the discs can also be analyzed
to prove the influence of the degeneration of one disc on the
overall behaviour of the spine. In Figure 12 themaximum and
minimum principal stresses are plotted at the levels affected
by the degeneration of D45. The remaining discs, D12 and
D23, are not shown because these are not affected by the
degeneratedD45.The stresses are shown for the posterior and
anterior part of each disc taking into account both the flexion
and extensionmoment. It can be seen that the stresses are not
very different in any case, but it is interesting to highlight that
the stresses are more similar in D45 disc between healthy and
degenerated situation than in D34 and D51 which are only
influenced by degeneration in L4L5 level.

4. Discussion

The goal of this work was to construct a suitable constitutive
model to characterize the mechanical behaviour of normal
and degenerated annulus fibrosus of the IVD. This model
takes into account the biphasic nature and also the clear
preferential orientation of the collagen fibres in the annulus.
The phenomenon of swelling, indeed, is really important for a
correct simulation of the stress-strain behaviour of cartilage
as it has evidently shown in previous numerical [7, 40] and
experimental works [39, 47, 51]. Furthermore, it plays an
important role in the stress relaxation, in fluid regulation and
therefore in tissue permeability. Here, the model for fibred
reinforced materials, originally proposed by Holzapfel [52],
was modified to incorporate the swelling contribution due to
the PGs being coupled with the biphasic formulation.

Due to the hydrophilic behaviour of cartilage, an increase
of PG’s concentration (e.g., due to a compression of the
tissue) produces an influx of fluid into the cartilage. This
implies an increase of the internal pressure giving the tissue
more capacity to absorb loads. To simulate this effect, the
component of the 2nd Piola-Kirchhoff stress tensor related
to the material compressibility was modified introducing the
osmotic gradient pressure. This term considers the tissue
fixed charge density as a function of the volume variation
[26, 40].
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Table 3: Material properties, geometrical parameters, and elements number of the lumbosacral spine ligaments [42, 48–50].

Ligament 𝐸
1
(MPa) 𝐸

2
𝜖
12

Number of elements Area (mm2)
ALL 7.8 20.0 0.12 5 32.4
PLL 1.0 2.0 0.11 5 5.2
LF 1.5 1.9 0.062 3 84.2
ITL 10.0 59 0.18 4 1.8
SSL 3.0 5.0 0.20 3 25.2
Ligament Spine level Area (mm2) Poisson’s ratio ] Number of elements Stiffness 𝑘 (N/mm)

JC

L1-L2

43.8 0.4 6

42.5 ± 0.8

L2-L3 33.9 ± 19.2

L3-L4 32.3 ± 3.3

L4-L5 30.6 ± 1.5

L5-S1 29.9 ± 22.0

ISL

L1-L2

35.1 0.4 6

10.0 ± 5.2

L2-L3 9.6 ± 4.8

L3-L4 18.1 ± 15.9

L4-L5 8.7 ± 6.5

L5-S1 16.3 ± 15.0

Finally, a strain dependent permeability function was
implemented in the model. A power-low function of the por-
osity rate change was chosen relating the actual and the initial
permeability [53].The equivalence between this function and
an exponential one [54] was demonstrated by Riches et al.
[41].

To validate the behaviour of the poromechanical part of
the model a 1D free swelling test was reproduced in silico.
Because of the lack of data regarding the AF tissue free
swelling behaviour, human cartilage tissue behaviour was
simulated and compared with previous results found in the
literature. Since this tissue did not present a fibred structure,
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Table 4: Material properties and element types of the finite element model.

Component Element type Number of
elements Material constants Notes

Bone R3D3 73016 Rigid body

Nucleus C3D8 10106

𝐶
1
= 0.16MPa

𝐷 = 0.024MPa −1
𝑐
𝐹,0

= 1.810
−4meq/mm3

𝑘
0
= 1.92410

−16m4/Ns
𝑛
𝑓,0

= 0.8

𝑒 = 4.8

Porohyperelastic NeoHookean
[44]

Annulus C3D8 19421 see Table 2
Porohyperelastic Fibre

reinforced material (𝛼 = ±30
∘)

[17]
Ligaments T3D2 180 see Table 1 Tension only truss
Posterior processes
contact GAP 30
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Figure 5: Evolution of the strain during 1D swelling test. Compari-
son with Wilson et al. [40].

no fibres were considered in the model in agreement with
Wilson et al. [40]. The response of the model showed an
excellent agreement with these authors [40].

Once the model was validated for free swelling, different
tests were performed to guarantee the accuracy of the results.
The material constants of the annulus fibrosus related to the
fluid and ionic contribution (𝑘

0
, 𝑛
0
, 𝑐
𝐹,0
) were obtained from

the literature [4, 26, 40, 47]. On the other hand, we were
not interested in detecting differences across the zones of
the annulus (anterior, posterior, inner, or outer). Therefore,
only one set of elastic constant values (𝐶

10
, 𝐶
20
, 𝐷,𝐾

1
, and

𝐾
2
) was fitted to the experimental data by Ebara et al. [38]

representing a good average behaviour for the whole annulus.
This assumption was fully demonstrated in a previous work
[43].

First, the experimental confined compression test pro-
posed by Schroeder et al. [39] for the healthy AF tissue was
reproduced in silico.The FEmodel showed a good agreement
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Figure 6: Comparison between experimental data reported by
Schroeder et al. [39] and the present numerical model for a confined
compression test.
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Figure 8: Comparison between experimental data reported by
Iatridis et al. [4] and the present numerical model for normalized
stress-stretch at equilibrium.

with the experimental results. The numerical curve, in fact,
fills within the experimental curves range. Furthermore this
first analysis showed that ourmodel was capable of predicting
values of stresses equivalent to those measured experimen-
tally. However, the found value of stress at the end of the
relaxation period was rather different in comparison with the
average value reported in the literature. Many explanations
could be made for this behaviour. For example the PGs
content, or equivalently the fixed charge density, strongly
influences the material response [9, 25, 55]. Also the distri-
bution and orientation of the fibres direction could influence
the behaviour of the tissue [39, 52].

Then, a transient response behaviour analysis as proposed
by Iatridis and coworkers [4] was carried out. Since the
experimental curve presented by Iatridis et al. [4] is only
related to a specific specimen and not to an average curve;
the value of force was normalised and compared. This
procedure, furthermore, is in agreement with that proposed
by DiSilvestro and Suh [56] and Wilson et al. [13]. From the
other hand, the results obtained with the experimental result
proposed by Schroeder and coworkers [39] are adequate to
guarantee the goodness of found internal stress values. The
results showed a good accordance with experimental data. In
particular the model showed the ability to recover the value
of the stress with the same velocity of experimental data.

In Section 4 a criterion to define a degenerated AF tissue
behaviour was defined. In particular the experimental evi-
dences of Iatridis et al. [4] were used to modify the constant
values of the model. In Figure 8 the normalised value of the
stress was compared between experimental and numerical
results for normal and degenerated AF tissue. It can be
noted how the proposed procedure was able to reproduce the
effects of degeneration: increase of stiffness and reduction of
nonlinearity of the behaviour. Iatridis et al. [4] mentioned
that the increase in the elastic modulus with degeneration
is likely related to an increase in tissue density resulting
from the loss of water content. However, the reduction
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Figure 9: Comparison between normal and degenerated behaviour
in traction.

in nonlinearity behaviour with degeneration could suggest
a diminished compaction effect of the degenerate tissues
at large deformations which could be related to structural
changes in matrix. Besides, the effect of the increase of the
ground substance elastic modulus was analysed under a pure
axial tensile load. The obtained results are also in agreement
with the experimental behaviour showed by Guerrin et al.
[24]. Experimental results, in fact, showed an increase of the
elastic modulus in the toe part, before fibres act, but when the
fibres act there is no additional stiffening.

Finally, the constitutive model that has been presented
here has been applied to a complete finite element model
of the lumbar spine and degeneration of one disc has been
provoked by modifying its mechanical properties. In this
analysis it has been obtained that the degeneration of one level
affects the biomechanics of the adjacent levels; in particular
a decrease of the range of motion in flexion/extension has
been seen. These results are in agreement with Kettler et
al. [34] who analyzed 203 lumbar spine segments obtaining
that the range of motion decreased with degeneration. This
same result was radiographically shown by Mimura et al.
[33] for flexion/extension moments. Regarding the stress
distributions in the discs, there is no much data to compare.
As mentioned in the introduction, only the work of Ruberte
et al. [37] analyzed the influence of single-level lumbar degen-
erative disc disease on the behaviour of the adjacent levels
using the finite element model. However, the conclusions
of their study are opposite to what we have obtained here
and other experimental results [30, 31]. They obtained that
as degeneration progresses the stiffness increased but was
significantly less than the healthy model; however it seems
that the clinical evidence proves our results. With respect to
the stresses distribution, our results showed that there is a
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Figure 10: Relative rotation of each pair of vertebrae both in flexion and extension. Comparison between numerical simulation and
experimental measures of Guan et al. [46].



Journal of Applied Mathematics 11

−3

−2

−1

0

1

2

3

Moment (Nm)

L1-L2 flexion-extension-comparison healthy 
and degenerated spine

Healthy spine
Degenerated spine

−5.00 −3.00 −1.00 1.00 3.00 5.00

Re
la

tiv
e r

ot
at

io
n
(∘
)

(a)

Healthy spine
Degenerated spine

−3.0

−2.0

−1.0

0.0

1.0

2.0

3.0

4.0

−5.00 −3.00 −1.00 1.00 3.00 5.00

Moment (Nm)

L2-L3 flexion-extension-comparison healthy 
and degenerated spine

Re
la

tiv
e r

ot
at

io
n
(∘
)

(b)

Healthy spine
Degenerated spine

−5.00 −3.00 −1.00 1.00 3.00 5.00
−4.0

−3.0

−2.0

−1.0

0.0

1.0

2.0

3.0

4.0

Moment (Nm)

L3-L4 flexion-extension-comparison healthy 
and degenerated spine

Re
la

tiv
e r

ot
at

io
n
(∘
)

(c)

Healthy spine
Degenerated spine

−5.00 −3.00 −1.00 1.00 3.00 5.00

Moment (Nm)

−4.0

−2.0

0.0

2.0

4.0

6.0

L4-L5 flexion-extension-comparison healthy 
and degenerated spine

Re
la

tiv
e r

ot
at

io
n
(∘
)

(d)

Healthy spine
Degenerated spine

−5.00 −3.00 −1.00 1.00 3.00 5.00

Moment (Nm)

−6.0

−4.0

−2.0

0.0

2.0

4.0

6.0

8.0

10.0

L5-S1 flexion-extension-comparison healthy 
and degenerated spine

Re
la

tiv
e r

ot
at

io
n
(∘
)

(e)

Figure 11: Relative rotation of each pair of vertebrae. Comparison between healthy spine (continuous line) and damaged spine (dashed line)
in which D45 disc has been degenerated.
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Figure 12: Maximum and minimum principal stresses in the anterior and posterior part of D34, D45, and D51 discs. Plots in continuous line
correspond to the healthy spine, and plots in dashed lines correspond to the degenerated model.

slight modification on the adjacent levels when one single
level is degenerated. However, this data cannot be transferred
to the clinical evidence because it is not quantitatively known
to what extent loading changes involve degenerative changes.

5. Assumptions and Limitations

The numerical model for the degeneration of the annulus
fibrosus has several limitations. First, only the swelling effect

has been introduced to describe its behaviour.There aremore
effects related to the electrochemical nature of cartilage that
will be taken into account in further developments. As shown
in Figure 6, the viscoelastic nature of the solid matrix can
affect the overall response of the tissue and it should be
included to improve this model. Numerical predictions have
been compared with experimental results; however, there is a
lack of data in the literature about the poromechanics of the
healthy or degenerated AF and therefore more experimental
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data would be required to better guarantee our results. On
the other hand, the stiffening of the annulus fibrosus has
been reproduced by modifying the mechanical behaviour
of the matrix. It is known that with degeneration, collagen
fibers are reoriented and broken.This contribution should be
introduced in future works.

With respect to the lumbar spine finite element model
there are also limitations and underlying assumptions. The
most important one is that the same finite element model
has been used for healthy and damaged spine. It is known
that the height of the discs is modified with degeneration
and also the internal structure of the disc but here only
the mechanical properties of the degenerated disc have been
modified.Notwithstanding the fact that the height of the discs
can modify the biomechanical response of the spine, it has
been seen [57] that when the disc height is reduced, flexibility
of themotion segment decreased.Therefore, this effect would
contribute in the same direction to the results that have been
obtained here.

6. Conclusions

In conclusion, the developed model is capable of simulating
the poromechanical behaviour of normal anddegeneratedAF
tissue with a good approximation. The most important fea-
ture of thismodel is related to the coupling between a strongly
fibredmatrix and its intrinsic affinity to water regulated by its
ionic nature. On the other hand, the degeneration of cartilage
is a very complex process that has been here simplified for AF
tissue with accurate predictions.

Moreover, the present study provides a qualitative anal-
ysis of the influence of single level disc degeneration on the
mechanics of the adjacent segments under flexion/extension
moments. It has been seen that degeneration modified the
degree of motion and loading of both the degenerated disc
and adjacent levels. These changes could increase the risk of
progression of degeneration to the nearest segments of the
spine.

Nomenclature

Ψ: Helmholtz free energy function
Ψgs: Ground substance Helmholtz free energy

function
Ψ
𝑓
: Fibres behaviour Helmholtz free energy

function
Ψvol: Material compressibility Helmholtz free

energy function
C: Right Cauchy-Green tensor
C: Modified right Cauchy-Green tensor
𝐽: Relative volume change detC1/2
A
𝑛
: Structural tensor of the fibre direction

a
𝑛
: Fiber direction

S: 2nd Piola-Kirchhoff stress tensor
Sgs: Ground substance 2nd Piola-Kirchhoff

stress tensor
S
𝑓
: Fibres behaviour 2nd Piola-Kirchhoff

stress tensor

Svol: Material compressibility 2nd
Piola-Kirchhoff stress tensor

P: Project tensor
I: Fourth-order unite tensor
𝐶
𝑖𝑗
: Ground substance material constants

𝐾
𝑛
: Collagen fibres behaviour constants

𝐷: Tissue incompressibility modulus
𝐼
1
: First invariant trC

𝐼
∗

𝑛
: Fibres invariants a0

𝑛
⋅ Ca0
𝑛

𝜇
𝑓
: Water chemical potential

𝑝: Fluid pressure
ΔΠ: Osmotic pressure gradient
Πext: External osmotic pressure
Πint: Internal osmotic pressure
𝑅: Universal gas constant
𝑇: Absolute temperature
𝜙int: Internal osmotic coefficient
𝜙ext: External osmotic coefficient
𝑐ext: External salt concentration
𝑐
𝐹
: Fixed charge density

𝑐
𝐹,0
: Initial fixed charge density

𝑛
𝑓,0
: Initial fluid fraction

𝑘: Permeability
𝑘
0
: Initial permeability

𝑛: Porosity
𝑛
0
: Initial porosity

𝑚: Positive coefficient.
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Electroencephalogram (EEG) recordings are often contaminated with muscle artifacts. This disturbing muscular activity strongly
affects the visual analysis of EEGand impairs the results of EEG signal processing such as brain connectivity analysis. Ifmultichannel
EEG recordings are available, then there exist a considerable range of methods which can remove or to some extent suppress the
distorting effect of such artifacts. Yet to our knowledge, there is no existing means to remove muscle artifacts from single-channel
EEG recordings. Moreover, considering the recently increasing need for biomedical signal processing in ambulatory situations, it
is crucially important to develop single-channel techniques. In this work, we propose a simple, yet effective method to achieve the
muscle artifact removal from single-channel EEG, by combining ensemble empirical mode decomposition (EEMD) with multiset
canonical correlation analysis (MCCA).We demonstrate the performance of the proposed method through numerical simulations
and application to real EEG recordings contaminated with muscle artifacts. The proposed method can successfully remove muscle
artifacts without altering the recorded underlying EEG activity. It is a promising tool for real-world biomedical signal processing
applications.

1. Introduction

The electroencephalogram (EEG) is frequently contaminated
by various physiological activities of noninterest, such as
electrocardiogram (ECG), electrooculogram (EOG), and
electromyogram (EMG).These artifacts reduce the quality of
the signal and blur features of interest. While ECG and EOG
artifacts can be effectively removed by using adaptive filters
and blind source separation (BSS) techniques [1], the pertur-
bation induced by muscular activity (e.g., biting, chewing,
and frowning) is particularly difficult to correct as recently
reviewed in [2]. The main reason lies in the fact that EMG
artifacts have higher amplitude (compared with the EEG
signal), wide spectral distribution, and variable topographical
distribution [2]. These muscle artifacts obscure EEG signals
and make the interpretation of the EEG complicated or even
unfeasible [3].

Low-pass filters are commonly employed to remove
muscle artifacts. However, since the frequency spectrum
of muscle artifacts significantly overlaps with that of brain
signals, these filters not only suppress muscle artifacts but
also interesting brain signals [4]. Recently, as one of the most
popular BSS techniques, independent component analysis
(ICA) has been extensively explored for this purpose [5–7].
ICA utilizes higher-order statistics and aims to separate the
EEG recordings into statistically independent components
(ICs). Clean EEGdata can then be reconstructed by removing
artifacts-related ICs from the raw EEG data. However, in
some studies muscle artifacts seriously contaminate most ICs
and crosstalk of brain and muscle activity can be observed
[8, 9]. One possible reason is that ICAonly exploits the spatial
structure of source signals and the marginal distribution of
the observations. Thus, it is suitable when source signals are
temporally independent [10]. However, the artifacts typically
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have certain temporal structure which can be exploited for
better source separation.

Second order blind identification (SOBI) takes temporal
structure into consideration and simultaneously diagonalizes
several covariance matrices at different time lags [10]. It has
been shown that SOBI improved the performance signif-
icantly over ICA [11]. Yet, SOBI only considers stationary
sources and it may suffer when there exist nonstationary
ones, such as transientmuscular activities [12].More recently,
a canonical correlation analysis (CCA) method has been
proposed as a more suitable BSS approach for separating
EMG artifacts from EEG [13]. Due to the broad frequency
spectrum of the EMG artifacts, they resemble temporal
white noise and thus have lower autocorrelation compared
to EEG signals. The method exploits this characteristic for
EMG removal and has been shown to outperform ICA on
simulated data. Later, the result has been again documented
by Gao et al. [14]. One possible reason for CCAs superior
performance over ICA is due to the fact that muscle artifacts
involve the movement of a group of muscles, which do
not have a stereotyped topography [14]. Therefore, ICA
does not function correctly here. Lately, a novel multi-
ple time-lag CCA-based method was proposed to further
improve the performance for removing muscular artifact in
EEG [15]. However, it did not provide enough quantitative
and comparative results based on either simulated or real
data.

In recent years, biomedical signal measurement and
processing are increasingly being deployed in ambulatory
situations, particularly in healthcare applications. It is a trend
to transit healthcare systems from hospital-centric toward
ambulation-based, where minimal instrumentation and low
computational complexity are required. The emerging wear-
able and portable wireless EEG system is a representative
[16–18]. To reduce the complexity, quite a few ambulatory
systems operate using only one single EEG channel, for
example, [17, 18], in which case it is crucial to suppress
muscle artifacts to extract as much valuable information as
possible. However, almost all current methods for muscle
artifact removal so far have been designed to handle mul-
tichannel/multidimensional datasets and will fail to isolate
muscle activity in the current situation where only single-
channel (unidimensional) EEG recordings are available.

In this study, we therefore propose a simple yet effective
method to achieve the muscle artifact removal from single-
channel EEG. Actually, it is a two-step modeling strategy.
In the first step, unidimensional EEG is decomposed into
multidimensional datasets. To implement this step, empirical
mode decomposition (EMD) is a suitable option. EMD is a
single-channel technique that decomposes nonstationary and
nonlinear time series into a finite number of intrinsic mode
functions (IMFs) [19]. Compared with other decomposition
methods (e.g., wavelet transform), EMD is completely data-
driven, meaning that it decomposes a signal in a natural way
without requiring prior knowledge [20]. It has been shown
to be efficient in many biomedical applications, for example,
removing motion artifacts from functional near-infrared
spectroscopy (fNIRS) data [21] and eliminating eye blink
artifacts from EEG recordings [22]. However, the original

EMD algorithm is highly sensitive to noise and may cause
mode mixing. Recently, a noise assisted version of EMD,
called ensemble EMD (EEMD), was proposed and has been
demonstrated to be more robust in real-life applications [23].
In the second step, multiset canonical correlation analysis
(MCCA) [24] is utilized as a BSS technique instead of
the conventional CCA to the multidimensional datasets
obtained from the first step. The advantage of MCCA over
CCA will be discussed. The separation of muscle and brain
activity components can then be achieved due to the relative
low autocorrelation of muscle artifacts in comparison with
brain activity. We denote the method as EEMD-MCCA by
exploring the combination of EEMD and MCCA. The main
contribution of the proposed method is to solve the practical
muscle artifact removal problem from single-channel EEG,
especially at the time when ambulatory healthcare is drawing
continuously increasing attention.

We will examine the performance of the proposed
EEMD-MCCA method on both synthetic and real datasets.
We first validate it on simulated data by quantitative mea-
sures. We then apply it to real EEG recordings contaminated
with muscle artifacts. We note that while EEMD-MCCA is
proposed to remove muscle activity for the single-channel
EEG case, it is generally applicable when one dataset contains
relatively fewer channels (e.g., two or three) by first applying
EEMD to each channel and then utilizing MCCA to the
integrated signals after decomposition.

2. Materials and Methods

2.1. Methods. In this section, we first briefly introduce the
techniques employed in this paper.Then we describe the new
proposed EEMD-MCCA method.

Notations. Scalars are denoted by lowercase italic letters
(𝑎, 𝑏, . . .), vectors by lowercase boldface letters (a, b, . . .),
matrices by boldface capitals (A,B, . . .), and the number of
rows and columns by italic capitals (𝑇, 𝑁, . . .). Matrix or
vector transposition is denoted by an uppercase superscript
𝑇 (e.g., X𝑇, v𝑇). The symbol x (with size 1 × 𝑇) is used to
represent the original single-channel signal. It can be also
expressed like this x = [x(1), x(2), . . . , x(𝑇)], where x(𝑡) (𝑡 =

1, 2, . . . , 𝑇) is the value of the signal at the time point 𝑡.

2.1.1. Ensemble Empirical Mode Decomposition. EMD is a
single-channel decompositionmethod for nonstationary and
nonlinear signals [19]. EMD decomposes a signal into a finite
number of IMFs, which represent fast to slow oscillations. An
IMF is a function that satisfies two following conditions [19]:
(1) the number of extrema and the number of zero crossings
must either be equal or differ at most by one; and (2) at any
point, the mean value of the envelope defined by the local
maxima and the envelope defined by the local minima are
zero. To obtain an IMF from the original signal x, a sifting
process is performed [19]. First, all extrema of the original
signal x need to be identified. All local maximum points are
connected by a cubic spline line as the upper envelope e

𝑢
.
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Repeat the procedure for local minimum points to form the
lower envelope e

𝑙
. Their mean a

1
is calculated as

a
1

=
e
𝑢

+ e
𝑙

2
. (1)

The difference between the signal and the mean is defined as
the first component h

1
as follows:
h
1

= x − a
1
. (2)

In the second sifting process, h
1
is treated as the signal, and

we can have
h
11

= h
1

− a
11

. (3)
Subsequently, we can repeat this sifting procedure 𝑘 times
until h

1𝑘
is an IMF, with

h
1𝑘

= h
1(𝑘−1)

− a
1𝑘

. (4)
Therefore the first IMF component derived from the original
signal is designated as

c
1

= h
1𝑘

. (5)
A criterion for stopping the sifting process to have an

IMF has been established by limiting the size of the standard
deviation (SD), calculated from the two consecutive sifting
sequences as follows:

SD =

𝑇

∑

𝑡=1

{
[h
1(𝑘−1)

(𝑡) − h
1𝑘

(𝑡)]
2

h2
1(𝑘−1)

(𝑡)
} . (6)

A typical value for SD can be set between 0.2 and 0.3 [19].
To extract the 2nd IMF component, we remove 𝑐

1
from

the original signal 𝑥 to have
r
1

= x − c
1
. (7)

The residual 𝑟
1
is treated as a new signal and the same sifting

process is applied to obtain the 2nd IMF component 𝑐
2
and

the residual
r
2

= r
1

− c
2
. (8)

This procedure can be repeated on the subsequent residuals
r
𝑗
’s until the final residual r

𝐽
no longer contains any oscilla-

tion information:
r
𝑗

= r
𝑗−1

− c
𝑗
. (9)

By summing up (7), (8), and (9), we can obtain

x =

𝐽

∑

𝑗=1

c
𝑗

+ r
𝐽
. (10)

Thus, we decompose the original signal x into 𝐽 empirical
modes c

𝑖
’s and a residue r

𝐽
.

However, the original EMD algorithm is highly sensitive
to noise. Recently, Wu and Huang introduced a new noise-
assisted data analysismethod, called EEMD [23].Themethod
defines the true IMF components as themean of an ensemble
of trials. Each trial consists of the signal plus an additive
independent identically distributed white noise of the same
standard deviation. In this case, although each individual
trial may produce noisy results, it is canceled out in the
ensemble mean of sufficient trials since the noise in each trial
is assumed independently.

2.1.2. Canonical Correlation Analysis. Two zero-mean data
sets are stored in twomatrices,X

1
with size𝑃

1
×𝑇 andX

2
with

size 𝑃
2

× 𝑇, where 𝑇 means the number of observations and
𝑃
1
and 𝑃
2
indicate the numbers of variables in corresponding

matrices. Conventional CCA is to find linear combinations of
both X

1
and X

2
variables which have maximum correlation

coefficient with each other [25]. This leads to the following
objective function with constraints:

max
v1 ,v2

(v𝑇
1
X
1
X𝑇
2
v
2
)
2

s.t. v𝑇
1
X
1
X𝑇
1
v
1

= 1, v𝑇
2
X
2
X𝑇
2
v
2

= 1,

(11)

where v
𝑖
’s (𝑖 = 1, 2) are the weight vectors.

The solutions to this problem are the largest eigen-
vectors of the matrices (X

1
X𝑇
1
)
−1X
1
X𝑇
2
(X
2
X𝑇
2
)
−1X
2
X𝑇
1
and

(X
2
X𝑇
2
)
−1X
2
X𝑇
1
(X
1
X𝑇
1
)
−1X
1
X𝑇
2
, respectively. The subsequent

weights are the eigenvectors of the same matrix in the order
of decreasing eigenvalues.The canonical variatesU

𝑖
(𝑖 = 1, 2)

can be calculated directly from the original matrices X
𝑖
’s as

U
𝑖

= V𝑇
𝑖
X
𝑖
. The corresponding rows between U

1
and U

2
are

highly correlated, while the rows within each individual U
𝑖

are uncorrelated with each other. The detailed derivation can
be referred to [26].

Due to the aforementioned property, conventional CCA
has been further extended to solve the BSS problemby assum-
ing source components to be maximally autocorrelated and
mutually uncorrelated in a functional magnetic resonance
imaging (fMRI) study [27]. In the setting, let X

1
be the

observed data matrix X with 𝑃 mixtures and 𝑇 samples, and
let X
2
be a temporally delayed version of the original data

matrixX
2
(𝑡) = X(𝑡−𝜏).Thus, CCA can separate the recorded

data into the self-correlated and mutually uncorrelated
sources. As a potential alternative for the most widely used
ICA method, CCA has been previously examined against
a number of ICA algorithms using multichannel or single-
channel recordings. The CCA-based methods were shown
to outperform the ICA-based techniques for EEG/fNIRS
artifact removal [13, 14, 21] and also demonstrated to be more
computationally efficient when having similar qualitative
results for EEG/fMRI source separation [27, 28] due to the
usage of second-order statistics.

2.1.3. Multiset Canonical Correlation Analysis. MCCA
extends the theory of CCA to more than two data
sets to identify canonical variates that summarize the
correlation structure among multiple random vectors by
linear transformations. Unlike CCA where correlation
between two canonical variates is maximized, MCCA aims
to optimize an objective function of the correlation matrix
of the canonical variates from multiple random vectors in
order to make the canonical variates achieve the maximum
overall correlation [24]. Suppose we have 𝑀 data sets
X
𝑚

(𝑚 = 1, 2, . . . , 𝑀) with size 𝑃 × 𝑇. The aim of MCCA is
to extract source components which are uncorrelated within
each individual data set X

𝑚
and meanwhile correlated well

across the 𝑀 data sets. Analogously, it is straightforward to
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Input: the single-channel EEG signal x with size 1 × 𝑇.
Output: the reconstructed EEG signal x̂ after muscle artifact removal.
The First Step:
(1) for 𝑖 = 1 : 𝐼 do
(2) Add independent identically distributed white noise to the single-channel EEG x;
(3) Apply EMD to the above noisy signal and derive a set of IMFs by (1)–(10), denoted as F

𝑖
;

(4) end for
(5) Obtain an ensemble of IMF sets F

𝑖
’s;

(6) Calculate a set of averaged IMFs as the final decomposition, that is X = ∑
𝐼

𝑖=1
𝐹
𝑖
/𝐼;

The Second Step:
(7) 𝑀 temporally delayed versions of the matrix X are generated according to (12), that is X

𝑚
, 𝑚 = 1, 2, . . . , 𝑀;

(8) Apply MCCA to the 𝑀 data sets and extract the underlying sources Ŝ in X;
(9) Set the sources Ŝ corresponding to muscle artifacts (with low autocorrelation) to zero;
(10) Return the cleaned multichannel signals X̂ by passing the source matrix through the mixing matrix A;
(11) Reconstruct the single-channel EEG signal x̂ by summing the recovered IMFs in the matrix X̂.

Algorithm 1: The EEMD-MCCA Algorithm.

extend MCCA to handle the BSS problem under the similar
assumption by letting

X
𝑚

(𝑡) = X (𝑡 − (𝑚 − 1) 𝜏) , 𝑚 = 1, 2, . . . , 𝑀. (12)

To demonstrate the advantage of MCCA over CCA, we
will briefly discuss the source separability conditions. For
more details, one can refer to [24]. When 𝑀 = 2, the
following condition must be satisfied to successfully recover
the 𝑃 underlying sources by CCA:


𝑟
(𝑘)

1,2


̸=

𝑟
(𝑙)

1,2


, (1 ≤ 𝑘 < 𝑙 ≤ 𝑃) , (13)

where |𝑟
(𝑘)

1,2
| represents the correlation coefficient between the

𝑘th source from the 1st data set and the 𝑘th source from the
2nd data set. When 𝑀 > 2, the following requirement must
be met to successfully recover the 𝑃 underlying sources from
each of 𝑀 data sets correspondingly by MCCA:

∀𝑚 ∈ 1, 2, . . . , 𝑀, ∃ 𝑛 ̸= 𝑚, such that

𝑟
(𝑘)

𝑚,𝑛


̸=

𝑟
(𝑙)

𝑚,𝑛


, 1 ≤ 𝑘 < 𝑙 ≤ 𝑃,

(14)

where |𝑟
(𝑘)

𝑚,𝑛
| represents the correlation coefficient between the

𝑘th source from the 𝑚th data set and the 𝑘th source from the
𝑛th data set.

It is important to note that condition (14) is more
relaxed than (13), especially for our discussed BSS problem.
More specifically, if two underlying sources have the same
autocorrelation regarding to the time delay 𝜏, condition (13)
will not be met so that these two sources cannot be recovered
successfully by CCA. However, as long as these two sources
have different autocorrelations for one of the possible time
delays𝑚𝜏 (𝑚 = 1, 2, . . . , 𝑀), they can be extracted completely
by MCCA according to (14). The difference between (14) and
(13) suggests that solving the BSS problem on a larger group
of data sets is easier than doing that on a smaller group of
datasets.

2.1.4. The Proposed EEMD-MCCA. To deal with the muscle
artifact removal problem in single-channel EEG, we propose
taking advantage of both EEMD and MCCA by exploring
their combination and denote the proposed method as
EEMD-MCCA. In fact, it is a two-step modeling strategy.

In the first step, EEMD is employed to decompose the
single-channel EEG signal x and derive a set of averaged
IMFs. All the IMF components and the final residual are
placed into a matrix X. The size of X is 𝑁 × 𝑇, where 𝑁 =

𝐽 + 1. Regarding the ensemble number 𝐼, it is found that
the performance of the technique becomes fairly consistent
when using ten or more ensembles in our application. This is
a proper number in practice considering the computational
cost.The noise standard deviation has been suggested empir-
ically to 0.2 times the standard deviation of the original signal
[23].

In the second step, (12) is first used to generate 𝑀

temporally delayed versions of the matrix X. Then MCCA
is applied to the 𝑀 data sets and the underlying sources Ŝ
in X are extracted and ordered in terms of autocorrelation
from high to low. The sources with low autocorrelation
correspond to muscle artifacts and can be removed by setting
the corresponding row of the matrix Ŝ to be zero. The source
matrix is then passed through the mixing matrix A to return
the cleaned multichannel signals X̂ which are now, ideally,
free of artifacts. The artifact-free single-channel recording
x̂ can be determined by summing the recovered IMFs in
the matrix X̂. Regarding the parameter 𝑀, we will discuss
more in the simulation part. After these two steps, the muscle
activity can almost be removed from single-channel EEG.The
specific implementation procedure is shown in Algorithm 1.

2.2. Data Description

2.2.1. Synthetic Data. To demonstrate the performance of
the proposed EEMD-MCCA method, in this section we will
generate synthetic single-channel EEG with real-life muscle
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Figure 1: (a) The original EEG data. (b) The contaminated EEG data by muscle activity.

artifacts. Further, we employ some measures to test the
performance since the ground truth is known.

Conventionally, the “ground truth” EEG signals with-
out muscle artifacts were selected according to the visual
inspection of experienced neurophysiologists. However, not
only it is difficult to obtain clean EEG signals, but also
there is no guarantee that the signals are completely free
of muscle activity solely relying on visual inspection. Thus,
in this study, we tend to use synthetic EEG data. A single-
channel EEG series can be generated according to the phase-
resetting theory [29, 30]. Similar to Mäkinen et al. [29], we
generated our simulated data by summing 4 such sinusoids
with frequencies chosen randomly from range 4–20Hz. The
sampling frequency was 250Hz. Ten trials of EEG were
generated and each trial was 1 second long. Then a 10-second
series xEEG could be formed by concatenating the 10 trials,
containing mainly theta, alpha, and beta activity. It should be
noted that while each trial included 4 distinct frequencies, the
frequencies chosen in different trials were also independent,
whichmeans that therewas rich frequency information in the
10-second series.

To simulate real-life situations, obtaining pure muscle
activity is quite necessary. It is insufficient to select muscle
artifacts directly from the EEG as they contain both muscle
and brain activity. To removeEEGactivity and acquiremuscle
activity, ICA was utilized to decompose a real EEG data set
with 21 channels. A neurophysiologist labeled the eye blink
artifacts, eye movement artifacts, and muscle artifacts from
all the decomposed ICs by inspecting some features such as
the power spectral density and topography. It is important
to note that a large number of ICs contained both EMG
and ongoing EEG activity. Nevertheless, there existed one
component containing pure EMG activity, denoted by xEMG.
Since we focus on single-channel issues, it is unnecessary
to reconstruct the component with the corresponding field
distribution.

The EMG activity was superimposed on the EEG signal
as follows:

x = xEEG + 𝜀 ⋅ xEMG, (15)

where 𝜀 represents the contribution of muscle activity. Figure
1 shows the original EEG signal xEEG and the EEG containing

muscle artifacts x (𝜀 = 1.5). The signal-to-noise ratio (SNR)
can then be adjusted by changing the parameter 𝜀:

SNR =
RMS (xEEG)

RMS (𝜀 ⋅ xEMG)
, (16)

where the root mean squared (RMS) value is defined as

RMS (x) = √
1

𝑇
xx𝑇. (17)

The relative root-mean-squared error (RRMSE) is used as an
evaluation measure to the effect of muscle artifact removal,
which is defined as follows:

RRMSE =
RMS (xEEG − x̂)

RMS (xEEG)
, (18)

where x̂ is the estimated EEG signal after muscle artifact
removal. To further measure the capability of the proposed
method for preserving the original EEG signal, correlation
coefficients between the two waveforms xEEG and x̂ are also
calculated. Hence, in this work, RRMSE and correlation
coefficient (CC) serve as the main criteria for measuring the
performance of muscle artifact removal.

2.2.2. Real Data. In the real data study, two datasets were
employed to demonstrate the effect of the proposed method.
One dataset was collected by us from eight health subjects
during their stable cycling on an exercise bicycle. The study
was approved by the University of British Columbia Ethics
Board, and all subjects gave written, informed consent prior
to participating. The EEG data were collected using an
EEG cap (Quick-Cap, Compumedics, Texas, USA) with 9
electrodes based on the International 10–20 system, ref-
erenced to linked mastoids. The EEG data were sampled
at 1000Hz using SynAmps2 amplifiers (NeuroScan, Com-
pumedics, Texas, USA). Data were later processed by a
band-pass filter between 1∼70Hz. EEG recordings during
exercise are easily contaminated with muscle artifacts and
those artifacts can largely complicate the subsequent EEG
signal processing such as brain connectivity analysis. Figure 2
displays one 10-second scalp EEG segment. All channels were
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Figure 2: The original 10-second scalp EEG recordings during
cycling.

more or less contaminated with muscle activity during the 10
seconds.

The other dataset is the public ictal EEG from the
BioSource database established by Sabine Van Huffel (http://
www.esat.kuleuven.be/stadius/members/biomed/biosource.
htm). Ictal EEG is often severely contaminated with muscle
artifacts, which make the determination and localization
of the ictal onset complicated. Figure 3 shows the 10-
second scalp EEG recordings with 21 channels from a
long-term Epilepsy Monitoring Unit (OSG EEG recorders,
Rumst, Belgium). Electrodes were placed according to
the International 10–20 system with additional sphenoidal
electrodes. The sampling frequency was 250Hz. The EEG
was digitally filtered by a band-pass filter between 0.3∼35Hz.
A notch filter was applied to suppress the 50Hz power-line
interference.The seizure EEG was contaminated with muscle
artifacts and eye blinks. Muscle artifacts can be observed
between 0 s and 3.9 s on channels F7, T3, T5, C3, and T1 and
between 5 s and 10 s on channels F8, T4, F4, C4, and P4.

Although the EEG recordings here are not based on
single-channel, we can still apply the proposed EEMD-
MCCA method to each channel individually and demon-
strate its effectiveness for removing muscle artifacts from
different regions in the brain.

3. Results and Discussion

3.1. The Synthetic Data Case. We applied the proposed
EEMD-MCCA method to the synthetic single-channel data
x according to the procedure of Algorithm 1. As mentioned
in Section 2.1.4, we tested the reliability of the method with
different 𝑀 and SNR values in terms of RRMSE and CC
as shown in Figure 4. Note that the number of data sets 𝑀

was chosen from 2 to 20 (i.e., 𝑀 = 2, 3, 4, . . . , 20). When
𝑀 = 2, it means that CCA was used. When 𝑀 > 2,
MCCA was employed.The parameter 𝜏 in (12) can be chosen
empirically as it may highly depend on the data structure. In
this simulation study, we found that similar results could be
obtained by examining a set of 𝜏 values. One possible reason
is that by applying MCCA to multiple time-delayed data sets
it is sufficient to fully exploit the temporal structure of the
original data set nomatter what value 𝜏 is. Among the values,
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Figure 3: The original ictal 10-second scalp EEG recordings.

𝜏 = 10 provided slightly better performance and was chosen
here.

It can be seen from Figure 4 that MCCA can consistently
achieve better performance than CCA, which is in accord
with the theoretical analysis in Section 2.1.3. Another inter-
esting observation is that when 𝑀 ≥ 3 the performance
becomes quite stable. This suggests that 𝑀 = 3 is a proper
number of data sets in practical applications. To further
demonstrate the practicability of the method, we tested the
time cost when 𝑀 = 2 and 𝑀 = 3, which were 2.61
seconds and 2.73 seconds averaged over 100 independent
runs separately. The implementation was done in MATLAB
(MathWorks Inc., Novi, MI, USA) and run under Microsoft
Windows 8 x64 OS on the computer with Dual Intel(R)
Core(TM) i-3427U 1.80GHz CPU and 8.00GB RAM. Con-
sidering the improved performance, the slightly increased
time cost is well acceptable for removing artifacts from 10-
second EEG data, especially for a number of ambulatory
systems in which fast clean information and direct feedback
are essentially important.

To see some details of the method, we also present the
stepwise results in Figure 5. The IMF components extracted
by EEMD were shown in Figure 5(a) from high to low
frequencies. After applying MCCA, the uncorrelated sources
were ordered in terms of their autocorrelations as displayed
in Figure 5(b). The muscle activity was present in the last
two components with lowest autocorrelations in the MCCA
decomposition. Excluding the muscle artifact components
in the reconstruction led to the cleaned EEG shown in
Figure 5(c). To further illustrate the performance, an ampli-
fied version including both recovered and original EEG
signals was present in Figure 5(d), from which we can see
that the proposedmethod highly preserved the original brain
activity.

In addition, we also implemented low-pass filter and ICA-
based methods for a performance comparison study in terms
of RRMSE andCCat various SNRvalues. Butterworth filter of
order 8 was employed with three different cutoff frequencies
equal to 10, 30, and 50Hz. ICA was applied to the same IMF
components extracted by EEMD as our proposed method
did. It is termedEEMD-ICA.The joint approximate diagonal-
ization of eigenmatrices (JADE) algorithm was adopted here
for ICA implementation [31]. Muscle artifact components,
after applying EEMD-ICA, had to be selected according to
visual inspection. The cleaned signal was reconstructed by
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Figure 4: The performance measure in different 𝑀 and SNR values: (a) RRMSE and (b) CC.
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Figure 5:The stepwise results of the proposed method: (a) the IMF components after applying EEMD to the single-channel EEG x (𝜀 = 1.5);
(b) the canonical variates after using MCCA (𝑀 = 3); (c) the reconstructed EEG signal x̂ after muscle artifact removal; (d) the amplified
version of x̂ compared with the original EEG xEEG.

excluding the components related to the artifact. The results
are shown in Figure 6, from which we can see that EEMD-
MCCAhas consistently better performance than the low-pass
filters. The possible reason is due to the fact that the low-pass
filters were insufficient to remove all artifacts without altering

the underlying brain activity since the frequency spectrum
of the muscle artifacts overlaps with that of the brain signal
[13]. Another concern for the low-pass filters is the nonlinear
phase-frequency response characteristic in practice, which
will lead to signal distortion. It should be noted that we did
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Figure 6: The performance comparisons between EEMD-MCCA and low-pass filters at various SNR values in terms of two criteria: (a)
RRMSE and (b) CC.
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Figure 7: The components decomposed by using EEMD-ICA to the synthetic data at two different SNR values: (a) SCICA at 𝜀 = 0.4 (SNR =
3.80) and (b) SCICA at 𝜀 = 2 (SNR = 0.76).

not present the results of EEMD-ICA in Figure 6, because it
was not capable of separating the muscle artifact from the
EEG signal. Two examples of its decomposition are shown
in Figure 7. We can easily observe that the EMG and EEG
components weremixed together (e.g., IC9 in Figure 7(a) and
IC1 in Figure 7(b)). It is quite difficult to determine which
components should be excluded since we did not want to
remove any brain activity.

3.2. The Real Data Case. In this case study, we applied the
proposed EEMD-MCCAmethod to each individual channel
of the EEG recordings as shown in Figures 2 and 3. We
found that it was fairly easy to distinguish the muscle artifact
components from the ones related to the brain activity.When
processing each single-channel EEG recordings, muscle
activity was almost present in the last several components in
the MCCA decomposition. Excluding those components in
the reconstruction of the EEG resulted in the cleaned EEG as
shown in Figures 8 and 9. It can be seen that muscle artifacts
have been sufficiently removed. In particular, for the ictal
EEG, the ictal activity on the T2, F8, T4, and T6 electrodes
was perfectly preserved.The ictal activity onF8 andT4,which

originally was blurred by muscle artifacts, becomes visible by
using the proposed EEMD-MCCAmethod. It should also be
noted that there exist some obvious EOG artifacts in both
real datasets, while their removal is beyond the scope of this
paper. However, these EOG artifacts can help demonstrate
the superior performance of our proposedmethod due to the
fact that they were preserved with little distortion.

4. Conclusions

In this paper, we proposed a simple yet effective EEMD-
MCCA method to realize muscle artifact removal from
single-channel EEG. We illustrated the performances of the
proposed method using both synthetic data and real-life
data. We observed that the method is able to remove muscle
activity effectively and efficiently andmeanwhile preserve the
brain activity very well. It is worth noting that while EEMD-
MCCA is proposed to remove muscle activity for the single-
channel EEG case, it is generally applicable when one dataset
contains relatively fewer channels (e.g., two or three). The
proposed method is a promising single-channel technique
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Figure 8: Reconstructed EEG signals after muscle artifact removal.
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Figure 9: Reconstructed ictal EEG signals after muscle artifact
removal.

under the current situation that ambulatory healthcare sys-
tems are increasingly emerging.
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Templatematching is an approach for signal pattern recognition, often used for biomedical signals including electroencephalogram
(EEG). Since EEG is often severely contaminated by various physiological or pathological artifacts, identification and rejection
of these artifacts with improved template matching algorithms would enhance the overall quality of EEG signals. In this paper,
we propose a novel approach to improve the accuracy of conventional template matching methods by adopting the dynamic
positional warping (DPW) technique, developed recently for handwriting pattern analysis. To validate the feasibility and superiority
of the proposed method, eye-blink artifacts in the EEG signals were detected, and the results were then compared to those
from conventional methods. DPW was found to outperform the conventional methods in terms of artifact detection accuracy,
demonstrating the power of DPW in identifying specific one-dimensional data patterns.

1. Introduction

Template matching has been one of the most popular
approaches in pattern recognition over the past few decades
[1–4].This technique is designed tomatch parts of a signal (or
image) to a predefined template signal (or image) in order to
quantify similarity of shapes among test and template signals.
Thanks to its applicability in detecting various kinds of pat-
terns, successful applications in a variety of different research
fields have been reported. Such fields include eye-region
detection [5, 6], human authentication [7], stock change
categorization [8], handwriting recognition [9], signature
verification [10], and electroencephalogram (EEG) artifact
detection [11–13].

Pattern-detection studies on EEG signals have been con-
ducted for the purpose of identifying pathologically driven
EEG patterns or EEG artifacts [11, 12, 14–16]. However, there
is still a need for better identification of eye-blink andmotion
artifacts, so that they can be rejected nearly perfectly in
hopes of obtainingmore reliable EEG analyses results. Precise
automatic identification of artifacts is of great necessity in
applications requiring online EEG processing or long-term

EEG monitoring. Aside from the need for better artifact
detection, there is also a need for better detection of abnormal
EEG patterns associated with various brain disorders in order
to achieve improved diagnostic decisions or better lesion
localization [17, 18].

Dynamic timewarping (DTW), a technique for enhanced
template matching, has been widely studied in speech recog-
nition [19, 20] and is gradually being applied in other ways,
such as shape-boundary matching [21], facial recognition
[22], signature verification [23], and EEG pattern detection
[12]. DTW is a method that has been applied to achieve
more accurate quantification of differences between template
and test-signal subpatterns, through optimal matching of
corresponding points. Instead of assuming uniform distri-
butions among corresponding points between template and
test subpatterns, DTWfinds the best corresponding points by
warping the template pattern at the time axis. Recent studies
have shown higher accuracies for template matching with
DTW than for conventional template matchingmethods that
assume uniform distributions among corresponding points
[24–26].
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Dynamic positional warping (DPW) is a modification of
DTW that was developed to improve accuracy in distance
quantification [27]. It was originally developed for the accu-
rate matching of contour data with two-dimensional shapes
and frequently used for signature verification. By allowing for
the signal to be warped on the ordinate axis in addition to the
time axis, DPW can more accurately identify corresponding
points than can conventional DTW.

The main goal of this study was to investigate whether
DPW could be extended to one-dimensional pattern recog-
nition problems. To approach this aim, we applied DPW for
the detection of eye-blink artifact patterns in frontal EEGdata
acquired from 24 healthy subjects. The detection accuracy
of DPW was then compared to those of the conventional
template matching methods.

2. Materials and Methods

2.1. Experimental Data and Preprocessing. In this study, eye-
blink artifacts in continuous EEG signals were selected as the
target patterns to be detected.The reason for this is that, while
eye-blink artifacts were regarded as representative artifacts
contaminating EEG signals, it was difficult to accurately iden-
tify them due to high variability among events or individuals.
EEG data were recorded from 24 healthy participants using
a multichannel EEG recording system (ActiveTwo AD-box,
BioSemi, The Netherlands) at a sampling rate of 2,048Hz,
while the participants performed spot-the-difference puzzles
for 25 seconds. Two slightly different images were presented
on the left and right halves of a display, and the participants
were asked to find the differences between two images for 15
seconds.The taskwas repeated five times for each participant.
A particular frontal channel Fp2 in the international 10–20
system was used for the eye-blink artifact detection. To
verify eye-blink detection accuracy, it was necessary to use
a ground-truth dataset indicating the presence of an eye-
blink artifact. For this aim, time ranges of eye-blink artifacts
were marked by two experienced researchers based on visual
inspection of EEG data.

Before the primary analyses, EEG data were high-pass
filtered with a 0.1 Hz cutoff frequency, downsampled to a
64Hz sampling rate in order to reduce the computation
cost, and median-filtered with a five-point width in order
to smooth the data. The width of the median filter was
determined empirically.

2.2. Procedure for Template Matching. In order to evaluate
and compare different distance metrics, a typical template
matching protocol was implemented. The template matching
protocol was designed to be as simple as possible so as
to exclude any potential influence from any confounding
factors. Figure 1 illustrates the schematic diagramof our study
protocol.

The core parts of this process include distance calculation
between templates and test patterns (denoted by Step 1 in
Figure 1) and an overall similarity decision based on a pre-
determined threshold (denoted by Step 3 in Figure 1). Both
of these steps are common among studies using template
matching approaches [11, 12, 28]. In the current study, test

patterns were extracted from the continuous test EEG data
using a fixed-size sliding window, and the distances between
the template and test EEG signalswere evaluated at every time
point (the number of slidingwindowswas denoted by𝑁).The
size of the sliding windowwas set to be the same as the length
of the template as this was an assumption indispensable for
applying linear template matching such as correlation and
root-mean-square error. The decision step was only applied
for the local minima of the distance array, and equal widths
were assumed for the detected pattern and template. When
ranges of adjacent detected patterns overlapped with one
another, the detected pattern rangesweremerged into a single
range in order to avoid duplicate detection.

Template signals were randomly selected by a computer
as in [4], so as to eliminate any possible bias toward the
use of a specific method. When used by experts, manual
template selection has the potential for achievement of
higher performance outcomes [11, 12] compared to random
selection; however, manual selection processes are highly
dependent on experts’ subjective decisions and can lead to
biased results.

Approaches for better use of training data involve con-
struction of a single template by averaging patterns in a
single cluster or selection of best-fit templates for each cluster.
Unfortunately, however, thesemethods do not generally show
high performance when template widths and shapes have
large variances. In this study, we adopted a normalization
method [29], considering large variances of template widths
and shapes due to random selection of templates. There
are two advantages for normalization approach compared
to the conventional approaches: (1) effects of improper
template selection can be minimized by distance-averaging;
(2) variations in template width and shape do not need to
be considered. Normalized distance (denoted by𝐷

𝑗
) between

the 𝑗th test pattern and templates can be calculated by

𝐷
𝑗
=

(∑
𝑛

𝑖=1
𝑑
𝑖𝑗
)

𝑛 ⋅ 𝜎
, (1)

where 𝑑
𝑖𝑗
is distance between the 𝑖th template and the 𝑗th test

pattern, 𝑛 is the number of templates, and𝜎 is a normalization
factor, given as

𝜎 =

(∑
𝑛

𝑖=1
∑
𝑛

𝑗=𝑖+1
𝑑
𝑖𝑗
)

{𝑛 ⋅ (𝑛 − 1) /2}
. (2)

The test pattern 𝑇
𝑗
is accepted if 𝐷

𝑗
is a local minimum

and if this local minimum is lower than a predefined
threshold.This overall process was repeated 20 times in order
to achieve an unbiased comparison.

2.3. Traditional Distance Metrics. Because it is generally
assumed that target-pattern shapes are unchanging, Eucli-
dean distance and correlation-coefficients have been most
commonly used for template matching applications [4, 30].
Three traditional distance metrics are investigated in this
study, which are root-mean-square error (RMSE) based
on Euclidean distances (with linear matching), correlation
coefficient, and Kurtosis. Kurtosis was considered in this
study because it is widely used in biomedical data analysis
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Figure 1: Schematic diagram of our study protocol for 𝑛 = 5 templates. After selecting templates from the ground-truth dataset, the average
distance among the templates is calculated for normalization (during the “Training” phase). During the “Testing” phase, distances between
templates and test patterns within test-signal sliding windows are calculated.

[31, 32]. Between two signals 𝐴 and 𝐵, with 𝐿
𝐴
and 𝐿

𝐵
as

the respective signal lengths, distances for each metric are
defined as follows.

Root-mean-square error:

𝑑rmse = √
1

𝐿
⋅

𝐿

∑

𝑘=1

{𝐴 (𝑘) − 𝐵 (𝑘)}
2
. (3)

Correlation:

𝑑corr =
∑
𝐿

𝑘=1
{𝐴 (𝑘) − 𝐴} ⋅ {𝐵 (𝑘) − 𝐵}

√∑
𝐿

𝑘=1
{𝐴 (𝑘) − 𝐴}

2

⋅ √∑
𝐿

𝑘=1
{𝐵 (𝑘) − 𝐵}

2

. (4)

Kurtosis:

𝑑ku =



∑
𝐿𝐴

𝑘=1
{𝐴 (𝑘) − 𝐴}

4

𝐿
𝐴
⋅ 𝜎
𝐴

4
−

∑
𝐿𝐵

𝑘=1
{𝐵 (𝑘) − 𝐵}

4

𝐿
𝐵
⋅ 𝜎
𝐵
4



, (5)

where 𝐴(𝑘) and 𝐵(𝑘) denote 𝑘th data in signals 𝐴 and 𝐵,
respectively. Note that RMSE and correlation are calculable
only for identical signal lengths. Thus, a common variable 𝐿

was used to represent the signal length in (3) and (4).

2.4. Dynamic Time Warping. In spite of various modifica-
tions of DTW in previous decades, original kernel models
for calculating distance are still being widely used in many
applications. In this study, we adopted a common implemen-
tation of DTW [19] and empirically determined parameters
for slope constraints.The DTWdistance between two signals
is defined as

𝑑dtw = 𝜏 (𝐿
𝐴
, 𝐿
𝐵
) , (6)

where 𝐿
𝐴
and 𝐿

𝐵
are respective template and test pattern

lengths, and 𝜏(𝑖, 𝑗) is the distance between two subsignals
{𝐴(𝑘) | 1 ≤ 𝑘 ≤ 𝑖} and {𝐵(𝑘) | 1 ≤ 𝑘 ≤ 𝑗}, defined as

𝜏 (𝑖, 𝑗) =
{𝐴 (𝑖) − 𝐴 (1)} − {𝐵 (𝑗) − 𝐵 (1)}



+min
𝑐

{𝜏 (𝑖 − 𝐶
𝐴 (𝑐) , 𝑗 − 𝐶

𝐵 (𝑐))} ,

(7)

where 𝜏(1, 1) = 0, and 𝐶
𝐴
(𝑐) and 𝐶

𝐵
(𝑐) are 𝑐th slope con-

straints on pattern axes, which limit the number of skipping
(jumping) data points. 𝐶

𝐴𝐵
(𝑐) denotes the 𝑐th pair of the

slope constraints on template and test pattern axes and can
be written as

𝐶
𝐴𝐵

= {(1,𝑚) , (𝑚, 1) | 1 ≤ 𝑚 ≤ 𝑀} , (8)

where𝑀 is the maximum branch length of slope constraints.
Note that the values at the starting points of the two patterns
are adjusted to be overlapped.
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Figure 2: Schematic illustrations for elucidating dynamic time warping and positional warping for one-dimensional data matching: (a) two
signals 𝛼 (solid line) and 𝛽 (dashed line) are compared and considered a pair of corresponding points. (b) Time warping in DTW: a is warped
to a by time shifting. (c) Positional and time warping in DPW: a is warped to a to be overlapped onto b.

2.5. Dynamic Positional Warping (DPW). DPW was orig-
inally proposed for accurate quantification of differences
between two-dimensional data such as an object’s contour
or handwritten characters, by searching similar subsequences
recursively [27]. When employed for one-dimensional data,
the DPW distance between time series signals 𝐴 and 𝐵 can
be written as follows:

𝑑dtw = 𝜏 (𝐿
𝐴
, 𝐿
𝐵
) , (9)

𝜏 (𝑖, 𝑗) =

{𝐴 (𝑖) − 𝐴 (𝑖prev)} − {𝐵 (𝑗) − 𝐵 (𝑗prev)}


+ 𝜔 (𝑖, 𝑗) ,

(10)

𝑖prev = 𝑖 − 𝐶
𝐴
(𝑐min (𝑖, 𝑗)) , (11)

𝑗prev = 𝑗 − 𝐶
𝐵
(𝑐min (𝑖, 𝑗)) , (12)

𝑐min (𝑖, 𝑗) = arg min
𝑐

{𝜑 (𝑖 − 𝐶
𝐴
(𝑐) , 𝑗 − 𝐶

𝐵
(𝑐))} , (13)

𝜔 (𝑖, 𝑗) = min
𝑐

{𝜑 (𝑖 − 𝐶
𝐴
(𝑐) , 𝑗 − 𝐶

𝐵
(𝑐))} , (14)

where most notations are the same as those used in the
original DTW equations ((6) and (7)). In these equations,
𝑖prev and 𝑗prev represent preceding corresponding points that
minimize 𝜏(𝑖, 𝑗). As shown in (9) and (10), the forms of
the equations are the same as those of conventional DTW

equations, except with regard to distance calculation between
two points. Note that 𝐴(𝑖prev) and 𝐵(𝑗prev) are substituted for
𝐴(1) and 𝐵(1), respectively, in (10).

Figure 2 compares the mechanisms of DPW and DTW
in one-dimensional data-matching applications. When two
signals are compared and points a and b are matched as a
corresponding pair (Figure 2(a)), DTW shifts a subsequence
that begins with a on the time axis such that the shifted point
is moved to the same time index as the subsequence starting
with b (Figure 2(b)). This process, denoted as time warping,
allows for distance calculation between points c and d by
placing them closely on time axis. In the case of DPW, upon
matching a and b, the subsequence starting from a is warped
so that a is overlapped onto b. Please note this subsequence
warping costs the distance (on the axis of ordinate) between
the two points a and b, while the warping cost on the time
axis is free (refer to [27] for more detailed description on the
original DPWmethod).

3. Results and Discussion

Receiver operating characteristic (ROC) curves were used to
compare pattern-detection performances among the various
template matching approaches introduced in Section 2. To
evaluate ROC curves, recall rates were evaluated with respect
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Figure 3: ROC curves of five different methods.

to fixed precision rates for each iteration of each participant.
Then, for each precision rate, recall rates were averaged across
all the iterations and participants. Figure 3 showsROCcurves
illustrating detection accuracies for five different methods.
DPW showed the highest accuracy among all methods
investigated, with an accuracy of 82% for equal precision
and recall rates. DPW accuracy was 10% higher than that
for conventional DTW (where accuracy rating was 72%) and
even higher than those for conventional distance metrics
(RMSE: 49%, correlation: 34%, and Kurtosis: 11%). These
results demonstrate that positional warping, as has been used
for two-dimensional pattern recognition problems, might
be also effective in one-dimensional pattern recognition
problems.

The extremely low accuracies of RMSE and correlation
may be surprising, considering that both distance metrics
are so commonly used for template matching applications.
The poor performances found for both metrics are thought
to partly originate from high target-pattern shape variations.
It is also possible that these poor performances were the
result of the chosen task being more difficult than typical
tasks. Since the templates in the current task were selected
randomly from ground-truth datasets, there may have been
many templates with irregular shapes. Despite these difficult
conditions, the proposed DPW approach showed much
higher detection accuracy than the DTW approach, suggest-
ing that DPW might be used as a new and powerful method
for extracting specific signal patterns for EEG applications.

Table 1 summarizes the best detection accuracies among
20 iterations, evaluated for each participant. Accuracy was
calculated as the percentage of precision or recall for equal
precision and recall values in ROC curves. When ROC
curveswere evaluated for each participant and best accuracies
were selected among the 20 iteration results, the conven-
tional methods based on correlation coefficients or RMSEs
yielded better accuracies than the results shown in Figure 3.

Nevertheless, DPW still outperformed the other metrics,
ranking the highest for 22 of 24 participants. The averaged
detection accuracy for DPW (96.10%) was 3.62% higher than
that for DTW (92.38%).

In addition, the influence of the number of templates on
detection accuracy was investigated. The detection accuracy
was evaluated by increasing the number of templates and then
averaging across all iterations and participants (Table 2). The
results show a weak influence of the number of templates on
detection accuracy. Except for correlation, accuracy did not
change significantly as the number of templates increased.
Instead, the standard deviations ofDTWandDPWdecreased
significantly, demonstrating the possibility for more stable
pattern detection by the use of sufficient numbers of tem-
plates in DTW and DPW.

4. Conclusion

In this paper, we investigated whether DPW, originally devel-
oped for two-dimensional pattern recognition, could be suc-
cessfully employed for one-dimensional pattern recognition.
To validate our alternative hypothesis that DPW is effective
for one-dimensional data analysis, DPW was applied to the
problem of EEG eye-blink artifact detection. DPW outper-
formed conventional template matching methods including
DTW, demonstrating that this positional warping method,
which warps signals on both ordinate and abscissa axes, is
also effective in one-dimensional pattern recognition. This
study suggests the possibility of applying DPW tomany other
types of signal patterns and applications.We are also planning
to combine DPW with other methodologies in our future
studies.
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Table 1: Best accuracies (%) evaluated for each participant among results from 20 iterations. Best accuracy values for each participant are in
bold font.

Subject ID Correlation RMSE Kurtosis DTW DPW
1 86.96 61.32 22.86 94.97 98.55
2 84.25 90.67 39.46 97.60 98.28
3 49.19 60.83 15.98 77.42 85.27
4 69.02 84.38 15.77 93.65 95.41
5 49.28 73.69 18.45 83.50 92.39
6 26.67 84.44 13.33 90.00 91.55
7 80.72 92.80 30.95 94.64 98.66
8 88.19 92.86 48.00 98.01 100.00
9 62.96 98.77 31.34 98.77 99.38
10 71.83 71.33 17.94 93.57 95.11
11 40.00 86.67 20.71 91.55 100.00
12 61.32 91.74 13.24 93.28 99.26
13 57.48 41.88 15.10 79.21 96.56
14 60.83 78.89 30.19 91.43 97.14
15 63.89 76.07 15.01 94.36 98.65
16 80.63 94.18 34.05 96.84 98.95
17 60.87 54.01 22.79 84.28 80.82
18 40.30 86.38 24.00 97.37 98.72
19 65.01 72.08 18.37 89.81 94.95
20 17.59 76.67 17.69 93.33 94.94
21 79.20 91.67 22.13 92.51 97.94
22 63.11 41.63 25.10 91.88 96.70
23 65.55 90.23 23.08 100.00 98.08
24 40.99 97.53 20.71 99.17 99.17
Average 61.08 78.78 23.18 92.38 96.10

Table 2: Artifact detection accuracies (%) with respect to the number of templates, for equal precision and recall.

Number of templates Correlation RMSE Kurtosis DTW DPW
1 49.54 ± 22.45 61.65 ± 28.42 9.65 ± 5.63 77.58 ± 22.44 83.94 ± 23.52

2 34.37 ± 27.54 62.55 ± 25.51 11.74 ± 11.01 68.29 ± 29.59 78.23 ± 30.35

3 28.42 ± 25.93 61.60 ± 25.08 10.20 ± 7.21 76.38 ± 20.47 86.06 ± 17.06

4 27.31 ± 24.58 60.42 ± 25.52 9.88 ± 7.49 75.51 ± 20.07 85.79 ± 16.36

5 23.84 ± 22.28 59.77 ± 24.72 10.77 ± 8.15 74.64 ± 19.79 85.92 ± 16.24

6 24.89 ± 21.47 58.90 ± 25.72 10.47 ± 8.35 77.49 ± 17.44 86.63 ± 15.41

7 25.76 ± 22.91 58.44 ± 25.09 10.37 ± 8.14 76.09 ± 17.64 86.42 ± 15.74

8 25.35 ± 22.23 58.59 ± 25.25 10.85 ± 8.74 76.80 ± 17.32 86.87 ± 14.60

9 24.56 ± 20.88 59.65 ± 24.45 11.08 ± 8.90 77.92 ± 15.12 87.13 ± 14.16

10 24.17 ± 19.33 59.49 ± 25.37 10.69 ± 9.17 78.68 ± 15.35 86.54 ± 15.25
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