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The integrated 6-DOF orbit-attitude dynamical modeling and control have shown great importance in various missions, for
example, formation flying and proximity operations. The integrated approach yields better performances than the separate one in
terms of accuracy, efficiency, and agility. One challenge in the integrated approach is to find a unified representation for the 6-DOF
motion with configuration space SE(3). Recently, exponential coordinates of SE(3) have been used in dynamics and control of the
6-DOFmotion, however, only on the kinematical level. In this paper, we will improve the current method by adopting exponential
coordinates on the dynamical level, by giving the relation between the second-order derivative of exponential coordinates and
spacecraft’s accelerations. In this way, the 6-DOF motion in terms of exponential coordinates can be written as a second-order
systemwith a quite compact form, to which a broader range of control theories, such as higher-order slidingmodes, can be applied.
For a demonstration purpose, a simple asymptotic tracking control law with almost global convergence is designed. Finally, the
integrated modeling and control are applied to the body-fixed hovering over an asteroid and verified by a simulation, in which
absolute motions of the spacecraft and asteroid are simulated separately.

1. Introduction

The integrated 6-DOF orbit-attitude dynamical modeling
and control of spacecraft have shown great importance
in various space missions, such as formation flying [1–7],
proximity operations [8–14], and proximity operations about
minor celestial bodies [15–17].

Necessity of the integrated approach for spacecraft’s 6-
DOFmotion lies in two aspects. Firstly, the orbit and attitude
motions are actually kinematically coupled in spacecraft rela-
tive motions [1, 7] and are dynamically coupled due to effects
of external forces and torques, such as the gravitational orbit-
attitude coupling in close proximity of minor celestial bodies
[18–21] and the orbit-attitude coupling of high area-to-mass
ratio (HAMR) objects caused by the solar radiation pressure
(SRP) [22, 23]. Secondly, and more importantly, proximity
operations and some formation flying missions, such as
proximity rendezvous, docking, landing on and sampling
an asteroid, interferometric observation, and coordinated
pointing, usually require the relative position and attitude of
spacecraft to follow the desired trajectory simultaneously.

Unlike the traditional approach that treats orbit and
attitude motions separately, such as Zhang et al. [24, 25], the
integrated approach models and controls the orbit and atti-
tude motions in a unified framework. Therefore, integrated
orbit-attitude dynamical modeling and control will capture
the system’s dynamics better and will lead the 6-DOFmotion
in the phase space more accurately and effectively. That is,
the integrated approach yields better performances than the
separate one in terms of accuracy, efficiency, and agility.

There are two main challenges in the integrated dynami-
cal modeling and control. The first one is to find an adequate
unified mathematical representation for the 6-DOF orbit-
attitude motion, which must be amenable for the application
of various nonlinear control theories.The unified representa-
tion of the 6-DOF motion is also required to be applicable to
a wide range of spacecraft maneuvers.

The second challenge is that the 6-DOF orbit-attitude
motion is highly nonlinear and is subjected to external distur-
bances and parameter uncertainties. Consequently, adequate
control theories are needed in the controller design, such
as the sliding mode control [9], adaptive control [12, 13],
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adaptive sliding mode control [3, 17], adaptive terminal
slidingmode control [2, 14], finite-time control [5, 16, 26], and
state-dependent Riccati equation (SDRE) method [4, 7].

As for the unified mathematical representation of the 6-
DOF motion, the spacecraft can be considered as a rigid
body and the configuration space is the Lie group SE(3),
the special Euclidean group, which is the set of position
and attitude of a rigid body moving in a three-dimensional
Euclidean space. The dual quaternion has been widely used
as a unified representation of the 6-DOF rigid body motion,
but the constraints between its elements need to be dealt
with carefully [10, 11]. Sanyal et al. [8, 27] have used the
matrix formof the Lie group SE(3) in the dynamicalmodeling
of rigid body motion and achieved controllers with almost
global convergence, which is the best that can be achieved
for a system evolving on a noncontractible state space, like
the 6-DOF rigid body motion, with continuous feedback
[6]. However, due to the complexity of matrix calculations,
the matrix form of SE(3) is not convenient for controller
design.

Recently, exponential coordinates of Lie group SE(3)
have been used as a unified representation of the 6-DOF
orbit-attitude (rigid body) motion in spacecraft formation
flying and asteroid hovering [6, 9, 14–17]. The exponential
coordinates are in vector form with six elements, and thus,
unlike the dual quaternion, have no constraint between
elements. Besides, compared with the matrix form of SE(3),
the set of exponential coordinates with a vector form is more
convenient for applications of nonlinear control theories. In
the mentioned studies, the exponential coordinates are used
to describe the 6-DOF kinematics of the spacecraft, and the
control scheme is designed to reduce errors of configuration
and velocities from almost any given initial state, except those
that differ in orientation by a 𝜋 radian rotation from the
desired states where exponential coordinates for the attitude
are not uniquely defined [6]. Because the set of such initial
states is an embedded lower-dimensional subspace of the
state space, the tracking control scheme designed in terms
of exponential coordinates can achieve almost global con-
vergence, which makes it applicable in practice. Exponential
coordinates of SE(3) used by Lee et al. [6, 15, 16] have provided
a goodunified representation for the 6-DOFmotionwith sev-
eral advantages: having a vector form, having no constraint
between elements, being convenient for controller design,
and achieving almost global convergence in the controller.

In the present paper, based on the results by Bullo
and Murray [28], we will improve the dynamical modeling
method for the 6-DOF rigid bodymotion suggested by Lee et
al. [6, 15, 16]. Lee et al. used exponential coordinates of SE(3)
only in the kinematics of spacecraft, that is, only gave the
relation between the first-order time derivative of exponential
coordinates and the (angular) velocity of spacecraft. We will
use exponential coordinates of SE(3) on the dynamical level
further, that is, give the relation between the second-order
time derivative of exponential coordinates and the (angular)
acceleration of spacecraft. By using this relation on the
dynamical level, the system can be written as a second-order
system with a compact form. Then, the set of exponential
coordinates becomes more convenient for controller design
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Figure 1:The spacecraft moving in proximity of the reference body.

and a broader range of control theories, such as higher-order
sliding modes, can be applied.

Another improvement suggested in the current work is to
introduce a desired trajectory for the 6-DOF motion, that is,
the guidance on SE(3). The controller will lead the system to
follow the desired trajectory until reaching the desired final
state. In the earlier studies by Lee et al. [6, 15, 16], Lee [9], and
Lee and Vukovich [14, 17], the controller aimed at the desired
final state directly. Therefore, the true trajectory to the final
state could not be specified. Compared with Lee’s approach,
our approach has two advantages: firstly, it is applicable to
diverse spacecraft proximity operations requiring a specific
6-DOF orbit-attitude trajectory, for example, approaching
along an obstacle-free trajectory; secondly, the initial tracking
error is much smaller and the control saturation in the
beginning can be avoided.

Based on the second-order system in terms of exponential
coordinates of SE(3), a simple asymptotic tracking control
law with almost global convergence is designed for a demon-
stration purpose. Finally, both the integrated dynamical
modeling and control law are applied to body-fixed orbit-
attitude hovering over an asteroid.

2. Integrated Modeling of 6-DOF
Relative Dynamics

As shown in Figure 1, the 6-DOF orbit-attitude (rigid body)
motion of a spacecraft in proximity of the reference body is
considered. The reference body can be another spacecraft in
spacecraft formation flying and proximity operations or the
asteroid in minor celestial body proximity operations. The
inertial frame is denoted by 𝑆IF = {e1, e2, e3} with 𝑂IF as its
origin. The body-fixed principal-axis frames of the reference
body and spacecraft are denoted by 𝑆RB = {u, v,w} and 𝑆SC ={i, j, k} with 𝑂RB and 𝑂SC as their origins, respectively.

2.1. Dynamics of Spacecraft. The attitude of the spacecraft
with respect to the inertial frame 𝑆IF is described by matrix
ASC:

ASC = [𝛼SC,𝛽SC, 𝛾SC]𝑇 ∈ SO (3) , (1)
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where 𝛼SC, 𝛽SC, and 𝛾SC are coordinates of unit vectors e1,
e2, and e3 of the inertial frame 𝑆IF expressed in the body-
fixed frame of spacecraft 𝑆SC, respectively. Matrix ASC is
also the coordinate transformation matrix from the body-
fixed frame 𝑆SC to the inertial frame 𝑆IF. SO(3) is the three-
dimensional special orthogonal group.The position vector of
the spacecraft with respect to the origin 𝑂IF expressed in the
inertial frame 𝑆IF is denoted by rSC.

The configuration space of 6-DOF orbit-attitude motion
of the spacecraft is the Lie group:

𝑄SC = SE (3) , (2)

known as the special Euclidean group of three-dimensional
space with elements (ASC, rSC), which is the semidirect
product of SO(3) and R3, that is, SO(3) ⋉ R3. The velocity
phase space of 6-DOFmotion of the spacecraft is the tangent
bundle TSE(3), which can be represented by SE(3) × se(3)
through the left translation, where se(3) is the Lie algebra of
Lie group SE(3).

The configuration of spacecraft on the special Euclidean
group SE(3) can be represented by the following 4×4matrix:

gSC = [ASC rSC
0 1 ] ∈ SE (3) . (3)

The velocities of spacecraft, which are contained within
Lie algebra se(3), can be represented by the 6 × 1 vector:

𝜉SC = [ΩSC
VSC

] ∈ R
6, (4)

where ΩSC and VSC are the spacecraft’s angular velocity and
velocity with respect to the inertial frame, respectively, both
expressed in its body-fixed frame 𝑆SC.

Then, the 6-DOF orbit-attitude kinematics of the space-
craft can be given by [15]

ġSC = gSC (𝜉SC)∨ , (5)

where the map (⋅)∨ : R6 → se(3) is the Lie algebra
isomorphism defined by

(𝜉SC)∨ = [(ΩSC)× VSC

0 0 ] ∈ se (3) . (6)

The map (⋅)× : R3 → so(3) is the Lie algebra
isomorphism, which is also the cross-product operator for3 × 1 vectors, defined by

(w)× = [[
[
𝑤𝑥
𝑤𝑦
𝑤𝑧

]]
]

×

= [[
[

0 −𝑤𝑧 𝑤𝑦
𝑤𝑧 0 −𝑤𝑥
−𝑤𝑦 𝑤𝑥 0

]]
]

∈ so (3) , (7)

where so(3) is the Lie algebra of Lie group SO(3).
The 6-DOF orbit-attitude dynamics of the spacecraft can

be given by [15]

ISC�̇�SC = ad∗𝜉SC (ISC𝜉SC) + 𝜏𝑛SC + 𝜏𝑐SC, (8)

where ISC is the combined matrix of the mass and inertia of
the spacecraft given by

ISC = [ISC 0
0 𝑚SCI3×3

] ∈ R
6×6, (9)

ISC and𝑚SC are the inertia tensor and mass of the spacecraft,
respectively, and I3×3 is the 3 × 3 identity matrix. The adjoint
operator ad𝜉SC and coadjoint operator ad

∗
𝜉SC

on the Lie algebra
se(3) can be given as matrixes:

ad𝜉SC = [(ΩSC)× 0

(VSC)× (ΩSC)×] ∈ R
6×6,

ad∗𝜉SC = (ad𝜉SC)𝑇 = [− (ΩSC)× − (VSC)×
0 − (ΩSC)×] ∈ R

6×6.
(10)

The environmental torqueT𝑛SC and forceF
𝑛
SC acting on the

spacecraft, both expressed in the body-fixed frame 𝑆SC, are
written together in vector 𝜏𝑛SC:

𝜏𝑛SC = [T𝑛SC
F𝑛SC

] ∈ R
6. (11)

Keep in mind that, in minor celestial body proximity
operations, the environmental torque and force 𝜏𝑛SC include
the gravitational torque and force by the minor body, while,
in spacecraft formation flying and proximity operations, the
gravitational torque and force between two spacecraft will be
neglected.

The control torque T𝑐SC and force F𝑐SC acting on the
spacecraft, both expressed in the body-fixed frame 𝑆SC, are
written together in vector 𝜏𝑐SC:

𝜏𝑐SC = [T𝑐SC
F𝑐SC

] ∈ R
6. (12)

2.2. Dynamics of Reference Body. The 6-DOF orbit-attitude
dynamics of the reference body is described similarly as that
of the spacecraft. The attitude of reference body with respect
to the inertial frame 𝑆IF is described by matrix ARB:

ARB = [𝛼RB,𝛽RB, 𝛾RB]𝑇 ∈ SO (3) , (13)

where 𝛼RB, 𝛽RB, and 𝛾RB are coordinates of unit vectors e1, e2,
and e3 expressed in the body-fixed frame of reference body𝑆RB, respectively. The position vector of the reference body
with respect to the origin 𝑂IF expressed in the inertial frame𝑆IF is denoted by rRB. The configuration space of reference
body, 𝑄RB, is also Lie group SE(3) with elements (ARB, rRB).
The configuration of the reference body is denoted by

gRB = [ARB rRB
0 1 ] ∈ SE (3) . (14)

The velocities of the reference body are represented by

𝜉RB = [ΩRB
VRB

] ∈ R
6, (15)
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where ΩRB and VRB are angular velocity and velocity of the
reference bodywith respect to the inertial frame, respectively,
both expressed in the reference body’s body-fixed frame 𝑆RB.

The 6-DOF orbit-attitude kinematics of the reference
body is given by

ġRB = gRB (𝜉RB)∨ , (16)

where

(𝜉RB)∨ = [(ΩRB)× VRB

0 0 ] ∈ se (3) . (17)

The 6-DOF orbit-attitude dynamics of the reference body
can be given by

IRB�̇�RB = ad∗𝜉RB (IRB𝜉RB) + 𝜏RB, (18)

where IRB is the combined matrix of the mass and inertia of
the reference body

IRB = [IRB 0
0 𝑚RBI3×3

] ∈ R
6×6, (19)

IRB and 𝑚RB are the inertia tensor and mass of the reference
body, respectively, and

ad∗𝜉RB = [− (ΩRB)× − (VRB)×
0 − (ΩRB)×] ∈ R

6×6. (20)

Resultant torque TRB and force FRB acting on the refer-
ence body, both expressed in the body-fixed frame 𝑆RB, are
written together in vector 𝜏RB:

𝜏RB = [TRB

FRB
] ∈ R

6. (21)

The torque and force 𝜏RB will include control torque and
force acting on the reference body, if they exist, in spacecraft
formation flying and proximity operations.

2.3. Relative Dynamics of Spacecraft. In space missions, what
really matters is the relative dynamics of spacecraft with
respect to the reference body, rather than the absolute
dynamics of spacecraft in the inertial space. The 6-DOF
relative dynamics of spacecraft, which will be written in a
similar form with the absolute dynamics, can be obtained
based on the results in Sections 2.1 and 2.2.

The relative configuration of spacecraftwith respect to the
reference body, which is also on the special Euclidean group
SE(3), is denoted by

g𝑅 = (gRB)−1 gSC = [A𝑅 r𝑅
0 1 ] ∈ SE (3) , (22)

where matrix A𝑅 is the relative attitude of spacecraft with
respect to the reference body, which is also the coordinate
transformation matrix from the body-fixed frame of space-
craft 𝑆SC to the body-fixed frame of reference body 𝑆RB, and

vector r𝑅 is the relative position of spacecraft with respect to
the reference body𝑂RB, expressed in the body-fixed frame of
reference body 𝑆RB.

The relative attitude matrix A𝑅 can be written as

A𝑅 = [𝛼𝑅,𝛽𝑅, 𝛾𝑅]𝑇 , (23)

where 𝛼𝑅, 𝛽𝑅, and 𝛾𝑅 are coordinates of unit vectors u, v, and
w of the reference body’s body-fixed frame 𝑆RB expressed in
the spacecraft’s body-fixed frame 𝑆SC, respectively.

According to (3) and (14), the relative configuration of
spacecraft can be obtained as

g𝑅 = (gRB)−1 gSC = [A−1RB −A−1RBrRB
0 1 ][ASC rSC

0 1 ]

= [A−1RBASC A−1RB (rSC − rRB)
0 1 ] .

(24)

Then, the 6-DOF relative orbit-attitude kinematics of the
spacecraft with respect to the reference body can be given by

ġ𝑅 = (gRB)−1 ġSC + 𝑑𝑑𝑡 [(gRB)−1] gSC
= (gRB)−1 ġSC − (gRB)−1 ġRB (gRB)−1 gSC
= (gRB)−1 gSC (𝜉SC)∨

− (gRB)−1 gRB (𝜉RB)∨ (gRB)−1 gSC
= g𝑅 (𝜉SC)∨ − (𝜉RB)∨ g𝑅
= g𝑅 [(𝜉SC)∨ − (g𝑅)−1 (𝜉RB)∨ g𝑅] .

(25)

The relative kinematics of spacecraft (25) can be written
in the same form as the absolute kinematics (5) and (16):

ġ𝑅 = g𝑅 (𝜉𝑅)∨ , (26)

where the 6 × 1 vector 𝜉𝑅 is the relative velocity of spacecraft:
𝜉𝑅 = [Ω𝑅

V𝑅
] ∈ R

6. (27)

Vectors Ω𝑅 and V𝑅 are relative angular velocity and relative
velocity of spacecraft with respect to the reference body,
respectively, both expressed in the body-fixed frame of
spacecraft 𝑆SC.

According to (25) and (26), we can obtain the relative
velocity of spacecraft (𝜉𝑅)∨ as follows:

(𝜉𝑅)∨ = (𝜉SC)∨ − (g𝑅)−1 (𝜉RB)∨ g𝑅, (28)

which can be written in a compact form

𝜉𝑅 = 𝜉SC − Ad(g𝑅)−1𝜉RB. (29)

The operator Ad(g𝑅)−1 , the adjoint action of (g𝑅)−1 ∈ SE(3) on(𝜉RB)∨ ∈ se(3), satisfies
(Ad(g𝑅)−1𝜉RB)∨ = (g𝑅)−1 (𝜉RB)∨ g𝑅, (30)
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and the matrix form of operator Ad(g𝑅)−1 can be given by

Ad(g𝑅)−1 = [
[

A−1𝑅 0

(−A−1𝑅 r𝑅)× A−1𝑅 A−1𝑅
]
]

∈ R
6×6. (31)

As for the 6-DOF relative orbit-attitude dynamics of the
spacecraft with respect to the reference body, the time deriva-
tive of relative velocity 𝜉𝑅, that is, the relative acceleration of
the spacecraft, can be obtained according to (29):

�̇�𝑅 = �̇�SC − 𝑑𝑑𝑡 [Ad(g𝑅)−1𝜉RB] . (32)

According to Lee et al. [15],

𝑑𝑑𝑡 [Ad(g𝑅)−1𝜉RB] = −ad𝜉𝑅Ad(g𝑅)−1𝜉RB + Ad(g𝑅)−1 �̇�RB, (33)

where the adjoint operator ad𝜉𝑅 on the Lie algebra se(3) is
defined in (10).

Therefore, the relative acceleration of the spacecraft �̇�𝑅
can be written as

�̇�𝑅 = �̇�SC + ad𝜉𝑅Ad(g𝑅)−1𝜉RB − Ad(g𝑅)−1 �̇�RB. (34)

According to (8) and (34), the 6-DOF relative dynamics
of the spacecraft with respect to the reference body can be
given by

ISC�̇�𝑅 = ISC�̇�SC + ISC [ad𝜉𝑅Ad(g𝑅)−1𝜉RB − Ad(g𝑅)−1 �̇�RB]
= ad∗𝜉SC ISC𝜉SC + 𝜏𝑛SC + 𝜏𝑐SC

+ ISC {ad𝜉𝑅Ad(g𝑅)−1𝜉RB − Ad(g𝑅)−1 �̇�RB} .
(35)

Equations (26) and (35) form complete equations for the 6-
DOF relative motion.

3. Tracking Error Modeling and
Control Law Design

In formation flying and proximity operations, the 6-DOF
relative orbit-attitude motion of the spacecraft with respect
to the reference body is usually required to track the desired
trajectory. The goal of the controller is to reduce the tracking
error. Here, introducing a desired trajectory for the 6-DOF
orbit-attitude motion, that is, guidance on SE(3), is an
improvement compared with the earlier works by Lee et al.
[6, 15, 16] and Lee andVukovich [14, 17], where the controllers
aimed at the desired final state directly. In our approach with
a reference trajectory, the true orbit-attitude trajectory to the
final state can be specified, and the control saturation caused
by the large initial tracking error can be avoided.

3.1. Desired Relative Trajectory and Tracking Error. The
desired trajectory is denoted by (g𝑑(𝑡), 𝜉𝑑(𝑡), �̇�𝑑(𝑡)), where

ġ𝑑 = g𝑑 (𝜉𝑑)∨ . (36)

The goal of the orbit-attitude motion controller is (g𝑅(𝑡),
𝜉𝑅(𝑡)) → (g𝑑(𝑡), 𝜉𝑑(𝑡)).

The tracking error in configuration space of the relative
motion, which is also on the special Euclidean group SE(3),
is defined by

g𝑒 = (g𝑑)−1 g𝑅 = [A𝑒 r𝑒
0 1] ∈ SE (3) . (37)

By using the same method as in Section 2.3, the kinemat-
ics of tracking error of the spacecraft’s relativemotion is given
by

ġ𝑒 = g𝑒 (𝜉𝑒)∨ , (38)

where the 6 × 1 vector 𝜉𝑒 is the tracking error in the relative
velocity:

𝜉𝑒 = [Ω𝑒
V𝑒

] = 𝜉𝑅 − Ad(g𝑒)−1𝜉𝑑. (39)

The time derivative of velocity tracking error 𝜉𝑒 can be
obtained:

�̇�𝑒 = �̇�𝑅 + ad𝜉𝑒Ad(g𝑒)−1𝜉𝑑 − Ad(g𝑒)−1 �̇�𝑑. (40)

According to (35), the dynamics of the 6-DOF orbit-
attitude tracking error can be given by

ISC�̇�𝑒 = ad∗𝜉SC ISC𝜉SC + 𝜏𝑛SC + 𝜏𝑐SC + ISC {ad𝜉𝑒Ad(g𝑒)−1𝜉𝑑
− Ad(g𝑒)−1 �̇�𝑑 + ad𝜉𝑅Ad(g𝑅)−1𝜉RB − Ad(g𝑅)−1 �̇�RB} ,

(41)

where the motion of reference body (gRB(𝑡), 𝜉RB(𝑡), �̇�RB(𝑡))
and the desired relative motion (g𝑑(𝑡), 𝜉𝑑(𝑡), �̇�𝑑(𝑡)) are
known.

By using the following relations,

g𝑅 = g𝑑g𝑒,
gSC = gRBg𝑅,
𝜉𝑅 = 𝜉𝑒 + Ad(g𝑒)−1𝜉𝑑,
𝜉SC = 𝜉𝑅 + Ad(g𝑅)−1𝜉RB,

(42)

(38) and (41) can form complete equations for the tracking
error (g𝑒, 𝜉𝑒) of the 6-DOF relative motion. The goal of the
controller is to achieve g𝑒 → I4×4 and 𝜉𝑒 → 0, where I4×4 is
the 4 × 4 identity matrix.

3.2. Tracking Error in Exponential Coordinates of SE(3). By
using exponential coordinates of SE(3), the tracking error
in configuration space of the orbit-attitude motion can be
denoted by

(𝜂𝑒)∨ = log (g𝑒) = log([A𝑒 r𝑒
0 1]) ∈ se (3) , (43)

where the vector of exponential coordinates 𝜂𝑒 is denoted by

𝜂𝑒 = [Θ𝑒
b𝑒

] ∈ R
6, (44)
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and the corresponding element of the Lie algebra se(3) is
denoted by

(𝜂𝑒)∨ = [(Θ𝑒)× b𝑒
0 0 ] ∈ se (3) . (45)

The specific expressions of the logarithm map log :
SE(3) → se(3) are given by

(Θ𝑒)× = 𝜙2 sin𝜙 [A𝑒 − A𝑇𝑒 ] ,
b𝑒 = A−1 (Θ𝑒) r𝑒,

(46)

where 𝜙 satisfies cos𝜙 = (1/2)[tr(A𝑒) − 1], 𝜙 < 𝜋, and
A−1 (Θ𝑒) = I3×3 − 12 (Θ𝑒)×

+ ( 1𝜙2 − 1 + cos𝜙2𝜙 sin𝜙 ) (Θ𝑒)× (Θ𝑒)× .
(47)

Actually, Θ𝑒 = 𝜙n is the principal rotation vector of attitude
matrix A𝑒; 𝜙 = |Θ𝑒| and unit vector n are the principal
rotation angle and axis, respectively. The logarithmmap log :
SE(3) → se(3) is bijectivewhen the principal rotation angle of
A𝑒 is less than a 𝜋 radian, that is, 𝜙 < 𝜋, but it is not uniquely
defined when 𝜙 is exactly a 𝜋 radian [15].

The kinematics of tracking error of the spacecraft’s rel-
ative motion (38) can be rewritten in terms of exponential
coordinates 𝜂𝑒:

�̇�𝑒 = G (𝜂𝑒) 𝜉𝑒. (48)

The kinematical matrix G(𝜂𝑒) is given by [28]

G (𝜂𝑒) = I6×6 + 12ad𝜂𝑒 + 𝐴 (𝜙) (ad𝜂
𝑒

)2
+ 𝐵 (𝜙) (ad𝜂

𝑒

)4 ,
(49)

where I6×6 is the 6×6 identity matrix:

ad𝜂
𝑒

= [(Θ𝑒)× 0

(b𝑒)× (Θ𝑒)×] , (50)

𝐴 (𝜙) = 2𝜙2 [1 − 𝛼 (𝜙)] + 12𝜙2 [𝛼 (𝜙) − 𝛽 (𝜙)] , (51)

𝐵 (𝜙) = 1𝜙4 [1 − 𝛼 (𝜙)] + 12𝜙4 [𝛼 (𝜙) − 𝛽 (𝜙)] , (52)

𝛼 (𝜙) = 𝜙2 cot(𝜙2) , (53)

𝛽 (𝜙) = [ (𝜙/2)
sin (𝜙/2)]

2 . (54)

Equations (48) and (41) can form complete equations of
motion for the tracking error of spacecraft’s 6-DOF relative
motion in terms of exponential coordinates (𝜂𝑒, 𝜉𝑒). The goal
of the controller is to achieve 𝜂𝑒 → 0 and 𝜉𝑒 → 0.

3.3. Dynamics of Tracking Error as a Second-Order System. In
equations ofmotion (48) and (41), exponential coordinates of
SE(3) are used only on the kinematical level. That is, (48) has
only given the relation between the first-order time derivative
of exponential coordinates and the velocity. In the following,
we will extend exponential coordinates to the dynamical
level, by giving the relation between the second-order time
derivative of exponential coordinates and the acceleration.
This extension is an important improvement compared with
earlier works by Lee et al. [6, 15, 16].

By taking time derivative of both sides of the kinematics
of tracking error (48), we can have the second-order deriva-
tive of exponential coordinates:

�̈�𝑒 = G (𝜂𝑒) �̇�𝑒 + Ġ (𝜂𝑒) 𝜉𝑒, (55)

where, according to (49), Ġ(𝜂𝑒) can be obtained as

Ġ (𝜂𝑒) = 12aḋ𝜂𝑒 + �̇� (𝜙) (ad𝜂
𝑒

)2 + 𝐴 (𝜙) (aḋ𝜂
𝑒

ad𝜂
𝑒

+ ad𝜂
𝑒

aḋ𝜂
𝑒

) + �̇� (𝜙) (ad𝜂
𝑒

)4 + 𝐵 (𝜙) [aḋ𝜂
𝑒

(ad𝜂
𝑒

)3
+ ad𝜂

𝑒

aḋ𝜂
𝑒

(ad𝜂
𝑒

)2 + (ad𝜂
𝑒

)2 aḋ𝜂
𝑒

ad𝜂
𝑒

+ (ad𝜂
𝑒

)3 aḋ𝜂
𝑒

] .

(56)

According to (50), aḋ𝜂
𝑒

in (56) is given by

aḋ𝜂
𝑒

= [
[
(Θ̇𝑒)× 0

(ḃ𝑒)× (Θ̇𝑒)×
]
]

, (57)

where Θ̇𝑒 and ḃ𝑒 are given by (48). By using (51) and (52),�̇�(𝜙) and �̇�(𝜙) in (56) can be derived as

�̇� (𝜙) = 𝑑𝐴𝑑𝜙 𝑑𝜙𝑑𝑡
= 1𝜙3 [32𝛼 (𝜙) + 32𝛽 (𝜙) + 𝛼 (𝜙) 𝛽 (𝜙) − 4] Θ𝑒 ⋅ Θ̇𝑒𝜙 ,

�̇� (𝜙) = 𝑑𝐵𝑑𝜙 𝑑𝜙𝑑𝑡
= 1𝜙5 [32𝛼 (𝜙) + 32𝛽 (𝜙) + 𝛼 (𝜙) 𝛽 (𝜙) − 4] Θ𝑒 ⋅ Θ̇𝑒𝜙 .

(58)

Then, (55) and (41) can form a second-order equation
of tracking error of the 6-DOF relative motion in terms of
exponential coordinates (𝜂𝑒, 𝜉𝑒):

�̈�𝑒 = G (𝜂𝑒) �̇�𝑒 + Ġ (𝜂𝑒) 𝜉𝑒, (59)

where �̇�𝑒, G(𝜂𝑒), and Ġ(𝜂𝑒) are given by (41), (49), and (56),
respectively.

3.4. Integrated Tracking Control Law with Almost Global
Convergence. Based on the dynamics of tracking error of
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the 6-DOF relative motion, appropriate control theories can
be applied, and integrated tracking control laws can be
designed. To show the application potential of our integrated
6-DOF dynamical modeling (59) in terms of exponential
coordinates, a simple integrated tracking control law will be
designed for a demonstration purpose.

Since the exponential coordinates are not uniquely
defined when the rotation angle is exactly a 𝜋 radian, the
controllers can work with almost all initial tracking errors,
except those with a rotation angle of a 𝜋 radian. Because the
set of such initial states is an embedded lower-dimensional
subspace of the state space, the tracking control law designed
in terms of exponential coordinates can achieve almost global
convergence and then is applicable to space missions and
operations in practice.

By using a simple feedback scheme, the continuous track-
ing control law 𝜏𝑐SC for the integrated orbit-attitudemotion of
spacecraft can be designed as

𝜏𝑐SC = −ad∗𝜉SC ISC𝜉SC − 𝜏𝑛SC − ISCG
−1 (𝜂𝑒) [Ġ (𝜂𝑒) 𝜉𝑒

+ K𝑑�̇�𝑒 + K𝑝𝜂𝑒] − ISC {ad𝜉𝑒Ad(g𝑒)−1𝜉𝑑 − Ad(g𝑒)−1 �̇�𝑑

+ ad𝜉𝑅Ad(g𝑅)−1𝜉RB − Ad(g𝑅)−1 �̇�RB} ,
(60)

where the control gains K𝑑 and K𝑝 can be tuned to achieve
desired stability and dynamic performance of the closed-loop
system.

The dynamics of closed-loop system describing tracking
error of the 6-DOF relativemotion is obtained by substituting
the control law (60) into the second-order equation of
tracking error (59):

�̈�𝑒 + K𝑑�̇�𝑒 + K𝑝𝜂𝑒 = 0, (61)

which is a homogeneous linear differential equation with
constant coefficients. By choosing appropriate control gains
K𝑑 and K𝑝 in the control law (60), the tracking error in
configuration space 𝜂𝑒 and its derivative �̇�𝑒 will both converge
to 0 asymptotically, and, according to (48), the tracking error
in velocity 𝜉𝑒 will also converge to 0 asymptotically.

Therefore, with the feedback control law (60), the space-
craft’s 6-DOF relative motion will converge to the desired
trajectory asymptotically from almost all initial tracking
errors, except those with a rotation angle of a 𝜋 radian. Thus,
the control law (60) is an integrated asymptotic tracking
control law with almost global convergence.

4. Body-Fixed Orbit-Attitude Hovering
over an Asteroid

In this section, we will apply integrated dynamical modeling
and tracking control law for the spacecraft’s 6-DOF motion
obtained above to the body-fixed orbit-attitude hovering over
an asteroid.

The body-fixed orbit-attitude hovering means that both
the position and attitude of the spacecraft are kept to be
stationary in the asteroid body-fixed frame [29]. The orbit-
attitude hovering was modeled also in an integrated manner

by Wang and Xu [29] by using the theory of noncanonical
Hamiltonian system within the framework of gravitationally
coupled orbit-attitude dynamics, in which the spacecraft was
considered as a rigid body.Wang andXu [29] have proposed a
noncanonical Hamiltonian structure-based feedback control
law. Here, we will use the asymptotic tracking control law
designed in Section 3.4 to achieve the orbit-attitude hovering
and make comparisons with the controller in Wang and Xu
[29].

4.1. System Description. It is assumed that the center of mass
of the asteroid, that is, the reference body in earlier parts of
the paper, is stationary in the inertial space, and the asteroid
is rotating with a constant angular velocity 𝜔𝑇 around its
maximum-moment principal axis, which is assumed to be
w axis without loss of generality. That is to say, the external
torque and force acting on the asteroid, 𝜏RB, are zeros. Thus,
the 6-DOF dynamics of the reference body can be simplified
as

gRB0 = I4×4,
𝜉RB ≡ [0, 0, 𝜔𝑇, 0, 0, 0]𝑇 ,
�̇�RB = 0.

(62)

To make comparisons with the controller in Wang and
Xu [29], a similar mission scenario is chosen in the following.
The gravity field of the asteroid is approximated by a second
degree and order-gravity field with harmonics 𝐶20 and 𝐶22.
The parameters of the asteroid are chosen to be the same as
in Wang and Xu [29]:

𝜇 = 94m3/s2,
𝐶20 = −0.1,
𝐶22 = 0.04,
𝑎𝑒 = 400m,
𝜔𝑇 = 2.9089 × 10−4 s−1,

(63)

where 𝜇 = 𝐺𝑚RB,𝐺 is the gravitational constant, and 𝑎𝑒 is the
mean equatorial radius of the asteroid.

Since the spacecraft is in the close proximity of the
asteroid and is assumed to have a low area-to-mass ratio,
perturbations of solar gravity and SRP are negligible. Thus,
only the gravitational torque and force by asteroid are
considered in the environmental torque and force 𝜏𝑛SC. That
is to say, 𝜏𝑛SC depends only on the relative configuration of
spacecraft with respect to the asteroid:

𝜏𝑛SC = 𝜏𝑛SC (g𝑅) . (64)

The explicit formulation of 𝜏𝑛SC(g𝑅) is given by [19]

T𝑛SC = 3𝜇𝑅5𝑅R𝑅 × ISCR𝑅,
F𝑛SC = −𝜇𝑚SC𝑅2𝑅 R𝑅 + 3𝜇2𝑅4𝑅 {[5R

𝑇

𝑅ISCR𝑅 − tr (ISC)
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+ 𝜏0𝑚SC (1 − 5 (𝛾𝑅 ⋅ R𝑅)2)
− 10𝜏2𝑚SC ((𝛼𝑅 ⋅ R𝑅)2 − (𝛽𝑅 ⋅ R𝑅)2)]R𝑅
− 2ISCR𝑅 + 2𝜏0𝑚SC (𝛾𝑅 ⋅ R𝑅) 𝛾𝑅
+ 4𝜏2𝑚SC ((𝛼𝑅 ⋅ R𝑅)𝛼𝑅 − (𝛽𝑅 ⋅ R𝑅)𝛽𝑅)} ,

(65)

where R𝑅 = A−1𝑅 r𝑅 is the relative position of the spacecraft
with respect to the asteroid expressed in the body-fixed frame
of spacecraft 𝑆SC, R𝑅 is the unit vector along R𝑅, 𝜏0 =𝑎2𝑒𝐶20, and 𝜏2 = 𝑎2𝑒𝐶22. In the environmental force F𝑛SC,
the perturbation caused by the gravitational orbit-attitude
coupling of the spacecraft has been included [30].

The parameters of spacecraft are chosen as

𝑚SC = 1 × 103 kg,

ISC = [[
[
2 0 0
0 1 0
0 0 1.6

]]
]

× 103 kg⋅m2. (66)

The hovering position-attitude gRH, that is, the relative
configuration of spacecraft at hovering, is chosen to be the
same as in Wang and Xu [29]:

gRH = [ARH rRH
0 1 ] ∈ SE (3) , (67)

where

ARH = [𝛼RH,𝛽RH, 𝛾RH]𝑇 ,
rRH = ARHRRH,
𝛼RH = [0.9659, 0, −0.2588]𝑇 ,
𝛽RH = [0.067, 0.9659, 0.25]𝑇 ,
𝛾RH = [0.25, −0.2588, 0.933]𝑇 ,
RRH = 500 [0.9798, 0, 0.2]𝑇m.

(68)

In the simulation, the desired trajectory (g𝑑(𝑡), 𝜉𝑑(𝑡),
�̇�𝑑(𝑡)) is simply chosen as the desired hovering position-
attitude:

g𝑑 (𝑡) ≡ gRH,
𝜉𝑑 (𝑡) ≡ 0,
�̇�𝑑 (𝑡) ≡ 0.

(69)

A better reference trajectory connecting the initial position-
attitude and the hovering position-attitude, which is easier
to track, can be designed in the future through studies on
the guidance on SE(3), which is not the main concern of this
paper.

The initial relative configuration of spacecraft with
respect to the asteroid g𝑅0 is chosen as

g𝑅0 = [A𝑅0 r𝑅0
0 1 ] ∈ SE (3) , (70)

where

A𝑅0 = ARHL,

L = [[[[[
[

cos(𝜋9 ) − sin(𝜋9 ) 0
sin(𝜋9 ) cos(𝜋9 ) 0

0 0 1

]]]]]
]

[[[[[
[

cos(− 𝜋20) 0 sin(− 𝜋20)0 1 0
− sin(− 𝜋20) 0 cos(− 𝜋20)

]]]]]
]

[[[[[
[

1 0 0
0 cos( 𝜋18) − sin( 𝜋18)
0 sin( 𝜋18) cos( 𝜋18)

]]]]]
]

,

r𝑅0 = rRH + [200, 100, 250]𝑇m.

(71)

The initial relative velocity of spacecraft with respect to
the asteroid 𝜉𝑅0 is chosen as

𝜉𝑅0 = [Ω𝑅0
V𝑅0

] = [−0.06 s−1, 0.05 s−1, 0.09 s−1,

− 1m/s, 2m/s, 1.5m/s]𝑇 .
(72)

In simulations, absolute motions of the spacecraft and
asteroid in the inertial space will be simulated separately.The

relativemotion of spacecraft and its tracking error that appear
in the control lawwill be calculated by using absolutemotions
and the desired trajectory. With this approach, not only the
control law but also the dynamical modeling method can be
verified.

To initiate the simulation of spacecraft’s absolute motion,
the initial configuration of spacecraft in the inertial space can
be calculated by

gSC0 = gRB0g𝑅0, (73)
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Figure 2: Exponential coordinates of attitude tracking error and its
norm.

and the initial velocity of spacecraft in the inertial space can
be calculated by

𝜉SC0 = 𝜉𝑅0 + Ad(g𝑅0)−1𝜉RB0. (74)

The control gains K𝑑 and K𝑝 in the control law (60) are
chosen as

K𝑑 = 0.04I6×6,
K𝑝 = 4 × 10−4I6×6. (75)

The maximum control torque and force that can be
provided by the spacecraft’s control system are set to be
10N⋅m and 10N for each axis, respectively.

4.2. Numerical Simulation Results. The exponential coordi-
nates of the position-attitude tracking error 𝜂𝑒 = [Θ𝑇𝑒 , b𝑇𝑒 ]𝑇
and their norms are shown in Figures 2 and 3, respectively,
and the tracking errors of the spacecraft’s angular velocity
and velocity 𝜉𝑒 = [Ω𝑇𝑒 ,V𝑇𝑒 ]𝑇 are shown in Figures 4 and 5,
respectively. It can be seen that the motion of spacecraft con-
verges to the hovering position-attitude and keepsmotionless
relative to the asteroid after about 900 seconds. The attitude
motion of spacecraft has an error of about 0.026 degrees and 5× 10−4 degree/s within 600 seconds and an error of about 1.5×
10−5 degrees and 3 × 10−7 degree/s within 1000 seconds, while
the orbital motion has an error of about 10m and 0.15m/s
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Figure 3: Exponential coordinates of position tracking error and its
norm.
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Figure 4: Tracking error of the angular velocity of spacecraft.
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Figure 5: Tracking error of the velocity of spacecraft.

within 600 seconds and an error of about 0.05m and 1 ×
10−3m/swithin 1000 seconds.The attitudemotion has a faster
converge than the orbital motion.

The trajectory of spacecraft in the body-fixed frame of
asteroid in Figure 6 shows that it does not approach the
hovering position directly due to the initial velocity error. In
the figure, the hovering position is denoted by the star (∗), the
initial position of spacecraft is denoted by the circle (I), and
the final position of spacecraft is denoted by the pentagram
(f). Notice that the star (∗) is overlapped with the pentagram
(f) and cannot be distinguished.

The components of control torque and force T𝑐SC and F𝑐SC,
both expressed in the spacecraft body-fixed frame 𝑆SC, are
shown in Figures 7 and 8, respectively. The control torque
is within the spacecraft’s control capacity during the whole
trajectory, whereas the thrust saturation of the control force
occurs on all three axes before 600 seconds. Although thrust
saturation occurs for the control force, the controller is still
effective.

As the spacecraft is approaching to the hovering configu-
ration, the control torque and force are converging to values
that are needed to balance the gravitational and centrifugal
torque and force at hovering position-attitude. Since the
gravity gradient torque T𝑛SC is quite small, the control torque
T𝑐SC converges to nearly zero.

Compared with the hovering controller in Wang and Xu
[29], the controller proposed in this paper has not utilized
the Hamiltonian structure of the system. On one hand, the

controller in this paper (60) is much more complicated than
that inWang and Xu [29], which is consisted of two potential
shapings and one energy dissipation. However, on the other
hand, the closed-loop system in this paper is a linear system
and converges much faster than that in Wang and Xu [29],
which is a noncanonical Hamiltonian system with energy
dissipation, oscillating around the hovering position-attitude
for a long duration before the final convergence.

5. Conclusions

The integrated 6-DOF orbit-attitude dynamical modeling
and controller design for the relative motion of spacecraft
with respect to a reference body have been studied in the
framework of geometric mechanics in the present paper. The
configuration and velocity of the relative motion have been
represented by the Lie group SE(3) and also its exponential
coordinates. By using exponential coordinates of SE(3) on the
dynamical level, the dynamics of tracking error have been
formulated as a second-order system with a quite compact
form. A simple asymptotic tracking control law with almost
global convergence was designed for a demonstration pur-
pose. Both the integrated dynamical modeling and control
lawwere verified in an asteroid hoveringmission scenario. To
verify the dynamical modeling method, individual motions
of the spacecraft and asteroid in the inertial space have been
simulated, rather than the equations ofmotion describing the
relative dynamics.
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Figure 6: Trajectory of the spacecraft in the asteroid body-fixed frame.
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