

HAND DELIVERED

JAN 1 8 2011

UTAH DIVISION OF SOLID & HAZARDOUS WASTE 2011.001'05 SALT LAKE AREA OFFICE 6771 SOUTH 900 EAST MIDVALE, UTAH 84047 PHONE: (801) 566-5599 FAX: (801) 566-5581 www.hansenallenluce.com

January 18, 2011

Phillip Burns Utah Department of Environmental Quality Division of Solid and Hazardous Waste 288 North 1460 West P.O. Box 144880 Salt Lake City, Utah 84114-4880

RE: Weber County Class VI C&D Landfill Permit Application

Mr. Burns:

At the direction of Weber County and Moulding and Sons Landfill LLC, we have altered the approved Class IVb landill application to apply for a Class VI landfill permit. We are delivering two copies of the application for Class VI C & D Landfill permit for review. The item of most interest to you will be the Proven Market Analysis located directly after the table of contents on page 1.

Please contact us with any questions or concerns you might have.

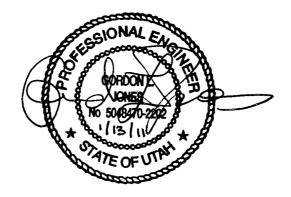
Sincerely,

HANSEN, ALLEN & LUCE, INC.

Gordon L. Jdnes, P.E Project Engineer

2 Copies of Weber County Application for Class VI C & D Landfill Permit

39805


WEBER COUNTY CORP

WEBER COUNTY C & D LANDFILL

JAN 1 8 2011

HAND DELIVERED

APPLICATION FOR CLASS VI C&D LANDFILL PERMIT UTAH OIVISION OF SOLID & HAZARDOUS WASTE 2011, 00105

Prepared by

HANSEN, ALLEN & LUCE, INC Consulting Engineers 6771 South 900 East Midvale, Utah 84047 (801) 566-5599

January 2011

TABLE OF CONTENTS

SECTION II - INTRODUCTION Page II - 1 SECTION III - PART I Page II - 1 SECTION III - PART II UTAH CLASS VI LANDFILL PERMIT APPLICATION FORM Page II - 1 SECTION III - PART II Page III - 1 SECTION III - PART II Page III - 1 SECTION IV - PART II I FACILITY GENERAL INFORMATION Page III - 1 SECTION IV - PART II Page III - 1 Page IV - 1 Completed Patt I General information Form Page IV - 1 General description of the Facility (R315 310 3(1)(b)) Page IV - 1 Legal description of property (R315-310-3(1)(c) Page IV - 2 Proof of ownership lease agreement or other mechanism (R315-310 3(1)(c) Page IV - 2 If the permit application is for a class IV landfill a demonstration that the landfill is not a commercial facility (R315 302 2(2)(a)) Page IV - 2 Waste type and anticipated doily volume (R315-310-3(1)(d)) Page IV - 3 SECTION V - PART II I FACILITY GENERAL INFORMATION - NEW OR LATERALLY EXPANDING FACILITIES Page V - 1 Documentation that the Historical Survey requirements of R315 302-1(2)(1) Page V - 1 Name and address of all property owners within 1000 leel of the facility Page V - 2 Page V - 2 Name and address of all property owners within 1000 leel of the facility Page	PROVEN MARKET ANALYSIS INFORMATION	Page 1
UTAH CLASS VI LANDFILL PERMIT APPLICATION FORMPage II - 1SECTION III - PART II UTAH CLASS VI PERMIT APPLICATION CHECKLISTPage III - 1SECTION IV - PART II I I GENERAL INFORMATION General description of the Facility (R315 310 3(1)(b)) Legal description of the Facility (R315 310 3(1)(b)) Page IV - 1 Legal description of property (R315 310 3(1)(b)) Page IV - 2 Proof of ownership lease agreement or other mechanism (R315 310 3(1)(c) Proge IV - 2 Proof of ownership lease agreement or other mechanism (R315 310 3(1)(c) Page IV - 2 Proof of ownership lease agreement or other mechanism (R315 310 3(1)(c) Page IV - 2 Proof of construction (R315 302 2(2)(a))Page IV - 2 Page IV - 2Page IV - 2 Page IV - 2Page IV - 2 Page IV - 2 Page IV - 2SECTION V - PART II I FACILITY GENERAL INFORMATION Ib GENERAL INFORMATION - NEW OR LATERALLY EXPANDING FACILITIES Name and address of all property owners within 1000 lead of the facility boundary (R315 -310 -3(2)(ii))Page IV - 1 Page V - 1 Page V - 1Documentation that the Historical Survey requirements of R315 302-1(2)(1) have been met (R315 -310 -3(2)(iii))Page V - 1 Page V - 1 Page V - 1Documentation that the Historical Survey requirements of R315 302-1(2)(1) have been met (R315 -310 -3(2)(iii))Page V - 2 Page V - 1 Page V - 1 Page V - 2SECTION VI - PART II I FACILITY GENERAL INFO	SECTION I - INTRODUCTION	Page I - 1
UTAH CLASS VI PERMIT APPLICATION CHECKLISTPage III - 1SECTION IV - PART II I a GENERAL INFORMATION - ALL FACILITIESPage IV - 1Completed Part I General information Form General description of the Facility (R315 310 3(1)(b))Page IV - 1Legal description of property (R315 310-3(1)(c)Page IV - 2Proof of ownership lease agreement or other mechanism (R315-310 3(1)(c)Page IV - 2Proof of ownership lease agreement or other mechanism (R315-310 3(1)(c)Page IV - 2Utathe landfill is not a commercial facilityPage IV - 2Waste type and anticipated doily volume (R315-310-3(1)(d))Page IV - 2Intended schedule of construction (R315 302 2(2)(a))Page IV - 2SECTION V - PART III FACILITY GENERAL INFORMATION Ib GENERAL INFORMATION - NEW OR LATERALLY EXPANDING FACILITIESPage V - 1Documentation that the Historical Survey requirements of R315 302-1(2)(f) have been met (R315-305-4(1)(b)(vi))Page V - 1Name and address of all property owners within 1000 leel of the facility boundary (R315-310-3(2)(iii))Page V - 2Name of the local government with jurisdiction over the facility site (R315-310-3(2)(iii))Page V - 2SECTION VI - PART II I FACILITY GENERAL INFORMATION Id LOCATION STANDARDS - NEW OR LATERALLY EXPANDING CLASS IVD AND VI LANDFILLSPage VI - 1		Page II - 1
IFACILITY GENERAL INFORMATION IdPage IV-1IdGENERAL INFORMATION - ALL FACILITIESPage IV-1Completed Part I General information Form General description of the Facility (R315 310 3(1)(b))Page IV-1Legal description of property (R315-310-3(1)(c)Page IV-2Proof of ownership lease agreement or other mechanism (R315-310 3(1)(c)Page IV-2If the permit application is for a class IV landfill a demonstration that the landfill is not a commercial facilityPage IV-2Waste type and anticipated doily volume (R315-310-3(1)(d))Page IV-2Intended schedule of construction (R315 302 2(2)(a))Page IV-3SECTION V - PART IIPage IV-3IFACILITY GENERAL INFORMATION Ib GENERAL INFORMATION - NEW OR LATERALLY EXPANDING FACILITIESPage V-1Documentation that the Historical Survey requirements of R315 302-1(2)(f) have been met (R315-305-4(1)(b)(vi))Page V-1Name and address of all property owners within 1000 leel of the facility boundary (R315-310-3(2)(iii))Page V-2Name of the local government with jurisdiction over the facility (R315-310-3(2)(iii))Page V-2SECTION VI - PART IIPage V-2SECTION VI - PART IIPage V-2Name of the local government with jurisdiction over the facility site (R315-310-3(2)(iii))Page V-2Section VI - PART IIPage V-2IFACILITY GENERAL INFORMATION (d LOCATION STANDARDS - NEW OR LATERALLY EXPANDING CLASS IVb AND VI LANDFILLSPage V-1		Page I II - 1
General description of the Facility (R315 310 3(1)(b))Page IV - 1Legal description of property (R315-310-3(1)(c)Page IV - 2Proof of ownership lease agreement or other mechanism (R315-310 3(1)(c)Page IV - 2If the permit application is for a class IV landfill a demonstration that the landfill is not a commercial facilityPage IV - 2Waste type and anticipated doily volume (R315-310-3(1)(d))Page IV - 2Intended schedule of construction (R315 302 2(2)(a))Page IV - 2Intended schedule of construction (R315 302 2(2)(a))Page IV - 3SECTION V - PART IIII FACILITY GENERAL INFORMATION Ib GENERAL INFORMATION - NEW OR LATERALLY EXPANDING FACILITIESPage V - 1Documentation that the Historical Survey requirements of R315 302-1(2)(f) have been met (R315-305-4(1)(b)(vi))Page V - 1Name and address of all property owners within 1000 leel of the facility boundary (R315-310-3(2)(iii))Page V - 1Documentation that a notice of intent to apply for a permit has been sent to all property owners listed above (R315-310-3(2)(ii))Page V - 2Name of the local government with jurisdiction over the facility site (R315-310-3(2)(iii))Page V - 2SECTION VI - PART IIIFACILITY GENERAL INFORMATION Id LOCATION STANDARDS - NEW OR LATERALLY EXPANDING CLASS IVD AND VI LANDFILLSPage VI - 1	I FACILITY GENERAL INFORMATION	Page IV - 1
(R315-310 3(1)[c)Page IV - 2If the permit application is for a class IV landfill a demonstration that the landfill is not a commercial facilityPage IV - 2Waste type and anticipated doily volume (R315-310-3(1)[d))Page IV - 2Intended schedule of construction (R315 302 2(2)[a))Page IV - 3SECTION V - PART IIII FACILITY GENERAL INFORMATIONPage IV - 3Ib GENERAL INFORMATION - NEW OR LATERALLY EXPANDING FACILITIESPage V - 1Documentation that the Historical Survey requirements of R315 302-1(2)[f) have been met (R315-305-4(1)[b][vi])Page V - 1Name and address of all property owners within 1000 leel of the facility boundary (R315-310-3(2)[ii])Page V - 1Documentation that a notice of intent to apply for a permit has been sent to all property owners listed above (R315-310-3(2)[iii])Page V - 2SECTION VI - PART IIIFACILITY GENERAL INFORMATION (R315-310-3(2)[iii])Page V - 2SECTION VI - PART IIIFACILITY GENERAL INFORMATION (d LOCATION STANDARDS - NEW OR LATERALLY EXPANDING CLASS IVD AND VI LANDFILLSPage VI - 1	General description of the Facility (R315 310 3(1)(b)) Legal description of property (R315-310-3(1)(c)	Page IV - 1
the landfill is not a commercial facilityPage IV - 2Waste type and anticipated doily volume (R315-310-3(1)(d))Page IV - 2Intended schedule of construction (R315 302 2(2)(a))Page IV - 3SECTION V - PART IIIFACILITY GENERAL INFORMATIONIbGENERAL INFORMATION - NEW OR LATERALLY EXPANDING FACILITIESDocumentation that the Historical Survey requirements of R315 302-1(2)(f) have been met (R315-305-4(1)(b)(vi))Page V - 1Name and address of all property owners within 1000 leel of the facility boundary (R315-310-3(2)(ii))Page V - 1Documentation that a notice of intent to apply for a permit has been sent to all property owners listed above (R315-310-3(2)(ii))Page V - 2Name of the local government with jurisdiction over the facility site 	(R315-310 3(1)(c)	Page IV - 2
IFACILITY GENERAL INFORMATION BPage V - 1Documentation that the Historical Survey requirements of R315 302-1(2)(f) have been met (R315-305-4(1)(b)(vi))Page V - 1Name and address of all property owners within 1000 leel of the facility boundary (R315-310-3(2)(ii))Page V - 1Documentation that a notice of intent to apply for a permit has been sent to all property owners listed above (R315-310-3(2)(iii))Page V - 2Name of the local government with jurisdiction over the facility site (R315-310-3(2)(iii))Page V - 2SECTION VI - PART II IFACILITY GENERAL INFORMATION Id LOCATION STANDARDS - NEW OR LATERALLY EXPANDING CLASS IVD AND VI LANDFILLSPage VI - 1	the landfill is not a commercial facility Waste type and anticipated doily volume (R315-310-3(1)(d))	Page IV - 2
have been met (R315-305-4(1)(b)(vi))Page V - 1Name and address of all property owners within 1000 leel of the facility boundary (R315-310-3(2)(i))Page V - 1Documentation that a notice of intent to apply for a permit has been sent to all property owners listed above (R315-310-3(2)(ii))Page V - 1Name of the local government with jurisdiction over the facility site (R315-310-3(2)(iii))Page V - 2SECTION VI - PART II 	I FACILITY GENERAL INFORMATION	Page V - 1
to all property owners listed above (R315-310-3(2)(II)) Page V - 2 Name of the local government with jurisdiction over the facility site (R315-310-3(2)(III)) Page V - 2 SECTION VI - PART II I FACILITY GENERAL INFORMATION Id LOCATION STANDARDS - NEW OR LATERALLY EXPANDING CLASS IVb AND VI LANDFILLS Page VI - 1	have been met (R315-305-4(1)(b)(vi)) Name and address of all property owners within 1000 leel of the facility boundary (R315-310-3(2)(i))	U
(R315-310-3(2)(III)) Page V - 2 SECTION VI - PART II I FACILITY GENERAL INFORMATION Id LOCATION STANDARDS - NEW OR LATERALLY EXPANDING CLASS IVD AND VI LANDFILLS Page VI - 1	to all property owners listed above (R315-310-3(2)(ii))	Page V - 2
I FACILITY GENERAL INFORMATION Id LOCATION STANDARDS - NEW OR LATERALLY EXPANDING CLASS IVD AND VI LANDFILLS Page VI - 1		Page V - 2
EIGENENENDS OS SERCITIEREM TELEVISIÓN Z_{1}	I FACILITY GENERAL INFORMATION Id LOCATION STANDARDS - NEW OR LATERALLY EXPANDING	Page VI - 1 Page VI - 1

Wetlands as specified in R315-302-1(2)(d) (R315-305-4(1)(b)(ii)) The landfill is located so that the lowest level of waste is at least ten feet	Page VI - 1
above the historical high level of ground water (R315-305-4(1)(b)(iii) Geology as specified in R315-302-1(2)(b)(I) and (iv) (R315-305-4(1)(b)(iv))	Page VI - 1 Page VI 2
SECTION VII - PART II I FACILITY GENERAL INFORMATION Ie ADDITIONAL LOCATION STANDARDS - NEW OR LATERALLY EXPANDING CLASS IVb AND VI LANDFILLS OR LANDFILLS REQUESTING THAT DEAD ANIMALS BE ADDED AS A NEW WASTE STREAM (R315-305-4(1)(0)(V))	Page VII - 1
Maps showing the existing land use, topography, residences parks monuments, recreation areas or wilderness areas within 1000 feet of the site boundary Certifications that no ecologically or scientifically significant areas or endangered species are present in the site area Mops showing the location of dwellings residential areas other structures and historic structures	Page VII - 1 Page VII - 1 Page VII - 1
List of airports within five miles of facility and distance to each SECTION VIII - PART II I FACILITY GENERAL INFORMATION If PLAN OF OPERATIONS - ALL FACILITIES (R315-310-3(1)(e)	Page VII 1
and R315-302-2(2)) Description of on-site waste handling procedures and on example of the form that will be used to record the weights or volumes of waste received (R315-302-2(2)(b) and R315 310 3(1)(f)) Schedule for conducting inspections and monitoring and examples of the forms that will be used to record the results of the inspections and monitoring (R315-302-2(2)© R315-302-2(5)(a) and	Page VIII 1 Page VIII - 1
 R315-310-3(1)(g)) Contingency plans in the event of a fire or explosion (R315-302-2(2)(d)) Plan to control fugitive dust generated from roads construction general operations and covering the waste (R315-302 2(2)(g)) Plan tor litter control and collection (R315-302-2(2)(h)) Procedures for excluding the receipt of prohibited hazardous or PCB containing waste (R315-302-2(2)(j)) Procedures for controlling disease vectors (R315-302 2(2)(k)) A plan for alternative waste handling (R315-302-2(2)(l)) A general training and safety plan for site operations (R315-302-2(2)(o)) Any recycling programs planned at the facility (R315-303-4(6)) Any other site specific information pertaining to the plan of operation 	Page VIII - 2 Page VIII - 2 Page VIII - 3 Page VIII - 3 Page VIII - 3 Page VIII - 4 Page VIII - 4 Page VIII - 4
required by the Executive Secretary (R315-302-2(2)(o))	Page VIII - 5

SECTION IX - PART II

II FA CILITY TECHNICAL INFORMATION

Topographic mop drawn to the required scale with contours showing the
boundaries of the landfill unit ground water monitoring well locations,
gas monitoring points, and the borrow and fill areas
(R315-310-4(2)(a)(I))Page IX - 1Most recent U SGeological Survey topographic mop, 7-1/2 minute
series showing the waste facility boundary, the property boundary
surface drainage channels any existing utilities and structures within
one fourth mile of the site, and the direction of the prevailing
winds (R315-310-4(2)(a)(II))Page IX - 1

SECTION X - PART II

II FA CILITY TECHNICAL INFORMATION

IIC ENGINEERING REPORT, PLANS, SPECIFICATIONS, AND CALCULATIONS - ALL FACILITIES

Page X - 1

Page IX - 1

Unit design to include cover design, fill methods and elevation of final cover including plans and drawings signed and sealed by a professional engineer registered in the State of Utah when required (R315 310-3(1)(b) and R315-310-4(2)(c)(III)) Page X - 1 Design and location of run on and run-off control systems (R315-310 4(2)(c)(viii)) Page X - 2 Anticipated facility life and the basis for calculating the facility's life (R315 310 4(2)(c)(viii)) Page X - 2 Engineering reports required to meet the location standards of R315-305-4 including documentation of any demonstration or exemption made for any location standard (R315-310 4(2)(c)(i)) Page X - 3 Identification of borrow sources for final cover (R315-310-4(2)(c)(iv)) Page X - 3 Run off collection treatment and disposal and documentation to show that any treatment system is being or has been reviewed by the Division of Water Quality (R315-310-4(2)(c)(v) and R315-310-3(1)(i)) Page X - 3

SECTION XI - PART II

II FA CILITY TECHNICAL INFORMATION

IId CLOSURE REQUIREMENTS - ALL FACILITIES	Page XI - 1
Closure Plan (R315-310-3(1)(h))	Page XI - 1
Closure Schedule (R315-310-4(2)(d)(I))	Page XI - 1
Design of Final Cover (R315-310-4(2)(c)(iii))	Page XI - 1
Capacity of Site in Volume and Tonnage (R315-310-4(2)(d)(ii))	Page XI - 1

Final Inspection by Regulatory Agencies (R315-310-4(2)(d)(iii)) Page XI - 1

SECTION XII - PART II

II FA CILITY TECHNICAL INFORMATION	
ILE POST-CLOSURE REQUIREMENTS - ALL FACILITIES	Page XII - 1
Post-Closure Core Plan (R315-310-3(1)(h))	Page X II - 1
Changes to record of title land use and zoning restrictions (R315-310-4(2)(e)(II))	Page XII - 1
Maintenance a ctivities to maintain cover and run-on/run-off control systems (R315-310-4(2)(e)(III))	Page XII - 1
List the name, address, and telephone number of the person or office to contact about the facility during the post-closure care period (R315 310-4(2)(e)(vi))	Page XII - 1
SECTION XIII - PART II II FA CILITY TECHNICAL INFORMATION	
IIf FINANCIAL ASSURANCE - ALL FACILITIES	Page XIII - 1
Identification of closure costs including cost calculations (R315-310-4(2)(d)(iv))	Page XIII - 1
Identification of post-closure care costs including cost calculations (R315-310-4(2)(e)(iv)) Identification of the financial assurance mechanism that meets the	Page XIII - 2
requirements of Rule R-315-309 and the dote that the mechanism will become effective (R315-309-1(1)	Page XIII - 2

TABLES

Table XIII-1 - Summary	of Estimated Closure Costs	Page XIII - 1
Table XIII-2 - Summary	of Estimated Post-Closure Costs	Page XIII - 2

FIGURES

Figure 1 - Weber County Class VI C&D Landfill - General Location
Figure 2 - Weber County Class VI C&D Landfill - Floodplains
Figure 3 - Weber County Class VI C&D Landfill - Wetlands Map
Figure 4 - Weber County Class VI C&D Landfill - General Location Requirements
Figure 5 - Weber County Class VI C&D Landfill - USGS Quad Map with Prevailing Wind

EXHIBIT A

WEBER COUNTY CONSTRUCTION AND DEMOLITION LANDFILL DESIGN ENGINEERING REPORT

Prepared by

Hansen, Allen & Luce, Inc Consulting Engineers 6771 South 900 East Midvale, Utah 84047

EXHIBIT B

QUIT CLAIM DEED C2008-227 REAL ESTATE PURCHASE AGREEMENT C2008-228 LANDFILL OPERATING AND MANAGEMENT AGREEMENT

EXHIBIT C

A CULTURAL RESOURCE INVENTORY OF A PROPOSED LANDFILL NEAR LITTLE MOUNTAIN WEBER COUNTY, UTAH

Prepared by

Sagebrush Consultants, LLC 3670 Quincy Avenue, Suite 203 Ogden, Utah 84403

EXHIBIT D

PROPERTY OWNER NOTIFICATION LETTERS - ORIGINAL PERMIT APPLICATION JANUARY 2009

EXHIBIT E

U S ARMY CORPS OF ENGINEERS WETLAND DETERMINATION DOCUMENTS

EXHIBIT F

LETTER FROM STATE OF UTAH DEPARTMENT OF NATURAL RESOURCES DIVISION OF WILDLIFE RESOURCES

EXHIBIT G

OPERATIONAL AND REPORTING FORMS

EXHIBIT H

STORM WATER POLLUTION PREVENTION PLAN STORM WATER DISCHARGE PERMIT

EXHIBIT I

FINANCIAL ASSURANCE CALCULATIONS

WEBER COUNTY CORP

WEBER COUNTY C & D LANDFILL

PROVEN MARKET ANALYSIS INFORMATION

> UCA TITLE 19 CHAPTER 6

SECTION 108(10)

UCA Title 19 Chapter 6 Section 108(10)

A Evidence that the proposed commercial facility has a proven market

In 1990, Moulding & Sons Sand and Gravel, LLC received approval to operate a commercial C&D landfill south of 21st Street in Weber County This facility operated as a privately owned commercial facility for 20 years and was designed to hold approximately 2 million tons of C&D waste This commercial facility was closed in September of 2008, leaving no commercial C&D facility within Weber County As a result, much of the C&D material was shipped to the Weber County Transfer Station at a charge of \$30/ton In a year when most waste streams throughout Utah were declining because of the economic down turn, Weber County's waste stream increased 20,000 tons It is estimated that the total impact from C&D waste was approximately 40,000 tons Since the down turn in the economy has affected C&D waste as much as or more than the MSW waste stream, it is estimated that the typical annual need for C&D waste would vary between 50,000 to 80,000 tons for Weber County alone The Moulding and Sons C&D landfill received waste from Weber, Davis, Morgan and Box Elder counties

The Market for C&D waste has been established by the Moulding facility over the past 20 years in Weber County C&D matenal waste flow changes depending on economic conditions. It is directly related to the amount of new construction going on in the community. Over the 20-year period the Moulding facility was in operation (i e approximately from 1989 through 2008), the average annual waste flow was around 100,000 tons. More recently, with the advent of the LEEDS program more and more contractors are sorting matenal on site and sending concrete and metal for recycling, but there is still a significant need in Weber County and the surrounding counties for C&D disposal.

There are no other commercial C&D landfills within Weber, Davis, Box Elder, or Morgan counties The only public C&D landfill within Weber County is the Weber County C&D Landfill Currently the closest alternative facilities are the Box Elder County Landfill in Box Elder County and the Wasatch Integrated Waste Landfill in Davis County, both of which are Class I MSW facilities The current fees for the Box Elder County Landfill and the Wasatch Integrated Waste Landfill are \$26 50/ton and \$26 00/ton, respectively

(b) Description of the public benefits

The need for a commercial C&D facility in Weber County is simple. It is a better use of resources at a lower cost. The Weber County C&D Landfill offers a lower cost alternative to the MSW facilities located in the area. The current fees for the Box Elder County Landfill and the Wasatch Integrated Waste Landfill are \$26 50/ton and \$26 00/ton, respectively. The current fee for the Weber County Transfer Station is \$30 00/ton. The price at the gate of the new Weber County C&D Landfill facility is less than \$15 00/ton, which is less than 50 to 58% of the disposal fees at the MSW facilities. The C&D landfill charges are based on the size and type of vehicle. Thus, the Weber County C&D Landfill is a good alternative for entities within Weber County and surrounding counties for disposal of C&D wastes. Use of the Weber County C&D Landfill would also preserve waste capacity in the MSW landfills in Davis and Box Elder Counties Davis County officials have expressed concern that the Davis County Landfill is filling much faster than they would like Thus, they have entered into a contract with Weber County to use the Weber County C&D Landfill for C&D wastes The same would apply to the Box Elder County Landfill as well Changing the Weber County C&D Landfill to a commercial facility would allow other entities within Morgan and Box Elder counties to use the Weber County facility without requinng individual agreements with those entities

An additional benefit of the Weber County C&D Landfill has been to alleviate negative impacts on their municipal solid waste system C&D waste has had three negative impacts on Weber County's Solid waste system transfer station The first is safety The typical 40 foot end dump trucks that are used in transporting much of the C&D waste are not designed for use in a crowded transfer station In some areas of the building they can reach as high as some of the air ducts and signage They are very unstable when fully extended and could be a danger to themselves, employees, and the other visitors of the facility The second concern is the wear and tear on the facility itself The transfer station has a concrete floor where garbage is dumped but the nature of C&D material is heavier and more abrasive than other loads This causes excessive wear on the floor Since the opening of the transfer station, there are areas that have worn down as much as five inches The third impact is reduced capacity Often this type of material is transported via "side-dump" trailers These vehicles take four or five bays in the transfer station to dump their material Dunna busy times many of the other customers must wait in queue while the C&D material is being dumped On busy days at the transfer station as much as 1200 tons of waste is shipped to the landfill. The building design capacity is 1,000 tons per day

The Weber County C&D Landfill will not at the current time focus on energy recovery, nor will it permit dumping of any hazardous material

(c) Compliance history of an owner or operator of a proposed commercial nonhazardous solid or hazardous waste treatment, storage, or disposal facility

The two entities involved in this operation, namely Moulding and Sons Landfill, LLC, and Weber County have been in the waste management business since 1990 and 1966, respectively. To our knowledge there have never been any major violations or deviation from polices of the State. The track record for operations of this type of a facility has been stellar and would continue to provide cooperation and professionalism in the operations of this facility in the future.

SECTION I

INTRODUCTION

Weber County is applying for a Class VI permit to construct and operate a construction and demolition landfill the "Weber County C & D Landfill", which is anticipated to receive waste from and is to be located within the boundaries of Weber County Utah This application for Class VI permit is submitted in accordance with the requirements of Rules R315-302, R315-303, R315-305, R315-309 and R315-310 of the Utah Solid Waste Permitting and Management Rules and the Utah Solid and Hazardous Waste Act (UCA 19-6-101 through 123)

SECTION II

PART I UTAH CLASS VI LANDFILL PERMIT APPLICATION FORM

The following pages consist of the completed Utah Class VI Landfill Permit Application Form

Utah Class IV and VI Landfill Permit Application Form Utah Division of Solid and Hazardous Waste Solid Waste Management Program

Mailing Address P O Box 144880 Salt Lake City Utab 84114-4880 Office Location 288 North 1460 West Salt Lake City Utab 84116 Phone (801) 538-6170 Fax (801) 538 6715 www deq utab gov

APPLICATION FOR A PERMIT TO OPERATE A CLASS IV OR VI LANDFILL

Please read the instructions that are found in the document, INSTRUCTIONS FOR APPLICATION FOR A PERMIT TO OPERATE A CLASS IV or VI LANDFILL This application form shall be used for all Class IV or VI solid waste disposal facility permits and modifications Part I, GENERAL INFORMATION must accompany a permit application Part II, APPLICATION CHECKLIST, is provided to assist applicants and, if included with the application, will assist review Please note the version date of this form found on the lower right of the page, if you have received this form more than six months after this date it is recommended you contact our office at (801) 538-6170 to determine if this form is still current. When completed, please return this form and support documents, forms, drawings, and maps to

Dennis R Downs, Director Division of Solid and Hazardous Waste Utah Department of Environmental Quality PO Box 144880 Salt Lake City, Utah 84114-4880

(Note When the application is determined to be complete, submittal of two copies of the complete application will be required)

Utah Class IV and VI Landfill Permit Application Form

Part I General Information	APPLICANT F	PLEASE COM	IPLETE ALL S	ECTIONS.			··· -
Landfill □ Class IVa ype X Class VI	Class IVb	<i>II</i> Applica Type	ation	New Applica Renewal Apj			Facility Expansion Modification
For Renewal Applications Facility Exp	ansion Applications a	and Modifications	Enter Current Pe	rmit Number	<u> </u>		
III Facility Name and Locati	on						·
Legal Name of Facility							
Weber County C&D Landfill					County		
Site Address (street or directions to sit 10485 West 900 South	e)				Weber		
City Ogden		State Utoh	Zıp Code 84404	Τε	elephone		
Township 6 North Range 3 West	Section(s)	19	Quarter/Quarter S	ection	Quarter S	Section	Northwest
Main Gate Latitude degrees 41	minutes 14	seconds 55 0	Longitude	degrees 112	minutes	13	seconds 50 3
IV. Facility Owner(s) Informa	ation		<u></u>				
Legal Name of Facility Owner Weber County Corp Address (mailing)							
867 West Wilson Lane			7.0	- <u></u>			
City Ogden		State Utoh	Zip Code 84401	Τε	elephone (8	01) 399 8	3803
V. Facility Operator(s) Inform	nation						
Legal Name of Facility Operator Moulding & Sons Londfill LLC							
Address (mailing) 910 West 21st Street							
vty Ogden		Stale Utoh	Zip Code 84401	Τε	elephone (8	01) 725 2	2722
VI Property Owner(s) Inform	nation						
Legal Name of Property Owner Weber County Corp							
Address (mailing)	· · · · ·				 .		
2380 S Washington Blvd							
City Ogden		State Utoh	Zip Code 84401	Te	elephone (8	01) 399 8	3416
VII Contact Information							
Owner Contact Gary C Laird			Title Weber C	ounty Director o	of Solid Wast	e	
Address (mailing) 867 West Wilson Lone							
City Ogden		State Utoh	Zıp Code 84401		elephone (8	011 399	8803
Email Address glourd@co weber ut	us		Alternative Tele other) (801) 39				
Operator Contact Rondy Moulding			Title				
Address (mailing) 910 West 21st Street							
City Ogden		State Utoh	Zip Code 84401		elephone (8	01) 725	2722
Email Address			Alternative Tele other)	phone (cell or			
Property Owner Contact Nate Pierce			Title Weber C	ounty Director o	of Operation	IS	
Address (mailing) 444 24th Street							
cily Ogden		State Utoh	Zıp Code 84401	Te	elephone (801) 625	3850
Email Address npierce@co weber i	ut us		Alternative Tele other)	ephone (cell or			

Utah Class IV and VI Landfill Permit Application Form

Part I General Information (Continued)	
	IX Faaility Area
VIII Waste Types (check all that apply) Image: Landfill will accept all wastes allowed in Class IV or VI landfills Or landfill will accept only the following wastes Waste Type Combined Disposal Unit	IX Facility Area Facility 110 7 Area 98 5 Area 98 5
	Design Capacity Years 50 est
Contaminated Soil Contaminated	Cubic Yards <u>16 Million</u>
	Tons 8 Million
X Fee and Application Documents	
	Application Fee Amount \$ Class VI Special Requirements
	Operation Image: Constraint of the second secon
I HEREBY CERTIFY THAT THIS INFORMATION AND ALL	ATTACHED PAGES ARE CORRECT AND COMPLETE
Signature of Authonzed Owner Representative	Title Weber County - [] Date Director of Solid Waste ////////////////////////////////////
Gary C Laird	Address 867 West Wilson Lane[] Ogden Utah 84401
Signature of Outhorized Lano Owner Representative (if applicable)	Title Weber County Date Director of Solid Waste 1/1/1/11
Gary C Laird Name typed or printed	Address 867 West Wilson Lane[] Ogden Utah 84401
Signature of Authonzed Operator Representative (if applicable)	Title Moulding & Sons [] Date Landfill LLC President / - / // - ///
Randy Moulding	Address 910 West 21st Street[] Ogden Utah 84401

SECTION III

PART II UTAH CLASS VI PERMIT APPLICATION CHECKLIST

The following pages include the completed Utoh Class VI Permit Application Checklist as obtained from Utoh Division of Solid and Hazardous Waste. The checklist includes reference to the locations in this permit application where each item required on the checklist is provided.

Important Note The following checklist is for the permit application and addresses only the requirements of the Division of Solid and Hazardous Waste. Other federal, state, or local agencies may have requirements that the facility must meet. The applicant is responsible to be informed of, and meet, any applicable requirements. Examples of these requirements may include obtaining a conditional use permit, a business license, or a storm water permit. The applicant is reminded that obtaining a permit under the Solid Waste Permitting and Management Rules does not exempt the facility from these other requirements.

An application for a permit to construct and operate a landfill is the documentation that the landfill will be located, designed, constructed, and operated to meet the requirements of Rules R315-305 of the *Utah* Solid Waste Permitting and Management Rules and the *Utah* Solid and Hazardous Waste Act (UCA 19-6-101 through 123) The application should be written to be understandable by regulatory agencies, landfill operators, and the general public The application should also be written so that the landfill operator, after reading it, will be able to operate the landfill according to the requirements with a minimum of additional training

Copies of the Solid Waste Permitting and Management Rules, the Utah Solid and Hazardous Waste Act, along with many other useful guidance documents can be obtained by contacting the Division of Solid and Hazardous Waste at 801-538-6170 Most of these documents are available on the Division's web page at www hazardouswaste utah gov Guidance documents can be found at the solid waste section portion of the web page

When the application is determined to be complete the original complete application and one copy of the complete application are required along with an electronic copy

I. Facility General Information	· · · · · · · · · · · · · · · · · · ·
Description of Item	Location In Document
a General Information - All Facilities	
Completed Part I General information form above	1 11
General description of the facility (R315-310-3(1)(b))	IV 1
_egal description of property (R315-310-3(1)(c))	IV 2
Proof of ownership, lease agreement, or other mechanism (R315-310-3(1)(c))	IV 2
If the permit application is for a Class IV landfill, a demonstration that the landfill is not a commercial facility	Does Not Apply
Waste type and anticipated daily volume (R315-310-3(1)(d))	IV-2
Intended schedule of construction (R315-302-2(2)(a))	IV-3
Ib General Information - New Or Laterally Expanding Facilities	
Documentation that the Historical Survey requirements of R315-302-1(2)(f) have been met (R315-305-4(1)(b)(vi))	V-1
Name and address of all property owners within 1000 feet of the facility boundary (R315-310-3(2)(i))	٧١
Documentation that a notice of intent to apply for a permit has been sent to all property owners listed above (R315-310-3(2)(ii))	V 2

Part II Application Checkhst

Facility General Information Description of Item	Location In
Description of item	Document
Name of the local government with junsdiction over the facility site (R315-310- 3(2)(iii))	V 2
Ic Location Standards - New Or Laterally Expanding Class IVa Landfills (R315-305-4(1)(a))	
Land use compatibility	Does Not Apply
Maps showing the existing land use, topography, residences, parks, monuments, recreation areas or wilderness areas within 1000 feet of the site boundary	Does Not Apply
Certifications that no ecologically or scientifically significant areas or endangered species are present in site area	Does Not Apply
Maps showing the location of dwellings residential areas, other structures, and historic structures	Does Not Apply
List of airports within five miles of facility and distance to each	Does Not Apply
Geology	Does Not Apply
Geologic maps showing significant geologic features faults and unstable areas	Does Not Apply
Maps showing site soils	Does Not Apply
Surface water	Does Not Apply
Magnitude of 24 hour 25 year and 100 year storm events	Does Not Apply
Average annual rainfall	Does Not Apply
Maximum elevation of flood waters proximate to the facility	Does Not Apply
Maximum elevation of flood water from 100 year flood for waters proximate to the facility	Does Not Apply
Wetlands	Does Not Apply
Ground water	Does Not Apply
/d Location Standards - New Or Laterally Expanding Class IVb and VI Landfills	
Floodplains as specified in R315-302-1(2)(c)(ii) (R315-305-4(1)(b)(i))	VI 1
Wetlands as specified in R315-302-1(2)(d) (R315-305-4(1)(b)(ii))	۷۱ ۱
The landfill is located so that the lowest level of waste is at least ten feet above the historical high level of ground water (R315-305-4(1)(b)(iii))	VI 1
Geology as specified in R315-302-1(2)(b)(i) and (iv) (R315-305-4(1)(b)(iv))	VI 2
/e Additional Location Standards - New Or Laterally Expanding Class IVb and VI Landfills Or Landfills Requesting That Dead Animals Be Added As A New Waste Stream (R315-305- 4(1)(a)(v))	
Maps showing the existing land use topography, residences parks monuments recreation areas or wilderness areas within 1000 feet of the site boundary	VII 1

I Facility General Information Description of Item	Location In Document
Certifications that no ecologically or scientifically significant areas or endangered species are present in site area	VI I 1
Maps showing the location of dwellings, residential areas other structures, and historic structures	VII 1
List of airports within five miles of facility and distance to each	VII 1
If Plan Of Operations - All Facilities (R315-310-3(1)(e) and R315- 302-2(2))	
Description of on-site waste handling procedures and an example of the form that will be used to record the weights or volumes of waste received (R315-302-2(2)(b) And R315-310-3(1)(f))	ר וווע
Schedule for conducting inspections and monitoring and examples of the forms that will be used to record the results of the inspections and monitoring (R315-302-2(2)(c), R315-302-2(5)(a) and R315-310-3(1)(g))	VIII 2
Contingency plans in the event of a fire or explosion (R315-302-2(2)(d))	VIII 2
Plan to control fugitive dust generated from roads, construction, general operations and covering the waste (R315-302-2(2)(g))	VIII 3
Plan for letter control and collection (R315-302-2(2)(h))	VIII 3
Procedures for excluding the receipt of prohibited hazardous or PCB containing waste (R315-302-2(2)(J))	VIII 3
Procedures for controlling disease vectors (R315-302-2(2)(k))	VIII 4
A plan for alternative waste handling (R315-302-2(2)(I))	VIII 4
A general training and safety plan for site operations (R315-302-2(2)(o))	VIII 4
Any recycling programs planned at the facility (R315-303-4(6))	VIII 4
Any other site specific information pertaining to the plan of operation required by the Executive Secretary (R315-302-2(2)(o))	VIII 5
Ig Additional Plan Of Operation Requirements - Class IVa Facilities	
Corrective action programs to be initiated if ground water is contaminated (R315- 302-2(2)(e))	Does Not Apply
// Facility Technical Information	
I/a Maps - All Facilities	
Topographic map drawn to the required scale with contours showing the boundaries of the landfill unit, ground water monitoring well locations, gas monitoring points and the borrow and fill areas (R315-310-4(2)(a)(i))	IX 1 and FIGURES
Most recent U S Geological Survey topographic map 7-1/2 minute series, showing the waste facility boundary the property boundary surface drainage channels, any existing utilities and structures within one-fourth mile of the site, and the direction of the prevailing winds (R315-310-4(2)(a)(ii))	IX 1 and FIGURES

I Facility General Information Description of Item	Location In
	Document
IIb Geohydrological Assessment - Class IVa Landfills (R315-310- 4(2)(b))	·····
Local and regional geology and hydrology including faults, unstable slopes and subsidence areas on site (R315-310-4(2)(b)(i))	Does Not Apply
Evaluation of bedrock and soil types and properties including permeability rates (R315-310-4(2)(b)(ii))	Does Not Apply
Depth to ground water (R315-310-4(2)(b)(III))	Does Not Apply
Quantity, location, and construction of any private or public wells on-site or within 2,000 feet of the facility boundary (R315-310-4(2)(b)(v))	Does Not Apply
Tabulation of all water rights for ground water and surface water on-site and within 2,000 feet of the facility boundary (R315-310-4(2)(b)(vi))	Does Not Apply
Identification and description of all surface waters on-site and within one mile of the facility boundary (R315-310-4(2)(b)(vii))	Does Not Apply
For an existing facility identification of impacts upon the ground water and surface water from leachate discharges (R315-310-4(2)(b)(viii))	Does Not Apply
Calculation of site water balance (R315-310-4(2)(b)(ix))	Does Not Apply
IIc Engineering Report, Plans, Specifications, And Calculations - All Facilities	
Unit design to include cover design, fill methods, and elevation of final cover including plans and drawings signed and sealed by a professional engineer registered in the State of Utah, when required (R315-310-3(1)(b) and R315-310-4(2)(c)(iii))	X 1
Design and location of run-on and run-off control systems (R315-310-4(2)(c)(viii))	X 2
Anticipated facility life and the basis for calculating the facility's life (R315-310- 4(2)(c)(ii))	X 2
Engineering reports required to meet the location standards of R315-305-4 including documentation of any demonstration or exemption made for any location standard (R315-310-4(2)(c)(i))	Х З
Identification of borrow sources for final cover (R315-310-4(2)(c)(iv))	Х З
Run-off collection, treatment and disposal and documentation to show that any treatment system is being or has been reviewed by the Division of Water Quality (R315-310-4(2)(c)(v) and R315-310-3(1)(i))	Х 3
//d Closure Requirements - All Facilities	
CLOSURE PLAN (R315-310-3(1)(h))	XI 1
Closure schedule (R315-310-4(2)(d)(I))	XI 1

I Facility General Information	
Description of Item	Location In Document
Capacity of site in volume and tonnage (R315-310-4(2)(d)(ii))	XI-1
Final inspection by regulatory agencies (R315-310-4(2)(d)(iii))	XI- I
Ile Post-Closure Requirements- All Facilities	
POST-CLOSURE CARE PLAN (R315-310-3(1)(h))	XII 1
Changes to record of title, land use, and zoning restrictions (R315-310-4(2)(e)(ii))	XII 1
Maintenance activities to maintain cover and run-on/run-off control systems (R315-310-4(2)(e)(III))	ХШТ
List the name, address, and telephone number of the person or office to contact about the facility during the post-closure care penod (R315-310-4(2)(e)(vi))	XII 1
IIf Financial Assurance - All Facilities (R315-310-3(1)(j))	
Identification of closure costs including cost calculations (R315-310-4(2)(d)(iv))	XIII 1
Identification of post-closure care costs including cost calculations (R315-310-4(2)(e)(iv))	XIII 2
Identification of the financial assurance mechanism that meets the requirements of Rule R315-309 and the date that the mechanism will become effective (R315-309-1(1))	XIII 2

 $\label{eq:linear} N \ \mbox{ALL}\ \mbox{SWS Form}\ \mbox{Perm} \ \mbox{Application forms}\ \mbox{2007}\ \mbox{Class}\ \mbox{IV}\ \mbox{\&Vl}\ \mbox{application}\ \mbox{and}\ \mbox{checkliss}\ \mbox{doc}\ \mbox{doc}\ \mbox{All}\ \mbox{All}\ \mbox{Application}\ \mbox$

SECTION IV

PART II I FACILITY GENERAL INFORMATION

IO GENERAL INFORMATION - ALL FACILITIES

Completed Part I General information Form

The part I general information form is completed and is provided in Section I of this document

General description of the Facility (R315-310-3(1)(b))

The Weber County C & D Landfill will be located on approximately 110.7 acres of land located in the Northwest Quarter of Section 19, Township 6 North Range 3 West Salt Lake Base and Meridian Property owners surrounding the proposed landfill site include the U.S. Government (Air Force property) to the west, the Union Pacific Railroad and undeveloped land owned by Powder Mountain Group Holding LLC to the south, Bible Broadcasting Network. Inc. (on which a radio tower has been constructed) and undeveloped property owned by Joseph M. Colosimo to the north and undeveloped property owned by Counterpoint Construction Company to the east The property is located along base of the south side of Little Mountain located in Weber County Sheet C 1 of the design drawings shows the general location of the site (Exhibit A. Appendix 1)

Weber County land use zoning for the site and of the properties adjacent to the proposed landfill are designated as M 3 (heavy manufacturing) Since this will be a landfill owned by Weber County and allowed under zoning as a government use facility no zoning changes or conditional use permits will be required by Weber County. The landfill site will be surrounded by a minimum 4 foot high security fence consisting of either a 5 strand barbed wire fence or a wire mesh field fence. The fence will be either constructed in phases as landfill expansion occurs or may be constructed around the entire facility property at any time during the facility life.

Site access will be from an existing asphalt road (900 South) located along the north side of the property with the entrance approximately 500 feet west of the east property line. Weber County has assigned the street address of the facility as 10485 West 900 South. A 6-foot high chain link fence will extend for minimum distance of 50 feet on each side of the site entrance with a gate that can be closed and locked auring hours the landfill is not open. Access to the facility will be gated to inhibit unauthorized entrance when the landfill operator is not present.

The landfill footprint will consist approximately 98.5 acres and the rest of the property will include storm drainage and operational facilities and site access roods. The waste pile is designed to be approximately 1.80 to 200 feet heigh around the perimeter slopes and approaches 230 feet in height along the center ridge line.

Benches are provided approximately every 50 feet of vertical height around the perimeter slopes to accommodate storm water management and structural stability. The benches ore

approximately 18 feet wide and provide a ditch depth of approximately 3 feet. All benches provide a drainage slope toward the southeast corner of the waste pile where storm drainage inlet boxes and down drain piping will be installed to convey storm wafer off the landfill area. Bench widths also provide access around the perimeter slopes for periodic inspection and maintenance.

Three storm water management ponds are included in the design to provide storm water detention and to provide for water quality controls prior to discharging storm water off site. The operations pond will collect storm water from the operations area and discharge the water into the upper east pond. The upper east pond receives storm water from the operations pond from the areas of Little Mountain and the asphalt rood up-grodient from the facility, and from part of the lower east and north slope areas of the landfill. The southeast pond receives storm water from the southeast pond will be off-site directly in line with a culvert that has been installed to direct storm water under the railroad and to the mud flats on the south side of the railroad. Each detention pond is equipped with on outlet design that provides for skimming of oils and other materials that will collect on the surface of the water in the ponds.

Legal description of property (R315-310-3(1)(c))

The legal description of the property as provided on the Quif-Cloim Deed for Moulding Investments LLC and in a property purchase and landfill operating agreement between Moulding Investments LLC and Weber County located in Exhibit B

Proof of ownership, lease agreement, or other mechanism (R315-310-3(1)(c))

The proof of ownership is provided in the form of a Quit-Cloim Deed for Moulding Investments LLC and in a property purchase and landfill operations agreement between Moulding Investments LLC and Weber County located ond a purchase and operating agreement between Weber County and Moulding Investments LLC in Exhibit B The landfill will be operated by Moulding & Sons Landfill LLC under contract with Weber County

If the permit application is for a Class IV landfill, a demonstration that the landfill is not a commercial facility

The application is for a Class VI landfill

Waste type and anticipated doily volume (R315-310-3(1)(d))

The facility will be a Class VI construction and demolition landfill used for disposal of nonhazardous wastes as defined by R315-305-1 and in accordance with the following waste types

- Construction/demolition waste
- Yard waste
- Inert waste

- Dead animals upon as approved by the Executive Secretary and upon meeting the requirements of R315-315-6 which provide for disposal, burial and cover requirements for dead animals
- Non-hazardous petroleum contaminated soils containing the following constituents below the following levels
 - Benzene, 0 03 mg/kg
 - Ethylbenzene 13 mg/kg
 - Toluene, 12 mg/kg and
 - Zylenes 200 mg/kg
- No wastes wastes will be accepted from a conditionally exempt small quantity generator of hazardous waste will be accepted

Anticipated doily volumes will include approximately 600 to 1000 tons per day depending on the time of year and the economic environment for construction and demolition projects

Intended schedule of construction (R315-302-2(2)(a))

Construction is anticipated to begin in early 2009 or immediately following issuance of the required permits from the Utah Division of Solid and Hazardous Waste and Weber County Planning and Zoning Initial construction will include the access rood installation of a mobile office for checking in waste deliveries and keeping records preparing the floor grades in the initial landfill operating area to provide sufficient air space to begin receipt of waste and installation of utilities needed for the mobile office and for construction and dust control water

Construction of the floor area will expand as needed to provide air space to meet operational needs as waste is received during the life of the facility. Only earthwork construction will be required to provide the needed cuts and fills to achieve a level that is at or above the floor design grades provided in the drawings. In areas where fill is required to obtain design floor elevations inert imported till in the form of concrete masonry imported soils etc. may be used in lieu of on-site soils for fill.

SECTION V

PART II I FACILITY GENERAL INFORMATION

Ib GENERAL INFORMATION - NEW OR LATERALLY EXPANDING FACILITIES

Documentation that Historical Survey requirements of R315-302-1(2)(f) hove been met (R315-305-4(1)(b)(vi))

A historical survey was completed by Sagebrush Consultants in June 2008 The report providing the results of the survey was submitted to the State Historic Preservation Officer in July 2008 and is provided Exhibit C of this permit application. According to the report submitted, there were two sites identified. The report summarizes that "the inventory resulted in the identification of one historic campsite. 42WB445 and one rock quarry 42WB446. Due to their proximity to the Lucin Cutoff, as well as datable artifacts found at the campsite, it is highly likely that these two sites ore related to the construction of the cutoff. Both sites were recommended eligible to the Notional Register of Historic Places due to their association with the significant historic site, the Lucin Cutoff.

The historic campsite which is within the existing 100-foot rood right-of-way will be preserved since it is off the landfill facility property, however the rock quarry area will be incorporated into the active landfill area

Nome and address of all property owners within 1000 feet of the facility boundary (R315-310-3(2)(I))

Fronk R Hol 150 East 200 North #P Logon Utah 84321

Bible Broadcasting Network, Inc 8030 Arrowridge Blvd Charlotte, North Carolina 28273

United States of America Hill Air Force Base Tim Stone AICP Hill Air Force Base Community Planner 75 CEG/CEPP 7302 Wardleigh Rood Hill AFB Utah 84056-5016

State of Utah Division of Wildlife Resources Attn Scott Walker - Habitat Manager 515 East 5300 South Ogden, Utah 84405

Stonefield Inc 355 Boxington Way Sparks, Nevada 89434

Union Pacific Railroad 1400 Douglas St**ree**t Omaha, Nebraska 68179

Westinghouse Electric Company LLC 1330 Beuloh Road Pittsburgh, Pennsylvania 15235

Counterpoint Construction Company, Inc 1598 North 352 West Loyfon Utah 84040

Utah Department of Transportation 4501 South 2700 West Moil Stop 141200 Salt Lake City, Utah 84114-1200

Documentation that a notice of intent to apply for a permit has been sent to all property owners listed above (R315-310-3(2)(II))

Copies of all letters provided to the surrounding property owners at the time of the original permit application submitted in January of 2009 are included in Exhibit D

Nome of the local government with jurisdiction over the facility site (R315-310-3(2)(III))

Local government with jurisdiction over the facility is

Weber County 2380 Washington Blvd Ogden, Utah 84401

SECTION VI

PART II I FACILITY GENERAL INFORMATION

Id LOCATION STANDARDS - NEW OR LATERALLY EXPANDING CLASS IVb AND VI LANDFILLS (R315-305-4(1)(a))

Floodplains as specified in R315-302-1(2)(c)(ii) (R315-305-4(1)(b)(i))

Flood mopping showing the 100-yeor flood area in the proximity of the facility as obtained from the Federal Emergency Management Agency (FEMA) is found in Exhibit E

According to the Federal Emergency Management Agency (FEMA) flood plain mop for the area (Flood Insurance Rate Mop Weber County Utah and Incorporated Areas Panel 400 of 600 Map Number 49057C0400E Effective Dote December 16 2005) the subject property is not within the designated 100-yeor flood plain

The overage annual rainfall for the site is approximately 13.2 inches based on the Utah Climate Center climate summary table for the Bear River Boy. Utah weather station

Magnitudes of the 100-yeor 24-hour and the 25-year 24-hour precipitation events of the facility ore 2 73 and 2 23 inches respectively based on the Point Precipitation Frequency Estimates from NOAA Atlas 14 (Exhibit A Appendix 4)

Wetlands as specified in R315-302-1(2)(d) (R315-305-4(1)(b)(ii))

A search was competed on the notional wetlands inventory web site (www fws gov/nwi/) and several potential wetlands were presented at the site. A wetlands biologist certified by the Bountiful Army Corps of Engineers (COE) and a wetlands specialist from the COE Bountiful office a site visit on September 12 2008. According to the COE wetland specialist and based on criteria defined in a memorandum from the EPA and the Army Corps of Engineers entitled. Clean Water Act Jurisdiction Following the U.S. Supreme Court's Decision in <u>Roponos v. United States &</u> <u>Corobell v. United States</u> doted June 2007. The determination for all wetlands located on the proposed landfill site is non-jurisdictional. Based on conversations with COE personnel, documentation has been prepared from the COE Bountiful office classifying all wetlands at the proposed site as non-jurisdictional. This documentation is to be included as Exhibit E

The landfill is located so that the lowest level of waste is at least ten feet above the historical high level of ground water (R315-305-4(1)(b)(iii))

The Owner requests o variance by the Executive Secretory to allow five feet of separation in lieu of the ten-foot separation requirement. This request is based on the poor quality of ground wafer in the uppermost aquifer the inert nature of the waste materials that will be received, and the low permeability associated with the soils at the site.

Two ground water samples were obtained from soil boring locations (B-4 and B-7) near the south or down-gradient side of the property Wafer quality analyses were completed on the two samples obtained by American West Analytical Laboratories Results of the laboratory analyses show TDS values of 29,000 mg/L and 23,000 mg/L in the samples obtained from B-4 and B-7, respectively (Exhibit A Appendix 3) Ground waters with TDS values over 10,000 mg/L are defined by the Utah Division of Water Quality as Class IV or Saline Ground Water

Laboratory permeability analyses were conducted on samples consisting of lean clay and the interloyered cloy and silt materials obtained at a depth of about 0.5 foot in TP-1 and at a depth of about 2.5 feet in TP-7. Results show the permeability of the lean clay to be 2×10^{6} cm/sec and the permeability of the interloyered cloy and silt to be 2×10^{7} cm/sec (Exhibit A Appendix 2 Page 5)

Geology as specified in R315-302-1(2)(b)(I) and (IV) (R315-305-4(1)(b)(IV))

The site is not located in a dam failure flood area, or above on underground mine a salt dome or a salt bed and is not located adjacent to features which could compromise the structural integrity of the facility. There ore also no local soil conditions geolotic features or human made features that will compromise the integrity of the structural components of the facility.

A letter from Applied Geotechnicol Engineering Consultants (AGEC) doted December 4 2008 (Exhibit A Appendix 2) provides a description of the regional and site geology the tectonic setting and geologic hazards. Much of the text herein is directly from the AGEC letter

Regional Geology includes the Basin and Range physiographic province of the northeast end of the Great Salt Lake which is mode up of north/south elongated mountain blocks and valleys The area in and around the Great Salt lake was once occupied by a large lake known as Lake Bonneville during the Wisconsin Glacial Period of the Pleistocene Age. The present-day Great Salt Lake is o remnant of ancient Lake Bonneville. The stillstonds of Lake Bonneville formed benches along the Wasatch Front. The highest level of Lake Bonneville is marked by a bench, the Bonneville shoreline at approximate elevation 5200 feet. The lake remained at this high level from approximately 17,000 to 15,0000 years before the present until it dropped approximately 350 feet6 during a catastrophic flood known as the Bonneville Flood. Two lower stillstonds of Lake Bonneville are the Provo and Gilbert, which formed at approximate elevations of 4800 and 4250 feet respectively. The lake has remained near its present-day level through most of Holocene time. The elevation of the site is just above the historic high level of the Great Salt Lake.

Site **geology** is associated withy the southnern end of Little Mountain which is a hill of exposed bedrock. This bedrock was mapped as consisting of rock from the Perry Canyon Formation. This bedrock is exposed along the north and west edges of the property and consists of diamictite and slate. The diomictife in this area generally dips down toward the northwest of approximately 7 to 10 degrees. Based on results of the subsurface investigation, there is a significant amount of sand and clay which overlies the bedrock in most of the area planned for londfilling. These soils consist of Lake Bonneville sediments which area interpreted to be both deep lake and near shore deposits.

Tectonic setting of the site is near the eastern side of the Basin and Range physiographic province adjacent to the Wasatch mountains. The Wasatch mountains ore bounded on the west by the Wasatch fault zone which extends approximately 240 miles from near Molod, Idaho to the vicinity of Fayette. Utah Relatively recent fault movements of the Wasatch fault zone ore evidenced by offsets in Lake Bonneville sediments and more recent alluvial and colluvial deposits.

The Wasatch fault zone is considered to be made up of several segments each segment acting relatively independently. The site is located approximately 14 miles west of the Weber segment of the Wasatch fault zone. There is another potentially active fault in the East Great Salt Lake fault which extends along the west side of Antelope Island and Promontory Point. This fault is located approximately 11 miles to the southwest. This is the closest known potentially active fault to the site. Both of these faults show evidence of movement during the Holocenf time and thus, ore considered potentially active. The Weber segment of the Wasatch fault zone is considered to potentially active. The Weber segment of the Wasatch fault zone is considered to be able to produce a 6.9 moment magnitude earthquake.

Geologic Hazards identified during the study which may affect the site are primarily limited strong earthquake ground shaking and the potential for liquefaction and possibly lateral spread. Surface fault rupture rockfall landslide and debris flow ore not considered potential hazards at the site

SECTION VII

PART 11 I FACILITY GENERAL INFORMATION

IE ADDITIONAL LOCATION STANDARDS - NEW OR LATERALLY EXPANDING CLASS IVE AND VI LANDFILLS OR LANDFILLS REQUESTING THAT DEAD ANIMALS BE ADDED AS A NEW WASTE STREAM (R315-305-4(1)(A)(v))

Maps showing the existing land use, topography, residences, parks, monuments, recreation areas or wilderness areas within 1000 feet of the site boundary

Maps showing the existing land use topography, residences porks, monuments recreation areas or wilderness areas within 1000 feet of the site boundary are provided in the figures. There are no existing residences porks monuments recreation areas or wilderness areas within 1000 feet of the site boundary.

Certifications that no ecologically or scientifically significant areas or endangered species are present in the site area

A letter received from the State of Utah Department of Natural Resources Division of Wildlife Resources dated October 16 2008 states that "The Utah Division of Wildlife Resources (UDWR) does not have records of occurrence for any threatened endangered or sensitive species within the project area or within a 1-mile radius. The letter provided by the UDWR is included in Exhibit F

Mops showing the location of dwellings, residential areas, other structures, and historic structures

Mops showing the location of dwellings residential areas other structures and historic structures ore found in on otlached figure

List of airports within five miles of facility and distance to each

There are no airports located within 5 miles of the facility as shown in the attached figures

SECTION VIII

PART II I FACILITY GENERAL INFORMATION

If PLAN OF OPERATIONS - ALL FACILITIES (R315-310-3(1)(e) AND R315-302-2(2))

Description of On-Site Waste Handling procedures and on example of the form that will be used to record the weights or volumes of waste received (R315-302-2(2)(b) and R315-310-3(1)(f))

The landfill will be operated and managed by Moulding & Sons Landfill LLC (Moulding & Sons) under contract with Weber County (Landfill Owner) Moulding & Sons will be responsible to Weber County to operate and manage the landfill under the requirements and conditions of the landfill permits

Construction to expand the landfill area will occur as needed during the life of the landfill Documentation will be provided to the Utah Division of Solid and Hazardous Waste (DSHW) to demonstrate that the floor grades achieved ore at or above the design grades presented in the drawings Disposal of non-inert waste materials (such as concrete, masonry fill soils, etc.) in the newly constructed areas will only occur after approval to operate each completed area is provided by the Utah Division of Solid and Hazardous Waste. If is expected that general site grading for the landfill expansion will be ongoing to meet soil cover operational needs

Handling procedures for C & D Waste will include checking in each truck load of waste material delivered to the landfill facility and either providing on estimated volume delivered with each load for conversion to tons received or by installation of scales and weighing each load of waste delivered. The conversion factor to be used will be 0 50 tons per cubic yards in accordance with R315-302-2(4)(c)(ii) Doily waste delivery records will be kept on a form similar to or containing similar information to the form contained in Exhibit G

Trucks delivering inert waste consisting of concrete masonry non-contaminated soils etc will then be directed to either a location outside the landfill operational footprint for use as floor fill or operational cover materials or to location at or near the working waste disposal face. Equipment operators will then place the inert waste materials as floor fill, in stockpiles to be used later as fill or cover materials, or as cover materials as needed for litter and vector control. Slightly contaminated soils meeting the requirements established for Class **VI** wastes may be stockpiled in approved operational areas within the landfill footprint and used as waste cover materials.

Trucks delivering non-inert waste materials that con-not be used as clean fill or operational covers will be directed to the landfill waste pile working face. Equipment operators will then incorporate the waste materials into the working face or waste pile.

Dead Animals delivered to the site will be managed and disposed in a manner that will minimize odors and the attraction harborage, and propagation of insects rodents birds or other animals Dead animals will be disposed of 1) At base of the active working face and buried immediately with a minimum of two feet of other waste, 2) In a separate trench specifically designated to receive dead animals and covered with of least 6 inches of earth at the end of the working day the carcasses ore received. Disposal at the base of the active working face and covering the carcasses with at least 2 feet of waste is the preferred method of disposal. Trenches in which carcasses ore disposed shall receive a minimum intermediate soil cover of 12 inches if delivery of additional carcasses is expected to exceed 30 days.

A 6-inch thick soil cover will be placed over wastes as required for litter and vector control and to reduce the potential of fire hazard. A final 2-foof thick final cover will be placed above areas of the waste mound as final grades ore obtained.

Schedule for conducting inspections and monitoring, and examples of the forms that will be used to record the results of the inspections and monitoring (R315-302-2(2)(c), R315-302-2(5)(a), and R315-310-3(1)(g))

The schedule of inspections and monitoring associated with the landfill facility to provide for proper operation and maintenance ore provided in Table VIII-1

Inspection Activity	Frequency
Access Road and Gate	Semi-Annuol
Security Fences	Semi-Annuol
Landfill Construction	At the time of each construction phase
Landfill Equipment	As recommended by Manufacturers
Storm Drainage Facilities	Quarterly
Final Closure Cover	Semi-Annuol
Post Closure	Semi-Annuol

TABLE VIII-1 INSPECTION SCHEDULE

Contingency plans in the event of a fire or explosion (R315-302-2(2)(d))

Fire hazard is reduced by soil cover materials placed on ignifoble waste during waste handling and placement. In the event that fires do occur during operating hours, the burning material will first be covered with on-site or other available soil material. Small fires may be extinguished with tire extinguishers provided in the site vehicles, by using on-site water available from designated water sources, and/or by covering the fires with on-site or other available soils.

Upon notification of a fire that con not be controlled using on-site equipment, a long blase (greater than 30 seconds) on a vehicle horn or on permanent site alarm equipment will be sounded and non-essential equipment will be shut down. All site personnel will assemble outside the landfill entrance and the Weber Fire District will be notified. All site personnel will be moved a safe distance from the area involved until the fire is safely controlled or extinguished. The telephone number and location of the nearest fire station will be displayed near telephones located in the site office.

Fires that occur during times that the landfill is closed will have additional time to spread and will therefore be more difficult to contain and control. The landfill operator or manager may utilize site equipment to cover fires with soil and/or separate burning materials from the other waste materials and bury the burning materials with soil. Otherwise the local fire deportment will be notified to assist in the efforts to control fires

Explosive gases are expected to be minimal due to the type of waste received (mostly being relatively inert) the dry nature of the waste entering the landfill and the dry climate and limited availability of moisture that can leach into the landfilled waste

Plan to control fugitive dust generated from roods, construction, general operations, and covering the waste (R315-302-2(2)(g))

Fugitive dust will be controlled by applying wafer, or by use of other dust treatment and control procedures to roods and other exposed surfaces where fugitive dust generation becomes a nuisance. Fugitive dust and the control of fugitive dust will be routinely reviewed for compliance with Division of Air Quality regulations.

Plan for litter control and collection (R315-302-2(2)(h))

Litter will be controlled by fencing and using soil cover as needed. Although measures intended to control litter dispersal ore effective it is inevitable that litter collection will still be required. There will be periods of time when wind conditions are very calm and litter will not be problematic. However, there will be occasions when winds will occur that will most likely scatter some litter around the property and onto surrounding properties. When litter collection is necessary, the facility will hire laborers to pick up scattered litter around the facility and surrounding properties.

Procedures for excluding the receipt of prohibited hazardous or PCB containing waste (R315-302-2(2)(j))

The landfill will be operated as a non-hazardous solid waste facility and will accept only waste defined in for Class VI landfill disposal Landfill operators and waste handling personnel will also be frained in identification and removal of hazardous and PCB containing wastes. If hazardous and PCB containing wastes ore observed during delivery or disposal, these materials will be removed and sent back with the vehicle delivering the waste or arrangements will be mode for their proper handling and disposal. The landfill manager will hove ultimate authority and responsibility for decisions regarding acceptance or rejection of waste materials.

Procedures for controlling disease vectors (R315-302-2(2)(k))

Six inches of soil thickness will be placed over wastes materials that may attract vectors. Waste materials expected to attract vectors primarily include wet or green wastes, including yard wastes

A plan for alternative waste handling (R315-302-2(2)(I))

In the event of on emergency areas of the facility other than the active disposal areas may be used to receive waste (for disposal or temporary storage), but only if such areas are available If **n**o such areas ore available during on emergency waste receipt will be temporarily halted until such areas can be mode available for disposal or storage and waste in transit will be directed elsewhere

A general training and safety plan for site operations (R315-302-2(2)(o))

Employee health and safety and maintaining environmental quality are important to Weber County and to Moulding & Sons in the operation of the facility Each person employed at the landfill will be trained to have a working knowledge of basic health safety and emergency response procedures for the facility. Those employed to handle waste materials will be trained with basic maintenance and operational procedures to ovoid endangerment of human health and safety and to protect the quality of the environmental. Those employed to operate equipment will receive training for the proper operation core and maintenance of the equipment to which they ore assigned.

A facility training program will be implement through on-the-job supervision and training and through formal classroom training as needed by individuals qualified to provide the training. The facility training program will be directed by the facility manager or a designated trainer. Initial training will be completed within the first two months of employment followed by annual reviews and by regular and special training meetings scheduled as needed.

Any recycling programs planned at the facility (R315-303-4(6))

Delivery of waste will primarily be from demolition and building contractors and is expected to hove only limited use by the general public. General contractors will be encouraged to segregate recyclable materials at the job site and deliver the recyclable materials to individual recycling entities. The general public will be encouraged to deliver waste materials to the Weber County transfer station where re-cycling options ore currently in place. Weber County also currently operates a recycling program for green and wood type wastes.

An area may be provided at the landfill facility immediately east of the operations area where recycling of wood or other wastes may occur. There are several entities in Weber County that provide recycling services for non-reinforced concrete materials. It is expected that recyclable concrete materials will be delivered to those entities.

Any other site specific information pertaining to the plan of operation required by the Executive Secretary (R315-302-2(2)(o))

The Executive Secretary may issue by permit additional site specific requirements that will become a port of the facility operating plan

SECTION IX

PART II II FACILITY TECHNICAL INFORMATION

IIa MAPS - ALL FACILITIES

Topographic mop drawn to the required scale with contours showing the boundanes of the landfill unit, ground water monitoring well locations, gas monitoring points, and the borrow and fill areas (R315-310-4(2)(a)(I))

Topographic mopping is provided with the figures and as Sheet GW-1 in Exhibit A. Appendix 1. Sheet GW-1 also provided ground water surface contours as generated from ground water measurements

Ground water monitoring is not anticipated due to the types of wastes that will be delivered to the landfill and the poor quality of ground water below the site

Landfill gas monitoring is not anticipated due to the types mostly inert nature of waste materials that will be delivered to the landfill

Borrow ond fill areas ore presented in Sheet C-2 in Exhibit A Appendix 1 This sheet presents existing and future contours associated with the floor grade of the landfill lit is expected that oil fill materials will be obtained either on-site from cut areas presented to achieve design floor grades or from delivery of inert waste and soil materials. Some borrowing of materials may also occur as needed from off-site sources or properties owned by Weber County

Most recent U S Geological Survey topographic mop, 7-1/2 minute senes, showing the waste facility boundary, the property boundary, surface drainage channels, any existing utilities and structures within one-fourth mile of the site, and the direction fo the prevailing winds (R315-310-4(2)(a)(ii)

The U.S. Geological Survey topographic mop is provided with the figures. This map shows the direction of the prevailing winds which are from the south direction.

SECTION X

PART II II FACILITY TECHNICAL INFORMATION

IIE ENGINEERING REPORT - PLANS, SPECIFICATIONS, AND CALCULATIONS - ALL FACILITIES

The complete engineering report including design drawings, o geotechnical and geological evaluation report and supporting design calculations is included in Exhibit A. The following provides responses to specific items contained on the Application Checklist

Unit design to include cover design, fill methods, and elevation of final cover including plans and drawings signed and sealed by a professional engineer registered in the State of Utah, when required (R315-310-3(1)(b) and R315-310-4(2)(c)(iii))

The Weber County C & D Landfill will be located on approximately 110 7 acres of land located in the Northwest Quarter of Section 19, Township 6 North Range 3 West Salt Lake Base and Meridian Property owners surrounding the proposed landfill site include the U S Government (Air Force property) to the west the Union Pacific Railroad and undeveloped land owned by Powder Mountain Group Holding LLC to the south Bible Broadcasting Network, Inc (on which a radio tower has been constructed) and undeveloped property owned by Joseph M Colosimo to the north and undeveloped property owned by Counterpoint Construction Company to the east The property is located along base of the south side of Little Mountain located in Weber County Figure 1 shows the general location of the site

Weber County land use zoning for the site and of the properties adjacent to the proposed landfill ore designated as M-3 (heavy manufacturing) Since this will be a landfill owned by Weber County and allowed under zoning as o government use facility no zoning changes are required The landfill site will be surrounded by a minimum 4-foot high security fence consisting of either a 5-strand barbed wire fence or a wire-mesh field fence. The fence will be either constructed in phases as londfill expansion occurs or may be constructed around the entire facility property at any time during the facility life

Site access will be from on existing asphalt rood located along the north side of the property and approximately 500 feet west of the east property line. Weber County has assigned the street address of the facility as 10485 West 900 South. A 6-foot high chain link fence will extend for 50 feet on each side of the site entrance with a locking security gate at the facility entrance. Access to the facility will be gated to inhibit unauthorized entrance when the landfill operator is not present.

The landfill footprint will consist approximately 98.5 acres and the rest of the property will include storm drainage and operational facilities and site access roads. The waste pile is designed to be approximately 1.80 fo 200 feet heigh around the perimeter slopes and approaches 2.30 feet in height along the center ridge line.

Benches ore provided approximately every 50 feet of vertical height around the perimeter slopes to accommodate storm water management and structural stability. The benches ore approximately 18 feet wide and provide a ditch depth of approximately 3 feet. All benches slope toward the southeast corner of the waste pile where storm drainage inlet boxes and down drain piping will be installed to convey storm water off the landfill area. Bench widths also provide access around the perimeter slopes for periodic inspection and maintenance

Three storm water management ponds ore included in the design to provide storm water detention and to provide for water quality controls prior to discharging storm water off site. The operations pond will collect storm water from the operations area and discharge the water into the upper east pond. The upper east pond receives storm wafer from the operations pond, from the areas of Little Mountain the asphalt rood along the north side of the facility, and from port of the lower east and north slope areas of the landfill. The southeast pond receives storm water from the upper east pond and from the remaining landfill area. Discharge from the southeast pond will be off-site directly in line with a culvert that has been installed to direct storm water under the railroad and to the mud flats on the south side of the railroad. Each detention pond is equipped with on outlet design that provides for skimming of oils and other materials that may collect on the surface of the water in the ponds.

Design and location of run-on and run-off control systems (R315-310-4(2)(c)(viii))

Run-on **C**ontrol **S**yste**m** design includes control and proper conveyance of storm water that may enter the facility from up-gradient lands Run-on is expected primarily from Little Mountain and the asphalt rood north of the proposed facility. The run-on control system is designed to control storm wafer flows from o 100 year 24-hour storm event, which exceeds the regulatory requirements of designing the systems based on the 25-year event, and to route the storm water around the active landfill area

Storm water from Little Mountain currently collects in a ditch system located on the north side of the asphalt rood north of the proposed facility. The ditch system north of the facility conveys the storm water to three culverts that currently discharge storm water toward the facility property. A ditch will be constructed within the road right-of-way along the north side of the property to convey storm water discharged from the culverts toward the east and down the east side of the facility to the upper east detention pond. The storm water design drawings calculations and supporting information are found in Exhibit A

Run-off Control Systems include 1) Control and containment of potentially contaminated storm water from active and open areas of the landfill where storm water may come in direct contact with waste material, and 2) Control and discharge of clean storm water that is generated from areas of the waste mound covered with clean soil and final cover soils

Anticipated facility life and the basis for calculating the facility's life (R315-310-4(2)(c)(ii))

Anticipated facility life is approximately 50 years based on a total air space of 16 million cubic yards, approximately 1.6 million cubic yards of cover soil which reduces the waste capacity to about 1.4.4 million cubic yards and receipt of between 250,000 and 300 000 cubic yards of

waste annually

Engineering reports required to meet the location standards of R315-305-4 including documentation of any demonstration or exemption mode for any location standard (R315-310-4(2)(c)(i))

Compliance with the location standards is presented in Section VI starting on page VI-1 of this permit application

Identification of borrow sources for final cover (R315-310-4(2)(c)(IV))

Final cover will be obtained from on-site soils stockpiled during excavations fo obtain floor grades clean soils delivered to the site as waste from construction excavations, and from weber county properties that are near the facility. Weber county currently owns undeveloped property approximately 1 mile to the west of the facility that is designated for recreational purposes. Soils may be obtained from this property to establish site grading needed for the recreational property and to meet closure needs. It is anticipated that all clean soils delivered to the site will be stockpiled for future closure, or will be placed directly on exterior and top slopes during waste placement where the waste mound has reached final grade.

Run-off collection, treatment, and disposal and documentation to show that any treatment system is being or has been reviewed by the Division of Water Quality (R315-310-4(2)(c)(v) and R315-310-3(1)(l))

All runoff that comes into direct contact with waste will be completely contained within the landfill footprint by either placing o berm around a containment area on the landfill floor or by placing o berm or excavating a containment pond area on the waste material. The capacity of all runoff containment facilities will be 0.13 acre-foot per acre of exposed waste as provided in the design engineering report in Exhibit A. This will provide sufficient capacity to contain runoff from the 100-year 24 hour precipitation event.

Potentially contaminated water contained within the landfill footprint will be used for dust control on the waste materials. Since evaporation for exceeds the potential precipitation rote: run-off water will be lost to evaporation from the containment areas and during dust control activities.

Since direct runoff from exposed waste areas will be contained within the landfill footprint, there will be no treatment and disposal associated with the run-off water. Therefore, there are no treatment and disposal systems proposed for review.

The site is provided with a Storm Water Pollution Prevention Plan (SWPP Plan) and has been issued a storm water discharge permit for initial construction activities. The SWPP Plan which will be modified and updated as needed and the storm water discharge permit is included in Exhibit H. An SWPP Plan will be completed for the site and on application will be mode for a **Multi**-Sector General Permit (MSGP) for storm water discharges associated with industrial activities prior fo facility operation

SECTION XI

PART II II FACILITY TECHNICAL INFORMATION

IId CLOSURE REQUIREMENTS - ALL FACILITIES

Closure Plan (R315-310-3(1)(h))

Final closure activities will occur in phases as portions of the waste pile reach design elevations It is expected that perimeter side slopes will be closed with each completed lift between perimeter benches Notification will be provided to the Utah Division of Solid and Hazardous Waste (Executive Secretary) of closure schedules 60 days prior to closing areas of the landfill Closed areas will be seeded to promote new growth and minimize erosion

Closure Schedule (R315-310-4(2)(d)(I))

Final closure activities at the landfill will commence within 30 days after final placement of waste at the facility and shall be completed within 180 days

Design of Final Cover (R315-310-4(2)(c)(iii))

Design of the final cover system is provided in the design drawings in Exhibit A, Appendix 1

Capacity of Site in Volume and Tonnage (R315-310-4(2)(d)(ii))

Site capacity is approximately 1.6 million cubic yards which is approximately 8 million cubic yards using the conversion factor of 0.5 ton per cubic yard

Final Inspection by Regulatory Agencies (R315-310-4(2)(d)(iii))

A final Inspection will be scheduled with the regulatory agencies upon closure of any part of the facility and upon final closure of the facility Certification will be provided by the owner and/or operator of the facility of any closed areas

SECTION XII

PART II II FACILITY TECHNICAL INFORMATION

IIe POST-CLOSURE REQUIREMENTS - ALL FACILITIES

Post-Closure Core Plan (R315-310-3(1)(h))

Post-closure core will include semi-onnuol inspections of the facility fences storm drainage systems areas of excessive settlement that may adversely affect storm drainage, and closure cover. A report will be generated for each inspection conducted during the post-closure care period. The report will include areas requiring repair and maintenance.

Post closure maintenance will include repairing fences and gates cleaning and repair of storm drainage facilities repair of places of excessive erosion, and re-seeding as required

Changes to Record of Title, Land Use, and Zoning Restrictions (R315-310-4(2)(e)(ii))

Plots and a statement of fact concerning the location of the disposal site shall be recorded as port of the record of title with the county recorder within 60 days offer certification of final closure

Maintenance Activities to Maintain Cover and Run-on/Run-off Control Systems (R315-310-4(2)(e)(III))

Maintenance activities include repairing fences and gates cleaning and repair of storm drainage facilities repair of places of excessive erosion and re-seeding as required based on findings during the semi-annual inspections

List the Nome, Address, and Telephone Number of the Person or Office to Contact About the Facility During the Post-Closure Care Period (R315-310-4(2)(e)(vi))

Contact information is provided below

Weber County C&D Landfill 867 West Wilson Lone Ogden Utah 8**44**01 801-399 8803

SECTION XIII

PART II II FACILITY TECHNICAL INFORMATION

IIf FINANCIAL ASSURANCE - ALL FACILITIES (R315-310-3(1)(J))

Identification of closure costs including cost calculations (R315-310-4(2)(d)(iv)

A summary of the closure cost calculations ore presented Table XIII-1 - Summary of Estimated Closure Costs Closure cost calculations were based on the cost of closing the entire site including demolition placement of closure cover, and installation of storm drainage facilities The costs were then averaged over the entire landfill footprint area to obtain an estimated closure cost per acre of open area and by the landfill air space to obtain closure cost per cubic yard of oir space. Obtaining on overage cost per acre of landfill footprint allows estimates to be made and updated annually based on the amount of ore constructed and operating. Supporting closure cost calculations and supporting documentation is included in Exhibit I

Task/Service	U nits	Quantity	Unit Cost	2009 Task Cost
Earthwork Construction				
Closure Soil Placement	СҮ	360 313	\$4 28	\$1 542 140
Erosion Control	Acres	112	\$1,038 89	\$116 356
Demolition	LS	1	\$61 317 00	\$61 317
Storm Drainage Control	LS	1	\$33 354 00	\$33,354
Subtotal				\$1,755,175
Technical & Professional Services	LS	1	\$70,113 00	\$70 113
Contingency (% of construction)		10%		\$175 518
Total				\$2,000,806
Cost Per Acre	a c res	100 5	\$19,909	
Cost Per Cubic Yard of Capacity	Сү	16,000,000	\$0 13	

Table XIII-1 Summary of Estimated Closure Costs

Identification of post-closure care costs including cost calculations (R315-310-4(2)(e)(IV))

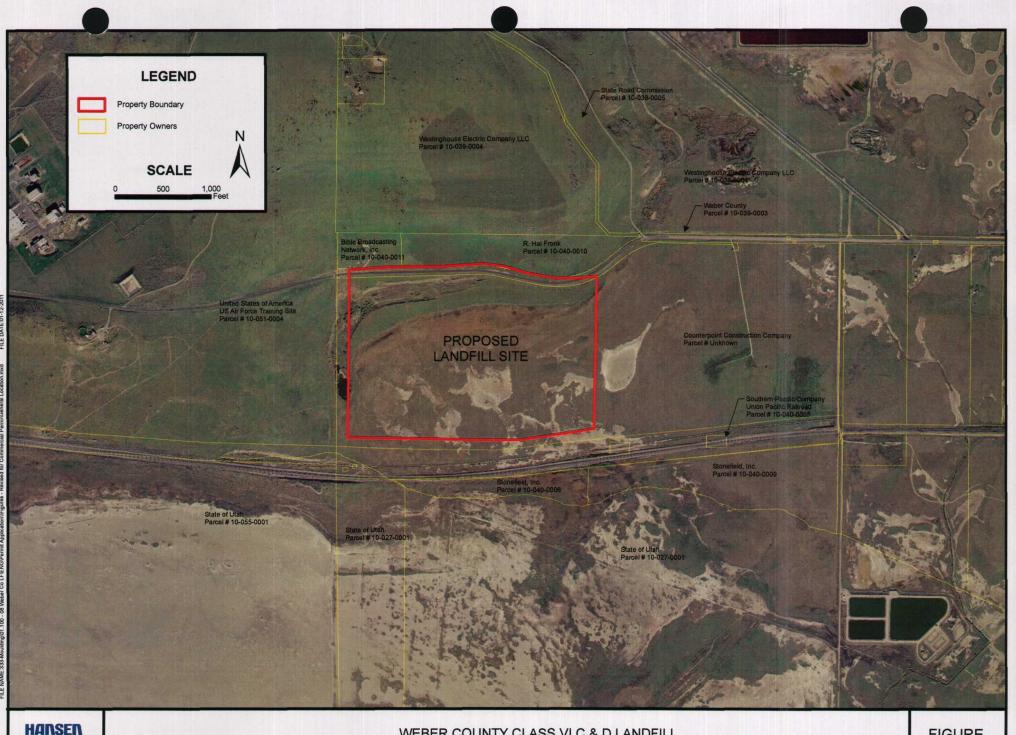
A summary of post-closure cost calculations are presented in Table XIII-2 - **S**ummary of Estimated Post-Closure Costs Post-closure cost calculations were based on the cost per year including inspections and maintenance. The costs were then averaged over the entire landfill footprint area fo obtain on estimated post-closure cost per acre of open area and by the landfill air space fo obtain post-closure cost per cubic yard of air space. Obtaining an average cost per acre of landfill footprint allows estimates fo be made and updated annually based on the amount of are constructed and operating. **S**upporting post-closure cost calculations and supporting documentation is included in Exhibit I

Task/Service	Quantity	Units	Unit Cost	2008 Task Cost
Post Closure Inspections	30	Yr	\$2 4 00	\$72 000
Repair/Maintain Cover	30	Yr	\$11,264	\$337,920
Subtotal				\$409,920
Contingency (% of Cost)]	LS	10%	\$40,992
To tal				\$491,904
Cost Per Acre	acres	100 5	\$4,895	
Cost Per Cubic Yard of Capacity	СҮ	16,000,000	\$0 03	

 Table XIII-2

 Summary of Estimated Post-Closure Costs

Notes


1 Time of post-closure care may be reduced based on site stabilization with DEQ approval

Identification of the financial assurance mechanism that meets the requirements of Rule R-315-309 and the dote that the mechanism will become effective (R315-309-1(1))

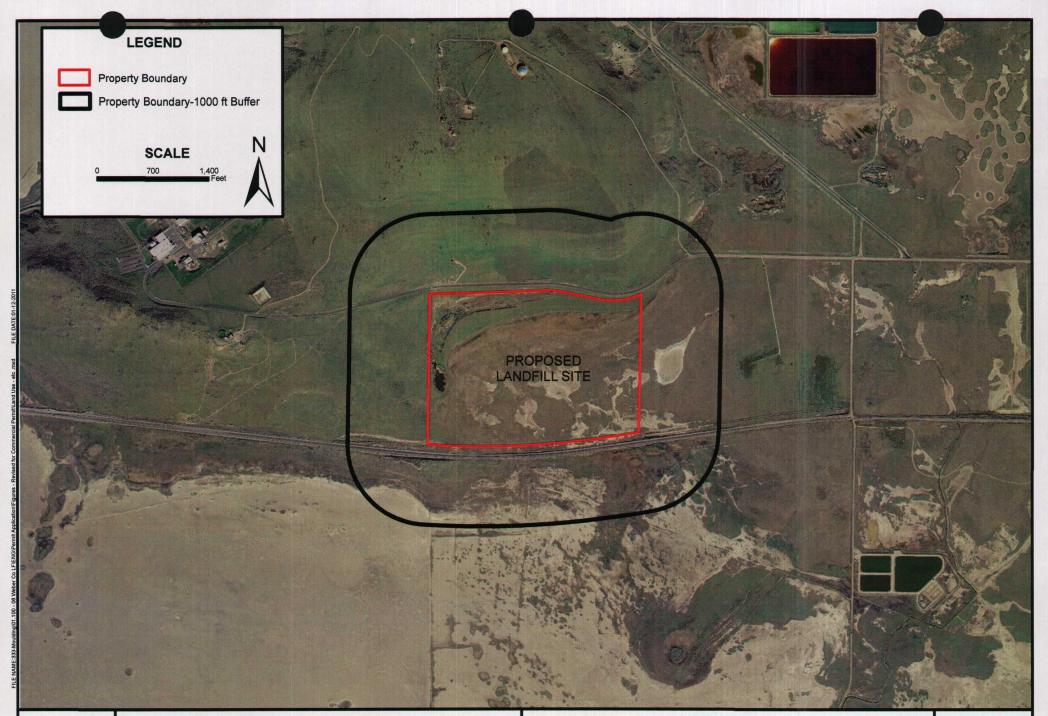
Weber County proposes to use the local government financial test as provided in R315-309-8 The local government test will be completed with required information prior to the landfill receiving waste

.

WEBER COUNTY CLASS VI C & D LANDFILL GENERAL LOCATION

HANSEN ALLEN & LUCEINC

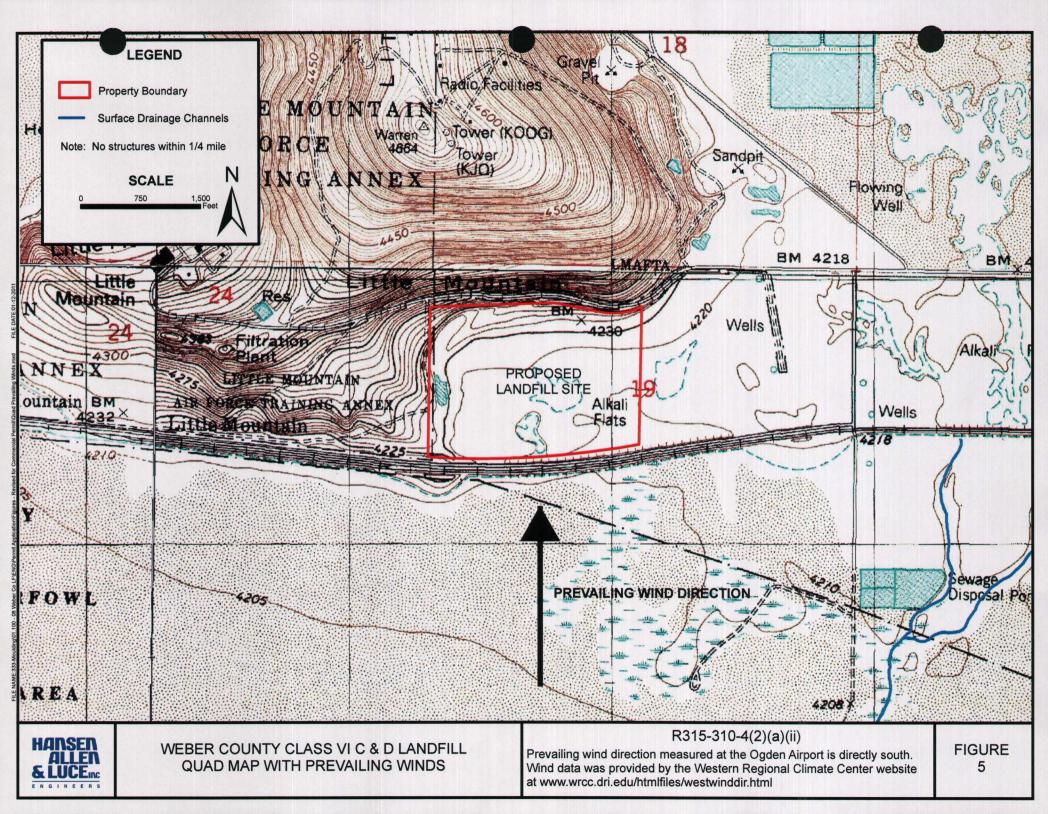
WEBER COUNTY CLASS VI C & D LANDFILL


Floodplains. No new or existing facility shall be located in a floodplain.

HANSEN ALLEN & LUCEINC

WEBER COUNTY CLASS VI C & D LANDFILL WETLANDS MAP

Wetlands. No new facility or lateral expansion of an existing facility shall be located in wetlands.



WEBER COUNTY CLASS VI C & D LANDFILL GENERAL LOCATION REQUIREMENTS

R315-302-2 (a)

No Residental Areas, Dwellings, Parks, Monuments, Historic Structures, Recreation Areas, or Wilderness Areas are located within the extents shown on this figure.

EXHIBIT A

WEBER COUNTY

CONSTRUCTION AND DEMOLITION LANDFILL

DESIGN ENGINEERING REPORT

Prepared by

Hansen, Allen & Luce, Inc Consulting Engineers 6771 South 900 East Midvale, Utah 84047

January 2009

· · ·

.

· · · .

an an an an Araba an Araba an Araba. An Araba an Araba an Araba an Araba an Araba Araba an Araba an Araba an Araba an Araba an Araba.

WEBER COUNTY

CLASS VI C & D LANDFILL PERMIT DESIGN ENGINEERING REPORT

Project Engineer

Prepared by

HANSEN, ALLEN & LUCE, INC Consulting Engineers 6771 South 900 East Midvale, Utah 84047 (801) 566-5599

> January 2009 Revised January 2011

Page

TABLE OF CONTENTS	I
APPENDICES	າາ
LIST OF TABLES	11
CHAPTER I - INTRODUCTION	-]
CHAPTER II - GENERAL INFORMATION ACCESS SIGN SECURITY OPERATIONAL FACILITIES TRAFFIC UTILITIES Power Water Sewer Telephone Gas WASTE TYPES LANDFILL OPERATION AND LIFE Landfill Operation Estimated Landfill Life	$\begin{array}{c} & - \\ & $
CHAPTER III - GROUNDWATER CURRENT GROUNDWATER CONDITIONS Literature and Water Rights Research Geotechnical Investigation	- 1 - 1 - 1 - 1
CHAPTER IV - LANDFILL DESIGN GENERAL LAYOUT AND DESIGN Floor Elevations Embankments ACTIVE AREA RUNOFF CONTAINMENT	IV - 1 IV - 1 IV - 1 IV - 2 IV - 2
CHAPTER V - LANDFILL CLOSURE DESIGN GENERAL LAYOUT AND DESIGN STORM WATER MANAGEMENT Hydrology Methodology Peak Design Flows Hydraulic Design	V - 1 V - 1 V - 2 V - 2 V - 2 V - 2 V - 3

Drainage Channels	V - 3
Downspout Piping	V - 4
Slope Erosion Protection	V - 4
CHAPTER VI - STORM WATER MANAGEMENT	VI - 1
Open Landfill Areas	VI - 1
Off-Site Run-On Storm Water	VI - 1
Storm Water From On-Site Disturbed Areas Outside Landfills	VI - 2
REFERENCES	R - 1

APPENDICES

APPENDIX 1 - DESIGN DRAWINGS
WEBER COUNTY CLASS VI C & D LANDFILL PERMIT
APPENDIX 2 - GEOTECHNICAL INVESTIGATION
APPENDIX 3 - GROUNDWATER QUALITY ANALYSIS
APPENDIX 4 - HYDROLOGY
APPENDIX 5 - STORM WATER HYDRAULIC DESIGN
APPENDIX 6 - EROSION PROTECTION

LIST OF TABLES

Page

TABLE III-1	TEST PIT AND BORING LOCATION AND GROUNDWATER ELEVATION INFORMA	TION-2
TABLE V-1	SUB-BASIN PEAK DESIGN FLOWS	V - 3
TABLE V-2	Downspout PIPING PEAK DESIGN FLOWS	V - 3
TABLE V-3	SEED MIX DESIGN	V - 5

CHAPTER I

INTRODUCTION

Hansen Allen & Luce, Inc was retained to provide engineering design services for a proposed Construction and Demolition (C&D) landfill to be located on approximately 110 7 acres of land located in the Northwest Quarter of Section 19 Township 6 North Range 3 West, Salt Lake Base and Meridian The property for the landfill has an address of 10485 West 900 South and is located between the base of the south side of Little Mountain in Weber County and the Union Pacific Railroad line as presented on Sheet C-1 of the attached drawings

The proposed landfill and property will be owned by Weber County and will be operated by Moulding and Sons Landfill LLC under contract with Weber County

The overall facility will consist of a C&D landfill with an air space capacity of about 16 million cubic yards (8 million tons) a future green waste recycling area storm water control facilities and operational facilities consisting of an office and a future shop. This report provides design related information for permit approval of the C&D landfill by the Utah Division of Solid and Hazardous Waste according to the requirements of the Utah Administrative Code for a Class VI C&D Landfill. Weber County planning and zoning will provide review and approval of the design associated with the operational facilities (entrance office shop utilities etc.) Design information associated with these facilities ore therefore not included in this report and are only presented as conceptual in the drawings.

This report provides general information location standards compatibility and ground water information. Also presented herein is information associated with landfill landfill closure and storm water management systems design.

CHAPTER II

GENERAL INFORMATION

ACCESS

The proposed landfill is to be located in an M-3 (heavy manufacturing) zone within an unincorporated area of Weber County Primarily access to the proposed facility is along 900 South which is a main artery to access developments within the M-3 zone. An access drive will be constructed into the facility approximately 500 feet west of the east property line for the landfill site. A gate will be installed at the entrance that can be closed and locked to provide access security during non-operating hours. A 6-foot high chain link fence will be installed for a minimum distance of 50 feet on either side of the gate.

SIGN

A sign will be installed at the facility entrance that will be approximately 4 feet by 8 feet in size and will be constructed of steel materials. The sign will advertise at least the facility name operating hours unacceptable wastes and an emergency telephone number as required by R315-303-3 (7)(d) of the Utah Administrative Code

SECURITY

A fence will be installed around the facility perimeter to provide for facility security. The fence will generally consist of either 5 strands of barbed wire or mesh wire with the exception of the 6-foot high chain link fence and gate at the facility entrance.

OPERATIONAL FACILITIES

An office will be provided meeting the requirements of Weber County to accommodate administrative and operational activities and personnel. The office will provide for observation of vehicles entering and exiting the site checking in and documenting loads of waste received and for keeping and storing records. Sufficient parking will be provided under the direction of Weber County for personnel employed at the landfill and for visitors. Area has also been provided for a future shop to be constructed as needed in the operational area

TRAFFIC

Traffic to the facility will be generated by employees required to operate the facility, occasional visitors and vehicles hauling waste to the facility. It is anticipated that there may be five employees to operate the facility for an overage of 5 vehicles per day and an average of about 50 trucks per day hauling waste to the facility. The number of trucks will depend highly on the season and the amount of construction and demolition that may occur in any one year Typical trucks that will be hauling waste to the landfill include end dump trucks end dump trucks with pups and trucks pulling single and double trailers. There may be occasional pickup trucks

Revised January 2011

with utility trailers and utility dump trailers. It is anticipated that small personal loads will generally go to the Weber County transfer station on 21st street rather than directly to the landfill

UTILITIES

Utilities will be provided in meeting the requirements of Weber County Planning and Weber County Health Department

Power

There is currently a 3-phase underground power line that runs along the north side of the improved road to the facility property. Power will be installed to the facility as a single phase underground service line from the moin power line.

Water

Water will be required to meet demands for culinary uses and fire flow and for construction and dust control. An 8-inch diameter water lateral will be constructed to the facility from one of two culinary water suppliers in the area to meet culinary and fire flow requirements. A fire hydrant will be installed near the office and future shop. Water Rights may also be acquired to drill a new water well on the property as the primary source of water for construction and dust control.

Sewer

There are no sewer lines near the facility to provide a service connection Approval was granted by the Weber-Morgan Health Department for a septic system based on a percolation test that was conducted at the location of the office

Telephone

Cellular telephone communication services may be used for the site. However, there is an existing Qwest telephone line along the north side of the property from which telephone communications may also be obtained.

Gas

Natural gas is not anticipated since the office will most likely be all electric and does not use gas for any of the heating requirements. Should natural gas be required at some time there is an existing natural gas line owned by Questar Gas that runs along 900 South ending near the site from which a gas lateral may be constructed.

WASTE TYPES

The permit obtained from the State of Utah Department of Environmental Quality - Division of Solid and Hazardous Waste is expected to include all Class VI waste types These waste types may include

Revised January 2011

- Construction/demolition waste,
- Yard waste,
- Inert waste
- Dead animals upon as approved by the Executive Secretary and upon meeting the requirements of R315-315-6 which provide for disposal burial and cover requirements for dead animals,
- Non-hazardous petroleum contaminated soils containing the following constituents below the following levels
 - Benzene, 0 03 mg/kg
 - Ethylbenzene 13 mg/kg
 - Toluene 12 mg/kg and
 - Zylenes 200 mg/kg
- No wastes wastes will be accepted from a conditionally exempt small quantity generator of hazardous waste will be accepted

LANDFILL OPERATION AND LIFE

Landfill Operation

The landfill is expected to begin operation in early 2009 or as soon as permits can be obtained from Weber County Planning and the State Division of Solid and Hazardous Waste Waste disposal is expected to begin in the northwest corner of the proposed landfill area and will continue toward the south and east as needed to accommodate air space and operational requirements Closure of the landfill will occur as soon as possible in areas where design waste grades have been achieved

Approximate floor grades will be established as needed prior to disposal of waste in designated landfill areas Grading of the floor will proceed as needed in order to open expanded areas for operation within the proposed landfill footprint

Soil wastes (typically obtained from excavations on construction projects) are generally suitable for use to cover waste materials as needed for litter and vector control and as a final cover These soils will be segregated from other wastes and stockpiled for future use. Other inert heavy wastes ' such as masonry road demolition wastes concrete soils not suitable for final cover etc will segregated as much as possible and will be used to cover wastes as needed for litter and vector control

Class VI landfills are not subject to a bottom lining system because of the inert or otherwise nonhazardous nature of the waste materials received for disposal **A** leachate collection and removal system that accompanies a lining system is, therefore not required Groundwater monitoring is also not typically required for Class VI landfills and is not anticipated considering the type of landfill and the poor quality of ground water exiting the site Estimated Landfill Life

The landfill has an estimated life of 50 years within the currently proposed footprint and waste grade plan

LITTER CONTROL

Litter blowing from the landfill will be controlled by placing 6 inches of a suitable cover material over waste materials subject to wind dispersion. Should litter be disbursed off the landfill by wind facility personnel will scout areas immediately surrounding the landfill property and return the litter to the landfill for disposal.

Debris fences will also be used as needed near the working faces of the waste disposal areas to assist in trapping blowing debris. Litter trapped by debris and facility fences will be cleaned up and disposed back in the landfill on a regular basis and covered with appropriate cover materials

CHAPTER III

GROUNDWATER

CURRENT GROUNDWATER CONDITIONS

Literature and Water Rights Research

A search of water rights and known groundwater wells was completed in the area and data was obtained from two wells located in Section 19 located on the parcel of property east of the proposed facility within a distance of about 1/2 mile. One well showed a water-bearing gravel layer at a depth of 36 feet and the other well did not report water bearing formations until 188 feet in depth. Both of these wells were drilled over fifty years ago. The proposed facility is in an area where ground water levels ore obviously higher than reported with the two wells presented.

Geotechnical Investigation

Between the dates of April 8 and April 30 2004 8 borings (B-1 through B-7 including B-1A) and 8 test pits (TP-1 through TP-8) were completed associated with the Geotechnical Investigation Report completed by Applied Geotechnical Engineering Consultants (AGEC) provided with this report Groundwater was encountered at depths ranging from approximately 6 to 12 feet based on measurements taken several months after the initial drillings and excavations were completed and sufficient time was allowed for recovery of ground water. No groundwater was found in Borings B-1 B-2 and B-3 because the borings were drilled in the higher elevations of the site and refusal of deeper boring was encountered due to bedrock and/or other larger subsurface rocks

A survey was completed at the site in order to establish coordinate and elevation controls and to obtain locations and elevations of the borings and test pits. This survey provided the basis for establishing elevations associated with the observed groundwater levels and to establish contours associated with the ground water levels. The following table provides a summary of these elevations and the design drawings show ground water contours generated from the tabulated data which also shows a comparison between ground water and the existing ground surface.

General regional ground water flow is from the northeast toward the southwest or toward the mud flats and the Great Salt Lake located south and west of the proposed facility. Local ground water flows generally follow the ground surface topography which is from the north to the south from little mountain and a component from the west to the east from the higher ground located west of the proposed facility. There is on abandoned gravel pit are located along the north half of the west side and along about the west third of the north side of the proposed facility. Storm water runoff from the area of Little Mountain located upgradient from the gravel pit area is currently directed into the gravel pit which appears to influence ground water gradients across the property. During focility development a storm water ditch will be constructed along the north side of the property that will direct Little Mountain runoff around the facility and away from the gravel pit and active landfill areas. It is expected that re-directing this runoff will most likely

Revised January 2011

alter recharge that previously occurred in the gravel pit area, since this area will become part of the landfill footprint Changes that may occur include removing much of the ground water gradient from the west side of the property toward the east and generally lowering ground water levels across the property

BORING NUMBER	NORTHING	EASTING	GROUND ELEVATION	GROUND WATER ELEVATION	DEPTH TO GROUNDWATER
TP-1	3614389 75	1439372 56	4217 63	1	T
T P-2	3615214 86	1439452 36	4218 47	4212 66	5 81
TP-3	3615619 42	1439552 59	4222 45	4216 66	5 79
TP-4	3614366 04	1438437 75	4220 69	4214 25	6 44
TP-5	3614956 68	1438431 17	4219 75	4214 53	5 22
TP-6	3614595 76	1440318 34	4215 35	4210 21	5 14
TP-7	3615281 4	1440362 2	4220 49	4213 63	6 86
TP-8	3615681 49	1440341 82	4222 85	4216 05	6 80
B-1A	3615918 39	1437907 16	4230 59	4218 73	11 86
B-4	3614341 62	1439827 63	4216 15	4207 64	8 51
B-5	3615515 08	1438657 22	4223 62	4214 40	9 22
B-6	3615615 35	1439596 51	4223 80	4218 24	5 56
B-7	3614416 05	1439014 48	4218 03	4210 81	7 22

TABLE III-1 TEST PIT AND BORING LOCATION AND GROUNDWATER ELEVATION INFORMATION

Notes 1

Test Pit TP-1 observation PVC pipe had been broken off at the surface by cattle and had portiolly filled with dirt Ground water measurements could not be obtained at this location

CHAPTER IV

LANDFILL DESIGN

This section presents the general layout and design concept for the landfill area and also presents more specific design information for the floor layout, interior runoff control and exterior run-on control Reference is made to the design drawings included with this report for this section

GENERAL LAYOUT AND DESIGN

The C&D facility consists of one large landfill footprint area. The C&D is designed with a total surface area of approximately 98.5 acres. An operational and staging area is planned at the northeast corner of the facility. Dimensions of this operational and staging area are roughly 325 feet by 1.000 feet. The operational area will include on office and parking area a future shop and an area for potential recycling of green wastes.

Construction of the landfill footprint will occur in phases based on operational needs and C&D waste disposal demands. It is anticipated that construction of the landfill footprint will begin in the northwest corner of the property and will occur in phases toward the south and east as additional cell space and area is required.

Floor Elevations

Regulations state that the separation between the floor of the C&D landfill and the groundwater surface should be 10 feet or more Water quality samples were obtained from borings B-4 and B-7 to determine the quality of the ground water at the site Results from the samples show TDS levels of 29 000 and 23 000 mg/L for the samples obtained from B-4 and B-7 respectively Ground water is very poor quality and is classified as Class IV groundwater according to State standards

Permeability tests were also conducted on the lean clay obtained from TP-1 about 1 foot below existing ground and from the interloyered lean cloy and silt formations obtained from TP-7 approximately 2.5 feet below existing ground at the site Results of the tests show the lean clay and the interloyerd lean clay and silt to hove permeability values of $2 \times 10^{\circ}$ cm/sec and 2×10^{7} cm/sec respectively

Because of the poor quality the low permeability of the clays and silts immediately below the landfill footprint, and based on discussions with the Division of Solid and Hazardous Waste a variance is requested from 10 feet to 5 feet of separation between the bottom of the waste and ground water. It is our opinion that degradation to ground water will be negligible due to the types of the wastes that will be received the poor quality of ground water that exists at the site the low permeability of the existing soils and storm water management practices that will be implemented (presented later in this report)

Floor elevations within the landfill footprint were established based on ground water surface contours generated by measured ground water elevations. Ground water contours show the elevation to be lowest near the southeast corner of the facility and increase toward the north and toward the west forming a type of trough at the ground water surface. The floor design generally results in a separation between 6 feet and 7 feet although future ground water levels are expected to lower resulting from construction of the landfill removal of the existing gravel pit where recharge occurs, and re-directing storm water from little mountain away from the gravel pit area and around the east side of the landfill property.

Both cuts and fills will be required to achieve the design floor elevations presented in the drawings Fill materials may be obtained from native soils during excavations in the landfill footprint area, from inert waste materials such as concrete masonry soils etc and from off site soil sources. Significant cuts are anticipated in the northern and western portions of the property and fills will generally be required in the lower playos areas. Although significant cuts are anticipated along the north and west sides of the property the design side slopes presented may be flatter and the cuts may be less should bedrock be encountered that inhibits these excavations to occur.

Embankments and Waste Mound

Very little embankment construction is expected with most of the fill areas occurring to establish floor grades and to establish storm water control facilities. The waste mound will begin generally of the floor elevation (toe of waste) around the floor perimeter along the south east and part of the north sides and of the top of the cut slopes along the rest of the north side and the west side. The waste mound will consist of four litts that ore approximately 50 feet or less in height. A bench approximately 18 feet wide is provided at the top of each lift to provide for storm water conveyance and to provide for a resulting 3H 1V (horizontal to vertical) slope after accounting for the benches in order to maintain stability of the landfill slopes. The entire vertical height is generally between about 180 feet near the southeast corner of the waste mound to about 230 feet from the center peak of the waste mound to the floor. Fill materials needed to construct the landfill access romps will most likely also be constructed of waste materials after first establishing a minimum boftom grade consistent with the extension of the floor slopes.

The top of the waste mound consist of on approximate 10 percent slope between the top outer perimeter and the center of the waste pile to promote storm water runoff to occur toward the outside perimeter and to a storm water down drain to be installed at the southeast corner of the waste pile. Storm water management is discussed later as part of the landfill closure section.

A stability analysis was conducted on the waste mound slopes during the geotechnical investigation. The stability analysis shows safety factors of 1.8 under static conditions and 1.2 under seismic conditions. The geotechnical report is included as on appendix in this report.

ACTIVE AREA RUNOFF CONTAINMENT

Runoff from exposed waste materials will be contained on-site within the active landfill footprint area until the waste either receives a clean soil cover or until the time of closure As portions of

Revised January 2011

the landfill receive clean cover soils or are closed runoff from the clean and closed area will be conveyed off the waste pile and will be allowed to discharge off-site

Regulations require containment be sufficiently sized to contain runoff from the 25-year 24-hour precipitation event. Potential runoff volume per acre of open cell area was calculated using the SCS curve number methodology provided in USDA Urban Hydrology for Small Watersheds. Technical Release No. 55 Precipitation depth for the 25-year 24-hour precipitation event (2.23 inches) was obtained from Point Precipitation Frequency Estimates from NOAA Atlas 14.

Using charts provided in TR-55, a curve number of 87 was selected assuming a combination of Type C soils which are typical of on-site soils and some impervious waste material. Calculations resulting from the assumptions mode result in a minimum containment volume of 0.13 acre-foot (5.662 cubic feet) per acre of open cell area. This containment capacity may be provided using pond areas on the landfill floor between the waste and the up-grodient interior slopes of the landfill providing ponds or berms on the waste surfaces or by providing pond areas on the landfill floor between the waste surfaces. This runoff water may be used for dust control within the landfill area. mixing of concrete, and other activities requiring water above constructed landfill floor areas.

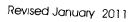
CHAPTER V

LANDFILL CLOSURE DESIGN

Design objectives for the C&D Cell closures is to provide a final waste grade final soil cover and erosion protection that will promote and control storm water runoff from the closed cells and control erosion. This section presents the general layout and design concept for the landfill cell closure caps including storm water control and erosion control.

GENERAL LAYOUT AND DESIGN

The waste grade layout provides resultant 3H 1V (horizontal to vertical) slopes extending up from the bottom toe of the waste pile toward the center of the landfill Intermediate benches are provided every 50 feet of vertical rise to facilitate erosion control and storm water management The intermediate benches ore 18 feet wide and slope toward the inside of the bench providing o 3-foot deep V-ditch Side slopes between benches ore 2 5H 1V and when combined with the benches provides resultant slopes of 3H 1V. The maximum height of the closure cops is about 180 to 200 feet around waste pile perimeter with a maximum of about 230 feet above the floor of the center peak of the waste pile


Two feet of cover soil will be placed at final closure consisting of a clean soil fill material with an erosion protective layer. This final closure cover will consist of either 18 inches of soil fill with 6 inches of soil that will support vegetation. 20 inches of soil fill with 4 inches or stone mulch or a combination of both.

Each of the intermediate benches is provided with approximately a 1 percent slope toward the southeast corner of the landfill to form V-type drainage ditches that are approximately 3 feet deep. The drainage ditches have side slopes of 20H 1V or 5 percent provided by the bench) ond the 2 5H 1V (provided by the general closure cop surface). The ditch flow lines convey storm water to inlet boxes and downspout pipes located at the southeast corner of the landfill

The top closure surface will consist of approximately 10 percent slopes from the center toward the outer perimeter of the top surface. A 3-foot high berm system will be constructed around the outside perimeter of the top slope that will contain storm water and convey the runoff toward the southeast corner where it will enter the down drain system to be constructed at the southeast corner of the landfill. Storm water runoff from the landfill will enter the upper east and southeast detention ponds and will ultimately be discharged off site toward on existing culvert under the railroad near the southeast corner of the landfill

STORM WATER MANAGEMENT

The objectives of storm water management associated with the closure caps is to control erosion and convey storm water from the closure cop surfaces during precipitation events and snow melt. The following paragraphs present the hydrology and hydraulic design associated with the storm water management system.

Hydrology

Hydrologic calculations were completed for the closure cop of the C&D landfill to determine peak runoff in designing the bench drainage ditches and to determine erosion protective measures for the drainage ditches and the closure cap slopes. The SCS (Soil Conservation Service) curve number methodology was used in conjunction with the Army Corps of Engineers HEC-HMS hydrology computer model to predict peak flows from the closure cap. The methodology for predicting peak flows requires a delineation of the sub-bosins generating runoff, determination of a curve number to be used a precipitation rote a storm distribution, and a calculation of the time of concentration and lag time.

<u>Methodology</u> The sub-bosins were delineated assuming each is comprised of the perimeter slope above each of the bench areas including the bench area of the bottom of the perimeter slope and the perimeter slope above the ground surface. The landfill area has 7 delineated subbosins with on additional subbosin for the operations and staging area. Each of the 4 subbasins comprised of the bench areas and the slope areas above the benches will generate runoff that will collect in the ditches on the benches and the runoff will be conveyed around the benches to the southeast corner. Runoff will then be conveyed through inlet boxes and down drain piping to the ground surface. Runoff from the 3 subbasins on the lower slope areas will collect on the ground surface and the detention ponds of the toe of the slopes.

The SCS curve number is determined from the type of soil and erosion control measures used for the closure cap. The closure cap will be seeded with native grass or other range grasses and brush that adopt to the area, which when established will result in on assumed curve number of 81.

Native soils at the site and clean imported soils ore expected to be used for construction of the closure cops. The types of soils from NRCS soil mapping showed hydrologic soil group type C soils on the landfill parcel and should also provide on overage type of soils that may be imported. Type C soils have low infiltration rates when thoroughly wetted consist chiefly of soils with a layer that impedes downward movement of water and hove moderately fine to fine texture. These soils also have a low rote of water transmission. An SCS curve number (CN) of 81 was selected using the tables provided in TR-55 using an herbocious cover with type C soils.

Regulations required that the facilities be designed for a 25-year 24-hour precipitation event Since a closure cop is a critical component our calculations for storm water management from the closure cops ore based on the 100-year 24-hour precipitation event. The Point of precipitation frequency estimates from NOAA Atlas 14 was used to determine the precipitation depth of 2.73 inches and the SCS Type II storm distribution for a 24-hour event was used to predict peak flows

<u>Peak Design Flows</u> Hydrologic calculations presented above were used to generate peak design flows for each of the 8 subbasins for the closure cop and for the downspout piping located at the southeast corner Peak design flows for each of the subbasins are summarized in Table VI-1 Peak design flows for the downspout piping were generated using HEC-HMS

computer model to combine flows from the individual sub-basins. These flows are summarized on Table VI-2

HEC-HMS SUBBASIN ID	SUBBASIN DESCRIPTION	PEAK FLOW (cfs)
Subbosin - 1	Top of the landfill to first bench	95
Subbosin - 2	Second bench from top	39
Subbosin - 3	Third bench from top	53
Subbosin - 4	Fourth bench from top	58
Subbosin - 5	Northeast base of landfill from fourth bench to ground surface	61
Subbosin - 6	West base of landfill from fourth bench to ground surface	74
Subbosin - 7	Southeast corner of landfill from fourth bench to ground surface	98
Operational Area	Operations and staging area in northeast corner of the parcel	109

Table V-1 SUBBASIN PEAK DESIGN FLOWS

TABLE V-2 DOWNSPOUT PIPING PEAK DESIGN FLOWS

HEC-HMS REACH ID	DOWNSPOUT PIPE SECTION DESCRIPTION	PEAK FLOW (cfs)
Reach - 3	First bench to second bench	95
Reach - 2	Second bench to third bench	120
Reach - 1	Third bench to fourth bench	15 3
Reach - 4	Fourth bench to Detention	192

Hydraulic Design

Peak design flows were used to complete hydraulic design of the drainage channels and the downspout piping for the closure cop

<u>Drainage Channels</u> The highest design peak flows for the benches and for the flow to the ground surface provided in Table VI-1 were used to design the drainage ditches. This provides

consistency in the design, in achieving final waste grades during operation and in constructing the closure caps. The bench drainage ditches were designed with a 6H 1V side slope along the bench surface and a 25H 1V slope resulting from the predominate closure cop slope.

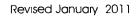
A channel flow depths of approximately 0.63 feet was calculated for the bench ditches using the peak design flow of 4.75 cfs (half of the maximum flow from the peak basin Subbosin 1). Using a manning s n of 0.30 (assuming gross/weed lined channels) the resulting velocity is 2.4 ft/sec. The gross and weed lined channel with this low velocity would not require the use of riprap for erosion protection.

Periodic check dams constructed of gravel may be placed periodically for the purpose of minimizing erosion and retaining some moisture to establish vegetation within the drainage benches

<u>Downspout Piping</u> Hydrologic calculations presented above were used to generate the combined peak design flows for the C&D closure cop Design is based on the combined peaks shown in Table VI-2 starting with a flow of 9.5 cfs at top bench and progressing to 19.2 cfs at the outlet of the downspout piping Hydraulic Charts for the Selection of Highway Culverts published by the U.S. Department of Transportation were used for sizing the downspout piping The required pipe diameter is 18 inches for the top downspout reach and 21 inches thereafter to the outlet based on Inlet control conditions with a head water depth requirement of no greater than four feet ollowing for one foot of freeboard. This headwater depth requirement is provided within the 24 inches of inlet box depth below the grating with the additional depth provided by the approximately 3 foot ditch above the grating.

Slope Erosion Protection

The establishment of vegetation has proven to be an effective practice in providing erosion protection for highway cut and fill slopes downstream slopes of dams and landfill closure cops within the state of Utah Procedures presented in Erosion and Sedimentation in Utah - A Guide for Control published by the Utah Water Research Laboratory were used to determine requirements for vegetative control measures. Calculations show that the density of a vegetative cover should be 97 percent. In order to determine the effectiveness of a vegetative cover appropriate for the climate and soils used for the final cover the slope below the lowermost drainage bench should be used to test the seed mix provided and adjust the seed mix based on the results of the test area. Initial seeding should include a mix design similar to mix presented in Table V-3. Test areas for seeding on the lower slope will provide a basis for determining erosion control measures for final closure. Erosion control blankets may also be used as needed during establishment of vegetation.


Calculations also show that erosion control con be accomplished by placing a minimum thickness of 2.5 inches of stone mulch over the final closure areas. Stone mulch has also been effectively used for erosion protection on highway cut and fill slopes and on landfill closures around the state of Utah and has shown to allow natural vegetation to establish itself through the stone mulch cover. During testing of the lowermost slope a determination might be mode that erosion control measures are best accomplished by using o combination of vegetation and

Revised January 2011

stone mulch where vegetation is established on the upper portions of the slopes where runoff water is not concentrated and stone mulch is placed on the lower slope areas where runoff water is more concentrated

Common Name	Species Name	Application Rate (PLS) (Ibs/acre)
Grasses		
Hycrest crested	Agropyron cristatum	30
wheotgrass	hycrest	20
Intermediate wheotgrass	Agropyron Intermedium	20
Western wheotgrass	Agropyron smithii	20
Indian ricegrass	Oryzopsis hymenoldes	10
Great Basın wıldrye	Elymus cinereus	01
Alkalı socoton	Sporobolus airoides	
Forbs		
Scorlet globemallow	Sphoerolcea coccineo	05
S hrubs		
4-wing saltbush	Atriplex conescens	10
Shodscale	Atriplex confertifolio	10
Forage kochia	Kochio prosfroto	05
TOTAL	I	13 1

TABLE V-3 SEED MIX DESIGN

CHAPTER VI

STORM WATER MANAGEMENT

Open Landfill Areas

Berms or ditches will be constructed around open landfill areas to manage storm water from surrounding areas from entering the open landfill areas Berms will be constructed in phases around the landfill as areas ore opened for waste disposal. These berms will also provide a safety barrier to restrict vehicle traffic from entering the open landfill other than by established accesses

Off-Site Run-On Storm Water

The gradient of the existing ground surface is toward the south and southeast from Little Mountain and through the facility There ore several culverts that cross under 900 south that convey water from the Little **M**ountain drainage and run-on through the C&D facility property There are no defined natural drainage channels

A hydrologic computer model was developed to predict peak flows from the drainage area expected to contribute to run-on flows that affect the facility property using the 100yeor 24-hour storm event. The drainage area comprised one subbosin that could be characterized by soil types vegetative cover slope and precipitation depth.

An SCS curve number was established for each subbosin based on soil types and vegetative cover characteristics. Vegetation cover was defined based on observations made during field visits. Soil types were obtained from the Natural Resource Conservation. Service website from soil mopping available of the Soil Data Mart

Precipitation depths were obtained for the subbosin from the Point Precipitation Frequency Estimates from NOAA Atlas 14 One precipitation value was used (2.73 inches) dependent upon the general elevation of the facility and the area tributary to it. The SCS Type II storm distribution was used which is typical for this area.

Run-on areas will be allowed to temporarily discharge onto open areas of the property as currently occurs until the landfill expands to where those open areas would be unavailable When expansion to those areas does occur run-on will be conveyed through a ditch along the north side of the property and into the detention system that has been designed for closure conditions

This Little Mountain storm water conveyance ditch will have a slope that will vary from about 0.5% and 1% with 2.5H 1V side slopes resulting in a V-shaped channel with no bottom width. The maximum depth calculated for this channel is 1.2 feet with o peak flow of 9 cfs and o minimum channel slope of 0.5%. In order to provide 1 foot of freeboard a

depth of 2.2 feet is required. The maximum calculated velocity is 3.3 fps with the maximum slope of 1%

Results from the calculations ottoched to this report show a peak flow from water ultimately diverted around the north side of the facility and to the east through the detention basins and eventually exiting the property from the existing culvert in the southeast corner. The peak flow that will ultimately be diverted south and east around the facility from ott-site run-on is approximately 9 cfs. The detention basins have been designed to accommodate both run-on from off-site and run-off from the facility

Storm Water From On-Site Disturbed Areas Outside Landfills

Storm water from disturbed areas outside the landfill around the facility may include operation area roods staging area soil stock piles etc. The amount of disturbed area will be minimized as much as practical and still allow for operations and construction of the facility. Runoff from these areas will be collected and conveyed to o detention pond located at the southeast corner of the operations and staging area. This pond has been sized for the 100-yeor 24-hour precipitation event.

A drainage channel will be located south of the operations orea providing conveyance from the operations area to the pond. This ditch will have a slope that will vary from 0.5% and 1% with 2.5H 1V side slopes resulting in a V-shaped channel with no bottom width. The maximum depth calculated for these channels is 1.3 feet with a peak flow of 10.9 cfs and a minimum channel slope of 0.5%. In order to provide 1 foot of freeboard a depth of 2.3 feet is required. The maximum calculated velocity is 3.5 cfs with the maximum slope of 1%.

REFERENCES

Federal Highway Administration US Department of Transportation Hydraulic Charts for the Selection of Highway Culverts US Government Printing Office June 1980

Applied Geotechnical Engineering Consultants Inc Geotechnical Investigation-Proposed Landfill - 10500 West 900 South - Plain City Utah November 11, 2008

National Oceanic and Atmospheric Administration (NOAA) Point Precipitation Frequency Estimates from NOAA Atlas 14 Notional Weather Service Maryland 2003

US Army Corps of Engineers Hydrologic Engineering Center HEC-HMS Hydrologic Computer Modeling Software

US Department of Agriculture Natural Resources Conservation Service Urban Hydrology for Small Watersheds Technical Release No 55 (TR-55) June 1986

Utah Water Research Laboratory Erosion and Sedimentation in Utah A Guide for Control Utah Stote University February 1984

APPENDIX 1

DESIGN DRAWINGS WEBER COUNTY CLASS VI C & D LANDFILL PERMIT

WEBER COUNTY CLASS VI C&D LANDFILL PERMIT JANUARY 2011

INDEX OF DRAWINGS

GENERAL

- G-1 COVER
- G-2 GENERAL NOTES

GROUND WATER

GW-1 GROUND WATER CONTOURS

<u>CIVIL</u>

- C-1 VICINITY PLAN
- C-2 OVERALL SITE PLAN
- C-3 EXISTING & FINAL CONTOUR PLAN
- C-4 OVERALL LANDFILL SECTIONS

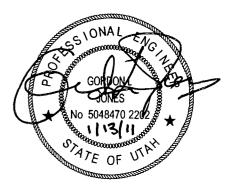
STORM WATER

- SW-1 FINAL SITE GRADING & DRAINAGE PLAN
- SW-2 OPERATIONS AREA & EAST UPPER PONDS
- SW-3 SOUTHEAST POND
- SW-4 POND OUTLET DETAILS
- SW-5 CLOSURE DOWN DRAIN PLAN & PROFILE
- SW-6 CLOSURE DOWN DRAIN INLET DETAILS

FENCE AND GATES

FG 2A UDOT RIGHT OF WAY FENCE AND GATES (METAL POST) FG 2B UDOT RIGHT OF WAY FENCE AND GATE (METAL POST) FG 6 UDOT CHAIN LINK FENCE

COVER DWG


ISED/G-1 ST PERMIT

WEBER CO LF\CAD\CADFILES\STATE PER

8

WEBER CO LF\01 100

195

SURVEY NOTES

COORDINATES ARE BASED ON UTAH NADB3 STATE PLANE NORTH ZONE MODIFIED TO LOCAL PROJECT ELEVATION DATUM WITH A COORDINATE CONVERSION FACTOR OF 0 99974352 FROM SEA LEVEL TO LOCAL PROJECT ELEVATION DATUM

ELEVATIONS PROVIDED ARE BASED ON NAVD 88

BASIS OF BEARING FOR DESCRIPTIONS

THE CONTROL USED TO ESTABLISH THE PROPERTY LINES WAS THE WEBER COUNTY SECTION CORNER MONUMENTATION SURROUNDING SECTION 19 T6N R3W SLB&M THE BASIS OF BEARING IS THE NORTH UNE OF THE NORTH HALF OF SAID SECTION WHICH BEARS SOUTH 89 23 44 EAST (WEBER COUNTY GRID BEARING)

PROPERTY DESCRIPTION

ALL THAT PROPERTY IN THE NORTH HALF OF SECTION 19 TOWNSHIP 6 NORTH RANGE 3 WEST SALT LAKE BASE & MERDIAN IN THE STATE OF UTAH COUNTY OF WEBER MORE PARTICULARY DESCRIBED AS FOLLOWS

BEGINNING AT A POINT ON THE NORTH SIDE OF A 100 FOOT PERPETUAL EASEMENT SAID POINT BEING SOUTH 425 19 FEET AND WEST 4 17 FEET FROM THE NORTHWEST CORNER OF SAID SECTION BASIS OF BEARING MAY BE DETERMINED LOCALLY BY A BEARING OF S89 23 44 E BETWEEN THE NORTHWEST CORNER AND THE NORTHEAST CORNERS OF SAID SECTION THENCE ALONG THE NORTH UNE OF SAID EASEMENT THE FOLLOWING FIVE COURSES S89 05 20 E 12 18 AND N8750 35 E 1450 90 FEET TO THE BEGINNING OF A CURVE CONCAVE TO THE SOUTH WITH A RADIUS OF 868 51 FEET THENCE EASTERLY 198 57 FEET THROUGH A CENTRAL ANGLE OF 13 06 00 AND S79 05 14 E 485 59 FEET TO THE BEGINNING OF A CURVE CONCAVE TO THE NORTH WITH A RADIUS OF 768 51 FEET THENCE EASTERLY 474 18 FEET THROUGH A CENTRAL ANGLE OF 35 21 09 THENCE LEAVING SAID NORTH LINE SOUTH 1811 66 FEET TO THE NORTHERLY RIGHT-OF-WAY OF THE SOUTHERN PACIFIC RAUROAD COMPANY THENCE ALONG SAID RIGHT-OF-WAY THE FOLLOWING FOUR COURSES S81 46 35^TW 221 51 FEET AND S81 42 06^TW 251 02 FEET TO THE BEGINNING OF A CURVE CONCAVE TO THE NORTH WITH A RADIUS OF 10491 76 FEET THENCE WESTERLY 2155 58 FEET THROUGH A CENTRAL ANGLE OF 11 46 18 AND N89 26 02^TW 1 88 FEET TO THE EASTERLY BOUNDARY OF THE USAF PROPERTY THENCE LEAVING SAID RIGHT-OF-WAY AND ALONG SAID EASTERLY BOUNDARY OF THE USAF PROPERTY THENCE LEAVING SAID RIGHT-OF-WAY AND ALONG SAID EASTERLY BOUNDARY THE FOLLOWING TWO COURSES N0733 58 E 1867 42 FEET AND N0735 08 E 100 78 FEET TO THE POINT OF

TOGETHER WITH A PERPETUAL EASEMENT FOR ACCESS AND CONSTRUCTION OF UTILITIES MORE PARTICULARY DESCRIBED AS FOLLOWS

BEGINNING AT A POINT ON THE NORTH SIDE OF A 100 FOOT PERPETUAL EASEMENT SAID POINT BEING SOUTH 423 16 FEET AND EAST 259 73 FEET FROM THE NORTHWEST CORNER OF SAID SECTION 19 BASIS OF BEARING MAY BE DETERMINED LOCALLY BY A BEARING OF S89 23 44 E BETWEEN THE NORTHWEST CORNER AND THE NORTHEAST CORNERS OF SAID SECTION 19 THENCE ALONG THE NORTH UNE OF SAID EASEMENT THE FOLLOWING NINE COURSES EASTERLY ALONG A CURVE CONCAVE TO THE NORTHWEST WITH A RADIUS OF 768 51 FEET THENCE ALONG SAID CURVE 214 24 FEET THROUGH A CENTRAL ANGLE OF 15 58 21 AND N49 3705 E 309 04 FEET AND N65 33 35 E 139 61 FEET AND SOQ'00 25 E 32 86 TO THE SOUTH SIDE OF A COUNTY ROAD AND ALONG SAID SOUTH SIDE S89 47 56 E 331 04 FEET AND SOO'14 05'W 7 51 SAID POINT ALSO BEING THE BEGINNING OF A CURVE CONCAVE TO THE SOUTHEAST WITH A RADIUS OF 768 51 FEET THROUGH A CENTRAL ANGLE OF 40'37 13 AND S49 37 05'W 169 04 FEET TO THE BEGINNING OF A CAUVE CONCAVE TO THE NORHTWEST WITH A RADIUS OF 868 51 FEET THENCE WESTERLY 286 61 FEET THROUGH A CENTRAL ANGLE OF 40'37 13 AND S49 37 05'W 169 04 FEET TO THE BEGINNING OF A CURVE CONCAVE TO THE NORHTWEST WITH A RADIUS OF 868 51 FEET THENCE WESTERLY 286 61 FEET THROUGH A CENTRAL ANGLE OF 40'37 13 AND S49 37 05'W 169 04 FEET TO THE BEGINNING OF A CURVE CONCAVE TO THE NORHTWEST WITH A RADIUS OF 868 51 FEET THENCE WESTERLY 286 61 FEET THROUGH A CENTRAL ANGLE OF 18 54 28 THENCE NORTH 108 43 FEET TO THE POINT OF BEGINNING

ALSO SUBJECT TO ANY AND ALL EASEMENTS AND EXCEPTIONS AS PERTAINING TO SUBJECT PARCEL AS DESCRIBED IN DOCUMENT ENTRY #2305658 DATED NOVEMBER 20 2007 RECORDED WITH THE WEBER COUNTY RECORDERS OFFICE

LANDFILL FLOOR CONSTRUCTION

- 1 THE LANDFILL FLOOR IS TO BE CONSTRUCTED IN PHASES AS NEEDED TO PROVIDE FOR OPERATIONAL AND CAPACITY NEEDS
- 2 PROPER FLOOR ELEVATIONS AND GRADES ARE TO BE CONSTRUCTED CERTIFIED BY AN ENGINEER OR SURVEYOR LICENSED IN THE STATE OF UTAH AND APPROVED FOR OPERATION BY THE UTAH DIVISION OF SOLID AND HAZARDOUS WASTE PRIOR TO WASTE DISPOSAL IN EACH PHASE OF CONSTRUCTION
- 3 DESIGN FLOOR ELEVATIONS PROVIDED HEREIN ARE MINIMUM ELEVATIONS ELEVATIONS MAY BE CONSTRUCTED AND CERTIFIED HIGHER THAN THE MINIMUM ELEVATIONS PROVIDED
- 4 EXCAVATE AND STOCKPILE AS MUCH AS PRACTICABLE THE SOIL FROM EXCAVATION AREAS IN ESTABLISHING DESIGN FLOOR GRADES FOR USE AS COVER CLOSURE AND OTHER FILL MATERIALS
- 5 ON-SITE SOILS AND INERT WASTE SUCH AS CONCRETE MASONRY ROCK CLEAN SOIL ETC MAY BE USED AS FILL TO ESTABLISH DESIGN FLOOR ELEVATIONS

WASTE PILE CONSTRUCTION

- 1 INERT TYPE WASTES IN THE FORM OF CONCRETE MASONRY CLEAN SOILS ROCK ETC MAY BE STOCKPILED AND USED FOR COVER OVER WASTE MATERIALS AS NEEDED FOR LITTER AND VECTOR CONTROL
- 2 ON-SITE SOILS AND CLEAN WASTE SOIL MATERIALS MAY BE STOCKPILED FOR LATER USE OR IMMEDIATELY USED FOR FINAL COVER MATERIALS
- 3 EXTERIOR PERIMETER SLOPES ARE TO BE NO STEEPER THAN 2.5.1 (HORIZONTAL TO VERTICAL) BETWEEN BENCH LEVELS
- 4 BENCHES ARE TO BE CONSTRUCTED APPROXIMATELY EVERY 50 FEET OF VERTICAL HEIGHT AND ARE TO SLOPE TOWARD THE SOUTHEAST CORNER OF THE WASTE PILE TO CONVEY STORM WATER RUN-OFF FROM THE WASTE PILE TO THE DOWN DRAIN PRESENTED ON THE DRAWINGS
- 5 THE V-DITCH FORMED BY THE BENCHES SHALL BE 3 FEET DEEP AND 18 FEET WIDE BENCHES 18 FEET WIDE PROVIDE A RESULTANT OUTER SLOPE OF 3 1 (HORIZONTAL TO VERTICAL)
- 6 STORM WATER RUN-OFF CONTAINMENT FROM EXPOSED WASTE MATERIALS (OTHER THAN INERT TYPE WASTES) SHALL BE PROVIDED WITHIN THE LANDFILL FOOTPRINT ABOVE THE FLOOR DESIGN GRADE WITH A MINIMUM CAPACITY OF 0 13 ACRE-FOOT PER ACRE OF EXPOSED WASTE CONTAINMENT AREAS MAY BE ESTABLISHED WITHIN BERM SYSTEMS ON APPROVED AREAS OF THE LANDFILL FLOOR AND ON THE WASTE PILE AND AS DEPRESSED POND AREAS ON THE WASTE PILE
- 7 STORM WATER MAY BE DISCHARGED OFF-SITE FROM AREAS OF THE WASTE PILE THAT HAVE RECEIVED A CLEAN SOIL OR INERT WASTE COVER OR A FINAL CLOSURE COVER

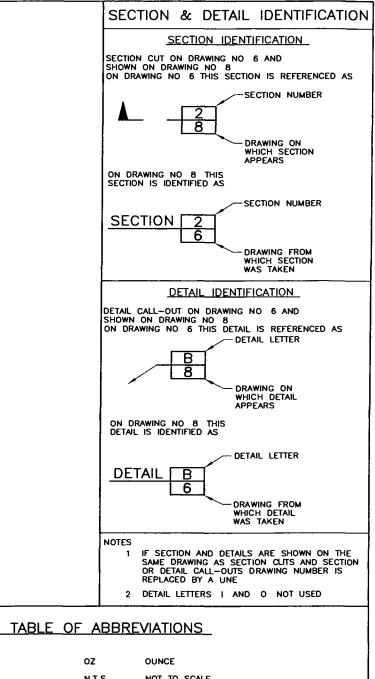
CLOSURE CONSTRUCTION

- 1 CLOSURE COVER SHALL CONSIST OF CLEAN SOIL WITH A MINIMUM THICKNESS OF 2 FEET
- 2 CLOSURE COVERS SHALL ONLY BE CONSTRUCTED AFTER STATE DIVISION OF SOLID AND HAZARDOUS WASTE APPROVAL
- 3 ALL CLOSURE AREAS ARE TO BE CERTIFIED BY THE OWNER AND OPERATOR OF THE LANDFILL FOR COVER THICKNESS PROPER STORM WATER CONTROLS AND EROSION PROTECTION
- 4 EROSION CONTROL MAY BE IN THE FORM OF VEGETATION (GENERALLY RANGE GRASSES AND BRUSH THAT ARE ADAPTABLE TO THE AREA) AND/OR STONE MULCH

STORM WATER MANAGEMENT

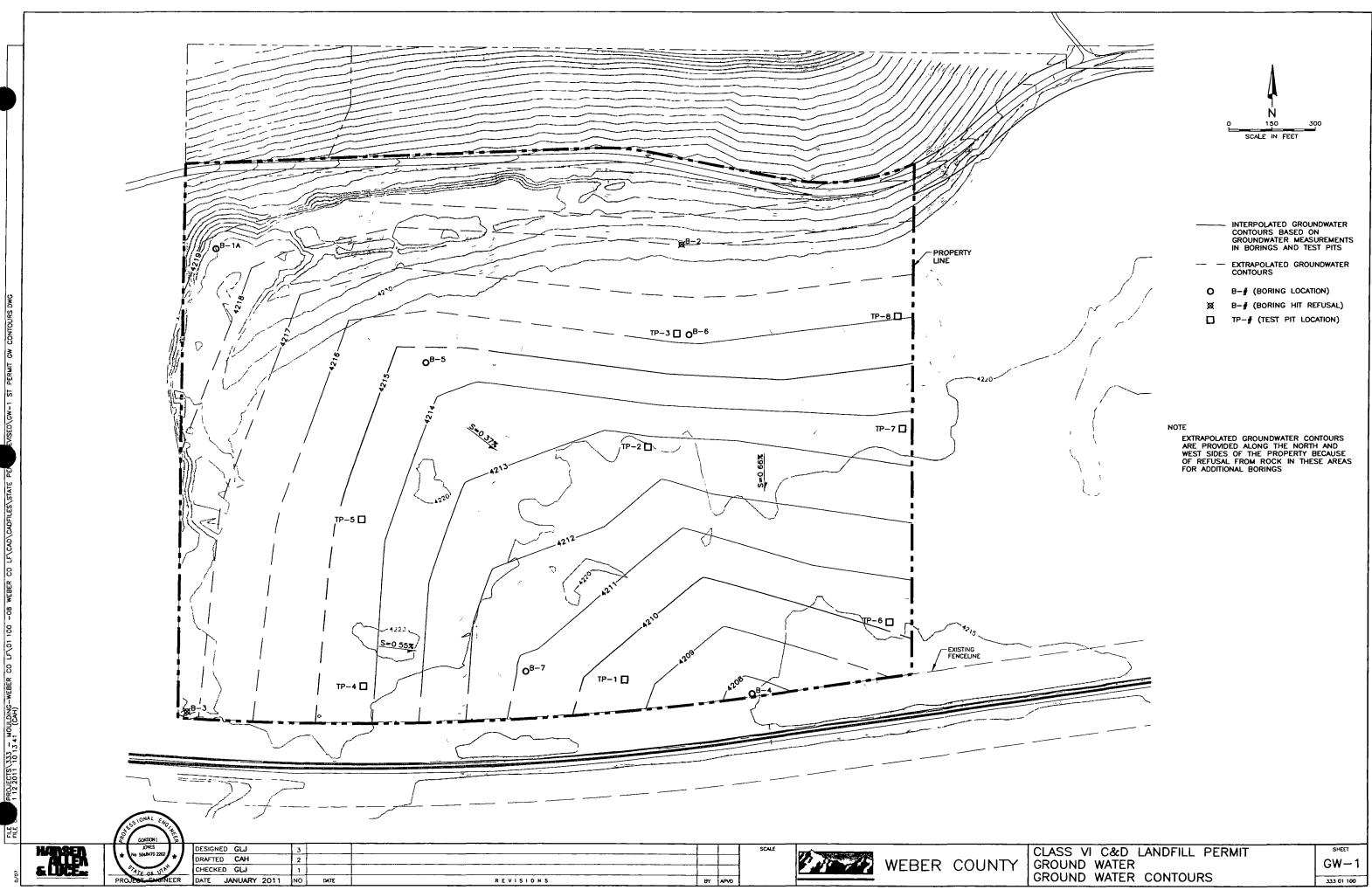
- THE STORM WATER DETENTION POND ASSOCIATED WITH THE OPERATIONS AREA SHALL BE CONSTRUCTED DURING CONSTRUCTION OF THE ACCESS ROAD AND OPERATIONS AREA DISCHARGE FROM THIS POND MAY BE ONTO EXISTING GROUND SURFACES UNTIL THE UPPER EAST POND AND THE SOUTHEAST POND BECOME NECESSARY FOR STORM WATER MANAGEMENT
- 2 THE UPPER EAST POND AND SOUTHEAST POND SHALL BOTH BE CONSTRUCTED BEFORE THE LANDFILL FOOTPRINT AND WASTE PILE HAVE REACHED THE EAST SIDE OF THE LANDFILL FOOTPRINT AREA
- 3 LITTLE MOUNTAIN STORM WATER CONVEYANCE DITCH SHALL BE CONSTRUCTED BEFORE THE LANDFILL AND WASTE PILE FOOTPRINT EXTEND TO THE FIRST CULVERT UNDER THE IMPROVED ROAD THAT IS EAST OF THE PROPERTY S NORTHWEST CORNER
- 4 THE CULVERT FOR THE LITTLE MOUNTAIN STORM WATER CONVEYANCE DITCH SHALL BE CONSTRUCTED UNDER THE ACCESS ROAD AT THE TIME THE ACCESS ROAD IS CONSTRUCTED

AVG	AVERAGE
Ē	CENTER UNE
CPE	CORRUGATED POL
CONT	CONTINUOUS
AIC	DIAMETER
DIAG	DIAGONAL
EL	ELEVATION
E W	EACH WAY
۶L	FLOW LINE
HOPE	HIGH DENSITY PO
-IR	HOUR
D	INSIDE DIAMETER
NV EL	INVERT ELEVATION
XAN	MAXIMUM
AIL.	MILLIMETER
AIN	MINIMUM
oc	ON CENTER


HADSED		JONES N 5048470-2202		DESIGNED GLJ	3					SCALE		
	1*	N 505010-2002	'*/	DRAFTED CAH	2					AS	WEE	
& DCE.		STATE OF UTA		CHECKED GLJ	1					SHOWN	WEE	SER COUNT
	PRO	JEST CHOIN	EER	DATE JANUARY 2011	NO	DATE	R E VISION 5	BY	APVD			

CO LF\CAD\CADFILES\STATE

10/37


8

ROJECTS\333 - MOULDING 12 2011 09 41 46 (CAH)

	02	UUNCE
	NTS	NOT TO SCALE
LYETHYLENE	PCPE	PERFORATED CORRUGATED POLYETHYLENE PIPE
	ROW	RIGHT OF WAY
	S=	SLOPE EQUALS
	SDR	STANDARD DIMENSION RATIO
	STA	STATION
	TYP	TYPICAL
	UDOT	UTAH DEPARTMENT OF TRANSPORTATION
OLYETHYLENE	YR	YEAR

CLASS VI C&D LANDFILL PERMIT	SHEET
GENERAL	G-2
GENERAL NOTES	333 01 100

CONTOURS

3

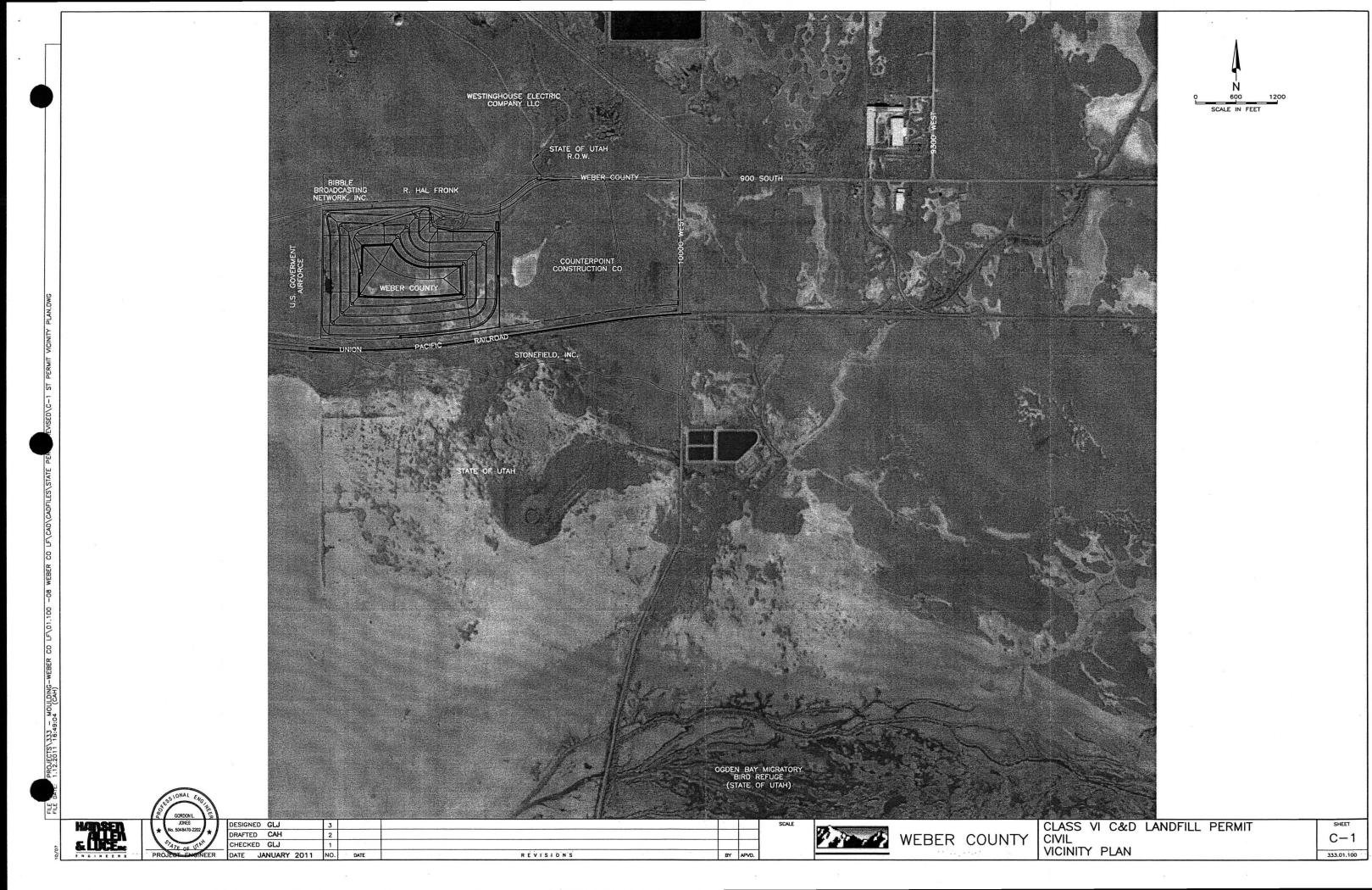
PERMIT 5

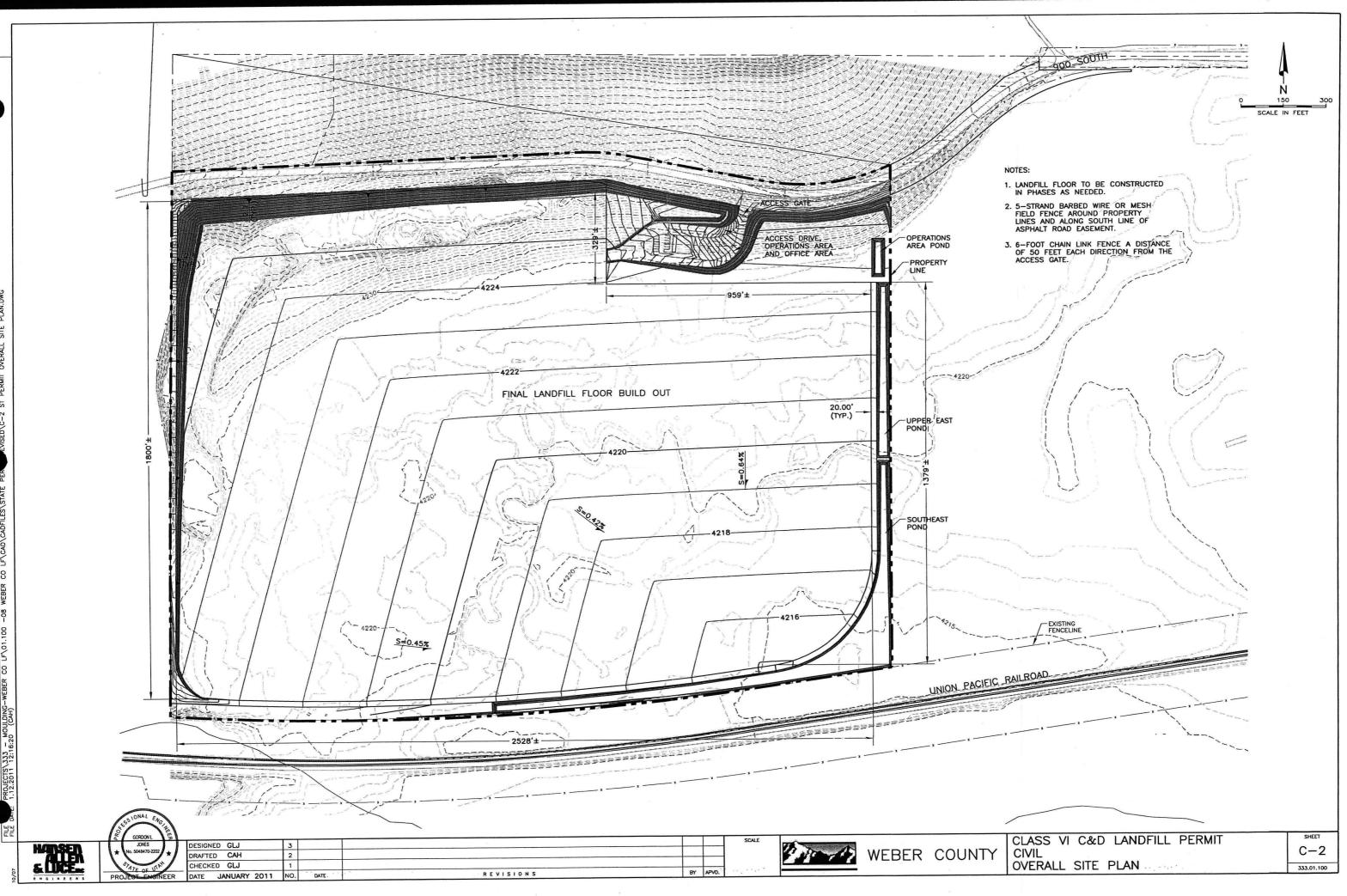
SFD/GW-1

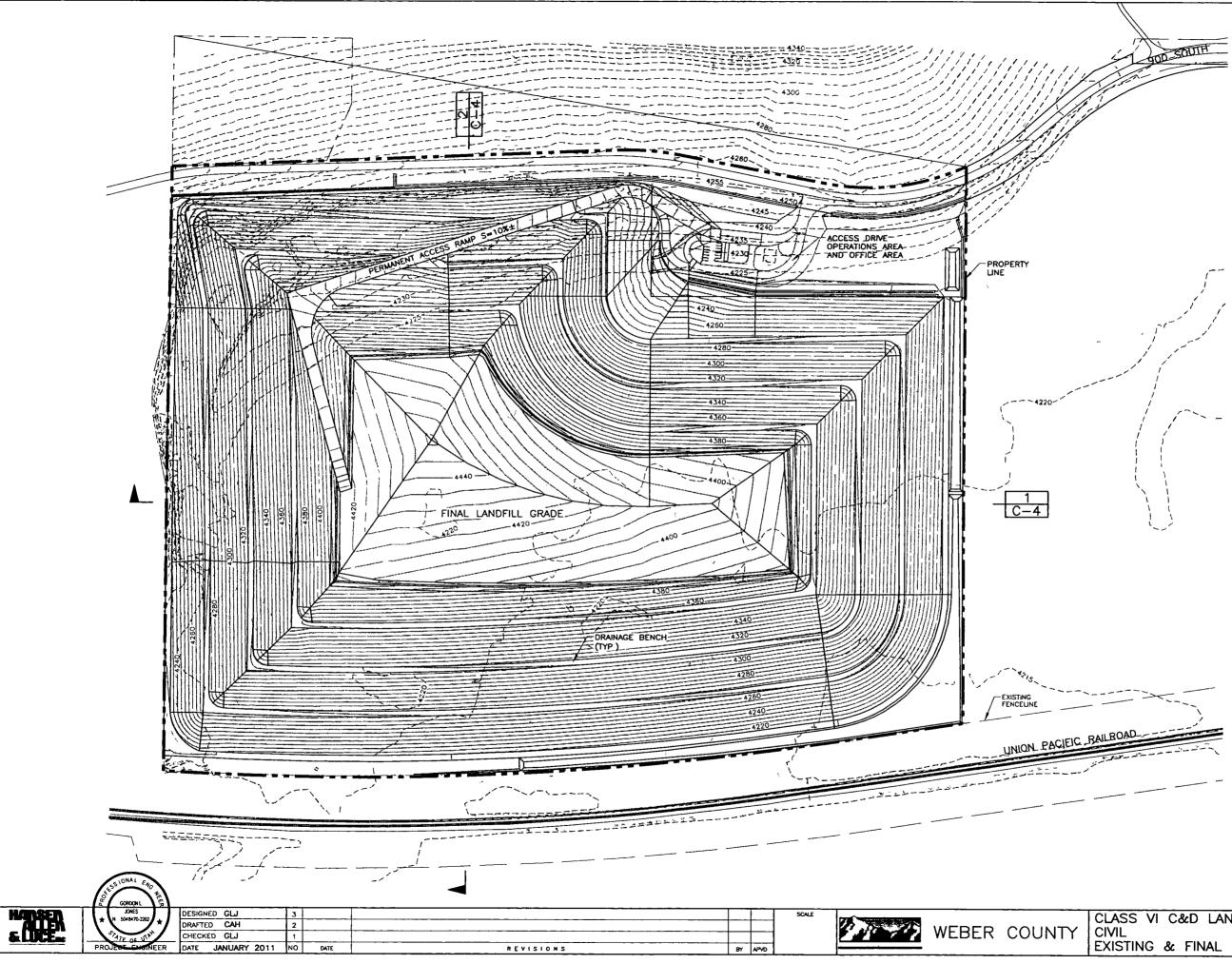
١W

DFILES STATE

18

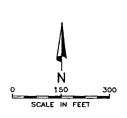

8


WEBER CO LF\01


ECTS\333

GROUND	WATER		
GROUND	WATER	CONTOURS	

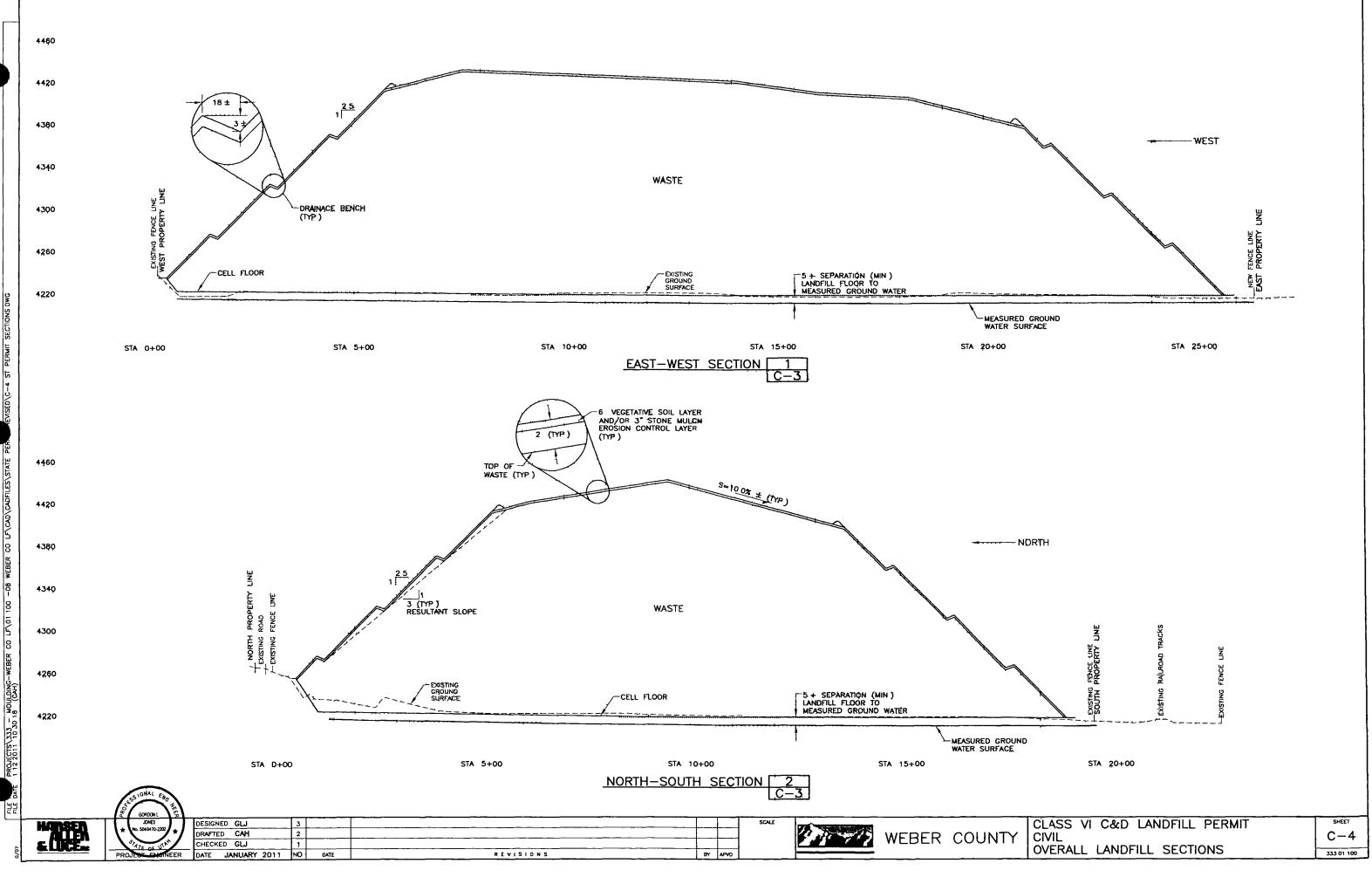
SHEET			
GW-1			
333 01 100			



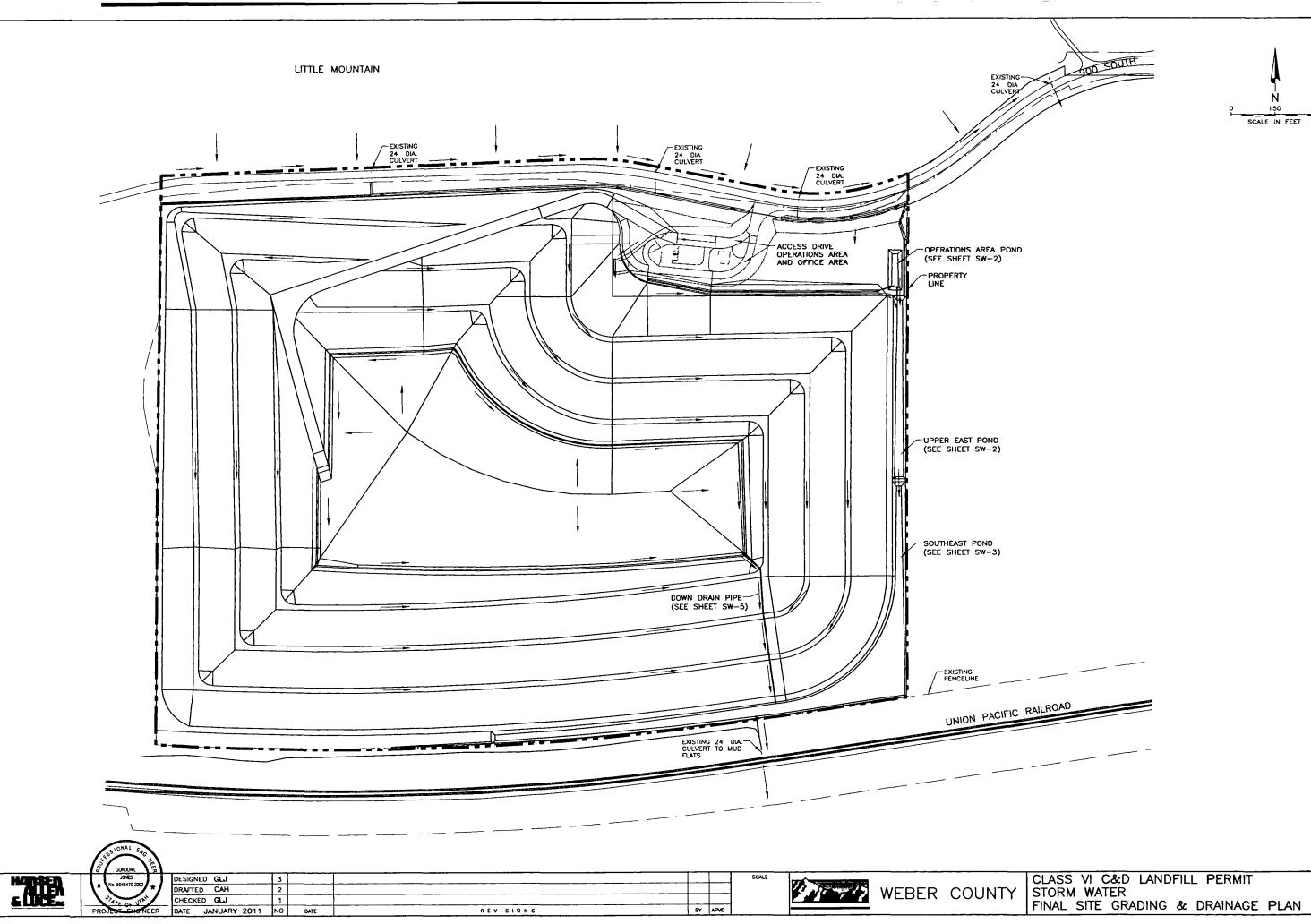
10/37

ROJECTS\333

199



NOTES

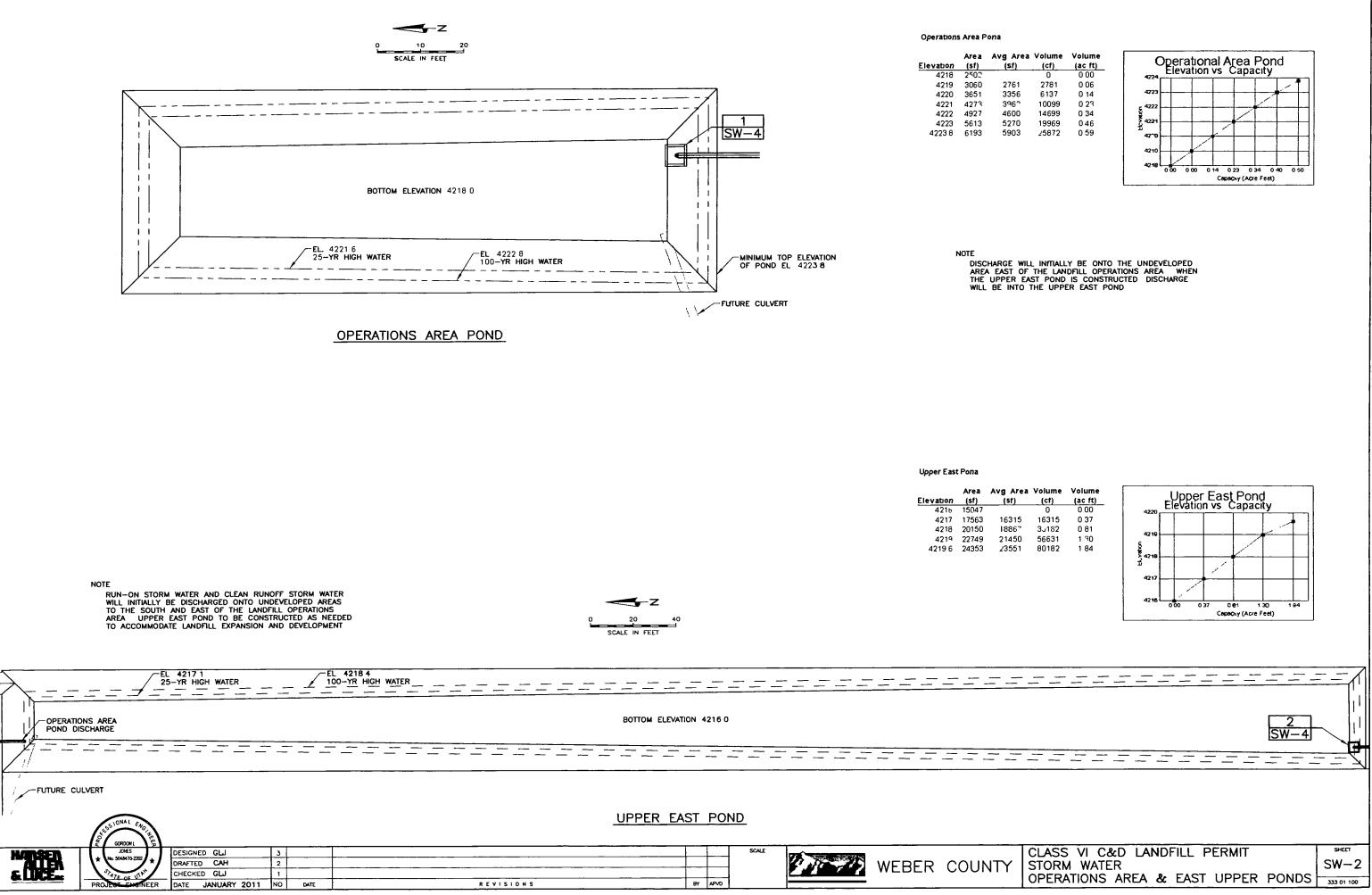

- 1 EXISTING GROUND CONTOUR INTERVAL IS 1-FOOT
- 2 CLOSURE CONTOUR INTERVAL IS 5-FEET

CLASS VI	C&D LANDFILL PERMIT & FINAL CONTOUR PLAN
EXISTING	& FINAL CONTOUR PLAN

SHEET	
C-3	
333 01 100	

LF\CAD\CADFILES\STATE PER

LES\STATE

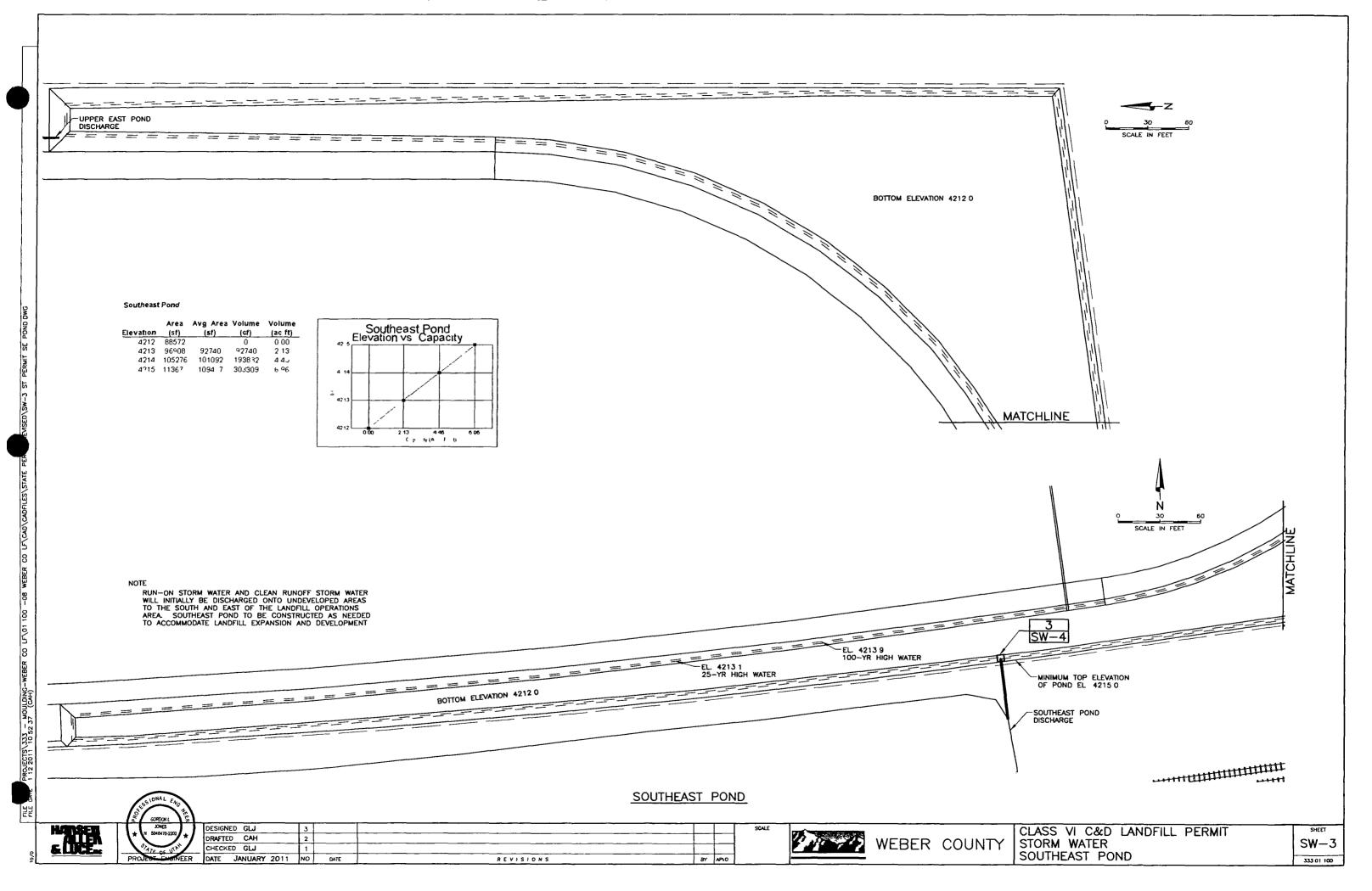

8

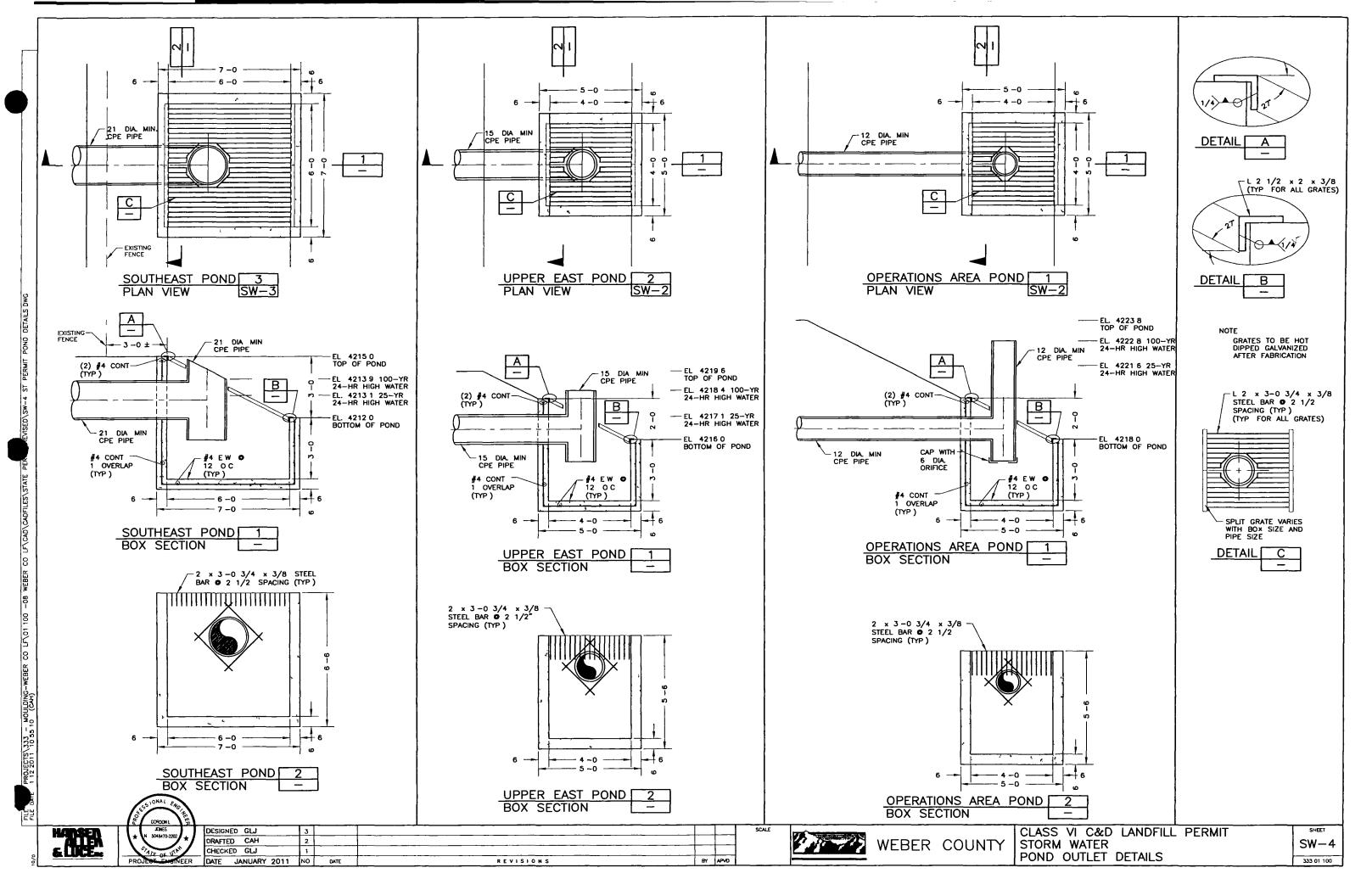
CO LF\01 1

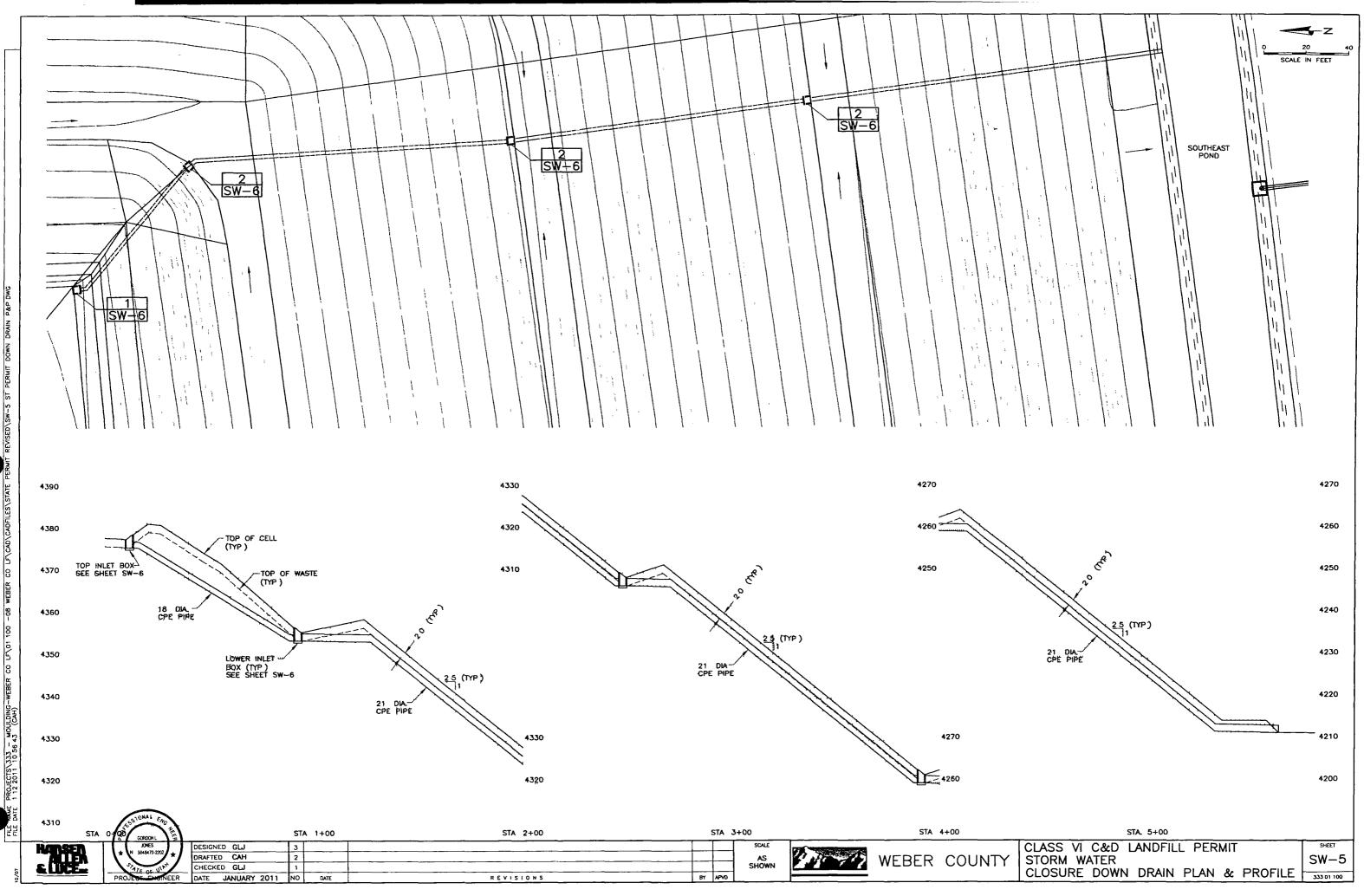
PROJECTS\ 333 - MOULDING-WEBER

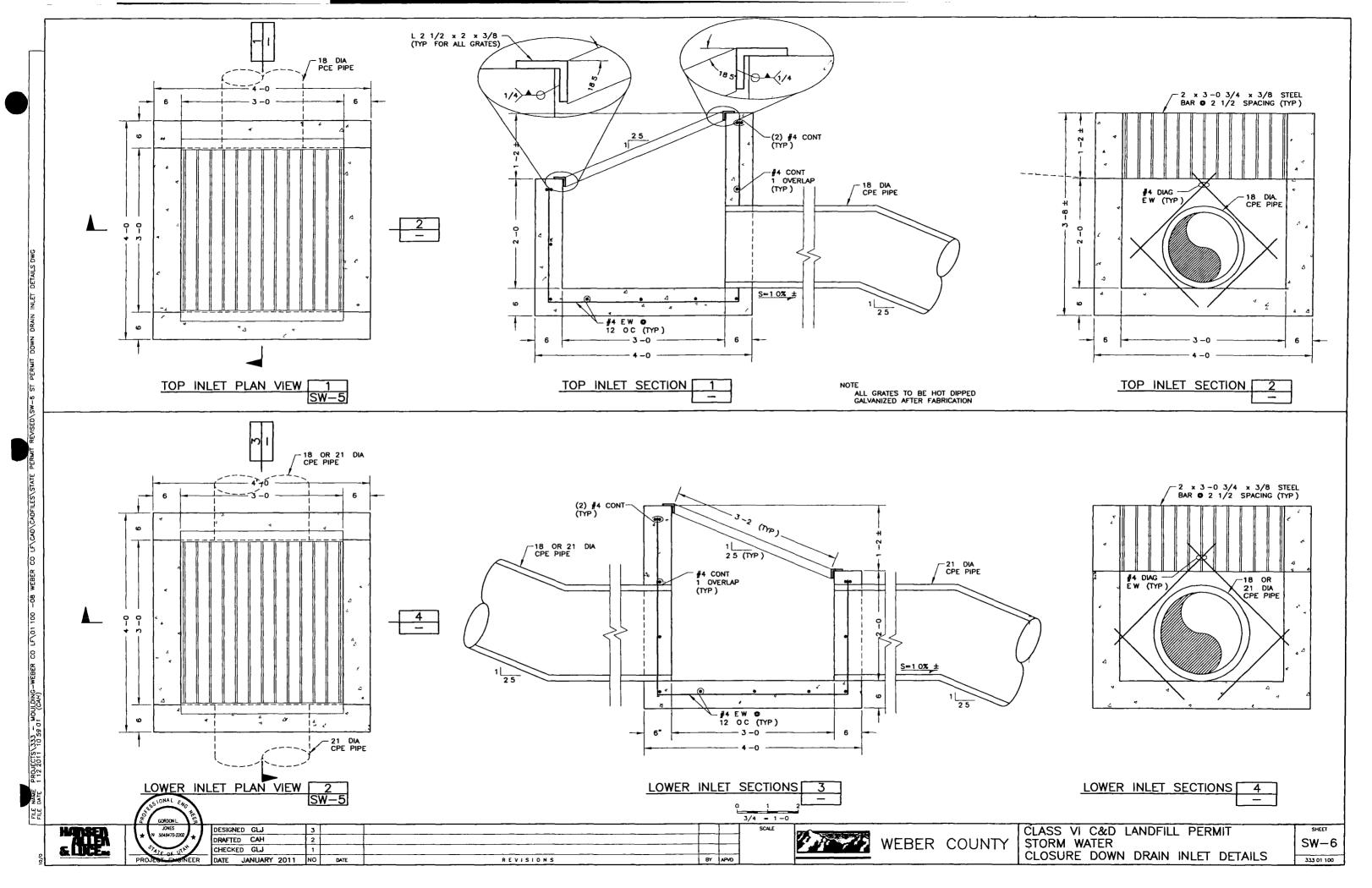
SHEET

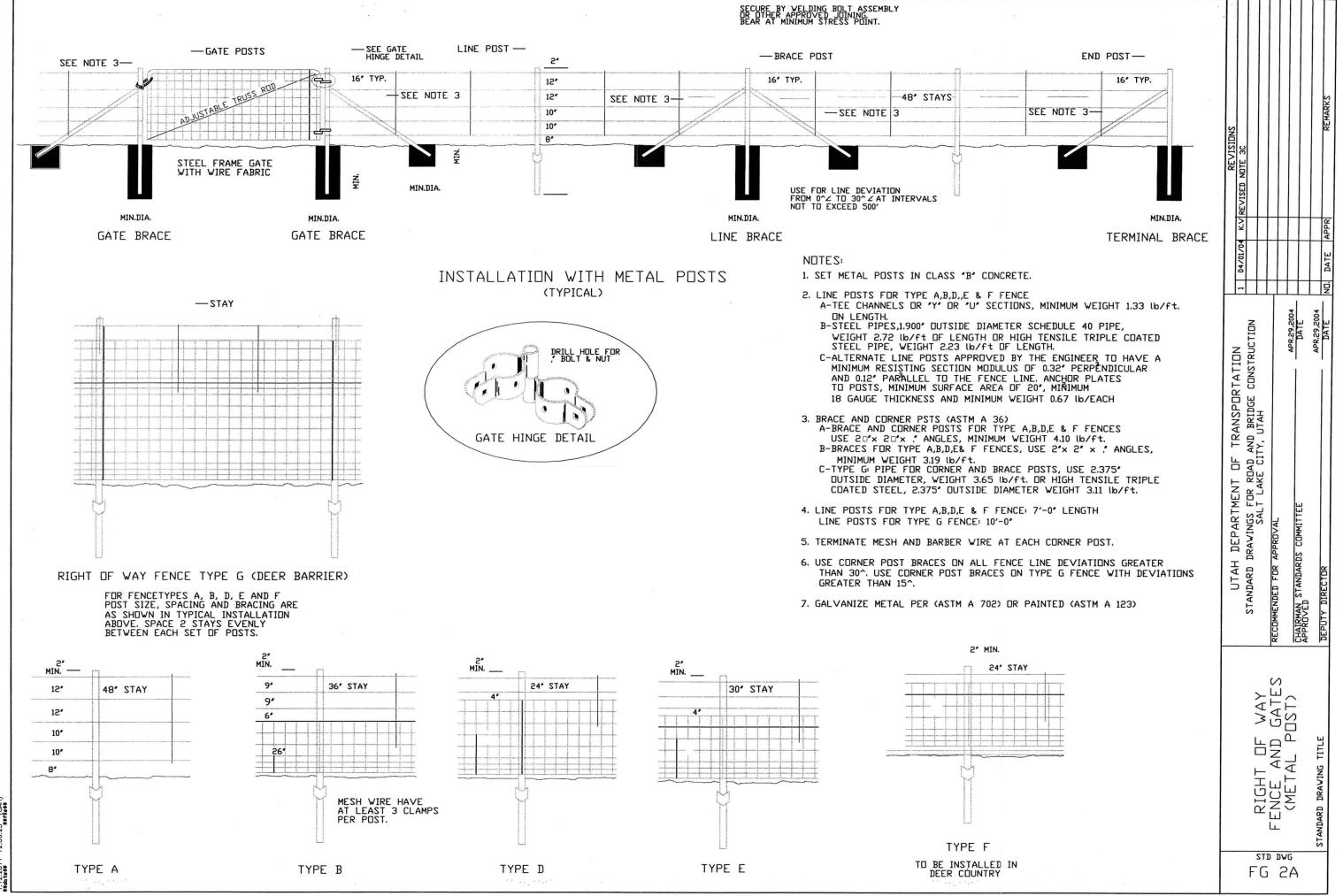
SW	- 1
333 01	100

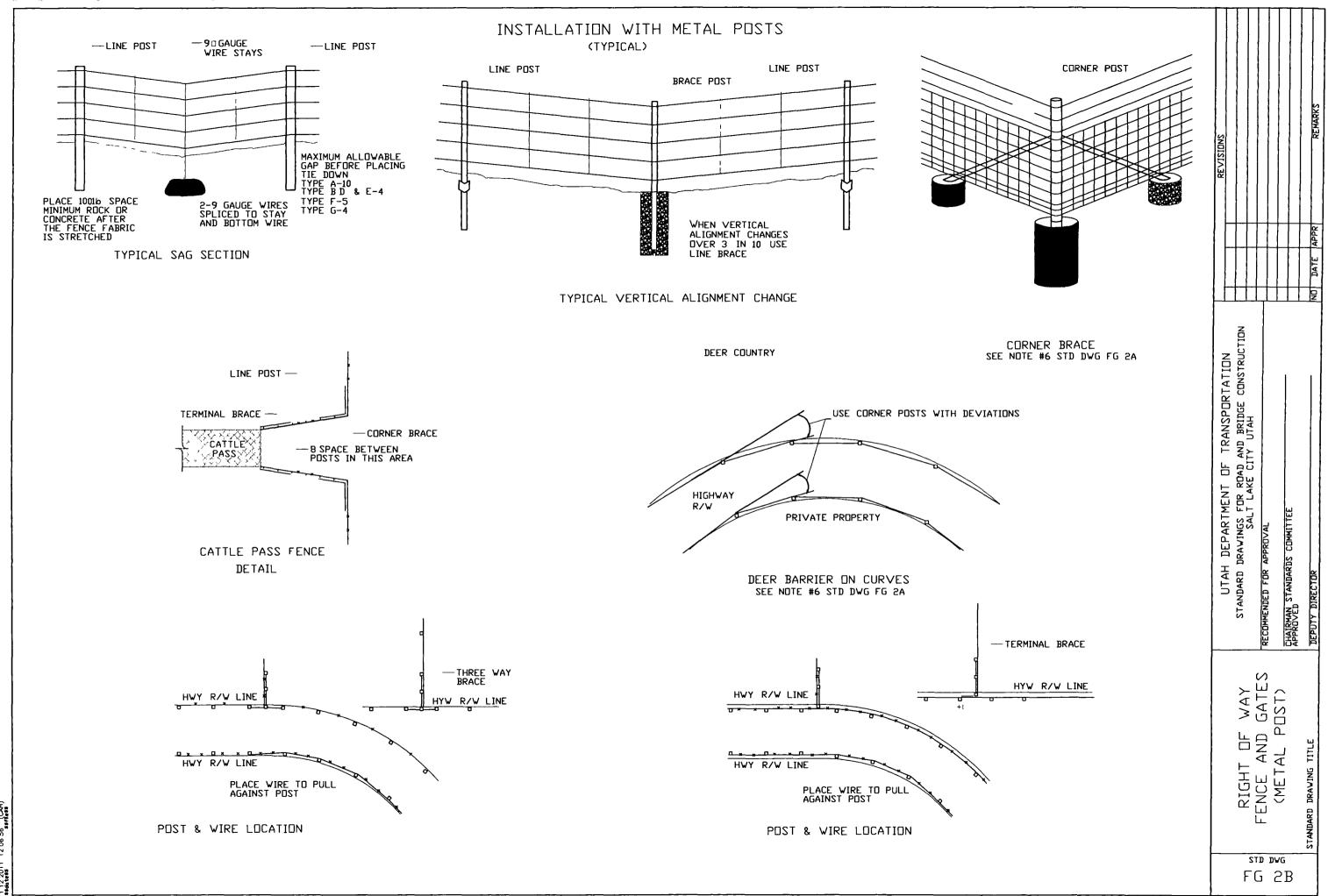


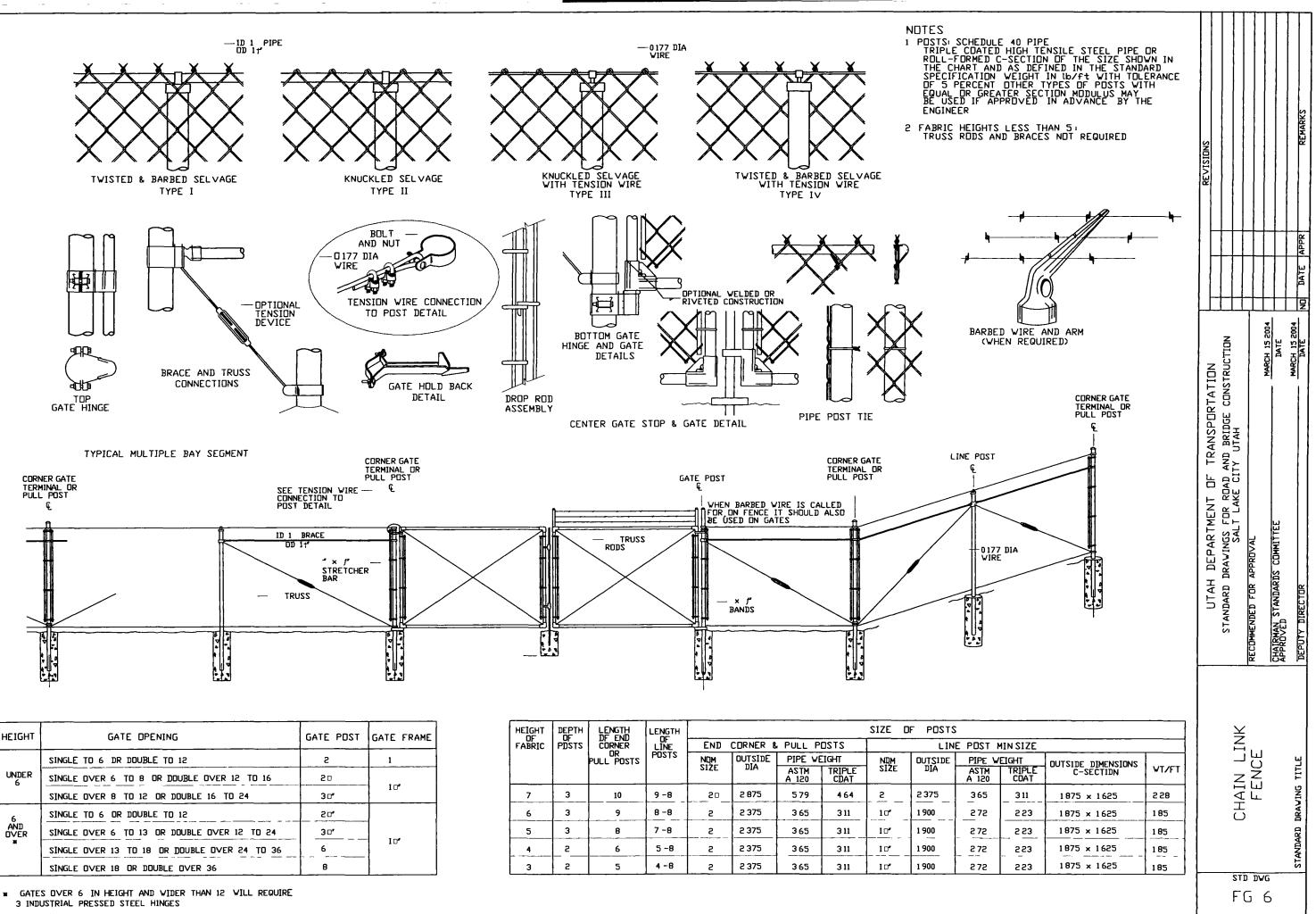

EVISED\SW-2 ST PERMIT OPS-UPPER PONDS DWG


WEBER CO LF\01 100 -08 WEBER CO LF\CAD\CADFILES\STATE PE


NIC


PROJECTS\333 -





2 PROJECTS\333 - MOULDING 1.12.2011 12:06:23 (CAH)

PROJECTS\333 - MOULDING-WEBER CO LF\01 100 -08 WEBER CO LF\CAD\CADFLES\STATE PERMIT REVISED\FGD2E 12 2011 12 06 56 (204) 1360468

GATES OVER 6 IN HEIGHT AND WIDER THAN 12 WILL REQUIRE × 3 INDUSTRIAL PRESSED STEEL HINGES

APPENDIX 2

GEOTECHNICAL INVESTIGATION

GEOTECHNICAL INVESTIGATION

PROPOSED LANDFILL

10500 WEST 900 SOUTH

PLAIN CITY UTAH

PREPARED FOR

MOULDING AND SONS C/O HANSEN ALLEN & LUCE 6771 SOUTH 900 EAST MIDVALE UTAH 84047

ATTENTION KENT STAHELI

PROJECT NO 1080092

NOVEMBER 11 2008

EXECUTIVE SUMMARY	Rage 1
SCOPE	Page 2
SITE CONDITIONS	Page 2
FIELD STUDY	Page 3
SUBSURFACE CONDITIONS	Page 3
SUBSURFACE WATER	Rage 7
PROPOSED CONSTRUCTION	Page 7
STABILITY ANALYSIS	Rage 7
SETTLEMENT ANALYSIS	Rage 8
LIQUEFACTION ANALYSIS	Rage 8
LIMITATIONS	Rage 9
FIGURES	
LOCATIONS OF EXPLORATORY BORINGS AND TEST PITS LOGS OF EXPLORATORY BORINGS LOGS OF TEST PITS LEGEND AND NOTES OF EXPLORATORY BORINGS AND TEST PITS CONSOLIDATION TEST RESULTS DIRECT SHEAR RESULTS TRIAXIAL COMPRESSION TEST SUMMARY OF LABORATORY TEST RESULTS	FIGURE 1 FIGURES 2 5 FIGURE 6 FIGURE 7 FIGURES 8 14 FIGURES 15 18 FIGURE 19 TABLE I

APPENDIX

l I CONE PENETRATION TEST RESULTS

EXECUTIVE SUMMARY

- 1 The subsurface materials encountered at the site consist of approximately ½ to 1 foot of topsoil overlying predominantly clay in the lower portions of the site and sand gravel and bedrock in the upper elevations of the site. The borings drilled along the north and west edges of the property encountered bedrock at relatively shallow depths and the borings refused in the bedrock at depths ranging from approximately 3 to 15½ feet. The soil thickness is substantially greater in the lower elevations of the site. Bedrock was encountered at depths of approximately 76. 29 and 95½ feet in Borings B 5. B 6 and B 7 respectively. Bedrock was not encountered in Boring B 5 but very dense gravel was encountered in the lower portion of the boring below a depth of approximately 91 feet.
- 2 Subsurface water was measured at depths ranging from approximately 6 to 12 feet No subsurface water was encountered in Borings B 1 B 2 and B 3 as these borings terminated at a relatively shallow depth in bedrock
- We understand that the landfill could be on the order of 250 feet thick with side slopes on the order of 3 horizontal to 1 vertical and a total unit weight of the landfill of 45 to 75 pounds per cubic foot Based on this assumption and the subsurface conditions encountered we estimate settlement could be on the order of 5 to 6½ feet near the middle of the landfilled area for the waste density of 45 to 75 pounds per cubic foot respectively
- Based on the subsurface conditions encountered laboratory test results and our analysis we estimate the safety factor against failure for the proposed landfill configuration to be 1.8 under static conditions and on the order of 1.2 under seismic conditions. The seismic condition does not consider the potential for liquefaction of the underlying soil
- 5 The site is underlain predominantly by clay There are some silt and sand layers Some of the sand is potentially liquefiable. Information from the borings suggests that there could be up to approximately 6 inches of settlement due to IBC 2006 design ground motion. This liquefaction could result in some lateral movement of the south and east sides of the landfill We estimate this lateral movement to be on the order of 2 feet for IBC 2006 design ground motion.

SCOPE

This report presents the results of a geotechnical investigation for a proposed landfill to be constructed at 10500 West 900 South m Plain City Utah. The report presents the subsurface conditions encountered laboratory test results and an estimate of settlement and stability for the landfill. The study was conducted in general accordance with our proposal dated February 20, 2008.

Field exploration was conducted to obtain information on the subsurface conditions Samples obtained from the field investigation were tested in the laboratory to determine physical and engineering characteristics of the on site soil Information obtained from the field and laboratory was used to define conditions at the site for our engineering analysis

This report has been prepared to summarize the data obtained during the study and to present our conclusions and recommendations based on the proposed construction and subsurface conditions encountered **D**esign parameters and a discussion of geotechnical engineering considerations related to construction are included in the report

SITE CONDITIONS

At the time of our field investigation there were no permanent structures or pavement on the site. Most of the site consists of undeveloped pasture. There is a strip of land along the west half of the north end of the property and the north half of the west edge of the property which we understand has been mined for aggregate.

The ground surface of the site generally slopes down toward the south and east particularly along the north and west edges of the property. There is a depressed area in the northwest

corner of the property where material has been removed. There is a small pond in this excavated area near the center of the west edge of the property which had water in it at the time of our field investigation.

Vegetation at the site consists predominantly of grass with some brush in the northwest portion of the property

FIELD STUDY

The field study consisted of drilling eight borings excavating seven test pits and pushing a cone for cone penetration testing at four locations. The borings were drilled between April 8 and 10, 2008 using 8 inch diameter, hollow stem auger powered by an all terrain drill rig. The test pits were excavated on April 24, 2008 using a rubber tired backhoe. The borings and test pits were logged and soil samples obtained by an engineer from AGEC. Logs of the subsurface conditions encountered in the borings and test pits are graphically shown on Figures 2 through 6 with legend and notes on Figure 7.

The test pits were backfilled without significant compaction The backfill in the test pits should be properly compacted where it will support proposed buildings slabs or pavement

The cone penetration tests were performed on April 30 2008 Results of the tests are presented in the Appendix

SUBSURFACE CONDITIONS

The subsurface materials encountered at the site consist of approximately ½ to 1 foot of topsoil overlying predominantly clay in the lower portions of the site and sand gravel and bedrock in the upper elevations of the site. The borings drilled along the north and west

edges of the property encountered bedrock at relatively shallow depths and the borings refused in the bedrock at depths ranging from approximately 3 to 15½ feet. The soil thickness is substantially greater in the lower elevations of the site. Bedrock was encountered at depths of approximately 76 29 and 95½ feet in Borings B-5 B 6 and B 7 respectively. Bedrock was not encountered in Boring B 5 but very dense gravel was encountered in the lower portion of the boring below a depth of approximately 91 feet.

A description of the various soils and bedrock encountered in the borings and test pits follows

<u>Topsoil</u> The topsoil consists of lean clay with some sand and gravel particularly along the upper elevations at the site. The topsoil is moist dark brown and contains roots and organics

<u>Lean Clay</u> The clay contains a small to moderate amount of sand and gravel with some silt and sand layers The clay is very soft to very stiff moist to wet and brown to green to gray with some iron oxide staining

Laboratory tests performed on samples of the clay indicate that it has natural moisture contents ranging from 14 to 64 percent and natural dry densities ranging from 63 to 117 pounds per cubic foot (pcf) Results of consolidation tests performed on samples of the clay indicate that it will compress a small to large amount with the addition of light to heavy loads Results of the consolidation tests are presented on Figures 8 through 14 Triaxial compression and direct shear tests were performed on samples of the clay Results of these tests are presented on Figures 16 17 and 19

A permeability test was performed on a sample of the clay obtained from Test Pit TP 1 at a depth of approximately $\frac{1}{2}$ foot Results of the permeability test indicate that it has a permeability of 2×10^{6} centimeters per second Interlayered Lean Clay and Silt The interlayered soil contains some sand layers It is soft to stiff moist to wet and brown to gray with some cemented particles

Laboratory tests performed on a sample of the interlayered soil indicate that it has a natural moisture content of 23 percent and a natural dry density of 98 pcf

A permeability test was performed on a sample of the interlayered clay and silt obtained from Test Pit TP 7 at a depth of approximately $2\frac{1}{2}$ feet Results of the permeability test indicate that it has a permeability of 2×10^7 centimeters per second

<u>Clayey Sand</u> The sand contains some clay layers It is loose to medium dense moist to wet and brown to gray with some cemented layers and particles

Laboratory tests performed on samples of the clayey sand indicate that it has natural moisture contents ranging from 15 to 20 percent and natural dry densities ranging from 112 to 120 pcf

<u>Silty Sand</u> The sand contains some clay layers It is loose to medium dense wet and brown to dark gray to green with some iron oxide staining

Laboratory tests performed on samples of the silty sand indicate that it has natural moisture contents ranging from 18 to 34 percent and natural dry densities ranging from 90 to 111 pcf

<u>Poorly Graded Sand with Silt</u> The sand contains some gravel and clay layers It is medium dense to dense wet and brown to gray with cemented particles

Laboratory tests performed on samples of the sand indicate that it has natural moisture contents ranging from 10 to 11 percent and natural dry densities ranging from 123 to 129 pcf

<u>Interlayered Sand and Gravel</u> The sand and gravel contains some clay layers It contains a small amount of silt is medium dense to dense wet and black to brown

<u>Clayey Gravel with Sand</u> - The gravel is medium dense to dense moist to wet and brown to gray

<u>Poorly Graded Gravel with Sand</u> The gravel is medium dense wet and brown to gray

<u>Bedrock</u> Two bedrock types were encountered at the site One consists of a diamictite which is moderately to highly weathered hard to very hard variably cemented fine grained clayey matrix with pebble to gravel sized subangular to angular inclusions. The rock is gray to dark gray and occasionally yellowish brown

The other bedrock encountered consists of slate which is moderately to highly weathered hard to very hard highly foliated has slaty cleavage and some iron staining along cleavage planes. The slate is gray to black

Laboratory tests performed on a sample of the slate indicate that it has a natural moisture content of 3 percent and a natural dry density of 112 pcf Results of a direct shear test performed on the slate which was ground to a powder compacted into a mold near its natural moisture content and density are presented on Figure 15

Results of the laboratory tests are summarized on Table I and are included on the logs of the borings and test pits

SUBSURFACE WATER

Subsurface water was encountered at depths ranging from approximately 6 to 12 feet based on measurements taken up to approximately 167 days after drilling borings or excavation of test pits No subsurface water was encountered in Borings B 1 B 2 and B 3 as these borings were drilled in the upper elevations of the site and encountered bedrock at a shallow depth Slotted PVC pipe was installed in the borings and test pits to facilitate future measurement of the water level Fluctuations in the water level can be expected over time

PROPOSED CONSTRUCTION

We understand that the landfill will consist of construction waste with a significant amount of wood product. We understand that much of the concrete in the waste will be recycled for other uses and thus the concrete content of the landfill will be relatively low. The landfill is planned to be approximately 250 feet in height with constructed side slopes of 3 horizontal to 1 vertical. Benches are planned for each approximately 50 feet of vertical rise.

STABILITY ANALYSIS

The stability analysis assumes that the waste will be composed of construction waste with a significant amount of wood product Based on the literature we have assumed a total unit weight for the landfill of 45 to 75 pcf and strengths consisting of a cohesion of 300 pounds per square foot (psf) and a friction angle of 33 degrees Based on laboratory testing of the subsurface materials we have assumed a total unit weight of 120 pcf a cohesion of 420 psf and a friction angle of 18 5 degrees for the native soil below the landfill Based on these assumptions we have analyzed the stability of the landfill using the modified Bishop Method of analysis **A** safety factor against failure under static conditions is estimated to be 1 8

For the seismic condition in which a large magnitude earthquake may occur along the Wasatch Fault to the east of the site we have assumed ground shaking with a probability of occurrence of 2 percent in 50 years factored by two thirds. We have then assumed an allowable 2 inches of deformation. This results in a horizontal ground acceleration of 0.13g which was used to perform a pseudo static analysis. Results of the analysis indicate that the safety factor is 1.2 for this seismic condition and the assumed landfill configuration and soil strengths as indicated above.

SETTLEMENT ANALYSIS

The estimate for settlement assumes the landfill layout as described in the Proposed Construction section of the report a landfill total unit weight of 45 to 75 pcf and soil parameters determined from the subsurface conditions encountered and laboratory test results. Based on the results of our analysis we estimate on the order of 5 to 6½ feet of settlement for the 45 to 75 pcf waste density respectively could occur towards the center of the landfilled area decreasing out toward the edges. No significant settlement is expected where the landfill will extend over the bedrock and the bedrock is at a relatively shallow depth such as along the north and west edges of the property.

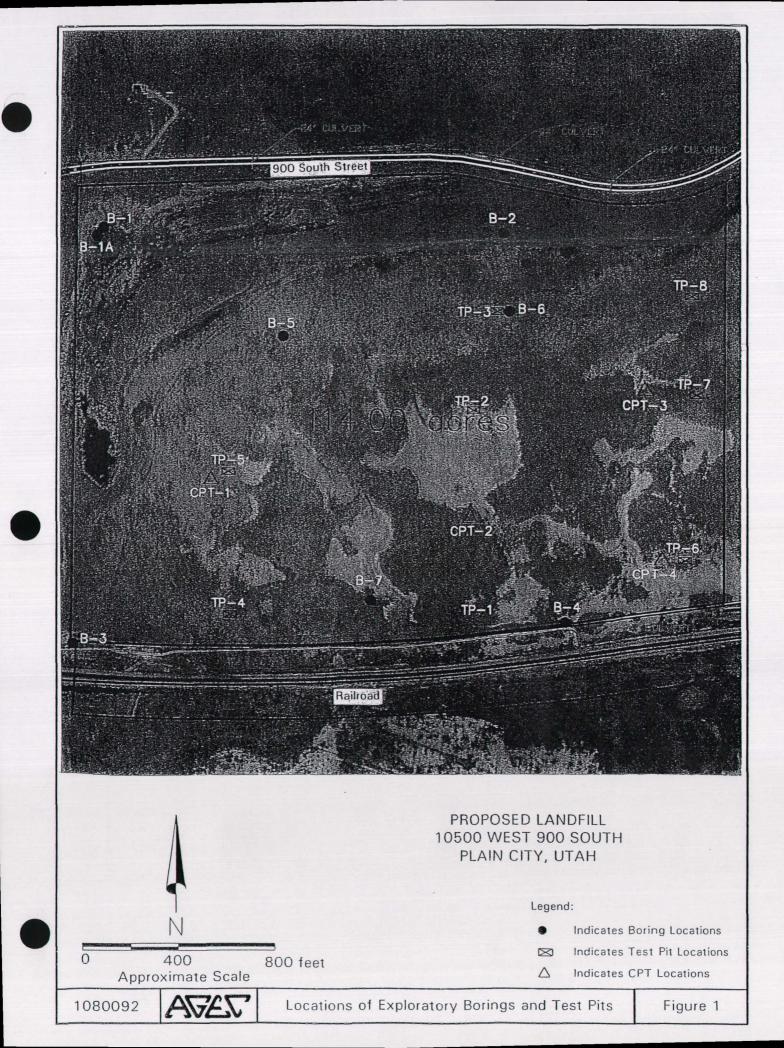
LIQUEFACTION ANALYSIS

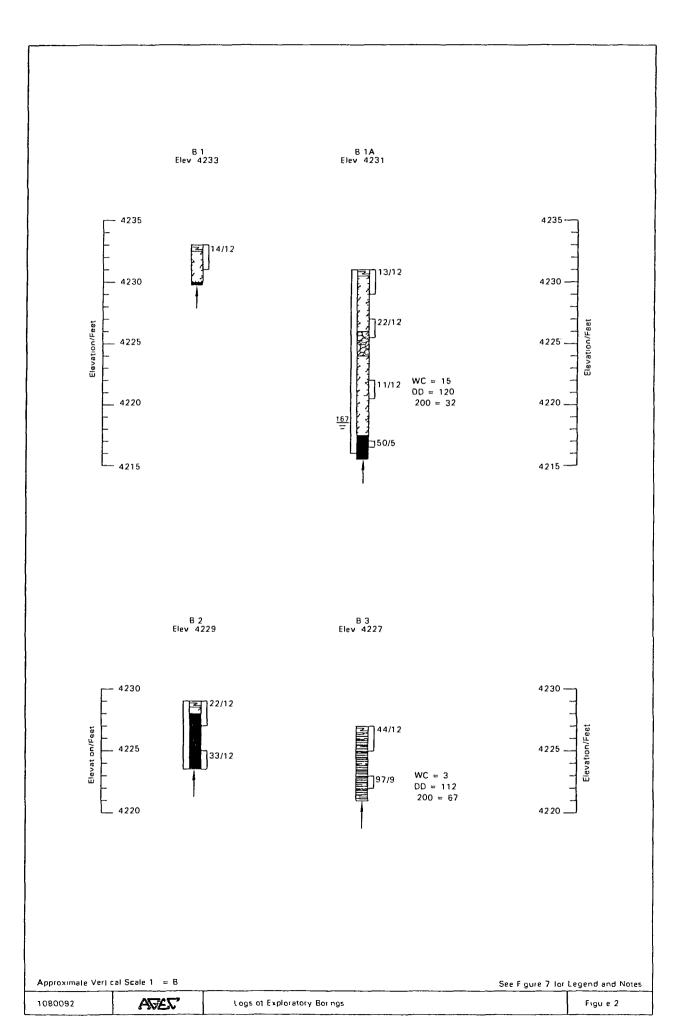
The site is underlain predominantly by clay which is not susceptible to liquefaction However there are some layers of sand which based on the boring information could liquefy during an IBC 2006 design seismic event. We estimate up to approximately 6 inches of liquefaction induced settlement could occur as suggested by Boring B 5. This liquefaction could result in some lateral movement of the south and east sides of the landfill depending on the extent of the liquefaction. We estimate this lateral movement to be on the order of 2 feet for IBC 2006 design ground motion.

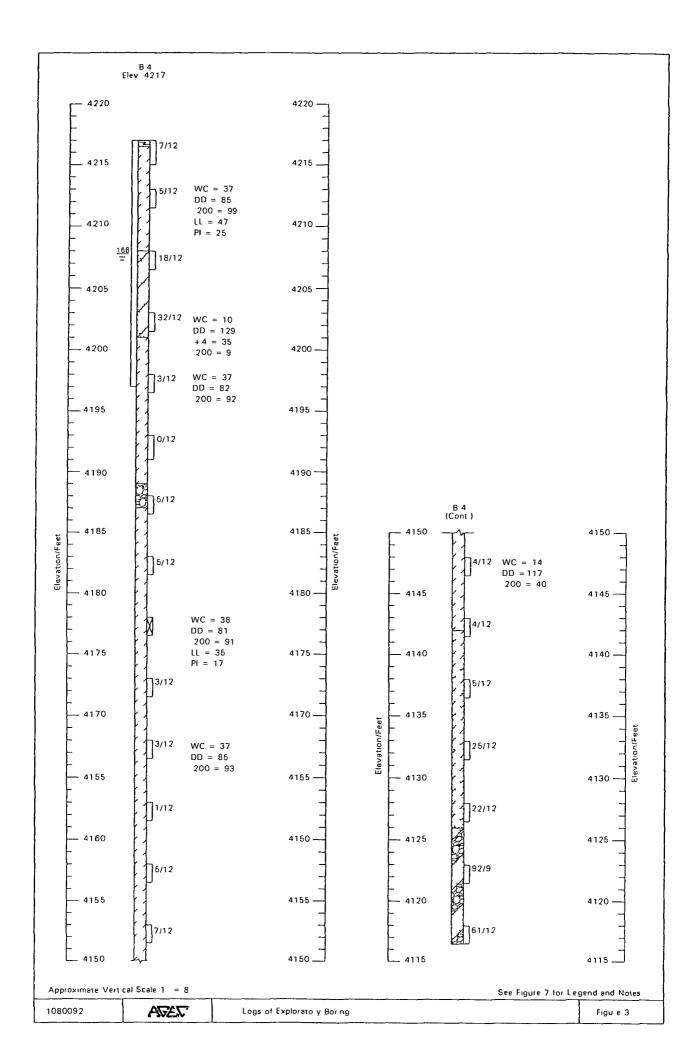
LIMITATIONS

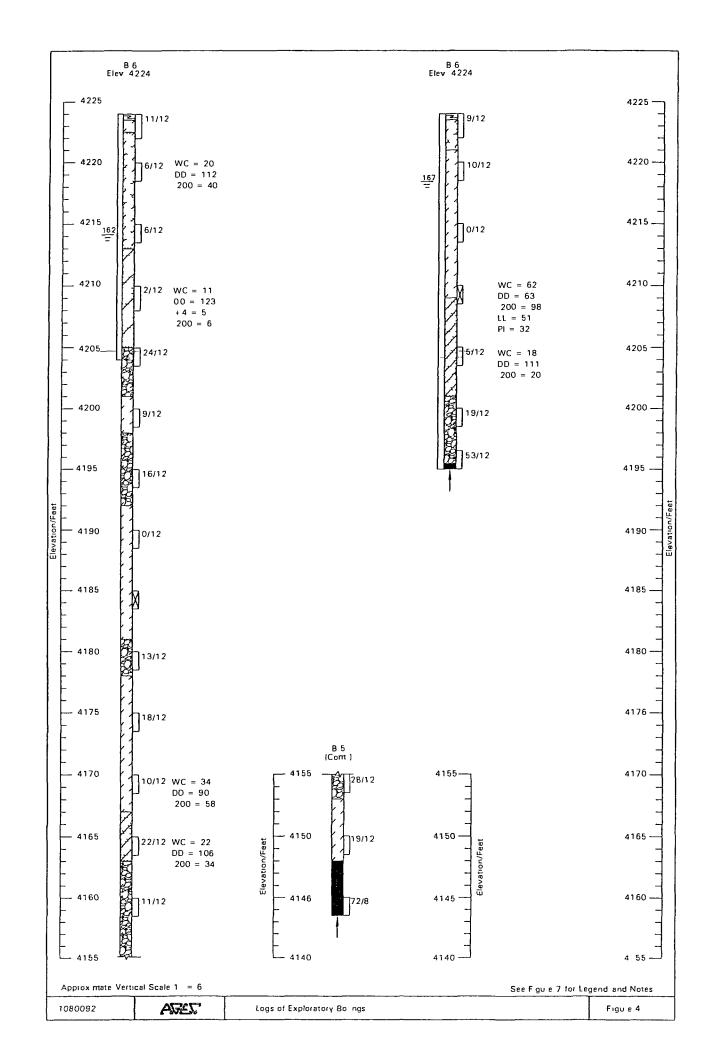
This report has been prepared in accordance with generally accepted soil and foundation engineering practices in the area for the use of the client for design purposes. The conclusions and recommendations included within the report are based on the information obtained from the borings drilled. CPT testing test pits excavated at the approximate locations indicated on Figure 1 and the data obtained from laboratory testing. Variations in the subsurface conditions may not become evident until additional exploration or excavation is conducted. If the proposed construction, subsurface conditions or groundwater level is found to be significantly different from what is described in this report, we should be notified to reevaluate the recommendations given.

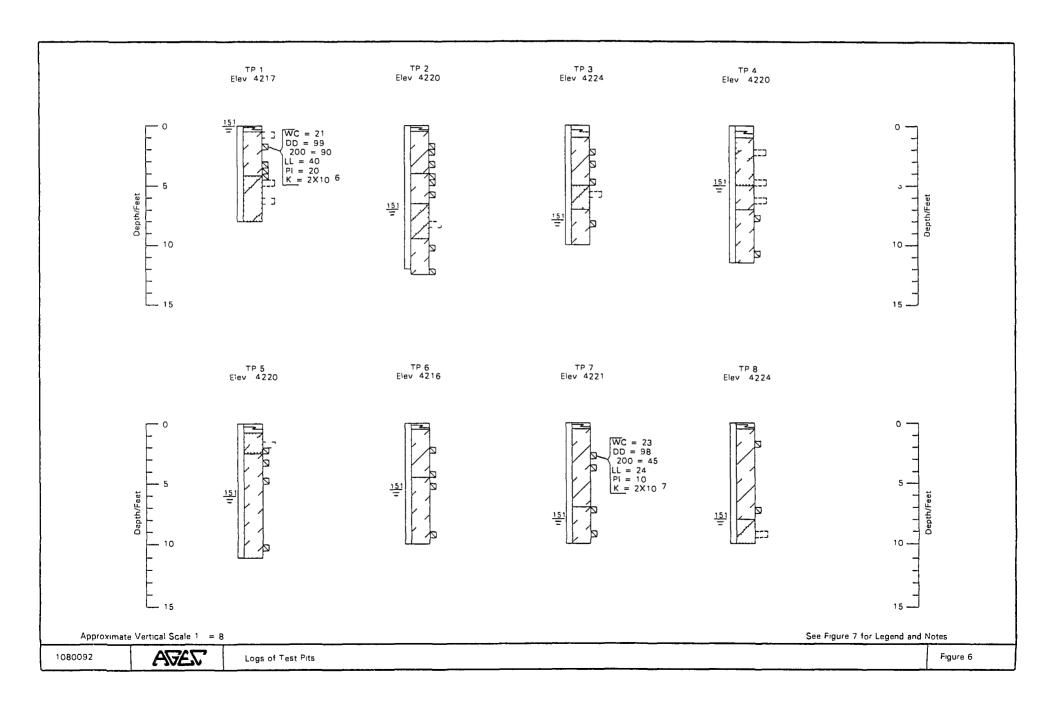
APPLIED GEOTECHNICAL ENGINEERING CONSULTANTS INC

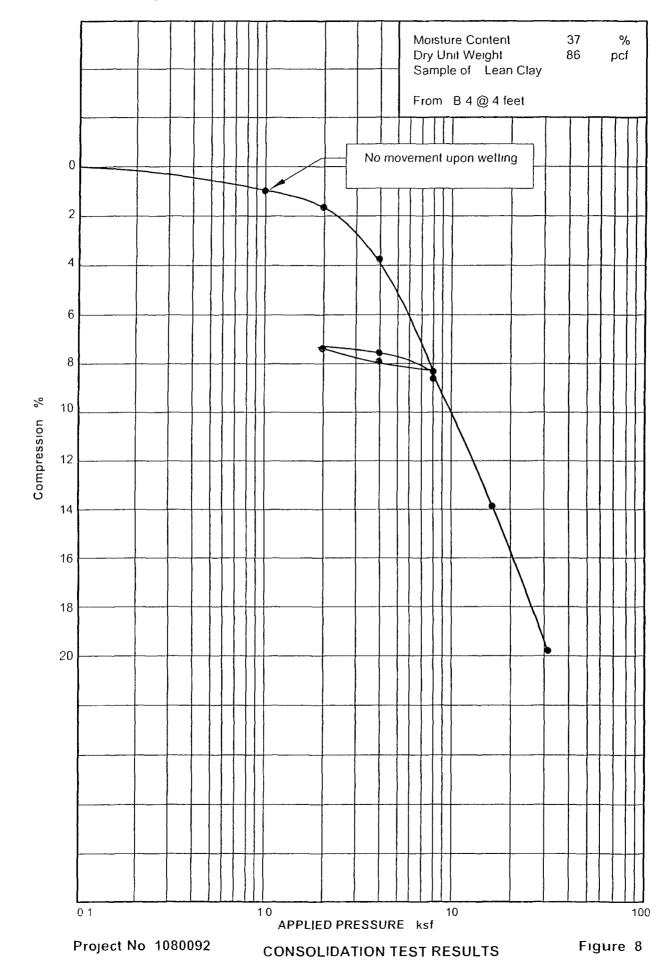

Douglas R Hawkes

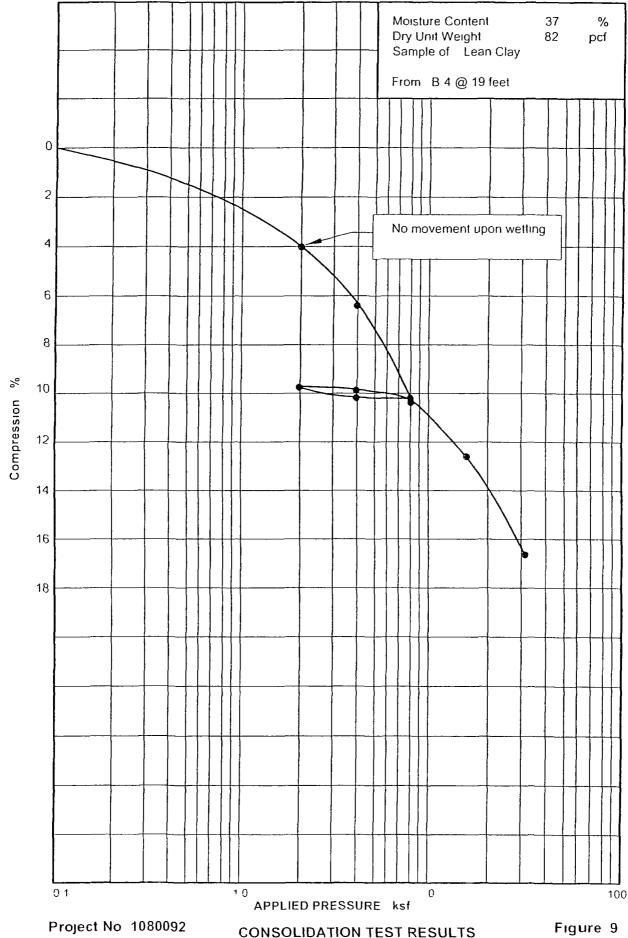

Matthe B.O.A

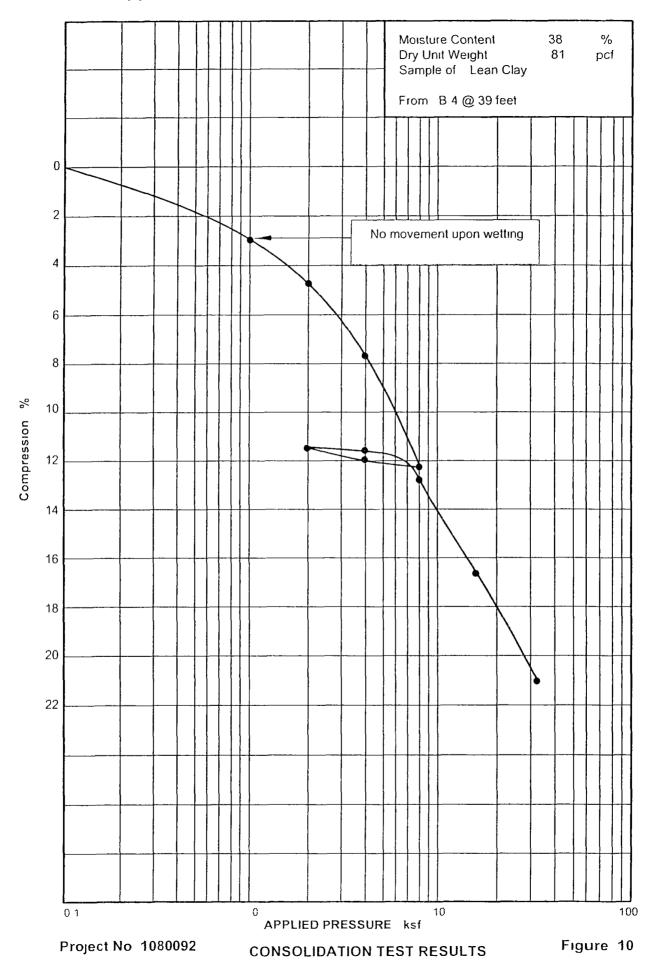

Reviewed by Matthew B Olsen P E

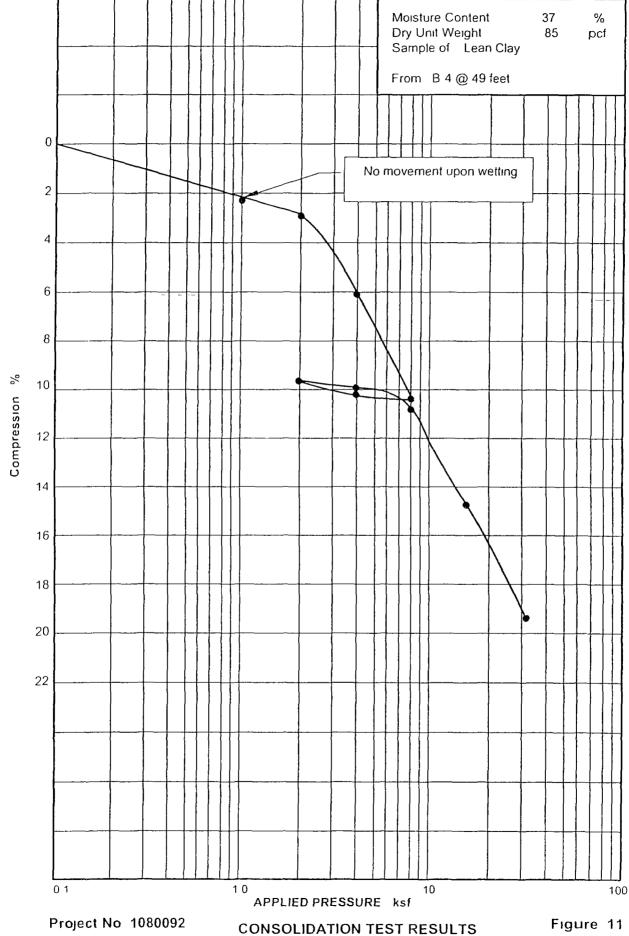

DRH/dc



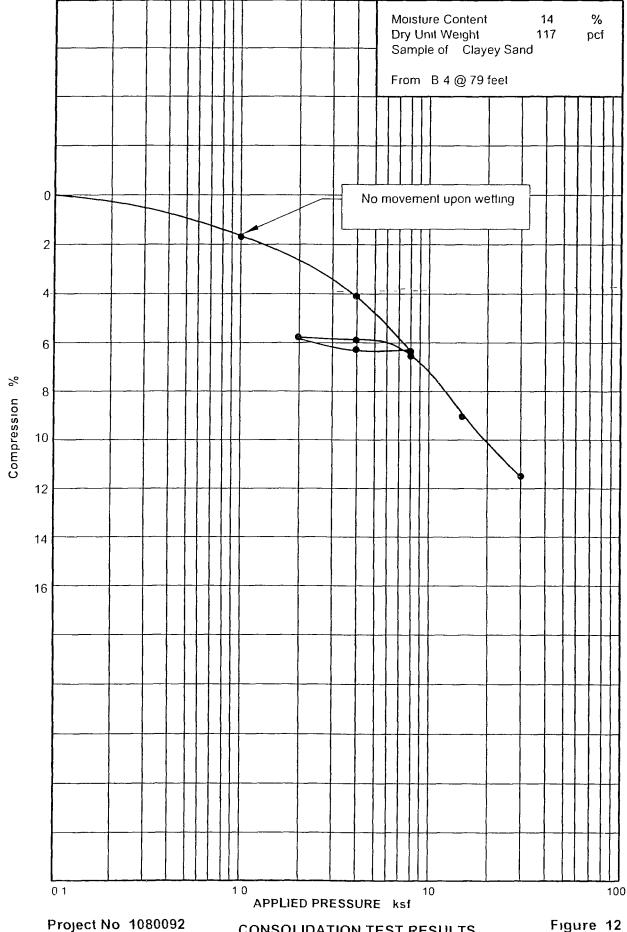


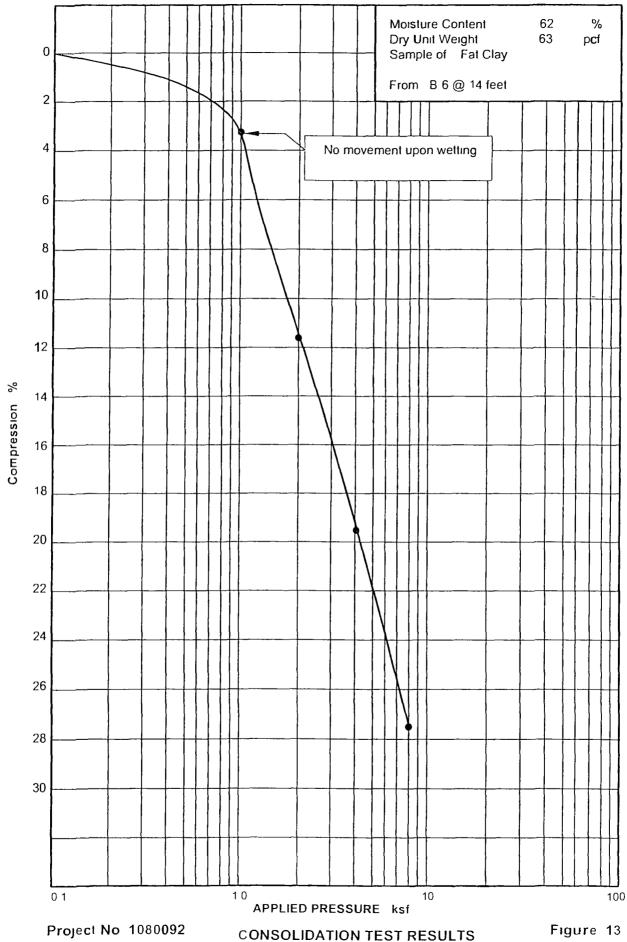




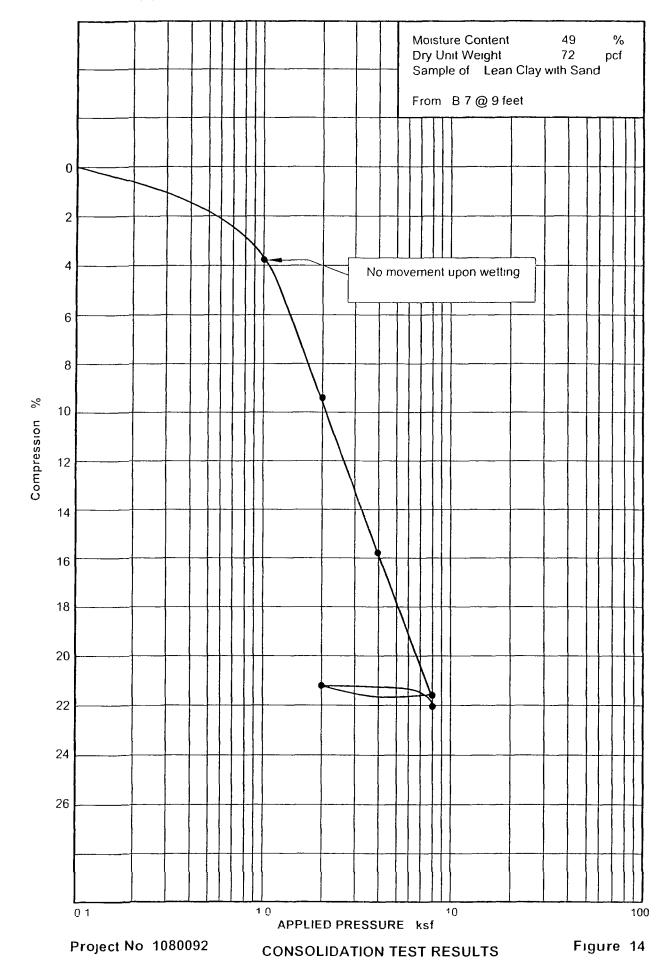

EGEN		LEGEND (Cont)
2	Topsoil lean clav som sand and gravel moist dark brown oots orgs ics	
;]	Lean Clav (CL) small to mode ate amount of sand and gravel some silt and sand layers very soft to very stiff most to wet brown to grøen to gray some iron oxide staining	Indicates slotted 1 / inch PVC pipe installed in the boring to the depth shown 167 Indicates the depth to free water and the number of days after drilling the
7	Interlayered Lean Clay and Silt fCL/ML) some sand layers soft to stiff moist to wet brown to gray some cemented particles Clayey Sand (SC) some clay layers loose to medium dense moist to wet brown to darl gray some cemented layers and particles	measurement was taken
	Silty Sand (SM) some clay layers loose to medium dense, wet, brown to dark gray to green, some iron oxide staining	
	Poorly graded Sand with Silt (SP SM) some gravel and clay layers medium dense to dense wet brown to dark gray some cemented particles	NOTES
8	Interlayered Sand and Gravel (SP/GP) some clay layers small amount of silt medium dense to very dense wet black to brown	Borings were drilled on April 8 9 and 10 2008 with 8 inch diamete hollowstem auger Test Pits were excavated on April 24 2008 with rubber tired backhoe
日本	Clayey Gravel with Sand (GC) medium dense to dense moist to wet brown to gray	2 Locations of borings and test pits were surveyed by Hansen Allen & Luce 3 Elevations of borings and test pits were determined by Hansen Allen & Luce
N.	Poorly graded Gravel with Sand (GP) med um dense wet ib own to dark gray	4 The boring and test pit locations and elevations should be considered accurate only to the degree implied by the method used
6	Diamictite hard to very hard moderately to highly weathered friable to moderately hard variably cemented fine grained clayey matrix with pebble to gravel sized subangular to angular inclusions gray to dark gray occasionally yellowish brown	5 The lines between the materials shown on the boring and test pit logs represent the approximate boundanes between material types and the transitions may be gradual
	Slate moderately to highly weathered hard to very hard highly foliated slaty cleavage gray to black some iron staining along cleavage planes	6 Water level readings shown on the logs were made at the time and under the conditions indicated - Fluctuations in the water level may occur with time
	2 California Drive sample taken. The symbol 10/12 indicates that 10 blows from a 140 pound automatic hammer falling 30 inches we e required to drive the sampler 12 inches.	7 WC = Water Content (%) DD = Dry Density (pcf) +4 = Percent Retained on No 4 Sieve 200 = Percent Passing No 200 Sieve
	Indicates Shelby Tube sample taken	LL = Liquid Limit (/) Pl ≈ Plasticity Index (&) K ≈ Permeability (cm/sec)
2	Indicates relatively undisturbed hand driva sample taken	
ſ ⁻ :	Indicates disturbed sample taken	

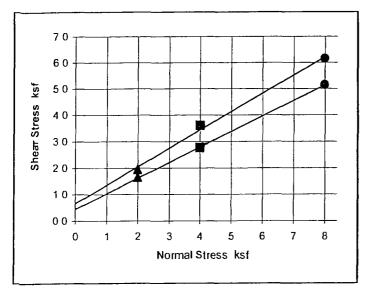
1080092

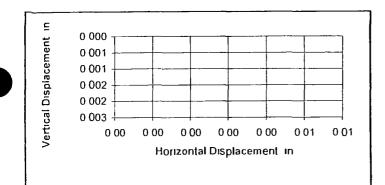


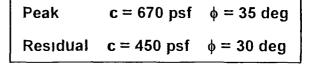


. Compr

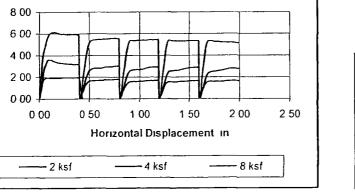



ł


CONSOLIDATION TEST RESULTS



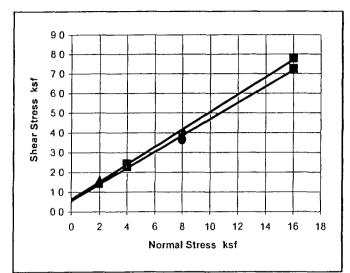
Ļ

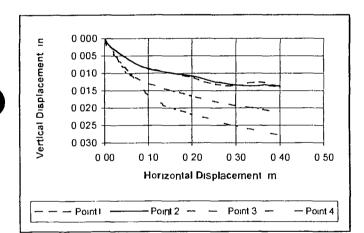


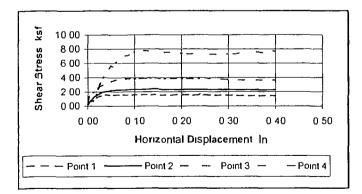
Project and Sample Information		
Project Number	1080092	
Project Name	Moulding	
Sample Identification	B-3@4 feet	
Sample Description	Slate	

Test No (Symbol)	1 (▲)	2 (🛙)	3(•)
Test Type	Consolidated Wetted		
Sampe Type		Remolded	dt
Length in		1 00	
Diameter in		2 00	
Dry Density pcf			
Moisture Content %			
Consol Load ksf	2	4	8
Normal Load ksf	2	4	8
Shear Stress_ksf Peak	19	36	62
Shear Stress ksf Residual	16	28	52
Rate of Strain	0 002 in/min		
Comments Sample was ground to powder and			

remolded to 110 pcf at 3 percent moisture prior to testing Sample was sheared thru five cycles


Sample PropertiesDry Density pcf112Moisture Content %3Liquid Limit %9Plasticity Index %9Percent Gravel9Percent Sand9Percent passing No 200 Sieve67

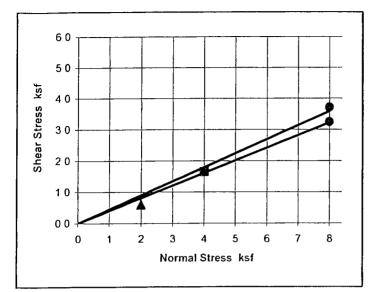

Project No 1080092

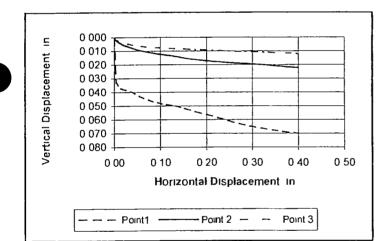

ksf

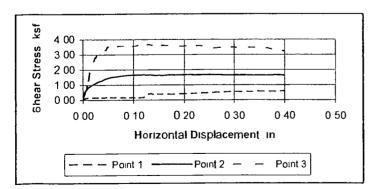
Shear Stress

Direct Shear Results

Peak	c = 620 psf	φ = 24 deg
Residual	c = 550 psf	φ = 23 deg


Project and Sample Information		
Project Number	1080092	
Project Name	Moulding	
Sample Identification	B 4@39 feet	
Sample Descnption	Lean Clay	

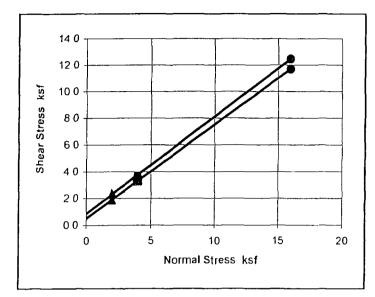

Test No (Symbol)	1 (▲)	2 (13)	3(•)	4())
Test Type	Consolidated Wetted			
Sampe Type	Undisturbed			
Length m	1 00	1 00	1 00	1 00
Diameter in	1 93	1 93	1 93	1 93
Dry Density pcf		81		
Moisture Content %		38		
Consol Load ksf	2	4	8	16
Normal Load ksf	2	4	8	16
Shear Stress ksf Peak	16	24	40	78
Shear Stress ksf Residual	14	2 3	36	73
Rate of Strain		0 0086 i	n/min	
Comments				

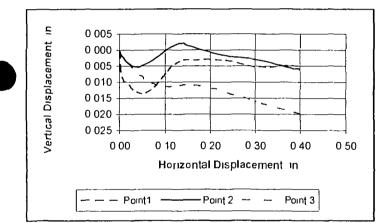

Sample Properties	
Dry Density pcf	81
Moisture Content %	38
Liquid Limit %	35
Plasticity Index %	17
Percent Gravel	
Percent Sand	
Percent passing No 200 Sieve	91

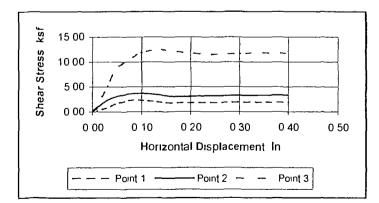
Project No 1080092

Direct Shear Results

Peak	c = 0 psf	φ = 24 deg	
Residual	c = 0 psf	φ = 22 deg	


Project and Sample Information		
Project Number	1080092	
Project Name	Moulding	
Sample Identification	B-6@14 feet	
Sample Descnption	Fat Clay	


Test No (Symbol)	1 (▲)	2 (🖬)	3(@)
Test Type	Consolidated Wetted		
Sampe Type	Undisturbed		
Length in	1 00	1 0 0	1 00
Diameter in	1 93	193	1 93
Dry Density pcf		63	
Moisture Content %		62	
Consol Load ksf	2	4	8
Normal Load ksf	2	4	8
Shear Stress ksf			
Peak	06	17	37
Shear Stress ksf			
Residual	06	17	33
Rate of Strain	C) 0086 in/n	nin
Comments			
	<u> </u>		

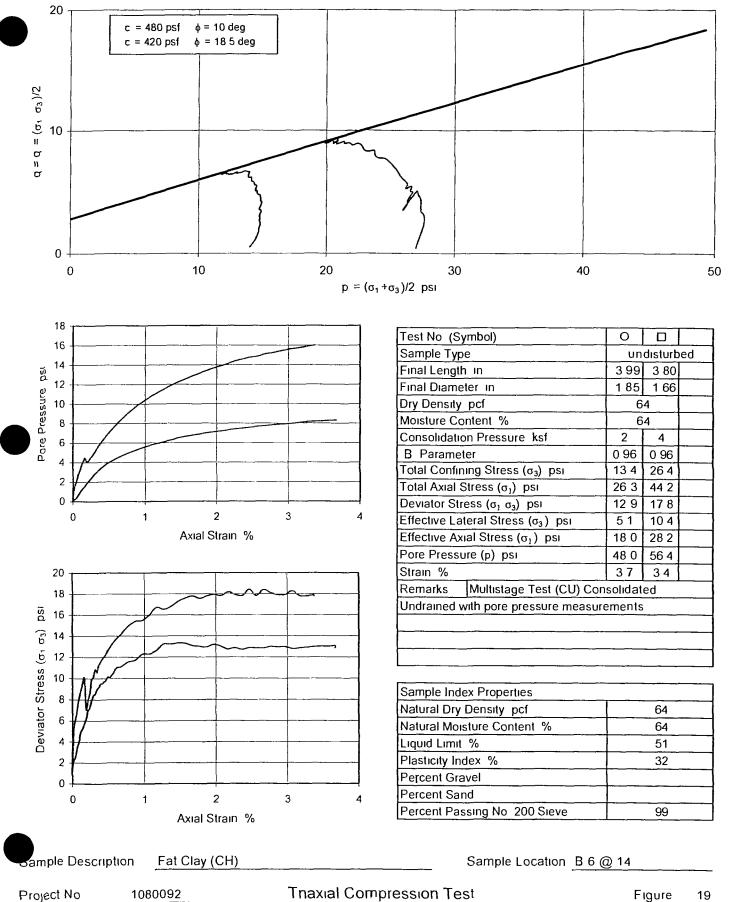

Sample Properties	
Dry Density pcf	63
Moisture Content %	62
Liquid Limit %	51
Plasticity Index %	32
Percent Gravel	
Percent Sand	
Percent passing No 200 Sieve	99

Project No 1080092

Direct Shear Results

Peak	c = 860 psf	ϕ = 36 deg
Residual	c = 500 psf	φ = 35 deg

Project and Sample Information						
Project Number	1080092					
Project Name	Moulding					
Sample Identification	B7@14 feet					
Sample Description	Poorly graded Sand with Silt					


Test No (Symbol)	1 (▲)	2(1)	3(•)			
Test Type	Consolidated Wetted					
Sampe Type	Undisturbed					
Length in	1 00	1 0 0	1 00			
Diameter in	1 93	1 93	1 93			
Dry Density pcf		115				
Moisture Content %		13				
Consol Load ksf	2	4	16			
Normal Load ksf	2 4		16			
Shear Stress ksf						
Peak	24	37	12 5			
Shear Stress ksf						
Residual	19	33	117			
Rate of Strain	C) 0033 m/n	ייייייייייייייייייייייייייייייייייייי			
Comments						

Sample Properties	
Dry Density pcf	115
Moisture Content %	13
Liquid Limit %	
Plasticity Index %	
Percent Gravel	
Percent Sand	
Percent passing No 200 Sieve	9

Project No 1080092

Direct Shear Results

Figure 18

· - -----

TABLE I

SUMMARY OF LABORATORY TEST RESULTS

PROJECT NUMBER 1080092

Page 1 of 2

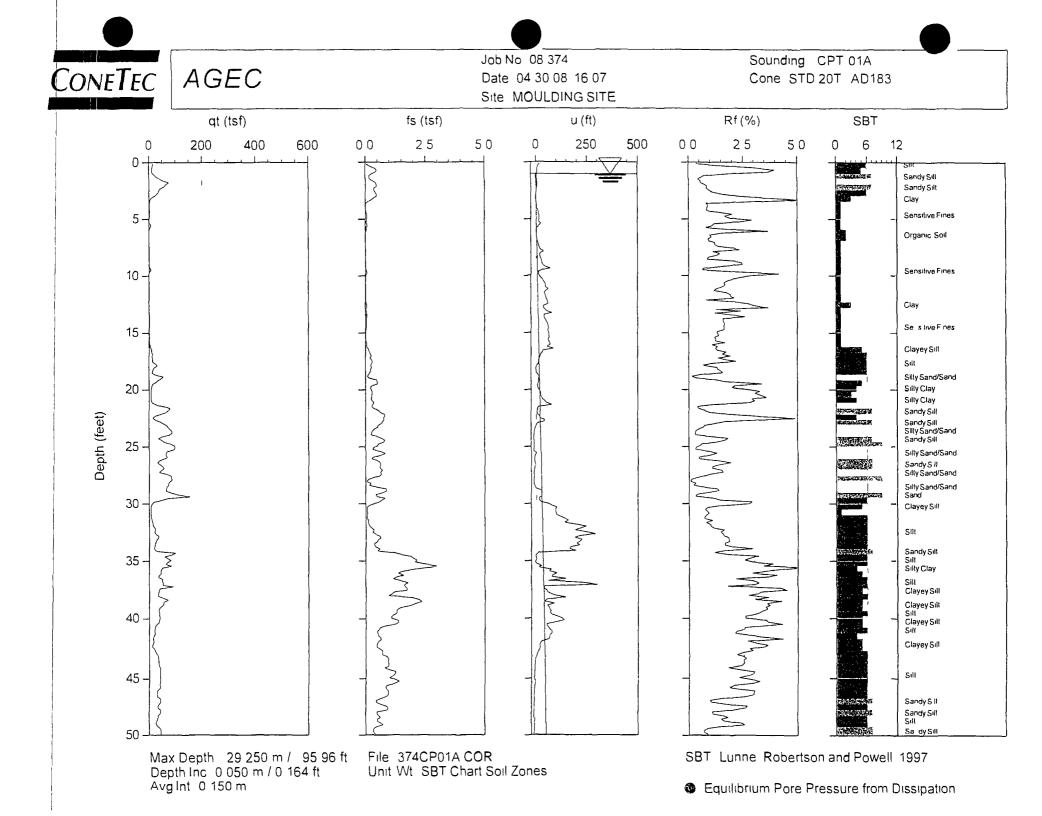
	SAMPLE		NATURAL		GRADATION			ATTERBERG LIMITS			WATER	SAMPLE
BOR	ING	DEPTH CONTENT (FEET) (%)	CONTENT	DRY DENSITY (PCF)	GRAVEL (%)	SAND {%)	SILT/ CLAY (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	COMPRESSIVE STRENGTH (PSF)	SOLUBLE SULFATE (ppm)	CLASSIFICATION
B 1	А	9	15	120			32					Clayey Sand
<u>В</u>	3	4	3	112			67	 	· · · · ·			Slate
В		4				·	99	47	26			
	4	14	37 10	86 129	35	56	9	47				Lean Clay Poorly graded Sand with Silt
┣									·			and Gravel
		19	37	82			92 91	35	17			Lean Clay
		<u>39</u> 49	38 37	81 85			93		17			Lean Clay Lean Clay
		79	14	117			40					Clayey Sand
		/ / /										
В	5	4	20	112			40					Clayey Sand
		14	11	123	5	89	6			· · · · · · · · · · · · · · · · · · ·		Well graded Sand with Silt
		54	34	90			58					Sandy Lean Clay
		59	22	106			34					Silty Sand
В	6	14 (1)	64	64			99					Fat Clay
		14 (2)	62	63			98	51	32			Fat Clay
		19	18	111			20					Silty Sand
В	7	9	49	72	<u> </u>		79			ļ		Lean Clay with Sand
 	<u> </u>	14	13	115			9		<u> </u>			Poorly graded Sand with Silt
	+						l					

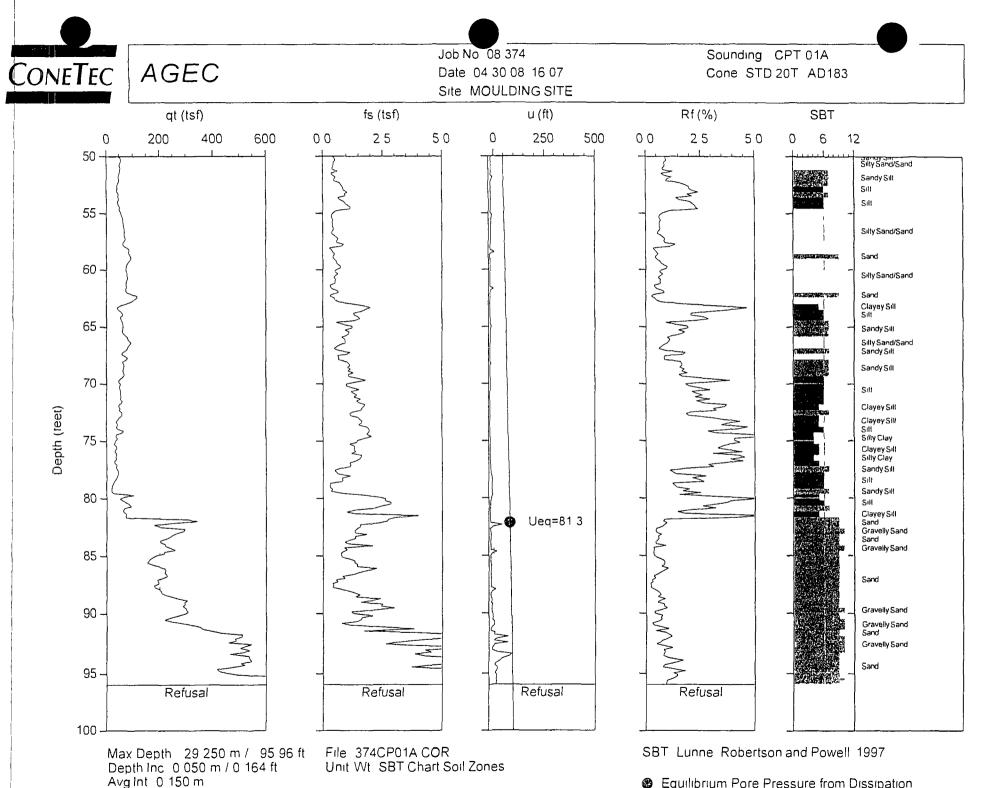
APPLIED GEOTECHNICAL ENGINEERING CONSULTANTS, INC.

TABLE I

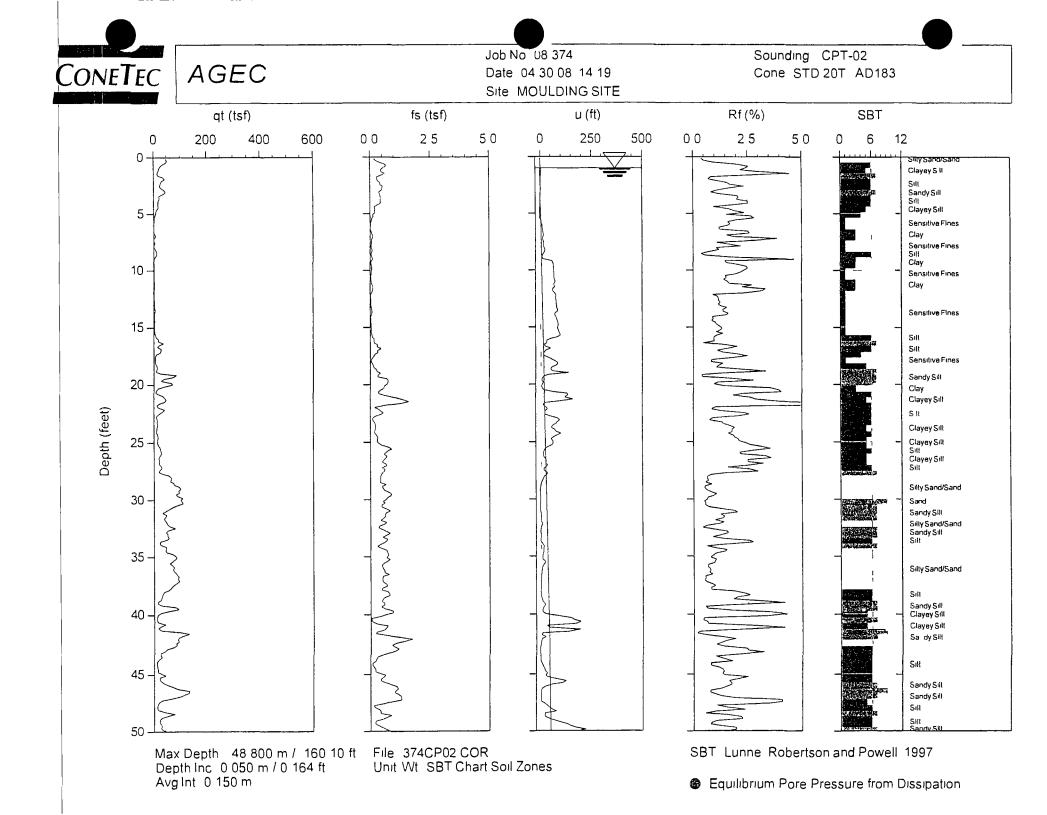
SUMMARY OF LABORATORY TEST RESULTS

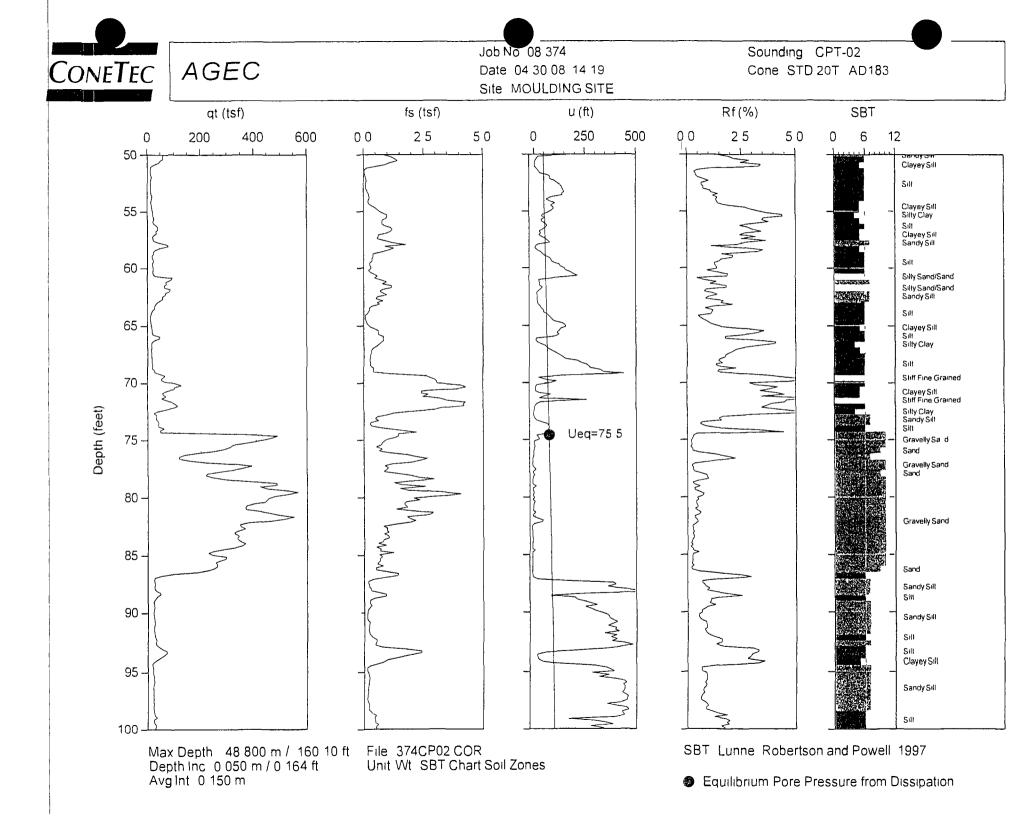
PROJECT NUMBER 1080092

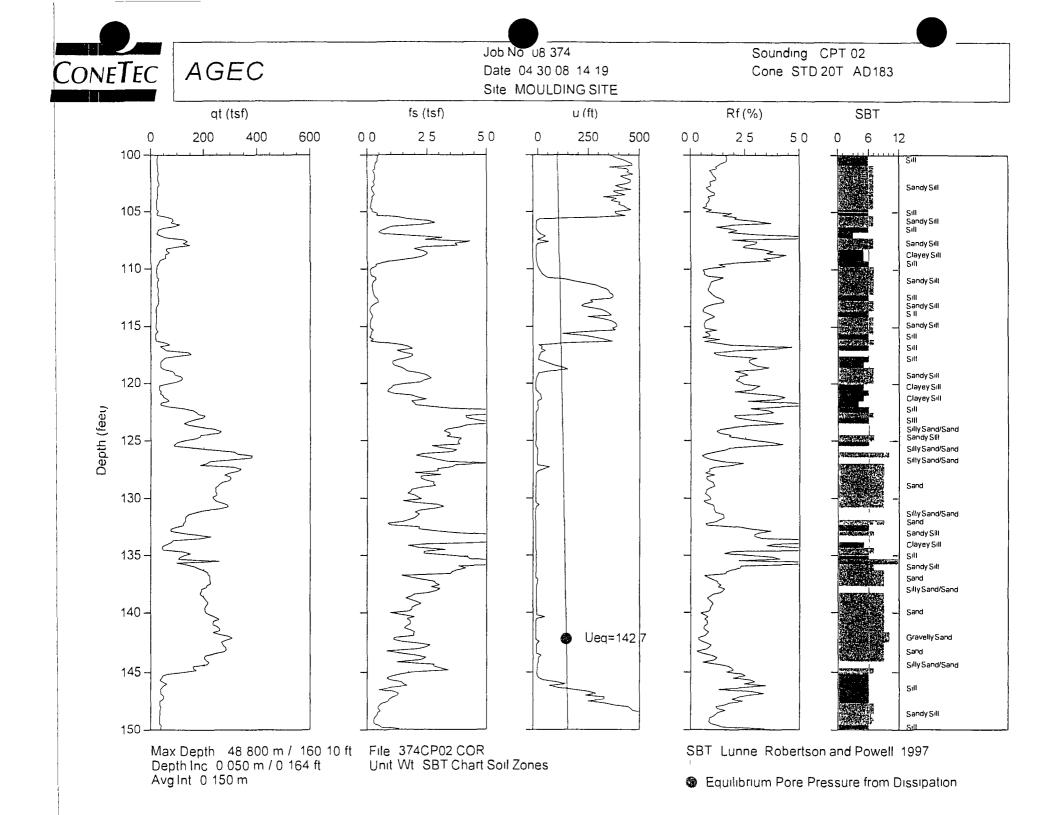

Page 2 of 2

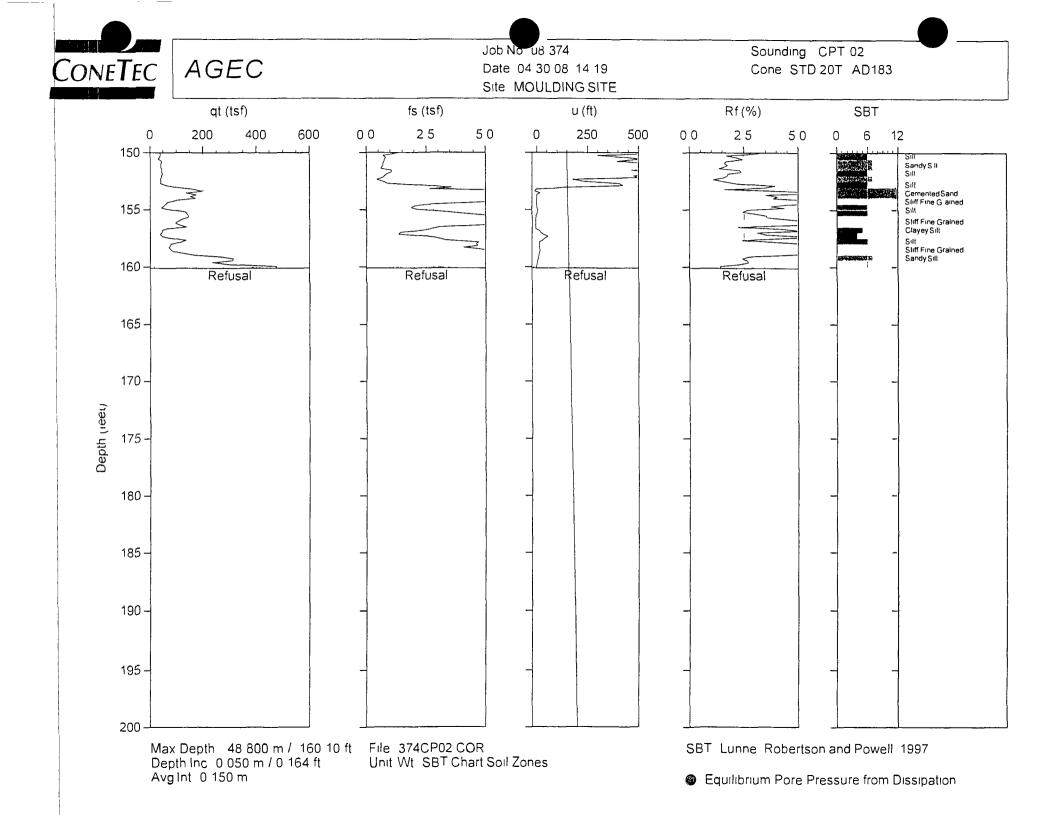

	SAMPLE LOCATION		NATURAL		GRADATION			ATTERBERG LIMITS		UNCONFINED	WATER	SAMPLE
TE PI		DEPTH (FEET)	MOISTURE CONTENT (%)		GRAVEL (%)	SAND (%)	SILT/ CLAY (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	COMPRESSIVE STRENGTH (PSF)	SOLUBLE SULFATE (ppm)	CLASSIFICATION
ТР	2	6	21	99			90	40	20			Lean Clay
 							·					
ТР	4	2 ½	23	98			45	24	10			Interlayered Lean Clay and Sandy Silt with Cemented Particles
												
 		 			ļ							
 							·					
			[
		<u> </u>										
											_	
							·					

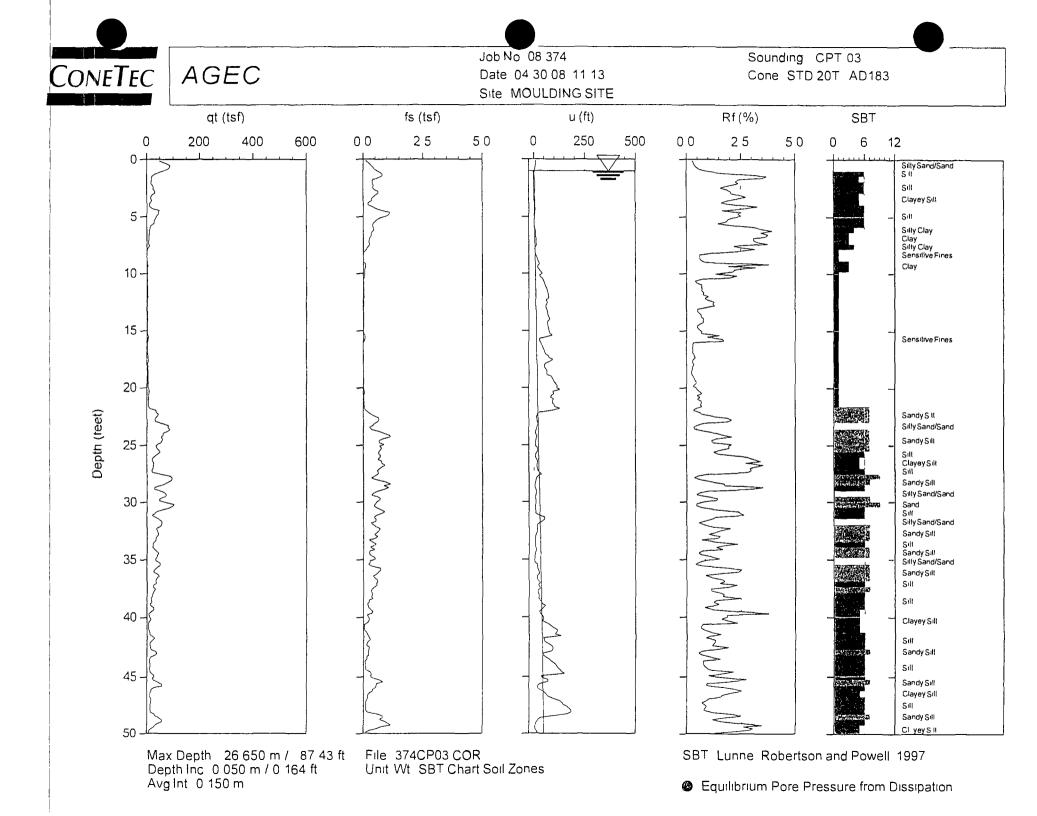
. .

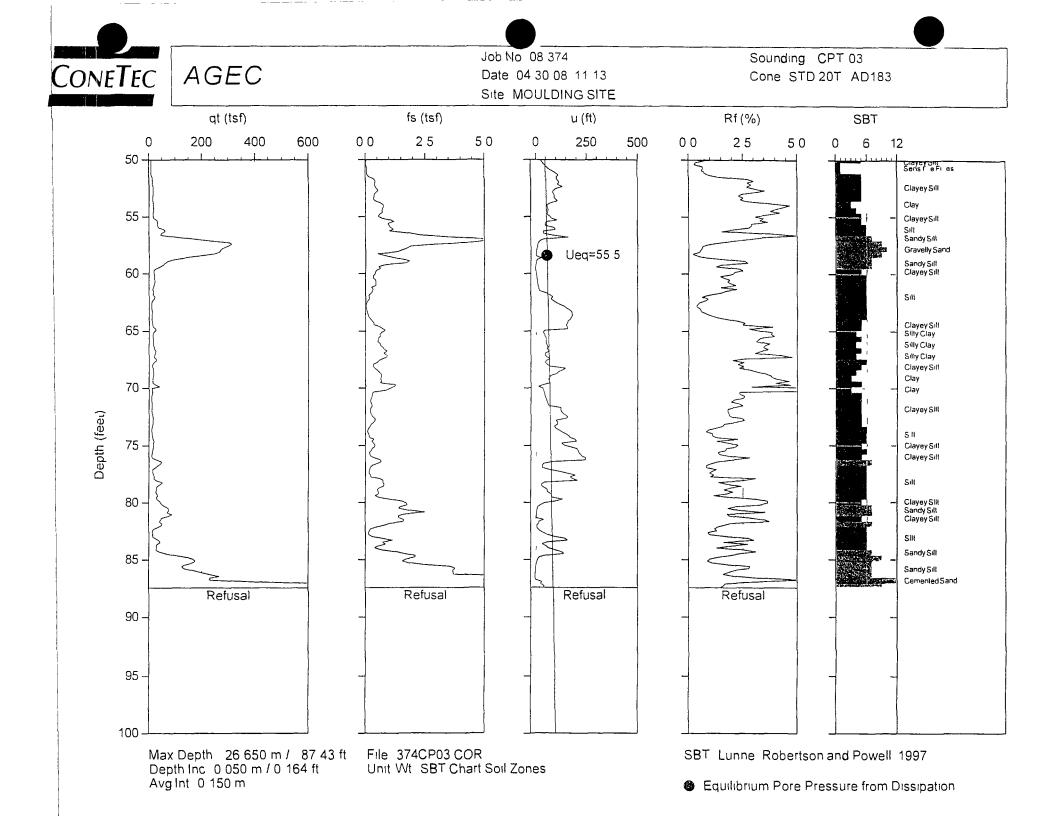

APPENDIX

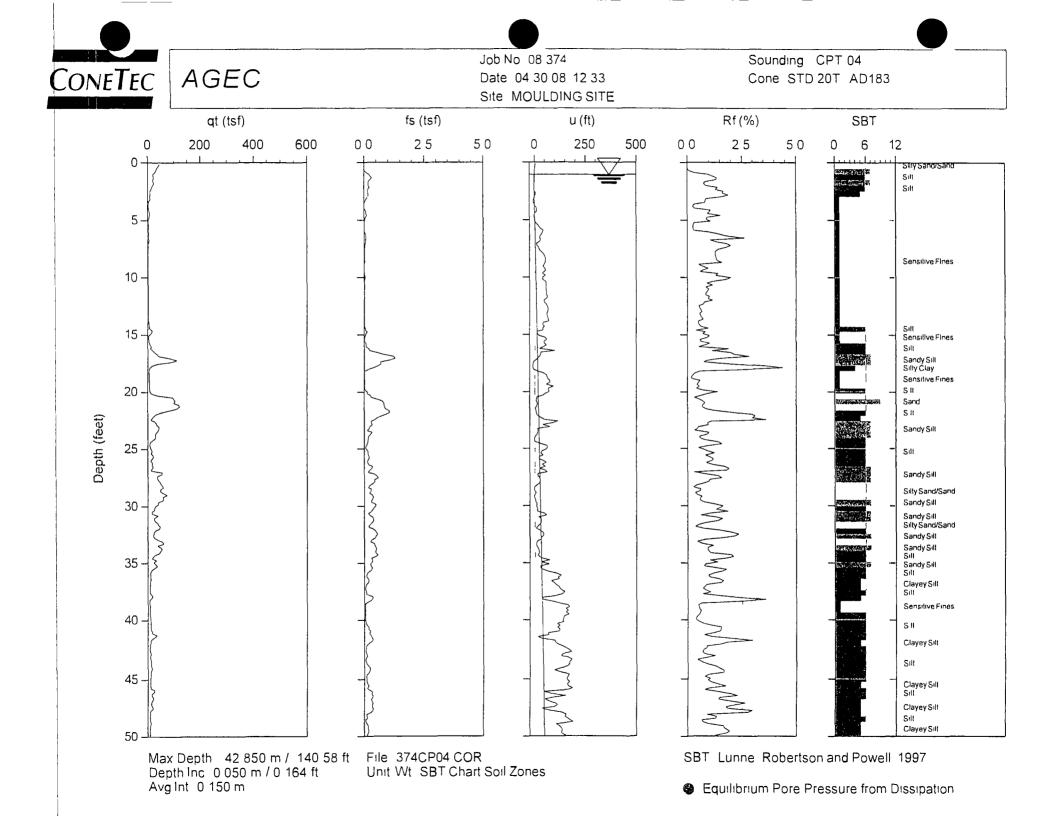

CONE PENETRATION TEST RESULTS

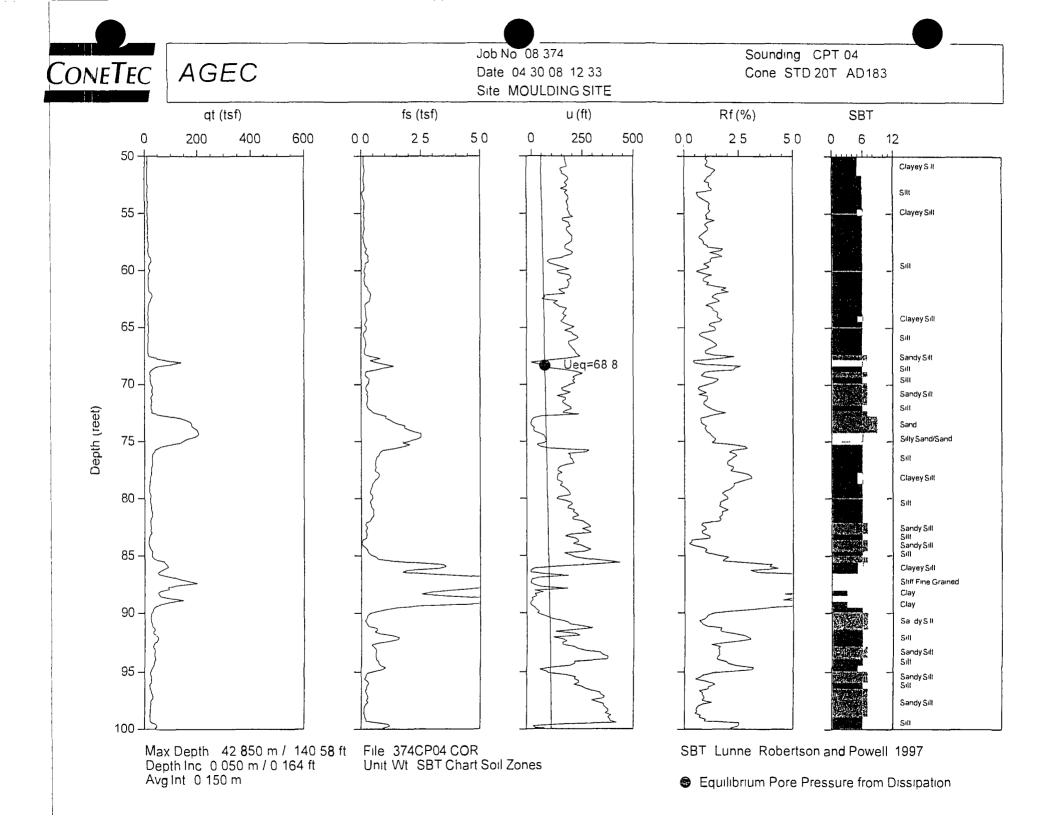


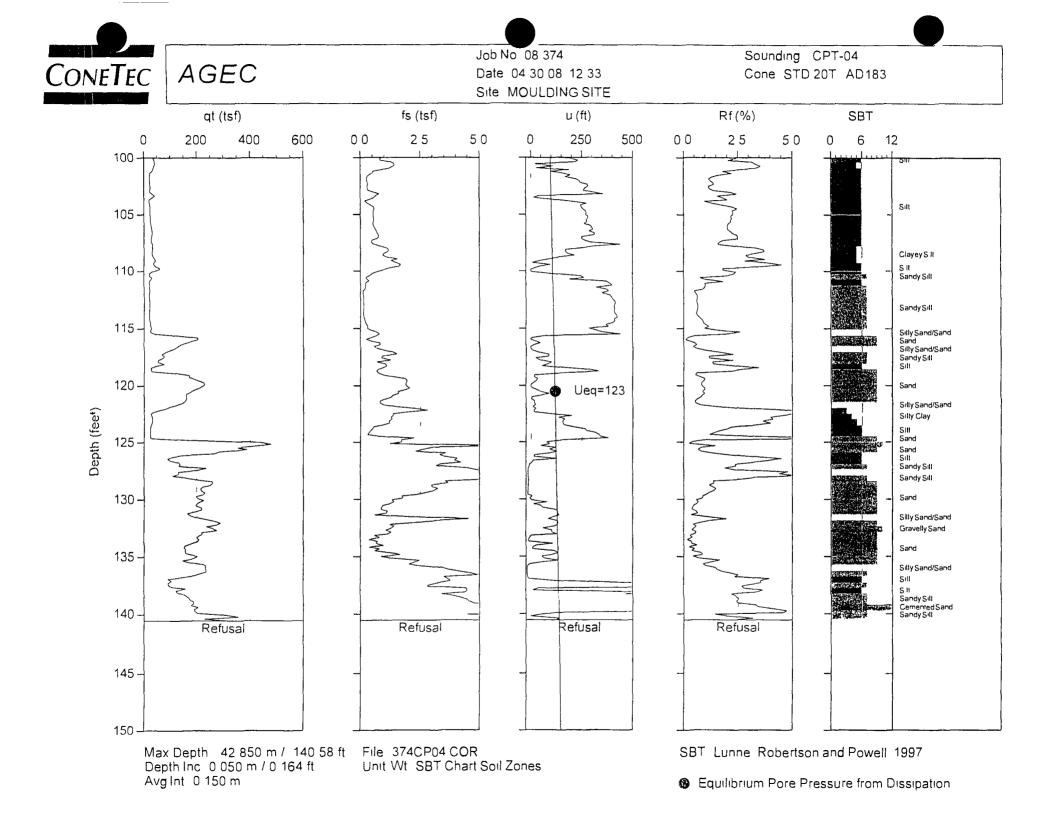


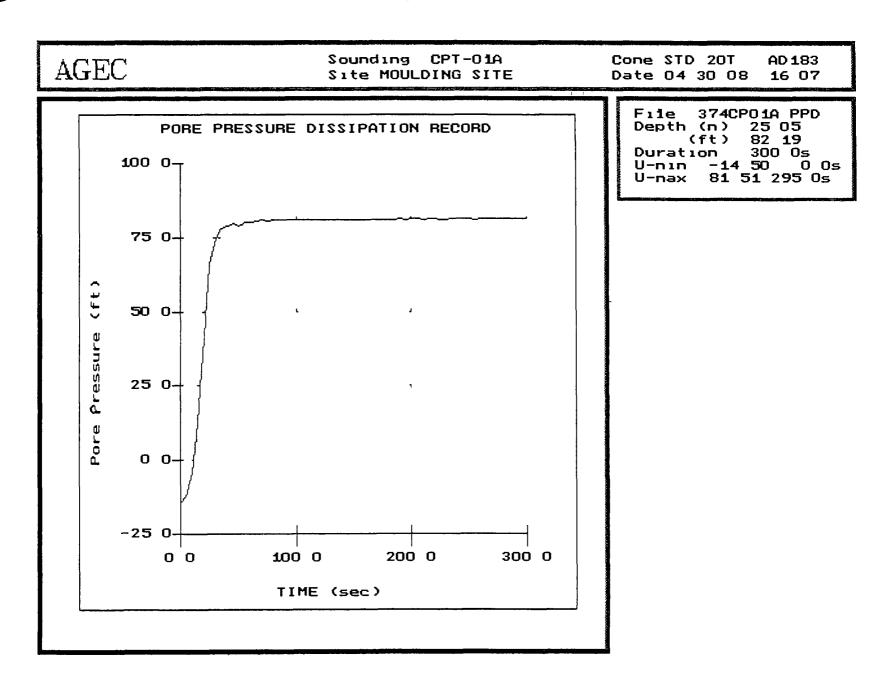

Equilibrium Pore Pressure from Dissipation

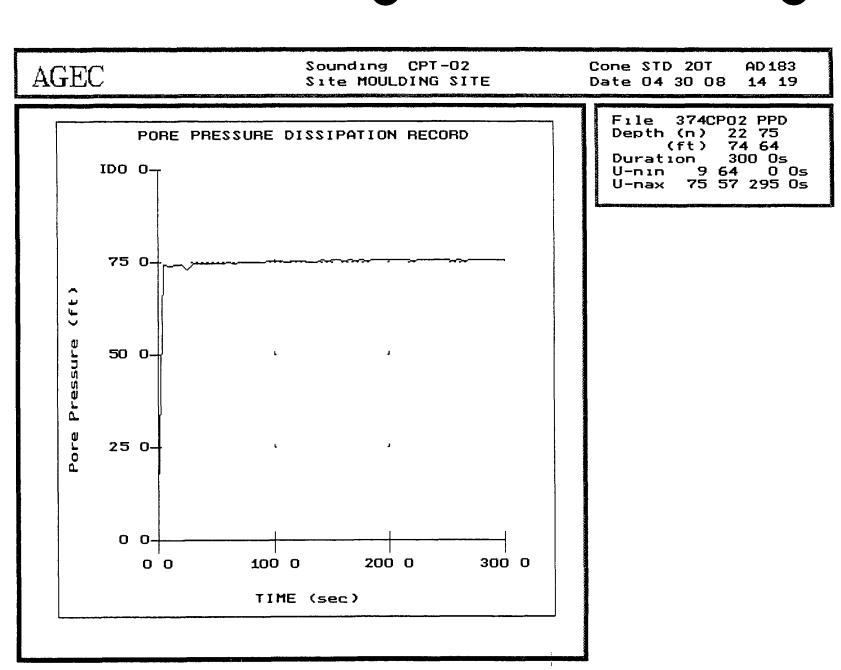


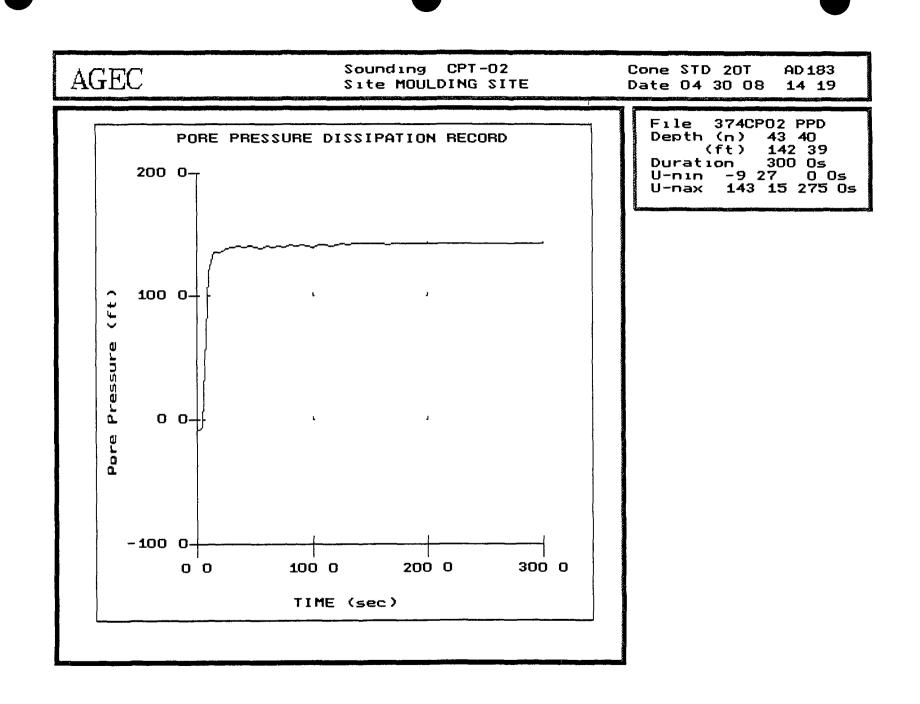


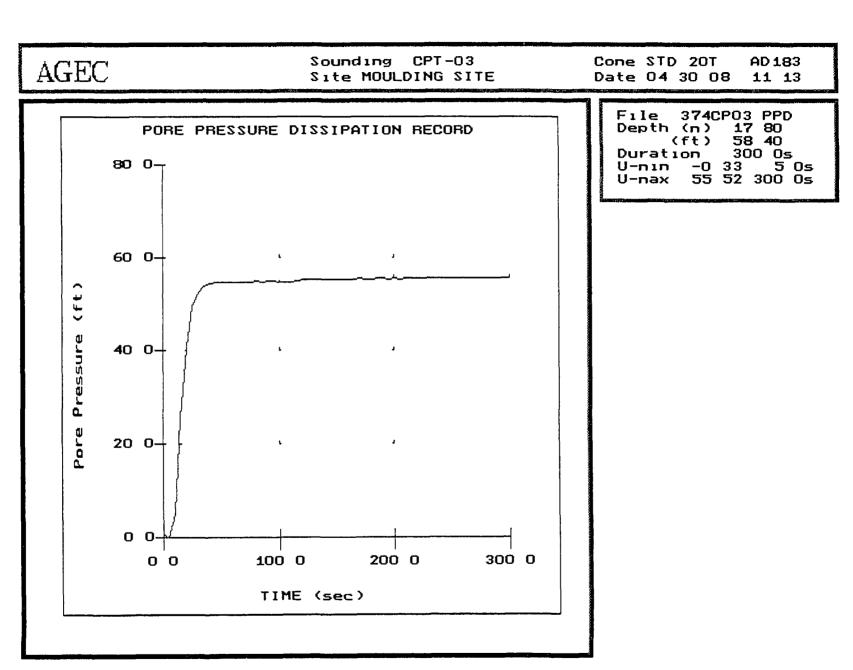


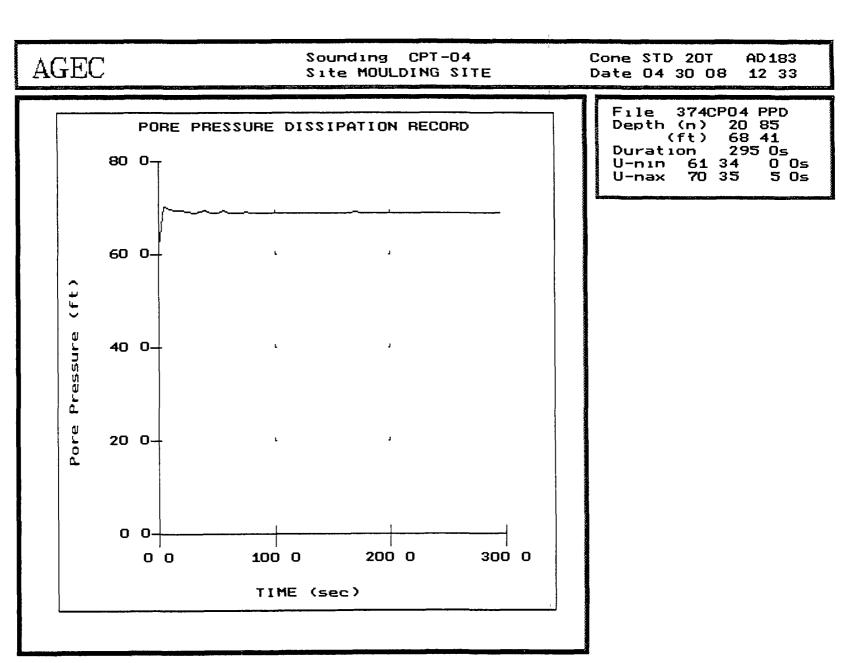


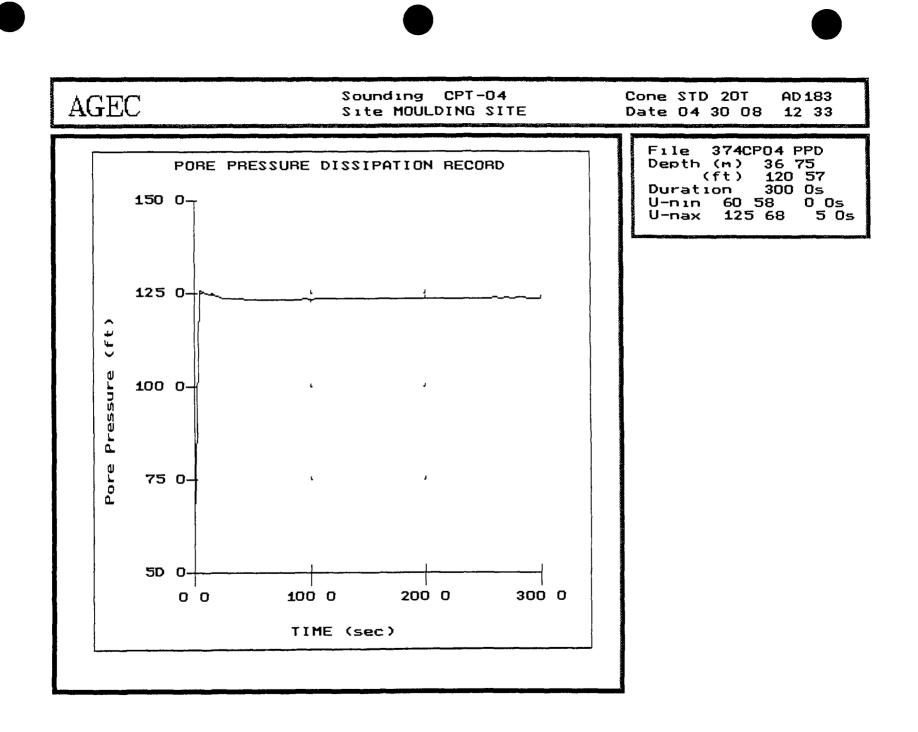












December 4 2008

Moulding and Sons c/o Hansen Allen & Luce Inc 6771–South-900 East Midvale UT 84047

- Attention Kent Staheli FAX 566 5581
- Subject Geologic Conditions Proposed Landfill 10500 West 900 South Plain City Utah AGEC Project No 1080092

Gentlemen

Applied Geotechnical Engineering Consultants Inc. was requested to provide a description of the geology for the proposed landfill to be constructed at 10500 West 900 South in Plain City. Utah. We previously performed a geotechnical investigation and submitted our findings and recommendations in a report dated November 11, 2008 under Project No, 1080092

GEOLOGIC AND SEISMIC TECTONIC SETTING

A Regional Geology

The site is located at the northeast end of the Great Salt Lake which is located in the Basin and Range physiographic province. The province is made up of north/south elongated mountain blocks and valleys

The area in and around the Great Salt Lake was once occupied by a large lake known as Lake Bonneville during the Wisconsin Glacial Period of the Pleistocene Age. The present day Great Salt Lake is a remnant of ancient Lake Bonneville. The stillstands of Lake Bonneville tormed benches along the Wasatch Front. The highest level of Lake Bonneville is marked by a bench the Bonneville shoreline at approximate elevation 5200 teet. The lake remained at this high level from approximately 17 000 to 15 000.

Moulding and Sons December 4 2008 Page 2

years before present until it dropped approximately 350 feet during a catastrophic flood known as the Bonneville Flood (Currey and Oviatt 1985 Jarrett and Malde 1987) Two lower stillstands of Lake Bonneville are the Prove and Gilbert which formed at approximate elevations of 4800 and 4250 feet respectively (Personius and Scott 1992) The lake has remained near its present day level through most of Holocene time. The elevation of the site is just above the historic high level of the Great Salt Lake.

B Tectonic Setting

The site is located near the eastern side of the Basin and Range physiographic province adjacent the Wasatch mountains. The Wasatch-mountains-are bounded on the west by the Wasatch fault zone which extends approximately 240 miles from near Malad. Idaho to the vicinity of Fayette. Utable Relatively recent fault movements of the Wasatch fault zone are evidenced by offsets in Lake Bonneville sediments and more recent alluvial and colluvial deposits.

The Wasatch fault zone is considered to be made up of several segments each segment acting relatively independently (Machette and others 1987). The site is located approximately 14 miles west of the Weber segment of the Wasatch fault zone. There is another potentially active fault in the East Great Salt Lake fault, which extends along the west side of Antelope Island and Promontory Point. This fault is located approximately 11 miles to the southwest. This is the closest known potentially active fault to the site (Black and others 2003). Both of these faults show evidence of movement during Holocene time and thus are considered potentially active. The Weber segment of the Wasatch fault zone is considered to potentially produce earthquakes as great as 7.2 moment magnitude and the east Great Salt Lake fault Lake lault is considered to be able to produce a 6.9 moment magnitude earthquake (Wong and others 2002).

C Site Geology

The site is located on the southern end of Little Mountain which is a hill which exposes bedrock. This bedrock was mapped by Christie Blick 1985 as consisting of rock from the Perry Canyon Formation. This bedrock is exposed along the north and west edges of the property. The bedrock at the site consists of diamictite and slate as described in the above referenced geotechnical report. The diamictite in this area generally dips down toward the northwest at approximately 7 to 10 degrees. Based on the results of our subsurface investigation, there is a significant amount of sand and clay which overlies the bedrock in most of the area planned for landfilling. These soils consist of Lake Bonneville sediments which are interpreted to be both deep lake and near shore deposits.

Moulding and Sons December 4 2008 Page 3

GEOLOGIC HAZARDS

The geologic hazards which were identified during the original study which may affect the site are primarily limited to strong earthquake ground shaking and the potential for liquefaction and possibly lateral spread. These conditions are described in the above referenced geotechnical report. Surface fault rupture rockfall landslide and debris flow are not considered potential hazards at the site.

It you have questions or if we can be of further service please call

Sincerely

APPLIED GEOTECHNICAL ENGINEERING CONSULTANTS INC

小月小

Douglas R Hawkes PE PG

Reviewed by SM P G DRH/dc

References

Black B D Hecker S Hylland M D Christenson G E and McDonald G N 2003 Quaternary fault and fold database and map of Utah Utah Geological Survey Map 193DM

Christie Blick N 1985 Upper Proterozoic glacial marine and subglacial deposits at Little Mountain Utah Brigham Young University Geology Studies volume 32 Part 1 18p

Currey D R and Oviatt F G 1985 Durations average rates and probable cause of Lake Bonneville expansion Stillstands and contractions during the last deep lake cycle 32 000 to 10 000 years ago in Diaz H F eds Problems of and prospects for predicting Great Salt Lake levels Proceedings for NOAA conference Center for Public Affairs and Administration University of Utah Salt Lake City Utah

Jarrett R D and Malde H E 1987 Paleodischarge of the late Pleistocene Bonneville Flood Snake River Idaho computed from new evidence Geological Society of America Bulletin v 99 p 127 134 Moulding and Sons December 4 2008 Page 4

References (continued)

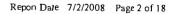
Machette M N Personius S F and Nelson A R 1987 Quaternary geology along the Wasatch Fault Zone segmentation recent investigations and preliminary conclusions U S Geological Survey Open File Report 87 585 p B1 B124

Personius S.F. and W.E. Scott 1992 Surficial Geologic Map of the Salt Lake City Segment and parts of adjacent segments of the Wasatch Fault Zone. Davis Salt Lake and Utah Counties Utah U.S. Geological Survey Map J 2106

Wong L-Silva W Olig S Thomas P Wright D Ashland F Gregor N Pechmann J Dober M Christenson C and Gerth R 2002 Earthquake scenario and probabilistic ground shaking maps for Salt Lake City Utah metropolitan area. Utah Geological Survey Miscellaneous Publication MP 02.5

Client Hansen, Allen & Luce Project ID Moulding C & D Landfill Contact Kent Staheh

AMERICAN WEST ANALYTICAL **LABORATORJES**


Lab Sample ID L84598 01E Field Sample ID B-4 Collected 6/17/2008 6 05 00 PM Received 6/18/2008

TOTAL METALS

	TOTAL METALS		Date	Method	Reporting	-	
	Analytical Results	Units	Analyzed	Used	Limit	Results	5
463 West 3600 South	Antimony	mg/L	6/21/2008 5 39 38 AM	6020	0 0010	< 0 0010	
Salt Lake City Utah 84115	Arsenic	mg/L	6/21/2008 5 39 38 AM	6020	0 00060	0 027	
	Barium	mg/L	6/21/2008 5 39 38 AM	6020	0 00040	10	
	Beryllnum	mg/L	6/2]/2008 5 39 38 AM	6020	0 00060	< 0 00060	
	Cadmium	mg/L	6/21/2008 5 39 38 AM	6020	0 00018	0 00052	
	Calcium	mg/L	6/27/2008 5 14 00 PM	6010B	10	28 0	² ~
(801) 263 8686 Tall Free (888) 262 8686	Chromium	mg/L	6/27/2008 6 31 00 PM	6010B	0 010	0 010	
Toll Free (888) 263 8686 Fax (801) 263 8687	Cobalt	mg/L	6/21/2008 5 39 38 AM	6020	0 0012	0 0071	
mail awal@awal labs com	Copper	mg/L	6/21/2008 5 39 38 AM	6020	0 00080	0 038	
	Iron	mg/L	6/27/2008 6 31 00 PM	6010B	0 050	13	2
Kyle F Gloss	Lead	mg/L	6/21/2008 5 39 38 AM	6020	0 00040	0 0077	
Laboratory Director	Magnesium	mg/L	6/27/2008 5 14 00 PM	6010B	10	450	"~
	Manganese	mg/L	6/21/2008 5 39 38 AM	6020	0 0012	0 53	1
lose Rocha QA Officer	Mercury	mg/L	6/20/2008 11 52 35 AM	7470A	0 00020	< 0 00020	
	Nickel	mg/L	6/21/2008 5 39 38 AM	6020	0 00080	0 090	
	Potassium	mg/L	6/27/2008 5 14 00 PM	6010B	10	410	2~
	Selemum	mg/L	6/21/2008 5 39 38 AM	6020	0 00080	< 0 00080	
	Silver	mg/L	6/21/2008 5 39 38 AM	6020	0 00040	< 0 00040	
	Sodium	mg/L	6/27/2008 4 12 00 PM	6010B	100	86 00	2~
	Thallium	mg/L	6/21/2008 5 39 38 AM	6020	0 00040	0 00086	
	Vanadıum	mg/L	6/27/2008 6 31 00 PM	6010B	0 0050	0 023	
	Zinc	mg/L	6/21/2008 5 39 38 AM	6020	0 0054	0 050	

Mairix spike recovery indicores matrix interference The method is in control as indicated by the LCS Analyte concentration is too high for accurate matrix spike recovery and/or RPD

~ The reporting limits were raised due to high analyte concentrations

All analyse applicable to the CWA SDWA and RCRA are performed in accordance to NELAC pro ocol Peninent sampling information is located on the attached COC. This report is provided for the exclusive use of the addres e Privileges of subsequent use of the name of this company or any member of its staff or reproduction of this report m connection with the advertisement promotion or sale of any product or process or in connection with he re publication of this report for any purpose other than for the addressee will be granted only on contact. The company accepts no re-pon-inhibity except for the due performance of in-pertion and/or analysi in cood faith and according to the rule of the trade and of science

APPENDIX 3

GROUNDWATER QUALITY ANALYSIS

Client Hansen, Allen & Luce Project ID Moulding C & D Landfill Contact Kent Staheli

AMERICAN WEST Field Sample ID L84598-01 WEST Field Sample ID B-4 ANALYTICAL LABORATORIES Received 6/18/2008

	Analytical Results	Umts	Date Analyzed	Method Used	Reporting Limit	Analytical Result	
463 West 3600 South	Ammonia (as N)	mg/L	6/26/2008 12 12 00 PM	350 1	0 050	2 9	
Salt Lake City Utah 84115	Bicarbonate (As CaCO3)	mg/L	6/19/2008 10 15 00 AM	2320B	20	180	
	Carbonate (As CaCO3)	mg/L	6/19/2008 10 15 00 AM	2320B	10	< 10	
	Chloride	mg/L	6/27/2008 5 04 09 AM	300 0	500	15000	
	COD	mg/L	6/20/2008 10 30 00 AM	HACH 8000	100	1100	
	Nitrate (as N)	mg/L	6/18/2008 1 37 00 PM	353 2	0 0 1 0	0 034	'@
(801) 263 8086 Toll Free (888) 263 8686	рН @ 25° С	pH Units	6/18/2008 7 00 00 PM	4500H+B	1 00	7 60	н
Fax (801) 263 8687 mail awal@awal labs.com	Sulfate	mg/L	6/27/2008 3 07 43 AM	300 0	750	1200	
	TDS	mg/L	6/19/2008 12 30 00 PM	160 1	100	29000	
Kyle F Gloss	Total Organic Carbon	mg/L	6/26/2008 5 32 00 AM	53J0B	10	74	

Laboratory Director

Matrix spike recovery indicates matrix interference The method is in control as indicated by the LCS

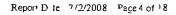
ⓐ High RPD due to suspected sample non homogeneity or matrix interference

H Sample was received outside of the holding time

Jose Rocha QA Officer

Report Date 7/2/2008 Page 5 of 18

All analyses applicable to the CWA_SDWA and RCRA are performed in accordance to NELAC protocols. Perfinent sampling information is located on the attached COC. This report is provided for the exclusive use of the address ee. Privilege of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement promotion or sale of any product or process or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no re-ponsibility except for the due performance of inspect on and/or analysis in bood aith and according on the rule of the trade and of science.


Hansen, Allen & Luce Chent Project ID Moulding C & D Landfill Contact Kent Staheli

Lab Sample ID L84598 03E AMERICAN Field Sample ID B-7 WEST ANALYTICAL Collected 6/17/2008 6 28 00 PM **LABORATORJES** Received 6/18/2008

TOTAL METALS

	TOTAL METALS		Date	Method	Reporting	-	1
	Analytical Results	Units	Analyzed	Used	Limit	Results	
463 West 3600 South Salt Lake City Utah	Antimony	mg/L	6/21/2008 6 06 39 AM	6020	0 0010	< 0 0010	
84115	Arsenic	mg/L	6/21/2008 6 06 39 AM	6020	0 00060	0 00 97	
	Barium	mg/L	6/21/2008 6 06 39 AM	6020	0 00040	38	
	Beryllium	mg/L	6/21/2008 6 06 39 AM	6020	0 00060	< 0 00060	
	Cadmium	mg/L	6/21/2008 6 06 39 AM	6020	0 00018	0 00028	
	Calcium	mg/L	6/27/2008 5 29 00 PM	6010B	10	230	~
(801) 263 8686	Chromium	mg/L	6/27/2008 6 48 00 PM	6010B	0 010	< 0 0] 0	
Toll Free (888) 263 8686 Fax (801) 263 8687	Cobalt	mg/L	6/21/2008 6 06 39 AM	6020	0 0012	0 0048	
mail awal@awal labs com	Copper	mg/L	6/21/2008 6 06 39 AM	6020	0 00080	0 025	
	lron	mg/L	6/27/2008 6 48 00 PM	6010B	0 050	57	
Kyle F Gross	Lead	mg/L	6/21/2008 6 06 39 AM	6020	0 00040	0 00 50	
Laboratory Director	Magnesium	mg/L	6/27/2008 5 29 00 PM	6010B	10	440	~
	Manganese	mg/L	6/21/2008 6 06 39 AM	6020	0 0012	0 63	
Jose Rocha QA Officer	Mercury	mg/L	6/20/2008 12 01 04 PM	7470A	0 00020	< 0 00020	
	Nickel	mg/L	6/21/2008 6 06 39 AM	6020	0 00080	0 083	
	Potassium	mg/L	6/27/2008 5 29 00 PM	6010B	10	330	~
	Selenuum	mg/L	6/21/2008 6 06 39 AM	6020	0 00080	< 0 00080	
	Silver	mg/L	6/21/2008 6 06 39 AM	6020	0 00040	< 0 00040	
	Sodium	mg/L	6/27/2008 4 54 00 PM	6010B	1000	6700	~
	Thallium	mg/L	6/21/2008 6 06 39 AM	6020	0 00040	< 0 00040	
	Vanadıum	mg/L	6/27/2008 6 48 00 PM	6010B	0 0050	< 0 0050	
	Zinc	mg/L	6/21/2008 6 06 39 AM	6020	0 0054	0 023	

~ The reporting limits were raised due to high analyte concentrations

All analyse applicable to the CWA SDWA and RCRA are performed in accordance to NELAC protocols Pertinent sampling information is located on the attached COC This report is provided for the exclusive use of the addressee Privilege, of subsequent use of the name of the company or any member of its staff, or reproduction of this report in connection with the advertisement promotion or sale of any product or process or in connection with he re publication of this report or any purpose other than for the addressee will be granted only on contact. This company accepts no re-ponsibility except for the due performance of inspection and/or analysi in good faith and accordmo to the nile of the trade and of science

Client Hansen, Allen & Luce Project ID Moulding C & D Landfill Contact Kent Staheli

AMERICAN WEST Field Sample ID L84598 03 WEST Field Sample ID B-7 ANALYTICAL Collected 6/17/2008 6 28 00 PM LABORATORJES Received 6/18/2008

	Analytical Results	Units	Date Analyzed	Method Used	Reportmg Limit	Analytical Result	
463 West 3600 South	Ammonia (as N)	mg/L	6/26/2008 12 12 00 PM	350 1	0 050	15	
Salt Lake City Utah 84115	Bicarbonate (As CaCO3)	mg/L	6/19/2008 10 15 00 AM	2320B	40	250	
	Carbonate (As CaCO3)	mg/L	6/19/2008 10 15 00 AM	2320B	10	< 10	
	Chloride	mg/L	6/27/2008 7 47 07 AM	300 0	500	12000	
	COD	mg/L	7/1/2008 1 00 00 PM	HACH 8000	100	89 0	,
	Nitrate (as N)	mg/L	6/18/2008 1 37 00 PM	353 2	0 010	< 0 010	
(801) 263 8686 Tol] Free (888) 263 8686	pH @ 25° C	pH Units	6/18/2008 7 00 00 PM	4500H+B	1 00	7 45	н
Fax (801) 263 8687 mail awal@awal labs.com	Sulfate	mg/L	6/27/2008 7 00 33 AM	300 0	7 5	730	
	TDS	mg/L	6/20/2008 4 30 00 PM	160 1	100	23000	
Kyle F Gross	Total Organic Carbon	mg/L	6/26/2008 5 32 00 ANI	5310B	10	22	

Laboratory Director

Matrix effect caused NO3 value to read negative Corrected to zero

H Sample was received outside of the holding time
 Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS

lose Rocha QA Officer

Repon Date 7/2/2008 Page 7 of 18

All analyses applicable to the CWA_SDWA and RCRA are performed in accoroance to NELAC protocols. Pertinent ampling information is located on the attached COC. This report is provided for the exclusive use of the addresses of subsequent use of the name of this company or any member of its staff or reproduction of this report in connection with the advertisement promotion or sale of any product or procels or in connection with the republication of this report located the addresses will be granted only on contact. This company accepts no responsibility exception the due performance of inspection and/or analysis in oood with and according on the rules of the trade and of science.

. .

APPENDIX 4

Moulding and Sons Weber County C&D Landfill Hydrology 333 01 100

- Purpose To determine the design flows to use for the detention and around the facility
- MethodThe SCS curve number method was used with the HEC HMS hydrology modelAreas for the subbasins were determined using AutoCAD and ArcGIS
- Required In order to calculate the runoff and runon the following steps and information are required
 - A delineation of the tributary area
 - A weighted or representative Soil Conservation Service(SCS) curve number (CN) for the tributary area
 - Lag time
 - Storm Distribution
 - 100 year 24 hour precipitation
 - 25 year 24 hour precipitation
- Delineation The delineation of the subbasins shown in the HMS storm water model figure was based on the landfill design provided and USGS quad map contours for the runon basin
- Curve Numbers The curve numbers were determined based on the hydrologic soil type and soil cover The soil type in the area ranged from B to some D type soils A type C soil was selected as representative of the area The cover conditions were combined with the hydrologic soil type to produce a curve number based on Table 2 2d of Technical Release 55 The runoff from the closed landfill was determined to have a curve number of 81 using the herbaceous cover and Type C soil conditions The runon basin from Little Mountain was determined to have a curve number of 63 using the fair cover sagebrush with grass understory and C type soils
- Precipitation A 100 year 24 hour event was used for the design storm exceeding the State requirements of a 25 year event. The rainfall amounts were taken from the Point Precipitation Frequency Estimates from NOAA Atlas 14". The 100 year 24 hour storm was listed as 2.73 inches in NOAA Atlas 14. The 25 year 24 hour storm was listed as 2.23 inches.
- Distribution The distribution used for the 24 hour event was the SCS Type II
- Lag Time The lag times were calculated by using the Time of Concentration and the equation $T_L = 0.6Tc$ Tc was calculated using Worksheet 3 in TR 55 A spreadsheet showing each subbosin is provided and are labeled with their subbosin name. The runon subbosin was calculated using a method from a study by Simas and Hawkins. Lag Time Characteristics for Small Watersheds in the U S
- Results The results of the HEC 1 model run are summarized in the table entitled Hydrology Output from HMS The outflow from the lower detention out of the

Moulding and Sons PROJECT Weber County C&D Landfill FEATURE Hydrology 333 01 100 PROJECT NO

CLIENT

SHEET 2 OF 2 COMPUTED GLJ CHECKED DATE November 2008

facility is 16 1 cfs with a total tributary area of 219 acres including the landfill facility and runon from Little Mountain producing 0 074 cfs/acre

POINT PRECIPITATION **FREQUENCY ESTIMATES FROM NOAA ATLAS 14**

Utab 41 246455 N 112 232511 W 4202 feet from P cc p lat on Frequency Allas of the United States NOAA Allas 14 Volume 1 Version 4 G M Bonn n. D Mari n B Lin T Pa zvbok M Yekia and D Rilev

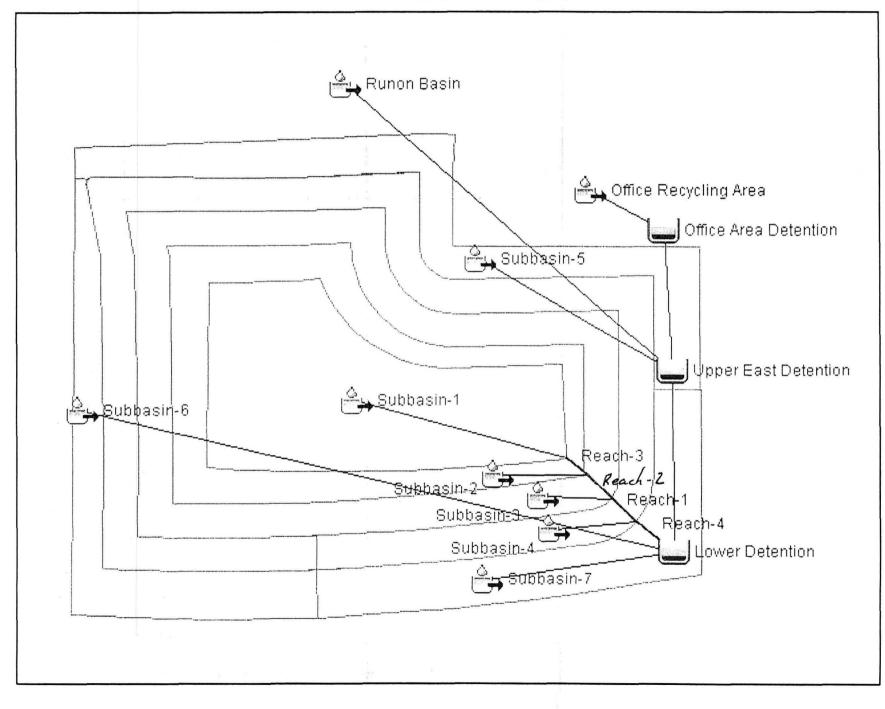
NOAA National Weather Service Sil er Sprine Maryland 006

Extracted Thu May 8 008

						and the second s	
Confidence Limits	Seasonality	Location Maps	Other Info	GIS data] Maps	Help Docs	US Map 🗉

	Precipitation Frequency Estimates (inches)																	
AR)* (years)	5 11 m	<u>וס</u> 10 מוַמ]5 mm	3 <u>0</u> n <u>11n</u>	<u>60</u> m <u>in</u>	<u>12</u> 0 min	<u>3 hr</u>	<u>6 h</u> r	<u>1</u> 2 <u>ћ</u> г	<u>24</u> hг	48 h г	4 day	7 day	1 <u>0</u> day	2 <u>0</u> dav	3 <u>0</u> day	45 dav	60 dav
]	0 12	0 18	0 2 3	031	0 38	0 48	0 55	0 73	0 92	1 12	1 29	1 47	1 70	187	2 34	2 78	3 37	3 96
2	0 15	0 23	0 29	0 39	0 48	0 60	0 68	0 89	1 12	1 37	1 58	181	2 08	2 30	2 88	3 42	4] 4	4 86
5	021	0 32	0 40	055	0 66	0 78	0 86	1 09	1 36	166	1 91	2 18	2 51	2 77	3 4 4	4 07	4 90	5 74
10	0 26	0 40	0 50	0 67	د8 0	0 95	1 02	1 27	1 57	1 90	2 18	2 4 9	2 86	3 13	3 87	4 57	5 47	641
25	0 35	0 53	0 66	0 89	1 10	1 23	1 29	1 54	188	2 23	2 54	2 90	3 33	3 62	4 42	5 20	618	د2 7
50	د4 0	0 66	0 81	1 10	1 36	1 49	1 54	176	2 1 3	2 47	2 82	3 2 3	3 69	3 98	4 80	5 65	6 67	781
100	0 53	0 80	0 99	1 34	1 66	1 80	1 84	2 02	2 40	2 75	3 10	3 57	4 05	4 34	5 18	6 08	7 12	8 35
200	0 64	0 98	1 21	165	2 02	2 17	2 20	2 32	2 69	2 98	9د 3	3 91	4 4]	4 69	5 53	6 4 9	7 53	د8 8
500	0 83	1 26	1 56	2 10	2 60	2 76	2 78	2 90	3 16	3 33	3 77	4 3 7	4 88	5 13	5 95	6 99	7 99	9 39
1000	0 99	1 51	1 88	2 53	3 13	3 30	s 32	3 42	3 54	3 60	4 06	4 72	5 24	5 4 5	6 24	7 33	8 2 7	9 74

These precipitation frequency estimates are based on a <u>partial duration series</u>. ARI is the Average Recurrence Interval Please refer to the n_uniting for more information NOTE. Formatting forces estimates near zero to appear as zero


	* Upper bound of the 90% confidence interval Precipitation Frequency Estimates (inches)																	
ARI * (years)	5 mm	10 mm	15 mm	30 mm	60 mm	120 mm	3 br	6 br	12 br	24 br	48 br	4 day	7 day	10 day	20 day	30 day	45 day	60 day
	0 14	0 21	0 27	036	0 44	0 54	0 62	0 80	1 00	1 25	1 43	1 63	1 88	2 06	2 56	3 03	3 65	4 29
2	0 18	0 27	4د 0	045	0 56	0 68	0 77	0 99	1 23] 54	1 77	2 00	2 31	2 54	3 15	3 73	4 48	5 26
5	0 24	0 37	0 46	0 62	0 77	0 88]	0 97	1 20	1 49	1 86	2 13	2 41	2 79	3 04	3 77	4 4 3	5 28	6 19
10	031	0 47	0 58	0 78	0 96	1 08	1 16	1 40] 72	2 13	2 42	2 76	3 17	3 4 4	4 24	4 96	5 89	6 90
25	0 4 1	0 62	0 77	1 04	1 29] 4]] 47] 7]	2 07	2 49	2 83	s 22 د	3 69	3 98	4 83	5 65	6 64	7 78
50	0 51	0 78	0 96	1 29	1 60	1 73	1 76	1 97	2 37	2 78	3] 4	3 60	4 09	4 38	5 25	6 14	7 1 7	841
100	0 63	0 96	1 19	1 60	1 98	2 12	2 15	2 29	2 70	3 06	3 47	98 د	4 50	4 78	5 67	6 63	7 67	9 01
200	0 78	1 19	1 47	1 98	2 46	2 61	2 61	2 67	3 07	3 36	3 80	4 38	4 92	5 17	6 06	7 10	811	955
500	1 03	1 57	1 95	2 62	3 25	3 42	3 46	3 4 9	3 69	3 76	4 25	4 93	5 4 9	5 69	6 55	7 67	8 63	10 16
1000	1 27	1 94	2 40	3 2 3	4 00	4 19	4 2 3	4 2 7	4 32	4 36	4 59	5 37	5 92	6 07	6 89	8 09	8 94	10 56

The upper bound of the confidence interval at 90 / confidence level is the value which 5 / of the simulated puantile values for a given frequency are greater than These precipitation frequency estimate are based on a partial duration sense. ARI is the Average Recurrence Interval

Please refer to the use ticc for more information NOTE. Formatting prevents estimates near zero to appear as zero

	* Lower bound of the 90% confidence interval Precipitation Frequency Estimates (inches)																	
AR]* (years)	5 mm	10 mm	15 mm	30 100 mm	60 mm	120 mm	3 br	6 hr	12 bт	24 br	48 br	4 day	7 day	10 day	20 day	30 day	45 day	60 day
1	011	0 16	0 20	0 2 7	0 33	0 42	0 50	067	0 84	1 00	1 17	1 33	1 54	1 70	2 14	2 55	3 1 1	3 66
2	0 14	021	0 26	0 34	0 42	0 53	0 62	0 82	1 03] 24] 44	1 64	1 90	2 09	2 64	3 14	3 83	4 50
5	0 18	0 28	0 35	0 47	0 58	0 69	0 7 7	0 99	1 25	1 50	1 73	1 98	2 28	2 51	3 1 5	3 75	4 53	5 3.
10	023	0 35	د4 0	0 58	0 72	0 83	0 91	1 15	1 4 3	171	1 97	2 2 5	2 59	2 85	3 54	4 19	5 07	5 94
25	0 30	0 45	0 56	0 76	0 93	1 05	1 13	1 37	1 69	1 99	2 29	2 61	3 01	3 28	4 04	4 77	5 72	6 70
50	0 35	0 54	0 67	0 90	111	1 24	1 31	1 55	1 89	2 2 0	2 53	2 90	3 31	<u>ه 59</u>	4 38	5 16	617	7 22
100	0 42	0 64	0 79	1 06	1 32	1 45	155	174	2 10	2 42	2 77	3 18	3 62	3 90	4 71	5 54	6 58	771
		<u> </u>															M	F

WEBER COUNTY C&D LANDFILL HMS STORM WATER MODEL

Weber County C&D Landfill Hydrology Output from HMS 100yr 24hr Storm Event SCS Type II Storm Distribution NOAA 14 Rainfall Depth (2 73 inches)

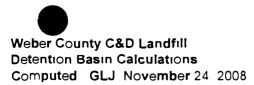
Hydrologic Element	Drainage Area (Mi²)	Peak Discharge (cfs)	Time of Peak	Volume (ac-ft)
Lower Detention	0 342	16 1	01Jan2009 15 50	13 8
Office Area Detention	0 015	2 1	01Jan2009 12 50	11
Office Recycling Area	0 015	10 9	01Jan2009 12 10	11
Reach 1	0 082	15 3	01Jan2009 13 00	49
Reach 2	0 052	12	01Jan2009 12 50	31
Reach 3	0 031	95	01Jan2009 12 40	18
Reach 4	0 119	19 2	01Jan2009 13 20	7
Runon Basın	0 160	9	01Jan2009 12 50	28
Subbasin 1	0 031	95	01Jan2009 12 40	18
Subbasin 2	0 021	39	01Jan2009 13 30	12
Subbasin 3	0 031	53	01Jan2009 13 40	18
Subbasin-4	0 037	58	01Jan2009 14 00	2 2
Subbasin 5	0 019	61	01Jan2009 12 40	11
Subbasin 6	0 014	74	01Jan2009 12 10	0.8
Subbasin 7	0 016	98	01Jan2009 12 10	09
Upper East Detention	0 193	89	01Jan2009 14 00	5

WEBER COUNTY C&D LANDFILL HMS STORM WATER MODEL DETENTION RESULTS

🛄 Summary Re	ults for Reservo	oir LowerDetention	
Project Tr	ial Simulation Ri	un 100yr24hr Reservoir	Lower Detention
Start of Run End of Run Compute Time	013an2000, 00 023an2000, 1: e D9Dec2008, 0	2 00 Meteorologic Ma	
	Volume L	Jnits 🕺 IN 🙃 AC FT	
Computed Ref	ult		
Peak Inflow Peak Outflow Total Inflow Total Outflow	30 1 (CFS) 16 1 (CFS) 13 ថ (AC FT) 12 8 (AC FT)	Date/Time of Peak Inflow Date/Time of Peak Outflow Peak Storaae Peak Elevation	01Jan2000, 13 10 v 01Jan2000 15 50 4 3 (AC FT) (FT)
Summary Res	ults for Reservo	r Office Area Detention	
Project Trial	Simulation Run	100yr 24hr Reservoir Off	ice Area Detention
Start of Run End of Run Compute Time	013an2000, 00 021an2000, 12 09Dec2008, 09	00 Meteorologic Mo	-
	Volume U	nits (° IN ° AC FT	
Computed Rest	ults		
Peak Inflow Peak Outflow Total Intlow Total Outflow	10 ° (CFS) 2 1 (CFS) 1 1 (AC FT) 1 1 (AC FT)	Date/Time of Peak Inflow Date/Time of Peak Outflow Peak Storage Peak Elevation	01Jan2000 12 10 01Jan2000 12 50 0 4 (AC FT) (FT)
Summar, Res	ults for Reservo	ır Upper East Detention	
Project Trial	Simulation Run	100yr 24hr - Reservoir Up	per East Detention
Start of Run End of Run Compute Time	01 lan2000, 00 02 lan2000, 12 09Det2008, 09	2 00 Meteorologic Ma	
	Volume L	Inits 📑 IN 🤃 AC FT	
Computed Res	ults		
Peak Inflow Peak Outflow Total Inflow Total Outflow	16 7 (CFS) 8 9 (CFS) 5 0 (AC FT) 5 0 (AC FT)	Date/Time of Peak Inflow Date/Time of Peak Outflow Peak Storage Peak Elevation	01 1an2000, 12 50 01 Jan2000, 14 00 1 0 (AC FT) (FT)

Table 2 2d Runoff curve numbers for and and semiand rangelands 1/

Cover description			Curve numbers for llydrologic soil group							
Cover type	Hydrologic condition ^{2/}	A 3⁄	B	<u> </u>	D					
Herbaceous—mixture of grass weeds and	Poor		80	87	. 93					
low growing brush with brush the	Fair		71	(81) (un	elf 89					
minor element	Good		62	74 CA	ems 85					
Oak aspen—mountain brush mixture of oak brush	Poor		66	74	79					
aspen mountain mahogany bitter brush maple	Fair		48	57	63					
and other brush	Good		30	41	48					
Pmyon juniper—pinyon juniper or both	Poor		75	85	89					
grass understory	Fair		58	73	80					
	Good		41	61	71					
Sagebrush with grass understory	Poor		67	80	. 85					
	Fair		51	[63]	70					
	Good		35	47	55					
Desert shrub—major plants include saltbush	Poor	63	77	85	88					
greasewood creosotebush blackbrush bursage	Fair	55	72	81	86					
palo verde mesquite and cactus	Good	49	68	79	84					


¹ Average runoff condition and 1 = 0.28 For range in humid regions use table 2.2c

² Poor <30% ground cover (litter grass and brush overstory)

Fair 30 to 70% ground cover

Good > 70% ground cover

³ Curve numbers for group A have been developed only for desert shrub

LOWER DETENTION FACILITY

Invert Elevation (ft)	0
Outlet Elevation (ff)	0
Orrifice Size (in)	21
Ornfice Coefficient	06
Pipe Size (in)	24

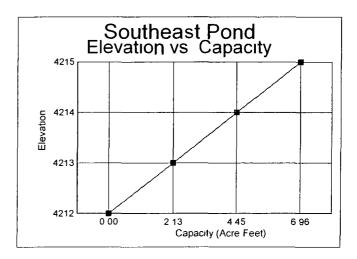
	Step Volume			Total Volume	Orrifice Outflow	
Elevation	Area (sf)	(cf)	Total Volume (cf)	(acre ft)	(cfs)	
0.0	0	0	0	0 000	0 00	
10	92740 00	92740	92740	2 1 2 9	11 58	
1 08				2 400	12 20	25 yr High W a ter
1 94				4 300		100 yr High Water
2 0	101092 00	101092	193832	4 450	16 38	
30	109477 00	109477	303309	6 963	20 06	

UPPER EAST DETENTION FACILITY

Invert Elevation (ft)	0
Outlet Elevation (ft)	0
Ornfice Size (in)	15
Ornfice Coefficient	06
Pipe Size (in)	24

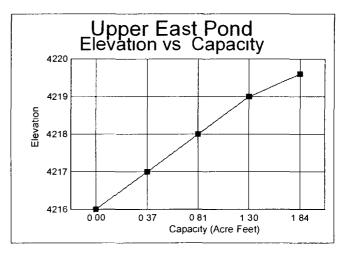
	S	tep Volume		Total Volume	Orrifice Outflow	
Elevation	Area (sf)	(Cf)	Total Volume (cf)	(acre ft)	(Cfs)	
0.0	0	0	0	0 0 00	0 00	
10	16315 00	16315 00	16315	0 375	5 91	
1 06				0 400	6 00 25 yr Hi	gh W a ter
2 0	18867 00	18867 00	35182	0 808	8 36	
2 39				1 000	8 90 100 yr H	ligh W a ter
30	21450 00	21450 00	56632	1 300	10 23	-
36	235510	23551 00	80183	1 841	11 21	

OFFICE AREA DETENTION FACILITY

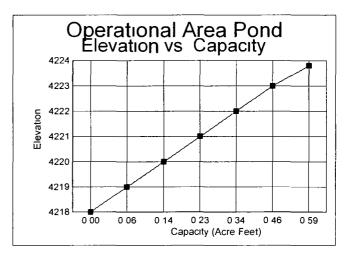

Invert Elevation (ff)	0
Outlet Elevation (ft)	0
Orrifice Size (in)	6
Orrifice Coefficient	06
Pipe Size (in)	12

	Step Volume			Total Volume	Orrifice Outflow
Elevation	Area (sf)	(cf)	Total Volume (cf)	(acre ft)	(Cfs)
0.0	0	0	0	0 000	0 00
10	27810	2781 00	2781	0 064	0 95
2 0	3356 0	3356 00	6137	0141	1 34
30	3962 0	3962 00	10099	0 232	1 64
36				0 300	1 80 25 yr High Water
4 0	4600 0	4600 00	14699	0 337	189
48				0 400	2 07 100 yr High Water
50	5270 0	5270 00	19969	0 458	2 1 1
58	5903 0	5903 00	25872	0 594	2 28

ClientWeber County/Moulding & Sons Landfill LLCProjectLandfill PermitFeatureStormwater Ponds Stage vs Capacity RelationshipsDateNovember 2008


Southeast Pond

Area (sf)	Avg Area (sf)	Volume (cf)	Volume (ac-ft)
88572		0	0 00
96908	92740	92740	2 13
105276	101092	193832	4 45
113677	109477	303309	6 96
	(sf) 88572 96908 105276	(sf) (sf) 88572 96908 92740 105276 101092	(sf)(sf)(cf)88572096908927409276101092193832


Upper East Pond

Elevation	A <i>r</i> ea (sf)	Avg Area (sf)	Volume (cf)	Volume (ac-ft)
4216	15047		0	0 00
4217	17583	16315	16315	0 37
4218	20150	18867	35182	0 81
4219	22749	21450	56631	1 30
42196	24353	23551	80182	1 84

Operations Area Pond

Elevation	Area (sf)	Avg Area (sf)	Volume (cf)	Volume (ac-ft)
4218	2502		0	0 00
4219	3060	2781	2781	0 06
4220	3651	3356	6137	0 14
4221	4273	3962	10099	0 23
4222	4927	4600	14699	0 34
4223	5613	5270	19969	0 46
4223 8	6193	5903	25872	0 59

RANSEN ALLER & LUCE Inc	CLIENTMoulding/Weber CountySHEET 1OF 2PROJECTWeber County Landtill DesignCOMPUTEDKCSFEATURERunoff Containment Within CellCHECKEDPROJECT NO333 01 100DATE December 2008					
Purpose Method	To determine the capacity requirements for runoff containment for exposed waste within active landfills Waste that is inert or has received a soil cover is not considered exposed and runoff from these areas may be discharged off site The SCS curve number method as described in Technical Release No 55					
Required	 In order to calculate the runoff volume the following steps and information are required Delineation of the tributary area contributing to runoff A weighted or representative Soil Conservation Service(SCS) curve number (CN) 25 year 24 hour precipitation depth 					
Delineation	Runoff will be determined based on the volume generated per acre of open and active cell area of exposed waste					
Curve Numbers	The curve numbers were determined based on the hydrologic soil type located at the site and materials placed in the cells. There are assumed to be no soil vegetation cover and conditions during placement of the waste					
Precipitation	Design for the 25 year 24 hour precipitation event is assumed for containment to provide an equivalent design to requirements for MSW facilities The rainfall amounts were taken from the Point Precipitation Frequency Estimates from NOAA Atlas 14 The precipitation depth value used is 2 23					
Calculations						

Rainfall runoff depth (Q) is determined by

$Q = ((P \ 0 \ 2S)^2)/(P + 0 \ 8S)$ Where Q	a =	Runoff depth (inches)		
		P =	Precipitation depth (inches)	
		S =	Potential maximum retention after runoff	
			begins (inches) = $(ia)/(02)$	
V	Nhere I	a =	Initial abstraction (inches)	

Also S is related the SCS curve number (CN) as follows

S = (1000/CN) 10

Determine SCS Curve Number (CN) for the C&D Waste Material

C&D Waste materials will consist primarily of concrete asphalt wood products and other impermeable construction materials. However, the materials placed in the landfill will be broken up and will most likely consist of many voids. Much of the precipitation will either run off the surface of the waste materials or move through the void spaces between the materials. There will be some retention on the within the void spaces in the waste and on the surface of the waste pile. Soils used for cover will also most likely range between hydrologic soil type B and D.

Assume a hydrologic soil group C for soils that may be intermixed in the waste materials and assume that the impervious waste covers 50 percent of the area. Also assume the soils to be compacted similar to what a dirt road surface may represent

CLIENT I PROJECT V FEATURE I PROJECT NO

MouldingAVeber County Weber County Landfill Design Runoff Containment Within Cell 333 01 100

Use information from Natural Resources Conservation Service Technical Release 55 (TR 55) Urban Hydrology for Small Watersheds

Table 2 2aCN = 87 for hydrologic soil group C and a dirt road type surface
including right of wayCN = 98 for paved surfaces similar to the
impermeable surfaces of waste within the landfill

Figure 2.3 Composite CN = 93 using a pervious CN of 87 and 50% connected impervious area with a CN = 98 ((98 x 0 50) + (87 x 0 50) = 92 5)

Determine Runoff Depth Per Acre of Area

 $S = (1000/93) \ 10 = 0 \ 753$

 $Q = ((2 \ 23 \ 0 \ 2(0 \ 753))^2)/(2 \ 23 + 0 \ 8(0 \ 753)) = 1 \ 54 \text{ inches}$

Runoff quantity per acre is 1.54/12 = 0.13 acre foot per acre = 5.662 cf/acre

Conclusion

Required runoff containment capacity is therefore 0.13 acre foot (5.662 cf) per acre of exposed waste area. This containment capacity may be provided in a number of ways including

- A ponding area on the waste surface
- Dikes or pond areas constructed down gradient from the working faces
 Allowing runoff to discharge from the cell into on on site containment pond
 A combination of the above or any other method that will provide the required containment capacity

Runoff wafer may be used inside the cell or on facility roads for dust control or used for construction water as needed for material processing and compaction

APPENDIX 5

STORM WATER HYDRAULIC DESIGN

Т

Purpose and Procedure

The purpose of these calculations is to design the drainage channels that will convey run on from Little Mountain and run off from the operations area

Federal Highway Administration HEC 15 Design of Roadside Channels with Flexible Linings was used as the basis for both depth and erosion protection requirements. The selected erosion protection for the channel was grass-lined therefore chapter 4 from HEC 15 was the basis for the analysis.

- II The design dimensions for the drainage channel is a V shaped channel with 2 5H 1V sides with a_depth of 2 feet with slopes ranging from 0.5% to 1%. Design_flow_for_the channel is 10 9 cfs the peak 100 year 24 hour flow from the operations area. The peak flow for the channel conveying flow from run on from Little Mountain is 9 cfs.
 - Step 1 Channel slope will vary between 0.5 and 1% Channel shape will be V shaped with 2.5H 1V sides with a peak discharge of 10.9 cfs
 - Step 2 A vegetative lining on a lean clay with some sand and gravel
 - Step 3 Initial depth estimate is 1.5 feet for the 1% grade

R = 0.70 feet

Step 4 To estimate n the applied shear stress on the grass lining given by Equation 2.3

 $T_0 = yRS_0 = 62 4(0 70)(0 01) = 0 437 lb/ft^2$

Determine a Mannings n value from Equation 4.2 From Table 4.3 Cn = 0.2

 $n = \alpha C_n T^{04} = 0213(02)(0437)^{04} = 0059$

The discharge is calculated using Manning's equation

$$Q = 1 49/0059(5 63)(0 70)^{(2/3)}(0 01)^{(4)} = 11 2 \text{ ft}^3/\text{s}$$

- Step 5 This value is within 5% of the design flow of 10.9 cfs so we can proceed to step 6
- Step 6 The maximum shear on the channel bottom is

 $T = ydS_0 = 62 4(1 5)(0 01) = 0 936 lb/ft^2$

Determine the permissible soil shear stress from Equation 4.6

 $T_{p \text{ soli}} = (C_1 P I^2 + C_2 P I + C_3) (C_4 + C_5 P)^2 C_6 = (1 \ 07(17)^2 + 14 \ 3(17) + 47 \ 7) (1 \ 48 \ 0 \ 57(0 \ 5))^2 10^4$

 $= 0.086 \, \text{lb/ft}^2$

CLIENT

Equation 4.7 gives the permissible shear stress on vegetation. The value of C, is found in Table 4 5

 $T_p = T_{p,sol}/(1 C_l)(n/n_s)^2 = (0.086/(1.0.5))(0.059/0.016)^2 = 2.34 \text{ lb/ft}^2$

The safety factor for this channel is taken as 1.0

Step 7 The grass lining Ts acceptable since the maximum shear on the vegetation is less than the permissible shear of 2.7 lb/ft² The grass lining will therefore also be sufficient for the 0 5% grade parts of the channel

APPENDIX 6

EROSION PROTECTION

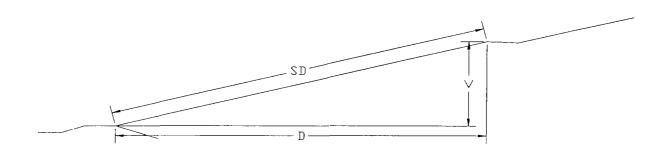
CLIENT PROJECT FEATURE PROJ NO

Moulding & Sons Weber County C & D Landfill Erosion Protection 333 01 100 SHEET 1 OF 8 COMPUTED GLJ CHECKED DATE December 2008

Purpose and Procedure

The purpose of these calculations is to determine which erosion protection measure to use and how to apply it. The closure cap will consist of o 2.5H 1V slope extending up from the toe of the cap at ground surface. Benches will be constructed in the slopes of the closure cop to intercept precipitation and snow melt runoff from the slopes as needed to control runoff and to minimize erosion with a slope of 6H 1V creating the bench with the closure cop slope of 2.5H 1V

The procedure used to determine the allowable slope lengths between the bench areas of the closure cap slopes is token from the publication "Erosion and Sedimentation in Utah A Guide for-Control" Utah Water Research Laboratory -February 1984 - This-publication is specific to Utah The figure presented on Sheet 2 presents a cross section showing the configuration of the area contributing runoff to the slopes of the closure cap The degree of erosion protection required is based on the steepness and length of the slopes. Erosion protection measures will be determined for the longest slope length and the erosion control measures determined for the longest slope will be conservatively applied to all slopes.


II The procedure from the above publication uses the Universal Soil Loss Equation (in modified form to represent Utah's climatic and topographic conditions) to estimate the soil erosion potential of the surface soils assuming no application of erosion control measures. Erosion control measures to be implemented are based on the soil erosion potential calculated

The universal soil loss equation used to calculate soil erosion potential is

A=R K LS

- where A = Computed amount of soil loss per unit area for the time interval represented by factor R generally in tons per acre per year
 - R = Rainfall (precipitation) factor
 - K = Soil erodibility factor in tons per acre per year per unit of R
 - LS = Topographic factor (length and steepness of slope)

D = Horizontal Distance V = Vertical Distance SD = Slope Distance

For 2 5H 1V Slopes

$$D = 25V$$

$$SD = \sqrt{D^2 + V^2}$$

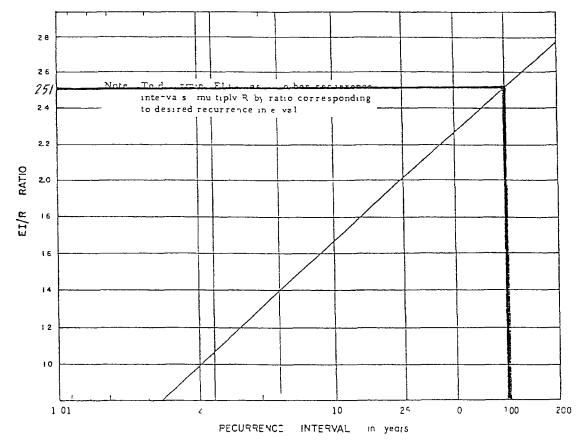
$$SD = \sqrt{(25^2)(V^2) + V^2}$$

$$SD = \sqrt{725V^2}$$

client project feature proj no

HIINSEN

DI LEN


Moulding & Sons Weber County C & D Landfill Erosion Protection 333 01 100

Calculated erosion after applying erosion control measures is determined by applying and erosion control factor (VM) to the universal soil loss equation. The erosion control factor is dependent upon the type and extent to which the erosion control measure is used (ie vegetative type and density mulches type and thickness chemical type and application amount mechanical compactive effort smoothness of surface etc.)

A The rainfall (precipitation) factor (R) is obtained from mean annual iso erodent (R) value maps. The R value for the facility as obtained from the Tooele area map is

$$R = 40$$

Since R = 4.0 is based on an annual recurrence interval a correction factor is obtained from the figure below for the 100 yr recurrence interval. For the 100 yr recurrence interval

R = 40*(251) = 1004

Figure ?-1 The rela _crship of ween the EI/R matic and recurrence _nterval

Moulding & Sons Weber County C & D Landfill Erosion Protection 333 01 100

B Soil erodibility factor (K) is determined using figure 2 from the above referenced report. The gradation of the materials is based on information from the AGEC soil report.

The worst case condition is represented by the soils whose gradation is on the fine side of the soil gradation envelope Parameters obtained from the gradation envelope and parameters assumed for use with the nomographs to determine K ore

- 85 % silt and very fine sand and
- 15% sand were obtained from the gradation envelope
- 1% organic material and a very slow permeability were assumed parameters

Applying the above parameters to the nomographs from Figure 2 gives a soil erodibility factor (K) equal to 0.66

C The topographic factor (LS) is determined assuming single slopes. The figure on Sheet 2 shows the configuration of typical slope segments that need to be accounted for in the calculations which includes a 2 5H 1V for the closure cop slope. The LS factor is determined by the following equation.

$$LS = \left(\frac{65\ 41\ s^2}{s^2\ +\ 10\ ,000} + \frac{4\ 56\ s}{\sqrt{s^2\ +\ 10\ ,000}} + 0\ 065\right) \left(\frac{1}{72\ 6}\right)^m$$

where LS = topographic factor for slope segment n

- I = length of slope segment n
- s = slope gradient of segment n in percent
- I = slope length
- m = slope gradient factor which is
 - 0 2 for gradients of 0 to 2 percent
 - 0 3 for gradients of 1 to 3 percent
 - 0 4 for gradients of 3 5 to 4 5 percent
 - 0 5 for gradients greater than 5 percent

CLIENT

The following table provides LS factor values for varying lengths of the 25H 1V slope

HORIZONTAL	SLOPE LENGTHS (ff) AND LS FACTOR VALUES				
DISTANCE ALONG SLOPE	2 5H 1V (40%) Slope				
(ft)	Slope Length	LS Factor			
15	40 39	5 9055			
65	175 02	12 2933			
115	309 65	16 3516			
165	444 28	19 5863			

D Potential Erosion Rotes without erosion protection where R = 10.04 K = 0.66 and LS as tabulated above ore presented in the table below

HORIZONTAL	2 5H 1V (40%) Slope				
DISTANCE ALONG SLOPE (ff)	Slope Length	LS	A (tons/oc/ y r)		
15	40 39	5 9055	39 1 3		
65	175 02	12 2933	81 46		
115	309 65	16 3516	108 35		
165	444 28	19 5863	129 79		

POTENTIAL EROSION RATES (A) ASSUMING **BARE SOILS**

E Potential Erosion Rotes for varying VM factors where R = 10.04 K = 0.66 and LS as tabulated above are presented in the table below

HORIZONTAL DISTANCE ALONG SLOPE (ft)	A(tons/ac/yr) 2 5H IV (40%) Slope VM =					
	15	0 31	0 35	0 39	0 43	0 47
65	0 65	0-73-	-0 81	0 90	0 98	1 06
115	0 87	0 98	1 08	1 19	1 30	141
165	1 04	117	1 30	1 43	1 56	1 69

POTENTIAL EROSION RATES FOR VARYING VM FACTORS

F Required Stone Mulch

CLIENT

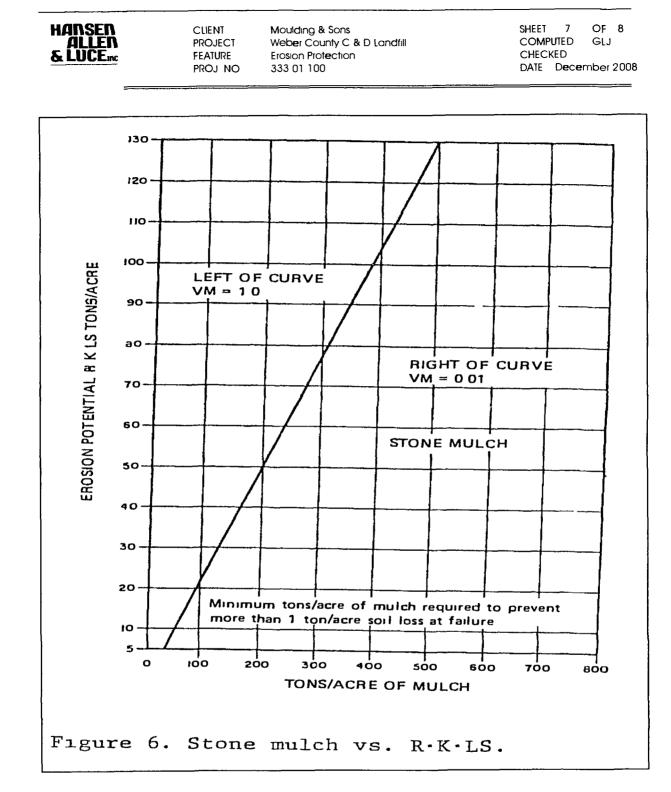
PROJECT

FEATURE

PROJ NO

The amount of stone mulch required to limit soil loss to one ton per acre per year is determined from figure 6 of the above referenced report as shown on the following page. This figure shows the amount of stone mulch required to reduce the erosion potential from as much as 130 tons per acre per year to one ton per ocre per year.

For the 2 5H 1V (40%) Slope


Approximately 500 tons per acre of stone mulch is required. The required thickness of stone mulch is

t = (Required tons/acre of stone mulch x 2000 lbs/ton x 12 in/ft)/ (43560 ft²/acre x stone mulch density lbs/ft³)

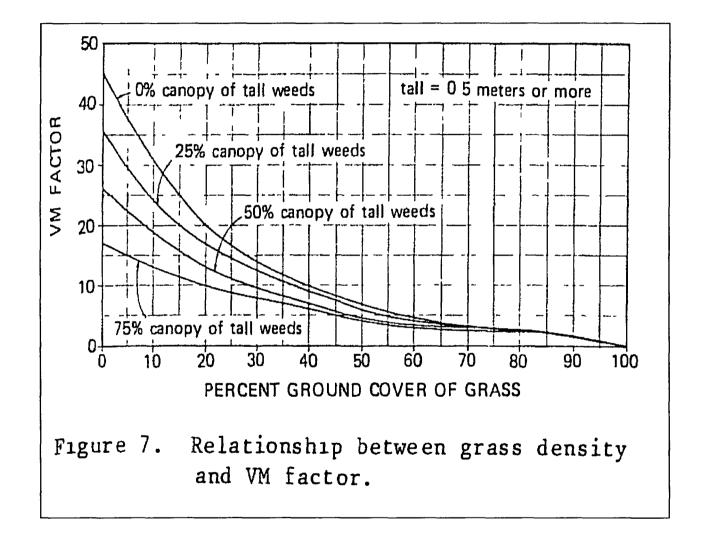
Assuming a stone mulch density of 110 lbs/tt³

t = 500(2000)(12)/(43560)(110) = 25 in

Recommending 3 in cover for all slopes

G Required Vegetative Cover

If a vegetative cover of gross is used instead of the stone mulch the amount of cover required is determined from the figure 7 of the above referenced report os shown on the following page. The VM factor required is calculated by the following equation


CLIENT Mouldan PROJECT Weber (FEATURE Erosion PROJ NO 333 01

Moulding & Sons Weber County C & D Landfill Erosion Protection 333 01 100

For the 2 5H 1V (40%) Slope

VM = 1/130 = 0.008

Percent Ground Cover of Grass = 97% (Regardless of toll weeds)

EXHIBIT B

Quit Claim Deed

C2008-227 Real Estate Purchase Agreement

C2008-228 Landfill Operating and Management Agreement

When recorded, return to Moulding Investments, L L C 910 West 21st Street Ogden, Utah 84401

ENREST D POWLEY, WEBER COUNTY RECORDER INCOT-UN 1039 AN FEE \$18 OU OCP SPY REC FOR MOULDING INVESTMENTS

QUITCLAIM DEED

MOULDING INVESTMENTS, LLC a Utah Limited Liability Company and **COUNTERPOINT CONSTRUCTION COMPANY, INC**, Grantors, hereby quitclaims to **MOULDING INVESTMENTS, LLC** a Utah Limited Liability Company, whose address is 910 West 21st Street, Ogden, Utah 84401, for the sum of Ten Dollars (\$10 00) and other good and valuable consideration, the following described tract of land in Weber County State of Utah

See Exhibit A attached hereto and incorporated herein by this reference

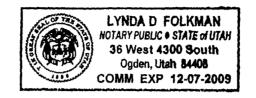
Dated this Luday of Oct 2008

MOULDING INVESTMENTS, LLC a Utah Limited Liability Company

Bγ

COUNTERPOINT CONSTRUCTION COMPANY, INC

State of Utah


County of Weber

On the <u>//</u> day of <u>(OCTOBER</u>, 2008, personally appeared before me Randy Moulding, who is duly sworn, did say, that he, Randy Moulding, is President of Moulding Investments, LLC, a Utah Limited Liability Company, and Kelly Penrod, who is duly sworn, did say, that he, Kelly Penrod, is <u>(CETSoudent</u>) of CounterPomt Construction Company, Inc, and that the within and forgoing instrument was signed in behalf of said Limited Partnership, and Incorporated Company, by authority of its resolution of its LLC and INC

Jolkman Notary Public

My Commission Expires

12-7-2009

EXHIBIT A

ALL THAT PROPERTY IN THE NORTH HALF OF SECTION 19, TOWNSHIP 6 NORTH, RANGE 3 WEST, SALT LAKE BASE & MERIDIAN, IN THE STATE OF UTAH, COUNTY OF WEBER, MORE PARTICULARY DESCRIBED AS FOLLOWS

BEGINNING AT A POINT ON THE NORTH SIDE OF A 100 FOOT PERPETUAL EASEMENT, SAID POINT BEING SOUTH 425 19 FEET AND WEST 4 17 FEET FROM THE NORTHWEST CORNER OF SAID SECTION, BASIS OF BEARING MAY BE DETERMINED LOCALLY BY A BEARING OF \$89°23'44"E, BETWEEN THE NORTHWEST CORNER AND THE NORTHEAST CORNERS OF SAID SECTION, THENCE ALONG THE NORTH LINE OF SAID EASEMENT THE FOLLOWING FIVE COURSES, S89°05'20"E 12 18, AND N87°50'35"E 1450 90 FEET TO THE BEGINNING OF A CURVE CONCAVE TO THE SOUTH, WITH A RADIUS OF 868 51 FEET, THENCE EASTERLY 198 57 FEET, THROUGH A CENTRAL ANGLE OF 13°06'00", AND S79°05'14"E 485 59 FEET, TO THE BEGINNING OF A CURVE CONCAVE TO THE NORTH, WITH A RADIUS OF 768 51 FEET, THENCE EASTERLY 474 18 FEET, THROUGH A CENTRAL ANGLE OF 35°21'09", THENCE LEAVING SAID NORTH LINE, SOUTH 1811 66 FEET, TO THE NORTHERLY RIGHT-OF-WAY OF THE SOUTHERN PACIFIC RAILROAD COMPANY, THENCE ALONG SAID RIGHT-OF-WAY THE FOLLOWING FOUR COURSES, S81°46'35"W 221 51 FEET, AND S81°42'06"W 251 02 FEET, TO THE BEGINNING OF A CURVE CONCAVE TO THE NORTH, WITH A RADIUS OF 1049176 FEET, THENCE WESTERLY 2155 58 FEET, THROUGH A CENTRAL ANGLE OF 11°46'18", AND N89°26'02"W 188 FEET TO THE EASTERLY BOUNDARY OF THE USAF PROPERTY, THENCE LEAVING SAID RIGHT-OF-WAY AND ALONG SAID EASTERLY BOUNDARY THE FOLLOWING TWO COURSES, N00°33'58"E 1867 42 FEET, AND N00°35'08"E 100 78 FEET TO THE POINT OF BEGINNING

CONTAINING 116 69 ACRES MORE OF LESS

TOGETHER WITH A PERPETUAL EASEMENT FOR ACCESS AND CONSTRUCTION OF UTILITIES, MORE PARTICULARY DESCRIBED AS FOLLOWS

BEGINNING AT A POINT ON THE NORTH SIDE OF A 100 FOOT PERPETUAL EASEMENT, SAID POINT BEING SOUTH 423 16 FEET AND EAST 2595 73 FEET FROM THE NORTHWEST CORNER OF SAID SECTION 19, BASIS OF BEARING MAY BE DETERMINED LOCALLY BY A BEARING OF S89"23'44"E, BETWEEN THE NORTHWEST CORNER AND THE NORTHEAST CORNERS OF SAID SECTION 19, THENCE ALONG THE NORTH LINE OF SAID EASEMENT THE FOLLOWING NINE COURSES, EASTERLY ALONG A CURVE, CONCAVE TO THE NORHTWEST, WITH A RADIUS OF 768 51 FEET, THENCE ALONG SAID CURVE 214 24 FEET, THROUGH A CENTRAL ANGLE OF 15°58'21", AND N49°3705"E 309 04 FEET, AND N65°33'35"E 139 61 FEET, AND S00°00'25"E 32 86 TO THE SOUTH SIDE OF A

COUNTY ROAD, AND ALONG SAID SOUTH SIDE, S89°47'56"E 331 04 FEET, AND S00°14'05"W 7 51, SAID POINT ALSO BEING THE BEGINNING OF A CURVE, CONCAVE TO THE SOUTHEAST, WITH A RADIUS OF 768 51 FEET, THENCE WEST AND SOUTHWESTERLY 544 84 FEET, THROUGH A CENTRAL ANGLE OF 40°37'13", AND S49°37'05"W 169 04 FEET, TO THE BEGINNING OF A CURVE CONCAVE TO THE NORHTWEST, WITH A RADIUS OF 868 51 FEET, THENCE WESTERLY 286 61 FEET, THROUGH A CENTRAL ANGLE OF 18°54'28, THENCE NORTH 108 43 FEET TO THE POINT OF BEGINNING

ALSO TOGETHER WITH ½ OF ANY AND ALL WATER, WATER RIGHTS, WATER SHARESSURFACE AND SUB-SURFACE, APPURTENANT TO, OR USED IN CONJUNCTION WITH, THE ABOVE STATED PARCEL SUBJECT TO EASEMENTS, RESTRICTIONS AND RIGHTS OF WAY APPEARING OF RECORD AND ENFORCEABLE IN LAW

THE PURPOSE AND INTENT OF THIS QUIT CLAIM DEED, IS TO SEPARATE THE 1/2 INTERESTS OF THE PROPERTY AS LISTED AS PARCEL #100400001 OF OFFICAL RECORD WITH THE WEBER COUNTY RECORDERS OFFICE AND DESCRIBED IN DOCUMENT ENTRY #2305658 DATED NOVEMBER 20, 2007

ALSO SUBJECT TO ANY AND ALL EASEMENTS, AND EXCEPTIONS AS PERTAINING TO SUBJECT PARCEL AS DESCRIBED IN DOCUMENT ENTRY #2305658 DATED NOVEMBER 20, 2007, RECORDED WITH THE WEBER COUNTY RECORDERS OFFICE

12-23

C2008-227 REAL ESTATE PURCHASE AGREEMENT

THIS REAL ESTATE PURCHASE AGREEMENT (hereinafter "Agreement") is made and entered into on the <u>23</u> day of <u>Bovennet</u> 2008, by and between Weber County, a body politic, corporate and political subdivision of the State of Utah (heremafter 'Buyer") and Moulding Investments, LLC, a Utah limited liability company (heremafter 'Seller")

RECITALS

WHEREAS, according to the official records of the Recorder of Weber County, State of Utah, Seller owns real property (hereinafter the Land") more fully described in $E_{\lambda}hibit$ "A" which is attached hereto and hereby incorporated into this Agreement, and

WHEREAS, Buyer is m need of purchasing the Land to facilitate the development of a construction and demolition landfill (the 'Landfill'), and

WHEREAS, Buyer and Moulding and Sons Landfill, LLC, a Utah limited liability company, have entered into a Landfill Operation and Management Agreement of even date herewith (the 'Management Agreement') pursuant to which said Moulding and Sons Landfill, LLC, will, upon issuance of all permits, licenses and approvals by applicable governmental entities (collectively, the "Permits"), manage and operate the Landfill, and

WHEREAS, Seller 15 willing to accept as compensation for the Property (as defined below) the consideration more fully enumerated below, and

WHEREAS, Seller and Buyer have determined that this Agreement is mutually beneficial to each Party,

NOW, THEREFORE, in consideration of the covenants contained herein, the Buyer and Seller hereby agree as follows

SECTION ONE PROPERTY

Seller agrees to convey to Buyer all of Seller's interest in the Land described above together with all of Seller's rights, title and interest in a mobile building to be relocated from Seller's present business premises to the Land (the Building") and all appurtenances specifically attached to the Land including but not limited to, Seller's interest in any assignable licenses, permits, appurtenant mineral rights appurtenant water rights (including shares in inrigation companies which serve the Land), easement rights-of way or other items that may benefit the same of any (All items referenced in this paragraph are heremafter collectively referred to as the 'Property')

SECTION TWO CONSIDERATION

The consideration for the conveyance shall be as follows

- A <u>Puichase Piice</u> The Puichase Piice shall be SEVEN HUNDRED FIFTY THOUSAND DOLLARS (\$750,000), and shall be paid as follows
- A <u>Earnest Money</u> Buyer shall deposit TEN THOUSAND DOLLARS (\$10,000) with Home Abstract Title Company ("Title Company") upon execution of this Agreement, as earnest money ('Earnest Money") The Earnest Money shall be credited toward the Purchase Puce at Closing
- B <u>Additional Money at Closing</u> In addition to the Earnest Money which shall be i eleased to the Sellei at Closing, Buyer shall pay the balance of SEVEN HUNDRED FORTY THOUSAND DOLLARS (\$740,000) at Closing

SECTION THREE ESCROW

Upon Buyer's receipt of a fully executed copy of this Agreement Buyer shall open an escrow with Title Company, by depositing with Title Company the Earnest Money and an executed copy of this Agreement The Agreement, together with other written instructions as will be provided by Buyer and Seller to Title Company, shall constitute its escrow instructions to the Title Company

SECTION FOUR EFFECTIVE DATE

The Effective Date shall be deemed the date of execution of this Agreement by both parties

SECTION FIVE TITLE COMMITMENT

Within Ten (10) days of the Effective Date Buyer may at Buyer's sole discretion and cost choose to purchase Title Insurance and obtain a commitment therefor (the Commitment")

SECTION SIX SURVEY AND BUILDING PLANS

Within ten (10) business days after the Effective Date, Seller shall deliver to Buyer a copy of any survey of the Property which Seller has mits possession. If Seller has no survey of the Property none shall be required. If Buyer elects to obtain a new Survey of the Property it shall pursue completion of the same with diligence at its own expense.

SECTION SEVEN TITLE AND SURVEY OBJECTIONS

Withm Ten (10) business days after Buyer's receipt of the Title Commitment and Survey, Buyer shall give written notice to Seller of any matters contained in the Title Commitment or Survey to which Buyer objects ("Objections") Any matters in the Title Commitment or Survey to which Buyer does not so object shall be 'Perinited Exceptions"

SECTION EIGHT CURE OF OBJECTIONS

Seller shall have Ten (10) business days after receipt of the notice contemplated by Section 7 above relative to the Title Commitment and Survey, or update (Sellers Cure Period"), to cure the Objections to the satisfaction of Buyer or elect not to cure the same, provided however, all consensual monetary encumbrances recorded against the Property will be discharged or otherwise removed by Seller on or before Closing If Seller gives notice that Seller will not cure the Objections to Buyers satisfaction within Sellers Cure Period, then Buyer may (a) warve any such Objections and proceed to Closing or (b) terminate this Agreement and receive back the Earnest Money

SECTION NINE INVESTIGATIONS

From the Effective Date through the duration of the Due Diligence Period as defined below, Buyer and its representatives shall have the right to enter upon the Property to conduct at its own expense investigations, including without limitation, obtaining or performing surveys, soils and/or water tests engineering studies, feasibility studies, environmental assessments and inspections, evaluating the availability of utilities, diamage and access, and performing such other investigations as Buyer may desire to determine the suitability of the Property for Buyers intended use Buyer shall provide to Seller, without cost, copies of any and all results of Buyers investigations or studies if Buyer elects not to purchase the Property, provided, however, that the copies are delivered without any warranty whatsocver as to the accuracy thereof. Buyer in the conduct of its investigation shall not unreasonably interfere with any existing operations on the Property and Buyer shall modernmly and hold Seller harmless from and against any and all physical damage to the Property resulting from Buyer's investigation of the Property and any costs, hability or other adverse consequences (c g mechanic s hens) associated with or arising out of such investigations

SECTION TEN DUE DILIGENCE PERIOD

Seller agrees that Buyer shall have a period of Thirty (30) calendar days (Due Diligence Period ') after the Effective Date to determine the suitability of the Property for Buyer's intended use It is understood that suitability will be dependent upon among other things, the following

- A <u>Zoning</u> The zoning of the Pioperty must be satisfactory to the Buyer in that the zoning allows Buyer to utilize the property for its intended purpose and shall receive that approval from all governing entities with jurisdiction over the Pioperty
- B <u>Streets</u> The Property shall have vehicular access into and out of the Property by means satisfactory to Buyer
- C <u>Studies</u> All studies (other than the Survey and Condition of **T**itle, which shall be as previously approved) including, without limitation, environmental and geoteclinical studies, at Buyer's sole discretion, shall show the Property to be acceptable for Buyer's intended use

Buyer may end the Due Diligence Period at any time by giving notice to Seller and proceed with the purchase under the terms set forth herein Buyer shall give Seller notice of its decision to proceed with this purchase (subject to conditions herem stipulated) or to terminate on or before the expiration of the Due Diligence Period Should Buyer provide notice to terminate, or fail to provide notice prior to the expiration of the Due Diligence Period, this Agreement shall terminate and be of no further force or effect, and Buyer shall receive all of the Earnest Money deposited with the Title Company

SECTION ELEVEN CONDEMNATION

If pilor to the Closing Seller receives notice that a condemnation of emment domain action is threatened or has been filed against the Property or any part thereof (or that a taking is pending or contemplated), Seller shall promptly give notice thereof to Buyer. If such taking is of a portion of the Property such that the value or usefulness of the Property is in Buyer's sole option, materially impaired of reduced, Buyer may elect, by written notice delivered to Seller within fifteen (15) days after receipt of Buyer's notice, to terminate this Agreement and the Escrow, in which event neither party shall have any further obligation hereunder and all monies deposited hereunder shall be returned to the party depositing same. If Buyer does not deliver written notice of terminate this Agreement, (b) Seller shall assign and deliver to Buyer all of Seller's interest in the awaid (or right to such awaid) for such taking of the Property, and (c) the parties shall continue performance under this Agreement and the Escrow without modification of any of its terms and without any reduction in the Purchase Price

SECTION TWELVE CLOSING

The conveyance of the Property to Buyer shall be closed on the Closing Date at the office of the Title Company, which date shall be within Ten (10) days after the issuance of the Permits

SECTION THIRTEEN CLOSING DOCUMENTS

The following documents shall be delivered at Closing

- A <u>Deed</u> Seller shall deliver a General Warranty Deed conveying to Buyer, all Seller's mterest m the Property free and clear of all restrictions, liens, assessments, tenancies, whether recorded or unrecorded, or other encumbrances except as otherwise provided in this Agreement
- B <u>Other</u> The Buyer shall deliver, m addition to the Purchase Price to Seller, any other documentation reasonably required by the Title Company to appropriately conduct the Closing on the Property

SECTION FOURTEEN CLOSING COSTS

Closing costs and prorations shall be prorated as follows

- A <u>Fees</u> Any escrow fee charged by Title Company shall be shared equally by Seller and Buyer Each party will pay its own attorney's fees Buyer shall pay the cost of recording the Deed
- B <u>Other</u> Except as otherwise provided herein, all other bills or charges including other recording fees, any state or local documentary stamps transfer taxes or fees, assessments for improvements completed or imitated prior to the Closing, whether levied or not, pertaining to the Property as of the date of Closing shall be allocated according to local custom of the Title Company

SECTION FIFTEEN POSSESSION

Possession of the Pioperty shall be delivered to Buyer at Closing Seller agrees that any improvements remaining on the Pioperty after such date shall belong to Buyer

SECTION SIXTEEN WARRANTIES

1 <u>Seller's Warrantics</u> Seller makes the following representations warranties and covenants as of the date of this Agreement and as of the date of Closing and such warranties and covenants shall survive the Closing The warranties provided in this Section 16 and its subparagraphs shall be enforceable by the Buyer and its successors and assigns

- A <u>Title</u> Seller owns good and marketable fee simple absolute title to the Property, subject to all matters of record, and is fully authorized to convey the Property pursuant to this Agreement
- B <u>No Proceedings</u> As of the date of this Agreement there are no pending and, to the best of Sellers knowledge, threatened condemnation or similar proceedings or assessments affecting the Property, lawsuits by adjoining landowners or others, nor to the best knowledge and belief of Seller is any such lawsuit contemplated by any person, nor to Seller's best knowledge, is any condemnation or assessment contemplated by any governmental authority other than as disclosed in writing by Seller
- C <u>No Leases</u> Except as otherwise expressly provided herein, at the time of Closing, the Property will not m whole or m part be subject to any leases, or other possessory rights and interests, except as may have been reflected in the Title Commitment
- D <u>No Contracts</u> Seller has not and will not enter into any written contracts agreements or listings, or be a party to any oral understandings or agreements affecting the Property which may become binding upon Buyer, except as may be reficcted by recorded documents
- E <u>Compliance with Laws</u> To the best knowledge of Seller, Seller has complied with all applicable laws ordinances regulations, statutes and rules relating to the Property
- F <u>Environmental</u>
 - (1) Definitions of Environmental Law, Hazardous Substances Environmental Conditions and Environmental Claims
 - a <u>Environmental Law</u> For purposes of this Agreement the termi 'Environmental Law" shall mean any federal, state regional, municipal or local statute code ordinance, rule, regulation, policy guideline, permit, consent, approval, license, judgment, order whit decree, injunction or other authorization relating to
 - emissions discharges, ieleases of theatened releases of Hazaidous Substances (as defined below) in the natural of human envnonment including without limitation, an soil sediments land suiface of subsulface suiface water ground water buildings of facilities treatment works drainage systems of septic systems of
 - (n) the generation treatment, storage, disposal use handling manufacturing transportation or shipment of Hazardous Substances or otherwise concerning pollution or protection of the envnonment public health and safety employee health or safety, or solid waste handling treatment or disposal

Except as otherwise provided herein any reference in this Agreement to any Environmental Law or other statute includes and is a reference to such Environmental Law or statute and to the regulations made pursuant thereto with all amendments made thereto and m force from time to time, and to any Environmental Law or statute or regulations that may be passed which have the effect of supplementing or superseding such Environmental Law or statute or regulations

- Hazardous Substances For purposes of this Agreement the term b pollutants, contaminants, dangeious substances, constituents, toxic substances, hazaidous oi toxic chemicals hazaidous wastes and hazardous substances as those tenns are defined in the following statutes and then implementing regulations the Hazardous Materials Transportation Act, 49 USC § 1801 et seg the Resource Conservation and Recovery Act, 42 USC §6901 et seq the Comprehensive Envnonmental Response Compensation and Liability Act, as amended by the Superfund Amendments and Reauthorization Act, 42 U S C § 9601 et seq, ("CERCLA") the Clean Water Act 33 USC § 33 USC § 1251 et seg, the Toxic Substances Control Act, 15 U S C § 2601 et seq, the Clean Air Act, 42 U S C § 7401 et seq and any other federal, state or local statute or regulations dealing with similar matiers, (n) petroleum, including crude oil and fractions thereof (in) natural gas synthetic gas and any mixtures thereof, (1v) asbestos and/oi asbestos containing materials, (v) PCB s oi PCB-contaiming materials or fluids, (vi) any other substance including sewage sludge, with respect to which any federal, state or local agency or other governmental entity may require either an environmental investigation or any environmental remediation, and (vii) any other hazardous of noxious substance, material, pollutant, or solid waste that is regulated by, or forms the basis of liability under any Environmental Law
- c <u>Environmental Condition</u> For purposes of this Agreement, the term "Environmental Condition" shall mean any condition with respect to the environment (including soil, surface waters ground waters land, stream sediments, surface or subsurface strata ambient an, and any environmental medium) and any condition with respect to the interior or extenor of buildings or structures (including without limitation friable and non-friable asbestos lead based paint or any Hazardous Substance located in the meterior or on the exterior of buildings or structures) whether or not the condition is known which could or does result m any liability claim, cost, or order to or against the Buyer or Seller by any third party (including, without limitation any government entity)
- d <u>Environmental Claims</u> For purposes of this Agreement the tenn "Environmental Claims shall mean any and all liabilities demands claims or actions clean-up costs remediation removal or other response

costs, legal expenses (including attorneys' fees), investigation costs (including fees of consultants, counsel and other experts in connection with environmental investigation or testing) any other losses, liabilities, obligations, fines, penalties (civil or crimmal), damages (including compensatory, punitive, natural resource damages), or payments sought or claimed by any person, governmental agency or other entity which are based upon the violation or alleged violation of any Environmental Law (as defined above) or the imposition or liability by the operation of any Environmental Law

(2) <u>Seller's Environmental Warranties and Covenants</u>

- a To the best of Seller's knowledge, Seller warrants that during the period that Seller has owned the Property, there has been no storage, production, transportation, disposal, treatment or release of any Hazardous Substances on or m the Property (other than the potential for the existence asbestos which has been disclosed to the Buyer) Seller further warrants that to the best of Seller's knowledge, during Seller's ownership of the Property Seller has complied with all Environmental Laws relating to the Property and that there are no wells, underground storage tanks, covered surface unpoundments or other sources of Hazardous Substances on the Property
- b To the best of Seller's knowledge, there are no wetlands on the Property nor has there been any earth settlement, movement instability or other damage from natural causes which may have affected the Property
- c Buyer hereby assumes all obligations related to and shall mdemmfy, defend, release and hold hamiless Seller, its successor and assigns from and against all Environmental Claims relating to arising from or attributable to directly or indirectly, m whole or m part relating to the existence removal and/or remediation of Hazardous Substances and Environmental Conditions existing on the Property as of the date of Closing

11 <u>Buyer s Wananties</u> Buyer makes the following representations, wan anties and covenants as of the date of this Agreement and as of the date of Closing, and such wan anties and covenants shall survive the Closing The warranties provided in this Section 16 and its subparagraphs shall be enforceable by the Seller and its successors and assigns

A <u>Authorization</u> Buyer has full power and authority to execute and deliver all documents required to consummate this transaction and to perform its obligations thereunder. Without limiting the generality of the foregoing the governing authority of Buyer has duly authorized the execution delivery and performance of this Agreement by Buyer. This Agreement constitutes the valid and legally binding obligation of Buyer enforceable m accordance with its terms and conditions.

B <u>Future Expenses</u> Buyer shall pay all expenses that shall be necessary or desirable after the date of execution of this Agreement to complete preparation of the Land for the operation of the Landfill as contemplated by this Agreement and by the Management Agreement, including, but not limited to, the cost of moving and installing the Building on the Land, the cost of installing electricity water, telephone service and other utilities to the Building, the cost of constructing a parking lot near and about the Building and all engineering and other services

SECTION SEVENTEEN NOTICES

Any notice of designation to be given hereunder shall be given by placing the notice of designation m the United States mail certified of registered, properly stamped and addressed to the address shown below of such other address as the respective party may direct in writing to the other, or by personal delivery to such address by a party, or by a delivery service which documents delivery, and such notice of designation shall be deemed to be received upon such placing in the mails of such delivery

SELLER Pnoi to Closing

Moulding Investments LLC 910 West 21st Street Ogden, Utah 84401

After Closing

Moulding Investments, LLC at the address of the Property

BUYER Weber County Corporation Attention Commission Chair 2380 Washington Boulevard Ogden, Utah 84401

SECTION EIGHTEEN TERMINATION

If this Agreement is terminated of Closing does not occur because of the failure of any condition of the occurrence of an event giving rise to a termination right by Buyer as set forth herein, all monies deposited by Buyer hereunder will be returned to it. In the event of default by either party, the other party may, at its option (i) terminate this Agreement upon written notice to such defaulting party and recover from such other party all damages incurred or suffered by such other party or (ii) pursue all other remedies available at law or mequity including specific performance

SECTION NINETEEN REAL ESTATE AGENTS AND COMMISSIONS

The Seller and Buyer hereby agree that no real estate commissions shall be due on account of the transaction contemplated herem. Each party agrees to indemnify defend and hold the other party harmless from and against any commissions fees or other compensation which is claimed by any thud party with whom the indemnifymg party has allegedly dealt.

SECTION TWENTY ENTIRE AGREEMENT

This Agreement contains all agreements between the parties, and no agreement not contained herem shall be recognized by the parties

SECTION TWENTY-ONE BINDING EFFECTS

This Agreement shall be binding upon and inure to the benefit of the parties and then respective heirs, legal representatives, successors and assigns

SECTION TWENTY-TWO DEFAULT BY BUYER

If Buyer should default at any time during this Agreement, Buyer agrees to deliver to Seller all studies, engineering plans and plats to Seller that were performed by Buyer

SECTION TWENTY-THREE DEFAULT BY EITHER PARTY

In the event of default by either party, the other party shall have the rights set forth m section 18 above, including the right of specific performance

SECTION TWENTY-FOUR AUTHORITY OF SIGNERS

If Buyer of Seller is a corporation, partnership trust, estate or other entity, the person executing this Agreement on its behalf warrants his or her authority to do so and bind Buyer or Seller

SECTION TWENTY-FIVE **ATTORNEYS FEES**

In any action alising out of this Agreement, each party hereto shall be responsible for its own costs and attorney's fees

SECTION TWENTY-SIX **RISK OF LOSS**

All risk of loss of damage to the property shall be borne by Seller until closing

SECTION TWENTY-SEVEN **INCORPORATION OF RECITALS**

The Recitals pieceding this Agreement are incorporated herein as part of this Agreement by this refeience

SECTION TWENTY-EIGHT COUNTERPARTS AND FACSIMILE SIGNATURES

This Agreement may be executed in any number of counterparts which when combined shall constitute one original Facsimile signatures on this Agreement shall be accepted as original, with original signatures to be delivered to the parties as soon as reasonably possible thereafter

SECTION TWENTY-NINE **NO EFFECT**

This Agreement shall be void *ab initio* and of no force of effect if the Management Agreement is not executed of is for any reason invalid or unenforceable

IN WITNESS WHEREOF the undersigned have affixed their respective signatures hereto the dates indicated below

BUYER

BOARD OF COUNTY COMMISSIONERS OF WEBER COUNTY

By Jan M Zogmaister Chan

Commissioner Bischoff voted Commissioner Dearden voted Commissioner Zogmaister voted

STATE OF UTAH

)

COUNTY OF WEBER

SS

)

I certify that the foregoing instrument was approved in a regular Commission Meeting of the Board of County Commissioners of Weber County on the 23 day of November, 2008

Alan D McEwan CPA Weber County Clerk/Auditor

SELLER

MOULDING INVESTMENTS, LLC, a Utah limited liability company

By__ Randy Moulding

EXHIBIT "A-1"

Legal Description of Property

That certain real property located in Weber County, State of Utah, more particularly described as follows

ALL THAT PROPERTY IN THE NORTH HALF OF SECTION 19, TOWNSHIP 6 NORTH. RANGE 3 WEST, SALT LAKE BASE & MERIDIAN, IN THE STATE OF UTAH. COUNTY OF WEBER, MORE PARTICULARLY DESCRIBED AS FOLLOWS BEGINNING AT A POINT ON THE NORTH SIDE OF A 100 FOOT PERPETUAL EASEMENT. SAID POINT BEING SOUTH 425 19 FEET AND WEST 4 17 FEET FROM THE NORTHWEST CORNER OF SAID SECTION BASIS OF BEARING MAY BE DETERMINED LOCALLY BY A BEARING OF SOUTH 89°23'44" EAST BETWEEN THE NORTHWEST CORNER AND THE NORTHEAST CORNERS OF SAID SECTION, THENCE ALONG THE NORTH LINE OF SAID EASEMENT THE FOLLOWING FIVE COURSES, SOUTH 89°05'20" EAST 12 18 AND NORTH 87°50'35" EAST 1450 90 FEET TO THE BEGINNING OF A CURVE CONCAVE TO THE SOUTH, WITH A RADIUS OF 868 51 FEET, THENCE EASTERLY 198 57 FEET. THROUGH A CENTRAL ANGLE OF 13°06'00" AND SOUTH 79°05'14" EAST 485 59 FEET. TO THE BEGINNING OF A CURVE CONCAVE TO THE NORTH. WITH A RADIUS OF 768 51 FEET THENCE EASTERLY 474 18 FEET, THROUGH A CENTRAL ANGLE OF 35°21'09" THENCE LEAVING SAID NORTH LINE SOUTH 1811 66 FEET TO THE NORTHERLY RIGHT OF WAY OF THE SOUTHERLY PACIFIC RAILROAD COMPANY, THENCE ALONG SAID RIGHT OF WAY THE FOLLOWING FOUR COURSES, SOUTH 81°46'35" WEST 221 51 FEET AND SOUTH 81°42'06" WEST 251 02 FEET. TO THE BEGINNING OF A CURVE CONCAVE TO THE NORTH WITH A RADIUS OF 10491 76 FEET, THENCE WESTERLY 2155 58 FEET THROUGH A CENTRAL ANGLE OF 11º46'18" AND NORTH 89º26'02" WEST 1 88 FEET TO THE EASTERLY BOUNDARY OF THE USAF PROPERTY, THENCE LEAVING SAID RIGHT OF WAY AND ALONG SAID EASTERLY BOUNDARY THE FOLLOWING TWO COURSES NORTH 00°33'58" EAST 1867 42 FEET AND NORTH 00°35'08" EAST 100 78 FEET TO THE POINT OF BEGINNING CONTAINING 116 69 ACRES MORE OR LESS (10-040-0012)

TOGETHER WITH A PERPETUAL EASEMENT FOR ACCESS AND CONSTRUCTION OF UTILITIES MORE PARTICULARLY DESCRIBED AS FOLLOWS

BEGINNING AT A POINT ON THE NORTH SIDE OF A 100 FOOT PERPETUAL EASEMENT, SAID POINT BEING SOUTH 423 16 FEET AND EAST 2595 73 FEET FROM THE NORTHWEST CORNER OF SAID SECTION 19 BASIS OF BEARING MAY BE DETERMINED LOCALLY BY A BEARING OF SOUTH 89°23 44' EAST BETWEEN THE NORTHWEST CORNER AND THE NORTHEAST CORNERS OF SAID SECTION 19 THENCE ALONG THE NORTH LINE OF SAID EASEMENT THE FOLLOWING NINE

E ro 'Url nown document p operty ii nie Error' Unknown decument piooerty name Error' Unknown document property name

COURSES EASTERLY ALONG A CURVE CONCAVE TO THE NORTHWEST, WITH A RADIUS OF 768 51 FEET THENCE ALONG SAID CURVE 214 24 FEET, THROUGH A CENTRAL ANGLE OF 15°58 21", AND NORTH 49°3705' EAST 309 04 FEET AND NORTH 65°33'35" EAST 139 61 FEET, AND SOUTH 00°00'25" EAST 32 86 TO THE SOUTH SIDE OF A COUNTY ROAD, AND ALONG SAID SOUTH SIDE, SOUTH 89°47'56' EAST 331 04 FEET, AND SOUTH 00°14'05' WEST 7 51 SAID POINT ALSO BEING THE BEGINNING OF A CURVE, CONCAVE TO THE SOUTHEAST, WITH A RADIUS OF 768 51 FEET, THENCE WEST AND SOUTHWESTERLY 544 84 FEET THROUGH A CENTRAL ANGLE OF 40°37'13", AND SOUTH 49°37'05" WEST 169 04 FEET, TO THE BEGINNING OF A CURVE CONCAVE TO THE NORTHWEST, WITH A RADIUS OF 868 51 FEET THENCE WESTERLY 286 61 FEET, THROUGH A CENTRAL ANGLE OF 18°54'28 THENCE NORTH 108 43 FEET TO THE POINT OF BEGINNING

ALSO TOGETHER WITH ½ OF ANY AND ALL WATER, WATER RIGHTS, WATER SHARES SURFACE AND SUB-SURFACE, APPURTENANT TO, OR USED IN CONIUNCTION WITH THE ABOVE STATED PARCEL

SUBJECT TO EASEMENTS RESTRICTIONS AND RIGHTS OF WAY APPEARING OF RECORD AND ENFORCEABLE IN LAW

ALSO SUBJECT TO ANY AND ALL EASEMENTS AND EXCEPTIONS AS PERTAINING TO SUBJECT PARCEL AS DESCRIBED IN DOCUMENT ENTRY #2305658 DATED NOVEMBER 20, 2007 RECORDED WITH THE WEBER COUNTY RECORDERS OFFICE

RECEIPT OF EARNEST MONEY

The undersigned hereby acknowledges receipt of a check in the amount of \$_______as Earnest Money under the foregoing Agreement The undersigned will promptly cash the check and hold the proceeds as Earnest Money in accordance with the terms of the Agreement The undersigned will promptly notify the parties if these instructions are for any reason not earried out

Title Company	
Ву	
Its	
Date	

LANDFILL OPERATING AND MANAGEMENT AGREEMENT

MADE BY AND BETWEEN

WEBER COUNTY AND MOULDING & SONS LANDFILL, LLC

C 2008-228 MANAGEMENT AGREEMENT

THIS MANAGEMENT AGREEMENT ('Agreement) is made and entered into as of the <u>33</u> day of <u>December</u>, 2008 by and between Weber County, a body politic, corporate and political subdivision of the State of Utah ('County"), and Mouldmg & Sons Landfill, LLC (Manager'), a Utah limited liability company

RECITALS

WHEREAS, County has purchased property located at approximately 10000 West 900 South m Weber County, Utah, for the purpose of operating a Construction and Demolition Landfill and

WHEREAS, Manager has significant expenence m managing and operating construction and demolition landfills, and

WHEREAS, the County desires to engage Manager, and Manager desires to accept such engagement, to provide management services for the Landfill on the terms and conditions set forth herein,

NOW, THEREFORE, m consideration of the mutual premises, covenants and agreements herein contained, the parties hereto, mtendmg to be legally bound, hereby agree as follows

SECTION ONE DEFINITIONS

For purposes of this Agreement, the following terms have the meanings referred to m this Section One

"Board" means the Board of County Commissioners of Weber County

"Solid Waste' means any waste that may be received by a Class IVb landfill pursuant to Utah Administrative Code Rules 315-301 2(10) and 315 305-3(2) as of the date of execution of this Agreement

"Contract Administrator' means the chair of the Board or his/her designee

'Fiscal Year' means a one year period beginning January 1 and ending December 31

"Landfill" means the Class IVb Landfill located at approximately 10000 West 900 South m Weber County, Utah

"Laws" means all federal, state, local and municipal regulations, ordinances, statutes, rules, laws and constitutional provisions

'Losses' means any and all losses, habilities, claims damages and expenses

Manager means Moulding & Sons Landfill LLC , as defined in the first paragraph of this Agreement

'Operating Expenses" means (a) any and all expenses and expenditures of whatever kind or nature incurred, directly or indirectly, by Manager m operating, maintaining and managing the Landfill, including, but not limited to employee compensation and related expenses, supplies, material and parts costs, costs of any independent contractors, repairs and maintenance costs, the costs of procuring and maintaining the msurance referred to m Section 8 below, amounts expended to procure and maintain permits and licenses, taxes, excises, utility and telephone charges, safety and medical expenses, costs relating to the maintenance of signage mientory and systems, the cost of annual independent audits of the Landfill, the cost of compliance with laws and regulations, other start-up expenses associated with the opening of a new Landfill

'Operating Revenues" means any and all revenues of every kmd-or nature derived from operating and managing the Landfill

"Person" means any individual, general partnership, limited partnership, limited liability partnership, partnership, corporation, joint venture, trust, business trust limited liability company, cooperative, or association, and the successors and assigns of any of the foregoing and, unless the context otherwise requires the singular shall include the plural, and the mascuhne gender shall include the feminine and the neuter, and vice versa

"Renewal Term" means the additional period for which this Agreement may be renewed m accordance with Section 3 2 hereof beyond the Management Term

SECTION TWO ENGAGEMENT OF MANAGER, SCOPE OF SERVICES

21 Engagement

- 211 <u>General Scope</u> The Board hereby engages Manager to operate and manage the Landfill during the Management Term and the Renewal Term, if any upon the terms and conditions hereinafter set forth, and Manager hereby accepts such engagement
- 212 <u>Manager of the Landfill</u> Subject to the terms of this Agreement, Manager shall be the sole and exclusive manager of the Landfill to manage and operate the Landfill during the Management Term and the Renewal Term(s) if any In such capacity Manager shall have all authority over the day-to-day operation of the Landfill and all activities therein The County shall take no action that materially mterferes with impedes or impairs the ability of Manager to manage the Landfill effectively except that if the Manager is m violation of any applicable federal or state law, rule or regulation, the County may direct the Manager to correct such violation and if said violation is not corrected withm a reasonable time,

the County may correct the same with said costs to be paid by Manager withm thirty (30) days

- 213 <u>Approval of the Board</u> To the extent that the approval of the Board is required under the terms of this Agreement the approval of the Contract Administrator shall constitute the approval of the Board, except to the extent the approval of another party is expressly required by the terms of this Agreement
- 2 2 <u>Scope of Services Generally</u> Manager shall perform and furnish such management services and systems as are appropriate or necessary to operate and manage the Landfill m a manner consistent with Manager's pohcies and procedures and the operations of other similar facilities In that connection, Manager will operate the Landfill m a manner to achieve the following objectives, subject to the availability of Operating Revenues

To provide excellent service to the users of the Landfill, To maximize the utilization of the Landfill and its revenue generating capacity,

To provide for the safety of the persons visiting the Landfill, To respond to the changmg needs of the community and users of the Landfill with expansions and/or upgrades of services

- **2 3 Specific Services** Without limiting the generality of the foregoing, Manager shall have, without (except as otherwise expressly noted below) any prior approval by the County, sole right and authority to
 - 231 employ, supervise and direct employees and personnel consistent with the provisions of this Agreement,
 - 2 3 2 negotiate, execute m its name as agent for the County, dehver and administer any and all licenses which are necessary or appropriate and all other contracts and agreements m connection with the management and operation of the Landfill
 - 2 3 3 rent, lease or purchase all equipment and maintenance supplies necessary or appropriate for the operation and maintenance of the Landfill
 - 234 charge the prices and rates set forth on the rate schedule which is attached hereto as Exhibit "A' and by this reference incorporated herein, and, subject to the approval of the Board (which approval shall not be unreasonably withheld, conditioned or delayed), to determine any adjustments thereto,
 - 235 pay when due, all Operating Expenses from accounts established pursuant to Section 52 of this Agreement,

- 2 3 6 maintain a record of the amount of all Solid Waste accepted at the Landfill,
- 2 3 7 provide day-to-day administrative services m support of its management activities, including, but not limited to, the acquisition of services, equipment, supplies and facilities, internal budgeting and accounting, maintenance and property management, personnel management, record-keeping, collections and billing, and similar services
- 24 <u>Right of Entry Reserved</u> The Board or any designated representative shall have the right to enter all portions of the Landfill during regular business hours for any lawful purpose and to inspect same, to observe the performance of Manager of its obligations under this Agreement, to install, remove, adjust, repair, replace or otherwise handle any utility lines, or other matters m, on, or about the premises, or to do any act or thing which the Board may be obligated or have the right to do under this Agreement or otherwise Except⁻for emergency situations or to remedy violations of federal or state law, rules or regulations in accordance with Section 2 1 2 above, the Manager shall be given not less than twenty-four (24) hours prior written notice of such mtended entry Nothing contained m this Section is intended or shall be construed to limit any other rights of the Board under this Agreement

SECTION THREE TERM AND RENEWAL

- **3 1** <u>Management Term and Renewal Term</u> The Management Term of this Agreement shail commence on the Closing Date under the Real Estate Purchase Agreement of even date herewith between the County and Moulding Investments, LLC, a Utah limited liability company, pursuant to which the County has purchased the real property on which the Landfill will be operated (the "Purchase Agreement"), and shall end at midnight on the date which is twenty (20) years thereafter, unless earlier termmated pursuant to the provisions of this Agreement
- **3 2** <u>Contract Extension</u> The Board and Manager may agree to extend the term hereof upon the same terms and conditions except for modifications which may be made as specified herein for two (2) additional five (5) year periods by executing an addendum to this Agreement at least one hundred eighty (180) days prior to the expiration of the Management Term or any Renewal Term

SECTION FOUR COMPENSATION TO COUNTY

4 1 <u>Compensation</u> Manager shall pay County on a monthly basis One Dollar and Fifty Cents (\$1 50) for each ton (or the equivalent thereof) of Sohd Waste accepted at the Landfill, with an increase to be negotiated every five (5) years between Manager and County or, if Manager and County are unable to agree on such increase said payment shall be increased by an amount equal to the percentage increase, if any, in the applicable consumer price index published by the United States government since the last such increase

SECTION FIVE FUNDING, BUDGET, BANK ACCOUNTS

- **51** <u>Operating Funds</u> Manager shall be responsible for all funds necessary to pay all Operating Expenses incurred or accrued m each Fiscal Yeai
- **5 2** <u>**Receipts and Disbursements</u>** Manager shall establish and maintain in one of inore depositories one or inore operating, payroll and other bank accounts for the operation and management of the Landfill, in the name of the Manager, with signature authority in such employees of Manager as Manager shall determine All revenues collected by Manager from the operation of the Landfill shall be deposited into such accounts and Operating Expenses shall be paid therefrom by Manager</u>
- **5 3** <u>**Capital Improvements, Capital Equipment**</u> The obligation to pay for, and authority to perform, direct and supervise capital improvements and capital equipment purchases shall be the responsibility of the Manager
- **5 4** <u>Landfill Closure</u> Manager shall establish a closure account separate from the operating account for the purpose of bullding a closure fund Manager shall deposit in the closure fund the equivalent of \$ 20 per ton (or the equivalent thereof) for the purpose of accumulating funds sufficient to close the Landfill in accordance with applicable federal and state laws, rules and regulations Any funds remaining in said account after completing Manager's services under this Agreement m accordance with said laws, rules and regulations shall belong to Manager, provided, however, that in the event County continues to operate the Landfill following termination of this Agreement, said closure fund shall be held in an interest bearing escrow account until closure, whereupon all remaining funds in excess of closure costs shall be returned to Manager

SECTION SIX RECORDS, AUDITS AND REPORTS

61 Records and Audits

- 6 1 1 Manager shall keep and preserve for at least three (3) years following each Fiscal Year all records relating to the number of tons (or the equivalent thereof) of Solid Waste accepted at the Landfill
- 6 1 2 The Board shall have the right, annually, upon at least seven (7) days prior written notice, to cause one or more of the County's internal auditors to audit the books of Manager at the Landfill's business office relating to the number of tons (or the equivalent thereof) of Solid Waste accepted at the Landfill

6 2 <u>Monthly Reports</u> By the twenty-fifth day of each month, Manager shall provide to the Board a written report showing the number of tons (or the equivalent thereof) of Sohd Waste accepted at the Landfill during the previous calendar month

SECTION SEVEN EMPLOYEES

71 Manager Employees

- 7 1 1 Manager shall select, ti am and employ at the Landfill such number of employees as Manager deems necessary or appropriate to satisfy its responsibilities hereunder Manager shall have authority to hire, terminate and discipline any and all personnel working at the Landfill
- 7 1 2 Manager s employees at the Landfill shall not for any-purpose be considered to be employees of the Board and Manager shall be solely responsible for their supervision and daily direction and control and for setting, and paying as an Operating Expense, their compensation (and federal income tax withholdmg) and any employee benefits, and all costs related to their employment shall be an Operating Expense

SECTION EIGHT INDEMNIFICATION AND INSURANCE

8 1 Indemnification

- 8 1 1 Each party shall mdemnify, defend and hold harmless the other party and its officers, agents and employees from and against any and all claims and judgments arising from any the negligence, fault, material default or breach by such mdemnifymg party of its obligations specified herein
- 8 1 2 The provisions set forth m subparagraph 8 1 1 above shall survive termination of this Agreement, provided, however, that a claim for indemnification shall be valid only if the party entitled to such indemnification provides written notice thereof to the other party prior to three (3) years following the date of termination of this Agreement
- 8 1 3 The foregoing indemnification rights shall be the exclusive remedies of each party hereto, other than any right to terminate this Agreement arising from any breach of, default under or performance pursuant to this Agreement

8 2 Liability Insurance

- 8 2 1 Manager shall secure prior to the commencement of the Management Term hereunder and shall keep m force at all times during the term of this Agreement, commercial liability insurance, including public liability and property damage, covering premises liability, and Manager operations hereunder m the amount of One Million Dollars (\$1,000 000 00) for bodily injury and One Million Dollars (\$1,000,000 00) for property damage
- 8 2 2 Manager shall also maintain Comprehensive Automotive Bodlly Injury and Property Damage Insurance for business use covering all vehicles operated by Manager officers, agents and employees m connection with the Landfill, whether owned by Manager, the Board, or otherwise, with a combined single limit of not less than One Million Dollars (\$1,000,000 00) per occurrence (including an extension of hired and non-owned coverage)
- 8 2 3 Commencing with the Management Term and continuing thereafter during the term hereof, Manager shall also maintain employment practices hability insurance with coverage of at least One Million Dollars \$1,000,000 00) for claims relating to the employment practices of Manager at the Landfill pertaining to its employees
- 8 2 4 Manager shall be the named insured under all such insurance The Board and County shall be an additional insured under the insurance described herein
- 8 2 5 Certificates evidencing the existence of the above insurance shall be delivered to the Contract Administrator prior to the commencement of the Management Term Notwithstanding the provisions of this Section 8 2, the parties hereto acknowledge that the above insurance may contain exclusions from coverage which are reasonable and customary for insurance of such type
- 8 2 6 A renewal bmder of coverage (or satisfactory evidence of such renewal) shall be delivered to the Contract Administrator at least twenty (20) days after a policy's expiration date except for any pohcy expiring on the termination date of this Agreement or thereafter
- 8 2 7 Except as provided m Section 8 5, all msurance procured by Manager m accordance with the requirements of this Agreement shall be primary over any insurance earried by the Board and not require contribution by the Board
- 83 <u>Workers Compensation Insurance</u> Manager shall at all times maintain worker s compensation msurance (mcludmg occupational disease hazards) with an authorized msurance company or through an authorized self-insurance plan approved by the State of Utah insuring its employees at the Landfill m

amounts equal to or greater than required under law Manager shall defend indemnify and hold harmless the Board and County from any and all actions brought for workers compensation benefits

SECTION NINE OWNERSHIP OF ASSETS

91 <u>Ownership</u> The ownership of any permanent buildings and real estate located at the Landfill shall remain with the County Ownership of removable buildings, heavy equipment, furnishmgs, materials, technical and office equipment and facilities, furniture, displays, fixtures, vehicles and similar tangible property or fixtures not considered to be real property and other personal property furnished by Manager shall remain with Manager The assets of a party as described herem shall not be pledged, hened, encumbered or otherwise alienated or assigned other than m the ordinary course of business of the Landfill without the prior approval of the other party

SECTION TEN ASSIGNMENT

10 1 <u>Assignment</u> Neither this Agreement nor any of the rights or obligations hereunder may be assigned by either party hereto without the prior written consent of the other party hereto

SECTION ELEVEN LAWS AND PERMITS

- 111 Permits, Licenses, Taxes and Liens Manager, as agent for the County, shall use reasonable efforts to procure any permits and licenses required for the business to be conducted by it hereunder The Board shall cooperate with Manager m applymg for such permits and licenses Manager shall deliver copies of all such permits and licenses to the Contract Admmistrator Manager shall pay promptly out of the accounts specified m Section 5.2, all taxes, excises, license fees and permit fees of whatever nature arising from its operation, promotion and management of the Landfill Managei shall use reasonable efforts to prevent mechanic's or materialman's or any other hen from becoming attached to the premises or improvements at the Landfill, or any part or parcel thereof, by reason of any work or labor performed or materials furnished by any mechanic or materialman, so long as the work, labor or material was provided at Manager's direction and the County has supphed funds for the payment of charges therefor m accordance with this Agreement
- **11 2** <u>Governmental Compliance</u> Manager, its officers, agents and employees shall comply with all Laws appheable to Manager's management of the Landfill hereunder

SECTION TWELVE TERMINATION

121 <u>Termination</u> This Agreement shall be termmated

12 1 1 upon expiration of the term hereof,

12 1 2 upon ninety (90) days written notice by either party to the other party ('Voluntary Termination"),

12.1.3 by either party if the other party fails to pay any sum payable hereunder or fails m any material respect to perform or comply with any of the other terms, covenants, agreements or conditions hereof, and such failure continues for more than sixty (60) days after written notice thereof from the other party ("Default"), provided, however, that m the event that a Default (other than a Default m the payment of money) is not reasonably susceptible to being cured withm the sixty (60)-day period, the defaulting party-shall not be considered m Default if it shall withm such sixty (60) day period have commenced with due diligence and dispatch to cure such Default and thereafter completes with dispatch and due diligence the curing of such Default,

12 1 4 If the Solid Waste flow to the Landfill dimmishes to the point that continued operation of the Landfill is no longer economically feasible (Lack of Economical Viability"), or

12 1 5 by County upon the commission of an act by Manager that is mimical to public operations or which brings disrepute to the County (Cause')

122 Effect of Termination

12.2.1 Upon termmation of this Agreement for any reason other than Manager's Voluntary Termmation, Manager's Default, Lack of Economical Viability or Cause, County shall pay Manager an amount equal to the then rate of compensation per ton (or the equivalent thereof) which is payable by Manager to the County pursuant to Section 4.1 above for each ton (or the equivalent thereof) of Sohd Waste that can be deposited in the Remaining Airspace of the Landfill (as defined in Section 12.3 below) If the Landfill continues to be operated, said amount shall be paid monthly as the remaining airspace of the Landfill is filled, otherwise it shall be paid within thirty (30) days after determination thereof as provided in said Section 12.3

12.2.2 Upon termination of this Agreement for Cause, Manager may repurchase the Landfill and seek to have it permitted and licensed as a private C&D Landfill County agrees to fully cooperate with Manager in obtaining all applicable permits and licenses The purchase price shall be the amount the County paid for the Landfill, plus any additional expense the County made m developing, permitting or upgrading the Landfill, adjusted by a consumer price index for the number of years the County owned the Landfill, which total amount shall be multiplied by a fraction, the numerator of which is the Remaining Airspace of the Landfill (as defined m Section 12 **3** below), and the denominator of which shall be the number of tons (or the equivalent thereof) of Solid Waste that can be deposited m the Landfill as of the date of this Agreement, as determined by Managei s engineer to-wit Seven Million Five Hundred Thousand (7 500,000) tons ('Initial Airspace")

12 2 3 Upon termmation of this Agreement for any reason, (a) all Operating Expenses incurred or committed for prior to the date of expiration or termination and any unpaid compensation due to the County pursuant to Section 4 1 shall be paid using funds on deposit m the account(s) described in Section 5 2 and to the extent such funds are not sufficient, the Manager shall pay all such Operating Expenses and shall indemnify and hold the Board harmless therefrom, and (b) all further obligations of the parties hereunder shall terminate except for the obligations m this Section Twelve and m Section 8 1

- 12 3 <u>Remaining Airspace</u> The Remaining Airspace of the Landfill shall be the difference between (a) the Initial Airspace (as defined m Section 12 2 2 above and (b) the number of tons (or the equivalent thereof) of Solid Waste that has been accepted at the Landfill as of the date of termination of this Agreement as set forth m the records maintamed by Manager pursuant to Section Srx hereof
- **12.4** <u>Surrender of Premises</u> Upon termination of this Agreement for any reason specified m this Section 12, including expiration of this Agreement, Manager shall surrender and vacate the Landfill upon the effective date of such termination

SECTION THIRTEEN MISCELLANEOUS

- 13 1 <u>Dispute Resolution</u> Any dispute arising under or m connection with this Agreement will be resolved by the parties m accordance with the procedures set forth on Exhibit 'B" attached hereto
- 13 2 <u>No Partnership or Joint Venture</u> Nothing herein contained is mtended or shall be construed in any way to create or establish the relationship of partners or a joint venture between the Board and Manager None of the officers, agents or employees of Manager shall be or be deemed to be employees of the Board for any purpose whatsoever
- **13 3** <u>Entire Agreement</u> This Agreement contains the entire agreement between the parties with respect to the subject matter hereof and supersedes all prior agreements and understandings with respect thereto. No other agreements, representations, warianties or other matters whether oral or written, will be deemed to bind the parties hereto with respect to the subject matter hereof.

13 4 <u>Written Amendments</u> This Agreement shall not be altered, modified or amended in whole or m part, except in a writing executed by each of the parties hereto

135 Force Majeure

- 13 5 1No party will be liable or responsible to the other party for any delay. damage, loss, failure, or mability to perform caused by 'Foice Majeure" if notice is provided to the other party within ten (10) days of date on which such party gams actual knowledge of the event of 'Force Majeure" that such party is unable to perform The term 'Force Majeure" as used m this Agreement means the following an act of God, strike, war, public noting lightning, fire, storm, flood, explosions inability to obtain materials, supplies, epidemics, landslides, lightening storms, earthquakes floods, storms, washouts, civil disturbances, explosions, breakage or accident to machine v or lmes of equipment, temporary failure of equipment, freezing of equipment, terrorist acts, and any other cause whether of the kinds specifically enumerated above or otherwise which is not reasonably withm the control of the party whose performance is to be excused and which by the exercise of due diligence could not be reasonably prevented or overcome (it being acknowledged that under no circumstances shall a failure to pay amounts due and payable hereunder be excusable due to a Force Majeure)
- 13 5 2 Neither party hereto shall be under any obligation to supply any service or services if and to the extent and during any period that the supplying of any such service or services or the provision of any component necessary therefor shall be prohibited or rationed by any Law
- 13 5 3 Except as otherwise expressly provided m this Agreement, no abatement, dimmution or reduction of the payments payable to Manager shall be claimed by the Board or charged against Manager, nor shall Manager be entitled to additional payments beyond those provided for in this Agreement for any mconvenience interruption, cessation, or loss of business or other loss caused, directly or indirectly, by priorities, rationing, or curtailment of labor or materials, or by war or any matter or thing
- 13 5 4 In the event of damage to or destruction of the Landfill by reason of fire, storin or other casualty or occurrence of any nature of any regulatory action or requirements that, m either case, is expected to render the Landfill permanently untenantable, notwithstanding the Board's reasonable efforts to remedy such situation either party may terminate this Agreement upon written notice to the other
- 13 5 5 Manager may suspend performance required under this Agreement, without any further liability, in the event of any act of God or other

occurrence, which act or occurrence is of such effect and duration as to effectively curtail the use of the Landfill so as effect a substantial reduction in the need for the services provided by Manager for a period m excess of ninety (90) days provided, however, that for the purposes of this subsection, Manager shall have the right to suspend performance retroactively effective as of the date of the use of the Landfill was effectively curtailed Substantial reduction in the need for these services provided by Manager" shall include such a reduction as shall make the provision of any services by Manager economically impractical

13 6 Binding Upon Successors and Assigns, No Third Party Beneficiaries

- 13 6 1 This Agreement and the rights and obligations set forth herein shall inure to the benefit of, and be binding upon, the parties hereto and each of their respective successors and permitted assigns
- 13 6 2 This Agreement shall not be construed as giving any Person, other than the parties hereto and their successors and perinitted assigns any legal or equitable right, remedy or claim under or m respect of this Agreement or any of the provisions herein contained, this Agreement and all provisions and conditions hereof being interided to be, and being, for the sole and exclusive benefit of such parties and their successors and permitted assigns and for the benefit of no other Person
- 13 7 <u>Notices</u> Any notice, consent or other communication given pursuant to this Agreement will be m writing and will be effective either (a) when dehvered personally to the party for whom mtended, (b) on the second busmess day following mailing by an overnight courier service that is generally recognized as reliable, (c) on the fifth day following malling by certified or registered mail, return receipt requested postage prepaid, or (d) on the date transmitted by telecopy as shown on the telecopy confirmation therefor as long as such telecopy transmission is followed by mailing of such notice by certified or registered mail, return receipt requested, postage prepaid, in any case addressed to such party as set forth below or as a party inay designate by written notice given to the other party in accordance herewith

13 8 To the Manager and Board

To Manager

Prior to opening of the Landfill

Mouldmg & Sons Landfill, LLC 910 West 21st Street Ogden Utah 84401 After openmg of the Landfill

Moulding & Sons Landfill LLC at the address of the Landfill

To County

Weber County Corporation 2380 Washington Blvd Ogden, Utah 84401

- 13 9 Section Headings and Defined Terms The section headings contained herein are for reference purposes only and shall not m any way affect the meaning and interpretation of this Agreement The terms defined herein and m any agreement executed m connection herewith include the plural as well as the singular and the singular as well as the plural, and the use of mascuhne pronouns shall melude the femme and neuter Except as otherwise indicated, all agreements defined herein refer to the same as from time to time amended or supplemented or the terms thereof waived or modified m accordance herewith and therewith
- 13 10 <u>Counterparts</u> This Agreement may be executed in two or more counterparts, each of which shall be deemed an original copy of this Agreement, and all of which, when taken together, shall be deemed to constitute but one and the same agreement
- 13 11 <u>Severability</u> The invalidity or unenforceability of any particular provision, or part of any provision, of this Agreement shall not affect the other provisions or parts hereof, and this Agreement shall be construed in all respects as if such invalid or unenforceable provisions or parts were omitted
- 13 12 <u>Non-Waiver</u> A failure by either party to take any action with respect to any default or violation by the other of any of the terms, covenants, or conditions of this Agreement shall not m any respect limit, prejudice dimmish, or constitute a waiver of any rights of such party to act with respect to any prior, contemporaneous, or subsequent violation or default or with respect to any continuation or repetition of the original violation or default
- 13 13 <u>Consent</u> Wherever the consent or approval of a party is required under the terms of this Agreement, the party whose consent or approval is required shall not unreasonably withhold or delay such consent or approval

13 14 Certain Representations and Warranties

13 14 1 The Board represents and warrants to Manager the following (1) all required approvals have been or will be obtained, and the Board has full legal right, power and authority to enter into and perform its obligations hereunder, and (11) this Agreement has been duly executed and delivered by the Board and constitutes a valid and binding obligation of the Board enforceable m accordance with its terms except as such enforceability may be limited by bankruptcy insolvency, reorganization or similar laws affecting creditors rights generally or by general equitable principles

- 13 14 2 Manager represents and warrants to the Board the following (i) all required approvals have been or will be obtained, and Manager has full legal right power and authority to enter into and perform its obligations hereunder, and (ii) this Agreement has been duly executed and delivered by Manager and constitutes a valid and binding obligation of Manager, enforceable in accordance with its terms, except as such enforceability may be limited by bankruptcy, insolvency, reorganization or similar laws affecting creditors' rights generally or by general equitable principles
- **13 15** <u>Governing Law</u> This Agreement will be governed by and construed m accordance with the internal laws of the State of Utah, without giving effect to otherwise applicable principles of conflicts of law
- **13 16** <u>No Effect</u> This Agreement shall be void *ab initio* and of no force or effect if the Purchase Agreement is not executed or is for any reason invalid or unenforceable

[Signature Page Follows]

IN WITNESS WHEREOF, this Agreement has been duly executed by the parties hereto as of the day and year first above written

BOARD OF COUNTY COMMISSIONERS OF WEBER COUNTY

By <u>chu M Communiter</u> Jan M Zogmaister Chain

Commissioner Bischoff voted	<u></u>
Commissioner Dearden voted	<u></u>
Commissioner Zogmaistei voted	

ATTEST

Alan D McEwan, CPA Weber County Clerk/Auditor

MOULDING & SONS LANDFILL, LLC

By Randy Moulding, Manager

EXHIBIT "A"

RATE SCHEDULE

Pickups	\$ 50 00
Pickups with Sides	60 00
Small Trailers	100 00
Bobtails	100 00
Small Flatbeds	100 00
Large Trailers	150 00
Large Flatbeds	150 00
Dump Trucks	150 00
Dump Trucks with Pups	240 00
Small End Dumps	160 00
End Dumps	240 00
Large End Dumps	320 00
Roll-Offs	8 00 per yard

EXHIBIT "B"

COOPERATION/MEDIATION

(a) The parties desire to cooperate with each other m the management and operation of the Landfill pursuant to the terms hereof In keeping with this cooperative spirit and intent any dispute arising hereunder will first be referred to the parties' respective agents or representatives prior to either party initiating a legal suit, who will endeavor m good faith to resolve any such disputes withm the limits of their authority and withm forty-five (45) days after the commencement of such discussions If and only if any dispute remains unresolved after the parties have followed the dispute resolution procedure set forth above, the matter will be resolved pursuant to paragraphs (b) and (c) below

(b) If any dispute between the parties has not been resolved pursuant to paragraph (a) above, the parties will endeavor to settle the dispute by mediation under the then current CPR Institute for Dispute Resolution (CPR") model procedure for mediation of business disputes or, if such model procedure no longer exists, some other mutually agreeable procedure Withm ten (10) business days from the date that the parties cease direct negotiations pursuant to paragraph (a) above, the Board shall provide Manager with a list of three (3) individuals then listed on CPR's U S Regional Panel of Distinguished Neutrals for the locale m which the Landfill is located (or if no such list exists for the locale closest to where the Landfill is located), who are available during the time penod contained in subparagraph (e) below and who have no unwaived conflict of interest with respect to either Party and Manager shall (withm ten (10) business days after receipt of such hst) select one (1) of the neutrals from such list Each party will bear its own cost of mediation, provided, however, the cost charged by any mdependent third party mediator will be borne equally by the parties in the mediation, each Party may be represented by their own counsel

(c) The parties agree that any mediation proceeding (as well as any discussion pursuant to paragraph (a) above) will constitute settlement negotiations for purposes of the federal and state rules of evidence and will be treated as non discoverable, confidential and privileged communication by the parties and the mediator No stenographic, visual or audio record will be made of any mediation proceedings or such discussions All conduct, statements, promises, offers and opinions made m the course of the mediation or such discussion by any party, its agents, employees, representatives or other mvitees and by the mediator will not be discoverable nor admissible for any purposes m any litigation or other proceeding mvolving the parties and will not be disclosed to any third party

(d) The parties agree that this mediation procedure will be obligatory and participation therem legally binding upon each of them In the event that either party refuses to adhere to the mediation procedure set forth in this Exhibit B', the other

party may bring an action to seek enforcement of such obligation in any court of competent jurisdiction

(e) The parties' efforts to reach a settlement of any dispute will continue until the conclusion of the inediation proceeding. The mediation proceeding will be concluded when (I) a written settlement agreement is executed by the parties, or (ii) the mediator concludes and informs the parties in writing that further efforts to mediate the dispute would not be useful, or (iu) the parties agree in writing that an impasse has been reached. Notwithstanding the foregoing, either party may withdraw from the mediation proceeding without liability therefor in the event the dispute is not resolved withm forty five (45) days from the commencement of such proceeding. For purposes of the preceding sentence, the proceeding will be deemed to have commenced following the completion of the selection of a mediator as provided in paragraph (b)

(f) If any dispute has not been resolved pursuant to the foregoing each party is free to file suit in a court of competent jurisdiction to enforce its rights hereunder

(g) The procedure specified in this Exhibit "B" shall be the sole and exclusive procedures for the resolution of disputes between the parties arising out of or relating to this Agreement, provided, however, that a paity, without prejudice to the above procedures, may file a complaint to seek a preliminary injunction or other provisional judicial relief, if in its sole discretion such action is necessary to avoid irreparable damage or to preserve the status quo (**Equitable Litigation**') Despite such action the parties will continue to participate m good faith in the procedures specified in this Exhibit 'B"

(h) Any interim or appellate relief granted in such Equitable Litigation shall remain in effect until the alternative dispute resolution procedures described in this Exhibit B" concerning the dispute that is the subject of such Equitable Litigation result in a settlement agreement or terminate Any such written settlement agreement shall be the final, biding determination on the merits of such dispute, shall supersede and nullify any decision m the Equitable Litigation, and shall preclude any subsequent litigation on such merits, notwithstanding any determination to the contrary m connection with any Equitable Litigation granting or denying mterim relief or any appeal therefrom

(1) All applicable statutes of limitation and defenses based upon the passage of time shall be tolled while the procedures specified m this Exhibit B' are pending. The parties will take such action, if any required to effectuate such tolling. Each party shall be required to perform its obligations under this Agreement pending final resolution of any dispute arising out of or relating to this Agreement, unless to do so would be impossible or impracticable under the circumstances

2

EXHIBIT C

A CULTURAL RESOURCE INVENTORY OF A PROPOSED LANDFILL NEAR LITTLE MOUNTAIN WEBER COUNTY, UTAH

Prepared for Hansen, Allen & Luce, Inc 6771 South 900 East Midvale, Utah 84047

Prepared by Sagebrush Consultants, LLC 3670 Quincy Avenue, Suite 203 Ogden Utah 84403

Under the Authority of Archaeological Survey Permit No 58 United States Antiquities Permit No U 08 SJ-0527p Cultural Resource Report No 1696

June 26, 2008

A CULTURAL RESOURCE INVENTORY OF A PROPOSED LANDFILL

NEAR LITTLE MOUNTAIN, WEBER COUNTY, UTAH

by

Sandy Chynoweth Pagano and Alyssa Wallin

Prepared for

Hansen, Allen & Luce, Inc 6771 South 900 East Midvale Utah 84047

Prepared by

Sagebrush Consultants, L L C 3670 Quincy Avenue, Suite 203 Ogden, Utah 84403

Under the Authority of

Archaeological Survey Permit No 58 Utah State Antiquities Permit No U-08-SJ 0527p Cultural Resource Report No 1696

June 26, 2008

ABSTRACT

In June 2008 Hansen Allen and Luce, Inc of Midvale, Utah, requested that Sagebrush Consultants, L L C (Sagebrush) of Ogden, Utah, conduct a cultural resource inventory of a proposed landfill near Little Mountain in Weber County, Utah The survey consists of 112 acres located about 15 miles west of Ogden on privately owned lands in T 6N, R 3W, Sec 19 on the USGS 7 5' Quadrangle Ogden Bay, Utah (1991) The purpose of this inventory is to identify cultural resources that may be present within the proposed project area Sagebrush earried out the fieldwork on June 19 2008 The project was conducted under Archaeological Survey Permit No 58, issued by the Public Lands Policy Coordination Office and Utah State of Utah Antiquities Project No U 08 SJ 0527p

The inventory resulted in the identification of one historic campsite, 42WB445, and one rock quarry 42WB446. Due to their proximity to the Lucm Cutoff, as well as datable artifacts found at the campsite, it is highly likely that these two sites are related to the construction of the cutoff. Site 42WB445 is an historic campsite with eight depressions and a surficial scatter of aqua and amethyst glass, porcelain brick fragments, and tin can fragments. Site 42WB446 is an abandoned rock quarry that has filled with water. Both sites were recommended eligible to the National Register of Historic Places due to their association with the significant historic site. Lucm Cutoff

The railroad construction camp (42WB445) and the railroad quarry (42WB446) have been recommended eligible to the NRHP Both sites are located on the northwestern periphery of the project area, and can easily be avoided by landfill activities Sagebrush recommends that these sites be avoided during construction and use of the landfill area

This investigation was conducted with techniques that are considered to be adequate for evaluating cultural resources that are available for visual inspection and could be adversely affected by the proposed project Based on the above-mentioned avoidance, cultural resource clearance is recommended for the current project However, should such resources be discovered during construction a report should be made immediately to the State Archaeologist at the Utah State Historic Preservation Office, Salt Lake City, Utah

1

TABLE OF CONTENTS

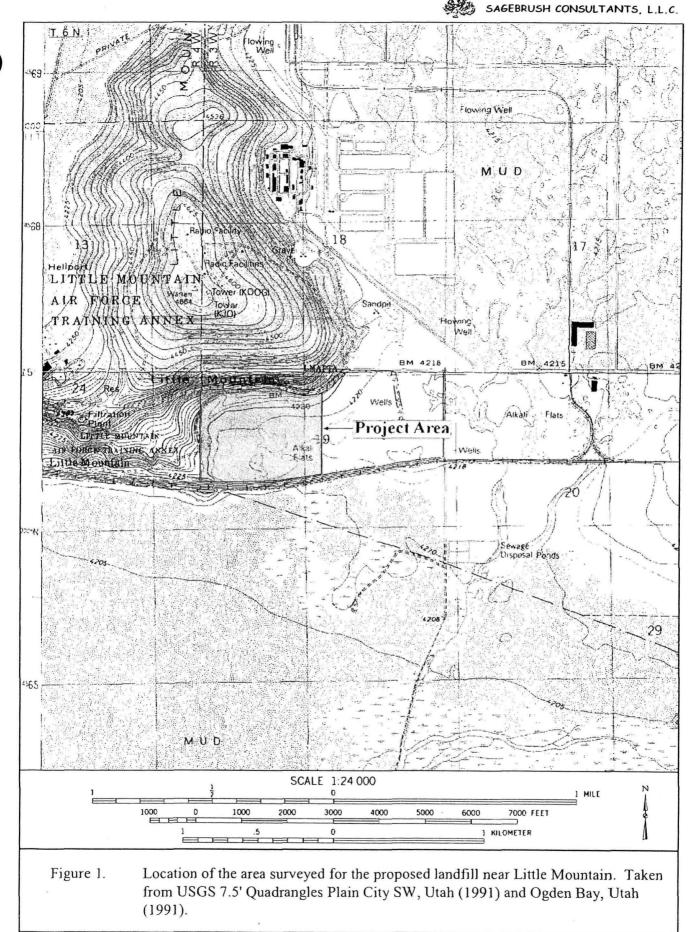
ABSTRACT	1
TABLE OF CONTENTS	11
LIST OF FIGURES	11
INTRODUCTION	1
ENVIRONMENT	3
HISTORIC CONTEXT	3
Fur Trapping and Settlement Period (1844 to 1853)	4
Initial Expansion Period (1854 to 1868)	6
Railroad Era (1869 to 1889)	7
Rise of Commercialism (1890 to 1914)	9
Industrial Development Period (1915 to 1929)	11
The Depression Era (1930 to 1941)	13
World War 11 (1942 to 1947)]4
International Period (1948 to 1960)	15
METHODOLOGY	15
RESULTS	16
Site 42WB445	16
Site 42WB446	18
RECOMMENDATIONS	18
Site 42WB445	18
Site 42WB446	19
REFERENCES CITED	20

LIST OF FIGURES

Figure J	Location of project area	2
Figure 2	Location of site 42WB445 and 42WB446	17

INTRODUCTION

In June 2008, Hansen, Allen, and Luce, Inc of Midvale, Utah, requested that Sagebrush Consultants, L L C (Sagebrush) of Ogden Utah, conduct a cultural resource inventory of a proposed landfill near Little Mountain in Weber County, Utah The survey consists of 112 acres located about 15 miles west of Ogden on privately owned lands in T 6N, R 3W Sec 19 on the USGS 7 5' Quadrangle Ogden Bay, Utah (1991) The purpose of this inventory is to identify cultural resources that may be present within the proposed project area Sandy Chynoweth Pagano, Alyssa Wallin, Kurt Raffield and Joe Taylor of Sagebrush earned out the fieldwork on June 19, 2008 The project was conducted under Archaeological Survey Permit No 58, issued by the Public Lands Policy Coordination Office and Utah State of Utah Antiquities Project No U 08 SJ 0527p


A file search for previous archaeological projects and cultural resources was performed by Marty Thomas for Sagebrush at the Division of State History, Utah State Preservation Office (SHPO) on June 1 and 6, 2006 Five previous cultural resource projects have been conducted near the current project area Arie Leefiang, of the Utah State Historic Preservation Office, Antiquities Division conducted a GIS file search for the project on June 18, 2008 The results of this search indicated that five cultural resource inventories and two culmral resource sites have been recorded within one mile of the current project area Following is a brief description of these projects and the cultural resource sites

In 2005 Sagebrush Consultants conducted a Class III inventory of a portion of the Ogden Bay Wildlife Management Area (Polk and Pagano 2006) Two historic sites were recorded withm one mile of the current project area (42WB348 and 42WB427)

Site 42WB348 is the Lucm Cutoff corridor The Lucm Cutoff constructed in 1902-1904, is a 103 mile railroad that spanned the Great Salt Lake The site was originally documented in 2001 and recommended eligible to the National Register of Historic Places (NRHP)(Ellis et al 2001) hi 2006 Sagebrush recorded a 3,730 ft segment of the Lucm Cutoff corridor The segment was recommended to be a non contributing component to the site s eligibility (Polk and Pagano 2006)

Site 42WB427 is an historic railroad camp associated with the Lucin Cutoff Artifacts found at this site include fire brick fragments, metal fragments, a single fragment of opalized clear glass, a few small pieces of cut bone and numerous fragments of deteriorated tin cans Structural remains include a stone foundation, four depressions, and three tent platforms/habitational structures This site was recommended eligible to the NRHP under criteria A and D (Polk and Pagano 2006)

In 1989, Weber State College conducted a reconnaissance level archaeological survey of the Ogden/Weber River Marshes m conjunction with the Archaeological Technician Program

(Russell et al 1989) Numerous previously recorded and several new cultural resource sites were noted during this inventory however, none are within one mile of the current project area. In 1991 Utah State University Foundation conducted a sample archaeological inventory of several parcels of U S Air Force lands (University Foundation 1992) Numerous cultural resource sites were noted during this project however, none are within one mile of the current project area

In 2000 and 2001, Hill Air Force Base (HAFB) re-surveyed portions of the Little Mountain Facility for a proposed groundwater remedial investigation at the Little Mountain Test Annex (Hirschi 2000 and 2001) No cultural resource sites were located during these inventories In 2004, Montgomery Archaeological Consultants conducted a cultural resource inventory on 114 acres of DWR land immediately adjacent to the current project area (Montgomery 2005) No cultural resources were located during the inventory

The NRHP was also checked prior to conducting the survey No NRHP listed sites are located within one mile of the current project area. No additional projects-were-conducted-within one mile of the current project area.

ENVIRONMENT

The project area falls within the Great Salt Lake geographic unit of the Basin and Range near the Ogden Bay of Great Salt Lake The project area is largely within an area of mud and alkali flats occurring along the margins of the lake The elevation of the project area is 4205 to 4210 feet a sl Vegetation consists of typical shadscale community species including pickle weed iodine bush saltbush greasewood, cheatgrass and bunch grasses There is low ground visibility in the northern portion of the project area The southern portion of the project area consists of mostly mud flat areas with little vegetation except in seep areas, which were characterized by stands of phragmites Natural disturbance consists of fire and fluctuation in flood and low water stages of the Great Salt Lake Cultural disturbance includes road and railroad construction, a quarry, recreational vehicles a fence line and a utility line corridor

HISTORIC CONTEXT

The city of Ogden is known as the Crossroads of the West, due to its location in the geographical center of the western United States and the many trails, roads, and communication routes that converge and diverge in this area. The crisscrossing of trails, roads and communications routes continued throughout the historic period and continues today with fiber optic lines and pipelines being laid in the region. The current project area is located along the

route of the Lucm Cutoff of the Transcontinental Railroad about 15 miles west of Ogden City, m unincorporated Weber County

While little is known about Native American trails in the region, the first recorded paths established in northern Utah were those of the fur trappers of the Rocky Mountain Fur Company and the Hudson Bay Company, who encountered each other in the mountains east of Ogden Following on the heels of the trappers, government explorers and surveyors crisscrossed the West locating new routes to Oregon and California and routes for the railroad and telegraph They in turn were followed closely by pioneers, who settled the region and built the City of Ogden which later became the major hub for a number of railroads in the West These railroads, like the later highways, moved traffic not only east and west, but also north and south

The history of Ogden can be divided into seven periods, which reflects the important socioeconomic trends that occurred throughout the development of Ogden This chronology includes Fur Trapping and Settlement, Initial Expansion, the Railroad Era, the Rise of Commercialism, Industrial Development, the Depression Era, World War II, and the International Penod

Fur Trapping and Settlement Period (1844 to 1853)

This period reflects the earliest exploratory expeditions into the Ogden area by Europeans and European Americans Until this time, small bands of Shoshone Indians inhabited the area The period also reflects the initial settlement of the area by trapper Miles Goodyear in 1845 and by the Mormon pioneers in the early 1850s During this early period, the settlement contained small, widely scattered farmsteads along the banks of the Weber and Ogden rivers

The first Non-Native Americans to venture into Northern Utah and the Ogden area were the fur trappers and mountain men of the 1810s Prior to that time, Utah and particularly Northern Utah, was located outside the known trapping areas, which consisted of the Pacific Northwest and the upper Missouri River (Eldredge and Gowans 1994 208) By about 1811, five American trappers with John Jacob Astor s American Fur Company under the direction of Wilson Price Hunt, were trapping in the Snake River area and appear to have reached as far south as the Bear River (Eldredge and Gowans 1994 208) At about the same time, British trappers from the Northwest Fur Company were trapping along the Bear River and around Bear Lake (Eldredge and Gowans 1994 208) In 1819, Donald MacKenzie records that he also trapped the Bear Lake region (Eldredge and Gowans 1994 208) In 1823 and 1824, MacKenzie and Alexander Ross both lead brigades of Hudson's Bay Company trappers into the Snake River and Northem Utah regions (Eldredge and Gowans 1994 209)

By 1824, Northern Utah became the converging point for the three major competing fur interests the trappers of the Hudson's Bay Company operating out of Oregon under the direction of Peter Skene Ogden the American companies out of St Louis, Missouri, represented by the

Ashley Henry Fur Company and the trappers licensed by the Mexican government out of Taos and Santa Fe, New Mexico, represented by men like Etienne Provost (Eldredge and Gowans 1994 209) In the spring of that year all three interests were present in the mountains and valleys of Northern Utah Throughout the next two years, the various parties trapped the rivers and streams of Northern Utah (Eldredge and Gowans 1994 209) In the spring of 1825, the three interests met face to face

At Mountain Green along the Weber River, about 14 miles southeast of Ogden, fur trappers of the American owned Rocky Mountain Fur Company led by Johnson Gardner (formerly the Ashley Heiuy Fur Company), Hudson's Bay Company led by Peter Skene Ogden, and a group of Mexican trappers led by Etienne Provost encountered one another (Eldredge and Gowans 1994 210, Roylance 1982 419) Soon a discussion ensued as to who had the right to trap in the region Provost who probably had the best case for the right to trap the area, stayed out of the disagreement (Eldredge and Gowans 1994 210) After two days, Ogden backed down and withdrew from the immediate area While no permanent claim was established; the fight showed that all three groups had an interest in the area and would continue to trap and trade in the area for a while to come By 1841 fashion trends, as well as economic trends, in the east had changed and the demand for beaver pelts faded Thus, beaver pelts were no longer in high demand and the fur trade diminished to a few trading posts that continued to trade furs in general and supply goods for those irumigrants moving west (Eldredge and Gowans 1994 212)

One such trading post belonged to Miles Goodyear In 1836, at the age of nineteen, Goodyear joined the Whitman Spaulding missionary party on its way west to Oregon (Sadler 1994 227) However, at Fort Hall Goodyear had a change of mind and joined a group of fur trappers (Sadler 1994 227) For the next nine years, Goodyear trapped and traded with the Indians (Sadler 1994 227) In 1839 he married Ute Chief Pe teet neet s daughter, Pomona with whom he had rwo children (Sadler 1994 227) In 1845 Goodyear began construction of a trading post on the western bank of the Weber River about a quarter to half a mile southwest of the Crossroads Historic District (Sadler 1994 227) He called his post Fort Buenaventura (Sadler 1994 227) The post was constructed of cottonwood logs set upright m the ground The post enclosed about half an acre and was completed in 1846 (Sadler 1994 227)

In July 1847, the Mormon pioneers (members of the Church of Jesus Christ of Latter day Saints, also known as Latter day Saints or LDS) under the direction of their President, Brigham Young entered the Salt Lake Valley By the following spring, Young sent a group of settlers under the direction of Captain James Brown to explore the Ogden area and purchase the fort from Goodyear (Daughters of Utah Pioneers [DUP] 1944 58, Roberts 1994 399) The settlers renamed the fort and the small settleruent that soon grew up around it, Brown s Fort or Brownsville m honor of Captain Brown (Roberts 1994 399) During the spring of 1849 and 1850, flood waters from the Weber River inundated the settlement Thus, in early 1850, the town's people moved the settlement to the east side of the river A new fort was constructed at approximately 29th Street and Pacific Avenue (Terry 1988 99) The next year (1851) Henry G Sherwood officially surveyed the Ogden area and established a gridded town site, named Ogden

5

in honor of Peter Skene Ogden of the Hudson's Bay Company (Roberts 1994 399) The new town was bounded on the north by 1st Street (now 21st Street), on the south by 9th Street (now 29th Street) on the east by East Street (now Quincy Avenue), and on the west by Franklin (now Wall Avenue) (Terry 1988 87)

Among the priorities for the new town was the need for water, thus, a major task was undertaken to bring water from the Weber and Ogden Rivers to the homes and fields m and around the town In 1851 the settlers dug a number of small canals from the two rivers to irrigate the northern and western parts of Ogden The following year they began construction on a seven mile-long canal designed to bring water from the Weber River to the lower (southern and central) portion of the community (Sadler and Roberts 1994 29) This canal, the Weber Canal, was completed in 1854 In addition, they constructed a gristmill, a furniture mill, and a molasses mill along the canal to utilize the flowing water to turn the overshot mill wheels and helped establish Ogden as a permanent settlement (Sadler and Roberts 1994 30)

Initial Expansion Period (1854 to 1868)

A steady increase in the number of immigrants into Utah characterizes this period during which settlement and expansion of Ogden and the surrounding communities occurred The number of Mormon farmsteads substantially increased during this period. The fertile fields and readily available water from the Weber and Ogden rivers, as well as the many mountain streams, were very attractive to the settlers arriving from the east and overseas. Ogden would steadily grow to become the second largest city in the Utah Territory (Powell 1994 431 438)

The 1850 census for Weber County, which consisted mainly of the Ogden area, was 1,141 people (DUP 1944 84, Roberts and Sadler 1997 63) By 1860, the community of Ogden maintained a population of 1,463 residents (DUP 1944 98,116, Roylance 1982 420) Homesteads were largely strung out along available water resources, such as streams, rivers or near the head of a spring Brigham Young, president of the LDS Church, envisioned Ogden becoming the headquarters for all Mormon settlements m the northern portion of the Utah Territory (DUP 1944 77) Mormon town plans called for the populace to live in town and farm the outlaying areas In order to consolidate their resources and conform to other Mormon settlement patterns, Young encouraged many settlers to abandon their farmsteads in the surrounding areas and establish permanent homes and businesses withm Ogden City (DUP 1944 77) In 1854, the areas north and northwest of the Ogden City town site were surveyed to establish definable farming plots This survey, which covered roughly six square miles, resulted in the creation of three new communities or districts (DUP 1944 79) These were Bingham Fort District (Lynne) to the north, Slaterville District to the north and west, and North Ogden District to the north of Slaterville At the same time, Ogden's northern boundary was shifted to two miles north of the Ogden River (DUP 1944 79)

Despite this geographic expansion, the bulk of the area's population remained concentrated withm the town site boundanes selected by Brigham Young, primarily in the area south of 21st Street and west of Washington Boulevard (DUP 1944 77-79 Roberts and Sadler 1985 65) A few homes were constructed east of Spnng Street (now Adams Avenue) and south of what is now 28th Street, however most of this area remained farmland

During this period of Ogden s initial occupation, small bands of indigenous Shoshone Indians continued to venture through the area While few incidents occurred between the Native Americans and the Mormon settlers, trouble did come in 1853 In July of that year, Chief Walker and his followers started fighting the settlers in Utah, Juab, Sanpete, Millard, and Iron counties (DUP 1994 85) Although the fighting did not spread as far north as Weber County, it made the Mormon settlers nervous and they feared attacks from the local bands of Shoshone (DUP 1944 85,281) Thus, the city council ordered the construction of an earthen wall around the mam portion of the city (DUP 1944 85 Work Projects Administration 1940 32) The wall was to enclose the area from what is now Wall Avenue to Madison Avenue, and⁻from 21 st Street to 28th Street Construction began immediately along Wall Avenue In the end, only this portion of the enclosure was ever completed as the Shoshone never attacked the settlement and the Walker War came to an official end m May 1854 (DUP 1944 91 Tyler 1978 362)

Railroad Era (1869 to 1889)

The major event of this period was the arrival of the Union Pacific Railroad (UP) in Utah and the joining of its rails with the Central Pacific Railroad (CP) at Promontory, Utah, on May 10, 1869 (Atheam 1971 98) The Union Pacific arrived in Ogden the previous March, which had a major impact on the local economy and the surrounding areas (Bain 1999 618-19) By December 1869 Ogden became the junction and passenger transfer point for both the Central Pacific and Union Pacific (Klein 1987 422, Roberts and Sadler 1985 35) The completion of the transcontinental railroad provided the impetus for construction of seven other railroads The Utah Central (UC) line was built between 1869 and 1870 to connect Salt Lake City to Ogden (Roberts and Sadler 1985 42) Then, between 1871 and 1878, the Utah Northern (UN) line was built to connect Logan and Brigham City to Ogden (Roberts and Sadler 1985 44) Both of these lines further increased the importance of Ogden as a center for transportation, settlement, and commerce

Ogden s selection as the junction for the railroads significantly changed the size and importance of Ogden City, as the two companies constructed major railroad facilities and rail yards west of Wall Avenue at the west end of 25th Street The population rose from 1,463 residents m 1860, to 3,127 residents in 1870, the year after the arrival of the railroad (DUP 1944 98 116, Roylance 1982 420) By 1880 this number had nsen to 6,069, and by 1890 it had more than doubled to 12,889 (DUP 1944 116, Peterson and Parson 2001 34, Roberts and Sadler 1985 65) An increase in the number of residents was not the only impact the railroad had on the city s population Besides increasing its numbers it increased the population's diversity Before

the arrival of the railroad, most of Ogden City s residents were of northern European descent, primarily Bntish Islanders After the completion of the railroad, the city s ethnic make up was vastly different Most of the workers for the various railroads were of Italian, Greek, Chinese Japanese or African descent (Roberts and Sadler 1985 94 96) Many of these individuals, especially the Chinese workers, chose to remam in Ogden after construction work was completed on the railroad, or while working for the railroad related industries in town While most of the Chinese settled in small communities on lower 25th Street and northward, a few lived to the south of that area The 1890 Sanborn maps of the Ogden area show that a few Chinese immigrants established small vegetable farms on unoccupied plots of land between Young Street (now Grant) and Mam Street (now Washington) near Healy Street (Sanborn Map Company 1890)

The arrival of the railroads also affected mining in the state Prior to 1869, mining activity was limited to small scale operations where minerals could be reduced to a transportable and cost-efficient size Before-the railroads, the only-method of transporting goods or products was by wagon over a relatively long distance and thus expensive Transporting large quantities of raw or concentrated ores was out of the question Thus, most mining during this period was limited to precious minerals such as gold and silver, which could be reduced to a transportable size that was economical to transport by wagon (Notarianni 1994 367 368) However, once the railroads extended their tracks into Utah and the mining regions of the state, it became possible to transport large amounts of concentrated ores grew dramatically m areas in and around mining districts including the Salt Lake Valley Rail spurs made it possible to move ore to smelters and mills in Midvale and Murray (Notarianni 1994 368) The majonity of this ore had to pass through Ogden

The foundation for business interests was firmly set with the establishment of a number of financial institutions in Ogden The beginnings of the Utah National Bank, which was organized in 1883 from several other banking institutions, started in 1873 The Deseret National Bank was organized in Salt Lake City in 1872 and opened a branch office in Ogden in 1881 The Ogden First National Bank began operations in 1882, as did the Ogden Savings Bank (Sadler and Roberts 2000 208) The Utah Loan and Timst Company was organized in Ogden in 1888 (Sadler and Roberts 2000 209) The majority of these banking institutions were founded by local businessmen, who had a stake m the success of the businesses of Ogden This included men such David Eccles, David Perry, Matthew Browning Franklin S Richards, and Brigham H Goddard (Sadler and Roberts 2000 208-209)

In addition, hundreds of travelers per week made their way into or through Ogden via the many passenger trains servicing the town New businesses, including hotels and restaurants, were established to accommodate these travelers Among the first hotels to be opened were the Ogden House, at the comer of 24th Street and Washington Boulevard, and the White House (later the Junction House), at the comer of 25th Street and Washington Boulevard (Roberts and Sadler 1985 73) These two establishments were opened m 1868 in anticipation of the railroad s

completion Over the next several years, many other hotels were established including the Union Depot Hotel built in 1869, the Keeney House opened in 1870, and the Beardsley and City Hotels opened in the mid 1870s Hotel construction continued into the 1880s with the completion of the famous Broom Hotel m 1883 (Roberts and Sadler 1985 73 75)

Ogden was fast becoming more cosmopolitan during this period with the constitution of a sewer system in 1879 and other city services and utilities that soon followed (DUP 1944 494 495) The first telephone was installed in the George A. Lowe Company, a wagon and buggy shop, with a number of telephone services in operation by the following year (Sadler and Roberts 2000 126) By 1883 these phone companies were consolidated into the Rocky Mountain Telephone Company (Sadler and Roberts 2000 126) The same year, the Ogden Street Railway Company was organized and incorporated on May 29 as a private street trolley company (DUP 1944 387 Sadler and Roberts 2000 126) Three mule-pulled trolleys began operations on June 2 1884, and ran from 28th Street to Ogden River bridge on Washington, and from Washington to the railway depot on 24th and 25th streets (DUP 1944 387) In addition to a trolley system and telephones, the Ogden Electric Light Company was incorporated on May 11, 1881, and began delivering service to customers in 1884

Rise of Commercialism (1890 to 1914)

The arrival of the railroads in Ogden had a lasting effect upon the commercial and industrial growth of the area for several decades An increase in commercial development, warehousing food processing (canning), and the exportation of local products such as livestock and minerals characterized this period of Ogden s history During this time, the face of Ogden changed from wooden-frame buildings to brick and mortar structures Businesses also solidified from temporary commercial enterprises that relied on the initial arrival and construction of the railroads to trades and industries that invested m the economy and growth of Ogden

The railroads and the economy, along with the goods and services they produced, continued to grow and expand during this period and as the railroad grew, so did its need for workers In 1890 the various railroads employed 2,094 workers By 1890 the number of railroad employees rose to 3,414, and it more than doubled to 8,199 employees in 1900 (Sadler and Roberts 2000 208)

In addition to the railroad, another major industry was livestock Next to the railroads, the livestock industry became the second leading exporter (Sadler and Roberts 2000 208) Prior to the railroad, the cattle and sheep industry represented small scale operations that were confined to village and town herds Cattle ranching, based solely on livestock, existed in Utah during the pre-railroad period (Petersen 1994 333) By the 1880s the number of cattle and sheep began to increase lin 1885 there were approximately 200,000 head of cattle in Utah. Ten years later, the number had risen to 356,000 head. Due to harsh weather that killed a number of animals and poor market prices the number of cattle remained constant through 1905 (Petersen

1994 333) However between 1905 and 1910 the number began to rise, reaching 412,000 head in 1910 (Petersen 1994 333) Eight years later there were 505,000 head of cattle grazing on grass m Utah Sheep on the other hand fared better in Utah ln 1885 there were about one million head of sheep That number grew to 1,500,000 m five years By 1900 there were approximately 3,818,000 head of sheep, which leveled off to about 2,500,000 by 1915

While the Utah herds and flocks multiplied, the railroad was shipping animals from the surrounding states including Wyoming, Idaho, and Nevada The shipment of these animals through Ogden yards soon made Ogden the center of the livestock industry By 1919, the Ogden Union Stockyards, which was constructed in 1917 and located on the west side of the rail yards was shipping 3,000 to 7,000 animals per day (Sadler and Roberts 2000 213) As the hub for the industry, Ogden played host to the first Cattleman's Congress m 1892 (Sadler and Roberts 2000 208) In 1918, the Ogden Livestock Show, a weekly livestock auction and competition that drew entnes from around the nation, was started at the yards (Roberts and Sadler 1985 140-141) The success of the livestock industry in the area lead to the Ogden Packing and Provision Company establishing operations in 1901, which became the largest meat packing plant west of Omaha (Sadler and Roberts 2000 208) By 1914 a second meat packing company was in operation (Sadler and Roberts 2000 213)

Just as important as the livestock industry was the canning industry, which grew to be one of the largest employers in the Ogden area during this time. Although a few small canning factories had been established in Ogden before the turn of the century full scale development of the industry did not begin until the early 1900s. Food canning began in Ogden with the opening of the Colorado Utah Canning Company m 1886 (Sadler and Roberts 2000 212). After only a year of operations, the owners split and began a separate canning business. In 1890 the Utah Canning Company began by canning *Pierce s Pork and Beans* (Sadler and Roberts 2000 212). In 1904 the company canned 45,000 cases of tomatoes. Between 1890 and 1920, there were 24 food canning companies (Sadler and Roberts 2000 213). In 1919 there were more than 46 canneries scattered throughout Weber County (Roberts and Sadler 1985 88 89).

Other industries were established in Ogden City around this time, providing jobs to local residents and strengthening the area's economy Some companies, such as the Sperry Flour Mill, opened after World War 1 By 1919 Ogden was one of the ten leading flour milling centers in the United States (Sadler and Roberts 2000 213)

As noted, the onginal southern boundary of the Ogden town site, as laid out m the early 1850s, was 28th Street (Ogden Historical Society 1938 6) Gradually, in the late 1800s this boundary moved south The explosive growth of the city's population created the need to expand the boundarres of Ogden City In 1889, with the population approaching 13,000 residents, the city council moved the southern boundary of Ogden City to 36th Street and the northern boundary 20 blocks to the north (Irene Woodhouse, personal communication 1995 Roberts and Sadler 1985 59) They also moved the eastern boundary of the city to include the land extending to the foothills At this time they renamed many city streets

The expansion of the city caused other changes as well Around this time, a citywide sewer system was established to help with the growing sanitation problem created by the community s rapid growth The city s first sewer, a subterianean structure built around 1879, only serviced the area from Washington and 25th Street northward one block and then west to a point below Wall Avenue (DUP 1944 494) In November 1886, a proposal for a citywide sewer was submitted to the City Commissioners by City Engineer Joseph M Tracy and A F Parker, a consulting engineer (DUP 1944 495) It wasn t until sometime in 1888 that funding was obtained for the project and construction work commenced Public utilities were also beginning to establish themselves In 1893 the Pioneer Electric Power Company was organized and began construction on a power system that included a temporary dam m Wheeler Canyon, which was finished in 1896 (Sadler and Roberts 2000 211) A permanent dam was constructed across the Ogden River in Ogden Canyon at Pineview The project was completed in 1897, and the company was sold to the Utah Power and Light Company in August of that same year (Sadler and Roberts 2000 211)

Industrial Development Period (1915 to 1929)

This period is marked by changes m technology that affect the manufacturing industry and the agricultural business. The discovery of new inventions lead to advances in technology that would radically alter both manufacturing as well as society as a whole. The inventions and scientific discoveries from the last century were slow to develop and have an effect. The most significant of these technological advances was the power generator and the ability to use it to produce large amounts of inexpensive electrical power. This new source of energy allowed manufactures to increase the size of heavy machinery and the assembly line needed to begin to mass produce goods. These goods, which included the automobile, the radio vacuum cleaner, the washing machine, the electric iron, refrigerator, and other moderu conveniences, would change the face of society. This same electricity that was used to power heavy industrial machinery was used in individual households to power appliances that freed the housewife from mundane tasks. This change had been foreshadowed by the caming industry of the last period

In 1915 the economy in Ogden was still strong with the railroads, livestock trading, food canning and meat packing plants supplying much of the employment War m Europe had commenced the year before with the assassination of the Austrian Crown Prince Franz Ferdinand at Sarajevo by a Serbian Nationalist The United States remained neutral during the first part of the war and was able to carry on trade with most other nations including those at war However, the Aruerican public was slowly beginning to side with the Allied Nations of Great Britain, France, Russia, and Belgium On April 6, 1917, the United States declared war on Germany and her allies after the sinking of the *Lusuania*, which killed a number of American citizens Many Ogden residents joined the military and served overseas in France and Belgium During the war, raw materials and food products were badly needed in Europe and on the front Ogden canneries, meat packing plants, and railroads became busier than ever before It was important to keep

perishable goods cold on their long trips to other processing areas To meet this need, the railroads constructed an icing plant in Ogden that could produce 400 tons of ice daily and service 272 box cars an hour (Sadler and Roberts 2000 243)

While the United States had enormous resources and manpower at hand, the nations after four years of war were not so fortunate The First World War came to an end 18 months after the US entered the war on November 11, 1918 Ogden s economy continued to do well follow mg the war, however, it did not last long By 1920, a down turn in economic conditions reached Ogden and Utah Wheat pnces, which had been \$3 50 a bushel in 1918, dropped in 1921 to \$0 98 a bushel (Sadler and Roberts 2000 219) In 1919 the shipment of minerals, which had increased 54 percent over the previous years, fell the following year to almost nothing (Sadler and Roberts 2000 219) While mineral and agriculture were slow to rebound, the rest of society had entered the so called Roaring Twenties and a period of economic prosperity

This period of prosperity was made possible through the sales of new-products and new marketing techniques, which enticed the consumer to buy higher priced products on the installment plan or easy payment plan (Allen 1931 140) This plan or program made goods and services more affordable and attractive to the consumer, which spurred the economy during this period. The automobile became the new preferred mode of transportation and helped to stimulate the creation of new industries m the form of tourism, motels, gas stations, repair shops, car show rooms, and fast food stands (Allen 1931 136). Between 1919 and 1929, the number of passenger cars in the United States rose from 6,771 000 to 23 121,000 (Allen 1931 136).

Household electrical appliances also made a major impact upon American culture at the same time as did the radio Radio broadcasting in the United States commenced in the fall of 1920 (Allen 1931 137) The radio broadcasts consisted of only music, but by 1922 the new industry was beginning quickly to develop into a medium that would change how society looked at the world (Allen 1931 137) News was added to the schedule of programs, as was radio dramas, comedies, and other entertainment Advertising also became an important part of the radio broadcasts, sponsoring operas, symphonies, and other programs (Allen 1931 137) The success of radio can be measured in the amount of money spent on radio sets and equipment Ogden s first radio station, KDZL, was licensed to the Rocky Mountain Radio Corporation and went on the air m June 1922 (Larson and Avery 1994 56) This station was followed by KFCP in February 1923 and over the next two years by KFUR and KFWA (Larson and Avery 1994 56) KFUR, now KLO, was the only one of these stations to survive the Great Depression (Larson and Avery 1994 56)

With the ending of World War I, a major change was made to the Constitution of the United States with the passing of the 18th Amendment On January 29, 1919, the 18th Amendment to the Constitution was passed and signed into law, which made it illegal to manufacture, sell, or transport alcoholic beverages in the United States (Kelly et al 1991 A28) Although the majority of Americans appear to have backed this law, a good many people opposed it This prompted many of these individuals to disobey the new law and either smuggle

the illegal liquor into the country or manufacture of their own These activities lead to the operation of underground establishments known as speakeasies In Ogden a number of speakeasies were located in basements or in tunnels that ran beneath the sidewalks of 25th Street (Buchta and Gurrister 2001 1,3A) Twenty fifth street, which already had a reputation of wild and illegal activity, became worse Despite the problems that illegal alcohol brought, Prohibition remained m affect until December 5, 1933, when the 21st Amendment was passed that repealed the 18th Amendment, making the manufacturing and sale of liquor legal again (Kelly et al 1991 A30)

Ogden grew with the prosperity that the nation enjoyed The population in the city grew from 33,804 people in 1920 to 40,272 people m 1930 (Powell 1994 437) The businesses along 25th Street do not appear to have changed much physically during this period The majority of changes appears to be the expansion of businesses along Washington Avenue The success and prosperity of these businesses are visible in the larger and taller business buildings of the period The new larger structures contained office space rather than space for manufacturing, which was now taking place farther from the center of town The business district, which had been growing throughout the earlier periods, was now at build out' with the center located at 25th and Washington The financial heart was along Washington while the night life was located along 25th Street

The Depression Era (1930 to 1941)

The impact of the stock market crash on the economy of Ogden City marks this period The loss of jobs, the closures of many businesses, and a sharp decline in expansion are the hallmarks of the period This era is also characterized by the construction of several new buildings This construction was the result of government sponsored public works projects designed to provide some fiscal relief from the vagaries of the Great Depression Besides the Railroad Era the period of largest growth for Ogden and adjacent municipalities was during the 1920s and, especially, the 1930s Though economic problems occurred in Ogden during this period because of the Great Depression, it was also a time of expansion for the community

The stock market crash of October 29, 1929, brought a rapid halt to the benefits of a strong agricultural and industrial economy being enjoyed by Ogdenites at the end of the 1920s As a whole, Utah was one of the states most affected by the Great Depression By 1933, Utah s unemployment rate soared to 35 8 percent, fourth highest in the nation (McCormick 1995 136) Roughly 32 percent of the state s population was receiving part or all of their resources from government relief funds, and 32 of the state s 105 banks had failed, including the Ogden State and Pingree National banks (Roberts and Sadler 1985 121 125)

At the time of the Great Depression, the economy of Ogden City was largely dependent on the agriculture (livestock and canning included) and railroad industries As the value of agricultural products plunged, residents began to suffer hardships The railroad companies could no longer afford to ship locally produced goods to outside markets As a result, not only did the farmers, ranchers, and cannery workers have no outlet for their products, but also the railroad companies began laying off their own workers Several canning factories and many other local business, closed down during the Depression Some reopened during or after World War II, but many others never did

In an attempt to boost the economy by providing employment to local residents, many agencies, both private charity and government sponsored, developed public works projects in the mid 1930s Federal programs such as the Civilian Conservation Corps (CCC), the Federal Emergency Relief Administration (FERA), the National Youth Administration (NYA), the Public Works Administration (PWA) and the Works Progress Administration (WPA) provided employment and assistance to Ogdenites Through the CCC, they constructed recreational campsites and new roads in Ogden Canyon and up to Monte Cristo, and they established the Ogden Bird Refuge (Roberts and Sadler 1985 126) However, it was the PWA that had perhaps the greatest impact on the Ogden area During their employment with the PWA, local workers constructed the U S Forest Service building at 25th Street and Adams Avenue, the Ogden City Municipal Building at 25th Street and Washington Boulevard, and Ogden High School just north of 30th Street on Harrison Boulevard Relief programs such as these helped Ogdenites through the Great Depression until the activities of World War II provided a permanent economic recovery

World War II (1942 to 1947)

The establishment of several government installations marks this period in and around the Ogden area in preparation for World War II and by the war years themselves The establishment of these facilities provided new jobs for thousands of Ogdenites left unemployed by the Great Depression During this time, the number of new houses in the area increased as employment opportunities arose

As tension overseas began to grow, the United States began to prepare for what would be an inevitable result, war While war is not a fortunate event, the coming of World War II did serve to pull the nation and Ogden City out of the stranglehold of the Great Depression In preparation for the war, several new military installations were built or expanded in the Ogden area during this time, including the Utah General Depot (later the Defense Depot Ogden), the Ogden Arsenal (originally built m 1920), and Hill Material Air Base (now Hill Air Force Base)

Although m north Davis County, Hill Material Air Base became one of the largest employers for Ogdenites both during and after its construction Opened in 1939, the WPA constructed the base (Roberts and Sadler 1985 130) By 1943, the base employed roughly 22,000 people, many of them women, doing sheet metal work, welding, or aircraft repair Located west of Wall Avenue and north of 12th Street, the Utah General Depot was opened as a military warehousing facility in 1940 (Roberts and Sadler 1985 130) The depot eventually became the largest quartermasters depot in the United States By 1943, more than 7,700 local civilian personnel were employed at the facility

International Period (1948 to 1960)

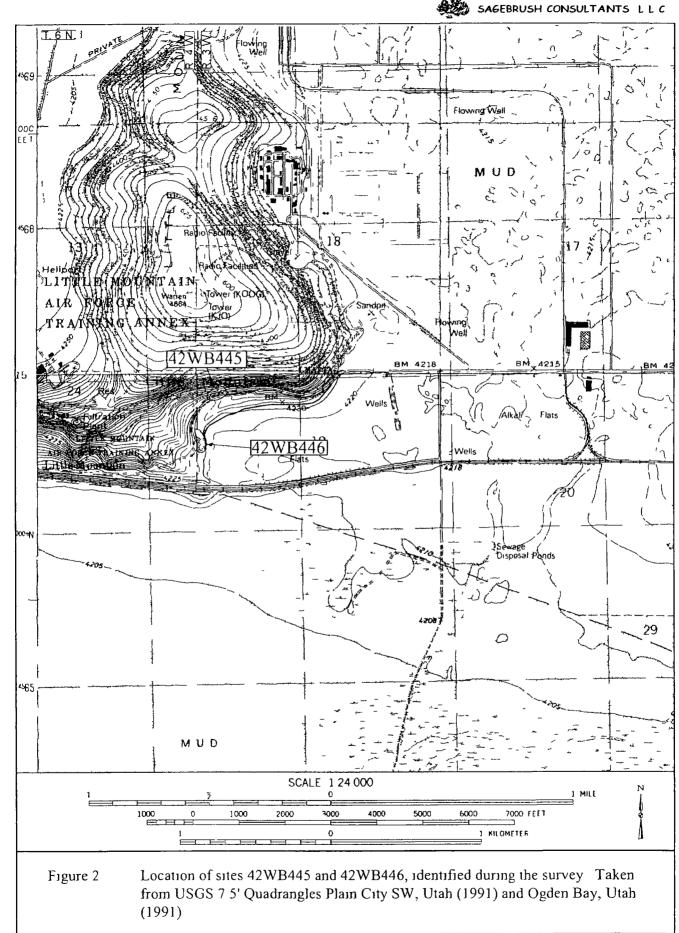
Initial rapid residential growth in Ogden marks the postwar period, followed by a slow decline within the current project area Government related or government run facilities remain among the area s largest employers

Federal employment continued to play an important role in the economy of the Ogden area throughout the mid 1950s. The establishment of an JRS district office, the Western Internal Revenue Center, at the Defense Depot in late 1956 provided jobs for more than 360 local residents. By 1970, the workload of the center had outgrown the confines of that building at the Depot. A new building complex was constructed to the west of the old one (at 12th West and 12th South), and housed nearly 4 000 workers. Rapid growth in both the residential and commercial sectors has marked the Post. War period m Ogden, as a whole. As major industries, such as Thiokol Corporation (manufacturer of rocket motors), Kimberly Clark, lomega, and Morton International continue to locate in or near Ogden.

Ogden s population increase can be seen in the creation of new subdivisions throughout the city However within the current project area, only one subdivision, the Crouch Subdivision (started in 1957), can be definitively attributed to the Post War Period (Weber County Recorder n d) In fact, very little growth has occurred within the current project area since the close of World War II, and, to some extent, the neighborhoods within this area have been m decline While new subdivisions are being created m vacant areas of the east bench and m surrounding suburbs and communities, Wall Avenue from 26th to 36th is gradually being taken over by industrial and commercial development, as well as car dealerships

METHODOLOGY

An intensive cultural resource inventory was earried out for the landfill near Little Mountain The project area was inventoried in parallel transects spaced no more than 15 meters apart to cover a total of 112 acres of private land The boundaries of the survey area were established using a differentially correctable trimble GeoXT device in combination with existing landmarks and aerial photographs


RESULTS

A cultural resource inventory was earried out for a portion of Little Mountain Landfill The inventory resulted in the identification of one historic campsite, 42WB445, and one rock quarry, 42WB446 (Figure 2) Due to their proximity to the Lucm Cutoff, as well as datable artifacts found at the campsite, it is highly likely that these two sites are related to the construction of the cutoff Site 42WB445 is an historic campsite with eight depressions (F I through F8) and a surficial scatter of aqua and amethyst glass, porcelain, brick fragments, and tin can fragments Site 42WB446 is an abandoned rock quarry that has filled with water

Site 42WB445

This site is located on a 1 to 2 degree slope on the southeast side of Little-Mountain The site consists of a historic campsite mcludmg eight depressions (F1 8), most likely dugout structures for a railroad construction camp The depressions are located on top of a ridge with a sharp 30 to 40 ft drop off to the south The possible dugouts vary in size from 16 by 12 ft and 5 by 6 ft and were all dug back into the low south-facing slope Depressions 1 and 2 have rocks and boulders reinforcing the downslope berm There is no apparent pattern to these rocks Depressions 3 7 are located south of Depression 1 and 2 and are constructed adjacent to one another on the edge of the steep drop off Each of these five dugouts shares a berm wall with the next dugout These berms measure 9 to 15 ft wide Depression 8 is a shallow depression measuring 14 by 14 ft with what appears to be an entryway on the southeast side Dugouts range m depth between 8 in and 2 ft Historic artifacts were observed sparsely scattered throughout the site and include aqua and amethyst glass, porcelain fragments firebrick fragments metal fragments, a single fragment of opalized clear glass, a few small pieces of cut bone, and numerous fragments of deteriorated tm cans A moderu fencelme and road run in an east-west direction, just north of the site and may have destroyed additional features or artifacts however, no evidence of this is currently visible Additionally, the site has been impacted by moderu recreational use evidenced by shotgun shells and moderu trash

It appears that these features and artifacts are part of a railroad construction camp related to construction of the Lucm Cutoff ca 1902-1904, for the Southeru Pacific Transportation Company's mainline from Ogden to San Francisco The Lucin Cutoff, constructed largely by the Utah Construction Company, began in 1902 and worker campsites and a shipyard were known to have been located in the Little Mountain area (Peterson 2001 48-59) When the Lucin Cutoff was constructed across Great Salt Lake, the original transcontinental railroad route around Promontory Summit was abandoned as the main line The historic trestle earried trains across the lake into the early 1960s when the moderu earthen dike that is still in use today replaced it

Site 42WB446

This site, located on the southeast base of Little Mountain, is an abandoned materials quarry The site is likely associated with the construction of the Lucm Cutoff, ca 1902 1904, a railroad that spanned the Great Salt Lake According to historic records, stone and fill from Little Mountain provided material for the railroad grade and accompanying dike (Peterson 2001 48 59) The quarry and its associated access road are currently abandoned, as indicated by vegetation overgrowth and stagnant water pooling in the quarry Artifacts associated with this site include a surficial scatter of aqua and brown bottle glass fragments, deteriorated tin can fragments, and modern trash No additional artifacts or features were noted at this site

RECOMMENDATIONS

An intensive cultural resource inventory was earried out for the Little Mountain Landfill Two new cultural resource sites (42WB445 and 42WB446) were located during this inventory Following are the criteria followed m determining the eligibility of properties as set forth in 36CFR 60 4

The quality of significance m American history, architecture archaeology, and culture is present in districts, sites, buildings, structures, and objects that possess integrity of location, design, setting, materials, workmanship, feeling, and association, and

(A) that are associated with events that have made a significant contribution to the broad patterns of our history, or

(B) that are associated with the lives of persons significant m our past or

(C) that erubody the distinctive characteristics of a type, period or method of construction or that represent the work of a master, or that possess high artistic values, or that represent a significant and distinguishable entity whose components may lack individual distinction, or

(D) that have yielded, or may be likely to yield, information important in prehistory or history

Site 42WB445

This site is associated with the Lucin Cutoff constructed across Great Salt Lake between 1902-1904, a significant event in the history of railroads in the United States Campsites such as

this are expected along historic railroads as a result of the large workforce required for construction. Although the site is disturbed subsurface features may be present and have the potential to provide further information in the understanding of worker construction camps along the Lucm Cutoff Additionally, the Lucin Cutoff construction and related sites are associated with events (transcontinental transportation) that have made a significant contribution to the broad patterns of history. As such, the site is recommended eligible to the NRHP under criteria A and D

Site 42WB446

This site is associated with the Lucin Cutoff constructed across Great Salt Lake between 1902–1904, a significant event in the history of railroads in the United States Quarries, such as this, are expected near the Lucin Cutoff since fill was required to complete the railroad through this area Additionally, the Lucin Cutoff construction and related sites are associated with events (transcontinental transportation) that have made a significant contribution to the broad patterns of history As such the site is recommended eligible to the NRHP under criteria A

The tailroad construction camp (42WB445) and the railroad quarry (42WB446) have been recommended eligible to the NRHP Both sites are located on the northwestem periphery of the project area, and can easily be avoided by landfill activities Sagebrish recommends that these sites be avoided during construction and use of the landfill area

This investigation was conducted with techniques that are considered to be adequate for evaluating cultural resources that are available for visual inspection and could be adversely affected by the proposed project Based on the above-mentioned avoidance, cultural resource clearance is recommended for the current project However, should such resources be discovered during constitution a report should be made immediately to the State Archaeologist at the Utah State Historic Preservation Office, Salt Lake City, Utah

REFERENCES CITED

Allen, Frederick Lewis

1931 Only Yesterday An Informal History of the Nineteen Twenties Reprinted 1964 Harper and Row, Publishers, New York

Athearn, Robert G

1971 Union Pacific Country University of Nebraska Press, Lincoln, Nebraska

Bam, David H

1999 Empire Express Building the Fust Transcontmental Railroad Penguin Putnam Inc, New York

Buchta Cheryl and Tim-Gurrister

2001 Ogden What lies beneath? Standard Exammer, 22 July 1 3A Ogden, Utah

Carr, Stephen L and Robert W Edwards 1989 Utah Ghost Rails Western Epics, Salt Lake City

Daughters of Utah Pioneers (DUP)

1944 Beneath Ben Lomond s Peak edited by Milton R Hunter Daughters of Utah Pioneers, Weber County Chapter Reprinted in 1995 by Quality Press Salt Lake City

Eldridge, Scott J and Fred R Gowans

1994 The Fur Trade in Utah In Utah Encyclopedia, edited by Allan Kent Powell, pp 208 213 University of Utah Press Salt Lake City

Ellis, Sheri Murray, Rachel L Orth, Scott B Edmisten and Soma Hutmacher

2001 Class III Cultural Resource Inventory and Buildings Reconnaissance Survey for the 1 15 North Project Weber County Utah SWCA, Inc Environmental Consultants, Salt Lake City

Hırschı, Jaynıe

- 2000 A Class III Cultural Resources Inventory of the Proposed Groundwater Remedial Investigation Little Mountain Test Annex Weber County Utah Hill Air Force Base, Utah
- 2001 Gioundwatei Remedial Investigation Little Mountain Test Annex Sludge Drying Beds RI/RA Hill Air Force Base, Utah

Kelly, Alfred H Winfred A Harbison, and Herman Belz

1991 The American Constitution Its Origms and Development Volume 1 W W Norton and Company New York

Klein Maury

1987 Union Pacific Birth of a Railroad 1862 1893 Volume 1 Doubleday & Company, Inc, Garden City, New York

Larson, Tim and Robert K Avery

1994 Utah Broadcasting History In Utah Encyclopedia, edited by Allan Kent Powell, pp 55
58 University of Utah Press, Salt Lake City, Utah

McCormick John S

1995 The Great Depression In Utah History Encyclopedia edited by Allan Kent Powell, pp 136 138 University of Utah Press, Salt Lake City

Montgomery Archaeological Consultants

2005 Cultural Resource Inventory of Division of Wildlife Resources Administered Land South of Little Mountain Test Annex-Weber County Utah Moab, Utah

Notarianni, Philip

1994 Mining In Utah Encyclopedia edited by Allan Kent Powell, pp 367 370 University of Utah Press, Salt Lake City, Utah

Ogden Historical Society

1938 A Partial Bibliography of Source Material on Weber County and Ogden Citv Utah On file in Special Collections, Weber County Library, Ogden, Utah

Petersen, Charles S

1994 Livestock Industry In Utah Encyclopedio, edited by Allan Kent Powell, pp 333 335 University of Utah Press, Salt Lake City, Utah

Peterson, David

2001 Tale of the Lucm A Boat a Railroad and the Great Salt Lake Old Waterfront Publishing, Trinidad, California

Peterson, G Ross and Robert Parsons

2001 Ogden City Its Governmental Legacy Chapelle Limited, Ogden, Utah

Polk, Ann S and Sandy Chynoweth Pagano

2006 A Cultural Resource Inventory of a Portion of the Ogden Bay Wildlife Management Area Weber County Utah Sagebrish Consultants Report No 1462, Ogden, Utah

Powell, Allan Kent

1994 Population In Utah Encyclopedia, edited by Allan Kent Powell, pp 431-438 University of Utah Press, Salt Lake City, Utah Roberts, Richard C

1994 Ogden In Utoh Encyclopedia, edited by Allan Kent Powell, pp 339 400 University of Utah Press, Salt Lake City, Utah

Roberts, Richard C and Richard W Sadler

1985 Ogden Junction City Windsor Publications, Inc, Northridge, California

Roylance, Ward J

1982 Utah A Guide to the State Utah Arts Council, Salt Lake City

Russell, Kenneth W, Mark E Stuart, James A Brannan and Heather M Weymouth 1989 Archaeological Reconnaissance m Ogden/Webei River Marshes Weber State College, Ogden, Utah

Sadler, Richard W and Richard-C Roberts

- 1994 The Weber River Basin Grass Roots Democracy and Water Development Utah State University Press, Logan, Utah
- 1997 A History of Weber County Utah State Historical Society and the Weber County Commission, Salt Lake and Ogden, Utah

2000 Weber County s History Weber County Commission Ogden, Utah

Sadler, Richard W

1994 Miles Goodyear In *Utoh Encyclopedio*, edited by Allan Kent Powell, pp 227 228 University of Utah Press, Salt Lake City

Sanbom Map Company

- 1890 [Insurance Map of Ogden City] Sanbom Map and Publishing Company, Ltd., New York
- 1906 [Insurance Map of Ogden City] Sanborn Map and Publishing Company, Ltd., New York

Terry William W

1988 Weber County is Woith Knowing Privately published, Ogden, Utah

Tyler, S Lyman

1978 The Indians in Utah Territory In *Utah s History* edited by Richard D Poll, Thomas G Alexander, Eugene E Campbell, and David E Miller, Brigham Young University Press, Provo, Utah

University Foundation

1992 A 1991 Archaeological Assessment of US An Force Designated Lands m Utah University Foundation Utah State University, Logan Utah

Weber County Recorder


n d [Subdivision Plat Maps and Computer Listings] Weber County Recorder's Office, Ogden, Utah

Works Project Administration Writer's Program (WPA)

1940 A History of Ogden The Utah Historical Records Survey Project Division of Professional and Service Projects Ogden City Commission, Ogden, Utah

EXHIBIT D

Property Owner Notification Letters -Original Permit Application January 2009

Gary Laird Director

January 15, 2009

Kellie Cragun Office Manager

> Counterpoint Construction Company, Inc 1598 Noith Hill Fill Road Ste A Layton, Utah 84041

Re Weber County Construction and Demohtion Landfill Perinit

To Whom it May Concern

Notice is hereby given that Weber County intends to apply with the Utah Division of Solid and Hazaidous Waste for a perinit to own and operate a Class Ivb Landfill Facility within the northwest 1/4 of Section 19, Township 6 north, Range 3 West, Salt Lake Base & Meiidian The property is located within unmcorporated Weber County Utah approximately 10 miles west of Mariott Slateiville along highway 39 (turns into 900 South) as shown in the attached figure

The Utah Division of Solid and Hazaidous Waste may be contacted to review and comment on the permit application

Sincerely,

Gay C Land Weber County Director of Solid Waste

Gary Laird Director

Scott Walker Habilal Manager Kellie Cragun Division of Wildlite Resources office Manager 515 East 5300 South Ogden Utah 84405 January 15 2009

Re Weber County Construction and Demolition Landtill Permit

Dear Mi Walker

Notice is hereby given that Weber County intends to apply with the Utah Division of Solid and Hazardous Waste tor a permit to own and operate a Class IVb Landtill Facility within the northwest ¼ of Section 19 Township 6 North Range 3 West Salt Lake Base & Meridian The property is located within unincorporated Weber County Utah approximately 10 miles west of Marriott Slaterville along highway 39 (turns into 900 South) at 10485 West 900 South as shown in the attached figure

The Utah Division of Solid and Hazardous Waste may be contacted to review and comment on the permit application

Sincerely

Gary & Loird Weber County Director of Solid Waste

Gary Laırd Dilector

Westinghouse Electric Company LLC 1330 Beulah Rood Office Manager Pittsburg Pennsylvania 15235 January 15 2009

Re Weber County Construction and Demolition Landfill Permit

To Whom It May Concern

Notice is hereby given that Weber County intends to apply with the Utah Division of Solid and Hazardous Waste for a permit to own and operate a Class IVb Landfill Facility within the northwest ¼ of Section 19 Township 6 North Range 3 West Salt Lake Base & Meridian The property is located within unincorporoled Weber County Utah approximately 10 miles west of Marriott Slaterville along highway 39 (turns into 900 South) at 10485 West 900 South as shown in the attached figure

The Utah Division of Solid and Hazardous Waste may be contacted to review and comment on the permit application

Sincerely

Gar∲C Laird Weber County Director of Solid Waste

Gary Laırd Dırector

Kellie Cragun Office Manager 75 CEG/CEPP 7302 Wardleigh Rood Hill AFB Utah 84056 5016 January 15 2009

Re Weber County Construction and Demolition Landfill Permit

Dear Mr Stone

Notice is hereby given that Weber County intends to apply with the Utah Division of Solid and Hazardous Waste for o permit to own and operate a Class IVb Landfill Facility within the northwest 1/4 of Section 19 Township 6 North Range 3 West Salt Lake Base & Meridian The property is located within unincorporated Weber County Utah approximately 10 miles west of Marriott Slaterville along highway 39 (turns into 900 South) at 10485 West 900 South as shown in the attached figure

The Utah Division of Solid and Hazardous Waste may be contacted to review and comment on the permit application

Sincerely

Gorý'C Laird Weber County Director of Solid Waste

Gary Laird Director

Union Pacific Railrood 1400 Douglas Street Kellie Cragun Office Manager January 15 2009

Re Weber County Construction and Demolition Landfill Permit

To Whom It May Concern

Notice is hereby given that Weber County intends to apply with the Utah Division of Solid and Hazardous Waste tor a permit to own and operate a Class IVb Landfill Facility within the northwest ¼ of Section 19 Township 6 North Range 3 West Salt Lake Base & Meridian The property is located within unincorporated Weber County Utah approximately 10 miles west of Marriott Slaterville along highway 39 (turns into 900 South) at 10485 West 900 South as shown in the attached figure

The Utah Division of Solid and Hazardous Waste may be contacted to review and comment on the permit application

Sincerely

Gary É Laird Weber County Director of Solid Waste

Gary Laird Director

Powder Mountain Group Holdings LLCKellie Cragun
Office ManagerSolt Loke CityUtah 84111

January 15 2009

Re Weber County Construction and Demolition Landfill Permit

To Whom It May Concern

Notice is hereby given that Weber County intends to apply with the Utah Division of Solid and Hazardous Waste for a permit to own and operate a Class IVb Landfill Facility within the northwest 1/4 of Section 19 Township 6 North Range 3 West Salt Lake Base & Meridian The property is located within unincorporated Weber County Utah approximately 10 miles west of Marriott Slaterville along highway 39 (turns into 900 South) at 10485 West 900 South as shown in the attached figure

The Utah Division of Solid and Hazardous Waste may be contacted to review and comment on the permit application

Sincerely

Gary/C Laird Weber County Director of Solid Waste

Gary Laird Director

Joseph M Colosimo Kellie Cragun Office Manager Draper Utoh 84094 January 15 2009

Re Weber County Construction and Demolition Landfill Permit

Dear Property Owner

Notice is hereby given that Weber County intends to apply with the Utah Division of Solid and Hazardous Waste for a permit to own and operate a Class IVb Landfill Facility within the northwest ¼ of Section 19 Township 6 North Range 3 West Salt Lake Base & Meridian The property is located within unincorporated Weber County Utah approximately 10 miles west of Marriott Slaterville along highway 39 (turns into 900 South) at 10485 West 900 South as shown in the attached figure

The Utah Division of Solid and Hazaidous Waste may be contacted to review and comment on the permit application

Sincerely

Gary C Loird Weber County Director of Solid Waste

Gary Laird Director

Bible Broadcasting Network Inc 8030 Arrowridge Blvd ^{Kellie Cragun} Charlotte North Carolino 28273 January 15 2009

Re Weber County Construction and Demolition Landfill Permit

Dear Property Owner

Notice is hereby given that Weber County intends to apply with the Utah Division of Solid and Hazardous Waste tor a permit to own and operate a Class IVb Landfill Facility within the northwest 1/4 of Section 19 Township 6 North Range 3 West Salt Lake Base & Meridian The property is located within unincorporated Weber County Utah approximately 10 miles west of Morriott Slaterville along highway 39 (turns into 900 South) at 10485 West 900 South as shown in the attached figure

The Utah Division of Solid and Hazardous Waste may be contacted to review and comment on the permit application

Sincerely

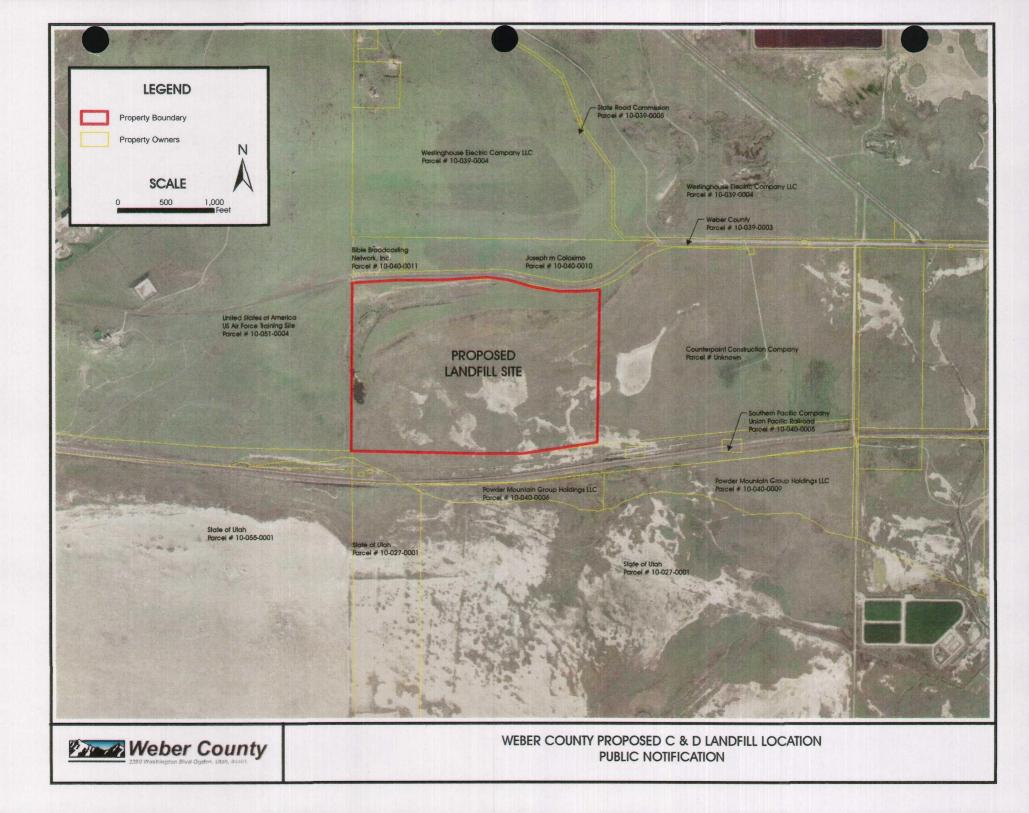
Gary⁴C Laird Weber County Director of Solid Waste

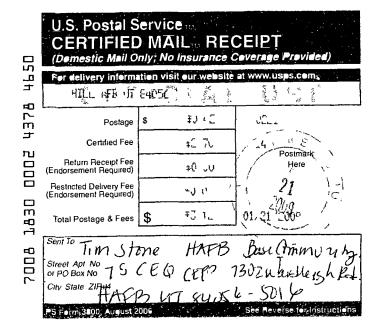
Gary Laird Director

Utah Deportment of Transportation 4501 South 2700 West Kellie Cragun Office Manager Mail Stop 141200 Salt Lake City Utah 84114 1200 January 15 2009

Re Weber County Construction and Demolition Landfill Permit

To Whom It May Concern


Notice is hereby given that Weber County intends to apply with the Utah Division of Solid and Hazardous Waste for o permit to own and operate o Class IVb Landfill Facility within the northwest ¼ of Section 19 Township 6 North Range 3 West Salt Lake Base & Meridian The property is located within unincorporated Weber County Utah approximately 10 miles west of Marriott Slaterville along highway 39 (turns into 900 South) at 10485 West 900 South as shown in the attached figure


The Utah Division of Solid and Hazardous Waste may be contacted to review and comment on the permit application

Sincerely

Gary C Laird Weber County Director of Solid Waste

4643	U.S. Postal S CERTIFIED (Demestic Mail O For delivery informa- Mathin ME take	DMAI Inly; Ne li ation visit	Lin REC	Covérage Previded)
457B	Postage	\$	¥V + 2	2 EL
m	Centified Fee Return Receipt Fee	<u> </u>	* <u>.</u> 7	Postmarti Here
	(Endorsement Required) Restricted Delivery Fee (Endorsement Required)		\$9 VV	11 15
1,830	Total Postage & Fees	\$	‡C 1C	12 -Learton
2008	Sent To Street Apt No or PO Bo No City State ZIR+4 (*S Form 3400, August 2	10 br	he fe	y roud St 28179 Ste Soverse for Instruction

4639		ΟΛ niy;	ALL: RE No Insurance (CEIPT Ceverage Previded). at www.uses.com
	- 4m II 14	ŕŕ	CI & I	
578	Postage	\$	¥U _	10°_1
ᠴ	Certified Fee		±_ " ı	17
	Return Receipt Fee (Endorsement Required)		⊊µ^̂	Postmark Here
	Restricted Delivery Fee (Endorsement Required)		ж (Ц)	No. Fr
	Total Postage & Fees	\$	\$7	11.21.200
2008	Sent To JOSPA W Street Apt No	ן ק 4 מונה	Colosimo é 11500 S VIT Syloin	1 M


۵

C

U.S. Postal Service CERTIFIED MAIL RECEIPT (Demestic Mail Only; Ne Insurance Coverage Previded) ப ן ל For delivery n visit aur 印建门 弟子 E Card ji ka ţ, ۳D 5 2 τJ ທີ່ໄດ້ມ \$ Postage ÷ Certilied Fee JE 71 ព្រ Poşimark. Return Receipt Fee (Engorsement Required) ,Heītè 4U JV Restricted Delivery Fee (Endorsement Required) ‡ΰ ()+ 1630 みる この見1 ±. 1. Total Postage & Fees \$ Sent To 800 Street Apt No DEDT Trensportation 2700 mailstop 141200 S 4501 or PO Box No City State ZIP+4 SULI4-1200 PS Ferm 3800

U.S. Postal Service The CERTIFIED MAIL TRECEIPT (Demestic Mail Only; No Insurance Coverage Pro	vided)
For delivery information visit our website at www.usps.c	
-0 Postage \$ U'	
T Certified Fee	mark
Return Receipt Fee Endorsement Required) Restricted Delivery Fee Endorsement Required	eie.
Restricted Delivery Fee (Findorsement Required)	10)
Total Postage & Fees \$ My	," 2 -5
Sent To Westinghouse alectrici -	e
Street Apt No or PO Box NO Corry State ZIPHS	
	e.tor instruction

4681		MAII nly; No In tion visit		EIPT overage Provided) at www.usps.com
т	LA, TU UT 64	v4] 🧶		2 8 THE S
578	Postage	\$	 ₹√ 4	JET SEON
÷	Centified Fee		- 7. I	14 901 Th
2000	Return Receipt Fee (Endorsement Required)		Ξ · υ ·]	Here S
	Restricted Delivery Fee (Endorsement Required)		*J v	
1,830	Total Postage & Fees	\$	¥Ĩ	
7008 1	Sent Ta UV Ner Street Apt No or PO Box No 5 City State ZIP+4 Au To PS Farm 3 500 Au sust	18 N n	•	CO Ield Rd Stat 1041 Sector instructions

EXHIBIT E

U. S. Army Corps of Engineers Wetlands Determination Documents

DEPARTMENT OF THE ARMY SACRAMENTO DISTRICT CORPS OF ENGINEERS 1325 J STREET SACRAMENTO CA 95814 2922

March 18, 2009

Regulatory Division (SPK-2008-867)

TTENTION OF

Randy Moulding Mouldmg and Sons Sand and Gravel 910 West 21st Street Ogden, Utah 84401-5600

RECEIVED MAR 2 3 2009

HA&

Dear Mr Moulding

We are responding to your consultant's request for an approved jurisdictional determination for the Little Mountain Property This approximately 114-acre site is located m Section 19, Township 6 North, Range 3 West, Salt Lake Base and Meridian, centered on Latitude 41 24775 North, Longitude 112 222788 West, west of Ogden, Weber County, Utah

The 114-acre site has approximately 31 73 acres of wetlands as depicted on the enclosed Figure 2 of the Moulding & Son s Little Mountain Property Wetland Delineation Report prepared by Paul West These wetlands are intrastate isolated wetlands with no apparent interstate or foreign commerce connection or any connection to any other regulated water of the United States As such, waters on this site are not currently regulated by the Corps of Engineers This disclaimer of jurisdiction is only for Section 404 of the Federal Clean Water Act Other Federal, State, and local laws may apply to your activities

This verification is valid for five years from the date of this letter, unless new information warrants revision of the determination before the expiration date This letter contains an approved jurisdictional determination for your subject site If you object to this determination, you may request an administrative appeal under Corps regulations at 33 CFR Part 331

A combined Notification of Appeal Process fact sheet and Request for Appeal form is enclosed If you request to appeal this determination you must submit a completed Request For Appeal form to the South Pacific Division Office at the following address Administrative Appeal Review Officer, Army Corps of Engineers, South Pacific Division, CESPD-PDS-O, 1455 Market Street, San Francisco, California 94103-1399, Telephone 415-503-6574, FAX 415-503-6646

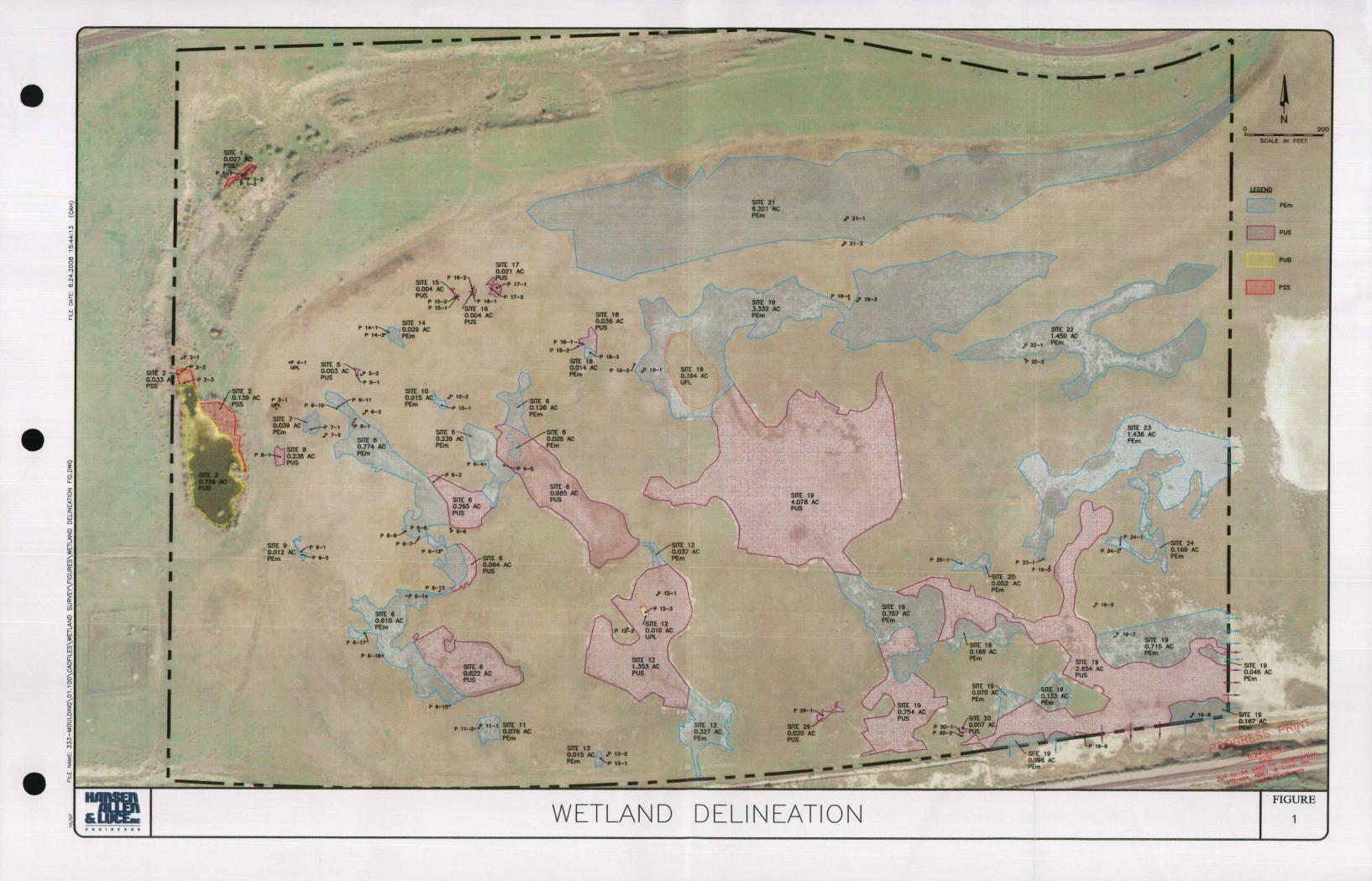
In order for an appeal request to be accepted by the Corps, the Corps must determine that it is complete, that it meets the criteria for appeal under 33 CFR Part 331 5, and that it has been received by the Division Office within 60 days of the date of the Notification of Appeal Process fact sheet Should you decide to submit a Request for Appeal form, it must be received at the above address by 60 days from the date of this letter It is not necessary to submit an appeal request form to the Division Office if you do not object to the determination in this letter

You should provide a copy of this letter and notice to all other affected parties, including any individual who has an identifiable and substantial legal interest in the property

This determination has been conducted to identify the limits of Corps of Engineers' Clean Water Act jurisdiction for the particular site identified in this request This determination may not be valid for the wetland conservation provisions of the Food Security Act of 1985 If you or your tenant are USDA program participants, or anticipate participation in USDA programs, you should request a certified wetland determination from the local office of the Natural Resources Conservation Service, prior to starting work

We appreciate your feedback At your earliest convenience, please complete our customer survey at *http //www spk usace army mil/customer_survey html* Your passcode is "conigliaro"

If you have any questions, please contact Richard Gebhart, Bountiful Regulatory Office, 533 W 2600 South, Suite 150, Bountiful, Utah 84010-7714, email <u>richard a gebhart@usace army mil</u>, or telephone 801 295-8380 x16


Sincerely

Jason Gipson Chief, Nevada-Utah Branch

Enclosure

Copy Furnished with Enclosure

Gordon Jones, Hansen, Allen, and Luce, Inc , 6771 S 900 East, Salt Lake City UT 84047-1436 Paul West, 2478 W Long Meadow Dr, West Jordan UT 84084-5805

March 23 2009

Utah Department of Environmental Quality Division of Solid and Hazardous Waste 288 North 1460 West P O Box 144880 Salt Lake City Utah 84114 4880

RE Weber County C&D Landfill Permit Application Comments regarding Wetland Definitions and Issues

Gentlemen

A wetland delineation was completed by a wetland biologist (between mid April and mid May 2008) on the property proposed for the Weber County C&D landfill located immedialely south of Little Mountain in Weber County in the Northwest Quarter Section 19 Township 6 North Range 3 West Solt Lake Base and Meridian Information from the wetland delineation work was subsequently submitted to the Army Corps of Engineers to determine whether or not the delineated sites on the property are regulated under Section 404 of the Clean Water Act

A letter from the Corps of Engineers dated March 18 2009 is provided Exhibit E of the permit application determining the wetlands delineated on the property as non-jurisdictional or otherwise not regulated by the Corps of Engineers under Section 404 of the Federal Clean Water Act Concurrence to the Corps of Engineers determination was provided by the U S EPA prior to receiving their letter. A figure prepared by a wetland biologist was included with the letter from the Corps of Engineers that delineated wetlands on the property based on the broad definitions outlined by the Corps of Engineers. Non regulated areas under Section 404 do not require any permits alternatives analyses or mitigation measures for removal and development

The Utah Administrative Code provides the definition of wetlands (R315 301 2(86) as 'those areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support and under normal conditions do support a prevalence of vegetation typically odapted for life in saturated soil conditions. Wetlands generally include swamps marshes bogs and similar areas. None of the areas delineated on the property meet the definition of a wetland provided in the Utah Administrative Code as is demonstrated in the following paragraphs.

None of the areas delineated on the figure contain inundated or saturated conditions from surface or ground water except for the excavated area associated with a prior gravel pit operations located at the west side of the property one location (19.8) at the extreme southeast corner of the property which is outside the landfill footprint and another location (21.1) just south of the facility access and operations area. The south end of the west side of the gravel pif receives surface water runoff from little mountain resulting from precipitation and snow melt

Utan Department of Environmental Quality Division of Solid and Hazardous Waste March 23 2009 Page 2 of 5

events This water is lost to evaporation transpiration and percolation info the soils and dries up sometime during the summer. The pond has been used as a water source for stock watering of cattle on the property but has not supported life that typically exists in saturated conditions. Since the gravel pit area does not support life that typically exists in saturated conditions it does not meet the definition of a wetlond in the administrative code and will become permanently dry when storm water controls ore implemented. These storm water controls include diverting runoff from Little Mountain toward the east along the south side of the existing rood and then south through a series of detention ponds along the east property line. The other two locations showed very small areas of saturated soils at the time of the delineation (April May) which was during a time when the site received several storm events. These areas however, dried to non-saturated conditions within weeks of the delineation and are also not known to support life that typically exists in saturated conditions.

The other areas delineated as being wetlands on the figure are primarily associated with ployas sites typically consisting of bare soils with high salt content. These areas are not inundated, do not consist of saturated soils most do not support vegetative growth, and they do not support life that typically exists in saturated conditions. Therefore, none of the areas delineated meet the definition of a wetland provided in R315 301 2(86). The data sheets attached to this letter present results of soil and hydrology observations conducted by the wetland biologist who deline ated the oreos as presented on the figure attached to the Corps of Engineers letter. As presented on the site observation forms, the sites delineated are not associated with inundated or saturated conditions with the exception of the two very small locations defined as 19.8, and 21.1, as discussed earlier.

There are several criteria that outline location standards associated with wetlands for Class IV landfills in R315 302 1(2)(d) As stated earlier we believe that all areas presented as non jurisdictional wetlands in the figure accompanying the Corps of Engineers letter also do not meet the definition of wetlands as stated in the Utah Administrative Code However. The following paragraphs address each of the criteria presented in the rule for wetlands.

R315-302-1(2)(d) Wetlands No new facility or lateral expansion of on existing facility shall be located in wetlands unless the owner or operator demonstrates to the Executive Secretary that

CRITERIA 1 - (I) Where applicable under section 404 of the Clean Water Act or applicable State wetland lows the presumption that a practicable alternative to the proposed landfill is available which does not involve wetlands is clearly rebutted

COMMENT 1 The areas delineated ore not regulated by section 404 of the Clean Water act as provided tor in the letter from the Army Corps of Engineers doted March 18 2009 As such on alternatives analysis is not required

CRITERIA 2 (II) The unit will not violate any applicable state water quality standards or section 307 of the Clean Water Act

Utah Department of Environmental Quality Division of Solid and Hazardous Waste March 23 2009 Revised June 8 2009 Page 3 ol 5

> **COMMENT 2** Section 307 of the Clean Water Act addresses Toxic and Pretreotment Effluent Standards As presented in the permit application the quality of the ground water is very poor consisting of 23 000 to 29 000 mg/L TDS. This landfill unit is permitted to receive only inert type wastes as defined for Class IVb landfills and will not receive toxic materials. Storm water from exposed waste surfaces will be contained within the landfill footprint and will not be discharged. Therefore, no discharges from exposed wastes are expected and the Section 307 does not opply.

> **CRITERIA** 3 (III) The unit will not jeopaidize the continued existence of any endangered orthreatened species or result in the destruction or adverse modification of critical habitat protected under the Endangered Species Act of 1973

COMMENT 3 A letter from the Utah Division of Wildlife Resources doted October 16 2008 was provided in Exhibit E of the permit application stating that The Utah Division of Wildlife Resources (UDWR) does not have records of the occurrence for any threatened endangered or sensitive species within the project area or within a 1 mile radius. The unit will therefore not jeopardize the continued existence of any endangered or threatened species or result in the destruction or adverse modification of critical habitat protected under the Endangered Species Act of 1973

CRITERIA 4 (IV) the unit will not cause or contribute to significant degradation of wetlands The owner or operator must demonstrate the integrity of the unit and its ability to protect ecological resources by addressing the following factors

(A) erosion stability and migration potential of native wetland soils muds and deposits used to support the unit

(B) elosion stability and migration potential of dredged and fill materials used to support the unit

(C) the volume and chemical nature of the waste managed in the unit

(D) impacts on fish wildlife and other aquatic resources and their habitat from release of solid waste

(E) the potential effects of catastrophic release of waste to the wetland and the resulting impacts on environment and

(F) any additional factors os necessary to demonstrate that ecological resources in the wetland ore sufficiently protected

Utoh Department of Environmental Quality Division of Solid and Hazardous Waste March 23 2009 Revised June 8 2009 Page 4 of 5

COMMENT 4 We believe that all areas delineated in the figure attached to the letter from the Corps of Engineers do not meet the State of Utah definition of wetlands presented in R315 301 2(86) However we will address each criteria presented above

(A) Erosion and stability calculations have been completed and ore presented in the permit application that demonstrate that the native soils will support the landfill unit

(B) There will be no dredged materials and erosion and stability calculations have been completed and are presented in the permit application that demonstrate that the on site soils may be used as fill materials and will support the landfill unit

(C) The waste managed in the unit will consist of those materials acceptable in a Class IVb landfill. These are waste defined by R315 301 2(10)

(D) There are no fish or aquatic resources or habitats on the property. The gravel pit is the only site on the property that includes surface water or soturoted soils. The surface water and saturated soil conditions only occur seasonally and will become non existent upon implementation of the storm droinoge system for the site. Water in the gravel pit has only been used for stock watering ond not for the support of wildlife

(E) Landfill design parameters include seismic conditions and 100 yeoi piecipitation events. The only potential releases from catastrophic conditions would occur from storm water containment facilities within the landfill footprint designed to contain runott from exposed waste surfaces. Since there are no wetlands meeting the regulatory definition in the administrative code and since Class IVb landfills con only accept waste types defined by R315 301 2(10) possible releases from large precipitation events should not have an import on wetlands or the environment

(F) The sites delineated on the property do not meet the regulatory definition of wetlands and are not ecologically sensitive. The sites are also not regulated under Section 404 of the Clean Water Act and require no permits for modifying or changing these areas.

CRITERIA 5 (v) to the extent required under section 404 of the Clean Water Act or applicable state wetlands lows steps have been taken to attempt to achieve no net loss of wetlands as defined by acreage and function by first avoiding impacts to wetlands to the maximum extent practicable as required by Subsection R315 302 1(2)(d)(l) then minimizing unavoidable impacts to the maximum extent practicable and finally offsetting remaining unavoidable wetland impacts through all appropriate and practicable

Utah Department of Environmental Quality Division of Solid and Hazardous Waste March 23 2009 Page 5 of 5

compensatory mitigation actions (e.g. restoration of existing degraded wetlands or creation of man made wetlands) and

COMMENT 5 The sites delineated on this property are not regulated and are non jurisdictional under Section 404 of the Clean Water Act as demonstrated by the March 18 2009 letter received by the Corps of Engineers

CRITERIA 6 (vi) sufficient information is available to moke reasonable determination with respect to these demonstrations

COMMENT 6 The information provided in the March 18 2009 letter from the Corps of Engineers and the information presented in this letter are sufficient to demonstrate that the site delineated on the property are not regulated under Section 404 of the Clean Wafer Act and do not meet the definition of wetlands provided by R315 301 2(86) of the Utah Administrative Code All other information contained herein and in the permit application demonstrates that the landfill is designed with appropriate site considerations

Please include this letter and supporting observation forms in Exhibit E of the permit application and feel free to call if you need any additional information for your review of the permit application

Sincerely

HANSEN ALLEN & LUCE INC

Kent C Staheli P E Principal

attachments

1

Profile Description (Descri	be to the dep	th needed to docu	ment the	Indicator	or confirm	n the absence	e of indicators)
Depth Main		Redo	x Feature	<u>s</u>			
(inches)Color (moist)		Color (moist)	%	Type ¹	Loc ²		Remarks
<u>04</u> <u>10YR 3/2</u>	100			. <u></u>		<u>_CI</u>	Damo
<u>4 1010YR 4/2</u>		7 5YH 3/4	_40	. <u></u>		CILo	Saturated
10 12	100					Oraanic	Saturated
12 – 18+10YR 4/2	100					Sa	Standina water
	<u> </u>			•		<u> </u>	
			. <u></u>	· <u></u>	<u> </u>		
				·			
						. <u> </u>	<u></u>
¹ Type C=Concentration D=E					e Lining R	C=Root Chan	
Hydric Soil Indicators (App	licable to all			ed)			for Problematic Hydric Soils ³
Histosol (A I)		Sandy Red					Muck (A9) (LRR C)
Histic Epipedon (A2)		Stripped Ma	• •				Muck (A10) (LRR B)
Black Histic (A3)		Loamy Muc	-				ced Vertic (F18)
Hydrogen Sulfide (A4)		Loamy Gley		(F2)			arent Material (TF2)
Stratified Layers (A5) (LR	RC)	Depleted M				Other	(Explain in Remarks)
1 cm Muck (A9) (LRR D) X Depleted Below Dark Sur	Face (A 11)	Redox Dark Depleted D					
Thick Dark Surface (A12)	ace (ATT)	Redox Dep					
Sandy Mucky Mineral (S1	۱	Vernal Pool	-	0)		⁹ Indicators	of hydrophylic vegetation and
Sandy Gleyed Matnx (S4)			3 (1 3)				hydrology must be present
Restrictive Layer (if present)							
Туре							
Depth (inches)						Hydric Soil	Present? Yes X No
Remarks							
Soils depleted below dark surf	ace						
	· · · · · · · · · · · · · · · · · · ·			<u> </u>			
HYDROLOGY							
Wetland Hydrology Indicator	s				· ·	Secor	ndary Indicators (2 or more required)
Pnmary Indicators (any one in	dicator is suffi	cient)				W	Vater Marks (B1) (River i ne)
Surface Water (A1)		Salt Crust	(B11)			s	ediment Deposits (B2) (Riverine)
X High Water Table (A2)		Biotic Crus	st (B12)			D	rift Deposits (B3) (Riverine)
X Saturation (A3)		Aquatic In	vertebrate	s (B13)			rainage Patterns (81C)
X Water Marks (B1) (Nonriv	verine)	Hydrogen	Sulfide O	dor (C1)		D	ry Season Water Table (C2)
X Sediment Deposits (B2) (i	-	Oxidized F	Rhizosphe	res along l	Living Roo		hin Muck Surface (C7)
Dntt Deposits (B3) (Nonri	,	P esence					rayfish Burrows (C8)
Surface Soil Cracks (B6)	,	Recent Iro					aturation Visible on Aerial Imagery (C9)
Inundation Visible on Aen	al Imagery (B7					•	hallow Aquitard (D3)
Water Stained Leaves (BS		/		manoj			AC Neutral Test (D5)
Field Observations	<u></u>		<u></u>			'	
Surface Water Present?	Yos ,	No X Depth (in	chee)				
					-		
Water Table Present?		No Depth (in			-	n al Ll I -	
Saturation Present? (includes capillary finge)	res <u>X</u>	No Depth (in	cnes) <u>1</u>	<u>u</u>	_ wvetla	and Hydrolog	y Present? Yes <u>X</u> No
Describe Recorded Data (strea	am gauge mo	nitoring well aenal	photos pr	evious ins	pections) i	f available	······
Remarks							
Saturated at 10 water at 12							

ł

.

Profile Desc	cription (Describe	to the dep	oth needed to docu	ment the	indicator	or confirm	n the absence	e of indicators)	
Depth	Matnx		Redo	ox Feature	s				
(inches)	Color (moist)	/	Color (moist)	/o	Type ¹	Loc ²	<u> </u>	Remarks	
04	10YR 3/2					<u> </u>		Damp	
4 10	10YR 4/2	60	_7 5YR 3/4	40			CILo	Saturated	
_10_12	10YR 2/2	100	_				Organic	Saturated	
<u>12 – 18+</u>	10YR 4/2	_100	<u> </u>				Sa	Standing water	
			. <u></u>						
			<u> </u>						
	<u> </u>		. <u> </u>		. <u> </u>				
	<u> </u>								
¹ Type C=Ce	oncentration D=Depl	etion RM	=Reduced Matnx	² Location	PL=Por	e Lining F	RC=Root Chan		
Hydric Soil	Indicators (Applica	ble to all	LRRs unless othe	rwise not	ed)		Indicators	for Problematic Hydric Soils ³	
Histosol	(AI)		Sandy Red	lox (S5)			1 cm M	Muck (A9) (LRR C)	
Histic Ep	oipedon (A2)		Stripped M.	atnx (S6)			2 cm Muck (A10) (LRR B)		
Black Hi	slic (A3)		Loamy Muc	cky Minera	I (FI)		Reduced Vertic (F18)		
Hydroge	n Sulfide (A4)		Loamy Gle	yed Matnx	(F2)		Red P	arent Matenal (TF2)	
Stratified	d Layers (A5) (LRR C)	Depleted M	latnx (F3)			Other	(Explain in Remarks)	
1 cm Mu	ick (A9) (LRR D)		Redox Darl	k Surface (F6)				
X Depleted	d Below Dark Surface	e (ATT)	Depleted D	ark Surfac	e (F7)				
Thick Da	irk Surface (A12)		Redox Dep	ressions (F	-8)				
	lucky Mineral (S1)		Vernal Poo	ls (F9)			³ Indicators	of hydrophytic vegetation and	
Sandy G	leyed Matnx (S4)			, ,				hydrology must be present	
Restrictive L	ayer (if present)								
Туре									
	ches)						Hydric Soil	Present? Yes <u>X</u> No	
Remarks									
Soils deplete	d below dark surface								
HYDROLO	GY								
Wetland Hyp	Irology Indicators						Secor	idary Indicators (2 or more required)	

Pnmary Indicators (any one indicator is sufficient)	Water Marks (B1) (Riverine)
Surface Water (A1) Salt Crust (B11)	Sediment Deposits (B2) (Riverme)
X High Water Table (A2) Biotic Crust (B12)	Dnft Deposits (B3) (Riverine)
X Saturation (A3) Aquatic Invertebrates (B13)	Drainage Pattems (B10)
X Water Marks (B1) (Nonriverine) Hydrogen Sulfide Odor (C1)	Dry Season Water Table (C2)
<u>X</u> Sediment Deposits (B2) (Nonriverine) Oxidized Rhizospheres along Living Root	s (C3) Thin Muck Surface (C7)
Dnft Deposits (B3) (Nonriverine) Presence of Reduced Iron (C4)	Crayfish Burrows (C8)
Surface Soil Cracks (B6) Recent Iron Reduction in Plowed Soils (C	6) Saturation Visible on Aen al Imagery (C9)
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)	Shallow Aquitard (D3)
Water Stained Leaves (B9)	FAC Neutral Test (D5)
Field Observations	
Surface Water Present? Yes No X Depth (inches)	
Water Table Present? Yes <u>No X</u> Depth (inches)	
Saturation Present? Yes X No Depth (inches) 12 Wetlan (includes capillary fringe)	nd Hydrology Present? Yes X No
Describe Recorded Data (stream gauge monitoring well aerial photos previous inspections) if	available
Remarks	
Saturated at 12	

1

	Redox Features	onfirm the absence of indicators)
Depth <u>Matrix</u> (inches) Color (moist) <u>%</u>	Color (moist)	DC ² Remarks
0 2 10YR 2/2 100		Lodamp
·		
	······································	
¹ Type C=Concentration D=Depletion RM=Re	educed Matrix ² Location PL=Pore Lin	Ing RC=Root Channel M=Matrix
Hydric Soil Indicators (Applicable to all LR	Rs unless otherwise noted)	Indicators for Problematic Hydric Soils ³
Histosol (A1)	Sandy Redox (S5)	1 cm Muck (A9) (LRR C)
Histic Epipedon (A2)	Strpped Matnx (S6)	2 cm Muck (A10) (LRR B)
Black Histic (A3) Hydrogen Sulfide (A4)	Loamy Mucky Mineral (FI) Loamy Gleyed Matnx (F2)	Reduced Vertic (F18) Red Parent Material (TF2)
Stratified Layers (A5) (LRR C)	Depleted Matrix (F3)	Other (Explain in Remarks)
1 cm Muck (A9) (LRR D)	Redox Dark Surface (F6)	
Depleted Below Dark Surface (A11)	Depleted Dark Surface (F7)	
Thick Dark Surface (A12)	Redox Depressions (F8)	
Sandy Mucky Mineral (SI)	Vernal Pools (F9)	³ indicators of hydrophytic vegetation and
Sandy Gleyed Matnx (S4) Restrictive Layer (if present)		wetland hydrology must be present
Type		
Depth (inches)		Hydric Soil Present? Yes No X
Remarks		
No indications of hydric soils		
HYDROLOGY		
		Secondary Indicators (2 or more required)
Wetland Hydrology Indicators	nt)	Secondary Indicators (2 or more required) Water Marks (B1) (Riverine)
Wetland Hydrology Indicators Pnmary Indicators (any one indicator is sufficient		Water Marks (B1) (Riverine)
Wetland Hydrology Indicators <u>Pnmary Indicators (any one indicator is sufficien</u> Surface Water (A1)	nt) Salt Crust (B11) Biotic Crust (B12)	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine)
Wetland Hydrology Indicators Pnmary Indicators (any one indicator is sufficient	Salt Crust (B11)	Water Marks (B1) (Riverine)
Wetland Hydrology Indicators <u>Pnmary Indicators (any one indicator is sufficien</u> Surface Water (A1) High Water Table (A2)	Salt Crust (B11) Biotic Crust (B12)	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Dift Deposits (B3) (Riverine)
Wetland Hydrology Indicators <u>Pnmary Indicators (any one indicator is sufficien</u> Surface Water (A1) High Water Table (A2) Saturation (A3)	 Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) 	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Dift Deposits (B3) (Riverine) Drainage Patterns (B1C) Dry Season WaterTable (C2)
Wetland Hydrology Indicators <u>Pnmary Indicators (any one indicator is sufficien</u> Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonriverine) Sediment Deposits (B2) (Nonriverine) Dnft Deposits (B3) (Nonriverine)	 Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Presence of Reduced Iron (C4) 	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Dnft Deposits (B3) (Riverine) Drainage Patterns (B1C) Dry Season WaterTable (C2) Thin Muck Surface (C7) Crayfish Burrows (C8)
Wetland Hydrology Indicators Pnmary Indicators (any one indicator is sufficient Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonriverine) Sediment Deposits (B2) (Nonriverine) Dift Deposits (B3) (Nonriverine) Surface Soil Cracks (B6)	 Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Presence of Reduced Iron (C4) Recent Iron Reduction in Plowed Set 	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Dnft Deposits (B3) (Riverine) Drainage Patterns (B1C) Dry Season WaterTable (C2) Thin Muck Surface (C7) Crayfish Burrows (C8)
Pnmary Indicators (any one indicator is sufficient	 Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Presence of Reduced Iron (C4) 	Water Marks (B1) (Riverine) Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Dift Deposits (B3) (Riverine) Drainage Patterns (B1C) Dry Season Water Table (C2) GRoots (C3) Thin Muck Surface (C7) Crayfish Burrows (C8) Oils (C6) Saturation Visible on A e n al Imagery (C Shallow Aquitard (D3)
Wetland Hydrology Indicators Pnmary Indicators (any one indicator is sufficient Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonriverine) Sediment Deposits (B2) (Nonriverine) Dift Deposits (B3) (Nonriverine) Surface Soil Cracks (B6) Inundation Visible on Aenal Imagery (B7) Water Stained Leaves (B9)	 Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Presence of Reduced Iron (C4) Recent Iron Reduction in Plowed Set 	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Dift Deposits (B3) (Riverine) Drainage Patterns (B1C) Dry Season Water Table (C2) g Roots (C3) Crayfish Burrows (C9) oils (C6) Saturation Visible on A en al Imagery (C
Wetland Hydrology Indicators <u>Pnmary Indicators (any one indicator is sufficient</u> 	 Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Presence of Reduced Iron (C4) Recent Iron Reduction in Plowed Se Other (Explain in Remarks) 	Water Marks (B1) (Riverine) Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Dift Deposits (B3) (Riverine) Drainage Patterns (B1C) Dry Season Water Table (C2) GRoots (C3) Thin Muck Surface (C7) Crayfish Burrows (C8) Oils (C6) Saturation Visible on A e n al Imagery (C Shallow Aquitard (D3)
Wetland Hydrology Indicators Pnmary Indicators (any one indicator is sufficient	 Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Presence of Reduced Iron (C4) Recent Iron Reduction in Plowed Second Other (Explain in Remarks) X Depth (inches) 	Water Marks (B1) (Riverine) Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Dift Deposits (B3) (Riverine) Drainage Patterns (B1C) Dry Season Water Table (C2) GRoots (C3) Thin Muck Surface (C7) Crayfish Burrows (C8) Oils (C6) Saturation Visible on A e n al Imagery (C Shallow Aquitard (D3)
Wetland Hydrology Indicators Pnmary Indicators (any one indicator is sufficient	 Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Presence of Reduced Iron (C4) Recent Iron Reduction in Plowed Second Other (Explain in Remarks) X Depth (inches) X Depth (inches) 	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Dift Deposits (B3) (Riverine) Drainage Patterns (B1C) Dry Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) oils (C6) Saturation Visible on A e n al Imagery (C Shallow Aquitard (D3) FAC Neutral Test (O5)
Wetland Hydrology Indicators Pnmary Indicators (any one indicator is sufficient	 Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Presence of Reduced Iron (C4) Recent Iron Reduction in Plowed Second Other (Explain in Remarks) X Depth (inches) X Depth (inches) 	Water Marks (B1) (Riverine) Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Dift Deposits (B3) (Riverine) Drainage Patterns (B1C) Dry Season Water Table (C2) GRoots (C3) Thin Muck Surface (C7) Crayfish Burrows (C8) Oils (C6) Saturation Visible on A e n al Imagery (C Shallow Aquitard (D3)
Wetland Hydrology Indicators Pnmary Indicators (any one indicator is sufficient	 Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Presence of Reduced Iron (C4) Recent Iron Reduction in Plowed Secondary Other (Explain in Remarks) X Depth (inches) X Depth (inches) X Depth (inches) X Depth (inches) 	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Dift Deposits (B3) (Riverine) Drainage Patterns (B1C) Dry Season Water Table (C2) g Roots (C3) Thin Muck Surface (C7) Crayfish Burrows (C9) oils (C6) Saturation Visible on A e n al Imagery (C Shallow Aquitard (D3) FAC Neutral Test (05) Wetland Hydrology Present? Yes No X
Wetland Hydrology Indicators Pnmary Indicators (any one indicator is sufficient	 Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Presence of Reduced Iron (C4) Recent Iron Reduction in Plowed Second Other (Explain in Remarks) X Depth (inches) X Depth (inches) X Depth (inches) X Depth (inches) 	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Dift Deposits (B3) (Riverine) Drainage Patterns (B1C) Dry Season Water Table (C2) g Roots (C3) Thin Muck Surface (C7) Crayfish Burrows (C9) oils (C6) Saturation Visible on A e n al Imagery (C Shallow Aquitard (D3) FAC Neutral Test (05) Wetland Hydrology Present? Yes No X
Wetland Hydrology Indicators Pnmary Indicators (any one indicator is sufficient	 Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Presence of Reduced Iron (C4) Recent Iron Reduction in Plowed Second Other (Explain in Remarks) X Depth (inches) X Depth (inches) X Depth (inches) X Depth (inches) 	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Dift Deposits (B3) (Riverine) Drainage Patterns (B1C) Dry Season Water Table (C2) g Roots (C3) Thin Muck Surface (C7) Crayfish Burrows (C9) oils (C6) Saturation Visible on A e n al Imagery (C Shallow Aquitard (D3) FAC Neutral Test (05) Wetland Hydrology Present? Yes No X
Wetland Hydrology Indicators Pnmary Indicators (any one indicator is sufficient	 Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Presence of Reduced Iron (C4) Recent Iron Reduction in Plowed Second Other (Explain in Remarks) X Depth (inches) X Depth (inches) X Depth (inches) X Depth (inches) 	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Dift Deposits (B3) (Riverine) Drainage Patterns (B1C) Dry Season Water Table (C2) g Roots (C3) Thin Muck Surface (C7) Crayfish Burrows (C9) oils (C6) Saturation Visible on A e n al Imagery (C Shallow Aquitard (D3) FAC Neutral Test (05) Wetland Hydrology Present? Yes No X

.

1

;

Sampling Point _____

Profile Description (Describe to	the depth needed to do	cument the indi	cator or confir	m the absence	e of indicators)
Depth <u>Matnx</u>		edox Features			
(inches) Color (moist)	6 Color (moist)	<u> </u>	ype' Loc ²	Texture	Remarks
0-2+				Gr	Undioabls, coarse gravel
				• •	
¹ Type C=Concentration D=Deplet				RC=Root Chan	
Hydnc Soil Indicators (Applicab		,			for Problematic Hydric Soils ³
Histosol (A1)	Sandy F				Muck (A9) (LRR C)
Histic Epipedon (A2)	Stnpped	Matrix (56) Jucky Mineral (F	••		Muck (A10) (LRR B)
Black Histic (A3) Hydrogen Sulfide (A4)		Bleyed Matrix (F2			ed Vertic (F18) arent Matenal (TF2)
Stratified Layers (A5) (LRR C)		i Matrix (F3)	.)		(Explain in Remarks)
1 cm Muck (A9) (LRR D)		ark Surface (F6)		00	
Depleted Below Dark Surface (A		Dark Surface (F			
Thick Dark Surface (A12)		epressions (F8)			
Sandy Mucky Mineral (S1)	Vernal P	ools (F9)		³ Indicators	of hydrophytic vegetation and
Sandy Gleyed Matnx (S4)				wetland	I hydrology must bepresent
Restrictive Layer (if present)					
Type <u>Gravel</u>					
Depth (inches) <u>0+</u>				Hydric Soil	Present? Yes No X
Remarks					
No indications of hydric soils					
HYDROLOGY		····	7		
Wetland Hydrology Indicators				Secor	ndary Indicators (2 or more required)
Primary Indicators (any one indicato	r is sufficient)				Vater Marks (B1) (River i ne)
Surface Water (AI)		ust (B11)			ediment Deposits (82) (Riverine)
High Water Table (A2)		Crust (B12)			orift Deposits (B3) (Riverine)
Saturation (A3)		Invertebrates (B	13)		Drainage Patterns (B10)
Water Marks (B1) (Nonriverine		en Sulfide Odor (•		bry Season Water Table (C2)
Sediment Deposits (B2) (Nonriv					hin Muck Surface (C7)
Drift Deposits (B3) (Nonriverine	,	ce of Reduced Ir			Crayfish Burrows (C8)
Surface Soil Cracks (B6)		Iron Reduction in		-	aturation Visible on Aenal Imagery (C9)
Inundation Visible on Aenal Ima		Explain in Remar			challow Aquitard (D3)
Water Stained Leaves (B9)					AC Neutral Test (05)
Field Observations				'	
	No Y Death	(inches)			
	No <u>X</u> Depth	· ·			
	No X Depth			1	
Saturation Present? Yes	No X Depth	(inches)	Wet	iand Hydrolog	y Present? Yes No <u>X</u>

Remarks

Ł

No indications of wetland hydrology

(includes capillary fringe) Describe Recorded Data (stream gauge monitoring well aerial photos previous inspections) if available

Profile Description (Describe to the depth Depth Matnx		<u>x Feature</u>						
(inches) Color (moist) 9	Color (moist)	<u></u> <u>%</u>		_Loc ²	Texture	Remarks		
0_2 <u>10YR 2/1100</u>					LoSa	Moist		
2+					Gravel	Saturated		
<u></u>	· · · · · · · · · · · · · · · · · · ·							
			<u> </u>		<u> </u>			
	······							
					. <u> </u>			
¹ Type C=Concentration D=Depletion RM=R	educed Matny	² Location		elining B		nel M=Matrix		
Hydric Soil Indicators (Applicable to all LF				e Lining /		s for Problematic Hydric Soils ²		
Histosol (A1)	Sandy Redo					Muck (A9) (LRR C)		
Histic Epipedon (A2)	Stripped Ma					Muck (A10) (LRR B)		
Black Histic (A3)	Loamy Muc		l (F1)		Reduced Vertic (F18)			
Hydrogen Sulfide (A4)	Loarny Gley	ed Matrix	(F2)			arent Matenal (TF2)		
Stratified Layers (A5) (LRR C)	Depleted Ma	atnx (F3)			Other	(Explain in Remarks)		
1 cm Muck (A9) (LRR D)	Redox Dark	Surface (F6)					
Depleted Below Dark Surface (A11)	Depleted Da	ark Surfac	e (F7)					
Thick Dark Surface (A12)	Redox Depr	essions (l	⁻ 8)					
Sandy Mucky Mineral (S1)	Vernal Pools	s (F9)				of hydrophytic vegetation and		
Sandy Gleyed Matnx (S4)					wetland	I hydrology must bepresent		
Restrictive Layer (if present)								
Type <u>Gravel</u>	_							
Depth (inches) _2+	-				Hydric Soft Present? Yes X No			
Remarks								
Gravelly substrate is saturated to within 2 of si	urface							
YDROLOGY								
Wetland Hydrology Indicators					Secor	ndary Indicators (2 or more required)		
Primary Indicators (any one indicator is sufficie	nt)				v	Vater Marks (B1) (Riverine)		
Surface Water (A1)	Salt Crust	(B11)			s	ediment Deposits (82) (Riverine)		
X High Water Table (A2)	Biotic Crus	t (B12)				Drift Deposits (B3) (Riverine)		
X Saturation (A3)	Aquatic Inv		s (B13)			Prainage Patterns (810)		
Water Marks (B1) (Nonriverine)	Hydrogen S		•			Dry Season Water Table (C2)		
Sediment Deposits (B2) (Nonriverine)	Oxidized R			Living Root	-	hin Muck Surface (C7)		
Dnft Deposits (B3) (Nonriverine)	Presence of	-		-		Grayfish Burrows (C8)		
Surface Soil Cracks (B6)	Recent Iror					aturation Visible on Aerial Imagery (C9)		
Inundation Visible on Aenal Imagery (B7)	Other (Exp					hallow Aquitard (03)		

Water Stained Leaves	(B9)	FAC Neutral Test (05)				
Field Observations						
Surface Water Present?	Yes No <u>X</u> Depth (inches)	_1				
Water Table Present?	Yes X No Depth (inches) Unk					
Saturation Present? (includes capillary fnnge)	Yes X No Depth (inches) 2	Wetland Hydrology Present? Yes X No				
Describe Recorded Data (st	tream gauge monitoring well aerial photos previous in	spections) if available				
Remarks						
Saturation at 2						
*						

,

Depth <u>N</u> (inches) Color (mo					bsence of indicators)
	Matnx	<u>Redox Feature</u> Color (moist) 9	esType1	Loc ² Te	xture Remarks
			_ <u>ype</u>		
·					
		<u> </u>		·····	
¹ Type C=Concentration	D-Depletion RM-E				ot Channel M=Matrix
		Rs unless otherwise no			dicators for Problematic Hydric Soils ³
		Sandy Redox (S5)			_ 1 cm Muck (A9) (LRR C)
Histosol (AI) Histic Epipedon (A2)		Stripped Matrix (S6)		<u></u>	_ 2 cm Muck (A10) (LRR B)
Black Histic (A3)		Loamy Mucky Minera	al (E1)		Reduced Vertic (F18)
Hydrogen Sulfide (A4)	١	Loamy Gleyed Math			Red Parent Material (TF2)
Stratified Layers (A5)		Depleted Matrix (F3)		x	Other (Explain in Remarks)
1 cm Muck (A9) (LRR		Redox Dark Surface			
Depleted Below Dark		Depleted Dark Surfa	ce (F7)		
Thick Dark Surface (A	(12)	Redox Depressions	(F8)	_	
Sandy Mucky Mineral		Vernal Pools (F9)			dicators of hydrophytic vegetation and
Sandy Gleyed Matnx					wetland hydrology must be present
Restrictive Layer (if pres	ent)			1	
Туре	<u> </u>	_			
Depth (inches)		<u> </u>		Hyd	Inc Soil Present? Yes X No
Permanently inundated					
IYDROLOGY	<u></u>				
Wetland Hydrology Indic	ators				
					Secondary Indicators (2or more required)
Pnmary Indicators (any on	e indicator is sufficie	<u>nt)</u>			<u>Secondary Indicators (2or more required)</u> Water Marks (B1) (Riverine)
	e indicator is sufficie				Water Marks (B1) (Riverine)
X Surface Water (AI)		Salt Crust (B11)			Water Marks (B1) (Riverine) Sediment Deposits (82) (Riverine)
X Surface Water (AI) High Water Table (A2)		Salt Crust (B11) Biotic Crust (B12)	 ≥s (B13)		Water Marks (B1) (Riverine) Sediment Deposits(82) (Riverine) Drift Deposits (B3) (Riverine)
X Surface Water (A I) High Water Table (A2) Saturation (A3))	Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrate			Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B1C)
X Surface Water (AI) High Water Table (A2) Saturation (A3) X Water Marks (B1) (No) onnverine)	Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrate Hydrogen Sulfide O	dor (C1)	ing Roots (C3	 Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B1C) Dry Season Water Table (C2)
X Surface Water (A I) High Water Table (A2) Saturation (A3) X Water Marks (B1) (No Sediment Deposits (B) onnverine) 2) (Nonriverine)	Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrate Hydrogen Sulfide O Oxidized Rhizosphe	edor (C1) eres along Liv	ing Roots (C3	 Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B1C) Dry Season Water Table (C2) Thin Muck Surface (C7)
X Surface Water (A I) High Water Table (A2) Saturation (A3) X Water Marks (B1) (No Sediment Deposits (B X Dnft Deposits (B3) (No) onnverine) 2) (Nonriverine) onriverine)	Salt Crust (B11) Solic Crust (B12) Aquatic Invertebrate Hydrogen Sulfide O Oxidized Rhizosphe Presence of Reduct	odor (C1) eres along Liv ed Iron (C4)	-	 Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B1C) Dry Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8)
X Surface Water (A I) High Water Table (A2) Saturation (A3) X Water Marks (B1) (No Sediment Deposits (B X Dnft Deposits (B3) (No Surface Soil Cracks (E) pnnverine) 2) (Nonriverine) pnriverine) 36)	Salt Crust (B11) Solic Crust (B12) Aquatic Invertebrate Hydrogen Sulfide O Oxidized Rhizosphe Presence of Reduce Recent Iron Reduct	dor (C1) eres along Liv ed Iron (C4) ion in Plowed	-	 Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B1C) Dry Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on A en al Imagery (C9)
X Surface Water (A I) High Water Table (A2) Saturation (A3) X Water Marks (B1) (No Sediment Deposits (B) X Dnft Deposits (B3) (No Surface Soil Cracks (E X Inundation Visible on) 2) (Nonriverine) 2) (Nonriverine) 26) Aerial Imagery (B7)	Salt Crust (B11) Solic Crust (B12) Aquatic Invertebrate Hydrogen Sulfide O Oxidized Rhizosphe Presence of Reduce Recent Iron Reduct	dor (C1) eres along Liv ed Iron (C4) ion in Plowed	-	 Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B1C) Dry Season WaterTable (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on A en al Imagery (C9) Shallow Aquitard (O3)
X Surface Water (A I) High Water Table (A2) Saturation (A3) X Water Marks (B1) (No Sediment Deposits (B) X Dnft Deposits (B3) (No Surface Soil Cracks (E X Inundation Visible on Water Stained Leaves) 2) (Nonriverine) 2) (Nonriverine) 26) Aerial Imagery (B7)	Salt Crust (B11) Solic Crust (B12) Aquatic Invertebrate Hydrogen Sulfide O Oxidized Rhizosphe Presence of Reduce Recent Iron Reduct	dor (C1) eres along Liv ed Iron (C4) ion in Plowed	-	 Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B1C) Dry Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on A en al Imagery (C9)
X Surface Water (A I) High Water Table (A2) Saturation (A3) X Water Marks (B1) (No Sediment Deposits (B3) X Dnft Deposits (B3) (No Surface Soil Cracks (E X Inundation Visible on Water Stained Leaves Field Observations) 2) (Nonriverine) 2) (Nonriverine) 36) Aerial Imagery (B7) 5 (B9)	Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrate Hydrogen Sulfide O Oxidized Rhizosphe Presence of Reduce Recent Iron Reduct Other (Explain in Re	odor (C1) eres along Liv ed Iron (C4) ion in Plowed emarks)	-	 Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B1C) Dry Season WaterTable (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on A en al Imagery (C9) Shallow Aquitard (O3)
X Surface Water (A I) High Water Table (A2) Saturation (A3) X Water Marks (B1) (No Sediment Deposits (B X Dnft Deposits (B3) (No Surface Soil Cracks (E X Inundation Visible on Water Stained Leaves Field Observations Surface Water Present?) 22) (Nonriverine) 23) (Nonriverine) 36) Aerial Imagery (B7) 5 (B9) Yes <u>X</u> No	Salt Crust (B11) Solution Crust (B12) Aquatic Invertebrate Hydrogen Sulfide O Oxidized Rhizosphe Presence of Reduce Recent Iron Reduct Other (Explain in Recent) Depth (inches)	odor (C1) eres along Liv ed Iron (C4) ion in Plowed emarks) 	-	 Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B1C) Dry Season WaterTable (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on A en al Imagery (C9) Shallow Aquitard (O3)
X Surface Water (A I) High Water Table (A2) Saturation (A3) X Water Marks (B1) (No Sediment Deposits (B3) X Dnft Deposits (B3) (No Surface Soil Cracks (E X Inundation Visible on Water Stained Leaves Field Observations Surface Water Present? Water Table Present?) 2) (Nonriverine) 24) (Nonriverine) 26) Aerial Imagery (B7) 3 (B9) Yes <u>X</u> No Yes <u>No</u>	Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrate Hydrogen Sulfide O Oxidized Rhizosphe Presence of Reduct Recent Iron Reduct Other (Explain in Re Depth (inches) Depth (inches)	odor (C1) eres along Liv ed Iron (C4) ion in Plowed emarks) 	Soils (C6)	 Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B1C) Dry Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on A en al Imagery (C9) Shallow Aquitard (03) FAC Neutral Test (05)
X Surface Water (A I) High Water Table (A2) Saturation (A3) X Water Marks (B1) (No Sediment Deposits (B X Dnft Deposits (B3) (No Surface Soil Cracks (B X Inundation Visible on Water Stained Leaves Field Observations Surface Water Present? Water Table Present? Saturation Present? Saturation Present? (includes capillary finne)) 22) (Nonriverine) 23(Nonriverine) 36) Aerial Imagery (B7) 3 (B9) Yes <u>X</u> No Yes <u>No</u> Yes <u>No</u>	Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrate Hydrogen Sulfide O Oxidized Rhizosphe Presence of Reduce Recent Iron Reduct Other (Explain in Re Depth (inches) Depth (inches)	odor (C1) eres along Liv ed Iron (C4) ion in Plowed emarks) <u>0 - 36+</u>	Soils (C6) Wetland H	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B1C) Dry Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on A e n al Imagery (C9) Shallow Aquitard (03) FAC Neutral Test (05)
X Surface Water (A I) High Water Table (A2) Saturation (A3) X Water Marks (B1) (No Sediment Deposits (B X Dnft Deposits (B3) (No Surface Soil Cracks (B X Inundation Visible on Water Stained Leaves Field Observations Surface Water Present? Water Table Present? Saturation Present? Saturation Present? (includes capillary finne)) 22) (Nonriverine) 23(Nonriverine) 36) Aerial Imagery (B7) 3 (B9) Yes <u>X</u> No Yes <u>No</u> Yes <u>No</u>	Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrate Hydrogen Sulfide O Oxidized Rhizosphe Presence of Reduct Recent Iron Reduct Other (Explain in Re Depth (inches) Depth (inches)	odor (C1) eres along Liv ed Iron (C4) ion in Plowed emarks) <u>0 - 36+</u>	Soils (C6) Wetland H	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B1C) Dry Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on A e nal Imagery (C9) Shallow Aquitard (03) FAC Neutral Test (05)
X Surface Water (A I) High Water Table (A2) Saturation (A3) X Water Marks (B1) (No Sediment Deposits (B X Dnft Deposits (B3) (No Surface Soil Cracks (B X Inundation Visible on Water Stained Leaves Field Observations Surface Water Present? Water Table Present? Saturation Present? Saturation Present? Describe Recorded Data (state)) 22) (Nonriverine) 23(Nonriverine) 36) Aerial Imagery (B7) 3 (B9) Yes <u>X</u> No Yes <u>No</u> Yes <u>No</u>	Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrate Hydrogen Sulfide O Oxidized Rhizosphe Presence of Reduce Recent Iron Reduct Other (Explain in Re Depth (inches) Depth (inches)	odor (C1) eres along Liv ed Iron (C4) ion in Plowed emarks) <u>0 - 36+</u>	Soils (C6) Wetland H	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B1C) Dry Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on A e n al Imagery (C9) Shallow Aquitard (03) FAC Neutral Test (D5)
X Surface Water (A I) High Water Table (A2) Saturation (A3) X Water Marks (B1) (No Sediment Deposits (B X Dnft Deposits (B3) (No Surface Soil Cracks (B X Inundation Visible on Water Stained Leaves Field Observations Surface Water Present? Water Table Present? Saturation Present? Saturation Present? (includes capillary finne)) 22) (Nonriverine) 23(Nonriverine) 36) Aerial Imagery (B7) 3 (B9) Yes <u>X</u> No Yes <u>No</u> Yes <u>No</u>	Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrate Hydrogen Sulfide O Oxidized Rhizosphe Presence of Reduce Recent Iron Reduct Other (Explain in Re Depth (inches) Depth (inches)	odor (C1) eres along Liv ed Iron (C4) ion in Plowed emarks) <u>0 - 36+</u>	Soils (C6) Wetland H	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B1C) Dry Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on A e nal Imagery (C9) Shallow Aquitard (03) FAC Neutral Test (05)

Depth	Matrix		th needed fo document the Redox Featur			·,			
Vinches)	Color (moist)		<u>Color (moist)</u> %	Type ¹	Loc ²	Texture	Remarks		
08	10YR 3/2	100	-				Damp		
							- <u></u>		
<u>8 - 18+</u>	<u>10YR 4/2</u>	_100				SILo	_Damp		
						<u> </u>			
	·						·		
		- <u></u>					· ······		
	Concentration D=Dep		Reduced Matnx ³ Location		e Lining R		nel M=Matnx s for Problematic Hydric Soils ³		
-			Sandy Redox (S5)				Muck (A9) (LRR C)		
Histosol (A1) Histic Epipedon (A2)			Stripped Matrix (S6)						
Black H			Loamy Mucky Miner		2 cm Muck (A10) (LRR B) Reduced Vertic (F18) Red Parent Matenal (TF2)				
	en Sulfide (A4)		Loamy Gleyed Matr						
	ed Layers (A5) (LRR C	3	Depleted Matnx (F3)		Other (Explain in Remarks)				
_	uck (A9) (LRR D)	,	Redox Dark Surface						
	ed Below Dark Surface	Δ (Δ 1 1)	Depleted Dark Surfa						
	ark Surface (A12)	. ()	Redox Depressions						
	Mucky Mineral (S1)		Vernal Pools (F9)	(. 0)		³ Indicators	of hydrophytic vegetation and		
	Gleyed Matnx (S4)						hydrology must be present		
	Layer (If present)								
						f			
	iches)					Hydnc Soi	I Present? Yes No_X		
Remarks				`		L,			
Soils not hyd	dnc								
YDROLO)GY								
Vetland Hy	drology Indicators					Seco	ndary Indicators (2 or more required		
nmary Indi	cators (any one indica	itor is suffic	pient)			V	Vater Marks (B1) (River i ne)		
Surface	Water (A1)		Salt Crust (B11)			5	Sediment Deposits (B2) (Riverine)		
— High Wa	ater Table (A2)		Biotic Crust (B12)				Drift Deposits (B3) (Riverine)		
Saturati			Aquatic Invertebrat	es (B13)			Drainage Patterns (610)		
	/arks (B1) (Nonriverii	ne)	Hydrogen Sulfide C				Dry Season Water Table (C2)		
	nt Deposits (B2) (Nor		Oxidized Rhizosph				Thin Muck Surface (C7)		

Surface Soil Cracks (B6 Inundation Visible on A6	Doft Deposits (B3) (Nonriverine) Surface Soil Cracks (B6) Inundation Visible on Aenal Imagery (B7) Water Stained Leaves (B9)		Presence of Reduced Iron (C4) Recent Iron Reduction in Plowed Other (Explain in Remarks)	Soils (C6)	Crayfish Burrows (C8) Saturation Visible on Aenal Image Shallow Aquitard (D3) FAC Neutral Test (05)	ery (C9)
Field Observations						
Surlace Water Present?	Yes	No. <u>X</u>	Depth (Inches)			
Water Table Present?	Yes !	No <u>X</u>	Depth (Inches)			
Saturation Present? (includes capillary fringe)	Yes I	No <u>X</u>	Deoth (Inches)	Wetland Hyc	Irology Present? Yes No	<u>x</u>
Describe Recorded Data (st	ream gauge mo	onitoring	vell aenal photos previous inspec	tions) if availa	ble	
Remarks		·····				
No wetland hydrology						

00

SOIL						SamplingPoint <u>41</u>
Profile Des	cription (Describe	to the depth	needed to document the indica	ator or confirm	the absence	of indicators)
Depth (inches)	Matnx Color (moist)		Redox Features Color (moist) / Tyr	pe ¹ _Loc ²	Texture	Remarks
0 8	10YR 3/2					
		100			CILo	 Damp
					<u> </u>	
					<u> </u>	
			<u></u>			
¹ Type C=C	oncentration D=Dep	pletion RM=Re	educed Matnx ² Location PL:	=Pore Lining R	C=Root Chan	nel M=Matrix
-		able to all LR	Rs unless otherwise noted)		Indicators	for Problematic Hydric Soils ³
Histosol			Sandy Redox (S5)			Auck (A9) (LRR C)
	pipedon (A2)		Stopped Matnx (S6)			Auck (A10) (LRR B)
	stic (A3) in Sulfide (A4)		Loamy Mucky Mineral (F1) Loamy Gleyed Matnx (F2)			ed Vertic (F18) arent Matenal (TF2)
	d Layers (A5) (LRR	C)	Depleted Matrix (F3)			(Explain in Remaiks)
	uck (A9) (LRR D)	0)	Redox Dark Surface (F6)		0	
	d Below Dark Surfac	e (A11)	Depleted Dark Surface (F7)		
	ark Surface (A12)		Redox Depressions (F8)			
	lucky Mineral (S I)		Vernal Pools (F9)			of hydrophytic vegetation and
	leyed Matnx (S4)				wetland	hydrology must tepresent
(ayer (if present)					
	ches)				Hydric Soil	Present? Yes NoX
Remarks				· · · · ·	d	
No hydric so	115					
HYDROLO	GY		<u> </u>			
Wetland Hy	drology Indicators				Secor	ndary Indicators (2 or more required)
Primary India	ators (any one indic	ator is sufficien	nt)			/ater Marks (B1) (Riverine)
	Water (A1)		Salt Crust (B11)			ediment Deposits (B2) (Riverine)
1	iter Table (A2)		Biotic Crust (B12)		_	rift Deposits (B3) (Riverine)
Saturation			Aquatic Invertebrates (B1)			rainage Patterns (810)
	arks (B1) (Nonriver		Hydrogen Sulfide Odor (C			ry Season Water Table (C2)
	nt Deposits (B2) (No		Oxidized Rhizospheres al			hin Muck Surface (C7)
	osits (B3) (Nonrive	rine)	Presence of Reduced Iron			ravfish Burrows (C8)
	Soil Cracks (B6)		Recent Iron Reduction In		•	aturation Visible on A e n al Imagery (C9)
	on Visible on Aenal	inayery (D7)	Other (Explain in Remarks	2)		hallow Aquitard (03) AC Neutral Test (05)
Field Obser	tained Leaves (B9)		······································		<u></u> [·	
Surface Wat		loc Mo	X Depth (inches)			
Water Table			<u>X</u> Depth (inches) X Depth (inches)	1		
Saturation P			<u>X</u> Depth (inches)		and Hydrology	y Present? Yes NoX
(includes ca		NO				

Describe Recorded Data (stream gauge monitoring well aenal photos previous inspections) if available

Remarks

No wetland hydrology

(Inches)	Matnx Color (moist)	%		x Feature	Ţype ¹	_Loc ²	Texture	Remarks
0 1010	DYR 4/1					<u></u>	CILo	Moist
<u> 10+ </u>)yr 6/2						CI	Moist
Type C=Conce	ntration D=Dep	letion RM=F	Reduced Matrix	² Location	PL=Por	e Lining R	C=Root Chan	nel M=Matrix.
			RRs unless other	wise not	ed)		Indicators	s for Problematic Hydric Soils ³
Histosol (A1) Histic Epipec Black Histic (Hydrogen SL Stratified Lay	don (A2) (A3) Jlfide (A4) vers (A5) (LRR (C)	Sandy Redo Stripped Ma Loamy Much Loamy Gley Depleted Ma Depleted Ma	itrix (S6) ky Minera red Matrix atrix (F3)	(F2)		2 cm Reduc Red P	Muck (A9) (LRR C) Muck (A10) (LRR B) ced Vertic (F18) Parent Matenal (TF2) (Explain in Remarks)
1 cm Muck (/ Depleted Bel Thick Dark S Sandy Mucky Sandy Gleye Restrictive Laye	ow Dark Surfac urface (A12) y Mineral (S1) d Matrix (S4)	e (A I I)	Redox Dark Depleted Da Redox Depr Vernal Pools	ark Surfac essions (l	e (F7)			of hydrophytic vegetation and hydrology must be present
Туре)						Hydric Soil	Present? Yes X No
Remarks Playa soils Salor	thids are hydric	by definition						
YDROLOGY								
Wetland Hydrold	ogy Indicators						Seco	ndary Indicators (2 or more required)
onmary Indicators		ator is suffici	ent)				v	Vater Marks (B1) (Riverine)
Surtace Wate High Water T	able (A2)		Salt Crust	t (B12)			C	Sediment Deposits (B2) (Riverine) Dritt Deposits (B3) (Riverine)
Saturation (A Water Marks)	(3) (B1) (Nonriveri		Aquatic Inv Hydrogen \$					Drainage Patterns (B10) Dry Season Water Table (C2)
_	posits (B2) (Noi		Oxidized R			Living Roo		Thin Muck Surface (C7)
	s (B3) (Nonnvei		Presence of		_	-		Crayfish Burrows (C8)
X_Surface Soll		(5-)	Recent Iron			ed Solls (0	·	Saturation Visible on Aenal Imagery (
	isible on Aenal 1	magery (B7)	Other (Exp	iain in He	marks)			Shallow Aquitard (D3)
	d Leaves (B9)						F	AC Neutral Test (D5)
Jold Obcassion	115							
				choc)				
Field Observatio Surface Water Pr Water Table Pres	esent? Y		o <u>X</u> Depth (inc					
	esent? Y ent? Y	es No	o <u>X</u> Depth (inc o <u>X</u> Depth (inc o <u>X</u> Depth (inc	ches)			and Hydrolog	y Present? Yes X No

Describe Recorded Data (stream gauge monitoring well aenal photos previous inspections) if available

Remarks

Surface cracks and hoof pnnts in the mud are indication of saturation

Profile Description (Describe to the dep	oth needed to docum	ent the inc	dicator o	r confirr	n the absence	of indicators)
Depth <u>Matnx</u>		Features	- 1-			
(inches) Color (moist) %	Color (moist)		lype'	Loc ²	<u>lexture</u>	Remarks
<u>0 8 10YR 3/2 100</u>	<u></u>				_SiLo	Damp
<u>8-18+</u> <u>10YR 4/2</u> <u>100</u>	<u></u>		<u> </u>		_CILo	Damp
	<u></u>		·			
			·· ·			
			·		<u> </u>	
			<u> </u>			
¹ Type C=Concentration D=Depletion RM				Lining F	RC=Root Chan	
Hydric Soil Indicators (Applicable to all	LRRs unless otherw	vise noted)		Indicators	for Problematic Hydric Soils ³
Histosol (A1)	Sandy Redox					Muck (A9) (LRR C)
Histic Epipedon (A2)	Stnpped Mat					Muck (A10) (LRR B)
Black Histic (A3)	Loamy Muck	-				ed Verlic (F18) arent Matenal (TF2)
Hydrogen Sulfide (A4) Stratified Layers (A5) (LRR C)	Loamy Gleye Depleted Mat		2)			(Explain in Remarks)
1 cm Muck (A9) (LRR D)	Redox Dark \$		5)		Outer	
Depleted Below Dark Surface (AI1)	Depleted Dar					
Thick Dark Surface (A12)	Redox Depre)			
Sandy Mucky Mineral (S1)	Vernal Pools	(F9)				of hydrophytic vegetation and
Sandy Gleyed Matnx (S4)		_			wetland	hydrology must be present
Restrictive Layer (if present)						
Type					Huders Soil	Present? Yes NoX
Deoth (inches)					Tiyane Son	
nemarks						
No hydric soils						
No nyane solis						
HYDROLOGY						
						dary Indicators (2 or more required)
Wetland Hydrology Indicators Pnmary Indicators (any one indicator is suff	(c) cont					
	Salt Crust (E					/ater Marks (B1) (River in e) ediment Deposits (B2) (Riverine)
Surface Water (A1) High Water Table (A2)	Biotic Crust	,				Inft Deposits (B3) (Riverine)
Saturation (A3)	Aquatic Inve		813)			rainage Patterns (B10)
Water Marks (B1) (Nonnverine)	Hydrogen S	-	•			ry Season Water Table (C2)
Sediment Deposits (B2) (Nonnverine)	Oxidized Rh			vina Roc		hin Muck Surface (C7)
Drift Deposits (B3) (Nonnverine)	Presence of					rayfish Burrows (C8)
Surface Soil Cracks (B6)	Recent Iron		• •			aturation Visible on Aen al Imagery (C9)
Inundation Visible on Aenal Imagery (B					·	hallow Aquitard (D3)
Water Stained Leaves (B9)						AC Neutral Test (D5)
Field Observations				1	<u> </u>	
Surface Water Present? Yes	No X Deoth (Inch	es)		_		
Water Table Present? Yes	No X Depth (Inch	es)		_ [
	No X Depth (Inch	es)		Wetl	and Hydrology	v Present? Yes NoX
(includes capillary fnnge) Descnbe Recorded Data (stream gauge mo	onitoring well aenal ph	iotos previ	ous insp	ections)	ıf available	— <u> </u>
			·			
Remarks						
No wetland hydrology						

J.

Depth	Matnx		Rede	ox Features						
(inches)	Color (moist)	<u>/6</u>	color (moist)	/	_Type ¹	Loc ²	Texture	Remarks		
0_41	0YR 5/2	100	- <u></u> _				CILO	Moist		
4-81	0YR 6/3	100						Moist		
<u></u>								Hard pan		
								· · · · · · · · · · · · · · · · · · ·		
~~										
				2,				· · · · · · · · · · · · · · · · · · ·		
	entration D=Deplet cators (Applicab					e Lining H		nel M=Matnx s for Problematic Hydric Soils ³		
Histosol (A I			Sandy Red		α,			Muck (A9) (LRR C)		
Histic Epiper	,	-	Stripped M	• •						
Black Histic		-	Loamy Mud	• •	(F1)		2 cm Muck (A10) (LRR B) Reduced Vertic (F18) Red Parent Matenal (TF2) _X Other (Explain in Remarks)			
Hydrogen Si		-	Loamy Gle							
	vers (A6) (LRR C)	-	Depleted M							
1 cm Muck (Redox Darl	Surface (F	-6)			, ,		
	low Dark Surface (A11)	Depleted D	ark Surface	e (F7)					
	Surface (A12)	, _	Redox Dep		• •					
Sandy Muck			Vernal Poo	Is (F9)	,		³ Indicators	of hydrophytic vegetation and		
Sandy Gleve				. ,				hydrology must be present		
Restrictive Laye										
Type <u>Hard p</u>	an						u			
Depth (Inches) _8						Hydric Soil	Present? Yes X No		
lemarks										
'laya soils Saloi	thids are hydric by	definition								
						<u> </u>	<u></u>			
DROLOGY										
Vetland Hydrolo	ogy Indicators						Secor	ndary Indicators (2or more required)		
nmary Indicator	<u>s (anv one indicato</u>	r is sufficient)	l			<u>.</u> .	V	Vater Marks (B1) (Riverme)		
_ Surtace Wat	er (AI)		X Salt Crust	(B11)			S	Sediment Deposits (B2) (Riverine)		
_ High Water 1	fable (A2)		Biotic Crus	st (B12)			C	0rift Deposits (B3) (Riverme)		
_ Saturation (A	(3)		Aquatic In	vertebrates	(B13)			Drainage Patterns (B1C)		
Water Marks	(B1) (Nonrivenne)	Hydrogen)ry Season Water Table (C2)		
-	posits (B2) (Nonriv		Oxidized F		• •			hin Muck Surtace (C7)		
	s (B3) (Nonrivenne	-	Presence	-	-	-		Crayfish Burrows (C8)		
		•				,	~ ~ ~	,		

Salt crust and cracked soils in a playa indicate wetland hydrology

Inundation Visible on Aerial Imagery (B7) ____ Other (Explain in Remarks)

 Yes
 No
 X
 Depth (inches)

 Yes
 No
 X
 Depth (inches)

Describe Recorded Data (stream gauge monitoring well aenal photos previous inspections) if available

Yes _____ No __X Depth (inches) _____

____ Water Stained Leaves (B9)

Field Observations Surface Water Present?

Water Table Present? Saturation Present?

Remarks

(includes capillary fnnpe)

____ Shallow Aquitard (D3)

___ FAC Neutral Test (D5)

Wetland Hydrology Present? Yes X No

Profile Des	cription (Describe to	the depth ne	eded to docum	ent the inc	dicator o	or confirm	the abs	ence of Ind	icators)		
Depth	Matnx			Features		<u> </u>			·		
(inches)	Color (moist)	<u>%</u> C	Color (moist)	%	Type'	Loc ²	<u> </u>	<u></u>	Remark	<u>.s</u>	
04	10YR 4/2	100	·				CILo	<u>M</u>	oist		
4 18+	7 5YR 6/3	10D					CiLo	<u>M</u>	oist		
							<u> </u>	<u></u>			
							<u> </u>		<u> </u>		
	· · · · · ·										
						·			······		
									·····		
¹ Type C=C	oncentration D=Deplet	tion RM=Red	uced Matrix	² Location	PL=Pore	Lining RC	C=Root	Channel M=	Matnx		
Hydric Soil	Indicators (Applicab	le to all LRR	s unless other	wise noted) —		Indic	ators for Pr	oblematic Hydr	ic Soils ^a	
Histosol	Histosol (A1)			x (S5)				cm Muck (A			
· - ·	opedon (A2)	-	Stnpped Mat	•				cm Muck (A			
	stic (A3)	-	_ Loamy Muck	-				Reduced Ver			
	n Sulfide (A4) Layers (A5) (LRR C)	-	Loamy Gleye Depleted Ma		2)			Red Parent M	n in Remarks)		
	ick (A9) (LRR D)	_	Redox Dark	• •	5)				,		
	d Below Dark Surface (At1)	Depleted Da								
	ark Surface (A12)	-	Redox Depre)		•				
	lucky Mineral (ST)	-	Vernal Pools	(F9)				•	ophytic vegetati		
	ileyed Matnx (S4) Layer (If present)						WE	atiano nyoroi	ogy must be pre	sent	
	ches)					1	Hydric	Soil Prese	n t? Yes	No <u>X</u>	
Remarks											
nemarka											
No indication	is of hydric soils										
			<u>.</u>								
HYDROLO			<u></u>								
-	drology Indicators								dicators (2 or m		1
	ators (any one indicato								arks (B1) (Rivei	-	
	Water (A1)		Salt Crust (Biotic Crust				-		it Deposits(B2) oosits (B3)(Rive	•	
Saturatio	iter Table (A2)		Aquatic Invi		B13)		-		Patterns (810)	-	
	arks (B1) (Nonrivenne	;)	Hydrogen S				-		son Water Table		
	it Deposits (B2) (Nonri		Oxidized Ri			iving Roots	s (C3)		ck Surtace (C7)		
	osits (B3) (Nonrivenni		Presence o				· -/ -		Burrows (CB)		
	Soil Cracks (B6)		Recent Iron				- 6)		n Visible on Ae	rıal İmagery ((C9)
	on Visible on Aenal Ima	agery (87)	Other (Expl				_		Aquitard (D3)		-
Water S	tained Leaves (89)						-	FAC Net	utral Test (D5)		

Water Stained Leaves (89)				FAC Neutral Lest (05)							
Field Observations												
Surface Water Present?	Yes	NoX_	Deoth (inches)									
Water Table Present?	Yes	No <u>X</u>	_ Deoth (inches)									
Saturation Present? (includes capillary fnnge)	Yes	No <u>X</u>	_ Deoth (inches)		Wetland Hydrology Present?	Yes	No	<u>x</u>				
Descnbe Recorded Data (st	ream gauge	monitoring	well aenal photos	s previous inspec	tions) if available							
Remarks	<u>. </u>					,						
No wetland hydrology												

0

(inches)	Color (moist)		Redox Features Color (moist) % Type ¹		Texture	Remarks
04	10YR 5/2					Moist
<u>4-B</u>						
8+						Hard pan
			Reduced Matrix ² Location PL=Pore	Lining R		
•		able to all L	RRs unless otherwise noted)			for Problematic Hydric Soils ³
_ Histosol (•		Sandy Redox (S5)			Auck (A9) (LRR C)
	npedon (A2)		Stripped Matrix (S6)			Auck (A10) (LRR B)
Black His	n Sultide (A4)		Loamy Mucky Mineral (F1) Loamy Gleyed Matnx (F2)			ed Vertic (F18) arent Matenal (TF2)
	Layers (A5) (LRR C	C)	Depleted Matrix (F3)			(Explain in Remarks)
	ck (A9) (LRR D)	-)	Redox Dark Surface (F6)			
	Below Dark Surface	e (A11)	Depleted Dark Surface (F7)			
Thick Da	rk Surface (A12)		Redox Depressions (F8)			
	ucky Mineral (S1)		Vernal Pools (F9)			of hydrophytic vegetation and
	leyed Matnx (S4)				wetland	hydrology must bepresent
estrictive L	ayer (if present)					
• • • • • • • • • • • • • • • • • • • •	lard pan					
Depth (inc	Hard pan hes)8				Hydric Soil	Present? Yes_XNo
• •					Hydric Soil	Present? Yes X No
Depth (incl lemarks	hes) <u>8</u>				Hydric Soil	Present? Yes_X No
Depth (Incl lemarks					Hydric Soil	Present? Yes X No
Depth (incl lemarks laya soils S	hes) <u>8</u> alorthids are hydric				Hydric Soil	Present? Yes <u>X</u> No_
Depth (incl emarks laya soils S /DROLOC	hes) <u>8</u> alorthids are hydric					
Depth (incl emarks laya soils S /DROLOC /etland Hyd	hes) <u>8</u> alorthids are hydric GY Irology Indicators	by definition			Secor	idary Indicators (2 or more require
Depth (incl emarks laya soils Si /DROLOC /etland Hyd nmary Indica	hes) <u>8</u> alorthids are hydric GY Irology Indicators ators (any one indica	by definition	ent)		<u>Secor</u>	idary Indicators (2 or more require Vater Marks (B1) (Riverine)
Depth (incl emarks laya soils Si /DROLOC /etland Hyd nmary Indica Surface V	hes) <u>8</u> alorthids are hydric GY Irology Indicators ators (any one indicators Vater (A I)	by definition	ent) <u>X</u> Salt Crust (B11)		<u>Secor</u> W S	idary Indicators (20r more require Vater Marks (B1) (Riverine) ediment Deposits (62) (Riverine)
Depth (incl emarks laya soils S /DROLOC /etland Hyd nmary Indica Surface V High Wat	hes) <u>8</u> alorthids are hydric GY Irology Indicators ators (any one indic Nater (A1) ter Table (A2)	by definition	ent) _X Salt Crust (B11) Biotic Crust (B12)		<u>Secor</u> W S D	idary Indicators (2 or more require Vater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) nft Deposits (B3) (Riverine)
Depth (incl emarks laya soils S /DROLOC /etiand Hyd nmary Indica Surface V High Wat Saturation	hes) <u>8</u> alorthids are hydric GY Irology Indicators ators (any one indicators Water (A1) ter Table (A2) n (A3)	by definition	ent) <u>X</u> Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13)		<u>Secor</u> W S D D	idary Indicators (2 or more require Vater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) nft Deposits (B3) (Riverine) rainage Pattems (B1D)
Depth (incl emarks laya soils Si /DROLOC /etland Hyd nmary Indica Surface V High Wat Saturation Water Ma	hes) <u>8</u> alorthids are hydric GY Irology Indicators ators (any one indicators Vater (A I) ter Table (A2) n (A3) arks (B1) (Nonnveri	by definition	ent) X Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1)		<u>Secor</u> W S D D D	idary Indicators (2 or more require Vater Marks (B1) (Riverine) ediment Deposits(B2) (Riverine) nft Deposits (B3) (Riverine) rainage Pattems (B1D) ry Season WaterTable (C2)
Depth (incl lemarks laya soils Si /DROLOC /etiand Hyd nmary Indica Surface V High Wat Saturation Water Ma Sediment	hes) <u>8</u> alorthids are hydric GY Irology Indicators ators (any one indic Nater (A1) ter Table (A2) n (A3) arks (B1) (Nonnveri t Deposits (B2) (Nor	by definition	ent) X Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Li	ving Roo	<u>Secor</u> W D D D D D	Idary Indicators (2or more require Vater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) nft Deposits (B3) (Riverine) rainage Pattems (B1D) ry Season WaterTable (C2) hin Muck Surtace (C7)
Depth (incl lemarks laya soils Si /DROLOC /etland Hyd /mary Indica 	hes) <u>8</u> alorthids are hydroc GY Irology Indicators ators (any one indicators)	by definition	ent) X Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Li Presence of Reduced Iron (C4)	-	<u>Secor</u> W S D D D ts (C3) Ti C	Idary Indicators (20r more require Vater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) nft Deposits (B3) (Riverine) rainage Pattems (B1D) ry Season WaterTable (C2) hin Muck Surtace (C7) rayfish Bunows (C8)
Depth (incl emarks laya soils S /DROLOC /etiand Hyd nmary Indica 	hes) <u>8</u> alorthids are hydric GY frology Indicators ators (any one indicators))	by definition ator is suffici ine) nrivenne) rine)	ent) X Sait Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Li Presence of Reduced Iron (C4) Recent Iron Reduction in Plower	-	<u>Secor</u> 	Idary Indicators (2 or more require Vater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) nft Deposits (B3) (Riverine) rainage Pattems (B1D) ry Season WaterTable (C2) hin Muck Surtace (C7) rayfish Bunows (C8) aturation Visible on Aerial Imagery
Depth (incl emarks laya soils Si /DROLOC /etland Hyd mary Indica 	hes) <u>8</u> alorthids are hydric GY Irology Indicators ators (any one indicators (any one indicators) ators (any one indicators) (Nater (A1) ter Table (A2) n (A3) arks (B1) (Nonnveri t Deposits (B2) (Non osits (B3) (Nonnveri Soil Cracks (B6) in Visible on Aenal I	by definition ator is suffici ine) nrivenne) rine)	ent) X Sait Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Li Presence of Reduced Iron (C4) Recent Iron Reduction in Plower	-	<u>Secor</u> W S D D D D ts (C3)TI C 26)S	Idary Indicators (2 or more require /ater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) rift Deposits (B3) (Riverine) rainage Pattems (B1D) ry Season WaterTable (C2) hin Muck Surtace (C7) rayfish Bunows (C8) aturation Visible on Aerial Imagery hallow Aquitard (D3)
Depth (incl emarks laya soils S /DROLOC /etland Hyd nmary Indica Surface V High Wat Saturation Water Ma Sediment Dnft Depo Surface S Inundation Water Sta	hes) <u>8</u> alorthids are hydric GY Irology Indicators ators (any one indica Nater (A I) ter Table (A2) n (A3) arks (B1) (Nonnveri t Deposits (B2) (Non osits (B3) (Nonnveri Soil Cracks (B6) in Visible on Aenal In anned Leaves (B9)	by definition ator is suffici ine) nrivenne) rine)	ent) X Sait Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Li Presence of Reduced Iron (C4) Recent Iron Reduction in Plower	-	<u>Secor</u> W S D D D D ts (C3)TI C 26)S	Idary Indicators (2 or more require Vater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) nft Deposits (B3) (Riverine) rainage Pattems (B1D) ry Season WaterTable (C2) hin Muck Surtace (C7) rayfish Bunows (C8) aturation Visible on Aerial Imagery
Depth (incl emarks laya soils Si /DROLOC /etland Hyd nmary Indica 	hes) <u>8</u> alorthids are hydric GY frology Indicators ators (any one indicators ators (any one indicators vater (A1) ter Table (A2) n (A3) arks (B1) (Nonnveri t Deposits (B2) (Non osits (B3) (Nonnveri Soil Cracks (B6) in Visible on Aenal In ained Leaves (B9) ations	by definition ator is suffici ine) nrivenne) rine)	ent) X Sait Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Li Presence of Reduced Iron (C4) Recent Iron Reduction in Plower Other (Explain in Remarks)	d Soils (C	<u>Secor</u> W S D D D D ts (C3)TI C 26)S	Idary Indicators (2 or more require /ater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) rift Deposits (B3) (Riverine) rainage Pattems (B1D) ry Season WaterTable (C2) hin Muck Surtace (C7) rayfish Bunows (C8) aturation Visible on Aerial Imagery hallow Aquitard (D3)
Depth (incl lemarks laya soils Si /DROLOC /etland Hyd mmary Indica 	hes) <u>8</u> alorthids are hydric GY rology Indicators ators (any one indicators ators (any one indicators ators (any one indicators) ators (B3) (Nonnver Soil Cracks (B6) in Visible on Aenal In aned Leaves (B9) ations ir Present? Ye	by definition ator is suffici- ine) nrivenne) rine) magery (B7)	ent) X Sait Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Li Presence of Reduced Iron (C4) Recent Iron Reduction in Plower	d Soils (C	<u>Secor</u> W S D D D D ts (C3)TI C 26)S	Idary Indicators (2 or more require /ater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) rift Deposits (B3) (Riverine) rainage Pattems (B1D) ry Season WaterTable (C2) hin Muck Surtace (C7) rayfish Bunows (C8) aturation Visible on Aerial Imagery hallow Aquitard (D3)

Remarks

Soil cracks and salt crust are indications of wetland hydrology

1

ş

Profile Descr	iption (Describe	e to the depth	needed to docu	ment the i	ndicator	or confirm	n the absence	e of indicators)
Depth	Matnx			ox Features				
(inches)	Color (moist)		Color (moist)	/o	Type ¹	Loc ²	<u> </u>	Remarks
02	10YR 3/2	100					_CILo	Moist
23	7 5YR 4/5	_100					CILo	Moist
_3+	10YR 3/3	100					CI	Moist
						_		
¹ Type C=Cor	centration D=De	oletion RM=F	leduced Matrix	² Location	PL=Por	e Linina F	O=Root Chan	nel M=Matnx
	dicators (Appli							for Problematic Hydric Soils ³
Histosol (/	A 1)		Sandy Red	lox (S5)			1 cm l	Muck (A9) (LRR C)
Histic Epi	pedon (A2)		Stripped M	atnx (S6)			2 cm !	Muck (A10) (LRR B)
Black Hist	tic (A3)		Loamy Mu				Reduc	ced Vertic (F18)
	Sulfide (A4)	-	Loamy Gle	•	(F2)			arent Matenal (TF2)
	Layers (A5) (LRR	C)	Depleted M	• •			Other	(Explain in Remarks)
	k (A9) (LRR D) Below Dark Surfa	ο (Δ11)	Redox Darl		•			
	k Surface (A12)	(ATT)	Redox Dep					
	cky Mineral (S1)		Vernal Poo		-,		³ Indicators	of hydrophytic vegetation and
	eyed Matnx (S4)			. ,				hydrology must be present
Restrictive La	iyer (if present)					· · · ·	1	
Туре								
Deoth (inch	ies)						Hydnc Soil	Present? Yes No X
No hydnc soils								
	ology Indicators						Seco	ndary Indicators (2 or more required)
	tors (any one indi		ant)					Vater Marks (B1) (Riverme)
Surface W		2010133011010	Salt Crust	/B11)				ediment Deposits (B2) (River me)
—	er Table (A2)		Biotic Cru	• •			_	Drift Deposits (B3) (Riverme)
Saturation			Aquatic In		(B13)			Drainage Patterns (B10)
	rks (B1) (Nonrive	nne)	Hydrogen					Dry Season Water Table (C2)
	Deposits (B2) (No					.iving Roo		hin Muck Surface (C7)
	sits (B3) (Nonrive		Presence			-		Crayfish Burrows (C8)
	oil Cracks (B6)		Recent Irc					aturation Visible on Aenal Imagery (C9)
	Visible on Aenal	Imagery (B7)						hallow Aquitard (03)
Water Sta	ined Leaves (B9)						F	AC Neutral Test (05)
Field Observa	tions							
Surface Water	Present?	/es No	_X Depth (ir	iches)		_ }		
Water Table P			Depth (ir					
Saturation Pres (includes capill Describe Beco			X Depth (ir					v Present? Yes NoX
				too pie		551010		
Remarks								
No wetland hyd	drology							

~~.

4

)

SOL								Sampling Point 65
Profile Des	cription (Describe	Io the de	oth needed to doc	ument the	indicator of	or confirm	the absence	e of indicators)
Depth	Matrix			lox Feature	s			
(inches)	Color (moist)		Color (moist)	%	Type'	_Loc ⁴ _	Texture	Remarks
04	2 5Y 5/2	100	·	_,		·	CI	Moist
4 7	2 5Y 6/2	1.00					CI	Moist
7 - 10	2 5Y 6/2	95	_2 5Y 5/6	5			CI	Moist
	• <u> </u>					<u></u>		
	<u></u>	·						
					·			
		·			·			
¹ Type C=C	oncentration D=Dep	letion RM	=Reduced Matrix	² Location	n PL=Pore	Lining R	C=Root Chan	nel M=Matnx
Hydric Soil	Indicators (Applic	able to al	LRRs unless oth	erwise not	ed)		Indicators	for Problematic Hydric Soils ³
Histoso	(A1)		Sandy Re	dox (S5)			1 cm I	Muck (A9) (LRR C)
	pipedon (A2)		Stripped N					Muck (A10) (LRR B)
Black H	• •		Loamy Mu					ced Vertic (F18)
	en Sulfide (A4) d Layers (A5) (LRR (ור	Loamy Gle	-	(F2)			'arent Material (TF2) (Explain in Rernaiks)
	uck (A9) (LRR D)	~)		rk Surface	(F6)		Outer	(Explain in Nernails)
	d Below Dark Surfac	e (A11)		Dark Surtac				
, .	ark Surface (A12)		Redox De	pressions (l	F8)			
	lucky Mineral (S1)		Vernal Po	ols (F9)				of hydrophytic vegetation and
	Sleyed Matnx (S4)		·····				wetland	l hydrology must be present
	Layer (if present)							
1								
	ches)						Hydne Soll	Present? Yes X No
Hemarks								
Depleted ma	tnx							
HYDROLO	GY							
	drology Indicators				· · · · · · · · · · · · · · · · · · ·		Secor	ndary Indicators (2 or more required)
-	ators (any one indicators	ator is suff	leient)					Vater Marks (B1) (River ine)
		10 13 5011		+ /011)				ediment Deposits(82) (Riverine)
1	Water (A1) Iter Table (A2)		Salt Crus Biotic Cn					Prift Deposits (B3) (Riverine)
Saturatio				nvertebrate	s (B13)			Drainage Patterns (81 0)
	larks (B1) (Nonriven	ле)		n Sulfide Od				Pry Season Water Table (C2)
1	nt Deposits (B2) (Noi					ivina Root		hin Muck Surface(C7)
1	osits (B3) (Nonnvei		Presence		-			Cravfish Burrows (C8)
	Soil Cracks (B6)	,	Recent Ir		-		-	aturation Visible on Aenal Irnagery (C9)
4	on Visible on Aenal I	magery (B				·		hallow Aquitard (03)
1	tained Leaves (B9)	· ·			•			AC Neutral Test (05)
Field Obser								
Surface Wate		es	No X Depth (i	nches)				
Water Table			No X Depth (i					
Saturation P			No X Deoth (i			1	nd Hydroloa	y Present? Yes X No
(includes cap	ullary fnnge)							
Describe Re	corded Data (stream	gauge m	onitoring well aenal	photos pr	evious insp	ections) i	f available	

Remarks

Soil cracks evidence of ponding or saturation

Color (moist) % Color (moist) % Type1 Loc2 0 2 10YR 3/2 100	Texture Remark s CILo Moist OILo Moist CI Moist Moist Moist Moist Moist Indicators for ProblematicHydric Soils ³ _ 1 cm Muck (A9) (LRR C) _ Reduced Vertic (F18) </th
2 3 7 5YR 4/5 100 3+ 10YR 3/3 100	OILo Moist Cl Moist Moist Moist Cl Moist Indicators for Problematic Hydric Soils ³ 1 cm Muck (A9) (LRR C) 2 cm Muck (A10) (LRR B) Reduced Verlic (F18) Red Parent Matenal (TF2)
3+ 10YR 3/3 100 Type C=Concentration D=Depletion RM=Reduced Matnx ² Location PL=Pore Lining RG Hydric Soil Indicators (Applicable to all LRRs, unless otherwise noted)	CI Moist C=Root Channel M=Matnx Indicators for Problematic Hydric Soils ³ 1 cm Muck (A9) (LRR C) 2 cm Muck (A10) (LRR B) Reduced Vertic (F18) Red Parent Matenal (TF2)
Type C=Concentration D=Depletion RM=Reduced Matnx ² Location PL=Pore Lining R(Hydric Soil Indicators (Applicable to all LRRs, unless otherwise noted)	C=Root Channel M=Matnx Indicators for Problematic Hydric Soils ³ 1 cm Muck (A9) (LRR C) 2 cm Muck (A10) (LRR B) Reduced Vertic (F18) Red Parent Matenal (TF2)
Indicators (Applicable to all LRRs, unless otherwise noted) Histosol (A1) Sandy Redox (S5) Histic Epipedon (A2) Stnpped Matnx (S6) Black Histic (A3) Loamy Mucky Mineral (F1) Hydrogen Sultide (A4) Loamy Gleyed Matnx (F2) Stratitied Layers (A5) (LRR C) Depleted Matnx (F3)	Indicators for Problematic Hydric Soils ³ 1 cm Muck (A9) (LRR C) 2 cm Muck (A10) (LRR B) Reduced Vertic (F18) Red Parent Matenal (TF2)
Indicators (Applicable to all LRRs, unless otherwise noted) Histosol (A1) Sandy Redox (S5) Histic Epipedon (A2) Stnpped Matnx (S6) Black Histic (A3) Loamy Mucky Mineral (F1) Hydrogen Sultide (A4) Loamy Gleyed Matnx (F2) Stratitied Layers (A5) (LRR C) Depleted Matrix (F3)	Indicators for Problematic Hydric Soils ³ 1 cm Muck (A9) (LRR C) 2 cm Muck (A10) (LRR B) Reduced Vertic (F18) Red Parent Matenal (TF2)
Histic Epipedon (A2) Stnpped Matrix (S6) Black Histic (A3) Loarny Mucky Mineral (F1) Hydrogen Sultide (A4) Loarny Gleyed Matrix (F2) Stratitied Layers (A5) (LRR C) Depleted Matrix (F3)	2 cm Muck (A I0) (LRR 8) Reduced Vertic (F18) Red Parent Matenal (TF2)
Black Histic (A3) Loarny Mucky Mineral (F1) Hydrogen Sultide (A4) Loarny Gleyed Matnx (F2) Stratitied Layers (A5) (LRR C) Depleted Matrix (F3)	Reduced Verlic (F18) Red Parent Matenal (TF2)
_ Hydrogen Sultide (A4) Loarny Gleyed Matnx (F2) _ Stratitied Layers (A5) (LRR C) Depleted Matrix (F3)	Red Parent Matenal (TF2)
_ Stratitied Layers (A5) (LRR C) Depleted Matrix (F3)	
Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Vernal Pools (F9) Sandy Gleyed Matnx (S4) estrictive Layer (if present)	³ Indicators of hydrophytic vegetation and wetland hydrology must be present
Type	Hydric Soil Present? Yes No
Depth (inches)	Hydric Soil Present? Yes No
lo hydnc soils YDROLOGY	
Vetland Hydrology Indicators	Secondary Indicators (2 or more required
nmary Indicators (any one indicator is sufficient)	Water Marks (B1) (Riverme)
Salt Crust (B11)	Sediment Deposits(B2) (Riverme)
High Water Table (A2) Biotic Crust (B12)	Drift Deposits (B3) (Riverme)
_ Saturation (A3) Aquatic Invertebrates (B13)	Drainage Patterns (810)
_ Water Marks (B1) (Nonnverine) Hydrogen Sulfide Odor (C1)	Dry Season WaterTable (C2)
Sediment Deposits (B2) (Nonrivenne) Oxidized Rhizospheres along Living Roots	· · · · ·
_ Drift Deposits (B3) (Nonrivenne) Presence of Reduced Iron (C4)	Crayfish Burrows (C8)
Surface Soil Cracks (B6) Recent Iron Reduction in Plowed Soils (Cr	
_ Inundation Visible on Aenal Imagery (B7) Other (Explain in Remarks)	Shallow Aquitard (03)
_ Water Stained Leaves (B9)	FAC Neutral Test (05)
ield Observations	
urface Water Present? Yes <u>No X</u> Depth (inches)	
ncludes capillary fringe)	and Hydrology Present? Yes No _)
escribe Recorded Data (stream gauge monitoring well aenal photos previous inspections) if	f available

No wetland hydrology

Profile Des	cription (Describe	to the depth	needed to docun	nent the	indicator	or confirm	the absence	e of indicators)
Depth (matrice)	Matnx Color (moist)		Color (moist)	x Feature	s Type ¹	Loc ²	Texture	Remarks
(inches)	· · · · · · · · · · · · · · · · · · ·			/6				
0 2	10YR 3/2				·		CILo	Moist
23	<u>7 5YR 4/5</u>	_100					CILo	Moist
<u>3_1B+</u>	10YR 3/3	100					CI	Moist
								·
						<u> </u>		
	<u> </u>							·····
							<u> </u>	
17				21				
	oncentration D=Dep Indicators (Applic					e Lining H		nel M=Matux for ProblematicHydric Soils ³
L Histosol			Sandy Redo		607			Muck (A9) (LRR C)
	pipedon (A2)		Stnpped Ma					Muck (A10) (LRRB)
	istic (A3)		Loamy Mucl		I (F1)			ed Vertic (F18)
	en Sulfide (A4)		Loamy Gley	ed Matnx	(F2)		Red P	arent Matenal (TF2)
	d Layers (A5) (LRR	C)	Depleted Ma				Other	(Explain in Remarks)
	Jck (A9) (LRR D)	- (A 14)	Redox Dark					
	d Below Dark Surtac ark Surface (A12)	e (ATT)	Depleted Da					
	Aucky Mineral (SI)		Vernal Pools		,		³ Indicators	of hydrophytic vegetation and
	Gleyed Matrix (S4)							hydrology must be present
Restrictive	Layer (if present)							
Туре		<u> </u>						
Depth (ind	ches)		_				Hydric Soll	Present? Yes No_X
Remarks								
No hydnc so	ıls							
HYDROLO	GY							
Wetland Hyd	drology Indicators						Secor	ndary Indicators (2 or more required)
Pnmary Indic	cators (any one indic	ator is sufficie	ent)				v	Vater Marks (B1) (Riverine)
Surface	Water (AI)		Salt Crust (B11)			s	ediment Deposits (B2) (Riverine)
High Wa	ater Table (A2)		Biotic Crust	(B12)			D	rift Deposits (B3) (Riverine)
Saturation			Aquatic Inv					rainage Patterns (81C)
	larks (B1) (Nonriver		Hydrogen S			_		Pry Season Water Table (C2)
	nt Deposits (B2) (No		Oxidized R					hin Muck Surface(C7)
	posits (B3) (Nonrive	nne)	Presence o					rayfish Burrows (C8)
	Soil Cracks (B6)		Recent Iron			ed Solls (C		aturation Visible on A e nal Imagery (C9)
	on Visible on Aenal I	magery (B7)	Other (Expl	ain in He	marks)			hallow Aquitard (03)
Field Observ	tained Leaves (B9)					·	F	AC Neutral Test (05)
Surface Wat			Y Dooth (ma					
Water Table		-	X Depth (inc			-		
Saturation Pi (includes cap		es ino	X Depth (inc	nes)			πα πγατοιοĝ	v Present? Yes No_X
	corded Data (stream	gauge monit	tonng well aenal p	hotos pre	evious insp	pections) if	available	
Remarks				··				
No wetland h	ydrology							

SUL						Sampling Point <u>68</u>
Profile Des	cription (Describe	to the dep	th needed to document the indicator or	confirm th	ne absence	of indicators)
Depth	Matnx_		Redox Features Color (moist) 9 Type ¹		Tautura	
(inches)	Color (moist)				Texture	Remarks
_0_2	<u>10YR 3/2</u>				<u>OILo</u>	Moist
23	<u>7 5YR 4/5</u>				CILo	Moist
	10YR 3/3	100			<u>Cl</u>	Moist
	Concentration D-Der					Dol. M-Matrix
			LRRs unless otherwise noted)			for Problematic Hydric Soils ³
Histoso			Sandy Redox (S5)			Muck (A9) (LRR C)
	Epipedon (A2)		Stnpped Matnx (S6)			Muck (A10) (LRR B)
Black H	listic (A3)		Loamy Mucky Mineral (F1)			ed Vertic (F18)
	en Sulfide (A4)	_	Loamy Gleyed Matrix (F2)			arent Material (TF2)
-	ed Layers (A5) (LRR)	C)	Depleted Matnx (F3)		Other ((Explain in Remarks)
	luck (A9) (LBR D) ed Below Dark Surfac		Redox Dark Surface (F6) Depleted Dark Surface (F7)			
· · ·	ark Surface (A12)		Redox Depressions (F8)			
	Mucky Mineral (S1)		Vernal Pools (F9)			of hydrophytic vegetation and
	Gleyed Matrix (S4)			·	wetland	hydrology must bepresent
Restrictive	Layer (if present)					
.,				ļ.		
	nches)			F	Hydne Son	Present? Yes No X
Remarks						
No hydric so	sik					
HYDROLO	θGY					
Wetland Hy	drology Indicators				Secor	ndary Indicators (2 or more required)
Primary Indic	cators (any one indic	ator is suffic	pient)		W	/ater Marks (B1) (Rıv er me)
Surface	Water (A1)		Salt Crust (B11)		S	ediment Deposits(B2) (Riverine)
High Wa	ater Table (A2)		Biotic Crust (B12)			rıft Deposits (B3) (Ri ve rme)
Saturation			Aquatic Inverfebrates (B13)			rainage Patterns (81C)
	Aarks (B1) (Nonriver		Hydrogen Sulfide Odor (C1)			ry Season Water Table (C2)
	nt Deposits (B2) (No		Oxidized Rhizospheres along Livi	ng Roots (hin Muck Surface (C7)
	posits (B3) (Nonrive	nne)	Presence of Reduced Iron (C4)	0.1- (00)		ravfish Bunows (C8)
	Soil Cracks (B6)	·	Recent Iron Reduction in Plowed	Soils (Cb)		aturation Visible on Aenal Imagery (C9)
	ion Visible on Aenal I Stained Leaves (B9)	magery (D7	 Other (Explain in Remarks) 			hallow Aquitard (03) AC Neutral Test (05)
Field Obser				1	'	
Surface Wat			Vo V Denth (inches)			
Water Table			No X Depth (inches)			
Saturation P			No X Depth (inches)	Watland		y Present? Yes No_X
Saturation P	Teserit I	es I		welland	i Hydroiog)	

Remarks

No wetland hydrology

(includes capillary finge)

Describe Recorded Data (stream gauge monitoring well aenal photos previous inspections) if available

Profile Des	cription (Describe	to the dep	oth needed to docu	ment the	indicator	or confirm	the absence	e of indicat	ors)	
Depth	Matnx		Color (moist)	<u>x Feature</u>	<u>s</u>		Texture		Remarks	
(inches)	Color (moist)			7					<u> </u>	·····
0_4	<u>2 5Y 5/2</u>	100	<u> </u>			<u> </u>	Cl	Moist		,,
4 7	<u>2 5Y 6/2</u>					<u> </u>	CI	Moist	<u></u>	
7 10	2_5Y_6/2	95	_2 5Y 5/6		<u></u>	- <u></u>	CI	Moist		
		. <u> </u>	<u></u>	• ••••••		<u> </u>				
					<u></u>	<u> </u>	<u> </u>	<u> </u>	·	<u> </u>
	<u> </u>	·		- <u></u>	<u></u>		<u></u>			
	<u></u>			·			·			<u> </u>
¹ Type C=C	oncentration D=Dep	letion RM:	=Reduced Matnx	² Location	PL=Por	e Lining R	O=Root Char	nel M=Mat		
Hydric Soil	Indicators (Applic	able to all	LRRs unless othe	rwise not	ed)		Indicators	for Proble	ematic Hyd ri c S	Soils ³
Histosol	l (A1)		Sandy Red	ox (S5)			1 cm	Muck (A9) (LRR C)	
Histic E	pipedon (A2)		Stripped Ma	atnx (SB)			2 cm	Muck (A10)	(LRR B)	
Black H	istic (A3)		Loamy Muc	ky Minera	l (F1)			ced Verfic (F	•	
Hydroge	en Sultide (A4)		Loamy Gley		(F2)			arent Mater		
Stratified	d Layers (A5) (LRR C	C)	<u>X</u> Depleted M	latnx (F3)			Other	(Explain in	Remarks)	
1 cm Mu	Jck (A9) (LRR D)		Redox Dark	: Surface (F6)					
Deplete	d Below Dark Surface	e (A11)	Depleted D	ark Surfac	e (F7)					
Thick Da	ark Surface (A12)		Redox Dep		-8)					
Sandy M	/lucky Mineral (S1)		Vernal Pool	s (F9)			³ Indicators	of hydroph	ytic vegetation	and
	Gleyed Matnx (S4)						wetland	i hydrology	mustbepreser	nt
Restrictive I	Layer (if present)									_
••••								0	Net N	N
Depth (ind Remarks	ches)						Hydric Soi	Present	Yes_X	No
nemarks										
Depleted ma	ıtnx									
HYDROLO	GY						·····			
Wetland Hy	drology Indicators						Seco	ndary Indica	ators (2 or more	e required)
Primary Indic	cators (any one indica	ator is suffi	cient)				V	Vater Marks	(B1)(Riverine	e)
Surface	Water (A1)		Salt Crust	(B11)					eposits (82) (Ri	•
High Wa	ater Table (A2)		Biotic Crus	st (B12)			[[]	orift Deposit	s (183) (Riverm	e)
Saturatio	on (A3)		Aquatic 1m	verfebrate	s (B13)		[)rainage Pa	tterns (B1O)	
Water M	larks (B1) (Nonnveri	ne)	Hydrogen	Sulfide Oc	lor (C1)		[ory Season	Water Table (C	2)
	nt Deposits (B2) (Nor		Oxidized F			Living Root	ts (C3) T	'hin Muck S	urface(C7)	
	posits (B3) (Nonriver		Presence	-	-	-		Crayfish Bur		

X Surface Soil Cracks (B6)

____ Recent Iron Reduction in Plowed Soils (C6) ___ Inundation Visible on Aenal Imagery (B7) ____ Other (Explain in Remarks) ____ Water Stained Leaves (B9)

Field Observations		
Surface Water Present?	Yes NoX_ Depth (inches)	
Water Table Present?	Yes NoX Depth (inches)	
Saturation Present? (includes capillary finge)	Yes NoX Depth (inches)	Wetland Hydrology Present? Yes X No
Describe Recorded Data (strea	am gauge monitoring well aenal photos previous inspec	ctions) if available

Remarks

Soil cracks evidence of ponding and wetland hydrology

Saturation Visible on Aenal Imagery (C9)

Shallow Aquitard (03)

FAC Neutral Test (05)

Depth	ription (Describe to th Matrix		Redo	x Features				
(inches)		%	Color (moist)		Type'	_Loc ²	Texture	Remarks
02	<u>10YR 3/2</u> 10	00					_CILo	Moist
23	<u>7 5YR 4/5</u> 10						CILo	Moist
<u>_3+</u>	<u>10YR 3/3</u> 10	00		<u> </u>			C)	Moist
			······································	·				
	ncentralion D=Depletio					e Lining Ri		nel M=Matnx
-	ndicators (Applicable	e to all LRF			d)			s for Problematic Hydric Soils ³
Histosol			Sandy Red					Muck (A9) (LRR C)
Black His	ipedon (A2)		Stnpped Ma Loamy Mud		(E1)			Muck (A10) (LRR B) ced Verfic (F18)
	n Sulfide (A4)		Loamy Gle	-				Parent Material (TF2)
	Layers (A5) (LRR C)		Depleted M		/			(Explain in Remarks)
	ck (A9) (LRR D)		Redox Darl		6)			, , , ,
Depleted	Below Dark Surface (A	11)	Depleted D	ark Surface	(F7)			
	rk Surface (A12)		Redox Dep	•	8)		-	
	ucky Mineral (S1)	,	Vernal Poo	s (F9)				of hydrophytic vegetation and
	eyed Matnx (S4)						wetianc	hydrology must be present
	ayer (if present)							
Туре								
	hes)		•			<u> </u>	Hydnc Soil	Present? Yes No X
Remarks								
No hydnc soil	S							
IYDROLOG			·····					
-	rology Indicators							ndary Indicators (2 or more required)
	ators (any one indicator i	is sufficien						Vater Marks (B1) (Riverine)
Surface V			Salt Crust	• •				Sediment Deposits (B2) (Riverine)
	er Table (A2)		Biotic Crus					Drift Deposits (B3) (Riverine)
Saturation			-	vertebrates				Drainage Patterns (BID)
	arks (B1) (Nonnverine)			Sulfide Odd		_		Dry Season Water Table (C2)
	Deposits (B2) (Nonrive			Rhizosphere	-	-	· · · —	Thin Muck Surface (C7)
	osits (B3) (Nonnverine)			of Reduced				Crayfish Burrows (C8)
	Soil Cracks (B6)			n Reductior		ed Soils (C		Saturation Visible on Aenal Imagery (C9)
	n Visible on Aerial Image ained Leaves (B9)	егу (В7)	Other (Exp	olain in Rem	narks)			Shallow Aquitard (D3)
								AC Neutral Test (05)

Water Stained Leaves (B9)				FAC Neutral	Fest (05)		
Field Observations								
Surface Water Present?	Yes	No <u></u>	_ Depth (inches)					
Water Table Present?	Yes	No <u></u>	_ Depth (inches)		{			
Saturation Present? (includes capillary fnnge)	Yes	NoX	_ Deoth (inches)	·	Wetland Hydrology Present?	Yes	No_	<u>x</u>
Describe Recorded Data (str	eam gauge	monitoning	well aenal photos pre	evious inspec	ctions) if available			
Remarks			·	·····	······································			
No wetland hydrology								

1	inplion (Describe	to the dep	th needed to docur	nem men			the absence	e of indicators)
Depth	<u>Matnx</u> Color (moist)		<u>Redo</u> Color (moist)	x Feature	S Turne ¹		Texture	Remark s
(inches)								
0 4	<u>2 5Y 5/2</u>	_100					<u> </u>	Moist
4 7	2 5Y 6/2	_100	<u></u>		<u> </u>		CI	Moist
7 - 10	2 5Y 6/2	95	2 5Y 5/6	5	<u> </u>		C1	Moist
		- <u> </u>						
							<u>. </u>	
		·	······	· •		·······		
	<u></u>			·				
1				2.				
	oncentration D=Dep		Heduced Mathx LRRs unless other			Lining H		nel M=Matnx s for Problematic Hydric Soils ³
•					-0)			
Histosol	(A1) oipedon (A2)		Sandy Redo Stnpped Ma					Muck (A9) (LRR C) Muck (A10) (LRR B)
Black Hi			Loamy Muc	-	(F1)		-	ced Verlic (F18)
	n Sulfide (A4)		Loamy Gley					arent Matenal (TF2)
	Layers (A5) (LRR (C)	X Depleted M		. ,			(Explain in Remarks)
	ck (A9) (LRR D)		Redox Dark	Surface (•			
·	l Below Dark Surfac	e (A11)	Depleted Da					
	irk Surface (A12)		Redox Depr		-8)		3	
	lucky Mineral (ST) ileyed Matrix (S4)		Vernal Pool	s (F9)				of hydrophytic vegetation and I hydrology must be present
	ayer (if present)							nyurology must be present
	ches)						Hvdric Soil	Present? Yes X No
Remarks							l	
Depleted ma	trix							
·								
HYDROLO	GY							
	drology Indicators						Seco	ndary Indicators (2 or inore required)
_	ators (any one indic	ator is suffi	cient)					Vater Marks (B1) (Riverine)
Surface			Salt Crust	(B11)				Gediment Deposits (B2) (Riverine)
				()				
High Wa	ter Table (A2)		Biotic Crus	t (B12)				
	ter Table (A2) on (A3)		Biotic Crus		s (B13)		C	Onft Deposits (B3) (Riverine)
Saturatio	on (A3)	ine)	Biotic Crus Aquatic Inv Hydrogen S	vertebrate			C	
Saturatio	on (A3) arks (B1) (Nonnver		Aquatic Inv Hydrogen \$	verfebrate: Sulfide Oc	lor (C1)	.iving Roo	C	onft Deposits (B3) (Riverine) Drainage Pattems (B10)
Saturatio	on (A3)	nrivenne)	Aquatic Inv Hydrogen \$	verfebrate: Sulfide Oc Ihizosphei	lor (C1) es along L		C C C ts (C3) T	Onft Deposits (B3) (Riverine) Orainage Pattems (B10) Ory Season Water Table (C2)
Saturation Water M Sedimen Drift Dep	on (A3) arks (B1) (Nonnver it Deposits (B2) (Noi	nrivenne)	Aquatic Inv Hydrogen Oxidized F	vertebrate: Sulfide Oc Ihizosphei of Reduce	lor (C1) es along L d Iron (C4)		C C ts (C3) T C	Onft Deposits (B3) (Riverine) Orainage Pattems (B10) Ory Season Water Table (C2) Ihin Muck Surface (C7)
Saturation Water M Sedimer Drift Dep _X Surface	on (A3) arks (B1) (Nonnver at Deposits (B2) (No iosits (B3) (Nonnvel	nrivenne) rine)	Aquatic Inv Hydrogen 3 Oxidized F Presence 6 Recent Iro	vertebrate Sulfide Oc Ihizosphei of Reduce n Reductio	lor (C1) es along L d Iron (C4) on in Plowe		C C Is (C3) T C C6) S	Onft Deposits (B3) (Riverine) Drainage Pattems (B10) Dry Season Water Table (C2) Thin Muck Surface (C7) Drayfish Burrows (C 8)
Saturation Water M. Sedimer Drift Dep X Surface Inundation	n (A3) arks (B1) (Nonnver tt Deposits (B2) (Noi iosits (B3) (Nonnvei Soil Cracks (B6)	nrivenne) rine)	Aquatic Inv Hydrogen 3 Oxidized F Presence 6 Recent Iro	vertebrate Sulfide Oc Ihizosphei of Reduce n Reductio	lor (C1) es along L d Iron (C4) on in Plowe		[[ts (C3) T C ;6) S	Onft Deposits (B3) (Riverine) Orainage Pattems (B10) Ory Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Gaturation Visible on Aenal Imagery (C9)
Saturation Water M. Sedimer Drift Dep X Surface Inundation	on (A3) arks (B1) (Nonnver it Deposits (B2) (Noi iosits (B3) (Nonnver Soil Cracks (B6) on Visible on Aenal I tained Leaves (B9)	nrivenne) rine)	Aquatic Inv Hydrogen 3 Oxidized F Presence 6 Recent Iro	vertebrate Sulfide Oc Ihizosphei of Reduce n Reductio	lor (C1) es along L d Iron (C4) on in Plowe		[[ts (C3) T C ;6) S	Onft Deposits (B3) (Riverine) Orainage Pattems (B10) Ory Season Water Table (C2) Thin Muck Surface (C7) Orayfish Burrows (C8) Saturation Visible on Aeinal Imagery (C9) Shallow Aquitard (D3)
Saturation Water M. Sedimer Drift Dep _X Surface Inundation Water St	on (A3) arks (B1) (Nonnver at Deposits (B2) (Noi osits (B3) (Nonnver Soil Cracks (B6) on Visible on Aenal I tained Leaves (B9) vations	nrıvenne) rıne) magery (B7	Aquatic Inv Hydrogen 3 Oxidized F Presence 6 Recent Iro	vertebrate: Sulfide Oc Ihizosphei of Reduce n Reductio Iain in Re	lor (C1) res along L d Iron (C4) on in Plowe marks)	ed Soils (C	[[ts (C3) T C ;6) S	Onft Deposits (B3) (Riverine) Orainage Pattems (B10) Ory Season Water Table (C2) Thin Muck Surface (C7) Orayfish Burrows (C8) Saturation Visible on Aeinal Imagery (C9) Shallow Aquitard (D3)
Saturation Water M Sedimer Drift Dep _X Surface Inundation Water St Field Observ	on (A3) arks (B1) (Nonnver it Deposits (B2) (Non osits (B3) (Nonnver Soil Cracks (B6) on Visible on Aenal I tained Leaves (B9) vations er Present? Y	nrıvenne) rıne) magery (B7 es I	Aquatic Inv Hydrogen Hydrogen Oxidized F Presence c Recent Iron Other (Exp	vertebrate: Sulfide Oc Ihizosphei of Reduce n Reductio lain in Ref lain in Ref	lor (C1) es along L d Iron (C4) on in Plowe marks)	ed Soils (C	[[ts (C3) T C ;6) S	Onft Deposits (B3) (Riverine) Orainage Pattems (B10) Ory Season Water Table (C2) Thin Muck Surface (C7) Orayfish Burrows (C8) Saturation Visible on Aeinal Imagery (C9) Shallow Aquitard (D3)
Saturation Water M. Sedimen Drift Dep _X Surface Inundation Water St Field Observ Surface Water	on (A3) arks (B1) (Nonnver at Deposits (B2) (Non iosits (B3) (Nonnver Soil Cracks (B6) on Visible on Aenal I tained Leaves (B9) vations er Present? Y	nrivenne) rine) magery (B7 es I es I	Aquatic Inv Hydrogen Hydrogen Oxidized F Presence c Recent Iron Other (Exp	vertebrate: Sulfide Oc hizosphei of Reduce n Reductio lain in Re lain in Re ches)	lor (C1) es along L d Iron (C4) on in Plowe marks)	ed Soils (C	[[ts (C3) T C S S F	Onft Deposits (B3) (Riverine) Orainage Pattems (B10) Ory Season Water Table (C2) Thin Muck Surface (C7) Orayfish Burrows (C8) Saturation Visible on Aeinal Imagery (C9) Shallow Aquitard (D3)
Saturation Water M Sedimer Drift Dep X Surface Inundation Water Si Field Observ Surface Water Table Saturation Pr (includes cap	on (A3) arks (B1) (Nonnver at Deposits (B2) (Non iosits (B3) (Nonnver Soil Cracks (B6) on Visible on Aenal I tained Leaves (B9) vations er Present? Y Present? Y resent? Y uillary finge)	nrivenne) rine) magery (B7 es I es I es I	Aquatic Inv Hydrogen 3 Hydrogen 3 Oxidized F Presence 6 Recent Iron 7) Other (Exp 7) Other (Exp 7) Depth (inc NoX_ Depth (inc NoX_ Depth (inc	vertebrate: Sulfide Oc Ihizosphei of Reduce n Reduction lain in Ref lain in Ref ches) ches) ches)	lor (C1) es along L d Iron (C4) on in Plowe marks)	ed Soils (C	C C ts (C3) T C (6) S F	Onft Deposits (B3) (Riverine) Orainage Pattems (B10) Ory Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aeinal Imagery (C9) Shallow Aquitard (D3) FAC Neutral Test (D5)
Saturation Water M Water M Sedimer Drift Dep X Surface Inundation Water Si Field Observ Surface Water Table Saturation Pr (includes cap	on (A3) arks (B1) (Nonnver at Deposits (B2) (Non iosits (B3) (Nonnver Soil Cracks (B6) on Visible on Aenal I tained Leaves (B9) vations er Present? Y Present? Y resent? Y uillary finge)	nrivenne) rine) magery (B7 es I es I es I	Aquatic Inv Hydrogen 3 Hydrogen 3 Oxidized F Presence 0 Recent Iron Other (Exp No X Depth (inc	vertebrate: Sulfide Oc Ihizosphei of Reduce n Reduction lain in Ref lain in Ref ches) ches) ches)	lor (C1) es along L d Iron (C4) on in Plowe marks)	ed Soils (C	C C ts (C3) T C (6) S F	Onft Deposits (B3) (Riverine) Orainage Pattems (B10) Ory Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aeinal Imagery (C9) Shallow Aquitard (D3) FAC Neutral Test (D5)

Remarks

Soil cracks evidence of ponding and wetland hydrology

'	SOIL
---	------

	Matnx			x Features	<u> </u>	— <u> </u>	_	
(Inches)	Color (moist)	%	Color (moist)	<u> </u>	Type ¹	Loc ²	<u>Texture</u>	Remarks
0_4	10YR 3/2	<u>t00</u>			<u> </u>		CI	_Moist
4 7	<u>25Y 5/2</u>						<u>CI</u>	Moist
<u>7 – 10</u>	10YR 6/3				<u></u>	<u> </u>	CI	Moist
	oncentration D=Dep					Lining F	IO=Root Chan	
	ndicators (Applic	able to all L			ed)			for Problematic Hydric Soils ³
Histosol			Sandy Rede					Muck (A9) (LRR C)
Histic Ep Black His	pipedon (A2)		Stripped Ma Loamy Muc	• •	(E1)			Muck (A10) (LRR B) ed Vertic (F18)
	n Sulfide (A4)		Loamy Gley	-				arent Matenal (TF2)
	Layers (A5) (LRR (C)	Depleted M		(* -)		_	(Explain in Remarks)
	ck (A9) (LRR D)	-	Redox Dark	Surtace (F6)		-	
	Below Dark Surfac	e (A 1)	Depleted Da					
	rk Surface (A12)		Redox Depr	-	8)		3	
	ucky Mineral (ST) leyed Matnx (S4)		Vernal Pool	s (F9)				of hydrophytic vegetation and hydrology must be present
	ayer (If present)			<u> </u>				nydiology must be present
•• —	hes)						Hvdric Soil	Present? Yes X No
Depth (Inc Remarks								
Remarks	alorihids are hydric							
Remarks Playa soils S YDROLO(alorihids are hydric							
Remarks Playa soils S YDROLOG Vetland Hyd	alorihids are hydnc GY Irology Indicators	by definition					Secor	ndary Indicators (2 or more required)
Remarks Playa soils S YDROLO(Wetland Hyd Primary Indic	alorihids are hydnc GY Irology Indicators ators (any one indicators	by definition	ent)	(0.4.4)			<u>Secor</u>	ndary Indicators (2 or more required) Vater Marks (B1) (Riverine)
Remarks Playa soils S YDROLO(Vetland Hyd Pnmary Indic Surface V	alorihids are hydric GY Irology Indicators ators (any one indic Water (Al)	by definition	ent) Salt Crust				<u>Secor</u> W S	ndary Indicators (2 or more required) /ater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine)
Remarks Playa soils S YDROLOO Vetland Hyd Primary Indica Surface V High Wat	alorihids are hydric GY Irology Indicators ators (any one indicators Water (AI) ter Table (A2)	by definition	ent) Salt Crust Biotic Crus	t (B12)			<u>Secor</u> W S D	ndary Indicators (2 or more required) /ater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) inft Deposits (B3) (River me)
Pemarks Playa soils S YDROLOO Vetland Hyd Inmary Indica Surface V High Wat Saturatio	alorihids are hydric GY Irology Indicators ators (any one indica Water (A I) ter Table (A2) in (A3)	by definition	ent) Salt Crust Biotic Crus Aquatic Inv	t (B12) vertebrates			<u>Secor</u> W S D D	ndary Indicators (2 or more required) /ater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) inft Deposits (B3) (Riverine) irainage Pattems (B10)
lemarks laya soils S YDROLO(Vetland Hyd nmary Indic Surface V High Wat Saturatio Water Ma	alorihids are hydnc GY Irology Indicators ators (any one indicators Water (A1) ter Table (A2) in (A3) arks (B1) (Nonriven	by definition	ent) Salt Crust Biotic Crus Aquatic Inv Hydrogen	t (B12) vertebrates Sulfide Od	or (C1)		<u>Secor</u> W S D D	ndary Indicators (2 or more required) /ater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) inft Deposits (B3) (River me) irrainage Pattems (B10) irry Season Water Table (C2)
Playa soils S YDROLOO Vetland Hyd Primary Indica Surface V High Wat Saturatio Water Ma Sedimen	alorthids are hydric GY Irology Indicators ators (any one indic Water (A1) ter Table (A2) in (A3) arks (B1) (Nonriven t Deposits (B2) (Nor	by definition ator is sufficient ine) nrivenne)	ent) Salt Crust Biotic Crus Aquatic Inv Hydrogen Oxidized F	t (B12) vertebrates Sulfide Od ihizospher	or (C1) es along l	-	<u>Secor</u> W S D D D ts (C3) T	ndary Indicators (2 or more required) /ater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) inft Deposits (B3) (River me) irrainage Pattems (B10) irry Season Water Table (C2) hin Muck Surface (C7)
Playa soils S YDROLOO Vetland Hyd Pamary Indica Surface V High Wat Saturatio Water Ma Sedimen Drift Dep	alorthids are hydric GY frology Indicators ators (any one indicators water (A1) ter Table (A2) in (A3) arks (B1) (Nonriven t Deposits (B2) (Nor osits (B3) (Nonriven	by definition ator is sufficient ine) nrivenne)	ent) Salt Crust Biotic Crus Aquatic Inv Hydrogen Oxidized F Presence o	t (B12) vertebrates Sulfide Od hizospher of Reduce	or (C1) es along l d Iron (C4	_	<u>Secor</u> W M D D D ts (C3) T C	ndary Indicators (2 or more required) Vater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) inft Deposits (B3) (River me) frainage Pattems (B10) iry Season Water Table (C2) hin Muck Surface (C7) irayfish Burrows (C8)
Playa soils S Playa soils S PDROLOG Pomary Indica Surface V High Wat Saturatio Water Ma Sediment Drift Dep X Surface S	alorthids are hydric GY Irology Indicators ators (any one indic Water (A1) ter Table (A2) in (A3) arks (B1) (Nonriven t Deposits (B2) (Nor	by definition ator is sufficient ine) nrivenne) nne)	ent) Salt Crust Biotic Crus Aquatic Inv Hydrogen Oxidized F	t (B12) vertebrates Sulfide Od hizospher of Reduces n Reductio	or (C1) es along l d Iron (C4 in in Plowe	_	<u>Secor</u> W N D D D ts (C3) T C C6) S	ndary Indicators (2 or more required) /ater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) inft Deposits (B3) (River me) irrainage Pattems (B10) irry Season Water Table (C2) hin Muck Surface (C7)
Playa soils S Playa soils S Playa soils S PDROLOO Pomary Indica Surface V High Wat Saturatio Water Ma Sedimen Drift Dep X Surface S Inundatio	alorihids are hydric GY frology Indicators ators (any one indica Water (A I) ter Table (A2) in (A3) arks (B1) (Nonriven t Deposits (B2) (Nor osits (B3) (Nonriven Soil Cracks (B6)	by definition ator is sufficient ine) nrivenne) nne)	ent) Salt Crust Biotic Crus Aquatic Inv Hydrogen 3 Oxidized F Presence 6 Recent Iro	t (B12) vertebrates Sulfide Od hizospher of Reduces n Reductio	or (C1) es along l d Iron (C4 in in Plowe	_	Secor 	Indary Indicators (2 or more required) /ater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) inft Deposits (B3) (River me) irrainage Patterns (B10) irry Season Water Table (C2) hin Muck Surface (C7) irrayfish Burrows (C8) aturation Visible on Aenal Imagery (C
Playa soils S Playa soils S YDROLOO Wetland Hyd Commary Indica Surface V High Wat Saturatio Water Ma Sedimen Drift Dep X Surface S Inundatio Water St	alorihids are hydric GY Irology Indicators ators (any one indicators Mater (A1) ter Table (A2) in (A3) arks (B1) (Nonriven t Deposits (B2) (Non osits (B3) (Nonriven Soil Cracks (B6) on Visible on Aenal I ained Leaves (B9)	by definition ator is sufficient ine) nrivenne) nne)	ent) Salt Crust Biotic Crus Aquatic Inv Hydrogen 3 Oxidized F Presence 6 Recent Iro	t (B12) vertebrates Sulfide Od hizospher of Reduces n Reductio	or (C1) es along l d Iron (C4 in in Plowe	_	Secor 	ndary Indicators (2 or more required) Vater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) inft Deposits (B3) (Riverine) irrainage Pattems (B10) irry Season Water Table (C2) hin Muck Surface (C7) irrayfish Burrows (C8) aturation Visible on Aenial Imagery (C hallow Aquitard (D3)
Playa soils S Playa soils S Playa soils S PDROLOO Pomary Indica Surface V High Wat Saturatio Water Ma Sedimen Drift Dep X Surface S Inundatio	alorthids are hydric GY frology Indicators ators (any one indicators (any one indicators) water (A1) ter Table (A2) in (A3) arks (B1) (Nonriven t Deposits (B2) (Nor osits (B3) (Nonriven Soil Cracks (B6) on Visible on Aenal I ained Leaves (B9) rations	by definition ator is sufficient ine) nrivenne) nne) magery (B7)	ent) Salt Crust Biotic Crus Aquatic Inv Hydrogen 3 Oxidized F Presence 6 Recent Iro	t (B12) vertebrates Sulfide Od hizospher of Reduce n Reductio lain in Rer	or (C1) es along l d Iron (C4 n in Plow narks)	ed Soils (C	Secor 	ndary Indicators (2 or more required) Vater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) inft Deposits (B3) (Riverine) irrainage Pattems (B10) irry Season Water Table (C2) hin Muck Surface (C7) irrayfish Burrows (C8) aturation Visible on Aenial Imagery (C hallow Aquitard (D3)
Playa soils S Playa soils S YDROLOO Wetland Hyd Dimary Indice Surface V High Wal Saturatio Water Ma Sedimen Drift Dep X Surface S Inundatio Water St Field Observ	alorthids are hydric GY Irology Indicators ators (any one indicators water (A1) ter Table (A2) in (A3) arks (B1) (Nonriven t Deposits (B2) (Nor osits (B3) (Nonriven Soil Cracks (B6) on Visible on Aenal I ained Leaves (B9) vations er Present? Y	by definition ator is sufficient ine) nrivenne) nne) magery (B7) es No	ent) Salt Crust Biotic Crust Aquatic Inv Hydrogen 3 Oxidized F Presence 6 Recent Iron Other (Exp	t (B12) vertebrates Sulfide Od thizospher of Reduced n Reductio lain in Rer ches)	or (C1) es along l d Iron (C4 n in Plowe narks)	ed Soils (C	Secor 	ndary Indicators (2 or more required) Vater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) inft Deposits (B3) (Riverine) irrainage Pattems (B10) irry Season Water Table (C2) hin Muck Surface (C7) irrayfish Burrows (C8) aturation Visible on Aenial Imagery (C hallow Aquitard (D3)

Remarks

Soil cracks evidence of ponding and wetland hydrology

|--|

Profile Des	cription (Describe to	the depth	needed to docu	inent the	indicator	or confirm	the absence	e of indicators)			
Depth	Matnx		Red	ox Feature	<u>s</u>		- .	.			
(inches)	Color (moist)	_%	Color (moist)		_Type	_Loc ²	<u>Texture</u>	Remarks			
04	10YR 3/2	100		<u> </u>	·		<u>Sa</u>	Moist			
4 7	<u>2 5Y 4/2</u>	100					<u>SaLo</u>	Moist			
7 - 10	10YR 6/3	<u>95</u>	10YR 5/2	5			CI	Moist			
	oncentration D=Depletion					Lining R		nel M=Matnx s for ProblematicHydric Soils ³			
Histosol	l (A1)	Sandy Red	lox (S5)			1 cm Muck (A9) (LRR C)					
	pipedon (A2)	Stnpped M				2 cm Muck (A10) (LRR B)					
Black Histic (A3) Loarny Mucky Mineral (F1)						Reduced Vertic (F18)					
Hydrogen Sulfide (A4)Loarny Gleyed Matnx (F2) Stratitied Layers (A5) (LRR C)Depleted Matnx (F3)						Red Parent Matenal (TF2) Other (Explain in Remarks)					
Depleted Thick Da Sandy M Sandy G	uck (A9) (LRR D) d Below Dark Surface (A ark Surface (A12) Aucky Mineral (S1) Gleyed Matnx (S4)	(11)	Redox Darl Depleted D Redox Dep Vernal Poo	ark Surfac ressions (l	e (F7)			of hydrophytic vegetation and I hydrology must be present			
Restrictive I	Layer (if present)										
			-								
Depth (inches)							Hydric Soil Present? Yes X No				
Remarks Playa soils IYDROLO	salorthids are hydnc by	definition									
Wetland Hyd	drology Indicators						Secor	ndary Indicators (2 or more required)			
-	cators (any one indicator	<u>is sufficier</u>	nt)					Vater Marks (B1) (River ine)			
Surface	Water (A1)		Salt Crust	(B11)				ediment Deposits(82) (Riverine)			
High Wa	High Water Table (A2) Biotic Crust (B12)					D	nft Deposits (B3) (Riverine)				
	Saturation (A3) Aquatic Invertebrates (B13)							Prainage Patterns (B1O)			
Water Marks (B1) (Nonriverine) Hydrogen Sulfide Odor (C1)							D	ry Season Water Table (C2)			
Sedimer	nt Deposits (B2) (Nonriv	erine)	Oxidized F	Rhizospher	es along L	.iving Root	s (C3) T	hin Muck Surface(C7)			
Dnft Dep	oosits (B3) (Nonriverine)	Presence	of Reduce	d Iron (C4))	0	rayfish Burrows (C8)			
	Soil Cracks (B6)		Recent Iro	n Reductio	on in Plowe	ed Soils (C		aturation Visible on Aerial Imagery (C			
	on Visible on Aenal Imag	gery (B7)	Other (Exp	olain in Rei	marks)			hallow Aquitard (03)			
Water St	Water Stained Leaves (B9)							FAC Neutral Test (D5)			

Field Observations

Surface Water Present? Yes _____ No __X Depth (inches) Yes _____ No __X Depth (inches) Water Table Present? Saturation Present? Yes _____ No ___X Depth (inches) Wetland Hydrology Present? Yes X No (includes capillary finge) Describe Recorded Data (stream gauge monitoring well aenal photos previous inspections) if available

Remarks

Soil cracks evidence of ponding or saturation

Profile Des	cription (Describe	to the depth r	eeded to docu	ment the in-	dicator	or confirm	n the absence	e of indicators)
Depth	Matnx			ox Features				
(inches)	Color (moist)		Color (moist)		<u>Type'</u>	_Loc ²	Texture	Remarks
0 4	10YR 3/2				<u> </u>		<u> </u>	Moist
4 7	<u>2 5Y 5/2</u>	100					CI	Moist
7 - 10	10YR 6/3	_100					CI	Moist
						·		
						• <u> </u>	<u></u>	
							<u>_</u>	
	<u>. </u>						<u> </u>	·····
	oncentration D=Dep					e Lining F		inel M=Matrix
Hydric Soil	Indicators (Applic	able to all LR	Rs unless othe	rwise noted	1)		Indicators	s for Problematic Hydric Soils ³
Histosol	· ·		Sandy Red					Muck (A9) (LRR C)
	pipedon (A2)		Stripped Ma					Muck (A10) (LRR B)
, ——	stic (A3)			ky Mineral (-			ced Vertic (F18)
	en Sultide (A4)	2)		yed Matnx (F	-2)			Parent Matenal (TF2)
	d Layers (A5) (LRR ((ت	Depleted M	•	~)		<u>X</u> Other	(Explain in Remarks)
	uck (A9) (LRR D) d Below Dark Surfac	o (A11)		< Surface (Fi	•			
	ark Surface (A12)	e (ATT)		ark Surface ressions (F8				
· —	Aucky Mineral (S1)		Vernal Pool		9		³ Inducators	of hydrophytic vegetation and
	leyed Matnx (S4)			13 (1 3)				hydrology must be pre sent
	Layer (if present)							
Depth (ind	ches)		_				Hydnc Soi	Present? Yes X_ No
Remarks							·L	
Playa soils S	Salorthids are hydric	by detinition						
1								
HYDROLO	GY				~			
	drology Indicators						Seco	ndary Indicators (2 or incre required)
1	ators (any one indic	ator is sufficien	t)					Vater Marks (B1) (Riverine)
	atoro (any one filule		*				'	

 Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonnverine Sediment Deposits (B2) (Nonnverine Drift Deposits (B3) (Nonnverine Surface Soil Cracks (B6) Inundation Visible on Aenal Ima Water Stained Leaves (B9) 	e) Aquation e) Hydrog venne) Oxidize e) Presen Recent	Crust (B12) c Invertebrates (B13) gen Sultide Odor (C1)	ng Roots (C3) Soils (C6)	Sediment Deposits (82) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aen al Imagery (C9) Shallow Aquitard (D3) FAC Neutral Test (05)
Field Observations				
Surface Water Present? Yes	No X Depth	(inches)		
Water Table Present? Yes	No <u>X</u> Depth	n (inches)		
Saturation Present? Yes (includes capillary fringe)	No X_ Depth	(inches)	Wetland Hydi	rology Present? Yes No <u>X</u>
Describe Recorded Data (stream ga	uge monitonng well aer	nal photos previous inspect	tions) if availab	le
Remarks				
No wetland hydrology				

)

1

ī.

ī

1	scription (Describe	to the depth r				or confirm	the absence	e of indicators)
Depth	<u>Matnx</u> Color (moist)			ox Features %		Loc ²	Texture	Remarks
<u>(inches)</u>								
02	10YR 3/2						_CILo	Moist
23	_7 SYR 4/5	<u>too</u>					OILo	Moist
_3+	10YR 3/3					<u> </u>	CI	Moist
	·							
		~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				·	<u> </u>	·
	Doncentration D=Dep I Indicators (Applic					ELINING R		nel M=Matnx s for Problematic Hydric Soils ³
•					u)			•
Histoso	Epipedon (A2)		Sandy Red Stopped M					Muck (A9) (LRR C) Muck (A10) (LRR B)
Black H			Loamy Mud	•	(F1)			ced Verfic (F18)
_	en Sulfide (A4)		Loamy Gle					Parent Matenal (TF2)
Stratitie	ed Layers (A5) (LRR (C)	Depleted M	latnx (F3)				(Explain in Remaiks)
	luck (A9) (LRR D)		Redox Darl					
	ed Below Dark Surfac	e (A11)	Depleted D		•			
	Dark Surface (A12) Mucky Mineral (B1)		Redox Dep Vernal Poo		8)		³ Indicators	of hydrophytic vegetation and
	Gleyed Matrix (S4)			13 (1 0)				d hydrology must be pre sent
	Layer (if present)	·····						
Туре		<u></u>						
Depth (ir	nches)		_				Hydric Soi	Present? Yes NoX
Remarks			· · · · · · · · · · · · · · · · · · ·				L	
No hydnc so	DIIS							
HYDROLC	DGY							
Wetland Hy	drology Indicators						Seco	ndary Indicators (2 or more required)
Pnmary Ind	icators (any one indic	ator is sufficien	t)				V	Vater Marks (B1) (River ine)
Surface	e Water (A1)		Salt Crust	(B11)			s	Gediment Deposits (B2) (Riverme)
High W	ater Table (A2)		Biotic Crus	st (B12)			C	Orift Deposits (B3) (Biverme)
Saturati	ion (A3)		Aquatic In		•		[Drainage Patterns (B10)
_	Marks (B1) (Nonriven		Hydrogen					Dry Season Water Table (C2)
	ent Deposits (B2) (Noi				-	-		hin Muck Surface (C7)
	posits (B3) (Nonrivei	nne)	Presence					Crayfish Burrows (C8)
	Soil Cracks (B6)	(0.7)	Recent Iro			ed Soils (C	·	Saturation Visible on Aenal Imagery (C9)
	tion Visible on Aerial I	magery (B7)	Other (Exp	lain in Hen	narks)			Shallow Aquitard (03)
	Stained Leaves (B9)						F	AC Neutral Test (D5)
Field Obsei			V D H <i>i</i>					
			<u>X</u> Depth (inc			1		
Water Table			X Depth (ind			•		
			X_ Depth (inc	hes)		- Wetta	nd Hydrolog	y Present? Yes No X
Saturation F (includes ca	Present? Y pillary fnnge) ecorded Data (stream		nng well aenal	photos prev	vious insp	ections) if	available	
Saturation F (includes ca	pillary fnnge)		nng well aenal j	photos pre	vious insp	ections) if	available	
Saturation F (includes ca Descnbe Re	pillary fnnge)		nng well aenal j	photos pre	vious insp	lections) if	available	
Saturation F (includes ca Descnbe Re	pillary fnnge) ecorded Data (stream		nng well aenal j	photos pre	vious insp	l vections) if	available	
Saturation F (includes ca Describe Re Remarks	pillary fnnge) ecorded Data (stream		nng well aenal j	photos pre	vious insp	l vections) if	available	

1

	(2000)				r confirm t	he absen	ce of indicators)			
Depth	Matnx		Redox Features	- 1		-				
(Inches)	Color (moist)	% Color (mois	st) <u> </u>	<u>lype</u>	Loc	Texture	Remarks			
0_41	10YR 3/2 1	00				Cl	Moist			
4 72	2 5Y 5/21	100			<u> </u>	Cl	Moist			
7 - 101	10YR 6/3 1	00				<u>CI</u>	Moist			
			· ·	·						
Hydric Soil Ind	licators (Applicable	on RM=Reduced Matri to all LRRs unless	otherwise noted		Lining RC:	Indicato	rs for ProblematicHydric Soils ³			
Histosol (A Histic Epipe			/ Redox (S5) ed Matnx (S6)				ו Muck (A9) (LRR C) א Muck (A10) (LRR B)			
Black Histic			y Mucky Mineral ((F1)			uced Vertic (FIB)			
Hydrogen S	•		y Gleyed Matrix (I				Parent Matenal (TF2)			
-	ayers (A5) (LRR C)		ted Matrix (F3)			Other (Explain in Remarks)				
	(A9) (LRR D)	Redox	Dark Suntace (F	-6)						
Depleted Be	elow Dark Surface (A		ted Dark Surface							
Thick Dark			Depressions (F8	8)		3				
	ky Mineral (ST)	Vernal	l Pools (F9)				rs of hydrophytic vegetation and			
	ved Matnx (S4)			.		wetla	nd hydrology must bepresent			
Restrictive Lay										
	·									
	s)					Hydric So	DII Present? Yes_X No			
Remarks										
lemans										
-	orthids are hydnc by d	definition								
-		definition								
Playa soils Salo YDROLOGY		iefinition				Sec	ondary Indicators (2 or more required)			
Playa soils Salo YDROLOGY Vetland Hydro	1					Sec	condary Indicators (2 or more required) Water Marks (B1) (River me)			
Playa soils Salo YDROLOGY Vetland Hydro	/ logy Indicators brs (any one indicator	is sufficient)	Crust (B11)			<u>Sec</u>				
Playa soils Sald YDROLOGY Vetland Hydrol Prmarv Indicato	f logy Indicators ors (any one indicator ater (AT)	<u>is sufficient)</u> Salt (Crust (B11) c Crust (B12)			<u>Sec</u>	Water Marks (B1) (Biver me)			
Playa soils Salo YDROLOGY Vetland Hydrol Pnmary Indicato Surface Wa	/ logy Indicators ors (any one indicator ater (A I) Table (A2)	<u>is sufficient)</u> Salt (Biotic		(B13)		<u>Sec</u>	Water Marks (B1) (River me) Sediment Deposits(B2) (River me)			
Playa soils Salo YDROLOGY Vetland Hydrol Pinmarv Indicato Surface Wa High Water Saturation (/ logy Indicators ors (any one indicator ater (A I) Table (A2)	<u>is sufficient)</u> Salt (Biotic Aqua	c Crust (B12)			<u>Sec</u>	Water Marks (B1) (Riverme) Sediment Deposits(B2) (Riverme) Drift Deposits (B3) (Riverme)			
Playa soils Salo YDROLOGY Vetland Hydrol Pinmary Indicato Surface Wa High Water Saturation (Water Mark	/ logy Indicators ors (any one indicator ater (AT) Table (A2) (A3)	<u>IS sufficient)</u> Salt (Biotic Aqua Hydro	c Crust (B12) htic Invertebrates	or (C1)	wing Roots		Water Marks (B1) (River me) Sediment Deposits (B2) (River me) Drift Deposits (B3) (River me) Drainage Patterns (B1C)			
Playa soils Salo YDROLOGY Vetland Hydrol Primary Indicato Surface Wa High Water Saturation (Water Mark Sediment D	/ logy Indicators ors (any one indicator ater (A1) Table (A2) (A3) is (B1) (Nonnverine)	<u>IS sufficient)</u> Salt (Biotic Aqua Hydro enne) Oxidi	c Crust (B12) httc Invertebrates ogen Sulfide Odo	or (C1) es along Li	ving Roots		Water Marks (B1) (Riverme) Sediment Deposits(B2) (Riverme) Drift Deposits (B3) (Riverme) Drainage Patterns (B1C) Dry Season WaterTable (C2)			
Playa soils Salo YDROLOGY Wetland Hydrol Pinmarv Indicato Commarv Indicato Surface Wa High Water Saturation (Water Market Sediment D Drift Deposi	(logy Indicators ors (any one indicator ater (A1) Table (A2) (A3) (S (B1) (Nonnverine) Deposits (B2) (Nonrive	IS Sufficient) Salt (Biotic Aqua Hydro en ne) Oxidi) Preso	c Crust (B12) nic Invertebrates ogen Sulfide Odo zed Rhizosphere	or (C1) es along Li I Iron (C4)	U		Water Marks (B1) (River me) Sediment Deposits (B2) (River me) Drift Deposits (B3) (River me) Drainage Patterns (B1C) Dry Season Water Table (C2) Thm Muck Surface (C7)			

Water Stained Leaves	(B9)			FAC Neutral Test (05)				
Field Observations	······································							
Surface Water Present?	Yes	NoX	Depth (inches)					
Water Table Present?	Yes	NoX	Depth (inches)					
Saturation Present? (includes capillary finge)	Yes	No <u></u>	Depth (inches)	Wetland Hydrology Present? Yes	_ No_X			
Describe Recorded Data (st	tream gauge	e monitonn	g well aenal photos prev	vious inspections) if available				
Remarks								
No wetland hydrology evide	nt							

; 1

ł

Profile Desc	cription (Describe	to the depth n	eeded to docu	ment the i	ndicator	or confirm	the absen	ce of indicators)
Depth	<u>Maınx</u> Color (moist)			ox Features	Type ¹	Loc ²	Texture	Remarks
(inches)								
04	<u>10YR 3/2</u>		······				CI	Moist
4 7	2 5Y 5/2			~			CI	Moist
7-10	10YR 6/3	_100					<u> </u>	Moist
		· <u></u>						
						<u> </u>		
						<u> </u>		
	<u></u>							
¹ Type C=C	oncentration D=Dep	letion RM=Rec	luced Matrix	2Location	PL=Por	e Lining Ri	O=Root Cha	annel M=Matnx
	Indicators (Applic					~¥		rs for Problematic Hydric Soils ³
Histosol	(A1)		Sandy Red	ox (S5)			1 cm	n Muck (A9) (LRR C)
	oipedon (A2)		Stnpped M					Muck (A10) (LRR B)
Black Hi			Loamy Muc	-	· •			uced Vertic (F18) Parent Matenal (TF2)
	n Sulfide (A4) 1 Layers (A5) (LRR (Depleted M	-	(F2)			er (Explain in Remarks)
	ick (A9) (LRR D)	-, .	Redox Darl		=6)			······································
Depleted	d Below Dark Surface	e (A11)	Depleted D					
	ark Surface (A12)	-	Redox Dep		8)		3	
	fucky Mineral (S1) ileyed Matrix (S4)		Vernal Poo	IS (F9)				rs of hydrophytic vegetation and nd hydrology must bepresent
	_ayer (if present)							
	ches)						Hydric Sc	oll Present? Yes X No
Remarks			· · · · · · · · · · · · · · · · · · ·				1	
1								
Playa soils S	Salorthids are hydric	by detinition						
HYDROLO	GY							
Wetland Hyd	drology Indicators						Sec	ondary Indicators (2 or more required)
Primary Indic	ators (any one indica	ator is sufficient						Water Marks (B1) (Riverine)
1	Water (A1)		Salt Crust					Sediment Deposits(B2) (Riverine)
	iter Table (A2)		Biotic Crus					Drift Deposits (B3) (Riverine)
Saturatio			Aquatic In					Drainage Patterns (81C)
	arks (B1) (Nonnven		Hydrogen			wing Poot		Dry Season WaterTable (C2) Thin Muck Surface(C7)
	nt Deposits (B2) (Nor posits (B3) (Nonriver		Presence	•	-	-		Crayfish Burrows (C8)
·	Soil Cracks (B6)	inc)	Recent Irc					Saturation Visible on Aerial Imagery (C9)
	on Visible on Aenal I	magery (B7)	Other (Exp					Shallow Aquitard (03)
	tained Leaves (B9)							FAC Neutral Test (05)
Field Observ								
Surface Wate	er Present? Ye	es No_	X Depth (in	ches)				
Water Table	Present? Y	es No _	X Depth (in	ches)				
Saturation Pr		es No _	X_ Depth (in	ches)		_ Wetla	nd Hydrolo	gy Present? Yes X No
(includes cap	oillary fnnge) corded Data (stream		ing well sensiti	nhotos pre			favailable	
Describe riet	Solueo Dala (Strediti	gaage monitor	ing non actial	prioros pie				
Remarks								
	s are indication of we	tland hydrology	,					

-

1

Profile Desc	cription (Describe	to the dept	needed to docu	ment the i	ndicator	or confirm	the absence	e of indicators)
Depth	Matnx			ox Features				
(inches)	Color (moist)		Color (moist)	/	_Type ¹	Loc ²	Texture	Remarks
03	10YR 5/2	100					SILO	Moist
3 18+	_10YR 5/2	100					Ci	Moist
						<u> </u>		·······
							·	
							· <u>·····</u>	
	oncentration D=Depl					e Lining R		nel M=Matnx
Hydric Soil	ndicators (Applica	able to all L			ed)			for Problematic Hydric Soils ³
Histosol	• •		Sandy Red					Muck (A9) (LRR C)
Histic Ep	opedon (A2)		Stnpped Ma	atrıx (S6)			2 cm	Muck (A10) (LRR B)
Black Hi	stic (A3)		Loamy Muc	ky Mineral	(F1)		Reduc	ced Vertic (F18)
Hydroge	n Sulfide (A4)		Loamy Gley	yed Matnx	(F2)		Red P	arent Matenal (TF2)
Stratified	Layers (A5) (LRR C	;)	Depleted M	latrix (F3)			<u>X</u> Other	(Explain in Remarks)
	ck (A9) (LRR D)		Redox Dark	Surface (I	-6)			
	Below Dark Surtace	(ATI)	Depleted D		-			
	rk Surface (A12)	(· · · · /	Redox Dep					
	ucky Mineral (S1)		Vernal Pool		-,		³ indicators	of hydrophytic vegetation and
-	leyed Matnx (S4)		vondri oor					I hydrology must be present
Restrictive L	ayer (if present)						<u> </u>	
Туре								
Depth (inc	hes)						Hydric Soil	Present? Yes X No
Remarks								
Playa soils S	alorthids are hydric l	by definition						
					<u> </u>			
HYDROLO	GY							

Wetland Hydrology Indicators	Secondary Indicators (2 cr in ore reaured)
Primary Indicators (any one indicator is sufficient)	Water Marks (B1) (Riverine)
Surface Water (A1) Salt Crust (B11)	Sediment Deposits(B2) (Riverine)
High Water Table (A2) Biotic Crust (B12)	Doft Deposits (B3) (Riverine)
Saturation (A3) Aquatic Invertebrates (B13)	Drainage Patterns (B10)
Water Marks (B1) (Nonrivenne) Hydrogen Sulfide Odor (C1)	Dry Season WaterTable (C2)
Seoiment Deposits (B2) (Nonrivenne) Oxidized Rhizospheres along Living Roots	(C3) Thin Muck Surface (C7)
Drift Deposits (B3) (Nonnverine) Presence of Reduced Iron (C4)	Crayfish Burrows (C8)
<u>X</u> Surface Soil Cracks (B6) <u> </u>	5) Saturation Visible on Aenal Imagery (C9)
Inundation Visible on Aenal Imagery (B7) Other (Explain in Remarks)	Shallow Aquitard (03)
Water Stained Leaves (B9)	FAC Neutral Test (05)
Field Observations	
Surface Water Present? Yes No X Depth (inches)	
Water Table Present? Yes No X Depth (inches)	
Saturation Present? Yes No X Depth (inches) Wetlan (includes capillary finge)	nd Hydroiogy Present? Yes X No
Describe Recorded Data (stream gauge monitoring well aerial photos previous inspections) if	available
Remarks	
Cracked soils are indication of wetland hydrology	

Profile Description (Describe to the depth needed to document the indicator or confir	m the absence of indicators)
Depth Matnx Redox Features	-
(inches) Color (moist) % Color (moist) % Type ¹ Loc ²	Texture Remarks
0-6 <u>10YR 3/2</u> 100	SiLo Moist
<u>6 + 7 5YR 4/3 100</u>	CILo Moist
	·
	·
	· · · · · · · · · · · · · · · · · · ·
¹ Type C=Concentration D=Depletion RM=Reduced Matnx ² Location PL=Pore Lining	RC=Root Channel M=Matrix
Hydric Soil Indicators (Applicable to all LRRs unless otherwise noted)	Indicators for Problematic Hydric Soils ³
Histosol (A1) Sandy Redox (S5)	1 cm Muck (A9) (LRR C)
Histic Epipedon (A2) Stipped Matnx (S6)	2 cm Muck (A10) (LRR B)
Black Histic (A3) Loarny Mucky Mineral (F1)	Reduced Venuc (F18)
Hydrogen Sulfide (A4) Loarny Gleyed Matnx (F2)	Red Parent Matenal (TF2)
Stratitied Layers (A5) (LRR C) Depleted Matrix (F3)	Other (Explain in Remarks)
1 cm Muck (A9) (LRR D) Redox Dark Surface (F6)	
_ Depleted Below Dark Surface (A11) _ Depleted Dark Surface (F7) Thick Dark Surface (A12) _ Redox Depressions (F8)	
Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Vernal Pools (F9)	³ Indicators of hydrophytic vegetation and
Sandy Gleyed Matnx (S4)	wetland hydrology must be present
estrictive Layer (if present)	
Туре	
Depth (inches)	Hydric Soil Present? Yes NoX
lo hydnc soils	
No hydric soils YDROLOGY	Secondary Inductors (2 or more required)
YDROLOGY Vetland Hydrology Indicators	Secondary Indicators (2 or more required) Water Marks (B1) (Biverme)
YDROLOGY Vetland Hydrotogy Indicators Inmary Indicators (any one indicator is sufficient)	Water Marks (B1) (Riverme)
YDROLOGY Vetland Hydrology Indicators rimary Indicators (any one indicator is sufficient)	Water Marks (B1) (Riverme) Sediment Deposits (B2) (Riverme)
YDROLOGY Vetland Hydrotogy Indicators Immary Indicators (any one indicator is sufficient)	Water Marks (B1) (Riverme) Sediment Deposits (B2) (Riverme) Drift Deposits (B3) (Riverine)
YDROLOGY Vetland Hydrology Indicators rimary Indicators (any one indicator is Sufficient)	Water Marks (B1) (Riverme) Sediment Deposits (B2) (Riverme) Drift Deposits (B3) (Riverine) Drainage Patterns (B10)
YDROLOGY Vetland Hydrotogy Indicators Immary Indicators (any one indicator is sufficient)	 Water Marks (B1) (Riverme) Sediment Deposits (B2) (Riverme) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry Season Water Table (C2)
YDROLOGY Vetland Hydrotogy Indicators rimary Indicators (any one indicator is sufficient)	Water Marks (B1) (Riverme) Sediment Deposits (B2) (Riverme) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry Season Water Table (C2) ots (C3) Thin Muck Surface (C7)
YDROLOGY Vetland Hydrotogy Indicators Immary Indicators (any one indicator is Sufficient) Surface Water (A1) Salt Crust (B11) High Water Table (A2) Biotic Crust (B12) Saturation (A3) Aquatic Invertebrates (B13) Water Marks (B1) (Nonnverine) Hydrogen Sultide Odor (C1) Sediment Deposits (B2) (Nonrivenne) Oxidized Rhizospheres along Living Ro Dnft Deposits (B3) (Nonrivenne) Presence of Reduced Iron (C4)	 Water Marks (B1) (Riverme) Sediment Deposits (B2) (Riverme) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry Season Water Table (C2) ots (C3) Thin Muck Surface (C7) Crayfish Burrows (C8)
YDROLOGY Vetland Hydrology Indicators mmary Indicators (any one indicator is Sufficient) Surface Water (A1) Salt Crust (B11) High Water Table (A2) Biotic Crust (B12) Saturation (A3) Aquatic Invertebrates (B13) Water Marks (B1) (Nonnverine) Hydrogen Sultide Odor (C1) Sediment Deposits (B2) (Nonrivenne) Oxidized Rhizospheres along Living Ro Dnft Deposits (B3) (Nonrivenne) Presence of Reduced Iron (C4) Surface Soil Cracks (B6) Recent Iron Reduction in Plowed Soils (Water Marks (B1) (Riverme) Sediment Deposits (B2) (Riverme) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry Season Water Table (C2) ots (C3) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aenal Imagery (C
//DROLOGY //etland Hydrology Indicators nmary Indicators (any one indicator is Sufficient)	 Water Marks (B1) (Riverme) Sediment Deposits (B2) (Riverme) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry Season Water Table (C2) ots (C3) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aenal Imagery (C Shallow Aquitard (D3)
YDROLOGY Vetland Hydrotogy Indicators Immary Indicators (any one indicator is sufficient) Surface Water (A1) Salt Crust (B11) High Water Table (A2) Biotic Crust (B12) Saturation (A3) Aquatic Invertebrates (B13) Water Marks (B1) (Nonnverine) Hydrogen Sultide Odor (C1) Sediment Deposits (B2) (Nonrivenne) Oxidized Rhizospheres along Living Ro Dnft Deposits (B3) (Nonrivenne) Presence of Reduced Iron (C4) Surface Soil Cracks (B6) Recent Iron Reduction in Plowed Soils (Inundation Visible on Aenal Imagery (B7) Water Stained Leaves (B9) Other (Explain in Remarks)	Water Marks (B1) (Riverme) Sediment Deposits (B2) (Riverme) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry Season Water Table (C2) ots (C3) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aenal Imagery (C
YDROLOGY Vetland Hydrology Indicators Immary Indicators (any one indicator is sufficient) Surface Water (A1) Salt Crust (B11) High Water Table (A2) Biotic Crust (B12) Saturation (A3) Aquatic Invertebrates (B13) Water Marks (B1) (Nonnverine) Hydrogen Sultide Odor (C1) Sediment Deposits (B2) (Nonrivenne) Oxidized Rhizospheres along Living Ro Dnft Deposits (B3) (Nonrivenne) Presence of Reduced Iron (C4) Surface Soil Cracks (B6) Recent Iron Reduction in Plowed Soils (Inundation Visible on Aenal Imagery (B7) Water Stained Leaves (B9) Uter (Explain in Remarks)	 Water Marks (B1) (Riverme) Sediment Deposits (B2) (Riverme) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry Season Water Table (C2) ots (C3) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aenal Imagery (C Shallow Aquitard (D3)
YDROLOGY Vetland Hydrology Indicators Primary Indicators (any one indicator is sufficient)	 Water Marks (B1) (Riverme) Sediment Deposits (B2) (Riverme) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry Season Water Table (C2) ots (C3) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aenal Imagery (C Shallow Aquitard (D3)
YDROLOGY Primary Indicators (any one indicator is sufficient)	 Water Marks (B1) (Riverme) Sediment Deposits (B2) (Riverme) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) Dry Season Water Table (C2) ots (C3) Thin Muck Surface (C7) Crayfish Burrows (C8) (C6) Saturation Visible on Aenal Imagery (C Shallow Aquitard (D3) FAC Neutral Test (D5)
YDROLOGY Vetland Hydrology Indicators Primary Indicators (any one indicator is sufficient)	 Water Marks (B1) (Riverme) Sediment Deposits (B2) (Riverme) Drift Deposits (B3) (Riverme) Drainage Patterns (B10) Dry Season Water Table (C2) ots (C3) Thin Muck Surface (C7) Crayfish Burrows (C8) (C6) Saturation Visible on Aenal Imagery (C Shallow Aquitard (D3) FAC Neutral Test (D5)
YDROLOGY Vetland Hydrology Indicators Primary Indicators (any one indicator is sufficient)	 Water Marks (B1) (Riverme) Sediment Deposits (B2) (Riverme) Drift Deposits (B3) (Riverme) Drainage Patterns (B10) Dry Season Water Table (C2) ots (C3) Thin Muck Surface (C7) Crayfish Burrows (C8) (C6) Saturation Visible on Aenal Imagery (C Shallow Aquitard (D3) FAC Neutral Test (D5)
YDROLOGY Vetland Hydrology Indicators Primary Indicators (any one indicator is Sufficient)	Water Marks (B1) (Riverme) Sediment Deposits (B2) (Riverme) Drift Deposits (B3) (Riverine) Drinage Patterns (B10) Dry Season Water Table (C2) ots (C3) Thin Muck Surface (C7) Crayfish Burrows (C8) (C6) Saturation Visible on Aenal Imagery (C Shallow Aquitard (D3) FAC Neutral Test (D5)
YDROLOGY Vetland Hydrotogy Indicators Primary Indicators (any one indicator is sufficient)	 Water Marks (B1) (Riverme) Sediment Deposits (B2) (Riverme) Drift Deposits (B3) (Riverme) Drainage Patterns (B10) Dry Season Water Table (C2) ots (C3) Thin Muck Surface (C7) Crayfish Burrows (C8) (C6) Saturation Visible on Aenal Imagery (C Shallow Aquitard (D3) FAC Neutral Test (D5)
YDROLOGY Vetland Hydrology Indicators Primary Indicators (any one indicator is Sufficient)	Water Marks (B1) (Riverme) Sediment Deposits (B2) (Riverme) Drift Deposits (B3) (Riverme) Drainage Patterns (B10) Dry Season Water Table (C2) ots (C3) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aenal Imagery (C Shallow Aquitard (D3) FAC Neutral Test (D5)

Profile Des	cription (Describe	to the dept	h needed to docu	ment the indicator	or confirm	n the absence	e of indicators)	
Depth <u>Matnx</u>		·	Rede	ox Features		_	_	
(inches)	Color (moist)	%	Color (moist)	<u> </u>	_Loc [*]	<u>Texture</u>	Remarks	
03	10YR 5/2	100			<u> </u>	SILo	Moist	
3+	10YR 5/2	_100				CI	Moist	
					·			
	·							
	. <u></u> .				<u> </u>	·		
	Concentration D=Dep				e Lining F			
•	Indicators (Applica						s for Problematic Hydric Soils ³	
Histoso	I (A1) pipedon (A2)		Sandy Red Stnpped M	• •		1 cm Muck (A9) (LBR C)		
Histic E				cky Mineral (F1)		2 cm Muck (A10) (LRR B) Reduced Vertic (F18)		
	en Sulfide (A4)			yed Matrix (F2)		Red Parent Matenal (TF2)		
	d Lavers (A5) (LRR C	:)	Depleted M			X Other (Explain in Remarks)		
	uck (A9) (LRR D)	,		< Surface (F6)			(
	d Below Dark Surface	e (A11)		ark Surface (F7)				
	ark Surface (A12)	. ,	Redox Dep	ressions (F8)				
Sandy I	Mucky Mineral (S1)		Vernal Poo	ls (F9)		³ Indicators	s of hydrophytic vegetation and	
Sandy (Gleyed Matnx (S4)					wetland	hydrology must be present	
Restrictive	Layer (if present)							
Туре			—					
Depth (in	ches)					Hydric Soi	I Present? Yes X No	
Remarks								
Playa soils	Salorthids are hydric t	by definition	I					
YDROLC					<u>-</u>	<u></u>	adar (ladartara (2) ar mara ragina d	
	drology Indicators						ndary Indicators (2 or more required)	
	cators (any one indica	tor is suffic					Water Marks (B1) (Rivenne)	
_	Water (A1)		Salt Crust	• •			Sediment Deposits (B2) (Rivenne)	
-	ater Table (A2)		Biotic Crue				Onft Deposits (B3) (Rivenne)	
Saturati				verfebrates (B13)			Drainage Pattems (B10)	
Water N	larks (B1) (Nonriveni	ne)	Hydrogen	Sulfide Odor (C1)		[Dry Season Water Table (C2)	

vvaler marks (DT) (Northvertine)		 Dry Season water	able
Sediment Deposits (B2) (Nonrivenne)	Oxidized Rhizospheres along Living Roots (C3)	 Thin Muck Surface	(C7)

- ___ Presence of Reduced Iron (C4)

X Surface Soil Cracks (B6)	Recent Iron Reduction in Plowed	Soils (C6) Saturation Visible on Aerial Imagery (C9)
Inundation Visible on Ae	nal Imagery (B7)	Other (Explain in Remarks)	Shallow Aquitard (D3)
Water Stained Leaves (B	39)		FAC Neutral Test (D5)
Field Observations			
Surface Water Present?	Yes No	X Depth (inches)	
Water Table Present?	Yes No _	X Deoth (inches)	
Saturation Present? (includes capillary fringe)	Yes No _	X Depth (inches)	Wetland Hydrology Present? Yes X No
Describe Recorded Data (str	eam gauge monito	onng well aenal photos previous inspec	tions) if available

Remarks

_

Cracked soils are indication of wetland hydrology

Dntt Deposits (B3) (Nonrivenne)

___ Crayfish Burrows (C8)

Sampling Point 91

Profile Description (Describe to t	he depth nee	eded to docun	nent the I	ndicator	or confirm	the absen	ce of indicators)
Depth <u>Matrix</u> (inches) Color (moist)	γ <u>Co</u>	Redo lor (moist)	x Features		Loc ²	Texture	Remarks
	_ <u>/</u> <u>0</u> 100					SiLo	
							<u>Moist</u>
	100					<u>Cl</u>	Moist
<u>7 – 10 10YR 6/3 1</u>	100					<u> </u>	Moist
¹ Type C=Concentration D=Depletion Hydric Soil Indicators (Applicable Histosol (A1) Histic Epipedon (A2) Black Histic (A3)		unless other Sandy Redo Stnpped Ma Loamy Muc	wise note ox (S5) itnx (S6) ky Mineral	(F1)	Lining R	Indicato 1 cn 2 cn Red	ors for Problematic Hydric Soils ³ n Muck (A9) (LRR C) n Muck (A10) (LRR B) luced Vertic (F18)
 Hydrogen Sultide (A4) Stratitied Layers (A5) (LRR C) 1 cm Muck (A9) (LRR D) Depleted Below Dark Surface (A Thick Dark Surface (A12) 	 .11)	Loamy Gley Depleted Ma Redox Dark Depleted Da Redox Depr	atrix (F3) Surface (f ark Surface essions (F	⁼ 6) e (F7)		Oth	l Parent Matenal (TF2) er (Explain in Remaiks)
Sandy Mucky Mineral (S1)		_ Vernal Pools	s (F9)				ors of hydrophytic vegetation and
Sandy Gleyed Matnx (S4) Restrictive Layer (if present)						wetta	nd hydrology must be present
Type)	
Depth (inches)						Hydric Se	oil Present? Yes No <u>X</u>
Remarks							
No hydnc soils							
IYDROLOGY							
Wetland Hydrology Indicators							condary Indicators (2 or more required)
Pnmary Indicators (any one indicator	is sufficient)						Water Marks (B1) (Riverme)
Surface Water (AI) High Water Table (A2)		_ Salt Crust (_ Biotic Crus	t (B12)				Sediment Deposits (B2) (Riverme) Drift Deposits (B3) (Rivenne)
Saturation (A3) Water Marks (B1) (Nonnverine)	_	_ Aquatic Inv _ Hydrogen \$					Drainage Patterns (BIO) Dry Season Water Table (C2)
 Sediment Deposits (B2) (Nonrivenne) Drift Deposits (B3) (Nonrivenne) 	enne) _	Oxidized R Presence c	hizosphere	es along L	-	is (C3)	Thin Muck Surface (C7) Crayfish Burrows (C8)
Surface Soil Cracks (B6) Inundation Visible on Aenal Imag Water Stained Leaves (B9)	 gery (B7)	_ Recent Iror _ Other (Exp			ed Soils (C	:6) 	Saturation Visible on Aenal Imagery (C9) Shallow Aquitard (03) FAC Neutral Test (05)
Field Observations	No. Y	Donth (m	bec)				
		C Depth (inc C Depth (inc	•		[
		Depth (inc				nd Hydrolo	ogy Present? Yes No <u>X</u>
Describe Recorded Data (stream gau	ige monitonn	g well aenal p	hotos pre	vious insp	ections) i	f available	
Remarks		·		~~~~			······
No wetland hydrology							

١

Profile Description (Describe to the depth needed to document the indicator or conhri	n the absence o	f indicators)
Depth Matnx Redox Features		· · · · · · · · · · · · · · · · · · ·
(inches) <u>Color (moist)</u> <u>%</u> <u>Color (moist)</u> <u>%</u> <u>Type¹</u> <u>Loc²</u>	Texture	Remarks
0 <u>3</u> 10YR 3/2 100	<u>SiLo</u>	Moist
3 8 10YR 6/4 100	SaGr	Damp
		Cemented, hard pan
{ <u>8+</u>		
	<u> </u>	
·		
¹ Type C=Concentration D=Depletion RM=Reduced Matnx ² Location PL=Pore Lining F	RC=Root Channe	M=Matnx
Hydric Soil Indicators (Applicable to all LRRs unless otherwise noted)		or Problematic Hydric Soils ³
Histosol (A1) Sandy Redox (S5)	1 cm Mu	ck (A9) (LRR C)
Histic Epipedon (A2) Stipped Matrix (S6)		ck (A10) (LRR B)
Black Histic (A3) Loamy Mucky Mineral (F1)		Vertic (F18)
Loamy Gleyed Matnx (F2)		ent Matenal (TF2)
Stratitied Layers (A5) (LRR C) Depleted Matnx (F3) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6)		xplain in Remarks)
Depleted Below Dark Surface (A11) Depleted Dark Surface (F7)		
Thick Dark Surface (A12) Redox Depressions (F8)		
Sandy Mucky Mineral (S1) Vernal Pools (F9)		hydrophytic vegetation and
Sandy Gleyed Matnx (S4)	wetland h	ydrology must bepresent
Restrictive Layer (if present)		
Type <u>Cemented hard pan</u>	Hudra Sail D	resent? Yes X No
Depth (inches) 8 Remarks		resent? Yes X No
nemans		
Salorthids		
HYDROLOGY	<u>Second</u>	
Wetland Hydrology Indicators Primary Indicators (any one indicator is sufficient)		ary Indicators (2 or more required)
		ter Marks (B1) (Rive r ine)
Surface Water (A1) Salt Crust (B11) High Water Table (A2) Biotic Crust (B12)		liment Deposits (B2) (Riverme)
Saturation (A3) Aquatic Invertebrates (B13)		t Deposits (B3) (Riverine) inage Patterns (B10)
Water Marks (B1) (Nonrivenne) Hydrogen Sulfide Odor (C1)		Season Water Table (C2)
Sediment Deposits (B2) (Nonrivenne) Oxidized Rhizospheres along Living Roc		Muck Surface (C7)
Drift Deposits (B3) (Nonrivenne) Presence of Reduced Iron (C4)	Cra	yfish Burrows (C8)
X Surface Soil Cracks (B6) Recent Iron Reduction in Plowed Soils (uration Visible on Aeri al Imagery (C9)
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)	Sha	llow Aquitard (D3)
Water Stained Leaves (B9)	FAC	C Neutral Test (D5)
Field Observations		
Surface Water Present? Yes NoX_ Depth (inches)		
Water Table Present? Yes NoX Depth (inches)		
	and Hydrology F	Present? Yes X No
(includes capillary fnnge) Descnbe Recorded Data (stream gauge monitoring well aenal photos previous inspections)	If available	
Desense necorded Data (stream gauge monitoring weir aerial photos previous inspections)	n avanadie	
Remarks		
Cracked soils indicate wetland hydrology		
Stacked constitute wetland hydrology		

SUL	Sampling Point <u>101</u>
Profile Description (Describe to the depth needed to document the indicator or cor	firm the absence of indicators)
Depth <u>Matnx</u> <u>Redox Features</u> (inches) Color (moist) % Color (moist) % Type ¹ Loc	2 Tasture David
0 8 10YR 3/2 100	SiLo Damp
<u>8 – 18+</u> <u>10YR 4/2</u> <u>100</u>	SiLo Damp
¹ Type C=Concentration D=Depletion RM=Reduced Matrix ² Location PL=Pore Linin	
Hydric Soil Indicators (Applicable to all LRRs unless otherwise noted)	Indicators for Problematic Hydric Soils ³
Histosol (A1) Sandy Redox (S5) Histic Epipedon (A2) Stripped Matrix (S6)	1 cm Muck (A9) (LRR C) 2 cm Muck (A10) (LRR B)
Black Histic (A3) Loamy Mucky Mineral (F1)	Reduced Vertic (F18)
Hydrogen Sulfide (A4) Loamy Gleyed Matnx (F2)	Red Parent Matenal (TF2)
Stratified Layers (A5) (LRR C) Depleted Matrix (F3)	Other (Explain in Remarks)
1 cm Muck (A9) (LRR D) Redox Dark Surface (F6)	
Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8)	
Fields Depressions (F6)	³ Indicators of hydrophytic vegetation and
Sandy Gleyed Matnx (S4)	wetland hydrology must the present
Restrictive Layer (if present)	
Туре	
Depth (inches)	Hydric Soil Present? Yes No X
Remarks	
Soils not hydric	
HYDROLOGY	
Wetland Hydrology Indicators	Secondary Indicators (2 or more required)
Pnmary Indicators (any one indicator is sufficient)	Water Marks (B1) (Riverme)
Surface Water (A1) Salt Crust (B11)	Sediment Deposits (B2) (Riverme)
High Water Table (A2) Biotic Crust (B12)	Drift Deposits (B3) (Riverme)
Saturation (A3) Aquatic Invertebrates (B13)	Drainage Patterns (B10)
Water Marks (B1) (Nonnverine) Hydrogen Sulfide Odor (C1)	Dry Season Water Tab1e (C2)
	Roots (C3) Thin Muck Surtace (C7)
Drift Deposits (B3) (Nonrivenne) Presence of Reduced Iron (C4)	Crayfish Burrows (C8)
Surface Soil Cracks (B6) Recent Iron Reduction in Plowed Soi	
Inundation Visible on Aenal Imagery (B7) Other (Explain in Remarks)	Shallow Aquitard (D3)
Water Stained Leaves (B9)	FAC Neutral Test (05)
Field Observations	
Surface Water Present? Yes No X Depth (inches)	
Water Table Present? Yes No X Depth (inches) Cohurthan Depart 2 Vac Na X Depth (inches)	
(includes capillary fnnge)	/etland Hydrology Present? Yes NoX
Describe Recorded Data (stream gauge monitoring well aenal photos previous inspection	is) if available
Domarka	
Remarks	
No wetland hydrology	

'

Depth	Matnx		h needed to docu Red	ox Feature				
(inches)	Color (moist)	%	Color (moist)		Type ¹	_Loc ²	Texture	Remarks
0_3	10YR 3/2	100	- <u></u>				SILO	Moist
3 - 16+	10YR 6/4						<u> </u>	Moist
·				~	<u> </u>			
<u> </u>								
	• •		······					
	·							
	· · · · · · · · · · · · · · · · · · ·							
	Doncentration D=Dep Indicators (Applic					e Lining R		nel M=Matnx s for Problematic Hydric Soils ⁹
-			Sandy Rec					Muck (A9) (LRR C)
Histoso Histic F	pipedon (A2)		Stnpped M	• •				Muck (A10) (LRR B)
Black H			Loamy Mu	• •	(F1)			ced Vertic (F18)
	en Sulfide (A4)		Loamy Gle				Red P	arent Matenal (TF2)
	d Layers (A5) (LRR	C)	Depleted N				<u>X</u> Other	(Explain in Remaiks)
	uck (A9) (LRR D)	o (A11)	Redox Dar					
	ed Below Dark Surfac ark Surface (A12)	e (ATT)	Depleted D					
	Mucky Mineral (S1)		Vernal Poo		0)		³ Indicators	of hydrophytic vegetation and
	Gleyed Matrix (S4)						wetland	hydrology must bepresent
Restrictive	Layer (if present)							
• •								
Depth (Ir Remarks	iches)		 				Hydnc Soil	Present? Yes <u>X</u> No
Depth (in Remarks Salorthids	uches)						Hydnc Soil	Present? Yes <u>X</u> No
Depth (ir Remarks Salorthids YDROLC	oches)							
Depth (in Remarks Salorthids YDROLC Wetland Hy	DGY drology Indicators						Seco	ndary Indicators (2 or more required)
Depth (ir Remarks Salorthids YDROLC Wetland Hy Primary Indi	DGY vdrology 1n dicators cators (any one indic		ient)	(811)			<u>Seco</u>	ndary Indicators (2 or more required) Vater Marks (B1) (Rive ri ne)
Depth (ir Remarks Salorthids YDROLC Wetland Hy Pnmary Indi	DGY drotogy Indicators cators (any one indic Water (A1)		ient) Salt Crust				<u>Seco</u> V S	ndary Indicators (2 or more required) Vater Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine)
Depth (in Remarks Salorthids YDROLC Wetland Hy Pnmary Indi Surface High W	DGY vdrotogy1ndicators cators (any one indic Water (A1) ater Table (A2)		ient)	st (B12)	s (B13)		<u>Seco</u> V S	ndary Indicators (2 or more required) Vater Marks (B1) (Rive ri ne)
Depth (in Remarks Salorthids YDROLC Wetland Hy Primary Indi Surface High W. Saturati	DGY vdrotogy1ndicators cators (any one indic Water (A1) ater Table (A2)	ator is suffic	<u>ient)</u> Salt Crust Biotic Cru	st (B12) vertebrates			<u>Seco</u> V S C	ndary Indicators (2 or more required) Vater Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Onft Deposits (B3) (Riverine)
Depth (in Remarks Salorthids YDROLC Wetland Hy Pnmary Indi Surface High W Saturati Water M	DGY /drology1ndicators cators (any one indic water (A1) ater Table (A2) ion (A3)	ator is suffic	ient) Salt Crust Biotic Cru Aquatic Ir Hydrogen	st (B12) overtebrates Sulfide Od	or (C1)	Iving Root	<u>Seco</u> V S C C C s (C3)T	ndary Indicators (2or more required) Vater Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Orift Deposits (B3) (Riverine) Orainage Patterns (B10) Ory Season Water Table (C2) Thin Muck Surtace (07)
Depth (in Remarks Salorthids YDROLC Wetland Hy Pnmary Indi Surface High W Saturati Saturati Water M Sedime Drift De	DGY vdrotogy Indicators cators (any one indic Water (A1) ater Table (A2) ion (A3) Marks (B1) (Nonriver int Deposits (B2) (No posits (B3) (Nonrive	ator is suffic ine) nrivenne)	<u>ient)</u> Salt Crust Biotic Cru Aquatic Ir Hydrogen Oxidized Presence	st (B12) wertebrates Sulfide Od Rhizospher of Reduce	lor (C1) les along d Iron (C4)	<u>Seco</u> V S C C s (C3)T	ndary Indicators (2 or more required) Vater Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Orift Deposits (B3) (Riverine) Orainage Patterns (B10) Ory Season Water Table (C2)
Depth (in Remarks Salorthids YDROLC Wetland Hy Primary Indi Garrian Surface High W Saturati Saturati Saturati Sedime Drift De X Surface	DGY vdrology Indicators cators (any one indic vdater (A1) ater Table (A2) ion (A3) Marks (B1) (Nonriver int Deposits (B2) (No posits (B3) (Nonrive Soil Cracks (B6)	ator is suffic ane) nrivenne) rine)	ient) Salt Cruss Biotic Cru Aquatic Ir Hydrogen Oxidized Presence Recent Irr	st (B12) wertebrates Sulfide Od Rhizospher of Reduce on Reductio	lor (C1) es along t d Iron (C4 on in Plow)	<u>Seco</u> V S C C C s (C3)T C	ndary Indicators (2 or more required) Vater Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Orift Deposits (B3) (Riverine) Orainage Patterns (B10) Ory Season Water Table (C2) Thin Muck Surtace (07) Crayfish Burrows (C8) Saturation Visible on Aen al Imagery (C5)
Depth (ir Remarks Salorthids YDROLC Wetland Hy Primary Indi Garriace High W Saturati Water M Sedime Drift De X Surface Inundat	DGY /drology1ndicators cators (any one indic water (A1) ater Table (A2) on (A3) Marks (B1) (Nonriver int Deposits (B2) (No posits (B3) (Nonrive soil Cracks (B6) ion Visible on Aerial	ator is suffic ane) nrivenne) rine)	ient) Salt Cruss Biotic Cru Aquatic Ir Hydrogen Oxidized Presence Recent Irr	st (B12) wertebrates Sulfide Od Rhizospher of Reduce on Reductio	lor (C1) es along t d Iron (C4 on in Plow)	Secon V S C C C s (C3)T C 6)S	ndary Indicators (2 or more required) Vater Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Orift Deposits (B3) (Riverine) Orainage Patterns (B10) Ory Season Water Table (C2) Thin Muck Surtace (07) Crayfish Burrows (C8) Saturation Visible on Aein al Imagery (CS Shallow Aquitard (D3)
Depth (in Remarks Salorthids YDROLC Wetland Hy Pnmary Indi Garage High W Saturati Saturati Water M Sedime Drift De X Surface Inundat Water S	DGY drology Indicators cators (any one indic Water (A1) ater Table (A2) ion (A3) Marks (B1) (Nonriver int Deposits (B2) (No posits (B3) (Nonrive Soil Cracks (B6) ion Visible on Aerial I Stained Leaves (B9)	ator is suffic ane) nrivenne) rine)	ient) Salt Cruss Biotic Cru Aquatic Ir Hydrogen Oxidized Presence Recent Irr	st (B12) wertebrates Sulfide Od Rhizospher of Reduce on Reductio	lor (C1) es along t d Iron (C4 on in Plow)	Secon V S C C C s (C3)T C 6)S	ndary Indicators (2 or more required) Vater Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Orift Deposits (B3) (Riverine) Orainage Patterns (B10) Ory Season Water Table (C2) Thin Muck Surtace (07) Crayfish Burrows (C8) Saturation Visible on Aen al Imagery (C5)
Depth (in Remarks Salorthids YDROLC Wetland Hy Primary Indi Surface High W Saturati Water N Saturati Unift De X Surface Inundat Water S	DGY rdrology Indicators cators (any one indic Water (A1) ater Table (A2) ion (A3) Marks (B1) (Nonriver int Deposits (B2) (No posits (B3) (Nonrive Soil Cracks (B6) ion Visible on Aerial Stained Leaves (B9) rvations	ator is suffic ane) nrivenne) rine) magery (B7)	ient) Salt Crust Biotic Cru Aquatic Ir Hydrogen Oxidized Presence Recent Iro Other (Ex	st (B12) wertebrates Sulfide Od Rhizospher of Reduce on Reductio plain in Rei	or (C1) es along t d Iron (C4 on in Plow marks)) ed Soils (C	Secon V S C C C s (C3)T C 6)S	ndary Indicators (2 or more required) Vater Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Orift Deposits (B3) (Riverine) Orainage Patterns (B10) Ory Season Water Table (C2) Thin Muck Surtace (07) Crayfish Burrows (C8) Saturation Visible on Aein al Imagery (CS Shallow Aquitard (D3)
Depth (in Remarks Salorthids YDROLC Wetland Hy Primary Indi Gurlace High W Saturati Saturati Water N Sedime Drift De X Surface Inundat Water S Field Obser	DGY vdrology Indicators cators (any one indic water (A1) ater Table (A2) ion (A3) Marks (B1) (Nonriver int Deposits (B2) (No posits (B3) (Nonrive Soil Cracks (B6) ion Visible on Aerial I Stained Leaves (B9) rvations ter Present? Y	ator is suffic ine) nrivenne) rine) magery (B7) es N	ient) Salt Crust Biotic Cru Aquatic Ir Hydrogen Oxidized Presence Recent Irr Other (Ex	st (B12) wertebrates Sulfide Od Rhizospher of Reduce on Reductio plain in Rei nches)	or (C1) es along f d Iron (C4 on in Plow marks)) ed Soils (C	Secon V S C C C s (C3)T C 6)S	ndary Indicators (2 or more required) Vater Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Orift Deposits (B3) (Riverine) Orainage Patterns (B10) Ory Season Water Table (C2) Thin Muck Surtace (07) Crayfish Burrows (C8) Saturation Visible on Aein al Imagery (CS Shallow Aquitard (D3)
Depth (in Remarks Salorthids YDROLC Wetland Hy Pnmary Indi Surface High W Saturati Saturati Water N Sedime Drift De X Surface Inundat Water S Field Obsei Surface Wa Water Table	DGY drology Indicators cators (any one indic Water (A1) ater Table (A2) ion (A3) Marks (B1) (Nonriver int Deposits (B2) (No posits (B3) (Nonrive Soil Cracks (B6) ion Visible on Aerial I Stained Leaves (B9) rvations ter Present? Y	ator is suffic ine) nrivenne) rine) magery (B7) es N es N	ient) Salt Crust Biotic Cru Aquatic Ir Hydrogen Oxidized Presence Recent Irc Other (Ex o X Depth (ir o X Depth (ir	st (B12) wertebrates Sulfide Oc Rhizospher of Reducer on Reductio plain in Rer nches) nches)	or (C1) es along i d Iron (C4 on in Plow marks)) ed Soils (C	Secon V S C C C C s (C3)T C 6)S F	ndary Indicators (2 or more required) Vater Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Orift Deposits (B3) (Riverine) Orainage Patterns (B10) Ory Season Water Table (C2) Thin Muck Surtace (07) Crayfish Burrows (C8) Saturation Visible on Aein al Imagery (CS Shallow Aquitard (D3) FAC Neutral Test (D5)
Depth (in Remarks Salorthids YDROLC Wetland Hy Primary Indi Garage High W Saturati Saturati Saturati Saturati Saturati Saturati Surface Surface Wa Water Table Saturation F Includes ca	DGY drology Indicators cators (any one indic water (A1) ater Table (A2) on (A3) Marks (B1) (Nonriver int Deposits (B2) (No posits (B3) (Nonrive soil Cracks (B6) ion Visible on Aerial I Stained Leaves (B9) rvations ter Present? Y Present? Y pillary fringe)	ator is suffic ine) nrivenne) rine) magery (B7) es N es N es N	ient) Salt Crust Biotic Cru Aquatic Ir Hydrogen Oxidized Presence Recent Ird Other (Ex o X Depth (ir o X Depth (ir o X Depth (ir	st (B12) vertebrates Sulfide Oc Rhizospher of Reducer on Reduction plain in Ref inches) inches)	or (C1) es along t d Iron (C4 on in Plow marks)) ed Soils (C	Seco V S C C C s (C3)T C 6)S F nd Hydrolog	ndary Indicators (2 or more required) Vater Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Orift Deposits (B3) (Riverine) Orainage Patterns (B10) Ory Season Water Table (C2) Thin Muck Surtace (07) Crayfish Burrows (C8) Saturation Visible on Aein al Imagery (CS Shallow Aquitard (D3)
Depth (in Remarks Salorthids YDROLC Wetland Hy Primary Indi Garage High W Saturati Saturati Saturati Saturati Saturati Saturati Surface Surface Wa Water Table Saturation F Includes ca	DGY drology Indicators cators (any one indic Water (A1) ater Table (A2) ion (A3) Marks (B1) (Nonriver int Deposits (B2) (No posits (B3) (Nonrive Soil Cracks (B6) ion Visible on Aerial I Stained Leaves (B9) rvations ter Present? Y Present? Y	ator is suffic ine) nrivenne) rine) magery (B7) es N es N es N	ient) Salt Crust Biotic Cru Aquatic Ir Hydrogen Oxidized Presence Recent Ird Other (Ex o X Depth (ir o X Depth (ir o X Depth (ir	st (B12) vertebrates Sulfide Oc Rhizospher of Reducer on Reduction plain in Ref inches) inches)	or (C1) es along t d Iron (C4 on in Plow marks)) ed Soils (C	Seco V S C C C s (C3)T C 6)S F nd Hydrolog	ndary Indicators (2 or more required) Vater Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Orift Deposits (B3) (Riverine) Orainage Patterns (B10) Ory Season Water Table (C2) Thin Muck Surtace (07) Crayfish Burrows (C8) Saturation Visible on Aein al Imagery (CS Shallow Aquitard (D3) FAC Neutral Test (D5)
Depth (in Remarks Salorthids YDROLC Wetland Hy Primary Indi Garage High W Saturati Saturati Saturati Saturati Saturati Saturati Surface Surface Wa Water Table Saturation F Includes ca	DGY drology Indicators cators (any one indic water (A1) ater Table (A2) on (A3) Marks (B1) (Nonriver int Deposits (B2) (No posits (B3) (Nonrive soil Cracks (B6) ion Visible on Aerial I Stained Leaves (B9) rvations ter Present? Y Present? Y pillary fringe)	ator is suffic ine) nrivenne) rine) magery (B7) es N es N es N	ient) Salt Crust Biotic Cru Aquatic Ir Hydrogen Oxidized Presence Recent Ird Other (Ex o X Depth (ir o X Depth (ir o X Depth (ir	st (B12) vertebrates Sulfide Oc Rhizospher of Reducer on Reduction plain in Ref inches) inches)	or (C1) es along t d Iron (C4 on in Plow marks)) ed Soils (C	Seco V S C C C s (C3)T C 6)S F nd Hydrolog	ndary Indicators (2 or more required) Vater Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Orift Deposits (B3) (Riverine) Orainage Patterns (B1O) Ory Season Water Table (C2) Thin Muck Surtace (07) Crayfish Burrows (C8) Saturation Visible on Aein al Imagery (CS Shallow Aquitard (D3) FAC Neutral Test (D5)
Depth (in Remarks Salorthids YDROLC Wetland Hy Primary Indi Garage High W Saturati Water M Sedime Drift De X Surface Inundat Water S Field Obsei Surface Wa Water Table Saturation F Includes ca Describe Re	DGY drology Indicators cators (any one indic water (A1) ater Table (A2) on (A3) Marks (B1) (Nonriver int Deposits (B2) (No posits (B3) (Nonrive soil Cracks (B6) ion Visible on Aerial I Stained Leaves (B9) rvations ter Present? Y Present? Y pillary fringe)	ator is suffic ine) nrivenne) rine) magery (B7) es N es N es N gauge mor	ient) Salt Crust Biotic Cru Aquatic Ir Hydrogen Oxidized Presence Recent Ird Other (Ex o X Depth (ir o X Depth (ir o X Depth (ir	st (B12) vertebrates Sulfide Oc Rhizospher of Reducer on Reduction plain in Ref inches) inches)	or (C1) es along t d Iron (C4 on in Plow marks)) ed Soils (C	Seco V S C C C s (C3)T C 6)S F nd Hydrolog	ndary Indicators (2 or more required) Vater Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Orift Deposits (B3) (Riverine) Orainage Patterns (B1O) Ory Season Water Table (C2) Thin Muck Surtace (07) Crayfish Burrows (C8) Saturation Visible on Aein al Imagery (CS Shallow Aquitard (D3) FAC Neutral Test (D5)
Depth (in Remarks Salorthids YDROLC Wetland Hy Primary Indi Garage High W Saturati Water M Sedime Drift De X Surface Inundat Water S Field Obsei Surface Wa Water Table Saturation F Includes ca Describe Re	DGY drology Indicators cators (any one indic Water (A1) ater Table (A2) ion (A3) Marks (B1) (Nonriver int Deposits (B2) (No posits (B3) (Nonrive Soil Cracks (B6) ion Visible on Aerial I Stained Leaves (B9) rvations ter Present? Y Present? Y pillary fringe) ecorded Data (stream	ator is suffic ine) nrivenne) rine) magery (B7) es N es N es N gauge mor	ient) Salt Crust Biotic Cru Aquatic Ir Hydrogen Oxidized Presence Recent Ird Other (Ex o X Depth (ir o X Depth (ir o X Depth (ir	st (B12) vertebrates Sulfide Oc Rhizospher of Reducer on Reduction plain in Ref inches) inches)	or (C1) es along t d Iron (C4 on in Plow marks)) ed Soils (C	Seco V S C C C s (C3)T C 6)S F nd Hydrolog	ndary Indicators (2 or more required) Vater Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Orift Deposits (B3) (Riverine) Orainage Patterns (B1O) Ory Season Water Table (C2) Thin Muck Surtace (07) Crayfish Burrows (C8) Saturation Visible on Aein al Imagery (CS Shallow Aquitard (D3) FAC Neutral Test (D5)

Depth <u>Matrix</u> Inches) Color (moist)6	Redox Features Color (moist) % Type ¹	Loc ²	Texture	Remarks
0 3 10YR 3/2 100			Silo	
<u>3 – 18+ 10YR 6/4 100</u>				Moist
ype C=Concentration D=Depletion RM-		ore Lining R		
ydric Soil Indicators (Applicable to all				for Problematic Hydric Soits ³
Histosol (A1) Histic Epipedon (A2)	Sandy Redox (S5) Stopped Matnx (S6)			Muck (A9) (LRR C) Muck (A10) (LRR B)
_ Black Histic (A3)	Loamy Mucky Mineral (F1)			ed Vertic (F18)
_ Hydrogen Sulfide (A4)	Loamy Gleyed Matnx (F2)			arent Matenal (TF2)
Stratified Layers (A5) (LRR C)	Depleted Matnx (F3)		X Other	(Explain in Remarks)
1 cm Muck (A9) (LRR D) Depleted Below Dark Surface (A11) Thick Dark Surface (A12)	 Redox Dark Surface (F6) Depleted Dark Surface (F7) Redox Depressions (F8) Versal Back (F0) 		³ la duastara	
_ Sandy Mucky Mineral (S1) _ Sandy Gleyed Matnx (S4)	Vernal Pools (F9)			of hydrophytic vegetation and hydrology must be present
estrictive Layer (if present)				
contente cajer (n present)				
Type				
Type Depth (inches) marks			Hydric Soil	Present? Yes X No
Depth (inches)			Hydric Soil	Present? Yes X No
			Hydric Soil	Present? Yes <u>X</u> No
Depth (inches) emarks alorthids DROLOGY etland Hydrology Indicators			<u>Secor</u>	idary Indicators (2 or more required)
Depth (inches) emarks alorthids DROLOGY etland Hydrology Indicators imary Indicators (any one indicator is suffic	cient)		<u>Secor</u>	ndary Indicators (2 or more required) Vater Marks (B1) (Rivenne)
Depth (inches) emarks alorthids DROLOGY etland Hydrology Indicators imary Indicators (any one indicator is suffic _ Surface Water (A1)	<u>cient)</u> Salt Crust (B11)		<u>Secor</u> W S	<u>idary Indicators (2 or more required)</u> /ater Marks (B1) (Rivenne) ediment Deposits (B2) (Rivenne)
Depth (inches) emarks alorthids DROLOGY etland Hydrology Indicators imary Indicators (any one indicator is suffic Surface Water (A1) High Water Table (A2)			<u>Secor</u> W S D	idary Indicators (2 or more required) /ater Marks (B1) (Rivenne) ediment Deposits (B2) (Rivenne) nft Deposits (B3) (Rivenne)
Depth (inches) emarks alorthids DROLOGY etland Hydrology Indicators imary Indicators (any one indicator is suffic _ Surface Water (A1) _ High Water Table (A2) _ Saturation (A3)	cient) Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13)		<u>Secor</u> W S D D	idary Indicators (2 or more required) /ater Marks (B1) (Rivenne) ediment Deposits (B2) (Rivenne) nft Deposits (B3) (Rivenne) rainage Patterns (B10)
Depth (inches) emarks alorthids DROLOGY etland Hydrology Indicators imary Indicators (any one indicator is suffic 	cient) Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1)		<u>Secor</u> W S D D D	idary Indicators (2 or more required) /ater Marks (B1) (Rivenne) ediment Deposits (B2) (Rivenne) nft Deposits (B3) (Rivenne) rainage Patterns (B10) ry Season Water Table (C2)
Depth (inches) emarks alorthids DROLOGY etland Hydrology Indicators imary Indicators (any one indicator is suffic 	<u>cient)</u> Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along	-	<u>Secor</u> W D D D D D D	ndary Indicators (2 or more required) /ater Marks (B1) (Rivenne) ediment Deposits (B2) (Rivenne) nft Deposits (B3) (Rivenne) rainage Patterns (B10) ry Season Water Table (C2) hin Muck Surface (C7)
Depth (inches) marks lorthids DROLOGY etland Hydrology Indicators mary Indicators (any one indicator is suffice _ Surface Water (A1) _ High Water Table (A2) _ Saturation (A3) _ Water Marks (B1) (Nonrivenne) _ Sediment Deposits (B2) (Nonrivenne) _ Drift Deposits (B3) (Nonrivenne)	cient) Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Presence of Reduced Iron (C	4)	<u>Secor</u> W D D D ts (C3) T C	Idary Indicators (2 or more required) /ater Marks (B1) (Rivenne) ediment Deposits (B2) (Rivenne) nft Deposits (B3) (Rivenne) rainage Patterns (B10) ry Season Water Table (C2) hin Muck Surface (C7) rayfish Burrows (C8)
Depth (inches) emarks alorthids DROLOGY etland Hydrology Indicators imary Indicators (any one indicator is suffic Surface Water (A1) 	cient) Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Presence of Reduced Iron (C Recent Iron Reduction in Plo	4)	<u>Secor</u> 	Idary Indicators (2 or more required) /ater Marks (B1) (Rivenne) ediment Deposits (B2) (Rivenne) nft Deposits (B3) (Rivenne) rainage Patterns (B10) ry Season Water Table (C2) hin Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aerial Imagery (C
Depth (inches) emarks alorthids DROLOGY etland Hydrology Indicators imary Indicators (any one indicator is suffic 	cient) Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Presence of Reduced Iron (C Recent Iron Reduction in Plo	4)	Secor W S D D D D ts (C3)T C 26)S S	Idary Indicators (2 or more required) /ater Marks (B1) (Rivenne) ediment Deposits (B2) (Rivenne) nft Deposits (B3) (Rivenne) rainage Patterns (B10) ry Season Water Table (C2) hin Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aerial Imagery (C hallow Aquitard (C3)
Depth (inches) emarks alorthids DROLOGY etland Hydrology Indicators <u>imary Indicators (any one indicator is suffic</u> 	cient) Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Presence of Reduced Iron (C Recent Iron Reduction in Plo	4)	Secor W S D D D D ts (C3)T C 26)S S	Idary Indicators (2 or more required) /ater Marks (B1) (Rivenne) ediment Deposits (B2) (Rivenne) nft Deposits (B3) (Rivenne) rainage Patterns (B10) ry Season Water Table (C2) hin Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aerial Imagery (C
Depth (inches) emarks alorthids /DROLOGY etland Hydrology Indicators mary Indicators (any one indicator is suffic _ Surface Water (A1) _ High Water Table (A2) _ Saturation (A3) _ Water Marks (B1) (Nonrivenne) _ Sediment Deposits (B2) (Nonnverine) _ Drift Deposits (B3) (Nonrivenne) (_ Surface Soil Cracks (B6) _ Inundation Visible on Aenal Imagery (B7 _ Water Stained Leaves (B9) eld Observations	cient) Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Presence of Reduced Iron (C Recent Iron Reduction in Ploy 7) Other (Explain in Remarks)	4) wed Soils (C	Secor W S D D D D ts (C3)T C 26)S S	Idary Indicators (2 or more required) /ater Marks (B1) (Rivenne) ediment Deposits (B2) (Rivenne) nft Deposits (B3) (Rivenne) rainage Patterns (B10) ry Season Water Table (C2) hin Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aerial Imagery (C hallow Aquitard (C3)
Depth (inches) emarks alorthids //DROLOGY etland Hydrology Indicators mmary Indicators (any one indicator is suffic 	cient) Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Presence of Reduced Iron (C Recent Iron Reduction in Plo 7) Other (Explain in Remarks) NoX Depth (inches)	4) wed Soils (C	Secor W S D D D D ts (C3)T C 26)S S	Idary Indicators (2 or more required) /ater Marks (B1) (Rivenne) ediment Deposits (B2) (Rivenne) nft Deposits (B3) (Rivenne) rainage Patterns (B10) ry Season Water Table (C2) hin Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aerial Imagery (C hallow Aquitard (C3)
Depth (inches) emarks alorthids //DROLOGY fetland Hydrology Indicators mmary Indicators (any one indicator is suffic 	cient) Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Presence of Reduced Iron (C Recent Iron Reduction in Ploy 7) Other (Explain in Remarks)	4) wed Soils (C	Secor W D D D D D D D D D D S S S S	Idary Indicators (2 or more required) /ater Marks (B1) (Rivenne) ediment Deposits (B2) (Rivenne) nft Deposits (B3) (Rivenne) rainage Patterns (B10) ry Season Water Table (C2) hin Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aerial Imagery (C hallow Aquitard (C3)

Cracked soils indicate wetland hydrology

.

ł

1	cription (Describe	to the dept				or confirm	the absence	e of indicators)
Depth (inches)	<u>Matrix</u> Color (moist)		Red Color (moist)	ox Features		1002	Texture	Remarks
<u> </u>	<u>10YR 3/2</u>						<u> SıLo </u>	
8-18+	10YR 4/2	100				<u> </u>	<u>SiLo</u>	Damp
					<u> </u>	<u></u>		
						·	- <u></u>	
[· · · · · · · · · · · · · · · · · · ·
	oncentration D=Dep					e Lining R		nel M=Matnx
	Indicators (Applic	able to all L			ed)			s for Problematic Hyd ric Soils ³
Histoso			Sandy Rec					Muck (A9) (LRR C)
	pipedon (A2)		Strpped M		(51)			Muck (A10) (LRR B)
	istic (A3) en Sulfide (A4)		Loamy Mu					ced Vertic (F18) Parent Matenal (TF2)
· · ·	d Layers (A5) (LRR	C)	Depleted M	-	(1 -)			(Explain in Remarks)
	uck (A9) (LRR D)	-,	Redox Dar	•	F6)			
	d Below Dark Surfac	e (A i 1)	Depleted D	ark Surface	∋ (F7)			
	ark Surface (A12)		Redox Dep		8)			
	Mucky Mineral (S1)		Vernal Poo	ls (F9)				of hydrophytic vegetation and
	Gleyed Matrix (S4)						wetland	hydrology must tepresent
	Layer (if present)							
	~						Liberta e O aul	
Depth (In Remarks	ches)							Present? Yes No X
Soils not hyd	fuc							
HYDROLO	GY		·····					
Wetland Hv	drology Indicators						Seco	ndary Indicators (2 or more required)
-	cators (any one indic	ator is suffici	ent)					Vafer Marks (B1) (Riverme)
Surface			Salt Crust	(811)				Sediment Deposits (82) (Riverme)
	ater Table (A2)		Biotic Cru					Orift Deposits (B3) (Riverine)
Saturati			Aquatic In		(B13)			Drainage Patterns (81C)
	larks (B1) (Nonriver	nne)	Hydrogen		•			Dry Season Water Table (C2)
	nt Deposits (B2) (No					Iving Root		hin Muck Surface (C7)
	posits (B3) (Nonrive		Presence	-	-	-		Crayfish Burrows (08)
	Soil Cracks (B6)	,	Recent Irc					Saturation Visible on Aerial Imagery (C9)
	on Visible on Aerial	Imagery (B7)				,		Shallow Aguitard (03)
	tained Leaves (B9)	• • •			·			AC Neutral Test (05)
Field Obser	vations		·····					
Surface Wat	er Present? Y	esNo	Deoth (In	ches)		_		
Water Table			Depth (in			-		
Saturation P			Depth (in	,		_	and Hydrolog	y Present? Yes NoX_
(includes cap	oillary fnnge)							
Descnbe Re	corded Data (stream	gauge mon	itonng well aenal	photos pre	vious insp	ections) i	f available	
Remarks								
No wetland h	vdroloav							

Depth <u>Matrix</u> (inches) Color (moist)	9	Color (moist)	x Features	pel Loc ²	Texture	Remark s
0 18+ 2 5Y 5/2	70	10YR 5/6	<u>30 C</u>		SaCl	Moist
Type C=Concentration D=Deple			² Location PL=	Pore Lining F		
Hydric Soil Indicators (Applicat	ble to all Lf					for Problematic Hydric Soils ³
Histosol (A1)		Sandy Redo				Auck (A9) (LRR C)
Histic Epipedon (A2) Black Histic (A3)		Stripped Ma	ky Mineral (F1)			/luck (A10) (LRR 8) ed Vertic (F18)
Hydrogen Sulfide (A4)			ved Matrix (F2)			arent Matenal (TF2)
Stratified Layers (A5) (LRR C)	1	Depleted Ma				(Explain in Remarks)
1 cm Muck (A9) (LRB D) Depleted Below Dark Surface		Redox Dark	Surface (F6) ark Surface (F7))		· · · · ·
Thick Dark Surface (A12)		X Redox Depr	ressions (F8)			
Sandy Mucky Mineral (S1)		Vernal Pool	s (F9) 🔹			ot hydrophytic vegetation and
Sandy Gleyed Matrix (S4)					wetland	hydrology must be present
Restrictive Layer (if present)					1	
Туре		-				
Type Depth (inches) Remarks		_			Hydric Soit	Present? Yes_X No
Depth (inches) Remarks Redox Depressions YDROLOGY Wetland Hydrology Indicators Primary Indicators (any one indicators)		ent)	(811)		<u>Secor</u> W	ndary Indicators (2or more required) Vater Marks (B1) (Riverine)
Depth (inches) Remarks Redox Depressions YDROLOGY Wetland Hydrology Indicators Pnmary Indicators (any one indicators Surface Water (A1)		ent) _X_Salt Crust	. ,		<u>Secor</u> W S	ndary Indicators (2 or more required) Vater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine)
Depth (inches) Remarks Redox Depressions YDROLOGY Wetland Hydrology Indicators Pinmary Indicators (any one indicators Surface Water (A1) High Water Table (A2)		ent) _X_Salt Crust Biotic Crus	it (B12)	3)	<u>Secor</u> W S D	ndary Indicators (2 or more required) /ater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) rift Deposits (B3) (Riverine)
Depth (inches) Remarks Redox Depressions YDROLOGY Wetland Hydrology Indicators Primary Indicators (any one indicators Surface Water (A1) High Water Table (A2) Saturation (A3)	tor is sufficie	ent) _X Salt Crust Biotic Crus Aquatic Inv	it (B12) vertebrates (B13		<u>Secor</u> 	idary Indicators (2 or more required) /ater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) rift Deposits (B3) (Riverine) rainage Patterns (B10)
Depth (inches) Remarks Redox Depressions YDROLOGY Wetland Hydrotogy Indicators Primary Indicators (any one indicators Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonrivennio	tor is sufficie	ent) _X Salt Crust Biotic Crus Aquatic Inv Hydrogen S	vertebrates (B13 Sultide Odor (C	1)	<u>Secor</u> W S D D D	ndary Indicators (2or more required) /ater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) rift Deposits (B3) (Riverine) rainage Patterns (B10) ry Season WaterTable (C2)
Depth (inches) Remarks Redox Depressions YDROLOGY Wetland Hydrology Indicators Primary Indicators (any one indicators Surface Water (A1) High Water Table (A2) Saturation (A3)	tor is sufficie ie) nverine)	ent) _X Salt Crust Biotic Crus Aquatic Inv Hydrogen S Oxidized R	it (B12) vertebrates (B13	1) ong Living Roc	<u>Secor</u> W D D D D sts (C3) T	idary Indicators (2 or more required) /ater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) rift Deposits (B3) (Riverine) rainage Patterns (810)
Depth (inches) Remarks Redox Depressions YDROLOGY Wetland Hydrology Indicators Pinmary Indicators (any one indicators Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonrivenni Sediment Deposits (B2) (Nonrivenni Dnft Deposits (B3) (Nonrivenni	tor is sufficie ie) nverine)	ent) _X Salt Crust Biotic Crus Aquatic Inv Hydrogen S Oxidized R Presence o	it (B12) vertebrates (B13 Sultide Odor (C thizospheres alc	1) ong Living Roc (C4)	<u>Secor</u> W S D D D D D D D	ndary Indicators (2or more required) /ater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) rrift Deposits (B3) (Riverine) rainage Patterns (810) ry Season WaterTable (C2) hm Muck Surface (C7)
Depth (inches) Remarks Redox Depressions YDROLOGY Wetland Hydrology Indicators Pinmary Indicators (any one indicators Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonrivenni Sediment Deposits (B2) (Nonrivenni Dnft Deposits (B3) (Nonrivenni	tor is sufficie ie) nverine) ne)	ent) <u>X</u> Salt Crust Biotic Crus Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror	it (B12) vertebrates (B13 Sultide Odor (C Ihizospheres alc of Reduced Iron	1) ong Living Roc (C4) Plowed Soils (I	<u>Secor</u> 	ndary Indicators (2or more required) /ater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) rift Deposits (B3) (Riverine) rainage Patterns (810) ry Season WaterTable (C2) hm Muck Surface (C7) rayfish Burrows (C8)
Depth (inches)	tor is sufficie ie) nverine) ne)	ent) <u>X</u> Salt Crust Biotic Crus Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror	it (B12) vertebrates (B13 Sultide Odor (C Ihizospheres ald of Reduced Iron n Reduction in F	1) ong Living Roc (C4) Plowed Soils (I	Secor 	Idary Indicators (2 or more required) /ater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) rift Deposits (B3) (Riverine) rainage Patterns (B10) ry Season WaterTable (C2) hm Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aenal Imagery (CS
Depth (inches) Remarks Redox Depressions YDROLOGY Wetland Hydrology Indicators Primary Indicators (any one indicators) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonriverning Sediment Deposits (B2) (Nonriverning Dift Deposits (B3) (Nonriverning X Surface Soil Cracks (B6) Inundation Visible on Aenal Im Water Stained Leaves (B9)	tor is sufficie ie) nverine) ne)	ent) <u>X</u> Salt Crust Biotic Crus Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror	it (B12) vertebrates (B13 Sultide Odor (C Ihizospheres ald of Reduced Iron n Reduction in F	1) ong Living Roc (C4) Plowed Soils (I	Secor 	Idary Indicators (2 or more required) /ater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) rift Deposits (B3) (Riverine) rainage Patterns (B10) ry Season WaterTable (C2) hm Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aenal Imagery (CS hallow Aquitard (D3)
Depth (inches) Remarks Redox Depressions YDROLOGY Netland Hydrology Indicators <u>Pinmary Indicators (any one indicators)</u> Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonriverning Sediment Deposits (B2) (Nonriverning Dift Deposits (B3) (Nonriverning) X Surface Soil Cracks (B6) Inundation Visible on Aenal Im Water Stained Leaves (B9) Field Observations	tor is sufficie nverine) ne) hagery (B7)	ent) <u>X</u> Salt Crust Biotic Crus Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror	it (B12) vertebrates (B13 Sultide Odor (C Ihizospheres alc of Reduced Iron n Reduction in F ilain in Remarks	1) ong Living Roc (C4) Plowed Soils ((;)	Secor 	Idary Indicators (2 or more required) /ater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) rift Deposits (B3) (Riverine) rainage Patterns (B10) ry Season WaterTable (C2) hm Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aenal Imagery (CS hallow Aquitard (D3)
Depth (inches)	tor is sufficie nverine) ne) hagery (B7)	ent) <u>X</u> Salt Crust Biotic Crus Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iron Other (Exp	it (B12) vertebrates (B13 Sultide Odor (C Ihizospheres ald of Reduced Iron in Reduction in F ilain in Remarks	1) ong Living Roc (C4) Plowed Soils ((;)	Secor 	Idary Indicators (2 or more required) /ater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) rift Deposits (B3) (Riverine) rainage Patterns (B10) ry Season WaterTable (C2) hm Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aenal Imagery (CS hallow Aquitard (D3)
Depth (inches)	tor is sufficie nverine) ne) hagery (B7) s No s No	ent) <u>X</u> Salt Crust Biotic Crus Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iron Other (Exp X Depth (inc X Depth (inc X Depth (inc	tt (B12) vertebrates (B13 Sultide Odor (C Ihizospheres alc of Reduced Iron in Reduction in F ilain in Remarks ches) ches) ches)	1) ong Living Roc (C4) Plowed Soils (f	Secor 	Idary Indicators (2 or more required) /ater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) rift Deposits (B3) (Riverine) rainage Patterns (B10) ry Season WaterTable (C2) hm Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aenal Imagery (CS hallow Aquitard (D3)
Depth (inches) Remarks Redox Depressions YDROLOGY Wetland Hydrology Indicators Primary Indicators (any one indicators Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonrivenni Sediment Deposits (B2) (Nonrivenni Dift Deposits (B3) (Nonrivenni X Surface Soil Cracks (B6) Inundation Visible on Aenal Im Water Stained Leaves (B9) Field Observations Surface Water Present? Yes Water Table Present? Yes	tor is sufficie nverine) ne) hagery (B7) s No s No	ent) <u>X</u> Salt Crust Biotic Crus Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iron Other (Exp X Depth (inc X Depth (inc X Depth (inc	tt (B12) vertebrates (B13 Sultide Odor (C Ihizospheres alc of Reduced Iron in Reduction in F ilain in Remarks ches) ches) ches)	1) ong Living Roc (C4) Plowed Soils (f	Secor 	ndary Indicators (2 or more required) /ater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) rift Deposits (B3) (Riverine) rainage Patterns (B10) ry Season WaterTable (C2) hm Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aenal Imagery (C9) hallow Aquitard (D3) AC Neutral Test (05)

Depth	tion (Describe Matnx			ox Feature				,
(inches)	Color (moist)		Color (moist)			Loc ²	Texture	Remarks
0 - 18+ 1	0YR 3/2	100		_			Sa	Dry to damp
					<u></u>			
	·							
			·					
						<u></u>		
	· _ · · · · · · · · · · · · · · · · · ·						·	
				2		D		· · · · · ·
	entration D=Dep					e Lining H	C=Root Chanr	for Problematic Hydric Soils ³
-					eu)			
Histosol (A1 Histic Epipe	•		Sandy Rec Stripped M					1uck (A9) (LRR C) 1uck (A10) (LRR B)
Black Histic			Loamy Mu		I (F 1)			ed Vertic (F18)
Hydrogen S			Loamy Gle	-				arent Matenal (TF2)
• -	yers (A5) (LRR (C)	Depleted N		(· -/			Explain in Remaiks)
1 cm Muck (Redox Dar		F6)			
	low Dark Surface	e (A11)	Depleted D	Dark Surfac	e (F7)			
Thick Dark S			Redox Dep		-8)			
Sandy Muck			Vernal Poo	ols (F9)				of hydrophytic vegetation and
Sandy Gleye							wetland	hydrology must be present
Restrictive Laye								
Type								
	······							
Depth (inches Remarks	3)					i	Hydric Soil	Present? Yes No <u>X</u>
Deoth (inches Remarks No hydric soils	;)					i	Hydric Soil	Present? Yes NoX
Deoth (inches Remarks No hydric soils YDROLOGY	3)		-					
Deoth (inches Remarks No hydric soils YDROLOGY Wetland Hydrol	ogy Indicators						Secon	dary Indicators (2 or more required)
Deoth (inches Remarks No hydric soils YDROLOGY Wetland Hydrol Pnmary Indicator	ogy Indicators		nt)				<u>Secon</u>	dary Indicators (2 or more required) ater Marks (B1) (Rivenne)
Deoth (inches Remarks No hydric soils YDROLOGY Wetland Hydrol Pnmary Indicator Surface Wat	ogy Indicators rs (any one indicators rer (A1)		nt) Salt Crust	-			<u>Secon</u> W St	dary Indicators (2 or more required) ater Marks (B1) (Rivenne) ediment Deposits (B2) (Riverme)
Deoth (inches Remarks No hydric soils YDROLOGY Wetland Hydrol Pnmary Indicator Surface Wat High Water	ogy Indicators rs (any one indicater rer (A1) Table (A2)		nt) Salt Crust Biotic Cru	ist (B12)			<u>Secon</u> W St	dary Indicators (2 or more required) ater Marks (B1) (Rivenne) ediment Deposits (B2) (Riverme) nft Deposits (B3) (Rivenne)
Deoth (inches Remarks No hydric soils YDROLOGY Wetland Hydrol Pnmary Indicator Surface Wat High Water Saturation (<i>A</i>	ogy Indicators rs (any one indica rer (A1) Table (A2) A3)	ator is sufficie	nt) Salt Crust Biotic Cru Aquatic Ir	ist (B12) ivertebrate			<u>Secon</u> W S4 Di Di	dary Indicators (2 or more required) ater Marks (B1) (Rivenne) ediment Deposits (B2) (Riverme) nft Deposits (B3) (Rivenne) rainage Patterns (B10)
Deoth (inches Remarks No hydric soils YDROLOGY Wetland Hydrol Pnmary Indicator Surface Wat High Water Saturation (A Water Marks	ogy Indicators rs (any one indica rer (A1) Table (A2) A3) s (B1) (Nonriven	ator is sufficie	nt) Salt Crust Biotic Cru Aquatic Ir Hydrogen	ist (B12) nvertebrate Sulfide Od	lor (C1)		<u>Secon</u> W D D	dary Indicators (2 or more required) ater Marks (B1) (Rivenne) ediment Deposits (B2) (Riverme) nft Deposits (B3) (Rivenne) rainage Patterns (B10) ry Season Water Table (C2)
Deoth (inches Remarks No hydric soils YDROLOGY Wetland Hydrol Pnmary Indicator Surface Wat High Water Saturation (<i>A</i> Water Marks Sediment De	ogy Indicators rs (any one indica rer (A1) Table (A2) A3) s (B1) (Nonriven eposits (B2) (Nor	ator is sufficie ne) inverine)	nt) Salt Crust Biotic Cru Aquatic fr Hydrogen Oxidized	ist (B12) nvertebrate Sulfide Oc Rhizosphei	lor (C1) es along L		<u>Secon</u> W D D D D s (C3) T	dary Indicators (2 or more required) ater Marks (B1) (Rivenne) ediment Deposits (B2) (Riverme) nft Deposits (B3) (Rivenne) rainage Patterns (B10) ry Season Water Table (C2) nin Muck Surface (C7)
Deoth (inches Remarks No hydric soils YDROLOGY Wetland Hydrol Pnmary Indicator Surface Wat High Water Saturation (A Water Marks Sediment De Drift Deposit	ogy Indicators rs (any one indicators rer (A1) Table (A2) A3) s (B1) (Nonriven eposits (B2) (Nor s (B3) (Nonriver	ator is sufficie ne) inverine)	nt) Salt Crust Biotic Cru Aquatic Ir Hydrogen Oxidized Presence	ist (B12) nvertebrate Sulfide Oc Rhizospher of Reduce	lor (C1) es along L d Iron (C4)	<u>Secon</u> W D D D D s (C3) T	dary Indicators (2 or more required) ater Marks (B1) (Rivenne) ediment Deposits (B2) (Riverme) nft Deposits (B3) (Rivenne) rainage Patterns (B10) ry Season Water Table (C2) nin Muck Surface (C7) rayfish Burrows (C8)
Deoth (inches Remarks No hydric soils YDROLOGY Wetland Hydrol Pnmary Indicator Surface Wat High Water Saturation (<i>A</i> Water Marks Sediment De Drift Deposit Surface Soil	ogy Indicators rs (any one indicators rer (A1) Table (A2) A3) s (B1) (Nonriven eposits (B2) (Nor s (B3) (Nonriver Cracks (B6)	ator is sufficie ne) inverine) ine)	nt) Salt Crust Biotic Cru Aquatic Ir Hydrogen Oxidized Presence Recent Iro	st (B12) nvertebrates Sulfide Od Rhizospher of Reduce on Reduction	lor (C1) es along L d Iron (C4 on in Plowe)	Secon W Se De De De De De De s (C3) Th Ce Se	dary Indicators (2 or more required) ater Marks (B1) (Rivenne) ediment Deposits (B2) (Riverme) nft Deposits (B3) (Rivenne) rainage Patterns (B10) ry Season Water Table (C2) nin Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aenal Imagery (C
Deoth (inches Remarks No hydric soils YDROLOGY Wetland Hydrol Pnmary Indicator Surface Wat High Water Saturation (A Water Marks Sediment De Drift Deposit Surface Soil Inundation V	ogy Indicators rs (any one indicators rer (A1) Table (A2) A3) s (B1) (Nonriven eposits (B2) (Nor s (B3) (Nonriver Cracks (B6) 'isible on Aerial In	ator is sufficie ne) inverine) ine)	nt) Salt Crust Biotic Cru Aquatic Ir Hydrogen Oxidized Presence	st (B12) nvertebrates Sulfide Od Rhizospher of Reduce on Reduction	lor (C1) es along L d Iron (C4 on in Plowe)	Secon W Du Su Du Du Du Su Du Du Du Du Su Du Du Du Su Du Du Du Du Su Du Du Du Su Du Du Su Du Du Du Su Du SU	dary Indicators (2 or more required) ater Marks (B1) (Rivenne) ediment Deposits (B2) (Riverme) nft Deposits (B3) (Rivenne) rainage Patterns (B10) ry Season Water Table (C2) nin Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aenal Imagery (C nallow Aquitard (D3)
Deoth (inches Remarks No hydric soils YDROLOGY Wetland Hydrol Pinmary Indicator Surface Wat High Water Saturation (A Water Marks Sediment De Drift Deposit Surface Soil Inundation V Water Staine	ogy Indicators rs (any one indica rer (A1) Table (A2) A3) s (B1) (Nonriven eposits (B2) (Nor rs (B3) (Nonriver Cracks (B6) risible on Aerial li ed Leaves (B9)	ator is sufficie ne) inverine) ine)	nt) Salt Crust Biotic Cru Aquatic Ir Hydrogen Oxidized Presence Recent Iro	st (B12) nvertebrates Sulfide Od Rhizospher of Reduce on Reduction	lor (C1) es along L d Iron (C4 on in Plowe)	Secon W Du Su Du Du Du Su Du Du Du Du Su Du Du Du Su Du Du Du Du Su Du Du Du Su Du Du Su Du Du Du Su Du SU	dary Indicators (2 or more required) ater Marks (B1) (Rivenne) ediment Deposits (B2) (Riverme) nft Deposits (B3) (Rivenne) rainage Patterns (B10) ry Season Water Table (C2) nin Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aenal Imagery (C
Deoth (inches Remarks No hydric soils YDROLOGY Wetland Hydrol Pnmary Indicator Surface Wate High Water Saturation (<i>A</i> Water Marks Sediment De Drift Deposit Surface Soil Inundation V Water Staine Field Observatio	ogy Indicators rs (any one indica rer (A1) Table (A2) A3) s (B1) (Nonriven eposits (B2) (Nor s (B3) (Nonriver Cracks (B6) risible on Aerial In ed Leaves (B9) ons	ne) nverine) nne) magery (B7)	nt) Salt Crust Biotic Cru Aquatic fr Hydrogen Oxidized Presence Recent Iro Other (Ex	ist (B12) invertebrate Sulfide Oc Rhizosphei of Reduce on Reduction plain in Ref	lor (C1) res along L d Iron (C4 on in Plow marks)) ed Soils (C	Secon W Du Su Du Du Du Su Du Du Du Du Su Du Du Du Su Du Du Du Du Su Du Du Du Su Du Du Su Du Du Du Su Du SU	dary Indicators (2 or more required) ater Marks (B1) (Rivenne) ediment Deposits (B2) (Riverme) nft Deposits (B3) (Rivenne) rainage Patterns (B10) ry Season Water Table (C2) nin Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aenal Imagery (C nallow Aquitard (D3)
Deoth (inches Remarks No hydric soils YDROLOGY Wetland Hydrol Pnmary Indicator Surface Water High Water Saturation (A Water Marks Sediment De Drift Deposit Surface Soil Inundation V Water Staine Field Observatio	ogy Indicators rs (any one indicators rer (A1) Table (A2) A3) s (B1) (Nonriven eposits (B2) (Nor is (B3) (Nonriver Cracks (B6) risible on Aerial li ed Leaves (B9) ons resent? Ye	ator is sufficie ne) inverine) ine) magery (B7)	nt) Salt Crust Biotic Cru Aquatic Ir Hydrogen Oxidized Presence Recent Ird Other (Ex	ist (B12) invertebrate: Sulfide Oc Rhizosphei of Reduce on Reduction plain in Res nches)	lor (C1) es along L d Iron (C4 on in Plow marks)) ed Soils (C	Secon W Du Su Du Du Du Su Du Du Du Du Su Du Du Du Su Du Du Du Du Su Du Du Du Su Du Du Su Du Du Du Su Du SU	dary Indicators (2 or more required) ater Marks (B1) (Rivenne) ediment Deposits (B2) (Riverme) nft Deposits (B3) (Rivenne) rainage Patterns (B10) ry Season Water Table (C2) nin Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aenal Imagery (C nallow Aquitard (D3)
Deoth (inches Remarks No hydric soils YDROLOGY Wetland Hydrol Pinmary Indicator Surface Water High Water Saturation (A Water Marks Sediment De Drift Deposit Surface Soil Inundation V Water Staine Field Observatio Surface Water Pres	ogy Indicators rs (any one indica- ter (A1) Table (A2) A3) s (B1) (Nonriven eposits (B2) (Nor s (B3) (Nonriver Cracks (B6) 'Isible on Aerial li ed Leaves (B9) ons resent? Ye	ator is sufficie ne) nnverine) nne) magery (B7) es No es No	nt) Salt Crusi Biotic Cru Aquatic Ir Hydrogen Oxidized Presence Recent Irc Other (Ex Depth (ir X Depth (ir	ist (B12) invertebrates Sulfide Oc Rhizosphei of Reduce on Reduction plain in Ref inches)	lor (C1) es along L d Iron (C4 on in Plowe marks)) ed Soils (C 	Secon W Du DU 	dary Indicators (2 or more required) ater Marks (B1) (Rivenne) ediment Deposits (B2) (Riverme) nft Deposits (B3) (Rivenne) rainage Pattems (B10) ry Season Water Table (C2) nin Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aenal Imagery (C nallow Aquitard (D3) AC Neutral Test (D5)
Deoth (inches Remarks No hydric soils YDROLOGY Wetland Hydrol Pinmary Indicator Surface Water High Water Saturation (A Water Marks Sediment De Drift Deposit Surface Soil Inundation V Water Staine Field Observatio Surface Water Press Saturation Prese	ogy Indicators rs (any one indicators rs (any one indicators rer (A1) Table (A2) A3) s (B1) (Nonriven eposits (B2) (Norriver Cracks (B6) risible on Aerial li ed Leaves (B9) ons resent? Ye sent? Ye nt? Ye	ator is sufficie ne) nnverine) nne) magery (B7) es No es No	nt) Salt Crust Biotic Cru Aquatic Ir Hydrogen Oxidized Presence Recent Ird Other (Ex	ist (B12) invertebrates Sulfide Oc Rhizosphei of Reduce on Reduction plain in Ref inches)	lor (C1) es along L d Iron (C4 on in Plowe marks)) ed Soils (C 	Secon W Du DU 	dary Indicators (2 or more required) ater Marks (B1) (Rivenne) ediment Deposits (B2) (Riverme) nft Deposits (B3) (Rivenne) rainage Patterns (B10) ry Season Water Table (C2) nin Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aenal Imagery (C nallow Aquitard (D3)
Deoth (inches Remarks No hydric soils YDROLOGY Wetland Hydrol Pinmary Indicator Surface Water High Water Saturation (A Water Marks Sediment De Drift Deposit Surface Soil Inundation V Water Staine Field Observatio Surface Water Prese Saturation Prese (includes capillar	ogy Indicators rs (any one indicators rs (any one indicators rer (A1) Table (A2) A3) s (B1) (Nonriven eposits (B2) (Norriver Cracks (B6) risible on Aerial li ed Leaves (B9) ons resent? Ye sent? Ye nt? Ye	ator is sufficie ne) inverine) ine) magery (B7) es No es No	nt) Salt Crust Biotic Cru Aquatic Ir Hydrogen Oxidized Presence Recent Iro Other (Ex Other (Ex XDepth (ir XDepth (ir XDepth (ir	ist (B12) invertebrates Sulfide Oc Rhizosphei of Reduce on Reduction plain in Reduction p	lor (C1) res along L d Iron (C4) on in Plowe marks)) ed Soils (C Wetła	<u>Secon</u> W Si DI	dary Indicators (2 or more required) ater Marks (B1) (Rivenne) ediment Deposits (B2) (Riverme) nft Deposits (B3) (Rivenne) rainage Pattems (B10) ry Season Water Table (C2) nin Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aenal Imagery (C nallow Aquitard (D3) AC Neutral Test (D5)
Deoth (inches Remarks No hydric soils YDROLOGY Wetland Hydrol Pinmary Indicator Surface Water High Water Saturation (A Water Marks Sediment De Drift Deposit Surface Soil Inundation V Water Staine Field Observatio Surface Water Prese Saturation Prese (includes capillar	ogy Indicators rs (any one indicators rs (any one indicators rer (A1) Table (A2) A3) s (B1) (Nonriven eposits (B2) (Nor s (B3) (Nonriver Cracks (B6) risible on Aerial li ed Leaves (B9) ons resent? Ye sent? Ye y finge)	ator is sufficie ne) inverine) ine) magery (B7) es No es No	nt) Salt Crust Biotic Cru Aquatic Ir Hydrogen Oxidized Presence Recent Iro Other (Ex Other (Ex XDepth (ir XDepth (ir XDepth (ir	ist (B12) invertebrates Sulfide Oc Rhizosphei of Reduce on Reduction plain in Reduction p	lor (C1) res along L d Iron (C4) on in Plowe marks)) ed Soils (C Wetła	<u>Secon</u> W Si DI	dary Indicators (2 or more required) ater Marks (B1) (Rivenne) ediment Deposits (B2) (Riverme) nft Deposits (B3) (Rivenne) rainage Pattems (B10) ry Season Water Table (C2) nin Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aenal Imagery (C nallow Aquitard (D3) AC Neutral Test (D5)
Deoth (inches Remarks No hydric soils YDROLOGY Wetland Hydrol Pinmary Indicator Surface Water Saturation (A Water Marks Sediment De Drift Deposit Surface Soil Inundation V Water Staine Field Observatio Surface Water Pres Saturation Prese (includes capillar Describe Record	ogy Indicators rs (any one indicators rs (any one indicators rer (A1) Table (A2) A3) s (B1) (Nonriven eposits (B2) (Nor s (B3) (Nonriver Cracks (B6) risible on Aerial li ed Leaves (B9) ons resent? Ye sent? Ye y finge)	ator is sufficie ne) inverine) ine) magery (B7) es No es No	nt) Salt Crust Biotic Cru Aquatic Ir Hydrogen Oxidized Presence Recent Iro Other (Ex Other (Ex XDepth (ir XDepth (ir XDepth (ir	ist (B12) invertebrates Sulfide Oc Rhizosphei of Reduce on Reduction plain in Reduction p	lor (C1) res along L d Iron (C4) on in Plowe marks)) ed Soils (C Wetła	<u>Secon</u> W Si DI	dary Indicators (2 or more required) ater Marks (B1) (Rivenne) ediment Deposits (B2) (Riverme) nft Deposits (B3) (Rivenne) rainage Pattems (B10) ry Season Water Table (C2) nin Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aenal Imagery (C nallow Aquitard (D3) AC Neutral Test (D5)

Implementation Color (most) Y Type Loc Texture Remarks 0 10 10YR 2/2 100 Sa Drv 10+ 10YR 2/2 Sa Drv Drv 10+ 10YR 2/2 Sa Drv Drv 10+ 10YR 2/2 Connective of the second of the sec		he depth needed to document the indicator	or confirm the	absence of inc	licators)
0 10 107R 2/2 100 Sa Drv 10+ 107R 2/3 Sa Drv Drv 10+ 100 Sa Drv Drv Drv 10+ 100 Sa Drv Drv Drv Drv 10 100 100 Factors Drv	Depth <u>Matnx</u> (inches) Color (moist)	<u> </u>	Loc ²	exture	Remarks
10+ 10YR 4/3 100 Sa Dry Irge C_CConcentration D=Depletion FM=Reduced Matrix ************************************	0 10 10YR 2/2 1	0.0		Sa Dn	/
Type C_Concentration Depletion RA-Reduced Matrix ¹ Location PLePore Lining RO-Root Channel M-Matrix type C_Concentration Depletion RA-Reduced Matrix ¹ Location Indicators for Problematic Hydric Solls ¹ Hetical (A1)					
pdric Soil Indicators (Applicable to all LRRs unless otherwise noted) Indicators for Problematic Hydric Soils*	<u>10+ 101H 4/3 1</u>				Y
pdric Soil Indicators (Applicable to all LRRs unless otherwise noted) Indicators for Problematic Hydric Soils*					
pdric Soil Indicators (Applicable to all LRRs unless otherwise noted) Indicators for Problematic Hydric Soils*					
pdric Soil Indicators (Applicable to all LRRs unless otherwise noted) Indicators for Problematic Hydric Soils*					
pdric Soil Indicators (Applicable to all LRRs unless otherwise noted) Indicators for Problematic Hydric Soils*					
pdric Soil Indicators (Applicable to all LRRs unless otherwise noted) Indicators for Problematic Hydric Soils*					Matay
Hetre Epipedion (A2) Stripped Matrix (S6) 2 cm Mukck (A10) (LRR B) Black Histic (A3) Loamy Gleyed Matrix (F2) Reduced Vertic (F1) Stratified Layers (A5) (LRR C) Depleted Matrix (F2) Red Parent Matenal (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A09) (LRR D) Redox Dark Surface (F7) Thick Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Dark Surface (F7) Sandy Mucky Mineral (S1) Vernal Pools (F9) Sandy Mucky Maneral (S1) Vernal Pools (F9) Sandy Mucky Maneral (S1) Vernal Pools (F9) Hydne Soil Present? Yes	•				
Black Histic (A3) Loamy Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Suffide (A4) Loamy Gleyed Matrix (F2) Red Parent Matenal (TF2) Stratified Layers (A5) (LRR C) Depleted Matrix (F3) Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F1) Depleted Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) *Indicators of hydrophytic vegetation and wetland hydrology must be present Sandy Gleyed Matrix (S4)			-		
Hydrogen Sullide (A4) Loamy Gleyed Matrx (F2) Red Parent Material (TF2) Strattled Layers (A5) (LRR C) Depleted Matrx (F3) Other (Explain in Remarks) Term Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Vermal Pools (F9) Indicators of hydrophytic vegetation and wetland hydrology must be present estinctive Layer (if present) Hydric Soil Present? Yes No _X. emarks end for the sands Sandy Gleyed Matrix (F4) Molecators (2 or more required) mark (B1) (Inverne) Hydric Soil Present? Yes No _X. emarks On the sands Saccondary Indicators (2 or more required) mark highestors (any one indicator is sufficient) Water Marks (B1) (Inverne) Salt Crust (B11) Sediment Deposits (B2) (Riverne) Muter Indicator (B12) Drift Deposits (B2) (Riverne) Matrix (B1) (Dorivenne) Aquatic Invertebrates (B13) Drinage Patterns (B10) Or sanage Patterns (B2) (Riverne) Presence of Reduced Iron (C4) Crayths Bunows (C8)			_		
			-	Red Parent I	Matenal (TF2)
Depleted Balow Dark Surface (A11) Belota Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Vemal Pools (F9) Sandy Mucky Mineral (S1) Vemal Pools (F9) wettand hydrology must be present estinctive Layer (if present) Type Depth (inches) Hydne Soil Present? Yes No _X emarks o hydne soils //DROLOGY // Secondary Indicators // Secondary Indicators (B2) (Rivenne) Surface Water (A1) Selfcent] Sufface Table (A2) Biote Crust (B12) Water Marks (B1) (Rivenne) Surface Water (A1) Selfcent Table (A2) Biote Crust (B12) Dir Deposits (B2) (Rivenne) Surface Soil Cracks (B6) Precent Physics (C8) There are all magery (C7) Surface Soil Cracks (B6) Precent Physics (C8) Craytish Bunows (C8) surface Soil Cracks (B6) Recent Iron Reduction in Plowed Soils (C6) Statuation Visible on Aenal Imagery (B7) Other (Explain in Remarks) Face No _X Depth (inches)	Stratified Layers (A5) (LRR C)	Depleted Matrix (F3)	-	_ Other (Expla	ın ın Remarks)
Thick Dark Surface (A12)Redox Depressions (F8) Sandy Mucky Mineral (S1)Vermal Pools (F9) **Indicators of hydrophytic vegetation and sandy Gleyed Matrx (S4)wetland hydrology must be present estinctive Layer (if present)	1 cm Muck (A9) (LRR D)				
Sandy Mucky Minreral (S1)					
	Thick Dark Surface (A12)				
estrictive Layer (if present) Type Depth (inches) Hydnc Soil Present? Yes No _X_ emarks o hydnc soils //DROLOGY //Etland Hydrology Indicators mary Indicators (any one indicator is sufficient) Surface Water (A1)Salt Crust (B11)Sedment Deposits (B2) (Rivenne)Surface Water (A1)Salt Crust (B12)Drift Deposits (B3) (Rivenne)Surface Water (A3)Aquate Invertebrates (B13)Drift Deposits (B3) (Rivenne)Surface Soil Cracks (B6)Recent Iron Reduction in Plowed Soils (C5)Stataeton Visible on Aenal Imagery (IC		Vernal Pools (F9)	3	•	
Type		······································		wetland hydro	logy must be present
Depth (inches) Hydrc Soil Present? Yes No _X emarks o hydrc soils (DROLOGY Velocity indicators Secondary Indicators (2 or more required) mary Indicators (any one indicator is sufficient)	_				
emarks o hydnc soils //DROLOGY /etiland Hydrology Indicators					
o hydrc soils //DROLOGY fetland Hydrology Indicators Secondary Indicators (2 or more reoured) nmary Indicators (any one indicator is sufficient) Water Marks (B1) (Rivenne)	Depth (inches)	<u></u>	H	dnc Soll Prese	ent? Yes No <u>X</u>
/etland Hydrotogy Indicators Secondary Indicators (2 or more required) nmary Indicators (any one indicator is sufficient) Water Marks (B1) (Rivenne) Surtace Water (A1) Salt Crust (B11) Sediment Deposits (B2) (Rivenne) High Water Table (A2) Biotic Crust (B12) Drift Deposits (B3) (Rivenne) Saturation (A3) Aquatic Invertebrates (B13) Dranage Patterns (B10) Water Marks (B1) (Nonrivenne) Hydrogen Sulfide Odor (C1) Dry Season Water Table (C2) Sediment Deposits (B2) (Nonrivenne) Oxidized Rhizospheres along Llving Roots (C3) Thin Muck Surface (C7) Dift Deposits (B3) (Nonriverine) Presence of Reduced Iron (C4) Crayfish Bunows (C8) Surface Soil Cracks (B6) Recent Iron Reduction in Plowed Soils (C6) Saturation Visible on Aenal Imagery (0) Inundation Visible on Aenal Imagery (B7) Other (Explain in Remarks) Shallow Aquitard (C3) water Present? Yes No X Depth (inches) urate Reverse Present? Yes No X Depth (inches) cludes capillary finge) Wetland Hydrology Present? Yes No X escnbe Recorded Data (stream gauge monitoring well aerial photos previous inspections) if available Stallable	No hydnc soils				
mmary Indicators (any one indicator is sufficient) Water Marks (B1) (Rivenne) Surtace Water (A1) Salt Crust (B11) Sediment Deposits (B2) (Rivenne) High Water Table (A2) Biotic Crust (B12) Drift Deposits (B3) (Rivenne) Saturation (A3) Aquatic Invertebrates (B13) Drainage Patterns (B10) Water Marks (B1) (Nonrivenne) Hydrogen Sulfide Odor (C1) Dry Season Water Table (C2) Sediment Deposits (B2) (Nonrivenne) Oxidized Rhizospheres along Llving Roots (C3) Thin Muck Surface (C7) Dift Deposits (B3) (Nonrivenne) Presence of Reduced Iron (C4) Crayfish Bunows (C8) Surface Soil Cracks (B6) Recent Iron Reduction in Plowed Soils (C6) Saturation Visible on Aenal Imagery (B7) Inundation Visible on Aenal Imagery (B7) Other (Explain in Remarks) Shallow Aquitard (C3) Water Staned Leaves (B9) FAC Neutral Test (D5) virface Water Present? Yes No_X No_X Depth (inches) Water And Hydrology Present? Yes No_X No_Lides capillary finge) escribe Recorded Data (stream gauge monitoning well aerial photos previous inspections) if available emarks				Secondary	ndiractors (2 or more required)
Surface Water (A1) Salt Crust (B11) Sediment Deposits (B2) (Rivenne) High Water Table (A2) Biotic Crust (B12) Drift Deposits (B3) (Rivenne) Saturation (A3) Aquatic Invertebrates (B13) Dranage Patterns (B10) Water Marks (B1) (Nonrivenne) Hydrogen Sulfide Odor (C1) Dry Season Water Table (C2) Sediment Deposits (B2) (Nonrivenne) Oxidized Rhizospheres along Llving Roots (C3) Thin Muck Surface (C7) Drift Deposits (B3) (Nonriverine) Presence of Reduced Iron (C4) Crayfish Bunows (C8) Surface Soil Cracks (B6) Recent Iron Reduction in Plowed Soils (C6) Saturation Visible on Aenal Imagery (f Inundation Visible on Aenal Imagery (B7) Other (Explain in Remarks) Shallow Aquitard (C3) Water Stained Leaves (B9) FAC Neutral Test (D5) reld Observations Indicates Y es No X urface Water Present? Yes No X Depth (inches) aturation Present? Yes No X Depth (inches) Mo X Includes capillary finge) escribe Recorded Data (stream gauge monitoning well aerial photos previous inspections) if available eriarks		in authorizat)			
Water Marks (B1) (Nonrivenne) Hydrogen Sulfide Odor (C1) Dry Season Water Table (C2) Sediment Deposits (B2) (Nonrivenne) Oxidized Rhizospheres along Llving Roots (C3) Thin Muck Surface (C7) Drift Deposits (B3) (Nonnverine) Presence of Reduced Iron (C4) Crayfish Bunows (C8) Saturation Visible on Aenal Imagery (C1) Other (Explain in Remarks) Saturation Visible on Aenal Imagery (B7) Other (Explain in Remarks) Shallow Aquitard (C3) FAC Neutral Test (D5) reludes capillary fringe) Wetland Hydrology Present? Yes No _X Depth (inches) Wetland Hydrology Present? Yes No _X Depth (inches) Wetland Hydrology Present? Yes No _X Depth (inches) Recorder Data (stream gauge monitoring well aerial photos previous inspections) if available					
Sediment Deposits (B2) (Nonriverine)Oxidized Rhizospheres along Llving Roots (C3)Thin Muck Surface (C7)Drift Deposits (B3) (Nonriverine)Presence of Reduced Iron (C4)Crayfish Bunows (C8)Surface Soil Cracks (B6)Recent Iron Reduction in Plowed Soils (C6)Saturation Visible on Aenal Imagery (CNurface Visible on Aenal Imagery (B7)Other (Explain in Remarks)Shallow Aquitard (C3)Nater Stained Leaves (B9)FAC Neutral Test (D5)No_XDepth (inches)Nater Table Present? YesNo_XDepth (inches)Aaturation Present? YesNo_XDepth (inches)Nater Table Present? YesNo_XDepth (inches)Aaturation Present? YesNo_XDepth (inches)					
Drift Deposits (B3) (Nonnverine) Presence of Reduced Iron (C4) Crayfish Bunows (C8) Surface Soil Cracks (B6) Recent Iron Reduction in Plowed Soils (C6) Saturation Visible on Aenal Imagery (0 No Other (Explain in Remarks) Shallow Aquitard (C3) Shallow Aquitard (C3) FAC Neutral Test (D5) related Leaves (B9) FAC Neutral Test (D5) related Cobservations No_X Depth (inches) Recorded Data (stream gauge monitoring well aerial photos previous inspections) if available emarks				-	
Surface Soil Cracks (B6)Recent Iron Reduction in Plowed Soils (C6)Saturation Visible on Aenal Imagery (0 Inundation Visible on Aenal Imagery (B7)Other (Explain in Remarks)Shallow Aquitard (C3) Shallow Aquitard (C3)Shallow Aquitard (C3) Shallow Aquitard (C3) FAC Neutral Test (D5) Ided Observations urface Water Present? YesNo _X Depth (inches) //ater Table Present? YesNo _X Depth (inches) aturation Present? YesNo _X Depth (inches) aturation Present? YesNo _X Depth (inches) moludes capillary fnnge) escribe Recorded Data (stream gauge monitoning well aerial photos previous inspections) if available emarks				•	
Inundation Visible on Aenal Imagery (B7)Other (Explain in Remarks)Shallow Aquitard (C3)FAC Neutral Test (D5)FAC Neutral Test (D5)			-		
			ed Soils (C6)		
ueld Observations urface Water Present? Yes No _X Depth (inches) /ater Table Present? Yes No _X Depth (inches) Wetland Hydrology Present? Yes No _X aturation Present? Yes No _X Depth (inches) Wetland Hydrology Present? Yes No _X includes capillary finge) escribe Recorded Data (stream gauge monitoring well aerial photos previous inspections) if available		ery (B7) Other (Explain in Remarks)		-	
urface Water Present? Yes No X Depth (inches) /ater Table Present? Yes No X Depth (inches) aturation Present? Yes No X Depth (inches) aturation Present? Yes No X Depth (inches) includes capillary fnnge) Wetland Hydrology Present? Yes No X escribe Recorded Data (stream gauge monitoring well aerial photos previous inspections) if available				FAC Ne	eutral Test (D5)
/ater Table Present? Yes No _X Depth (inches) aturation Present? Yes No _X Depth (inches) wetland Hydrology Present? Yes No _X includes capillary fnnge) wetland Hydrology Present? escribe Recorded Data (stream gauge monitoring well aerial photos previous inspections) if available emarks	ield Observations				
aturation Present? Yes <u>No X</u> Depth (inches) <u>Wetland Hydrology Present? Yes</u> <u>No X</u> ncludes capillary finge) escribe Recorded Data (stream gauge monitoring well aerial photos previous inspections) if available emarks	Surface Water Present? Yes	No X Depth (inches)	_ {		
escribe Recorded Data (stream gauge monitoring well aerial photos previous inspections) if available emarks	Vater Table Present? Yes	No X Depth (inches)	_]		
emarks	ncludes capillary fnnge)		1.		ent? Yes No _X
			,		
o wetland hydrology	Remarks				
	o wetland bydrology				

Depth <u>Matrix</u>		
	Redox Features	Loc ² Texture Remarks
(inches) Color (moist) %	Color (moist) % Type1	
<u>0 - 18+ 10YR 4/3 100</u>		CILo Moist
·		· ·
¹ Type C=Concentration D=Depletion RM=		
Hydnc Soil Indicators (Applicable to all		Indicators for Problematic Hydric Soils ³
Histosol (A1)	Sandy Redox (S5)	1 cm Muck (A9) (LRR C)
Histic Epipedon (A2)	Stnpped Matrix (S6)	2 cm Muck (A10) (LRR B)
Black Histic (A3)	Loarny Mucky Mineral (F1)	Reduced Vertic (F18)
Hydrogen Sulfide (A4)	Loamy Gleyed Matrix (F2)	Red Parent Material (TF2)
Stratified Layers (A5) (LRR C)	Depleted Matrix (F3)	X Other (Explain in Remarks)
1 cm Muck (A9) (LRR D) Depleted Below Dark Surface (A11)	Redox Dark Surface (F6) Depleted Dark Surface (F7)	
Depleted Below Dark Surface (A11) Thick Dark Surface (A12)	Redox Depressions (F8)	
Sandy Mucky Mineral (S1)	Vernal Pools (F9)	³ Indicators of hydrophytic vegetation and
Sandy Gleyed Matnx (S4)		wetland hydrology must be present
Restrictive Layer (if present)		
Туре		
Depth (inches)		Hydnc Soil Present? Yes X No
Remarks		
		Secondary Inducators (2 or more required)
Wetland Hydrology Indicators	nont)	Secondary Indicators (2 or more required)
Wetland Hydrology Indicators Primary Indicators (any one indicator is suffi		Water Marks (B1) (Rivenne)
Wetland Hydrology Indicators Primary Indicators (any one indicator is suffi Surface Water (A1)	<u>X</u> Salt Crust (B11)	Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne)
Wetland Hydrology Indicators Primary Indicators (any one indicator is suffir Surface Water (A1) High Water Table (A2)	X Salt Crust (B11) Biotic Crust (B12)	Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Dnft Deposits (B3) (Rivenne)
Wetland Hydrology Indicators Primary Indicators (any one indicator is suffir Surface Water (A1) High Water Table (A2) Saturation (A3)	X Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13)	Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Dnft Deposits (B3) (Rivenne) Drainage Patterns (B10)
Wetland Hydrology Indicators Primary Indicators (any one indicator is suffir Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonrivenne)	X Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1)	Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Dnít Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2)
Wetland Hydrology Indicators Primary Indicators (any one indicator is suffir Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonrivenne) Sediment Deposits (B2) (Nonrivenne)	X Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along	Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Dnft Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2) Living Roots (C3) Thin Muck Surface (C7)
Wetland Hydrology Indicators Primary Indicators (any one indicator is suffir Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonrivenne) Sediment Deposits (B2) (Nonrivenne) Drift Deposits (B3) (Nonrivenne)	 X Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Presence of Reduced Iron (C4) 	Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Dnft Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2) Living Roots (C3) Thin Muck Surface (C7) Crayfish Burrows (C8)
Wetland Hydrology Indicators Primary Indicators (any one indicator is suffir Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonrivenne) Sediment Deposits (B2) (Nonrivenne) Drift Deposits (B3) (Nonrivenne) X Surface Soil Cracks (B6)	X Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Presence of Reduced Iron (C4) Recent Iron Reduction in Plow	Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Dnft Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2) Living Roots (C3) Thin Muck Surface (C7) Crayfish Burrows (C8)
Wetland Hydrology Indicators Primary Indicators (any one indicator is suffly Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonrivenne) Sediment Deposits (B2) (Nonrivenne) Drift Deposits (B3) (Nonrivenne) X Surface Soil Cracks (B6) Inundation Visible on Aenal Imagery (B7	X Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Presence of Reduced Iron (C4) Recent Iron Reduction in Plow	Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Dnft Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2) Living Roots (C3) Thin Muck Surface (C7) (Crayfish Burrows (C8) wed Soils (C6) Saturation Visible on Aenal Imagery (C9 Shallow Aquitard (D3)
Wetland Hydrology Indicators Primary Indicators (any one indicator is suffir Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonrivenne) Sediment Deposits (B2) (Nonrivenne) Drift Deposits (B3) (Nonrivenne) X Surface Soil Cracks (B6) Inundation Visible on Aenal Imagery (B7 Water Stained Leaves (B9)	X Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Presence of Reduced Iron (C4) Recent Iron Reduction in Plow	Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Dnft Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2) Living Roots (C3) Thin Muck Surface (C7) (Crayfish Burrows (C8)) ved Soils (C6) Saturation Visible on Aenal Imagery (C9)
Wetland Hydrology Indicators Primary Indicators (any one indicator is suffir 	 X Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Presence of Reduced Iron (C4 Recent Iron Reduction in Plow Other (Explain in Remarks) 	Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Drift Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2) Living Roots (C3) Thin Muck Surface (C7) Crayfish Burrows (C8) ved Soils (C6) Saturation Visible on Aenal Imagery (C9) FAC Neutral Test (D5)
Wetland Hydrology Indicators Primary Indicators (any one indicator is suffir 	X Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Presence of Reduced Iron (C4) Recent Iron Reduction in Plow	Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Drift Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2) Living Roots (C3) Thin Muck Surface (C7) Crayfish Burrows (C8) ved Soils (C6) Saturation Visible on Aenal Imagery (C9) FAC Neutral Test (D5)
Wetland Hydrology Indicators Primary Indicators (any one indicator is suffly Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonrivenne) Sediment Deposits (B2) (Nonrivenne) Drift Deposits (B3) (Nonrivenne) X Surface Soil Cracks (B6) Inundation Visible on Aenal Imagery (B7 Water Stained Leaves (B9) Field Observations Surface Water Present?	 X Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Presence of Reduced Iron (C4 Recent Iron Reduction in Plow Other (Explain in Remarks) 	Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Drift Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2) Living Roots (C3) Thin Muck Surface (C7) () Crayfish Burrows (C8) ved Soils (C6) Saturation Visible on Aenal Imagery (C9) Shallow Aquitard (D3) FAC Neutral Test (D5)
Wetland Hydrology Indicators Primary Indicators (any one indicator is suffly Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonrivenne) Sediment Deposits (B2) (Nonrivenne) Drift Deposits (B3) (Nonrivenne) X Surface Soil Cracks (B6) Inundation Visible on Aenal Imagery (B7 Water Stained Leaves (B9) Field Observations Surface Water Present? Yes N Water Table Present? Yes N	X Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Presence of Reduced Iron (C4 Recent Iron Reduction in Plov Other (Explain in Remarks)	Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Dnft Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2) Living Roots (C3) Thin Muck Surface (C7) (A) Crayfish Burrows (C8) ved Soils (C6) Saturation Visible on Aenal Imagery (C9) Shallow Aquitard (D3) FAC Neutral Test (D5)
Wetland Hydrology Indicators Primary Indicators (any one indicator is suffly	X Salt Crust (B11)	Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Drift Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2) Living Roots (C3) Thin Muck Surface (C7) () Crayfish Burrows (C8) ved Soils (C6) Saturation Visible on Aenal Imagery (C9) Shallow Aquitard (D3) FAC Neutral Test (D5) Wetland Hydrology Present? Yes X No
Wetland Hydrology Indicators Primary Indicators (any one indicator is suffly	X Salt Crust (B11)	Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Drift Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2) Living Roots (C3) Thin Muck Surface (C7) () Crayfish Burrows (C8) ved Soils (C6) Saturation Visible on Aenal Imagery (C9 Shallow Aquitard (D3) FAC Neutral Test (D5) Wetland Hydrology Present? Yes X No
Wetland Hydrology Indicators Primary Indicators (any one indicator is suffly	X Salt Crust (B11)	Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Drift Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2) Living Roots (C3) Thin Muck Surface (C7) () Crayfish Burrows (C8) ved Soils (C6) Saturation Visible on Aenal Imagery (C9) Shallow Aquitard (D3) FAC Neutral Test (D5) Wetland Hydrology Present? Yes X No
High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonrivenne) Sediment Deposits (B2) (Nonrivenne) Drift Deposits (B3) (Nonrivenne) X Surface Soil Cracks (B6) Inundation Visible on Aenal Imagery (B7 Water Stained Leaves (B9) Field Observations Surface Water Present? Yes Water Table Present? Yes Saturation Present? Yes	X Salt Crust (B11)	Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Dift Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2) Living Roots (C3) Thin Muck Surface (C7) () Crayfish Burrows (C8) ved Soils (C6) Saturation Visible on Aenal Imagery (C9) Shallow Aquitard (D3) FAC Neutral Test (D5) Wetland Hydrology Present? Yes X No
Wetland Hydrology Indicators Primary Indicators (any one indicator is suffir Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonrivenne) Sediment Deposits (B2) (Nonrivenne) Drift Deposits (B3) (Nonrivenne) X Surface Soil Cracks (B6) Inundation Visible on Aenal Imagery (B7 Water Stained Leaves (B9) Field Observations Surface Water Present? YesN Water Table Present? YesN Saturation Present? YesN Saturation Present? YesN Saturation Present? YesN	X Salt Crust (B11)	Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Dift Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2) Living Roots (C3) Thin Muck Surface (C7) (), Crayfish Burrows (C8) ved Soils (C6) Saturation Visible on Aenal Imagery (C9) Shallow Aquitard (D3) FAC Neutral Test (D5) Wetland Hydrology Present? Yes X No
Wetland Hydrology Indicators Primary Indicators (any one indicator is suffir Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonrivenne) Sediment Deposits (B2) (Nonrivenne) Drift Deposits (B3) (Nonrivenne) X Surface Soil Cracks (B6) Inundation Visible on Aenal Imagery (B7 Water Stained Leaves (B9) Field Observations Surface Water Present? YesN Water Table Present? YesN Saturation Present? YesN Saturation Present? YesN Saturation Present? YesN	X Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Presence of Reduced Iron (C4 Recent Iron Reduction in Plow Other (Explain in Remarks) Other (Explain in Remarks) Other (inches) No _X Depth (inches) No _X Depth (inches) nitoning well aenal photos previous ins	Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Drift Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2) Living Roots (C3) Thin Muck Surface (C7) () Crayfish Burrows (C8) ved Soils (C6) Saturation Visible on Aenal Imagery (C9) Shallow Aquitard (D3) FAC Neutral Test (D5) Wetland Hydrology Present? Yes X No
Wetland Hydrology Indicators Primary Indicators (any one indicator is suffle Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonrivenne) Sediment Deposits (B2) (Nonrivenne) Drift Deposits (B3) (Nonrivenne) X Surface Soil Cracks (B6) Inundation Visible on Aenal Imagery (B7 Water Stained Leaves (B9) Field Observations Surface Water Present? Yes N Saturation Present? Yes N Sa	X Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Presence of Reduced Iron (C4 Recent Iron Reduction in Plow Other (Explain in Remarks) Other (Explain in Remarks) Other (inches) No _X Depth (inches) No _X Depth (inches) nitoning well aenal photos previous ins	Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Drift Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2) Living Roots (C3) Thin Muck Surface (C7) () Crayfish Burrows (C8) ved Soils (C6) Saturation Visible on Aenal Imagery (C9) Shallow Aquitard (D3) FAC Neutral Test (D5) Wetland Hydrology Present? Yes X No

į

Profile De	scription (Describe	to the dept	n needed to docum	ent the	ndicator	or confirm	the absence	e of indicators)
Depth	Matrix		Redox	Feature	<u>s</u>		T	Demester
(inches)	Color (moist)		Color (moist)	%	<u>rype</u>		Texture	
0 10	<u>10YR 2/2</u>						<u>Sa</u>	Drv
_10+	10YR 4/3						<u>Sa</u>	Dry
						<u> </u>	<u> </u>	
_								
		•				<u> </u>		
						<u> </u>	<u> </u>	
'Type C=0	Concentration D=Dep	letion RM=F				e Lining R		nel M=Matrix
Hydric Soi	Indicators (Applic	able to all L	RRs unless other	wise note	ed)		Indicators	s for Problematic Hydnc Soils ³
Histoso	ol (A1)		Sandy Redo	x (S5)				Muck (A9) (LRR C)
	Epipedon (A2)		Stnpped Mai					Muck (A10) (LRR B)
Black I			Loamy Muck	-				ced Vertic (F18)
	gen Sulfide (A4)	~	Loamy Gleye		(F2)			'arent Matenal (TF2) (Explain in Remarks)
	ed Layers (A5) (LRR + /uck (A9) (LRR D)	-)	Depleted Ma Redox Dark		F6)			
	ed Below Dark Surfac	e (A11)	Depleted Dank		•			
	Dark Surface (A12)	• (, ,)	Redox Depre					
	Mucky Mineral (S1)		Vernal Pools				³ Indicators	of hydrophytic vegetation and
	Gleyed Matrix (S4)						wetland	hydrology must be present
Restrictive	Layer (if present)							
Туре	<u> </u>							
Deoth (II	nches)						Hydric Soil	I Present? Yes No <u>X</u>
No hydric s								
	ydrology Indicators						Seco	ndary Indicators (2 or more required)
	licators (any one indic	ator is cuffici	ont)				-	Vater Marks (B1) (Rivenne)
			Salt Crust (Sediment Deposits (B2) (Riverme)
	e Water (A1) /ater Table (A2)		Biotic Crust	•				Drift Deposits (B3) (Rivenne)
Night W			Aquatic Inv		s (B13)			Drainage Patterns (B10)
	Marks (B1) (Nonriver	ne)	Hydrogen S		•			Dry Season Water Table (C2)
	ent Deposits (B2) (No		Oxidized RI			_iving Root		hin Muck Surface (C7)
	eposits (B3) (Nonnve		Presence o	-	-	-		Crayfish Burrows (C8)
	e Soil Cracks (B6)		Recent Iron					Saturation Visible on Aerial Imagery (C9)
	tion Visible on Aenal	magery (B7)						Shallow Aquitard (D3)
	Stained Leaves (B9)		— • •		•			AC Neutral Test (D5)
Field Obse								
		es N	o_X Depth (inc	hes)		_ [
Water Table			Depth (inc			· •		
Saturation F			o X Depth (inc			- 1	nd Hvdroloa	v Present? Yes No _X
(includes ca	apillary finnge)							
Describe R	ecorded Data (stream	gauge mon	itonng well aerial p	hotos pre	evious ins	pections) i	f available	
Pomortio		<u> </u>						
Remarks								
No wetland	hydrology							

		he depth needed to docur				
Depth (Inches)	<u>Matnx</u> Color (moist)	<u> </u>	x Features <u>%</u> Type	_Loc ²	Texture	Remarks
0_10	10YR 4/1	100			OlLo	Moist
	10yr 6/2	100			CI	Moist
	Concentration D=Depletin	on RM=Reduced Matrix e to all LRRs unless othe	² Location PL=P	pre Lining R		nnel M=Matnx s for Problematic Hydric Soils ³
Histoso		Sandy Red	-			Muck (A9) (LRR C)
Histic E	pipedon (A2)	Stnpped Ma				Muck (A10) (LRR B)
	listic (A3)		ky Mineral (F1)		Reduc	ced Vertic (F18)
	en Sulfide (A4)		/ed Matrix (F2)			arent Material (TF2)
Stratifie	d Layers (A5) (LRR C)	Depleted M			<u>X</u> Other	(Explain in Remarks)
1 cm M	uck (A9) (LRR D)	Redox Dark	Surface (F6)			
	d Below Dark Surface (A	-	ark Surface (F7)			
	ark Surlace (A12)		ressions (F8)		<u>,</u>	
	Mucky Mineral (S1)	Vernal Pool	s (F9)			of hydrophytic vegetation and
	Gleyed Matnx (S4)				wetlanc	hydrology must be present
Restrictive	Layer (if present)					
Туре						
Depth (in	iches)				Hydric Son	Present? Yes X No
Remarks Playa soils	Salorthids are hydric by o	definition				
IYDROLO	θGY	· · · · · · · · · · · · · · · · · · ·	<u> </u>			
Wetland Hy	drology Indicators				Seco	ndary Indicators (2 or more required)
Pnmary Indi	cators (any one indicator	is sufficient)			V	Vater Marks (B1) (Rivenne)
Surface	Water (A1)	Salt Crust	(B11)		s	Sediment Deposits (B2) (Rivenne)
High Wa	ater Table (A2)	Biotic Crus	it (B12)		C)rift Deposits (B3) (Rivenne)
Saturati	on (A3)	Aquatic Inv	vertebrates (B13)		C)rainage Pattems (B10)
Water N	/arks (B1) (Nonrivenne)	Hydrogen	Sulfide Odor (C1)		C	ry Season Water Table (C2)
vvalei iv						
	nt Deposits (B2) (Nonriv	enne) Oxidized F	hizospheres along	Living Root	ts (C3) T	hin Muck Surface (C7)
Sedime	nt Deposits (B2) (Nonriv posits (B3) (Nonrivenne		Ihizospheres along of Reduced Iron (C	-		hin Muck Surface (C7) Crayfish Burrows (C8)

Field Observations

____ Inundation Visible on Aenal Imagery (B7) ____ Other (Explain in Remarks) ____ Shallow Aquitard (D3) __ FAC Neutral Test (D5) __ Water Stained Leaves (B9) Yes _____ No X Depth (inches) _____ Surface Water Present? Yes _____ No X Deoth (inches) _____ Water Table Present? Yes ____ No X Depth (inches) _____ Wetland Hydrology Present? Yes X No ____ Saturation Present? (includes capillary fnnge) Describe Recorded Data (stream gauge monitoring well aenal photos previous inspections) if available

Remarks

Surface cracks are indication of saturation

0

SOIL							Sampling Point <u>14.2</u>
Profile Des	cription (Describe	to the dept	h needed to docur	nent the indicator	or confirm	the absence	of indicators)
Depth	Matnx		Redo	x Features			
(inches)	Color (moist)		Color (moist)	%Type1	Loc ²	<u>Texture</u>	Remarks
0_8	10YR 3/2	_100				SILO	Damp
9_19,	10YR 4/2	100				CILo	Damp
0-10+	_101 h 4/2			·	<u> </u>		Danip
	<u></u>		·	·			<u></u>
			· · · · · · · · · · · · · · · · · · ·				
				·			
			·····			<u> </u>	
ļ		_		_			
¹ Type C=C	oncentration D=Dep	letion RM=	Reduced Matnx	² Location PL=Por	e Linina R	O=Root Chan	nel M=Mainx
	Indicators (Applic				<u>.</u>		for Problematic Hydric Soils ³
Histosol	(A1)		Sandy Redo	ox (S5)		1 cm N	Auck (A9) (LRR C)
	pipedon (A2)		Stnpped Ma				Muck (A10) (LRR B)
Black H				ky Mineral (F1)			ed Vertic (F18)
	en Sulfide (A4)			red Matrix (F2)		Red Pa	arent Material (TF2)
	d Layers (A5) (LRR (C)	Depleted Ma	atnx (F3)		Other	(Explain in Remarks)
1 cm Mi	uck (A9) (LRR D)			Surtace (F6)			
	d Below Dark Surfac	e (A11)		ark Surface (F7)			
	ark Surface (A12)			essions (F8)		a	
	Aucky Mineral (S1)		Vernal Pools	s (F9)			of hydrophytic vegetation and
	Bleyed Matnx (S4)		·····		,	wetland	hydrology must be present
1	Layer (if present)						
Depth (In	ches)					Hydric Soit	Present? Yes <u>No X</u>
Remarks							
No hydne so	ıls						
HYDROLO	GV						
<u></u>						Sacor	ndary Indicators (2 or more required)
1 -	drology Indicators	ator in a iffic					
1	cators (any one indic	ator is sume					/ater Marks (B1) (Rivenne)
	Water (A1)		Salt Crust				ediment Deposits (B2) (Rivenne)
	ater Table (A2)		Biotic Crus	· ·			nft Deposits (B3) (Riverme)
Saturate				vertebrates (B13)			rainage Patterns (B10)
	larks (B1) (Nonnver	-		Sulfide Odor (C1)			ry Season Water Table (C2)
	nt Deposits (B2) (No		-	Ihizospheres along	-		hin Muck Surface (C7)
	oosits (B3) (Nonrive	nne)	-	of Reduced fron (C4	-		rayfish Burrows (CB)
1	Soil Cracks (B6)			n Reduction in Plow	ed Soils (C		aturation Visible on Aenal Imagery (C9)
1	on Visible on Aenal I	magery (B7)	Other (Exp	ilain in Remarks)			hallow Aquitard (D3)
1 .	tained Leaves (B9)					F/	AC Neutral Test (D5)
Field Obser	vations						
Surface Wat	er Present? Y	es N	o X Depth (inc	hes)	_		
Water Table	Present? Y	es N	o <u>X</u> Deoth (inc	hes)	_		

(includes capillary fnnge) Describe Recorded Data (stream gauge monitoring well aerial photos previous inspections) if available

 Yes
 No
 X
 Depth (inches)

 Yes
 No
 X
 Depth (inches)

Remarks

No wetland hydrology

Saturation Present?

Wetland Hydrology Present? Yes _____ No __X

SUL								Sampling Point
Profile Des	cription (Describe	to the dept	n needed to docur	nent the ir	ndicator	or confirm	the absence	e of indicators)
Depth	Матлх		Redo	x Features	1			
(inches)		9	Color (moist)	9	Type'	_Loc ²	Texture	Remarks
0 10	10YR 4/1	100					CILo	Moist
_10+	10vr 6/2			·			<u>CI</u>	Moist
	· <u></u>							
							······································	
	·			·				
		·				<u> </u>	<u></u>	
	· · · · · · · · · · · · · · · · · · ·					- <u></u>		
	·					·		· · · · · · · · · · · · · · · · · · ·
	Concentration D=Dep					e Lining R		
-	Indicators (Applic	able to all L			d			s for Problematic Hydric Soils ³
Histoso	· ·		Sandy Rede					Muck (A9) (LRR C)
	рipedon (А2)		Stnpped Ma					Muck (A10) (LRR B)
Black H			Loamy Muc	-				ced Vertic (F18)
	en Sulfide (A4)		Loamy Gley		(F2)			Parent Matenal (TF2)
	d Layers (A5) (LRR	C)	Depleted M				<u>X</u> Other	(Explain in Remarks)
	uck (A9) (LRR D)		Redox Dark					
	d Below Dark Surfac	e (A11)	Depleted Da					
	ark Surface (A12)		Redox Depr		8)		31	the state of the s
	Mucky Mineral (S1)		Vernal Pool	s (F9)				of hydrophytic vegetation and
	Gleyed Matrix (S4) Layer (rf present)						weiland	hydrology must be present
Depth (In	ches)						Hydric Soi	Present? Yes X No
Remarks								-
Playa soils	Salorthids are hydric	by definition						
HYDROLO	GY		<u> </u>					
	drology Indicators						Seco	ndary Indicators (2 or more reaured)
	cators (any one indic	ator is suffici	ent)					Vater Marks (B1) (Rivenne)
·	Water (AI)		Salt Crust	/B++\				Sediment Deposits (B2) (Rivenne)
<u> </u>				• •				
	ater Table (A2)		Biotic Crus					Onft Deposits (B3) (Rivenne)
Saturate	• •	,	Aquatic Inv					Drainage Patterns (B10)
	larks (B1) (Nonnver		Hydrogen					Dry Season Water Table (C2)
	nt Deposits (82) (No	-						hin Muck Surface (C7)
	posits (B3) (Nonrive	nne)	Presence of					Crayfish Burrows (C8)
X Surface	Soil Cracks (B6)		Recent Iron			ed Soils (C		Saturation Visible on Aenal Imagery (C9)
Inundati	on Visible on Aenal I	magery (B7)	Other (Exp	laın ın Rem	narks)		8	Shallow Aquitard (D3)
Water S	stained Leaves (B9)						F	AC Neutral Test (D6)
Field Obser	vations							
Surface Wat	er Present? Y	esN	Depth (Ind	ches)		_		
Water Table			Depth (ind			4		
			Deput (inc			- 1		

Yes ____ No X Deoth (inches) _____

Describe Recorded Data (stream gauge monitoring well aenal photos previous inspections) if available

115 Arm Coros of Foo opers

Surface cracks are indication of saturation

Saturation Present? (includes capillary fnnpe)

Remarks

Wetland Hydrology Present? Yes X No ____

ł

Profile Description (Describe to the Depth <u>Matrix</u>		ox Features			<i>,</i>
(inches) Color (moist) 9	Color (moist)	<u> </u>	Loc ²	<u>Texture</u>	Remarks
0 8 10YR 3/2 100				SILO	Damp
<u>8 – 18+10YR 4/2100</u>			<u></u>	_CILo	Damp
		- <u></u>			
			<u></u>		
				<u> </u>	
Type C=Concentration D=Depletion	RM=Reduced Matrix	² Location PL=Por	e Lining F	C=Root Chan	nel M=Matnx
Hydric Soil Indicators (Applicable to	all LRRs unless othe	rwise noted)		Indicators	for Problematic Hydric Soils ³
Histosol (A1)	Sandy Red	ox (S5)		1 cm M	Auck (A9) (LRR C)
Histic Epipedon (A2)	Stripped M				1uck (A10) (L RR B)
Black Histic (A3)		cky Mineral (F1)			ed Verfic (F18)
Hydrogen Sulfide (A4)		yed Matrix (F2)			arent Matenal (TF2)
Stratitied Layers (A5) (LRR C)	Depleted M			Other	(Explain in Remarks)
1 cm Muck (A9) (LRR D) Depleted Below Dark Surface (A11)		k Surface (F6) ark Surface (F7)			
_ Depleted Below Dark Sofface (A11) _ Thick Dark Surface (A12)		ressions (F8)			
Sandy Mucky Mineral (S1)	Vernal Poo			³ Indicators	of hydrophytic vegetation and
Sandy Gleyed Matnx (S4)	+ + + + + + + + + + + + + + + + + +				hydrology must be present
Restrictive Layer (if present)				1	,,
restrictive Layer (in present)					
Type Depth (inches) Remarks				Hydnc Soit	Present? Yes NoX
Type Depth (inches) Remarks No hydnc soils YDROLOGY Vetland Hydrology Indicators Pamary Indicators (any one indicator is s	:ufficient)			<u>Secor</u>	dary Indicators (2 or more required) ater Marks (B1) (Riverme)
Type Depth (inches) Remarks No hydnc soils YDROLOGY Vetland Hydrology Indicators Primary Indicators (any one indicator is s Surface Water (A1)	sufficient)			<u>Secor</u> W S	<u>dary Indicators (2 or more required)</u> ater Marks (B1) (Riverme) ediment Deposits (62) (Rivenne)
Type Depth (inches) Remarks Io hydnc soils YDROLOGY Vetland Hydrology Indicators Inmary Indicators (any one indicator is s Surface Water (A1) High Water Table (A2)	sufficient) Salt Crust Biotic Crust	st (B12)		<u>Secor</u> W S D	dary Indicators (2 or more required) ater Marks (B1) (Riverme) ediment Deposits (62) (Rivenne) nft Deposits (B3) (Rivenne)
Type Depth (inches) Remarks No hydnc soils YDROLOGY Vetland Hydrology Indicators Inmary Indicators (any one indicator is s Surface Water (A1) High Water Table (A2) Saturation (A3)	sufficient) Salt Crust Biotic Crus Aquatic In	st (B12) vertebrates (B13)		<u>Secor</u> W S D D	dary Indicators (2 or more required) 'ater Marks (B1) (Riverme) ediment Deposits (62) (Rivenne) nft Deposits (B3) (Rivenne) rainage Patterns (B10)
Type Depth (inches) temarks to hydnc soils YDROLOGY Vetland Hydrology Indicators <u>nmary Indicators (any one indicator is s</u> 	sufficient) Salt Crust Biotic Crust Aquatic Im Hydrogen	st (B12) vertebrates (B13) Sulfide Odor (C1)		Secor W S D D D	dary Indicators (2 or more required) (ater Marks (B1) (Riverme) ediment Deposits (62) (Rivenne) nft Deposits (B3) (Rivenne) rainage Patterns (B10) ry Season Water Table (C2)
Type Depth (inches) temarks temarks to hydnc soils YDROLOGY Vetland Hydrology Indicators <u>nmary Indicators (any one indicator is s</u> Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonriverine) Sediment Deposits (B2) (Nonriverine)	sufficient) Salt Crust Biotic Crust Aquatic In Hydrogen ie) Oxidized F	st (B12) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along		<u>Secor</u> W W D D D D ts (C3) TI	dary Indicators (2 or more required) fater Marks (B1) (Riverme) ediment Deposits (62) (Rivenne) inft Deposits (B3) (Rivenne) rainage Patterns (B10) ry Season Water Table (C2) hin Muck Surface (C7)
Type Depth (inches) Remarks No hydnc soils YDROLOGY Vetland Hydrology Indicators Inmary Indicators (any one indicator is s Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonriverine) Sediment Deposits (B2) (Nonriverine) Drift Deposits (B3) (Nonriverine)	sufficient) Salt Crust Biotic Crus Aquatic In Hydrogen ie) Oxidized F Presence	st (B12) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (C4)	<u>Secor</u> W S D D D D ts (C3) TI C	dary Indicators (2 or more required) fater Marks (B1) (Riverme) ediment Deposits (62) (Rivenne) nft Deposits (B3) (Rivenne) rainage Patterns (B10) ry Season Water Table (C2) nin Muck Surface (C7) rayfish Burrows (C8)
Type Depth (inches) Remarks No hydnc soils YDROLOGY Vetland Hydrology Indicators Inmary Indicators (any one indicator is s Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonriverine) Sediment Deposits (B2) (Nonriverine) Drift Deposits (B3) (Nonriverine) Surface Soil Cracks (B6)	eufficient) Salt Crust Biotic Crus Aquatic In Hydrogen Presence Recent fro	st (B12) verfebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (C4 in Reduction in Plow)	<u>Secor</u> 	dary Indicators (2 or more required) (ater Marks (B1) (Riverme) ediment Deposits (62) (Rivenne) nft Deposits (B3) (Rivenne) rainage Patterns (B10) ry Season Water Table (C2) nin Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aerial Imagery (C
Type Depth (inches) Remarks No hydnc soils YDROLOGY Vetland Hydrology Indicators Inmary Indicators (any one indicator is s Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonriverine) Sediment Deposits (B2) (Nonriverine) Dift Deposits (B3) (Nonriverine) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery	eufficient) Salt Crust Biotic Crus Aquatic In Hydrogen Presence Recent fro	st (B12) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (C4)	Secor W S D D D D D ts (C3)TI C C6)SI	dary Indicators (2 or more required) ater Marks (B1) (Riverme) ediment Deposits (62) (Rivenne) nft Deposits (B3) (Rivenne) rainage Patterns (B10) ry Season Water Table (C2) nin Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aerial Imagery (C nallow Aquitard (D3)
Type Depth (inches) Remarks No hydnc soils YDROLOGY Vetland Hydrology Indicators Immary Indicators (any one indicator is s Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonriverine) Sediment Deposits (B2) (Nonriverine) Dift Deposits (B3) (Nonriverine) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery Water Stained Leaves (B9)	eufficient) Salt Crust Biotic Crus Aquatic In Hydrogen ie) Oxidized F Presence Recent fro	st (B12) verfebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (C4 in Reduction in Plow)	Secor W S D D D D D ts (C3)TI C C6)SI	dary Indicators (2 or more required) (ater Marks (B1) (Riverme) ediment Deposits (62) (Rivenne) nft Deposits (B3) (Rivenne) rainage Patterns (B10) ry Season Water Table (C2) nin Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aerial Imagery (C
Type Depth (inches) Remarks No hydnc soils YDROLOGY Vetland Hydrology Indicators Primary Indicators (any one indicator is set and High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonriverine) Sediment Deposits (B2) (Nonriverine) Dift Deposits (B3) (Nonriverine) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery Water Stained Leaves (B9) Field Observations	Sufficient) Salt Crust Biotic Crust Aquatic In Hydrogen Hydrogen Oxidized F Presence Recent 1ro (B7)Other (Exp	st (B12) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (C4 in Reduction in Plow plain in Remarks)) ed Soils (C	Secor W S D D D D D ts (C3)TI C C6)SI	dary Indicators (2 or more required) ater Marks (B1) (Riverme) ediment Deposits (62) (Rivenne) nft Deposits (B3) (Rivenne) rainage Patterns (B10) ry Season Water Table (C2) nin Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aerial Imagery (C nallow Aquitard (D3)
Type Depth (inches) Remarks No hydnc soils YDROLOGY Vetland Hydrology Indicators Primary Indicators (any one indicator is s Carmary Indicators (any one indicator is s Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonriverine) Sediment Deposits (B2) (Nonriverine) Sediment Deposits (B2) (Nonriverine) Drift Deposits (B3) (Nonnverine) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery Water Stained Leaves (B9) Tield Observations Surface Water Present? Yes	Sufficient) Salt Crust Biotic Crus Aquatic In Hydrogen Mydrogen Oxidized F Presence Recent fro (B7)Other (Exp NoXDepth (inc	st (B12) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (C4 in Reduction in Plow plain in Remarks)) ed Soils (C	Secor W S D D D D D ts (C3)TI C C6)SI	dary Indicators (2 or more required) ater Marks (B1) (Riverme) ediment Deposits (62) (Rivenne) nft Deposits (B3) (Rivenne) rainage Patterns (B10) ry Season Water Table (C2) nin Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aerial Imagery (C nallow Aquitard (D3)
Type Depth (inches) Remarks No hydnc soils YDROLOGY Vetland Hydrology Indicators Primary Indicators (any one indicator is s Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonriverine) Sediment Deposits (B2) (Nonriverine) Sediment Deposits (B2) (Nonriverine) Dift Deposits (B3) (Nonriverine) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery Water Stained Leaves (B9) Tield Observations Surface Water Present? Yes Vater Table Present? Yes	Sufficient) Salt Crust Biotic Crus Aquatic In Aquatic In Hydrogen No Presence Recent Iro (B7) Other (Exp NoX Depth (inc NoX Depth (inc	st (B12) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (C4 in Reduction in Plow plain in Remarks) ches) ches)) ed Soils (C 	Secor W W D D D D D D D D D D D D D D S S S S S S S	dary Indicators (2 or more required) (ater Marks (B1) (Riverme) ediment Deposits (62) (Rivenne) nft Deposits (B3) (Rivenne) rainage Patterns (B10) ry Season Water Table (C2) nin Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aerial Imagery (C nallow Aquitard (D3) AC Neutral Test (D5)
Type Depth (inches) Remarks No hydnc soils YDROLOGY Vetland Hydrology Indicators Primary Indicators (any one indicator is s Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonriverine) Sediment Deposits (B2) (Nonriverine) Sediment Deposits (B2) (Nonriverine) Dift Deposits (B3) (Nonriverine) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery Water Stained Leaves (B9) Tield Observations Surface Water Present? Yes Vater Table Present? Yes	Sufficient) Salt Crust Biotic Crus Aquatic In Hydrogen No Presence Recent Iro (B7) Other (Exp NoX Depth (inc NoX Depth (inc NoX Depth (inc	st (B12) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (C4 in Reduction in Plow plain in Remarks) ches) ches)) ed Soils (C 	Secor W S D TI S S TI S 	dary Indicators (2 or more required) ater Marks (B1) (Riverme) ediment Deposits (62) (Rivenne) nft Deposits (B3) (Rivenne) rainage Patterns (B10) ry Season Water Table (C2) nin Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aerial Imagery (C nallow Aquitard (D3)
Type Depth (inches) Remarks No hydnc soils YDROLOGY Vetland Hydrology Indicators Parmary Indicators (any one indicator is s Parmary Indicators (any one indicator is s Parmary Indicators (any one indicator is s Surface Water (A1) 	Sufficient) Salt Crust Biotic Crus Aquatic In Hydrogen No Presence Recent Iro (B7) Other (Exp NoX Depth (inc NoX Depth (inc NoX Depth (inc	st (B12) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (C4 in Reduction in Plow plain in Remarks) ches) ches)) ed Soils (C 	Secor W S D TI S S TI S 	dary Indicators (2 or more required) (ater Marks (B1) (Riverme) ediment Deposits (62) (Rivenne) nft Deposits (B3) (Rivenne) rainage Patterns (B10) ry Season Water Table (C2) nin Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aerial Imagery (C nallow Aquitard (D3) AC Neutral Test (D5)
Type Depth (inches) Remarks No hydnc soils YDROLOGY Vetland Hydrology Indicators Parmary Indicators (any one indicator is s Parmary Indicators (any one indicator is s Parmary Indicators (any one indicator is s Surface Water (A1) 	Sufficient) Salt Crust Biotic Crus Aquatic In Hydrogen No Presence Recent Iro (B7) Other (Exp NoX Depth (inc NoX Depth (inc NoX Depth (inc	st (B12) vertebrates (B13) Sulfide Odor (C1) Rhizospheres along of Reduced Iron (C4 in Reduction in Plow plain in Remarks) ches) ches)) ed Soils (C 	Secor W S D TI S S TI S 	dary Indicators (2 or more required) (ater Marks (B1) (Riverme) ediment Deposits (62) (Rivenne) nft Deposits (B3) (Rivenne) rainage Patterns (B10) ry Season Water Table (C2) nin Muck Surface (C7) rayfish Burrows (C8) aturation Visible on Aerial Imagery (C nallow Aquitard (D3) AC Neutral Test (D5)

Depth	Matnx		Redo	x Features	1		
(inches)	Color (moist)	%	Color (moist)	<u>%</u>		<u> Textu</u>	re Remarks
0_10	10YR 4/1	_100				CILo	Moist
<u>10+</u>	10vr 6/2	_100		·		<u>Ci</u>	Moist
	·····						
	·····						
	ncentration D=Deple				Pore Lining R		Channel M=Matrix ators for Problematic Hydric Soils ³
Histosol			Sandy Redo				cm Muck (A9) (LRR C)
	pipedon (A2)		Stripped Ma				cm Muck (A10) (LRR B)
Black His				ky Mineral (F1)			leduced Vertic (F18)
	n Sulfide (A4)		Loamy Gley				led Parent Matenal (TF2)
	Layers (A5) (LRR C)		Depleted Ma			<u>x</u> c	Other (Explain in Remarks)
	ck (A9) (LRR D)		Redox Dark				
	I Below Dark Surface	(ATT)		ark Surface (F7)			
	rk Surface (A12)			essions (F8)		a.	
	ucky Mineral (SI)		Vernal Pools	s (F9)			ators of hydrophytic vegetation and
	leyed Matrix (S4)					we	tland hydrology must be present
	ayer (if present)						
Туре			_				
	hes)					Hydric	Soil Present? Yes X No
Remarks							
Playa soils S	alorthids are hydric b	y definition					
YDROLOG	GY						
Wetland Hyd	Irology Indicators					5	Secondary Indicators (2 or more reoured)
	ators (any one indicat	tor is sufficie	nt)				Water Marks (B1) (Rivenne)
Surface V	Water (AI)		Salt Cmst	(B11)			Sediment Deposits (B2) (Riverme)
	ter Table (A2)		Biotic Crus	•			Drift Deposits (B3) (Rivenne)
Saturatio				ertebrates (B13)			Drainage Patterns (B10)
	arks (B1) (Nonrivenn	e)		Sulfide Odor (C1		_	Dry Season Water Table (C2)
	t Deposits (B2) (Noni					s (C3) _	Thin Muck Surface (C7)
	osits (B3) (Nonriven	-		f Reduced Iron			Crayfish Burrows (CB)
	Soil Cracks (B6)	,		Reduction in Pl	-	-	Saturation Visible on Aenal Imagery (C
Inundatio	on Visible on Aenal Im	agery (67)	Uner (Exp	laın ın Remarks)			Shallow Aguitard (D3)

Water Stained Leaves (B	9)	FAC Neutral Test (D5)				
Field Observations]				
Surface Water Present?	Yes No X Depth (inches)					
Water Table Present?	Yes No _X Depth (inches)					
Saturation Present? (includes capillar/ fnnge)	Yes No _X Depth (inches)	Wetland Hydrology Present? Yes X No				
Describe Recorded Data (stre	am gauge monitoring well aenal photos previous inspe	ctions) if available				
Remarks						
Surface cracks are indication	of saturation					

1

.

1

Profile Des	cription (Describe	to the depth				or confirm	n the absend	ce of indicators)
Depth (inches)	Color (moist)	%	Red Color (moist)	ox Features	<u>5</u>	1.002	Texture	Remarks
								_
0 8	10YR 3/2	100					_SILo	Damp
<u>8 - 18+</u>	_10YR_4/2	100					_CILo	Damp
		. <u></u>					<u></u>	
ļ ———			· · · · · · · · · · · · · · · · · · ·				<u>~</u>	
					<u> </u>			
					<u></u>			
	<u></u>	. <u> </u>				<u> </u>		
	oncentration D=Dep					e Lining R		
Hydric Soil	Indicators (Applic	able to all LF	RRs unless othe	erwise note	ed)		Indicator	rs for Problematic Hydric Soils ³
Histoso	I (A I)		Sandy Red	lox (S5)				Muck (A9) (LRR C)
	pipedon (A2)		Stripped M					Muck (A10) (LRR B)
Black H			Loamy Mu	-				uced Vertic (F1B)
	en Sulfide (A4)		Loamy Gle		(F2)		_	Parent Material (TF2)
	d Layers (A5) (LRR ((تـ	Depleted M				Othe	r (Explain in Remarks)
	uck (A9) (LRR D) d Below Dark Surfac	0 (411)	Redox Dari	•	-			
	ark Surface (A12)		Redox Dep		• •			
	Aucky Mineral (S1)		Vernal Poo		0,		³ Indicator	rs of hydrophytic vegetation and
	Gleyed Matnx (S4)							nd hydrology must be present
	Layer (if present)					· <u></u>	1	
Туре		<u> </u>	_					
Deoth (in	ches)						Hydnc So	No X
Remarks								
No hydric so	als							
,								
HYDROLO								
	drology Indicators							ondary Indicators (2 or more reaured)
Primary Indi	cators (any one indic	ator is sufficie	ent)					Water Marks (B1) (Riverme)
Surface	Water (A1)		Salt Crust	- ,				Sediment Deposits(B2) (Rivenne)
	ater Table (A2)		Biotic Cru					Dnft Deposits (B3) (Riverne)
Saturati	on (A3)		Aquatic In					Drainage Patterns (B1O)
	larks (B1) (Nonriver		Hydrogen					Dry Season WaterTable (C2)
	nt Deposits (B2) (No		Oxidized I					Thin Muck Surface (C7)
Dnft De	oosits (B3) (Nonnve	nne)	Presence					Crayfish Burrows (CB)
	Soil Cracks (B6)		Recent Irc			ed Soils (C		Saturation Visible on Aenal Imagery (C9)
	on Visible on Aenal I	magery (B7)	Other (Ex	plain in Rer	narks)			Shallow Aquitard (D3)
Water S	tained Leaves (B9)							FAC Neutral Test (D5)
Field Obser	vations							
Surface Wat	er Present? Y	es No	<u>X</u> Depth (ind	ches)		-1		
Water Table	Present? Y	es No	X_ Depth (inc	ches)		_		
Saturation P		es No	X_ Depth (ind	ches)		_ Wetla	and Hydrolo	gy Present? Yes NoX
(includes ca Describe Re	corded Data (stream	gauge monit	oring well aerial	photos pre	vious inst	ections) r	f available	
	(<u> </u>			-, ·		
Remarks		· <u></u>		<u></u>		<u> </u>	·	
No wetland h	vdrologv							
	ری ر							

i

Profile Description (Describe to the depth needed to document the ind	icator or confirm the absence of indicators (
Depth Matrix Redox Features	
(inches) Color (moist) 9 Color (moist) /	Type' Loc ² Texture Remarks
<u>0 10 10YR 4/1 100</u>	OlLo Moist
10+ <u>10yr 6/2</u> <u>100</u>	CI Moist
¹ Type C=Ooncentration D=Depletion RM=Reduced Matnx ² Location F	
Hydric Soil Indicators (Applicable to all LRRs unless otherwise noted	
Histosol (A1) Sandy Redox (S5)	1 cm Muck (A9) (LRR C)
Histic Epipedon (A2) Stopped Matrix (S6)	2 cm Muck (A10) (LRR B)
Black Histic (A3) Loamy Mucky Mineral (F	
Hydrogen Sulfide (A4) Loamy Gleyed Matnx (Fi	
Stratified Layers (A5) (LRR C) Depleted Matrix (F3)	X Other (Explain in Remarks)
1 cm Muck (A9) (LRR D) Redox Dark Surface (F6	
Depleted Below Dark Surface (AI1) Depleted Dark Surface (-7)
Thick Dark Surface (A12) Redox Depressions (F8)	3.
Sandy Mucky Mineral (S1) Vernal Pools (F9)	³ Indicators of hydrophytic vegetation and
Sandy Gleyed Matrix (S4)	wetiand hydrology must be present
Restrictive Layer (if present)	
Туре	
Depth (Inches)	Hydnc Soil Present? Yes X No
Remarks	
Playa soils Salorthids are hydnc by definition	
Playa soils Salorthids are hydnc by definition	
Playa soils Salorthids are hydric by definition	
HYDROLOGY	Secondary Indicators (2 or more required)
HYDROLOGY Wetland Hydrology Indicators	<u>Secondary Indicators (2 or more required)</u> Water Marks (B1) (Biverine)
HYDROLOGY Wetland Hydrology Indicators Pnmary Indicators (any one indicator is sufficient)	Water Marks (B1) (Riverine)
HYDROLOGY Wetland Hydrology Indicators Pnmary Indicators (any one indicator is sufficient)	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Rivenne)
HYDROLOGY Wetland Hydrology Indicators Pnmary Indicators (any one indicator is sufficient)	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Rivenne) Drift Deposits (B3) (Riverine)
HYDROLOGY Wetland Hydrology Indicators Pnmary Indicators (any one indicator is sufficient) Surface Water (A1) Salt Crust (B11) High Water Table (A2) Biotic Crust (B12) Saturation (A3) Aquatic Invertebrates (E	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Dnft Deposits (B3) (Riverine) Drainage Patterns (810)
HYDROLOGY Wetland Hydrology Indicators Pnmary Indicators (any one indicator is sufficient)	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drainage Patterns (B10) (C1) Dry Season Water Table (C2)
HYDROLOGY Wetland Hydrology Indicators Pnmary Indicators (any one indicator is sufficient)	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Drift Deposits (B3) (Riverine) Drinage Patterns (810) (C1) Dry Season Water Table (C2) along Living Roots (C3) Thin Muck Surface (C7)
HYDROLOGY Wetland Hydrology Indicators Pnmary Indicators (any one indicator is sufficient) Surface Water (A1) Salt Crust (B11) High Water Table (A2) Biotic Crust (B12) Saturation (A3) Aquatic Invertebrates (E Water Marks (B1) (Nonnverine) Hydrogen Sulfide Odor Sediment Deposits (B2) (Nonnvenne) Oxidized Rhizospheres Dnft Deposits (B3) (Nonnvenne) Presence of Reduced In	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Dnft Deposits (B3) (Riverine) B13) Drainage Patterns (810) (C1) Dry Season Water Table (C2) along Living Roots (C3) Thin Muck Surface (C7) on (C4) Crayfish Burrows (08)
HYDROLOGY Wetland Hydrology Indicators Pnmary Indicators (any one indicator is sufficient) Surface Water (A1) Salt Crust (B11) High Water Table (A2) Biotic Crust (B12) Saturation (A3) Aquatic Invertebrates (B Water Marks (B1) (Nonnverine) Hydrogen Sulfide Odor Sediment Deposits (B2) (Nonnvenne) Oxidized Rhizospheres Dnft Deposits (B3) (Nonnvenne) Presence of Reduced In X Surface Soil Cracks (B6) Recent Iron Reduction In	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Dnft Deposits (B3) (Riverine) Dift Deposits (
HYDROLOGY Wetland Hydrology Indicators Pnmary Indicators (any one indicator is sufficient)	
HYDROLOGY Wetland Hydrology Indicators Pnmarv Indicators (any one indicator is sufficient)	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Dnft Deposits (B3) (Riverine) Dift Deposits (
HYDROLOGY Wetland Hydrology Indicators Pnmary Indicators (any one indicator is sufficient)	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Dift Deposits (B3) (Riverine) Cranage Patterns (810) (C1) Dift Deposits (B3) (Riverine) Cranage Patterns (810) (C1) Cranage Patterns (810) (C2) Thin Muck Surface (C7) On (C4) Cranage Patterns (810) Cranage Pat
HYDROLOGY Wetland Hydrology Indicators Pnmary Indicators (any one indicator is sufficient)	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Dift Deposits (B3) (Riverine) Dift Deposits (B3) (Riverine) Dift Deposits (B3) (Riverine) Dift Deposits (B3) (Riverine) Drainage Patterns (B10) (C1) Dry Season Water Table (C2) along Living Roots (C3) Thin Muck Surface (C7) on (C4) Crayfish Burrows (08) n Plowed Soils (C6) Saturation Visible on Aenal Imagery (C9) rks) FAC Neutral Test (D5)
HYDROLOGY Wetland Hydrology Indicators Pnmary Indicators (any one indicator is sufficient)	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Dift Deposits (B3) (Riverine) Dift Deposits (B3) (Riverine) Dift Deposits (B3) (Riverine) Dift Deposits (B3) (Riverine) Dry Season Water Table (C2) along Living Roots (C3) Thin Muck Surface (C7) on (C4) Crayfish Burrows (08) Crayfish Burrows (08) n Plowed Soils (C6) Saturation Visible on Aeinal Imagery (C9) rks) FAC Neutral Test (D5)
HYDROLOGY Wetland Hydrology Indicators Pnmarv Indicators (any one indicator is sufficient)	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Dift Deposits (B3) (Riverine) Crayfish Burrows (B10) Crayfish Burrows (08) Crayfish Burrows (08) Crayfish Burrows (08) N Plowed Soils (C6) Saturation Visible on Aeinal Imagery (C9) Crayfish Dift Deposits (D5) FAC Neutral Test (D5)
HYDROLOGY Wetland Hydrology Indicators Pnmary Indicators (any one indicator is sufficient)	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Dift Deposits (B3) (Riverine) Crainage Patterns (B10) (C1) Dift Deposits (B3) (Riverine) Dift Deposits (B3) (Riverine) Dift Deposits (B3) (Riverine) Crainage Patterns (B10) (C1) Dift Deposits (C3) Dift Deposits (C3) (C4) Crayfish Burrows (08) n Plowed Soils (C6) Crayfish Burrows (08) n Plowed Soils (C6) Saturation Visible on Aenal Imagery (C9) rks) Shallow Aquitard (D3) FAC Neutral Test (D5) Wetland Hydrology Present? Yes X No
HYDROLOGY Wetland Hydrology Indicators Pnmary Indicators (any one indicator is sufficient)	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Dift Deposits (B3) (Riverine) Crainage Patterns (B10) (C1) Dift Deposits (B3) (Riverine) Dift Deposits (B3) (Riverine) Dift Deposits (B3) (Riverine) Crainage Patterns (B10) (C1) Dift Deposits (C3) Dift Deposits (C3) (C4) Crayfish Burrows (08) n Plowed Soils (C6) Crayfish Burrows (08) n Plowed Soils (C6) Saturation Visible on Aenal Imagery (C9) rks) Shallow Aquitard (D3) FAC Neutral Test (D5) Wetland Hydrology Present? Yes X No
HYDROLOGY Wetland Hydrology Indicators Pnmary Indicators (any one indicator is sufficient)	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Dift Deposits (B3) (Riverine) Crainage Patterns (B10) (C1) Dift Deposits (B3) (Riverine) Dift Deposits (B3) (Riverine) Dift Deposits (B3) (Riverine) Crainage Patterns (B10) (C1) Dift Deposits (C3) Dift Deposits (C3) (C4) Crayfish Burrows (08) n Plowed Soils (C6) Crayfish Burrows (08) n Plowed Soils (C6) Saturation Visible on Aenal Imagery (C9) rks) Shallow Aquitard (D3) FAC Neutral Test (D5) Wetland Hydrology Present? Yes X No
HYDROLOGY Wetland Hydrology Indicators Pnmary Indicators (any one indicator is sufficient)	Water Marks (B1) (Riverine) Sediment Deposits (B2) (Riverine) Dift Deposits (B3) (Riverine) Crainage Patterns (B10) (C1) Dift Deposits (B3) (Riverine) Dift Deposits (B3) (Riverine) Dift Deposits (B3) (Riverine) Crainage Patterns (B10) (C1) Dift Deposits (C3) Dift Deposits (C3) (C4) Crayfish Burrows (08) n Plowed Soils (C6) Crayfish Burrows (08) n Plowed Soils (C6) Saturation Visible on Aenal Imagery (C9) rks) Shallow Aquitard (D3) FAC Neutral Test (D5) Wetland Hydrology Present? Yes X No

J

1

Profile Description (Describe to the dep			dicator	or confirm	n the absence	e of indicators)
Depth <u>Matnx</u> (inches) Color (moist) %	Redo	x Features %	Type ¹	Loc ²	Texture	Remark s
<u>0 8 10YR 3/2 100</u>			<u> </u>		<u>SILo</u>	Damp
<u>8-18+</u> <u>10YR 4/2</u> <u>100</u>					CILo	Damp
			<u> </u>		·····	
					·	
				<u> </u>		·
¹ Type C=Concentration D=Depletion RM				e Lining R	C=Root Char	nnel M=Matrix
Hydnc Soil Indicators (Applicable to all	LRRs unless othe	rwise noted	j)		Indicators	s for Problematic Hydric Soils ³
Histosol (A1)	Sandy Red	ox (S5)			1 cm	Muck (A9) (LRR C)
Histic Epipedon (A2)	Stnpped Ma					Muck (A10) (LRR B)
Black Histic (A3)	Loamy Muc	-				ced Vertic (F18)
Hydrogen Sulfide (A4)	Loamy Gley		F2)			Parent Matenal (TF2)
Stratified Layers (A5) (LRR C)	Depleted M Redox Dark	-	6)		Other	r (Explain in Remarks)
1 cm Muck (A9) (LRR D) Depleted Below Dark Surface (A11)	Depleted D	-	-			
Thick Dark Surface (A12)	Redox Depi					
Sandy Mucky Mineral (S1)	Vernal Pool	-			³ Indicators	s of hydrophytic vegetation and
Sandy Gleyed Matrix (S4)					wetiand	d hydrology must bepresent
Restrictive Layer (if present)						
Туре						
Depth (inches)					Hydnc Sol	I Present? Yes No X_
Remarks						
No hydne soils						
HYDROLOGY						
Wetland Hydrology Indicators					Seco	ndary Indicators (2 or more required)
Pnmary Indicators (any one indicator is suffl	cient)					Water Marks (B1) (Riverine)
Surface Water (A1)	Salt Crust	(B11)				Sediment Deposits (B2) (Rivenne)
High Water Table (A2)	Biotic Crus					Drift Deposits (63) (River me)
Saturation (A3)	Aquatic In		(B13)			Drainage Patterns (B10)
Water Marks (B1) (Nonrivenne)	Hydrogen	Sulfide Odo	or (C1)			Dry Season Water Table (C2)
Sediment Deposits (B2) (Nonnvenne)				.iving Roo	ts (C3) 1	Thin Muck Surtace (C7)
Drift Deposits (B3) (Nonnverine)	Presence	of Reduced	Iron (C4)	(Crayfish Burrows (C8)
Surface Soil Cracks (B6)	Recent Iro	n Reduction	n in Plow	ed Soils (C	C6) S	Saturation Visible on Aenal Imagery (C9)
Inundation Visible on Aenal Imagery (B	7) Other (Exp	lain in Rem	arks)		5	Shallow Aquitard (D3)
Water Stained Leaves (B9)					F	FAC-Neutral Test (D5)
Field Observations						
Surface Water Present? Yes	No X Depth (inc	:hes)		_		
Water Table Present? Yes	No X Depth (inc	:hes)		_		
	No X Depth (inc			,	and Hydrolog	gy Present? Yes No <u>X</u>
(includes capillary fringe)						
Describe Recorded Data (stream gauge mo	mitoning well aenal j	photos prev	nous insp	Dections) I	II avallable	
	····					
Remarks						
No wetland hydrology						
ł						

,

}

Depth Matnx	h needed to document the indicator or con Redox Features		·
(inches) Color (moist) 9	Color (moist) // Type1 Loc	Texture	Remarks
0 1010YR 4/1100		CILo	Moist
			Moist
······································			
Type C=Ooncentration D=Depletion RM=	Reduced Matnx ² Location PL=Pore Linin		nol M-Motov
Type C=Concentration D=Depletion RM= Tydric Soil Indicators (Applicable to all t			for Problematic Hydric Soils ³
_ Histosol (A1)	Sandy Redox (S5)		Muck (A9) (LRR C)
Histosof (A7) Histic Epipedon (A2)	Stnpped Matnx (S6)		Muck (A10) (LRR 8)
Black Histic (A3)	Loamy Mucky Mineral (F1)		ced Vertic (F18)
Hydrogen Sulfide (A4)	Loamy Gleyed Matrix (F2)		arent Matenal (TF2)
Stratified Layers (A5) (LRR C)	Depleted Matrix (F3)		(Explain in Remarks)
_ 1 cm Muck (A9) (LRR D)	Redox Dark Surface (F6)		
_ Depleted Below Dark Surface (A11)	Depleted Dark Surface (F7)		
_ Thick Dark Surface (A12)	Redox Depressions (F8)	a ,	
Sandy Mucky Mineral (S1)	Vernal Pools (F9)		of hydrophytic vegetation and
Sandy Gleyed Matnx (S4) estructive Layer (if present)		wetland	hydrology must bepresent
Type			
			Present? Yes X No
lemarks Iaya soils Salorthids are hydric by definition			
emarks laya soils Salorthids are hydric by definition (DROLOGY Vetland Hydrology Indicators	1	Secon	ndary Indicators (2 or more required)
emarks laya soils Salorthids are hydric by definition (DROLOGY Vetland Hydrology Indicators	1	<u>Secon</u>	ndary Indicators (2 or more required) Vater Marks (B1) (Rive 1 1 ne)
emarks laya soils Salorthids are hydric by definition (DROLOGY /etland Hydrology Indicators nmary Indicators (any one indicator is suffic _ Surface Water (A1)	u <u>ent)</u> Salt Crust (B11)		nd <u>ary Indicators (2 or more required)</u> Vater Marks (B1) (Rive r ine) ediment Deposits (82) (Rive r ine)
emarks laya soils Salorthids are hydric by definition //DROLOGY /etland Hydrology Indicators nmary Indicators (any one indicator is suffic Surface Water (A1) High Water Table (A2)	i <u>ent)</u> Salt Crust (B11) Biotic Crust (B12)	<u>Secon</u> V S C	ndary Indicators (2 or more required) Vater Marks (B1) (Rive rine) rediment Deposits (B2) (Riverine) Prift Deposits (B3) (Riverine)
emarks laya soils Salorthids are hydric by definition (DROLOGY /etland Hydrology Indicators nmary Indicators (any one indicator is suffic _ Surface Water (A1) _ High Water Table (A2) _ Saturation (A3)	ient) Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13)		ndary Indicators (2 or more required) Vater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) Onft Deposits (B3) (Riverine) Drainage Patterns (B10)
emarks laya soils Salorthids are hydric by definition (DROLOGY /etland Hydrology Indicators nmary Indicators (any one indicator is suffic Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonniverine)	ient) Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1)		ndary Indicators (2 or more required) Vater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) Onft Deposits (B3) (Riverine) Orainage Patterns (B10) Ory Season WaterTable (C2)
emarks laya soils Salorthids are hydric by definition (DROLOGY Vetland Hydrology Indicators <u>nmary Indicators (any one indicator is suffic</u> Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonnverine) Sediment Deposits (B2) (Nonnverine)	ient) Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living F	<u>Secon</u> V S C C C Roots (C3) T	ndary Indicators (2 or more required) Vater Marks (B1) (Rive rine) rediment Deposits (B2) (Riverine) Orift Deposits (B3) (Riverine) Orainage Pattems (B10) Ory Season Water Table (C2) hin Muck Surface (C7)
emarks laya soils Salorthids are hydric by definition (DROLOGY Vetland Hydrology Indicators <u>inmary Indicators (any one indicator is suffic</u> Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonnverine) Sediment Deposits (B2) (Nonnverine) Dntt Deposits (B3) (Nonnverine)	ient) Salt Crust (B11) Siotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living R Presence of Reduced Iron (C4)	<u>Secon</u> V S C C C Roots (C3) T C	ndary Indicators (2 or more required) Vater Marks (B1) (Rive rine) ediment Deposits (B2) (Riverine) Orift Deposits (B3) (Riverine) Orainage Patterns (B10) Ory Season Water Table (C2) hin Muck Surface (C7) Grayfish Burrows (08)
Iaya soils Salorthids are hydric by definition (DROLOGY Vetland Hydrotogy Indicators Immary Indicators (any one indicator is suffic 	ient) Salt Crust (B11) Slotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living F Presence of Reduced Iron (C4) Recent Iron Reduction in Plowed Soil	Secon 	ndary Indicators (2 or more required) Vater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) Prift Deposits (B3) (Riverine) Prainage Patterns (B10) Pry Season Water Table (C2) hin Muck Surface (C7) Frayfish Burrows (08) Faturation Visible on Aenal Imagery (CS
emarks laya soils Salorthids are hydric by definition (DROLOGY Vetland Hydrology Indicators <u>inmary Indicators (any one indicator is suffic</u> Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonnverine) Sediment Deposits (B2) (Nonnverine) Dntt Deposits (B3) (Nonnverine) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7)	ient) Salt Crust (B11) Siotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living R Presence of Reduced Iron (C4) Recent Iron Reduction in Plowed Soil	Secon 	ndary Indicators (2 or more required) Vater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) Orft Deposits (B3) (Riverine) Orainage Patterns (B10) Ory Season Water Table (C2) hin Muck Surface (C7) Grayfish Burrows (08) Faturation Visible on Aenal Imagery (CS hallow Aquitard (D3)
Iaya soils Salorthids are hydric by definition (DROLOGY Vetland Hydrology Indicators <u>inmary Indicators (any one indicator is suffic</u> _ Surface Water (A1) _ High Water Table (A2) _ Saturation (A3) _ Water Marks (B1) (Nonnverine) _ Sediment Deposits (B2) (Nonnverine) _ Ditt Deposits (B3) (Nonnverine) _ Surface Soil Cracks (B6) _ Inundation Visible on Aerial Imagery (B7) _ Water Stained Leaves (B9)	ient) Salt Crust (B11) Slotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living F Presence of Reduced Iron (C4) Recent Iron Reduction in Plowed Soil	Secon 	ndary Indicators (2 or more required) Vater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) Prift Deposits (B3) (Riverine) Prainage Patterns (B10) Pry Season Water Table (C2) hin Muck Surface (C7) Frayfish Burrows (08) Faturation Visible on Aenal Imagery (CS
Iaya soils Salorthids are hydric by definition (DROLOGY Vetland Hydrotogy Indicators <u>inmary Indicators (any one indicator is suffic</u> 	ient) Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living R Presence of Reduced Iron (C4) Recent Iron Reduction in Plowed Soil) Other (Explain in Remarks)	Secon 	ndary Indicators (2 or more required) Vater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) Orft Deposits (B3) (Riverine) Orainage Patterns (B10) Ory Season Water Table (C2) hin Muck Surface (C7) Grayfish Burrows (08) Faturation Visible on Aenal Imagery (CS hallow Aquitard (D3)
emarks laya soils Salorthids are hydric by definition (DROLOGY Vetland Hydrology Indicators mmary Indicators (any one indicator is suffic	ient) Salt Crust (B11) Subtract Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living F Presence of Reduced Iron (C4) Recent Iron Reduction in Plowed Soil) Other (Explain in Remarks) o Depth (inches)	Secon 	ndary Indicators (2 or more reauired) Vater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) Orft Deposits (B3) (Riverine) Orainage Patterns (B10) Ory Season Water Table (C2) hin Muck Surface (C7) Grayfish Burrows (08) Faturation Visible on Ae nal Imagery (CS hallow Aquitard (D3)
Iemarks Iaya soils Salorthids are hydric by definition YDROLOGY Vetland Hydrology Indicators Immary Indicators (any one indicator is suffic Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonnverine) Sediment Deposits (B2) (Nonnverine) Dntt Deposits (B3) (Nonnverine) (< Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Water Stained Leaves (B9) ield Observations urface Water Present? Yes N Vater Table Present? Yes N	ient) Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living F Presence of Reduced Iron (C4) Recent Iron Reduction in Plowed Soil) Other (Explain in Remarks) o X Depth (inches) o X Depth (inches)	Secon 	ndary Indicators (2 or more reauired) Vater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) Orft Deposits (B3) (Riverine) Orainage Patterns (B10) Ory Season Water Table (C2) hin Muck Surface (C7) Grayfish Burrows (08) Faturation Visible on Ae nal Imagery (CS hallow Aquitard (D3)
Iemarks Ilaya soils Salorthids are hydric by definition YDROLOGY Vetland Hydrology Indicators Immary Indicators (any one indicator is suffic	ient) Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living F Presence of Reduced Iron (C4) Recent Iron Reduction in Plowed Soil) Other (Explain in Remarks) o X Depth (inches) o X Depth (inches)	Secon 	ndary Indicators (2 or more reauired) Vater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) Orft Deposits (B3) (Riverine) Orainage Patterns (B10) Ory Season Water Table (C2) hin Muck Surface (C7) Grayfish Burrows (08) Faturation Visible on Ae nal Imagery (CS hallow Aquitard (D3)
Iernarks Playa soils Salorthids are hydric by definition YDROLOGY Vetland Hydrology Indicators Immary Indicators (any one indicator is suffic Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonnverine) Sediment Deposits (B2) (Nonnverine) Difface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Water Stained Leaves (B9) ield Observations Surface Water Present? Yes Nater Table Present? Yes Naturation Present? Yes Nicturation Present?	ient) Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living F Presence of Reduced Iron (C4) Recent Iron Reduction in Plowed Soil) Other (Explain in Remarks) o X Depth (inches)	Secon 	ndary Indicators (2 or more reaured) Vater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) Orfit Deposits (B3) (Riverine) Orainage Patterns (B10) Ory Season Water Table (C2) hin Muck Surface (C7) Crayfish Burrows (O8) Eaturation Visible on Aenal Imagery (CS hallow Aquitard (D3) AC Neutral Test (D5)
Iernarks Playa soils Salorthids are hydric by definition YDROLOGY Vetland Hydrology Indicators Immary Indicators (any one indicator is suffic Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonnverine) Sediment Deposits (B2) (Nonnverine) Difface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Water Stained Leaves (B9) ield Observations Surface Water Present? Yes Nater Table Present? Yes Naturation Present? Yes Nicturation Present?	ient) Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living F Presence of Reduced Iron (C4) Recent Iron Reduction in Plowed Soil) Other (Explain in Remarks) o X Depth (inches) o X Depth (inches)	Secon 	ndary Indicators (2 or more reaured) Vater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) Orfit Deposits (B3) (Riverine) Orainage Patterns (B10) Ory Season Water Table (C2) hin Muck Surface (C7) Crayfish Burrows (O8) Eaturation Visible on Aenal Imagery (CS hallow Aquitard (D3) AC Neutral Test (D5)
Iernarks Playa soils Salorthids are hydric by definition YDROLOGY Vetland Hydrology Indicators Immary Indicators (any one indicator is suffic Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonnverine) Drit Deposits (B2) (Nonnverine) Ontt Deposits (B3) (Nonnverine) Water Stained Leaves (B6) Inundation Visible on Aerial Imagery (B7) Water Stained Leaves (B9) ield Observations urface Water Present? Yes Naturation Present? Yes Nickles capillary finge)	ient) Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living F Presence of Reduced Iron (C4) Recent Iron Reduction in Plowed Soil) Other (Explain in Remarks) o X Depth (inches)	Secon 	ndary Indicators (2 or more reaured) Vater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) Orfit Deposits (B3) (Riverine) Orainage Patterns (B10) Ory Season Water Table (C2) hin Muck Surface (C7) Crayfish Burrows (O8) Eaturation Visible on Aenal Imagery (CS hallow Aquitard (D3) AC Neutral Test (D5)
Iernarks Playa soils Salorthids are hydric by definition YDROLOGY Vetland Hydrology Indicators Immary Indicators (any one indicator is suffic Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonnverine) Sediment Deposits (B2) (Nonnverine) Difface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Water Stained Leaves (B9) ield Observations Surface Water Present? Yes Nater Table Present? Yes Naturation Present? Yes Nicturation Present?	ient) Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living F Presence of Reduced Iron (C4) Recent Iron Reduction in Plowed Soil) Other (Explain in Remarks) o X Depth (inches)	Secon 	ndary Indicators (2 or more reaured) Vater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) Orfit Deposits (B3) (Riverine) Orainage Patterns (B10) Ory Season Water Table (C2) hin Muck Surface (C7) Crayfish Burrows (O8) Eaturation Visible on Aenal Imagery (CS hallow Aquitard (D3) AC Neutral Test (D5)
Iaya soils Salorthids are hydric by definition YDROLOGY Vetland Hydrotogy Indicators Immary Indicators (any one indicator is suffic 	ient) Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living F Presence of Reduced Iron (C4) Recent Iron Reduction in Plowed Soil) Other (Explain in Remarks) o X Depth (inches)	Secon 	ndary Indicators (2 or more reaured) Vater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) Orfit Deposits (B3) (Riverine) Orainage Patterns (B10) Ory Season Water Table (C2) hin Muck Surface (C7) Crayfish Burrows (O8) Eaturation Visible on Aenal Imagery (CS hallow Aquitard (D3) AC Neutral Test (D5)
emarks laya soils Salorthids are hydric by definition (DROLOGY /etland Hydrology Indicators nmary Indicators (any one indicator is suffic	ient) Salt Crust (B11) Biotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living F Presence of Reduced Iron (C4) Recent Iron Reduction in Plowed Soil) Other (Explain in Remarks) o X Depth (inches)	Secon 	ndary Indicators (2 or more reaured) Vater Marks (B1) (Riverine) ediment Deposits (B2) (Riverine) Orfit Deposits (B3) (Riverine) Orainage Patterns (B10) Ory Season Water Table (C2) hin Muck Surface (C7) Crayfish Burrows (O8) Eaturation Visible on Aenal Imagery (CS hallow Aquitard (D3) AC Neutral Test (D5)

Depth <u>Matnx</u> inches) Color (moist)		Redox Fi olor (moist)	eatures % Tupo!		Texture	Remarks
						Damp
<u>8 - 18+10YR 4/2</u>						Damp
Type C=Concentration D=Dep	pletion BM=Bedi	Iced Matrix ² Lo	pration PI =Pr	ore Lining B	O=Boot Chan	
lydric Soil Indicators (Applic				ne enning in		for Problematic Hydric Soils ³
Histosol (A1)	-	_ Sandy Redox (S5)		1 cm I	Muck (A9) (LRR C)
_ Histic Epipedon (A2)	_	_ Stripped Matrix	: (S6)		2 cm I	Muck (A10) (LRR B)
Black Histic (A3)		Loamy Mucky Muc				ced Vertic (F18)
Hydrogen Sulfide (A4)	~ -	Loamy Gleyed				arent Matenal (TF2)
Stratified Layers (A5) (LRR 1 cm Muck (A9) (LRR D)		_ Depleted Matna _ Redox Dark Su			Uner	(Explain in Remarks)
Depleted Below Dark Surfac		_ Depleted Dark				
Thick Dark Surface (A12)		Redox Depress	•			
Sandy Mucky Mineral (S1)		_ Vernal Pools (F	⁻ 9)			of hydrophytic vegetation and
Sandy Gleyed Matnx (S4)					wetiand	I hydrology must be present
estrictive Layer (if present)						
_						
Туре						
Type Depth (inches) emarks					Hydric Soif	Present? Yes NoX
Depth (inches)					Hydric Sof	Present? Yes NoX
Depth (inches) emarks Io hydnc soils YDROLOGY						Present? Yes <u>No X</u>
Depth (inches) emarks to hydnc soils YDROLOGY Vetland Hydrology Indicators					Seco	
Depth (inches) emarks o hydnc soils /DROLOGY /etland Hydrology Indicators		Salt Crust (B1	1)		<u>Seco</u>	ndary Indicators (2 or more required)
Depth (inches) emarks o hydnc soils /DROLOGY /etland Hydrology Indicators rimary Indicators (any one indic Surface Water (A1)					<u>Seco</u> V S	ndarv Indicators (2 or more required) Vater Marks (B1) (River me)
Depth (inches) emarks lo hydnc soils /DROLOGY Vetland Hydrology Indicators rimary Indicators (any one indic Surface Water (A1)	cator is sufficient)	Salt Crust (B1 Biotic Crust (B Aquatic Invert	B12) ebrates (B13)		<u>Seco</u> 	ndarv Indicators (2 or more required) Vater Marks (B1) (River me) Sediment Deposits (B2) (River me)
Depth (inches) emarks o hydnc soils //DROLOGY /etland Hydrology Indicators rimary Indicators (any one indic Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonnver	cator is sufficient)	Salt Crust (B1 Biotic Crust (B Aquatic Invert Hydrogen Sull	B12) ebrates (B13) flde Odor (C1)		<u>Seco</u> 	ndary Indicators (2 or more required) Vater Marks (B1) (River me) Sediment Deposits (B2) (River me) Orift Deposits (B3) (Riven ne) Orainage Patterns (B10) Ory Season Water Table (C2)
Depth (inches) emarks o hydnc soils //DROLOGY /vetland Hydrology Indicators rimary Indicators (any one indic Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonnver Sediment Deposits (B2) (No	cator is sufficient) rine) innverine)	Salt Crust (B1 Biotic Crust (B Aquatic Inverti Hydrogen Sulf Oxidized Rhiz	912) ebrates (B13) flde Odor (C1) ospheres along		<u>Secon</u> V S C C C ts (C3)T	ndarv Indicators (2 or more required) Vater Marks (B1) (River me) Sediment Deposits (B2) (River me) Orift Deposits (B3) (Riven ne) Orainage Patterns (B10) Ory Season Water Table (C2) Ihin Muck Surtace (C7)
Depth (inches) emarks lo hydnc soils YDROLOGY Vetland Hydrology Indicators rimary Indicators (any one indic Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonnver Sediment Deposits (B2) (No Dnft Deposits (B3) (Nonnve	nnverine)	Salt Crust (B1 Biotic Crust (B Aquatic Invertie Hydrogen Sulf Oxidized Rhiz Presence of R	912) ebrates (B13) flde Odor (C1) ospheres along leduced Iron (C	(4)	<u>Secon</u> V S C C ts (C3)T	ndarv Indicators (2 or more required) Vater Marks (B1) (River me) Sediment Deposits (B2) (River me) Orift Deposits (B3) (Riven ne) Oranage Patterns (B10) Ory Season Water Table (C2) hin Muck Surtace (C7) Crayfish Burrows (C8)
Depth (inches) emarks Io hydnc soils YDROLOGY Vetland Hydrology Indicators Primary Indicators (any one indic Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonnver Sediment Deposits (B2) (No Dnft Deposits (B3) (Nonnve Surface Soil Cracks (B6)	cator is sufficient) rine) innverine)	Salt Crust (B1 Biotic Crust (B Aquatic Inverte Hydrogen Sulf Oxidized Rhiz Presence of R Recent Iron R	912) ebrates (B13) flde Odor (C1) ospheres along leduced Iron (C eduction in Plo	(4)	Secon 	ndary Indicators (2 or more required) Vater Marks (B1) (River me) Gediment Deposits (B2) (River me) Orift Deposits (B3) (Rivenne) Orainage Patterns (B10) Ory Season Water Table (C2) Chin Muck Surface (C7) Crayfish Burrows (C8) Gaturation Visible on Aenal Imagery (C
Depth (inches) emarks to hydnc soils //DROLOGY Vetland Hydrology Indicators rimary Indicators (any one indic Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonnver Sediment Deposits (B2) (No Dnft Deposits (B3) (Nonnve Surface Soil Cracks (B6) Inundation Visible on Aenal I	cator is sufficient) rine) innverine)	Salt Crust (B1 Biotic Crust (B Aquatic Invertie Hydrogen Sulf Oxidized Rhiz Presence of R	912) ebrates (B13) flde Odor (C1) ospheres along leduced Iron (C eduction in Plo	(4)	Secon 	ndary Indicators (2 or more required) Vater Marks (B1) (River me) Gediment Deposits (B2) (River me) Orift Deposits (B3) (Rivenne) Orainage Patterns (B10) Ora Season Water Table (C2) Ihin Muck Surface (C7) Crayfish Burrows (C8) Gaturation Visible on Aenal Imagery (C
Depth (inches) emarks lo hydnc soils YDROLOGY Vetland Hydrology Indicators Immary Indicators (any one indic Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonnver Sediment Deposits (B2) (No Dnft Deposits (B3) (Nonnve Surface Soil Cracks (B6) Inundation Visible on Aenal I Water Stained Leaves (B9)	cator is sufficient) rine) innverine)	Salt Crust (B1 Biotic Crust (B Aquatic Inverte Hydrogen Sulf Oxidized Rhiz Presence of R Recent Iron R	912) ebrates (B13) flde Odor (C1) ospheres along leduced Iron (C eduction in Plo	(4)	Secon 	ndary Indicators (2 or more reauired) Vater Marks (B1) (River me) Gediment Deposits (B2) (River me) Orift Deposits (B3) (Rivenne) Orainage Patterns (B10) Ory Season Water Table (C2) Chin Muck Surface (C7) Crayfish Burrows (C8) Gaturation Visible on Aenal Imagery (C
Depth (inches) emarks lo hydnc soils YDROLOGY Vetland Hydrology Indicators rimary Indicators (any one indic Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonnver Sediment Deposits (B2) (No Dnft Deposits (B3) (Nonnve Surface Soil Cracks (B6) Inundation Visible on Aenal I Water Stained Leaves (B9) ield Observations	nne) Imagery (B7)	Salt Crust (B1 Biotic Crust (B Aquatic Inverte Hydrogen Sulf Oxidized Rhiz Presence of R Recent Iron R Other (Explain	912) ebrates (B13) flde Odor (C1) ospheres along leduced Iron (C eduction in Plot o in Remarks)	(4) wed Soils (C	Secon 	ndary Indicators (2 or more required) Vater Marks (B1) (River me) Gediment Deposits (B2) (River me) Orift Deposits (B3) (Rivenne) Orainage Patterns (B10) Ora Season Water Table (C2) Ihin Muck Surface (C7) Crayfish Burrows (C8) Gaturation Visible on Aenal Imagery (C
Depth (inches) emarks lo hydnc soils YDROLOGY Vetland Hydrology Indicators Immary Indicators (any one indic Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonnver Sediment Deposits (B2) (No Dnft Deposits (B3) (Nonnve Surface Soil Cracks (B6) Inundation Visible on Aenal I Water Stained Leaves (B9) ield Observations urface Water Present? Y	rine) innverine) innagery (B7)	Salt Crust (B1 Biotic Crust (B Aquatic Inverte Hydrogen Sulf Oxidized Rhiz Presence of R Recent Iron R Other (Explain X Depth (inches	b12) ebrates (B13) flde Odor (C1) ospheres along leduced Iron (C eduction in Plo n in Remarks)	(4) wed Soils (C	Secon 	ndary Indicators (2 or more required) Vater Marks (B1) (River me) Gediment Deposits (B2) (River me) Orift Deposits (B3) (Rivenne) Orainage Patterns (B10) Ora Season Water Table (C2) Ihin Muck Surface (C7) Crayfish Burrows (C8) Gaturation Visible on Aenal Imagery (C
Depth (inches) emarks lo hydnc soils YDROLOGY Vetland Hydrology Indicators Primary Indicators (any one indic Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonnver Sediment Deposits (B2) (No Dnft Deposits (B3) (Nonnver Surface Soil Cracks (B6) Inundation Visible on Aenal I Water Stained Leaves (B9) ield Observations surface Water Present? Y	cator is sufficient) inne) inne) imagery (B7) 'es No	Salt Crust (B1 Biotic Crust (B1 Aquatic Inverted Hydrogen Sulf Oxidized Rhiz Presence of R Recent Iron R Other (Explain X Depth (inches X Depth (inches	B12) ebrates (B13) filde Odor (C1) ospheres along leduced Iron (C eduction in Plot in in Remarks)	(4) wed Soils (C	Secon V S C C C ts (C3)T C (C3)T S S F	ndary Indicators (2 or more reaured) Vater Marks (B1) (River me) Sediment Deposits (B2) (Riverme) Orift Deposits (B3) (Rivenne) Orainage Patterns (B10) Ory Season Water Table (C2) hin Muck Surtace (C7) Crayfish Burrows (C8) Saturation Visible on Aenal Imagery (C Shallow Aquitard (D3) AC Neutral Test (D5)
Depth (inches) emarks No hydnc soils YDROLOGY Vetland Hydrology Indicators Primary Indicators (any one indic Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonnver Sediment Deposits (B2) (No Dnft Deposits (B3) (Nonnver Surface Soil Cracks (B6) Inundation Visible on Aenal I Water Stained Leaves (B9) Tield Observations Surface Water Present? Y Vater Table Present? Y vaturation Present? Y	cator is sufficient) inne) inne) imagery (B7) 'es No	Salt Crust (B1 Biotic Crust (B Aquatic Inverte Hydrogen Sulf Oxidized Rhiz Presence of R Recent Iron R Other (Explain X Depth (inches	B12) ebrates (B13) filde Odor (C1) ospheres along leduced Iron (C eduction in Plot in in Remarks)	(4) wed Soils (C	Secon V S C C C ts (C3)T C (C3)T S S F	ndary Indicators (2 or more required) Vater Marks (B1) (River me) Gediment Deposits (B2) (River me) Orift Deposits (B3) (Rivenne) Orainage Patterns (B10) Ora Season Water Table (C2) Ihin Muck Surface (C7) Crayfish Burrows (C8) Gaturation Visible on Aenal Imagery (C
Depth (inches) emarks No hydnc soils YDROLOGY Wetland Hydrology Indicators Primary Indicators (any one indic Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonnver Sediment Deposits (B2) (No Dnft Deposits (B3) (Nonnver Surface Soil Cracks (B6) Inundation Visible on Aenal Water Stained Leaves (B9) Field Observations Surface Water Present? Y	cator is sufficient) innverine) innverine) inne) Imagery (B7) /es No /es No	 Salt Crust (B1 Biotic Crust (E Aquatic Inverted Hydrogen Sulf Oxidized Rhiz Presence of R Recent Iron R Other (Explain X Depth (inches) X Depth (inches) X Deoth (inches)	B12) ebrates (B13) flde Odor (C1) ospheres along leduced Iron (C eduction in Plo in in Remarks) in in Remarks)	(4) wed Soils (0	Secon Secon S S S S S S S S S S S S S S S S S S S	ndary Indicators (2 or more reaured) Vater Marks (B1) (River me) Sediment Deposits (B2) (Riverme) Orift Deposits (B3) (Rivenne) Orainage Patterns (B10) Ory Season Water Table (C2) hin Muck Surtace (C7) Crayfish Burrows (C8) Saturation Visible on Aenal Imagery (C Shallow Aquitard (D3) AC Neutral Test (D5)
Depth (inches) emarks No hydnc soils YDROLOGY Wetland Hydrology Indicators Primary Indicators (any one indic Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonnver Sediment Deposits (B2) (No Dnft Deposits (B3) (Nonnver Surface Soil Cracks (B6) Inundation Visible on Aenal I Water Stained Leaves (B9) Field Observations Surface Water Present? Y Vater Table Present? Y Saturation Present? Y	cator is sufficient) innverine) innverine) inne) Imagery (B7) /es No /es No	 Salt Crust (B1 Biotic Crust (E Aquatic Inverted Hydrogen Sulf Oxidized Rhiz Presence of R Recent Iron R Other (Explain X Depth (inches) X Depth (inches) X Deoth (inches)	B12) ebrates (B13) flde Odor (C1) ospheres along leduced Iron (C eduction in Plo in in Remarks) in in Remarks)	(4) wed Soils (0	Secon Secon S S S S S S S S S S S S S S S S S S S	ndary Indicators (2 or more reaured) Vater Marks (B1) (River me) Sediment Deposits (B2) (Riverme) Orift Deposits (B3) (Rivenne) Orainage Patterns (B10) Ory Season Water Table (C2) hin Muck Surtace (C7) Crayfish Burrows (C8) Saturation Visible on Aenal Imagery (C Shallow Aquitard (D3) AC Neutral Test (D5)

ı

S	0	1L

Depth	Matnx		Red	ox Features						
nches)	Color (moist)	<u> </u>	Color (moist)			Loc ²		<u></u>	Remarks	
04	10YR 3/2	_100			<u> </u>		CILo	damp		
4 12	10YR 6/2	100			<u></u>		<u></u>	Moist		
12+	·				<u></u>		<u> </u>	Hard pa	<u>n</u>	
							<u> </u>	<u> </u>		
<u>_</u>									<u> </u>	
			······································							
	oncentration D=Dep		Reduced Mater	² Location			C=Root Chann	el MeMat		
	Indicators (Applic					s ching in			matic Hydric	Soils
	pipedon (A2)		Sandy Red	atnx (S6)			2 cm M	uck (A9) (l uck (A10)	(LRR B)	
	istic (A3)		· · ·	cky Mineral	• •			d Vertic (F		
	en Sulfide (A4) d Layers (A5) (LRR (-	Loamy Gie	yed Matnx (latox (E3)	F2)		X Other (rent Mater	,	
	uck (A9) (LRR D)			k Surface (F	6)				петала	
-	d Below Dark Surface	e (A11)		ark Surface	,					
Thick Da	ark Surface (A12)		Redox Dep	ressions (F	8)					
	/lucky Mineral (S1)		Vernal Poo	ls (F9)				• • •	ytic vegetation	
	Bleyed Matnx (S4)						wetland I	nydrology	mustbeprese	ent
Restrictive							ļ			
Restrictive	Cemented						1.1.1.1.1.0.1.1.1		V V	
Restrictive Type(Depth (in			 				Hydric Soil F	Present?	Yes <u>X</u>	No
Restrictive	Cemented						Hydric Soil F	Present?	Yes <u>X</u>	
Restrictive Type (Depth (in Remarks	Cemented						Hydric Soll F	Present?	Yes <u>X</u>	
Restrictive Type(Depth (in	Cemented						Hydric Soll F	Present?	Yes <u>X</u>	

Wetland Hydrology Indicators Se	condary Indicators (2 or more required)
Pnmary Indicators (any one Indicator Is sufficient)	_ Water Marks (B1) (Riverine)
Surface Water (A I) Salt Crust (B11)	_ Sediment Deposits (B2) (Rivenne)
High Water Table (A2) Biotic Crust (B12)	Drift Deposits (B3) (Riverine)
Saturation (A3) Aquatic Invertebrates (B13)	Drainage Patterns (BIO)
Water Marks (B1) (Nonnvenne) Hydrogen Sulfide Odor (C1)	_ Dry Season Water Table (C2)
Sediment Deposits (B2) (Nonnvenne) Oxidized Rhizospheres along Living Roots (C3)	_ Thin Muck Surface (07)
Dnft Deposits (B3) (Nonnvenne) Presence of Reduced Iron (C4)	Crayfish Burrows (C8)
X Surface Soil Cracks (B6) Recent Iron Reduction in Plowed Soils (C6)	Saturation Visible on Aenal Imagery (C9)
Inundation Visible on Aenal Imagery (B7) Other (Explain in Remarks)	Shallow Aquitard (D3)
Water Stained Leaves (B9)	FAC Neutral Test (D5)
Field Observations	
Surface Water Present? Yes No X Depth (inches)	
Water Table Present? Yes No X Depth (inches)	
	ogy Present? Yes X No
(includes capillary finge)	
Describe Recorded Data (stream gauge monitoring well aerial photos previous inspections) if available	
Remarks	
Surface soil cracks = wetland hydrology	

SC	IL
----	----

Depth	Matrix		Redox Feature	<u>s</u>		
(inches) Colo	r (moist)		Color (moist) 9	Type ¹ Loc ²	<u> </u>	Remarks
<u>0 5 _10YR</u>	4/2	_100			<u></u>	Moist
<u>5 7 10YR</u>	5/3	100			CISa	Moist
7+	_					Hard pan
				• • • • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·
	<u> </u>					
				·		
				- <u> </u>		
¹ Type C≈Concentra	ion D=Depl	etion RM=Re	educed Matrix ² Location	n PL=Pore Lining	RC=Root Char	nel M=Matnx
Hydric Soil Indicato	rs (Applica	ble to all LR	Rs unless otherwise not	ed)	Indicators	s for Problematic Hydric Soils ³
Histosol (A1)			Sandy Redox (S5)		1 cm .	Muck (A9) (LRR C)
Histic Epipedon (A2)		Stnpped Matrix (S6)			Muck (A10) (LRR B)
Black Histic (A3)			Loamy Mucky Minera			ced Vertic (F18)
Hydrogen Sulfide Stratified Layers		、	Loamy Gleyed Matrix Depleted Matrix (F3)	. (⊢2)		Parent Matenal (TF2) (Explain in Remarks)
1 cm Muck (A9) ()	Redox Dark Surface	(F6)		(Explain in Remarks)
Depleted Below I	-	(A11)	Depleted Dark Surfac			
Thick Dark Surfa			Redox Depressions (
Sandy Mucky Mir	ieral (S1)		Vernal Pools (F9)		² Indicators	of hydrophytic vegetation and
Sandy Gleyed Ma			······································		wetland	I hydrology must be present
Restrictive Layer (if						
Type <u>Cemented</u>						
Depth (Inches)	L				Hydric Soi	Present? Yes X No
Remarks						
Salorthids playa soils						
IYDROLOGY						
Wetland Hydrology	ndicators			······	Seco	ndary Indicators (2 or more required)
	v one indica	tor is sufficier	nt)		v	Vater Marks (B1) (Rivenne)
Pnmary Indicators (ar			X Salt Crust (B11)			Sediment Deposits (B2) (Riverme)
	1)					
	'		Biotic Crust (B12)			
Surface Water (A	'			·s (B13)	[Daft Deposits (B3) (Rivenne) Drainage Patterns (B10)
Surface Water (A High Water Table	(A2)	1e)	Biotic Crust (B12)		[Onft Deposits (B3) (Rivenne)
Surface Water (A High Water Table Saturation (A3)) (Nonnvenr		Biotic Crust (B12) Aquatic Invertebrate	dor (C1)	[[[onft Deposits (B3) (Rivenne) Drainage Patterns (B10)
Surface Water (A High Water Table Saturation (A3) Water Marks (B1	(A2) (Nonnvenr ts (B2) (Non	nvenne)	Biotic Crust (B12) Aquatic Invertebrate Hydrogen Sulfide Od	dor (C1) res along Living Ro	[[[[[]	Onft Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2)
Surface Water (A High Water Table Saturation (A3) Water Marks (B1 Sediment Deposit Dnft Deposits (B3) (Nonnvenr 15 (B2) (Non 1) (Nonnven	nvenne)	Biotic Crust (B12) Aquatic Invertebrate Hydrogen Sulfide Od Oxidized Rhizosphe	dor (C1) res along Living Ro ed Iron (C4)	[[pots (C3) 7 0	Onft Deposits (B3) (Riverine) Drainage Patterns (B10) Dry Season Water Table (C2) Thin Muck Surtace (C7) Drayfish Burrows (C8)
 Saturation (A3) Water Marks (B1 Sediment Deposition) (Nonnvenr 15 (B2) (Non 1) (Nonnven 1) (Nonnven 15 (B6)	nvenne) ne)	Biotic Crust (B12) Aquatic Invertebrate Hydrogen Sulfide Od Oxidized Rhizosphe Presence of Reduce	dor (C1) res along Living Ro ed Iron (C4) ion in Plowed Soils	[[pots (C3) 7 0 (C6) 5	Onft Deposits (B3) (Riverine) Drainage Patterns (B10) Dry Season Water Table (C2) Thin Muck Surtace (C7)

•		

Remarks

Surface Water Present?

(includes capillary finge)

Water Table Present? Saturation Present?

Yes _____ No _X Depth (Inches) __

Describe Recorded Data (stream gauge monitoring well aenal photos previous inspections) if available

Yes _____ No _X __ Depth (inches) _____

Yes _____ No __X __ Depth (inches) _____

Wetland Hydrology Present? Yes X No

^

[cription (Describe	to the depth ne			ator or confi	rm the ab	sence of indicat	ors)	
Depth (Inches)	<u>Matnx</u> Color (moist)	% Co	Heao Nor (moist)	x Features % Typ	pe ¹ Loc ²	– Text	ure	Remarks	
0 10	10YR 2/2						Dry		
	10YR 4/3							· · · · · · · · · · · · · · · · · · ·	
_10+	<u>101H 4/3</u>			·		<u>Sa</u>			
	·								
	<u> </u>	·							
							·		
	<u> </u>						<u> </u>		
	<u> </u>								
				2					<u> </u>
	oncentration D=Dep Indicators (Applic				=Pore Lining		Channel M=Mat	ematic Hydric So	
Histosol			_ Sandy Rede				1 cm Muck (A9) (-	113
	pipedon (A2)	—	_ Sandy Red _ Stnpped Ma				2 cm Muck (A3) (
	istic (A3)	-		ky Mineral (F1)			Reduced Vertic (
	en Sulfide (A4)	_	- •	ved Matnx (F2)			Red Parent Mate	•	
	d Layers (A5) (LRR (C)	_ Depleted M				Other (Explain in	Remarks)	
-	uck (A9) (LRR D)	_	-	Surface (F6)					
	d Below Dark Surtace	e (A I 1)		ark Surface (F7)				
	ark Surface (A12)	—		essions (F8)		3 Indu	notana af budaa ab	ytic vegetation an	لہ
	/lucky Mineral (S1) Bleyed Matnx (S4)	-	_ Vernal Pool	s (F9)			• •	mustbepresent	Ċ.
	Layer (if present)						chand hydrology	most bepresent	••••••••••••••••••••••••••••••••••••••
_									
· · _	ches)					Hydn	c Soil Present?	Yes	No X
Remarks							···		
IYDROLO							Consideration	ators (2 or more re	
	drology Indicators	atas is quifficlent)							equireu)
	cators (any one indicators	ator is sufficient)	Call Caust	(D+4)		<u> </u>		s (B1) (Riverin e)	
	Water (AI)	-	Salt Crust Biobc Crus	• •				eposits (B2) (R ive is (B3) (Riverin e)	
	ter Table (A2)	-		/ertebrates (B1:	2)		Drainage Pa		
Saturatio	larks (B1) (Nonnven	- -	— ·	Sulfide Odor (C	•			Water Table (C2)	
	nt Deposits (B2) (Nor			hizospheres al		nots (C3)	Thin Muck S		
	posits (B3) (Nonriver			of Reduced Iron	• •		Crayfish Bur		
	Soil Cracks (B6)			n Reduction in I		(C6)		isible on Aenal Im	agery (C9)
	on Visible on Aenal li			lain in Remarks		()	Shallow Aqu		g., (,
	tained Leaves (B9)				-,		FAC Neutra		
Field Obser									
Surface Wate		es No <u>_ X</u>	Depth (in	ches)					
Water Table		es No <u>_X</u>							
Saturation Pi		es No _X			1	tland Hvd	rology Present?	Yes	No X
(includes cap	oillary fnnge)								
Describe Red	corded Data (stream	gauge monitonr	g well aenal p	photos previous	s inspections)) if availat	le		
						· · · · · · · · · · · · · · · · · · ·			
Remarks									
/ 									
No wetland h	iyurology								

Depth <u>Matnx</u>			Redo	ox Feature	s			
hches!	Color (moist)	<u> </u>	Color (moist)	%	Type ¹	_Loc ²	<u> </u>	Remarks
3	10YR 3/2	_100					<u> </u>	damp
- 18+	10YR 4/2		10YR 6/2		_ <u>C</u>	<u>M</u>		
	Concentration D=Dep Indicators (Applic					Lining R		nel M=Matnx. for Problematic Hydric Soi1s ^a
_ Histoso	I (A1)		Sandy Red	ox (S5)			1 cm M	Muck (A9) (LRR C)
Histic E	pipedon (A2)		Stnpped M	atnx (S6)			2 cm N	/luck (A10) (LRR B)
_ Black H	istic (A3)		Loamy Muc	ky Minera	l (F1)		Reduc	ed Vertic (F18)
_ Hydroge	en Sulfide (A4)		Loamy Gle	ed Matnx	(F2)		Red Pa	arent Matenal (TF2)
_ Stratifie	d Layers (A5) (LRR (C)	Depleted M	atnx (F3)			X_ Other	(Explain in Remarks)
_ 1 cm M	uck (A9) (LRR D)		Redox Dark	Surface (F6)			
_ Deplete	d Below Dark Surfac	e (A11)	Depleted D	ark Surfac	e (F7)			
_ Thick D	ark Surface (A12)		Redox Dep					
-	Aucky Mineral (S1)		Vernal Pool	-	-		³ Indicators	ol hydrophytic vegetation and
	Gleyed Matnx (S4)		_					hydrology must be present
	Layer (if present)						[
Туре							1	
Depth (in	ches)						Hydric Soil	Present? Yes X No
emarks							<u></u>	
alorthids								
DROLO	GY							
etland Hy	drology Indicators						Secon	idary Indicators (2 or more required)
mary Indi	cators (any one indic	ator is suff	cient)				W	/ater Marks (B1) (Rivenne)
_ Surface	Water (A1)		Salt Crust	(B11)			S	ediment Deposits (B2) (Riverme)

High Water Table (A2)		Biotic (Crust (B12)		Drift Deposits (B3) (Rivenne)
Saturation (A3)		Aquatio	ic Invertebrates (B13)		Drainage Pattems (B10)
Water Marks (B1) (Nonn	venne)	Hydrog	gen Sulfide Odor (C1)		Dry Season Water Table (C2)
Sediment Deposits (B2)	(Nonnvenne)	Oxidize	ed Rhizospheres along L	iving Roots (C3)	Thin Muck Surface (C7)
Dnft Deposits (B3) (Noni	nvenne)	Presen	nce or Reduced Iron (C4)		Crayfish Burrows (C8)
X_ Surface Soil Cracks (B6)		Recent	t Iron Reduction in Plowe	d Soils (C6)	Saturation Visible on Aenal Imagery (C9)
Inundation Visible on Aei	nal Imagery (B7)	Other ((Explain in Remarks)		Shallow Aquitard (D3)
Water Stained Leaves (E	9)				FAC Neutral Test (D5)
Field Observations				1	
Surface Water Present?	Yes No	X_ Depth	h (Inches)	-	
Water Table Present?	Yes No	<u>X</u> Depth	h (Inches)	_ }	
Saturation Present? (includes capillary fnnge)	Yes No _	X_ Depth	h (inches)	_ Wetland Hydrol	ogy Present? Yes X No
Describe Recorded Data (stre	eam gauge monito	nng well aer	nal photos previous insp	ections) if available	
Remarks					
1					
Surface soil cracks = wetland	hydrology				

SOIL

1

-

~

_ ._

Depth <u>Matnx</u>			Redo	x Feature	s				
(Inches)	Color (moist)	/	Color (moist)	%	Type ¹	Loc ²	<u> Texture </u>	Remark	(s
0 - 18+	10YR 3/2	_100		- <u></u>			<u>Sa</u>	Dry to damp	
			······································						
			Reduced Matnx RRs unless other			e Lining R		nel_M=Matrix for Problematic Hydr	Coulo ³
Histosol (A Histic Epip Black Hist Hydrogen Stratified L 1 cm Much Depleted B Thick Dark Sandy Muc Sandy Gle Restrictive La	AT) bedon (A2) lic (A3)	;)	Sandy Redo Stnpped Ma Loamy Muc Loamy Gley Depleted Ma Redox Dark Redox Dark Redox Depr Vernal Pools	ox (S5) atrix (S6) ky Mineral red Matnx atnx (F3) Surface (ark Surfac essions (f	l (F1) (F2) F6) e (F7)		1 cm M 2 cm M Reduce Red Pa Other (³ Indicators d	Juck (A9) (LRR C) Juck (A10) (LRR B) ad Vertic (F18) arent Matenal (TF2) Explain in Remarks) of hydrophytic vegetati hydrology must be pre	ion and
Type Depth (Inch	es)						Hydnc Soil	Present? Yes	No <u></u>
lemarks									
lo hydnc solls									
YDROLOG						<u> </u>			
	ology Indicators							dary Indicators (2 or m	
	ors (any one indica	tor is suffici				. -		ater Marks (B1) (River	-
Surface W	ater (A1)		Salt Crnst	(B11)			Se	ediment Deposits (B2)	(Riverme)

Surtace Water (A1)		Salt Cmst (B11)	Sediment Deposits (B2) (Riverme)
High Water Table (A2)		Biotic Orust (B12)	Drift Deposits (B3) (Riverme)
Saturation (A3)		Aquatic Invertebrates (B13)	Drainage Patterns (B10)
Water Marks (B1) (Non	rivenne)	Hydrogen Sulfide Odor (C1)	Dry Season Water Table (C2)
Sediment Deposits (B2)	(Nonnvenne)	Oxidized Rhizospheres along Livi	ng Roots (C3) Thin Muck Surface (C7)
Dnft Deposits (B3) (Non	nvenne)	Presence of Reduced Iron (C4)	Crayfish Burrows (C8)
Surface Soil Cracks (B6)	Recent Iron Reduction in Plowed	Soils (C6) Saturation Visible on Aerial Imagery (C9)
Inundation Visible on Ae	nal Imagery (B7)	Other (Explain in Remarks)	Shallow Aquitard (D3)
Water Stained Leaves (B9)		FAC Neutral Test (D5)
Field Observations			
Surface Water Present?	Yes No _	X Depth (inches)	
Water Table Present?	Yes No _	X Depth (inches)	
Saturation Present? (includes capillary fringe)	Yes No _	X Depth (inches)	Wetland Hydrology Present? Yes NoX
	eam gauge monito	onng well aenal photos previous inspec	tions) if available
Remarks			
No wetland hydrology			
1			

١

1

		eded to document the indicator or	confirm the	absence	of indicators)
Depth <u>Mat</u> (inches) Color (mois		Redox Features		exture	Remarks
0 4 10YR 3/2					Moist
<u>4 10 10YR 4/3</u>	100		<u>_Ci</u>		Moist
					Hard pan
				······	
'Type C=Concentration D=					
1 -	oplicable to all LRRs	unless otherwise noted)			or Problematic Hydric Soils ³
Histosol (AI)	-	_ Sandy Redox (S5)			Jck (A9) (LRR C)
Hislic Epipedon (A2)	•	_ Stnpped Matnx (S6)			Jck (A10) (LRR B)
Black Histic (A3)		Loamy Mucky Mineral (F1) Loamy Gleyed Matnx (F2)	_	_	d Vertic (F18) rent Material (TF2)
 Hydrogen Sulfide (A4) Stratified Layers (A5) (L 	BB C)	_ Depleted Matnx (F3)	x -	_	xplain in Remarks)
1 cm Muck (A9) (LRR D		_ Redox Dark Surface (F6)		<u>.</u>	
Depleted Below Dark St		_ Depleted Dark Surface (F7)			
Thick Dark Surface (A12	-	_ Redox Depressions (F8)			
Sandy Mucky Mineral (S		Vernal Pools (F9)	² lı		f hydrophytic vegetation and
Sandy Gleyed Matrix (S-				wetland h	ydrology must be present
Restrictive Layer (rf preser	it)				
Type <u>Cemented</u>					
Depth (inches) 10			Hy	dric Soil P	resent? Yes X No No
Remarks					
Salorthids playa soils					
Salorinius playa solis					
HYDROLOGY					
Wetland Hydrology Indicat	ors		·····	Second	ary Indicators (2 or more reaured)
Pnmary Indicators (any one	ndicator is sufficient)			Wa	ter Marks (B1) (Riverine)
Surface Water (AI)	-	Salt Crust (B11)		Sec	diment Deposits (B2) (Riverine)
High Water Table (A2)	-	Biotic Crust (B12)		Dri	ft Deposits (B3) (Riverine)
Saturation (A3)	-	Aquatic Invertebrates (B13)		Dra	ariage Patterns (BIO)
Water Marks (B1) (Nonr	iverine)	Hydrogen Sulfide Odor (C1)		Dry	v Season Water Table (C2)
Sediment Deposits (B2)		Oxidized Rhizospheres along Liv	ing Roots (C:		· •
Dnft Deposits (B3) (Non		Presence of Reduced Iron (C4)			ayfish Bunows (C8)
X Surface Soil Cracks (B6)	-	Recent Iron Reduction in Plowed	Soils (C6)		uration Visible on Aerial Imagery (C9)
Inundation Visible on Ae		Other (Explain in Remarks)			allow Aguitard (D3)
Water Stained Leaves (I	39) 	· · · · · · · · · · · · · · · · · · ·	<u></u> _	FA	C Neutral Test (D5)
Field Observations					
Surface Water Present?		C Deoth (Inches)			
Water Table Present?	Yes No _>	(Depth (inches)			
Saturation Present?	Yes No _>	(Depth (inches)	Wetland H	lydrology	Present? Yes <u>X</u> No
(includes capillary fnnge) Describe Becorded Data (str	eam gauge monitor	ng well aenal photos previous inspec	tions) if ava	lable	
	can gabge moment				
Remarks	,,,				·····
hemaiks					
Soil outfore erection	l hudrologu				
Soil surface cracks = wetland	пуатоюду				

_

SÕIL

ī

0 3 10YR 3/2 100	DepthRedox Fea	tures	- <u> </u>	_	_
3 12 10VF 4/3 100 Sa Most 122 Hard pan Hard pan Hard pan 124 Hard pan Hard pan 125 Statped Matrx (25) Indicators for Problematic Hydric Soils ³ 1415001(A1) Statped Matrx (55) 1 or Muck (A0) (LRR 0) 1415001(B4 (A4) Learny Mucky Mineral (F1) Reduced Varin (F13) 12 Normal Key Matrix (S5) 2 or Muck (A10) (LRR 0) 125 Statified Layers (A5) (LRR 0) Depleted Dark Sufface (F7) 126 The Mack (S1) (LRR 0) Redox Dark Sufface (F7) 127 The Mack Matrx (S4) wetland hydrology must their a sufficient1 128 Statifice Layers of hydrophytic vegatation and wetland hydrology must their a sufficient1 Wetland hydrology must their a sufficient1 128 General Matris (S4) Statintot (S1) Wetland H	(inches) Color (moist) 9 Color (moist)	<u>Type'</u>	_Loc ²	<u>Texture</u>	Remarks
124 Hard pan Type	0 3 10YR 3/2 100	<u></u>		SaLo	Moist
Type_C=Concentration_D=Depletion_RM=Reduced Matrix *Location_PL=Pore Luning_RC=Root Channel, M=Matrix tytin:Soil Indicators (Applicable to all LRRs_unless otherwise noted.) Indicators for Problematic Hydric Soils ³ Hestsol (A)	<u>3 12 10YR 4/3 100</u>		<u></u>	Sa	Moist
pydric Soil Indicators (Applicable to all LRRs unless otherwise noted) Indicators for Problematic Hydric Soils [*] Histos Epredon (A2) Stripped Matrix (S5)	12+			<u> </u>	Hard pan
pydric Soil Indicators (Applicable to all LRRs unless otherwise noted) Indicators for Problematic Hydric Soils [*] Histos Epredon (A2) Stripped Matrix (S5)			<u></u>		
pydric Soil Indicators (Applicable to all LRRs unless otherwise noted) Indicators for Problematic Hydric Soils [*] Histos Epredon (A2) Stripped Matrix (S5)					
pydric Soil Indicators (Applicable to all LRRs unless otherwise noted) Indicators for Problematic Hydric Soils [*] Histos Epredon (A2) Stripped Matrix (S5)				<u>, , , , , , , , , , , , , , , , , , , </u>	
pydric Soil Indicators (Applicable to all LRRs unless otherwise noted) Indicators for Problematic Hydric Soils [*] Histos Epredon (A2) Stripped Matrix (S5)					
pydric Soil Indicators (Applicable to all LRRs unless otherwise noted) Indicators for Problematic Hydric Soils [*] Histos Epredon (A2) Stripped Matrix (S5)					
pydric Soil Indicators (Applicable to all LRRs unless otherwise noted) Indicators for Problematic Hydric Soils [*] Histos Epredon (A2) Stripped Matrix (S5)					
			e Lining F		
Black Histic (A3) Learny Mucky Mineral (F1) Reduced Vertic (F18) Hydrogen Sultide (A4) Learny Gleyed Matrix (F2) Red Parent Material (TF2) Stratified Lysers (A5) (LRR C) Depleted Matrix (F2) Red X Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F6) Sandy Mucky Mineral (S1) Vernal Pools (F9) 'Indicators of hydrophytic vegatation and surface (F7) Sandy Gleyed Matrix (S4) wetland hydrology must be price sent Estrictive Layer (If present) Yers_X		•			
Hydrogen Sultide (A4) Loamy Gleyed Matnx (F2) Red Parent Matenal (TF2) Stratified Layers (A5) (LRR C) Depleted Matnx (F3) X Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A11) Depleted Dark Surface (F7) Thuck Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Vernal Pools (F9) *Indicators of hydrophytic vegetation and wetland hydrology must bepresent Edericitive Layer (If present) Type		•			
Stratified Layers (A5) (LRR C) Depleted Matrx (F3) X. Other (Explain in Remarks) 1 cm Muck (A9) (LRR D) Redox Dark Surface (F6) Depleted Below Dark Surface (A12) Depleted Dark Surface (F7) Thick Dark Surface (A12) Redox Depressions (F8) Sandy Mucky Mineral (S1) Vernal Pools (F9) *Indicators of hydrophytic vegetation and sandy Gleyed Matrx (S4) wetland hydrology must be present estinctive Layer (If present) Hydric Soil Present? Yes _X No emarks alorthids playa soils Hydric Soil Present? Yes _X No emarks alorthids playa soils Water Marks (B1) (Averine) Sediment Deposits (B2) (Riverine) Sediment Deposits (B2) (Riverine) Sediment Deposits (B2) (Riverine) Sediment Deposits (B3) (Riverine) Outlide Codor (C1) Dry Season Water Table (C2) Outlide Rhizospheres along Living Roots (C3) Thm Muck Surface (07) Dry Gesaon Water Table (C2) Surface Soil Cracks (B6) Recent Iron Reduced Iron (C4) Crayfish Bu rows (C3) Intimudation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Shallow Aquitard (C3) Kater Stande Leaves (B9) Other (Explain in Remarks)					
				X Other	(Explain in Remarks)
Thick Dark Surface (A12)Redox Depressions (F8) Sandy Mucky Mineral (S1)Vernal Pools (F9)wetland hydrology must bepresent sandy Gleyed Matrix (S4)wetland hydrology must bepresent series (if present) 		ace (F6)			
Sandy Mucky Mineral (S1)Vernal Pools (F9) *Indicators of hydrophytic vegetation andwetland hydrology must be present estrictive Layer (if present)	Depleted Below Dark Surface (AI1) Depleted Dark Su	urface (F7)			
		• •			
estrictive Layer (if present) Type					
Type Cemented Depth (inches) 10 emarks alorthids playa soils PBOLOGY etland Hydrology Indicators imary Indicators (any one indicator is sufficient) Surface Water (A1) Surface Water (A1) Surface Water (A2) Saturation (A3) Aquatic Invertebrates (B13) Stater Bon (A3) Water Marks (B1) (Nonrivenne) Hydrogen Sulfide Odor (C1) Sufface Soil Cracks (B2) (Nonnvenne) Derti Deposits (B2) (Nonnvenne) Presence of Reduced Iron (C4) Sufface Soil Cracks (B6) Sufface Soil Cracks (B6) Station Visible on Aerial Imagery (B7) Other (Explain in Remarks) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Indication Visible on Aerial Imagery (B7) Uhare Kater Present? Yes No X				wetland	hydrology must bepresent
Depth (inches)10					
emarks alorthids_playa soils 'DROLOGY (etland Hydrology Indicators immary_indicators (any one indicator is sufficient)				J	
alorthids playa soils //DROLOGY fetland Hydrology Indicators Secondary Indicators (2 or more reaured) immary Indicators (any one indicator is sufficient) Water Marks (B1) (Riverine)				1	
//DROLOGY //etland Hydrology Indicators Secondary Indicators (2 or more reaured) //marx Indicators (any one indicator is sufficient) Water Marks (B1) (Riverine)				Hydric Soil	Present? Yes_X No
//DROLOGY //etland Hydrology Indicators Secondary Indicators (2 or more reaured) //marx Indicators (any one indicator is sufficient) Water Marks (B1) (Riverine)	Depth (inches) <u>10</u> Iemarks			Hydric Soil	Present? Yes X No
Vetland Hydrology Indicators Secondary Indicators (2 or more reaured) rimary Indicators (any one indicator is sufficient) Water Marks (B1) (Riverine) Surface Water (A I) Salt Crust (B11) Sediment Deposits (B2) (Riverine) High Water Table (A2) Biotic Crust (B12) Drift Deposits (B3) (Riverine) Saturation (A3) Aquatic Invertebrates (B13) Drainage Patterns (810) Water Marks (B1) (Nonrivenne) Hydrogen Sulfide Odor (C1) Dry Season Water Table (C2) Sediment Deposits (B2) (Nonnvenne) Oxidized Rhizospheres along Living Roots (C3) Thim Muck Surface (07) Drift Deposits (B3) (Nonnvenne) Presence of Reduced Iron (C4) Crayfish Bu rows (C8) Surface Soil Cracks (B6) Recent Iron Reduction m Plowed Soils (C6) Saturation Visible on Aerrial Imagery (C Inundation Visible on Aerrial Imagery (B7) Other (Explain in Remarks) Shallow Aquitard (03) Water Stained Leaves (B9) FAC Neutral Test (05) Ield Observations urface Water Present? Yes No X Depth (inches) Metland Hydrology Present? Yes No X Autoriation Present? Yes No X Depth (inches) Metland Hydrology Present? Yes No X				Hydric Soil	Present? Yes_X No
Vetland Hydrology Indicators Secondary Indicators (2 or more reaured) rimary Indicators (any one indicator is sufficient) Water Marks (B1) (Riverine) Surface Water (A I) Salt Crust (B11) Sediment Deposits (B2) (Riverine) High Water Table (A2) Biotic Crust (B12) Drift Deposits (B3) (Riverine) Saturation (A3) Aquatic Invertebrates (B13) Drainage Patterns (810) Water Marks (B1) (Nonrivenne) Hydrogen Sulfide Odor (C1) Dry Season Water Table (C2) Sediment Deposits (B2) (Nonnvenne) Oxidized Rhizospheres along Living Roots (C3) Thim Muck Surface (07) Drift Deposits (B3) (Nonnvenne) Presence of Reduced Iron (C4) Crayfish Bu rows (C8) Surface Soil Cracks (B6) Recent Iron Reduction m Plowed Soils (C6) Saturation Visible on Aerrial Imagery (C Inundation Visible on Aerrial Imagery (B7) Other (Explain in Remarks) Shallow Aquitard (03) Water Stained Leaves (B9) FAC Neutral Test (05) Ield Observations urface Water Present? Yes No X Depth (inches) Metland Hydrology Present? Yes No X Autoriation Present? Yes No X Depth (inches) Metland Hydrology Present? Yes No X				Hydric Soil	Present? Yes_X No
Immary Indicators (any one indicator is sufficient) Water Marks (B1) (Riverine) Surface Water (A1) Salt Crust (B11) Sediment Deposits (82) (Rivenne) High Water Table (A2) Biotic Crust (B12) Drift Deposits (B3) (Riverine) Saturation (A3) Aquatic Invertebrates (B13) Drainage Patterns (810) Water Marks (B1) (Nonrivenne) Hydrogen Sulfide Odor (C1) Dry Season Water Table (C2) Sediment Deposits (B2) (Nonnvenne) Oxidized Rhizospheres along Living Roots (C3) Thm Muck Surface (07) Drift Deposits (B3) (Nonnvenne) Presence of Reduced Iron (C4) Crayfish Bu rows (C8) Surface Soil Cracks (B6) Recent Iron Reduction m Plowed Soils (C6) Saturation Visible on Aerial Imagery (C Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Shallow Aquitard (03) Water Stained Leaves (B9) FAC Neutral Test (D5) Image Patterns (D5) Ield Observations No X Depth (inches) Image Patterns (D5) Ield Observations Yes No X Depth (inches) Image Patterns (D5) Ield Observations Yes No X Depth (inches) Image Patterns (D5) Ield Observations Yes No <td< td=""><td>emarks</td><td></td><td></td><td>Hydric Soil</td><td>Present? Yes_X No</td></td<>	emarks			Hydric Soil	Present? Yes_X No
Surface Water (A1) Salt Crust (B11) Sediment Deposits (82) (Riverne) High Water Table (A2) Biotic Crust (B12) Drift Deposits (B3) (River me) Saturaton (A3) Aquatic Invertebrates (B13) Dranage Patterns (810) Water Marks (B1) (Nonrivenne) Hydrogen Sulfide Odor (C1) Dry Season Water Table (C2) Sediment Deposits (B2) (Nonnvenne) Oxidized Rhizospheres along Living Roots (C3) Thm Muck Surface (07) Dnft Deposits (B3) (Nonnvenne) Presence of Reduced Iron (C4) Crayfish Bu rows (C8) Surface Soil Cracks (B6) Recent Iron Reduction m Plowed Soils (C6) Saturation Visible on Aerial Imagery (C Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Shallow Aquitard (03) Water Stained Leaves (B9) FAC Neutral Test (05) FAC Neutral Test (05) eld Observations Increasent? Yes No Depth (inches) Metand Hydrology Present? Yes No X aturation Present? Yes No Depth (inches) Wetland Hydrology Present? Yes No X aturation Present? Yes No Depth (inches) Wetland Hydrology Present? Yes No X	emarks alorthids playa soils			Hydrıc Soil	Present? Yes_X No
High Water Table (A2) Biotic Crust (B12) Drift Deposits (B3) (Riv er me) Saturation (A3) Aquatic Invertebrates (B13) Drainage Patterns (810) Water Marks (B1) (Nonrivenne) Hydrogen Sulfide Odor (C1) Dry Season Water Table (C2) Sediment Deposits (B2) (Nonnvenne) Oxidized Rhizospheres along Living Roots (C3) Thm Muck Surface (07) Dnft Deposits (B3) (Nonnvenne) Presence of Reduced Iron (C4) Crayfish Bu rows (C8) Surface Soil Cracks (B6) Recent Iron Reduction m Plowed Soils (C6) Saturation Visible on Aerial Imagery (07) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Shallow Aquitard (03) Water Stained Leaves (B9) FAC Neutral Test (D5) eld Observations No X urface Water Present? Yes No Yes No X Depth (inches) aturation Present? Yes No X Depth (inches) Wetland Hydrology Present? Yes No Autration Present? Yes No X Depth (inches)	emarks alorthids playa soils 'DROLOGY				
High Water Table (A2) Biotic Crust (B12) Drift Deposits (B3) (Riv er me) Saturation (A3) Aquatic Invertebrates (B13) Drainage Patterns (810) Water Marks (B1) (Nonrivenne) Hydrogen Sulfide Odor (C1) Dry Season Water Table (C2) Sediment Deposits (B2) (Nonnvenne) Oxidized Rhizospheres along Living Roots (C3) Thm Muck Surface (07) Dnft Deposits (B3) (Nonnvenne) Presence of Reduced Iron (C4) Crayfish Bu rows (C8) Surface Soil Cracks (B6) Recent Iron Reduction m Plowed Soils (C6) Saturation Visible on Aerial Imagery (07) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Shallow Aquitard (03) Water Stained Leaves (B9) FAC Neutral Test (D5) eld Observations No X urface Water Present? Yes No No X Depth (inches) Wetland Hydrology Present? Yes No aturation Present? Yes No X Depth (inches) Wetland Hydrology Present? Yes No X aturation Present? Yes No X Depth (inches) Wetland Hydrology Present? Yes No X	emarks alorthids playa soils /DROLOGY etland Hydrology Indicators			Seco	ndary Indicators (2 or more reaured)
Saturation (A3)	emarks alorthids playa soils DROLOGY etland Hydrology Indicators imary Indicators (any one indicator is sufficient)			<u>Secon</u>	ndary Indicators (2 or more reauired) Vater Marks (B1) (Rive ri ne)
Water Marks (B1) (Nonrivenne) Hydrogen Sulfide Odor (C1) Dry Season Water Table (C2) Sediment Deposits (B2) (Nonrivenne) Oxidized Rhizospheres along Living Roots (C3) Thm Muck Surface (07) Dnft Deposits (B3) (Nonrivenne) Presence of Reduced Iron (C4) Crayfish Bu rows (C8) Surface Soil Cracks (B6) Recent Iron Reduction m Plowed Soils (C6) Saturation Visible on Aerial Imagery (B7) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Shallow Aquitard (03) Water Stained Leaves (B9) FAC Neutral Test (05) eld Observations No Depth (inches) inface Water Present? Yes No Depth (inches) inturation Present? Yes No Wetland Hydrology Present? Yes No inturation Present? Yes No Wetland Hydrology Present? Yes No X	emarks alorthids playa soils DROLOGY etland Hydrology Indicators imary Indicators (any one indicator is sufficient) _ Surface Water (A I) Salt Crust (B11)	2)		<u>Secon</u> V S	ndary Indicators (2 or more reauired) Vater Marks (B1) (Rive ri ne) ediment Deposits (82) (Rivenne)
Sediment Deposits (B2) (Nonnvenne) Oxidized Rhizospheres along Living Roots (C3) Thm Muck Surface (07) Dnft Deposits (B3) (Nonnvenne) Presence of Reduced Iron (C4) Crayfish Bu rows (C8) Surface Soil Cracks (B6) Recent Iron Reduction m Plowed Soils (C6) Saturation Visible on Aerial Imagery (C Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Shallow Aquitard (03) Water Stained Leaves (B9) FAC Neutral Test (D5) eld Observations No Depth (inches) inface Water Present? Yes No Depth (inches) ater Table Present? Yes No Depth (inches) Wetland Hydrology Present? Yes No ituration Present? Yes No X Depth (inches) Wetland Hydrology Present? Yes No X	emarks alorthids playa soils DROLOGY etland Hydrology Indicators imary Indicators (any one indicator is sufficient) _ Surface Water (A I) _ High Water Table (A2) _ Biotic Crust (B12)			<u>Seco</u> V S C	ndary Indicators (2 or more reaured) Vater Marks (B1) (Riverine) ediment Deposits (82) (Rivenne) Irift Deposits (B3) (River me)
Dnft Deposits (B3) (Nonnvenne) Presence of Reduced Iron (C4) Crayfish Bu rows (C8) Surface Soil Cracks (B6) Recent Iron Reduction m Plowed Soils (C6) Saturation Visible on Aerial Imagery (C1) Other (Explain in Remarks) Shallow Aquitard (03) Vater Stained Leaves (B9) Other (Explain in Remarks) FAC Neutral Test (D5) eld Observations Ves No _X_ Depth (inches) ater Table Present? Yes No _X_ Depth (inches) ater Table Present? Yes No _X_ Depth (inches) Wetland Hydrology Present? Yes No _X_ Depth (inches)	emarks alorthids playa soils DROLOGY etland Hydrology Indicators imary Indicators (any one indicator is sufficient) _ Surface Water (A1) Salt Crust (B11) _ High Water Table (A2) Biotic Crust (B12 _ Saturation (A3) Aquatic Inverteb	rates (B13)		<u>Secon</u> 	ndary Indicators (2 or more reaured) Vater Marks (B1) (Riverine) ediment Deposits (82) (Riverne) Irrift Deposits (B3) (River me) Prainage Patterns (810)
Surface Soil Cracks (B6)	emarks alorthids playa soils DROLOGY etland Hydrology Indicators imary Indicators (any one indicator is sufficient) _ Surface Water (A1) Salt Crust (B11) _ High Water Table (A2) Biotic Crust (B12 _ Saturation (A3) Aquatic Inverteb _ Water Marks (B1) (Nonrivenne) Hydrogen Sulfid	rates (B13) e Odor (C1)	Living Roo	<u>Secon</u> 	ndary Indicators (2 or more reaured) Vater Marks (B1) (Rive r ine) ediment Deposits (82) (Rivenne) Vift Deposits (B3) (Riverme) Virainage Patterns (810) Viry Season Water Table (C2)
_ Inundation Visible on Aerial Imagery (B7)Other (Explain in Remarks)Shallow Aquitard (03) Water Stained Leaves (B9)FAC Neutral Test (D5) eld Observations urface Water Present? YesNo _X_ Depth (inches) ater Table Present? YesNo _X_ Depth (inches) uturation Present? YesNo _X_ Depth (inches) uturation Present? YesNo _X_ Depth (inches) uturation Present? YesNo _X_ Depth (inches)	emarks alorthids playa soils DROLOGY etland Hydrology Indicators imary Indicators (any one indicator is sufficient) Surface Water (A I) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonrivenne) Cxidized Rhizos Sediment Deposits (B2) (Nonnvenne) Cxidized Rhizos	rates (B13) e Odor (C1) pheres along	-	<u>Secon</u> 	ndary Indicators (2 or more reaured) Vater Marks (B1) (Riverine) ediment Deposits (82) (Rivenne) Irrif Deposits (B3) (River me) Irrainage Patterns (810) Irry Season Water Table (C2) hm Muck Surface (07)
_ Water Stained Leaves (B9) FAC Neutral Test (D5) eld Observations inface Water Present? Yes No _X Depth (inches) ater Table Present? Yes No _X Depth (inches) inturation Present? Yes No _X Depth (inches) inturation Present? Yes No _X Depth (inches) inturation Present? Yes No _X Depth (inches)	emarks alorthids playa soils DROLOGY etland Hydrology Indicators imary Indicators (any one indicator is sufficient)	rates (B13) e Odor (C1) pheres along duced Iron (C4	-)	<u>Secon</u> V V C C C ts (C3)T	ndary Indicators (2 or more reaured) Vater Marks (B1) (Riverine) ediment Deposits (82) (Riverne) Irrif Deposits (B3) (River me) Drainage Patterns (810) Irry Season Water Table (C2) hm Muck Surface (07) Frayfish Bu rows (C8)
eld Observations urface Water Present? Yes No _X Depth (inches) ater Table Present? Yes No _X Depth (inches) aturation Present? Yes No _X Depth (inches) aturation Present? Yes No _X Depth (inches) aturation Present? Yes No _X Depth (inches)	emarks alorthids playa soils DROLOGY etland Hydrology Indicators imary Indicators (any one indicator is sufficient)	rates (B13) e Odor (C1) pheres along duced Iron (C4 luction m Plow	-)	<u>Secon</u> 	ndary Indicators (2 or more reaured) Vater Marks (B1) (Riverine) ediment Deposits (82) (Riverine) Inft Deposits (B3) (Riverine) Irainage Patterns (810) Iry Season Water Table (C2) hm Muck Surface (07) irayfish Bu rows (C8) aturation Visible on Aerial Imagery (C
urface Water Present? Yes No _X _ Depth (inches) ater Table Present? Yes No _X _ Depth (inches) aturation Present? Yes No _X _ Depth (inches) uturation Present? Yes No _X _ Depth (inches) ucludes capillary fnnge) Wetland Hydrology Present? Yes No _X _	emarks alorthids playa soils DROLOGY etland Hydrology Indicators imary Indicators (any one indicator is sufficient) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonrivenne) Water Marks (B1) (Nonrivenne) Sediment Deposits (B2) (Nonnvenne) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Other (Explain in	rates (B13) e Odor (C1) pheres along duced Iron (C4 luction m Plow	-)	Secon 	ndary Indicators (2 or more reaured) Vater Marks (B1) (Riverine) ediment Deposits (82) (Riverine) Irift Deposits (B3) (Riverine) Irianage Patterns (810) Iry Season Water Table (C2) hm Muck Surface (07) Frayfish Bu rows (C8) aturation Visible on Aerial Imagery (C hallow Aquitard (03)
ater Table Present? Yes No _X Depth (inches) aturation Present? Yes No _X Depth (inches) icludes capillary fnnge) Wetland Hydrology Present? Yes No _X	emarks alorthids playa soils /DROLOGY etland Hydrology Indicators imary Indicators (any one indicator is sufficient) Surface Water (A1)	rates (B13) e Odor (C1) pheres along duced Iron (C4 luction m Plow	-)	Secon 	ndary Indicators (2 or more reaured) Vater Marks (B1) (Riverine) ediment Deposits (82) (Riverine) Irift Deposits (B3) (Riverine) Irianage Patterns (810) Iry Season Water Table (C2) hm Muck Surface (07) Frayfish Bu rows (C8) aturation Visible on Aerial Imagery (C hallow Aquitard (03)
aturation Present? Yes No X Depth (inches) Wetland Hydrology Present? Yes No X	emarks alorthids playa soils //DROLOGY /etland Hydrology Indicators rimary Indicators (any one indicator is sufficient) Surface Water (A1) Salt Crust (B11) High Water Table (A2) Biotic Crust (B12) Saturation (A3) Aquatic Inverteb Water Marks (B1) (Nonrivenne) Hydrogen Sulfid Sediment Deposits (B2) (Nonnvenne) Oxidized Rhizos Drift Deposits (B3) (Nonnvenne) Presence of Rec Surface Soil Cracks (B6) Recent Iron Red Water Stained Leaves (B9) eld Observations	rates (B13) e Odor (C1) pheres along duced Iron (C4 luction m Plow n Remarks)	ed Soils (0	Secon 	ndary Indicators (2 or more reaured) Vater Marks (B1) (Riverine) ediment Deposits (82) (Riverine) Irift Deposits (B3) (Riverine) Irianage Patterns (810) Iry Season Water Table (C2) hm Muck Surface (07) Frayfish Bu rows (C8) aturation Visible on Aerial Imagery (C hallow Aquitard (03)
ncludes capillary fnnge)	emarks alorthids playa soils //DROLOGY /etland Hydrology Indicators rimary Indicators (any one indicator is sufficient)	rates (B13) e Odor (C1) pheres along duced Iron (C4 luction m Plow n Remarks)	ed Soils (0	Secon 	ndary Indicators (2 or more reaured) Vater Marks (B1) (Riverine) ediment Deposits (82) (Riverine) Irift Deposits (B3) (Riverine) Irianage Patterns (810) Iry Season Water Table (C2) hm Muck Surface (07) Frayfish Bu rows (C8) aturation Visible on Aerial Imagery (C hallow Aquitard (03)
	emarks alorthids playa soils /DROLOGY /etland Hydrology Indicators rimary Indicators (any one indicator is sufficient)	rates (B13) e Odor (C1) pheres along duced Iron (C4 luction m Plow n Remarks)	ed Soils (C	Secon V V C _C	ndary Indicators (2 or more reaured) Vater Marks (B1) (Riverine) ediment Deposits (82) (Riverine) Prainage Patterns (810) Pry Season Water Table (C2) hm Muck Surface (07) Brayfish Bu rows (C8) aturation Visible on Aerial Imagery (C hallow Aquitard (03) AC Neutral Test (D5)
	iemarks alorthids playa soils //DROLOGY //etland Hydrology Indicators rimary Indicators (any one indicator is sufficient)	rates (B13) e Odor (C1) pheres along duced Iron (C4 luction m Plow n Remarks)	ed Soils (C	Secon V V C _C	ndary Indicators (2 or more reaured) Vater Marks (B1) (Riverine) ediment Deposits (82) (Riverine) Prainage Patterns (810) Pry Season Water Table (C2) hm Muck Surface (07) Brayfish Bu rows (C8) aturation Visible on Aerial Imagery (C hallow Aquitard (03) AC Neutral Test (D5)

No wetland hydrology

}

1

J

)

)

١

۱

Profile Desc	cription (Describe	to the depth ne	eded to docur	nent the i	ndicator or	confirm	the absence	ce of indicators)
Depth	Matnx		Redo	x Feature	<u> </u>		_	
(inches)	Color (moist)		olor (moist)	<u> </u>	Type	Loc	Texture	<u>Remarks</u>
0_3	10YR 3/2	_100		·			_SaLo	Moist
3-18+	10YR 4/3	100					Sa	Moist
	<u></u>			·				
	<u> </u>		·	·				
	<u> </u>			·				
			· <u> </u>					
¹ Type C=Co	oncentration D=Dep	letion RM=Redu	uced Matrix	² Location	PL=Pore L	ining R	C=Root Cha	nnel M=Matnx
Hydric Soil 1	Indicators (Applic	able to all LRRs	s unless other	wise note	ed)		Indicator	s for Problematic Hydric Soils ³
Histosol	(AI)	-	Sandy Redo	ox (S5)			1 cm	Muck (A9) (LRR C)
	opedon (A2)	-	Stripped Ma					Muck (A10) (LRR B)
Black Hi		-	_ Loamy Muc	-				uced Verfic (F18)
· · ·	n Sulfide (A4)		Loamy Gley		(F2)			Parent Matenal (TF2)
	I Layers (A5) (LRR (ck (A9) (LRR D)	ッ -	Depleted Ma Redox Dark		F6)		<u>X</u> Other	r (Explain in Remarks)
	Below Dark Surface	 e (A11)	Depleted Da		•			
	rk Surface (A12)		Redox Depr		· •			
	lucky Mineral (S1)	_	Vernal Pool	s (F9)				s of hydrophytic vegetation and
1	leyed Matrix (S4)						wetlan	d hydrology must be present
1	ayer (if present)							
1								
Deoth (Inc	hes)						Hydric So	Il Present? Yes X No
Salorfhids pl								
HYDROLO				<u></u>				
1	irology Indicators							ondary Indicators (2 or more required)
	ators (any one indica							Water Marks (BI) (Rivenne)
,	Water (AI)		<u>X</u> Salt Crust (•				Sediment Deposits (B2) (Rivenne)
Saturatic	ter Table (A2)	-	Biotic Cms		(013)			Drat Deposits (B3) (Rivenne)
	arks (B1) (Nonriven	ne)	Aquatic Inv Hydrogen :		•			Drainage Patterns (B10) Dry Season Water Table (C2)
	t Deposits (B2) (Nor					ina Root		Thin Muck Surface (C7)
	osits (B3) (Nonriver		Presence of					Crayfish Burrows (C8)
, <u> </u>	Soil Cracks (B6)		Recent Iron			Soils (C		Saturation Visible on Aenal Imagery (C9)
1	on Visible on Aenal I		Other (Exp					Shallow Aquitard (D3)
1	ained Leaves (89)	• • • •						FAC Neutral Test (D5)
Field Observ						1		
Surface Wate	er Present? Ye	es No	X Depth (inc	hes)				
Water Table		es No				1		
Saturation Pr		es No				Wetla	nd Hydrolog	gy Present? Yes <u>X</u> No
(includes cap	illary fringe)							
Describe Rec	orded Data (stream	gauge monitoni	ng well aenal p	notos pre	vious inspec	ctions) if	available	
Remarks							·	
Soil surface o	racks and salt crust	= wetland hydro	logy					

1

)

١

(inches)	Color (moist)	%	Color (moist)	/ Type ¹	Loc ²		Remarks	
04	10YR 3/2	100				CI	Damp	
4 6	10YR 4/2	100				CI	moist	
							saturated	
<u>6 – 18+</u>	10YH 4/2	<u> </u>	101 H 0/4	<u></u>				
·								
<u></u>				·				
		~			<u> </u>			
				² Location PL=Pore	Lining R			
ydric Soft Ir	idicators (Applic	able to all L	RRs unless other	rwise noted)		Indicator	rs for Problematic Hydric Soils ³	
_ Histosol (Sandy Redo			1 cm	Muck (A9) (LRR C)	
_ Histic Epi			Stnpped Ma			2 cm Muck (A10) (LRR B)		
Black Histic (A3) Loamy Mucky Mineral (F1)						Reduced Verfic (F18)		
	Sulfide (A4)		Loamy Gley			Red Parent Matenal (TF2)		
	Layers (A5) (LRR (C)	Depleted M			Othe	r (Explain in Remarks)	
	k (A9) (LRR D)		Redox Dark					
	Below Dark Surfac	e (A11)	Depleted Da					
-	k Surface (A12)		Redox Depr			3.		
Sandy Mucky Mineral (S1)Vernal Pools (F9)						^a Indicators of hydrophytic vegetation and		
	eyed Matnx (S4)					wetlan	nd hydrology must be present	
estrictive La	iyer (if present)							
Туре			-					
Depth (inch	es)					Hydnc So	Il Present? Yes X No	
epleted belov	w dark surface							
·								
DROLOG						Seco	ondary Indicators (2 or more required)	
DROLOG etland Hydr	Ŷ	ator is sufficie	ent)				ondary Indicators (2 or more required) Water Marks (B1) (Rivenne)	
DROLOG etland Hydr mary Indica	Y ology Indicators tors (any one indica	ator is sufficie		(B11)			Water Marks (B1) (Rivenne)	
DROLOG etland Hydr mary Indica Surface W	Y ology Indicators tors (any one indica later (A1)	ator is sufficie	Salt Crust				Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne)	
DROLOG etland Hydr marv Indica Surface W High Wate	Y ology Indicators tors (any one indica tater (A1) er Table (A2)	ator is sufficie	Salt Crust	t (B12)			Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Drift Deposits (B3) (Rivenne)	
DROLOG etland Hydr mary Indica Surface W High Wate Saturation	TY ology Indicators tors (any one indica dater (A1) er Table (A2) (A3)		Salt Crust Biotic Crus Aquatic Inv	t (B12) vertebrates (B13)			Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Drift Deposits (B3) (Rivenne) Drainage Patterns (B10)	
DROLOG etland Hydr mary Indica Surface W High Wate Saturation Water Ma	Y ology Indicators tors (any one indica dater (A1) er Table (A2) (A3) rks (B1) (Nonnven	ne)	Salt Crust Biotic Crus Aquatic Inv Hydrogen S	t (B12) vertebrates (B13) Sulfide Odor (C1)			Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Drift Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2)	
DROLOG etland Hydr mary Indica Surface W High Wate Saturation Water Mai Sediment	Y ology Indicators tors (any one indica fater (A1) er Table (A2) (A3) rks (B1) (Nonnven Deposits (B2) (Nor	ne) nnvenne)	Salt Crust Biotic Crus Aquatic Inv Hydrogen s Oxidized R	t (B12) vertebrates (B13) Sulfide Odor (C1) Ihizospheres along L			Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Drift Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2) Thin Muck Surface (C7)	
DROLOG etland Hydr mary Indica Surface W High Wate Saturation Water Mai Sediment Dnft Depo	Y ology Indicators tors (any one indica dater (A1) er Table (A2) (A3) rks (B1) (Nonnven Deposits (B2) (Nor sits (B3) (Nonnver	ne) nnvenne)	Salt Crust Biotic Crus Aquatic Inv Hydrogen S Oxidized R Presence c	t (B12) vertebrates (B13) Sulfide Odor (C1) hizospheres along L of Reduced Iron (C4)	I.		Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Drift Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8)	
DROLOG etland Hydr mary Indica Surface W High Wate Saturation Water Mai Sediment Dnft Depo	TY ology Indicators tors (any one indica dater (A1) er Table (A2) (A3) rks (B1) (Nonnven Deposits (B2) (Nor sits (B3) (Nonnver oil Cracks (B6)	ne) nnvenne) nne)	Salt Crust Biotic Crus Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror	t (B12) vertebrates (B13) Sulfide Odor (C1) hizospheres along L of Reduced Iron (C4) n Reduction in Plowe	I.		Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Drift Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aenal Imagery (C	
DROLOG etland Hydr mary Indica Surface W High Wate Saturation Water Mai Sediment Dnft Depo Surface So Inundation	TY ology Indicators tors (anv one indica dater (A1) er Table (A2) (A3) rks (B1) (Nonnven Deposits (B2) (Non sits (B3) (Nonnver sits (B3) (Nonnver oil Cracks (B6) o Visible on Aenal In	ne) nnvenne) nne)	Salt Crust Biotic Crus Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror	t (B12) vertebrates (B13) Sulfide Odor (C1) hizospheres along L of Reduced Iron (C4)	I.		Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Drift Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aenal Imagery (C Shallow Aquitard (D3)	
DROLOG etland Hydr mary Indica Surface W High Wate Saturation Water Mar Sediment Dnft Depo Surface So Inundation Water Sta	Y ology Indicators tors (any one indicators (ater (A1) er Table (A2) (A3) rks (B1) (Nonnven Deposits (B2) (Non sits (B3) (Nonnver oil Cracks (B6) o Visible on Aenal In ined Leaves (B9)	ne) nnvenne) nne)	Salt Crust Biotic Crus Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror	t (B12) vertebrates (B13) Sulfide Odor (C1) hizospheres along L of Reduced Iron (C4) n Reduction in Plowe	I.		Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Drift Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aenal Imagery (C	
DROLOG etland Hydr mary Indica Surface W High Wate Saturation Water Mar Sediment Dnft Depo Surface So Inundatior Water Sta	Y ology Indicators tors (any one indicators (ater (A1) er Table (A2) (A3) rks (B1) (Nonnven Deposits (B2) (Nor sits (B3) (Nonnver oil Cracks (B6) o Visible on Aenal In ined Leaves (B9) tions	ne) nnvenne) nne) magery (B7)	Salt Crust Biotic Crus Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror Other (Exp	t (B12) vertebrates (B13) Sulfide Odor (C1) hizospheres along L of Reduced Iron (C4) n Reduction in Plowe Jain in Remarks)	ed Soils (Ci		Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Drift Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aenal Imagery (C Shallow Aquitard (D3)	
DROLOG etland Hydr mary Indica Surface W High Wate Saturation Water Mai Sediment Dnft Depo Surface So Inundation Water Sta eld Observa	Y ology Indicators tors (any one indicators (ater (A1) er Table (A2) (A3) rks (B1) (Nonnven Deposits (B2) (Nor sits (B3) (Nonnver oil Cracks (B6) o Visible on Aenal In ined Leaves (B9) tions	ne) nnvenne) nne) magery (B7)	Salt Crust Biotic Crus Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror Other (Exp	t (B12) vertebrates (B13) Sulfide Odor (C1) hizospheres along L of Reduced Iron (C4) n Reduction in Plowe	ed Soils (Ci		Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Drift Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aenal Imagery (C Shallow Aquitard (D3)	
DROLOG etland Hydr mary Indica Surface W High Wate Saturation Water Mai Sediment Dnft Depo Surface So Inundation Water Sta eld Observa	Y ology Indicators tors (anv one indica dater (A1) er Table (A2) (A3) rks (B1) (Nonnven Deposits (B2) (Non sits (B3) (Nonnver sits (B3) (Nonnver oil Cracks (B6) o Visible on Aenal Ii ined Leaves (B9) tions Present? Ye	ne) nnvenne) nne) magery (B7) es No	Salt Crust Biotic Crus Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror Other (Exp	t (B12) vertebrates (B13) Sulfide Odor (C1) hizospheres along L of Reduced Iron (C4) n Reduction in Plowe Jain in Remarks)	ed Soils (Ci		Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Drift Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aenal Imagery (C Shallow Aquitard (D3)	
DROLOG etland Hydr mary Indica Surface W High Wate Saturation Water Mai Sediment Dnft Depo Surface So Inundation Water Sta eld Observa inface Water ater Table P	Y ology Indicators tors (anv one indicators (ater (A1) er Table (A2) (A3) (A3) (ks (B1) (Nonnven Deposits (B2) (Non sits (B3) (Nonnver oil Cracks (B6) o Visible on Aenat In ined Leaves (B9) thons Present? Ye sent? Ye	ne) nnvenne) magery (B7) es No es No	Salt Crust Biotic Crus Aquatic Inv Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror Other (Exp Oxer (Exp Depth (inc	t (B12) vertebrates (B13) Sulfide Odor (C1) hizospheres along L of Reduced Iron (C4) n Reduction in Plowe lain in Remarks)	ed Soils (Ci		Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Drift Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aenal Imagery (C Shallow Aquitard (D3)	
DROLOG etland Hydr mary Indica Surface W High Wate Saturation Water Mai Sediment Dnft Depo Surface So Inundation Water Sta eld Observa urface Water ater Table P	Ty ology Indicators tors (anv one indicators) (ater (A1) er Table (A2) (A3) rks (B1) (Nonnven Deposits (B2) (Non sits (B3) (Nonnver oil Cracks (B6) o Visible on Aenat In ined Leaves (B9) tions Present? Ye sent? Ye sent? Ye ary finge)	ne) nnvenne) magery (B7) es No es No es No	 Salt Crust Biotic Crust Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror Other (Exp 	t (B12) verfebrates (B13) Sulfide Odor (C1) hizospheres along L of Reduced Iron (C4) n Reduction in Plowe lain in Remarks) ches)	ed Soils (Ci		Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Drift Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aenal Imagery (C Shallow Aquitard (D3) FAC Neutral Test (D5)	
DROLOG etland Hydr mary Indica Surface W High Wate Saturation Water Mai Sediment Dnft Depo Surface So Inundation Water Sta eld Observa urface Water ater Table P aturation Pre-	Ty ology Indicators tors (anv one indicators) (ater (A1) er Table (A2) (A3) rks (B1) (Nonnven Deposits (B2) (Non sits (B3) (Nonnver oil Cracks (B6) o Visible on Aenat In ined Leaves (B9) tions Present? Ye sent? Ye sent? Ye ary finge)	ne) nnvenne) magery (B7) es No es No es No	 Salt Crust Biotic Crust Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror Other (Exp 	t (B12) vertebrates (B13) Sulfide Odor (C1) hizospheres along L of Reduced Iron (C4) n Reduction in Plowe lain in Remarks) ches) ches)	ed Soils (Ci		Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Drift Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aenal Imagery (C Shallow Aquitard (D3) FAC Neutral Test (D5)	
DROLOG etland Hydr mary Indica Surface W High Wate Saturation Water Ma Sediment Dnft Depo Surface So Inundation Water Sta eld Observa urface Water ater Table P aturation Pre- icludes capill escribe Reco	Ty ology Indicators tors (anv one indicators) (ater (A1) er Table (A2) (A3) rks (B1) (Nonnven Deposits (B2) (Non sits (B3) (Nonnver oil Cracks (B6) o Visible on Aenat In ined Leaves (B9) tions Present? Ye sent? Ye sent? Ye ary finge)	ne) nnvenne) magery (B7) es No es No es No	 Salt Crust Biotic Crust Aquatic Inv Hydrogen S Oxidized R Presence c Recent Iror Other (Exp 	t (B12) vertebrates (B13) Sulfide Odor (C1) hizospheres along L of Reduced Iron (C4) n Reduction in Plowe lain in Remarks) ches) ches)	ed Soils (Ci		Water Marks (B1) (Rivenne) Sediment Deposits (B2) (Rivenne) Drift Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2) Thin Muck Surface (C7) Crayfish Burrows (C8) Saturation Visible on Aenal Imagery (C Shallow Aquitard (D3) FAC Neutral Test (D5)	

SOIL

۱

Sampling Point 19 9

Profile Description (Describe to the depth needed to document the indicator or confirm the absence of indicators)									
Depth <u>Matn</u> (inches) Color (moist)		Redox Color (moist)	Features %	Type'	Loc ²	Texture	Remarks		
<u>0 2 10YR 3/2</u>	100		•			<u> Lo </u>	damp		
						<u> </u>	Hard pan		
		. <u></u>			·				
		<u> </u>							
		- <u>·</u> .			·	<u></u>			
¹ Type C=Concentration D=E	epletion RM=Rec	duced Matnx	Location	PL=Pore	Lining R	C=Root Char	nnel M=Matnx		
Hydric Soil Indicators (App	licable to all LRR	s unless otherv	vise noted	d)		Indicator	s for Problematic Hydric Soils ³		
Histosol (A1)			1 cm Muck (A9) (LRR C)						
Histic Epipedon (A2)		Stnpped Mat				2 cm Muck (A10) (LRR B)			
Black Histic (A3)		Loamy Muck	-			Reduced Vertic (F18)			
Hydrogen Sulfide (A4)		Loamy Gleye		F2)			Parent Matenal (TF2)		
Stratified Layers (A5) (LR	нG) .	Depleted Ma Redox Dark \$		6)		Other	r (Explain in Remarks)		
1 cm Muck (A9) (LRR D) Depleted Below Dark Sur	ace (Δ11)	Depleted Dark	•	•					
Thick Dark Surface (A12)		Redox Depre		•					
Sandy Mucky Mineral (S1)	Vernal Pools	•	,		³ Indicators	s of hydrophytic vegetation and		
Sandy Gleyed Matnx (S4)			• •			wetlan	d hydrology must be present		
Restrictive Layer (if present)						1			
Type <u>Cemented</u>		-							
Depth (inches)						Hydric Soi	I Present? Yes No _X		
Remarks									
No hydnc soil indicators									
					<u> </u>				
HYDROLOGY									
Wetland Hydrology Indicator						Seco	indary indicators (2 or more required)		
Primary Indicators (any one in	dicator is sufficient	t)				\	Water Marks (B1) (Rivenne)		
Surface Water (A1)		Salt Crust (I	311)	_		Sediment Deposits (B2) (Rivenne)			
High Water Table (A2)		Biotic Crust	(B12)			Dnft Deposits (B3) (Rivenne)			
High Water Fable (A2) Block Gross (B12) Saturation (A3) Aquatic Invertebrates (B13)							Drainage Patterns (B10)		
Water Marks (B1) (Non N	enne)		Dry Season Water Table (C2)						
Sediment Deposits (B2) (I	ionrivenne)	Oxidized Rh	uzosphere	s along L	.ving Root	ts (C3) 1	Thin Muck Surface (C7)		
Dnft Deposits (B3) (Nonn	venne)	Presence of	Reouced	Iron (C4))	(Crayfish Burrows (C8)		
Surface Soil Cracks (B6)		Recent fron	Reduction	In Plowe	ed Soils (C	26) <u> </u>	Saturation Visible on Aenal Imagery (C9)		
Inundation Visible on Aen	al Imagery (B7)	Other (Expla	ain in Rem	arks)		\$	Shallow Aquitard (D3)		
Water Stained Leaves (BS	9)					F	FAC Neutral Test (D5)		
Field Observations		·····							
Surface Water Present?	Yes No	X Depth (incl	nes)		_ }				
Water Table Present?	Yes No	· · ·	••=•		-				
Saturation Present?	Yes No					etland Hydrology Present? Yes NoX			
(includes capillary fringe)									
Describe Recorded Data (strea	am gauge monitor	ng well aerial ph	otos prev	ious insp	ections) if	f available			
Remarks									
No wetland hydrology									

SOIL

ī.

- -

Depth	Matnx		Redo	x Feature	s				
inches)	Color (moist)	%	Color (moist)	_%	Type'	_Loc ²	Texture	Remarks	
0 3	10YR 3/2	100					SaLo	Moist	
3 - 18+	10YR 4/3						_ <u>Sa</u>	Moist	
	oncentration D=De					e Lining F	RO=Root Cha	nnel M=Matnx	
lydric Soil	Indicators (Applic	cable to all LR	Rs unless othe	rwise note	ed)		Indicator	s for Problematic Hydric Soils ³	
_ Histosol			Sandy Red					Muck (A9) (LRR C)	
	pipedon (A2)		Stripped Ma	-				Muck (A10) (LRR B)	
_ Black Hi			Loamy Muc	-				iced Vertic (F18)	
	en Sulfide (A4) d Layers (AS) (LRR	C)	Loamy Gley Depleted M		(FZ)		Red Parent Matenal (TF2) X Other (Explain in Remarks)		
	uck (A9) (LRR D)	0)	Redox Dark		F6)			(Explain in Remarks)	
	d Below Dark Surfac	ce (A11)	Depleted Da		-				
-	ark Surface (A12)		Redox Dep						
	lucky Mineral (S1)		Vernal Pool				³ Indicator	s of hydrophytic vegetation and	
	Bleyed Matrix (S4)						wetlan	d hydrology must be present	
estrictive L	Layer (If present)								
Туре							ļ		
Depth (inc	ches)		-				Hydric So	Il Present? Yes X No	
lemarks				·····			.		
Salorthids									
DROLO			·						
	drology indicators							ondary Indicators (2 or more reoured)	
	ators (any one indic	ator is sufficier			<u></u>			Water Marks (B1) (Riverme)	
	Water (AI)		Salt Crust	• •				Sediment Deposits (B2) (Rivenne)	
- •	ter Table (A2)		Biotic Crus		(5.0)			Drift Deposits (B3) (Rivenne)	
Saturation (A3) Aquatic Invertebrates (B13)							Drainage Patterns (B10)		
Water Marks (B1) (Nonnvenne) Hydrogen Sulfide Odor (C1)							Dry Season Water Table (C2)		
	t Deposits (B2) (No							Thin Muck Surface (C7)	
	osits (B3) (Nonrive	nne)	Presence of					Crayfish Burrows (C8)	
-	Soil Cracks (B6)	maar: (07)	Recent Iro			ed Solls (C		Saturation Visible on Aenal Imagery (C	
	on Visible on Aerial	inagery (B7)	Other (Exp	nain in Her	narks)			Shallow Aquitard (D3)	
	tained Leaves (B9)					<u>_</u>		FAC Neutral Test (D5)	
ield Observ		• • •							
urface Wate			X Depth (ind	•					
Vater Table I			X Depth (Inc						
Saturation Pr		'es No	X Depth (in	ches)		_ Wetla	and Hydrolog	gy Present? Yes X No	

(includes capillary fnnge) Descnbe Recorded Data (stream gauge monitoring well aenal photos previous inspections) if available

Remarks

Surface soil cracks = wetland hydrology

S	OIL
---	-----

Sampling Point _20.2___

Depth	Matnx		Redo	x Features					
(inches)	Color (moist)	%	Color (moist)			Loc ²		Ren	narks
0-4	10YB 2/2	_100					_CILo	<u>Damp</u>	
		·							
	<u> </u>	· <u> </u>						<u> </u>	
		·							
	<u></u>					<u></u>		•	- <u></u>
	oncentration D=Dep					e Lining F	RC=Root Chan		
•	Indicators (Applic	able to all			d)			for Problematic H	ydnc Solls"
Histosol			Sandy Red	• •				Auck (A9) (LRR C)	
	opedon (A2)		Stnpped M					luck (A10) (LRR B))
Black Hi			Loamy Mud	•				ed Ventic (F18)	
	n Sulfide (A4)		Loamy Gle		F2)			arent Matenal (TF2)	
	l Layers (A5) (LRR C	C)	Depleted M	• •			Other (Explain in Remarks	5)
	ick (A9) (LRR D)		Redox Darl	•	'				
Depleted	d Below Dark Surface	e (A11)	Depleted D		• •				
Thick Da	ark Surface (A12)		Redox Dep	ressions (Fi	B)		_		
	lucky Mineral (S1)		Vernal Poo	s (F9)				of hydrophytic vege	
Sandy G	leyed Matrix (S4)						wetland	hydrology must be	present
estrictive l	_ayer (if present)								
Туре	Cemented								
Depth (ind	ches)4						Hydric Soil	Present? Yes	No <u>X</u>
Remarks									

HYDROLOGY

Wetland Hydrology Indicators	Secondary Indicators (2 or more required)
Pnmary Indicators (any one indicator is sufficient)	Water Marks (B1) (Riverine)
Surface Water (A1) Salt Crust (B11)	Sediment Deposits (B2) (Riverme)
High Water Table (A2) Biotic Crust (B12)	Dnft Deposits (B3) (Rivenne)
Saturation (A3) Aquatic Invertebrates (B13)	Drainage Patterns (B10)
Water Marks (B1) (Nonnverine) Hydrogen Sulfide Odor (C1)	Dry Season Water Table (C2)
Sediment Deposits (B2) (Nonnvenne) Oxidized Rhizospheres along Livir	ng Roots (C3) Thin Muck Surface (C7)
Dnft Deposits (B3) (Nonnvenne) Presence of Reouced Iron (C4)	Crayfish Burrows (CB)
Surface Soil Cracks (B6) Recent Iron Reduction in Plowed S	Soils (C6) Saturation Visible on Aenal Imagery (C9)
Inundation Visible on Aenal Imagery (B7) Other (Explain in Remarks)	Shallow Aquitard (D3)
Water Stained Leaves (B9)	FAC Neutral Test (D5)
Field Observations	
Surface Water Present? Yes No X_ Depth (inches)	
Water Table Present? Yes No X Depth (inches)	
Saturation Present? Yes <u>No X</u> Depth (inches)	Wetland Hydrology Present? Yes No _X
(includes capillary finge)	
Describe Recorded Data (stream gauge monitoring well aenal photos previous inspect	ions) it available
Remarks	
No wetland hydrology	

-

Profile Description (Describe to the de	pth needed to document the indicator or c	confirm the absence	of indicators)		
Depth <u>Matnx</u>	Redox Features				
(inches) Color (moist) %	Color (moist) % Type' L	.oc ² <u>Texture</u>	Remarks		
<u>0 12 10YR 3/1 100</u>		OlLo	Moist		
<u>12+ 10YR 4/1 100</u>		CI	Saturated		
	·				
	·				
³ Type C=Concentration D=Depletion RM	/=Reduced Matnx ² Location PL≈Pore Li	ning RC=Root Chanr	nel M=Matnx		
Hydric Soil Indicators (Applicable to a	ILRRs unless otherwise noted)	Indicators	for Problematic Hydric Soils ³		
Histosol (A1)	Sandy Redox (S5)	1 cm M	Auck (A9) (LRR C)		
Histic Epipedon (A2)	Stnpped Matrix (S6)		2 cm Muck (A10) (LRR B)		
Black Histic (A3)	Loamy Mucky Mineral (F1)		Reduced Verlic (F1B)		
Hydrogen Sulfide (A4)	Loamy Gleyed Matnx (F2)		Red Parent Material (TF2)		
Stratified Layers (A5) (LRR C)	Depleted Matnx (F3)	Other ((Explain in Remarks)		
1 cm Muck (A9) (LRR D)	Redox Dark Surface (F6)				
X Depleted Below Dark Surface (A11)	Depleted Dark Surface (F7)				
Thick Dark Surface (A12)	Redox Depressions (F8)	31			
Sandy Mucky Mineral (S1)	Vernal Pools (F9)		of hydrophytic vegetation and hydrology must be present		
Restrictive Layer (if present)		Welland	nydrology most be present		
Туре					
Depth (inches)		Hydric Soil	Present? Yes <u>X</u> No		
Remarks					
Depleted below dark surface					
HYDROLOGY					
Wetland Hydrology Indicators		Secon	idary Indicators (2 or more required)		
Pnmary indicators (any one indicator is suf	ficient)	W	/ater Marks (B1) (Rivenne)		
Surface Water (A1)	Salt Crust (B11)	S	ediment Deposits (B2) (Riverme)		

	<u> </u>	
High Water Table (A2)	Biotic Crust (B12)	Drift Deposits (B3) (Rivenne)
X Saturation (A3)	Aquatic Invertebrates (B13)	Drainage Patterns (B10)
Water Marks (B1) (Nonnverine)	Hydrogen Sulfide Odor (C1)	Dry Season Water Table (C2)
Sediment Deposits (B2) (Nonnvenne)	Oxidized Rhizospheres along Living Roots (C3) Thin Muck Surface (C7)
Drift Deposits (B3) (Nonnvenne)	Presence of Reduced Iron (C4)	Crayfish Burrows (CB)
Surface Soil Cracks (B6)	Recent Iron Reduction in Plowed Soils (C6)	Saturation Visible on Aenal Imagery (C9)
Inundation Visible on Aenal Imagery (B7)	Other (Explain in Remarks)	Shallow Aquitard (D3)
Water Stained Leaves (B9)		FAC Neutral Test (D5)
Field Observations		
Surface Water Present? Yes No	X Depth (inches)	
Water Table Present? Yes No _	X Depth (inches)	
Saturation Present? Yes X No_ (includes capillary fnnge)	Depth (inches)12 Wetland H	ydrology Present? Yes <u>X</u> No
Describe Recorded Data (stream gauge monito	nng well aenal photos previous inspections) if avail	lable
Remarks		
Saturated at 12		

Profile Description (Describe to the dept			or confirm	the absence	e of indicators)
Depth Matnx (inches) Color (moist) % 0 - 4 10YR 3/2 100	Color (moist)	Features	Loc ²	<u>Texture</u> CILo	Remarks
					Hard pan
¹ Type C=Concentration D=Depletion RM=1 Hydric Soil Indicators (Applicable to all L			e Lining R		nel M=Matrix s for Problematic Hydric Soils ³
Histosol (A1) Histic Epipedon (A2)	Sandy Redo: Stnpped Mat				Muck (A9) (LRR C) Muck (A10) (L RR B)
Black Histic (A3) Hydrogen Sulfide (A4) Stratified Layers (A5) (LRR C)	Loamy Muck	y Mineral (F1) ed Matnx (F2) tnx (F3)		Reduc	ced Vertic (F18) Parent Matenal (TF2) (Explain in Remarks)
1 cm Muck (A9) (LRR D) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1)	Redox Dark Depleted Dar Redox Depre Vernal Pools	rk Surface (F7) essions (F8)		³ Indicators	of hydrophytic vegetation and
Sandy Gleyed Matnx (S4) Restrictive Layer (rf present)		····			hydrology must be present
Type <u>Cemented</u> Depth (inches) <u>4</u>				Hydric Soil	Present? Yes No _X
Remarks				L,	
No indications of hydric soils					
YDROLOGY					
Wetland Hydrology Indicators					ndary Indicators (2 or more required)
<u>Pomary Indicators (any one indicator is suffici</u> Surface Water (A1)	Salt Crust (I	B11)			Vater Marks (B1) (Rivenne) Sediment Deposits (B2) (Riverme)
High Water Table (A2)					Doft Deposits (B3) (Riverme)
High Water Table (A2) Biotic Crust (B12) Saturation (A3) Aquatic Invertebrates (B13)					Drainage Patterns (B10)
Water Marks (B1) (Nonnvenne)		ulfide Odor (C1)			Dry Season Water Table (C2)
Sediment Deposits (B2) (Nonnverine)			_iving Root		hin Muck Surtace (C7)
Dnft Deposits (B3) (Nonnvenne)		Reduced Iron (C4	-		Crayfish Bu rows (C8)
Surface Soil Cracks (B6)	-	Reduction in Plow			Saturation Visible on Aenal Imagery (C
Inundation Visible on Aenal Imagery (B7)	Other (Expla	aın ın Remarks)			Ghallow Aquitard (D3)

Water Stained Leaves (B9)	FAC Neutral Test (D5)			
Field Observations					
Surface Water Present?	Yes No X Depth (inches)				
Water Table Present?	Yes No X Depth (inches)				
Saturation Present? (includes capillary finge)	Yes No X Depth (inches)	Wetland Hydrology Present? Yes NoX			
Descnbe Recorded Data (sti	ream gauge monitoning well aenal photos previous inspec	tions) if available			
Remarks					
No wetland hydrology					

Sampling Point _____22_1

	scription (Describe Matrix	to the depth		x Feature		or comm	i the absence	or indicators ;
Depth nches)	Color (moist)	%	Color (moist)	<u>x reature</u> 9		Loc ²	Texture	Remarks
	10YR 3/2	100					CiLo	Damp
0 4								
4 6	10YR 4/3	100			<u> </u>		CI	Damp
6+	10YR 6/2	_100	·	·				
<u> </u>								
	. <u> </u>				<u> </u>			
. <u> </u>		<u> </u>						
'Type C=C	Concentration D=Dep	letion RM=R	educed Matrix			Lining R	C=Root Chanr	
Hydric Soil	Indicators (Application	able to all Lf	RRs, unless other	wise note	ed)		Indicators	for Problematic Hydric Soils ³
Histoso			Sandy Redo				1 cm N	/luck (A9) (LRR C)
	Epipedon (A2)		Stnpped Ma					luck (A10) (LRR B)
	Histic (A3)		Loamy Muc					ed Vertic (F18)
	en Sulfide (A4)	••	Loamy Gley		(F2)			arent Matenal (TF2)
	ed Layers (A5) (LRR C	<i>י</i>)	Depleted Ma				<u>_x</u> Other (Explain in Remarks)
	luck (A9) (LRR D) ed Below Dark Surface	(A+1)	Redox Dark Depleted Da		-			
	ark Surface (A12)	5 (ALL)	Redox Depr		• •			
	Mucky Mineral (S1)		Vernal Pools		0)		³ indicators	of hydrophytic vegetation and
	Gleyed Matnx (S4)			,				hydrology must be present
	Layer (rf present)						J	
Туре			_					
•• -•	nches)						Hydric Soil	Present? Yes X No
Remarks							L	
Salorthids								
HYDROLC	DGY							
Wetland Hy	drology indicators						Secon	dary indicators (2 or more required)
	icators (any one indica	ator is sufficie	nt)					ater Marks (B1) (Riverme)
	e Water (AI)		Salt Crust	(B11)				ediment Deposits (B2) (Riverme)
	ater Table (A2)		Biotic Crus					rift Deposits (B3) (Rivenne)
Saturati			Aquatic Inv		; (B13)			rainage Pattems (B10)
	Marks (B1) (Nonnven	ne)	Hydrogen S					ry Season Water Table (C2)
	ent Deposits (B2) (Nor		Oxidized R			ivina Root		nn Muck Surface (C7)
	posits (B3) (Nonnver		Presence of	-	-	-	· · ·	rayfish Burrows (C8)
	Soil Cracks (B8)		Recent iror					aturation Visible on Aenal Imagery (C9)
—	ion Visible on Aenal Ir	nagery (B7)	Other (Exp					nallow Aquitard (D3)
	Stained Leaves (B9)		Outer (Exp					AC Neutral Test (D5)
Field Obser		<u></u>						
			X Dooth /m	shae)				
			<u>X</u> Depth (inc					
Water Table			<u>X</u> Depth (inc				- 4 4 1 - 4 - 4	
Saturation P	Present? Ye pillary fringe)	es No	X Depth (inc	nes)		- Wetla	nd Hydrology	Present? Yes X No
	ecorded Data (stream	gauge monit	onng well aenal p	hotos pre	vious insp	ections) if	f available	······
Descnbe Re	•		- '	•				
Descnbe Re								
Descnbe Re Remarks								

1	SOL	
1	SOIL	

ł

	iption (Describe	to the depth ne				or confirm	the absence	e of indicators)	
Depth (inches)	<u>Matnx</u> Color (moist)	<u>%</u>	Rede Color (moist)	ox Features	Type'	_Loc ²		Remarks	
0-4	10YR 3/2	100					CILo	Damp	
4+								Hard pan	
·									
		·							
· ·									
							<u> </u>		
		·				<u> </u>	- <u></u>		
·		·		<u> </u>					
		<u></u>							
	ncentration D=Dep					e Lining R		nel M=Matrix	
	dicators (Applic	able to all LHH			ea)			s for Problematic Hydric Soils ³	
Histosol (. Histos Epi	,	-	Sandy Red Stopped M					Muck (A9) (LRR C) Muck (A10) (LRR B)	
	Histic Epipedon (A2) Black Histic (A3)			Stnpped Matnx (S6) Loarny Mucky Mineral (F1)			2 cm Muck (A10) (LRR B) Reduced Vertic (F18)		
		-						arent Matenal (TF2)	
	Hydrogen Sulfide (A4) Loamy Gleyed Matnx (F Stratified Layers (A5) (LRR C) Depleted Matnx (F3)			(12)		Other (Explain in Remarks)			
	k (A9) (LRR D)	<i>-</i> // -	Redox Darl		EG)		Oner	(Explain in Hemaixs)	
	Below Dark Surface	- (Depleted D						
	k Surface (A12)	= (ATT) _	Redox Dep						
	icky Mineral (S1)	-	Netro Dep Vernal Poo		0)		³ Inducators	of hydrophytic vegetation and	
	eyed Matrix (S4)		veinairou	15 (1-9)				hydrology must be present	
	ayer (if present)							inyclology must be present	
Type _C									
Depth (inch	ies) <u>4</u>						Hydnc Soil	Present? Yes No _X	
Remarks							I		
,									
No indications	of hydnc soils								
HYDROLOG	Ϋ́			·····					
Wetland Hydr	ology Indicators						Secor	ndary Indicators (2 or more required)	
Pnmary Indica	tors (any one indica	ator is sufficient)					W	Vater Marks (B1) (Riverme)	
			Only Count	(044)			<u>^</u>		

 Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) (Nonnvenne) Sediment Deposits (B2) (Nonnvenne) Dnft Deposits (B3) (Nonnvenne) Surface Soil Cracks (B6) Inundation Visible on Aenal Imagery (B7) 	 Salt Crust (B11) Blotic Crust (B12) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Roots (C3) Presence of Reduced Iron (C4) Recent Iron Reduction in Plowed Soils (C6) Other (Explain in Remarks) 	 Sediment Deposits (B2) (Rivenne) Drift Deposits (B3) (Rivenne) Drainage Patterns (B10) Dry Season Water Table (C2) Thin Muck Surface (C7) Crayfish Bunows (CB) Saturation Visible on Aenal Imagery (C9) Shallow Aguitard (D3)
Water Stained Leaves (B9)		FAC Neutral Test (D5)
Field Observations		
	X Depth (inches)	
	X Depth (inches)	
Saturation Present? Yes No (includes capillary fnnge)	X Depth (inches) Wetland H	ydrology Present? Yes NoX
Describe Recorded Data (stream gauge monito	nng well aenal photos previous inspections) if avail	lable
Remarks		
No wetland hydrology		

S	0	IL	
---	---	----	--

Deptti	cription (Describe to Matnx	ale deptil		x Feature		or commu	ane ausenice	s or mulcators j
nches)	Color (moist)		Color (moist)			Loc ²	Texture	Remarks
0 10	10YR 3/2	100			. <u></u>		<u>OlLo</u>	<u>Damp</u>
10 - 1B+	10YR 4/2	100				_	CI	Damp
		- <u>-</u>						
					· <u> </u>			
					·		·	
			<u> </u>			- <u></u>	<u> </u>	
	<u></u>							
Type C=C	oncentration D=Deplet	ion RM=R	educed Matnx	² Location	PL=Por	e Lining R	C=Root Chan	nel M=Matnx
lydric Soil	Indicators (Applicab	le to all LF	Rs, unless othe	rwise not	ed)		Indicators	s for Problematic Hydric Soits ³
Histosol	• •		Sandy Red				1 cm l	Muck (A9) (LRR C)
	pipedon (A2)		Stripped Ma					Muck (A10) (LRR B)
	istic (A3)		Loamy Muc	-	. ,			ced Vertic (F18)
	en Sulfide (A4) d Layers (A5) (LRR C)		Loamy Gley	•	(F2)			Parent Matenal (TF2) (Explain in Remarks)
	uck (A9) (LRR D)		Redox Dart	• •	(F6)			
	d Below Dark Surface (A11)	Depleted D					
·	ark Surface (At2)	•	Redox Dep					
	/lucky Mineral (S1)		Vernal Pool	s (F9)			³ Indicators	of hydrophytic vegetation and
	Gleyed Matnx (S4)						wetland	I hydrology must be present
	Layer (if present)							
Depth (Inc	ches)						Hydnc Soil	Present? Yes X No
Remarks								
Salorthids M	lay also meet cntena fo	or depleted	matnx					
YDROLO	GY							
Vetland Hy	drotogy Indicators						Secor	ndary Indicators (2 or more required)
rimary Indic	cators (any one indicato	or is sufficie	nt)		- <u> </u>		v	Vater Marks (B1) (Rivenne)
Surface	Water (A1)		Salt Crust	(B11)			S	ediment Deposits (B2) (Rivenne)
 High Wa	ater Table (A2)		Biotic Crus	st (B12)			C	Drift Deposits (B3) (Rivenne)
Saturatio	on (A3)		Aquatic Inv	vertebrate	s (B13)		C	Drainage Patterns (B10)
Water M	larks (B1) (Nonnvenne	e)	Hydrogen	Sulfide Oc	lor (C1)		C	Dry Season Water Tabte (C2)
Sedimer	nt Deposits (B2) (Nonn	verine)	Oxidized F	Rhizosphei	res along l	.iving Root		hin Muck Surface (C7)
Drift Dep	oosits (B3) (Nonnvenn	e)	Presence	of Reduce	d Iron (C4)	c	Crayfish Burrows (CB)
X Surface	Soil Cracks (B6)		Recent Iro	n Roductu		od Soule /C	ε) <u>ς</u>	Saturation Visible on Aenal Imagery (C

____ Recent Iron Reduction in Plowed Soils (C6)

Remarks

Surface soil cracks = wetland hydrology

X Surtace Soil Cracks (B6)

___ Water Stained Leaves (B9)

Field Observations

Surface Wafer Present?

Water Table Present?

Saturation Present? (includes capillary fnnge)

___ Inundation Visible on Aenal Imagery (B7) ___ Other (Explain in Remarks)

Yes _____ No X__ Depth (inches)

Yes _____ No _X __ Deoth (inches) _____

Describe Recorded Data (stream gauge monitoring well aenal photos previous inspections) if available

Yes ____ No X Depth (inches) _____

____ Saturation Visible on Aenal Imagery (C9)

___ Shallow Aquitard (D3)

Wetland Hydrology Present? Yes X No

___ FAC Neutral Test (D5)

SOIL

3

Sampling Point ____24_1_

Depth	Matrix		Redox Features			
hches)	Color (moist)	%	Color (moist) % Type ¹	Loc ²	<u>Texture</u>	Remarks
0 4	10YR 3/2	_100			CILo	Damp
4 6	10YR 4/3	100			<u>CI</u>	Damp
6+	10YR 6/2	100			CI	
					·	······································
					· <u> </u>	
					·	
¹ Type C=Co	procentration D=Dep	letion RM=Red	duced Matnx ² Location PL=Pore	Lining RC	=Root Chanr	nel M=Matrix
Hydric Soil I	ndicators (Applic	able to all LRF	is, unless otherwise noted)			for Problematic Hydric Soils ³
Histosol	(AI)		Sandy Redox (S5)		1 cm N	/luck (A9) (LRR C)
	apedon (A2)		Stnpped Matrix (S6)			fuck (A10) (LRR B)
Black His			Loamy Mucky Mineral (F1)			ed Vertic (F18)
	n Sulfide (A4)		Loamy Gleyed Matnx (F2)			arent Material (TF2)
	Layers (AS) (LRR) ck (A9) (LRR D)		Depleted Matnx (F3) Redox Dark Surface (F6)		Other (Explain in Remarks)
	Below Dark Surfac		Depleted Dark Surface (F7)			
	rk Surface (A12)	. ,	Redox Depressions (F8)			
	ucky Mineral (S1)		Vernal Pools (F9)			of hydrophytic vegetation and
	leyed Matrix (S4)				wetland	hydrology must be present
Restrictive L	ayer (if present)			(
				1		
Depth (inc	hes)		<u> </u>	1	Hydric Soil	Present? Yes X No
Salorthids	GY					
Wetland Hyd	Irology Indicators	. <u></u>			Secon	dary Indicators (2 or more required)
-	ators (any one indic	ator is sufficien	t)			ater Marks (B1) (Riverme)
	Water (A1)		X Salt Crust (B11)			ediment Deposits (B2) (RiverIne)
	ter Table (A2)		Biotic Crust (B12)			nft Deposits (B3) (Rivenne)
Saturatio	n (A3)		Aquatic Invertebrates (B13)			rainage Patterns (B10)
Water Ma	arks (B1) (Nonnver	ine)	Hydrogen Sulfide Odor (C1)		Di	ry Season Water Table (C2)
Sediment	t Deposits (B2) (No	nrivenne)	Oxidized Rhizospheres along Liv	ing Roots	(C3) Tł	nin Muck Surface (C7)
Dnfl Dep	osits (B3) (Nonnve	rine)	Presence of Reduced Iron (C4)		C	rayfish Burrows (C8)
X Surface S	Soil Cracks (B6)		Recent Iron Reduction in Plowed	d Soils (C6) Sa	aturation VIsible on Aerial Imagery (C9
	n Visible on Aenal I	magery (B7)	Other (Explain in Remarks)			nallow Aquitard (D3)
	ained Leaves (B9)	·			F/	AC Neutral Test (D5)
Field Observ						
Surface Wate			X Deoth (inches)	1		
Water Table F			X Depth (inches)	1		
Saturation Pre		es No _	X Depth (inches)	Wetlan	d Hydrolo <mark>g</mark> y	Present? Yes X No
(includes capi Describe Rec		gauge monitor	nng well aenal photos previous inspe	ctions) if a	available	·····
		0 - 0 0 0	C Protect Protects work			
Remarks		·				
•						
.	rooke and calt crust	wetlend bude				
Surface soil ci	Tacks and sall crush	= wettand nyur	ology			

60	
- 30	' & L

1

Sampling Point _____24 2

Profile De	scription (Descri	be to the depth	needed to docur	nent the I	ndicator o	or confirm	the abs	ence of indicators)
Depth	Matro		Redo	<u>x Feature</u>	<u>s</u>			
(inches)	Color (moist)		Color (moist)		Type ¹	_Loc ² _	<u> </u>	reRemarks
0-4		100					CILo	o Damp
4+								Hard pan
		····· ································						
			<u> </u>				·····	
			·····	<u> </u>	<u> </u>	<u>_</u>		·
								· ···
						<u>-</u>		
	Concentration D=D					Lining RO	C=Root C	Channel M=Matnx.
Hydric Soi	II Indicators (App	licable to all LF	Rs unless other	wise note	ed)		Indica	ators for Problematic Hydric Soils ²
Histos	ol (A1)		Sandy Rede	ox (S5)			1	cm Muck (A9) (LRR C)
Histic I	Epipedon (A2)		Stnpped Ma	• •				cm Muck (A10) (LRR B)
· · · · ·	Histic (A3)		Loamy Muc	-				educed Ventic (F18)
	gen Sulfide (A4)		Loamy Gley		(F2)			ed Parent Matenal (TF2)
	ed Layers (A5) (LRI	7 C)	Depleted M	• •			0	ther (Explain in Remarks)
	1uck (A9) (LRR D)	<i>/ • • •</i> •	Redox Dark		-			
	ed Below Dark Surf	ace (ATT)	Depleted Da Redox Depr					
	Dark Surface (A12) Mucky Mineral (S1)		Vernal Pool		-0)		² indica	ators of hydrophytic vegetation and
	Gleyed Matnx (S4)		Ventari ool	5 (1 3)				tland hydrology must be present
	Layer (if present)							
1	Cemented							
	nches)						Hydric	Soil Present? Yes No <u>X</u>
Remarks						1		
Noundicate								
	ons of hydnc soils							
HYDROLO	DGY							
Wetland H	ydrology Indicator	s					S	Secondary Indicators (2 or more required)
Pnmary Ind	licators (any one inc	licator is sufficie	nt)					Water Marks (B1) (Riverme)
Surface	e Water (A1)		Salt Crnst	'B11)				Sediment Deposits (B2) (Rivenne)
	ater Table (A2)		Biotic Crus	•				Drift Deposits (B3) (Rivenne)
Satural			Aquatic Inv		s (B13)		-	Drainage Patterns (B10)
	Marks (B1) (Nonnv	enne)	Hydrogen				~	Dry Season Water Table (C2)
	ent Deposits (B2) (N					iving Root	ts (C3)	Thin Muck Surface (C7)
	eposits (B3) (Nonny		Presence of					Crayfish Burrows (C8)
1	e Soil Cracks (86)	,	Recent Iro					Saturation Visible on Aenal Imagery (C9)
1	tion Visible on Aena	l Imagery (B7)						Shallow Aquitard (D3)
	Stained Leaves (B9				,			FAC Neutral Test (D5)
Field Obse				····				
	ater Present?	Voc No	V Dopth (in)	boc)				
1			<u>X</u> Depth (ind					
Water Table			X Depth (inc			1		
Saturation I	Present? apillary fnnge)	Yes No	<u>X</u> Deoth (inc	:hes)		- Wetlai	nd Hydro	ology Present? Yes No <u>X</u>
	ecorded Data (strea	m gauge monite	onng well aenal g	hotos pre	vious insp	ections) if	f available	e
		3-3-		,	, , , ,	,		
Remarks				·				
- iemarks								
Nia washing t	hudeolo eu:							
No wetland	nyarology							
1								

Crayfish Burrows (C8)

___ Dry Season Water Table (C2)

____ Saturation Visible on A e nai Imagery (C9)

25 1

Depth	Matrix	<u>-</u>	Redox	Features				
(inches)	Color (moist)	%	Color (moist)		_Loc ²	<u>Texture</u>	Remarks	
0_4	10YR 3/2				<u> </u>	CILo	Damp	
4_6	10YR 4/3	_100				<u>CI</u>	Damp	
6 +	10YR 6/2							
	oncentration D=Dep		-Reduced Matrix ² L LRRs unless otherw	Location PL=Por	e Lining R		nel M=Matrix for Problematic Hydric Soils ³	
Histosol			Sandy Redox				Auck (A9) (LRR C)	
_	· ·		Stnpped Matri			2 cm Muck (A10) (LRR B)		
 Histic Epipedon (A2) Black Histic (A3) 			Loamy Mucky Mineral (F1)			Reduced Vertic (F18)		
Hydrogen Sulfide (A4)			Loamy Gleyed Matnx (F2)			Red Parent Matenal (TF2)		
Stratified Layers (A5) (LRR C)		Depleted Matrix (F3)			X Other (Explain in Remarks)			
	uck (A9) (LRR D)		Redox Dark S					
	d Below Dark Surfac	e (A11)	Depleted Dark					
	ark Surface (A12)	. ,	Redox Depres					
	Aucky Mineral (S1)		Vernal Pools (• •		³ Indicators	of hydrophytic vegetation and	
	Gleyed Matnx (S4)			,			hydrology must be present	
	Layer (if present)					I	· · · · · · · · · · · · · · · · · · ·	
	· · · · ·							
· · ·	ches)					Hydnc Soil	Present? Yes X_ No	
lemarks						I		
Salorthids								
YDROLO	GY					·······		
Vetland Hy	drology Indicators			<u> </u>		Secon	dary Indicators (2 or more required)	
nmary India	cators (any one indic	ator is suffi	cient)	<u> </u>		w	ater Marks (B1) (River me)	
Surface	Water (A1)		X Salt Crust (B	11)			ediment Deposits (82) (Rivenne)	
	ater Table (A2)		Biotic Crust (-			ntt Deposits (B3) (Riverme)	
	on (A3)			tebrates (B13)			rainage Patterns (B1O)	

Saturation	(A3)
------------	------

Dnft Deposits (B3) (Nonnvenne)
X Surface Soil Cracks (B6)
Inundation Visible on Aenal Imagery (B7)
Water Stained Leaves (B9)
Field Observations

Sediment Deposits (B2) (Nonnvenne)

Water Marks (B1) (Nonnvenne)

Inundation Visible on A	enal Imagery (B7)	Other (Explain in Remarks)	Shallow Aquitard (D3)
Water Stained Leaves	(B9)		FAC Neutral Test (D5)
Field Observations			
Surface Water Present?	Yes No _>	C Depth (inches)	_
Water Table Present?	Yes No>	K Depth (inches)	
Saturation Present? (includes capillary finige)	Yes No _>	<u>K</u> Deoth (inches)	Wetland Hydrology Present? Yes <u>X</u> No.
Describe Recorded Data (st	ream gauge monitonr	ng well aenal photos previous ins	pections) if available
De la			

_ Recent Iron Reduction in Plowed Soils (C6)

____ Oxidized Rhizospheres along Living Roots (C3) ____ Thin Muck Surface (07)

____ Hydrogen Sulfide Odor (C1)

____ Presence of Reduced Iron (C4)

Remarks

1

Surface soil cracks and salt crust = wetland hydrology

SOIL	S	0	IL
------	---	---	----

Depth (inchos)	<u>Matnx</u> Color (moist)		<u>Redox Features</u> Color (moist) <u>%</u> Type ¹		Texture	Remarks
(inches)						
04	10YR 3/2	_100			<u> </u>	Damp
4 6	<u>10YR 4/3</u>	100			<u></u>	Damp
6+	10YR_6/2	_100	······································			······
	oncentration D=Depl		Reduced Matrix ² Location PL=Pore RRs unless otherwise noted)	Lining R		nel M=Matrix s for Problematic Hyd ric Soils ³
Histosol			Sandy Redox (S5)			Muck (A9) (LRR C)
	apedon (A2)		Stripped Matrix (S6)			Muck (A10) (LRR B)
Black His			Loamy Mucky Mineral (F1)			ced Verfic (F1B)
	n Sulfide (A4)		Loamy Gleyed Matrix (F2)			arent Matenal (TF2)
	Layers (A5) (LRR C)	Depleted Matnx (F3)			(Explain in Remarks)
	ck (A9) (LRR D)	•	Redox Dark Surface (F6)			
	Below Dark Surtace	(A11)	Depleted Dark Surface (F7)			
	rk Surface (A12)		Redox Depressions (F8)			
	lucky Mineral (S1)		Vernal Pools (F9)		³ Indicators	of hydrophytic vegetation and
	leyed Matrix (S4)				wetiand	hydrology must be present
lestrictive L	ayer (if present)					
Туре						
	ches)				Hydric Soil	Present? Yes X No
lemarks						
alorthids						
YDROLOG	GY					
Vetland Hyd	rology Indicators				Secor	ndary Indicators (2 or more reaured)
nmary Indica	ators (any one indica	tor is suffic	ent)		W	Vater Marks (B1) (Riverine)
_ Surface V	Water (A1)		X Salt Crust (B11)		S	Sediment Deposits (B2) (Riverine)
_ High Wat	ter Table (A2)		Biotic Crust (B12)		D	Onft Deposits (B3) (Riverine)
Saturatio	· · ·		Aquatic Invertebrates (B13)		D	Drainage Patterns (B1C)
	arks (B1) (Nonrivenr	\	Hydrogen Sulfide Odor (C1)			Dry Season Water Table (C2)

____ Oxidized Rhizospheres along Living Roots (C3)

____ Recent Iron Reduction in Plowed Soils (C6)

Presence of Reduced Iron (C4)

____ Other (Explain in Remarks)

____ Thin Muck Surface (C7)

____ Crayfish Burrows (C8)

____ Shallow Aquitard (D3)

____ FAC Neutral Test (D5)

Wetland Hydrology Present? Yes X No

____ Saturation Visible on A e nal Imagery (C9)

(includes capillary fnnge) Describe Recorded Data (stream gauge monitoring well aerial photos previous inspections) if available

Yes _____ No X Depth (inches) ____

Yes _____ No X __ Depth (inches) _____

Yes _____ No X ___ Depth (inches) ______

Remarks

1

Surface soil cracks and salt crust = wetland hydrology

____ Sediment Deposits (B2) (Nonriverine)

___ Inundation Visible on Aenal Imagery (B7)

_ Drift Deposits (B3) (Nonrivenne)

X Surtace Soil Cracks (B6)

Field Observations

Surface Water Present?

Water Table Present?

Saturation Present?

____ Water Stained Leaves (B9)

EXHIBIT F

Letter From:

State of Utah Department of Natural Resources Division of Wildlife Resources

October 16, 2008

Species of Concern Near Proposed Landfill Site in Weber County, Utah

State of Utah

DEPARTMENT OF NATURAL RESOURCES

MICHAEL R. STYLER Execute e Di ecto

JON M HUNTSMAN JIL Go e no GARY R. HERBERT Le ienoi i Go e i oi

Division of Wildlife Resources JAMES F KARPOWITZ

D is or Directo

October 16 2008

Gordon Jones Hansen Allen & Luce Inc 6771 South 900 East Midvale Utah 84047

Subject Species of Concern Near Proposed Landfill Site in Weber County Utah

Dear Gordon Jones

I am writing in response to your email dated October 16 2008 regarding information on species of special concern proximal to the proposed waste landfill site to be located in Section 19 of Township 6 North Range 3 West SLB&M in Weber County Utah

The Utah Division of Wildlife Resources (UDWR) does not have records of occurrence for any threatened endangered or sensitive species within the project area noted above or within a 1 mile radius

The information provided in this letter is based on data existing in the Utah Division of Wildlife Resources central database at the time of the request. It should not be regarded as a final statement on the occurrence of any species on or near the designated site nor should it be considered a substitute for on the ground biological surveys. Moreover because the Utah Division of Wildlife Resources central database is continually updated and because data requests are evaluated for the specific type of proposed action any given response is only appropriate for its respective request.

In addition to the information you requested other significant wildlife values might also be present on the designated site. Please contact UDWR s habitat manager for the northern region. Scott Walker at (801) 476 2776 if you have any questions.

Please contact our office at (801) 538 4759 if you require further assistance

Sincerely

Sarah Lindsey Information Manager Utah Natural Heritage Program

cc Scott Walker NRO

EXHIBIT G

Operational and Reporting Forms

WEBER COUNTY C&D LANDFILL INSPECTION FORM

	Compliant		ant	
Inspection Area	Yes	No	NA	Comments or Corrective Action
General				
Litter Control				
Dust Control				
Equipment Maintenance (per manufacturer)				
	<u> </u>			
Quarterly		·		
Storm Drainage Ditches Pipes and Ponds				
Storm Drainage Inlet / Outlet Structures				
Oil / Water Separatars In Place	VR			
Equipment Staging Areas Clean	1946. 1. 1.	50.44 G	8. A. M	the second and the second
Operations Alea Clean	ACC.			
Wash / Maintenance Aleas				
	in the second	<u>C ()</u>		
Semi Annual			La bank	5 6 ' 19789'
Perimeter Security Fences				
Access Road and Gate				
Debris Fences				
Fuel Storage Tanks				
Annual				
Final Closure Cover				
Erosion Control Vegetation / Covers				
Post Closure				

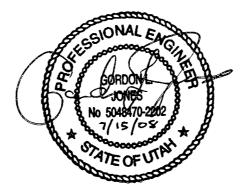
CLASS IVb C&D LANDFILL

MOULDING & SONS LANDFILL, LLC

WASTE DELIVERY RECORD

Date	Customer Nome/ Sıgnature	Job Name/No	License or Truck No	Load Type	Load Size
		an 13、4 1907年 2022 54、4、1472年、251715、石 2029年 12 1945年 1827 -			
	•				
		AND REPORTING			
	REGULATOR				

EXHIBIT H


STORM WATER POLLUTION PREVENTION PLAN

STORM WATER DISCHARGE PERMIT

STORM WATER POLLUTION PREVENTION PLAN FOR CONSTRUCTION ACTIVITIES

FOR

MOULDING & SONS OFFICE SITE OGDEN, UTAH

Project Engineer

Prepared by

Hansen Allen & Luce Inc 6771 South 900 East Midvale Utah 84047 801-566-5599

July 2008

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted Based on my inquiry of the person or persons who mañagē thē system, or those persons directly responsible for gathering the information, the information is, to the best of my knowledge and belief, true, accurate and complete I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment for knowing violations

> [name] [title]

SITE CONTACT INFORMATION

1	
Telephone 801-399-9994 Facsimile 801-725-2722	910 West 21 st Street Og'den, Utah 84404
24-HOUR CONTACT	
Telephone 801–399–9994 Facsimile 801–725–2722	910 West 21 st Street Ogden, Utah 84404
	Facsimule 801-725-2722 24-HOUR CONTACT Telephone 801-399-9994

Revision Schedule

This storm water pollution prevention plan (SWPPP) should be revised and updated to address changes in site conditions, new or revised government regulations, and additional on-site storm water pollution controls

All revisions to the SWPPP must be documented on the SWPPP Revision Documentation Form which should include the information shown below. The authorized facility representative who approves the SWPPP should be an individual at or near the top of the facility's management organization, such as the president, vice president, construction manager, site supervisor or environmental manager. The signature of this representative attests that the SWPPP revision information is true and accurate. Previous authors and facility representatives are not responsible for the revisions.

Number	Date	Author	Company Representative Signature
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			

SWPPP Revision Documentation Form

CONTENTS

- -

- -

LIS	LIST OF FIGURES AND DRAWINGS					
1	CON	ISTRUCTION ENVIRONMENTAL SUMMARY	1-1			
	11	Summary]-]			
2	INT	RODUCTION	2-1			
	21	Storm water Pollution Prevention Plan Requirements	2-1			
	22	Purpose	2-1			
	23	SWPPP Organization	2-1			
3	CLE	ARING LIMITS	3-1			
	31	Site Plans	3-1			
	32	Marking Clearing Limits	3 1			
	33	Special Consideration	3-1			
	34	Selected BMPs	3-1			
4	CON	ISTRUCTION ACCESS	4 -1			
	41	Site Access	4-1			
	42	Street Cleaning	4-1			
	43	Wheel Wash	4-1			
	44	Selected BMPs	4-1			
5	STO	RM WATER RETENTION	5-1			
	51	Storm Water Retention Pond	5-1			
	52	Run-on Bypass	5-1			
6	SED	IMENT CONTROLS	6-1			
	61	Site Sediment Control System	6-1			
7	SOII	L STABILIZATION	7-1			
	71	Soil Stabilization	71			
	72	Selected BMPs	7-1			
8	SLO	PE PROTECTION	8-1			
	81	General Practices	8-1			
	82	Selected BM P s	8-1			

CONTENTS (Continued)

9		IN INLET PROTECTION	
7	9 1	Existing Storm Drains	9-1 9-1
	9 2	Newly Constructed Storm Drains	9-1
10	STO	RM WATER OUTLET PROTECTION	10-1
	10 1	Retention P ond Outlet	10-1
11	SPIL	L PREVENTION AND RESPONSE	11-1
	11 1	General Materials Handling Practices	11-1
	112	Specific Materials Handling Practices	11-2
	113	Spill R esponse	11-3
	114	Notification	11-4
12	STO	RM WATER TREATMENT	12-1
	12 1	Storm Water Collection System	12-1
	12 2	Sediment Traps	12-1
13	BMP	MAINTENANCE	13-1
14	PRO.	JECT MANAGEMENT	14-1
	14 1	Phasing of Construction	14-1
	142	Seasonal Work	14-1
	14 3	Training	14-1
	144	Pre-construction Conference	14-2
	14 5	Coordination with Utilities and other Contractors	14-2
	14 6	Subcontractor Oversight	14-2

CONTENTS (Continued)

DRAWINGS

APPENDIX A - ENGINEERING CALCULATIONS

APPENDIX B - NPDES STORM WATER PERMIT

APPENDIX C - STATE WATER QUALITY STANDARDS

APPENDIX D - STANDARDS AND SPECIFICATIONS FOR SELECTED BMPs

APPENDIX E - MATERIAL SAFETY DATA SHEETS

APPENDIX F - A SUMMARY OF ENVIRONMENTAL REGULATIONS REQUIRING IMMEDIATE TO WITHIN 24 HOUR NOTIFICATION AND CONTACT INFORMATION

Moulding & Sons

FIGURES AND DRAWINGS

Following Report

Drawings

- Sheet 1 Site Boundary with Topography
- Sheet 2 Storm Water BMP Plan Earthwork Phases
- Sheet 3 Storm Water BMP Plan Facilities Construction Phase

1 CONSTRUCTION ENVIRONMENTAL SUMMARY

11 Summary

Beginning in the Summer of 2008, Moulding & Sons, lnc is starting a construction project located at approximately 900 South and 11500 West in Weber County, Utah The project will consist of an access road and office site (10' x 60' trailer), with asphalt and graveled areas

The improvements planned for this site will disturb a relatively small area (2 acres) versus the total size of the parcel (114 acres) The site slopes down from 900 South at about 12% for 450 feet to the south in the area of the construction project Following this initial decline, the property is relatively fiat with less than a 0 5% grade the roughly 1,500 feet to the southem edge of the property Currently there is one 24-inch culvert at the south end of the property that directs runoff under the railroad and into neighboring property that eventually drains to the Great Salt Lake There are no defined drainage ditches or streams, either ephemeral or perennial, that would receive any waters from the parcel There are wetlands located to the south of the project site, both on the parcel owned by Mouldmg & Sons, lnc and on property to the south of the railroad, that eventually drain to the Great Salt Lake These wetlands are dry during most of the year

This *Storm Water Pollution Prevention Plan* (SWPPP) details anticipated protective environmental measures, that will be employed during construction of the project Modifications to the measures detailed herein will be implemented should needed modifications become apparent during construction or site evaluations

111 Project Description

The project will be located on about 3 acres, with a 600 square feet trailer, about 53,000 square feet of asphalted area (will probably be gravel for awhile before it is paved), and the rest of the area graveled, landscaped or re-vegetated Fill quantities are not yet estimated, but it is expected that the cut and fill requirements will balance

112 Existing Site Conditions

The existing site is located on a 12% slope with a gravelly loam soil Currently, there are no buildings or equipment stored on the property This parcel has primarily been used for grazing by cattle

1 1 3 Adjacent Areas

A small portion of South Mountain to the north of the project site could potentially discharge stormwater onto the project site through an existing culvert, unless protective measures are taken Therefore, the site will be graded such that storm water cannot enter from off site

114 Critical Areas

There are some wetlands located to the south of the project site within the parcel owned by Moulding & Sons, Inc There are other wetlands associated with the Great Salt Lake that are located to the south of the railroad

115 Soils

Information from the Natural Resources Conservation Service (NRCS) indicate that the area of the project site consists of a gravelly loam topsoil The remainder of the parcel that the project site would be tributary to contains soils classified as Lakeshore. The Lakeshore series consists of very deep, poorly drained soils that formed in lacustrine deposits derived from mixed rocks. Lakeshore soils are on lake plains and lake terraces with slopes of 0 to 1 percent. The NRCS describes the areas with this type of soil as being prone to ponding because of the flatness and soil saturation during the spring.

116 Construction Phasing

1 1 6 1 Clearing and Grubbing - The first construction phase will consist of clearing the site of soils that are unsuitable for construction and grubbing the site of any remaining roots, stumps, and other undesireable materials

1162 Excavating and Grading – The second construction phase will consist of excavating and exporting excess material and importing structural material

1 1 6 3 Facilities Construction – The third construction phase will consist of constructing and installing the planned facilities on the site

117 Construction Schedule

Because the construction schedule is not firm at this time, the starting and ending dates of the construction phases are not provided The following periods are best estimates of the durations of each construction phase

- 1 1 7 1 Clearing and Grubbing One Week
- 1172 Grading One Month
- 1 1 7 3 Facilities Construction 3 Weeks

118 Financial/Ownership Responsibilities

Moulding & Sons, lnc is the owner of the site with financial responsibility for liablility associated with erosion and sedimentation impacts

119 Engineering Calculations

Design calculations for the sizing of storm water management facilities are provided in Appendix A

21 Storm water Pollution Prevention Plan Requirements

This SWPPP was developed consistent with the requirements of the Utah Pollutant Discharge Elimination System (UPDES) General Storm water Pennit for Construction Activities (see Appendix B for a copy of the general permit) The primary consideration determining the adequacy of this SWPPP is compliance with State Surface Water Quality Standards [Utah Administrative Code R317-2-14 (water classifications 2B and 3D) – see Appendix C)

This SWPPP, properly implemented, should result in discharge of water from the construction site without significantly degrading the quality of the receiving waters

2 2 Purpose

The purpose of this SWPPP is to

- Describe best management practices (BMPs) to minimize erosion and sediment runoff at the site
- Identify, reduce, eliminate, or prevent the pollution of storm water
- Prevent violations of surface water quality or groundwater quality standards

2 3 SWPPP Organization

This SWPPP consists of a detailed narrative section and the appendices, which contain illustrations, maps, and drawings The narrative section includes descriptions of potential pollution problems associated with site features, and then discusses the selection of specific pollution prevention BMPs to reduce or eliminate the threat of causing pollution during the actual construction project The illustrations, maps, and drawings in the appendices show the site location, topography, sensitive environmental receptors, placement of BMPs, and BMP specifications, and performance expectations The narrative section of this SWPPP is organized in numbered sections around the 12 required elements of an SWPPP listed below

- 1 Mark project clearing limits
- 2 Establishing the construction entrance(s)
- 3 Storm water detention
- 4 Selection and installation of sediment controls
- 5 Soil stabilization
- 6 Slope protection
- 7 Drain inlet protection
- 8 Storm water outlet protection
- 9 Chemical spill prevention and response
- 10 Site Storm water Treatment
- 11 BMP maintenance
- 12 Project management

In the narrative section, each of the above elements will be discussed in relation to the specific conditions at the development BMPs for each element will be screened, resulting in selection of those BMPs deemed most appropriate for use

Specifications and drawings (as-needed) of the selected BMPs are referenced at the end of each section and can be found in Appendix D

3 CLEARING LIMITS

3 1 Site Plans

The Storm Water BMP Plan for the Earthwork Phases drawing shows any surface water in the area and placement of anticipated BMPs needed to comply with the intent of this SWPPP

3 2 Marking Clearing Limits

Prior to beginning earth-disturbing activities, including clearing and grading all clearing limits easements, setbacks, sensitive areas and their buffers, trees and drainage courses will be clearly marked to prevent environmental damage both on and off site

3 3 Special Consideration

There are no areas of special consideration related to this project site

3 4 Selected BMPs

- BMP C101 Preserving Natural Vegetation
- BMP C102 Buffer Zones

4 CONSTRUCTION ACCESS

4 1 Site Access

The construction access is located off 900 South north of the project site

4 2 Street Cleaning

Sediment that is accidentally transported onto 900 South from the construction site will be removed from the street surface when necessary Sediment will be shoveled and/or swept from the street and disposed of in a manner, which prevents contamination with storm water or surface water (e g, covered soil stockpile) In addition, a street sweeper may be used to maintain clean roads on an as-needed basis

4 3 Wheel Wash

Based on site conditions and time of year, a temporary truck wheel wash station may be constructed to ensure control of sediment at the construction exit point. The wheel wash system (if needed) will be constructed on the site at a location just prior to where trucks leave the site access and enter the street. The system will consist of an asphalt-lined wash pond for immersing the truck tires as the truck drives through and a small settling pond for settling suspended sediment in wash water cycled out of the system. Wash water may be reused after settling, infiltrated onsite, or transported off site for disposal Accumulated sediments will be collected periodically, stockpiled for dewatering, then reused onsite

4 4 Selected BMPs

- BMP C105 Stabilized Construction Entrance
- BMP C106 Wheel Wash

5 STORM WATER RETENTION

51 Storm Water Retention Pond

Due to the topography of the site and the relatively small proposed area of disturbance, no storin water retention is required for this site. The small amount of runoff produced from a 10 year - 24 hour storm event from the disturbed 3 acre building site will be discharged onto flat, grassy terrain that will settle any resulting sediments. The amount of runoff from a 10 year - 24 hour storm event was calculated to be about 2,000 cubic feet.

5 2 Run-on Bypass

Clean storm water run-on will not be allowed to run onto the area of disturbance from the up-gradient, undisturbed portion of the site

6 SEDIMENT CONTROLS

6 1 Site Sediment Control System

The generally flat topography of the project parcel and long runoff distance over undisturbed terrain will control sediment transport by allowing sediments to settle prior to reaching the discharge point at the culvert or the wetlands

7 SOIL STABILIZATION

This section describes some of the stabilization and structural BMPs that will be implemented to mimmize erosion and transport of sediment should they become a problem

7 1 Soil Stabilization

The following soil stabilization BMPs will be implemented at this site according to Part 111D 2(a)(2) of the General Pennit

- **Soil Covering** Disturbed soils can be stabilized by covering them with transparent plastic sheeting Plastic sheeting can also be used as an emergency BMP to cover previously stabilized areas, which begin to erode Loose straw and mulch covers may also be used
- **Bonded Fiber Matrix Soil Treatment** Disturbed soils can be stabilized by applying a slurry of fibers and bonding ingredients that cure to create a breathable, built-in-place, protective crust blanket. This blanket is designed to prevent both water and wind erosion. The slurry materials are totally biodegradable and harmless to fish, birds, plants, and animals

The standards and specifications of the proprietary product shown in Appendix D are for example only Any product that is totally biodegradable and harmless to fish, birds, plants, and animals can be used that accomplishes the goal of soil stabilization

• **Maintenance of Existing Vegetation** Existing and new vegetation will be maintained to the maximum extent practicable to prevent the contamination of storm water with sediment

7 2 Selected BMPs

- BMP C123 Plastic Covering
- Bonded Fiber Matrix Soil Treatment
- BMP C101 Preserving Natural Vegetation

8 SLOPE PROTECTION

8 1 General Practices

Cut and fill slopes on this project have been designed and will be constructed so as to minimize erosion. Soil types have been analyzed and considered for their potential to erode also. In addition, slope runoff velocities will be reduced by terracing, creating diversions, and surface contouring.

Any upslope drainage and uncontaminated run-on water from off-site will be intercepted at the top of the slope and diverted around the active construction area Down slope flows will be allowed to dissipate over the flat grassy runout before reaching the wetlands or culvert outlet

8 2 Selected BMPs

- BMP C130 Surface Roughening
- BMP C131 Gradient Terraces

9 DRAIN INLET PROTECTION

91 Existing Storm Drains

There are no existing storm drain inlets on this site

9 2 Newly Constructed Storm Drains

There are no proposed storm drain inlets on this site

10 STORM WATER OUTLET PROTECTION

101 Retention Pond Outlet

A retention pond is not required on this site, therefore outlet protection is unnecessary

11 SPILL PREVENTION AND RESPONSE

Consistent with the general permit requirements, all potential pollutants other than sediment will be handled and disposed of in a manner that does not cause contamination of storm water Non-sediment pollutants that may be present during construction activities include

- Petroleum products including fuel, lubricants, hydraulic fluids, and form oils
- Polymer used for soil stabilization
- Water treatment chemicals (coagulant, acid, sodium bicarbonate)
- Concrete
- Paints
- Fertilizers

These materials, and other materials used during construction with the potential to impact storm water, will be stored, managed used, and disposed of in a manner that minimizes the potential for releases to the environment and especially into storm water

Emergency contacts for the project will be posted at the project office and are included in Appendix F

11 1 General Materials Handling Practices

The following general practices will be used throughout the project to reduce the potential for spills

- Potential pollutants will be stored and used in a manner consistent with the manufacturer's instructions in a secure location. To the extent practicable, material storage areas should not be located near storm dram inlets and should be equipped with covers, roofs, or secondary containment as needed to prevent storm water from contacting stored materials. Chemicals that are not compatible (such as sodium bicarbonate and hydrochloric acid) shall be stored in segregated areas so that spilled materials cannot combine and react.
- Materials disposal will be in accordance with the manufacturer's instructions and applicable local, state, and federal regulations

- Materials no longer required for construction will be removed from the site as soon as practicable
- Adequate garbage, construction waste, and sanitary waste handling and disposal facilities will be provided to the extent necessary to keep the site clear of obstruction and BMPs clear and functional

11 2 Specific Materials Handling Practices

- All pollutants, including waste materials and demolition debris, that occur onsite during construction will be handled in a way that does not contaminate storm water
- All chemicals including liquid products, petroleum products, water treatment chemicals, and wastes stored on site will be covered and contained and protected from vandalism
- Maintenance and repair of all equipment and vehicles involving oil changes, hydraulic system drain down de-greasing operations, fuel tank dram down and removal, and other activities which may result in the accidental release of contaminants, will be conducted under cover during wet weather and on an impervious surface to prevent the release of contaminants onto the ground Materials spilled during maintenance operations will be cleaned up immediately and properly disposed of
- Wheel wash water will be settled and discharged on site by infiltration Wheel wash water will not be discharged to the storm water system or the storm water treatment system
- Application of agricultural chemicals, including fertilizers and pesticides, will be conducted in a manner and at application rates that will not result in loss of chemical to storm water runoff Manufacturers' recommendations will be followed for application rates and procedures
- pH modifying sources will be managed to prevent contamination of runoff and storm water collected on site The most common sources of pH-modifying materials are bulk cement, cement kiln dust (CKD), fly ash, new concrete washing and curing waters, waste streams generated from concrete grinding and sawing, exposed aggregate processes, and concrete pumping and mixer washout waters

11 3 Spill Response

The primary objective in responding to a spill is to quickly contain the material(s) and prevent or minimize their migration into storm water runoff and conveyance systems If the release has impacted on-site storm water, it is critical to contain the released materials on site and prevent their release into receiving waters

If a spill of pollutants threatens storm water at the site, the spill response procedures outlined below must be implemented in a timely manner to prevent the release of pollutants

- The site superintendent will be notified immediately when a spill, or the threat of a spill is observed. The superintendent will assess the situation and determine the appropriate response.
- If spills represent an imminent threat of entering the receiving waters facility personnel will respond immediately to contain the release and notify the superintendent after the situation has been stabilized
- Spill kits containing materials and equipment for spill response and cleanup will be maintained at the site if necessary Each spill kit may contain
 - Oil absorbent pads (one bale)
 - Oil absorbent booms (40 feet)
 - 55-gallon drums (2)
 - 9-mil plastic bags (10)
 - Personal protective equipment including gloves and goggles
- If an oil sheen is observed on surface water (e g, settling ponds, detention pond swales), absorbent pads and/or booms will be applied to contain and remove the oil The source of the oil sheen will also be identified and removed or repaired as necessary to prevent further releases
- The site superintendent, or his designee, will be responsible for completing the spill reporting form and for reporting the spill to the appropriate state or local agency (see Forms at the end of this section)
- Facility personnel with primary responsibility for spill response and cleanup will receive training from the site superintendent. This training will include identifying the location of spill kits and other spill response equipment and the use of spill response materials

• Spill response equipment will be inspected and maintained as necessary to replace any materials used in spill response activities

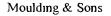
11 4 Notification

• In the event of a spill, make the appropriate notification(s) consistent with the table provided in Appendix F

Storm Water Pollution Prevention Plan for Construction Activities

Spill Report Form

	 Date	Tune	
Regulatory agencies noti		and how)	
Material spilled			
Source			
Cause			
Extent of injuries (if any)			
Adverse environmental ii	npact (ıf any)		
Immediate remedial actio	-		
	ed to prevent recurrence		
This report prepared l			
		(Signature)	


12 STORM WATER TREATMENT

12 1 Storm Water Collection System

Construction will occur in phases as much as practicable to avoid unnecessarily exposing vegetated areas of the site Clean storm water, generated from stabilized and undisturbed portions of the site, will be collected and conveyed to stabilized discharge areas whenever necessary to avoid contact with disturbed portions of the site All conveyance and collection systems will be constructed consistent with State and local BMP requirements

12 2 Sediment Traps

During construction and prior to the completion of the storm drainage system and detention basin, storm water will be conveyed onto the flat grassy terram to the south of the project site

13 BMP MAINTENANCE

All temporary and permanent erosion and sediment control BMPs will be maintained and repaired as needed to assure continued performance of their intended function All maintenance and repair will be conducted in accordance with BMPs Recommended BMP maintenance requirements are listed in Table 1 included in this section Following Table 1 is a BMP Inspection Checklist for use in routine inspections of the construction site

Any temporary erosion and sediment control BMPs needed during the project will be removed within 30 days after final site stabilization is achieved or after the temporary BMPs are no longer needed Trapped sediment will be removed or stabilized on site Disturbed soil areas resulting from removal of BMPs or vegetation will be permanently stabilized as soon as possible

Storm Water Pollution Prevention Plan for Construction Activities

Table 1

BMP Maintenance and Inspection Schedule (Source Control BMPs)

MOULDING & SONS, INC Ogden, Utah

BMP Designation	BMP Name	Recommended Maintenance	Recommended Schedule of Mamtenance
C]0]	Preserving Natural Vegetation	Inspect flagged areas to make sure flagging has not been removed If tree roots have been exposed or m jured recover and/or seal them	Daily (Documented Weekly)
C102	B uffer Zones	Inspect the area frequently to make sure flagging remains in place and the area remains undisturbed	Daily (Documented Weekly)
C105	Stabilized Construction Entrance and Tire Wash	Quarry spalls (or hog fuel) shall be added if the pad is no longer m accordance with the specifications If the rock (or hog fuel) entrance is not working to keep streets clean then install wheel wash sweep streets or wash streets if wash water can be collected	Daıly (Documented Weekly)
C106	Wheel Wash	Wheel wash water shall not be discharged into a storm dram or the site s storm water collection system Use closed loop recirculation land application or discharge to sanitary sewer (by permit)	Daily (Documented Weekly)
C123	Plastic Covermg	Replace torn sheets and repair open seams Replace deteriorated plastic sheets Dispose of plastic when no longer needed	Weekly
	B onded Fiber Matrix Soil Treatment	Reapply treatment to redisturbed soils that will be exposed for more than 3 weeks	Weekly
C130	Surface Roughening	Re roughen any areas beginning to erode	Weekly and following storms
C131	Gradient Terraces	Mamtenance should be performed as needed	Annually and following large storm events

Storm Water Pollution Prevention Plan for Construction Activities

BMP Inspection Form

Erosion Prevention

Inspector(s)			Date
Site Name and Lo	cation _		
Current Weather (Conditio	ons	Last 24 Hours
BMP Designation	ОК	Not O K.	BMP Condition, Corrective Action, General Notes
Preserving Natural Vegetation			
Buffer Zones			
Stabilized Construction Access			
Wheel Wash			
Plastic Covering			
Soil Treatment			
Surface Roughening			
Gradient Terraces			

Moulding & Sons

14 PROJECT MANAGEMENT

Implementation and management of the environmental aspects of this project under the SWPPP are the responsibilities of Moulding & Sons, Inc Communication between all parties performing work on the site is essential for proper implementation of the SWPPP All parties involved should all be familiar with the SWPPP and their responsibilities under the plan To help delegate these responsibilities the following outline has been provided

14 1 Phasing of Construction

The project has been planned at this point in three phases The first construction phase will consist of clearing the site of soils that are unsuitable for construction and grubbing the site of any remaining roots, stumps, and other undesireable materials The second construction phase will consist of excavating and exporting excess material and importing structural material The third construction phase will consist of constructing and installing the planned facilities on the site

14 2 Seasonal Work

While not seasonal, some construction activities may need to be postponed if scheduled during ongoing storm events Activities such as grading and trenching in areas directly adjacent to the drainage basin during rainstorms may result in sediment-contaminated storm water reaching the outlet This work would therefore be performed within a window of dry weather predicted on the basis of weather reports

14 3 Training

Moulding & Sons, lnc will provide on-site training to key personnel responsible for compliance with the SWPPP Construction workers and others at the site will be given appropriate training information at the conclusion of site safety meetings or on an asneeded basis

14.4 Pre-construction Conference

One or more pre-construction meetings will be held with an explicit agenda item addressing the SWPPP

14 5 Coordination with Utilities and other Contractors

All contractors providing services on the project which may cause storm water pollution will be given a copy of the SWPPP and appropriate training regarding storm water pollution prevention

14 6 Subcontractor Oversight

Subcontractor oversight to ensure compliance with the SWPPP will be provided by the prime contractor's superintendent or project manager Informal, on-the-job tailgate training will be the first level of communication followed by onsite observation of training compliance Non-compliance with SWPPP policies will trigger a more intensive training session to correct the problem(s) Chronic non-compliance with SWPPP policies may require the intervention of local and/or state regulatory personnel

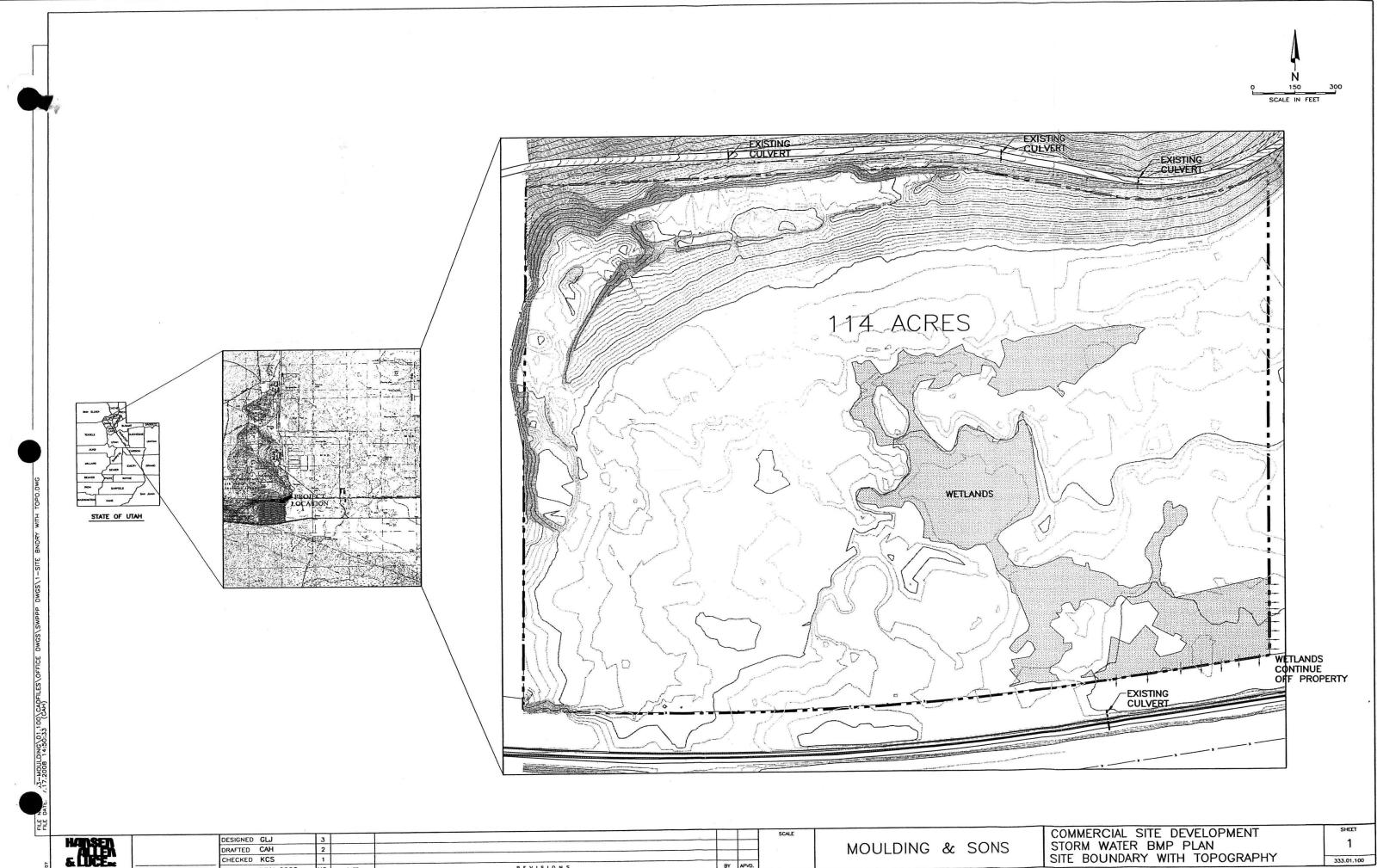
DRAWINGS

į

•• • •• •• •• ••

1

. . . .



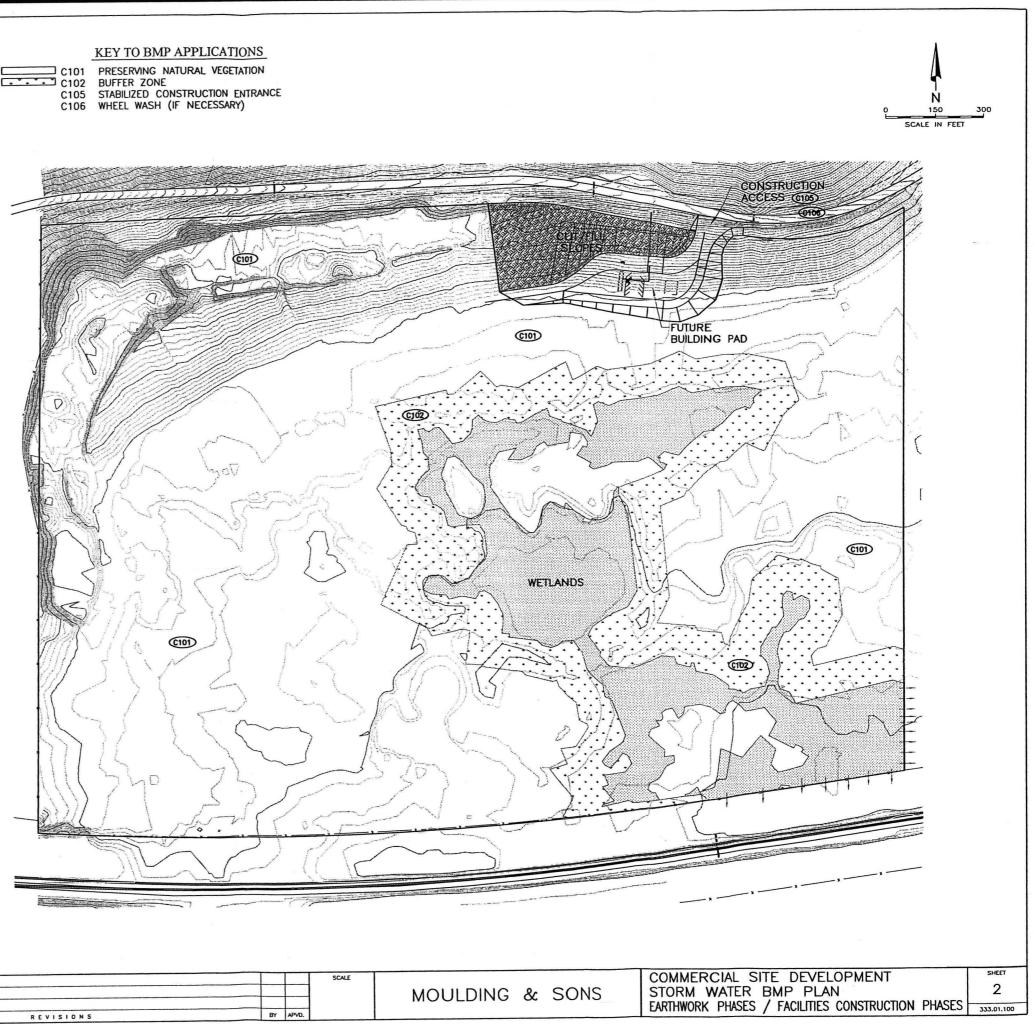
1

- - .

- ----

HANSEN		DESIGNED GLJ DRAFTED CAH	3					SCALE	MOULDING & SC
& DCE.	PROJECT ENGINEER	CHECKED KCS DATE JULY 2008	1 NO.	DATE	REVISIONS	BY	APVD.		

NOTES


ADULDING 01.100 CAD

HQ

s Di

- 1. THE IMPLEMENTATION OF THIS PLAN AND THE CONSTRUCTION, MAINTENANCE, REPLACEMENT, AND UPGRADING OF THESE FACILITIES IS THE RESPONSIBILITY OF THE APPLICANT/CONTRACTOR UNTIL ALL CONSTRUCTION IS COMPLETED AND APPROVED AND VEGETATION/LANDSCAPING IS ESTABLISHED.
- 2. THE BOUNDARIES OF THE CLEARING LIMITS SHOWN ON THIS PLAN SHALL BE CLEARLY FLAGGED IN THE FIELD PRIOR TO CONSTRUCTION. DURING THE CONSTRUCTION PERIOD, NO DISTURBANCE BEYOND THE FLAGGED CLEARING LIMITS SHALL BE PERMITTED. THE FLAGGING SHALL BE MAINTAINED BY THE APPLICANT/CONTRACTOR FOR THE DURATION OF CONSTRUCTION.
- 3. THE FACILITIES SHOWN ON THIS PLAN MUST BE CONSTRUCTED IN CONJUNCTION WITH ALL CLEARING AND GRADING ACTIVITIES, AND IN SUCH A MANNER AS TO MINIMIZE THE DISCHARGE OF SEDIMENT AND SEDIMENT-LADEN WATER FROM THE SITE
- 4. THE FACILITIES SHOWN ON THIS PLAN ARE THE MINIMUM REQUIREMENTS FOR ANTICIPATED SITE CONDITIONS. DURING THE CONSTRUCTION PERIOD, THESE FACILITIES SHALL BE UPGRADED AS NEEDED FOR UNEXPECTED STORM EVENTS AND TO MINIMIZE THE DISCHARGE OF SEDIMENT AND SEDIMENT-LADEN WATER FROM THE SITE.
- 5. THE FACILITIES SHALL BE INSPECTED ACCORDING TO THE SWPPP BY THE APPLICANT/CONTRACTOR AND MAINTAINED AS NECESSARY TO ENSURE THEIR CONTINUED FUNCTIONING.
- 6. THE FACILITIES ON INACTIVE SITES SHALL BE INSPECTED AND MAINTAINED A MINIMUM OF ONCE A WEEK OR WITHIN THE 48 HOURS FOLLOWING A MAJOR STORM EVENT.
- 7. AT NO TIME SHALL MORE THAN ONE FOOT OF SEDIMENT BE ALLOWED TO ACCUMULATE WITHIN A SEDIMENT TRAP ALL CATCH BASINS AND CONVEYANCE LINES SHALL BE CLEANED PRIOR TO PAVING. THE CLEANING OPERATION SHALL NOT FLUSH SEDIMENT LADEN WATER INTO THE DOWNSTREAM SYSTEM.
- 8. STABILIZED CONSTRUCTION ACCESS SHALL BE INSTALLED AT THE BEGINNING OF CONSTRUCTION AND MAINTAINED FOR THE DURATION OF THE PROJECT. ADDITIONAL MEASURES MAY BE REQUIRED TO ENSURE THAT ALL PAVED AREAS ARE KEPT CLEAN FOR THE DURATION OF THE PROJECT.

- C105

EN	 DESIGNED GLJ DRAFTED CAH	3			_	-	SCALE	MOULDING &	SONS
E _	 CHECKED KCS	1 NO.	DATE	REVISIONS B	۲r	APVD.		MOOLDING &	30113

APPENDIX A

ENGINEERING CALCULATIONS

_

-

ć

-

--

-

_

~

٦

- -

~

--

Chapter 2

SCS runoff curve number method

The SCS Runoff Curve Number (CN) method is de scribed in detail m NEH-4 (SCS 1985) The SCS runoff equation is

$$Q = \frac{\left(P - I_a\right)^2}{\left(P - I_a\right) + S} \qquad [eq \ 2 \ 1]$$

where

- Q = runoff(in)
- P = rainfall(in)
- S = potential maxunum retention after runoff begins (in) and
- $l_a = mitial abstraction (in)$

Initial abstraction (I_a) is all losses before runoff begins It includes water retained in surface depres sions water untercepted by vegetation, evaporation and mfiltration I_a is highly variable but generally is correlated with soil and cover parameters Through studies of many small agricultural watersheds, I_a was found to be approximated by the following empirical equation

$$I_a = 0.2S$$
 [eq 2.2]

By removing I_a as an independent parameter, this approximation allows use of a combination of S and P to produce a unique runoff amount Substituting equation 2.2 into equation 2.1 gives

$$Q = \frac{(P - 0.2S)^2}{(P + 0.8S)}$$
 [eq 2.3]

S is related to the soil and cover conditions of the watershed through the CN $\,$ CN has a range of 0 to 100 and S is related to CN by

$$S = \frac{1000}{CN} - 10$$
 [eq 2-4]

Figure 2.1 and table 2.1 solve equations 2.3 and 2-4 for a range of CN s and rainfall

Factors considered in determin ing runoff curve numbers

The major factors that determine CN are the hydro logic soil group (HSG), cover type treatment, hydro logic condition, and antecedent runoff condition (ARC) Another factor considered is whether impervious areas outlet directly to the dramage system (con nected) or whether the flow spreads over pervious areas before entering the drainage system (uncon nected) Figure 2.2 is provided to aid m selecting the appropriate figure or table for determining curve numbers

CN s m table 2 2 (a to d) represent average antecedent runoff condition for urban, cultivated agricultural, other agricultural and and and semiarid rangeland uses Table 2 2 assumes impervious areas are directly connected The following sections explain how to determine CN s and how to modify them for urban conditions

Hydrologic soil groups

Infiltration rates of soils vary widely and are affected by subsurface permeability as well as surface mtake rates Soils are classified mto four HSG s (A, B C, and D) according to their minimum infiltration rate which is obtained for bare soil after prolonged wetting Appendix A defines the four groups and provides a list of most of the soils in the Umted States and their group classification. The soils in the area of interest may be identified from a soil survey report which can be obtained from local SCS offices or soil and water conservation district offices

Most urban areas are only partially covered by imper vious surfaces the soil remains an important factor m runoff estimates Urbanization has a greater effect on runoff in watersheds with soils having high infiltration rates (sands and gravels) than m watersheds predonu nantly of silts and clays, which generally have low infiltration rates

Any disturbance of a soil profile can significantly change its infiltration characteristics. With urbaniza tion native soil profiles may be mixed or removed or fill material from other areas may be mtroduced. Therefore a method based on soil texture is given m appendix A for determining the HSG classification for disturbed soils.

POINT PRECIPITATION FREQUENCY ESTIMATES **FROM NOAA ATLAS 14**

Utah 4] 246455 N 112 232511 W 4202 feet

f om Picc pitation Frequency Allas of the United States NOAA Allas 14 Volume 1 Velsion 4 G M Bonnin D Martin B Lin T Palzybok M Vekta and D R lev NOAA National Weather Service Still e Spring Maryland 006

Exuacted Thu May 8 008

Seasonality Location Maps Other Info GIS data Maps Help Docs

US Map

Co	Confidence Limits Seasonality									aps	, 0	ther Ir	fo	GĪS	data	M	Maps	
	Precipitation Frequency Estimates (inches)																	
ARJ* (years)	ہ ساس	10 mm	ד5 מומת	30 m m	60 מומ <u>ו</u>	120 1010	<u>3 hr</u>	6 hr	12 hr	24 br	48 br	4 dav	- day	1 <u>0</u> dav	20 da v	30 dav	45 dav	60 Jav
	0 12	0 18	د2 0	1د 0	0 38	0 48	0 55	075	0 92	1 12	1 29	1 47	1 70	J 87	4د 2	2 78	s 37	J 96
2	0 15	0 23	0 29	9د 0	0 48	0 60	0 68	0 89	1 12	1 37	1 58	181	2 08	2 30	2 88	s 42 د	4] 4	4 86
5	021	0 32	0 40	055	0 66	0 78	0 86	1 09	1 36	1 66	191	2 18	2 51	2 77	4 4 د	4 07	4 90	5 74
10	026	0 40	0 50	0 67	0 83	0 95	1 02	1 27	1 57	1 90	2 18	2 49	2 86	<u>دا د</u>	3 87	4 57	5 47	6 4 1
25	0 35	0 53	0 66	0 89	1 10	125	1 29	1 54	188	2 2 3	2 54	2 90	3 33	5 62	4 4 2	5 20	6 18	رد 7
50	0 45	0 66	0 81	1 10	1 36	1 49	1 54	1 76	2 13	2 47	2 82	3 25	3 69	3 98	4 80	5 65	6 67	781
100	055	0 80	0 99	1 34	1 66	1 80	1 84	2 02	2 40	275	5 10	3 57	4 05	4 34	518	6 08	7 12	5د 8
200	0 64	0 98	121	1 65	2 02	2 17	2 20	2 32	2 69	2 98	s 39 ک	3 91	4 4 1	4 69	5 53	6 49	7 53	8 83
500	د8 0	1 26	1 56	2 10	2 60	2 76	2 78	2 90	3 16	3 33	3 77	4 37	4 88	5 13	5 95	6 99	7 99	9 39
1000	0 99	1 51	1 88	2 55	3 1 2	3 30	J 32	3 42	3 54	3 60	4 06	4 72	5 24	5 45	624	7 33	8 27	9 74

The eprecipitation	frequency	estimates are based on a partial duration series. ARI is the Average Recurrence Interva	J.
Please refer to the p	n t	for more information. NOTE: Formatting forces estimates near zero to appear as zero)

	* Upper bound of the 90% conlidence interval Precipitation Frequency Estimates (inches)																	
ARI (years)	5 10100	10 100 100	15 ատ	30 10100	60 ատ	120 ໝາກ	3 hr	6 br	12 br	24 br	48 hr	4 day	7 day	10 day	20 day	30 day	45 day	60 day
]	014	0 2 1	0 27	6د 0	0 4 4	0 54	0 62	0 80	1 00	1 25	1 43	165	1 88	2 06	2 56	3 03	3 65	4 29
2	0 18	0 27	4د 0	0 45	0 56	0 68	0 77	0 99	1 23	1 54	1 77	2 00	2 31	2 54	3 1 5	3 73	4 48	5 26
5	024	0 37	0 46	0 62	0 77	0 88	0 97	1 20	1 49	1 86	2 13	2 4 1	2 79	3 04	3 77	4 4 3	5 28	6 19
10	031	0 47	0 58	0 78	0 96	1 08	1 16	1 40	1 72	2 1.5	2 42	2 76	s 17	3 44	4 24	4 96	5 89	6 90
25	041	0 62	0 77	1 04	1 29] 4]] 47	1 71	2 07	2 49	2 83	3 22	3 69	3 98	4 83	5 65	6 64	7 78
50	0 51	0 78	0 96	1 29	1 60	1 73	1 76	1 97	2 37	2 78	3 14	3 60	4 09	4 38	5 25	6 1 4	7 1 7	8 4 1
100	د6 0	0 96	1 19	1 60	1 98	2 1 2	2 15	2 29	2 70	3 06	3 47	3 98	4 50	4 78	5 67	663	7 67	9 01
200	0 78	1 19] 47	1 98	2 46	2 61	2 61	2 67	3 07	3 36	3 80	4 38	4 92	5 17	6 06	7 10	811	955
500	1 05	1 57	1 95	2 62	3 25	3 42	3 46	3 49	3 69	3 76	4 25	4 93	5 49	5 69	6 5 5	7 67	865	10 16
1000	1 27	1 94	2 40	3 23	4 00	4 19	4 23	4 27	4 32	4 36	4 59	5 37	5 92	6 07	6 89	8 09	8 94	10 56

The upper bound of the confidence interval at 90 / confidence level is the value which 5 / of the simulated quantile values for a given frequency are greater than " These precipitation frequency estimates are based on a partial duration senes_ARI is the Average Recurience Interval

Plea e reter to the _____ to _____ for more information_NOTE_Formatting prevents estimates near zero to appear as zero

	* Lower bound of the 90% confidence interval Precipitation Frequency Estimates (inches)																	
ARJ * (years)	5 1010	10 տա	15 տա	30 111 111	60 מומו	120 mm	3 hr	6 br	12 br	24 hr	48 br	4 day	7 day	10 day	20 day	30 day	45 day	60 day
	0 11	0 16	0 20	0 27	0 33	0 42	0 50	0 67	0 84	1 00	1 17	1 32	1 54	1 70	2 14	2 55	3 1 1	3 66
2	0 14	0 2 1	026	0 34	0 42	0 53	0 62	0 82	1 03	1 24] 44	1 64	1 90	2 09	2 64	3] 4	83 د	4 50
5	0 18	0 28	5د 0	0 47	0 58	0 69	0 77	0 99	1 25	1 50	173	1 98	2 28	2 51	3 1 5	<u>s</u> 75	4 53	د3 5
10	025	0 35	د4 0	0 58	0 72	0 83	0 91	1 15	1 43	1 71	1 97	2 2 5	2 59	2 85	3 54	4 19	5 07	5 94
25	0 30	0 45	0 56	0 76	0 93	1 05	1 13	1 37	1 69	1 99	2 29	2 61	3 01	J 28	4 04	4 77	5 72	6 70
50	5د 0	0 54	0 67	0 90	111	1 24	1 31	1 55	1 89	2 20	255	2 90	3 3 1	5 59	8 4	5 16	6 17	7 22
100	0 42	0 64	0 79	1 06	1.52	1 45	155	1 74	2 10	2 42	2 77	3 18	3 62	<u> </u>	471	5 54	6 58	7 71
							\square										, j	

Davis Weber Area Utah

[Depths of layers are in feet. See text for definitions of terms used in this table. Estimates of the frequency of ponding and flooding apply to the whole year rather than to individual months. Absence of an entry indicates that the feature is not a concern or that data were not estimated. This report shows only the major soils in each map unit]

				Wate	r table		Ponding		Flo	oding
Map symbol and soil name	Hydrologic group	Surface runoff	Months	Upper limit	Lower limit	Surface water depth	Duration	Frequency	Duration	Frequenc
	·l			Ft	Ft	Ft Ft		4	· · · · · · ·	
aE										
Barton gravelly loam	В	Medium	Jan Dec					None		None
Barton stony loam	В	Medium	Jan Dec					None		None
Rock outcrop			Jan Dec					None		None
rG										
Barton	В	High	Jan Dec					None		None
Barton	В	High	Jan Dec					None		None
Rock outcrop			Jan Dec					None		None
P										
Gravel pits			Jan Dec					None		None
а										
Lakeshore	D	Negligible	January	0017	>6 0			None		None
			February	0017	>6 0			None		None
			March	0017	>6 0	0105	Long	Frequent		None
			April	0017	>6 0	0105	Long	Frequent		None
			May	0017	>6 0	0105	Long	Frequent		None
			June	0017	>6 0	0105	Long	Frequent		None
			July	0017	>6 0	0105	Long	Frequent		None
			August	0017	>6 0			None		None
			September	0017	>6 0			None		None
			October	0017	>6 0			None		None
			November	0017	>6 0			None		None
			December	0017	>6 0			None		None

JSDA Natural Resources **Conservation Service**

Survey Area Version 4 Survey Area Version Date 12/13/2006 Established Series Rev AIE TBN MJD-JVC 02/2006

BARTON SERIES

The Barton series consists of very deep well drained soils that formed in colluvium and residuum derived from metamorphic rocks Barton soils are on hills Slopes are 5 to 40 percent. The mean annual precipitation is about 15 inches and the mean annual temperature is about 50 degrees F

TAXONOMIC CLASS Coarse loamy, mixed, superactive mesic Typic Argixerolls

TYPICAL PEDON Barton gravelly loam -rangeland (Colors are for dry soil unless otherwise noted)

A1 0 to 5 inches dark grayish brown (10YR 4/2) gravelly loam very dark grayish brown (10YR 3/2) moist weak medium granular structure, soft, friable slightly sticky and nonplastic few mica flakes, many fine roots, few fine pores, neutral (pH 6 8) clear smooth boundary (3 to 6 inches thick)

A2 5 to 13 inches, dark grayish brown (10YR 4/2) gravelly loam very dark grayish brown (10YR 3/2) moist weak medium granular structure, slightly hard, friable, slightly sticky and slightly plastic few mica flakes many fine roots, common fine roots, common fine pores neutral (pH 6 8), clear smooth boundary (4 to 10 inches thick)

Bt 13 to 19 inches dark grayish brown (10YR 4/2) gravelly loam, very dark grayish brown (10YR 3/2) moist weak medium subangular blocky structure, slightly hard friable slightly sticky and slightly plastic few mica flakes, common fine roots, common fine pores common thin clay films neutral (pH 6 8) clear wavy boundary (4 to 8 inches thick)

C1 19 to 31 inches brown (10YR 5/3) very cobbly loam, dark grayish brown (2 5Y 4/2) moist, massive slightly hard friable slightly sticky and nonplastic, few mica flakes, few fine roots and few fine pores neutral (pH 7 0), clear wavy boundary (10 to 18 inches thick)

C2 31 to 60 inches light brownish gray (10YR 6/2) very stony sandy loam dark grayish brown (10YR 4/2) moist single grain, neutral

TYPE LOCATION Weber County, Utah on Little Mountain about 1 mile north of the gravel pit about 1,000 feet west and 350 feet north from the center of section 7 T 6 N R 3 W

RANGE IN CHARACTERISTICS

Mollic epipedon thickness - 10 to 19 inches includes the Bt horizon in some pedons

Particle size control section Clay content 12 to 18 percent, Rock fragments 20 to 35 percent mamlv gravel

Depth to very cobbly or very stony material 18 to 30 inches

Al horizon Value 3 or 4 dry 2 or 3 moist Chroma 2 or 3 dry or moist Organic matter content 2 to 4 percent Texture Gravelly loam very gravelly loam stony loam or very stony loam

A2 horizon Value 3 or 4 dry 2 oi 3 moist Chroma 2 or 3 dry or moist Organic matter content 1 to 3 percent

Bt horizon Value 4 or 5 dry 3 or 4 moist Texture Gravelly loam or gravelly fine sandy loam Clay content 12 to 18 percent Rock fragments 20 to 35 percent Organic matter content 0 5 to 1 percent

C horizons Hue 10YR or 2 5Y Value 5 or 6 dry, 4 or 5 moist Chroma 2 or 3, dry or moist Texture Very cobbly loam very stony loam very cobbly sandy loam or very stony sandy loam Rock fragments 35 to 60 percent Effervescence Noneffervescent to strongly effervescent

COMPETING SERIES This is the Soirell (T) series Sorrell soils are moderately deep to paralithic contacts

GEOGRAPHIC SETTING Barton soils are on hills above the surrounding lake plain of Great Salt Lake These soils formed in colluvium and residuum derived from metamorphic rocks such as tillite fluvial conglomerate varved slate and graywacke **S**lopes are 5 to 40 percent The climate is dry subhumid The mean annual precipitation is 13 to 16 inches The mean annual temperature is 48 to 52 degrees F and the mean summer temperature is 68 to 72 degrees F The frost-free period is 140 to 160 days

GEOGRAPHICALLY ASSOCIATED SOILS These are the <u>Lehnd</u> Saltan and <u>Warm Springs</u> soils Leland soils are fine loamy, have ochric epipedons and natric horizons, and occur on lake terraces Saltan soils are fine silty, have ochric epipedons and salic horizons, and occur on lake plains Warm Springs soils are fine loamy have calcic horizons and occur on lake terraces

DRAINAGE AND PERMEABILITY Well drained, medium or high surface runoff, moderate permeability (moderately high or high saturated hydraulic conductivity)

USE AND VEGETATION Barton soils are used as rangeland with part of the area used for industrial activities. The native vegetation is mainly Sandberg's bluegrass threeawn grass. Wyoming big sagebrush prairie junegrass stork's bill and sunflower

DISTRIBUTION AND EXTENT Northwestern Utah These soils are not extensive with about 1 300 acres of the series mapped to date MLRA 28A

MLRA OFFICE RESPONSIBLE Reno, Nevada

SERIES ESTABLISHED Weber County Utah 1974

REMARKS Diagnostic horizons and features recognized m this pedon are

Mollic epipedon The zone from the soil surface to 19 inches (A1 A2 and Bt horizon)

Argillic horizon The zone from 13 to 19 inches (Bt horizon)

Particle size control section The zone from 13 to 19 inches (Bt horizon)

The superactive cation exchange activity class was added in 03/2003 to the taxonomic classification by the National Soil Survey Centei on request of the Reno MLRA office without review of the soil series property data

ADDITIONAL DATA The typical pedon at the series type location has partial characterization data by the Soils Laboratory from Utah State University (USU) Logan UT and is published on pages 138 139 Table 11 of the Soil Survey of Davis Weber Area Utah The pH values in the typical pedon are from the original field description

National Cooperative Soil Survey U S A

Established Series Rev AJE-MJD RJL JVC 03/2006

LAKESHORE SERIES

The Lakeshore series consists of very deep poorly drained soils that formed in lacustrine deposits derived from mixed rocks. Lakeshore soils are on lake plains and lake terraces. Slopes are 0 to 1 percent The mean annual precipitation is about 15 inches and the mean annual temperature is about 50 degrees. F

TAXONOMIC CLASS Coarse-silty, mixed superactive mesic Typic Aquisalids

TYPICAL PEDON Lakeshore silt loam tangeland (Colors are for moist soil unless otherwise noted) The soil surface has a 3 millimeter thick salt crust

Az 0 to 4 inches grayish brown (2 5Y 5/2) silt loam, light gray (2 5Y 7/2) dry weak medium platy structure, slightly hard friable slightly sticky and slightly plastic, many fine pores, violently effervescent 16 percent calcium carbonate equivalent strongly saline (EC 55 mmhos/cm), moderately alkaline (pH 8 1) clear smooth boundary (2 to 5 inches thick)

Czg1--4 to 8 inches light olive brown (2 5Y 5/3) silt loam pale yellow (2 5Y 7/3) dry, massive, soft very friable, slightly sticky and slightly plastic, many fine and medium pores common medium prominent yellowish brown (10YR 5/6) masses of iron accumulation, violently effervescent 19 percent calcium carbonate equivalent strongly saline (EC 73 mmhos/cm), moderately alkaline (pH 8 0), clear smooth boundary (3 to 15 inches thick)

Czg2 8 to 13 inches olive (5Y 5/3) very fine sandy loam pale yellow (5Y 7/3) dry, massive, soft, very friable, nonsticky and nonplastic, common medium and fine pores, common fine prominent light olive brown (2 5Y 5/6) masses of iron accumulation violently effervescent, moderately alkaline (pH 8 1) clear wavy boundary (0 to 8 inches thick)

Czg3--13 to 19 inches olive (5Y 5/3) loam pale yellow (5Y 7/3) dry, massive slightly hard, very friable slightly sticky and slightly plastic, common medium pores, common medium prominent light olive brown (2 5Y 5/6) masses of iron accumulation violently effervescent, 11 percent calcium carbonate equivalent strongly saline (EC 87 mmhos/cm), slightly alkaline (pH 7 7), clear smooth boundary (4 to 11 inches thick)

Czg4--19 to 51 inches, olive (5Y 5/3) silt loam, pale yellow (5Y 7/3) dry, massive slightly hard very friable, slightly sticky and slightly plastic few fine and medium pores common fine prominent light olive brown (2 5Y 5/6) masses of iron accumulation violently effervescent, 10 percent calcium carbonate equivalent strongly saline (EC 72 mmhos/cm) slightly alkaline (pH 7 7) clear wavy boundary (12 to 20 inches thick)

Czg5--51 to 64 inches dark gray (5Y 4/1) silt loam, gray (5Y 6/1) dry, massive slightly hard friable slightly sticky and slightly plastic few fine and medium pores violently effervescent 13 percent

calcium carbonate equivalent strongly saline (EC 72 mmhos/cm) neutral (pH 7 0)

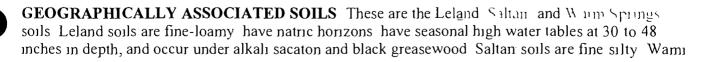
TYPE LOCATION Weber County Utah, about 3 miles west of West Warren Church, approximately 1 320 feet east and 1 000 feet north of the southwest corner of section 17 T 6 N R 3 W USGS Plain City SW 7 5 minute topographic quadrangle 41 degrees 15 minutes 11 seconds north latitude and 112 degrees 12 minutes 49 seconds west longitude NAD83 UTM zone 12N 398330E 4567557N, NAD83

RANGE IN CHARACTERISTICS

Soil moisture The soils are saturated with water during most of the year within a depth of 40 inches the upper part of the moisture control section is dry during summer months in normal years, Aquic moisture regime during seasonal periods of saturation and reduction

Mean annual soil temperature 50 to 54 degrees F

Particle size control section Clay content Averages 8 to 18 percent


Salinity Surface is rypically crusted with a thin layer of salt (mostly sodium chloride) salic horizon begins at the soil surface

Az horizon - Hue 2 5Y or 5Y Value 4 or 5 moist, 6 or 7 dry Chroma 1 or 2, dry or moist Texture Silt loam or fine sandy loam Salinity (EC) 32 to 90 mmhos/cm Sodicity (SAR) 13 to 90 Calcium carbonate equivalent 5 to 25 percent Reaction Slightly alkaline through strongly alkaline

Czg horizons Hue 2 5Y or 5Y Value 4 through 6 moist Chroma 1 through 3, dry or moist Texture Loam silt loam, or very fine sandy loam Salinity (EC) 32 to 90 mmhos/cm Sodicity (SAR) 13 to 90 Calcium carbonate equivalent 5 to 25 percent Reaction Neutral through strongly alkaline

COMPETING SERIES There are currently no other series in this family

GEOGRAPHIC SETTING Lakeshore soils are on lake plains and lake terraces adjoining small ponds. These soils formed in lacustrine deposits derived from mixed rocks such as limestone quartizite shale and sandstone. Slopes are 0 to 1 percent Elevations range from 4 200 to 4 400 feet. The climate is dry subhumid. The mean annual precipitation is 14 to 18 inches. The mean annual temperature is 48 to 52 degrees F, the mean summer temperature is 66 to 71 degrees F. and the frost free period is 160 to 180 days.

Springs soils are fine loamy have mollic epipedons and calcic horizons and occur under alkali sacaton

DRAINAGE AND PERMEABILITY Poorly drained, negligible surface runoff, slow permeability (moderately low or moderately high saturated hydraulic conductivity) Endosaturation is present with an apparent seasonal high water table between the soil surface and 1 7 feet (very shallow and shallow free water occurrence classes) year round Cumulative annual duration class is Persistent These soils are susceptible to occasional ponding for brief duration from March through July with water up to 6 inches deep

USE AND VEGETATION Lakeshore soils are used for rangeland and wildlife habitat The soil surface is about 90 percent bare ground with some scattered vegetation that is usually inland saltgrass and pickleweed

DISTRIBUTION AND EXTENT Northwestem Utah These soils are not extensive with about 9 400 acres of the series mapped to date MLRA 28A

MLRA OFFICE RESPONSIBLE Reno Nevada

SERIES ESTABLISHED Weber County (Davis Weber Area), Utah, 1967

REMARKS Diagnostic horizons and features recognized in this pedon are

Ochric epipedon The zone from the soil surface to 4 inches (Az horizon)

Salıc horizon - The zone from the soil surface to 64 inches (Az, Czg1 Czg2 Czg3, Czg4 and Czg5 horizons)

Aquic conditions - The conditions of endosaturation reduction, and redoximorphic features between the soil surface and 20 inches at certain times during nonnal years (parts of the Az Czgl Czg2 Czg3, and Czg4 horizons)

Particle-size control section - The zone from 10 to 40 inches (Czg3 horizon and parts of the Czg2 and Czg4 horizons)

The soil was last reviewed in the field in 1965 It needs to be determined if the soil moisture control section is dry in some or all parts at some time during normal years. The height and duration of the seasonal high water needs to be verified in the field

ADDITIONAL DATA The typical pedon at the series type location has partial characterization data by the Soils Laboratory from Utah State University (USU) Logan UT and is published on pages 140 141 Table 11 of the Soil Survey of Davis-Weber Area, Utah The pH values in the typical pedon are from saturated paste

National Cooperative Soil Survey U S A

PROJECT	Officels	HE - SWPPP	_	COMPUTED
FEATURE	Runoff	Jolume		CHECKED
PROJECT NO	333.01	100		DATE

$$Tenoff Volume for a 10 year - 24hr Storan
Q = (P-02s)^{2}
(P+08s)
where S = 1000 - 10 => CN = 69 (TR-SS, B type
Soil, fair conduction)
Deortune
S = 1000 - 10 = 449$$

$$P = 19 m$$

$$Q = \frac{(19 - 02(449))^2}{(19 + 08(449))}$$

$$A = 3 \text{ acres}$$

 $V = 0.18 \text{ yr}' \left(\frac{1 \text{ ft}}{12 \text{ yr}}\right) \cdot 3 \text{ acres}$
 $= 0.045 \text{ ac-ft} \text{ or} 1960 \text{ ft}^3$

APPENDIX B

NPDES STORM WATER PERMIT

- ---

-

- ---

_ --- -

x

+

-

STATE OF L	ITAH, DEPARTMEN		RONMENTAL QUALITY, DIVISION OF WATER
288 North	1460 West PO Box		alt Lake City Utah 84114 4870 (801)538 6146
NOI		ivity Unde	Storm Water Discharges Associated will r the UPDES General Permit No UTR355013 TIONS
authorized by UP activity in the Sta	DES General Permit No 【	JT R35501 3 mittee obligate	t the party(s) identified in Section I of this form intends to I issued for storm water discharges associated with constructi s such discharger to comply with the terms and conditions of t ON THIS FORM
	continuation for previously number of the previous pe		t coverage at the same site? Y (Y or N) Permit No UTR110683
Р	ermit Start Date 01/14/1	1	Permit Explration Date 01/14/12
I OPERATOR I	NFORMATION	Dat	e NOI is received at DWQ (to be completed by DWC
Name (Main	operator) Weber County Co	rp	Phone 801 399 8416
Address 28	30 S Washingion Blvd		Status of Owner/Operator M Public
City Ogden		State UT	Zıp 84401
Contact Pers	on Gary Laird		Phone 801 399 8803
Name (1st C	o permittee) Moulding and	Sons	Phone 801 399 9994
Address 104	\$85 W 900 S		Status of Owner/Operator P Privale
City Ogden		State UT	Zıp 84401
Contact Pers	on Randy Moulding		Phone 801 725 2722
Name (2nd (Co permittee)		Phone
Address			Status of Owner/Operator
City		State	Zıp
Contact Pers	on		Phone
Name (3rd C	o permittee)		Phone
Address			Status of Owner/Operator
City		State	Zıp
Contact Pers	ion		Phone
Please copy this fo	orm if you have more co pe	rmittees than v	what is allowed on this form
II FACILITY SI	TE / LOCATION INFORMATIO	N	Is the facility located in Indian Country?
Name Off	ce Sue		N (Y or N)
Project No	(if any)		
Address 1	0485 W 900 S		County WEBER
City OGDI	EN	State UT	Z1p 84401
Latitude 4	1 248317	Longit	ude 112 231583
Method (ch	eckone) 🔲 USGS Topo Map	Scale	EPA Web site CPS X Other

m	SITE ACIVITY INFORMATION							
	Municipal Separate Storm Sewer System (MS4) Operator Name None							
	Receiving Water Body Great Salt Lake (this is known)							
	How far to the nearest water body? 24000 ft							
	List the Number of any other UPDES permits at the site							
IV	TYPE OF CONSTRUCTION (Check all that apply)							
	1 🛄 Residential 2 🗷 Commercial 3 🛄 Indusinal 4 🛄 Road 5 🛄 Bridge 6 🛄 Utility 7 🛄 Contouring Landscaping							
	8 [] Other (Please list)							
V	MANAGEMENT PRACTICES							
	Identify proposed Best Management Practices (BMPs) to reduce pollutants in storm water discharges. (Check all that apply)							
	1 🛄 Silt Fences 2 🛄 Sediment Pond 🛛 🕱 Seeding/Preservation of Vegetation 4 🛄 Mulching/Geolexules 5 🛄 Check Dams							
	6 🛄 Structural Controls (Berms Ditches etc.)							
	7 Other (Please list)							
VI	ADDITIONAL INFORMATION REQUIRED							
	A storm water pollution prevention plan has been prepared for this site and is to the best of my knowledge in Compliance with State and/or Local Sediment and Erosion Plans and Requirements Y (Y or N) (A pollution prevention plan is required to be on hand before submittal of the NOI)							
<u> </u>	Project Start Date 01/14/11 Completion Date 03/14/11 All coverage s issued under this NOI will terminate on June 30 2013)							
	VII CERTIFICATION I certify under penalty of law that I have read and understand the Part 1 eligibility requirements for coverage under the general permit for storm water discharges from construction activities. I further certify that to t best of my knowledge all discharges and BMPs that have been scheduled and detailed in a pollution prevention pla will satisfy requirements of Part 1 and Part 3 of this permit 1 understand that continued coverage under this storm water general permit is contingent upon maintaining eligibility as provided for in Part 1							
	I also certify under penalty of law that this document and all attachments were prepared under the direction or supervision of those who have placed their signature below in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information the information submitted is to the best of my knowledge and belief true accurate and complete I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment for knowing violations							
Prin	Name (of responsible person for the mam operator from first page) Date							
Gar	y Laırd							
Sigr	ature							
Prin	Name (of responsible person for the 1st co permittee from first page) Date							
Sigr	Signature							
Prin	Name (of responsible person for the 2nd co permittee from first page) Date							
Sigr	ature							
Prin	Name (of responsible person for the 3rd co permittee from first page) Date							
Sigr	Amount of Permit Fee Enclosed \$ 100							

INSTRUCTIONS

Nouce Of Intent (NOI) For Permit Coverage Under the UPDES General Permit For Storm Water Discharges From Construction Activities

Elimination System (UPDES) permit The operator of a construction activity that has such a storm water discharge must submit a NOI to obtain coverage under the UPDES Storm Water General Permit If you have questions about whether you need a permit under the UPDES Storm Water program or if you need information as to whether a particular program is administered by EPA or a state agency contact the storm water coordinator at (801) 538 6146

Where To File NOI Form NOIs with fee paymeni(s) must be sent to the following address

> Department of Environmental Quality Division of Water Quabty PO Box 144870 Salt Lake City UT 84114-4870

(The NOI can also be completed on line at http://www.waterquality.utah.gov/ UPDES/stormwaiercon htm)

Beginning of Coverage Storm Water General Permits cover a facility quickly avoiding delays therefore coverage is immediate after submitting an NOI with submission of the permit fee. The permittee should be aware that though you may not have a permit m hand if you have sent in a completed NOI with the penrul fee you are covered by the conditions m the permit and will be expected to comply with these conditions If you wish contact the Division of Water Quality at (801) \$38-6146 to receive a generic copy of the permit or you can pnni a copy from the DWQ web site or it can be downloaded during the on line application process

Permit Fees (MAKE CHECKS PAYABLE TO, DIVISION OF WATER plans QUALITY) Construction projects are prorated from the time they begin disturbing ground unnJ the time the disturbed surface is stabilized and the permit is terminated by the permittee with a subminal of a Nouce of Termination (NOT) form That time penod may or may not be that same ome penod as what could be considered project start date and project end date Fees are prorated at \$8.34 per month of coverage needed except there is a \$100 minimum and a \$500 00 maximum EXAMPLE if you need 5 months of coverage 5 x \$834 = \$4170 then you will need to submit the \$100 nummum if 18 months of coverage is needed 18 x \$834 = \$15012 your total fee will be \$15012 The \$50000 maximum will provide permit coverage to hve years and then expire at the end of die five year period Permit coverage is calculated on the dollar amount of the permit fee submined The minimum time period that a pennit can be issued for is one year If stabilization occurs before one year the perminee must submit an NOT State or local political subdivisions are exempt from the permit fee. The fee must be received with die NOI before permit coverage is given

Length of Coverage Storm Water Construction Permits get coverage siamng on the day that the NOI and fee payment is received at DWQ (on hne if that is the case) and ending on the date that die fee pays up to The minimum fee is \$100 therefore all permits where the minimum fee is paid will automancally receive coverage for one year. If a permittee does not need coverage for a full year and does not want to be held accountable for permit conditions they must submit the NOT (associated widi the permit) after die site has been stabdized (or when other requirements are mei so diat die permittee can legally terminate die permit) to terminate coverage

The Storm Water General Permit for Construction Activities UTR300000 will expire on Jmie 30 2013

SECTION 1 FACILITY OPERATOR INFORMATION Give the legal name(s) of the person(s) firm(s) pubbc organizaoonfs) or any other enuty(ies) diat conducts the construction operation at the facility or sue described in dus appbcanon The name of the operator(s) may be de developer the owner die general contractor the design firm the excavauon contractor and/or others (e g anyone that his the definition of operator) An operator is anyone diat has control over site/project specificanons and/or control of day to day operacional acuviues. Do not use a colloquial name

Enter the complete address and telephone number of die operator(s) Enter die appropriate letter to indicate die legal stams of the operator of the facility

F = Federal M = Public (other than Fed or State) S = State P = Private

SECTION II FACILITY/SITE LOCATION INFORMATION Enter die facdity name or legal name and project number (if any) of the site and complete street address including city state and ZIP code. The laotude and longimde of die facdily must be included to the approximate centroid of die sue and die method of how die Lat/Long was obtained (USGS maps GPS Internet Map sites (such as Google Earth) odier) The township and range is desirable but not necessary

Who Must File A Notice Of Intent (NOI) Form State law at UAC R317 8- Indicate whether the facdiry is located in Indian Country. If the facility is 3.9 prohibits point source discharges of storm water from construction located m Indian Country do not complete this NOI mised complete form activities to a water body(ies) of the State without a Utah Pollutant Discharge 3510.6 and submit to EPA Region VIIf except for facdities on the Navajo Reservation or on the Goshute Reservation which should submit EPA form 3510-6 to Region IX

> SECTION III - SITE ACTIVITY INFORMATION If the storm water discharges to a municipal separate storm sewer system (MS4) enter the name of the operator of die MS4 (e.g. municipality name county name) and the receiving water of die discharge from the MS4 if it is known (if i) is not known please esumate or guess and indicate so) (An MS4 is defined as a conveyance or system of conveyances (mcluding roads with dramage systems municipal streets catch basins curbs guners ditches man made channels or storm drams) that is owned or operated by a state city town county district association or odier public body which is designed or used for collecting or conveying storm water)

> SECTION IV - TYPE OF CONSTRUCTION Check each type of construction diat applies to this application

> SECTION V - BEST MANAGEMENT PRACTICES Check each type of best management practice that will be used to control storm water runoff at the 10b site

> SECTION VI - ADDITIONAL INFORMATION REQUIRED Enter the project start date and the estimated completon date for die ennre development plan All coverage s issued under this NOI terminate on June 30 2013 Provide an estimate of die total number of acres of the site on which soil will be disturbed (round to die nearest acre) Indicate whether the storm water pollution prevention plan for die site is in compliance with approved state and/or local sediment and erosion plans permits or storm water management

> SECTION_VII - CERTIFICATION State statutes provide for severe penalties for submitting false information on dus application form. State regulations require this application to be signed as follows

> For a corporation by a responsible corporate officer which means (1) president secretary treasurer or vice president of the corporation m charge of a principal business function or any other person who performs similar policy or decision making functions or (11) the manager of one or more manufacturing production or operating facdities employing more dian 250 persons or having gross annual sales or expenditures exceeding \$25 mdiion (m second quarter 1980 dollars) if authority to sign documents has been assigned or delegated to the manager m accordance with corporate procedures

> For a partnership or sole proprietorship by a general parmer or the proprietor or

> For a municipality state Federal or other public facility by either a principal executive officer or ranking elected official

> POLLUTION PREVENTION PLAN A storm water pollunon prevention plan (SWP3) is required to be in hand before the NOI can be submitted li is important to know SWP3 requirements (contained in the permit) even during die design portion of the project. A copy of die permit can be obtamed from die Division of Water Quality's storm water construction web site. Guidance matenal for developing a SWP3 can be obtained from EPA (NTIS) or copied from EPA material at the Division of Water Quality's storm water construction web sue

> NOTICE OF TERMINATION (NOT) A completed Notice of Tenninauon (NOT) form is required to terminate your permit at the end of construction Please complete the NOT form including the project's assigned permit number and return it to die Division of Water Quality. If you apply on line you wdl receive a panially filled out NOT at the ome of application for which you wdl need to fdl in the terminauon date and provide a signature for submission Please contact die storm water coordinator at (801) 538 6146 for any quesoons or for a copy of the NOT form

STATE OF UTAH, DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF WATER QUALITY 288 North 1460 West P O Box 144870 Salt Lake City Utah 84114 4870									
NOT	Notice of Termmati Under the UPDES (on (NOT) for Stor	m Water	Discharges Asso	ciated w	rith Cons			
authonzed to disc	s Notice of Termination harge storm water asso IST BE PROVIDED ON TH	ociated with industri							
I Permit Informat	I Permit Information								
UPDES Storm Wat	UPDES Storm Water General Permit Number UTR355013								
Final stabilization Partial site NOT	Final stabilization has been achieved on all portions of the site for which you are responsible Partial site NOT [] Full site NOT []								
Another party has Partial site 🔲 Ful	Another party has assumed control of the site for which you are responsible through appropriate transfer of responsibility Partial site 🔲 Full site 🛄								
	Coverage under another Storm Water Construction permit or an alternative UPDES permit has been obtained Partial site [] Full site []								
homeowner [(list each of the addresses of the lots transferred to a homeowner on a separate sheet and attach it to this sheet before								
II Facility Operato	or Information								
Name Weber Cour	nty Corp				Phone	801 399 8	3416		
Address 2830 S W	ashington Blvd								
City Ogden			State	UT	Zip 84	1401			
III facility Site/Loo	cation Information								
Name Office Sue							 		
Address 10485 W	900 S				с	ounty W	EBER		
City OGDEN			State	UT	Zip 84	401			
Latitude 41 24831	7 Longitude	112 231583							
from the portion of an operator at the construction site of no longer authoric discharging pollut of Utah Water Qua	certify under penalty or of the identified facility he construction site a where I previously had zed to discharge storm ants in storm water ass ality Act where the disc mination does not relea	where I was an oper nd a new operator operational control n water associated sociated with constru- charge is not authori	rator have r has ass I understa with cons uction act ized by a	e ceased or have sumed operationa and that by subm struction activity ivity to waters of UPDES permit 1 a	been elin il control itting this under th the State also unde	ninated or I for thos s notice or is genera e is unlawl erstand th	r b) I am no longer se portions ot the f termination I am il permit and that ful under the State at the submittal of		
Print Name				Date					
Gary Laırd									
Signature									

Instructions for Completing Notice of Termination (NOT) Form

Who May File A Notice Of Termination (NOT) Form

Permittees who are presendy covered under die State issued Utah Pollutant Discharge Elimination System (UPDES) General Storm Water Permit for Construction Activity may submit a notice of termmation (NOT) form when their factboes no longer have any storm water discharges associated with industinal acovity as defined in the storm water regulations at UAC R317 8-38(b)(c) and (d) or when dey are no longer the operator of die factbues

For construction activities elimination of all storm water discharges associated with industrial activity occurs when disturbed sods at the construction sue have been finally stabdized and temporary erosion and sediment control measures have been removed or wd) be removed at an appropriate time or diat all storm water discharges associated with construction activity from the construction site diat are authorized by a UPDES general permit have otherwise been eliminated. Final stabilization means that all soddisturbing activities at the site have been completed and that a uniform perennial vegetative cover with a density of 70% of die cover for unpaved areas and areas not covered by permanent structures has been established or equivalent permanent stabdization measures (such as the use of nprap gabions or geotexides) have been employed

Where to File NOT Form

Send this form to die following address

Division of Water Quality 288 Nordi 1460 West P O Box 144870 Salt Lake City Utah 84114 4870

Completing the Form

Type or pnni using upper case leners in the appropriate areas only Please place each character between the marks. Abbreviate if necessary to stay within the number of characters allowed for each item. Use only one space for breaks between words but not for punctuanon marks unless they are needed to clarify your response. If you have any questions about this form call the Division of Water Quality at (801) 538 6146

Section 1 - Permit Information

Enter the existing UPDES Storm Water General Permit number assigned to the facdity or sue idenofied in Section III If you do not know the permit number contact the Division of Water Quality at (801) 538 6146

Indicate your reason for submitting dus Nouce of Termmanon by checking die appropriate box

If diere has been a change of operator and you are no longer the operator of the facdity or site identified in Section III Check die corresponding box

If all stoms water discharges at the facdity or sue identified in Section III have been terminated check the corresponding box

Section 11 - Facility Operator Information

There may be more than one operator for a consuucoon project. This form must be folled out and submitted by each of die operators listed on the nonce of intent (NOI) diat was submitted for receiving coverage under this permit. In diss section give die legal name of the person firm pubbc organization or any other enoty diat is filed as an operator at the facdity or sue described in this application that is desinng to terminate coverage. The name of die operation may or may not be the same name as the facdity. The operator of die facility is the legal entity which controls the facdity is operation (referring to operation of construction activity) or a portion of it rather diat die plant or sue manager of die finished or rehabilitized facdity. Do not use a colloquial name. Enter the complete address and telephone number of the operator.

Section 111 - Facility/Site Location Information

Enter the facility s or site s official or legal name and complete address mcluding city state and ZIP code and the laomde and longinde of the factity to the nearest 15 seconds of the approximate center of the site. It is preferred that the location address be the same as that which the sue used in the submission of the NOI

Section IV - Certification

State statues provide for severe penalnes for submitting false information on dis application form. State regulations require this application to be signed as follows

For a rorporonon by a responsible corporate officer which means (1) president secretary oreasurer or vice president of the corporauon m charge of a pincipal business function or any odier person who performs similar policy or decision making functions or (u) the manager of one or more manufacturing producuon or operaning factures employing more dian 250 persons or having gross annual sales or expenditures exceeding \$25 million (in second quarer 1980 doilars) if audionity to sign documents has been assigned or delegated to die manager in accordance with corporate procedures

For o pormership or sole proprietorship by a general parmer or die proprietor respectively or

For a municipality State Federal or other public facility by either a principal executive officer or ranking elected official

STATE OF UTAH DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF WATER QUALITY

Authorization to Discharge Under the Utah Pollutant Discharge Elimination System

> Storm Water General Permit for Construction Activities Permit No UTR300000

This Permit is issued in compliance with the provisions of the Utah Water Quahty Act Title 19, Chapter 5, Utah Code Annotated 2004 as amended (the 'Act') and the federal Water Pollution Control Act (33 USC §§ 1251 *et seq* as amended to date) and the rules and Regulations made pursuant to those statutes

This Permit authorizes storm water discharges to waters of the State of Utah resulting from construction activities including construction support activities, anywhere within the State of Utah as provided in Parts 1 4 and 1 5 of this Permit This authorization is conditioned upon a discharger meeting the eligibility requirements in Part I 2 2 of this Permit including preparation of a Storm Water Pollution Prevention Plan <u>prior</u> to filing a Notice of Intent (NOI) to discharge under this General Permit A discharger is not covered by this Permit if the discharger submits an NOI but has not met these conditions

This authorization is subject to the authority of the Utah Water Quality Board or the Executive Secretary of the Utah Water Quality Board to reopen this Permit (see Part 5 15 of this Permit) or to require a discharger to obtain an individual permit or use an alternative general permit (see Part 2 3 of this Permit) The issuance of a discharge permit authorization under this general Permit does not relieve Permittees of other duties and responsibilities under the Act or rules made under that Act Significant terms used in this Permit are defined in Part 6 of this Permit

This Permit shall become effective on July 1 2008

This Permit and the authorization to discharge shall expire at midnight June 30 2013 except as described in Part 2 4 of this Permit

Signed this 26th day of June 2008

Walter L' Braker P E Executive Secretary Utah Water Quality Board

TABLE OF CONTENTS

PART I	PERMIT SCOPE AND COVERAGE	3
11	Persons Required to Obtain Authorization for Discharge	3
12	Permit Area and Eligibility	3
13	Authorization to Discharge	3
14	Allowable Storm Water Discharges	3
15	Allowable Non storm Water Discharges	4
16	Discharges Not allowed Under This Permit	4
17	Authorization to Discharge Date	5
18	Notice of Intent	5 5 5
19	Coverage Before October 1, 2008	5
1 10	Late Notifications	6
PART 2	SPECIAL CONDITIONS, MANAGEMENT PRACTICES,	7
RESPON	SIBILITIES, AND OTHER NON-NUMERIC LIMITATIONS	7
21	Releases in Excess of Reportable Quantities	7
22	Discharge Compliance with Water Quality Standards and TMDL Requirements	7
23	Requiring an Individual Permit or an Alternative General Permit	8
24	Continuation of the Expired General Permit	9
PART 3		10
31	SWPPP Required	10
32	SWPPP Location Availability, Revision, and Signature	10
33	Keeping SWPPPs Current	11
34	More Than One Permittee	11
35	Contents of SWPPP	12
PART 4		19
4 1	Termination of Coverage	19
42	Conditions for Submitting an NOT	19
43	Updating the SWPPP	
	STANDARD PERMIT CONDITIONS	20
51	Duty to Comply	20
52	Duty to Reapply	20
53	Need to Halt or Reduce Activity Not a Defense	20
54	Duty to Mitigate	20
55	Duty to Provide Information	20
56	Other Information	20
57	Oil and Hazardous Substance Liability	21
58	Property Rights	21
59	Severability	21
5 10	Record Retention	21
5 1 1	Addresses	21
5 12	State Laws	21
5 13	Proper Operation and Marntenance	21
5 14	Inspection and Entry	22
5 1 5	Reopener Clause	22
5 16	Signatory Requirements	22
PART 6	DEFINITIONS	24

PART 1 PERMIT SCOPE AND COVERAGE

Utah Division of Water Quality General Permit No UTR 300000

Part 1

- 1 1 Persons required to obtain authonzation for discharge No person may conduct construction activities that disturb an area greater than or equal to one acre without authorization for storm water discharge from the Executive Secretary (See Utah Adrrun Code Sections R317 8-3 9(6)(d)(10) and R317-8-3 9(6)(e)(1)) In addition, no person may conduct construction activities that disturb an area smaller than one acre if the disturbance is part of a larger common plan of development or sale that will ultimately disturb an area greater than or equal to one acre *Id See* Part 6 5 of this Permit for a definition of 'construction activities'
- 12 Permit Area and Eligibility
 - 1 2 1 Construction activities located within the State of Utah except for Indian Country (*see* Part 6 16 of this Permit for a definition of 'Indian Country') may be eligible to be covered inder this Permit
 - 122 Eligibility for authonization to discharge under this Permit is conditioned upon
 - a Preparation of a Storm Water Pollution Prevention Plan ("SWPPP") (see Part 3 of this permit) prior to submission of a Notice of Intent ("NOP),
 - b Submission of a complete and a ccurate Notice of Intent to be covered by this Permit (see Part 1 8 of this Permit), and
 - c Payment of applicable fees
- 1 3 <u>Authorization to Discharge</u> This Permit authonzes discharges of storm water from construction activities that disturb an area greater than or equal to one acre, and from construction activities that disturb an area smaller than one acre if the disturbance is part of a larger common plan of development or sale that will ultimately disturb an area greater than or equal to one acre. This authorization is subject to all of the terms and conditions of this Permit, including the requirement that the discharger must submit a Notice of Intent ("NOI"), and the prohibitions on discharges specified in Part 1 6
- 1.4 <u>Allowable Storm Water Discharges</u> Subject to compliance with the terms and conditions of this Permit, a Permittee is authorized to discharge pollutants in
 - 1 4 1 Storm water associated with construction activity as that term is defined in Part 6 5 of this Permit (but see Part 1 4 3 of this Permit for limitations on discharges from construction support activities),
 - 1 4 2 Storm water discharges designated by the Executive Secretary as needing a storm water permit under R317-8-3 9(6)(e)(2),
 - 1 4 3 Discharges from construction support activities as that term is defined in Part 6 6 of this Permit, provided
 - a The support activity is directly related to the construction site required to have UPDES permit coverage for discharges of storm water associated with construction activity,
 - b The support activity is not a commercial operation serving multiple unrelated construction projects by different owners/operators and does not operate beyond the completion of the construction activity at the last construction project it supports, and
 - c Appropriate controls and measures are identified in a Storm Water Pollution

Prevention Plan (SWPPP) covering the discharges from the support activity areas, and

- 1 4 4 Discharges composed of allowable discharges listed m Part 1 4 and 1 5 of this Permit commingled with a discharge authorized by a different UPDES permit and/or a discharge that does not require UPDES permit authorization
- 1.5 <u>Allowable Non-storm Water Discharges</u> A Permittee is authorized to make the following non-storm water discharges, provided the non-storm water component of the discharge is in compliance with Part 3.5.5 of this Permit
 - 151 Discharges from fire-fighting activities,
 - 152 Fire hydrant flushings,
 - 1 5 3 Waters used to wash vehicles where detergents are not used,
 - 154 Water used to control dust m accordance with Part 352(c)(2),
 - 155 Potable water including incontaminated water line flushings,
 - 156 Routine external building wash down that does not use detergents,
 - 157 Pavement wash waters where spills or leaks of toxic or hazardous materials have not occurred (unless all spilled material has been removed) and where detergents are not used,
 - 158 Uncontaminated air conditioning or compressor condensate,
 - 159 Uncontaminated ground water or spring water,
 - 1 5 10 Foundation or footing drams where flows are not contaminated with process materials such as solvents,
 - 1511 Landscape and other irrigation drainage
- 1.6 <u>Discharges not allowed under this Permit</u> Notwithstanding any other language in this Permit, the following storm water discharges are not authorized by this Permit
 - 161 <u>Discharges from Construction Activities within Indian Country</u> This Permit does not cover discharges within hidian Country as that term is defined in Part 6 16 of this Permit,¹
 - 162 <u>Post Construction Discharges</u> Storm water discharges that originate from the site after construction activities have been completed and the site has imdergone final stabilization,
 - 163 <u>Discharges Mixed with Non storm Water</u> Discharges that are mixed with sources of non-storm water other than discharges which are identified in Part 1 5 of this Permit and in compliance with Part 3 5 5 (non storm water discharges) of this Permit,
 - 164 <u>Discharges Covered by Another Permit</u> Storm water discharges associated with construction activity for which an individual permit has been issued, or for which the owner/operator is required to or may obtain coverage under an individual permit or an alternative general permit (*see* Part 2 3 of this Permit), including a general

¹ The State of Utah, *Division of Water Quality*, does not have permit authority for Indian Country Storm water permits for Indian Country within the State must be acquired through EPA Region VIII, except for facilities on the Navajo Reservation or on the Goshute Reservation which must acquire storm water permits through EPA Region IX

permit issued for areas regulated by a qualified municipal Separate Storm Sewer System Program,

- 165 <u>Discharges Threatening Water Quality</u> Storm water discharges from construction activities that cause or have the reasonable potential to cause a violation of a water quality standard *See* Part 2 2 of this Permit,
- 166 <u>Discharges from commercial construction support and related activities</u> Storm water discharges from construction support activities unless they are included within the definition in Part 6 6 of this permit,
- 167 <u>Spills</u> This Permit does not authorize the discharge of hazardous substances or oil resulting from an on-site spill, and
- 168 Discharges that result from violations of this Permit
- 17 Authorization to Discharge Date
 - 171 This permit is effective as of July 1, 2008 and is effective for five years expiring at 11 59 p m on June 30, 2013
 - 172 Unless notified by the Executive Secretary to the contrary, a discharger is authorized for coverage under this Permit and may begin construction activities immediately after preparing a SWPPP for the construction activities (*see* Part 1 2 2(a) of this Permit), and after submitting an NOI and permit fee (*see* Part 1 2 2(b) and (c) of this Permit) The date of submission of the NOI or a permit fee shall be the date of its receipt by the Executive Secretary, or the date the NOI or permit fee are submitted electronically using the website for the Utah Division of Water Quality Any NOIs mailed to the Executive Secretary shall be mailed to the address specified in Part 5 11 of this Permit
 - 173 The Executive Secretary may, with written notice (including electronic notice) delay authorization to verify an applicant's eligibility or resolve other concerns. In these instances, a discharger is not authorized for coverage under this permit until it receives notice from the Executive Secretary
- 18 Notice of Intent
 - 181 A person who wishes to submit an NOI must use the NOI form provided by the Executive Secretary (or a copy thereof), or submit an NOI electronically (see (https //secure utah gov/stormwater/))
 - 1 8 2 All questions m an NOI form provided by the Executive Secretary or answered in the course of submitting an NOI electronically must be answered completely and accurately
 - 183 The NOI, whether on the form provided by the Executive Secretary or submitted electronically, must include a certification statement, and must be signed and dated by an authorized representative as specified in Part 516 of this Permit
- 19 <u>Coverage before June 30, 2010</u> Permittee's that previously received authorization to discharge under the October 1, 2002 General Permit (2002 General Permit) and still have active coverage shall without submission of an NOI continue coverage under UTR200000 until June 30, 2010 at which time, or before if desired, the Permittee shall, by submission of an NOI (either on-line <u>www waterquality utah gov/updes/stormwatercon htm</u> or by paper submission) obtain coverage under this Permit (UTR300000)

ł

Page 6

Utah Division of Water Quality General Permit No UTR 300000 Part 1

1 10 <u>Late Notifications</u> Persons are not prohibited from submitting NOIs after initiating cleanng, grading, excavation activities, or other construction activities. When a late NOI is submitted, authonization for discharges occurs consistent with Subpart 2.1. The Agency reserves the nght to take enforcement action for any un-permitted discharges that occur between the commencement of construction and discharge authonization

PART 2 SPECIAL CONDITIONS, MANAGEMENT PRACTICES, RESPONSIBILITIES, AND OTHER NON-NUMERIC LIMITATIONS

- 21 <u>Releases m excess of Reportable Quantities</u> The discharge of hazardous substances or oil in the storm water discharge(s) from a site shall be prevented or minimized in accordance with the applicable SWTPP for the site This Permit does not relieve the Permittee of the reporting requirements of 40 CFR part 117, 40 CFR 110, and 40 CFR part 302 Where a release containing a hazardous substance in an amount equal to or in excess of a reportable quantity established under either 40 CFR 117, 40 CFR 110, or 40 CFR 302, occurs during a 24 hour period
 - 211 The Permittee is required to notify the National Response Center (NRC) (800-424 8802) in accordance with the requirements of 40 CFR 117, 40 CFR 110 and 40 CFR 302 and the Division of Water Quality (DWQ) (801-538-6146) or the 24 hour DWQ answering service at 801-536-4123 as soon as he or she has knowledge of the discharge,
 - 212 The Permittee shall submit within 14 calendar days of knowledge of the release a written description of the release (including the type and estimate of the amount of material released) the date that such release occurred, the circumstances leading to the release the measures taken and/or planned to be taken to cleanup the release, and steps to be taken to minimize the chance of future occurrences to the Executive Secretary, and
 - 213 The SWPPP required under Part 3 of this Permit must be modified withm 14 calendar days of knowledge of the release to provide a description of the release, the circumstances leading to the release, and the date of the release In addition, the SWPPP must be reviewed to identify measures to prevent the reoccurrence of such releases and to respond to such releases, and the SWPPP must be modified where appropriate
- 2.2 <u>Discharge Compliance with Water Quality Standards and TMDL requirements</u> Storm water discharges from construction activities that cause or have the reasonable potential to cause a violation of a water quality standard or a violation of Total Maximum Daily Load (TMDL") requirements are not authorized by this Permit If there is a TMDL requirement for the receiving water, that requirement, rather than a water quality standard, will govern If a discharge that would otherwise be covered by this Permit causes a violation or if there is a reasonable potential a discharge will cause a violation the Permitteee will take all necessary actions to ensure future discharges do not cause or contribute to the violation of a water quality standard or a TMDL requirement and shall document these actions in the SWPPP

If the Executive Secretary determines that construction activities have caused or have the reasonable potential to cause a violation of a water quality standard or a TMDL requirement, the discharger will be notified by the Executive Secretary of additional requirements for treatment or handling of the discharge to ensure future discharges do not cause or contribute to the violation. The Permittee will document these requirements in the SWPPP. The Executive Secretary may authorize continued coverage under this Permit after appropriate controls and implementation procedures designed to bring the discharges.

Page 7

into compliance with water quality standards or TMDL requirements, have been included in the SWPPP

Alternatively, the Executive Secretary may notify the Permittee that an individual permit application is necessary (see Part 2 3 of this Permit)

If violations remain or re-occur, then coverage under this Permit may be terminated by the Executive Secretary and an alternative permit may be issued or denied Compliance with this requirement does not preclude any enforcement activity as provided by the Water Quality Act for the underlying violation

23 Requiring an Individual Permit or an Ahemative General Permit

- The Executive Secretary may require any person authorized by this Permit to apply 231 for and/or obtain either an individual UPDES permit or an alternative UPDES general permit Any interested person may petition the Executive Secretary to take action under this paragraph Where the Executive Secretary requires a discharger authorized to discharge under this Permit to apply for an individual UPDES permit, the Executive Secretary shall notify the discharger m writing that a permit application is required This notification shall include a brief statement of the reasons for this decision, an application form or reference to the application requirements, a statement setting a deadline for the discharger to file the application, and a statement that on the effective date of issuance or demal of the individual UPDES permit or the alternative general permit as it applies to the individual Permittee, coverage under this general Permit shall automatically terminate Applications shall be submitted to the address of the Division of Water Quahty shown m Part 5 11 of this Permit The Executive Secretary may grant additional time to submit the application upon request of the applicant If a discharger fails to submit in a timely manner an individual UPDES permit application as required by the Executive Secretary under this paragraph, then the applicability of this Permit to the individual UPDES permittee is automatically terminated at the end of the day specified for application submittal
- 2 3 2 Any discharger authorized by this Permit may request to be excluded from the coverage of this Permit by applying for an individual permit. In such cases, the discharger shall submit an individual application m accordance with the requirements of Utah Administrative Code ("UAC") R317-8-3 9(2)(b)2 with reasons supporting the request, to the Executive Secretary at the address for the Division of Water Quality in Part 5 11 of this Permit. The request may be granted by issuance of any individual permit or an alternative general permit if the reasons cited by the Permittee are adequate to support the request.
- 2 3 3 When an individual UPDES permit is issued to a discharger who would otherwise be subject to this Permit, or the discharger is authorized to discharge under an alternative UPDES general permit, the applicability of this Permit to the individual UPDES permittee is automatically termmated on the effective date of the individual permit or the date of authorization for coverage under the alternative general permit, whichever the case may be When an individual UPDES permit is denied to a discharger otherwise subject to this Permit or the discharger is denied for coverage under an alternative UPDES general permit, the applicability of this Permit to the

1

Utah Division of Water Quality General Pennit No UTR 300000 Part 2

individual UPDES permittee is automatically terminated on the date of such denial, unless otherwise specified by the Executive Secretary

2.4 <u>Continuation of the Expired General Permit</u> This Permit expires on June 30, 2013 However, an expired general permit shall continue in force and effect after the expiration date until a new general permit is issued. If a discharger was eligible for and permitted under this Permit, and this Permit expires, the discharger will remain covered by this Permit until the earliest of

- 2.4.1 One himdred twenty days after re-issuance or replacement of this Permit,
- 2.4.2 The discharger submits a Notice of Termination in compliance with this Permit,
- 2 4 3 The discharger is issued an individual permit for the project s discharges, or
- 2 4 4 180 days after the Executive Secretary makes a formal decision not to reissue or replace this Permit, at which time the discharger must seek coverage imder an alternative general permit or an individual permit

PART 3 STORM WATER POLLUTION PREVENTION PLANS

31 SWPPP required A Storin Water Pollution Prevention Plan ("SWPPP") shall be developed for each construction project covered by this Permit prior to submission of an NOI A SWPPP shall be prepared in accordance with good engineering practices. It is recommended that the plan be signed by a Professional Engineer (P E) registered in the State The SWPPP shall identify potential sources of pollution which may reasonably be expected to affect the quality of storm water discharges from the construction site, shall describe and ensure the implementation of practices which will be used to reduce the pollutants m storm water discharges associated with construction activity at the construction site and to assure compliance with the terms and conditions of this Perinit, and shall otherwise meet the requirements of this Permit As a condition of this Permit, Permittees must implement the SWPPP as written or modified from commencement of construction until final stabilization is complete and an NOT has been submitted (This provision is not intended to address the potential liability of a Permittee or other current or former operator or owner in the event of a discharge of pollution from the property of an individual homeowner)

3.2 SWPPP Location, Availability, Revision, and Signature

- 3 2 1 <u>SWPPP Location</u> A copy of the SWPPP, including a copy of the Permit, the NOI and any amendments to the SWPPP, shall be retained on-site at the site which generates the storm water discharge in accordance with this Part 3 2 and with Part 5 10 of this Permit If the site is inactive or does not have an onsite location adequate to store the copy of the SWPPP reasonable local access to a copy of the SWPPP during normal working hours (e g, at a local library or government building), must be provided and the location of the SWPPP, along with a contact phone number, shall be posted on site at a publicly-accessible location. For linear construction projects, such as pipelines, the posted notice shall be located at a publicly accessible location near the active part of the construction project.
- 3 2 2 <u>SWPPP Availability</u> The Permittee shall make the copy of the SWPPP that is kept on site or kept locally available for review upon request to the Executive Secretary, EPA, other local agencies approving sediment and erosion plans, grading plans, or storm water management plans, local government officials, or to the operators of a municipal separate storm sewer receiving discharges from the site. The Permittee need not provide a free copy of the SWPPP to these entities upon request, but if it chooses not to do so, it shall keep two copies of the SWPPP, in its entirety, and shall allow these entities to borrow one to make a copy at their own expense
- 3 2 3 <u>Original SWPPP</u> If requested by the Executive Secretary, the onginal SWPPP, including any previous versions requested, shall be provided to the Executive Secretary within five working days of the request The original provided shall be signed in accordance with Part 5 16 of this Permit
- 3 2 4 <u>SWPPP Availability to the Public</u> The Permittee shall also make a copy of the SWPPP available to the public to review at reasonable times during regular business hours Advance notice by the public of the desire to view the SWPPP may be required, not to exceed two working days The Permittee need not provide a free copy of the SWPPP to members of the public, but if it chooses not to do so, it shall

keep two copies of the SWPPP, in its entirety, and shall allow members of the public to borrow one to make a copy at their own expense

- 3 2 5 <u>Compelled Revisions</u> The Executive Secretary, or an authorized representative of the Executive Secretary, may notify the Permittee (co Permittees) at any time that the SWPPP does not meet one or more of the minimum requirements of this Part 3 Such notification shall identify those provisions of the Permit which are not being met by the SWPPP, and identify which provisions of the SWPPP require modifications in order to meet the minimum requirements of this Part 3 Within 7 days of such notification from the Executive Secretary, (or as otherwise provided by the Executive Secretary), or authorized representative, the Permittee shall make the required changes to the SWPPP and shall submit to the Executive Secretary a written certification that the changes have been made The Executive Secretary may take appropriate enforcement action for the period of time the Permittee was operating under a SWPPP that did not meet the minimum requirements of the Permit
- 3 2 6 All SWPPPs must be signed and certified in accordance with Part 5 16 of this Permit

3 3 Keeping SWPPPs Current

- 3 3 1 The Permittee shall amend the SWPPP whenever there is a change in design, construction, operation, or maintenance, which has a significant effect on the discharge of pollutants to the waters of the State and which has not otherwise been addressed in the SWPPP
- 3 3 2 The Permittee shall amend the SWPPP whenever inspections or myestigations by site operators, local, state, or federal officials indicate the SWPPP is proving ineffective in eliminating or significantly minimizing pollutants from sources identified under Part 3 5 1 of this Permit, or is otherwise not achieving the general objectives of controlling pollutants m storm water discharges associated with construction activity
- 3 3 3 The Permittee shall amend the SWPPP whenever a new owner/operator becomes responsible for implementing all or part of the SWPPP, as further described m Part 3 4 and Part 4 3 of this Permit
- 3 3 4 The following records of activities shall be maintained as part of the SWPPP
 - a Dates when major grading activities occur,
 - b Dates when construction activities temporarily or permanently cease on a portion of or all of the site, and
 - c Dates when stabilization measures are initiated
- 3 3 5 Once an area has been finally stabilized, the Permittee may identify this area m the SWPPP and no further SWPPP or inspection requirements shall apply to that area
- 3.4 <u>More than one Permittee</u> A SWPPP may identify more than one Permittee and may specify the responsibilities of each Permittee by task, area, and/or timing Permittees may coordinate and prepare more than one SWPPP to accomplish this However, in the event there is a requirement under the SWPPP for which responsibility is ambiguous or is not included in the SWPPP(s), each Permittee shall be responsible for implementation of that requirement Each Permittee is also responsible for assuring that its activities do not render another Permittee's controls ineffective

Utah Division of Water Quality General Permit No UTR 300000 Part 3

- 3.5 <u>Contents of SWPPP</u> The SWPPP shall include the following items
 - 3 5 1 <u>Site Description</u> Each SWPPP shall provide a description of pollutant sources and other information as indicated
 - a A description of the nature of the construction activity,
 - b A description of the intended sequence of major activities which disturb soils for major portions of the site (e g grubbing, excavation, grading, utilities, and infrastructure installation),
 - c Estimates of the total area of the site and the total area of the site that is expected to be disturbed by excavation, grading, or other activities, including areas for construction support,
 - d An estimate of the runoff coefficient of the site after construction activities are completed and existing data describing the soil or the quality of any discharge from the site,
 - e A general location map (e g portion of a city or county map or similar scale) and a site map indicating
 - 1) drainage patients and approximate slopes anticipated after major grading activities,
 - construction boundaries and a description of existing vegetation prior to grading activities,
 - 3) areas of soil disturbance, and areas of no disturbance,
 - 4) the location of major structures and nonstructural controls identified in the SWPPP,
 - 5) Locations of areas used for construction support,
 - 6) the location of areas where stabilization practices are expected to occur,
 - 7) the location of surface waters (including wetlands), and
 - 8) locations where storm water is discharged or will discharge to a surface water,
 - f A description of any discharge associated with industrial activity other than construction at the site (including storm water discharges from dedicated portable asphalt plants and dedicated portable concrete plants), whether or not those discharges are covered by the Permit and the location of that activity,
 - g The name of the receiving water(s), and aerial extent of wetland acreage at the site, and
 - h A copy of this Permit
 - 3 5 2 <u>Controls</u> The SWPPP shall employ best management practices to control pollutants in storm water discharges Each plan shall include a description of appropriate controls and measures that will be implemented during construction activity and while the site is unstabilized The plan must clearly describe for each major activity identified in Part 3 5 1(b) appropriate control measures and the timing during the construction process that the measures will be implemented The description and implementation of controls shall address the following minimum components a Erosion and Sediment Controls
 - 1) Short and Long Term Goals and Criteria
 - A) The construction-phase erosion and sediment controls should be designed to retain sediment on site to the maximum extent

practicable

- B) All control measures must be properly selected, installed, and maintained in accordance with the manufacturer's specifications and good engineering practices If periodic inspections or other information indicates a control has been used inappropriately, incorrectly, or is ineffective the Permitiee must replace or modify the control for site situations
- C) If sediments escape the construction site, off-site accumulations of sediment must be removed at a frequency sufficient to mimmize the possibility of offsite impacts such as fugitive sediments washing into storm sewers by the next rain or posing a safety hazard to users of public streets
- D) Sediment must be removed from sediment traps or sedimentation ponds when design capacity has been reduced by 50%
- E) Litter, construction debris, and construction chemicals exposed to storm water shall be picked up prior to anticipated storm events (e g forecasted by local weather reports), or otherwise prevented from becoming a pollutant source for storm water discharges (e g screening outfalls, picked up daily, etc)
- F) Offsite material storage areas (also including overburden and stockpiles of dirt, etc.) used solely by the Permitted project are considered a part of the project and, unless a Permittee submits a separate NOI for such areas or they are subject to a separate UPDES permit, they shall be addressed in the SWPPP
- 2) <u>Stabilization Practices</u> A description of existing interim and permanent stabilization practices, including site-specific scheduling of the implementation of the practices SWPPPs should ensure that existing vegetation is preserved where attainable and that disturbed portions of the site are stabilized. Stabilization practices may include temporary seeding, permanent seeding, mulching, geo-textiles, sod stabilization, vegetative buffer strips, protection of trees, preservation of mature vegetation, and other appropriate measures. Use of impervious surfaces for stabilization should be avoided. Except as provided in paragraphs (A) and (B) below (Parts 3 5 2(a)(2)(A) and (B)), stabilization measures shall be initiated as soon as practicable in portions of the site where construction activities have temporarily or permanently ceased, but in no case more than 14 days after the construction activity in that portion of the site has temporarily or permanently ceased.
 - A) Where the initiation of stabilization measures by the 14th day after construction activity temporarily or permanently ceases is precluded by snow cover or frozen ground conditions, stabilization measures shall be initiated as soon as practicable
 - B) Where construction activity on a portion of the site is temporarily ceased, and earth disturbing activities will be resumed within 21 days, temporary stabilization measures do not have to be initiated on that portion of the site
- 3) Structural Practices The permittee shall provide a description of

Page 13

1

structural practices that divert flows from exposed soils, store flows or otherwise limit runoff and the discharge of pollutants from exposed areas of the site to the degree attainable Such practices may include silt fences, earth dikes, drainage swales sediment traps, check dams, subsurface drains, pipe slope drains, level spreaders, storm drain inlet protection, rock outlet protection reinforced soil retaining systems, gabions, and temporary or permanent sediment basins Placement of structural practices in floodplains should be avoided to the degree attainable The installation of these devices may be subject to Section 404 of the federal Clean Water Act ("CWA")

- A) 10 Acre Sediment Basin Requirement Where attainable, for common drainage locations that serve areas with 10 or more acres disturbed at one time, the Permittee shall provide a temporary (or permanent) sediment basin that provides storage for a 10 year, 24 hour storm event, a calculated volume of runoff for disturbed acres drained, or equivalent control measures, until final stabilization of the site Where calculations are not performed, a sediment basin providing 3 600 cubic feet of storage per acre drained (a 1 irich storm event), or equivalent control measures, shall be provided where attainable until final stabilization of the site The required sizing of the sediment basin does not include flows from offsite areas and flows from onsite areas that are either undisturbed or have undergone final stabilization where such flows are diverted around both the disturbed area and the sediment basin In determining whether installing a sediment basin is attainable, factors such as site soils, slope, and available area on site shall be considered For drainage locations which serve 10 or more disturbed acres at one time and where a temporary sediment basin or equivalent controls is not attainable, smaller sediment basins and/or sediment traps (with comparable storage) must be used, or
 - (1) at a minimum, equivalent controls in silt fences, vegetative buffer strips, sod mulch, geo-textiles, stepped check dams, pipe slope drains or other sediment or erosion controls are required for all erodible areas, down slope boundaries of the construction area and side slope boundaries deemed appropriate as dictated by individual site conditions, or
 - (11) it can be shown that site meteorological conditions do not warrant equivalent storage during the time period the 10acres are destabilized (little or no chance of precipitation for the period of surface destabilization)
- B) <u>Less Than 10 Acre BMP Requirement</u> For drainage locations serving less than 10 acres, sediment basins and/or sediment traps should be used At a minimum, silt fences, vegetative buffer strips or equivalent sediment controls are required for all down slope boundaries (and those side slope boundaries deemed appropriate as dictated by individual site conditions) of the construction area unless a sediment basin providing storage for

Page 14

1

Utah Division of Water Quality General Pemut No UTR 300000 Part 3

3,600 cubic feet of storage per acre drained is provided

- b Storm Water Management Description of measures that will be installed during the construction process to control pollutants in storm water discharges that will occur after construction operations have been completed Structural measures should be placed on upland soils to the degree attainable The installation of these devices may be subject to Section 404 of the CWA This Permit only addresses the installation of storm water management measures, and not the ultimate operation and maintenance of such structures after the construction activities have been completed and the site has imdergone final stabilization Permittees are only responsible for the installation and maintenance of storm water management measures pnor to final stabilization of the site, and are not responsible for maintenance after storm water discharges associated with construction activity have been eliminated from the site However, post-construction storm water BMPs that discharge pollutants from point sources once construction is completed, may in themselves, need authorization under a separate UPDES permit and are likely regulated under local municipal requirements
 - 1) Such measures may include
 - A) storm water detention structures (including wet ponds),
 - B) storm water retention structures,
 - C) flow-atienuation by use of open vegetated swales and natural depressions
 - D) infiltration of runoff onsite, and
 - E) sequential systems (which combine several practices)
 - The SWPPP shall include an explanation of the technical basis used to select the practices to control pollution where flows exceed predevelopment levels
 - 3) Storm water velocity dissipation devices shall be placed at discharge locations and along the length of any outfall channel for the purpose of providing a non-erosive flow velocity from the structure to a water course so that the natural physical and biological characteristics and functions are maintained and protected The objective is to minimize significant changes in the hydrological regime of the receiving water
- c <u>Other Controls</u>
 - <u>Waste Disposal</u> No solid materials, including building materials shall be discharged to waters of the State, except as authorized by a federal CWA Section 404 permits
 - 2) <u>Off-site Tracking</u> Off-site vehicle tracking of sediments and the generation of dust shall be mimmized
 - 3) <u>Septic, Waste, and Sanitary Sewer Disposal</u> The SWPPP shall ensure and demonstrate compliance with applicable State and/or local waste disposal, sanitary sewer or septic system regulations
 - 4) <u>Exposure to Construction Matenals</u> The SWPPP shall include a narrative description of practices to reduce pollutants from construction related materials which are stored onsite including an inventory of construction materials (including waste materials), storage practices to minimize exposure of the materials to storm water, and spill prevention and

response

- 5) <u>Support Areas</u> A description of pollutant sources from areas other than construction (including storm water discharges from dedicated portable asphalt plants and dedicated portable concrete plants), and a description of controls and measures that will be implemented at those sites
- d Other Laws and Requirements
 - 1) <u>Local Storm Water Control Requirements</u> This Permit does not relieve the Permitiee from compliance with other laws effecting erosion and sediment control or requirements for the permanent storm water system Where applicable compliance efforts to these requirements should be reflected in the SWPPP
 - 2) <u>Threatened or Endangered Species & Historic Properties</u> This Permit does not relieve the Permitiee from compliance with Federal or State laws pertaining to threatened or endangered species or historic properties Where applicable compliance efforts to these laws should be reflected in the SWPPP
 - 3) <u>Variance of Permit Requirements</u> Dischargers seeking alternative permit requirements shall submit an individual UPDES permit application in accordance with applicable law to the address indicated in Part 5 11 of this Permit along with a description of why requirements in this Permit should not be applicable as a condition of a UPDES permit
- 3 5 3 <u>Maintenance</u> All vegetation, erosion and sediment control measures and other protective measures identified in the SWPPP shall be maintained in effective operating condition. A description of procedures to ensure the timely maintenance of these measures shall be identified in the SWPPP. Maintenance needs identified in inspections or by other means shall be accomplished before the next anticipated storm event, or as necessary to maintain the continued effectiveness of storm water controls. If maintenance prior to the next anticipated storm event is impracticable, maintenance must be scheduled and accomplished as soon as practicable.

354 Inspections

- a Inspections must be conducted in accordance with one of the two schedules listed below The Permitiee shall specify in its SWPPP which schedule it will be following
 - 1) At least once every 7 calendar days, or
 - 2) At least once every 14 calendar days and within 24 hours of the end of a storm event of 0.5 inches or greater
- b Inspection frequency may be reduced to at least once every month if
 - 1) The entire site is temporarily stabilized, or
 - 2) Runoff is unlikely due to winter conditions (e g, site is covered with snow, ice, or the ground is frozen)
- c The inspection requirement is waived until one month before thawing conditions are expected to result in a discbarge if all of the following requirements are met
 - 1) The project is located in an area where frozen conditions are anticipated to continue for extended periods of time (i e, more than one month),

ł

Utah Division of Water Quality General Permit No UTR 300000 Part 3

- 2) Land disturbance activities have been suspended, and
- 3) The beginning and ending dates of the waiver period are documented in the SWPPP
- d Inspections must be conducted by qualified personnel (provided by the operator or cooperatively by multiple operators) "Qualified personnel" means a person knowledgeable in the principles and practice of erosion and sediment controls who possesses the skills to assess conditions at the construction site that could impact storm water quality and to assess the effectiveness of any sediment and erosion control measures selected to control the quality of storm water discharges from the construction activity
- e Inspections must include all areas of the site disturbed by construction activity and areas used for storage of materials that are exposed to precipitation Inspectors must look for evidence of, or the potential for, pollutarits entering the storm water conveyance system Sedimentation and erosion control measures identified m the SWPPP must be observed to ensure proper operation Discharge locations must be inspected to ascertain whether erosion control measures are effective in preventing significant impacts to waters of the United States where accessible Where discharge locations are inaccessible, nearby downstream locations must be inspected to the extent that such inspections are practicable Locations where vehicles enter or exit the site must be inspected for evidence of off-site sediment tracking
- f Inspections at construction sites involving utility line installation, pipeline construction, and other long, narrow, linear construction may be more limited if the areas described in Part 3 5 4(e) of this Permit are not reasonably accessible or could cause additional disturbance of soils and increase the potential for erosion. In these circumstances, controls must be inspected at the same frequency as other construction projects, but personnel may instead inspect controls along the construction site for 0 25 mile above and below each access point where a roadway, undisturbed right-of-way, or other similar feature intersects the construction site and allows access to the areas described above. In the absence of evidence to the contrary, the conditions of the controls along each inspected 0 25 mile segment may be considered as representative of the condition of controls along that reach extending from the end of the 0 25 mile segment to either the end of the next 0 25 mile inspected segment, or to the end of the project, whichever occurs first
- g For each inspection required above, the inspector must complete an inspection report At a minimum, the inspection report must include
 - 1) The inspection date,
 - 2) Names, titles, and qualifications of personnel making the inspection,
 - 3) Weather information for the period since the last inspection (or since commencement of construction activity if the first inspection) including a best estimate of the beginning of each storm event, duration of each storm event, approximate amount of rainfall for each storm event (in inches), and whether any discharges occurred,
 - 4) Weather information and a description of any discharges occurring at the time of the inspection,
 - 5) Location(s) of discharges of sediment or other pollutants from the site,

Utah Division of Water Quality General Penmt No UTR 300000 Part 3

- 6) Location(s) of BMPs that need to be maintained,
- 7) Location(s) of BMPs that failed to operate as designed or proved inadequate for a particular location,
- 8) Location(s) where additional BMPs are needed that did not exist at the time of inspection, and
- 9) Corrective action required including any changes to the SWPPP necessary and implementation dates

h A record of each inspection and of any actions taken in accordance with this Part 3 must be retained as part of the SWPPP for at least three years from the date that permit coverage expires or is terminated The inspection reports must identify any incidents of non-compliance with the permit conditions Where a report does not identify any incidents of non-compliance, the report must contain a certification that the construction project or site is in compliance with the SWPPP and this permit The report must be signed in accordance with Part 5 16 of this Permit

355 <u>Non-Storm Water Discharges</u> Except for flows from fire fighting activities, sources of non-storm water listed in Part 1 5 of this Permit that are combined with storm water discharges associated with industrial activity must be identified in the SWPPP The SWPPP shall identify and ensure the implementation of appropriate pollution prevention measures for the non-storm water component(s) of the discharge

PART 4 TERMINATION/CHANGES IN OWNER/OPERATOR FOR SITE

- 4 1 <u>Termination of Coverage</u> Permittees may or shall (as specified) terminate coverage under this Permit under the following conditions
 - 4 I 1 <u>Completion of construction activities and site stabilization</u> Permittees shall terminate coverage under this Permit by submitting a Notice of Termination ("NOT") withm thirty days after completion of all construction activities, completion of final stabilization of all areas of the site as defined in Part 6 15 The NOT shall be submitted on the form specified by the Executive Secretary
 - 4 1 2 <u>Partial completion of construction activities and site stabilization</u> A Permittee who, as specified in Part 3 4 of this Permit, is identified in the SWPPP as responsible for a specific area may terminate coverage under this Permit by submitting an NOT within thirty days after completion, for that area, of all construction activities, completion of final stabilization of all areas for which the Permittee was responsible and that were disturbed The NOT shall be submitted on the form specified by the Executive Secretary and the Permittee shall indicate on the form that it is a partial NOT
 - 413 <u>New responsible owner/operator</u> A Permittee may terminate its coverage under this Permit by submitting an NOT if another party (or parties) assumes responsibility for all remaining SWPPP requirements Termination of the Permittee's responsibilities under the SWPPP will not be final until the other party (or parties) submits an NOI If the new responsible owner/operator fails to submit an NOI, the Permittee may complete termination by demonstrating to the Executive Secretary that it has entered into contracts that obligate the new owner/operator to undertake all remaining responsibilities under the SWPPP
- 4.2 <u>Conditions for Submitting an NOT</u> A Permittee may not submit an NOT unless it meets the requirements specified in Part 4.1 Appropriate enforcement actions may be taken if an NOT is submitted without these requirements having been met, and the Permittee may also continue to be responsible for any Permit violations
- 4.3 <u>Updating the SWPPP</u> If an NOT is submitted under Part 4.1.2 or 4.1.3, the SWPPP shall be updated by the remaining Permittee(s) to meet the requirements of Part 3.4 of the Permit

Page 19

PART 5 STANDARD PERMIT CONDITIONS

51 Duty to Comply

- 5 1 1 The Permittee must comply with all conditions of this Permit Any Permit noncompliance constitutes a violation of the Act and is grounds for enforcement action, for Permit termination, revocation and reissuance, or modification, or for denial of a permit renewal application
- 512 Penahies for Violations of Permit Conditions

a <u>Violations</u> The Act provides that any person who violates the Act, Utah wastewater rules, or conditions of a permit issued under the Act is subject to a fine of \$10,000 per day

b <u>Willful or Gross Negligence</u> The Act provides that any person who discharges a pollutant to waters of the State as a result of criminal negligence or who intentionally discharges is criminally liable and is subject to imprisonment and a fine of up to \$50 000 per day Utah Code Ann § 19 5-115

c <u>False Statements</u> The Act provides that any person who knowingly makes any false material statement, representation, or certification m any application, record, report, plan, or other document filed or required to be maintained under the Act, the rules, or this Permit, or who knowingly falsifies, tampers with or renders inaccurate, any monitoring device or method required to be maintained under the Act shall upon conviction, be punished by a fine of not more than \$10 000 or by imprisonment for 6 months or by both Utah Code Ann § 19-5-115(4)

- 5.2 <u>Dut y to Reapply</u> If a Permittee wishes to continue an activity regulated by this permit after the expiration date of this permit, it must apply for and obtain a new permit except as provided in Part 2.4 of this Permit
- 5.3 <u>Need to halt or reduce activity not a defense</u> It shall not be a defense for a Permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity m order to maintain compliance with the conditions of this Permit
- 5.4 <u>Duty to Mitigate</u> The Permittee shall take all reasonable steps to minimize or prevent any discharge in violation of this Permit which has a reasonable likelihood of adversely affecting human health or the environment
- 5.5 <u>Duty to Provide Information</u> The Permittee shall furnish to the Executive Secretary or an authorized representative, within a reasonable time, any information which is requested to determine compliance with this Permit The Permittee must also furnish to the Executive Secretary or an authorized representative copies of records to be kept by this Permit
- 5.6 <u>Other Information</u> When the Permittee becomes aware that he or she failed to submit any relevant facts or submitted incorrect information in the Notice of Intent or m any other report to the Executive Secretary, he or she shall promptly submit such facts or information

Page 21

Utah Division of Water Quality General Penmt No UTR 300000 Part 5

- 5 7 <u>Oil and Hazardous Substance Liability</u> Nothing in this Permit shall be construed to preclude the institution of any legal action or relieve the Permittee from any responsibilities, liabilities, or penalties to which the Permittee is or may be subject under the "Act"
- 5.8 <u>Property Rights</u> The issuance of this Permit does not convey any property rights of any sort, nor any exclusive privileges, nor does it authorize any injury to private property nor any invasion of personal rights, nor any infringement of Federal, State or local laws or regulations
- 59 <u>Severability</u> The provisions of this Permit are severable, and if any provision of this Permit, or the application of any provision of this Permit to any circumstance, is held invalid, the application of such provision to other circumstances and the remainder of this Permit shall not be affected thereby

510 Record Retention

- 5 10 1 The Permittee shall retain copies of SWPPPs and all reports required by this Permit, and records of all data used to complete the Notice of Intent to be covered by this Permit, for a period of at least three years from the date that the site is finally stabilized This period may be extended by request of the Executive Secretary at any time
- 5 10 2 After final stabilization of the construction site is complete, the SWPPP is no longer required to be maintained on site, but may be maintained by the Permittee(s) at its pnmary headquarters Access to the SWPPP will continue as described in Part 3 2, however
- 5 11 <u>Addresses</u> All written correspondence under this permit shall be directed to the Division of Water Quality at the following address

Department of Environmental Quality Division of Water Quality 288 North 1460 West PO Box 144870 Sah Lake City, Utah 84114-4870

5 12 State Laws

- 5 12 1 Nothing in this Permit shall be construed to preclude the institution of any legal action or relieve the Permittee from any responsibilities, liabilities, or penalties established pursuant to any applicable State law or regulation under authority preserved by Utah Code Ann § 19-5-117
- 5 12 2 No condition of this Permit shall release the Permittee from any responsibility or requirements under other environmental statutes or regulations
- 5 13 <u>Proper Operation and Maintenance</u> The Permittee shall at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) which are installed or used by the Permittee to achieve compliance with the conditions

of this Permit and with the requirements of SWPPPs Proper operation and maintenance also includes adequate laboratory controls and appropriate quality assurance procedures Proper operation and maintenance requires the operation of backup or auxiliary facilities or similar systems, installed by a Permitiee only when necessary to achieve compliance with the conditions of the Permit

5 14 <u>Inspection and Entry</u> The Permitiee shall allow, upon presentation of credentials, the Executive Secretary or an authorized representative

- 5 14 1 To enter upon the Permittee's premises where a regulated facility or activity is located or conducted or where records must be kept under the conditions of this Permit,
- 5 14 2 Have access to and copy at reasonable times, any records that must be kept under the conditions of this Permit
- 5 14 3 Inspect at reasonable times any facilities, equipment (including montioring and control equipment) practices, or operations regulated or required under this Permit, and
- 5 14 4 Sample or monitor at reasonable times, for the purposes of assuring permit compliance or as otherwise authorized by law, any substances or parameters at any location
- 515 Reopener Clause
 - 5 15 1 <u>Reopener Due to Water Quality Impacts</u> If there is evidence indicating that the storm water discharges authorized by this Permit cause, have the reasonable potential to cause or contribute to, a violation of a water quality standard, the discharger may be required to obtain an individual permit or an alternative general permit in accordance with Part 2 3 of this Permit or the Permit may be modified to include different limitations and/or requirements
 - 5 15 2 <u>Reopener Guidelines</u> Permit modification or revocation will be conducted according to UAC R317-8-5 6 and UAC R317-8-6 2
 - 5 15 3 <u>Permit Actions</u> This Permit may be modified revoked and reissued, or terminated for cause The filing of a request by the Permitiee for a Permit modification, revocation and reissuance, or termination, or a notification of plaimed changes or anticipated noncompliance does not stay any Permit condition
- 5 16 Signatory Requirements
 - 5 16 1 All Notices of Intent, SWPPPs, reports, certifications or information submitted to the Executive Secretary, or that this Permit requires be maintained by the Permittee, shall be signed as follows
 - a All Notices of Intent shall be signed as follows
 - For a corporation by a responsible corporate officer For the purpose of this section, a responsible corporate officer means a president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision-making functions for the corporation or the manager of one or more manufacturing, production or operating facilities employing more than 250 persons or having gross annual sales or expenditures exceeding \$25,000,000 (in second-quarter 1980 dollars) if authority to sign

1

documents has been assigned or delegated to the manager in accordance with corporate procedures,

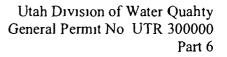
- 2) For a partnership of sole proprietorship by a general partner or the proprietor, respectively, or
- 3) For a municipality, State, Federal, or other public agency by either a principal executive officer or ranking elected official For purposes of this section, a principal executive officer of a Federal agency includes (1) the chief executive officer of the agency, or (2) a senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency (e.g. Regional Administrators of EPA)
- b All reports required by the Permit and other information requested by the Executive Secretary or by an authorized representative of the Executive Secretary shall be signed by a person described above or by a duly authorized representative of that person A person is a duly authorized representative only if
 - 1) The authorization is made in writing by a person described above and submitted to the Executive Secretary, and
 - 2) The authorization specifies either an individual or a position having responsibility for overall operation of the regulated site, facility or activity, such as the position of manager, operator superintendent, or position of equivalent responsibility or an individual or position having overall responsibility for environmental matters for the company (A duly authorized representative may thus be either a named individual or any individual occupying a named position)
- c Certification Any person signing documents under this Part 5 16 shall make the following certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information the information submitted is to the best of my knowledge and belief true accurate and complete I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment for knowing violations

5 16 2 If a document is to be signed electronically, the Division's rules regarding electronic transactions govern

PART 6 DEFINITIONS

As used in this Permit


- 61 "Act" means the "Utah Water Quality Act"
- 6 2 "Best Management Practices' ("BMPs') means schedules of activities, prohibitions of practices, maintenance procedures, and other management practices to prevent or reduce the discharge of pollutants to waters of the State BMPs also include treatment requirements, operating procedures, and practices to control plant site runoff, spillage or leaks, sludge or waste disposal or drainage from raw material storage
- 6 3 Common plan of development or sale" means one plan for development or sale, separate parts of which are related by any announcement, piece of documentation (including a sign, public notice or hearing, sales pitch, advertisement, drawing, plat, blueprint, contract, permit application, zoning request, computer design, etc.), physical demarcation (including boundary signs, lot stakes, surveyor markings, etc.), or continuing obligation (including contracts) that identify the scope of the project. A plan may still be a common plan of development or sale even if it is taking place in separate stages or phases, is planned in combination with other construction activities, or is implemented by different owners or operators.
- 6.4 'Commencement of Construction' means the initial disturbance of soils associated with clearing, grading, or excavating activities or other construction activities
- 6 5 Construction activity" means soil disturbing activities such as clearing, grading, and excavating of land The term also includes construction support activities
- 6 6 Construction support activities" means construction material and equipment storage and maintenance, concrete or asphalt batch plants, except as provided m Part 1 4 3 of this Permit
- 67 Control Measure" refers to any Best Management Practice or other method used to prevent or reduce the discharge of pollutants to waters of the State
- 68 'CWA' means Clean Water Act or the Federal Water Pollution Control Act
- 69 "Dedicated portable asphalt plant" means a portable asphalt plant that is located on or contiguous to a construction site and that provides asphalt only to the construction site that the plant is located on or adjacent to
- 6 10 'Dedicated portable concrete plant" means a portable concrete plant that is located on or contiguous to a construction site and that provides concrete only to the construction site that the plant is located on or adjacent to
- 611 Discharge "when used without qualification, means the discharge of a pollutant

Page 24

Utah Division of Water Quality General Perinit No UTR 300000 Part 6

- 6 12 "EPA" means the United States Environmental Protection Agency
- 6 13 "Eligible" means qualified for authorization to discharge storm water under this general permit
- 6 14 "Executive Secretary" means Executive Secretary of the Utah Water Quality Board
- 6 15 "Final Stabilization" means that all soil disturbing activities at the site have been completed and that a uniform (e g evenly distributed without large bare areas) perennial vegetative cover with a density of 70% of the native background vegetative cover for the area has been established on all unpaved areas and areas not covered by permanent structures, or equivalent permanent stabilization measures (such as the use of nprap, gabions, or geo-textiles) have been employed. In some parts of the country, background native vegetation will cover less than 100% of the ground (e g and areas). Establishing at least 70% of the natural cover of native vegetation meets the vegetative cover criteria for final stabilization. For example, if the native vegetation covers 50% of the ground, 70% of 50% would require 35% total cover for final stabilization. For individual lots in residential construction, final stabilization means that either the homebuilder has completed final stabilization as specified above or the homebuilder has established temporary stabilization including perimeter controls for an individual lot prior to occupation of the home by the homeowner and has obligated the homeowner by contract to complete the requirements for final stabilization within two years
- 6 16 'Indian Country" is defined as in 40 CFR §122 2 to mean
 - 1 All land within the limits of any Indian reservation under the jurisdiction of the United States Government, notwithstanding the issuance of any patent and, including rights-of-way running through the reservation,
 - 2 All dependent Indian communities within the borders of the United States whether within the originally or subsequently acquired territory thereof, and whether within or without the limits of a state, and
 - 3 All Indian allotments, the Indian titles to which have not been extinguished, including rights-of-ways running through the same
- 6 17 "Municipal Separate Storm Sewer System" refers to all separate storm sewers that are owned or operated by the United States, a State, city, town, county, district association, or other public body having jurisdiction over disposal of sewage, industrial wastes, storm water, or other wastes including special districts under State law such as a sewer districts, flood control districts or dramage districts, or similar entity that discharges to waters of the State
- 6 18 "NOI" means notice of intent to be covered by this Permit
- 6 19 "NOT" means notice of termination
- 6 20 "Point Source" means any discernible, confined and discrete conveyance, including but not limited to any pipe ditch, channel, tunnel, conduit, well, discrete fissure, container, rolling stock, concentrated animal feeding operation, landfill leachate collection system,

vessel or other floating craft from which pollutants are or may be discharged This term does not include return flows from irrigated agriculture or agricultural storm water runoff

- 6 21 "Runoff coefficient" means the fraction of total rainfall that will appear at conveyance as runoff
- 6 22 "Site" means the land or water area where any "facility or activity" is physically located or conducted, including adjacent land used in connection with the facility or activity
- 6 23 'Storm water" means storm water runoff snow melt runoff, and surface runoff and drainage
- -6 24 "Storm water discharge associated with industrial activity" is defined in the Utah Administrative Code (UAC) R317-8-3 9(6)(c) & (d) and incorporated here by reference Most relevant to this Permit is UAC R317-8 3 9(6)(d)10, which relates to construction activity including clearing, grading and excavation activities
- 6 25 SWPPP means Storm Water Pollution Prevention Plan referring to the plan required in Part 3 of this Permit
 - 6 26 Total Maximum Daily Load" or "TMDL" means the sum of the individual wasteload allocations (WLAs) for point sources and load allocations (LAs) for nonpoint sources and natural background If a receiving water has only one point source discharger, the TMDL is the sum of that point source WLA plus the LAs for any nonpoint sources of pollution and natural background sources, tributaries, or adjacent segments TMDLs can be expressed m terms of either mass per time, toxicity, or other appropriate measure
 - 6 27 Waters of the State means all streams, lakes, ponds, marshes, water-courses, waterways wells, springs, irrigation systems, drainage systems, and all other bodies or accumulations of water, surface and underground, natural or artificial, public or private, which are contained within, flow throw or border upon this state or any portion thereof, except that bodies of water confined to and retained within the limits of private property, and which do not develop into or constitute a nuisance, or a public health hazard, or a menace to fish and wildlife, shall not be considered to be waters of the state (UAC R317-1-1 31)

f \wp\stornwat\storn water construction permit\sw const finat per package\general construction permit doc

STATE	E OF UTAH, DEPARTMENT OF ENVIRONMENTAL QUALITY, DIVISION OF WATER QUALITY 288 North 1460 West, P O Box 144870, Salt Lake City, Utah 84114-4870
NOT	Notice of Termination (NOT) for Storm Water Discharges Associated with Construction Activity Under the UPDES General Permit No UTRI00000 SEE REVERSE FOR INSTRUCTIONS
	ce of Termination consijutes notice that the operator identified in Section II of this form is no longer authorized to discharge storm water associated with The UPDES program ALL NECESSARY INFORMATION MUST BE PROVIDED ON THIS FORM
1 Permit Information	
	eneral Permit Number
11 Facility Operator Ir	Iformation
Name	Phone
Address	
Cıty	State Zip
III Facility Site/Locati	on Information
Name	
Address	County
Cny	State Zıp
Latitude	Longitude
operator have ceased or construction site where with construction activi State of Utah Water Qu	rtify under penalty of law that either a) all storm water discharges associated with construction activity from the portion of the identified facility where I was an have been eliminated or b) I am no longer an operator at the construction site and a new operator has assumed operational control for those portions of the I previously bad operational control I understand that by submitting this notice of termination I am no longer authorized to discharge storm water associated ty under this general permit and that discharging pollutants in storm water associated with construction activity to waters of the Slate is unlawful under the ality ACI where the discharge is not authorized by a UPDES permit. I also understand that the submittal of this nonce of termination does not release an for any violations of this permit or the Water Quality Act
Print Name	Date
Signature	

Instructions for Completing Notice of Termination (NOT) Form

Who May File A Notice Of Termination (NOT) Form

Permmees who are presently covered under the State issued Utah Pollutant Discharge Elimination System (UPDES) General Storm Water Permit for Construction Activm may submit a nonce of termination (NOT) form when their facilities no longer have any storm water discharges associated with industrial activity as defined in the storm water regulations at UAC R317 8 3 9(b)(c) and (d) or when lhey are no longer the operator of the facilities

For construction activities elimination of all storm water discharges associated with industrial activity occurs when disturbed soils at the construction site have been finally stabilized and temporary erosion and sediment control measures have been removed or will be removed at an appropriate time or that all storm water discharges associated with construction activity from the construction site that are authorized by a UPDES general permit have otherivise been eliminated. Final stabilization means that all soil disturbing activities at the sue have been completed and that a uniform perennial v cgetative cover with a density of 70% of the cover for unpaved areas and areas not covered by permanent structures has been established or equivalent permanent stabilization measures (such as the use of riprap-gabions or geotextiles) have been employed

Send this form to the following address

Division of Water Quality 288 North 1460 West P O Box 144870 Salt Lake City Utah 84114 4870

Completing the Form

Type or print using upper case leners in the appropriate areas only. Please place each character between the marks. Abbreviate if necessary to stay within the number of characters allowed for each item. Use only one space for breaks between words but not for punctuation marks unless they are needed to clarify your response. If you have any questions about this form call the Division of Water Quality at (801) 538 6146.

Section] Permil Information

Enter the existing UPDES Storm Water General Permit number assigned to the facility or sue identified in Section III If you do not know the permit number contact the Division of Water Quality at (801) 538 6146

Indicate your reason for submitting this Notice of Termination by checking the appropriate box

- If there has been a change of operator and you are no longer the operator of the facility or site identified in Section III Check the corresponding box
- If all storm water discharges at the facility or site identified in Section III have been terminated check lhe corresponding box

Section II Facility Operator Information

There may be more than one operator for a construction project. This form must be filled out and submitted by each of the operators listed on the notice of intent (NOI) that was submitted for receiving coverage under this permit. In this section give the legal name of the person firm public organization or any other entiry that is filed as an operator at the facility or site described in this application that is desiring to terminate coverage. The name of the operator may or may not be the same name as the facility. The operator of the facility is the legal entity which controls the facility is operation of construction activity) or a portion of it rather that the plant or sue manager of the finished or rehabilitated facility. Do not use a colloquial name. Enter the complete address and telephone number of the operator

Section III Facility/Sile Location Information

Enter the facility s or sue s official or legal name and complete address including city state and ZIP code and the latitude and longitude of the facility to the nearest 15 seconds of the approximate center of the site. It is preferred that the location address be the same as that which the site used in the submission of the NOI

Section IV Certification

State statues provide for severe penalties for submitting false information on this application form. State regulations require this application to be signed as follows

For a corporation by a responsible corporate officer which means (1) president secretary treasurer or vice president of the corporation in charge of a principal busmess function or any other person who performs similar policy or decision making functions or (11) the manager of one or more manufacturing production or operating facilities employing more than 250 persons or having gross annual sales or expenditures exceeding \$25 million (in second quarter 1980 dollars) if authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures

For a parinership of sole proprietorship by a general parinet or the proprietor respectively or

For o municipality Store Federal or other public facility by either a principal executive officer or ranking elected official

	STA	TE OF UTAH, DEPARTMENT OF ENVIRONMENTAL QUALITY, DIV 288 North 1460 West, P O Box 144870, Salt Lake City, Utah 84114											
	Notice of Intent (NOI) for Storm Water Discharges Associated with Construction Activity Under the UPDES General Permit No UTRI00000 SEE REVERSE FOR INSTRUCTIONS												
	UTR100000 issued	Notice of Intent constitutes notice that the party(s) identified in Section I of this form mtends for storm water discharges associated with construction activity m the State of Utah Becom conditions of the permit ALL NECESSARY INFORMATION MUST BE PROVIDED ON	ing a permittee obhgates such discharger to comply										
Ī	I OPERATO	DR INFORMATION											
	Name (Ma	in operator)Phone											
	Address		Status of Owner/Operator										
	City	State	Zıp										
	Contact Pe	rson Phon	e										
		Co permittee)											
	Address		Status of Owner/Operator										
ļ	City	State	Zıp										
	Contact Pe	rson	Phone										
ļ		Co permittee)											
	Address		Status of Owner/Operator										
	City	State	Zıp										
	Contact Pe	rson	Phone										
	Name (3rd	Co permittee)	Phone										
	Address		Status of Owner/Operator										
	City	State	Zıp										
	Contact Pe	rson	Phone										
	Please copy this fo	rm if you have more co permittees than what is allowed on this form											
	IL FACILITY	/ SITE / LOCATION INFORMATION	Is the facility located on Indian Lands?										
	Name		(Y or N)										
	Project No (if any)											
	\ddress	County											
		StateZıp											

INSTRUCTIONS

Notice Of Intent (NOI) For Covered Under the UPDES General Permit Storm Water Discharges From Construction Activities

Who Must File A Notice Of Intent (NOI) Form

State law at UAC R317 8 39 probibits pomt source discharges of storm water from construction activities to a water body(ies) of the State without a Utab Pollutant Discharge Elimination System (UPDES) permit. The operator of s construction activity that bas such a storm water discharge must submit a NOI to obtain coverage under the UPDES Storm Water General Permit If you have questions about whether you need a permit under the UPDES Storm Water program or if you need information as to whether a particular program is administered by EPA or a state agency contact the storm water coordinator at (801) 538-6146

Where To File NOI Form

NOIs wilb fee payment(s) must be sent to the following address

Department of Environmental Quality Division of Water Quality P O Box 144870 Salt Lake City UT 84114-4870

Completing The NOI Form

You must type or print, using upper case letters in the appropriate areas only Please place each character between the marks. Abbreviate if necessary to stay within the number of characters allowed for each item. Use one space for breaks between words but not for punctuation marks unless they are needed to clarify your response. If you have any questions on this form please call the storm water coordinator at (801) 538-6146

Begmning of Coverage

Storm Water General Permits cover a facility quickly avoiding delays therefore coverage is immediate after NOI with submission of the permit fee. The permittee should be aware that though you may not have a permit in band if you have sent in a completed NOI with permit fee you are covered by the conditions in the permit and will be expected to help with these conditions If you wish contact the Division of Water Quality at (801) 58 6146 to receive a generic copy of the permit. After we receive the NOI and the permit fee we will send you an official copy of the permit with your permit number

Permit Fees (MAKE CHECKS PAYABLE TO DIVISION OF WATER QUALITY)

Construction projects arc prorated from the time they begin disturbing ground until the time the disturbed surface is stabilized and the permit is termmated by the permittee with a submittal of a Notice of Termination (NOT) form Fees are prorated al \$8.34 per month of coverage needed except a \$100 minimum EXAMPLE if you need 9 months of coverage 9 x \$8.34 = \$75.06 then you will need to submit the \$100 minimum if 18 months of coverage is needed 18 x \$8.34 = \$150.12 your total fee will be \$150.12 Permit coverages extending beyond the expiration date of the general permit will be extended under the reissued general permit. State or local political subdivisions are exempt from the permit fee. The fee must be received with the NOI before permit coverage is given

General

Facdities within Salt Lake City or Salt Lake County must contact the city or county and notify them of the new permit status for the facdity

SECTION 1 FACILITY OPERATOR INFORMATION

Give the legal name(s) of the person(s) firm(s) public organization(s) or any other entity(ies) that conducts the constinction operation at the facibity or site described in this application. The name of the operator(s) may be the developer the owner the general contractor the design firm the excavation contractor and/or others (e.g. anyone that fits the definition of operator). An operator is anyone that has control over site/project specifications and/or control of day to day operational activities. Do not use a colloquial name. Enter the complete address and telephone number of the operator(s)

Enter the appropriate letter to indicate the legal status of the operator of the facility F = Federal M = Public (other than Fed or State) S = State P = Private

SECTION II FACILITY/SITE LOCATION INFORMATION

Enter the facility s or site s official or legal name and project number (if any) and uplcic street address including city state and ZIP code. If the facility or site lacks a el address indicate the latitude and longitude of the facdity to the nearest 15 seconds of the approximate center of the site.

Indicate whether the facdity is located on Indian Lands

If the facility is located on Indian Lands EPA form 3510-6 should be used and submitted to EPA Region VIII except for facilities on the Navajo Reservation or on the Gosbute Reservation which should submit EPA form 3510-6 to Region IX

SECTION III SITE ACTIVITY INFORMATION

If the storm water discbarges lo a municipal separate storm sewer system (MS4) enter the name of the operator of the MS4 (e.g. municipality name, county name) and the receiving water of the discbarge from the MS4 if it is known (A MS4 is defined as a conveyance or system of conveyances (including roads with drainage systems municipal streets catch basins curbs gutters ditches man made channels or storm drains) that is owned or operated by a state, city town county district association or other pubbc body which is designed or used for collecting or conveying storm water)

SECTION IV TYPE OF CONSTRUCTION

Check each type of construction that applies to this application

SECTION V MANAGEMENT PRACTICES

Check each type of management practices that will be used to control storm water runoff at the job site.

SECTION VI ADDITIONAL INFORMATION REQUIRED

Enter the project start date and the estimated completion date for the entire development plan

Provide an estimate of the total number of acres of the site on which soil will be disturbed (round to the nearest acre)

Indicate whether the storm water pollution prevention plan for the site is in compliance with approved state and/or local sediment and erosion plans permits or storm water management plans

SECTION VD CERTIFICATION

Slate statutes provide for severe penalties for submitting false information on this application form. State regulations require this application to be signed as follows

For a corporation by a responsible corporate officer which means (1) president, secretary treasurer or vice-president of the corporation in charge of a principal business function or any other person who performs similar policy or decision making functions or (ii) the manager of one or more manufacturing production or operating facilities employing more than 250 persons or having gross annual sales or expenditures exceeding 252 million (m second quarter 1980 dollars) if authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures

For a partnership or sole proprietorship by a general pariner or the proprietor or

For a murucipality state Federal, or other public facility by either a principal executive officer or ranking elected official

POLLUTION PREVENTION PLAN

A storm water pollution prevention plan (SWP3) is required to be in band before the NOI can be submitted. It is important to know SWP3 requirements (contained in the permit) even during the design portion of the project. A copy of the permit can be obtained from the Division of Water Quabty Guidance material for developing a SWP3 can be obtained from EPA (NTIS) or copied from EPA material at the Division of Water Quabty.

NOTICE OF TERMINATION (NOT)

A completed Notice of Termination (NOT) form is required to terminate your permit at the end of construction Please complete the NOT form including the project's assigned permit number and return it to the Division of Water Quality Please contact the storm water coordinator at (801) 538 6146 for any questions or for a copy of the NOT form 10/30/97

III SITE ACTIVITY INFORMATION	
Municipal Separate Storm Sewer System (MS4) Operator Name	
eceiving Water BodyHow far to the neare	st water body? ft. miles (circle one)
List the Number of any other UPDES permits at the site	
IV TVPE OF CONSTRUCTION (Check all that apply)	
] [Residential 2 [Commercial 3] Industrial 4 [Road 5]]	Bridge 6 🗆 Utility 7 🗆 Contouring Landscaping
8 D Other (Please hst)	
V BEST MANAGEMENT PRACTICES	
Identify proposed Best Management Practices (BMPs) to reduce pollutants in storm water	discharges (Check all that apply)
I 🗆 Sill Fences 2 🗆 Sediment Pond 3 🗇 Seeding/Preservation of Vegetation 4 🗆 Mi	ulching/Geotextiles 5 🛛 Check Dams 6 🗆 Structural Controls (Berms Ditches etc.)
7	
VI ADDITIONAL INFORMATION REQUIRED	A storm wafer pollution prevention plan has been prepared for this site and is to the best of my knowledge m Compliance with State
Project Start Date Completion Date Estimated Area to be Disturbed	and/or Local Sediment and Erosion Plans and Requirements
(in Acres)(Y or)	N) (A pollution prevention plan is required to be on sand before submittal of the NOI)
for storm water discharges from construction activities I further certify that to the be have been scheduled and detaded in a pollution prevention plan will satisfy requirement coverage under this storm water general permit is contingent upon maintaming eligibilit I also certify under penalty of law that this document and all attachments were prepair signature below in accordance with a system designed to assure that qualified person inquiry of the person or persons who manage the system or those persons directly res- best of my knowledge and belief true accurate, and complete I am aware that there possibility of fine and imprisonment for knowing violations	s of Part J B and Part JIJ of this permit. I understand that continued y as provided for in Part I B red under the direction or supervision of those who have place their nel properly gather and evaluate the mformation submitted Based on my ponsible for gathering the information the information submitted is to the
Print Name (of responsible person for the mam operator from first page)	Date
Signature	
Print Name (of responsible person for the 1st co permittee from first page)	Dale
Signature	
Print Name (of responsible person for the 2nd co permittee from first page)	Date
Signature	
Print Name (of responsible person for 3rd co permittee from first page)	Date
Signature	Amount of Permit Fee Enclosed \$
	<u> </u>

APPENDIX C

STATE WATER QUALITY STANDARDS

_ ~

ς.

1

_ ---

Moulding & Sons

/

7

TABLE 2 14 1 NUMERIC CRITERIA FOR DOMESTIC, RECREATION, AND AGRICULTURAL USES

Parameter	Domestic Source 1C			Recreation and Aesthetics 2A 2B					Agrı - culture 4		
BACTERIOLOGICAL (30-DAY GEOMETF MEAN) (NO)/100 E coli	RIC) ML)	(7) 206	1	.26	20				4		
MAXIMUM (NO)/100 ML)	(7)										
E colı		940	5	76	94(С					
PHYSICAL											
pH (RANGE) Turbidity Incre		6 5-9 0		6 5-9	0	6	5-9	0	6	5-9	0
(NTU)	430			10		10)				
METALS (DISSOL MG/L) (2)	VED, M	AXIMUM									
Arsenic Barium		0 01 1 0							0	1	
Beryllıum Cadmıum Chromıum		<0 004 0 01 0 05							0	01 10 2	
Copper Lead Morrowry		0 015 0 002								2 1	
Mercury Selenıum Sılver		0 002 0 05 0 05							0	05	
INORGANICS (MAXIMUM MG/L) Bromate Boron		0 01							0	75	
Chlorite Fluoride (3) Nitrates as N Total Dissolved	1	<1 0 1 4-2 4 10							U		
Solids (4)	l	Irrıgatı Stock Wa								200	
RADIOLOCICAL (MAXIMUM pCı/L) Cross Alpha Gross Beta		15 4 mrem/	'yr						15	1	

Radium 226, 228 (Combined) Strontium 90 Tritium Uranium	5 8 20000 30			
ORGANICS (MAXIMUM UG/L)				
Chlorophenoxy Herbicides 2,4-D 2,4,5-TP Methoxychlor	70 10 40			
POLLUTION INDICATORS (5)				
BOD (MG/L) Nıtrate as N (MG/L) Total Phosphorus as P (MG/L)(6)	4	5 4 0 05 0 05	5	5

FOOTNOTES

(1) Reserved

(2) The dissolved metals method involves filtration of the sample in the field, acidification of the sample in the field, no digestion process in the laboratory, and analysis by atomic absorption or inductively coupled plasma (ICP) spectrophotometry

(3) Maximum concentration varies according to the daily maximum mean air temperature

TEMP (C)	MG/L
12 0		24
12 1-1-	46	22
14 7-1	76	2 0
17 7-2	14	18
21 5-2	62	16
26 3-3	25	14

(4) Total dissolved solids (TDS) limits may be adjusted if such adjustment does not impair the designated beneficial use of the receiving water The total dissolved solids (TDS) standards shall be at background where it can be shown that natural or un-alterable conditions prevent its attainment In such cases rulemaking will be undertaken to modify the standard accordingly

(5) Investigations should be conducted to develop more information where these pollution indicator levels are exceeded

(6) Total Phosphorus as P (mg/l) indicator for lakes and reservoirs shall be 0 025

(7) Where the criteria are exceeded and there is a reasonable basis for concluding that the inoicator bacteria are primarily from natural sources (wildlife), e g , in National Wildlife Refuges and State Waterfowl Management Areas, the criteria may be considered attained Exceedences of bacteriological numeric criteria from nonhuman nonpoint sources will generally be addressed through appropriate Federal, State, and local nonpoint source programs

TABLE 2 14 2

NUMERIC CRITERIA FOR AQUATIC WILDLIFE

Parameter	Aquatıc 3A	Wıldlıfe 3B	3C	3D
PHYSICAL		• =		
Total Dissolved				
Gases	(1)	(1)		
Minimum Dissolved Oxyg (MG/L) (2)	en			
30 Day Average	65	55	5 0	5 0
7 Day Average	9 5/5 0	6 0/4 0		
l Day Average	8 0/4 0		3 0	3 0
Max Temperature(C)(3)	20	27	27	
Max Temperature				
Change (C)(3)	2	4 6 5-9 0	4 6 5-9 0	
pH (Range)	6 5-9 0	6 5-9 0	6 5-9 0	6 5-9 0
Turbidity Increase	1.0	1.0	3 F	3 F
(NTU)	10	10	15	15
METALS (4)				
(DISSOLVED,				
UG/L)(5) Alumınum				
4 Day Average (6)	87	87	87	87
1 Hour Average	750	750	750	750
Arsenic (Trivalent)	750	750	750	750
4 Day Average	150	150	150	150
1 Hour Average	340	340	340	340
Cadmium (7)	510	0.0	510	510
4 Day Average	0 25	0 25	0 25	0 25
1 Hour Average	2 0	2 0	2 0	2 0
Chromium				
(Hexavalent)				
4 Day Average	11	11	11	11
1 Hour Average	16	16	16	16
Chromium				
(Trıvalent) (7)				
4 Day Average	74	74	74	74
l Hour Average	570	570	570	570
Copper (7)				
4 Day Average	9	9	9	9
l Hour Average	13	13	13	13
Cyanıde (Free)				
4 Day Average	5 2	5 2	5 2	
1 Hour Average	22	22	22	22
Iron (Maxımum)	1000	1000	1000	1000
Lead (7)				

4 Day Average 1 Hour Average Mercury	2 5 65	2 5 65	2 5 65	2 5 65
4 Day Average 1 Hour Average Nıckel (7)	0 012 2 4	0 012 2 4	0 012 2 4	0 012 2 4
4 Day Average 1 Hour Average Selenium	52 468	52 468	52 468	52 468
4 Day Average 1 Hour Average Sılver	46 184	46 184	46 184	4 6 18 4
1 Hour Average (7) Zinc (7)	16	16	16	1 6
4 Day Average 1 Hour Average INORGANICS (MG/L) (4)	120 120	120 120	120 120	120 120
Total Ammonia as N (9) 30 Day Average 1 Hour Average Chlorine (Total	(9a) (9b)	(9a) (9b)	(9b)	(9b)
Residual) 4 Day Average 1 Hour Average Hydrogen Sulfide (13)	0 011 0 019	0 011 0 019	0 011 0 019	0 011 0 019
(Undissociated, Max UG/L) Phenol (Maximum) RADIOLOGICAL	2 0 0 01	2 0 0 01	200	20 D1 001
Max UG/L) Phenol (Maxımum) RADIOLOGICAL (MAXIMUM pCı/L) Gross Alpha (10) ORGANICS (UG/L) (4)				
Max UG/L) Phenol (Maximum) RADIOLOGICAL (MAXIMUM pCi/L) Gross Alpha (10) ORGANICS (UG/L) (4) Aldrin 1 Hour Average	0 01	0 01	0 (0 01
Max UG/L) Phenol (Maximum) RADIOLOGICAL (MAXIMUM pCi/L) Gross Alpha (10) ORGANICS (UG/L) (4) Aldrin 1 Hour Average Chlordane 4 Day Average 1 Hour Average	0 01 15	0 01	0 (0 01 15
Max UG/L) Phenol (Maximum) RADIOLOGICAL (MAXIMUM pCi/L) Gross Alpha (10) ORGANICS (UG/L) (4) Aldrin 1 Hour Average Chlordane 4 Day Average 1 Hour Average 4,4' -DDT 4 Day Average 1 Hour Average 1 Hour Average	0 01 15 1 5 0 0043	0 01 15 1 5 0 0043	0 (15 1 5 0 0043	0 01 15 1 5 0 0043
Max UG/L) Phenol (Maximum) RADIOLOGICAL (MAXIMUM pCi/L) Gross Alpha (10) ORGANICS (UG/L) (4) Aldrin 1 Hour Average Chlordane 4 Day Average 1 Hour Average 4,4' -DDT 4 Day Average 1 Hour Average Dieldrin 4 Day Average 1 Hour Average 1 Hour Average 1 Hour Average	0 01 15 1 5 0 0043 1 2 0 0010	0 01 15 1 5 0 0043 1 2 0 0010	0 (15 1 5 0 0043 1 2 0 0010	0 01 15 1 5 0 0043 1 2 0 '0010
Max UG/L) Phenol (Maximum) RADIOLOGICAL (MAXIMUM pCi/L) Gross Alpha (10) ORGANICS (UG/L) (4) Aldrin 1 Hour Average Chlordane 4 Day Average 1 Hour Average 1 Hour Average 1 Hour Average Dieldrin 4 Day Average 1 Hour Average	0 01 15 1 5 0 0043 1 2 0 0010 0 55 0 056	0 01 15 1 5 0 0043 1 2 0 0010 0 55 0 056	0 (15 1 5 0 0043 1 2 0 0010 0 55 0 056	0 01 15 1 5 0 0043 1 2 0 0010 0 55 0 056
Max UG/L) Phenol (Maximum) RADIOLOGICAL (MAXIMUM pCi/L) Gross Alpha (10) ORGANICS (UG/L) (4) Aldrin 1 Hour Average Chlordane 4 Day Average 1 Hour Average 4,4' -DDT 4 Day Average 1 Hour Average Dieldrin 4 Day Average 1 Hour Average Alpha-Endosulfan 4 Day Average	0 01 15 1 5 0 0043 1 2 0 0010 0 55 0 056 0 056 0 056	0 01 15 1 5 0 0043 1 2 0 0010 0 55 0 056 0 24 0 056	0 (15 1 5 0 0043 1 2 0 0010 0 55 0 056 0 24 0 056	0 01 15 1 5 0 0043 1 2 0 0010 0 55 0 056 0 056

4 Day Average 1 Hour Average 0 0038 0 0038 0 0038 0 0038 0 26 0 26 0 26 0 26 Heptachlor epoxide 0 0038 0 0038 0 0038 0 0038 4 Day Average 1 Hour Average 0 26 0 26 0 26 0 26 Hexachlorocyclohexane (Lindane) 4 Day Average 0 08 0 08 0 08 0 08 1 0 1 0 1 Hour Average 1 0 1 0 Methoxychlor 0 03 0 03 0 03 0 03 (Maxımum) 0 001 0 001 Mirex (Maximum) 0 001 0 001 Parathion 0 013 0 013 0 013 0 013 4 Day Average 1 Hour Average 0 066 0 066 0 066 0 066 PCB's 0 014 0 014 0 014 0 014 4 Day Average Pentachlorophenol (11) 15 15 4 Day Average 15 15 19 19 19 19 1 Hour Average Toxaphene 0 0002 0 0002 0 0002 4 Day Average 0 0002 l Hour Average 0 73 0 73 0 73 0 73 POLLUTION INDICATORS (11) 50 50 50 50 Gross Beta (pC1/L) BOD (MG/L) 5 5 5 5 Nitrate as N (MG/L) 4 4 4 Total Phosphorus as P 0 05 (MG/L) (12) 0 05

FOOTNOTES

(1) Not to exceed 110% of saturation

(2) These limits are not applicable to lower water levels in deep impoundments First number in column is for when early life stages are present, second number is for when all other life stages present

(3) The temperature standard shall be at background where it can be shown that natural or un-alterable conditions prevent its attainment In such cases rulemaking will be undertaken to modify the standard accordingly

Site Specific Standards for Temperature

Ken's Lake From June 1st - September 20th, 27 degrees C

(4) Where criteria are listed as 4-day average and 1-hour average concentrations, these concentrations should not be exceeded more often than once every three years on the average

(5) The dissolved metals method involves filtration of the sample in the field, acidification of the sample in the field, no digestion process in the laboratory, and analysis by atomic absorption spectrophotometry or inductively coupled plasma (ICP)

(6) The criterion for aluminum will be implemented as follows

Where the pH is equal to or greater than 7 0 and the hardness is equal to or greater than 50 ppm as CaCO3 in the receiving water after mixing, the 87 ug/l chronic criterion (expressed as total recoverable) will not apply, and aluminum will be regulated based on compliance with the 750 ug/1 acute aluminum criterion (expressed as total recoverable)

(7) Hardness dependent criteria 100 mg/l used Conversion factors for ratio of total recoverable metals to dissolved metals must also be applied In waters with a hardness greater than 400 mg/l as CaCO3, calculations will assume a hardness of 400 mg/l as CaCO3 See Table 2 14 3 for complete equations for hardness and conversion factors

(8) Reserved

(9) The following equations are used to calculate Ammonia criteria concentrations

(9a) The thirty-day average concentration of total ammonia nitrogen (in mg/l as N) does not exceed, more than once every three years on the average, the chronic criterion calcuiated using the following equations

Fish Early Life Stages are Present

mg/l as N (Chronic) = ((0 0577/1+10^{7 688-pH}) + (2 487/1+10^{PH-7 688}))* MIN (2 85, 1 45*10^{0 028 (25-T)})

Fish Early Life Stages are Absent

 $mg/l as N_{0}(Chronic) = ((0 0577/1+10^{7} 688-pH) + (2 487/1+10^{pH-7} 688))$ * 1 45×10⁰ 028* (25-MAX (T 7))

(9b) The one-hour average concentration of total ammonia nitrogen (in mg/l as N) does not exceed, more than once every three years on the average the acute criterion calculated using the following equations Class 3A

mg/l as N (Acute) = $(0 \ 275/(1+10^{7} \ ^{204-pH})) + (39 \ 0/1+10^{pH-7} \ ^{204}))$ Class 3B, 3C, 3D

 $mg/l as N (Acute) = 0.411/(I+I0^{7.204-pH})) + (58.4/(I+10^{pH-7.204}))$ In addition, the highest four-day average within the 30-day period should not exceed 2 5 times the chronic criterion The "Fish Early Life Stages are Present" 30-day average total ammonia criterion will be applied by default unless it is determined by the Division, on a site-specific basis, that it is appropriate to apply the "Fish Early Life Stages are Absent" 30-day average criterion for all or some portion of At a minimum, the "Fish Early Life Stages are the year Present" criterion will apply from the beginning of spawning through the end of the early life stages Early life stages include the pre-hatch embryonic stage, the post-hatch free embryo or yolk-sac fry stage, and the larval stage for the species of fish expected to occur at the site The division will consult with the Division of Wilolife Resources in making such determinations The Division will maintain information regaroing the waterbodies and time periods where application of the "Early Life Stages are Absent" criterion is determined to be appropriate

(10) Investigation should be conducted to develop more information where these levels are exceedeo

(11) pH dependent criteria pH 7 8 used in table See Table 2 14 4 for equation (12) Total Phosphorus as P (mg/l) indicator for lakes and reservoirs shall be 0 025 (13) Formula to convert dissolved sulfide to un-disassociated hydrogen sulfide is H_2S = Dissolved Sulfide * e^{((-1 92 + pH) + 12 05)}

> TABLE 1-HOUR AVERAGE (ACUTE) CONCENTRATION OF TOTAL AMMONIA AS N (MG/L)

TABLE 30-DAY AVERAGE (CHRONIC) CONCENTRATION OF TOTAL AMMONIA AS N (MG/1)

Fish Early Life Stages Present

рН	0	14	16	18	20	22	24	26	28	30		
65	6 67	6 67	6 06	5 33	4 68		3 62	3 18	2 80	2 46		
66	6 57	6 57	5 97	5 25	4 61	4 05	3 56	3 13	2 75	2 42		
67	644	644	586	5 15	4 52	3 98	3 50	3 07	2 70	2 37		
68	629	629	5 72	5 03	4 42	389	3 42	3 00	2 64	2 32		
69	6 12	6 12	5 56	4 89	4 30	3 78	3 32	2 92	2 57	2 25		
70	5 91	5 91	5 37	4 72	4 15	3 65	3 21	2 82	2 48	2 18		
71	5 67	5 67	5 15	4 53	3 98	3 50	3 08	2 70	2 38	2 09		

72	5 39	5 39	4	90	4	31	3	78	3	33	2 92	2 57	2 26	1 99
73	5 08	5 08	4	61	4	06	3	57	3	13	276	2 42	2 13	1 87
74	473	473	4	30	3	78	3	32	2	92	2 57	2 26	1 98	1 74
75	4 36	4 36	3	97	3	49	3	06	2	69	2 37	2 08	1 83	1 61
76	3 98	3 98	3	61	3	18	2	79	2	45	2 16	1 90	1 67	1 47
77	3 58	3 58	3	25	2	86	2	51	2	21	1 94	1 71	1 50	1 32
78	3 18	3 18	2	89	2	54	2	23	1	96	1 73	1 52	1 33	1 17
79	2 80	2 80	2	54	2	24	1	96	1	73	1 52	1 33	1 17	1 03
8 0	2 43	2 43	2	21	1	94	1	71	1	50	1 32	1 16	1 02	0 90
8 1	2 10	2 10	1	91	1	68	1	47	1	29	1 14	1 00	0 88	0 77
82	1 79	1 79	1	63	1	43	1	26	1	11	0 97	086	0 75	0 66
83	1 52	1 52	1	39	1	22	1	07	0	94	0 83	0 73	0 64	0 56
84	1 29	1 29	1	17	1	03	0	91	0	80	0 70	0 62	0 54	0 48
85	1 09	1 09	0	99	0	87	0	76	0	67	0 59	0 52	046	0 40
86	0 92	0 92	0	84	0	73	0	65	0	57	0 50	0 4 4	0 39	0 34
87	0 78	0 78	0	71	0	62	0	55	0	48	0 42	0 37	0 33	0 29
88	0 66	0 66	0	60	0	53	0	46	0	41	0 36	0 32	0 28	0 24
89	0 56	0 56		0	5	1	0 4	5	0	40	0 35	0 31	0 27	0 24
0 21														
9 0	0 49	0 49	0	44	0	39	0	34	0	30	0 26	0 23	0 20	0 18

TABLE 30-DAY AVERAGE (CHRONIC) CONCENTRATION OF TOTAL AMMONIA AS N (MG/1)

Fish Early Life Stages Absent

			Tempo	eratur	e, C				
рH	0-7	8	9	10	11	12	13	14	16
65	10 8	10 1	9 51	8 92	8 36	784	7 36	689	6 06
66	10 7	10 1	9 37	9 37	8 79	8 24	7 72	724	6 36
67	10 5	999	9 20	8 62	8 08	7 58	7 11	6 66	5 86
68	10 2	9 81	8 98	8 42	7 90	7 40	6 94	6 51	5 72
69	9 93	9 31	8 73	8 19	7 68	7 20	6 75	6 33	5 56
7 0	9 60	9 00	8 4 3	7 91	7 41	6 95	6 52	6 11	5 37
7 1	9 20	8 63	8 09	7 58	7 11	6 67	6 25	5 86	5 15
7 2	8 75	8 20	7 69	7 21	676	6 34	5 94	5 57	4 90
73	8 24	7 73	7 25	679	6 37	5 97	5 60	5 25	4 61
74	7 69	7 21	676	6 33	5 94	5 57	5 22	4 89	4 30
75	7 09	6 64	623	5 84	5 48	5 13	4 81 4 38	4 51	3 97 2 61
76 77	6 46 5 81	6 05 5 45	5 67 5 11	5 32 4 79	499 449	4 68 4 21	4 30 3 95	4 11 3 70	3 61 3 25
78	5 81 5 17		5 11 4 54	4 79 4 26	4 49 3 99	4 21 3 74	3 51	3 29	289
	1 07	1 01	0 944	0 885	0 829	0 778	0 729	0 684	0 601
89	0 917	0 860	0 806	0 758	0 709	0 664	0 623	0 584	0 513
7 9 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8	4 54 3 95 3 41 2 91 2 47 2 09 1 77 1 49 1 26 1 07	4 26 3 70 3 19 2 73 2 32 1 96 1 66 1 40 1 18 1 01	3 99 3 47 2 99 2 56 2 18 1 84 1 55 1 31 1 11 0 944	3 74 3 26 2 81 2 40 2 04 1 73 1 46 1 23 1 04 0 885	3 51 3 05 2 63 2 25 1 91 1 62 1 37 1 15 0 976 0 829	3 29 2 86 2 47 2 11 1 79 1 52 1 28 1 08 0 915 0 778	3 09 2 68 2 31 1 98 1 68 1 42 1 20 1 01 0 858 0 729	2 89 2 52 2 17 1 85 1 58 1 33 1 13 0 951 0 805 0 684	2 54 2 21 1 91 1 63 1 39 1 17 0 990 0 836 0 707 0 601

90 pH 65 66 70 70 71 72 73 74 75 76 77 77 87 98 0 81 82 83 84 85 86 70 70 75 76 76 77 78 79 80 81 82 83 84 85 86 86 86 86 86 86 86 86 87 87 87 87 87 87 87 87 87 87	$\begin{array}{c}1\\5\\5\\5\\5\\4\\4\\4\\3\\3\\2\\2\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0$	790 833 2515 039 723 406 789 186 432 03 8735 24 94 832 03 8735 23 25 24 94 85 24 94 85 25 25 25 25 25 25 25 25 25 25 25 25 25	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	740 268 652 420 158 772 69 71 476 765 65 765 65 765 65 765 765 765 765	4 4 3 3 3 3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0	694 212 05 989 78 50 313 99 45 50 313 99 45 29 73 29 11 50 29 11 50 29 11 50 20 10 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50	3 3 3 3 3 3 2 2 2 2 2 1 1 1 1 0 0 0 0 0 0	$\begin{array}{c} 651\\ 2\\ 4\\ 5\\ 5\\ 5\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$	3 3 3 2 2 2 2 2 2 2 1 1 1 1 1 0 0 0 0 0 0	$\begin{array}{c} 610\\ 26\\ 18\\ 13\\ 07\\ 00\\ 92\\ 70\\ 57\\ 426\\ 08\\ 90\\ 71\\ 53\\ 16\\ 00\\ 855\\ 727\\ 615\\ 520\\ 439\\ 1\end{array}$	2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 0 0 0 0	572 8075 7064 5748 826 138 8375 102 8752 8752 102 8752 541 102 8752 102	2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 0 0 0 0	536 46 42 37 25 18 99 74 47 325 899 741 47 327 617 327 327 617 327 3	0	503	0	442	
85 66	0 0	870 735	0 0	765 646	0 0	672	0	591	0	520	0	457	0	401					
8 7 8 8 8 9 9 0	0 0 0 0	622 528 451 389	0 0 0 0	547 464 397 342	0 0 0 0	408 408 340 300	0 0 0	422 359 306 264	0 0 0	315 269 232	0 0 0	277 237 204	0 0 0	244 208 179					

APPENDIX D

STANDARDS AND SPECIFICATIONS FOR SELECTED BMPs

_

.....

- -

Moulding & Sons

41 Source Control BMPs

BMP C101 Preserving Natural Vegetation

- PurposeThe purpose of preserving natural vegetation is to reduce erosion wherever
practicable Limiting site disturbance is the single most effective method
for reducing erosion For example, conifers can hold up to about 50
percent of all rain that falls during a storm Up to 20 30 percent of this ram
may never reach the ground but is taken up by the tree or evaporates
Another benefit is that the ram held in the tree can be released slowly to the
ground after the storm
- Natural vegetation should be preserved on steep slopes near perennial and intermittent watercourses or swales, and on building sites in wooded areas
 - As required by local governments

Design andNatural vegetation can be preserved in natural clumps or as individualInstallationtrees, shrubs and vinesSpecifications

The preservation of individual plants is more difficult because heavy equipment is generally used to remove unwanted vegetation The points to remember when attempting to save individual plants are

- Is the plant worth saving? Consider the location, species, size, age, vigoi, and the work involved Local governments may also have ordinances to save natural vegetation and trees
- Fence or clearly mark areas around tiees that are to be saved It is preferable to keep ground disturbance away from the trees at least as fai out as the dripline

Plants need protection from three kinds of mjuiies

- Construction Equipment This injury can be above or below the ground level Damage results from scarring cutting of roots, and compaction of the soil Placing a fenced buffer zone around plants to be saved prior to construction can prevent construction equipment mjuries
- Grade Changes Changing the natural ground level will alter grades, which affects the plant's ability to obtain the necessary an water, and minerals Minor fills usually do not cause problems although sensitivity between species does vary and should be checked Trees can tolerate fill of 6 inches or less For shrubs and other plants, the fill should be less

When there are major changes m grade it may become necessary to supply an to the roots of plants. This can be done by placing a layer of gravel and a tile system over the roots before the fill is made. A tile system protects a tree from a taised grade The tile system should be laid out on the original grade leading from a dry well around the tree trunk The system should then be covered with small stones to allow an to circulate over the root area

Lowering the natural ground level can seriously damage trees and shrubs The highest percentage of the plant roots are in the upper 12 inches of the soil and cuts of only 2-3 inches can cause serious injury To protect the roots it may be necessary to terrace the immediate area around the plants to be saved If roots are exposed, construction of retaining walls may be needed to keep the soil in place Plants can also be preserved by leaving them on an undisturbed, gently sloping mound To increase the chances for survival, it is best to limit grade changes and other soil disturbances to areas outside the dripline of the plant

• *Excavations* - Protect trees and other plants when excavating for drainfields, power, water, and sewer lines Where possible, the trenches should be routed around trees and large shrubs When this is not possible, it is best to tunnel under them This can be done with hand tools or with power augers If it is not possible to route the trench around plants to be saved, then the following should be observed

Cut as few roots as possible When you have to cut cut clean Paint cut root ends with a wood dressing like asphalt base paint

Backfill the trench as soon as possible

Tunnel beneath root systems as close to the center of the mam trunk to preserve most of the important feeder 100ts

Some problems that can be encountered with a few specific trees are

- Maple, Dogwood, Red alder, Western hemlock Westeru red cedar and Douglas fir do not readily adjust to changes m envnonment and special care should be taken to protect these trees
- The wmdthiow hazard of Pacific silvei fir and madronna is high, while that of Western hemlock is moderate The dangei of wmdthrow increases where dense stands have been thinned Othei species (unless they are on shallow, wet soils less than 20 inches deep) have a low wmdthrow hazard
- Cottonwoods, maples, and willows have water seeking roots These can cause trouble m sewer limes and infiltration fields. On the other hand, they thrive m high moisture conditions that other trees would not
- Thinning operations m pure or mixed stands of Grand fir Pacific silver fir Noble fir, Sitka spruce Westeru red cedar Western hemlock

Pacific dogwood, and Red alder can cause senous disease problems Disease can become established through damaged limbs, tmnks, roots and freshly cut stumps Diseased and weakened trees are also susceptible to insect attack

- Inspect flagged and/or fenced areas regularly to make sure flagging or Maintenance • fencing has not been removed or damaged If the flagging or fencing has been damaged or visibility reduced, it shall be repaired or replaced immediately and visibility restored
 - If tree roots have been exposed or injured, prime cleanly with an appropriate prinning saw or lopers directly above the damaged roots and recover with native soils Treatment of sap flowing trees (fir, hemlock, pine, soft maples) is not advised as sap forms a natural healing baniei

Standa) ds

BMP C102 Buffer Zones

Puipose	An undisturbed area or strip of natural vegetation or an established suitable planting that will provide a living filter to reduce soil erosion and mnoff velocities			
Conditions of Use	Natural buffer zones are used along streams, wetlands and other bodies of water that need protection from erosion and sedimentation Vegetative buffer zones can be used to protect natural swales and can be incorporated nto the natural landscaping of an area			
	Critical areas buffer zones should not be used as sediment treatment areas These areas shall remain completely undisturbed The local perinitting authority may expand the buffer widths temporarily to allow the use of the expanded area for removal of sediment			
Design and Installation	 Preserving natural vegetation or plantings in clumps, blocks or strips is generally the easiest and most successful method 			
Specifications	• Leave all unstable steep slopes in natural vegetation			
	• Mark clearing limits and keep all equipment and constitution debris out of the natural areas Steel constitution fencing is the most effective method m protecting sensitive areas and buffers Alternatively, wire-backed silt fence on steel posts is marginally effective Flagging alone is typically not effective			
	• Keep all excavations outside the dripline of tiees and shrubs			
	 Do not push debris or extra soil into the buffer zone area because it will cause damage from burying and smothering 			
	• Vegetative buffer zones for streams, lakes or other waterways shall be established by the local permitting authority or other state or federal permits or approvals			
Maintenance Standards	• Inspect the area frequently to make sure flagging remains m place and the area remains undisturbed			

BMP C105 Stabilized Construction Entrance

Construction entiances are stabilized to reduce the amount of sediment transported onto paved roads by vehicles or equipruent by constructing a stabilized pad of quarry spalls at entrances to construction sites					
Construction entrances shall be stabilized wherever traffic will be leaving a construction site and traveling on paved roads or other paved areas withm 1,000 feet of the site					
On large commercial highway, and road projects, the designer should include enough extra materials in the contract to allow for additional stabilized entrances not shown in the initial Construction SWPPP It is difficult to determine exactly where access to these projects will take place, additional materials will enable the contractor to install them where needed					
• See Figure 4.2 for details Note the 100 minimum length of the entrance shall be reduced to the maximum practicable size when the size of configuration of the site does not allow the full length (100)					
• A separation geotextile shall be placed under the spalls to prevent fine sediment from pumping up into the rock pad The geotextile shall meet the following standards					

Grab Tensile Strength (ASTM D4751)	200 psi min
Grab Tensile Elongation (ASTM D4632)	30% max
Mullen Burst Strength (ASTM D3786 80a)	400 psi min
AOS (ASTM D4751)	20-45 (US standard sieve size)

- Consider early installation of the first lift of asphalt in areas that will paved, this can be used as a stabilized entrance Also consider the installation of excess concrete as a stabilized entiance During large concrete pours, excess concrete is often available for this purpose
- Hog fuel (wood based mulch) may be substituted for or combined with quarry spalls in areas that will not be used for permanent roads Hog fuel is generally less effective at stabilizing construction entrances and should be used only at sites where the amount of traffic is very limited Hog fuel is not recommended for entrance stabilization in uiban areas. The effectiveness of hog fuel is highly vanable and it generally iequites more maintenance than quarry spalls. The inspector may at any time require the use of quarry spalls if the hog fuel is not preventing sediment from being tracked onto pavement or if the hog fuel is being carried onto pavement. Hog fuel is prohibited in permanent roadbeds because orgames in the subgrade soils cause degradation of the subgrade support over time.
- Fencing (see BMPs C103 and C104) shall be installed as necessary to restrict traffic to the construction entrance

• Whenever possible, the entrance shall be constructed on a firm compacted subgrade This can substantially increase the effectiveness of the pad and reduce the need for maintenance

Maintenance Standaids

- Quarry spalls (or hog fuel) shall be added if the pad is no longer m accordance with the specifications
- If the entrance is not preventing sediment from being tracked onto paveruent, then alternative measures to keep the streets free of sediment shall be used This may include street sweeping, an increase m the dimensions of the entrance, or the installation of a wheel wash
- Any sediment that is tracked onto pavement shall be removed by shoveling of street sweeping. The sediment collected by sweeping shall be removed of stabilized on site. The pavement shall not be cleaned by washing down the street, except when sweeping is ineffective and there is a threat to public safety. If it is necessary to wash the streets, the construction of a small sump shall be considered. The sediment would then be washed into the sump where it can be controlled.
- Any quarry spalls that are loosened from the pad which end up on the roadway shall be removed immediately
- If vehicles are entering or exiting the site at points other than the construction entrance(s), fencing (see BMPs C103 and C104) shall be installed to control traffic
- Upon project completion and site stabilization, all construction accesses intended as permanent access for maintenance shall be permanently stabilized

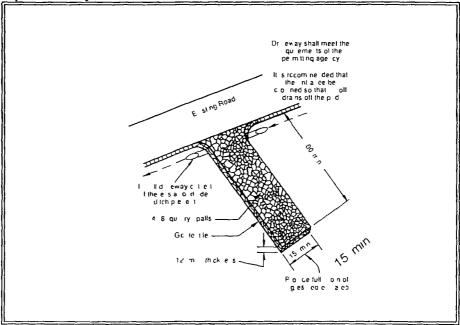


Figure 4 2 – Stabilized Construction Entrance

BMP C106 Wheel Wash

Purpose	Wheel washes reduce the amount of sediment transported onto paved loads by motor vehicles
Condutions af Use	When a stabihzed construction entrance (see BMP C105) is not preventing sediment from being tracked onto pavement
	• Wheel washing is generally an effective BMP when installed with careful attention to topography For example, a wheel wash can be detrimental if installed at the top of a slope abutting a right-of-way where the water from the dripping trick can mn unimpeded into the street
	• Pressure washing combined with an adequately sized and surfaced pad with direct drainage to a large 10-foot x 10 foot sump can be very effective
Design and Installation Specifications	Suggested details are shown m Figure 4.3 The Local Permitting Authority may allow other designs A minimum of 6 inches of asphalt treated base (ATB) over cmshed base material or 8 inches over a good subgrade is recommended to pave the wheel wash
	Use a low clearance truck to test the wheel wash before paving Either a belly dump or lowboy will work well to test clearance
	Keep the water level from 12 to 14 inches deep to avoid damage to truck hubs and filling the tmck tongues with water
	Midpoint spray nozzles are only needed m extremely muddy conditions
	Wheel wash systems should be designed with a small grade change 6 to 12 inches for a 10-foot-wide pond, to allow sediment to flow to the low side of pond to help prevent re-suspension of sediment A drainpipe with a 2 to 3-foot riser should be installed on the low side of the pond to allow for easy cleaning and refilling Polymers may be used to promote coagulation and flocculation m a closed loop system Polyacrylamide (PAM) added to the wheel wash water at a rate of 0 25 0 5 pounds pei 1,000 gallons of water increases effectiveness and reduces cleanup time If PAM is already being used for dust or erosion control and is being applied by a water timek, the same timek can be used to change the wash water
Maintenance	The wheel wash should start out the day with fresh water
Standa) ds	The wash water should be changed a minimum of once per day On large earthwork jobs where more than 10 20 tmcks per hour are expected, the wash water will need to be changed more often
	Wheel wash of thre bath wastewater shall be discharged to a separate on site treamment system, such as closed loop recirculation or land apphcation, or to the sanitary sever with proper local sever district approval

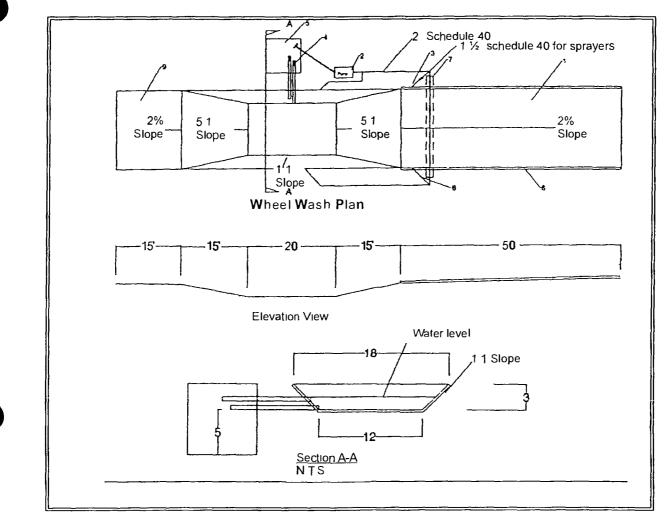


Figure 4 3 Wheel Wash

Notes

- 1 Asphalt construction entrance 6 in asphalt treated base (ATB)
- 2 3 inch trash pump with floats on the suction hose
- 3 Midpoint spray nozzles if needed
- 4 6 inch sewer pipe with butterfly valves. Bottom one is a drain. Locate top pipe s invert 1 foot above bottom of wheel wash
- 5 8 foot x 8 foot sump with 5 feet of catch Build so can be cleaned with trackhoe
- 6 Asphalt curb on the low road side to direct water back to pond
- 7 6 inch sleeve under road
- 8 Ball valves
- 9 15 foot ATB apron to protect ground from splashing water

BMP C123 Plastic Covering

PurposePlastic covering provides immediate, short-term elosion plotection to
slopes and distuibed aleas

Conditions of Use

- Plastic covering may be used on distuibed areas that require cover measures for less than 30 days except as stated below
 - Plastic is particularly useful for protecting cut and fill slopes and stockpiles. Note The relatively rapid breakdown of most polyethylene sheeting makes it unsuitable for long term (greater than six months) applications.
 - Clear plastic sheeting can be used over newly seeded areas to create a
 greenhouse effect and encourage grass growth if the hydroseed was
 installed too late in the season to establish 75 percent grass cover or if
 the wet season started earlier than normal Clear plastic should not be
 used for this purpose during the summer months because the resulting
 high temperatures can kill the grass
 - Due to rapid runoff caused by plastic sheeting, this method shall not be used upslope of areas that might be adversely impacted by concentrated runoff. Such areas include steep and/or unstable slopes
 - While plastic is inexpensive to purchase the added cost of installation maintenance, removal, and disposal make this an expensive material up to \$1 50 2 00 per square yard
 - Whenever plastic is used to protect slopes, water collection measures must be installed at the base of the slope. These measures include plastic-covered berms channels and pipes used to covey clean rainwater away from bare soil and disturbed areas. At no time is clean runoff from a plastic covered slope to be mixed with dirty runoff from a project
 - Other uses for plastic include
 - 1 Temporary ditch linei
 - 2 Pond linei in temporary sediment pond
 - 3 Liner for bermed temporary fuel storage area if plastic is not reactive to the type of fuel being stored
 - 4 Emergency slope protection during heavy rains and
 - 5 Temporary drainpipe (elephant trunk ') used to duect water

Design and Installation Specifications

- Plastic slope cover must be installed as follows
 - 1 Run plastic up and down slope not across slope,
 - 2 Plastic may be installed perpendicular to a slope if the slope length is less than 10 feet,
 - 3 Minimum of 8-inch over lap at seams
 - 4 On long or wide slopes or slopes subject to wind all seams should be taped
 - 5 Place plastic into a small (12-inch wide by 6-inch deep) slot ti ench at the top of the slope and backfill with soil to keep water from flowing underneath,
 - 6 Place sand filled builap or geotextile bags every 3 to 6 feet along seams and pound a wooden stake through each to hold them in place,
 - 7 Inspect plastic for rips tears, and open seams regularly and repair immediately This prevents high velocity runoff from contacting bare soil which causes extreme erosion
 - 8 Sandbags may be lowered into place tied to ropes However, all sandbags must be staked in place
- Plastic sheeting shall have a minimum thickness of 0.06 millimeters
- If erosion at the toe of a slope is likely, a gravel berm, riprap, or other suitable protection shall be installed at the toe of the slope in order to reduce the velocity of runoff

Mavntenance Standards

.

- Torn sheets must be replaced and open seams repaired
- If the plastic begins to deteriorate due to ultraviolet radiation, it must be completely removed and replaced
- When the plastic is no longer needed it shall be completely removed
- Dispose of old tiles appropriately

Erosion Control Improved

Increased Efficiency

Easily applied with conventional hydraulic seeding equipment which is less expensive than blankets or erosion control netting ENVIRO SHIELD bonded fiber matrix is the only Easy Lawn approved BFM that can be used via jet agitation mixing from an Easy Lawn TURFMASTER® series 350 600 Gallon Hydroseeder as well as larger units from all hydraulic seeding macfiline manufacturers

imoroved Soil Quality

Only ENVIRO-SHIELD bonded fiber matnx is made from gypsum, whict i supplies calcium sulfur and other nutrients to the soil Gypsum also improves the structure of high clay content soils buffers soil pH and helps drive sodium out of the root profile in areas where high soil sodium is a problem

Safe

Totally biodegradable and harmless to fish, birds, plants and animals, ENVIRO SHIELD bonded fiber matrix is easily applied where steep slopes or inaccessible terrain make the installation of blankets difficult. Where public safety is a concern, especially around retail or school areas, there are no staples' (typically used with sod or erosion control blankets) that turn into dangerous projectiles when mowed

Economical

Whether steep slopes, open tracts or narrow embankments, effective coverage is achieved at recommended application rates of just 3,500 pounds of product (70 bags) per acre. With less ground preparation and less labor than a roll-out or sod blanket application. Envire Shield bonded fiber matrix is up to 30% less expensive than other erosion control methods.

Long-Lasting

Meeting or exceeding the erosion qualities of temporary erosion control blankets, ENVIRO SHIELD bonded fiber matrix s blend of fiber and bonding ingredients creates a crust that enhances germination by protecting the seed to promote plant growth

Effective

Special water holding ingredients improve the retention of moisture from rain water, facilitating quick and effective germination of plant cover

Versat 'e

Can be used for roadway and airport runway shoulders golf courses, oil, dnlling, construction mining industrial and cement manufacturing sites feedlots landfills power stations and new or existing housing developments

Technical Data

- Can be mixed at 70 (+/- 10 lbs.) per 100 galloos of water - Packaging net weight is 50-lb. Dales - One truckload equals 840 bales or 24 pallets (40" x48" pallet

Typical Application Rates

Pounds/AG Area 3000 histar 3500 histae <3,1 slop 3,1 tp 2,1 4000 lbs/ac >21 since

Components

Enano-Surp bonded fiber matrix contains the following inedegradable and environmentally safe ingredients: - A gypsum-based binder

- Cellulosic tiber mulch (caper/soil wood)

Specially developed plant-based tackifiers (short-term binding agents);

- Nonpetroleum-based polymers dong term binding agents)

- Water-holding ingredients, potyacrylmides (PAM))

Dye (green)

- Surfactant

BMP C130 Surface Roughening

Purpose	Surface roughening aids in the establishment of vegetative cover, reduces runoff velocity increases infilitation, and provides for sediment trapping through the provision of a rough soil surface Horizontal depressions are created by operating a tiller or other suitable equipment on the contour or by leaving slopes in a roughened condition by not fine grading them
Conditions for Use	• All slopes sieeper than 3 1 and greater than 5 vertical feet require surface roughening
	• Areas with grades steeper than 3 1 should be roughened to a depth of 2 to 4 inches prior to seeding
	 Areas that will not be stabilized immediately may be roughened to reduce runoff velocity until seeding takes place
	• Slopes with a stable rock face do not require roughening
	• Slopes where mowing is planned should not be excessively loughened
Design and Installation Specifications	There are different methods for achieving a roughened soil suiface on a slope, and the selection of an appropriate method depends upon the type of slope Roughening methods include stair step grading, grooving, contour furrows, and tracking See Figure 4 6 for tracking and contour furrows Factors to be considered in choosing a method are slope steepness, mowing requirements, and whether the slope is formed by cutting or filling
	• Disturbed areas that will not require mowing may be stair step graded, grooved, or left rough after filling
	• Stair step grading is particularly appropriate in soils containing large amounts of soft rock Each "step" catches material that sloughs from above, and provides a level site where vegetation can become established Stairs should be wide enough to work with standard earth moving equipment Stan steps must be on contour of gullies will form on the slope
	• Areas that will be mowed (these areas should have slopes less steep than 3 1) may have small furrows left by disking, harlowing, raking or seed-planting machinery operated on the contour
	• Graded areas with slopes greater than 3 1 but less than 2 1 should be roughened before seeding This can be accomplished in a variety of ways, including "track walking," or driving a crawler tractor up and down the slope leaving a pattern of cleat imprints parallel to slope contours
	 Tracking is done by operating equipment up and down the slope to leave horizontal depressions in the soil
Maıntenance Standards	 Areas that are graded in this manner should be seeded as quickly as possible
	 Regular inspections should be made of the area If rills appear they should be regraded and re-seeded ininediately

ι

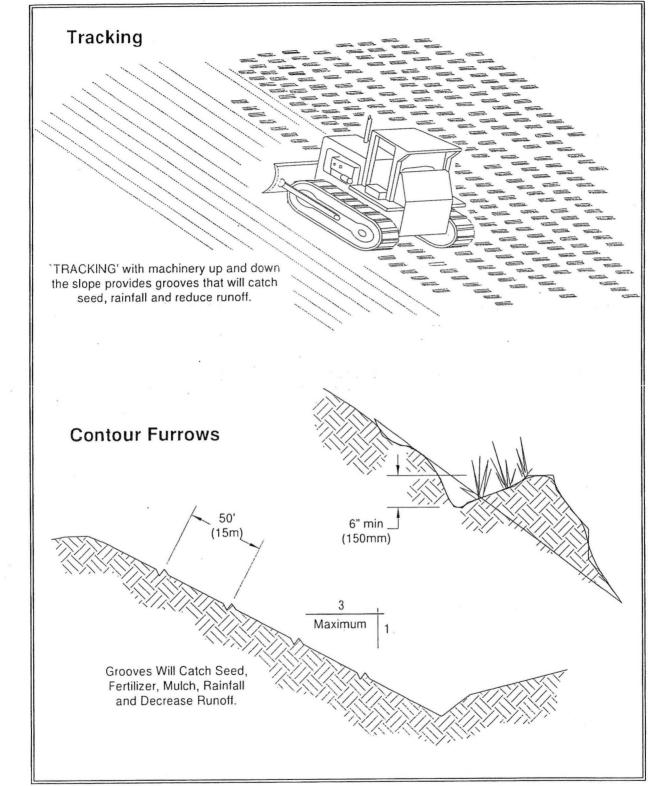


Figure 4.6 – Surface Roughening by Tracking and Contour Furrows

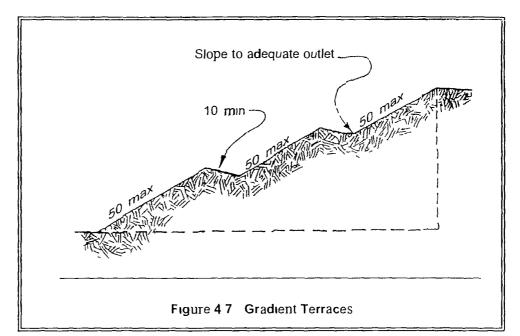
BMP C131 Gradient Terraces

Specifications

PurposeGradient terraces ieduce erosion damage by mterceptmg surface runoff
and conducting it to a stable outlet at a non erosive velocity

Conditions of Use
 Gradient terraces normally are limited to denuded land having a water erosion problem They should not be constructed on deep sands or on soils that are too stony, steep, or shallow to permit practical and economical installation and maintenance Gradient terraces may be used only where suitable outlets are or will be made available See Figure 4.7 for gradient terraces

Design and• The maximum spacing of gradient terraces should be determined by
the following method


	VJ	= (0 8)s + y
Where	VI	= vertical interval in feet
	S	= land rise per 100 feet, expressed in feet = a coll and cover viewship with values from 1 0 to 4.0
	У	= a soil and cover variable with values from 10 to 40

Values of v' are influenced by soil erodibility and cover practices The lower values are appheable to erosive soils where little to no residue is left on the surface The higher value is applicable only to erosion-resistant soils where a large amount of residue $(1\frac{1}{2} \text{ tons of straw/acre equivalent})$ is on the surface

- The minimum constructed cross section should meet the design dimensions
- The top of the constructed ridge should not be lower at any point than the design elevation plus the specified overfill for settlement. The opening at the outlet end of the tenace should have a cross section equal to that specified for the terrace channel
- Channel grades may be either uniform of variable with a maximum grade of 0 6 feet per 100 feet length For short distances, tenace grades may be increased to improve alignment. The channel velocity should not exceed that which is nonerosive for the soil type with the planned treatment.
- All gradient terraces should have adequate outlets Such an outlet may be a grassed waterway, vegetated area or tile outlet In all cases the outlet must convey runoff from the tenace or tenace system to a point where the outflow will not cause damage Vegetative cover should be used m the outlet channel
- The design elevation of the water surface of the tenace should not be lower than the design elevation of the vate surface in the outlet at then junction when both are operating at design flow

- Vertical spacing determined by the above methods may be increased as much as 0 5 feet or 10 percent, whichever is greater, to provide better alignment or location, to avoid obstacles, to adjust for equipment size, or to reach a satisfactory outlet
- The diamage area above the top should not exceed the area that would be drained by a terrace with normal spacing
- The terrace should have enough capacity to handle the peak runoffer expected from a 2 year 24-hour design storm without overtopping
- The terrace cross-section should be proportioned to fit the land slope The ridge height should include a reasonable settlement factor. The ridge should have a minimum top width of 3 feet at the design height The minimum cross sectional area of the terrace channel should be 8 square feet for land slopes of 5 percent or less, 7 square feet for slopes from 5 to 8 percent, and 6 square feet for slopes steeper than 8 percent. The terrace can be constructed wide enough to be maintained using a small cat
- Maintenance should be performed as needed Tenaces should be inspected regularly, at least once a year and after large storm events

Maintenance Standaids

BMP C209 Outlet Protection

Purpose	Outlet protection prevents scour at conveyance outlets and minimizes the potential for downstream erosion by reducing the velocity of concentra t ed stormwatei flows
Conditions of use	Outlet protection is required at the outlets of all ponds, pipes, ditches or other conveyances, and where runoff is conveyed to a natural oi manmade drainage feature such as a stream, wetland lake, or ditch
Design and Installation Specifications	The receiving channel at the outlet of a culvert shall be protected from erosion by rock lining a minimum of 6 feet downstream and extending up the channel sides a minimum of 1-foot above the maximum tailwater elevation or 1 foot above the crown, whichever is higher. For large pipes (more than 18 inches in diameter), the outlet protection lining of the channel is lengthened to four times the diameter of the culvert
	 Standard wingwalls, and tapered outlets and paved channels should also be considered when appropriate for permanent culvert outlet protection (See WSDOT Hydraulic Manual available through WSDOT Engmeering Publications)
	 Organic or synthetic erosion blankets, with or without vegetation, are usually more effective than rock, cheaper, and easier to install Materials can be chosen using manufacturer product specifications ASTM test results are available for most products and the designer can choose the correct material for the expected flow
	• With low flows, vegetation (including sod) can be effective
	• The following guidelines shall be used for riprap outlet protection
	I If the discharge velocity at the outlet is less than 5 fps (pipe slope less than 1 percent), use 2 inch to 8 inch riprap Minimum thickness is 1-foot
	2 For 5 to 10 fps discharge velocity at the outlet (pipe slope less than 3 percent), use 24-inch to 4-foot riprap Minimum thickness is 2 feet
	3 For outlets at the base of steep slope pipes (pipe slope greater than 10 percent), an engineered energy dissipater shall be used
	 Filter fabric or erosion control blankets should always be used under riprap to prevent scour and channel erosion
	• New pipe outfalls can provide an opportunity for low cost fish habitat improvements For example an alcove of low velocity water can be created by constructing the pipe outfall and associated energy dissipater back from the stream edge and digging a channel over widened to the upstieam side from the outfall Overwintering juvenile and migrating adult salmonids may use the alcove as shelter during

high flows Bank stabilization, bioengineering, and habitat features may be required for disturbed areas See Volume V for more information on outfall system design

Maintenance Standards

- Inspect and repair as needed
- Add rock as needed to maintain the intended function
- Clean energy dissipater if sediment builds up

BMP C233: Silt Fence

PurposeUse of a silt fence reduces the transport of coarse sediment from a
construction site by providing a temporary physical barrier to sediment
and reducing the runoff velocities of overland flow. See Figure 4.19 for
details on silt fence construction.

Conditions of Use

Silt fence may be used downslope of all disturbed areas.

- Silt fence is not intended to treat concentrated flows, nor is it intended to treat substantial amounts of overland flow. Any concentrated flows must be conveyed through the drainage system to a sediment pond. The only circumstance in which overland flow can be treated solely by a silt fence, rather than by a sediment pond, is when the area draining to the fence is one acre or less and flow rates are less than 0.5 cfs.
- Silt fences should not be constructed in streams or used in V-shaped ditches. They are not an adequate method of silt control for anything deeper than sheet or overland flow.

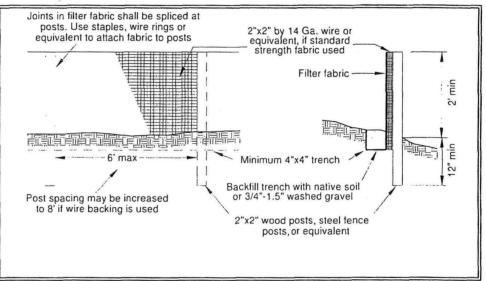


Figure 4.19 – Silt Fence

Design and Installation Specifications

- Drainage area of 1 acre or less or in combination with sediment basin in a larger site.
- Maximum slope steepness (normal (perpendicular) to fence line) 1:1.
- Maximum sheet or overland flow path length to the fence of 100 feet.
- No flows greater than 0.5 cfs.
- The geotextile used shall meet the following standards. All geotextile properties listed below are minimum average roll values (i.e., the test result for any sampled roll in a lot shall meet or exceed the values shown in Table 4.10):

	Table 4 10 Geotextile Standards
Polymeric Mesh AOS (ASTM D4751)	0 60 mm maximum for slit film wovens (#30 sieve) 0 30 mm maximum for all other geotextile types (#50 sieve) 0 15 mm minimum for all fabric types (#100 sieve)
Water Permittivity (ASTM D4491)	0 02 sec minimum
Grab Tensile Strength (ASTM D4632)	180 lbs Minimum for extra strength fabric100 lbs minimum for standard strength fabric
Grab Tensile Strength (ASTM D4632)	30% max וmum
Ultraviolet Resistance (ASTM D4355)	70% minimum

- Standard strength fabrics shall be supported with wire mesh chicken wire, 2-inch x 2 inch wire safety fence, or jute mesh to increase the strength of the fabric Silt fence materials are available that have synthetic mesh backing attached
- Filter fabric material shall contain ultraviolet ray inhibitors and stabilizers to provide a minimum of six months of expected usable construction life at a temperature range of 0°F to 120°F
- 100 percent biodegradable silt fence is available that is strong, long lasting, and can be left in place after the project is completed, if permitted by local regulations
- Standard Notes for construction plans and specifications follow Refer to Figure 4 19 for standard silt fence details

The contractor shall install and maintain temporary silt fences at the locations shown in the Plans The silt fences shall be constructed in the areas of clearing, grading, or drainage pilor to starting those activities A silt fence shall not be considered temporary if the silt fence must function beyond the life of the contract. The silt fence shall prevent soil carried by runoff water from going beneath, through, or over the top of the silt fence but shall allow the water to pass through the fence

The minimum height of the top of silt fence shall be 2 feet and the maximum height shall be $2\frac{1}{2}$ feet above the original ground surface

The geotextile shall be sewn together at the point of manufacture or at an approved location as determined by the Engineer to form geotextile lengths as required All sewn seams shall be located at a support post Alternatively, two sections of silt fence can be overlapped provided the Contractor can demonstrate, to the satisfaction of the Engineer that the overlap is long enough and that the adjacent fence sections are close enough together to prevent silt lade i water from escaping through the fence at the overlap The geotextile shall be attached on the up slope side of the posts and support system with staples, wire, or in accordance with the manufacturer siecommendations. The geotextile shall be attached to the posts in a manner that reduces the potential for geotextile tearing at the staples, wire, or other connection device. Silt fence back up support for the geotextile in the form of a wire or plastic mesh is dependent on the properties of the geotextile selected for use. If wire or plastic back-up mesh is used, the mesh shall be fastened securely to the up-slope of the posts with the geotextile being up slope of the mesh back up support.

The geotextile at the bottom of the fence shall be buried in a trench to a minimum depth of 4 inches below the ground surface The trench shall be backfilled and the soil tamped in place over the buried portion of the geotextile, such that no flow can pass beneath the fence and scouring can not occur. When wire or polymeric back up support mesh is used, the wire or polymeric mesh shall extend into the trench a minimum of 3 inches

The fence posts shall be placed or driven a minimum of 18 inches A minimum depth of 12 inches is allowed if topsoil or other soft subgrade soil is not present and a minimum depth of 18 inches cannot be reached Fence post depths shall be increased by 6 inches if the fence is located on slopes of 3 1 or steeper and the slope is perpendicular to the fence. If required post depths cannot be obtained, the posts shall be adequately secured by bracing or guying to prevent overturning of the fence due to sediment loading.

Silt fences shall be located on contour as much as possible, except at the ends of the fence, where the fence shall be turned uphill such that the silt fence captures the runoff water and prevents water from flowing around the end of the fence

If the fence must cross contours, with the exception of the ends of the fence, gravel check dams placed perpendicular to the back of the fence shall be used to minimize concentrated flow and erosion along the back of the fence. The gravel check dams shall be approximately 1 foot deep at the back of the fence. It shall be continued perpendicular to the fence at the same elevation until the top of the check dams shall consist of crushed surfacing base course, gravel backfill for walls, or shoulder ballast. The gravel check dams shall be located every 10 feet along the fence where the fence must cross contours. The slope of the fence line where contours must be crossed shall not be steeper than 3.1

Wood steel or equivalent posts shall be used Wood posts shall have minimum dimensions of 2 inches by 2 inches by 3 feet minimum length and shall be fiee of defects such as knots splits or gouges Steel posts shall consist of either size No 6 rebar or larger, ASTM A 120 steel pipe with a minimum diameter of 1-inch, U, T, L or C shape steel posts with a minimum weight of 1 35 lbs /ft or other steel posts having equivalent strength and bending resistance to the post sizes listed. The spacing of the support posts shall be a maximum of 6 feet.

Fence back up support, if used, shall consist of steel wire with a maximum mesh spacing of 2 inches, or a prefabricated polymeric mesh. The strength of the wire or polymeric mesh shall be equivalent to or greater than 180 lbs grab tensile strength. The polymeric mesh must be as resistant to ultraviolet radiation as the geotextile it supports.

• Silt fence installation using the slicing method specification details follow Refer to Figure 4 20 for slicing method details

The base of both end posts must be at least 2 to 4 inches above the top of the silt fence fabric on the middle posts for ditch checks to drain piopeily Use a hand level or string level, if necessary to mark base points before installation

Install posts 3 to 4 feet apart in critical retention areas and 6 to 7 feet apart in standard applications

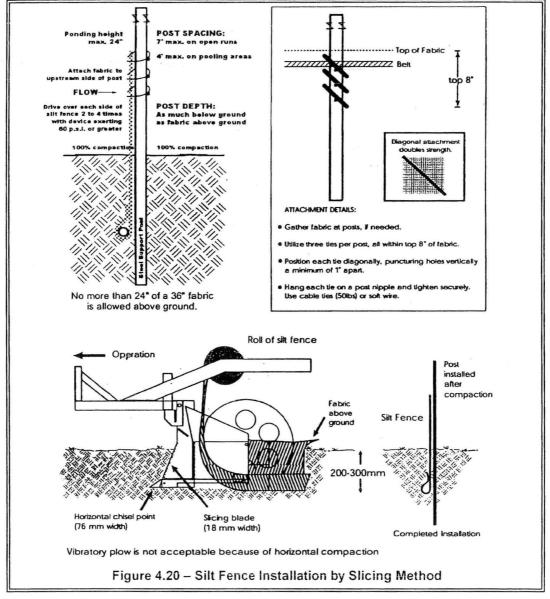
Install posts 24 inches deep on the downstream side of the silt fence, and as close as possible to the fabric enabling posts to support the fabric from upstream water pressure

Install posts with the nipples facing away from the silt fence fabric

Attach the fabric to each post with three ties all spaced within the top 8 inches of the fabric Attach each tie diagonally 45 degrees through the fabric, with each puncture at least 1 inch vertically apart. In addition, each tie should be positioned to hang on a post nipple when tightening to prevent sagging

Wrap approximately 6 inches of fabric around the end posts and secure with 3 ties

No more than 24 inches of a 36 inch fabric is allowed above ground level


The tope lock system must be used in all ditch check applications

The installation should be checked and corrected for any deviation before compaction Use a flat-bladed shovel to tuck fabric deeper into the ground if necessary

Compaction is vitally important for effective results. Compact the soil immediately next to the silt fence fabric with the front wheel of the tractor skid steer or ioller exerting at least 60 pounds per square inch. Compact the upstream side first and then each side twice for a total of four trips.

Maintenance Standards

- Any damage shall be repaired immediately.
- If concentrated flows are evident uphill of the fence, they must be intercepted and conveyed to a sediment pond.
- It is important to check the uphill side of the fence for signs of the fence clogging and acting as a barrier to flow and then causing channelization of flows parallel to the fence. If this occurs, replace the fence or remove the trapped sediment.
- Sediment deposits shall either be removed when the deposit reaches approximately one-third the height of the silt fence, or a second silt fence shall be installed.
- If the filter fabric (geotextile) has deteriorated due to ultraviolet breakdown, it shall be replaced.

X

APPENDIX E

MATERIAL SAFETY DATA SHEETS

Moulding & Sons

-

1

7

MATERIAL SAFETY DATA SHEET USG ENVIRO-SHIELD[™] Brand Bonded Fiber Matrix

Page 1 of 8

United States Gypsum Company 125 South Franklin Street Chicago Illinois 60606 4678 A Subsidiary of USG Corporation Product Safety 1 (800) 507 8899 www.usg.com Version Date December 21 2004 Version 1

SECTION 1

CHEMICAL PRODUCT AND IDENTIFICATION

PRODUCT(S) USG ENVIRO SHIELDTM Bonded Fiber Matrix

CHEMICAL FAMILY Paper and Wood Fibers Calcium Sulfate Hemihydrate (CaSO4•1/2H2O) and Guar Gum

SECTION 2
COMPOSITION, INFORMATION ON INGREDIENTS

MATERIAL Cellulosıc Fiber (Paper/ Soft Wood)	WT% <75	TLV (mg/m³) 10	PEL(mg/m ³) 15 (T) / 5 (R)	CAS NUMBER 9004-34-6
Plaster of Paris (CaSO4•%H2O)	>20	10	15(T)/5(R)	26499-65-0
Guar Gum	< 5	10	15(T)/5(R)	7783-20-2
Crystalline Silica	<1	0 05(R)	0 1(R)	14808-60-7

(T) - Total (R) - Respirable (NE) - Not Established

Respirable crystalline silica IARC Group 1 carcinogen NTP Known human carcinogen. The weight percent of crystalline silica given represents total quartz and not the respirable fraction. Testing of dust from USG plaster of pans has not detected respirable crystalline silica.

1=iD

Food and Drug Administration [CFR Title 21 v 3 sec 184 1230] – Calcium Sulfate is Generally Recognized as Safe (GRAS)

Food and Drug Administration [CFR Title 21 v 3 sec 184 1339] – Guar Gum is Generally Recognized as Safe (GRAS)

All ingredients of this product are included in the U.S. Environmental Protection Agency's Toxic Substances Control Act Chemical Substance Inventory All components of this product are included in the Canadian Domestic Substances List (DSL)

SECTION 3 HAZARD IDENTIFICATION

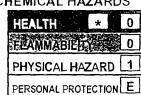
*0

0

1

INFORMATION FOR HANDLING AND IDENTIFICATION OF CHEMICAL HAZARDS

NFPA Ratings


Health Fire

Reactivity

HIMS Ratings Health Fire

Reactivity

- 0 = Minimal Hazard
- 1 = Slight Hazard
- 2 = Moderate Hazard
- 3 = Senous Hazard

4 = Severe Hazard

Personal Protection Use eye and skin protection. Use NIOSH/MSHA approved respiratory protection when necessary

*Respirable crystalline silica can cause lung disease and/or cancer E – Safety glasses gloves and dust respirator

EMERGENCY OVERVIEW

0

0

0

This product is not expected to produce any unusual hazards during normal use. Exposure to high dust levels may irritate the skin eyes nose throat or upper respiratory tract. When mixed with water this material hardens and becomes very hot – sometimes quickly **DO NOT** attempt to make a cast enclosing any part of the body using this material.

MATERIAL SAFETY DATA SHEET USG ENVIRO-SHIELD[™] Brand Bonded Fiber Matrix

SECTION 3 HAZARD IDENTIFICATION (continued)

POTENTIAL HEALTH EFFECTS

ACUTE

Eyes Direct contact can cause mechanical irritation of eyes. If burning redness itching pain or other symptoms persist or develop consult physician

Skin When mixed with water this material hardens and becomes very hot – sometimes quickly DO NOT attempt to make a cost enclosing any part of the body using this material Failure to follow these instructions can cause severe burns that may require surgical removal of affected tissue or amputation of limb. Direct prolonged or repeated contact with the skin may cause irritation. Rinse with water until skin is free of material to avoid irritation, then wash skin thoroughly with mild soap and water. Repeated exposure may dry skin

Inhalation Dust exposures generated during the handling of the product may irritate eyes skin nose throat and upper respiratory tract. Persons subjected to large amounts of this dust will be forced to leave area because of nuisance conditions such as coughing sneezing and nasal irritation. Labored breathing may occur after excessive inhalation. Occupational asthma has been reported for workers in the industrial production of guar gum. If respiratory symptoms persist consult physician.

Ingestion Guar gum is a natural food additive although direct use in food in powder or pill form is banned by the FDA due to the risk of respiratory or gastrointestinal blockage. Swallowing small amounts of powder could result in the material swelling in throat possibly causing blockage of the throat and choking. Plaster of pans may also cause gastic disturbances if swallowed. Plaster of pans is non toxic however ingestion of a sufficient quantity could lead to mechanical obstruction of the gut especially the pylonc region. See First Aid Measures. Ingestion (Section 4)

CHRONIC

Raw guar contains natural proteins that can cause allergic reactions such as asthma and rhinitis Processed guar such as this product contains far less protein and therefore has a lower risk of sensitization **O**ccupational asthma has been reported for workers in the industrial production of guar gum

Inhalation Testing of dust from USG plaster of pans has not detected respirable crystalline silica Exposures to respirable crystalline silica are not expected during the normal use of this product however actual levels must be determined by workplace hygiene testing. The weight percent of respirable crystalline silica has not been measured in this product.

The wood fiber in this product is from a soft wood primarily pine. Wood dust depending on species (including pine) may cause respiratory sensitization

Prolonged and repeated exposure to airborne free respirable crystalline silica can result in lung disease (i.e. silicosis) and/or lung cancer. The development of silicosis may increase the nsks of additional health effects. The risk of developing silicosis is dependent upon the exposure intensity and duration.

Skin The wood fiber in this product is from a soft wood primarily pine. Wood dust depending on species (including pine) may cause irritation and/or dermatitis on prolonged repetitive contact

Repeated contact to plaster of pans may dry the skin causing cracking or dermatitis Sensitive individuals may develop an allergic dermatitis

Eyes No known effects

Ingestion No known effects

TARGET ORGANS Eyes skin and respiratory system PRIMARY ROUTES OF ENTRY Inhalation eyes and skin contact

SECTION 4 FIRST AID MEASURES

FIRST AID PROCEDURES

Eyes Flush thoroughly with water for 15 minutes. If irritation persists consult physician

Skin Wash with mild soap and water A commercially available hand lotion may be used to treat dry skin areas. If skin has become cracked take appropriate action to prevent infection and promote healing. If irritation persists consult physician.

MATERIAL SAFETY DATA SHEET USG ENVIRO-SHIELD[™] Brand Bonded Fiber Matrix

Page 3 of 8

SECTION 4 FIRST AID MEASURES (continued)

Inhalation Remove to fresh air Leave the area of dust exposure and remain away until coughing and other symptoms subside Assure that the victim is breathing. If breathing is difficult administer oxygen if available. If victim is not breathing administer CPR (cardiopulmonary resuscitation). Seek medical attention

Ingestion This product is not intended to be ingested or eaten. Swallowing small amounts of powder could result in the material swelling in throat possibly causing blockage of the throat and choking. If the victim is conscious and alert give 1.2 glasses of water to drink to prevent esophageal obstruction. Do not give anything by mouth to an unconscious person. Seek medical attention. Do not leave victim unattended. If gastric disturbance occurs call physician. This product contains gypsum plaster. Plaster of pans hardens and if ingested may result in obstruction of the gut especially the pylonc region.

MEDICAL CONDITIONS WHICH MAY BE AGGRAVATED Pre existing upper respiratory and lung diseases such as but not limited to bronchitis emphysema and asthma Pre existing skin diseases such as but not limited to rashes and dermatitis

Notes to Physician Treatment should be directed at the control of symptoms and the clinical condition

SECTION 5 FIRE FIGHTING MEASURES					
General Fire Hazards	G reater than 20 difficult to ignite	0°F non combustible at standard	temperature pressure		
Extinguishing Media	Water or use extinguishing media appropriate for surrounding fire				
Special Fire Fighting Procedures	Wear appropnate personal protective equipment (See section 8)				
Unusual Fire and Explosion Hazards	None				
Hazardous Combustion Products	Above 1450° C	decomposes to calcium oxide (C	(aO) and sulfur dioxide (SO_2)		
Flash Point	None Known	Auto Ignition	Not Applicable		
Method Used Upper Flammable Limit (UFL)	Not Applicable Not Applicable	Flammability Classification	Not Applicable may act as a fire retardant		
Lower Flammable Limit (LFL)	Not Applicable	Rate of Burning	Not Applicable		

SECTION 6 ACCIDENTAL RELEASE MEASURES

CONTAINMENT

No special precautions Wear appropriate personal protection (See Section 8)

CLEAN UP

Use normal clean up procedures If dry shovel or sweep up material from spillage and place collected material into a container for recovery or waste disposal. Avoid dust generation. Avoid inhalation of dust and contact with eyes and skin. Wear appropriate protective equipment. Maintain proper ventilation. If vacuum is used to collect dust, use an industrial vacuum cleaner with a high efficiency air filter. If sweeping is necessary, use dust suppressant. Do not use compressed air for clean up. These procedures will help minimize potential exposures. If washed down, may plug drains. If already mixed with water, scrape up and place in container.

DISPOSAL

Follow all local state provincial and federal regulations Never discharge large releases directly into sewers or surface waters. Slurry may plug drains. Trace amounts of residue can be flushed to a drain using plenty of water.

MSDS # 52-112-001

USG

MATERIAL SAFETY DATA SHEET USG ENVIRO-SHIELD[™] Brand Bonded Fiber Matrix

Page 4 of **8**

SECTION 7 HANDLING AND STORAGE

HANDLING

Avoid dust contact with eyes Wear the appropriate eye protection against dust (See Section 8)

Avoid breathing dust Wear the appropriate respiratory protection against dust in poorly ventilated areas and if TLV is exceeded (see Sections 2 and 8)

Minimize dust generation and accumulation Use good safety and industnal hygiene practices

Guar gum is a known dust explosion hazard Guar gum comprises less than 5% of this product the explosion hazard of this product has not been evaluated

STORAGE

Store in a cool dry ventilated area away from sources of heat moisture and incompatibilities (see Section 10) Dew point conditions or other conditions causing presence of liquid will harden this material during storage Protect product bags or containers from physical damage and weather

Keep bags or other containers tightly closed to prevent moisture contact

SECTION 8 EXPOSURE CONTROLS/PERSONAL PROTECTION

ENGINEERING CONTROLS

Provide ventilation sufficient to control airborne dust levels especially respirable crystalline silica

If user operations generate airborne dust use ventilation to keep dust concentrations below permissible exposure limits (See Section 2)

Where general ventilation is inadequate use process enclosures local exhaust ventilation or other engineering controls to control dust levels below permissible exposure limits (see Section 2). If engineering controls are not possible wear a properly fitted NIOSH/MSHA approved particulate respirator

RESPIRATORY PROTECTION

Wear a NIOSH/MSHA approved respirator equipped with particulate cartridges when dusty in poorly ventilated areas and if TLV is exceeded. A respiratory program that meets OSHA's 29 CFR 1910 134 and ANSI Z88 2 requirements must be followed whenever workplace conditions warrant a respirator's use

OTHER PERSONAL PROTECTIVE EQUIPMENT

Eye/Face Wear eye protection (safety glasses or goggles) to avoid possible eye irritation Skin Wear gloves and protective clothing to prevent repeated or prolonged skin contact. Barrier creams or skin lotion may be applied to face neck wrist and hands when skin is exposed to help prevent drying of skin.

General Selection of Personal Protective Equipment will depend on environmental working conditions and operations

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Appearance	Tan grayish-green	Viscosity	Not Applicable
Physical State	Solid (mulched)	Solubility (H2O)	Insoluble will disperse in water
Odor	Low to no odor	Boiling Point	Not Applicable
pH @ 25 ° C	~7	Melting Pomt	Not Applicable
Particle Size	Vanes	Softening Point	Not Applicable
Molecular Weight	Mixture	Freezing Point	Not Applicable
Bulk Density	~ 0 97 g/cm	Vapor Density (Air = 1)	Not Applicable
Specific Gravity (H ₂ 0 = 1)	Not Determined	Vapor Pressure (mm Hg)	Not Applicable
Percent Volatile	None	Evaporation Rate (BuAc =	= 1) Not Applicable
VOC Content	None		

Page 5 of 8

USG

MATERIAL SAFETY DATA SHEET

USG ENVIRO-SHIELD[™] Brand Bonded Fiber Matrix

SECTION 10 CHEMICAL STABILITY AND REACTIVITY

Stable in dry environments. Dew point conditions or other conditions causing presence of liquid will harden this matenal.
Contact with acids water high humidity and incompatibles Dusting conditions extreme heat open flame and sparks
Acids Exposure to water and acids must be supervised because the reactions are vigorous and produce large amounts of heat
Will not occur Above 1450° C calcium oxide (CaO) and sulfur dioxide SO ₂

SECTION 11 TOXICOLOGICAL INFORMATION

ACUTE EFFECTS

The sulfate ion has caused gastro intestinal disturbance in humans following large oral doses

Limited studies involving the repeated inhalation of an (unspecified) calcium sulfate failed to identify any particular target organs in monkeys rats and hamsters

No evidence of mutagenicity was found in Ames bacterial tests

Plaster of pans Oral LD50 rat > 5000 mg/kg

Dermal LD50 – None Determined Skin Irritation LD50 – None Determined Eye Irntation LD50– None Determined

LD₅₀ Not Available for product

LC₅₀ Not Available for product

CHRONIC EFFECTS / CARCINOGENICITY

Wood dusts The wood fiber in this product is from a soft wood primarily pine. Wood dust depending on species (including pine) may cause respiratory sensitization irritation and/or dermatitis on prolonged repetitive contact. Crystalline silica. Testing of dust from USG plaster of pans has not detected respirable crystalline silica. Exposures to respirable crystalline silica are not expected during the normal use of this product however, actual levels must be determined by workplace hygiene testing. The weight percent of respirable crystalline silica has not been measured in this product.

Prolonged and repeated exposure to airborne free respirable crystalline silica can result in lung disease (i.e. silicosis) and/or lung cancer. The development of silicosis may increase the nsks of additional health effects. The risk of developing silicosis is dependent upon the exposure intensity and duration.

In June 1997 IARC classified crystalline silica (quartz and cnstobalite) as a human carcinogen. In making the overall evaluation the IARC Working Group noted that carcinogenicity in humans was not detected in all industrial circumstances studied. Carcinogenicity may be dependent on inherent characteristics of the crystalline silica or on external factors affecting its biological activity or distribution of its polymorphs.

IARC states that crystalline silica inhaled in the form of quartz or cristobalite from occupational sources is carcinogenic to humans (Group 1)

Nonylphenol Ethoxylates Nonyl phenol ethoxylate is an alkylphenol ethoxylate and this group of chemicals has come under increasing scrutiny as possible endocrine disrupters in wildlife. In laboratory tests nonylphenol ethoxylate (NPE) and its break down ethoxylates disrupt the endocrine systems of fish birds and mammals. They cause feminization and demasculinization of male fish causing them to synthesize egg yolk protein. They caused a reduction in testicular size in rainbow trout. They also caused proliferation of estrogen sensitive human breast tumor cells. Trace amounts of 1.4 dioxane, ethylene oxide, acetaldehyde and formaldehyde may be associated with the production of nonylphenol ethoxylate. Any exposure to these substances is expected to remain well below OSHA regulatory and ACGIH recommended limits during normal handling and use of this product.

Page 6 of 8

MATERIAL SAFETY DATA SHEET

USG ENVIRO-SHIELD[™] Brand Bonded Fiber Matrix

SECTION 12 ECOLOGICAL INFORMATION

ENVIRONMENTAL TOXICITY This product has no known adverse effect on ecology

Ecotoxicity value Not determined

SECTION 13 DISPOSAL CONSIDERATIONS

WASTE DISPOSAL METHOD

Dispose of material in accordance with federal state and local regulations. Never discharge directly into sewers or surface waters. Consult with environmental regulatory agencies for guidance on acceptable disposal practices. Slurry may plug drains

SECTION 14 TRANSPORT INFORMATION

US DOT INFORMATION Not a hazardous matenal per DOT shipping requirements Not classified or regulated

Shipping Name	Same as product name
Hazard Class	Not classified
UN/NA #	None Not classified
Pac k ing G roup	None
Label (s) Required	Not applicable
GGVSec/MDG-Code	Not classified
ICAO/IATA DGR	Not applicable
RID/ADR	None
ADNR	None

SECTION 15 REGULATORY INFORMATION

UNITED STATES REGULATIONS

All ingredients of this product are included in the U.S. Environmental Protection Agency's Toxic Substances Control Act Chemical Substance Inventory

MATERIAL	WT%	3 02	304	313	CERCLA	CAA Sec 112	RCRA Code
Cellulosic Fiber (Paper/ Soft Wood)	< 75	NL	NL	NL	NL	NL	NL
Plaster of Paris (CaSO4•½H2O)	>20	NL	NL	NL	NL	NL	NL
Guar Gum	< 5	NL	NL	NL	NL	NL	NL
Crystalline Silica	< 1	NL	NL	NL	NL	NL	NL

Key NL = Not Listed

SARA Title III Section 302 (EPCRA) Extremely Hazardous Substances Threshold Planning Quantity (TPQ) SARA Title III Section 304 (EPCRA) Extremely Hazardous Substances Reportable Quantity (RQ) SARA Title III Section 313 (EPCRA) Toxic Chemicals X= Subject to reporting under section 313 CERCLA Hazardous Substances Reportable Quantity (RQ)

CAA Section 112 (r) Regulated Chemicals for Accidental Release Prevention Threshold Quantities(TQ) RCRA Hazardous Waste RCRA hazardous waste code **USG**

MATERIAL SAFETY DATA SHEET

USG ENVIRO-SHIELDTM Brand Bonded Fiber Matrix Page 7 of 8

SECTION 15 REGULATORY INFORMATION (continued)

Food and Drug Administration [CFR Title 21 v 3 sec 184 1230] – Calcium Sulfate is Generally Recognized as Safe (GRAS)

FD/A

Food and Drug Administration [CFR Title 21 v 3 sec 184 1339] – Guar Gum is Generally Recognized as Safe (GRAS)

CANADIAN REGULATIONS

This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations and the MSDS contains all the information required by the Controlled Products Regulations All components of this product are included in the Canadian Domestic Substances List (DSL)

MATERIAL	WT%	IDL Item #	WHMIS Classification
Cellulosic Fiber (Paper/ Soft Wood)	<75	Not Listed	Not Listed
Plaster of Paris (CaSO4•%H2O)	>20	Not Listed	Not Listed
Guar Gum	< 5	Not Listed	Not Listed
Crystalline Silica	<1	1406	D2A

IDL Item# Canadian Hazardous Products Act – Ingredient Disclosure List Item #

WHMIS Classification Workplace Hazardous Matenal Information System

CARCINOGENICITY CLASSIFICATION OF INGREDIENT(S) All substances listed are associated with the nature of the raw matenals used in the manufacture of this product and are not independent components of the product formulation. All substances if present are at levels well below regulatory limits. See Section 11 Toxicology Information for detailed information.

MATERIAL	IARC	NTP	ACGIH	CAL 65
Respirable Crystalline Silica	1	1	A2	Listed
1 4 Dioxane	2B	2	A3	Listed
Ethylene Oxide	1	1	A2	Listed
Acetaldehyde	2B	2	A3	Listed
Formaldehyde	1	2	A2	Listed

See Section 11 Toxicology Information for detailed information

IARC - International Agency for Research on Cancer (World Health Organization)

- 1 Carcinogenic to humans
- 2A Probably carcinogenic to humans
- 2B Possibly carcinogenic to humans
- 3 Not classifiable as a carcinogen
- 4 Probably not a carcinogen

NTP - National Toxicology Program (Health and Human Services Dept Public Health Service NIH/NIEHS)

- 1 Known to be carcinogen
- 2 Anticipated to be carcinogens

ACGIH – Amencan Conference of Governmental Industrial Hygienists

- A1 Confirmed human carcinogen
- A2 Suspected human carcinogen
- A3 Animal carcinogen
- A4 Not classifiable as a carcinogen
- A5 Not suspected as a human carcinogen

CAL 65 - California Proposition 65 Chemicals known to the State of California to Cause Cancer

Page 8 of 8

MATERIAL SAFETY DATA SHEET

USG ENVIRO-SHIELD[™] Brand Bonded Fiber Matrix

SECTION 16 OTHER INFORMATION

Label Information **AWARNING**

When mixed with water this matenal hardens and becomes very hot - sometimes quickly DO NOT attempt to make a cost enclosing any part of the body using this material. Failure to follow these instructions can cause severe burns that may require surgical removal of affected tissue or amputation of limb

Dust created from product may cause eye skin nose throat or upper respiratory irritation. Occupational asthma has been reported for workers in the industrial production of guar gum. Avoid inhalation of dust and eye contact. Use in a well ventilated area Wear a NIOSH/MSHA approved respirator when dusty. Use proper ventilation to reduce dust exposure Wear eye protection. If eye contact occurs flush thoroughly with water for 15 minutes. If irritation persists call physician Wash thoroughly with soap and water after use Do not ingest If ingested call physician Product safety information (800) 507-8899 or www usg com

KEEP OUT OF REACH OF CHILDREN

Key/Legend	
TLV	Threshold Limit Value
PEL	Permissible Exposure Limit
CAS	Chemical Abstracts Service (Registry Number)
NIOSH	National Institute for Occupational Safety and Health
MSHA	Mine Safety and Health Administration
OSHA	Occupational Health and Safety Administration
ACGIH	Amencan Conference of Governmental Industnal Hygienists
IARC	International Agency for Research on Cancer
DOT	United States Department of Transportation
EPA	United States Environmental Protection Agency
NFPA	National Fire Protection Association
HMIS	Hazardous Matenals Identification System
PPE	Personal Protection Equipment
TSCA	Toxic Substances Control Act
DSL	Canadian Domestic Substances List
NDSL	Canadian Non Domestic Substances List
SARA	Superfund Amendments and Reauthorization Act of 1986
CAA	Clean Air Act
EPCRA	Emergency Planning & Community Right to know Act
RCRA	Resource Conservation and Recovery Act
CERCLA	Comprehensive Environmental Response Compensation and Liability Act of 1980
UN/NA#	United Nations/North Amenca number
CFR	Code of Federal Regulations
WHMIS	Workplace Hazardous Matenal Information System

Prepared by Product Safety **USG** Corporation 125 South Franklin St Chicago Illinois 60606

APPENDIX F

A SUMMARY OF ENVIRONMENTAL REGULATIONS REQUIRING IMMEDIATE TO WITHIN 24 HOUR NOTIFICATION AND CONTACT INFORMATION

Moulding & Sons

A Summary of Utah State and Federal Hazardous Substance/Waste/Material Environmental Regulations Requiring Immediate to Within 24 Hour Notification of Utah DEQ or EPA

		Air Quality				
Regulation	When Required	Information Required	Notify Whom	Oral Notice Time	Phone Numbers	Written Notice Time
R307-107.2	Air pollution control equipment breakdown > 2 hrs	Not specified	Div. of Air Quality.	3-18 hrs	536-4000 536-4123 (off hours)	7 days
40 CFR 58	Air pollution control malfunction	Not specified	State	24 hours	536-4000 536-4123 (off hours)	14 days
40 CFR 59	Monitoring system malfunctions	Not specified	State Air Program Director.	24 hours	536-4000 536-4123 (off hours)	14 days
40 CFR 52	When in violation of National Ambient Air Quality Standards	Not specified	State Air Program Director	24 hours	536-4000 536-4123 (off hours)	
	I (Hazardous Waste/Material/Substance		1		
R315-9-1(b)	 Spill of one kilogram of "acutely hazardous waste", which includes: "P"wastes, F999 wastes (chemical warfare agents), and "F" wastes with a hazard code of "H" (identified in 40 CFR 261.31 and includes wastes from the production or use of chlorphenols and chlorobenzenes). Spill of 100 kilograms of other hazardous waste. Notify for a spill of a lesser quantity if there is a potential threat to human health or the environment. 	Name, phone number, and address of responsible party. Name, title and phone of person reporting. Time and date of the spill. Spill location. Nearest town, city, highway or waterway. Waste description and amount. Cause. Extent of injuries. Potential hazards to human health or the environment. Estimated quantity and disposition of recovered material.	Div. of Solid & Hazardous Waste	Immediately	538-6170 536-4123 (off hours)	15 days
40 CFR 263.30	When a transporter spills a hazardous waste, immediate action must be taken to protect the environment, including notification of local authorities.	Not specified	Div. of Solid & Hazardous Waste	Immediately	538-6170 536-4123 (off hours)	
CERCLA 103	Any CERCLA listed substance spilled over the reportable quantity into the environment.	Name, phone number, and address of responsible party: name, title and phone of person reporting; time and date of the spill; spill location; nearest town, city, highway or waterway; waste description and amount; cause; action taken.	NRC	Immediately	1-800-424-8802	
40 CFR 302.6	Discharge of a hazardous substance in quantities greater than the reportable quantity over 24 hours	Not specified	NRC	Immediately	1-800-424-8802	

		Hazardous Waste/Material/Substance Continue	d			
Regulation	When Required	Information Required	Notify Whom	Oral Notice Time	Phone Numbers	Written Notice Time
49 CFR 171.15 49 CFR 195.52	Hazardous materials release (as defined by DOT in 29 CFR 171.8) causes death, serious injury, major property damage, evacuation, closure of a major highway, aircraft flight path altered, pollution of a water body, release of infectious substance, or continuing danger to life	Reporter name and phone number, name and address of carrier, incident date, time and location, extent of injuries, classification, name and quantity of hazardous materials involved, type of incident and nature of hazardous materials involvement, whether a continuing danger to life exists.	NRC	earliest practicable moment	1-800-4248802	30 days (see 49 CFR 171.16 for details)
EPCRA 304 40 CFR 355.40	Release of "Extremely Hazardous Substance" or CERCLA substance, over the RQ, exposing persons outside the facility boundaries	Chemical name, quantity, release time and duration, health risks, medical advice, precautions, contact names and phone numbers	LEPC SERC	Immediately	Various 536-4123 (24 hours)	As soon as practicable
R315-8-4.7(a) R315-7- 11.7(a)	Any imminent or actual emergency at a hazardous waste Treatment, Storage or Disposal (TSD) permitted facility	Facility name, address, EPA ID number; Incident date, time and type. Quantity of waste. Injuries.	DEQ, federal OSC, State and local response agencies	Immediately		15 days
40 CFR 264.56/ 265.56 40 CFR 279.52	Imminent or actual emergency situation at a TSD or used oil processor or used oil refiner facility	Facility name, address, EPA ID number. Incident date, time and type. Quantity of waste. Injuries. Possible hazards to human health or the environment outside the facility.	State and local response agencies, NRC	Immediately	1-800-424-8802	15 days
40 CFR 262.34 40 CFR 264.56	When a fire, explosion or other release at a hazardous waste generator or TSD facility could threaten human health outside the facility, or when the spill has reached surface water	Facility name, address, EPA ID number Incident date, time and type. Quantity of waste Injuries. Quantity of recovered materials. Possible hazards to human health or the environment outside the facility.	NRC	Immediately	1-800-424-8802	15 days
R315-8-4.7(d) R315-7- 11.7(d)	When a fire, explosion or other release at a hazardous waste TSD facility could threaten human health or the environment outside the facility	Name and phone number of reporter. Facility name, address. Incident date, time and type. Name and quantity of waste. Injuries. Human health or environmental hazards.	DEQ Federal OSC NRC	Immediately	538-4170 1-303-293-1788 1-800-424-8802	5 days
R315-3- 10(i)(6) 40 CFR 270.30	Any TSD permittee noncompliance which may endanger health or the environment	Releases of hazardous waste that may cause endangerment to public drinking water systems. Information on releases of hazardous waste or fire or explosions which could threaten the environment or human health outside the facility. Name and phone number of reporter. Facility name, address. Incident date, time and type. Name and quantity of waste. Injuries. Description of occurrence. Human health or environmental hazards. Estimated quantity and disposition of recovered material.	Div of Solid & Hazardous Waste	24 hours	536-6170	5 days

		Hazardous Waste/Material/Substance Continue	d			
Regulation	When Required	Information Required	Notify Whom	Oral Notice Time	Phone Numbers	Written Notice Time
40 CFR 264.196(d) 265.196(d)	When a hazardous waste disposal facility discovers a tank or secondary containment system leak	Not specified	EPA administrator	24 hours	1-303-293-1788	
R315-8-10 R315-7-12			Div of Solid & Hazardous Waste		538-6170	
40 CFR 761.125	When PCB contaminated material contaminates surface water, sewers, drinking water, grazing lands or vegetable gardens.	Not specified	EPA Region	24 hours	1-303-293-1788	
40 CFR 302.6	Release of PCB's into the environment in amounts greater than 1 pound.	Not specified	NRC	Immediately	1-800-424-8802	
R315-303- 5(7)(c)	When a landfill operator discovers receipt of a hazardous waste or PCB contaminated waste	Not specified	Div of Solid & Hazardous Waste, Hauler, Generator	24 hours	538-6170 536-4123 (off hours)	
R315-303-4- (5)	When methane levels at a landfill exceed state limits in R315-303(2)(a)	Not specified	Div. of Solid & Hazardous Waste	Immediately	538-6170 536-4123 (off hours)	
40 CFR 258.23	When methane levels at a landfill exceed specified federal limits.	Not specified	State Director	Immediately	538-6170 536-4123 (off hours)	
	1. 1. 1	Radioactive Materials				
R313-38- 77(2)(b)	If a sealed radiation source or device containing radioactive material is damaged, or if contamination is detected at the surface after the source is used in a subsurface tracer study.	Circumstances of the loss and request approval of abandonment procedures	Div of Rad. Control	Immediately	536-4250 536-4123 (off hours)	
R313-38- 77(5)(Ь)	If radioactive material has been lost in or to an underground potable water source.	Well location. Magnitude and extent of radioactive material loss. Consequences of such loss. Efforts being taken to mitigate these consequences.	Div of Rad. Control	Immediately	536-4250 536-4123 (off hours)	
R313-32- 33(1)	Misadministration of a radioactive material in a therapy procedure	Not specified	Div of Rad. Control	24 hours	536-4250 536-4123 (off hours)	÷
R313-15- 1202(1)	Event involving a radioactive material which caused or threatens to cause a specified exposure or specified amount of property damage	Not specified	Div. of Rad. Control	Immediately	536-4250 536-4123 (off hours)	2

		Radioactive Materials Continued				
Regulation	When Required	Information Required	Oral Notice Time	Phone Numbers	Written Notice Time	
R313-15- 1202(2)	Loss of licensed or registered source of radiation that may have caused or threatens to cause a specified exposure or specified amount of property damage.	Not specified	24 hours	536-4250 536-4123 (off hours)		
1		Releases From Underground Storage Tanks				
Utah Code 19-6-420 (3)	Releases from an underground storage tank presenting the possibility of an imminent and substantial danger to public health or the environment	Abatement action taken	Div. of Env. Response & Remediation	24 hours	536-4123 (24 hours)	
R311-201-7	Discovery of a release from an underground storage tank	Not specified	Div. of Env. Response & Remediation	24 hours	536-4123 (24 hours)	
40 CFR 280.50	Release of a regulated substance, unusual operation conditions or monitoring results that indicate a release	Not specified	State	24 hours	536-4123 (24 hours)	
40 CFR 280.53	A spill or overfill that is: 1, > 25 gallons; or 2. causes a sheen on surface water; or 3. > reportable quantity of a CERCLA hazardous substance into the environment; or 4. In violation of Clean Water Act 311(b)(3)	Not specified	Div. of Env. Response and Remediation (see also ref 8,31,32)	24 hours	536-4123 (24 hours)	
		Used Oil				
R315-15-9	Used oil spills > 25 gallons or potential threat to human health or environment.	Name, phone number and address of person responsible for spill. Name, title and phone number of individual reporting. Time and date of spill. Spill location - including nearest city, highway, or waterway. Amount and description of material spilled. Cause of the spill. Action taken to minimize threats to human health and the environment.	DEQ	Immediately	536-4123	15 Days

		Water Quality				-
Regulation	When Required	Information Required	Notify Whom	Oral Notice Time	Phone Numbers	Written Notice Time
Utah Code 19-5-114	Spill of substance which could pollute the waters of the state	Material, actions taken, cleanup and disposal plan	Div. of Water Quality	Immediately	538-6146 536-4123 (off hours)	
40 CFR 110	If oil or hazardous substance release: (1)causes a sheen; or (2)violates water quality standards; or (3) causes sludge or emulsion to be deposited below water level	Not specified	NRC	Immediately	1-800-424-8802	
R317-8-4 (b)(12)(f)	Any UPDES permittee noncompliance which may endanger health or the environment including, but not limited to: (1) unanticipated bypasses which exceed effluent permit limitations; (2) any upset which exceeds effluent limitation; (3) violation of maximum daily discharge limitation for permit listed pollutants.	Name and telephone number of reporting party. Time and type of incident. Name and quantity of materials released Injuries. Health hazards	Div. of Water Quality	24 hours	538-6146 536-4123 (off hours)	5 days
R318-8.10 (7)(b) R318-8.13 (c) and 8.14 (3)(b)	 Sampling indicates a violation of water pollution control pretreatment standards. A pretreatment system "upset" that exceeds pretreatment standards. An unanticipated pretreatment bypass. 	Not specified	"Control Authority", which is DEQ or the POTW, depending on the permit.	24 hours		
40 CFR 403.12 40 CFR 403.16/17	 Sampling indicates a violation of water pollution control pretreatment standards. A pretreatment system "upset" that exceeds pretreatment standards. An unanticipated pretreatment bypass. 	Not specified	"Control Authority", which is DEQ or the POTW, depending on the permit.	24 hours		
R317-6-6.13	Mechanical or discharge system failures affecting the chemical characteristics or volume of a ground water discharge	Not specified	Div. of Water Quality	Immediately	538-6146 536-4123 (off hours)	30 days
R317-6-6.11	Commencement of groundwater discharge	Not specified	Div of Water Quality	Immediately	538-6146 536-4123 (off hours)	
R317-6-6.11	Discontinuance of groundwater discharge due to spill, leak or accidental release	Not specified	Div. of Water Quality	Immediately	538-6146 536-4123 (off hours)	5 days
R317-6-6.18	Out of compliance with ground water discharge permit	Not specified	Div. of Water Quality	Immediately	538-6146 536-4123 (off hours)	5 days

EXHIBIT I FINANCIAL ASSURANCE CALCULATIONS

Client Weber County / Moulding & Sons Landfill LLC Project Weber County C&D Landfill Feature C&D Closure Construction Cost Calculations Date 01/15/09

C&D Landfill Closure Construction

			Total					Constructe	d To Date	Remainin	g Construct	tion Quantity
Description	Unit	Total Calculated Quantity	Estimated Payment Quantity	Estimated Unit Cost	Estimated Construction <u>Cost</u>	Estimated Quantity	Payment Quantity	Calculated Quantity	Payment Quantity	Remaining Construction Cost		
Earth Work								1				
Closure Soil	су	343 156	360 313	\$4 28	\$1 542 141 24	0	\$0 00	360 313	360 313	\$1 542 141 24		
Vegetation	ac	105	112	\$1 038 89	\$115 010 11	0	\$0 00	112	112	\$116 010 11		
Stone Mulch	су	0	0	\$30 00	\$0 00	0	\$0 00	0	0	\$0 00		
Pipe Installations												
18 Dia Single CPE Pipe (Storm Drain)	lf	80	80	\$39 68	\$3 174 40	0	\$0 00	80	80	\$3 174 40		
21 Dia Single CPE Pipe (Storm Drain)	lf	500	500	\$39 68	\$19 840 00	0	\$0 00	500	500	\$19 840 00		
24 Dia Single CPE Pipe (Storm Drain)	lf	0	0	\$39 68	\$0 00	0	\$0 00	0	0	\$0 00		
4 x4 Concrete Inlet Boxes	ea	4	4	\$2 584 82	\$10 339 28	0	\$0 00	4	4	\$10 339 28		
Operational Facilities						1						
Mobile Office	lsum	1	1	\$579 55	\$579 55	0	\$0 00	1	1	\$579 55		
Shop (Assume 40 × 60)	Isum	1	1	\$30 811 77	\$30 811 77	0	\$0 00	1	1	\$30 811 77		
Hard Surface Roads	sy	3 307	3 307	\$7 25	\$23 974 94	0	\$0 00	3 307	3 307	\$23 974 94		
Concrete pads (trailer and electric)	sy	1 104	1 104	\$5 39	\$5 950 55	0	\$0 00	1 104	1 104	\$5 950 56		
Engineering Design and CQC/CQA During Constru	uction											
Design (2 / of Construction Costs)			100/	\$35 056 44	\$35 056 44	0/	\$0 00	100/	100 %	\$35 056 44		
Construction Surveying (1 / of Construction	Costs)		100 /	\$17 528 22	\$17 528 22	0/	\$0 00	100/	100/	\$17 528 22		
CQC/CQA Dunng Construction (1 / of Construction			100 /	\$17 528 22	\$17 528 22	0/	\$0 00	100 /	100 /	\$17 528 22		
Total of Closure Construction Costs					\$1 822 934 73		\$0 00			<u>\$1 822,934 73</u>		
Cost Per Acre	100 5	acres =	\$18 130 16	per acre								
Cost Per CY of Waste	16 000 000	CY =	<u>\$0</u> 11	per cubic yard								

ClientWeber County / Moulding & Sons Landfill LLCProjectWeber County C&D LandfillFeatureFacility Post Closure Cost CalculationsDate01/15/09

30 Year Maintenance

...

				Total	Complete	d To Date	Remaining To Date	
		Total	Estimated	Estimated				Remaining
		Calculated	Unit	Construction	Estimated	Payment	Calculated	Construction
Description	Unit	Quantity	Cost	Cost	Quantity	Amount	Quantity	Cost
Inspections	••••							
Inspection and Reporting	Annual LS	30	\$2 400 00	\$72 000 00	0	\$0 00	30	\$72 000 00
Maintenance								
Security – Fences Gates Signs Access Etc	Annual LS	30	\$3 284 04	\$98 521 20	0	\$0 00	30	\$98 521 20
Erosion/Settlement Repairs Erosion Control Repair	Annual LS	30	\$5 668 02	\$170 040 60	0	\$0 00	30	\$170 040 60
Surface Water Facilities (run on/run off) Maintenance	Annual LS	30	\$1 200 88	\$36 026 40	0	\$0 00	30	\$36 026 40
Storm Drainage Pipe Maintenance	Annual LS	30	\$1 110 44	\$33 313 20	0	\$0 00	30	\$33 313 20
Total of Closure Construction Costs				\$409 901 40		\$0 00		\$409 901 40
Cost Per Acre	100 5	acres =	\$4 076 71	per acre				
Cost Per CY of Waste	16 000 000	CY =	\$0 03	per cubic yard				

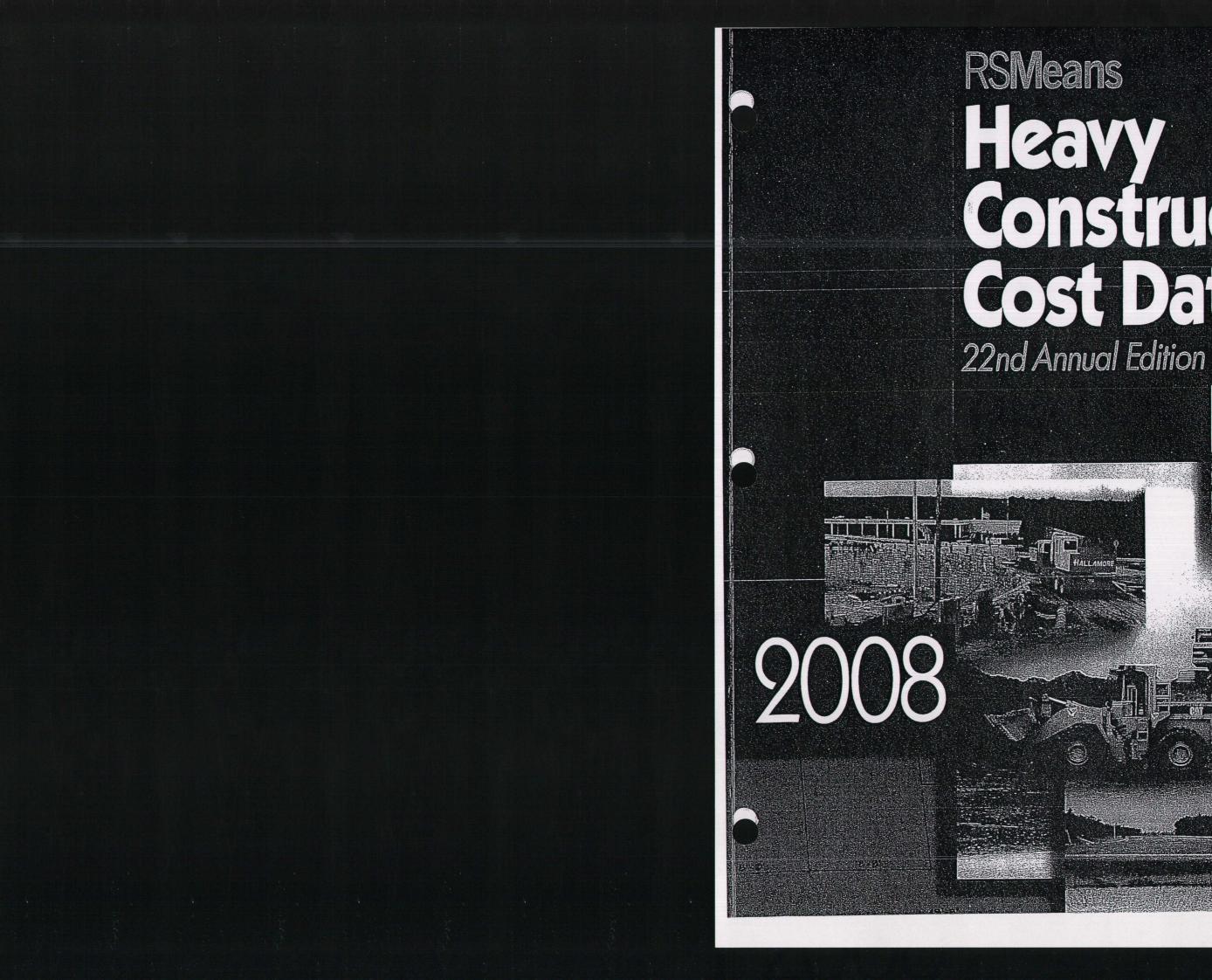
 Facility:
 Weber County C&D Landfill

 Feature:
 Unit Cost Estimates for Closure and Post Closure Care

 Date:
 1/15/2009

Note N-	Description	Unit Cost	Unit	Evelopetian
IOLE NO	, preservation	LOSI		Explanation URE COSTS
	Supply & Placement of Closure Cap			
1	General Contractor Mobilization/Demobilization	\$ 30,000.00	lump sum	mobilization distance.
2	Final Cover (24")	\$ 4.28	в су	2008 RS Means (page 225) shows a cost of \$1.65/cy to place and spread fill material with no compaction and 2.63/cy for borrowing and 1/2 mile round trip hauling using 22 cy off road haulers The total is (1.85 + 2.63) x 0.928 = \$4.16/cy x 1.028 = \$4.28
3	Grading of Waste/Surface Preparation	\$ 1,123.16	Acre	Assume 1/3 day of grading per acre using a motor grader and a dozer. 2008 RS Means (pages 4 and 450) provides daily costs of \$1,102 for a 55,000 lb grader and \$2,430 for a 500 H.P. dozer which includes the crew cost. Total daily cost is, therefore, \$3,532 and factored by the local multiplier of 0.928 gives a daily cost of \$3,277.70 or \$1,092.57 per acre x 1.028 = \$1,123.16
4	Surveying for Grade Control	\$ 300.00	acre	Assume 2 hours of surveying per acre at a rate of \$155 per hour for GPS surveying (typical local GPS survey rate) for a cost of \$310.00/acre.
5	Seeding	\$ 1,038.89	Acre	Assumed for tractor seeding using a drill. The cost is obtained using 6 lb per 1000 square teel 260 lbs per acre for a rye seed mix which will be similar to other range grasses. 2008 RS Means (page 283) shows the cost to be \$25/1000 square teel or \$1,089/acre which includes overhead a profit. After multiplying by the local factor of 0.928 gives \$1,010.59/acre x 1.028 = \$1,038.89
	Stormwater/Groundwater Controls			
6	Downdrain Pipe	\$ 39.68	LF	RS Means, page 312, provides a materials and labor cost of \$26/If for installation of 24* diameter HDPE Type S storm drainage pipe. Trench excavation is \$2,97/cy (RS Means Page 210, 1.5 cy bucket) and with a 3* a3* trench, it would be \$2,97 x 0.33 v; 14 = \$0,981M. Backfill is \$27.00/cy with no compaction requirements, the cost is (27.00 x 0.33 = 6.91) \$8,91/If. Assume the tench is compacted by hand for \$17.25/cy for a cost of (17.25 x 0.33 = 5.01) \$5.70/If (RS Means 222). Th total per foot cost is therefore \$26.00 (pipe) + \$0.98 (excavation) + \$8.91 (backfill) + \$5.70 (compaction) = \$41.39/II (Total). Applying a local factor of 0.928 gives an adjusted total of \$38.61 1.028 = \$39.68
7	inlet Boxes	\$ 2,584.82	EA	RS Means, page 316, provides a cast-in-place drainage inlet box 4* x 4* x 4* deep at \$1,975, gratin is \$24.00/st (page 114, RS Means) with about 24 sq. ft. and backfill is \$79.25/cy (page 222) for hand placement and compaction in 6" lifts. Assume 2 cy of backfill gives a total cost of \$1,975 (concrete box) + \$376 (grating) + \$158.50 (backfill) = \$2,709.50 (Total). Applying a local factor of 0.928 gives an adjusted total of \$2,514.42 x 1.028 = \$2,504.82
8	Pond Excavation/Earthwork	\$ 1.33	СҮ	2009 ENR Costbook, page 53. Cost is \$1.42/cy large area excavations using a 2-1/2 cy bucket h end loader. Assume that deposition of excavated materials to be around the perimeter of the por areas for very little haul distance from side to side. Applying a factor of 0.93 for local costs gives cost of \$1.33/cy.
	Operations Facilities			Assume the mobile office is sufficiently aged that there is no salvage value or sales value. Move
9	Mobile Office	\$ 579.55	LS	office to the landfill area for disposal. Assume 2 hours dozer (½ day) to pull to landfill and to crus 2008 RS Means (pages 449 and 450) provides daily costs of \$2,430 for a 500 H.P. dozer which includes the crew cost. 0.25 x 2430 x 0.928 = \$563.76 x 1.028 = \$579.55
10	Shop (demolish and dispose, recycle steel, etc.)	\$ 30,811.77	LS	Is not expected to be constructed the first year of operation. However, the shop will be 2400 squite feet or less of stele building with a restoorn, office, and concrete foor. 2008 RS Means (page 33 and 34) shows a demolition cost per cubic tool of building volume standing. A small steel building with no salvage value provides a cost of 350 30/ct. Assuming a building that averages 25 feet in height provides a volume of 60,000 cf. Demolition cost is 0.30 x 60000 x 0.928 = 516,704. Concrete slab is 55.65/sf 104 a cost of 5.65 x 2400 x 0.928 = \$12,553.68. Footings of 13 ^o thick an 6 ^o x 6 ^o wide are about \$41.00/fl (double a 3 ^o wide tooting). Assume the tootings to only exist at column supports for the building every 20 feet around the perimeter. This results in 6 columns to foral length of 181. Assume on-site disposal in the landfill for a total cost of 18 x 41 x .28 = \$64.66. The total cost of the demolition is about \$29,972.54 x 1.028 = \$30,811.77. Demolition
11	Concrete Pad Demolition (remove and dispose)	\$ 5.39	SF	Concrete pads include the mobile office pad, possible transformer pad, steps to the east door of 1 mobile office and the steps and ADA ramp to the west door of the mobile office. 2008 RS Means (page 34) provides a cost of \$5.65/sf x .928 = \$5.24/sf x 1.028 = \$5.39 (demolition materials to be disposed in the landfill)
12	Bituminous Pavements (remove and dispose)	\$ 7.25	SY	RS Means (page 23) provides a cost of \$7.60/sy for a 4° to 6° pavement when adjusted to local costs gives 7.60 x 0.928 = $\$7.05/sy \pm 1.028 = \7.25 . The pavement the first year will only extend about 50 feet south of the entrance gate but may eventually include the entire entrance drive to th access control gates, the parking area west of the mobile office and the access road to the parkin area. Demolfkion materials to be disposed in the landfill.
	Other: (List)			
13	Engineering Site Evaluation	2	%	Assume 2% of the construction costs
14 15	Design, Specification & CQA/CQC Manual Project Mgmt. & QA/QC, Oversight, Testing, & Reporting	1	%	Assume 1% of the construction costs Assume 1% of the construction costs
_	POS	T CLOSU	RE/POS	T CLOSURE CARE COSTS
	Maintenance Costs			
16	Security, tencing, gates, signs, access, etc.	\$ 3,482.04	Yı	Barbed wire lencing is estimated at about \$36.50/f (2008 RS Means, page 273). Assume repairs average about 100 if per year. Therefore, the cost is about \$3,650 per year. Adjusting for the regional multiplier of 0.928 gives a cost of \$3,387.20 x 1.028 = \$3,482.04/year. Welded wire fabri [ence with 2" x 4" spaces and 12.5 gage is \$20.50/fl. Use the barbed wire cost.
17	Erosion repair, settlement repair, revegetation, stone mulch replacement.	\$ 5,668.02	Yr	Assume erosion and settlement repairs require 2 days effort using a dozer, dwnp bruck and a who loader. The combined cost is \$1,388 (dozer) + \$502.80 (dwnp truck) + \$536 (loader) = \$2,425.80/doy (RS Means, pages 449, 451 & 451). Assume seeding to be 1 acres per year wher repairs may occur at a price of \$1,009.50/ac from above. Total cost is (\$2,426.80 x 2 x 0.928) + (\$109.50 x 1] = \$5,513.64 x 1.028 = \$5,668.62.
18	Surface water control maintenance (run-on/run-off)	\$ 1,200.88	Yr	Assume repairs and maintenance may require 3 days effort using a backhoe, dump truck and a wheel loader assumed every 5 years. The combined cost is \$1,060 (excavator) + \$502.80 (dump truck) + \$536 (loader) = \$2,098.80/day (RS Means, pages 449, 451 & 451). These costs will incl the cost for general repair and cleaning sediments, if ever needed. Total cost is ((\$2,098.80 x 3 days x 0.928)/5 yrs = \$1,168.17 x 1.028 = \$1,200.88/yr average.
19	Storm Drainage Pipe Maintenance	\$ 1,110.44	Yr	Pipe cleaning costs are between $$3.10$ /f and $$8.06$ /ft, use $$6.00$ /ft (RS Means, page 292. Cleani will probably only be needed every 5 years and will include roughly 970 lf storm drains and down drains. The cost is, therefore, (970 x $$6 \times 0.928$)/5 = $$1,080.19 \times 1.028 = $1,110.44$ /year.
	Monitoring Costs			
	Part time Employee monitoring for Storm Water and			Assume 8 hours per quarter to walk the fence lines, storm drainage facilities, and the closure cap surface. Assume a going rate (cost plus overhead and benefits) of about \$75.00/hr. 8 x4 x 75 =

RS Means - RS Means Heavy Construction Cost Data, 22nd Edition, 2008 ENR Costbook - ENR Square Foot Costbook, 2009 Edition DSHV Year over Year Allowable Inflation Rate Adjustment is 2.8%. RS Means Regional Price Adjustment Factor for the Ogden area = 0.928, RS Means, Page 506. ENR Costbook Retional Price Adjustment Factor = 0.93, ENR Costbook, Page 181.


Weber County / Moulding & Sons Landfill LLC Weber County C&D Landfill C&D Closure Construction Quantity Calculations 01/15/09

2 5H 1V Plan to Slope Area Conversion ≈		1 078		
10% Plan to Slope Area Conversion ≈		1 005		
6H 1V Plan to Slope Area Conversion ≈		1 014		
Closure Soil Thickness ≈	2	ft		
Stone Mulch Thickness ≈	3	inches ≈	0 25	ft
Top Soil Thickness ≈	6	inches ≈	05	ft

C&D Closure Construction

Areas

Alcas							
· · · · · · · · · · · · · · · · · · ·	North Slope						
]	Plan	Slope					
]	Area	Area					
Description	(sf)	<u>(sf)</u>					
Top 10% Slope Area	771 531	775 388					
Upper 2 5 1 Slope	553 728	596 919					
Upper Bench	96 2 2 9	97 576					
Upper Middle 2 5 1 Slope	733 774	791 009					
Upper Middle Bench	118 118	119 771					
Lower Middle 2 5 1 Slope	873 382	941 506					
Lower Middle Bench	135 562	137 460					
Lower 2 5 1 Slope	967 477	1 042 940					
Lower Penmeter Road	130 031	130,031					
Total Closure Area	4,379,832	4,632,601					
Closure Soil Quantity, cy		343,156					

Heavy Construction Cost Data

02	21 Surveys						$\sigma_{i+1}^{\tau_i}$			
	21 13 = Sile Surveys									
- 00 0	1 12 00 Topographical Surveys	(row		Labor- Hours	Unit	Material	2008 B Lobor	are Costs Equipment	Total	Total
	1 13.09 Topographical Surveys TOPOGRAPHICAL SURVEYS	(Crew	UUIPUI	nours		Mulenui		cquipmern	ΙΟΙΟΙ	Incl O&P
0020	Topographical surveying, conventional, minimum	1.1.10	3.30	1 1 1 1 1 1 1	1	and the second	305	21	- 343 ₁	505
0100	Moximum	A-8-	60	53.333			2,175	115	2,342	3;500
	1 13.13 Boundary and Survey Markers BOUNDARY AND SURVEY MARKERS		自己的					67. State		
0300	Lot location and lines; large quantities; minimum	A7-	2	12	Acre	30	500	34.50	564.50	840
0820	Average		1 1	19.200		48	800	55	903	1,350
0400	Smoll quanhies: maximum	A-8	a and the state	32	Chief Cam	64	1,300	69	0,1,4931	2,150
0600 0800	Monuments, 3' long Property lines, perimeter, cleared land	A-7 "	10	2.400	Eo. L.F.	30 .03	100 1	6.90 .07	136.90 1.10	195 1.65
	1 13.16 Aerial Surveys	L	11000	.021	ы.				1.10	1.01
	AFRIALSURVEYS									
1500	Aerial surveying, including ground control-minimum fee. 10 acres				Total					5,700
1510	100 acres									9,500
1550 1600	From existing photography; deduct 2' contours, 10 ocres	認超			Acre					1,370 460
1650	20 ocres							.]		315
1800	50 ocres		.+			1201212-8				95
1850	100 ocres						San		errer	85
2150 2160	For 1 Contours and dense urban areas odd to above				Acre					40%
3000	Inemal guidance system for				たい					
3010	locating coordinales rent per day				6					4,000
ELECTRON CONTRACT										
102	32 Geotechnical Investigation	ग	3							
	32 13 - Subsurface Drilling and Sampling									
Enternancian R	2 13.10 Boring and Exploratory Drilling	12.HEM 546.741			687,813,9137	*****	2247846C()/A24/13	2009 CARLON CONTRACTO		ng langa ang sin ng mang sasi
,0010	BORING AND EXPLORATORY DRILLING									
0020	Bonngs; mittal Hield stake; out & determination: of elevations:	A-6-		16	F. F		615	69	684	1,025
0100 0200	Drawings showing borng defails Report and recommendations from P.E.				Total) Total		233.10 525''		233-10 525	340.20 766.50
0300	Mobilization and demobilization, minimum-	B-55	4 4	6			180	231	411	535
0350	For over 100 miles, per added mile		450	.053	Mile		1.60	2.06	3.66	4.74
0600	Auger holes in earth, no samples, 2-1/2" diameter		78.60	.305	LF.		9.15	11.80	20.95	27 31.50
0650 0800	4" diometer Cased bonngs in earth, with samples, 7:17/72; diameter		67.50 55550		题题	17 40	10.65 12195	13.70 1670	24.35 47.05	57-50
0850	4" dometer		32.60	736		27.50	- 22	28.50:	78	95.50
1000	Drilling in rock, "BX" core, no sampling	B 567	34 90	458			15.60	37	52:60	64:50
1050	With cosing & sompling		3170	- martine lines.		17 40	1715	41	7555	90.50
1200 1250	"NX" core, no sampling With casing and sampling		25.92 25	.617 .640		21	21 22	50 51.50	71 94.50	87 114
1400	Borings, earth, drill rig and crew with truck mounted auger	♥ B-55	1	.040	★ Doy	21	720	925	1,645	2,150
1450	Rock using crawler type drill	B-56	1	16	"		545	1,300	1,845	2,250
1500	For inner city borings odd, minimum									10%
1510										20%
Entre Planter and	32 19 - Exploratory Excavations									
	2 19.10 Test Pits TEST PITS					2000 Sin L				
0020		1) Clób	4.50	1.77.8	СY		54		54	83:50
0100	Heovy soil		2.50	3.200	V		97		97	151
22	iene an aire ann amraiche fear aire fair i generale suiteire suiteire service fearaige faire ann agus general a	an Tarrah S. M. S. S.	a Land Profile 1	12 12 16 20 BEARING			- Andrew State Party			

02 32 Geotechnical Investigations

in the		法投资	的目的影響	当相法者	1993年1	国家建立的总统	1993年1993日	語言語語語言語	是自己的主法的	
				Daily Labor-			2008 Bo	ore Costs		Total
	2 19.10 Test Pits	Crew	Output	Hours	Unit	Material	Labor	Equipment	Total	Incl O&P
	Looder-bockhee, light soll	B-11M	28	571	E CYE		20	12:15	32:15	44
-0.	Heavy soil	"	20	.800	¥		28	17.05	45.05	62
1000	Subsurface exploration, mobilization				Mile				7.50	8.63
1010	Difficult access for rig, add				Hr.				150	172.20
1020	Auger borings, drill rig, incl. samples				LF.				17.27	19.87
1030	Allond ougers and all second and all									29.36
1050	Drill and sample every-5 - splitspoon								22.52	25.90
1060	Fxtmscampes									35 02

02 41 Demolition

02 41 13 - Selective Site Demolition

02 41 13.15 Hydrodemolition

	HYDRODEMOLITION				R024119-10								
0015	Hydrodemolition, concrete	poverner	1, 4000:PSI, 2″ depth			B-5	1500	112	ISE	3.73	217	5.90	815
0120	4" depth					語言	450	2124		4.14	2:41	6,55	9 05
0130	61, depth					認護	400	140		4.66	271	137-37	10.15
0410	6000 PSI, 2" depth		n na secondario de la compositione de la composition de la compo	ţ.			410	.137		4.55	2.65	7.20	9.90
.0420	4" depth		lan.				350	.160		 5.30	3.10	8.40	11.60
0430	6" depth	÷					300	.187		6.20	3.62	9.82	13.55
0510	8000 PSI, 2" depth						330	.170		5.65	3.29	8.94	12.30
0520	4" depth						280	200		6.65	3.88	\$10.53	
E S	6" dépth						240	233		7.75	4.52	12.27	16.90

13.17 Demolish, Remove Pavement and Curb

	DEMOLISH, REMOVE PAVEMENT AND CURB	1 [R024115									
5010 5050	Povement removal (bituminous roads; 53% thick :44 to 61% thick			6-382	13-7-23-7-F	FU58	S.Y.	1 98 3 24	1:45 2:39	2015年1月1日日月	4:63 7:60
5100	Bituminousidriveways				间的行行	7.063		2 13	1.57	3.70	4.9.9
5200	Concrete to 6" thick, hydraulic harmmer, mesh reinforced				255	.157		5.35	3.93	9.28	12.50
5300	Rod reinforced	*	4) ²		200	.200	-	6.80	5	11.80	15.95
5400	Concrete, 7" to 24" thick, plain	a .			33	1.212	C.Y.	41.50	30.50	72	97
5500	Reinforced	2.5		₩	24	1.667	n	 57	42	99	133
5600	With hand held ar equipment bituminous, to 6" thick :			B,39	1900	.025	S.F.	:80	. 10	.90	1.35
5700	Concrete to 6" thick no remoticing				1600	.030		r 1.95	12	1.07	1.61
5800	Meshreinforced				1400	.034		1.09	4	1.23	1.84
5900	Rod reinförced			V	765	063		2	25	2.25	3.37
6000	Curbs, concrete, plain			B-6	360	.067	L.F.	2.18	.79	2.97	4.23
6100	Reinforced				275	.087		2.86	1.04	3.90	5.55
6200	Granite				360	.067		2.18	.79	2.97	4.23
6300	Bituminous				528	.045		1.49	.54	2.03	2.88
6500	Site demo, berns under 4% in height, bituminous				528	.045		1 49	54	. 2.03	2.88
6600	4" or over in height			V	300	080		2:62		3.57	5.10

02 41 13.20 Selective Demo, Highway Guard Rails & Barriers

0010	SELECTIVE DEMOLITION, HIGHWAY GUARD RAILS & BARRIERS								
0100	Guard rail, compated steel	B-6	600	.040		1.31	48	1.79	2.53
EUZUO -	End sections Wrap pround		40	-600	ED.	19.65	7.15	26.8U 26.80	38 29
	Timber 4" x 8"	555 (SE)	600	.040	LF.	1.31	.48	1.79	2.53
0500	Three 3/4" cables		600	.040	"	1.31	.48	1.79	2.53
0600	Wood posts	¥	240	.100	Eo.	3.28	1.19	4.47	6.35
0700	Guide rail, 6" x 6" box beom	B-80B	120	.267	L.F.	8.55	1.87	10.42	15.25

5 53	19.50 Floor Grating, Aluminum	Crev		Lobor- t Hours		Material	2008 I Labor	Bore Costs Equipment	Total	Tote Incl C
900	2-1/4" deep, 5.0# per S.F.	E-4	875	037	S.F.	19.20	the second s		20.94	
100	For safety serrated surface, add		The last second	C-11274A11	40.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	15%		Lite and the second second second		
)55	3 21 — Steel Floor Grating									
	21.50 Floor Grating, Steel	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		. Por a carro co	I ht of t			Landa di sa secolari		
A	FLOOR GRATING, STEEL, held fabricated from panels									
050: 100-	Lobor for installing, from ground/Aloor Elevated	E4	845 460	038	S.F.		1.65 3103	16	1.81	
300	Platforms, to 12' high, rectongular		3150	2	ĿĿ	1.54		04	2.02	
400	Circular	8928 SAU 3	2300	A CALCULA	538238 <i>1</i> 1	1.69	.61	.06	2.36	399429944
410	Painted bearing bars @ 1-3/16"	1.								
412	Cross bars @ 4" O.C., 3/4" x 1/8" bar, up to 300 S.F.	E-2	500	.112	S.F.	6.45	4.69	3.13	14.27	18
414	Over 300 S.F.	1955) 1955) 1955)	750	.075	- - - - - - - - - - - - - - - - - - -	5.85	3.13	2.09	11.07	14
422 424	1:1/4" x 3/16", up to 300 S.I. Over 300 S.F.		400	.140 .093		870 790	5.85 3.91	3.92 2.61	18.47 14.42	10
132	1-1/2" x1/8", up to 300 SF		400	140		7.80	124 18 14 19 19 19 19	3.92	17.57	18
134	Over 300 ST		600	.093		710	3.91	2.61	13.62	
136	1-3/4" x 3/16", up to 300 S.E.		400	.140	Contraction of the second	11.35	5.85	3.92	21.12	27
138	Over 300 S.F.		600	.093		10.30	3.91	2.61	16.82	21
152 154	2-1/4" x 3/16", up to 300 S.F. Over 300 S.F.		300 450	.187 .124		13.45 12.20	7.80 5.20	5.20 3.48	26.45 20.88	34
62	Cross bars @ 2º 0 C .3/A: x:1/8/; up to 300 S F		500	2112	激耀	12.20	4.69	3,40	20.00	26. 25
64	Over 300 ST		750	.075	語語	10.35	313	2:09	15.57.	19
72	1-1/4" x3/16", up to 300/51		400	140-		18.65	5.85	3.92	28.42	35
74	Over 300 SFL		600	.093		15:55	3.91	2.61	22.07	26
82	1-1/2" x 1/8", up to 300 S.F. Over 300 S.F.		400	.140		14.40 12	5.85 3.91	3.92	24.17	30.
84 86	1-3/4" x 3/16", up to 300 S.F.		600 400	.093 .140		12	5.85	2.61 3.92	18.52 29.22	23 36
88	Over 300 S.F.		600	.093		16.20	3.91	2.61	22.72	27.
02	.2.1/4"; x3/16"; up t0300.StF		300	187		23	7.80	5.20	36	45
04	Over 300 ST	V	450	124	¥	19:30	5.20	3.48	27,98	5 34
0]	Pointed beining bors @15/16" 0.C. ross bors @4/ 0.C			5000						
12 22	Up to 300 S:1+ 3/45 X:1/87; bors 1-1/4" x 3/16" bors		850 600	038. .053	S.	8:05	1.64 2.32	.22 .22	9:85 13.89	16. 16.
32	$1-1/2'' \times 1/8''$ bars		550	.058		10.35	2.53	.24	13.12	16.
36	1-3/4" x 3/16" bors		450	.071		14.95	3.09	.29	18.33	22.
52	2-1/4" x 3/16" bors	E-2	300	.187	D-10-10-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	19.55	7.80	5.20	32.55	4]
62	Cross bors @ 2º 0 C., Un to 300.5 F, 3749 X T/8º		500	112		13.70	4.69	313	21.52	26
72 82	1-1/4" x-3%16% bars 1-1/2" x-1/8% bars		400 400	140 140		14:75 14:05	5.85 5.85	3.92 3.92	24.52	
86	1·3/4" 3·3/16" burs		14 - A (E) - A	140		14:05	7.80	5:20	23.82 32.10	40
90 90	For galvanized grating, add	en sever	NGUMAN			25%	HINGS CONTRACT	entrice contra		Station of the
00	For straight cuts, odd				LF.	2.82			2.82	3.
00	For curved cuts, odd					3.88			3.88	4.
	For straight bonding, odd		THE REAL PROPERTY OF	alexano.	1991 (SH)	3.29			3.29	3.
00	For curved bonding, odd For checkered plote nosings, odd					5.10 5:00			510	× 5
00 00	For checkered plote nosings, add For straight loe or kick plate, add					5-80 8-20			5180 8-20	0. 9.
00	For curved loe of kick plate, add					0.20 9.95			9.95	101
00	For abrasive nasings, add	ander herdeligte	NAMES OF T	953956TZ		6	LIGHTENESSER.	an contraction of the second	6	10 6.0 48
00	For safety serroted surface, minimum, add-					15%				
00	Maximum, add		450			25%	0.00	00	41.00	10
00	Stainless steel gratings, close spaced, 1" x 1/8" bars, up to 300 S.F.	E-4	450	.071	. S.F.	38.50	3.09	.29	41.88	48

(

.

31 23 Excevetion

31 01	3 16.13 Excavating, Trench	Grew	Daily Outpu			Moteriol	2008 B Labor	ore Costs Equipment	Total	Tota
0500	6' to 10' deep, 3/4 C.Y. excavator	B-12F		.071	B.C.		2.53		4.97	Incl Og
0510	1 C.Y. excovator	B-12A		.040			1.42	1.62	3.04	0
0600	1 C.Y. excovator, truck mounted	B-12K		.040			1.42	2.72	4.14	240
0610	1-1/2 C.Y.excovotor	B-12B		.027			.95	1.38	2.33	200
0620	2-1/2 C.Y. excovotor	B-12S	1000	.016			57	1.47		
0900	10' to 14' deep; 3/4 (.'Y; exclivator	B-12E	200	080			2.85	2.75	5.60	
0910	1.C.Y. excovator	B-12A	可以出现的了。	. 044			1.58	1.80	3.38	
1000	1-1/2 C.Y. excovotor	Carle State State	540	.030			1.05	1.54	2 59	
1020	2-1/2 C.Y. excavator	B-125		.016			.57	1.47	2.04	2
1030	3 C.Y. excovator	B-12D		.011			.41	1.67	2.08	2
1040	3-1/2 C.Y. excavator	"	1800	.009			.32	1.30	1.62	
1300	14' to 20' deep, 1 C.Y. excovotor	B-12A		.050	1+100	10 10 10 10 10 10 10 10 10 10 10 10 10 1	1.78	2.02	3.80	4
-1310-	11/2CY excovolor	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	480	1 2 C With C	1.1.7		119	173	2.92	
1320	21/2 CY: excivotor	B-12S	11. 水市市法治		126.512		6/	1.72	2,39	2
1330	3 CY: excivitio	B-12D	a de la caractería de la c	.016	1.2		5/		291	
1335	31)/2 CY excivator	D 1-04	1150	70.5 - 5.5.2			1.00	2.03	2.53.	
1340	20' to-24' deep, 1 C.Y. excavator 1-1/2 C.Y. excavator	B-12A B-12B		.056 .037			1.98	2.25	4.23	5
1342 1344	2-1/2 C.Y. excavator	B-128	432	.037		1	1.32 .74	1.92 1.92	3.24 2.66	4
1344	3 C.Y. excavator	B-125	900	.021			.63	2.60	3.23	1
1340	31/2/CY excovolor	S STA	1050				00. 10.	2.00	2177	J
1352	4- to 6/ deep. 1/2. CY. exception w/shench box	B-13H	15 The 1 Percent	085			3.03	25555	81581	10
1354	5/8(CY: exception		235	068			2.42	4 45	6.87	8
1356	3/4 C.Y. excovator	B-130	282	057	たたた		2.02	2.35	4:37	
1358] (.Y. excovotor/ trench box	B-13D	376	.043	認定,推		1.51	2.02	3.53	<u>7375595</u>
1360	1-1/2 C.Y. excavator/ trench box	B-13E	508	.032			1.12	1.86	2.98	3
1362	6' to 10' deep, 3/4 C.Y. excovator w/trench box	B-13G	212	.075			2.69	3.13	5.82	7
1370	1 C.Y. excovator/ trench box	B-13D	376	.043			1.51	2.02	3.53	4
1371	1-1/2 CY extrovalor/ trench.box	B-13E	564	.028			101	1.67	2.68	3
1372	2:1/2:CY exrovotor/ trench box	B-13J	940	.017			-61	1:68	2 29	2
1374	10% to:14% deep;37/4 CY: excovolot w/trench box	B-136	the level of the	085			. 3.03	3-53	656	3 8
1375	I CY- excovator/ hench box		338		調整		1 69	2.25	3 94	5
1376	1-1/2 C.Y. excovator/ trench box	B-13E	508	.032			1.12	1.86	2.98	3
1377	2-1/2 C.Y. excavator/ trench box	B-13J	940	.017			.61	1.68	2.29	2
1378	3 C.Y. excavator/ trench box	B-13F	1316	.012			.43	1.86	2.29	2
1380	· 3-1/2 C.Y. excovotor/ trench box	11 20.720259355	1692	.009	1945 M		.34	1.45	1.79	2 (1997)
1381-	14' to 20'-deep; T. C.Y. excavato: w/trench box	B 13D	20.70 2.40-22	.053			1.89	2.53	4.42	5
1382	11//2 CV excovib//heich box	A STATE OF A STATE	451	035			1.26	2.09	3.35	4
1383	21/2 CY excivolor/ thench box	B-131	799	2.22 (1.18) 12.4			**************************************	1.98	2.69.	
1384	3 CY: excovolor/ trench box	B-13F	2 JICALL MA	HAT WEDDE	識認		61	2.61	3.22	10
1385	3-1/2 C.Y. excovator / trench box		1081	.015			.53	2.27	2.80	3
1386	20' to 24' deep, 1 C.Y. excavator w/trench box	B-13D	271	.059			2.10	2.80	4.90	6
1387	1-1/2 C.Y. excovator/ trench box	B-13E	406	.039			1.40	2.32	3.72	4
1388	2-1/2 CY. excovator/ trench box	8-13J	719 20072第1	.022	35. FR		.79	2.20	2.99	C Second
1389	3.C.Y. excovolor/ trench box 3.1/2 C.Y. excovotor// trench box	B.13F	846	.019 .016			67 C P	2.90	3:57	
1390 1201	3:1/2 C.T. excovato/_rendit box Shoring by SF/day trench wall protected loose math.4 : W		987 3200		▼ SF Wa		0C:: 0C	<u>2.48</u> 09	0.00	0 1 1
1391	Shoring by SF7 day trench woll profested loose main 4 w Rent shoring per week per SF wall profested, loose mail, 4 W.	D-0	3200	000		47 1.29	τ.Ζ Ο	07	.81 1 <u>.</u> 29	
1392 1395	Kent shoring per week person wat protected stable moth, 4 ' W Hydraulic shoring, SF trench wall protected stable moth, 4 ' W	2 Clob	2700	.006		.15	.18		.33	
1395	semi-stoble material, 4' W	2 (100	2400	.008		.15	.10		.33	•
1377	Rent hyraulic shoring per day/SF wall, stable matl. 4' W		2400	.007		.15	.20		.15	
1379	semi-stoble material					.13			.13	
	By hand with pick and shovel 25 to 65 deep light soil	1 Clob	200	<u>کاند</u>	T C V	NERSON A	30.50		30.50	in the second
1400	STATUS AND A REPORT OF	54218141100	2425 Dealer	States Banks	S. D. Conte	11-11-11-11-11-11-11-11-11-11-11-11-11-		The state of the s	1222 ALL ST 1124 P	Hard Street, Hard

31 23 19 = Dewatering

31 23	19.20 Dewatering Systems	(rew	Daily Output			Moteriol	2008 BC	Bore Costs Equipment	Total	
1600	Sump hole construction, incl. excavation and gravel, pit	B-6	1250	019	C.F.	.91				1
1700	With 12" gravel collar, 12" pipe, corrugated, 16 ga.		70	.343		18.75		4.08	34.08	
1800	15" pipe, corrugated, 16 ga.		55	.436		24	14.30	-		
1900	18" pipe, corrugated, 16 ga		50	the rest of the second	A 14 2 14 19	28	12.00 10.00 10.00	5.70	49.40	
2000	24" pipe, corrugated, 14 pp.		40	.600	Station &	33.50	WE DE ALE ALE ALE ALE	「「「「「「「「」」」」」	60.30	
2200	Wood linng, up to 4 x 4 code		300	080	SFCA	15.90	2.62	95		1. 1 1. N. 14 14 14
9950	See Div 31 23 19:40 for wellpoints									
9960	See Div. 31 23 19.30 for deep well systems			2012	Dere.	Strategiese (ZPERMEN	Abbran	human and	Cathorn
9970	See Div. 22 11 23 for pumps	$(_)$		<u> </u> '		l!	í)	I	1)	
	19.30 Wells					L				L
0010. N										
0011	For dewatering 10: to 20: deep; 2: diameters									
0020	with steel casing, minimum	B-6	165	at an a farmer	VLE	2	476	173	Series and the Provide 1	A SULEY
0050	Averoge:		98	245		39	8	2.9.1	49:91	
0100	изорных по технологи по сочительном издельных и наконологи потехно, на очен на очено заключение изделения и со Мохітит	ATT 72 10 10 10	49	.490	A	39	16.05	5.80	60.85	212222
0300	For dewatering pumps see 01 54 33 in Reference Section	()	1 1	()	1 - 7	()	(í – J	()	1
0500	For domestic water wells, see Div. 33 21 13.10	[]		1	1	1	(]	í]		1
31 23 1	19.40 Wellpoints					<u> </u>				
0010 W	VELLPOINTS									
0011	For equipment rental, see .01.54433 vn Reference Section									
0100	Installation and removal of single stage system (
0110	Construction of the for the provident sector of the provident of the sector of the provident of the providen	1 Cloby	CALIFORNIE CAL	748	LE HOR		22-50		22.50.	
0200	2.0 lobor-hours per L.F., moximum	"	4	2	"]	1	60.50	And the second s	60.50	Jan
0400	Pump operation, 4 @ 6 hr. shifts	i _]	1		1	1 1	1	1	1	1,4
0410		4 Eqlt				1]	950		950	
0500	Per 168 hour week, 160 hr. straight, 8 hr. double time			1	Week		6,700		6,700	10,1
0550	Pel-4.3 weekinonmin		-04	800	Month		30,200		30,200	45/6
0600	- Complete Installation, operation, equipment rential tole 18									麣
0610:	removal of system with 2% wellpoints 5% O.C.				影響					
)700 J		Find Find IN	NEWARK	9.907	即國	12月1日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	375		5235	
0080	Thereofter, per month		4.13			118	292		410	5
1000	200' long header, 8" diameter, first month			5.333		131	201		332	4
1100	Thereofter, per month		1 1	3.814		66.50	144		210.50	2
1300	500' long header, 8" diameter, first month	Water I water I water	10.63	and the second s		52	114	Contraction of the Party of the P	166	2
400	Deredfier per month		20.91			37 J	58		95	
600	1,000, long header, 10% diameter, instranonth		11 62	2754		44.50	104		148.50	
700	Thereother, per month		4181	765			29		51	
900	Note: clove houses include pumping 1/68 his; per weeks									
910	and include the pump operator and one stand-by pump.							Cardon Cardon Control	And	
31 23	23 - Fill									
1 23 2	23.13 Backfill	Star.	Although	161	Alter and	All Company and Company	And the second	ACAPUTATION		<u> (*234</u>
	ACKFILL									
015	By hend, no compaction, light soil.	1.Clob	14	57.1			17:30		17-30	
0100	Henry soil		States and	727	國際		22		22	
000	Compaction in 6" layers; hand tamp; addito above		4 - La	388	翻		11.75		42 1175	
)400	a de la casa de la cas	Parta tas table		.120	Series	ANELENSINE A.	4.40	1.43	5.83	Alson.
500		-		.120	11		6.45	1.43	7.61	
600	• • • •	A-1D		.133		.	4.03	.52	4.55	
800		1 Clob		.135		· . [7.10		7.10	
9004				.235			2.93	95	3.88	
000	Air timp, odd		1.1114日 21	140			4.30	75 67	5.00 4.97	
ALC: NO		and the second second second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	the second s		ALE STREET	自己的复数形式的复数		4:50 3:12	
100	And	A-1E	- 90	.089	- ATAGA		2.69	40日45	Contraction of the state	

200	2 31 Fences and Gates									
32	31 26 – Wire Fences and Gates									
	1 26.10 Fences, Misc. Metal	Crew	Daily Output			Material	2008 B Labor	ore Costs Equipment	Total	Total Incl O&P
No ANA	14 ga., 1" x 2" mesh, 3' high	B-800		080.	LF.	2.88			5.90	7.55
0500		₽	300	.080	₩	3.98		.62	7	8.80
1000		2 Clob) 4	4	Eo.	450	121	1 20 20 14 14 14 14 14 14 14 14 14 14 14 14 14	571	690
1050 1200	。- 人名英格兰斯斯 在这些中的目的,我们就是我们的新闻的问题,我们就是我们的新闻,我们就是我们的新闻,我们就是我们的问题。		- 4 - 10	4 1.067		545	12) 		-666	7.85
1250			1812	1.333	目前出	147 147	40-50	1 State of the second	124.50 187.50	151 225
E4500		B 80	25	1.280	122210-21	40	41-50	Service .	106-50	1012 TAXE _ 1141 A-51
4600	16' high	"	20	1.600	"	48	52	31.50	131.50	167
32 3	1 26.20 Wire Fencing, General		_							
0010										
10015	Baibed wire: palvanized, domestic steel thirensile 15 17/2 go					33			33	36.50
0020		公開設				.44.50 144.50	16世纪2010年1月		44-50 44-50	49
0500	Helicol rozor ribbon, stoinless steel, 18" dia x 18" spacing				C.L.F.	129			129	49 142
0600	Hardware cloth galv., 1/4" mesh, 23 ga., 2' wide	1			C.S.F.	58			58	63.50
0700	3' wide					56.50		-	56.50	62
0900	1/2" mesh, 19 go., 2' wide	U.S.S.T.S.	an the second	AND MARKS	শুক্ষাৰ মালায়	51	MERICATION	BUFERANCSALL	51	56.50
1000 1200	4 wide Chain ink labine, steel = 2% mesh = 6:ga, galvanized					- 150 - 191			<u>50</u> 191	
81300	9/go-golvonized					94.50			94:50	211 104;
1350	Vinyl.cooled					- 79			7.9	87
1360	Aluminized	Contraction of the	15.002.00	1242215254502	24040 20040	123	And a second	BARTING SYNAUS VIE	123	135
11/10	2-1/4" mesh, 11.5 go, galvonized					64			64	70
	1-3/4" mesh (tennis courts), 11.5 ga (core), vinyl coated 9 ga, galvanized					90.50 81.50			90.50 81.50	99.50 89.50
24100	y go, gavanized SWelded wire fabric, galvanized, 1/4x,2/2 14-ga				發展	54			54	59.50
2200	7/"X44",121//2.pc.				V	T8:50			18.50	20.50
32	31 29 – Wood Fences and Gates									
32 3	1 29.10 Fence, Wood					<u></u>				
10010										
	Bosket werve, 3/8" x 4" boards =2" x 4"									
0020	stiningers on spreaders, 4" x 4" posts No. 11-cedar: 6f high	0.000	1/0			0.01	ана 170		1471	10.05
0070	Treoted pine, 6' high	B-80C		150 .160	新記器 "	8.85 10.75	4.50 4.80	1.16	14.51 16.79	18.05
0200	Board fence, 1" x 4" boards, 2" x 4" roils, 4" x 4" post		150	.100		10.75	1.00	1.2 1		20.50
0220	Preservative treated, 2 rail, 3' high	B-80C	145	.166	LF.	6.60	4.96	1.28	12.84	16.35
0240 0260	4' high National Barbar I and a state of the second	18-59- HEAR	135	.178	Sec.	7.25	5.35	1.38	13.98	17.70
0300-	3 (al 5) high			185,		8.15	:5.55	1.43	15.13	19:10
0320	6'rhigh No: 2 grade western redâr, 2 rail, 3' high		-125 -145	.192 1662		9:35 7:20	5.75 4.96	1.49 1.28	16.59 13:44	21 17
0340	rio, z guue wasian teou, z run, s riigi (4) high		145	17.8			4.96	1.20	15.44	17
0360	3 roil, 5' high	1981 A.S.		.185		9.80	5.55	1.43	16.78	21
0400	6' high			.192		10.75 [.]	5.75	1.49	17.99	22.50
0420 0440	No. 1 grade cedar, 2 roil, 3' high		145	.166		10.80	4.96	1.28	17.04	21
0460	4' high	-	135	.178	an an	12.25	5.35	1.38	18.98	23.50
1200	3 rail, 5' high 6'' high			.185 -192		14.20 15.80	5.55 5.75	1.43 1.49	21.18 23.04	26 28
	es ingn 		160	192		5.95	575 4.50	1.47	11.61	28 14:85
	No. 2 cedor		160	.150		4.64	4.50	1.16	10:30	13.40
0880 0890	3 rail, 4' high, no. 1 cedar	CASE COX	150	.160	04 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.05	4.80	1.24	14.09	17.65
0920	No. 2 cedar Purtic rail: 2 ceil 2/ bish, po. 1 cedar			.160		5.30	4.80	1.24	11.34	14.60
	Rustic roils, 2 roil 3' high, no. 1 cedar	¥	160	.150	↓	3.72	4.50	1.16	9.38	12.35

E des

55	U1 Operation		/MOII tenanc	ntGhCl 2 of Wat	119 er l	30 Itiliti	25	Ш	<u>11(4)</u>				
ອວນ		CHICKANODIA				Doily	Lopol-	VELIAN NE		2008 Bc		14 14 14 14 14 14 14 14 14 14 14 14 14 1	Total
	10.20 Pipe Repair	and the second			Crew		Hours	Unit Eo.	Material 99.50	Lobor 24	Equipment	Total 123.50	Incl Ogp
20	3" diometer pipe	<u>a an /u>			1 Plu		533	CU. Berlagi	109	24		123.30	145
	3-1/2" diometer pip 4" diometer pipe	e.			B-20		.600		119	20.50		139:50	1200 1413 - 1413
1740 1750	6" diometer pipe					34-	706		149	24		173	202
1760	8″ diometer pipe					21	1 1 4 3		- 199	39		238	280
1770	10" diameter pipe					20	1.200		229	41		270	315
1780	12" diometer pipe				4	17	1.412		248	48		296	350
1800	For 9" long, add			· ·					40% 60%	45% 80%			
1810	For 12" long, add	THE REAL PROPERTY OF A					NAR		120%	110%		Konnensi	
1820	For 18" long, add		- 101					Y					
2000	Clomp, stainless steel, two section. Full seal, for iron, steel, PVC p	ine .			都設								
2040; 2100.	6" long, 4" diameter pip	the second second second second second			B-20	24		Eo.	169	34		203	239
2110	6" diometer pipe		· 1995年1997年1998年1998年1998年1998年1998年1998年1998		12.62 37	20	1.200	Street als	199	41	n in ann a' leann ann ann ann ann ann ann ann ann ann	240	283
2120	8" diometer pipe					13	1.846		219	62.50		281.50	340
2120	10" diometer pipe					12	2		320	68		388	455
2140	12" diometer pipe	-				10	2.400	5000000	350	81.50	and the second second	431.50	505
2200	9" long, 4" diometer pipt					16	1 500		219	51		270	320.
2210	6" diometer pipe					13-	1.846		248 1.5	62:50		-31050	370
2220	8" diometer pipe'					9	2.667		258	90.50		348.50 462	425
2230	10" diometer pipe					8-1	3.429		360 ¹ 395	102 116		402-511	555 615
2240	12" diometer pipe	. .	e : Ek			7 6.40	3.750		595	110		722	855
2250	14" diameter pipe	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	2000 1960 1970 1970			6.40	3.750 4		625	127		761	900-2
2260	16" diometer pipe 18" diometer pipe					5	4.800		645	163		808	965
270	20" diometer pipe				麗	4.60	5 217	题题	695	177		872	1,050
-1290	20° dometer pipe 24" diometer pipe					4	61		1 200	204		1,404	1,625
2320	For 12" long, add to 9".								15%	25%			
2330	For 18" long, odd to 9"								70%	55%			
8000	For internal cleaning and inspection	n, see Div. 33 01 3	0.16				-						
8100	For pipe testing, see Div. 23 05 93	3.50			00005-2	a second and a second	RES-PROVE		TELEPISTIC CONTRACTOR				
33(1 30 - Operation	and Main	tenanc	e of Sew	er l	Juliti	es						
	30.16 TV Inspection of		ines		1100-001	en sensibelik	Juliana Sala	14005050000		Constant and the second		Loto - Para a Maria	
0010	TV INSPECTION OF SEWER PJP												
0100	Pipe internal cleaning & inspection		pipe systems										
0120	Pig method, Jengths 1000/ h											270	310
0140	4" diameter thru 24" dia	imeter, minimum,						NELE "				6.74	8.06
0160	Maximum				[0.74	0.000
6000	Sewage/sonitory systems	1 9 ruttor											
6100	Power rodder with heade							Total				403.20	472.50
6110	Mobilization charge, min Mobilization charge, ma								ZERE			945	1,07.1
6120 6140	Mobilization charge, mu 4" diameter											1:34	155
6140 6150	4' diometer											1.69	195
6160	8" diometer											2.02	235
6170	10" diameter	NACENCE COL	n le messestelle	nan san san san san san san san san san	11 EME 3			- And a state of the state of t		a construction and a construction of		2.35	2.70
6180	12" diameter											2.56	2.96
6190	14" diometer	refue:	5.				1					2.70	3.10
00	16" diometer					Ser Barrer	T 2557574744	e anna san	- EDGERSON	H MARANA BANAN	WINDOW NOT A TRANS	3.03	3.51 3.84
	18" diometer							1200				3.38	3.84 4.04
6220	20" diometer											3.51 3.91	4.09 4.51
6230	24" diometer											17.0 1	
292													in the second
L/L	á.												

-

California and

	05 23 — Trenchless Utility Installation		Daily	Lobor-			2008 R	ore Costs	<u>Sector and the sec</u>	Total
0	5 23.20 Horizontal Boring	Crew	Output		Unit	Material	Labor	Equipment	Total	Incl 0&
	HORIZONTAL BORING									
0011	Casing only, 1001 minimum,									
0020	not incl. jocking pits or dewotening									
0100	Rondwork 17/21 thick wall 24" diameter casing 36" diameter	E 42	20	3.200 4		90:50) 144	109	68 85	267.50 365	465
0200 0300	48" diometer		10	4.267		211	136	90.50	365 446.50	1
0500	Railroad work, 24" diameter		15	4.267		90.50	145	90.50	326	430
0600	36" diameter		14	4.571		144	156	97	397	510
0700	4.8% diameter		12	5.333		#21 0	182	113	506	645
0900	For ledge, add								195.30	1.2.1.1.1.1
1000	Small diameter borng, 31' sondy sol	B-82-	121211-122	018		24.	.60	09	, 24.69	
1040	Rockysol		500s	032	Seventies.	24 <u>-</u>	1 09	15	25.24	28
1100	Prepore jacking pits, incl. mobilization & demobilization, minimum Maximum	1			Eo. "				2,992 17,750.25	3,543 21,278
1101	5 23.22 Directional Drilling	<u> </u>	1		I				17,7 30.23	21,270
33 U: 0010	DIRECTIONAL DRILLING									
	Excluding cost of conduit, 1001 minimum s									
0100	Small equipment to 300?, not to exceed 12? diam									
0102	small unit mobilization to site	B-82A	2	8	Eo		212	460	732	925
0105	small unit setup per drill		4	4.			136	231	367	460
0109	minimum charge gravel, sand & silt, up to 12" diam.		3.20	5	V	3.75	170	289	462.75	585
0110	gravel, sond & silt, up to 12" diam. min charge , clay & soft sandstone, up to 10" diam.		300 3.20	.053 5	L.F. Eo.	.03 12.75	1.81 170	3.08 289	4.92 471.75	6 595
110	Clay & soft sondstone, up to 10 soft.		300	.053		09	170	3.08	4.98	6
-128	min chorge : hard clay & cobble : up to 8% diam			16	Eas	42	545	925	1,512	1,900
0130	Hard day & robble, up to 8% diam	V	100	.160	LE.	42	5 45	9:25	15:12	1.8
0200	Medium equipment to 6001, not to exceed 1.2" diam									
0202	medium unit mobilization to site	B-82B	2	12	Eo.		395	585 292	980 489	1,250 620
0205	medium unit setup per drill minimum charge gravel, sand & silt, up to 12″ diam.		4 3.20	6 7.500		3.75	197 246	365	409 614.75	785
0210	gravel, sand & silt, up to 12" diam.		350	.069	♥ LF.	.03	2.25	3.33	5.61	7
0218	min charge ; day & soft sandstone; up to 10% diam.	麗麗	3.20	7 500	Eo	12.75	246	365	623.7.5	795
0220	Cloy & soft sondstone: up to 10% diam.		300	.080	EFE	.09	2.62	3.89	6.60	8
0228 .	min chorge ; hard clay & cobble ; up to 8° diam.		2.61.5.6.3		- 11 A A A A A A A A A A A A A A A A A A	42	440	655		1,450
0230	Hard clay & cobble, up to 8% diam	V	150	160	距關	42	5.25	7:75	19.42	17
0300	Lorge equipment to 1000', not to exceed 12" diam.	Daac		10	r		201	005	1.110	1 400
0302	large unit mobilization to site large unit setup per drill	B-82C	2	12	Eo.' 1		395 197	720 360	1,115 557	1,400 695
0303	norge unit serve per and minimum charge gravel, sand & silt, up to 12" diam.		4	6		3.75	197	360	560.75	700
0310	gravel, sond & silt, up to 12% diam.		400	060		03	197	3.60	5:60	
0318	min charge , clay & soft sandstone, up to 12" diam.		-3.20	7.500	Ea	1275	246	450	708:75	890
0320	Clay & soft sandstone, up to 12" diam.		350	.069		09	2125	4.11.	- 6.45	8
0328	min charge , haid clay & cobble, up to 10" diam.		1.78	13.483	Eo	42	440	810	1;292	1,625
0330	Rock & cobble, up to 10" diam.		150	.160	L.F.	.42	5.25	9.60	15.27	19
0400 1000	Directional drilling, mud trailer per day Additional charges for mobilization may apply at some locations	B-82D		8	Doy		300	267	567	750
	Additional charges for mobilization may apply at some locations									1.1.1.1
	5 26 - Utility Line Signs, Markers, and Flag	D	或認識				NUC TAKE	HEAR OWN	And the second	
	26.10 Utility Accessories	1.49.55.544	ligaç Mel	12.24AN	100		Sector Sector			- Market Sectors
0010 0400	UTILITY ACCESSORIES Underground tape, detectable; reinforced, alum. foil core, 2"	1 Clob	150	.053	CLE	2	1.61		3.61	4
J500			140	.053	C.E.	西部林家门	1.73		6.73	8

33 41 Storm Utility Drainage Piping 38 41 18 – Public Storm Utility Drainage Piping

33 4	1 13.50 Piping, Drainage & Sewage, Corrug. HDPE Type S	G Crew	Daily Outpu		Unit	Material	2008 E Labor	lore Costs Equipment	Total	Tolo Ind Oa
0020	Not including exception & bockfill, bell & spigot	n.00		0.57						
1000 1010	With goskets, 4% diameter: 6% diameter:	B-20	425 400	.056	SLE.	72.	- 1.92 2:04		2.64 3.69	
1020	8" diameter	17466 834	380	.063	670,943	3.15	1.1	1. 12. 1. 2. 1	5.30	
1030	10" diometer		370	.065		4.36	2.20	4	6.56	
1040	12" diometer		340	.071		5.95	2.40		8.35	
1050			300	.080	WIND STR	8.05	2.72		10.77	13
1060	18 ^w dometer	B 21-	275	102		11.45	111 11 11 11 11 11 11 11	47	15.48	10
1070 1080	24" dameler 30", dameler		250 200	112. 140		17.80 28	3.92		22.24	20. 20
1090	36//dometer		180	156		20 35:50	4.89 5.45	65 72	41.67	509. S
1100	42" diometer	1860 BG	175	.160		44.50	5.60	.74	50.84	运动的 50
1110	48" diometer		170	.165		58	5.75	.76	64.51	58
1120	54" diameter		160	.175		89.50	6.10	.81	96.41	108
1130	60" diameter	+	150	.187	7	104	6.55	.86	111.41	108 126
1135	Add 15% to material pipe tost for water tight connection bell & spigot									
1140	HDPE type s- albows 1/2" diameter	B 20		2.182.	EO: 2	49	74		128	169
1150 1160	415% domete; 18% domete;	B 21	9 9	2:667 3:111		76 125	90.50 109	14.35	166-50 248:35	-12 <u>15</u> 557
1170	24" diometer		9 9	3.111		266	107	14.35	389.35	920 475
1180	30" diometer		8	3.500		425	122	16.15	563.15	670
1190	36" diameter	₩	8	3.500		545	122	16.15	683.15	805
1240	HDPE type s, Tee 12" diometer	B-20	7	3.429]]]	116		227	305
1260	15" dometer		6	4		131	136		267	355
1280 1300	18", diometer. 2 4 " dometer.	8-21	6 E	4.667		193	163 196	21.50	- 377.50 475	490
1320	30% dometer		500 5	5.600		253 475	170 196	26 26	475 697	860
1340	36" diometer	TA AR	4	7	972 (1935)	620	245	32.50	897.50	1,100
1360	42‴diometer		4	7		1,075	245	32.50	1,352.50	1,600
1380	48" diometer	*	4	7	*	1,775	245	32.50	2,052.50	2,375
1400	Add to basic installation cost for each split coupling joint	879537	NO.	007201005005	-	RANKE REPORT OF	RESPONDE			CHARLES STATE
1402 1420	HDPE type s; split toupling: 12" diameter	B-20		1.412 1.600		- 5.40	48		53:40	
1420	15/ dometer		10 19	1.600		6 10:40	54.50. 62.50		60.50 72.90	109
1460	24 ⁴ dometers		12	1.0404 3.7		15.20	68		83 20	123
1480	30" diometer	1657 58:02	10	2.400	975 9825 I	25	81.50		106.50	155
1500	36" diometer		9	2.667		32	90.50		122.50	176
1520	42" diameter		8	3		38.50	102		140.50	200
1540	48" diameter	4	8	3	4	49.50	102		151.50	213
	13.60 Sewage/Drainage Collection, Concrete Pipe			10-10-2-10-1V			a la attaina a ta ann a mha			
Light free states in	SEWAGE/DRAINAGE COLLECTION, CONCRETE PIPE									
0020	Not including excevation of bockfill									
0050	Box culvert, cast in place, 6 - x 6'	C-15	16 14	4.500		181]62		343	450 580
0070	8-+ 8' 12' x 12'		1.7. E43 E22 4	57143 7.200		266. 520	185 259		451 779	975
0100	Box culvert, precost, bose price, 8' long, 6' x 3'	♥ B-69	140	.343		283	11.40	9.20	303.60	340
0150	6' x 7'	1	125	.384		430	12.75	10.30	453.05	500
0200	8' x 3'		133	.361		390	11.95	9.70	411.65	460
0250	8/ x 8/		100	480		525	15.95	12.90	553.85	620
0300	10' x 3'		110	436		580.	14.50	71.75	606:25	67.0
0350	10° x 8		1.22.2	600		655	19-90	- 16.15	691.05	- <u>770</u>
0400]2: x3	.	100	480	V	560	15.95	12.90	588.85	655
312	. <u>.</u> E									

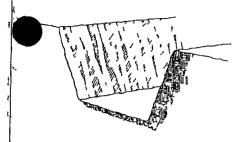
33	42 Culverts									
334	2 16 = Concrete Culverts									
	16 dE Ouel Areb Culturate			Labor-				Bare Costs	T. 1	Total
42	2 16.15 Oval Arch Culverts 57%x38%12.00-48% equivalent	Crew	Uutpu	t Hours		Moterial	Labor 24:50	Equipment	Total	Incl 0&P
Bust	End sections 1 7/1 x 13/2			2.545	1 M. Then	97.50	A 1-20-20-20-20-20-20-20-20-20-20-20-20-20-	the state of the state of the state	and the second second second	A CONTRACTOR OF A
3340	47" x 29"			3.294		400	108	46.50	1	State Line Line Line
3360	Multiplate arch, steel	B-20	1690	.014	Lb.	1. 10/	48	State State	1.60	A Department of the second
had a second s	an de la constante de la constant d La constant de la const	21 MARIE	-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	1919年,新华新华的 1919年,新华新华的	HI-1715202435	a Detablik denis di	all work have a second	2011-11-11-11-11-11-11-11-11-11-11-11-11-	14-12-14-15-15-15-16-16-15-15-15-15-15-15-15-15-15-15-15-15-15-	<u>4108</u> 9788858586
99	44 Storm Utility Water Drain									
DD		LD								
334	4 13 – Utility Area Drains									
33 44	13.13 Catchbasins		7							
0010	CATCHBASINS									
0011	Not including looping & excevation									
1580	curb inlet hane, grate, and curb box		前短							
1582	Hallorge 24% x 36% heovy duty	B-24	2	<u>12</u>	Eo.	440	420		860	1,125
1590	Small 10" x 21" medium duty	"	2	12		310	420		730	990
1600	Frames & covers, C.I., 24" square, 500 lb.	B-6	7.80	3.077		249	101	36.50		
1700	26" D shape, 600 lb.		7	3.429		425	112	41	578	690
1800	Light traffic, 18" diameter, 100 lb.	-	10	2.400	789 250	139	78.50	28.50	246	305
1900	247 dometer 300.15		8.70	2.7-59	1455 B.b	215	90.50	Care Constant	338.50	410
2000	36' dometer 900 b		5.80	4.138		430	136	49.	6]5	735
2100	Hervy Indfic, 24% dömeter, 400 lb. 36% diameter, 1150 lb.		7.80	3.077		208 690	101 262	36.50 95	345:50	425
2200 2300	Moss. State standard, 26" diameter, 475 lb.		3 7	8 3.429		520	112	41	1,047 673	1,275
100	30" diometer, 620 lb.		7	3.427		330	112	41	483	585
	Wotertight, 24" diameter, 350 lb.		7.80	3.077		355	101	36.50	492.50	585
	26" diometer, 500 lb.		7	3.429		335	112	41	488	590
2700	32/ dameter 575/b		6	4		745	131	47:50	923.50	1,075
2800 2900	3 piece cover/& (fame, 10% deep,									
2900	1200 lbs: for heavy equipment	= B -6	ġ.	8	Eo.	1,075	262	95	1,432	1,675
3000	Roised for poving [1] //4" to 2" high,									
3100	4 piece expansion ring									
3200	20" to 26" diameter	1 Clob	3	2.667	Eo.	117	80.50		197.50	253
3300	30" to 36" diometer	"	3	2.667	"	162	80.50		242.50	305
3320 3340	Frames and covers, existing, raised for paving, 2", including	28755	No P	1.222		2/10/	1	10:00	Corror	
3360-	row of brick, concrete collor, up to 12° wide frome 20° to 26° wide frome	B-6-,	*112+F51		1	36.50 57:50	43-50 71-50	-15.85 26	95:85 155	124
3380	20 10 2 0; wide frome 30° to 36° wide frome]:] 0.	2.182 2.667	源於	Contraction of the second	87:50	R Defension and a second as		202 248
3400	Inverts, single channel brick	D-T	2	5.333		71 80	186	01:00	266	370
3500	Concrete	國品語	5 5	3.200	識證	62.50	112		174.50	239
3600	Triple channel, brick *		2	8		121	279		400	560
3700	Concrete		3	5.333		107	186		293	400

CCA							
222/17	13 -	Pone	land	Res	ervoi	rLine	rs

Photo Shared Ha			Do	ily L	Labor-	PART COL	ten menyaka ng By Tom Solo (1997)	2008 B	ore Costs		Total
	1 13.53 Reservoir Liners HDPE	(re	w Out	but H	Hours	Unit	Material	Lapor	Equipment	Total	Incl Ox
	RESERVOIR LINERS HDPE										
0011	membrane lining.			100							
1100	30 mil thick	3.Sk	wk 18	50	.013	SF	- 35	51		.86	
1200	60 mil thick		160)0	.015	11 A A A A A A A A A A A A A A A A A A				1.24	
1220	60 mil thick		1.6	0	15	M.S.F.	650	590		1,240	1,625
1300	120 mil thick	↓	14	10 .	.017	S.F.	1.47	.66		2.13	

33 49 Storm Drainage Structures 33 49 13 – Storm Drainage Manholes, Frames, and Covers-

1


33 49 13.10 Storm Drainage Manholes, Frames and Covers

0010	STORM DRAINAGE MANHOLES, FRAMES & COVERS									
0020	Excludes footing, excivation, bockfull (See lure items for frame & cover)									
0050	Brick 41 inside diameter 41 deep	DI		16	HEAD AND	395	560		955	1275
0100	66 deep	题题	70 .50	22.857 32		555 710	795		1,835	0.1257
0150	84 deep For depths over 84, odd	4 - 10 -	.50	4	¥ V.L.F.	147	1,125		287	2,475
0200 0400	Concrete blocks (radial), 4' 1.D., 4' deep		1.50	10.667	Eo.	340	370		710	375. 940.
0400	6' deep		1.1	16		450	560	2	1,010	1,350
0600	8' deep	藏爾	70	22,857	彩耀	560	795		1,010	1,350
07.00	For depths over 84 add		5:50	is the training	VLF.	57:50	107		158.50	217
0800	Concrete, cost in ploce; 4/ x 4/ - 8/, thick; 4/ deep	CT4H	12	24	Eor	510	905	12.50	1,427-50	-1,975
0900	61 deep 11 and 12 and		1.50	-32		740	1,200	16.65	1,956:65	2,700
1000	8' deep	ACC STATE]	48	*	1,050	1,800	25	2,875	4,025
1100	For depths over 8', add	¥	8	6	V.L.F.	120	227	3.12	350.12	490
1110	Precost, 4' I.D., 4' deep	B-22	4.10	7.317	Eo.	680	259	47.50	986.50	1,200
1120	6' deep	25-10/10224	3	10	ETHE MERIN	850	355	64.50	1,269.50	1,550
1130.	8, deep		2	×15		1,025	530	97	1,652	2,050
1140	For depths over 82, odd	Y	<u></u> 16	1.875	VLF.	139	66.50	12.15	217.65	268
1150	5'10;4' deep	50-0-3 1	うう	8 12	Ho:	700 945	262 395	95 143	1,057 1,483	1,275 1,800
1160 1170	6' deep 8' deep		1.50	16		1,200	525	190	1,915	2,325
1180	For depths over 8', odd		12	2	♥ V.L.F.	155	65.50	24	244.50	298
1190	6' I.D., 4' deep		2	12	Eo.	1,150	395	143	1,688	2,000
1200	6' deep		1.50	16		1,500	525	190	2,215	2,650
1210	8. deep			24		1,825	785	285	2,895	3,550
1220	For depths over 84 add	V	8	3	YLE	240	98-50	35,50	374	455
1250	- Slob tops, precest, 84 thick									
1300	41 diometer monhole	B 6	8 -	3	Eo:	161	98.50	35.50	. 295	365
1400	5' diameter manhole		7.50			315	105	38	458	555
1500	6' diameter manhole	*	7	3.429		460	112	41	613	725
3800	Steps, heavyweight cast iron, 7" x 9"	1 Bric	40	.200		12.95	7.85		20.80	26
3900	8" x 9"	285 Coord	40	.200	र राज	19.45	7.85	VARIATION CANCERS	27.30	33:5(
3928	124×101/2"		40	200		18 40	7.85		26:25	32
4000	Shindord sizes, galvõnized steel		40	200		15.60	7.85		23.45	
4100	Alumnum	×	¥0	200	V	21	7.85		28.85	

1030	105	Cut & Fill Gravel		COST PER C Y	
1030			EQUIP	LABOR	TOTAL
		10 haul 5 lift 2 passes	5 60	3 35	8 95
2000		4 passes	5 70	3 48	918
2700		12 lift 2 passes	5 55	3 2 5	88
2750		4 passes	5 65	3 39	9.04
3000	300 HP do:	zer & roller compactors 150 haul 6 lift, 2 passes	2 69	1 39	4 08
3050		4 passes	2 79	1 52	4 31
3100		12 lítt, 2 passes	2 62	1 30	3 92
3150		4 passes	2 72	1 43	4 1 5
3200	30	0 haul 5 lift 2 passes	4 61	2 23	6 84
3250		4 passes	471	2 36	7 07
3300		12 lift 2 passes	4 54	214	6 68
3350		4 passes	4 64	2 27	6 91
4200	10 C Y elev	vating scraper & roller compacter 1500 haul 6 lift 2 passes	2 89	1 82	4 7 1
4250		4 passes	3 21	2 14	5 35
4300		12 ltt 2 passes	2 71	1 64	4 35
4350		4 passes	2 92	1 85	4 78
4800	500	DO haul 6 lift 2 passes	364	2 24	5 88
4850		4 passes	3 95	2 56	6 52
4900		12 航 2 passes	3 46	2 06	5 52
4950		4 passes	3 57	2 28	5 95
5000	15 C Y S P	scraper & roller compactor 1500 haul 6 lift, 2 passes	3 53 3 85		507
5050		4 passes	3 35	1 85 1 36	<u> </u>
5100		12 htt 2 passes	3 55	1 56	471 514
5150	E00	4 passes 10 haul 6 lift 2 passes	4 66	1 58	514 656
50	500	u naulo lint 2 passes 4 passes	4 00	2 22	6 56 7 20
50		12° litt, 2 passes	4 98	1 72	5 20
		12 mg 2 passes 4 passes	4 48	1 94	5 20 6 63
5600	210750	scraper & roller compactor 1500 haul 6 lift 2 passes	382	1 35	517
5650	210138	4 passes	4 14	1 55	581
5700		12 lift 2 passes	364	1 17	481
5750		4 passes	3 85	1 39	624
5750	500	1 passes	6 50	1 73	7 23
6050	JUL	4 passes	5 85	2 05	7 90
6100		12 kf 2 passes	5 35	1 55	6 90
5150		4 passes	5 55	1 77	7 32

() - ⁽)

G10 Site Preparation G1030 Site Earthwork

Trenching Systems are shown on a cost per linear foot basis The systems include excavation backfill and removal of spoil and compaction for various depths and trench bottom widths The backfill has been reduced to accommodate a pipe of suitable diameter and bedding

The slope for trench sides vanes from none to $1 \ l$

The Expanded System Listing shows Trenching Systems that range from 2 to 12 in width Depths range from 2 to 25

System Components			(OST PER L F	
System Components	QUANTITY	UNIT	EQUIP	LABOR	TOTAL
SYSTEM G1030 805 1310					
Trenching common earth no slope 2 wide 2 dp 3/8 c y bucket			[]		
Excavation trench hyd backhoe track mtd 3/8 C Y bucket	148	CY	31	84	119
Backfill and load spoil from stockpile	153	CY	09	26	3
Compaction try vibrating plate 6 lifts 4 passes	118	ECY	03	32	35
Remove excess spoil 8 C Y dump truck 2 mile roundbip	040	CY	14	15	2
TOTAL			57	1 57	214

610	30 805	Trenching Common Earth		COST PER L F	
			EQUIP	LABOR	TOTAL
	Trenching commo	n earth no slope 2 wide 2 deep 3/8 C Y bucket	57	1 57	214
1320		3 deep 3/8 C Y bucket	81	2 36	3 17
		4 deep 3/8 C Y bucket	1 03	3 14	417
		6 deep 3/8 C Y bucket	1 40	4 06	5 45
		8 deep 1/2 C Y bucket	1 82	5 35	717
1350		10 deep 1 C Y bucket	2 84	6 40	9 24
1400	4	wide 2 deep 3/8 C Y bucket	1 32	3 13	4 45
1410		3 deep 3/8 C Y bucket	1 78	4 69	6 47
1420		4 deep 1/2 C Y bucket	2 06	5 20	7 25
1430		5 deep 1/2 C Y bucket	3 33	8 30	11 53
1440		8 deep 1/2 C Y bucket	5 35	10 70	16 05
1450		10 deep 1 C Y bucket	6 50	13 30	19 80
1460		12 deep 1 C Y bucket	8 40	16 90	25 30
1470		15 deep 1 1/2 C Y bucket	7 45	15 10	22 55
1480		18 deep 21/2CY bucket	10 30	21	31 30
1520	6	wide 6 deep 5/8 C Y bucket w/trench box	7 40	12 50	19 90
1530		8 deep 3/4 C Y bucket	9 55	16 15	25 70
1540		10 deep 1 C Y bucket	9 45	16 80	26 25
1550		12 deep 1 1/2 C Y bucket	1015	18 05	28 20
1560		16 deep 21/2CY bucket	13 80	22	35 80
1570		20 deep 3-1/2 C Y bucket	19 50	27	46 50
1580		24 deep 3-1/2 C Y bucket	23 50	32 50	55
1540	8	wide 12 deep 1 1/2 C Y bucket w/trench box	14 25	23	37 25
1550		15 deep 1 1/2 C Y bucket	18 60	30	46 50
1560		18 deep 2 1/2 C Y bucket	20	29 50	49 50
1580		24 deep 3-1/2 C Y bucket	31 50	42	73 50
1730	1	D wide 20 deep 3-1/2 C Y bucket w/Irench box	25	40	65
1740		24 deep 31/2 C Y bucket	38 50	48	85 50
1800	1/2 to 1 s	lope 2 wide 2 deep 3/8 C Y bucket	81	2 36	317
	• • • • •	3 deep 3/8 C Y bucket	1 33	412	5 45
		4 deep 3/8 C Y bucket	1 97	6 25	8 22
1		6 deep 3/8 C Y bucket	3 35	10 20	13 55
1850		8 deeo 1/2 C Y bucket	5 25	15 20	21 45
1880		10 deep 1 C Y bucket	9 80	22 50	32 30

2300	G 1030 805 Trenching Common Earth				
2300		EQUIP	LABOR	TOTAL	
2310	4 wide 2 deep 3/8 C Y bucket 3 deep 3/8 C Y bucket	1 55 2 31	3 91	- 5 46	
2320	4 deep 1/2 C Y bucket	2 94	6 45 7 90	876	
2340	5 deep 1/2 C Y bucket	5 60	14 70	10 84 20 30	
2350	8 deep 1/2 C Y bucket	10 35	21 50	20 30	
2380	10 deep 1 C Y bucket	14 40	30 50	44 9ð	
2400 2430	12 deep 1 C Y bucket 15 deep 1 1/2 C Y bucket	1910 21	41 44	6010	
2450	18 deep 21/2 C Y bucket	37	67 50	65	
2840	6 wide 6 deep 5/8 C Y bucket w/trench box	10 65	18 25	104 <u>50</u> 28 90	
2860	8 deep 3/4 C Y bucket	15 45	27 50	42 95	
2880	10 deep 1 C Y bucket	15 20	28	43 20	
2900 2940	12 deep 11/2 C Y bucket 16 deep 21/2 C Y bucket	19 20 31 50	36 50 52 50	5570	
2940	20 deep 3-1/2 C Y bucket	48 50	72 50	84_3	
3020	24 deep 3-1/2 C Y bucket	69	99	121* 168-ي	
3100	8 wide 12 deep 1 1/2 C Y bucket w/trench box	24	41 50	65 50	
3120	15 deep 1 1/2 C Y bucket	34 50	60 50	952	
3140-	18 deep 21/2 C Y bucket 24 deep 31/2 C Y bucket	43 50 77 50	70 50	114 -	
3180 3270	10 wide 20 deep 3-1/2 C Y bucket w/trench box	48 50	108 83 50	185-50,	
3280	24 deep 31/2 C Y bucket	85 50	118	203 50	
3370	12 wide 20 deep 31/2 C Y bucket w/ trench box	72	97		
3380	25 deep 31/2 C Y bucket	100	138	238 🛒	
4	1 slope 2 wide 2 deep 3/8 C Y bucket 3 deep 3/8 C Y bucket	1 03	314	472	
520 540	4 deep 3/8 C Y bucket	2 90	7 25 9 40	10 <u>32</u> 1230	
550	5 deep 3/8 C Y bucket	3 35	1015	13 50	
580	8 deep 1/2 C Y bucket	6 55	20 50	27 05	
600	10 deep 1 C Y bucket	16 70	38 50	55 20	
800 820	4 wde 2 deep 3/8 C Y bucket 3 deep 3/8 C Y bucket	1 78 2 82	4 69 8 20	6 47 11 02	
840	4 deep 1/2 C Y bucket	380	10 60	14 40	
860	6 deep 1/2 C Y bucket	7 90	21	28 90	
880	8 deep 1/2 C Y bucket	15 40	32 50	47 90	
900	10 deep 1 C Y bucket 12 deep 1 C Y bucket	22 50	47 50	· · · · ·	
920	15 deep 11/2 CY bucket	33 34 50	68 50 73	101 50 107 50	
960	18 deep 21/2 C Y bucket	51 51		107 50	
030	6 wde 5 deep 5/8 C Y bucket w/trench box	14	24 50	38 50	
040	8 deep 3/4 C Y bucket	20 50	34	54 50	
050	10 deep 1 C Y bucket	22	4]	63	
060 070	12 deep 11/2 CY bucket 16 deep 21/2 CY bucket	29 50 49	55 50 83 50	85 🛫 132 50	
080	20 deep 3-1/2 C Y bucket	78 50	118	196 50	
090	24 deep 3-1/2 C Y bucket	115	166	28]	
500	8 wide 12 deep 11/2 CY bucket w/trench box	33 50	60 50	94 🤨	
650	15 deep 11/2 C Y bucket	51	91	142	
600 650	18 deep 21/2CY bucket 24 deep 31/2CY bucket	66 123	109 175	175 i 298	
800	10 wide 20 deep 31/2 C Y bucket w/trench box	71 50	1/5	198 50	
	24 deep 31/2 C Y bucket	131	185	316	
850	12 wde 20 deep 3-1/2 C Y bucket w/ trench box	104	143	247	
850 950 980	25 deep 3-1/2 C Y bucket	149	209	358 1	

ł

(

(

G10 Site Preparation G1030 Site Earthwork

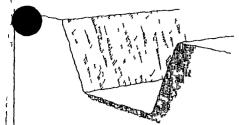
i mart

Trenching Systems are shown on a cost per linear foot basis The systems include excavation backfill and removal of spoil and compaction for vanous depths and trench bottom widths The backfill has been reduced to accommodate a pipe of suitable diameter and bedding

The slope for trench sides vanes from none to 11

The Expanded System Listing shows Trenching Systems that range from 2 to 12 in width Depths range from 2 to 25

Surtem Components			COST PER L F			
System Components	QUANTITY	UNIT	EQUIP	LABOR	TOTAL	
SYSTEM G1030 806 1310						
Trenching Loam & Sandy Clay No Slope 2 wide, 2 dp 3/8 c y bucket						
Excavation trench hyd backhoe track mtd 3/8 C Y bucket	148	BCY	29	78	1 07	
Backfill and kiad spoil from stockpile	165	CY	10	28 -	38	
Compaction by vibrabing plate 18 wide 5 lifts 4 passes	118	ECY	03	32	35	
Remove excess spoil 8 C Y dump tmck 2 mile roundtrip	042	CY	14	16	30	
TOTAL			57	1 57	214	


C				·····	C		
System	n Compo	nents	QUANTITY	UNIT	EQUIP	LABOR	TOTAL
	TEM G1030 80						
TRE		& SANDY CLAY NO SLOPE 2 WIDE, 2 DP 3/8 C Y BUCKET]		
	Excavahon trench hyd backhoe track mtd 3/8 C Y bucket 148 B C Y				29	78	
	Backfill and kiad spoil from stockpile 165 C Y				10	28 -	
	Compaction by vibrabing plate 18 wide 5 lifts 4 passes 118 E C Y				03	32	
	Rem	ove excess spoil 8 C Y dump tmck 2 mile roundtrip	042	CY	14	16	
		101/			57	1 57	
C102	0 806	Trenching Loam & San	dy Clay			COST PER L F	
			ay ciay		EQUIP	LABOR	TOTA
ŕ	nching loam & s	andyclay no slope 2 wide 2 deep 3/8 C Y bucket			56	1 54	
320		3 deep 3/8 CY bucket			87	2 5 3	
230		4 deep 3/8 C Y bucket			1	307	
		6 deep 3/8 C Y bucket			1 48	3 54	
1350		8 deep 1/2 CY bucket			1 93	4 79	
1 360		10 deep 1 C Y bucket			2 13	5 15 3 08	
1410	4 wide 2 deep 3/8 C Y bucket				1 32	4 51	
1420	3 deep 3/8 C Y bucket 4 deep 1/2 C Y bucket				2 05	5 10	
1430	6 deep 1/2 C Y bucket				3 51	7 40	1
1440		8 deep 1/2 C Y bucket			5 20	10 55	i
1450		10 deep 1 C Y bucket			5 10	10 80	1
1460		12 deep 1 CY bucket			6 40	13 45	ī
1470		15 deep 11/2 C Y bucket			7 75	15 55	2
1480		18 deep 21/2CY bucket	· · · · · · · · · · · · · · · · · · ·		9 25	16 90	2
1520	6	wide 6 deep 5/8 C Y bucket w/trench box			7 15	12 30	1
1530		8 deep 3/4 C Y bucket			9 15	15 85	2
1540	_	10 deep 1 C Y bucket			8 70	16 15	2
1550		12 deep 11/2 CY bucket			9 85	18 10	2
1560		15 deep 21/2 C Y bucket			13 40	22 50	3
1570		20 deep 3-1/2 C Y bucket			17 80	27	4
1580	<u>-</u>	24 deep 31/2 C Y bucket			22 50	33	5
1640 1650	8	wide 12 deep 1 1/4 C Y bucket w/Irench box			14 05	23	3
1560		15 deep 1 1/2 C Y bucket		· <u>···</u> ··· ···	1716	29	4
1680		18 deep 21/2CY bucket 24 deep 3-1/2CY bucket			20 50 30 50	32 50 42 50	5
1730	<u> </u>	10 wide 20 deep 3-1/2 C Y bucket w/Irench box		<u>-</u>	30 50	42 50	7
1740		24 deep 31/2 C Y bucket			38 50	52 50	9
1780		12 wide 20 deep 3-1/2 C Y bucket w/trench box		· · · · · · · · · · · · ·	38 30	61	
190		25 deep bucket			48 50	65 50	11
0	1/2 1 slope	2 wide 2 deep 3/8 C Y BK			79	2 31	
1810	• · · · · · • • • •	3 deep 3/8 CY bucket			1 29	4 03	
1820		4 deep 3/8 C Y bucket			1 92	615	1
1840		6 deep 3/8 C Y bucket			3 54	910	1

G1030 Si	e Earthwork			4 c/
G1030 806	Trenching Loam & Sandy Clay	EQUIP	COST PER L F	TOTA
1860	8 deep 1/2 C Y bucket	5 50	14 50	TOTAL 20
1880	10 deep 1 C Y bucket	7 25	18 20	
2300 4	wide 2 deep 3/8 C Y bucket	1 55	3 84	25 5
2310	3 deep 3/8 C Y bucket	2 2 9	6 35	8
2320	4 deep 1/2 C Y bucket	2 91	7 75	10
2340	6 deep 1/2 C Y bucket	5 90	1320	19
2360	8 deep 1/2 C Y bucket	10 05	21 50	31
2380	10 deep 1 C Y bucket	11 15	25	35
2400	12 deep 1 C Y bucket	18 65	41	59
2430	15 deep 11/2 C Y bucket	22	45 50	57
2460	18 deep 21/2 CY bucket	- 36	58 50	105
	wide 6 deep 5/8 C Y bucket w/Irench box	10 35	18 50	29
2860	8 deep 3/4 C Y bucket	14 80	27	42
2880	10 deep 1 C Y bucket	15 45	30 50	45
2900	12 deep 11/2 CY bucket	1915	37	56
2940	16 deep 21/2 CY bucket	30 50	53 50	84
2980	20 deep 31/2 CY bucket	46 50	73 50	120
3020	24 deep 31/2 C Y bucket	66 50	100	157
	wide 12 deep 11/2 C Y bucket w/trench box	23 50	42	65
3120	15 deep 11/2 C Y bucket	31 50	59	90
3140	18 deep 21/2 C Y bucket	42	71 50	114
3180	24 deep 3-1/2 C Y bucket	74 50	110	185
270	10 wde 20 deep 3-1/2 C Y bucket w/trench box 24 deep 3-1/2 C Y bucket	59 50 82 50	89	149
3280	12 wide 20 deep 3-1/2 C Y bucket w/trench box	82 50 66	120	203
3380	25 deep 3-1/2 C Y bucket w/trench box	90 50	130	153
	2 wide 2 deep 3/8 C Y bucket		3 07	221
1520	3 deep 3/8 C Y bucket	1 81	5 75	4
1540	4 deep 3/8 C Y bucket	2 82	9 20	12
550	6 deep 3/8 C Y bucket	3 54	9 10	12
580	8 deep 1/2 C Y bucket	9 25	24	33
500	10 deep 1 C Y bucket	12 35	31	43
800	2 deep 3/8 C Y bucket	1 78	4 62	5
	wide 3 deep 3/8 C Y bucket	2 79	8 05	10 8
840	4 deep 1/2 C Y bucket	3 75	10 40	14
850	6 deep 1/2 C Y bucket	8 30	19	27
880	8 deep 1/2 C Y bucket	14 95	32	47
900	10 deep 1 C Y bucket	17 20	39	56
920	12 deep 1 C Y bucket	25	55	80
940	15 deep 11/2 C Y bucket	36	75 50	112
950	18 deep 21/2 C Y bucket	50	94 50	145
	wide 6 deep 5/8 C Y bucket w/trench box	13 55	24 50	38
040	8 deep 3/4 C Y bucket	20 50	38	58
050	10 deep 1 C Y bucket	22	44 50	65
060	12 deep 1 1/2 C Y bucket	28 50	56	84
080	20 deep 3-1/2 C Y bucket	75 50	120	195
090	24 deep 31/2 C Y bucket	110	168	278
	wide 12 deep 11/4 C Y bucket w/trench box	32 50	51	93
550	15 deep 1 1/2 C Y bucket	46	88 50	135
500	18 deep 21/2 C Y bucket	64	111	176
650	24 deep 31/2 C Y bucket	118	178	296
800	10 wide 20 deep 3-1/2 C Y bucket w/trench box	88 50	135	225
850	24 deep 31/2 C Y bucket	126	188	316
950	12 wide 20 deep 3-1/2 C Y bucket w/trench box	95	144	239
980	25 deep bucket	144	212	355

ι

GIU Sile Preparation

G1030 Site Earthwork

فكرحائبهم

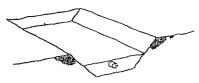
Trenching Systems are shown on a cost per linear foot basis The systems include excavation backfill and removal of spoil and compaction for vanous depths and trench bottom widths The backfill has been reduced to accommodate a pipe of suitable diameter and bedding

The slope for trench sides varies from none to 1 1 $\!\!\!\!\!$

The Expanded System Listing shows Trenching Systems that range from 2 to 12' in width Depths range from 2 to 25

Castan Components			[COST PER LF	
System Components	QUANTITY	UNIT	EQUIP	LABOR	TOTAL
SYSTEM G1030 807 1310					
TRENCHING SAND & GRAVEL NO SLOPE 2 WIDE 2 DEEP 3/8 C Y BUCKET				1	
Excavation trench hyd backhoe track mtd 3/8 C Y bucket	148	BCY	28	77 :	1 05
Backfill and load spoil, from stockpile	118	CY	07	20	27
Compacbon by vibrabng plate 18 wide 6 lifts 4 passes	118	ECY	03	32	35
Remove excess spoil BCY dump truck 2 mile roundtrip	035	CY	12	13	25
TOTAL			50	1 42	1 92

G10	30 807	Trenching Sand & Gravel		COST PERLF	
			EQUIP	LABOR	TOTAL
1310 1	renching sand &	gravel no slope 2 wide 2 deep 3/8 C Y bucket	50	1 42	19
ין 120 		3 deep 3/8 C Y bucket	82	2 4 3	3 2
30		4 deep 3/8 C Y bucket	93	2 91	38
0		6 deep 3/8 C Y bucket	1 40	3 47	4 {
	<u>un a harr a ha</u>	8 deep 1/2 C Y bucket	1 84	4 57	54
1360		10 deep 1 C Y bucket	1 99	4 84	6 8
1400	4	wide 2 deep 3/8 C Y bucket	1 19	2 90	4 (
1410		3 deep 3/8 C Y bucket	1 52	4 35	6
1420		4 deep 1/2 CY bucket	1 89	4 82	67
1430		6 deep 1/2 CY bucket	3 34	7 10	10 -
1440		8 deep 1/2 CY bucket	4 91	10	14
1450		10 deep 1 CY bucket	4 80	10 20	15
1460		12 deep 1 C Y bucket	6 05	12 75	18
1470		15 deep 1 1/2 C Y bucket	7 35	14 75	22
1480	<u></u>	18 deep 21/2CY bucket	8 70	15 85	24
1520	6	wide 6 deep 5/8 CY bucket w/trench box	6 75	11 60	18
1530		8 deep 3/4 C Y bucket	8 70	15 05	24
1540		10 deep 1 CY bucket	8 20	15 25	23
1550		12 deep 1 1/2 C Y bucket	9 35	17 05	26
1560		16 deep 2 C Y bucket	12 80	21	34
1570	····	20 deep 3-1/2 C Y bucket	16 90	25 50	42
1580		24 deep 3-1/2 C Y bucket	21 50	31	52
1640	8	wide 12 deep 1 1/2 C Y bucket w/trench box	13 20	21 50	34
1650		15 deep 11/2 CY bucket	16 05	27 50	43 5
.1660		18 deep 21/2 C Y bucket	19 35	30	49
1680		24 deep 3-1/2 C Y bucket	29	40	69
I 1730	10) wide 20 deep 3-1/2 C Y bucket w/Irench box	29	40	69
1740		24 deep 31/2 CY bucket	36 50	49 50	86
1780		12 wide 20 deep 31/2 C Y bucket w/trench box	35	47 60	82
790		25 deep bucket	45	61	107
800	1/2 1 slop	e 2 wide 2 deep 3/8 CY bk	73	2 19	2
1810	-, 5,66	3 deep 3/8 C Y bucket	1 21	3 83	5
1820		4 deep 3/8 C Y bucket	1 80	5 85	7
1840		6 deep 3/8 C Y bucket	3 38	8 70	12


G1030	807 Trenching Sand & Gravel		COST PER L F	F	
		EQUIP	LABOR	TO	
1860	8 deep 1/2 C Y bucket	5 35	1385		
1880	10 deep 1 C Y bucket	680	17 15		
2300	4 wide 2 deep 3/8 C Y bucket	141	363		
2310	3 deep 3/8 C Y bucket 4 deep 1/2 C Y bucket	210	6		
2320		2 69	7 35		
2340	5 deep 1/2 C Y bucket 8 deep 1/2 C Y bucket	5 65 9 55	12 65		
2360 2380	10 deep 1 C Y bucket		20		
2400		10 55	23 50		
2400	15 deep 1 1/2 C Y bucket	20 50	39		
2450	18 deep 21/2 C Y bucket	34 50	43		
2840	6 wide 5 deep 5/8 C Y bucket w/trench box	9 80	64 50		
	8 deep 3/4 C Y bucket	14 10	17 50		
2860			25 50		
2880	10 deep 1 C Y bucket 12 deep 1 1/2 C Y bucket	14 65	28 50		
2900		1815	35		
2940	15 deep 2 C Y bucket 20 deep 31/2 C Y bucket	29 50	50 60		
2980	· ·	44 50	59		
3020	24 deep 3-1/2 C Y bucket	63 50	94 50		
3100	8 wide 12 deep 1 1/4 C Y-bucket w/trench box	22	39 50		
3120	15 deep 1 1/2 C Y bucket		55 50		
3140	18 deep 21/2 C Y bucket	40	57		
3180	24 deep 3-1/2 C Y bucket	71	103		
3270	10 wide 20 deep 3-1/2 C Y bucket w/trench box	56 50	83 50		
3280	24 deep 3-1/2 C Y bucket	78 50	113		
3370	12 wide 20 deep 31/2 C Y bucket w/trench box	63	93		
3380	25 deep bucket	91 50	130		
3600	1] slope 2 wide 2 deep 3/8 CY bk	1 73	3 73		
3520	3 deep 3/8 C Y bucket	1 69	5 45		
3540	4 deep 3/8 C Y bucket	2 65	8 75		
3560	6 deep 3/8 C Y bucket	3 38	8 70		
3580	8 deep 1/2 C Y bucket	8 85	23		
3600	10 deep 1 C Y bucket	11 60	29 50		
3800	4 wide 2 deep 3/8 C Y bucket	1 52	4 36		
3820	3 deep 3/8 C Y bucket	2 58	7 65		
3840	4 deep 1/2 C Y bucket	3 47	9 90		
850	5 deep 1/2 C Y bucket	7 95	18 20		
880	8 deep 1/2 C Y bucket	14 20	30 50		
1900	10 deep 1 C Y bucket	16 30	36 50		
920	12 deep 1 C Y bucket	23 50	52		
940	15 deep 11/2 C Y bucket		71 50		
950	18 deep 21/2 C Y bucket	47	89		
030	6 wide 6 deep 5/8 C Y bucket w/trench box	12 85	23 50		
040	8 deep 3/4 C Y bucket	1955	35		
050	10 deep 1 C Y bucket	21	42		
050	12 deep 1 1/2 C Y bucket	27	53		
070	16 deep 2 C Y bucket	45 50	79 50		
080	20 deep 3-1/2 C Y bucket	72	112		
090	24 deep 3-1/2 C Y bucket	105	158		
500	8 wide 12 deep 11/2 C Y bucket w/trench box	31	57 50		
550	15 deep 11/2 C Y bucket	4360	83 60		
600	18 deep 21/2 C Y bucket	60 50	104		
650	24 deep 31/2 C Y bucket	113	157		
800	10 wide 20 deep 3-1/2 C Y bucket w/trench box	84	127		
850	24 deep 3-1/2 C Y bucket	121	175		
950	12 wide 20 deep 31/2 C Y bucket w/trench box	90	134		
980	25 deep bucket	137	199		

55 Jun ----

ì

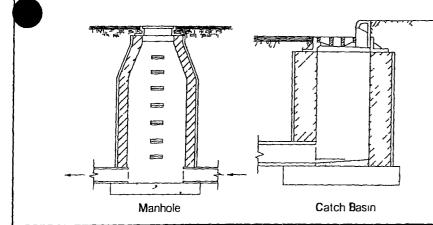
GIU SUC Prepriation

G1030 Site Earthwork

The Pipe Bedding System is shown for vanous pipe diameters Compacted bank sand is used for pipe bedding and to fill 12 over the pipe No backfill is included Various side slopes are shown to accommodate different soil conditions Pipe sizes vary from 6 to 84 diameter

				COST PER L F			
System Components	1	QUANTITY	UNIT	MAT	INST	TOTAL	
SYSTEM G1030 815 1440							
PIPE BEDDING SIDE SLOPE 0 TO 1 1 WIDE PIPE SIZE 6 DIAMETER							
Borrow bank sand 2 mile haul machine spread]	067	CY	74	42	1 16	
Compaction vibrabng plate		067	CY		14	14	
	1						
<u> </u>	TOTAL			74	56	1 30	

G1030 815	Pipe Bedding		COST PERLF	
		MAT	INST	TOTAL
	e slope O to 1 1 wide pipe size 6 diameter	74	56	1
	2 wide pipe size 8 diameter	1 63	1 22	2
1480	Pipe size 10" diameter	1 67	1 26	
1600	Pipe size 12 diameter	1 72	1 28	
	3 wide pipe size 14 diameter	2 83	2 11	
1540	Pipe size 16 diameter	2 86	2 14	
00	Pipe size 16 diameter	2 89	2 16	
<u>ور ا</u>	Pipe size 18 diameter	2 96	2 22	. <u> </u>
	wide pipe size 20° diameter	4 27	3 20	
1620	Pipe size 21 diameter	4 31	3 23	
1640	Pipe size 24 diameter	4 42	3 32	
1660	Pipe size 30" diameter	4 52	3 39	
	5 wide pipe size 32 diameter	7 90	6 90	1.
1700	Pipe size 36 diameter	810	6 10	<u> </u>
	7 wide pipe size 48 diameter	10 55	7 90	1
	3 wide pipe size 60" diarneter	13 20	9 86	2
	0 wide pipe size 72 diameter	19 05	14 25	3.
	2 wide pipe size 84 diameter	26	19 35	4
· · ·	e 1/2 to 1 1 wide pipe size 6 diameter	1 55	1 17	
2160	2 wide pipe size 8 diameter	2 57	1 93	
2180	Pipe size 10 diameter	2 79	2 09	
2200	Pipe size 12 diameter	2 98	2 23	
	3 wide pipe size 14 diameter	4 28	3 21	
±2240	Pipe size 15 diameter	4 39	3 29	
2260	Pipe size 16 diameter	4 52	3 39	
_2280	Pipe size 18 diameter	4 79	3 59	
2300	wide pipe size 20" diameter	6 30	4 74	11
2320	Pipe size 21 diameter	6 45	4 85	11
2340	Pipe size 24 diameter	6 95	5 20	12
72360	Pipe size 30 diameter	7 80	5 80	13
<u>2380</u> 6	wide pipe size 32 diameter	11 45	8 60	2
-2400	Pipe size 36 diameter	12 25	9 15	2
2420 7	wide pipe size 48 diameter	16 76	12 65	29
t0 8	wide pipe size 60 diameter	22	16 35	3
	0 wide pipe size 72 diameter	30 50	23	5
	2 wide pipe size 84 diameter	40 50	30 60	7
2620 Side slope	e 1 to 1 1 wide pipe size 6 diameter	2 37	1 77	
-2640 2	wide pipe size 8 diameter	3 55	2 66	(


G1030 815	Pipe Bedding	C	OST PER L F	
G1030 015	File bedding	MAT	INST	
2660	Pipe size 10" diameter	3 8 9	2 92	
2680	Pipe size 12 diameter	4 28	3 21	
2700	3 wide pipe size 14 diameter	5 75	4 30	
2720	Pipe size 15 diameter	5 95	4 43	-
2740	Pipe size 15 diameter	615	4 61	
2760	Pipe size 18 diameter	6 60	4 95	-
2780	4 wide pipe size 20 diameter	8 35	6 25]
2800	Pipe size 21 diameter	860	6 45]
2820	Pipe size 24 diameter	940	7 05	
2840	Pipe size 30 diameter	11	8 25	1 1 1
2860	6 wide pipe size 32 diameter	15	11 25	2
2880	Pipe size 35 diameter	16 35	12 25	2
2900	7 wide pipe size 48 diameter	23	17 20	
2920	8 wide pipe size 60' diameter	30 50	23	
2940	10 wide pipe size 72 diameter	42	31 50	
2960	12 wide pipe size 84 diameter	55 50	41 50	g

-

ł

GEU DIUSMISCIEDIICE CUITUESE

G3030 Storm Sewer

The Manhole and Catch Basin System includes excavation with a backhoe a formed concrete footing frame and cover cast iron steps and compacted backfill

A CONTRACTOR OF A CONTRACTOR OF

The Expanded System Listing shows manholes that have a 4 5' and 6 inside diameter riser Depths range from 4 to 14 Construction material shown is either concrete concrete block precast concrete or bnck

Sul Components					OST PER EACH	EACH =		
system Components		QUANTITY	UNIT	MAT	INST	TOTAL		
SYSTEM G303G 210 1920				1				
MANHOLE/CATCH BASIN BRICK 4 I D RISER 4 DEEP					[
Excavation hydraulic backhoe 3/8 C Y bucket		14 815	CY	} {	97 18	9		
Trim sides and bottom of excavation	}	64 000	Sf	} }	51 20	5		
forms in place manhole base 4 uses		20 000	SFCA	14	87	10		
Reinforcing in place footings #4 to #7		019	Ton	18 53	20 43	3		
Concrete 3000 psi		925	CY	101 75	1	10		
Place and vibrate concrete footing direct chute	ł	925	CY	1	40 23	4		
Catch basin or MH brick 4 ID 4 deep		1 000	Ea	436	850	1 28		
Catch basin or MH steps heavy galvanized cast iion		1 000 [Ea	14 25	11 90	2		
Catch basin or MH Irame and cover		1 000	Ea	229	195 50	42		
Fill granular		12 954	CΥ	206 62	1	42 20		
Backfill spread with wheeled front end loader		12 954	CY		26 56	2		
Air tamp add		12 954	CY		96 38	9		
	1							
	TOTAL			1 019 15	1 476 38	2 49		

G3030 21	Manholes & Catch Basins	(OST PER EACH	TOTAL 2 500 =
G3030 21	IV Mannoles & Calch Dasins	MAT	INST	TOTAL
1920 Manhole/cat	tch basin brick 4 10 nser 4 deep	1 025	1 475	2 500
1940	6 deep	1 400	2 075	3 475 🛔
1960	8 deep	1 825	2 825	4 650
1980	10 deep	2 325	3 450	4 650 5 775 6 825
3000	12 deep	3 025	3 800	
3020	14 deep	3 800	5 275	9 075
3200 Bloc	ick 4 ID riser 4 deep	960	1 175	2 135
3220	6 deep	1 275	1 700	2 975 4 025
3240	8 deep	1 675	2 350	4 025
3260	10 deep	1 975	2 875	4 860 6 125 7 500 3 200
3280	12 deep	2 475	3 650	6 1 2 5
3300	14 deep	3 050	4 450	7 500
4520 Con	ncrete cast-inplace 4 1D riser 4 deep	1 1 50	2 050	3 200
4640	6 deep	1 600	2 725	4 325)
4660	8 deep	2 225	3 975	6 200
4680	10 deep	2 575	4 925	7 600
4700	12 deep	3 300	6 100	9 400
4720	14 deep	4 026	7 300	11 325
5820 Con	ncrete precast 4 1D riser 4 deep	1 325	1 075	2 400
5840	6 deep	1 725	1 450	3 1 7 5

01	54 Construction Aids						
01	54 33 Equipment Rental	UNIT	HOURLY OPER COST	RENT PER DAY	RENT PER WEEK	rent Per Month	CREW EQUIPMENT COST/DAY
0120	5/8 C Y capacity B015433	Ea	24 05	510	1 525	4 575	COSI/DAY 2 497 40 2 549 40 546 60 830 1060 1 466 2337 149 80 131 20 932 60 1089 218 60 285 40 340 80 472 40 111 60 74 60 125 80 131 20 215 60 298 20
0140	3/4 C Y capacity 10		27 30	550	1 655	4 975	549 40
60	1 C Y capacity		34 70	615	1 845	5 525	646 6D
-3200	11/2 C Y capacity		42 50	815	2 450	7 350	830
0300	2 C Y capacity		56 25	1 025	3 050	9 150	1 060
0320			75 95	1 425	4 290	12 900	1 466
0340	3-1/2 C Y capacity Attachments		118 75	2 300	6 935	20 800	2 337
0341	Bucket thumbs		2 60	215	645	1 925	149 80
0342	Grapples		2 40	187	560	1 675	131 20
0350	Gradall type trick mounted 3 ton @ 15 radius 5/8 C Y	┢╌┼─	46 95	930	2 785	8 350	932 60
0370	1 C Y capacity		52 15	1 125	3 360	10 100	1 089
0400	Backboe loader 40 to 45 H P 5/8 C Y capacity		11 20	215	645	1 925	218 60
0450	45 HP to 60 HP 3/4 C Y capacity		15 05	275	825	2 475	285 40
0460	80 HP 11/4CY capacity		18 10	325	980	2 950	340.80
0470	112 HP 11/2 CY capacity		24 30	465	1 390	4 1 7 5	472 40
0480	Attachments						
0482	Compactor 20 000 lb		4 70	123	370	1 100	111 60
0485	Hydraulic hammer 750 tilbs	-	2 70	88 50	265	795	74 60
0486	Hydraulic hammer 1200 ft-lbs		3 60	162	485	1 450	125 80
0500	Brush chipper gas engne 6 cutler head 35 H P		8 40	107	320	960	131 20
0550	12 cutter head 130 H P		13 95	173	520	1 550	215 60
0600	15 cutter head 165 H P		20 90	218	655	1 975	298 20
0750	Bucket clamshell general purpose 3/8 C Y		1 05	36 50	110	330	30 40
0800	1/2 C Y		1 20	43 50	130	390	35 60
0850	3/4 C Y		1 35	53 50	160	480	42 80
- 0900	1 C Y		1 40	58 50	175	525	46 20
0950	1 1/2 C Y		2 20	78 50	235	705	64 60
00	2 C Y		2 30	88 50	265	795	71 40
1010	Bucket dragline medium duty 1/2 C Y		60 65	23 50 24 50	70	210 219	18 80 19 80
1020 1030	3/4 C Y 1 C Y		65	24 50 26	73	219	20 80
1030	1 L/2 C Y	\rightarrow	1 05	40	120	360	32 40
1040	2 C Y		1 10	45	135	405	35 80
1030	3 C Y		1 60	55	165	495	45 80
1200	Compactor manually guided 2-drum vibratory smooth roller 7 5 H P		5 75	162	485	1 450	143
1250	Rammer compactor gas 1000 lb blow		2 25	41 50	125	375	43
1300	Vibratory plate gas 18 plate 3000 lb blow		2 20	22 50	67	201	31
1350	21 plate 5000 lb blow		2 70	28	84	252	38 40
1370	Curb builder/extruder 14 H P gas single screw		11 30	238	715	2 1 5 0	233 40
1 3 9 0	Double screw		11 95	278	835	2 500	262 60
1500	Disc harrow attachment for tractor		39	64 50	193	580	41 70
1750	Extractor piling see lines 2500 to 2750						
1810	Feller buncher sheanng & accumulating trees 100 H P	Ea	27 30	545	1 630	4 900	544 40
1860	Grader sell-propelled 25 000 lb		23 65	445	1 340	4 025	457 20
1910	30 000 lb		27 30	525	1 580	4 750	534 40
1920	40 000 lb		38 60	810	2 425	7 275	793 80
1930	55 000 lb		51 10	1 1 50	3 465	10 400	1 102
1950	Hammer pavement demo hyd gas sell-prop 1000 to 1250 lb		22 35	325	970	2 900	372 80
2000	Diesel 1300 to 1500 lb		33 53	645	1 940	5 825	656 25
2050	Pile dnving hammer steam or air 4150 ft Ib @ 225 BPM		7 00	283	850	2 550	226
2100	8750 ft Jb @ 145 BPM		8 55	425	1 275	3 825	323 40
2150	15 000 ft.4b @ 60 BPM		8 90	460	1 375	4 125	346 20
2200	24 450 ft.lb @ 111 BPM		12 35 95	545 28 50	1 635 85	4 900 255	425 80 24 60
50	Leads 20 long lor pile driving hammers up to 20 000 lt -lb 30 long tor hammers over 20 000 ft -lb		95 1 55	28 50 71 50	85 215	255 645	24 60 55 40
2300			1.11	11 JU	112	1-50	

200 We lets hummer/shruttor 200 RM dissel generator 34 HP 38 60 660 1975 5.925 200 88 HP 1975 5.925 2805 857 2805 857 200 150 HP 13395 1675 5.630 1700 270 Log choper up to 27 den 300 HP 3790 440 4325 5.75 2700 Log choper up to 27 den 300 HP 3790 440 4782 2207 780 1000 H h 1790 4500 1785 5.76 2007 780 1000 H h 1790 4000 1786 4782 2007 780 1000 H h 100 3202 780<		54 33 Equipment Rental		UNIT	HOURLY Oper Cost	RENT PER DAY	rent Per Week	RENT PER MONTH	CREW Equipment Cost/day	
141 000 h b 40 06 117 3 22 10 600 200 Yb dec. harme/ratactar 200 kW desel generator 34 HP 38 8 650 1275 525 200 130 HP 130 40 1875 526 1770 525 200 150 HP 130 40 1875 5450 1700 526 200 150 HP 130 40 480 140 425 2750 1500 HP 480 140 425 200 150 HP 150 HP 480 167 2750 575 575 575 200 150 HP 450 175 356 176 225 780 200 150 Hoc query total without 1069 272 276 780 336 1100 3025 1100 3025 1100 3025 1100 3025 1100 3026 1275 380 1100 3025 1200 1000 Hoc due without 20 HP 210 205 1000 3025 1100 3026 1100 3026 1100 3026 1100 3026 1100 3026				Ea	,)]		577 80	
200 We det: harmerychartoriz 200 RW desel generator 34 HP 38 R0 650 3975 5 975 550 30 HP 1304 640 365 2865 8675 700 Extractor stem rer 700 H fb 1394 480 1444 4325 700 Lig objoer up 122 dem 500 HP 2799 4405 1395 4565 700 Red winding & status (ips 150 HP 4280 475 2200 785 700 Red winding & status (ips 150 HP 4280 785 786 786 7202 700 Red winding & status (ips 150 HP 4280 787 786 786 7202 785 700 Red winding & status (ips 150 HP 4280 788 788 786 786 786 786 787 785 786 786 786 788 788 786 786 788 786 788 786 786 787 785 786 787 786 787 786 787 785 787	L		===++			1			661 20	1
250 80 HP 94.0 96.0 95.5 56.0 250 130 HP 130 B 155.0 160.0 140.0 142.00 142.00 2750 Extracts stam or at 700 ft /b 15.0 17.0 60.0 17.00 60.0 17.00 60.0 17.00					ſ				1 086	
500 150 H P 130 95 1 875 56/20 1700 700 Extracts team or 700 H fb 150 40 480 1400 425 700 Log chaper up to 270 4m 100 H b 1750 600 1795 5.375 700 Log chaper up to 270 4m 500 H P 1796 430 450 1786 700 Adding & Stacking logs 150 H P 4281 678 2202 785 1700 330 100 3300 1305 1300 3300 130 3300 130 3300 130 3300 100 3300 3300 100 3300 100 3300 100 3300 100 3300 100 3300 100 3300 100 3300 100 3300 100 3300 100 3300 100 3300 100 3300 100 3300 100 3300 100 3300 100 3300 100 100 100 100 100 100									705 40	
1200 Extractor stem or ar 700 ft h 1540 450 1440 4325 2750 1000 ft h 1750 600 1795 5375 3800 Log objer ut 527 den 500 HP 3790 450 1350 460 3800 Bate symptom with rector 100 ft h 3790 450 1350 460 3000 Boler whorder particle symptom with rector 100 ft h 3865 1100 3005 3000 Boler whorder particle symptom with rector 665 128 386 1100 3005 3000 Boler whorder particle symptom with rector 6656 128 386 11400 3300 3150 Simptom bit rector 655 1275 3005 1400 1 3300 3200 Phermatic ter circle B0 HP 21300 3500 1300 3300 1015 3300 3301 HP 1310 3400 4232 1277 305 100 3255 11400 1 3303 HP			11						1 134	
2750 1000 ft b. 17.50 6.00 1.395 5.375 860 Log choper up to 22 dim 500 HP 2.3390 6.439 1.550 4.050 860 Log choper up to 22 dim 500 HP 4.280 8.75 2.202 7.850 9700 Rele samp tool with tractor 10.069 2.26 6.78 2.025 9700 354 P 9.26 2.42 7.25 2.175 100 Joxed type withraty canagetor smooth drum 50 HP 2.220 3.65 1.100 3.300 1370 Lendit compactor 20 HP 3.300 100 3.300 1.005 3.500 3200 Hormstoic ther older 80 HP 3.010 1.400 4.235 1.27.00 1.00 4.265 1.75 8.55 1.300 1.005 3.650 1.966 5.855 1.500 4.000 1.355 5.650 1.966 5.855 1.500 4.000 1.257 1.350 4.000 1.256 1.270 1.000 4.225 1.2700 1.001 4.275 1.0									2 178	
1000 Ligs theoper up to 22 dem 500 HP 3750 450 1500 4600 2850 Logger for skidding & stacking logs 150 HP 42.80 875 2.520 7.850 2000 Rest workering tool with traction 10.99 2.26 6.05 12.80 885 11.50 8.06 35.1 HP 6.05 12.8 385 11.100 3005 3100 Back workery compactor smooth drum 50 HP 21.20 335 11.00 3005 3100 Back spices Statistic anget to a statistic spice spic						1 1			411 20	ł
1850 Linger for skading logs 150 HP 4 280 PK5 2 520 7850 7000 Rake spring loalli with hactor 10 69 226 678 2 025 300 Role valvalvy under smooth drum 20 HP 655 127 338 11 00 300 back pre whatary compactor smooth drum 50 HP 9 25 2 42 7 25 2 175 3100 Landit compactor 220 HP 6 595 1 275 3 805 11 400 1 3200 Presentin the role 76 0H P 2 300 3 505 5 7 58 5 7 5									499	
2500 Rate sprag toolh with hactor 10 69 226 678 2005 3000 Rater weatury taxeem smooth drum 20 H P 66 615 128 385 1150 3100 Jowed tyne whatury compactor smooth drum 50 H P 21 20 336 100 3 300 3100 Landiti compactor 220 HP 65 95 1275 3 805 11 400 1 3200 Steepstool 50 H P 20 00 610 11 825 5 475 3201 Steepstool whatery rolin 7 200 H P 3 300 2855 1 4 700 1 3202 3400 H P 3 300 2855 1 750 4 700 3203 Mark weakery rolin 7 200 H P 1 3 50 5 700 1 700 4 700 3203 340 H P 1 200 6 100 1 825 5 8 25 1 700 3101 Rais synaptic 4 4 x 4 248 7 45 2 2 2 5 3 400 2 9 5 6 2 50 1 8 5 5 6 16 75 3203 Steepstool whatery rolin 7 1 H P 1 3 10 3 1 100 1 3 5 7 6 1 7 50 1 5 7 7 5 2 2 1 7 5 50		-	- 11						573 20	
1000 Roler werdwy landen smooth drum 20 HP 665 128 385 1150 3060 35 HP 925 224 725 2175 3100 Wordy ge whardary compactor smooth drum 50 HP 220 335 1100 300 3170 Landfil compactor 220 FP 6595 1275 3865 11400 11 3200 Preammate the roller 80 HP 2000 610 1825 5475 3200 Jand Landfil compactor 220 HP 2000 660 1285 1570 4700 3200 Smooth drum victary roller 200 HP 7510 1400 4235 12700 11 3300 Tiszy data 755 7570 4700 4700 4765 2225 12700 11 3300 Tiszy data 755 100 1525 1770 4700 1 4745 2225 12700 11 320 320 1476 785 1755 3265 175 5517 3305 1525 1870									866 40	
3560 35 H P 925 342 725 2175 3100 Toxed yie wordary compactor smooth drum 50 H P 2120 350 353 1000 3 025 3170 Landit compactor 220 HP 6559 1275 3805 11 400 1 3200 Preamter the role 80 HP 2000 610 1825 5475 3300 Sneegstort whatny role 200 HP 2000 610 1825 5475 3300 Sneegstort whatny role 200 HP 2000 610 1825 5475 3300 Sneegstort whatny role 200 HP 2500 555 1570 4700 3400 125 HP 1955 525 1570 4700 1 3400 126 17 CV capacity 655 185 555 1675 183 555 1675 3400 2 gape 24 CV capacity 655 185 555 1675 168 555 1675 3400 2 gape 24 CV capacity 1305 5610 16 800 1	1		11				1		221 10	
1100 Towed type whatary compactor smooth drum 50 H P 1110 21 20 335 1010 3025 1150 Sneepsloat 50 H P 22 20 365 1100 3300 120 Preumatic the role 80 H P 1310 330 1015 3050 3200 Preumatic the role 80 H P 2000 610 1825 5475 3300 Sheepsloat whatary role 70 H P 2000 610 1825 5475 3300 Sheepsloat whatary role 75 H P 1955 555 1570 470 3300 Sheepsloat whatary role 75 H P 1955 555 1570 470 3300 Sheepsloat whatary role 75 H P 1955 555 1570 470 3300 Sheepsloat whatary role 75 H P 1955 555 1570 470 3300 Sheepsloat A whatary role 75 H P 1955 170 1510 1555 3400 Scrapers sheproded A whatar 2 engne 14 CY capacity 11305 1665 175 3500 Scrapers sheproded A whatar 2 engne 14 CY capacity<									130 20	1
3150 Skeepslool 50 H P 22 20 365 1 100 3 300 3170 Landift compactor 220 HP 1 310 340 1155 3 656 1 100 3 300 3200 Piterumet the role 80 HP 1 310 340 1 015 3 656 1 100 3 657 3200 Sheepsloot wbratary role 200 H P 2000 610 1 825 5 475 3300 Steepsloot wbratary role 75 H P 1 955 5 55 1 570 4 700 3400 125 H P 1 955 5 55 1 570 4 700 1 105 3400 125 H P 1 955 5 55 1 570 4 700 1 105 3400 125 H P 256 1 70 1 705 1 105 1 105 1 105 3400 Scrapers laneed type 9 to 12 CY capacity 1 1305 1 105	1		11						219	I
3170 Landit compactor 220 HP 6555 1 275 3805 11 400 1 3200 Pneumatic ter cole 80 HP 1 3100 600 1015 3605 1 3200 Sheepdool whong roller 200 HP 2 000 610 1400 4 235 12 700 1 3200 340 HP 7610 1400 4 235 12 700 1 3201 7610 1400 4 235 12 700 1<									371 60	
3200 Prieumatic tire roller 80 HP 13 10 340 1015 3 050 3200 120 HP 20 00 0 610 1425 5 475 3300 Stepedot whotery roller 200 HP 76 10 1 400 4 225 1 2700 1 3300 Stepedot whotery roller 75 H P 1955 525 1 577 4 700 3300 Stepedot whotery roller 75 H P 2550 650 1 945 525 1 577 4 700 3300 Stepedot whotery roller 75 H P 2550 650 1 945 525 1 577 510 1 1 400 4 235 2 225 3400 Rotatiler 5 HP wakk-ehnd 2 595 1 70 510 1 555 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1 550 1	1				1		(397 60	
3250 120 HP 2000 610 1825 5475 3300 Sheepsdot wratery roler 200 HP 3300 560 2275 8525 1 3300 Smooth drum vibratery roler 75 HP 1955 525 1570 4700 3400 125 HP 209 6250 188 555 3400 Rotother 50 with fractor 209 62 50 188 555 3400 Scrapers towed type 9 to 12 C V capacity 555 170 510 1355 3500 Scrapers towed type 9 to 12 C V capacity 113 05 1625 4890 14 700 1 3600 2 engre 24 C V capacity 113 05 1625 4890 14 700 1 3700 32 44 C Y capacity 113 05 1625 4890 14 700 1 3700 2 engre 24 C Y capacity 13 05 1625 8800 2 200 5610 1600 3700 2 c Y capacity 49 30 890 2 265 8 000 100 3625 3700 3 c K Y capacity 10 5 rs capacity 4 500			4						1 289	
3300 Sheepstod whatebuy refer 20 H P 53 90 960 2 875 8 525 1 3300 30 H P 76 10 1 400 4 225 12 700 1 3300 125 H P 2560 650 1945 5 825 3410 Rotary mower brush 50 with tractor 14 45 248 745 2225 3400 125 H P 2560 650 1945 5 825 3410 Rotary mower brush 50 with tractor 14 45 248 745 2225 3450 Scrapers towed type 9 to 12 CY capacity 5 95 170 510 1525 3550 Scrapers soft grouped 4 x 4 dre 2 engine 14 CY capacity 113 05 16 25 4890 14 700 1 3500 2 engine 24 CY capacity 13 360 1875 5 5610 16 800 1 3500 Scrapers soft grouped 4 x 4 dre 2 engine 14 CY capacity 13 360 1875 5 5610 16 800 1 3600 2 engine 24 CY capacity 18 455 175 2 8500 3 3 360 18 75 5 610 16 800 1 200					1	. 1		1	307 80	
3320 340 HP 76 10 1400 4 235 12 700 1 3335 Smooth dum visatory roller 75 HP 2560 1955 525 1570 4 700 3340 125 HP 2560 650 1945 5255 1570 4 700 3410 Rotay mower bush 50° with tractor 11445 248 745 2 225 3410 Rotay mower bush 50° with tractor 1945 5 55 100 15125 3400 12 to 17 CY capacity 595 170 5510 1525 1470 1 3500 2 engre 24 CY capacity 11575 5 657 14700 1 1450 28800 3 3600 2 engre 24 CY capacity 11575 5 610 16 800 1 360 375 5610 16 800 1 360 375 5610 16 800 1 360 1275 5610 16 800 1 360 375 5610 16 800 1 360 370 370 370 120 365 5610 16 800 1 370 370 110 </td <td>·</td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td>~~~~ · · · ·</td> <td>525</td> <td>Ł</td>	·							~~~~ · · · ·	525	Ł
3350 Snooth drun vbratary roller 75 H P 1955 525 1570 4 700 3400 125 H P 2660 650 1945 5225 310 Rolary mover bursh 50° with tractor 1445 248 745 2222 3400 Scrapers flowed byte 9 to 12 CY capacity 595 170 510 1575 350 Scrapers saftproget 4 x 4 drive 2 engine 14 CY capacity 11305 1655 185 555 3500 2 to 17 CY capacity 11575 2625 7.845 23.500 2 3600 2 engine 24 CY capacity 11305 1655 8600 147.00 1 3600 2 engine 24 CY capacity 44.86 3175 9.495 28.800 3 3700 22 CY capacity 49.30 800 2565 8.000 1 3700 5 x 15 screen 30.60 405 1.210 3.625 1 3800 10 Y x 10 screen 30.60 405 1.210 3.625 3800 10 Y x 10 screen 30.60 405 1.220 6550 200 500 <td>3300</td> <td></td> <td></td> <td></td> <td></td> <td>6</td> <td>1</td> <td>(</td> <td>1 006</td> <td>1</td>	3300					6	1	(1 006	1
3400 125 HP 2560 650 1945 5282 3101 Rotary mower bush 50° with ractor 1445 248 745 2225 3402 Rotary mower bush 50° with ractor 209 6250 1285 555 3450 Scrapers towed type 9 to 12 CY capacity 6155 185 555 1675 3500 12 to 17 CY capacity 6155 185 555 1675 1400 1 3600 2 engne 24 CY capacity 11305 1625 4890 14700 1 3600 32 44 CY capacity 184 55 3175 9495 28500 3 3660 32 24 CY capacity 184 55 3175 9495 28500 1 3700 22 CY capacity 184 55 3175 9495 28500 1 3710 Screening plant 110 HP w/ 5 x 10 screen 3060 405 1210 3625 3720 5 x 15 screen 30 60 405 1210 3625 1500 1500 3860 1CY 215 75 525 160 1200	3320								1 456	ł
3410 Rotary mover bush 50° with tractor 14 45 248 745 2 225 3420 Rotaliter 5 H walk-behnd 209 62 50 188 555 3450 Scrapers towed type 9 to 12 CY capacity 595 170 510 1525 3500 12 to 17 CY capacity 113 05 1675 1675 3600 2 engne 24 CY capacity 113 05 1625 7845 23 500 2 3600 32 44 CY capacity 184 65 3175 9495 28 500 3 3600 32 44 CY capacity 184 65 3175 9495 28 500 3 3700 22 CY capacity 49 30 890 2565 8 000 3 3700 22 CY capacity 33 60 1675 560 1210 3625 3700 5 x 15 screem 30 60 4605 1210 3625 375 525 3800 1 CY 20 5 650 1500 4550 500 500 500 500 500 500 500 500 500 500 500 500 </td <td>3350</td> <td>Smooth drum vibratory roller 75 H P</td> <td></td> <td></td> <td>19 55</td> <td>525</td> <td>1 570</td> <td>4 700</td> <td>470 40</td> <td>ľ</td>	3350	Smooth drum vibratory roller 75 H P			19 55	525	1 570	4 700	470 40	ľ
3420 Rotoliter 5 HP wak-behnd 2 09 62 50 188 555 3450 Scrapers owed type 9 to 12 C Y capacity 5 95 170 510 1525 3500 12 to 17 C Y capacity 5 95 185 5555 1675 3500 2 engre 24 CY capacity 113 05 1625 4890 14 700 1 3600 2 engre 24 CY capacity 184 65 3175 9495 28 500 3 3650 Scraenty 184 65 3175 9495 28 500 3 3700 22 C Y capacity 49 30 890 2565 8000 3700 Screenng plant 110 HP w/5 x 10 screen 30 60 405 1210 3625 3720 5 x 15 screen 32 70 505 1520 450 3860 Shove/backhoe bucket 1/2 C Y Ea 2 00 58 50 175 525 3870 34 C Y 2 15 75 225 675 390 11/2 C Y 2 30 58 50 175 525 376 3880 1 C Y 2 88 50 100 <td< td=""><td>3400</td><td></td><td>[]</td><td></td><td>25 60</td><td></td><td>1 945</td><td></td><td>593 80</td><td>1</td></td<>	3400		[]		25 60		1 945		593 80	1
3450 Scrapers towed type 9 to 12 C Y capacity 5 95 170 510 1 525 3500 12 to 17 C Y capacity 113 05 1 625 4 890 14 700 1 3500 2 engne 7 4 C Y capacity 113 05 1 625 4 890 14 700 1 3600 32 44 C Y capacity 1375 2 625 7 846 23 500 2 3600 32 44 C Y capacity 184 65 3 175 9 495 28 500 3 3610 32 44 C Y capacity 184 65 3 175 9 495 28 500 3 3700 22 C Y capacity 193 80 1875 5 101 16 600 1 3701 Screening plant 110 HP w/5 x 10 screen 30 60 405 1210 3 625 3800 3800 3650 505 1 520 4 550 360 3800 1 C Y 32 70 505 1 520 4 550 360 3800 1 C Y 32 70 3 4 C Y 2 05 6 50 200 500 360 3800 1 C Y 3880 1 75 5 255<	3410	Rotary mower brush 50" with tractor			14 45	248	745	2 225	264 60	
3500 12 to 17 C Y capacity 6 55 185 555 1 675 3550 Scrapers self-propeled 4 x 4 drie 2 engine 14 C Y capacity 113 05 1 625 7 845 2 3500 2 3600 2 engine 24 C Y capacity 1157 55 2 625 7 845 2 3500 2 3600 32 44 C Y capacity 49 30 850 2 565 8 000 3 3700 22 C Y capacity 49 30 800 1 375 5 610 16 800 1 3710 Screening plant 110 HP w/ 5 x 10 screen 30 60 405 1 210 3 625 3720 5 x 15 screen 32 70 5 05 1 520 4 550 3850 Shorel/backheb bucket 1/2 C Y Ea 2 00 5 850 175 5 25 3880 1 C Y 2 30 8 8 50 2 65 7 95 3 75 3 70 1 100 3960 Skorel/backheb bucket 1/2 C Y 2 30 8 8 50 2 65 7 95 3 75 3880 1 1/2 C Y 2 30 8 8 50 2 65 7 95 3 75 3 70 1 100 3 70	3420	Rototiller 5 HP walk-behind	11		2 09	62 50	188	555 (54 30	ł
3500 12 to 17 C Y capacity 6 55 185 555 1 675 3550 Scrapers self-propeled 4 x 4 drie 2 engine 14 C Y capacity 113 05 1 525 7 845 23 500 2 3600 2 engine 24 C Y capacity 157 55 2 625 7 845 23 500 2 3600 32 44 C Y capacity 49 30 880 2 565 8 000 3 3700 22 C Y capacity 49 30 800 1075 5 610 16 800 1 3700 Screening plant 110 HP w/s x 10 screen 30 60 405 1210 3 625 3700 Stores 270 5 x 15 screen 32 70 505 1520 4 550 3860 Shovel/backhoe bucket 1/2 C Y Ea 2 00 5 850 175 525 3870 3/4 C Y 2 30 8 50 2 56 795 3 300 1100 3860 Storel/backhoe bucket 1/2 C Y Ea 2 00 5 850 175 5 25 3870 3/4 C Y 2 30 8 50 2 55 6 50 2 00 5 00 3880	3450	Scrapers towed type 9 to 12 C Y capacity		\uparrow	5 95	170	510	1 525	149 60	Í
3550 Scrapers sell-propelled 4 x 4 drive 2 engine 14 CY capacity 113 05 1 625 4 890 14 700 1 3600 2 engine 24 CY capacity 157 55 2 625 7 845 23 500 2 3640 32 4 CY capacity 184 65 3 175 9 495 28 500 3 3650 Sell bading 11 CY capacity 93 80 1 875 5 610 1 6 800 1 3700 22 CY capacity 30 60 405 1 210 3 6 25 3 3701 Screening plant 110 HP w/ 5 x 10 screen 30 60 405 1 210 3 6 25 3800 Storels see Cranes dwison 015 90 600 3700 2 05 66 50 200 500 3800 3 /4 CY 2 05 66 50 200 500 380 3800 1 CY 2 30 88 50 265 795 3910 3 CY 2 30 88 50 265 1000 3960 1 L/2 CY 2 30 88 50 1075 3225 4100 Tractor crawler with bulidozer torque converter diesel 80 HP 2 655 1500 4800					6 55	185	555		163 40	
3600 2 engme 24 CY capacity 157 55 2 625 7 845 23 500 2 3640 32 44 CY capacity 184 65 3175 9 495 28 500 3 3650 Sellbading 11 CY capacity 49 30 890 2 565 8 000 2 3700 22 CY capacity 33 80 1875 5 501 16 800 1 3710 Screening plant 110 HP w/5 x 10 screen 30 60 405 1 210 3625 3800 Skovel/backhee bucket 1/2 CY 5 x 15 screen 32 70 505 1 520 4 550 3800 1 CY 2 00 58 50 1 75 5 25 360 3800 1 CY 2 15 75 2 25 6 75 3800 1 CY 2 30 88 50 266 795 3910 3 CY 2 30 88 50 265 1100 4200 Skump chipper 18 deep 30 HP 2 60 123 370 1100 4110 Tractor crawler with bultozer torque converter diesel 80 HP 2 8 85 5 6 45 1 940 5 8 25 4200		Scrapers self-propelled 4 x 4 drive 2 engine 14 C Y capacity		1-1	113 05		4 890		1 882	
3640 32 44 CY capacity 184 65 3175 9495 28 500 3 3650 Seltbading 11 CY capacity 49 30 890 2655 8 000 3700 22 CY capacity 93 80 1875 5 610 16 800 1 3710 Screening plant 110 HP w/ 5 x 10 screen 30 60 405 1 210 3625 3720 5 x 15 screen 32 70 505 1 520 4 550 3850 Shovel/backhoe bucket 1/2 CY Ea 2 00 58 50 175 525 3870 3/4 CY 2 05 66 50 200 500 500 3880 1 CY 2 30 88 50 755 225 675 3890 1 /2 CY 2 30 88 50 266 795 3910 3 CY 3 0 HP 7 60 160 440 1450 4110 Tractor cavler with buildozer torque converter diesel 80 HP 2 88 050 5150 4 525 4260 200 HP 2 855 645 1 940 5 825 14 4310 300 HP			11		1	{	7 845	1	2 829	Ĺ
3650 Sell loading 11 CY capacity 49 30 890 2 565 8 000 3700 22 CY capacity 93 80 1 875 5 610 1 6 800 1 3710 Screening plant 110 HP w/5 x 10 screen 30 60 405 1 210 3 625 3720 5 x 15 screen 32 70 505 1 50 4 550 3850 Stovels see Cranes dwision 01590 600				+-+	184 65		9 4 95		3 376	1
3700 22 C Y capacity 93 80 1 875 5 610 16 800 1 3710 Screening plant 110 HP w/ 5 x 10 screen 30 60 405 1 210 3 625 3720 5 x 15 screen 32 70 5 05 1 520 4 550 3850 Shovel/backhoe bucket 1/2 C Y Ea 2 00 5850 175 525 3870 3/4 C Y 2 05 66 50 200 500 300 <t< td=""><td></td><td>· ·</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>927 40</td><td>ł</td></t<>		· ·					1		927 40	ł
3710 Screening plant 110 HP w/s x 10 screen 30 60 405 1210 3625 3720 5 x 15 screen 32 70 505 1520 4550 3860 Showel/backhoe bucket 1/2 C Y Ea 2 00 58 50 175 525 3870 3/4 C Y 2 05 66 50 200 500 3880 1 C Y 2 30 88 50 265 795 3970 3 C Y 2 30 88 50 265 795 3970 3 C Y 2 30 88 50 265 795 3970 3 C Y 2 30 88 50 265 795 3970 3 C Y 2 30 88 50 265 795 3970 3 C Y 2 30 88 50 265 795 3970 3 C Y 2 300 100 1450 4110 Tractor crawler with buldozer torque converter diesel 80 HP 20 55 360 1075 3225 4200 100 HP 28 50 1500 4525 1400 4525 4200 100 HP 52 85 <td< td=""><td></td><td></td><td></td><td>╶┼╶┼</td><td></td><td></td><td></td><td></td><td>1 872</td><td></td></td<>				╶┼╶┼					1 872	
3720 5 x 15 screen 32 70 505 1 520 4 550 3850 Shovel/backhoe bucket 1/2 C Y Ea 2 00 58 50 175 525 3870 3/4 C Y 2 05 66 50 2 00 500 3880 1 C Y 2 15 75 2 25 675 3890 1 /2 C Y 2 30 88 50 2 66 795 3910 3 C Y 2 30 88 50 2 66 795 3910 3 C Y 2 30 88 50 2 65 795 3910 3 C Y 2 60 1 23 3 70 1 100 3960 Stump chipper 18 deep 30 H P 7 60 1 60 480 1 450 4110 Tractor crawler with bulkdozer torque converter diesel 80 H P 2 655 3 60 1 0 75 3 2 2 25 4150 105 H P 2 8 80 5 055 1 510 4 5 2 5 4200 140 H P 2 6 55 3 40 9 7 25 1 4 4310 300 H P 5 2 8 5 1 0 75 3 2 40 9 7 25 1 4 4360							1		486 80	Ĺ
3850 Stovels see Cranes division 01590 600 Ea 2 00 58 50 175 525 3860 Showel/backhoe bucket 1/2 C Y 2 05 66 50 200 500 3880 1 C Y 2 05 66 50 200 500 3890 1 C Y 2 30 88 50 265 795 3910 3 C Y 2 30 88 50 265 795 3910 3 C Y 2 30 88 50 265 795 3910 3 C Y 2 60 123 370 1 100 3960 Stump chipper 18 deep 30 H P 2 0 55 360 1 075 3 225 4110 Tractor crawler with buldozer torque converter diesel 80 H P 2 8 80 505 1 510 4 525 4200 140 H P 2 8 80 505 1 510 4 525 4200 140 H P 57 65 1 400 4 235 1 2700 1 1 4310 300 H P 50 61 H 90 40 1 825 5 470 1 5 400 1 1 4300 400 HP 120 70 2 450 7 320 <									565 60	
3860 Shove//backhoe bucket 1/2 C Y Ea 2 00 58 50 175 525 3870 3/4 C Y 2 05 66 50 200 500 3880 1 C Y 2 15 75 225 675 3890 1 //2 C Y 2 30 88 50 265 795 3910 3 C Y 2 30 88 50 265 795 3910 3 C Y 2 060 123 370 1 100 3960 Stump chipper 18 deep 30 H P 7 60 160 480 1 450 4110 Tractor crawler with bultdozer torque converter diesel 80 H P 2 055 360 1075 3 225 4150 105 H P 2 88 505 1 510 4 525 4200 140 H P 2 885 1075 3 240 9 725 1 1 4310 300 H P 57 65 1 400 4 235 1 2 700 1 1 4310 300 H P 120 70 2 450 7 320 2 2 000 2 4330 700 H P 120 70 2 450 7 320 2 2 000 2				1						ł
3870 3/4 CY 2 05 66 50 200 500 3880 1 CY 2 15 75 225 675 3890 1 1/2 CY 2 30 88 50 265 795 3910 3 CY 2 60 123 370 1 100 3960 Stump chipper 18 deep 30 H P 7 60 160 480 1 450 4110 Tractor crawler with bulldozer torque converter diesel 80 H P 20 55 360 1 075 3 225 4150 105 H P 28 80 505 1 510 4 525 4200 140 H P 34 55 645 1 940 5 825 1 4 2 2 5 1 2 7 00 1 1 4 2 2 5 1 2 7 00 1 1 4 2 2 5 1 2 7 00 1 4 2 2 7 0 2 2 2 2 2 2 0 0 2 2 7 5 1 2 2 2 2				Ea	2 00	58 50	175	525	51	l
3880 1 C Y 2 15 75 225 675 3890 1 1/2 C Y 2 30 88 50 265 795 3910 3 C Y 2 60 123 370 1 100 3960 Stump chipper 18 deep 30 H P 7 60 160 480 1 450 4110 Tractor crawler with bulldozer torque converter diesel 80 H P 20 55 360 1 075 3 225 4150 105 H P 28 80 505 1 510 4 525 4200 140 H P 34 55 645 1 940 5 825 4260 200 H P 52 85 1 075 3 240 9 725 1 1 4310 300 H P 57 65 1 400 4 235 1 2 7 00 1 1 4360 410 H P 90 40 1 825 5 470 1 1 1 4370 500 H P 120 70 2 450 7 320 22 000 2 4 4 50 1 1 4 50 4400 Loader crawler torque conv desel 1 1/2 C Y 80 H P 18 90 3 4 5 1 3 30 3 3 00 3 4 4 50 3 4 55 3 3 2 50 1 4 50 3 4 55				<u> </u>		1		4	56 40	1
3890 11/2 CY 2 30 88 50 265 795 3910 3 CY 2 60 123 370 1 100 3960 Stump chipper 18 deep 30 H P 7 60 160 480 1 450 4110 Tractor crawler with bult/dozer torque converter diesel 80 H P 20 55 360 1 075 3 225 4150 105 H P 28 80 505 1 510 4 525 4200 140 H P 34 55 645 1 940 5 825 4260 200 H P 52 85 1 075 3 240 9 725 1 1 4310 300 H P 57 65 1 400 4 235 1 2 700 1 4360 410 H P 90 40 1 825 5 470 1 5 400 1 4 4370 500 H P 120 70 2 450 7 320 22 000 2 4 4380 700 H P 120 70 3 455 1 0 33 3 1 00 3 1 00 3 1 00 3 1 00 3 1 00 3 1 00 3 1 00 3 1 00 3 1 00 3 1 00 3 1 00 3 1 00 3 1 00 3 1 00 3 1 00<				┼╌┼					62 20	ł
3910 3 C Y 2 60 123 370 1 100 3960 Stump chipper 18 deep 30 H P 7 60 160 480 1 450 4110 Tractor crawler with bulldozer torque converter diesel 80 H P 20 55 360 1 075 3 225 4150 105 H P 28 80 505 1 510 4 525 4200 140 H P 34 55 645 1 940 5 825 4260 200 H P 52 85 1 075 3 240 9 725 1 4 4310 300 H P 57 65 1 400 4 235 1 2 700 1 4 4360 410 H P 90 40 1 825 5 470 1 5 400 1 4 4370 500 H P 120 70 2 450 7 320 22 000 2 4 4380 700 H P 120 70 2 450 7 320 22 000 2 4 4400 Loader crawler torque conv diesel 1 1/2 C Y 80 H P 1 8 90 345 1 0 30 3 100 1 4 4400 Loader crawler torque conv diesel 1 1/2 C Y 80 H P 1 8 90 345 1 0 30 3 100 1 4 <td></td> <td></td> <td> </td> <td></td> <td>1</td> <td></td> <td></td> <td>1</td> <td>71 40</td> <td></td>					1			1	71 40	
3960 Sturnp chipper 18 deep 30 H P 7 60 160 480 1 450 4110 Tractor crawler with bulldozer torque converter diesel 80 H P 20 55 360 1 075 3 225 4150 105 H P 28 80 505 1 510 4 525 4200 140 H P 34 55 645 1 940 5 825 4260 200 H P 52 85 1 075 3 240 9 725 1 4 4310 300 H P 57 65 1 400 4 235 12 700 1 4 4370 500 H P 102 70 2 450 7 320 22 000 2 4 4380 700 H P 120 70 2 450 7 320 22 000 2 4 4400 Loader crawler torque conv diesel 11/2 C Y 80 H P 18 90 345 1 030 3 100 3 455 450 11/2 to 1 3/4 C Y 95 H P 22 20 435 1 305 3 925 4 450 510 13/4 to 2 1/4 C Y 130 H P 29 90 660 1 980 5 950 4 450 511 13/4 to 2 1/4 C Y 130 H P 42 80 920 2 755 8 275									94 80	l
4110 Tractor crawler with bulldozer torque converter diesel 80 HP 20 55 360 1075 3225 4150 105 HP 28 80 505 1510 4525 4200 140 HP 34 55 645 1940 5 825 4260 200 HP 52 85 1075 3 240 9 725 11 4310 300 HP 57 65 1400 4 235 12 700 1 4360 410 HP 90 40 1 825 5 470 15 400 14 4370 500 HP 120 70 2 450 7 320 22 000 24 4380 700 HP 120 70 2 450 7 320 22 000 24 4400 Loader crawler torque conv diesel 11/2 C Y 80 HP 18 90 345 10 30 3100 4450 11/2 to 1 3/4 C Y 95 HP 22 20 435 1 305 3 925 4 4510 13/4 to 2 1/4 C Y 130 HP 29 90 660 1 980 5 950 1 4520 31/2 to 5 C Y 275 HP 42 80 920 2 7 55 8 2 75 4 4510					4		1	1	156 80	
4150 105 HP 28 80 505 1 510 4 525 4200 140 HP 34 55 645 1 940 5 825 4260 200 HP 52 85 1 075 3 240 9 725 1 1 4310 300 HP 57 65 1 400 4 235 12 700 1 4360 410 HP 90 40 1 825 5 470 15 400 1 4 4370 500 HP 120 70 2 450 7 320 22 000 2 4 4380 700 HP 120 70 2 450 7 320 22 000 2 4 4400 Loader crawler torque conv diesel 1 1/2 C Y 80 HP 18 90 345 1 030 3 100 1 4 4450 31 /2 to 1 3/4 C Y 95 HP 22 20 435 1 305 3 925 4 4510 1 3/4 to 2 1/4 C Y 1 30 HP 29 90 660 1 980 5 950 1 4560 3 1/2 to 5 C Y 275 HP 42 80 920 2 755 8 275 4 4510 Tractor koder wheel torque conv 4 x 4 1 to 11/4 C Y 65 HP 1 3 30 200 600 1 800									379 40	
4200 140 HP 34 55 645 1 940 5 825 4260 200 HP 52 85 1 075 3 240 9 725 1 4 4310 300 HP 57 65 1 400 4 235 1 2 700 1 4360 410 HP 90 40 1 825 5 470 15 400 1 4 4370 500 HP 90 40 1 825 5 470 15 400 1 4 4380 700 HP 120 70 2 450 7 320 22 000 2 4 4400 Loader crawler torque conv desel 1 1/2 C Y 80 HP 18 90 345 1 030 3 100 3 100 3 455 4510 1 1/2 to 1 3/4 C Y 95 HP 22 20 4 35 1 305 3 925 4 450 4530 2 1/2 to 3 1/4 C Y 130 HP 29 90 660 1 980 5 950 1 4530 4550 3 1/2 to 5 C Y 275 HP 69 85 1 275 3 815 11 400 1 7 453 4510 Tractor bader wheel torque conv 4 x 4 1 to 1 1/4 C Y 65 HP 1 3 30 200 600 1 800 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		·			1				1	1
4260 200 HP 52 85 1 075 3 240 9 725 1 4 4310 300 HP 57 65 1 400 4 235 1 2 700 1 4360 410 HP 90 40 1 825 5 470 15 400 1 4370 500 HP 120 70 2 450 7 320 22 000 2 4380 700 HP 179 00 3 750 11 250 33 800 31 4400 Loader crawler torque conv desel 1 1/2 C Y 80 HP 18 90 345 1 030 3 100 3 4450 1 1/2 to 1 3/4 C Y 95 HP 22 20 435 1 305 3 925 4 4510 1 3/4 to 2 1/4 C Y 130 HP 29 90 660 1 980 5 950 4 4530 2 1/2 to 3 1/4 C Y 190 HP 42 80 920 2 7 55 8 275 4 4560 3 1/2 to 5 C Y 275 HP 69 85 1 275 3 815 11 400 11 4610 Tractor loader wheel torque conv 4 x 4 1 to 1 1/4 C Y 65 HP 13 30 200 600 1 800 5				+-+					532 40	
4310 300 HP 57 65 1 400 4 235 1 2 700 1 1 4360 410 HP 90 40 1 825 5 470 1 5 400 1 1 4370 500 HP 120 70 2 450 7 320 22 000 2 4 4380 700 HP 179 00 3 750 11 250 33 800 3 4 4400 Loader crawler torque conv diesel 1 1/2 C Y 80 HP 18 90 345 1 030 3 100 3 450 4400 Loader crawler torque conv diesel 1 1/2 C Y 80 HP 18 90 345 1 030 3 100 3 450 4510 1 1/2 to 1 3/4 C Y 95 HP 22 20 435 1 305 3 925 4 450 4510 1 3/4 to 2 1/4 C Y 1 30 HP 29 90 660 1 980 5 950 4 450 4530 2 1/2 to 3 1/4 C Y 190 HP 42 80 920 2 755 8 275 4 500 4560 3 1/2 to 5 C Y 275 H P 69 85 1 275 3 815 11 400 1 7 4 500 1 7 500 1 800 1 7 500 4610 Tractor loader wheel torque conv 4 x 4 1 to 1 1/4 C Y 65 H P 1 3 30	-							1	664 40	Ł
4360 410 HP 90 40 1 825 5 470 1 5 400 1 4 4370 500 HP 120 70 2 450 7 320 22 000 2 4 4380 700 HP 179 00 3 750 11 250 33 800 3 4 4400 Loader crawler torque conv diesel 1 1/2 C Y 80 HP 18 90 345 1 030 3 100 3 4450 3 1 /2 to 1 3/4 C Y 95 HP 22 20 435 1 305 3 925 4 4510 1 3/4 to 2 1/4 C Y 1 30 HP 29 90 660 1 980 5 950 4 4530 2 1/2 to 3 1/4 C Y 190 HP 42 80 920 2 755 8 275 4 4560 3 1/2 to 5 C Y 275 HP 69 85 1 275 3 815 11 400 1 7 4610 Tractor loader wheel torque conv 4 x 4 1 to 1 1/4 C Y 65 HP 13 30 200 600 1 800 5									1071	l
4370 500 HP 120 70 2 450 7 320 22 000 2 4380 4380 700 HP 179 00 3 750 11 250 33 800 3 1 4400 Loader crawler torque conv diesel 1 1/2 C Y 80 HP 18 90 345 1 030 3 100 4450 1 1/2 to 1 3/4 C Y 95 HP 22 20 435 1 305 3 925 4 4510 1 3/4 to 2 1/4 C Y 1 30 HP 29 90 660 1 980 5 950 4 4530 2 1/2 to 3 1/4 C Y 190 HP 42 80 920 2 755 8 275 4 4560 3 1/2 to 5 C Y 275 HP 69 85 1 275 3 815 11 400 1 7 4610 Tractor loader wheel torque conv 4 x 4 1 to 1 1/4 C Y 65 HP 13 30 200 600 1 800 5						1	1		1 388	Ł
4380 700 HP 179 00 3 750 11 250 33 800 3 1 4400 Loader crawler torque conv diesel 1 1/2 CY 80 HP 18 90 345 1 030 3 100 4450 1 1/2 to 1 3/4 CY 95 HP 22 20 435 1 305 3 925 4 4510 1 3/4 to 2 1/4 CY 1 30 HP 29 90 660 1 980 5 950 4 4530 2 1/2 to 3 1/4 CY 190 HP 42 80 920 2 755 8 275 4 4560 3 1/2 to 5 CY 275 HP 69 85 1 275 3 815 11 400 1 7 4610 Tractor loader wheel torque conv 4 x 4 1 to 1 1/4 CY 65 HP 13 30 200 600 1 800 5									1 817	L
4400 Loader crawler torque conv diesel 1 1/2 C Y 80 H P 18 90 345 1 030 3 100 4450 1 1/2 to 1 3/4 C Y 95 H P 22 20 435 1 305 3 925 4510 1 3/4 to 2 1/4 C Y 130 H P 29 90 660 1 980 5 950 4530 2 1/2 to 3 1/4 C Y 190 H P 42 80 920 2 755 8 275 4560 3 1/2 to 5 C Y 275 H P 69 85 1 275 3 815 11 400 1 2 4610 Tractor loader wheel torque conv 4 x 4 1 to 1 1/4 C Y 65 H P 13 30 200 600 1 800 5						1		1	2 4 30	Ĺ
4450 1 1/2 to 1 3/4 CY 95 HP 22 20 435 1 305 3 925 4510 1 3/4 to 2 1/4 CY 1 30 HP 29 90 660 1 980 5 950 4530 2 1/2 to 3 1/4 CY 190 HP 42 80 920 2 755 8 275 4560 3 1/2 to 5 CY 275 HP 69 85 1 275 3 815 11 400 1 2 4610 Tractor loader wheel torque conv 4 x 4 1 to 1 1/4 CY 65 HP 1 3 30 200 600 1 800 2					179 00			33 800	3 682	
4510 1 3/4 to 2 1/4 C Y 130 H P 29 90 660 1 980 5 950 4530 2 1/2 to 3 1/4 C Y 190 H P 42 80 920 2 755 8 275 4560 3 1/2 to 5 C Y 275 H P 69 85 1 275 3 815 11 400 1 7 4610 Tractor loader wheel torque conv 4 x 4 1 to 1 1/4 C Y 65 H P 13 30 200 600 1 800	1		- {{		18 90	345	1 030	3 1 0 0	357 20	
4530 21/2 to 31/4 C Y 190 HP 42 80 920 2 755 8 275 4560 31/2 to 5 C Y 275 H P 69 85 1 275 3 815 11 400 1 7 4610 Tractor loader wheel torque conv 4 x 4 1 to 11/4 C Y 65 H P 13 30 200 600 1 800 1			[]		22 20	435	1 305	3 925	43860	ł
4560 3-1/2 to 5 CY 275 H P 69 85 1 275 3 815 11 400 1 7 4610 Tractor loader wheel torque conv 4 x 4 1 to 1 1/4 CY 65 H P 1 3 30 200 600 1 800 1	4510	1 3/4 to 2 1/4 C Y 1 30 H P			29 90	660	1 980	5 950	635 20	L
4610 Tractor loader wheel torque conv 4 x 4 1 to 1 1/4 C Y 65 H P 13 30 200 600 1 800	4530	21/2 to 31/4 C Y 190 H P			42 80	920	2 755	8 275	893 40	Ĺ
4610 Tractor loader wheel torque conv 4 x 4 1 to 1 1/4 C Y 65 H P 13 30 200 600 1 800	4560			1-1	69 85	1 275	3 81 5		1 242	Ł
		•	11		j		i	1	226 40	l
	4620	11/2 to 13/4 C Y 80 HP	╾╾┼╂╌	+-+	17 35	273	820	2 450	302 80	ł
	1		Ţ			1	I	1	345 60	ł

] • •	54 Construction Aids 54 33 Equipment Rental			HOURLY	RENT	RENT	RENT	CREW Equipment Cost/day
4710	2 1/2 to 31/2 CY 130 HP		UNIT Ea	COST 21 55	DAY 355	WEEK 1 070	MONTH 3 200	
4730	3 to 41/2 CY 170 HP	R015433	Ī	28 00	1	1 560	4 575	
4750	5-1/4 to 53/4 CY 270 HP			45 35	775	2 320	6 950	825 8
4810	7 to 8 C Y 375 H P			77 35	1 450	4 340	13 000	1 487
4870	121/2CY 690HP			105 25	2 225	6 655	20 000	2 181
4880	Wheeled skid steer 10 C F 30 H P gas			7 50	130	390	1 175	138
4890	I CY 78 H P diesel		↓	14 05	223	570	2 000	246 40
4891	Attachments for all skid steer loaders			ļ				
4892	Auger		Ea	52	87	261	785	56 3
4893	Backhoe			69	116	347	1 050	74 90
4894	Broom			71	118	355	1 075	76 70
4895	Forks		┨	24	40 50	121	365	25 10
4896	Grapple			58	97 50	292	875	53 05
4897			┝┈┼╌	1 02	170	511	1 525	110 3
4898	Tree spade			76	127 148	381	1 150	82 30
4899 4900	Trencher Trencher chain boom type gas operator walking 12 H.P.		┠╌┼╌╴	89 3 55	46 50	443	1 325	95 7(56 40
4900 4910	Operator nding 40 HP	l-		11 15	46 50 258	775	420 2 325	244 20
4910 5000	Wheel type diesel 4 deep 12-wide	- , 2. / 2 +	┠╼┾─	61 55	790	2 375	7 125	244 20 967 40
5100	Diesel 6 deep 20 wide			73 90	1 850	5 550	16 700	1 701
5150	Chain type diesel 5 deep 8 wide	- 155	 	27 45	575	1 725	5 175	564 60
52 0 0	Diesel 8 deep 16 wide			70 75	1 950	5 850	17 600	1 736
5210	Tree spade self propelled			13 30	267	800	2 400	266 40
5250	Timek dump 2-axle 12 ton 8 CY payload 220 H P			22 95	208	625	1 875	308 60
5300	Three axle dump 16 ton 12 CY payload 400 H P			40 35	300	900	2 700	502 80
5350	Dump trailer only rear dump 16-1/2 C Y			4 50	125	375	1 125	111
5400	20 C Y			4 85	142	425	1 275	123 80
5450	Flatbed single axle 1 1/2 ton rabig			17 55	63 50	190	570	179 20
5500	3 ton rabng	5000		21 25	90	270	810	224
5550	Off highway rear dump 25 ton capacity		~ _	52 25	1 075	3 240	9 725	1 066
5500	35 ton capacity			53 15	1 1 0 0	3 320	9 950	1 089
5610	50 ton capacity			69 20	1 450	4 360	13 100	1 426
5620	65 ton capacity			74 25	1 550	4 615	13 800	1 517
5630	100 ton capacity			95 45	1 975	5 950	17 900	1 956
6000	Vibratory plow 25 H P walking	★.	+	6 20	60	180	540	85 60
) I	GENERAL EQUIPMENT RENTAL without operators	R015433					105	
0150	Aenal lift scissor type to 15 high 1000 lb cap electric		Ea	2 60 3 05	55	165	495	53 80
0150 0170	To 25 high 2000 lb capacity Telescoping boom to 40 high 500 lb capacity gas			16 75	80 310	240 925	720 2 775	72 40 319
0180	To 45 high 500 lb capacity			18 75	350	1 075	3 225	319
0190	To 60 high 500 lb capacity	ſ		1980	475	1 420	4 250	442 40
0195	Air compressor portable 6.5 CFM electric		┝╌┼╌┤	44	12	36	108	10 70
0196	Gasoline			73	18	54	162	16 55
0200	Air compressor portable gas engine 60 C F M		┝╶┼─┤	11 55	46 50	140	420	120 40
0300	160 C F M]		13 45	50	150	450	137 50 161 80 211 80 257 436 40 442 60 8 60 8 80
0400	Diesel engine rotary screw 250 C F M			12 85	98 50	295	885	161 80
0500	365 C F M			17 35	122	355	1 100	211 80
0550	450 C F M			22 00	152	455	1 375	257
0600	600 C F M			38 55	213	540	1 925	436 40
0700	750 C F M			38 70	222	565	2 000	442 60
1	For silenced models small sizes add	1		3%	5%	5%	5%	
0800	Large sizes add			5%	7%	7%	7%	
0800 0900		1		. ({	
	Air tools and accessories	11						0.00
0000	Air tools and accessories Breaker pavement 50 lb		Ea	40 40	9 9 35	27	81 84	8 60 8 80

City Cost Indexes

How to Use the City Cost Indexes

What you should know before you begin

RSMeans City Cost Indexes (CCI) are an extremely useful tool to use when you want to compare costs from city to city and region to region

This publication contains average construction cost indexes for 316 U S and Canadian cities covering over 930 three digit zip code locations as listed directly under each city

Keep in mmd that a City Cost Index number is a percentage ratio of a specific city s cost to the national average cost of the same item at a stated time period

In other words these index figures represent relative construction factors (or, if you prefer, multipliers) for Material and Installation costs, as well as_the_weighted average for Total In Place costs for each CSI MasterFormat division Installation costs include both labor and equipment rental costs When estimating equipment rental rates only for a specific location use 01543 CONTRACTOR EQUIPMENT index

The 30 City Average Index is the average of 30 major U S cities and serves as a National Average

Index figures for both material and installation are based on the 30 major city average of 100 and represent the cost relationship as of July 1, 2006 The mdex for each division is computed from representative material and labor quantities lor that division The weighted average for each city is a weighted total of the components bsted above it but does not include relative productivity between trades or cities

As changes occur m local material prices labor rates and equipment rental rates, the impact of these changes should be accurately measured by the change m the City Cost Index lor each particular city (as compared to the 30 City Average)

Therefore, if you know (or have estimated) building costs in one city today you can easily convert those costs to expected building costs in another city

In addition by using the Historical Cost Index you can easily convert National Average building costs at a particular tune to the approximate building costs for some other time. The City Cost Indexes can then be applied to calculate the costs for a particular city.

Quick Calculations

Location Adjustment Using the City Cost Indexes

Index for City A Index for City B = Cost m City A

Tune Adjustment for the National Average Using the Historical Cost Index

Index for Year A Index for Year B = Cost m Year A

Adjustment from the National Average

Index for City A 100 x National Average Cost = Cost m City A Since each of the other RSMeans publications contains many different items, any one item multiphed by the particular city index may give incorrect results. However, the larger the number of items compiled, the closer the results should be to actual costs for that particular city

ا ما وليد المجراب المحمد ال

, se

بہ بہ ~

Ž

Ľ

The City Cost Indexes for Canadian cities are calculated using Canadian material and equipment prices and labor rates in Canadian dollars Therefore, indexes lor Canadian cities can be used to conven U S National Average prices to local costs in Canadian dollars

How to use this section

1 Compare costs from city to city

In using the RSMeans Indexes, remember that an index number is not-a-fixed number but a ratio it is a percentage ratio of a building component s cost at any stated time to the National Average cost of that same component at the same tune period Put in the form of an equation

Specific City Cost National Average Cost x 100 = City Index Number

Therefore when making cost comparisons between cities do not subtract one city's mdex number from the mdex number of another city and read the result as a percentage difference Instead divide one city's index number by that of the other city. The resulting number may then be used as a multipher to calculate cost differences from city to city. The formula used to find cost differences between cities for the purpose of comparison is as follows

City A Index City B Index x City B Cost (Known) = City A Cost (Unknown)

In addition you can use RSMeans CCl to calculate and compare costs division by division between cities using the same basic formula (Just be sure that you re comparing similar divisions)

2 Compare a specific city s construction costs with the National Average

When you re studymg construction location feasibility, it's advisable to compare a prospective project's cost mdex with an mdex of the Nationa Average cost

For example divide the weighted average mdex of construction costs of a specific city by that of the 30 City Average which = 100

$$\frac{\text{City Index}}{100} = \% \text{ of National Average}$$

As a result, you get a ratio that indicates the relarive cost of construction in that city in comparison with the National Average

3 Convert US National Average to actual costs in Canadian City

Index for Canadian City 100 × National Average Cost = Cost m Canadian City m \$ CAN

						l) z kojst		20 - Ale 24						di Serieti				
	DIVISION			<u>ज</u>		ORPUS CI	ודפופו	<u> </u>	DALLAS	TE	XAS	EL PASO		I F	ORTWO	<u></u>	 	
	DADON	MAT	BEAUMON	TOTAL	MAT	INST	TOTAL	MAT	INST	TOTAL	MAT	INST	TOTAL	MAT	INST	TOTAL	MAT	HOUSTON
015433	COFITRACTOR EQUIPMENT		88 4	88 4		95 4	95 4		98.4	98.4		87 3	87 3	1	873	87.3		991 1000
0241 31 34		99 7 105 4	85 2	896 573	1257 980	80 5	94 2 44 9	1233 950	86 4 56 0	97 6 61 4	1007 973	84 5 44 4	89 4 51 7	102 4 93 5	<u>85 3</u> 55 2	905	125.8	840 395
0310 0320	Concrete Forming & Accessones Concrete Rentorcing	991	495 408	573 710	841	36 3 46 3	44 9 65 9	950	50 U 52.9	014 759	9/3	49 4 45 1	704	935	52 B	60 5 74 1	94 4 101 0	168
0330	Cast in Place Concrete	92 3	51 5	77 2	100 6	43.4	794	931	53 2	78 4	87 0	39 0	69 3	95.4	49 0	78 2	95 2	602 687 85
03	CONCRETE	919	49 4	72 3	88.3	42 6	67 2	88 5	56 0	735	86 3	435	66 5	90 2	53 3	732	914	665 \$79
04	MASONRV	1015	581	75.5	79.9	50 2	62 2	101 6	586	759	96.6	479	675	94.2	58 5	729	96.5	609 .75
05 06	Metals Wood plastics & composites	1056 1128	62 8 49 9	93.1 78 9	98 0 112 9	75 1 35 7	91 4 71.3	98.9 97 1	804 564	93 5 75 2	100 5	60 2 47 2	88 8 71 7	974 1008	66 B 66 3	885 769	1103 979	60 9 75 87 9 10 64 4 39
07	THERMAL & MOISTURE PROTECTION	1047	567	86 0	95 2	453	75.8	94.2	62.8	81 9	95 7	538	79 4	100 2	519	81 4	976	64 4
08	OPENINGS	95 3	458	83 1	107 5	37 2	90 2	104 3	52 3	91 5	92 8	42 7	80 4	86 9	52 2	783	105 0	64 1 81 63 2 91 63 9 75 63 9 78 63 9 78 60 5 88
0920	Plaster & Gypsum Board	963	492	67 3	94 3	34.4	574	90 9	558	69 2	86 4	46.4	61 7	873	55 8	678	947	639 75
0950 0980	Ceilings & Acoustic Treatment	100 9	492	69 2	877	34.4	55 0	941	558	706	89 2	46 4	629	917	558	696	101 4	639 (78
0960 0990	Rooning Well for shore & Preston Costons	1120 940	730 479	101 4 66 3	108 9 106 7	44 8 55 7	914 761	999 1006	54 9 55 3	876 734	1134 969	64 3 34 1	100 1 59 2	1471 982	43 9 50 7	1191 696	99 1 101 7	605
0990	Wall Finishes & Painting/Coating	95.5	535	73 5	97.9	39 2	67 2	96.9	55 4	75 2	96.4	47.4	707	107 5	52 5	787	100 0	598 76 627 80
COVERS	DIV5 10 14 25 28 41 43 44	100 0	781	95 5	100 0	75 3	94 9	1000	79.4	95.8	100 0	65 7	93 0	100 0	79 0	957	100 0	<u>- 831 96</u>
21 22 23	FIRE PROTECTION PLUMBING & HVAC	100 0	61 5	84 2	99.8	42 2	76 2	99 8	65 3	856	100 0	36 2	73 8	100 0	64 6	81 4	100 0	697 8 7
26 27 3370	ELECTRICAL, COMMUNICATIONS & UTIL	938	66.9	80.6	98.4	51 5	75.4	97.2	71 2	84.4	951	53.4	74.6	972	62 1	799	95.8	83 1 96 69 7 87 68 2 82
MF2004	WEIGIFIED AVERAGE	98 8	609	82 6	98 3	50 9	78 0	98 8	658	84 6	96 6	50 2	76 8	97 3	59 9	81 3	101 1	700 .87,
		L	1 ADEDO						005003	TE				r	11400			4
ļ	DIVISION	MAT	LAREDO	TOTAL	MAT	LU880C	K TOTAL	-MAT	ODESSA INST	TUTAL	SA MAT	IN ANTON	TOTAL	MAT	WACO	TOTAL	W MAT	ICHITA FALLS
015433	CONTRACTOR EQUIPMENT	16/1	867	867		97.6	97.6	- 19241	87.3	87.3		89.6	89.6		87.3	87.3		INST TOT 87 3 87
0241 31 34	SITE & INFHASTRUCTURE, DEMOLITION	910	85.0	86.8	1 32.0	831	97 9	102.4	85 3	90.5	90 7	90 0	90 2	1010	85 3	901	101 8	850 90
0310	Concrete Forming & Accessones	92 5	36.6	44 3	972	39 3	473	97 8	37 3	457	92 5	55 2	60 4	98 5	38 8	471	985	40 4 48,
0320	Concrete Rontorcing	848	463	66 3	95 3	48 3	72.6	94 0	48 2	719	90 6	497	709	940	477	717	94 0	489 72
0330	Casi-in Flace Concrete	775	595	708 642	93 2 88 4	46.0	75 8 68 5	93 1 89 3	42.1	74 2 67 6	75 0 78 8	<u>674</u> 590	72 8 69 7	84 0 84 8	<u>50 5</u> 45 6	<u>716</u> 667	<u> </u>	456 73 449 67
03	CONCRETE MASONRY	87.5	473	64.9	97.8	45 5	66.8	985	46.2	672	87 3	603	71 2	95.2	55 2	713	957	44 9 67 58 2 73
05	METALS	994	61 3	88 3	104.4	78 5	96 9	1001	636	895	1001	66 4	90 3	1006	64 0	900	1006	657 9Ĵ
06	WOOD REASTICS & COMPOSITES	94 5	35 5	627	1008	39 4	678	100 7	37 4	66 6	94 5	536	72 5	106 9	34 7	680	106 9	39 3 70
07	THERMAL & MOIS RIRE PROTECTION	91 5	50 2	75 4	90 4	47 9	738	99 0	434	77 3	91 5	636	806	995	47 4	792	99 5	52 3 81
08	OPENINGS	100 7 91 6	<u>378</u> 344	85 2 56 3	104 2 88 4	40 3	88 4 57 5	92 8 88 0	38 9 36 3	795 561	102.6 91.6	53.6 52.9	90 6 67 7	86 9 88 0	<u>36 1</u> 33 6	<u>74 4</u> 54 4	<u> </u>	41 9 75. 38 3 57
0920 0950 0980	Plaster & Gypsum Boani Ceilings & Acoustic Treatment	877	344 344	55 0	93 5	383	575 596	917	363	577	877	52.9 52.9	663	917	336	561	917	303 57 383 58
0960	flooring	933	44 8	501	1051	37 2	86.6	113.4	36.8	92.6	93 3	66 5	866	1471	34 1	1164	1484	77 3 129
0990	Walt Frushes & Painting/Coating	936	52.1	68 7	108 4	31 9	62.4	96 9	31 9	57 8	93 6	52 1	68 7	98 2	32 9	58 9	101 9	52 1 72
09	FINISHES	90 5	38.7	63.4	99 7	37 2	66.9	97.4	35.9	65 2	90 5	56 3	72.6	107 6	35 9	700	108 2	48 0 76
COVEH5	DIVS 10 14 25 28 41 43 44	100 0	729	94 5 74 4	1000	743	947 707	100 0 100 1	64 9 34 6	928 732	100 0 99 8	79 1 67 1	95 7 86 4	100 0 100 1	76 5 55 3	952	100.0	65 7 93 47 4 78
21 22 23 26 27 3370	FIRE PROTECTION PLIJMBING & HVAC ELECTRICAL, COMMUNICATIONS & 1111L	998 1001	380 648	74 4 82.8	996 955	47 6 42.3	78 3 69 4	971	394 394	688	100 6	64 8	830	971	55 5 74 0	617 857	100 1 99 3	62.4 61
MF2004	WEIGHTED AVERAGE	95.4	517	767	99.6	51 2	789	97 5	45.9	75.4	95 7	65 0	82.6	97 2	56.8	799	979	55 5 79
							UT	AH						1994 yang br>1994 yang 1994 yang 1	1	VERM		
	DIVISION		LOGAN			OGDEN			PROVO		SAL	T LAKE C	ТΥ	81	IRLINGTO	IN		RUTLAND
		MAT	INST	TOTAL	MAT	INST	TOTAL	MAT	INST	TOTAL	MAT	INST	TOTAL	MAT	INST	TOTAL	MAT	INST TOT
015433	CONTRACTOR EQUIPMENT	00.2	100 2	100 2	77.0	100 2	100 2	05.0	99 0 97 3	99 0	77 7	100 2 99 2	100 2 92.7		100 6 97 8	100.6		100 6 100 97 8 91
0241 31 34 0310	SITE & INFRASTRUCTURE, DEMOLITION Concrete Fanning & Accessones	89 2 102.5	<u>99 2</u> 57 1	96 2 63 4	77 9 102 5	99 2 57 1	92 8 63 4	85 8 103.3	973 573	938 637	102.3	57 3	63.5	77 3 95 2	57 5	91 6 62.7	77 2 98.9	581 63
0320	Concrete Reinlarcing	102.3	72.1	88 3	102.5	72.1	881	1118	72 2	92.7	105.4	72 2	89.4	102 0	84 1	93.4	102.0	84 1 93
0330	Cast+nPlace Concrete	91 9	72 0	84 5	933	72 0	85 4	92.0	72 0	84 6	102 0	72 0	90 9	95 5	110 5	101 0	86 1	1107 96
03	CONCRETE	1118	65 5	90 5	101 5	65 5	84.9	1117	65 6	90 4	121 2	65 6	95 6	105 9	81 0	94.4	102 4	81 4 92
04	MASONRY	1]44	60 1	81 9	1079	60 1	793	1197	601	840	122 1	601	85 0	104 7	55 7	754	855	55 7 67 79 2 89
05	METALS	1016	72 5 54 1	932	1021	72 5	935	99 9 87 1	726 541	92.0 69 3	106 5 87 5	726	96 7 69 5	94 9 04 7	786 570	902	93.4 100.4	792 89 579 77
06 07	WOOD REASTICS & COMPOSITES THERMAL & MOISTURE PROTECTION	857 977	54 1 65 8	686 853	85 7 96 4	54 1 65 8	68 6 84.5	87 1 99 6	54 1 65 8	693 864	8/5 997	54 1 65 8	695 865	947 990	57 9 56 0	749 822	100 4 99 0	5/9 // 64.8 85
07	OPENINGS	886	55 7	805	886	55 7	805	92.6	55 7	835	90 4	557	819	105 3	57 5	93.5	105 3	57 5 93
0920	Plaster & Gypsum Board	799	52 7	63 1	799	527	631	803	52.7	63 3	82.2	52 7	64 0	1047	56 0	74 7	103 7	560 74
0950 0980	Ceilings & Acoustic Treatment	106 4	52 7	734	106 4	52 7	734	106 4	52 7	734	100 7	527	71 2	89 4	55 0	68.9	90 2	56 0 69
0960	Flooning	1059	55]	92.1	1036	55 l	90 4	1067	55 1	927	104 8	55 1	91 3	96 5	63 7	876	96 3	63 7 87
0990	Wall Fyrshes & Painting Aloating	988	44.9	66.4	98.6	449	66.4	98.8	63 3	774	101 3	633	785	916	37 2	589	916	37 2 58
09 COVERS	FINISHES DIVS 10 14 25 28 41 43 44	100 3	<u>54 7</u> 64 7	76 4 92.8	965 1000	<u>547</u> 647	75.6 92.8	101 1 100 0	56 7 64 7	77 9 92 8	98.6 100.0	56 7 64 7	76 7 92 8	973 1000	55 B 83 6	756 966	97 2 100 0	55 8 75 83 6 96
21 22 23	FIRE PROTECTION PLUMBING & HVAC	99 9	674	92.8 86.5	99 9	674	92.0 86.5	999	674	92.8 86.5	100 0	674	92 0 86 6	1000	65 6	859	100 0	65.6 86
26 27 3370	ELECTRICAL, COMMUNICATIONS & UTIL	92 7	687	80 9	930	687	811	93 3	717	82.7	96 2	717	84 2	98.2	64 6	817	976	64 7 81
MF2004	WEIGHTED AVERAGE	100 0	673	86 0	98 1	673	849	100 5	67 9	86 5	102 5	68 0	87 8	99 5	690	86.4	97 9	69.4 85

Manipula

	SAL.
A ABS	Are Aci
AB5	Asb
	Alte Air-
	Ast
ACI	Ply Ain
AD Addıt	Ply Ado
Adj	Adj
af A.G.A.	Aud Am
Agg	Agg
A.H Ahr	Am Am
AHU AIA	Aır
AIC	Am Amj
Allow alt	Allo Altu
Alum	Alur
am Amp	Anto Amp
Anod	Апо
Approx Apt	App Apa
Ash ASBC	Asba Ame
Asbe	Asbe
A S H R.A E	Ame Refr
A.S M E.	Ame
ALS TM	Engi Ame
, • ~ ~ hmt	Mate Attac
	Aver Ame
B&B B&S B & W b c c B C Y BE	Ame Barre
B&B	Grad
B &S	Balle Bell
B & W	Bbcl
bcc BCY	Body Bank
BE BF	Beve Boar
Bg ccm	Bag
BHP	Boıle Brak
B1	Black
新 Bit Bitum. 美 Bk.	Bitur Back
∦ Bkrs FBldg	Brea Build
} Blk	Block
a Brn Boul	Bean Boile
BPM BPM	Blow
BR Brg	Bedr Bear
Brhe Bric	Bnck
Brk	Bnck Bnck
्रै Brng इ. Brs	Bear) Briss
Brz	Bron
BR Brg Brhe Brc Brc Brc Brs Brs Brs Brs Brz Brz Brz Brz Brz Brz Brz Brz Brz Brz	Basır. Bette
U U	Bntis
JH R	BTU Budt
3	Inter

с С С/С

Labora Chapterian and

	Area Square Feet, Ampere Acrylontrile Butadiene Stryrene Asbestos Bonded Steel Altemating Current Air-Conditiorung Asbestos Cement, Plywood Grade A & C Amencan Concrete Institute Plywood Grade A & D Additional Adjustable Audio-frequency American Gas Assocration Aggregate Ampere Hours Ampere hour Air Handling Unit Amencan Institute of ArcIntects Ampere Interrupting Capacity	Cab Carr Calc Cap Carp C B C C A C C F cd cd/sf CD CDX Cef CDX Cef CF CF CF
	Allowance Altitude Alummum	e g CHW C1
	Ante Meridiem Ampere Anodized Approximate Apartment Asbestos	CIP Crc CL Clab Clam CLF
E	American Standard Building Code Asbestos Worker American Society of Heating Refrig & AC Engineers American Society of Mechanical Engineers	CLF CLP cm CMP C M U CN
	Amencan Society for Testing and Maternals Attacliment Average American Wire Gauge American Water Works Assoc	Col CO Comb Compr Cone Cont
	Barrel Grade B and Bener Balled & Burlapped Bell and Spigot Bbck and White Body constant Gubia	Corr Cos Cot Cov C/P
	Body-centered Cubic Bank Cubic Yards Bevel End Board Feet Bag of Cement Bouler Hossenower	CPA Cplg C PM CPVC C Pc CRC
	Boiler Horsepower Brake Horsepower Black Iron Bitummous Backed	Creos Crpt CRT CS
	Breakers Building Block Beam Boilermal er	Csc C S F CSI
	Blows per Minute Bedroom Bearing Bicklayer Helper Bicklayer Bicklayer	CT CTS Cu Cu Ft cw CW
	Bearing Briss Bronze Basin Better Bntish Ttiemial Umt BTU per Hour	Cwi CWX CY: CY/Hr Cyl d D
	Bio per Hour Budt up Roofing Interlocked Armored Ciblc Conductivity Copper Sweit Hundred CentigraJe Center to Center Cedar on Cedar	Dis Disch Db Dbl DC DDC DDC Demob

ł	Cabmet	
•	Air Tool Laborer	
-	Calculated	
	Сарасну	
P	Capenter	
A	Circuit Breaker Cliromate Copper Arsenate	
F	Hundred Cubic Feet	
-	Candela	
f	Candela per Square Foot	
	Grade of Plywood Face & Back	
(Plywood Grade C & D exterior	
	glue	
1	Cement Finisher Cement	
1	Hundred Feet	
	Cubic Feet	
[Cubic Feet per Minute	
	Center of Gravity	
V	Chilled Water	
	Conunercial Hot Water	
,	Cast Iron Cast in Place	
	Circuit	
	Carload Lot	
	Common Laborer	
1	Common mainicnance laborer	
;	Hundred Lmear Feet	
	Curreot Lmuting Fuse	
	Cross Linked Polyethylene	
	Cenumeier Corr Metal Pipe	
U	Concrete Masonry Umt	
Ŭ	Change Notice	
	Column	
	Carbon Dioxide	
b	Combinauon	
pr	Compressor Concrete	
•	Contruous Contrued	
	Corrugated	
	Cosine	
	Cotangent	
	Cover	
	Cedar on Panelmg Control Pomt Adjustmeni	
	Coupling	
1	Cnucal Path Method	
2	Chlorinated Polyvinyl Chloride	
	Hundred Pau	
	Cold Rolled Channel	
S	Creosote	
	Carpet & Lmoleum Layer Catliode ray Tube	
	Carbon Steel Constant Shear Bar	
	Joist	
	Cosecant	
	Hundred Square Feet	
	Construction Specifications	
	Institute	
	Current Transformer Copper Tube Size	
	Copper Cubic	
⁷ t	Cubic Foot	
	Continuous Wave	
	Cool Winte Cold Water	
	100 Pounds	
X	Cool White Deluxe	
Hr	Cubic Yard (27 cubic feet)	
	Cubic Yard per Hour Cylmder	
	Penny (nail size)	
	Deep Depdi Discharge	
Disch	Discharge	
	Decibel	
	Double Direct Current	
	Direct Current Direct Digital Conuol	
ob	Demobilization	
	= -	

<u> </u>	
	mage Fixture Units
	ible Hung ncsoc Hot Water
	gonal
	meter
Dis	nbution
Dıv	ISION
Dec	:k
Dea	d Load Diesel
Dee	p Long Span Bar Joist
Ditt	0
Dep	
	ible Pole Single Throw
Driv	
	iking
	ble Strength
	ble Strength A Grade
	ble Strength B Grade
Dut	
	in Waste Vent
	ixe White Direct Expansion
Dyn	
	Intricity
Equ Eacl	ipment Only East
	ised Burial
	nomy ankment Cubic Yards
	tronic Data Processing
Euce	nor Insulauon Fmish System
	v Durcet Radiauon
	ition
	uician Electineal
	ator Elevating
	uical Metallic Conduit
	Wall Conduit
	ne Engineered
Ethy	lene Propylene Dicne
Mon	omer
Expa	inded Polystyrene
Equi	p Oper Heavy p Oper Light p Oper Medium p Oper Master Mechanic
Equi	p Oper Light
Equi	p Oper Medium
Equi	p Oper Master Mechanic
Equi	p Oper Oilers
	pment
Eleci	Lic Resistance Welded
	gy Saver
	nated
	rostatic Units
	Way
	rmg Water Temperature vation
Exp	insion Exposure
	LSION
	stress
	cnheit, Female Fill
	cated
	glass
	candles
	centered Cubic
	pressive Stress in Concrete
	eme Compressive Stress
	t End
	nnated Ethylene Propylene
(Tefl	
Flat (Gram
	ml Housing Administration
Figu	
Finis	
Fixtu	ire
	Ounces
Floor	
	ency Modulation
Facto	ory Mutual
Fram	
	dation
Fore	man Inside
	580

dfu DH DHW

Diag Diam Disinb Dıv Dk. DL DLH Do Dp DPS T Dt Dnnk DS DS_A. DSB Dty DWV DX dyn e E Ea. EВ Econ ECY EDP EIF6 EDR. Eq Elec Elev EMT

Eng EPDM

EPS Eqhv Eqlt Eqmd Eqmm EqoL Equip ERW ES Est esu E W EWT Excav

Exp Ext. Extru f F Fab FBGS FC fee ٢c FE FEP FG FHA Fig Fm Fun_ Fl Oz Fŀr FΜ

Fmg Fndm

Fon

ERRE SOUARE FOOT OOST BOOM

2009 Edition

Design & Construction Resources

	Unit	Tota
02110 50_TREE CUTTING & CLEARING (Cont)		
Loading and trucking		
For machine load per load round thp 1 mile	EA	84 50
3 mile	EA	96 00
5 mile	EA	11(
10 mile 20 mile	EA	14(
Hand loaded round thp	EA	210
1 mile	EA	210
3 mile	EA	240
5 mile 10 mile	EA	270
20 mile	EA EA	330 410
2210 10 HAULING MATERIAL	277	410
Haul matenal by 10 cy dump truck round tnp		
1 mile	CY	4 56
2 mile 5 mile	CY	5 47
10 mile	C Y C Y	7 47 8 21
20 mile	CY	9-12
30 mile	CY	11 00
Site grading cut & fill sandy clay 200 haul 75	CY	3 28
Spread topsoil by equipment on site Site grading (cut and fill lo 6) less than 1 acre	CY	3 65
75 hp dozer	СҮ	547
1 5 cy backhoe/loader	Č Ý	8 2 1
2210 30 BULK EXCAVATION		
Excavation by small dozer	0.14	
Large areas Small areas	СҮ СҮ	1 64 2 74
Trim banks	CY	4 11
Hydraulic excavator		
1 cy capacity		
Light material Medium material	C Y C r	3 52
Wet material	CY	4 23 5 28
Blasted rock	Ċŕ	6 04
1 1/2 cy capacity		
Light material Medium material	CY	1 42
Wet material	C Y C Y	1 89 2 27
Wheel mounted front end loader	Ŭ	221
7/8 cy capacity		
Light material	СҮ	2 83
Medium matenal Wet matenal	C Y C Y	3 24 3 78
Blasted rock	СҮ	376 453
1 1/2 cy capacity		, 00
Light material	CY	1 62
Medium material Wet material	CY	1 74
Blasted rock	C Y C Y	1 89 2 06
2 1/2 cy capacity	CT	2 00
Light material	CY	1 33
Medium material	CY	1 42
Wet matenal Blasted rock	CY	1 51
Track mounted front end loader	Сv	1 62
1 1/2 cy capacity		
Light material	СҮ	1 89
Medium material	CY	2 06
Wet material Blosted reak	CY	2 27
Blasted rock 2 3/4 cy capacity	СY	2 52
	Сү	1 13
Light material		

T | .