
THE MICROSOFT JOURNAL FOR DEVELOPERS

COLUMNS
CUTTING EDGE
Objects and the Art
of Data Modeling
Dino Esposito page 6

WINDOWS WITH C++
Thread Pool Cancellation
and Cleanup
Kenny Kerr page 12

FORECAST: CLOUDY
The Windows Azure
AppFabric Service Bus: Topics
Joseph Fultz page 16

TEST RUN
Graph Structures
and Maximum Clique
James McCaffrey page 82

UI FRONTIERS
Pages and Pop-ups
in Windows Phone 7
Charles Petzold page 90

DON’T GET ME STARTED
Imagine That
David Platt page 96

OCTOBER 2011 VOL 26 NO 10

ASYCHRONOUS PROGRAMMING
Easier Asynchronous Programming
with the New Visual Studio Async CTP
Eric Lippert . 22
Pause and Play with Await
Mads Torgersen . 28
Async Performance: Understanding
the Costs of Async and Await
Stephen Toub . 34

PLUS:
Securing Access to LightSwitch Applications
Valerie Andersen, Matt Evans, Sheel Shah and Michael Simons 46
Authoring an F#/C# VSIX Project Template
Dan Mohl . 58
Harnessing the Power of the
Dynamics CRM 4.0 API from Silverlight 4
Mark Beckner . 66
Building Information Architecture in SharePoint 2010
Shahram Khosravi . 70

INFRAGISTICS MOTION FRAMEWORK™

Delivering a great user experience in Windows Presentation
Foundation (WPF) and Microsoft Silverlight business intelligence
applications requires more than styling, it requires giving your
application's end users greater insight into the story of their data.

REPORTING, DATA VISUALIZATION AND LOB UI CONTROLS FOR ASP.NET, WINDOWS
FORMS, JQUERY/HTML5, WPF, SILVERLIGHT AND WINDOWS PHONE 7

OLAP PIVOT GRID DATA VISUALIZATION
Work with multidimensional data from your OLAP
cubes, data warehouses and Microsoft® SQL Server®

Analysis Services.

NetAdvantage®

Untitled-7 2 7/8/11 12:22 PM

http://www.infragistics.com/ultimate

TAKE YOUR APPLICATIONS TO THE
NEXT LEVEL WITH OUR TOOLS
INFRAGISTICS.COM/ULTIMATE

SILVERLIGHT DATA
VISUALIZATION
Use the Silverlight Data
Visualization treemap
control to communicate
differences in data points
with different pattern
identifications.

EXPORT TO
MICROSOFT® WORD
New class library can create
Word documents and stream
xamGrid™ contents from
Silverlight to a Word document.

jQUERY
The most robust
and forward-
thinking product
we have based
on emerging Web
technologies
including HTML5
and CSS 3.

CHARTING
Make business charting quick
and easy with fast, interactive,
and vivid visuals across every
.NET platform.

WINDOWS FORMS
GANTT CHARTS
Deliver a Microsoft Project-style user experience to your
users, with the composite tabular/timeline view of your
scheduling data.

ASP.NET GAUGE
Whether it's for a sidebar gadget or an internal
portal such as SharePoint®, gauges play a crucial
role on any dashboard.

Infragistics Sales 800 231 8588 • Infragistics Europe Sales +44 (0) 800 298 9055 • Infragistics India +91 80 4151 8042 • @infragistics

SCAN HERE
for an exclusive
look at Ultimate!
www.infragistics.com/ult

WINDOWS PHONE 7
Visually and functionally
designed to build eye-
catching, high-end user
experiences that take your
mobile applications to the
next level on the Microsoft®
Windows Phone® 7.

Untitled-7 3 7/8/11 12:22 PM

http://www.infragistics.com/ult
http://www.infragistics.com/ultimate
http://www.infragistics.com/ultimate

magazine

Printed in the USA

LUCINDA ROWLEY Director
KIT GEORGE Editorial Director/mmeditor@microsoft.com
PATRICK O’NEILL Site Manager

MICHAEL DESMOND Editor in Chief/mmeditor@microsoft.com
DAVID RAMEL Technical Editor
SHARON TERDEMAN Features Editor
WENDY GONCHAR Managing Editor
KATRINA CARRASCO Associate Managing Editor

SCOTT SHULTZ Creative Director
JOSHUA GOULD Art Director

CONTRIBUTING EDITORS Dino Esposito, Joseph Fultz,
Kenny Kerr, Julie Lerman, Dr. James McCaffrey, Ted Neward,
Charles Petzold, David S. Platt

Henry Allain President, Redmond Media Group
Matt Morollo Vice President, Publishing
Doug Barney Vice President, Editorial Director
Michele Imgrund Director, Marketing
Tracy Cook Online Marketing Director

ADVERTISING SALES: 508-532-1418/mmorollo@1105media.com

Matt Morollo VP, Publishing
Chris Kourtoglou Regional Sales Manager
William Smith National Accounts Director
Danna Vedder Microsoft Account Manager
Jenny Hernandez-Asandas Director Print Production
Serena Barnes Production Coordinator/msdnadproduction@1105media.com

Neal Vitale President & Chief Executive Offi cer
Richard Vitale Senior Vice President & Chief Financial Offi cer
Michael J. Valenti Executive Vice President

Abraham M. Langer Senior Vice President, Audience Development & Digital Media
Christopher M. Coates Vice President, Finance & Administration
Erik A. Lindgren Vice President, Information Technology & Application Development
Carmel McDonagh Vice President, Attendee Marketing
David F. Myers Vice President, Event Operations

Jeffrey S. Klein Chairman of the Board

MSDN Magazine (ISSN 1528-4859) is published monthly by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offi ces. Annual subscription rates payable in US funds are: U.S. $35.00, International
$60.00. Annual digital subscription rates payable in U.S. funds are: U.S. $25.00, International $25.00.
Single copies/back issues: U.S. $10, all others $12. Send orders with payment to: MSDN Magazine,
P.O. Box 3167, Carol Stream, IL 60132, email MSDNmag@1105service.com or call (847) 763-9560.
POSTMASTER: Send address changes to MSDN Magazine, P.O. Box 2166, Skokie, IL 60076. Canada
Publications Mail Agreement No: 40612608. Return Undeliverable Canadian Addresses to Circulation
Dept. or XPO Returns: P.O. Box 201, Richmond Hill, ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part prohibited except by written permission. Mail
requests to “Permissions Editor,” c/o MSDN Magazine, 4 Venture, Suite 150, Irvine, CA 92618.

Legal Disclaimer: The information in this magazine has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy,
there is no guarantee that the same or similar results may be achieved in all environments. Technical
inaccuracies may result from printing errors and/or new developments in the industry.

Corporate Address: 1105 Media, Inc., 9201 Oakdale Ave., Ste 101, Chatsworth, CA 91311, www.1105media.com

Media Kits: Direct your Media Kit requests to Matt Morollo, VP Publishing, 508-532-1418 (phone),
508-875-6622 (fax), mmorollo@1105media.com

Reprints: For single article reprints (in minimum quantities of 250-500), e-prints, plaques and posters contact:
PARS International, Phone: 212-221-9595, E-mail: 1105reprints@parsintl.com, www.magreprints.com/
QuickQuote.asp

List Rental: This publication’s subscriber list, as well as other lists from 1105 Media, Inc., is available
for rental. For more information, please contact our list manager, Merit Direct. Phone: 914-368-1000;
E-mail: 1105media@meritdirect.com; Web: www.meritdirect.com/1105

All customer service inquiries should be sent to MSDNmag@1105service.com or call 847-763-9560.

OCTOBER 2011 VOLUME 26 NUMBER 10

mailto:mmeditor@microsoft.com
mailto:mmeditor@microsoft.com
mailto:508-532-1418/mmorollo@1105media.com
mailto:msdnadproduction@1105media.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:mmorollo@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:1105media@meritdirect.com
http://www.meritdirect.com/1105
mailto:MSDNmag@1105service.com
www.dtSearch.com

Prices subject to change. Not responsible for typographical errors.

Win an iPad!

Programmer’s Paradise has a new name: TechXtend!

NO PURCHASE NECESSARY. Use offer code WEBTRW10 when you place your order online or with your TechXtend/
Programmer’s Paradise representative and you’ll automatically be entered into a drawing to win an iPad Wi-Fi 32GB.

For official rules, or to complete the online entry form: www.techxtend.com/tradewinds

techxtend.com

For nearly 30 years, Programmer’s Paradise has served the software development and IT communities with the
best selection of software, terrific values and a commitment to service excellence.

30 years... much has changed in that time!

However, one thing that won’t ever change is that we will still be your “go to” source for software developer
tools — AND you'll also be able to depend on TechXtend for all of your other IT needs.

Learn more about our new name: www.techxtend.com/techxtend

techxtend.com/textcontrol

Download a demo today.

Professional Edition
TechXtend #

T79 12101A01
$1,109.99

• .NET WinForms and WPF rich
text box for VB.NET and C#

• ActiveX for VB6, Delphi, VBScript/HTML, ASP
• File formats DOCX, DOC, RTF, HTML,

XML, TXT
• PDF and PDF/A export, PDF text import
• Tables, headers & footers, text frames,

bullets, structured numbered lists, multiple
undo/redo, sections, merge fields, columns

• Ready-to-use toolbars and dialog boxes

TX Text Control 16.0
Word Processing Components
TX Text Control is royalty-free, robust and
powerful word processing software
in reusable component form. New

Version
Released!

techxtend.com/embarcadero

Embarcadero RAD Studio XE2
The ultimate application development suite
for Windows, Mac, mobile and Web

by Embarcadero
Embarcadero® RAD Studio XE2 is the ultimate
application development suite and the fastest
way to build data-rich, visually engaging
applications for Windows, Mac, mobile,
.NET, PHP and the Web. RAD Studio includes
Delphi®, C++Builder® and RadPHP™, enabling
developers to deliver applications up to 5x
faster across multiple desktop, mobile, Web,
and database platforms including Delphi
applications for 64-bit Windows.

Professional Ed.
TechXtend #
CGI 15501A01
$1,383.99

TechXtend #
V55 22301A04
$149.99

techxtend.com/lenovo

Lenovo ThinkPad X220
by Lenovo
The ThinkPad X220 features the quality
and performance Lenovo users have
come to expect and increased audio,
video and communications features that
respond to the increased use of laptops
as a multimedia and communications
tools in business. The ultra-portable
ThinkPad X220 comes equipped with a
full-powered Intel processor with outstand-
ing graphic performance. ThinkPad has
improved on full-size keyboard design and
nimble TrackPoint by adding an advanced
buttonless touchpad.

TechXtend #
ZHI GF0818

$1,362.99

techxtend.com/idm

UltraEdit
The world’s #1 text editing solution
is also the world’s most affordable!

by IDM Computer Solutions
UltraEdit is the world’s standard in text
editors. Millions use UltraEdit as the ideal
text/hex/programmers editor on any
platform — Windows, Mac, or Linux!

Features include syntax highlighting
for nearly any programming language;
powerful Find, Replace, Find in Files,
and Replace in Files; FTP support, sort,
column mode, hex, macros/scripting,
large file handling (4+ GB), projects,
templates, Unicode, and more.

Named User
1-24 Users

TechXtend #
I84 01201A01

$59.95

techxtend.com/microsoft

Upgrade
TechXtend #
M47 40201B02
$478.99

Microsoft Visual Studio
Professional 2010
by Microsoft
Microsoft Visual Studio 2010 Professional with
MSDN Essentials Subscription is an integrated
environment that simplifies creating, debugging
and deploying applications. Unleash your
creativity and bring your vision to life with
powerful design surfaces and innovative
collaboration methods for developers and
designers. Work within a personalized environ-
ment, targeting a growing number of platforms,
including Microsoft SharePoint and cloud
applications and accelerate the coding process
by using your existing skills.

techxtend.com/vSphere

VMware vSphere 5
Essentials Kit Bundle
VMware vSphere is the industry-leading
virtualization platform for building cloud
infrastructures that enables users to run
business critical applications with
confidence and respond faster to
their business.

vSphere accelerates the shift to cloud
computing for existing datacenters, while
also underpinning compatible public cloud
offerings paving the way for the only
hybrid cloud model. With over 250,000
customers worldwide and the support of
over 2500 applications from more than
1400 ISV partners, VMware vSphere is
the trusted platform for any application.

CALL

NEW
VERSION

5!

NEW
VERSION!

TechXtend #
ZHI DQ1077

$28.99

techxtend.com/kingston

Kingston DataTraveler G3
16 GB Flash Drive
by Kingston Technology
The new generation of a Kingston
best-seller is here! With capacities up
to 32GB, the reliable DataTraveler Generation 3
(G3) is ideal for your important documents,
music, video clips and favorite photos that can
be stored and retrieved in a flash.

Available in four fun colors by capacity, it’s a
perfect fit for the office, home, school and
wherever you travel. A well-built cap protects
the USB plug and your data. DataTraveler G3
also makes a great promotional item for
your organization.

techxtend.com/zemana

TechXtend #
Z0B 01101G01

$10.42

Zemana Antilogger
by Zemana LLC
Stop hackers now! Zemana AntiLogger has a
unique technology that detects when malware
runs on your computer, and shuts it down —-
before it can steal your identity or hurt your
computer. It doesn’t slow your computer down
like those old-fashioned antivirus programs
that rely on virus signature updates and file
scanning in order to prevent malware attacks.
Zemana AntiLogger eliminates threats from
keyloggers, SSL banker trojans, spyware,
and more! Plus, you can use Zemana
AntiLogger seamlessly, as an important
extra layer of security, in harmony with
almost any antivirus or firewall software.

VMware Workstation 7
for Linux & Windows
The world’s #1 text editing solution
is also the world’s most affordable!

by VMware
Winner of more than 50 industry awards,
VMware Workstation transforms the way technical
professionals develop, test, demo, and deploy
software. Innovative features help software
developers, QA engineers, sales professionals,
and IT administrators to reduce hardware cost,
save time, minimize risk, and streamline tasks
that save time and improve productivity.

Software, Systems, & Solutions – Since 1982

866-719-1528

ActiveReports 6
by GrapeCity PowerTools

The de facto standard reporting tool
for Microsoft Visual Studio .NET

• Fast and Flexible reporting engine
• Flexible event-driven API to completely

control the rendering of reports
• Wide range of Export and Preview formats

including Windows Forms Viewer, Web
Viewer, Adobe Flash and PDF

• XCopy deployment
• Royalty-Free Licensing for Web and

Windows applications

Professional Ed.
TechXtend #
D03 04301A01

$1,310.99

NEW
VERSION

6!

techxtend.com/grapecity

techxtend.com/vmware

Untitled-1 1 8/30/11 12:07 PM

http://www.techxtend.com/tradewinds
http://www.techxtend.com/techxtend
http://www.techxtend.com
http://www.techxtend.com

msdn magazine4

dynamic programming, and most recently asynchronous program-
ming. As Lisa Feigenbaum, program manager in the Visual Studio
group at Microsoft , explains, the eff ort was made to incorporate
these capabilities in ways that “best fi t the style of each language.”

“For example, dynamic language interop was added to Visual
Basic by taking advantage of the late binding constructs that were
already part of the language. Furthermore, in C# we added a static
type, called dynamic,” Feigenbaum says. “Speaking of functional
programming, when adding lambdas to Visual Basic, we used the
familiar keyword syntax with Sub/End Sub and Function/End Func-
tion. However, for C#, which is less verbose, we used symbols to
design the syntax with ‘=>’. Th ese designs help each language preserve
its original character and remain familiar to developers as it grows.”

Adding significant new functionality to a programming
language is never a trivial matter. Feigenbaum describes language
design as a “very conservative process,” emphasizing that features
are not added until they’re exactly right. In the case of async, the
new functionality is built on foundations introduced with the last
version of the .NET Framework.

“For example, the Visual Studio vNext async designs build upon
the Task type that was added to the .NET Framework in .NET 4,”
says Feigenbaum. “Using that foundation, as well as additional
Framework support that’s being added in the next version, we
were ultimately able to design a very elegant language syntax that
we were happy with for async in Visual Studio vNext.”

Today, developers can work with the Async CTP to become
familiar with the new resources coming to C# and Visual Basic. In
the meantime, Torgersen says developers can do one thing to best
prepare for the age of async: become Task-based.

“Even on .NET 4, the Task types are a much better currency for
asynchronous activity than the older patterns we have. You still
need to be callback-based because you don’t have the language
support, but in a more elegant way. And having all your signatures
follow the new Task-based pattern will prepare you beautifully
for the day when you can con-
sume those with just a simple
‘await’ expression.”

Thinkin’ About Async
Th is month MSDN Magazine explores the powerful new asynchro-
nous programming features coming to the next versions of C#,
Visual Basic and the Microsoft .NET Framework. Available today
via the Visual Studio Async CTP, the new functionality helps
resolve one of the biggest emerging headaches in the age of
multicore systems and cloud computing: the penalties incurred
when threads are blocked waiting for things like data to return from
a remote server or a computation on another thread to complete.

I spoke with Mads Torgersen, author of one of this month’s
features on asynchronous programming and a principal program
manager on the C# and Visual Basic Language team at Microsoft . He
notes that almost every application is becoming connected and that
latency is emerging as “a central problem to code around.” So why
didn’t we see async support in the .NET Framework 4?

“At the point where the feature set was locked down for that
release, we didn’t have a serious grasp on what such a language
feature should look like,” says Torgersen. “However, F# shipped
at the same time with an asynchronous language feature that
ended up inspiring us a lot. By the time we shipped C# 4 and Visual
Basic 10, we were seeing mounting evidence that asynchrony should
be next in line, and that it was a problem that really needed to be
solved at the language level.”

Torgersen describes the core implementation approach as quite
simple. Th e solution was to “pause and resume” the execution of
code in fl ight. Rather than chop up generated code into separate
bits, the team used a technique to “parachute in” to the proper spot
in the user’s code. Th e approach provides the benefi t of retaining
the structure of the original source code—and the results are hard
to argue with.

“We’ve had a surprisingly small bug tail of inconsistencies,”
Torgersen says.

Async Evolution
Th e new asynchronous programming features in C# and Visual
Basic mark the latest in a series of important evolutionary steps for
Microsoft ’s fl agship managed programming languages. Over the
past few years, the languages have taken on aspects of functional and

EDITOR’S NOTE

© 2011 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodifi ed form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affi liated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specifi c environments and confi gurations. These recommendations or guidelines may not apply to dissimilar confi gurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN, and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

MICHAEL DESMOND

mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine

Untitled-1 1 9/8/11 11:55 AM

www.axosoft.com

msdn magazine6

of persistence details. Th e ORM exposes a query language (LINQ
to Entities), transactional semantics (the xxxContext objects in the
EF) and a basic create, read, update and delete (CRUD) API that
supports concurrency, lazy loading and fetch plans.

So you have the model, and you know how to persist it and
how to query information from it. Is this a model you can use
everywhere in your application? More specifi cally, is this a model
you can effectively bring up to the presentation layer? This is a
really sore point where theory and practice differ substantially,
context is king and uncertainty (when not really confusion) reigns.
Let me off er a concrete example bound to the popular ASP.NET
MVC technology. The only reason I’m using ASP.NET MVC
instead of, say, Silverlight, is that ASP.NET MVC has the word Model
in the name (the M in MVC)—and I’ve been asked too many times
in classes and conferences about the exact location of the “model”
in an ASP.NET MVC application.

Today, even aft er three versions, too many tutorials on ASP.NET
MVC insist on using just one model for queries, updates and
presentation. Many tutorials also keep the defi nition of the model
inside the main project. It works, so where’s the problem? The
problem isn’t with the solution, which works, is eff ective, and is
something I’ve oft en used myself and plan to keep using. Th ere’s
actually a set of real-world, but simple and relatively short-lived
applications (not just demos and tutorials), that can be developed
with simple patterns. Th e problem of using just one model is with
the message it transmits to the primary consumers of tutorials:
developers looking to learn a technology. Having just one model
in just one place suggests it’s the preferred (if not recommended)
way of doing things. It is, instead, just a special case—a very simple
and favorable scenario. If the real scenario you’ll actually work in
matches that, you’re more than fi ne. Otherwise, you’re stuck and
ready to grow your fi rst “big ball of mud” bigger and bigger.

 Objects and the Art of Data Modeling

Many of today’s apps are built around a single data model, typically
persisted to a data store via an object-relational mapper (ORM)
tool. But sometimes—for several diff erent reasons—you may need
more fl exibility, which requires multiple models. In this article, I’ll
discuss some strategies you can use to handle these situations and
develop more layered and robust applications.

Using diff erent models clearly makes the whole application more
complex, but it’s a sort of necessary, positive complexity that makes
the whole project more manageable. Understanding when one model
of data just doesn’t fi t all use cases is the challenge for the architect.

Diff erent parts of a soft ware application may have their own
model of data. Th e way in which you represent data at the UI level
is diff erent from the way in which you organize data in the middle
tier, and it may be even diff erent from how the data is physically
persisted in some data store.

But, for many years, developers used just one model of data,
regardless of the part of the application involved. Many of us
have grown with relational databases and their related modeling
techniques. It was natural to spend a lot of eff ort in elaborating a
model based on relations and normalization rules. Any data stored
in a relational database was then extracted and moved around using
memory structures similar to an in-memory database. Record
Set is the name of this generic data pattern (see bit.ly/nQnyaf); the
ADO.NET DataSet was an excellent implementation of it.

Th e table-based approach was progressively pushed to the corner
by the growing complexity of applications. ORM tools emerged for
two main pragmatic reasons. First, working with objects is easier
than dealing with generic super-arrays of data such as a recordset.
Th e second reason is productivity. Th e goal of an ORM is taking
an object model and mapping it to a relational schema. By using
an ORM, you essentially make the object model look like the real
database to the application’s eyes.

How do you design this model? And should you really use just
one model for each application? Let’s fi nd out.

One Model Doesn’t Always Fit All
Th e recent release of the Entity Framework (EF) 4.1 included sup-
port for “Code First” programming, which, as the name implies, lets
Microsoft .NET Framework developers take a code-fi rst approach
to data modeling. Th is basically means that you begin by writing the
Plain Old CLR Object (POCO) classes that model the domain of
the application. Th e second step consists of mapping these classes
to some persistent store and having the ORM tool (the EF) take care

CUTTING EDGE DINO ESPOSITO

Understanding when one
model of data just doesn’t fi t
all use cases is the challenge

for the architect.

http://bit.ly/nQnyaf

Untitled-1 1 9/8/11 11:58 AM

www.telerik.com/happycustomers

msdn magazine8 Cutting Edge

A More General
Architecture
Let’s begin by using slightly diff er-
ent names. Let’s call the model of
data that you persist the domain
model and call the data you man-
age in the view the view model.
I should mention that domain
model isn’t exactly a neutral term
in soft ware, as it refers to an object
model designed according to a
number of additional rules. In the
scope of this article, I’m not using
the meaning that results from the
Domain-Driven Design (DDD)
methodology. For me, here, the
domain model is simply the object
model you persist—entity model
might be another equivalent—and less confusing—term.

You use the classes in the entity model in the back end of the
application; you use the classes in the view model in the presenta-
tion layer. Note, however, that in ASP.NET MVC, the presentation
layer is the controller. Th e controller should receive data ready for
the UI. Th e middle-tier components receive and return view model
objects and internally use entity objects. Figure 1 shows the web
of dependencies in a typical multilayered project.

The presentation (that is, the codebehind or controller class)
references the application logic, namely a component that imple-
ments the application’s use cases. Th e application logic technically
belongs to the business layer or tier, and in very simple cases
may be merged with the presentation. Th is is what happens in
some tutorials that are either too simple to really feel the need for
isolating application logic in its own layer, or poorly designed and
splitting application logic between the presentation and the data
access layer (DAL).

The application logic assembly implements the service layer
pattern and decouples two interfacing layers: presentation and
data. Th e application logic references both the entity model (your
domain classes) and the DAL. Th e application logic orchestrates
the DAL, domain classes and services to pursue the expected
behavior. Th e application logic communicates with the presenta-
tion layer through view model objects and communicates with
the DAL through domain objects. Th e DAL, in turn, references
the model and the ORM assembly.

A Few Words on the Entity Framework
Let’s examine this architecture, assuming the EF as the ORM. Th e
EF isn’t simply an ORM, but as its name suggests, it does the typical
work of an ORM, plus off ering a framework for creating a model.
Nice idea, but it shouldn’t be forgotten that we’re straddling two
distinct layers—business and the DAL. Th e classes are business; the
persistence engine is the DAL. For the EF, the persistence engine (the
ORM assembly) is system.data.entity and its dependencies, includ-
ing the ObjectContext class. Put another way, unless you use POCO
classes and Code First, you’ll likely end up with a domain model

that has a dependency on the ORM. A domain model should use
POCO—that is, among other things, it should be a self-contained
assembly. An interesting thread on this topic exists on Stack
Overfl ow at bit.ly/mUs6cv. For more details on how to split entities from
context in the EF, see the ADO.NET team blog entries, “Walkthrough:
POCO Template for the Entity Framework” (bit.ly/bDcUoN) and “EF 4.1
Model & Database First Walkthrough” (b it.ly/hufcWN).

From this analysis, it seems that the POCO attribute is essential
for domain classes. POCO, of course, indicates a class with no
dependencies outside its own assembly. POCO is about simplicity
and is never wrong. Not going the POCO way means having forms
of tight coupling between layers. Tight coupling isn’t poisonous
and doesn’t kill you instantly, but it can take your project to a slow
death. Check out my column about soft ware disasters in last month’s
issue (msdn.microsoft.com/magazine/hh394145).

What’s the Model?
When you create an object model, you create a library of classes. You
can organize your object model according to a number of patterns,
but essentially it boils down to choosing between a table-oriented
approach and an object-oriented approach.

How do you devise your classes? Which capabilities should they
feature? In particular, should your classes be aware of the database?
Should they include logic (that is, methods) or be limited to just
exposing properties? Th ere are two main patterns you can refer to:
Active Record and Domain Model.

In the Active Record pattern, your classes are closely modeled
aft er database tables. You mostly have one class per table and one

Figure 1 Connections Among Layers

References

References

References

References

Presentation
Layer

Assembly

Application
Logic

Assembly

View Model Objects

References

Domain Model
Assembly

CustomerRepository

References

References

DAL Assembly

CustomerRepository

ORM Assembly

References

References

A domain model should use
POCO—that is, among other

things, it should be a
self-contained assembly.

http://bit.ly/bDcUoN
http://bit.ly/hufcWN
http://msdn.microsoft.com/magazine/hh394145

Untitled-1 1 9/8/11 11:58 AM

www.telerik.com/happycustomers

msdn magazine10 Cutting Edge

property per column. More importantly, classes are responsible for
their own persistence and their own simple, minimal domain logic.

According to the Domain Model pattern, your classes are aimed
at providing a conceptual view of the problem’s domain. These
classes have no relationships with the database and have both
properties and methods. Finally, these classes aren’t responsible for
their own persistence. If you opt for a Domain Model approach,
persistence has to be delegated to a distinct layer—the DAL.
You can write this layer yourself, but it wouldn’t be much fun. A
well-done DAL for a library designed according to the Domain
Model pattern is nearly the same as an ORM tool. So why not use
one of the existing ORM tools?

Especially if you use the automatic code generator, the EF gets
you an object model made of classes that have only properties.
The pattern used certainly isn’t Active Record, but classes have
no methods by default. Fortunately, classes are marked as partial,
which makes it possible for you to shape up a much richer domain
model by adding logic through partial classes. If you choose the
Code First approach, you’re then entirely responsible for writing
the source code of your classes from start to fi nish.

Classes in an object model that only feature properties are oft en
referred to as an anemic domain model.

Repositories
A good practice that’s gaining well-deserved popularity is wrap-
ping data access code in façade classes known as repositories. A
repository consists of an interface and an implementation class.
You typically have a repository for each significant class in the
model. A signifi cant class in an object model is a class that controls

its own persistence and stands on its own in the domain without
depending on other classes. In general, for example, Customer
is a signifi cant class, whereas OrderDetails is not, because you’ll
always use order details if you have an order. In DDD, a signifi cant
class is said to be an aggregate root.

To improve the design, you can establish a dependency between
application logic and the DAL through repository interfaces.
Actual repositories can then be injected in the application logic as
appropriate. Figure 2 shows the resulting architecture where the
DAL is based on repositories.

Repositories enable dependency injection in the DAL because
you can easily unplug the current module that provides persis-
tence logic and replace it with your own. Th is is certainly benefi cial
for testability, but it isn’t limited to that. An architecture based on
repositories allows mocking the DAL and testing the application
logic in isolation.

Repositories also represent an excellent extensibility point for
your applications. By replacing the repository, you can replace
the persistence engine in a way that’s transparent to the rest of
the layers. Th e point here isn’t so much about switching from, say,
Oracle to SQL Server, because this level of flexibility is already
provided by ORM tools. Th e point here is being able to switch from
the current implementation of the DAL to something diff erent such
as a cloud API, Dynamics CRM, a NoSQL solution and the like.

What Repositories Should Not Be
A repository is part of the DAL; as such, it isn’t supposed to know
about the application logic. Th is may be too obvious a statement,
but a type of architecture diagram I see quite oft en these days is
based on presentation and repositories.

If your actual logic is thin and simple—or is essentially CRUD—
then this diagram is more than OK. But what if that’s not the case? If
so, you defi nitely need a place in the middle where you deploy your
application logic. And, trust me, I’ve seen only a few applications that
are just CRUD in my career. But probably I’m just not a lucky man …

Clarifying Obscurity
Wrapping up, nowadays applications tend to be designed around
a model of data that an ORM tool then persists to some data store.
Th is is fi ne for the back end of the application, but don’t be too
surprised if the UI requires you to deal with signifi cantly diff erent
aggregates of data that just don’t exist in the original model. Th ese
new data types that exist for the sole purpose of the UI must
be created. And they end up forming an entirely parallel object
model: the view model. If you reduce these two models to just one,
then by all means stick to that and be happy. If not, hopefully this
article clarifi ed some obscure points.

DINO ESPOSITO is the author of “Programming Microsoft ASP.NET MVC3”
(Microsoft Press, 2011) and coauthor of “Microsoft .NET: Architecting Appli-
cations for the Enterprise” (Microsoft Press, 2008). Based in Italy, Esposito is a
frequent speaker at industry events worldwide. You can follow him on Twitter
at twitter.com/despos.

THANKS to the following technical experts for reviewing this article:
Andrea Saltarello and Diego Vega

Figure 2 Using Repositories in the DAL

Fake DAL ORM

Service Layer DAL

Repository
Interfaces

ProductServices

OrderServices

CustomerServices

<< uses >><< uses >>

To improve the design, you can
establish a dependency between

application logic and the DAL
through repository interfaces.

www.twitter.com/despos

Untitled-1 1 9/8/11 11:59 AM

www.telerik.com/happycustomers

msdn magazine12

run time. Th e unique_handle class template I introduced in my
July 2011 column (msdn.microsoft.com/magazine/hh288076) takes care of
these details with the help of a cleanup-group-specifi c traits class:

struct cleanup_group_traits
{
 static PTP_CLEANUP_GROUP invalid() throw()
 {
 return nullptr;
 }

 static void close(PTP_CLEANUP_GROUP value) throw()
 {
 CloseThreadpoolCleanupGroup(value);
 }
};

typedef unique_handle<PTP_CLEANUP_GROUP, cleanup_group_traits> cleanup_group;

I can now use the convenient typedef and create a cleanup group
object as follows:

cleanup_group cg(CreateThreadpoolCleanupGroup());
check_bool(cg);

As with private pools and callback priorities, a cleanup group
is associated with various callback-generating objects by means
of an environment object. First, update the environment to
indicate the cleanup group that will manage the lifetime of objects
and their callbacks, like this:

environment e;
SetThreadpoolCallbackCleanupGroup(e.get(), cg.get(), nullptr);

At this point, you can add objects to the cleanup group that are
then referred to as members of the cleanup group. Th ese objects
can also be individually removed from the cleanup group, but it’s
more common to close all members in a single operation.

A work object can become a member of a cleanup group at
creation time simply by providing the updated environment to the
CreateTh readpoolWork function:

auto w = CreateThreadpoolWork(work_callback, nullptr, e.get());
check_bool(nullptr != w);

Notice that I didn’t use a unique_handle this time. Th e newly
created work object is now a member of the environment’s cleanup
group and its lifetime need not be tracked directly using RAII.

You can revoke the work object’s membership only by closing it,
which can be done on an individual basis with the CloseTh read-
poolWork function. Th e thread pool knows that the work object
is a member of the cleanup group and revokes its membership be-
fore closing it. Th is ensures that the application doesn’t crash when
the cleanup group later attempts to close all of its members. Th e
inverse isn’t true: If you fi rst instruct the cleanup group to close all
of its members and then call CloseTh readpoolWork on the now
invalid work object, your application will crash.

Thread Pool Cancellation and Cleanup

Cancellation and cleanup are notoriously difficult problems to
solve when it comes to multithreaded applications. When is it safe
to close a handle? Does it matter which thread cancels an opera-
tion? To make matters worse, some multithreaded APIs are not
reentrant, potentially improving performance but also adding
complexity for the developer.

I introduced the thread pool environment in last month’s
column (msdn.microsoft.com/magazine/hh394144). One critical feature this
environment enables is cleanup groups, and that’s what I’ll focus
on here. Cleanup groups don’t attempt to solve all of the world’s
cancellation and cleanup problems. What they do is make the
thread pool’s objects and callbacks more manageable, and this can
indirectly help to simplify the cancellation and cleanup of other
APIs and resources as needed.

So far, I’ve only shown you how to use the unique_handle class
template to automatically close work objects via the CloseTh readpool-
Work function. (See the August 2011 column at msdn.microsoft.com/
magazine/hh335066 for the details.) Th ere are some limitations with
this approach, however. If you want a say in whether pending
callbacks are canceled or not, you need to call WaitForTh readpool-
WorkCallbacks fi rst. Th at makes two function calls multiplied by
the number of callback-generating objects in use by your applica-
tion. If you opt to use TrySubmitTh readpoolCallback, you don’t
even get the opportunity to do so and are left wondering how to
cancel or wait for the resulting callback. Of course, a real-world
application will likely have far more than just work objects. In
next month’s column, I’ll start introducing the other thread pool
objects that produce callbacks, from timers to I/O to waitable
objects. Coordinating the cancellation and cleanup of all of these
can quickly become a nightmare. Fortunately, cleanup groups solve
these problems and more.

Th e CreateTh readpoolCleanupGroup function creates a cleanup
group object. If the function succeeds, it returns an opaque pointer
representing the cleanup group object. If it fails, it returns a null
pointer value and provides more information via the GetLastError
function. Given a cleanup group object, the CloseThreadpool-
CleanupGroup function instructs the thread pool that the object
may be released. I’ve mentioned this before in passing, but it bears
repeating—the thread pool API does not tolerate invalid arguments.
Calling CloseTh readpoolCleanupGroup or any of the other API
functions with an invalid, previously closed or null pointer value
will cause your application to crash. Th ese are defects introduced
by the programmer and should not require additional checks at

WINDOWS WITH C++ KENNY KERR

http://msdn.microsoft.com/magazine/hh394144
http://msdn.microsoft.com/magazine/hh335066
http://msdn.microsoft.com/magazine/hh335066
http://msdn.microsoft.com/magazine/hh288076

The Altova MissionKit includes

multiple intelligent tools for data integration:

Experience how the Altova MissionKit®, the integrated

suite of XML, data mapping, and database tools, can

help you leverage existing technology and business

software investments while integrating modern

technologies – without breaking your budget.

Connect legacy

technologies

affordably with the

complete set of data

integration tools from Altova®

MapForce® – Graphical data mapping,

transformation, & conversion tool

 Drag-and-drop data conversion with instant

 transformation & code gen

 Support for mapping XML, DBs, EDI,

 Excel®2007+, XBRL, flat files & Web services

XMLSpy® – XML editor and Web services tool

 XML editor with strong database integration

 Web services tool, JSON <> XML converter

 DatabaseSpy® – multi-database query,

 design, comparison tool

 Support for all major relational databases

 and translation between DB types

 SQL editor, graphical database design

 & content editor

NEW in Version 2011:

Instant chart generation
 to analyze XML and
 database data

StyleVision® integration
 in MapForce for report
 creation

XML digital signatures

Data streaming for ETL

Support for IATA PADIS
 & HIPAA EDI

SOAP validation
 against WSDL

Download a 30 day free trial!

Try before you buy with a free, fully

functional trial from www.altova.com

Scan with your smart-

phone to learn more

about these products

Untitled-1 1 8/30/11 12:06 PM

http://www.altova.com

msdn magazine14 Windows with C++

Of course, the whole point of a cleanup group is to free the application
from having to individually close all of the various callback-generating
objects it happens to be using. More importantly, it allows the appli-
cation to wait for and optionally cancel any outstanding callbacks
in a single wait operation rather than having to have an application
thread wait and resume repeatedly. Th e CloseTh readpoolCleanup-
GroupMembers function provides all of these services and more:

bool cancel = ...
CloseThreadpoolCleanupGroupMembers(cg.get(), cancel, nullptr);

Th is function might appear simple, but in reality it performs a
number of important duties as an aggregate on all of its members.
First, depending on the value of the second parameter, it cancels
any pending callbacks that haven’t yet begun to execute. Next, it
waits for any callbacks that have already begun to execute and,
optionally, any pending callbacks if you chose not to cancel them.
Finally, it closes all of its member objects.

Some have likened cleanup groups to garbage collection, but I
think this is a misleading metaphor. If anything, a cleanup group
is more like a Standard Template Library (STL) container of
callback-generating objects. Objects added to a group will not be
automatically closed for any reason. If you fail to call CloseTh read-
poolCleanupGroupMembers, your application will leak memory.
Calling CloseTh readpoolCleanupGroup to close the group itself
won’t help either. You should instead just think of a cleanup group
as a way of managing the lifetime and concurrency of a group of
objects. You can, of course, create multiple cleanup groups in your
application to manage diff erent groups of objects individually. It’s an
incredibly useful abstraction—but it’s not magic, and care must be
taken to use it correctly. Consider the following faulty pseudo-code:

environment e;
SetThreadpoolCallbackCleanupGroup(e.get(), cg.get(), nullptr);

while (app is running)
{
 SubmitThreadpoolWork(CreateThreadpoolWork(work_callback, nullptr, e.get()));

 // Rest of application.
}

CloseThreadpoolCleanupGroupMembers(cg.get(), true, nullptr);

Predictably, this code will use an unbounded amount of memory
and will get slower and slower as system resources are exhausted.

In my August 2011 column, I demonstrated that the seemingly
simple TrySubmitThreadpoolCallback function is rather prob-
lematic because there’s no simple way to wait for its callback to
complete. Th is is because the work object is not actually exposed by
the API. Th e thread pool itself, however, suff ers no such restriction.
Because TrySubmitTh readpoolCallback accepts a pointer to an
environment, you can indirectly make the resulting work object a
member of a cleanup group. In this way, you can use CloseTh read-
poolCleanupGroupMembers to wait for or cancel the resulting
callback. Consider the following improved pseudo-code:

environment e;
SetThreadpoolCallbackCleanupGroup(e.get(), cg.get(), nullptr);

while (app is running)
{
 TrySubmitThreadpoolCallback(simple_callback, nullptr, e.get());

 // Rest of application.
}

CloseThreadpoolCleanupGroupMembers(cg.get(), true, nullptr);

I could almost forgive a developer for thinking this is akin to
garbage collection, because the thread pool automatically closes
the work object created by TrySubmitThreadpoolCallback. Of
course, this has nothing to do with cleanup groups. I described this
behavior in my July 2011 column. Th e CloseTh readpoolCleanup-
GroupMembers function in this case is not initially responsible
for closing the work object, but only for waiting for and possibly
canceling callbacks. Unlike the previous example, this one will
run indefi nitely without using undue resources and still provide
predictable cancelation and cleanup. With the help of callback
groups, TrySubmitTh readpoolCallback redeems itself, providing
a safe and convenient alternative. In a highly structured applica-
tion where the same callback is queued repeatedly, it would still be
more effi cient to reuse an explicit work object, but the convenience
of this function can no longer be dismissed.

Cleanup groups provide one fi nal feature to simplify your applica-
tion’s cleanup requirements. Oft en, it’s not enough to simply wait for
outstanding callbacks to complete. You might need to perform some
cleanup task for each callback-generating object once you’re sure no
further callbacks will execute. Having a cleanup group manage the
lifetime of these objects also means that the thread pool is in the best
position to know when such cleanup tasks should happen.

When you associate a cleanup group with an environment through
the SetTh readpoolCallbackCleanupGroup function, you can also
provide a callback to be executed for each member of the cleanup
group as part of the CloseTh readpoolCleanupGroupMembers
function’s process of closing these objects. Because this is an attrib-
ute of the environment, you can even apply different callbacks
to diff erent objects belonging to the same cleanup group. In the
following example I create an environment for the cleanup group
and cleanup callback:

void CALLBACK cleanup_callback(void * context, void * cleanup)
{
 printf("cleanup_callback: context=%s cleanup=%s\n", context, cleanup);
}

environment e;
SetThreadpoolCallbackCleanupGroup(e.get(), cg.get(), cleanup_callback);

Th e cleanup callback’s fi rst parameter is the context value for the
callback-generating object. Th is is the context value you specify
when calling the CreateThreadpoolWork or TrySubmitThread-
poolCallback functions, for example, and it’s how you know which
object the cleanup callback is being called for. Th e cleanup callback’s
second parameter is the value provided as the last parameter when
calling the CloseTh readpoolCleanupGroupMembers function.

Now consider the following work objects and callbacks:
void CALLBACK work_callback(PTP_CALLBACK_INSTANCE, void * context, PTP_WORK)
{
 printf("work_callback: context=%s\n", context);
}

void CALLBACK simple_callback(PTP_CALLBACK_INSTANCE, void * context)
{
 printf("simple_callback: context=%s\n", context);

Very little is certain in
multithreaded code.

15October 2011msdnmagazine.com

}

SubmitThreadpoolWork(CreateThreadpoolWork(work_callback, "Cheetah", e.get()));
SubmitThreadpoolWork(CreateThreadpoolWork(work_callback, "Leopard", e.get()));
check_bool(TrySubmitThreadpoolCallback(simple_callback, "Meerkat", e.get()));

Which of these is not like the others? As much as the cute little
Meerkat wants to be just like his neighboring big cats in southern
Africa, he will simply never be one of them. What happens when
the cleanup group members are closed as follows?

CloseThreadpoolCleanupGroupMembers(cg.get(), true, "Cleanup");

Very little is certain in multithreaded code.
If the callbacks manage to execute before
they’re canceled and closed, the following
might be printed out:

work_callback: context=Cheetah
work_callback: context=Leopard
simple_callback: context=Meerkat
cleanup_callback: context=Cheetah
cleanup=Cleanup
cleanup_callback: context=Leopard
cleanup=Cleanup

A common mistake is to assume that the
cleanup callback is called only for objects
whose callbacks did not get an opportunity
to execute. Th e Windows API is a bit mis-
leading because it sometimes refers to the
cleanup callback as a cancel callback, but
this is not the case. Th e cleanup callback is
simply called for every current member of
the cleanup group. You could think of it as a
destructor for cleanup group members, but,
as with the garbage collection metaphor, this
is not without risk. Th is metaphor holds up
pretty well until you get to the TrySubmit-
Th readpoolCallback function, which once
again introduces a complication. Remember
that the thread pool automatically closes
the underlying work object that this func-
tion creates as soon as its callback executes.
Th at means that whether or not the cleanup
callback executes for this implicit work ob-
ject depends on whether or not its callback
has already begun to execute by the time
CloseTh readpoolCleanupGroupMembers
is called. Th e cleanup callback will only be
executed for this implicit work object if its
work callback is still pending and you ask
CloseTh readpoolCleanupGroupMembers
to cancel any pending callbacks. Th is is all
rather unpredictable, and I therefore don’t
recommend using TrySubmitTh readpool-
Callback with a cleanup callback.

Finally, it’s worth mentioning that even
though CloseThreadpoolCleanupGroup-
Members blocks, it doesn’t waste any time.
Any objects that are ready for cleanup will
have their cleanup callbacks executed on the
calling thread while it waits for other out-
standing callbacks to complete. Th e features

provided by cleanup groups—and, in particular, the CloseTh read-
poolCleanupGroupMembers function—are invaluable for tearing
down all or parts of your application effi ciently and cleanly.

KENNY KERR is a soft ware craft sman with a passion for native Windows
development. Reach him at kennykerr.ca

THANKS to the following technical expert for reviewing this article:
Hari Pulapaka

www.countersoft.com
www.countersoft.com
www.geminiplatform.com
www.atlasanswer.com
www.msdnmagazine.com
www.kennykerr.ca

msdn magazine16

segments in the Topic. For example, instead of a U.S. Inventory
Check Topic that subscribers fi lter by region, I might have to create
a SouthCentral U.S. Inventory Check Topic and then further fi lter
to the specifi c local branch. With that caveat, I’ll proceed with my
single Inventory Check Topic, as I can promise I won’t have more
than a handful of franchise locations in my wonderland.

Getting the Message Out
You can download the Windows Azure AppFabric CTP June
Update from bit.ly/p3DhAU, and find the management portal at
portal.appfabriclabs.com. I’ll access the management portal to retrieve a
few pieces of information I need to use in my code (see Figure 2).

I need to grab the Service Gateway, the Default Issuer (always
“owner” in the CTP) and the Default Key. Because I need these
throughout my sample, I’ll create them at object scope:

private string sbNamespace = "jofultz";
private string issuerName = "owner";
private string issuerKey = "25vtsCkUPBtB39RdiBbUtCQglYRPOdHHC4MvX5fvxxxx";

I’ll use these variables in my functions to create the Topic, and
then to post messages to the Topic. Th ere’s a REST interface for
those who want to use it or who aren’t deploying on a platform that
allows use of the client library. Because I’m building a Windows
client, I’ll use the library. To do that, I need to add references to
the Microsoft.ServiceBus, Microsoft.ServiceBus.Message and
System.ServiceModel, as shown in Figure 3.

Once that’s done, a few straightforward lines of code are all that’s
needed to get the Topic set up:

SharedSecretCredential credential =
 TransportClientCredentialBase.CreateSharedSecretCredential(
 issuerName, issuerKey);

Uri sbUri = ServiceBusEnvironment.CreateServiceUri(
 "sb", sbNamespace, String.Empty);
ServiceBusNamespaceClient sbNSClient =
 new ServiceBusNamespaceClient(sbUri, credential);
Topic newTopic = sbNSClient.CreateTopic(topicName);

The Windows Azure
AppFabric Service Bus: Topics

It’s no secret among my colleagues that the Windows Azure
Service Bus functionality didn’t really get much support from me.
However, with the Windows Azure AppFabric CTP June Update,
Microsoft has fi nally added enough features to move the Service
Bus from what I considered not much more than a placeholder to
a truly useful technology. For my purpose here, the essential piece
of messaging technology the AppFabric Service Bus now off ers is
Topics, a rich publish-and-subscribe capability. I’ll focus on Topics
in this article and draw, as I am so oft en apt to do, from my retail
industry experience to look at how the technology can be used to
facilitate inter-store inventory checks.

Have you ever gone to buy something and found that the last
one has just been sold, or that the item you want is in some way
messed up? When this happens, the sales clerk will oft en go into
the POS system and check the inventory at nearby stores. More
oft en than not, that check is against inventory counts that are kept
in a central database or enterprise resource planning (ERP) system
of some type, and the clerk usually checks by store number using
her tribal knowledge of the nearby stores. Oft en, the data is a bit
stale because it’s only refreshed as part of the end-of-day process-
ing when the transaction logs and other data are uploaded and
processed by the corporate system.

A more ideal scenario would be that a store could at any time
throw a request about product availability into the ether and nearby
stores would respond, indicating whether they had it. Th at’s what
I’m going to set up using the Windows Azure AppFabric Service
Bus, as depicted in Figure 1.

Topics provide a durable mechanism that lets me push content
out to up to 2,000 subscribers per topic. Th at subscriber limita-
tion is unfortunate, as it potentially forces a solution architecture
(like the one I’ll describe) to work around it by somehow creating

FORECAST: CLOUDY JOSEPH FULTZ

This article is based on the Windows Azure AppFabric CTP June Update.
All information is subject to change.

Figure 1 An Inventory-Check Message

Store

Store

Store

Store

Store

Inventory Check Topic

Re
gi

on
-B

as
ed

 S
ub

sc
rip

tio
ns

Re
gi

on
-B

as
ed

 S
ub

sc
rip

tio
ns

The API supports correlation
and subscription IDs as

fi rst-class citizens.

http://portal.appfabriclabs.com

IG GRID ALL
FEATURES ENABLED
The grid’s sophisticated filtering
and sorting features allow your
users to find the records they
need to work with.

IG GRID
ON HTML PAGE

High performance grid
lets users page through
any OData source, even

streaming movie
descriptions.

RATING
Enable a social
experience for
users, by letting
them rate their
favorite movies or
anything else with
our rating control.

IG VIDEO
PLAYER MVC
When a user finds
what they want to
watch, our HTML5
video player adds
streaming video right
into your own apps.

UPLOADERS
Accept file uploads of any
kind of content straight
from your users with
background file transfers.

TAKE YOUR WEB APPLICATIONS TO
THE NEXT LEVEL WITH OUR TOOLS
INFRAGISTICS.COM/JQUERY

Infragistics Sales 800 231 8588 • Infragistics Europe Sales +44 (0) 800 298 9055 • Infragistics India +91 80 4151 8042 • @infragistics

NetAdvantage®

for jQuery

SCAN HERE
for an exclusive
look at jQuery!

www.infragistics.com/jq

IG EDITORS
Robust data entry and
editing controls assist

users with entering data in
the formats your

application needs.

Untitled-1 1 9/8/11 12:11 PM

http://www.infragistics.com/jq
http://www.infragistics.com/jquery
http://www.infragistics.com/jquery

msdn magazine18 Forecast: Cloudy

What will become important as I start throwing messages out
there is the ability of the stores to fi lter the messages and get only
the ones that are relevant to the receiving location based on region.
Th e API supports correlation and subscription IDs as fi rst-class
citizens, but for the fi ltering I want to use my knowledge of the
data and fi lter based on the contents of the request. Th us, I want
geographically close stores to look for and respond to each other’s
requests for inventory based on region. At the same time, I need
to make sure that the originating store doesn’t pick up its own
requests. Requests will include the SKU of the item in question,
the region in which the inquiry is made, and the RequesterID so
the originating store can fi lter out its own requests on the topic:

[Serializable]
class InventoryQueryData
{
 public string Region;
 public string ResponderID;
 public string RequesterID;
 public string Sku;
 public int Count;
}

Note the [Serializable] attribute that I’ve added to the class. You
could mark the properties as DataMembers and use DataContract
as well, but the point is that whatever type I intend to send to the
topic needs to be serializable.

I’ve created a simple form that allows me to enter an arbitrary
string for the SKU and select from a list for the posting store.
Th e code behind my inquiry button looks similar to the code to
connect and create the topic and resembles the typical constructs
you fi nd when working with messaging APIs, as shown in Figure 4.

Th ere are two things to note here. First, I’ve added the name-
value pairs I need for fi ltering to the BrokeredMessage.Properties
collection. Second, as a matter of runtime maintenance, I’ve given
the TimeToLive (TTL) a value of 60 seconds, which should keep
the subscriptions on the topic from getting too backed up. Of

course, you’ll generally want a more
informed approach for picking the
TTL, but I fi gure if the request doesn’t
reach any of the subscribers in that
time, it’s probably too long because
there’s a customer standing there
waiting. Besides, this is just a sample.

Any message that’s sent to the bus
is in the form of a BrokeredMessage
that has a factory method Create-
Message. This simply wraps the
data into an instance of a Brokered-
Message type that contains all of the
constructs needed for a fully func-
tional messaging system.

With this I have all I need to get a message out to the subscribers
of the Inventory Check Topic, so now I’ll start setting up the
subscription clients to fetch the messages and respond.

Tapping the Topic Stream and Responding
With my client in place, I’m ready to send out a steady stream of
requests, but right now this will be little more than letting bits
loose in the wild ether. I create a Windows Form application and
reuse the XML store list and the InventoryQueryData from the
fi rst (sender) application. I’ll need to create a unique subscription
for each client that’s listening to the topic. This is easily enough
accomplished by combining a subscription name with the store
number I want to listen for. My little test app allows me to select the
store number from a combobox, so I just tack that value onto the
base Subscription name in order to create the unique Subscription
name. It’s important to ensure that every client has a unique
Subscription; two or more using the same subscription would
create a race condition where those subscribers would compete
for the message and the fi rst one to receive and delete would win:

Topic invTopic = sbNSClient.GetTopic(topicName);
SubscriptionName = "InventoryQuerySubscription" + this.cboStore.Text;
SqlFilterExpression RegionFilter = new SqlFilterExpression("Region = '" +
 cboStore.SelectedValue + "' AND RequesterID <> '" + cboStore.Text + "'");

Subscription sub = invTopic.AddSubscription(SubscriptionName, RegionFilter);

As I add the Subscription to the Topic, I can also pass in a fi lter
so that each store receives only the inventory check requests for its
own region. Note that you can develop your own FilterExpression
type from the base type, but the API includes four types that should
cover most scenarios, especially if used together: Correlation-
FilterExpression, MatchAllFilterExpression, MatchNoneFilter-
Expression and SqlFilterExpression. I used SqlFilterExpression,
which allowed me to easily and instinctively write this expression
to get the messages for the Texas region, for example, and exclude
messages that originated from my own store:

"Region = '[Region]' AND RequesterID <> '[StoreID]'"

Figure 2 Getting Information from the Windows Azure AppFabric Management Portal

The point is that whatever
type I intend to send to the topic

needs to be serializable.

Once the subscription
is set up it will persist even after

the client closes down.

TAKE YOUR APPLICATIONS TO
THE NEXT LEVEL WITH OUR TOOLS
INFRAGISTICS.COM/DV

Infragistics Sales 800 231 8588 • Infragistics Europe Sales +44 (0) 800 298 9055 • Infragistics India +91 80 4151 8042 • @infragistics

NetAdvantage®

for Data Visualization

INTERACTIVE
DASHBOARDS
Build rich dashboards
that visualize business
data to empower
decision makers.

MEDIA TIMELINE
The timeline highlights how easily
users can search, browse and play

popular videos from YouTube.

MAP OUT ANYTHING AND
EVERYTHING
Use xamMap™ to get an instant view and
show anything including seating charts,
floor plans, warehouse contents, and yes—
geographic maps, too!

INFRAGISTICS MOTION
FRAMEWORK™

Create an immersive and animated user
experience that tells the story of your data
over time like no other visualization can.

OLAP PIVOT GRID
DATA VISUALIZATION
Work with multidimensional data from your
OLAP cubes, data warehouses and
Microsoft® SQL Server®Analysis Services.

SCAN HERE
for an exclusive

look at Data Visualization!
www.infragistics.com/dvis

Untitled-2 1 5/11/11 11:29 AM

http://www.infragistics.com/dvis
http://www.infragistics.com/DV
http://www.infragistics.com/DV

msdn magazine20 Forecast: Cloudy

I only need to fi lter the requests coming
through, but in some cases I could theo-
retically “fi x up” some data on the way in
using a RuleDescription to, say, combine a
SqlFilterExpression with a SqlFilterAction.
Th e former identifi es the messages that I’m
targeting, while the latter defi nes the action
that should be taken. Th is type of function-
ality can be useful when the data coming
through needs to be massaged into some-
thing that works for the recipient and both
sides of the bus can’t or won’t be changed.

Once the subscription is set up it will
persist even aft er the client closes down. Th is
is perfect for this scenario; I’ll simply cre-
ate a SubscriptionClient every time I start
monitoring, and it will attach to the existing connection. However,
not everyone will want that behavior. I can imagine situations where
you’d want to remove the subscription when the client shuts down:

SubscriptionClient subClient = msgFactory.CreateSubscriptionClient(
 topicName, SubscriptionName);
MessageReceiver msgReceiver = subClient.CreateReceiver(ReceiveMode.ReceiveAndDelete);
msgReceiver.Open();

Note in the call to CreateReceiver that I’ve set ReceiveMode to
ReceiveAndDelete. You could also use PeekLock for the Receive-
Mode. Here, I simply want to grab the message and process it,

and I have no need to ensure proper receipt
and processing prior to deletion because
if the message is lost, it isn’t a big deal. If I
needed behavior that was more guaran-
teed and reliable, I’d likely do two things. I
wouldn’t set the TTL for the Message, Topic or
Subscription, and instead let the messages
live indefi nitely. Or, I’d give it a very high
TTL so that the receiver had suffi cient time
to process or move to an exception queue so
that only truly undeliverable messages would
end up in the dead-letter queue. Also, I’d use
PeekLock on the receiver to read and process
the data and only remove the message upon
completion of the related process. Manually
creating this distributed transaction behavior

can quickly lead to other problems, such as poison queues, but we’ll
address that behavior and problem set another time.

Once I’ve opened the receiver I enter a loop to check for
messages. Th e API has a direct Receive method that will return
the BrokeredMessage. However, I’ll use the TryReceive method,
which will return a bool to indicate success (see Figure 5). I’ll pass a
relatively short timeout to that method, which should be long
enough to check and receive the message. If a message is received,
I’ll work with it and immediately check for another message. If no
message is received, I’ll sleep the thread for a bit and check again.

My request object is contained in the BrokeredMessage, and to
retrieve it I’ll call GetBody<T>, passing the object type. Th e impli-
cation here is that object types need to match on both sides of the
bus. You can accomplish this using proxy types or, in the case of
uncertainty or plain old XML coming across, you could pass the
object as a string and handle it as XML.

Until Next Time …
At this point, all the work is done to create the message and get it
out to all of the interested nodes, and for them to fetch the mes-
sage from the Topic. I’ve demonstrated the features that allow me
to not only broadcast the message, but also fi lter appropriately for
the subscribed receiver. Next month I’ll work through the return
trip to demonstrate the complementary use of queues and correla-
tion to fi nish the scenario and round out your basic understanding
of the new features in the Windows Azure AppFabric Service Bus.
I’ll also have the complete code available for you to download.

JOSEPH FULTZ is a software architect at Hewlett-Packard Co., working as
part of the HP.com Global IT group. Previously he was a soft ware architect for
Microsoft working with its top-tier enterprise and ISV customers defining
architecture and designing solutions.

THANKS to the following technical expert for reviewing this article: Jim Keane

// Assign data values.
InventoryQueryData data = new InventoryQueryData();
data.Sku = txtSKU.Text;
data.StoreID = cboStore.SelectedText;
data.Region = cboStore.SelectedValue.ToString();

Uri sbUri = ServiceBusEnvironment.CreateServiceUri("sb", sbNamespace, string.Empty);
SharedSecretCredential credential = TransportClientCredentialBase.CreateS
haredSecretCredential(issuerName, issuerKey);

MessagingFactory msgFactory = MessagingFactory.Create(sbUri, credential);
TopicClient topicClient = msgFactory.CreateTopicClient(topicName);
MessageSender MsgSender = topicClient.CreateSender();

BrokeredMessage msg = BrokeredMessage.CreateMessage(data);
// Add props to message for filtering.
msg.Properties["Region"] = data.Region;
msg.Properties["RequesterID"] = data.RequesterID;

msg.TimeToLive = TimeSpan.FromSeconds(60);

MsgSender.Send(data);

Figure 4 Getting the Data Values

while (MonitorOn)
{
 BrokeredMessage NewMsg;
 bool recvSuccess = msgReceiver.TryReceive(TimeSpan.FromSeconds(3), out NewMsg);

 if (recvSuccess)
 {
 this.lbMessages.Items.Add(NewMsg.MessageId);
 InventoryQueryData RequestObject =
 NewMsg.GetBody<CreateInquiry.InventoryQueryData>();
 ProcessMessage(RequestObject);
 }
 else
 {
 System.Threading.Thread.Sleep(3000);
 }
}

Figure 5 Checking for Messages

The implication here is that
object types need to match on

both sides of the bus.

Figure 3 Adding References

TAKE YOUR APPLICATIONS TO
THE NEXT LEVEL WITH OUR TOOLS
INFRAGISTICS.COM/PERFORMANCE

Infragistics Sales 800 231 8588 • Infragistics Europe Sales +44 (0) 800 298 9055 • Infragistics India +91 80 4151 8042 • @infragistics

REAL-TIME
USER
INTERFACES
Refresh your app’s
user interface tick-
by-tick on every
value change in the
fastest applications
imaginable.

ACROSS ALL PLATFORMS
Charts and grids featuring blazing speed
whether you are using ASP.NET, Silverlight,
WPF or any other .NET platform.

DEEP DRILLDOWN
Dive into the deepest details of your
data with crisp, rapidly-updating visual
controls designed to handle it all.

TAKE IT ON THE ROAD
Our XAML controls with Windows Phone® 7
support means your UI is always on the go.SCAN HERE

for an exclusive
look at Performance!
www.infragistics.com/perf

Untitled-6 1 7/8/11 12:15 PM

http://www.infragistics.com/perf
http://www.infragistics.com/Performance
http://www.infragistics.com/Performance

msdn magazine22

A S YN CHR ONOUS PR OGR AM M I NG

Easier Asynchronous
Programming with
the New Visual Studio
Async CTP

Imagine what the world would be like if people worked the same
way as computer programs:

void ServeBreakfast(Customer diner)
{
 var order = ObtainOrder(diner);
 var ingredients = ObtainIngredients(order);
 var recipe = ObtainRecipe(order);
 var meal = recipe.Prepare(ingredients);
 diner.Give(meal);
}

Each subroutine can, of course, be broken down further; pre-
paring the meal might involve heating pans, cooking omelets and
toasting bread. Were humans to perform these sorts of tasks like
typical computer programs, we’d carefully write down everything
as sequences of hierarchical tasks in a checklist and obsessively
ensure that each job was complete before embarking on the next.

A subroutine-based approach seems reasonable—you can’t cook
the eggs before you get the order—but in fact it both wastes time

Eric Lippert

and makes the application appear unresponsive. It wastes time
because you want the bread to be toasting while the eggs are frying,
not aft er the eggs are done and getting cold. It appears unresponsive
because if another customer arrives while the current order is still
cooking, you want to be taking his order, not making him wait at
the door until the current customer has been served her breakfast.
A server slavishly following a checklist does not have any ability to
respond in a timely manner to unexpected events.

Solution One: Hire More Staff
by Making More Threads
Making someone’s breakfast is a whimsical example, but the reality,
of course, is anything but. Every time you transfer control into a
long-running subroutine on the UI thread, the UI becomes com-
pletely unresponsive until the subroutine fi nishes. How could it be
otherwise? Applications respond to UI events by running code on
the UI thread, and that thread is obsessively busy doing something
else. Only when every job on its list is done will it get around to
dealing with the queued-up commands of the frustrated user. Th e
usual solution to this problem is to use concurrency to do two or
more things “at the same time.” (If the two threads are on two inde-
pendent processors, they might truly be running at the same time.
In a world with more threads than processors to dedicate to them,
the OS will simulate at-the-same-time concurrency by periodically
scheduling a time slice for each thread to control a processor.)

One concurrent solution might be to create a thread pool and
assign each new client a specifi c thread to handle its requests. In
our analogy, you could hire a group of servers. When a new diner
comes in, an idle server is assigned to the new diner. Each server

This article is based on a prerelease version of the Visual Studio
Async CTP. All information is subject to change.

This article discusses:
• Why concurrency doesn’t always lead to more

responsive programs

• When DoEvents should and should not be used

• The problem with callbacks

• Using task-based asynchrony

Technologies discussed:
Visual Studio Async CTP, C#, Visual Basic

23October 2011msdnmagazine.com

then independently does the work of taking the order, fi nding the
ingredients, cooking the food and serving it.

Th e diffi culty with this approach is that UI events typically arrive
on the same thread and expect to be fully serviced on that thread.
Most UI components create requests on the UI thread, and expect
to be communicated with only on that thread. Dedicating a new
thread to each UI-related task is unlikely to work well.

To address this problem you could have a single foreground
thread listening to UI events that does nothing but “take orders” and
farm them out to one or more background worker threads. In this
analogy, there’s only one server who interacts with the customers,
and a kitchen full of cooks who actually do the requested work.
The UI thread and the worker threads are then responsible for
coordinating their communications. Th e cooks never talk directly
to the diners, but somehow the food gets served anyway.

Th is certainly solves the “responding to UI events in a timely
manner” problem, but it doesn’t resolve the lack of effi ciency; the
code running on the worker thread is still waiting synchronously
for the eggs to cook fully before the bread goes in the toaster. Th at
problem could be solved in turn by adding even more concurrency:
You could have two cooks per order, one for the eggs and one
for the toast. But that might get pretty expensive. Just how many
cooks are you going to need, and what happens when they have to
coordinate their work?

Concurrency of this sort introduces many well-known diffi cul-
ties. First, threads are notoriously heavyweight; a thread by default
consumes a million bytes of virtual memory for its stack and many
other system resources. Second, UI objects are oft en “affi nitized” to
the UI thread and can’t be called from worker threads; the worker
thread and the UI thread must come to some complex arrangement
whereby the UI thread can send necessary information from the
UI elements over to the worker, and the worker can send updates
back to the UI thread, rather than to the UI elements directly. Such
arrangements are diffi cult to code and prone to race conditions,
deadlocks and other threading problems. Th ird, many of the pleasant
fi ctions that we all rely upon in the single-threaded world—such
as reads and writes of memory happening in a predictable and
consistent sequence—are no longer reliable. Th is leads to the worst
kinds of diffi cult-to-reproduce bugs.

It just seems wrong to have to use the big hammer of thread-
based concurrency to build simple programs that remain responsive
and run effi ciently. Somehow real people manage to solve complex
problems while remaining responsive to events. In the real world
you don’t have to allocate one waiter per table or two cooks per
order to serve dozens of customer requests that are all pending at
the same time. Solving the problem with threading makes for too

many cooks. Th ere’s got to be a better solution that doesn’t involve
so much concurrency.

Solution Two: Develop Attention
Defi cit Disorder with DoEvents
A common non-concurrent “solution” to the problem of UI unre-
sponsiveness during long-running operations is to liberally sprinkle
the magic words Application.DoEvents around a program until the
problem goes away. Th ough this is certainly a pragmatic solution,
it’s not a very well-engineered one:

void ServeBreakfast(Customer diner)
{
 var order = ObtainOrder(diner);
 Application.DoEvents();
 var ingredients = ObtainIngredients(order);
 Application.DoEvents();
 var recipe = ObtainRecipe(order);
 Application.DoEvents();
 var meal = recipe.Prepare(ingredients);
 Application.DoEvents();
 diner.Give(meal);
}

Basically, using DoEvents means “see if anything interesting
happened while I was busy doing that last thing. If something hap-
pened that I need to respond to, remember what I was doing just now,
deal with the new situation, and then come back to where I left off .”
It makes your program behave like it has attention defi cit disorder:
anything new that comes along gets attention right away. Th at sounds
like a plausible solution to improve responsiveness—and sometimes
even works—but there are a number of problems with this approach.

First, DoEvents works best when the delay is caused by a loop that
has to execute many times, but each individual loop execution is
short. By checking for pending events every few times through the
loop, you can maintain responsiveness even if the whole loop takes
a long time to run. However, that pattern is usually not the cause
of a responsiveness problem. More oft en the problem is caused by
one inherently long-running operation taking a lot of time, such
as attempting to synchronously access a file over a high-latency
network. Perhaps in our example the long-running task is in
preparing the meal, and there’s no place to put the DoEvents that
helps. Or perhaps there is a place where DoEvents would help, but
it’s in a method you don’t have the source code for.

Second, calling DoEvents causes the program to attempt to fully
service all the more recent events before fi nishing work associated with
earlier events. Imagine if no one could get his meal until aft er every
customer who came in got his meal! If more and more customers
keep arriving, the fi rst customer might never get his meal, resulting in
starvation. In fact, it could happen that no customers get their meals.
Th e completion of work associated with earlier events can be pushed
off arbitrarily far into the future as servicing newer events continues
to interrupt the work being done for earlier events.

Third, DoEvents poses the very real danger of unexpected
reentrancy. Th at is, while serving one customer you check to see if
there have been any recent interesting UI events and accidentally
start serving the same diner again, even though he’s already being
served. Most developers don’t design their code to detect this kind
of reentrancy; it’s possible to end up in some very strange program
states indeed when an algorithm never intended to be recursive
ends up calling itself unexpectedly via DoEvents.

A thread by default consumes a
million bytes of virtual memory

for its stack.

www.msdnmagazine.com

msdn magazine24 Asynchronous Programming

In short, DoEvents should be used only to fi x a responsiveness
problem in the most trivial cases; it’s not a good solution for man-
aging UI responsiveness in complex programs.

Solution Three: Turn Your Checklist
Inside-out with Callbacks
Th e non-concurrent nature of the DoEvents technique is attractive,
but clearly not quite the right solution for a complex program. A
better idea is to break down the items on the checklist into a series
of short tasks, each of which can be completed rapidly enough that
the application can appear to be responsive to events.

Th at idea is nothing new; dividing a complex problem into small
parts is why we have subroutines in the fi rst place. Th e interesting
twist is that instead of rigidly running down a checklist to determine
what has already been done and what needs to be done next, and
only returning control to the caller when everything is completed,
each new task is given the list of work that must come aft er it. Th e
work that must come aft er a particular task is fi nished is called the
“continuation” of the task.

When a task has finished, it can look at the continuation and
finish it off right there. Or it might schedule the continuation to
run later. If the continuation requires information computed by the
previous task, the previous task can pass that information along as
an argument to the call that invokes the continuation.

With this approach, the total body of work is essentially broken up
into little pieces that can each be executed rapidly. Th e system appears
responsive because pending events can be detected and handled
between the executions of any two of the small pieces of work. But
because any activities associated with those new events can also
be broken down into small parts and queued up to execute later,
we don’t have the “starvation” problem whereby new tasks prevent
old tasks from completing. New long-running tasks are not dealt
with immediately, but they are queued up for eventual processing.

Th e idea is great, but it’s not at all clear how to implement such
a solution. Th e essential diffi culty is determining how to tell each
small unit of work what its continuation is; that is, what work
needs to come next.

In traditional asynchronous code, this is typically done by
registering a “callback” function. Let’s suppose we have an asyn-
chronous version of “Prepare” that takes a callback function that
says what to do next—namely, serve the meal:

void ServeBreakfast(Diner diner)
{
 var order = ObtainOrder(diner);
 var ingredients = ObtainIngredients(order);
 var recipe = ObtainRecipe(order);
 recipe.PrepareAsync(ingredients, meal =>
 {
 diner.Give(meal);
 });
}

Now ServeBreakfast returns immediately after PrepareAsync
returns; whatever code called ServeBreakfast is then free to ser-
vice other events that occur. PrepareAsync does no “real” work
itself; rather, it quickly does whatever is necessary to ensure that
the meal will be prepared in the future. Moreover, PrepareAsync
also ensures that the callback method will be invoked with
the prepared meal as its argument at some time after the meal

preparation task is completed. Th us, the diner will eventually be
served, though she might have to wait briefly if there’s an event
that requires attention between the end of the preparation and
the serving of the meal.

Note that none of this necessarily involves a second thread. Perhaps
PrepareAsync causes the meal preparation work to be done on a
separate thread, or perhaps it causes a series of short tasks asso-
ciated with meal preparation to be queued up on the UI thread
to be executed later. It really doesn’t matter; all we know is that
PrepareAsync somehow guarantees two things: that the meal will
be prepared in a manner that doesn’t block the UI thread with a
high-latency operation, and that the callback will somehow be
invoked aft er the work of preparing the requested meal is done.

But suppose any of the methods for obtaining the order, obtaining
the ingredients, obtaining the recipe or preparing the meal might
be the one that’s slowing down the UI. We could solve this larger
problem if we had an asynchronous version of each of these meth-
ods. What would the resulting program look like? Remember, each
method must be given a callback that tells it what to do when the
unit of work is completed:

void ServeBreakfast(Diner diner)
{
 ObtainOrderAsync(diner, order =>
 {
 ObtainIngredientsAsync(order, ingredients =>
 {
 ObtainRecipeAsync(order, recipe =>
 {
 recipe.PrepareAsync(ingredients, meal =>
 {
 diner.Give(meal);
 })})})});
}

Th is might seem like an awful mess, but it’s nothing compared
to how bad real programs get when they’re rewritten using
callback-based asynchrony. Th ink about how you might deal with
making a loop asynchronous, or how you’d deal with exceptions,
try-fi nally blocks or other non-trivial forms of control fl ow. You
end up essentially turning your program inside-out; the code now
emphasizes how all the callbacks are wired together, and not what
the logical workfl ow of the program should be.

Solution Four: Make the Compiler Solve
the Problem with Task-Based Asynchrony
Callback-based asynchrony does keep the UI thread responsive and
minimize time wasted by synchronously waiting for long-running
work to complete. But the cure seems worse than the disease. Th e
price you pay for responsiveness and performance is that you have to
write code that emphasizes how the mechanisms of the asynchrony
work while obscuring the meaning and purpose of the code.

Dividing a complex problem
into small parts is why we have
subroutines in the fi rst place.

Untitled-1 1 8/30/11 12:17 PM

www.leadtools.com

msdn magazine26 Asynchronous Programming

Th e upcoming versions of C# and Visual Basic instead allow you
to write code that emphasizes its meaning and purpose, while giving
enough hints to the compilers to build the necessary mechanisms
for you behind the scenes. Th e solution has two parts: one in the
type system, and one in the language.

Th e CLR 4 release defi ned the type Task<T>—the workhorse
type of the Task Parallel Library (TPL)—to represent the concept of
“some work that’s going to produce a result of type T in the future.”
Th e concept of “work that will complete in the future but returns
no result” is represented by the non-generic Task type.

Precisely how the result of type T is going to be produced in the
future is an implementation detail of a particular task; the work might
be farmed out to another machine entirely, to another process on
this machine, to another thread, or perhaps the work is simply to
read a previously cached result that can be accessed cheaply from
the current thread. TPL tasks are typically farmed out to worker
threads from a thread pool in the current process, but that imple-
mentation detail is not fundamental to the Task<T> type; rather, a
Task<T> can represent any high-latency operation that produces a T.

Th e language half of the solution is the new await keyword. A
regular method call means “remember what you’re doing, run this
method until it’s completely fi nished, and then pick up where you
left off , now knowing the result of the method.” An await expression,
in contrast, means “evaluate this expression to obtain an object
representing work that will in the future produce a result. Sign up

the remainder of the current method as the callback associated
with the continuation of that task. Once the task is produced and
the callback is signed up, immediately return control to my caller.”

Our little example rewritten in the new style reads much more nicely:
async void ServeBreakfast(Diner diner)
{
 var order = await ObtainOrderAsync(diner);
 var ingredients = await ObtainIngredientsAsync(order);
 var recipe = await ObtainRecipeAsync(order);
 var meal = await recipe.PrepareAsync(ingredients);
 diner.Give(meal);
}

In this sketch, each asynchronous version returns a Task<Order>,
Task<List<Ingredient>> and so on. Every time an await is
encountered, the currently executing method signs up the rest of
the method as the thing to do when the current task is complete,
and then immediately returns. Somehow each task will complete
itself—either by being scheduled to run as an event on the current
thread, or because it used an I/O completion thread or worker
thread—and will then cause its continuation to “pick up where it
left off ” in executing the rest of the method.

Note that the method is now marked with the new async keyword;
this is simply an indicator to the compiler that lets it know that in
the context of this method, the keyword await is to be treated as
a point where the workfl ow returns control to its caller and picks
up again when the associated task is fi nished. Note also that the
examples I’ve shown in this article use C# code; Visual Basic will

have a similar feature with similar syntax.
The design of these features in C# and
Visual Basic was heavily influenced by F#
asynchronous workfl ows, a feature that F#
has had for some time.

Where to Learn More
This brief introduction merely motivates
and then scratches the surface of the new
asynchrony feature in C# and Visual Basic.
For a more detailed explanation of how it
works behind the scenes, and how to rea-
son about the performance characteristics
of asynchronous code, see the companion
articles in this issue by my colleagues Mads
Torgersen and Stephen Toub.

To get your hands on a preview release of
this feature, along with samples, white papers
and a community forum for questions, dis-
cussions and constructive feedback, please
go to msdn.com/ async. Th ese language features
and the libraries that support them are still in
development; the design team would love to
have as much of your feedback as possible.

ERIC LIPPERT is a principal developer on the C#
Compiler team at Microsoft .

THANKS to the following technical experts for
reviewing this article: Mads Torgersen, Stephen
Toub and Lucian Wischik

www.melissaData.com/mynet

© 2011 ComponentOne LLC. All rights reserved. All other product and brand names are trademarks and/or registered trademarks of their respective holders.© 2011 ComponentOne LLC. All rights reserved. All other product and brand names are trademarks and/or registered trademarks of their respective holders.

Untitled-3 1 7/12/11 3:35 PM

http://www.componentone.com/flex

msdn magazine28

A S YN CHR ONOUS PR OGR AM M I NG

Pause and Play with Await

Asynchronous methods in the upcoming versions of
Visual Basic and C# are a great way to get the callbacks out of
your asynchronous programming. In this article, I’ll take a closer
look at what the new await keyword actually does, starting at the
conceptual level and working my way down to the iron.

Sequential Composition
Visual Basic and C# are imperative programming languages—and
proud of it! Th is means they excel in letting you express your pro-
gramming logic as a sequence of discrete steps, to be undertaken
one aft er the other. Most statement-level language constructs are
control structures that give you a variety of ways to specify the order
in which the discrete steps of a given body of code are to be executed:

Mads Torgersen

• Conditional statements such as if and switch let you choose
diff erent subsequent actions based on the current state of
the world.

• Loop statements such as for, foreach and while let you
repeat the execution of a certain set of steps multiple times.

• Statements such as continue, throw and goto let you transfer
control non-locally to other parts of the program.

Building up your logic using control structures results in
sequential composition, and this is the lifeblood of imperative
programming. It is indeed why there are so many control struc-
tures to choose from: You want sequential composition to be
really convenient and well-structured.

Continuous Execution
In most imperative languages, including current versions of
Visual Basic and C#, the execution of methods (or functions, or
procedures or whatever we choose to call them) is continuous. What
I mean by that is that once a thread of control has begun executing
a given method, it will be continuously occupied doing so until
the method execution ends. Yes, sometimes the thread will be exe-
cuting statements in methods called by your body of code, but that’s
just part of executing the method. Th e thread will never switch to
do anything your method didn’t ask it to.

Th is continuity is sometimes problematic. Occasionally there’s
nothing a method can do to make progress—all it can do is wait
for something to happen: a download, a fi le access, a computation
happening on a diff erent thread, a certain point in time to arrive.
In such situations the thread is fully occupied doing nothing. Th e

This article is based on a prerelease version of the Visual Studio
Async CTP. All information is subject to change.

This article discusses:
• The tension between imperative and asynchronous programming

• Using asynchronous methods to interrupt continuously
executing code

• Asynchronous methods and await expressions under the hood

Technologies discussed:
Visual Studio Async CTP, C#, Visual Basic

Code download available at:
code.msdn.microsoft.com/mag201110Await

http://code.msdn.microsoft.com/mag201110Await

29October 2011msdnmagazine.com

common term for that is that the thread is blocked; the method
causing it to do so is said to be blocking.

Here’s an example of a method that is seriously blocking:
static byte[] TryFetch(string url)
{
 var client = new WebClient();
 try
 {
 return client.DownloadData(url);
 }
 catch (WebException) { }
 return null;
}

A thread executing this method will stand still during most of the
call to client.DownloadData, doing no actual work but just waiting.

This is bad when threads are precious—and they often are.
On a typical middle tier, servicing each request in turn requires
talking to a back end or other service. If each request is handled by
its own thread and those threads are mostly blocked waiting for
intermediate results, the sheer number of threads on the middle
tier can easily become a performance bottleneck.

Probably the most precious kind of thread is a UI thread: there’s
only one of them. Practically all UI frameworks are single-threaded,
and they require everything UI-related—events, updates, the user’s
UI manipulation logic—to happen on the same dedicated thread.
If one of these activities (for example, an event handler choosing
to download from a URL) starts to wait, the whole UI is unable to
make progress because its thread is so busy doing absolutely nothing.

What we need is a way for multiple sequential activities to be
able to share threads. To do that, they need to sometimes “take
a break”—that is, leave holes in their execution where others can
get something done on the same thread. In other words, they
sometimes need to be discontinuous. It’s particularly convenient
if those sequential activities take that break while they’re doing
nothing anyway. To the rescue: asynchronous programming!

Asynchronous Programming
Today, because methods are always continuous, you have to
split discontinuous activities (such as the before and after of a
download) into multiple methods. To poke a hole in the middle of
a method’s execution, you have to tear it apart into its continuous
bits. APIs can help by off ering asynchronous (non-blocking) ver-
sions of long-running methods that initiate the operation (start the
download, for example), store a passed-in callback for execution
upon completion and then immediately return to the caller. But
in order for the caller to provide the callback, the “aft er” activities
need to be factored out into a separate method.

Here’s how this works for the preceding TryFetch method:
static void TryFetchAsync(string url, Action<byte[], Exception>
callback)
{
 var client = new WebClient();
 client.DownloadDataCompleted += (_, args) =>
 {
 if (args.Error == null) callback(args.Result, null);
 else if (args.Error is WebException) callback(null, null);
 else callback(null, args.Error);
 };
 client.DownloadDataAsync(new Uri(url));
}

Here you see a couple of diff erent ways of passing callbacks:
Th e DownloadDataAsync method expects an event handler to

have been signed up to the DownloadDataCompleted event, so
that’s how you pass the “aft er” part of the method. TryFetchAsync
itself also needs to deal with its callers’ callbacks. Instead of
setting up that whole event business yourself, you use the simpler
approach of just taking a callback as a parameter. It’s a good thing we
can use a lambda expression for the event handler so it can just
capture and use the “callback” parameter directly; if you tried to
use a named method, you’d have to think of some way to get the
callback delegate to the event handler. Just pause for a second and
think how you’d write this code without lambdas.

But the main thing to notice here is how much the control fl ow
changed. Instead of using the language’s control structures to
express the fl ow, you emulate them:

• Th e return statement is emulated by calling the callback.
• Implicit propagation of exceptions is emulated by calling

the callback.
• Exception handling is emulated with a type check.

Of course, this is a very simple example. As the desired control
structure gets more complex, emulating it gets even more so.

To summarize, we gained discontinuity, and thereby the ability
of the executing thread to do something else while “waiting”
for the download. But we lost the ease of using control struc-
tures to express the fl ow. We gave up our heritage as a structured
imperative language.

Asynchronous Methods
When you look at the problem this way, it becomes clear how
asynchronous methods in the next versions of Visual Basic and C#
help: Th ey let you express discontinuous sequential code.

 Let’s look at the asynchronous version of TryFetch with this
new syntax:

static async Task<byte[]> TryFetchAsync(string url)
{
 var client = new WebClient();
 try
 {
 return await client.DownloadDataTaskAsync(url);
 }
 catch (WebException) { }
 return null;
}

Asynchronous methods let you take the break inline, in the
middle of your code: Not only can you use your favorite control
structures to express sequential composition, you can also poke
holes in the execution with await expressions—holes where the
executing thread is free to do other things.

A good way to think about this is to imagine that asynchronous
methods have “pause” and “play” buttons. When the executing
thread reaches an await expression, it hits the “pause” button and the
method execution is suspended. When the task being awaited com-
pletes, it hits the “play” button, and the method execution is resumed.

Compiler Rewriting
When something complex looks simple, it usually means there’s
something interesting going on under the hood, and that’s certainly
the case with asynchronous methods. Th e simplicity gives you a
nice abstraction that makes it so much easier to both write and read
asynchronous code. Understanding what’s happening underneath

www.msdnmagazine.com

msdn magazine30 Asynchronous Programming

is not a requirement. But if you do understand, it will surely help
you become a better asynchronous programmer, and be able to
more fully utilize the feature. And, if you’re reading this, chances
are good you’re also just plain curious. So let’s dive in: What do
async methods—and the await expressions in them—actually do?

When the Visual Basic or C# compiler gets hold of an asyn-
chronous method, it mangles it quite a bit during compilation:
the discontinuity of the method is not directly supported by
the underlying runtime and must be emulated by the compiler.
So instead of you having to pull the method apart into bits, the
compiler does it for you. However, it does this quite diff erently than
you’d probably do it manually.

The compiler turns your asynchronous method into a state
machine. Th e state machine keeps track of where you are in the
execution and what your local state is. It can either be running or
suspended. When it’s running, it may reach an await, which hits
the “pause” button and suspends execution. When it’s suspended,
something may hit the “play” button to get it back and running.

Th e await expression is responsible for setting things up so that
the “play” button gets pushed when the awaited task completes.
Before we get into that, however, let’s look at the state machine
itself, and what those pause and play buttons really are.

Task Builders
Asynchronous methods produce Tasks. More specifi cally, an asyn-
chronous method returns an instance of one of the types Task or
Task<T> from System.Th reading.Tasks, and that instance is auto-
matically generated. It doesn’t have to be (and can’t be) supplied
by the user code. (Th is is a small lie: Asynchronous methods can
return void, but we’ll ignore that for the time being.)

From the compiler’s point of view, producing Tasks is the easy part.
It relies on a framework-supplied notion of a Task builder, found in
System.Runtime.CompilerServices (because it’s not normally meant
for direct human consumption). For instance, there’s a type like this:

public class AsyncTaskMethodBuilder<TResult>
{
 public Task<TResult> Task { get; }
 public void SetResult(TResult result);
 public void SetException(Exception exception);
}

The builder lets the compiler obtain a Task, and then lets it
complete the Task with a result or an Exception. Figure 1 is a sketch
of what this machinery looks like for TryFetchAsync.

Watch carefully:
• First a builder is created.
• Th en a __moveNext delegate is created. Th is delegate is

the “play” button. We call it the resumption delegate, and
it contains:

 • Th e original code from your async method (though we
have elided it so far).

 • Return statements, which represent pushing the
“pause” button.

 • Calls that complete the builder with a successful result,
which correspond to the return statements of the
original code.

 • A wrapping try/catch that completes the builder with
any escaped exceptions.

• Now the “play” button is pushed; the resumption delegate
is called. It runs until the “pause” button is hit.

• Th e Task is returned to the caller.
Task builders are special helper types meant only for compiler

consumption. However, their behavior isn’t much diff erent from
what happens when you use the TaskCompletionSource types of
the Task Parallel Library (TPL) directly.

So far I’ve created a Task to return and a “play” button—the
resumption delegate—for someone to call when it’s time to resume
execution. I still need to see how execution is resumed and how
the await expression sets up for something to do this. Before I put
it all together, though, let’s take a look at how tasks are consumed.

Awaitables and Awaiters
As you’ve seen, Tasks can be awaited. However, Visual Basic and C#
are perfectly happy to await other things as well, as long as they’re
awaitable; that is, as long as they have a certain shape that the await
expression can be compiled against. In order to be awaitable, some-
thing has to have a GetAwaiter method, which in turn returns an
awaiter. As an example, Task<TResult> has a GetAwaiter method
that returns this type:

public struct TaskAwaiter<TResult>
{
 public bool IsCompleted { get; }
 public void OnCompleted(Action continuation);
 public TResult GetResult();
}

Th e members on the awaiter let the compiler check if the await-
able is already complete, sign up a callback to it if it isn’t yet, and
obtain the result (or Exception) when it is.

We can now start to see what an await should do to pause and
resume around the awaitable. For instance, the await inside our
TryFetchAsync example would turn into something like this:

 __awaiter1 = client.DownloadDataTaskAsync(url).GetAwaiter();
 if (!__awaiter1.IsCompleted) {
 ... // Prepare for resumption at Resume1
 __awaiter1.OnCompleted(__moveNext);
 return; // Hit the "pause" button
 }
Resume1:
 ... __awaiter1.GetResult()) ...

static Task<byte[]> TryFetchAsync(string url)
{
 var __builder = new AsyncTaskMethodBuilder<byte[]>();
 ...
 Action __moveNext = delegate
 {
 try
 {
 ...
 return;
 ...
 __builder.SetResult(…);
 ...
 }
 catch (Exception exception)
 {
 __builder.SetException(exception);
 }
 };
 __moveNext();
 return __builder.Task;
}

Figure 1 Building a Task

for

Untitled-1 1 9/8/11 11:57 AM

www.devart.com

msdn magazine32 Asynchronous Programming

Again, watch what happens:
• An awaiter is obtained for the task returned from

DownloadDataTaskAsync.
• If the awaiter is not complete, the “play” button—the

resumption delegate—is passed to the awaiter as a callback.
• When the awaiter resumes execution (at Resume1) the

result is obtained and used in the code that follows it.
Clearly the common case is that the awaitable is a Task or Task<T>.

Indeed, those types—which are already present in the Microsoft .NET
Framework 4—have been keenly optimized for this role. However,
there are good reasons for allowing other awaitable types as well:

• Bridging to other technologies: F#, for instance, has a type
Async<T> that roughly corresponds to Func<Task<T>>.
Being able to await Async<T> directly from Visual Basic
and C# helps bridge between asynchronous code written
in the two languages. F# is similarly exposing bridging
functionality to go the other way—consuming Tasks
directly in asynchronous F# code.

• Implementing special semantics: Th e TPL itself is adding
a few simple examples of this. Th e static Task.Yield utility
method, for instance, returns an awaitable that will claim
(via IsCompleted) to not be complete, but will immediately
schedule the callback passed to its OnCompleted method,
as if it had in fact completed. Th is lets you force schedul-
ing and bypass the compiler’s optimization of skipping it
if the result is already available. Th is can be used to poke
holes in “live” code, and improve responsiveness of code
that isn’t sitting idle. Tasks themselves can’t represent things

that are complete but claim not to be, so a special awaitable
type is used for that.

Before I take a further look at the awaitable implementation of
Task, let’s fi nish looking at the compiler’s rewriting of the asynchro-
nous method, and fl esh out the bookkeeping that tracks the state
of the method’s execution.

The State Machine
In order to stitch it all together, I need to build up a state machine
around the production and consumption of the Tasks. Essentially,
all the user logic from the original method is put into the resump-
tion delegate, but the declarations of locals are lift ed out so they
can survive multiple invocations. Furthermore, a state variable is
introduced to track how far things have gotten, and the user logic
in the resumption delegate is wrapped in a big switch that looks
at the state and jumps to a corresponding label. So whenever
resumption is called, it will jump right back to where it left off the
last time. Figure 2 puts the whole thing together.

Quite the mouthful! I’m sure you’re asking yourself why this code
is so much more verbose than the manually “asynchronized” ver-
sion shown earlier. Th ere are a couple of good reasons, including
effi ciency (fewer allocations in the general case) and generality (it
applies to user-defi ned awaitables, not just Tasks). However, the main
reason is this: You don’t have to pull the user logic apart aft er all;
you just augment it with some jumps and returns and such.

While the example is too simple to really justify it, rewriting a
method’s logic into a semantically equivalent set of discrete methods
for each of its continuous bits of logic between the awaits is very
tricky business. Th e more control structures the awaits are nested
in, the worse it gets. When not just loops with continue and break
statements but try-fi nally blocks and even goto statements surround
the awaits, it’s exceedingly diffi cult, if indeed possible, to produce a
rewrite with high fi delity.

Instead of attempting that, it seems a neat trick is to just over-
lay the user’s original code with another layer of control structure,
airlift ing you in (with conditional jumps) and out (with returns)
as the situation requires. Play and pause. At Microsoft , we’ve been
systematically testing the equivalence of asynchronous methods to
their synchronous counterparts, and we’ve confi rmed that this is a
very robust approach. Th ere’s no better way to preserve synchronous
semantics into the asynchronous realm than by retaining the code
that describes those semantics in the fi rst place.

The Fine Print
Th e description I’ve provided is slightly idealized—there are a few
more tricks to the rewrite, as you may have suspected. Here are a
few of the other gotchas the compiler has to deal with:

Goto Statements The rewrite in Figure 2 doesn’t actually
compile, because goto statements (in C# at least) can’t jump to
labels buried in nested structures. Th at’s no problem in itself, as the
compiler generates to intermediate language (IL), not source code,
and isn’t bothered by nesting. But even IL doesn’t allow jumping
into the middle of a try block, as is done in my example. Instead,
what really happens is that you jump to the beginning of a try block,
enter it normally and then switch and jump again.

static Task<byte[]> TryFetchAsync(string url)
{
 var __builder = new AsyncTaskMethodBuilder<byte[]>();
 int __state = 0;
 Action __moveNext = null;
 TaskAwaiter<byte[]> __awaiter1;

 WebClient client = null;

 __moveNext = delegate
 {
 try
 {
 if (__state == 1) goto Resume1;
 client = new WebClient();
 try
 {
 __awaiter1 = client.DownloadDataTaskAsync(url).GetAwaiter();
 if (!__awaiter1.IsCompleted) {
 __state = 1;
 __awaiter1.OnCompleted(__moveNext);
 return;
 }
 Resume1:
 __builder.SetResult(__awaiter1.GetResult());
 }
 catch (WebException) { }
 __builder.SetResult(null);
 }
 catch (Exception exception)
 {
 __builder.SetException(exception);
 }
 };

 __moveNext();
 return __builder.Task;
}

Figure 2 Creating a State Machine

0911msdn_GrapeCity_Insert.indd 1 8/9/11 3:44 PM

www.GCPowerTools.com
www.GCPowerTools.com
http://GvTv.GCPowerTools.com

0911msdn_GrapeCity_Insert.indd 2 8/9/11 3:45 PM

http://GvTv.GCPowerTools.com
www.GCPowerTools.com

33October 2011msdnmagazine.com

Finally Blocks When returning out of the resumption delegate
because of an await, you don’t want the fi nally bodies to be executed
yet. Th ey should be saved for when the original return statements
from the user code are executed. You control that by generating
a Boolean flag signaling whether the finally bodies should be
executed, and augmenting them to check it.

Evaluation Order An await expression is not necessarily the
fi rst argument to a method or operator; it can occur in the middle.
To preserve the order of evaluation, all the preceding arguments
must be evaluated before the await, and the act of storing them
and retrieving them again aft er the await is surprisingly involved.

On top of all this, there are a few limitations you can’t get around.
For instance, awaits aren’t allowed inside of a catch or fi nally block,
because we don’t know of a good way to reestablish the right
exception context aft er the await.

The Task Awaiter
Th e awaiter used by the compiler-generated code to implement
the await expression has considerable freedom as to how it sched-
ules the resumption delegate—that is, the rest of the asynchronous
method. However, the scenario would have to be really advanced
before you’d need to implement your own awaiter. Tasks them-
selves have quite a lot of fl exibility in how they schedule because
they respect a notion of scheduling context that itself is pluggable.

The scheduling context is one of those notions that would
probably look a little nicer if we had designed for it from the start.
As it is, it’s an amalgam of a few existing concepts that we’ve decided
not to mess up further by trying to introduce a unifying concept
on top. Let’s look at the idea at the conceptual level, and then I’ll
dive into the realization.

Th e philosophy underpinning the scheduling of asynchronous
callbacks for awaited tasks is that you want to continue executing
“where you were before,” for some value of “where.” It’s this “where”
that I call the scheduling context. Scheduling context is a thread-
affine concept; every thread has (at most) one. When you’re
running on a thread, you can ask for the scheduling context it’s
running in, and when you have a scheduling context, you can
schedule things to run in it.

So this is what an asynchronous method should do when it
awaits a task:

• On suspension: Ask the thread it’s running on for its
scheduling context.

• On resumption: Schedule the resumption delegate back
on that scheduling context.

Why is this important? Consider the UI thread. It has its own
scheduling context, which schedules new work by sending it through
the message queue back on the UI thread. Th is means that if you’re
running on the UI thread and await a task, when the result of the
task is ready, the rest of the asynchronous method will run back
on the UI thread. Th us, all the things you can do only on the UI
thread (manipulating the UI) you can still do aft er the await; you
won’t experience a weird “thread hop” in the middle of your code.

Other scheduling contexts are multithreaded; specifi cally, the
standard thread pool is represented by a single scheduling context.
When new work is scheduled to it, it may go on any of the pool’s

threads. Th us, an asynchronous method that starts out running on
the thread pool will continue to do so, though it may “hop around”
among diff erent specifi c threads.

In practice, there’s no single concept corresponding to the
scheduling context. Roughly speaking, a thread’s Synchronization-
Context acts as its scheduling context. So if a thread has one of
those (an existing concept that can be user-implemented), it will
be used. If it doesn’t, then the thread’s TaskScheduler (a similar
concept introduced by the TPL) is used. If it doesn’t have one of
those either, the default TaskScheduler is used; that one schedules
resumptions to the standard thread pool.

Of course, all this scheduling business has a performance cost.
Usually, in user scenarios, it’s negligible and well worth it: Having
your UI code chopped up into manageable bits of actual live work
and pumped in through the message pump as waited-for results
become available is normally just what the doctor ordered.

Sometimes, though—especially in library code—things can get
too fi ne-grained. Consider:

async Task<int> GetAreaAsync()
{
 return await GetXAsync() * await GetYAsync();
}

Th is schedules back to the scheduling context twice—aft er each
await—just to perform a multiplication on the “right” thread. But
who cares what thread you’re multiplying on? That’s probably
wasteful (if used oft en), and there are tricks to avoid it: You can
essentially wrap the awaited Task in a non-Task awaitable that
knows how to turn off the schedule-back behavior and just run the
resumption on whichever thread completes the task, avoiding the
context switch and the scheduling delay:

async Task<int> GetAreaAsync()
{
 return await GetXAsync().ConfigureAwait(continueOnCapturedContext: false)
 * await GetYAsync().ConfigureAwait(continueOnCapturedContext: false);
}

Less pretty, to be sure, but a neat trick to use in library code that
ends up being a bottleneck for scheduling.

Go Forth and Async’ify
Now you should have a working understanding of the under-
pinnings of asynchronous methods. Probably the most useful
points to take away are:

• Th e compiler preserves the meaning of your control struc-
tures by actually preserving your control structures.

• Asynchronous methods don’t schedule ne w threads—they
let you multiplex on existing ones.

• When tasks get awaited, they put you back “where you were”
for a reasonable defi nition of what that means.

If you’re like me, you’ve already been alternating between read-
ing this article and typing in some code. You’ve multiplexed
multiple fl ows of control—reading and coding—on the same thread:
you. Th at’s just what asynchronous methods let you do.

MADS TORGERSEN is a principal program manager on the C# and Visual Basic
Language team at Microsoft .

THANKS to the following technical expert for reviewing this article:
Stephen Toub

www.msdnmagazine.com

msdn magazine34

A S YN CHR ONOUS PR OGR AM M I NG

Async Performance:
Understanding the Costs
of Async and Await

Asynchronous programming has long been the realm
of only the most skilled and masochistic of developers—those with
the time, inclination and mental capacity to reason about callback
aft er callback of non-linear control fl ow. With the Microsoft .NET
Framework 4.5, C# and Visual Basic deliver asynchronicity for the
rest of us, such that mere mortals can write asynchronous methods
almost as easily as writing synchronous methods. No more callbacks.
No more explicit marshaling of code from one synchronization
context to another. No more worrying about the fl owing of results
or exceptions. No more tricks that contort existing language
features to ease async development. In short, no more hassle.

Of course, while it’s now easy to get started writing asynchronous
methods (see the articles by Eric Lippert and Mads Torgersen in
this issue of MSDN Magazine), doing it really well still requires an

Stephen Toub

understanding of what’s happening under the covers. Any time
a language or framework raises the level of abstraction at which
a developer can program, it invariably also encapsulates hidden
performance costs. In many cases, such costs are negligible and can
and should be ignored by the vast number of developers imple-
menting the vast number of scenarios. However, it still behooves
more advanced developers to really understand what costs exist
so they can take any necessary steps to avoid those costs if they do
eventually become visible. Such is the case with the asynchronous
methods feature in C# and Visual Basic.

In this article, I’ll explore the ins and outs of asynchronous methods,
providing you with a solid understanding of how asynchronous
methods are implemented under the covers and discussing some
of the more nuanced costs involved. Note that this information isn’t
meant to encourage you to contort readable code into something
that can’t be maintained, all in the name of micro-optimization
and performance. It’s simply to give you information that may
help you diagnose any problems you may run across, as well as
supply a set of tools to help you overcome such potential issues.
Note also that this article is based on a preview release of the .NET
Framework 4.5, and it’s likely that specific implementation
details will change prior to the fi nal release.

Getting the Right Mental Model
For decades, developers have used high-level languages like C#,
Visual Basic, F# and C++ to develop efficient applications. This
experience has informed those developers about the relevant

This article is based on a preview release of the Microsoft .NET
Framework 4.5. It’s likely that specifi c implementation details will
change prior to the fi nal release.

This article discusses:
• Understanding the performance implications of

asynchronous methods

• Optimizing object allocations and garbage collections

• The impact of context on asynchronous method performance

Technologies discussed:
Microsoft .NET Framework 4.5, C#, Visual Basic

35October 2011msdnmagazine.com

costs of various operations, and that knowledge has informed best
development practices. For example, for most use cases, calling a
synchronous method is relatively cheap, even more so when the
compiler is able to inline the callee into the call site. Th us, devel-
opers learn to refactor code into small, maintainable methods, in
general without needing to think about any negative ramifi cations
from the increased method invocation count. Th ese developers
have a mental model for what it means to call a method.

With the introduction of asynchronous methods, a new mental
model is needed. While the C# and Visual Basic languages and com-
pilers are able to provide the illusion of an asynchronous method
being just like its synchronous counterpart, under the covers it’s
no such thing. Th e compiler ends up generating a lot of code on
behalf of the developer, code akin to the quantities of boilerplate
code that developers implementing asynchronicity in days of yore
would’ve had to have written and maintained by hand. Further still,
the compiler-generated code calls into library code in the .NET
Framework, again increasing the work done on behalf of the devel-
oper. To get the right mental model, and then to use that mental
model to make appropriate development decisions, it’s important
to understand what the compiler is generating on your behalf.

Think Chunky, Not Chatty
When working with synchronous code, methods with empty
bodies are practically free. Th is is not the case for asynchronous
methods. Consider the following asynchronous method, which
has a single statement in its body (and which due to lack of awaits
will end up running synchronously):

public static async Task SimpleBodyAsync() {
 Console.WriteLine("Hello, Async World!");
}

An intermediate language (IL) decompiler will reveal the true
nature of this function once compiled, with output similar to what’s
shown in Figure 1. What was a simple one-liner has been expanded
into two methods, one of which exists on a helper state machine class.
First, there’s a stub method that has the same basic signature as that
written by the developer (the method is named the same, it has
the same visibility, it accepts the same parameters and it retains its
return type), but that stub doesn’t contain any of the code written by
the developer. Rather, it contains setup boilerplate. Th e setup code
initializes the state machine used to represent the asynchronous
method and then kicks it off using a call to the secondary MoveNext
method on the state machine. Th is state machine type holds state
for the asynchronous method, allowing that state to be persisted
across asynchronous await points, if necessary. It also contains the
body of the method as written by the user, but contorted in a way
that allows for results and exceptions to be lift ed into the returned
Task; for the current position in the method to be maintained so
that execution may resume at that location aft er an await; and so on.

When thinking through what asynchronous methods cost to
invoke, keep this boilerplate in mind. Th e try/catch block in the
MoveNext method will likely prevent it from getting inlined by
the just-in-time (JIT) compiler, so at the very least we’ll now have
the cost of a method invocation where in the synchronous case
we likely would not (with such a small method body). We have
multiple calls into Framework routines (like SetResult). And we have

multiple writes to fi elds on the state machine type. Of course, we
need to weigh all of this against the cost of the Console.Write-
Line, which will likely dominate all of the other costs involved (it
takes locks, it does I/O and so forth). Further, notice that there
are optimizations the infrastructure does for you. For example,
the state machine type is a struct. Th at struct will only be boxed
to the heap if this method ever needs to suspend its execution
because it’s awaiting an instance that’s not yet completed, and in this
simple method, it never will complete. As such, the boilerplate of
this asynchronous method won’t incur any allocations. Th e com-
piler and runtime work hard together to minimize the number of
allocations involved in the infrastructure.

Know When Not to Use Async
Th e .NET Framework attempts to generate effi cient asynchronous
implementations for asynchronous methods, applying multiple
optimizations. However, developers oft en have domain knowledge
than can yield optimizations that would be risky and unwise for the
compiler and runtime to apply automatically, given the generality
they target. With this in mind, it can actually benefi t a developer
to avoid using async methods in a certain, small set of use cases,

[DebuggerStepThrough]
public static Task SimpleBodyAsync() {
 <SimpleBodyAsync>d__0 d__ = new <SimpleBodyAsync>d__0();
 d__.<>t__builder = AsyncTaskMethodBuilder.Create();
 d__.MoveNext();
 return d__.<>t__builder.Task;
}

[CompilerGenerated]
[StructLayout(LayoutKind.Sequential)]
private struct <SimpleBodyAsync>d__0 : <>t__IStateMachine {
 private int <>1__state;
 public AsyncTaskMethodBuilder <>t__builder;
 public Action <>t__MoveNextDelegate;

 public void MoveNext() {
 try {
 if (this.<>1__state == -1) return;
 Console.WriteLine("Hello, Async World!");
 }
 catch (Exception e) {
 this.<>1__state = -1;
 this.<>t__builder.SetException(e);
 return;
 }

 this.<>1__state = -1;
 this.<>t__builder.SetResult();
 }

 ...
}

Figure 1 Asynchronous Method Boilerplate

The .NET Framework
attempts to generate effi cient

asynchronous implementations
for asynchronous methods.

www.msdnmagazine.com

msdn magazine36 Asynchronous Programming

particularly for library methods that will be accessed in a more
fi ne-grained manner. Typically, this is the case when it’s known
that the method may actually be able to complete synchronously
because the data it’s relying on is already available.

When designing asynchronous methods, the Framework devel-
opers spent a lot of time optimizing away object allocations. Th is is
because allocations represent one of the largest performance costs
possible in the asynchronous method infrastructure. The act of
allocating an object is typically quite cheap. Allocating objects
is akin to fi lling your shopping cart with merchandise, in that it
doesn’t cost you much eff ort to put items into your cart; it’s when
you actually check out that you need to pull out your wallet and
invest signifi cant resources. While allocations are usually cheap, the
resulting garbage collection can be a showstopper when it comes
to the application’s performance. The act of garbage collection
involves scanning through some portion of objects currently
allocated and finding those that are no longer referenced. The
more objects allocated, the longer it takes to perform this marking.
Further, the larger the allocated objects and the more of them that
are allocated, the more frequently garbage collection needs to occur.
In this manner, then, allocations have a global eff ect on the system:
the more garbage generated by asynchronous methods, the slower
the overall program will run, even if micro benchmarks of the
asynchronous methods themselves don’t reveal signifi cant costs.

For asynchronous methods that actually yield execution (due
to awaiting an object that’s not yet completed), the asynchronous
method infrastructure needs to allocate a Task object to return
from the method, as that Task serves as a unique reference for
this particular invocation. However, many asynchronous method
invocations can complete without ever yielding. In such cases,
the asynchronous method infrastructure may return a cached,
already completed Task, one that it can use over and over to
avoid allocating unnecessary Tasks. It’s only able to do this in
limited circumstances, however, such as when the asynchronous
method is a non-generic Task, a Task<Boolean>, or when it’s a
Task<TResult> where TResult is a reference type and the result of
the asynchronous method is null. While this set may expand in

the future, you can oft en do better if you have domain knowledge
of the operation being implemented.

Consider implementing a type like MemoryStream. Memory Stream
derives from Stream, and thus can override Stream’s new .NET 4.5
ReadAsync, WriteAsync and FlushAsync methods to provide opti-
mized implementations for the nature of MemoryStream. Because
the operation of reading is simply going against an in-memory
buff er and is therefore just a memory copy, better performance
results if ReadAsync runs synchronously. Implementing this with
an asynchronous method would look something like the following:

public override async Task<int> ReadAsync(
 byte [] buffer, int offset, int count,
 CancellationToken cancellationToken)
{
 cancellationToken.ThrowIfCancellationRequested();
 return this.Read(buffer, offset, count);
}

Easy enough. And because Read is a synchronous call, and
because there are no awaits in this method that will yield control,
all invocations of ReadAsync will actually complete synchro-
nously. Now, let’s consider a standard usage pattern of streams,
such as a copy operation:

byte [] buffer = new byte[0x1000];
int numRead;
while((numRead = await source.ReadAsync(buffer, 0, buffer.Length)) > 0) {
 await source.WriteAsync(buffer, 0, numRead);
}

Notice here that ReadAsync on the source stream for this
particular series of calls is always invoked with the same count
parameter (the buffer’s length), and thus it’s very likely that the
return value (the number of bytes read) will also be repeating.
Except in some rare circumstances, it’s very unlikely that the
asynchronous method implementation of ReadAsync will be able
to use a cached Task for its return value, but you can.

Consider rewriting this method as shown in Figure 2. By taking
advantage of the specifi c aspects of this method and its common
usage scenarios, we’ve now been able to optimize allocations away
on the common path in a way we couldn’t expect the underlying
infrastructure to do. With this, every time a call to ReadAsync
retrieves the same number of bytes as the previous call to Read-
Async, we’re able to completely avoid any allocation overhead from
the ReadAsync method by returning the same Task we returned
on the previous invocation. And for a low-level operation like this
that we expect to be very fast and to be invoked repeatedly, such
an optimization can make a noticeable diff erence, especially in the
number of garbage collections that occur.

A related optimization to avoid the task allocation may be done
when the scenario dictates caching. Consider a method whose pur-
pose it is to download the contents of a particular Web page and
then cache its successfully downloaded contents for future accesses.

private Task<int> m_lastTask;

public override Task<int> ReadAsync(
 byte [] buffer, int offset, int count,
 CancellationToken cancellationToken)
{
 if (cancellationToken.IsCancellationRequested) {
 var tcs = new TaskCompletionSource<int>();
 tcs.SetCanceled();
 return tcs.Task;
 }

 try {
 int numRead = this.Read(buffer, offset, count);
 return m_lastTask != null && numRead == m_lastTask.Result ?
 m_lastTask : (m_lastTask = Task.FromResult(numRead));
 }
 catch(Exception e) {
 var tcs = new TaskCompletionSource<int>();
 tcs.SetException(e);
 return tcs.Task;
 }
}

Figure 2 Optimizing Task Allocations

The Framework developers
spent a lot of time optimizing

away object allocations.

Untitled-1 1 6/9/11 11:25 AM

www.DevExpress.com/Grids

msdn magazine38 Asynchronous Programming

Such functionality might be written using an asynchronous method
as follows (using the new System.Net.Http.dll library in .NET 4.5):

private static ConcurrentDictionary<string,string> s_urlToContents;

public static async Task<string> GetContentsAsync(string url)
{
 string contents;
 if (!s_urlToContents.TryGetValue(url, out contents))
 {
 var response = await new HttpClient().GetAsync(url);
 contents = response.EnsureSuccessStatusCode().Content.ReadAsString();
 s_urlToContents.TryAdd(url, contents);
 }
 return contents;
}

Th is is a straightforward implementation. And for calls to Get-
ContentsAsync that can’t be satisfi ed from the cache, the overhead
of constructing a new Task<string> to represent this download will
be negligible when compared to the network-related costs. How-
ever, for cases where the contents may be satisfi ed from the cache,
it could represent a non-negligible cost, an object allocation sim-
ply to wrap and hand back already available data.

To avoid that cost (if doing so is required to meet your perfor-
mance goals), you could rewrite this method as shown in Figure 3.
We now have two methods: a synchronous public method, and an
asynchronous private method to which the public method delegates.
Th e dictionary is now caching the generated tasks rather than their
contents, so future attempts to download a page that’s already been
successfully downloaded can be satisfi ed with a simple dictionary
access to return an already existing task. Internally, we also take
advantage of the ContinueWith methods on Task that allow us to
store the task into the dictionary once the Task has completed—
but only if the download succeeded. Of course, this code is more
complicated and requires more thought to write and maintain, so
as with any performance optimizations, avoid spending time mak-
ing them until performance testing proves that the complications
make an impactful and necessary diff erence. Whether such optimi-
zations make a diff erence really depends on usage scenarios. You’ll
want to come up with a suite of tests that represent common usage
patterns, and use analysis of those tests to determine whether these
complications improve your code’s performance in a meaningful way.

Another task-related optimization to consider is whether you
even need the returned Task from an asynchronous method. C# and

Visual Basic both support the creation of asynchronous methods
that return void, in which case no Task is allocated for the method,
ever. Asynchronous methods exposed publicly from libraries
should always be written to return a Task or Task<TResult>, because
you as a library developer don’t know whether the consumer
desires to wait on the completion of that method. However, for
certain internal usage scenarios, void-returning asynchronous
methods can have their place. Th e primary reason void-returning
asynchronous methods exist is to support existing event-driven
environments, like ASP.NET and Windows Presentation Foun-
dation (WPF). Th ey make it easy to implement button handlers,
page-load events and the like through the use of async and await.
If you do consider using an async void method, be very careful
around exception handling: exceptions that escape an async void
method bubble out into whatever SynchronizationContext was
current at the time the async void method was invoked.

Care About Context
Th ere are many kinds of “context” in the .NET Framework: Logical-
CallContext, SynchronizationContext, HostExecutionContext,
SecurityContext, ExecutionContext and more (from the sheer
number you might expect that the developers of the Framework
are monetarily incentivized to introduce new contexts, but I
assure you we’re not). Some of these contexts are very relevant to
asynchronous methods, not only in functionality, but also in their
impact on asynchronous method performance.

SynchronizationContext SynchronizationContext plays a big role
in asynchronous methods. A “synchronization context” is simply
an abstraction over the ability to marshal delegate invocation in a
manner specific to a given library or framework. For example,
WPF provides a Dispatcher SynchronizationContext to represent the
UI thread for a Dispatcher: posting a delegate to this synchroniza-
tion context causes that delegate to be queued for execution by the
Dispatcher on its thread. ASP.NET provides an AspNetSynchroni-
zationContext, which is used to ensure that asynchronous opera-
tions that occur as part of the processing of an ASP.NET request
are executed serially and are associated with the right HttpContext
state. And so on. All told, there are around 10 concrete implemen-
tations of SynchronizationContext within the .NET Framework,
some public, some internal.

When awaiting Tasks and other awaitable types provided by the
.NET Framework, the “awaiters” for those types (like TaskAwaiter)
capture the current SynchronizationContext at the time the await
is issued. Upon completion of the awaitable, if there was a current
SynchronizationContext that got captured, the continuation rep-
resenting the remainder of the asynchronous method is posted
to that SynchronizationContext. With that, developers writing

private static ConcurrentDictionary<string,Task<string>> s_urlToContents;

public static Task<string> GetContentsAsync(string url) {
 Task<string> contents;
 if (!s_urlToContents.TryGetValue(url, out contents)) {
 contents = GetContentsAsync(url);
 contents.ContinueWith(delegate {
 s_urlToContents.TryAdd(url, contents);
 }, CancellationToken.None,
 TaskContinuationOptions.OnlyOnRanToCompletion |
 TaskContinuatOptions.ExecuteSynchronously,
 TaskScheduler.Default);
 }
 return contents;
}

private static async Task<string> GetContentsAsync(string url) {
 var response = await new HttpClient().GetAsync(url);
 return response.EnsureSuccessStatusCode().Content.ReadAsString();
}

Figure 3 Manually Caching Tasks

You’ll want to come up with
a suite of tests that represent

common usage patterns.

Untitled-1 1 6/9/11 11:31 AM

www.DevExpress.com/Reporting

msdn magazine40 Asynchronous Programming

an asynchronous method called from a UI thread don’t need to
manually marshal invocations back to the UI thread in order to
modify UI controls: such marshaling is handled automatically by
the Framework infrastructure.

Unfortunately, such marshaling also involves cost. For applica-
tion developers using await to implement their control fl ow, this
automatic marshaling is almost always the right solution. Libraries,
however, are oft en a diff erent story. Application developers typically
need such marshaling because their code cares about the context
under which it’s running, such as being able to access UI controls,
or being able to access the HttpContext for the right ASP.NET
request. Most libraries, however, do not suffer this constraint.
As a result, this automatic marshaling is frequently an entirely
unnecessary cost. Consider again the code shown earlier to copy
data from one stream to another:

byte [] buffer = new byte[0x1000];
int numRead;
while((numRead = await source.ReadAsync(buffer, 0, buffer.Length)) > 0) {
 await source.WriteAsync(buffer, 0, numRead);
}

If this copy operation is invoked from a UI thread, every awaited
read and write operation will force the completion back to the UI
thread. For a megabyte of source data and Streams that complete
reads and writes asynchronously (which is most of them), that
means upward of 500 hops from background threads to the UI
thread. To address this, the Task and Task<TResult> types provide
a Confi gureAwait method. Confi gureAwait accepts a Boolean con-
tinueOnCapturedContext parameter that controls this marshaling
behavior. If the default of true is used, the await will automatically
complete back on the captured SynchronizationContext. If false
is used, however, the SynchronizationContext will be ignored and
the Framework will attempt to continue the execution wherever
the previous asynchronous operation completed. Incorporating
this into the stream-copying code results in the following more
effi cient version:

byte [] buffer = new byte[0x1000];
int numRead;
while((numRead = await
 source.ReadAsync(buffer, 0, buffer.Length).ConfigureAwait(false)) > 0) {
 await source.WriteAsync(buffer, 0, numRead).ConfigureAwait(false);
}

For library developers, this performance impact alone is suf-
ficient to warrant always using ConfigureAwait, unless it’s the
rare circumstance where the library has domain knowledge of its
environment and does need to execute the body of the method
with access to the correct context.

Th ere’s another reason, beyond performance, to use Confi gure-
Await in library code. Suppose the preceding code, without
Confi gureAwait, was in a method called CopyStreamToStream-
Async, which was invoked from a WPF UI thread, like so:

private void button1_Click(object sender, EventArgs args) {
 Stream src = …, dst = …;
 Task t = CopyStreamToStreamAsync(src, dst);
 t.Wait(); // deadlock!
}

Here, the developer should have written button1_Click as an
async method and then await-ed the Task instead of using its
synchronous Wait method. Th e Wait method has its important uses,
but it’s almost always wrong to use it for waiting in a UI thread like
this. Th e Wait method won’t return until the Task has completed.
In the case of CopyStreamToStreamAsync, the contained awaits
try to Post back to the captured SynchronizationContext, and the
method can’t complete until those Posts complete (because the
Posts are used to process the remainder of the method). But those
Posts won’t complete, because the UI thread that would process
them is blocked in the call to Wait. Th is is a circular dependency,
resulting in a deadlock. If CopyStreamToStreamAsync had instead
been written using ConfigureAwait(false), there would be no
circular dependency and no deadlock.

ExecutionContext ExecutionContext is an integral part of the
.NET Framework, yet most developers are blissfully unaware of
its existence. ExecutionContext is the granddaddy of contexts,
encapsulating multiple other contexts like SecurityContext and
LogicalCallContext, and representing everything that should be
automatically flowed across asynchronous points in code. Any
time you’ve used ThreadPool.QueueUserWorkItem, Task.Run,
Delegate.BeginInvoke, Stream.BeginRead, WebClient.Download-
StringAsync or any other asynchronous operation in the Framework,
under the covers ExecutionContext was captured if possible (via
ExecutionContext.Capture), and that captured context was then
used to process the provided delegate (via ExecutionContext.Run).
For example, if the code invoking Th readPool.QueueUserWorkItem
was impersonating a Windows identity at the time, that same
Windows identity would be impersonated in order to run the sup-
plied WaitCallback delegate. And if the code invoking Task.Run
had fi rst stored data into the LogicalCallContext, that same data
would be accessible through the LogicalCallContext within the
supplied Action delegate. ExecutionContext is also fl owed across
awaits on tasks.

Th ere are multiple optimizations in place in the Framework to
avoid capturing and running under a captured ExecutionContext
when doing so is unnecessary, as doing so can be quite expensive.

[StructLayout(LayoutKind.Sequential), CompilerGenerated]
private struct <FooAsync>d__0 : <>t__IStateMachine {
 private int <>1__state;
 public AsyncTaskMethodBuilder <>t__builder;
 public Action <>t__MoveNextDelegate;

 public DateTimeOffset <dto>5__1;
 public DateTime <dt>5__2;
 private object <>t__stack;
 private object <>t__awaiter;

 public void MoveNext();
 [DebuggerHidden]
 public void <>t__SetMoveNextDelegate(Action param0);
}

Figure 4 Local Lifting

The Wait method has its
important uses, but it’s almost

always wrong to use it for waiting
in a UI thread.

Untitled-1 1 6/9/11 11:31 AM

www.DevExpress.com/Analytics

msdn magazine42 Asynchronous Programming

However, actions like impersonating a Windows identity or stor-
ing data into LogicalCallContext will thwart these optimizations.
Avoiding operations that manipulate ExecutionContext, such as
WindowsIdentity.Impersonate and CallContext.LogicalSetData,
results in better performance when using asynchronous methods,
and when using asynchrony in general.

Lift Your Way out of Garbage Collection
Asynchronous methods provide a nice illusion when it comes to
local variables. In a synchronous method, local variables in C#
and Visual Basic are stack-based, such that no heap allocations are
necessary to store those locals. However, in asynchronous meth-
ods, the stack for the method goes away when the asynchronous
method is suspending at an await point. For data to be available
to the method after an await resumes, that data must be stored
somewhere. Th us, the C# and Visual Basic compilers “lift ” locals into
a state machine struct, which is then boxed to the heap at the fi rst
await that suspends so that locals may survive across await points.

Earlier in this article, I discussed how the cost and frequency of
garbage collection is infl uenced by the number of objects allocated,
while the frequency of garbage collection is also infl uenced by the
size of objects allocated. Th e bigger the objects being allocated,
the more oft en garbage collection will need to run. Th us, in an
asynchronous method, the more locals that need to be lift ed to the
heap, the more oft en garbage collections will occur.

As of the time of this writing, the C# and Visual Basic compilers
sometimes lift more than is truly necessary. For example, consider
the following code snippet:

public static async Task FooAsync() {
 var dto = DateTimeOffset.Now;
 var dt = dto.DateTime;
 await Task.Yield();
 Console.WriteLine(dt);
}

Th e dto variable isn’t read at all aft er the await point, and thus the
value written to it before the await doesn’t need to survive across the
await. However, the state machine type generated by the compiler
to store locals still contains the dto reference, as shown in Figure 4.

Th is slightly bloats the size of that heap object beyond what’s
truly necessary. If you fi nd that garbage collections are occurring
more frequently than you expect, take a look at whether you really
need all of the temporary variables you’ve coded into your asyn-
chronous method. Th is example could be rewritten as follows to
avoid the extra fi eld on the state machine class:

public static async Task FooAsync() {
 var dt = DateTimeOffset.Now.DateTime;
 await Task.Yield();
 Console.WriteLine(dt);
}

Moreover, the .NET garbage collector (GC) is a generational
collector, meaning that it partitions the set of objects into groups,
known as generations: at a high-level, new objects are allocated in
generation 0, and then all objects that survive a collection are pro-
moted up a generation (the .NET GC currently uses generations
0, 1 and 2). Th is enables faster collections by allowing the GC to
frequently collect only from a subset of the known object space.
It’s based on the philosophy that objects newly allocated will also
go away quickly, while objects that have been around for a long
time will continue to be around for a long time. What this means
is that if an object survives generation 0, it will likely end up being
around for a while, continuing to put pressure on the system for
that additional time. And that means we really want to ensure that
objects are made available to garbage collection as soon as they’re
no longer needed.

With the aforementioned lift ing, locals get promoted to fi elds
of a class that stays rooted for the duration of the asynchronous
method’s execution (as long as the awaited object properly main-
tains a reference to the delegate to invoke upon completion of the
awaited operation). In synchronous methods, the JIT compiler
is able to keep track of when locals will never again be accessed,
and at such points can help the GC to ignore those variables as
roots, thus making the referenced objects available for collection
if they’re not referenced anywhere else. However, in asynchronous
methods, these locals remain referenced, which means the objects
they reference may survive much longer than if these had been
real locals. If you fi nd that objects are remaining alive well past
their use, consider nulling out the locals referencing those objects
when you’re done with them. Again, this should be done only if
you fi nd that it’s actually the cause of a performance problem, as it
otherwise complicates the code unnecessarily. Furthermore, the
C# and Visual Basic compilers could be updated by fi nal release
or otherwise in the future to handle more of these scenarios on
the developer’s behalf, so any such code written today is likely to
become obsolete in the future.

Avoid Complexity
Th e C# and Visual Basic compilers are fairly impressive in terms
of where you’re allowed to use awaits: almost anywhere. Await
expressions may be used as part of larger expressions, allowing
you to await Task<TResult> instances in places you might have

public static Task<int> SumAsync(
 Task<int> a, Task<int> b, Task<int> c)
{
 return (a.Status == TaskStatus.RanToCompletion &&
 b.Status == TaskStatus.RanToCompletion &&
 c.Status == TaskStatus.RanToCompletion) ?
 Task.FromResult(Sum(a.Result, b.Result, c.Result)) :
 SumAsyncInternal(a, b, c);
}

private static async Task<int> SumAsyncInternal(
 Task<int> a, Task<int> b, Task<int> c)
{
 await Task.WhenAll((Task)a, b, c).ConfigureAwait(false);
 return Sum(a.Result, b.Result, c.Result);
}

Figure 5 Applying Multiple Optimizations

The bigger the objects being
allocated, the more often garbage

collection will need to run.

Untitled-1 1 6/9/11 11:31 AM

www.DevExpress.com/Charting

msdn magazine44 Asynchronous Programming

any other value-returning expression. For example, consider the
following code, which returns the sum of three tasks’ results:

public static async Task<int> SumAsync(
 Task<int> a, Task<int> b, Task<int> c)
{
 return Sum(await a, await b, await c);
}

private static int Sum(int a, int b, int c)
{
 return a + b + c;
}

Th e C# compiler allows you to use the expression “await b” as an
argument to the Sum function. However, there are multiple awaits
here whose results are passed as parameters to Sum, and due to
order of evaluation rules and how async is implemented in the
compiler, this particular example requires the compiler to “spill”
the temporary results of the fi rst two awaits. As you saw previously,
locals are preserved across await points by having them lift ed into
fi elds on the state machine class. However, for cases like this one,
where the values are on the CLR evaluation stack, those values
aren’t lift ed into the state machine but are instead spilled to a sin-
gle temporary object and then referenced by the state machine.
When you complete the await on the fi rst task and go to await the
second one, the compiler generates code that boxes the fi rst result
and stores the boxed object into a single <>t__stack fi eld on the
state machine. When you complete the await on the second task
and go to await the third one, the compiler generates code that
creates a Tuple<int,int> from the fi rst two values, storing that tuple
into the same <>__stack fi eld. Th is all means that, depending on
how you write your code, you could end up with very diff erent al-
location patterns. Consider instead writing SumAsync as follows:

public static async Task<int> SumAsync(
 Task<int> a, Task<int> b, Task<int> c)
{
 int ra = await a;
 int rb = await b;
 int rc = await c;
 return Sum(ra, rb, rc);
}

With this change, the compiler will now emit three more fi elds
onto the state machine class to store ra, rb and rc, and no spilling
will occur. Th us, you have a trade-off : a larger state machine class
with fewer allocations, or a smaller state machine class with more
allocations. Th e total amount of memory allocated will be larger
in the spilling case, as each object allocated has its own memory
overhead, but in the end performance testing could reveal that’s
still better. In general, as mentioned previously, you shouldn’t think
through these kinds of micro-optimizations unless you fi nd that the
allocations are actually the cause of grief, but regardless, it’s helpful
to know where these allocations are coming from.

Of course, there’s arguably a much larger cost in the preceding
examples that you should be aware of and proactively consider. Th e
code isn’t able to invoke Sum until all three awaits have completed,

and no work is done in between the awaits. Each of these awaits
that yields requires a fair amount of work, so the fewer awaits you
need to process, the better. It would behoove you, then, to com-
bine all three of these awaits into just one by waiting on all of the
tasks at once with Task.WhenAll:

public static async Task<int> SumAsync(
 Task<int> a, Task<int> b, Task<int> c)
{
 int [] results = await Task.WhenAll(a, b, c);
 return Sum(results[0], results[1], results[2]);
}

Th e Task.WhenAll method here returns a Task<TResult[]> that
won’t complete until all of the supplied tasks have completed, and it
does so much more effi ciently than just waiting on each individual
task. It also gathers up the result from each task and stores it into
an array. If you want to avoid that array, you can do that by forcing
binding to the non-generic WhenAll method that works with Task
instead of Task<TResult>. For ultimate performance, you could
also take a hybrid approach, where you first check to see if all
of the tasks have completed successfully, and if they have, get their
results individually—but if they haven’t, then await a WhenAll
of those that haven’t. Th at will avoid any allocations involved in
the call to WhenAll when it’s unnecessary, such as allocating the
params array to be passed into the method. And, as previously
mentioned, we’d want this library function to also suppress context
marshaling. Such a solution is shown in Figure 5.

Asynchronicity and Performance
Asynchronous methods are a powerful productivity tool,
enabling you to more easily write scalable and responsive librar-
ies and applications. It’s important to keep in mind, though, that
asynchronicity is not a performance optimization for an
individual operation. Taking a synchronous operation and making
it asynchronous will invariably degrade the performance of that
one operation, as it still needs to accomplish everything that the
synchronous operation did, but now with additional constraints
and considerations. A reason you care about asynchronicity, then,
is performance in the aggregate: how your overall system per-
forms when you write everything asynchronously, such that you can
overlap I/O and achieve better system utilization by consuming
valuable resources only when they’re actually needed for execu-
tion. Th e asynchronous method implementation provided by the
.NET Framework is well-optimized, and oft en ends up providing
as good or better performance than well-written asynchronous
implementations using existing patterns and volumes more code.
Any time you’re planning to develop asynchronous code in the
.NET Framework from now on, asynchronous methods should
be your tool of choice. Still, it’s good for you as a developer to be
aware of everything the Framework is doing on your behalf in these
asynchronous methods, so you can ensure the end result is as good
as it can possibly be.

STEPHEN TOUB is a principal architect on the Parallel Computing Platform team
at Microsoft .

THANKS to the following technical experts for reviewing this article:
Joe Hoag, Eric Lippert, Danny Shih and Mads Torgersen

The fewer awaits you need to
process, the better.

Untitled-4 1 7/6/11 11:31 AM

http://www.Aspose.com

msdn magazine46

L IGH TS WITC H SEC UR IT Y

Securing Access to
LightSwitch Applications

Let’s face it: Implementing application security can
be daunting. Luckily, Visual Studio LightSwitch makes it easy to
manage permissions-based access control in line-of-business (LOB)
applications, allowing you to build applications with access-control
logic to meet the specifi c needs of your business.

A LightSwitch application logically consists of three tiers:
presentation, logic and data storage, and you’ll need to consider
access to assets at each tier in order to ensure the right level of
access is achieved. With LightSwitch, you can build access-control
logic into applications at the right level. Moreover, you’ll fi nd that
LightSwitch leverages the access-control fundamentals in the
underlying technologies and allows for common access-control
confi guration through IIS and ASP.NET.

Th is article examines how access control works in LightSwitch
applications. First, we’ll describe the features LightSwitch provides
for access control in a three-tier architecture. Next, we’ll briefly
review deployment as it pertains to access control and show some
ways to further control access using the technologies that support
LightSwitch. Finally, we’ll discuss access control when deploying
to a Windows Azure environment.

Valerie G. Andersen, Matt Evans, Sheel Shah and Michael Simons

Access Control Basics
Th ere are two aspects to access control in LightSwitch applications.
Th e fi rst is authentication, or how an application verifi es a user is
who he says he is. Th e second is authorization, which defi nes what
the user is allowed to do or see in the application.

Authentication
Th e authentication process determines if a user is who he claims to
be. Th e fi rst layer of access control in LightSwitch requires users to
identify themselves to the application. Th e supported authentica-
tion modes are Windows authentication and Forms authentication.
These options can be configured in the application properties
Access Control tab of your application, as seen in Figure 1.

Windows authentication is recommended when all users are
on a Windows domain and you trust that the person logged into
a computer is the same user who’s using the application. Windows
authentication doesn’t require an additional login prompt and the
application doesn’t have to store or manage passwords outside of
Windows. Windows authentication is the more secure option,
but it’s usually only practical if the application is running in a
corporate intranet environment with a domain.

With the second option, Forms authentication, the user is
prompted for a username and password when the application
opens. In LightSwitch, these values are checked against a database
by default. Forms authentication works nicely for clients running
across the Internet or for those not on a Windows domain.

Forms authentication requires that any users needing access
to the application fi rst be added to the system. Windows authen-
tication can work this way as well, but there’s an option that can
be set at design time to allow all Windows users who can log in to
the domain to have access to the application by default. Any parts

This article discusses:
• Authentication and authorization

• Securing access in three-tier applications

• Controlling access across relationships

• Leveraging access-control features in IIS

• Securing LightSwitch Azure applications

Technologies discussed:
Visual Studio LightSwitch, Windows Azure, IIS, ASP.NET

47October 2011msdnmagazine.com

of the application requiring specific permissions would not be
accessible to a Windows user who hasn’t been explicitly added.

Authentication lets you identify who can or can’t use the appli-
cation, and it may be all that’s required to meet the access-control
needs for some kinds of applications. Once users are authenticated,
you may choose to fully trust them with access to the data. In that
case, your access-control implementation is complete and no addi-
tional permissions or code are required. You need only consider the
IIS options discussed in the Deployment Considerations for Access
Control section for securing your application on the hosting server.

However, many applications require more granular control of users’
behavior after they’ve been authenticated. For these scenarios,
you’ll need authorization.

Authorization
LightSwitch provides a permissions-based authorization system
for developing business rules, as shown in Figure 2.

You define permissions in the application designer (see
Figure 1). You can then write code to check if the current user has
the required permissions. Access-control methods can be imple-
mented on entities, queries and screens, so you can easily write
logic to determine if the current user can view or manipulate
specifi c data or open a particular screen.

LightSwitch has a built-in permission called Security Admin-
istration, and any user who receives this permission becomes a
security administrator. Th e Security Administration permission
allows the logged-on user to access the Security Administration
screens in the running LightSwitch client application, which will
show automatically for users who have been granted this privilege.
Th e security administrator creates the roles needed for the applica-
tion and assigns the desired permissions to each role, as shown in
Figure 3. Th en, users are created and assigned to the appropriate
role, as shown in Figure 4.

When an application is fi rst deployed, a security administrator must
be added to the Security Administration role to enable initial access
to the application. Th e deployment process assists in confi guring

this default user appropriately.
When a deployed application is
running, the system will not allow
the removal of the last user having
the security administrator per-
mission to ensure that a security
administrator exists at all times.

However, you won’t have to
deploy your application to verify
the appropriate permission behav-
ior. When you run a LightSwitch
application in debug mode, the
authentication and role system
run in a special mode in which
the development environment
automatically tries to authenticate
a special test user. You can grant
or deny the permissions the test
user has from the LightSwitch

designer using the “Granted for debug” column. Th en the applica-
tion will run in debug mode with the permissions selected so you
can test the written permission logic. Th is means you can quickly
validate that the permission checks are accurate without having to
confi gure multiple test users and roles.

Where You Control Access
to Application Assets Matters
Now let’s consider what to secure and where to secure it. Many appli-
cations have some sensitive data that needs to be protected from view,
other data that only needs to be guarded against manipulation, and
possibly some data that doesn’t need protected access at all.

Th e fi rst place to think about securing data should be the logic
tier. When developers control data appropriately at the logic tier,
the presentation tier will oft en react correctly and automatically.
For example, if a user doesn’t have the delete permission granted
for Employee data, a grid showing Employee data will have the
delete button disabled. That’s the power and ease of building
applications with LightSwitch.

Implementing access control at the data level makes the
application more secure and lets developers take advantage of
built-in intelligence. Securing data only at the presentation tier
leaves your data exposed at the logic tier. A malicious, authenti-
cated user could bypass the presentation tier and access the service
directly to read or manipulate data. This relates to the three-tier
architecture of LightSwitch applications and, in fact, is common
among three-tier applications. Th e presentation tier is responsible
for displaying the data appropriately; however, it’s not the only way
for an authenticated user to access the data if the proper access
controls aren’t implemented on the logic tier.

Securing Data on the Logic Tier
Th e logic tier includes two major groups of components where you
apply permissions checking: entities and queries.

Entities Entities are the general mechanism for accessing and
working with application data. Th ere are four main actions you can

Figure 1 Defi ning Permissions in the Application Designer

www.msdnmagazine.com

msdn magazine48 LightSwitch Security

carry out with entities: read, insert, update and delete. LightSwitch
gives developers a hook-point to verify a user’s permissions as each
action is carried out, and it also provides a simple API for checking
if the current user has a specifi c permission defi ned in the appli-
cation. Th e following code shows an example of the permissions
check and the various gate methods the API provides to allow a
developer to check permissions:

partial void Employee_CanUpdate(ref bool result)
{
 result = Application.Current.User.HasPermission(Permissions.EmployeeUpdate);
}

partial void Employee_CanInsert...

partial void Employee_CanRead...

partial void Employee_CanDelete...

partial void SaveChanges_CanExecute...

A couple of things should be noted. First, these methods, with
the exception of SaveChanges_CanExecute, are implemented on

the entity set as a whole and not on the specifi c entity instances.
Th erefore, any checks performed can’t be related to data values on
a specifi c entity instance. Th e SaveChanges_CanExecute method
controls access to changes in the entire data source and therefore
can’t contain entity- or entity-set-specific logic. Second, if the
Employee_CanRead method returns false, the Employee_Can-
Update and Employee_CanDelete methods will not be called,
as they would be implicitly false as well. A user is not allowed to
update or delete an entity if she isn’t allowed to read it.

Th e “Can” methods are the basic way to do coarse-grained secu-
rity. Th ey support basic data access-control policies. However, they
have some limitations. When more fi ne-grained control for reading
data is needed, you can implement access-control logic on queries.
To control the writing of data at a more granular level, you must do
so in the Save Pipeline.

Queries Queries are also secured on the logic tier. Each query
has a method that allows you to control access. LightSwitch
automatically generates three queries for each entity that exists:
an All query to return all of the entity instances, and Single and
SingleOrDefault queries to return one entity instance by key. Each
of these built-in queries has a CanExecute method that can be used
to implement access control:

partial void Employees_All_CanExecute(ref bool result)
{
 result = Application.Current.User.HasPermission(Permissions.QueryEmployees);
}

partial void Employees_Single_CanExecute...

partial void Employees_SingleOrDefault_CanExecute...

It’s important to note that LightSwitch queries are composable,
meaning new queries can be based on an existing query. When
applying access-control logic to queries, the permission require-
ments on the initial query serve as input to queries composed on
that query. Th e Single and the SingleOrDefault queries are composed

on the All query, so securing the All
query also secures these queries if
no specifi c permissions are speci-
fied for the derived query. How-
ever, if you like, you can specify
permissions on the derived query
that are less restrictive than those
on the composing query. Also, the
CanRead method on the entity set
will be applied before CanExecute
for any queries of that type.

Figure 5 shows an example
of query composition—if the
NorthAmericaEmployees query
is created on the Employee entity,
this query is composed on the
built-in Employee_All query.
Therefore, any access-control
logic applied via Employee_All_
CanExecute will also apply to
the NorthAmericaEmployees
query because the NorthAmerica-
Employees query is based on the Figure 3 Creating Roles at Run Time

Figure 2 Implementing Authorization in LightSwitch

Defined by the Developer
at Design Time

Permission Permission

Developer writes
permission checks

in code.

Configured by the Security
Administrator at Run Time

*

*

User

1 *

Role

partial void Employees_CanRead(ref bool result)

 {

 result = this.Application.User.HasPermission(
 Permissions.EmployeeReader):

 }

49October 2011msdnmagazine.com

Employee_All query, assuming no specific code is written for
the derived query. If you wanted to allow only certain users to
access the data in the NorthAmericanEmployees entity, you could
specifi cally restrict or open up the permissions for that query via
the NorthAmericaEmployees_CanExecute method.

Controlling Access Across Relationships
When working with queries across relationships, it’s important to
understand that permissions are checked on the entities as rela-
tionships, which are traversed across related
entities. This is another reason why it’s
important to have permissions properly
defi ned on the entities. If you need to protect
data from read access through relationships,
the CanRead method on the entity needs to
require the correct level of permission. As an
example, let’s consider our Employee table
again and the related compensation data, as
shown in the model in Figure 6.

When traversing the relationship between
Employee and Compensation via a query,
the permissions on the entity read actions
are evaluated as the relationship is tra-
versed rather than the permissions on the
Compensation_All_CanExecute. The
permissions must be correctly set on the
Compensation entity’s CanRead method so
the correct level of permission is achieved as
entities are traversed. You need to be aware
that queries can be used to infer data when
the entities are not secured. For example, if
you have a query that returns the top-paid
employees, as shown in Figure 7, the com-
pensation entity that’s accessed to return the
Employee data needs to be properly secured
so only users who have been granted access
can get to this data via the query.

Providing a Customized
Presentation Experience
Once the data has been secured on the logic
tier, it’s time to design the user experience
in the presentation tier. If you don’t want
a user to have access to a particular screen
at all, you can turn the screen off via the
<ScreenName>_CanRun method for the
application. When a user doesn’t have access
to a given screen, the screen won’t show in
her navigation menu. You can also restrict
commands on a screen by using the
<CommandName>_CanExecute method.

There are several other methods avail-
able on screens and entities that can be
used to hide, show and control the editable
state of specifi c controls on a screen, such as

<EntityProperty>_IsReadOnly, <ScreenControl>.IsEnabled,
<ScreenControl>.IsReadOnly and <ScreenControl>.IsVisible.
While the main purpose of these methods is not access control,
they’re quite useful in delivering the desired user experience. In
some cases, it might be best to hide data users can’t manipulate;
other times you may want to show read-only controls; and some-
times you’ll want to guide users to enter data correctly and give
meaningful errors if they go astray. Th e LightSwitch presentation
tier allows all this fl exibility.

www.codefluententities.com/msdn
www.msdnmagazine.com

msdn magazine50 LightSwitch Security

It should be clearly understood that providing logic on the screen
to hide, show or control the editable state of data does not protect
data from user access; it only controls how the data is displayed. A
malicious, authenticated user could potentially hit the logic-tier
service directly to view or manipulate data if it’s not secured
appropriately. Th at’s why it’s vital to implement access control on
each application tier appropriately.

Securing Data on the Storage Tier
Th e storage tier is where your data is stored in a database. You can
control access to the data in the storage tier by providing a database
login with the minimum necessary privileges on the database. Th e
application uses this login to connect to the database and carry
out the necessary operations. All connectivity to the data is done
via the middle tier, and end users never have direct access to the
data or connection string in a three-tier deployment. When you’re
deploying a LightSwitch application, you must specify a connection
string that the application will use to access the data, as shown in
Figure 8. If a unique database login doesn’t exist
for the application, LightSwitch will guide the
application administrator to create one. It’s highly
recommended that the database user identifi ed be
specifi c to the application and be given access only
to the pertinent data used by the application.

It’s worth mentioning that it’s possible to deploy
a secure LightSwitch application with a two-tier
deployment. In a two-tier deployment, the presenta-
tion tier and the logic tier run on the user’s desktop.
Th is confi guration gives the user of the client access
to the web.confi g fi le where the connection string for
the database is stored, therefore it does not off er the
separation of presentation and logic tiers required

to achieve a secure application
configuration. With the connec-
tion string, the user can gain direct
access to the database and bypass
any access-control logic on the
middle tier. It’s best to use Windows
authentication between the middle
tier and the database in this case.
Otherwise, a three-tier deploy-
ment is necessary to secure the
application appropriately.

Deployment
Considerations for
Access Control
When deploying a LightSwitch
application for the first time,
you need to create a LightSwitch
administrative user. Initially, this
is the only user who will have
administrator permissions. This
user will then be used to con-
fi gure roles and users within the

client application as discussed earlier. Note that this user will be an
administrator of your LightSwitch application, but need not be a
Windows administrator. A command-line utility is also available
to create a new administrative user outside of the deployment
process. You can fi nd this utility, Microsoft .LightSwitch.Security-
Admin.exe, in the LightSwitch install directory.

Leveraging Access-Control Features in IIS
Now that we’ve discussed LightSwitch-specifi c access-control func-
tionality, let’s briefl y touch on some additional ways an application
administrator can manually secure LightSwitch applications using
the supporting technologies.

LightSwitch and SSL Like Web browsers and Web servers,
LightSwitch clients and servers communicate via the HTTP pro-
tocol. HTTP specifi es that data be sent in clear text, which means
that a network eavesdropper could monitor the data the clients
and servers exchange. To secure communications against network
eavesdroppers, you should instead use the HTTPS protocol, which

hides the normal HTTP data in an encrypted tunnel.
LightSwitch applications can be deployed such

that clients communicate with the server via HTTPS.
Th is protects not only the sensitive business data
that’s exchanged between client and server, but also
usernames and passwords when using Forms authen-
tication. It’s a best practice to deploy to an HTTPS
site when using Forms authentication in conjunction
with IIS or Windows Azure. Otherwise, it’s possible
for an attacker to steal the authentication token and
impersonate the logged-in user. When using Windows
authentication, an attacker can’t recover user pass-
words or impersonate users, even when using
HTTP instead of HTTPS. However, regardless of

Figure 5 Query
Composition on the
Employee Entity

Employee

Employee_All Query

NorthAmericaEmployees Query

Figure 4 Assigning Users to Roles at Run Time

Untitled-1 1 2/10/11 9:04 AM

www.xceed.com

msdn magazine52 LightSwitch Security

authentication mode, business data transferred between client and
server is still subject to eavesdropping unless HTTPS is employed.

SSL and Certifi cates Web servers that communicate via HTTPS
rely on a server certifi cate being installed. Th e certifi cate serves two
purposes. First, the certifi cate verifi es that the server the client is
connecting to is actually the correct server and hasn’t been replaced
or tampered with. Second, the server certificate contains the
secret key information used to encrypt any data sent to the client.

For a Web browser to be able to trust the identity of a server it
hasn’t contacted previously, the server’s certifi cate must have been
cryptographically signed by a trusted certifi cate authority (CA).
You can purchase a certifi cate from a number of providers, such
as verisign.com, entrust.net, instantssl.com or geocerts.com. Because most
providers charge to generate or sign server certifi cates, it’s common
in development environments to use a self-generated, unsigned—
and thus untrusted—certifi cate.

If you connect to a LightSwitch Web application via HTTPS and
the server is using an untrusted certifi cate, the behavior depends
on your Web browser. Minimally, your browser will inform you
of the certificate problem and ask if you’d like to proceed. For
LightSwitch Web applications, this should work correctly.

However, if you’re using a LightSwitch desktop application
that’s hosted by IIS, and accessing it via HTTPS, the IIS server
must be using a trusted certifi cate.
Silverlight will not allow desk-
top applications to come from
untrusted server certifi cates. An
untrusted certificate will result
in an application that appears to
install successfully but will fail
immediately upon launch. To
remedy this problem, either force
your Web browser to trust the serv-
er’s certifi cate by pre-installing it in
the client’s certifi cate store or replace
the server’s certifi cate with one that
has been signed by a trusted CA.
Note that you’ll want to perform

one of these corrective steps before accessing the application for
the fi rst time from a given client; otherwise, it will appear to that
client as though the certifi cate has changed or been tampered with.

IIS No LightSwitch-specifi c confi guration is required on the IIS
server in order to host LightSwitch applications with SSL. Server
administrators should confi gure the Web server to enable HTTPS,
and select a certifi cate in the normal fashion.

It’s actually possible to host the same LightSwitch application
using both HTTP and HTTPS, and there are some situations where
you might want to do this. But note that, as already mentioned, any
clients that connect via HTTP are not protecting user password
information or sensitive business data.

By default, in recent versions of IIS, the Default Web Site listens for
both HTTP and HTTPS connections. Th e server administrator can
force a LightSwitch application deployed to such a server to require
HTTPS and redirect any HTTP incoming connections to the HTTPS
endpoint. Th is setting is in the web.confi g of the LightSwitch application.

Application Pool Confi guration When publishing to IIS, con-
sider running the application in its own application pool. Application
pools provide isolation between worker processes (so if one
Web application crashes it doesn’t aff ect other applications on the
server), but they also allow the application to run under diff erent
identities. Th us you can create an application pool that hosts a Web
application or a set of services that runs under a specifi c Windows
identity and allow access only to the resources that identity needs
to run the application. In the case of a LightSwitch application, that
additional resource will be the database. By default, the deployment
wizard publishes the application under the ASP.NET 4 application
pool that runs under a machine account identity. However, this
identity doesn’t have access to the application database, so running
the application results in an error message such as “Login failed for
user ‘IIS APPPOOL\ASP.NET v4.0.’”

Th ere are a couple of options here. If you’re using a SQL Server
username/password in the connection string, the application is
most likely ready to go (as long as that user had appropriate
access to the database). However, when Windows authentication
is preferred to connect to the database, a separate application pool
is necessary so it can be confi gured to run under a least-privileged
Windows user account. Th is account must also be granted appro-
priate access to the application database.

Figure 6 HR Application Model

1 0 ... 1

Employee

+Id
+Name
+Address
+StartDate

Compensation

+Id
+Hourly Rate

Figure 7 Defi ning a Query to Return the Top-Paid Employees

Web servers that communicate
via HTTPS rely on a server
certifi cate being installed.

http://verisign.com
http://entrust.net
http://instantssl.com
http://geocerts.com

Untitled-3 1 7/12/11 3:35 PM

http://www.componentone.com/lightswitch/?utm_source=Magazine&utm_medium=MSDNOct2011&utm_campaign=LightSwitch2011v2

msdn magazine54 LightSwitch Security

If you’re using Windows authentication in IIS 7, there’s one
additional confi guration setting of which you should be aware. When
you use a custom user identity as the application pool identity, you
need to either use the Windows NT LAN Manager (NTLM) pro-
vider (not Kerberos) or enable support for Kerberos authentication.
Another option is to use the Network Service identity as the app
pool’s identity and add that account access to the database instead.

Securing LightSwitch Azure Applications
All LightSwitch applications that are hosted in Windows Azure are
publicly accessible. Th erefore, these applications have a unique set
of access-control requirements.

SSL Encryption LightSwitch will default to using an HTTPS end-
point when publishing an application to Windows Azure. Th is is to
ensure that any sensitive business information is encrypted as it’s
communicated over the Internet. LightSwitch provides an option to
create a self-signed SSL certifi cate for the application during publish.
While this is a great way to test the application in Windows Azure,
it’s highly recommended that a licensed certifi cate from an exter-
nal vendor be used, as noted earlier. Because desktop applications
won’t work over SSL with an untrusted certifi cate, you can turn SSL
encryption off for debugging purposes by updating the deployment
confi guration value of Microsoft .LightSwitch.RequireEncryption
to false, using the Windows Azure portal to do so aft er the applica-
tion has been successfully deployed.

Once the application has been tested using a self-signed SSL
certifi cate, you can update the SSL certifi cate without republishing
the application via the Windows Azure portal. A new SSL certifi -
cate can be uploaded for the hosted application by changing the
SSLCertifi cate value to the thumbprint for the newer certifi cate
and turning encryption back on.

Application Authentication Forms authentication is recom-
mended to prevent unauthorized access to Windows Azure-hosted

LightSwitch applications. This requires no
additional server confi guration aft er an appli-
cation has been published. If the application
requires Windows authentication, though,
the published LightSwitch application will
need to be domain-joined. This requires
the use of Windows Azure Connect. You’ll
fi nd guidance on enabling Windows Azure
Connect at bit.ly/qx0Z6n.

SQL Azure Database Security LightSwitch
applications will typically rely on a SQL Azure
database for their built-in database. This
database is necessary if you’ve created any
tables in LightSwitch or are using authen-
tication. SQL Azure uses the combination
of a fi rewall and user credentials to protect
against unauthorized access.

To allow Windows Azure-hosted LightSwitch
applications to connect to the database, the
“Allow other Windows Azure services to
access this server” fi rewall rule must be set
to true. LightSwitch also requires that a fi re-

wall rule be added for the IP address of the machine publishing the
application. It’s recommended that this fi rewall rule be removed
once the application has been published. This will prevent any
external machines from accessing the database.

Wrapping Up
LightSwitch helps developers build business applications in a
simple and productive manner, and this holds true for implementing
access-control features as well. Developers can quickly and easily
restrict access to their applications through the use of authentica-
tion. When more granular control is needed, authorization features
provide a powerful way to defi ne permissions and secure assets
at the logic and data tiers of the application to eff ectively control
user access. Commonly used features in IIS and Windows Azure
can be leveraged for a full access-control solution. Th e innovation,
however, is up to you! Look for more from the LightSwitch team
at blogs.msdn.com/b/lightswitch.

VALERIE ANDERSEN is a Microsoft program manager working on Visual Studio
LightSwitch. Her aim is to drive features into LightSwitch that will enable
real-world developers to swift ly build secure, quality applications to meet the needs
of customers worldwide.

MATT EVANS is a soft ware tester working on LightSwitch. He wants to make sure
that your LightSwitch apps are as secure as you need them to be.

SHEEL SHAH is a Microsoft program manager working on LightSwitch. His focus
on the team includes designing Windows Azure support, deployment and
LightSwitch client features.

MICHAEL SIMONS is a senior Microsoft developer working on LightSwitch. His
focus on the team is developing data and security features.

THANKS to the following technical experts for reviewing this article:
Dan Leeaphon, John Rivard, Dan Seefeldt and Matt Th alman

Figure 8 Specifying the Database Connection Credentials for the Running
Application During Deployment

http://bit.ly/qx0Z6n
http://blogs.msdn.com/b/lightswitch

Our Name
Says It All

Download our FREE evaluation from
www.activepdf.com/MSDN

Call 1-866-GoTo-PDF | 949-582-9002 | Sales@activepdf.com

Come and see why thousands of customers have
trusted us over the last decade for all their server

based PDF development needs.

. Convert over 400 fi les types to PDF

. High fi delity translation from PDF to Offi ce

. ISO 32000 Support including PDF/X & PDF/A

. HTML5 to PDF

. True PDF Print Server

. Form Fill PDF

. Append, Stamp, Secure and Digitally Sign

ActivePDF_ad_v6-copy.indd 2 3/4/11 1:14 PM

http://www.activepdf.com/MSDN
mailto:Sales@activepdf.com

Untitled-2 2 6/9/11 11:24 AM

www.DevExpress.com/Comments

Untitled-2 3 6/9/11 11:24 AM

www.DevExpress.com/FreeEval

msdn magazine58

F# PROG R AMMING

Authoring an F#/C# VSIX
Project Template

Software developers are increasingly expected to provide
complex solutions in less time and with fewer defects. One area
that oft en causes productivity loss is the initial setup of new F#, C#
or Visual Basic projects in just the way you require. Th e best way
to reduce these repetitive project setup tasks is to create a Visual
Studio Extension (VSIX) project template.

You may also wish to author a VSIX project template to promote
soft ware development standards, showcase a new product or pro-
vide a quick launch into a new technology. Whatever your reason,
adding the ability to create these VSIX project templates to your
development bag of tricks is certain to have benefi ts.

In this article, I’ll show you how to author a VSIX project template
made up of a C# ASP.NET MVC 3 Web Application, an F# Library

Daniel Mohl

that contains the server-side code and an F# Library that can be
used to contain unit tests. Additionally, you’ll learn a few advanced
techniques that can be used to add fl exibility and power to your
project templates. In the end, you’ll be armed with the knowledge
to greatly reduce the previously mentioned time-wasters through
the creation of your own custom project templates.

Getting Set Up
Before diving in, you must complete a few tasks in order to get your
development environment set up. First, make sure you have Visual
Studio 2010 Professional or higher with the F# and C# components
installed. Next, install the Visual Studio 2010 SDK, which you can
download from bit.ly/vs-2010-SDK. Th e Visual Studio 2010 SDK pro-
vides everything needed to create a VSIX project. To help reduce the
tedium associated with creating a multiproject template, you should
also download and install the Export Template Wizard from bit.ly/
export-template-wiz. Finally, in order to complete the example provided
with this article, you should download and install the ASP.NET
MVC 3 Tools Update, available at bit.ly/mvc3-tools-update. Th is update
provides a number of useful features and tools, including NuGet
1.2. For more information, check out bit.ly/introducing-mvc3-tools-update.

Building the Initial Application
Now that your environment is set up, you’re ready to build
the base application that will be created every time the project
template is launched from the New Project Wizard within Visual
Studio. This lets you set up exactly what you need in order to

This article discusses:
• Setting up your environment

• Building the base application

• Creating a VSIX project template

• Extending the template

• Adding a Windows Presentation Foundation UI

Technologies discussed:
F#, C#, ASP.NET MVC 3

Code download available at:
fsharpmvc3vsix.codeplex.com

http://fsharpmvc3vsix.codeplex.com
http://bit.ly/introducing-mvc3-tools-update
http://bit.ly/mvc3-tools-update
http://bit.ly/export-template-wiz
http://bit.ly/export-template-wiz
http://bit.ly/vs-2010-SDK

59October 2011msdnmagazine.com

reduce time wasted by repetitive project-initialization
tasks. Th e solution developed at this point can be as
simple or complex as needed.

Th e fi rst project you need to create is a C# ASP.NET
MVC 3 Web application that should be named
MsdnWeb. Th e role of this project is to provide the
presentation layer for the overall solution. You should
launch the New Project Wizard in Visual Studio and
select ASP.NET MVC 3 Web Application, which can
be found within Visual C# | Web. For this example, you
should ensure that the “Empty” template, the Razor
view engine and the “Use HTML5 semantic markup”
options are selected, and then click OK. Once Visual Studio fi nishes
generating the project, locate the Global.asax and Global.asax.cs
fi les. You’ll be writing the majority of the code for the Global.asax
in F#, so you can now remove the Global.asax.cs fi le and update
the Global.asax markup as shown in Figure 1. As a fi nal step for
this project, you can create a new folder in the Views folder named
Home and add a new View within it named Index.

Next, create a new F# Library project named MsdnWebApp
and remove the default .fs and .fsx fi les that Visual Studio creates.
Th e primary purpose of this project is to contain the controllers,
models and other server-side code that will drive the views.
Because this is an F# project, you’ll be able to create this server-
side code in the clean, crisp and succinct style that F# provides. In
order to use this project for its intended purpose, you need to add
references to the System.Web, System.ComponentModel.Data-
Annotations, System.Web.Abstractions and System.Web.Mvc
(version 3.0+) assemblies. You also need to add a Global.fs fi le that
contains the code shown in Figure 2.

You also need to add a HomeController.fs fi le that contains the
code shown here:

namespace MsdnWeb.Controllers

Open System.Web
Open System.Web.Mvc

[<HandleError>]
type HomeController() =
 inherit Conroller()
 member this.Index() =
 this.View() :> ActionResult

As a fi nal task in building the initial application, you should create
the second F# Library project and name it MsdnWebAppTests. As

the name suggests, the purpose of the MsdnWebAppTests project
is to contain the unit tests for MsdnWebApp. A production-ready
version of this project would be primed with unit tests. However,
in order to keep things simple, you can remove the default .fs
and .fsx files that Visual Studio generates and leave the empty
project as a container for the creation of future tests. To see an
example of the code that could be added to this project, install the
FsUnit.MvcSample NuGet package at bit.ly/fsunit-mvc3-tests.

Creating the VSIX Project Template
The example project template I’m walking you through has
several goals. Th ese goals are the foundation on which the rest of
this article is based:

1. Provide a VSIX project template made up of a C# project
and two F# projects.

2. Dynamically add each of the projects to a shared solution
during new project creation.

3. Programmatically add any necessary project references
each time the project template is launched.

4. Install various NuGet packages to the created ASP.NET
MVC 3 Web Application.

5. Provide a UI that allows a user to specify various
project-creation options.

Visual Studio provides a rich extensibility model that makes
accomplishing the fi rst goal fairly trivial. Th e easiest way to take
advantage of this is to launch the Export Template Wizard by
going to File | Export Template as VSIX. Visual Studio will then
display a VSIX package-creation wizard that allows the selection
of multiple projects to be compressed into a VSIX package. While
this handles simple multiproject scenarios, it can’t handle more
advanced requirements such as goals two through fi ve. To do these
things, you’ll need a bit more power.

Th is power comes in the form of composition via the IWizard
interface. This is commonly referenced as creating a template
wizard. To build a simple template wizard in F#, you need to create
a new F# Library project, add a class that implements the IWizard
interface (see Figure 3) and add references to EnvDTE and
Microsoft .VisualStudio.TemplateWizardInterface.

In order to handle more-advanced functionality such as
programmatically adding project references and installing
NuGet packages, you’ll also need to add references to
EnvDTE80, VSLangProj, VSLangProj80, Microsoft.Visual Stu-
dio.Comp onent Model Host, Microsoft .VisualStudio.OLE.Interop,

Figure 1 Updating the Global.asax Markup

You may also wish to author
a VSIX project template to

promote software development
standards, showcase a new
product or provide a quick

launch into a new technology.

www.msdnmagazine.com
http://bit.ly/fsunit-mvc3-tests

msdn magazine60 F# Programming

Microsoft .Visual Studio.Shell, Microsoft .VisualStudio.Shell.Interop,
Microsoft .VisualStudio.Shell.Interop.8.0, NuGet.Core (version 1.2+)
and NuGet.VisualStudio (version 1.2+). If you’ve followed the in-
structions for setting up your environment, all of these libraries
are available on your local machine. A few of the key libraries can
also be found in the lib folder of the source code that accompanies
the article, which can be found at fsharpmvc3vsix.codeplex.com.

As a fi nal step to building the basic template wizard, you’ll need
to sign the template wizard assembly. If you don’t already have
one, you’ll fi rst need to generate a strong named key (.snk) fi le (see
bit.ly/how-to-create-snk for information on how to do this). Once you
have an .snk fi le, you can sign the F# template wizard assembly by
going to the properties of the project, selecting the Build tab and
typing the following into the “Other flags:” textbox (you must
replace <Path> and <snk File Name> with the values that relate
to your specific .snk file):

 '--keyfile:"<Path><snk File Name>.snk"'

In order to use this template wizard, you’ll need to create a
multiproject template that references the signed template wizard
assembly. Th e easiest way to do this is to use the Export Template
Wizard Visual Studio 2010 extension to kick-start the process,
then manually tweak the result. In the wizard that displays when
you launch File | Export Template as VSIX, select the MsdnWeb,

MsdnWebApp and MsdnWebAppTests projects and click Next.
On the resulting page, enter the template name and description
that you wish to appear in the Visual Studio New Project Wizard
window and specify the location of the template wizard DLL for
the Wizard Assembly. Aft er clicking Next, you should uncheck
the “Automatically import the template into Visual Studio” option
and click Finish. Visual Studio will then create the VSIX package,
launch Windows Explorer and take you to the directory that
contains the VSIX fi le.

Th is gives you a nice starting point, but now you must get your
hands dirty and make a few manual modifi cations. Because VSIX
fi les are really just .zip fi les with a diff erent extension, you can dig
into the guts of this package by simply changing the fi le extension
to .zip and extracting all of the files. Once complete, navigate
to the “Solution” directory within the folder that the extraction
process revealed and extract the compressed fi le found within. Th is
extraction process reveals the projects that constitute your project
template as well as a .vstemplate fi le.

In order to meet the goals for this project template, you must
modify this .vstemplate fi le. Th e fi rst step you should do is rename
the fi le to MsdnFsMvc3.vstemplate. Because this .vstemplate fi le
is a simple XML fi le, you can now open the fi le in your text editor
of choice and do the following:

1. Verify that the <Name> and <Description> elements con-
tain the information that you wish to have displayed for this
project template in the Visual Studio New Project Wizard.

2. Change the value in the <ProjectType> element to FSharp.
3. Remove all child elements of the <ProjectCollection> element.

You can now save and close the fi le, and then compress the three
folders as well as the modifi ed .vstemplate fi le into a fi le named
MsdnFsMvc3.zip.

Th e MsdnFsMvc3.zip fi le could easily be combined back into
a VSIX package at this point, but you would then be left without
the ability to test or enhance the package with debugging support.
It would be much better if Visual Studio could be used for these
types of tasks. Luckily, the Visual Studio 2010 SDK that you previ-
ously installed provides exactly the type of tooling needed to do
this. To get started, you fi rst need to create a new VSIX Project,
which can be found in the New Project Wizard under Visual C#

namespace MsdnFsTemplateWizard

open System
open System.Collections.Generic
open EnvDTE
open Microsoft.VisualStudio.TemplateWizard

type TemplateWizard() =
 interface IWizard with
 member this.RunStarted (automationObject:Object,)
 replacementsDictionary:Dictionary<string,string>,
 runKind:WizardRunKind, customParams:Object[]) =
 "Not Implemented" |> ignore
 member this.ProjectFinishedGenerating project = "Not Implemented" |> ignore
 member this.ProjectItemFinishedGenerating projectItem =
 "Not Implemented" |> ignore
 member this.ShouldAddProjectItem filePath = true
 member this.BeforeOpeningFile projectItem = "Not Implemented" |> ignore
 member this.RunFinished() = "Not Implemented" |> ignore

Figure 3 Implementing the IWizard Interface

Because this is an F# project,
you’ll be able to create this

server-side code in the clean,
crisp and succinct style that

F# provides.

namespace MsdnWeb

open System
open System.Web
open System.Web.Mvc
open System.Web.Routing

type Route = { controller : string
 action : string
 id : UrlParameter }

type Global() =
 inherit System.Web.HttpApplication()

 static member RegisterRoutes(routes:RouteCollection) =
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}")
 routes.MapRoute("Default",
 "{controller}/{action}/{id}",
 { controller = "Home"; action = "Index"
 id = UrlParameter.Optional })

 member this.Start() =
 AreaRegistration.RegisterAllAreas()
 Global.RegisterRoutes(RoutTable.Routes)

Figure 2 The Global.fs File

http://fsharpmvc3vsix.codeplex.com
http://bit.ly/how-to-create-snk

(888) 850-9911
Sales Hotline - US & Canada:

/update/2011/10

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2011 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
30 Greyfriars Road
Reading
Berkshire
RG1 1PE
United Kingdom

Asia / Pacific Headquarters
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

FusionCharts from $195.02
Interactive Flash & JavaScript (HTML5) charts for web apps.

BEST SELLER

ActiveAnalysis from $979.02
Rapidly embed out-of-the box OLAP, data visualization and BI features to your applications.

BEST SELLER

BEST SELLER TX Text Control .NET for Windows Forms/WPF from $499.59
Word processing components for Visual Studio .NET.

BEST SELLER

Janus WinForms Controls Suite V4.0 from $853.44
Add powerful Outlook style interfaces to your .NET applications.

BEST SELLER

Untitled-4 1 9/1/11 5:03 PM

http://www.componentsource.com

msdn magazine62 F# Programming

| Extensibility. The project that Visual Studio creates includes a
source.extension.vsixmanifest fi le, which can be viewed and edited
via a simple double-click. You can now fi ll out the basic metadata
information about your project template. Figure 4 provides an example.

Th e MsdnFsMvc3.zip fi le can now be added to the VSIX project
in Visual Studio. To do this, you fi rst navigate to the root folder of
the VSIX project within Windows Explorer and create a new folder
named ProjectTemplates. Within this folder, you should add a new
folder named ASPNET. Th e creation of this second folder is what
determines the project subtype for the project template. You now
copy the MsdnFsMvc3.zip fi le into the ASPNET folder.

Back in Visual Studio, in the design view of the source.exten-
sion.vsixmanifest fi le, you should click the “Add Content” button.
Figure 5 shows the entries that you can specify in the resulting window.

Th e directory structure that’s automatically created in the VSIX
project by this process now needs a little adjustment. You do this
by right-clicking on the ProjectTemplates folder and creating a new
folder named ASPNET. Last, you should move the compressed fi le
from the ProjectTemplates folder to the ASPNET folder and click
Yes when prompted to overwrite
the existing fi le. Building the solu-
tion quickly reveals that the creation
of your VSIX project template by
Visual Studio has been successful. If
desired, you could now add this project
template to Visual Studio by double-
clicking the .vsix fi le that was created
by Visual Studio and walking through
the resulting installation wizard.

Extending the
Project Template
Th e steps completed so far accom-
plish the fi rst goal for this template
and set the stage for attaining the
rest of the goals. These additional
goals are primarily accomplished
by adding code to the RunFinished
method of the IWizard implementa-

tion of the template wizard. I’ll now
walk you through the code needed
to accomplish the remaining goals
for this template.

Th e code required to accomplish
the second goal of dynamically
adding each of the projects to the
solution during project creation is
shown in Figure 6.

The first line of code in the
method shown in Figure 6 returns
the location of the multiproject
template on the machine from
which the New Project Wizard
was launched. Th e second defi nes
a function named AddProject.

This function contains the code necessary to update the Visual
Studio status bar, specifies the appropriate .vstemplate file that
corresponds with the desired project template and adds the
project from the template to the solution. Th e last lines of code call
the AddProject function for the MsdnWeb and MsdnWebApp
projects. A similar call to AddProject could’ve also been added for
the MsdnWebAppTests project, if that were desired.

To accomplish the third goal of dynamically adding any desired
project references, you need to first create a map of the project
names and associated Project objects that make up the solution (see
bit.ly/fsharp-maps for information on F# maps). Th is is accomplished
by calling a custom function named BuildProjectMap with a
provided argument of a collection of the Projects in the solution.

Figure 4 Filling out the Metadata

Figure 5 Adding Content in the Design View of a Manifest File

Visual Studio provides a rich
extensibility model.

Untitled-3 1 7/12/11 3:36 PM

http://www.componentone.com/webstack/?utm_source=Magazine&utm_medium=MSDNOct2011&utm_campaign=WebStack2011v2

msdn magazine64 F# Programming

Th is is then bound to a value named “projects,” as shown here:
// This function can be found in the full source
// as part of the ProjectService module.
let BuildProjectMap (projects:Projects) =
 projects
 |> Seq.cast<Project>
 |> Seq.map(fun project -> project.Name, project)
 |> Map.ofSeq

// This method can be found in the full source
// as part of the TemplateWizard class.
member this.RunFinished() =

 // Non-relevant code omitted.

 // this.dte is set in the RunStarted method.
 let projects = BuildProjectMap (this.dte.Solution.Projects)

 // Non-relevant code omitted.

Now that you have the project map, you can call another custom
function to kick off the process of adding the project references. Th e
fi rst line of the code shown here creates a list of tuples:

// This method can be found in the full source
// as part of the TemplateWizard class.
member this.RunFinished() =

 // Non-relevant code omitted.

 // webName, webAppName and webAppTestsName are values that have been
 // bound to strings that are used to identify specific projects.
 [(webName, webAppName); (webAppTestsName, webAppName)]
 |> BuildProjectReferences projects

 // Non-relevant code omitted.

Each tuple in the list represents the name of the target project
followed by the name of the project that’s being referenced. For
example, the fi rst tuple indicates a target project name of “MsdnWeb”
with an associated project reference name of “MsdnWebApp.”
Th is list is then piped to the BuildProjectReferences function.

Th is code shows the BuildProjectReferences function:
// This function can be found in the full source
// as part of the ProjectService module.
let BuildProjectReferences (projects:Map<string, Project>) projectRefs =
 projectRefs
 |> Seq.iter (fun (target,source) ->
 AddProjectReference (projects.TryFind target)
 (projects.TryFind source))

Th is function simply takes the list of tuples, iterates through it, tries
to retrieve the appropriate Project object from the project map by name
and calls the AddProjectReference function to do the actual work.

Th e AddProjectReference function fi nishes up the process by
verifying that the target and projToReference arguments both
contain a valid project, as shown here:

// This function can be found in the full source
// as part of the ProjectService module.
let AddProjectReference (target:Option<Project>)
 (projToReference:Option<Project>) =
 if ((Option.isSome target) && (Option.isSome projToReference)) then
 let vsTarget = target.Value.Object :?> VSProject
 vsTarget.References
 |> Seq.cast<Reference>
 |> Seq.filter(fun (reference) -> reference.Name = projToReference.Value.Name)
 |> Seq.iter(fun reference -> reference.Remove())
 vsTarget.References
 .AddProject((projToReference.Value.Object :?> VSProject).Project)
 |> ignore

If they do contain valid projects, this function removes any
existing reference. Finally, it adds the reference to the project.

Th e fourth goal for this project template is a concept that was
recently introduced by the ASP.NET MVC team. It provides a great
way to add references to libraries or frameworks that are likely to be
enhanced in the not-too-distant future. NuGet 1.2, which ships with
the ASP.NET MVC 3 Tools Update, includes an assembly named
NuGet.VisualStudio that allows NuGet packages to be installed easily
from within a template wizard. Th e ASP.NET MVC 3 Tools Update
install also adds several NuGet packages to the local machine to allow
faster installation of these specifi c packages during project creation.

Th ere are a couple of diff erent functions in the sample that are
used to accomplish the NuGet package installations. The most
important one is show here:

// This function can be found in the full source
// as part of the NuGetService module.
let InstallPackages (serviceProvider:IServiceProvider) (project:Project) packages =
 let componentModel =
 serviceProvider.GetService(typeof<SComponentModel>) :?> IComponentModel
 let installer = componentModel.GetService<IVsPackageInstaller>()
 let nugetPackageLocalPath = GetNuGetPackageLocalPath()
 packages
 |> Seq.iter (fun packageId ->
 installer.InstallPackage(nugetPackageLocalPath,
 project, packageId, null, false))

Th e fi rst three lines of code in this function are used to get the
concrete implementation of the IVsPackageInstaller interface,

The process for accomplishing
the fi nal goal—adding a UI
that can be used to gather

information from the user during
the project-creation process—
hasn’t changed much over the

past several years.

// This method can be found in the full source
// as part of the TemplateWizard class.
member this.RunFinished() =

 // Non-relevant code omitted.

 // this.solution is set in the RunStarted method.
 let templatePath = this.solution.GetProjectTemplate("MsdnFsMvc3.zip", "FSharp")
 let AddProject status projectVsTemplateName projectName =
 // this.dte2 is set in the RunStarted method
 this.dte2.StatusBar.Text <- status
 let path =
 templatePath.Replace("MsdnFsMvc3.vstemplate", projectVsTemplateName)
 this.solution.AddFromTemplate(path,
 Path.Combine(this.destinationPath, projectName),
 projectName, false) |> ignore

 // webName and webAppName are values that have been
 // bound to strings that identify specific projects.
 AddProject "Installing the C# Web project..."
 (Path.Combine("MsdnWeb", "MsdnWeb.vstemplate")) webName
 AddProject "Adding the F# Web App project..."
 (Path.Combine("MsdnWebApp", "MsdnWebApp.vstemplate")) webAppName

 // Non-relevant code omitted.

Figure 6 Dynamically Adding Projects to the Solution

In-depth training for all levels
 of developers

Impressive speaker lineup that
 includes top industry experts and
 Microsoft insiders

60+ sessions

8 tracks

5 full-day workshops

Special events and networking
 opportunities

DECEMBER 5-9
ORLANDO, FLORIDA
ROYAL PACIFIC RESORT
AT UNIVERSAL ORLANDO®

 In dde tpthh traii ining ffor all levels

5 CODE-FILLED
DAYS IN SUNNY
FLORIDA

REGISTER TODAY: VSLIVE.COM/ORLANDO
Use promo code MTIP

www.vslive.com/orlando

INTENSE TRAINING +
AN AWESOME LOCATION
Visual Studio 2010/.NET

Silverlight / WPF

Web/HTML5

Windows Phone 7

Developing Services

Data Management

Cloud Computing

Programming Practices

DECEMBER 5-9
ORLANDO, FLORIDA
ROYAL PACIFIC RESORT
AT UNIVERSAL ORLANDO®

VSLIVE.COM/ORLANDO

Use promo code MTIP

PLATINUM SPONSORS PRODUCED BYSUPPORTED BY

SAVE $200!
REGISTER

TODAY

Sponsored by:

Scan the
QR code
for more
information
on Visual
Studio Live!
Orlando.

www.vslive.com/orlando

65October 2011msdnmagazine.com

which will be used to install the various NuGet
packages in the specifi ed project. Th e fourth line of
code calls the GetNuGetPackageLocalPath function,
which accesses the System Registry to determine the
install path of ASP.NET MVC 3. Last, the provided
list of package names is piped to the Seq.iter function,
which iterates through the list and installs each package.

Now that all of this functionality has been imple-
mented in your template wizard, you simply need to
add the template wizard project as content to the VSIX
project with a type of Template Wizard. Figure 7 shows
the completed Add Content window. Th is completes
goals two through four.

Adding a Windows
Presentation Foundation UI
Th e process for accomplishing the fi nal goal—adding a
UI that can be used to gather information from the user
during the project-creation process—hasn’t changed
much over the past several years. A 2007 article from O’Reilly
Media Inc. (oreil.ly/build-vs-proj-wiz) provides a nice overview for doing
this. While the premise of the process remains the same, you need
to know a few things to implement this functionality in Windows
Presentation Foundation (WPF) and tie it into your project template.

To get started, you need to fi rst create a new C# User Control
Library. You should now change the target framework from .NET
Framework 4 Client Profile to .NET Framework 4. Next, you
can remove the default UserControl1.xaml and add a new WPF
Window. Through whichever method you prefer, you can now
manipulate the XAML to design the desired UI. Finally, you need
to expose any desired properties and then defi ne any necessary
event handlers. A simple example of what the codebehind for the
WPF Window might look like is shown here:

// This can be found in the full source as part of the MsdnCsMvc3Dialog class.

public bool IncludeTestsProject { get; set; }

private void btnOk_Click(object sender, RoutedEventArgs e)
{
 IncludeTestsProject =
 cbIncludeTestsProject.IsChecked.HasValue ?
 cbIncludeTestsProject.IsChecked.Value : false;
 DialogResult = true;
 Close();
}

private void btnCancel_Click(object sender, RoutedEventArgs e)
{
 Close();
}

Aft er getting the UI exactly the way you want it, you’ll need to
sign the assembly. Next, you should add the project—as content
with a Content Type of Template Wizard—to the VSIX project.
Within the template wizard project, you then add a reference to the

project that contains your UI. Once this is all fi nished, you need
to add code to the RunStarted method of the IWizard implemen-
tation that will show the UI and capture the result, as shown here:

// This method can be found in the full source
// as part of the TemplateWizard class.
member this.RunStarted () =

 // Non-relevant code omitted.

 let dialog = new TemplateView()
 match dialog.ShowDialog().Value with
 | true ->
 this.includeTestProject <- dialog.IncludeTestsProject
 | _ ->
 raise (new WizardCancelledException())

Finally, you can add the following code to the RunFinished
method of the template wizard:

// This method can be found in the full source
// as part of the TemplateWizard class.
member this.RunFinished() =

 // Non-relevant code omitted

 // webAppTestsName is a value that has been bound
 // to a string that represents the tests project.
 if this.includeTestProject then
 AddProject "Adding the F# Web App Tests project..."
 (Path.Combine("MsdnWebAppTests",
 "MsdnWebAppTests.vstemplate")) webAppTestsName
 // Non-relevant code omitted.

Reuse and Reduce Time
Authoring an F#/C# VSIX project template is an easy way to
encourage reuse and reduce time wasted on repetitive project set-
up tasks. With these skills now in your possession, you’ll be able
to increase productivity by creating project templates that contain
as little or as much complexity as your scenario requires.

DANIEL MOHL is a Microsoft MVP and F# Insider. He blogs at blog.danielmohl.com
and you can follow him on Twitter at twitter.com/dmohl.

THANKS to the following technical experts for reviewing this article:
Elijah Manor, Chris Marinos and Richard Minerich

Figure 7 The Completed Add Content Window

An F#/C# VSIX project template is
an easy way to encourage reuse.

www.msdnmagazine.com
http://oreil.ly/build-vs-proj-wiz
www.twitter.com/dmohl
http://blog.danielmohl.com

msdn magazine66

S I LV E RL I G HT

Harnessing the Power
of the Dynamics CRM 4.0
API from Silverlight 4

Increasingly, companies are implementing Microsoft
Dynamics CRM 4.0 solutions and fi nding it necessary to build
external applications that can integrate with the existing Web
service-based API.

Building Silverlight applications that can interact directly with
Microsoft Dynamics CRM 4.0 (CRM 4.0 hereaft er for brevity) can
prove challenging, due to the asynchronous nature of Silverlight
calls and its inability to call the CRM 4.0 Web services directly.
In this article, you’ll get an in-depth look at how to build a
Silverlight application that can read and write data through the
CRM 4.0 Web service API.

Solution Overview
Silverlight 4 and CRM 4.0 are both powerful technologies—but
they aren’t the most easily integrated. I’ll look at the details behind

Mark Beckner

creating this integration by exploring asynchronous communica-
tions between Silverlight and the CRM 4.0 Web service API.

In typical non-Silverlight applications, a call to a Web service is
synchronous—the call goes out, and the application waits until a
response is received. During this time, the user can’t interact with the
application and must wait for the full roundtrip to complete. In an
asynchronous application such as Silverlight, the call to the service
goes out, but the application continues to be fully functional even
before the response is returned. Th is creates a rich and dynamic
user experience, but it places greater demands on the developer.

In order to understand how this communication can occur, I’ll
present several pieces of functionality. First, I’ll look at how to set
up a Silverlight application and work through the steps required
to interact with a Web service that will act as a wrapper for the
CRM 4.0 API. Next, I’ll go through the details of working with the
CRM 4.0 API and how to read and write data using the Web service
wrapper. I’ll work with the core System User entity in CRM 4.0,

This article discusses:
• Creating a Silverlight app

• Interacting with the Dynamics CRM 4.0 API

• Querying data

• Updating data

• Using returned data in Silverlight

Technologies discussed:
Silverlight 4, Microsoft Dynamics CRM 4.0

Code download available at:
code.msdn.microsoft.com/mag201110Dynamics

public class CrmServiceWrapper : System.Web.Services.WebService
{
 [WebMethod]
 public string GetCRMData()
 {
 return "This is the stubbed return for retrieving";
 }

 [WebMethod]
 public string PostCRMData()
 {
 return "This is the stubbed return for posting data";
 }
}

Figure 1 The Web Method Stubs

http://code.msdn.microsoft.com/mag201110Dynamics

67October 2011msdnmagazine.com

and also look at working with dynamic entities. Finally, I’ll look
at how to deal with the result sets that are returned to Silverlight.
In the end, you’ll be able to build your own Silverlight/CRM 4.0
integrations with ease.

Creating the Silverlight 4 Application
There are a number of steps to work through in order to get a
Silverlight application configured to interact with CRM 4.0.
Although it’s possible to reference the CRM 4.0 SDK or Web ser-
vice API directly from the Silverlight project, most of the interfaces
and methods can’t actually be called from code. In order to interact
with the CRM 4.0 API, a wrapper Web service must be created.
This Web service will broker the calls between the Silverlight
application and the CRM 4.0 API in a format that can be handled
by Silverlight. Th e wrapper Web service can be added directly to
the SilverlightCRMDemo.Web application.

Start this process by creating a new Silverlight solution in Visual
Studio 2010 called CRM40SilverlightDemo. When creating a
Silverlight application in Visual Studio, two projects are always
created. One is the core Silverlight application; the second is the
ASP.NET application that embeds the Silverlight application into
a Web page. Th is ASP.NET application will also be home to the
Web service wrapper that will interact with the CRM 4.0 API.
Th e Silverlight application will reference this Web service via a
Service Reference.

To create the Web service wrapper, add a new Web service to
the ASP.NET application and call it CrmServiceWrapper. For this
example, you’ll add two Web methods to the service—one to get

CRM data and one to post CRM data. Figure 1 shows what these
stubbed-out methods should look like for now. Once you get the
Silverlight application communicating successfully with this wrapper
service, you’ll update these methods to call the actual CRM 4.0 API.

Once the Web service wrapper has been added to the
ASP.NET application, the easiest way to add a reference to it from
the Silverlight application is to run it in debug mode and capture
the URL where the debugger is running the application from (you
can simply grab the URL from the browser window that pops
up). Once captured, you can add a new Service Reference called
CrmServiceReference to the Silverlight application and paste in this
URL. All related confi guration fi les and code will be automatically
corrected. If you decide not to do this, you’ll have to deal with cross-
domain reference exceptions—and quite a bit more setup in order
to successfully debug your application.

Now that the reference exists, the real coding within the
Silverlight application can take place. The code consists of wir-
ing up an event handler for each Web method and creating two
methods to handle data once the calls to those Web methods have
completed. Th e code shown in Figure 2 can be added directly to
the MainPage.xaml.cs fi le in the Silverlight application. Running
this will cause both methods to execute simultaneously.

When you’ve validated that your Silverlight application is
running without errors and returning data from the Web service,
you can turn your attention to building out the calls to the CRM
4.0 API. Th ese calls will all be contained within the Web service
wrapper GetCRMData and PostCRMData Web methods that have
already been created.

Interacting with the CRM 4.0 API
Th ere are two primary Web services available through CRM 4.0: the
CRMService and the MetadataService. Th ese Web services are gener-
ally available to reference from any project (but won’t actually allow
for much functionality when referenced from a Silverlight applica-
tion). Th e most common and effi cient way to work with the API is
using the Microsoft Dynamics CRM SDK (available for download
at bit.ly/6M3PvV). Th e SDK contains numerous classes and methods,
and it simplifi es the communication between .NET Framework code
and the CRM 4.0 Web services. In this section, you’ll learn how to
interact with the API using the SDK from the Web service wrapper.

Th e fi rst step is to reference the appropriate CRM SDK assemblies.
In the ASP.NET application that houses the Web service wrapper,
add a reference to two SDK assemblies: microsoft .crm.sdk.dll and
microsoft .crm.sdktypeproxy.dll. Once these have been referenced,

using CRM40SilverlightDemo.CrmServiceReference;

public partial class MainPage : UserControl
{
 public MainPage()
 {
 InitializeComponent();

 // Call the GetCRMData Web method.
 CrmServiceWrapperSoapClient proxyGet =
 new CrmServiceWrapperSoapClient();
 proxyGet.GetCRMDataCompleted +=
 new EventHandler<GetCRMDataCompletedEventArgs>(proxy_GetCRMDataCompleted);
 proxyGet.GetCRMDataAsync();

 // Call the PostCRMData Web method.
 CrmServiceWrapperSoapClient proxyPost = new CrmServiceWrapperSoapClient();
 proxyPost.PostCRMDataCompleted +=
 new EventHandler<PostCRMDataCompletedEventArgs>(proxy_PostCRMDataCompleted);
 proxyPost.PostCRMDataAsync();
 }

 // Called asynchronously when the GetCRMData Web method returns data.
 void proxy_GetCRMDataCompleted(object sender, GetCRMDataCompletedEventArgs e)
 {
 // Do something with the data returned.
 string result = e.Result.ToString();
 }

 // Called asynchronously when the PostCRMData Web method returns data.
 void proxy_PostCRMDataCompleted(object sender, PostCRMDataCompletedEventArgs e)
 {
 // Do something with the data returned.
 string result = e.Result.ToString();
 }
}

Figure 2 Adding Code to MainPage.xaml.cs

static public CrmService GetCRMService()
{
 CrmService service = new CrmService();
 CrmAuthenticationToken token =
 new Microsoft.Crm.Sdk.CrmAuthenticationToken();
 token.OrganizationName = "Contoso";
 service.Url = "http://localhost:5555/MSCRMServices/2007/crmservice.asmx";
 service.Credentials = System.Net.CredentialCache.DefaultCredentials;
 service.CrmAuthenticationTokenValue = token;
 return service;
}

Figure 3 The GetCRMService Method

www.msdnmagazine.com
http://bit.ly/6M3PvV

msdn magazine68 Silverlight

add the appropriate directives to the top of the CrmService-
Wrapper.asmx page as follows:

using Microsoft.Crm.Sdk;
using Microsoft.Crm.SdkTypeProxy;
using Microsoft.Crm.Sdk.Query;

Th e next step is to write code to instantiate a CRM service that will
allow you to connect to a CRM 4.0 instance. Th is code will be used by
both the GetCRMData and PostCRMData Web methods, so it will
reside in its own method. Th is method (shown in Figure 3) requires
two key fi elds: the organization name of your CRM 4.0 instance and
the URL of the main CRM service (located at /MSCRMServices/ 2007/
crmservice.asmx). Note that these fi elds are best housed in a confi gu-
ration fi le for easy modifi cation aft er compiling the code.

Querying CRM Data
You can now turn your attention to querying data from CRM 4.0.
It’s important to know there are two types of entities in CRM 4.0:
core system entities and custom entities. Th e core system entities
can be worked with a little more easily than custom entities. By
default, all of the properties on core entities can be retrieved through
strongly typed objects in C#. Custom entities are generally queried
as Dynamic Entities, although an alternative allows them to be
treated as strongly typed objects, also. I’ll demonstrate querying
data with both types of entities.

An example of querying a core system entity—the System User
entity—is shown in Figure 4. Th is code replaces the Web method by
the same name that was stubbed out earlier in this article. In this new

code, which queries CRM 4.0 for all system users, you’ll see several
important things. First, the type of object dealt with is “systemuser.”
All of the core entities have their own types. Second, the result being
returned is a string representation of an XML document.

You’ll fi nd that the options for returning data to Silverlight are
pretty limited. For example, you can’t return the BusinessEntity-
Collection to work with, because Silverlight can’t work with the
API directly. Second, there are limitations with passing XML to
Silverlight via a Web service. So, in the end, dealing with a simple
string is likely your best option.

Querying custom entities can be a little more involved. The
most common way to retrieve data is by using a Dynamic Entity to
retrieve the results (an example of this kind of retrieval is shown in
Figure 5). Th e challenge to this approach is in dealing with specifi c
attributes in fi lters within query expressions. While everything is
possible, IntelliSense can’t help out much.

Although the Dynamic Entity approach may be the most
common, if you want to have full visibility into the structure of
your entity in Visual Studio and interact with it in the same way
as a standard entity, you can create a proxy to the CrmService. In
many cases, this can greatly improve the development experience
and enable more fl exibility in how code can be written. A proxy is
nothing more than a generated C# fi le, based on the most current
instance of the CrmService WSDL. To create a proxy class for the
main CrmService service, open a Visual Studio command prompt
and type the following, replacing the URL with the appropriate link
to your crmservice.asmx page:

wsdl.exe /out:CrmSdk.cs /namespace:CRM40SilverlightDemo.WebReferences.CrmSdk
http://localhost:5555/mscrmservices/2007/crmservice.asmx?wsdl

Th is command will create a C# fi le called CrmSdk.cs in the direc-
tory from where you ran the wsdl.exe executable. Th is fi le should be
added to your project. Once added, you can work with any custom

[WebMethod]
public string GetCRMData()
{
 // This will return all users in CRM in a single XML structure.
 StringBuilder xml = new StringBuilder();
 CrmService service = GetCRMService();

 QueryExpression query = new QueryExpression();
 query.EntityName = "systemuser";
 query.ColumnSet = new AllColumns();

 RetrieveMultipleRequest retrieve = new RetrieveMultipleRequest();
 retrieve.Query = query;
 retrieve.ReturnDynamicEntities = false;

 RetrieveMultipleResponse retrieved =
 (RetrieveMultipleResponse)service.Execute(retrieve);

 xml.Append("<Users>");

 for (int i = 0; i <
 retrieved.BusinessEntityCollection.BusinessEntities.Count; i++)
 {
 systemuser user =
 (systemuser)retrieved.BusinessEntityCollection.BusinessEntities[i];

 // Create a string represenation to return to Silverlight app.
 xml.Append("<User");
 xml.Append(" FirstName ='" + user.firstname + "'");
 xml.Append(" LastName = '" + user.lastname + "'");
 xml.Append(" SystemUserId = '" + user.systemuserid.ToString() + "'");
 xml.Append(" JobTitle = '" + user.jobtitle + "'");
 xml.Append("/>");
 }

 xml.Append("</Users>");

 return xml.ToString();
}

Figure 4 Querying the System User Entity

public static DynamicEntity GetCRMEntity(
 CrmService tmpService, String entityId, String entityName)
{
 DynamicEntity crmEntity = null;

 TargetRetrieveDynamic targetRetrieve = new TargetRetrieveDynamic();

 // Set the properties of the target.
 targetRetrieve.EntityName = entityName;
 targetRetrieve.EntityId = new Guid(entityId);

 // Create the request object.
 RetrieveRequest retrieve = new RetrieveRequest();

 // Set the properties of the request object.
 retrieve.Target = targetRetrieve;
 retrieve.ColumnSet = new AllColumns();

 // Retrieve as a DynamicEntity.
 retrieve.ReturnDynamicEntities = true;

 // Execute the request.
 RetrieveResponse retrieved = (RetrieveResponse)tmpService.Execute(retrieve);

 // Extract the DynamicEntity from the request.
 DynamicEntity entity = (DynamicEntity)retrieved.BusinessEntity;

 crmEntity = entity;

 return crmEntity;
}

Figure 5 Retrieval Using a Dynamic Entity

69October 2011msdnmagazine.com

entity in the exact same manner as core system entities. If the entity
changes, simply update your proxy C# fi le and the new attributes
(or other modifi cations) will be available. For the purposes of the
current exercise, the proxy C# fi le won’t be used.

Updating CRM 4.0 Data
Having looked at how to retrieve data from CRM 4.0, you can now
work through posting data. Th e code shown in Figure 6 shows
how to update a system user record. It requires that two properties
be passed in: the unique identifi er of the CRM 4.0 record and the
nickname. In order to pass in these strings, one line of code must
be modifi ed in the MainPage.xaml.cs, shown here:

proxyPost.PostCRMDataAsync("f04b02d9-ad5f-e011-a513-000c29330bd5","My Nickname");

Notice that the ID is hardcoded in the call to the PostCRMData
method. You’ll want to come up with a mechanism to grab the
ID dynamically.

Processing the Results in Silverlight
At this point, the solution should be retrieving and posting data to and
from CRM 4.0. However, nothing is being done with the string results
that are returned to Silverlight. Th e GetCRMData method is returning

a string of data that contains an XML document with all of the user
records, but what can be done with that? Depending on the control,
you may be able to bind to XML directly, or you may want to parse
through the XML that’s returned and deal with individual data elements.

An example of looping through the results returned can be
seen in Figure 7. Th is code shows how to load the string into an
XML document and loop through the data. In working with XML
documents in Silverlight, the most versatile functionality comes
from the XDocument class. This can be accessed by adding a
reference to System.Xml.Linq in your Silverlight project.

Endless Possibilities
Th ere are endless possibilities when integrating the two technolo-
gies. Some of the immediate next steps you might want to look at
are approaches to exception handling (many Silverlight controls
hide exceptions, so you’ll need to deal with this on a case-by-case
basis) and integrating with various controls. Regardless of the direc-
tion you take, you’ve now got everything you need in order to build
Silverlight solutions that read and write data with CRM 4.0.

MARK BECKNER is the founder of Inotek Consulting Group LLC. He works across
the Microsoft stack, including BizTalk, SharePoint, Dynamics CRM and general
.NET Framework development. He can be reached at mbeckner@inotekgroup.com.

THANKS to the following technical expert for reviewing this article: Scott Jones

void proxy_GetCRMDataCompleted(object sender, GetCRMDataCompletedEventArgs e)
{
 XDocument xDoc = XDocument.Parse(e.Result);

 string firstName;
 string lastName;
 string ID;
 string title;

 // Loop through the results.
 foreach (XElement element in xDoc.Descendants("User"))
 {
 firstName = GetAttributeValue(element, "FirstName");
 lastName = GetAttributeValue(element, "LastName");
 ID = GetAttributeValue(element, "SystemUserId");
 title = GetAttributeValue(element, "JobTitle");
 }
}

private string GetAttributeValue(XElement element, string strAttributeName)
{
 if (element.Attribute(strAttributeName) != null)
 {
 return element.Attribute(strAttributeName).Value;
 }
 return string.Empty;
}

Figure 7 Working with XDocuments

[WebMethod]
public string PostCRMData(string userId, string nickname)
{
 CrmService service = GetCRMService();

 Key kid = new Key();
 kid.Value = new Guid(userId);
 systemuser entity = new systemuser();
 entity.systemuserid = kid;

 entity.nickname = nickname;

 service.Update(entity);

 return "success";
}

Figure 6 Posting CRM 4.0 Data

mailto:mbeckner@inotekgroup.com
www.godiagram.com
www.msdnmagazine.com

msdn magazine70

S H A RE POINT 20 10 EC M

Building Information
Architecture in
SharePoint 2010

The release of Microsoft SharePoint 2010 saw new
Enterprise Content Management (ECM) capabilities added to the
collaboration soft ware. Th is article shows you how to take advantage
of these new features to build fl exible, extensible and maintainable
information architecture for the following two types of portals:

• Internet/intranet/extranet-facing publishing portals
• Knowledge-management portals

I’ll walk you through the design and implementation of several
custom SharePoint components that can be used to implement the
information architecture for these portals.

Shahram Khosravi, Ph.D.

Building Information Architecture
for Internet/Intranet/Extranet-Facing
Publishing Portals
Traditionally, Internet/intranet/extranet-facing publishing portals
follow a strictly guided navigation model where GUI elements such
as menus are used to guide the users to the content they’re looking
for. Such portals normally have a top and a left navigation menu.

The top navigation menu is usually an AspMenu that allows
users to make selections from the first and second tiers of the
portal taxonomy. Th e left navigation menu is usually an AspMenu
that allows users to make selections from the third and fourth (or
possibly fi ft h) tiers of the portal taxonomy.

Th e entire content of the portal is divided into a set of categories
that form the fi rst tier. I’ll use the following naming convention for
categories: Termi where i takes on an integer value. For example, the
fi rst and second categories are named Term1 and Term2, respectively.

The content in each category is then divided into a set of
subcategories which form the second tier. I’ll use the following
naming convention for subcategories: Termij where i and j take on
integer values. For example, the fi rst subcategory of the fi rst cat-
egory is named Term11.

Th is categorization of the content continues until we reach the
desired granularity. Figure 1 shows this portal taxonomy.

Such portal taxonomy is normally implemented in SharePoint
2007 through establishment of the appropriate site structure. I’ll
start by creating a separate site for each category. I’ll then create

This article discusses:
• Building information architecture for Internet/intranet/extranet-

facing publishing portals
• Implementing a custom data source control
• Using a ListSiteMapPath control to solve a problem
• Building information architecture for

knowledge-management portals
• The knowledge-management portal homepage

• Building a wiki page

Technologies discussed:
SharePoint 2010

Code download available at:
code.msdn.microsoft.com/mag201110SPECM

http://code.msdn.microsoft.com/mag201110SPECM

71October 2011msdnmagazine.com

separate subsites under each category site for the respective subcat-
egories, and so on. Figure 2 shows the site structure of the portal.

Basically, each category, subcategory, sub-subcategory and so
on has its own dedicated site. Th is dedicated site contains a Pages
document library that contains the pages for that site. If I were to
use social networking language, I could say all pages in the Pages
document library of a site are implicitly tagged with the category,
subcategory or sub-subcategory that the site represents. In a way,
I implicitly tag a bunch of pages with a category, subcategory or
sub-subcategory by creating them in a site that represents that
category, subcategory or sub-subcategory. Th is way, I create a new
implicit tag (or term) by creating a new site.

Th e top navigation AspMenu displays these categories (fi rst tier)
and their subcategories (second tier). Th e user selects a category
or subcategory from this AspMenu to navigate to the page that’s
implicitly tagged with that category or subcategory.

When the user selects a subcategory from the top navigation
menu, the left navigation AspMenu (Quick Launch) displays
the sub-subcategories associated with that subcategory. Th e user
selects a sub-subcategory from this AspMenu to navigate to the
page that’s implicitly tagged with that sub-subcategory. Th e Pages
document library of a given site may contain multiple pages, which
means that multiple pages may be implicitly tagged with the same
category, subcategory or sub-subcategory. The Quick Launch
displays the links to all pages that are implicitly tagged with the
same sub-subcategory.

Comparison of Figure 1 and Figure 2 clearly shows that the
portal taxonomy or information architecture directly reflects
the portal site structure. Th is makes the information architecture
infl exible and introduces the following problems:

• Creating a new implicit tag requires site administration
permission to create a new site.

• Retagging a page requires physically moving the page from
one site to another.

• Reorganizing the information architecture requires physi-
cally moving and deleting sites and pages.

• Content authors aren’t able to
share the same page across mul-
tiple categories, subcategories,
sub-subcategories and so on. Th ey
have to create a separate page for
each category, subcategory and so
on because each is a separate site.
Th e only out-of-the-box option is
to copy the page to the respective
sites. Th is solution introduces two
usability problems. First, the con-
tent author has to copy the page
to many diff erent places. Second,
each time the content author
changes the content in one page,
he has to go back to all those
copies in all those sites to make
the same updates or copy the page
again. Th is is error-prone.

• Because changing taxonomy requires structural changes
in the site structure, which involves a lot of time and eff ort,
taxonomy is very rigid. Taxonomy is tightly coupled with
the way information is actually stored in the site collection.

Enter SharePoint 2010 ECM. You can now implement your portal
taxonomy in a managed metadata service application where you
manage it centrally. Such implementation no longer depends on
your portal site structure:

• You don’t need to provision new sites just to create new
implicit tags. You simply add new terms to the desired spots
in the portal taxonomy in the term store. Th is way, you can
now keep all your pages in the same Pages document library
in the same site because scalability of document libraries is
no longer an issue in SharePoint 2010. Th is article assumes
that all pages are maintained in a single Pages document
library in a single site.

• You can retag a page with a new term without having to
physically move the page.

• You can reorganize your taxonomy by simply reorganizing
your taxonomy in the term store without having to physi-
cally move or delete sites and pages.

• You can share the same page across multiple categories,
subcategories and so on by simply tagging the page with
multiple terms—where each term represents a category,
subcategory and so on—without having to physically copy
the page across sites.

I’ll implement the portal taxonomy as a single term set, as
shown in Figure 3.

However, implementing the portal taxonomy in a term store
instead of the portal site structure introduces two challenges
discussed in the next sections.

The TaxonomyDataSource Control
First, the v4.master master page comes with an AspMenu that dis-
plays the top navigation menu. Th is control is bound to a site map
data source control that uses a provider to retrieve the site map

data from the portal site structure.
Th is isn’t going to work in this case
because I want the site map data to
come from the term store, not the
portal’s physical site structure.

One option is to implement a cus-
tom site map provider that retrieves
the appropriate terms from the term
store. Another option is to implement
a custom data source control. I’ll use
the latter because ASP.NET comes
with a powerful data source control
named XmlDataSource that I can
easily extend to achieve my goal.
I’ll name this custom data source
control TaxonomyDataSource.

TaxonomyDataSource exposes a
Boolean property named IsGlobal.
I’ll include two instances of Taxonomy-

Figure 1 Portal
Taxonomy

Figure 2 The Site
Structure of the Portal

www.msdnmagazine.com

msdn magazine72 SharePoint 2010 ECM

DataSource in the master page. One
instance will be bound to the Asp-
Menu that renders the top naviga-
tion menu. Th e IsGlobal property
of this instance will be set to true
to retrieve all terms of the term set
that contains the portal taxonomy.
Th is enables the top navigation
menu to display all categories and
their subcategories. Keep in mind
that categories and their respec-
tive subcategories are nothing but
the child and grandchild terms of
this term set.

The second instance will be
bound to the AspMenu that renders
the left navigation menu (Quick
Launch). Th e IsGlobal property
of this instance will be set to false
to retrieve only the subterms of
the current term. Let me elaborate
on what I mean by “current term.”

Recall that when the user
selects a subcategory from the top
navigation menu, the left naviga-
tion menu must display the list of
sub-subcategories associated with
that subcategory. Th e current term
in this context is the subcategory.
The second instance basically
returns the current term’s child
and grandchild terms, which are
nothing but the sub-subcatego-
ries and sub-sub-subcategories.

TaxonomyDataSource over-
rides the Data property to retrieve
the portal taxonomy from the

term store. Th e main objective of the Data property is to create
the XML document that XmlDataSource uses to create the nodes
that it passes to AspMenu. Th is property fi rst uses the SharePoint
2010 managed metadata API to access the term set that contains
the portal taxonomy, as shown here:

TaxonomySession taxonomySession = new TaxonomySession(SPContext.Current.Site);
TermStore termStore = taxonomySession.TermStores[this.TermStore];
Group group = termStore.Groups[this.Group];
TermSet termSet = group.TermSets[this.TermSet];

Th e property uses all terms in the term set if IsGlobal is true:
termsToReturn = termSet.Terms;

If IsGlobal is false, the property fi rst accesses the GUID of the
current term, which is exposed through the CurrentTermId query
string parameter. Th en it uses the child and grandchild terms of
the current term:

Term currentTerm = taxonomySession.GetTerm(
 new Guid(this.Page.Request.QueryString["CurrentTermId"]));
termsToReturn = currentTerm.Terms;

Th e Data property then starts creating the XML document. Th is
document has a document element named <Terms>, which contains

a hierarchy of <Term> elements. TaxonomyDataSource creates a
separate <Term> element to represent each term that it pulls from
the term store. Following is an example of such an XML document:

<Terms>
 <Term Name="Term1" URL="PageUrl?CurrentTermId=">
 <Term Name="Term11" URL="PageUrl?CurrentTermId=">
 <Term Name="Term111" URL="PageUrl?CurrentTermId="/>
 </Term>
 </Term>
 <Term Name="Term2" URL="PageUrl?CurrentTermId=">
 <Term Name="Term21" URL="PageUrl?CurrentTermId="/>
 </Term>
</Terms>

Note that the <Term> element has two attributes named Name
and URL. Th e Name attribute is set to the name of the term and
the URL is set to the URL of the page that’s tagged with that term.
Th is URL includes a query string parameter named CurrentTermId
that contains the GUID of the current term.

The Data property iterates through the retrieved terms and
invokes the GetXmlFragment method for each enumerated term.
Th e main goal of this method is to build the <Term> element that
represents the enumerated term and this <Term> element’s <Term>
subelements that represent the child and grandchild terms of the
enumerated term:

foreach (Term term in termsToReturn)
{
 GetXmlFragment(publishingPageCollection, term, ref xml);
}

Note that TaxonomyDataSource uses the SharePoint publishing
API to access the collection that contains the publishing pages.

Next, I’ll discuss the implementation of GetXmlFragment. How-
ever, fi rst you need to understand the signifi cance of the Tags site

foreach (PublishingPage publishingPage in publishingPageCollection)
{
 TaxonomyFieldValueCollection values =
 publishingPage.ListItem["Tags"] as TaxonomyFieldValueCollection;

 foreach (TaxonomyFieldValue value in values)
 {
 if (value != null && value.TermGuid == term.Id.ToString())
 {
 url = publishingPage.Uri.AbsoluteUri;
 xml += "<Term Name='" + term.Name + "' URL='" + url +
 "?CurrentTermId=" + term.Id.ToString() + "'>";
 closeTerm = true;
 defaultPublishingPage = publishingPage;
 break;
 }
 }

 if (closeTerm)
 break;
}

Figure 4 The First Part of GetXmlFragment

Figure 3 Implementation
of Portal Taxonomy in the
Managed Metadata Service
Application

Implementing the portal
taxonomy in a term store instead

of the portal site structure
introduces two challenges.

Untitled-1 1 9/8/11 12:00 PM

www.nsoftware.com

msdn magazine74 SharePoint 2010 ECM

column, which is of type Managed Metadata. You’ll need to create
this site column and bind it to the term set that contains the portal
taxonomy and add the site column to the associated content type
of the publishing page layout. Th e Tags column allows the content
author to tag publishing pages with terms from the portal taxonomy.

GetXmlFragment consists of three parts. As Figure 4 shows, the
fi rst part searches through the pages in the Pages document library
for the fi rst page that’s tagged with the specifi ed term and renders
a <Term> element to represent the term.

Th e URL attribute of this <Term> element is set to the URL of
this page and the CurrentTermId query string parameter is set to
the GUID of this term. Th is page acts as the default page for the
specifi ed term. Th is basically simulates the default page of a site if
I were to create a site to represent the specifi ed term.

Th e code in Figure 4 basically generates the following XML fragment:
<Term Name='TermName' URL='DefaultPageURL?CurrentTermId=GUID>

Note that the <Term> element isn’t closed yet because I still need
to iterate through the child and grandchild terms of this term and
render <Term> subelements within this <Term> element for each
enumerated child and grandchild term. Th is is exactly what the
second part of GetXmlFragment does:

foreach (Term cterm in term.Terms)
{
 GetXmlFragment(publishingPageCollection, cterm, ref xml);
}

GetXmlFragment fi nally closes the parent <Term> element. Next,
GetXmlFragment renders <Term> elements for the rest of the pages
in the Pages document library that
are tagged with the same term.
Th ese <Term> elements are treated
as the siblings of the <Term> ele-
ment that represents the default
page. This allows Quick Launch
to render the links to all pages that
are tagged with the current term.
This basically simulates the non-
default pages of a site if I were to
represent the term with a site, as
shown in Figure 5.

Figure 6 shows an example of a page based on the master page
that uses TaxonomyDataSource.

Thanks to TaxonomyDataSource, the top and left navigation
menus display different tiers of the portal taxonomy, which is
maintained centrally in the term store.

The ListSiteMapPath Control
As mentioned, implementing the portal taxonomy in a term store
instead of the portal site structure introduces two challenges. In
the previous section I discussed the fi rst challenge and provided a
solution. Th is section discusses the second challenge and provides
a solution to address it.

v4.master contains a control named PopoutMenu that renders
a control named ListSiteMapPath. ListSiteMapPath renders the
breadcrumb that shows up when the user clicks PopoutMenu,
which is shown as an icon on the page.

ListSiteMapPath inherits from SiteMapPath, which is a tradi-
tional control for rendering the breadcrumb. Also, default.master
uses SiteMapPath, whereas v4.master uses ListSiteMapPath.

ListSiteMapPath exposes a property named SiteMapProviders that
takes a comma-separated list of site map provider names. As such, List-
SiteMapPath can work with more than one provider. ListSiteMapPath
iterates through these providers and takes the following steps for each
enumerated provider. It fi rst invokes the FindSiteMapNode method
of the provider, passing in HttpContext to return the current site map
node. It then recursively invokes the GetParentNode method of the
provider to access all ancestor site map nodes of the current site map
node all the way up to the root site map node. Finally, it renders an
item in the breadcrumb for each ancestor site map node starting from
the root site map node all the way down to the current site map node.

As you can see, ListSiteMapPath renders a complete hierarchy of
items for each enumerated site map provider. Th is way, each site map
provider contributes to the breadcrumb. Th is enables ListSiteMapPath
to render site map nodes from diff erent types of sources. In my case,
I want to have ListSiteMapPath render site map nodes from the por-
tal taxonomy maintained in the term store. I’ll implement a custom
site map provider named TaxonomySiteMapProvider to achieve this.

TaxonomySiteMapProvider overrides FindSiteMapNode, where
it uses the specifi ed context to access the respective SPListItem.
This context is basically the current context. The method then
accesses the URL, ID and title of this list item and creates a site map
node to represent it. Keep in mind that this list item in publishing
sites represents a publishing page.

if (!this.IsGlobal)
{
 foreach (PublishingPage publishingPage in publishingPageCollection)
 {
 if (publishingPage == defaultPublishingPage)
 continue;

 TaxonomyFieldValueCollection values =
 publishingPage.ListItem["Tags"] as TaxonomyFieldValueCollection;

 foreach (TaxonomyFieldValue value in values)
 {
 if (value != null && value.TermGuid == term.Id.ToString())
 {
 url = publishingPage.Uri.AbsoluteUri;
 xml += "<Term Name='" + publishingPage.Title + "' URL='" +
 url + "?CurrentTermId=" + term.Id.ToString() + "'/>";
 break;
 }
 }
 }
 }

Figure 5 The Third Part of GetXmlFragment

Figure 6 An Example Page Based on a Master Page that Uses TaxonomyDataSource

Untitled-2 1 6/29/11 11:49 AM

www.DiscountASP.net/tfs/msdn

msdn magazine76 SharePoint 2010 ECM

ListSiteMapPath invokes this method to access the current site
map node:

SPContext spContext = SPContext.GetContext(context);
SPListItem listItem = spContext.ListItem;
string url = listItem.Url;
string key = listItem.ID.ToString();
string title = listItem.Title;
return new SiteMapNode(this, key, url, title);

ListSiteMapPath then invokes GetParentNode, passing in the
current site map node to return the site map node that represents
the parent of the current node. Keep in mind that the current site
map node represents the current publishing page and the parent
site map node represents the parent of this publishing page. Th e
parent of a publishing page in this case is the publishing page that’s
tagged with the parent term of the term with which the current
publishing page is tagged.

Th e TaxonomyDataSource override of GetParent-
Node fi rst accesses the current SharePoint list, which
is nothing but the Pages document library that con-
tains the publishing pages. It then creates a Collabora-
tive Application Markup Language (CAML) query to
search this list for the current publishing page so it can
access the term with which the current page is tagged.
Th is time around, I’m not using the publishing API
to access this publishing page. Using a CAML query
provides better performance, especially if the Pages
document library contains tens of thousands of pages.

Th e following code section of GetParentNode basically returns
the publishing page that the specifi ed node represents, and then
retrieves the value of the Tags fi eld, which is the term with which
the page is tagged:

SPQuery query = new SPQuery();

query.ViewFields = "<FieldRef Name='Tags'/>";
query.Query = "<Where><Eq><FieldRef Name='ID'/><Value Type='Integer'>" +
 node.Key + "</Value></Eq></Where>";
SPListItemCollection listItems = list.GetItems(query);
SPListItem listItem = listItems[0];

TaxonomyFieldValueCollection values =
 listItem["Tags"] as TaxonomyFieldValueCollection;
TaxonomyFieldValue value = values[0];

Guid termGuid = new Guid(value.TermGuid);
TaxonomySession taxonomySession = new TaxonomySession(context.Site);
Term term = taxonomySession.GetTerm(termGuid);

Next, GetParentNode accesses the parent term of the current
term and searches the Pages document library for the publishing
page that’s tagged with this parent term. It fi nally accesses the URL
and ID of this publishing page and uses these two pieces of infor-
mation, plus the name of the parent term, to form the parent site
map node, as shown in Figure 7.

The code in Figure 7 uses the GetWssIdsOfTerm static
method of the TaxonomyField class. This method returns the
Windows SharePoint Services (WSS) IDs of the specified term
from the taxonomy hidden list, which is a SharePoint list at the
site-collection level where SharePoint caches terms used in the site
collection. Every time you tag an item with a new term, SharePoint
automatically adds an entry to this hidden list for that term. Th e
same term may have multiple entries in this taxonomy hidden list
if, for example, the term is reused.

GetWssIdsOfTerm returns the IDs of all list items that repre-
sent the specifi ed term in the taxonomy hidden list. You have to
use these IDs in the CAML queries that fi lter based on managed
metadata fi elds, which is the Tags fi eld in this case.

Figure 8 shows the ListSiteMapPath that’s bound to the Tax-
onomySiteMapProvider. Note that the control renders the entire
hierarchy to which the current page belongs.

Building Information Architecture
for Knowledge-Management Portals
As discussed, a traditional guided-navigation approach takes
users through a set of menu options to help them fi nd the content
they’re looking for. Th is is quite diff erent from social networking
portals, where approaches such as the following are used to help
users fi nd content:

• Search engine: Users perform search queries against
search indices to fi nd content.

• Metadata fi ltering: Users use metadata fi ltering to
fi lter search results.

• Wiki-style links: Pages are linked together through
wiki-style links. Users use these links to navigate
between pages.

• Rollup Web Parts: Pages contain Rollup Web
Parts that roll up content from various places.
Users use the links in these Web Parts to navigate
between pages.

Term parentTerm = term.Parent;
if (parentTerm != null)
{
 int[] wssIds = TaxonomyField.GetWssIdsOfTerm(context.Site, parentTerm.TermStore.Id,
 parentTerm.TermSet.Id, parentTerm.Id, false, 500);
 query = new SPQuery(list.DefaultView);
 query.Query =
 "<Where><In><FieldRef LookupId='True' Name='Tags'/><Values>";
 foreach (int wssId in wssIds)
 {
 query.Query += ("<Value Type='Integer'>" + wssId.ToString() + "</Value>");
 }
 query.Query += "</Values></In></Where>";
 listItems = list.GetItems(query);
 listItem = listItems[0];

 string url = listItem.Url;
 string key = listItem.ID.ToString();
 string title = parentTerm.Name;

 return new SiteMapNode(this, key, url, title);
}

Figure 7 Forming the Parent Site Map Node

Figure 8 The List-
SiteMapPath that Is
Bound to the Taxono-
mySiteMapProvider

Social networking portals
promote the free-fl ow approach
to navigation as opposed to the
linear guided approach used in

traditional portals.

Untitled-9 1 4/8/11 4:28 PM

www.msdn.com/vsip

msdn magazine78 SharePoint 2010 ECM

Social networking portals promote the free-fl ow approach to navi-
gation as opposed to the linear guided approach used in traditional
portals. Th us, users can arrive at a page through diff erent means. In
the following sections, I’ll discuss the design and implementation of
a knowledge-management portal that takes advantage of the social
networking navigation model. Sean Squires and Lincoln DeMaris
presented this design during a session at the Microsoft SharePoint
Conference 2009. I’ll cover some aspects of this design and also present
my own customizations and enhancements to it. Th e next section
discusses the homepage of this knowledge-management portal.

The Homepage
The main goal of the homepage is to provide the following two
capabilities: search box and Rollup Web Parts. The search box
enables users to search for content. Th is is the main component of
the homepage. Th e Rollup Web Parts roll up content from various
places throughout the enterprise.

Th is content could be anything that’s of some interest to users.
For example, it may be benefi cial to users to show them the most-
viewed and most-searched content in the enterprise. SharePoint
2010 comes with an out-of-the-box Web Analytics Web Part that
you can confi gure to display such content.

A knowledge-management portal normally stores documents
in a central repository. SharePoint comes with an out-of-the-box

site template named Document Center. You can create a site from
this site template to store your documents. You can then add a con-
tent query Web Part to the homepage to roll up the most recently
uploaded documents.

When the user uses the search box shown in the homepage to
perform a search query, she’s taken to the search results page. Th is
page is the standard SharePoint out-of-the-box search results
page that comes with a refi nement panel. Th is panel contains cat-
egories that the user can use to fi lter search results. One of these
categories is result types.

Th e user selects the result type associated with Web pages to view
Web pages only. Th e refi nement panel also presents the terms with
which these Web pages are tagged. Th ese are the terms from the por-
tal taxonomy. Th e user uses these terms to further fi lter these pages
to arrive at the desired page. Th e user then clicks on the search result
to navigate to the page, which is basically an enterprise wiki page.

Structure of an Enterprise Wiki Page
All pages in my knowledge-management portal are created from
the same customized version of the enterprise wiki page layout.

To customize the page layout, I start by replacing the Wiki
Categories fi eld control with the Tags fi eld control. I’ll also place a
Tags fi eld control inside an EditModePanel so that it only shows
up when the page is in Edit mode. Th e reason I don’t want the Tags
fi eld control to show up in the Display mode is because I’ll use the
left navigation menu to render the terms with which the current
page is tagged instead of the Tags fi eld control. As you’ll see shortly,
using AspMenu will allow me to not only render the current terms,
but also the current terms’ subterms, sub-subterms and so on.

I also need to make changes in the implementation of Tax-
onomyDataSource so the control
doesn’t use the query string to get
the current term. Instead, it should
retrieve the current terms from the
Tags fi eld of the current page. Th is
is because I’m no longer taking the
user through the top navigation
menu, which is how it’s done in a
guided-navigation model used in
traditional portals. Th e user can
access the current page from any-
where. For example, there could
be a wiki link on some page that
takes the user to the current page.
As such, there’s no query string
parameter that would tell you
about the current term. Th is also Figure 10 A Page Based on a Customized Enterprise Wiki Layout

TaxonomyFieldValueCollection values =
 SPContext.Current.ListItem["Tags"] as TaxonomyFieldValueCollection;
Term currentTerm = null;
foreach (TaxonomyFieldValue value in values)
{
 currentTerm = taxonomySession.GetTerm(new Guid(value.TermGuid));
 GetXmlFragment(publishingPageCollection, currentTerm, ref xml);
 termsToReturn = currentTerm.Terms;

 if (termsToReturn != null)
 {
 foreach (Term term in termsToReturn)
 {
 GetXmlFragment(publishingPageCollection, term, ref xml);
 }
 }
}

Figure 9 The New Version of TaxonomyDataSource

A knowledge-management
portal normally stores documents

in a central repository.

ALM Summit
Register at www.alm-summit.com
November 14-18, 2011 - Microsoft Conference Center, Redmond

application lifecycle management
for the microsoft platform

Conference Workshop Options:
 Pre-conference (Monday)
 Implementing Scrum - Richard Hundhausen
 Managing your application lifecycle with TFS - Anthony Borton

 Post-conference (Friday)
 Enterprise Management of the Software Process - Steven Borg
 Visual Studio 2010 Lab Management - Brian Randell

sponsored by Microsoft

follow us on

sponsors

track chairs

Tim Lister
Author

Jason Zander
Corporate Vice President
Microsoft

Scott Guthrie
Corporate Vice President
Microsoft

Dave West
Senior Analyst
Forrester Research

Mark Russinovich
Technical Fellow
Microsoft

Brian Harry
Technical Fellow
Microsoft

Sam Guckenheimer
ALM Leadership Track

Jim Newkirk
Agile Developer Track

keynote speakers

diamond platinum

deliver more than expected

Untitled-1 1 9/8/11 12:00 PM

http://www.alm-summit.com

msdn magazine80 SharePoint 2010 ECM

means that the current term may
no longer be a single term, because
the current page may have been
tagged with multiple terms.

Th e new version of Taxonomy-
DataSource fi rst accesses all terms
with which the current page is
tagged. It then iterates through these
terms and creates XML fragments
for these terms and their descen-
dant terms, as shown in Figure 9.

Figure 10 shows a page based
on my customized version of an
enterprise wiki page layout.

Note that Quick Launch displays
the current terms, the subterms of
the current terms and the pages
that are tagged with the current terms and subterms of the current
terms. Also note that the page doesn’t display the Tags fi eld control
in the Display mode.

Figure 11 shows the page in the Edit mode where the Tags fi eld
is shown, allowing the content author to tag or retag the page.

Thanks to TaxonomyDataSource, the left navigation menu
exposes links to all pages that are related to the current page. It
exposes links not only to the pages that are tagged with the same
terms as the current page, but also to pages that are tagged with
the descendant terms of these terms. You can enhance Taxono-
myDataSource to give the content author the option of specifying
whether to display only the child terms of the terms with which the
current page is tagged, the child terms and the grandchild terms, or
the child terms, grandchild terms and the grand-grandchild terms,
and so on. You can also give the author the option to display the
parent terms of the terms with which the current page is tagged,
the parent terms and the grandparent terms, and so on.

Thus, TaxonomyDataSource becomes a powerful tool that
ensures when a user visits a page, the page presents the user with
links to all related pages throughout the enterprise. As more pages
are added and tagged with the same terms with which the current
page is tagged or with the descendant terms of the same terms,
TaxonomyDataSource automatically picks them up, so Quick Launch
is automatically updated to include links to these new pages. Tax-
onomyDataSource makes it possible to use the portal taxonomy as
the common thread that chains together all pages and documents
throughout your enterprise.

Links on the Quick Launch are just one way to make connections
between the pages of your portal. Another way is to use wiki-style
page linking. Yet another means is to use Rollup Web Parts that bring

in related content from throughout the enterprise. For example, you
can confi gure a Content Query Web Part to pull documents from
your document center and fi lter them based on the terms with which
the current page is tagged. As users upload new documents to the
document center and tag them with the same terms with which the
current page is tagged, this Content Query Web Part automatically
updates to show these new documents as well.

As the content author adds a new tag to the page, edits the
existing tag or removes an existing tag, the content of all Rollup Web
Parts on the page and the content of Quick Launch automatically
changes. Th is is an example of contextual social networking, where
the page displays content based on the taxonomy.

TaxonomyDataSource, wiki-style linking and Rollup Web Parts
turn a page into a forefront for pulling related content from through-
out the enterprise to one location, fi ltered based on the terms with
which the page is tagged. Pages are no longer explicitly structured
through physical structure of the portal. Instead, they’re implicitly
structured via the relationships they have through taxonomy,
wiki-style linking and Rollup Web Parts.

Flexible and Customized Information Architecture
Wrapping up, the new SharePoint 2010 ECM capabilities help you
build and implement fl exible information architecture for Internet/
intranet/extranet-facing publishing and knowledge-management
portals. Th is fl exibility is becoming more important as Web page and
site design evolve to accommodate new ways of using the Internet,
as exemplifi ed by the explosion in social networking sites. While
I presented the design and implementation of several custom
SharePoint components that can be used to implement information
architecture, there’s much more that can be done, and I urge you
to explore the new possibilities.

SHAHRAM KHOSRAVI specializes in and has extensive industry experience with
SharePoint architecture, design and development. He’s the author of the follow-
ing books: “Expert WSS 3.0 and MOSS 2007 Programming” (Wrox, 2008),
“Professional SharePoint 2007 Workfl ow Programming” (Wrox, 2008), “ASP.NET
AJAX Programmer’s Reference” (Wrox, 2007), “ASP.NET 2.0 Server Control and
Component Development” (Wrox, 2006) and “IIS 7 and ASP.NET Integrated
Programming” (Wrox, 2007).

Figure 11 A Page in Edit Mode, Allowing Tagging or Retagging

Links on the Quick Launch are just
one way to make connections

between the pages of your portal.

Toll Free USA (888) 774-3273 | Phone (913) 390-4797 | sales@spreadsheetgear.com

Download the FREE fully functional 30-Day
evaluation of SpreadsheetGear 2010 today at

www.SpreadsheetGear.com.

ASP.NET Excel Reporting
Easily create richly formatted Excel reports without Excel using the
new generation of spreadsheet technology built from the ground up
for scalability and reliability.

Excel Compatible Windows Forms Control
Add powerful Excel compatible viewing, editing, formatting, calculating,
charting and printing to your Windows Forms applications with the
easy to use WorkbookView control.

Create Dashboards from Excel Charts and Ranges
You and your users can design dashboards, reports, charts, and
models in Excel rather than hard to learn developer tools and you can
easily deploy them with one line of code.

Microsoft Chose SpreadsheetGear...
“After carefully evaluating SpreadsheetGear, Excel Services, and other
3rd party options, we ultimately chose SpreadsheetGear for .NET
because it is the best fi t for MSN Money.”

Chris Donohue, MSN Money Program Manager

Untitled-9 1 11/2/10 12:10 PM

http://www.SpreadsheetGear.com
mailto:sales@spreadsheetgear.com

msdn magazine82

Th e data for the Figure 1 graph is stored in an external text fi le
named DimacsClique.clq, which uses a standard format called
DIMACS. I’ll explain the DIMACS fi le format shortly. My demo
program begins by validating the source file, then instantiates a
graph data structure using the data fi le. Aft er the graph has been
instantiated, I validate the internal representation and display it in
a human-friendly image. As you’ll see, an effi cient internal repre-
sentation of a graph is critically important for the maximum clique
problem. The demo program finishes by calling a method that
determines if two nodes are adjacent, nodes 5 and 8 in this case,
and by calling a method that returns the number of neighbors a
node has, for node 4 in this case.

I’ll walk you through the code that generated the Figure 2 out-
put line by line. Th e complete source code for the demo program
is available at code.msdn.microsoft.com/mag201110TestRun. The code is
written in C#, but you should be able to follow me if you have
intermediate-level programming skills in any modern high-level
language. Th e graph code presented here lays the foundation for
solving the maximum clique problem in upcoming articles and
should be a useful addition to your developer, tester and soft ware
project management toolkits.

A Bit Matrix
Th ere are several common ways to represent an unweighted (graph
edges aren’t assigned priorities of some sort), undirected (edges
don’t have a direction from one node to another) graph in memory.
For the maximum clique problem, representing a graph using a
bit matrix provides an excellent combination of space and perfor-
mance effi ciencies. Figure 3 shows a bit matrix that corresponds to
the example graph. Even though we’re dealing with an undirected
graph, it’s common to call the vertical indices the from-nodes

Graph Structures and Maximum Clique

In this month’s column, I present the design, a C# language imple-
mentation and testing techniques for a graph data structure that
can be used to solve the maximum clique problem. Th e graph code
can also be used for many other problems, as I’ll explain.

So, just what is the maximum clique problem and why might
it be relevant to you? A clique is a subset of a graph where every
node is connected to every other node. Take a look at the graph
representation in Figure 1. Nodes 2, 4 and 5 form a clique of size
three. The maximum clique problem is to find the clique with
the largest size in a graph. Th e maximum clique for the graph in
Figure 1 is the node set { 0, 1, 3, 4 }, which has size four.

Th e maximum clique problem is encountered in a wide range
of applications, including social network communication analysis,
computer network analysis, computer vision and many others. For
graphs of even moderate size, it turns out that the maximum clique
problem is one of the most challenging and interesting problems in
computer science. Th e techniques used to solve the maximum clique
problem—which include tabu search, greedy search, plateau search,
real-time parameter adaptation and dynamic solution history—can
be used in many other problem scenarios. In short, code that solves
the maximum clique problem can be directly useful to you, and the
advanced techniques employed in the algorithm can be helpful for
solving other diffi cult programming problems.

A complete solution to the maximum clique problem is too long
to present and explain in one article, so I’ll present the solution
over several articles. Th e fi rst step for solving the maximum clique
problem is to design, implement and test a data structure that can
effi ciently store the graph under analysis in memory. Th e console
application in Figure 2 shows you where I’m headed in this column.

With some WriteLine statements removed, the code that pro-
duced the run shown in Figure 2 is:

string graphFile = "..\\..\\DimacsGraph.clq";
MyGraph.ValidateGraphFile(graphFile, "DIMACS");

MyGraph graph = new MyGraph(graphFile, "DIMACS");

graph.ValidateGraph();
Console.WriteLine(graph.ToString());

Console.WriteLine("\nAre nodes 5 and 8 adjacent? " +
 graph.AreAdjacent(5,8));
Console.WriteLine("Number neighbors of node 4 = " +
 graph.NumberNeighbors(4));

TEST RUN JAMES MCCAFFREY

Code download available at code.msdn.microsoft.com/mag201110TestRun.

For the maximum clique
problem, representing a graph
using a bit matrix provides an

excellent combination of space
and performance effi ciencies.

http://code.msdn.microsoft.com/mag201110TestRun
http://code.msdn.microsoft.com/mag201110TestRun

83October 2011msdnmagazine.com

and the horizontal indices the to-nodes. A
value of 1 means there’s an edge between the
corresponding nodes; a 0 value indicates no
edge between nodes. Notice that the matrix
is symmetric and that we assume nodes aren’t
adjacent to themselves.

The primary advantage of a bit matrix
over alternative designs is that it allows fast
adjacency lookups, which oft en dominate
the runtime of many graph algorithms,
including the maximum clique problem. If
implemented crudely, the primary disad-
vantage of a bit matrix is memory usage. For
example, if the 9x9 matrix in Figure 3 was
implemented as a two-dimensional array
of 4 byte integers or Booleans, the matrix
would require 9 * 9 * 4 = 324 bytes. But
because each value in a bit matrix can be only 0 or 1, we can use the
bits of an integer to store up to 32 values per integer. In this example,
if we imagine that the low-order bit is on the right, the fi rst row can
be stored as a single 32-bit integer 00000000-00000000-00000000-
10110000, which has the decimal value of 128 + 32 + 16 = 176. So if
each row of the matrix is stored as a single integer where the bits
of the integer are used to represent the presence or absence of an
edge between nodes, the 9x9 matrix would require only 36 bytes.

In older programming languages, you’d have to implement a
bit matrix from scratch using low-level bit operators such as left -
shift , bitwise-or and so on. But the Microsoft .NET Framework
System.Collections namespace has a BitArray type that makes
implementing a program-defi ned BitMatrix type easy. A BitMatrix
class can be defi ned as shown in Figure 4.

Th e BitMatrix class represents a square matrix and is essen-
tially an array of BitArray array objects. I declare the BitMatrix
class with private scope because I intend to embed it
within a graph class defi nition rather than use it as a
standalone class. Th e BitMatrix constructor accepts
a parameter n that’s the dimension of an nxn matrix,
allocates a column of size n of BitArray array objects
and then instantiates each BitArray using size n.
Because there’s no bit type in the .NET Framework, the
values in a BitArray—and therefore in the BitMatrix
class—are exposed as type bool, as you can see in the
SetValue method. Notice that to keep my code short,
I’ve removed normal error checking.

Using the BitMatrix could look like:
BitMatrix matrix = new BitMatrix(9);
matrix.SetValue(5, 8, true);
matrix.SetValue(8, 5, true);
bool connected = matrix.GetValue(2, 6);

Th e fi rst line creates a 9x9 BitMatrix object initially
set to all false (or zeros) to represent an unweighted,
undirected graph with nine nodes. Th e second line sets
row 5, column 8 to true/1 to indicate there’s an edge
between node 5 and node 8. Th e third line sets row 8,
column 5 to true/1 so that the graph edge representa-
tion is consistent. Th e fourth line fetches the value at

row 2, column 6, a value indicating whether
or not there’s an edge between nodes 2
and 6, which would be false/0. Notice that
determining whether or not two nodes are
adjacent is just a quick array lookup.

A Graph Class
With a BitMatrix class in hand, it’s easy to
defi ne an effi cient graph class suitable for the
maximum clique problem and many other
graph-related problems. Th e structure of a
graph class is presented in Figure 5. Th e graph
class has dependencies on namespaces System,
System.IO and System.Collections. For the
example program, I placed the graph class
directly inside the console app, but you may
want to place the code in a class library.

Th e graph class defi nition starts with:
public class MyGraph
{
 private BitMatrix data;
 private int numberNodes;
 private int numberEdges;
 private int[] numberNeighbors;
...

I name the class MyGraph. It’s somewhat tempting to try to
defi ne an all-purpose graph class, but there are so many variations
of graphs that it’s a better idea to defi ne diff erent graph classes for
diff erent kinds of problems. Th e graph class I defi ne here is aimed
at solving the maximum clique and related problems, so I could’ve
named the class something like MaxCliqueGraph. Th e class has
four data fi elds. Th e fi rst is a BitMatrix object as described in the
previous section. Th e numberNodes and numberEdges fi elds hold
the number of nodes (nine in the example) and the number of
undirected edges (13 in the example) in the graph.

Figure 2 Graph Loading and Validation

Figure 1 A Graph for the Maximum
Clique Problem

0

3

6

1

4

7

2

5

8

www.msdnmagazine.com

msdn magazine84 Test Run

When solving many graph problems, it’s
necessary to know how many neighbors
a node has—that is, how many nodes are
connected to a given node. For the example
graph in Figure 1, node 5 has three neigh-
bors. Th e number of neighbors a node has
is also called the degree of the node. For a
given node, this value could be computed
on the fly when needed by counting the
number of true/1 values in the node’s data
row. A much faster approach is to count
and store the number of neighbors for
each node once in the graph constructor
and then do an array lookup when needed.
So, for the example graph aft er instantia-
tion, array numberNeighbors would have
nine cells with values [3,3,2,3,6,3,1,3,2],
indicating node 0 has three neighbors, node 1 has three neighbors,
node 2 has two neighbors and so on.

Th e graph class constructor is:
public MyGraph(string graphFile, string fileFormat)
{
 if (fileFormat.ToUpper() == "DIMACS")
 LoadDimacsFormatGraph(graphFile);
 else
 throw new Exception("Format " + fileFormat + " not supported");
}

The constructor accepts a text file that holds graph data
and a string that indicates the specific format of the data file.
Here, I immediately transfer control to a helper method

LoadDimacsFormatGraph. This design
allows the graph class to be easily extended
to accommodate multiple data fi le formats.
If you’re a fan of enumeration types, the
fi le format parameter can be implemented
using an enumeration.

The heart of the MyGraph class is the
LoadDimacsFormatGraph method, which
reads a source data fi le and stores the graph
representation. There are many more or
less standard graph file formats. The one
I use here is called the DIMACS format.
Th e acronym DIMACS stands for Discrete
Mathematics and Theoretical Computer
Science. DIMACS is a collaborative associa-
tion headed by Rutgers University.

Th e example program shown in Figure
2 uses a file named DimacsGraph.clq, which is listed in Figure
6. Lines beginning with c are comment lines. There’s a single
line beginning with p that has the string “edge,” followed by the
number of nodes, followed by the number of edges. Lines begin-
ning with e defi ne edges. Notice that the DIMACS fi le format is
blank-space delimited and 1-based, and that each edge is stored
only once.

Th e load method begins:
private void LoadDimacsFormatGraph(string graphFile)
{
 FileStream ifs = new FileStream(graphFile, FileMode.Open);
 StreamReader sr = new StreamReader(ifs);
 string line = "";
 string[] tokens = null;
...

When reading text fi les, I prefer using the FileStream and Stream-
Reader classes, but you may want to use one of the many .NET
alternatives. Next:

line = sr.ReadLine();
line = line.Trim();
while (line != null && line.StartsWith("p") == false) {
 line = sr.ReadLine();
 line = line.Trim();
}
...

I perform a priming read and then advance to the p line in the
data fi le. Because text fi les can easily acquire spurious whitespace
characters over time, I use the Trim method to help avoid
problems. Continuing:

tokens = line.Split(' ');
int numNodes = int.Parse(tokens[2]);
int numEdges = int.Parse(tokens[3]);
sr.Close(); ifs.Close();
this.data = new BitMatrix(numNodes);
...

I use the String.Split method to parse the p line. At this point,
tokens[0] holds the string literal “p”, tokens[1] holds “edge”, tokens[2]
holds “9” and tokens[3] holds “13”. I use the int.Parse method (I
could’ve used Convert.ToInt32) to convert the number of nodes
and edges into int values that I store in local variables numNodes
and numEdges. I could’ve stored these values into class fields
this.numberNodes and this.numberEdges at this time. Now that
I’ve determined the number of nodes and the number of edges, I
close the data fi le and instantiate the BitMatrix data fi eld.

Figure 3 A Bit Matrix Graph
Representation

0

0

1

2

3

4

5

6

7

8

0

1

0

1

1

0

0

0

0

1

0

0

1

1

0

0

0

0

0

0

0

0

1

1

0

0

0

1

1

0

0

1

0

0

0

0

1

1

1

1

0

1

0

1

0

0

0

1

0

1

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

1

0

1

0

0

0

0

0

1

0

1

0

1 2 3 4 5 6 7 8

private class BitMatrix
{
 private BitArray[] data;
 public readonly int Dim;

 public BitMatrix(int n)
 {
 this.data = new BitArray[n];
 for (int i = 0; i < data.Length; ++i) {
 this.data[i] = new BitArray(n);
 }
 this.Dim = n;
 }
 public bool GetValue(int row, int col)
 {
 return data[row][col];
 }
 public void SetValue(int row, int col, bool value)
 {
 data[row][col] = value;
 }
 public override string ToString()
 {
 string s = "";
 for (int i = 0; i < data.Length; ++i) {
 for (int j = 0; j < data[i].Length; ++j) {
 if (data[i][j] == true)
 s += "1 ";
 else
 s += "0 ";
 }
 s += Environment.NewLine;
 }
 return s;
 }
}

Figure 4 A BitMatrix Class

REALLY?
FREE?

TX Text Control Express

is your FREE - free as in beer -

RichTextBox replacement

for Visual Studio®

Download at: www.textcontrol.com/express

WORD PROCESSING
COMPONENTS
WINDOWS FORMS

Word Processing Components
for Windows Forms, WPF & ASP.NET

US +1 877 - 462 - 4772 (toll-free)
EU +49 421 - 4270671 - 0WWW.TEXTCONTROL.COM

Visual Studio is a trademark of Microsoft Corporation in the United States and/or other countries.

OCT 31 - NOV 3, 2011, LAS VEGAS

MEET US AT

Untitled-4 1 9/1/11 5:01 PM

http://www.textcontrol.com/express
www.textcontrol.com

msdn magazine86 Test Run

Now I’m ready to read edge data from the data fi le:
ifs = new FileStream(graphFile, FileMode.Open);
sr = new StreamReader(ifs);
while ((line = sr.ReadLine()) != null) {
 line = line.Trim();
 if (line.StartsWith("e") == true) {
 tokens = line.Split(' ');
 int nodeA = int.Parse(tokens[1]) - 1;
 int nodeB = int.Parse(tokens[2]) - 1;
 data.SetValue(nodeA, nodeB, true);
 data.SetValue(nodeB, nodeA, true);
 }
}
sr.Close(); ifs.Close();
...

I reopen the fi le and start reading from the beginning. Technically—
because of the presence of the p line before any e lines—there’s no need
to use two reads of a DIMACS format fi le. However, for other fi le for-
mats that don’t explicitly store the number of edges, you may want to
perform a double scan like the one used here. When the code encoun-
ters an e line such as “e 3 6”, I parse the e line, convert the two nodes to
type int and subtract 1 to change the representation from 1-based to
0-based. I use the SetValue method to create symmetric entries in the
BitMatrix. Note that because the BitMatrix is symmetric, I could've
stored just the upper or lower triangular portion to reduce memory.

Next, I take care of the numberNeighbors array:
this.numberNeighbors = new int[numNodes];
for (int row = 0; row < numNodes; ++row) {
 int count = 0;
 for (int col = 0; col < numNodes; ++col) {
 if (data.GetValue(row, col) == true) ++count;
 }
 numberNeighbors[row] = count;
}
...

For each node, I walk across its corresponding row and count
the number of true/1 values that gives the number of edges and
therefore the number of neighbors the node has. Th e LoadDimacs-
FormatGraph method fi nishes with:

...
 this.numberNodes = numNodes;
 this.numberEdges = numEdges;
 return;
}

Aft er transferring the number of nodes and the number of edges
from local variables to class fi eld variables, I use an explicit return
for readability to exit the method.

The rest of the MyGraph class is easy. I expose the private
numberNodes and numberEdges class fi elds as read-only values
using the C# class Property mechanism:

public int NumberNodes {
 get { return this.numberNodes; }
}

public int NumberEdges {
 get { return this.numberEdges; }
}

I prefer using the explicit Property syntax, but you can use auto-
implemented property syntax if you’re using .NET 3.0 or greater.
I expose the number of neighbors a node has through a method:

public int NumberNeighbors(int node) {
 return this.numberNeighbors[node];
}

When working with graphs, it’s difficult to know when to
perform standard error checking and when to omit checking. Here,
I don’t check to see if the node parameter is in the range 0 ..
this.numberNodes-1, leaving me open to an array index out of

public class MyGraph
{
 private BitMatrix data;
 private int numberNodes;
 private int numberEdges;
 private int[] numberNeighbors;

 public MyGraph(string graphFile, string fileFormat)
 {
 if (fileFormat.ToUpper() == "DIMACS")
 LoadDimacsFormatGraph(graphFile);
 else
 throw new Exception("Format " + fileFormat + " not supported");
 }

 private void LoadDimacsFormatGraph(string graphFile)
 {
 // Code here
 }

 public int NumberNodes
 {
 get { return this.numberNodes; }
 }

 public int NumberEdges
 {
 get { return this.numberEdges; }
 }

 public int NumberNeighbors(int node)
 {
 return this.numberNeighbors[node];
 }

 public bool AreAdjacent(int nodeA, int nodeB)
 {

 if (this.data.GetValue(nodeA, nodeB) == true)
 return true;
 else
 return false;
 }

 public override string ToString()
 {
 // Code here
 }

 public static void ValidateGraphFile(string graphFile, string fileFormat)
 {
 if (fileFormat.ToUpper() == "DIMACS")
 ValidateDimacsGraphFile(graphFile);
 else
 throw new Exception("Format " + fileFormat + " not supported");
 }

 public static void ValidateDimacsGraphFile(string graphFile)
 {
 // Code here
 }

 public void ValidateGraph()
 {
 // Code here
 }

 // ---
 private class BitMatrix
 {
 // Code here
 }
 // ---

} // Class MyGraph

Figure 5 A Graph Class Defi nition

ement1); areaSeries Add(seriesElement2); areaSeries Add(seriesElement3); // Add series to the plot area plotArea Series Add(areaSeries); //page Elements Add(new LayoutGrid()); // Add the page elements to the page AddEAement1); areaSerieies.AAdd(se(s rriesElement2t2); a) reaSeries.AdA d(seriesElement3); // Add series to the plot area plotArea.Series.Add(areaSeries); //page.Elemenem ts.Add(ddd(new ne LaLayyoutGrid()); // A/ dd the page elements to the page AddEA

s, 240, 0); AddEAN1AN 3SupSup5(pa5(p ge.Elemeentnts, 480, 0); AdddUPCVersionA(page.Elemene ts, 0, 135); AddUPCVersionASup2(page.Elements, 240, 135); AdddUPCddUPCd CVerssionAionAo Sup5((page.Elemennts, t 480, 135); AddEAN8(page.Elements, 0,

.Elements, 480, 2270);; AddddUUPCVersionE(papage.Elementts, 0, 405); AddUPCVersionESuE p2(page.Elements, 240, 405); AddUPCVersionESup5(pageage.Ele.Elelemmments, 4s, 48800, 4405); // AAdd the page toe t the document document.Pages.Add(pa

CaptionAndRectanga lee(elemeements, “EAN/JA/JAN 13 Bar Codde”, x, y, 204, 99); BarCode barCode = new Ean13(“123456789012”, x, y + 21); barCode.ode.X +=X +X +=X + ((2004 -4 - baarCoode.GettSymbolWidth()h) / 2; elements.Add(barCode); } private vovo

dRectangle(elemente s,, “EANEAN/JAN 13 Bar Car Code, 2 digit supplement”, x, y, 204, 99); BarCode barCode = new Ean13Sup2(“12 234556789678 0121212”, 2”, x, yy + 2+ 211); 1); barCoode.XX += (204 - barCode.GetSymbolWidth()) / 2; elements.Add((barC

ts, float x, float yy) { A{ AddCaCaptionAndRectanangle(elements, “EAN/JAN 13 Bar Code, 5 5 digit supplement”, x, y, 204, 99); BaB rrCodee barrCode == new Ean13SupS 5(“12345678901212345”, x, y + 21); ba

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onA(Group elements, float x, float y) {Add{ CaptionAndRectangle(elements, “, UPC VersVersVersVersion ionoi A Baar Cr Coode”, x, y,y, 204, 99);; BarCoode barCode = new UpcVersionA(“12345678901”, xx, y +

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onASup2(Group elements, float x, floato y) { AddCaptionAndRectangle(elementm ““UPCC Version E Bar Code, 2 digit supplement”, x, y, 204, 94 9); BarCoode od

21) ; barCode.X ++= (2= (04 - barba Code.GeetSymbymbolWidth()) / 2; elements.Add(barCode); e } private void AddUPCVersionASSSSuup5(up5(u Group elements,n float x, flfloaflo t VV

digit supplement”,t” xx, y, 22004, 99); BarCodeCode bbarCode = new UUpcVep rsionASuAS p5(“12343 567890112345”, x, y + 21); bbarCarCode.Xde.X += (204 - barCode.GetSymboom lWidth()) / 22; eelele

t x, float y) { AddCapdCaptionnAndRAnd ectangle(eleelemments, “EAN/JANN 88 Bar Code”,de”, xx, y, 204, 0 99); BarCode barCode = nnew Eew Ean8(an8(n8n8 “1 2345670”, x, y + 21); OpenFileileDiala og fileDie aloogoglo =

g.Filter = “Adobeob PDPDF fileess (*.pdf)|*.pdf|Alll FileFiles (*.*)|*.*”; if (fileDieD alog.SShowDiialog() == DialogResult.OK) { { pdfVpdfVf ieweewer.OpOpr.OpOpen (fifileDialogalog.FilleName, “”); } SaveveFileDialog saveFaveFileileDDialoog = neneww Sav

Dialog.Filter == “AdoAdobe PPDF fiDF files (*.pdff)|*.pdpdf|A|All Files (*.*)|*.*”;”; iff (saveFFileDialolog.Showh Dialog() ==DialoalogResgResRee ult..OK)OK) OK) { pdfVfVView .SSaveAsve (sav(saveFieFileDia

printer = pdfViewViewer.Per rinterr; pprinter.PriintWiW thDialog(); } elsee { MesssageBox.SShoww(“Please opeopen a n a fifile to pto p rintrinrint”)”); }OpenFin le DDialoog fileDieD alogalog = new OpenFileDDialog(); fileDiaDialog.og Tittle = e e = e “Opepen File Dl

les (*.*)|*.*|Addobe Pe PDF files es (*.p*.pdf)|*.pdddf”; if i (fifileDialog.ShowwDialalog() === DialogResult.ult OK) { { DynaDynamicPDFVDFVDFVDFViewiewewerClass test e = neew DynammiccPDFViewerClass((); PPDFPrinter ter pprinp ter er r = te= ttet st.OpenFFileFo

= File.ReadAAllByteBytes(@”C:\M:\MyDyDoc.pdff””); //u// sing System.Runntimme.Inttent ropServicces;GCHaGCHandlendledd gch=GCH= CHaananddla e.Aloc(conteents, GCHandleTTypee.Pinnedd);) IIntntPtrPtr cooncontentsIntPtr = g

tents.Lengthh, “”);“”); A AddCaCaptioonAndReReectanglan ee(pageElementts, “BBBookkmark k Pagee E Elemelemeent:”nt:”, x,, y);; pa pagaapageEeEleemeents.Add(newtesw t Bookmookmaark(“Bookmarked TextTextt”, x + 55, y , y, yy ++ 2+ 20+ , pap rentre OutlO ine)); p) a

215, 10, Fonnt.TTimemesRomanma , 1010)); } prprrriivate vooid AddCiirclercle(GGro(G up paageElemeennnts,nts floafloat x,x floafloat yt y)t y) { / { /////Add/Add/A ss a circlt to the pap ge Eleemenmentenents AddCapdCapCaCadCaptiont AndRdRectae

Add(new Cirrcle(x e(x ++ 112.5f5f, y ++ 50f, 1007.5f, 300f, RgbColoolor.RRRed, RgbbbColor.Bor.Bluee,lue 2, LineL eStyylylly e.DaDae shLaLs rge))); } pprivate void AdA d FormatteeddTexxtAreea(Groupp paageElements, flofl aat x, fl float yy)) {) // A// AAdds dds a fofoa rmatted textte a

mic</i>PDFPDF/b>&tm; GGenerator vvv666.0 6 for ..NETNET has has a forrmattted ttetext arrea pea paaage a “ + “ “ele“ele“eleeeemmmentm . ThThis prroviddes rich fororm m atting ssuppupport for texext that appap eears in the doocumment. You have “ + “+ “compcompletlete conco trolol ove ovevever 8 r paragraph

left indentattionn, rigrighht indenentation, aligliggnnment, allollowing orphaaan linnes, aand whwhite ite “ + “spa“spaacece ppce pprereservata ion; 6 foont propropeerties: e <fonont fat f ce=’=’Timemes’>s’>font facece, <//fontt>font “ + “s+ “size, ont><fonont cocoocoot lor=lor=’FF0000’00’>c

 2 line prpropertieses: le leading, ag ndd leaddinngg type.ype. TText can also be rootateeed.</d.</< p>”;p> FFororo mattmattmm edeedTeedTeTeextArx ea fformaormattedTTextAreArea = nnew FormattedTextTex Areare (formattat edHHtmll, x + 5, yy + 20, 215, 60, FonttFammily.Helveelvetictica, 9, fffalalsse);se);se);sssse) // // Sets the i

ddCaptionAAndReRectanct gle(e(pagepageElemeenntsnts, “F, “Fororrmarmattedtte TextT Areeae Page ElElemenement:”,t:”,,, x, y); y); y)y AddCAdddCddCA aptionAnAndReectangnglele(pageElements, “Formatm tedTextAx rea OverOv flflow TText:”, x x + 2279, y); pageElementments.Add(foormarmattedTTTextAxttAAtArea)r ; // CrCrer ate

tArea overflowFoowFormatrm tedTdTextAArea == foormamatteddTdt extArea.GettOveerflowwwFormatmatteddTTexextAxx rea(rerea(re x + x 28284, y +y 200); pageElements.Add(overflowFormattedTextAArea)); } pprivate vooid AddImage(Group p pagpageElementsents, float t x, flo, at yy) {) { // // A/ dd

ents, “Imagee PagePage Elementen :”, xx, y); IImmagemage imaaage =ge new Imaage(SServvever.Mr.MapPattatth(“.h(“.“ ./I./Im./ agesages/DPDDFLogL o..png”), x + 112.5f, y + 50f, 0.24f); // Image is ssizzed and centeredd inn the rectangle immage.age SetBoundunds(21s(215, 5, 65 0); 0) image.VAVAAlign

ge); } privatte void oid AAddLabela (Group pp ppageageElememments, float x, flfloat y) { /// A/ Adds as aa llabel tel t to tht e pappap gegeElemenementts AddCaptionAndRectangle(pageElemenm ts, “LabLa el & PPageNummbeeringLabel Page EElemments:”, x,x, y); y) striing g laabelTextxt = = “= ““Lab

aain page numbumberinering: %%CP%%CP%%% ofof %%%T%%TP%%% pages.”; LLabel le abbel = nnew LLLew Laabel(labbelTeelTeeelTexxt, x + 5, y5 ++ 12, 220, 80, Font.TimesRoman, 12, Texe tAlign.C.Centter); label.Annglee = 8; PageNumbeeringgLabel pagepageNumLNumLabelab = nnnewew Pw Page

, 12, TeextAlxtAligign.CentC er); paga eEleementntntss.Ad.Addd(paageNumLabel));); p paggeElemenments.Addddd(d(label)); } } privprpp ate voidoid A AddLine(Group pageElements, float x, floao t y) { /// Addds aa line to thethe pageElements AdddCCaptionAndRAndRRectanngleglen (pagpag(a eeElemments

+ 5,+ y ++ 20, x + 220, y + 8080, , 3, RRgbbColor.Gr.G eeen)); pageElemmementss.n Add(d(d new w Linee(x ++ 22 2200, yy ++ 20, x + 5,+ 5, y + 80, 3, RgbColor.Green)); } private void AdddLLink((Grouup pageEElemments, float x, floaat yy) { // Adds ads a link toto thethhe pagp eEleEleemen

ynynamicPDF.com.m ”; AAddCaddCaptioptionAAnddnAndRectanglan e((pageElementts, “LLink PaPagege Elemment:nt:”, xx, y);y); LLabel llabela = new Label(text, x + 5, y + 20, 215, 80, font, 12,2 RggbCoolor.Blue)e); laabel.Underline = true;rue Link link =k = newnew LLinnk(x k(x ++ 5,5, y y ++ 20,

on(o “httpp://www.dynnamicppddf.coomm””))); pageEeElemments..Add(Ad labbeel);l); ppagepagpageElementsnts.AAdd(link); k) } prp ivatee void AddPath(Group pageElements, float x, float y) { // AAdds a path to the pageElemeents ceeTe.DynamicamicicPPDPDF.PagegeElemlemlements.PatP h

20,0 RgbgbbColor.Blue, RgbCRgbCoolor.RRedd, 22, LineStyeS lee.Solidd, true); pathhh.Su.SubbPaths.A.Adddd(new Lw LineSineSubPaubPath(x + 215, y + 40)); path.SubPaths.Add(new CurveToSToSubPPathh(x + 1+ 08, y + 80, x + 160,, y ++ 800)); path.SubSubPSubPathssssh .AAAd.Add(new(ne CurveS

ectecctanglangle(pageElemeents, “P“Path Ph Paage ge Element:””, x, yy);) pageEEleEleEE meentss.AdAdd(pad(path));th } pprivaate ve vooid AAddRectangle(Group pageElements, float x, float y) ororderede ddList = ordeo redLedList.GetOverFlowLo List((xx + x 5, y + 2+ 22000); AddCddCCCA aptiapa oonAndRect

2222 55, 1110); page.Eleements.Ats.Add(odd(ordrdrderr edList); x == 0; 0; y +=y ++=y + 118881 ; // CCCreaate e aan unorrderede lisist UnUnordderedList unorderedList = new Unoro deredList(x + 5, y +y + 220, 4400, 900, Font.Ht.Helvetica, 10); uuunoorderredListst.Itte.I ms.Amms Am dd(“ddd(“FruiFruFFFrFruF tss”); unorder

eree ies(); pieSeries.DaataLababel = da; plotArea.Seeriesess.AAd.Add(pieSSSeriesss);es ppieSeries.Elemelementss.AddAdd(27,7, “Website A”); pieSeries.Elements.Add.Ad (19, “Website e B”)); pieSerrieses.Elementmen s.Add(21, “WWebssite CC”); pieSpieSSerieeririees.Elemeneemmee ts[0s[0].Color = a

sess.Elemments[2].Color = auttogradient3;”unoro derreder ddSubLList2 == unoorderedList.Items[ms 1].SubLubLissts.AAddUnorderedSubList(); unorderedSubLu ist2.Items.Add(“dd(“Pottato”); unu ordeeredSubList2.Itemmms.A.Add(d(“Beaansansea ”);;; UUUnorU dereree dSubSu List subU

dSuedd bList(); subUnoUnorderedSubList.Items.As.AAdd(““d Lime”); subUUnorddereedSubList.Itemtems.Ads.Add(“Od(“Orangrange”);e” Unorderd edSubList sus bUnorderd edSue bList2 = unnorddereedSubLisLi t.Items[ms 1].SubLists.s.AddUAAddUd norrdereddeddSubLSubLbList(st); ssubUnbUnu oorderedSe ub

na”aa); UUnorderederedSubList subUnordo erededSubLSu ist3st3 = uunnorderredSubLSubList2.Itet ms[00].Su.SubLisLists.As.AddUnd orderedSSubList(); subUnoU rderedSudSubList3.Items.AAdd((“Swweet Potao to”)); UUnorderedSredSubLubLiL st sst ubUUnordrdeeredSdSredSdSubList4 st4st = ununorderedSu

ubLSuSu ist444.Ite.Items.Am dd(“String Bean”n”); s; subUnbUnordeereedSubbList4..Itemms.Addd(“Lima BeanBean”); subUsubUnnorderedSubList4.Items.Add(“Kidney Bean”e); x += 279; pagpage.EElemenntts.Addd(unorderedListst); u); ; nordno eredreddLisst = = uunordn ereddreddLisst..GetG Overv Flo

e.e.Elemeentsen , “Unordered List Page Ege Elemment On verflverflow:””, x, y,, 2255, 110); page.Elemementsents.AddAdd(un(unorderedList); } private void AddTextFt ield(Group pageEeElemlemennts, flfloaat x, flooatt y) { TextFFielddield txt = new Tew extFextFieldeld(“txtfnafnaaame”,meme”,me”, x +x + 20, 20, y + y +

tteaa dTeextArea(formattedHtml, x ++ 5, 5 y ++ 20, 202 215,15 60, FontFFamilyy.Heelvetica, 9, ffalse)se ; /// SetSets ths the ine dent property formattedTextArea.Style.Paragraph.IndeIn nnt = 1188; AddCaptCap ionAndRendRectanaa gle(eg pagepageep ElemElemE ents, “FFormamormattedttedtedtedTeTextArearea P

atteatat dTeextArea Overflow TeeText:”, x + 27 9, y9, y); p; pageEgeElements.AAdd(formformattedTextAArea); a) // CCreatea ee an overflow formatted text area for the overflow text FoFormmattedTtedTextAxt reaMMaxaxLeLengthngth = 9 = 9= 9; txtxtxtxxt1.B1.Bordeded rCorColor =r = RgbCololoColoor.Br.BBlaack; txttxt1.Ba1 Ba

MaMMM ximuum Lengthgth”; p; ageEEgeEElemeements.nts.Add(Add(txttxt1); TTextFex ieldd txt2 = neew TeextField(“txxtf2namename”, xx + 3+ 30, y + 30, 150, 40); txt2.DefaultValue = “This is a TexxtFtFieldd whiichh goees tototot the nexxt lit liline ine iif thff t e text et et xceexceeds wds wididth”; ”; ttxt2.xt2.xt2xt2 MMMultMu iLinLine = e =

RgRR bCooolor.AliceBlueBluee; txt2.T2. oolTip == “M“Multiline”; ppageEElemennts.AAdd(ttxt2); AddCapCaptiont AndRAndRecctangle(pageElements, “TextField Form Page Element:”, x, x, y, 50450444, 8585); }; } prri vate voioidd AddComCCC boFibo eld(Group pap pageElgeElemeemenene ttts, ts float x, fl

, , y + 4000, 150,, 20 20)20); c; cb.Boro derCd olor = RgbColorr.BBlack; cb.BaackggrounndColor = RgbCRgbColoro .AliAliceBceBlue; cb.Font = Font.Helvetica; cb.FontSize = 12; cb.Itemsem .AAdd(“(“It((em 1m 1”); ; ccb.IItemste .Add(“It““Item 2em 2”); ”); cb.Icb.Itemsems.Add(“Item 3em 3”)); cb.IItems

aaabbble”b].SSeSeSeleleclected = true; cb.Edb itable = true; cb.ToToololTip = “Editable Coe Combo Box””; pa; pageElgeE emements.Add(cb); ComboBox cb1 = new ComboBox(“cmb1namame”, x + 303,030 y +y + 4440 40, 150, 200); c); cb1.Bb1.Bb1 ordeorderColrColoor = Rgbg Coloor.Blr.Br Br B ack;ack cb1.Bac

.F..FFFontontSize = 12; cb1.Items.Add(“Item 1”); cb1.Items.AAdd(“Item 2em 2”); ccb1.Items.Add((“Itemem 3”); cb1.Items.Add(“Item 4”); cb1.Items.Add(“Non-Editable”);”); cb111.Items[“NNon-Eon-Editable”].Selecteccc ed =ed = tru true; ce; cb1 Eb1.EEditable e = fa= f lse;se cb1.ToolT

eerrter.Coonvert(“http://www.google.com”, “Output.pdf”));Convverteer.Coonvert(GetDocD PathPath(“Do(“D cumentA.rtf”), “Output.pdf”);System.Diagnostics.Process..s SStartt(“Ot(“ uutpuutpuutputt.pdf”);”); AsyncCoConvernverrtter t aConaConvertverter =e newe AsyncCncConnverter(); aC

vveerted); aConverter.ConversionError += new ConversiionErroorEvventHHandler(aConveerteer_ConversionError); aConverter.Convert(@”C:\temp\DocumentA.rtA f””””, f , f @”C:C \temte p\OuO tputtputA.pdA.pdf”);f”); aCo aCoa nverter.Convert(ert @”C:\teme p\Dop\D cumentB

\Doc\D ummentC.rtf”, @”C :\temp\OutputC.pdf”); aConverrter.Coonverrt(“hhttp://www.yahoo.coo.com”, @”C:\Temp\yahoo.pdf”); ConvC ersionOptions ops optiontions = nneewnew new ew Conversise onOpOptiontionoo s(72s(720, 70, 720, 72, 7 true); ceTe.DynaDynamicPm DF.CDF.Conveon rsiorsion Con.Co

outpou ut.pdf”, optionso); ceTe.DynamicPDF.Conversion.CConveerter.ConvCon ert(“C:\\temp\\\Documocument2.docx”, “C:\\temp\\op\ utput.pdf”, optiptoptioptiop ons)ons); s; stringing sampleHple tml m = “<“<htmlhtml><bo><bob dydy><p>This is s a very simplee HTMLHTMLHTHT strstrs ing iningin inclincincincludinud ng a g a g TT

(g[] g)

{{

pp

gg g (p p)

[]

[]

pp y y yyp

HighhSecuSec rity securiturity y new w HighhSecuurityy(“OOwnerPassword”, “U“ serPassword”)

yy ppy

ees y yy

p

(p p)

pag p (p pp)

p ()

}

Untitled-1 1 9/8/11 11:56 AM

www.DynamicPDF.com
www.DynamicPDF.com/eval

msdn magazine88 Test Run

range exception. I usually add error-checks during development,
then aft er development I remove those checks that I feel can safely
be omitted in order to improve performance. Because of my
data structure design with a BitMatrix class, writing a method to
determine if two nodes are adjacent is easy:

public bool AreAdjacent(int nodeA, int nodeB)
{
 if (this.data.GetValue(nodeA, nodeB) == true)
 return true;
 else
 return false;
}

Recall that the BitMatrix is symmetric, so I can check either
GetValue(nodeA, nodeB) or GetValue(nodeB, nodeA). As I
mentioned earlier, checking node adjacency dominates the runtime
of many graph algorithms. When using a bit matrix, checking node
adjacency is quick because the check is just an array lookup plus
a little bit-manipulation overhead handled by the BitArray class.

I code a simple ToString method for the MyGraph class:
public override string ToString()
{
 string s = "";
 for (int i = 0; i < this.data.Dim; ++i) {
 s += i + ": ";
 for (int j = 0; j < this.data.Dim; ++j) {
 if (this.data.GetValue(i, j) == true)
 s += j + " ";
 }
 s += Environment.NewLine;
 }
 return s;
}

In the maximum clique scenario, performance isn’t a big issue,
so for the ToString method, I use simple string concatenation
rather than the more effi cient StringBuilder class. Here, I use i to
index into the BitMatrix rows and j to index into the columns. I
terminate the string with an Environment.NewLine rather than
“\n” to make the MyGraph class more portable.

Validating the Graph
If you refer back to Figure 2, you’ll notice that I perform two
important types of graph validation: validating the graph data fi le
before the graph object is instantiated and validating the internal
graph representation aft er instantiation.

A complete discussion of graph validation and testing
would require an entire article, so I’ll just present an overview.
You can obtain and view the complete validation code from
code.msdn.microsoft.com/mag201110TestRun.

I perform data fi le validation using a static method Validate-
GraphFile as shown in Figure 5. As with the MyGraph constructor,
ValidateGraphFile immediately calls a helper method Validate-
DimacsGraphFile to do the actual work. Th e fi le validation code
iterates through the fi le to see if every line is in valid DIMACS form:

if (line.StartsWith("c") == false &&
 line.StartsWith("p") == false &&
 line.StartsWith("e") == false)
throw new Exception("Unknown line type: " + line);

Th e method also checks the format of non-comment lines by
attempting to parse. For example, for the single p line:

try {
 if (line.StartsWith("p")) {
 tokens = line.Split(' ');
 int numNodes = int.Parse(tokens[2]);
 int numEdges = int.Parse(tokens[3]);
 }
catch {
 throw new Exception("Error parsing line = " + line);
}

Th e method uses similar logic to test e lines. Th is pattern holds
in general when validating graph data fi les: check for valid lines
and attempt to parse data lines.

Once instantiated, I validate the internal graph representation
using a method ValidateGraph. It turns out that a complete check
of the graph data structure is surprisingly complex, so in practice
it’s common to check for just those errors that are most likely to
occur. A common error in graph data fi les is a missing data line
that creates an asymmetric BitMatrix data store. It can be checked
with code like this:

for (int i = 0; i < this.data.Dim; ++i) {
 for (int j = 0; j < this.data.Dim; ++j) {
 if (this.data.GetValue(i, j) != this.data.GetValue(j, i))
 throw new Exception("Not symmetric at " + i + " and " + j);
 }
}

Other errors to check for include the presence of a true/1 on the
bit matrix main diagonal, a bit matrix consisting of either all false/0
or true/1, and the sum of the values in the numberNeighbors array
fi eld not equaling the total number of true/1 values in the bit matrix.

Stay Tuned for More Details
Th is article presented a graph data structure type that can be used
for solving many graph-related problems including the maximum
clique problem. Th e essential feature of the graph data structure
is the use of a program-defi ned bit matrix that’s effi cient in terms
of memory usage and that allows quick node-adjacency lookups.
Th e bit matrix fi eld of the graph data structure is implemented
using the .NET BitArray class, which takes care of all the low-
level bit manipulation operations. In the next Test Run column, I’ll
describe the maximum clique problem in more detail and show
you a greedy algorithm solution that uses the graph structure
described here.

DR. JAMES MCCAFFREY works for Volt Information Sciences Inc., where he man-
ages technical training for soft ware engineers working at the Microsoft Redmond,
Wash., campus. He’s worked on several Microsoft products, including Internet
Explorer and MSN Search. Dr. McCaff rey is the author of “.NET Test Automation
Recipes” (Apress, 2006), and can be reached at jammc@microsoft .com.

THANKS to the following technical experts for reviewing this article:
Paul Koch, Dan Liebling, Ann Loomis Th ompson and Shane Williams

c DimacsGraph.clq
c number nodes, edges: 9, 13
p edge 9 13
e 1 2
e 1 4
e 1 5
e 2 4
e 2 5
e 3 5
e 3 6
e 4 5
e 5 6
e 5 8
e 6 9
e 7 8
e 8 9

Figure 6 DIMACS Format Data File

http://code.msdn.microsoft.com/mag201110TestRun
mailto:jammc@microsoft.com

Untitled-1 1 1/11/10 10:55 AM

www.alexcorp.com

msdn magazine90

the user can’t interact with the underlying page while the pop-up
is active. In this sense, it’s a little easier to implement a modeless
pop-up, but typically the process of juggling simultaneous input from
a modeless dialog and an underlying page can be tricky.

Beginning with the MiddlemarchReader program that I pre-
sented in my July column (msdn.microsoft.com/magazine/hh288085), my
e-book readers have included an option to display a list of chapters
in a ListBox. You can then select one of the chapter titles to jump
to the beginning of that chapter. Th is qualifi es as a dialog box, and
I chose to implement it as a pop-up even though the logic was
somewhat messy: The ApplicationBar button that invoked the
pop-up also served to dismiss the pop-up, and that required a
somewhat diff erent image for the button.

In retrospect, I should have implemented this dialog box as a sepa-
rate page, and that’s how it’s done in the HorrorReader program I’ll
be describing in this article. To celebrate October and Halloween,
HorrorReader lets you read four horror classics: “Frankenstein,”
“Dracula,” “Dr. Jekyll and Mr. Hyde” and “Th e Turn of the Screw,”
as shown in Figure 1. (Th e e-book reader next month will fi nally
expand the potential library to some 35,000 books, I promise!)

In changing the chapters ListBox from a pop-up to a navigable
page, I searched deep into my heart to try to understand why I’ve
tended to implement Windows Phone 7 dialog boxes as pop-ups.
I’ve discovered the surprising motivation: Fear.

Fear of Navigation
If you’ve done any Windows Phone 7 programming at all, you
probably know about tombstoning: In certain circumstances,
a running application can be terminated and removed from
memory. This happens when the user presses the Start button
on the phone to view the start screen; the phone hasn’t received
any input for a while and turns off its display to go into a locked
condition, or the user turns off the screen manually.

Pages and Pop-ups in Windows Phone 7

Th e interaction between user and computer application normally
proceeds without interruption. We type text into the word processor;
enter numbers and formulae into the spreadsheet; and fl ip the pages
in an e-book reader. But occasionally, the application requires
additional information from the user, or the user initiates an opera-
tion specifi cally to provide the application with other information.

In a traditional Windows application, we all know what happens
next: A dialog box appears. Fill it out and click OK, or Cancel if
you’ve changed your mind.

What happens in a Windows Phone 7 application isn’t quite
clear, however. Neither in Silverlight for the Web nor Silverlight for
Windows Phone does there exist anything called a “dialog box.”
I still like the term to describe any mechanism that allows the
application to interrogate the user for information, but obviously
Silverlight dialog boxes are a little diff erent from the traditional kind.

Over the past several installments of this column, I’ve been pro-
gressively building an e-book reader for Windows Phone 7 based on
plain-text book fi les downloaded from Project Gutenberg. It has come
time to enhance that program with a whole bunch of dialog boxes.

Two Approaches
In implementing dialog boxes in a Silverlight application for
Windows Phone 7, you have two options.

Perhaps the most obvious approach is to defi ne the dialog box as
a separate page. Derive a new class from PhoneApplicationPage and
populate it with a bunch of buttons and text boxes and whatnot. A
page then invokes this dialog box by navigating to it using the page’s
NavigationService object. The Back button (or something else)
terminates the dialog box and goes back to the page that invoked it.

The second option is what I call the “pop-up” approach. This
approach could make use of the Popup class, but it doesn’t need
to. (I’ll discuss the difference shortly.) This kind of dialog box
generally derives from UserControl and appears visually on top
of the page that invokes it, and then disappears when the user is
fi nished interacting with it. No navigation is involved.

Dialog boxes implemented as navigable pages are inherently modal.
(A modal dialog box inhibits interaction with the window or page
that invoked it until the dialog box is dismissed.) With the pop-up
approach, a dialog box can be either modal or modeless. Implement-
ing a modal pop-up requires the programmer to make sure that

UI FRONTIERS CHARLES PETZOLD

Code download available at code.msdn.microsoft.com/mag201110UIFrontiers.

Neither in Silverlight for the
Web nor Silverlight for Windows
Phone does there exist anything

called a “dialog box.”

http://code.msdn.microsoft.com/mag201110UIFrontiers
http://msdn.microsoft.com/magazine/hh288085

91October 2011msdnmagazine.com

Th e application is restarted when the user unlocks
the screen or presses the Back button to navigate back
to the program. The Windows Phone 7 OS will dis-
play the last active page in the application, but the
restoration of any other information is entirely the
programmer’s responsibility. Generally, a page uses
the State dictionary of PhoneApplicationPage to save
transient information associated with the page, while
the App object uses the State dictionary of Phone-
ApplicationService to store transient application data,
and isolated storage for permanent data.

In coding for tombstoning, programmers override
the OnNavigatedFrom method in the page to save page
information and OnNavigatedTo to restore this informa-
tion. Th at’s fi ne when the program is being tombstoned
or being revived aft er being tombstoned. But if the page
is simply in the process of navigating to another page,
or returning from that navigation, then saving and
restoring page information is unnecessary. Depending
on the amount of information involved, this extra
activity could slow up page navigation signifi cantly.

One way to avoid this extra activity is simply to
restrict the application to one page and implement
dialog boxes with pop-ups! That’s what I did in the
previous versions of the e-book reader. I avoided page navigation
because I feared slowing it down with tombstoning code.

But that’s silly. It’s really only a problem if tombstoning is imple-
mented in what I now think of as “the dumb approach”! A page
shouldn’t save a lot of state information unless the application is
really being tombstoned, and it shouldn’t attempt to restore that
information unless it’s being revived from a tombstoned state.
Windows Phone 7.1 will provide the navigation overrides with
additional information to more intelligently implement these
methods. Meanwhile, you can relegate all heavy lifting to the
App class, which is primarily responsible for handling the events
implemented by PhoneApplicationService. These events truly
indicate if an application is being tombstoned or revived.

It’s usually benefi cial to tighten up the OnNavigatedTo override
as well. Th is logic can be rather simple: If a particular fi eld is null, it
needs to be regenerated; if it isn’t null, then the object is the same as
it was before navigation because the application wasn’t tombstoned.

The Structure of HorrorReader
Th e App fi le in HorrorReader has two public properties that refer-
ence objects stored in isolated storage. Th e fi rst, AppSettings, stores
application settings that apply to all the books. Th ese include the
font family, font size and the style of page transition. Th e second,
the CurrentBook property of App, is an object of type BookInfo,
which has all the individual book-related properties, including
the fi lename of the actual book, the current chapter and page, the
collection of ChapterInfo objects storing pagination data, and
collections of bookmarks and annotations, which are new with this
version. Each of the four books in the library has its own BookInfo
object stored in isolated storage, but this BookInfo object isn’t
created until you fi rst read the book.

HorrorReader has six classes that derive from PhoneApplicationPage.
Th ese classes are all part of the HorrorReader project and are easily
identifi ed with the word “Page” in their names. Aside from App, all other
classes are in the Petzold.Phone.EBookReader dynamic link library.

As you’ve seen in Figure 1, MainPage has four buttons that let you
select one of the four available books. (Th is page will be replaced
in next month’s version of the program.) When the user clicks one
of these buttons, MainPage navigates to BookViewerPage, which
is primarily responsible for hosting the BookViewer control and
implementing several pop-ups.

BookViewerPage has four ApplicationBar buttons. Th e fi rst three
cause navigation to other pages: ChaptersPage, BookmarksPage and
AnnotationsPage. A Bookmark is simply a reference to a particular
page in the book with a label entered by the user. An Annotation
is a text selection accompanied by an optional note. Each of
these three pages contains a ListBox, and each of them causes the
BookViewerPage to jump to a new page in the book.

Th e ApplicationBar menu in BookViewerPage has three items:
“smaller text,” “larger text” and “settings.” Th e fi rst two cause changes
to the font size in increments of 10 percent, and “settings” navigates
to SettingsPage, which implements a Pivot control for selecting fonts
and the desired page transition, as shown in Figure 2. Th e text at
the bottom of the page is a preview of the selected font.

Figure 2 The Settings Pivot
for Font Selection

Figure 1 The MainPage Display
of HorrorReader

Dialog boxes implemented
as navigable pages are

inherently modal.

www.msdnmagazine.com

msdn magazine92 UI Frontiers

In working on this page, I ran into an apparent
confl ict with the Slider and the GestureListener
class from the Windows Phone Toolkit. I had to
implement my own Slider, and in the process
made it jump only in 10 percent increments.

I’m not entirely happy with the use of
Phone ApplicationPage derivatives as dialog
boxes. I prefer a more structured way to pass
information to a dialog box and get informa-
tion back. Th is transfer of data oft en becomes
somewhat clumsy within a navigational struc-
ture. For example, I would’ve preferred for
the BookViewerPage to pass a reference of
the current book to ChaptersPage, and for
ChaptersPage to return the chapter selected
by the user back to BookViewer Page. In other
words, I want ChaptersPage to work more
like a function without side effects. Perhaps
someday I’ll design a wrapper around Phone-
ApplicationPage that lets me do this. Mean-
while, for HorrorReader, I simply have all
the pages share data by referencing the same
CurrentBook property in the App class.

Pop up or Pop-Up?
Although I went with PhoneApplicationPage derivatives for the
chapters list, bookmarks list, annotations list and settings, I still
needed several pop-ups.

There are basically two ways to implement a pop-up in
Silverlight for Windows Phone. One approach is simply to put a
control (or, more commonly, a UserControl derivative) right in

the page’s visual tree. Th is control sits on top of everything else, but
its Visibility property is initialized to Collapsed. When the pop-up
needs to pop up, simply set the Visibility property to Visible.

For a modal pop-up, you’ll also want to disable everything else
on the page. You can do this by setting the IsEnabled property
of the underlying control to false, or alternatively setting the
IsHitTestVisible property to false. Th ese two properties are similar,
but IsEnabled is restricted to controls while IsHitTestEnabled can
also be used with FrameworkElement derivatives such as panels.
The IsEnabled property also causes some controls to dim out.
Another option is to make the pop-up full screen with a translucent
background that blocks touch input. Regardless what technique
you use, you’ll probably also need to disable the ApplicationBar.
(More on this little problem shortly.)

An alternative is to use the Popup element. Th e Popup element
has a Child property that you’ll probably set to a UserControl

derivative. (I wish I could derive from Popup,
but it’s sealed.) By default, the IsOpen property
of Popup is false, and you set it to true to make
the child of the Popup visible. Popup also has
convenient HorizontalOffset and Vertical-
Off set properties that let you position the child.

One interesting aspect of Popup is that it
doesn’t require a parent element. In other words,
it doesn’t have to be part of the visual tree. You
can simply create a Popup object in code, set
the Child property and set the IsOpen prop-
erty to true and it will appear visually on top
of everything else.

Watch out, though. If Popup has no parent,
the HorizontalOff set and VerticalOff set prop-
erties are relative to the upper-left corner of the
PhoneApplicationFrame object, which concep-
tually underlies all the PhoneApplicationPage
objects. The frame includes the system tray
at the top of the screen, but the pop-up won’t
appear on top of the system tray. If the system
tray is visible, the Popup child will be clipped
at the top. Only the part overlaying the
PhoneApplicationPage will be visible. You’ll
want to set the VerticalOffset property to a

non-zero value to accommodate the system tray.
The advantage of a Popup with no parent is that it’s easy to

make it modal. You simply set the IsEnabled property of the
PhoneApplicationPage derivative to false and eff ectively disable
everything on the page in one shot.

Gosh, wouldn’t that be nice? In reality, it doesn’t happen, because
the ApplicationBar isn’t part of the visual tree of the page. You’ll need
to disable the ApplicationBar separately. It has a handy IsMenu-
Enabled property, but it doesn’t have a single property to disable
the buttons. You’ll have to handle those buttons individually.

For two of the pop-ups I needed, I wanted to move them to
various places relative to the page. Th at’s easy when the dialog is
a child of Popup. Otherwise, you’ll need a TranslateTransform
on the dialog control. To simplify tombstoning, I decided to be
consistent and use the Popup element for all my pop-ups. I also
decided to defi ne each Popup and child in the visual tree of the
page. Th e HorizontalOff set and VerticalOff set properties are thus
relative to the page rather than to the frame.

One of these pop-ups is a ListBox named “textSelectionMenu,”
defi ned in BookViewerPage.xaml. Th is is the menu that appears
when you make a text selection, as I described in my September
column (msdn.microsoft.com/magazine/hh394142). One of the options
is “note,” which invokes another pop-up defi ned by a UserControl
derivative named AnnotationDialog. Th is lets the user type in a
note, as shown in Figure 3.

You can defi ne a new bookmark by fl icking your fi nger up or
down the page. Th e BookmarkDialog lets you enter a label.

BookmarkDialog and AnnotationDialog can also appear, respec-
tively, on BookmarksPage and AnnotationsPage for editing an
existing item. You can also delete a bookmark or note on these

Figure 3 The AnnotationDialog
Pop-Up

There are basically two ways
to implement a pop-up in

Silverlight for Windows Phone.

http://msdn.microsoft.com/magazine/hh394142

93October 2011msdnmagazine.com

pages, and that invokes another pop-up called
OkCancelDialog. Th is is similar to the standard
MessageBox available in Windows Phone 7,
except it doesn’t make a noise when it appears.

The final pop-up is FindDialog, invoked
by the fourth ApplicationBar button and
shown in Figure 4. This lets you search for
text in the book with familiar options. As each
match is found, the text is highlighted and the
FindDialog jumps to the top or bottom of the
page to let the highlighted text be visible.

Tombstoning Pop-Ups
Should pop-ups accommodate tombstoning?
Here’s the scenario I posed to myself: Suppose
I’m searching for some text in a book using
the pop-up dialog shown in Figure 4. Th en I
set the phone down on the table. Several min-
utes later, I pick up the phone and the screen
is locked. I push the On button and sweep up
the wallpaper. Should the FindDialog still be
visible in the state I left it?

My reluctant answer was: of course. I had to
acknowledge that this is what the user expects
and this is what should happen. Th at meant that pop-ups needed
to be tombstoned.

So, in any page that hosts a Popup, I defi ned a fi eld of type Pop-
up named activePopup, which is set whenever a pop-up is visible.
If this fi eld is set during a call to OnNavigationFrom, it can only
mean that the program is being tombstoned, because everything
else is disabled while the pop-up is visible. In that case, the page
saves the name of the Popup in the page’s State dictionary. It also
checks if the child of the Popup implements the ITombstonable
interface, which I defined with two methods: SaveState and
RestoreState. Th is is how the AnnotationDialog, BookmarkDialog,
OkCancelDialog and FindDialog dialog pop-ups save and restore
their current states during tombstoning.

Back Button Overrides
I wrote an entire book on Windows Phone 7 programming and I
didn’t include even one example of overriding the OnBackKeyPress
method defi ned by PhoneApplicationPage. Silly me.

Th e Back key referred to in this method is the
left most of the three hardware buttons on the
phone. By default, the Back button navigates
from a page back to the page that invoked it.
If an application is on its main page, then the
Back button terminates the program.

As I was implementing various dialog boxes
in the form of pop-ups, it became obvious to me
that I needed to override the behavior of the Back
button rather frequently. Th e general rule is this:
Whenever it’s conceivable that the user will push
the Back button without desiring to navigate away
from the page or terminate the application, you
should override OnBackKeyPress.

Any page that can host pop-ups—and in
my case that was BookViewerPage, Anno-
tationsPage and BookmarksPage—should
override the Back key to dismiss the pop-up,
much like clicking the window Close button
in a traditional dialog box. Th e argument to
the OnBackKeyPress method is an instance of
CancelEventArgs; set the Cancel property to
true to inhibit the Back key from performing
its normal navigational function.

If a pop-up is active and a TextBox on the pop-up has the input
focus, then an on-screen keyboard will be displayed. Pressing the
Back key at this time automatically dismisses the keyboard. Pressing
Back again should dismiss the pop-up. Press Back again and you’ll
navigate back to the previous page. In all cases, a dramatic visual
change gives good feedback to the user that pressing the Back key
actually did something.

Watch out when overriding OnBackKeyPress. It should never be
possible for the user to get stuck in a loop where successive presses of
the Back button don’t terminate the application! You’ll never get the
program into the Windows Phone 7 marketplace if this is the case.

Ready for the Front End
In programming, there’s oft en a big diff erence between supporting
one instance of some entity and supporting more than one
instance. Besides the various pages and pop-ups in HorrorReader,
the program has made a big leap over my previous e-book readers
in letting you read four books rather than just one. Each book has
its own BookInfo object that’s stored in isolated memory, so each
book is independent of all the rest.

Now all that’s necessary is to replace MainPage with a new front
end that lets you download books from the Project Gutenberg site. No
other changes should be necessary. Th at should be simple, right?

CHARLES PETZOLD is a longtime contributing editor to MSDN Magazine.
His recent book, “Programming Windows Phone 7” (Microsoft Press, 2010), is
available as a free download at bit.ly/cpebookpdf. Th is month marks the 25th
anniversary of Petzold’s contributions to MSDN Magazine and its predecessor,
Microsoft Systems Journal.

THANKS to the following technical expert for reviewing this article:
Richard Bailey

Figure 4 The FindDialog Pop-Up

As I was implementing various
dialog boxes in the form of

pop-ups, it became obvious to
me that I needed to override

the behavior of the Back button
rather frequently.

www.msdnmagazine.com
http://bit.ly/cpebookpdf

VSLIVE.COM/ORLANDO

 Visual Studio 2010 / .NET

 Silverlight / WPF

 Web / HTML5

 Windows Phone 7

 Developing Services

 Data Management

 Cloud Computing

 Programming Practices

INTENSE TRAINING + AN AWESOME LOCATION:
Visual Studio Live! Orlando is a must-attend event for developers,
software architects and designers that provides the tools, technologies

and tips you need to solve development challenges. Educational tracks

lead by IT experts and .NET rock stars include:

DECEMBER 5-9
ORLANDO, FLORIDA
Royal Pacifi c Resort at Univeral Orlando®

5 CODE-FILLED
DAYS IN FLORIDA!

PLATINUM SPONSORS PRODUCED BYSUPPORTED BY

REGISTER
TODAY AND
SAVE $300!
Use Promo Code OCTAD

PICK YOUR
SESSIONS

Use Promo Code OCTAD

www.vslive.com/orlando

VISUAL STUDIO LIVE! ORLANDO

VISIT US ONLINE AT VSLIVE.COM/ORLANDO FOR MORE DETAILS!
Sessions and speakers are subject to change.

Visual Studio Live! Pre-Conference Workshops: Monday, December 5, 2011 (Separate entry fee required)

MWK1 Workshop: SQL Server for Developers
Andrew Brust & Leonard Lobel

MWK2 Workshop: Making Effective Use of Silverlight
and WPF Billy Hollis & Rockford Lhotka

MWK3 Workshop: Programming
with WCF in One Day Miguel Castro

Visual Studio Live! Day 1: Tuesday, December 6, 2011

Keynote Microsoft TBA

T1 HTML5 & CSS3 Mini-Bootcamp
for ASP.NET Developers

Todd Anglin

T2 Intense Intro to Silverlight
Billy Hollis

T3 AppFabric, Workfl ow and WCF
- The Next Generation Middleware

Ron Jacobs

T4 So Many Choices, So Little Time:
Understanding Your .NET 4 Data

Access Options Lenni Lobel

T5 The HTML5 Mullet: Form Input
and Validation Todd Anglin

T6 XAML: Achieving Your Moment
Of Clarity Miguel Castro

T7 What's New in WCF 4
Ido Flatow

T8 Microsoft Session TBA

Birds-of-a-Feather Lunch & Visit Exhibits

T9 Chalk Talk: What's New and Cool in Silverlight 5 Pete Brown T10 Chalk Talk: Building Applications Using CSLA .NET Rockford Lhotka

T11 Learning MVC - for the Web
Forms Developer

Adam Tuliper

T12 Fundamental Design Principles
for UI Developers

Billy Hollis

T13 Creating Scalable Stateful
Services Using WCF and WF

Marcel de Vries
T14 Microsoft Session TBA

T15 MVC, Razor, and jQuery -
The New Face of ASP.NET

Ido Flatow

T16 Bind Anything to Anything
in XAML

Rockford Lhotka

T17 AppFabric Caching: How It
Works and When You Should Use It

Jon Flanders
T18 Microsoft Session TBA

Visual Studio Live! Day 2: Wednesday, December 7, 2011

Keynote Scott Cate

W1 Creating a Data Driven
Web Site Using WebMatrix and

ASP.NET Razor Rachel Appel

W2 Javascript and CSS 3 Patterns
for HTML5
John Papa

W3 If Not IaaS, When Should I Use
Windows Azure VM Role?

Eric D. Boyd

W4 Team Foundation Server Build
Automation Inside Out

Marcel de Vries

W5 Hack Proofi ng Your ASP.NET
Web Forms and MVC Applications

Adam Tuliper

W6 A Lap Around WPF v.next
Pete Brown

W7 What is Windows Azure
Marketplace DataMarket?

Michael Stiefel

W8 Implementing Custom Shells,
Silverlight Custom Controls and

WCF RIA Michael Washington

Lunch & Visit Exhibits

W9 Chalk Talk: Advanced Patterns with MVVM in Silverlight
and Windows Phone 7 John Papa

W10 Chalk Talk: Building RESTful Services with WCF
Jon Flanders

W11 How Orchard CMS Works
Rachel Appel

W12 Light Up on Windows 7 with
Silverlight and WPF

Pete Brown

W13 Deciding Between Relational
Databases and Tables in the Cloud

Michael Stiefel

W14 BI in the Cloud with
SQL Azure Reporting

Eric D. Boyd

W15 HTML5 and Internet Explorer 9:
Developer Overview Ben Hoelting

W16 Radically Advanced Templates
for WPF and Silverlight Billy Hollis

W17 Windows Azure Platform
Overview Vishwas Lele

W18 Overview of Project ‘Crescent’
Andrew Brust

Wild Wednesday with Developer Duel

Visual Studio Live! Day 3: Thursday, December 8, 2011

TH1 Getting Started
with ASP.NET MVC

Philip Japikse

TH2 XNA Games for
Windows Phone 7

Brian Peek

TH3 Building Windows
Azure Applications

Vishwas Lele

TH4 REST with Silverlight 5, WCF
Web API, and a Little ASP.NET MVC3

Pete Brown

TH5 Test Driving ASP.NET MVC
Philip Japikse

TH6 Working with Data on Windows
Phone 7 Sergey Barskiy

TH7 Building Compute-Intensive
Apps in Windows Azure Vishwas Lele

TH8 Session TBA

TH9 Busy Developer’s Guide to
(ECMA/Java)Script

Ted Neward

TH10 Building Native Mobile Apps
with HTML5 & jQuery

Jon Flanders

TH11 Building and Running the
Windows Azure Developer Portal

Chris Mullins

TH12 Multi-Touch Madness!
Brian Peek

Lunch

TH13 Using Code First
(Code Only) Approach with the
Entity Framework Sergey Barskiy

TH14 Getting Started with
Windows Phone 7

Scott Golightly

TH15 The LINQ Programming Model
Marcel de Vries

TH16 Application Lifecycle
Management and Visual Studio:

What’s Next Brian Randell

TH17 Using MEF to Develop
Composable Applications

Ben Hoelting

TH18 Data Binding and MVVM
Patterns in HTML5

John Papa
TH19 Microsoft Session TBA

TH20 Visual Studio v.Next
Brian Randell

Visual Studio Live! Post-Conference Workshops: Friday, December 9, 2011 (Separate entry fee required)

FWK1 Workshop: Architectural Katas
Ted Neward

FWK2 Workshop: ALM in 2011: Visual Studio 2010 and the Next Big Release
Brian Randell

Silverlight /
WPF

Developing
Services

Windows
Phone 7

Cloud
Computing

Data
Management

Programming
Practices Web / HTML5 Visual Studio

2010 / .NET 4

www.vslive.com/orlando

msdn magazine96

passed through the immigration station here,
in the late 19th or early 20th centuries. It’s
been renovated now, scrubbed way too clean.
But you can still feel the ghosts as the sun
sets and the city skyline lights up across the
water, deepening the darkness on the island.

New York still welcomes immigrants who
have the right skills. “Today over 40 percent
of New Yorkers are foreign born,” said Mayor
Michael Bloomberg at the awards presenta-
tion. “So when you fi nish your schooling,
come join us. Bring your brains; we need
them, and this is a great place to use them.”

On the boat I met the members of
Team Hawk—Choman, Kosar and Enji—
representing Iraq. Th eir entry was a system
for quickly registering arrivals in a refugee
camp. Th ey’re a proud team from a proud
country. “We’re the world’s oldest civilization,”
Choman told me. “Mesopotamia, between
the Tigris and Euphrates rivers. But some-
how we lost our way, and we have to get it
back. Th at’s what we’re doing here.”

Th e Statue of Liberty is a great place for that
sort of thought. She represents to the world
what’s best about America, a clear symbol of

everything good that we have ever been or meant. Th e boat sails
in front of her copper verdigris face and her eyes follow you, even
though you know they can’t. If you can keep from misting up at
that sight, you’re stronger tha n I am. Or maybe weaker, I’m not sure.

“Lift your head up,” her torch says. Life looks very diff erent from
that angle. Try it some time.

Enji was in heaven. “I’ve dreamed to see that statue since I was
a child, and now I can’t believe I’m here. She’s so beautiful. I love
you, My Lady,” and I heard the capital letters in her voice. I’m glad
I could show it to her, to all of them, and glad they could show it
to me, too.

DAVID S. PLATT teaches Programming .NET at Harvard University Extension
School and at companies all over the world. He’s the author of 11 programming books,
including “Why Soft ware Sucks” (Addison-Wesley Professional, 2006) and “Intro-
ducing Microsoft .NET” (Microsoft Press, 2002). Microsoft named him a Soft ware
Legend in 2002. He wonders whether he should tape down two of his daughter’s
fi ngers so she learns how to count in octal. You can contact him at rollthunder.com.

Imagine That

I just returned from judging the world fi nals
of the Microsoft Imagine Cup, a programming
contest for college students. Th e experience
was transcendent.

I’d been a judge at the first worldwide
fi nals, in Barcelona in 2003, and had written
in “Why Soft ware Sucks” about my experiences
there. The contest has grown enormously
since then, from 1,000 student entrants in
regional- and country-level tourneys to
more than 350,000 today. The finals have
expanded from 16 teams in one division
to 128 teams (yes, we geeks like our powers
of two) across nine divisions; and evolved
from an aft erthought at Tech·Ed to its own
separate conference, taking over the Times
Square Marriott hotel in NYC.

Th e teams came from all over: stalwarts
such as Japan and France, the BRIC coun-
tries (Brazil, Russia, India, China) nipping
at their heels, upcomers like Vietnam and
Bangladesh nipping at theirs. Even sub-
Saharan Africa is starting to enter, with teams
from Uganda and Senegal.

Th e best projects are scary smart: Team
Hermes from Ireland, with a system to help
teenage drivers kill fewer of themselves and others; Team Note-
Taker from the United States, with a note-taker system for visually
handicapped students; Team Oasys from Jordan, with an assistance
device that lets quadriplegics control PCs by moving their heads.

Th e raw brain power here is stunning. Th e ingenuity, the imag-
ination, the incredible things that are possible when you haven’t
yet learned what’s impossible. And also the blindness, the naiveté,
the solving of the wrong problems when you haven’t yet learned
what’s important and what isn’t, or what users really do rather than
what they say they’ll do or you wish they’d do, or that your users are
not like yourself. To my fellow instructors and me belongs the job
of channeling that power, guiding it, shaping it for the benefi t of
humanity without squashing that spark. I found it humbling, and
if you’ve read my columns, you know that I don’t humble easily.

My most moving experience was accompanying the students to
the Statue of Liberty and Ellis Island, in New York Harbor. About
one-third of all Americans, including myself, have an ancestor who

DON’T GET ME STARTED DAVID PLATT

The Members of Team Hawk Stand in
Front of the Statue of Liberty

www.rollthunder.com

Untitled-4 1 9/1/11 5:00 PM

www.GCPowerTools.com

Untitled-1 1 8/30/11 2:20 PM

www.syncfusion.com/downloads/evaluation

	Back
	Print
	MSDN Magazine, October 2011
	Contents
	CUTTING EDGE: Objects and the Art of Data Modeling
	WINDOWS WITH C++: Thread Pool Cancellation and Cleanup
	FORECAST: CLOUDY: The Windows Azure AppFabric Service Bus: Topics
	ASYCHRONOUS PROGRAMMING:
	Easier Asynchronous Programming with the New Visual Studio Async CTP
	Pause and Play with Await
	Async Performance: Understanding the Costs of Async and Await

	Securing Access to LightSwitch Applications
	Authoring an F#/C# VSIX Project Template
	Harnessing the Power of the Dynamics CRM 4.0 API from Silverlight 4
	Building Information Architecture in SharePoint 2010
	TEST RUN: Graph Structures and Maximum Clique
	UI FRONTIERS: Pages and Pop-ups in Windows Phone 7
	DON’T GET ME STARTED: Imagine That

	GrapeCity Insert
	Visual Studio Live! Insert

