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ABBREVIATIONS 

cDNA  complementary DNA 
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CLPS  procolipase gene 

CN  copy number (of a gene) 
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Ct  threshold cycle 

CTLA4  cytotoxic T-lymphocyte-associated protein 4 gene 

CTRB2  human chymotrypsinogen B2 protein 

CTRC  human chymotrypsinogen C protein 

Ctrb  mouse chymotrypsinogen B protein 

Ctrc  mouse chymotrypsinogen C protein 

CXCL1 chemokine (C-X-C motif) ligand 1 

DEFA1  human α1-defensin gene 

DEFA3  human α3-defensin gene 

DEFB1  human β1-defensin gene 

DM  diabetes mellitus 

DM1  type 1 diabetes mellitus, insulin-dependent diabetes mellitus 

DM2  type 2 diabetes mellitus, non-insulin dependent diabetes mellitus 

DNA  deoxyribonucleic acid 

DTT  dithiothreitol 

EDTA  ethylenediaminetetraacetic acid 

ELISA  enzyme-linked immunosorbent assay 

FAM  6-carboxyfluorescein 

GAPDH glyceraldehyde-3-phosphate dehydrogenase gene 

GFR  glomerular filtration rate 

HBD1  human β1-defensin protein 

HBD2  human β2-defensin protein 

HCl  hydrogen chloride 

HLA  human leukocyte antigen 

HNP  human neutrophil peptide 

Hu1  human cationic trypsinogen protein 

Hu2  human anionic trypsinogen protein 

Hu3  human mesotrypsinogen protein 

IFIH1  interferon-induced helicase C domain-containing protein 1 

IFNγ  interferon gamma 

IL1R1  interleukin receptor type 1 

IL1RN  interleukin-1 receptor antagonist 
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IL-1β  interleukin-1β 

IL2RA  interleukin 2 receptor alpha  

IL-6  interleukin-6 

INS  insulin gene 

LDL  low density lipoprotein 

LXR  liver X receptor 

MMP  matrix metalloproteinase 

MODY  maturity onset diabetes of the young, monogenic diabetes 

MPO  myeloperoxidase gene 

mRNA  messenger ribonucleic acid 

MWCO molecular weight cut off 

NaCl  sodium chloride 

NCBI  National Center for Biotechnology Information, USA 

NF-κB  nuclear factor-κB 

OR  odds ratio 

PAGE  polyacrylamide gel electrophoresis 

PCR  polymerase chain reaction 

PMN  polymorphonuclear immune cells 

PPARµ2 peroxisome proliferator-activated receptor µ2 

PRSS1  human cationic trypsinogen gene 

PRSS2  human anionic trypsinogen gene 

PRSS3  human mesotrypsinogen gene 

PTPN22 protein tyrosine phosphatase, non-receptor type 22 

PVDF  polyvinylidene fluoride 

qPCR  quantitative (real time) polymerase chain reaction 

RNA  ribonucleic acid 

RT PCR reverse transcription polymerase chain reaction 

SBDS  Shwachman-Bodian-Diamond Syndorme gene 

SDF1  stromal cell-derived factor 1 (or chemokine (C-X-C motif) ligand 12) 

SDS  sodium dodecyl sulfate 

SNP  single nucleotide polymorphism 

SUMO4 small ubiquitin-like modifier 4 gene 

TAP  trypsinogen activation peptide 

TIMP  tissue inhibitors of metalloproteinases 

TLR4  Toll-like receptor 4 

TNF-α  tumor necrosis factor alpha 

UBR1  Ubiquitin-protein ligase E3 component N-recognin 1 gene 

UV  ultraviolet light 
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1. INTRODUCTION 

Disorders of the pancreas, both endocrine (e.g. diabetes mellitus) and exocrine (e.g. 

chronic pancreatitis or cystic fibrosis), can be triggered by different genetic factors. There 

exist specific mutations which can directly lead to the development of certain pancreatic 

diseases. A little more than a half century ago, mankind knew a significant amount about 

these disorders clinically, however at that time not much was known about their genetic 

background. 

In 1889, Minkowski and von Mering reported, that dogs developed diabetes after 

pancreatectomy [112]. This was the first evidence proving the role of the pancreas in 

pathogenesis of diabetes mellitus. In 1921, the first effective therapy in dogs using pancreatic 

extracts containing insulin against diabetes mellitus was carried out by Banting and Best [11]. 

Today we know that genetic factors (including the insulin gene) have significant roles in the 

development of diabetes mellitus in combination with environmental factors. However, 

diabetes can also develop due to a mutation in a single gene (monogenic diabetes). 

One of the most common genetic diseases among the Caucasian (white) population is 

cystic fibrosis (OMIM: 219700) with an incidence of 1 in 2500 live births [88]. In 1938, it 

was first distinguished from coeliac disease by Dorothy H. Andersen [5]. Mutations in the 

cystic fibrosis transmembrane conductance regulator gene (CFTR, OMIM: 602421)                

-identified in 1989 [52]- are responsible for the development of this disorder. The CFTR gene 

codes for a chloride channel whose malfunction hinders the physiological role of the pancreas 

and other organs of the digestive, respiratory and reproductive systems. Mutations causing 

cystic fibrosis can be found under the homepage http://www.cftr2.org/. 

In 1896, Hans Chiari has described for the first time the post mortem autodigestion of 

the pancreas and he proposed that this might be mediated by pancreatic enzymes [23]. In 

1952, Comfort and Steinberg were the first to describe a familial accumulation of chronic 

pancreatitis [24], and in 1996, the PRSS1 gene encoding human cationic trypsinogen was 

identified as the first gene associated with chronic pancreatitis by Whitcomb et al. [116]. 

Since then other genes (CTRC, SPINK1, CPA1 and the above mentioned CFTR) have also 

been shown to have roles in the development of chronic pancreatitis. Under the 

http://www.pancreasgenetics.org/ homepage a summary of published mutations of genes 

(except for CFTR) associated with chronic pancreatitis can be found. 

In the past 2-3 decades, investigators began studying genetic factors which can lead to 

pancreatic diseases. Despite the fact that large steps have been made in the understanding of 
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the genetics and pathophisiology of pancreatic diseases, clearly, these investigations have not 

reached their endpoint yet. In this thesis the results of recent genetic investigations regarding 

hereditary chronic pancreatitis and diabetes mellitus have been reviewed together with a 

description of the author's experimental data in order to gain a deeper comprehension of the 

pathophisiology of pancreatic diseases and their complications. 

1.1. GENETIC RISK FACTORS OF DIABETES 

Based on the definitions provided by the American Diabetes Association, diabetes is a 

group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin 

secretion, insulin action, or both. Type 1 diabetes (~5-10% of all cases of diabetes) is caused 

by β-cell destruction in the Langerhans islets of the pancreas, usually leading to absolute 

insulin deficiency. Characteristics of type 2 diabetes (~90-95% of all cases of diabetes) range 

from predominant insulin resistance with relative insulin deficiency to predominant insulin 

secretory defect with insulin resistance [3]. The long term complications affect several organs 

including the eyes, kidneys, nerves and blood vessels, making diabetes a lifelong disease 

which predisposes to secondary malfunction of almost all organs in the whole body, primarily 

due to the metabolic changes characteristic of diabetes. 

1.1.1. Genetic risk factors of type 1 diabetes mellitus (DM1) 

Type 1 diabetes mellitus (DM1, OMIM: 222100) is a genetically heterogeneous 

autoimmune disease of glucose homeostasis that is characterized by susceptibility to 

ketoacidosis in the absence of insulin therapy [111]. β-cells of the pancreas suffer 

autoimmune destruction in which several autoantibodies can have a pathogenic role against 

islet cells, including insulin, glutamic acid decarboxylase 65, and tyrosine phosphatases IA-2. 

In this type of diabetes patients are rarely obese [3]. 

Based on functional, structural and genetic evidence, haplotypes DR3 and DR4 of the 

human leukocyte antigene (HLA) class II loci are considered strong triggering factors, while 

DR2 haplotype protects from DM1 [13]. Other genes which are involved in disease 

pathogenesis are: INS (insulin gene on 11q15), PTPN22 (protein tyrosine phosphatase, non-

receptor type 22 on 1p13), CTLA4 (cytotoxic T-lymphocyte-associated protein 4 on 2q33), 

CD25 / IL2RA (on 10p15), interferon-induced helicase C domain-containing protein 1 (IFIH1 

gene on 2q24), small ubiquitin-like modifier 4 (SUMO4 gene on 6q25). However, certain 

alleles of these genes confer relatively low risk for development of DM1 compared to HLA 

class II haplotypes of which genetic association studies have shown clear correlation to DM1 

[13]. 
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Since DM1 is known to be principally an autoimmune disease, genetic factors which 

influence the physiology of the immune system, might have a significant role in the 

pathophysiology. Certain alleles of the TNF-α locus, as a part of an extended haplotype of the 

HLA DR4 haplotype on chromosome 6, have been found to play a direct role in the 

pathogenesis of DM1 [82]. 

Lanng et al. did not find an association between certain IL-1β alleles and the 

development of diabetes in cystic fibrosis patients [57], however, the IL-1β*2 allele, which 

correlates with a high secretor phenotype was associated significant susceptibility to 

nephropathy in DM1 patients [62], as well as to an interleukin-1 receptor antagonist allele 

(IL1RN*2) [16]. Investigation of the interleukin receptor type 1 gene (IL1R1) led also to the 

conclusion that certain IL1R1 alleles are associated with DM1 development [14, 71]. 

Awata et al. suggested that a CA-repeat polymorphism within the first intron of the 

IFNγ gene may contribute to the pathogenesis of DM1 in patients of Japanese origin and may 

be a genetic marker for DM1 [9]. Pociot et al. did not find an association between the 

presence of the same IFNγ allele and DM1 in Danish population, however in the Finnish 

population they found a modestly significant disease association of the studied IFNγ allelic 

pattern [83]. 

1.1.2. Genetic risk factors of type 2 diabetes mellitus (DM2) 

Type 2 diabetes mellitus (DM2, OMIM: 125853) accounts for 90–95% of those with 

diabetes. This type encompasses individuals who have insulin resistance and usually have 

relative insulin deficiency. Most patients with this form of diabetes are obese. Obesity itself is 

known to cause some degree of insulin resistance. Although, many different etiological 

factors can be responsible for the development of DM2, the specific causes are not known. In 

this type of diabetes, autoimmune destruction of β-cells does not occur. Ketoacidosis is not 

characteristic of DM2, but occurs rarely. Hyperglycaemia develops gradually and at its earlier 

stage it is often not severe enough for the patient to notice any of the classic symptoms of 

diabetes. Insulin deficiency due to β-cell dysfunction impacts skeletal muscle, liver and 

adipose tissues. Nevertheless, such patients are at increased risk for the development of 

macrovascular and microvascular complications [3, 8]. DM2 is known to be a multifactorial 

disease with clear association with different environmental and genetic factors. 

Although there are several genes found to be associated with DM2, only genes that 

have a role in the function of the innate immune system, and are also associated with DM2, 

are reviewed in this thesis. The innate immune system is the first line of defense against 
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microbial, fungal and viral infections. Tumor necrosis factor alpha (TNF-α), interleukin-1β 

(IL-1β) and interleukin-6 (IL-6) are released when toll-like receptor 4 (TLR4) binds certain 

danger- or pathogen-associated molecules [70]. These molecules can directly increase insulin 

resistance in fat, muscle and liver cells [15, 46], which can lead to impaired glucose 

tolerance, the major characteristic of DM2. Different alleles of these cytokine genes may 

influence the innate immunity pathway resulting in altered response to dietary factors which 

can also bind to TLR4 [10]. 

Arora et al. investigated DM2 patients in a cross-sectional study, and found genetic 

association between several SNPs in IL-6 and triglyceride levels, furthermore between SNPs 

of IL-6, TNF-α and fasting insulin levels. Other associations were found also between SNPs 

of TNF-α, and levels of CRP and HDL cholesterol. The strongest association was observed 

between CRP SNPs and CRP levels; SNPs rs1205 was inversely and rs1417938 was directly 

associated with CRP levels [8].  

Saxena et al. investigated IL-6, TNF-α and IL-10 polymorphisms in DM2 patients and 

controls of Indian origin. Genotypes IL-6 -597AA and TNF-α -308GG together, or -597AA, 

TNF-α -308GG and IL-10 -592CA together markedly increased the risk of DM2 if they were 

present in the same individual. However, the individual presence of the above mentioned 

genotypes did not lead to an increase in risk [96]. 

The “Pro” allele of p.P12A (rs1801282) polymorphism of peroxisome proliferator-

activated receptor µ2 (PPARµ2) gene is associated with higher glucose and insulin levels in 

obese patients [48]. However, if the Ala allele of polymorphism p.T92A (rs225014) of type 2 

deiodinase is present in the same patient together with the Ala allele of PPARµ2 p.P12A 

polymorphism, the chance of developing significant insulin resistance is highly elevated [31]. 

1.1.3. Defensins in diabetes 

Defensins are small antimicrobial peptides of the innate immune system, which have 

3 major type in vertebrates: α -, β- and θ-defensins. In humans only α- and β-defensins are 

expressed, while the genes encoding human θ-defensins are pseudogenes [20, 38, 108]. 

1.1.3.1. αααα-defensins 

The human chromosome locus 8p23.1 harbors 6 different α-defensin genes (DEFA1, 

DEFA3, DEFA1B, DEFA4, DEFA5, DEFA6) and 5 α-defensin pseudogenes. There are 6 

different types of α-defensins / human neutrophil peptides (HNP) expressed in humans. The 

protein product of DEFA1, DEFA3, DEFA4 genes are HNP-1,-2,-3 and -4 derived from 

polymorphonuclear immune cells, while intestinal human defensins (HD-5 and HD-6) are 
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derived from Paneth cells and are the protein products of DEFA5 and DEFA6 genes [19, 22, 

118]. 

The cluster of human α-defensin genes include DEFA1 (OMIM: 125220) and DEFA3 

(OMIM: 604522) lying on chromosome 8 with high variability of copy numbers. These genes 

encode human neutrophil peptide 1, 2 and 3 (HNP1-3) which are almost identical in their 

mature peptide sequence. The only difference between these mature peptides is the N-

terminal amino acid, which is Ala in the case of HNP-1, while at the same position HNP-3 

has an Asp residue. Mature HNP-2 peptide lacks this amino acid residue, and this peptide 

might be a result of a proteolytic cleavage of the other two peptides, because no separate gene 

has been identified to encode HNP-2 [100]. Differencies in copy number are the major source 

of genetic polymorphisms in the DEFA1 and DEFA3 genes. These are present in a cluster 

that is close to but independent of the β-defensin cluster on 8p23.1. Total DEFA1/DEFA3 

copy number was found to range between four and 11 copies per diploid genome with five to 

nine copies being the most common [1]. 

Today, these peptides are characterized as danger signals (alarmins) playing important 

roles in inflammation and immunity [77]. In addition to antimicrobial effects, α-defensins 

have an important role in chemotaxis and they induce proinflammatory cytokines [19, 22, 

118]. HNPs increase LDL (low density lipoprotein cholesterol) binding to the endothelial 

surface suggesting that α-defensins may modulate the development of atherosclerosis [86]. 

Neutrophil granulocytes are considered to be the primary cellular origin of HNP 1-3; which 

comprise 30-50 % of the granule proteins. HNPs can be released into the extracellular milieu 

following granulocyte activation as a consequence of degranulation, leakage, cell death, and 

lysis during inflammation [37]. In the formation of neutrophil extracellular traps (NETs)       

α-defensins are also involved [80]. 

1.1.3.2. β-defensins 

Human β-defensins are also antimicrobial peptides, which are thought to control the 

microbial flora on epithelial surfaces. [38, 81]. According to currently accessible data from 

the HUGO Gene Nomenclature Committee (http://www.genenames.org/), 38 different genes 

were identified encoding potentially expressed β-defensins in humans (17 genes on 8p23.1, 1 

gene on 11q13.4, 5 genes on 6p12.3, 4 genes on 20q11.1, 4 genes on 20q11.21, 6 genes on 

20p13, 1 gene on 4p16.1), while 9 genes are referred to as β-defensin pseudogenes. 

There is a wide body of knowledge regarding human β1-defensin, which is 

constitutively expressed from the HBD1 gene (OMIM: 602056) on chromosome 8, in close 
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proximity to DEFA1/DEFA3 sites. The main sources of human β1-defensin are the epithelial 

cells throughout in body: skin, small intestine, respiratory and urogenital tissues, pancreas, 

kidneys, male and female internal genital organs and thymus [121]. Human β1-defensin kills 

E.coli at micromolar concentrations, and other Gram-negative bacteria at concentrations 

ranging from 60 to 500 µg/µL [98]. The antibacterial and antifungal characteristics of HBD1 

is well characterized [114, 119] and their function is thought to be important in protection 

also against viral infections [41]. In addition to their antimicrobial effects, the 

chemoattractive function of these defensins have been shown to play a role in immunological 

reactions that protect the host from various pathogens [30]. While the expression of HBD1 is 

generally constitutive, the levels of human β2-defensin (HBD2) is inducible by 

proinflammatory cytokines and bacteria [17, 26, 81]. 

Several SNPs have been characterized in the HBD1 gene. Three frequent SNPs at 

positions c.-20G>A (rs11362), c.-44C>G (rs 1800972) and c.-52G>A (rs1799946) in the 5’-

untranslated region (5' UTR) of DEFB1 were described earlier [28]. The untranslated variants 

influence HBD-1 expression or function [103]. 

1.1.3.3. Role of defensins in diabetes mellitus 

Although it has been shown that some polymorphisms in certain cytokine genes are 

associated either with DM1 or DM2, little is known about the genetics and the functions of α- 

and β-defensins in diabetes. Infections are frequent in diabetic patients, because the 

antimicrobial function of their immune response is impaired. It has been reported that mRNA 

levels of rat β1-defensin are decreased in the kidneys, which may explain the high incidence 

of urinary tract infections in diabetes mellitus [35]. Recently, the effect of glucose and insulin 

on β-defensin expression have been described [12]. However, no connection was found 

between genetic polymorphisms of the HBD1 gene and diabetes in a Brasilian study 

investigating diabetic children [42]. 

Increased levels of human neutrophil peptide 1, 2 and 3 in type 1 diabetic patients 

with nephropathy and with cardiovascular complications has recently been reported [50, 95]. 

It is tempting to speculate that copy number polymorphisms and alterations of 

DEFA1/DEFA3 mRNA levels in granulocytes may influence the levels of HNP1-3 in patients 

with diabetes type 1 and type 2. 
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1.1.4. Connections between endocrine and exocrine pancreatic diseases at the genomic 

level 

Diabetes is a multifactorial disease, with both environmental and genetic factors 

playing a role in its development. Mutations in only a single gene, can also lead to the 

development of diabetes. Monogenic diabetes, also termed maturity onset diabetes of the 

young (MODY), develops before the age of 25, and presents as a nonketotic form of diabetes. 

Its inheritance follows an autosomal dominant pattern, and mutations associated with MODY 

cause a primary defect in the function of the beta cells of the endocrine pancreas [33]. 

Exocrine pancreas function is not affected in the majority of the 11 different types of MODY 

[34]. However, in MODY8 (CEL MODY), in which there is a defect in the carboxyl ester 

lipase (CEL, OMIM: 114840) gene, insufficiency of both endocrine and exocrine pancreatic 

function is observed [87]. 

Another example when a single malfunctioning gene may lead to both endocrine and 

exocrine insufficiency of the pancreas is the procolipase gene (CLPS, OMIM: 120105). The 

products of CLPS gene are the precursors of colipase and enterostatin. They are secreted 

mainly by the exocrine pancreas, but are also expressed in stomach, liver and regions of the 

central nervous system. The mature form of colipase is the essential cofactor of lipase, which 

has a significant role in the digestion of triglycerides emulsified by bile salts. Enterostatin 

acts as a pentapeptide hormone, which selectively down-regulates fat intake, and hampers 

insulin secretion in animal models. Certain SNPs of the CLPS gene (rs3748050 and 

rs378051) are associated in altered insulin secretion in non-diabetic Caucasians [115]. 

Furthermore, CLPS gene mutant p.R109C (also called p.R92C according to procolipase 

numbering) was found to be associated with DM2 [60]. In a functional study, the same 

mutant was found to be defective in its ability to anchor triglycerides to pancreatic lipase 

[29]. 

The simultaneous appearance of diabetes mellitus and exocrine pancreas insufficiency 

is surprisingly common. In most cases they do not develop together due to a single genetic 

disorder as described above in the case of CEL MODY, but as a result of disorders which can 

diffusely damage the pancreatic tissue (pancreatitis, trauma, pancreatectomy, neoplasia, 

cystic fibrosis, hemochromatosis, fibrocalculous pancreatopathy or surgical pancreas 

resection), which is classified as type 3c diabetes mellitus [3]. According to the publication 

by Ewald et al. [32], diabetes type 3c is often misclassified as type 2. Upon reclassification, 

the authors found that out of 1868 patients, 172 had type 3c diabetes mellitus (9.2%), of 

which 78.5% had chronic pancreatitis. In a publication by Hardt et al. [43] a high prevalence 
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of patients with type 1 and type 2 diabetes were found to have pathological exocrine function 

of the pancreas, which was correlated with an early onset of endocrine failure, long-lasting 

diabetes mellitus and low body mass index levels. 

Though endocrine and exocrine malfunction of the pancreas usually have different 

genetic risk factors, they might have a common genetic origin due to certain mutations in 

CLPS and CEL genes mentioned above. Living with chronic pancreatitis leads to the 

development of endocrine pancreas disfunction over time. Therefore, investigation of the 

mechanisms leading to chronic pancreatitis may not only result in a deeper understanding of 

the function of the exocrine pancreas and related diseases, but may also elucidate the 

mechanism of disease pathogenesis in certain types of diabetes. 

1.2. CHRONIC PANCREATITIS 

Chronic pancreatitis (CP) is defined as a relapsing or continuing inflammatory disease 

of the pancreas and is characterized by irreversible morphological changes, upper abdominal 

pain and, in some patients, permanent impairment of exocrine or endocrine function or both. 

The incidence of CP is 3.5-23 cases / 100.000 persons [4, 69, 88]. Excessive alcohol 

consumption is the most frequently identified etiological factor of chronic pancreatitis. In 

addition, smoking can accelerate the progression of the disease [65], and increase the risk of 

developing pancreatic adenocarcinoma. The incidence of pancreatic cancer among chronic 

pancreatic patients ranges between 3% and 13% [63, 69, 74], however, the incidence is close 

to 70% in patients with hereditary CP [69]. 

1.2.1. Hereditary chronic pancreatitis 

The first description of familial accumulation of chronic pancreatitis cases was 

provided in 1952 by Comfort and Steinberg [24]. However, it took 44 years before the first 

gene associated with hereditary pancreatitis was identified by Whitcomb et al. in 1996 [116]. 

The first reports about Hungarian cases of hereditary pancreatitis were published by Ruszinkó 

et al. and Oláh et al. in 2001 [76, 90], and these cases were also mentioned in a 2004 study by 

Howes et al. [47]. The first case report describing a Hungarian family affected by hereditary 

pancreatitis was published in 2012 by Major et al. [66]. 

The definitions of familial and hereditary pancreatitis need to be distinguished. 

Clinically, both are recurrent acute or chronic pancreatitis. If two first-degree relatives or 

three or more third-degree relatives in two or more generations are affected and have no other 

precipitating factors, the diagnosis of hereditary pancreatitis is established. The diagnosis of 
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Figure 1. Effect of pancreatitis-associated PRSS1 mutations on the chymotrypsin C (CTRC) 

dependent activation and degradation of human cationic trypsinogen. CTRC cleaves the Leu81-Glu82 
peptide bond and trypsin cleaves the Arg122-Val123 peptide bond; these two cleavages result in the 
eventual degradation of trypsinogen. CTRC also stimulates autoactivation of cationic trypsinogen by 
cleaving the Phe18-Asp19 peptide bond in the activation peptide. The shortened activation peptide is more 
susceptible to trypsin-mediated activation at the Lys23-Ile24 peptide bond. The dominant effect of CTRC is 
degradation. (A) PRSS1 mutations can increase conversion of trypsinogen to trypsin by inhibition of 
CTRC-dependent trypsinogen degradation (red arrow) or by increasing CTRC-dependent stimulation of 
autoactivation (green arrow). (B) Proteolytic cleavage of human cationic trypsinogen by CTRC and 

trypsin. Primary structure of trypsinogen with disulfide bonds is shown. CTRC cleavage sites are 
highlighted in orange and trypsin cleavage sites are shown in blue. The activation peptide is in green. Note 
the yellow peptide segment not stabilized by disulfide bonds between the Leu81 and Arg122 cleavage sites. 
Figure 1B is modified from Szmola and Sahin-Tóth (2007) [107]. 

familial pancreatitis is made if more than one affected family member was diagnosed with CP 

in the same generation [47]. 

Hereditary chronic pancreatitis is a human genetic disorder caused by heterozygous 

mutations in the serine protease 1 gene (PRSS1, OMIM: 276000) on chromosome 7q35 

encoding human cationic trypsinogen [116], the precursor for the most abundant digestive 

enzyme secreted by the human pancreas [97]. Besides PRSS1, the locus also contains five 

A 

B 
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trypsinogen pseudogenes, a relic gene, and PRSS2, which encodes anionic trypsinogen, the 

other major human trypsinogen isoform. The PRSS3 gene coding for mesotrypsinogen, the 

relatively minor third human isoform, is found on chromosome 9p13. 

Mutations in the PRSS1 gene associated with hereditary chronic pancreatitis result in 

early activation of trypsinogen inside the pancreas due to altered regulation by chymotrypsin 

C (CTRC) [106]. High penetrance trypsinogen mutations such as p.N29I and p.R122H are 

associated with an autosomal dominant inheritance pattern, whereas mutations with lower 

penetrance (e.g. mutation p.A16V), may be found not only in hereditary but also in sporadic 

cases without family history [109]. 

Figure 1 shows the functional effects of the most frequent human cationic trypsinogen 

mutations. Shortening of the activation peptide by CTRC-mediated cleavage of Phe18-Asp19 

peptide bond results in increased autoactivation [72]. This cleavage is stimulated by 

pancreatitis-associated mutations p.N29I and p.A16V [106, 72]. Cleavage of the Leu81-

Glu82 peptide bond in the calcium binding loop, together with the trypsin-mediated autolytic 

cleavage of the Arg122-Val123 peptide bond, results in rapid degradation and inactivation of 

cationic trypsinogen [107]. Mutations p.N29I and p.R122H inhibit CTRC-mediated 

degradation and thereby increase trypsinogen autoactivation [106]. 

1.2.2. Syndromes associated with chronic pancreatitis 

Goobie et al. mapped the susceptibility gene of Shwachman-Diamond syndrome 

(OMIM: 260400) to chromosome 7 [40]. This disease follows an autosomal recessive 

inheritance pattern and is characterized mainly by exocrine pancreatic insufficiency 

(lipomatosis of pancreas), hematologic (neutropenia, anemia, thrombocytopenia) and skeletal 

abnormalities (delayed maturation, metaphyseal chondordysplasia of the long bones and 

thoracic-cage abnormalities with costochondrial thickening). The susceptibility gene is the 

Shwachman-Bodian-Diamond Syndrome gene (SBDS, OMIM: 607444) mapped to 7q11.21 

[18]. 

In 1971, Johanson and Blizzard described a congenital syndrome characterized by 

aplasia of the alae nasi, deafness, hypothyroidism, dwarfism, absent permanent teeth and 

malabsorption [49]. The most consistently affected organ in this syndrome is the pancreas, 

and the intrauterin onset of pancreatitis is characterized by gradual destruction of previously 

formed acinar cells with unaffected primary zymogen synthesis and no sign of apoptosis at 

the cellular level. The susceptibility gene of Johanson-Blizzard syndrome (OMIM: 243800) 
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with multiple pathogenic alleles is the ubiquitin-protein ligase E3 component N-recognin 1 

gene (UBR1, OMIM: 605981) at position 15q15.2, containing 47 exons [120]. 

1.3. MOUSE TRYPSINOGENS 

Considering the widespread use of mice in experimental studies of the pancreas, it is 

surprising how little is known about mouse trypsinogens. In 1982, Watanabe reported the 

purification of three trypsinogen isoforms from the mouse pancreas [113]. In 1986, Stevenson 

et al. cloned a trypsinogen cDNA, corresponding to isoform T20, from the pancreas and 

demonstrated that the mouse genome contained multiple different trypsinogen genes [102]. 

This was later confirmed by Leroy Hood's laboratory in 1997 when they sequenced the 

mouse T cell receptor beta locus on chromosome 6 and identified 20 trypsinogen genes 

organized into two groups, one comprising genes T1-T7 and the other containing genes T8-

T20 [39]. 

Using the currently accessible NCBI (National Center for Biotechnology Information, 

USA) online genomic database (http://www.pubmed.org/) we found that eleven of the 20 

genes are potentially functional (T4, T5, T7, T8, T9, T10, T11, T12, T15, T16, T20; as shown 

in Suppl. Figure 1), while the other nine genes are either pesudogenes (T1, T2, T3, T14) or 

relic genes (T6, T13, T17, T18, T19). In 1999, Ohmura et al. cloned the cDNA for isoform 

T9 from sperm acrosome [75]. It remained unknown, however, which isoforms of the 11 

potentially functional trypsinogen genes are expressed at the protein level in the mouse 

pancreas. More recently, genetic deletion of T7 indicated that this isoform may contribute to 

as much as 60% of pancreatic trypsinogens [25, 91]. The authors also found that despite the 

presence of other trypsinogen isoforms, mice deficient in T7 did not respond to secretagogue 

hyperstimulation with the characteristic intra-acinar cell trypsinogen activation, which is an 

early event in acute pancreatitis. 

These findings suggest that the different mouse trypsinogen isoforms vary in their 

activation kinetics and highlight the need for their comparative biochemical characterization. 

Therefore, identification of major trypsinogen isoforms in the mouse pancreas, and a study of 

their autoactivation and regulation by mouse chymotrypsins is needed. 
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3. AIMS 

Like other members of the innate immune system, defensins can also have a role in 

the development of type 1 and type 2 diabetes mellitus and their macro- and microvascular 

complications. In order to gain deeper comprehension about the role of defensins in diabetes, 

the aims of this study were: 

• to measure plasma levels of human neutrophil peptides 1-3 (HNP 1-3) and to 

examine their possible association with diabetes and / or its complications, 

• to determine gene copy number polymorphism and mRNA expression levels 

of DEFA1/DEFA3 genes in diabetes mellitus, 

• to investigate the association of single nucleotide polymorphisms c.-20G>A, 

c.-44C>G and c.-52G>A in the promoter region of the β1-defensin (DEFB1) 

gene with type 1 and type 2 diabetes mellitus. 

Research into the pathomechanism of hereditary chronic pancreatitis has been 

hindered by the lack of good animal models which mimic the human disease and develop 

spontaneous pancreatitis. In order to create a mouse model, biochemical characterisation of 

mouse trypsinogens was necessary. The aims of the study of mouse trypsinogens were: 

• to identify the major trypsinogen isoforms expressed in the mouse pancreas, 

• to characterize the autoactivation of mouse trypsinogens and study their 

interaction with mouse chymotrypsins, 

• to investigate the biochemical characteristics of the most frequent pathogenic 

human cationic trypsinogen mutation p.R122H introduced into mouse 

trypsinogen isoforms T7 and T8. 
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2. PATIENTS AND METHODS 

2.1. NOMENCLATURE 

Nucleotide residues are numbered starting with nucleotide A of the ATG-translation 

initiation codon. Amino acid residues are numbered starting with the initiator methionine of 

the primary translation product. Note that because of an extra Asp residue (Asp23) in the 

activation peptide of T7 mouse trypsinogen isoform, amino-acid numbering in this isoform is 

shifted by one relative to human and other mouse trypsinogens. Autolysis loop refers to the 

flexible region between residues 146 and 154 in trypsinogen (Suppl. Figure 1). 

2.2. PATIENTS AND CONTROLS IN GENETIC ASSOCIATION STUDY 

All cases and controls were of Hungarian ethnic origin and were residents of 

Hungary. Informed consent was obtained from all subjects, and the local Ethics Committee of 

University of Szeged gave prior approval to the study. All subjects consented to the study and 

were treated according to the Patient Right Protection Act of our institutions and international 

guidelines. 

2.2.1. Control group 

The 221 age- and gender matched members of the control group were selected from 

healthy blood donors from the regional Centre of Hungarian National Blood Transfusion 

Service, Szeged, Hungary. Blood donors with diabetes mellitus, nephropathy, hypertension or 

ischemic heart disease were excluded from this study. 

2.2.2. Patients with diabetes mellitus 

257 diabetic patients (122 men, 135 women) were enrolled in the study; which 

included 117 patients with type 1 and 140 patients with type 2 diabetes. Diagnosis of diabetes 

of all patients was based on the ADA criteria [2]. 

71 of the cohort had diabetic nephropathy (32 with type 1 diabetes and 39 with type 2 

diabetes), defined as an albumin-to-creatinine ratio in a random spot collection higher than 

3.4 mg/mM or protein content over 300 mg/day in collected urine. Abnormal kidney function 

was detected if glomerular filtration rate (GFR) was lower than 60 mL/min/1.73 m2. 

115 patients suffered from retinopathy (47 with type 1 diabetes and 68 with type 2 

diabetes). This complication was evidenced as the presence of background or proliferative 

retinopathy, macular edema or diabetes-related blindness or the use of retinal 

photocoagulation therapy. The retinopathy status was checked by color stereo-

ophtalmography and fluorescence angiography. Neuropathy was diagnosed in 95 patients (35 
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with type 1 and 60 with type 2 diabetes). Neuropathy was proven if abnormal peripheral 

sensory functions or altered lower limb tendon reflexes as well as impaired cardiovascular 

reflex tests were detected. 54 diabetic patients (14 with type 1 diabetes, 40 with type 2 

diabetes) had previously been diagnosed with macrovascular disease including major 

coronary events, stroke or transient ischemic attack, peripheral artery disease or amputation. 

High number of patients (182) had treated hypertension. (50 with type 1 diabetes and 132 

with type 2 diabetes). 

2.3. METHODS USED IN GENETIC ASSOCIATION STUDY 

2.3.1. DNA isolation 

Genomic DNA purification was carried out from 300 µl buffy coat of the 

anticoagulated (EDTA), centrifuged (1200 rpm/min for 15 min), peripheral blood using the 

High Pure PCR Template Preparation Kit (Roche Diagnostic GmbH, Mannheim, Germany). 

DNA concentrations were measured with a Qubit™ fluorometer (Invitrogen, Carlsbad, CA, 

USA) according to the manufacturer's instructions. Genomic DNA was stored at –20ºC. 

2.3.2. Determination of DEFA1/DEFA3 gene copy number by quantitative real-time 

PCR 

Genomic DNA was purified from peripheral blood. Gene copy number determination 

was carried out as previously described by Linzmeier et al. [61] with minor modifications. 

For quantitation BIO-RAD CFX 96 instrument (Bio-Rad, Hercules, CA, USA) was used. The 

reaction volume was 15 µL, containing 3 µL of DNA, 1 µM of each primers, 7,5 µL of 

reaction buffer (Fermentas Probe/ROX qPCR MasterMix, Fermentas, Lithuania) and 0,6 µL 

EVAGreen (20x EVAGreen™ Biotium Inc., Hayward, CA, USA). In order to amplify the 

DEFA1/DEFA3 target genes we used the forward primer "DEFA1 1 F" (5’ TAC CCA CTG 

CTA ACT CCA TAC 3’), and the reverse primer "DEFA1 1 R" (5’ GAA TGC CCA GAG 

TCT TCC C 3’). To amplify the reference gene MPO (myeloperoxidase) we used the forward 

primer "MPO 1 F" (5’ CCA GCC CAG AAT ATC CTT GG 3’), and the reverse primer 

"MPO 1 R" (5’ GGT GAT GCC TGT GTT GTC G 3’). The real time PCR conditions were 

as follows: initial denaturation at 95 oC for 10 min followed by 40 cycles of denaturation (95 
oC for 15 s) and extension (54 oC for 1 min). 

Quantification was performed by monitoring the emitted fluorescence after each cycle 

of PCR reaction of genomic DNA samples in order to identify the exact time point at which 
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the logarithmic linear phase could be distinguished from the background (crossing point). 

Each DNA sample was analyzed in triplicate, in two independent experiments. 

Using the formula "A" we calculated the ∆Ct value which was characteristic for each 

DNA sample. The copy number of the reference gene MPO was known to be 2 per diploid 

genome [61]. The total copy number (CN) of target genes DEFA1 and DEFA3 per diploid 

genome was calculated using the formula "B". 

   A:  ∆Ct = Ct reference - Ct target  

   B: CNtarget = 2∆Ct
 x (CNreference)  

2.3.3. RNA extraction and reverse transcription 

For RNA extraction 300 µL buffy coat was prepared from the same peripheral blood 

samples which were used for genomic DNA extraction. Total RNA was extracted with High 

Pure RNA isolation kit (Roche) according the manufacturer’s instruction. RNA concentration 

was determined by the A260 value of the sample. Complementary DNA (cDNA) was 

generated from 1 µg total RNA using the High-Capacity cDNA Reverse Transcription Kit 

(Applied Biosystems) in a final volume of 20 µL. 

2.3.4. DEFA1/DEFA3 mRNA expression measurement using quantitative RT PCR 

Using the reverse transcription polymerase chain reaction (RT PCR), we examined 

the relative expression levels of DEFA1/DEFA3 mRNA in 20 patients with diabetes (10 cases 

of type 1, and 10 cases of type 2 diabetes). RNA samples were prepared from buffy coat and 

quantification were performed according to our previously used method [110]. After reverse 

transcription, quantitative PCR amplification was carried out using Light Cycler Fast Start 

DNA MasterPLUS SYBR Green I mix (Roche). Samples were loaded into capillary tubes and 

placed in the fluorescence thermocycler (LightCycler). Initial denaturation at 95 °C for 10 

min was followed by 45 cycles of 95 °C for 10 s, annealing at 58 °C for 8 s, and elongation at 

72 °C for 12 s. To amplify specific products from cDNA of DEFA1/DEFA3, the following 

primers were used: sense 5’-TCC CAG AAG TGG TTG TTT CC-3’; and antisense, 5’-GCA 

GAA TGC CCA GAG TCT TC-3’. To measure expression of GAPDH, the housekeeping 

gene, sense primer 5′-AAG GTC GGA GTC AAC GGA TTT-3′; and antisense primer 5′-

TGG AAG ATG GTG ATG GGA TTT-3′ were used. At the end of each run, melting-curve 

profiles were achieved by cooling the sample to 40 °C for 15 s and then heating the sample 

slowly at 0.20 °C/s up to 95 °C with continuous measurement of the fluorescence to confirm 

the amplification of specific transcripts. Cycle-to-cycle fluorescence emission readings were 

monitored and analyzed by the LightCycler software (Roche Diagnostics GmbH). Expression 
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data were normalized to the housekeeping GAPDH gene. Relative gene expression was 

determined using the ∆∆Ct method. 

2.3.5. Genotyping of SNPs of human β1-defensin (DEFB1) 

Genotyping was performed using Custom TaqMan® SNP Genotyping Assays 

(Applied Biosystems, CA). Fluorogenic minor groove binder probes with the dyes 6-

carboxyfluorescein FAMTM (excitation, 494 nm) and VIC® (excitation, 538 nm) were used in 

each cases in order to determine the genotypes of different SNPs: β1-defensin (DEFB1) 

polymorphisms c.-20G>A (rs11362, Applied Biosystems code c_11636793_20), c.-44C>G 

(rs1800972, c_11636794_10) and c.-52G>A (rs1799946, c_11636795_20). Thermal cycling 

was performed on ABI Prism 7000 sequence-detection PCR systems. The amplification mix 

contained the following ingredients: 7.5 µL of TaqMan® universal PCR master mix (Applied 

Biosystems, CA), 0.375 µL of primer-probe mix, 6.375 µL of RNase- and DNase-free water 

(Sigma), and 0.8 µL of sample DNA, in a total volume of 15 µL per single tube reaction. 

Assay conditions were 2 min at 50 °C, 10 min at 95 °C, and 40 cycles of 95 °C for 15 s and 

60 °C for 1 min. Each 96-well plate contained 90 samples of an unknown genotype and six 

reactions with reagents but no DNA. DNase-free water used as nontemplate control. Initial 

and post-assay analysis was performed using the Sequence Detection System version 2.1 

software (Applied Biosystems, CA) as outlined in the TaqMan Allelic Discrimination Guide. 

Genotypes were determined visually based on the dye-component fluorescent emission data 

depicted in the X-Y scatter plot of the Sequence Detection System software. Genotypes were 

also determined automatically by the signal processing algorithms in the software. Results of 

each scoring method were saved in two separate output files for later comparison.  

2.3.6. Assay of HNP 1-3 concentration 

The same peripheral blood samples we used for genomic DNA and RNA extraction 

from patients and controls were also used for isolation of plasma, which was stored at -80oC 

until further analysis. Plasma HNP1-3 concentrations were determined by ELISA (Hycult-

Biotech HK324, Uden, The Netherlands) according to the instructions of the manufacturer. 

2.3.7. Statistical analysis 

Comparisons of plasma concentrations were carried out by Mann-Whitney test and 

with two-tailed paired Student’s test. The level of significance of the genotype frequency of 

different DEFB1 SNPs was analysed by using the χ2 test and Fischer test. Levels p<0.05 

indicated statistical significance. All statistical calculations were performed with the Graph 

Pad Prism 5.0 statistical program (GraphPad Software,San Diego, CA USA). The genotype 
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frequencies for each polymorphism of DEFB1 were tested for deviation from the Hardy-

Weinberg equilibrium by the χ2 test, with 1 degree of freedom. 

2.4. EXPERIMENTAL PROCEDURES USED IN MOUSE TRYPSINOGEN 

EXPERIMENTS 

2.4.1. Plasmid construction and mutagenesis 

Construction of the pTrapT7-intein-Hu1 and pcDNA3.1(-)-CTRB2 expression 

plasmids harboring the coding sequence for human cationic trypsinogen (Hu1) and human 

chymotrypsinogen B2 (CTRB2) was reported previously [54, 107]. Mutation p.S150F was 

introduced into human cationic trypsinogen using overlap-extension PCR mutagenesis. 

Expression plasmids for mouse trypsinogens were created in the pTrapT7 plasmid previously 

designed for bacterial expression of human trypsinogens [93, 94]. The coding DNA was PCR 

amplified from commercial I.M.A.G.E. clones and cloned into pTrapT7 using NcoI and SalI 

restriction sites. In all constructs the N-terminal secretory signal peptide was replaced with a 

Met-Ala sequence. In T20, the stop codon was changed from amber (TAG) to ochre (TAA). 

T7 was amplified from I.M.A.G.E. clone #30306963 (GenBank accession BC061093.1) 

using T7 NcoI sense (5'- AAA TTT CCA TGG CTC TCC CCC TGG ATG ATG ATG ATG 

-3', where the NcoI site is underlined) and T7 SalI antisense (5'- AAA TTT GTC GAC TTA 

GTT GGC AGC GAT GGT CTG CTG -3', where the SalI site is underlined) primers. T8 was 

amplified from I.M.A.G.E. clone #30306436 (GenBank accession BC061135.1) using T8 

NcoI sense (5'- AAA TTT CCA TGG CTT TCC CTG TGG ATG ATG ATG ACA -3', where 

the NcoI site is underlined) and T8 SalI antisense (5'- AAA TTT GTC GAC TTA GTT TGC 

AGC AAT GGT GTT TTG -3,' where the SalI site is underlined) primers. T9 was amplified 

from I.M.A.G.E. clone #6433372 (GenBank accession CF581321.1) using T8 NcoI sense and 

T9 SalI antisense (5'- AAA TTT GTC GAC TTA GTT TGC GGC AAT GGT GTC CTG -3', 

where the SalI site is underlined) primers. T20 was amplified from I.M.A.G.E. clone 

#6433384 (GenBank accession CF581305.1) using T20 NcoI sense (5'- AAA TTT CCA 

TGG CTT TCC CTG TGG ATG ATG ATG ACA -3', where the NcoI site is underlined) and 

T20 SalI antisense (5'- AAA TTT GTC GAC TTA GTT GTC AGC AAT TGT GTT CTG -3', 

where the SalI site is underlined) primers. Mutations p.L82A, p.R123H, and p.L149A in T7 

and p.R122H and p.F150S in T8 were created by overlap extension PCR and cloned into the 

pTrapT7 plasmid. 

Expression plasmids for mouse chymotrypsinogens carrying a 10His affinity tag were 

created in the pcDNA3.1(-) plasmid. The coding DNA for mouse chymotrypsinogen C (Ctrc) 
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Figure 2. Identification of major trypsinogen isoforms expressed by the mouse pancreas. 
Chromatographic separation of trypsinogen isoforms. Trypsinogens were purified from pancreas tissue 
extracts of CD-1 mice using ecotin affinity chromatography and the ecotin eluate was loaded onto a MonoS 
column equilibrated with 20 mM Na-acetate (pH 5.0). The column was developed with a linear gradient of 
0-0.5 M NaCl. Peaks were analyzed by SDS-PAGE, N-terminal sequencing and mass spectrometry. 

was PCR amplified from a cDNA preparation from CD-1 mouse pancreas, using mCTRC 

XhoI sense (5'-AAA TTT CTC GAG ACC TGA ACC ATG TTG GGA ATT ACA GTC-3', 

where the XhoI site is underlined) and mCTRC EcoRI antisense (5'-AAA TTT GAA TTC 

GGC GTC GAG ACT TCT GGA ACC GTC TCT-3', where the EcoRI site is underlined) 

primers and cloned into pcDNA3.1(-) using XhoI and EcoRI. A 10His affinity tag was added 

to the C terminus using gene synthesis (GenScript, Piscataway, NJ) and the XcmI and EcoRI 

sites. In this synthetic construct Leu268 was deleted to prevent autolytic cleavage of the His-

tag. The coding DNA for mouse chymotrypsinogen B (Ctrb, GenBank accession 

NM_025583.2) with a C-terminal 10His tag was custom synthesized (GenScript) and cloned 

into pcDNA3.1(-) using XhoI and BamHI. 

2.4.2. Purification and identification of trypsinogens from CD-1 mouse pancreas  

Pancreata (2-3) were homogenized in 10 mL of 20 mM Na-HEPES (pH 7.4) buffer, 

briefly sonicated, centrifuged at 13,500 rpm for 10 min and ~4 mL supernatant was loaded 

onto a 2 mL ecotin column. Ecotin is a pan-serine protease inhibitor from E. coli which can 

bind the inactive zymogen forms of pancreatic serine proteases [58, 79]. 

The ecotin column was washed with 20 mM Tris-HCl (pH 8.0), 0.2 M NaCl and 

trypsinogens were eluted with 50 mM HCl. The flow-through contained no trypsinogen, as 

judged by the lack of trypsin activity after incubation with enteropeptidase. The ecotin-eluate 

contained all trypsinogen isoforms and low levels of chymotrypsinogen and proelastase. Four 
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mL eluate was loaded onto a 2 mL MonoS column equilibrated with 20 mM Na-acetate (pH 

5.0) and trypsinogens were eluted with a 0-0.5 M NaCl gradient at 1 mL/min flow rate 

(Figure 2). The eluted proteins were separated by SDS-PAGE, transferred to PVDF 

membrane and individual bands were subjected to N-terminal protein sequencing by Edman 

degradation (Midwest Analytical, St. Louis, MO). Peaks corresponding to T8, T9 and T20 

were also subjected to in-gel digestion followed by LC-MS/MS mass spectrometry 

(ProtTech, Phoenixville, PA). Relative abundance of trypsinogen isoforms were calculated 

from the peak areas corrected for the ultraviolet extinction coefficient differences. The T9-T8 

peaks were also corrected for Ctrb contamination, which was determined from the relative 

trypsin and chymotrypsin activities after activation with enteropeptidase. Because of the poor 

separation of T8 and T9, these two isoforms were calculated as one. 

2.4.3. Expression and purification of trypsinogens 

Human cationic trypsinogen was expressed in the aminopeptidase P deficient LG-3 E. 

coli strain as fusions with a self-splicing mini-intein, as decribed in [53, 54]. Mouse 

trypsinogens were expressed in E. coli BL21(DE3), as described for human trypsinogens 

previously [93, 94]. Isolation of cytoplasmic inclusion bodies, in vitro refolding and 

purification with ecotin affinity chromatography were performed according to published 

protocols [53, 54, 58, 93, 94]. The preparations were more than 90% pure, as judged by SDS-

PAGE and Coomassie Blue staining. Concentrations of trypsinogen solutions were calculated 

from their UV absorbance at 280 nm using the following extinction coefficients: 37,525      

M-1cm-1 (human cationic trypsinogen), 39,140 M-1cm-1 (mouse T7), 34,670 M-1cm-1 (mouse 

T8 and T9) and 43,150 M-1cm-1 (mouse T20). 

2.4.4. Expression and purification of chymotrypsinogens 

Human CTRB2, mouse Ctrb and Ctrc carrying 10His affinity tags were expressed in 

transiently transfected HEK 293T cells using Lipofectamine® 2000 (Life Technologies) and 

purified from 450 mL conditioned medium using nickel-affinity chromatography as reported 

previously [105, 106]. Aliquots (75 µL) of the eluted 5 mL fractions were analyzed by 15% 

SDS-PAGE and Coomassie Blue staining and peak fractions with >90% purity were pooled 

and dialyzed for 72 hours against three changes of 1 liter of 0.1 M Tris-HCl (pH 8.0) buffer 

containing 150 mM NaCl. The dialyzed chymotrypsinogen solutions were concentrated using 

a Vivaspin 20 concentrator (10 kDa MWCO). Chymotrypsinogens were activated with 

trypsin and active chymotrypsin concentrations were determined by active site titration with 

ecotin, as described [104]. 
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2.4.5. Trypsinogen autoactivation 

Trypsinogen at 2 µM concentration was incubated in the absence or presence of 25 

nM chymotrypsin, as indicated. Autoactivation was induced by 10 nM trypsin in 0.1 M Tris-

HCl (pH 8.0), 1 or 10 mM CaCl2 and 0.05% Tween 20 (final concentrations) at 37 ºC. At 

given times, 1.5 µL aliquots were withdrawn and mixed with 48.5 µL assay buffer containing 

0.1 M Tris-HCl (pH 8.0), 1 mM CaCl2, and 0.05% Tween 20. Trypsin activity was measured 

by adding 150 µL 200 µM N-CBZ-Gly-Pro-Arg-p-nitroanilide substrate dissolved in assay 

buffer and following the release of the yellow p-nitroaniline at 405 nm in a SpectraMax 

plus384 microplate reader (Molecular Devices, Sunnyvale, CA) for 1 min. Reaction rates 

were calculated from fits to the initial linear portions of the curves. 

2.4.6. Trypsinogen activation with enteropeptidase 

Complete activation of 2 µM trypsinogen (100 mM Tris-HCl (pH 8.0), 10 mM CaCl2 

and 0.05% Tween 20 as final concentrations) was carried out using 140 ng/mL final 

concentration of human enteropeptidase (R&D Systems, Minneapolis MN) on 37 ºC for 1 

hour. Maximal trypsin activity was measured as described above. This activity was 

designated as 100% and trypsin activity measured in autoactivation experiments was 

expressed relative to this value. The 100% values corresponded to 500 (T7), 400 (T8), 400 

(T9) and 300 (T20) mOD / min readings. 

2.4.7. SDS polyacrylamide gel electrophoresis 

Seventy-five µL of 2 µM trypsinogen samples were precipitated with 10 % 

trichloroacetic acid (final concentration). After centrifugation at 13.000 rpm for 10 minutes, 

the supernatant was discarded and the precipitate was dissolved in 15 µL Laemmli sample 

buffer (20% glycerol, 120 mM Tris, pH=6.8, 2% SDS, 0.003% bromphenol blue) containing 

100 mM DTT (final concentration). The precipitate was heat-denatured at 95 °C for 5 min. 

15% SDS-PAGE mini gels (running gel: 15% acrilamide, 375 mM Tris, 0.1% SDS, pH=8.8 

and stacking gel: 5% acrilamide, 125 mM Tris, 0.1% SDS, pH=6.8) were used for 

electrophoretic separation in standard Tris-glycine buffer (24.76 mM Tris, 19.18 mM glycine 

and 0.1 % SDS). Gels were stained with Coomassie blue (containing 3 grams of Brilliant 

Blue R-250 dissolved in 50% methanol and 10% acetic acid). The Coomassie stained gels 

were destained in a solution containing 60% methanol and 10% acetic acid as described 

earlier [56]. Quantitation of bands was carried out with the GelDoc XR+ gel documentation 

system and Image Lab 3.0 software (Bio-Rad, Hercules, CA). 
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3. RESULTS 

3.1. α-DEFENSINS IN DIABETES 

3.1.1. Plasma levels of HNP1-3 in patients with type 1 and type 2 diabetes 

Plasma levels of α-defensin -human 

neutrophil peptide- (HNP1-3) in 50 

patients with type 1 and in 60 patients 

with type 2 diabetes were determined and 

compared to 50 healthy blood donors. 

There was high individual variation in 

plasma levels of α-defensin, but a 

significant difference between healthy 

subjects and both groups of diabetic 

patients was observed. The mean value ± 

S.E.M. was 28.78 ± 4.2 ng/mL in type 1 

diabetes, and 29.82 ± 5.36 ng/mL in type 

2 diabetes, versus 11.94 ± 2.96 ng/mL in 

controls; p<0.01 respectively. No 

significant difference was found 

concerning the high plasma 

concentrations of HNP 1-3 between the 

patients with type 1 and type 2 diabetes 

(Figure 3). 

3.1.2. Plasma levels of HNP1-3 in 

diabetic patients with complications 

Subsequent investigations were 

focused on the generally high levels of 

HNP1-3 found in the peripheral blood of 

both group (type 1 and type 2) of diabetic 

patients, which were further divided in subgroups with different diabetes-related 

complications. Nephropathy was diagnosed in 71 patients (32 with type 1 and 39 with type 2 

diabetes), and neuropathy in 95 cases (35 with type 1 and 60 with type 2 diabetes). 115 

 
Figure 3. Plasma levels of human neutrophil 

peptides (HNP1-3) in patients with type 1 and type 

2 diabetes (DM1 and DM2) and healthy controls. 
The lines represent the mean plasma levels of HNP1-3. 
Significant differences determined by Mann-Whitney 
test are indicated. 

 
 

Figure 4. Plasma levels of human neutrophil 

peptides (HNP1-3) in diabetic patients with 

different complications relative to those without 

complications, and to healthy controls. Mean and 
S.E.M. are indicated; significant differences between 
groups were determined by unpaired t test. 
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patients suffered from retinopathy (47 with type 1, and 68 with type 2 diabetes), 54 patients 

(14 with type 1 diabetes, 40 with type 2 diabetes) had cardiovascular diseases and 182 (50 

with type 1 and 132 with type 2 diabetes) had hypertension. Data of these subgroups 

concerning HNP1-3 levels were compared with 67 patients who did not suffer from these 

complications, and with the data of 100 healthy subjects (Figure 4). The highest 

concentrations of α-defensin levels were found in diabetic patients with nephropathy (49.4 ± 

4.8 ng/mL), and with neuropathy (38.7 ± 4.8 ng/mL) or with cardiovascular complications 

(45.6.± 1.45 ng/mL) which were significantly higher in comparison with HNP1-3 plasma 

levels of diabetic patients without complications (25.4 ± 3.5 ng/mL). These data are in 

accordance with previous observations [50, 95] reporting high level of HNP 1-3 in type 1 

diabetic patients with cardiovascular mortality, or in type 1 diabetic patients with 

nephropathy. These results suggest that in diabetic complications, such as nephropathy, 

neuropathy and cardiovascular diseases, HNP 1-3 is elevated in the circulation independently 

of the type of diabetes. In summary, all of the diabetic patients, with or without complications 

exerted significantly higher levels of HNP1-3 in their plasma, than controls.(Figure 4) 

3.1.3. Copy number poly-

morphism of DEFA1/DEFA3 

The cumulative copy 

numbers of DEFA1/DEFA3 were 

detected using quantitative PCR 

analysis. From the control 

population 133 DNA samples were 

used for copy number 

determination, and 100-100 DNA 

samples of diabetic patients with 

type 1 or type 2 diabetes were 

investigated. There was no 

significant difference in 

DEFA1/DEFA3 copy number between controls and patients or between patients in the two 

types of diabetes groups (Figure 5). In the control group DEFA1/DEFA3 copy numbers 

ranged from 4 to 15 per genome, with a median number of 10 copies. The median copy 

number of DEFA1/DEFA3 in the patients with type 1 diabetes was 10 copies per genome 

(from 5 to 16 copies) and the median copy number of DEFA1/DEFA3 in patients with type 2 

 
Figure 5. Genomic copy number of DEFA1/DEFA3 in 

patients with diabetes and in healthy blood donors. 
Quantitative box-plot analysis (median, minimum, maximum 
value, 25% and 75% percentiles) of DEFA1/A3 copy numbers 
determined in  DNA samples from 133 controls, 100 patients 
with type 1 diabetes (DM1) and 100 patients with type 2 
diabetes (DM2). 
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diabetes was also 10 (ranging from 5 to 15). No significant correlation was observed between 

α-defensin plasma levels and genomic DEFA1/DEFA3 copy numbers (r2 = 0.01; Figure 6). 

3.1.4. DEFA1/DEFA3 gene expression 

Furthermore, determination of relative mRNA expression levels of DEFA1/DEFA3 in 

peripheral leukocytes from diabetic patients was carried out. DEFA1/DEFA3 mRNA were 

obtained from blood samples of patients (10 with type 1 and another 10 with type 2 diabetes). 

Relative expression levels of 

DEFA1/DEFA3 were compared 

to the DEFA1/DEFA3 copy 

number of the same patients. Our 

data support that peripheral 

leukocytes have the ability to 

transcribe DEFA1/DEFA3 genes 

and to produce HNP1-3 peptides. 

However, no positive correlation 

was observed between the copy 

numbers and the expression 

levels of the human neutrophil 

peptide 1-3 (Figure 7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Relative mRNA expression levels of DEFA1/DEFA3 

in diabetic patients versus copy numbers of DEFA1/DEFA3. 
The DEFA1/A3 copy numbers were determined by quantitative 
PCR analysis and compared to the DEFA1/DEFA3 mRNA 
measured by RT-PCR of the same patient (10 with type 1 and 10 
with type 2 diabetes). 

 
Figure 6. Plasma levels of human neutrophil peptides (HNP1-

3) in diabetic patients versus copy number of 

DEFA1/DEFA3. The DEFA1/A3 copy number were determined 
by quantitative PCR analysis and compared to the HNP1-3 
plasma level of the same patient (50 with type 1 and 50 with type 
2 diabetes). 
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3.2. DEFB1 C.-20G>A, C.-52G>A AND C.-44C>G POLYMORPHISMS IN 

DIABETES 

The distribution of the DEFB1 c.-20G>A genotypes (Table 1) was in accordance with 

the Hardy-Weinberg equilibrium both in the control population and in the patients.(p = 0.449 

and p = 0.989, respectively). There was no significant difference in genotype distribution 

between the patients overall and the healthy controls. Similarly, no significant differences in 

genotypes were observed when the patients were grouped as type 1 and type 2 diabetes 

mellitus.  

As to the DEFB1 c.-52G>A SNP (Table 2), distribution of the genotypes was in 

accordance with the Hardy-Weinberg equilibrium both in the control population and in the 

patients (p=0.610 and p=0.065 respectively). We did not detect significant differences in 

genotypes between the patients and the controls, neither in type 1 diabetes, nor in type 2 

diabetes. 

Table 1. DEFB1 c.-20G>A genotypes in patients with diabetes 

 GG GA AA χ2 test* 

Patients with diabetes  
n = 257 

82 (32 %) 131 (51 %) 44 (17 %) 0.568 

Type 1 diabetes 
n = 117 

36 (31 %) 60 (51 %) 21 (18 %) 0.775 

Type 2 diabetes 
n = 140 

46 (33 %) 71 (51 %) 23 (16 %) 0.573 

Controls 
n = 200 

62 (31 %) 96 (48 %) 42 (21 %)  

 
* chi square test versus control 

Table 2. DEFB1 c.-52G>A genotypes in patients with diabetes 

 GG GA AA χ2 test* 

Patients with diabetes 
n = 257 

114 (44 %) 104 (40 %) 39 (15 %) 0.572 

Type 1 diabetes 
n = 117 

52 (44 %) 47 (40 %) 18 (17 %) 0.702 

Type 2 diabetes 
n = 140 

62 (44 %) 57 (41 %) 21 (15 %) 0.658 

Controls 
n = 200 

80 (40 %) 84 (42 %) 36 (18 %)  

 
* chi square test versus control 
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Table 3. DEFB1 c.-44G>C genotypes in patients with diabetes 

 CC CG GG χ2 test* 

Patients with diabetes 
n = 257 

156 (61 %)+ 95 (37 %) 6 (2 %) ** 0.002 

Type 1 diabetes 
n = 117 

70 (60 %) 44 (37 %) 3 (2.5 %) 0.01 

Type 2 diabetes 
n = 140 

86 (61 %) 51 (36 %) 3 (2 %) 0.003 

Controls 
n = 200 

90 (45 %) 92 (46 %) 18 (9 %)  

 
* chi square test versus control 
** Fisher test versus control p = 0.001, OR = 9.136, 95 % CI: 3.512 – 23.82 
+ Fisher test versus control p = 0.0009, OR = 2.005, 95 % CI: 1.218- 2.746 
 

The genotypic distribution of DEFB1 c.-44C>G polymorphism is shown in Table 3, 

where the distribution of genotypes was also in accordance with the Hardy-Weinberg 

equilibrium among the patients with diabetes (p =0.610, χ2 = 0.260) and also in the control 

population (p=0.597, χ2=0.279). There was a significant difference in genotype distribution 

between patients and healthy controls (χ2 test, p = 0.002). The frequency of GG genotype was 

significantly lower in both types of diabetes (2.5% and 2%, respectively) than in healthy 

controls (9%), (Fisher test versus control p=0.002, OR=4.121, 95% CI: 1.604 – 10.59). 

Conversely, the prevalence of the CC genotype was 61% in the group of diabetic patients vs. 

45 % of controls (Fisher test: p = 0.02, OR = 2.055, 95% CI: 1.27 – 3.745). When the patients 

were sorted according to their diabetic complications, lower frequency of GG genotype 

among the patients with nephropathy and among the patients with neuropathy was found 

(1.4% and 1% respectively). 

3.3. RESULTS OF MOUSE TRYPSINOGEN EXPERIMENTS 

3.3.1. Identification of major trypsinogen isoforms in the mouse pancreas 

Ecotin affinity chromatography was used to purify trypsinogen isoforms from the 

mouse pancreas. Outbred CD-1 mice expressed 4 trypsinogen isofroms to high levels (T7, 

T8, T9 and T20), which were identified from homogenized whole mouse pancreata using N-

terminal sequenceing and mass spectrometry. Trypsinogens were eluted under acidic 

conditions from the ecotin column and immediately loaded onto a MonoS cation exchange 

column equilibrated with 20 mM Na-acetate (pH 5.0). The MonoS column was developed 

with a NaCl gradient, resulting in five peaks (Figure 2). 
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Figure 8. Strategy for the the identification of mouse trypsinogen isoforms by N-terminal sequencing. 
T4, T5, T7 and T12 trypsinogens have unique N-termini which allowed us to distinguish them from other 
isoforms, which were identical in their N-terminal sequences. Therefore, these isoforms were activated to 
trypsin, which allowed us to distinguish them from each other by N-terminal sequencing. Unique amino acid 
residues in the N-terminal sequence of given isoforms are in red letters. 

Edman-degradation identified the small fourth peak as elastase 3 (N terminus is 

CGQPS) and the large fifth peak as the cationic T7 trypsinogen isoform, which has a unique 

N-terminal sequence, LPLDD (Suppl. Figure 1 and Suppl. Figure 2A). The same N-termini 

(FPVDD) was observed in case of the other three peaks, which proved to be trypsinogens. 

These were subjected to in-gel tryptic digestion followed by mass spectrometric 

nanosequencing, which revealed the identity of the first peak as isoform T20. The second and 

third peaks were indistinguishable from each other, however it was proven that they are T9 

and T8 isoforms (Figure 2), which are almost identical in their amino-acid sequence (99% 

identity, Suppl. Figure 1 and Suppl. Figure 2B). They had a slight difference in their ionic 

character, which helped to assign T9 as the second peak and T8 as the third peak. 

Identification strategy of trypsinogen isoforms based on N-terminal sequenceing is 

shown in Figure 8. N-terminal sequencing of the combined second/third peaks after 

activation of trypsinogen to trypsin indicated a mixture of Val/Ile amino-acids at position 35 

(IVGGYTCRENS(V/I)P), with a preponderance of Val, confirming that the smaller second 

peak is T9 (containing Ile35) and the larger third peak is T8 (containing Val35) (Figure 2). 

Both N-terminal sequencing (CGVPA) and mass spectrometry indicated that the T9/T8 peaks 

were contaminated with some Ctrb. Quantitative evaluation of trypsinogen peaks were 

performed as described under Patients and Methods and the following relative expression 

levels were obtained (mean±SD, n=4): 41 ± 1 % for T7; 47 ± 3 % for T8 and T9 combined 

and 12 ± 2 % for T20. 
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Figure 9. Autoactivation of mouse trypsinogens. Trypsinogens 
were incubated at 2 µM concentration with 10 nM initial trypsin 
in 0.1 M Tris-HCl (pH 8.0), 1 mM CaCl2, (A) or 10 mM CaCl2 
(B) and 0.05% Tween 20, at 37 °C. Aliquots (1.5 µL) were 
withdrawn at the indicated times and trypsin activity was 
determined as described in Patients and Methods. Trypsin 
activity was expressed as percentage of the maximal activity 
determined by full activation with enteropeptidase. 
Representative experiments from four replicates are shown. 

3.3.2. Autoactivation of mouse trypsinogens. 

Large-scale purification of different trypsinogen isoforms from the mouse pancreas is 

impractical and preparations may be contaminated with low levels of other pancreatic 

proteases. In contrast, recombinant expression should provide highly purified, homogeneous 

enzyme preparations. Reliable methodology for the expression and purification of human 

trypsinogens [93, 94] is well known and the same approach has been used to obtain 

functionally competent mouse trypsinogen preparations. Trypsinogens were expressed in E. 

coli as inclusion bodies, renatured 

in vitro and purified by ecotin-

affinity chromatography. When 

mouse trypsinogens were 

incubated in 1 mM CaCl2 at pH 

8.0, isoforms T7, T8 and T9 

autoactivated and reached about 

40-60% of potentially attainable 

trypsin levels, indicating that 

some autocatalytic (trypsin-

mediated) degradation occurred 

(Figure 9A) during 

autoactivation. In contrast, T20 

did not autoactivate under these 

conditions. As expected, high 

concentrations of calcium (10 

mM) increased the rate of 

autoactivation and stabilized 

trypsinogens against degradation, 

yielding 80-100% of attainable 

trypsin levels. The stimulatory 

effect of calcium on the 

autoactivation of T20 was 

particularly striking (Figure 9B). 
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Figure 10. Effect of mouse chymotrypsin C (Ctrc) on mouse trypsinogen T7. (A) Autoactivation was 
measured in 1 mM and 10 mM CaCl2, in the absence (solid symbols) or presence (open symbols) of 25 nM 
mouse Ctrc, as described in Patients and Methods. (B) SDS-PAGE analysis of autoactivation in 1 mM CaCl2. 
Samples were withdrawn at the indicated time points, precipitated with trichloroacetic acid, electrophoresed and 
stained as described in Patients and Methods. (C) Cleavage of T7 trypsinogen by 25 nM mouse Ctrc. 
Incubations were performed with 2 µM trypsinogen in 0.1 M Tris-HCl (pH 8.0) in the absence or presence of 10 
mM CaCl2. Samples were precipitated with trichloroacetic acid and analyzed by SDS-PAGE and Coomassie 
blue staining. Representative experiments from three replicates are shown. (D) Cleavage of the activation 

peptide of trypsinogen T7 by mouse Ctrc. Primary structure of the native T7 activation peptide with 
proteolytic cleavage sites for Ctrc and trypsin are also indicated. Note that the N-terminal amino acid of mature 
trypsinogen is Leu16, as the 15 amino-acid long secretory signal peptide is removed in the endoplasmic 
reticulum. Trypsinogen was incubated at 2 µM concentration with 25 nM Ctrc in 0.1 M Tris-HCl (pH 8.0) and 0 
or 10 mM CaCl2 (final concentrations), at 37 °C. To prevent autoactivation, 25 nM human SPINK1 trypsin 
inhibitor was included. At the indicated times reactions were terminated by precipitation with 10% 
trichloroacetic acid (final concentration) and samples were analyzed by 15% non-reducing SDS-PAGE and 
Coomassie Blue staining. Relevant segments of representative gels (from two replicates) demonstrate the small 
mobility shift of the trypsinogen band caused by Ctrc-mediated cleavage of the Leu18-Asp19 peptide bond. 
Note that the rapid rate of cleavage is partly due to the added Met-Ala sequence at the N terminus of 
recombinant T7.  
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3.3.3. Effect of mouse Ctrc on T7 trypsinogen 

Mouse chymotrypsin C (Ctrc) in 25 nM final concentration reduced the final mouse 

T7 trypsin levels by ~35% during autoactivation in 1 mM CaCl2, while in 10 mM CaCl2 it 

slightly stimulated the rate of autoactivation (Figure 10A). 

In the absence of Ctrc, SDS-PAGE analysis of the autoactivation reaction in 1 mM 

calcium confirmed conversion of the T7 trypsinogen band to trypsin and also indicated 

degradation fragments generated by cleavages of trypsin-sensitive peptide bonds Arg123-

Val124 and Lys194-Asp195 (Figure 10B, left panel, see also Suppl. Figure 1 and Suppl. 

Figure 2A). These were identified by N-terminal sequencing, similarity to the published 

degradation fragments of rat anionic trypsinogen-2 [92] and comparison of the banding 

pattern with that of the T7 p.R123H mutant (Figure 12). Note that because of an extra amino 

acid in the activation peptide of T7, amino-acid numbering is shifted by one relative to 

human and other mouse trypsinogens (Suppelementary Figure 1). Cleavage after Arg123 

should result in a fully active, two-chain trypsin [55, 67], whereas cleavage after Lys194 

causes inactivation [92, 101]. Ctrc caused a small shift of the T7 trypsinogen band, 

suggesting cleavage of the activation peptide (Figure 10B, right panel). In addition, the 

banding pattern of degradation fragments became more complex, which is consistent with the 

lower trypsin activity attained during autoactivation in 1 mM calcium in the presence of Ctrc. 

To identify Ctrc-mediated cleavages of trypsinogen, digestion experiments with short 

incubation times was performed; when no trypsinogen activation took place yet and no 

trypsin activity was present. Under these conditions, slow cleavage of the Leu149-Ser150 

peptide bond in the autolysis loop was observed in the absence of calcium (Figure 10C, left 

panel) and this was completely inhibited by 10 mM calcium (Figure 10C, right panel, see also 

Suppl. Figure 2A). The Leu82-Glu83 peptide bond (corresponding to Leu81-Glu82 in human 

trypsinogens and other studied mouse isoforms) in the calcium binding loop was not cleaved 

to a detectable extent. This finding suggested that in T7 the moderate degradation observed 

during autoactivation in 1 mM calcium in the presence of Ctrc is mediated by cleavage of the 

Leu149-Ser150 peptide bond. To confirm this assumption, we compared autoactivation of the 

T7 p.L82A and p.L149A mutants in 1 mM calcium and found that only mutation p.L149A 

protected against degradation in the presence of Ctrc (Figure 11). Interestingly, mutant 

p.L82A suffered Ctrc-dependent degradation during autoactivation to an even larger extent 

than wild type T7. 
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Figure 11. Effect of mutations p.L82A and p.L149A on mouse trypsinogen T7. (A) Autoactivation was 
measured in 1 mM CaCl2 as described in Patients and methods. Trypsin activity was expressed as 
percentage of the maximal activity determined by full activation with enteropeptidase. (B) Cleavage of wild 

type and p.L82A T7 trypsinogen by 25 nM mouse Ctrc. (C) Cleavage of wild type and p.L149A T7 

trypsinogen by 25 nM mouse Ctrc. Incubations were performed with 2 µM trypsinogen in 0.1 M Tris-HCl 
(pH 8.0) in the absence of calcium. Trypsinogen samples were precipitated with 10% trichloroacetic acid 
(final concentration) and analyzed by SDS-PAGE and Coomassie blue staining. Representative experiments 
from two replicates are shown. 

3.3.4. N-terminal processing of T7 trypsinogen by mouse Ctrc 

Among the activation peptide sequences of mouse trypsinogens only T7 contains a 

potentially Ctrc-sensitive peptide bond, Leu18-Asp19 (Suppl. Figure 1 and Suppl. Figure 

2A). Inspection of Figure 10B revealed that the T7 trypsinogen band became slightly shifted 

as a result of treatment with Ctrc, suggesting that the activation peptide might be cleaved at 

Leu18-Asp19. When the samples were run under non-reducing conditions, the mobility shift 

caused by N-terminal processing of the T7 activation peptide became more apparent (Figure 

10D) and N-terminal sequencing confirmed the predicted cleavage site. However, in contrast 
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Figure 12. Effect of mutation p.R123H on mouse trypsinogen T7. (A) Autoactivation was measured in 1 
mM CaCl2 as described in Pateints and methods. Trypsin activity was expressed as percentage of the 
maximal activity determined by full activation with enteropeptidase. (B) SDS-PAGE analysis of the 

autoactivation reaction. Samples were withdrawn at indicated times, precipitated with trichloroacetic acid, 
electrophoresed and stained as described in Pateints and methods. (C) Cleavage of wild-type and p.R123H 

T7 trypsinogen by 25 nM mouse Ctrc. Incubations were performed with 2 µM trypsinogen in 0.1 M Tris-
HCl (pH 8.0) in the absence of calcium. Samples were precipitated with trichloroacetic acid and analyzed by 
SDS-PAGE and Coomassie blue staining. Cleavage products were identified with N-terminal sequencing. 
Representative experiments from two replicates are shown. 

to human cationic trypsinogen, the rate of autoactivation of N-terminally processed T7 was 

only negligibly stimulated (see Figure 10A, 10 mM calcium panel), indicating that Ctrc does 

not regulate activation of mouse trypsinogens through cleavage of the activation peptide. 

3.3.5. Effect of the p.R123H mutation on T7 trypsinogen.  

Mutation p.R123H protected T7 trypsinogen against degradation during 

autoactivation in 1 mM calcium in the presence of Ctrc (Figure 12); however, it had no effect 

on the cleavage of the Leu149-Ser150 peptide bond per se. This observation indicates that 
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Figure 13. Effect of mouse chymotrypsin C (Ctrc) on mouse trypsinogen T8. (A) Autoactivation was 
measured in 1 mM and 10 mM CaCl2, in the absence (solid symbols) or presence (open symbols) of 25 nM 
mouse Ctrc, as described in Patients and Methods. Where indicated, 2 µL of 1.4 µg/mL human 
enteropeptidase (EP) was added. (B) SDS-PAGE analysis of the autoactivation reaction in 1 mM CaCl2. 
Samples were withdrawn at indicated times, precipitated with trichloroacetic acid, electrophoresed and 
stained as described in Patients and Methods. (C) Cleavage of trypsinogen by 25 nM mouse Ctrc. 

Incubations were performed with 2 µM trypsinogen in 0.1 M Tris-HCl (pH 8.0) in the absence or presence 
of 10 mM CaCl2. Samples were precipitated with trichloroacetic acid and analyzed by SDS-PAGE and 
Coomassie blue staining. Cleavage products were identified with N-terminal sequencing. In the absence of 
calcium (left panel), the faint bands above and below the major cleavage products correspond to fragments 
of trypsinogen cleaved at the Leu81-Glu82 peptide bond. The faint band visible in the presence of 10 mM 
calcium (right panel) could not be identified. Representative experiments from three replicates are shown. 

moderate degradation of T7 during autoactivation is due to the combined effects of Ctrc-

mediated and tryptic cleavages after Leu149 and Arg123, respectively (Suppl. Figure 2A). 

3.3.6. Effect of mouse Ctrc on T8 and T9 trypsinogen 

Mouse Ctrc almost completely inhibited autoactivation of T8 and T9 trypsinogen in 1 

mM calcium and markedly reduced it in 10 mM calcium (Figures 13, 14). This inhibitory 

effect was not due to degradation, as addition of enteropeptidase to the Ctrc-treated samples 
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Figure 14. Effect of mouse chymotrypsin C (Ctrc) on mouse trypsinogen T9. See Figure 13 for 
experimental details. 

resulted in the appearance of highly significant trypsin activity. SDS-PAGE analysis of 

autoactivation in 1 mM calcium, in the absence of Ctrc, demonstrated conversion of 

trypsinogen to trypsin with the characteristic degradation fragments generated by tryptic 

cleavage of the Arg122-Val123 and Lys193-Asp194 peptide bonds (Figures 13B, 14B, left 

panel, see also Suppl. Figure 2B). In dramatic contrast, when autoactivation was followed in 

the presence of Ctrc, no trypsin band or any of the tryptic degradation bands were observed. 

Instead, Ctrc rapidly and completely cleaved T8 and T9 trypsinogen at a single site, which N-

terminal sequencing revealed as the Phe150-Gly151 peptide bond (Figures 13B, 14B, right 

panel, see also Suppl. Figure 2B). This peptide bond lies within the so-called autolysis loop, a 

flexible segment between residues 146 and 154 (Suppl. Figure 1). When cleavage of T8 and 

T9 trypsinogen by Ctrc was studied with short incubation times (i.e. before autoactivation 

occurred), both isoforms were primarily cleaved at the Phe150-Gly151 peptide bond, with 
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Figure 15. Effect of mouse chymotrypsin B (Ctrb) on mouse trypsinogen T8. (A) Autoactivation was 
measured in 1 mM CaCl2 as described in Patients and Methods, in the absence or presence of 25 nM mouse 
Ctrb or Ctrc, as indicated. (B) Cleavage of trypsinogen by 25 nM Ctrb and Ctrc was compared in the 
absence of calcium, as described in Figure 13C. Representative experiments from two replicates are shown. 
(C) The disappearance of the intact trypsinogen band was quantitated by densitometry and data from two 
experiments were plotted. For clarity, error bars were omitted, the error was within 10% of the mean.  

minimal cleavage observed at the Leu81-Glu82 peptide bond in the absence of calcium 

(Figures 13C, 14C). Cleavage of the Phe150-Gly151 peptide bond was slower but still readily 

detectable in 10 mM calcium. 

 

3.3.7. Cleavage of the Phe150-Gly151 peptide bond by mouse chymotrypsin B (Ctrb) 

Regulation of autoactivation of human cationic trypsinogen by human CTRC is 

highly specific and other chymotrypsins and elastases do not cleave the CTRC cleavage sites. 

To test whether the same Ctrc specificity exists in the mouse, we compared the effect of 
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Figure 16. Effect of mutation p.R122H on mouse trypsinogen T8. (A) Autoactivation of wild-type and 
p.R122H mutant T8 trypsinogen was measured in 1 mM CaCl2 as described in Patients and Methods. (B) 
The effect of 25 nM mouse Ctrc on the autoactivation of the p.R122H mutant T8. Conditions were the same 
as in panel A. (C) Cleavage of wild-type and p.R122H mutant T8 trypsinogen by 25 nM mouse Ctrc in the 
absence of calcium. Samples were incubated and analyzed as described in Figure 13C. Representative 
experiments from two replicates are shown. 

mouse Ctrb and Ctrc on T8 trypsinogen. As shown in Figure 15A, autoactivation of T8 was 

much less effectively inhibited by 25 nM Ctrb than by an equimolar concentration of Ctrc. In 

degradation experiments, Ctrb cleaved the Phe150-Gly151 peptide bond at a more than 7-fold 

slower rate than Ctrc (Figures 15B and 15C). 

3.3.8. Effect of the p.R122H mutation on T8 trypsinogen 

Mutation p.R122H slightly stimulated autoactivation of T8 trypsinogen in 1 mM 

calcium, in the absence of Ctrc (Figure 16A). In the presence of Ctrc, however, autoactivation 

was strongly inhibited by Ctrc, approximately to the same extent as seen with wild type T8 
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(Figure 16B, cf. Figure 13A). Consistent with the robust inhibitory effect, the Phe150-Gly151 

peptide bond was cleaved by Ctrc almost as well in T8 p.R122H trypsinogen as in wild type 

T8 (Figure 16C), indicating that mutation p.R122H does not influence this regulatory 

mechanism. 

3.3.9. Cleavage of the autolysis loop in the p.S150F human cationic trypsinogen 

mutant inhibits autoactivation 

The majority of mammalian trypsinogens do not contain Phe150 in their autolysis 

loop. To test whether introduction of Phe150 would reconstitute the chymotrypsin-dependent 

 
 

Figure 17. Effect of human chymotrypsin B2 (CTRB2) on the autoactivation of wild-type and p.S150F 

mutant human cationic trypsinogen (Hu1). (A, B) Autoactivation was measured in 1 mM CaCl2, in the 
absence or presence of 25 nM CTRB2, as described in Patients and Methods. (C) Cleavage of wild-type and 
p.S150F mutant human cationic trypsinogen by 25 nM CTRB2 in the absence of calcium. Incubations were 
performed and samples were analyzed as given in Figure 13C. To prevent autoactivation, 25 nM human 
SPINK1 trypsin inhibitor was included. Representative experiments from two replicates are shown. 
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autoactivation inhibition in another mammalian trypsinogen, we mutated Ser150 in human 

cationic trypsinogen to Phe. Because human CTRC cleaves the Leu81-Glu82 peptide bond 

and causes trypsinogen degradation, we used human CTRB2 to selectively cleave the newly 

created Phe150-Gly151 peptide bond. CTRB2 at 25 nM concentration had no effect on the 

autoactivation of wild type cationic trypsinogen (Figure 17A), whereas it inhibited activation 

of the p.S150F mutant (Figure 17B), via cleavage at the Phe150-Gly151 peptide bond (Figure 

17C). 

3.3.10. Effect of mouse Ctrc on T20 trypsinogen 

Mouse Ctrc had essentially no effect on trypsinogen T20, except for a slight 

stimulation of the activation rate in 10 mM calcium (Suppl. Figure 3A). On SDS-PAGE, no 

trypsinogen to trypsin conversion was evident in 1 mM calcium, in the absence or presence of 

Ctrc (Suppl. Figure 3B). Note that T20 trypsinogen ran as a doublet on gels, which seem to 

represent differently denatured conformers, as N-terminal sequencing and mass spectrometry 

indicated molecular homogeneity (not shown). Finally, cleavage of T20 with Ctrc resulted in 

very faint degradation bands even in the absence of calcium, indicating that this isoform is 

resistant to Ctrc (Suppl. Figure 3C). 
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4. DISCUSSION 

4.1. RELEVANCE OF α-AND β-DEFENSINS IN DIABETES MELLITUS 

4.1.1. The role of α-defensins 

In this work, HNP1-3 levels from the plasma of venous blood were measured. From 

the buffy coat, copy number variation and mRNA expression levels of DEFA1/DEFA3 genes 

of the same individual were investigated. Intriguingly, our results showed significantly higher 

HNP 1-3 plasma levels in patients with both type 1 and type 2 diabetes mellitus compared to 

healthy controls. Moreover, the plasma of diabetic patients with nephropathic and 

neuropathic complications showed the highest concentrations of HNPs. It seems possible that 

the elevation of HNP1-3 in the plasma of patients with nephropathy is the consequence of the 

decreased renal degradation of the peptides together with advanced nephropathy [95]. The 

cause of high levels of HNP1-3 in patients with neuropathy in type 1 and type 2 diabetes 

remains unknown.  

Further investigations were performed in order to clarify whether increased gene 

expression was responsible for the elevated plasma levels of α-defensins. In our study no 

correlation was observed between HNP1-3 plasma levels and copy numbers of 

DEFA1/DEFA3 genes. The effect of copy number variations in DEFA1/DEFA3 on the 

disease or even on the plasma concentrations of the peptides remain unclear. 

There are contradictory data about the correlation between DEFA1/DEFA3 copy 

numbers and α-defensin peptide concentrations. Linzmeier and Ganz [61] showed that the 

HNP1-3 peptide levels in human neutrophils were proportional to the copy number of the 

DEFA1 and DEFA3 genes. Copy numbers of DEFA1/DEFA3 may be proportional to the 

intracellular levels of HNP1-3 in neutrophil granulocytes, but possibly not to the circulating 

HNP1-3 levels. Additionally, a recent study in septic patients [21] showed the discrepancy 

between gene copy number and protein levels. There are several possibilities to explain why 

DEFA1/DEFA3 copy numbers and HNP 1-3 plasma levels are not correlated. The human     

α-defensins are stored primarily in the granules of neutrophils and released into the 

circulation during the activation of neutrophils. Also, yet unrevealed transcriptional 

mechanisms or an increased distance between the regulators of the genes might modulate the 

expression of these genes [21, 45]. 

In our study no significant correlation was observed between the genomic copy 

number variation of DEFA1/DEFA3 and the mRNA expression levels (Figure 7), suggesting 
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that degranulation rather than increased gene expression may be responsible for increased 

HNP plasma levels in diabetes. In a study by Aldred et al. [1] the combined expression levels 

of DEFA1/DEFA3 and the genomic copy number were also not correlated, suggesting the 

superimposed influence of trans-acting factors. It is noteworthy that there are several 

examples for the abscence of correlation between copy number polymorphisms and relative 

transcription levels [45]. 

These results are in a good correlation with our recent observations, suggesting that 

modulation of the HNP1-3 secretion by neutrophils following kynurenic acid treatment might 

be independent from the mRNA expression levels of DEFA1 / DEFA3 [110]. 

In a recent study, eosinophils with active α-defensin production have been detected in 

capillary blood of diabetic patients [73]. In this investigation eosinophils but not neutrophils 

displayed augmentation of transcriptional activation of α-defensin expression. In our study 

the majority of the cells in peripheral venous blood were neutrophils, therefore our purified 

DNA and RNA samples were derived also mostly from neutrophils. 

4.1.2. Polymorphisms of β1-defensin gene 

The present study has demonstrated that the distribution of DEFB1 c.-44C>G 

genotypes were different between patients with diabetes and healthy controls. Our results 

showed that the frequency of the GG genotype was significantly higher in the control 

population. The presence of G allele might lead to strengthened HBD1 antimicrobial activity, 

which is less frequent among patients with diabetes. The G allele of the c.-44C>G SNP 

generates a putative binding site for nuclear factor-κB (NF-κB), and induces overexpression 

of HBD1 gene. The proposed effect of this SNP could partially explain why the GG genotype 

was considered to be a protective genotype in atopic dermatitis [84] and also in case of 

Candida colonization in diabetic patients [51]. Conversely, in these studies subjects carrying 

the CC genotype were at a greater risk of aquiring infection. Recently, it has been suggested 

that the C allele of c.-44C>G SNP probably abrogates NF-κB-dependent DEFB1 

upregulation [85]. 

These earlier observations are consistent with our present finding that the GG 

genotype could also be protective in diabetes, and the presence of CC genotype might be 

connected with lower expression of human β1-defensin. Among 257 patients with diabetes, 

only 6 (2%) were GG homozygotes, and 61% of the patients were CC homozygotes, 

comparing with 45% of CC homozygotes in control group. Furthermore, the number of GG 

homozygotes was even less (1%) in nephropathy and neuropathy. These observations draw 
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attention to the importance of DEFB1 polymorphisms in diabetes, especially in case of 

nephropathy and neuropathy. High blood glucose itself can result in low levels of β-defensin 

[35] and as it was earlier mentioned, its expression might be downregulated in humans 

carrying the C allele of c.-44C>G polymorphism. It is noteworthy that insulin is also an 

important factor mediating HBD-1 expression [12]. 

Taken together, in our study elevated levels of α-defensin (HNP1-3) was observed in 

type 1 and type 2 diabetes, and this increase was more pronounced in diabetic complications. 

However, correlation of circulating HNP1-3 levels with DEFA1/DEFA3 copy number was 

absent. Similarly, no correlation between mRNA expression and copy number variations was 

found. Further studies are needed to explore whether the elevated α-defensin levels of the 

plasma in diabetes are causally linked to this disease and its complications, or are simply the 

consequences of the degranulation of neutrophils in pathologic conditions. According to our 

results, elevated HNP1-3 levels might not be genetically determined, or at least they are 

independent from the copy number variation of the DEFA1/DEFA3 genes. In contrast, the 

CC genotype, and the C allele of c.-44C>G SNP in the promoter region of DEFB1 gene was 

more frequent among diabetic patients than in healthy controls, which drew attention to the 

genetic background of a potentially impaired function of hBD1 in diabetes. These data 

support the hypothesis that both α- and β-defensins might have important roles in the 

pathogenesis of diabetes and diabetic complications. 

4.2. CTRC REGULATES AUTOACTIVATION OF MOUSE TRYPSINOGENS 

VIA CLEAVAGE OF THE AUTOLYSIS LOOP 

4.2.1. Genetic mouse models of chronic pancreatitis 

Available mouse models of acute and chonic pancreatitis has been reviewed in a 

recent publication by Lerch and Gorelick [59]. In the past decade there were several attempts 

to create mouse models, which develop chronic pancreatitis due to different genetic 

manipulations. Dimagno et al. described a CFTR knock out mouse model in the C57BL/6 

background, which had mild pancreatic insufficiency, and developed more severe pancreatitis 

in response to cerulein injenction compared to wild type mice [27]. 

Rat elastase promoter controlled human interleukin-1β (IL-1β) expression in mice 

resulted in chronic pancreatitis with early onset and severe fibrosis. In this model T-cell 

dominated inflammatory response was seen together with increased expression of other 

cytokines (TNF-α), chemokines (CXCL1, SDF1), growth factors (TGF-β1), metalloproteases 

(MMP2, 7, 9, and TIMP1) and cyclooxigenase 2. These observations generally suggest that 
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IL-1β might have a major role in the persistent activation of the immune system leading to 

chronic pancreatitis. It is important to mention that there was no evidence whether these mice 

developed diabetes. Interlukin-1β is a well-described activator of pancreatic stellate cells, and 

also an inflammatory cytokine of the innate immune system. Cytokine polymorphisms can 

affect the immune response, and were shown to play an important role in the pathogenesis of 

pancreatitis [68]. 

Liver X receptors (LXRs) α and β are nuclear oxysterol receptors with a key role in 

cholesterol, triglyceride, and glucose metabolism and also control the expression of water 

transporter aquaporin-1. LXRβ−/− male and female mice developed pancreatic exocrine 

insufficiency at 11 month of age [36]. 

None of the models above tried to make an attempt to manipulate genes of digestive 

enzymes. Human cationic trypsinogen (PRSS1), chymotrypsinogen C (CTRC) and 

carboxypeptidase A1 (CPA1) are known to have a role in the development of pancreatitis 

according to described plethora of biochemical and clinical studies [72, 89, 107, 116, 117]. 

Transgenic mice carrying the coding DNA for human cationic trypsinogen with the p.R122H 

mutation (see Figure 1B and Suppl. Figure 1) did not develop spontaneous pancreatitis, 

although small differences in the pathological responses were noted when pancreatitis was 

artificially induced [99]. In contrast, when mice were made transgenic with the p.R122H 

mutation introduced into mouse trypsinogen isoform T8 (Suppl. Figure 2B), the resulting 

animals developed acute and eventually chronic pancreatitis [7], however any replication 

study with this last model has not been published since 2006. It is unclear whether the 

observed phenotype was related to the expression of the mutant trypsinogen. Nonetheless, 

this thesis raises the question whether the biochemical effects of the p.R122H mutation are 

similar in the context of mouse and human trypsinogens and whether we can utilize mouse 

trypsinogens to model the human condition. Although considerable progress has been made 

in clarifying the mechanism of PRSS1 mutations at the biochemical level, until this time, only 

the two publications above [7, 99] documented attempts to generate such models. Animal 

models that recapitulate the characteristics of human hereditary pancreatitis are still lacking. 

Genetic deletion of mouse T7 was recently shown to abolish intra-acinar trypsinogen 

activation in response to hyperstimulation with cerulein; while severity of acute pancreatitis 

was somewhat decreased but not diminished [25]. Furthermore, development of cerulein-

induced chronic pancreatitis was unaffected by the absence of T7 [91]. These observations 

seem to call into question the direct role of trypsinogen in the development of pancreatitis. 

However, a more likely explanation for the apparent contradiction is that the 
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hyperstimulation model employed in these studies does not mimic the pathological pathway 

associated with human hereditary pancreatitis. 

We wanted to clarify whether introduction of trypsinogen mutations associated with 

human hereditary pancreatitis into mouse trypsinogens would offer a viable approach to 

model hereditary pancreatitis in mice. Therefore, identification of the major trypsinogen 

isoforms expressed by the mouse pancreas and characterization of their regulation of 

autoactivation by mouse Ctrc was necessary. 

4.2.2. Trypsinogens expressed by the mouse pancreas 

Investigating the commonly used outbred mouse strain CD-1, we found that only four 

trypsinogen isoforms, T7, T8, T9 and T20, are expressed to high levels (Figure 2) in the 

mouse pancreas, even though the mouse genome contains 20 trypsinogen genes, of which 11 

are potentially functional (Suppl. Figure 1). The cationic isoform T7 was deleted in the 

C57BL/6 strain and judging from the residual trypsinogen content the authors suggested that 

T7 contributes 60% of total mouse trypsinogens [25, 91]. In our investigations we found 

smaller values (41%), however, these difference seem to fall within experimental error and 

may represent strain-specificity. In our experiments we used unstimulated mouse pancreas 

and it is possible, even likely, that upon hormonal stimulation, the trypsinogen expression 

pattern may change, as shown previously for rat p23, the ortholog of mouse T4 and T5, 

which becomes drastically upregulated upon cerulein stimulation [64]. Marked upregulation 

of T5 was observed in a knock-out mouse strain deficient in interferon regulatory factor 2 

[44]. 

4.2.3. Biochemical characteristics of mouse trypsinogens 

Autoactivation of mouse trypsinogens T7, T8 and T9 was comparable, whereas T20 

autoactivated more slowly, particularly in 1 mM calcium (Figure 9). Surprisingly, regulation 

of autoactivation by mouse Ctrc was isoform specific and mechanistically different from the 

actions of human CTRC on human cationic trypsinogen. Thus, Ctrc-mediated cleavage of the 

activation peptide was observed only with the T7 isoform, however, this N-terminal 

processing had no effect on autoactivation. Cleavage of the Leu81-Glu82 peptide bond in the 

calcium binding loop was detectable in T7 but was inefficient and resulted in minimal 

degradation, when compared to the effect of human CTRC on human cationic trypsinogen. 

Slow cleavage of the Leu81-Glu82 peptide bond was also seen in T8 and T9, whereas 

isoform T20 was not cleaved by Ctrc. 
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In contrast, isoforms T8 and T9 were rapidly cleaved at the Phe150-Gly151 peptide 

bond in the autolysis loop and this cleavage resulted in marked inhibition of autoactivation 

without degradation. The Phe150-Gly151 peptide bond was also cleaved by Ctrb at a 7-fold 

slower rate. However, considering that Ctrb is the most abundant chymotrypsin in the mouse 

pancreas, physiological regulation of activation of T8 and T9 may be also dependent on Ctrb. 

The vast majority of mammalian trypsinogens do not contain Phe in position 150 in 

their primary amino acid sequence. Trypsinogens of some rodents has been investigated 

either in a functional study (guinea pig -Cavia porcellus- [78]), or only at the genomic level 

(rabbit -Oryctolagus cuniculus- [6]), but the Phe150 residue has not been found in the 

investigated rodent trypsinogen isoforms. According to the online genomic database of NCBI 

(http://www.pubmed.org) some rodent species (rat -Rattus norvegicus-, chinese hamster -

Cricetulus griseus- and naked mole rat -Heterocephalus glaber-) have at least one possible 

trypsinogen isoform which carries a Phe residue at the 150th amino acid position. 

Surprisingly, in one marsupial, the tasmanian devil -Sarcophilus harrisii- and also, in some 

primates (Rhesus macaque -Macaca mulatta- , gorilla -Gorilla gorilla gorilla- and the olive 

baboon -Papio anubis-) Phe150 can be found in the primary structure of one of their 

potentially functional trypsinogen isoforms. More interestingly, human mesotrypsinogen also 

contains Phe150 (Suppl. Figure 1) and cleavage at this site by human CTRC was 

demonstrated previously [107], suggesting that activation of mesotrypsinogen may be under a 

similar regulation. Human anionic and cationic trypsinogens contain Ser at position 150, but 

mutation S150F of human cationic trypsinogen confers sensitivity to CTRB2-mediated 

cleavage of the autolysis loop, which inhibits autoactivation in a manner that is similar to the 

Ctrc-dependent inhibition of T8 and T9 in the mouse. 

The Ctrc-dependent inhibition of autoactivation of T8 and T9 trypsinogens may have 

evolved as a protective mechanism to curtail unwanted trypsinogen activation in the 

pancreas. In this regard, this is highly analogous to the regulation of human trypsinogens by 

human CTRC even though mechanistic details are dissimilar. Interestingly, we found that 

cleavage of the Phe150-Gly151 peptide bond in T8 and T9 trypsinogens also inhibits 

activation by enteropeptidase, the physiological trypsinogen activator in the duodenum. 

Although inhibition of digestive enzyme activation in the gut may seem counterintuitive, this 

chymotrypsin-dependent feed-back mechanism likely ensures that intestinal trypsinogen 

activation proceeds with a slower, more prolonged kinetics which may be more favorable for 

food digestion. 
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Intra-acinar cell activation of trypsinogen in cytoplasmic vesicles of autophagic origin 

is an early event in experimental models of acute pancreatitis. Genetic deletion of T7 was 

recently shown to abolish intra-acinar trypsinogen activation in response to hyperstimulation 

with cerulein; a somewhat perplexing observation as other trypsinogen isoforms could have 

potentially be activated [25, 91]. The results presented in this thesis offer a plausible 

explanation for this puzzle. When trypsinogen activation occurs, isoforms T8 and T9 may be 

inhibited in a Ctrc- or Ctrb-dependent manner, whereas T7 is relatively insensitive to 

chymotryptic regulation. Due to its lower concentration and poor activation, isoform T20 is 

unlikely to contribute to intra-acinar trypsinogen activation to a detectable extent. Taken 

together, the biochemical properties of mouse trypsinogens suggest that T7 is the isoform 

responsible for intra-acinar trypsinogen activation, which is the exact conclusion that Dawra 

et al offered in their study [25]. 

Finally, our data argue that the previously published mouse model in which a T8 

transgene carrying the p.R122H mutation was introduced could not have developed the 

described phenotypic changes as a result of a mutation-dependent increase in trypsinogen 

activation [7]. We found that mutation p.R122H did not affect inhibition of autoactivation by 

Ctrc in T8 trypsinogen, which stands in contrast to the robust negative effect of this mutation 

on CTRC-dependent degradation of human cationic trypsinogen [106]. Thus, it seems more 

likely that in the published mouse model increased gene dosage or nonspecific effects of the 

transgene may have been the cause of the described pancreas pathology. 
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5. SUMMARY AND NEW RESULTS 

I.  

1. We confirmed earlier findings of elevated HNP 1-3 plasma levels in patients with 

diabetes mellitus compared to healthy controls. Furthermore, we found that diabetic 

patients with nephropathy, neuropathy, or cardiovascular complications all had 

significantly higher HNP1-3 levels compared to diabetic patients without 

complications and also to healthy controls. 

2. Our results demonstrated that the median gene copy number of human 

DEFA1/DEFA3 gene is 10 per diploid genome in the Hungarian population; not only 

among controls but also in diabetic patients. DEFA1/DEFA3 gene copy numbers did 

not correlate with mRNA expression levels in peripheral leukocytes, nor with the     

α-defensin (HNP 1-3) levels measured in the plasma of peripheral blood. Therefore 

the elevated HNP 1-3 levels might not be genetically determined, or at least  

independent of the copy number variation of the DEFA1/DEFA3 genes. 

3. The C allele of the c.-44C>G SNP located in the promoter region of the DEFB1 gene 

was found to be more frequent among diabetic patients than in healthy controls, 

indicating that impaired human β-defensin function might have a role in the 

development of diabetes mellitus. 

II. 

1. There are 4 trypsinogen isoforms (T7, T8, T9 and T20) expressed at high levels in the 

mouse pancreas under physiological conditions. In 1 mM CaCl2, at pH=8.0, only T7, 

T8 and T9 autoactivated, while T20 did not autoactivate. 

2. Ctrc and Ctrb almost completely inhibited autoactivation of T8 and T9 isoforms by 

enzymatic cleavage of their autolysis loop, but had no significant effect on the 

autoactivation of T7 isoform. 

3. Introduction of the p.R123H mutation in T7, or the analogous p.R122H mutation in 

T8, did not significantly change the autoactivation characteristics of mouse 

trypsinogens. Therefore, the biochemical characteristics of these mutants did not 

mimic the pathogenic phenotype of the p.R122H mutation in human cationic 

trypsinogen. 
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Supplementary Figure 1. Amino acid sequence alignment of human cationic (Hu1), anionic (Hu2), 
mesotrypsinogen (Hu3) and 11 potentially expressed mouse trypsinogen isoforms (T4, T5, T7, T8, T9, T10, T11, 
T12, T15, T16 and T20). Numbering starts with the initiator methionine. Note that due to insertions in T4, T5 and 
T7, the numbering is shifted by one after the insertion sites, relative to the indicated numbers. Similarly, a deletion in 
T12 shifts numbering. Trypsin cleavage sites are highlighted in blue and chymotrypsin C (Ctrc) cleavage sites in red. 
Cys residues are indicated in green and the catalytic triad in orange. The original annotation predicted deletion of 
Arg69 (in red letter) in T4 and T5 but more recent annotations include this residue. 

7. SUPPLEMENTARY 
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T7 

 
Supplementary Figure 2A. Primary structure of T7 moue trypsinogen. The activation peptide 
containing Lys24 is designated by yellow circles. Red circles indicate cleavage sites of chymotrypsin C 
(L18, L82 and L149), while blue background shows tryptic cleavage sites (K24, R123 and K194). Cys 
residues which form disulfide bonds are designated by green circles (C31-C161, C49-C65, C133-C234, 
C140-C207, C172-C186 and C197-C221). Members of the catalytic triad are shown by orange circles 
(H47, D108 and S201). "Ca" indicates a calcium ion (Ca2+). 
 

T8 (T9) 

 
Supplementary Figure 2B. Primary structure of T8 and T9 mouse trypsinogens. The activation 
peptide containing Lys23 is designated by yellow circles. Solid red circles indicate cleavage sites of 
chymotrypsin C (L81 and F150), while blue background shows tryptic cleavage sites (K23, R122 and 
K193). Cys residues which form disulfide bonds are designated by green circles (C30-C160, C48-C64, 
C132-C233, C139-C206, C171-C185 and C196-C220). Members of the catalytic triad are shown by orange 
circles (H46, D107 and S200). Amino acid differences in T9 trypsinogen are indicated in empty red circles. 
"Ca" indicates a calcium ion (Ca2+). 
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Supplementary Figure 3. Effect of mouse chymotrypsin C (Ctrc) on mouse trypsinogen T20. (A) 
Autoactivation was measured in 1 mM and 10 mM CaCl2, in the absence (solid symbols) or presence (open 
symbols) of 25 nM mouse Ctrc, as described in Patients and Methods. Where indicated, 2 µL of 1.4 µg/mL 
human enteropeptidase (EP) was added. (B) SDS-PAGE analysis of the autoactivation reaction in 1 mM 
CaCl2. Samples were withdrawn at the indicated time points, precipitated with trichloroacetic acid, 
electrophoresed and stained as described in Patients and Methods. (C) Cleavage of T20 trypsinogen by 25 
nM mouse Ctrc. Incubations were performed and samples were analyzed as in Figure 13C. The faint Ctrc 
cleavage products seen in the absence of calcium were not identified. Representative experiments from 
three replicates are shown. 
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ABSTRACT 

 

AIM: To investigate the genetic background of human defensin expression in type 1 and 2 

diabetes.  

METHODS: Associations between DEFA1/DEFA3 gene copy number polymorphism and 

diabetes as well as between the promoter polymorphisms of DEFB1 and diabetes were 

studied. The copy number variation of the DEFA1/DEFA3 genes was determined in 257 

diabetic patients (117 patients with type 1 and 140 with type 2 diabetes). The control group 

consisted of 221 age- and gender-matched healthy blood donors. The cumulative copy 

numbers of the DEFA1/DEFA3 genes were detected by using quantitative PCR analysis. To 

evaluate the HNP 1-3 (human neutrophil peptide 1-3 or α-defensin) levels in the circulation, 

plasma HNP 1-3 concentrations were measured by ELISA. The expression of DEFA1/A3 in 

peripheral leukocytes ofthe diabetic patients was measured by quantitative RT PCR analysis. 

Three SNPs of the human DEFB1 (human defensin β-1) gene: DEFB1 G-20A (rs11362), 

DEFB1 C-44G (rs1800972) and DEFB1 G-52A (rs1799946) were genotyped by Custom 

TaqMan® Real Time PCR assay.  

RESULTS: Significant differences were observed in HNP1-3 levels between the healthy 

subjects and both groups of diabetic patients. The mean ±SE was 28.78 ± 4.2 ng/ml in type 1 

diabetes, and 29.82  ± 5.36 ng/ml in type 2 diabetes, vs. 11.94 ± 2.96 ng/mL in controls; 

p<0.01 respectively. There was no significant difference between patients with type 1 and 

type 2 diabetes in the high plasma concentrations of HNP1-3. The highest concentrations of 

α-defensin were found in diabetic patients with nephropathy (49.4  ± 4.8 ng/mL), neuropathy 

(38.7 ± 4.8 ng/mL) or cardiovascular complications (45.6 ± 1.45 ng/L). 

There was no significant difference in the cumulative copy numbers of DEFA1/DEFA3 genes 

between controls and patients, or between patients with the two types of diabetes. 

Comparisons of HNP 1-3 plasma level and DEFA1/A3 copy number of the same patient did 

not reveal significant relationship between defensin-α levels and the gene copy numbers (r2 = 

0.01). Similarly, no positive correlation was observed between the copy numbers and the 

mRNA expression levels of DEFA1/A3. Regarding the C-44G polymorphism of DEFB1, the 

GG “protective” genotype was much less frequent (1–2%) among both groups of patients than 

among controls (9%). 



 4 

CONCLUSION: Elevated HNP1-3 levels in diabetes are independent of DEFA1/DEFA3 copy 

numbers, but GG genotype of C-44G SNP in DEFB1 gene may result in decreased defensin  

β-1 production. 

 

Key words: α-defensins, HNP1-3, β-defensin 1, diabetes, copy number polymorphism, single 

nucleotide polymorphism 

 

CORE  TIP: 

There is  growing evidence of the role of innate immunity in diabetes To our knowledge our 

data provide the first report on a complex investigation of defensin-α and defensin β-1 in type 

1 and type 2 diabetes. The main conclusion of our manuscript is, that the elevated HNP1-3 

levels in diabetes are independent of  the DEFA1/DEFA3 copy numbers, but the GG 

genotype of C-44G SNP in the DEFB1 gene may result in a decreased level of  defensin β-1 

production. Our data support the view that both alpha and beta-defensins may have an 

important role in the pathogenesis of diabetes and diabetic complications. 

 

 

INTRODUCTION 

 

Defensins are members of small antimicrobial peptides of the innate immune system[1,2]. 

However, today these peptides are also known as danger signals or ”alarmins” playing 

important roles in inflammation and immunity[3]. Mammalian defensins are divided into two 

major families, the α- and β-defensins.  Human α-defensins include human neutrophil peptide 

1-4 (HNP1-4) and intestinal human defensins (HD-5 and HD-6) produced by Paneth cells. 

Besides the antimicrobial effects, alpha defensins display chemotactic activity and induce 

proinflammatory cytokines[4,5,6]. HNPs increase the binding of LDL (low density lipoprotein 

cholesterol) to the endothelial surface suggesting that alpha defensins may modulate the 

development of atherosclerosis [7]. Neutrophil granulocytes are considered to be the primary 

cellular origin of α-defensins; HNP 1-3 comprise 30–50% of the granule proteins. HNPs can 

be released into the extracellular milieu following granulocyte activation as a consequence of 

degranulation, leakage, cell death, and lysis during inflammation[8]. α-defensins are also 

involved in the formation of neutrophil extracellular traps[9]. 
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Human β-defensins make up another family of antimicrobial peptides[1, 10]. In addition to their 

antibacterial and antiviral effects, the chemoattractive function of these defensins has been 

shown to play a role in immunological reactions that protect the host from various 

pathogens[11]. While the expression of human defensin beta-1 (HBD1) is generally 

constitutive, the levels of human defensin beta-2 (HBD2) are inducible by proinflammatory 

cytokines and bacteria[10, 12, 13 ]. Human beta defensins are expressed by epithelial cells of the 

skin, gut, respiratory and urogenital tissues, the pancreas and the kidneys. HBD1 is also 

constitutively expressed by leukocytes[14, 15, 16]. 

The level of defensin expression varies among individuals, and it has been suggested that this 

variation is due to genetic differences in the genes encoding defensins. Defensin genes have 

been mapped to 8p22-p23[17]. Two types of genetic polymorphisms have been identified in 

genes encoding defensins: copy number polymorphisms and single nucleotide poymorphisms 

(SNPs). Human defensin beta-1 (HBD-1) is encoded by the gene DEFB1 (OMIM: 602056), 

in which several SNPs (single nucleotide polymorphisms) have been characterized. Three 

frequent SNPs at positions G-20A (rs11362), C-44G (rs 1800972) and G-52A (rs1799946) in 

the 5’-untranslated region (UTR) of DEFB1 were described[18]. The untranslated variants 

influence HBD-1 expression or function[19]. 

The cluster of human alpha-defensin genes on chromosome 8 includes the genes DEFA1 

(OMIM: 125220) and DEFA3 (OMIM: 604522), which are copy-variables. The genes DEFA1 

and DEFA3 differ only in a single base substitution in the coding sequence, corresponding to 

a single amino acid difference between the peptides encoded[20]. HNP 1-3 differs only in a 

single N-terminal acid, and the HNP-2 peptide lacks this residue and might be a proteolytic 

product of the other two peptides because no separate gene has been identified to encode 

HNP-2[21]. Several copy number polymorphisms form the major source of genetic 

polymorphism of α-defensin genes DEFA1 and DEFA3, encoding human neutrophil peptides 

HNP-1, -2 and 3[20, 22].These genes are present in a cluster that is close to but independent 

from the β-defensin cluster on 8p23. The total DEFA1/DEFA3 copy number has been found 

to range between 4 and 11 copies per diploid genome with 5 to 9 copies being the most 

common[22]. 

To date, little is known about the genetic basis and the functions of α- and β-defensins in 

diabetes. Infections are frequent in diabetic patients because the antimicrobial function of 

their immune response is impaired. It has been reported that mRNA levels of rat β-defensin-1 

are significantly low in the kidneys, which may explain the high incidence of urinary tract 

infections in diabetes mellitus[23]. The effects of glucose and insulin on the β-defensin 
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expression have recently been demonstrated[24], but no connection has been found between 

genetic polymorphisms of the HBD1 gene and diabetes in a Brazilian study on diabetic 

children[25]. 

Increased levels of alpha-defensin -1, -2 and -3 have recently been reported in patients with 

type 1 diabetes with nephropathy and in cardiovascular complications[26, 27]. It is tempting to 

speculate whether copy number polymorphisms and the DEFA1/DEFA3 mRNA in the 

granulocytes may influence the levels of HNP1-3 in patients with types 1 and 2 diabetes. 

The aim of our study was to investigate the genetic background of human defensin-α and 

human defensin β-1 production in adult patients with type 1 and type 2 diabetes, especially 

with complications. Therefore, we carried out an association study between DEFA1/DEFA3 

copy number polymorphism and diabetes, and between the promoter polymorphisms of 

DEFB1 and diabetes. We also measured the plasma levels of HNP 1-3 in both types of 

diabetes, and the mRNA expression of DEFA1/DEFA3 in leukocytes.  

 

MATERIALS AND METHODS 

. 

Patients 

 

257 diabetic patients (122 men and 135 women) were enrolled in our study, which included 

117 patients with type 1 and 140 patients with type 2 diabetes. All patients participating in the 

study were diagnosed according to the ADA criteria: Diagnosis and classification of diabetes 

mellitus. Diabetes Care 36 (Suppl.1.) 2013. S64-S74. 

The mean age of type 1 diabetic patients was 40.6 years±1.51 years, the mean duration of 

diabetes was 17.7±1.12 years, and their mean HbA1c was 8.86±0.17%. In type 2 diabetic 

subjects, the mean age was 58.4±1.27 years, the mean duration of diabetes was 14.5±0.8 years, 

and the mean HbA1c was 8.03±0.13%.  

71 subjects in the cohort had diabetic nephropathy (32 with type 1 and 39 with type 2 

diabetes) defined as an albumin-to-creatinine ratio in a random spot collection being higher 

than 3.4 mg/mmol, or the protein content being over 300 mg/day in collected urine. Abnormal 

kidney function was described when the glomerular filtration rate (GFR) was lower than 60 

mL/min/1.73 m2. 

115 patients suffered from retinopathy (47 with type 1 and 68 with type 2 diabetes). This 

complication was evidenced as the presence of background or proliferative retinopathy, 

macular edema or diabetes-related blindness, or the administration of retinal photocoagulation 
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therapy. The retinopathy status was checked by color stereo-ophthalmography and 

fluorescence angiography. Neuropathy was diagnosed in 95 patients (35 with type 1 and 60 

with type 2 diabetes). Neuropathy was proven when abnormal peripheral sensory functions or 

altered lower limb tendon reflexes as well as impaired cardiovascular reflex tests were 

detected. 54 diabetic patients (14 with type 1 diabetes and 40 with type 2 diabetes) had 

previously been diagnosed with macrovascular disease including major coronary events, 

stroke or a transient ischemic attack, peripheral artery disease or amputation. A high number 

of the patients (182) had controlled hypertension (50 with type 1 and 132 with type 2 

diabetes).  

The control group consisted of 221 age- and gender-matched healthy blood donors. These 

control subjects were selected from blood donors at the regional Center of Hungarian 

National Blood Transfusion Service, Szeged, Hungary. The exclusion criteria for blood 

donors were diabetes, nephropathy, hypertension, or ischemic heart disease. All cases and 

controls were of Hungarian ethnic origin and resident in Hungary. Informed consent was 

obtained from all patients and controls, and the local Ethics Committee gave prior approval to 

the study. All patients consented to the study and were treated according to the Patient Right 

Protection Act of our institutions and according to international guidelines. 

 

Assay of HNP 1-3 concentration 

Blood samples containing EDTA were obtained from patients and controls. Plasma was 

isolated after the blood was centrifuged at 3,000g for 3 min and stored at -80oC for further 

analysis. The HNP1-3 concentrations in plasma were determined by ELISA (Hycult-Biotech 

HK324, Uden, The Netherlands) according to the instructions of the manufacturer. 

 

DNA isolation 

Genomic DNA purified from peripheral blood was used. Leukocyte DNA was isolated using 

the High Pure PCR Template Preparation Kit according to the instructions of the 

manufacturer (Roche Diagnostic GmbH, Mannheim, Germany). DNA concentrations were 

measured with a Qubit™ fluorometer (Invitrogen, Carlsbad, CA, USA) according to the 

instructions of the manufacturer. Genomic DNA was stored at -20º C until further use.  

Determination of DEFA1/DEFA3 gene copy numbers by quantitative real-time PCR 
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Genomic DNA purified from peripheral blood was used. Gene copy number determination 

was carried out as previously described by Linzmeier [20] with slight modifications. BIO-RAD 

CFX 96 instrument (Bio-Rad, Hercules, CA, USA) was used for quantitation. The reaction 

volume was 15 µL, containing 3 µL of DNA, 1 µmol L-1 each of the primers, 7.5 µL of 

reaction buffer (Fermentas Probe/ROX qPCR MasterMix, Fermentas, Lithuania) and 0.6 µL 

EVAGreen (20x EVAGreen™ Biotium Inc., Hayward, CA, USA). Forward primer: DEFA1 1 

F (5’ TAC CCA CTG CTA ACT CCA TAC 3’), reverse primer: DEFA1 1 R (5’ GAA TGC 

CCA GAG TCT TCC C 3’); MPO (myeloperoxidase) reference gene primer set MPO 1 F (5’ 

CCA GCC CAG AAT ATC CTT GG 3’), MPO 1 R (5’ GGT GAT GCC TGT GTT GTC G 

3’). PCR conditions were as follows: initial denaturation at 95oC for 10 min followed by 40 

cycles of denaturation (95oC for 15 sec) and extension (54oC for 1 min).  

Quantification was performed by monitoring the emitted fluorescence after each cycle of PCR 

reaction of genomic DNA samples in order to identify the exact time point at which the log-

linear phase could be distinguished from the background (crossing point). The precise amount 

of DNA added to each reaction mix was based on optical density. Each DNA sample was 

analyzed in triplicate, in 2 independent experiments. 

 

DEFA1/DEFA3 mRNA quantification by RT PCR 

 

We collected further 2 mL of venous blood in EDTA tubes from patients with diabetes and 

controls. Leukocytes from blood were separated by centrifugation at 1200 rpm/min for 15 min. 

By using the reverse transcription polymerase chain reaction (RT-PCR), we examined the 

expression of DEFA1/DEFA3 mRNA in 24 patients with diabetes (12 cases of type 1 and 12 

cases of type 2 diabetes). Total RNA was extracted with High Pure RNA isolation kit (Roche) 

according the manufacturer’s instruction. RNA concentration was determined by the A260 

value of the sample. Complementary DNA (cDNA) was generated from 1 µg total RNA using 

the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems) in a final volume 

of 20 µL. After reverse transcription, amplification was carried out by using Light Cycler Fast 

Start DNA MasterPLUS SYBR Green I mix (Roche). Samples were loaded into capillary tubes 

and placed in the fluorescence thermocycler (LightCycler). Initial denaturation at 95°C for 10 

min was followed by 45 cycles of 95°C for 10 sec, annealing at 58°C for 8 sec, and elongation 

at 72°C for 12 sec. DEFA1/DEFA3 sense, 5’-TCC CAG AAG TGG TTG TTT CC-3’; and 

antisense, 5’-GCA GAA TGC CCA GAG TCT TC-3’, and for the housekeeping gene 
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GAPDH (glyceraldehyde-3-phosphate dehydrogenase) sense, 5′-AAG GTC GGA GTC AAC 

GGA TTT-3′; antisense, 5′-TGG AAG ATG GTG ATG GGA TTT-3′ primers were used to 

amplify specific products from cDNA samples. At the end of each run, melting-curve profiles 

were achieved by cooling the sample to 40°C for 15 sec, and then heating the sample slowly 

at 0.20°C/sec up to 95°C with continuous measurement of the fluorescence to confirm the 

amplification of specific transcripts. Cycle-to-cycle fluorescence emission readings were 

monitored and analyzed by using LightCycler software (Roche Diagnostics GmbH). All 

quantifications were normalized to the housekeeping GAPDH gene. Relative gene expression 

was determined by using the ∆∆Ct method. 

 

 

 

Genotyping of SNPs of human defensin beta -1 (DEFB1) 

Genotyping was performed by means of Custom TaqMan® SNP Genotyping Assays (Applied 

Biosystems, CA). Fluorogenic minor groove binder probes were used for each case using the 

dyes 6-carboxyfluorescein (FAM; excitation, 494 nm) and VIC (excitation, 538 nm): beta-

defensin-1 polymorphisms DEFB1 G-20A (rs11362) Applied Biosystems code 

c_11636793_20, DEFB1 C-44G (rs1800972) c_11636794_10 and DEFB1 G-52A 

(rs1799946) c_11636795_20. Thermal cycling was performed on ABI Prism 7000 sequence-

detection PCR systems. The amplification mix contained the following ingredients: 7.5 µL of 

TaqMan® universal PCR master mix (Applied Biosystems, CA), 0.375 µL of primer-probe 

mix, 6.375 µL of RNase- and DNase-free water (Sigma), and 0.8 µL of sample DNA, in a 

total volume of 15 µL per single tube reaction. Assay conditions were 2 min at 50°C, 10 min 

at 95°C, and 40 cycles of 95°C for 15 sec and 60°C for 1 min. Each 96-well plate contained 

90 samples of an unknown genotype and six reactions with reagents but no DNA. DNase-free 

water was used as nontemplate control. Initial and postassay analysis was performed by using 

the Sequence Detection System (SDS) version 2.1 software (Applied Biosystems, CA) as 

outlined in the TaqMan Allelic Discrimination Guide. Genotypes were determined visually 

based on the dye-component fluorescent emission data depicted in the X-Y scatter plot of the 

SDS software. Genotypes were also determined automatically by the signal processing 

algorithms in the software. Results of each scoring method were saved in two separate output 

files for later comparison.  
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Statistical analysis 

Comparisons of plasma concentrations were carried out by the Mann–Whitney test and with 

two-tailed paired Student test. The level of significance of the genotype frequency of different 

DEFB1 SNPs was analyzed by using the χ2 test and the Fischer test. Levels p<0.05 indicated 

statistical significance. All statistical calculations were performed with the Graph Pad Prism 

5.0 statistical program (GraphPad Software, San Diego CA. USA). The genotype frequencies 

for each polymorphism of DEFB1 were tested for deviation from the Hardy–Weinberg 

equilibrium by the χ2 test with 1 degree of freedom. 
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RESULTS 

Plasma levels of human neutrophil peptide (HNP1-3) in patients with type 1 and type 2 

diabetes 

In a pilot study, plasma levels of α-defensin, human neutrophil peptide (HNP1-3), in 50 

patients with type 1 diabetes and in 60 patients with type 2 diabetes were determined and 

compared with those of 50 healthy blood donors. There was a high individual variation in the 

plasma levels of α-defensin, but significant differences were observed between the healthy 

subjects and both groups of diabetic patients. The mean value ±SE was 28.78±4.2 ng/mL in 

patients with type 1 diabetes and 29.82±5.36 ng/mL in patients with type 2 diabetes vs. 

11.94±2.96 ng/mL in controls (p<0.01 respectively). The difference between the high plasma 

concentrations of HNP1-3 in patients with type 1 or type 2 diabetes was not significant 

(Fig.1.).  

Plasma levels of human neutrophil peptide (HNP1-3) in diabetic patients with complications 

After that, we checked whether the generally high level of HNP1-3 in the peripheral blood of 

both groups (type 1 and type 2) of diabetic patients was connected to diabetic complications. 

Nephropathy was diagnosed in 71 patients (32 with type 1 and 39 with type 2 diabetes) and 

neuropathy in 95 ones (35 with type 1 and 60 with type 2 diabetes). 115 patients suffered 

from retinopathy (47 with type 1 and 68 with type 2 diabetes), 54 patients had cardiovascular 

diseases (14 with type 1 diabetes and 40 with type 2 diabetes), and 182 had hypertension (50 

with type 1 and 132 with type 2 diabetes). Their data concerning the HNP1-3 levels were 

compared with those of the 67 patients who did not suffer from these complications, and with 

the data of the 100 healthy subjects (Fig.2.). The highest HNP 1-3 concentrations were found 

in the diabetic patients with nephropathy (49.4±4.8 ng/mL) and with neuropathy (38.7±4.8 

ng/mL) or with cardiovascular complications (45.6±1.4 ng/mL). These concentrations were 

significantly higher than those in the diabetic patients without complications (25.4±3.5 

ng/mL). These data are in accordance with previous observations[26, 27] of high levels of HNP 

1-3 in type 1 diabetic patients with cardiovascular diseases. In a relatively smaller group of 

patients (n =28) with diabetic foot ulcer (20 with type 1 diabetes and 8 with type 2 diabetes), 

the HNP1-3 plasma levels were 35.9±1.1 ng/mL. These high HNP1-3 levels might be the 

consequence of the degranulation of recruited neutrophils from the skin frequently following 
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infections. Our results suggest that in diabetic complications such as nephropathy, neuropathy 

and cardiovascular diseases, the HNP1-3 level in the circulation is elevated independently of 

the type of diabetes. All diabetic patients, with or without complications, exhibited 

significantly higher plasma levels of HNP1-3 than the control subjects (Fig.2). 

Copy number polymorphism of DEFA1/DEFA3 

The cumulative copy numbers of DEFA1/DEFA3 were determined by using quantitative PCR 

analysis. In the control group, 133 DNA samples were used for copy number determination 

and 100 DNA samples of diabetic patients with type 1 or type 2 diabetes. There was no 

significant difference in copy number between the controls and the patients or between the 

patients with the two types of diabetes (Fig.3). In the control group, DEFA1/DEFA3 copy 

numbers ranged from 4 to 15 per genome with a median number of 10 copies. The median 

copy number of DEFA1/DEFA3 in the patients with type 1 diabetes was 10 copies per 

genome (range 5 to16 copies), and that in the patients with type 2 diabetes was also 10 (range 

5 to 15). Comparing the HNP 1-3 plasma level and the DEFA1/A3 copy number of the same 

patient, no significant correlation was observed between defensin levels and genomic copy 

numbers (r2=0.01; Fig.4.). 

 

DEFA1/DEFA3 gene expression 

The expression of DEFA1/A3 was measured in the peripheral leukocytes of diabetic patients. 

DEFA1/DEFA3 mRNA was determined in blood samples from 12 patients with type 1 and 

another 12 with type 2 diabetes, and the relative expressions of DEFA1/DEFA3 were 

compared with the DEFA1/DEFA3 copy numbers of the same patients (Fig.5). The data 

indicated that peripheral leukocytes had the ability to transcribe DEFA1/DEFA3 genes ( mean 

± SE of relative expression 1.5±0.28) and to biosynthetize HNP1-3 peptides. However, no 

positive correlation was observed between the copy numbers and the expression levels of the 

human neutrophil peptide 1-3 (Fig.5). The variation in expression levels between individuals 

did not exhibit a positive correlation with the copy number. Similarly, the expression of 

specific mRNA in the leukocytes for HNP 1-3 did not parallel the HNP 1-3 plasma levels 

(data not shown). 

DEFB1 G-20A, DEFB1 G-52A and DEFB1 C-44G polymorphisms 
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The genotypic distributions of DEFB1 G-20A, and DEFB1 G-52A and DEFB1 C-44G 

polymorphisms are presented in Table 1. 

The distribution of the DEFB1 G-20A genotypes was in accordance with the Hardy–

Weinberg equilibrium both in the control population and in the patients ( p = 0.912 and p = 

0.795, respectively). There was no significant difference in genotype distribution between the 

patients overall and the healthy controls. Similarly, no significant differences in genotypes 

were observed when the patients were grouped according to type 1 and type 2 diabetes. 

As concerns the DEFB1 G-52A SNP , distribution of the genotypes was in accordance with 

the Hardy–Weinberg equilibrium both in the control population and in the patients ( p = 0.252  

and  p = 0.181, respectively). We did not detect any significant difference in genotypes 

between the patients and the controls, either in type 1 or type 2 diabetes. 

The genotypic distribution of DEFB1 C– 44G polymorphism is shown in Table 1. 

The distribution of genotypes was in accordance with the Hardy–Weinberg equilibrium 

among the patients with diabetes (p = 0.151) and also in the control population (p = 0.722). 

But there was a significant difference in genotype distribution between the patients overall 

and the healthy controls (χ2 test, p = 0.002). The frequency of the GG genotype was 

significantly lower in both types of diabetes (2.5% and 2%, respectively) than in the healthy 

controls (9%) (Fisher test vs. control, p = 0.001, OR=9.136, 95% CI: 3.512–23.82). 

Conversely, the prevalence of the DEFB1 CC genotype was 61 % in the group of diabetic 

patients vs. 45% in the controls (Fisher test: p = 0.0009, OR=2.055, 95% CI: 1.248–2.746). 

When the patients were grouped according to the diabetic complications, there was a lower 

frequency of the GG genotype among the patients with nephropathy and among those with 

neuropathy (1.4% and 1%, respectively ).  

 

 

DISCUSSION 

 

HNP1-3 levels in the circulation were measured, and the copy number variation of 

DEFA1/A3 genes was determined in diabetic patients. The diabetic patients exhibited 

overall higher plasma levels of HNP 1-3 (α-defensin) with either type 1 or type 2 form of 

the disease than the healthy controls. The highest concentrations of HNPs were detected in 

patients with nephropathic or neuropathic and cardiovascular  complications. An essential 
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question arises as to why an increased concentration of plasma α-defensin (HNP1-3) level 

is associated with type 1 and type 2 diabetes, especially in the event of diabetic 

complications such as nephropathy, neuropathy or  cardiovascular problems. The 

explanation might be that the elevation in the plasma HNP1-3 level is the consequence of 

the decreased renal degradation of the peptides in patients with advanced nephropathy [26]. 

HNP 1-3 promote the accumulation of low density lipoprotein in the vasculature, inhibit 

fibrinolytic activity on the surface of vascular cells, and accumulate in the intima of 

atherosclerotic plaques. Therefore, HNP 1-3 may have clinical implications in diabetic 

patients with hypercholesteremia or vascular dysfunction[7,  27].   

The association of high levels of HNP1-3 in patients with neuropathy in type 1 and type 2 

diabetes is yet to be clarified. The next question is whether there is an increased gene 

expression responsible for the elevated plasma levels of α-defensins. Our study revealed 

that there was no correlation between HNP1-3 plasma levels and the copy numbers of 

DEFA1/A3 genes. The effect of copy number variations in DEFA1/DEFA3 on the disease 

or even on the plasma concentrations of the peptides remain unclear. Controversal data 

have been published about the correlation between DEFA1/A3 copy number and the α-

defensin peptide concentration. Linzmeier and Ganz [20] have shown that the intracellular 

HNP1-3 levels in human neutrophils are proportional to the copy numbers of the DEFA1 

and DEFA3 genes Copy numbers of DEFA1/A3 may be proportional to the intracellular 

levels of HNP1-3 in neutrophil granulocytes but possibly not to the circulating HNP1-3 

levels. Additionally, a discrepancy between gene copy number and the HNP1-3 protein 

levels has recently been reported in septic patients[28]. There are several potential 

explanations of the discrepancy between the gene copy number and the plasma levels. 

HNP1-3 is stored primarily in the granules of neutrophils and is released into the 

circulation during the activation of the neutrophils. Moreover, it might also be due to 

different transcriptional mechanisms modulating these genes or to an increased distance 

between the regulators of the genes [28, 29]. 

The fact that in our study no significant correlation was observed between the genomic 

copy number variation of DEFA1/DEFA3 and the mRNA expression levels (Fig. 5.) 

suggests that the degranulation rather than the increased gene expression may be 

responsible for the increased plasma HNP 1-3 levels in diabetes. 

Similar observations have been published about the copy number polymorphism and 

expression level variation of DEFA1 and DEFA3 genes[22]. In that study, the combined 
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expression levels of DEFA1/A3 and the genomic copy number have not been correlated, 

suggesting the superimposed influence of trans-acting factors. 

It is noteworthy that there are several examples of the absence of a correlation between 

copy number polymorphisms and the relative transcription level[29]. 

There are no direct data showing that exaggerated degranulation is linked to diabetic 

complications, or it is higher in DM patients than in controls. However, it has recently 

been published that pro-inflammatory conditions during hyperglycemia favor NET – 

neutrophil extracellular traps – formation [30], and HNP 1-3 are also involved in the 

formation of neutrophil extracellular traps[9]. It is noteworthy that diabetes is associated 

with low grade, sub-clinical and chronic inflammation characterized by abnormal 

cytokine production. Therefore, the diabetic microenvironment can induce NET formation, 

which may result in a basic high HNP-1 concentration in the circulations 

In order to detect whether increased mRNA expression is responsible for elevated 

defensin levels in diabetic patients,  quantitative RT-PCR reactions were performed. 

Expression of specific mRNA in the leukocytes was observed for HNP 1-3 but not parallel 

with HNP1-3 plasma levels. The mRNA values between patients and controls were rather 

equal (mean ± SE of relative expression 1.5±0.28 vs. 1.49±0.35, respectively) suggesting 

that not an increased gene expression may be responsible for increased plasma levels of 

HNP 1-3. Our findings were in good correlation with the observations of Fang X. M. et al. 
[31], that is, α-defensin genes were constitutively transcribed at low level in mature 

neutrophils, but they were not inducible 

Eosinophils with transcriptionally active α-defensin production have recently been 

detected in the capillary blood of diabetic patients[32]. Eosinophils but not neutrophils 

displayed the augmentation of transcriptional activation of α-defensin expression. In our 

study, the majority of the cells in peripheral venous blood were neutrophils; therefore, our 

purified DNA and RNA samples were derived mostly from neutrophils.  

The present study demonstrated that the distributions of the C-44G genotypes were 

different between patients with diabetes and healthy controls, whereas the frequency of 

the GG genotype was significantly higher in the control population. It indicates that the 

presence of G allele probably leads to strengthened HBD1 antimicrobial activity, which is 

less frequent in patients with diabetes. The G allele of C-44G SNP generates a putative 

binding site for nuclear factor κ B (NF-κB), and it is very likely to induce an 

overexpression. The proposed effect of this SNP could partially explain why the GG 
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genotype was considered to be a protective genotype in atopic dermatitis[33] and also in the 

susceptibility to Candida colonization in diabetic patients[34]. Conversely, in these studies, 

subjects carrying the CC genotype at the -44 locus site of the gene were at a greater risk of 

acquiring infection. It has been recently suggested that the C allele of DEFB1 C-44G SNP 

probably abrogates NF-κB-dependent DEFB1 upregulation[35].  

These data are consistent with our present observation that the GG phenotype could also 

be protective in diabetes, and vice versa, the higher frequency of CC genotype might be 

connected with lower expression of human defensin β-1. Among the 257 patients with 

diabetes, only 6 (2%) were GG homozygotes, and 61% of the patients were CC 

homozygotes, as compared with 45% of CC homozygotes in the control group. 

Furthermore, the number of GG homozygotes was even lower (1%) among patients with 

nephropathy and neuropathy. These observations draw the attention to the importance of 

DEFB1 polymorphisms in diabetes, especially in the cases with nephropathy and 

neuropathy. Foot ulcerations in diabetic patients are often combined with infections. None 

of  the 28  patients with foot ulcer displayed GG genotype of C- 44G SNP of DEFB1 gene 

. A high blood glucose level itself can result in low levels of β-defensin[23], and it might 

be further downregulated in humans as a consequence of C-44G polymorphism. It is 

noteworthy that insulin is an important factor mediating hBD-1 expression[24]. 

Taken together, our study demonstrated elevated levels of α-defensin (HNP1-3) in type 1 

and type 2 diabetes, which were more pronounced when there were diabetic complications. 

However, there was no correlation between the circulating HNP1-3 levels and the 

DEFA1/DEFA3 copy number. Similarly, no correlation was found between the mRNA 

expression and the copy number variation. Further studies are needed to explore whether 

the elevated α-defensin levels of the plasma in diabetes are causally linked to this disease 

and its complications, or they are simply the consequences of the degranulation of 

neutrophils under pathologic conditions. Whatever the mechanism, the elevated HNP1-3 

level might not be genetically determined or at least independent of the copy number 

variation of the DEFA1/DEFA3 genes. In contrast, the CC genotype of  the C-44G SNP of 

DEFB1 was more frequent in diabetic patients than in healthy controls, which draws the 

attention to the genetic background of a potentially impaired function of hBD1 (human 

defensin β-1) in diabetes. These data support the view that both alpha and beta-defensins 

may have important roles in the pathogenesis of diabetes and diabetic complications. Our 

results should be regarded as preliminary results, which should be confirmed on a larger 

series of patients in a future multicenter study. 
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COMMENTS 

Background 

There is a growing evidence of the role of innate immunity in diabetes. Defensins are 

members of small antimicrobial peptides of the innate immune system. In addition to their 

antibacterial and antiviral effects, immunologic functions of  defensins has been shown to 

play a role in the homeostasis. To date, little is known about the genetic basis and the 

functions of α- and β-defensins in diabetes. The aim of our study was to investigate the 

genetic background of human defensin-α and human defensin β-1 production in adult patients 

with type1 and type 2 diabetes, especially with complications. 
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Research Frontiers 

Neutrophil granulocytes are considered to be the primary cellular origin of α-defensins; HNP 

1-3 . HNPs can be released into the extracellular milieu following granulocyte activation as a 

consequence of degranulation, leakage, cell death, and lysis during inflammation . Human 

beta defensins are expressed mainly by epithelial cells of the skin, gut, respiratory and 

urogenital tissues, the pancreas and the kidneys . The level of defensin expression varies 

among individuals, and it has been suggested that this variation is due to genetic differences 

in the genes encoding defensins 

 

Innovations and breakthroughs 

To our knowledge our data provide the first report about a complex investigation of defensin-

alpha and defensin β-1 in type 1 and type 2 diabetes.  Increased levels of alpha-defensin -1, -2 

and -3 have recently been reported in patients with  type 1 diabetes with nephropathy and in 

cardiovascular complications (Ref 26, 27)..In our study not only HNP1-3 levels in the 

circulation were measured, but also  the copy number variation of DEFA1/A3 genes was 

determined in diabetic patients , together  with the expression of DEFA1/A3 in peripheral 

leukocytes. Several SNPs (single nucleotide polymorphisms) have been characterized of 

human DEFB1 (human defensin β-1) gene in  previous studies (Ref 18, 19) In our complex 

study we demonstrated that elevated HNP1-3 levels in diabetes are independent of 

DEFA1/DEFA3 copy numbers, but  the GG genotype of C-44G SNP in DEFB1 gene may 

result in decreased β1-defensin production. 

 

Applications 

Our data support the view, that both alpha and beta-defensins may have an important role in 

the pathogenesis of diabetes and diabetic complications The results may contribute to a better 

understanding of  the roles of defensins in the pathomechanism of  diabetes and may represent 

a future possibility toward broadening  of  the prognostic laboratory  markers. 

 

Terminology 

HNP 1-3 are Human Neutrophil Peptides, members of the  human α-defensin family. Human 

defensin β-1 (HBD1) is the member of  another family of antimicrobial peptides. Two types 

of genetic polymorphisms have been identified in genes encoding defensins: copy number 
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polymorphisms and single nucleotide poymorphisms (SNPs). Several copy number 

polymorphisms form the major source of genetic polymorphism of α-defensin genes DEFA1 

and DEFA3, encoding human neutrophil peptides Human defensin beta-1 (HBD-1) is encoded 

by the gene DEFB1.  Three frequent SNPs at positions G-20A (rs11362), C-44G (rs 1800972) 

and G-52A (rs1799946) in the 5’-untranslated region (UTR) of DEFB1 were described.  The 

untranslated variants influence HBD-1 expression or function. 
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DEFB1 G-20A GG GA AA χ
2 test* 

Patients with diabetes  
n = 257 

82 (32%) 131 (51%) 44 (17%) 0.568 

Type 1 diabetes 
n = 117 

36 (31%) 60 (51%) 21 (18%) 0.775 

Type 2 diabetes 
n = 140 

46 (33%) 71 (51%) 23 (16%) 0.573 

Controls 
n = 200 

62 (31%) 96 (48%) 42 (21%)  

DEFB1 G-52A GG GA AA χ
2 test* 

Patients with diabetes 
n = 257 

114 (44%) 104 (40%) 39 (15%) 0.572 

Type 1 diabetes 
n = 117 

52 (44%) 47 (40%) 18 (17%) 0.702 

Type 2 diabetes 
n = 140 

62 (44%) 57 (41%) 21 (15%) 0.658 

Controls 
n = 200 

80 (40%) 84 (42%) 36 (18%)  

DEFB1 C-44G CC CG GG χ
2 test* 

Patients with diabetes 
n = 257 

156 (61%) + 95 (37%) 6 (2%)** 0.002 

Type 1 diabetes 
n = 117 

70 (60%) 44 (37 %) 3 (2.5%) 0.01 

Type 2 diabetes 
n = 140 

86 (61%) 51 (36%) 3 (2%) 0.003 

Controls 
n = 200 

90 (45%) 92 (46%) 18 (9%)  

 
 
Table 1. Genotypes of  DEFB1 G-20A,  DEFB1 G-52A , and DEFB1 C-44G 

polymorphisms in patients with diabetes  

* chi square test vs. controls 
** Fisher test vs. controls, p = 0.001, OR = 9.136, 95% CI: 3.512–23.82 

+  Fisher test vs. controls, p = 0.0009, OR = 2.005, 95% CI: 1.218–2.746 
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Legends 

Fig.1. Plasma levels of human neutrophil peptides (HNP1-3) in patients with type 1 and type 

2 diabetes (DM1 and DM2) and healthy controls. The line represents the mean plasma levels 

of  HNP1-3. Significant differences as determined by Mann–Whitney test are indicated. 

Fig.2. Plasma levels of human neutrophil peptides (HNP1-3) in diabetic patients with 

different complications relative to those without complications, and to healthy controls. Mean 

and SE are indicated; significant differences between groups were determined by unpaired t 

test. 

Fig.3. Genomic copy number of DEFA1/DEFA3 in patients with diabetes and in healthy 

blood donors. Quantitative box-plot analysis (median, minimum, maximum value, 25% and 

75% percentiles) of DEFA1/A3 copy numbers determined in  DNA samples  from  133 

controls, 100 patients with type 1 diabetes (DM1), and 100 patients with type 2 diabetes 

(DM2). 

Fig.4. Plasma levels of human neutrophil peptides (HNP1-3) in diabetic patients vs. copy 

numbers of DEFA1/DEFA3. The DEFA1/A3 copy numbers were determined by quantitative 

PCR analysis and compared to the HNP1-3 plasma level of the same patient (50 with type 1 

and 50 with type 2 diabetes). 

Fig.5. Relative mRNA expression levels of DEFA1/DEFA3 in diabetic patients vs. copy 

numbers of DEFA1/DEFA3. The DEFA1/A3 copy numbers were determined by quantitative 

PCR analysis and compared to the DEFA1/DEFA3 mRNA measured by RT-PCR of the same 

patient (12 with type 1 and 12 with type 2 diabetes).  
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Human cationic trypsinogen (PRSS1) variants and chronic pancreatitis
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Németh BC, Sahin-Tóth M. Human cationic trypsinogen (PRSS1) variants and
chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol 306: G466–G473,
2014. First published January 23, 2014; doi:10.1152/ajpgi.00419.2013.—Varia-
tions in the serine protease 1 (PRSS1) gene encoding human cationic trypsinogen
have been conclusively associated with autosomal dominant hereditary pancreatitis
and sporadic nonalcoholic chronic pancreatitis. Most high-penetrance PRSS1 vari-
ants increase intrapancreatic trypsin activity by stimulating trypsinogen autoacti-
vation and/or by inhibiting chymotrypsin C-dependent trypsinogen degradation.
Alternatively, some PRSS1 variants can cause trypsinogen misfolding, which
results in intracellular retention and degradation with consequent endoplasmic
reticulum stress. However, not all PRSS1 variants are pathogenic, and clinical
relevance of rare variants is often difficult to ascertain. Here we review the PRSS1
variants published since 1996 and discuss their functional properties and role in
chronic pancreatitis.

The PRSS1 Gene

The serine protease 1 (PRSS1, PRoteaSe Serine 1) gene in
humans is located on chromosome 7q35, within the T cell
receptor beta locus (43). The association of trypsinogen genes
with this locus is important historically, because DNA se-
quencing of this region in 1996 and the fortuitous finding of
eight trypsinogen genes intercalated here greatly facilitated the
discovery of the susceptibility gene for hereditary pancreatitis.
PRSS1 codes for human cationic trypsinogen, the precursor for
the most abundant digestive enzyme secreted by the human
pancreas (45). Besides PRSS1, the locus also contains five
trypsinogen pseudogenes, a relic gene, and PRSS2, that en-
codes anionic trypsinogen, the other major human trypsinogen
isoform. The PRSS3 gene coding for mesotrypsinogen, the
relatively minor third human isoform, is found on chromosome
9p13.

Copy Number Mutations in PRSS1

Heterozygous triplication and duplication of a 605-kb seg-
ment containing the trypsinogen genes on chromosome 7 was
found in French patients with hereditary and sporadic idio-
pathic chronic pancreatitis (5, 29, 33). Presumably similar
heterozygous duplications of PRSS1 were reported in two U.S.
families with hereditary pancreatitis (26). Such copy number
mutations should result in higher trypsinogen expression
through a gene-dosage effect, although this has not been
demonstrated directly. Higher trypsinogen concentrations, in
turn, would increase the likelihood of autoactivation and de-
velopment of intrapancreatic trypsin activity. A unique dupli-
cation event that resulted in an extra copy of a hybrid PRSS2/
PRSS1 trypsinogen gene was also described in a French family
with hereditary pancreatitis (34).

Gene Conversions Within Trypsinogen Genes

Human trypsinogen genes exhibit a high level of sequence
identity, which may facilitate gene conversion events. In fact,
gene conversion was suggested as a mechanism for the evolu-
tionary origin of the most common hereditary pancreatitis-
associated mutations (6). A gene conversion event was identi-
fied in a 6-yr-old German girl with sporadic chronic pancre-
atitis, which replaced exon 2 in PRSS1 with that from PRSS2
(60). A gene duplication event in a French family with hered-
itary pancreatitis resulted in a similar hybrid gene, containing
exons 1–2 from PRSS2 and exons 3–4–5 from PRSS1 (34).
Since exon 1 codes for part of the signal peptide which is
removed in the endoplasmic reticulum, only changes in exon 2
affect the mature trypsinogen protein. The amino acids en-
coded by exon 2 are nearly identical between the two isoforms,
with the exception of Ile29 and Ser54 found in anionic
trypsinogen (PRSS2). Consequently, the hybrid genes de-
scribed in the German and French studies encode cationic
trypsinogen with mutations p.N29I and p.N54S. Whereas the
p.N54S variation is functionally innocuous (60), the p.N29I
mutation causes hereditary pancreatitis.

Common Polymorphisms in PRSS1

Polymorphic variations with a population frequency �5%
are relatively rare in PRSS1. Variant c.486C�T (p.D162� or
p.D162D; dbSNP rs6666) in exon 4 and variant c.738C�T
(p.N246� or p.N246N, dbSNP rs6667) in exon 5 are the only
two variations within the coding region. The two variants are
typically found in linkage disequilibrium and the C allele has
a slightly higher frequency in Europeans (0.6), whereas it is
less frequent (0.25) in subjects of Asian origin or subjects from
India (0.1). No disease association has been demonstrated for
either variant. Two additional common variants can be found
in the 5= region upstream of the ATG start codon: c.�204C�A
(dbSNP rs4726576; C allele frequency is �0.7 in Europeans
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and �0.4 in Asians) and c.�408C�T (dbSNP rs10273639; C
allele frequency is �0.6 in Europeans and �0.3 in Asians). In
a recent genomewide association study, variant c.–408C�T
(i.e., the T allele) was demonstrated to have a small protective
effect against chronic pancreatitis presumably by lowering
trypsinogen expression (64). The C allele of the same variation
(erroneously reported as �409C/T) was previously claimed to
offer protection against pancreatic cancer in a Chinese popu-
lation; however, independent confirmation is lacking (31).

PRSS1 Variants in the General Population

Published accounts indicate that sequencing the PRSS1 gene
of 200 French (7), 82 German (58), 420 Chinese (4, 68), 28
Korean (30), and 150 Brazilian (3) control subjects revealed
only the p.E79K exon 3 variant in a French and a Brazilian
individual. More recently, exon 3 of 1,000 healthy controls of
German origin was sequenced and only the p.V123L variation
was identified in a single subject (46). These observations
indicate that PRSS1 variants, other than the common polymor-
phisms, are exceedingly rare in the general population.

PRSS1 Mutations in Hereditary Pancreatitis

Autosomal dominant hereditary pancreatitis was first re-
ported by Comfort and Steinberg in 1952 (10). Using genetic
linkage analysis, three independent research groups localized
the susceptibility gene to chromosome 7 in 1996 (27, 39, 62).
In the same year, Whitcomb et al. (63) used candidate gene
sequencing to identify the most common causative mutation
p.R122H in PRSS1. Genetic heterogeneity underlying heredi-
tary pancreatitis was soon recognized when the second most
common PRSS1 mutation, p.N29I, was described by two
groups in 1997–1998 (16, 56). These two heterozygous muta-
tions are found in �90% of hereditary pancreatitis families
worldwide, with p.R122H accounting for �65% and p.N29I for
�25% of the cases. In the remaining 10% of the cases, PRSS1
mutations p.A16V, p.D21A, p.D22G, p.K23R, p.K23_I24insIDK,
p.N29T, p.V39A, p.R116C, and p.R122C were identified, always
in the heterozygous state (2, 12, 22, 28, 40, 48, 55, 57, 65, 67).
Mutations p.D21A, p.D22G, p.K23R, p.K23_I24insIDK, and
p.V39A were found only in a single family each. Penetrance of
PRSS1 mutations in hereditary pancreatitis families is incomplete;
it is estimated between 80 and 90% for carriers of p.R122H,
although smaller pedigrees may exhibit lower apparent penetrance
(21, 62, 41, 49). Note that mutations p.A16V and p.R116C exhibit
variable penetrance and were also found in sporadic cases with no
family history.

Hereditary pancreatitis-associated PRSS1 mutations exert
their effect via a so-called trypsin-dependent pathological path-
way, which involves increased autoactivation of mutant
trypsinogens resulting in elevated intrapancreatic trypsin ac-
tivity. Rare mutations in the activation peptide of trypsinogen
(p.D21A, p.D22G, p.K23R, and p.K23_I24insIDK) directly
stimulate autoactivation (8, 15, 22, 37). In contrast, the more
common hereditary pancreatitis-associated PRSS1 mutations
alter the regulation of activation and degradation of cationic
trypsinogen by chymotrypsin C (CTRC), a digestive enzyme
that controls trypsin levels generated through autoactivation of
human trypsinogens (51) (Fig. 1). CTRC promotes degradation

of trypsinogen by cleaving the Leu81-Glu82 peptide bond in
the calcium binding loop and thereby attenuates trypsin levels
during autoactivation (51, 52, 53). Importantly, trypsin-medi-
ated autolytic cleavage of the Arg122-Val123 peptide bond is
also required for CTRC-dependent degradation and inactiva-
tion of trypsinogen (51, 53). Paradoxically, CTRC also stim-
ulates trypsinogen activation by processing the activation pep-
tide at the Phe18-Asp19 peptide bond to a shorter form, which
is cleaved by trypsin at a higher rate, resulting in increased
autoactivation (38, 51).

PRSS1 mutations interfere with the CTRC-mediated cleav-
ages described above and render trypsinogen resistant to deg-
radation and/or increase processing of the activation peptide
(Fig. 1). Typically, a combination of two or more effects
results in the common phenotype of increased activation (51).
Thus mutations p.R122H and p.R122C completely block
cleavage at Arg122 by trypsin but also decrease cleavage at
Leu81 by CTRC. Mutation p.N29I increases cleavage of the
activation peptide and reduces cleavage both at Leu81 and
Arg122. Mutations p.V39A and p.N29T decrease cleavage at
Leu81 and Arg122, whereas mutation p.A16V increases pro-
cessing of the activation peptide by CTRC (38, 51). Regardless
of mechanistic details, the unifying biochemical phenotype of
all hereditary pancreatitis-associated mutants is increased rates
of autoactivation, with markedly elevated final trypsin activity
levels, relative to wild-type cationic trypsinogen.

The only exception to the unifying pathological mechanism
described above is mutation p.R116C, which does not change
trypsinogen activation but causes misfolding, which results in
intracellular aggregation and degradation and consequently
reduced secretion (25). Mutation-induced misfolding can elicit
endoplasmic reticulum stress, which is probably responsible
for the increased disease risk in carriers of p.R116C, although
the exact mechanism is unknown. Mutation p.R116C exhibits
variable penetrance and is often found in sporadic cases,
suggesting that the misfolding-dependent pathological path-
way may confer relatively smaller risk.

PRSS1 Variants in Sporadic Nonalcoholic Chronic
Pancreatitis

The first indication that PRSS1 variants can cause chronic
pancreatitis with lower penetrance came from the identification
of the p.A16V variant by Witt et al. (65) in four children with
chronic pancreatitis. Only one child had a positive family
history consistent with hereditary pancreatitis, whereas in three
children the disease was sporadic with no family history, even
though inheritance from unaffected parents was demonstrated.
Subsequent studies based on the EUROPAC database (18)
confirmed the variable penetrance of this variant, demonstrat-
ing that p.A16V was found in six families with hereditary
pancreatitis, in one family with familial (single-generation)
chronic pancreatitis, and in three cases of chronic pancreatitis
with no family history. The biochemical phenotype of the
p.A16V explains its genetic properties: the mutation causes
increased autoactivation in the presence of CTRC; however,
the rate of autoactivation and the final trypsin levels attained
are much lower than those observed with the highly penetrant
PRSS1 mutations such as p.R122H (51). Increased autoactiva-
tion is due to faster processing of the mutant trypsinogen
activation peptide by CTRC (38, 51). As noted above, mutation
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p.R116C is another example of a hereditary pancreatitis-asso-
ciated mutation with variable penetrance. A recent study dem-
onstrated that variant p.G208A was associated with �4% of
idiopathic and alcoholic chronic pancreatitis patients of Japa-
nese origin, and increased disease risk by �15- to 20-fold (32).
This variant has no effect on trypsinogen activation but causes
a moderate (�60%) reduction in trypsinogen secretion from
transfected cells (46). Thus, as seen with variant p.R116C,
mutation-induced misfolding and endoplasmic reticulum stress
may be the pathologically relevant mechanism for variant
p.G208A as well. It is also noteworthy that p.G208A is the first
PRSS1 variant for which an association with alcoholic pancre-
atitis has been demonstrated.

Screening of various patient populations with sporadic idio-
pathic chronic pancreatitis has led to the identification of a
large number of rare missense variants (4, 7, 14, 23, 30, 35, 42,
55, 58). The clinical significance of such variants has been
unclear because their low frequency did not allow statistical
determination of genetic association with pancreatitis. Never-
theless, authors often described these as causative or pancre-
atitis-associated simply by analogy with well-characterized
disease-relevant PRSS1 mutations. Characterization of the
functional phenotype of these variants revealed that only the
activation peptide variant p.D19A increased autoactivation in a

manner similar to the hereditary pancreatitis-associated activa-
tion-peptide mutations (8, 15, 37). A handful of mutants
showed a marked (p.D100H, p.C139F, and p.C139S) or mod-
erate (p.K92N and p.S124F) secretion defect, which suggested
that these mutations exerted their pathogenic effect through a
mechanism that involves mutation-induced misfolding and
endoplasmic reticulum stress, as described above for mutations
p.R116C and p.G208A (25, 46). Another subset of mutants
showed no phenotypic alterations compared with wild-type
trypsinogen (p.L81M, p.Q98K, p.A121T, p.T137M, and
p.S181G) or suffered increased degradation by CTRC (p.P36R,
p.G83E, p.I88N, and p.V123M) (46, 52, 54). These variants are
likely harmless and their identification in patients with chronic
pancreatitis may be accidental. One variant (p.K170E) caused
slightly increased trypsinogen secretion, which, similarly to the
copy number mutations, may translate to increased risk for
pancreatitis (46).

Variant p.E79K should be highlighted because this is the
only rare PRSS1 variant that was found not only in patients but
also in unrelated controls (3, 7, 20, 23, 41, 50, 59). Early
biochemical studies demonstrated an increased propensity of
this mutant to transactivate anionic trypsinogen; however, this
small phenotypic change is unlikely to be of pathological
consequence (59). More recent studies indicated that the rate of

Fig. 1. Effect of pancreatitis-associated PRSS1 mutations on the chymotrypsin C (CTRC)-dependent activation and degradation of human cationic trypsinogen.
CTRC cleaves the Leu81-Glu82 peptide bond and trypsin cleaves the Arg122-Val123 peptide bond; these 2 cleavages result in the eventual degradation of
trypsinogen. CTRC also stimulates autoactivation of cationic trypsinogen by cleaving the Phe18-Asp19 peptide bond in the activation peptide. The shortened
activation peptide is more susceptible to trypsin-mediated activation at the Lys23-Ile24 peptide bond. The dominant effect of CTRC is degradation. A: PRSS1
mutations can increase conversion of trypsinogen to trypsin by inhibition of CTRC-dependent trypsinogen degradation (red arrow) or by increasing
CTRC-dependent stimulation of autoactivation (green arrow). See text for further details. B: proteolytic cleavage of human cationic trypsinogen by CTRC and
trypsin. Primary structure of trypsinogen with disulfide bonds is shown. CTRC cleavage sites are highlighted in orange and trypsin cleavage sites are shown in
blue. The activation peptide is in green. Note the yellow peptide segment not stabilized by disulfide bonds between the Leu81 and Arg122 cleavage sites. B is
modified from Ref. 53, copyright by the National Academy of Sciences of the United States of America.
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Table 1. Variants in the PRSS1 gene encoding human cationic trypsinogen

Region Nucleotide Change Amino Acid Change
Number of CP Carriers

Reported
Number of Non-CP
Carriers Reported Clinical Significance

PRSS1 duplication 7 Pathogenic
PRSS1 triplication 26 2 Pathogenic

5 prime c.�408C�T common polymorphism common polymorphism Protective
5 prime c.�204C�A common polymorphism common polymorphism Nonpathogenic
5 prime c.�36G�A 1 Unknown
5 prime c.�30_�28delTCC 1 Unknown
intron 1 c.40�1G�A 1 Protective
intron 1 c.40�40delC 1 Unknown
intron 1 c.41–49C�T 1 Unknown
exon 2 c.47C�T p.A16V 39 24 Pathogenic
exon 2 c.56A�C p.D19A 1 Pathogenic
exon 2 c.62A�C p.D21A 3 Pathogenic
exon 2 c.65A�G p.D22G 2 1 Pathogenic
exon 2 c.68A�G p.K23R 2 Pathogenic
exon 2 c.63_71dup p.K23_I24insIDK 3 Pathogenic
exon 2 c.86A�T p.N29I 285 18 Pathogenic
exon 2 PRSS1-PRSS2 hybrid p.N29I � p.N54S 7 1 Pathogenic
exon 2 c.86A�C p.N29T 5 Pathogenic
exon 2 c.107C�G p.P36R 2 Nonpathogenic
exon 2 c.111C�A p.Y37X 1 Protective
exon 2 c.116T�C p.V39A 7 Pathogenic
intron 2 c.200�1G�A 1 Protective
exon 3 c.235G�A p.E79K 13 6 Pathogenic?
exon 3 c.241C�A p.L81M 4 Unknown
exon 3 c.248G�A p.G83E 1 Nonpathogenic
exon 3 c.263T�A p.I88N 1 Nonpathogenic
exon 3 c.273C�A p.A91� 1 Unknown
exon 3 c.276G�T p.K92N 1 Pathogenic
exon 3 c.292C�A p.Q98K 1 Nonpathogenic
exon 3 c.298G�C p.D100H 2 3 Pathogenic
exon 3 c.310C�G p.L104V 4 Unknown
exon 3 c.311T�C p.L104P 1 3 Pathogenic
exon 3 c.346C�T p.R116C 16 4 Pathogenic
exon 3 c.361G�A p.A121T 14 6 Nonpathogenic
exon 3 c.364C�T p.R122C 35 23 Pathogenic
exon 3 c.365G�A p.R122H 793 69 Pathogenic
exon 3 c.365_366GC�AT p.R122H 3 Pathogenic
exon 3 c.367G�A p.V123M 1 Nonpathogenic
exon 3 c.367G�T p.V123L 1 Nonpathogenic
exon 3 c.371C�T p.S124F 1 Pathogenic
exon 3 c.403A�G p.T135A 1 Unknown
exon 3 c.410C�T p.T137M 2 1 Nonpathogenic
exon 3 c.415T�A p.C139S 11 Pathogenic
exon 3 c.416G�T p.C139F 2 1 Pathogenic
exon 3 c.417C�T p.C139� 1 Unknown
exon 3 c.443C�T p.A148V 1 Unknown
intron 3 c.454�10A�C 5 Unknown
intron 3 c.454�36T�C 1 Unknown
intron 3 c.454�75A�G 24 4 Unknown
intron 3 c.454�127A�T 1 Unknown
intron 3 c.454�157C�A 1 Unknown
intron 3 c.454�157C�G 1 2 Unknown
intron 3 c.454�172C�T 4 Unknown
intron 3 c.455–192T�A 1 Unknown
exon 4 c.486C�T p.D162� common polymorphism common polymorphism Nonpathogenic
exon 4 c.508A�G p.K170E 2 Pathogenic?
exon 4 c.541A�G p.S181G 1 1 Nonpathogenic
intron 4 c.592–79G�A 1 Unknown
intron 4 c.592–78G�A 1 Unknown
intron 4 c.592–24C�T 1 Unknown
intron 4 c.592–11C�T 1 Unknown
intron 4 c.592–8C�T 1 Unknown
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autoactivation of mutant p.E79K is suppressed in the presence
of CTRC; however, the mutant reaches higher final trypsin
levels than wild-type trypsinogen, because of its resistance to
CTRC-mediated degradation (A. Szabó and M. Sahin-Tóth,
unpublished observations). Thus the biochemical phenotype is
inconclusive but, together with the genetic data, may be cau-
tiously interpreted as p.E79K being a mild pathogenic variant
with low penetrance.

PRSS1 Variants in Conditions Unrelated to Pancreatitis

Chen et al. (9) reported two loss-of-function PRSS1 variants,
a nonsense variant p.Y37X and a splice-site mutation
c.200�1G�A in intron 2 found in chronic alcoholics without
pancreatic disease. The authors suggested that the variants
should be protective against chronic pancreatitis. Gullo et al.
(19) investigated PRSS1 variants in benign pancreatic hyper-

enzymemia and found variant p.A148V and the splice-site
mutation c.40�1G�A in intron 1. Variant p.A148V has no
functional consequences (A. Schnúr and M. Sahin-Tóth, un-
published observations), whereas variant c.40�1G�A should
result in decreased trypsinogen expression, which might be
protective against chronic pancreatitis. Two studies described
PRSS1 variants in Chinese patients with pancreatic cancer
(p.T135A, p.T137M, c.454�36T�C, and c.454�157C�G in
intron 3), which are in all likelihood incidental findings unre-
lated to pathology (13, 68). The same group proposed a strong
protective effect for the C allele of the common polymorphic
variant c.�408C�T (erroneously reported as �409C/T)
against pancreatic cancer (31). Variant p.L104V was re-
ported in two female members of a Chinese family with
familial solid pseudopapillary tumor of the pancreas and in
two healthy male relatives (17). Finally, patients with

Table 2. Mechanism of action of pathogenic PRSS1 variants

Region Nucleotide change Amino acid change Pathogenic mechanism Notes Citations

PRSS1 duplication increased secretion no direct evidence
PRSS1 triplication increased secretion no direct evidence

exon 2 c.47C�T p.A16V increased activation CTRC dependent 38, 51
exon 2 c.56A�C p.D19A increased activation 8, 15, 24, 37
exon 2 c.62A�C p.D21A increased activation 37
exon 2 c.65A�G p.D22G increased activation 8, 15, 22, 24, 57
exon 2 c.68A�G p.K23R increased activation 8, 15, 24, 57
exon 2 c.63_71dup p.K23_I24insIDK increased activation 15, 22
exon 2 c.86A�T p.N29I increased activation CTRC dependent 51
exon 2 PRSS1-PRSS2 hybrid p.N29I � p.N54S increased activation CTRC dependent 51, 60
exon 2 c.86A�C p.N29T increased activation CTRC dependent 51
exon 2 c.116T�C p.V39A increased activation CTRC dependent 51
exon 3 c.235G�A p.E79K increased activation* CTRC dependent unpublished
exon 3 c.276G�T p.K92N misfolding 46
exon 3 c.298G�C p.D100H misfolding 46
exon 3 c.311T�C p.L104P misfolding unpublished
exon 3 c.346C�T p.R116C misfolding 25
exon 3 c.364C�T p.R122C increased activation CTRC dependent 51
exon 3 c.365G�A p.R122H increased activation CTRC dependent 51
exon 3 c.365_366GC�AT p.R122H increased activation CTRC dependent 51
exon 3 c.371C�T p.S124F misfolding 46
exon 3 c.415T�A p.C139S misfolding 25
exon 3 c.416G�T p.C139F misfolding 46
exon 4 c.508A�G p.K170E increased secretion 46
exon 5 c.623G�C p.G208A misfolding 46

See Table 1 for inclusion criteria. Mutations in PRSS1 can increase activation of cationic trypsinogen via 4 independent but mutually nonexclusive
mechanisms: 1) inhibition of CTRC-dependent trypsinogen degradation, 2) increasing CTRC-dependent stimulation of autoactivation; 3) direct stimulation of
autoactivation; and 4) increased trypsinogen secretion. Alternatively, PRSS1 mutations can cause misfolding and endoplasmic reticulum stress. See Fig. 1 for
CTRC-dependent mechanisms of trypsinogen activation and degradation. *Note that the biochemical phenotype of p.E79K is ambiguous; see text for details.
Citations refer to functional studies.

Table 1.—Continued

Region Nucleotide Change
Amino Acid

Change
Number of CP Carriers

Reported
Number of Non-CP
Carriers Reported Clinical Significance

exon 5 c.623G�C p.G208A 22 3 Pathogenic
exon 5 c.738C�T p.N246� common polymorphism common polymorphism Nonpathogenic

Adapted from www.pancreasgenetics.org, February 2, 2014. For a complete list of citations please visit the database website. The number of reported chronic
pancreatitis (CP) carriers is an approximation for the most frequent variants, because authors often published the same patients in multiple publications without
indicating the repetitive entries. Non-CP carriers include nonpenetrant family members, unrelated healthy control subjects or individuals with conditions other
than pancreatitis. The clinical significance field indicates our interpretation of the available genetic and functional data with respect to the pathogenic potential
of PRSS1 variants. The following genetic evidence was considered as indicative of pathogenic nature: segregation with disease, multiple reports worldwide of
affected carriers, and absence in unrelated controls. In case of rare variants, phenotypic similarity to well-characterized, hereditary pancreatitis-associated
mutations served as the basis for classification. Thus variants were considered pathogenic if they caused 1) increased autoactivation in the absence or presence
of chymotrypsin C (CTRC), 2) reduced secretion, indicative of potential misfolding, or 3) increased trypsinogen expression or secretion. Conversely, variants
that are expected to reduce trypsinogen expression were designated protective.

Review

G470 PRSS1 VARIANTS IN PANCREATITIS

AJP-Gastrointest Liver Physiol • doi:10.1152/ajpgi.00419.2013 • www.ajpgi.org



PRSS1-related hereditary pancreatitis have a 40 –55% life-
time risk of developing pancreatic cancer (Ref. 66 and
references therein).

The PRSS1 Database

The first database for PRSS1 variants associated with
chronic pancreatitis was created by Dr. Niels Teich at the
University of Leipzig, Germany (61). Although the link is still
active (http://www.uni-leipzig.de/pancreasmutation/db.html),
the website has not been updated since 2006. To track the
increasing number of PRSS1 variants in the literature and to
help with classification of their clinical relevance, in 2012 we
created a new online database. Currently, the database lists 64
PRSS1 variants: 2 copy number mutations, 34 missense vari-
ants, 4 synonymous variants, 1 nonsense variant, 1 micro-
insertion, 1 hybrid gene, and 21 variants in noncoding
regions (Table 1). With respect to clinical significance, 25
variants are pathogenic (Table 2), 14 are nonpathogenic, 4
variants are protective, and 21 (mostly intronic) variants
have unknown significance. The database can be accessed at
www.pancreasgenetics.org.

Animal Models of PRSS1 Related Pancreatitis

Although considerable progress has been made in clarifying
the mechanism of PRSS1 mutations at the biochemical level,
animal models that recapitulate salient features of human
hereditary pancreatitis are still lacking. At the time of writing
this review, only two publications documented attempts to
generate such models. Selig et al. (47) created transgenic mice
with the coding DNA of human PRSS1 containing the
p.R122H mutation. The animals did not develop spontaneous
pancreatitis, and cerulein caused only slightly more severe
pancreatitis in transgenic mice relative to controls. Archer et al.
(1) described the spontaneous development of acute and
chronic pancreatitis in a transgenic line with the p.R122H
mutation introduced into the coding DNA of mouse trypsino-
gen isoform T8. Unfortunately, independent replications or
additional studies on this promising model have not been
published since 2006. It is also unclear whether the observed
phenotype was related to the expression of the mutant trypsino-
gen. Nevertheless, this study focused attention to the question
whether the biochemical effects human PRSS1 mutations
would be similar in the context of mouse and human trypsino-
gens and whether we can make use of mouse trypsinogens to
model the human disease. Recently, we demonstrated that the
mouse pancreas expresses four trypsinogen isoforms to high
levels (T7, T8, T9, and T20), and mouse Ctrc strongly inhibits
autoactivation of isoforms T8 and T9 through cleavage of the
autolysis loop (36). In sharp contrast to the human situation
(see Ref. 51 and Fig. 1), mutation p.R122H had no appreciable
effect on the autoactivation of T8 trypsinogen in the presence
of mouse Ctrc (36). These observations argue that human
pancreatitis-associated mutations may not recapitulate the
pathogenic biochemical phenotype in the context of mouse
trypsinogens.

Genetic deletion of mouse T7 was recently shown to abolish
intra-acinar trypsinogen activation in response to hyperstimu-
lation with cerulein, whereas severity of acute pancreatitis was
somewhat decreased but not diminished (11). Furthermore,
development of cerulein-induced chronic pancreatitis was un-

affected by the absence of T7 (44). These observations seem to
call into question the direct role of trypsinogen in the devel-
opment of pancreatitis and seem to be at odds with the
preponderance of human genetic and biochemical data dis-
cussed in this review. However, a more likely explanation for
the apparent contradiction is that the hyperstimulation model
employed in these studies does not mimic the pathological
pathway associated with human hereditary pancreatitis. Future
studies will be needed to shed more light on this intriguing
problem.
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Quantitation of DEFA1A3 gene copy number polymorphism 
by allele specific amplification and real-time PCR
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ABSTRACT                        Some of the PCR based genotyping methods are faster and less expensive than 
sequencing in population-wide studies. One of the cost effective solutions is the allele specific 
amplification (ASA). We applied this method for quantitative analysis of defensin 1 (DEFA1) and 
defensin 3 (DEFA3) genes which are known to have copy number polymorphism in the human 
genome. The proteins encoded by these genes are human alpha defensins / human neutrophil 
peptides 1 and 3. Their antimicrobial mechanisms have an important role in the function of 
innate immune system. Our aim was to improve the reproducibility of ASA using 14 different 
mastermixes (MMX). Unfortunately, not all MMX-s are suitable for ASA investigations due to 
their different characteristics of polymerase activity. Here we investigated 14 commercial MMX-s 
whether they are capable for ASA test. Acta Biol Szeged 57(1):47-50 (2013)
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Figure 1. Principle of the allele specific amplification (ASA). The reaction takes place in two tubes. Each tube has one kind of forward extension 
primer which 3’ end perfectly complement to one of the target sequence. The reverse primer is common. The amplicon indicates the presence of 
the adequate allele. Investigating heterozygote’s, there are amplicons in both tubes, in contrast in case of homozygosis just one of them has. 



Real time PCR master mixes

Real-time quantitation using ASA

Results and Discussion

Figure 2. Test of the different mastermixes (MMX).MMX 1, 2 and 3 
could not differentiate between the DEFA1 and DEFA3 genes because 
of the proof reading activity of the Taq polymerase. MMX 4 produced 
aspecific bands as a side effect due to the presence of dsDNA binding 
protein which stabilizes the polymerase-template complex and able to 
amplify the target DNA in the presence of inhibitors (BioRad SsoFast 
EvaGreen Supermix). MMX 5 is suitable for ASA (Fermentas Maxima 
SybrGreen qPCR Mastermix and BioRad iTaq SybrGreen Supermix). 
Followed by annealing temperature optimisation MMX 6 also could 
be used (Promega GoTaq qPCR Mastermix).
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Background: Hereditary pancreatitis-associated mutations alter regulation of trypsinogen activation by chymotrypsin C.
Results: Activation of mouse trypsinogens T8 and T9 is inhibited by chymotrypsin C-mediated cleavage of the autolysis loop.
Conclusion: Chymotrypsin C regulates activation of human and mouse trypsinogens by different mechanisms.
Significance: Introduction of human pancreatitis-associated mutations into mouse trypsinogens will not recapitulate the
pathogenic biochemical effects.

Chymotrypsin C (CTRC) is a proteolytic regulator of tryp-
sinogen autoactivation in humans. CTRC cleavage of the
trypsinogen activation peptide stimulates autoactivation,
whereas cleavage of the calcium binding loop promotes trypsin-
ogen degradation. Trypsinogenmutations that alter these regu-
latory cleavages lead to increased intrapancreatic trypsinogen
activation and cause hereditary pancreatitis. The aim of this
study was to characterize the regulation of autoactivation of
mouse trypsinogens by mouse Ctrc. We found that the mouse
pancreas expresses four trypsinogen isoforms to high levels, T7,
T8, T9, and T20. Only the T7 activation peptide was cleaved by
mouse Ctrc, causing negligible stimulation of autoactivation.
Surprisingly, mouse Ctrc poorly cleaved the calcium binding
loop in all mouse trypsinogens. In contrast, mouse Ctrc readily
cleaved thePhe-150–Gly-151peptide bond in the autolysis loop
ofT8 andT9 and inhibited autoactivation.Mouse chymotrypsin
B also cleaved the same peptide bond but was 7-fold slower. T7
was less sensitive to chymotryptic regulation, which involved
slow cleavage of the Leu-149–Ser-150 peptide bond in the
autolysis loop.Modeling indicated steric proximity of the autol-
ysis loop and the activation peptide in trypsinogen, suggesting
the cleaved autolysis loopmay directly interfere with activation.
Weconclude that autoactivationofmouse trypsinogens is under
the control of mouse Ctrc with some notable differences from
the human situation. Thus, cleavage of the trypsinogen activa-
tion peptide or the calciumbinding loop byCtrc is unimportant.
Instead, inhibition of autoactivation via cleavage of the autolysis
loop is the dominant mechanism that canmitigate intrapancre-
atic trypsinogen activation.

Hereditary chronic pancreatitis is a human genetic disorder
caused by heterozygous mutations in the serine protease 1

(PRSS1) gene, which codes for the digestive proenzyme cationic
trypsinogen (1). High penetrance trypsinogen mutations such
as p.N29I and p.R122H are associated with an autosomal dom-
inant inheritance pattern, whereas mutations with lower pen-
etrance, exemplified by p.A16V, may be found not only in
hereditary but also in sporadic cases with no family history (2).
The disease mechanism involves increased autoactivation of
mutant trypsinogens within the pancreas due to altered regula-
tion by chymotrypsin C (CTRC)2 (3). Autoactivation of human
trypsinogens is proteolytically regulated by CTRC that cleaves
cationic trypsinogen at twodistinct regulatory sites. Cleavage of
the Phe-18–Asp-19 peptide bond in the activation peptide
results in a shorter activation peptide and increased autoacti-
vation (4). This cleavage is stimulated by pancreatitis-associ-
ated mutations p.N29I and p.A16V (3, 4). Cleavage of the Leu-
81–Glu-82 peptide bond in the calcium binding loop, together
with the trypsin-mediated autolytic cleavage of the Arg-122–
Val-123 peptide bond, results in rapid degradation and inacti-
vation of cationic trypsinogen (5). Mutations p.N29I and
p.R122H hamper CTRC-mediated degradation and thereby
increase trypsinogen autoactivation (3).
Despite the significant progress in understanding the mech-

anism of trypsinogen mutations at the biochemical level, ani-
mal models that recapitulate the human disease both pheno-
typically and mechanistically remain unavailable. Transgenic
mice carrying the coding DNA for human cationic trypsinogen
with the p.R122H mutation did not develop spontaneous pan-
creatitis, although small differences in the pathological
responseswere notedwhen pancreatitis was artificially induced
(6). In contrast, when mice were made transgenic with the
p.R122Hmutation introduced intomouse trypsinogen isoform
T8 (see Table 1), the resulting animals developed acute and
eventually chronic pancreatitis (7). Unfortunately, this remark-
able model has never been made available to the pancreas
research community for independent replication nor have
there been any follow-up studies published by the original
authors since 2006. It thus remains unclear whether the
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observed phenotypewas related to the expression of themutant
trypsinogen. Nonetheless, this study raises the question
whether the biochemical effects of the p.R122H mutation are
similar in the context of mouse and human trypsinogens and
whether we can utilize mouse trypsinogens to model the
human condition.
Considering the widespread use of mice in experimental

studies of the pancreas, it is surprising how little is known about
mouse trypsinogens. Watanabe and Ogasawara (8) reported
the purification of three trypsinogen isoforms from the mouse
pancreas. Stevenson et al. (9) cloned a trypsinogen cDNA, cor-
responding to isoform T20, from the pancreas and demon-
strated that the mouse genome contained multiple different
trypsinogen genes. This was later confirmed by Hood and co-
workers in 1997 (10) who sequenced the mouse T cell receptor
� locus on chromosome 6 and identified 20 trypsinogen genes
organized in two groups, one containing genes T1–T7 and the
other containing genes T8–T20 (Table 1). Eleven of the 20
genes are potentially functional (Table 1 and Fig. 1), whereas
the other nine genes are pseudogenes or relic genes. Ohmura et
al. (11) cloned the cDNA for isoformT9 from sperm acrosome.
It remains unknown, however, which isoforms of the 11 poten-
tially functional trypsinogen genes are expressed at the protein
level in the mouse pancreas. More recently, genetic deletion of
T7 indicated that this isoform may contribute as much as 60%
of pancreatic trypsinogens (12, 13). The authors also found that
despite the presence of other trypsinogen isoforms, mice defi-
cient in T7 did not respond to secretagogue hyperstimulation
with the characteristic intra-acinar cell trypsinogen activation,
an early event in acute pancreatitis. These new findings suggest
that the differentmouse trypsinogen isoforms vary in their acti-
vation kinetics and highlight the need for their comparative
biochemical characterization. Therefore, in this study, we iden-
tified the major trypsinogen isoforms in the mouse pancreas,
expressed these recombinantly, and studied their autoactiva-
tion and regulation by mouse Ctrc.

EXPERIMENTAL PROCEDURES

Nomenclature—Amino acid residues are numbered start-
ing with the initiator methionine of the primary translation
product, according to the recommendations of the Human
GenomeVariation Society. Note that because of an extra Asp
residue (Asp-23) in the activation peptide of T7, amino acid
numbering in this isoform is shifted by one relative to human
and other mouse trypsinogens. Autolysis loop refers to the
flexible region between residues 146 and 154 in trypsinogen
(Fig. 1).
Plasmid Construction and Mutagenesis—Construction of

the pTrapT7-intein-Hu1 and pcDNA3.1(�)-CTRB2 expres-
sion plasmids harboring the coding sequence for human cat-
ionic trypsinogen (Hu1) and human chymotrypsinogen B2
(CTRB2)was reported previously (5, 14).Mutation p.S150Fwas
introduced into human cationic trypsinogen using overlap-ex-
tension PCR mutagenesis. Expression plasmids for mouse
trypsinogens were created in the pTrapT7 plasmid previously
designed for bacterial expression of human trypsinogens (15,
16). The coding DNA was PCR-amplified from commercial
IMAGE clones and cloned into pTrapT7 using NcoI and SalI
restriction sites. In all constructs, the N-terminal secretory sig-
nal peptide was replaced with a Met-Ala sequence. In T20, the
stop codonwas changed fromamber (TAG) to ochre (TAA). T7
was amplified from IMAGE clone 30306963 (GenBankTM

accession BC061093.1) using T7 NcoI sense (5�-AAA TTT
CCA TGG CTC TCC CCC TGG ATG ATG ATG ATG-3�,
where the NcoI site is underlined) and T7 SalI antisense
(5�-AAA TTT GTC GAC TTA GTT GGC AGC GAT GGT
CTGCTG-3�, where the SalI site is underlined) primers. T8was
amplified from IMAGEclone 30306436 (GenBankTMaccession
BC061135.1) using T8 NcoI sense (5�-AAA TTT CCA TGG
CTTTCCCTGTGGATGATGATGACA-3�, where theNcoI
site is underlined) and T8 SalI antisense (5�-AAA TTT GTC
GACTTAGTTTGCAGCAATGGTGTTTTG-3�, where the

TABLE 1
Trypsinogen genes in the mouse genome
Table is based on the 1997 GenBankTM submissions AE000663.1, AE000664.1, and AE000665.1, which first reported the genomic sequence of the mouse T cell receptor �
locus. The original annotation described genes T2 and T14 as relic genes based on the absence of exon 1. The more recent annotation to the mouse genome identified the
first exons for both genes, and we re-classified these as pseudogenes.

Gene Function Notes

T1 Pseudogene Exons give in-frame translation; product may serve unknown function
Also known as protease, serine 58 (Prss58), GenBankTM NM_175020.3

T2 Pseudogene Exons give in-frame translation; product may serve unknown function
T3 Pseudogene A single nucleotide deletion in exon 2 leads to a frameshift
T4 Functional
T5 Functional
T6 Relic This gene has only exons 2 and 3
T7 Functional
T8 Functional Also known as trypsin4 (Try 4), GenBankTM NM_011646.5
T9 Functional Also known as trypsin5 (Try 5) GenBankTM NM_001003405.4

Also known as TESP4, GenBankTM AB017031.1
T10 Functional
T11 Functional Also known as protease, serine,3 (Prss3), GenBankTM NM_011645.2
T12 Functional
T13 Relic This gene has only exons 3 and 5
T14 Pseudogene This gene has a defective splice site after exon 2
T15 Functional
T16 Functional Also known as protease, serine,1 (Prss1), GenBankTM NM_053243.2
T17 Relic This gene is missing exons 1 and 2
T18 Relic This gene is missing exons 1 and 2
T19 Relic This gene has only exon 3
T20 Functional Also known as protease, serine,2 (Prss2), GenBankTM NM_009430.2
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SalI site is underlined) primers. T9 was amplified from IMAGE
clone 6433372 (GenBankTM accession CF581321.1) using T8
NcoI sense and T9 SalI antisense (5�-AAA TTT GTC GAC
TTAGTT TGCGGCAATGGTGTC CTG-3�, where the SalI
site is underlined) primers. T20 was amplified from IMAGE
clone 6433384 (GenBankTM accession CF581305.1) using T20
NcoI sense (5�-AAA TTT CCA TGG CTT TCC CTG TGG
ATG ATG ATG ACA-3�, where the NcoI site is underlined)
and T20 SalI antisense (5�-AAA TTT GTC GAC TTA GTT
GTC AGC AAT TGT GTT CTG-3�, where the SalI site is
underlined) primers. Mutations p.L82A, p.R123H, and
p.L149A in T7 and p.R122H in T8 were created by overlap
extension PCR and cloned into the pTrapT7 plasmid.
Expression plasmids for mouse chymotrypsinogens carrying

a His10 affinity tag were created in the pcDNA3.1(�) plasmid.
The coding DNA for mouse chymotrypsinogen C (Ctrc) was
PCR-amplified from a cDNA preparation from CD-1 mouse
pancreas, using mouse CTRC XhoI sense (5�-AAA TTT CTC
GAG ACC TGA ACC ATG TTG GGA ATT ACA GTC-3�,
where the XhoI site is underlined) and mouse CTRC EcoRI
antisense (5�-AAATTTGAATTCGGCGTCGAGACTTCT
GGA ACC GTC TCT-3�, where the EcoRI site is underlined)
primers and cloned into pcDNA3.1(�) using XhoI and EcoRI.
A His10 affinity tag was added to the C terminus using gene
synthesis (GenScript, Piscataway, NJ) and the XcmI and
EcoRI sites. In this synthetic construct Leu-268 was deleted
to prevent autolytic cleavage of the His tag. The coding DNA
for mouse chymotrypsinogen B (Ctrb, GenBankTM accession
NM_025583.2) with a C-terminal His10 tag was custom-syn-
thesized (GenScript) and cloned into pcDNA3.1(�) using
XhoI and BamHI.
Purification and Identification of Trypsinogens from CD-1

Mouse Pancreas—Pancreata (2 to 3) were homogenized in 10
ml of 20 mM Na-HEPES (pH 7.4) buffer, briefly sonicated, and
centrifuged at 13,500 rpm for 10min, and�4ml of supernatant
was loaded onto a 2-ml ecotin column. Ecotin is a pan-serine
protease inhibitor from Escherichia coli, which can bind the
inactive zymogen forms of pancreatic serine proteases (17, 18).
The ecotin column was washed with 20 mM Tris-HCl (pH 8.0),
0.2 MNaCl, and trypsinogens were eluted with 50mMHCl. The
flow-through contained no trypsinogen, as judged by the
lack of trypsin activity after incubation with enteropepti-
dase. The ecotin-eluate contained all trypsinogen isoforms
and low levels of chymotrypsinogen and proelastase. Four ml
of eluate was loaded onto a 2-ml Mono S column equili-
brated with 20 mM sodium acetate (pH 5.0), and trypsino-
gens were eluted with a 0–0.5MMNaCl gradient at 1 ml/min
flow rate (Fig. 2A). The eluted proteins were separated by
SDS-PAGE and transferred to a PVDF membrane, and indi-
vidual bands were subjected to N-terminal protein sequenc-
ing by Edman degradation (Midwest Analytical, St. Louis,
MO). Peaks corresponding to T8, T9, and T20 were also
subjected to in-gel digestion followed by LC-MS/MS mass
spectrometry (ProtTech, Phoenixville, PA). Relative abun-
dance of trypsinogen isoforms was calculated from the peak
areas corrected for the ultraviolet extinction coefficient dif-
ferences. The T9-T8 peaks were also corrected for Ctrb con-
tamination, which was determined from the relative trypsin

and chymotrypsin activities after activation with enteropep-
tidase. Because of the poor separation of T8 and T9, these
two isoforms were calculated as one.
Identification of Trypsinogens fromNMRIMouse Pancreas by

Two-dimensional PAGE and Mass Spectrometry—Pancreata
were homogenized in a Potter homogenizer at 2,500 rpm in
ice-cold homogenization buffer (HS buffer, 250mM sucrose, 10
mM citric acid (pH 6.0), 0.5 mM EGTA, 0.1 mM MgSO4) with
Complete mini protease inhibitor mixture (Roche Applied Sci-
ence). The homogenate was centrifuged for 5 min at 500 � g,
and the post-nuclear supernatant was centrifuged at 1,300 � g
for 15 min at 4 °C. This zymogen granule-enriched pellet was
washedwithHS buffer and dissolved in sample buffer (5 M urea,
2 M thiourea, 2 M CHAPS, 2% ASB-14, 0.05% SB3–10) with
Complete mini protease inhibitor mixture and stored in ali-
quots at �80 °C.
Immobilized pH gradient (IPG) strips (pH 3–10, 13 cm)were

rehydrated overnight in sample buffer containing 65 mM (10
mg/ml) dithiothreitol (DTT), 2% IPG buffer, and 0.01% Serva
blue. The zymogen granule-enriched pancreatic extract dis-
solved in sample buffer (50–100�g) was supplementedwith 65
mM (10 mg/ml) DTT, 2% IPG buffer, 0.01% Serva blue and
cup-loaded at the anode end of the strips. Isoelectric focusing
was performed undermineral oil at 3,500 Vwith a current limit
of 50�Aper strip up to 8,000 total volt hours using an IPGphor
unit (Amersham Biosciences). Strips were subsequently incu-
bated in equilibration buffer (0.5 M Tris-HCl (pH 8.8), 6 M urea,
2%SDS, 30%glycerol) containing 50mMDTT followed by incu-
bation in 0.3 M acrylamide, for 15min each. For electrophoresis
in the second dimension, the IPG strips were applied onto a
10.5% SDS-polyacrylamide gel, and proteins were separated
according to Schaegger and van Jagow (19). Gels were stained
with silver nitrate by a modified method of Blum et al. (20). For
estimation of relative protein content of trypsinogen spots, gels
were further stainedwith Serva blue, according toNeuhoff et al.
(21). Gel images were analyzed, and spot intensities were quan-
titated with the ImageMaster 2D Elute version 3.10 software
(Amersham Biosciences). Protein spots of interest were
excised, de-stained, and digested in-gel with sequencing grade
bovine trypsin (RocheApplied Science, 12.5 ng/�l) overnight at
37 °C. Peptides were extracted from gel slices, andmass spectra
were analyzed usingMALDI-TOFReflex IIImass spectrometer
machine (Bruker Daltonics, Germany) in linear mode with
external calibration. Peptide fingerprint data analysis was per-
formed using the web-based ProFound database with a mass
tolerance of 250 ppm.
Expression and Purification of Trypsinogens—Human cati-

onic trypsinogen was expressed in the aminopeptidase P-defi-
cient LG-3 E. coli strain as fusions with a self-splicing mini-
intein, as described previously (14, 22). Mouse trypsinogens
were expressed in E. coli BL21(DE3), as described for human
trypsinogens previously (15, 16). Isolation of cytoplasmic
inclusion bodies, in vitro refolding, and purification with
ecotin affinity chromatography were performed according
to published protocols (14–16, 18, 22). The preparations
were more than 90% pure, as judged by SDS-PAGE and Coo-
massie Blue staining. Concentrations of trypsinogen solu-
tions were calculated from their UV absorbance at 280 nm
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using the following extinction coefficients: 37,525 M�1cm�1

(human cationic trypsinogen), 39,140 M�1cm�1 (mouse T7),
34,670 M�1cm�1 (mouse T8 and T9), and 43,150 M�1cm�1

(mouse T20).
Expression and Purification of Chymotrypsinogens—Human

CTRB2 and mouse Ctrb and Ctrc carrying His10 affinity tags
were expressed in transiently transfected HEK 293T cells and
purified from 450ml of conditionedmediumusing nickel affin-
ity chromatography as reported previously (3, 23). Aliquots (75
�l) of the eluted 5-ml fractions were analyzed by 15% SDS-
PAGE and Coomassie Blue staining, and peak fractions with
�90% purity were pooled and dialyzed for 72 h against three
changes of 1 liter of 0.1 M Tris-HCl (pH 8.0) buffer containing
150 mM NaCl. The dialyzed chymotrypsinogen solutions were
concentrated using a Vivaspin 20 concentrator (10-kDamolec-
ular mass cutoff). Chymotrypsinogens were activated with
trypsin, and active chymotrypsin concentrations were deter-
mined by active site titration with ecotin, as described previ-
ously (24).
Trypsinogen Autoactivation—Trypsinogen at 2 �M concen-

tration was incubated in the absence or presence of 25 nM chy-
motrypsin, as indicated, and 10 nM initial trypsin in 0.1 M Tris-

HCl (pH 8.0), 1 or 10 mM CaCl2, and 0.05% Tween 20 (final
concentrations) at 37 °C. At given times, 1.5-�l aliquots were
withdrawn and mixed with 48.5 �l of assay buffer containing
0.1 M Tris-HCl (pH 8.0), 1 mM CaCl2, and 0.05% Tween 20.
Trypsin activity was measured by adding 150 �l of 200 �M

N-CBZ-Gly-Pro-Arg-p-nitroanilide substrate dissolved in
assay buffer and following the release of the yellow p-nitroani-
line at 405 nm in a SpectraMax plus384 microplate reader
(Molecular Devices, Sunnyvale, CA) for 1 min. Reaction rates
were calculated from fits to the initial linear portions of the
curves.
TrypsinogenActivationwith Enteropeptidase—Todetermine

the maximal trypsin activity attainable after full activation, 2
�M trypsinogen was incubated in 0.1 M Tris-HCl (pH 8.0), 10
mM CaCl2, and 0.05% Tween 20 (final concentrations) at 37 °C
with 140 ng/ml final concentration of human enteropeptidase
(R&D Systems, Minneapolis, MN) for 1 h, and trypsin activity
was measured as described above. This activity was designated
as 100%, and trypsin activity measured in autoactivation exper-
iments was expressed relative to this value. The 100% values
corresponded to 500 (T7), 400 (T8), 400 (T9), and 300 (T20)
milli-OD/min readings.

←
64

←
24

7 

←
22

0

←
20

6

←
20

0
←
19

6
←
19

3

←
18

5

←
17

1 

←
23

3

Autolysis loop 

←
17

5

←
17

4 

←
16

0

←
15

0
←
14

8 

←
13

9 

←
13

2 

←
12

2 

←
10

7 

←
87

←
1 

←
17

 

←
23

←
30

←
48

←
63

Activation peptide Signal peptide Ca-binding loop 

←
86

Hu1  MNPLLILTFVAAALA-APFDDDDKIVGGYNCEENSVPYQVSLNSGY-HFCGGSLINEQWVVSAGHCYKSRIQVRLGEHNIEVLEGNEQ 
T4   MKIITFFTFLGAAVA-LPANSDDKIVGGYTCPKHSVPYQVSLNDGISHQCGGSLISDQWVLSAAHCYKRRLQVRLGEHNIDVLEGGEQ 
T5   MKIIFFFTFLGAAVA-LPANSDDKIVGGYTCPKHSVPYQVSLNDGISHQCGGSLINDQWVLSAAHCYKRRLQVRLGEHNIDVLEGGEQ 
T7   MKTLIFLAFLGAAVALPLDDDDDKIVGGYTCQRNALPYQVSLNSGY-HFCGGSLINSQWVVSAAHCYKSRIQVRLGEHNIDALEGGEQ 
T8   MRALLFLALVGAAVA-FPVDDDDKIVGGYTCRENSVPYQVSLNSGY-HFCGGSLINDQWVVSAAHCYKSRIQVRLGEHNINVLEGNEQ 
T9   MNSLLFLALVGAAVA-FPVDDDDKIVGGYTCRENSIPYQVSLNSGY-HFCGGSLINDQWVVSAAHCYKTRIQVRLGEHNINVLEGNEQ 
T10  MSTLLFLALVGAAVA-FPVDDDDKIVGGYTCRENSVPYQVSLNSGY-HFCGGSLINDQWVVSAAHCYKSRIQVRLGEHNINVLEGNEQ 
T11  MNALLILALVGAAVA-FPVDDDDKIVGGYTCQENSVPYQVSLNSGY-HFCGGSLINDQWVVSAAHCYKTRIQVRLGEHNINVLEGNEQ 
T12  MSALLFLALVGAAVA--FPVDDDKIVGGYTCRENSVPYQVSLNSGY-HFCGGSLINDQWVVSAAHCYKTRIQVRLGEHNIKVLEGNEQ 
T15  MNAFLILALVGAAVA-FPVDDDDKIVGGYTCQENSVPYQVSLNSGY-HFCGGSLINDQWVVSAAHCYKTRIQVRLGEHNINVLEGNEQ 
T16  MSALLFLALVGAAVA-FPVDDDDKIVGGYTCRENSVPYQVSLNSGY-HFCGGSLINDQWVVSAAHCYKTRIQVRLGEHNINVLEGNEQ 
T20  MSALLILALVGAAVA-FPVDDDDKIVGGYTCRESSVPYQVSLNAGY-HFCGGSLINDQWVVSAAHCYKYRIQVRLGEHNINVLEGNEQ 

Hu1  FINAAKIIRHPQYDRKTLNNDIMLIKLSSRAVINARVSTISLPTAPPATGTKCLISGWGNTASSGADYPDELQCLDAPVLSQAKCEAS 
T4   FIDAEKIIRHPDYNKDTVDNDIMLIKLKSPAILNSQVSTVSLPRSCASTNAQCLVSGWGNTVSIGGKYPALLQCLEAPVLSASSCKKS 
T5   FIDAEKIIRHPDYNKDTVDNDIMLIKLKSPAILNSQVSTVSLPRSCASTNAQCLVSGWGNTVSIGGKYPALLQCLEAPVLSASSCKKS 
T7   FIDAAKIIRHPNYNANTYNNDIMLIKLKTAATLNSRVSTVALPRSCPSAGTRCLVSGWGNTLSSGTNYPSLLQCLDAPVLSDSSCTSS 
T8   FVNSAKIIKHPNFNSRTLNNDIMLIKLASPVTLNARVATVALPSSCAPAGTQCLISGWGNTLSFGVNNPDLLQCLDAPLLPQADCEAS 
T9   FVNSAKIIKHPNFNSRTLNNDIMLIKLASPVTLNARVATVALPSSCAPAGTQCLISGWGNTLSFGVNNPDLLQCLDAPLLPQADCEAS 
T10  FIDAANIIKHPKFKKKTLDNDIMLIKLSSPVTLNARVATVALPSSCAAAGTQCLISGWGNTLSSGVNNPDLLQCLDAPLLPQADCEAS 
T11  FVNAAKIIKHPNFNRKTLNNDIMLLKLSSPVTLNARVATVALPSSCAPAGTQCLISGWGNTLSFGVSEPDLLQCLDAPLLPQADCEAS 
T12  FVNAAKIIKHPNFNRKTLNNDIMLIKLSSPVTLNARVATVALPSSCAPAGTQCLISGWGNTLSFGVSEPDLLQCLDAPLLPQADCEAS 
T15  FVNAAKIIKHPNFNRKTLNNDIMLIKLSSPVTLNARVATVALPSSCAPAGTQCLISGWGNTLSFGVSEPDLLQCLDAPLLPQADCEAS 
T16  FIDAAKIIKHPNFNRKTLNNDIMLIKLSSPVTLNARVATVALPSSCAPAGTQCLISGWGNTLSFGVSEPDLLQCLDAPLLPQADCEAS 
T20  FVDSAKIIRHPNYNSWTLDNDIMLIKLASPVTLNARVASVPLPSSCAPAGTQCLISGWVTLNARVASVPDLLQCVDAPVLPQADCEAS 

Hu1  YPGKITSNMFCVGFLEGGKDSCQGDSGGPVVCNGQLQGVVSWGDGCAQKNKPGVYTKVYNYVKWIKNTIAANS 
T4   YPGQITSNMFCLGFLEGGKDSCDGDSGGPVVCNGEIQGIVSWGSVCAMRGKPGVYTKVCNYLSWIQETMANN- 
T5   YPGQITSNMFCLGFLEGGKDSCDGDSGGPVVCNGEIQGIVSWGSVCAMRGKPGVYTKVCNYLSWIQETMANN- 
T7   YPGKITSNMFCLGFLEGGKDSCQGDSGGPVVCNGQLQGVVSWGYGCAQRGKPGVYTKVCKYVNWIQQTIAAN- 
T8   YPGKITNNMICVGFLEGGKDSCQGDSGGPVVCNGQLQGIVSWGYGCALKDNPGVYTKVCNYVDWIQNTIAAN- 
T9   YPGKITNNMICVGFLEGGKDSCQGDSGGPVVCNGQLQGIVSWGYGCALKDNPGVYTKVCNYVDWIQDTIAAN- 
T10  YPGKITKNMICVGFLEGGKDSCQGDSGGPVVCNGQLQGIVSWGYGCAQKDNPGVYTKVCNYVDWIQNTIAAN- 
T11  YPGKITGNMVCAGFLEGGKDSCQGDSGGPVVCNRELQGIVSWGYGCALPDNPGVYTKVCNYVDWIQDTIAAN- 
T12  YPGKITGNMVCAGFLEGGKDSCQGDSGGPVVCNGELQGIVSWGYGCALADNPGVYTKVCNYVDWIQDTIAAN- 
T15  YPGKITGNMVCAGFLEGGKDSCQGDSGGPVVCNGELQGIVSWGYGCALPDNPGVYTKVCNYVDWIQDTIAAN- 
T16  YPGKITGNMVCAGFLEGGKDSCQGDSGGPVVCNGELQGIVSWGYGCALPDNPGVYTKVCNYVDWIQDTIAAN- 
T20  YPGDITNNMICVGFLEGGKDSCQGDSGGPVVCNGELQGIVSWGYGCAQPDAPGVYTKVCNYVDWIQNTIADN- 
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FIGURE 1. Primary sequence alignment of human cationic trypsinogen (Hu1) and 11 potentially functional mouse trypsinogens. Numbering starts with
the initiator methionine. Note that due to insertions in T4, T5, and T7, the numbering is shifted by one after the insertion sites, relative to the indicated numbers.
Similarly, a deletion in T12 shifts numbering. Trypsin cleavage sites are highlighted in blue and chymotrypsin C cleavage sites in red. Cys residues are indicated
in green and the catalytic triad in magenta. The original annotation predicted deletion of Arg-69 (red letter) in T4 and T5, but more recent annotations include
this residue. See text for details.
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Gel Electrophoresis—Trypsinogen samples (75�l,�3.8�g of
protein) were precipitated with trichloroacetic acid (10% final
concentration), and the precipitate was recovered by centrifu-
gation, dissolved in 15 �l of Laemmli sample buffer containing
100 mM DTT (final concentration), and heat-denatured at
95 °C for 5 min. Electrophoretic separation was performed on
15% SDS-PAGE mini gels in standard Tris-glycine buffer. Gels
were stained with Brilliant Blue R-250 and destained as
described earlier (25). Quantitation of bands was carried out
with the GelDoc XR� gel documentation system and Image
Lab 3.0 software (Bio-Rad).

RESULTS

Identification of Major Trypsinogen Isoforms in the Mouse
Pancreas—To identify trypsinogen isoforms expressed at high
levels in the mouse pancreas, we used ecotin-affinity chroma-
tography to purify trypsinogens en bloc from pancreas tissue
extracts of the outbred CD-1 mouse strain. Trypsinogens were
eluted under acidic conditions from the ecotin column and
immediately loaded onto a Mono S cation exchange column
equilibrated with 20 mM sodium acetate (pH 5.0). The Mono S
column was developed with a NaCl gradient, resulting in five

FIGURE 2. Identification of major trypsinogen isoforms expressed in the
mouse pancreas. A, chromatographic separation of trypsinogen isoforms.
Trypsinogens were purified from pancreas tissue extracts of CD-1 mice using
ecotin affinity chromatography, and the ecotin eluate was loaded onto a
Mono S column equilibrated with 20 mM sodium acetate (pH 5.0). The column
was developed with a linear gradient of 0 – 0.5 M NaCl. Peaks were analyzed by
SDS-PAGE, N-terminal sequencing, and mass spectrometry, as described
under “Experimental Procedures” and “Results.” B, two-dimensional PAGE of
a zymogen granule-enriched fraction of pancreas tissue from NMRI mice. Sil-
ver-stained spots were digested with trypsin and analyzed by peptide mass
fingerprinting, as described under “Experimental Procedures.” Spots for tryp-
sinogen isoforms T7, T8, T9, and T20, proelastase 3 (Ela3); chymotrypsinogen
B (Ctrb), and proelastase 1 (Ela1) are indicated.

FIGURE 3. Autoactivation of mouse trypsinogens. Trypsinogens were incu-
bated at 2 �M concentration with 10 nM initial trypsin in 0.1 M Tris-HCl (pH 8.0),
1 mM CaCl2 (A) or 10 mM CaCl2 (B) and 0.05% Tween 20 at 37 °C. Aliquots (1.5
�l) were withdrawn at the indicated times, and trypsin activity was deter-
mined as described under “Experimental Procedures.” Trypsin activity was
expressed as percentage of the maximal activity determined by full activation
with enteropeptidase. Representative experiments from four replicates are
shown.

TABLE 2
Relative expression levels of major trypsinogen isoforms in the mouse
pancreas determined by ion exchange chromatography (CD-1) or
two-dimensional gel electrophoresis (NMRI)
The averages from four experiments � S.D. are indicated. See text for details.

Mouse strain
Relative expression levels (% of total)

T7 T8 T9 T20

CD-1 41 � 1 47 � 3 12 � 2
NMRI 25 � 1 33 � 1 27 � 1 15 � 2
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peaks (Fig. 2A). Edman degradation unambiguously identified
the small fourth peak as proelastase 3 (N terminus is CGQPS)
and the large fifth peak as the cationic T7 trypsinogen isoform,
which has a unique N-terminal sequence, LPLDD (Fig. 1). The
other three peaks proved to be trypsinogens but had the sameN
termini, FPVDD; therefore, these were subjected to in-gel tryp-
tic digestion followed by mass spectrometric nanosequencing,
which revealed the identity of the first peak as isoform T20 and
the second and third peaks as isoformsT9 andT8 (Fig. 2A). The

latter two isoforms are nearly identical in their amino acid
sequence (99% identity, Fig. 1) and MS/MS peptide coverage
did not include any regions thatwere distinctive.On the basis of
a slight difference in their ionic character, T9 was assigned to
the second peak and T8 to the third peak. N-terminal sequenc-
ing of the combined second/third peaks after activation of tryp-
sinogen to trypsin indicated a mixture of Val/Ile amino acids at
position 35 (IVGGYTCRENS(V/I)P), with a preponderance of
Val, confirming that the smaller second peak is T9 (containing

FIGURE 4. Effect of mouse Ctrc on mouse trypsinogen T7. A, autoactivation was measured in 1 and 10 mM CaCl2 in the absence (solid symbols) or presence
(open symbols) of 25 nM mouse Ctrc, as described under “Experimental Procedures.” B, SDS-PAGE analysis of the autoactivation reaction in 1 mM CaCl2. Samples
were withdrawn at the indicated time points, precipitated with trichloroacetic acid, electrophoresed, and stained as described under “Experimental Proce-
dures.” C, cleavage of T7 trypsinogen by 25 nM mouse Ctrc. Incubations were performed with 2 �M trypsinogen in 0.1 M Tris-HCl (pH 8.0) in the absence or
presence of 10 mM CaCl2. Samples were precipitated with trichloroacetic acid and analyzed by SDS-PAGE and Coomassie Blue staining. Representative
experiments from three replicates are shown. D, cleavage of the activation peptide of trypsinogen T7 by mouse Ctrc. Primary structure of the native T7
activation peptide with proteolytic cleavage sites for Ctrc and trypsin is also indicated. Note that the N-terminal amino acid of mature trypsinogen is Leu-16, as
the 15-amino acid-long secretory signal peptide is removed in the endoplasmic reticulum. Trypsinogen was incubated at 2 �M concentration with 25 nM Ctrc
in 0.1 M Tris-HCl (pH 8.0) and 0 or 10 mM CaCl2 (final concentrations) at 37 °C. To prevent autoactivation, 25 nM human SPINK1 trypsin inhibitor was included. At
the indicated times, reactions were terminated by precipitation with trichloroacetic acid, and samples were analyzed by nonreducing SDS-PAGE and Coomas-
sie Blue staining. Relevant segments of representative gels (from two replicates) demonstrate the small mobility shift of the trypsinogen band caused by
Ctrc-mediated cleavage of the Leu-18 –Asp-19 peptide bond. Note that the rapid rate of cleavage is partly due to the added Met-Ala sequence at the N terminus
of recombinant T7.
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Ile-35) and the larger third peak is T8 (containing Val-35) (see
Fig. 1). Both N-terminal sequencing (CGVPA) and MS/MS
indicated that the T9/T8 peaks were contaminated with some
Ctrb. Quantitative evaluation of trypsinogen peaks was per-
formed as described under “Experimental Procedures,” and the
following relative expression levels were obtained (mean �
S.D., n � 4): 41 � 1% for T7; 47 � 3% for T8 and T9 combined,
and 12 � 2% for T20 (Table 2).
To confirm our findings with an independent method and in

a different mouse strain, we used a proteomic approach based
on two-dimensional PAGE, followed by in gel-digestion of sil-
ver-stained protein spots and peptide mass fingerprinting after
MALDI-TOF mass spectrometry. Fig. 2B demonstrates two-
dimensional PAGE protein patterns of a granule-enriched pan-
creas homogenate from the outbredNMRImouse strain. In the
20–37-kDa molecular mass range, the same four trypsinogen
isoforms were identified as with the chromatographic
approach. The relative proportions of spot intensities (mean �
S.D., n � 4) were 25 � 1% for T7, 33 � 1% for T8, 27 � 1% for
T9, and 15 � 2% for T20 (Table 2). These values compare fairly
well, within experimental error, with those obtained for CD-1
mice.

Autoactivation ofMouse Trypsinogens—Large scale purifica-
tion of different trypsinogen isoforms from themouse pancreas
is impractical, and preparations may be contaminated with low
levels of other pancreatic proteases. In contrast, recombinant
expression should provide highly purified homogeneous
enzyme preparations. We previously established methodology
for the expression and purification of human trypsinogens (15,
16), and here we used the same approach to obtain functionally
competent mouse trypsinogen preparations. Trypsinogens
were expressed in E. coli as inclusion bodies, renatured in vitro
and purified by ecotin-affinity chromatography. When mouse
trypsinogens were incubated in 1mMCaCl2 at pH 8.0, isoforms
T7, T8, and T9 autoactivated and reached about 40–60% of
potentially attainable trypsin levels, indicating that some
autocatalytic (trypsin-mediated) degradation occurred (Fig.
3A) during autoactivation. In contrast, T20 did not autoac-
tivate under these conditions. As expected, high concentra-
tions of calcium (10 mM) increased the rate of autoactivation
and stabilized trypsinogens against degradation, yielding
80–100% of attainable trypsin levels. The stimulatory effect
of calcium on the autoactivation of T20 was particularly
striking (Fig. 3B).

FIGURE 5. Effect of mutations p.L82A and p.L149A on mouse trypsinogen T7. A, autoactivation was measured in 1 mM CaCl2 as described under “Experi-
mental Procedures.” Trypsin activity was expressed as percentage of the maximal activity determined by full activation with enteropeptidase. B, cleavage of
wild-type and p.L82A T7 trypsinogen by 25 nM mouse Ctrc. C, cleavage of wild-type and p.L149A T7 trypsinogen by 25 nM mouse Ctrc. Incubations were
performed with 2 �M trypsinogen in 0.1 M Tris-HCl (pH 8.0) in the absence of calcium. Trypsinogen samples were precipitated with trichloroacetic acid and
analyzed by SDS-PAGE and Coomassie Blue staining. Representative experiments from two replicates are shown.
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Effect of Mouse Ctrc on T7 Trypsinogen—Addition of 25 nM
mouse Ctrc to the autoactivation assays of isoform T7 moder-
ately (by �35%) reduced trypsin levels in 1 mM calcium and
slightly stimulated the rate of autoactivation in 10 mM calcium
(Fig. 4A). SDS-PAGE analysis of the autoactivation reaction in 1
mM calcium, in the absence of Ctrc, confirmed conversion of
the T7 trypsinogen band to trypsin and also indicated degrada-
tion fragments generated by cleavages of trypsin-sensitive pep-
tide bonds Arg-123–Val-124 and Lys-194–Asp-195 (Fig. 4B,
left panel, see also Fig. 1). These were identified by N-terminal
sequencing, similarity to the published degradation fragments
of rat anionic trypsinogen-2 (26), and comparison of the band-
ing pattern with that of the T7 p.R123H mutant (see below).
Note that because of an extra amino acid in the activation pep-
tide of T7, amino acid numbering is shifted by one relative to
human and other mouse trypsinogens (see Fig. 1). Cleavage
after Arg-123 should result in a fully active two-chain trypsin
(27, 28), whereas cleavage after Lys-194 causes inactivation (26,
29). Ctrc caused a small shift of the T7 trypsinogen band, sug-
gesting cleavage of the activation peptide (Fig. 4B, right panel).
In addition, the banding pattern of degradation fragments
becamemore complex, which is consistent with the lower tryp-
sin activity attained during autoactivation in 1 mM calcium in
the presence of Ctrc.
To identify Ctrc-mediated cleavages of trypsinogen, we per-

formed digestion experiments with short incubation times
when no trypsinogen activation took place and no trypsin activ-
ity was present. Under these conditions, slow cleavage of the
Leu-149–Ser-150 peptide bond in the autolysis loop was
observed in the absence of calcium (Fig. 4C, left panel), and this
was completely inhibited by 10 mM calcium (Fig. 4C, right
panel, see also Fig. 1). The Leu-82–Glu-83 peptide bond (cor-
responding to Leu-81–Glu-82 in human trypsinogens and
other studied mouse isoforms) in the calcium binding loop was
not cleaved to a detectable extent. This finding suggested that
in T7 the moderate degradation observed during autoactiva-
tion in 1 mM calcium in the presence of Ctrc is mediated by
cleavage of the Leu-149–Ser-150 peptide bond. To confirm this
assumption, we compared autoactivation of the T7 p.L82A and
p.L149A mutants in 1 mM calcium and found that only muta-
tion of p.L149A protected against degradation in the presence
of Ctrc (Fig. 5). Interestingly, mutant p.L82A suffered Ctrc-de-
pendent degradation during autoactivation to an even larger
extent than wild-type T7.
N-terminal Processing of T7 Trypsinogen by Mouse Ctrc—

Among the activation peptide sequences of mouse trypsino-
gens, only T7 contains a potentially Ctrc-sensitive peptide
bond, Leu-18–Asp-19 (Fig. 1). Inspection of Fig. 4B revealed
that the T7 trypsinogen band became slightly shifted as a result
of treatment with Ctrc, suggesting that the activation peptide
might be cleaved at Leu-18–Asp-19. When samples were run
under nonreducing conditions, the mobility shift caused by
N-terminal processing of the T7 activation peptide became
more apparent (Fig. 4D), andN-terminal sequencing confirmed
the predicted cleavage site. However, in contrast to human cat-
ionic trypsinogen, the rate of autoactivation of N-terminally
processed T7 was only negligibly stimulated (see Fig. 4A, right

panel), indicating that Ctrc does not regulate activation of
mouse trypsinogens through cleavage of the activation peptide.
Effect of the p.R123H Mutation on T7 Trypsinogen—Muta-

tion p.R123H protected T7 trypsinogen against degradation
during autoactivation in 1 mM calcium in the presence of Ctrc
(Fig. 6); however, it had no effect on the cleavage of the Leu-
149–Ser-150 peptide bond per se. This observation indicates
thatmoderate degradation ofT7 during autoactivation is due to
the combined effects of Ctrc-mediated and tryptic cleavages
after Leu-149 and Arg-123, respectively (see Fig. 1).
Effect of Mouse Ctrc on T8 and T9 Trypsinogen—Mouse Ctrc

almost completely inhibited autoactivation of T8 and T9 tryp-
sinogen in 1 mM calcium and markedly reduced it in 10 mM

calcium (Figs. 7 and 8). This inhibitory effect was not due to
degradation, as addition of enteropeptidase to the Ctrc-treated
samples resulted in the appearance of highly significant trypsin
activity. SDS-PAGE analysis of autoactivation in 1mM calcium,

FIGURE 6. Effect of mutation p.R123H on mouse trypsinogen T7. A, auto-
activation was measured in 1 mM CaCl2 as described under “Experimental
Procedures.” Trypsin activity was expressed as percentage of the maximal
activity determined by full activation with enteropeptidase. B, SDS-PAGE
analysis of the autoactivation reaction. Samples were withdrawn at indicated
times, precipitated with trichloroacetic acid, electrophoresed, and stained as
described under “Experimental Procedures.” C, cleavage of wild-type and
p.R123H T7 trypsinogen by 25 nM mouse Ctrc. Incubations were performed
with 2 �M trypsinogen in 0.1 M Tris-HCl (pH 8.0) in the absence of calcium.
Samples were precipitated with trichloroacetic acid and analyzed by SDS-
PAGE and Coomassie Blue staining. Cleavage products were identified with
N-terminal sequencing. Representative experiments from two replicates are
shown.
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in the absence of Ctrc, demonstrated conversion of trypsinogen
to trypsin with the characteristic degradation fragments gener-
ated by tryptic cleavage of the Arg-122–Val-123 and Lys-193–
Asp-194 peptide bonds (Figs. 7B and 8B, left panel, see also Fig.
1). In dramatic contrast, when autoactivation was followed in
the presence of Ctrc, no trypsin band nor any of the tryptic
degradation bands were observed. Instead, Ctrc rapidly and
completely cleaved T8 and T9 trypsinogen at a single site,
which N-terminal sequencing revealed as the Phe-150–Gly-
151 peptide bond (Figs. 7B and 8B, right panel). This peptide
bond lies within the so-called autolysis loop, a flexible segment
between residues 146 and 154 (Fig. 1).When cleavage of T8 and
T9 trypsinogen byCtrcwas studiedwith short incubation times
(i.e. before autoactivation occurred), both isoforms were pri-
marily cleaved at the Phe-150–Gly-151 peptide bond, with
minimal cleavage observed at the Leu-81–Glu-82 peptide bond
in the absence of calcium (Figs. 7C and 8C). Cleavage of the
Phe-150–Gly-151 peptide bond was slower but still readily
detectable in 10 mM calcium.
Cleavage of the Phe-150–Gly-151 Peptide Bond by Mouse

ChymotrypsinB (Ctrb)—Regulation of autoactivation of human
cationic trypsinogen by human CTRC is highly specific, and

other chymotrypsins and elastases do not cleave the CTRC
cleavage sites. To test whether the same Ctrc specificity exists
in the mouse, we compared the effect of mouse Ctrb and Ctrc
on T8 trypsinogen. As shown in Fig. 9A, autoactivation of T8
was much less effectively inhibited by 25 nM Ctrb than by an
equimolar concentration of Ctrc. In degradation experiments,
Ctrb cleaved the Phe-150–Gly-151 peptide bond at a more
than 7-fold slower rate than Ctrc (Fig. 9, B and C).
Effect of the p.R122H Mutation on T8 Trypsinogen—Muta-

tion p.R122H slightly stimulated autoactivation of T8 trypsin-
ogen in 1 mM calcium, in the absence of Ctrc (Fig. 10A). In the
presence of Ctrc, however, autoactivation was strongly inhib-
ited by Ctrc, approximately to the same extent as seen with
wild-type T8 (Fig. 10B, cf. Fig. 7A). Consistent with the robust
inhibitory effect, the Phe-150–Gly-151 peptide bond was
cleaved by Ctrc almost as well in T8 p.R122H trypsinogen as in
wild-type T8 (Fig. 10C).
Cleavage of the Autolysis Loop in the p.S150F Human Cati-

onic TrypsinogenMutant Inhibits Autoactivation—Themajor-
ity of mammalian trypsinogens do not contain Phe-150 in their
autolysis loop. To test whether introduction of Phe-150 would
reconstitute the chymotrypsin-dependent autoactivation inhi-

FIGURE 7. Effect of mouse Ctrc on mouse trypsinogen T8. A, autoactivation was measured in 1 and 10 mM CaCl2, in the absence (solid symbols) or presence
(open symbols) of 25 nM mouse Ctrc, as described under “Experimental Procedures.” Where indicated, 2 �l of 1.4 �g/ml human enteropeptidase (EP) was added.
B, SDS-PAGE analysis of the autoactivation reaction in 1 mM CaCl2. Samples were withdrawn at indicated times, precipitated with trichloroacetic acid, electro-
phoresed, and stained as described under “Experimental Procedures.” C, cleavage of trypsinogen by 25 nM mouse Ctrc. Incubations were performed with 2 �M

trypsinogen in 0.1 M Tris-HCl (pH 8.0) in the absence or presence of 10 mM CaCl2. Samples were precipitated with trichloroacetic acid and analyzed by SDS-PAGE
and Coomassie Blue staining. Cleavage products were identified with N-terminal sequencing. In the absence of calcium (left panel), the faint bands above and
below the major cleavage products correspond to fragments of trypsinogen cleaved at the Leu-81–Glu-82 peptide bond. The faint band visible in the presence
of 10 mM calcium (right panel) could not be identified. Representative experiments from three replicates are shown.
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bition in anothermammalian trypsinogen, wemutated Ser-150
in human cationic trypsinogen to Phe. Because human CTRC
cleaves the Leu-81–Glu-82 peptide bond and causes trypsino-
gen degradation, we used human CTRB2 to selectively cleave
the newly created Phe-150–Gly-151 peptide bond. CTRB2 at
25 nM concentration had no effect on the autoactivation of
wild-type cationic trypsinogen (Fig. 11A), but it inhibited acti-
vation of the p.S150F mutant (Fig. 11B), via cleavage at the
Phe-150–Gly-151 peptide bond (Fig. 11C).
Effect of Mouse Ctrc on T20 Trypsinogen—Finally, mouse

Ctrc had essentially no effect on trypsinogen T20, except for a
slight stimulation of the activation rate in 10 mM calcium (Fig.
12A). On SDS-PAGE, no trypsinogen to trypsin conversionwas
evident in 1mMcalcium, in the absence or presence ofCtrc (Fig.
12B). Note that T20 trypsinogen ran as a doublet on gels, which
seems to represent differently denatured conformers, as N-ter-
minal sequencing and mass spectrometry indicated molecular
homogeneity (data not shown). Finally, cleavage of T20 with
Ctrc resulted in very faint degradation bands even in the
absence of calcium, indicating that this isoform is resistant to
Ctrc (Fig. 12C).

DISCUSSION

The aim of this study was to identify the major trypsinogen
isoforms expressed by the mouse pancreas and characterize
their regulation of autoactivation bymouse Ctrc. These studies
were undertaken to clarify whether introduction of trypsinogen

mutations associated with human hereditary pancreatitis into
mouse trypsinogens would offer a viable approach to model
hereditary pancreatitis in mice. Previous attempts to generate
transgenicmice expressing the codingDNA for human cationic
trypsinogen with the p.R122H mutation failed to recapitulate
hereditary pancreatitis, partly because of the low transgene
expression levels (6). Introduction ofmutation p.R122H into an
endogenous mouse trypsinogen may circumvent the expres-
sion problem. However, the effect of p.R122H in human cat-
ionic trypsinogen is dependent on CTRC (3), and it has been
unknownwhether autoactivation ofmouse trypsinogens is reg-
ulated by mouse Ctrc in a manner that mimics the human
situation.
Using two independent biochemical approaches with two

commonly used outbredmouse strains, we found that only four
trypsinogen isoforms,T7,T8,T9 andT20, are expressed to high
levels (Table 2) in the mouse pancreas, even though the mouse
genome contains 20 trypsinogen genes, of which 11 are poten-
tially functional (Table 1 and Fig. 1). The cationic isoform T7
was recently deleted in the C57BL/6 strain, and judging from
the residual trypsinogen content the authors suggested that T7
contributes 60% of total mouse trypsinogens (12, 13). Here, we
obtained smaller values (41% in CD-1 and 25% in NMRI mice);
however, these differences seem to fall within experimental
error and may even represent strain-specific differences. It is
important to note that Prss1 (T16) and Prss3 (T11) (see Table

FIGURE 8. Effect of mouse Ctrc on mouse trypsinogen T9. See Fig. 7 for experimental details. EP, human enteropeptidase.
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1), the presumed orthologs of human cationic trypsinogen
(PRSS1) and mesotrypsinogen (PRSS3), are not expressed at
detectable levels, indicating that assignment of orthology by
database curators may be unreliable and even misleading to
investigators, as evidenced by a recent study where expression
ofmouse Prss1 was studied (30). Finally, we emphasize that our
data pertain to the resting, unstimulatedmouse pancreas, and it
is possible, even likely, that upon hormonal stimulation the
trypsinogen expression pattern may change, as shown previ-
ously for rat p23, the ortholog of mouse T4 and T5, which
becomes drastically up-regulated upon cerulein stimulation
(31). Marked up-regulation of T5 was observed in a knock-out
mouse strain deficient in interferon regulatory factor 2 (32).
Autoactivation of mouse trypsinogens T7, T8, and T9 was

comparable, whereas T20 autoactivated more slowly, particu-
larly in 1 mM calcium (see Fig. 3). Surprisingly, regulation of
autoactivation by mouse Ctrc was isoform-specific and mech-

anistically different from the actions of human CTRC on
human cationic trypsinogen. Whereas the human enzyme tar-
gets regulatory cleavage sites in the activation peptide and the
calcium binding loop of cationic trypsinogen, these proved to
be irrelevant in mouse trypsinogens. Thus, Ctrc-mediated
cleavage of the activation peptide was observed only with the
T7 isoform, however, this N-terminal processing had no signif-
icant effect on autoactivation. Cleavage of the Leu-81–Glu-82
peptide bond in the calcium binding loop (Leu-82–Glu-83 in
T7) was not detectable in T7 or T20, and minimal cleavage was
seen in T8 andT9. In contrast, isoformsT8 andT9were rapidly
cleaved at the Phe-150–Gly-151 peptide bond in the autolysis
loop, and this cleavage resulted in marked inhibition of autoac-
tivation. The Phe-150–Gly-151 peptide bond was also cleaved
by Ctrb at a 7-fold slower rate. However, considering that Ctrb
is the most abundant chymotrypsin in the pancreas, physiolog-

FIGURE 9. Effect of mouse Ctrb on mouse trypsinogen T8. A, autoactivation
was measured in 1 mM CaCl2 as described under “Experimental Procedures” in
the absence or presence of 25 nM mouse Ctrb or Ctrc, as indicated. B, cleavage
of trypsinogen by 25 nM Ctrb and Ctrc was compared in the absence of cal-
cium, as described in Fig. 7C. Representative experiments from two replicates
are shown. C, disappearance of the intact trypsinogen band was quantitated
by densitometry, and data from two experiments were plotted. For clarity,
error bars were omitted; the error was within 10% of the mean.

FIGURE 10. Effect of mutation p.R122H on mouse trypsinogen T8. A, auto-
activation of wild-type and p.R122H mutant T8 trypsinogen was measured in
1 mM CaCl2 as described under “Experimental Procedures.” B, effect of 25 nM

mouse Ctrc on the autoactivation of the p.R122H mutant T8. Conditions were
the same as in A. C, cleavage of wild-type and p.R122H mutant T8 trypsinogen
by 25 nM mouse Ctrc in the absence of calcium. Samples were incubated and
analyzed as described in Fig. 7C. Representative experiments from two repli-
cates are shown.
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ical regulation of activation ofT8 andT9maybe also dependent
onCtrb. IsoformT7was also cleaved in the autolysis loop, albeit
slowly and at a different peptide bond (Leu-149–Ser-150),
which resulted in moderate degradation during autoactivation.
Nevertheless, isoform T7 was clearly less sensitive to chymo-
tryptic regulation than human cationic trypsinogen or mouse
trypsinogens T8 and T9.
The lack of cleavage at the Leu-81–Glu-82 (Leu-82–Glu-83

in T7) peptide bond by Ctrc may be partly explained by differ-
ences in the amino acid sequence of the calcium binding loop
(see Fig. 1). Furthermore, as we learned from the recent crys-
tal structure of human CTRC, recognition of the calcium
binding loop is governed by long range electrostatic interac-
tions between the negatively charged substrate and positively
charged surface regions on CTRC (33). These macroscopic
electrostatic interactions are less favorable in themouse, due to
missing positively charged residues in Ctrc (Arg-80 and Arg-

240) and negatively charged residues inmouse trypsinogens T7
(Glu-32, Asp-156, and Glu-157) and T8, T9, and T20 (Glu-79
and Glu-157) (see Fig. 1).
The majority of mammalian trypsinogens do not contain

Phe-150, indicating that this novel mechanism of autoactiva-
tion regulation may be unique to rodents. Human meso-
trypsinogen contains Phe-150, and cleavage at this site by
humanCTRCwas demonstrated previously (5), suggesting that
activation ofmesotrypsinogenmay be under similar regulation.
Human anionic and cationic trypsinogens contain Ser at posi-
tion 150, but mutation S150F confers sensitivity to CTRB2-
mediated cleavage of the autolysis loop, which inhibits autoac-
tivation in a manner that is similar to the Ctrc-dependent
inhibition of T8 and T9 in the mouse. Crystal structures of
mouse trypsinogens are not available, and the autolysis loop in
structures of rat anionic trypsinogen is disordered and not vis-
ible. Therefore, we used a bovine trypsinogen structure to
model the potential effects of cleavage of the autolysis loop after
Phe-150. As shown in Fig. 13, the autolysis loopmay be in close
proximity to the trypsinogen activation peptide, at least judged
by the position of Val-25, the first visible residue of the other-
wise disorderedN-terminal segment. Cleavage of the Phe-150–
Gly-151 peptide bond should increase themobility of the autol-
ysis loop, which may directly interact with the activation
peptide thereby decreasing its accessibility. One possible inter-
action may occur between the positive charge of the newly cre-
ated N terminus in the autolysis loop and the negatively
charged tetra-Asp motif in the activation peptide.
The Ctrc-dependent inhibition of autoactivation of T8

and T9 trypsinogens may have evolved as a protective mecha-
nism to curtail unwanted trypsinogen activation in the pan-
creas. This is conceptually analogous to the regulation of
human trypsinogens by human CTRC even though mechanis-
tic details are dissimilar. Interestingly, we found that cleavage of
the Phe-150–Gly-151 peptide bond in T8 and T9 trypsinogens
also inhibits activation by enteropeptidase, the physiological
trypsinogen activator in the duodenum (data not shown).
Although inhibition of digestive enzyme activation in the gut
may seemcounterintuitive, this chymotrypsin-dependent feed-
backmechanism likely ensures that intestinal trypsinogen acti-
vation proceeds with a slower, more prolonged kinetics, which
may be favorable for food digestion.
Intra-acinar cell activation of trypsinogen in cytoplasmic

vesicles of autophagic origin is an early event in experimental
models of acute pancreatitis (34). Genetic deletion of T7 was
recently shown to abolish intra-acinar trypsinogen activation in
response to hyperstimulation with cerulein: a somewhat per-
plexing observation as other trypsinogen isoforms could have
potentially be activated (12, 13). The results presented here
offer a plausible explanation for this puzzle. When trypsinogen
activation occurs, isoforms T8 and T9 may be inhibited in a
Ctrc or Ctrb-dependent manner, whereas T7 is less sensitive to
chymotryptic regulation. Because of its lower concentration
and poor activation, isoform T20 is unlikely to contribute to
intra-acinar trypsinogen activation to a detectable extent.
Finally, our data argue that in the context of mouse trypsino-

gens, human pancreatitis-associated mutations may not reca-
pitulate the pathogenic biochemical phenotype observed with

FIGURE 11. Effect of human CTRB2 on the autoactivation of wild-type and
p.S150F mutant human cationic trypsinogen (Hu1). A and B, autoactiva-
tion was measured in 1 mM CaCl2, in the absence or presence of 25 nM CTRB2,
as described under “Experimental Procedures.” C, cleavage of wild-type and
p.S150F mutant human cationic trypsinogen by 25 nM CTRB2 in the absence
of calcium. Incubations were performed, and samples were analyzed as given
in Fig. 7C. To prevent autoactivation, 25 nM human SPINK1 trypsin inhibitor
was included. Representative experiments from two replicates are shown.
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human cationic trypsinogen.We found thatmutation p.R122H
did not affect inhibition of autoactivation by Ctrc in T8 trypsin-
ogen, which stands in contrast to the robust negative effect of
this mutation on CTRC-dependent degradation of human
cationic trypsinogen (3). Thus, introduction of humanmuta-
tions into mouse trypsinogens may not be a practical
approach for the generation of mouse models of human
hereditary pancreatitis.
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Abstract Kynurenic acid (KynA), a broad spectrum
antagonist of excitatory amino acid receptors, may serve as a
protective agent in neurological disorders. The potential anti-
inflammatory effect of KynA in human leukocytes has not
been characterized. The aim of this study was to compare the
effects of KynA with those of a new analogue, 2-(2-N,N-
dimethylaminoethylamine-1-carbonyl)-1H-quinolin-4-one
hydrochloride on tumour necrosis factor-α (TNF-α) produc-
tion and high mobility group box protein 1 (HMGB1)
secretion. The effects of KynA on granulocyte activation
were investigated via the secretion of human neutrophil
peptide 1–3 (HNP1–3). Peripheral blood mononuclear cells
and granulocytes or CD14 positive monocytes were applied

as effector cells, or whole blood cultures were used. TNF-α,
HMGB1 and HNP1–3 concentrations were determined by
ELISA, TNF-α and HNP1–3 mRNA expressions were
quantified by reverse transcription PCR. KynA attenuated
the TNF-α production of human mononuclear cells
activated by heat-inactivated Staphylococcus aureus,
inhibiting TNF-α production at the transcription level.
Furthermore, KynA diminished HMGB1 secretion by U
937 monocytic cells and by peripheral blood monocytes.
KynA inhibited the HNP1–3 secretion in whole blood and
in granulocyte cultures. The suppressive effect of the
KynA analogue was more potent than that of an equimolar
concentration KynA in TNF-α, HMGB1 and HNP1–3
inhibition. These results suggest that the new KynA
analogue has a more potent immunoregulatory effect than
KynA on human mononuclear cells, monocytes and
granulocytes and indicate the potential benefits of further
exploration of its uses in human inflammatory disease.

Keywords Kynurenic acid . TNF-α . HMGB1 .

Defensin-α . Monocytes . Granulocytes

Introduction

Kynurenic acid (KynA), an endogenous product of the
tryptophan metabolism and a broad spectrum antagonist of
excitatory amino acid receptors, may serve as a protective
agent in neurological disorders (Stone 2000; Klivenyi et al.
2004; Nemeth et al. 2005; Sas et al. 2007; Gigler et al. 2007;
Vamos et al. 2009). KynA is an N-methyl-D-aspartate
(NMDA) antagonist (Stone 1993; Vecsei et al. 1992;
Schwarcz et al. 1999; Robotka et al. 2008) and exerts a
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wide range of biologically important action in the central
nervous system, including the reduction of excitotoxic damage
(Swartz et al. 1990; Kiss and Vecsei 2005; Robotka et al.
2008; Zádori et al. 2006). Exogenous KynA has been
demonstrated to be able to inhibit leukocyte activation in a
canine model of intestinal inflammation (Kaszaki et al. 2008).
Furthermore, KynA decreases the inflammatory activa-
tion and colonic motility in the early phase of acute
experimental colitis in the rat (Varga et al. 2010)

While most biological effects associated with KynA, such
as neuroprotective activities, have been attributed to its
antagonism on NMDA receptor, a novel mechanism by which
KynA may regulate peripheral cellular responses through
activation of GPR35 has been reported (Wang et al. 2006). It
has been demonstrated that KynA acts as a ligand for
GPR35, which is one of the members of the G-protein-
coupled receptors (Lagerström and Schiöth 2008). Expres-
sion analysis has revealed prominent expression of GPR35 in
immune and gastrointestinal tissues. In humans, GPR35 has
mainly been detected in peripheral leukocytes, among
them in monocytes, T cells, dendritic cells and neutro-
phils (Wang et al. 2006). Moreover, KynA was able to
attenuate LPS-induced tumour necrosis factor-α (TNF-α)
secretion of mononuclear cells. In view of its potential
anti-inflammatory action, we considered it of interest to
investigate the effects of KynA on TNF-α production and
on the high mobility group box protein 1 (HMGB1) and
defensin-α production of human white blood cells.

TNF is an inflammatory cytokine, an early mediator of
proinflammatory reactions, orchestrating the production of the
cytokine cascade (Fiers 1991). TNF-α has been shown to
promote inflammation via the activation and induction of the
cytokines interleukin 1 (IL-1), IL-6 and IL-8 and by the
upregulation of adhesion molecules on endothelial cells,
leading to increased leukocyte extravasation (Bradley 2008).
Theoretically, the blockade of TNF should be of broad
potential in the treatment of numerous inflammatory diseases
(Mazza et al. 2010). HMGB1 functions as a proinflammatory
late cytokine, actively secreted from monocytes and macro-
phages in response to proinflammatory stimuli, i.e. cytokines
such as TNF-α, IL-1 or even lipopolysacharide (LPS; Harris
and Andersson 2004; Lotze and Tracey 2005). Extracellular
HMGB1 induces further release of proinflammatory media-
tors, thereby prolonging inflammatory processes (Andersson
et al. 2002). In the present study, therefore the effects of
KynA and a KynA analogue on the HMGB1 secretion of
human monocyte cell line U 937 were investigated. Addi-
tionally, the effects of KynA on granulocyte activation were
studied via the secretion of human neutrophil peptide 1–3
(HNP1–3), also known as defensin-α, which can be secreted
and released into the extracellular milieu following the
activation of polymorphonuclear neutrophils during inflam-
mation (Ganz 1987; Quinn et al. 2008). Conventionally, α

defensins are involved in microbial killing, but they
also have an important immunomodulative role in
inflammation (Yang et al. 2002). We further compared the
effects of KynA with those of a novel, synthetic KynA
analogue 2-(2-N,N-dimethylaminoethylamine-1-carbonyl)-
1H-quinolin-4-one hydrochloride, which is able to cross the
blood–brain barrier (Marosi et al. 2010).

Materials and methods

Reagents

The test compound KynAwas purchased from SIGMA, while
the new analogue (Fig. 1) was synthetized by Prof. Fülöp at
the Department of Pharmaceutical Chemistry, University of
Szeged. KynA and the analogue were dissolved in phosphate-
buffered saline (PBS) and added in increasing concentration in
the μ range to the cell cultures or whole blood samples.

Isolation and stimulation of human mononuclear cells

Peripheral bloodmononuclear cells were prepared fromEDTA-
anticoagulated venous blood samples obtained from healthy
volunteers by Ficoll-Hypaque (Sigma Chemicals) density
gradient centrifugation. After washing, isolated cells (mono-
cytes and lymphocytes) were resuspended in RPMI 1640
medium (GIBCO) supplemented with 10% foetal calf serum
(FCS) to achieve a final concentration of 5×106 cells/ml.

Experimental cultures were incubated for 18 h with heat-
inactivated Staphylococcus aureus 108/ml as a TNF inducer
(Wang et al. 2000). In parallel experiments, mononuclear
cells were pretreated for 30 min with KynA or with KynA
analogue 2-(2-N,N-dimethylaminoethylamine-1-carbonyl)-
1H-quinolin-4-one hydrochloride at concentrations of 500,
250, 125, 50 and 25 μM, respectively. Cell supernatants
were tested for TNF-α content by ELISA (R&D).

Isolation and stimulation of human monocytes

Peripheral blood mononuclear cells were prepared from
EDTA-anticoagulated venous blood samples from healthy

Fig. 1 The structures of kynurenic acid (KynA) and of the new
KYNA analogue 2-(2-N,N-dimethylaminoethylamine-1-carbonyl)-1H-
quinolin-4-one hydrochloride (Marosi et al. 2010)
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volunteers by Ficoll-Hypaque (Sigma Chemicals) density
gradient centrifugation. Cells were washed with PBS and
resuspended in 80 μl of buffer consisting of PBS with 0.5%
of bovine serum albumin and 2 mM EDTA per 107 total
cells and 20 μl of magnetic MACS anti-CD14 MicroBeads
(Miltenyi Biotec, Germany) per total 107 total cells and
incubated for 15 min at 6–8°C. After washing, the cells
were resuspended in 500 μl of buffer and run through a
column (LS) placed in a magnetic field according to the
instructions of the manufacturer. The magnetic anti-CD14
cell separation (positive selection) yielded a cell popula-
tion consisting of 98% monocytes, as checked by flow
cytometric analysis (FACstar, Becton Dickinson). Cells
were cultured in RPMI 1640 medium (GIBCO) supple-
mented with 10% FCS to achieve final concentration of
2×106 cells/ml. The cells were stimulated for 24 h with
5 ng/ml phorbol-12-myristate-13-acetate (PMA; SIGMA),
with or without heat-inactivated S. aureus at 108/ml. In
parallel experiments, cultures were pretreated for 30 min
with KynA or with KynA analogue at concentrations of
500, 250, 125 and 50 μM. Supernatants were tested for
HMGB1 content by ELISA.

Isolation and stimulation of human polymorphonuclear
neutrophilic granulocytes

Polymorphonuclear neutrophilic granulocytes were isolated
from EDTA-anticoagulated blood by Ficoll-Hypaque den-
sity gradient centrifugation followed by brief hypotonic
lysis of red blood cells. Thereafter, cells were resuspended
in RPMI 1640 medium supplemented with 10% FCS. This
technique yielded 90–95% neutrophils as assessed by
Giemsa staining and by CD16 positivity. Cells were
cultured in RPMI 1640 medium (GIBCO) supplemented
with 10% FCS to achieve a final concentration of 2×
106 cells/ml and were incubated in the presence of heat-
inactivated S. aureus (108/ml) for 6 h. In parallel experi-
ments, granulocyte cultures were pretreated for 30 min with
KynA or with the KynA analogue at concentrations of 500,
250, 125 and 50 μM. Following the incubation period, the
samples were centrifuged at 300 g and the supernatants
were tested for HNP1–3 content by ELISA.

Cell line

Human monocytic cells U 937 were propagated in RPMI
1640 medium supplemented with 10% heat-inactivated
FCS (GIBCO) at 37°C in a humidified CO2 incubator. To
analyse HMGB1 secretion from U 937 cells, the cell
number was adjusted to 106/ml. The cells were stimulated
for 24 h with 5 ng/ml PMA (SIGMA). In parallel experi-
ments, cultures were pretreated for 30 min with KynA or
with the KynA analogue at concentrations of 500, 250, 125

and 50 μM. Supernatants were tested for HMGB1 content
by ELISA.

Whole blood incubation method

EDTA-anticoagulated freshly drawn peripheral blood sam-
ples (1 ml) from healthy blood donors (whose granulocyte
count varied from 3.8×106/ml to 4.7×106/ml) were
incubated in the presence of heat-inactivated S. aureus for
6 h. In parallel experiments, blood samples were pretreated
for 30 min with KynA or with the KynA analogue at
concentrations of 500, 250, 125 and 25 μM, respectively.
Following the incubation period, the whole blood samples
were centrifuged at 300×g, and the supernatants were tested
for TNF-α and for HNP1–3 content by ELISA.

TNF-α ELISA

The TNF-α concentrations in the supernatants of whole
blood cultures or in human mononuclear cells were
quantified by using TNF-α ELISA kit (R&D) according
to the instructions of the manufacturer.

HMGB1 ELISA

The HMGB1 concentrations of the supernatants of U 937
cells and of human monocytes were determined with an
ELISA kit (IBL Hamburg) according to the instructions of
the manufacturer.

HNP1–3 ELISA

The HNP1–3 ELISA kit was obtained from HyCult
Biotechnology, The Netherlands. Plasma samples of whole
blood cultures and the supernatants of purified granulocytes
were analysed with standard measurements, according to
the manufacturer’s instructions.

TNF-α mRNA quantification by RT-PCR

Total RNA was isolated with High Pure RNA Isolation Kit
(Roche) according to the manufacturer’s instructions. RNA
concentration was determined by the A260 value of the
sample. Complementary DNA (cDNA) was generated from
1 μg total RNA using the High-Capacity cDNA Reverse
Transcription Kit (Applied Biosystems) in a final volume of
20 μl. Reverse transcription PCR (RT-PCR) was performed in
a thermal cycler (MJMini Gradient Thermal Cycler, Bio-Rad)
according to the manufacturer’s instructions. After reverse
transcription, real-time quantitative PCR was carried out
using a LightCycler (Roche). The mixture contained FastStart
TaqMan® Probe Master (Roche), sample cDNA and the
following primers and probes: TNF-α left primer: 5′-CAG
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CCT CTT CTC CTT CCT GAT-3′, TNF-α right primer: 5′-
GCC AGA GGG CTG ATT AGA GA-3′ and probe:
UPL#29 (Roche). The thermal cycler conditions were initial
denaturation at 95°C for 10 min and 45 cycles of 95°C for
15 s and 60°C for 1 min. 18S rRNAwas used as a reference
(18S rRNA left primer 5′-CTC AAC ACG GGA AAC CTC
AC-3′, 18S rRNA right primer: 5′-CGC TCC ACC AAC
TAA GAA CG-3′, probe: UPL#77). Results were obtained
as threshold cycles (Ct) values, and the relative expression
was calculated by using the delta–delta Ct method and given
as a ratio between target and reference gene.

HNP1–3 mRNA quantification by RT-PCR

Total RNA was extracted from granulocytes with High Pure
RNA Isolation Kit (Roche) according to the manufacturer’s
instructions. RNA concentration was determined by the A260

value of the sample. cDNA was generated from 1 μg total
RNA using the High-Capacity cDNA Reverse Transcription
Kit (Applied Biosystems) in a final volume of 20 μl. After
reverse transcription, amplification was carried out using
Light Cycler Fast Start DNA MasterPLUS SYBR Green I mix
(Roche). Samples were loaded into capillary tubes and
placed in the fluorescence thermocycler (LightCycler). Initial
denaturation at 95°C for 10 min was followed by 45 cycles
of 95°C for 10 s, annealing at 58°C for 8 s and elongation at
72°C for 12 s. For DEFA1 sense, 5′-TCC CAG AAG TGG
TTG TTT CC-3′; antisense 5′-GCA GAA TGC CCA GAG
TCT TC-3′ and for the housekeeping gene glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) sense, 5′-AAG GTC
GGA GTC AAC GGA TTT-3′; antisense, 5′-TGG AAG
ATG GTG ATG GGATTT-3′ primers were used. At the end
of each run, melting curve profiles were achieved by cooling
the sample to 40°C for 15 s and then heating the sample
slowly at 0.20°C/s up to 95°C with continuous measurement
of the fluorescence to confirm the amplification of specific
transcripts. Cycle-to-cycle fluorescence emission readings
were monitored and analysed by using LightCycler software
(Roche Diagnostics GmbH). All quantifications were nor-
malized to the housekeeping GAPDH gene. Relative gene
expression is given as a ratio between target gene and
GAPDH gene expressions, calculated by using the delta–
delta Ct method.

Statistical analysis

Data are expressed as means ± SD. Differences between
group means were determined by ANOVA test followed by
Bonferroni’s multiple comparison test, or the unpaired
Student t test. p values <0.05 were considered significant.
All statistical calculations were performed with the Graph-
Pad Prism 5 statistical program (GraphPad Software Inc.,
San Diego, CA, USA).

Results

KynA and the KynA analogue attenuates TNF-α
production in whole blood

To study the effects of KynA and the KynA analogue on
leukocyte TNF-α production, varying concentrations of the
drugs were added to human whole blood activated with heat-
inactivated S. aureus. Whole blood, which recapitulates the
extracellular milieu of the physiological environment during
infection or injury, is an ideal substrate on which to assess
the activity of agents towards white blood cells directly.

During a 6-h incubation period, KynA significantly atten-
uated the TNF-α levels in whole blood in a dose-dependent
manner (Fig. 2). The comparison of the inhibitory effect of
KynAwith that of the KynA analogue revealed that the KynA
analogue was more effective (p<0.01) than an equimolar
concentration of KynA in suppressing TNF-α production.

KynA and the KynA analogue attenuates TNF-α
production in human mononuclear cells

As it was theoretically possible that KynA attenuates TNF-α in
whole blood by acting indirectly on other cells than mononu-
clear cells, we ascertained the effect of KynA on isolated
human mononuclear cells in vitro. Because of high individual
differences in TNF producing capacity, the data in Fig. 3 are
expressed as percentages of the TNF-α concentrations
produced by untreated (only PBS-treated) cells in each
experiment. Each concentration was tested in duplicate on
mononuclear cell cultures obtained from five different blood
donors. The maximum TNF-α concentrations in the super-
natants in SA-induced cultures of mononuclear cells without
KynA pretreatment were 12,500–50,000 pg/ml. At the highest
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Fig. 2 KynA and the KynA analogue attenuate TNF-α levels in SA-
stimulated human whole blood. Whole blood cultures were incubated
with PBS (0 μM), KynA or the KynA analogue at concentrations of
50, 125, 250 and 500 μM for 30 min prior to the addition of heat-
inactivated SA (108/ml), and the TNF-α levels in the plasma were
determined 6 h later. Each concentration was tested in duplicate in
whole blood obtained from three different donors. Data are shown as
means±SD. *p<0.01; **p<0.001 vs the control (0 μM); #p<0.01 vs
the KynA analogue, determined by the Student t test
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concentration (500 μM), KynA suppressed the TNF-α level
to 50±3.5%, while the KynA analogue did so to 16±4.5%
(p<0.001). At 25 μM, the compounds proved ineffective. At
each effective concentration (125, 250 and 500 μM), the
KynA analogue exhibited a significantly higher inhibitory
effect on TNF production than did KynA at equimolar
concentration (p<0.001; Fig. 3). Together with the results
obtained on whole blood, these findings indicate that the
KynA analogue is significantly more potent than KynA in
inhibiting TNF-α release from mononuclear leukocytes.

KynA and the KynA analogue inhibit TNF-α production
in mononuclear cells at the transcription level

To gain further insight into the KynA mechanism of action,
we next determined the effects of KynA on TNF-α mRNA
expression. Both KynA and the KynA analogue significantly
reduced the TNF-α relative expression (Fig. 4), indicating the
attenuation of SA-induced TNF protein synthesis in human
mononuclear lymphocytes via the inhibition of TNF-α gene
transcription.

Effects of KynA and the KynA analogue on HMGB1
secretion of U 937 cells

PMA (5 ng/ml) induced HMGB1 secretion in U 937 cells
after a 24-h incubation period. Pretreatment of the cells

with KynA or the KynA analogue resulted in a decreased
level of HMGB1 secretion. The KynA analogue exhibited a
significantly higher inhibitory effect (Fig. 5).

Effects of KynA and the KynA analogue on HMGB1
secretion of human monocytes

To confirm that the inhibition of HMGB1 secretion by
KynA is not characteristic only in the case of U 937, a
monocytic cell line, we supplemented our experiments by
applying freshly isolated human peripheral monocytes.
Purified CD14-positive monocytes from peripheral blood
of healthy donors were activated by PMA (5 ng/ml), or
with PMA and heat-killed S. aureus, and HMGB1 was
assessed by ELISA. KynA and KynA analogue exerted
strong inhibitory effects on HMGB1 release in cultures of
monocytes in doses ranging from 500 to 125 μM. The
inhibition was significantly higher for the KynA analogue
(Table 1).

Effects of KynA and the KynA analogue on secretion
of HNP1–3

EDTA-anticoagulated freshly drawn peripheral blood sam-
ples were pretreated with increasing concentrations of
KynA or the KynA analogue for 30 min and thereafter
were incubated in the presence of heat-killed S .aureus
for 6 h. Following a brief centrifugation at 300×g, the
supernatants were assessed for HNP1–3 (defensin-α) concen-
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Fig. 3 KynA and the KynA analogue attenuate the TNF-α level in SA-
stimulated human mononuclear cells. Mononuclear cells (5×106/ml)
were incubated with PBS (untreated cells), or with KynA or the KynA
analogue at the indicated concentrations 30 min prior to the addition of
heat-inactivated SA (108/ml), and the TNF-α levels in the supernatants
were determined after 18 h. Each concentration was tested in duplicate
in mononuclear cell cultures obtained from five different blood donors.
Data are expressed as percentages of the TNF values from
untreated cell cultures, without KynA or the KynA analogue, and
are shown as means±SD. *p<0.001 vs 25 μM KynA or vs 25 μM
KynA analogue; #p<0.001 vs equimolar KynA analogue. The
degree of significance between different experimental samples was
determined by the ANOVA test followed by Bonferroni’s multiple
comparison test
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Fig. 4 Effect of 500 μM of KynA and KynA analogue on TNF-α
mRNA levels in human mononuclear cells stimulated with SA. TNF-
α levels were normalized to reference gene of 18S rRNA by using
quantitative real-time PCR. Relative expression was calculated by
using the delta–delta Ct method and is given as a ratio between the
target and the reference gene. Data are shown as means±SD of the
results of three independent experiments. *p<0.01 vs 0 μM; **p<
0.001 vs 0 μM; determined by the Student t test. Open bar TNF-α
mRNA expression without stimulation, black bar mRNA expression
of SA-stimulated cells without KynA, grey bar SA-stimulated cells
with 500 μM KynA, hatched bar SA-stimulated cells with 500 μM
KynA analogue
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tration. The data in Fig. 6 are expressed as percentages of the
control values (without KynA or the KynA analogue,
respectively) in each experiment because of the high
individual differences in HNP1–3 release. Each concentra-
tion was tested in duplicate on whole blood obtained from
ten different blood donors. The HNP1–3 concentrations in
the SA-activated blood samples without KynA treatment
varied in the interval 350–650 ng/ml. Both KynA and the
KynA analogue significantly reduced the secretion of
HNP1–3 (Fig. 6), At 500 μM, KynA and the KynA
analogue decreased the level of HNP1–3 to 58±12% and

41±5.6% of that for the untreated samples, respectively
(p<0.001). The HNP1–3 present in the whole blood cultures
can be regarded as mainly due to the activity of the
granulocytes (Sthoeger et al. 2008). Our previous experi-
ments demonstrated HNP1–3 secretion not only in the case
of purified granulocytes but also when a whole blood
incubation method was applied. In the peripheral blood, the
neutrophil granulocytes are the main source of HNP1–3, and
we therefore suggest that the elevation of the level of HNP1–3
following SA1 induction is mainly due to the activity of the
granulocytes (Kocsis et al. 2009a). Accordingly, we conclude
that the HNP1–3 (α-defensin) in the supernatants of whole
blood cultures can be regarded as products of the granulo-
cytes (this is all the more likely, if it is borne in mind, that
the neutrophils account for the highest number of leukocytes
in the peripheral blood). However, we ascertained the effect
of KynA on isolated human neutrophils. There was a
considerable HNP1–3 secretion by granulocytes following
a 6-h induction with heat-killed SA (980±125 ng/ml). KynA
and the KynA analogue resulted in significantly decreased
HNP1–3 levels in the supernatants; at concentrations of 125–
500 μM, the lowest levels of HNP1–3 were secreted in the
presence of 500 μM KynA analogue (Table 2).

Levels of HNP1–3 mRNA in granulocytes

Wemeasured theα-defensin mRNA level in the granulocytes.
While the induction of neutrophil granulocytes with SA
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Fig. 5 Effects of KynA and the KynA analogue on HMGB1 secretion
of U 937 cells. U-937 cells were pretreated for 30 min with KynA or
the KynA analogue and thereafter incubated for 24 h with 5 ng/ml
PMA. Supernatants were processed for HMGB1 ELISA. Data are
means±SD of the results of three experiments.*p<0.05 vs control
(0 μM); **p<0.01 vs control (0 μM); #p<0.05 vs the KynA analogue
(determined by the Student t test)

Table 1 Effects of KynA and the KynA analogue on HMGB1
secretion of human monocytes

HMGB1 ng/ml

Induction with
PMA

Induction with
PMA + SA

Without KynA (control) 31±2.8 41.4±4.2

KynA 50 μM 29.0±2.8 33.2±4.1

Analogue 50 μM 27.1±3.1 28.2±3.5*

KynA 125 μM 26.2±2.7**** 29.1±2.8*,****

Analogue 125 μM 21.5±2.2* 21.8±2.7**

KynA 250 μM 14.9±2.6**,**** 18.2±2.4**,****

Analogue 250 μM 10.3±1.5*** 12.5±1.8***

KynA 500 μM 13.7±2.1**,**** 15.8±2.5***,****

Analogue 500 μM 9.5±1.5*** 10.5±0.9***

Human peripheral blood monocytes (separated by the MACS
(Miltenyi Biotec) magnetic bead method) were pretreated for 30 min
with KynA or the KynA analogue and thereafter incubated for 24 h
with 5 ng/ml PMA, or with 5 ng/ml PMA together with heat-
inactivated SA (108 /ml). Supernatants were processed for HMGB1
ELISA. Data are means ± SD of the results of three experiments

*p<0.05 vs control (without KynA); **p<0.01 vs control (without KynA);
***p<0.001 vs control (without KynA); ****p<0.05 vs the KynA
analogue (determined by the Student t test)
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Fig. 6 Effects of KynA and the KynA analogue on secretion of
HNP1–3. Whole blood cultures were incubated with KynA or the
KynA analogue at the indicated concentrations for 30 min prior to the
addition of heat-inactivated SA (108/ml), and the HNP1–3 levels in
plasma was determined 6 h later. Each concentration was tested in
duplicate in whole blood obtained from ten different blood donors.
Data are expressed as percentages of the results obtained on untreated
samples without KynA or the KynA analogue and are shown as
means±SD. The degree of significance between different experimen-
tal samples was determined by the ANOVA test followed by
Bonferroni’s multiple comparison test
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resulted in an elevation of mRNA levels (relative mRNA
expression 2.5±1.2; n=3), no significant influence of either
KynA or the KynA analogue even at 500 μM was observed
(data not shown).

Discussion

KynA was earlier shown to inhibit intestinal hypermotility
and xanthine oxidase activity in experimental colon
obstruction in dogs (Kaszaki et al. 2008), and it was
presumed that KynA might influence intestinal inflamma-
tion. The aim of the present pilot study is to investigate the
in vitro immunomodulatory effects of KynA and its
analogue 2-(2-N,N-dimethylaminoethylamine-1-carbonyl)-
1H-quinolin-4-one hydrochloride on human peripheral
leukocytes and the human monocyte cell line.

In the whole blood model, which resembles closely the
physiological milieu, both KynA and the KynA analogue
attenuated TNF-α induction. KynA also dose-dependently
inhibited the TNF-α production by purified human mono-
nuclear cells, but in equimolar concentrations, the KynA
analogue exhibited more pronounced inhibitory activity.

Not only the production of the “early inflammatory
cytokine” TNF was inhibited by KynA but also the active
secretion of a “late” cytokine, HMGB1. Active HMGB1
secretion induced in U 937 human monocytic cells
following phorbol ester induction was inhibited more
effectively by the KynA analogue. The inhibitory effects
of KynA and the KynA analogue were also demonstrated
when freshly isolated human peripheral blood monocytes

were activated with phorbol ester, or with phorbol ester
plus SA. HMGB1 plays important roles in various non-
infectious and infectious inflammatory conditions includ-
ing trauma, sepsis, rheumatoid arthritis and pancreatitis
(Levy et al. 2007; Pisetsky et al. 2008; Sundén-Cullberg
et al. 2006; Kocsis et al. 2009b). Inhibition of the
production of TNF-α and the active secretion of HMGB1
draw attention to the anti-inflammatory effect of KynA
and its analogue. Similarly, the secretion of human
neutrophil peptides HNP1–3 (defensin-α) was inhibited
by both compounds but significantly more strongly by the
KynA analogue. The secretion of defensin-α by granulo-
cytes was measured in our experiments in whole blood
cultures. As granulocytes are the main source of HNP1–3
in the peripheral blood, the results obtained from the
investigation of whole blood can be regarded as reflecting
the granulocyte functions (Kocsis et al. 2009a; Sthoeger et
al. 2008). To confirm this, we supplemented our study
with experiments involving purified granulocytes from
peripheral blood. The similar results proved the inhibitory
effects of KynA and the KynA analogue on the HNP1–3
secretion of the granulocytes. KynA, however, did not
result in a decreased HNP1–3 mRNA expression in the
granulocytes, which could possibly explained by inhibi-
tion of the secretion or of the degranulation, rather than by
impaired HNP1–3 transcription by KynA. HNP1–3
(defensin-α) has not only antibacterial properties but also
important immune functions and inflammatory effects
(Yang et al. 2002; Quinn et al. 2008). Inhibition of HNP1–
3 secretion can therefore additionally result in anti-
inflammatory effects.

Kynurenic acid is an NMDA antagonist (Stone 1993;
Robotka et al. 2008; Klivenyi et al. 2004). It is likely that
the inhibition of TNF transcription and production and the
attenuation of defensin-α secretion are connected with
NMDA antagonism (Mcnearney et al. 2010). Studies on the
mechanism of action of KynA atmicromolar concentrations are
a competitive antagonist of the NMDA receptor (Rózsa et al.
2008). Another possibility is that the inhibitory effect
on the TNF-α transcription is signalled through the α7-
nicotinic acetylcholine receptor pathway. Activation of the
α7-nicotinic acetylcholine receptor attenuates TNF-α and
HMGB1 production through the inhibition of nuclear
factor-κB activation (Rosas-Ballina and Tracey 2009; Wang
et al. 2004). Nonselective nicotinic agonists, including
acetylcholine and nicotine, attenuate proinflammatory
cytokine production through an α7-dependent mechanism
(Wang et al. 2003; Yoshikawa et al. 2006; Parrish et al.
2008). Interestingly, KynA is a nonselective antagonist of
the α7-nicotinic acetylcholine receptor at nanomolar con-
centrations (Hilmas et al. 2001; Robotka et al. 2008),
moreover exerts a biphasic, “Janus-face”-like effect (Rózsa
et al. 2008). It is tempting to speculate whether KynA, an

Table 2 Effects of KynA and the KynA analogue on the secretion of
HNP1–3 of human granulocytes

HNP1–3 (ng/ml)

Without KynA (control) 950±125

KynA 50 μM 915±130

Analogue 50 μM 850±125

KynA 125 μM 720±65*,****

Analogue 125 μM 410±51**

KynA 250 μM 660±62*,****

Analogue 250 μM 312±45**

KynA 500 μM 498±50**,****

Analogue 500 μM 230±32***

Human granulocytes (2×106 /ml) were incubated with KynA or the
KynA analogue at the indicated concentrations for 30 min prior to the
addition of heat-inactivated SA (108 /ml) and the HNP1–3 levels in the
supernatants were determined 6 h later. Data are means±SD of the results
of three experiments

*p<0.05 vs control (without KynA); **p<0.01 vs control (without
KynA); ***p<0.001 vs control (without KynA); ****p<0.01 vs the
KynA analogue (determined by Student t test)
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antagonist of the α7-nicotinic acetylcholine receptor, could
induce similar signalling effects towards TNF-α and
HMGB1 transcription, as an agonist. It is noteworthy,
however, that HMGB1 secretion by activated monocytes
and macrophages requires a tightly controlled relocation
program (Bonaldi et al. 2003; Ulloa and Messmer 2006).
Lacking a leader signal sequence, HMGB1, cannot be
released via the classical ER–Golgi secretory pathway.
Instead, activated macrophages/monocytes acetylate
HMGB1 at lysine-rich nuclear localization sequences, leading
to translocation of nuclear HMGB1 into cytoplasmic
vesicles and subsequent release into the extracellular milieu.
Further studies are necessary to elucidate the exact
mechanism, whereby the signalization is influenced by
KynA, resulting in inhibition of HMGB1 secretion.

In our experiments, KynA and its analogue attenuated
the secretion of TNF-α and HMGB1 of mononuclear cells
and U-937 cells and monocytes, respectively. This is in
good accordance with recent observations by Wang et al.,
who reported that KynA attenuated the LPS-induced TNF-
α secretion of human mononuclear cells, expressing the
GPR35 receptor (Wang et al. 2006). The predominant
expression of GPR35 in immune cells and the elevation of
KynA levels during inflammation (Lögters et al. 2009)
suggest that the anti-inflammatory effect of KynA provides
a feedback mechanism in modulating the immune response.
The attenuation of HNP1–3 secretion of neutrophils by
KynA may also be connected with the effect through
GPR35, as this receptor is expressed on neutrophils. Further
studies are necessary to elucidate the exact mechanisms that
result in the attenuation of TNF-α and HMGB1 production,
and it remains to be established whether the NMDA
receptor or the GPR35 activation or even the α7-nicotinic
acetylcholine receptor is involved in these effects.

Conclusion

Our preliminary results revealed that KynA attenuates TNF-α
and HMGB1 production by human mononuclear white blood
cells and by monocytic cells and the secretion of defensin-α
by human granulocytes, indicating definitive anti-
inflammatory action of the molecule, and the more potent
effect of the KynA analogue. The suppressive effect of the
KynA analogue is greater than that of an equimolar
concentration of KynA both in whole blood and in separated
mononuclear cells in vitro under comparable experimental
conditions. This may be due to the cationic centre of the side
chain, which is probably an additional binding site. Overall,
these results suggest that KynA and the KynA analogue can
regulate critical steps involved in a wide range of inflamma-
tion. The new analogue may therefore be considered a
promising candidate for clinical studies.
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