
performance

   

Programmer's Guide
Release 3. 7

SyncSort for z/   VSE

P R O V E N

All rights reserved. This document contains
proprietary and confidential material, and is
only for use by licensees of the SyncSort for  
z/VSE proprietary software system.

SyncSort is a registered trademark of Syncsort Incorporated

SI-0328-G

   070809

   



© Syncsort Incorporated, 2009

All rights reserved. This document contains proprietary and confidential material,
and is only for use by licensees of the SyncSort proprietary software system.
This publication may not be reproduced in whole or in part, in any form, except
with written permission from Syncsort Incorporated.

SyncSort is a trademark of Syncsort Incorporated. All other company and product
names used herein may be the trademarks of their respective companies.



Table of Contents

Summary of Changes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Performance Improvements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Data Utility Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Operating System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Chapter 1. Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1
An Introduction to SyncSort for z/VSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1
SyncSort’s Basic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1
SyncSort’s Data Utility and SortWriter Features . . . . . . . . . . . . . . . . . . . 1.2
Join Processing Sequence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5
Sample SortWriter Report. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6
SyncSort’s Operational Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.7
Structure of the Programmer’s Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.7
Related Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.9

Chapter 2. SyncSort Control Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1
Control Statement Summary Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3
Data Utility Processing Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.17
Maximum Record Length Allowed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.23
Control Statement Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.25
Rules for Control Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.25
ALTSEQ Control Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.30
ANALYZE Control Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.32
DUPKEYS Control Statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.33
Table of Contents  i



END Control Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.38
INCLUDE/OMIT Control Statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.39
INPFIL Control Statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.64
INREC Control Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.83
JOIN Control Statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.86
JOINKEYS Control Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.88
MERGE Control Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.95
MODS Control Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.110
OMIT Control Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.113
OPTION Control Statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.114
OUTFIL Control Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.141
OUTREC Control Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.174
RECORD Control Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.219
REFORMAT Control Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.224
SORT Control Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.227
SUM Control Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.246
XDUPFIL Control Statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.249
XSUMFIL Control Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.250

Chapter 3. Using the SyncSort Dictionary Feature  . . . . . . . . . . . . . . . . . . . . . . 3.1
The Dictionary Feature  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1
Dictionary Statement Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.8
The Constant_name Statement: Rules and Syntax . . . . . . . . . . . . . . . . 3.11
The Field_name Statement: Rules and Syntax  . . . . . . . . . . . . . . . . . . . 3.13
The Operator Statement: Rules and Syntax. . . . . . . . . . . . . . . . . . . . . . 3.21
Using Dictionary_names in SyncSort Control Statements  . . . . . . . . . . 3.26
Error Handling for Dictionary Statements . . . . . . . . . . . . . . . . . . . . . . . 3.28

Chapter 4. How to Use SyncSort Data Utility Features . . . . . . . . . . . . . . . . . . . 4.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1
Sample Data Utility Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2
Selecting Input Records  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2
Selecting Relevant Fields from the Input Records . . . . . . . . . . . . . . . . . . 4.7
Combining Records within a File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.13
Making Output Records Printable and Easy to Read . . . . . . . . . . . . . . 4.16
Dividing a Report into Sections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.33
Writing Headers and Trailers for a Report  . . . . . . . . . . . . . . . . . . . . . . 4.36
Totaling and Subtotaling Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.46
Counting Data Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.53
Creating Multiple Output Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.57

Chapter 5. Job Control Language and Sample Control Statement Streams . 5.1
Six Job Control Statements That May Be Needed for the Sort/Merge . . 5.1
Symbolic Filenames and Symbolic Unit Names for Job Control . . . . . . . 5.5
Setting up Disk Work File Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5
Calculating the Amount of Disk Work Space . . . . . . . . . . . . . . . . . . . . . . 5.8
Setting up Multiple SORTOUT Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.8
Sample JCL/Control Statement Streams . . . . . . . . . . . . . . . . . . . . . . . . . 5.8
SyncSort for z/VSE 3.7 Programmer’s Guideii



Chapter 6. EXEC PARM Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1
PARM Option Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1
SyncSort PARM Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3

Chapter 7. Invoking SyncSort from a Program  . . . . . . . . . . . . . . . . . . . . . . . . . 7.1
Invoking SyncSort from an Assembler Program . . . . . . . . . . . . . . . . . . . . 7.1
Invoking SyncSort from a COBOL Program . . . . . . . . . . . . . . . . . . . . . . . 7.6

Chapter 8. User Exit Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1
What Is an Exit? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1
Loading an Exit Program into Main Storage  . . . . . . . . . . . . . . . . . . . . . . 8.1
Linking Exit Programs to the Sort/Merge . . . . . . . . . . . . . . . . . . . . . . . . . 8.3
EXITS E11 and E31 Checkpointing and Label Processing  . . . . . . . . . . . 8.6
EXITS E15, E25, and E35 - Changing Records and Files  . . . . . . . . . . . 8.10
Coding a COBOL E15 Exit Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.14
Coding a C E15 Exit Routine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.23
E25 Programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.32
E35 Programs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.33
Coding a COBOL E35 Exit Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.35
EXIT E32 - Merge Only - Changing and Substituting Records, 

Reading Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.54
Coding a COBOL E32 Exit Program  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.57
Coding a C E32 Exit Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.62
EXITS E17 and E37 - Writing and Processing Labels  . . . . . . . . . . . . . . 8.66
Exits E18, E38, and E39—VSAM Exits . . . . . . . . . . . . . . . . . . . . . . . . . . 8.67
Coding REXX Exits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.73
REXX Variables Provided by SyncSort. . . . . . . . . . . . . . . . . . . . . . . . . . . 8.73
Sample REXX Exit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.75

Chapter 9. Creating VSAM Alternate Index Files with SyncSort . . . . . . . . . . 9.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1
Sample Alternate Index Definitions: IDCAMS and SYNCBIX. . . . . . . . . 9.2
Syntax Rules for SYNCBIX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.12
SYNCBIX Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.12
SYNCBIX Job Control Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.13
SYNCBIX Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.14

Chapter 10. SyncSort Reentrant Access Method Operation . . . . . . . . . . . . . . . 10.1
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1
Linking to SSRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1
Sort Call Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2
Parameter List Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3
The Key Definition Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3
Return Code Table Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.7
Duplicate Record Processing Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . 10.8
ASSEMBLER Parameter List and Return Code Table . . . . . . . . . . . . . . 10.9
ASSEMBLER Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.10
COBOL Parameter List and Return Code Table . . . . . . . . . . . . . . . . . . 10.13
COBOL Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.14
FORTRAN Parameter List and Return Code Table. . . . . . . . . . . . . . . . 10.18
Table of Contents  iii



FORTRAN Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.19
PL/I Parameter List and Return Code Table  . . . . . . . . . . . . . . . . . . . . 10.22
PL/I Calls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.23

Chapter 11. The SYNCHSTO Utility Program  . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1
What is SYNCHSTO?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1
Control Parameters for SYNCHSTO. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2
Job Control Language  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.5
Sample SYNCHSTO Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.6

Chapter 12. Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.1
SyncSort for z/VSE Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.1
Common SyncSort Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.29
SSRAM Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.30
SYNCBIX Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.35
SYNCHSTO Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.37

Appendix A. Devices and Software Supported by SyncSort. . . . . . . . . . . . . . . . A.1
Devices Supported by SyncSort  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.1
Proprietary Software Packages Compatible with SyncSort . . . . . . . . . . . A.1

Appendix B. Helpful Formulas for SyncSort Programs. . . . . . . . . . . . . . . . . . . . B.1
Calculating How Much Disk Workfile Space Is Needed for a Job  . . . . . B.1
Minimum Storage Needed to Run a Sort or Merge  . . . . . . . . . . . . . . . . . B.1

Appendix C. VSE/VSAM Space Management for SAM Files . . . . . . . . . . . . . . . . C.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.1
SAM ESDS Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.1
VSAM-Managed SORTIN Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.2
VSAM-Managed SORTWK Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.3
JCL Requirements for VSAM-Managed SORTWK Files  . . . . . . . . . . . . C.4
Sample JCL/Control Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.5
VSAM-Managed SORTOUT Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.7
JCL Requirements for VSAM-Managed SORTOUT Files  . . . . . . . . . . . C.8
Setting Up a JCL/Control Stream for Sorts with VSAM-Managed Files C.8

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I.1
SyncSort for z/VSE 3.7 Programmer’s Guideiv



SyncSort for z/VSE Release 3.7 Summary of Changes

Performance Improvements

SyncSort for z/VSE performance has been improved by the following.

• Improved elapsed time for sort applications that use the Virtual Sortwork feature of
the SyncSort Dynamic Storage Manager (DSM) due to improved I/O techniques.

• Improved elapsed time for sort applications that do not use the SyncSort DSM due to
more efficient buffer utilization for Sortwork I/O.

• Elapsed time improvements for applications using VSAM files as input to SyncSort.

Data Utility Features

The SyncSort for z/VSE data utility features have been enhanced by the following:

DUPKEYS Control Statement

• The new ALLDUPS parameter specifies that only records with duplicate SORT/
MERGE fields are retained.

• The new FIRSTDUP parameter specifies that only the first record of those with
duplicate SORT/MERGE fields is retained.

• The new LASTDUP parameter specifies that only the last record of those with
duplicate SORT/MERGE fields is retained. 

• The NODUPS parameter specifies that only records with unique SORT/MERGE fields
are retained.

INPFIL/OUTFIL Control Statements

• The new BUILD parameter is identical to the OUTREC parameter of the OUTFIL
control statement.
Summary of Changes v



• The new IFTHEN parameter uses conditional logic which enables you to reformat
records based on specific criteria.

• The new IFOUTLEN parameter overrides the maximum record length, which is
automatically set by the IFTHEN parameter.

• The new OVERLAY parameter enables you to change particular columns within a
record, and add fields to the end of a record, without rebuilding the entire record.

• The SECTIONS parameter now supports non-contiguous data fields to be used as the
break control field.

INREC/OUTREC Control Statements

• The new IFTHEN, IFOUTLEN, and OVERLAY parameters can be used to conditionally
reformat records or reformat only selected portions of records.

• The new RESTART subparameter of the SEQNUM parameter can be used to restart
the sequence numbering.

JOINKEYS Control Statement

• Data formats of CH, FI, PD, and ZD are now supported in addition to BI.

Other Features

• Support for UFF and SFF data formats in the INCLUDE/OMIT, MERGE, OUTREC,
and SORT parameters has been added.

• Support for additional data formats in SSRAM applications has been added.

Operating System

SyncSort for z/VSE Release 3.7 supports z/VSE 4.2.

Messages

• Now message SHS118A indicates that the input file to SYNCHSTO is empty.

• Message WER127A now applies to the BUILD and OVERLAY parameters in addition 
to the INREC, OUTREC, and REFORMAT parameters.

• Message WER128A now applies to the BUILD, OVERLAY, and REFORMAT 
parameters in addition to the INREC and OUTREC parameters.
SyncSort for z/VSE 3.7 Programmer’s Guidevi



• Message WER129A now applies to the IFTHEN parameter in addition to the 
INCLUDE and OMIT parameters.

• Message WER130A now applies to the IFTHEN parameter in addition to the 
INCLUDE and OMIT parameters.

• Message WER132A now applies to the IFTHEN parameter in addition to the 
INCLUDE and OMIT parameters.

• Message WER133A now applies to the BUILD parameter in addition to the INREC, 
OUTREC, and REFORMAT parameters.

• New message WER157A indicates that the IFOUTLEN parameter has a specified 
length greater than the RECORD control statement’s maximum record length.

• Message WER191A now indicates that the number of JOINKEYS fields specified on 
two JOINKEYS control statements are not equal.

• New message WER205A indicates that one or more of the corresponding fields on two 
JOINKEYS control statements are in incompatible formats.
Summary of Changes vii



SyncSort for z/VSE 3.7 Programmer’s Guideviii



Chapter 1.  Introduction

An Introduction to SyncSort for z/VSE

SyncSort for z/VSE is a high performance sort/merge/copy program for IBM System/370, 
System/390, and z/Architecture machines running under VSE/ESA, z/VSE, and MVT/VSE
(Software Pursuits).

SyncSort for z/VSE is designed to conserve system resources and provide significant perfor-
mance benefits.

SyncSort for z/VSE can be initiated by job control language or invoked from a program
written in COBOL, PL/1, or Assembler language. Eleven types of user exit routines can be
specified for additional programming flexibility.

SyncSort’s Basic Functions 

SyncSort for z/VSE has three basic functions: 

1. Sorting - rearranging data set records to produce a specific sequence 

2. Merging - combining up to 32 presequenced data sets into one data set that has the
same sequence

3. Copying - reproducing a data set without going through the sorting process
Chapter 1.  Introduction 1.1



Sorting  

A sort is the ordering of a data set of unspecified sequence into specific sequential form. For
example, a sort can arrange records in numeric or alphabetic order.

Up to 32 files can be sorted at one time, and a number of different devices can be used for
input, output, and work files.

The sort logically consists of four phases that perform the following functions:

• The control statements and job control information are read and analyzed, and the
operational parameters for the sort are established.

• The input data is read into virtual storage and sorted.

• If necessary, intermediate results are written to temporary storage devices.

• The sorting process completes, and the sorted data is written to the specified output
device(s).

Merging  

A merge is used to combine files where data in each file is in sequential order. The merge
combines up to 32 files into one output file.

A merge has only two phases that perform the following functions:

• The control statements and job control information are read and analyzed, and the
operational parameters for the merge are established.

• The files are merged and the sorted data is written to the specified output device(s).

Copying

A copy reproduces a file, bypassing the sorting process. A copy has only two phases that
perform the following functions:

• The control statements and job control information are read and analyzed, and the
operational parameters for the copy are established.

• The file is copied to the specified output device(s). 

SyncSort’s Data Utility and SortWriter Features 

SyncSort for z/VSE is designed to improve programmer productivity by reducing the time
the programmer/analyst must spend designing, testing, and debugging applications. With
SyncSort for z/VSE 3.7 Programmer’s Guide1.2



SyncSort’s extensive Data Utility and SortWriter features, data processing applications
previously requiring several steps can be accomplished in a single execution.

SyncSort’s Data Utility features include a multiple output facility, a full range of report
writing capabilities, and record selection and record reformatting facilities. These options
allow the user to design sort/merge/copy applications that can accomplish a host of related
tasks.

Processing Multiple Input Files

The multiple input facility (INPFIL) allows multiple input files to be processed by just one
pass of the sort. Each of these files can have unique specifications that determine which
records are to be included and how the records are to be formatted. Moreover, all these files
can originate from one input device, or each file can originate from a different device.

Generating Multiple Output Files

The multiple output facility (OUTFIL) allows multiple output files to be generated with
just one pass of the sort. Each of these files can have unique specifications that determine
which records are to be included, how the records are to be formatted, and which report
capabilities are to be used. Moreover, all these files can be written to the same output
device, or each can be written to a different device.

Creating Reports  

SyncSort’s SortWriter feature (OUTFIL) allows the user to design comprehensive reports
easily and efficiently. SortWriter options allow output data to be flexibly formatted with
headers and trailers that can include data fields. Totals, subtotals, record counts, and sub-
counts can be produced at report, page, and section levels. Output record fields can be
realigned, the records can be padded with blanks, characters, and binary zeros, and
numeric data can be converted and edited. Automatic pagination, page numbering, and
dating are also provided.

Selecting Records, Reformatting Records and Summing Fields

Record selection, reformatting, and summing are other important SyncSort for z/VSE Data
Utility features. Record selection via the INCLUDE/OMIT feature permits certain records
to be included in or omitted from an input data set based on comparisons between two data
fields or between a data field and a constant.

Record reformatting after input and/or before output, provided by the INREC/OUTREC
capability, allows the user to delete or repeat portions of records, insert spaces, characters
and binary zeros, realign fields, convert numeric data to its printable format, convert fixed-
length records to variable-length records or vice-versa, and convert data to its printable
hexadecimal format. The ability to delete irrelevant data fields before sorting via INREC
can provide important performance benefits.
Chapter 1.  Introduction 1.3



The AVG, MAX, MIN, and SUM features allow deletion of records with equal sort control
fields and optional replacement of specified numeric fields in the retained record with the
average, maximum, minimum, or sum of the field for all records with the same control
field. The deleted records can be written to a separate data set.

Join Facility

The join facility of SyncSort for z/VSE provides the capability to join records from two
source files. Each record from the first file with a given value in one or more fields (the join
key) is joined to each record from the second file that has an identical value in its join key.
The joined records are passed to the sort/copy process. The power of this facility is
enhanced by the ability to eliminate records from either or both files and to control the dis-
position of paired and unpaired records resulting from the join operation. 
SyncSort for z/VSE 3.7 Programmer’s Guide1.4



Join Processing Sequence

Join processing replaces the reading of the input data set (SORTIN) during a more tradi-
tional SORT or COPY. The records created by joining and reformatting are inserted into
the SORT/COPY process immediately prior to record selection by the INCLUDE/OMIT con-
trol statement. Note that the specifications in all of the other control statements after join
processing refer to the positions of the fields in the reformatted join records. See Figure 1
below.

Figure  1. One-Step Join Processing Sequence

 

Chapter 1.  Introduction 1.5



Sample SortWriter Report

The report in Figure 2 below illustrates the versatility of SyncSort’s Data Utility and Sort-
Writer features. First, irrelevant records are omitted from the input file, and the input
record is reformatted to eliminate unnecessary data fields. Then the file is sorted by invoice
status, invoice date, and company name. The output record is reformatted for readability,
and the numeric fields are converted and edited. The report itself is divided into sections
and subsections based on control field breaks. Headers and trailers identify the data fields,
provide record counts and section and cumulative totals, and include the date and page
number.

PAGE: 3
ACCOUNTS RECEIVABLE AGING REPORT FOR 01/30/92 DATE:04/22/92
********************************************* 

INVOICE STATUS:O
***************** 

------------ ------- ---- ----- -------- --------------------- ---------------------
INVOICE BALANCE

COMPANY NAME ADDRESS CO # INV # INV DATE PRODUCT TAX PRODUCT TAX
------------ ------- ---- ----- -------- --------------------- ---------------------
REPUBLIC DATA NYC NY 2681 86013306 1/17/91 1,100.00 90.75 1,100.00 90.75
RICE FEATURES CHI IL 2244 86013298 1/17/91 1,500.00 75.00 1,500.00 75.00
SIDNEY COLLEGE HOU TX 4762 86013297 1/17/91 2,500.00 150.00 2,500.00 150.00
WINIFRED INDUST WAS DC 1177 86013299 1/17/91 650.00 26.00 650.00 26.00
PIZZUTO LOANS STL MO 4633 86022200 2/15/91 550.00 22.00 550.00 22.00
RICE FEATURES CHI IL 2244 86022198 2/15/91 1,500.00 75.00 1,500.00 75.00
SIDNEY COLLEGE HOU TX 4762 86022197 2/15/91 500.00 30.00 500.00 30.00
REGENCY TRUST CO BOS MA 4986 85124011 12/15/91 1,500.00 75.00 1,500.00 75.00
SIDNEY COLLEGE HOU TX 4762 85124016 12/15/91 5,000.00 300.00 5,000.00 300.00 

---------- ---------- ---------- ----------
TOTAL NUMBER OF INVOICES: 11 MONTHLY TOTALS: $22,850.00 $1,484.50 $22,850.00 $1,484.50

---------- ---------- ---------- ---------- 

BALTIC AVENUE CORP CLE OH 0636 86022207 2/15/91 650.00 29.25 650.00 29.25
FASTEROOT EQUIP BAL MD 4980 86022205 2/15/91 1,700.00 76.50 1,700.00 76.50
FEDERAL FABRICS SHV LA 5143 86022204 2/15/91 1,750.00 70.00 1,750.00 70.00
PATIO PRODUCTS MRY CA 3029 86022203 2/15/91 850.00 51.00 850.00 51.00
HOLOFERNES FOR. EXCH. DTT MI 8325 86022201 2/15/91 1,600.00 64.00 1,600.00 64.00
WINES ASSOCIATES SMF CA 1794 86022209 2/15/91 750.00 45.00 750.00 45.00
DESIGN TECHNOLOGIES LAX CA 2520 85124017 12/15/91 360.00 21.60 360.00 21.60
POLL DATA CORP LAX CA 0846 85124019 12/15/91 600.00 36.00 600.00 36.00 

---------- ---------- ---------- ----------
TOTAL NUMBER OF INVOICES: 8 MONTHLY TOTALS: $8,260.00 $393.35 $8,260.00 $393.35

---------- ---------- ---------- ---------- 

Figure  2. Sample SortWriter Report
SyncSort for z/VSE 3.7 Programmer’s Guide1.6



SyncSort’s Operational Features

SyncSort for z/VSE has many operational features that contribute to its flexibility and
functionality.

• SyncSort for z/VSE interfaces with the VSE/VSAM Space Management for SAM
feature to permit VSAM space management of input, output, and sort work files. This
capability simplifies JCL requirements and facilitates automatic secondary sort work
allocation.

• SyncSort for z/VSE can be installed in the SVA. However, on VSE/ESA and z/VSE
systems, most of the SVA can be saved by activating SyncSort for z/VSE’s Virtual
Library and Virtual Sortwork features at installation time.

• Default values can be dynamically modified at execution time via the PARMEXIT
feature, allowing main storage allocations to reflect observed or anticipated VS paging
activity.

• SyncSort for z/VSE interfaces with many disk space management packages. This
capability provides many benefits, including automatic release of unused output disk
space and automatic secondary sort work allocation.

Other operational features include support for input files on different devices (e.g., disk,
tape, and card readers), support for mixed device types for disk sort work space, automatic
incore sorting, support for ASCII tape input and output files, and support for spanned vari-
able-length records. 

SyncSort’s SYNCBIX feature is a high performance replacement for the BLDINDEX pro-
cess performed by Access Methods Services (IDCAMS). The SYNCBIX feature interfaces
with SyncSort for z/VSE to allow efficient reading of the base cluster, fast extracting of the
record pointer information, primary and alternate keys, and high performance sorting of
these records. 

Structure of the Programmer’s Guide

The SyncSort for z/VSE Programmer’s Guide is a reference manual designed for use by
applications programmers when sorting, merging, or copying sequential data sets with
SyncSort. This manual is self-contained and assumes only a basic working knowledge of
the operating system and its job control language. It should not be necessary to refer to any
other manual to produce a functioning, efficient sort.

This manual is organized into the following chapters:

SyncSort Control Statements describes the coding and use of the ALTSEQ, ANALYZE,
DUPKEYS, END, INCLUDE/OMIT, INPFIL, INREC, JOIN, JOINKEYS, MERGE, MODS,
OMIT, OPTION, OUTFIL, OUTREC, RECORD, REFORMAT, SORT, SUM, XDUPFIL,
and XSUMFIL statements. The discussion of a particular control statement includes these
Chapter 1.  Introduction 1.7



topics: the statement’s coding format, the versatility provided by the various parameters
(many of them unique to SyncSort), the interaction between this control statement and
other statements, and simple examples.

Using the SyncSort Dictionary Feature describes how to use a dictionary_name to rep-
resent most fields or constants recognized in SyncSort control statements.

How to Use SyncSort’s Data Utility Features explains and illustrates the Data Utility
features and SortWriter using a series of sample applications. Each application is self-con-
tained and provides both the required JCL and the control statements necessary to accom-
plish tasks such as record and field selection, report writing, and multiple output file
generation.

Job Control Language and Sample JCL/Control Statement Streams analyzes
SyncSort’s job control requirements and describes the job control statements that may be
needed. Two methods for setting up disk work file statements are described. Sample 
JCL/control statement streams illustrate typical SyncSort applications and can be used as
models.

EXEC PARM Options describes the parameters that can be passed to SyncSort with the
PARM option on the JCL //EXEC statement.

Invoking SyncSort from a Program explains how to invoke SyncSort for z/VSE from
programs written in Assembler, COBOL, and PL/1 and provides examples of invoked sorts.

User Exit Programs describes the different types of exits that can be written to perform
various tasks at different stages of the sort/merge. Each exit point is fully documented
together with the tasks that are appropriate at that point. Exits for VSAM files are also
discussed.

Creating VSAM Alternate Index Files with SyncSort describes SyncSort’s SYNCBIX
feature, a high performance replacement for the BLDINDEX process performed by Access
Methods Services (IDCAMS).

SyncSort Reentrant Access Method Operation describes the interface between an
invoking program and SyncSort, which allows a program to invoke up to 16 concurrent
sorts.

The SYNCHSTO Utility Program describes a separate program that determines infor-
mation about variable-length record files, which then can be used to run more efficient
sorts of those files.

Messages documents all of the error and informational messages generated by the
SyncSort program. Errors that occur most frequently are explained in detail along with
suggestions for correcting them.
SyncSort for z/VSE 3.7 Programmer’s Guide1.8



Related Reading

SyncSort for z/VSE Installation Guide

This manual explains how to install and maintain SyncSort.

Exploiting SyncSort for z/VSE: JOIN

This booklet demonstrates how to use SyncSort’s JOIN feature through the use of sample
applications.

Exploiting SyncSort: SortWriter Data Utilities Guide

This booklet explains how to use SyncSort’s Data Utility features, with special emphasis on
report writing. Comprehensive sample applications illustrate how the control statements
produce formatted reports.
Chapter 1.  Introduction 1.9



SyncSort for z/VSE 3.7 Programmer’s Guide1.10



Chapter 2.  SyncSort Control Statements

The control statements tell SyncSort for z/VSE how to process files. These statements are
summarized below.

Control Statement   Function

ALTSEQ  Specifies an alternate collating sequence for control fields with an
AQ format.

ANALYZE  Determines how much disk work space an application will require
before it executes.

DUPKEYS  Deletes records with equal control fields and replaces specified
fields with calculated average, maximum, minimum, or sum
numeric values.

END  Signals the end of control statements.

INCLUDE   Specifies the criteria that determine whether or not records are
included in an application.

INPFIL  Describes the input file(s) and specifies processing options.

INREC  Reformats the input record before sort/merge processing.

JOIN  Specifies the disposition of paired and unpaired records in a join.
Chapter 2.  SyncSort Control Statements 2.1



JOINKEYS   Enables join feature processing and identifies the fields used to
select records for join processing.

MERGE  Defines a merge, copy, or compare application and specifies merge
control fields.

MODS  Specifies user exit(s).

OMIT  Specifies the criteria that determine whether or not records are
omitted from an application.

OPTION  Specifies processing options and overrides installation defaults.

OUTFIL  Describes the output file(s) and specifies SortWriter and processing
options.

OUTREC  Reformats the output record after sort/merge processing.

RECORD  Provides record information at various processing stages.

REFORMAT  Defines the record layout to be produced by the join processing spec-
ified on the application’s JOINKEYS control statement.

SORT  Defines a sort or copy application and specifies sort control fields.

SUM  Deletes records with equal control fields and sums numeric fields
on those records.

XDUPFIL  Describes the XDUP output file and any optional SortWriter pro-
cessing desired.

XSUMFIL  Describes the XSUM output file and any optional SortWriter pro-
cessing desired.
SyncSort for z/VSE 3.7 Programmer’s Guide2.2



Control Statement Summary Chart

The following chart summarizes the parameters of each control statement and indicates
default values.

OPERATION 
NAME

PARAMETERS DELIVERED
DEFAULT

ALTSEQ Standard EBCDIC 
series

ANALYZE CALC

DUPKEYS

where function is:

No reduction of equal-
keyed records

XDUP

END

INCLUDE Sort/Merge all records

Table 1.  (Page 1 of 14)  Control Table Summary Chart

CODE= ccpp1,…,ccpp256( )

ALLDUPS
function ,function[ ]... ,FORMAT=f[ ]
FIELDS=NONE
FIRSTDUP ,NODUPS[ ]
LASTDUP ,NODUPS[ ]
NODUPS 

 
 
 
 
 
 

AVG
MAX
MIN
SUM 

 
 
 
 

= p1,l1 ,f1[ ] ,p2,l2 ,f2[ ][ ]...( )

COND=

ALL
NONE

(c1

,AND,
,&,
,OR,
, , 

 
 
 
 

c2… )[,FORMAT = f]

 
 
 
 
 
 
 
 
 
Chapter 2.  SyncSort Control Statements 2.3



INPFIL BLKSIZE=n Unblocked records

BUFLIM=n BUFLIM=255

BUFOFF=n BUFOFF=0

BYPASS

CLOSE= RWD
Release at EOJ

OPERATION 
NAME

PARAMETERS DELIVERED
DEFAULT

Table 1.  (Page 2 of 14)  Control Table Summary Chart

CLOSE=

RWD
NORWD
UNLD
(UNLD,RALL)
(UNLD,REL)
(UNLD[,Rinput1…,Rinput32])
(UNLD,RNONE) 

 
 
 
 
 
 
 
 
SyncSort for z/VSE 3.7 Programmer’s Guide2.4



INPFIL CONVERT

CRDSIZE=n CRDSIZE=80

DATA=E

EXIT

FTOV

INPUT Accepted but ignored

Record unchanged

L4FILL = NONE

NOCHAIN

OPEN = RWD

PRESEQ Accepted but ignored

SKIPBYTE Accepted but ignored

SKIPREC=0

OPERATION 
NAME

PARAMETERS DELIVERED
DEFAULT

Table 1.  (Page 3 of 14)  Control Table Summary Chart

DATA= E
A 

 
 

FILES=
1
n
(1,2,…,32) 

 
 

FNAMES=
filename
filename1[,filename2][,filename3]…( ) 

 
 

INCLUDE
OMIT 

 
 

=(…)

INREC
BUILD

OVERLAY
IFTHEN 

 
 
 
 

…( )=

LRECL=
nnn
(lmax[,lmin]) 

 
 

L4FILL =
NONE
X'nn'
C'c' 

 
 

OPEN= RWD
NORWD 

 
 

SKIPREC
STARTEC 

 
 

=n
Chapter 2.  SyncSort Control Statements 2.5



INPFIL SPAN Unspanned records

SYSIPT

TOL Only if VSAM input

VLFILL=b

VLLONG=NO

VLTRIM=b

VOLUME=1

VSAM (Optional if managed-
SAM)

VTOF

INREC Input records 
unchanged

JOIN UNPAIRED

F1

F2

ONLY

OPERATION 
NAME

PARAMETERS DELIVERED
DEFAULT

Table 1.  (Page 4 of 14)  Control Table Summary Chart

STOPAFT
ENDREC 

 
 

=n

VLLONG = YES
NO 

 
 

VOLUME=
n
n1,...,n32( ) 

 
 

FIELDS
BUILD

OVERLAY
IFTHEN 

 
 
 
 

…( )=
SyncSort for z/VSE 3.7 Programmer’s Guide2.6



JOINKEYS

FIELDS=(p1,l1,f1,o1[,p2,l2,f2,o2,...[,p64,l64,f64o64]])

FORMAT = f FORMAT = BI

BLKSIZE=n

BUFLIM=n BUFLIM = 255

BUFOFF=0

BYPASS

CLOSE=RWD

CRDSIZE=80

DATA=E

OPEN=RWD

OPERATION 
NAME

PARAMETERS DELIVERED
DEFAULT

Table 1.  (Page 5 of 14)  Control Table Summary Chart

FILE= F1
F2 

 
 

LRECL =
nnn
(l1[,l4]) 

 
 

TYPE= F
V 

 
 

BUFOFF= n

CLOSE=
RWD
NORWD
UNLD 

 
 

CRDSIZE= n

DATA= E
A 

 
 

ENDREC
STOPAFT 

 
 

=n

INCLUDE
OMIT 

 
 

=(...)

OPEN= RWD
NORWD 

 
 
Chapter 2.  SyncSort Control Statements 2.7



JOINKEYS SORTED

SPAN

SYSIPT

TOL

VOLUME=n

VSAM

MERGE

BIAS=n Accepted but ignored

s=80

EQUALS

FILES or ORDER=1
(FILES or ORDER=2 
for JOIN and 
COMPARE)

FILESOUT=n FILESOUT=1

JOINWORK=n JOINWORK=1

MODS PHn=(name,loading information,Enn1,...,Ennn)

OMIT Sort/Merge all records

OPERATION 
NAME

PARAMETERS DELIVERED
DEFAULT

Table 1.  (Page 6 of 14)  Control Table Summary Chart

STARTREC
SKIPREC 

 
 

=n

FIELDS= p1,l1[,f1],o1, …,p64,l64[,f64],o64( ) ,FORMAT = f[ ]
FIELDS=COPY
FIELDS=COMPARE [(n)] 

 
 

CENTWIN= s
f 

 
 

EQUALS
NOEQUALS 

 
 

FILES
ORDER 

 
 

=n

COND=

ALL
NONE

(c1

,AND,
,&,
,OR,
, , 

 
 
 
 

c2… )[,FORMAT=f]

 
 
 
 
 
 
 
 
 
SyncSort for z/VSE 3.7 Programmer’s Guide2.8



OPTION

CALCAREA

s=80

NOCHALT

CMP=CPD

CMPINOM=CLC

DATE=STD

DEVIN=nn DEVIN=49

DEVOUT=nn DEVIN=49

DIAG

NOEQUALS-Sort
EQUALS-Merge

NOERASE

OPERATION 
NAME

PARAMETERS DELIVERED
DEFAULT

Table 1.  (Page 7 of 14)  Control Table Summary Chart

ADDROUT= A
D 

 
 

CENTWIN= s
f 

 
 

CHALT
NOCHALT 

 
 

CMP= CLC
CPD 

 
 

CMPINOM= CLC
CPD 

 
 

DATE =

ADATE
EDATE
IDATE
STD 

 
 
 
 

DEVWK=
n
(n1,…,n3)
NO 

 
 

DUMP
NODUMP 

 
 

EQUALS
NOEQUALS 

 
 

ERASE
NOERASE 

 
 
Chapter 2.  SyncSort Control Statements 2.9



OPTION FILNM=(output1,...,output32,input1,...,input32,cccc) SORTOUT/
SORTOFx/
SORTOxx/
SORTINx/
SORTIxx/
SORTWKx

GVSRANY=32K

GVSRLOW=128K

Respect l4

INCOR=OFF Incore sort if possible

Default symbolic unit 
numbers

KEYLEN=n KEYLEN=0

LABEL=(output1,...,output32,input1,...,input32,work) Standard labels

No LOCALE process-
ing

NOINC Incore sort if possible

NOTPMK Tape marks written

RC0, continue process-
ing

NRECS=n Output all records

RC0, continue process-
ing

OPERATION 
NAME

PARAMETERS DELIVERED
DEFAULT

Table 1.  (Page 8 of 14)  Control Table Summary Chart

GVSRANY=
n
nK
nM 

 
 

GVSRLOW=
n
nK
nM 

 
 

IGNRL4
NOIGNRL4
NOVLSHRT
VLSHRT 

 
 
 
 

JOINWK=
joinwork
(joinwork1,…,joinwork9) 

 
 

LOCALE=
CURRENT
name
NONE 

 
 

NRECOUT=
RC0
RC4
RC16 

 
 

OVFLO=
RC0
RC4
RC16 

 
 
SyncSort for z/VSE 3.7 Programmer’s Guide2.10



OPTION PRINT=ALL (JCL)
PRINT=CRITICAL
(Pgm)

ROUTE=LST (JCL)
ROUTE=LOG (Pgm)

RPS=OFF

Accepted but ignored

SKIPREC=n SKIPREC=0

Default symbolic unit 
numbers

Default symbolic unit 
numbers

Default symbolic unit 
numbers

RC16, and terminate if 
encounter incomplete 
spanned records

STOPAFT=n Output all records

(1) SIZE parameter
(2) program
partition, AUTO

SYMNLIB=(lib1.sublib1[,lib2.sublib2]...[,lib14.sublib14])

OPERATION 
NAME

PARAMETERS DELIVERED
DEFAULT

Table 1.  (Page 9 of 14)  Control Table Summary Chart

PRINT=

ALL
CRITICAL
CRITPLUS
NONE 

 
 
 
 

ROUTE=

LAL
LOG
LST
nnn 

 
 
 
 

RPS= ON
OFF 

 
 

SAMESDS= RECFMOUT
UNDEFOUT 

 
 

SORTIN=
input
(input1,…,input32) 

 
 

SORTOUT=
output
(output1,…,output32) 

 
 

SORTWK=
work
(work1,…,work9) 

 
 

SPANINC=
RC0
RC4
RC16 

 
 

STORAGE= (
n
nK
nM

,AUTO
,NOVIRT
,REAL
,VIRT

)

SYMNAMES=
lib.sublib.member.type
member.type
SYSIPT 

 
 
Chapter 2.  SyncSort Control Statements 2.11



OPTION

TP Accepted but ignored

VERIFY Accepted but ignored

VSCORE=4096K

VSCORET=8192K

WORKNM=work WORKNM=SORTWKx

Standard labels

XDUPNM=filename XDUPNM=SORTXDP

XDUPOUT=nnn Default symbolic unit 
number

Standard labels

XSUMNM=filename XSUMNM=SORTXSM

XSUMOUT=nnn Default symbolic unit 
number

No conversion of ZD 
SUM results to print-
able number

OPERATION 
NAME

PARAMETERS DELIVERED
DEFAULT

Table 1.  (Page 10 of 14)  Control Table Summary Chart

SYMNOUT=

LAL
LOG
LST
NONE 

 
 
 
 

VSCORE=
n
nK
nM 

 
 

VSCORET=
n
nK
nM 

 
 

XDUPLAB= S
U 

 
 

XSUMLAB= S
U 

 
 

NZDPRINT
ZDPRINT 

 
 
SyncSort for z/VSE 3.7 Programmer’s Guide2.12



OUTFIL BLKSIZE=n Unblocked records

BUFLIM=n BUFLIM=255

BUFOFF=n BUFOFF=0

CARDS=32,767
PAGES=32,767

CISIZE=n

CLOSE=RWD

DISK

DUMP

ENDREC=n

ESDS (Opt if managed-SAM)

EXIT

FILES=(1[,2...,32]) One output file

One output file

FREEOUT Accepted but ignored

FTOV

HEADER1=(field1[,field2]...) No report heading

HEADER2=(field1[,field2]...) No page heading

Output all records

KSDS

OPERATION 
NAME

PARAMETERS DELIVERED
DEFAULT

Table 1.  (Page 11 of 14)  Control Table Summary Chart

CARDS=s
PAGES=p 

 
 

CLOSE=
NORWD
RWD
UNLD 

 
 

CONVERT
VTOF 

 
 

FNAMES=
filename
(filename1[,filename2]…) 

 
 

INCLUDE
OMIT 

 
 

=
ALL
(comparison)
NONE 

 
 
Chapter 2.  SyncSort Control Statements 2.13



OUTFIL LINES=60 (print)
LINES=0 (punch)

LRECL=n

NODETAIL Detailed report

NOTPMK Tape marks written

OPEN=RWD

OUTPUT Accepted but ignored

Record unchanged

PRINT Required for report writ-
ing

PUNCH

REPEAT=n

REUSE (Only if VSAM output)

RRDS

SAVE

SECTIONS=(field1[,field2]...) No sections

SPAN Unspanned records

SPLIT

SPLITBY=n

STARTREC=n

TAPE

TOL (Only if VSAM output)

OPERATION 
NAME

PARAMETERS DELIVERED
DEFAULT

Table 1.  (Page 12 of 14)  Control Table Summary Chart

LINES=

n
SYSTEM
ANSI
(ANSI,n)
(ANSI,SYSTEM) 

 
 
 
 
 
 

OPEN= RWD
NORWD 

 
 

OUTREC
BUILD

OVERLAY
IFTHEN 


 


 

…( )=

SAMPLE = n
n,m( ) 

 
 
SyncSort for z/VSE 3.7 Programmer’s Guide2.14



OUTFIL TRAILER1=(field1[,field2]...) No report trailer

TRAILER2=(field1[,field2]...) No page trailer

VLFILL=f

VLTRIM=b

OUTREC Output records identi-
cal to input

RECORD LENGTH=(l1,...,l7)

REFORMAT FIELDS=(Fn:p1,l1[,Fn:]p2,l2...[[,Fn:]pm][,Fn:pn])

FILL=f

OPERATION 
NAME

PARAMETERS DELIVERED
DEFAULT

Table 1.  (Page 13 of 14)  Control Table Summary Chart

FIELDS
BUILD

OVERLAY
IFTHEN 


 


 

…( )=

TYPE=

F
V
D
VS
VBS 

 
 
 
 
 
 

DELBANK= (p,q)
p 

 
 
Chapter 2.  SyncSort Control Statements 2.15



SORT

BIAS=n Accepted but ignored

s=80

NOEQUALS

ERASEWK NOERASE

FILES=n FILES=1
FILES=2 (for JOIN)

FILESOUT=n FILESOUT=1

JOINWORK=1

Sort Capacity

WORK=DA

SUM No summing of fields; 
no reduction of equal-
keyed records

XSUM Records deleted by 
SUM processing are 
not written to a file

XDUPFIL Same as OUTFIL except EXIT, FILES=, and FNAMES= Same as OUTFIL

XSUMFIL Same as OUTFIL except EXIT, FILES=, and FNAMES= Same as OUTFIL

OPERATION 
NAME

PARAMETERS DELIVERED
DEFAULT

Table 1.  (Page 14 of 14)  Control Table Summary Chart

FIELDS=(p1,l1[,f1],o1,…,p64,l64[,f64],o64)[,FORMAT=f]
FIELDS=COPY 

 
 

CENTWIN= s
f 

 
 

CHKPT
CKPT 

 
 

EQUALS
NOEQUALS 

 
 

JOINWORK= n

SIZE= n
E1 

 
 

WORK=
DA
n
(n,s) 

 
 

FIELDS=(p1,l1[,f1][,p2,l2[,f2]]...) ,FORMAT=f[ ]
FIELDS=NONE 

 
 
SyncSort for z/VSE 3.7 Programmer’s Guide2.16



Data Utility Processing Sequence

Figure 3 on page 2.18 presents the sequence in which SyncSort control statements and
parameters are processed. It includes those statements and parameters that modify the
input file (e.g., INPFIL, INCLUDE/OMIT), reposition record fields (e.g., INREC,OUTREC),
and create reports (e.g., OUTFIL).

When specifying record fields on any of these SyncSort control statements or parameters,
refer to the record as it appears at that stage of SyncSort processing. For example, when
specifying SORT fields, be sure to take into account any repositioning of fields that may be
due to INREC processing.

The figure also illustrates the steps in processing where several record length parameters
are used to describe the records. lmin and lmax are parameters of INPFIL LRECL; l1, l2, l3, l4,
and l5 are parameters of RECORD LENGTH.
Chapter 2.  SyncSort Control Statements 2.17



Figure  3. Data Utility Processing Sequence

Multiple Input File Processing
INPFIL Control Statements

(see Figure 4)

User Exit to Read/Insert/Delete/Reformat Input Records
E15 exit

Record Selection
INCLUDE/OMIT Control Statement

Field Selection
INREC Control Statement

Record Sorting
SORT Control Statement

Combining/Eliminating Duplicate Records
SUM Control Statement

Printable and Easy-to-Read Output and
Fixed-to-Variable or Variable-to-Fixed Length Format Conversion

OUTREC Control Statement

User Exit to Insert/Delete/Reformat/Write Output Records
E35 exit

Multiple Output and Report Formatting
OUTFIL Control Statement(s)

(see Figure 5)

.     .     .     . 

.     .     .     . 

lmax,

lmin

lmax,

lmin

l1

l2,

l4,l5

Input
File 1

Input
File n

Output
File 1

Output
File n

l3
SyncSort for z/VSE 3.7 Programmer’s Guide2.18



Figure  4. The INPFIL Control Statement Sequence

Figure  5. The OUTFIL Control Statement Sequence

Multiple Input File
Processing
INPFIL

Control Statement(s)

Input record length(s) for
Input File 1

LRECL=(lmax,lmin)

Input
File 1

SKIPREC/STARTREC,
ENDREC,
L4FILL, 

INCLUDE/OMIT,
STOPAFT,

INREC,VTOF, FTOV
Parameters

Input
File n

Input record length(s) for
Input File n

LRECL=(lmax,lmin)

SKIPREC/STARTREC,
ENDREC,
L4FILL, 

INCLUDE/OMIT,
STOPAFT,

INREC, VTOF, FTOV
Parameters

Record Selection for
Output File 1
STARTREC,

ENDREC,
INCLUDE/OMIT,

SAVE
Parameters

Report Formatting for
Output File 1

Printable & Easy-to-Read Output
for File 1 & Variable-to-Fixed or 
Fixed-to-Variable Length Format 

Conversion
OUTREC, CONVERT, FTOV, VTOF

Parameters

Output File 1

Record Selection for
Output File n
STARTREC,

ENDREC,
INCLUDE/OMIT,

SAVE
Parameters

Report Formatting for
Output File n

Output 
File n

Printable & Easy-to-Read Output
for File n & Variable-to-Fixed or 
Fixed-to-Variable Length Format 

Conversion
OUTREC, CONVERT, FTOV, VTOF

Parameters

Multiple Output and
Report Formatting

OUTFIL
Control Statement(s)
Chapter 2.  SyncSort Control Statements 2.19



Data Utility Processing Sequence

1. The INPFIL control statement describes the input file(s) and details certain processing
options. In a JOIN application, the JOINKEYS control statements are used instead of
the INPFIL control statement to describe the input files for JOIN and to detail certain
processing applications.

2. The INCLUDE/OMIT control statement selects records from an input file based on
comparisons testing the contents of one or more fields within the record.

3. The INREC control statement reformats the input records by adding, deleting, or
reformatting fields before the records are sorted or merged.

4. The SORT control statement defines the application as a sort. It can also define a copy
application.

5. The SUM control statement deletes records with equal control fields and optionally
sums specified numeric fields on those records. Alternatively, the DUPKEYS control
statement may be used, which includes all functions of the SUM control statement and
more.

6. The OUTREC control statement reformats the output records by:

• Deleting or repeating segments of the input records

• Inserting character strings between data fields

• Inserting binary zeros

• Converting numeric data to printable format or to another numeric format

• Performing arithmetic operations and minimum and maximum functions with
numeric fields and constants 

• Converting data to printable hexadecimal format

• Changing the order of or completely redesigning the original input records

• Selecting, realigning, and reordering data fields

7. The OUTFIL control statement describes the output file(s) and: 

• Creates multiple output files

• Uses the SortWriter facility
SyncSort for z/VSE 3.7 Programmer’s Guide2.20



• Reformats records after E35 processing

• Converts a variable-length record input file to a fixed-length record output file or a
fixed-length record input file to a variable-length record output.

INPFIL Processing Sequence

1. The INPFIL control statement is the initial function of SyncSort. Its specific processing
varies, depending on parameters specified on INPFIL. If EXIT is specified, SyncSort
gets the input records from an E15/E32 user exit routine and all other INPFIL
parameters are ignored. If not, SyncSort processes each of the INPFIL parameters in
sequence as depicted in Figure 4 on page 2.19.

2. If the SKIPREC, STARTREC, and ENDREC parameters are specified, SyncSort
processes the functions as follows:

• SKIPREC - skips a specified number of records per input file before the file is
sorted, merged, or copied.

• STARTREC - specifies the first record that will be processed for this input file.

• ENDREC - specifies the last record that will be processed for this input file.

3. If the INCLUDE/OMIT parameter is specified, SyncSort performs processing of the
INCLUDE/OMIT function by selecting from an input file based on comparison of the
contents of one or more fields within the record.

4. If the STOPAFT parameter is specified, SyncSort performs processing of the STOPAFT
function by ceasing to pass the records to the SORT/MERGE when the specified
number of records has been reached.

5. If the INREC, BUILD, OVERLAY, or IFTHEN parameter is specified, SyncSort
performs processing of that function by reformatting the input records of the input file.

6. If the VTOF parameter is specified, variable-length records will be converted to fixed-
length records. If the FTOV parameter is specified, fixed-length records will be
converted to variable-length records.

OUTFIL Processing Sequence

1. The OUTFIL control statement is the final function of SyncSort. Its specific processing
varies, depending on parameters specified on OUTFIL. SyncSort processes each of the
OUTFIL parameters in sequence as depicted in Figure 5 on page 2.19.

2. If the STARTREC and ENDREC parameters are specified, SyncSort processes the
functions as follows:

• STARTREC - specifies the first sorted record that is generated to the output file.
Chapter 2.  SyncSort Control Statements 2.21



• ENDREC - specifies the last sorted record that is generated to the output file.

3. If the INCLUDE/OMIT parameter is specified, SyncSort performs processing of the
INCLUDE/OMIT function by excluding records from an output file based on
comparison of the contents of one or more fields within the record.

4. If the SAVE parameter is specified, SyncSort will include all the records that are not
included in another OUTFIL group in the data sets for this group. SAVE retains all the
input records that are not included in the other groups and would otherwise be lost.

If the OUTREC, BUILD, OVERLAY, or IFTHEN parameter is specified, SyncSort performs
processing of that function by reformatting the output records of the output file.

If the CONVERT or VTOF parameter is specified, variable-length records will be converted
to fixed-length records. If the FTOV parameter is specified, fixed-length records will be con-
verted to variable-length.
SyncSort for z/VSE 3.7 Programmer’s Guide2.22



Maximum Record Length Allowed

Certain control statements and user exits can adjust the length of the records at several
points during sort processing. (See Figure 3. “Data Utility Processing Sequence” on page
2.18.) The maximum record lengths allowed are constrained by both the types of input,
sortwork, and output devices used, and by the types of files used.

Observe the following device blocksize restrictions on record lengths:

1. Input files: for fixed-length records, the input records can be no longer than the
maximum blocksize of the SORTIN device(s). For nonspanned variable-length records,
the limit is 4 bytes less than the maximum blocksize.

2. Sortwork files: for fixed-length records, the length of the records processed at record
sorting time (i.e. after any length adjustments due to INPFIL, E15, and/or INREC
processing) can be no larger than 16 bytes less than the smallest maximum blocksize of
the SORTWK devices used.

3. Output files: for fixed-length records, the output records (i.e. after any further length
adjustments due to OUTREC, E35, and/or OUTFIL processing) can be no larger than
the maximum blocksize of the SORTOUT device(s). For nonspanned variable-length
records, the limit is 4 bytes less than the maximum blocksize.

The maximum blocksizes for several devices are listed in Table 2.

For ASCII tape records, the maximum blocksize is restricted to 9999 bytes.

Device Maximum Blocksize

FBA 32761

9345 46456

3380 47476

3390 56664

Tape 65535

Table 2.  Maximum Blocksizes by Device
Chapter 2.  SyncSort Control Statements 2.23



Also, observe the device and file type restrictions on the maximum size of fixed-length and
variable-length records shown in Table 3.

Device/File Type
Maximum Record Length

Fixed-Length Variable-Length

FBA sequential disk 32761 32757

CKD sequential disk max. blocksize (max blocksize - 4) c

65535b

VSAM 32761c

65535a
32765c

32767a

SAM ESDS 32761 32757c

65535b

Tape 65535 65531c

65535b

a with SPANNED in DEFINE CLUSTER statement
b with SPAN on sort’s OUTFIL control statement
c unspanned records

Table 3.  Maximum Record Lengths by Device and File Type
SyncSort for z/VSE 3.7 Programmer’s Guide2.24



Control Statement Examples

Simple examples illustrating the syntax of each of the SyncSort for z/VSE control state-
ments are included in this chapter. More complex applications are presented in “Chapter 4.
How to Use SyncSort Data Utility Features”. These applications demonstrate how the INP-
FIL, INCLUDE/OMIT, INREC, OUTREC, SUM, and OUTFIL control statements can be
used to accomplish a variety of tasks, such as selecting input records, selecting input fields,
combining records, reformatting output records, writing reports, and creating multiple out-
put.

Rules for Control Statements

The following rules apply to SyncSort for z/VSE control statements.

Specifying Control Statements

• Control statements can be in any order, except for the END statement which, if
specified, must be last.

• The control statement name can begin in column 2 through column 71. If labels are
used, the control statement name can begin in column 3 through 71.

• The control statement name must be the first field of the first card image of the
statement. It cannot be continued on a continuation card image.

• The control statement name must be preceded and followed by at least one blank.

• Each control statement, except for INPFIL/OUTFIL, can be specified only once for a
particular application.

• Each application can include up to 255 card images (including continuation card
images).

• Specify the OPTION control statement as the first card image if you want to override
the PRINT and ROUTE defaults prior to all processing or if you want to use SyncSort’s
dictionary feature.

Specifying Parameters

• Parameters can take three forms:

– Parameter

– Parameter=value, Parameter=(value) or Parameter(value)

– Parameter=(value1,value2,...,valuen) or Parameter(value1,value2,...,valuen)
Chapter 2.  SyncSort Control Statements 2.25



Note: Multiple values must be enclosed in parentheses.

• Parameters can be in any order, but the first parameter must begin on the first card
image of a control statement.

• Parameters must be separated from each other by commas.

• The parameter(s) must be preceded and followed by at least one blank. A blank
separates the parameter(s) from the control statement name and also indicates the end
of the control statement.

• If the parameter(s) end in column 71, column 72 must contain a blank to signal the end
of the control statement.

• With the exception of a literal string, a parameter value cannot exceed eight
alphanumeric characters.

• With the exception of a literal string, blanks are not permitted within parameters, and
blanks, commas, equals signs, and parentheses are not permitted within parameter
values. Parentheses within literal strings must be balanced. 

Specifying Field Positions, Lengths, and Formats

• Control statements reference fields by position (p) and length (l).

• The first byte of every fixed-length record is position 1, the second byte position 2, and
so on. 

• Bytes 1 through 4 of variable-length records are reserved for the Record Descriptor
Word (RDW). For these records, the first byte of the data portion is position 5.

• Some control statements support bit-level processing. This means a binary control field
can begin and end on any bit of any byte. For example, a position value of 7.4 designates
a field beginning on the fifth bit of the seventh byte (the 8 bits in each byte are
numbered 0 through 7). A length value of 7.4 designates a field seven bytes, four bits
long.

• When proper processing depends on data format, the format of the field must be
specified.

• The format of the field must be appropriate to the task. For example, only numeric
fields can be SUMmed.

• When all the fields have the same format, the format value can be specified just once
through the FORMAT=f subparameter. The FORMAT=f subparameter cannot be used
when the INCLUDE/OMIT parameter is specified on the OUTFIL control statement.
SyncSort for z/VSE 3.7 Programmer’s Guide2.26



Specifying Comments

• Identify a comment card image by placing an asterisk (*) in column 1. Comments can
extend through column 71.

• A comment card image can be inserted between a control statement and its
continuation.

• To add a comment to a control statement card image, leave one or more blanks after the
last parameter and follow with the comment, which can extend through column 71.
Continue a comment that follows a control statement by coding an asterisk (*) in
column 1 of the next card image. 

Specifying Continuation Card Images 

Control statements cannot extend beyond column 71, but they can be continued. To con-
tinue a control statement:

• Break after a parameter-comma combination or a complete parameter value before
column 72. Begin the continuation on the next card image anywhere between columns
2 and 71. No continuation character is required.

 --or--

• When the control statement extends through column 71 and cannot be broken at
 a parameter-comma combination:

• If the control statement does not contain a literal string that would extend beyond
column 71, place a continuation character in column 72 and continue the statement
on the next card image anywhere between columns 2 and 16.

• If the control statement does contain a literal string that would extend beyond
column 71, place a continuation character in column 72 and begin the continuation
of the literal string in column 16 of the next card image.

The following examples illustrate how card images can be continued.

In Figure 6, no continuation character is required. The control statement is interrupted
after a complete parameter value before column 72.

COL. 72 
↓ 

SORT FIELDS=(1,10,A,20,5,A,45,7,A),FORMAT=CH,FILESOUT=2, 
WORK=3

Figure  6. Continuing a Control Statement Without Specifying a Continuation Character
Chapter 2.  SyncSort Control Statements 2.27



In Figure 7, a continuation character is necessary because the literal string in the
HEADER2 specification would extend beyond column 71. The 'X' in column 72 is the contin-
uation character. The literal string is continued in column 16 of the next card image. 

Specifying Labels

SyncSort for z/VSE supports labels. If labels are used, the following rules apply:

• Labels are permitted on all SYSIN control statements, including continuation card
images, but not on the control statements passed by an invoking program.

• Labels must begin in column 1 with an alphabetic character.

• Labels can be any length provided the other rules that apply to control statements are
followed.

• At least one blank must separate the label from the control statement name or
parameter that follows it. 

Notational Conventions Used in the SyncSort for z/VSE Programmer’s Guide

• Braces { } indicate that a choice must be made from the alternatives listed.

• Brackets [ ] indicate an optional item. Two or more vertically listed items in brackets
are mutually exclusive options; only one can be chosen for a particular application.

• Defaults are underlined.

• Upper-case letters, numbers, commas, equal signs, and parentheses must be entered
exactly as indicated. Lower-case letters represent variables that must be replaced by
actual values.

• Subscripts show position in a series, and three dots indicate an ellipsis.

For example, a1,a2,...,a5 is equivalent to a1,a2,a3,a4,a5 and represents five “a” items
(variables that will be replaced with actual values).

COL. 16 COL.72 

↓ ↓ 
OUTFIL OUTREC=(1:10,8,30:40,10,50:75,25),HEADER2=(1:'DEPARTMENT NUMBX

ER',30:'ITEM NUMBER') 

Figure  7. Continuing a Control Statement with a Continuation Character
SyncSort for z/VSE 3.7 Programmer’s Guide2.28



• Examples that are to be entered exactly as shown are presented in the Courier
typeface, for instance:

ALTSEQ CODE=(F0B7,F1B8,F2B9,F3BA,F4BB,F5BC,F6BD,F7BE,F8BF,F9C0)

  
Chapter 2.  SyncSort Control Statements 2.29



ALTSEQ
ALTSEQ Control Statement

The ALTSEQ control statement constructs an alternate collating sequence for all control
fields for which the format code AQ has been specified on the SORT/MERGE or
INCLUDE/OMIT statement. If an alternate collating sequence has been provided by instal-
lation default, AQ fields collate against this sequence, modified by the ALTSEQ control
statement. If a default alternate sequence has not been provided, AQ fields collate against
the standard EBCDIC sequence, modified by an ALTSEQ statement. AQ can be specified
for one or more control fields so that those control fields all use the same alternate collating
sequence.

ALTSEQ Control Statement Format

The format of the ALTSEQ statement is illustrated below:

CODE Parameter (Required)

The CODE parameter specifies how the characters of the current collating sequence are to
be reordered to create the alternate collating sequence.

The CODE parameter can contain from 1 to 256 entries, each consisting of four hexadeci-
mal digits. These entries must be separated by commas and enclosed in parentheses. Each
CODE entry consists of two parts:

cc  The cc value represents the character that is to be repositioned in the alter-
nate sequence.

pp  The pp value indicates where the character represented by the cc value is to
be repositioned in the alternate sequence.

The character represented by the cc value does not replace the character represented by the
pp value. If both characters occur as sort control fields, they will be considered equal in the
collating process.

Each character (cc entry) can be moved only one time. However, a character represented by
the pp value can be repositioned as a cc entry anywhere in the series.

ALTSEQ CODE=(ccpp1,...,ccpp256)

Figure  8. ALTSEQ Control Statement Format
SyncSort for z/VSE 3.7 Programmer’s Guide2.30



ALTSEQ
Sample ALTSEQ Control Statements

The ALTSEQ statement in Figure 9 shows that the numbers 0 through 9 are to collate
before the uppercase alphabet.

This ALTSEQ statement in Figure 10 specifies that the number 0 is to collate as equal to a
blank (X'40').

ALTSEQ CODE=(F0B7,F1B8,F2B9,F3BA,F4BB,F5BC,F6BD,F7BE,F8BF,F9C0)

Figure  9. Sample ALTSEQ Control Statement

ALTSEQ CODE=(F040)

Figure  10. Sample ALTSEQ Control Statement
Chapter 2.  SyncSort Control Statements 2.31



ANALYZE
ANALYZE Control Statement

The ANALYZE control statement determines how much disk work space a sort will require
before it executes.

Specify the ANALYZE control statement only when a sort is initiated from JCL. The ANA-
LYZE statement cannot be specified for a merge. The format of the ANALYZE statement is
illustrated below.

CALC Parameter (Required)

The CALC parameter instructs SyncSort for z/VSE to determine how much disk work space
a sort will require. It sets the following parameters of the OPTION control statement when
the SIZE parameter is also specified on the SORT control statement:

• CALCAREA

• DIAG

• NODUMP

• PRINT=ALL

• ROUTE=LST

As a result, SyncSort will process the control statements and then terminate (without sort-
ing). SyncSort will print the number of tracks (for CKD devices) or blocks (for FBA devices)
required for work areas.

The SIZE parameter on the SORT statement must provide an accurate estimate of the
number of input records in order for the CALCAREA information to be meaningful.

ANALYZE CALC

Figure  11. ANALYZE Control Statement Format
SyncSort for z/VSE 3.7 Programmer’s Guide2.32



DUPKEYS
DUPKEYS Control Statement

The DUPKEYS control statement deletes all records with duplicate SORT/MERGE control
fields and optionally replaces specified numeric fields in the retained record with calculated
average, calculated sum, minimum, or maximum values from all records with equal control
fields. The deleted records can optionally be written to a separate output file.

The DUPKEYS control statement cannot be used along with a SUM control statement, or
when FIELDS=COPY is specified on the SORT or MERGE control statement, or when
FIELDS=COMPARE is specified on the MERGE control statement. 

If you need to add AVG, MAX, or MIN functionality to an existing application with a SUM
control statement, you must move the SUM specification to the DUPKEYS statement, and
remove the SUM statement. If you used XSUM, then specify XDUP on the DUPKEYS
statement, and define a SORTXDP output file instead of the SORTXSM file.

The format of the DUPKEYS control statement is illustrated below.

Arithmetic functions, FIELDS=NONE, ALLDUPS, FIRSTDUP, LASTDUP and NODUPS
are all mutually exclusive parameters, except that NODUPS can be specified along with
FIRSTDUP or LASTDUP.

If FIELDS=NONE is specified, all records with duplicate control fields are simply deleted.
If arithmetic functions are desired then the AVG, MAX, MIN, or SUM parameter must be
used, along with the optional FORMAT parameter. The AVG, MAX, MIN, or SUM parame-
ter specifies the position, length, and (optionally) the format of one or more numeric fields
for the arithmetic function.

When the FORMAT parameter is specified, an individual AVG, MAX, MIN, or SUM field
may omit a format value; in this case, the value specified by the FORMAT parameter is
used for that field.

where function is:

Figure  12. DUPKEYS Control Statement Format

DUPKEYS

ALLDUPS
function ,function[ ]... ,FORMAT=f[ ]
FIELDS=NONE
FIRSTDUP ,NODUPS[ ]
LASTDUP ,NODUPS[ ]
NODUPS 

 
 
 
 
 
 

,XDUP[ ]

AVG
MAX
MIN
SUM 

 
 
 
 

= p1,l1 ,f1[ ] ,p2,l2 ,f2[ ][ ]...( )
Chapter 2.  SyncSort Control Statements 2.33



Control Statements: DUPKEYS
Each field specified in the AVG, MAX, MIN, and SUM parameters is identified by its posi-
tion (p), length (l), and format (f).

p  The position value indicates the first byte of the field relative to the beginning of
the input record after INREC and/or E15 processing, if specified, have completed.
The field must begin on a byte boundary.

l  The length value indicates the length of the field. The length must be an integral
number of bytes. Refer to Table 4 for the permissible lengths.

f  The optional format value indicates the data format. Table 4 displays the valid for-
mats. If the format value is omitted, then the value in the FORMAT parameter is
used.

ALLDUPS Parameter (Optional)

The ALLDUPS parameter specifies that only records with SORT/MERGE fields that occur
more than once are retained. 

AVG Parameter (Optional)

Use the AVG parameter to specify numeric fields to retain the average value among all
records of the same control fields. Multiple fields separated by commas may be specified in
the same parameter. Multiple AVG parameters may be specified on the same DUPKEYS
control statement.

• Adding AVG fields to an existing sort application may result in an increase in the
amount of SORTWORK space required. This occurs because AVG postpones all
DUPKEYS processing until phase 3.

FORMAT
CODE

PERMISSIBLE LENGTH

SUM Fields MIN or MAX
Fields AVG Fields *

BI 2, 4, or 8 bytes 1 to 256 bytes 2, 4, or 8 bytes

FI 2, 4, or 8 bytes 2, 4, or 8 bytes 2, 4, or 8 bytes

FL 4, 8, or 16 bytes 4, 8, or 16 bytes 4, 8, or 16 bytes

PD 1 to 16 bytes 1 to 16 bytes 1 to 10 bytes

ZD 1 to 31 bytes 1 to 31 bytes 1 to 18 bytes

* 8-byte BI, FI and 16-byte FL AVG fields require an ESA-mode VSE machine.

Table 4.  Allowed DUPKEYS Field Lengths
SyncSort for z/VSE 3.7 Programmer’s Guide2.34



Control Statements: DUPKEYS
• BI, FI, PD, and ZD AVG fields contain average values truncated to integers. For
example, the average value of (1,1,1,1,0) is 0 and the average value of (-1,-1,-1,0) is also
0.

FIELDS Parameter (Optional)

The only valid value for FIELDS is NONE. Specify FIELDS=NONE only if no arithmetic
functions are desired. The sorted data will be reduced to one record per sort key value.

FIRSTDUP Parameter (Optional)

The FIRSTDUP parameter specifies that only the first record of those with SORT/MERGE
fields that occur more than once is retained. If the NODUPS parameter is also specified, all
records with SORT/MERGE fields that occur exactly once are also retained. 

FORMAT Parameter (Optional)

Use the FORMAT parameter to specify the default field format for fields specified in the
AVG, MAX, MIN, and SUM parameters. If any field in the AVG, MAX, MIN, or SUM
parameter does not include the format value (f), then this default format value applies to
that field.

LASTDUP Parameter (Optional)

The LASTDUP parameter specifies that only the last record of those with SORT/MERGE
fields occurring more than once is retained. If the NODUPS parameter is also specified, all
records with SORT/MERGE fields occurring exactly once are also retained.

MAX Parameter (Optional)

Use the MAX parameter to specify numeric fields to retain the maximum value among all
records with the same control fields. Multiple fields separated by commas may be specified
in the same parameter. Multiple MAX parameters may be specified on the same DUPKEYS
control statement. 

MIN Parameter (Optional)

Use the MIN parameter to specify numeric fields to retain the minimum value among all
records with the same control fields. Multiple fields separated by commas may be specified
in the same parameter. Multiple MIN parameters may be specified on the same DUPKEYS
control statement.

NODUPS Parameter (Optional)

The NODUPS parameter specifies that only records with SORT/MERGE fields that occur
exactly once are retained. 
Chapter 2.  SyncSort Control Statements 2.35



Control Statements: DUPKEYS
SUM Parameter (Optional)

Use the SUM parameter to specify numeric fields to contain the summed value among all
records with the same control fields. Multiple fields separated by commas may be specified
in the same parameter. Multiple SUM parameters may be specified on the same DUPKEYS
control statement.

XDUP Parameter (Optional)

Specify the XDUP parameter if you want the records deleted by DUPKEYS processing to be
written to a file named SORTXDP (this name may be changed by the XDUPNM parameter
in the OPTION statement). These records will be written to SORTXDP at the time of 
DUPKEYS processing. These records will not undergo OUTREC, E35, and OUTFIL pro-
cessing as such processing occurs after DUPKEYS processing.

When the XDUP parameter is specified, at least one additional parameter also must be
specified.

Characteristics of the SORTXDP file, such as BLKSIZE, can be specified with the XDUP-
FIL control statement. The default is unblocked output.

The SORTXDP file will be sequenced in the same order as the SORTOUT file.

Note that XDUP may increase system resource requirements:

• Adding XDUP to an existing sort application may result in an increase in the amount of
SORTWORK space required. This occurs because XDUP delays all DUPKEYS
processing until phase 3.

• XDUP may require additional storage. Do not specify a VSCORE value less than 512K
on the OPTION control statement.

Rules for Specifying DUPKEYS

• When using arithmetic functions or FIELDS=NONE, if EQUALS is in effect, the record
that is retained is the first record read for that sort key. If NOEQUALS is in effect, the
record that is retained is arbitrarily determined by SyncSort.

• An AVG, MAX, MIN, or SUM field cannot include any or part of a SORT or MERGE
control field, nor the first four bytes of a variable-length record that contains the
Record Descriptor Word.

• AVG, MAX, MIN, and SUM fields cannot overlap each other.

• If arithmetic overflow occurs during the summing or averaging of two records, those
records are not summed or averaged and neither record is deleted. All other DUPKEYS
functions are also suspended between those two records. AVG, MAX, MIN, and SUM
SyncSort for z/VSE 3.7 Programmer’s Guide2.36



Control Statements: DUPKEYS
arithmetic restarts when a subsequent set of records with equal control fields can be
summed or averaged without overflow. To avoid arithmetic overflow with SUM, use the
INREC control statement to insert binary zeros (or X'F0's if ZD) immediately before the
SUM field.

• Refer to “OVFLO Parameter (Optional)” on page 2.131 for other options for overflow
processing.

Sample DUPKEYS Control Statement

The following DUPKEYS statement deletes records with equal control fields but places
arithmetic sum, minimum, maximum, and average values of some fields in the retained
record.

When the control fields are equal, this statement sums the ZD field beginning in byte 20
and the FI field beginning in byte 32, selects the minimum value of the ZD field beginning
in byte 40, the maximum value of the ZD field beginning in byte 48, calculates the average
value of the ZD field beginning in byte 54, and then deletes the equal-keyed record.

DUPKEYS SUM=(20,8,32,4,FI),MIN=(40,6),MAX=(48,6),AVG=(54,6),FORMAT=ZD

Figure  13. Sample DUPKEYS Control Statement
Chapter 2.  SyncSort Control Statements 2.37



END
END Control Statement

If present, the END control statement must be the last control statement. The END control
statement is required only with card input.

The END statement has no parameters, but can contain comments if the comments are
preceded by at least one blank.

When SORTIN is a card (SYSIPT) file, the card file must follow immediately after the END
control statement. A /* (end-of-data) card must follow the last SORTIN card.
SyncSort for z/VSE 3.7 Programmer’s Guide2.38



INCLUDE/OMIT
INCLUDE/OMIT Control Statement

The INCLUDE/OMIT control statement selects records from an input file based on compar-
isons testing the contents of one or more fields within the record. A field can be compared to
a constant or to another field within the record. A binary field may enter into comparisons
that involve testing the individual bits in the field; and substrings, including wildcards,
may be specified. Only one INCLUDE/OMIT control statement can be specified for an
application, either as an INCLUDE or as an OMIT statement.

If you specify an INCLUDE or an OMIT statement, do not use the DELBLANK parameter
on the RECORD statement.

LOCALE-Based Comparison Processing

SyncSort supports alternate sets of collating rules based on a specified national language.
The alternate collating applies to INCLUDE/OMIT (as well as to INPFIL INCLUDE/OMIT
and OUTFIL INCLUDE/OMIT) comparison processing as well as to SORT/MERGE pro-
cessing. A LOCALE defines single and multi-character collating rules for a cultural envi-
ronment. 

LOCALE-based INCLUDE/OMIT processing applies only to character (CH) fields and
character or hexadecimal constants compared to character fields. When LOCALE is active,
a CH to BI (or BI to CH) comparison is not allowed. The illegal comparison will cause
SyncSort to terminate with an error message.

For more information on LOCALE-based processing, see “LOCALE Parameter (Optional)”
on page 2.128.

INCLUDE/OMIT Control Statement Format

The format of the INCLUDE/OMIT statement follows. 
Chapter 2.  SyncSort Control Statements 2.39



INCLUDE/OMIT
c represents a comparison. Each comparison has this format:

Figure  14. INCLUDE/OMIT Control Statement Format

INCLUDE
OMIT 

 
 

COND=

ALL
NONE

(c1 

,AND,
,&,
,OR,
, , 

 
 
 
 

c2… ) [,FORMAT=f]

 
 
 
 
 
 
 
 
 

p1,l1 

[,f1]

,EQ,
,NE,
,GT,
,GE,
,LT,
,LE, 

 
 
 
 
 
 

 
p2,l2[,f2]
constant 

 
 

[,f] 

,RANGE,
,R,
,XRANGE,
,XR, 

 
 
 
 

( constant1
(field1) 

 
  ,constant2

,(field2) 
 
 

…)

,BI

,BO,
,ALL, 

 
 

,BM,
,SOME, 

 
 

,BZ,
,NONE, 

 
 

,BNO,
,NOTALL, 

 
 

,BNM,
,NOTSOME, 

 
 

,BNZ,
,NOTNONE, 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

bit mask

,EQ,
,NE, 

 
 

bit pattern
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,SS ,EQ,
,NE, 

 
  constant

(expression1 [,expression2,…]) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SyncSort for z/VSE 3.7 Programmer’s Guide2.40



INCLUDE/OMIT
where expression may be either a wildcard-plus-constant or constant-plus-wildcard combi-
nation, as follows:

COND Parameter (Required)

The COND parameter controls how records are included or omitted from an application.
There are three forms of the COND parameter:

COND=ALL  All of the input records are to be included or omitted (depending
on the control statement). This is the default.

COND=NONE  None of the input records are to be included or omitted (depend-
ing on the control statement).

COND=comparison(s)  Specifies one or more comparisons that determine which
records are to be included or omitted. Two types of comparisons
are possible:

• A standard comparison between two record fields or
between a record field and a constant. A binary input field
also allows comparison by bit mask or bit pattern.

• A substring comparison that allows the search for a
constant within a field or for a field value within a constant.

The following several pages describe standard comparisons. For information on substring
comparisons, see “Substring Comparisons” on page 2.55.

Each field specified in the COND parameter is identified by its position (p), length (l), and
format (f).

p  The position value indicates the first byte of the field relative to the
beginning of the input record after E15 or E32 processing, if specified,
has completed. The field must begin on a byte boundary. (Keep in mind
that if a variable-length file is being referenced, the first 4 bytes must
be reserved for the Record Descriptor Word.)

l  The length value indicates the length of the field. The length must be
an integer number of bytes. Refer to the table below for permissible
field lengths by format.

Figure  15. Constant/Wildcard Expression

constant, wildcard
wildcard, constant 

 
 
Chapter 2.  SyncSort Control Statements 2.41



INCLUDE/OMIT
f  The format value indicates the format type of the field. The supported
formats for standard comparisons are all those indicated in Table 5 on
page 2.43 except for SS. If all data fields have the same format, the
FORMAT=f subparameter can be specified instead of the individual f
values. If both are specified, the individual f values will be used. (Note
that the f values must be specified for each compare field.) 

R/RANGE  This keyword indicates that a condition is true for a specified range of
values. One or more pairs of range values can be specified.

XR/XRANGE  This keyword indicates that a condition is true outside a specified range
of values. One or more pairs of range values can be specified.

constant1  This constant specifies the starting value. This value must be less than
the ending value of constant2 or field2.

constant2  This constant specifies the ending value. This value must be greater
than the starting value of constant1 or field1.

field1  This first field contains the starting value to be compared. This value
must be less than the ending value of constant2 or field2. It has three
variables (p1[, l1, f1]). p1 is the position of the field relative to the begin-
ning of the record. l1 is the optional length value indicating the length
of the field. If omitted, it will use the length defined in field 1 (l). f1 is
the optional format type of the field. If omitted, it will use the format
defined in field 1 (l).

field2  This second field contains the ending value to be compared. This value
must be greater than the starting value of constant1 or field1. It has
three variables (p2[, l2, f2]). p2 is the position of the field relative to the
beginning of the record. l2 is the optional length value indicating the
length of the field. If omitted, it will use the length defined in field 1 (l).
f2 is the optional format type of the field. If omitted, it will use the for-
mat defined in field 1 (l).

Notes:

1) A constant will be padded or truncated to the length of the field to
which it is compared.

2) Left and right parentheses are mandatory for field1 and field2.
SyncSort for z/VSE 3.7 Programmer’s Guide2.42



INCLUDE/OMIT
For definitions of the field formats in the above table, see Table 7 on page 2.47. The follow-
ing table shows the full-date data formats: 

Data Format Acceptable Field
Length (Bytes) 

AC 1 to 256 

AQ 1 to 256 

ASL 1 to 256 

AST 1 to 256 

BI 1 to 256 

CH 1 to 256 

CLO / OL 1 to 256 

CSF / FS 1 to 16 

CSL / LS 2 to 256 

CST / TS 2 to 256 

CTO / OT 1 to 256 

FI 1 to 256 

PD 1 to 255 

PD0 2-8 

SFF 1 to 44

UFF 1 to 44

Y2B 1 

Y2C / Y2Z 2 

Y2D 1 

Y2P 2 

Y2S 2 

ZD 1 to 256 

SS 1 to 32767 

Table 5.   Formats and Lengths of Include/Omit Fields
Chapter 2.  SyncSort Control Statements 2.43



INCLUDE/OMIT
 

The constant to which a field can be compared may be one of the following types:

decimal  A decimal constant can be any length. It should not be enclosed in sin-
gle quotes. It may or may not include a leading + or - sign. For example,
100 is a valid decimal constant.

Full-Date
Format Date Format Date Form Example Date 

Form 
Length 
(bytes) 

Y2T CH, BI yyx yyq 3

yyxx yymm 4

yyxxx yyddd 5

yyxxxx yymmdd 6

Y2U PD yyx
(X'yyxs')

yyq 2

yyxxx
(X'yyxxxs')

yyddd 3

Y2V PD yyxx
(X'0yyxxs')

yymm 3

yyxxxx
(X'0yyxxxxs')

yymmdd 4

Y2W CH, BI xyy qyy 3

xxyy mmyy 4

xxxyy dddyy 5

xxxxyy mmddyy 6

Y2X PD xyy
(X'xyys')

qyy 2

xxxyy
(X'xxxyys')

dddyy 3

Y2Y PD xxyy
(X'0xxyys')

mmyy 3

xxxxyy
(X'0xxxxyys')

mmddyy 4 

Note: The following symbols are used in the table:
y   year digit (0-9)
x   non-year digit (0-9)
s   sign (hexadecimal 0-F)
0   unused digit 

Table 6.   Valid Formats and Lengths of Include/Omit Fields: Full-Date Formats
SyncSort for z/VSE 3.7 Programmer’s Guide2.44



INCLUDE/OMIT
hexadecimal  A hexadecimal constant should be preceded by an X and specified in
pairs of valid hexadecimal values that must be enclosed in single
quotes: X'hh...hh'. For example, X'ACBF05' is a valid hexadecimal con-
stant. If a hexadecimal constant is compared to a CH field and
LOCALE is in effect, the hexadecimal constant is governed by the
LOCALE rules.

character  A character constant should be preceded by a C and enclosed in single
quotes: C'literal'. For example, C'SALES' is a valid character constant.

To include an apostrophe in a character constant, specify it as two apos-
trophes; for example, C'D''AGOSTINO'. If a character constant must be
continued on a second card image, place a continuation character in col-
umn 72 and then begin the continuation of the constant in column 16 of
the next card image. If a character constant is compared to a CH field
and LOCALE is in effect, the character constant is governed by the
LOCALE rules.

Y constant  A Y constant should be preceded by a Y and enclosed in single quotes:
Y'yyx...x', where yy is a 2-digit year value. For example, Y'991225' is a
valid Y constant. A Y constant may only be used with date data for-
mats.

There are two methods in which the bit level characteristics of a binary input field can be
used to include or omit records. One is to compare the binary field to a bit mask; the other
is to compare the binary field to a bit pattern.

bit mask  A bit mask is a string of bits specified in terms of either hexadecimal or
binary digits. The bit mask indicates which bits in the input field are to
be tested. Each bit in the mask whose value is 1 (ON) is tested against
the corresponding bit in the input field. If the value of a mask bit is 0
(OFF), the corresponding bit in the input field is ignored.

The hexadecimal format of a bit mask is X'hh...hh,' where each 'hh' rep-
resents any pair of hexadecimal digits.

The binary format of a bit mask is B'bbbbbbbb...bbbbbbbb', where each
'bbbbbbbb' represents 8 bits or a byte. Each bit is 1 or 0. The number of
bits in a binary bit mask must be a multiple of 8. The maximum length
of a binary bit mask is 256 bytes (2048 bits).

A bit mask is truncated or padded on the right to the byte length of the
binary field. The pad character is X'00' or B'00000000'.

bit pattern  The binary format of a bit pattern is B'bbbbbbbb...bbbbbbbb', where
each 'bbbbbbbb' represents 8 bits or a byte. Each bit is 1, 0, or period (.).
If the value of a bit in the bit pattern is 1 or 0, the corresponding bit in
Chapter 2.  SyncSort Control Statements 2.45



INCLUDE/OMIT
the binary input field is compared to 1 or 0. If a period (.) occurs in a bit
position in the bit pattern, the corresponding bit in the input field is
ignored.

The number of bit positions in a bit pattern must be a multiple of 8. The
maximum length of a bit pattern is 256 bytes (2048 bits).

A bit pattern is truncated or padded rightward to the byte length of the
binary input field. The pad character is B'00000000'.

The comparison operators represent the following conditions:

EQ  Equal to

NE  Not equal to

GT  Greater than

GE  Greater than or equal to

LT  Less than

LE  Less than or equal to

BO (or ALL)  All mask bits are 1s (ON) in the input field

BM (SOME)  Some but not all mask bits are 1s (ON) in the input field

BZ (NONE)  None of the mask bits is 1 (ON) in the input field

BNO (NOTALL)  Some or no mask bits are 1s (ON) in the input field

BNM (NOTSOME)  All or no mask bits are 1s (ON) in the input field

BNZ (NOTNONE)  All or some mask bits are 1s (ON) in the input field

Rules for Multiple Standard Comparisons

The following rules apply to comparisons:

Terms within comparisons are evaluated as follows:

• Any number of comparisons can be specified.

• Multiple comparisons must be separated by ANDs or ORs.

• The symbols & and | may be used for AND and OR.

• Inner parentheses are evaluated first.
SyncSort for z/VSE 3.7 Programmer’s Guide2.46



INCLUDE/OMIT

 

 A

 A

 A

 A

 B

 C

C
O

 C
F

 C
L

 C
T

C
O

 

 P  

 P

S

U

 Z  
• AND conditions are evaluated before OR conditions.

• The following numeric data compare as equal: +0, -0, 0.

• Up to 24 levels of internal parentheses are allowed.

Specifying Field-to-Field Standard Comparisons for Non-Date Fields

The format of a data field determines whether or not it can be compared to another data
field. Table 7 below illustrates which field-to-field comparisons are permitted. 

For information on comparisons involving full-date data, see “Specifying Standard Compar-
isons for Date Fields” on page 2.50.

 AC AQ ASL AST BI CH CLO
OL

CSF
FS

CSL
LS

CST
TS

CTO
OT FI PD PD0 SFF UFF ZD

C X               

Q  X              

SL   X X            

ST   X X            

I    X X          

H     X X          

LO
L       X X X X X    X X  

SF
S       X X X X X    X X  

SL
S       X X X X X    X X  

ST
S       X X X X X    X X  

TO
T       X X X X X    X X  

FI            X    

D             X  X

D0              X  

FF X X X X X X X

FF X X X X X X X

D             X  X

Table 7.   Permissible Field-to-Field Comparisons for Non-Date Data Formats
Chapter 2.  SyncSort Control Statements 2.47



INCLUDE/OMIT
Padding of Compared Fields

When two fields are compared, the shorter field is padded to the length of the longer field.
Padding takes place as follows:

• The padding characters are blanks when the shorter field is in character format;
otherwise, they are zeros of the shorter field’s own format.

• Padding is on the right if the shorter field is in BI, CH, or PD0 formats. Padding is on
the left for all other formats.

Specifying Field-to-Constant Standard Comparisons for Non-Date Fields 

The format of a data field determines the type of constant to which it can be compared.
Table 8 below illustrates which field-to-constant comparisons are permitted. 
SyncSort for z/VSE 3.7 Programmer’s Guide2.48



INCLUDE/OMIT
Table 8 above does not include full-date formats. For information on comparisons involving
full-date formats, see “Specifying Standard Comparisons for Date Fields” below.

A constant will be padded or truncated to the length of the field with which it is compared.
Decimal constants are padded or truncated on the left; hexadecimal, binary, and character
constants are padded on the right. The padding characters are:

Format Decimal Hexadecimal Character Binary
(bit pattern) 

AC X X 

AQ X X 

ASL X 

AST X 

BI X X X X 

CH X X 

CLO / OL X 

CSF / FS X 

CSL / LS X 

CST / TS X 

CTO / OT X 

FI X 

PD X 

PD0 X 

SFF X

SS X X 

UFF X

Y2B X 

Y2C / Y2Z X 

Y2D X 

Y2P X 

Y2S X 

ZD X 

Table 8.   Permissible Field-to-Constant Comparisons
Chapter 2.  SyncSort Control Statements 2.49



INCLUDE/OMIT
Binary string  B'00000000'

EBCDIC Character string  X'40'

ASCII Character string  X'20'

Hexadecimal string  X'00'

Decimal fields  Zeros of proper format. Decimal constants for all Y2 for-
mats are padded or truncated to two decimal digits rep-
resenting a year. The year constant will then have
CENTWIN processing applied to it for comparison to a
Y2 field. The constants for PD0 comparison should not
include the first digit and trailing sign of the PD0 data
that will be ignored. Thus, a PD0 field of n bytes will be
compared to a constant of n-1 bytes.

Specifying Standard Comparisons for Date Fields 

The date data formats work with the CENTWIN run-time parameter or installation option
to define a 2-digit year value that is to be treated as a 4-digit year. CENTWIN defines a
sliding or fixed 100-year window that determines the century to which 2-digit year data
belongs when processed by INCLUDE/OMIT and other control statements.

The date data formats that can be used with INCLUDE/OMIT and OUTFIL
INCLUDE/OMIT control statements are of two types, 2-digit year formats and full-date for-
mats, as follows:

• The 2-digit year formats are Y2B, Y2C, Y2D, Y2P, Y2S, and Y2Z.

• The full-date formats are Y2T, Y2U, Y2V, Y2W, Y2X, and Y2Y.

Date data format fields in a record can be compared to a constant or to another field in the
record. For field-to-field comparisons, date data format fields can only be compared to other
date data format fields.

Any of the comparison operators (EQ, NE, GE, LT, and LE) can be used.

The date data formats and CENTWIN ensure that century evaluation is applied to
INCLUDE/OMIT comparison conditions involving 2-digit year data. For example, without
CENTWIN processing, an INCLUDE/OMIT comparison would treat the year 01 as “less
than” the year 98. With CENTWIN processing, the 01 field could be recognized as a twenty-
first century date (2001), which would be treated as “greater than” 98 (1998).

For details on the CENTWIN option, see “CENTWIN Parameter (Optional)” on page 2.101.
For details on the date data formats, see “CENTWIN (Century Window) Processing with
SORT: 2-Digit Year Formats” on page 2.235 and “CENTWIN (Century Window) Processing
with SORT: Full-Date Formats” on page 2.240. For examples of INCLUDE statements not
SyncSort for z/VSE 3.7 Programmer’s Guide2.50



INCLUDE/OMIT
involving date data, see “Sample INCLUDE/OMIT Control Statements without Date Data”
on page 2.57. For examples of INCLUDE statements involving date data, see “Sample
INCLUDE/OMIT Control Statements with Date Data” on page 2.60.

Table 9 summarizes the valid field-to-field comparisons for 2-digit year data formats: 

For full-date formats, two types of comparisons are available:

Field-to-field  Compares ZD, PD, and BI date fields.

Field-to-constant  Compares a date field to a Y date constant.

The sequencing of date and non-date characters is the same as for an ascending sort.

A full-date data field is comprised of a year field plus additional date components. You can
compare a full-date data field to another full-date data field or to a Y date constant. In both
cases, the compared elements must have the same number of non-year (x) digits.

Thus, you can compare a field of the form P'xxxxyy' to a field of the form Z'xxxxyy' or
P'yyxxxx' but not Z'xxyy'. Similarly, you can compare a full-date data field of the form
C'yyxxx' or P'xxxyy' to a Y date constant of the form Y'yyxxx' but not Y'yyxx'.

Note that the position of the year components need not be the same for the items being
compared. Although compared date constants must be in the form yyxx... (two-digit year,
month, day -- with month and day optional), the full-date formats take care of this inter-
nally.

CH and ZD formats are represented by X'FdFd...sd', and PD formats are represented by
X'dd...ds', where “d” is a decimal digit (0-9) and “s” is a sign (0-F). For dates, the sign is not
relevant and can be ignored.

Table 6 on page 2.44 indicates the full-date formats that can be used with character (CH),
binary (BI), or packed decimal (PD) data. Note the recognized non-date values:

• Character or binary (Y2T and Y2W full-date formats)
C'0...0' (CH zeros)
C'9...9' (CH nines)

 Y2B  Y2C/Y2Z  Y2D  Y2P  Y2S 

 Y2B X 

 Y2C/Y2Z X X X 

 Y2D X X X 

 Y2P X X X 

 Y2S X 

Table 9.   Valid Comparisons with 2-Digit Year Formats
Chapter 2.  SyncSort Control Statements 2.51



INCLUDE/OMIT
Z'0...0' (ZD zeros)
Z'9...9 (ZD nines)
X'00...00' (BI zeros)
X'40...40' (blanks)
X'FF...FF' (BI ones) 

• Packed (Y2U, Y2V, Y2X, and Y2Y full-date formats)
P'0...0' (PD zeros)
P'9...9' (PD nines)

Table 10 below indicates the valid field-to-field and field-to-constant comparisons for full-
date fields. 

For constants, do not omit leading zeros. Thus, for a constant of the form Y'yymm', specify
Y'0003' for March 2000 and specify Y'0203' for March 2002.

Date Form Full-Date
Format

Length
(bytes)

Y Constant
Form 

yyx
xyy

Y2U
Y2X

Y2T
Y2W

2
2

3
3

Y'yyx' 

yyxx
xxyy

Y2V
Y2Y

Y2T
Y2W

3
3

4
4

Y'yyxx' 

yyxxx
xxxyy

Y2U
Y2X

Y2T
Y2W

3
3

5
5

Y'yyxxx' 

yyxxxx
xxxxyy

Y2V
Y2Y

Y2T
Y2W

4
4

6
6

Y'yyxxxx' 

yy Y2B
Y2D

Y2C
Y2P
Y2S
Y2Z

1
1

2
2
2
2

Y'yy' 

Table 10.   Valid Comparison with Full-Date Formats
SyncSort for z/VSE 3.7 Programmer’s Guide2.52



INCLUDE/OMIT
Y constants can also specify non-date values, as shown in Table 11:
  

Current Date Constant Specification

You can compare fields to the date of a SyncSort run or the date of the run with an offset in
addition to decimal fields and binary, character, and hexadecimal strings. Thus, records can
more easily be included or omitted based on whether their dates are equal to, less than, or
greater than the run date or the run date with an offset.

The format of a current date constant is illustrated below.

where:

• ‘current date constant’ is in the form of one of the &DATEx, &DATEx(c), &DATExP, or
Y'DATEx' parameters where x is 1, 2, 3, or 4 and depends on date comparison
compatibility. 

• ‘+’ indicates a date after the current date, and ‘-’ indicates a date before the current
date.

• ‘nnnn’ can have a maximum of 15 digits with the leftmost zeros truncated. When the x
in &DATEx, &DATEx(c), &DATExP, or Y'DATEx' is 1, 3, or 4, ‘nnnn’ can be from 0-
9999 and represents offset days. When the x in &DATEx, &DATEx(c), &DATExP, or
Y'DATEx' is 2, ‘nnnn’ can be from 0-999 and represents offset months.

Y Constant
Form

Non-Date
Character Full-Date Format 

Y'0...0' CH, ZD, PD
zeros

Y2T, Y2U, Y2V,
Y2W, Y2X, Y2Y

Y'9...9' CH, ZD, PD
nines

Y'LOW' BI zeros Y2T, Y2W, Y2S

Y'BLANKS' Blanks

Y'HIGH' BI ones 

Table 11.  Y Constant and Non-Date Characters

Figure  16. Current Date Constant Format

current date constant +
- 

 
 

nnnn
Chapter 2.  SyncSort Control Statements 2.53



INCLUDE/OMIT
The forms of current date constants available for standard comparisons are:

• &DATEx and &DATEx(c) represent the current date as a character string
(C'string') to which a field can be compared. 

• &DATExP represents the current date as a decimal number (+n) to which a field
can be compared. 

• Y'DATEx' represents the current date with a Y constant (Y'string') to which a field
can be compared.

The following table shows the current date constants and the format produced by each. The
c character in &DATEx(c) represents a non-blank separator character, except open and
close parentheses.

Full-Date Format Constant Specifications

Constants used for full-date comparisons should have the same number of digits in the con-
stant as in the full-date field that has been specified. Leading zeros must be specified when
needed. The constant is constructed from two items; the first is a 2-digit year and the sec-
ond is a value representing the months or days that comprise the remainder of the full date

Current Date Constant Generated Constant

&DATE1 C'yyyymmdd'

&DATE1(c) C'yyyycmmcdd'

&DATE1P +yyyymmdd

&DATE2 C'yyyymm'

&DATE2(c) C'yyyycmm'

&DATE2P +yyyymm

&DATE3 C'yyyyddd'

&DATE3(c) C'yyyycddd'

&DATE3P +yyyyddd

&DATE4 C'yyyy-mm-dd-hh.mm.ss'

Y'DATE1' Y'yymmdd'

Y'DATE2' Y'yymm'

Y'DATE3' Y'yyddd'

Table 12.  Current Date Constant Formats
SyncSort for z/VSE 3.7 Programmer’s Guide2.54



INCLUDE/OMIT
format. For example, if a 5-byte Y2W field were to be compared for a value greater than the
20th day of 1996, 96020 should be the code for the constant.

Constants can be coded to represent special values, such as those found in header or trailer
records. All zeros or nines may be used with Y2T, Y2U, Y2V, Y2W, Y2X, and Y2Y. The same
number of digits must be present as in the field that is being compared. The constant string
Y'LOW' (representing binary zeros), Y'HIGH' (representing binary ones), or Y'BLANKS'
(representing blanks) may be coded with the fields Y2T, Y2W, and Y2S. Y'DATEx' (repre-
senting the current date) may be coded with certain full-date formats specifically (see Table
13).

Table 13.  Full-Date Comparisons

Substring Comparisons

Substring comparison can be based on either of the following searches:

• Match occurrence of a constant within a record field

• Match occurrence of a record field within a constant

In the first form, the length of the constant is less than the length of a specified field.
Records will be searched for the occurrence of the constant anywhere within the field. The
condition will be true if an EQ operator is specified and the constant is found or if a NE
operator was specified and the constant is not found. For example, consider the constant
“ANYTOWN” and a 60-byte field that contains an address. Records will be searched for the
occurrence of the literal “ANYTOWN” anywhere within the 60-byte address field. If a
match is found and the logical operator is EQ, then the logical result is “true.” The logical
result is also “true” if the literal does not appear within the 60 bytes and the logical opera-
tor is NE.

Y Constant Date Form Length and Data Format Allowed

Y'DATE1' yyxxxx and xxxxyy 6,Y2T
6,Y2W
4,Y2V
4,Y2Y

Y'DATE2' yyxx and xxyy 4,Y2T
4,Y2W
3,Y2V
3,Y2Y

Y'DATE3' yyxxx and xxxyy 5,Y2T
5,Y2W
3,Y2U
3,Y2X
Chapter 2.  SyncSort Control Statements 2.55



INCLUDE/OMIT
In the second form, the length of a constant is greater than the length of a specified field.
Records will be searched for an occurrence of the field within the constant. For example, the
constant 'A02,A05,A06,A09', which is composed of substrings separated by commas, can be
compared against the contents of a 3-byte field within the record. If the 3-byte field
matches any 3-byte character string in the constant, the logical result is “true” if the logical
operator is EQ.

The character used to separate elements of the constant should be a character that does not
appear in the field being compared. The comparison is then equivalent to a standard com-
parison with ORed conditions. That is, the condition is true if 'A02' OR 'A05' OR 'A06' OR
'A09' is found in the field being compared. The substring comparison is a much more com-
pact expression than multiple OR conditions in a standard comparison.

For both forms of substring comparisons, constants can be from 1 to 256 bytes in length,
while fields in the record can be from 1 to 32767 bytes in length. Constants can be in either
character or hexadecimal format. (Refer to the description of constants just after Table 6 on
page 2.44.) For a sample INCLUDE control statement with substring comparisons, see
“Sample INCLUDE/OMIT Control Statements without Date Data” on page 2.57.

Wildcards can be used with substring comparisons to search a string pattern anywhere
within a field.

• The length value (l) can be a wildcard (*). This means the entire record, beginning from
the starting position (p), is searched for the specified substring.

Note: For variable-length records, you can specify a position (p) that exceeds the mini-
mum record length (l4). This excludes all records shorter than l4.

• The constant to which a field is compared can be in either character format
(C'AIRLINE') or hexadecimal format (X'0DFF').

Note: If two or more short constants are specified one after the other and separated by
a comma without any wildcard characters, then the constants will be concatenated and
treated as one long constant. For example, C'AIR',X'81',C'LAND',X'82' will be combined
to produce a 9-byte constant C'AIRaLANDb'.

• A wildcard can be either an asterisk (*) or percent sign (%). An asterisk (*) represents
zero or more characters, and a percent sign (%) represents exactly one character.

• Ordinarily, if the length of a constant is greater than the length of a specified field,
SyncSort will signify an error. This is not the case with substring comparisons.

For sample INCLUDE control statements with substring wildcards, see “Sample
INCLUDE/OMIT Control Statements without Date Data” below.
SyncSort for z/VSE 3.7 Programmer’s Guide2.56



INCLUDE/OMIT
Sample INCLUDE/OMIT Control Statements without Date Data

This section includes sample INCLUDE/OMIT control statements without date data. For
sample INCLUDE/OMIT control statements with date data, see “Sample INCLUDE/OMIT
Control Statements with Date Data” on page 2.60.

Example 1

In this example, records will be included in the application if the numeric data in the field
beginning in byte 24 is less than the numeric data in the field beginning in byte 28 or if the
character data in the field beginning in byte 10 is equal to NY.

Example 2

In this example, records will be omitted from the application if the numeric data in the field
beginning in byte 1 is equal to 100 and if the character data in byte 20 is not equal to a
blank (X'40').

The next set of control statements exemplifies record selection using bit level logic. The
first two examples involve a comparison between a bit mask (shown coded in binary and
hexadecimal format) and a binary input field. The third example is a comparison between a
bit pattern and a binary field.

Example 3

The record selection condition has the following elements (from left to right): a binary field
(BI) with a length of 1 byte that starts at column 10 of the record, a comparison operator
(ALL), and a bit mask (B'01001000' in binary, X'48' in hexadecimal). Counting from the left,
the second and fifth bits of the bit mask are ON (1). For the selection condition to be true,
the same bits must be ON in the binary input field. Therefore, if the input field contains
01001000, 01111000, or 11111111, for example, the condition for the inclusion of records is
satisfied. However, if the input field contains a bit string where both mask bits are not ON

INCLUDE COND=(24,4,PD,LT,28,4,PD,OR,10,2,CH,EQ,C'NY') 

Figure  17. Sample INCLUDE Control Statement

OMIT COND=(1,3,ZD,EQ,100,AND,20,1,CH,NE,X'40') 

Figure  18. Sample OMIT Control Statement

INCLUDE COND=(10,1,BI,ALL,B'01001000') 
or INCLUDE COND=(10,1,BI,ALL,X'48') 

Figure  19. Sample INCLUDE Control Statement Using a Bit Mask
Chapter 2.  SyncSort Control Statements 2.57



INCLUDE/OMIT
(e.g., 01000000, in which the fifth bit is not ON), the condition fails, and the records are
omitted.

Example 4

The condition for the inclusion of records is met if at least one of the mask bits is ON in the
input field. Therefore, the condition would evaluate as true if the bit string in the binary
field were 01000000 (the second bit is ON), 000010000 (the fifth bit is ON), or 01001000
(both the second and fifth bit are ON). However, with the string 10000111 in the input field,
for instance, the specified condition would evaluate as false (resulting in the omission of
records), since neither mask bit is ON.

The above method of comparing a binary input field to a bit mask is useful for testing the
contents of a “flag” byte where each bit has a different meaning.

Example 5

The condition specifies a 4-byte long binary input field (BI) in column 21, a logical relation-
ship (EQ), and a bit pattern. The bit pattern describes the required sequence of 1s and 0s in
the first and last twelve bit positions. The row of periods in the pattern represents the part
of the string that is irrelevant to the definition of the condition. The condition is true if the
sequence of 1s and 0s in the input field is identical to that described in the bit pattern.

The method of comparing a binary input field to a bit pattern is useful when testing for
numeric digits that are one half byte each, as in the packed data format. For example,
assume that the binary input field specified in the condition above is a date field in the PD
format X'0mmddyyF'. Each date element is split across a byte boundary. The second half-
byte of each byte (except the last) represents the first of the two digits that form a date ele-
ment (mm,dd,yy). (In the last byte, the second half-byte – 1111 in binary and F in hexadec-
imal – stands for the fact that the bit pattern encodes a packed decimal.) The first half-byte
of each byte (except the first) represents the second digit of a date element (mm,dd,yy).
(The first half-byte, i.e. 0000, of the bit pattern gives it the length specified for the binary
field at column 21.) Mapping this scheme onto the bit pattern in the control statement
results in the following.

INCLUDE COND=(10,1,BI,NOTNONE,B'01001000') 
or INCLUDE COND=(10,1,BI,NOTNONE,X'48') 

Figure  20. Sample INCLUDE Control Statement Using a Bit Mask

INCLUDE COND=(21,4,BI,EQ,B'000000010001........100100011111') 

Figure  21. Sample INCLUDE Control Statement Using a Bit Pattern
SyncSort for z/VSE 3.7 Programmer’s Guide2.58



INCLUDE/OMIT
The above control statement is an instruction to select just those records in whose date
field 'mm' and 'yy' equal 11 and 91, respectively, while 'dd' can have any value. In other
words, the records selected are those from November 1991.

Example 6

The following example illustrates substring comparisons.

In this example, a record will be included in the application if either of the following condi-
tions is true:

• The literal 'ANYTOWN' is found in the 60-byte field starting at position 11 in the
record.

• The contents of the 3-byte field starting at position 121 matches one of the four
substrings ('A02', 'A05', 'A06', or 'A09') in the constant.

Example 7

The following examples are variations of a substring comparison using wildcards. The fol-
lowing is the basic substring comparison, without wildcards:

This control statement will search for 'AIR' anywhere in the 40-byte field starting at posi-
tion 11.

INCLUDE COND=(11,60,EQ,C'ANYTOWN',
OR,121,3,EQ,C'A01,A05,A06,A09'),FORMAT=SS 

Figure  22. Sample INCLUDE Control Statement Using Substring Compares

INCLUDE COND=(11,40,SS,EQ,C'AIR') 

Figure  23. Basic INCLUDE Control Statement Using Substring Compare
Chapter 2.  SyncSort Control Statements 2.59



INCLUDE/OMIT
Consider the following variation with the wildcard (*):

This control statement will search the 40-byte field for a string beginning with 'AIR' fol-
lowed by any single character, multiple characters, or nothing and ending with 'FLIGHT'.
The following variation uses the wildcard (%):

This control statement will search the 40-byte field for a string beginning with 'AIR' fol-
lowed by any five characters and ending with 'FLIGHT'.

The last variation uses a wildcard for the length (l) specification:

This control statement will search the record starting from position 100 to the maximum
record length (L4 - 100 + 1). It searches for a string beginning with 'AIR' followed by any
single character, multiple characters, or nothing and ending with 'FLIGHT'. All records
shorter than 100 bytes will not be searched.

Sample INCLUDE/OMIT Control Statements with Date Data 

Example 1

The following example illustrates an INCLUDE comparison based on CENTWIN process-
ing.

In this example, only records whose data is from the years greater than 1996 will be
included in the application. If the CENTWIN parameter were set to 1980, representing a
century window of 1980 to 2079, the records would be processed in the following manner:

INCLUDE COND=(11,40,SS,EQ,(C'AIR',*,C'FLIGHT')) 

Figure  24. INCLUDE Control Statement Using Wildcard *

INCLUDE COND=(11,40,SS,EQ,(C'AIR',%%%%%,C'FLIGHT')) 

Figure  25. INCLUDE Control Statement Using Wildcard (%)

INCLUDE COND=(100,*,SS,EQ,(C'AIR',*,C'FLIGHT')) 

Figure  26. INCLUDE Control Statement Using Wildcard (*) for Length

INCLUDE COND=(20,2,Y2C,GT,96) 

Figure  27. INCLUDE Control Statement with Y2C Format
SyncSort for z/VSE 3.7 Programmer’s Guide2.60



INCLUDE/OMIT
Contents of
Position 20 and 21  Record Disposition

84   Omitted - represents 1984

99   Included - represents 1999

37   Included - represents 2037

Example 2

The following control statement selects records if the date field (20,6) of the form 
C'mmddyy' is Jan. 1, 1997 through Dec. 31, 2001. Records with a none-date value of
C'999999' are omitted. The previously set century window is 1980-2079 (CENTWIN=1980).

Table 6 on page 2.44 indicates that the 6-byte Y2W format is appropriate for a CH input
field of the form C'mmddyy'. The OMIT control statement compares the 6-byte field start-
ing in byte 20 to three different 6-byte character constants.

The following sample table indicates the include/omit status of input records: 

Example 3

The following control statement selects records if the date field (20,3) of the form P'yyddd'
(X'yyddds') is between January 1, 1992 and December 31, 2007. Records with non-date
value P'00000' are also selected.

The previously set century windows is 1980-2079 (CENTWIN=1980).

MERGE FIELDS=COPY
OMIT FORMAT=Y2W, * Uses Y2W full-date format.

COND=((20,6,GT,Y'011231'),OR, * Keeps records with dates
(20,6,LT,Y'970101'),OR, * between Jan. 1, 1997
(20,6,EQ,Y'9')) * and Dec. 31, 2001. 

Figure  28. OMIT Control Statement with Y2W Format

SORTIN Input
(C'mmddyy') 

Record Disposition Date Represented 
(yyyy/mm/dd) 

021545 Omit 2045/02/15 
999999 Omit non-date 
091899 Include 1999/09/18 
062184 Omit 1984/06/21 
070400 Include 2000/07/04 
Chapter 2.  SyncSort Control Statements 2.61



INCLUDE/OMIT
Table 6 on page 2.44 indicates that the 5-byte Y2U format is appropriate for a PD input
field of the form P'yydddd'. The INCLUDE control statement compares the 3-byte PD field
starting in byte 20 to three different 5-byte character constants.

The following sample table indicates the include/omit status of input records: 

Additional applications using the INCLUDE/OMIT control statement are illustrated in
“Chapter 4. How to Use SyncSort Data Utility Features”. Sample INCLUDE/OMIT Range
Control Statements

The following examples illustrate the typical range usages:

Example 1

To specify a range of dates to include:

MERGE FIELDS=COPY
INCLUDE FORMAT=Y2U, * Uses Y2U full-date format.

COND=((20,3,GE,Y'92001'),AND, * Keeps records with dates
(20,3,LE,Y'07365'),OR, * between Jan., 1, 1992 and
(20,3,EQ,Y'00000')) * Dec. 31, 2007. 

Figure  29. INCLUDE Control Statement with Y2U Format

SORTIN Input
(P'yyddd') 

Record 
Disposition 

Date Represented
(yyyy/ddd) 

99237 Include 1999/237 
00047 Include 2000/047 
74123 Omit 2074/123 
00000 Include non-date 
99999 Omit non-date 
87099 Omit 1987/099 

INCLUDE COND=(10,4,Y2T,RANGE,(Y'9001',Y'0512'))

Figure  30. INCLUDE Control Statement with Y2T Format

This control statement would include all records with date fields in position 10, length 4
bytes, between January 1990 and December 2005.
SyncSort for z/VSE 3.7 Programmer’s Guide2.62



INCLUDE/OMIT
Example 2

To specify a range of dates to exclude:

Example 3

To specify a range of values to include:

This control statement would include all records for an occurrence of the character field in
position 10, length 8 bytes, within the constants between '00001000' and '00005000'.

INCLUDE COND=(10,4,Y2T,RANGE,((50),(60)))

Figure  31. INCLUDE Control Statement with Y2T Format

If field (50,4,Y2T) contains Y'9001' and field (60,4,Y2T) contains Y'0512', then this control
statement would include all records with date fields in position 10, length 4 bytes, between
January 1990 and December 2005.

INCLUDE COND=(10,4,Y2T,RANGE,(Y'9001',Y'9012',Y'9501',Y'9512'))

Figure  32. INCLUDE Control Statement with Y2T Format

This control statement would include all records with date fields in position 10, length 4
bytes, between January 1990 and December 1990 or between January 1995 and December
1995.

INCLUDE COND=(10,4,Y2T,XRANGE,(Y'9001',Y'0512'))

Figure  33. INCLUDE Control Statement with Y2T Format

This control statement would exclude all records with date fields in position 10, length 4
bytes, between January 1990 and December 2005.

INCLUDE COND=(10,8,CH,RANGE,(C'00001000',C'00005000'))

INCLUDE COND=((10,8,CH,GE,C'00001000'),&,
(10,8,CH,LE,C'00005000'))

Figure  34. INCLUDE Control Statement with RANGE
Chapter 2.  SyncSort Control Statements 2.63



INPFIL
INPFIL Control Statement

The INPFIL control statement describes the input file(s) and details certain processing
options. The format of the INPFIL control statement is illustrated below:

Figure  35. (Page 1 of 2) INPFIL Control Statement Format

INPFIL ,BLKSIZE=n[ ] ,BUFLIM=
255
n 

 
 

,NOCHAIN

,BUFOFF=
0
n 

 
 

,BYPASS[ ]

,CLOSE=

RWD
NORWD

( UNLD

,RALL
,REL
,Rinput1,…,Rinput32

,RNONE

)

 
 
 
 
 
 
 
 
 

,CONVERT[ ]

,CRDSIZE= 80
n

------
 
 
 

,DATA= E
A
----

 
 
 

,EXIT[ ] ,FILES=
1
n
1,2,…,32( ) 

 
 

,FNAMES=
filename
filename1 ,filename2[ ] ,filename3[ ]…( ) 

 
 

,FTOV[ ]

, INCLUDE
OMIT 

 
 

= …( ) ,INPUT[ ]

INREC ,
BUILD,
OVERLAY , 

 
 

field1[,field2 ]…( )=

IFTHEN, subparm( ) ,IFTHEN = subparm( )[ ]…( ) ,IFOUTLEN = n[ ]= 
 
 
 
 

,LRECL=
nnn
(lmax[,lmin]) 

 
 

,L4FILL=
NONE
X'nn'
C'c' 

 
 
 
 

,NOCHAIN[ ] ,OPEN=
RWD
NORWD 

 
 

,PRESEQ[ ]

,SKIPBYTE[ ] , SKIPREC
STARTREC 

 
 

=n ,SPAN[ ] , STOPAFT
ENDREC 

 
 

= n
SyncSort for z/VSE 3.7 Programmer’s Guide2.64



INPFIL
For more information on the INPFIL processing sequence, see “INPFIL Processing
Sequence” on page 2.21.

BLKSIZE Parameter (Optional)

The BLKSIZE parameter specifies the blocksize of the input records. For multifile input,
use the largest blocksize.

If the BLKSIZE parameter is omitted (either by leaving it out of the INPFIL statement or
omitting the INPFIL statement itself), SyncSort will assume that the records are
unblocked.

The BLKSIZE parameter is not required for VSAM input.

Follow these guidelines in specifying the BLKSIZE value:

fixed-length EBCDIC records  BLKSIZE must be a multiple of the fixed record
length (l1).

variable-length EBCDIC records  BLKSIZE must be greater than or equal to the
length of the longest record (l1, which includes the
Record Descriptor Word) plus 4 bytes (for the Block
Descriptor Word). 

fixed-length ASCII records  BLKSIZE must be a multiple of the fixed record
length (l1) plus the BUFOFF value, if specified.

variable-length ASCII records  BLKSIZE must be greater than or equal to the
length of the longest record (l1, which includes the
Record Descriptor Word) plus the BUFOFF value, if
specified.

See Table 2 on page 2.23 for the maximum BLKSIZE values allowed for different input
devices.

Figure  35. (Page 2 of 2) INPFIL Control Statement Format

,SYSIPT[ ] ,TOL[ ] ,VLFILL=b[ ] ,VLLONG=
YES
NO 

 
 

,VLTRIM=b[ ] ,VOLUME=
n
(n1,…,n32) 

 
 

,VSAM[ ] ,VTOF[ ]
Chapter 2.  SyncSort Control Statements 2.65



INPFIL
BUFLIM/NOCHAIN Parameter (Optional)

The BUFLIM parameter places an upper limit of' 'n' on the number of input buffers
SyncSort can create. Specify n as a decimal number between 1 and 255. The delivered
default is 255. For multifile input, this is a global option that can be specified in one
INPFIL statement.

The NOCHAIN parameter can be specified only for tape input cases and is equivalent to
BUFLIM=2. NOCHAIN prevents chaining from taking place in a double buffer tape case.
NOCHAIN is ignored if it is specified for input from other devices.

Note: In the vast majority of cases, SyncSort for z/VSE needs no external assistance in
choosing the number of buffers. Therefore, avoid specifying this parameter, as inappropri-
ate use may degrade performance.

BUFOFF Parameter (Optional)

The BUFOFF parameter can be specified for ASCII input to indicate the block prefix size of
variable-length ASCII records. The 'n' value can be any number from 0 to 99. The default is
0.

Omit the BUFOFF parameter for fixed-length ASCII records, or specify BUFOFF=0.

Specify the BUFOFF parameter only when TYPE=D is specified on the RECORD control
statement or DATA=A is specified on the INPFIL control statement.

When the BUFOFF parameter is specified, the BLKSIZE value must include the BUFOFF
value.

BUILD Parameter (Optional)

The BUILD parameter is identical to the INREC parameter of the INPFIL Control State-
ment.  See “INREC Parameter (Optional)” on page 2.72 for a description of this parameter.

BYPASS Parameter (Optional)

The BYPASS parameter can be specified to instruct SyncSort not to terminate abnormally
when certain errors are encountered. 

The BYPASS parameter functions as follows:

• For non-VSAM files, with fixed-length records or variable-length records, BYPASS
instructs SyncSort to skip input data blocks that have been misread by the system.

• For all files with variable-length records, BYPASS instructs SyncSort to skip records
that are greater than or less than the lengths specified on the RECORD statement.
SyncSort for z/VSE 3.7 Programmer’s Guide2.66



INPFIL
If BYPASS is not specified and either of the above situations occurs, the application will
terminate abnormally with a detailed error message.

Because this parameter instructs SyncSort to skip erroneous input records, do not specify
BYPASS if all the input records must appear in the output file.

If the BYPASS parameter is specified in conjunction with either an E18 or E38 exit, it will
be ignored for fixed-length records.

Because the BYPASS parameter reduces performance, specify this option only when neces-
sary.

CLOSE Parameter (Optional)

Specified for tape input files only, the CLOSE parameter indicates what action should be
taken at the end of the file(s).

CLOSE=RWD, the default, indicates that all tape input volumes should be rewound at the
end of the file(s). CLOSE=NORWD indicates that the input volumes should not be rewound
at the end of the file(s).

CLOSE=UNLD indicates that all input volumes should be rewound and unloaded at the
end of the file(s). The Release option associated with CLOSE=UNLD is designed to assist
installations that lack tape management systems and may degrade performance when
specified in conjunction with a tape manager. The RNONE subparameter, the default with
CLOSE=UNLD, indicates that the tape drives should not be released until the end of the
job. The other subparameters permit the release of all (RALL) or specific assigned tape
drives (Rinput1,...,Rinput32) after their use for input. When the Release option is specified,
the UNLD and Release specifications must be enclosed in parentheses.

CLOSE=(UNLD,REL) indicates that the input tape drives assigned to this INPFIL control
statement are to be released after their use.

The following example illustrates the CLOSE parameter:

In this example, the tape drives assigned to the SORTIN logical device are released after
the input phase. A SORTIN device is needed for SORTOUT to be released.

CONVERT Parameter

CONVERT is equivalent to VTOF. See “VTOF Parameter (Optional)” on page 2.76.

CLOSE=(UNLD,REL) 

Figure  36. Sample CLOSE Parameter
Chapter 2.  SyncSort Control Statements 2.67



INPFIL
CRDSIZE Parameter (Optional)

The CRDSIZE parameter specifies the decimal number of bytes of data per physical input
card. The delivered default is 80.

When LRECL is a factor of CRDSIZE, “blocked” card input is possible. For example, if
CRDSIZE=80, multiple-record card input is possible if LRECL=40, 20, 10, etc. Thus, every
data card contains two 40-byte records (or four 20-byte records, etc.). Since short blocks are
not permitted, the /* card must appear in columns 1-2 of the last card after full cards of
data. A short data card can be padded with identifiable “dummy” records, which then are
excluded by the INCLUDE/OMIT control statement.

CRDSIZE removes any possible ambiguity with multi-record card input and multifile,
mixed device type input. For example, to sort an 80-column card and 400-byte blocked tape
input consisting of 40-byte logical records, use the following control statements:

In this example, the logical records are 40 bytes long. The input consists of both cards and
tape. Each card contains two records. The blocksize of the tape input is 400. Note that the
CRDSIZE parameter is necessary in this case only if the CRDSIZE default of 80 has been
changed.

DATA=E/A Parameter (Optional)

The DATA parameter specifies either EBCDIC or ASCII input. DATA=E specifies EBCDIC
input, and DATA=A specifies ASCII tape input. If this parameter is omitted, EBCDIC
input is assumed unless TYPE=D is specified on the RECORD control statement to indi-
cate variable-length ASCII input. Mixing ASCII and EBCDIC files on the INPFIL state-
ments is not supported.

If DATA=A is specified, the following restrictions apply:

• Only the AC, AST, or ASL format codes can be specified on the SORT and MERGE
control statements.

• The INCLUDE/OMIT, SUM, and ALTSEQ control statements cannot be specified.

• The INREC and OUTREC control statements are permitted, but the following
parameters cannot be specified: ZD, PD, BI, or FI formats and Mm, EDIT, SIGNS,
LENGTH, and HEX. If the nX parameter is specified, ASCII blanks (X'20') will be
inserted instead of EBCDIC blanks (X'40'). Specifying an nC'literal string' on an
INREC/OUTREC control statement results in the insertion of the ASCII
representation of the character string.

RECORD TYPE=F,LENGTH=40
INPFIL CRDSIZE=80,BLKSIZE=400 

Figure  37. Sample INPFIL Control Statement Illustrating CRDSIZE Parameter
SyncSort for z/VSE 3.7 Programmer’s Guide2.68



INPFIL
• The following parameters cannot be specified on the INPFIL control statement:
CRDSIZE, SPAN, SYSIPT, TOL, and VSAM.

• The following parameters cannot be specified on the OUTFIL control statement:
CARDS, DISK, ESDS, HEADER1, HEADER2, INCLUDE, KSDS, LINES, LRECL,
NODETAIL, OMIT, PAGES, PRINT, PUNCH, REUSE, RRDS, SECTIONS, SPAN,
TOL, TRAILER1, and TRAILER2.

• If the OUTREC parameter is specified on the OUTFIL control statement, the following
subparameters cannot be specified: ZD, PD, BI, or FI formats and Mm, EDIT, SIGNS,
LENGTH, and HEX. Specifying an nC'literal string' on an INREC/OUTREC control
statement results in the insertion of the ASCII representation of the character string.

• The value of the BLKSIZE parameter on the INPFIL and OUTFIL control statements
cannot exceed 9,999 bytes.

• TYPE=D must be specified on the RECORD control statement for variable-length
records.

• The DELBLANK parameter cannot be specified on the RECORD control statement.

• The KEYLEN and ADDROUT parameters cannot be specified on the OPTION control
statement. The CMP parameter can be specified on the OPTION statement, but will be
ignored.

• The date data formats Y2B, Y2C, Y2D, Y2P, Y2S, and Y2Z are changed into 4-digit
character (EBCDIC) format by OUTREC data conversion processing. If DATA=A has
been specified on the INPFIL statement, the above date data formats will be converted
into 4-digit ASCII character formats. 

When TYPE=D is specified on the RECORD control statement, the above restrictions apply
even if the DATA=A parameter is not specified on the INPFIL control statement.

ENDREC Parameter (Optional)

The ENDREC parameter specifies the last record from the input file.

The record count is done before INPFIL INCLUDE/OMIT processing, if specified, takes
place. (For example, if the first 100 records are to be deleted by INCLUDE/OMIT, the next
record is still counted as record number 101. If ENDREC=90, then no records will be
passed to the sort/merge.) For ENDREC=n, the n value can be 1 through 2,147,483,647.

The ENDREC parameter is incompatible with the STOPAFT parameter on the same 
INPFIL statement.
Chapter 2.  SyncSort Control Statements 2.69



INPFIL
EXIT Parameter (Optional)

The EXIT parameter indicates that an E15 or E32 exit will provide all the input to the
sort/merge. Write the E15 or E32 exit routine so that it reads the input data and passes one
record at a time to the sort/merge. Include label processing, volume positioning, and file
opening and closing information. Also, specify exit E15 or exit E32 in the MODS control
statement.

If the EXIT parameter is specified, all other INPFIL parameters are checked for syntax but
ignored.

FILES Parameter (Optional)

The FILES parameter connects the INPFIL statement with one or more input files. The
default is FILES=1.

By using FILES=(1,2,...,32), data sets that have all their parameters in common may be
specified by one INPFIL. If any one parameter differs, a separate INPFIL must be used.

Note: FNAMES and FILES are mutually exclusive parameters. Specifying both parame-
ters on the same INPFIL statement will cause a syntax error. If neither parameter is used
and only one INPFIL statement is specified, then that INPFIL statement applies to all
input files.

FNAMES Parameter (Optional)

The FNAMES parameter connects the INPFIL statement with one or more input files. The
name(s) used to specify the input file(s) can be up to seven characters long, and a corre-
sponding DLBL/TLBL statement must be present. The filenames specified with the
FNAMES parameter must be either the default filenames (SORTIN1, SORTIN2, ...) or a
filename specified using the FILNM parameter of the OPTION statement.

When two or more input files have identical parameters on the INPFIL statement, write
the specifications only once as illustrated below:

Note: FNAMES and FILES are mutually exclusive parameters. Specifying both parame-
ters on the same INPFIL statement will cause a syntax error. If neither parameter is used
and only one INPFIL statement is specified, then that INPFIL statement applies to all
input files.

FNAMES=(filename1,filename2,...,filename32) 

Figure  38. Sample FNAMES Parameter
SyncSort for z/VSE 3.7 Programmer’s Guide2.70



INPFIL
FTOV Parameter (Optional)

The FTOV parameter converts fixed-length input records to variable-length output records.
FTOV can be used both with and without the INREC parameter. When FTOV is used with
the INREC parameter, the variable-length record is created from the specified fields of the
fixed-length record. When FTOV is not used with the INREC parameter, the variable-
length record is created from the whole fixed-length record. 

Note: FTOV cannot be used with CONVERT or VTOF. VLTRIM can be used with the
FTOV parameter to delete pad bytes at the end of a record.

The LENGTH parameter on the RECORD control statement specifies the variable-length
output record to be produced by FTOV. l1 specifies the maximum variable-length output
record to be produced. l4 specifies the minimum variable-length output record to be pro-
duced.

The following control parameters may not be specified when INPFIL FTOV is used:

• INPFIL EXIT

• RECORD TYPE F,D

• MERGE FIELDS=COMPARE

• INPFIL VTOF, CONVERT

FTOV, no INREC Parameter

When FTOV is used without the INREC parameter, the variable-length record is created
from the fixed-length record. 

FTOV, with INREC Parameter

When FTOV is used with the INREC parameter, the variable-length record is created from
the specified fields of the fixed-length record. The maximum record length is the maximum
of the reformatted input records plus 4.

The TYPE parameter on the RECORD control statement must have a variable-length
record format (for example, VB or VBS).

The LENGTH parameter on the RECORD control statement must be given an LRECL that
can contain the largest and smallest variable-length records to be produced by INPFIL.

IFOUTLEN Parameter (Optional)

The IFOUTLEN parameter overrides the maximum record length, which is automatically
set by the IFTHEN parameter, and changes it to a specified value.  The IFOUTLEN param-
eter may only be used in conjunction with the IFTHEN parameter.
Chapter 2.  SyncSort Control Statements 2.71



INPFIL
The IFOUTLEN parameter automatically makes the following changes to the record to
match the new length. A record longer than n is truncated to n. A fixed-length record
shorter than n is padded with blanks to reach a length of n. The length n must not be larger
than the length l1 specified in the LENGTH parameter on the RECORD control statement.

IFTHEN Parameter (Optional)

The IFTHEN parameter uses conditional logic which enables you to reformat records based
on specified criteria. Multiple IFTHEN parameters may be specified within the same con-
trol statement and are processed sequentially.  See “IFTHEN Parameter (Optional)” on
page 2.205 for a complete description of this parameter.

INCLUDE/OMIT Parameter (Optional)

The INCLUDE/OMIT parameter selects records from an input file based on comparisons of
the contents of one or more fields within the record. See “INCLUDE/OMIT Control State-
ment Format” on page 2.39.

INPUT Parameter (Optional)

The INPUT parameter is ignored by SyncSort for z/VSE.

INREC Parameter (Optional)

The INREC parameter reformats the input records. See “INREC Control Statement For-
mat” on page 2.83 for a complete description of this parameter’s functions.

Note: The LENGTH parameter on the RECORD statement functions differently for fixed-
length records than it does for variable-length records. For fixed-length records, LENGTH
indicates the record length of the output records produced by INPFIL.

The length of the reformatted input record should match the length specified in the
LENGTH parameter on the RECORD statement. If the reformatted input record is less
than the length on the RECORD statement, SyncSort automatically pads the output record
with blanks on the right to achieve the desired length.

For variable-length records, LENGTH indicates the maximum and minimum record length
of the logical records produced by INPFIL INREC. l1 specifies the maximum variable-
length output record to be produced. l4 specifies the minimum variable-length output
record to be produced. This length should take into account any modifications made by an
INREC, or FTOV. See “LRECL Parameter (Optional)” section below for a complete descrip-
tion of how to specify an input record length for each file. 
SyncSort for z/VSE 3.7 Programmer’s Guide2.72



INPFIL
LRECL Parameter (Optional)

The LRECL parameter specifies an input record length before INPFIL INREC processing,
which may differ from the length specified in the LENGTH parameter on the RECORD
statement (see Figure 3 on page 2.18). It is, therefore, possible to have one record length for
the sort/merge and another record length for the input record. For variable-length records,
lmax is the maximum input record length, and lmin is the minimum input record length.

Use the INREC control statement to reformat the input records.

When multiple INPFIL statements are used, LRECL parameters may be used on some or
all of the INPFIL statements. When LRECL is omitted, the record length values for that
file are those specified by the LENGTH parameter of the RECORD statement.

When INREC, FTOV, or VTOF is specified on any INPFIL statement, the LRECL parame-
ter is required on all INPFIL statements.

L4FILL Parameter (Optional)

INPFIL L4FILL=X'hh' (or C'c') causes variable-length input records shorter than l4 (before
INREC processing) to be padded with hex byte “hh” (or character “c”) to a length of l4.
IGNRL4 is ignored for this file.

INPFIL L4FILL pads the records before any reformatting of records is done by the INREC
parameter of the INPFIL control statement, or by the INREC control statement. When
INPFIL INREC reformats the input records, the records are padded up to the minimum
record length specified by the LRECL lmin parameter on INPFIL (the length before INPFIL
INREC reformatting). Otherwise, the l4 value specified on the RECORD control statement
(or calculated by SyncSort), which is the length before any reformatting by the INREC con-
trol statement, is used. (See Figure 4 on page 2.19 and Figure 5 on page 2.19.)

When L4FILL=NONE is specified, no padding is done. This overrides any L4FILL installa-
tion default set by SYNCMAC.

When L4FILL is not specified on an INPFIL statement, padding will be done only if 

     - L4FILL has been specified as a default by SYNCMAC; and

     - IGNRL4 has not been specified on the OPTION control statement.

When INPFIL L4FILL is used without FILES=f, the L4FILL specification applies to all
input files. 

L4FILL is not used to pad short variable-length input records that are to be converted to
fixed-length records by VTOF or CONVERT; in these cases, specify the VLFILL parameter.
Chapter 2.  SyncSort Control Statements 2.73



INPFIL
OPEN Parameter (Optional)

Specified for tape input files only, the OPEN parameter indicates what action should be
taken when the file is opened.

OPEN=RWD, the default, indicates that the first volume of each tape input file should be
rewound when the file is opened. OPEN=NORWD indicates that the first volume of each
input file should not be rewound when the file is opened. This parameter is ignored if the
input files are on direct access devices.

OVERLAY Parameter (Optional)

The OVERLAY parameter enables you to change particular columns within a record, and
add fields to the end of a record, without rebuilding the entire record. When using the
OVERLAY parameter you only need to specify the columns you want to change; the rest of
the input record remains unchanged.  See “OVERLAY Parameter (Optional)” on page 2.209
for a complete description of this parameter.

PRESEQ Parameter (Optional)

The PRESEQ parameter is ignored by SyncSort for z/VSE.

SKIPBYTE Parameter (Optional)

The SKIPBYTE parameter is ignored by SyncSort for z/VSE.

SKIPREC Parameter (Optional)

The SKIPREC parameter instructs SyncSort to skip a decimal number of 'n' records per
input file before the file is sorted, merged, or copied. The input bypasses the skipped
records before INCLUDE/OMIT and INREC processing, if specified, takes place. For
SKIPREC=n, the n value can be 0 through 2,147,483,647.

The SKIPREC parameter is incompatible with the STARTREC parameter on the same
INPFIL statement.

SPAN Parameter (Optional)

The SPAN parameter instructs SyncSort to examine the input file(s) for spanned records.

If TYPE=VS or TYPE=VBS is specified on the RECORD control statement, the SPAN
parameter need not be specified.
SyncSort for z/VSE 3.7 Programmer’s Guide2.74



INPFIL
STARTREC Parameter (Optional)

The STARTREC parameter specifies the first record that will be processed from the input
file. The 'n'th record will be the first record eligible for the sort/merge, while the first n-1
records are skipped. The record count is done before INPFIL INCLUDE/OMIT processing,
if specified, takes place. For STARTREC=n, the n value can be 1 through 2,147,483,647.

The STARTREC parameter is incompatible with the SKIPREC parameter on the same
INPFIL statement.

STOPAFT Parameter (Optional)

The STOPAFT parameter specifies the number of records in a file for output to the
sort/merge. These will be the first 'n' records after INCLUDE/OMIT, SKIPREC, and
STARTREC processing. For STOPAFT=n, the n value can be 0 through 2,147,483,647.

The STOPAFT parameter is incompatible with the ENDREC parameter on the same
INPFIL statement.

SYSIPT Parameter (Optional)

The SYSIPT parameter specifies that the input should be read from a card reader. Card
input can be read with or without specific file assignments. Use the SYSIPT parameter
instead of an E15 exit program for increased efficiency.

Note: SYSIPT must be assigned either to an IBM-supported card reader or to SYSRDR
simulated input (diskette). The SYSIPT parameter cannot be used for card image input on
tape or disk.

TOL Parameter (Optional)

The TOL parameter indicates that a warning code is to be accepted when a VSAM input file
is opened. If the TOL parameter is not specified, the warning return code is recognized as
an error, an error message is generated, and SyncSort for z/VSE terminates.

VLFILL Parameter (Optional)

The VLFILL parameter is used in conjunction with VTOF to specify a fill byte to be used
for any short record. By default, spaces will be used.

VLLONG Parameter (Optional)

The VLLONG parameter specifies that SyncSort is to truncate long variable-length input
records. A long record is one whose length is greater than the LENGTH=parameter speci-
fied in the RECORD control statement. VLLONG=YES indicates that SyncSort truncates
long variable-length input records. VLLONG=NO indicates that SyncSort will terminate if
a long variable-length input record is encountered. This is the default. 
Chapter 2.  SyncSort Control Statements 2.75



INPFIL
VLTRIM Parameter (Optional)

The VLTRIM parameter defines a byte to be deleted from the end of a variable-length
record. All prior occurrences of this byte will also be deleted until a byte that is not equal to
the trim byte is found. The resulting records are decreased in record length. However, 
VLTRIM will not delete the first data byte, the Record Descriptor Word (RDW), or a data
byte less than or equal to the minimum record length.

For the VLTRIM parameter, specify a byte b to be deleted from the end of the record. b can
be specified as either a character or hexadecimal value. Specify either C'x' where x is a sin-
gle EBCDIC character or X'hh' where hh represents a hexadecimal digit pair (00-FF).

Note: VLTRIM is ignored if the FTOV parameter is not used.

VOLUME Parameter (Optional)

Specified for unlabeled or nonstandard labeled tape input files only, the VOLUME parame-
ter indicates the number of volumes for each input file. The default is one volume for each
input file. This parameter is ignored for disk input files.

For multifile input, the format of the VOLUME parameter is VOLUME=(n1,...,n32), where n
represents the number of volumes in each file. Specify the n values in the same order as the
input files are specified in the SORTIN portion of the job control stream. If the FILES or
FNAMES parameter is specified, only the VOLUME=n parameter is supported.

SyncSort’s installation procedure allows the user to choose IBM SM-483 compatibility for
this parameter. (See the VOLUME parameter of SYNCMAC in the SyncSort for z/VSE
Installation Guide for instructions.) With SM-483 compatibility for standard labeled files,
SyncSort will process whichever is less: the user’s actual number of volumes or the number
specified in the VOLUME parameter. Without this change, processing of standard labeled
files is compatible with IBM’s 5743 and 5746 programs; i.e., the VOLUME parameter is
ignored.

VSAM Parameter (Optional)

The VSAM parameter specifies VSAM access for VSAM managed SAM input files and is
not required with VSAM input. If this parameter is not specified, SyncSort assumes SAM
access for VSAM managed SAM.

Note: For improved performance when all input files are VSAM, specify the VSAM param-
eter.

VTOF Parameter (Optional)

The VTOF parameter converts variable-length records to fixed-length records. VTOF can
be used either with or without the INREC parameter. When VTOF is used with the INREC
parameter, the fixed-length record is created from the specified fields of the variable-length
SyncSort for z/VSE 3.7 Programmer’s Guide2.76



INPFIL
record. When VTOF is not used with the INREC parameter, the fixed-length record is cre-
ated from the whole variable-length record. 

The length of the output record of INPFIL is specified in the LENGTH parameter on the
RECORD control statement. If the output record of INPFIL is less than the length on the
RECORD control statement, VTOF will automatically pad the output record with the fill
character (VLFILL=b) on the right to achieve the desired length. The default pad character
is blank (VLFILL=X'40').

If the output record is longer than the length on the RECORD statement, the result
depends on the value of the VLLONG parameter:

• The sort terminates with an error message and gives a return code of 16 if the
VLLONG=NO option is specified. 

• VTOF truncates the long output records to achieve the desired length if the
VLLONG=YES option is specified. This option should not be used unless you want the
long variable-length output records to be truncated. Inappropriate use of VLLONG can
result in unwanted loss of data.

The following control parameters may not be specified when VTOF is used:

• INPFIL EXIT

• RECORD TYPE=VS, VBS, D, V

• MERGE FIELDS=COMPARE

• INPFIL FTOV

Sample INPFIL Statements

In Figure 39, the INPFIL statement specifies the following:

• The largest blocksize of the input files is 500.

• The first input file has three volumes, the second input file has ten volumes, and the
third input file has one volume.

• All tape input volumes will be rewound and unloaded at the end of the file.

• Because the OPEN parameter is not specified, the first volume of each input file will be
rewound when the file is opened. (This is the default).

INPFIL BLKSIZE=500,VOLUME=(3,10,1),CLOSE=UNLD 

Figure  39. Sample INPFIL Statement
Chapter 2.  SyncSort Control Statements 2.77



INPFIL
In Figure 40, the INPFIL statement specifies that a user exit program will provide all the
input records.

In Figure 41, the INPFIL statement reformats 250-byte fixed-length input records to 64-
byte (including 4-byte RDW) variable-length records before the sort/merge.

Sample Multiple INPFIL Statements

The following examples show the use of the INPFIL control statement for multiple input
files.

In Figure 42, the control statements specify both the maximum (l1) and minimum (l4) vari-
able-length output record. The largest variable-length output record to be produced for the
three input files is 204 and the minimum record length is 50.
 

In Figure 43, the control statements specify ONLY the maximum (l1) variable-length out-
put record. The largest variable-length output record to be produced for the three input
files is 204 and the minimum record length is 34 calculated by the sort.

INPFIL EXIT 

Figure  40. Sample INPFIL Statement

INPFIL INREC=(1,50,200,10),LRECL=250,FTOV 

Figure  41. Sample INPFIL Statement

RECORD TYPE=V,LENGTH=(204,,,50)
INPFIL FILES=1,FTOV,LRECL=80,VLTRIM=C'*'
INPFIL FILES=2,FTOV,LRECL=100,INREC=(1,50,80,10),...
INPFIL FILES=3,FTOV,LRECL=200,BLKSIZE=2000,VLTRIM=C''

Figure  42. Sample Multiple INPFIL Statements

SORT FIELDS=(28,7,CH,A)
RECORD TYPE=V,LENGTH=204
INPFIL FILES=1,FTOV,LRECL=80,VLTRIM=C'*'
INPFIL FILES=2,FTOV,LRECL=100,INREC=(1,50,80,10),...
INPFIL FILES=3,FTOV,LRECL=200,BLKSIZE=2000,VLTRIM=C''

Figure  43. Sample Multiple INPFIL Statements
SyncSort for z/VSE 3.7 Programmer’s Guide2.78



INPFIL
In Figure 44, the INPFIL FILES=1 statement specifies the following:

• The largest blocksize of the input file is 1604.

• The maximum record length of the logical records is 160, and 80 bytes is the minimum.

• The number of records to read from this file is 100.

• The input record will be reformatted based on the specified fields.

• The output maximum record length of the logical records is 1200, and 80 is the
minimum.

The INPFIL FILES=2 statement specifies the following:

• The largest blocksize of the input file is 12004.

• The maximum record length of the logical records is 1200, and 80 is the minimum.

• The number of records to read from this file is 150.

• The input record will be reformatted based on the specified fields.

• The output maximum record length of the logical records is 1200, and 80 is the
minimum.

In Figure 45, the INPFIL FILES=1 statement specifies the following:

• The largest blocksize of the input file is 800.

• The record length of the logical records is 80.

RECORD TYPE=V,LENGTH=(1200,,,80)
INPFIL FILES=1,LRECL=(160,80),STOPAFT=100,

INREC=(1,26,5,7,34),BLKSIZE=1604
INPFIL FILES=2,STOPAFT=150,LRECL=(1200,80),

INREC=(1,26,9,7,34),BLKSIZE=12004

Figure  44. Sample Multiple INPFIL Statements

RECORD TYPE=F,LENGTH=80
INPFIL BLKSIZE=800,FILES=1,STOPAFT=150,

LRECL=80,INREC=(1,70)
INPFIL BLKSIZE=9387,FILES=2,

LRECL=63,INREC=(1,60),SKIPREC=100

Figure  45. Sample Multiple INPFIL Statements
Chapter 2.  SyncSort Control Statements 2.79



INPFIL
• The number of records to read from this file is 150.

• The first 70 bytes contain original data, and the last 10 bytes are blanks.

• The output record length is 80.

The INPFIL FILES=2 statement specifies the following:

• The largest blocksize of the input file is 9387.

• The record length of the logical records is 63.

• The number of records to be skipped is 100.

• The first 60 bytes contain original data, and the last 20 bytes are blanks.

• The output record length is 80.

In Figure 46, the INPFIL FILES=1 statement specifies the following:

• The largest blocksize of the input file is 800.

• The record length of the logical records is 80.

• The number of records to be skipped is 100.

• The number of records to read from this file is 200.

• The output record length is 80.

The INPFIL FILES=2 statement specifies the following:

• The largest blocksize of the input file is 800.

• The record length of the logical records is 80.

• The number of records to read from this file is 100.

• The output record length is 80.

RECORD TYPE=F,LENGTH=80
INPFIL FILES=1,BLKSIZE=800,STOPAFT=200,SKIPREC=100
INPFIL FILES=2,BLKSIZE=800,STOPAFT=100
INPFIL FILES=3,BLKSIZE=800
OUTFIL BLKSIZE=800
OPTION PRINT=ALL,ROUTE=LST,STOPAFT=500

Figure  46. Sample Multiple INPFIL Statements
SyncSort for z/VSE 3.7 Programmer’s Guide2.80



INPFIL
The INPFIL FILES=3 statement specifies the following:

• The largest blocksize of the input file is 800.

• The record length of the logical records is 80.

• The number of records to read from this file is 200.

• The output record length is 80.

The OPTION STOPAFT parameter limits the number of records for the sort as follows:

• 200 records of SORTIN1 are accepted for processing.

• 100 records of SORTIN2 are accepted for processing.

• 200 records of SORTIN3 are accepted for processing (calculated 500-200-100=200).

In Figure 47, the control statements specify both the maximum (l1) and minimum (l4) vari-
able-length output records. The largest variable-length output record to be produced for the
three input files is 204 and the minimum record length is 50.

In Figure 48, the control statements specify ONLY the maximum (l1) variable-length out-
put record. The largest variable-length output record to be produced for the three input
files is 204; the minimum record length of 34 is calculated by the sort.

RECORD TYPE=V,LENGTH=(204,,,50)
INPFIL FILES=1,FTOV,LRECL=80,VLTRIM=C'*'
INPFIL FILES=2,FTOV,LRECL=100,INREC=(1,50,80,10)
INPFIL FILES=3,FTOV,LRECL=200,BLKSIZE=2000,VLTRIM=C''

Figure  47. Sample Multiple INPFIL Statements

SORT FIELDS=(28,7,CH,A)
RECORD TYPE=V,LENGTH=204
INPFIL FILES=1,FTOV,LRECL=80,VLTRIM=C'*'
INPFIL FILES=2,FTOV,LRECL=100,INREC=(1,50,80,10)
INPFIL FILES=3,FTOV,LRECL=200,BLKSIZE=2000,VLTRIM=C''

Figure  48. Sample Multiple INPFIL Statements

SORT FIELDS=(30,7,CH,A)
RECORD TYPE=V,LENGTH=(83,,,53)
INPFIL FILES=(1,3)BLKSIZE=9387
INPFIL FILES=2,BLKSIZE=9387,LRECL=(63,58),INREC=(1,34,20X,40)

Figure  49. Sample Multiple INPFIL Statements
Chapter 2.  SyncSort Control Statements 2.81



INPFIL
Figure 49 shows that the largest variable-length output record to be produced for the three
input files is 83, and the minimum record length is 53.

Figure 50 shows that the largest variable-length output record to be produced for the three
input files is 83, and the minimum record length is 58.

Figure 51 shows that the largest variable-length output record to be produced for the three
input files is 83; the minimum record length of 37 is calculated by the sort.

SORT FIELDS=(30,7,CH,A)
RECORD TYPE=V,LENGTH=83
INPFIL FILES=(1,3)BLKSIZE=9387,LRECL=(63,58)
INPFIL FILES=2,BLKSIZE=9387,LRECL=(63,58),INREC=(1,34,20X,40)

Figure  50. Sample Multiple INPFIL Statements

SORT FIELDS=(30,7,CH,A)
RECORD TYPE=V,LENGTH=(63,,,53)
INPFIL FILES=1,BLKSIZE=9387
INPFIL FILES=2,BLKSIZE=9387,OMIT=(20,3,CH,EQ,C'BAD')
INPFIL FILES=3,BLKSIZE=9387,STOPAFT=100

Figure  51. Sample Multiple INPFIL Statements
SyncSort for z/VSE 3.7 Programmer’s Guide2.82



INREC
INREC Control Statement

The INREC control statement reformats the input records. Use the INREC statement to
add, delete, or reformat fields before the records are sorted or merged. Use the OUTREC
statement or the OUTREC parameter of the OUTFIL statement to delete or reformat fields
after the records are sorted or merged. Note that INREC is performed after E15 exit pro-
cessing and INCLUDE/OMIT control statement processing.

Using the INREC control statement to delete data fields improves sort performance by
reducing the number of bytes SyncSort must process. The same result may be achieved in
some cases by changing the data format of certain fields. For example, if you need to change
the format of a ZD field to PD, which reduces the number of bytes for the field, it is more
efficient to use INREC rather than OUTREC for the conversion. Additionally, for
SORT/MERGE processing PD fields are processed more efficiently than ZD fields.

Except for CONVERT, all the functions performed by the OUTREC statement, such as
inserting character strings or changing the data format of a numeric field, can also be per-
formed by the INREC statement. (See “OUTREC Control Statement Format” on page 2.175
for an explanation of these functions.) For example, you can use the INREC statement to
insert zeros of the proper format to expand a numeric field before SUM processing to pre-
vent arithmetic overflow. However, you will usually want to use the OUTREC statement
rather than the INREC statement to expand the record because OUTREC processing takes
place after records are sorted or merged.

If you use the INREC statement to reformat the input record, remember to use the post-
INREC field positions when you specify the SORT, MERGE, SUM, OUTREC, and/or 
OUTFIL statements.

If the SEQNUM function is used in a SORT application to insert a sequence number field
in the record, this field will reflect the order of the records prior to sorting. In a MERGE
application, the field will reflect the order of the records as they were read from each input
in the merge.

INREC Control Statement Format

The format of the INREC statement is illustrated below:

Figure  52. INREC Control Statement Format

INREC 

FIELDS
BUILD

OVERLAY 
 
 

field1 field2,[ ]…( )=

IFTHEN subparm( )= ,IFTHEN = subparm( )[ ]… ,IFOUTLEN = n[ ] 
 
 
 
 
Chapter 2.  SyncSort Control Statements 2.83



INREC
FIELDS/BUILD Parameter 

The FIELDS parameter specifies the data fields to be included in the application. BUILD is
an alias for FIELDS. See “OUTREC Control Statement Format” on page 2.175 for a com-
plete description of these parameters. 

IFOUTLEN Parameter (Optional)

The IFOUTLEN parameter overrides the maximum record length, which is automatically
set by the IFTHEN parameter, and changes it to a specified value.  The IFOUTLEN param-
eter may only be used in conjunction with the IFTHEN parameter.

The IFOUTLEN parameter automatically makes the following changes to the record to
match the new length. A record longer than n is truncated to n. A fixed-length record
shorter than n is padded with blanks to reach a length of n. 

IFTHEN Parameter (Optional)

The IFTHEN parameter uses conditional logic which enables you to reformat records based
on specified criteria. Multiple IFTHEN parameters may be specified within the same con-
trol statement and are processed sequentially.  See “IFTHEN Parameter (Optional)” on
page 2.205 for a complete description of this parameter.

OVERLAY Parameter (Optional)

The OVERLAY parameter enables you to change particular columns within a record, and
add fields to the end of a record, without rebuilding the entire record. When using the
OVERLAY parameter you only need to specify the columns you want to change; the rest of
the input record remains unchanged.  See “OVERLAY Parameter (Optional)” on page 2.209
for a complete description of this parameter.

Sample INREC Control Statement

This INREC statement specifies three data fields from an 80-byte record:

• The first field begins in byte 1 of the input record and is 20 bytes long.

• The second field begins in byte 40 of the input record and is a 15-byte ZD field. The data
format is to be converted to PD. Since the input field contains 15 decimal digits, the
converted PD output field created by SyncSort will be 8 bytes long.

• The third field begins in byte 60 of the input record and is 5 bytes long.

INREC FIELDS=(1:1,20,21:40,15,ZD,PD,29:60,5) 

Figure  53. Sample INREC Control Statement
SyncSort for z/VSE 3.7 Programmer’s Guide2.84



INREC
These three fields have been positioned to begin in bytes 1, 21, and 29, as indicated by their
column prefixes.

The reformatted input record is now just 33 bytes long.

For comprehensive examples that illustrate the INREC control statement, see “Chapter 4.
How to Use SyncSort Data Utility Features”.
Chapter 2.  SyncSort Control Statements 2.85



INREC
JOIN Control Statement

The JOIN control statement specifies the disposition of paired and unpaired records in a
join. (See Figure 1 on page 1.5 for an illustration of join processing.)

When you do not provide a JOIN control statement in an application that has JOINKEYS
control statements, SyncSort produces an output from the join operation that includes all
paired records (an “inner join”). All unpaired records from both SORTIN1 and SORTIN2
are discarded. By providing a JOIN control statement, you can specify that unpaired
records are to be included in the join output (an “outer join”). Parameters of the JOIN con-
trol statement provide options as to which of the unpaired records are to be retained for
output.

See “JOINKEYS Control Statement” on page 2.88 and “REFORMAT Control Statement” on
page 2.224 for additional information.

JOIN Control Statement Format

The format of the JOIN control statement is illustrated below:

Retaining Unpaired Records

When joining files, a record from one file may or may not have a match in the other file. A
match occurs when the contents of the join keys in the record from the first file equal the
contents of the join keys in the record from the second file.

By specifying the JOIN control statement you can retain unpaired records from one or both
files.

To retain unpaired records from SORTIN1 (a “left outer join”) in addition to all joined
records, specify:

To retain unpaired records from SORTIN2 (a “right outer join”) in addition to all joined
records, specify:

JOIN UNPAIRED[,F1][,F2][,ONLY]

Figure  54. JOIN Control Statement Format

JOIN UNPAIRED,F1

Figure  55. Retaining Unpaired Records from SORTIN1 

JOIN UNPAIRED,F2

Figure  56. Retaining Unpaired Records from SORTIN2
SyncSort for z/VSE 3.7 Programmer’s Guide2.86



JOIN
To retain unpaired records from both SORTIN1 and SORTIN2 (a “full outer join”) in addi-
tion to all joined records, specify either:

or simply:

Discarding Paired Records

You have the option of discarding the paired records from a join and keeping only the
unpaired ones. To do this, specify:

If you want to keep only the unpaired records from one SORTIN1 or SORTIN2, add either
the F1 or the F2 parameter.

Note: See “REFORMAT Control Statement” on page 2.224 for a discussion on what will
appear in the record created by join processing when source fields from either SORTIN1 or
SORTIN2 are not available due to a join unpaired operation.

JOIN UNPAIRED,F1,F2

Figure  57. Retaining Unpaired Records from both SORTIN1 and SORTIN2

JOIN UNPAIRED

Figure  58. Retaining Unpaired Records from both SORTIN1 and SORTIN2

JOIN UNPAIRED,ONLY

Figure  59. Discarding Paired Records
Chapter 2.  SyncSort Control Statements 2.87



JOINKEYS
JOINKEYS Control Statement

Use the JOINKEYS statement to enable join feature processing and to identify the fields
used to select records for join processing. (See Figure 1 on page 1.5 for an illustration of join
processing.)

The join feature joins records from two input files that are specified on the SORTIN1 and
SORTIN2 label statements. By default, when the JOINKEYS fields from m records in
SORTIN1 match the JOINKEYS fields from n records in SORTIN2, all combinations of the
records are joined using the REFORMAT control statement, producing m*n records as
input to subsequent SyncSort processing. (This is called an “inner join.”)

See “REFORMAT Control Statement” on page 2.224 for a description of how a record is con-
structed from two records that have been selected as a match.

If the optional JOIN UNPAIRED control statement is specified, the unmatched records
from the SORTIN1 and/or SORTIN2 files will also be REFORMATted and included in the
input to SyncSort without being joined. (Including the unmatched records from SORTIN1
is called a “left outer join,” and including all unmatched records is called a “full outer join.”)
Optionally, only these unmatched records will become input to SyncSort. See “JOIN Con-
trol Statement” on page 2.86 and “REFORMAT Control Statement” on page 2.224 for fur-
ther details on their specifications.

The input files do not need to be presorted or have the same record type.

Two JOINKEYS control statements are required - one for each of the two files used in the
join. Do not specify an INPFIL control statement when JOINKEYS control statements are
used.

When JOINKEYS control statements are used, the RECORD control statement is ignored
and can be omitted. The actual record type and length will be determined by the 
REFORMAT statement or the input files.

The JOINKEYS control statement cannot be used with any exits (except for E35).
SyncSort for z/VSE 3.7 Programmer’s Guide2.88



JOINKEYS
JOINKEYS Control Statement Format

The format of the JOINKEYS control statement is illustrated below:

FILE Parameter (Required)

The FILE parameter connects the JOINKEYS control statement with the input file to be
read. The specification of F1 connects the JOINKEYS control statement with the SORTIN1
label statement. The specification of the F2 connects the JOINKEYS control statement
with the SORTIN2 label statement.

FIELDS Parameter (Required)

The FIELDS parameter is required. It describes the fields to be used to match records from
the two files, SORTIN1 and SORTIN2.

The number of JOINKEYS fields must be the same for both files, although their starting
positions need not be the same.

These fields can be in any of CH, BI, FI, PD, or ZD formats. If not explicitly specified, the
default format is binary (BI). 

Figure  60. JOINKEYS Control Statement Format

JOINKEYS FILE= F1
F2 

 
 

,FIELDS= p1,l1,f1 o, 1 p, 2,l2,f2 o, 2… p64,l64,f64 o, 64[ ][ ]( ),

FORMAT=f,[ ]

LRECL=
nnn
l1 ,l4[ ]( ) 

 
 

,TYPE= F
V 

 
 

,BLKSIZE=n[ ]

,BUFLIM=
255
n 

 
 

,BUFOFF= 0
n
---

 
 
 

,BYPASS[ ]

,CLOSE=
RWD
NORWD
UNLD 

 
 
 
 

,CRDSIZE=
80
n 

 
 

,DATA= E
A
----

 
 
 

, ENDREC
STOPAFT 

 
 

=n , INCLUDE
OMIT 

 
 

= …( ) ,OPEN=
RWD
NORWD 

 
 

,SORTED[ ] ,SPAN[ ] , STARTREC
SKIPREC 

 
 

=n ,SYSIPT[ ] ,TOL[ ]

,VOLUME=n[ ][,VSAM]
Chapter 2.  SyncSort Control Statements 2.89



JOINKEYS
The join files do not need to be presorted on the fields specified on the JOINKEYS control
statement. By default, SyncSort will sort the records to the proper sequence before per-
forming the join operation. If one or both of the files is already in the JOINKEYS FIELDS
sequence, the SORTED parameter (see below) of the JOINKEYS control statement can be
specified. If the SORTED parameter is used, the performance of the application may be
improved.

The maximum number of JOINKEYS fields is 64.

Each JOINKEYS field may be anywhere within the record, the maximum length of a field
is 256 to 4080 bytes, and the sum of all fields on a JOINKEYS control statement cannot
exceed 4080 bytes.

For variable-length records, all JOINKEYS fields must reside within the minimum record
length.

Each field specified in the FIELDS parameter is identified by a position (p), length (l),
optionally, format (f), and order (o). 

p  The position value indicates the first byte of the field relative to the beginning
of the input record. 

l  The length value indicates the length of the control field.

Table 14.  Permissible JOINKEYS field lengths

f  (optional) The format value indicates the format type of the control field. If
omitted, the value specified in the FORMAT parameter is used. If the FORMAT
parameter is also omitted then BI is assumed. 

Corresponding JOINKEYS fields from the two joining files must be of compara-
ble formats as indicated in the following table.

FORMAT PERMISSIBLE LENGTH PADDING FOR SHORTER FIELD
BI 1 to 4080 bytes binary zeroes on the right
CH 1 to 4080 bytes blanks on the right
FI 1 to 256 bytes sign extended on the left
PD 1 to 256 bytes binary zeroes on the left
ZD 1 to 256 bytes binary zeroes on the left
SyncSort for z/VSE 3.7 Programmer’s Guide2.90



JOINKEYS
  Table 15.  Comparable formats for JOINKEYS fields

o  The order value indicates the collating sequence of the field:

A=Ascending order
D=Descending order

FORMAT Parameter (Optional)

The optional FORMAT parameter specifies the default format for fields specified in the
FIELDS parameter. If omitted, BI will be the default format for fields specified in the
FIELDS parameter. Note that this parameter has no effect on the optional INCLUDE or
OMIT parameter where field format must be specified explicitly for each field.

LRECL Parameter (Required)

The LRECL parameter is used to indicate the record length. The l1 value indicates the
maximum length record. For variable-length records, l4 is optional and indicates the short-
est length record. See “LENGTH Parameter (Required)” on page 2.219 for a detailed
description of permissible record lengths.

TYPE Parameter (Required)

The TYPE parameter indicates the record format. TYPE=F indicates fixed-length records;
TYPE=V indicates variable-length records.

BLKSIZE Parameter (Optional)

The BLKSIZE parameter is used to indicate the block size. See “BLKSIZE Parameter
(Optional)” on page 2.65 for a detailed description of this parameter.

BUFLIM Parameter (Optional)

The BUFLIM parameter places an upper limit of ‘n’ on the number of input buffers
SyncSort can create. The delivered default is 255. See “BUFLIM/NOCHAIN Parameter
(Optional)” on page 2.66 for a detailed description of this parameter.

BI CH FI PD ZD
BI X X
CH X X
FI X
PD X X
ZD X X
Chapter 2.  SyncSort Control Statements 2.91



JOINKEYS
BUFOFF Parameter (Optional)

The BUFOFF parameter can be specified for ASCII input to indicate the block prefix size of
variable-length ASCII records. The delivered default is 0. See “BUFOFF Parameter
(Optional)” on page 2.66 for a detailed description of this parameter.

BYPASS Parameter (Optional)

The BYPASS parameter can be specified for all non-VSAM files to instruct SyncSort not to
terminate abnormally when certain errors are encountered. See “BYPASS Parameter
(Optional)” on page 2.66 for a detailed description of this parameter.

CLOSE Parameter (Optional)

Specified for tape input files only, the CLOSE parameter indicates what action should be
taken at the end of file. The delivered default is RWD. See “CLOSE Parameter (Optional)”
on page 2.67 for a detailed description of this parameter.

Note: The (REL, RNONE, RALL, and Rnnn) options on the CLOSE parameter are not
supported on the JOINKEYS control statement.

CRDSIZE Parameter (Optional)

The CRDSIZE parameter specifies the decimal number of bytes of data per physical input
card. The delivered default is 80. See “CRDSIZE Parameter (Optional)” on page 2.68 for a
detailed description of this parameter.

DATA Parameter (Optional)

The DATA parameter specifies either EBCDIC or ASCII input. The delivered default is
EBCDIC. See “DATA=E/A Parameter (Optional)” on page 2.68 for a detailed description of
this parameter.

ENDREC Parameter (Optional)

The ENDREC parameter specifies the last record that will be processed from the input file.
See “ENDREC Parameter (Optional)” on page 2.69 for a detailed description of this param-
eter.

INCLUDE/OMIT Parameter (Optional)

The INCLUDE/OMIT parameter selects from the input file based on comparisons of the
contents of one or more fields within the record. See “INCLUDE/OMIT Control Statement”
on page 2.39 for a detailed description of this parameter.
SyncSort for z/VSE 3.7 Programmer’s Guide2.92



JOINKEYS
OPEN Parameter (Optional)

Specified for tape input files only, the OPEN parameter indicates what action should be
taken when the file is opened. The delivered default is RWD. See “OPEN Parameter
(Optional)” on page 2.74 for a detailed description of this parameter.

SKIPREC Parameter (Optional)

The SKIPREC parameter instructs SyncSort to skip a decimal number of records per input
file. See “SKIPREC Parameter (Optional)” on page 2.74 for a detailed description of this
parameter.

SORTED Parameter (Optional)

By default, SyncSort will presume that the records in the file are not presequenced in the
JOINKEYS FIELDS specified. If both files are already collated in the proper sequence
(sorted with the first field being the major field and the subsequent fields being progres-
sively less significant fields), the SORTED parameter can be specified to improve the appli-
cation’s performance.

If sorting is skipped for a pre-sorted file, SyncSort will sequence check that file according to
its JOINKEYS fields. If the sequence check fails, SyncSort will issue a critical error mes-
sage containing the file name.

SPAN Parameter (Optional)

The SPAN parameter instructs SyncSort to examine the input file for spanned records. See
“SPAN Parameter (Optional)” on page 2.74 for a detailed description of this parameter.

STARTREC Parameter (Optional)

The STARTREC parameter specifies the first record that will be processed from the input
file. See “STARTREC Parameter (Optional)” on page 2.75 for a detailed description of this
parameter.

STOPAFT Parameter (Optional)

The STOPAFT parameter specifies the number of records in a file for output. See
“STOPAFT Parameter (Optional)” on page 2.75 for a detailed description of this parameter.

SYSIPT Parameter (Optional)

The SYSIPT parameter specifies that the input should be read from a card reader. See
“SYSIPT Parameter (Optional)” on page 2.75 for a detailed description of this parameter.
Chapter 2.  SyncSort Control Statements 2.93



JOINKEYS
TOL Parameter (Optional)

The TOL parameter specifies that a warning code is to be tolerated for a VSAM input file.
See “TOL Parameter (Optional)” on page 2.75 for a detailed description of this parameter.

VOLUME Parameter (Optional)

The VOLUME parameter indicates the number of unlabeled or nonstandard tape input
files to be read. See “VOLUME Parameter (Optional)” on page 2.76 for a detailed descrip-
tion of this parameter.

VSAM Parameter (Optional)

The VSAM parameter indicates VSAM accessed input files. See “VSAM Parameter
(Optional)” on page 2.76 for a detailed description of this parameter.

Sample JOINKEYS Control Statements

In Figure 61, the JOINKEYS control statements specify the following:

• Records read from SORTIN1 (F1), which contains fixed-length 80 character records
with a block size of 800, will be filtered using the INCLUDE parameter to include all
records containing an ‘A’ in position 25.

• Records read from SORTIN2 (F2), which contains fixed-length 80 character records
with a block size of 1600, will be filtered using the OMIT parameter to include all
records containing a ‘B’ in position 1.

• The records from each of these files will be joined by their common keys (F1 15,10 and
F2 35,10) based on the JOIN and REFORMAT control statements. See “JOIN Control
Statement” on page 2.86 and “REFORMAT Control Statement” on page 2.224 for
further information.

JOINKEYS FILE=F1,FIELDS=(15,10,A),TYPE=F,LRECL=80,BLKSIZE=800,
INCLUDE=(25,1,CH,EQ,C'A')

JOINKEYS FILE=F2,FIELDS=(35,10,A),TYPE=F,LRECL=80,BLKSIZE=1600,
OMIT=(1,1,CH,EQ,C'B')

Figure  61. Sample JOINKEYS statements
SyncSort for z/VSE 3.7 Programmer’s Guide2.94



MERGE
MERGE Control Statement

The MERGE control statement is required for every merge application. The MERGE state-
ment can also define a copy or compare application.

The format of the MERGE control statement is illustrated below:

FIELDS Parameter (Required for a Merge)

The FIELDS parameter is required for a merge. It describes the control fields.

As many as sixty-four control fields can be specified. List the control fields in order of great-
est to least priority, with the primary control field (p1,l1,f1,o1) listed first, followed by pro-
gressively less significant fields (p2,l2,f2,o2,..., p64,l64,f64,o64).

Each field specified in the FIELDS parameter is identified by its position (p), length (l), for-
mat (f) and order (o).

  The position value indicates the first byte of the field relative to the begin-
ning of the input record after INREC and/or E32 processing, if specified,
have completed. Binary control fields can begin on any bit of a byte. When a
binary field does not begin on a byte boundary, you must specify the bit
number (0-7). For example, a position value of 21.3 refers to the 4th bit of
the 21st byte of the record.

l   The length value indicates the length of the control field. The length value
must be an integral number of bytes except for the length of a binary con-
trol field, which may be specified in bits. For example, a length value of 0.5
refers to a binary control field 6 bits long. For signed fields, the length value
must include the area occupied by the sign.

f   The format value indicates the data format. Refer to Table 16 for a list of
valid formats. If all the control fields have the same format, you can specify
the format value once by using the FORMAT=f subparameter.

Figure  62. MERGE Control Statement Format

MERGE
FIELDS=(p1,l1[,f1],o1... ,p64,l64 ,f64[ ],o64)[,FORMAT = f]
FIELDS=COPY
FIELDS=COMPARE[(n)] 

 
 

,BIAS=n[ ] ,CENTWIN=
80
s
f 

 
 
 
 

,EQUALS
,NOEQUALS

,FILES=n
,ORDER=n

,FILESOUT=
1
n 

 
 

,JOINWORK=
1
n 

 
 
Chapter 2.  SyncSort Control Statements 2.95



MERGE
o  The order value indicates how the field is to be collated. A indicates Ascend-
ing order. D indicates Descending order.

Valid Formats for Control Fields

The following table lists the valid formats for merge control fields.  

Code Data Format Acceptable field 
length in bytes 

AC EBCDIC characters are translated to their ASCII equivalents before 
sorting. 

1 to 256 

AQ Character. Sorts records according to an alternate sequence specified 
either in the ALTSEQ control statement or as an installation default. 

1 to 256 

ASL Leading separate sign. An ASCII + or - precedes a numeric field. One 
digit per byte. 

2 to 256 

AST Trailing separate sign. An ASCII + or - trails a numeric field. One digit 
per byte. 

2 to 256 

BI Binary. Unsigned. 1 bit to 4092 

CH Character. Unsigned. Characters are collated according to the 
EBCDIC collating sequence unless LOCALE has been used to chose an 
alternate set of collating rules based on a specific national language. 
LOCALE can be set on the OPTION statement or as an installation 
default. 

1 to 4092 

CLO or 
OL 

Leading overpunch sign. Hexadecimal F,C,E or A in the first 4 bits of 
your field indicates a positive number. Hexadecimal D or B in the first 
4 bits indicates a negative number. One digit per byte. CMP=CLC is 
forced. 

1 to 256 

CSF or 
FS 

Floating sign format. An optional leading sign may be specified imme-
diately to the left of the digits. If the sign is a -, the number treated as 
negative. For other characters, the number is treated as positive. Char-
acters to the left of the sign are ignored. 

1 to 16 

CSL or 
LS 

Leading separate sign. An EBCDIC + or - precedes a numeric field. 
One digit per byte. CMP=CLC is forced. 

2 to 256 

CST or 
TS 

Trailing separate sign. An EBCDIC + or - follows a numeric field. One 
digit per byte. CMP=CLC is forced. 

2 to 256 

FI Fixed point. Signed. 1 to 256 

FL Signed floating point. Normalized. 2 to 16 

PD Packed decimal. Signed. 1 to 256 

Table 16.  (Page 1 of 3)  Format Code Chart
SyncSort for z/VSE 3.7 Programmer’s Guide2.96



MERGE
PD0 Packed decimal. 2-8-byte packed decimal data with the first digit and 
trailing sign ignored. The remaining bytes are treated as packed deci-
mal digits. Typically PD0 is used with century window processing and 
Y2P format; Y2P processes the year, while PD0 processes month and 
day. 

2-8 

SFF Signed free format. Decimal digits (0-9) are extracted from right to left 
to form a number value. A character of - or ) found within the field will 
cause the value to be treated as a negative number. All other non-deci-
mal digit values in the field are ignored.

1 to 44

UFF Unsigned free format. Decimal digits (0-9) are extracted from right to 
left to form a number value. All non-decimal digit values in the field 
are ignored.

1 to 44

Y2B Binary. 2-digit, 1-byte binary year data treated as a 4-digit year by 
CENTWIN (century window) processing. 

1 

Y2C Character. 2-digit character year data treated as a 4-digit year by 
CENTWIN (century window) processing. Processing is identical to Y2Z 
fields. 

2 

Y2D Packed decimal. 2-digit, 1-byte packed decimal year data treated as a 
4-digit year by CENTWIN (century window) processing. 

1 

Y2P Packed decimal. 2-digit, 2-byte packed decimal year data. Of the four 
packed digits contained in the 2 bytes, the first digit and trailing sign 
are ignored; the two inner digits are treated as a 4-digit year by 
CENTWIN processing. 

2 

Y2S Character or zoned decimal. 2-digit, 2-byte valid numeric data treated 
as a 4-digit year by CENTWIN (century window) processing, as for 
Y2C and Y2Z. However, certain data is not treated as year data. Data 
with binary zeros (X'00') or a blank (X'40') in the first byte will be col-
lated before valid numeric year data for ascending order (after year 
data for descending order). Data with all binary ones (X'FF') in the 
first byte will be collated after valid numeric year data for ascending 
order (before year data for descending order). Zones are ignored, as for 
Y2C and Y2Z, except for data where the first byte begins with X'00', 
X'40' or X'FF'. 

2 

Y2T
Y2U
Y2V
Y2W
Y2X
Y2Y 

Full-date formats. Enable sorting or merging a variety of date fields. 
The formats can process dates ending or starting with year digits and 
non-date data commonly used with the dates. Two-digit years are 
interpreted according to the CENTWIN setting. In most cases, for CH, 
ZD, and PD date fields the full-date data formats are easier to use than 
the 2-digit year formats. For details on these formats see Table 17 on 
page 2.99. 

Code Data Format Acceptable field 
length in bytes 

Table 16.  (Page 2 of 3)  Format Code Chart
Chapter 2.  SyncSort Control Statements 2.97



MERGE
The following table describes the valid full-date formats: Y2T, Y2U, Y2V, Y2W, Y2X, and
Y2Y. 

Y2Z Zoned decimal. 2-digit, 2-byte zoned decimal year data treated as a 4-
digit year by CENTWIN (century window) processing. The zones are 
ignored. Processing is identical to Y2C fields. 

2 

ZD or 
CTO 

Zoned decimal. Trailing overpunch in the first 4 bits of the rightmost 
byte gives the sign. Hexadecimal F,C,E or A indicates a positive num-
ber. Hexadecimal D or B indicates a negative number. One digit per 
byte. CTO forces CMP=CLC. 

1 to 256 

Code Data Format Acceptable field 
length in bytes 

Table 16.  (Page 3 of 3)  Format Code Chart
SyncSort for z/VSE 3.7 Programmer’s Guide2.98



MERGE
 

For information on using the full-date formats, see “CENTWIN (Century Window) Process-
ing with MERGE: Full-Date Formats” on page 2.106, “CENTWIN (Century Window) Pro-
cessing with SORT: Full-Date Formats” on page 2.240, and “Converting Year Data with
Century Window Processing on INREC, OUTREC, INPFIL INREC or OUTFIL OUTREC:
Full-Date Data” on page 2.196.

Full-Date 
Format Date Format Date Form Example Date 

Form 
Length 
(bytes) 

Y2T CH, BI yyx yyq 3

yyxx yymm 4

yyxxx yyddd 5

yyxxxx yymmdd 6

Y2U PD yyx
(X'yyxs')

yyq 2

yyxxx
(X'yyxxxs')

yyddd 3

Y2V PD yyxx
(X'0yyxxs')

yymm 3

yyxxxx
(X'0yyxxxxs')

yymmdd 4

Y2W CH, BI xyy qyy 3

xxyy mmyy 4

xxxyy dddyy 5

xxxxyy mmddyy 6

Y2X PD xyy
(X'xyys')

qyy 2

xxxyy
(X'xxxyys')

dddyy 3

Y2Y PD xxyy
(X'0xxyys')

mmyy 3

xxxxyy
(X'0xxxxyys')

mmddyy 4 

Note: The following symbols are used in the table:
y   year digit (0-9)
x   non-year digit (0-9)
s   sign (hexadecimal 0-F)
0   unused digit 

Table 17.   Full-Date Formats
Chapter 2.  SyncSort Control Statements 2.99



MERGE
For information on the 2-digit year formats (Y2B, Y2C, Y2D, Y2P, Y2S, and Y2Z) plus the
related data format PD0), see “CENTWIN (Century Window) Processing with SORT: 2-
Digit Year Formats” on page 2.235 and “Converting Year Data with Century Window Pro-
cessing on INREC, OUTREC, INPFIL INREC or OUTFIL OUTREC: 2-Digit Year Data” on
page 2.194. 

Rules for Specifying Control Fields

• The sum of the lengths of all control fields cannot exceed 4092 bytes. When the
EQUALS option is specified, the sum of the lengths cannot exceed 4088 bytes.

• Control fields can be in contiguous or noncontiguous locations in the record.

• Remember that for variable-length records, the first 4 bytes are reserved for the Record
Descriptor Word, so the first byte of the data portion of the record is byte 5.

Comparing PD and ZD Control Fields

When you specify CMP=CPD, SyncSort uses the Compare Decimal (CP) instructions for the
comparison, which means that ZD data fields are packed first then compared. This method
has performance advantages. However, invalid PD data may cause a Data Exception abend
and program termination. Moreover, the integrity of ZD fields is only guaranteed when the
fields contain valid ZD data. Since the zone bits (the left most 4 bits of each byte) are lost
during PACKing, UNPKing the field only restores valid ZD data to its original state. For
example, blanks are transformed into ZD zeros and alphabetic character data that packs to
a valid PD field is converted into valid ZD data.

When CMP=CLC is in effect, SyncSort does not perform data validation and the integrity of
the output is maintained.

FIELDS=COPY (Required for a Copy)

Use FIELDS=COPY to copy input file(s). Other control statements such as
INCLUDE/OMIT, INREC, OUTREC and OUTFIL and user exit routines can be specified in
conjunction with a copy application, allowing you to edit and reformat the file(s) without
merging them.

The SUM control statement cannot be specified with FIELDS=COPY.

FIELDS=COMPARE (Required for a Compare)

Use FIELDS=COMPARE[(n)] to determine if two files are identical. When the COMPARE
feature is specified, SyncSort compares the files record for record, byte for byte, and the
sorting process is bypassed.
SyncSort for z/VSE 3.7 Programmer’s Guide2.100



MERGE
The value specified for 'n' indicates how many unequal pairs of record SyncSort should flag
before terminating the job. The diagnostic information provided distinguishes among three
cases:

• Fully identical files.

• Files of different sizes where the smaller file consists of the larger file’s first n records,
in the same order.

• Files with different records. In this case, dumps are produced that identify the first pair
of unequal records or as many pairs of unequal records as the 'n' value specifies.

The SUM control statement cannot be used with FIELDS=COMPARE.

BIAS Parameter (Optional)

The BIAS parameter is ignored.

CENTWIN Parameter (Optional)

The CENTWIN option defines a sliding or fixed 100-year window that determines the cen-
tury to which 2-digit year data belongs when processed by SORT, MERGE, INCLUDE,
INREC, OMIT, OUTREC, or OUTFIL OUTREC control statements.

There are two types of date data formats: 2-digit year and full-date:

• For details on CENTWIN processing and the 2-digit year formats with the MERGE
control statement, see “CENTWIN (Century Window) Processing with MERGE: 2-Digit
Year Formats” on page 2.102. For similar information for the SORT control statement,
see “CENTWIN (Century Window) Processing with SORT: 2-Digit Year Formats” on
page 2.235.

For information on using INCLUDE/OMIT with 2-digit year formats, see “Specifying
Standard Comparisons for Date Fields” on page 2.50.

For information on using the 2-digit year formats for OUTREC processing, see “Con-
verting Year Data with Century Window Processing on INREC, OUTREC, INPFIL
INREC or OUTFIL OUTREC: 2-Digit Year Data” on page 2.194 and “Sample OUTREC
Control Statements with CENTWIN Processing: 2-Digit Year Formats” on page 2.213.

• For details on CENTWIN processing and the full-date formats with the MERGE control
statement, see “CENTWIN (Century Window) Processing with MERGE: Full-Date
Formats” on page 2.106. For similar information for the SORT control statement, see
“CENTWIN (Century Window) Processing with SORT: Full-Date Formats” on page
2.240.
Chapter 2.  SyncSort Control Statements 2.101



MERGE
For information on using INCLUDE/OMIT with full-date formats, see “Specifying Stan-
dard Comparisons for Date Fields” on page 2.50 and “Sample INCLUDE/OMIT Control
Statements with Date Data” on page 2.60.

For information on using the full-date data formats for OUTREC processing, see “Con-
verting Year Data with Century Window Processing on INREC, OUTREC, INPFIL
INREC or OUTFIL OUTREC: Full-Date Data” on page 2.196.

EQUALS/NOEQUALS Parameter (Optional)

The EQUALS parameter insures that equal-keyed records are merged in the order of their
respective files. Equal-keyed records from the first input file are written before those from
the second input file, etc. The NOEQUALS parameter specifies that equal-keyed records
from different files be written in random order. EQUALS is the default.

The order of equal-keyed records within each input file is always preserved during a merge
whether or not the EQUALS parameter is specified.

When the EQUALS parameter is used with the SUM or DUPKEYS control statement, the
first of the equally-keyed records is retained with the sum; all other records are deleted
after the specified field(s) have been summed.

FILES/ORDER Parameter (Optional)

The FILES parameter or the ORDER parameter specifies the number of input files to be
merged. The 'n' value can be any number from 1 to 32. NOTE: When using the JOIN pro-
cess or the COMPARE process, two input files are assumed.

FILESOUT Parameter (Optional)

The FILESOUT parameter specifies the number of output files and is required when creat-
ing multiple output files. The 'n' value can be any number from 1 to 32. If the FILESOUT
parameter is not specified, one output file is assumed.

JOINWORK Parameter (Optional)

The JOINWORK parameter specifies the number of sortwork files that the join process will
use. The ‘n’ value can be any number from 1 to 9. If the join process is used and JOIN-
WORK is not specified, JOINWORK=1 is assumed

CENTWIN (Century Window) Processing with MERGE: 2-Digit Year Formats

The CENTWIN run-time or installation option acts on 2-digit year data that spans centu-
ries. CENTWIN treats 2-digit year data as a 4-digit year and sequences the data according
to the 4-digit representation.
SyncSort for z/VSE 3.7 Programmer’s Guide2.102



MERGE
For information on using full-date formats, see “CENTWIN (Century Window) Processing
with MERGE: Full-Date Formats” on page 2.106.

CENTWIN generates a century window (for example, 1950 through 2049) that determines
what century a two-digit year field belongs to. CENTWIN ensures that year data spanning
centuries will be sequenced correctly. Without CENTWIN processing, an ascending
sort/merge would sequence the year '01' before the year '98'. With CENTWIN processing,
the '01' field could be recognized as a twenty-first century date (2001) and would thus be
sequenced after '98' (1998).

For more information on specifying the CENTWIN option, see “CENTWIN Parameter
(Optional)” on page 2.101.

CENTWIN processing only applies to data defined as date data formats: Y2B, Y2C, Y2D,
Y2P, Y2S, and Y2Z.These data formats enable SyncSort to process 2-digit year fields as 4-
digit years. A related data format, PD0, can be used to process the month and day portions
of packed decimal date fields. To correctly specify date fields for CENTWIN SORT/MERGE
processing, you should be familiar with the CENTWIN-related data formats.

The following describes each of the 2-digit year formats and provides example MERGE con-
trol statements:

Note: For simplicity, the sample date fields in the example MERGE statements below
begin at byte 20. Also note that date data is always sorted in the following order: year (yy),
month (mm), day (dd).

• Y2B

This format is used to sequence 2-digit, 1-byte binary year data with CENTWIN pro-
cessing. The binary values are converted to decimal, and the two low order digits are
used as year data. Thus, while binary and decimal values range from 00 to 255, year
values range from 00 to 99. The relationship between binary, decimal and year values is
shown in the following table: 

• Y2C and Y2Z

These formats represent 2-digit, 2-byte year data in either character (Y2C) or zoned
decimal (Y2Z) format. Either Y2C and Y2Z formats can be used with data of the form

Binary Value Decimal Value Year Value 

X'00' to X'63' 00 to 99 00-99 

X'64' to X'C7' 100 to 199 00-99 

X'C8' to X'FF' 200 to 255 00-55 

Table 18.   Possible Values Representing Year Data with Y2B
Chapter 2.  SyncSort Control Statements 2.103



MERGE
X'xyxy' where y is a hexadecimal year digit 0-9 and x is hexadecimal 0 through F. Y2C
and Y2Z ignore the x digits, leaving yy, the 2-digit unsigned year representation.

Suppose you have a character or zoned decimal date field mmddyy that begins at byte
20. You can use either Y2C or Y2Z to process the yy field. As the following example
indicates, you could specify three sort keys to correctly sort this date:

The yy field (24,2) will be processed according to the century window setting. For exam-
ple, if CENTWIN=1945, the field yy=45 will be sequenced as if it were 1945, and yy=44
would be sequenced as if it were 2044. Thus, for an ascending sort, '44' would follow
'45'.

• Y2D

This format is used to sort 2-digit, 1-byte packed decimal year data with CENTWIN
processing. Use Y2D to extract the year data (yy) from packed decimal date fields.

For example, consider a 3-byte packed decimal data field defined as

yyddds

This field has the year (yy) in the first byte and the day (ddd) in bytes 2 and 3. The
packed decimal sign (s) would be in the last digit (half byte) of the third byte. To sort
this date field, which begins at byte 20, with 4-digit years processing, use the following
MERGE control statement:

• Y2P

This format is used to sort or merge 2-digit, 2-byte packed decimal year data with
CENTWIN processing. Use Y2P to extract the year data (yy) from packed decimal date
fields spanning two bytes. For example, a packed decimal date of the form yymmdd
would be stored as four bytes:

yymmdd=X'0yymmddC'

MERGE FIELDS=(24,2,Y2C,A, * sort yy field as 4-digit year
20,2,CH,A, * sort mm field
22,2,CH,A) * sort dd field 

Figure  63. Sample MERGE Control Statement with Y2C

MERGE FIELDS=(20,1,Y2D,A, * sorts 2-digit year (yy) as 4-digit year
21,2,PD,A) * sorts ddds as 3 digits (ddd) 

Figure  64. Sample MERGE Control Statement with Y2D
SyncSort for z/VSE 3.7 Programmer’s Guide2.104



MERGE
where the trailing C (sometimes F) is a positive sign and the leading 0 pads the field on
the left to make an even number of digits.

Notice that the components of the date span bytes:

0y ym md dC

Y2P handles this condition by ignoring the first and last half bytes of the 2-byte field
specification. Thus, Y2P processes 0yym as yy, ignoring the leading digit (0) and the
trailing digit (m) that is part of the month.

The following example uses Y2P to sort the year portion of the date field, which begins
at byte 20:

The field specification 20,2,Y2P treats X'0yym' as X'yy', and CENTWIN processing
sorts yy as a 4-digit year yyyy.

• PD0 

This format is used to sort or merge 2-8 byte packed decimal data. PD0 ignores the first
digit and trailing sign during processing. PD0 is normally used in conjunction with the
Y2P data format. The Y2P format is used to process the 2-digit year portion of a packed
decimal date field, while the PD0 format is used to process the month and day portion
of the field.

Although PD0 is typically used with Y2P, the PD0 format itself is not affected by
CENTWIN processing.

Consider the packed decimal date field used in the example above:

yymmdd=X'0yymmddC'

where the trailing C (sometimes F) is a positive sign and the leading 0 pads the field on
the left to make an even number of digits.

Notice that the components of the date span bytes:

0y ym md dC

The date can be processed as follows:

• Y2P processes the year component X'0yym' as X'yy'.

• PD0 processes the month and day components X'ymmddC' as X'mmdd'.

MERGE FIELDS=(20,2,Y2P,A) * sorts yy field as 4-digit year 

Figure  65. Sample MERGE Control Statement with Y2P
Chapter 2.  SyncSort Control Statements 2.105



MERGE
The following MERGE control statement can be used to sort the entire date with
CENTWIN processing:

• Y2S

This format is used to sequence 2-digit, 2-byte character or zoned decimal data. The
Y2S format is identical to Y2C and Y2Z for valid numeric data, but Y2S treats data
that begins with X'00', X'40' or X'FF' as non-year data. Thus, the Y2S format can distin-
guish records that have non-year data in the first byte of the year field, allowing such
records to be sorted differently from other records.

Y2S treats non-year data as follows:

• Data with binary zeros (X'00') or a blank (X'40') in the first byte will not have
century window processing applied to it. Instead, such data will be collated in
sequence, before valid numeric year data for ascending order or after the year
data for descending order.

• Data with all binary ones (X'FF') in the first byte will also not have century window
processing applied to it. Instead, such data will be collated after valid year numeric
data for ascending order or before the year data for descending order. Zones are
ignored, as for Y2C and Y2Z, except for data where the first byte begins with X'00',
X'40' or X'FF'.

As an example, suppose you want to preserve the input order of header and trailer records
at the start or end of the file, and your header/trailer records are identified by binary zeros
(X'00'), a blank (X'40') or binary ones (X'FF') in the first byte of the date field.

The Y2S format allows CENTWIN to identify the header/trailer records and treat them dif-
ferently from other records.

CENTWIN (Century Window) Processing with MERGE: Full-Date Formats 

SyncSort’s full-date formats enable you to sort or merge a variety of date fields. The full-
date formats are Y2T, Y2U, Y2V, Y2W, Y2X and Y2Y. These date formats can process dates
ending or starting with year digits:

• x...xyy (for example: qyy, mmyy, dddyy, or mmddyy)

• yyx...x (for example: yyq, yymm, yyddd, or yymmdd)

MERGE FIELDS=(20,2,Y2P,A, * Treats X'0yym' as X'yy'; sorts yy as yyyy

21,3,PD0,A) * Treats X'ymmddC' as X'mmdd' 

Figure  66. Sample MERGE Control Statement with PD0
SyncSort for z/VSE 3.7 Programmer’s Guide2.106



MERGE
The full-date formats also process non-date data commonly used with the dates. SyncSort
interprets two-digit years (yy) according to the century window specified by the CENTWIN
option. CENTWIN processing does not apply to non-date data.

In most cases, for CH, ZD, and PD date fields the full-date data formats are easier to use
than the 2-digit year formats. The 2-digit year formats can be more difficult because you
must divide the date into its components. This requires care, particularly for PD dates,
where date components (q, dd, mm, or yy) may span bytes or occupy only part of a byte. The
full-date formats, on the other hand, process such dates automatically. For information on
the 2-digit year formats (Y2B, Y2C, Y2D, Y2P, Y2S, and Y2Z), see Table 16 on page 2.96 and
“CENTWIN (Century Window) Processing with MERGE: 2-Digit Year Formats” on page
2.102.

The following two examples illustrate how you might use Table 16 on page 2.96 to develop
SORT control statements:

• Suppose you have a packed decimal (PD) date field of the form mmyy. To sort this field
correctly, you would use the Y2Y 3-byte format from the table. Thus, if the date field
starts in position 30, you would specify the following SORT control statement to sort
the date in descending order:

Any PD fields of all PD zeros or all PD nines will be processed automatically as non-
date data.

• Suppose you have a character (CH) date field of the form yymmdd. To sort this field
correctly, you would use the Y2T 6-byte format from the table. Thus, if the field starts
in byte 40, you would specify the following SORT control statement to sort in ascending
order:

Any CH zeros, CH nines, BI zeros, blanks and BI ones will be processed automatically
as non-date data.

Collating Sequence with Full-Date Formats 

For full-date formats, the yy component is always sorted first (treated as primary key). This
is so even when the yy is physically at the rightmost end of the field, as for Y2W, Y2X, and
Y2Y. For example, a 6-byte Y2W field, has the form xxxxyy. This is collated with the yy as
the primary key and xxxx as the secondary key. Because SyncSort automatically collates

SORT FIELDS=(30,3,Y2Y,D) 

Figure  67. Sample SORT Control Statement with Y2Y

SORT FIELDS=(40,6,Y2T,A) 

Figure  68. Sample SORT Control Statement with Y2T
Chapter 2.  SyncSort Control Statements 2.107



MERGE
the year character first, you don’t have to deal with yy manually, for example by using PD0
and Y2D.

It is important to understand that the xxxx component of a full-date format must be
designed to collate as a unit. Suppose you have the 6-byte Y2T field yyxxxx. If you collate
this field in ascending order, then yy collates first (the primary key) with xxxx collating sec-
ond (secondary key). Consider two possibilities:

• If yyxxxx is actually yymmdd, you will be sorting first by year, then month, then day.

• If yyxxxx is actually yyddmm, you will be sorting by year, then day, then month. In
most cases, sorting in this way would not be what you intended.

To correctly collate a date, the date components must be in an order suitable for collating.
For example mmddyy and yymmdd will collate correctly, but ddmmyy or yyddmm will not.
For date forms that will not collate correctly, you must use one of the 2-digit year formats
(Y2B, Y2C, Y2D, Y2P, Y2S, and Y2Z).

Table 16 on page 2.96 indicates the full-date formats that can be used with character (CH),
binary (BI) or packed decimal (PD) data. Note the recognized non-date values:

•  Character or binary (Y2T and Y2W full-date formats)
C'0...0' (CH zeros)
C'9...9' (CH nines)
Z'0...0' (ZD zeros)
Z'9...9 (ZD nines)
X'00...00' (BI zeros)
X'40...40' (blanks)
X'FF...FF' (BI ones) 

•  Packed (Y2U, Y2V, Y2X and Y2Y full-date formats)
P'0...0' (PD zeros)
P'9...9' (PD nines)

The following table shows the order for ascending collation when using full-date formats
with the CENTWIN option: 
SyncSort for z/VSE 3.7 Programmer’s Guide2.108



MERGE
For a descending sort, the collation order is reversed.

Other date formats (non-full-date), with the exception of Y2S, do not process non-date data;
their sort sequence for ascending sorts is simply lower century dates then higher century
dates. 

Sample MERGE Control Statements

This sample MERGE statement specifies three merge control fields:

• The first, or primary, control field begins in byte 1, is 5 bytes long, is in character
format and is to be merged in ascending order.

• The second control field begins in byte 10, is 2 bytes long, is in packed decimal format
and is to be merged in descending order.

• The third control field begins in the third bit of byte 30, is 4 bytes long, is in binary
format and is to be merged in ascending order.

This MERGE statement specifies a copy operation.

Full-Date Format Data Format Ascending Sort Sequence 

Y2T
Y2W

CH, BI BI zeros
Blanks
CH/ZD zeros
Lower century dates (e.g. 1980)
Higher century dates (e.g. 2010)
CH/ZD nines
BI ones 

Y2U
Y2V
Y2X
Y2Y

PD PD zeros
Lower century dates (e.g. 1980)
Higher century dates (e.g. 2010)
PD nines 

Table 19.   Collation Order for Full-Date Formats

MERGE FIELDS=(1,5,CH,A,10,2,PD,D,30.2,4,BI,A)

Figure  69. Sample MERGE Control Statement

MERGE FIELDS=COPY 

Figure  70. Sample MERGE Control Statement
Chapter 2.  SyncSort Control Statements 2.109



MODS
MODS Control Statement

The MODS control statement specifies a user exit routine and is required with an exit.
Refer to “Chapter 8. User Exit Programs” for a detailed explanation of how to specify exit
programs.

The format of the MODS statement is illustrated below.

PHn Parameter (Required)

The PHn parameter specifies the sort/merge phase in which the exit point occurs. Replace
the 'n' value with the phase number.

• PH1 specifies Phase 1. E11, E15, E17 and E18 exits occur in Phase 1.

• PH2 specifies Phase 2. E21, E25 and E27 exits occur in Phase 2. (Exits E21 and E27
are currently unsupported.)

• PH3 specifies Phase 3. E31, E32, E35, E37, E38 and E39 exits occur in Phase 3.

Only E15, E32, and E35 may be specified if the exit program is a COBOL/VSE, C/VSE, or
REXX/VSE program.

The PHn parameter also specifies the exit’s name, loading information and type (Enn).

name  When SyncSort is to load the exit program(s), all of the exits
that occur in a sort/merge phase must be included in one load-
able program and must have a unique name. This program
must be catalogued in the core image library. User-supplied
names are permitted, but they must follow standard VSE name
conventions.

If the exit program(s) are already loaded in the partition in
main storage, the name can be omitted. In that case, insert a
comma to indicate the missing name.

If an exit program is written in COBOL/VSE or C/VSE, it must
be compiled and link-edited into a loadable phase in a core
image library. Specify the name of the phase as the name of the
exit. COBOL/VSE exits or C/VSE exits must be loaded by
SyncSort. They cannot be pre-loaded in the main storage.

MODS PHn=(name,loading information,Enn1,...,Ennn) 

Figure  71. MODS Control Statement Format
SyncSort for z/VSE 3.7 Programmer’s Guide2.110



MODS
Note that COBOL/VSE and C/VSE exits require activation of
SyncSort LOCALE and COBOL/C Exit Facility as described in
the SyncSort for z/VSE Installation Guide.

If the exit program is written in REXX/VSE, it must be cata-
logued in one of the libraries in the PROC search chain. Specify
the name of the REXX/VSE exit here. SyncSort does not sup-
port a compiled REXX/VSE exit.

loading information  When SyncSort is to load the exit program(s), loading informa-
tion must be supplied in one of the following ways:

• If the exit program is a compiled COBOL/VSE program,
specify the word COBOL here.

Note that COBOL/VSE requires additional GETVIS storage
for run-time library loading. Allow at least 500K of GETVIS
when executing SyncSort with the COBOL/VSE user exit.

• If the exit program is a compiled C/VSE program, specify C
here.

Note that C/VSE requires additional GETVIS storage for
run-time library loading. Allow at least 4 MB of GETVIS
when executing SyncSort with the C/VSE user exit.

• If the exit program is a REXX/VSE program, specify the
word EXEC or REXX here.

• If none of the above conditions apply, do the following:

– Specify the length of the program(s) as a decimal num-
ber of bytes. The letter 'L' must precede the number, for
instance, L2500. This method of specifying loading
information is preferred because it allows SyncSort to
load the program(s) into the optimal location within the
partition. However, the program(s) must be either self-
relocating or a relocating loader must be present in the
system in order to use this method.

– Specify the absolute loading address of the program as
a decimal number. This must be a virtual address if
SyncSort is running in virtual mode and a real address
if SyncSort is running in real mode. To use space most
efficiently, place the program(s) at the highest address
within the sort/merge partition. This method of supply-
ing loading information must be used if the program(s)
cannot be relocated.
Chapter 2.  SyncSort Control Statements 2.111



MODS
Loading information can be omitted if the program(s) are
already loaded into main storage. In that case, insert a
comma to indicate the missing loading information.

type (Enn)  Specify the type of exit as E15, E32, E35, etc. Supply the exit
type for each exit used within a sort/merge phase. Replace Enn1

with the number of the first exit used, Enn2 with the number of
the second, etc. 

Only E15, E32, and E35 may be specified for COBOL/VSE exits,
C/VSE exits, and REXX/VSE exits.

Specifying Exits in More Than One Phase

If an application has exits in two or three sort/merge phases, specify the PHn parameter
two or three times. Include a comma between the specifications of the PHn parameter as
illustrated below:

Sample MODS Control Statement

This sample MODS statement specifies the following information:

• User exit points occur in Phase1 and Phase 3.

• The catalogued name of the Phase 1 routines is TEXAS1. The total length of the
routines is 1000 bytes. The exits are an E15 and an E18.

• The catalogued name of the Phase 3 routines is TEXAS2. The total length of the
routines is 2500 bytes. The exits are an E31, E35 and E38.

PH1=(information),PH2=(information),PH3=(information) 

Figure  72. Multiple Specifications of the PHn Parameter

MODS PH1=(TEXAS1,Ll000,El5,EI8),PH3=(TEXAS2,L2500,E31,E35,E38) 

Figure  73. Sample MODS Control Statement
SyncSort for z/VSE 3.7 Programmer’s Guide2.112



OMIT
OMIT Control Statement

Refer to “INCLUDE/OMIT Control Statement” on page 2.39 for an explanation of the OMIT
control statement.
Chapter 2.  SyncSort Control Statements 2.113



OPTION
OPTION Control Statement

The OPTION control statement specifies options for the application.

The format of the OPTION control statement is illustrated in Figure 74, below. Delivered
defaults are underlined, but may have been changed when SyncSort for z/VSE was
installed.

[,FILNM=(output1,...,output32,input1,...,input32,cccc)]

 

 

 

Figure  74. (Page 1 of 2)  OPTION Control Statement Format

OPTION

ADDROUT

ADDROUT= A
D 

 
  ,CALCAREA[ ] ,CENTWIN=

80
s
f 

 
 
 
 

,CHALT
,NOCHALT

,CMP=
CLC
CPD 

 
 

,CMPINOM= CLC
CPD
-------------

 
 
 

,DATE=

ADATE
EDATE
IDATE
STD 

 
 
 
 

,DEVIN=nn[ ] ,DEVOUT=nn[ ] ,DEVWK=
n
(n1,…,n3)
NO 

 
 

,DIAG[ ]

,DUMP
,NODUMP

,EQUALS
,NOEQUALS

,ERASE
,NOERASE

,GVSRANY=
n
nK
nM 

 
 

,GVSRLOW=
n
nK
nM 

 
 

,IGNRL4
,NOIGNRL4
,NOVLSHRT
,VLSHRT

[,INCOR=OFF] 

,JOINWK=jwork
,JOINWK=(jwork1,…,jwork9) ,KEYLEN=n[ ]

,LABEL=(output1,…,output32,input1,…,input32,work)[ ]

,LOCALE=
CURRENT
name
NONE

 
 
 
 
 

,NOINC[ ] ,NOTPMK[ ] ,NRECOUT=
RC0
RC4
RC16 

 
 
 
 

,NRECS=n[ ] ,OVFLO=
RC0
RC4
RC16 

 
 
 
 

,PRINT

,PRINT= 

ALL
CRITICAL
CRITPLUS
NONE 

 
 
 
 
SyncSort for z/VSE 3.7 Programmer’s Guide2.114



OPTION
ADDROUT Parameter (Optional)

Specify ADDROUT or ADDROUT=A if you want the output file to contain only the
addresses of the sorted input records. Specify ADDROUT=D if you want the output file to
contain only the sort control fields and the addresses.

The ADDROUT option is supported for sequential disk input files, VSAM managed SAM
files treated as VSAM, and VSAM files, except for VSAM KSDS-defined files with spanned
records. The ADDROUT option is not valid for FBA devices or for ASCII data. For SAM

[,SYMNLIB=(lib1.sublib1[,lib2.sublib2]...[,lib14.sublib14])]

Figure  74. (Page 2 of 2)  OPTION Control Statement Format

,ROUTE=

LAL
LOG
LST
nnn 

 
 
 
 

,RPS=
ON
OFF 

 
 

,SAMESDS= RECFMOUT
UNDEFOUT 

 
 

[,SKIPREC=n]
,SORTIN=input
,SORTIN=(input1,…,input32)

,SORTOUT=output
,SORTOUT=(output1,…,output32)

,SORTWK=work
,SORTWK=(work1,…,work9)

,SPANINC=
RC0
RC4
RC16

 
 
 
 
 

[,STOPAFT=n] 

,STORAGE=
n
nK
nM 

 
 

,STORAGE=(
n
nK
nM

,AUTO
,REAL
,NOVIRT
,VIRT 

 
 
 
 

)

,SYMNAMES=
lib.sublib.member.type
member.type
SYSIPT 

 
 

,SYMNOUT=

LAL
LOG
LST
NONE 

 
 
 
 

[,TP][,VERIFY] ,VSCORE=
n
nK
nM 

 
 

,VSCORET=
n
nK
nM 

 
 

[,WORKNM=work] ,XDUPLAB= S
U 

 
 

[,XDUPNM=filename][,XDUPOUT=nnn] ,XSUMLAB= S
U 

 
 

[,XSUMNM=filename][,XSUMOUT=nnn] ,NZDPRINT
,ZDPRINT
Chapter 2.  SyncSort Control Statements 2.115



OPTION
files, the addresses of the records will be given in the standard 10-byte binary form, which
follows: 

If VSAM or VSAM managed SAM files are used, the addresses are 5-byte binary numbers
in this format: 
 

Rules for Specifying the ADDROUT Parameter

• Input files must be on disk devices. Output files can be on any device.

• If input files are VSAM or VSAM managed SAM, the VSAM parameter must be
specified on the INPFIL control statement.

• Mixing SAM input with VSAM or VSAM managed input is not permitted with
ADDROUT.

• For SAM files, the output blocksize must be a multiple of 10 bytes if ADDROUT or
ADDROUT=A is specified and a multiple of 10 bytes plus the sum of the control fields if
ADDROUT=D is specified. For VSAM files, the output blocksize must be a multiple of 5

Fields Description 

M Input file number. (The values 0 to 31 will appear in this byte, indicating 
SORTIN1-SORTI32.)

BB Bin number. (Always 00.)

CC Cylinder number

HH Head number

R The number of the record or the record block on the input file track.

DD For fixed-length records, 00 for unblocked files or the byte displacement from 
zero of the record within the block.

For variable-length records, 04 for unblocked files or the byte displacement 
from zero of the record within the block. 

Table 20.   ADDROUT Field Descriptions for SAM Files

Fields Description 

X Input file number. (The values 1 to 32 will appear in this byte, indicating 
SORTIN1-SORTI32.)

YYYY Relative byte address (RBA) for key-sequenced (KSDS) or entry-sequenced 
(ESDS) data sets; relative record number for relative record data sets 
(RRDS). 

Table 21.   ADDROUT Field Descriptions for VSAM Files
SyncSort for z/VSE 3.7 Programmer’s Guide2.116



OPTION
bytes if ADDROUT or ADDROUT=A is specified and a multiple of 5 bytes plus the sum
of the control fields if ADDROUT=D is specified.

• If the output is written to tape, the output blocksize must be at least 18 bytes in length.
If the last block is shorter than 18 bytes, it will be padded with blanks to some multiple
of the record length so that the length is at least 18 bytes. For example, a too-short last
block for 15-byte records will be padded to 30 bytes.

• ADDROUT is ignored if any of the following control statements is specified: INREC,
OUTREC, SUM, MERGE, SORT FIELDS=COPY.

• If ADDROUT or ADDROUT=A is specified along with the KEYLEN parameter, the
output records will not contain keyed fields. If ADDROUT=D is specified with
KEYLEN, the keys will appear as part of the control fields rather than in count-key-
data format.

• The ADDROUT parameter cannot be used for FBA devices or for VSAM key-sequenced
(KSDS) input files that contain spanned records. ADDROUT addresses produced are
meaningless in these cases.

• The ADDROUT parameter cannot be used with ASCII data.

Specifying the RECORD Statement and the ADDROUT and KEYLEN Parameters

If specified, the l2 and l3 values of the RECORD statement must reflect the ADDROUT and
KEYLEN specifications. If an E35 exit changes the record length at output, the new length
must be specified as the l3 value. 

The chart below illustrates how to calculate the length values on the RECORD control
statement when the ADDROUT and KEYLEN parameters are specified. 
Chapter 2.  SyncSort Control Statements 2.117



OPTION
 

CALCAREA Parameter (Optional)

The CALCAREA parameter is used to obtain an estimate of the amount of work space
required for a particular sort. The SIZE parameter must be specified on the SORT control
statement to provide an accurate estimate of the size of the input file(s). The sort will ter-
minate after Phase 0 with a message estimating the number of tracks needed for the work
areas. Any control statement errors will also be noted.

FIXED-LENGTH RECORDS 

l1 l2 l3 l4 l5 

KEYLEN record length 
+ key length 

record length 
+ key length 

record length 
+ key length 

do not use do not use 

ADDROUT=A
(with SAM files) 

record length sum of control 
fields + 10 

10 do not use do not use 

ADDROUT=A
(with VSAM files) 

record length sum of control 
fields + 5 

5 do not use do not use 

KEYLEN and
ADDROUT=A 

record length 
+ key length 

sum of control 
fields + 10 

10 do not use do not use 

ADDROUT=D
(with SAM files) 

record length + 10 sum of control 
fields + 10 

do not use do not use 

ADDROUT=D
(with VSAM files) 

record length sum of control 
fields + 5 

sum of control 
fields + 5 

do not use do not use 

KEYLEN and
ADDROUT=D 

record length 
+ key length 

sum of control 
fields + 10 

sum of control 
fields + 10 

do not use do not use 

 VARIABLE-LENGTH RECORDS 

ADDROUT=A
(with SAM files) 

length of 
longest 
record + 4 

sum of control 
fields + 10 

10 length of 
shortest 
record + 4 

length of 
most frequent 
records + 4 

ADDROUT=A
(with VSAM files) 

length of 
longest 
record + 4 

sum of control 
fields + 5 

5 length of 
shortest 
record + 4 

length of 
most frequent 
records + 4 

ADDROUT=D
(with SAM files) 

length of 
longest 
record + 4 

sum of control 
fields + 10 

sum of control 
fields + 10 

length of 
shortest 
record + 4 

length of 
most frequent 
records + 4 

ADDROUT=D
(with VSAM files) 

length of 
longest 
record + 4 

sum of control 
fields + 5 

sum of control 
fields + 5 

length of 
shortest 
record + 4 

length of 
most frequent 
records + 4 

Table 22.   RECORD Length Values Chart with the ADDROUT and KEYLEN Parameters
SyncSort for z/VSE 3.7 Programmer’s Guide2.118



OPTION
When the CALCAREA parameter is specified, it is not necessary to mount any of the files
or supply any JCL beyond ASSGN statements. Remember, however, to complete the JCL
when you execute the job.

CHALT/NOCHALT Parameters (Optional)

If the CHALT parameter is specified, all CH format data will be treated as AQ format data
during sort, merge, include and omit operations. Specifying NOCHALT prevents conver-
sion. NOCHALT is also the delivered default.

CENTWIN Parameter (Optional)

The CENTWIN option defines a sliding or fixed 100-year window that determines the cen-
tury to which 2-digit year data belongs when processed by SORT, MERGE, INCLUDE,
INREC, OMIT, OUTREC or OUTFIL OUTREC control statements.

Date data formats (Y2B, Y2C, Y2D, Y2P, Y2S, Y2T, Y2U, Y2V, Y2W, Y2X, Y2Y, and
Y2Z)work with CENTWIN to treat a 2-digit year value as a 4-digit year. The date data for-
mats can be specified on three types of SyncSort control statements:

• On a SORT or MERGE control statement to correctly collate 2-digit years that span
century boundaries.

• On an OUTREC or OUTFIL OUTREC control statements to convert 2-digit years (yy)
to 4-digit output (yyyy).

• On an INCLUDE or OMIT statement to select records to be processed based on dates.

There are two types of date data formats: 2-digit year and full-date:

• For details on CENTWIN processing and the 2-digit year formats with the MERGE
control statement, see “CENTWIN (Century Window) Processing with MERGE: 2-Digit
Year Formats” on page 2.102. For similar information for the SORT control statement,
see “CENTWIN (Century Window) Processing with SORT: 2-Digit Year Formats” on
page 2.235.

For information on using INCLUDE/OMIT with 2-digit year formats, see “Specifying
Standard Comparisons for Date Fields” on page 2.50.

Figure  75. CENTWIN Parameter Format

CENTWIN=
80
f
s 

 
 
 
 
Chapter 2.  SyncSort Control Statements 2.119



OPTION
For information on using the 2-digit year formats for OUTREC processing, see “Con-
verting Year Data with Century Window Processing on INREC, OUTREC, INPFIL
INREC or OUTFIL OUTREC: 2-Digit Year Data” on page 2.194 and “Sample OUTREC
Control Statements with CENTWIN Processing: 2-Digit Year Formats” on page 2.213.

• For details on CENTWIN processing and the full-date formats with the MERGE control
statement, see “CENTWIN (Century Window) Processing with MERGE: Full-Date
Formats” on page 2.106. For similar information for the SORT control statement, see
“CENTWIN (Century Window) Processing with SORT: Full-Date Formats” on page
2.240.

For information on using INCLUDE/OMIT with full-date formats, see “Specifying Stan-
dard Comparisons for Date Fields” on page 2.50 and “Sample INCLUDE/OMIT Control
Statements with Date Data” on page 2.60.

For information on using the full-date data formats for OUTREC processing, see “Con-
verting Year Data with Century Window Processing on INREC, OUTREC, INPFIL
INREC or OUTFIL OUTREC: Full-Date Data” on page 2.196.

CENTWIN ensures that year data spanning centuries will be sequenced correctly. Without
CENTWIN processing, an ascending sort/merge would sequence the year '01' before the
year '98'. With CENTWIN processing, the '01' field could be recognized as a twenty-first
century date (2001) and would thus be sequenced after '98' (1998) for an ascending sort.

The CENTWIN option generates either a sliding or fixed century window, depending on
which form of CENTWIN is used: CENTWIN=s or CENTWIN=f.

• CENTWIN=s specifies a sliding century window that automatically advances as the
current year changes.

The variable s is a number 0 through 100. This value is subtracted from the current
year to set a century-window starting point. For example, in 1996 CENTWIN=20 would
create the century window 1976 through 2075. Ten years later in 2006, the century
starting year would slide to 1986 (2006 minus 20=1986) and the century window would
be 1986 through 2085.

The CENTWIN default is s=80, which represents 80 years prior to the current year as
the starting year of a century window.

• CENTWIN=f specifies a fixed century window. The variable f is a four-digit year (yyyy)
between 1000 and 3000.

For example, CENTWIN=1976 establishes a fixed starting year 1976 for the century
window 1976 through 2075. This window will not change as the current year changes.

The century window defined by CENTWIN controls processing of year-data. If a 2-digit
year field has a value less than the last 2 digits of the century window start year, the year
SyncSort for z/VSE 3.7 Programmer’s Guide2.120



OPTION
field will be treated as a year in the century following the year of the century window. All
other 2-digit years will be treated as in the same century as the century window start year.

For example, consider the century window 1950 through 2049. The 2-digit year fields would
be processed as follows:

Two-digit Field  Processed as Year
01   2001
49   2049
50   1950
99   1999

An ascending sort of the above sample data would produce output data in the following
sequence:

Two-digit Field  Processed as Year
50   1950
99   1999
01   2001
49   2049

CMP=CLC/CMP=CPD Parameter (Optional)

The CMP parameter specifies how PD and ZD collation fields will be compared.

When you specify CMP=CPD, SyncSort uses the Compare Decimal (CP) instructions for the
comparison, which means that ZD data fields are packed first then compared. This method
has performance advantages. However, invalid PD data may cause a Data Exception abend
and program termination. Moreover, the integrity of ZD fields is only guaranteed when the
fields contain valid ZD data. Since the zone bits (the left most 4 bits of each byte) are lost
during PACKing, UNPKing the field only restores valid ZD data to its original state. For
example, blanks are transformed into ZD zeros and alphabetic character data that packs to
a valid PD field is converted into valid ZD data.

When CMP=CLC is in effect, SynsSort does not perform data validation and the integrity of
the output is maintained.

Before specifying this parameter, find out whether the default setting (CMP=CPD) has
been changed at installation time.

CMPINOM=CLC/CMPINOM=CPD Parameter (Optional)

The CMPINOM parameter is similar to the CMP parameter, but affects the processing of
the INCLUDE/OMIT statement or OUTFIL INCLUDE/OMIT statement.

CMPINOM specifies the type of INCLUDE/OMIT comparison operation that will be used
when comparing packed and zoned decimal fields.
Chapter 2.  SyncSort Control Statements 2.121



OPTION
DATE Parameter (Optional)

The DATE parameter specifies the format of the current system date generated by the
&DATE parameter (see “HEADER1/HEADER2 Parameters (Optional)” on page 2.149 and
“TRAILER1/TRAILER2 Parameters (Optional)” on page 2.164. The date format may be set
as follows: ADATE signifies American date format (mm/dd/yy); EDATE signifies European
date format (dd/mm/yy); IDATE signifies ISO date format (yy/mm/dd); STD signifies gener-
ated system date format. In the absence of any user provided formatting information, the
standard default format, STD will appear as the date format.

DEVIN/DEVOUT Parameters (Optional)

The DEVIN/DEVOUT parameters identify the system’s tape input and output devices.
Each tape device is represented by 'nn', a two-digit code. Use Table 23 below to determine
the correct value to substitute for 'nn'. If the device is not manufactured by IBM, use the
IBM model number, which corresponds to the device’s transfer rate and density. Accurate
specification of tape input/output devices may improve sort performance. The DEVIN and
DEVOUT parameters are usually specified at installation time. 
SyncSort for z/VSE 3.7 Programmer’s Guide2.122



OPTION
 

DEVWK Parameter (Optional)

The DEVWK parameter overrides the default disk device types in SYNCMAC. All device
types specified must match device types used for SORTWK.

You may specify up to three device types, but you may not specify both FBA and CKD
devices (for example, models 3380 and 3370) in the same DEVWK parameter.

Specifying SORTWK device types can improve the performance of small sorts. However, do
not specify multiple SORTWK device types needlessly since this may have a negative
impact on performance.

When specifying device types, you may use a two- or three-digit 'n' value to represent the
device type, or you may use a four-digit IBM model number. See Table 24 below for the 'n'
values corresponding to particular model numbers.

To override the default in SYNCMAC and have SyncSort identify the SORTWK device
types directly, specify DEVWK=NO. 

nn
VALUES 

IBM
MODEL NO. TRACKS 

DENSITY

BPI KB/S

32
33
34
35
36
37
38
38
39
40
41
42
42
43
44
45
46
47
47
48
49
50
51 

3420-3
3420-3
3420-3
3420-5
3420-5
3420-5
3420-7
3430

3420-7
3420-7
3420-4
3420-6
3422

3420-8
3410(1-2)

3410-2
3410-3
3430

3410-3
8809
3480
3490
3590 

 9
 7
7
9
7
7
9
9
7
7
9
9
9
9
9
9
9
9
9
9
18
18
128 

1600
800
556

1600
800
556

1600
6250
800
556

6250
6250
6250
6250
800

1600
800

1600
1600
1600
38K
38K
---- 

120
60
41.7

200
100
69.5

320
312.5
160
111.2
470
780
780

1250
20
40
40
80
80

 20(160)
1500
3000
9000 

Table 23.   DEVIN and DEVOUT Values
Chapter 2.  SyncSort Control Statements 2.123



OPTION
Note:  If your device is not listed, use the value corresponding to the equivalent IBM model
number or the actual four-digit model number. 

DIAG Parameter (Optional)

Specify the DIAG parameter to produce a listing of diagnostic messages for each SyncSort
phase. If the application terminates successfully, additional PDUMPS will be provided. 

DUMP/NODUMP Parameter (Optional)

Specify the DUMP parameter to produce a dump if the application terminates before the
end of the sort or merge. Specify NODUMP if you do not want a dump. NODUMP is the
default if the program terminates prematurely in Phase 0 and DUMP is the default if the
program terminates prematurely in Phases 1, 2, or 3.

EQUALS/NOEQUALS Parameter (Optional)

Specify the EQUALS parameter to preserve the original order of records with equal control
fields. These records are written in the same order in which they are read. Specify
NOEQUALS if the original record order need not be preserved. The defaults are
NOEQUALS for a sort and EQUALS for a merge.

When EQUALS is used with the SUM control statement, the first of the equal-keyed
records is retained with the sum; all other records are deleted after the specified field(s)
have been summed.

The EQUALS and NOEQUALS parameters can also be specified on the SORT and MERGE
control statements.

ERASE Parameter (Optional)

Specify ERASE to erase the contents of the work files opened by the sort. (If an incore sort
is performed, no files are erased.)

n VALUE IBM MODEL NO. 

08 3380 

09 3310, 3370, 9332, 9335, 9336 

138 3390 

139 9345 

Table 24.   DEVWK Values
SyncSort for z/VSE 3.7 Programmer’s Guide2.124



OPTION
FILNM Parameter (Optional)

Specify the FILNM parameter to direct SyncSort for z/VSE to use filenames other than the
default names of SORTOUT, SORTOFx, SORTOxx, SORTINx, SORTIxx and SORTWKx.
The alternate filenames must also be used in the TLBL/DLBL job control statements. If the
FILNM parameter is not specified, the default names must be used.

Observe the following rules when specifying the FILNM parameter:

• The alternate filename can contain up to seven alphanumeric characters. The first
character must be a letter.

• If user-supplied filenames are used with some default filenames, the FILNM parameter
can be specified. Insert a comma to indicate when a default filename is being used. Or,
write out the default filename(s).

The default names for multiple SORTIN files are: SORTIN1, SORTIN2,
SORTIN3,...,SORTIN9, SORTI10,...,SORTI32.

The default names for multiple SORTOUT files are: SORTOUT, SORTOF2,
SORTOF3,...,SORTOF9, SORTO10,...SORTO32.

The default names for multiple SORTWK files are: SORTWK1, SORTWK2,
SORTWK3,...,SORTWK9. For SORTWK files, only the first four characters ('SORT') can be
changed by specifying the FILNM parameter.

The format of the FILNM parameter is illustrated below.

Insert commas to represent files for which alternate filenames are not specified. The
FILESOUT parameter of the SORT or MERGE control statement determines the number
of commas SyncSort for z/VSE expects before finding the filename of the first input file.

If cccc is specified to change the prefix of the sort work files and fewer than nine input files
are input to the sort/merge, you must insert commas to represent any files that are not
named. It is not necessary to insert commas to represent unused input filenames if cccc is
not specified and nine or more input files are used.

An example of the FILNM parameter is illustrated below.

FILNM=(output1,...,output32,input1,...,input32,cccc) 

Figure  76. FILNM Format

FILNM=(OUT78,,,,IN78,,,,,,SYNC) 

Figure  77. Sample FILNM Parameter
Chapter 2.  SyncSort Control Statements 2.125



OPTION
This example specifies one output file (OUT78), four input files (SORTIN1, SORTIN2,
SORTIN3 and IN78). The sort work files will be named SYNCWKx.

If additional default input filenames were to be used after IN78 and the SORTWK prefix
was not to be changed, it would not be necessary to code commas for the additional input
filenames. SyncSort would reference them as SORTIN5, SORTIN6, etc.

GVSRANY Parameter

This parameter instructs SyncSort to reserve at least the specified amount of 31-bit
GETVIS storage for the system to use. The default is 32K.

GVSRLOW Parameter

This parameter instructs SyncSort to reserve at least the specified amount of 24-bit
GETVIS storage for the system to use. The default is 128K.

INCOR=OFF Parameter (Optional)

The INCOR=OFF parameter instructs SyncSort for z/VSE not to perform an incore sort.

IGNRL4/NOIGNRL4/VLSHRT/NOVLSHRT Parameter (Optional)

The IGNRL4 parameter indicates that SyncSort for z/VSE should not check that the vari-
able-length input record is at least as large as the value of l4 specified by the user on the
RECORD statement (or computed by the sort if the l4 value was not specified). Specifying
NOIGNRL4 will override IGNRL4. NOIGNRL4 is the default. The VLSHRT parameter is
equivalent to the IGNRL4 parameter. The NOVLSHRT parameter is equivalent to
NOIGNRL4 parameter. Note that only one of these parameters can be issued on an
OPTION statement.

Figure  78. GVSRANY Parameter Format

GVSRANY=
n
nK
nM 

 
 

Figure  79. GVSRLOW Parameter Format

GVSRLOW=
n
nK
nM 

 
 
SyncSort for z/VSE 3.7 Programmer’s Guide2.126



OPTION
IGNRL4 overrides any default L4FILL set by SYNCMAC; no L4FILL padding will be done.
However, the IGNRL4 parameter can be overridden on a per file basis by the INPFIL
L4FILL parameter, which will allow padding for those specific files.

JOINWK Parameter (Optional)

See “SORTOUT, SORTIN, SORTWK, and JOINWK Parameters (Optional)” on page 2.133
for a description of this parameter.

KEYLEN Parameter (Optional)

The KEYLEN parameter indicates that keys precede the input records and all or part of
these keys are to be used as control fields and/or the keys are to be included in the output
record. The 'n' value represents the number of bytes in the key field.

If the input records have keys and the KEYLEN parameter is not specified, SyncSort will
not read the keys and it will not be possible to sort on these keys nor to have them written
to the output file.

The KEYLEN parameter is supported only for SAM files on CKD disk devices.

Rules for Specifying the KEYLEN Parameter

• Input and output files must be on CKD direct access devices unless the ADDROUT
parameter is also specified. If ADDROUT is specified, output can be on any device type,
but the keys will not be written in count-key-data format. The keys will be included in
the output record if all or part of the key is specified as a control field.

• Keys are treated as the first n bytes of the input records. Replace n with the number of
bytes of the key field.

• Every record must have one key.

• Keys may extend up to 255 bytes, but all keys must be the same length.

• Key fields must be included in the length values of the RECORD statement. The l1

value must be specified; l2 to l5 may be calculated by default. Refer to Table 22 on page
2.118 under the ADDROUT parameter to determine how to calculate these values.

• Input records must be fixed-length and unblocked. If the input records are variable-
length and/or blocked, write an E15 exit routine to unblock them and/or restructure
them to fixed-length so that the KEYLEN parameter can be used.

• If the BLKSIZE parameter is specified on the INPFIL and OUTFIL statements, the
BLKSIZE value must be the length of one record plus the length of the key. If these
parameters are not specified, the correct value will be calculated by default.
Chapter 2.  SyncSort Control Statements 2.127



OPTION
• Key length must be taken into account when specifying the positions of control fields.

• The entire key, or part of it, can be used as a sort/merge control field.

LABEL Parameter (Optional)

The LABEL parameter specifies what types of labels the files have:

S - Standard labels (the default)

N - Nonstandard labels

U - Unlabeled

The files must be described in order (output, input, work) with the output files and the
input files listed in sequence. Output files and input files can have different types of labels
but work files must all have the same label type. Since all disk files must be labeled, U is
ignored if specified and the default (S) is used instead.

An 'S' designation can be omitted for a standard labeled file within a series, but a comma
must be inserted to represent the missing specification. If the files at the end of the series
all have standard labels, it is not necessary to insert commas for them. Simply close the
parenthesis after the last N or U value; for example, LABEL=(S,N,N,U).

Be sure that the number of specifications, either explicit or by default, equals the total
number of output, input and work files. 

If any information is added to a standard label, it is no longer considered standard and
must be coded as 'N'. Any files with 'N' labels must be opened and closed by an exit program
designed to process labels. (Refer to “Chapter 8. User Exit Programs”.) Standard labeled
and unlabeled files will be processed by SyncSort.

LOCALE Parameter (Optional)

LOCALE controls cultural environment processing, allowing you to choose an alternate set
of collating rules based on a specified national language.

Figure  80. LOCALE Parameter Format

LOCALE=
NONE
CURRENT
name 

 
 
 
 
SyncSort for z/VSE 3.7 Programmer’s Guide2.128



OPTION
For SORT/MERGE processing, the alternate collating applies to character (CH) fields. For
INCLUDE/OMIT comparison processing, the alternate collating applies to character fields
and to character constants and hexadecimal constants compared to character fields.

SyncSort employs the callable services of IBM’s Language Environment for VSE (LE/VSE)
to collate data in a way that conforms to the language and conventions of a selected
LOCALE. A LOCALE defines single and multi-character collating rules for a cultural envi-
ronment. Numerous pre-defined LOCALEs are available.

NONE, the default setting for LOCALE, results in normal EBCDIC collating.

CURRENT directs SyncSort to use the LOCALE active when SyncSort begins.

name is the name of a supplied or user-defined LOCALE that is to be active during
SyncSort processing. A LOCALE name may be up to 32 characters and is not case sensitive.
The LOCALE active just before SyncSort processing begins will be restored when SyncSort
processing completes.

Notes: 

1. Make sure the LIBDEF chain gives SyncSort access to the library that contains the
loadable LOCALE routines. For the IBM supplied LOCALEs, these are the dynamically
loadable routines in the IBM LE/VSE library. For more information, see the IBM
publication LE/VSE Customization Guide.

2. If LOCALE processing is used for fields specified in a SORT or MERGE control
statement with variable-length records, then SyncSort will terminate if a variable-
length input record does not contain all SORT/MERGE control fields.

3. Although LOCALE processing can improve performance compared to external collating
routines, it should be used only when necessary. LOCALE processing can significantly
degrade SORT/MERGE and INCLUDE/OMIT performance compared to normal
collating.

4. LOCALE processing requires additional GETVIS storage to support the use of the IBM
LE/VSE facilities. For those jobs that use LOCALE, a total partition size of at least 5M
bytes is recommended to accommodate the storage needs of LE/VSE.

5. LOCALE cannot be used with CHALT, VLSHRT, or IGNRL4.

6. LOCALE processing of fields may greatly expand the size of a field.
Chapter 2.  SyncSort Control Statements 2.129



OPTION
NOERASE Parameter (Optional)

The NOERASE parameter is ignored.

NOINC Parameter (Optional)

The NOINC parameter instructs SyncSort not to perform an incore sort and is equivalent
to INCOR=OFF.

NOTPMK Parameter (Optional)

The NOTPMK parameter specifies that a tape mark not be written before the first record of
each volume of an unlabeled tape output file. The default is to write tape marks on each
volume of an unlabeled tape output file. The NOTPMK parameter can also be specified on
the OUTFIL control statement.

This parameter is ignored for disk files or labeled tape files.

NRECS Parameter (Optional)

The NRECS parameter specifies the number of records to be sorted or merged. These will
be the first 'n' records after E15, INCLUDE/OMIT, and SKIPREC processing, if specified,
have completed.

The NRECS parameter is identical to the STOPAFT parameter.

NRECOUT Parameter (Optional)

The NRECOUT parameter overrides the NRECOUT installation option. The NRECOUT
option indicates how SyncSort will proceed when it does not write any output records.

RC0 issues a return code of 0 and continues processing.

RC4 issues a return code of 4 and continues processing.

RC16 issues a return code of 16 and terminates processing.

If more than one return code is generated by SyncSort, the highest is issued.

NRECOUT is ignored when OUTFIL EXIT is indicated.

Figure  81. NRECOUT Parameter Format

NRECOUT=
RC0
RC4
RC16 

 
 
 
 
SyncSort for z/VSE 3.7 Programmer’s Guide2.130



OPTION
OVFLO Parameter (Optional)

The OVFLO parameter overrides the OVFLO installation option. OVFLO indicates how
SyncSort will proceed when BI, FI, PD, or ZD fields overflow during DUPKEYS or SUM
processing.

RC0 causes SyncSort to continue processing if overflow is encountered and to issue mes-
sage WER207 with return code 0. DUPKEYS or SUM processing continues. The record pair
that caused the overflow condition is not summed and the records are not deleted.

RC4 is identical to RC0 except that SyncSort issues return code 4.

RC16 causes SyncSort to terminate when an overflow condition is encountered and to issue
message WER207 with return code 16.

If more than one return code is generated by SyncSort, the highest is issued.

PRINT Parameter (Optional)

The PRINT parameter determines which sort/merge messages are displayed.

PRINT/PRINT=ALL  All sort/merge messages are displayed, including end of phase,
end of SyncSort program and error messages.

PRINT=NONE  No messages are printed on the printer. Critical messages, how-
ever, appear on the console.

PRINT=CRITICAL  Only critical messages (A-level severity) are displayed. These
messages will appear on the printer and/or console and will
indicate premature termination of the SyncSort program.

PRINT=CRITPLUS  Displays the same messages as CRITICAL, plus the WER227
and WER228 messages.

PRINT=ALL is the default for a JCL-initiated sort/merge. PRINT=CRITICAL is the default
for an invoked sort/merge.

Specify the OPTION statement as the first control statement if you want
PRINT=CRITICAL, PRINT=CRITPLUS, or PRINT=NONE to suppress the printing of con-
trol card images.

Figure  82. OVFLO Parameter Format

OVFLO=
RC0
RC4
RC16 

 
 
 
 
Chapter 2.  SyncSort Control Statements 2.131



OPTION
ROUTE Parameter (Optional)

The ROUTE parameter directs the routing of messages. ROUTE=LST directs all messages
to the printer (SYSLST). If the JCL has assigned a console to the application, critical mes-
sages will also appear on the console. ROUTE=LOG directs all messages to the console
(SYSLOG). ROUTE=LAL directs all messages both to the printer and to the console. The
default is ROUTE=LST for a JCL-initiated application, and ROUTE=LOG for a program-
invoked application.

ROUTE=nnn directs all messages to the disk device whose logical unit is specified by nnn,
which can be any value from 000 to 221. ROUTE=nnn is accepted only when SyncSort is
invoked by another program. If ROUTE=nnn is specified for a JCL-initiated sort/merge, it
is ignored and the default (ROUTE=LST) is used. Specifying ROUTE=nnn allows the user
to separate SyncSort’s messages from the report being produced by the invoking program.

When ROUTE=nnn is specified, the following statements must be included in the JCL of
the program that is invoking the sort/merge.

The 'nnn' specified in the EXTENT statement must correspond to the logical unit number
specified in the ROUTE=nnn parameter. 

RPS Parameter (Optional)

The RPS parameter determines whether SyncSort for z/VSE uses rotational position sens-
ing, an operating system facility that frees the channel during part of an I/O operation. If
RPS is active on the system, RPS=ON causes SyncSort to utilize the feature and RPS=OFF
causes SyncSort to ignore the feature. RPS=OFF is the default.

The use of RPS can enhance system performance by improving throughput.

SAMESDS Parameter (Optional)

The SAMESDS parameter is ignored.

SKIPREC Parameter (Optional)

The SKIPREC parameter instructs SyncSort to skip a decimal number of 'n' records before
the input file is sorted or copied. The input bypasses the skipped records before E15 and
INCLUDE/OMIT processing, if specified, take place.

The SKIPREC parameter can be specified for a merge only when FIELDS=COPY is speci-
fied.

// DLBL SYSLST,'file-id'...
// EXTENT SYSnnn,... 

Figure  83. JCL Statements for the ROUTE=nnn Parameter
SyncSort for z/VSE 3.7 Programmer’s Guide2.132



OPTION
For SKIPREC=n, the maximum value of n is 2G-1 (2147483647).

SORTOUT, SORTIN, SORTWK, and JOINWK Parameters (Optional)

The SORTOUT, SORTIN, SORTWK, and JOINWK parameters override the default sym-
bolic unit numbers that SyncSort uses to logically connect the sort/merge program with
input, output, and work devices. The symbolic user-supplied numbers assigned in the JCL
ASSGN and EXTENT statements must be specified in the SORTIN, SORTOUT, SORTWK,
and JOINWK parameters. However, if the standard default numbers are used, these
parameters can be omitted.

Symbolic numbers can be selected from SYSnumbers SYS001 to SYS254. Specify only the
numeric part of the SYSnumber. Leading zeros can be omitted.

The following example illustrates how the SORTOUT, SORTIN, SORTWK, and JOINWK
parameters can be specified.

This example assumes that SyncSort is reading input and writing output (see Table 45 on
page 5.4) and that FILES=3, WORK=3, and JOINWORK=2 have been specified. This
example illustrates the following:

• SYS011 has been assigned to the output file, overriding the default value of SYS001.

• SYS016 has been assigned to the first input file, overriding the default of SYS002. The
second and third input files represented by commas default to SYS003 and SYS004.

• The default values for SORTWK begin with O+I+1 where O is the number of output
files and I is the number of input files. The first two sort work files, represented by
commas, default to SYS005 and SYS006. SYS010 has been assigned to the third sort
work file, overriding the default of SYS007.

• The default values of JOINWK begin with N+I+W+1 where N is the number of output
files, I is the number of input files and W is the number of sortwork files. SYS012 has
been assigned to the first sort joinwork file, overriding the default SYS008.

If a direct access work file with multi-extents is being used and DA has been coded in the
DLBL statement, it is not necessary to supply symbolic unit numbers for all the extents.
Simply provide a single number for the first extent and SyncSort will access all the extents.

SORTOUT=11,SORTIN=(16,,),SORTWK=(,,10),JOINWK=(12) 

Figure  84. Sample SORTOUT, SORTIN, SORTWK, and JOINWK Parameters
Chapter 2.  SyncSort Control Statements 2.133



OPTION
SPANINC Parameter (Optional)

The SPANINC parameter overrides the SPANINC installation option. SPANINC indicates
how SyncSort responds when one or more incomplete spanned records are encountered in a
variable spanned input data set.

RC0 causes SyncSort to delete incomplete spanned records it encounters and issue message
WER217 with return code 0. Processing continues for complete records.

RC4 is identical to RC0 except that SyncSort issues return code 4.

RC16 causes SyncSort to terminate when incomplete spanned records are encountered and
issue message WER217 with return code 16.

If more than one return code is generated by SyncSort, the highest is issued.

SyncSort terminates with return code 16 if a spanned record cannot be assembled, as when
segment length is less than 4 bytes. In such cases, SPANINC is not relevant.

STOPAFT Parameter (Optional)

The STOPAFT parameter specifies the number of records to be sorted or copied. These will
be the first 'n' records after E15, INCLUDE/OMIT, and SKIPREC processing, if specified,
have completed.

The STOPAFT parameter can be specified for a merge only when FIELDS=COPY is speci-
fied.

For STOPAFT=n, the maximum value of n is 2G-1 (2147483647).

Figure  85. SPANINC Parameter Format

SPANINC=
RC0
RC4
RC16

 
 
 
 
 
SyncSort for z/VSE 3.7 Programmer’s Guide2.134



OPTION
STORAGE Parameter (Optional)

The STORAGE parameter specifies the amount of main storage to be used and indicates
whether SyncSort can perform private CCW translation.

If the SIZE parameter is specified on the EXEC statement and the STORAGE parameter is
specified on the OPTION statement, SyncSort uses the lower figure.

If the figure specified for the STORAGE parameter is larger than the partition size in
which the sort/merge is to operate, SyncSort will use whatever space is available within the
partition.

In addition to the above rules, the VSCORE parameter (after DSMVSE adjustment)—an
internal default that can be changed at installation time—specifies an absolute upper
bound to the main storage the sort will be allowed to run in. (See “VSCORE Parameter
(Optional)” on page 2.137.) 

SyncSort can execute from the GETVIS area. If you want to load SyncSort into the GETVIS
area, specify the SIZE parameter on the invoking program’s EXEC statement, issue the
GETVIS macro, and use the STORAGE=n or STORAGE=nK parameter to specify an
equivalent amount of storage.

STORAGE=n  
STORAGE=nK
STORAGE=nM  

Define the amount of main storage as a decimal
number of bytes, K bytes (K=1024), or M bytes
(M=1024x1024).

STORAGE=(n,VIRT)
STORAGE=(nK,VIRT)
STORAGE=(nM,VIRT)  

Instruct SyncSort not to perform private CCW
translations.

STORAGE=(n,NOVIRT)
STORAGE=(nK,NOVIRT)
STORAGE=(nM,NOVIRT)  

Allow SyncSort to perform a private CCW translation
according to the real storage allocated to a partition;
equivalent to STORAGE=(,REAL).

STORAGE=(,REAL)  Instructs SyncSort to perform a private CCW
translation according to the real storage allocated to a
partition. The translation will be done based on the
user’s real storage definition specified by the ALLOCR
or SETPFIX command.

STORAGE=(,AUTO)  Instructs SyncSort to perform a private CCW
translation according to what SyncSort considers
optimal based on both the operating system and sort
performance.

Table 25.  Storage Parameter Options
Chapter 2.  SyncSort Control Statements 2.135



OPTION
SYMNAMES Parameter (Optional)

The presence of the SYMNAMES parameter indicates that the SyncSort dictionary feature
is to be used to map symbolic names in control statements to proper position, length, and
format values or constants. See “Chapter 3. Using the SyncSort Dictionary Feature” for
information on using a SyncSort dictionary.

If this parameter is used, the OPTION control statement must be placed first, before all
other SyncSort control statements.

The SYMNAMES parameter specifies where the dictionary statements are located. It may
include a complete library name, sublibrary name, member name, and member type for a
library member that contains the dictionary statements. Alternatively, SYMNAMES may
include just the member name and the member type. In that case, SyncSort will find the
library member by using the library search chain supplied by the SYMNLIB parameter.

Dictionary statements may also be supplied along with SyncSort control statements by
specifying SYMNAMES=SYSIPT. In this case, place the dictionary statements immediately
after the OPTION control statement (but before all other non-dictionary SyncSort control
statements). Use a statement that starts with /* in column 1 and 2 to indicate the end of
the dictionary statements. SYMNAMES=SYSIPT is not valid when SyncSort is invoked
from within a program.

SYMNLIB Parameter (Optional)

The SYMNLIB parameter specifies a set of library.sublibrary pairs that constitute a library
search chain used in library searches when the SYMNAMES parameter only specifies a
member name and member type. As many as fourteen library/sublibrary pairs may be spec-
ified. See “Chapter 3. Using the SyncSort Dictionary Feature” for information on using a
SyncSort dictionary.

The SYMNLIB parameter overrides the installation default value of SYMNLIB.

SYMNOUT Parameter (Optional)

The SYMNOUT parameter specifies where the dictionary listing is to be printed. The list-
ing contains the original dictionary statements and the content of the SyncSort dictionary
derived from them. The listing should be reviewed and verified during initial setup or after
a change was made to a dictionary.

• SYMNOUT=LST directs the listing to the printer (SYSLST).

• SYMNOUT=LOG directs the listing to the console (SYSLOG).

• SYMNOUT=LAL sends the listing to both the printer and the console.

• SYMNOUT=NONE suppresses the listing.
SyncSort for z/VSE 3.7 Programmer’s Guide2.136



OPTION
In all cases, critical error messages from SyncSort dictionary processing will also appear at
the console. See “Chapter 3. Using the SyncSort Dictionary Feature” for information on
using a SyncSort dictionary.

The SYMNOUT parameter overrides the installation default value of SYMNOUT.

TP Parameter (Optional)

The TP parameter is ignored.

VERIFY Parameter (Optional)

The VERIFY parameter is ignored.

VSCORE Parameter (Optional)

The VSCORE parameter is an internal default parameter that establishes the upper bound
of virtual storage below the 16-megabyte line in which SyncSort will run. Refer to the
SyncSort for z/VSE Installation Guide for this default value and for instructions on how to
change it permanently.

If you want to change the VSCORE value for a single job, specify the VSCORE parameter
on the OPTION statement to override the default setting. Specify the amount of main stor-
age to be used as an upper limit as a decimal number of n, nK (K=1024) bytes, or nM bytes.

VSCORET Parameter (Optional)

VSCORET sets the maximum amount of storage below and above the 16-megabyte virtual
storage line that SyncSort can use when it is running in a partition that has above the 16-
megabyte line virtual storage.

The optional VSCORET parameter is used to override the installation default value of
VSCORET. Refer to the SyncSort for z/VSE Installation Guide for instructions on how to
change the installation default value.

If the value specified for VSCORET is less than the value of VSCORE, SyncSort will auto-
matically raise it to that of VSCORE.

WORKNM Parameter (Optional)

The WORKNM parameter changes the four-character prefix of all SORTWK names from
the default value, SORT. For example, if WORKNM=SYNC is specified, all sort work files
will be named SYNCWKx instead of SORTWKx.

Note: For a JOIN application, the WORKNM parameter will also change the four character
prefix of all the JOINWORK files in the same way.
Chapter 2.  SyncSort Control Statements 2.137



OPTION
XDUPLAB Parameter (Optional)

The XDUPLAB parameter specifies the label type for the XDUP output file:

S  Standard labels (the default)

U  Unlabeled

XDUPNM Parameter (Optional)

The XDUPNM parameter overrides the default filename for the XDUP output file, which
contains records deleted by DUPKEYS processing. This alternate filename must also be
used in the DLBL/TLBL job control statements.

An alternate filename can consist of up to seven alphanumeric characters and the first
character must be a letter. The delivered default filename for XDUP output is SORTXDP.

XDUPOUT Parameter (Optional)

The XDUPOUT parameter overrides the default symbolic logic unit number that SyncSort
uses to connect the sort/merge program to the device on which the XDUP output will be
written. This alternate symbolic logic unit must also be used in the ASSIGN and EXTENT
job control statements for the XDUP output file.

The alternate symbolic logic unit number must be a number from 1 to 254 that represents
SYSnumbers SYS001 to SYS254. The available SYSnumbers are limited by the number of
logical units generated in your VSE Supervisor. Specify only the numeric part of the SYS-
number. Leading zeros can be omitted.

The delivered default symbolic logic unit number for XDUP output is N+I+W+1, where N is
the number of output files not including XDUP output, I is the number of input files, and W
is the number of sort work files.

For example, if a sort job has one output file, one input file, one sort work file, and specifies
the XDUP parameter in the DUPKEYS statement, then the default symbolic logic unit
numbers for the output file, input file, sort work file, and the XDUP output file, are
SYS001, SYS002, SYS003, and SYS004, respectively.

XSUMLAB Parameter (Optional)

The XSUMLAB parameter specifies the label type for the XSUM output file:

S  Standard labels (the default)

U  Unlabeled
SyncSort for z/VSE 3.7 Programmer’s Guide2.138



OPTION
XSUMNM Parameter (Optional)

The XSUMNM parameter overrides the default filename for the XSUM output file, which
contains records deleted by SUM processing. This alternate filename must also be used in
the DLBL/TLBL job control statements.

An alternate filename can consist of up to seven alphanumeric characters and the first
character must be a letter. The delivered default filename for XSUM output is SORTXSM.

XSUMOUT Parameter (Optional)

The XSUMOUT parameter overrides the default symbolic logic unit number that SyncSort
uses to connect the sort/merge program to the device on which the XSUM output will be
written. This alternate symbolic logic unit must also be used in the ASSIGN and EXTENT
job control statements for the XSUM output file.

The alternate symbolic logic unit number must be a number from 1 to 254 that represents
SYSnumbers SYS001 to SYS254. The available SYSnumbers are limited by the number of
logical units generated in your VSE Supervisor. Specify only the numeric part of the SYS-
number. Leading zeros can be omitted.

The delivered default symbolic logic unit number for XSUM output is N+I+W+1, where N is
the number of output files not including XSUM output, I is the number of input files, and W
is the number of sort work files.

For example, if a sort job has one output file, one input file, one sort work file, and specifies
the XSUM parameter in the SUM statement, then the default symbolic logic unit numbers
for the output file, input file, sort work file, and the XSUM output file, are SYS001,
SYS002, SYS003, and SYS004, respectively.

ZDPRINT/NZDPRINT Parameter (Optional)

This option specifies if positive ZD summation results from the SUM or DUPKEYS control
statement are to be converted to printable numbers. ZDPRINT enables conversion to print-
able format. NZDPRINT, the default, prevents the conversion.

This option determines whether the sign byte of a positive ZD field summed by the SUM or
DUPKEYS control statement will be converted to a printable format. More precisely, the
option specifies whether the zone of the last digit should be changed from a hexadecimal C
to a hexadecimal F.

Figure  86. ZDPRINT/NZDPRINT Parameter Format

ZDPRINT
NZDPRINT 

 
 
Chapter 2.  SyncSort Control Statements 2.139



OPTION
Sample OPTION Control Statement

This sample OPTION statement specifies the following:

• All sort messages are to be printed.

• Messages are to be routed to the printer. If a console has been assigned to the
application, critical messages will also appear on the console.

• The amount of memory to be used by SyncSort for z/VSE is 512K.

• Only 1000 records are to be sorted or merged.

OPTION PRINT=ALL,ROUTE=LST,STORAGE=512K,STOPAFT=1000 

Figure  87. Sample OPTION Control Statement
SyncSort for z/VSE 3.7 Programmer’s Guide2.140



OUTFIL
OUTFIL Control Statement

The OUTFIL control statement describes the output file or files. It is required to accom-
plish the following tasks:

• Create multiple output files

• Use the SortWriter facility

• Reformat records after E35 processing

• Convert variable-length records to fixed-length, or fixed-length records to variable-
length.

The OUTFIL parameters associated with each of these tasks are listed below:

• Creating multiple output files: FILES, INCLUDE/OMIT, OUTREC

• Using the SortWriter facility: HEADER1, HEADER2, LINES, TRAILER1, TRAILER2,
SECTIONS, NODETAIL

• Reformatting records: OUTREC, CONVERT, FTOV, VTOF, BUILD, IFTHEN,
IFOUTLEN, OVERLAY

In addition, the OUTFIL statement is required with VSAM output, in which case the
ESDS, KSDS or RRDS parameter must be specified.

The format for the OUTFIL statement is illustrated below.

[,DISK] [,DUMP] [,ENDREC=n] [,ESDS] [,EXIT]

[,HEADER1=(field1[,field2]...)] [,HEADER2=(field1[,field2]...)]

Figure  88. (Page 1 of 2) OUTFIL Control Statement Format

OUTFIL BLKSIZE=n[ ] ,BUFLIM=
255
n 

 
 

,BUFOFF= 0
4
---

 
 
  ,CARDS=c

,PAGES=p

[,CISIZE=n] ,CLOSE=
RWD
NORWD
UNLD 

 
 
 
 

CONVERT,
VTOF, 

 
 

,FILES=
1
n
---

(1,2,…,32) 
 
 

,FNAMES=
filename
(filename1[,filename2]…) 

 
 

[,FREEOUT] ,FTOV[ ]
Chapter 2.  SyncSort Control Statements 2.141



OUTFIL
For more information on the OUTFIL processing sequence, see “OUTFIL Processing
Sequence” on page 2.21.

The Multiple Output Capability 

Use the OUTFIL control statement to create multiple files without making multiple passes
through the input data.

• Each output file can be directed to the same output device, or each file can be directed
to a different output device.

• Each output file can contain the same records, or each file can contain different records.

• The records in each output file can be identically formatted, or the records in each file
can be uniquely formatted.  

[,PRINT] [,PUNCH] [,REPEAT=n] [,REUSE] [,RRDS]

[,SECTIONS=(field1[,field2]...)] [,SPAN] [,SPLIT] [,SPLITBY=n]

[,STARTREC=n] [,TAPE] [,TOL]

[,TRAILER1=(field1[,field2]...)] [,TRAILER2=(field1[,field2]...)][,VLFILL=f]

Figure  88. (Page 2 of 2) OUTFIL Control Statement Format

,INCLUDE
,OMIT 

 
 

=
ALL
(comparison)
NONE 

 
 

[,KSDS] ,LINES=

n
SYSTEM
ANSI
(ANSI,n)
(ANSI,SYSTEM) 

 
 
 
 
 
 

[,LRECL=n] [,NODETAIL] [,NOTPMK] ,OPEN=
RWD
NORWD 

 
 

[,OUTPUT] 
OUTREC ,
BUILD,
OVERLAY , 

 
 

field1[,field2 ]…( )=

IFTHEN, subparm( )= ,IFTHEN = subparm( )[ ]… ,IFOUTLEN = n[ ] 
 
 
 
 

 

SAMPLE,( )= n
n,m( ) 

 
 

[,SAVE]

,VLTRIM=b[ ] 
SyncSort for z/VSE 3.7 Programmer’s Guide2.142



OUTFIL
The SortWriter Capability

The SortWriter capability of OUTFIL can produce completely formatted reports. The report
writing features, which can be specified differently for each output file, can accomplish
these tasks:

• Arrange the report into pages.

• Divide the report into sections.

• Format headers and trailers for sections, pages and the complete report.

• Convert and edit numeric data.

• Provide TOTAL and SUBTOTAL capabilities for data fields in a specific part of a
report. Provide MIN, MAX, AVERAGE, SUBMIN, SUBMAX and SUBAVG capabilities
for data fields in a specific part of a report.

• Provide COUNT and SUBCOUNT capabilities for records in a specific part of a report.

Once formatted, output files can be assigned to any tape, disk, or unit record device for sub-
sequent printing.

BLKSIZE Parameter (Optional)

The BLKSIZE parameter specifies the blocksize of the output records.

If the BLKSIZE parameter is omitted, either by leaving it out of the OUTFIL statement or
omitting the OUTFIL statement itself, SyncSort will generate unblocked records.

Do not specify the BLKSIZE parameter for VSAM output.

Follow these guidelines in specifying the BLKSIZE value:

fixed-length EBCDIC and ASCII records:  
BLKSIZE must be a multiple of the fixed record length (l3).

variable-length EBCDIC records:  
BLKSIZE must be greater than or equal to the length of the
longest record (l3, which includes the Record Descriptor Word)
plus 4 bytes (for the Block Descriptor Word).

variable-length ASCII records:  
BLKSIZE must be greater than or equal to the length of the
longest record (l3, which includes the Record Descriptor Word)
plus the BUFOFF value, if specified.
Chapter 2.  SyncSort Control Statements 2.143



OUTFIL
The l3 value represents the maximum output record length after E35 and OUTREC pro-
cessing.

See Table 2 on page 2.23 for the maximum BLKSIZE values allowed for different output
devices.

BUFLIM Parameter (Optional)

The BUFLIM parameter places an upper limit of 'n' on the number of output buffers
SyncSort can create. Specify n as a decimal number between 1 and 255. The delivered
default is 255.

In the vast majority of cases, SyncSort for z/VSE needs no external assistance in choosing
the number of buffers. Therefore, avoid specifying this parameter because using it inappro-
priately may seriously degrade performance.

BUFOFF Parameter (Optional)

The BUFOFF parameter can be specified when TYPE=D is specified on the RECORD con-
trol statement to indicate variable-length ASCII data. For variable-length ASCII data, the
'n' value can be 0 or 4. If the BUFOFF parameter is not specified, it defaults to 0. For fixed-
length ASCII data, this parameter should either be omitted or, if specified, the n value
must be 0.

For variable-length data only, when BUFOFF=4 is specified, the 4-digit ASCII blocksize is
inserted at the beginning of each block.

When BUFOFF=n is specified, the BLKSIZE value must include the BUFOFF value.

BUILD Parameter (Optional)

The BUILD parameter is identical to the OUTREC parameter of the OUTFIL Control
Statement.  See “OUTREC Parameter (Optional)” on page 2.158 for a description of this
parameter.

CARDS/PAGES Parameter (Optional)

The CARDS parameter sets an upper bound, 'c', on the number of cards to be punched. The
PAGES parameter sets an upper bound, 'p', on the number of logical pages (not physical
pages) to be printed. Specify only one of these two parameters. The choice must reflect the
type of device to which the output file has been assigned.

The value specified for CARDS cannot exceed 16,777,215. The delivered default values of
32,767 are assigned only if the PRINT or PUNCH parameters are explicitly specified in the
OUTFIL control statement. Specifying 0 for either the CARDS or PAGES parameter causes
the sort/merge to terminate abnormally if there is any output.
SyncSort for z/VSE 3.7 Programmer’s Guide2.144



OUTFIL
To use the PAGES parameter to limit the number of physical pages printed, define the log-
ical page using LINES=n with an 'n' value no greater than the line capacity of the paper
used.

CISIZE Parameter (Optional)

The CISIZE parameter can be used to override the default control interval size selected by
VSAM for implicitly-defined VSAM-managed SAM output files. For other types of output
files, this parameter is ignored.

Specify n as a decimal number between 512 and 32768. The actual control interval size of
the file created by VSAM will be rounded up to be a multiple of 512 (or 2048), which is
larger than the record length (for unblocked files) or the blocksize (for blocked files).

CLOSE Parameter (Optional)

Specified for tape output files only, the CLOSE parameter indicates what action should be
taken at end of file.

CLOSE=RWD, the default, specifies that all tape output volumes be rewound at end of file.
CLOSE=NORWD specifies that output volumes should not be rewound. CLOSE=UNLD
specifies that all output volumes be rewound and unloaded.

The CLOSE parameter is ignored if the output files are on direct access devices.

CONVERT/VTOF Parameter (Optional)

The CONVERT parameter is used to convert variable-length records to fixed-length. In
order to use CONVERT, OUTREC, BUILD, OVERLAY, or IFTHEN must also be specified
as an OUTFIL parameter. In addition, the following control parameters may not be speci-
fied when CONVERT is used:

• OPTION ADDROUT

• RECORD TYPE=VS, VBS, F or D

• OUTFIL SPAN or EXIT

• MERGE FIELDS=COMPARE

• INPFIL DATA=A

The record length and padding characters of the resulting fixed-length output are deter-
mined by the OUTREC (or BUILD, OVERLAY, or IFTHEN) parameter and the pres-
ence/absence of the LRECL parameter on the OUTFIL control statement. The following
rules are followed:
Chapter 2.  SyncSort Control Statements 2.145



OUTFIL
• If LRECL=n is specified, the output record length is n. Otherwise, the output record
length is the sum of the field lengths in the OUTREC parameter list. 

• Data records that are shorter than the sum of the field lengths in the OUTREC
parameter list are padded to that length with binary zeros; report header and trailer
records are padded with blanks. If this length is less than the length specified by the
LRECL parameter, additional padding of records is done with blank characters.

When CONVERT is used, all OUTREC fields specifying a position value must also specify a
length value.

Bytes 1 through 4 of the input record contain the RDW of the record. This field does not
need to be copied into the OUTRECed output record when using CONVERT.

DISK Parameter (Optional)

The DISK parameter specifies that the output file be stored on a disk device. The DISK
parameter is required if report writing parameters are specified and the output file(s) are
to be directed to a disk device.

DUMP Parameter (Optional)

The DUMP parameter specifies that SYSLST output be printed in both character and
hexadecimal format.

ENDREC Parameter (Optional) 

The ENDREC parameter specifies the last record that will be processed for this output file.
The “n”th record sorted will be the last record eligible to be written to the output file. For
ENDREC=n, the maximum value of n is 2G-1 (2147483647).

The count of sorted records is done before OUTFIL INCLUDE/OMIT processing, if speci-
fied, takes place. (For example, if the first 100 sorted records are to be deleted by
INCLUDE/OMIT, the next sorted record is still counted as record number 101. If
ENDREC=90, then NO records would be written to the output file.)

If STARTREC is also specified for this output file, the ENDREC value must be greater than
or equal to the STARTREC value.

ESDS Parameter (Optional)

Specify the ESDS parameter when the VSAM output data set is to be entry-sequenced.
(Entry-sequenced data sets are the VSAM equivalent of SAM data sets.) This parameter is
required when creating an entry-sequenced data set. Do not specify the BLKSIZE parame-
ter for an ESDS data set.
SyncSort for z/VSE 3.7 Programmer’s Guide2.146



OUTFIL
When the ESDS parameter is specified, all other OUTFIL parameters that do not relate to
VSAM are ignored except for the EXIT parameter, which will override the ESDS parame-
ter.

EXIT Parameter (Optional)

The EXIT parameter specifies that an E35 exit will process the output file(s), including
label processing, volume positioning, file opening and closing and handling of the output.
Specify exit E35 in the MODS control statement.

If the EXIT parameter is specified, all other OUTFIL parameters are ignored. Parameters
specified before the EXIT parameter are read, checked and flagged for errors, but no action
is taken.

FILES Parameter (Optional)

The FILES parameter connects the OUTFIL statement with one or more output files. This
parameter is required when creating multiple output files.

The format of the FILES parameter is illustrated below:

Use the numbers 1 through 32 to represent the output file(s). The number 1 designates the
output file as SORTOUT; the numbers 2 through 9 designate the output files
SORTOF2,...,SORTOF9, and 10 to 32 designate the output files as SORTO10,...SORTO32,
respectively. If the FILES parameter is not specified, the default is FILES=1 and the entire
output is directed to SORTOUT.

The FILES value cannot exceed the FILESOUT specification on the SORT or MERGE con-
trol statement.

When two or more output files have identical OUTFIL specifications (e.g., identical
HEADER1s, TRAILER2s, etc.), only one OUTFIL statement is required. If, however, the
files have different OUTFIL specifications, a separate OUTFIL statement is required for
each file. 

FNAMES Parameter (Optional)

The FNAMES parameter connects the OUTFIL statement with one or more output files.
Note that FNAMES and FILES are mutually exclusive parameters. If both FNAMES and
FILES parameters are specified for the same output file, it will cause a syntax error.

Figure  89. FILES Parameter Format Chart

FILES=
1
n
---

(1,2,...,32) 
 
 
Chapter 2.  SyncSort Control Statements 2.147



OUTFIL
The format of the FNAMES parameter is illustrated below:

Use FNAMES to specify a filename for an output file. The name can be up to 7 characters
long. A DLBL/TLBL statement must be present for this filename. The file names specified
with the FNAMES parameter must be either the default filenames (SORTOUT,
SORTOF2,...) or a filename specified using the FILNM parameter of the OPTION state-
ment.

FREEOUT Parameter (Optional)

The FREEOUT parameter is ignored.

FTOV Parameter (Optional)

The FTOV parameter converts fixed-length input records to variable-length output records.
FTOV can be used either with or without the OUTREC parameter. When FTOV is used
with the OUTREC parameter, the variable-length record is created from the specified fields
of the fixed-length record. When FTOV is not used with the OUTREC parameter, the vari-
able-length record is created from the whole fixed-length record. The maximum record
length is passed from INPFIL.

FTOV can be used with the VLTRIM parameter to delete pad bytes from the end of a
record.

The output record format produced by OUTFIL FTOV depends on the BLKSIZE parameter
except for VSAM output.

When the BLKSIZE parameter is not specified for the OUTFIL FTOV, SyncSort will gener-
ate unblocked output records.

The TYPE for the RECORD control statement must have a fixed-length record format (for
example, TYPE=F). In addition, the following control parameters may not be specified
when OUTFIL FTOV is used:

• OUTFIL EXIT

• RECORD TYPE=V, D, VS, VBS

• MERGE FIELDS=COMPARE

• OUTFIL VTOF, CONVERT

Figure  90. FNAMES Parameter Format Chart

FNAMES=
filename
filename1 filename2 … filename32,,,( ) 

 
 
SyncSort for z/VSE 3.7 Programmer’s Guide2.148



OUTFIL
Note: FTOV cannot be used with CONVERT or VTOF. If the input record is variable-
length, FTOV, if specified, will be ignored. FTOV can be used with the VLTRIM parameter
to delete pad bytes at the end of a record.

FTOV With BLKSIZE Parameter

When the BLKSIZE parameter is specified for the OUTFIL FTOV, SyncSort will generate
an output record format of VB or VBS. Make sure the BLKSIZE specified is big enough to
contain the largest variable-length output record to be produced. 

Note: Do not specify the BLKSIZE parameter for VSAM output.

FTOV With OUTREC Parameter

When FTOV is used with the OUTREC parameter, the variable-length record is created
from the specified fields of the fixed-length record. The maximum record length is the refor-
matted OUTREC record length plus 4. 

HEADER1/HEADER2 Parameters (Optional)

The SortWriter facility provides three types of headers:

• HEADER1, the report header

• HEADER2, the page header

• HEADER3, the section header

HEADER1 and HEADER2 are parameters of the OUTFIL control statement; HEADER3 is
a subparameter of OUTFIL’s SECTIONS parameter. Refer to “SPLIT Parameter
(Optional)” on page 2.161 for an explanation of how to specify HEADER3.

The three types of headers function independently of each other. Each serves a different
purpose:

• HEADER1 provides a header or a possible title page for the entire report. It appears
only once at the beginning of the report on its own page.

• HEADER2 provides a page header or a running head for each page defined by the
LINES parameter. It appears at the beginning or top of each page.

• HEADER3 provides a section header that appears at the beginning of each specified
section and, optionally, at the top of each page (or directly below any HEADER2).

Figure 91 illustrates the format for HEADERs. The field entries represent the subparame-
ters that can be specified for each HEADER.
Chapter 2.  SyncSort Control Statements 2.149



OUTFIL
Figure 92 illustrates and defines the available subparameters. Each subparameter consti-
tutes a separate field of the HEADER.

c:  Use the c: subparameter to define the column in which the specified
field should begin.

n  Used in conjunction with the X, 'literal string', and / subparameters,
the n value defines the number (1-255) of repetitions for each entry.

X  Use the X subparameter to define the number of spaces. It must be
coded to the immediate right of the n value, if specified. For more
than 255 spaces, two or more nX values should be specified.

[C]'literal string'  Use the C'literal string' or 'literal string' subparameter to define a
literal string. Specify the number of repetitions by coding n immedi-
ately before it.

/  Use the / subparameter to indicate the end of a line, force a carriage
return and separate text lines of a header. Multiple slashes (coded /
/ ... / or n/) can be used to specify leading, trailing or embedded
blank lines. At the beginning or end of a header, n/ produces n blank
lines. Within a header, n/ produces n-1 blank lines.

p,l  Use the p,l subparameter to include a field (or fields) within a
record in the header. For a HEADER1, the field(s) will be extracted

HEADER1=(field1[,field2] ...)
HEADER2=(field1[,field2] ...)
HEADER3=(field1[,field2] ...) 

Figure  91. HEADER Parameter Format Chart

Figure  92. HEADER Subparameters Format Chart

[c] 

[n] X
[n] C'literal string'
[n] 'literal string'
[n] /
p,l
&DATE=(abcd)
DATE=(abcd)
&DATENS=(abc)
DATENS=(abc)
&TIME=(nnc)
TIME=(nnc)
&TIMENS=(nn)
TIMENS=(nn)
&PAGE
PAGE 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SyncSort for z/VSE 3.7 Programmer’s Guide2.150



OUTFIL
from the first record in a file; for a HEADER2, the field(s) will be
extracted from the first record on a page; for a HEADER3, the
field(s) will be extracted from the first record in a section. p is the
starting position of the field in the record; l is the length in bytes (1-
255) of the field. Any number of fields can be specified. (Contiguous
fields within a record can be specified with a single p,l entry, but
their combined length cannot exceed 255 bytes.) The specified
field(s) must be a character or alphanumeric string or a number in
zoned decimal format, and the field cannot be converted or edited.

If any variable-length record contains only a portion of the bytes in
a specified field, those bytes will be included in the header and
blanks will be substituted for the missing bytes.

&DATE=(abcd)  The &DATE or DATE subparameter specifies the current gener-
ated system date and requires 8 bytes. abcd indicates that you
arrange the year, month and day in any order. d is the separator
character. Use M to denote month, D to denote day, and Y to denote
the last two characters of the year. You can specify 4 as an alterna-
tive to Y if you want the year expressed in four digits (1996 as
opposed to 96).

For example, if the current date is 4/24/96 and &DATE=(DMY.), the
output date is 24.04.96. With the same example, if &DATE=(4MD-),
the output date is 1996-04-24.

The date format represented by &DATE may also be set by the
DATE parameter on the OPTION statement as follows: ADATE sig-
nifies American date format (mm/dd/yy); EDATE signifies Euro-
pean date format (dd/mm/yy); IDATE signifies ISO date format
(yy/mm/dd). If omitted, system generated date (STD) is the default.

&DATENS=(abc)  Specify &DATENS or DATENS when no separator is desired.

&TIME=(nnc)  The &TIME or TIME subparameter specifies the current step start
time, which is the time that the current execution of SyncSort
began.

nn can be either 12 or 24. 24 specifies twenty-four hour clock with
the format hhcmmcss and requires 8 bytes. 12 specifies twelve hour
clock with the format hhcmmcss xx. xx can be either am or pm. c
denotes the separation character. When nn=12, &TIME requires 11
bytes.

&TIMENS=(nn)  Specify &TIMENS or TIMENS when no separator is desired.
Chapter 2.  SyncSort Control Statements 2.151



OUTFIL
&PAGE  The &PAGE or PAGE subparameter sequentially numbers logical
pages of the output report and requires 6 bytes. It produces a 6-
digit sequential page number, right-justified with leading zeros
suppressed. &PAGE is ignored for HEADER1.

Rules for Specifying HEADER Subparameters

Observe the following guidelines when you specify HEADER subparameters:

• Separate subparameters with commas, except for /, where commas are optional.

• Enclose literals in single quotes.

• Specify blank fields of n bytes as nX.

• Short headings (i.e., headings specified with fewer blanks than the logical record length
(LRECL) of the output record) are automatically padded on the right with blanks.

• If a heading exceeds the logical record length (LRECL) of the output record, specify the
LRECL parameter to expand the output record length so that the output record length
is at least as long as the longest header. (See “LRECL Parameter (Optional)” on page
2.157.)

IFOUTLEN Parameter (Optional)

The IFOUTLEN parameter overrides the maximum record length, which is automatically
set by the IFTHEN parameter, and changes it to a specified value.  The IFOUTLEN param-
eter may only be used in conjunction with the IFTHEN parameter.

The IFOUTLEN parameter automatically makes the following changes to the record to
match the new length. A record longer than n is truncated to n. A fixed-length record
shorter than n is padded with blanks to reach a length of n. For fixed-length blocked output
records, the blocksize must be a multiple of n.

IFTHEN Parameter (Optional)

The IFTHEN parameter uses conditional logic which enables you to reformat records based
on specified criteria. Multiple IFTHEN parameters may be specified within the same con-
trol statement and are processed sequentially.  See “IFTHEN Parameter (Optional)” on
page 2.205 for a complete description of this parameter.

INCLUDE/OMIT Parameter (Optional) 

Specify the INCLUDE or OMIT parameter to indicate which records are to be included in
or omitted from each output file. These parameters let you create multiple output files that
contain different records. The default is to include all sorted or merged records in the out-
put file. The format for the INCLUDE/OMIT parameter is illustrated below:
SyncSort for z/VSE 3.7 Programmer’s Guide2.152



OUTFIL
See “INCLUDE/OMIT Control Statement” on page 2.39 for the detailed format of a compar-
ison. The FORMAT=f parameter, which is permitted on the INCLUDE/OMIT control state-
ment, is not permitted on the INCLUDE/OMIT parameter. Field formats must be specified
on a field-by-field basis.

The comparison determines which records are included or omitted. When no records are to
be included in the output file(s), for example, when running a test, specify either
INCLUDE=NONE or OMIT=ALL.

Note: The location within the data records of the fields specified in the INCLUDE/OMIT
parameter will be based on the formatting of the record after processing by an E15/E32
exit, the INREC control statement, the OUTREC control statement, and an E35 exit, but
before processing due to the OUTREC and/or report writing parameters of the OUTFIL
control statement.

KSDS Parameter (Optional)

The KSDS parameter specifies that the VSAM output data set is to be key-sequenced. The
records must be sorted into ascending key sequence on the primary VSAM key. (Key-
sequenced data sets are the VSAM equivalent of ISAM data sets.) This parameter is
required when creating a key-sequenced output data set.

Do not specify the BLKSIZE parameter for a KSDS data set.

When the KSDS parameter is specified, all other OUTFIL parameters that do not relate to
VSAM are ignored except for the EXIT parameter, which will override the KSDS parame-
ter.

LINES Parameter (Optional)

Use the LINES parameter to define the logical pages constituting a report. The pages can
be defined in three ways:

• Using the carriage control characters automatically supplied by SyncSort for z/VSE.

• Using ANSI control characters supplied by the user.

• Using a combination of the above two methods.

Figure  93. INCLUDE/OMIT Parameter Format

INCLUDE
OMIT 

 
 

=
ALL
(comparison)
NONE 

 
 
Chapter 2.  SyncSort Control Statements 2.153



OUTFIL
Regardless of which method is selected, the number of lines defining a logical page must be
equal to or greater than the total number of lines, including blank lines, required for all
HEADER2, HEADER3, TRAILER2 and TRAILER3 entries plus at least one record.

The format of the LINES parameter is illustrated below:

LINES=n

If LINES=n is specified, paging is automatic and carriage control characters are added to
the beginning of each record by SyncSort. Specify 'n' as a value from 0 to 255. If the output
file is assigned to a printer, the default is LINES=60. If the output file is assigned to a card
punch, the default is LINES=0. LINES=0 is allowed only if the output file is assigned to a
card punch. This specification generates all HEADER1 and HEADER2 cards exactly once
before all output records.

When LINES=n is specified, the output record length is increased by 1. 

The LINES=n specification works in conjunction with any HEADERs and TRAILERs you
have specified as follows:

• HEADER1, if specified, prints as a preface to the report. Its page is not numbered.

• An automatic page break will occur after HEADER1. Every nth line after the
completion of HEADER1 will signal the start of a new page.

• A HEADER2 entry, if present, will be the first line(s) on each page, followed by any
HEADER3 entries that might be triggered either by control breaks or by PAGEHEAD
specifications in the SECTIONS parameter. HEADER2 is part of the logical page.

• A HEADER3 entry, if present, is part of a section of the report. It prints as a header for
the separate report sections. HEADER3s will appear in major to minor order according
to the order in which they are specified.

• If PAGEHEAD is specified, HEADER3 will print immediately below HEADER2, if
specified, or at the top of the page if a HEADER2 is not specified. A HEADER3 will not
print near the end of a page if there is not sufficient room on that page for at least one
data record and a TRAILER2, if specified.

Figure  94. LINES Parameter Format Chart

,LINES=

n
SYSTEM
ANSI
(ANSI,n)
(ANSI,SYSTEM) 

 
 
 
 
 
 
SyncSort for z/VSE 3.7 Programmer’s Guide2.154



OUTFIL
• A TRAILER3 entry, if present, is part of a section of the report. It prints as a conclusion
or summary for the separate report sections. TRAILER3s will appear in major to minor
order according to the order in which they are specified.

• A TRAILER2 entry, if present, will be the last line(s) on the logical page, preceded by
any TRAILER3s triggered by coincidentally occurring control breaks. TRAILER2 is
part of the logical page.

• TRAILER1 will be the last page of the entire report. Its page is not numbered.

Therefore, when LINES=n is specified, all HEADER2, HEADER3, TRAILER2 and
TRAILER3 entries will be included as part of 'n' (the total number of lines in a logical page)
and will print as described above.

LINES=SYSTEM

LINES=SYSTEM is similar to LINES=n. If LINES=SYSTEM is specified, the VSE system
defined default for the number of lines per page for SYSLST will be used as 'n'.

LINES=ANSI 

If LINES=ANSI is specified, user-provided ANSI control characters define the logical
pages. The first byte of each output record (including HEADER and TRAILER records)
must contain an ANSI control character (inserted, for example, by an E35 program) that is
valid for the specified output device type. For example, inserting '0' in byte 1 of the output
records produces double spaced records.

The ANSI control characters that can be used with the LINES=ANSI specification are sum-
marized in Table 26 on page 2.157.

If printed output is requested, the ANSI control characters do not print as part of the out-
put record. If, however, the report is routed to a disk or tape device, the control characters
are included in the output data.

The LINES=ANSI specification works in conjunction with any HEADERs or TRAILERs
you have specified. If you specify HEADER2, the ANSI specification affects this header as
follows:

• After HEADER1 is output, the first logical page begins with the first line of HEADER2.

• A logical page ends when data with a '1' in the first byte is encountered. Because '1' is
not a valid control character for a card punch, output punched using LINES=ANSI
always consists of exactly one logical page and always punches HEADER2 only once
before all data records.

• If the output file is assigned to a printer, a data record beginning with a '1' is delayed
until after TRAILER2 and HEADER2, if specified, are output. When record printing
resumes, this delayed record will be modified to have a control character '+', which
Chapter 2.  SyncSort Control Statements 2.155



OUTFIL
causes it to print over the last line of HEADER2. To prevent the data record from
printing over a text line of HEADER2, the HEADER2 should end with at least one
blank line, specified by a slash (/).

• To print HEADER2 at the top of a new physical page, the HEADER2’s first line should
begin with a '1'.

• Because you are in complete control of the paging with LINES=ANSI, you can permit
HEADER2 to appear between variable numbers of printed records.

LINES=(ANSI,n)

If LINES=(ANSI,n) is specified, ANSI control characters govern vertical control, and the 'n'
specification provides additional automatic paging. Added flexibility is provided because
the user can elect to double or triple space the output and still use automatic paging.

When SyncSort encounters a data record with a '1' in the first byte, SyncSort begins a new
logical page. If no data record begins with a '1' but the next data record would cause the
number of lines on the page to exceed 'n', SyncSort treats that record as if it began with a '1'
and begins a new page.

Refer to the LINES=ANSI discussion for information on using a HEADER2 with ANSI con-
trol characters.

LINES=(ANSI,SYSTEM)

LINES=(ANSI,SYSTEM) is similar to LINES=(ANSI,n). If LINES=(ANSI,SYSTEM) is
specified, the VSE system defined default for the number of lines per page for SYSLST will
be used as 'n'.

Valid ANSI Control Characters

The following table lists the ANSI control characters accepted by SyncSort. 
SyncSort for z/VSE 3.7 Programmer’s Guide2.156



OUTFIL
LRECL Parameter (Optional)

The LRECL parameter lets you specify an output record length different from the length
specified in the LENGTH parameter on the RECORD statement. It is, therefore, possible to
have one record length for the sort/merge and a different record length for the output
record. SyncSort automatically pads the output record with blanks or truncates records on
the right to achieve the desired length.

The LRECL parameter must be specified when a header or trailer is longer than the output
record (l3 value). In that case, the LRECL value should equal or exceed the length of the
longest header or trailer.

Code Interpretation 

blank Space one line before printing

0 Space two lines before printing

- Space three lines before printing

+ Suppress space before printing

1 Skip to channel 1 before printing

2 Skip to channel 2 before printing

3 Skip to channel 3 before printing

4 Skip to channel 4 before printing

5 Skip to channel 5 before printing

6 Skip to channel 6 before printing

7 Skip to channel 7 before printing

8 Skip to channel 8 before printing

9 Skip to channel 9 before printing

A Skip to channel 10 before printing

B Skip to channel 11 before printing

C Skip to channel 12 before printing

V Select stacker 1

W Select stacker 2 

Table 26.   ANSI Control Character Table
Chapter 2.  SyncSort Control Statements 2.157



OUTFIL
NODETAIL Parameter (Optional)

The NODETAIL parameter instructs the SortWriter facility to generate an output report
consisting only of header and trailer entries. Data records are not included in the output
report when this parameter is specified.

Thus, for example, it is possible to generate a report with section trailers containing totals
and record counts without printing any data records.

NOTPMK Parameter (Optional)

The NOTPMK parameter specifies that a tape mark not be written before the first record of
each volume of an unlabeled tape output file. The default is to write tape marks on each
volume of an unlabeled tape output file. The NOTPMK parameter can also be specified on
the OPTION control statement.

This parameter is ignored for disk files or labeled tape files.

OPEN Parameter (Optional)

Specified for tape output files only, the OPEN parameter indicates what action should be
taken when the file is opened.

OPEN=RWD, the default, specifies that the first volume of the output file be rewound when
the file is opened. OPEN=NORWD specifies that the first volume should not be rewound
before data is written. The default is OPEN=RWD.

The OPEN parameter is ignored if the output files are on direct access devices.

OUTPUT Parameter (Optional)

The OUTPUT parameter is ignored by SyncSort for z/VSE.

OUTREC Parameter (Optional)

The OUTREC parameter indicates how the records are to be formatted in each output file.
This parameter lets you create multiple output files that contain differently formatted
records. 

When the records in multiple output files are formatted and edited identically, it is more
efficient to specify a single OUTREC control statement rather than several OUTREC
parameters.

The OUTREC parameter reformats the records that are to be included in the output file(s)
after E35 processing, if specified. If no additional reformatting is required, omit this
parameter.
SyncSort for z/VSE 3.7 Programmer’s Guide2.158



OUTFIL
All references to field positions specified in the OUTREC parameter refer to the record
after processing by an E15 exit, the INREC control statement, the SUM control statement,
the OUTREC control statement and an E35 exit but before ANSI control character process-
ing.

The format of the OUTREC parameter is illustrated below.

The format of the OUTREC parameter is identical to the format of the OUTREC control
statement except that the FIELDS= specification is omitted. Refer to “OUTREC Control
Statement” on page 2.174 for a detailed explanation of how to specify this parameter.

In addition, OUTFIL OUTREC accepts one subparameter that cannot be specified on the
OUTREC control statement:

[n]/  The / subparameter indicates the end of a line and can be used to
create multiple output records from a single input record. Multiple
slashes (coded //.../ or n/) can be used to specify leading, trailing or
embedded blank records. At the beginning or end of the OUTREC
parameter, n/ produces n blank records. Embedded within the
OUTREC parameter, n/ produces n-1 blank records.

The / subparameter is most useful for its ability to accommodate
records whose lengths exceed the width of the physical page. For an
example use of the / subparameter, see “Printing Input Records on
Multiple Output Lines” on page 4.31. 

The / subparameter may not be used when LINES=ANSI,
LINES=(ANSI,n), or LINES=(ANSI,SYSTEM) has also been speci-
fied on the OUTFIL statement.

OVERLAY Parameter (Optional)

The OVERLAY parameter enables you to change particular columns within a record, and
add fields to the end of a record, without rebuilding the entire record. When using the
OVERLAY parameter you only need to specify the columns you want to change; the rest of
the input record remains unchanged.  See “OVERLAY Parameter (Optional)” on page 2.209
for a complete description of this parameter.

OUTREC=(field1[,field2]...) 

Figure  95. OUTREC Parameter Format
Chapter 2.  SyncSort Control Statements 2.159



OUTFIL
PRINT Parameter (Optional)

Use the PRINT parameter to specify that the output file be written to a printer. If report
writing parameters are specified and another output device type is not specified, PRINT is
the default. If report writing parameters are not specified and the output is to be printed,
the PRINT parameter must be specified.

When the output file is to be printed, the SYSnumber for this file (usually SYS001 for
SORTOUT) must be assigned to a printer. Do not specify a DLBL or TLBL statement for
the printer output file.

PUNCH Parameter (Optional)

Use the PUNCH parameter to specify that the output file be written to a card punch. This
parameter is required if the output is to be directed to a card punch.

The SYSnumber for this file (usually SYS001 for SORTOUT) must be assigned to a punch.
Do not specify a DLBL or TLBL statement for the punch output file.

REPEAT Parameter (Optional)

The REPEAT=n parameter writes each output record multiple times. n specifies the num-
ber of times each OUTFIL output record is written. The minimum value for n is 2.

REPEAT can be used with the OUTFIL OUTREC multiline feature (designated by a / in
the OUTREC specification). When this is done, each line will be written n times defined by
the OUTREC specifications. All occurrences of the first line will be written followed by all
the occurrences of the second, and so on.

The REPEAT parameter cannot be used with LINES, HEADER1, TRAILER1, HEADER2,
TRAILER2, SECTIONS, and NODETAIL.

REUSE Parameter (Optional)

Use the REUSE parameter to specify that the output be written over an existing VSAM
data set. The VSAM cluster must have been defined (DEFINE CLUSTER) with the REUSE
option; otherwise, an error will occur.

The REUSE parameter is ignored for non-VSAM files.

RRDS Parameter (Optional)

Specify the RRDS parameter when the VSAM output data set is to be a relative record data
set. (A relative record VSAM data set is essentially a string of fixed-length slots, each of
which has a relative record number. This number starts at one and continues up to the
maximum number of records that can be stored in the file.) This parameter is required
when creating a relative record data set.
SyncSort for z/VSE 3.7 Programmer’s Guide2.160



OUTFIL
Do not specify the BLKSIZE parameter for an RRDS data set.

When the RRDS parameter is specified, all other OUTFIL parameters that do not relate to
VSAM are ignored except for the EXIT parameter, which will override the RRDS parame-
ter.

SAMPLE Parameter (Optional)

The SAMPLE=n and SAMPLE=(n,m) parameters allow the selection of a sample of records
from an OUTFIL group. A specific interval and number of records in that interval can be
specified. The sample process will take place within the range of records specified by 
STARTREC or ENDREC if they are specified. SAMPLE=n and SAMPLE=(n,m) are mutu-
ally exclusive.

The sample consists of the first m records in every nth interval. n specifies the interval size.
The minimum value for n is 2 (sample every other record).

m specifies the number of records to be processed in each interval. The minimum value for
m is 1(process the first record in each interval). If m is not specified, 1 is used for m. If m is
specified, it must be less than n.

SAVE Parameter (Optional)

Use the SAVE parameter to include all the records that are not included in another
OUTFIL group in the data sets for this group. SAVE retains all the input records that are
not included in the other groups and would otherwise be lost.

SPLIT Parameter (Optional)

The SPLIT parameter of the OUTFIL control statement causes output records to be distrib-
uted in rotation among files in an OUTFIL group.

In the normal case, when the SPLIT parameter is not used, the output record files in the
group will contain the same records. SPLIT distributes the output records. The following
OUTFIL control statement will distribute records among three output files:

For the above example, the first record will be written to the SORTOF1 data set, the sec-
ond, to SORTOF2, the third, to SORTOF3. The fourth record will be written to SORTOF1
again, and so on in round-robin fashion.

OUTFIL FILES=(01,02,03), SPLIT

Figure  96. Sample OUTFIL Control Statement with SPLIT
Chapter 2.  SyncSort Control Statements 2.161



OUTFIL
The OUTFIL control statement can contain an INCLUDE/OMIT and an OUTREC parame-
ter, in which case the selected and reformatted subset of records will be distributed among
the output files.

Note that the SPLIT parameter cannot be used with any report writing (SortWriter) func-
tions. Specifically, report writing parameters (HEADERn, TRAILERn, SECTIONS, LINES,
NODETAIL) cannot be specified on the OUTFIL control statement that defines the output
group.

SPLIT and SPLITBY=n are mutually exclusive. SPLITBY=1 is equivalent to SPLIT.

SECTIONS Parameter (Optional)

The SECTIONS parameter allows the output report to be divided into sections.

The format of the SECTIONS parameter is illustrated below.

The SECTIONS parameter identifies the control field(s) that determine, or control, section
breaks. More than one control field can be specified to subdivide a report within sections.
However, if more than one control field is specified, the specifications must be made in
major to minor order. A major control field break causes all minor control fields to break at
the same time.

Each control field is identified by its position (p) and length (l).

p  The position value indicates the first byte of the field relative to
the beginning of the record after processing by an E15/E32 exit,
the INREC statement, the OUTREC statement and an E35
exit, if specified, but before processing by the OUTREC parame-
ter and other report writing parameters of the OUTFIL state-
ment, if specified.

l  The length value indicates the length of the field. The length
must be an integral number of bytes, with a maximum value of
256.

Multiple p,l pairs of non-contiguous fields can be specified to form a control field for a
SECTIONS break.

For each control field, at least one of the following subparameters must be specified: SKIP,
HEADER3 or TRAILER3. The SECTIONS subparameters are described below.

SECTIONS=(field1[,field2]...)
Each field is specified as follows:

p,l[,p,l],subparameter[,subparameter] 

Figure  97. SECTIONS Parameter Format Chart
SyncSort for z/VSE 3.7 Programmer’s Guide2.162



OUTFIL
  The SKIP subparameter specifies the amount of spacing that
should occur after a section is completed. This spacing will fol-
low immediately after the last TRAILER3 for that section, if
specified. SKIP=nL specifies that the next line of the report will
appear after 'n' number of blank lines. SKIP=P specifies a page
break following the completion of a section. SKIP=L means skip
one line.

HEADER3=(. . .)  The HEADER3 subparameter specifies a section header or title
that will appear at the start of each new section. The formats of
the HEADER3 and HEADER1/HEADER2 parameters are iden-
tical. (See “HEADER1/HEADER2 Parameters (Optional)” on
page 2.149 for details.)

TRAILER3=(. . .)  The TRAILER3 subparameter specifies a section trailer that
will appear at the end of each section. The TRAILER3 format is
identical to the format of the TRAILER1/TRAILER2 parame-
ters. (See “TRAILER1/TRAILER2 Parameters (Optional)” on
page 2.164 for details.)

PAGEHEAD  The PAGEHEAD subparameter can only be specified in con-
junction with the HEADER3 subparameter. The PAGEHEAD
subparameter specifies that the HEADER3 appear at the top of
each page as well as at the start of each new section.

SPAN Parameter (Optional)

The SPAN parameter indicates that the output files are spanned.

If TYPE=VS or TYPE=VBS is specified on the RECORD control statement, the SPAN
parameter does not have to be specified.

SPLITBY Parameter (Optional)

The SPLITBY=n parameter writes groups of records in rotation among multiple output
data sets and distributes multiple records at a time among the OUTFIL data sets. n speci-
fies the number of records to split by. The minimum value for n is 1.

Figure  98. SECTIONS Subparameters Format Chart

SKIP=
P
L
nL 

 
 

[,TRAILER3=(...)][,HEADER3=(...)][,PAGEHEAD]

SKIP=
P
L
nL

 
 
 
 
 
Chapter 2.  SyncSort Control Statements 2.163



OUTFIL
The SPLITBY parameter is similar to SPLIT, but SPLITBY can be used to rotate by a spec-
ified number of records rather than by one record, for example, records 1-10 to the first
OUTFIL data set, records 11-20 to the second OUTFIL data set, and so on.

For example, if SPLITBY=10 is specified for an OUTFIL group with three data sets:

• The first OUTFIL data set in the group receives records 1-10, 31-40, and so on.

• The second OUTFIL data set in the group receives records 11-20, 41-50, and so on.

• The third OUTFIL data set in the group receives records 21-30, 51-60, and so on.

SPLIT and SPLITBY=n are mutually exclusive. SPLITBY=1 is equivalent to SPLIT.

Note that the SPLIT parameter cannot be used with any report writing (SortWriter) func-
tions. Specifically, report writing parameters (HEADERn, TRAILERn, SECTIONS, LINES,
NODETAIL) cannot be specified on the OUTFIL control statement that defines the output
group.

STARTREC Parameter (Optional)

The STARTREC parameter specifies the first record that will be processed for this output
file. The “n”th sorted record will be the first record eligible to be written to the output file;
the first n-1 records are skipped. For STARTREC=n, the maximum value of n is 2G-1
(2147483647).

The count of sorted records is done before OUTFIL INCLUDE/OMIT processing, if speci-
fied, takes place.

TAPE Parameter (Optional)

Use the TAPE parameter to specify that the output file be stored on a tape device. The
TAPE parameter is required if report writing parameters are specified and the output
file(s) are to be directed to a tape device.

TOL Parameter (Optional)

The TOL parameter specifies that a warning code be accepted when a VSAM output file is
opened. If the TOL parameter is not specified, the warning return code is recognized as an
error, an error message is generated, and SyncSort for z/VSE terminates.

TRAILER1/TRAILER2 Parameters (Optional)

The SortWriter facility provides three types of trailers:

• TRAILER1, the report trailer
SyncSort for z/VSE 3.7 Programmer’s Guide2.164



OUTFIL
• TRAlLER2, the page trailer

• TRAILER3, the section trailer

TRAILER1 and TRAILER2 are parameters of the OUTFIL control statement; TRAILER3
is a subparameter of OUTFIL’s SECTIONS parameter. Refer to “SECTIONS Parameter
(Optional)” on page 2.162 for an explanation of how to specify TRAILER3.

The three types of trailers function independently of each other. Each serves a different
purpose:

• TRAILER1 provides a trailer or a possible summary for the entire report. It appears
only once at the end of the report on its own page.

• TRAILER2 provides a page trailer for each page defined by the LINES parameter. It
appears at the bottom or end of each page.

• TRAILER3 provides a section trailer that appears at the end of each specified section
and serves as a conclusion or summary for that section.

TRAILER1, TRAILER2 and TRAILER3 also provide TOTAL, SUBTOTAL, MIN, SUBMIN,
MAX, SUBMAX, AVG, SUBAVG, COUNT and SUBCOUNT capabilities at report, page and
section levels.

Figure 99 below illustrates the format for TRAILERs. Its field entries represent the subpa-
rameters that can be specified for each TRAILER.

TRAILER1=(field1[,field2]...) 
TRAILER2=(field1[,field2]...) 
TRAILER3=(field1[,field2]...) 

Figure  99. TRAILER Parameter Format
Chapter 2.  SyncSort Control Statements 2.165



OUTFIL
Figure 100 illustrates the available TRAILER subparameters. Each subparameter consti-
tutes a separate field of the TRAILER.

c:  Use the c: subparameter to define the column in which the spec-
ified field should begin. The c: subparameter must be specified
in ascending order and not cause overlapping fields.

n  Used in conjunction with the X, 'literal string', and / subparam-
eters, the n value defines the number (1-255) of repetitions for
each entry.

X  Use the X subparameter to define the number of spaces. It must
be coded to the immediate right of the n value, if specified. For
more than 255 spaces, two or more nX values should be speci-
fied.

Figure  100. TRAILER Subparameters Format Chart

[c:] 

[n] X
[n] C'literal string'
[n] 'literal string'
[n] /
p,l
&DATE
&DATE=(abcd)
DATE
DATE=(abcd)
&DATENS
&DATENS=(abc)
DATENS
DATENS=(abc)
&TIME=(nnc)
TIME=(nnc)
&TIMENS=(nn)
TIMENS=(nn)
&PAGE
PAGE

TOTAL/TOT
SUBTOTAL/SUB
MIN
SUBMIN
MAX
SUBMAX
AVG
SUBAVG 

 
 
 
 
 
 
 
 
 
 

 =(p,l,f 
,Mm
,EDIT=(...)
,M0

 [,SIGNS=(...)] [,LENGTH=(n)])

COUNT
SUBCOUNT 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SyncSort for z/VSE 3.7 Programmer’s Guide2.166



OUTFIL
[C]'literal string'  Use the C'literal string' or 'literal string' subparameter to define
a literal string. Specify the number of repetitions by specifying
n immediately before it.

/  Use the / subparameter to indicate the end of a line, force a car-
riage return and separate text lines of a trailer. Multiple
slashes (coded / /... / or n/) can be used to specify leading, trail-
ing or embedded blank lines. At the beginning or ending of a
trailer, n/ produces n blank lines. Within a trailer, n/ produces
n-1 blank lines.

p,l  Use the p,l subparameter to include a field or field(s) within a
record in the trailer. For a TRAILER1, the field(s) will be
extracted from the last record in a file; for a TRAILER2, the
field(s) will be extracted from the last record on a page; for a
TRAILER3, the field(s) will be extracted from the last record in
a section. p is the starting position of the field in the record; l is
the length in bytes (1-255) of the field. Any number of fields can
be specified. (Contiguous fields within a record may be specified
with a single p,l entry, but their combined length may not
exceed 255 bytes.) The specified field(s) must be a character or
alphanumeric string or a number in zoned decimal format, and
the field cannot be converted or edited.

If any variable-length record contains only a portion of the
bytes in a specified field, those bytes will be included in the
trailer and blanks will be substituted for the missing bytes.

&DATE=(abcd)  The &DATE or DATE subparameter specifies the current gen-
erated system date and requires 8 bytes. abcd indicates that
you arrange the year, month and day in any order. d is the sep-
arator character. Use M to denote month, D to denote day, and
Y to denote the last two characters of the year. You can specify
4 as an alternative to Y if you want the year expressed in four
digits (1996 as opposed to 96).

For example, if the current date is 4/24/96 and
&DATE=(DMY.), the output date is 24.04.96. With the same
example, if &DATE=(4MD-), the output date is 1996-04-24.

The date format represented by &DATE may also be set by the
DATE parameter on the OPTION statement as follows: ADATE
signifies American date format (mm/dd/yy); EDATE signifies
European date format (dd/mm/yy); IDATE signifies ISO date
format (yy/mm/dd). If omitted, system generated date (STD) is
the default.
Chapter 2.  SyncSort Control Statements 2.167



OUTFIL
&DATENS=(abc)  Specify &DATENS or DATENS when no separator is desired.

&TIME=(nnc)  The &TIME or TIME subparameter specifies the current step
start time, which is the time that the current execution of
SyncSort began. The default time format is hh:mm:ss.

nn can be either 12 or 24. 24 specifies twenty-four hour clock
with the format hhcmmcss and requires 8 bytes. 12 specifies
twelve hour clock with the format hhcmmcss xx and requires 11
bytes. xx can be either am or pm. c denotes the separation char-
acter. For example, &TIME=(24-) expresses 7:31 pm as
19-31-00.

&TIMENS=(nn)  Specify &TIMENS or TIMENS when no separator is desired.

&PAGE  The &PAGE or PAGE subparameter sequentially numbers logi-
cal pages of the output report and requires 6 bytes. It produces
a 6-digit sequential page number, right-justified with leading
zeros suppressed.

TOTAL/TOT  Use the TOTAL subparameter to specify that numeric data is to
be accumulated and totaled at the end of a report, logical page
or section. After including the results in the appropriate trailer,
the accumulator resets to zero. TOTALs appear in printable
(ZD) format.

SUBTOTAL/SUB  Use the SUBTOTAL (or SUBTOT or SUB) subparameter to
generate a running total of a field at the end of a report, logical
page or section. This subparameter functions like the TOTAL
subparameter except the accumulator does not reset to zero.
SUBTOTALs appear in printable (ZD) format.

MIN   Use the MIN subparameter to obtain the minimum numeric
value of an input field for all records within the report, logical
page or section. This value will be displayed in printable for-
mat.

SUBMIN   Use the SUBMIN subparameter to obtain the running mini-
mum numeric value of an input field for all records within the
report up to the point of the TRAILER. This value will be dis-
played in printable format.

MAX   Use the MAX subparameter to obtain the maximum numeric
value of an input field for all records within the report, logical
page or section. This value will be displayed in printable for-
mat.
SyncSort for z/VSE 3.7 Programmer’s Guide2.168



OUTFIL
SUBMAX   Use the SUBMAX subparameter to obtain the running maxi-
mum numeric value of an input field for all records within the
report up to the point of the TRAILER. This value will be dis-
played in printable format.

AVG   Use the AVG subparameter to obtain the average numeric
value of an input field for all records within the report, logical
page or section. This value will be displayed in printable for-
mat.

SUBAVG   Use the SUBAVG subparameter to obtain the running average
numeric value of an input field for all records within the report
up to the point of the TRAILER. This value will be displayed in
printable format.

p  Use the p subparameter to indicate the position of the first byte
of the field to be totaled.

l  Use the l subparameter to indicate the length of the field to be
totaled.

f  Use the f subparameter to indicate the format of the field to be
totaled. Replace f with BI, FI, PD or ZD.

Mm  Use the Mm subparameter to indicate that one of the 26
SyncSort-supplied masks (M0-M25) be used to format the
totaled field. Replace m with the mask number. (For details,
refer to “Mm Subparameter (Editing Masks)” on page 2.202.)

EDIT=(pattern)  Use the EDIT=(pattern) subparameter to indicate that a user-
provided editing mask be used to format the totaled field. (For
details, refer to “EDIT Subparameter” on page 2.200.)

SIGNS=(...)  Use the SIGNS subparameter to specify leading and/or trailing
signs that will appear before or after the edited number. (For
details, refer to “SIGNS Subparameter” on page 2.204.)

LENGTH=(n)  Use the LENGTH subparameter to alter the length of a totaled
field determined by the edit pattern and the internal field for-
mat. (For details, see “LENGTH=n Subparameter” on page
2.201.)

COUNT  Use the COUNT subparameter to obtain a count of the number
of records in either the entire report or a specific part of the
report. In a TRAILER1, this field will contain a count of the
total number of data records in the report. In a TRAILER2, it
will contain a count of the number of data records on each page.
In a TRAILER3, it will contain a count of the number of data
Chapter 2.  SyncSort Control Statements 2.169



OUTFIL
records in each section. This number will be a right-justified,
8-digit field with leading zeros suppressed. The maximum value
is 99999999.

SUBCOUNT  Use the SUBCOUNT subparameter to obtain a running count
of the number of records in either the entire report or a specific
part of the report. In a TRAILER1, this field will contain a run-
ning count of the total number of data records in the report. In a
TRAILER2, it will contain a running count of the number of
data records on each page. In a TRAILER3, it will contain a
running count of the number of data records in each section.
This number will be a right-justified, 8 digit field with leading
zeros suppressed. The maximum value is 99999999.

Rules for Specifying TRAILER Subparameters

Observe the following guidelines when you specify TRAILER subparameters:

• Separate fields with commas, except for /, where commas are optional.

• Enclose literals in single quotes.

• Specify blank fields of n bytes as nX.

• If a SyncSort editing mask is used for totaled or subtotaled data, either by specification
or by default, the length of the generated pattern will be determined by the maximum
permissible length supported for that data format, regardless of the actual length of the
field being totaled or subtotaled. Use the LENGTH subparameter to override the
length of the pattern.

• Short trailers (i.e., trailers specified with fewer blanks than the logical record length
(LRECL) of the output record) are automatically padded on the right with blanks.

• If a trailer exceeds the logical record length (LRECL) of the output record, specify the
LRECL parameter to expand the output record length so that the output record length
is at least as long as the longest trailer. (See “LRECL Parameter (Optional)” on page
2.157.)

VLFILL Parameter (Optional)

The VLFILL parameter is used in conjunction with VTOF to specify a fill byte to be used
for any short record. By default, spaces will be used. In order to use the VLFILL parameter,
OUTREC, BUILD, OVERLAY, or IFTHEN must also be specified as an OUTFIL parameter.
SyncSort for z/VSE 3.7 Programmer’s Guide2.170



OUTFIL
VLTRIM Parameter (Optional)

The VLTRIM parameter defines a byte to be deleted from the end of a variable-length
record. All prior occurrences of this byte will also be deleted until a byte that is not equal to
the trim byte is found. The resulting records are decreased in record length. However,
VLTRIM will not delete the first data byte, the Record Descriptor Word (RDW), or the ANSI
carriage control character.

For the VLTRIM parameter, specify a byte b to be deleted from the end of the record. b can
be specified as either a character or hexadecimal value. Specify either C'x' where x is a
single EBCDIC character, or X'hh' where hh represents a hexadecimal digit pair (00-FF).

Note: VLTRIM is ignored if used with fixed-length output records.

VTOF Parameter (Optional)

The VTOF parameter is identical to the CONVERT parameter. See “CONVERT/VTOF
Parameter (Optional)” on page 2.145 for a description of these parameters.

Sample OUTFIL Control Statements

The following example uses the IFOUTLEN  and OVERLAY parameters to lengthen the
records.

This OUTFIL control statement refers to an 80-byte record. The OVERLAY parameter sub-
tracts the Payments field (13,4,PD) from the Balance Due field (9,4,PD). This updated Bal-
ance Due amount is entered in a new, displayable field at the end of the record. Blanks are
filled in after the Balance Due amount to increase the output LRECL to 100 bytes.

The following example uses the IFOUTLEN and OVERLAY parameters to shorten the
records.

This OUTFIL control statement refers to an 100-byte record. The OVERLAY parameter
subtracts the Payments field (13,4,PD) from the Balance Due field (9,4,PD). This updated
Balance Due amount is entered at columns 51-54.  The output LRECL is truncated to 80
bytes.

OUTFIL BLKSIZE=800,LRECL=80,IFOUTLEN=100,

OVERLAY=(9:9,4,PD,SUB,13,4,PD,PD,LENGTH=4,81:9,4,PD)

Figure  101. Sample IFOUTLEN and OVERLAY parameters

OUTFIL BLKSIZE=800,LRECL=100,IFOUTLEN=80,

OVERLAY=(9:9,4,PD,SUB,13,4,PD,PD,LENGTH=4,51:9,4,PD)

Figure  102. Sample IFOUTLEN and OVERLAY parameters
Chapter 2.  SyncSort Control Statements 2.171



OUTFIL
The following example illustrates how to use the OUTFIL control statement to define mul-
tiple output files.

The two OUTFIL statements illustrated above are required to create two different output
files.

• The first file (SORTOUT) will be written to disk. Its output records contain three fields:
the first field begins in byte 1 and is 20 bytes long, the second field begins in byte 45
and is 5 bytes long, and the third field begins in byte 60 and is 8 bytes long. This file
will include only those records with 'NY' in bytes 21 and 22.

• The second file (SORTOF2) will be written to tape. Its output records contain two
fields: the first field begins in byte 1 and is 20 bytes long, and the second field begins in
byte 60 and is 8 bytes long. This file will include only those records with 'MA' in bytes
21 and 22.

In the following example, OUTFIL parameters specify information about a tape output file.

This OUTFIL statement specifies the following:

• The output file is to be written to tape.

• Its blocksize is 800.

• All tape output volumes are to be rewound and unloaded at end of file.

Comprehensive examples illustrating the SortWriter facility and the multiple output capa-
bility of the OUTFIL statement are provided in “Chapter 4. How to Use SyncSort Data
Utility Features”.

The control statements above will cause 80-byte fixed-length input records to be converted
to variable-length records, removing trailing blanks from each record and adding an RDW.

OUTFIL FILES=l,DISK,OUTREC=(1,20,45,5,60,8),INCLUDE=(21,2,CH,EQ,C'NY')

OUTFIL FILES=2,TAPE,OUTREC=(1,20,60,8),INCLUDE=(21,2,CH,EQ,C'MA') 

Figure  103. Sample Multiple OUTFIL Control Statements

OUTFIL TAPE,BLKSIZE=800,CLOSE=UNLD 

Figure  104. Sample OUTFIL Control Statement

INPFIL BLKSIZE=800,LRECL=80
OUTFIL FTOV,VLTRIM=C''

Figure  105. Sample OUTFIL Control Statement using FTOV Parameter
SyncSort for z/VSE 3.7 Programmer’s Guide2.172



OUTFIL
The control statements above will cause the 240-byte fixed-length input records to be con-
verted to variable-length records by using 60 bytes from each input record, removing trail-
ing blanks, and adding an RDW.

INPFIL BLKSIZE=2400,LRECL=240
OUTFIL OUTREC=(1,50,200,10),FTOV,VLTRIM=C''

Figure  106. Sample Multiple OUTFIL Control Statement using FTOV With OUTREC 
Parameter
Chapter 2.  SyncSort Control Statements 2.173



OUTREC
OUTREC Control Statement

The OUTREC control statement reformats the output records. Use the OUTREC statement
to accomplish the following tasks:

• Delete or repeat segments of the input records.

• Insert character strings between data fields.

• Insert binary zeros.

• Insert record sequence number or date/time of job run.

• Convert numeric data to printable format or to another numeric format.

• Perform arithmetic operations (multiply, divide, add, subtract) and minimum and
maximum functions with numeric fields and constants. This “horizontal arithmetic”
ability complements the “vertical arithmetic” already available with SUM and OUTFIL
TOTAL, MIN, MAX, and AVG.

• Convert binary data to printable hexadecimal format, or vice versa.

• Change the order of, or completely redesign, the original input records.

• Select, realign, and reorder data fields.

• Translate the case (upper, lower) of EBCDIC letters.

• Translate characters based on a translation table.

• The BUILD, IFTHEN, IFOUTLEN, and OVERLAY parameters can be used to
conditionally reformat records or reformat only selected portions of records.

The OUTREC parameter of the OUTFIL control statement can also be used to accomplish
any of the above tasks.

OUTREC control statement processing takes place after the records have been sorted or
merged but before E35 processing, if specified. OUTREC parameter processing takes place
after E35 processing.

Consider these guidelines when deciding whether to use the INREC statement, the
OUTREC statement or the OUTREC parameter of the OUTFIL control statement:

• Use the INREC statement to delete irrelevant data fields, reformat numeric fields to a
shorter length or combine numeric fields with arithmetic operations and functions.
Reducing the size of the input records before they are sorted or merged usually
improves performance.
SyncSort for z/VSE 3.7 Programmer’s Guide2.174



OUTREC
• Use either the OUTREC statement or the OUTREC parameter of the OUTFIL
statement to expand the data record, create new numeric fields, realign data fields,
convert and edit numeric data, and change from variable-length format to fixed-length
format when you are creating one output file.

• Use the OUTREC statement when you are creating multiple output files with the same
output record.

• Use the OUTREC parameter of the OUTFIL statement when you are creating multiple
output files with different output records.

• Use the OUTREC parameter of the OUTFIL statement when an E35 exit processes the
records.

• Use the OUTREC parameter of the OUTFIL statement when you specify the TOTAL
and/or SUBTOTAL subparameters of the TRAILER parameter so that the data field
being totaled can easily be aligned with the total in the trailer.

OUTREC Control Statement Format

The format for the OUTREC control statement is illustrated below.

FIELDS/BUILD Parameter 

The FIELDS parameter specifies fields that are to be included in the output record. BUILD
is an alias for FIELDS. Fields can be data fields or spaces, hexadecimal digits, literal
strings or binary zeros.

 

The field parameters can be specified as follows:

Figure  107. OUTREC Control Statement Format

OUTREC

FIELDS
BUILD
OVERLAY 

 
 

field1 field2,[ ]…( )=

IFTHEN subparm( )= ,IFTHEN = subparm( )[ ]… ,IFOUTLEN = n[ ] 
 
 
 
 

c:[ ]

p,l [,subparm]
[n] X
[n] X'hhhh...hh'
[n] C'literal string'
[n] Z

SEQNUM,l,f [,START= 1
n
---

 
 
 

] [,INCR = 1
i
---

 
 
 

] ,RESTART = p,h( )[ ]

run-time constant 
 
 
 
 
 
 
 
 
 
 
Chapter 2.  SyncSort Control Statements 2.175



OUTREC
Each data field specified in the FIELDS parameter is identified by its position (p) and
length (l).

c:  For the description of this term, see “FIELDS Subparameters”
on page 2.180.

p  The position value indicates the first byte of the field relative to
the beginning of the input record after E15, INREC and SUM
processing, if specified, have completed. If the OUTREC param-
eter of the OUTFIL statement is used, the position value refers
to the record after E35 processing as well. The field must begin
on a byte boundary and can be anywhere in the record.

l  The length value indicates the length of the field. The length
must be an integral number of bytes.

Spaces (X), hexadecimal digits (X'hhhh...hh'), literal strings (C'literal string') and binary
zeros (Z) can also be specified in the FIELDS parameter. Each of these entries can be pre-
ceded by an 'n' value, which indicates that a specified number of spaces, hex digits, literal
strings or binary zeros be inserted in the output record.

[n]X  Use the nX entry to define a specified number, n, of spaces. The
n value may be any number between 1 and 4095 inclusive. The
X entry represents spaces and must be coded to the immediate
right of the number specified for n. If more than 4095 spaces are
desired, two or more nX values should be specified. For exam-
ple, 4095X,4095X,63X will provide 8253 spaces.

[n]X'hhhh...hh'  Use the nx'hhhh...hh' entry to specify that n copies of hex-digits
or hex-digit strings be inserted in the output record. The repeti-
tion factor, n, may be any number between 1 and 4095 inclusive.

[n]C'literal string'  Use the nC'literal string' entry to specify that n copies of literal
characters be inserted in the output record. The repetition fac-
tor, n, may be any number between 1 and 4095 inclusive.

[n]Z  Use the nZ entry to define a specified number, n, of binary zeros
to be inserted in the output record. The repetition factor, n, may
be any number between 1 and 4095 inclusive. The Z entry must
be coded to the immediate right of the number specified for n.

SEQNUM   Use SEQNUM to create a sequence number field within the output
record. The length of the field can be from 1 to 16 bytes and can be
represented in either BI, CSF, FS, PD or ZD formats. A starting
value and an increment can be specified for the field. In addition,
the sequence numbering can be restarted when the value in a speci-
fied field changes.
SyncSort for z/VSE 3.7 Programmer’s Guide2.176



OUTREC
The following describes the SEQNUM variables and parameters:

l  Represents the length in bytes of the field to be created.
A value from 1 to 16 can be specified.

f  Indicates the format of the field to be created. BI, CSF,
FS, PD or ZD can be specified to create either an
unsigned binary field, a floating signed field, a packed
decimal field or zoned decimal field.

START  Optionally specifies a starting number n for the field.
The n value can be 0 through 2,147,483,647. The default
is 1.

INCR  Optionally specifies a value i that indicates how
sequence numbers should be incremented. The i value
can be 1 through 65,535. The default is 1.

RESTART  Optionally specifies that the sequence numbering is
restarted when the value in the field defined by the p,h
specification changes. The value of n specified in the
START parameter is used to restart the numbering
sequence. p represents the position of the first byte of
the field. h is the length of the field and can be from 1 to
256 bytes. A binary comparison is performed on the
field.

The maximum sequence number generated is limited to 15 dec-
imal digits or the length of the output field. If a number is
reached that would exceed the limit, SyncSort will truncate the
high order digit and continue processing. Thus, sequence num-
bers will cycle within the limit. For example, if the output field
is 2-bytes, then 99 will be the highest sequence number. The
next number, 100, will have its high order digit truncated. The
resulting number, 00, starts a new sequence number cycle from
00 to 99, regardless of the START value. 

run-time constant  Use any of the run-time constant parameters in Table 27 on
page 2.179 to insert the date and/or time of the current
SyncSort run. The table shows each parameter along with its
output format and length.

The leading ‘&’ of each parameter may be omitted.

A ‘C’ in the output format denotes a character constant output,
while a ‘P’ denotes a packed decimal constant output. Packed
Chapter 2.  SyncSort Control Statements 2.177



OUTREC
decimal constants contain a positive sign and a leading zero
where padding is necessary.

A ‘(c)’ in the parameter represents a chosen separator charac-
ter. A blank used as the separator character must be enclosed
in apostrophes. An apostrophe used as a separator character
must be specified as two apostrophes enclosed within apostro-
phes ('''').

The ‘xyz’ in the DATE= and DATENS= parameters represent
the desired layout of year, month, and day. Use M for month
(01-12), D for day (01-31), and either Y for 2-digit year (00-99)
or 4 for 4-digit year, replace ‘xyz’ with any sequence of day,
month, and year. The ‘c’ in DATE=parameter is the separator
character.

The ‘tt’ in TIME= and TIMENS= parameters can be 12 or 24,
indicating a 12-hour or 24-hour time format of output. The 24-
hour time format ranges from 00 hour 00 minute 00 second to
23 hour 59 minute 59 second. The 12-hour time format ranges
from 12 hour 00 minute 00 second AM to 11 hour 59 minute 59
second PM. The last three characters of the 12-hour time for-
mat output are either ‘ am’ or ‘ pm’. The ‘c’ in the TIME=
parameter is the separator character.
SyncSort for z/VSE 3.7 Programmer’s Guide2.178



OUTREC
Parameter Output Length (Bytes)

&DATE C'mm/dd/yy' 8

&DATE1 C'yyyymmdd' 8

&DATE1(c) C'yyyycmmcdd' 10

&DATE1P P'yyyymmdd' 5

&DATE2 C'yyyymm' 6

&DATE2(c) C'yyyycmm' 7

&DATE2P P'yyyymm' 4

&DATE3 C'yyyyddd' 7

&DATE3(c) C'yyyycddd' 8

&DATE3P P'yyyyddd' 4

&DATE4 C'yyyy-mm-dd-
hh.mm.ss'

19

&DATE=(xyzc) (see description 
above table)

8 or 10

&DATENS=(xyz) (see description 
above table)

6 or 8

&TIME C'hh:mm:ss' 8

&TIME1 C'hhmmss' 6

&TIME1(c) C'hhcmmcss' 8

&TIME1P P'hhmmss' 4

&TIME2 C'hhmm' 4

&TIME2(c) C'hhcmm' 5

&TIME2P P'hhmm' 3

&TIME3 C'hh' 2

&TIME3P P'hh' 2

&TIME=(ttc) C'hhcmmcss am' 8 or 11

&TIMENS=(tt) C'hhmmss am' 6 or 9

Table 27.   Run-Time Constants
Chapter 2.  SyncSort Control Statements 2.179



OUTREC
Specifying the FIELDS Parameter for Variable-Length Records 

Observe these rules when you specify the FIELDS parameter for variable-length records:

• Remember to specify 4 bytes for the Record Descriptor Word. You can include the 4
bytes in the length value of the first field if the first field in the original data record is
also the first field specified in the FIELDS parameter.

• At least one byte from the fixed portion of the input records must be specified in the
FIELDS parameter.

• To include any portion of the variable part of the input records, specify a position value
without a length value as the last entry. Make sure the position value does not exceed
the minimum input record length. Do not specify any other subparameters after the
position value unless HEX conversion is also specified. (Refer to “FIELDS
Subparameters” on page 2.180 for an explanation of HEX conversion.)

• The nX entry cannot be used to insert spaces before the first field if variable-length
records are being used because the Record Descriptor Word must be accounted for.

• The contents of the Record Descriptor Word will be automatically revised by the sort.

FIELDS Subparameters

Use the FIELDS subparameters to accomplish these tasks:

• Specify the column in which a field should begin.

• Specify halfword, fullword or doubleword alignment.

• Convert a numeric field to a printable format with editing capabilities.

• Convert numeric data to another numeric data format.

• Convert a field to its printable hexadecimal representation.

• Change an input field to a replacement constant if the input field equals a specified
search constant.

• Provide minimum and maximum functions and arithmetic operations (add, subtract,
multiply, divide) with numeric fields and constants.

Figure 108 illustrates how the FIELDS subparameters should be specified and describes
their functions. More detailed descriptions of the EDIT, LENGTH, Mm, and SIGNS subpa-
rameters follow this figure in the section “How to Convert Numeric Data” on page 2.192.
SyncSort for z/VSE 3.7 Programmer’s Guide2.180



OUTREC
The following describes the c: subparameter:

c:  Use the c: subparameter to define the column in which the field should begin.
SyncSort will add the appropriate number of blanks to achieve the proper
alignment. The c: subparameter must be specified in ascending order and not cause
overlapping fields. This subparameter can be specified for all types of fields.

The term expression represents the following syntax:

The following describes the elements of expression:

p,l,fi  This specifies the position, length and format of an input field. (See
the description of fi, below, for details.)

+n  This represents a positive numerical constant of up to 15 decimal
digits. The + sign must be specified.

-n  This represents a negative numerical constant of up to 15 decimal
digits. The - sign must be specified.

expression  An expression defines a numeric value. The simplest forms of an
expression consist of a numeric data input field defined either by
p,l,fi or a constant defined by +n or -n. Expressions can also be cre-
ated by connecting these simple expressions with operators, as
shown in the last line of the above syntax chart. Parentheses may

Figure  108. Fields Subparameters Format

Figure  109. Syntax for expression

[c:] 

expression

,fo

,
M0
Mm
EDIT=(pattern)

[,SIGNS=(s1s2s3s4)]
[,LENGTH=n]

   

p,l ,a
,CHANGE=(change-parms)[,NOMATCH=(nomatch-parms)]

   

p[,l] ,HEX
,TRAN= … 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

p,l,fi

+n
-n
[(]"expression1"[, "operator" , "expression2"][)] 

 
 
 
 
Chapter 2.  SyncSort Control Statements 2.181



OUTREC
be used to change the default precedence order of the operators.
Algebraic equations can thus be represented with an expression.

A maximum value of 15 digits is permitted at all times in evaluat-
ing an expression. If this is exceeded, a critical error will be issued.
Similarly, an attempted divide by zero will also result in a critical
error. The results of division will be rounded down to an integer.

Once an expression has been defined, its value can either be con-
verted to a numeric output data format or to a printable numeric
format using editing masks. The default is to use the M0 editing
mask to create printable output. The number of digits in an expres-
sion is defined to be 15 (unless the expression is a simple p,l,fi field),
so using the M0 default mask will create a 16-byte output field.

The following are expressions:

+10

10,2,Y2Z

+10,ADD,10,2,Y2Z

1,4,ZD

10,2,PD

+30

1,4,ZD,ADD,10,2,PD

+30,MUL,(1,4,ZD,ADD,10,2,PD)

+30,MUL,(1,4,ZD,ADD,10,2,PD),MIN,(5,5,ZD,DIV,+100)

(+30,MUL,(1,4,ZD,ADD,10,2,PD)),MIN,(5,5,ZD,DIV,+100) 

operator  Operations between two numeric fields or constants are performed
with operators. There are two types of operators: function operators
and arithmetic operators. The following are the function operators:

MIN  Generates the minimum arithmetic value of two speci-
fied fields.

MAX  Generates the maximum arithmetic value of two speci-
fied fields.

The following are the arithmetic operators:

MUL  multiplication

DIV  division

MOD  modulus

ADD  addition

SUB  subtraction
SyncSort for z/VSE 3.7 Programmer’s Guide2.182



OUTREC
The following rules of arithmetic precedence apply in computing an
“expression”:

• Conditions within parentheses are evaluated first, from
innermost to outermost parentheses.

• The arithmetic functions of minimum and maximum (MIN and
MAX) are performed before the arithmetic operators (MUL,
DIV, MOD, ADD, SUB). Within the arithmetic operators,
multiplication (MUL), division (DIV), and modulus (MOD) are
performed before addition (ADD) and subtraction (SUB).
Operations within the same precedence level are performed
from left to right.

The result of the DIV operation is truncated (rounded down) to an
integer. The MOD operation produces an integer remainder with
the sign of the dividend. 

fi  Use this parameter together with p,l to define the input format of a
numeric field that is part or all of an expression. The expression
will then be converted to either another numeric data format or to a
printable format. In such cases, indicate the format of the data field
that is to be converted by replacing fi with BI, FI, PD, ZD, CSF/FS,
PD0, one of the SMF formats (DT1, DT2, DT3, TM1, TM2, TM3,
and TM4), or one of the year data formats (Y2B, Y2C, Y2D, Y2P,
Y2S, Y2Z, Y2T, Y2U, Y2V, Y2W, Y2X, Y2Y).

Also use this parameter when a 2-digit packed decimal year value is
to be expanded to a 4-digit packed decimal value. In such cases
replace fi with Y2ID or Y2IP. The Y2ID and Y2IP formats cannot be
used to form complex arithmetic expressions and do not allow the
specification of mask (Mm), EDIT, SIGNS or LENGTH. Y2DP and
Y2PP can be used as synonyms for Y2ID and Y2IP respectively.

An l value indicating the length of the field must be specified in
accordance with the following allowable values:

for BI ... 1-4 inclusive
for CSF/FS ... 1-16 inclusive (15 digit limit)
Chapter 2.  SyncSort Control Statements 2.183



OUTREC
for FI ... 1-4 inclusive
for PD ... 1-8 inclusive
for PD0 ... 2-8 inclusive
for SFF ... 1-44 inclusive (15 digit limit)
for UFF ... 1-44 inclusive (15 digit limit)
for Y2B ... 1
for Y2C ... 2
for Y2D ... 1
for Y2ID ... 1
for Y2IP ... 2
for Y2P ... 2
for Y2S ... 2
for Y2Z ... 2
for ZD ... 1-15 inclusive 

Note that the above list of date formats (Y2x) does not include full-
date formats. For full-date formats, see Table 28 on page 2.185 and
“Converting Year Data with Century Window Processing on
INREC, OUTREC, INPFIL INREC or OUTFIL OUTREC: Full-Date
Data” on page 2.196.

Field conversion of a single p,l,fi expression with a format of Y2B,
Y2C, Y2D, Y2P, Y2S, Y2Z, Y2ID or Y2IP does not default to the use
of the M0 default output mask. The default is to convert to a 4-digit
4-byte printable year. However, except for Y2S, Y2ID and Y2IP,
these formats can be used to form expressions with operators. In
this case, the default will be to use the M0 output mask with 15 dec-
imal digits. The specification of an output numeric data format fo or
mask (Mm), EDIT, SIGNS or LENGTH is permitted except when
using Y2S, Y2ID and Y2IP.

The following table shows the full-date formats: 
SyncSort for z/VSE 3.7 Programmer’s Guide2.184



OUTREC
fo  Use this parameter to define the output numeric data format of an
expression. When fo is specified, mask (Mm), EDIT, and SIGNS
cannot be specified. Indicate the desired format of the output field
by replacing fo with BI, CSF/FS, FI, PD or ZD.

Full-Date 
Format Date Format Date Form Example Date 

Form 
Length 
(bytes) 

Y2T CH, BI yyx yyq 3

yyxx yymm 4

yyxxx yyddd 5

yyxxxx yymmdd 6

Y2U PD yyx
(X'yyxs')

yyq 2

yyxxx
(X'yyxxxs')

yyddd 3

Y2V PD yyxx
(X'0yyxxs')

yymm 3

yyxxxx
(X'0yyxxxxs')

yymmdd 4

Y2W CH, BI xyy qyy 3

xxyy mmyy 4

xxxyy dddyy 5

xxxxyy mmddyy 6

Y2X PD xyy
(X'xyys')

qyy 2

xxxyy
(X'xxxyys')

dddyy 3

Y2Y PD xxyy
(X'0xxyys')

mmyy 3

xxxxyy
(X'0xxxxyys')

mmddyy 4 

Note: The following symbols are used in the table:
y   year digit (0-9)
x   non-year digit (0-9)
s   sign (hexadecimal 0-F)
0   unused digit 
q  any digit 

Table 28.   Full-Date Formats
Chapter 2.  SyncSort Control Statements 2.185



OUTREC
Mm  Use the Mm subparameter to indicate that one of the 26 SyncSort-
provided editing masks, M0-M25, is to be used. Replace 'm' with the
mask number. (See “Mm Subparameter (Editing Masks)” on page
2.202.)

EDIT=(pattern)  Use the EDIT subparameter to specify that a user-provided editing
mask be used to format the output field. (See “EDIT Subparameter”
on page 2.200.)

SIGNS=(s1,s2,s3,s4)  Use the SIGNS subparameter to specify the signs that will appear
before or after the edited number. (See “SIGNS Subparameter” on
page 2.204.)

LENGTH=n  Use the LENGTH subparameter to alter the length determined by
the edit pattern and the format of the edited field. (See
“LENGTH=n Subparameter” on page 2.201.)

a  Use this subparameter to tell SyncSort for z/VSE how the field
should be aligned with respect to the start of the output record.
Replace a with H,F, or D to specify halfword (H), fullword (F), or
doubleword (D) alignment. The alignment itself actually takes
place after the column designation. It will automatically pad any
provided field with the number of bytes of binary zeros required to
achieve the specified alignment. This subparameter cannot be used
in conjunction with data conversion.

HEX  Use the HEX subparameter to convert a record field to its printable
hexadecimal representation. Specify this subparameter immedi-
ately after the position (p) and the length (l) of the field to be con-
verted. Specify p,l,HEX for both fixed-length records and the fixed-
length portion of variable-length records. Specify p,HEX for the
variable-length portion of variable-length records. Starting in posi-
tion p of the input record, for a length of l, each hex digit will be con-
verted to its printable representation.

Note: In the reformatted record, the converted field will double in
length.

TRAN  Use this subparameter to translate each byte of the field. Specify
p,l,TRAN for both fixed-length records and the fixed-length portion
of variable-length records. Specify p,TRAN for the variable-length
portion of variable-length records. Starting in position p of the
input record, for a length of l, each byte will be converted as speci-
fied. The format of the TRAN subparameter is illustrated below:
SyncSort for z/VSE 3.7 Programmer’s Guide2.186



OUTREC
LTOU  Instruct SyncSort to translate EBCDIC letters in
the specified field from lower case to upper case.

UTOL  Instruct SyncSort to translate EBCDIC letters in
the specified field from upper case to lower case.

CTOX  Instruct SyncSort to convert each byte in the speci-
fied field into 2-byte printable HEX digits.
(p,l,TRAN=CTOX is equivalent to p,l,HEX)

XTOC  Instruct SyncSort to convert each 2-byte HEX digits
in the specified field into 1-byte binary value. The
field length must be an even number of bytes long.
HEX digits are EBCDIC characters ‘0’ through ‘9’,
‘A’ through ‘F’, or ‘a’ through ‘f ’. Non-HEX charac-
ters are treated as ‘0’.

ALTSEQ  Instruct SyncSort to translate each byte in the spec-
ified field based on the ALTSEQ table in effect.

xxyy...  Instruct SyncSort to translate each byte in the spec-
ified field that matches xx into yy. xx and yy are
both HEX representations of a byte value. Up to 256
pairs of xxyy may be specified. Do not specify a
comma (,) between pairs of xxyy. 

C'cp...'  Instruct SyncSort to translate each byte in the spec-
ified field that matches character c into character p.
Up to 256 pairs of cp may be specified. Do not spec-
ify a comma (,) between pairs of cp. 

Figure  110. TRAN Subparameters format

TRAN=

LTOU
UTOL
CTOX
XTOC
ALTSEQ
xxyy…
X'xxyy...'
C'cp...' 

 
 
 
 
 
 
 
 
 
 
Chapter 2.  SyncSort Control Statements 2.187



OUTREC
The following example illustrates the use of the TRAN subparameter:

In the above example, the OUTREC control statement reformats the output record to con-
tain the first four bytes of the input record, followed by nine bytes of the input record with
lower case characters converted to upper case, followed by 16 bytes of input at column 21
with any ‘(‘ , ’)’, ‘-’, or ‘#’ characters converted to slashes (‘/’), and followed by 20 bytes of
input at column 37 with bytes of value X'00' and X'FF' changed to character ‘*’ (X'5C') and
all ‘$’ signs changed to character ‘_’.

CHANGE  The CHANGE subparameter changes an input field to a replace-
ment value in the reformatted output record if the input field equals
a search constant. The input field remains unchanged on the input
side.

Multiple search-replacement paired values, with different data for-
mats, can be specified on a CHANGE subparameter. Note the fol-
lowing rules for mixing data formats:

• Search constants are character, hexadecimal, or binary strings.
Multiple search constants on a CHANGE subparameter can be
a mixture of character and hexadecimal formats. Binary search
constants cannot be mixed with search constants of other
formats; thus, if one search constant on a CHANGE
subparameter is binary, all other search constants on that
subparameter must also be binary.

• Replacement values are either character or hexadecimal string
constants or a field from the input record. Multiple replacement
constants on a CHANGE subparameter can be a mixture of
character and hexadecimal string constants and fields from the
input record.

• The constants of a search-replacement pair can be of different
data format. For example, a hexadecimal or binary search
constant could be paired with a character replacement
constant, or a character search constant could be paired with a
hexadecimal replacement constant. Thus, you could change a
hexadecimal or binary input field to a character output field, or
you could change a character input field to a hexadecimal
output field.

OUTREC FIELDS=(1,4,5,9,TRAN=LTOU
21,16,TRAN=C'(/)/-/#/',
37,20,TRAN=(X'005CFF5C',C'$_'))

Figure  111. Sample Use of the TRAN Subparameter
SyncSort for z/VSE 3.7 Programmer’s Guide2.188



OUTREC
The subparameters for CHANGE are specified by the following syn-
tax:

The following describes the elements of the CHANGE subparame-
ter:

p,l  The normal SyncSort position-length designation
that specifies the input field. When this field
matches a search constant, the field will be changed
in the output to a replacement constant.

For character or hexadecimal search constants, the
input field can be 1 to 64 bytes long. For binary
search constants, the input field must be one byte.

o  The length of the output replacement field. Permis-
sible length is 1 to 64 bytes.

srch  The search constant to which the input field is com-
pared. Permissible formats are character string
(C'x...x'), hexadecimal string (X'x...x'), or a binary
byte (B'bbbbbbbb'). When the search constant
matches the input field, the input field will be
changed to an output replacement constant.

If one of the search constants is binary in a set of
search-replacement pairs on a CHANGE subparam-
eter, then all the search constants on that CHANGE
subparameter must be binary. (For additional infor-
mation on using binary fields in INCLUDE/OMIT
processing, see “INCLUDE/OMIT Control State-
ment” on page 2.39.)

If the search constant is longer than the length (l) of
the input field, the constant will be truncated to
length l. If the search constant is shorter than l, the
constant will be padded on the right to length l.
Character strings are padded with blanks (X'40', or
X'20' if INPFIL DATA=A was specified). Hexadeci-
mal strings are padded with zeros (X'00'). Binary
strings are neither truncated nor padded since only
one-byte strings are permissible.

o,srch1,repl1[,srch2,repl2...,srchn,repln]

Figure  112. Syntax for change-parms
Chapter 2.  SyncSort Control Statements 2.189



OUTREC
repl  The replacement value to which the input field is
changed in the reformatted output record when the
input field matches a search constant. The replace-
ment value can either be a constant or a field from
the input record.

The term repl represents the following syntax:

mrepl  A replacement constant to which the input field is
changed. The replacement formats that are permis-
sible for constants are character string (C'x…x') and
hexadecimal string (X'x…x').

If the replacement constant is longer than the
length (o) of the output field, the constant will be
truncated to length o. If the replacement constant is
shorter than o, the constant will be padded on the
right to length o. Character strings are padded with
blanks (X'40', or X'20' if INPFIL DATA=A was spec-
ified). Hexadecimal strings are padded with zeros
(X'00').

j,k     The position j and the length k of an input field that
will be inserted in the output record. k must be at
least 1 and cannot be greater than the length o spec-
ified for the output replacement field. If k is less
than o, the field j,k will be padded on the right with
blanks (X'40', or X'20' if INPFIL DATA=A was spec-
ified) to the length o.

NOMATCH  The NOMATCH subparameter indicates how SyncSort should
respond if the input field does not match a search constant. If
NOMATCH is not specified and no search constant matches the
input field, sort processing will terminate with an error message.

Figure  113. Syntax of repl

mrepl
j,k 

 
 
SyncSort for z/VSE 3.7 Programmer’s Guide2.190



OUTREC
The subparameters for NOMATCH are specified by the following
syntax:

The following describes the elements of the NOMATCH subparame-
ter:

nmrepl  A replacement constant to which the input field is
changed in the reformatted output record when the
input field (p,l) fails to match a search constant. For
details, see the description of the repl variable
above.

r,n  The position (r) and length (n) of an input field that
will be inserted in the output record when the
CHANGE input field (p,l) fails to match a search
constant.

n must be at least 1. If n is greater than the length
(o) specified for the output replacement field, the
output field r,n will be truncated on the right to
length o. If n is less than o, the field r,n will be
padded on the right with blanks (X'40', or X'20' if
INPFIL DATA=A was specified) to the length o.

The following example illustrates the use of the CHANGE subparameter:

In the above example, the OUTREC parameter contains two CHANGE subparameters. The
first CHANGE subparameter changes the input field 16,2 to a state name in the reformat-
ted output record when the input field matches a state code. If the state code is XX, posi-

Figure  114. Syntax for nomatch-parms

OUTREC FIELDS=(16,2,
CHANGE=(13,C'NJ',C'NEW JERSEY',

C'NY',C'NEW YORK',
C'PA',C'PENNSYLVANIA',
C'XX',50,13),

NOMATCH=(C'NOT SUPPORTED'),
8X,
24,1,

CHANGE=(10,B'1.......',C'EAST COAST',
B'0.......',C'WEST COAST')) 

Figure  115. Sample OUTREC Parameter with CHANGE Subparameter

nmrepl
r,n 

 
 
Chapter 2.  SyncSort Control Statements 2.191



OUTREC
tions 50 through 62 of the input record will be placed in the output record. If no matches
are found, the output field will be 'NOT SUPPORTED'. The second change subparameter
changes the one-byte input field 24,1 to 'EAST COAST' or 'WEST COAST' in the reformat-
ted output record, depending on the binary contents of the input field.

The following example illustrates a situation that can arise when using binary search con-
stants. In such cases, more than one search constant may match an input field:

Note that in the above example, the input field X'06' would match both binary search con-
stants. In such cases, the first search constant is used, thus the output would be the charac-
ter string 'SHARE'. If the input field were X'02', the output would be the character string
'UNIQUE'.

How to Convert Numeric Data

One of the most important functions of OUTREC processing is to convert a numeric data
field or an expression to either an output numeric data format or a printable format with
editing capabilities.

OUTREC processing can also expand a packed decimal 2-digit year to a packed decimal 4-
digit year. In such cases, Y2ID or Y2IP formats are used to convert from a 2-digit to a 4-
digit year while maintaining a packed format. For details on converting year data, see
“Converting Year Data with Century Window Processing on INREC, OUTREC, INPFIL
INREC or OUTFIL OUTREC: 2-Digit Year Data” on page 2.194.

When a single numeric field defined by p,l,fi is to be converted, the format and length of the
field determines the length of the output field, as illustrated in the chart below. 

OUTREC FIELDS=(24,1,
CHANGE=(6,B'.....11.',C'SHARE',

B'......1.',C'UNIQUE')) 

Figure  116. CHANGE Subparameter with Binary Search Constants
SyncSort for z/VSE 3.7 Programmer’s Guide2.192



OUTREC
Figure 29 does not include full-date formats. For full-date formats, see “Converting Year
Data with Century Window Processing on INREC, OUTREC, INPFIL INREC or OUTFIL
OUTREC: Full-Date Data” on page 2.196.

When any other type of expression is to be converted, the number of resulting digits (d) will
be 15. d will be used to determine the default length of the output field, which may be a
numeric data field or printable output.

If you specify no other FIELDS subparameters, the result will be converted to printable
output according to the default editing mask, M0. Refer to “Mm Subparameter (Editing
Masks)” on page 2.202. Other forms of printable output can be created by using the EDIT,
LENGTH, Mm and SIGNS subparameters, which allow you to create your own edit pat-

Data Conversion 

Input Format Number of Bytes
in Input Field 

Number of Resulting
Digits (d) 

ZD n n 

PD n 2n-1 

BI, FI 1 3 

BI, FI 2 5 

BI, FI 3 8 

BI, FI 4 10 

CSF or FS n n (to maximum of 15)

PSI n 2n-1 

PD0 n 2n-2 digits 

SFF, UFF n n (to maximum of 15, then 
truncated)

Y2C, Y2P, Y2S, Y2Z 2 4 digits 

Y2B, Y2D 1 4 digits 

Y2ID 1 2 bytes 

Y2IP 2 3 bytes 

ZSI 1 1 byte 

Table 29.   Data Conversion Table
Chapter 2.  SyncSort Control Statements 2.193



OUTREC
terns, or by using one of the 26 SyncSort-supplied editing masks, which are appropriate for
many editing operations.

To convert to a numeric data field, simply specify an output format of BI, CSF/FS, FI, PD or
ZD. The default output field length is determined by the following table, where d in the sec-
ond column represents the number of digits in the input. 

These lengths can be overridden by specifying the LENGTH parameter.

The following six sections describe the data conversion capabilities:

• Converting Year Data with Century Window Processing on INREC, OUTREC, INPFIL
INREC, or OUTFIL OUTREC: 2-Digit Year Data 

• Converting Year Data with Century Window Processing on INREC, OUTREC, INPFIL
INREC, or OUTFIL OUTREC: Full-Date Data

• The EDIT Subparameter

• The LENGTH=n Subparameter

• The Mm Subparameter (Editing Masks)

• The SIGNS Subparameter

Converting Year Data with Century Window Processing on INREC, OUTREC, 
INPFIL INREC or OUTFIL OUTREC: 2-Digit Year Data 

This section describes 2-digit year data. For information on converting full-date year data,
see “Converting Year Data with Century Window Processing on INREC, OUTREC, INPFIL
INREC or OUTFIL OUTREC: Full-Date Data” on page 2.196. 

A 2-digit year field, (as specified by the Y2B, Y2C, Y2D, Y2ID, Y2IP, Y2P, Y2S, and Y2Z for-
mats) can be converted on output to a 4-digit year:

Output Format 
Default

Output Length
(bytes) 

BI 4 

CSF or FS 4

FI 4 

PD d/2 + 1 

ZD d 

Table 30.   Output Length of Output Formats
SyncSort for z/VSE 3.7 Programmer’s Guide2.194



OUTREC
• The Y2C and Y2Z formats specify 2-digit year data that is in displayable (zoned
decimal) format. The 2-digit year data will be expanded to a 4-digit field containing the
appropriate century value.

• The Y2B format specifies 2-digit, 1-byte binary year data that will be converted to a 4-
digit, displayable character format with the appropriate century value. For information
on the range of binary values representing year data with Y2B, see Table 18 on page
2.103.

• The Y2D and Y2P formats specify 2-digit year values in packed decimal format. The
processing applied to these fields will create a 4-digit year value converted to a
displayable character format. (For a description of Y2D and Y2P formats, see Table 18
on page 2.103.)

• The Y2ID and Y2IP formats take as input the same 2-digit packed decimal year data as
Y2D and Y2P formats but produce a 4-digit year output that remains in packed decimal
format.

• The Y2S format is equivalent to Y2C and Y2Z for valid numeric year data. All three
formats will convert such data to a 4-digit year with the appropriate century value.
Y2S, however, provides additional functionality. For data with binary zeros (X'00'), a
blank (X'40') or binary ones (X'FF') in the first byte, typically to identify header/trailer
records, Y2S will expand the data to 4-bytes, padded in the first two bytes with the
same character as found in the first byte of the input field. The fourth byte of the
output field is copied unchanged from the second byte of the input field.

The following symbolic representation shows the treatment of the three types of data:

SORTIN Input   OUTREC Output
00ab   000000ab
40ab   404040ab
FFab   FFFFFFab

• The date data formats Y2B, Y2C, Y2D, Y2P, Y2S, and Y2Z are changed into 4 digit
character (EBCDIC) format by OUTREC data conversion processing. If DATA=A has
been specified on the INPFIL statement then the above date data formats will be
converted into 4 digit ASCII character formats.

For information on using the date formats for SORT/MERGE field specifications, see
“CENTWIN (Century Window) Processing with SORT: 2-Digit Year Formats” on page
2.235.

There are other data formats (PD0, PSI and ZSI) that do not convert to 2-digit format:

• The PD0 format is typically used to process the month and day portion of packed
decimal data, is not affected by CENTWIN processing and will not convert 2-digit year
data to 4-digit years.
Chapter 2.  SyncSort Control Statements 2.195



OUTREC
Note: On an OUTREC statement, PZ is an acceptable synonym for PD0.

• The PSI format is used to process 1-8 byte packed decimal data. PSI ignores the trailing
sign during processing. PSI is normally used in conjunction with the Y2D data format.
The Y2D format is used to process the 2-digit year portion of a packed decimal data
field, while the PSI format is used to process the day portion of the field.

Although PSI is typically used with Y2D, the PSI format itself is not affected by
CENTWIN processing.

Consider the packed decimal date field:

yyddd=X'yydddC'

where the trailing C (sometimes F) is a positive sign. This field has the year (yy) in the
first byte and the day (ddd) in bytes 2 and 3. The packed decimal sign would be in the
last digit (half byte) of the third byte.

The date can be processed as follows: Y2D processes the year component (X'yy'), while
PSI processes the day components (X'dddC').

• The ZSI format is used to process 1-15 byte zoned decimal data. ZSI ignores the trailing
sign during processing. ZSI is normally used in conjunction with the Y2Z data format.
The Y2Z format is used to process the 2-digit year portion of a zoned decimal data field,
while the ZSI format is used to process the day portion of the field.

Although ZSI is typically used with Y2Z, the ZSI format itself is not affected by
CENTWIN processing.

Consider the zoned decimal date field:

yymmdd=X'xyxyxmxmxdxd'

where y, m and d are hexadecimal digits 0-9, and x is hexadecimal 0-F.

The date can be processed as follows: Y2Z processes the year component (X'xyxy'). ZSI
processes the day components (X'xmxmxdxd)'.

For more information on using the date formats for OUTREC processing, see “Sample
OUTREC Control Statements with CENTWIN Processing: 2-Digit Year Formats” on page
2.213.

Converting Year Data with Century Window Processing on INREC, OUTREC, 
INPFIL INREC or OUTFIL OUTREC: Full-Date Data

You can use full-date formats with INREC/OUTREC, INPFIL INREC, and OUTFIL OUT-
REC to simplify conversion of date fields to printable or packed decimal format. Such con-
SyncSort for z/VSE 3.7 Programmer’s Guide2.196



OUTREC
version is often required to create output data with 4-digit years or to generate reports
displaying 4-digit year dates.

The full-date formats will convert CH, ZD, and PD date fields of the form yyx...x or x...xyy.
You can convert 2-digit year dates to character or packed decimal 4-digit year dates. You
can also convert PD 2-digit year to 4-digit years without unpacking. The following table
indicates the Y2x formats to use for different conversions to 4-digit year dates: 

For date formats, Y2x and Y2x(c), if DATA=A is specified in the INPFIL statement, the
input field is translated appropriately to ASCII character formats in the output record.

Note that full-date formats expand non-date characters but do not apply century window
processing. For example, if you are converting a field of the form P'yymm' to C'yyyy/mm', a
P'9999' date will be expanded to C'9999/99'.

Table 28 on page 2.185 indicates the full-date formats that can be used with character
(CH), binary (BI) or packed decimal (PD) data. Note the recognized non-date values:

•  Character or binary (Y2T and Y2W full-date formats)
C'0...0' (CH zeros)
C'9...9' (CH nines)
Z'0...0' (ZD zeros)
Z'9...9 (ZD nines)
X'00...00' (BI zeros)
X'40...40' (blanks)
X'FF...FF' (BI ones) 

•  Packed (Y2U, Y2V, Y2X and Y2Y full-date formats)
P'0...0' (PD zeros)
P'9...9' (PD nines)

CH and ZD formats are represented by X'FdFd...sd', and PD formats are represented by
X'dd...ds', where “d” is a decimal digit (0-9) and “s” is a sign (0-F). For dates, the sign is not

From
2-Digit Format

To
4-Digit Format

Y2x Format
to Use Comment 

CH, ZD, PD CH Y2T, Y2U, Y2V,
Y2W, Y2X, Y2Y

Example
Z'mmddyy' to
C'mmddyyyy' 

CH, ZD, PD PD Y2TP, Y2UP, Y2VP,
Y2WP, Y2XP, Y2YP

Example
P'yyddd' to
P'yyyyddd' 

PD PD Y2ID, Y2IP Y2DP and Y2PP are
synonymous with Y2ID
and Y2IP 

Table 31.   Y2x Formats to Use to Convert 2-Digit to 4-Digit Year Dates
Chapter 2.  SyncSort Control Statements 2.197



OUTREC
relevant and can be ignored. See Table 28 on page 2.185 for examples of date fields in CH,
ZD, and PD formats.

You can convert CH, ZD, and PD 2-digit year dates to any of three 4-digit year forms: a date
without date separators, a date with date separators, a 4-digit packed decimal date.

The following table describes the three date forms: 

For date formats Y2x and Y2x(c), if DATA=A is specified in the INPFIL statement, the
input field is translated appropriately to ASCII character formats in the output record.

The following table summarizes the three types of data conversion with the full-date for-
mats: 

Date
Form

Description Field
Specification
Form

Example 

Y2x 4-digit year without date 
separators.

Output data format is 
always CH. 

p,l,Y2x 20,6,Y2W 

Y2x(c) 4-digit year with date sep-
arators

Output date format is 
always CH. 

p,l,Y2x(c)

A date separator can be 
any character except a 
blank. 

20,5,Y2W(/) inserts 
slashes as date separa-
tors, producing output 
such as 137/2002. 

Y2xP 4-digit year in packed deci-
mal format.

Output date format is 
always PD, even though 
input data format can be 
CH (for Y2T and Y2W) or 
PD (for Y2U, Y2V, Y2X, 
and Y2Y). 

p,l,Y2xP 20,6,Y2TP converts 
C'yymmdd' to 
P'yyyymmdd'. 

Table 32.   4-Digit Date Forms
SyncSort for z/VSE 3.7 Programmer’s Guide2.198



OUTREC
 

Converting SMF Date and Time Formats

You can convert SMF date and time formats to standard date and time formats. The follow-
ing table shows the SMF formats and the converted output:

Date
Form

Full-Date
Format

Length
(bytes)

Output
Y2x

Output
Y2x(/)

Output
Y2xP 

yyx Y2T
Y2U

3
2

C'yyyyx' C'yyyy/x' P'yyyyx' 

yyxx Y2T
Y2V

4
3

C'yyyyxx' C'yyyy/xx' P'yyyyxx' 

yyxxx Y2T
Y2U

5
3

C'yyyyxxx' C'yyyy/xxx' P'yyyyxxx' 

yyxxxx Y2T
Y2V

6
4

C'yyyyxxxx' C'yyyy/xx/xx' P'yyyyxxxx' 

xyy Y2W
Y2X

3
2

C'xyyyy' C'x/yyyy' P'xyyyy' 

xxyy Y2W
Y2Y

4
3

C'xxyyyy' C'xx/yyyy' P'xxyyyy' 

xxxyy Y2W
Y2X

5
3

C'xxxyyyy' C'xxx/yyyy' P'xxxyyyy' 

xxxxyy Y2W
Y2Y

6
4

C'xxxxyyyy' C'xx/xx/yyyy' P'xxxxyyyy' 

Table 33.   Three Types of Data Conversion

SMF Format Converted Output

DT1 Z'yyyymmdd'

DT2 Z'yyyymm'

DT3 Z'yyyyddd' 

TM1 Z'hhmmss'

TM2 Z'hhmm'

TM3 Z'hh'

TM4 Z'hhmmssxx'

Table 34.  SMF Formats and Converted Output
Chapter 2.  SyncSort Control Statements 2.199



OUTREC
For DTn, the source is the 4-byte packed SMF date value (P'cyyddd'). For TMn, the source
is a 4-byte binary SMF time value.

The c in the date source P'cyyddd' represents the century. It is converted as follows: 0 is
converted to 19, 1 is converted to 20, and 2 or greater is converted to 21.

The converted output is a zoned decimal field, where each character in the table represents
a single byte. For TM4, xx represents hundredths of a second.

The SyncSort predefined edit masks (M0-M26) or specified edit patterns can be used to edit
the converted date and time. The default mask is M11.

Note: A data exception or an inaccurate ZD date can occur if an SMF date is not valid. An
inaccurate ZD time can occur if an SMF time is not valid. SMF dates and times are
processed as positive values.

EDIT Subparameter

The EDIT subparameter lets you create your own edit patterns for converted numeric data.
An edit pattern can consist of:

• Significant digit selectors.

• Leading insignificant digit selectors.

• Sign replacement characters.

• Any other characters to be printed in the actual output.

The edit pattern can be up to 22 characters in length, with a maximum of 15 leading insig-
nificant and/or significant digits.

The characters used to represent significant or insignificant digit selectors are determined
by the keyword EDIT. If EDIT is specified, the letter I represents leading insignificant dig-
its, which will print as blanks if the digits are zeros, and the letter T represents significant
digits (digits that will print in their true form, even as leading zeros).

The keyword EDIT can be specified with replacements for the letters I and/or T. Any print-
able character can be used as a replacement character. This replacement makes available
to the user a pattern that encompasses all printable characters. Figure 117 illustrates the
concept of replacing the insignificant and significant digit selectors I and T with other char-
acters.
SyncSort for z/VSE 3.7 Programmer’s Guide2.200



OUTREC
When a blank, quotation mark or unbalanced parenthesis appears within an EDIT pattern,
the pattern must be enclosed within single quotation marks. Balanced parentheses need
not be enclosed within quotation marks. A single quotation mark within the pattern (e.g.,
an apostrophe) must be specified as a double quotation mark. All other characters are
printed as specified in the edit pattern with the following exceptions:

• Any character specified after the first leading insignificant digit selector and before the
first significant digit selector will print as a blank, unless a previously selected digit
was non-zero.

• Any character specified after the last significant digit selector will print as a blank if
the edited number is positive.

• Any character or character string specified before the first leading insignificant digit
selector, including a leading sign character, will print to the immediate left of the first
significant digit. The appropriate number of leading blanks will be supplied, assuring
that the total number of characters in the printed field corresponds to the total number
of characters in the edit pattern.

• Any leading insignificant digit selector specified after the first significant digit selector
will be treated as a significant digit selector.

• The sign replacement character appearing as the first and/or last character of the
pattern is replaced as per the SIGNS subparameter.

LENGTH=n Subparameter

Use the LENGTH=n subparameter to alter the default length determined by the edit pat-
tern and the format of the field. If LENGTH=n is not specified, the length is equal to the
number of characters specified in the edit pattern. If LENGTH=n is specified, the edit pat-
tern will either be truncated or padded with blanks on the left so that the length of the pat-
tern equals the 'n' value.

The maximum value that can be specified for 'n' is 22.

• When an output data format fo is used, the default length is 4 for BI and FI formats,
and is determined by the number of digits in the input expression for CFS/FS, PD and
ZD formats. (The number of digits is 15 for any input expression other than a single
p,l,fi field.) If LENGTH=n is specified, the output data will either be truncated on the

EDxy=
where: x = insignificant digit selector

y = significant digit selector 

Figure  117. Replacing Digit Selector Characters
Chapter 2.  SyncSort Control Statements 2.201



OUTREC
left or padded on the left with zeros (or blanks for CSF/FS) of the appropriate format to
a length of n.

The following are the maximum values that can be specified for n when an output data for-
mat fo is used:

Mm Subparameter (Editing Masks)

SyncSort for z/VSE provides editing masks to simplify the more common editing opera-
tions. If neither Mm nor EDIT is specified in the OUTREC control statement, the default
mask, M0, is used.

Where applicable (in most European countries), the default may be set via the SYNCMAC
parameter at installation time, to interchange decimal commas and periods in the SyncSort
supplied editing masks: M2, M3, M4, and M5. 

Output Format Maximum 
Value of n

BI 4

FI 4

CSF 16

FS 16

PD 8

ZD 15

Table 35.  Maximum Values of LENGTH=n for Output Data

Figure  118. EMASK Format

EMASK= Y
N 

 
 
SyncSort for z/VSE 3.7 Programmer’s Guide2.202



OUTREC
Mask Pattern Signs Length 

Default
Mask (M0) IIII...IITS (,,' ',-) d+1 

M1 TTTTT...TTTS (,,' ',-) d+1 

M2 I,III,...,IIT.TTS (,,' ',-) d+1 + [ d/3 ]

M3 I,III,...IIT.TTCR d+2 + [ d/3 ]

M4 SI,III,...,IIT.TT (+,-) d+1 + [ d/3 ]

M5 SIII,...,IIT.TTS (' ',(,' ',)) d+2 + [ d/3 ]

M6 III-TTT-TTTT 12 

M7 TTT-TT-TTTT 11 

M8 IT:TT:TT 8 

M9 TT/TT/TT 8 

M10 IIIIIIIIIIIIIIT d 

M11 TTTTTTTTTTTTTTT d 

M12 SIII,..,III,IIT (' ',-) d+1 + [ [d-1]/3 ]

M13 SIII.III.III.III.IIT (' ',-) d+1 + [ [d-1]/3 ]

M14 SIII III III III IITS (' ',(,' ',)) d+2 + [ [d-1]/3 ]

M15 III III III III IITS (,,' ',-) d+1 + [ [d-1]/3 ]

M16 SIII III III III IIT (' ',-) d+1 + [ [d-1]/3 ]

M17 SIII'III'III'III'IIT (' ',-) d+1 + [ [d-1]/3 ]

M18 SI,III,III,III,IIT.TT (' ',-) d+1 + [ d/3 ]

M19 SI.III.III.III.IIT,TT (' ',-) d+1 + [ d/3 ]

M20 SI III III III IIT,TTS (' ',(,' ',)) d+2 + [ d/3 ]

M21 I III III III IIT,TTS (,,' ',-) d+1 + [ d/3 ]

M22 SI III III III IIT,TT (' ',-) d+1 + [ d/3 ]

M23 SI'III'III'III'IIT.TT (' ',-) d+1 + [ d/3 ]

M24 SI'III'III'III'IIT,TT (' ',-) d+1 + [ d/3 ]

M25 SIIIIIIIIIIIIIIT (' ',-) d+1 

M26 STTTTTTTTTTTTTTT (+,-) d+1

Table 36.   Editing Masks
Chapter 2.  SyncSort Control Statements 2.203



OUTREC
Note: The letter 'd' represents the number of resulting digits after data conversion. The
brackets indicate that only the integer part of this division should be retained.

Table 36, above, illustrates the following:

• Edit pattern

• Leading or trailing signs, where appropriate

• Length

The edit patterns use the same symbolic letters used in the EDIT subparameter. Leading
insignificant digits are represented by the letter I; significant digits are represented by the
letter T. Leading or trailing sign replacement characters are represented by the letter S.
All other characters print as they appear in the pattern.

The SIGNS illustrated for each mask follow the format requirements of the SIGNS subpa-
rameter. You can specify the SIGNS subparameter to selectively override the signs for a
particular mask. For example, if you specify mask M4 and also specify SIGNS=(' '), a lead-
ing blank will print instead of a plus sign if the number is positive. However, a leading
minus sign will print if the number is negative because the leading negative sign specified
in the editing mask has not been overridden.

The lengths in the table represent the length, in bytes, of the mask. The lengths of masks
M0 - M5 and M10-M26 are determined, in part, by the number of digits (d).

SIGNS Subparameter

The SIGNS subparameter specifies the sign(s) that will appear before or after the edited
number.

The sign replacement character, normally 'S', has special meaning if it appears as the first
or last character in an edit pattern. In these positions, the sign replacement character will
be replaced, as appropriate, by the characters specified by the SIGNS subparameter.

The format of the SIGNS subparameter is illustrated below.

where:

s1=leading positive sign indicator

s2=leading negative sign indicator

SIGNS=(s1,s2,s3,s4) 

Figure  119. SIGNS Subparameter Format
SyncSort for z/VSE 3.7 Programmer’s Guide2.204



OUTREC
s3=trailing positive sign indicator

s4=trailing negative sign indicator

Because the SIGNS subparameter contains four positional values, commas must be used to
indicate embedded, unspecified values. Each of the four values can contain one, and only
one, character; specified characters must be separated by commas.

A blank, comma, quotation mark and unbalanced parenthesis used as a SIGNS character
must be enclosed within single quotation marks. A single quotation mark used as a SIGNS
character must be specified as a double quotation mark and enclosed within single quota-
tion marks.

When the SIGNS subparameter is specified, the letter 'S' is normally used as the sign
replacement character in the user-supplied edit pattern. The user can change the last letter
of the keyword SIGNS in order to specify another character as the sign replacement charac-
ter. For example, if the user specifies SIGNX instead of SIGNS, the letter 'X' becomes the
sign replacement character in the user-provided edit pattern.

If the user specifies a sign replacement character in the edit pattern but does not specify a
value in the corresponding position in the SIGNS parameter, a blank will be assumed. For
example, if the user specifies the following:

EDIT=(IITT.TTS),SIGNS=(,,,-)

then a trailing minus sign will print if the number is negative and a trailing blank will
print if the number is positive.

The SIGNS subparameter can also be used to override the sign values in SyncSort-provided
editing masks.

IFOUTLEN Parameter (Optional)

The IFOUTLEN parameter overrides the maximum record length, which is automatically
set by the IFTHEN parameter, and changes it to a specified value. The IFOUTLEN param-
eter may only be used in conjunction with the IFTHEN parameter.

The IFOUTLEN parameter automatically makes the following changes to the record to
match the new length. A record longer than n is truncated to n. A fixed-length record
shorter than n is padded with blanks to reach a length of n.

IFTHEN Parameter (Optional)

The IFTHEN parameter uses conditional logic which enables you to reformat records based
on specified criteria. Multiple IFTHEN parameters may be specified within the same con-
trol statement and are processed sequentially.
Chapter 2.  SyncSort Control Statements 2.205



OUTREC
The format of the IFTHEN parameter is illustrated below. 

At the beginning of IFTHEN processing, a temporary record is created from each of the
input records.  

The IFTHEN parameter automatically makes the following changes to the temporary
record to accommodate any adjustments in length. In a variable-length record, the RDW
length is adjusted accordingly. In a fixed-length record, the record is padded with blanks
when necessary. Blanks also replace missing bytes in input fields.

The IFTHEN parameter has two main parts: the WHEN subparameter and a second sub-
parameter. As shown in "Figure 119. IFTHEN Parameter Format", the WHEN subparame-
ter may be WHEN=INIT, WHEN=(conditions), WHEN=ANY, or WHEN=NONE; and the
second subparameter may be BUILD or OVERLAY. The WHEN subparameter defines a
condition that must be satisfied before the second subparameter is applied to the tempo-
rary records. If the WHEN subparameter condition is not satisfied, then the second subpa-
rameter is not applied to the temporary records.

Since IFTHEN parameters refer to the temporary records instead of the input records, all
subsequent IFTHEN parameters within the same control statement will take previous
BUILD or OVERLAY changes into account. Once IFTHEN processing for each record stops,
the temporary record becomes the output record.

The following describes the IFTHEN subparameters:

WHEN=INIT  The WHEN=INIT subparameter condition is automatically satis-
fied. It applies the specified second subparameter to each tempo-
rary record as an initialization step.  

A second subparameter is required.

Figure  120. IFTHEN Parameter Format

IFTHEN

WHEN INIT
NONE 

 
  BUILD

OVERLAY 
 
 

fields( )=,=

WHEN conditions( ) BUILD
OVERLAY 

 
 

fields( ) HIT NEXT=,[ ]=,=

WHEN ANY BUILD
OVERLAY 

 
 

fields( )= HIT NEXT=,[ ]=

 
 
 
 
 
 
 
 
 
 
 
 
 

=

SyncSort for z/VSE 3.7 Programmer’s Guide2.206



OUTREC
WHEN=(conditions)  The WHEN=(conditions) subparameter condition is satisfied if a
temporary record meets the specified conditions. It applies the spec-
ified second subparameter to each temporary record that meets the
specified conditions.

conditions The conditions must be formulated into a comparison
or logical expression that can be evaluated to true or false.

For a complete description of comparisons and logical expressions,
see “COND Parameter (Required)” on page 2.41. However, the fol-
lowing cannot be used in WHEN=(conditions):

• FORMAT=f

A second subparameter is required. The HIT=NEXT subparameter is
optional.

WHEN=ANY  The WHEN=ANY subparameter condition is satisfied if one or more
of its associated WHEN=(conditions) subparameter conditions have
been satisfied. Its associated WHEN=(conditions) subparameters
are those that precede it but no other WHEN=ANY subparameter.
If the WHEN=ANY subparameter condition is satisfied, it applies
the specified second subparameter to the temporary record.

A second subparameter is optional. If it is not used, IFTHEN pro-
cessing simply stops if the WHEN=ANY subparameter condition is
satisfied unless the optional HIT=NEXT subparameter has been
specified.

WHEN=NONE  The WHEN=NONE subparameter condition is satisfied if none of
the preceding WHEN=(conditions) subparameter conditions is sat-
isfied or if there are no WHEN=(conditions) subparameters. If the
WHEN=NONE subparameter condition is satisfied, it applies the
specified second subparameter to the temporary record.

 A second subparameter is required.

The IFTHEN parameters must be specified such that the WHEN subparameters are in the
following order:

• WHEN=INIT

• WHEN=(conditions) and WHEN=ANY
Chapter 2.  SyncSort Control Statements 2.207



OUTREC
• WHEN=NONE

BUILD  The IFTHEN parameter will accept BUILD as a second subparame-
ter. See “FIELDS/BUILD Parameter” on page 2.175 for a complete
description of this subparameter.

OVERLAY  The IFTHEN parameter will accept OVERLAY as a second subpa-
rameter. See “OVERLAY Parameter (Optional)” on page 2.209 for a
complete description of this subparameter.

HIT=NEXT  The HIT=NEXT subparameter is optional, but can only be used in
conjunction with the WHEN=(conditions) or WHEN=ANY
subparameter. IFTHEN processing stops by default once a
WHEN=(conditions) subparameter condition or WHEN=ANY
subparameter condition is satisfied. Including the HIT=NEXT
subparameter will continue IFTHEN processing regardless of
whether or not the WHEN subparameter condition is satisfied.

IFTHEN processing continues until:

• All IFTHEN parameters have been processed; or

• A WHEN=(conditions) or WHEN=ANY subparameter condition is satisfied and the
HIT=NEXT subparameter is not included.

The following is an example of the IFTHEN parameter.

OUTREC IFTHEN=(WHEN=INIT,

BUILD=(1,80,1,8,ZD,MUL,+107,DIV,+100,ZD)),

IFTHEN=(WHEN=(81,15,ZD,GT,+10000),

OVERLAY=(81:81,15,ZD,ADD,+0500,ZD),HIT=NEXT), 

IFTHEN=(WHEN=(81,15,ZD,GT,+20000),

OVERLAY=(81:81,15,ZD,ADD,+2000,ZD),HIT=NEXT), 

IFTHEN=(WHEN=ANY,

OVERLAY=(96:C'*',97:81,15,ZD,MUL,+15,DIV,+100)), 

IFTHEN=(WHEN=NONE,

OVERLAY=(97:81,15,ZD,MUL,+12,DIV,+100)) 

Figure  121. Sample IFTHEN parameter 
SyncSort for z/VSE 3.7 Programmer’s Guide2.208



OUTREC
This OUTREC control statement refers to 80-byte input records containing a salesperson's
weekly sales in dollars in the first field (1,8,ZD) of each record. There are five IFTHEN
parameters in the example and they reformat each input record as follows:

• The first IFTHEN parameter uses WHEN=INIT to take the sales total in the first field
(1,8,ZD), increase it by 7%, and enter the result in a new 15-byte ZD field in column 81.

• The second IFTHEN parameter uses WHEN=(conditions) to test if the newly adjusted
sales total in the field (81,15,ZD) is over $10,000. If it is, its OVERLAY subparameter
increases the total by $500 and replaces the result in that field.

• The third IFTHEN parameter uses WHEN=(conditions) to test if the newly adjusted
sales total in the field (81,15,ZD) is over $20,000. If it is, its OVERLAY subparameter
increases the total by $2,000 and replaces the result in that field.

• The fourth IFTHEN parameter uses WHEN=ANY to test the second and third
IFTHEN parameters. If one or both WHEN subparameter conditions are satisfied,
indicating that the salesperson is getting a bonus, its OVERLAY subparameter inserts
an "*" in column 96 to denote a bonus, calculates a commission rate of 15%, and enters
the result in column 97.

• The fifth IFTHEN parameter uses WHEN=NONE to test the second and third
IFTHEN parameters. If neither WHEN subparameter condition is satisfied, indicating
that the salesperson is not getting a bonus, its OVERLAY subparameter calculates a
commission rate of 12% and enters the result in column 97.

OVERLAY Parameter (Optional)

The OVERLAY parameter enables you to change particular columns within a record, and
add fields to the end of a record, without rebuilding the entire record. When using the
OVERLAY parameter you only need to specify the columns you want to change; the rest of
the input record remains unchanged.

The format of the OVERLAY parameter is similar to that of the FIELDS parameter of the
OUTREC control statement. See “FIELDS/BUILD Parameter” on page 2.175 for the format
of this parameter. The following exceptions apply:

• In the OVERLAY parameter the length l is always required, unlike one case of the
FIELDS parameter in which l is optional after p.

• In the OVERLAY parameter for a variable-length record, the column value c: is always
required and must be set at 5 or greater, since c: is set to 1 by default and positions 1
through 4 comprise the RDW. The RDW cannot be overlaid.

The OVERLAY parameter automatically makes the following changes to the output record
to accommodate any adjustments in length. In a variable-length record, the RDW length is
adjusted accordingly. In a fixed-length record, the record is padded with blanks or user-
Chapter 2.  SyncSort Control Statements 2.209



OUTREC
specified VLFILL characters when necessary. Blanks also replace missing bytes in input
fields.

The following is an example of the OVERLAY parameter:

Sample OUTREC Control Statements without Date Data

Example 1

The following example illustrates how the OUTREC statement can be used to insert binary
zeros and blanks into the record.

This OUTREC statement defines a 60-byte record as follows:

• Four binary zeros are inserted in the first four bytes of the record (4Z).

• The next field begins in position 5. This field began in position 20 before OUTREC
processing and is 10 bytes long (5:20,10).

• Eight blanks are inserted before the next field, which begins in position 23. SyncSort
for z/VSE automatically inserts blanks in the unused positions between fields.

• The next field begins in position 23. This field began in position 44 before OUTREC
processing and is 28 bytes long (23:44,28).

• Ten blanks are inserted in the last 10 bytes of the record (10X).

Example 2

The following example illustrates how the OUTREC statement can be used to convert and
edit numeric fields.

This OUTREC statement defines a 69-byte output record as follows:

 OUTREC OVERLAY=(9:9,4,PD,SUB,13,4,PD,PD,LENGTH=4,81:9,4,PD)

Figure  122. Sample OVERLAY parameter 

OUTREC FIELDS=(1:4Z,5:20,10,23:44,28,10X) 

Figure  123. Sample OUTREC Control Statement

OUTREC FIELDS=(1,50,64,4,PD,M2,68,6,ZD,EDIT=($I,IIT.TTS),SIGNS=(,,+,-)) 

Figure  124. Sample OUTREC Control Statement
SyncSort for z/VSE 3.7 Programmer’s Guide2.210



OUTREC
• The first field begins in position 1. This field began in position 1 before OUTREC
processing and is 50 bytes long. (1,50)

• The next field begins in position 51. This packed decimal field began in position 64
before OUTREC processing and is 4 bytes long. After being converted and edited by
editing mask M2, the resulting field will be 9 bytes long. However, the number of digits
that will actually print will depend on the number of leading zeros, if any, because this
mask specifies that only three digits must print whether or not they are leading zeros.
Moreover, this mask specifies that a minus sign print after the number if it is negative
and a blank print after the number if it is positive. (64,4,PD,M2)

• The last field begins in position 60. This zoned decimal field began in position 68 before
OUTREC processing and is 6 bytes long. The EDIT and SIGNS subparameters specify
a 10-byte field because 4 additional bytes are needed for the dollar sign, the comma, the
decimal point and the trailing plus or minus sign. Note that if the first three digits are
leading zeros, they will be suppressed. (68,6,ZD,EDIT=($I,IIT.TTS),SIGNS=(,,+, -))

Example 3

This example uses the OUTREC statement to convert numeric data from one format to
another.

This OUTREC statement defines a 14-byte output record as follows:

• The first field (20,10,ZD,PD) begins in position 1. This field was a 10-byte ZD field that
began in position 20 before OUTREC processing. It will be converted to a 6-byte PD
field in the output record, because 6 bytes are required to contain 10 decimal digits as a
PD field.

• The next field (11,4,FI,ZD) begins in position 7. This field was a 4-byte FI field that
began in position 11 before OUTREC processing. It will be converted to an 8-byte ZD
field in the output record. Normally 10 ZD bytes would be required to contain the 10
decimal digits that may be represented by a 4-byte FI field, but the LENGTH=8
parameter overrode the output length. If there are more than 8 decimal digits in any of
the 11,4,FI fields, those digits will be truncated on the left in the output record.

Note that ZD output is not the same as printable output using editing masks. High
order zeros will appear as zeros in a ZD field, while they appear as blanks when using
the default M0 mask, as well as most other masks. The sign indicator in a ZD field is
placed in the first 4 bits of the rightmost byte, and not as a separate printable sign.

OUTREC FIELDS=(20,10,ZD,PD,
11,4,FI,ZD,LENGTH=8) 

Figure  125. Sample OUTREC Control Statement
Chapter 2.  SyncSort Control Statements 2.211



OUTREC
Example 4

This OUTREC example uses arithmetic and function operators to do algebraic calculations.

New 8-byte PD fields are required in each record containing the maximum and average of
fields A, B and C. Another new 5-byte printable field is required containing field D as a per-
centage of field E. The field definitions are:

Field A:   1,4,PD
Field B:   5,8,ZD
Field C:   13,4,FI
Field D:   25,4,PD
Field E:   29,4,PD

The OUTREC statement to accomplish this would be:

This OUTREC statement defines a 64-byte output record as follows:

• The first field (1,36) retains the complete contents of the input record.

• The second output field begins in position 40. An arithmetic calculation is done using
three different numeric input fields and the constant +3 to compute the arithmetic
average. This is an expression that is considered to contain 15 decimal digits. The
output is requested as a PD field. The length of this field will be 8 bytes, since that is
the length required to contain 15 decimal digits.

• The third output field begins in position 50. The largest of the values in Field A, Field
B, and Field C is output as an 8-byte PD field.

OUTREC FIELDS=(1,36, Retain existing fields
40:(01,4,PD,ADD, Field A plus

05,8,ZD,ADD, Field B plus
13,4,FI), Field C
DIV,+3, divide by 3 to get average
PD, output as 8-byte PD field

*
50:01,4,PD,MAX, Determine maximum of Field A and

05,8,ZD,MAX, Field B and
13,4,FI, Field C
PD, output as 8-byte PD field

*
60:+100,MUL, 100 times

25,4,PD,DIV, Field D divided by
29,4,PD, Field E
LENGTH=5) output as printable 5-byte field

* using default M0 mask 

Figure  126. Example 4, Sample OUTREC Control Statement
SyncSort for z/VSE 3.7 Programmer’s Guide2.212



OUTREC
• The fourth output field begins in position 60. Multiplying numeric Field D by 100
before dividing by numeric Field E gives the desired percentage number, which is
considered to contain 15 decimal digits. No output format or editing mask is specified,
so the default mask M0 is used to create printable output. LENGTH=5 is specified to
reduce the default length of the output field from 16 to 5, since it is known that the
percentage number will not be large.

Comprehensive examples illustrating the OUTREC control statement and the OUTREC
parameter of the OUTFIL statement are provided in “Chapter 4. How to Use SyncSort
Data Utility Features”.

Sample OUTREC Control Statements with CENTWIN Processing: 2-Digit Year 
Formats 

For century window processing, data conversion is determined by the century window
defined by the CENTWIN parameter.

The following provides examples of data conversion with CENTWIN using 2-digit year for-
mats. For full-date formats, see “Sample OUTREC Control Statements with CENTWIN
Processing: Full-Date Formats” on page 2.217.

Example 1 (Y2C): 

To expand a 2-digit year field in character format at position 20, use a specification similar
to the following:

Note that the expansion of the year data from 2 to 4 digits increases the output record
length by 2 bytes compared to the input record length.

The CENTWIN setting determines the century of the 2-digit year field. If CENTWIN=1980,
then a year field in the input record would be converted as follows:

SORTIN Input   OUTREC Output
13   2013

79   2079

80   1980

92   1992

Example 2 (PD0 and Y2P): 

Consider the following packed decimal date field:

OUTREC FIELDS=(1,19, * Copies first 19 bytes of record.

20,2,Y2C, * Converts 2-digit year data to 4-digit year.

22,59) * Copies remaining 59 bytes. 

Figure  127. Sample OUTREC Control Statement to Expand a 2-Digit Year Field
Chapter 2.  SyncSort Control Statements 2.213



OUTREC
yymmdd=X'0yymmddC'

Suppose you want to output a displayable 4-digit year in character format in the form

mm/dd/yyyy

To accomplish this, specify the following OUTREC control statement:

The 4-digit year output from the input year field (20,2,Y2P) depends on the CENTWIN set-
ting. The following sample input and output data shows the case for CENTWIN=1980:

SORTIN Input Date Field   OUTREC Output Date Field
0800329C   03/29/1980 

0790603C   06/03/2079

Example 3 (Y2ID): 

To expand a 3-byte packed decimal date field of the form X'yyddds' to a 4-byte packed field
of the form X'yyyyddds' that contains a prefixed century value, specify an OUTREC control
statement such as the following:

Note that in the above example the output record length will be 1 byte larger than the
input record length. The following sample input and output data shows the effect for
CENTWIN=1980:

SORTIN Input Date Field   OUTREC Output Date Field

OUTREC FIELDS=(1,19, * copy first portion of record

21,2,PD0,EDIT=(TT), * convert X'ymmd' to X'mm' then C'mm'

C'/', * insert slash

22,2,PD0,EDIT=(TT), * convert X'mddC' to X'dd'then C'dd'

C'/', * insert slash

20,2,Y2P, * convert X'0yym' to X'yy' then C'yyyy'

24,76) * copy rest of record 

Figure  128. Sample OUTREC Control Statement for Displaying a 4-Digit Year

OUTREC FIELDS=(1,19, * copy first portion of record

20,1,Y2ID, * convert X'yy' to X'yyyy'

21,60) * copy rest of record starting with

* the X'ddds' of the date field 

Figure  129. Sample OUTREC Control Statement to Expand a 3-Byte Field
SyncSort for z/VSE 3.7 Programmer’s Guide2.214



OUTREC
X'79'   X'2079'

X'80'   X'1980'

Example 4 (Y2IP): 

To expand a 4-byte packed decimal date field of the form X'0yymmdds' to a 5-byte field of
the form X'0yyyymmdds' that contains a prefixed century value, specify an OUTREC con-
trol statement such as the following:

As with Y2ID conversion, the output record length will be 1 byte larger than the input
length. The following sample input and output data shows the effect for CENTWIN=1980:

SORTIN Input Date Field   OUTREC Output Date Field
X'0791'   X'020791'

X'0800'   X'019800'

Example 5 (Y2D and PSI): 

To convert a 3-byte packed decimal date field of the form X'yyddds' to a 8-byte character
field of the form C'yyyy/ddd' that contains a prefixed century value, specify an OUTREC
control statement such as the following:

The output record length will be 5 bytes larger than the input length. The following sample
input and output data shows the effect for CENTWIN=1980:

SORTIN Input Date Field   OUTREC Output Date Field

OUTREC FIELDS=(1,19, * copy first portion of record

20,2,Y2IP, * convert X'0yym' to X'0yyyym'

22,59) * copy rest of record starting with

* the X'mdds' of the date field 

Figure  130. Sample OUTREC Control Statement to Expand a 4-Byte Field

OUTREC FIELDS=(1,19, * copy first portion of record
20,1,Y2D, * convert X'yy' to C'yyyy'
C'/', * insert slash (/)
21,2,PSI, * convert X'ddds' to C'ddd'
23,58) * copy rest of record 

Figure  131. Sample OUTREC Control Statement to Convert a 3-Byte Field
Chapter 2.  SyncSort Control Statements 2.215



OUTREC
X'79124C'   2079/124

X'80022C'   1980/022

Example 6 (Y2Z and ZSI): 

To convert a 6-byte zoned decimal date field of the form X'FyFyFmFmFdFd' to a 10-byte
character field of the form C'yyyy/mm/dd' that contains a prefixed century value, specify an
OUTREC control statement such as the following:

The output record length will be 4 bytes larger than the input length. The following sample
input and output data shows the effect for CENTWIN=1980:

SORTIN Input Date Field   OUTREC Output Date Field
X'F7F9F1F1F1F7'   2079/11/17

X'F8F0F0F2F0F5'   1980/02/05

Example 7 (Y2S) 

Consider a 2-byte character or zoned decimal field that may contain either valid numeric
year data or characters that identify the record as a header or trailer. Header records in the
example are identified by zeros (X'00') or a blank (X'40') in the first byte of the year field,
while trailer records are identified by binary ones (X'FF') in the first byte of the field. The
Y2S format will treat the valid year data normally, in the same way as the Y2C or Y2Z for-
mats would treat the data, but the year fields of header and trailer records will be con-
verted to a 4-digit form padded on the left with data identical to the data in the first byte of
the input field.

Typically this type of conversion is needed when a Y2S SORT or MERGE field is used to
collate the records so that header/trailer records in the output remain at the start or end of
the file. An OUTREC statement such as the following could be used.

OUTREC FIELDS=(1,19, * copy first portion of record
20,2,Y2Z, * convert X'FyFy to C'yyyy'
C'/', * insert slash (/)
22,2,ZSI, * convert X'FmFm' to C'mm'
C'/', * insert slash (/)
24,2,ZSI, * convert X'FdFd' to C'dd'
26,55) * copy rest of record 

Figure  132. Sample OUTREC Control Statement to Convert a 6-Byte Field
SyncSort for z/VSE 3.7 Programmer’s Guide2.216



OUTREC
As with Y2C or Y2Z, the output record length will be 2 bytes larger than the input record
length.

For CENTWIN=1990 and an ascending sort, the Y2S field would be sorted and converted
as follows:

SORTIN Input Date Field   OUTREC Output Date Field
X'4001'   X'00000000'

X'F9F8'   X'40404001'

X'F0F3'   X'F1F9F9F8'

X'0000'   X'F2F0F0F3'

X'FFFF'   X'FFFFFFFF'

Sample OUTREC Control Statements with CENTWIN Processing: Full-Date 
Formats 

The following provides examples of data conversion with CENTWIN using full-date for-
mats.

Example 1

The following OUTREC control statement converts a 6-byte Z'yymmdd' input date field to a
10-byte C'yyyy/mm/dd ' output date field. As indicated in Table 28 on page 2.185 the 6-byte
form of Y2T is the appropriate format to use for this conversion. The previously set century
window is 1950-2049.

The OUTREC control statement converts a 6-byte Z'mmddyy' date field in position 31 to a
10-character date field. Thus, the date field will expand by 4 bytes. The expansion is shown
in the following table. Also shown in the table is the conversion of non-date data (zeros).
Such data is converted but century window processing is not applied to it.

OUTREC FIELDS=(1,19, * Copies first portion of record

20,2,Y2S, * Converts C'yy' to C'yyyy' and pads

* fields that identify header/trailer records

22,59) * Copies the remaining fields 

Figure  133. Sample OUTREC Control Statement to Convert Header/Trailer Fields

SORT FIELDS=COPY
OUTREC=(1,30, * Copies field 1,30.

31,6,Y2T(/)) * Converts Z'yymmdd' to C'yyyy/mm/dd'. 

Figure  134. Sample OUTREC Control Statement for 6-Byte to 10-Byte Conversion
Chapter 2.  SyncSort Control Statements 2.217



OUTREC
SORTIN Input   SORTOUT Output 
(Z'yymmdd')  (C'yyyy/mm/dd')
740514   1974/05/14

101121   2010/11/21

500803   1950/08/03

000000   0000/00/00

Example 2

The following OUTREC control statement converts a 3-byte P'yyddd' packed decimal date
field to a 4-byte P'yyyyddd' packed decimal date field. As indicated in Table 28 on page
2.185 the Y2UP format is appropriate for this conversion. The previously set century win-
dow is 1970-2069.

The packed decimal input format is retained in the output data, as indicated in the follow-
ing table:

SORTIN Input   SORTOUT Output 
(P'yyddd')  (P'yyyyddd')
P'60347'   P'2060347'

P'99002'   P'1999002'

P'70143'   P'1970143'

P'99999'   P'9999999'

P'69113'   P'2069113'

P'84175'   P'1984175'

SORT FIELDS=COPY
OUTREC=(20,3,Y2UP) * Converts 3-byte P'yyddd' to 4-byte

* P'yyyyddd'. 

Figure  135. Sample OUTREC Control Statement for 3-Byte to 4-Byte Conversion
SyncSort for z/VSE 3.7 Programmer’s Guide2.218



RECORD
RECORD Control Statement

The RECORD control statement provides record length and format information. The
RECORD statement can also be used to delete certain records before sort/merge processing
The RECORD control statement is required unless the JOINKEYS control statement is
used.

The format of the RECORD control statement is illustrated below.

LENGTH Parameter (Required)

The LENGTH parameter specifies the length of the record at various points during the pro-
cessing of the application. These points are illustrated in Figure 3 on page 2.18.

The number of length values can vary from 1 to 7. Only the l1 value is required. If l1 is the
only value used, parentheses are optional. If l1 and additional length values are used, they
all must be enclosed in parentheses.

The length values are positionally dependent. An extra comma must indicate a missing l
value between any two that are specified. Commas need not follow the final l value speci-
fied. For example, if LENGTH=(l1,,,l4) is specified, the omitted values are understood to be
l2 ,l3, l5, l6, and l7.

If the KEYLEN or ADDROUT parameter is specified on the OPTION control statement,
refer to Table 22 on page 2.118 for information on calculating RECORD length values.

The l1,...,l7 variables specify the following:

l1  The maximum record length of the logical records at input to
the sort/merge, after any length change from INPFIL INREC
control statement(s) but before E15 processing. (See Figure 3
on page 2.18.) For variable-length records, this is the length of
the longest logical record plus the 4-byte Record Descriptor
Word. The 4-byte RDW must be included, even if the input is a
VSAM file. For tape input, 18 bytes is the minimum record
length that is permitted.

l2  The maximum length of the logical records after INPFIL
INREC E15 processing. Do not specify an l2 value to reflect a

Figure  136. RECORD Control Statement Format

RECORD LENGTH=(l1,...,l7), TYPE=

F
V
D
VS
VBS 

 
 
 
 
 
 

,DELBLANK=(p,q)
,DELBLANK=p
Chapter 2.  SyncSort Control Statements 2.219



RECORD
length change due to the INREC control statement; the post-
INREC length is calculated automatically. However, it is neces-
sary to specify an l2 value if an E15 exit has altered the record
length. If an l2 value is specified, it must be the length after
INPFIL INREC and/or E15 have altered the record length.

l3  The maximum length of the logical records after OUTREC or
E35 processing. If the record length has not changed from the l2

value, either as specified or as defaulted, you may omit the l3

value. It is not necessary to specify an l3 value to reflect a length
change due to the OUTREC statement or the OUTREC parame-
ter on the OUTFIL statement; the post-OUTREC length is cal-
culated automatically. However, it is necessary to specify an l3

value if an E35 exit has altered the record length and the sort is
writing the output file.

l4  The minimum length of the variable-length logical records plus
the 4-byte Record Descriptor Word. This length should take into
account any modifications made by an E15 exit program and/or
an INPFIL INREC statement, but not an INREC control state-
ment; the post-INREC length is calculated automatically. An
omitted l4 value defaults to the number of bytes needed to con-
tain all of the control fields specified on the INCLUDE/OMIT,
INREC, MERGE, OUTREC, SORT, SUM and/or OUTFIL state-
ments.

The l4 value is not used for a merge, but if it is specified,
SyncSort will check record lengths.

l5  The most frequent record length of the variable-length records.
This length should take into account any modifications made by
an E15 exit program and/or an INPFIL INREC statement, but
not an INREC control statement; the post-INREC length is cal-
culated automatically. Specify this length value to optimize the
size of the segment, i.e., the fixed-length block reserved to con-
tain variable-length records when they are placed on intermedi-
ate storage devices.

The l5 value is not used for a merge. If specified, it will be
ignored.

l6  The average work space required by each variable-length
record. The VL5L6L7 PARM or the SYNCHSTO utility program
can be used to calculate this value.
SyncSort for z/VSE 3.7 Programmer’s Guide2.220



RECORD
l7  The optimum segment length when sorting variable-length
records. The VL5L6L7 PARM or the SYNCHSTO utility pro-
gram can be used to calculate this value.

Rules for Specifying the Length Parameter

Observe the following rules when specifying length values:

• Make sure that all length values for variable-length records include 4 bytes for the
Record Descriptor Word.

• Make sure that the l1, l2 and l3 values represent the maximum record length and that
the l4 value represents the minimum record length. If SyncSort encounters a record
that exceeds the maximum length or is shorter than the minimum length, the
application will either terminate abnormally or produce unpredictable results.
However, if the BYPASS option is specified on the INPFIL control statement, SyncSort
will omit variable-length records that are too long or too short and continue processing.

• The sort internally adjusts record lengths when the INREC control statement is used.
When INREC is used on the INPFIL control statement, however, no internal
adjustment is done. Therefore, the l1, l2, l3, l4, and l5 values must be specified as the
lengths after INPFIL INREC but before the (non-INPFIL) INREC Control Statement.
(See Figure 3 on page 2.18.) When INPFIL INREC reformats records, use the LRECL
parameter of INPFIL to specify the original maximum and minimum record lengths.

TYPE Parameter (Required)

The TYPE parameter indicates the record format. Specify this parameter as follows:

If TYPE=D is specified, the BUFOFF parameter can be specified on the OUTFIL statement
but the DELBLANK parameter cannot be specified on the RECORD control statement. If
TYPE=D is specified but DATA=A is not specified on the INPFIL control statement, vari-
able-length ASCII input records are assumed. The restrictions for ASCII data, which are
outlined under the DATA=EA parameter on the INPFIL control statement, will apply.

TYPE=F   fixed-length EBCDIC or ASCII input records.

TYPE=V   variable-length EBCDIC input records.

TYPE=D   variable-length ASCII input records.

TYPE=VS   variable-length spanned EBCDIC input records.

TYPE=VBS   variable-length blocked spanned EBCDIC input records. 

Figure  137. TYPE Parameter Format
Chapter 2.  SyncSort Control Statements 2.221



RECORD
If TYPE=VS or TYPE=VBS is specified, SyncSort insures that all output files are also
spanned.

Only one type of record can be specified for an application.

Note: when FTOV or VTOF is used on the INPFIL control statement to reformat the input
records before sorting, the TYPE parameter must specify the format of the records after
the format conversion is done.

DELBLANK Parameter (Optional)

The DELBLANK parameter allows certain records to be deleted before sort/merge process-
ing. This parameter cannot be used if either an INCLUDE statement or an OMIT state-
ment is specified. The DELBLANK parameter also cannot be specified when DATA=A is
specified on the INPFIL control statement or TYPE=D is specified on the RECORD control
statement.

The DELBLANK parameter can be specified in two formats.

When DELBLANK=(p,q) is specified, p specifies the position of q. The q value represents
any EBCDIC value except a left or right-hand parenthesis, a comma or a blank. SyncSort
for z/VSE omits any record with the specified q value in the p position.

If DELBLANK=p is specified, SyncSort for z/VSE omits any record that has a blank in the
p position.

For variable-length records, remember to add 4 bytes for the Record Descriptor Word when
specifying the p value.

All references to field positions within the data record refer to the record after processing
by an E15 exit, if specified. The p position must be located within the first 4092 bytes of the
logical record.

Sample RECORD Control Statement

This sample RECORD statement defines the record as follows:

• The file contains variable-length records.

• The l1 or longest input record to the sort will be 104 bytes. (This includes the 4-byte
Record Descriptor Word.) This is the only required length value.

RECORD TYPE=V,LENGTH=(104,,,84,104),DELBLANK=(5,X) 

Figure  138. Sample RECORD Control Statement
SyncSort for z/VSE 3.7 Programmer’s Guide2.222



RECORD
• The l2 value is omitted because INREC and/or E15 processing did not alter the record
length. A comma indicates the omitted l2 value.

• The l3 value is omitted because OUTREC and/or E35 processing did not alter the record
length. A comma indicates the omitted l3 value.

• The l4 value indicates that the minimum record length is 84 bytes.

• The l5 value indicates that the most frequent record length is 104 bytes.

• The DELBLANK parameter specifies that any record with an X in byte 5 be omitted.
Chapter 2.  SyncSort Control Statements 2.223



REFORMAT
REFORMAT Control Statement

The REFORMAT control statement defines the record layout to be produced by the join
processing specified on an application’s JOINKEYS control statement.

Use the REFORMAT control statement to specify which fields from the SORTIN1 and
SORTIN2 files are to be included in each record created by the join operation.

The REFORMAT control statement is normally required if JOINKEYS is specified. It is
optional if a JOIN control statement with the ONLY option has been specified since no
records will actually be joined. In that instance, if a REFORMAT control statement is not
provided and only the unpaired records from one join input (SORTIN1 or SORTIN2) are
requested on the JOIN control statement, the records will not be reformatted and the
record type and length of the join input file will be retained. 

If a REFORMAT control statement is not provided and unpaired records from both join
inputs are requested, the resultant records will be variable-length, regardless of the record
formats of the join input files, and the record length will be the maximum of any fixed-
length input file record length plus four (for an RDW) and any variable-length input file
record length.

REFORMAT Control Statement Format

The format of the REFORMAT control statement is illustrated below:

FIELDS Parameter (Required)

The FIELDS parameter specifies fields to be included in the record produced by the join
function.

Each data field specified in the FIELDS parameter is identified by the file it originates
from Fn, its position p and length l.

Fn:   The Fn value indicates the input file from which the data field should be copied. Code
‘F1’ for SORTIN1 and ‘F2’ for SORTIN2. This field is optional after the first field speci-
fication. By default, the file of the prior field specification will be used to determine the
current field specification.

p  The position value indicates the first byte of the field relative to the beginning of the
input record

l  The length value indicates the length of the field.

REFORMAT FIELDS=(Fn:p1,l1[,Fn:]p2,l2...[[,Fn:]pm][,Fn:pn])[,FILL=f]

Figure  139. REFORMAT Control Statement Format
SyncSort for z/VSE 3.7 Programmer’s Guide2.224



REFORMAT
Specifying the FIELDS Parameter for Variable-Length Records

If the REFORMAT control statement only defines p,l fields, then the output of the join will
be a fixed-length record. If a variable-length record format is desired when one or both
input files are variable-length, then the first p,l REFORMAT field must be l,4 (from either
SORTINn input file) to define the RDW. This p,l specification of l,4 must reference an Fn
that is a variable-length file. The variable portion of the record must then be specified as
the last REFORMAT field by coding a position p without a length l. If both files are vari-
able-length, then the variable portion from each of the variable-length input files may be
specified once at the end of the REFORMAT statement. For example:

FILL Parameter (Optional)

The FILL parameter defines a fill byte to be used for any missing p,l field bytes. f specifies
the fill byte. f can be specified as either a character or hexadecimal value. Specify either C'c'
where c is a single EBCDIC character, or X'hh' where hh represents a hexadecimal digit
pair (00-FF).

The need for a fill byte can arise from two conditions:

• A portion or an entire p,l field specification is missing due to a short variable-length
record.

• A JOIN UNPAIRED was used and the REFORMAT FIELDS specification requires
a field from the file that is not being used to generate the current joined record.

For example, an application contains the following JOIN and REFORMAT control state-
ments:

REFORMAT FIELDS=(F1:1,4,F1:10,10,F2:25,3,F1:40,F2:50)

Figure  140. Sample REFORMAT Control Statement

JOIN UNPAIRED,F1
REFORMAT FIELDS=(F1:10,10,F2:12,5),FILL=C'0'

Figure  141. Sample JOIN and REFORMAT Control Statements
Chapter 2.  SyncSort Control Statements 2.225



REFORMAT
If a record is found in SORTIN1 that does not match a record in SORTIN2, the unpaired
record will be included in the join output and would look as follows:

The default FILL character is blank. Binary zeros will be used instead of the FILL charac-
ter for the first four bytes of a variable-length record requiring FILL processing. This indi-
cates that a record was not present for the REFORMAT due to JOIN UNPAIRED.

POSITION VALUE

1-10 Contents of the SORTIN1 record positions 10 through 19.

11-15 Filled with 0’s since SORTIN2 does not participate in 
building this record.

Figure  142. Sample Output of Unmatched SORTIN1/SORTIN2 Records
SyncSort for z/VSE 3.7 Programmer’s Guide2.226



SORT
SORT Control Statement

The SORT control statement defines the application as a sort. The SORT statement can
also define a copy application.

The SORT control statement is required for every sort.

The format of the SORT control statement is illustrated below.

FIELDS Parameter (Required for a Sort)

The FIELDS parameter is required for a sort. It describes the control fields.

As many as sixty-four control fields can be specified. List the control fields in order of great-
est to least priority, with the primary control field (p1,l1,f1,o1) listed first, followed by pro-
gressively less significant fields (p2,l2,f2,o2,...,p64,l64,f64,o64).

Each field specified in the FIELDS parameter is identified by its position (p), length (l), for-
mat (f) and order (o).

p  The position value indicates the first byte of the field relative to the begin-
ning of the input record after INREC and/or E15 processing, if specified,
have completed.

Binary control fields may begin on any bit of a byte. When a binary field
does not begin on a byte boundary, you must specify the bit number (0-7).
For example, a position value of 21.3 refers to the 4th bit of the 21st byte of
the record.

l   The length value indicates the length of the control field. The length value
must be an integral number of bytes except for the length of a binary con-
trol field, which may be specified in bits. For example, a length value of 0.6
refers to a binary control field 6 bits long.

Figure  143. SORT Control Statement Format

SORT
FIELDS=(p1,l1[,f1],o1,p2,l2[,f2],o2,…,p64l64[,f64],o64) [,FORMAT=f]
FIELDS=COPY 

 
 

[,BIAS = n] ,CENTWIN = 
80
s
f 

 
 
 
 

,CHKPT
,CKPT

,EQUALS
,NOEQUALS

,ERASEWK[ ] ,FILES = 1
n
---

 
 
 

,FILESOUT= 1
n
---

 
 
 

JOINWORK,( )= 1
n
---

 
 
 

SIZE,( )= n
E1 

 
 

WORK,( )=
DA
n
n,s 

 
 
 
 
Chapter 2.  SyncSort Control Statements 2.227



SORT
For signed fields, the length value must include the area occupied by the
sign. 

f  The format value indicates the data format. Refer to Table 37 below for a
list of valid formats. If the format value is omitted for a control field, then
the format value in the FORMAT=f subparameter is used for this control
field.

o  The order value indicates how the field is to be collated:

A=Ascending order

D=Descending order

Valid Formats for Control Fields

The following table lists the valid formats for sort control fields. 

 

Code Data Format Acceptable field 
length in bytes 

AC EBCDIC characters are translated to their ASCII equivalents before 
sorting. 

1 to 256 

AQ Character. Records are sorted according to an alternate sequence 
specified either in the ALTSEQ control statement or as an installa-
tion default. 

1 to 256 

ASL Leading separate sign. An ASCII + or - precedes a numeric field. One 
digit per byte. 

2 to 256 

AST Trailing separate sign. An ASCII + or - trails a numeric field. One 
digit per byte. 

2 to 256 

BI Binary. Unsigned. 1 bit to 4092 

CH Character. Unsigned. Characters are collated according to the 
EBCDIC collating sequence unless LOCALE has been used to chose 
an alternate set of collating rules based on a specific national lan-
guage. LOCALE can be set on the OPTION statement or as an instal-
lation default. 

1 to 4092 

CLO or 
OL 

Leading overpunch sign. Hexadecimal F,C,E or A in the first 4 bits of 
the field indicates a positive number. Hexadecimal D or B in the first 
4 bits indicates a negative number. One digit per byte. CMP=CLC is 
forced. 

1 to 256 

Table 37.  (Page 1 of 3)  Format Code Chart
SyncSort for z/VSE 3.7 Programmer’s Guide2.228



SORT
CSF or 
FS 

Floating sign format. An optional leading sign may be specified imme-
diately to the left of the digits. If the sign is a -, the number is treated 
as negative. For other characters, the number is treated as positive. 
Characters to the left of the sign are ignored. 

1 to 16 

CSL or 
LS 

Leading separate sign. An EBCDIC + or - precedes a numeric field. 
One digit per byte. CMP=CLC is forced. 

2 to 256 

CST or 
TS 

Trailing separate sign. An EBCDIC + or - follows a numeric field. One 
digit per byte. CMP=CLC is forced. 

2 to 256 

FI Fixed point. Signed. 1 to 256 

FL Signed floating point. Normalized. 2 to 16 

PD Packed decimal. Signed. 1 to 256 

PD0 Packed decimal. 2-8-byte packed decimal data with the first digit and 
trailing sign ignored. The remaining bytes are treated as packed deci-
mal digits. Typically PD0 is used with century window processing and 
Y2P format; Y2P processes the year, while PD0 processes month and 
day. 

2-8 

SFF Signed free format. Decimal digits (0-9) are extracted from right to 
left to form a number value. A character of - or ) found within the field 
will cause the value to be treated as a negative number. All other non-
decimal digit values in the field are ignored.

1 to 44

UFF Unsigned free format. Decimal digits (0-9) are extracted from right to 
left to form a number value. All non-decimal digit values in the field 
are ignored.

1 to 44

Y2B Binary. 2-digit, 1-byte binary year data treated as a 4-digit year by 
CENTWIN (century window) processing. 

1 

Y2C Character. 2-digit character year data treated as a 4-digit year by 
CENTWIN (century window) processing. Processing is identical to 
Y2Z fields. 

2 

Y2D Packed decimal. 2-digit, 1-byte packed decimal year data treated as a 
4-digit year by CENTWIN (century window) processing. 

1 

Y2P Packed decimal. 2-digit, 2-byte packed decimal year data. Of the four 
packed digits contained in the 2 bytes, the first digit and trailing sign 
are ignored; the two inner digits are treated as a 4-digit year by 
CENTWIN processing. 

2 

Code Data Format Acceptable field 
length in bytes 

Table 37.  (Page 2 of 3)  Format Code Chart
Chapter 2.  SyncSort Control Statements 2.229



SORT
The table below describes the valid full-date formats: Y2T, Y2U, Y2V, Y2W, Y2X, and Y2Y. 

Y2S Character or zoned decimal. 2-digit, 2-byte valid numeric data treated 
as a 4-digit year by CENTWIN (century window) processing, as for 
Y2C and Y2Z. However, certain data is not treated as year data. Data 
with binary zeros (X'00') or a blank (X'40') in the first byte will be col-
lated before valid numeric year data for ascending order (after year 
data for descending order). Data with all binary ones (X'FF') in the 
first byte will be collated after valid numeric year data for ascending 
order (before year data for descending order). Zones are ignored, as 
for Y2C and Y2Z, except for data where the first byte begins with 
X'00', X'40' or X'FF'. 

2 

Y2T
Y2U
Y2V
Y2W
Y2X
Y2Y 

Full-date formats. Enable sorting or merging a variety of date fields. 
The formats can process dates ending or starting with year digits and 
non-date data commonly used with the dates. Two-digit years are 
interpreted according to the CENTWIN setting. In most cases, for 
CH, ZD, and PD dates fields the full-date data formats are easier to 
use than the 2-digit year formats. For a description of these formats 
see Table 38 on page 2.231.

Y2Z Zoned decimal.2-digit, 2-byte zoned decimal year data treated as a 4-
digit year by CENTWIN (century window) processing. The zones are 
ignored. Processing is identical to Y2C fields. 

2 

ZD or 
CTO 

Zoned decimal. Trailing overpunch in the first 4 bits of the rightmost 
byte gives the sign. Hexadecimal F,C,E or A indicates a positive num-
ber. Hexadecimal D or B indicates a negative number. One digit per 
byte. CTO forces CMP=CLC. 

1 to 256 

Code Data Format Acceptable field 
length in bytes 

Table 37.  (Page 3 of 3)  Format Code Chart
SyncSort for z/VSE 3.7 Programmer’s Guide2.230



SORT
 

For information on using the full-date formats, see “CENTWIN (Century Window) Process-
ing with SORT: Full-Date Formats” on page 2.240 and “Converting Year Data with Century
Window Processing on INREC, OUTREC, INPFIL INREC or OUTFIL OUTREC: Full-Date
Data” on page 2.196.

Full-Date 
Format Date Format Date Form Example Date 

Form Length (bytes) 

Y2T CH, BI yyx yyq 3

yyxx yymm 4

yyxxx yyddd 5

yyxxxx yymmdd 6

Y2U PD yyx
(X'yyxs')

yyq 2

yyxxx
(X'yyxxxs')

yyddd 3

Y2V PD yyxx
(X'0yyxxs')

yymm 3

yyxxxx
(X'0yyxxxxs')

yymmdd 4

Y2W CH, BI xyy qyy 3

xxyy mmyy 4

xxxyy dddyy 5

xxxxyy mmddyy 6

Y2X PD xyy
(X'xyys')

qyy 2

xxxyy
(X'xxxyys')

dddyy 3

Y2Y PD xxyy
(X'0xxyys')

mmyy 3

xxxxyy
(X'0xxxxyys')

mmddyy 4 

Note: The following symbols are used in the table:
y   year digit (0-9)
x   non-year digit (0-9)
s   sign (hexadecimal 0-F)
0   unused digit
q  any digit

Table 38.   Full-Date Formats
Chapter 2.  SyncSort Control Statements 2.231



SORT
For information on the 2-digit year formats (Y2B, Y2C, Y2D, Y2P, Y2S, and Y2Z) plus the
related data format PD0) see “CENTWIN (Century Window) Processing with SORT: 2-
Digit Year Formats” on page 2.235 and “Converting Year Data with Century Window Pro-
cessing on INREC, OUTREC, INPFIL INREC or OUTFIL OUTREC: 2-Digit Year Data” on
page 2.194.

Rules for Specifying Control Fields

• The sum of the lengths of all control fields cannot exceed 4092 bytes. When the
EQUALS option is specified, the sum of their lengths cannot exceed 4088 bytes.

• Control fields can be in contiguous or noncontiguous locations in the record.

• Remember that the first 4 bytes of variable-length records are reserved for the Record
Descriptor Word, so the first byte of the data portion of the record is byte 5.

Comparing PD and ZD Control Fields

When you specify CMP=CPD, SyncSort may use the Compare Decimal (CP) instructions for
the comparison, which means that ZD data fields are packed first then compared. This
method provides performance advantages. However, invalid PD data may cause a Data
Exception abend and program termination. Moreover, the integrity of ZD fields is only
guaranteed when the fields contain valid ZD data. Since the zone bits (the left most 4 bits
of each byte) are lost during PACKing, UNPKing the field only restores valid ZD data to its
original state. For example, blanks are transferred into ZD zeros and alphabetic character
data that packs to a valid PD field is converted into valid ZD data.

When CMP=CLC is in effect, SyncSort does not perform data validation and the integrity of
the output is maintained.

FIELDS=COPY (Required for a Copy)

Use FIELDS=COPY to copy input file(s). Other control statements such as
INCLUDE/OMIT, INREC, OUTREC and OUTFIL and user exit routines can be specified in
conjunction with a copy application, allowing you to edit and reformat the file(s) without
sorting them.

The SUM control statement, and the CONVERT parameter of the OUTFIL control state-
ment, cannot be specified with FIELDS=COPY.

BIAS Parameter (Optional)

The BIAS parameter is ignored.
SyncSort for z/VSE 3.7 Programmer’s Guide2.232



SORT
CENTWIN Parameter (Optional)

The CENTWIN option defines a sliding or fixed 100-year window that determines the cen-
tury to which 2-digit year data belongs when processed by SORT, MERGE, INCLUDE,
INREC, OMIT, OUTREC or OUTFIL OUTREC control statements.

There are two types of date data formats: 2-digit year and full-date:

• For details on CENTWIN processing and the 2-digit year data formats with the SORT
control statement, see “CENTWIN (Century Window) Processing with SORT: 2-Digit
Year Formats” on page 2.235.

For information on using INCLUDE/OMIT with 2-digit year formats, see “Specifying
Standard Comparisons for Date Fields” on page 2.50.

For information on using the 2-digit year formats for OUTREC processing, see “Con-
verting Year Data with Century Window Processing on INREC, OUTREC, INPFIL
INREC or OUTFIL OUTREC: 2-Digit Year Data” on page 2.194 and “Sample OUTREC
Control Statements with CENTWIN Processing: 2-Digit Year Formats” on page 2.213.

• For details on CENTWIN processing and the full-date formats with the SORT control
statement, see “CENTWIN (Century Window) Processing with SORT: Full-Date
Formats” on page 2.240.

For information on using INCLUDE/OMIT with full-date formats, see “Specifying Stan-
dard Comparisons for Date Fields” on page 2.50 and “Sample INCLUDE/OMIT Control
Statements with Date Data” on page 2.60.

For information on using the full-date formats for OUTREC processing, see “Convert-
ing Year Data with Century Window Processing on INREC, OUTREC, INPFIL INREC
or OUTFIL OUTREC: Full-Date Data” on page 2.196.

CKPT/CHKPT Parameter (Optional)

This parameter instructs SyncSort to take a single checkpoint during a sort. SORTWK files
must be saved in order to restart the sort. 

When the CKPT parameter is specified, a SYS000 direct access device or a 2400/3400 series
tape device must be assigned as a checkpoint file. (See Table 45 on page 5.4.) This file must
have standard labels and must be given the filename SORTCKP in the TLBL/DLBL state-
ment.

Use standard restart procedures to restart the sort from the checkpoint. Refer to the appro-
priate System Management Guide for detailed instructions.

Because taking a checkpoint does cause some performance degradation, specify this param-
eter only for sorts that take a long time to complete.
Chapter 2.  SyncSort Control Statements 2.233



SORT
EQUALS/NOEQUALS Parameter (Optional)

The EQUALS parameter preserves the original order of records with equal control fields.
These records are written in the same order in which they were read. The NOEQUALS
parameter specifies that equal-keyed records be written in random order. NOEQUALS is
the default.

When EQUALS is used with the SUM or DUPKEYS control statement, the first of the
equally-keyed records is retained with the sum; all other records are deleted after the spec-
ified field(s) have been summed.

ERASEWK Parameter (Optional)

The ERASEWK parameter specifies that the contents of the work files opened by the sort
are to be erased at the end of the sort. (If an incore sort is performed, no files are erased.)

FILES Parameter (Optional)

The FILES parameter specifies the number of input files to be sorted. The 'n' value may be
any number from 1 to 32. If the FILES parameter is not specified, one input file is assumed.
Note: When using with the JOIN process, one output file is assumed.

FILESOUT Parameter (Optional)

The FILESOUT parameter specifies the number of output files and is required when creat-
ing multiple output files. The 'n' value may be any number from 1 to 32. If the FILESOUT
parameter is not specified, one output file is assumed.

JOINWORK Parameter (Optional)

The JOINWORK parameter specifies the maximum number of sortwork files that the join
process will use. The ‘n’ value can be any number from 1 to 9. If the join process is used and
JOINWORK is not specified, one sortwork file is assumed.

SIZE Parameter (Optional)

The SIZE parameter specifies the total number of records in the input file(s). Replace 'n'
with an accurate estimate of the number of records. Because sort performance is not
affected by the SIZE parameter, this parameter is used primarily in conjunction with the
ANALYZE control statement and the CALCAREA parameter on the OPTION statement.
These features determine the amount of sort work space required for a particular applica-
tion. 

SIZE=E1 can be used to call a Parmexit to override SyncSort defaults for a particular sort.
A default can be specified at installation time to call a Parmexit for every sort, providing
the ability to vary certain parameters on the basis of internal criteria, e.g., adjusting
SyncSort for z/VSE 3.7 Programmer’s Guide2.234



SORT
storage requirements according to the time of day. For information on Parmexits, see the
SyncSort for z/VSE Installation Guide.

WORK Parameter (Optional)

The WORK parameter specifies the total number of disk files to be used for sort work.

WORK=DA is equivalent to WORK=1; SyncSort will determine whether the sort work file
is a DA file, an SD file or a VSAM-managed SAM file. If multiple extents are used for sort
work files and the JCL statements follow Method 1, in which one DLBL statement precedes
all EXTENT statements (see “Chapter 5. Job Control Language and Sample Control State-
ment Streams”), WORK=DA must be specified on the SORT control statement.

For an incore sort, specify WORK=0. In any event, SyncSort may perform an incore sort if it
is more efficient.

For sequential disk files, replace 'n' with the number of sort work files SyncSort should use
for primary space. Specify WORK=(n,s) only in conjunction with Disk Space Management
packages. Replace 's' with the number of secondary work packs SyncSort can access within
the DSM pool, overriding the default set at installation time. For multiple sortwork files,
performance can be enhanced by assigning the files to separate devices. See “Setting up
Disk Work File Statements” on page 5.5.

Note: If OPTWORK=m has been specified as an installation parameter, with m>n, the sort
may improve performance by using more than ‘n’ work files. See the SyncSort for z/VSE
Installation Guide for details.

CENTWIN (Century Window) Processing with SORT: 2-Digit Year Formats

The CENTWIN run-time or installation option acts on 2-digit year data that spans centu-
ries. CENTWIN treats 2-digit year data as a 4-digit year and sequences the data according
to the 4-digit representation.

For information on using full-date data, see “CENTWIN (Century Window) Processing with
SORT: Full-Date Formats” on page 2.240.

CENTWIN generates a century window (for example, 1950 through 2049) that determines
what century a two-digit year field belongs to. CENTWIN ensures that year data spanning
centuries will be sequenced correctly. Without CENTWIN processing, an ascending
sort/merge would sequence the year '01' before the year '98'. With CENTWIN processing,
the '01' field could be recognized as a twenty-first century date (2001) and would thus be
sequenced after '98' (1998).

For more information on specifying the CENTWIN option, see “CENTWIN Parameter
(Optional)” on page 2.119.
Chapter 2.  SyncSort Control Statements 2.235



SORT
CENTWIN processing applies to data defined as 2-digit year formats: Y2B, Y2C, Y2D, Y2P,
Y2S, and Y2Z. These data formats enable SyncSort to process 2-digit year fields as 4-digit
years. A related data format, PD0, can be used to process the month and day portions of
packed decimal date fields. To correctly specify date fields for CENTWIN SORT/MERGE
processing, you should be familiar with the CENTWIN-related data formats.

The following describes each of the date formats and provides example SORT control state-
ments:

Note: For simplicity, the sample date fields in the example SORT statements below begin
at byte 20. Also note that date data is always sorted in the following order: year (yy), month
(mm), day (dd).

• Y2B

This format is used to sequence 2-digit, 1-byte binary year data with CENTWIN pro-
cessing. The binary values are converted to decimal, and the two low order digits are
used as year data. Thus, while binary and decimal values range from 00 to 255, year
values range from 00 to 99. The relationship between binary, decimal and year values is
shown in the following table: 

• Y2C and Y2Z

These formats represent 2-digit, 2-byte year data in either character (Y2C) or zoned
decimal (Y2Z) format. Either Y2C and Y2Z formats can be used with data of the form

X'xyxy'

where y is a hexadecimal year digit 0-9 and x is hexadecimal 0 through F. Y2C and Y2Z
ignore the x digits, leaving yy, the 2-digit unsigned year representation.

Suppose you have a character or zoned decimal date field mmddyy that begins at byte
20. You can use either Y2C or Y2Z to process the yy field. As the following example indi-
cates, you could specify three sort keys to correctly sort this date:

Binary Value Decimal Value Year Value 

X'00' to X'63' 00 to 99 00-99 

X'64' to X'C7' 100 to 199 00-99 

X'C8' to X'FF' 200 to 255 00-55 

Table 39.   Possible Values Representing Year Data with Y2B
SyncSort for z/VSE 3.7 Programmer’s Guide2.236



SORT
The yy field (24,2) will be processed according to the century window setting. For exam-
ple, if CENTWIN=1945, the field yy=45 will be sequenced as if it were 1945, and yy=44
would be sequenced as if it were 2044. Thus, for an ascending sort, '44' would follow
'45'.

• Y2D

This format is used to sort 2-digit, 1-byte packed decimal year data with CENTWIN
processing. Use Y2D to extract the year data (yy) from packed decimal date fields.

For example, consider a 3-byte packed decimal data field defined as

yyddds

This field has the year (yy) in the first byte and the day (ddd) in bytes 2 and 3. The
packed decimal sign (s) would be in the last digit (half byte) of the third byte. To sort
this date field, which begins at byte 20, with 4-digit years processing, use the following
SORT control statement:

• Y2P

This format is used to sort or merge 2-digit, 2-byte packed decimal year data with
CENTWIN processing. Use Y2P to extract the year data (yy) from packed decimal date
fields spanning two bytes. For example, a packed decimal date of the form yymmdd
would be stored as four bytes:

yymmdd=X'0yymmddC'

where the trailing C (sometimes F) is a positive sign and the leading 0 pads the field on
the left to make an even number of digits.

Notice that the components of the date span bytes:

0y ym md dC

SORT FIELDS=(24,2,Y2C,A, * sort yy field as 4-digit year
20,2,CH,A, * sort mm field
22,2,CH,A) * sort dd field 

Figure  144. Sample SORT Control Statement using Y2C

SORT FIELDS=(20,1,Y2D,A, * sorts 2-digit year (yy) as 4-digit year
21,2,PD,A) * sorts ddds as 3 digits (ddd) 

Figure  145. Sample SORT Control Statement using Y2D
Chapter 2.  SyncSort Control Statements 2.237



SORT
Y2P handles this condition by ignoring the first and last half bytes of the 2-byte field
specification. Thus, Y2P processes 0yym as yy, ignoring the leading digit (0) and the
trailing digit (m) that is part of the month.

The following example uses Y2P to sort the year portion of the date field, which begins
at byte 20:

The field specification 20,2,Y2P treats X'0yym' as X'yy', and CENTWIN processing
sorts yy as a 4-digit year yyyy.

• PD0 

This format is used to sort or merge 2-8 byte packed decimal data. PD0 ignores the first
digit and trailing sign during processing. PD0 is normally used in conjunction with the
Y2P data format. The Y2P format is used to process the 2-digit year portion of a packed
decimal date field, while the PD0 format is used to process the month and day portion
of the field.

Although PD0 is typically used with Y2P, the PD0 format itself is not affected by
CENTWIN processing.

Consider the packed decimal date field used in the example above:

yymmdd=X'0yymmddC'

where the trailing C (sometimes F) is a positive sign and the leading 0 pads the field on
the left to make an even number of digits.

Notice that the components of the date span bytes:

0y ym md dC

The date can be processed as follows:

• Y2P processes the year component X'0yym' as X'yy'.

• PD0 processes the month and day components X'ymmddC' as X'mmdd'.

The following SORT control statement can be used to sort the entire date with
CENTWIN processing:

SORT FIELDS=(20,2,Y2P,A) * sorts yy field as 4-digit year 

Figure  146. Sample SORT Control Statement using Y2P
SyncSort for z/VSE 3.7 Programmer’s Guide2.238



SORT
• Y2S

This format is used to sequence 2-digit, 2-byte character or zoned decimal data. The
Y2S format is identical to Y2C and Y2Z for valid numeric data, but Y2S treats data
that begins with X'00', X'40' or X'FF' as non-year data. Thus, the Y2S format can distin-
guish records that have non-year data in the first byte of the year field, allowing such
records to be sorted differently from other records.

Y2S treats non-year data as follows:

• Data with binary zeros (X'00') or a blank (X'40') in the first byte will not have
century window processing applied to it. Instead, such data will be collated in
sequence, before valid numeric year data for ascending order or after the year
data for descending order.

• Data with all binary ones (X'FF') in the first byte will also not have century window
processing applied to it. Instead, such data will be collated after valid year numeric
data for ascending order or before the year data for descending order. Zones are
ignored, as for Y2C and Y2Z, except for data where the first byte begins with X'00',
X'40' or X'FF'.

As an example, suppose you want to preserve the input order of header and trailer records
at the start or end of the file, and your header/trailer records are identified by binary zeros
(X'00'), a blank (X'40') or binary ones (X'FF') in the first byte of the date field.

The Y2S format allows CENTWIN to identify the header/trailer records and treat them dif-
ferently from other records. Presuming the year data begins in column 20, you would use
the following sort key specification:

The yy field (20,2) will be processed according to the century window setting. For
CENTWIN=1945, data with header and trailer records would be sorted as follows:

SORTIN Input   Record Order after Sorting
X'F9F6'   X'0000'

X'4001'   X'4000'

X'F4F4'   X'4001'

SORT FIELDS=(20,2,Y2P,A, * Treats X'0yym' as X'yy'; sorts yy as yyyy
21,3,PD0,A) * Treats X'ymmddC' as X'mmdd' 

Figure  147. Sample SORT Control Statement using PD0

SORT FIELDS=(20,2,Y2S,A) * Sorts yy field as 4-digit year 

Figure  148. Sample SORT Control Statement using Y2S
Chapter 2.  SyncSort Control Statements 2.239



SORT
X'4000'   X'F5F1'

X'0000'   X'F9F6'

X'F5F1'   X'F4F4'

X'FF03'   X'FF03'

Note that if the above data were sorted as Y2C or Y2Z format, the output order would be
different because the records starting with X'00', X'40' and X'FF' would be interpreted as
numeric years. For example, suppose the fields in the above list were defined as Y2Z and
sorted with EQUALS:

The data would be processed as follows:

SORTIN Input   Record Order after Sorting
X'F9F6'   X'F5F1'

X'4001'   X'F9F6'

X'F4F4'   X'FF03' (invalid numeric data)

X'4000'   X'4000' (invalid numeric data)

X'0000'   X'0000' (invalid numeric data)

X'F5F1'   X'4001' (invalid numeric data)

X'FF03'   X'F4F4'

The header and trailer records are sequenced as year data according to the CENTWIN set-
ting (CENTWIN=1945), and the header and trailer records lose their position at the start
and end of the file.

CENTWIN (Century Window) Processing with SORT: Full-Date Formats 

SyncSort’s full-date formats enable you to sort or merge a variety of date fields. The full-
date formats are Y2T, Y2U, Y2V, Y2W, Y2X and Y2Y. These date formats can process dates
ending or starting with year digits:

• x...xyy (for example: qyy, mmyy, dddyy, or mmddyy)

• yyx...x (for example: yyq, yymm, yyddd, or yymmdd)

The full-date formats also process non-date data commonly used with the dates. SyncSort
interprets two-digit years (yy) according to the century window specified by the CENTWIN
option. CENTWIN processing does not apply to non-date data.

In most cases, for CH, ZD, and PD date fields the full-date formats are easier to use than
the 2-digit year formats. The 2-digit formats can be more difficult because you must divide
the date into its components. This requires care, particularly for PD dates, where date com-
ponents (q, dd, mm, or yy) may span bytes or occupy only part of a byte. The full-date for-

SORT FIELDS=(20,2,Y2Z,A),EQUALS 

Figure  149. Sample SORT Control Statement using Y2Z
SyncSort for z/VSE 3.7 Programmer’s Guide2.240



SORT
mats, on the other hand, process such dates automatically. For information on the 2-digit
year formats, see Table 38 on page 2.231 and “CENTWIN (Century Window) Processing
with SORT: 2-Digit Year Formats” on page 2.235.

The following two examples illustrate how you might use Table 38 on page 2.231 to develop
SORT control statements:

• Suppose you have a packed decimal (PD) date field of the form mmyy. To sort this field
correctly, you would use the Y2Y 3-byte format from the table. Thus, if the date field
starts in position 30, you would specify the following SORT control statement to sort
the date in descending order:

Any PD fields of all PD zeros or all PD nines will be processed automatically as non-
date data.

• Suppose you have a character (CH) date field of the form yymmdd. To sort this field
correctly, you would use the Y2T 6-byte format from the table. Thus, if the field starts
in byte 40, you would specify the following SORT control statement to sort in ascending
order:

Any CH zeros, CH nines, BI zeros, blanks and BI ones will be processed automatically
as non-date data.

Collating Sequence with Full-Date Formats

For full-date formats, the yy component is always sorted first (treated as primary key). This
is so even when the yy is physically at the rightmost end of the field, as for Y2W, Y2X, and
Y2Y. For example, a 6-byte Y2W field, has the form xxxxyy. This is collated with the yy as
the primary key and xxxx as the secondary key. Because SyncSort automatically collates
the year character first, you don’t have to deal with yy manually, for example by using PD0
and Y2D.

It is important to understand that the xxxx component of a full-date format must be
designed to collate as a unit. Suppose you have the 6-byte Y2T field yyxxxx. If you collate
this field in ascending order, then yy collates first (the primary key) with xxxx collating sec-
ond (secondary key). Consider two possibilities:

• If yyxxxx is actually yymmdd, you will be sorting first by year, then month, then day.

SORT FIELDS=(30,3,Y2Y,D) 

Figure  150. Sample SORT Control Statement using Y2Y

SORT FIELDS=(40,6,Y2T,A) 

Figure  151. Sample SORT Control Statement using Y2T
Chapter 2.  SyncSort Control Statements 2.241



SORT
• If yyxxxx is actually yyddmm, you will be sorting by year, then day, then month. In
most cases, sorting in this way would not be what you intended.

To correctly collate a date, the date components must be in an order suitable for collating.
For example mmddyy and yymmdd will collate correctly, but ddmmyy or yyddmm will not.
For date forms that will not collate correctly, you must use one of the 2-digit year formats
(Y2B, Y2C, Y2D, Y2P, Y2S, and Y2Z).

Table 38 on page 2.231 indicates the full-date formats that can be used with character
(CH), binary (BI) or packed decimal (PD) data. Note the recognized non-date values:

•  Character or binary (Y2T and Y2W full-date formats)
C'0...0' (CH zeros)
C'9...9' (CH nines)
Z'0...0' (ZD zeros)
Z'9...9 (ZD nines)
X'00...00' (BI zeros)
X'40...40' (blanks)
X'FF...FF' (BI ones) 

•  Packed (Y2U, Y2V, Y2X and Y2Y full-date formats)
P'0...0' (PD zeros)
P'9...9' (PD nines)

The following table shows the order for ascending collation when using full-date formats
with the CENTWIN option: 

For a descending sort, the collation order is reversed.

Other date formats (non-full-date), with the exception of Y2S, do not process non-date data;
their sort sequence for ascending sorts is simply lower century dates then higher century
dates.

Full-Date Format Data Format Ascending Sort Sequence 

Y2T
Y2W

CH, BI BI zeros
Blanks
CH/ZD zeros
Lower century dates (e.g. 1980)
Higher century dates (e.g. 2010)
CH/ZD nines
BI ones 

Y2U
Y2V
Y2X
Y2Y

PD PD zeros
Lower century dates (e.g. 1980)
Higher century dates (e.g. 2010)
PD nines 

Table 40.   Collation Order for Full-Date Formats
SyncSort for z/VSE 3.7 Programmer’s Guide2.242



SORT
Sample SORT Control Statements with CENTWIN: Full-Date Formats

The following examples illustrate the use of full-date formats with the SORT control state-
ment.

• Example 1 (Y2W)

The following SORT control statement sorts a C'mmddyy' date field in ascending order,
with the previously set fixed century window 1984-2083:

Table 38 on page 2.231 indicates that the 6-byte Y2W form is appropriate for a CH
input field of the form xxxxyy. As shown in the following table, the output will be col-
lated as C'yyyymmdd', with the non-date data (zeros) appearing correctly at the begin-
ning of the sorted output. 

• Example 2 (Y2T)

The following SORT control statement sorts a Z'yyddd' date field in descending order,
with the previously set fixed century window 1921-2020:

Table 38 on page 2.231 indicates that the 5-byte Y2T form is appropriate for a ZD input
field of the form yyddd. As shown in the following table, the output will be collated as

SORT FIELDS=(10,6,Y2W,A) * Sort C'mmddyy' in ascending order,
* with Y2W and previously set
* century window 1984-2083. 

Figure  152. Sample SORT Control Statement using Y2W

SORTIN 
Input 
(mmddyy) 

Record Order 
after Sorting 
(mmddyy) 

Actual Date 
after Sorting 
(yyyy/mm/dd) 

021783 000000 non-date data 

092206 070484 1984/07/04 

081395 081395 1995/08/13 

110210 092206 2006/09/22 

000000 110210 2010/11/02 

070484 043060 2060/04/30 

043060 021783 2083/02/17 

SORT FIELDS=(20,5,Y2T,D) * Sort Z'yyddd' in descending order
* with Y2T and previously set
* century window 1921-2020. 

Figure  153. Sample SORT Control Statement using Y2T
Chapter 2.  SyncSort Control Statements 2.243



SORT
Z'yyyyddd', with non-date data (nines and zeros) appearing correctly at the beginning
and end of the sorted output. 

• Example 3 (Y2Y)

The following SORT control statement sorts a P'mmddyy' (X'0mmddyys') in ascending
order, with the previously set fixed century window 1921-2020:

Table 38 on page 2.231 indicates that the 4-byte Y2Y field is appropriate for a PD input
field of the form xxxxyy. As shown in the following table, the output will be collated as
P'yyyymmdd', with the non-date data (zeros and nines) appearing correctly at the
beginning and end of the sorted output. Note that the first two columns are in hexadec-
imal. 

 

SORTIN 
Input 
(mmddd) 

Record Order 
after Sorting 
(mmddd) 

Actual Date 
after Sorting 
(yyyy/ddd) 

00000 99999 non-date data 

50237 20153 2020/153 

99999 20047 2020/047 

20047 01223 2001/223 

94001 94001 1994/001 

01223 50237 1950/237 

20153 21148 1921/148 

21148 00000 non-date data 

SORT FIELDS=(26,4,Y2Y,A) * Sort P'mmddyy' in ascending order,
* with Y2Y and previously set
* century window 1921-2020. 

Figure  154. Sample SORT Control Statement using Y2Y

SORTIN 
Input 
(mmddyy) 

Record Order 
after Sorting 
(mmddyy) 

Actual Date 
after Sorting 
(yyyy/mm/dd) 

0999999C 0000000C non-date data 
0102250C 0080321C 1921/08/03 
0032120C 0102250C 1950/10/22 
0010194C 0010194C 1994/01/01 
0000000C 0111501C 2001/11/15 
0111501C 0032120C 2020/03/21 
0080321C 0999999C non-date data 
SyncSort for z/VSE 3.7 Programmer’s Guide2.244



SORT
Sample SORT Control Statements without Date Data

This sample SORT control statement indicates four control fields:

• The first, or primary, field begins in bit 4 of byte 2, is 2 bytes long, is in binary format
and is to be sorted in descending order.

• The second control field begins in byte 8, is 2 bytes 4 bits long, is in binary format and is
to be sorted in ascending order.

• The third control field begins on byte 25, is 10 bytes long, is in character format and is
to be sorted in ascending order.

• The fourth control field begins on byte 15, is 10 bytes long, is an EBCDIC numeric field
with a leading separate sign and is to be sorted in descending order.

This sample SORT control statement specifies the following:

• There are three control fields. Because all three fields have the same data format (in
this case, character), the FORMAT=CH subparameter is specified so that the CH value
does not have to be specified for each of the fields.

• The first control field begins on byte 20, is 5 bytes long and is to be sorted in ascending
order.

• The second control field begins on byte 5, is 10 bytes long and is to be sorted in
descending order.

• The third control field begins on byte 30, is 5 bytes long and is to be sorted in ascending
order.

• There are four sort work files.

SORT FIELDS=(2.3,2,BI,D,8,2.4,BI,A,25,10,CH,A,15,10,LS,D) 

Figure  155. Sample SORT Control Statement

SORT FIELDS=(20,5,A,5,10,D,30,5,A),FORMAT=CH,WORK=4 

Figure  156. Sample SORT Control Statement
Chapter 2.  SyncSort Control Statements 2.245



SUM
SUM Control Statement

The SUM control statement deletes records with equal control fields and optionally sums
specified numeric fields on those records. Equal keyed records are processed pair by pair. If
numeric fields are to be summed, the data in the sum fields is added, the sum is placed in
one of the records, and the other record is deleted. Provided arithmetic overflow does not
occur, the SUM statement produces only one record per sort key in the output data set.

The SUM control statement cannot be used when FIELDS=COPY is specified on the SORT
or MERGE control statement, or when FIELDS=COMPARE is specified on the MERGE
control statement.

The format of the SUM control statement is illustrated below.

FIELDS Parameter (Required)

The FIELDS parameter defines the numeric fields to be summed when the control fields of
two or more records are equal. Specify FIELDS=NONE or FIELDS=(NONE) to reduce the
sorted data to one record per sort key without summing any numeric fields.

Each field specified in the FIELDS parameter is identified by its position (p), length (l) and
format (f).

p   The position value indicates the first byte of the field relative to the
beginning of the input record after INREC and/or E15 processing, if
specified, have completed. The field must begin on a byte boundary.

l   The length value indicates the length of the field. The length must
be an integral number of bytes. Refer to Table 41 on page 2.247 for
the permissible lengths.

f   The format value indicates the data format. Fields with BI, FI, FL,
PD and ZD formats can be summed. If all the sum fields have the
same format, you can specify the format value once by using the
FORMAT=f subparameter. 

Figure  157. SUM Control Statement Format

SUM 
FIELDS= (p1,l1[,f1][,p2,l2[,f2]]…)[,FORMAT=f ]
FIELDS=NONE 

 
 

[,XSUM]
SyncSort for z/VSE 3.7 Programmer’s Guide2.246



SUM
 

XSUM Parameter (Optional)

Specify the XSUM parameter if you want the records deleted by SUM processing to be writ-
ten to a file named SORTXSM (this name may be changed by the XSUMNM parameter in
the OPTION statement). These records will be written to SORTXSM at the time of SUM
processing. These records will not undergo OUTREC, E35, and OUTFIL processing as such
processing occurs after SUM processing.

Characteristics of the SORTXSM file, such as BLKSIZE, can be specified via the XSUMFIL
statement. The default is unblocked output.

The SORTXSM file will be sequenced in the same order as the SORTOUT file.

Note that XSUM may increase system resource requirements:

• Adding XSUM to an existing sort application may result in an increase in the amount
of SORTWORK space required. This occurs because XSUM delays all summing until
phase 3.

• XSUM may require additional storage. Do not specify VSCORE below 512K.

Rules for Specifying Sum Fields

• If NOEQUALS is in effect, the record that is retained is determined arbitrarily. If
EQUALS is in effect, the record that is retained is the first record read. The EQUALS
parameter can be specified on the SORT, MERGE or OPTION control statement.

• A sort or merge control field cannot be summed. A portion of a control field cannot be
included in a sum field.

• Sum fields cannot overlap each other.

FORMAT 
CODE PERMISSIBLE LENGTH 

BI 2, 4 or 8 bytes 

FI 2, 4 or 8 bytes 

FL 4, 8 or 16 bytes 

PD 1 to 16 bytes 

ZD 1 to 31 bytes 

Table 41.   Permissible Lengths for SUM Fields
Chapter 2.  SyncSort Control Statements 2.247



SUM
• Non-sum fields remain unchanged and are retained from the record that contains the
sum.

• If arithmetic overflow occurs during the summing of two records, those records are not
summed and neither record is deleted. However, the sum process continues so that
subsequent pairs of records with equal control fields can be summed, provided they do
not cause overflow. To avoid arithmetic overflow, use the INREC statement to insert
binary zeros, or X'F0’s if the field is in ZD format, immediately before the sum field.

• Remember that the first 4 bytes of variable-length records are reserved for the Record
Descriptor Word, so the first byte of the data portion of the record is byte 5. 

Sample SUM Control Statements

The following SUM statement deletes equal-keyed records without summing numeric
fields.

Records with equal control fields will be deleted so that only one record is retained.

The following SUM statement sums two numeric fields on records with equal control fields.

When the control fields are equal, this SUM statement sums the numeric data in the fields
beginning in bytes 20 and 32. Because both fields are in packed decimal format, the FOR-
MAT=PD subparameter is used so that the PD value does not have to be specified for each
field.

Comprehensive examples illustrating the SUM control statement are provided in “Chapter
4. How to Use SyncSort Data Utility Features”.

SUM FIELDS=NONE 

Figure  158. Sample SUM Control Statement

SUM FIELDS=(20,4,32,4),FORMAT=PD 

Figure  159. Sample SUM Control Statement
SyncSort for z/VSE 3.7 Programmer’s Guide2.248



XDUPFIL
XDUPFIL Control Statement

The XDUPFIL control statement describes the XDUP (records deleted by DUPKEYS pro-
cessing) output file. It is required when XDUP is specified in the DUPKEYS statement and
you want any of the following:

• To specify an output blocksize

• VSAM output

• To reformat output records

• To use other parameters available in the XDUPFIL statement

The format and the parameters for the XDUPFIL statement are identical to the OUTFIL
statement, except that the following parameters are not supported:

• EXIT

• FILES=

• FNAMES=

Refer to the “OUTFIL Control Statement” on page 2.141 for an explanation of the parame-
ters that may be specified in an XDUPFIL statement. 
Chapter 2.  SyncSort Control Statements 2.249



XSUMFIL
XSUMFIL Control Statement

The XSUMFIL control statement describes the XSUM (records deleted by SUM processing)
output file. It is required when XSUM is specified in the SUM statement and you want any
of the following:

• To specify an output blocksize

• VSAM output

• To reformat output records

• To use other parameters available in the XSUMFIL statement

The format and the parameters for the XSUMFIL statement are identical to the OUTFIL
statement, except that the following parameters are not supported:

• EXIT

• FILES=

• FNAMES=

Refer to the “OUTFIL Control Statement” on page 2.141 for an explanation of the parame-
ters that may be specified in an XSUMFIL statement. 
SyncSort for z/VSE 3.7 Programmer’s Guide2.250



Chapter 3.  Using the SyncSort Dictionary Feature 

The Dictionary Feature

The SyncSort Dictionary Feature allows you to create symbolic ‘dictionary_names’ for fre-
quently used fields or constants and use these dictionary_names in SyncSort control state-
ments.

Using the Dictionary Feature has many benefits:

• Easier coding of sort control statements speeds development of sort applications and
improves accuracy.

• More readable and understandable sort control statements facilitate debugging and
adaptation to changes in the future.

• Reduction or elimination of changes to sort control statements when record layouts or
user parameters change saves time and reduces errors.

To use the SyncSort Dictionary Feature, do the following:

• Build a dictionary using the dictionary statements. A dictionary statement creates a
dictionary_name and associates it with a field specification (position, length, format) or
a constant value.

• Activate the Dictionary Feature using the SYMNAMES parameter on the OPTION
control statement. This parameter tells SyncSort the name and location of the
dictionary to use.
Chapter 3.  Using the SyncSort Dictionary Feature 3.1



• Use dictionary_names in sort control statements.

A dictionary consists of one or more dictionary statements. A dictionary can be catalogued
as a VSE library member, or it can be placed immediately after the OPTION control state-
ment in SYSIPT.

Each time a Dictionary Feature activated sort executes, it reads the dictionary statements
from the VSE library or SYSIPT, and substitutes any dictionary_name found in the follow-
ing control statements with the associated field specification or constant.

When a record layout changes, just modify the dictionary statements. The next sort execu-
tion will read in the updated dictionary statements and apply the new values during
dictionary_name substitutions.

Activating the Dictionary Feature

Activate the SyncSort for z/VSE dictionary feature by specifying SYMNAMES on the
SyncSort OPTION statement. If you wish to use the dictionary feature, the OPTION
statement must be the first statement read by SyncSort. SYMNAMES tells SyncSort where
to find the dictionary statements.

SYMNAMES=SYSIPT indicates that the dictionary statements are immediately after the
OPTION statement in SYSIPT. In this case, the last dictionary statement must be followed
by a statement with /* in column 1 and 2 followed by the remaining SyncSort control state-
ments, such as SORT, RECORD etc. Note that this form of the SYMNAMES parameter
cannot be used in a SyncSort execution from within another program such as an assembler
program.

The following sample application illustrates the use of SYMNAMES=SYSIPT:

The SYMNAMES parameter of the OPTION statement can also indicate that the dictio-
nary statements are contained in a VSE library member. In this case, the library member

// EXEC PGM=SORT
OPTION PRINT=ALL,ROUTE=LST,SYMNAMES=SYSIPT

* Start of the Dictionary statements
Field1,1,10,ch First field in data record
Field2,11,4,zd Second field in data record

.

.

.
Field40,251,15,ch Last field in data record
* End of the Dictionary statements
/*
SORT FIELDS=(Field2,A,Field40,D),FILES=1,WORK=3
RECORD TYPE=F,LENGTH=265
INPFIL BLKSIZE=7950
OUTFIL BLKSIZE=7950
END

/* 

Figure 160. Sample Application of SYMNAMES=SYSIPT
SyncSort for z/VSE 3.7 Programmer’s Guide3.2



must consist of fixed-length, 80 byte records. When SYMNAMES is used to specify a VSE
library member, SYMNAMES has two possible formats.

• SYMNAMES=library.sublib.member.type tells SyncSort all the information that it
needs to find the dictionary statements. In this case, SyncSort will read the dictionary
statements from the library member: member.type in the VSE library: library.sublib,
as shown in the following example:

The library member DATAREC.CARDS in the above example might contain dictionary
statements such as the following:

• SYMNAMES=member.type specifies only the member.type information. In this case,
SyncSort will read the data dictionary statements from library member member.type
in the first VSE library that SyncSort finds contains member.type. The libraries that
SyncSort searches for member.type are specified by the SYMNLIB installation default
or by the SYMNLIB parameter of the OPTION statement.

The SYMNLIB parameter specifies a list of 1 to 14 VSE libraries that should be
searched for the library member specified by SYMNAMES=member.type. The following
shows the format for SYMNLIB:

SyncSort will attempt to find the member specified by SYMNAMES=member.type first
in lib1.sublib1. If it is not found, SyncSort checks each lib.sublib in turn.

// EXEC PGM=SORT
OPTION PRINT=ALL,ROUTE=LST,SYMNAMES=(MAINLIB.MYSUB.DATAREC.CARDS)
SORT FIELDS=(Field2,A,Field40,D),FILES=1,WORK=3
RECORD TYPE=F,LENGTH=265
INPFIL BLKSIZE=7950
OUTFIL BLKSIZE=7950
END

/* 

Figure 161. Sample SYMNAMES=library.sublib.member.type

Field1,1,10,ch First field in data record
Field2,11,4,zd Second field in data record

.

.

.
Field40,251,15,ch Last field in data record 

Figure 162. Sample Dictionary Statements

SYMNLIB=(lib1.sublib1 [,lib2.sublib2]...[,lib14.sublib14])

Figure 163. SYMNLIB Format
Chapter 3.  Using the SyncSort Dictionary Feature 3.3



The following sample application uses SYMNAMES with SYMNLIB:

The library member DATAREC.CARDS in the above example might contain dictionary
statements such as the following:

An additional statement is allowed within dictionary statements to enable embedding or
concatenating dictionary sources. This is the SYMNAMES statement. The SYMNAMES
statement has the same function as the SYMNAMES parameter on the OPTION state-
ment. Either SYMNAMES=library.sublib.member.type or SYMNAMES=member.type may
be specified. (SYMNAMES=SYSIPT may not be specified on the SYMNAMES statement.)
The SYMNAMES statement may start with 0, 1 or more blanks followed by SYMNAMES=
and the required library member information. Continuation of the SYMNAMES statement
is not allowed. The maximum nesting level allowed using the SYMNAMES statement is 15. 

// EXEC PGM=SORT

OPTION SYMNAMES=DATAREC.CARDS,SYMNLIB=(TESTLIB.TSTSUB.MAINLIB.MYSUB)

SORT FIELDS=(Field2,A,Field40,D),FILES=1,WORK=3

RECORD TYPE=F,LENGTH=265

INPFIL BLKSIZE=7950

OUTFIL BLKSIZE=7950

END

/* 

Figure 164. Sample Application of SYMNAMES with SYMNLIB

Field1,1,10,ch First field in data record
Field2,11,4,zd Second field in data record

.

.

.
Field40,251,15,ch Last field in data record 

Figure 165. Sample Dictionary Statements
SyncSort for z/VSE 3.7 Programmer’s Guide3.4



The following sample application uses the SYMNAMES statement:

The library member DATAREC.CARDS in the above example might contain dictionary
statements such as the following:

When using the SYMNAMES statement to embed or concatenate dictionary members, you
must be careful not to introduce an embedding loop. For example: member1 contains a
SYMNAMES statement to read member2. Member2 contains a SYMNAMES statement
indicating SyncSort should read member3. Member3 contains a SYMNAMES statement
causing SyncSort to read member1. This is an embedding loop and is not allowed. The fol-
lowing shows sample dictionary statements in an embedded member:

Specifying Dictionary Listing Output

The SYMNOUT parameter of the OPTION statement allows you to specify if you want the
dictionary listing to be printed on SYSLST and/or SYSLOG or not at all:

• SYMNOUT=NONE prevents the printing of the dictionary listing.

// EXEC PGM=SORT
OPTION SYMNAMES=SYSIPT,SYMNLIB=(TESTLIB.TESTSUB,MAINLIB.MYSUB)

Field1,1,10,ch First field in data record
Field2,11,4,zd Second field in data record

.

.

.
Field40,250,15,ch
SYMNAMES=DATAREC.CARDS
/*
SORT FIELDS=(Field2,A,Field40,D),FILES=1,WORK=3
RECORD TYPE=F,LENGTH=514
INPFIL BLKSIZE=7710
OUTFIL BLKSIZE=7710
END

/* 

Figure 166. Sample Application of SYMNAMES Statement

Field41,265,15,ch
SYMNAMES=EMBEDDED.CARDS
Field85,511,4,zd 

Figure 167. Sample Dictionary Statements

Field42,280,24,ch
.
.
.

Field84,500,11,ch 

Figure 168. Sample Dictionary Statements in an Embedded Member
Chapter 3.  Using the SyncSort Dictionary Feature 3.5



• SYMNOUT=LST directs the output to SYSLST.

• SYMNOUT=LOG directs the output to SYSLOG

• SYMNOUT=LAL directs the output to both SYSLST and SYSLOG.

The dictionary listing consists of two parts.

• The first part is the user-provided dictionary statements.

• The second part is the dictionary table generated by SyncSort from the dictionary
statements.

See also “OPTION Control Statement” on page 2.114 for additional details of the
SYMNAMES, SYMNLIB, and SYMNOUT parameters.

Sample Dictionary Statements

This section provides examples to give you a quick understanding of dictionary statements.
For details of syntax and usage, see “Dictionary Statement Format” on page 3.8.

The following shows the basic format of a dictionary statement:

where dictionary_name can be either:

• field_name

• constant_name

A field_name can be represented as:

position,length,format (p,l,f)
position,length (p,l)
position (p)

A constant_name can be represented as:

C'string', c'string', or 'string'
X'string' or x'string'
Y'string' or y'string'
B'string' or b'string'
n, +n, or -n.

dictionary_name,value comment 

Figure 169. Basic Format of Dictionary Statement
SyncSort for z/VSE 3.7 Programmer’s Guide3.6



As a quick introduction, here are some sample dictionary statements:

Example 1

This example uses leading blanks before some color dictionary_names to create indentation
for clarity.

A blank statement is used before and after the "color" section. Such blank statements are
ignored but can be printed.

Dictionary_names are case-sensitive. Thus, Red and red are separate dictionary_names.

Example 2

In this example, note how position (p) is replaced with an asterisk (*) to indicate that the
value of p should be the next position after the previous field. This is a powerful feature.
Using an asterisk (*) for position allows you to map consecutive fields automatically. Thus,
if a field specification changes, it is not necessary to calculate and specify the changed posi-
tions of subsequent fields.

Order#,10,8,ch
Catlog#,18,6,ch 

Color,24,1,ch
Grey,C'G'
Red,C'R'
red,C'r'
Black,C'B'
White,C'W'

Qty,25,3,ZD
Price,28,4,PD 

Figure 170. Sample Dictionary Statements

Street,38,45,ch
City,*,26,ch City is "83,26,CH"
State,*,2,ch State is "109,2,CH"
Zip,*,9,zd Zip is "111,9,ZD" 

Figure 171. Example of Use of Asterisk to Replace Position (p)
Chapter 3.  Using the SyncSort Dictionary Feature 3.7



Example 3

In this example, the SKIP operator advances the next position by n bytes. Since the posi-
tion of the next field is specified with an asterisk (*), the position will be calculated auto-
matically.

Other operators, in addition to SKIP, are POSITION and ALIGN. POSITION,q or POSI-
TION,dictionary_name resets the next position. ALIGN,H aligns the next position on a
halfword, while ALIGN,F aligns it on a fullword and ALIGN,D aligns it on a doubleword.

Example 4

In this example, an equal sign (=) is used instead of p,l, or f. The equal sign assigns the pre-
vious position,length or format to the equal sign, mapping one field onto another.

Although field_names and constant_names can usually be specified in any order, using the
asterisk (*) or equal sign (=) forces a dependency on field order.

Note the use of comments in the above examples. As for SyncSort control statements, a
blank after the value indicates the beginning of a comment. You can also use comment
statements, which begin with an asterisk (*) in column 1.

Dictionary Statement Format

There are three basic types of dictionary statements:

• The constant_name statement

• The field_name statement

• The operator statement

These types of dictionary statements are described below in separate sections.

Name,5,40,ch
SKIP,20
Phone#,*,11,ch Phone# is "65,11,CH" 

Figure 172. Example of Use of SKIP Operator

Date_of_Birth,10,6,Y2T A 6-byte field in yymmdd format
DOB_YY,=,2,Y2C Mapping byte 1,2 of Date_of_Birth
DOB_MM,*,=,ZD Mapping byte 3,4 of Date_of_Birth
DOB_DD,*,=,= Mapping byte 5,6 of Date_of_Birth 

Figure 173. Example of Use of Equal Sign to Replace p,l, or f
SyncSort for z/VSE 3.7 Programmer’s Guide3.8



In addition, you can have a comment statement or a blank statement:

• A statement with an asterisk (*) in the first column is a comment statement. SyncSort
will not process it, but it can be printed.

• A blank statement contains blanks in fields 1 - 80. SyncSort will not process it, but it
can be printed.

The following shows the complete syntax for a dictionary statement:

where dictionary_name can be either:

• field_name

• constant_name

The following general rules apply to dictionary statements:

• The dictionary statement can start in any column, 1-80. However, a dictionary
statement can only occupy one line; a continuation to a second line is not permissible.

• One or more blank spaces indicate the beginning of a comment. Characters following
the blank space(s) are not processed by SyncSort but can be printed.

• A semicolon (;) can be used instead of a comma (,) to separate the dictionary_name and
the value.

The following rules apply to dictionary_name:

• May consist of 1 to 50 EBCDIC characters.

• May be a combination of uppercase letters (A-Z), lowercase letters (a-z), numbers (0-9),
the number sign (#), the dollar sign ($), the commercial at sign (@), the underscore (_),
or the dash (-).

• May not have a number (0-9) or a dash (-) as the first character.

Figure 174. Dictionary Statement Syntax

dictionary_name

,p,l,f
,p,l
,p
,constant 

 
 
 
 
 
 

comment
Chapter 3.  Using the SyncSort Dictionary Feature 3.9



• Are case-sensitive; for example, 'Address', 'ADDRESS', and 'address' are treated as
different fields.

• Cannot be a SyncSort reserved word. The following table lists the SyncSort reserved
words:

All SyncSort reserved words are in uppercase. Thus, mixed case and lowercase forms of
SyncSort reserved words are permissible as a dictionary_name. Similarly, dictionary
statement operators such as POSITION, SKIP and ALIGN are in uppercase, thus
mixed and lowercase forms of these words are permissible as a dictionary_name. For
example, position, Skip, and align are all acceptable as a dictionary_name.

Some permissible dictionary_names:

cust_name
ADDR2

A
AC
ADD
ALIGN
ALL
AND
AQ
ASL
AST
AVG
BI
CH
CLO
COMPARE
COPY
COUNT
CSF
CSL
CST
CTO
D
D1
D2
DATE
DATE1
DATE1P
DATE2

DATE2P
DATE3
DATE3P
DATE4
DATENS
DC1
DC2
DC3
DE1
DE2
DE3
DIV
DT1
DT2
DT3
E
F
FI
FL
FS
H
HEX
LS
MAX
MIN
MOD
MUL

M00 through M99
NONE
NUM
OL
OR
OT
PAGE
PAGEHEAD
PD
PD0
PDC
PDF
POSITION
PSI
PZ
SEQNUM
SFF
SKIP
SS
SUB
SUBCOUNT
TC1
TC2
TC3
TC4
TE1
TE2

TE3
TE4
TIME
TIME1
TIME1P
TIME2
TIME2P
TIME3
TIME3P
TIMENS
TM1
TM2
TM3
TM4
TS
UFF
VALCNT
VLEN
X
Y2x*
Y2xx*
Z
ZD
ZDC
ZDF
ZSI

* x represents any character

Table 42.  SyncSort Reserved Words
SyncSort for z/VSE 3.7 Programmer’s Guide3.10



FAX#
num 
Primary-SSN

The following are not permissible dictionary names:

100_Addr (begins with a number)
NUM (a reserved word)
ALIGN (an operator) 

The following sections describe the three types of dictionary statements in detail:

• “The Constant_name Statement: Rules and Syntax” on page 3.11

• “The Field_name Statement: Rules and Syntax” on page 3.13

• “The Operator Statement: Rules and Syntax” on page 3.21

The Constant_name Statement: Rules and Syntax

The value of a constant may be a decimal number, a character string, a hexadecimal string,
or a bit string.

A constant_name representing a specific value can be used for headings, titles, compari-
sons, etc. However, take care that the SyncSort control statement specifies the correct data
format. For example, consider the the dictionary_name CONSR, defined by the following
dictionary statement:

Since CONSR is a binary field, it can be specified as such on the SyncSort control state-
ment:

If you specified CH as the data format, the control statement would be invalid.

The rules for fields specified in a control statement always apply to a field specified as a
dictionary_name since internally SyncSort substitutes the actual field specification.

CONSR,B'00000010' 

Figure 175. Example of constant_name in Dictionary Statement

INCLUDE COND=(14,1,BI,EQ,CONSR) 

Figure 176. Example of constant_name in Control Statement
Chapter 3.  Using the SyncSort Dictionary Feature 3.11



The following table describes the types of constant values: 

 Value Type  Description  Valid Examples  Invalid Examples 

Character 
string 

Valid formats:
'xx...x'
C'xx...x'
nC'xx...x'
c'xx...x'
nc'xx...x'

where x is an EBCDIC 
character and n is a repeti-
tion factor for the string. 
Maximum length: 64 char-
acters.

To include a single apostro-
phe (') in a character string, 
use two single apostrophes 
(''), which count as 2 char-
acters. 

'+0.245'
c'BOOK'
C'O''DOOLE' 

C'CITY''
(unnecessary extra apostro-
phe after Y) 

c'city
(missing ending apostrophe) 

Decimal number 

Valid formats:
n
+n
-n

Maximum length is 1 to 15 
significant digits. Decimal 
points are invalid. 

+100
100
-500
00049 

++100
(too many plus signs)

500-
(minus sign in wrong place)

5.5
(decimal point not allowed) 

Hexadecimal 
string 

Valid formats:
X'yy...yy'
x'yy...yy'

where yy represents any 
pair of hexadecimal digits. 
Maximum length is 32 
pairs of hexadecimal dig-
its. Hexadecimal digit are 
0-9, A-F, or a-f. 

X'F1C5'
x'3fb91e'
X'06' 

X'F1H5'
(H not valid hexadecimal digit)

x'cf2'
(unpaired hexadecimal digit 2) 

Table 43.  (Page 1 of 2) Types of Constant Values
SyncSort for z/VSE 3.7 Programmer’s Guide3.12



The Field_name Statement: Rules and Syntax

A field_name in a dictionary statement can be defined by its position in the record and its
length and format type (p,l,f). Length and format type are optional.

The following are permissible field_names in a dictionary statement:

field_name,p,l,f
field_name,p,l
field_name,p

Take care that the format of the field name is acceptable on the SyncSort control state-
ment. For example, consider the dictionary_name CITY, defined by the following dictionary
statement:

Bit string 

Valid formats:
B'bbbbbbbb...bbbbbbbb'
b'bbbbbbbb...bbbbbbbb'.

Each group of 8 bs repre-
sents the 8 bits that com-
prise one byte. Maximum 
length is 8 groups of 8 bits 
each. A bit is a 1, 0 or . 
(period). 

b'11110000'
B'11...0000'
b'01101111' 

b'0011'
(only 4 bits, 8 needed)

b''
(no bits specified)

B'00001112'
(invalid bit value 2) 

Date constant 

Valid formats:
Y'LOW'
Y'HIGH'
Y'BLANKS'
Y'x...x'

where x...x represents 2 to 
6 decimal digits.

Y'HIGH'
Y'LOW'
Y'980731'
Y'012' 

Y'1'
(less than 2 digits)

Y' '
(blank not valid digit)

Y'1234567'
(more than 6 digits)

Y'BLANK'
(should be 'BLANKS')

 Value Type  Description  Valid Examples  Invalid Examples 

Table 43.  (Page 2 of 2) Types of Constant Values

CITY,10,29,CH 

Figure 177. Example of field_name in Dictionary Statement
Chapter 3.  Using the SyncSort Dictionary Feature 3.13



The following control statement specifying CITY would be valid because a CH field is per-
missible on the SORT control statement:

However, the dictionary_name CITY could not be used on a SUM control statement
because CH is not a valid format with SUM.

The rules for fields specified in a control statement always apply to a field specified as a
dictionary_name since internally SyncSort substitutes the actual field specification.

Note that you can specify a field_name with p, l, and f, then use the field_name in a control
statement that only requires p and l. SyncSort will substitute p and l during processing and
ignore the f specification. For example, consider the following dictionary statements:

Suppose you use these field_names in the following control statements:

Based on the field_names defined in the dictionary statements, SyncSort will make the fol-
lowing substitutions:

• In the OMIT statement, 'CheckDate' is substituted with '17,6,Y2T'.

• In the SORT statement, 'Account#' is substituted with '1,12,CH' and 'CheckDate' is
substituted with '17,6,Y2T'.

• In the SUM statement, 'CheckAmount' is substituted with '23,6'.

• In the OUTFIL OUTREC statement, 'Account#' is substituted with '1,12', 'CheckDate'
is substituted with '17,6,Y2T', and 'CheckAmount' is substituted with '23,6,PD'.

SORT FIELDS=(CITY,A) 

Figure 178. Example of field_name in Control Statement

Account#,1,12,ch
CheckNumber,*,4,zd
CheckDate,*,6,y2t
CheckAmount,*,6,pd 

Figure 179. Example of p,l,f in Dictionary Statements

OMIT COND=(CheckDate,LT,Y'980101')
SORT FIELDS=(Account#,A,CheckDate,A)
SUM FIELDS=(CheckAmount),FORMAT=PD
OUTFIL OUTREC=(Account#,CheckDate,CheckAmount,M23) 

Figure 180. Example of field_names in Control Statements
SyncSort for z/VSE 3.7 Programmer’s Guide3.14



Here are the resulting control statements:

The following three subsections describe the rules for specifying position (p), length (l) and
format (f) in field_name dictionary statements.

Specifying Position (p) in Field_name Dictionary Statements

The following are the rules for specifying position (p) in field_name dictionary statements:

• p can be a number from 1 to 65532 whenever p,l or p,l and f are used. However, if
position (p) is used alone (for example, CITY,20), the p can not be more than 15
significant digits.

Note that any value of p greater than 65532 may cause a syntax error when it is pro-
cessed as a position.

• Alternately, p can be in the form of m.n for specifying a bit position, where m is a
number from 1 to 65532 and n is a number between 0 and 7. Note that m.0 is
equivalent to m.

• p can be an asterisk (*), which indicates that the next position should be assigned to p.
Since l represents length, the next position is set to p + l each time the field_name for
p,l,f or p,l is read. If the next position has not yet been determined, as when the
asterisk is used in the first field_name, then p defaults to 1 (one).

The dictionary table, which can be printed on request, displays the actual positions
assigned to p when the asterisk is used for p. For example, consider the following
OPTION statement:

OMIT COND=(17,6,Y2T,LT,Y'980101')
SORT FIELDS=(1,12,CH,A,17,6,Y2T,A)
SUM FIELDS=(23,6),FORMAT=PD
OUTFIL OUTREC=(1,12,17,6,Y2T,23,6,PD,M23) 

Figure 181. Example of p,l in Control Statements

OPTION SYMNAMES=PARTS.LAYOUT 

Figure 182. Sample OPTION Statement
Chapter 3.  Using the SyncSort Dictionary Feature 3.15



Suppose the members contain field_name statements as follows:

SyncSort will print the following dictionary table:

The PARTS.LAYOUT member contains:

Part#,1,8,ch
Desc$,*,20,ch
SYMNAMES=MFC.LAYOUT
SYMNAMES=STOCK.LAYOUT

The MFC.LAYOUT member contains:

Mfc_code,*,6,ch
Mfc_part#,*,10,ch

The STOCK.LAYOUT member contains:

Stock_Shelf#,*,4,bi
Stock_Bin#,*,4,bi
Stock_Qty,*,4,pd 

Figure 183. Sample field_name Statements in Members

Part#,1,8,CH
Desc$,9,20,CH
Mfc_code,29,6,CH
Mfc_part#,35,10,CH
Stock_Shelf#,45,4,BI
Stock_Bin#,49,4,BI
Stock_Qty,53,4,PD 

Figure 184. Sample Dictionary Table
SyncSort for z/VSE 3.7 Programmer’s Guide3.16



Note that using the asterisk (*) for position (p) enables you to:

• Map consecutive record fields without having to calculate their actual positions.

• Map new fields inserted between other fields without having to modify the p values
of existing or inserted fields.

• Map contiguous fields in concatenated field name sets.

Field_names from all three field_name sets in the above example could be used in
SyncSort control statements as follows:

• The equal sign (=) can be used instead of p to indicate that the previous position should
be assigned to p. If the previous position has not yet been determined, an error message
will be issued. Each time the field_name for p,l,f (or p,l) is read, the previous position is
set to p.

Note that the value of the previous position can also be modified by a POSITION opera-
tor statement. See “Using POSITION in Operator Statements” on page 3.22.

If the dictionary table is printed, it will display the actual positions that result from the
= specification. For example, consider the following dictionary statements:

OUTFIL FNAME=ORDER,INCLUDE=(Stock_Qty,LT,100),
OUTREC=(Part#,10X,Mfc_code,5X,Mfc_part#)

OUTFIL FNAME=INTEL,INCLUDE=(Mfc_code,EQ,C'INTEL'),
OUTREC=(Part#,10X,Stock_Shelf#,LENGTH=6,

8X,Stock_Bin#,LENGTH=6,
8X,Stock_Qty,LENGTH=8) 

Figure 185. Sample field_names in Control Statements

POSITION,40
Payment_type,=,1,Bi
@cash$,B'......00'
@check,B'......01'
@credt,B'......1.'
Teller,*,20,Ch
Check#,=,4,Zd
CCard#,=,12,Zd 

Figure 186. Sample Dictionary Statements
Chapter 3.  Using the SyncSort Dictionary Feature 3.17



SyncSort will print the following dictionary table:

Before using = for p, ensure that the previous position is the one you want. If you hap-
pen to add a new field_name with a different position and insert that field_name in
front of a field_name that uses = for p, the value of the previous position will be wrong.
In this case you will need to use the actual position value instead of = .

Specifying Length (l) in Field_name Dictionary Statements

The length (l) indicator, can be an equal sign (=), a number from 1 to 65532, or a bit length
in the form of m.n, with m a number from 0 to 65532 and n a number from 0 to 7, while m
and n cannot both be zero. Using an equal sign (=) in place of l assigns the previous length
to l. If the previous length has not yet been determined when = is read, SyncSort will issue
an error message.

If the dictionary table is printed, it will display the actual lengths that were assigned when
= was specified for l. For example, consider the following definition statements:

The dictionary table will reflect substitutions made by SyncSort:

Before using = for length (l), ensure that the previous length is what you intended. If you
happen to add a new field_name with a different length and insert that field_name in front
of a field_name that uses = for l, the value of the previous length will be wrong. In this case
you will need to use the actual length value instead of = .

Payment_type,40,1,BI
@cash$,B'......00'
@check,B'......01'
@credt,B'......1.'
Teller,41,20,CH
Check#,41,4,ZD
CCard#,41,12,ZD 

Figure 187. Sample Dictionary Table

Student_name,1,40,ch
Test_score_1,*,4,zd
Test_score_2,*,=,zd
Test_score_3,*,=,zd 

Figure 188. Sample Definition Statements

Student_name,1,40,CH
Test_score_1,41,4,ZD
Test_score_2,45,4,ZD
Test_score_3,49,4,ZD 

Figure 189. Sample Dictionary Table
SyncSort for z/VSE 3.7 Programmer’s Guide3.18



Specifying Format (f) in Field_name Dictionary Statements

The format (f) indicator, can be an equal sign (=) or a specific format. The following formats
are permissible:

AC, AQ, ASL, AST, BI, CH, CLO, CSF, CSL, CST, CTO, FI, FL, FS, LS, OL, OT, PD,
PD0, PSI, SS, TS, Y2B, Y2C, Y2D, Y2DP, Y2ID, Y2IP, Y2P, Y2PP, Y2S, Y2T, Y2TP,
Y2U, Y2UP, Y2V, Y2VP, Y2W, Y2WP, Y2X, Y2XP, Y2Y, Y2YP, Y2Z, ZD, ZSI

Formats can be specified using uppercase, lowercase, or mixed case letters.

When either p or l is specified in the bit form (m.n) and the bit number is not zero (n≠0),
then the only valid format is BI.

As with p and l, an equal sign (=) indicates that the previous format should be assigned to f.
If the previous format has not yet been determined when an = sign is used for f, SyncSort
issues an error message.

If the dictionary table is printed, it will display the actual formats SyncSort substituted for
=. For example, consider the following dictionary statement:

After processing, the substitutions will be reflected in the dictionary table:

Before using = for f, ensure that the previous format is what you intend. If you happen to
add a new field_name with a different format and insert that field_name in front of a
field_name that uses = for f, the value of previous format will be wrong. In this case you
will need to change the = to the actual format.

Student_name,1,40,ch
Test_score_1,*,4,zd
Test_score_2,*,=,=
Test_score_3,*,=,=

Figure 190. Sample Dictionary Statement

Student_name,1,40,CH
Test_score_1,41,4,ZD
Test_score_2,45,4,ZD
Test_score_3,49,4,ZD 

Figure 191. Sample Dictionary Table
Chapter 3.  Using the SyncSort Dictionary Feature 3.19



If records are rearranged (for example by using E15, E35, INREC, or OUTREC), be sure to
use field_names that map to the new positions of your fields. For example, consider the fol-
lowing dictionary statement:

Suppose the following INREC control statements is used:

Only Name2 and Name4 will appear in the resulting records. If you want to use
field_names from the rearranged records (for example with a SORT statement), you will
need to use dictionary_statements that map the field_names to the rearranged records. For
example:

If the rearranged fields are given unique names, as in the example above, you can concate-
nate the old and new dictionary statements and use both the old and new
dictionary_names, as follows:

Alternative Field_name Syntax

SyncSort allows the following alternative form of the field_name statement:

Name1,1,5,ZD
Name2,*,8,ZD
Name3,*,3,ZD
Name4,*,7,ZD 

Figure 192. Sample Dictionary Statement

INREC FIELDS=(Name2,Name4) 

Figure 193. Sample INREC Control Statement

New_Name2,1,8,ZD
New_Name4,*,7,ZD 

Figure 194. Sample Dictionary Statements

INREC FIELDS=(Name2,Name4)
SORT FIELDS=(New_Name2,A,New_Name4,A) 

Figure 195. Example of Dictionary Statements in Control Statements

Figure 196. Alternative Form of field_name Statement

field_name, 
*

= 
 
  +

- 
 
 

n

SyncSort for z/VSE 3.7 Programmer’s Guide3.20



where n is a number from 1 to 65532.

This syntax form is useful for defining a field_name for record length to be used in the
RECORD control statement. For example:

You would then use rec_len in the RECORD control statement, as follows:

The Operator Statement: Rules and Syntax

The Operator Statement controls the position of fields you are mapping. Following is the
format of an operator statement:

where operator represents:

POSITION  Specifies a starting position.

SKIP  Skips unwanted positions.

ALIGN  Aligns fields on boundaries.

Syntax rules for the operator statement are the same as for the other types of dictionary
statement. However, one rule applies specifically to the operator statement: To be treated
as an operator statement, the operator must be all uppercase. The following are permissi-
ble operator statements:

field_name1,1,10,CH
.
.
.
.

field_namen,*,10,CH
rec_len,*-1 

Figure 197. Sample Dictionary Statements

RECORD TYPE=F,LENGTH=rec_len 

Figure 198. Example of field_name in RECORD Control Statement

operator,value comment 

Figure 199. Operator Statement Format
Chapter 3.  Using the SyncSort Dictionary Feature 3.21



POSITION,q

POSITION,field_name

SKIP,n

ALIGN,H

ALIGN,F

ALIGN,D

The following subsections describe the three operators: POSITION, SKIP, and ALIGN.

Using POSITION in Operator Statements

There are two forms of the operator statement with POSITION:

• POSITION,q

• POSITION,field_name

The first form of the OPERATOR statement (POSITION,q) sets the next position and the
previous position to q:

• The next position is used when an asterisk (*) replaces p in a field_name statement.

• Previous position is used when an equal sign (=) replaces p in a field_name statement.

q can be any number from 1 to 65532, or it can be in the form of m.n for specifying a bit
position, with m being a number from 1 to 65532 and n being a number from 0 to 7. Follow-
ing a POSITION,q statement, either an asterisk (*) or an equal sign (=) can be used for
position (p) in the next field_name statement.

Consider the following example, where POSITION,q is used with other dictionary state-
ments:

If the dictionary table is printed, it will reflect the substitutions:

The second form of the operator statement (POSITION,field_name) sets the next position
and the previous position to the position of the specified field name:

• The next position is used when an asterisk (*) replaces p in a field_name statement.

POSITION,45
Volser,*,8,ch 

Figure 200. Example of POSITION,q in Dictionary Statements

Volser,45,8,CH 

Figure 201. Sample Dictionary Table
SyncSort for z/VSE 3.7 Programmer’s Guide3.22



• The previous position is used when an equal sign (=) replaces p in a a field_name
statement.

Following a POSITION,field_name statement, either an * or an = can be used for p in the
next field_name statement.

The field_name used with the POSITION operator can be any previously defined
field_name. As a result, POSITION,field_name functions like the assembler ORG instruc-
tion, allowing you to map different fields onto the same area. Consider the following exam-
ple, where POSITION,field_name is used with other dictionary_statements:

SyncSort will print the following dictionary table:

Using SKIP in Operator Statements

The operator statement has the following form with SKIP:

where n can be any number from 1 to 65532, or it can be in the form of u.v for specifying a
bit length, with u being a number from 0 to 65532 and v being a number from 0 to 7 (while
u and v cannot both be zero).

SKIP,n increases the next position by n bytes. As described above, the next position is used
when an asterisk (*) replaces p in a field_name statement.

Filename,1,8,ch
Filetype,*,8,ch
Filemode,*,2,ch
POSITION,Filename
Filespec,*,18,=

Figure 202. Example of POSITION,field_name in Dictionary Statements

Filename,1,8,CH
Filetype,9,8,CH
Filemode,17,2,CH
Filespec,1,18,CH 

Figure 203. Sample Dictionary Table

SKIP,n 

Figure 204. SKIP Format in Operator Statement
Chapter 3.  Using the SyncSort Dictionary Feature 3.23



Consider the following example, which uses SKIP,n with other dictionary_statements:

SyncSort will print the following dictionary table:

Using ALIGN in Operator Statements

The ALIGN operator statement has three forms:

ALIGN,B
ALIGN,H
ALIGN,F
ALIGN,D

ALIGN,B aligns the next position on a byte boundary, for example 1, 2, 3, etc. As described
above, the next position is used when an asterisk (*) replaces p in a field_name statement.

The following example uses ALIGN,B with other dictionary_statements:

SyncSort will print the following dictionary table:

Make,1,10,ch
SKIP,4

pp1,= (Last position not changed by SKIP)
Model,*,10,ch 

Figure 205. Example of SKIP,n in Dictionary Statements

Make,1,10,CH
pp1,1
Model,15,10,CH 

Figure 206. Sample Dictionary Table

ZD1_zone,5.0,0.4,BI
ALIGN,B
Ten_bits,*,1.2,BI
ALIGN,B
nxt_byte,*,2,ch

Figure 207. Example of ALIGN,B in Dictionary Statements

ZD1_zone,5,0.4,BI
Ten_bits,6,1.2,BI
nxt_byte,8,2,CH 

Figure 208. Sample Dictionary Table
SyncSort for z/VSE 3.7 Programmer’s Guide3.24



ALIGN,H aligns the next position on a halfword boundary, for example 1, 3, 5, etc. As
described above, the next position is used when an asterisk (*) replaces p in a field_name
statement.

The following example uses ALIGN,H with other dictionary_statements:

SyncSort will print the following dictionary table:

ALIGN,F aligns the next position on a fullword boundary, for example 1, 5, 9, etc. As
described above, the next position is used when an asterisk (*) replaces p in a field_name
statement. Uppercase (F) and lowercase (f) are both acceptable.

The following example uses ALIGN,F with other dictionary_statements:

SyncSort will print the following dictionary table:

ALIGN,D aligns the next position on a doubleword boundary, for example 1, 9, 17, etc. As
described above, the next position is used when an asterisk (*) replaces p in a field defini-
tion statement. Uppercase (D) and lowercase (d) are both permissible.

box_1,1,1,BI
ALIGN,H
box_2,*,1,BI
ALIGN,H (Last position not changed by ALIGN)
sel_2,=,1,BI 

Figure 209. Example of ALIGN,H in Dictionary Statements

box_1,1,1,BI
box_2,3,1,BI
sel_2,3,1,BI 

Figure 210. Sample Dictionary Table

DIVISION,34,3,FI
ALIGN,F (already aligned)
DEPT_1,*,3,FI
ALIGN,F
DEPT_2,*,3,FI 

Figure 211. Example of ALIGN,F in Dictionary Statements

DIVISION,34,3,FI
DEPT_1,37,3,FI
DEPT_2,41,3,FI 

Figure 212. Sample Dictionary Table
Chapter 3.  Using the SyncSort Dictionary Feature 3.25



The following example uses ALIGN,D with other dictionary statements:

SyncSort will print the following dictionary table:

Using Dictionary_names in SyncSort Control Statements

Field_names can be used in the following SyncSort control statements:

DUPKEYS
INCLUDE
INPFIL
INREC
JOINKEYS
MERGE
OMIT
OUTFIL
OUTREC
REFORMAT
SORT
SUM
XDUPFIL
XSUMFIL

You can use a field_name wherever you would specify a position, length, and format (p,l,f or
p,l or p). In addition, a special form of field_name can be used with the LENGTH parameter
of the RECORD statement. (See “Alternative Field_name Syntax” on page 3.20.)

Account#,42,8,ch
ALIGN,D
Balance,*,8,csL 

Figure 213. Example of ALIGN,D in Dictionary Statements

Account#,42,8,CH
Balance,57,8,CSL 

Figure 214. Sample Dictionary Table
SyncSort for z/VSE 3.7 Programmer’s Guide3.26



Constant_names can be used in the following control statements:

INCLUDE
INPFIL
INREC
JOINKEYS
OMIT
OUTFIL
OUTREC
XDUPFIL
XSUMFIL

You can use a constant_name wherever you would specify a constant (X'nn...',
B'bbbb,...',C'ccc...', Y'xx...'), that is:

• A constant compared to a field in the data record (INCLUDE/OMIT)

• A constant inserted into a data record (INREC/OUTREC, OUTFIL, XSUMFIL).

• A constant used in a HEADERn/TRAILERn parameter, where n=1, 2, or 3 (OUTFIL,
XSUMFIL).

When substituting field_names in control statements, SyncSort checks the context in which
each field_name appears and determines which field specification is appropriate: p,l,f or
only p,l. A field_name substitution results in position and length (p,l) under the following
conditions:

• There is a separate FORMAT=parameter present in the control statement.

• A format is explicitly specified for the field; that is, the field_name is followed by a
format specification.

• The field_name appears in HEADERn/TRAILERn (where n=1, 2, or 3) in an
OUTFIL/XSUMFIL statement but outside a TOTAL/SUBTOTAL/MIN/MAX/AVG
subparameter.

• The field_name appears in an INREC/OUTREC statement or in the OUTREC parm of
an OUTFIL/XSUMFIL statement, with the following exceptions:

• The field_name is followed by an EDIT mask (Mnn), EDIT=parameter,
SIGN=parameter, or LENGTH=parameter.

• The field_name is enclosed in parentheses.

• The field_name is an operand of an arithmetic operation (ADD/SUB/MUL/DIV/
MOD/MIN/MAX).
Chapter 3.  Using the SyncSort Dictionary Feature 3.27



• The field_name is a Y2x field and it is not followed by H, F, D, HEX, or
CHANGE=parameter.

Note that you cannot use a dictionary_name for any of the following:

• EDIT parameter

• DATE parameter

• Replacement length in CHANGE=parameter

Error Handling for Dictionary Statements

SyncSort will scan each dictionary statement for errors. When the first error is detected, an
error message is printed. If appropriate, a marker will print just below the Dictionary
statement, near the error. SyncSort stops scanning at the first error, then resumes with the
next Dictionary statement.

Once an error has been detected, positions calculated with the use of an asterisk (*) for p or
with the POSITION,field_name statement in subsequent dictionary statements will not be
checked for errors. If an error is detected in any Dictionary statement, SyncSort terminates
processing after all Dictionary statements are scanned.

If SyncSort detects an error in a control statement while substitution is taking place, it
may respond in either of the following ways:

• Print the statement that was in error, followed by a corresponding error message and
marker (if appropriate), then continue with the next statement and terminate when all
substitutions have been completed.

• Stop the substitution for the statement in error and continue processing, letting
subsequent processing handle the error. If this occurs, the original field or constant
name rather than the substituted value may be displayed in a translated statement.

If the substitution process is successful, SyncSort will substitute values for field_names or
constant_names wherever they are allowed. If substituted values prove invalid for a partic-
ular statement or operand, it will be detected after the substitution has been performed,
making it easier to determine the source of the error.
SyncSort for z/VSE 3.7 Programmer’s Guide3.28



Chapter 4.  How to Use SyncSort Data Utility 
Features

Introduction 

This chapter assumes that you already know how to sort records and are ready to use
SyncSort’s Data Utility features for any or all of the following:

• Selecting only those input records and data fields that are needed for an application.

• Eliminating duplicate records.

• Consolidating records into a single record that contains the AVG, MAX, MIN, or SUM
of any numeric data fields.

• Making output data printable and easy to read.

• Writing a multi-sectioned report complete with headers and trailers.

• Generating several output files and reports with a single pass of the sort.

The following examples show how you can accomplish these tasks with SyncSort. Each
example is self-contained and provides coding instructions for both the required JCL and
the necessary control statements. Use them as starting points for your own applications.

For examples of the JOIN facility, you may refer to Syncsort’s booklet, Exploiting SyncSort
for z/VSE: JOIN.
Chapter 4.  How to Use SyncSort Data Utility Features 4.1



Sample Data Utility Applications

The following chart lists applications that demonstrate SyncSort’s features. 
 

Selecting Input Records 

When only certain records from an input file are needed for an application, SyncSort allows
you to set up one or more logical conditions for including only those records. Alternately,
you may specify conditions for omitting records from an application. Each condition is
based on a comparison between two record fields or between a record field and a constant.

Feature Application Page 

Selecting Input Records Including Relevant Records 
Omitting Irrelevant Records 

4.4
4.5

Selecting Relevant Fields from 
the Input Records 

Selecting a Number of Fields from Longer Records 
Eliminating Irrelevant Data Field(s) 
Selecting Fields from Variable-Length Records 

4.8
4.9
4.11

Combining Records within a 
File 

Combining Records and Placing AVG, MAX, MIN, or SUM 
Values in Retained Records

Eliminating Duplicate Records 
4.14
4.15

Making Output Records Print-
able and Easy to Read 

Reordering the Positions of Record Fields 
Inserting Blanks and Repositioning Record Fields 
Inserting Binary Zeros 
Converting Unprintable Data to Readable Form 
Converting Unprintable Data to Hexadecimal Format 
Converting and Editing Unprintable Data 
Putting a Data Field in Standard Format 
Printing Input Records 

4.18
4.20
4.22
4.23
4.25
4.27
4.29
4.34

Dividing a Report into Sections Dividing Output into Sections 4.34

Writing Headers and Trailers 
for a Report 

Writing a Title Page for a Report 
Writing a Page Header 
Writing a Section Header 
Using a Header to Eliminate Duplication Information within 

a Section
Writing a Report Trailer or Summary 
Writing a Page Trailer 

4.38
4.40
4.41

4.42
4.44
4.45

Totaling and Subtotaling Data Totaling Data at the End of a Report 
Subtotaling Data at the End of a Page 
Totaling Data at the End of a Section 

4.47
4.49
4.50

Counting Data Records Obtaining a Count of Data Records 
Obtaining a Cumulative, or Running, Count of Data Records 

4.53
4.54

Creating Multiple Output Files Generating Several Output Files with Different Information 
Writing Identical Output Files to Different Devices 

4.58
4.60

Table 44.   Index to Data Utility Applications
SyncSort for z/VSE 3.7 Programmer’s Guide4.2



You may specify the constant as a positive or negative decimal, a hexadecimal constant, or
a character literal. Multiple conditions may be specified, provided you connect them with
ANDs and ORs.

To specify the conditions for selecting records, use the INCLUDE/OMIT control statement
in Figure 215.

INCLUDE  Use INCLUDE to specify the conditions for including records.

OMIT  Use OMIT if you find it easier to specify the conditions for omitting
records.

pn,ln[,fn]  Specify record fields by starting position (p), length in bytes (l), and the
data format (f). 

EQ, NE, etc.  Use the relational operators (EQ, NE, GT, GE, LT, LE) to specify the
relations upon which conditions are based.

constant  Constants may be specified as a decimal of any length with an optional
+ or -, a hexadecimal coded as X'hh...hh', or a literal string coded as
C'literal string'.

AND/&/OR/|  Use these connectives when specifying more than one comparison. AND
conditions are evaluated before OR conditions unless you use parenthe-
ses, in which case the evaluation of the conditions proceeds from the
innermost to the outermost parentheses. Only one level of parentheses
is permitted. 

FORMAT  You may use this parameter when the data format of all the record
fields is identical.

c represents a comparison. Each comparison has this format:

Figure  215. INCLUDE/OMIT Format

INCLUDE
OMIT 

 
 

COND =  (c1

,AND,
,&,
,OR,
, , 

 
 
 
 

c2… ) [,FORMAT = f]

p1,l1 ,f1[ ]

,EQ,
,NE,
,GT,
,GE,
,LT,
,LE, 

 
 
 
 
 
 

p2,l2 f2,[ ]
constant 

 
 
Chapter 4.  How to Use SyncSort Data Utility Features 4.3



Including Relevant Records

Example: A school board requires a list of all students performing below their grade level
on standardized exams. (The record layout is given in Figure 216 and a sample record is
given in Figure 217.)

To generate the list, the following is coded.

 

Figure  216. Input Record Layout

 

Figure  217. Sample Student Record
SyncSort for z/VSE 3.7 Programmer’s Guide4.4



Explanation: In this application, two comparisons are necessary to identify the records
needed for the list: the Grade field (25,2) has to be compared to the student’s Reading Score
field (27,2) and to the Mathematics Score field (29,2). All numeric fields on the student
records are in packed-decimal (PD) format.

The two-clause INCLUDE statement (see Figure 218) guarantees the selection of the
needed records from the file. The first clause (29,2,LT,25,2) guarantees that records with
Math Scores less than the Grade field are INCLUDED. The second clause (27,2,LT,25,2)
guarantees that records with Reading Scores less than the Grade field are also
INCLUDED. The OR connecting the two clauses guarantees that if either or both of the
scores are less than the Grade field, the record is selected. Finally, since all the fields are in
packed-decimal format (PD), FORMAT=PD is specified.

The sample record shown above will be INCLUDED because the student’s Math Score
(047F) is lower than the Grade level (050F).

Omitting Irrelevant Records

Example: Records that have an Invoice Status Code of F (fully paid) are to be omitted in
preparing a list of only those customers with outstanding payments. (The input record lay-
out is given in Figure 219 and a sample input record is given in Figure 220.)

// JOB SUBLEV Signals the Start of Job

// ASSGN SYS001,SYSLST Assigns Logical Unit to Printer

// ASSGN SYS002,X'181' Assigns Logical Unit to Tape

// TLBL SORTIN1,'STUDENTS' Contains Input Tape File

Information

// ASSGN SYS003,X'251' Assigns Logical Unit to SORTWK Device

// DLBL SORTWK1 Contains SORTWK File Information

// EXTENT SYS003 Defines Direct Access Area for SORTWK

// EXEC SORT Signals Beginning of Sort Program

RECORD TYPE=F,LENGTH=30 Describes Input Records

INCLUDE COND=(29,2,LT,25,2,OR,27,2,LT,25,2),FORMAT=PD Selects Records

SORT FIELDS=(1,14,CH,A) Sorts Records 

Figure  218. JCL and Required Control Statements
Chapter 4.  How to Use SyncSort Data Utility Features 4.5



To produce this list of customers selected from the masterfile, the following is coded.

 

Figure  219. Input Record Layout

 

Figure  220. Sample Input Record
SyncSort for z/VSE 3.7 Programmer’s Guide4.6



Explanation: In this application, a simple comparison is necessary to identify those master-
file records that are not needed: the Invoice Status Code field (80,1,CH) has to be compared
to the constant 'F'.

The OMIT statement’s condition, 80,1,CH,EQ,C'F' (see Figure 221) guarantees that invoice
records, like the sample record shown above, with the Invoice Status Code 'F' are omitted
from the sort.

Selecting Relevant Fields from the Input Records

Input records often contain some information that is not relevant to a specific application.
For example, records in a personnel masterfile might, in addition to addresses, include sal-
aries and other confidential information that is not required for preparing a mailing list.

SyncSort’s Data Utility features allow you to select only those record fields that contain
necessary data and to eliminate those that do not. More important, SyncSort enables you to
do this editing before the records are sorted. As a result, the sort has fewer bytes to handle
and processing is more efficient.

To select relevant record fields, use the INREC statement as described below:

For the complete format of the INREC control statement, see “INREC Control Statement”
on page 2.83.

// JOB OUTPAY Signals the Start of Job

// ASSGN SYS001,SYSLST Assigns Logical Unit to Printer

// ASSGN SYS002,X'181' Assigns Logical Unit to Tape

// TLBL SORTIN1,'NEWINV' Contains Input Tape File

Information

// ASSGN SYS003,X'251' Assigns Logical Unit to SORTWK

Device

// DLBL SORTWK1 Contains SORTWK File Information

// EXTENT SYS003 Defines Direct Access Area for

SORTWK

// EXEC SORT Signals Beginning of Sort Program

RECORD TYPE=F,LENGTH=80 Describes Input Records

OMIT COND=(80,1,CH,EQ,C'F') Omits Records

SORT FIELDS=(1,29,CH,A) Sorts Records 

Figure  221. JCL and Required Control Statements

INREC FIELDS=(p1,l1[,p2,l2,...,pn,ln])

Figure  222. Basic INREC Statement Format
Chapter 4.  How to Use SyncSort Data Utility Features 4.7



p,l  Specify the beginning position and length in bytes of the input record’s rele-
vant fields. When specifying contiguous fields, or fields that directly follow
one another, you can simply indicate the starting position of the first field
together with the combined length of the fields that are contiguous.

Selecting a Number of Fields from Longer Records

Example: A school wants to rank the entire student body by grade point index. This appli-
cation simply requires selecting the two relevant fields out of all the fields in the student
records, and then sorting on the Grade Point Index field. (The Input Record layout is given
in Figure 223.)

To include only the relevant fields and generate the ranked list of students, the following is
coded.

 

Figure  223. Input Record Layout
SyncSort for z/VSE 3.7 Programmer’s Guide4.8



Figure 225 shows the input record after INREC processing.

Explanation: Specifying the two relevant data fields - the Social Security Number (1,9) and
the Grade Point Index (74,2) - on the INREC statement provides the sort with necessary
data for the application and eliminates the fields that are not relevant to the application.
INREC processing thus shortens each record to just a little under 14% of its original size.

Eliminating Irrelevant Data Field(s)

Example: For an inventory list, the price code on the masterfile records is not necessary.
(The masterfile record layout is given in Figure 226.)

// JOB RANK Signals the Start of Job

// ASSGN SYS001,SYSLST Assigns Logical Unit to Printer

// ASSGN SYS002,X'181' Assigns Logical Unit to Tape

// TLBL SORTIN1,'STUDENTS' Contains Tape File Information

// ASSGN SYS003,X'251' Assigns Logical Unit to SORTWK

Device

// DLBL SORTWK1 Contains SORTWK File Information

// EXTENT SYS003 Defines Direct Access Area for

SORTWK

// EXEC SORT Signals Beginning of Sort Program

RECORD TYPE=F,LENGTH=82 Describes Input Records

INREC FIELDS=(1,9, Selects Record Fields

74,2)

SORT FIELDS=(10,2,PD,D) Sorts Records 

Figure  224. JCL and Required Control Statements

 

Figure  225. Form of Post-INREC Record
Chapter 4.  How to Use SyncSort Data Utility Features 4.9



To eliminate the Price Code field and generate the inventory list, the following is coded.

Figure 228 shows the input record after INREC processing.

 

Figure  226. INPUT Record Layout

// JOB INVENTR Signals the Start of Job

// ASSGN SYS001,SYSLST Assigns Logical Unit to Printer

// ASSGN SYS002,X'181' Assigns Logical Unit to Tape

// TLBL SORTIN1,'WAREHSE' Contains Input Tape File Information

// ASSGN SYS003,X'251' Assigns Logical Unit to SORTWK Device

// DLBL SORTWK1 Contains SORTWK File Information

// EXTENT SYS003 Defines Direct Access Area for SORTWK

// EXEC SORT Signals Beginning of Sort Program

RECORD TYPE=F,LENGTH=21 Describes Input Records

INREC FIELDS=(1,17, Selects Record Fields

19,3)

SORT FIELDS=(1,5,CH,A) Sorts Records

. 

Figure  227. JCL and Required Control Statements
SyncSort for z/VSE 3.7 Programmer’s Guide4.10



Explanation: Specifying only those fields that are necessary eliminates those that are not
necessary for the application. The Price Code field (18,1) has not been specified on the
INREC statement; it will be deleted from the input records before the records are sorted by
item number for the list.

Selecting Fields from Variable-Length Records 

Example: For each volume in its collection, a library requires the catalog number and any
information concerning translations, other volumes in a series, additional copies on file,
and so on. The catalog file consists of variable-length records, and except for the catalog
number, the required information is contained in the variable-length portion of each
record. (The record layout is given in Figure 229.)

 

Figure  228. Post-INREC Record Layout
Chapter 4.  How to Use SyncSort Data Utility Features 4.11



To include only the relevant fields on the input records and to generate this list, the follow-
ing is coded.

Figure 231 shows the input record after INREC processing.

 

Figure  229. Sample Record Layout

// JOB LISTCAT Signals the Start of Job

// ASSGN SYS001,SYSLST Assigns Logical Unit to Printer

// ASSGN SYS002,X'181' Assigns Logical Unit to Tape

// TLBL SORTIN1,'CATALOG' Contains Input Tape File Information

// ASSGN SYS003,X'251' Assigns Logical Unit to SORTWK Device

// DLBL SORTWK1 Contains SORTWK File Information

// EXTENT SYS003 Defines Direct Access Area for SORTWK

// EXEC SORT Signals Beginning of Sort Program

RECORD TYPE=V,LENGTH=119 Describes Input Records

INREC FIELDS=(1,14, Selects Record Fields

98)

SORT FIELDS=(5,10,ZD,A) Sorts Records 

Figure  230. JCL and Required Control Statements
SyncSort for z/VSE 3.7 Programmer’s Guide4.12



Explanation: When selecting fields on variable-length records, you must observe these two
restrictions: (1) The position of the RDW cannot be affected; and (2) at least one byte from
the fixed-length portion of the record, in addition to the RDW, must be specified. On the
above INREC statement, the first 14 bytes of each record-the 4-byte RDW and the fixed-
length Catalog Number field-are retained unchanged. The next field, which contains more
information as required, is indicated only by position (98) since it is of variable-length. This
causes the entire variable-length portion of the record (beginning with byte 98) to be
included after the initial 14 bytes of the post INREC record. SyncSort automatically
adjusts the RDW to reflect the new record length.

Combining Records within a File 

Sometimes you may want to shorten a file by consolidating records that have some infor-
mation in common. For example, a company’s invoice file may contain more than one record
for any customer to whom multiple invoices have been issued. In some applications it might
then be feasible to consolidate such records, that is, to combine records with identical Cus-
tomer Name and Address fields into a single record containing the sum of that customer’s
charges and payments.

The SUM control statement allows you to combine records in this way. It is coded as fol-
lows.

 

Figure  231. Form of Post-INREC Record

Figure  232. SUM Control Statement Format

SUM 

FIELDS = (p1,l1 ,f1[ ]…,pn,ln ,fn[ ])

FIELDS = NONE
(NONE) 

 
 

 
 
 
 
 

 [,XSUM] [,FORMAT = f]
Chapter 4.  How to Use SyncSort Data Utility Features 4.13



pn,ln,fn   Specify the starting position (p), the length in bytes (l), and the data format
(f) for each field for which you desire the sum to appear on the combined,
cumulative record.

Note: Make sure that none of these fields has been specified on the SORT
statement.

FORMAT   Use this parameter to specify the default format for any field without “f ”
specified.

NONE  Use this parameter, with or without parentheses, to eliminate all but one of
two or more records that have identical information in the fields specified
on the SORT statement.

XSUM   Use this parameter to direct the sort to save all records eliminated by SUM
processing in a separate output file. 

Combining Records and Summing Numeric Data Fields

Example: For an inventory list, a company requires a single record for each product, indi-
cating its item number, warehouse code, and the total quantity in stock. (Figure 233 gives
the sample record layout.)

To combine those inventory records with identical item numbers and warehouse codes and
to produce the required list, the following is coded.

 

Figure  233. Input Record Layout
SyncSort for z/VSE 3.7 Programmer’s Guide4.14



Explanation: The list is generated by sorting on the Warehouse Code field (6,1,CH) and the
Item Number field (1,5,ZD). Records that have identical information in both these fields are
combined into a single record that contains the sum or total of those records’ Quantity
fields (7,12,PD). That is, the single record will show how many items with the same number
are in each warehouse.

Eliminating Duplicate Records

Example: A mailing list is being prepared from an invoice file. To eliminate duplicate
entries, any multiple invoice records for the same customer are combined into a single
record. (Figure 235 gives the sample record layout.)

To combine multiple invoice records and generate the mailing list, the following is coded.

// JOB INVENTR Signals the Start of Job

// ASSGN SYS001,SYSLST Assigns Logical Unit to Printer

// ASSGN SYS002,X'181' Assigns Logical Unit to Tape

// TLBL SORTIN1,'WAREHSE' Contains Input Tape File Information

// ASSGN SYS003,X'251' Assigns Logical Unit to SORTWK Device

// DLBL SORTWK1 Contains SORTWK File Information

// EXTENT SYS003 Defines Direct Access Area for SORTWK

// EXEC SORT Signals Beginning of Sort Program

RECORD TYPE=F,LENGTH=18 Describes Input Records

SORT FIELDS=(6,1,CH,A,1,5,ZD,A) Sorts Records

SUM FIELDS=(7,12,PD) Combines Records and Sums Numeric Data 

Figure  234. JCL and Required Control Statements

 

Figure  235. Input Record Layout
Chapter 4.  How to Use SyncSort Data Utility Features 4.15



Explanation: To prepare the customer mailing list, the only information required from the
invoice records is located in the Company Name field (17,23) and the Address field (40,5),
which are selected by the INREC statement. Sorting these records in ascending order by
company name generates an alphabetical list. Then, because the file contains a record for
every transaction, the SUM statement is used to avoid duplicate listings of customers who
have had more than one transaction. Note that because none of the fields contains numeric
data to be summed, the FIELDS=NONE parameter is used.

Making Output Records Printable and Easy to Read 

Because data is usually stored in a compact format, it can be difficult, if not impossible, to
read when printed. For example, on a typical input record, there will be no blank space
between fields, numeric data will sometimes be lost in leading and trailing zeros, and some
data will be in unprintable format.

After processing, you will probably want to edit this data so that it is easy to read. This is
bound to entail one or more of the following tasks:

• reordering the position of record fields

• inserting blanks between fields

• inserting binary zeros

• converting numeric data from unprintable to printable format

• converting data to printable hexadecimal format

• using masks or edit patterns to insert dollar signs, decimal points, slashes, and the
like. 

// JOB MAILIST Signals the Start of Job

// ASSGN SYS001,SYSLST Assigns Logical Unit to Printer

// ASSGN SYS002,X'181' Assigns Logical Unit to Tape

// TLBL SORTIN1,'MASTINV' Contains Input Tape File Information

// ASSGN SYS003,X'251' Assigns Logical Unit to SORTWK Device

// DLBL SORTWK1 Contains SORTWK File Information

// EXTENT SYS003 Defines Direct Access Area for SORTWK

// EXEC SORT Signals Beginning of Sort Program

RECORD TYPE=F,LENGTH=75 Describes Input Records

INREC FIELDS=(17,28) Selects Relevant Fields

SORT FIELDS=(1,23,CH,A) Sorts Records, Reference is to

Post-INREC Record

SUM FIELDS=NONE Eliminates Duplicate Records 

Figure  236. JCL and Required Control Statements
SyncSort for z/VSE 3.7 Programmer’s Guide4.16



SyncSort’s OUTREC processing, specified either as a control statement or as a parameter
on the OUTFIL statement, can perform these and other editing functions. The OUTREC
control statement is described below. Any number of the OUTREC statement’s subparame-
ters may be specified and must be coded in the order in which the fields will appear in the
reformatted record. (Note that when specified as a parameter of OUTFIL, OUTREC is
coded identically as for a control statement except that the keyword FIELDS is not used.)

Note: See “OUTREC Control Statement” on page 2.174 for the complete format of the
OUTREC statement.

c:  Specify the column, or byte, in which you want a field to begin
after OUTREC processing. If this is not coded, the first field
specified by position, length, and, when required, format (see
p,l,f, below) will begin in column one or the first byte of the post-
OUTREC record.

[n]X  Specify the number (n) of blanks (X).

[n]X'hhhh...hh'  Specify hexadecimal digits (X'hhhh...hh').

[n]C'literal string'  Specify the literal strings (C'literal string').

[n]Z  Specify bytes of binary zeros (Z) you want to insert.

p,l  Specify the starting position (p) and the length in bytes (l) of
each input field. Be sure to allow for any processing, such as
INREC, that may have altered the original input record.

f  Specify the format of any numeric data that you want converted
to printable (ZD) data.

Mm|EDIT=(pattern)  To format the converted numeric data, specify one of ten
SyncSort editing masks (Mm) or a pattern of your own, using I
for insignificant digits and T for significant digits. (Note that
you may replace the I and the T in EDIT with any characters
you want and then use these to mark insignificant and

Figure  237. Basic OUTREC Control Statement Format

OUTREC FIELDS = ( c:[ ]

[n]X
[n]X'hhhh...hh'
[n]C'literal string'
[n]Z

p1 l1 f1,[ ] ,Mm
,EDIT = (pattern)

,

p1 l1,[ ] HEX,[ ] 
 
 
 
 
 
 
 
 
 
 

 )
Chapter 4.  How to Use SyncSort Data Utility Features 4.17



significant digits.) If neither Mm nor EDIT is specified, a
default mask is used. (See “Mm Subparameter (Editing Masks)”
on page 2.202 and “EDIT Subparameter” on page 2.200.)

p[,l],HEX  Specify the starting position (p) and length in bytes (l) of the
field you want converted to printable hexadecimal (HEX) for-
mat. 

Reordering the Positions of Record Fields 

Example: A data center has decided to reorder the positions of the data fields in masterfile
records after sorting them. (Figure 238 gives the layout for the masterfile record.)

To sort the records alphabetically by product name and reposition the data fields, the fol-
lowing is coded.

 

Figure  238. Input Record Layout
SyncSort for z/VSE 3.7 Programmer’s Guide4.18



Figure 240 shows the output record after OUTREC processing.

Explanation: After the records are sorted alphabetically by product name (7,15,CH),
OUTREC processing moves the Product Code field (22,3) to the first byte of the record, the
Product Name field (7,15) to the fourth byte, the Region field (1,2) to the nineteenth byte,
the Month’s Sales field (25,4) to the twenty-first byte, and the Sales to Data field (3,4) to
the twenty-fifth byte.

// JOB SORTPRD Signals the Start of Job

// ASSGN SYS001,SYSLST Assigns Logical Unit to Printer

// ASSGN SYS002,X'181' Assigns Logical Unit to Tape

// TLBL SORTIN1,'MASTPRD' Contains Input Tape File Information

// ASSGN SYS003,X'251' Assigns Logical Unit to SORTWK Device

// DLBL SORTWK1 Contains SORTWK File Information

// EXTENT SYS003 Defines Direct Access Area for SORTWK

// EXEC SORT Signals Beginning of Sort Program

RECORD TYPE=F,LENGTH=28 Describes Input Records

SORT FIELDS=(7,15,CH,A) Sorts Records

OUTREC FIELDS=(22,3, Repositions Fields on Output Records

7,15,

1,2,

25,4,

3,4) 

Figure  239. JCL and Required Control Statements

 

Figure  240. Post-OUTREC Record Layout
Chapter 4.  How to Use SyncSort Data Utility Features 4.19



Inserting Blanks and Repositioning Record Fields 

Example: The central office of a commercial bank requires that each branch present its
masterfile at the end of every month in the format outlined in Figure 241. Branch A, how-
ever, has formatted its masterfile records as outlined in Figure 242.

To reformat its masterfile records to conform to central-office specifications, the following is
coded. Since the records do not require sorting, the SyncSort copy feature is used.

 

Figure  241. Required Format

 

Figure  242. Input Record Layout
SyncSort for z/VSE 3.7 Programmer’s Guide4.20



Figure 244 shows the effect of OUTREC processing on the output record.

Explanation: After the records are copied, OUTREC specifies two types of reformatting: (1)
repositioning data fields and (2) inserting blanks between fields. As shown in Figure 244,
two fields have been repositioned: the Account Type field now begins on the twenty-first
byte as opposed to the fifth byte, and the Account Number field begins on the fifth byte
rather than on the eighth. Also, blanks have been inserted using the nX entry to specify the
number (n) of blanks. Six blanks have been inserted after the Account Number field and a
single blank after the Account Type field. Since the Balance field and Interest field are con-
tiguous, they are treated as a single field in this application.

// JOB FORMAT Signals the Start of Job

// ASSGN SYS001,SYSLST Assigns Logical Unit to Printer

// ASSGN SYS002,X'181' Assigns Logical Unit to Tape

// TLBL SORTIN1,'ACCTMST' Contains Input Tape File Information

// ASSGN SYS003,X'251' Assigns Logical Unit to SORTWK Device

// DLBL SORTWK1 Contains SORTWK File Information

// EXTENT SYS003 Defines Direct Access Area for SORTWK

// EXEC SORT Signals Beginning of Sort Program

RECORD TYPE=F,LENGTH=41 Describes Input Records

SORT FIELDS=COPY Copies Records

OUTREC FIELDS=(1,4, Repositions Fields on Output Records

8,10,

6X,

5,3,

1X,

18,17) 

Figure  243. JCL and Required Control Statements

 

Figure  244. Post-OUTREC Record Layout
Chapter 4.  How to Use SyncSort Data Utility Features 4.21



Inserting Binary Zeros 

Example: A manufacturing firm has decided to expand its product line. However, because
the Item Number field on its inventory records is too small, the records must be reformat-
ted to allow for more columns for the new products. The Item Number is kept in packed-
decimal, PD, format, and the firm wants to add 4 bytes to the current 2 byte field. The new
bytes are to precede the current two bytes. Figure 245 gives the input record layout.

To copy the records and insert the 4 bytes of binary zeros, the following is coded.

 

Figure  245. Input Record Layout

// JOB COLUMNS Signals the Start of Job

// ASSGN SYS001,SYSLST Assigns Logical Unit to Printer

// ASSGN SYS002,X'181' Assigns Logical Unit to Tape

// TLBL SORTIN1,'INVREC' Contains Input Tape File Information

// ASSGN SYS003,X'251' Assigns Logical Unit to SORTWK Device

// DLBL SORTWK1 Contains SORTWK File Information

// EXTENT SYS003 Defines Direct Access Area for SORTWK

// EXEC SORT Signals Beginning of Sort Program

RECORD TYPE=F,LENGTH=76 Decsribes Input Records

SORT FIELDS=COPY Copies Records

OUTREC FIELDS=(1,20, Inserts Binary Zeros and

4Z, Reformats Records

25:21,56) 

Figure  246. JCL and Required Control Statements
SyncSort for z/VSE 3.7 Programmer’s Guide4.22



The effect of OUTREC processing is shown in Figure 247.

Explanation: The records are copied, and OUTREC processing adds 4 bytes of binary zeros
(4Z) to the beginning of the Item Number field (21,2). To allow for the 4 additional bytes,
the original Item Number field and the fields following it are all copied after the 4 inserted
bytes of zeros.

Converting Unprintable Data to Readable Form 

Example: For a file of invoice records sorted by company name, the Invoice Amount,
Amount Paid, and Balance Due fields are to be converted from packed-decimal to printable
format. In addition, any leading zeros will be suppressed and both commas and decimal
points will be inserted. (Figure 248 gives the input record layout.)

 

Figure  247. Post-OUTREC Record Layout
Chapter 4.  How to Use SyncSort Data Utility Features 4.23



To sort the records, convert the three fields of packed-decimal data, and insert the commas
and decimal points, the following is coded.

 

Figure  248. Input Record Layout

// JOB INVOICE Signals the Start of Job

// ASSGN SYS001,SYSLST Assigns Logical Unit to Printer

// ASSGN SYS002,X'181' Assigns Logical Unit to Tape

// TLBL SORTIN1,'NEWINV' Contains Input Tape File Information

// ASSGN SYS003,X'251' Assigns Logical Unit to SORTWK Device

// DLBL SORTWK1 Contains SORTWK File Information

// EXTENT SYS003 Defines Direct Access Area for SORTWK

// EXEC SORT Signals Beginning of Sort Program

RECORD TYPE=F,LENGTH=35 Describes Input Records

SORT FIELDS=(1,23,CH,A) Sorts Records

OUTREC FIELDS=(17:1,23, Repositions Record Fields and

52:24,4,PD,M2, Converts Data

74:28,4,PD,M2,

96:32,4,PD,M2) 

Figure  249. JCL and Required Control Statements
SyncSort for z/VSE 3.7 Programmer’s Guide4.24



The effect of OUTREC processing on the input record is shown in Figure 250.

Explanation: First the records are sorted alphabetically by company name (1,23,CH). Then,
three fields - the Invoice Amount (24,4,PD), the Amount Paid (28,4,PD), and the Balance
Due (32,4,PD) - are converted from packed-decimal (PD) into readable format and edited by
a SyncSort editing mask (M2) that suppresses the printing of leading zeros and inserts the
appropriate commas and decimal points. The number-colon entries (c:) that precede each of
the four fields assign a new starting position or, when printing, column for each of the four
fields. For example, the Company Name field, which originally began in byte 1 for a length
of 23 bytes, now begins in byte 17; the Invoice Amount field, which began in byte 24, begins
in byte 52, and so on. Note that after the data is converted and edited, the lengths of the
packed-decimal fields increase from four bytes each to ten bytes and that the fields are each
separated by twelve blanks. 

Converting Unprintable Data to Hexadecimal Format 

Example: A bank has discovered that some errors were made in recording the Account
Numbers of some of its customers. Specifically, on the transaction records, some Account
Number fields, which should contain only packed-decimal, PD, data, appear to contain data
that is not valid packed-decimal. Figure 251 shows the input record layout.

 

Figure  250. Post-OUTREC Record Layout
Chapter 4.  How to Use SyncSort Data Utility Features 4.25



In order to find the invalid data, the following is coded.

 

Figure  251. Sample Input Record Layout

// JOB ACCTNO Signals the Start of Job

// ASSGN SYS001,SYSLST Assigns Logical Unit to Printer

// ASSGN SYS002,X'181' Assigns Logical Unit to Tape

// TLBL SORTIN1,'CUSTNO' Contains Input Tape File Information

// ASSGN SYS003,X'251' Assigns Logical Unit to SORTWK Device

// DLBL SORTWK1 Contains SORTWK File Information

// EXTENT SYS003 Defines Direct Access Area for SORTWK

// EXEC SORT Signals Beginning of Sort Program

RECORD TYPE=F,LENGTH=79 Describes Input Records

SORT FIELDS=COPY Copies Records

OUTREC FIELDS=(1,30, Reformats Output Records and

36:31,12,HEX) Converts Data 

Figure  252. JCL and Required Control Statements
SyncSort for z/VSE 3.7 Programmer’s Guide4.26



The effect of OUTREC processing on the input record is shown in Figure 253.

Explanation: The records are copied, and OUTREC processing reformats the output record
to contain the Customer Name field (1,30) followed in column 36 by the Account Number
field converted to hexadecimal format (31,12,HEX). Blanks are automatically inserted in
the unspecified columns (31,5). Note that converting the Account Number data to printable
hexadecimal expands the original 12-byte field to 24 bytes. The bank can now read the
Account Number field in hexadecimal format to determine which records contain invalid
data.

Converting and Editing Unprintable Data 

Example: For an Outstanding Payments report, the packed-decimal Amount Due field on a
company’s invoice records is converted to printable format and edited with a floating dollar
sign, commas, and a decimal point. In addition, to make the output easy to read, ten blanks
are inserted between the Company Name field and the Amount Due field. (Figure 254 gives
the input record layout.)

 

Figure  253. Post-OUTREC Record Layout
Chapter 4.  How to Use SyncSort Data Utility Features 4.27



To sort the records and accomplish the conversion and editing, the following is coded.

 

Figure  254. Input Record Layout

// JOB PAYMENT Signals the Start of Job

// ASSGN SYS001,SYSLST Assigns Logical Unit to Printer

// ASSGN SYS002,X'181' Assigns Logical Unit to Tape

// TLBL SORTIN1,'INVOICE' Contains Input Tape File Information

// ASSGN SYS003,X'251' Assigns Logical Unit to SORTWK Device

// DLBL SORTWK1 Contains SORTWK File Information

// EXTENT SYS003 Defines Direct Access Area for SORTWK

// EXEC SORT Signals Beginning of Sort Program

RECORD TYPE=F,LENGTH=27 Describes Input Records

SORT FIELDS=(1,23,CH,A) Sorts Records

OUTREC FIELDS=(1,23, Converts and Edits Data, Inserts Blanks

10X,

24,4,PD,EDIT=($II,IIT.TT)) 

Figure  255. JCL and Required Control Statements
SyncSort for z/VSE 3.7 Programmer’s Guide4.28



Figure 256 shows the effect of OUTREC processing on the input record.

Explanation: First the records are sorted alphabetically by Company Name (1,23,CH).
Next, OUTREC processing inserts 10 blanks (10X) between the Company Name field (1,23)
and the Balance Due field (24,4,PD). OUTREC processing also converts this packed-deci-
mal field to printable format and edits it with the user-provided pattern specified on the
EDIT subparameter, EDIT=($II,IIT.TT). This pattern provides for a floating dollar sign as
well as the appropriate comma and decimal point. The Is indicate that leading zeros should
not be printed and the Ts indicate that zeros in those positions should be printed. Note that
this conversion and editing of the data cause the length of the Balance Due field to increase
from its original length of four bytes to ten bytes.

Putting a Data Field in Standard Format  

Example: The date field on insurance-policy records is stored in zoned-decimal format but
without slashes separating the month, day, and year. After the records are sorted, these
slashes will be inserted and the date will appear in the standard mm/dd/yy format. (Figure
257 gives the input record layout.)

 

Figure  256. Post-OUTREC Record Layout
Chapter 4.  How to Use SyncSort Data Utility Features 4.29



To sort the records and format the date field with the required slashes, the following is
coded.

 

Figure  257. Input Record Layout

// JOB SORTDT Signals the Start of Job

// ASSGN SYS001,SYSLST Assigns Logical Unit to Printer

// ASSGN SYS002,X'181' Assigns Logical Unit to Tape

// TLBL SORTIN1,'NEWPLCY' Contains Input Tape File Information

// ASSGN SYS003,X'251' Assigns Logical Unit to SORTWK

Device

// DLBL SORTWK1 Contains SORTWK File Information

// EXTENT SYS003 Defines Direct Access Area for

SORTWK

// EXEC SORT Signals Beginning of Sort Program

RECORD TYPE=F,LENGTH=37 Describes Input Records

SORT FIELDS=(1,23,CH,A) Sorts Records

OUTREC FIELDS=(1:1,23, Edits Data and Repositions

30:24,6,ZD,M9, Record Fields

45:30,8) 

Figure  258. JCL and Required Control Statements
SyncSort for z/VSE 3.7 Programmer’s Guide4.30



The effect of OUTREC processing is shown in Figure 259.

Explanation: The records are sorted alphabetically by Member Name (1,23,CH). The
OUTREC statement repositions the Effective Date field (24,6,ZD) and the Policy Number
field (30,8,ZD) in columns 30 and 45 respectively, leaving blanks between each of the three
fields. In addition, the OUTREC statement edits the Effective Date field with an M9 edit-
ing mask that places slashes between the month, date, and year. Note that editing the Date
field increases its size from six to eight bytes.

Printing Input Records on Multiple Output Lines

Example: In this example, five input record fields, shown in Figure 260, are copied to an
output file with each field printed as a separate output line.

 

Figure  259. Post-OUTREC Record Layout

 

Figure  260. Input Record Layout
Chapter 4.  How to Use SyncSort Data Utility Features 4.31



Multiple output lines are created by specifying a newline character, i.e. / (slash), in the
OUTREC parameter of an OUTFIL control statement. As shown in Figure 261, the newline
character follows the specification of each input field’s starting position and length.

Once SyncSort has printed the data in the COMPANY NAME field, it starts a new output
line, prints on it the data in the next field, CUSTOMER NAME, starts a new line, and so
forth. After printing the contents of the last field (CITY, STATE AND ZIP), SyncSort cre-
ates two new lines (2/).

Figure 262 provides an excerpt from the output file where the input record is formatted on
multiple lines. A blank line appears in the second and third set of multiline output because
the corresponding input record fields (i.e. CUSTOMER TITLE and CUSTOMER NAME)
were blank.

// JOB SORTDT Signals the Start of Job

// ASSGN SYS001,SYSLST Assigns Logical Unit to Printer

// ASSGN SYS002,X'181' Assigns Logical Unit to Tape

// TLBL SORTIN1,'NEWPLCY' Contains Input Tape File Information

// ASSGN SYS003,X'251' Assigns Logical Unit to SORTWK

Device

// DLBL SORTWK1 Contains SORTWK File Information

// EXTENT SYS003 Defines Direct Access Area for

SORTWK

// EXEC SORT Signals Beginning of Sort Program

SORT FIELDS=(101,40,CH,A) Sorts Records

RECORD TYPE=F,LENGTH=300 Record Length

OUTFIL HEADER2=('CUSTOMER ADDRESS LIST',3/), Prints a Page

Header

OUTREC=(101,40,/, Prints the Data in the

Field and Starts a

New Output Line

141,25,/, As Above

166,25,/, As Above

191,30,/, As Above

266,35,2/) As Above but Starts

2 New Output Lines 

Figure  261. JCL and Control Statements for Multiline Output
SyncSort for z/VSE 3.7 Programmer’s Guide4.32



Dividing a Report into Sections 

When printing sorted output, you may want to divide it into sections. For example, after
sorting a personnel file alphabetically by company name and department, you might want
to print each department’s records as a separate section and leave some blank lines
between each section. You might even want to print each section as a separate page of the
report. SyncSort allows you to print groups of records that have identical information in
one or more sort fields as sections and to separate each section by a specified number of
lines or a page break.

To divide output into sections, use the SECTIONS parameter on the OUTFIL control state-
ment as described below.

CUSTOMER ADDRESS LIST

AARON'S ROD INC. First Set of Multiline Output

DAVID LAURENCE

SYS PROG

6936 YOUNGMAN BLVD.

GREAT NECK CT. 06854

BLAKE'S VISION TECHNOLOGY Second Set of Multiline Output

MR. N. FRYE 

261 ALBION PLACE

SEA BRIGHT NJ. 08572

COLTRANE & COMPANY Third Set of Multiline Output

DATA CENTER MANAGER

300 DORIAN AVENUE

NEW YORK NY. 11220 

Figure  262. Sample Multiline Output

Figure  263. Basic SECTIONS Parameter Format

SECTIONS = (p,l,SKIP = nL
P 

 
 

)

Chapter 4.  How to Use SyncSort Data Utility Features 4.33



Note: See “SECTIONS Parameter (Optional)” on page 2.162 for the complete syntax of the
SECTIONS parameter.

p,l  Specify the starting position and the length in bytes of the field that
you have chosen to determine section breaks. (Note: Typically, this
field is one on which the data has been sorted.) A section break will
occur every time the data in this sort field changes.

When specifying the fields that control section breaks, keep the fol-
lowing in mind:

• Give the position and length of the field as it appears after any
processing by an E15 or E32 exit, the INREC control statement,
the OUTREC control statement, and an E35 exit, but before
processing due to the OUTREC and/or other OUTFIL
parameters.

• You may specify more than one field in order to subdivide the
report within sections. Specify the major control field first,
followed (in major to minor order) by the control fields that will
generate breaks within a major section.

SKIP=nL  Specifies the number of lines (nL) that should be skipped between
each section. Spacing occurs after the last section trailer
(TRAILER3) in the section.

SKIP=P  Specifies a page break (P). Spacing occurs after the last section
trailer (TRAILER3) in the section. 

Dividing Output into Sections

Example: A personnel roster is to be divided into sections by Department. (Figure 264 pre-
sents the layout for the input record.)
SyncSort for z/VSE 3.7 Programmer’s Guide4.34



To sort the records and generate a list that is divided by Department, the following is
coded.

A sample of the listing generated is shown in Figure 266.

 

Figure  264. Input Record Layout

// JOB ROSTER Signals the Start of Job

// ASSGN SYS001,SYSLST Assigns Logical Unit to Printer

// ASSGN SYS002,X'181' Assigns Logical Unit to Tape

// TLBL SORTIN1,'PRSNL' Contains Input Tape File Information

// ASSGN SYS003,X'251' Assigns Logical Unit to SORTWK Device

// DLBL SORTWK1 Contains SORTWK File Information

// EXTENT SYS003 Defines Direct Access Area for SORTWK

// EXEC SORT Signals Beginning of Sort Program

RECORD TYPE=F,LENGTH=25 Describes Input Records

SORT FIELDS=(15,5,A,1,14,A),FORMAT=CH Sorts Records

OUTFIL OUTREC=(6:15,5, Repositions Record Fields

14:1,14,

33:20,3,

44:23,1,54:24,2,),

SECTIONS=(15,5,SKIP=5L) Sections Records 

Figure  265. JCL and Required Control Statements
Chapter 4.  How to Use SyncSort Data Utility Features 4.35



Explanation: After the records are sorted alphabetically by Department (15,5) and
Employee Name (1,14), they are divided into sections by department. That is, every time
there is a change in the Department field (15,5 in the input record) the printer skips 5 lines
(5L) before printing the next record. (Note, in the Sample Output above, the five-line break
that occurs between ACCTG and PRSNL.) The OUTREC parameter is used to reposition
the record fields and to leave blanks between them.

Writing Headers and Trailers for a Report 

Headers are used to provide report, page, and section headings such as titles, page num-
bers, the current date, labels for each column of data, and the like. Similarly, trailers are
used for report, page, and section summaries. You can use them, for example, to provide
totals for columns of numeric data (see “Totaling and Subtotaling Data” on page 4.46) or to
indicate the end of a section with, for example, a string of asterisks or to provide a list of
abbreviations used in the report.

ACCTG BELL PAT SUP F 03

ACCTG EMERY PAUL CLK M 04

ACCTG JONES MARK CLK M 01

ACCTG NORTH NANCY MGR F 02

ACCTG OWEN JERRY CLK M 03

ACCTG TWAIN JOAN SEC F 05

ACCTG WEST DONNA CLK F 03

PRSNL SMITHE JON CLK M 00

PRSNL TOWERS LINDA CLK F 02

PRSNL VREES GEORGE CLK M 02

PRSNL WU JANE SUP F 05

PRSNL YOUNG RUSS MGR M 03 

Figure  266. Sample Output
SyncSort for z/VSE 3.7 Programmer’s Guide4.36



To generate Headers and/or Trailers, code the OUTFIL statement as described below:

Note: See “HEADER1/HEADER2 Parameters (Optional)” on page 2.149 and “TRAILER1/
TRAILER2 Parameters (Optional)” on page 2.164 for complete formats of HEADER and
TRAILER parameters.

HEADERn  Use a HEADER1 for a title page, a HEADER2 for a page
header, a HEADER3 for a section header. Note: HEADER3
must be specified as a subparameter of the SECTIONS
parameter.

TRAILERn  Specify a TRAILER1 for a report trailer, a TRAILER2 for a
page trailer, a TRAILER3 for a section trailer. Note:
TRAILER3 must be specified as a subparameter of the
SECTIONS parameter.

c:  Specify the column in which you want the entry to begin
printing.

n  Specify the number of times you want the blank (X), charac-
ter data ('literal string'), or forward spacing (/) repeated.

p,l  Specify the starting position (p) and the length in bytes (l) of
the data-record field(s) that you want to include in either a
header or trailer. For a HEADER1, the field(s) will be
extracted from the first data record in the report; for a
HEADER2, from the first data record on the page; for a
HEADER3, from the first data record in the section. For a
TRAILER1, the field(s) will be extracted from the last data
record in the report; for a TRAILER2, from the last data
record on a page; for a TRAILER3, from the last data record
in the section. 

Figure  267. Basic HEADER and TRAILER Parameter Formats

HEADER
TRAILER 

 
  1

2
3 

 
 

=([c:]

[n]X
[n]C'literal string'
[n]'literal string'
[n]/
p,l
[&DATE]
[DATE]
[DATE(abcd)]
[&TIME]
[TIME]
[TIME(nnc)]
[&PAGE] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

,...)
Chapter 4.  How to Use SyncSort Data Utility Features 4.37



&DATE=(abcd)  The &DATE or DATE subparameter specifies the current
generated system date and requires 8 bytes. abcd indicates
that you arrange the year, month, and day in any order. c is
the separator character. Use M to denote month, D to
denote day, and Y to denote the last two characters of the
year. You can specify 4 as an alternative to Y if you want
the year expressed in four digits (2006 as opposed to 06).

For example, if the current date is 4/24/06 and
&DATE=(DMY.), the output date is 24.04.06. With the
same example, if &DATE=(4MD-), the output date is 2006-
04-24.

&TIME=(nnc)  The &TIME subparameter specifies the current step start
time, which is the time that the current execution of 
SyncSort began. The default time format is hh:mm:ss.

nn can be either 12 or 24. 24 specifies twenty-four hour
clock with the format hhcmmcss and requires 8 bytes. 12
specifies twelve hour clock with the format hhcmmcss xx
and requires 11 bytes. xx can be either am or pm. c denotes
the separation character. For example, &TIME=(24-)
expresses 7:31 pm as 19-31-00.

&PAGE  Specify this parameter if you want the logical pages to be
numbered sequentially. Page numbers appear in a six-byte
format that is right justified with leading zeros suppressed.

Note: If any specified HEADER or TRAILER exceeds the length of the post-OUTREC
record, be sure to code the LRECL parameter on the OUTFIL statement to match the
length of the longest header or trailer. If this length is unknown, you may specify
LRECL=132.

Writing a Title Page for a Report  

Example: Marketing wants a title page for its monthly departmental sales report. The
three-line title will begin on line 16 and three blank lines will separate each line of the title.
The three lines will start printing in columns 49, 59, and 63, respectively.

To print this title page, the following is coded.
SyncSort for z/VSE 3.7 Programmer’s Guide4.38



Figure 269 shows the header that is generated by the above HEADER1 parameter:

Explanation: The HEADER1 parameter produces a header that will print on a separate
page, with no page number, at the beginning of the report. The first number-slash (n/)
entry, 15/, causes the printer to skip 15 lines before printing. The following number-colon
entry (c:), 49:, specifies the column in which the literal string 
'D E P A R T M E N T A L S A L E S' begins to print. Note that the literal string prints
exactly as it is entered between the single quotes, with a space between each letter and a
double space between the words.

The next entry, 4/, causes the printer to skip 3 more blank lines before starting to print the
literal string 'F E B R U A R Y' in column 59.

Finally, three more lines are left blank (4/) and the literal string '2 0 0 0' begins printing in
column 63. 

// JOB DSRPT Signals the Start of Job

// ASSGN SYS001,SYSLST Assigns Logical Unit to Printer

// ASSGN SYS002,X'181' Assigns Logical Unit to Tape

// TLBL SORTIN1,'SALES' Contains Input Tape File Information

// ASSGN SYS003,X'251' Assigns Logical Unit to SORTWK Device

// DLBL SORTWK1 Contains SORTWK File Information

// EXTENT SYS003 Defines Direct Access Area for SORTWK

// EXEC SORT Signals Beginning of Sort Program

RECORD TYPE=F,LENGTH=80 Describes Input Records

SORT FIELDS=(1,15,CH,A) Sorts Records

.

.

.

OUTFIL HEADER1=(15/,49:'D E P A R T M E N T A L S A L E S',

4/,59:'F E B R U A R Y',

4/,63:'2 0 0 0'), Generates Title Page

.

.

. 

Figure  268. JCL and Required Control Statements

D E P A R T M E N T A L S A L E S 

F E B R U A R Y 

2 0 0 0

Figure  269. Sample HEADER1
Chapter 4.  How to Use SyncSort Data Utility Features 4.39



Writing a Page Header

Example: Marketing wants the first line of every page of its departmental sales report to
contain the program number, report title, page number, and date. They want the third line
of every page to contain an identifying label for each column of data. Each of these lines will
begin printing in column one.

To print the page header, the following is coded.

Figure 271 shows a representation of the header that is generated by the above HEADER2
parameter.

// JOB DSRPT Signals the Start of Job

// ASSGN SYS001,SYSLST Assigns Logical Unit to Printer

// ASSGN SYS002,X'181' Assigns Logical Unit to Tape

// TLBL SORTIN1,'SALES' Contains Input Tape File Information

// ASSGN SYS003,X'251' Assigns Logical Unit to SORTWK Device

// DLBL SORTWK1 Contains SORTWK File Information

// EXTENT SYS003 Defines Direct Access Area for SORTWK

// EXEC SORT Signals Beginning of Sort Program

RECORD TYPE=F,LENGTH=80 Describes Input Records

SORT FIELDS=(1,15,CH,A) Sorts Records

.

.

.

OUTFIL .

.

HEADER2=(1:'PGM NUMBER 5', Generates Page Heading

46:'DEPARTMENTAL SALES REPORT FOR FEBRUARY 2000',

101:'DATE:',

107:&DATE,

121:'PAGE:',

127:&PAGE,//,

1:'DEPARTMENT',

40:'SALES MANAGER',

61:'SALES REP',

78:'SALES THIS PERIOD',

103:'SALES YEAR TO DATE',//),

.

. 

Figure  270. JCL and Required Control Statements

PGM NUMBER 5 DEPARTMENTAL SALES REPORT FOR FEBRUARY 2000 DATE: 02/01/00 PAGE: 1

DEPARTMENT SALES MANAGER SALES REP SALES THIS PERIOD SALES YEAR TO DATE 

Figure  271. Sample HEADER2
SyncSort for z/VSE 3.7 Programmer’s Guide4.40



Explanation: The HEADER2 parameter produces the page header shown above. Because
no forward spacing is specified, the page header begins on the first line of every page. Each
of the HEADER2’s number-colon entries (c:), for example, 1:, indicates the column in which
the entry following the colon begins to print. Thus, the literal 'PGM NUMBER 5' is printed
beginning in column 1, and so on. The &DATE and the &PAGE entries generate a current
date and a consecutive page number, respectively. The date and the page number appear
after the labels DATE: and PAGE:, which are specified like the other literals.

The double slashes (// ) following the &PAGE entry direct the printer to forward space two
lines, that is, to leave one blank line, before printing the next group of literals that consti-
tute the labels for the columns of data.

Writing a Section Header  

Example: Marketing wants each section of its departmental sales report to have its own
heading. The heading will consist of one line containing an identifying label for each col-
umn of data. The heading will begin printing in column one.

To print the section header, the following is coded.

// JOB DSRPT Signals the Start of Job

// ASSGN SYS001,SYSLST Assigns Logical Unit to Printer

// ASSGN SYS002,X'181' Assigns Logical Unit to Tape

// TLBL SORTIN,'SALES' Contains Input Tape File Information

// ASSGN SYS003,X'251' Assigns Logical Unit to SORTWK Device

// DLBL SORTWK1 Contains SORTWK File Information

// EXTENT SYS003 Defines Direct Access Area for SORTWK

// EXEC SORT Signals Beginning of Sort Program

RECORD TYPE=F,LENGTH=80 Describes Input Records

SORT FIELDS=(1,15,CH,A) Sorts Records

OUTFIL LRECL=114,

OUTREC=(1:1,15, Repositions Fields on Output Records

23:23,7, and Edits Data

51:48,3,

72:60,4,PD,EDIT=($II,IIT.TT),

101:64,4,PD,EDIT=($II,IIT.TT)),

SECTIONS=(1,15,SKIP=5L, Generates Section Breaks

HEADER3=(1:'DEPARTMENT', Generates Section Headings

23:'SALES MGR',

48:'SALES REP',

68:'SALES THIS PERIOD',

97:'SALES YEAR TO DATE',//))

.

. 

Figure  272. JCL and Required Control Statements
Chapter 4.  How to Use SyncSort Data Utility Features 4.41



Figure 273 shows the header that is generated by the above HEADER3 subparameter.

Explanation: The HEADER3 subparameter on the SECTIONS parameter generates a
header that prints at the beginning of each section. Its primary purpose here is to provide
labels for the columns of data that appear in each section. Each of the number-colon entries
(c:) specifies the column in which the entry following it should begin to print. Thus, the lit-
eral string 'DEPARTMENT' begins to print in column 1, the literal string 'SALES MGR'
begins to print in column 23, and so on. Blanks are automatically inserted in the space
between the columns that are specified. LRECL=114 has been specified on the OUTFIL
statement so that the length of the output record will equal that of the header. Note that if
the HEADER3 in this example were used in conjunction with the preceding HEADER2
example, there would be no need to specify the labels for the columns of data in the
HEADER2. 

Using a Header to Eliminate Duplicate Information within a Section  

Example: Rather than repeat the department name and sales manager, which are identical
for every record included in a section of the departmental sales report, marketing wants
this information to appear only once — within the section headers of the report. Therefore,
the section header’s first two entries (Department and Sales Manager) will be drawn
directly from the first data record in each section.

To print the section header with the input data fields, the following is coded.

DEPARTMENT SALES MGR SALES REP SALES THIS PERIOD SALES YEAR TO DATE 

OVER COUNTER CASEY 075 $14,000.00 $27,000.00 

OVER COUNTER CASEY 093 13,550.00 32,000.00 

OVER COUNTER CASEY 084 11,755.00 24,850.00 

OVER COUNTER CASEY 090 12,250.00 25,000.00 

OVER COUNTER CASEY 095 13,075.00 26,180.00

DEPARTMENT SALES MGR SALES REP SALES THIS PERIOD SALES YEAR TO DATE 

SURGICAL KILDARE 003 $11,750.00 $25,320.00 

SURGICAL KILDARE 007 14,300.00 24,900.00 

SURGICAL KILDARE 009 11,110.00 30,850.00 

SURGICAL KILDARE 004 13,375.00 27,505.00

. . . . .

. . . . .

. . . . . 

Figure  273. Sample Sections with HEADER3
SyncSort for z/VSE 3.7 Programmer’s Guide4.42



Figure 275 shows the header that is generated by the above HEADER3 subparameter.

// JOB DSRPT Signals the Start of Job

// ASSGN SYS001,SYSLST Assigns Logical Unit to Printer

// ASSGN SYS002,X'181' Assigns Logical Unit to Tape

// TLBL SORTIN1,'SALES' Contains Input Tape File Information

// ASSGN SYS003,X'251' Assigns Logical Unit to SORTWK Device

// TLBL SORTWK1 Contains SORTWK File Information

// EXTENT SYS003 Defines Direct Access Area for SORTWK

// EXEC SORT Signals Beginning of Sort Program

RECORD TYPE=F,LENGTH=80 Describes Input Records

SORT FIELDS=(1,15,CH,A) Sorts Records

OUTFIL LRECL=114,

OUTREC=(51:48,3, Repositions Fields on Output Records

72:60,4,PD,EDIT=($II,IIT.TT), and Edits Data

101:64,4,PD,EDIT=($II,IIT.TT)),

SECTIONS=(1,15,SKIP=5L, Generates Section Breaks

HEADER3=(1:1,15, Generates Section Headings

23:23,7,

48:'SALES REP',

68:'SALES THIS PERIOD',

97:'SALES YEAR TO DATE'//)) 

Figure  274. JCL and Required Control Statements

OVER COUNTER CASEY SALES REP SALES THIS PERIOD SALES YEAR TO DATE

075 $14,000.00 $27,000.00

093 $13,550.00 $32,000.00

084 $11,755.00 $24,850.00

090 $12,250.00 $25,000.00

095 $13,075.00 $26,180.00 

SURGICAL KILDARE SALES REP SALES THIS PERIOD SALES YEAR TO DATE 

003 $11,750.00 $25,320.00

007 $14,300.00 $24,900.00

009 $11,110.00 $30,850.00

004 $13,375.00 $27,505.00

. . .

. . .

. . . 

Figure  275. Sample Sections with HEADER3 Including Data from Input Record
Chapter 4.  How to Use SyncSort Data Utility Features 4.43



Explanation: The HEADER3 subparameter on the SECTIONS parameter generates a
header that prints at the beginning of each section. Its primary purpose here is to provide
individualized section headings that contain the Department Name and the Sales Manager
from the records in that section as well as labels for the columns of data. The first two
entries in this header, 1:1,15 and 23:23,7 (the Department Name and Sales Manager,
respectively), are drawn directly from the input record to eliminate the repetition of these
fields in the detail lines of each section. Note that specifying these fields in the HEADER3
eliminates the need to include them in OUTREC processing as was necessary in the preced-
ing example. Each of the number-colon entries (c:) specifies the column in which the entry
following it should begin to print. Thus, the Department field, (1,15) begins to print in col-
umn 1; the Sales Manager field, in column 23; the literal string "SALES REP", in column
48, and so on. Blanks are automatically inserted in the space between the columns. Note
that LRECL=114 has been specified on the OUTFIL statement so that the output record
length will equal that of the header. 

Writing a Report Trailer or Summary

Example: The final page of marketing’s departmental sales report will contain a note say-
ing that February sales figures include residual 2000 sales not previously recorded. This
note will begin on the 21st line of the page and start printing in the 33rd column of the
page.

To print the report trailer, the following is coded.

// JOB DSRPT Signals the Start of Job

// ASSGN SYS001,SYSLST Assigns Logical Unit to Printer

// ASSGN SYS002,X'181' Assigns Logical Unit to Tape

// TLBL SORTIN1,'SALES' Contains Input Tape File Information

// ASSGN SYS003,X'251' Assigns Logical Unit to SORTWK Device

// DLBL SORTWK1 Contains SORTWK File Information

// EXTENT SYS003 Defines Direct Access Area for SORTWK

// EXEC SORT Signals Beginning of Sort Program

RECORD TYPE=F,LENGTH=80 Describes Input Records

SORT FIELDS=(1,15,CH,A) Sorts Records

.

.

.

OUTFIL .

.

.

TRAILER1=(20/, Generates Report Trailer

33:'FEBRUARY SALES FIGURES INCLUDE RESIDUAL 2000',

'SALES NOT PREVIOUSLY RECORDED') 

Figure  276. JCL and Required Control Statements
SyncSort for z/VSE 3.7 Programmer’s Guide4.44



Figure 277 shows the trailer that is generated by the above TRAILER1 parameter.

Explanation: The TRAILER1 parameter produces a report trailer or summary that consti-
tutes the final page of a report. Unless otherwise specified, it begins on the first line of the
page. The TRAILER1’s initial number-slash (n/) entry, 20/, directs the printer to forward
space 20 blank lines before printing on the 21st line. The next entry, a number-colon (c:)
entry, is used to center the literal string that follows it by having the string of characters
begin printing in the appropriate column. It specifies column 33 as the beginning position
for printing the literal string, 'FEBRUARY SALES FIGURES INCLUDE RESIDUAL 2000
SALES NOT PREVIOUSLY RECORDED'.

Writing a Page Trailer

Example: Marketing wants the last line on every page of its departmental sales report to
contain a note identifying the information as confidential. This line will begin printing in
column one.

To print the page trailer, the following is coded.

FEBRUARY SALES FIGURES INCLUDE RESIDUAL 2000 SALES NOT PREVIOUSLY RECORDED 

Figure  277. Sample TRAILER1

// JOB DSRPT Signals the Start of Job

// ASSGN SYS001,SYSLST Assigns Logical Unit to Printer

// ASSGN SYS002,X'181' Assigns Logical Unit to Tape

// TLBL SORTIN1,'SALES' Contains Input Tape File Information

// ASSGN SYS003,X'251' Assigns Logical Unit to SORTWK Device

// DLBL SORTWK1 Contains SORTWK File Information

// EXTENT SYS003 Defines Direct Access Area for SORTWK

// EXEC SORT Signals Beginning of Sort Program

RECORD TYPE=F,LENGTH=80 Describes Input Records

SORT FIELDS=(1,15,CH,A) Sorts Records

.

.

.

OUTFIL .

.

.

TRAILER2=(5'*','CONFIDENTIAL INFORMATION',

Generates Page Trailer

5'*','CONFIDENTIAL INFORMATION',5'*')

.

.

. 

Figure  278. JCL and Required Control Statements
Chapter 4.  How to Use SyncSort Data Utility Features 4.45



Figure 279 shows the trailer that is generated by the above TRAILER2 parameter.

Explanation: The TRAILER2 coded above provides a trailer that appears at the bottom of
every logical page. The first entry, 5'*', a literal enclosed in single quotes (in this case an
asterisk) and a repetition factor (5), specifies that 5 asterisks should be printed. Because no
column was specified, the trailer begins in column one. The next entry, 'CONFIDENTIAL
INFORMATION', specifies that the literal string enclosed in the single quotes should
directly follow the asterisks. Note that the literal string is printed exactly as it is coded
within the quotation marks. The trailer’s other entries specify the printing of another five
asterisks followed by the literal string 'CONFIDENTIAL INFORMATION' and finally
another five asterisks.

Totaling and Subtotaling Data 

Writing a summary or trailer for a report will sometimes involve providing totals for col-
umns of figures. For example, you would probably want a trailer for an inventory report to
contain the total number of items on hand. The OUTFIL statement allows you to write
trailers that contain both totals and subtotals. Moreover, you can total data at the end of a
report, at the end of a page, and also at the end of a section.

The TOTAL and SUBTOTAL entries of OUTFIL’s TRAILER parameters and subparame-
ter are described below.

c:  Specify the column in which you want the entry to begin
printing. 

TRAILERn  Specify a TRAILER1 for a report trailer, a TRAILER2 for a
page trailer, a TRAILER3 for a section trailer. NOTE: Spec-
ify a TRAILER3 only as a subparameter of the SECTIONS
parameter.

TOTAL/TOT  Use this parameter if you want the numeric data that you
specify totaled at the end of a report, page, or section.

SUBTOTAL/SUB  Use this parameter if you want a running total of the
numeric data you specify. 

*****CONFIDENTIAL INFORMATION*****CONFIDENTIAL INFORMATION***** 

Figure  279. Sample TRAILER3

Figure  280. TRAILER Format for TOTALS and SUBTOTALS

TRAILER
1
2
3 

 
 

= ([c:] TOTAL
SUBTOTAL 

 
 

= (p,l,f ,Mm
,EDIT = (pattern)

,SIGNS = (...)[ ] ,LENGTH = (n)[ ]...)
SyncSort for z/VSE 3.7 Programmer’s Guide4.46



p  Specify the beginning position of the numeric field on the
input record.

Note: This position should reflect any changes in the record
due to any processing other than OUTFIL processing.

l  Specify the length of the numeric field that you want
totaled.

f  Specify the format of the numeric data.

Mm   Specify one of ten SyncSort editing masks to format the
total. (See “Mm Subparameter (Editing Masks)” on page
2.202.)

Note: If neither Mm nor EDIT is specified, a default edit
mask is used.

EDIT=(pattern)   Specify your own editing mask or pattern to format the
total. (See “EDIT Subparameter” on page 2.200.)

SIGNS=(...)  Specify leading and/or trailing sign indicators to be used
with the edit pattern or SyncSort mask.

LENGTH=(n)  Specify the length of the edited total to alter the default
length of an edit pattern or SyncSort mask.

Note: If any specified TRAILER exceeds the length of the post-OUTREC record, be sure to
code the LRECL parameter on the OUTFIL statement to match the length of the longest
header or trailer. If this length is unknown, you may specify LRECL=132.

Totaling Data at the End of a Report

Example: The departmental sales report’s final page will be a summary containing both the
total for the sales this period and the total for the sales to date. The trailer will begin on the
21st line of the page and each total will have an identifying label.

To print the report trailer, the following is coded.
Chapter 4.  How to Use SyncSort Data Utility Features 4.47



Figure 282 shows the trailer that is generated by the above TRAILER1 parameter.

Explanation: The TRAILER1 parameter produces a report trailer or summary that consti-
tutes the final page of a report. Unless otherwise specified, it begins on the first line of the
page. This TRAILER1’s initial number-slash(n/) entry, 20/, directs the printer to forward
space 20 blank lines before printing. The next entry, a number-colon (c:) entry, is used to
center the literal string that follows it by having the string of characters begin printing in
the appropriate column. It specifies column 40 as the beginning position for the literal
string 'SALES THIS PERIOD:' that labels the numeric data following it. This TRAILER’s
other number-colon plus literal-string entry functions the same way.

The two TOT entries, TOT=(....), generate the trailer’s totals. These entries specify the
numeric data used and its format. Thus the four bytes of packed-decimal data that begin in
byte 24 (24,4,PD) and the four bytes that begin in byte 28 (28,4,PD) of the input record are
converted to printable format. This data is then edited by the EDIT pattern ($II,IIT.TT),
which suppresses the printing of leading zeros and inserts a floating dollar sign as well as a
necessary comma and decimal point. The pattern uses an I to indicate those zeros in the
total that should not be printed and a T to indicate those that should.

Note: Be sure to code all the necessary parentheses when using the TOTAL and EDIT
entries.

// JOB DSRPT Signals the Start of Job
// ASSGN SYS001,SYSLST Assigns Logical Unit to Printer
// ASSGN SYS002,X'181' Assigns Logical Unit to Tape
// TLBL SORTIN1,'SALES' Contains Input Tape File Information
// ASSGN SYS003,X'251' Assigns Logical Unit to SORTWK Device
// DLBL SORTWK1 Contains SORTWK File Information
// EXTENT SYS003 Defines Direct Access Area for SORTWK
// EXEC SORT Signals Beginning of Sort Program

RECORD TYPE=F,LENGTH=80 Describes Input Records
SORT FIELDS=(1,15,CH,A) Sorts Records

.

.

.
OUTFIL.

.

.
TRAILER1=(20/, Generates Report Trailer with Totals

40:'SALES THIS PERIOD:',
59:TOT=(24,4,PD,EDIT=($II,IIT.TT)),
73:'SALES TO DATE:',
88:TOT=(28,4,PD,EDIT=($II,IIT.TT))) 

Figure  281. JCL and Required Control Statements

SALES THIS PERIOD: $35,807.85 SALES TO DATE: $62,305.25 

Figure  282. Sample TRAILER1
SyncSort for z/VSE 3.7 Programmer’s Guide4.48



Subtotaling Data at the End of a Page

Example: The page trailer for a report listing invoices is to contain the totals for the
Amount Paid and the Balance Due fields of the invoice records printed up to and including
that page. These totals will appear directly below the columns of figures and be separated
from them by strings of hyphens. An identifying label, TOTALS:, will appear on the same
line as the totals and will begin in column 40.

To generate the trailer, the following is coded.

// JOB INVLST Signals the Start of Job

// ASSGN SYS001,SYSLST Assigns Logical Unit to Printer

// ASSGN SYS002,X'181' Assigns Logical Unit to Tape

// TLBL SORTIN1,'INVOICE' Contains Input Tape File Information

// ASSGN SYS003,X'251' Assigns Logical Unit to SORTWK Device

// DLBL SORTWK1 Contains SORTWK File Information

// EXTENT SYS003 Defines Direct Access Area for SORTWK

// EXEC SORT Signals Beginning of Sort Program

RECORD TYPE=F,LENGTH=155 Describes Input Records

SORT FIELDS=(9,23,A,36,2,A,32,4,A),FORMAT=CH Sorts Records

.

.

.

OUTFIL.

.

.

TRAILER2=(65:10'-',86:10'-',/, Generates Page Trailer

40:'TOTALS:', with Running Totals

65:SUB=(46,4,PD,EDIT=($II,IIT.TT)),

86:SUB=(54,4,PD,EDIT=($II,IIT.TT))) 

Figure  283. JCL and Required Control Statements
Chapter 4.  How to Use SyncSort Data Utility Features 4.49



Figure 284 shows the trailer that is produced.

Explanation: The above TRAILER2 provides for totaling the figures in the Amount Paid
field (46,4,PD) and the Amount Due field (54,4,PD) on the invoice records. Because the
SUB (SUBTOTAL) entry is specified, the totals that appear at the bottom of each page rep-
resent running totals, that is, the totals for all the records that have been printed up to and
including that page. The TRAILER2 also generates the identifying label TOTALS:
(40:'TOTALS:') and strings of hyphens at the bottoms of the columns to be totaled (65:10'-',
86:10'-').

The totaled data for each field is converted to printable format and, after being edited,
begins printing in the columns specified with the two number colon entries (c:), 65: and 86:.
The data is edited by the EDIT pattern, ($II,IIT.TT), which suppresses the printing of lead-
ing zeros and inserts a floating dollar sign as well as the necessary comma and decimal
point. The pattern uses an I to indicate the zeros in the total that should not be printed and
a T to indicate those that should.

Totaling Data at the End of a Section

Example: The section trailer for an accounts receivable report sectioned by month is to con-
tain the totals for the Amount Paid and the Balance Due columns of each section. These
totals will appear directly below the columns of figures and be separated from them by
strings of hyphens. An identifying label, TOTALS:, will appear on the same line as the
totals and will begin in column 40.

To generate the trailer, the following is coded.

. . . . .

. . . . .

. . . . .
MERLINS TRUST CO 82124054 12/15/92 0.00 1,500.00
MEWER COLLEGE 83013324 1/17/92 0.00 1,500.00
NORTHEAST INDUST 83013303 1/17/92 200.00 200.00
PARK PLACE CORP 83022211 2/15/92 0.00 650.00
PATIO PRODUCTS 83022203 2/15/92 0.00 850.00
PINES ASSOCIATES 83022587 2/15/92 0.00 750.00
POLL DATA CORP 82124019 12/15/92 0.00 600.00
PRIESTLEY METALS 83022201 2/15/92 0.00 1,600.00
REGENCY TRUST CO 82124011 12/15/92 0.00 1,500.00
REPUBLIC DATA 83013306 1/17/92 0.00 1,100.00
RIBBIT TECHNOLOGIES 82124020 12/15/92 0.00 360.00
RICE FEATURES 82124015 12/15/92 750.00 750.00
RICE FEATURES 83013298 1/17/92 0.00 1,500.00
RICE FEATURES 83022198 2/15/92 0.00 1,500.00
ROBINS NEST CORP 83013353 1/17/92 0.00 900.00
SIDNEY COLLEGE 82124016 12/15/92 0.00 5,000.00
SIDNEY COLLEGE 83013297 1/17/92 0.00 2,500.00

---------- ----------
TOTALS: $6,150.00 $66,475.00 

Figure  284. TRAILER2 with SUBTOTAL
SyncSort for z/VSE 3.7 Programmer’s Guide4.50



// JOB ACTREC Signals the Start of Job

// ASSGN SYS001,SYSLST Assigns Logical Unit to Printer

// ASSGN SYS002,X'181' Assigns Logical Unit to Tape

// TLBL SORTIN1,'NEWINV' Contains Input Tape File Information

// ASSGN SYS003,X'251' Assigns Logical Unit to SORTWK Device

// DLBL SORTWK1 Contains SORTWK File Information

// EXTENT SYS003 Defines Direct Access Area for SORTWK

// EXEC SORT Signals Beginning of Sort Program

RECORD TYPE=F,LENGTH=80 Describes Input Records

SORT FIELDS=(9,23,A,36,2,A,32,4,A),FORMAT=CH Sorts Records

.

.

.

OUTFIL.

.

.

SECTIONS=(32,4,SKIP=3L, Generates Section Breaks

TRAILER3=(65:10'-',86:10'-',/, Generates Section Trailer

40:'TOTALS:', with Totals

65:TOT=(46,4,PD,EDIT=($II,IIT.TT)),

86:TOT=(54,4,PD,EDIT=($II,IIT.TT)))) 

Figure  285. JCL and Required Control Statements
Chapter 4.  How to Use SyncSort Data Utility Features 4.51



Figure 286 shows the section trailer, with totals, that is produced.

Explanation: In addition to generating strings of hyphens at the bottom of the columns to
be totaled (65:10'-',86:10'-') and the identifying label TOTALS: on the line below
(40:'TOTALS:'), the TRAILER3 provides for totaling the figures in the Amount Paid field
(46,4,PD) and the Amount Due field (54,4,PD) on the invoice records. Note that because the
TOT (TOTAL) entry is specified, the totals that appear at the end of each section represent
the totals only for the records that are included in that section.

The totaled data for each field is converted to printable format and, after being edited,
begins printing in the columns specified with the two number colon entries (c:), 65: and 86:.
The data is edited by the EDIT pattern, ($II,IIT.TT), which suppresses the printing of lead-
ing zeros and inserts a floating dollar sign as well as the necessary comma and decimal
point. The pattern uses an I to indicate the zeros in the total that should not be printed and
a T to indicate those that should.

. . . . .

. . . . .

. . . . .

WINIFRED INDUST 82124013 12/15/91 300.00 350.00

-------- ---------

TOTALS: $2,600.00 $19,770.00 

ARLINE FRAGRANCES 83013304 1/17/92 0.00 7,500.00

CHARACTER DATA 83013343 1/17/92 0.00 1,100.00

COUNTRY INDUSTRIAL 83013557 1/17/92 0.00 950.00

DUNHAM INDUST INC 83013302 1/17/92 0.00 850.00

ECHO LABS INC 83013300 1/17/92 0.00 550.00

ESS SECURITIES 83013311 1/17/92 0.00 550.00

EVERMORE INDUST 83013556 1/17/92 2,000.00 3,000.00

GOODEY FOODS 83013356 1/17/92 0.00 600.00

GROSS BOOKS CO 83013264 1/17/92 0.00 2,500.00

HARVEY MOTORS CO 83013301 1/17/92 2,000.00 3,000.00

KALABRA CORPORATION 83013555 1/17/92 0.00 1,500.00

MEWER COLLEGE 83013324 1/17/92 0.00 1,500.00

NORTHEAST INDUST 83013303 1/17/92 200.00 200.00

REPUBLIC DATA 83013306 1/17/92 0.00 1,100.00

RICE FEATURES 83013298 1/17/92 0.00 1,500.00

ROBINS NEST CORP 83013353 1/17/92 0.00 900.00

SIDNEY COLLEGE 83013297 1/17/92 0.00 2,500.00

SOUTHWEST INDUST 83013503 1/17/92 200.00 200.00

SPENSERS INDUST 83013989 1/17/92 0.00 650.00

UNITED INTERESTS INC 83013309 1/17/92 0.00 1,500.00

WINIFRED INDUST 83013299 1/17/92 0.00 650.00

-------- ---------

TOTALS: $4,400.00 $32,800.00 

Figure  286. TRAILER3 with TOTAL
SyncSort for z/VSE 3.7 Programmer’s Guide4.52



Counting Data Records 

Trailers in a report will sometimes require you to obtain a record count or a count for a par-
ticular type of item in a specific part of a report. The OUTFIL statement allows you to write
trailers that contain such a count as well as cumulative, or running, counts of records.
Moreover, you can obtain these counts at the end of a report, at the end of a page, and at
the end of a section.

The COUNT and SUBCOUNT entries of OUTFIL’s TRAILER parameters and subparame-
ter are described below.

TRAILERn  Specify TRAILER1 for a report trailer, TRAILER2 for a page
trailer, TRAILER3 for a section trailer. 

Note: Specify TRAILER3 only as a subparameter of the SECTIONS
parameter.

COUNT  Use this entry in TRAILER1 for the total number of output data
records in the entire report; in a TRAILER2 for the total number of
output data records on a page; in a TRAILER3 for the total number
of output data records in a section. This number will be a right-jus-
tified, eight-byte field with leading zeros suppressed. The maximum
value is 99999999.

SUBCOUNT  Use this entry in a TRAILER1 if you want a count of the output
data records in the entire report; in a TRAILER2 if you want a
cumulative, or running, count of output data records on a given
page and all pages that precede it; in a TRAILER3 if you want a
cumulative, or running, count of output data records in that section
and all sections that precede it. This number will be a right-justi-
fied, eight-character field with leading zeros suppressed. The maxi-
mum value is 99999999.

Note: You can use the COUNT and SUBCOUNT entries in conjunction with all other
TRAILER entries.

Obtaining a Count of Data Records

Example: Marketing wants a count of the total number of customers with outstanding pay-
ments included in the summary of its outstanding invoices report.

Figure  287. TRAILER Format for COUNT and SUBCOUNT

TRAILER 
1
2
3 

 
 

= ([c:] COUNT
SUBCOUNT 

 
 

…)
Chapter 4.  How to Use SyncSort Data Utility Features 4.53



To get this record count and print it as part of the report summary, the following is coded.

Figure 289 shows the trailer containing the record count.

Explanation: Since each record in the report represents an individual customer, coding the
COUNT entry in the TRAILER1 will provide the total number of customers with outstand-
ing payments. This TRAILER1 produces a report trailer, or summary, that constitutes the
final page of a report. It will print on the 21st line of the page (20/) and begin printing the
literal string 'NUMBER OF CUSTOMERS WITH OUTSTANDING PAYMENTS: ' in col-
umn 40.

Obtaining a Cumulative, or Running, Count of Data Records

Example: For an outstanding invoices report sectioned by month, marketing wants a cumu-
lative, or running, count of invoices to date at the end of each section as well as a total
count of each month’s invoices included as section trailers.

To generate these record counts, the following is coded.

// JOB INVRPT Signals the Start of Job

// ASSGN SYS001,SYSLST Assigns Logical Unit to Printer

// ASSGN SYS002,X'181' Assigns Logical Unit to Tape

// TLBL SORTIN1,'INVOICE' Contains Input Tape File Information

// ASSGN SYS003,X'251' Assigns Logical Unit to SORTWK Device

// DLBL SORTWK1 Contains SORTWK File Information

// EXTENT SYS003 Defines Direct Access Area for SORTWK

// EXEC SORT Signals Beginning of Sort Program

SORT FIELDS=(1,23,CH,A) Sorts Records

.

.

.

OUTFIL

.

.

.

TRAILER1=(20/,40:'NUMBER OF CUSTOMERS WITH OUTSTANDING PAYMENTS: ',

COUNT) Generates Report Summary 

Figure  288. JCL and Required Control Statements

NUMBER OF CUSTOMERS WITH OUTSTANDING PAYMENTS: 52 

Figure  289. Report Trailer Containing Record Count
SyncSort for z/VSE 3.7 Programmer’s Guide4.54



// JOB INVRPT Signals the Start of Job
// ASSGN SYS001,SYSLST Assigns Logical Unit to Printer
// ASSGN SYS002,X'181' Assigns Logical Unit to Tape
// TLBL SORTIN1,'INVOICE' Contains Input Tape File Information
// ASSGN SYS003,X'251' Assigns Logical Unit to SORTWK Device
// DLBL SORTWK1 Contains SORTWK File Information
// EXTENT SYS003 Defines Direct Access Area for SORTWK
// EXEC SORT Signals Beginning of Sort Program

SORT FIELDS=(28,2,ZD,A, Sorts Records
24,2,ZD,A,
1,23,ZD,A)

.

.

.
OUTFIL.

.

.
SECTIONS=(24,6,SKIP=1L, Generates Sections with Record
TRAILER3=(/, Count & Cumulative Record Subcount

95:'MONTH''S NUMBER OF INVOICES: ',COUNT,/,
95:'NUMBER OF INVOICES TO DATE: ',SUBCOUNT)) 

Figure  290. JCL and Required Control Statements
Chapter 4.  How to Use SyncSort Data Utility Features 4.55



Figure 291 shows the trailers containing the counts of records.

Explanation: The trailer’s first / entry causes the printer to leave one blank line after the
data records and before printing the trailer. The second / entry indicates the end of the
trailer’s first line. The identical number-colon entries (95:) set the starting positions of the
literal strings that follow them: 'MONTH' 'S NUMBER OF INVOICES: ' and 'NUMBER OF

. . . .

. . . .

. . . .
RIBBIT TECHNOLOGIES 12/15/91 360.00 21.60
RICE FEATURES 12/15/91 750.00 75.00
SIDNEY COLLEGE 12/15/91 5,000.00 300.00
SNAP FEATURES 12/15/91 750.00 75.00
WEBB BROS CORP 12/15/91 600.00 36.00
WELLINGTON IMPORTS 12/15/91 750.00 45.00
WINIFRED INDUST 12/15/91 350.00 26.00 

MONTH'S NUMBER OF INVOICES: 17
NUMBER OF INVOICES TO DATE: 17 

ARLINE FRAGRANCES 1/17/92 7,500.00 618.75
CHARACTER DATA 1/17/92 1,100.00 50.75
COUNTRY INDUSTRIAL 1/17/92 850.00 0.00
DUNHAM INDUST CO 1/17/92 850.00 0.00
ECHO LABS INC 1/17/92 550.00 22.00
ESS SECURITIES 1/17/92 550.00 22.00
EVERMORE INDUST 1/17/92 3,000.00 225.00
GOODEY FOODS 1/17/92 600.00 30.00
GROSS BOOKS CO 1/17/92 2,500.00 150.00
HARVEY MOTORS CO 1/17/92 3,000.00 225.00
KALABRA CORP 1/17/92 1,500.00 90.00
NORTHEAST INDUST 1/17/92 200.00 20.00
PULER COLLEGE 1/17/92 1,500.00 75.00
REPUBLIC DATA 1/17/92 1,100.00 90.75
RICE FEATURES 1/17/92 1,500.00 75.00
ROBINS NEST CORP 1/17/92 900.00 54.00
SIDNEY COLLEGE 1/17/92 2,500.00 150.00
SOUTHWEST INDUST 1/17/92 200.00 20.00
SPENSERS INDUST 1/17/92 650.00 26.00
UNITED INTERESTS 1/17/92 1,500.00 90.00
WINIFRED INDUST 1/17/92 650.00 26.00 

MONTH'S NUMBER OF INVOICES: 21
NUMBER OF INVOICES TO DATE: 38 

BALTIC AVENUE CORP 2/15/92 650.00 29.25
BATHO PRODUCTS 2/15/92 850.00 51.00
CARRINGTON OIL 2/15/92 1,600.00 64.00
CDR TRUST INC 2/15/92 1,500.00 75.00
ECHO LABS INC 2/15/92 550.00 22.00
ESS SECURITIES 2/15/92 550.00 22.00
FASTEROOT EQUIP 2/15/92 1,700.00 76.50
FEDERAL FABRICS 2/15/92 1,750.00 70.00

. . . .

. . . .

. . . . 

Figure  291. TRAILER3 Containing Record Counts and Cumulative Record Counts
SyncSort for z/VSE 3.7 Programmer’s Guide4.56



INVOICES TO DATE: '.(Note that the apostrophe in MONTH'S is doubled because a single
apostrophe would signal the end of a literal string.) Finally, because each data record in
this report represents an invoice, the TRAILER3’s COUNT entry generates a count of each
month’s invoices and the SUBCOUNT entry generates a cumulative, or running, count of
the invoices. The leading zeros in these 8-byte fields are suppressed.

Creating Multiple Output Files 

Data centers often use the same masterfile for different purposes. Assume, for example,
that you wanted to produce two reports using a masterfile of cash-receipt records. One
report was to present the total cash receipts for the current month; the second, for the year
to date. This would typically entail running a separate sort for each report. SortWriter’s
multiple-output feature, however, enables you to produce both reports with a single pass of
the sort. In addition, you can specify the same or different devices to receive the separate
output files.

To generate multiple output files, code the OUTFIL statement as described below.

Note: See “OUTFIL Control Statement” on page 2.141 for the complete format of the
OUTFIL statement.

FILES   Use this parameter to connect an OUTFIL statement with one or more
output files. (NOTE: FILES and the FILESOUT parameter on the
SORT statement must coincide.) These numbers correspond to the out-
put files defined in the JCL. The number 1 designates SORTOUT as the
output file; the numbers 2 through 9 designate the output files
SORTOF2 through SORTOF9; the numbers 10 through 32 designate
the output files SORTO10 through SORTO32, respectively. If the
FILES parameter is not specified, the entire output is directed to
SORTOUT; the default is FILES=1. 

INCLUDE  Use this parameter to indicate which records you wish included in each
output file. The default is to INCLUDE ALL records. To override the
default, specify one or more logical conditions under which records are
to be included or omitted. You may also override the default by specify-
ing OMIT=ALL or INCLUDE=NONE. (See “OUTFIL Control State-
ment” on page 2.141 for the detailed format of comparisons.)

Figure  292. Multiple Output Parameters Format on OUTFIL

OUTFIL FILES = 
1
n
(1,2,...,32) 

 
  ,INCLUDE

,OMIT 
 
 

=
ALL
(comparison)
NONE 

 
 

,TAPE[ ] ,DISK[ ] ,PRINT[ ] ,PUNCH[ ] ,OUTREC = field ,field[ ] ...( )[ ]
Chapter 4.  How to Use SyncSort Data Utility Features 4.57



OMIT  Use this parameter to indicate which records you wish omitted from
each output file. The default is to OMIT=NONE records. To override
the default, specify one or more logical conditions under which records
are to be included or omitted. You may also override the default by
specifying OMIT=ALL or INCLUDE=NONE. (See “INCLUDE/OMIT
Control Statement” on page 2.39 for the detailed format of compari-
sons.)

TAPE  Use this parameter to specify that the output file(s) is (are) to be stored
on a tape device.

DISK  Use this parameter to specify that the output file(s) is (are) to be stored
on a disk device.

PRINT  Use this parameter, the default, to specify that the output file(s) is (are)
to be written to a printer.

PUNCH  Use this parameter to specify that the output file(s) is (are) to be writ-
ten to a card punch.

OUTREC  Use the OUTREC parameter to reformat the output file. When specify-
ing the beginning positions of data fields, remember to take into
account any changes due to processing by an E15/E32 exit, the INREC
control statement, the OUTREC control statement, and/or an E35 exit.
(See “OUTREC Control Statement” on page 2.174 for the detailed for-
mat of OUTREC fields.)

Generating Several Output Files with Different Information

Example: Marketing wants three output files of customer records. The first will contain a
list of U.S. and European customers. The second will contain a list of U.S. customers only,
and the third will contain a list of European customers only.

To generate the three separate files, the following is coded.
SyncSort for z/VSE 3.7 Programmer’s Guide4.58



Explanation: Creating the three requested output files requires specifying a SORTOUT
and two SORTOFx data sets in the JCL as well as three separate OUTFIL statements.
Each of the OUTFIL statements is connected by a FILES parameter to one of the output
files defined in the JCL. Specifying 1 on the FILES parameter connects its OUTFIL state-
ment with the output file defined by SORTOUT on the JCL. Likewise, specifying 2 connects
its OUTFIL statement with the output file defined by SORTOF2, and so on.

The first output file (SORTOUT) in this example will contain the records from the input file
(INCLUDE=ALL). The second output file will include the records that contain the
character string 'USA' starting in byte 67, (INCLUDE=(67,3,CH,EQ,C'USA')), which
indicates that these records are for USA customers. And similarly, the third output file will
include only those records that contain the character string 'EUR' beginning in byte 67,
which indicates that these records are for European customers. Note that because each
data set is being written to tape, the TAPE parameter is specified on each OUTFIL
statement and because three output files are being written, the FILESOUT parameter is
coded as FILESOUT=3 on the SORT control statement.

// JOB CUSTRCD Signals the Start of Job

// ASSGN SYS001,X'180' Assigns Logical Unit to Tape

// TLBL SORTOUT Contains Output Tape File Information

// ASSGN SYS002,X'181' Assigns Logical Unit to Tape

// TLBL SORTOF2 Contains Output Tape File Information

// ASSGN SYS003,X'182' Assigns Logical Unit to Tape

// TLBL SORTOF3 Contains Output Tape File Information

// ASSGN SYS004,X'251' Assigns Logical Unit to Disk

// DLBL SORTIN1,'CUSTMRS' Contains Input Disk File Information

// EXTENT SYS004 Defines Direct Access Area for Input

// ASSGN SYS005,X'253' Assigns Logical Unit to SORTWK Device

// DLBL SORTWK1 Contains SORTWK File Information

// EXTENT SYS005 Defines Direct Access Area for SORTWK

// EXEC SORT Signals Beginning of Sort Program

RECORD TYPE=F,LENGTH=80 Describes Input Records

SORT FIELDS=(10,15,CH,A),FILESOUT=3 Sorts Records

OUTFIL FILES=1, Outfil Statement for SORTOUT

INCLUDE=ALL, Including All Records

TAPE

OUTFIL FILES=2, Outfil Statement for SORTOF2

INCLUDE=(67,3,CH,EQ,C'USA'), Including Only USA Records

TAPE

OUTFIL FILES=3, Outfil Statement for SORTOF3

INCLUDE=(67,3,CH,EQ,C'EUR'), Including Only European Records

TAPE 

Figure  293. JCL and Required Control Statements
Chapter 4.  How to Use SyncSort Data Utility Features 4.59



Writing Identical Output Files to Different Devices

Example: Personnel wants a printed copy of its updated masterfile as well as copies on disk
and on tape.

To generate these three copies of the same file on different devices, the following is coded.

Explanation: Creating the three copies of the masterfile requires coding three OUTFIL
statements. Each OUTFIL statement is coded with a FILES parameter whose number con-
nects it to one of the output files defined in the JCL. The number 1 signifies the SORTOUT
data set, and 2 and 3 signify SORTOF2 and SORTOF3, respectively. In addition to the
FILES parameter, a device parameter specifies the output device to which each output data
set is written. Thus, the SORTOUT data set goes to a printer, the SORTOF2 data set to a
tape drive, and the SORTOF3 data set to disk. 

// JOB MULTOUT Signals the Start of Job

// ASSGN SYS001,SYSLST Assigns Logical Unit to Printer

// ASSGN SYS002,X'181' Assigns Logical Unit to Tape

// TLBL SORTOF2 Contains Output Tape File Information

// ASSGN SYS003,X'251' Assigns Logical Unit to Disk

// DLBL SORTOF3 Contains Output Disk File Information

// EXTENT SYS003 Defines Direct Access Area for Output

// ASSGN SYS004,X'252' Assigns Logical Unit to Disk

// DLBL SORTIN1,'CUSTMRS' Contains Input Disk File Information

// EXTENT SYS004 Defines Direct Access Area for Input

// ASSGN SYS005,X'253' Assigns Logical Unit to SORTWK Device

// DLBL SORTWK1 Contains SORTWK File Information

// EXTENT SYS005 Defines Direct Access Area for SORTWK

// EXEC SORT Signals Beginning of Sort Program

RECORD TYPE=F,LENGTH=80 Describes Input Records

SORT FIELDS=(10,15,CH,A),FILESOUT=3 Sorts Records

OUTFIL FILES=1,PRINT Creates Print File

OUTFIL FILES=2,TAPE Creates Tape File

OUTFIL FILES=3,DISK Creates Disk Data Set 

Figure  294. JCL and Required Control Statements
SyncSort for z/VSE 3.7 Programmer’s Guide4.60



Chapter 5.  Job Control Language and Sample 
Control Statement Streams

Six Job Control Statements That May Be Needed for the Sort/Merge 

Job control language for SyncSort for z/VSE follows the standard conventions for VSE/ESA
and z/VSE. Here are six job control statements that may be needed for sorting or merging,
and the format they should follow. For detailed JCL information, refer to the appropriate
version of System Control Statements.

Brackets in the following examples indicate optional parameters; braces show that one
choice must be made. Capital letters mean the capitalized word itself must appear. Capital-
ized words in brackets and braces, however, may be omitted if not chosen.

JOB 

As the first card image in the job stream, the JOB statement signals the start of the job.

ASSGN 

The ASSGN statement assigns symbolic unit names to the input, output, and work devices
that will be used for the sort/merge. (See Table 45 on page 5.4.) It connects the sort/merge
program to the devices by referring the sort/merge devices to the logical unit block, the log-

// JOB jobname 

Figure  295. JOB Job Control Statement Format
Chapter 5.  Job Control Language and Sample Control Statement Streams 5.1



ical unit block to the physical unit block, and finally, the physical unit block secures the
devices specified. Because it must work with the system’s logical unit block, this statement
is often described as “assigning a logical name to a physical device.” 

It is not necessary to move all input files to the same type of device before sorting; input
may be drawn from card, disk, or tape files in a single sort/merge. When different disk
drives are used for SORTWK files, the characteristics of the smaller device do not constrain
the way the larger device is used; the full track is utilized for each device.

An ASSGN statement is needed for every input, output, and work device used unless the
system has already been set up with permanent symbolic unit names for the sort/merge
program. In that case, this statement may be omitted.

TLBL/DLBL 

These statements contain tape or DASD file information. A TLBL statement must be pro-
vided for every tape file with standard labels. A DLBL statement is necessary for every
disk file. The format of the TLBL statement is given below in Figure 297.

A DLBL statement would take the form below in Figure 298.

Filenames can be user-supplied or the pre-chosen, "default" names, i.e., SORTIN1,
SORTOUT, and SORTWK for input, output, and work filenames, respectively, can be
selected. If user-supplied names are used, they must be specified in the FILNM or
WORKNM parameter of the OPTION control statement. Up to 32 input files can be used
for a sort or merge. Appropriate numbers can be attached to a single filename (for example,
OWNAME1, OWNAME2,. . .,) or a unique name can be used for each file.

Note: The names may not be over seven characters long and the first character must be a
letter.

The TLBL and DLBL statements may have continuation statements.

// ASSGN SYSxxx,X'nnn' or // ASSGN SYSxxx,cuu 

Figure  296. ASSGN Job Control Statement Format

// TLBL filename [,'file-id'] [,date] 

Figure  297. TLBL Job Control Statement Format

// DLBL filename [,'file-id'] [,date] [,code] 

Figure  298. DLBL Job Control Statement Format
SyncSort for z/VSE 3.7 Programmer’s Guide5.2



EXTENT 

A DLBL statement is usually followed by an EXTENT statement. This defines the direct
access area that will be used for that file.

The EXTENT statement must give the symbolic unit name of the device the extent occurs
in. (This is the unit name specified in the ASSGN statement.) A user-supplied name may be
used for the device so long as it is referenced in the SORTIN1, SORTOUT, SORTWK
parameters of the OPTION control statement.

If an input file has multiple extents, only the first EXTENT statement needs to use either
the "default" symbolic unit name or the user-provided name and must be referenced in the
OPTION control statement. The remaining extents for the file may be given any symbolic
unit names that are valid for the system.

// EXTENT symbolic unit[,serial-number]
[,type][,sequence-number]
[,relative-track][,number-of-tracks] 

Figure  299. EXTENT Job Control Statement Format
Chapter 5.  Job Control Language and Sample Control Statement Streams 5.3



Job Control 
Statement:

TLBL/
DLBL ASSGN, EXTENT

Device 
Purpose Filename Symbolic Unit Names Used When: 

Sort/Merge 
Reads Input & 
Writes Output 

User E15
Program 
Reads Input 

User E35
Program 
Writes Output 

User Program 
Reads Input & 
Writes Output 

Output SORTOUT
SORTOF2 
. 
. 
SORTOF9
. 
. 
SORTO32 

SYS001 
. 
. 
. 
. 
. 
. 
.
SYS(O) 

SYS001 
. 
. 
. 
. 
. 
. 
. 
SYS(O) 

Input SORTIN1 
. 
. 
SORTIN9
SORTI10 
. 
. 
SORTI32 

SYS(O+1)
.
.
.
.
.
.
SYS(O+I) 

SYS001 
.
.
.
.
.
.
SYS(I) 

Work SORTWK1
.
.
SORTWK9 

SYS(O+I+1) 
.
.
SYS(O+I+W) 

SYS(O+1)
.
.
SYS(O+W) 

SYS(I+1) 
.
.
SYS(I+W) 

SYS001
.
.
SYS(W) 

Joinwork SORTWKA
.
.
SORTWKI

SYS(N+I+W+1)
.
.
SYS(N+I+W+J) 

SYS(I+W+1) 
.
.
SYS(I+W+J) 

XSUM or 
XDUP

SORTXSM 
or 
SORTXDP

SYS(N+I+W+J+1) SYS(N+W+J+1) SYS(I+W+J+1) SYS(W+J+1) 

Checkpoint SORTCKP SYS000 SYS000 SYS000 SYS000 

O=Number of Output Files Used
J=Number of Joinwork files used
I=Number of Input Files Used
W=Number of Work Files Used

Table 45.  Symbolic Name Guide
SyncSort for z/VSE 3.7 Programmer’s Guide5.4



EXEC 

The EXEC statement signals the end of the job control information and the beginning of
the sort/merge program. Program control statements follow the EXEC statement. 

Note that certain SyncSort options can be specified in the PARM field of the EXEC state-
ment. For more information about these options, see “Chapter 6. EXEC PARM Options”.

Symbolic Filenames and Symbolic Unit Names for Job Control

Table 45 on page 5.4 lists the prechosen or “default” names SyncSort uses for the sort/
merge’s input, output, and work files. If the checkpoint option is used, it must be referenced
in the job control statements using the names shown in Table 45. 

Setting up Disk Work File Statements 

When multiple sort work files are used, performance can be enhanced by spreading the
files among different disk devices. Work file sizes large enough to avoid secondary alloca-
tion also can reduce processing time.

There are two ways to set up disk work file statements. (Disk devices of different types may
be used. Tape work files are not supported.)

Method 1

The filename "SORTWK1" is placed on one DLBL statement and "DA" is placed in the code
parameter. This statement can be followed by 1 to 9 EXTENT statements identifying the
number of tracks to be used. Only the first EXTENT statement, however, needs to get the
default symbolic unit name or the user-supplied name that is specified in the OPTION con-
trol statement. EXTENT statements 2 to 9 may take any SYSnumber that is valid for the
system but these numbers must be arranged in consecutive, ascending order. The same
SYSnumber may be used for extents that occur on the same physical disk but different
SYSnumbers must be used for extents that occur on different devices.

In addition, the WORK parameter of the SORT control statement must be coded
WORK=DA.

One version of Method 1 is shown below in Figure 301.

Unless designated as required, the values are arbitrary and should be changed according to
user specifications.

// EXEC[PGM=pgmname][,SIZE=size][,PARM='option1,option2,...']

Figure  300. EXEC Job Control Statement Format
Chapter 5.  Job Control Language and Sample Control Statement Streams 5.5



Notes:

1-3  The ASSGN statements assign symbolic unit names SYS003, SYS004, and
SYS005 to three disk work files, each of which resides on a disk device. The
variables in the X'nnn' parameter should be replaced with the address of each
of the three devices.

4  The DLBL statement uses the required filename SORTWK1, places a comma to
indicate a missing file-id, codes a zero to show no retention date, and places the
required (for this method) DA in the code parameter to indicate a direct access
file.

5-10  There are six EXTENT statements that describe six extents. The first two are
located on device SYS003, the next area is found on SYS004, and the last three
are on the disk assigned the name SYS005.

vvvvvv represents the volume serial number of the volume, and should be
replaced by the actual number. If this number is less than 6 digits, the system
will pad it on the left with zeros.

The 1 that appears in the type parameter in all the EXTENT statements speci-
fies a data area.

The next parameter indicates the sequence number of the extents within this
multi-extent file. The number of the first extent is 0, and this number is incre-
mented by 1 on each following extent. The numbers may range from 0 to 255.

aaaaa represents the number of the track (relative to zero) where the extent is
to begin. It should be replaced by the actual number, and may be from 1 to 5
digits long.

zzzzz gives the number of tracks the extent will use. It should be replaced by
the actual number, and may be from 1 to 5 digits long.

// ASSGN SYS003,X'nnn' 1
// ASSGN SYS004,X'nnn' 2
// ASSGN SYS005,X'nnn' 3
// DLBL SORTWK1,,0,DA 4
// EXTENT SYS003,vvvvvv,l,0,aaaaa,zzzzz 5
// EXTENT SYS003,vvvvvv,l,l,aaaaa,zzzzz 6
// EXTENT SYS004,vvvvvv,1,2,aaaaa,zzzzz 7
// EXTENT SYS005,vvvvvv,1,3,aaaaa,zzzzz 8
// EXTENT SYS005,vvvvvv,1,4,aaaaa,zzzzz 9
// EXTENT SYS005,vvvvvv,1,5,aaaaa,zzzzz 10 

Figure  301. Disk Work File JCL Method 1
SyncSort for z/VSE 3.7 Programmer’s Guide5.6



Method 2

Using the filenames SORTWK1 to SORTWK9, one DLBL statement is required for each SD
work file.

The symbolic unit names for the work files must be either user-created and referenced in
the SORTWK parameter of the OPTION control statement, or the default names shown in
Table 45 on page 5.4.

An example of Method 2 is given in Figure 302.

Notes:

1  The ASSGN statement assigns the symbolic unit name SYS003 to the first
work file. The file resides on a device at address X'nnn'.

2  The first DLBL statement uses the required filename SORTWK1 for the first
work file. The file-id is 'WORK AREA A', there is to be no retention date, and
the code is sequential disk (the SD designation). This last parameter could have
been left out and received by default, as in the last DLBL statement in this
example.

3  The EXTENT statement defines an area to be used for the SORTWK1 work file
to which the symbolic name SYS003 has been assigned. vvvvvv represents the
volume serial number; 1 indicates a data area; 0 shows a sequence number of
zero; aaaaa represents the number of the track where the extent begins (rela-
tive to zero); and zzzzz represents the number of tracks used by the extent.

// ASSGN SYS003,X'nnn' 1
// DLBL SORTWK1,'WORK AREA A',0,SD 2
// EXTENT SYS003,vvvvvv,1,0,aaaaa,zzzzz 3
// ASSGN SYS004,X'nnn' 4
// DLBL SORTWK2,'WORK AREA B',0,SD 5
// EXTENT SYS004,vvvvvv,1,0,aaaaa,zzzzz 6
// ASSGN SYS005,X'nnn' 7
// DLBL SORTWK3,'WORK AREA C',0,SD 8
// EXTENT SYS005,vvvvvv,1,0,aaaaa,zzzzz 9
// ASSGN SYS006,X'nnn' 10
// DLBL SORTWK4,'WORK AREA D',0,SD 11
// EXTENT SYS006,vvvvvv,1,0,aaaaa,zzzzz 12
// ASSGN SYS007,X'nnn' 13
// DLBL SORTWK5,'WORK AREA E',0,SD 14
// EXTENT SYS007,vvvvvv,1,0,aaaaa,zzzzz 15
// ASSGN SYS008,X'nnn' 16
// DLBL SORTWK6,'WORK AREA F',0 17
// EXTENT SYS008,vvvvvv,1,0,aaaaa,zzzzz 18 

Figure  302. Disk Work File JCL Method 2
Chapter 5.  Job Control Language and Sample Control Statement Streams 5.7



4-18  The instructions for statements 4-18 are the same as for statements 1-3, except
that the SYSnumber is incremented by one for each work file.

Unlike Method 1, where the sequence number is always incremented by one for each
extent, the sequence number in Method 2 EXTENT statements is always 0.

Calculating the Amount of Disk Work Space  

As a general rule, 15 to 20 percent more disk work space should be planned for than the
total input file size. If INREC or an E15 shorten or lengthen the input records, the disk
work space required is also reduced or increased.

Whenever the initial allocation of SORTWK space is exhausted, SyncSort can request more
work space. This space will be generated by a Disk Space Management package, if present,
or may be supplied through operator communication.

Setting up Multiple SORTOUT Files 

The multiple SORTOUT feature enables the user to specify a maximum of thirty-two
SORTOUT files. The default names for the multiple SORTOUT files are SORTOUT,
SORTOF2,...,SORTOF9, SORTO10,...SORTO32.

The DLBL and/or TLBL statements for filenames SORTOFx and SORTOxx are used to
define the data sets used, in addition to SORTOUT, to receive sorted output. These values
may be overridden by the FILNM parameter on the OPTION statement. SORTOFx and
SORTOxx may be assigned to any disk, tape or unit record device.

The logical SYSnumbers default to SYS001,...,SYS032. These values may be overridden by
the SORTOUT parameter on the OPTION statement. The number of output files is speci-
fied in the FILESOUT parameter on the SORT control statement.

Sample JCL/Control Statement Streams 

One of the ways to initiate the sort/merge is by using job control language streams. This
section illustrates sample JCL/control statement streams that you can use as models for
your own applications.

Appendix C. “VSE/VSAM Space Management for SAM Files” explains how to set up job
control language streams for VSAM managed SAM files. Information describing each line
of JCL is provided.

A Standard-Labeled Tape Input and Output Sort 

Figure 303 shows a sort with one tape input file, one tape output file, and a single extent
disk work file. The default names have been used for the input, output and work files. The
SyncSort for z/VSE 3.7 Programmer’s Guide5.8



control statements change the blocksize of the output file from that of the input file, sum a
zoned decimal field when equal control fields are found, and request a dump in case the job
does not run successfully.

Notes:

1  Creates a jobname.

2-4  Assigns symbolic unit name SYS001 to the output file at device address X'280',
SYS002 to the input file at X'281', and SYS003 to the work file at X'142'.

5  Gives the filename of the input file and the file-id.

6  Gives the filename of the output file and the file-id, and requests a retention
date of thirty-one days for the output file.

7  Gives the filename of the work file, places a comma for the omitted file-id, codes
a 0 to specify no retention date, and identifies the type of file as a sequential
disk.

8  Gives the symbolic unit name of the work file that occupies the extent, indi-
cates that the volume serial number is 111111, codes 1 to specify a data area,
codes 0 for the sequence number of the extent, indicates that the extent begins
on track 1000, and that it runs for 2000 tracks.

9  Gives the name of the SyncSort program and indicates that the job will take up
100K space in virtual storage.

// JOB SCOFFLAW 1
// ASSGN SYS001,X'280' 2
// ASSGN SYS002,X'281' 3
// ASSGN SYS003,X'142' 4
// TLBL SORTIN1,'MAY INPUT' 5
// TLBL SORTOUT,'MAY OUTPUT',31 6
// DLBL SORTWK1,,0,SD 7
// EXTENT SYS003,111111,1,0,1000,2000 8
// EXEC SORT,SIZE=100K 9

SORT FIELDS=(5,22,CH,A),WORK=l 10
RECORD TYPE=V,LENGTH=500 11
INPFIL BLKSIZE=5000 12
OUTFIL BLKSIZE=10000 13
SUM FIELDS=(400,14,ZD) 14
OPTION DUMP 15
END UNPAID PARKING TICKETS* *MAY/* 16

/* 17
/& 18 

Figure  303. Sample JCL/Control Statement Stream
Chapter 5.  Job Control Language and Sample Control Statement Streams 5.9



10  The SORT control statement shows that one field is to be sorted on. It begins on
byte 5 of the record, has a length of 22 bytes, consists of character data, and is
to be sorted in ascending sequence. There is to be one work file.

11  The RECORD statement shows that variable-length records are being sorted
and that the maximum record length is 500 bytes.

12  The INPFIL statement shows that the blocksize of the records in the input file
is 5000 bytes.

13  The OUTFIL statement shows that the blocksize of the records in the output
file is 10,000 bytes.

14  The SUM statement requests that when two records with equal control fields
are found, SyncSort is to sum a certain portion of the two records, place the
total in one record, and delete the other record. The field to be summed begins
on byte 400 of the record, is 14 bytes long, and has a zoned decimal format.

15  In case the job is not completed, a dump is to be processed.

16  The END statement tells SyncSort that the control statements for the job are
now complete. The rest of the card image is a comment.

17  A standard job card image indicating the end of the JCL/control stream.

18  A standard job control statement indicating the end of the job stream. 

An Unlabeled Tape Input and Output Sort 

Figure 304 shows a sort with four unlabeled input tape volumes, five disk work files, and
an unlabeled output tape file. In this case, by using the special INCLUDE feature, the sort
has been used to build an output file containing unique information.
SyncSort for z/VSE 3.7 Programmer’s Guide5.10



Notes:

1  Gives the name of the job.

2-11  Assigns symbolic unit name SYS001 to an output file, SYS002-SYS005 to 4
input files, and SYS006-SYS010 to 5 work files. (The distinction between input
and work files is made in the SORT statement.)

12-21  Sets up the 5 work files according to “Method 2” on page 5.7. Each DLBL card
image gives the filename, omits the file-id, specifies a one-day retention date (to
protect the files from being overlaid with data from a job operating in another
partition), and by omitting the last parameter, specifies a sequential disk file.

// JOB FLYING 1
// ASSGN SYS001,X'280' 2
// ASSGN SYS002,X'281' 3
// ASSGN SYS003,X'282' 4
// ASSGN SYS004,X'283' 5
// ASSGN SYS005,X'284' 6
// ASSGN SYS006,X'142' 7
// ASSGN SYS007,X'142' 8
// ASSGN SYS008,X'144' 9
// ASSGN SYS009,X'144' 10
// ASSGN SYSO10,X'145' 11
// DLBL SORTWK1,,l 12
// EXTENT SYS006,111111,1,0,200,50 13
// DLBL SORTWK2,,l 14
// EXTENT SYS007,111111,1,0,2400,50 15
// DLBL SORTWK3,,l 16
// EXTENT SYS008,444444,1,0,700,50 17
// DLBL SORTWK4,,l 18
// EXTENT SYS009,444444,1,0,1800,50 19
// DLBL SORTWK5,,l 20
// EXTENT SYS010,555555,1,0,3000,50 21
// EXEC SORT 22

SORT FIELDS=(50,1,CH,A),FILES=4,WORK=5 23
RECORD TYPE=F,LENGTH=100 24
INPFIL BLKSIZE=500,CLOSE=(UNLD,RALL) 25
OUTFIL BLKSIZE=500 26
INCLUDE COND=(62,8,EQ,C'RETURNED',AND, 27

75,14,EQ,C'FEAR OF FLYING'),FORMAT=CH 28
OPTION LABEL=(U,U,U,U,U),STORAGE=60K 29
END NATIONAL RETURNS FEAR OF FLYING 30

/* 31
/& 32 

Figure  304. Sample JCL/Control Statement Stream
Chapter 5.  Job Control Language and Sample Control Statement Streams 5.11



The EXTENT statements give the symbolic unit names of the files. They note
that SYS006 and SYS007 are on volume 111111, SYS008 and SYS009 on vol-
ume 444444, and SYS010 on volume 555555. The 1 on each card image specifies
a data area, and the 0 gives the required sequence number for sequential disk
files. A beginning track number has been specified for each extent, and each
extent will take 50 tracks.

22  Gives the SyncSort program name.

23  The SORT statement identifies one control field. It starts on byte 50 of the
record, is 1 byte long, has character format, and is to be sorted in ascending
sequence.

The FILES parameter gives four as the number of input files, and the WORK
parameter gives five as the number of work files.

24  The RECORD statement shows fixed-length records that are 100 bytes long.

25-26  The INPFIL and OUTFIL statements specify a blocksize of 500 bytes. All four
input tape volumes will be rewound, unloaded, and released at end-of-file. The
Release option should only be used in the absence of a tape management sys-
tem.

27-28  The INCLUDE statement tells the sort to select any record with 'RETURNED'
in bytes 62-69 and 'FEAR OF FLYING' in bytes 75-88, and write them to the
output file. Records that do not meet these requirements are not to be included.
At the end of this sort, the programmer will have complete data on the returns
of a book sold on consignment throughout the country. A report may be printed
at a later time.

29  The OPTION statement shows that the output and four input files are unla-
beled, and that SyncSort may use 60K in main storage.

30  The END control statement gives a comment.

31-32  The standard job control end card images. 

A Disk Input and Output Sort  

Figure 305 shows a sort with disk input, disk output and two disk work devices. The object
of this sort is to create a paycheck file from the input payroll data. Later, paychecks will be
printed from this output disk. The OUTREC feature has been used to select the pay,
department, and name fields from the input record for the new, shortened output records.
SyncSort for z/VSE 3.7 Programmer’s Guide5.12



Notes:

1  Creates a jobname.

2-5  Assigns symbolic unit names to the output, input, and two work files.

6  The DLBL statement gives the filename SORTOUT to the output file, gives
'PAYCHECKS' as the file-id, asks for a 30-day retention period, and specifies
(by omitting the parameter) a sequential disk.

7  The EXTENT statement gives SYS001 for the symbolic unit name of the output
file, gives 111111 as the volume serial number, codes 1 to specify a data area,
codes 0 to show the sequence number, gives 2500 as the beginning track num-
ber, and gives 400 as the number of tracks it will use.

8-9  This pair of DLBL-EXTENT statements for the input file follows the same for-
mat as the pair for the output file; however, the input file is much larger (2000
tracks) than the output file (400 tracks). This is because the input record will be

// JOB PAYROLL 1
// ASSGN SYS001,X'142' 2
// ASSGN SYS002,X'142' 3
// ASSGN SYS003,X'144' 4
// ASSGN SYS004,X'145' 5
// DLBL SORTOUT,'PAYCHECKS',30 6
// EXTENT SYS001,111111,1,0,2500,400 7
// DLBL SORTIN1,'PAYFILE',30 8
// EXTENT SYS002,111111,1,0,500,2000 9
// DLBL SORTWK1,,0,DA 10
// EXTENT SYS003,444444,1,0,200,500 11
// EXTENT SYS003,444444,1,1,1000,500 12
// EXTENT SYS003,444444,1,2,2300,500 13
// EXTENT SYS004,555555,1,3,450,500 14
// EXTENT SYS004,555555,1,4,1060,500 15
// EXTENT SYS004,555555,1,5,1800,500 16
// EXEC SORT 17

SORT FIELDS=(64,6,PD,A,2,3,CH,A) 18
RECORD TYPE=F,LENGTH=190 19
INPFIL BLKSIZE=3800 20
OUTREC FIELDS=(64,6,2,3,10,30) 21
OUTFIL BLKSIZE=780 22
OPTION PRINT=CRITICAL,ROUTE=LOG 23
END ***OCTOBER 15 PAYCHECKS*** 24

/* 25
/& 26 

Figure  305. Sample JCL/Control Statement Stream
Chapter 5.  Job Control Language and Sample Control Statement Streams 5.13



reformatted on the OUTREC statement so that at the end of the sort, when it
becomes output, it will be 151 bytes shorter.

10  This DLBL statement gives the filename for the work file as SORTWK1, omits
a file-id, specifies no retention date, and codes DA to indicate a direct access
file.

11-16  The EXTENT statements give the locations and lengths of the six extents of the
work file described on the DLBL statement (item 10). The sequence number is
incremented by one for each extent.

17  The EXEC statement gives SORT as the SyncSort program name.

18  The SORT statement shows two control fields. The first, or major field, starts
on byte 64 of the input record, is 6 bytes long, has packed decimal format, and is
to be sorted according to ascending sequence. The second, or lesser field, begins
on byte 2 of the record, is 3 bytes long, has character data, and is to be sorted
according to ascending sequence.

19  The RECORD statement codes an F for fixed-length records and indicates that
the length of the input record is 190 bytes. This is the l1 value. The l2 and l3 val-
ues will be calculated by the sort and the correct values will be used when it is
time to change the length of the record for the output file.

20  The INPFIL statement gives the blocksize of the input file as 3800 bytes. This
is twenty records to a block.

21  The OUTREC statement shows how the input record is to be reconstructed to
form the output record. The FIELDS parameter shows that three fields will be
picked up. The first starts on byte 64 of the input record and is 6 bytes long.
The second starts on byte 2 of the input record and is 3 bytes long. The third
starts on byte 10 of the input record and is 30 bytes long. These are the pay,
department number, and employee name fields, respectively, that will later be
reproduced on paychecks. They will now run consecutively from byte 1 through
byte 39 of the output record, and will be edited with spacing later when they
are printed.

22  The OUTFIL statement gives the blocksize of the output file as 780 bytes.
Although this is still twenty records to a block, the output file blocksize is con-
siderably shorter than that of the input file.

23  The OPTION statement requests that only critical messages be issued and that
they appear on the console.

24  The END statement indicates the end of the control statements. A comment is
given.

25-26  The standard job control end statement.  
SyncSort for z/VSE 3.7 Programmer’s Guide5.14



A Tape Input and Output Merge 

Figure 306 shows a merge with 4 standard-labeled tape files as input and one standard
labeled tape file as output. The input files are already in sequence, as is required for all
merge programs. In this case, a membership file is being updated. The ALTSEQ statement
is used so that any small size numbers that appear in the member code field will be collated
as equal to their matching large size numbers in the EBCDIC series. Also, the numbers are
to be collated in descending order so that 9, 8, 7,... will collate before 0, 1, 2,...

Notes:

1  Creates a jobname.

2-6  Assigns a symbolic unit name to the output file at device address X'230'.
Assigns symbolic unit names to four input files on four separate devices and
gives the device addresses.

7-11  The TLBL statements create filenames for the five tape files. Since these are
user-supplied names, they must be referenced in the FILNM parameter of the
OPTION control statement. The output file is given the updated file-id
'MASTER-25' and a retention date of 92 days (to cover July, August, and Sep-

// JOB JOINERS 1
// ASSGN SYS001,X'230' 2
// ASSGN SYS002,X'231' 3
// ASSGN SYS003,X'282' 4
// ASSGN SYS004,X'283' 5
// ASSGN SYS005,X'284' 6
// TLBL MERGOUT,'MASTER-25',92 7
// TLBL MERGIN1,'MASTER-24' 8
// TLBL MERGIN2,'APRIL JOINERS' 9
// TLBL MERGIN3,'MAY JOINERS' 10
// TLBL MERGIN4,'JUNE JOINERS' 11
// EXEC SORT 12

MERGE FIELDS=(1,8,AQ,D,10,30,CH,A),FILES=4 13
RECORD TYPE=F,LENGTH=100 14
INPFIL BLKSIZE=1000 15
OUTFIL BLKSIZE=1000 16
OPTION FILNM=(MERGOUT,MERGIN1,MERGIN2, 17

MERGIN3,MERGIN4)
ALTSEQ CODE=(B0F0,BlFl,B2F2,B3F3,B4F4,B5F5, 18

B6F6,B7F7,B8F8,B9F9) COLLATE
* SMALL NUMBERS EQUAL TO LARGE

SUM FIELDS=NONE 19
END 3-MONTH MEMBERSHIP UPDATE 20

/* 21
/& 22 

Figure  306. Sample JCL/Control Statement Stream
Chapter 5.  Job Control Language and Sample Control Statement Streams 5.15



tember) is requested. The MERGIN1 file is the old master and MERGIN2,
MERGIN3, and MERGIN4 contain new data.

12  The EXEC statement gives SyncSort’s program name and signals that the sort/
merge control statements are about to begin.

13  The MERGE statement shows there are two control fields on which the merge
will be based. The first control field starts on byte 1 of the record, is 8 bytes
long, is to be merged according to an alternate collating sequence (this will be
supplied in the ALTSEQ statement), and the sequence is to be referenced in
descending order. The second control field starts on byte 10 of the record, is 30
bytes long, has character format data, and is to be merged according to ascend-
ing order. The FILES parameter specifies four input files.

14  The RECORD statement notes that the TYPE of records are fixed-length, and
that their LENGTH is 100 bytes.

15-16  The INPFIL and OUTFIL statements both show a blocksize of 1000 bytes.

17  Since MERGOUT/MERGIN filenames were substituted for the default
SORTOUT/SORTIN filenames, the user-supplied names must be referenced
here in the FILNM parameter.

18  The ALTSEQ statement gives the alternate collating sequence that will be used
for the first control field. In this case, the nine pairs of hex numbers specify that
the small numbers represented in the EBCDIC series by B0-B9 are to be col-
lated as identical to the large numbers represented by F0-F9. This statement
includes a comment.

19  The SUM statement guarantees that the output membership file will have only
one record per sort control key. Assuming the sort key identifies the member,
this would mean that the updated membership file will mention each member
exactly once. Since EQUALS is the default for a merge, when equal-keyed
records are encountered, it is the record from the earliest input file that is
retained; i.e., records from the old master file, then the April joiners, then the
May joiners, and finally, the June joiners. The EQUALS default ensures that
the updated master membership file identifies the member’s earliest successful
application for membership.

20  The END control statement indicates the end of the control statements and
includes a comment.

21-22  Standard job control end statement. 
SyncSort for z/VSE 3.7 Programmer’s Guide5.16



A Sort Using Card Input  

In Figure 307 and Figure 308, the SYSIPT parameter has been issued so that cards may be
used as direct input to the sort. No work files are used for this sort. This is because the
number of records is small enough to be sorted incore, and data can go directly to the out-
put phase without ever needing to be written out to an intermediate work device. An
approximate guide for determining whether a job is small enough to be sorted completely
incore is:

Total bytes of input data + output BLKSIZE + 20K ≤ Sort program’s storage.

The input in the following examples consists of the 200 report cards with the highest aver-
ages for one high school semester. They will be sorted by class and student names so that
the disk output can later be printed as "The Dean’s List." Either example will produce the
same results.

Note: Some older programs use E15 programs to read card input. Since SyncSort supports
direct reading of card input, these programs should be converted to use SYSIPT for
increased efficiency.

// JOB TOPGRADE 1
// ASSGN SYS001,X'142' 2
// DLBL SORTOUT,'DEAN'S LIST' 3
// EXTENT SYS001,111111,1,0,100,4 4
// ASSGN SYS002,SYSIPT 4A
// EXEC SORT 5

SORT FIELDS=(79,2,CH,A,2,20,CH,A),WORK=0 6
RECORD TYPE=F,LENGTH=80 7

* NO INPFIL STATEMENT 8
OUTFIL BLKSIZE=1600 9
END 10
Report Card 1 11
.
.
.
Report Card 200 12

/* 13
/& 14 

Figure  307. Sample JCL/Control Statement Stream
Chapter 5.  Job Control Language and Sample Control Statement Streams 5.17



Notes:

1  Creates a jobname.

2  Assigns a symbolic unit name SYS001 to the output file at device address
X'142'.

3  Gives the filename and file-id of the output file.

4  Gives the symbolic unit name of the output file that occupies the extent, gives
111111 as the volume serial number, codes a 1 to indicate a data area, codes a 0
for the sequence number, gives 100 as the beginning track number, and states
that the extent will use four tracks.

4A  Assigns symbolic unit name SYS002 to the input file on the system input
device.

5  Gives the program name.

6  The SORT control statement shows two fields to be sorted on. The first begins
on byte 79 of the record, is 2 bytes long, has character data format, and is to be
collated in ascending order. The second begins on byte 2, is 20 bytes long, has
character data format and is to be collated in ascending order. The WORK=0
parameter states that no work files are going to be used. Since the default for
omitting this parameter is 1 direct access work device, code a 0 here if no work
device is to be used.

// JOB TOPGRADE 1
// ASSGN SYS001,X'142' 2
// DLBL SORTOUT,'DEAN'S LIST' 3
// EXTENT SYS001,111111,1,0,100,4 4
// EXEC SORT 5

SORT FIELDS=(79,2,CH,A,2,20,CH,A),WORK=0 6
RECORD TYPE=F,LENGTH=80 7
INPFIL SYSIPT 8
OUTFIL BLKSIZE=1600 9
END 10
Report Card 1 11
.
.
.
Report Card 200 12

/* 13
/& 14 

Figure  308. Sample JCL/Control Statement Stream
SyncSort for z/VSE 3.7 Programmer’s Guide5.18



7  The RECORD statement shows that fixed-length, 80-byte records are being
used.

8  The INPFIL statement is not required when SYSIPT is assigned to SYS002.

9  The OUTFIL statement indicates that the blocksize of the output file is to be
1600 bytes.

10  The END statement signals the end of the control statements and is required
with card input.

11-12  The 200 input cards are inserted here.

13  The standard job control end card signals the end of the input.

14  The standard job control end card signals the end of the program. 

A Disk Input and Output JOIN

Figure 309 shows a JOIN application with one fixed-length and one variable-length disk
input file. The records in these two files are filtered based on INCLUDE parameters and
then reformatted into variable-length output records to a disk file.
Chapter 5.  Job Control Language and Sample Control Statement Streams 5.19



Notes:

1  Creates a job name. 

2-7  Assigns symbolic unit names to the output, input, one sort work, and two join
work files. 

8-9  Gives DLBL and EXTENT information for the SORTOUT disk file 
‘YTD.COMBINED’. 

// JOB JOIN 1
// ASSGN SYS001,250 2
// ASSGN SYS002,251 3
// ASSGN SYS003,252 4
// ASSGN SYS004,253 5
// ASSGN SYS005,253 6
// ASSGN SYS006,253 7
// DLBL SORTOUT,'YTD.COMBINED',30 8
// EXTENT SYS001,111111,1,0,2500,100 9
// DLBL SORTIN1,'YTD.OLD',30 10
// EXTENT SYS002,222222,1,0,2500,100 11
// DLBL SORTIN2,'YTD.NEW',30 12
// EXTENT SYS003,333333,1,0,2500,100 13
// DLBL SORTWK1,'SORT.WORK.1',0 14
// EXTENT SYS002,222222,1,0,2500,100 15
// DLBL SORTWKA,'SORT.WORK.A',0 16
// EXTENT SYS005,222222,1,0,2600,100 17
// DLBL SORTWKB,'SORT.WORK.B',0 18
// EXTENT SYS006,222222,1,0,2700,100 19
// EXEC SORT 20
JOINKEYS FILE=F1,FIELDS=(13,6,A),TYPE=F,LRECL=80, 21

BLKSIZE=2400,INCLUDE=(19,2,CH,EQ,C' C') 22
JOINKEYS FILE=F2,FIELDS=(5,6,A),TYPE=V,LRECL=200, 23

BLKSIZE=1700,INCLUDE=(11,10,ZD,GE,100000) 24
REFORMAT FIELDS=(F2:1,4, 25

F2:1,6, 26
F2:5,6, 27
F2:74,6, 28
F2:11,10, 29
F2:23,20, 30
F2:21) 31

SORT FIELDS=(5,6,BI,A) ,EQUALS,JOINWORK=2 32
OUTFIL BLKSIZE=1700 33
END 34

/* 35
/& 36 

Figure  309. A disk input and output JOIN
SyncSort for z/VSE 3.7 Programmer’s Guide5.20



10-11  Gives DLBL and EXTENT information for the SORTIN1 disk file ‘YTD.OLD’. 

12-13  Gives DLBL and EXTENT information for the SORTIN2 disk file ‘YTD.NEW’. 

14-15  Gives DLBL and EXTENT information for the SORTWK1 sort work disk file. 

16-19  Gives DLBL and EXTENT information for SORTWKA and SORTWKB for the
internal join work disk files.

20  The EXEC statement gives SORT as the SyncSort program name.

21-22  The JOINKEYS control statement is used to define the join key, record format,
record length, and block size for file F1, or SORTIN2. The INCLUDE parame-
ter is used to include all records with a ‘C’ in positions 19-20.

23-24  The JOINKEYS control statement is used to define the join key, record format,
record length, and block size for file F2, or SORTIN2. The INCLUDE parame-
ter is used to include all records that have a ZD value greater than 100000 in
positions 11-20.

25-31  The REFORMAT control statement is used to combine data fields from both F1
and F2 based on the positions and lengths specified. Since the JOIN control
statement is not specified, all equally-keyed records based on the keys specified
in the JOINKEYS control statements will be kept and all unequally keyed
records will be discarded. The reformatted output record will be variable-length
because statement 25 copies the RDW from F2 and statement 31 copies the
position (p) without the length (l) from F2.

32  The SORT control statement shows that all reformatted records coming out of
the internal join sort will be sorted on the binary field starting in position 5 for
a length of 6 in ascending sequence. The EQUALS parameter indicates that all
equally keyed records will have their original order preserved through the
entire sort process. JOINWORK=2 indicates that two join work files,
SORTWKA and SORTWKB, will be used for the join sorting process. Since no
WORK parameter is present, the default of one sort work is used, SORTWK1.

33  The OUTFIL control statement indicates the output disk block size for
SORTOUT. 

34  The END control statement indicates the end of the sort control statements. 

35-36  The standard job control statements indicate the end of the job stream. 

VSAM Input and Output 

Figure 310 is a sample JCL/control statement stream that can be used to run an actual job
with VSAM input and output files. This example illustrates the manner in which a job
stream should be set up to facilitate the sorting of an entry-sequenced data set.
Chapter 5.  Job Control Language and Sample Control Statement Streams 5.21



Notes:

1  Creates a jobname.

2-6  Assigns I/O disk devices for input, output and work files.

7-8  Specifies a VSAM disk file as output. The file should have been defined (by a
DEFINE CLUSTER) earlier.

9-10  Specifies a VSAM disk file as input.

11-16  Specifies work files on disk.

17  Specifies the SIZE parameter to restrict the amount of virtual storage used by
SyncSort. There must be sufficient virtual storage left in the partition for
VSAM use.

18  The OPTION statement indicates the following:

• All sort/merge messages are to be printed.

// JOB SORTTEST 1
// ASSGN SYS001,X'250' OUTPUT FILE 2
// ASSGN SYS002,X'251' INPUT FILE 3
// ASSGN SYS003,X'252' SORT WORK 4
// ASSGN SYS004,X'253' SORT WORK 5
// ASSGN SYS005,X'254' SORT WORK 6
// DLBL SORTOUT,'SORTOUT',,VSAM 7
// EXTENT SYS001,PACKI 8
// DLBL SORTIN1,'SORTIN1',,VSAM 9
// EXTENT SYS002,PACK2 10
// DLBL SORTWK1,,0 11
// EXTENT SYS003,PACK3,1,0,4769,70 12
// DLBL SORTWK2,,0 13
// EXTENT SYS004,PACK4,1,0,4839,70 14
// DLBL SORTWK3,,0 15
// EXTENT SYS005,PACK,1,0,4909,70 16
// EXEC SYNCSORT,SIZE=100K 17

OPTION PRINT=ALL,ROUTE=LST 18
SORT FIELDS=(11,4,BI,A),FILES=1,WORK=3 19
RECORD TYPE=F,LENGTH=(0063,,0063) 20
INPFIL VSAM,TOL 21
OUTFIL ESDS,TOL 22
END 23

/* 24
/& 25 

Figure  310. Sample JCL/Control Statement Stream
SyncSort for z/VSE 3.7 Programmer’s Guide5.22



• Messages are to be routed to SYSLST.

19  The SORT statement specifies the sort control field and one input file and three
sort work files.

20  The RECORD statement specifies record information for an entry-sequenced
data set. Fixed-length records are to be sorted. The input and output record
lengths are 63 bytes.

21  The INPFIL statement specifies that the input file is VSAM and a warning
code will be accepted when opening the VSAM input file.

22  The OUTFIL statement specifies that the output file is entry-sequenced and a
warning code will be tolerated when opening a VSAM output data set.

23  The END statement signals the end of the control statements.

24-25  The standard job control end statements. 

Using the FIELDS=COPY Parameter 

The FIELDS=COPY parameter, when coupled with SyncSort’s I/O techniques, may be used
as a high performance file editing tool. By using this facility, the user may avoid writing
file edit programs. Certain control statements can be input in a predetermined sequence to
accomplish the desired file edit.

Figure 311 and the related record layout in Figure 312 show how to perform the file edit. In
this example, the FIELDS=COPY parameter of the MERGE control statement is used in
conjunction with the INCLUDE/OMIT and INREC/OUTREC control statements. For
detailed descriptions, refer to “INCLUDE/OMIT Control Statement” on page 2.39, “INREC
Control Statement” on page 2.83, and “OUTREC Control Statement” on page 2.174.

In this example, certain data concerning exployees in a fictitious department 44 are to be
extracted from a master file and placed on an edited file.
Chapter 5.  Job Control Language and Sample Control Statement Streams 5.23



Notes:

1  Creates a jobname.

2-3  Assigns symbolic unit name SYS001 to the output file at device address X'280'
and SYS002 to the input file at X'281'.

4  Gives the filename of the output file and file-id.

5  Gives the filename of the input file and file-id.

6  Gives the name of the sort program.

7  The MERGE statement indicates that the FIELDS=COPY parameter will be
used to copy the records.

8  The RECORD statement shows that fixed-length records are being processed
and the record length is 200 bytes.

9  The INCLUDE statement indicates that SyncSort will process only records of
employees in department 44. If the data beginning in byte 24 for a length of 7
bytes is equal to DEPT 44, the record will be copied.

10  For records that meet the criteria established by the INCLUDE statement, the
OUTREC statement will output only the following data:

• Employee name (found at position 110 of a record for 40 bytes)

• Payroll code (found at position 6 of a record for 10 bytes)

// JOB COPY AND EXIT 1
// ASSGN SYS001,X'280' 2
// ASSGN SYS002,X'281' 3
// TLBL SORTOUT,'EDITED FILE' 4
// TLBL SORTIN,'MASTER FILE' 5
// EXEC SORT 6

MERGE FIELDS=COPY 7
RECORD TYPE=F,LENGTH=200 8
INCLUDE COND=(24,7,EQ,C'DEPT 44'),FORMAT=CH 9
OUTREC FIELDS=(110,40,6,10,C'$ ',42,4,PD,M2) 10
INPFIL BLKSIZE=2000 11
OUTFIL BLKSIZE=6200 12
END 13

/* 14
/& 15 

Figure  311. Sample JCL/Control Statement Stream
SyncSort for z/VSE 3.7 Programmer’s Guide5.24



• Payroll amount (the 4 byte PD field found at position 42 is converted to
printable format and edited with SyncSort editing mask M2. Leading zeros
will be suppressed and a minus sign will be included if the number is
negative. A dollar sign and a blank will precede the number: $ II,IIT.TTS).

The output records will be 62 characters in length.

11  The INPFIL statement gives the blocksize of the input file as 2000 bytes.

12  The OUTFIL statement gives the blocksize of the output file as 6200 bytes.

13  The END statement indicates the end of the control statements.

14-15  The standard job control end statements.
Chapter 5.  Job Control Language and Sample Control Statement Streams 5.25



Using the FIELDS=COMPARE Parameter 

The FIELDS=COMPARE parameter of the MERGE statement provides a file identity test.
In Figure 313, the parameter is used to test the functional equivalence of two routines by
COMPAREing the output files they produced from the same input data set.

Suppose changes were made to a copy of the program that was responsible for the master
file described in the previous problem (see Figure 311 and Figure 312)—changes that
should not have affected the make-up of the master file. Therefore, the manner of perform-
ing the identity check on the master file will be as indicated in Figure 313. The JCL/control

Note: Only records with “DEPT 44” in position 24 of each record are written to the output file.

Figure  312. Sample Record Layout

1 6 16 24 31 42 46 110 150 201

PAYROLL CODE

DEPT NO.

PAYROLL AMOUNT
EMPLOYEE NAME

TOTAL: 200 CHARACTERS

1 41 51 63

EMPLOYEE NAME

PAYROLL CODE

PAYROLL AMOUNT ($ II,IIT.TTS)

TOTAL: 62 CHARACTERS
SyncSort for z/VSE 3.7 Programmer’s Guide5.26



statement stream is similar to that of the previous problem except for the COMPARE
option and the absence of output file specifications. Because there is no SORTOUT with
FIELDS=COMPARE, SORTIN files will start with SYS001. With FIELDS=COMPARE,
the merge is not done. Moreover, it is not possible to use an option such as INCLUDE/
OMIT with this parameter.

The files are processed record pair by record pair. If the input files are identical, the
MERGE will print such a message. A second message exists for the case where the files are
unequal (e.g., do not have the same number of records) but where the first n records of the
larger file are identical to the smaller file in its entirety (i.e., up to the EOF flag); this mes-
sage also gives the number of records processed from each file, clarifying which of the two
has the extra record(s). The extra record(s) must all be at the end of the larger file in order
to get this message.

In the two cases discussed thus far, all paired records compared as equal; in the first case,
the files as well as the records compared as equal. In the second case, an unequal file condi-
tion was detected.

When an unequal record condition is detected, a different message is issued. An unequal
record condition exists when two non-EOF records paired by the merge are not byte-for-
byte identical such as, for example, when the RDWs of two variable-length records differ.
After the "unequal records" message, 2 PDUMPs are immediately produced:

1. The first PDUMP shows each SORTIN DTF.

2. The second PDUMP displays the unequal records; the record from file one is followed
by the corresponding file two record whose address appears in Register 8.

The MERGE then terminates with a message identifying the files as not equal and indicat-
ing the number of records processed.

// JOB COMPARE
// DLBL SORTIN1,'FILEIN1',0
// EXTENT SYS001,222222
// DLBL SORTIN2,'FILEIN2',0
// EXTENT SYS002,222222
// EXEC SYNCSORT,SIZE=50K

MERGE FIELDS=COMPARE,ORDER=2
RECORD TYPE=F,LENGTH=200
INPFIL BLKSIZE = 200
END

/*
/& 

Figure  313. Sample JCL/Control Statement Stream
Chapter 5.  Job Control Language and Sample Control Statement Streams 5.27



All these messages are directed to SYSLST and no provision is made for SYSLST’s being
assigned to tape or disk. "A" messages generated by the FIELDS=COMPARE parameter do
not appear on the console. 
SyncSort for z/VSE 3.7 Programmer’s Guide5.28



Chapter 6.  EXEC PARM Options

EXEC PARM options can be specified to provide processing information for JCL-initiated
and program-invoked applications. EXEC PARM options override both installation defaults
(set by SYNCMAC) and parameters specified on the OPTION control statement. They can
be useful when a parameter change is needed for one instance of the sort without changing
the installation defaults for all sorts, or without recompiling a program that invokes the
sort.

Specify the PARM options in the EXEC statement as follows:

The maximum number of characters that can be specified in one PARM string is 100. To
specify more than 100 characters, up to two additional PARM strings may be used on the
EXEC statement.

Note: Since other program products also may be using the EXEC PARM, SyncSort will not
perform its normal syntax validation on the PARM options. If SyncSort does not recognize
a PARM option, the option will be ignored.

PARM Option Summary

The available SyncSort PARM options are summarized in Table 46.

// EXEC programname,...,PARM='option1,option2,...,optionn'

Figure  314. PARM Options in EXEC Statement
Chapter 6.  EXEC PARM Options 6.1



Table 46.  PARM Option Names and Functions.

PARM Option Name PARM Option Function

CENTWIN/CW
Defines a 100-year window that determines the applica-
ble century for 2-digit year data. 

DIAG Produces a listing of diagnostic messages and PDUMPs.

EQUALS/NOEQUALS
Indicates whether or not the original order of records with
equal control fields needs to be preserved.

ERASE/ERASEWK
Erases contents of work files that were opened by the
sort.

IGNRL4/NOIGNRL4
Indicates whether or not SyncSort should check that the
variable-length input records are at least as large as the
specified or computed l4 value.

INCOR=OFF Specifies that an incore sort is NOT to be performed.

PRINT Determines which SyncSort messages are displayed.

ROUTE Determines where SyncSort messages are displayed.

SF
Overrides the SORT FIELDS collating parameters for
invoked sorts. 

SYMNAMES
Specifies that the SyncSort dictionary feature is to be
used to map symbolic names in control statements.

SYMNLIB
Specifies a library search chain used by the SyncSort dic-
tionary feature.

SYMNOUT
Specifies where the dictionary listing is to be printed
when using the SyncSort dictionary feature.

VL5L6L7

Analyzes a variable-length file to determine optimum val-
ues for l5, l6, and l7, which can be used for subsequent
sorts of the same file as LENGTH parameters on the
RECORD control statement to improve performance.

VSCORE
Specifies the upper bound of virtual storage below the 16-
megabyte line in which SyncSort will run.

VSCORET
Specifies the maximum amount of storage that SyncSort
can use when it is running in a partition that has storage
above the 16-megabyte line.

WORKNM
Changes the four-character prefix of all SORTWK names
from the default, SORT.
SyncSort for z/VSE 3.7 Programmer’s Guide6.2



SyncSort PARM Options

CENTWIN/CW

The CENTWIN PARM is an aid in overriding the CENTWIN=parameter on the OPTION
control statement. It is most useful for applications that call the sort several times for
which different values of the CENTWIN parameter are needed, or for adding a CENTWIN
value to existing applications without altering the compiled program. For details on the
CENTWIN parameter, see “CENTWIN Parameter (Optional)” on page 2.119.

CW=n is accepted as a synonym. The requirements for specifying “n” are the same as for
OPTION CENTWIN.

The following is an example of the CENTWIN override for a program that invokes the sort
only once.

To allow for applications that call the sort several times (multiply-invoked sorts) for which
some CENTWIN values require overrides and others do not, the CENTWIN=* can be
inserted to denote a null override. The following example shows an EXEC PARM that was
coded for an invoking program that calls the sort three times; the first and third sorts
require CENTWIN overrides, and the second sort does not.

Note that the CENTWIN parameters may mix sliding and fixed century window values.

Figure  315. CENTWIN PARM Format

CENTWIN = 
80

f
s 

 
 
 
 

// EXEC INVOKED,SIZE=512K,PARM='CENTWIN=1998' 

Figure  316. Example CENTWIN Override

// EXEC INVOKED,SIZE=512K,PARM='CENTWIN=50,CENTWIN=*,CW=1985' 

Figure  317. Example EXEC PARM
Chapter 6.  EXEC PARM Options 6.3



DIAG

The DIAG PARM causes a listing of diagnostic messages and PDUMPs to be produced.

EQUALS/NOEQUALS

The EQUALS and NOEQUALS PARMs determine if the original order of records with
equal control fields needs to be preserved. These PARMs use the same rules as the
EQUALS and NOEQUALS parameters of the OPTION control statement. See
“EQUALS/NOEQUALS Parameter (Optional)” on page 2.102.

ERASE/ERASEWK

ERASE or ERASEWK causes contents of the work files opened by the sort to be erased at
the end of the sort. This PARM is equal to the ERASEWK parameter of the SORT control
statement. See “ERASEWK Parameter (Optional)” on page 2.234.

IGNRL4/NOIGNRL4

The IGNRL4 and NOIGNRL4 PARMs determine if the sort checks that each variable-
length input record is at least as large as the specified or computed l4 value. These PARMs
use the same rules as the IGNRL4 and NOIGNRL4 parameters of the OPTION control
statement. See “IGNRL4/NOIGNRL4/VLSHRT/NOVLSHRT Parameter (Optional)” on
page 2.126.

DIAG 

Figure  318. DIAG PARM Format

EQUALS
NOEQUALS

Figure  319. EQUALS/NOEQUALS PARMs Format

ERASE
ERASEWK

Figure  320. ERASE/ERASEWK PARMs Format

IGNRL4
NOIGNRL4

Figure  321. IGNRL4/NOIGNRL4 PARMs Format
SyncSort for z/VSE 3.7 Programmer’s Guide6.4



The IGNRL4 overrides the INPFIL L4FILL and SYNCMAC L4FILL specifications for all
files. No padding is done for any short record of length < l4. The NOIGNRL4 PARM, allows
a default L4FILL=X'nn' or C'c' specified by SYNCMAC used to pad short records.

INCOR=OFF

The INCOR=OFF PARM instructs SyncSort for z/VSE that an incore sort is NOT to be per-
formed.

PRINT

The PRINT PARM controls which messages are displayed by SyncSort. This PARM uses
the same rules as the PRINT parameter of the OPTION control statement. See “PRINT
Parameter (Optional)” on page 2.131.

ROUTE

The ROUTE PARM controls where messages are displayed by SyncSort. This PARM uses
the same rules as the ROUTE parameter of the OPTION control statement. See “ROUTE
Parameter (Optional)” on page 2.132.

INCOR=OFF

Figure  322. INCOR=OFF PARM Format

Figure  323. PRINT PARM Format

PRINT = 

ALL
NONE
CRITICAL
CRITPLUS 

 
 
 
 

Figure  324. ROUTE PARM Format

ROUTE = 

LST
LOG
LAL
nnn 

 
 
 
 
Chapter 6.  EXEC PARM Options 6.5



SF

The SF PARM allows a SyncSort customer to override an invoking program’s SORT
FIELDS control statement by using the SF=(p, l, f, o) PARM on the EXEC statement. Only
the (p, l, f, o) part of the invoking program’s SORT control statement will be replaced. All
other parameters on the invoking program’s SORT control statement will remain
unchanged. It should be noted that the syntax of (p, l, f, o) must follow the syntax required
for the FIELDS parameter of the SORT control statement or collating errors or syntax
errors will occur. The following is an example of the SORT FIELDS override for a program
that invokes the sort only once.

To allow for applications that call the sort several times (multiply-invoked sorts) for which
some SORT FIELDS require overrides and others do not, SF=* can be inserted to denote a
null override. The following example shows an EXEC PARM that was coded for an invoking
program that calls the sort three times; the first and third sorts require SORT FIELDS
overrides, and the second sort does not.

In addition to the SF=(....) and SF=* override parameters, the SF=PRT parameter facili-
tates printing the sort control statements. The SF=PRT parameter allows the customer to
print the invoking program’s sort control statements prior to modifying them via the
SF=(....) parameter.

The specification of the SF=PRT parameter will cause the sort to print the sort control
statements depending on where ROUTE= is pointing. If ROUTE=LOG, the sort control
statements will be printed on SYSLOG. If ROUTE=LST, the sort control statements will be
printed on SYSLST. This only allows printing of the sort control statements to SYSLST as
long as SYSLST is assigned to a printer device; it will not print the control statements to
any other device. If the SF=PRT parameter is used with SyncSort’s DIAG parameter, DIAG
will be turned off. The SF=PRT parameter can be placed anywhere in the EXEC PARM and
will not affect the assignment of the SF=(....) or SF=* override parameters. The following is

Figure  325. SF PARM Format

SF = 
(p,l,f,o,...)
*
PRT 

 
 

// EXEC INVOKED,SIZE=512K,PARM='SF=(5,7,CH,A)' 

Figure  326. Example SORT FIELDS Override

// EXEC INVOKED,SIZE=512K,PARM='SF=(5,7,CH,A),SF=*,SF=(9,4,BI,A)' 

Figure  327. Example EXEC PARM for Invoking Program
SyncSort for z/VSE 3.7 Programmer’s Guide6.6



an example of the SF=PRT parameter to print the invoking program’s sort control state-
ments.

SYMNAMES

The SYMNAMES PARM indicates that the SyncSort data dictionary feature is to be used
to map symbolic names in control statements to proper position, length, and format values
or constants. This PARM uses the same rules as the SYMNAMES parameter of the
OPTION control statement. See “SYMNAMES Parameter (Optional)” on page 2.136.

SYMNLIB

The SYMNLIB PARM specifies a set of library.sublibrary pairs that constitutes a library
search chain used in library searches when the SYMNAMES parameter specifies only a
member name and member type. As many as 14 library/sublibrary pairs may be specified.

SYMNOUT

The SYMNOUT PARM specifies where the SyncSort dictionary listing is to be printed. This
PARM uses the same rules as the SYMNOUT parameter of the OPTION control statement.
See “SYMNOUT Parameter (Optional)” on page 2.136.

// EXEC INVOKED,SIZE=512K,PARM='SF=PRT' 

Figure  328. Example SF=PRT Parameter

Figure  329. SYMNAMES PARM Format

SYMNAMES=
lib.sublib.member.type
member.type
SYSIPT 

 
 

SYMNLIB=(lib1.sublib1 [,lib2.sublib2]...[,lib14.sublib14])

Figure  330. SYMNLIB PARM Format

Figure  331. SYMNOUT PARM Format

SYMNOUT = 

LST
LOG
LAL
NONE 

 
 
 
 
Chapter 6.  EXEC PARM Options 6.7



VL5L6L7

The VL5L6L7 PARM is used to calculate and display values for a variable-length file that
can be used to improve sort performance of future sorts using that file. VL5L6L7 will pro-
duce the WER224I message that displays recommended values of l5, l6, and l7. These values
can be specified as LENGTH parameters on the RECORD control statement for another
sort using that file.

The l5, l6, and l7 values for a particular sort application depend on the distribution of record
lengths in the file, the position of the sort key(s), and any reformatting done by an E15 or
by INREC. The displayed l5 is the most common record length of the records in the file after
INPFIL INREC, E15, and INREC processing; l6 is the average work space per record; and
l7 is the recommended segment size.

Since additional overhead is used to calculate these values when VL5L6L7 is specified,
resulting in reduced performance when it is used, this parameter should be used only once
for a particular sort application. The first time the sort is run, use VL5L6L7 to calculate l5,
l6, and l7 values for that file with a specific sort key position and, if needed, an E15 and/or
INREC. For subsequent sorts using that data (either unchanged or with a relatively small
number of updates), remove the VL5L6L7 PARM and add l5, l6, and l7 values to the
LENGTH parameter of the RECORD control statement to improve the performance of
those sorts.

When the INREC control statement is used to reformat the input records, care should be
used in specifying the value of l5. The value of l5 displayed by the WER224I message is the
most common record length of the records as they are being sorted, i.e. after all INPFIL
INREC, E15, and INREC processing has been done. However, the value of l5, which should
be specified on the RECORD control statement, is the most common length after only
INPFIL INREC and E15 processing, but before processing by the INREC control
statement; any record length adjustments to l5 (and l2 and l4) due to the INREC control
statement are performed internally by SyncSort. (See Figure 3 on page 2.18.) For example,
if the INREC control statement expands the records by 50 bytes, and WER224I displays
l5=76, then the actual l5 value to be specified on a subsequent RECORD control statement
is 26.

Another way to determine l5, l6, and l7 values for a file, without sorting it, is to use the sep-
arate SYNCHSTO utility program (see “Chapter 11. The SYNCHSTO Utility Program” ).
SYNCHSTO is useful when a sort is not going to reformat the records with an E15 or
INREC. It also allows you to sample a limited number of records of a very large file to esti-
mate these values.

This PARM does not have a corresponding installation default or OPTION control state-
ment parameter to override. It is ignored for a MERGE or a COPY application.

VL5L6L7

Figure  332. VL5L6L7 PARM Format
SyncSort for z/VSE 3.7 Programmer’s Guide6.8



VSCORE

The VSCORE PARM establishes the upper bound of virtual storage below the 16-megabyte
line in which SyncSort will run, specified as a decimal number of n, nK (K=1024), or nM
(M=1024x1024) bytes.

VSCORET

The VSCORET PARM sets the maximum amount of storage that SyncSort can use when it
is running in a partition that has storage above the 16-megabyte line, specified as a deci-
mal number of n, nK (K=1024), or nM (M=1024x1024) bytes. If the specified value of
VSCORET is less than the specified or default value of VSCORE, SyncSort automatically
raises the value of VSCORET to the VSCORE value.

WORKNM

The WORKNM PARM changes the four-character prefix of all SORTWK names from the
default, SORT. For example, if WORKNM=SYNC is specified, all sort work files will be
named SYNCWKx instead of SORTWKx.

Figure  333. VSCORE PARM Format

VSCORE = 
n
nK
nM 

 
 

Figure  334. VSCORET PARM Format

VSCORET = 
n
nK
nM 

 
 

WORKNM=work

Figure  335. WORKNM PARM Format
Chapter 6.  EXEC PARM Options 6.9



SyncSort for z/VSE 3.7 Programmer’s Guide6.10



Chapter 7.  Invoking SyncSort from a Program 

Another way to initiate the sort/merge is to have it loaded by an executing program. This
program may be written in a number of languages including Assembler, COBOL, and PL/1.
The coding necessary to invoke the sort/merge from an Assembler and from a COBOL pro-
gram is given in this chapter.

When the sort/merge is invoked from a program, you can direct messages to a specific logi-
cal unit. This feature is explained in “OPTION Control Statement” on page 2.114 and
“ROUTE Parameter (Optional)” on page 2.132.

Invoking SyncSort from an Assembler Program 

When an Assembler program is used and SyncSort is to be called somewhere within that
program, use the LOAD or CALL macro to establish linkage. (SyncSort will not execute as
a subtask, so the FETCH and ATTACH macros cannot be used.) If the LOAD or CALL
macro is used, SyncSort should be loaded on a doubleword boundary at the end of the pro-
gram. To insure proper linkage, registers 13, 14, 15, and 1 must contain the following infor-
mation:

Register 13  Must contain the address of an 18-word save area where SyncSort can store
the contents of the user’s registers when the sort/merge gains control.
When the sort/merge program is over, these registers will be automatically
restored to the user.

Register 14  Must contain the address of the instruction in the invoking program to
which SyncSort is to return control when it finishes the sort/merge.
Chapter 7.  Invoking SyncSort from a Program 7.1



Register 15  Must contain the address of SyncSort’s entry point.

Register 1  Must contain the address of a variable-length parameter list of address con-
stants.

Addressing and Residence Modes For Invoking Programs 

SyncSort may be invoked from an Assembler program located above or below 16 MB of vir-
tual storage and may execute in either 24-bit or 31-bit addressing mode.

SyncSort will process the invoking parameter list in the addressing mode that is current
when it receives control, and it will return control to the invoking program in that same
mode.

• If SyncSort receives control in 24-bit mode, it treats all addresses as 24-bit addresses.
SyncSort will ignore the high order byte of these addresses, and all user exits pre-
loaded by the invoking program must be located below 16 MB of virtual storage and
must be able to execute in AMODE 24. 

• If SyncSort receives control in 31-bit mode, it treats all addresses as 31-bit addresses,
and these addresses may be located either above or below 16 MB of virtual storage. If
the addresses reside below 16 MB of virtual storage, the invoking program must
provide "clean" 24-bit addresses, that is, bits 1 through 7 must be 0. SyncSort ignores
the high order bit (bit 0) unless it is part of the address of a user exit.

When user exit addresses are included in the parameter list, bit 0 of the address signals the
addressing mode of the exit. When the bit is set to 0, SyncSort calls the user exit in
AMODE 24. When the bit is set to 1, SyncSort calls the user exit in AMODE 31. 

When it loads a user exit, SyncSort always calls the exit in the AMODE assigned by the
linkage editor, and provides "clean" 24-bit addresses in the parameter list. All addresses
returned by the user exit must be valid 31-bit addresses for AMODE 31 exits and valid 24-
bit addresses for AMODE 24 exits. 

A user exit may return to SyncSort in any addressing mode.

The Parameter List of Address Constants

An Assembler program that invokes the sort/merge must include a 10-word or an 18-word
parameter address constant list. These address constants will point to the images of
SyncSort control statements, to a halfword set aside for a return code, and to three-branch
tables for exit programs.

The first 10 parameters in the parameter list are obligatory and must be coded in the cor-
rect sequence, with A(0) coded for any control statement image or branch table entry not
used. The final 8 parameters (address constants for ALTSEQ through REFORMAT) are
SyncSort for z/VSE 3.7 Programmer’s Guide7.2



optional. The sequence of these last 8 addresses is not important and unused parameters
can be omitted.

The Control Statement Images

The actual control statement images must use DC instructions and follow these specific
rules:

1. Each control statement image must be delimited at the beginning by the constant C
followed immediately by a single quote.

2. The operator (SORT, RECORD, etc.) must immediately follow the single quote.

3. The operator must be followed by exactly one blank.

4. The operator and parameters of the control statement images must be coded exactly as
the control statements described in “Chapter 2. SyncSort Control Statements”.

5. The last parameter is followed by exactly one blank and then a final delimiting single
quote.

6. The parameter for the INPFIL control statement image addresses may specify more
than one control statement image to accommodate multiple input files. If more than
one INPFIL control statement image is to be specified, each subsequent specification
should immediately follow the final blank of the prior specification. A parameter list
containing multiple INPFIL control statement images is illustrated in Figure 339 on
page 7.7.

LINKLIST DC A(LSORT)  * ADDRESS OF SORT CONTROL STATEMENT IMAGE

DC A(LREC)  * ADDRESS OF RECORD CONTROL STATEMENT IMAGE

DC A(LINPFIL)  * ADDRESS OF INPFIL CONTROL STATEMENT IMAGE

DC A(LOUTFIL)  * ADDRESS OF OUTFIL CONTROL STATEMENT IMAGE

DC A(LOPTION)  * ADDRESS OF OPTION CONTROL STATEMENT IMAGE

DC A(LMODS)  * ADDRESS OF MODS CONTROL STATEMENT IMAGE

DC A(PHASE1)  * ADDRESS OF PHASE 1 BRANCH TABLE

DC A(PHASE2)  * ADDRESS OF PHASE 2 BRANCH TABLE

DC A(PHASE3)  * ADDRESS OF PHASE 3 BRANCH TABLE

DC A(RETCODE)  * ADDRESS OF HALFWORD FOR RETURN CODE

DC A(LALTSEQ)  * ADDRESS OF ALTSEQ CONTROL STATEMENT IMAGE

DC A(LOUTREC)  * ADDRESS OF OUTREC CONTROL STATEMENT IMAGE

DC A(LSUM)  * ADDRESS OF SUM CONTROL STATEMENT IMAGE

DC A(LINCOM)  * ADDRESS OF INCLUDE/OMIT CONTROL STATEMENT IMAGE

DC A(LANALYZE)  * ADDRESS OF ANALYZE CONTROL STATEMENT IMAGE

DC A(LINREC)  * ADDRESS OF INREC CONTROL STATEMENT IMAGE

DC A(LJOIN)  * ADDRESS OF JOIN CONTROL STATEMENT IMAGE

DC A(LREFORMAT) * ADDRESS OF REFORMAT CONTROL STATEMENT IMAGE

Figure  336. Sample Parameter List of Address Constants
Chapter 7.  Invoking SyncSort from a Program 7.3



7. The parameter for the OUTFIL/XSUMFIL/XDUPFIL control statement image
addresses may specify more than one control statement image to accommodate
multiple output files. If more than one OUTFIL control statement image is to be
specified, each subsequent specification should immediately follow the final blank of
the prior specification. A parameter list containing multiple OUTFIL/XSUMFIL/
XDUPFIL control statement images is illustrated in Figure 339 on page 7.7.

8. If both the INREC and the OUTREC control statement images are specified, each
control statement image address may be specified separately. Or, the parameter for
either the INREC control statement image address or the OUTREC control statement
image address may be used to specify both control statement images. In this case, the
second control statement image should immediately follow the final blank of the first
specification.

9. The parameter for the SUM control statement image may be used to specify the
DUPKEYS control statement image. 

10. In a JOIN application, the parameter for the INPFIL control statement image would be
used to specify the JOINKEYS control statement image.

11. To continue a control image, place a single quote with no embedded blank after the last
character on the first card image. The successive card image should code a DC
instruction in columns 10 and 11, a C' in columns 16 and 17, start the continuation in
column 18, and leave exactly one blank followed by a single quote after the last
parameter.

12. Embedded blanks are not allowed on control statement images, except within literal
strings.

13. Comments are not allowed on the control statement images.

An example of a coded parameter list using the addresses from the sample parameter list of
address constants is given in Figure 337 on page 7.5.

The Return Code Parameter

The return code address constant points to a halfword that must be set up somewhere in
the user’s program. After a successful run of the sort/merge program, SyncSort will store a
0 in this halfword. If the sort/merge was not successful, SyncSort will place a 16 in this
halfword.

An example of a coded return code parameter is given in Figure 337 on page 7.5.
SyncSort for z/VSE 3.7 Programmer’s Guide7.4



The ALTSEQ Control Statement Alternative  

Although the code parameter on the ALTSEQ control statement image can be used to pass
information for SyncSort to build a 256-byte translate table, you can build your own
256-byte table when invoking the sort/merge from a program. In this case, include your
table in the program and SyncSort will reference it for all control fields specified with AQ
as the data format code.

LSORT DC C'SORT FIELDS=(4.1,8.0,BI,D),WORK=2 '
LREC DC C'RECORD TYPE=V,LENGTH=(16,,,56,98),'

DC C'DELBLANK=(42,$) '
LINPFIL DC C'INPFIL BLKSIZE=3500 '
LOUTFIL DC C'OUTFIL BLKSIZE=6000 '
LOPTION DC C'OPTION PRINT=ALL,DUMP,STORAGE=120K '
LMODS DC C'MODS PH1=(,,E15) '
* PHASE 1 BRANCH TABLE

USING PHASE 1,15
PHASE1 DC A(0)
EXIT15 B E15
EXIT17 DC A(0)
EXIT18 DC A(0)

.

.

.
* END CONTROL STATEMENT IMAGES
E15 DS 0H
* EXIT 15 ROUTINE FOLLOWS HERE

.

.

.
RETCODE DS H'0' *HALFWORD FOR RETURN CODE 

Figure  337. Sample Code Parameter List Including Some Control Images
and One Branch Table

LALT DC C'AQTT'
DC A(TTAB)

TTAB DC X'00010203FF09FF7FFFFFFF0B0C0D0E0F '
X'10111213FFFF08FF18191A1B1C1D1E1F '

.

.

.
X'30313233343536373839FFFFFFFFFFFF ' 

Figure  338. Coding an AQTT Table to Translate EBCDIC to ASCII
Chapter 7.  Invoking SyncSort from a Program 7.5



To create a translate table, follow these steps:

1. In place of the ALTSEQ address constant, specify the address of a fullword aligned
location containing C'AQTT' in the parameter address list.

2. Program a constant C with the value 'AQTT'.

3. Immediately following this entry, place the address of the table.

4. Construct a 256-byte hexadecimal translate table.

An example of the coding necessary for the AQTT table is given in Figure 338 on page 7.5.
Note that the entire table is not given.

A Sample Assembler Program Invoking SyncSort

Figure 339 on page 7.7 illustrates how to invoke the sort/merge from an Assembler Pro-
gram. When SyncSort is invoked from a program, it will return control to the user’s pro-
gram upon completion, giving a code to indicate either a successful or an unsuccessful sort/
merge program. For this reason, the sample program in Figure 339 on page 7.7 includes a
process for a successful sort as well as a process for an unsuccessful sort. It checks the sort’s
return code with a compare instruction and either branches to or falls into the routine to
process the results of the sort.

Invoking SyncSort from a COBOL Program 

The COBOL programming language includes a sort feature so that the COBOL program-
mer has complete opportunity to access the SyncSort program. The COBOL program must
include an SD (Sort-File-Description) in the File Section and a SORT statement in the Pro-
cedure Division. Control fields, called sort-keys in COBOL, are defined in the SD and, as
specified in the SORT verb, sort-keys are either sorted in ascending or descending order
according to the EBCDIC collating sequence for COBOL characters. (Consult American
National Standard COBOL texts for complete details.)

A Sample COBOL Program Invoking SyncSort

The program in Figure 342 on page 7.9 was designed to produce three output reports from a
single pass of the master file. By using the SyncSort sort/merge program together with the
COBOL sort feature, three distinct records are created from one master record, sorted and
later written out on the appropriate reports.
SyncSort for z/VSE 3.7 Programmer’s Guide7.6



*LOAD SORT,ESTABLISH LINKAGE,BRANCH AND LINK 

LOAD SORT,SENTRY *LOAD SORT AT SENTRY
LR R15,R1 *LOAD ADDRESS OF SENTRY
LA R1,PADLIST *LOAD ADDRESS OF PARAMETER ADDRESS LIST
LA R13,REGSAVE *LOAD ADDRESS OF REGISTER SAVE AREA
BALR R14,R15 *LINK TO R15 WITH A RETURN TO R14 

*SORT RETURNS CONTROL AT COMBACK, RETURN CODE IS CHECKED 

COMBACK CLC RETCODE(2),=H'0'*COMPARE FOR SUCCESSFUL SORT
BNE BADSORT *NO GOOD, GO TO ERROR ROUTINE

PROCESS DS 0H
.
. *PROCESS ROUTINE FOR SUCCESSFUL SORT
.

PADLIST DC A(SORT1) *SORT CONTROL IMAGE ADDRESS
DC A(REC1) *RECORD CONTROL IMAGE ADDRESS
DC A(INPUT1) *INPFIL CONTROL IMAGE ADDRESS
DC A(OUTPT1) *OUTFIL CONTROL IMAGES ADDRESS
DC A(OPT1) *OPTION CONTROL IMAGE ADDRESS
DC A(0) *MODS CONTROL IMAGE (UNUSED) ADDRESS
DC A(0) *PHASE 1 BRANCH TABLE (UNUSED) ADDRESS
DC A(0) *PHASE 2 BRANCH TABLE (UNUSED) ADDRESS
DC A(0) *PHASE 3 BRANCH TABLE (UNUSED) ADDRESS
DC A(RETCODE) *RETURN CODE HALFWORD ADDRESS
DC A(0) *ALTSEQ CONTROL IMAGE (UNUSED) ADDRESS
DC A(INREC1) *INREC CONTROL IMAGE ADDRESS
DC A(SUM1) *SUM CONTROL IMAGE ADDRESS
DC A(OMIT1) *OMIT CONTROL IMAGE ADDRESS
DC A(OUTREC1) *OUTREC CONTROL IMAGE ADDRESS 

*THE PARAMETER ADDRESS LIST IS GIVEN ABOVE, THE PARAMETERS ARE REFERENCED
*BELOW 

SORT1 DC C'SORT FIELDS=(24,8,BI,A),WORK=3,FILESOUT=2,FILES=2 '
REC1 DC C'RECORD TYPE=F,LENGTH=148 '
INPUT1 DC C'INPFIL BLKSIZE=1480,FILES=1 '

DC C'INPFIL BLKSIZE=2960,FILES=2 '
OUTPT1 DC C'OUTFIL BLKSIZE=2500,FILES=1 '

DC C'OUTFIL BLKSIZE=5000,FILES=2 '
DC C'XSUMFIL BLKSIZE=2200 '

OPT1 DC C'OPTION STORAGE=100K '
INREC1 DC C'INREC FIELDS=(1,100,139,10) '
SUM1 DC C'SUM FIELDS=(96,4,PD),XSUM '
OMIT1 DC C'OMIT COND=(71,5,ZD,GT,5000) '
OUTREC1 DC C'OUTREC FIELDS=(1,8,5X,9,10,5X,19,4,5X,23,88) ' 

REGSAVE DC 18F'0' *REGISTER SAVE AREA OF 18 FULLWORDS
RETCODE DC H'0' *HALFWORD FOR RETURN CODE

LTORG
BADSORT DS 0H

.

. *ROUTINE FOR UNSUCCESSFUL SORT

.
SENTRY DC D'0' *SYNCSORT ENTRY POINT

END 

Figure  339. Assembler Program Invoking SyncSort
Chapter 7.  Invoking SyncSort from a Program 7.7



Problem Description

A master payroll file is in order according to social security number. Each record would
appear as in Figure 340. 
 

It is necessary to produce three reports containing these records, each with the records in
order according to a different field.

For the first report, the records are to be in order according to employee number.

For the second report, the records are to be in order according to employee number within
department number.

For the third report, the records are to be in order according to salary, but only including
those records with salaries over $10,000.

A 14-byte key is generated to become the new sort field. This is given in Figure 341. 

The key will be appended to the beginning of each record generated from the master file.

After the fields in the appended keys are properly filled in and the records are sorted, the
fields in the keys will be tested so that the record may be written on the appropriate report.

1 10 15 19 25 45

SOCIAL SECURITY NUMBER # EMPLOYEE # DEPT # SALARY PAYROLL DATA

Figure  340.  A Record from a Master Payroll File

1 5 9 14 

DEPT # EMPLOYEE # SALARY 

Figure  341.  14-Byte Key As New Sort Field
SyncSort for z/VSE 3.7 Programmer’s Guide7.8



The appended key will not be picked up, so only the original record will appear in the
reports.

IDENTIFICATION DIVISION
PROGRAM-ID. REPGEN
AUTHOR. SYNCSORT INCORPORATED
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE COMPUTER. IBM-370-158.
OBJECT COMPUTER. IBM-370-158.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT EMP-MASTER ASSIGN TO SYS007-UR-2540R-S.
SELECT REP-MASTER ASSIGN TO SYS009-UT-2400-S-SORTOUT.
SELECT SORT-FILE ASSIGN TO SYS001-UT-3330-S-SORTWK1.

DATA DIVISION.
FILE SECTION.
SD SORT-FILE

SORT-OPTION IS WORK-OPTION
DATA RECORD IS REP-REC.

01 REP-REC.
05 GEN-KEY PIC X(14).
05 REC PIC X(45).

FD EMP-MASTER
DATA RECORD IS EMPLOYEE.

01 EMPLOYEE.
05 $$ PIC X(9).
05 EMP PIC 9999.
05 DEPT PIC 9999.
05 MONEY PIC 9(6).

88 REC-OK VALUE 10001 THRU 999999.
05 NAME PIC X(20).
05 FILLER PIC X(37). 

FD REP-FILE
LABEL RECORDS ARE STANDARD
DATA RECORD IS REPORT-REC.

01 REPORT-REC.
05 REP-CODE PIC X(14).
05 REP-RECD PIC X(45). 

WORKING STORAGE SECTION
01 WORK-OPTION PIC X(20) VALUE 'OPTION SORTWK=003'.
01 WORK-RECORD

05 WORK-KEY PIC X(14) VALUE SPACE.
05 WORK-REC PIC X(45) VALUE SPACE 

01 SORT-KEY.
05 S-DEPT PIC 9(4) VALUE ZERO.
05 S-EMP PIC 9(4) VALUE ZERO.
05 S-SAL PIC 9(6) VALUE ZERO. 

Figure  342. Invoking SyncSort from a COBOL Program
Chapter 7.  Invoking SyncSort from a Program 7.9



PROCEDURE DIVISION.
INITIAL.

OPEN INPUT EMP-MASTER.
START-SORT.

SORT SORT-FILE
ASCENDING GEN-KEY
INPUT PROCEDURE BUILD
GIVING REP-FILE.

REPORT-WRITE.
OPEN INPUT REP-FILE.

R-W.
READ REP-FILE AT END GO TO EOJ-STEP.
GO TO R-W.

EOJ-STEP.
CLOSE REP-FILE.

EOJ-EXIT.
STOP RUN.

BUILD SECTION.
BUILD-KEY.

READ EMP-MASTER AT END GO TO CLOSE-MST.
MOVE ZEROS TO SORT-KEY.
MOVE DEPT TO S-DEPT.
MOVE SORT-KEY TO WORK-KEY.
MOVE EMPLOYEE TO WORK-REC.
RELEASE REP-REC FROM WORK-RECORD.
MOVE ZEROS TO SORT-KEY.
MOVE EMP TO S-EMP.
MOVE SORT-KEY TO WORK-KEY.
MOVE EMPLOYEE TO WORK-REC.
RELEASE REP-REC FROM WORK-RECORD.
IF REC-OK

MOVE ZEROS TO SORT-KEY,
MOVE MONEY TO S-SAL,
MOVE SORT-KEY TO WORK-KEY,
MOVE EMPLOYEE TO WORK-REC,
RELEASE REP-REC FROM WORK-RECORD.

GO TO BUILD-KEY.
CLOSE-MST.

CLOSE EMP-MASTER.
MST-EXIT.

EXIT. 

Figure  343. Invoking SyncSort from a COBOL Program (cont.)
SyncSort for z/VSE 3.7 Programmer’s Guide7.10



Chapter 8.  User Exit Programs

What Is an Exit?  

User-supplied routines are known as exits. Different types of exits can be written to do a
variety of tasks at different stages of the sort/merge. The point in the sort/merge at which
an exit program takes control to do a specific task is also known as an exit, and this point
has the same exit number as the program that is entered to do the task.

The number of an exit provides certain information: the first digit in the exit number indi-
cates whether the exit occurs in Phase 1, 2, or 3 of the sort/merge. The second digit refers to
the type of task(s) the exit can perform.

Table 47 on page 8.2 lists all available exits. It also illustrates in which phase each exit
occurs and provides an overall view of the tasks that can be performed by each exit.

Loading an Exit Program into Main Storage  

There are two ways to get exit programs into main storage: (1) place them in the core image
library and have the sort/merge load them; (2) place them in main storage and tell the sort/
merge where they are to be found.

When SyncSort Loads a User-Supplied Program

Group all exit routines that occur in a particular phase of the sort/merge together and cata-
logue each group under a unique name in the core image library. The group name(s), load-
ing information, and names of the exits being included are supplied on the MODS control
Chapter 8.  User Exit Programs 8.1



statement. This informs SyncSort when to get the exit programs, where to find them, and
how much space to set aside.

SyncSort can load the exits (routines) whether the sort is initiated by JCL or by another
program. 

TASKS 
PHASE 1 PHASE 2 PHASE 3 

E11 E15 E17 E18 E21 E25 E27 E31 E32 E35 E37 E38 E39 

Checkpoint * 

Process labels * * * * * 

Open files * * 

Close files * * * * * 

Read sort input * 

Count input records * 

Insert records * * 

Delete records * * * 

Lengthen and 
shorten records 

* * 

Alter noncontrol 
fields of records 

* * * * 

Read merge input * 

Sum records * * * 

Substitute records 
(merge only) 

* 

Suppress sequence 
checking 

* 

Write output * 

Process read errors * * 

Process direct access 
write errors 

* 

Provide VSAM pass-
words 

* * * 

Table 47.   Exit Task Chart
SyncSort for z/VSE 3.7 Programmer’s Guide8.2



Note: E21 and E27 are not currently supported.

If the exit programs are self-relocating or can be relocated by the system loader program, it
is advisable to supply the length of the programs in the MODS statement rather than give
an absolute address. If the exit programs cannot be relocated, they should be placed in the
highest address available within the sort/merge partition.

When Programs Are Preloaded

If the sort/merge program is initiated from another program, exit routines may be placed in
storage by the user. The initiating program must then contain the address constants of
three exit branch tables, one for each of the three exit phases. These are part of a fixed-
length parameter list that is to be placed in register 1. (See “Chapter 7. Invoking SyncSort
from a Program”.) Exit routines may not be preloaded by the user if the sort/merge is initi-
ated by JCL. 

High Level Language User Exit

In addition to assembler language, user exits may be coded in one of the supported High
Level Languages (HLL). SyncSort supports user exits coded in COBOL/VSE, C/VSE, and
REXX/VSE.

Note: COBOL/VSE and C/VSE exits require activation of the SyncSort LOCALE and
COBOL/C Exit Facility as described in the SyncSort for z/VSE Installation Guide.

HLL exits cannot be pre-loaded by a user program. They must be loaded by SyncSort.

COBOL/VSE exits and C/VSE exits must be compiled and link-edited into phases and
placed in core image libraries in the active search chain.

REXX/VSE exits must be catalogued in a library that is in the active search chain for
PROC. SyncSort does not support compiled REXX exits.

Use the MODS control statement to indicate an HLL exit. In the loading information field,
code COBOL for COBOL/VSE exit, C for C/VSE exit, and EXEC or REXX for REXX/VSE
exit. SyncSort will use the appropriate method to load the HLL exit.

Linking Exit Programs to the Sort/Merge  

Two procedures must be followed to secure linkage between exit programs and the sort/
merge. First, for every phase in which exits are issued, the sort/merge must be given a
branch table with the exits to be used within that particular phase. Second, exit programs
must make use of the parameters that the sort/merge sets up for them. The information
passed by SyncSort is placed in registers 1, 13, 14, and 15, and is accessed by standard pro-
gramming conventions.
Chapter 8.  User Exit Programs 8.3



The Branch Table

All exit routines for a particular phase must be placed together in ascending numerical
sequence and loaded as a single module. Immediately preceding this module must be a
branch table that lists every branch (including those not supported) in the phase in ascend-
ing numerical sequence.

The format for each of the three branch tables is given in Figure 344, Figure 345 and Fig-
ure 346, respectively.

Code a 4-byte branch instruction for every exit used, and code 4 bytes of zeros for every exit
not used. An example of a coded Phase 3 branch table is Figure 347.

USING PHASE1,15
PHASE1 B E11

B E15
B E17
B E18

Figure  344. PHASE1 Branch Table Format

USING PHASE2,15
PHASE2 DC A(0) *E21 NOT SUPPORTED

B E25
DC A(0) *E27 NOT SUPPORTED 

Figure  345. PHASE2 Branch Table Format

USING PHASE3,15
PHASE3 B E31

B E32
B E35
B E37
B E38
B E39 

Figure  346. PHASE3 Branch Table Format
SyncSort for z/VSE 3.7 Programmer’s Guide8.4



The Parameters the Sort/Merge Sets Up

The sort/merge places addresses in registers 1, 13, 14, and 15 so that exit routines can
access the information they need when they take control. The registers contain addresses of
the following information.

Register 1  Contains the address of a parameter list of address constants. The parame-
ter list format will vary, depending on which exit is being used. (The
parameter list format for each exit is given later in the discussion for the
exits.)

Register 13  Contains the address of a save area of eighteen words. Store the contents of
general registers 14 through 12 at this address, starting at the fourth full-
word. In other words, the save area begins 12 bytes off of register 13.

At the end of the routine, remember to restore the contents of registers 14
through 12 before returning control to SyncSort.

Register 14  Contains SyncSort’s return address. At the end of the exit program, return
to SyncSort at this address.

Register 15  Contains the address of the first instruction of the branch table for what-
ever phase is being executed. 

Addressing and Residence Modes of User Exits 

SyncSort supports both AMODE 24 and AMODE 31 user exits, and user exits loaded above
or below 16 MB of virtual storage.

When it loads a user exit, SyncSort always calls the exit in the AMODE assigned by the
linkage editor to the exit phase. When the address of a preloaded user exit is passed to
SyncSort by an invoking parameter list, SyncSort determines the entry AMODE of the exit
according to the following rules.

• If SyncSort is invoked with AMODE 24, SyncSort ignores the high order byte of the
address of the user exit and calls the exit with AMODE 24.

PHASE3 B E31 *BRANCH TO E31
DC A(0) *NO BRANCH TO E32
DC A(0) *NO BRANCH TO E35
B E37 *BRANCH TO E37
B E38 *BRANCH TO E38
DC A(0) *NO BRANCH TO E39 

Figure  347. Sample PHASE3 Branch Table
Chapter 8.  User Exit Programs 8.5



• If SyncSort is invoked with AMODE 31, SyncSort uses the high order bit of the user
exit address to determine the AMODE of the exit. If the high order bit is set to 1, the
exit will be called with AMODE 31. If the high order bit is set to 0, the exit will be
called with AMODE 24.

An exit entered with 24-bit addressing mode can only pass 24-bit addresses back to
SyncSort. An exit entered with 31-bit addressing mode can only pass 31-bit addresses back
to SyncSort, and bits 1 through 7 must be set to 0 in addresses below 16 MB of virtual
storage.

A user exit may return to SyncSort in any addressing mode.

EXITS E11 and E31 Checkpointing and Label Processing 

These exits are used for opening and closing files, initialization or termination processing,
and the processing of labels. E31 is additionally used for checkpointing. Since the only time
the opening and closing of files would be done by the user is while assuming the responsi-
bility for processing labels, the opening and closing of files will be treated in this section,
along with label processing.

Note: Label processing must be done whenever the user’s files have nonstandard or user
standard labels. The LABEL parameter of the OPTION control statement must be speci-
fied whenever label processing is done.

Exits E15, E32, and E35 may also be used to process labels and should do so if EXIT has
been specified in the INPFIL or OUTFIL control statements. In addition, final trailer
labels (those on the last input and output volumes) should be processed by E17 and E37,
respectively.

Parameter and Entry Lists

For each of these exits, SyncSort will place the address of a parameter list of full word
addresses in register 1. The information passed in these parameter lists will vary according
to the point the user has reached in the sort/merge. An exit is approached many times dur-
ing the SyncSort program and there is an opportunity to enter at each of these times; these
opportunities are called entries and do various things. Table 48 and Table 49 on page 8.7
show the parameter to which each word points and the entry lists for each of the exits,
respectively, showing what is done at the various entry points of each exit. 
SyncSort for z/VSE 3.7 Programmer’s Guide8.6



 

Checkpointing  

When the CKPT option is specified on the SORT statement, SyncSort will take checkpoints
of sort data in main storage and on work devices at the start of the final merge pass. How-
ever, if checkpoints of data are to be taken from a user-supplied program, this should be
done at Phase 3 using E31. If CKPT is also a specified option, SyncSort will not take check-
points.

POINTER TO USE 

Checkpoint action word

Checkpoint device list 
checkpoint (E31 only) 

Previous volume unit (symbolic unit num-
ber)

Next volume unit (symbolic unit number)

Block count (of trailer tape)

SYSnumber table 

label processing 

Table 48.   Parameter List for E11 and E31

E11 ENTRY LIST E31 ENTRY LIST 

E
N

T
R

Y
 1

 

Open volume 1 of input file 1 Open volume 1 of all input files (merge 
only)

Process header labels for input file 1 Open volume 1 of output file (sort or 
merge)

Process header labels for input and out-
put files above

Checkpoint work files (sort

L
A

T
E

R
 E

N
T

R
IE

S
 Open additional input volumes or files Open additional merge input and sort 

output volumes

Process header labels for these files Process their header labels

Process trailer labels for the preceding 
input volume or file 

Process trailer labels for preceding input 
or output volume 

Table 49.   Entry Lists for E11 and E31
Chapter 8.  User Exit Programs 8.7



E11 Programs

Since sorting has not yet begun at this phase, it is not necessary to pass any information
from the exit routine to the sort through parameters.

E31 Programs

At this exit it is possible to checkpoint both user devices and sort work files. Since only one
merge occurs in Phase 3, only one checkpoint is taken. This occurs at Entry 1 when the exit
routine first gets control.

The only parameter that applies to an E31 checkpoint program is the Checkpoint device
list, which is the second parameter in the list. The device list for disk files is given below in
Figure 348.

The 2-byte Count area contains the total number of devices to be checkpointed. The Unit
code is the numeric portion of the symbolic unit name of the device, and the Bin number
is always 0. (All numbers will be in the low-order bytes.) There will be only one count area
at the start of the checkpoint device list, but a unit code and bin number will be given for
every device checkpointed.

Label Processing  

Nonstandard and user standard labels are not processed by the sort/merge program. Disk
and tape files with these types of labels will need to have label processing routines written
for headers, and the tape files will need routines for trailers as well. Since sort file labels
are not processed in Phase 2, only E11 and E31 routines will be used, and if it is necessary
to write a header label on the output file, exit 31 must be used. (Exit 37 must be used to
write the trailer label on the last volume of the output file.) For exits E11 and E31, the last
four words of the parameter list are relevant. (They are: 3. Previous volume (symbolic)
unit (number), 4. Next volume (symbolic) unit (number), 5. Block count (of trailer tape),
and 6. SYSnumber table.) The Previous volume unit points to the numeric portion of
the symbolic unit name of the volume just processed. This is contained in a halfword in the
low-order bytes. The Next volume unit points to the numeric portion of the symbolic unit
name of the volume to be processed next. This is also in a halfword in the low-order bytes.

CHECKPOINT DEVICE FOR DISK FILES

Count Unit Code Bin Number ...

2 
bytes

2 
bytes

2 
bytes

Figure  348. Checkpoint Device List for Disk Files
SyncSort for z/VSE 3.7 Programmer’s Guide8.8



The Block count points to a 4-byte area with the number of blocks of the tape receiving a
trailer label contained in the lower-order byte(s).

The SYSnumber table points to a 20 to 74 byte area containing the number portion of the
symbolic unit name of every file used for the sort. Each byte contains the SYSnumber (in
binary) of one file. The following describes the contents of each byte of the SYSnumber
table for "n" output files (FILESOUT=n):

• Bytes 1 to "n" contain the SYSnumbers for the output files. Byte 1 is always present for
the first output file. There are only as many bytes in the SYSnumber table as there
are output files present.

• Bytes "n+1" through "n+m" contain the SYSnumbers for each of m input files. The
maximum value for m is 32. A minimum of 9 bytes for input files is always reserved in
the SYSnumber table, regardless of the number of input files actually present. If less
than 9 input files are used, the unused bytes are filled with zeros.

• Bytes "n+m+1" through "n+m+9" contain the SYSnumbers for work files. The value of
m may not be less than 9, and a minimum of 9 bytes is always reserved for work files in
the SYSnumber table, regardless of the number of work files actually present. If less
than 9 work files are used, the unused bytes are filled with zeros.

• Byte "n+m+10" contains the SYSnumber for the checkpoint file.

E11 Programs

For Entry 1, the Previous volume unit and the Next volume unit parameters are both
filled with zeros. This permits testing for Entry 1. After testing successfully for Entry 1,
open the first volume of the input file, referencing the SYSnumber table in parameter 6,
and then process its label. (It is assumed that the first input volume is a nonstandard or
user labeled file. For this first entry, it is important to know the type of label of the first vol-
ume of input.)

Later Entries of this exit occur each time another input volume is needed, and when a vol-
ume has user or nonstandard labels. In order to tell the user when a volume has standard
or no labels and, therefore, needs no processing, parameter 4 will be set to zero and param-
eter 3 will contain the trailer unit. That means that if the Previous volume unit parame-
ter contains a nonzero number, the volume just read needs to be processed; therefore,
process its trailer label using the block count number given in parameter 5.

To find out if the last volume of a file has nonstandard or user labels, compare parameters
3 and 4. If they contain different numbers and parameter 3 is not zero, it is necessary to
close the last volume. Then, check the Next volume unit (parameter 4); if it does not con-
tain zeros, open the next input volume and process its header label.

The very last trailer label - the one on the last volume of the last input file - must be pro-
cessed by an E17 program.
Chapter 8.  User Exit Programs 8.9



E31 Programs

For Entry 1, parameters 3 and 4 are set to zero. Use this entry to open the first volume of
every input file used for a merge, referencing the SYSnumber table in parameter 6. (It is
assumed these have nonstandard or user labels.) Also, use this entry to open the first vol-
ume of the output file for either a sort or a merge. Then, process their header labels.

Later Entries of this exit occur whenever another merge input or sort or merge output vol-
ume is needed, and when any of these volumes have nonstandard or user labels. If a vol-
ume has standard or no labels, parameters 3 and 4 will be set to zero. To find out if the
volume just read needs processing, test parameter 3 (Previous volume unit). If it con-
tains a numeric value, process a trailer label for this volume using the block count number
found in parameter 5.

To find out if the last volume of a file has nonstandard or user labels, compare parameters
3 and 4. If they are different values and parameter 3 is not zero, it is necessary to close the
volume.

To find out if it is necessary to open the next volume, test parameter 4. If it is not zero, open
the volume and process its header label.

The last volume of every merge input file and the last volume of the output file for both a
sort and merge cannot be processed at this exit. They must be processed with an E37 rou-
tine.

EXITS E15, E25, and E35 - Changing Records and Files 

These exits are used when there is a desire to change the data in individual records, insert
or delete records from a file, have the program assume responsibility for reading the input
file, or have the program assume responsibility for writing the output file.

E15 Programs  

Exit 15 is entered before input records are processed in Phase 1. It is, therefore, possible to
write a program that changes the length of the records, or inserts or deletes records before
any sorting takes place. The new length of the records must agree with whatever value has
been specified for l2 in the RECORD control statement. (For variable-length records, the
maximum new length will agree with the l2 value.)

If the E15 program is going to read the input file, it must also open the file, process the
header labels, read the file and pass one record at a time to the sort/merge, close the file,
and process tape trailer labels. And for all read programs, the control statements must
include an INPFIL statement specifying EXIT.
SyncSort for z/VSE 3.7 Programmer’s Guide8.10



Parameter List

When using an E15, a pointer to the 4-word parameter address list is passed to the user in
register 1. (See Figure 349.)

The Record parameter will contain the address of the next record to be processed. How-
ever, if EXIT has been specified on an INPFIL statement, this parameter will be set to
zeros, since the sort/merge now expects the appropriate record address to be placed in the
Record parameter. Whether the user or the sort/merge is placing addresses, at end of file
the Record parameter will be filled with zeros.

The Action word parameter is where a code must be placed to tell the sort/merge what to
do when it receives control.

The Record length parameter will give the address of a 20-byte (five word) area contain-
ing the record length values l1, l2, l3, l4, and l5, as described in the length parameter of the
RECORD control statement.

The Record type parameter will give the address of a 1-byte area coding the input record
type: X'80' for fixed-length input and X'40' for variable-length.

The following codes may be passed to the sort/merge in the Action word.

CODE (in hexadecimal)

00  Process normally. Place X'00' in the Action word whenever the sort/merge should
process a user record, whether it has been changed or not. However, if the record is
changed, it is necessary to move it first to a work area, make the changes, and then
put the address of the changed record in the Record parameter. If the record has
not been changed, the sort/merge will supply the correct record address in this
parameter.

04  Delete record. Whenever a record is to be deleted from the input file, place X'04'
in the Action word. The sort/merge will then delete that record and return to the
exit with the address of the next record to be processed in the Record parameter.

POINTER TO:

1. ... Record
2. ... Action word
3. ... Record length
4. ... Record type 

Figure  349. Parameter List for E15
Chapter 8.  User Exit Programs 8.11



08  No return. Once an E15 exit has been entered, the sort/merge will keep returning
to it until it receives an X'08' in the Action word. In other words, it is necessary to
tell the sort/merge when this exit is no longer required.

0C  Insert record When a record is to be inserted by the user, replace the address in
the Record parameter with the main storage address of the record that is to be
added. Then, place X'0C' in the low order byte of the Action word. When the sort/
merge receives this code, it will insert the user’s record and return the address of
the next record to be processed (the one replaced by the user) in the Record param-
eter.

If additions are to be made at the end of the input file, check for zeros in the Record
parameter. Any number of records can be added at this point, since the sort/merge
will continue to return to exit E15 until an X'08' is coded to signal no return.

10  End sort/merge. If the sort/merge is to be terminated, place an X'10' in the low-
order byte of the Action word. This will cause the sort/merge to go directly to EOJ.
A message will then be given indicating how many records were processed in the
last phase before the EOJ.

Note: If EXIT has been specified on an INPFIL statement, only the last three codes
may be used.

A Sample EXIT E15 Program

The E15 program in Figure 350 should be compared with the SYSIPT examples in “Chap-
ter 5. Job Control Language and Sample Control Statement Streams” (see Figure 308 and
Figure 310). For increased efficiency when using card input for a sort, the SYSIPT parame-
ter should be used.
SyncSort for z/VSE 3.7 Programmer’s Guide8.12



STMT SOURCE STATEMENT 

1 START 0
2 USING BTBL15,15 R15 BASE REG FOR BRANCH TABLE BTBL15
3 PRINT NOGEN
4 BTBL15 DC A(0) NO E11
5 B E15 BRANCH TO EXIT E15
6 DC A(0) NO E17
7 DC A(0) NO E18
9 * ESTABLISH ADDRESSABILITY AND LINKAGE

11 DROP 15 R15 TO BE USED BY LIOCS
12 USING BTBL15,11 R11 NOW BASE REGISTER
13 E15 STM 14,12,12(13) STORE REGISTERS IN SORT SAVE AREA
14 LR 11,15 ESTABLISH ADDRESSABILITY
15 ST 13,SAVEAREA+4 STORE SORT SAVE ADDRESS IN EXIT SAVE
16 LR 12,13 SAVE REGISTER13
17 LA 13,SAVEAREA POINT TO EXIT SAVE
18 ST 13,8(12) STORE EXIT SAVE ADDRESS
19 B LINKS CONTINUE PROCESSING
20 SAVEAREA DC 18A(0) EXIT SAVE AREA
22 * EXIT IS NOW SET UP TO HAVE ITS OWN REGISTERS STORED IF NEEDED
24 * GET SYNCSORT PARAMETER ADDRESS LIST
26 LINKS LR 4,1 LOAD ADDRESS OF PARAMETER LIST
27 L 5,4(1) LOAD ADDRESS OF ACTION WORD
28 LA 6,INCARD LOAD ADDRESS OF DTF
30 * INPUT PROCEDURES
32 CARDP NOP READC OPEN FILE FIRST TIME ONLY
33 OPENR (6) OPEN SYSIPT RELOCATABLE
34 MVI CARDP+1,X'F0' CHANGE NOP TO BC 15
35 READC GET (6) READ A CARD
36 LA 7,CRDBUF POINT TO INPUT BUFFER
37 ST 7,0(4) STORE POINTER IN SORT PARAM LIST
38 LA 7,12 LOAD CODE 12 IN REG 7 (INSERT A RECORD)
40 * RESTORE REGISTERS AND RETURN TO SYNCSORT
42 GOBACK ST 7,0(5) PUT CODE IN ACTION WORD IN PARAM LIST
43 L 13,4(13) LOAD ADDRESS OF SORT SAVE AREA
44 L 14,12(13) RESTORE REGISTER 14 (RETURN REG)
45 LM 0,12,20(13) RESTORE REGISTERS 0 THROUGH 12
46 BR 14 BRANCH TO RETURN CONTROL TO SYNCSORT
48 * END OF FILE PROCESSING
50 ENDFIL LA 7,8 LOAD CODE 8 IN REGISTER 7 (NO RETURN)
51 CLOSER (6) CLOSE SYSIPT RELOCATABLE
52 B GOBACK BRANCH TO RESTORE AND RETURN ROUTINE
54 * LIOCS
56 CRDBUF DC 80C' '
57 INCARD DTFCD DEVADDR=SYSIPT,IOAREA1=CRDBUF,EOFADDR=ENDFIL
58 IJFZIZO CDMOD LIOCS CARD LOGIC MODULE
59 END 

Figure  350. Sample E15 Exit Program
Chapter 8.  User Exit Programs 8.13



Coding a COBOL E15 Exit Program 

An E15 exit program can be coded in COBOL/VSE. A COBOL E15 exit program is indi-
cated in the MODS control statement. 

A COBOL exit uses GETVIS space to load run-time library routines. Allow at least 500K of
extra GETVIS when executing SyncSort with a COBOL exit. Communication between
SyncSort and the COBOL exit takes place in the LINKAGE SECTION of the COBOL pro-
gram. For example, records are passed to the COBOL routine in the second definition
(RECORD-UP) area of the LINKAGE SECTION.

The LINKAGE SECTION  

The LINKAGE SECTION examples that follow show the parameters required for passing
fixed-length and variable-length records to the sort. The data-names and conditional
names used in the examples are arbitrary but each definition is required. The complete
programs from which the examples are taken follow the discussion of the exit.

MODS PH1=(MYCOBE15,COBOL,E15)

Figure  351. Sample MODS control statement for a COBOL E15
SyncSort for z/VSE 3.7 Programmer’s Guide8.14



Example 1: Fixed-Length Records 

• For the first definition (EXIT-STATUS) specify PIC 9(8) COMPUTATIONAL. (This
area defines exit status codes.) When using 88 levels to define the exit status codes,
specify values 00, 04, and 08.

• For the second definition (RECORD-UP) define the SORTIN record. 

• For the third definition (WORK) define the record that will be passed to SyncSort. (This
is the “work area.”)

• For the fourth through the eighth definitions define dummy areas.

• For the ninth definition (COMM-LEN) specify PIC 9(4) COMPUTATIONAL. This area
defines the communication area length.

• For the tenth definition (COMMUNICATION-AREA) code an OCCURS clause
DEPENDING ON data-name PIC X.

LINKAGE SECTION.

01 EXIT-STATUS PIC 9 (8) COMPUTATIONAL.

88 FIRST-TIME VALUE 00.

88 MOST-TIME VALUE 04.

88 LAST-TIME VALUE 08.

01 RECORD-UP.

07 FILLER PIC 9(6).

07 R-SEQ2 PIC 9(2).

07 FILLER PIC X(92).

01 WORK PIC X(100).

01 DUMMY1 PIC X.

01 DUMMY2 PIC X.

01 DUMMY3 PIC X.

01 DUMMY4 PIC X.

01 DUMMY5 PIC X.

01 COMM-LEN PIC 9(4) COMPUTATIONAL.

01 COMMUNICATION-AREA.

05 COMM-AREA OCCURS 1 TO 256 TIMES

DEPENDING ON COMM-LEN PIC X.

Figure  352. Sample LINKAGE SECTION for Fixed-Length Records
Chapter 8.  User Exit Programs 8.15



Example 2: Variable-Length Records 

• For the first definition (EXIT-STATUS) specify PIC 9(8) COMPUTATIONAL. (This
area defines exit status codes.)

• For the second definition (RECORD-UP) code an OCCURS clause with the
DEPENDING ON data-name option specifying (1) The minimum and maximum
number of bytes the variable SORTIN records contain (do not include 4 bytes for the
RDW) and (2) DEPENDING ON data-name PIC X. Data-name is defined in the sixth
definition in the LINKAGE SECTION.

• For the third definition (WORK) code an OCCURS clause with the DEPENDING ON
data-name option specifying (1) The minimum and maximum number of bytes for
variable-length records to be passed to SyncSort (do not include 4 bytes for the RDW)
and (2) DEPENDING ON data-name PIC X. Data-name is defined as the seventh
definition in the LINKAGE SECTION.

• For the fourth definition specify a dummy level 01 data-name of any number of bytes.
(IN-BUF is the data-name used in this example.) Note that the level 01 data-name,
used here as a dummy address, has no effect on the E15 routine for variable-length
records. The address is usually used as a buffer pointer in the COBOL E35 exit routine.
By using it in the E15 LINKAGE SECTION, SyncSort is able to use the same
parameter list for both COBOL exits E15 and E35.

LINKAGE SECTION.

01 EXIT-STATUS PIC 9 (8) COMPUTATIONAL.

88 FIRST-TIME VALUE 00.

88 MOST-TIME VALUE 04.

88 LAST-TIME VALUE 08.

01 RECORD-UP.

05 RU OCCURS 1 TO 100 TIMES

DEPENDING ON LEN-RU PIC X.

01 WORK.

05 WK OCCURS 1 TO 100 TIMES

DEPENDING ON LEN-WK PIC X.

01 IN-BUF PIC X(100).

01 DUMMY PIC X(4).

01 LEN-RU PIC 9(8) COMPUTATIONAL.

01 LEN-WK PIC 9(8) COMPUTATIONAL.

01 LEN-IB PIC 9(8) COMPUTATIONAL.

01 COMM-LEN PIC 9(4) COMPUTATIONAL.

01 COMMUNICATION-AREA.

05 COMM-AREA OCCURS 1 TO 256 TIMES

DEPENDING ON COMM-LEN PIC X.

Figure  353. Sample LINKAGE SECTION for Variable-Length Records
SyncSort for z/VSE 3.7 Programmer’s Guide8.16



• For the fifth definition specify a dummy area.

• For the sixth definition (LEN-RU) specify data-name PIC 9(8) COMPUTATIONAL.
This is where SyncSort passes the length of the SORTIN record to the COBOL exit. 

• For the seventh definition (LEN-WK) specify data-name PIC 9(8) COMPUTATIONAL.
This is where the E15 routine passes the length of the work area record to SyncSort.

• For the eighth definition define a dummy area.

• For the ninth definition (COMM-LEN) specify PIC 9(4) COMPUTATIONAL. This area
defines the communication area length.

• For the tenth definition (COMMUNICATION-AREA) code an OCCURS clause
DEPENDING ON data-name PIC X. 

The IDENTIFICATION, ENVIRONMENT, and DATA DIVISIONs 

As always, the COBOL program must contain the entries required by the compiler for these
program divisions. Code the optional entries in these divisions according to the require-
ments of the application. 

The WORKING-STORAGE SECTION  

If the exit routine inserts records into the final merge and replaces records passed from
SyncSort, the insertion record and the replacement record may be defined in this section.
These records will be moved to the WORK area described in the LINKAGE SECTION, so be
sure that the PICTURE clause or the OCCURS clause in the WORK area is correct for
these records.

This section may also define the return codes as 77-level data items. Alternatively, these
codes can be specified as literals in the MOVE instruction. (MOVE literal to RETURN-
CODE.) Note that RETURN-CODE is the name of a predefined storage area in COBOL
used to pass return codes to the sort; RETURN-CODE should not be defined in the exit rou-
tine.

The PROCEDURE DIVISION  

Specify the USING option on the PROCEDURE DIVISION header. Each identifier
specified after USING must be the same as those described in the 01-level of the LINKAGE
SECTION. Taking for example the identifiers defined in the fixed-length record LINKAGE
SECTION shown here, they would appear as: PROCEDURE DIVISION USING EXIT-
STATUS, RECORD-UP, WORK, DUMMY1, DUMMY2, DUMMY3, DUMMY4, DUMMY5,
COMM-LEN, COMMUNICATION-AREA.
Chapter 8.  User Exit Programs 8.17



The GOBACK statement is used to return control to SyncSort. Do not use the EXIT state-
ment as it will cause unpredictable results. Be sure that SyncSort receives a valid return
code before the GOBACK statement is executed.

EXIT-STATUS Codes (Fixed and Variable-Length Records) 

00  First record. SyncSort uses this Code to indicate the first call to the COBOL
exit and that the first record from SORTIN is in the RECORD-UP area. 

04  Most records. This is used for all calls except the first one when there are
records in the RECORD-UP area. After Code 00 has been issued, Code 04 is
passed to the exit until there is no record for the sort to pass to the
RECORD-UP area.

08  All records passed. This indicates that the last SORTIN record has already
been processed by the exit. Do not attempt to reference the record again. No
more records will be passed to the exit routine. Note that if the SORTIN
data set is empty, 08 will be passed every time including the first time.

RETURN-CODE Codes (Fixed and Variable-Length Records) 

0  Accept this record. This instructs SyncSort to accept the (unaltered) record
in the RECORD-UP area.

4  Delete this record. SyncSort will delete the current record in the 
RECORD-UP area.

8  Do not return to this exit. This instructs SyncSort to close the exit for the
remainder of the sort application. This return code might be used at SOR-
TIN end-of-file (Exit Status Code 08) to indicate that extra records will not
be added at this point. If SORTIN is present, the current input record and
all subsequent records will be processed by SyncSort.

12  Insert a record. This instructs SyncSort to add the record in the WORK area
to the input data set just ahead of the current record in the RECORD-UP
area. When SyncSort returns control to the E15, the same record will be in
the RECORD-UP area. The exit routine can then add another record from
the WORK area or process the current record in RECORD-UP.

16  Terminate SyncSort. SyncSort will end its program and return to the call-
ing program or the Supervisor. SyncSort will issue a completion code of 16
to indicate that the sort was unsuccessful.

20  Replace current record. SyncSort will replace the current record in the
RECORD-UP area with the record in the WORK area. Be sure that the
record in the WORK area is valid before passing it to SyncSort.  
SyncSort for z/VSE 3.7 Programmer’s Guide8.18



To Change a Record

In order to change the record in the RECORD-UP area, first move it to the WORK area. All
changes are made to the WORK area copy, which replaces the record in RECORD-UP when
20 is moved to RETURN-CODE.

Sample COBOL E15, Fixed-Length Records 

IDENTIFICATION DIVISION.
PROGRAM-ID. E15FL13C.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
I-O-CONTROL.
DATA DIVISION.
FILE SECTION.

WORKING-STORAGE SECTION.
01 EVEN-FLAG PIC 9(2) VALUE ZERO.

01 USER-RETURN-CODE PIC 9(8) COMPUTATIONAL.
88 ACCEPT-REC VALUE 0.
88 DELETE-REC VALUE 4.
88 END-EXIT VALUE 8.
88 INSERT-REC VALUE 12.
88 END-SORT VALUE 16.
88 REPL-REC VALUE 20.

01 CHANGE-REC.
05 C-REC PIC X(6) VALUE 'CHANGE'.
05 C-INCR PIC 9(4) VALUE ZERO.
05 C-BLANK PIC X(90) VALUE ZERO.

01 INSRT-REC.
05 I-REC PIC X(6) VALUE 'INSERT'.
05 I-INCR PIC 9(4) VALUE ZERO.
05 I-BLANK PIC X(90) VALUE SPACES.

01 TOTAL.
05 BLANKS PIC X(10) VALUE ' E15'.
05 TITL PIC X(25) VALUE 'TOTAL RECORDS OUT'.
05 COUNTER PIC 9(8) VALUE 0.

Figure  354. (Page 1 of 2) Sample COBOL E15, Fixed-Length Records
Chapter 8.  User Exit Programs 8.19



LINKAGE SECTION.

01 EXIT-STATUS PIC 9(8) COMPUTATIONAL.

88 FIRST-TIME VALUE 00.

88 LAST-TIME VALUE 08.

01 RECORD-UP.

07 FILLER PIC 9(6).

07 R-SEQ1 PIC 9(2).

07 FILLER PIC X(92).

01 WORK PIC X(100).

PROCEDURE DIVISION USING EXIT-STATUS, RECORD-UP,WORK.

IF COUNTER GREATER THAN 100

MOVE 0 TO RETURN-CODE

GO TO RETURN-TO-SORT.

IF LAST-TIME GO TO RETURN-TO-SORT.

IF R-SEQ1 EQUAL 0

MOVE 4 TO RETURN-CODE

GO TO RETURN-TO-SORT.

IF R-SEQ1 EQUAL 5

MOVE 12 TO RETURN-CODE

MOVE INSRT-REC TO WORK

GO TO RETURN-TO-SORT.

IF R-SEQ1 EQUAL 6

MOVE 20 TO RETURN-CODE

MOVE CHANGE-REC TO WORK

GO TO RETURN-TO-SORT.

MOVE 0 TO RETURN-CODE.

RETURN-TO-SORT.

ADD 1 TO COUNTER.

IF LAST-TIME MOVE 8 TO RETURN-CODE

DISPLAY TOTAL.

GOBACK.

Figure  354. (Page 2 of 2) Sample COBOL E15, Fixed-Length Records
SyncSort for z/VSE 3.7 Programmer’s Guide8.20



Sample COBOL E15, Variable-Length Records 

IDENTIFICATION DIVISION.

PROGRAM-ID. E15VL19C.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-370.

OBJECT-COMPUTER. IBM-370.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

I-O-CONTROL.

DATA DIVISION.

FILE SECTION.

WORKING-STORAGE SECTION.

01 EVEN-FLAG PIC 9(2) VALUE ZERO.

01 USER-RETURN-CODE PIC 9(8) COMPUTATIONAL.

88 ACCEPT-REC VALUE 0.

88 DELETE-REC VALUE 4.

88 END-EXIT VALUE 8.

88 INSERT-REC VALUE 12.

88 END-SORT VALUE 16.

88 REPL-REC VALUE 20.

01 CHANGE-REC.

05 C-REC PIC X(6) VALUE 'CHANGE'.

05 C-INCR PIC 9(4) VALUE ZERO.

05 C-BLANK PIC X(90) VALUE SPACES.

01 INSRT-REC.

05 I-REC PIC X(6) VALUE 'INSERT'.

05 I-INCR PIC 9(4) VALUE ZERO.

05 I-BLANK PIC X(90) VALUE SPACES.

01 TOTAL.

05 BLANKS PIC X(10) VALUE ' E15'.

Figure  355. (Page 1 of 3) Sample COBOL E15, Variable-Length Records
Chapter 8.  User Exit Programs 8.21



05 TITL PIC X(25) VALUE 'TOTAL RECORDS OUT'.

05 COUNTER PIC 9(8) VALUE 0.

LINKAGE SECTION.

01 EXIT-STATUS PIC 9(8) COMPUTATIONAL.

88 FIRST-TIME VALUE 00.

88 MOST-TIME VALUE 04.

88 LAST-TIME VALUE 08.

01 RECORD-UP.

05 RU OCCURS 1 TO 100 TIMES

DEPENDING ON LEN-RU PIC X.

01 WORK.

05 WK OCCURS 1 TO 100 TIMES

DEPENDING ON LEN-WK PIC X.

01 IN-BUF PIC X(100).

01 DUMMY PIC 9(8) COMPUTATIONAL.

01 LEN-RU PIC 9(8) COMP.

01 LEN-WK PIC 9(8) COMP.

PROCEDURE DIVISION USING EXIT-STATUS, RECORD-UP, WORK,

IN-BUF, DUMMY, LEN-RU, LEN-WK.

IF NOT FIRST-TIME

ADD 1 TO COUNTER

MOVE 0 TO RETURN-CODE.

IF COUNTER LESS THAN 50

MOVE 54 TO LEN-WK

ADD 1 TO I-INCR

MOVE INSRT-REC TO WORK

MOVE 12 TO RETURN-CODE

GO TO RETURN-TO-SORT.

IF COUNTER LESS THAN 75

MOVE 44 TO LEN-WK

ADD 1 TO C-INCR

MOVE CHANGE-REC TO WORK

Figure  355. (Page 2 of 3) Sample COBOL E15, Variable-Length Records
SyncSort for z/VSE 3.7 Programmer’s Guide8.22



Coding a C E15 Exit Routine

An E15 exit program can be coded in C/VSE. A C E15 exit program is indicated in the
MODS control statement. 

A C exit is called by SyncSort as a subroutine, so it must not contain a main() routine.

A C exit uses GETVIS space to load runtime library routines. Allow at least 4 MB of extra
GETVIS when executing SyncSort with a C exit. SyncSort and the C exit communicate
through arguments defined in the function header. For example, records are passed to the C
routine by the address presented in the second argument in the function parameter list. No
storage is reserved in the exit program because the records exist elsewhere.

Exit Communication

The parameter list structure required for passing fixed-length and variable-length records
between the sort and the exit is detailed in the following section. The parameter names
used in the examples are arbitrary but each definition is required. Complete sample pro-
grams showing the use of the argument lists are presented following the discussion of the
exit interface.

MOVE 20 TO RETURN-CODE

GO TO RETURN-TO-SORT.

IF COUNTER LESS THAN 100

MOVE 80 TO LEN-WK

ADD 1 TO I-INCR

MOVE 12 TO RETURN-CODE

MOVE INSRT-REC TO WORK.

GO TO RETURN-TO-SORT.

IF COUNTER LESS THAN 200

MOVE 4 TO RETURN-CODE

GO TO RETURN-TO-SORT.

RETURN-TO-SORT.

IF LAST-TIME MOVE 8 TO RETURN-CODE

DISPLAY TOTAL.

GOBACK. 

Figure  355. (Page 3 of 3) Sample COBOL E15, Variable-Length Records

MODS PH1=(MYCE15,C,E15)

Figure  356. Sample MODS control statement for a C E15
Chapter 8.  User Exit Programs 8.23



Fixed-Length Records - Function Definition

The following describes the parameters used in the preceding definition.

exit_status  This parameter points to a variable containing one of the follow-
ing exit status codes:

00  First record. SyncSort uses this code to indicate the first
call to the C exit and that the first record from SORTIN
is in the record_up area. If the SORTIN is empty or does
not exist, a 08 status will be passed the first time.

04  Most records. This is used for all calls except the first
one when there are records in the record_up area. After
Code 00 has been issued, Code 04 is passed to the exit
until there is no record for the sort to pass to the
record_up area.

08  All records passed. This indicates that the last SORTIN
record has already been processed by the exit. Do not
attempt to reference the record again. No more records
will be passed to the exit routine. Note that if the SOR-
TIN data set is empty or does not exist, 08 will be
passed every time including the first time.

record_up  The record_up parameter contains a pointer to the record being
passed to the E15 from the SORTIN. The struct_ru data type
represents a structure that describes the fields within the SOR-
TIN record.

work  The work parameter contains a pointer to a work area that is to
be used to hold an inserted or replaced record returned from the
E15. The struct_ins_rep data type represents a structure that
describes the fields within the inserted or replaced record.

int E15exit ( int *exit_status,

struct_ru *record_up,

struct_ins_rep *work,

int *dummy1, int *dummy2, int *dummy3,

int *dummy4, int *dummy5,

int *comm_len,

struct_ca *communication_area)

Figure  357. Fixed-Length Records - Function Definition
SyncSort for z/VSE 3.7 Programmer’s Guide8.24



dummy1 - dummy5  These parameters define unused place holders. They are used
with variable-length E15 and E35 communication. Their defini-
tion here allows a common parameter list for fixed-length and
variable-length C E15 and E35 exits.

comm_len  This parameter points to a variable that defines the communi-
cation area length (always 256 bytes).

communication_area  The communication_area parameter contains a pointer to the
communication area. The struct_ca data type represents a user-
defined structure that describes the fields in the communication
area. This area can be used to pass information between exits.

Variable-Length Records - Function Definition

The following describes the parameters used in the preceding definition.

exit_status  This parameter points to a variable containing exit status
codes. See the exit_status definition for a fixed-length C E15
exit for the code definitions.

record_up  The record_up parameter contains a “universal” pointer to the
record being passed to the E15 from the SORTIN. The void*
pointer can be cast to point an appropriate structure to describe
the record passed to the exit. This allows different record struc-
tures, as is common with variable-length records, to share a sin-
gle pointer definition.

work  The work parameter contains a “universal” pointer to a work
area that is to be used to hold an inserted or replaced record
returned from the E15. The void* pointer can be cast to point an
appropriate structure to describe the work record.

int E15exit ( int *exit_status,

void *record_up,

void *work,

int *dummy1, int *dummy2,

int *len_ru,

int *len_wk,

int *dummy3,

 int *comm_len,

struct_ca *communication_area)

Figure  358. Variable-Length Records - Function Definition
Chapter 8.  User Exit Programs 8.25



dummy1 - dummy3  These parameters define unused place holders. They are used
with C E35 communication. Their definition here allows a com-
mon parameter list for C E15 and E35 exits.

len_ru  This parameter points to a variable that defines the length of
the SORTIN record passed to the E15. This is the length of the
record referred to in the record_up parameter.

len_wk  This parameter points to a variable that defines the length of
the record to be inserted or used as a replacement for the
record_up record. This is the length of the record referred to in
the work parameter. This field must be set by the exit when an
insert or replace operation is performed.

comm_len  This parameter points to a variable that defines the communi-
cation area length (always 256 bytes).

communication_area  The communication_area parameter contains a pointer to the
communication area. The struct_ca data type represents a user-
defined structure that describes the fields in the communication
area. This area can be used to pass information between exits.

RETURN-CODE Codes (Fixed and Variable-Length Records)

The RETURN statement is used to return control to SyncSort. It must indicate one of the
following return values to indicate the action to be taken by SyncSort.

0  Accept this record. This instructs SyncSort to accept the (unaltered) record
in the record_up area.

4  Delete this record. SyncSort will delete the current record in the RECORD-
UP area.

8  Do not return to this exit. This instructs SyncSort to close the exit for the
remainder of the sort application. This return code might be used at SOR-
TIN end-of-file (exit_status code 08) to indicate that extra records will not
be added at this point. If SORTIN is present, the current input record and
all subsequent records will be processed by SyncSort.

12  Insert a record. This instructs SyncSort to add the record in the WORK area
to the input data set just ahead of the current record in the RECORD-UP
area. When SyncSort returns control to the E15, the same record will be in
the RECORD-UP area. The exit routine can then add another record from
the WORK area or process the current record in RECORD-UP.
SyncSort for z/VSE 3.7 Programmer’s Guide8.26



16  Terminate SyncSort. SyncSort will end its program and return to the call-
ing program or the Supervisor. SyncSort will issue a completion code of 16
to indicate that the sort was unsuccessful.

20  Replace current record. SyncSort will replace the current record in the
record_up area with the record in the work area. Be sure that the record in
the work area is valid before passing it to SyncSort. When replacing a vari-
able-length record, insure that its length is indicated in the len_wk param-
eter.

How to Change a Record

To change the record in the record_up area, first move it to the work area. All changes are
made to the work area copy, which replaces the record in record_up when the return value
from the exit is 20.
Chapter 8.  User Exit Programs 8.27



Sample C E15, Fixed-Length Records

#define FIRST_TIME 0

#define MOST_TIME 4

#define LAST_TIME 8

#define ACCEPT_REC 0

#define DELETE_REC 4

#define END_EXIT 8

#define INSERT_REC 12

#define END_SORT 16

#define REPL_REC 20

typedef _Packed struct record {

char name[6];

char code[4];

int serial_no;

} t_ru;

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int SMPE15FB(int *exit_status,t_ru *record_up,t_ru *work,int *dummy1,

int *dummy2,int *dummy3,int *dummy4,int *dummy5,int *comm_len,

void *communication_area)

{

static counter=0;

int icode,return_code;

char *text1="CHANGE";

char *text2="INSERT";

if (counter > 10) {return_code=ACCEPT_REC;

goto return_to_sort;}

if (*exit_status == LAST_TIME) {return_code=END_EXIT;

goto return_to_sort;}

Figure  359. (Page 1 of 2) Sample C E15, Fixed-Length Records
SyncSort for z/VSE 3.7 Programmer’s Guide8.28



sscanf(record_up->code,"%4d",&icode);

if (icode==0) { return_code=DELETE_REC;

goto return_to_sort;}

if (icode==5) {

strncpy(work->name,text2,6);

sprintf(work->code,"%4d",icode+counter+8);

work->serial_no=300;

return_code=INSERT_REC;

goto return_to_sort;}

if (icode==6) {

strncpy(work->name,text1,6);

sprintf(work->code,"%4d",icode+1);

work->serial_no=record_up->serial_no+200;

return_code=REPL_REC;

goto return_to_sort;}

return_code=ACCEPT_REC;

return_to_sort:

counter++;

if (*exit_status==LAST_TIME)

{ return_code=END_EXIT;

printf("E15 total number of records handled:%d\n",counter);

}

return(return_code);

}

Figure  359. (Page 2 of 2) Sample C E15, Fixed-Length Records
Chapter 8.  User Exit Programs 8.29



Sample C E15, Variable-Length Records

#define FIRST_TIME 0

#define MOST_TIME 4

#define LAST_TIME 8

#define ACCEPT_REC 0

#define DELETE_REC 4

#define END_EXIT 8

#define INSERT_REC 12

#define END_SORT 16

#define REPL_REC 20

#define MAX_RLEN 104

typedef _Packed struct record1 {

char rec[6];

int incr;

char address[MAX_RLEN-14];

} t_ru1;

typedef _Packed struct record2 {

char title[10];

int number;

} t_ru2;

#include <stdio.h>

#include <stdlib.h>

#include <strings.h>

int SMPE15VB(int* exit_status,void *record_up,void *work,int *dummy1,

int *dummy2,int *len_ru,int *len_wk,int *dummy3,int *comm_len,

void *communication_area)

{

static counter=0,i_incr=0,i_number=0;

int return_code;

char *text1="CHANGE E15";

char *text2="INSERT E15";

t_ru1 *p_record1,*pwork1;

t_ru2 *p_record2,*pwork2;

p_record1 = (t_ru1 *)record_up;

pwork1 = (t_ru1 *)work;

p_record2 = (t_ru2 *)record_up;

pwork2 = (t_ru2 *)work;

if (*exit_status != FIRST_TIME) {counter++;

return_code=ACCEPT_REC;}

Figure  360. (Page 1 of 3) Sample C E15, Variable-Length Records
SyncSort for z/VSE 3.7 Programmer’s Guide8.30



if (counter<50) {

if (*len_ru == 14)

{

*len_wk = 14;

i_number++;

pwork2->number=i_number;

strncpy(pwork2->title,text2,10);

}

else {

*len_wk = 54;

i_incr++;

pwork1->incr=i_incr;

strncpy(pwork1->rec,text2,6);

}

return_code=INSERT_REC;

goto return_to_sort;}

if (counter<75) {

if (*len_ru == 14)

{

*len_wk = 14;

pwork2->number=p_record2->number+1;

strncpy(pwork2->title,text1,10);

}

else {

*len_wk = 54;

pwork1->incr=p_record1->incr+1;

strncpy(pwork1->rec,text1,6);

}

return_code=REPL_REC;

goto return_to_sort;}

if (counter<100) {

if (*len_ru == 14)

{

*len_wk = 14;

i_number++;

pwork2->number=i_number;

strncpy(pwork2->title,text2,10);

}

Figure  360. (Page 2 of 3) Sample C E15, Variable-Length Records
Chapter 8.  User Exit Programs 8.31



E25 Programs  

Exit E25 programs can be used to sum or delete fixed-length records during Phase 2 of the
sort. Exit E25 will be entered just before each record in a string of records is moved to the
output buffer, except in the case of the first record of the string, which will already have
been moved. Because you are not allowed to delete the record already in the output buffer,
you are cautioned that you may miss deleting certain records if they turn up at the begin-
ning of a string. You may also miss examining entire groups of records, if the sort does not
need to process the entire input file in Phase 2. And, in the event that the input file can be
processed without going through Phase 2 at all, your E25 program will not run.

Parameter List

The three-word parameter list of addresses (see Figure 361) is passed to the user in register
1.

else {

*len_wk = 80;

i_incr++;

pwork1->incr=i_incr;

strncpy(pwork1->rec,text2,6);

}

return_code=INSERT_REC;

goto return_to_sort;}

if (counter<200) {

return_code=DELETE_REC;

goto return_to_sort;}

return_to_sort:

if (*exit_status==LAST_TIME)

{ return_code=END_EXIT;

printf("E15 total number of records handled:%d\n",counter);

}

return(return_code);

}

Figure  360. (Page 3 of 3) Sample C E15, Variable-Length Records

POINTER TO:

1. ... Record
2. ... Previous record
3. ... Action word 

Figure  361. Parameter List for E25
SyncSort for z/VSE 3.7 Programmer’s Guide8.32



The Record parameter will contain the address of the record to be processed next.

The Previous record will give the address of the previous record in the series, which is
now in the output buffer.

The Action word points to the word where the code is placed to signal the sort on what
action to take. The following codes are used.

CODE (in hexadecimal)

00  Process normally. Place an X'00' in the Action word when the sort is to
process the present record and the previous record normally.

04  Delete record. The record that is waiting to be processed can be deleted by
placing X'04' in the Action word. This is the record whose address is given
in parameter 1. (It is not possible to delete the record whose address is
given in parameter 2.) The sort will delete the record and return control to
the user with the address of a new record in parameter 1. (The address of
the previous record in parameter 2 will remain unchanged.)

If a pair of records is to be summed, place the total in the record in the out-
put buffer (but do not alter the length of that record) and delete the record
about to be processed. Continue summing at this point with new records as
many times as is necessary.

08  No Return. X'08' should be placed in the Action word when the exit has
completed and it is no longer necessary to return to this exit. The sort will
then continue, but will not return to this exit.

10  End sort. Place X'10' or decimal 16 in the Action word to end the sort pro-
gram as well as the user’s program. This will cause the sort to go to EOJ,
and a message will be sent indicating the number of records that were pro-
cessed in this phase.  

E35 Programs  

Use an exit E35 program to insert or delete records, to change their contents or their
lengths, or to sum them. If records are lengthened or shortened, the new length must be
referenced in the l3 parameter of the RECORD control statement. (For variable-length
records, the maximum new length should be given as the l3 value.)

The E35 exit will be entered before every output record is written. If desired, write a pro-
gram that writes the output on one or more devices. If this is done, it is necessary to include
an OUTFIL control statement specifying EXIT and assume entire responsibility in the pro-
gram for opening, writing, and closing the output file. Do not use X'00' and X'0C' codes with
this type of program.
Chapter 8.  User Exit Programs 8.33



Parameter List

Figure 362 shows the six-word parameter list that is pointed to by the user in register 1.

The Record parameter contains the address of the record to be processed next. When all
the records have been processed, this parameter will be filled with zeros.

The Previous record parameter contains the address of the previous record, which has
been processed and has moved on to the output buffer. Before the first record has been pro-
cessed, this parameter will be filled with zeros.

The Action word points to a word where a code has been placed that informs the sort/
merge what action is to be taken.

The Out-of-sequence record parameter is used when a record is to be inserted whose
control field is not in sequence with those of other records. It points to a word filled with
zeros.

The Record length parameter will give the address of a 20-byte (5-word) area containing
the record length values l1, l2, l3, l4, and l5.

The Record type parameter will give the address of a 1-byte area coding the input record
type: X'80' for fixed-length input, X'40' for variable-length.

The following codes may be passed to the sort/merge in the Action word.

CODE (in hexadecimal)

00  Process normally. (Cannot be used with OUTFIL EXIT.) This is to be used when
the sort/merge is to process records normally. If a record is to be changed, code
X'00', move the record to a work area, make the change, and place the address of
the changed record in the Record parameter. If a control field is changed in any way
(including if a part of it is removed when a record is shortened), it is necessary to
place a nonzero value somewhere in the word addressed by the fourth parameter.
The sort/merge will then accept this now out-of-sequence record.

POINTER TO:

1. ... Record
2. ... Previous record
3. ... Action word
4. ... Out-of-sequence record
5. ... Record length
6. ... Record type 

Figure  362. Parameter List for E35
SyncSort for z/VSE 3.7 Programmer’s Guide8.34



04  Delete record. If the sort/merge is to delete a record whose address is in parame-
ter 1, place X'04' in the Action word.

08  No return When the program is completed and there is no longer a need to return
to this exit, place X'08' in the Action word. The sort/merge will then continue but
will not return to this exit.

0C  Insert record. (Cannot be used with OUTFIL EXIT.) When a record is to be
inserted in the output file, put the address of this record in parameter 1 in place of
the address of the record to be processed next, and store an X'0C' or decimal 12 in
the Action word. The sort/merge will insert the record, and when control is
returned to the user, the address of the inserted record will be in parameter 2, and
the address of the record that was to have been processed next will again appear in
parameter 1. Records can continue to be inserted at this point or normal processing
can be resumed.

If the end of the output file has been reached (in this case, the first parameter will
contain zeros), additional records can be inserted because the sort/merge will keep
returning to this exit until a code X'08' in the Action word has been reached.

Since the records at this final output stage are all in order, be sure to place a non-
zero value in the out-of-sequence record parameter if a record is added that is not in
sequence. This fourth parameter is a fullword of zeros, and nonzero values may be
placed anywhere in that word.

10  End sort/merge. Place an X'10'or decimal 16 in the Action word when the sort/
merge program is to be terminated. This will cause the sort/merge to go to EOJ, and
a message will be sent informing the user how many records were processed during
this last phase. 

Coding a COBOL E35 Exit Program 

An E35 exit program can be coded in COBOL/VSE. A COBOL E35 exit program is indi-
cated in the MODS control statement.

A COBOL exit uses GETVIS space to load run-time library routines. Allow at least 500K of
extra GETVIS when executing SyncSort with a COBOL exit.

Like any other E35 exit routine, the COBOL E35 is called each time a record is brought out
of Phase 3. Communication between SyncSort and the COBOL exit takes place in the
LINKAGE SECTION of the COBOL program. For example, records are passed to the
COBOL routine in the second definition (RECORD-UP) area of the LINKAGE SECTION. 

MODS PH3=(MYCOBE35,COBOL,E35)

Figure  363. Sample MODS control statement for a COBOL E35
Chapter 8.  User Exit Programs 8.35



The LINKAGE SECTION  

The LINKAGE SECTION examples that follow show the parameters required for passing
fixed-length and variable-length records to the sort. The data-names and conditional
names used in the examples are arbitrary but each definition is required. The complete
programs from which the examples are taken follow the discussion of the exit.

Example 1: Fixed-Length Records  

The PICTURE and VALUE clauses for (1) the record passed from SyncSort, (2) the record
WORK area, and (3) the record in the output buffer are application-specific.

• For the first definition (EXIT-STATUS) specify PIC 9(8) COMPUTATIONAL. When
using 88 levels to define exit status codes, specify values 00, 04, and 08.

• For the second definition (RECORD-UP) define the record leaving Phase 3.

LINKAGE SECTION.

01 EXIT-STATUS PIC 9(8) COMPUTATIONAL.

88 FIRST-TIME VALUE 00.

88 MOST-TIME VALUE 04.

88 LAST-TIME VALUE 08.

01 RECORD-UP.

05 RU PIC X(100).

01 WORK.

05 WK PIC X(100).

01 IN-BUF.

05 IB PIC X(100).

01 DUMMY1 PIC X(4).

01 DUMMY2 PIC X.

01 DUMMY3 PIC X.

01 DUMMY4 PIC X.

01 COMM-LEN PIC 9(4) COMPUTATIONAL.

01 COMMUNICATION-AREA.

05 COMM-AREA OCCURS 1 TO 256 TIMES

DEPENDING ON COMM-LEN PIC X.

Figure  364. Sample LINKAGE SECTION for Fixed-Length Records
SyncSort for z/VSE 3.7 Programmer’s Guide8.36



• For the third definition (WORK) define the record that SyncSort is to put in the output
data set. This is the “work” area.

• For the fourth definition (IN-BUF) define the record in the output data set.

• For the fifth definition define a dummy area with PIC X(4).

• For the sixth through the eighth definitions define dummy areas.

• For the ninth definition (COMM-LEN) specify PIC 9(4) COMPUTATIONAL. This area
defines the communication area length.

• For the tenth definition (COMMUNICATION-AREA) code an OCCURS clause
DEPENDING ON data-name PIC X. 

Example 2: Variable-Length Records 

• For the first definition (EXIT-STATUS) specify PIC 9(8) COMPUTATIONAL. When
using 88 levels to define exit status codes, specify values 00, 04, and 08.

LINKAGE SECTION.

01 EXIT-STATUS PIC 9(8) COMPUTATIONAL.

88 FIRST-TIME VALUE 00.

88 MOST-TIME VALUE 04.

88 LAST-TIME VALUE 08.

01 RECORD-UP.

05 RU OCCURS 1 TO 100 TIMES

DEPENDING ON LEN-RU PIC X.

01 WORK.

05 WK OCCURS 1 TO 100 TIMES

DEPENDING ON LEN-WK PIC X.

01 IN-BUF.

05 IB OCCURS 1 TO 100 TIMES

DEPENDING ON LEN-IB PIC X.

01 DUMMY PIC X(4).

01 LEN-RU PIC 9(8) COMPUTATIONAL.

01 LEN-WK PIC 9(8) COMPUTATIONAL.

01 LEN-IB PIC 9(8) COMPUTATIONAL.

01 COMM-LEN PIC 9(4) COMPUTATIONAL.

01 COMMUNICATION-AREA.

05 COMM-AREA OCCURS 1 TO 256 TIMES

DEPENDING ON COMM-LEN PIC X.

Figure  365. Sample LINKAGE SECTION for Variable-Length Records
Chapter 8.  User Exit Programs 8.37



• For the second definition (RECORD-UP) code an OCCURS clause with the
DEPENDING ON data-name option specifying (1) the minimum and maximum
number of bytes of your variable-length records leaving Phase 3 (do not include 4 bytes
for the RDW) and (2) DEPENDING ON data-name PIC X. Data-name is defined in the
sixth definition in the LINKAGE SECTION.

• For the third definition (WORK) code an OCCURS clause with the DEPENDING ON
data-name option specifying (1) the minimum and maximum number of bytes for
variable-length records you will pass to SyncSort (do not include 4 bytes for the RDW)
and (2) DEPENDING ON data-name PIC X. Data-name is defined as the seventh
definition in the LINKAGE SECTION. This area is used for the “work” area.

• For the fourth definition (IN-BUF) define records in the output area. Code an OCCURS
clause with the DEPENDING ON data-name option specifying (1) the minimum and
maximum number of bytes for variable-length records in the output data set (do not
include 4-bytes for the RDW) and (2) DEPENDING ON data-name PIC X. Data-name
is defined as the eighth definition in the LINKAGE SECTION.

• For the fifth definition define a dummy area with PIC X(4).

• For the sixth definition (LEN-RU) specify PIC 9(8) COMPUTATIONAL. SyncSort will
pass the length of the record leaving Phase 3 in this area.

• For the seventh definition (LEN-WK) specify PIC 9(8) COMPUTATIONAL. The E35
routine passes SyncSort the length of the record in the work area in this section.

• For the eighth definition (LEN-IB) specify PIC 9(8) COMPUTATIONAL. SyncSort
passes the length of the record in the output area in this section.

• For the ninth definition (COMM-LEN) specify PIC 9(4) COMPUTATIONAL. This area
defines the communication area length.

• For the tenth definition (COMMUNICATION-AREA) code an OCCURS clause
DEPENDING ON data-name PIC X. 

The IDENTIFICATION, ENVIRONMENT, and DATA DIVISIONs 

As always, the COBOL program must contain the entries required by the compiler for these
program divisions. Code the optional entries in these divisions according to the require-
ments of the application.

The WORKING-STORAGE SECTION  

If the exit routine inserts records into the final merge and replaces records passed from
SyncSort, the insertion record and the replacement record may be defined in this section.
These records will be moved to the WORK area described in the LINKAGE SECTION, so be
SyncSort for z/VSE 3.7 Programmer’s Guide8.38



sure that the PICTURE clause or the OCCURS clause in the WORK area is correct for
these records.

This section may also define the return codes as 77-level data items. Alternatively, these
codes can be specified as literals in the MOVE instruction. (MOVE literal to RETURN-
CODE.) Note that RETURN-CODE is the name of a predefined storage area in COBOL
used to pass return codes to the sort; RETURN-CODE should not be defined in the exit rou-
tine.

The PROCEDURE DIVISION  

Specify the USING option on the PROCEDURE DIVISION header. Each identifier
specified after USING must be the same as those described in the 01-level of the LINKAGE
SECTION. Taking for example the identifiers defined in the fixed-length record LINKAGE
SECTION shown here, they would appear as: PROCEDURE DIVISION USING EXIT-
STATUS, RECORD-UP, WORK, IN-BUF, DUMMY1, DUMMY2, DUMMY3, DUMMY4,
COM-LEN, COMMUNICATION-AREA.

The GOBACK statement is used to return control to SyncSort. Do not use the EXIT state-
ment as it will cause unpredictable results. Be sure that SyncSort receives a valid return
code before the GOBACK statement is executed.

EXIT-STATUS Codes (Fixed and Variable-Length Records) 

00  First record. SyncSort uses this Code to indicate the first call to the COBOL
exit and that the first record to leave Phase 3 is in the RECORD-UP area.

04  Most records. This is used for all calls except the first one when there are
records in the RECORD-UP area. After Code 00 has been issued, Code 04 is
passed to the exit until there is no record for the sort to pass to the
RECORD-UP area.

08  All records passed. This indicates that the last SORTIN record has already
been processed by the exit. Do not attempt to reference the record again. No
more records will be passed to the exit routine. Note that if the SORTIN
data set is empty, 08 will be passed every time including the first time.

RETURN-CODE Codes (Fixed and Variable-Length Records) 

0  Accept this record. This instructs SyncSort to accept the (unaltered) record
in the RECORD-UP area.

4  Delete this record. SyncSort will delete the current record in the RECORD-
UP area
Chapter 8.  User Exit Programs 8.39



8  Disconnect E35. This instructs SyncSort to process any remaining records
without showing them to the E35 exit. Register 1 is ignored for processing
this return code.

When this return code is used at end-of-file (signalled by EXIT-STATUS
LAST-TIME), it indicates that the E35 is also finished and will not add
additional records. When used before end-of-file, it indicates that SyncSort
should process the “current” record passed to the E35, and any subsequent
records, as if there were no E35 present. Note that when SyncSort is not
creating any output files and E35 is the only “output”, SyncSort terminates
immediately, since any subsequent records will never be seen. Also note
that if an XSUM data set was being created, it will only contain records
generated prior to the return code of 8.

12  Insert a record. This instructs SyncSort to add the record in the WORK area
to the output data set just ahead of the current record in the RECORD-UP
area. When SyncSort returns control to the E35, the same record will be in
the RECORD-UP area. The exit routine can then add another record from
the WORK area or process the current record in RECORD-UP.

16  Terminate SyncSort. SyncSort will terminate and return to the calling pro-
gram or the Supervisor. SyncSort will issue a completion code of 16 to indi-
cate that the sort was unsuccessful.

20  Replace current record. SyncSort will replace the current record in the
RECORD-UP area with the record in the WORK area. Be sure that the
record in the WORK area is valid before passing it to SyncSort. 

To Change a Record

In order to change the record in the RECORD-UP area, first move it to the WORK area.
Make the changes there and then pass return code 20 in RETURN-CODE. The altered
record in the WORK area will replace the record in RECORD-UP.
SyncSort for z/VSE 3.7 Programmer’s Guide8.40



Sample COBOL E35, Fixed-Length Records  

IDENTIFICATION DIVISION.

PROGRAM-ID. E35FL101.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-370.

OBJECT-COMPUTER. IBM-370.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

I-O-CONTROL.

DATA DIVISION.

FILE SECTION.

WORKING-STORAGE SECTION.

01 EVEN-FLAG PIC 9(2) VALUE ZERO.

01 USER-RETURN-CODE PIC 9(8) COMPUTATIONAL.

88 ACCEPT-REC VALUE 0.

88 DELETE-REC VALUE 4.

88 END-EXIT VALUE 8.

88 INSERT-REC VALUE 12.

88 END-SORT VALUE 16.

88 REPL-REC VALUE 20.

01 CHANGE-REC.

05 C-REC PIC X(6) VALUE 'CHANGE'.

05 C-INCR PIC 9(4) VALUE ZERO.

05 C-BLANK PIC X(90) VALUE SPACES.

01 INSRT-REC.

05 I-REC PIC X(6) VALUE 'INSERT'.

05 I-INCR PIC 9(4) VALUE ZERO.

05 I-BLANK PIC X(90) VALUE SPACES.

01 TOTAL.

05 BLANKS PIC X(10) VALUE 'E35'.

05 TITL PIC X(25)

VALUE 'TOTAL RECORDS HANDLED'.

05 COUNTER PIC 9(8) VALUE 0

Figure  366. (Page 1 of 2) Sample COBOL E35, Fixed-Length Records
Chapter 8.  User Exit Programs 8.41



LINKAGE SECTION.
01 EXIT-STATUS PIC 9(8) COMPUTATIONAL.

88 FIRST-TIME VALUE 00.
88 MOST-TIME VALUE 04.
88 LAST-TIME VALUE 08.

01 RECORD-UP.
05 RU PIC X(100).

01 WORK.
05 WK PIC X(100).

01 IN-BUF.
05 IB PIC X(100).

01 DUMMY1 PIC X(4).

PROCEDURE DIVISION USING EXIT-STATUS, RECORD-UP, WORK,
IN-BUF, DUMMY.

IF NOT FIRST-TIME
ADD 1 TO COUNTER
MOVE 0 TO RETURN-CODE.

IF COUNTER LESS THAN 50
ADD 1 TO I-INCR
MOVE INSRT-REC TO WORK
MOVE 12 TO RETURN-CODE
GO TO RETURN-TO-SORT.

IF COUNTER LESS THAN 75
ADD 1 TO C-INCR
MOVE CHANGE-REC TO WORK
MOVE 20 TO RETURN-CODE
GO TO RETURN-TO-SORT.

IF COUNTER LESS THAN 100
ADD 1 TO I-INCR
MOVE INSRT-REC TO WORK
MOVE 12 TO RETURN-CODE
GO TO RETURN-TO-SORT.

IF COUNTER LESS THAN 200
MOVE 4 TO RETURN-CODE
GO TO RETURN-TO-SORT.

RETURN-TO-SORT.
IF LAST-TIME MOVE 8 TO RETURN-CODE

DISPLAY TOTAL.
GOBACK.

Figure  366. (Page 2 of 2) Sample COBOL E35, Fixed-Length Records
SyncSort for z/VSE 3.7 Programmer’s Guide8.42



Sample COBOL E35, Variable-Length Records 

IDENTIFICATION DIVISION.

PROGRAM-ID. E35VL101.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-370.

OBJECT-COMPUTER. IBM-370.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

I-O-CONTROL.

DATA DIVISION.

FILE SECTION.

WORKING-STORAGE SECTION.

01 EVEN-FLAG PIC 9(2) VALUE ZERO.

01 USER-RETURN-CODE PIC 9(8) COMPUTATIONAL.

88 ACCEPT-REC VALUE 0.

88 DELETE-REC VALUE 4.

88 END-EXIT VALUE 8.

88 INSERT-REC VALUE 12.

88 END-SORT VALUE 16.

88 REPL-REC VALUE 20.

01 CHANGE-REC.

05 C-REC PIC X(6) VALUE 'CHANGE'.

05 C-INCR PIC 9(4) VALUE ZERO.

05 C-BLANK PIC X(90) VALUE SPACES.

01 INSRT-REC.

05 I-REC PIC X(6) VALUE 'INSERT'.

05 I-INCR PIC X(4) VALUE ZERO.

05 I-BLANK PIC X(90) VALUE SPACES.

01 TOTAL.

05 BLANKS PIC X(10) VALUE ' E35'.

05 TITL PIC X(25)

VALUE 'TOTAL RECORDS HANDLED'.

05 COUNTER PIC 9(8) VALUE 0.

Figure  367. (Page 1 of 3) Sample COBOL E35, Variable-Length Records
Chapter 8.  User Exit Programs 8.43



LINKAGE SECTION.
01 EXIT-STATUS PIC 9(8) COMPUTATIONAL.

88 FIRST-TIME VALUE 00.
88 MOST-TIME VALUE 04.
88 LAST-TIME VALUE 08.

01 RECORD-UP.
05 RU OCCURS 1 TO 100 TIMES

DEPENDING ON LEN-RU PIC X.
01 WORK.

05 WK OCCURS 1 TO 100 TIMES
DEPENDING ON LEN-WK PIC X.

01 IN-BUF.
05 IB OCCURS 1 TO 100 TIMES

DEPENDING ON LEN-IB PIC X.

01 DUMMY PIC X(4).
01 LEN-RU PIC 9(8) COMPUTATIONAL.
01 LEN-WK PIC 9(8) COMPUTATIONAL.
01 LEN-IB PIC 9(8) COMPUTATIONAL.

Figure  367. (Page 2 of 3) Sample COBOL E35, Variable-Length Records
SyncSort for z/VSE 3.7 Programmer’s Guide8.44



PROCEDURE DIVISION USING EXIT-STATUS, RECORD-UP, WORK,

IN-BUF, DUMMY, LEN-RU, LEN-WK, LEN-IB.

IF NOT FIRST-TIME
ADD 1 TO COUNTER
MOVE 0 TO RETURN-CODE.

IF COUNTER LESS THAN 50
MOVE 54 TO LEN-WK
ADD 1 TO I-INCR
MOVE INSRT-REC TO WORK
MOVE 12 TO RETURN-CODE
GO TO RETURN-TO-SORT.

IF COUNTER LESS THAN 75
MOVE 44 TO LEN-WK
ADD 1 TO C-INCR
MOVE CHANGE-REC TO WORK
MOVE 20 TO RETURN-CODE
GO TO RETURN-TO-SORT.

IF COUNTER LESS THAN 100
MOVE 80 TO LEN-WK
ADD 1 TO I-INCR
MOVE INSRT-REC TO WORK
MOVE 12 TO RETURN-CODE
GO TO RETURN-TO-SORT.

IF COUNTER LESS THAN 200
MOVE 4 TO RETURN-CODE
GO TO RETURN-TO-SORT.

RETURN-TO-SORT.
IF LAST-TIME MOVE 8 TO RETURN-CODE

DISPLAY TOTAL.
GOBACK.

Figure  367. (Page 3 of 3) Sample COBOL E35, Variable-Length Records
Chapter 8.  User Exit Programs 8.45



Coding a C E35 Exit Routine 

An E35 exit program can be coded in C/VSE. A C E35 exit program is indicated in the
MODS control statement.

A C exit is called by SyncSort as a subroutine, so it must not contain a main() routine.

A C exit uses GETVIS space to load runtime library routines. Allow at least 4 MB of extra
GETVIS when executing SyncSort with C exit.

Like any other E35 exit routine, the C E35 exit routine is called each time a record is
brought out of Phase 3. Communication between SyncSort and the C exit takes place
through arguments defined in the function header. For example, records are passed to the C
routine by an address presented in the second argument in the function parameter list. 

Exit Communication

The parameter list structure required for passing fixed-length and variable-length records
between the sort and the exit is detailed in the following section. The parameter names
used in the examples are arbitrary but each definition is required. Complete sample pro-
grams showing the use of the argument lists are presented following the discussion of the
exit interface.

Fixed-Length Records - Function Definition

The following describes the parameters used in Figure 369.

exit_status  This parameter points to a variable containing one of the follow-
ing exit status codes:

MODS PH3=(MYCE35,C,E35)

Figure  368. Sample MODS Control Statement for a C E35

int E35exit ( int *exit_status,

struct_ru *record_up,

struct_ins_rep *work,

 struct_in_buf *in_buf,

int *dummy1, int *dummy2, int *dummy3, int *dummy4,

 int *comm_len,

struct_ca *communication_area)

Figure  369. Fixed-Length Records - Function Definition
SyncSort for z/VSE 3.7 Programmer’s Guide8.46



00  First record. SyncSort uses this Code to indicate the
first call to the C exit and that the first record to leave
Phase 3 is in the record_up area. If there are no records
to pass to the exit, a 08 status will be passed to the exit
on the first call.

04  Most records. This is used for all calls except the first
one when there are records in the record_up area. After
Code 00 has been issued, Code 04 is passed to the exit
until there is no record for the sort to pass to the
record_up area.

08  All records passed. This indicates that the last record
has already been processed by the exit. Do not attempt
to reference the record again. No more records will be
passed to the exit routine. Note that if SyncSort is not
passing any records to Phase 3, 08 will be passed every
time including the first time.

record_up  The record_up parameter contains a pointer to the record leav-
ing Phase 3. The struct_ru data type represents a structure
that describes the fields within the record.

work  The work parameter contains a pointer to a work area that is to
be used to hold an inserted or replaced record returned from the
E35. The struct_ins_rep data type represents a structure that
describes the fields within the inserted or replaced record.

in_buf  The in_buf parameter contains a pointer to the record that
SyncSort is to put in the output data set. Until a record has
been accepted or inserted, this pointer will be null. A record at
this address can be modified if required.

dummy1 - dummy4  These parameters define unused place holders. They are used
with variable-length C E35 communication. Their definition
here allows a common parameter list for fixed and variable-
length C E15 and E35 exits.

comm_len  This parameter points to a variable that defines the communi-
cation area length (always 256 bytes).

communication_area  The communication_area parameter contains a pointer to the
communication area. The struct_ca data type represents a user-
defined structure that describes the fields in the communication
area. This area can be used to pass information between exits.
Chapter 8.  User Exit Programs 8.47



Variable-Length Records - Function Definition

The following describes the parameters used in Figure 370.

exit_status  This parameter points to a variable containing exit status
codes. See the exit_status definition for a fixed-length C E35
exit for the code definitions.

record_up  The record_up parameter contains a “universal” pointer to the
record leaving Phase 3. The void* pointer can be cast to point an
appropriate structure to describe the record passed to the exit.
This allows different record structures, as is common with vari-
able-length records, to share a universal pointer.

work  The work parameter contains a “universal” pointer to a work
area that is to be used to hold an inserted or replaced record
returned from the E35. The void* pointer can be cast to point an
appropriate structure to describe the work record.

in_buf  The in_buf parameter contains a “universal” pointer to the
record that SyncSort is to put in the output data set. Until a
record has been accepted or inserted, this pointer will be null.
The void* pointer can be cast to point an appropriate structure
to describe the work record.

dummy1  This parameter defines an unused place holder.

len_ru  This parameter points to a variable that defines the length of
the record leaving Phase 3. This is the length of the record
referred to in the record_up parameter.

len_wk  This parameter points to a variable that defines the length of
the record to be inserted or used as a replacement for the
record_up record. This is the length of the record referred to in
the work parameter.

int E35exit ( int *exit_status,

void *record_up,

void *work,

void *in_buf,

int *dummy1,

int *len_ru,

int *len_wk,

int *len_ib,

int *comm_len,

struct_ca *communication_area)

Figure  370. Variable-Length Records - Function Definition
SyncSort for z/VSE 3.7 Programmer’s Guide8.48



len_ib  This parameter points to a variable that defines the length of
the record that SyncSort is to put in the output data set. This is
the length of the record referred to in the in_buf parameter.

comm_len  This parameter points to a variable that defines the communi-
cation area length.

communication_area  The communication_area parameter contains a pointer to the
communication area. The struct_ca data type represents a user-
defined structure that describes the fields in the communication
area. This information can be used to pass information between
exits.

RETURN-CODE Codes (Fixed and Variable-Length Records)

0  Accept this record. This instructs SyncSort to accept the (unaltered) record
in the record_up area.

4  Delete this record. SyncSort will delete the current record in the record_up
area.

8  Disconnect E35. This instructs SyncSort to process any remaining records
without showing them to the E35 exit. When this return code is used at
end-of-file (signalled by exit_status 08), it indicates that the E35 is also fin-
ished and will not add additional records. When used before end-of-file, it
indicates that SyncSort should process the “current” record passed to the
E35, and any subsequent records, as if there were no E35 present. Note
that when SyncSort is not creating any output files and E35 is the only
“output,” SyncSort terminates immediately, since any subsequent records
will never be seen.

12  Insert a record. This instructs SyncSort to add the record in the work area
to the output data set just ahead of the current record in the record_up
area. When SyncSort returns control to the E35, the same record will be in
the record_up area. The exit routine can then add another record from the
work area or process the current record in record_up.

16  Terminate SyncSort. SyncSort will terminate and return to the calling pro-
gram or the Supervisor. SyncSort will issue a completion code of 16 to indi-
cate that the sort was unsuccessful.

20  Replace current record. SyncSort will replace the current record in the
record_up area with the record in the work area. Be sure that the record in
the work area is valid before passing it to SyncSort.
Chapter 8.  User Exit Programs 8.49



Change a Record

In order to change the record in the record_up area, first move it to the provided work area.
Make the changes there and then pass return code 20. The altered record in the work area
will replace the record in record_up.

Sample C E35, Fixed-Length Records

#define FIRST_TIME 0

#define MOST_TIME 4

#define LAST_TIME 8

#define ACCEPT_REC 0

#define DELETE_REC 4

#define END_EXIT 8

#define INSERT_REC 12

#define END_SORT 16

#define REPL_REC 20

#include <decimal.h>

typedef _Packed struct record {

char rec[6];

decimal(7,0) incr;

char address[90];

} t_ru;

int counter,i_incr;

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int SMPE35FB(int *exit_status,t_ru *record_up,t_ru *work,t_ru *in_buf,

int *dummy1,int *dummy2,int *dummy3,int *dummy4,int *comm_len,

void *communication_area)

{

int return_code;

char *text1="CHANGE";

char *text2="INSERT";

if (*exit_status != FIRST_TIME) {counter++;

return_code=ACCEPT_REC;

}

Figure  371. (Page 1 of 2) Sample C E35, Fixed-Length Records
SyncSort for z/VSE 3.7 Programmer’s Guide8.50



if (counter<50) {

i_incr++;

work->incr=i_incr;

strncpy(work->rec,text2,6);

return_code=INSERT_REC;

goto return_to_sort;}

if (counter<75) {

work->incr=record_up->incr+1d;

strncpy(work->rec,text1,6);

return_code=REPL_REC;

goto return_to_sort;}

if (counter<100) {

i_incr++;

work->incr=i_incr;

strncpy(work->rec,text2,6);

return_code=INSERT_REC;

goto return_to_sort;}

if (counter<200) {

return_code=DELETE_REC;

goto return_to_sort;}

return_to_sort:

if (*exit_status==LAST_TIME)

{ return_code=END_EXIT;

printf("E35 total number of records handled:%d\n",counter);

}

return(return_code);

}

Figure  371. (Page 2 of 2) Sample C E35, Fixed-Length Records
Chapter 8.  User Exit Programs 8.51



Sample C E35, Variable-Length Records

#define FIRST_TIME 0

#define MOST_TIME 4

#define LAST_TIME 8

#define ACCEPT_REC 0

#define DELETE_REC 4

#define END_EXIT 8

#define INSERT_REC 12

#define END_SORT 16

#define REPL_REC 20

#define MAX_RLEN 104

typedef _Packed struct record1 {

char rec[6];

int incr;

char address[MAX_RLEN-14];

} t_ru1;

typedef _Packed struct record2 {

char title[10];

int number;

} t_ru2;

int counter,i_incr,i_number;

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int SMPE35VB(int *exit_status,void *record_up,void *work,void *in_buf,

int *dummy,int *len_ru,int *len_wk,int *len_ib,int *comm_len,

void *communication_area)

{

Figure  372. (Page 1 of 3) Sample C E35, Variable-Length Records
SyncSort for z/VSE 3.7 Programmer’s Guide8.52



int return_code;

char *text1="CHANGE E35";

char *text2="INSERT E35";

t_ru1 * p_record1,*pwork1;

t_ru2 * p_record2,*pwork2;

p_record1 = (t_ru1 *)record_up;

pwork1=(t_ru1 *)work;

p_record2 = (t_ru2 *)record_up;

pwork2=(t_ru2 *)work;

if (*exit_status != FIRST_TIME) {counter++;

return_code=ACCEPT_REC;}

if (counter<50) {

if (*len_ru == 14)

{

*len_wk = 14;

i_number++;

pwork2->number=i_number;

strncpy(pwork2->title,text2,10);

} else

{

*len_wk = 54;

i_incr++;

pwork1->incr=i_incr;

strncpy(pwork1->rec,text2,6);

}

return_code=INSERT_REC;

goto return_to_sort;}

if (counter<75) {

if (*len_ru == 14)

{

*len_wk = 14;

pwork2->number=p_record2->number+1;

strncpy(pwork2->title,text1,10);

} else

{

*len_wk = 54;

pwork1->incr=p_record1->incr+1;

strncpy(pwork1->rec,text1,6);

}

return_code=REPL_REC;

goto return_to_sort;}

Figure  372. (Page 2 of 3) Sample C E35, Variable-Length Records
Chapter 8.  User Exit Programs 8.53



EXIT E32 - Merge Only - Changing and Substituting Records, 
Reading Input 

An E32 exit can only be used while running a merge. It is used to change the contents of a
record or to substitute a record. If an INPFIL control statement specifying EXIT is
included, E32 is being used to process the input files. A one-word parameter list will be
passed to the user if EXIT is not specified on the INPFIL control statement, and a five-word
parameter list will be passed if it is included.

Changing Records 

Exit E32 is entered before each record of the input files is processed. Control, as well as
noncontrol, areas may be changed as long as the total length of the record is not altered and
the change in the control field does not result in an out-of-sequence record. The address of
the record to be processed will appear in a one-word parameter list pointed to by register 1.

if (counter<100) {

if (*len_ru == 14)

{

*len_wk = 14;

i_number++;

pwork2->number=i_number;

strncpy(pwork2->title,text2,10);

} else

{

*len_wk = 80;

i_incr++;

pwork1->incr=i_incr;

strncpy(pwork1->rec,text2,6);

}

return_code=INSERT_REC;

goto return_to_sort;}

if (counter<200) {

return_code=DELETE_REC;

goto return_to_sort;}

return_to_sort:

if (*exit_status==LAST_TIME)

{ return_code=END_EXIT;

printf("E35 total number of records handled:%d\n",counter);

}

return(return_code); 

}

Figure  372. (Page 3 of 3) Sample C E35, Variable-Length Records
SyncSort for z/VSE 3.7 Programmer’s Guide8.54



Whenever it is necessary to change a record: move the record to a work area, make the
change, and place the address of the changed record in the Record area parameter. Then,
return control to the merge. (It is not necessary to pass a code telling the merge what action
to take.)

Substituting Records  

A record can be replaced with a new record by putting the address of the new record in the
Record area parameter over the address of the record being replaced. Then, pass control to
the merge. When control is returned to the exit, the old record will have been deleted and
the new one inserted in its place, and the address of the next record to be processed will
appear in the Record area parameter. This is a one-for-one exchange; one record must be
removed for every record inserted. Also, the record inserted must be in sequence. (The
merge will be automatically terminated if this is not so.) Again, it is not necessary to give
the merge a code telling it what action to take. 

Reading Input  

It is necessary to take complete responsibility for opening the files and processing their
labels if the program is to read the input files. Records may be changed, inserted or deleted,
providing they are passed in their final form to the merge. The merge will then process the
records and write them on an output file; or, the output can be written using an E35 exit
program. The merge will return control to E32 each time an individual record has been pro-
cessed.

An INPFIL control statement specifying EXIT must be included with every program that
reads input. Figure 374 illustrates a five-word parameter list that will be pointed to by the
user in register 1.

POINTER TO:

1. ... Record area 

Figure  373. Parameter List for E32 (EXIT Not Specified on INPFIL Statement)
Chapter 8.  User Exit Programs 8.55



Place the address of the record to be passed to the merge in the Record area parameter.

Subsequently, find out from which input file to select the next record. This will be deter-
mined by the merge and the number of the file passed in the area pointed to by word 2, the
Input File Number parameter. The merge will place a hexadecimal code in this fullword,
using 0 to indicate the first file and incrementing by four for each successive file; (0=file 1,
4=file 2, 8=file 3 ... ).

A code must be placed in the Action word parameter telling the merge what action to take
each time a record is passed.

The Record length parameter will give the address of a 20-byte (five-word) area contain-
ing the record length values l1, l2, l3, l4, and l5.

The Record type parameter will give the address of a 1-byte area coding the input record
type: X'80' for fixed-length input, X'40' for variable-length.

The following codes may be passed to the merge in the Action word.

CODE (in hexadecimal)

08  End of file. Whenever the end of a file is reached place X'08' in the Action word.
(There will be a different DTF for each input file so each file will have a different
end-of-file address.)

0C  Accept this record. Place this code in the Action word every time a record is
passed to the merge.

10  End merge. If, for any reason, the merge is to be terminated, place this code in the
Action word. 

POINTER TO:

1. ... Record area
2. ... Input file number
3. ... Action word
4. ... Record length
5. ... Record type 

Figure  374. Parameter List for E32 (EXIT Specified on INPFIL Statement)
SyncSort for z/VSE 3.7 Programmer’s Guide8.56



Coding a COBOL E32 Exit Program

An E32 exit program can be coded in COBOL/VSE. A COBOL E32 exit program is indi-
cated in the MODS control statement.

A COBOL exit uses GETVIS space to load runtime library routines. Allow at least 500K of
extra GETVIS when executing SyncSort with a COBOL exit.

Like any other E32 exit program, the COBOL E32 exit program is called each time an
input record is processed in a MERGE or COPY. Communication between SyncSort and the
COBOL E32 exit takes place in the LINKAGE SECTION of the COBOL program.

The LINKAGE SECTION  

The LINKAGE SECTION examples that follow show the parameters required for passing
fixed-length and variable-length records to the sort. The data-names and conditional
names used in the examples are arbitrary but each definition is required. 

MODS PH3=(MYCOBE32,COBOL,E32)

Figure  375. Sample MODS control statement for a COBOL E32
Chapter 8.  User Exit Programs 8.57



Example 1: Fixed-Length Records 

• For the first definition (EXIT-STATUS) specify PIC 9(8) COMPUTATIONAL. (This
area defines exit status codes.) When using 88 levels to define the exit status codes,
specify values 00, 04, and 08.

• For the second definition (RECORD-UP) define the SORTIN record. 

• For the third definition (WORK) define the record that will be passed to SyncSort. (This
is the “work area.”)

• For the fourth and sixth through eighth definitions define dummy areas.

• For the fifth definition (FILE-NUMBER) specify PIC 9(8) COMPUTATIONAL.
SyncSort places the input file number from which the next record is to be read. (0=file
1, 4=file 2, 8=file 3, ...)

• For the ninth definition (COMM-LEN) specify PIC 9(4) COMPUTATIONAL. This area
defines the communication area length.

LINKAGE SECTION.

01 EXIT-STATUS PIC 9(8) COMPUTATIONAL.

88 FIRST-TIME VALUE 00.

88 MOST-TIME VALUE 04.

88 LAST-TIME VALUE 08.

01 RECORD-UP.

07 FILLER PIC 9(6).

07 R-SEQ2 PIC 9(2).

07 FILLER PIC X(92).

01 WORK PIC X(100).

01 DUMMY1 PIC X.

01 FILE-NUMBER PIC 9(8) COMPUTATIONAL.

01 DUMMY2 PIC X.

01 DUMMY3 PIC X.

01 DUMMY4 PIC X.

01 COMM-LEN PIC 9(4) COMPUTATIONAL.

01 COMMUNICATION-AREA.

05 COMM-AREA OCCURS 1 TO 256 TIMES

DEPENDING ON COMM-LEN PIC X.

01 EXIT-ID PIC X(3).

Figure  376. Sample LINKAGE SECTION for Fixed-Length Records
SyncSort for z/VSE 3.7 Programmer’s Guide8.58



• For the tenth definition (COMMUNICATION-AREA) code an OCCURS clause
DEPENDING ON data-name PIC X.

• For the eleventh definition (EXIT-ID) specify PIC X(3). SyncSort places the literals
'E32' here.

Example 2: Variable-Length Records 

• For the first definition (EXIT-STATUS) specify PIC 9(8) COMPUTATIONAL. (This
area defines exit status codes.)

• For the second definition (RECORD-UP) code an OCCURS clause with the
DEPENDING ON data-name option specifying (1) The minimum and maximum
number of bytes the variable SORTIN records contain (do not include 4 bytes for the
RDW) and (2) DEPENDING ON data-name PIC X. Data-name is defined in the sixth
definition in the LINKAGE SECTION.

• For the third definition (WORK) code an OCCURS clause with the DEPENDING ON
data-name option specifying (1) The minimum and maximum number of bytes for
variable-length records to be passed to SyncSort (do not include 4 bytes for the RDW)
and (2) DEPENDING ON data-name PIC X. Data-name is defined as the seventh
definition in the LINKAGE SECTION.

LINKAGE SECTION.
01 EXIT-STATUS PIC 9(8) COMPUTATIONAL.

88 FIRST-TIME VALUE 00.
88 MOST-TIME VALUE 04.
88 LAST-TIME VALUE 08.

01 RECORD-UP.
05 RU OCCURS 1 TO 100 TIMES

DEPENDING ON LEN-RU PIC X.
01 WORK.

05 WK OCCURS 1 TO 100 TIMES
DEPENDING ON LEN-WK PIC X.

01 DUMMY1 PIC X.
01 FILE-NUMBER PIC 9(8) COMPUTATIONAL.
01 LEN-RU PIC 9(8) COMPUTATIONAL.
01 LEN-WK PIC 9(8) COMPUTATIONAL.
01 DUMMY2 PIC X.
01 COMM-LEN PIC 9(4) COMPUTATIONAL.
01 COMMUNICATION-AREA.

05 COMM-AREA OCCURS 1 TO 256 TIMES
DEPENDING ON COMM-LEN PIC X.

01 EXIT-ID PIC X(3).

Figure  377. Sample LINKAGE SECTION for Variable-Length Records
Chapter 8.  User Exit Programs 8.59



• For the fourth definition specify a dummy area.

• For the fifth definition specify (FILE-NUMBER) specify PIC 9(8) COMPUTATIONAL.
SyncSort places the input file number from which the next record is to be read. (0=file
1, 4=file 2, 8=file 3, ...)

• For the sixth definition (LEN-RU) specify data-name PIC 9(8) COMPUTATIONAL.
This is where SyncSort passes the length of the SORTIN record to the COBOL exit. 

• For the seventh definition (LEN-WK) specify data-name PIC 9(8) COMPUTATIONAL.
This is where the E32 routine passes the length of the work area record to SyncSort.

• For the eighth definition define a dummy area.

• For the ninth definition (COMM-LEN) specify PIC 9(4) COMPUTATIONAL. This area
defines the communication area length.

• For the tenth definition (COMMUNICATION-AREA) code an OCCURS clause
DEPENDING ON data-name PIC X. 

• For the eleventh definition (EXIT-ID) specify PIC X(3). SyncSort places the literals
'E32' here.

The IDENTIFICATION, ENVIRONMENT, and DATA DIVISIONs 

As always, the COBOL program must contain the entries required by the compiler for these
program divisions. Code the optional entries in these divisions according to the require-
ments of the application. 

The WORKING-STORAGE SECTION  

If the exit routine inserts records into the final merge and replaces records passed from
SyncSort, the insertion record and the replacement record may be defined in this section.
These records will be moved to the WORK area described in the LINKAGE SECTION, so be
sure that the PICTURE clause or the OCCURS clause in the WORK area is correct for
these records.

This section may also define the return codes as 77-level data items. Alternatively, these
codes can be specified as literals in the MOVE instruction. (MOVE literal to RETURN-
CODE.) Note that RETURN-CODE is the name of a predefined storage area in COBOL
used to pass return codes to the sort; RETURN-CODE should not be defined in the exit rou-
tine.
SyncSort for z/VSE 3.7 Programmer’s Guide8.60



The PROCEDURE DIVISION  

Specify the USING option on the PROCEDURE DIVISION header. Each identifier speci-
fied after USING must be the same as those described in the 01-level of the LINKAGE
SECTION. 

The GOBACK statement is used to return control to SyncSort. Do not use the EXIT state-
ment as it will cause unpredictable results. Be sure that SyncSort receives a valid return
code before the GOBACK statement is executed.

EXIT-STATUS Codes (Fixed and Variable-Length Records) 

00  First record. SyncSort uses this Code to indicate the first call to the COBOL
exit and that the first record from SORTIN is in the RECORD-UP area. 

04  Most records. This is used for all calls except the first one when there are
records in the RECORD-UP area. After Code 00 has been issued, Code 04 is
passed to the exit until there is no record for the sort to pass to the
RECORD-UP area.

08  All records passed. This indicates that the last SORTIN record has already
been processed by the exit. Do not attempt to reference the record again. No
more records will be passed to the exit routine. Note that if the SORTIN
data set is empty, 08 will be passed every time including the first time.

RETURN-CODE Codes (Fixed and Variable-Length Records) 

0  Accept this record. This instructs SyncSort to accept the (unaltered) record
in the RECORD-UP area.

This return code is valid only when EXIT is not specified on the INPFIL
control statement.

8  Do not return to this exit. This instructs SyncSort to close the exit for the
remainder of the sort application. 

12  Accept this record. This instructs SyncSort to accept the record in the
WORK area. This return code is valid only when EXIT is specified on the
INPFIL control statement.

16  Terminate SyncSort. SyncSort will end its program and return to the call-
ing program or the Supervisor. SyncSort will issue a completion code of 16
to indicate that the sort was unsuccessful.

20  Replace current record. SyncSort will replace the current record in the
RECORD-UP area with the record in the WORK area. Be sure that the
record in the WORK area is valid before passing it to SyncSort.
Chapter 8.  User Exit Programs 8.61



This return code is valid only when EXIT is not specified on the INPFIL
control statement.

Coding a C E32 Exit Program

An E32 exit program can be coded in C/VSE. A C E32 exit program is indicated in the
MODS control statement.

A C exit is called by SyncSort as a subroutine, so it must not contain a main() subroutine.

A C exit uses GETVIS space to load runtime library routines. Allow at least 4 MB of extra
GETVIS when executing SyncSort with a C exit.

Like any other E32 exit program, the C E32 exit program is called each time an input
record is processed in a MERGE or COPY. SyncSort and the C exit communicate through
arguments defined in the function header. For example, records are passed to the C routine
by an address presented in the second argument in the function parameter list.

Exit Communication

The parameter list structure required for passing fixed-length and variable-length records
between the sort and the exit is detailed in the following section. The parameter names
used in the examples are arbitrary but each definition is required. Complete sample pro-
grams showing the use of the argument lists are presented following the discussion of the
exit interface.

Fixed-Length Records - Function Definition

MODS PH3=(MYCE32,C,E32)

Figure  378. Sample MODS control statement for a C E32

int E32exit ( int *exit_status,

struct_ru *record_up,

struct_ins_rep *work,

int *dummy1,

int *file_number,

int *dummy2, int *dummy3, int *dummy4,

int *comm_len,

struct_ca *communication_area,

char exit_id [3])

Figure  379. Fixed-Length Records - Function Definition
SyncSort for z/VSE 3.7 Programmer’s Guide8.62



The following describes the parameters used in Figure 379.

exit_status  This parameter points to a variable containing one of the follow-
ing exit status codes:

00  First record. SyncSort uses this code to indicate the first
call to the C exit and that the first record from SORTIN
is in the record_up area. If the SORTIN is empty or does
not exist, a 08 status will be passed the first time.

04  Most records. This is used for all calls except the first
one when there are records in the record_up area. After
Code 00 has been issued, Code 04 is passed to the exit
until there is no record for the sort to pass to the
record_up area.

08  All records passed. This indicates that the last SORTIN
record has already been processed by the exit. Do not
attempt to reference the record again. No more records
will be passed to the exit routine. Note that if the SOR-
TIN data set is empty or does not exist, 08 will be
passed every time including the first time.

record_up  The record_up parameter contains a pointer to the record being
passed to the E32 from the SORTIN. The struct_ru data type
represents a structure that describes the fields within the SOR-
TIN record.

work  The work parameter contains a pointer to a work area that is to
be used to hold an inserted or replaced record returned from the
E32. The struct_ins_rep data type represents a structure that
describes the fields within the inserted or replaced record.

dummy1 - dummy4  These parameters define unused place holders. They are used
with variable-length E32 and E35 communication. Their defini-
tion here allows a common parameter list for fixed-length and
variable-length C E32 and E35 exits.

file_number  This parameter points to an integer number that indicates
which input file SyncSort is requesting input from. The number
starts from 0 and increments by 4. (i.e. 0=file 1, 4=file 2, 8=file
3, etc.) When E32 encounters end-of-file on the indicated file, it
should return with code 8, and SyncSort will no longer request
input from that file.

comm_len  This parameter points to a variable that defines the communi-
cation area length.
Chapter 8.  User Exit Programs 8.63



communication_area  The communication_area parameter contains a pointer to the
communication area. The struct_ca data type represents a
structure that describes the fields in the communication area.

exit_id  The exit_id parameter gives the address of a three character
array that contains the literals 'E32'. This parameter may be
used to identify an E32 call when the exit handles both E32 and
E35 calls.

Variable-Length Records - Function Definition

The following describes the parameters used in Figure 380.

exit_status  This parameter points to a variable containing exit status
codes. See the exit_status definition for a fixed-length C E32
exit for the code definitions.

record_up  The record_up parameter contains a “universal” pointer to the
record being passed to the E32 from the SORTIN. The void*
pointer can be cast to point an appropriate structure to describe
the record passed to the exit. This allows different record struc-
tures, as is common with variable-length records, to share a sin-
gle pointer definition.

work  The work parameter contains a “universal” pointer to a work
area that is to be used to hold an inserted or replaced record
returned from the E32. The void* pointer can be cast to point an
appropriate structure to describe the work record.

dummy1 - dummy2  These parameters define unused place holders. They are used
with C E35 communication. Their definition here allows a com-
mon parameter list for C E32 and E35 exits.

int E32exit ( int *exit_status,

struct_ru *record_up,

struct_ins_rep *work,

int *dummy1,

int *file_number,

int *len_ru,

int *len_wk,

int *dummy2,

int *comm_len,

struct_ca *communication_area,

char exit_id [3])

Figure  380. Variable-Length Records - Function Definition
SyncSort for z/VSE 3.7 Programmer’s Guide8.64



file_number  This parameter points to an integer number that indicates
which input file SyncSort is requesting input from. The number
starts from 0 and increments by 4. (i.e. 0=file 1, 4=file 2, 8=file
3, etc.) When E32 encounters end-of-file on the indicated file, it
should return with code 8, and SyncSort will no longer request
input from that file.

len_ru  This parameter points to a variable that defines the length of
the SORTIN record passed to the E15. This is the length of the
record referred to in the record_up parameter.

len_wk  This parameter points to a variable that defines the length of
the record to be inserted or used as a replacement for the
record_up record. This is the length of the record referred to in
the work parameter. This field must be set by the exit when an
insert or replace operation is performed.

comm_len  This parameter points to a variable that defines the communi-
cation area length.

communication_area  The communication_area parameter contains a pointer to the
communication area. The struct_ca data type represents a
structure that describes the fields in the communication area.

exit_id  The exit_id parameter gives the address of a three character
array that contains the literals 'E32'. This parameter may be
used to identify an E32 call when the exit handles both E32 and
E35 calls.

RETURN-CODE Codes (Fixed and Variable-Length Records)

The RETURN statement is used to return control to SyncSort. It must indicate one of the
following return values to indicate the action to be taken by SyncSort.

0  Accept this record. This instructs SyncSort to accept the (unaltered) record
in the record_up area.

This return code is valid only when EXIT is not specified on the INPFIL
control statement.

8  Do not return to this exit. This instructs SyncSort to close the exit for the
remainder of the sort application. This return code might be used at SOR-
TIN end-of-file (exit_status code 08) to indicate that extra records will not
be added at this point. If SORTIN is present, the current input record and
all subsequent records will be processed by SyncSort.

12  Accept this record. This instructs SyncSort to accept the record in the
WORK area. This return code is valid only when EXIT is specified on the
INPFIL control statement.
Chapter 8.  User Exit Programs 8.65



16  Terminate SyncSort. SyncSort will end its program and return to the call-
ing program or the Supervisor. SyncSort will issue a completion code of 16
to indicate that the sort was unsuccessful.

20  Replace current record. SyncSort will replace the current record in the
record_up area with the record in the work area. Be sure that the record in
the work area is valid before passing it to SyncSort. When replacing a vari-
able-length record, insure that its length is indicated in the len_wk param-
eter.

This return code is valid only when EXIT is not specified on the INPFIL
control statement.

EXITS E17 and E37 - Writing and Processing Labels 

These exits are used to process nonstandard or user standard trailer labels and to close
files, and at exit 37 a trailer label can be written on the output file. The address of the fol-
lowing one-word parameter list is passed in register 1 for both exits.

E17 Programs

This exit is used to process nonstandard or user standard tape trailer labels on the last
input volume. (All preceding input volumes with nonstandard or user standard labels must
be processed by an E11 program.)

The sort/merge will pass the address of the block count of the last input volume in the
Block count parameter. After processing the trailer label, the input file must be closed. (If
any files from the user program are used during Phase 1 of the sort, they can be closed at
this exit.)

E37 Programs  

This exit is used to process nonstandard and user standard tape trailer labels on merge
input files and on the output file for both sort and merge programs. In addition, you may
write and process nonstandard and user standard trailer labels on merge input files and on
sort and merge output files. Also, if the user program uses any tape files during Phase 3,
trailer labels for them can be processed at this exit.

POINTER TO:

1. ... Block count 

Figure  381. Parameter List for E17 and E37
SyncSort for z/VSE 3.7 Programmer’s Guide8.66



After you have written and processed trailer labels, the files can be closed.

For a merge program, SyncSort provides a list of 4-byte block counts for the output file and
for each input file. If any of these files are unlabeled or have standard labels, these 4-byte
entries will be set to zero. The address of the list will be passed in the Block count parame-
ter in register 1.

For a sort program, the address of the block count for the output volume just processed will
be placed in register 1. This will point to a 4-byte entry.

Exits E18, E38, and E39—VSAM Exits 

When VSAM files are sorted or merged, exit routines can be entered at E18, E38, or E39 for
the following reasons:

1. To supply passwords.

2. To supply an exit list for VSAM input and output files.

The following sections describe VSAM specific coding instructions for exits E18, E38, and
E39.

Passwords for VSAM Files

SyncSort for z/VSE allows password-protected VSAM files to be used for input and output.
When a password is needed for a VSAM file, the appropriate user routine is entered at exit
E18 (for sort input), E38 (for merge input), and E39 (for sort/merge output) before the files
are opened by SyncSort. In the routine, the user can supply the required password(s). If the
VSAM file is password-protected and a sort exit does not provide a password, SyncSort for
z/VSE will either request that password to be entered at the operator’s console or ABEND
depending on the ATTEMPTS parameter of the DEFINE CLUSTER for the data set.

When a user activates the E18, E38, and E39 exits, register 1 will contain the address of a
12-byte parameter list. Refer to Figure 382 for the format of a parameter list.
Chapter 8.  User Exit Programs 8.67



The parameter list contains a 3-byte flag that indicates the purpose for which the exit rou-
tine will be used. In this case, 'PWD' stands for password retrieval.

Note: If the user does not want a specific situation, the user routine should return to
SyncSort leaving a return code of “0” in the Action Word. This code tells SyncSort to ignore
the entry.

When the VSAM exit routine gets initial control, the pointer to the password list will be
zeros. To supply passwords, the user must create a password list and ensure that the
parameter list pointer is set to the password list address.

The format of the password list is shown in Figure 383.

As soon as the user routine returns control after the password list is created, the Action
Word will be checked for one of the following hexadecimal codes:

0  Ignore this entry.

4  Accept passwords.

3 BYTES
1 

BYTE

REGISTER 1 C 'PWD' RES.

PASSWORD LIST

ACTION WORD

4 BYTES

Figure  382. E18, E38, and E39 VSAM Password Parameter List

FIRST ENTRY  ADDITIONAL ENTRIES 

2 BYTES 8 BYTES 8 BYTES

NO. OF 
ENTRIES 
(IN 
BINARY)

FILENAME
PASS-
WORD

Figure  383. E18, E38, and E39 Password List Format
SyncSort for z/VSE 3.7 Programmer’s Guide8.68



8  Do not return to this exit for the exit list.

A user’s routine is entered only once at an exit for passwords. All necessary passwords
must be supplied at that point.

Exit List for VSAM Files

An exit list for VSAM input and output data sets can be supplied using exits E18, E38, or
E39. The exit list must be constructed using the VSAM EXLST macro. All VSAM exit rou-
tines pointed to by this macro must return to VSAM by standard VSAM linkage. All con-
ventions governing VSAM exit lists must be observed. Consult IBM’s VSE/ESA System
Macro User’s Guide or VSE/VSAM User’s Guide and Application Programming.

SyncSort comes to the user’s sort/merge exit (containing the VSAM exit list and routines)
once for each exit. The parameter list that the sort/merge passes to the exit has the format
shown in Figure 384.

After saving any registers that were used, the 3-byte flag should be checked. In this case,
'EXL' stands for exit list. If it is not the proper flag, return to the sort/merge leaving return
code “0” in the Action Word.

The exit list address should be stored in the second word. In addition, a return should be
made to sort/merge with one of the following return codes in the Action Word; it is pointed
to by the third word of the parameter list:

0  Ignore this entry.

4  Accept the exit list address.

8  Do not return to this sort/merge exit.

REGISTER 1 3 BYTES
1 

BYTE

PARAMETER LIST C 'EXL' RES.

ZEROS

ACTION WORD

4 BYTES

Figure  384. Parameter List Passed to the VSAM EXLST Exit
Chapter 8.  User Exit Programs 8.69



Exit Coding Instructions

To assist the user in coding exits E18, E38, and E39, the following instructions are pro-
vided. Four areas of information will be discussed for each exit. They include the building of
an exit’s parameter, password, and exit lists, and a specific coding procedure.

E18 Parameter List  Contains the following data:

• Type indicator (C'PWD', which denotes that passwords are
being requested, or C'EXL', which denotes that an exit list
is being requested).

• Zeros (cleared for address of password list).

• Address of Action Word.

Note: The return code must be placed in the rightmost byte of
the Action Word. Valid codes are: 0 - no reply, 4 - reply provided,
and 8 - do not return.

E18 Password List  Begins with a 2-byte entry count. It continues with a 16-byte
entry for each password-protected sort input file. Refer to Fig-
ure 383 for an E18 password list format.

E18 Exit List  Must adhere to rules found in IBM’s VSE/ESA System Macro
User’s Guide or VSE/VSAM User’s Guide and Application Pro-
gramming. Those routines to which the list points must use
standard VSAM linkage to return to VSAM.

Note: VSAM EXLST routines, indicated by the EXLST entry to
E18/E38/E39, must not use the SAVE area indicated in register
13. It is in use by VSAM. The user is responsible for providing a
SAVE area.

E18 Routine Procedure  E18 is entered twice, as follows:

• The first time, parameter 1 contains C'PWD' (plus a
padding byte).

• The second time, parameter 1 contains C'EXL' (plus a
padding byte).

If no reply is desired, place a code of “0” in the Action Word. If
not, place the address of the password or exit list (whichever is
requested) in parameter 2. Return with a code of "4".
SyncSort for z/VSE 3.7 Programmer’s Guide8.70



E38 Parameter List  Contains the following data:

• Type indicator (C'PWD', which denotes passwords are being
requested, or C'EXL', which denotes the exit list is being
requested).

• Zeros (cleared for address of password list).

• Address of Action Word.

Note: The return code must be placed in the rightmost byte of
the Action Word. Valid codes are: 0 - no reply, 4 - reply provided,
and 8 - do not return.

E38 Password List  Begins with a 2-byte entry count. It continues with a 16-byte
entry for each password-protected merge input file. Refer to
Figure 383 for an E38 password list format.

E38 Exit List  Must adhere to rules found in IBM’s VSE/ESA System Macro
User’s Guide or VSE/VSAM User’s Guide and Application Pro-
gramming. Those routines to which the list points must use
standard VSAM linkage to return to VSAM.

Note: VSAM EXLST routines, indicated by the EXLST entry to
E18/E38/E39, must not use the SAVE area indicated in register
13. It is in use by VSAM. The user is responsible for providing a
SAVE area.

For end-of-file processing, the EODAD exit must not be used
because the sort will not be able to detect the end-of-file. In its
place, use a LERAD exit. In addition, test the FDBK code for
“4”, which indicates the end-of-file. Do not change the code as
the sort also uses it.

Note: The same exit list must be valid for all SORTIN files.

E38 Routine Procedure  E38 is entered twice, as follows:

• The first time, parameter 1 contains C'PWD' (plus a
padding byte).

• The second time, parameter 1 contains C'EXL' (plus a
padding byte).

If no reply is desired, ensure a code of "0" is placed in the Action
Word. If not, place the address of the password or exit list
(whichever is requested) in parameter 2. Return with a code of
"4".
Chapter 8.  User Exit Programs 8.71



E39 Parameter List  Contains the following data:

• Type indicator (C'PWD', which denotes passwords are being
requested, or C'EXL', which denotes the exit list is being
requested).

• Zeros (cleared for address of password list).

• Address of Action Word.

Note: The return code must be placed in the rightmost byte of
the Action Word. Valid codes are: 0 no reply, 4 reply provided,
and 8 do not return.

E39 Password List  Begins with a 2-byte entry count. It is followed by output file
name and associated password pairs. Refer to Figure 383 for an
E39 password list format.

E39 Exit List  Must adhere to rules found in IBM’s VSE/ESA System Macro
User’s Guide or VSE/VSAM User’s Guide and Application Pro-
gramming. Those routines to which the list points must use
standard VSAM linkage to return to VSAM.

Note: VSAM EXLST routines, indicated by the EXLST entry to
E18/E38/E39, must not use the SAVE area indicated in register
13. It is in use by VSAM. The user is responsible for providing a
SAVE area.

E39 Routine Procedure  E39 is entered twice, as follows:

• The first time, parameter 1 contains C'PWD' (plus a
padding byte).

• The second time, parameter 1 contains C'EXL' (plus a
padding byte).

If no reply is desired, place a code of “0” in the Action Word. If
not, place the address of the password or exit list (whichever is
requested) in parameter 2. Return with a code of “4”. 
SyncSort for z/VSE 3.7 Programmer’s Guide8.72



Coding REXX Exits

The exit programs E15, E32, and E35 can be coded in REXX/VSE. A REXX exit program is
indicated in the MODS control statement. A LIBDEF search chain for PROCs must be
established to include the library where the REXX exit program is catalogued.

REXX Variables Provided by SyncSort

SyncSort provides a number of special REXX variables to facilitate the development of
REXX exits. These variables offer a simple, efficient means of establishing communication
between the exit and SyncSort.

SyncSort will automatically load these variables each time it calls a REXX exit. When the
exit completes its work, it should use the following sequence of commands to return the
variables to SyncSort:

ADDRESS SYNCREXX 'TAKE' 

RETURN

The following table describes the special REXX variables:

MODS PH1=(MYE15,EXEC,E15),PH3=(REXXE35,EXEC,E35)

Figure  385. Sample MODS control statement for REXX exits

VARIABLE FUNCTION

SYRECORD When the exit is entered, SYRECORD contains the current data 
record. The exit can accept the record, modify it, or add a new record; 
SYACTION should be set accordingly.

If SYRECORD is null, then SyncSort has no data remaining. When 
this happens, the exit can either CLOSE or can continue to INSERT 
new records.

Table 50.  (Page 1 of 2) REXX Variables Provided by SyncSort
Chapter 8.  User Exit Programs 8.73



SYACTION This variable should be set before the exit returns control to 
SyncSort. It describes the disposition of the current record. Possible 
values for SYACTION are as follows:

ACCEPT: Retain the current record with no modification.
REPLACE: Replace the current record with contents of the 
SYRECORD.
DELETE: Delete the current record.
INSERT: Insert the contents of the SYRECORD before the current 
record.
CLOSE: Do not return to the exit.
ABEND: Terminate SyncSort.

If an E15/E32 is providing the input, the only valid values for SYAC-
TION are INSERT, CLOSE, or ABEND. If an E35 is writing the out-
put, the only valid values for SYACTION are DELETE, CLOSE, or 
ABEND.

SYOUTSEQ For E35 exits only, this variable can be used in conjunction with an 
INSERT value for SYACTION to indicate that the new record is out 
of sequence. SYOUTSEQ=0 means the new record is in sequence; any 
other value indicates that it is not.

SYFILNUM For E32 exits, this variable contains the file number of the file cur-
rently being processed. The numbering convention increments file 
numbers by 4 (e.g., FILE1=0, FILE2=4, ... FILE9=32).

SYEXITYP This variable will automatically be set to E15, E32, or E35, depend-
ing on which type of exit is being called.

SYGBLN1... 
SYGBLN8

These eight special variables are global variables. The user may set 
these to any value provided that the value does not exceed 15 charac-
ters in length. SyncSort will insure that these variables are preserved 
across calls to the exit.

SYGBLSTR This is an additional global variable. The user may set this to any 
value, provided the string does not exceed 1024 characters in length. 
SyncSort will insure that this variable is preserved across calls to the 
exit.

VARIABLE FUNCTION

Table 50.  (Page 2 of 2) REXX Variables Provided by SyncSort
SyncSort for z/VSE 3.7 Programmer’s Guide8.74



Sample REXX Exit

The following example illustrates a REXX exit that will count the number of records that
are passed to the exit and convert the first 20 bytes of each record to upper case:

If syrecord='' Then

Do

syaction='CLOSE'

Say 'REXX' syexityp 'counted' sygbln1 'records'

End

Else

Do

sygbln1 = sygbln1 + 1

Parse Var syrecord to_upper 21 no_change

syrecord=Translate(to_upper) || no_change

syaction='REPLACE'

End

Address SYNCREXX 'TAKE'

Return

Figure  386. Sample REXX Exit
Chapter 8.  User Exit Programs 8.75



SyncSort for z/VSE 3.7 Programmer’s Guide8.76



Chapter 9.  Creating VSAM Alternate Index Files 
with SyncSort 

Introduction

This chapter describes SYNCBIX, SyncSort’s high performance replacement for the
BLDINDEX process performed by Access Methods Services (IDCAMS). SYNCBIX inter-
faces with SyncSort for z/VSE to allow efficient reading of the base cluster, fast extracting
of the record pointer information, primary and alternate keys, and high performance sort-
ing of these records.

VSAM alternate index is one of VSAM’s most useful features. It provides an alternate
means to access records in a base cluster, through different keys. The base cluster, can be
an Entry Sequenced Data Set (ESDS) or a Key Sequenced Data Set (KSDS). KSDS and
ESDS alternate index files can be defined as either a UNIQUE key data set or as a
NONUNIQUE key data set:

• UNIQUE indicates that every alternate key is in one and only one data record in the
base cluster.

• NONUNIQUE indicates that an alternate key can be in several records in the base
cluster.

The prime key of a KSDS file must be defined as a unique key data set.
Chapter 9.  Creating VSAM Alternate Index Files with SyncSort 9.1



Steps to Create an Alternate Index

In order to establish an alternate index to access a base cluster, the following steps are nec-
essary, whether you are using BLDINDEX or SYNCBIX. Note that only the fifth item,
building the index, differs between BLDINDEX and SYNCBIX.

1. Create the VSAM base file with the IDCAMS DEFINE CLUSTER command.

2. Load the base cluster with data.

3. Define the alternate index file with the IDCAMS DEFINE AIX command.

4. Define a path through the alternate index to the base cluster with a DEFINE PATH
command for a KSDS base file.

5. Build the alternate index with the BLDINDEX process of IDCAMS or with SYNCBIX.
Using SYNCBIX speeds the process because SYNCBIX uses the high-performance
sorting of SyncSort for z/VSE. The process is conceptually divided into three steps:
reading, sorting, and writing to output:

• The entire base cluster is read and the record pointer information, primary key and
alternate key are extracted.

• The extracted data is sorted on the alternate key. This process may be completed
entirely in virtual storage or for larger files require the use of disk work files.

• The sorted information is formatted into alternate index data records that are
loaded directly into the alternate index cluster.

Sample Alternate Index Definitions: IDCAMS and SYNCBIX

The figures below show JCL and control statements for creating alternative indexes with
IDCAMS and SYNCBIX. The pairing highlights the difference between IDCAMS and
SyncSort’s SYNCBIX. Note that each pair is identical except for Step 4. Thus, only the
actual index building step of IDCAMS (Step 4) requires changes in order to use SYNCBIX.

The following is a generalized Step 4 using SYNCBIX:
SyncSort for z/VSE 3.7 Programmer’s Guide9.2



The following figures show the JCL and control statements for IDCAMS and SYNCBIX for
four types of alternate index definition:

• Unique Key Alternate Index on a KSDS -- IDCAMS
• Unique Key Alternate Index on a KSDS -- SYNCBIX

• Non-Unique Key Alternate Index on a KSDS -- IDCAMS
• Non-Unique Key Alternate Index on a KSDS -- SYNCBIX

• Unique Key Alternate Index on a ESDS -- IDCAMS
• Unique Key Alternate Index on a ESDS -- SYNCBIX

• Non-Unique Key Alternate Index on a ESDS -- IDCAMS
• Non-Unique Key Alternate Index on a ESDS -- SYNCBIX

* Step 4: BUILD ALTERNATE INDEX USING SYNCBIX
// DLBL IJSYSUC,'catalog.fileid',,VSAM
// DLBL filenamei.,'base.cluster.fileid',,VSAM
// DLBL filenameo.,'aix.fileid',,VSAM
// DLBL SORTWK1,'sortwk.fileid',0,SD
// EXTENT SYS003,volser,1,0,strk,numtrk
// ASSGN SYS003,DISK,VOL=volser,SHR
/*
// LIBDEF PHASE,SEARCH=(lib.sublib)
// EXEC PGM=SYNCBIX,SIZE=512K 

INFILE(filenamei</pwi>) -
OUTFILE(filenameo</pwo>) -
PRINT(prt) -
WORK(n) -
SORT(sortname)

/* 

Figure  387. Step 4 Using SYNCBIX
Chapter 9.  Creating VSAM Alternate Index Files with SyncSort 9.3



// JOB AIX1AMS
*
* STEP 1. DEFINE KSDS BASE CLUSTER
*
// EXEC PGM=IDCAMS,SIZE=AUTO
DEFINE CLUSTER( NAME(KSDS.BASE.CLUSTER) -

FREESPACE(10 5) -
INDEXED -
KEYS(4 28) -
VOLUMES(VOL001)) -

DATA( NAME(KSDS.BASE.CLUSTER.DATA) -
RECORDS(1000) RECORDSIZE(100 100)) -

INDEX( NAME(KSDS.BASE.CLUSTER.INDEX)) -
CATALOG(KSDS.USER.CATALOG)

/*
* STEP 2. LOAD KSDS BASE CLUSTER
*
// EXEC PGM=LOADKSDS

.

.

.
/*
* STEP 3. DEFINE ALTERNATE INDEX AND PATH
*
// EXEC PGM=IDCAMS,SIZE=AUTO
DEFINE ALTERNATEINDEX( NAME(KSDS.AIX.CLUSTER) -

FREESPACE(5 5) -
KEYS(8 12) -
RELATE(KSDS.BASE.CLUSTER) -
UNIQUEKEY -
UPGRADE -
VOLUMES(VOL001)) -

DATA( NAME(KSDS.AIX.CLUSTER.DATA) -
RECORDS(1000) RECORDSIZE(50 50)) -

INDEX( NAME(KSDS.AIX.CLUSTER.INDEX)) -
CATALOG(KSDS.USER.CATALOG)

DEFINE PATH( NAME(PATH.TO.KSDS.BASE.CLUSTER) -
PATHENTRY(KSDS.AIX.CLUSTER)) -
CATALOG(KSDS.USER.CATALOG)

/*
* STEP 4. BUILD ALTERNATE INDEX USING IDCAMS
*
// EXEC PGM=IDCAMS,SIZE=AUTO
BLDINDEX INDATASET(KSDS.BASE.CLUSTER) -

OUTDATASET(KSDS.AIX.CLUSTER) -
WORKVOLUMES(VOL001) -
CATALOG(KSDS.USER.CATALOG)

/*
/& 

Figure  388. Unique Key Alternate Index on a KSDS -- IDCAMS
SyncSort for z/VSE 3.7 Programmer’s Guide9.4



// JOB AIX1SS
*
* STEP 1. DEFINE KSDS BASE CLUSTER
*
// EXEC PGM=IDCAMS,SIZE=AUTO
DEFINE CLUSTER( NAME(KSDS.BASE.CLUSTER) -

FREESPACE(10 5) -
INDEXED -
KEYS(4 28) -
VOLUMES(VOL001)) -

DATA( NAME(KSDS.BASE.CLUSTER.DATA) -
RECORDS(1000) RECORDSIZE(100 100)) -

INDEX( NAME(KSDS.BASE.CLUSTER.INDEX)) -
CATALOG(KSDS.USER.CATALOG)

/*
* STEP 2. LOAD KSDS BASE CLUSTER
*
// EXEC PGM=LOADKSDS

.

.

.
/*
* STEP 3. DEFINE ALTERNATE INDEX AND PATH
*
// EXEC PGM=IDCAMS,SIZE=AUTO
DEFINE ALTERNATEINDEX( NAME(KSDS.AIX.CLUSTER) -

FREESPACE(5 5) -
KEYS(8 12) -
RELATE(KSDS.BASE.CLUSTER) -
UNIQUEKEY -
UPGRADE -
VOLUMES(VOL001)) -

DATA( NAME(KSDS.AIX.CLUSTER.DATA) -
RECORDS(1000) RECORDSIZE(50 50)) -

INDEX( NAME(KSDS.AIX.CLUSTER.INDEX)) -
CATALOG(KSDS.USER.CATALOG)

DEFINE PATH( NAME(PATH.TO.KSDS.BASE.CLUSTER) -
PATHENTRY(KSDS.AIX.CLUSTER)) -
CATALOG(KSDS.USER.CATALOG)

/*
* STEP 4. BUILD ALTERNATE INDEX USING SYNCBIX
*
// LIBDEF PHASE,SEARCH=(lib.sublib)
// ASSGN SYS003,DISK,TEMP,VOL=VOL010,SHR
// DLBL IJSYSUC,'KSDS.USER.CATALOG',,VSAM
// DLBL BASE,'KSDS.BASE.CLUSTER',,VSAM
// DLBL AIX,'KSDS.AIX.CLUSTER',,VSAM
// DLBL SORTWK1,'SORTWK1.FILE',0,SD
// EXTENT SYS003,VOL010,1,0,strk,ntrk
// EXEC PGM=SYNCBIX,SIZE=2048K
INFILE(BASE) OUTFILE(AIX) WORK(1)

/*
/& 

Figure  389. Unique Key Alternate Index on a KSDS -- SYNCBIX
Chapter 9.  Creating VSAM Alternate Index Files with SyncSort 9.5



// JOB AIX2AMS
*
* STEP 1. DEFINE KSDS BASE CLUSTER
*
// EXEC PGM=IDCAMS,SIZE=AUTO
DEFINE CLUSTER( NAME(KSDS.BASE.CLUSTER) -

FREESPACE(10 5) -
INDEXED -
KEYS(8 12) -
VOLUMES(VOL001)) -

DATA( NAME(KSDS.BASE.CLUSTER.DATA) -
RECORDS(1000) RECORDSIZE(100 100)) -

INDEX( NAME(KSDS.BASE.CLUSTER.INDEX)) -
CATALOG(KSDS.USER.CATALOG)

/*
* STEP 2. LOAD KSDS BASE CLUSTER
*
// EXEC PGM=LOADKSDS

.

.

.
/*
* STEP 3. DEFINE ALTERNATE INDEX AND PATH
*
// EXEC PGM=IDCAMS,SIZE=AUTO
DEFINE ALTERNATEINDEX( NAME(KSDS.AIX.CLUSTER) -

FREESPACE(5 5) -
KEYS(4 28) -
RELATE(KSDS.BASE.CLUSTER) -
NONUNIQUEKEY -
UPGRADE -
VOLUMES(VOL001)) -

DATA( NAME(KSDS.AIX.CLUSTER.DATA) -
RECORDS(1000) RECORDSIZE(50 50)) -

INDEX( NAME(KSDS.AIX.CLUSTER.INDEX)) -
CATALOG(KSDS.USER.CATALOG)

DEFINE PATH( NAME(PATH.TO.KSDS.BASE.CLUSTER) -
PATHENTRY(KSDS.AIX.CLUSTER)) -
CATALOG(KSDS.USER.CATALOG)

/*
* STEP 4. BUILD ALTERNATE INDEX USING IDCAMS
*
// EXEC PGM=IDCAMS,SIZE=AUTO
BLDINDEX INDATASET(KSDS.BASE.CLUSTER) -

OUTDATASET(KSDS.AIX.CLUSTER) -
WORKVOLUMES(VOL001) -
CATALOG(KSDS.USER.CATALOG)

/*
/& 

Figure  390. Non-Unique Key Alternate Index on a KSDS -- IDCAMS
SyncSort for z/VSE 3.7 Programmer’s Guide9.6



// JOB AIX2SS
*
* STEP 1. DEFINE KSDS BASE CLUSTER
*
// EXEC PGM=IDCAMS,SIZE=AUTO
DEFINE CLUSTER( NAME(KSDS.BASE.CLUSTER) -

FREESPACE(10 5) -
INDEXED -
KEYS(8 12) -
VOLUMES(VOL001)) -

DATA( NAME(KSDS.BASE.CLUSTER.DATA) -
RECORDS(1000) RECORDSIZE(100 100)) -

INDEX( NAME(KSDS.BASE.CLUSTER.INDEX)) -
CATALOG(KSDS.USER.CATALOG)

/*
* STEP 2. LOAD KSDS BASE CLUSTER
*
// EXEC PGM=LOADKSDS

.

.

.
/*
* STEP 3. DEFINE ALTERNATE INDEX AND PATH
*
// EXEC PGM=IDCAMS,SIZE=AUTO
DEFINE ALTERNATEINDEX( NAME(KSDS.AIX.CLUSTER) -

FREESPACE(5 5) -
KEYS(4 28) -
RELATE(KSDS.BASE.CLUSTER) -
NONUNIQUEKEY -
UPGRADE -
VOLUMES(VOL001)) -

DATA( NAME(KSDS.AIX.CLUSTER.DATA) -
RECORDS(1000) RECORDSIZE(50 50)) -

INDEX( NAME(KSDS.AIX.CLUSTER.INDEX)) -
CATALOG(KSDS.USER.CATALOG)

DEFINE PATH( NAME(PATH.TO.KSDS.BASE.CLUSTER) -
PATHENTRY(KSDS.AIX.CLUSTER)) -
CATALOG(KSDS.USER.CATALOG)

/*
* STEP 4. BUILD ALTERNATE INDEX USING SYNCBIX
*
// LIBDEF PHASE,SEARCH=(lib.sublib)
// ASSGN SYS003,DISK,TEMP,VOL=VOL010,SHR
// DLBL IJSYSUC,'KSDS.USER.CATALOG',,VSAM
// DLBL BASE,'KSDS.BASE.CLUSTER',,VSAM
// DLBL AIX,'KSDS.AIX.CLUSTER',,VSAM
// DLBL SORTWK1,'SORTWK1.FILE',0,SD
// EXTENT SYS003,VOL010,1,0,strk,ntrk
// EXEC PGM=SYNCBIX,SIZE=2048K
INFILE(BASE) OUTFILE(AIX) WORK(1)

/*
/& 

Figure  391. Non-Unique Key Alternate Index on a KSDS -- SYNCBIX
Chapter 9.  Creating VSAM Alternate Index Files with SyncSort 9.7



// JOB AIX3AMS
*
* STEP 1. DEFINE ESDS BASE CLUSTER
*
// EXEC PGM=IDCAMS,SIZE=AUTO
DEFINE CLUSTER( NAME(ESDS.BASE.CLUSTER) -

NONINDEXED -
VOLUMES(VOL001)) -

DATA( NAME(ESDS.BASE.CLUSTER.DATA) -
RECORDS(1000) RECORDSIZE(100 100)) -

CATALOG(ESDS.USER.CATALOG)
/*
* STEP 2. LOAD ESDS BASE CLUSTER
*
// EXEC PGM=LOADESDS

.

.

.
/*
* STEP 3. DEFINE ALTERNATE INDEX AND PATH
*
// EXEC PGM=IDCAMS,SIZE=AUTO
DEFINE ALTERNATEINDEX( NAME(ESDS.AIX.CLUSTER) -

FREESPACE(5 5) -
KEYS(8 12) -
RELATE(ESDS.BASE.CLUSTER) -
UNIQUEKEY -
UPGRADE -
VOLUMES(VOL001)) -

DATA( NAME(ESDS.AIX.CLUSTER.DATA) -
RECORDS(1000) RECORDSIZE(50 50)) -

INDEX( NAME(ESDS.AIX.CLUSTER.INDEX)) -
CATALOG(ESDS.USER.CATALOG)

DEFINE PATH( NAME(PATH.TO.ESDS.BASE.CLUSTER) -
PATHENTRY(ESDS.AIX.CLUSTER)) -
CATALOG(ESDS.USER.CATALOG)

/*
* STEP 4. BUILD ALTERNATE INDEX USING IDCAMS
*
// EXEC PGM=IDCAMS,SIZE=AUTO
BLDINDEX INDATASET(ESDS.BASE.CLUSTER) -

OUTDATASET(ESDS.AIX.CLUSTER) -
WORKVOLUMES(VOL001) -
CATALOG(ESDS.USER.CATALOG)

/*
/& 

Figure  392. Unique Key Alternate Index on an ESDS -- IDCAMS
SyncSort for z/VSE 3.7 Programmer’s Guide9.8



// JOB AIX3SS
*
* STEP 1. DEFINE ESDS BASE CLUSTER
*
// EXEC PGM=IDCAMS,SIZE=AUTO
DEFINE CLUSTER( NAME(ESDS.BASE.CLUSTER) -

NONINDEXED -
VOLUMES(VOL001)) -

DATA( NAME(ESDS.BASE.CLUSTER.DATA) -
RECORDS(1000) RECORDSIZE(100 100)) -

CATALOG(ESDS.USER.CATALOG)
/*
* STEP 2. LOAD ESDS BASE CLUSTER
*
// EXEC PGM=LOADESDS

.

.

.
/*
* STEP 3. DEFINE ALTERNATE INDEX AND PATH
*
// EXEC PGM=IDCAMS,SIZE=AUTO
DEFINE ALTERNATEINDEX( NAME(ESDS.AIX.CLUSTER) -

FREESPACE(5 5) -
KEYS(8 12) -
RELATE(ESDS.BASE.CLUSTER) -
UNIQUEKEY -
UPGRADE -
VOLUMES(VOL001)) -

DATA( NAME(ESDS.AIX.CLUSTER.DATA) -
RECORDS(1000) RECORDSIZE(50 50)) -

INDEX( NAME(ESDS.AIX.CLUSTER.INDEX)) -
CATALOG(ESDS.USER.CATALOG)

DEFINE PATH( NAME(PATH.TO.ESDS.BASE.CLUSTER) -
PATHENTRY(ESDS.AIX.CLUSTER)) -
CATALOG(ESDS.USER.CATALOG)

/*
* STEP 4. BUILD ALTERNATE INDEX USING SYNCBIX
*
// LIBDEF PHASE,SEARCH=(lib.sublib)
// ASSGN SYS003,DISK,TEMP,VOL=VOL010,SHR
// DLBL IJSYSUC,'ESDS.USER.CATALOG',,VSAM
// DLBL BASE,'ESDS.BASE.CLUSTER',,VSAM
// DLBL AIX,'ESDS.AIX.CLUSTER',,VSAM
// DLBL SORTWK1,'SORTWK1.FILE',0,SD
// EXTENT SYS003,VOL010,1,0,strk,ntrk
// EXEC PGM=SYNCBIX,SIZE=2048K
INFILE(BASE) OUTFILE(AIX) WORK(1)

/*
/& 

Figure  393. Unique Key Alternate Index on an ESDS -- SYNCBIX
Chapter 9.  Creating VSAM Alternate Index Files with SyncSort 9.9



// JOB AIX4AMS
*
* STEP 1. DEFINE ESDS BASE CLUSTER
*
// EXEC PGM=IDCAMS,SIZE=AUTO
DEFINE CLUSTER( NAME(ESDS.BASE.CLUSTER) -

NONINDEXED -
VOLUMES(VOL001)) -

DATA( NAME(ESDS.BASE.CLUSTER.DATA) -
RECORDS(1000) RECORDSIZE(100 100)) -

CATALOG(ESDS.USER.CATALOG)
/*
* STEP 2. LOAD ESDS BASE CLUSTER
*
// EXEC PGM=LOADESDS

.

.

.
/*
* STEP 3. DEFINE ALTERNATE INDEX AND PATH
*
// EXEC PGM=IDCAMS,SIZE=AUTO
DEFINE ALTERNATEINDEX( NAME(ESDS.AIX.CLUSTER) -

FREESPACE(5 5) -
KEYS(4 28) -
RELATE(ESDS.BASE.CLUSTER) -
NONUNIQUEKEY -
UPGRADE -
VOLUMES(VOL001)) -

DATA( NAME(ESDS.AIX.CLUSTER.DATA) -
RECORDS(1000) RECORDSIZE(50 50)) -

INDEX( NAME(ESDS.AIX.CLUSTER.INDEX)) -
CATALOG(ESDS.USER.CATALOG)

DEFINE PATH( NAME(PATH.TO.ESDS.BASE.CLUSTER) -
PATHENTRY(ESDS.AIX.CLUSTER)) -
CATALOG(ESDS.USER.CATALOG)

/*
* STEP 4. BUILD ALTERNATE INDEX USING IDCAMS
*
// EXEC PGM=IDCAMS,SIZE=AUTO
BLDINDEX INDATASET(ESDS.BASE.CLUSTER) -

OUTDATASET(ESDS.AIX.CLUSTER) -
WORKVOLUMES(VOL001) -
CATALOG(ESDS.USER.CATALOG)

/*
/& 

Figure  394. Non-Unique Key Alternate Index on an ESDS -- IDCAMS
SyncSort for z/VSE 3.7 Programmer’s Guide9.10



// JOB AIX4SS
*
* STEP 1. DEFINE ESDS BASE CLUSTER
*
// EXEC PGM=IDCAMS,SIZE=AUTO
DEFINE CLUSTER( NAME(ESDS.BASE.CLUSTER) -

NONINDEXED -
VOLUMES(VOL001)) -

DATA( NAME(ESDS.BASE.CLUSTER.DATA) -
RECORDS(1000) RECORDSIZE(100 100)) -

CATALOG(ESDS.USER.CATALOG)
/*
* STEP 2. LOAD ESDS BASE CLUSTER
*
// EXEC PGM=LOADESDS

.

.

.
/*
* STEP 3. DEFINE ALTERNATE INDEX AND PATH
*
// EXEC PGM=IDCAMS,SIZE=AUTO
DEFINE ALTERNATEINDEX( NAME(ESDS.AIX.CLUSTER) -

FREESPACE(5 5) -
KEYS(4 28) -
RELATE(ESDS.BASE.CLUSTER) -
NONUNIQUEKEY -
UPGRADE -
VOLUMES(VOL001)) -

DATA( NAME(ESDS.AIX.CLUSTER.DATA) -
RECORDS(1000) RECORDSIZE(50 50)) -

INDEX( NAME(ESDS.AIX.CLUSTER.INDEX)) -
CATALOG(ESDS.USER.CATALOG)

DEFINE PATH( NAME(PATH.TO.ESDS.BASE.CLUSTER) -
PATHENTRY(ESDS.AIX.CLUSTER)) -
CATALOG(ESDS.USER.CATALOG)

/*
* STEP 4. BUILD ALTERNATE INDEX USING SYNCBIX
*
// LIBDEF PHASE,SEARCH=(lib.sublib)
// ASSGN SYS003,DISK,TEMP,VOL=VOL010,SHR
// DLBL IJSYSUC,'ESDS.USER.CATALOG',,VSAM
// DLBL BASE,'ESDS.BASE.CLUSTER',,VSAM
// DLBL AIX,'ESDS.AIX.CLUSTER',,VSAM
// DLBL SORTWK1,'SORTWK1.FILE',0,SD
// EXTENT SYS003,VOL010,1,0,strk,ntrk
// EXEC PGM=SYNCBIX,SIZE=2048K
INFILE(BASE) OUTFILE(AIX) WORK(1)

/*
/& 

Figure  395. Non-Unique Key Alternate Index on an ESDS -- SYNCBIX
Chapter 9.  Creating VSAM Alternate Index Files with SyncSort 9.11



Syntax Rules for SYNCBIX

The following are the rules for creating card image control statements required by 
SYNCBIX:

• SYNCBIX scans columns 1 through 80 of all card images.

• An “*” in column 1 of a card image indicates that the card image is a comment
statement. This statement will not be processed by SYNCBIX. Comment statements
may be placed anywhere in the SYSIPT card image stream.

• One or more complete SYNCBIX parameters (separated by at least one blank) may be
placed on a card image.

• SYNCBIX parameters may start in column 2 or later.

• Continuation is indicated by completing a parameter on a card image and then using
either a "-" or "+" character. Any information after the "-" or "+" character will be
treated as a comment.

SYNCBIX Parameters

The following are the parameters accepted by SYNCBIX:

INFILE  Specifies the filename, filenamei of the VSAM DLBL statement, and if
required, the read password, pwi of the VSAM base cluster to be used as
input to the alternate index building process. This parameter is required.
The read password of the INFILE parameter is only required if the VSAM
file is password protected.

NOREUSE  Specifies that the SYNCBIX default of REUSE is not to be applied to the
VSAM alternate index cluster.

OUTFILE  Specifies the filename, filenameo of the VSAM DLBL statement, and if
required, the write password, pwo of the VSAM alternate index cluster or
path that points to the alternate index cluster. This parameter is required.
The write password of the OUTFILE parameter is only required if the
VSAM file specified by the OUTFILE parameter is password protected.

PRINT  Specifies the amount of information to be displayed on SYSLST. SYSLST
may only be assigned to a printer. PRINT(ALL) specifies that all of the con-
trol statements and both informational and critical messages be displayed.
PRINT(CRITICAL) specifies that only critical error messages be displayed.
PRINT(NONE) specifies that no messages are to be displayed.
PRINT(CRITICAL) is the default. The PRINT parameter must be specified
first in order to affect the printing of the other SYNCBIX parameters. The
PRINT parameter is optional.
SyncSort for z/VSE 3.7 Programmer’s Guide9.12



SORT  Specifies the phase name of SyncSort for z/VSE. The default name is SORT,
which is almost always the correct name. This parameter is optional, and
should not be specified without consultation with the system programmer
who installed SyncSort for z/VSE.

WORK  Specifies the total number in decimal of disk files to be used for SORTWK.
The value of n must be between 1 and 9 and the default value of n is 1. This
parameter is optional. You must provide n SORTWKx DLBLs in your JCL
to be used if the data cannot be processed completely in virtual storage. See
“Setting up Disk Work File Statements” on page 5.5 for more details.

SYNCBIX Job Control Statements

The following are the job control statements (JCL) required by SYNCBIX:

IJSYSUC DLBL  Specifies the VSAM catalog that contains both the
VSAM base cluster and the VSAM alternate index
file. This statement is not needed if both files are
cataloged in the master catalog or if the correct cat-
alog is defined as IJSYSUC in standard labels. This
statement is also not needed if both of the DLBLs
for the base cluster and the alternate index cluster
use the CAT=parameter on their DLBLs.

filenamei DLBL  Specifies the VSAM file that is the base cluster for
the alternate index file. The INFILE parameter
specifies the value of filenamei. This DLBL state-
ment may use the CAT=parameter to indicate the
VSAM catalog that owns this cluster.

filenameo DLBL  Specifies the VSAM file that is the alternate index
cluster that is to created. The OUTFILE parameter
specifies the value of filenameo. This DLBL state-
ment may use the CAT=parameter to indicate the
VSAM catalog that owns this cluster.

SORTWKx DLBL/EXTENT/ASSGN  Specifies the SORTWK disk space to be used by
SyncSort for z/VSE if the BLDINDEX process is too
large to fit completely in virtual storage. There
should be one set of SORTWK DLBL/EXTENT/
ASSGN statements for each SORTWK specified by
the WORK parameter. For more details on
SORTWK JCL, see “Setting up Disk Work File
Statements” on page 5.5. These statements may not
be required if they already exist in the LABEL area.
Chapter 9.  Creating VSAM Alternate Index Files with SyncSort 9.13



LIBDEF  Defines the VSE library and sublibrary, (lib.sublib),
which contains SYNCBIX and SyncSort for z/VSE.
This statement may not be required if the SyncSort
for z/VSE library is in the permanent LIBDEF
chain.

EXEC  Specifies that the program to be executed is
SYNCBIX and defines the virtual storage it should
use. SYNCBIX will generally execute more
efficiently in larger virtual storage, but reading and
writing the VSAM files efficiently requires a
significant amount of GETVIS storage. Using
SIZE=512K or SIZE=1024K should be reasonable in
most cases. However, when the maximum record
length of the alternate index file is greater than
32K, the “SIZE=” value chosen must include the
maximum record length (i.e., SIZE=512K+nnnn or
SIZE=1024K+nnnn, where nnnn indicates the
maximum record length defined for the alternate
index files).

SYNCBIX Messages

SYNCBIX messages are written to SYSLST with a record length of 121 bytes and SYSLST
must be ASSGNed to a print device.

SYNCBIX messages have the prefix SBIX. (See “SYNCBIX Messages” on page 12.35 for a
description of SYNCBIX messages.)
SyncSort for z/VSE 3.7 Programmer’s Guide9.14



Chapter 10.  SyncSort Reentrant Access Method 
Operation

Overview

SyncSort Reentrant Access Method (SSRAM) is an interface between an invoking program
and SyncSort for z/VSE. SSRAM allows a program to invoke up to sixteen concurrent sorts
each of which can manipulate the same data differently.

Syntax Conventions

In this chapter, the following stylistic conventions apply. Lowercase characters in call syn-
tax, parameter lists, and error messages indicate variable information or information that
you must supply. Uppercase characters indicate literal information. Brackets in call syntax
enclose optional parameters.

Linking to SSRAM

SSRAM has a language interface that must be linkedited to the invoking program in order
to use SSRAM. The same language interface is used regardless of the language in which
the invoking program is written. The language interface interprets the sort call routines. 

Following is sample JCL to linkedit the interface to an invoking Assembler program.
Chapter 10.  SyncSort Reentrant Access Method Operation 10.1



Sort Call Overview

There are five calls that control the operation of sorts running under SSRAM:

• SRTCORE

• SRTOPEN

• SRTFILL

• SRTGETR

• SRTCLSE

SRTCORE  Reserves storage for all sorts. SRTCORE allows the application program to
specify the storage area which will be used by SSRAM and to limit the
amount of storage SSRAM uses. This must be at least as large as the sum of
the storage specified in the parameter lists for all concurrent lists. SRT-
CORE is required for PL/I and FORTRAN programs to avoid storage over-
lay problems. SRTCORE is optional for COBOL and Assembler programs.

SRTOPEN  Opens a sort. SRTOPEN causes SSRAM to use the information in the
parameter list, as well as the key definition table, return code table and
duplicate record processing table (when used) to initialize a sort.

SRTFILL  Passes a record to a sort. SSRAM uses the information in the parameter list
to determine the sort to which the record should be moved.

// JOB COMPILE
// OPTION  CATAL
PHASE USERPROG,*

// EXEC ASSEMBLY, SIZE=500K

source program 

/*
INCLUDE SSSRAM

// EXEC LNKEDT
/*
/& 

Figure  396. Sample JCL to linkedit to Invoking Assembler Program
SyncSort for z/VSE 3.7 Programmer’s Guide10.2



SRTGETR  Retrieves a record from a sort. The first SRTGETR call tells the sort to
merge the sorted strings and moves a sorted record to the work area. Subse-
quent SRTGETR calls move a sorted record to the work area of the invoking
program.

SRTCLSE  Ends a sort. The CLOSE call terminates the sort for the specified parame-
ter list.

Parameter List Overview

A unique parameter list is required for each sort that is initiated through SSRAM. The
application program stores information into this area, which SSRAM uses to run the sort.
SSRAM then sets a flag in the parameter list, which can be tested by the application pro-
gram. The list must be fullword aligned. The fields of this list are described here; language-
specific details are in later sections.

file id  This identifies the SSRAM work file name, as specified on the
DLBL job control statement. The work file must be on DASD, not
on tape.

logical unit number  This identifies the LUN for the work file, as specified in the
SYSnnn values on the ASSGN and EXTENT job control state-
ments. nnn must be between 000 and 221.

storage  This sets the amount of storage that SSRAM will use for this sort.
At least 64K is required; increased storage improves sort perfor-
mance.

record length  This specifies the record length (maximum record length for vari-
able-length records).

end-of-file flag  This is used by SSRAM to return a flag indicating when end-of-file
has been reached.

key definition table  This specifies the sort keys and the sorting order.

The Key Definition Table

Each parameter list contains a key definition table. The key definition table defines the
fields or sort keys by which records will be sorted. The key definition table also determines
the order, ascending or descending, in which the sort keys will be sorted.

The key definition table can be 256 characters long. Following is the format for the key def-
inition table.
Chapter 10.  SyncSort Reentrant Access Method Operation 10.3



V  V is required when the record is a variable-length record.

Variable-length records must begin with a standard 4-byte RDW (record
descriptor word). The first two bytes of the RDW must contain the record
length in binary format. The second two bytes of the RDW are ignored by
SSRAM but, nonetheless, should contain binary zeros. If you wish to sort on
record length, you may sort on the first two bytes. The first data position is
byte 5.

When sorting variable-length records you may enter either the average
record length or the maximum record length in the parameter table. How-
ever, you must enter the maximum record length when the key definition
table contains either signed binary or floating-point data type.

p  This is the starting position of the key field. The maximum value allowed is
4092, where 1 is the first position in the record.

l  This is the length of the key field in bytes. The maximum value varies
depending on the type of data. Following are the maximum values allowed
for each data type.

• The maximum value for alphanumeric data is 256.

• The maximum value for packed decimal data is 16.

• The valid values for floating-point data are 4 and 8.

• The maximum value for unsigned binary data is 4092.

• The maximum value for fixed integer data is 256.

• The maximum value for zoned decimal data is 256.

f  This is the data format code of the sort key. See the following table for
allowed codes.

[ V,] (p1,l1,f1,o1,p2,l2,f2,o2...pn,ln,fn,on) 

Figure  397. Key Definition Table Format
SyncSort for z/VSE 3.7 Programmer’s Guide10.4



Code Type of Data 

AC EBCDIC characters are translated to their ASCII equivalents

ASL Leading separate sign (ASCII + or - )

AST Trailing separate sign (ASCII + or - )

BI or B Unsigned binary

CH or C Alphanumeric EBCDIC characters

CLO Leading overpunch sign

CSF Floating sign

CSL Leading separate sign

CST Trailing separate sign

CTO Zoned decimal, trailing overpunch

FI Signed fixed point

FL Signed floating point

FS Floating sign

LS Leading separate sign

OL Leading overpunch sign

PD or P Signed packed decimal

PD0 Packed decimal, first digit and trailing sign ignored

TS Trailing separate sign

ZD or Z Zoned decimal, trailing overpunch

The following 2-digit formats are treated as 4-digit
years by CENTWIN (century window) processing

Y2B Binary 2-digit, 1 byte year

Y2C Character 2-digit year

Y2D Packed decimal 2-digit, 1 byte year

Y2P Packed decimal 2-digit, 2 byte year

Y2S Character or zoned decimal 2-digit, 2-byte year

Y2T
Y2V
Y2W
Y2X
Y2Y

Full date formats; see Table 37 on page 2.228

Y2Z Character 2-digit year

Table 51.  Data Format Codes
Chapter 10.  SyncSort Reentrant Access Method Operation 10.5



For details on each data type, see the Format Code Chart in “ Valid Formats
for Control Fields” on page 2.228.

o  This specifies the order in which the records will be sorted. Enter A for
ascending order. Enter D for descending order.

Sample Key Definition Table

The following figure shows two ways to show the same key definition table.

In the preceding example, the record is sorted in ascending order on the 23-character field
(alphanumeric), which starts in position 1. The minor sort keys are the 2-byte, binary data
starting in position 36, which is sorted in descending order and a 4-byte packed-decimal
field, which starts in position 32.

(1,23,C,A,36,2,B,D,32,4,P,A)

or

(1,23,CH,A,36,2,BI,D,32,4,PD,A) 

Figure  398. Sample of Equivalent Key Definition Tables
SyncSort for z/VSE 3.7 Programmer’s Guide10.6



Return Code Table Overview

In addition to the required parameter list, you have the option of using a return code table
for each sort. The advantage of using a return code table is that it offers greater control
when an error occurs. Typically, when SSRAM encounters an error, it cancels the program.

If SSRAM is passed a return code table during the OPEN call, SSRAM updates the return
code table after each subsequent call. It is recommended that the program check the return
code table each time it is updated by SSRAM. The program can take appropriate action
based on SSRAM’s response.

The return code table contains binary values and must be fullword aligned. The values in
the table are in binary format.

return codes  Following are the possible return codes:

0  The last call ran successfully.

4  There is an error in the parameter list.

8  SSRAM detected an end-of-file condition as a result of
the last GET call. Check the error code.

12  The CLOSE call completed successfully.

16  An error occurred during the last call. Check the error
code.

error code  This is the binary representation of the error message number.

FILL record count  This counts the records passed as a result of FILL calls. SSRAM
updates the record count when the work file is closed or if an
error occurs.

GET record count  This counts the records passed as a result of GET calls. SSRAM
updates the record count when the work file is closed or if an
error occurs.

DISPLACEMENT TABLE ENTRY

+0 return code (halfword)

+2 error code (halfword)

+4 FILL record count (fullword)

+8 GET record count (fullword)

Table 52.  Return Code Table
Chapter 10.  SyncSort Reentrant Access Method Operation 10.7



Refer to Figure 400 on page 10.9, Figure 410 on page 10.14, Figure 420 on page 10.18, or
Figure 429 on page 10.23 for the format of the return code table for each respective lan-
guage.

Duplicate Record Processing Overview

In addition to the required parameter list, you have the option of using a duplicate record
code for a sort. The advantage of using a duplicate record code is that it offers the option to
delete records that have duplicate keys during sort execution. The other fields in the dupli-
cate key records can be unequal.

To delete duplicate key records, enter the value 8 in the variable for duplicate record pro-
cessing specified in the SRTOPEN parameter list. To retain all records, enter the value 0;
this is the default.

If you are deleting duplicate keyed records and the records are variable-length records, be
sure to enter the maximum record length in the parameter table. If you use the average
record length instead of the maximum record length, the sort may terminate and issue
error message WER123A SUM FIELD BEYOND RECORD.
SyncSort for z/VSE 3.7 Programmer’s Guide10.8



ASSEMBLER Parameter List and Return Code Table

Each sort that you initiate through SSRAM must have a unique parameter list. The
parameter list must be fullword aligned. Figure 399 shows the format for an Assembler
parameter list.

Following is the description of each of the required parameters.

FILEID  Enter the 1-5 character filename for the SSRAM disk work area as
specified on the DLBL job control statement. 

LOGUNIT  Use this to set the logical unit number (LUN) for the DASD work
file. This value corresponds to the SYSnnn value on both the
ASSGN and EXTENT control statements for the work file in the
JCL. The LUN must be a 3-digit number between 000 and 221.

STORAGE  Use this to set the amount of main storage that SSRAM will use for
this sort task. The minimum amount of storage required by SSRAM
for each sort is 64K. However, SSRAM will accept a minimum value
of 10K. If a value less than 64K is specified, SSRAM automatically
uses 64K instead. Increasing storage improves performance.

RECLEN  For fixed-length records, enter the actual record length. For vari-
able-length records, enter the maximum record length.

EOFFLAG  SSRAM sets this to 99 when EOF occurs on the SSRAM work file.

KEYDFTBL  Enter the key definition table.

The following figure shows the format for an Assembler return code table.

PARMLIST DS 0F Fullword alignment required
FILEID DC CL5'filename' File name
LOGUNIT DC CL3'logical unit #' Logical Unit Number
STORAGE DC F'storage' Storage Size
RECLEN DC H'record length' Record Length
EOFFLAG DC CL2'XX'  End-of-file indicator
KEYDFTBL DC C'key definition table' Sort keys 

Figure  399. Assembler Parameter List

RCODETBL DS 0F FULLWORD ALIGNMENT REQUIRED
RTNCODE DC H'0' RETURN CODE
ERRCODE DC H'0' ERROR CODE
FILLCNT DC F'0' FILL RECORD COUNT
GETCNT DC F'0' GET RECORD COUNT 

Figure  400. Assembler Return Code Table
Chapter 10.  SyncSort Reentrant Access Method Operation 10.9



ASSEMBLER Calls

SRTCORE

The optional SRTCORE call defines a storage length; it may also define a storage area and
century window. Only one SRTCORE call may be defined in the application program and it
must precede all other SSRAM calls in the program.

starea  Enter the variable name of the storage area within the program which will
be used by SSRAM.

stlength  Enter the variable name of the storage length, stored as a fullword value. A
minimum of 64K of storage is required for each sort.

When starea is not specified, SSRAM will be loaded at the end of the last program phase
loaded.

When starea is specified within the problem program area, a placeholder value of
X'FFFFFFFF' may be used as the length parameter to specify that storage will be allocated
from the starea location to the end of the problem program area.

sys, usr, ops, str, pfx, dsm, and ccw are optional positional parameters which are
accepted but ignored. centwin is an optional positional parameter which specifies the cen-
tury window to which 2-digit year data belongs when being processed by the sort. For
details on using centwin, see “ CENTWIN Parameter (Optional)” on page 2.101.

If centwin is specified, the preceding 7 parameters must be specified using fullword place-
holders. The value X’FFFFFFFF’ may be used for each. A value must also be specified for
starea.

Following are examples of SRTCORE usage:

CALL SRTCORE,([starea,]stlength[,sys,usr,ops,str,pfx,dsm,ccw,centwin])

Figure  401. SRTCORE Format
SyncSort for z/VSE 3.7 Programmer’s Guide10.10



SRTOPEN

The SRTOPEN call starts a SSRAM sort.

parmlist  Enter the variable name of the parameter list. The parameter list is
required.

rcodetbl  Enter the variable name of the return code table.

duprecps  Enter the variable name of the duplicate record processing field. This is a
fullword binary value. The duplicate record processing field is optional.

userexit  This function is not supported. However, if a variable name is entered,
SSRAM will ignore the value and continue processing normally.

Because the variables are positional, if you wish to specify a duplicate record processing
table and a user exit, you must enter a variable name for the return code table even if you
are not using return codes. In this case, define a placeholder return code table as follows:

CALL SRTCORE,(AREA,LENGTH)
CALL SRTCORE,(AREA,DUMMYLEN) Use space to end of problem program 
* area (AREA must not be in 
* GETVIS storage)
CALL SRTCORE,(LENGTH) Load at end of last phase
CALL SRTCORE,(AREA,LENGTH,FILL,FILL,FILL,FILL,FILL,FILL,FILL,WINDOW)
* Century window specified
LENGTH DC F'128000' Length of storage area in bytes
DUMMYLEN DC F'-1' Special positional value for "stlength"
AREA DS  XL128000 Storage where SSRAM will be loaded
WINDOW DC F’2007’
FILL DC F’-1’

Figure  402. Examples of SRTCORE Usage

CALL  SRTOPEN,(parmlist[,rcodetbl[,duprecps[,userexit]]]) 

Figure  403. SRTOPEN Format

rcodetbl DC F'-1' 

Figure  404. Placeholder Return Code Table
Chapter 10.  SyncSort Reentrant Access Method Operation 10.11



SRTFILL

The SRTFILL call tells SSRAM to pass a record from the specified record area to the sort
defined by the specified parameter list.

parmlist  Enter the variable name of the parameter list of the sort to which you
wish to pass a record. 

record-area  Enter the variable name of the area that contains the record to be
passed to the sort.

SRTGETR

The SRTGETR call retrieves a record from the sort defined by the parameter list and puts
it in the specified record-area. If SSRAM detects an end-of-file condition, SSRAM sets 
EOFFLAG to 99. If the program expects a return code, SSRAM will return code 8 at EOF.

parmlist  This is the variable name of the parameter list that identifies the sort
from which the record is being retrieved.

record-area  This variable name identifies the name of the record area to which the
record is to be moved.

SRTCLSE

Use the SRTCLSE call to terminate sort processing for an individual sort. If return codes
have been requested, SSRAM supplies the record count and return code 12 if the close was
successful.

parmlist  This is the variable name of the parameter list of the sort you wish to
close.

CALL SRTFILL,(parmlist,record-area) 

Figure  405. SRTFILL Format

CALL SRTGETR,(parmlist,record-area) 

Figure  406. SRTGETR Format

CALL SRTCLSE,(parmlist[,rcodetbl]) 

Figure  407. SRTCLSE Format
SyncSort for z/VSE 3.7 Programmer’s Guide10.12



rcodetbl  This is the variable name of the return code table, which is updated and
returned to the program. This is optional.

COBOL Parameter List and Return Code Table

Each sort that you initiate through SSRAM must be accompanied by a unique parameter
list. Since the parameter list must be fullword aligned, the parameter list must be defined
as SYNCHRONIZED. Figure 408 shows the format for a COBOL parameter list.

FILE-ID  Enter the 1-5 character filename for the SSRAM disk work area as
specified on the DLBL job control statement.

LOG-UNIT  Use this to set the logical unit number (LUN) for the DASD work
file. This value corresponds to the SYSnnn value on both the
ASSGN and EXTENT control statements for the work file in the
JCL. The LUN must be a 3-digit number between 000 and 221.

STORAGE  Use this to set the amount of main storage that SSRAM will use for
this sort task. The minimum amount of storage required by SSRAM
for each sort is 64K. However, SSRAM will accept a minimum value
of 10K. If a value less than 64K is specified, SSRAM automatically
uses 64K instead. Increasing storage improves performance.

REC-LENGTH  For fixed-length records, enter the actual record length. For vari-
able-length records, enter the maximum record length.

EOF-FLAG  SSRAM sets this to 99 when EOF occurs on the SSRAM work file.

KEYDEF-TBL  Enter the key definition table.

There are special considerations for sorting variable-length records from a COBOL pro-
gram. Since COBOL does not typically use the RDW, you must ensure that an RDW that
meets the previously described specifications is included as part of the record. This can be
done in the record-area definition in WORKING STORAGE. The following figure shows a
sample record-area definition that includes the required RDW. REC-LEN must be adjusted
to include the record length and the length of the RDW for each variable-length record. The
record should be moved to USER-DATA prior to being passed to the sort.

01 SRTTBLE SYNCHRONIZED.
02 FILE-ID  PICTURE X(5) VALUE 'filename'.
02 LOG-UNIT PICTURE X(3) VALUE 'Logical unit number'.
02 STORAGE PICTURE S9(6) VALUE main storage size COMP.
02 REC-LENGTH PICTURE S9(4) VALUE record-length COMP.
02 EOF-FLAG PICTURE XX VALUE SPACES.
02 KEYDEF-TBL PICTURE X(nn) VALUE 'key definition table'. 

Figure  408. COBOL Parameter List
Chapter 10.  SyncSort Reentrant Access Method Operation 10.13



Figure 410 shows the format for a COBOL return code table. Since the return code table
must be fullword aligned, the return code table must be defined as SYNCHRONIZED.

COBOL Calls

SRTCORE

The optional SRTCORE call defines a storage area and storage length; it may also define a
century window. Only one SRTCORE call may be defined in the application program and it
must precede all other SSRAM calls in the program.

starea  Enter the variable name of the storage area within the program which will be used
by SSRAM.

stlength  Enter the variable name of the storage length. A minimum of 64K of storage is
required for each sort.

When starea is not specified, SSRAM will be loaded at the end of the last program phase
loaded.

sys, usr, ops, str, pfx, dsm, and ccw are optional positional parameters which are
accepted but ignored. centwin is an optional positional parameter which specifies the cen-
tury window to which 2-digit year data belongs when being processed by the sort. For
details on using centwin, see “ CENTWIN Parameter (Optional)” on page 2.101.

01 RECORD-AREA.
05 REC-LEN PIC S9(4) COMPUTATIONAL.
05 FILLER PIC XX.
05 USER-DATA PIC X(...). 

Figure  409. Sample COBOL Record Area Definition

01 RETURN-CODE-TABLE SYNCHRONIZED.
05 RETURN-CODE PIC S9(4) COMPUTATIONAL VALUE ZERO.
05 ERROR-CODE PIC S9(4) COMPUTATIONAL VALUE ZERO.
05 FILL-COUNT PIC S9(6) COMPUTATIONAL VALUE ZERO.
05 GET-COUNT  PIC S9(6) COMPUTATIONAL VALUE ZERO. 

Figure  410. COBOL Return Code Table

CALL 'SRTCORE' USING [starea,]stlength,[sys,usr,ops,str,pfx,dsm,ccw,centwin].

Figure  411. SRTCORE Format
SyncSort for z/VSE 3.7 Programmer’s Guide10.14



If centwin is specified, the preceding 7 parameters must be specified using placeholder
variables. The value PLACEHOLDER PIC X(-1) may be used for each.

Following is an example of SRTCORE usage:

SRTOPEN

The SRTOPEN call starts a SSRAM sort.

parmlist  Enter the variable name of the parameter list. The parameter list is
required.

rcodetbl  Enter the variable name of the return code table. The return code table is
optional.

duprecps  Enter the code that indicates how duplicate records are processed. 0 indi-
cates that duplicate records are to be retained; this is the default. 8 tells
SSRAM to delete records with duplicate keys. The following figure shows
how to specify deletion of records with duplicate keys.

Because the variables are positional, if you wish to specify duplicate record processing, you
must enter a variable name for the return code table even if you are not using return codes.
In this case, define a placeholder return code table as follows:

CALL 'SRTCORE' USING STORAREA,STORLEN.

WORKING-STORAGE SECTION.
01 STORAREA PIC   X(128000).
01 STORLEN PIC S9(6) COMPUTATIONAL VALUE +128000.

Figure  412. Example of SRTCORE Usage

CALL 'SRTOPEN' USING parmlist[,rcodetbl[,duprecps]]. 

Figure  413. SRTOPEN Format

DUPRECPS PIC S9(6) VALUE +8 COMPUTATIONAL. 

Figure  414. Format to Specify Deletion of Records with Duplicate Keys.

rcodetbl PIC S9(6) VALUE HIGH-VALUES. 

Figure  415. Placeholder Return Code Table
Chapter 10.  SyncSort Reentrant Access Method Operation 10.15



SRTFILL

The SRTFILL call tells SSRAM to pass a record from the specified record area to the sort
defined by the specified parameter list.

parmlist  Enter the variable name of the parameter list of the sort to which you wish
to pass a record. 

record-area  Enter the variable name of the area that contains the record to be passed.

SRTGETR

The SRTGETR call retrieves a record from the sort defined by the parameter list and puts
it in the specified record-area. If SSRAM detects an end-of-file condition, SSRAM sets 
EOF-FLAG to 99. If the program expects a return code, SSRAM will return code 8 at EOF.

parmlist  This is the variable name of the parameter list that identifies the sort from
which the record is being retrieved.

record-area  This variable name identifies the name of the area to which the record is to
be moved.

SRTCLSE

Use the SRTCLSE call to terminate sort processing for an individual sort. If return codes
have been requested, SSRAM supplies the record count and return code 12 if the close was
successful.

parmlist  This is the variable name of the parameter list of the sort you wish to close.

rcodetbl  This is the variable name of the return code table, which is updated and
returned to the program. This is optional.

CALL 'SRTFILL' USING parmlist,record-area. 

Figure  416. SRTFILL Format

CALL 'SRTGETR' USING parmlist,record-area. 

Figure  417. SRTGETR Format

CALL 'SRTCLSE' USING parmlist[,rcodetbl]. 

Figure  418. SRTCLSE Format
SyncSort for z/VSE 3.7 Programmer’s Guide10.16



Note: With COBOL (D), ENTER LINKAGE and ENTER COBOL must be used with each
call.
Chapter 10.  SyncSort Reentrant Access Method Operation 10.17



FORTRAN Parameter List and Return Code Table

Each sort that you initiate through SSRAM must be accompanied by a unique parameter
list. The parameter list in FORTRAN is defined using the DIMENSION and the DATA
statements. Figure 419 shows the format for a FORTRAN parameter list.

Refer to the IBM VS FORTRAN documentation for a full description of the DIMENSION
and DATA statements syntax. Following is a description of each of the required fields.

parmlist(n)  This identifies the variable name of the parmlist defined in the DATA
statement. n is the number of words in the accompanying DATA state-
ment; its value depends on the size of the key definition table.

Byte 1-5  Use this to specify the 5-character filename of the SSRAM disk work
area as specified on the DLBL job control statement.

Byte 6-8  Use this to identify the Logical Unit Number of the device that contains
the work file. This value corresponds to the SYSnnn value on both the
ASSGN and EXTENT control statements for the work file in the JCL.
The LUN must be a 3-digit number between 000 and 221.

Byte 9-12  Use this to set the amount of main storage that SSRAM will use for a
sort task. The minimum amount of storage required by SSRAM for each
sort is 64K. However, SSRAM will accept a minimum value of 10K. If a
value less than 64K is specified, SSRAM automatically uses 64K
instead. Increasing storage improves performance.

Byte 13-16  Use this to specify the record length. For variable-length records, spec-
ify the maximum record length.

Byte 17-n  Use this for the key definition table. It must be enclosed within pare-
theses. s is the size of the table in bytes.

Figure 420 shows the format for a FORTRAN return code table.

DIMENSION parmlist(n),data-area(nnnnn)
DATA parmlist / 5Hbyte1-5,3Hbyte6-8,byte9-12,byte13-16,sH(byte17-n) 

Figure  419. FORTRAN Parameter List

DIMENSION rcodetbl (3)

Figure  420. FORTRAN Return Code Table
SyncSort for z/VSE 3.7 Programmer’s Guide10.18



The return code table contains the following:

Byte 1-2  return code

Byte 3-4  error code

Byte 5-8  FILL record count

Byte 9-12  GET record count

FORTRAN Calls 

SSCOR

The required SSCOR call defines a storage area and storage length. Optionally, it may also
define a century window. Only one SSCOR call may be defined in the application program
and it must precede all other SSRAM calls in the program.

iarea  Enter the variable name of the storage area within the program which
will be used by SSRAM.

ilength  Enter the variable name of the storage length. A minimum of 64K of
storage is required for each sort.

isys, iusr, iops, istr, ipfx, idsm, and iccw are optional positional parameters which are
accepted but ignored. icentwin is an optional positional parameter which specifies the cen-
tury window to which 2-digit year data belongs when being processed by the sort. For
details on using icentwin, see “ CENTWIN Parameter (Optional)” on page 2.101.

If icentwin is specified, the preceding 7 parameters must be specified using placeholder
variables. The value DATA IHOLDER/-1/ may be used for each.

Following is an example of SSCOR usage:

CALL SSCOR (iarea,ilength[,isys,iusr,iops,istr,ipfx,idsm,iccw,icentwin]) 

Figure  421. SSCOR Format

DIMENSION IAREA(32768)
DATA ILENGTH/131072/ 
CALL SSCOR (IAREA,ILENGTH)

Figure  422. Example of SSCOR Usage
Chapter 10.  SyncSort Reentrant Access Method Operation 10.19



SSOPN

The SSOPN call starts a SSRAM sort.

parmlist  Enter the variable name of the parameter list. The parameter list is
required.

rcodetbl  Enter the variable name of the return code table.

duprecps  Enter the variable name of the duplicate record processing field. The
duplicate record processing field is optional.

Because the variables are positional, if you wish to specify a duplicate record processing
field, you must enter a variable name for the return code table even if you are not using
one. In this case, define a placeholder return code table as follows:

SSFIL

The SSFIL call tells SSRAM to pass a record from the specified integer array to the sort
defined by the specified parameter list.

parmlist  Enter the variable name of the parameter list of the sort to which you wish
to pass a record. 

irec  Enter the variable name of the integer array that contains the record to be
sorted.

SSGET

CALL SSOPN (parmlist[,rcodetbl[,duprecps]]) 

Figure  423. SSOPN Format

DATA rcodetbl /-1/ 

Figure  424. Placeholder Return Code Table

CALL SSFIL (parmlist,irec) 

Figure  425. SSFIL Format

CALL SSGET (parmlist,irec,&stmt) 

Figure  426. SSGET Format
SyncSort for z/VSE 3.7 Programmer’s Guide10.20



The SSGET call retrieves a record from the sort defined by the parameter list and puts it
into a specified integer array. If SSRAM detects an end-of-file condition, SSRAM passes
control to the statement specified by &stmt. If the program expects a return code, SSRAM
will return a code of 8 at EOF.

parmlist  This is the variable name of the parameter list that identifies the sort from
which a record is to be retrieved.

irec  This variable name identifies the integer array into which the record is to
be moved.

&stmt  This is the statement number of the statement to which SSRAM passes
control when an end-of-file condition occurs.

SSCLS

Use the SSCLS call to terminate sort processing for an individual sort. If return codes have
been requested, SSRAM supplies the FILL record count, the GET record count, and return
code 12 if the close was successful.

parmlist  This is the variable name of the parameter list of the sort you wish to close.

rcodetbl  This is the variable name of the return code table.

CALL SSCLS (parmlist[,rcodetbl]) 

Figure  427. SSCLS Format
Chapter 10.  SyncSort Reentrant Access Method Operation 10.21



PL/I Parameter List and Return Code Table

Each sort that you initiate through SSRAM must be accompanied by a unique parameter
list. Since the parameter list must be fullword aligned, the parameter list must be defined
as a STATIC ALIGNED structure. Do not use other structures such as AUTOMATIC for
SSRAM storage areas. Figure 428 shows the format for a PL/I parameter list.

Following is the description of each of the required parameters.

FILEID  Enter the 5-character filename for the SSRAM disk work area as speci-
fied on the DLBL job control statement. 

LOGUNIT  Use this to set the logical unit number (LUN) for the DASD work file.
This value corresponds to the SYSnnn value on both the ASSGN and
EXTENT control statements for the work file in the JCL. The LUN
must be a 3-digit number between 000 and 221.

STORAGE  Use this to set the amount of main storage that SSRAM will use for a
sort task. The minimum amount of storage required by SSRAM for each
sort is 64K. However, SSRAM will accept a minimum value of 10K. If a
value less than 64K is specified, SSRAM automatically uses 64K
instead. Increasing storage improves performance.

RECLEN  For fixed-length records, enter the actual record length. For variable-
length records, enter the maximum record length.

EOFFLAG  SSRAM sets this to 99 when EOF occurs on the SSRAM work file.

KEYDFTBL  Enter the key definition table. It must be enclosed within parentheses.

DECLARE 1 SORTTAB STATIC ALIGNED,
2 FILEID  CHAR (5) INITIAL ('file name'),
2 LOGUNIT CHAR (3) INITIAL ('logical unit #'),
2 STORAGE BINARY FIXED (31) INITIAL (storage size),
2 RECLEN BINARY FIXED (15) INITIAL (record length),
2 EOFFLAG CHAR (2) INITIAL ('XX'),
2 KEYDFTBL CHAR (nn) INITIAL ('key definition table'); 

Figure  428. PL/I Parameter List.
SyncSort for z/VSE 3.7 Programmer’s Guide10.22



Figure 429 shows the format for a PL/I return code table. Since the return code table must
be fullword aligned, the return code table must be defined as a STATIC ALIGNED
structure.

PL/I Calls

SRTCORE

The required SRTCORE call defines a storage area and storage length. Optionally, it may
also define a century window. Only one SRTCORE call may be defined in the application
program and it must precede all other SSRAM calls in the program.

starea  Enter the variable name of the storage area within the program which
will be used by SSRAM.

stlength  Enter the variable name of the storage length. A minimum of 64K of
storage is required for each sort.

sys, usr, ops, str, pfx, dsm, and ccw are optional positional parameters which are
accepted but ignored. centwin is an optional positional parameter which specifies the cen-
tury window to which 2-digit year data belongs when being processed by the sort. For
details on using centwin, see “ CENTWIN Parameter (Optional)” on page 2.101.

If centwin is specified, the preceding 7 parameters must be specified using placeholder
variables. The value PLACEHOLDER CHAR(-1) may be used for each.

Following is an example of SRTCORE usage:

DECLARE 1 RETURN_CODE_TABLE STATIC ALIGNED,
2 RETURN_CODE BINARY FIXED(15) INIT(0),
2 ERROR_CODE BINARY FIXED(15) INIT(0),
2 FILL_COUNT BINARY FIXED(31) INIT(0),
2 GET_COUNT BINARY FIXED(31) INIT(0); 

Figure  429. PL/I Return Code Table.

CALL SRTCORE (starea,stlength[,sys,usr,ops,str,pfx,dsm,ccw,centwin]);

Figure  430. SRTCORE Format

DCL1 STOR_AREA STATIC ALIGNED,
2 SRAM_AREA CHAR(256000);

DCL STOR_LEN BIN FIXED(31) INIT(256000); 

Figure  431. Example of SRTCORE Usage
Chapter 10.  SyncSort Reentrant Access Method Operation 10.23



SRTOPEN

The SRTOPEN call starts a SSRAM sort.

parmlist  Enter the variable name of the parameter list. The parameter list is
required.

rcodetbl  Enter the variable name of the return code table.

duprecps  Enter the variable name of the duplicate record processing field. The
duplicate record processing field is optional.

Because the variables are positional, if you wish to specify a duplicate record processing
field, you must enter a variable name for the return code table even if you are not using
one. In this case, define a placeholder return code table as in the following example:

SRTFILL

The SRTFILL call tells SSRAM to pass a record from the specified record area to the sort
defined by the specified parameter list.

parmlist  Enter the variable name of the parameter list of the sort to which you wish
to pass a record. 

recptr  Enter the variable name of an address constant pointer to a one-dimen-
sional structure or elementary item that contains the input record to be
sorted.

CALL  SRTOPEN (parmlist[,rcodetbl[,duprecps]]); 

Figure  432. SRTOPEN Format

DCL rcodetbl FIXED BIN(31) INIT(-1); 

Figure  433. Placeholder Return Code Table

CALL SRTFILL (parmlist,recptr); 

Figure  434. SRTFILL Format
SyncSort for z/VSE 3.7 Programmer’s Guide10.24



SRTGETR

The SRTGETR call retrieves a record from the sort defined by the parameter list and puts
it in the area specified by the address constant pointer. If SSRAM detects an end-of-file con-
dition, SSRAM sets EOFFLAG to 99. If the program expects a return code, SSRAM will
return a code of 8 at EOF.

parmlist  This is the variable name of the parameter list that identifies the sort from
which the record is being retrieved.

recptr  This variable name identifies the name of the address constant pointer that
specifies the area to which the record is to be moved.

SRTCLSE

The SRTCLSE call terminates sort processing for an individual sort. If return codes have
been requested, SSRAM supplies the FILL record count, the GET record count, and the
return code 12 if the close was successful.

parmlist  This is the variable name of the parameter list of the sort you wish to close.

rcodetbl  This is the variable name of the return code table, which is updated with
the appropriate return code and record counts. This is optional.

CALL SRTGETR (parmlist,recptr); 

Figure  435. SRTGETR Format

CALL SRTCLSE (parmlist[,rcodetbl]); 

Figure  436. SRTCLSE Format
Chapter 10.  SyncSort Reentrant Access Method Operation 10.25



SyncSort for z/VSE 3.7 Programmer’s Guide10.26



Chapter 11.  The SYNCHSTO Utility Program

What is SYNCHSTO?

SYNCHSTO is a separate program that is used to determine information about variable-
length record files. The program uses SyncSort to scan a variable-length record file and
provides information about the records in the file, which then can be used to run more effi-
cient sorts of that file.

SYNCHSTO will report the:

• minimum and maximum record lengths in the file;

• average record length;

• total number of records in the file;

• total number of bytes in the file;

• measured l5 value (most common record length) for the file;

• recommended l6 value (average work space per record) for the file; and

• recommended l7 value (optimum segment length) for the file.

SYNCHSTO will also produce a histogram that displays the distribution of the lengths of
the records in the file.
Chapter 11.  The SYNCHSTO Utility Program 11.1



The l5, l6, and l7 values can be used for the LENGTH parameter on the RECORD control
statement for subsequent sorts using the file to help improve the performance of those
sorts. Since the l7 value depends on the record length and key position after INREC and
E15 processing, the value calculated by SYNCHSTO is an estimate assuming a specified
(or default) key position. If a sort application reformats the records using an E15 or INREC,
a more accurate value can be calculated for that application by using the VL5L6L7 PARM
with that sort (see “VL5L6L7” on page 6.8).

The output from SYNCHSTO is written to SYSLST, which must be ASSGNed to a print
device.

Control Parameters for SYNCHSTO

The parameter statement (or statements) describes the input file and controls the charac-
teristics of the SYNCHSTO output. Parameter statements are read into SYNCHSTO
through SYSIPT. A parameter statement contains parameters and their associated values
(if any), which may be specified in any order.

The following rules are used for parameter statements:

• The first parameter on a statement begins in column 1 and extends up to column 71.

• Each parameter statement ends with a blank to end that statement, or a comma to
continue the parameter list onto the next statement.

• Parameters are separated by commas, with no intervening blanks.

• A blank or a comma may not be used within a parameter.

• A continuation statement begins in column 1.

The control parameters are described below; defaults are underlined. For all numerical val-
ues, only a significant number of digits is needed (i.e. “nnnnn” can be replaced by “80”;
“00080” is not required). LRECL is the only parameter that is required in all cases.

BLKSIZE

This parameter specifies the block size of the input file. (It is required if the file is of type
VB or VBS.)

The maximum value of nnnnn is 65528.

BLKSIZE=nnnnn

Figure  437. BLKSIZE Format
SyncSort for z/VSE 3.7 Programmer’s Guide11.2



CLOSE

For tape files, this parameter indicates what action should be taken after the file has been
read. CLOSE=RWD, the default, specifies that the last tape input volume will be rewound
at end-of-file. CLOSE=NORWD specifies that input volumes should not be rewound at end-
of-file. CLOSE=UNLD specifies that the last tape input volume should be rewound and
unloaded at end-of-file.

This parameter is ignored for non-tape files.

KEYEND

This parameter specifies the ending position of the last sort key field that will be used
when sorting this file. Remember that the first 4 bytes of the record are used by the Record
Descriptor Word, so the first byte of the data portion of the record is byte 5.

LRECL (required)

This parameter specifies the maximum record length of the variable-length records in the
file. Remember to include 4 bytes for the Record Descriptor Word.

The maximum value of “nnnnn” is 65524.

NRECS

Figure  438. CLOSE Format

CLOSE

RWD

NORWD
UNLD 

 
 
 
 

=

Figure  439. KEYEND Format

KEYEND
20

nnnn 
 
 

=

LRECL=nnnnn

Figure  440. LRECL Format

NRECS=nnnnnnnnnn

Figure  441. NRECS Format
Chapter 11.  The SYNCHSTO Utility Program 11.3



If specified, this parameter specifies the number of records to be read from the file. If not
specified, the entire file is read. The file characteristics measured and calculated by
SYNCHSTO will be based on only the first “nnnnnnnnnn” records of the file. (If the record
lengths are randomly distributed in a very large file, this can provide a useful estimate that
avoids the long processing time required for reading the entire file.)

The maximum value of “nnnnnnnnnn” is 2 gigabytes - 1 (i.e. 2147483647).

OPEN

For tape files, this parameter indicates what action should be taken when the file is
opened.

OPEN=RWD, the default, specifies that the first volume of the tape input file is to be
rewound when the file is opened. OPEN=NORWD specifies that the first volume of the tape
input file is not to be rewound when the file is opened.

This parameter is ignored for non-tape files.

SORTNAME

This parameter, if specified, indicates the name of SyncSort as installed on your system to
be used by SYNCHSTO.

Specify the “sortname” value as 1 to 8 alphanumeric characters. The first character must
be alphabetic.

SPAN

This parameter indicates that the input file may contain spanned records.

Figure  442. OPEN Format

OPEN
RWD

NORWD 
 
 

=

Figure  443. SORTNAME Format

SORTNAME
SORT

sortname 
 
 

=

SPAN

Figure  444. SPAN Format
SyncSort for z/VSE 3.7 Programmer’s Guide11.4



VOLUME

This parameter indicates the number of volumes for an unlabeled input tape file.

This parameter is ignored for disk input files.

VSAM

Specify this parameter when the input file is a VSAM file.

WIDTH

This parameter indicates the range between the minimum and maximum record lengths in
each group of the SYNCHSTO histogram display. The number specified must be a multiple
of 4.

If not specified, SYNCHSTO will dynamically calculate the value of WIDTH to use for the
display based on the minimum and maximum record lengths of the records read from the
file.

The maximum value of “nnnnn” is 65524.

Job Control Language

Use the filename SORTIN1 and symbolic unit name SYS002 to define the input file on the
ASSGN, DLBL or TLBL, and EXTENT JCL statements, followed by one or more control
statements. A sample SYNCHSTO job stream is shown below.

VOLUME=nnn

Figure  445. VOLUME Format

VSAM

Figure  446. VSAM Format

WIDTH=nnnnn

Figure  447. WIDTH Format
Chapter 11.  The SYNCHSTO Utility Program 11.5



Notes: 

1. Symbolic unit name SYS002 is used.

2. Filename SORTIN1 is used.

3. The required LRECL parameter is on this control statement.

4. The second control statement ends with a comma, indicating that it is continued on the
next control statement. Since multiple control statements are allowed, and a parameter
cannot be “split” in the middle by a comma, there is no difference between specifying
control statements with or without continuations.

Sample SYNCHSTO Output

Figure 449 shows the output resulting from running SYNCHSTO with the JCL example
shown above.

// JOB TESTHSTO
// ASSGN SYS001,SYSLST

1. // ASSGN SYS002,DISK,VOL=mydisk,SHR
2. // DLBL SORTIN1,'VARIABLE.DATA.FILE',0,SD
1. // EXTENT SYS002,mydisk

// EXEC SYNCHSTO,SIZE=128K
3. LRECL=2900,KEYEND=75
4. WIDTH=100,
4. NRECS=5000

/*
/&

Figure  448. Sample SYNCHSTO Job Stream
SyncSort for z/VSE 3.7 Programmer’s Guide11.6



1
.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*
 
*
 
*
 
*
 
*
 
*
 
*
 
*
 
*
 
*
 
*
 
*
 
*
 
 
 
S
Y
N
C
H
S
T
O
 
P
A
R
A
M
E
T
E
R
 
S
T
A
T
E
M
E
N
T
S
 
*
 
*
 
*
 
*
 
*
 
*
 
*
 
*
 
*
 
*
 
*
 
*
 
*

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
L
R
E
C
L
=
2
9
0
0
,
K
E
Y
E
N
D
=
7
5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
W
I
D
T
H
=
1
0
0
,

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
N
R
E
C
S
=
5
0
0
0

2
.

 
 
S
H
S
0
0
1
I
 
 
N
U
M
B
E
R
 
O
F
 
R
E
C
O
R
D
S
 
.
 
.
 
.
 
.
 
.
 
.
 
.
 
 
 
 
 
 
 
 
 
 
 
5
0
0
0

 
 
S
H
S
0
0
2
I
 
 
T
O
T
A
L
 
L
E
N
G
T
H
 
O
F
 
A
L
L
 
R
E
C
O
R
D
S
 
.
 
.
 
 
 
 
 
 
 
 
8
1
6
9
8
2
0

 
 
S
H
S
0
0
3
I
 
 
A
V
E
R
A
G
E
 
R
E
C
O
R
D
 
L
E
N
G
T
H
 
.
 
.
 
.
 
.
 
.
 
 
 
 
 
 
 
 
 
 
 
1
6
3
3

 
 
S
H
S
0
0
4
I
 
 
K
E
Y
 
E
N
D
 
P
O
S
I
T
I
O
N
 
 
.
 
.
 
.
 
.
 
.
 
.
 
.
 
 
 
 
 
 
 
 
 
 
 
 
 
7
5

 
 
S
H
S
0
0
5
I
 
 
H
I
S
T
O
G
R
A
M
 
L
I
N
E
 
W
I
D
T
H
 
 
.
 
.
 
.
 
.
 
.
 
 
 
 
 
 
 
 
 
 
 
 
1
0
0

 
 
S
H
S
0
0
6
I
 
 
L
O
N
G
E
S
T
 
R
E
C
O
R
D
 
 
.
 
.
 
.
 
.
 
.
 
.
 
.
 
.
 
 
 
 
 
 
 
 
 
 
 
2
9
0
0

 
 
S
H
S
0
0
7
I
 
 
S
H
O
R
T
E
S
T
 
R
E
C
O
R
D
 
.
 
.
 
.
 
.
 
.
 
.
 
.
 
.
 
 
 
 
 
 
 
 
 
 
 
 
4
0
2

 
 
S
H
S
0
0
8
I
 
 
M
O
S
T
 
C
O
M
M
O
N
 
R
E
C
O
R
D
 
L
E
N
G
T
H
 
(
L
5
)
.
 
 
 
 
 
 
 
 
 
 
 
1
1
0
0

 
 
S
H
S
0
0
9
I
 
 
A
V
G
.
 
S
P
A
C
E
 
P
E
R
 
R
E
C
O
R
D
 
(
L
6
)
.
 
.
 
.
 
 
 
 
 
 
 
 
 
 
 
1
6
5
1

 
 
S
H
S
0
1
0
I
 
 
R
E
C
O
M
M
E
N
D
E
D
 
S
E
G
M
E
N
T
 
S
I
Z
E
 
(
L
7
)
 
.
 
 
 
 
 
 
 
 
 
 
 
 
2
2
0

3
.

 
R
E
C
O
R
D
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
R
E
C
O
R
D
 
L
E
N
G
T
H

 
 
C
O
U
N
T
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
M
I
N
 
 
 
 
 
M
A
X

 
 
 
 
2
0
7
 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
0
0
 
 
 
 
 
4
9
9

 
 
 
 
2
0
5
 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
0
0
 
 
 
 
 
5
9
9

 
 
 
 
2
1
2
 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
0
0
 
 
 
 
 
6
9
9

 
 
 
 
1
9
3
 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
0
0
 
 
 
 
 
7
9
9

 
 
 
 
2
1
4
 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
0
0
 
 
 
 
 
8
9
9

 
 
 
 
1
7
9
 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
0
0
 
 
 
 
 
9
9
9

 
 
 
 
1
9
9
 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
0
0
0
 
 
 
 
1
0
9
9

 
 
 
 
2
2
4
 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
1
0
0
 
 
 
 
1
1
9
9

 
 
 
 
2
1
0
 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
0
0
 
 
 
 
1
2
9
9

 
 
 
 
2
0
1
 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
3
0
0
 
 
 
 
1
3
9
9

 
 
 
 
2
2
8
 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
4
0
0
 
 
 
 
1
4
9
9

 
 
 
 
2
0
0
 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
5
0
0
 
 
 
 
1
5
9
9

 
 
 
 
1
9
5
 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
6
0
0
 
 
 
 
1
6
9
9

 
 
 
 
1
9
3
 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
7
0
0
 
 
 
 
1
7
9
9

 
 
 
 
2
0
0
 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
8
0
0
 
 
 
 
1
8
9
9

 
 
 
 
1
9
6
 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
9
0
0
 
 
 
 
1
9
9
9

 
 
 
 
1
9
2
 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
0
0
0
 
 
 
 
2
0
9
9

 
 
 
 
1
7
9
 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
1
0
0
 
 
 
 
2
1
9
9

 
 
 
 
1
9
5
 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
2
0
0
 
 
 
 
2
2
9
9

 
 
 
 
2
0
7
 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
3
0
0
 
 
 
 
2
3
9
9

 
 
 
 
1
9
4
 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
4
0
0
 
 
 
 
2
4
9
9

 
 
 
 
1
8
8
 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
5
0
0
 
 
 
 
2
5
9
9

 
 
 
 
1
8
9
 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
6
0
0
 
 
 
 
2
6
9
9

 
 
 
 
1
8
8
 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
7
0
0
 
 
 
 
2
7
9
9

 
 
 
 
2
1
0
 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
8
0
0
 
 
 
 
2
8
9
9

 
 
 
 
 
 
2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
9
0
0
 
 
 
 
2
9
0
3

F
ig

u
re

  4
49

.
S

am
pl

e 
S

Y
N

C
H

S
T

O
 O

u
tp

u
t

1.
T

h
e 

pa
ra

m
et

er
s 

re
ad

 b
y 

S
Y

N
C

H
S

T
O

 a
re

 p
ri

n
te

d 
at

 t
h

e 
to

p 
of

 t
h

e 
re

po
rt

. 
If

 t
h

er
e 

ar
e 

an
y 

co
n

tr
ol

 s
ta

te
m

en
t 

er
ro

rs
, 

er
ro

r
m

es
sa

ge
s 

ar
e 

pr
in

te
d 

h
er

e.
 

2.
T

h
e 

S
Y

N
C

H
S

T
O

 i
n

fo
rm

at
io

n
al

 m
es

sa
ge

s 
de

sc
ri

be
 t

h
e 

ch
ar

ac
te

ri
st

ic
s 

of
 t

h
e 

re
co

rd
s 

th
at

 h
av

e 
be

en
 r

ea
d 

fo
r 

th
e 

fi
le

, 
an

d 
th

e
re

co
m

m
en

de
d 

va
lu

es
 o

f 
l 6

 a
n

d 
l 7

 t
h

at
 h

av
e 

be
en

 c
al

cu
la

te
d.

 T
h

es
e 

ar
e 

de
sc

ri
be

d 
in

 “
S

Y
N

C
H

S
T

O
 M

es
sa

ge
s”

 o
n

 p
ag

e 
12

.3
7.

3.
T

h
e 

h
is

to
gr

am
 g

iv
es

 a
 g

ra
ph

ic
 d

is
pl

ay
 o

f 
th

e 
di

st
ri

bu
ti

on
 o

f 
th

e 
le

n
gt

h
s 

of
 t

he
 r

ec
or

ds
 i

n
 t

h
e 

fi
le

. 
R

E
C

O
R

D
 C

O
U

N
T

 g
iv

es
 t

h
e

n
u

m
be

r 
of

 r
ec

or
ds

 f
al

li
ng

 w
it

h
in

 t
h

e 
m

in
im

u
m

 a
nd

 m
ax

im
u

m
 n

u
m

be
rs

 s
h

ow
n 

u
n

de
r 

R
E

C
O

R
D

 L
E

N
G

T
H

. T
h

e 
ra

n
ge

 i
s 

th
e 

li
n

e
W

ID
T

H
 v

al
u

e 
th

at
 h

as
 b

ee
n

 s
pe

ci
fi

ed
 a

n
d 

di
sp

la
ye

d.
 T

h
e 

as
te

ri
sk

s 
re

pr
es

en
t 

th
e 

n
u

m
be

r 
of

 r
ec

or
ds

 i
n

 e
ac

h
 r

an
ge

 o
f 

re
co

rd
le

n
gt

h
s.
Chapter 11.  The SYNCHSTO Utility Program 11.7



SyncSort for z/VSE 3.7 Programmer’s Guide11.8



Chapter 12.  Messages

SyncSort for z/VSE Messages 

This chapter identifies SyncSort for z/VSE messages. A section at the end of this chapter
describes the most common errors and how to correct them.

There are three main types of messages for the sort/merge program:

1. WERnnnA messages generally report a critical error (WER226A, for example, is an
exception). The sort/merge has terminated for the indicated reasons.

2. WERnnnI and WERnnnB messages are informational, although some of them can be
taken as warnings. In any case, processing continues.

3. WERnnnC messages are automatically printed on the console as well as the printer
unless ROUTE=LST has been specified. In that case, they will only appear on the
printer.

Installation-related messages are documented in the SyncSort for z/VSE Installation
Guide.

The messages for SyncSort sort/merge that are not installation-related are given below.

Note: These messages are available in the VSE console EXPLAIN function if your systems
programmer installed SyncSort with this option.

WER002A  EXCESS CONTROL STATEMENTS
EXPLANATION: Over 80 control statements were used.
Chapter 12.  Messages 12.1



ACTION: If excess occurred because of comments on control statement
continuations, use the special comment statements for remarks. (These
will not be counted in the 80 statement total).

WER003A  CONTINUATION STATEMENT ERROR FOUND
EXPLANATION: This message is generated when an improperly speci-
fied continuation statement is encountered.

WER004A  CALCAREA REQUESTED; NO SIZE=D
EXPLANATION: Whenever the CALCAREA parameter is included in
the OPTION statement, a SIZE value must be provided in the SORT
statement. The SIZE value must be a positive integer.

WER007I  CENTURY WINDOW FROM xxxx TO yyyy
EXPLANATION: One or more Y2x data formats have been used for a
SORT/MERGE control statement or an OUTREC edit field. The start-
ing year is xxxx and the ending year is yyyy for the century window
used to process the fields.

WER008A  INVALID CENTWIN/CW VALUE ON EXEC PARM
EXPLANATION: The CENTWIN/CW PARM on the EXEC statement
must be a number between 0 and 100 or a number between 1000 and
3000.
ACTION: Correct the CENTWIN/CW values in the EXEC statement
PARM.

WER009A  INVALID ANSI CONTROL CHARACTER FOUND
EXPLANATION: The ANSI control character found in the HEADER
parameter of the OUTFIL control statement was invalid or illegal for
the device assigned. Note that (1) SyncSort does not support X, Y, Z con-
trol characters for a card punch; and (2) even though &PAGE begins
with a blank, which is a valid ANSI control character for a printer, it is
not permitted to be the first field of a heading when LINES=ANSI or
LINES=(ANSI,n).

WER010A  xxxxx STATEMENT MISSING
EXPLANATION: A required SORT, MERGE, or RECORD control state-
ment was not specified.

WER012A  SUM INCOMPATIBLE WITH COPY OR COMPARE
EXPLANATION: The SUM or DUPKEYS control statement cannot be
specified when FIELDS=COPY or FIELDS=COMPARE is specified.

WER014A  DUPLICATE PARM FOUND ON xxxx STATEMENT
EXPLANATION: One of the allowable parameters has been specified
more than once on a single control statement. The message will reflect
the name of the statement containing the duplicated parameter. 
SyncSort for z/VSE 3.7 Programmer’s Guide12.2



WER015A  EXTRA ESDS/KSDS/RRDS ON OUTFIL STMT
EXPLANATION: More than one of the ESDS, KSDS, or RRDS key-
words was specified on the OUTFIL control statement.

WER017A  ERROR IN DISPLACEMENT/LENGTH VALUE
EXPLANATION: The sum of the lengths of all control fields is over
4092 bytes. (If the EQUALS parameter is used on the OPTION state-
ment, the sum of the lengths is limited to 4088 bytes.)

WER018A  CONTROL FIELD ERROR
EXPLANATION: A value specifying the type of field format was left out
of the FIELDS parameter in the SORT or MERGE statement.

WER019A  SIZE/SKIPREC ERROR
EXPLANATION: The number of records in the input files was incor-
rectly specified in the SIZE parameter on the SORT statement.

WER021A  TYPE PARAMETER MISSING ON RECORD STMT
EXPLANATION: The TYPE parameter was not included on the
RECORD statement as required.

WER022A  RECORD TYPE INVALID
EXPLANATION: An invalid value was given for the TYPE parameter
on the RECORD statement. (Only F, V, D, VS, or VBS is valid.) Or,
TYPE=V, VS or VBS was specified when DATA=A was specified on the
INPFIL statement. Or, TYPE=D was specified when DATA=E was spec-
ified on the INPFIL statement or was the default.

WER023A  LENGTH PARAM. MISSING ON RECORD STMT
EXPLANATION: The LENGTH parameter was not included on the
RECORD control statement as required.

WER024A  ERROR IN LENGTH VALUE
EXPLANATION: An invalid l value appeared on the RECORD state-
ment.
EXAMPLES: l5>l1 l4>l2

Or, any of the following may have occurred:

1. Output was to tape and a record length of fewer than 18 bytes was
defined. The system does not guarantee that it can correctly read
this record back if the last block has only one record. To correct this
problem, increase the minimum record length to at least 18 bytes.

2. Input was an EPIC-cataloged data set. The record length for this
file stored in the EPIC catalog does not match the record length
specified on the RECORD control statement.
Chapter 12.  Messages 12.3



3. Input was a VSAM file and the record length in the VSAM catalog
differs from the record length on the RECORD control statement.

4. The BUFOFF parameter was specified incorrectly. The BUFOFF
value can be 0-99 for input but only 0 or 4 for output. (Only 0 should
be specified for fixed-length output records.) The BUFOFF
parameter must not be specified for EBCDIC data.

5. The record length (l1-l5) for ASCII data exceeds 9,999 bytes.

6. The length specified on the RECORD statement conflicts with the
length of the record after INPFIL INREC processing. Remember
that the LRECL parameter of the INPFIL control statement
specifies the record length before INPFIL INREC processing, and
the LENGTH parameter of the RECORD control statement
specifies the record length after INPFIL INREC processing.

WER025A  JOINKEYS FIELD BEYOND RECORD
EXPLANATION: The last byte of a control field as specified on the
JOINKEYS control statement was beyond the last byte of a record.

WER026A  RECORD LENGTH (L1) NOT SPECIFIED
EXPLANATION: The l1 value was not included in the RECORD state-
ment as required.

WER027A  CONTROL FIELD BEYOND RECORD
EXPLANATION: The last byte of a control field as specified was beyond
the last byte of a record.

WER028I  OPTION ADDROUT PARAMETER IGNORED
EXPLANATION: ADDROUT can not be specified on the OPTION con-
trol statement when INREC, OUTREC, SUM, or DUPKEYS has been
specified. The ADDROUT specification will be ignored and processing
will continue.

WER029I  **END PHASE 0 NO ERRORS DETECTED**
EXPLANATION: The sort’s phase 0 completed with no errors detected.

WER030A  UNIT RECORD MAXIMUM VALUE EXCEEDED
EXPLANATION: One or more of the unit record parameters specified
on the OUTFIL statement exceeded internal restrictions.

WER031A  FOR OUTFIL EXIT, E35 IS REQUIRED
EXPLANATION: An OUTFIL statement specifying EXIT was found,
but no E35 program was included.

WER032I  OUTFIL BYPASS PARAMETER IGNORED
EXPLANATION: The BYPASS parameter was specified on the OUTFIL
SyncSort for z/VSE 3.7 Programmer’s Guide12.4



statement. Since this may be specified only on the INPFIL statement,
the parameter was ignored and processing continued.

WER033A  FILESOUT CONFLICTS WITH OUTFIL FILES
EXPLANATION: The number of output files specified in the
FILESOUT parameter on the SORT or MERGE control statement
differs from the number of output files specified in the FILES
parameter on the OUTFIL control statement.
ACTION: Correct either the FILESOUT parameter or the FILES
parameter so that both parameters specify the same number of output
files.

WER034A  ENDREC < STARTREC ON IN/OUTFIL STMT
WER034A  ENDREC < STARTREC ON XSUMFIL STMT
WER034A  ENDREC < STARTREC ON XDUPFIL STMT

EXPLANATION: The values specified for STARTREC and ENDREC on
an INPFIL/OUTFIL, XDUPFIL, or XSUMFIL control statement are
inconsistent. The ENDREC value must be larger than or equal to the
STARTREC value. 

WER036I  XSUMFIL IGNORED, XSUM NOT SPECIFIED
WER036I  XDUPFIL IGNORED, XDUP NOT SPECIFIED

EXPLANATION: The sort has found and ignored either an XSUMFIL
control statement because the XSUM parameter is not present, or an
XDUPFIL control statement because the XDUP parameter is not
present. To activate XSUM or XDUP processing (i.e., saving the elimi-
nated records in a separate output file), the XSUM or XDUP parameter
must be specified.

WER037I  NO KEYWORDS FOUND ON xxxxx STATEMENT
EXPLANATION: One of the SyncSort control statements, xxxxx, has
been specified without any of the allowable keywords. This message
will reflect the name of the appropriate control statement. 

WER039A  INSUFFICIENT STORAGE
EXPLANATION: The sort started to run, but found insufficient storage
during Phase 0 or Phase 1.
ACTION: Check to see that figures are accurate if the SIZE parameter
was used on the JCL EXEC statement and/or STORAGE specified on
the OPTION statement. (SyncSort requires at least 64K of storage to
run.) If exit programs have been preloaded, check to see that they were
loaded into the highest possible positions in the partition. Increase stor-
age.

WER040A  VSAM OR KEYED FILE NOT ON DISK
EXPLANATION: All keyed or VSAM files must be on disk.
Chapter 12.  Messages 12.5



WER042A  UNITS ASSIGN ERR: DVC=XX, LUN=YY
EXPLANATION: In attempting to determine the assignment for
LUN=YY (where YY is the SYSNBR in hexadecimal), the sort/merge
found a discrepancy. Either (1) DVC=XX was not supported, where XX
is the device type in hexadecimal; or (2) LUN=YY was not assigned, UA
or IGN (in this case, DVC=FF).

WER043I  EXIT IGNORED, THIS PHASE NOT MERGE
EXPLANATION: A Phase 2 exit, which can be used only with a sort,
was specified for a merge. The exit was never processed, and the sort
continued.

WER044A  ILLEGAL OVERLAPPING OF DECIMAL FIELDS
EXPLANATION: Two control fields may not share the rightmost
(signed) byte of a packed or zoned decimal field unless they both end at
that byte. (A signed byte can not be embedded in a decimal field.)
EXAMPLE: FIELDS=(8,2,PD,A,9,4,PD,A,5,3,CH,D)

WER047A  xxxxx STATEMENT HAS SYNTAX ERROR
EXPLANATION: One of the SyncSort control statements, xxxxx, con-
tains a syntax error. The name of the statement containing the syntax
error will be reflected in the message. 

WER048I  E32 EXIT IGNORED WITH SORT STATEMENT
EXPLANATION: An exit E32 was specified for a sort program. Since an
E32 can be used only with a merge, the exit was ignored and the sort
continued.

WER049A  CALCAREA INCOMPATIBLE WITH MERGE/COPY
EXPLANATION: CALCAREA cannot be specified for a merge or copy
application.

WER051A  OVERLAPPING SORTWK FILES ON 'nnn'
EXPLANATION: Two (or more) of the SORTWK files within the job-
stream have overlapping extents. The 'nnn' device address identifies
the relevant ASSGN statements.

WER054A  MIXED CKD AND FBA SORTWKS ARE ILLEGAL
EXPLANATION: When Fixed Block Architecture (FBA) devices (3310
and 3370) are used for SORTWK, they must be the only work device
type. They can not be mixed with the standard Count Key Data (CKD)
devices (3380, 3390, etc.).

WER056A  FILEIN CONFLICTS WITH INPFIL STMT
WER056A  FILES CONFLICTS WITH JOINKEYS STMT

EXPLANATION: The number of input files specified in the FILES
parameter on the SORT, MERGE, or JOINKEYS control statement dif-
SyncSort for z/VSE 3.7 Programmer’s Guide12.6



fers from the number of input files specified in the FILES/FNAMES
parameter on the INPFIL control statement.
ACTION: Correct either the FILES parameter or the number of 
INPFIL control statements so that both parameters specify the same
number of input files.

WER058I  ALTSEQ STMT IGNORED - NO AQ FIELD
EXPLANATION: If an ALTSEQ statement is used, code AQ for the f
value of at least one control field in the FIELDS parameter of the SORT
or MERGE statement. The sort will run as if the ALTSEQ statement
had not been coded.

WER059A  RECORD LEN/BLKSIZE INVALID FOR DEVICE
EXPLANATION: The l2 value on the RECORD statement exceeded the
track capacity of the device used for SORTWK, or the BLKSIZE value
specified on the INPFIL/OUTFIL statement exceeded the track capac-
ity of the device used for SORTIN/SORTOUT.

WER063I  STORAGE AVAIL
EXPLANATION: This is the amount of storage, given in decimal bytes,
in which the sort/merge is running.

WER065A  PROBABLE DECK STRUCTURE ERROR
EXPLANATION: An invalid operation definer was found.
ACTION: Check for misspelling of operation definers such as control
statements.

WER066I  filename CONTROL INTERVAL SIZE=xxxxx
EXPLANATION: filename indicates the filename (e.g. SORTOUT,
SORTOF2). xxxxx indicates the control interval size SyncSort has
selected for SAM SORTOUT on an FBA device. This value was deter-
mined by user DLBL specifications or by internal calculations.

WER067A  DUPLICATE xxxxx STATEMENT FOUND
EXPLANATION: One of the allowable SyncSort control statements,
xxxxx, was specified more than once. The name of the duplicated state-
ment will be reflected in the message. 

WER068A  INVALID CISIZE SPECIFIED
EXPLANATION: The CISIZE value specified on the DLBL statement is
insufficient for one block or is not a multiple of 512. Or, a disk space
management package has changed the CISIZE via a catalogue entry to
a value insufficient to accommodate one block of data.

WER070A  INVALID INPUT DEVICE FOR ADDROUT
EXPLANATION: SORTIN is an FBA device and CKD ADDROUT for-
mat is not applicable.
Chapter 12.  Messages 12.7



WER072A  INVALID DATA CONVERSION REQUEST
EXPLANATION: Data conversion has been requested and one of the
following error conditions has occurred: (1) The length of the field to be
converted is too large; (2) Data conversion has been requested for a field
that is not specified as ZD, PD, BI, or FI.

WER075A  NO EXTENT FOR SORT WORK
EXPLANATION: One or more extents for sort work files were not
defined.

WER076A  INSUFFICIENT GETVIS AVAILABLE
EXPLANATION: The LABEL macro has returned a code of X'1C',
which has this meaning.
ACTION: Provide additional GETVIS area using the EXEC statement’s
SIZE parameter.

WER080I/A  INCONSISTENT LUNS: SYSxxx, SYSyyy
EXPLANATION: There is an inconsistency between SyncSort defaults
and label processing for an I/O file. xxx is the default; yyy is the label
value.

Note: At the user’s option, this message may result in critical error ter-
mination.

WER081A  KEY LENGTH EXCEEDS RECORD LENGTH
EXPLANATION: The sum of the lengths of the control fields is greater
than the length specified in one or more of the l values on the RECORD
statement.

WER082A  INVALID BLKSIZE SPECIFIED
EXPLANATION: The BLKSIZE value has been incorrectly specified.
The following rules must be observed in specifying BLKSIZE:

1. For fixed-length input records, the blocksize specified in the
INPFIL statement must be a multiple of the length of the input
record (l1). For ASCII records, the BUFOFF value, if specified, must
be added.

2. For fixed-length output records, the blocksize specified in the
OUTFIL statement must be a multiple of the length of the output
record following E35, OUTREC, and OUTFIL processing.

3. For variable-length EBCDIC records, the blocksize specified in the
INPFIL and OUTFIL statements must be at least the length of the
longest record plus 4 bytes for the Block Descriptor Word.
SyncSort for z/VSE 3.7 Programmer’s Guide12.8



4. For variable-length ASCII records, the block size specified in the
INPFIL and OUTFIL statements must be at least the length of the
longest record plus the BUFOFF value, if specified.

5. The blocksize cannot exceed 65,528 for EBCDIC records or 9,999 for
ASCII records.

WER083A  VTOC FAILURE: R15=xx, LUN=yy
EXPLANATION: VTOC processing for yy has resulted in a non-zero
return code of xx. Check CVH Return Codes in the appropriate VSE
LIOCS manual.

WER084A  CRDSIZE NOT EVENLY DIVISIBLE BY LRECL
EXPLANATION: For SYSIPT input, CRDSIZE must be an integral
multiple of the record length value, l1.

WER085A  UNABLE TO PERFORM SORTWORK ERASE
EXPLANATION: The sort was unable to acquire the storage needed to
perform the requested erasing of the sortwork file(s).
ACTION: Provide additional GETVIS area using the EXEC statement’s
SIZE parameter.

WER090A  INPFIL EXIT REQUIRES AN E15 OR E32
EXPLANATION: An INPFIL statement specifying EXIT was found, but
no E15 or E32 exit was included.

WER091A  NUMERIC FIELD ERROR ON xxxxx STATEMENT
A numeric value was specified improperly on a SyncSort control
statement, xxxxx. The name of the statement containing the incorrect
specification will be reflected in the message. 

WER099A  EQUAL TAPE LUNS FOUND FOR MERGE
EXPLANATION: This message is received when two or more files,
being input to the same merge, are assigned to the same logical unit.
This situation results in termination of the merge.

WER100A  INVALID STATEMENT BEFORE END STMT
EXPLANATION: Either a misspelled operation definer was found in a
control statement, or an extraneous statement was present.

WER101A  DATA=A INVALID
EXPLANATION: A control statement or parameter was specified that
is not permitted when DATA=A. Or, an input or output file other than a
tape file was specified.

WER102A  LENGTH CHANGED, EXIT NOT SPECIFIED
EXPLANATION: The l2 or the l3 values were not equal to the l1 value
Chapter 12.  Messages 12.9



on the RECORD statement, but neither an exit nor an OUTREC state-
ment was included.

WER103A  HEADER/TRAILER FIELD BEYOND RECORD
EXPLANATION: A data field specified in a HEADER or TRAILER is
beyond the length of the record.
ACTION: Make sure that the position plus the length of the data field
specified in the HEADER or TRAILER does not exceed the length of the
record.

WER105A  INVALID FORMAT FOR ASCII DATA
EXPLANATION: An invalid value was specified for the code format (f).
Only AC, ASL, or AST are valid format values for ASCII data.

WER106A  PHASE NAME TOO LONG
EXPLANATION: A phase name specified on the MODS statement is
more than the allowed eight characters.

WER108A  EXIT ADDRESS IS INVALID
EXPLANATION: An absolute address that is not on a doubleword
boundary was specified in the MODS statement (in the loading infor-
mation parameter).

WER109A  REXX ENVIRONMENT UNAVAILABLE
EXPLANATION: The current operating environment does not support
the execution of a REXX exit. A REXX exit can only be run on an ESA
mode machine with REXX/VSE installed.

WER110A  FILE NAME TOO LONG
EXPLANATION: A file name of over eight characters was specified on
the OPTION statement.

WER112A  NO NUMERIC FIELD ON MODS STATEMENT
EXPLANATION: A MODS statement with a missing loading address
was found.

WER113I  BLOCK SIZE EXCEEDS CI SIZE
EXPLANATION: The BLKSIZE specified on either the INPFIL or
OUTFIL control statement is greater than the size of the control inter-
val specified for the corresponding input file.

WER114A  INVALID INTERMEDIATE STORAGE DEVICE
EXPLANATION: This message is due to an error in the JCL specifica-
tion of files. User SORTIN files may not be fully specified or there may
be an inconsistency between the values of the WORK and FILES
parameters - somehow a discrepancy has arisen between the number of
files and the number of file labels in use.
SyncSort for z/VSE 3.7 Programmer’s Guide12.10



WER115A  REQ’D PARM MISSING ON JOINKEYS STMT
EXPLANATION: A parameter was not included on the JOINKEYS con-
trol statement as required.

WER116A  MISSING PARM FOR SORT OR MERGE
EXPLANATION: A required parameter is missing from the SORT or
MERGE statement.

WER117A  PHASE 0 HAS CRITICAL ERROR
EXPLANATION: The sort/merge has found an error in Phase 0 that is
too serious to allow the program to run.

WER118A  MINIMUM XXXX SORT WORK AREA nnnnnn
EXPLANATION: Phase 0 has been completed and the CALCAREA
parameter (requested explicitly using the OPTION statement or implic-
itly using ANALYZE) has terminated the sort with this report of the
number of tracks (for CKD devices) or blocks (for FBA devices) neces-
sary for the SORTWK files. XXXX indicates the device type, and
nnnnnn indicates the number of tracks or blocks. If DEVWK is speci-
fied, SyncSort will display the number of tracks needed for the work
area of the listed devices. Otherwise, it will display the number of
tracks needed for each of the CKD and FBA devices.

WER119A  EXCESS ERRORS NOT DISPLAYED
EXPLANATION: A very large number of errors have been generated.
Some of the error messages will not be displayed.
ACTION: Correct all of the indicated errors.

WER120A  OVERLAPPING FIELDS IN HEADER/TRAILER
EXPLANATION: A field specified in a header or trailer overlapped
another field.

WER123A  SUM FIELD BEYOND RECORD
WER123A  DUPKEYS FIELD BEYOND RECORD

EXPLANATION: A field specified either on the SUM control statement
or the DUPKEYS control statement is beyond the length of the record.

WER124A  ILLEGAL OVERLAPPING OF SUM FIELDS
WER124A  ILLEGAL OVERLAPPING OF DUPKEYS FIELDS

EXPLANATION: A field specified in the SUM or DUPKEYS statement
overlapped with another field in the same statement or a SORT/
MERGE control field.

WER127A  INREC/OUTREC FIELD BEYOND RECORD
REFORMAT
BUILD/OVERLAY
EXPLANATION: A field specified on the INREC, OUTREC, 
Chapter 12.  Messages 12.11



REFORMAT, BUILD, or OVERLAY control statement or parameter
was either beyond the minimum length of the record or more than 4096
bytes long.

WER128A  ILLEGAL INREC/OUTREC DATA FIELD 
REFORMAT 
BUILD/OVERLAY

EXPLANATION: Any of the following may have occurred:

1. A non-numeric value was given for a numeric field.

2. A zero value was specified.

3. A value was omitted.

4. A space value was greater than 256.

5. An alignment value other than H, F, or D was specified.

6. The last value specified was a p value indicating the variable
portion of a record, but fixed-length records were specified.

7. Overlapping output fields were specified.

8. No data portion (past the RDW) was specified for variable-length
records.

WER129A  INCLUDE/OMIT FIELD BEYOND RECORD
IFTHEN
EXPLANATION: The length of the field specified on an INCLUDE,
OMIT, or IFTHEN control statement or parameter for either inclusion
or omission is longer than the length of the user’s records.

WER130A  INCLUDE/OMIT INVALID COND
IFTHEN SELF DEF TERM

LENGTH
FIELD POSITION
FORMAT
LOGICAL OPERATOR
WILDCARD SYNTAX

EXPLANATION: The indicated parameter on the INCLUDE, OMIT, or
IFTHEN statement or parameter was incorrectly specified.

WER132A  INCLUDE/OMIT FORMATS INCOMPATIBLE
IFTHEN
EXPLANATION: A format code in either a field-to-field comparison or
field-to-constant comparison is illegal.
SyncSort for z/VSE 3.7 Programmer’s Guide12.12



WER133A  INREC/OUTREC RDW NOT INCLUDED
REFORMAT
BUILD/OVERLAY
EXPLANATION: The Record Descriptor Word was not included when
the INREC, OUTREC, REFORMAT, BUILD, or OVERLAY control
statement or parameter was coded for variable-length records.

WER134A  SORTOUT REC LEN INCOMPAT W/OUTREC
EXPLANATION: The length specified as the l3 value in the RECORD
statement is not equal to the length of the output record defined by the
OUTREC statement.

WER136I  INREC/OUTREC RECORD LENGTH=xxxxx
EXPLANATION: This message displays the record length, xxxxx, after
INREC processing (if only INREC is specified) or after OUTREC pro-
cessing (if OUTREC is specified). The record length is displayed in deci-
mal bytes.

WER137A  STORAGE LESS THAN 64K MINIMUM
EXPLANATION: The value specified for the STORAGE parameter on
the OPTION statement is less than the minimum required for SyncSort
for z/VSE.
ACTION: Increase the STORAGE parameter value so that it is at least
equal to the minimum amount of storage required.

WER138A  ILLEGAL KEY LENGTH SPECIFIED
EXPLANATION: A key is over 255 bytes or > the l1 or l3 values in the
RECORD statement or the input records are blocked or the output
records are blocked and ADDROUT was not specified.

In addition, the user will receive this message if KEYLEN was specified
and SORTIN was specified as VSAM.

WER139A  EXIT NOT SPECIFIED FOR N.S. LABEL
EXPLANATION: The LABEL parameter on the OPTION statement
indicates non-standard SORTIN and/or SORTOUT but the MODS
statement does not specify an appropriate exit (E11 or E17 for non-
standard SORTIN, E31 or E37 for non-standard SORTOUT).

WER140I  ROUTE=nnn IGNORED [INVALID DVC TYPE]
EXPLANATION: Messages were not routed to the logical unit specified
by 'nnn' because ROUTE=nnn was specified for a JCL sort/merge, or an
invalid device type was specified for an invoked sort/merge.

WER141A  SORTWK DEFAULT/DEVWK DEVICE INVALID
EXPLANATION: The SORTWK device specified as the installation
default or specified as the 'nn' variable for DEVWK in the OPTION con-
Chapter 12.  Messages 12.13



trol statement is invalid. Check the table of valid codes for disk device
types.

WER146A  CONVERT/FTOV/VTOF CONFLICTS WITH PARM
EXPLANATION: The CONVERT/FTOV/VTOF parameter has been
specified on the INPFIL or OUTFIL control statement and one of the
following is also true:

1. One or more of the following have also been specified in the control
statements: OPTION ADDROUT; RECORD TYPE=VS, VBS, F, or
D; OUTFIL SPAN or EXIT; MERGE FIELDS=COMPARE; INPFIL
DATA=A.

2. OUTREC was not specified in the OUTFIL control statement.

WER147A  INVALID ADDRESS IN INVOKING PARM LIST
EXPLANATION: The parameter list created by the invoking program
contains an address pointer to a sort control statement that is outside of
the partition.

WER148A  OUTFIL STMT HAS SYNTAX ERROR ON FNAME
EXPLANATION: The specified filename on the OUTFIL statement is
not found in any output DLBL/TLBL JCL.

WER149A  OUTFIL STMT HAS SYNTAX ERROR ON DATE
WER149A  XSUMFIL STMT HAS SYNTAX ERROR ON DATE
WER149A  XDUPFIL STMT HAS SYNTAX ERROR ON DATE

EXPLANATION: The specified DATE=(DMYc) parameter has a syntax
error. D, M, and Y represent the output sequence of day (D), month (M),
or year (4 or Y). Check that each parameter occurs only once. For exam-
ple, DATE-(MDY.) is correct whereas DATE=(MMY.) causes a syntax
error.

WER150A  XSUMFIL INCOMPATIBLE WITH DUPKEYS
WER150A  XDUPFIL INCOMPATIBLE WITH SUM

EXPLANATION: The XSUMFIL control statement cannot be specified
with the DUPKEYS control statement. In the same way, the XDUPFIL
control statement cannot be specified along with the SUM control state-
ment.

WER151A  LOCALE CONFLICT WITH CHALT
EXPLANATION: The LOCALE option cannot be specified with CHALT.

WER152A  LANGUAGE ENV. NOT LINKED IN SYNCSORT
EXPLANATION: SyncSort for z/VSE must be properly installed with
the IBM Language Environment product library in order to use any
SyncSort for z/VSE 3.7 Programmer’s Guide12.14



COBOL exit, C exit, and/or the LOCALE function. Contact your local
system programmer for information on SyncSort for z/VSE installation.

WER153A  LOCALE SERVICE NOT LINKED IN SYNCSORT
EXPLANATION: SyncSort for z/VSE was installed with a version of the
IBM Language Environment product that does not support LOCALE.
Contact your local system programmer for information on SyncSort for
z/VSE installation.

WER154A  NO LOCALE SUPPORT FOR JOINKEYS
EXPLANATION: The LOCALE option cannot be specified with JOIN
processing.

WER155I  LOCALE IN EFFECT: xxxx
EXPLANATION: Indicates that LOCALE processing is in effect. xxxxx
is the name of the effective LOCALE.

WER156I  IGNRL4/VLSHRT IGNORED - LOCALE USED
EXPLANATION: The IGNRL4 or VLSHRT option is ignored when the
LOCALE option is specified.

WER157A  INVALID IFOUTLEN SPECIFIED
EXPLANATION: The IFOUTLEN parameter has specified a length
greater than the maximum record length (l1) on the RECORD control
statement. 

WER158A  INTERNAL RECORD LENGTH EXCEEDS 64K
EXPLANATION: The length of the records internal to the sort is larger
than the allowed 64K bytes. Record length is determined after adjust-
ments due to INREC and E15 processing and expansion due to
EQUALS, LOCALE, and certain data types (such as AC, AQ, and the
Y2K formats). 

WER159A  NO LABEL FOUND FOR xxxxxxx
EXPLANATION: A DLBL statement was not found for the sortwork file
with xxxxxxx for its file name.
ACTION: Add a DLBL statement with the file name xxxxxxx or correct
the DLBL statement with the misspelled file name.

WER160A  OPTION/SYMNAMES MUST BE THE 1ST STMT
EXPLANATION: When specifying SYMNAMES=option in the OPTION
statement, the OPTION statement must precede all other SyncSort
control statements.

WER161A  MATCHING QUOTE IS MISSING
EXPLANATION: The data dictionary statement contains an open quote
that has no matching closing quote.
Chapter 12.  Messages 12.15



WER162A  DATA NAME IS A RESERVED WORD
EXPLANATION: The data name to be defined is a reserved word.

WER163A  DATA NAME ALREADY IN DICTIONARY
EXPLANATION: The data name to be defined has been defined previ-
ously.

WER164A  REFERENCE TO UNDEFINED DATA NAME
EXPLANATION: The POSITION data dictionary statement refers to
an undefined data name.

WER165A  POSITION/LENGTH VALUE IS INVALID
EXPLANATION: The data dictionary statement contains a position or
length field that has an invalid value.

WER166A  DATA NAME OR CONSTANT LENGTH ERROR
EXPLANATION: The data name is too long or the length of the con-
stant is invalid for that type of constant.

WER167A  INVALID CHARACTER FOUND IN CONSTANT
EXPLANATION: The constant contains a character that is invalid for
that type of constant.

WER168A  FORMAT NAME IS INVALID
EXPLANATION: The format specified is not one of the valid data for-
mats.

WER169A  STATEMENT HAS SYNTAX ERROR
EXPLANATION: The data dictionary statement has a syntax error.

WER170A  INFINITE READ LOOP DETECTED
EXPLANATION: A data dictionary member, or a subsequent member
invoked by it, contains a SYMNAMES statement that invokes itself
again.

WER171A  NESTED SYMNAMES EXCEED LIMIT
EXPLANATION: Only 15 levels of nested member invocations via
SYMNAMES statements are allowed.

WER172A  SYMNLIB CONTAINS NONEXIST LIB/SUBLIB
EXPLANATION: One or more library/sublibrary pairs specified in the
SYMNLIB parameter was not found.

WER173A  MEMBER NOT FIXED RECORD FORMAT
EXPLANATION: The data dictionary member must be cataloged as a
fixed format type.
SyncSort for z/VSE 3.7 Programmer’s Guide12.16



WER174A  MEMBER NOT FOUND
EXPLANATION: The library member referenced by the SYMNAMES
statement was not found.

WER175A  LIBRM xxxxx FAILED, RC=yy ,RSN=X'zz'
EXPLANATION: Library access macro xxxxx issued by SyncSort
returns a non-zero code yy and a reason code zz (in hex). 
ACTION: Refer to macro documentation provided with the operating
system for further explanation.

WER176A  NO LIB/SUBLIB OR SYMNLIB SPECIFIED
EXPLANATION: The SYMNAMES parameter or statement does not
include library name and sublibrary name, and there is no SYMNLIB
parameter that specifies which libraries and sublibraries to search for
the member.

WER177A  DATA DICTIONARY HAS SYNTAX ERROR
EXPLANATION: One or more data dictionary statements has a syntax
error.

WER178A  DATA DICTIONARY HAS CRITICAL ERROR
EXPLANATION: Data dictionary processing encountered a critical
error.

WER179A  SYMBOL/SYNTAX ERROR ON xxxxx STMT
EXPLANATION: A symbol or syntax error was detected during symbol
substitution for the control statement.

WER180I  PROCESSING DATA DICTIONARY STATEMENT
EXPLANATION: SyncSort dictionary processing has started.

WER181I  STARTING SYMBOL SUBSTITUTION
EXPLANATION: The SyncSort dictionary has been established. The
SyncSort control statements will be scanned and the field names or con-
stant names will be replaced with their values as defined in the dictio-
nary.

WER182I  DATA DICTIONARY PROCESSING COMPLETE
EXPLANATION: SyncSort dictionary generation and substitution of
field_name and constant_name values in the sort control statements
have completed successfully.

WER183A  OPEN FAILED FOR SORTWKn
EXPLANATION: An error occurred while opening SORTWKn. n indi-
cates the SORTWK number, such as SORTWK1.

WER184I  SORTWKn TRUNCATED, xxxxxxx TRACKS RELEASED
FROM=yyyyyyy TO=zzzzzzz
Chapter 12.  Messages 12.17



EXPLANATION: This message is issued for every sortwork file that
has tracks or blocks that can be truncated at the end of phase 2 (or
phase 1 if phase 2 is not needed). For FBA sortworks, BLOCKS are
shown instead of TRACKS. This message is only issued if DMS=BIME-
PIC is coded in SYNCMAC.

WER185A  INVALID MINIMUM RECORD LENGTH (L4)
EXPLANATION: The specified record length is less than the minimum
record length (l4).

WER186A  JOIN CAPACITY EXCEEDED BY nnnnK
EXPLANATION: SyncSort is unable to complete the join application
because of insufficient memory. The message indicates the amount of
additional memory required in the partition to successfully complete
the join process.
ACTION: Run the join application in a larger partition that includes
the additional memory. Contact SyncSort for z/VSE Product Services for
assistance, if necessary.

WER187I  JOIN SPACE ALLOCATED=nnnnK, USED=NNN
WER187I  ADDITIONAL VIA GETVIS=nnnnK, USED=NNN

EXPLANATION: Indicates the amount of memory used by the join pro-
cess. In addition, if GETVIS memory was used by the join process, it
will also be indicated.

WER188A  SPLIT/SPLITBY/REPEAT CONFLICT WITH REPORT WRITING

EXPLANATION: The SPLIT, SPLITBY, or REPEAT parameter and one
or more report writing parameters have been specified on an OUTFIL
control statement. SPLIT, SPLITBY, or REPEAT and report writing
parameters are incompatible on the same OUTFIL control statement
with HEADERn, TRAILERn, LINES, NODETAIL, and SECTIONS.

WER189I  JOINKEYS REFORMAT RECORD LENGTH=nnnn, TYPE=(F/V)
EXPLANATION: Indicates the record length and record type generated
by the join process.

WER190I  SORTxxx HAS UNIT ASSIGNED IGNORE
EXPLANATION: The indicated input or output file has its logical unit
assigned to IGN. If it is an input file, data will not be read from this file.
If it is an output file, data will not be written to this file.

WER191A  UNEQUAL NUMBER OF JOINKEYS FIELDS
EXPLANATION: The number of JOINKEYS fields specified on the two
JOINKEYS control statements are not equal. 
ACTION: Make sure that the two JOINKEYS control statements define
the same number of fields in the FIELDS parameter.
SyncSort for z/VSE 3.7 Programmer’s Guide12.18



WER192A  INPFIL STMT CONFLICTS WITH JOINKEYS
EXPLANATION: INPFIL can not be used with JOIN.

WER193A  REFORMAT IS REQUIRED TO JOIN RECORDS
EXPLANATION: A join application requires two JOINKEYS control
statements and a REFORMAT control statement.

WER194A  JOIN FEATURE REQUIRES TWO INPUT FILES
EXPLANATION: A join application requires two JOINKEYS state-
ments that define the same number of JOINKEYS FIELDS, with each
corresponding field having the same length and order specified.

WER195A  SUM JOIN CONFLICTS WITH JOINKEYS
EXPLANATION: The JOIN parameter can not be specified when 
JOINKEYS control statements are specified.

WER196A  VSAMSAM BLOCK NOT A MULTIPLE OF LRECL
EXPLANATION: The sort read a VSAM-managed SAM block whose
length was not a multiple of the logical record length.
ACTION: Correct the logical record length.

WER197I  REFORMAT STMT IGNORED, NO JOINKEYS
EXPLANATION: The REFORMAT statement was ignored because nei-
ther a JOINKEYS control statement was present nor the JOIN param-
eter specified on the SUM control statement.

WER198I  JOIN STMT IGNORED, NO JOINKEYS
EXPLANATION: The JOIN control statement requires the presence of
a JOINKEYS control statement for SORTIN1 and SORTIN2.

WER199A  SOME PARMS INCOMPATIBLE WITH JOINKEYS
EXPLANATION: The following parameters are incompatible with the
JOINKEYS control statement: E11, E15, E17, E31, E32, and E37 exits,
SKIPREC on the OPTION control statement, and CKPT on the SORT
control statement.

WER200A  XSUM PROCESSING HAS CRITICAL ERROR
WER200A  XDUP PROCESSING HAS CRITICAL ERROR

EXPLANATION: A critical error has occurred during XDUP or XSUM
processing. The program has terminated.

WER201A  NO MATCH FOR INREC/OUTREC CHANGE PARM
EXPLANATION: A field was found on an input record that did not
match any search constants specified by the CHANGE subparameter
on an INREC, OUTREC, or OUTFIL OUTREC control statement, and
the NOMATCH subparameter was not specified.
Chapter 12.  Messages 12.19



ACTION: Add a NOMATCH subparameter, or add the missing search
constant to the CHANGE subparameter list.

WER202A  INVALID DATA FOR ACTIVE LOCALE
EXPLANATION: The active LOCALE produces no translation for data
contained in a sort or merge field.

WER203A  LOCALE SERVICE (CEExxxx) FAILED, RC=nnnn
EXPLANATION: A call to Language Environment service used to sup-
port LOCALE processing indicated a critical error in its feedback code.
CEExxxx is the name of the service, and nnnn is the error message
number contained in the feedback code.

WER204A  UNEXPECTED TERMINATION OF LE/VSE
EXPLANATION: SyncSort did not complete because the Language
Environment (LE/VSE) established by SyncSort has terminated prema-
turely.
ACTION: Examine the error message produced by LE/VSE to deter-
mine the source of the problem. Also, ensure there is enough GETVIS
storage available to satisfy the application.

WER205A  INCOMPATIBLE JOINKEYS FIELDS FORMATS
EXPLANATION: One or more of the corresponding fields on the two
JOINKEYS control statements are in incompatible formats.

WER206A  LENGTH OF SECTIONS FIELD > 256
EXPLANATION: The length value specified in a control field for the
SECTIONS parameter of an OUTFIL control statement exceeds the
allowed maximum.

WER207I  SUM OVERFLOW OCCURRED
EXPLANATION: Two or more records that should have been combined
due to the specification of the SUM or DUPKEYS statement were not
combined, because addition of the sum fields would have caused arith-
metic overflow in the field of the specified size.

WER208A  INVALID LOGICAL BLOCK FOUND
EXPLANATION: A block read from the input file had one of the follow-
ing inconsistencies:

1. The blocksize exceeded the value supplied for INPFIL BLKSIZE.

2. For fixed-length records only, the block size was not a multiple of
the LRECL.

3. For fixed-length records only, INPFIL BLKSIZE was omitted,
signifying unblocked input, and the blocksize was not equal to the
LRECL.
SyncSort for z/VSE 3.7 Programmer’s Guide12.20



WER209A  xxxxxxxx yyyyyyyy FIELD OVERFLOW
EXPLANATION: xxxxxxxx is the output filename, yyyyyyyy can be
TOTAL, SUBTOTAL, AVG, or SUBAVG. This message indicates that
the value of the yyyyyyyy field is greater than 15 decimal digits.

WER210A  SORTOUT OUT OF SEQUENCE (MAY BE E35)
EXPLANATION: The sort/merge has detected an out-of-sequence con-
dition on output. This may be caused by sort key modification using an
E35 exit routine or may be related to a WER215A overlapping
SORTWK condition.
ACTION: Whenever an E35 exit routine is to modify sort control fields,
the sequence check word should be set to a non-zero value. Also, see
“Common SyncSort Errors” on page 12.29.

WER211A  THE FOLLOWING H/T LINE IS GT LRECL:
EXPLANATION: This message flags any HEADERs or TRAILERs that
exceed the LRECL specification. The HEADER or TRAILER itself will
be included in the message text.

WER212A  OUTREC ARITHMETIC OVERFLOW
WER212A  OUTFIL OUTREC ARITHMETIC OVERFLOW

EXPLANATION: An overflow has occurred while processing an 
OUTREC arithmetic function.
ACTION: Expand the size of the OUTREC fields being processed to
handle larger numbers.

WER213A  INVALID ANSI CONTROL CHARACTER FOUND
EXPLANATION: The OUTFIL control statement specifies LINES as
ANSI, requiring control characters in the output records. A carriage
control character was found that is invalid for the device type specified.
Note that SyncSort does not support X, Y, Z for a card punch.

WER214A  UNIT RECORD MAXIMUM EXCEEDED
EXPLANATION: The number of cards punched or logical pages printed
has exceeded either (1) the number specified in the CARDS or PAGES
parameter; or (2) the installation default for CARDS or PAGES (deliv-
ered defaults: 32,767 CARDS, 32,767 PAGES).

WER215A  SORTWK OUT OF SEQ. CHECK FILE OVERLAP
EXPLANATION: First, see “Common SyncSort Errors” on page 12.29.
If the problem persists, rerun with SPECIAL DIAG (UPSI of 11110111)
to obtain a dump and call VSE Product Services.

WER216I  ZERO RECORDS INPUT TO SORT
EXPLANATION: No records were received by the sort. Either there
was an empty input file or the records were deleted by an exit or by the
INCLUDE/OMIT statement.
Chapter 12.  Messages 12.21



WER217A  INPUT SEGMENTS IN WRONG ORDER
EXPLANATION: The sequence of segments of a spanned record in an
input file is incorrect. For example, an initial segment must be read
before a middle or ending segment, and an ending segment cannot pre-
cede a middle segment.

WER218A  SVA INSTAL ERR: PHASE=xxxxxxxx CODE=x
EXPLANATION: SyncSort for z/VSE has been incorrectly installed in
the SVA. This may imply an “SVA full” condition, or an error applying
maintenance to SyncSort for z/VSE. “xxxxxxxx” is the phase name for
which the error was found. The CODE=x is information for SyncSort for
z/VSE Product Services.

WER219B  TRK OVER-ALLOC FACTOR (OAF)=ALLOC/USED=
EXPLANATION: The number of tracks allocated for sortwork is divided
by the number of tracks actually used by SyncSort, giving the over-allo-
cated factor. To find out how many tracks SyncSort used, divide the
number of tracks allocated by the number given above.

WER220A  SORTINx OUT OF SEQUENCE: record
EXPLANATION: SORTINx file was not previously sorted according to
the requested MERGE FIELDS. "record" is the number of the out of
sequence record in the SORTINx file.

WER221I  B=
EXPLANATION: This is the blocksize used for sortwork files.

WER222I  G=
EXPLANATION: This is the number of records (or segments of
variable-length records) that can fit in storage during Phase 1.

WER223B  NMAX=
EXPLANATION: This is the number of records of the length defined in
the RECORD statement that can be sorted in the sortwork area
assigned to them.

WER224I  L5=xxxxx, L6=yyyyy, L7=zzzzz
EXPLANATION: When the VL5L6L7 PARM is used, SyncSort analyzes
the distribution of variable-length records to calculate optimal values of
l5, l6, and l7. These values can be specified for the LENGTH parameter
on the RECORD control statement for subsequent sorts using this file
to improve sorting performance. (If INREC is used, adjust l5 as
described on page 6.8.)

WER225I  ***END SORT PHASE***
EXPLANATION: The end of a sort phase has been reached.
SyncSort for z/VSE 3.7 Programmer’s Guide12.22



EXPLANATION: The end of the sort/merge program indicated by the
jobname has been reached. The number of records is the amount in
SORTOUT or (if the job is a merge or has no SORTOUT file) the
amount deleted. Incore sorts and MERGE applications are so identified.
OAF and UAF values report on the result of dividing the number of
tracks allocated by the user for SORTWK by the number of tracks
SyncSort used. If the primary allocation was sufficient, this number
will be greater than one and is reported as an overallocation factor
(QAF). If secondary allocation was necessary, this number will be less
than one and is reported as an underallocation factor (UAF). To find out
how many tracks SyncSort actually used, divide the number of tracks
allocated by the user by the OAF/UAF. In the case of underallocation,
subtract the primary allocation from this figure to determine the
secondary allocation in tracks. For VSE/ESA 1.3 or above, VSWK
indicates that the sort used Dynamic Storage Manager. For releases of
VSE/ESA prior to release 1.3, VSWK means that the sort used Virtual
Sortwork.

WER227I  RCD IN xxx, OUT yyy, XSUM zzz
WER227I  RCD IN xxx, OUT yyy, XDUP zzz

EXPLANATION: The number of records that went into the sort and the
number of records that came out at this phase in the program are given.
If the XSUM or XDUP parameter is specified, the number of records
that were eliminated by SUM or DUPKEYS is also given.

EXPLANATION: The number of records that were inserted and the
number of records that were deleted from the sort/merge at this phase
in the program are given.

WER228I  INSERT xxx, DELETE yyy
EXPLANATION: The number of records that were inserted and the

number of records that were deleted from the sort/merge at this phase
in the program are given.

WER229A  OPEN ERROR FOR SORTIN [ VSAM CODE=xx]
EXPLANATION: An error occurred while opening SORTIN. If SORTIN
is a VSAM file, xx gives the VSAM error code.

WER230A  OPEN ERROR FOR SORTOUT [ VSAM CODE=xx]
EXPLANATION: An error occurred while opening SORTOUT. When-
ever SORTOUT is a VSAM file, xx gives the VSAM error code.

WER226A END SYNCSORT (jobname), RECORD=xxxxxxxxxx, INCORE
MERGE
OAF=xxxx
UAF=xxxx
VSWK
Chapter 12.  Messages 12.23



WER231A  INVALID CISIZE AFTER OPEN
EXPLANATION: The CISIZE value on an output file has been changed
to a value insufficient to accommodate one block of data. This usually
occurs when a disk space management package changes the CISIZE
value via a catalogue entry.
ACTION: Increase the CISIZE value or decrease the blocksize.

WER234A  DIAG=nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn
nnnnnnnn
EXPLANATION: This message contains information that can be used
by SyncSort for z/VSE Product Services to diagnose errors or to enhance
performance.

WER235B  TRK ALLOC=xxx, USED=yyy
EXPLANATION: The number of tracks allocated for sortwork and the
number of tracks actually used for sortwork are given.

WER236A  USER EXIT RETURN CODE TERMINATE
EXPLANATION: The user’s program passed SyncSort a code of 16 to
terminate the sort and it has been obeyed.

WER237A  RECORD LENGTH EXCEEDS MAXIMUM (L1/L2)
EXPLANATION: A variable-length input record has been found that is
greater than the length specified in the l1/l2 parameter on the RECORD
statement.

WER238A  INCORE SORT CAPACITY EXCEEDED
EXPLANATION: An incore sort was requested, but input was too large
to fit into storage.
ACTION: Either supply sortwork files or increase storage size.

WER239A  TURNAROUND SORT PERFORMED
EXPLANATION: Although sortwork files were supplied, the input was
able to be sorted completely in storage, so the intermediate and final
merge stages were bypassed.

WER240A  SORTWK DEVICE NOT EQUAL DEFAULT/DEVWK
EXPLANATION: The SORTWK device type does not correspond to the
installation default or to the device types specified for the DEVWK
parameter in the OPTION control statement.

WER232A   IMPROPER RETURN CODE FROM E15
E18 E32 E38
E25 E35 E39

EXPLANATION: The user’s exit program passed SyncSort an invalid 
return code.
SyncSort for z/VSE 3.7 Programmer’s Guide12.24



WER241A  RECORD LEN EXCEEDS L3, USER REQ ABORT
EXPLANATION: A variable-length record was found that is greater
than the length specified in the l3 parameter on the RECORD state-
ment.

WER242I  SEGLEN
EXPLANATION: The value given above was used by SyncSort to sort
the user’s variable-length records.

WER243A   NOT ENOUGH STORAGE IN INT. MERGE PHASE

EXPLANATION: The sort ran out of storage during the phase shown.

WER244A  STRING CT OVERFLOW; INCREASE STORAGE
EXPLANATION: There was too much data for the sort to process in the
storage available.
ACTION: Specify an increased value for the SIZE parameter on the
JCL EXEC statement and/or VSCORE/VSCORET parameter on the
OPTION statement.

WER245A  RECORD LENGTH LESS THAN MINIMUM (L4)
EXPLANATION: The sort found a variable-length record that is shorter
than the value the sort is using for l4.

WER246I   WRONG LENGTH RECORD. filename

EXPLANATION: The sort found a wrong-length physical or logical
record. If BYPASSED is on the message, the record was ignored and the
sort continued. If BYPASSED is not on the message, the filename for
the wrong-length record will be given.

WER248A  RECORD LENGTH EXCEEDS TRACK CAPACITY
EXPLANATION: The record length specified must be no greater than
the track capacity of the SORTWK disk device.

WER250A  ZERO LENGTH RECORD FOUND
EXPLANATION: A variable-length record with a length of zero in its
Record Descriptor Word was found by the sort/merge.

WER251A  RDW INVALID, OVERFLOWS BUFFER
EXPLANATION: The sort found a variable-length record with a length
value in its Record Descriptor Word that, when added to the address of
the end of the previous record in this input buffer, would overflow the
buffer. This message will also be issued when the length of an assem-
bled spanned record exceeds the l1 value (input buffer size).
ACTION: Check for a bad record in the input files.

FINAL MERGE PH.

BYPASSED
Chapter 12.  Messages 12.25



WER252A  HEADER/TRAILER EXCEEDS LINES ON PAGE
EXPLANATION: The total number of lines in the HEADER(S) and/or
TRAILER(s) exceeds the number of lines per page determined either by
default or by the LINES parameter on the OUTFIL control statement.
ACTION: Increase the number of lines per page or reduce the total
number of lines in the HEADER(S) and/or TRAILER(s).

WER253A  SORT CAPACITY EXCEEDED
EXPLANATION: Sortwork file space was exceeded.
ACTION: Increase sortwork file allocations.

WER254A  UNSUPPORTED DEVICE SWITCH ON OUTPUT
EXPLANATION: There are three "classes" of output devices; DASD,
tape, and unit record. The output file switched from one class to
another, and that class switch is unsupported.

WER255I  ***END PHASE 2***
EXPLANATION: The sort/merge has completed Phase 2.

WER256I  EXTENTS EXHAUSTED FOR SORTWKx
WER256I  PROCEEDING WITH REMAINING SORTWK FILES

EXPLANATION: The two WER256I messages are informational and do
not require any response. The WER256I message may be preceded by
the IBM message:

4n50A NO MORE AVAILABLE EXTENTS

SyncSort for z/VSE tries to obtain secondary disk space allocations for
all VSAM-SAM SORTWK files. SyncSort will first obtain allocations for
SORTWK1 until no further secondary allocations are available for
SORTWK1, then will try to obtain secondary disk space allocations for
SORTWK2. This process will be repeated for every VSAM-SAM
SORTWK file until sufficient SORTWK space has been obtained to
complete the sorting process.

WER300A  ABE xxx CALL SYNCSORT INC. AT 201-930-8210
EXPLANATION: The sort diagnosed a critical internal error and can no
longer run.
ACTION: Rerun the program using the DIAG option or UPSI 11111111
to get a dump. Then, call SyncSort for z/VSE Product Services at the
above number.

WER301A  IOERROR,
IOERROR,
IOERROR,

SORTWK
filename
CCB=

CCB@

IOERROR,
IOERROR,
IOERROR,

LOGICAL,
PHYSICAL,
UNKNOWN,

VSAM ERROR CODE=xx,
VSAM ERROR CODE=xx,
VSAM ERROR CODE=xx,

R15=yy
R15=yy
R15=yy
SyncSort for z/VSE 3.7 Programmer’s Guide12.26



EXPLANATION: An I/O error has occurred. If byte 5 of the CCB shows
a X'40', there is a wrong-length record. If the error occurred while pro-
cessing a VSAM file, the message will indicate whether it is known to
be logical or physical. xx is the error code; yy is the value of register 15
returned by VSAM.

WER400A  CRITICAL ERROR. SORT TERMINATED
EXPLANATION: Due to a critical error, the sort could not run to com-
pletion.
ACTION: Check for other error messages to determine the nature of the
error.

WER401I  STARTING INTERNAL SORT FOR JOIN
EXPLANATION: SyncSort has started an additional internal sort as
part of JOIN processing.

WER402I  END INTERNAL SORT, RECORD=nnnnn, OAF
UAF
INCORE

EXPLANATION: The additional internal sort started by SyncSort as
part of JOIN processing has successfully completed. nnnnn is the num-
ber of records processed by this internal sort.

WER403A  ERROR RETURNED FROM INTERNAL SORT
EXPLANATION: The additional internal sort started by SyncSort as
part of JOIN processing has encountered a problem. There will be addi-
tional messages displayed related to this problem.

WER405A  INPFIL LRECL REQUIRES AN INREC
EXPLANATION: An INPFIL control statement specifying LRECL was
different than the length specified on the LENGTH parameter on the
RECORD control statement, but no INREC control statement was
included.

WER406I  SORTINx: IN nnnnn, OUT nnnnn
LRECL= nnnnn, BLKSIZE=xxxxx, INREC=(inr1,inr2)

CISIZE=xxxxx
EXPLANATION: The number of records that went into the INPFIL
processor and the number of records that came out of this processor are
given. If the input file is VSAM, xxxxx indicates the control interval
size SyncSort has selected, otherwise the BLKSIZE value is displayed
along with the LRECL value. If INREC is specified, inr1 indicates the
user-specified input record length and inr2 indicates the record length
selected by SyncSort.
Chapter 12.  Messages 12.27



WER407I  filename: DATA RECORDS OUT nnnnnnnnn
EXPLANATION: nnnnnnnnn represents the number of data records
(exclusive of HEADERs and/or TRAILERs) in this output data set.

WER408I  filename: TOTAL RECORDS OUT yyyyyyyyy
EXPLANATION: yyyyyyyyy represents the total number of records in
this output data set (data records and HEADERs and/or TRAILERs).
Note that the total number of lines written to the line printer may be
greater than the actual record count, since multiple lines of blank out-
put are considered one data record.

WER409I  JOIN FILE n: PAIRED nnnnn, UNPAIRED nnnnn
EXPLANATION: The n value is either 1 or 2 and indicates the number
of paired and unpaired records processed by the join application.

WER500A  SYNCSORT IN ERROR RECOVERY, PLEASE DO NOT CANCEL
EXPLANATION: A critical failure has occurred and SyncSort is in
error recovery. See SYSLOG and/or SYSLST output for an explanation
of the error.

WER900A  FIELDS=COMPARE. THE RECORDS ARE UNEQUAL. PDUMP
SHOWS EACH SORTIN DTF. THE NEXT PDUMP SHOWS THE
RESPECTIVE RECORDS.
EXPLANATION: Two non-EOF records paired by the MERGE were not
byte-for-byte identical. For a description of the two PDUMPS, see
“Using the FIELDS=COMPARE Parameter” on page 5.26. This mes-
sage will be followed by WER901A. Although this is an “A” message, it
will not appear on the console.

WER901A  FIELDS=COMPARE; SORTIN1 RCDS=xxxxxxxxxx
SORTIN2 RCDS=xxxxxxxxxx
EXPLANATION: Two non-EOF records paired by the MERGE were not
byte-for-byte identical. At this point, an equal number of records has
been processed from each of the two files (since the MERGE processes
record pairs); the numbers given reflect the position of the current
unequal records in their respective files. Although this is an “A” mes-
sage, it will not appear on the console.

WER901I  FIELDS=COMPARE; SORTIN1 RCDS=xxxxxxxxxx
SORTIN2 RCDS=xxxxxxxxxx
EXPLANATION: The merged files were identical. The numbers given
reflect the number of records in each file. Since the files are identical,
these numbers must be equal.

WER902A  FIELDS=COMPARE; SORTIN1 RCDS=xxxxxxxxxx
SORTIN2 RCDS=xxxxxxxxxx; THE FILES ARE UNEQUAL.
EXPLANATION: The two files are of different sizes, with the first n
SyncSort for z/VSE 3.7 Programmer’s Guide12.28



records (the smaller number in the message) of the larger file being
identical to the smaller file in its entirety. The numbers given reflect
the number of non-EOF records read from each file. Since the file size
comparison is done in terms of record pairs processed, however much
larger one file is than another, it will still be reported as having only
one additional record. Although this is an "A" message, it will not
appear on the console.

Common SyncSort Errors

The errors described in this section are those that occur most frequently.

1. WER253A SORT CAPACITY EXCEEDED. This occurs when the work file space
allocated for the sort is insufficient in size. As a general rule, the amount of work file
space should be 15 to 20 percent more than the amount of space required for the total
sort input.

2. WER039A INSUFFICIENT STORAGE. There is not enough storage for the sort to run
in. This may occur when the sort is initiated from a program that occupies a large
amount of storage. This error is also caused by inadvertently specifying 30K rather
than 300K on the SIZE parameter of the EXEC job control statement. In either
situation, the sort/merge will terminate and a message will be issued indicating the
error.

3. WER246I WRONG LENGTH RECORD

• User input consists of variable-length records and the Block Descriptor Words on
the user’s tape contain errors. When this occurs, the user’s blocked input has been
incorrectly described to the sort. The sort may still run, but the results will be
unpredictable.

• The wrong record size or block size is specified. This type of error is created by
typing or simple arithmetic errors. If any of the length values specified on either
the RECORD statement or the BLKSIZE parameters on the OUTFIL statement is
incorrect, the effects on the user’s program are unpredictable.

4. DATA EXCEPTION. The user’s control fields contain bad data. This error is often a
result of: a programmer specifying ZD or PD for a field in the SORT statement that
contains unsigned data; including a blank in a field specified as PD or ZD. To avoid
abnormal termination of the sort when this message is received, the user can specify
CMP=CLC on the OPTION statement. SyncSort will then accept the records containing
the bad data and proceed with the sort/merge.

5. WER301A I/O ERROR. Input/output errors may occur. This common error can be
caused by a hardware failure such as a bad spot in a tape or disk. When this occurs the
sort is unable to read or write the user’s data. The program will terminate, generating a
message to indicate the error.
Chapter 12.  Messages 12.29



6. VARIOUS SYNTAX ERRORS. Conflicting parameters are specified in the control
statements. An example of this situation would be a programmer specifying
DELBLANK in the RECORD statement when either an INCLUDE statement or an
OMIT statement has been specified in the program. In this situation the sort/merge
terminates, generating a message to indicate the error.

7. INCORRECT OUTPUT. There are program exits, but the MODS statement is omitted
from the control stream. In this situation the sort/merge will run, but the exits will not
be utilized.

8. An E15 program that reads input or an E35 program that writes output is included
without the inclusion of an INPFIL or OUTFIL statement specifying EXIT. In this
situation the sort/merge terminates, generating a message to indicate the error.

9. The use of SYSIPT for card image data. SYSIPT must be assigned to an actual card
reader or to SYSRDR simulated input (i.e., Diskette).

10. WER215A SORTWK OUT OF SEQ. CHECK FILE OVERLAP

• Overlapping SORTWK extents. To solve the problem, change the SORTWK JCL.

• Another simultaneously executing program is overlapping your SORTWK area(s).
This should only arise in the absence of a Disk Space Management package. Both
the JCL and the label cylinders must be checked to determine if this is the problem.
Revise the extent information in the JCL to eliminate overlap.

11. 0S12I 'SUB XXXXXX CANCELED DUE TO MAIN TASK TERMINATION'. This
message may not indicate a problem, since it may have been caused by an early
termination code from an E15 or E35 exit (or COBOL output procedure). Typical
examples include branching out after processing a fixed number of records or branching
out as soon as a certain condition is met. Whenever an E35 exit (COBOL output
procedure) neglects to process the entire sorted file, this message will be generated and
should be ignored. In other circumstances, this message may reflect a serious problem
in that the invoking program has terminated without proceeding to the sort EOJ.

SSRAM Messages

SSRAM Error Checking

SSRAM checks the format of the call and contents of the parameter table each time that it
is called. If SSRAM discovers an error in the call or the parameter table, it terminates pro-
cessing immediately and issues an error message. If SSRAM experiences an error during
processing, its action depends on whether the invoking program requested return codes.

If the invoking program does not request return codes, SSRAM sends an error to the con-
sole if SYSLOG is assigned. A partition dump may be produced and the program is can-
celed.
SyncSort for z/VSE 3.7 Programmer’s Guide12.30



If the invoking program does request return codes, SSRAM passes control back to the
invoking program along with the return code table. The return code table will contain
either return code 4 or 16 and the error message. If SSRAM then receives another call from
the invoking program after experiencing an error on the preceding call, SSRAM cancels the
program. Therefore, the invoking program should include a check of requested return codes
so that it takes the appropriate action.

Any error SSRAM encounters during initialization is non-recoverable regardless of
whether return codes were requested by the invoking program. The program is canceled.

SSRAM Message Format

All SSRAM messages have the following format:

nnn  This is the message number.

xxxxx  This is either INIT or the sortwork filename passed in the parameter table.
INIT means that the error occurred during initialization. The sortwork file
name lets you identify which sort experienced the error.

message  This is the message text.

Note: These messages are available in the VSE console EXPLAIN function if your systems
programmer installed SyncSort with this option.

WERS001  RE-OPEN FUNCTION NOT SUPPORTED.
EXPLANATION: An attempt was made to use either the SRTOPN,
CAROP, or SSAROP call to re-use a sortwork file and this function is
not supported.

WERS002  DUPLICATE RECORD DELETE OPTION NOT SUPPORTED.
EXPLANATION: An attempt was made to delete a duplicate record
during sort processing and this function is not supported.
 ACTION: You can delete only records that have duplicate keys.

WERS005  MULTIPLE SRTCORE CALLS ARE ILLEGAL
EXPLANATION: More than one SRTCORE function call was used for
the application.

WERSnnn xxxxx message 

Figure  450. SSRAM Message Format
Chapter 12.  Messages 12.31



WERS006  SRTCORE CALL MUST PRECEDE SRTOPEN CALL
EXPLANATION: The application issued a SRTCORE function call after
issuing a SRTOPEN function call.

WERS010  SRTCORE STORAGE ADDRESS IS INVALID
EXPLANATION: The storage address passed in the SRTCORE param-
eter list is invalid. The address is invalid for one of the following rea-
sons:

• The address is lower than the beginning address of the
partition.

• The address is higher than the ending address of the partition.

• A storage length value was not specified and the address is in
the partition GETVIS area.

WERS011  SRTCORE STORAGE LENGTH IS INVALID
EXPLANATION: The storage length value passed in the SRTCORE
parameter list is invalid. The storage length is invalid for one of the fol-
lowing reasons:

• If the SRTCORE storage address is in the problem program
area of the partition (not the GETVIS area), then the ending
address implied by adding the storage length to the storage
address must also be in the problem program area (not the
GETVIS area).

• If the SRTCORE storage address is in the GETVIS area, then
the ending address implied by adding the storage length value
to the storage address must be less than the ending address of
the GETVIS area.

WERS101  SUBSID SVC FAILURE. RETURN CODE=xx 
EXPLANATION: An SVC 105 (X'69') was issued and failed. xx is the
return code from SUBSID.
ACTION: Call SyncSort for z/VSE Product Services.

WERS102  INIT OPERATING SYSTEM NOT SUPPORTED.
EXPLANATION: SSRAM supports only standard IBM operating sys-
tems. 

WERS103  INIT INSUFFICIENT STORAGE.
EXPLANATION: Either the main storage value passed in the SSRAM
parameter table during a SRTOPEN call was less than 10K or there
was not enough storage in the partition to run SSRAM.
ACTION: In the first case increase the main storage value in the
SSRAM parameter table to at least 10K. In the second case, SSRAM
SyncSort for z/VSE 3.7 Programmer’s Guide12.32



requires a minimum of 64K in the partition for each sort in addition to
the storage required for the invoking program and the 8K required by
SRAM itself.

WERS104  INIT GETVIS NOT INITIALIZED.
EXPLANATION: The partition GETVIS area has not been properly ini-
tialized by VSE.
ACTION: Call SyncSort for z/VSE Product Services.

WERS105  INIT PARAMETER TABLE NOT FULLWORD ALIGNED.
EXPLANATION: The SSRAM parameter table is not aligned to a full-
word boundary.
ACTION: If you are using PL/I, use the ALIGNED keyword in the defi-
nition of the parameter table. If you are using COBOL, use the SYN-
CHRONIZED keyword in the definition of the parameter table.

WERS106  xxxxx LABEL ERROR DETECTED.
EXPLANATION: The DLBL statement in the JCL does not match bytes
1 to 5 of the SSRAM parameter.
ACTION: Correct the DLBL statement so that it matches bytes 1 to 5 of
the SSRAM parameter.

WERS107  xxxxx KEY DEFINITION ERROR DETECTED.
EXPLANATION: There is a syntax error in the sort key definition.
ACTION: Ensure that opening and closing parentheses match, that all
the keys are valid, or that there are no typographical errors. See “The
Key Definition Table” on page 10.3.

WERS108  xxxxx ALREADY OPENED.
EXPLANATION: An attempt was made to open the specified file and
that file is open already.
ACTION: Check to see if more than one sort is using the same parame-
ter table.

WERS109  xxxxx LOGICAL UNIT ASSIGNMENT ERROR.
EXPLANATION: There are several possible reasons for this error mes-
sage. The SSRAM workfile name in the parameter table is assigned to a
tape (TLBL) instead of a disk (DLBL). Either the Logical Unit Number
(LUN) is a non-numeric value, is greater than 255, is unassigned, or is
set to IGNORE.
ACTION: Change the TLBL to a DLBL. The LUN cannot be a non-
numeric value, cannot be greater than 255, cannot be unassigned and
cannot be set to IGNORE. Correct the parameter table and re-run the
job.

WERS110  xxxxx FILL CALL ERROR.
EXPLANATION: The FILL call was issued in an improper sequence,
Chapter 12.  Messages 12.33



either preceding an SRTOPEN call or following a CLOSE or GET call.
ACTION: Correct the program that issues the calls.

WERS111  xxxxx FILL PARAMETER LIST INCOMPLETE.
EXPLANATION: The record area is missing from a FILL call.
ACTION: Provide the record area.

WERS113  xxxxx GET CALL ERROR.
EXPLANATION: The GET call was issued in an improper sequence,
either preceding an OPEN or FILL call or following a CLOSE.
ACTION: Correct the program that issues the calls.

WERS114  xxxxx GET PARAMETER LIST INCOMPLETE.
EXPLANATION: The record area is missing from a GET call.
ACTION: Provide the record area.

WERS116  xxxxx CLOSE CALL ERROR.
EXPLANATION: The CLOSE call was issued in an improper sequence,
preceding an OPEN, FILL, or GET call.
ACTION: Correct the program that issues the calls.

WERS191  xxxxx INVALID DUPLICATE RECORD PROCESSING CODE.
EXPLANATION: A code other than 0, 4, or 8 was passed to SSRAM.
ACTION: 0, 4, or 8 are the only valid duplicate record processing codes.
Correct the fullword that contains the duplicate record processing code.

WERS201  xxxxx FREEVIS FAILURE.
EXPLANATION: SSRAM received a non-zero return code in response
to a FREEVIS request.
ACTION: Call SyncSort for z/VSE Product Services.

WERS202  xxxxx WORK FILE DEVICE NOT SUPPORTED.
EXPLANATION: The LUN is assigned to a device other than DASD.
ACTION: Correct the JCL and rerun the job.

WERS203  INIT INCORRECT RELEASE OF SYNCSORT/VSE.
EXPLANATION: This release of SSRAM is incompatible with the
release of SyncSort for z/VSE that you are trying to use.
ACTION: Call SyncSort for z/VSE Product Services.

WERS204  INIT PHASE RELEASE MISMATCH.
EXPLANATION: SSRAM has detected that its two phases are from dif-
ferent releases.
ACTION: Call SyncSort for z/VSE Product Services.

WERS210  xxxxx SORT INITIALIZATION ERROR.
EXPLANATION: Prior to the completion of the first FILL call,
SyncSort for z/VSE experienced an error.
SyncSort for z/VSE 3.7 Programmer’s Guide12.34



ACTION: See accompanying sort messages. Call SyncSort for z/VSE
Product Services.

WERS211  xxxxx SORT ERROR DURING FILL PHASE.
EXPLANATION: While SSRAM was passing records with a FILL call,
SyncSort for z/VSE experienced an error.
ACTION: See accompanying sort messages. Call SyncSort for z/VSE
Product Services.

WERS212  xxxxx SORT ERROR DURING INTERMEDIATE MERGE
PHASE.
EXPLANATION: Prior to the completion of the first GET call, SyncSort
for z/VSE experienced an error.
ACTION: See accompanying sort messages. Call SyncSort for z/VSE
Product Services.

WERS213  xxxxx SORT ERROR DURING FINAL MERGE PHASE.
EXPLANATION: While SSRAM was receiving records with a GET call,
SyncSort for z/VSE experienced an error.
ACTION: See accompanying sort messages. Call SyncSort for z/VSE
Product Services.

SYNCBIX Messages

SYNCBIX is SyncSort’s high performance replacement for IDCAMS. All SYNCBIX mes-
sages have prefix SBIX. Otherwise the message format is the same as WER messages.
SYNCBIX messages printed are written to SYSLST with a record length of 121 bytes and
SYSLST must be ASSGNed to a print device.

Note: These messages are available in the VSE console EXPLAIN function if your systems
programmer installed SyncSort with this option.

SBIX001A  INVALID DEBUGGING OPTION
EXPLANATION: The option specified for debugging is not permis-
sible.

SBIX002A  FILE xxxxxxxx OPEN ERROR. VSAM RC=X'nn' , EC=X'nn'....
EXPLANATION: An error was encountered while opening a VSAM
file.
ACTION: Check the VSAM Return and Error codes for detailed
information.

SBIX003A  FILE xxxxxxxx : INVALID RECORDSIZE SPECIFIED
EXPLANATION: The value specified in the RECORDSIZE parame-
ter of the VSAM cluster definition exceeds the maximum limit of
32760 bytes.
Chapter 12.  Messages 12.35



SBIX004A  FILE xxxxxxxx OPEN ERROR: NOT AIX FILE
EXPLANATION: The file specified by the OUTFILE parameter
must be defined as an AIX file.

SBIX005A  AIX DATASET MUST BE A KSDS
EXPLANATION: The file specified by the OUTFILE parameter is
not properly defined as an alternate index.

SBIX006A  FILE xxxxxxxx IS NOT A BASE CLUSTER
EXPLANATION: The file specified by the OUTFILE parameter is
not defined as a base cluster or a path over a base cluster.

SBIX007A  INVALID CONTINUATION STMT: 
EXPLANATION: A continuation character was specified on the cur-
rent control statement with no additional control statements follow-
ing. The invalid statement is displayed following this error
message.

SBIX008A  INVALID PARAMETER SPECIFIED: 
EXPLANATION: A keyword or value is not recognized. It may be
misspelled. The invalid parameter is displayed following this error
message.

SBIX009A  DUPLICATE xxxx PARAMETER FOUND
EXPLANATION: The specified parameter xxxx was specified more
than once.

SBIX010A  MISSING INFILE/OUTFILE PARAMETER
EXPLANATION: One or more of the required parameters were not
specified.

SBIX011A  INVALID SORTWK NUMBER SPECIFIED
EXPLANATION: The allowable WORK values are from 1 through
9.

SBIX012I  TRUNCATED nnnn EXCESS AIX KEY xxxx
EXPLANATION: The alternate index record was too short to con-
tain all of the prime key or RBA pointers. The record is created with
only those pointers that would fit. nnnn gives the number of point-
ers that could not fit into the record. xxxx represents the AIX key
value that had too many primary keys associated with it.
ACTION: Increase the maximum length of the RECORDSIZE value
in the IDCAMS DEFINE AIX command.

SBIX013I  VSAM FILE xxxxxxxx BUILT WITH ERRORS
EXPLANATION: This is an informational message, indicating that
the file was built with alternate index records without all of the
SyncSort for z/VSE 3.7 Programmer’s Guide12.36



record pointers. This message is displayed along with message
SBIX012I.

SBIX014A  VSAM FILE xxxxxxxx PUT ERROR, RC=X'XX' ,EC=X'xx'
EXPLANATION: An error occurred while writing a logical record
into the VSAM AIX file. Check the VSAM Return and Error codes
for detailed information.

SBIX015I  VSAM FILE xxxxxxxx SUCCESSFULLY BUILT
EXPLANATION: The alternate index file was built successfully
with no errors.

SBIX016A  VSAM FILE xxxxxxxx WAS NOT BUILT
EXPLANATION: The alternate index file was not built due to some
error.

SBIX020A  SYNCBIX TERMINATED. ERROR FROM SORT, RC=X'xxxx'
EXPLANATION: SYNCBIX was terminated due to an error that
occurred during sort operation.

SBIX021A  CRITICAL ERROR. INVALID AIX TYPES
EXPLANATION: SYNCBIX was terminated due to internal errors. 

SBIX022I  NONUNIQUE AIX KEY xxxx; PRIME KEY yyyy
EXPLANATION: The AIX was defined as unique. More than one
record with AIX key value xxxx was encountered. The primary key
was yyyy. SYNCBIX continued to build the remainder of the AIX.
The keys are displayed in hexadecimal. If the length of a key is
greater than 20 bytes, only the first 20 bytes of the key are dis-
played in the message.

SBIX023A  INSUFFICIENT STORAGE
EXPLANATION: SYNCBIX did not have enough storage to load the
SORT phase. SYNCBIX requires at least 100K plus the maximum
record length of the alternate index file.

SYNCHSTO Messages

There are two main types of messages for the SYNCHSTO program:

1. SHSnnnI messages, messages ending in ‘I’, are informational. They describe control
information used by SYNCHSTO and the characteristics of the records that have been
read.

2. SHSnnnA, messages ending in ‘A’, indicate critical error conditions. SYNCHSTO
terminates to allow you to correct the error(s) so that a successful program may be run.
Chapter 12.  Messages 12.37



SHS001I  NUMBER OF RECORDS nnnn 
EXPLANATION: This displays the number of records that have
been read by SYNCHSTO. This is either the total number of records
in the file, or the limit imposed by the NRECS parameter.

SHS002I  TOTAL LENGTH OF ALL RECORDS nnnn 
EXPLANATION: This is the total number of bytes read. 

SHS003I  AVERAGE RECORD LENGTH nnnn 
EXPLANATION: This is the total number of bytes read divided by
the number of records read.

SHS004I  KEY END POSITION nnnn 
EXPLANATION: This is the end location of the last sort control
field to be used, specified by the KEYEND control parameter (or
using the assumed default value).

SHS005I  HISTOGRAM LINE WIDTH nnnn 
EXPLANATION: This is the numeric interval between the mini-
mum and maximum record lengths for each line of the histogram
display.

SHS006I  LONGEST RECORD nnnn 
EXPLANATION: This is the length of the longest record read.

SHS007I   SHORTEST RECORD nnnn
EXPLANATION: This is the length of the shortest record read.

SHS008I   MOST COMMON RECORD LENGTH (L5) nnnn
EXPLANATION: This is the most frequently occurring record
length in all of the records that have been read. Supply SyncSort
with this value as the l5 value in the LENGTH parameter of the
RECORD control  statement to improve sort performance.

SHS009I   AVG. SPACE PER RECORD (L6) nnnn
EXPLANATION: This is the estimated average work space per
record that has been calculated by SYNCHSTO. Supply SyncSort
with this value as the l6 value in the LENGTH parameter of the
RECORD control statement to improve sort performance.

SHS010I   RECOMMENDED SEGMENT SIZE (L7) nnnn
EXPLANATION: This is the recommended segment size that has
been calculated by SYNCHSTO. Supply SyncSort with this value as
the l7 value in the LENGTH parameter of the RECORD control
statement to improve sort performance.

Since the l7 value depends on the location of the sort key within the
record, the actual optimal value for l7 may be affected if INREC or
SyncSort for z/VSE 3.7 Programmer’s Guide12.38



an E15 reformats the records. In this case, the value estimated by
SYNCHSTO is less accurate for a particular sort application than
the value of l7 calculated using the VL5L6L7 PARM during that
sort.

SHS101A  NO PARAMETER STATEMENT FOUND
EXPLANATION: No parameter statement followed the 
// EXEC SYNCHSTO  statement.

SHS102A   INVALID LRECL VALUE 
EXPLANATION: LRECL must be a numeric value no larger than
65524.

SHS103A   INVALID BLKSIZE VALUE 
EXPLANATION: BLKSIZE must be a numeric value no larger than
65528.

SHS104A   INVALID SORTNAME
EXPLANATION: SORTNAME must be 1-8 alphanumeric charac-
ters beginning with an alphabetic character.

SHS105A   INVALID NRECS VALUE 
EXPLANATION: NRECS must be a numeric value no larger than
2147483647.

SHS106A   INVALID KEYEND VALUE 
EXPLANATION: KEYEND must be a numeric value less than or
equal to LRECL.

SHS107A   INVALID PARAMETER SPECIFIED
EXPLANATION: An invalid or misspelled parameter has been
specified.

SHS108A   BAD RETURN CODE FROM SYNCSORT
EXPLANATION: The sort that is used by SYNCHSTO has encoun-
tered an error. See the beginning of this chapter for further infor-
mation about error messages produced by the sort.

SHS109A   INVALID RECORD TYPE FOUND
EXPLANATION: The input file must have variable-length records.
If the file has blocked records, the BLKSIZE parameter must be
specified.

SHS110A   NO PARAMETERS FOUND
EXPLANATION: A blank parameter statement has been found.

SHS111A   DUPLICATE PARAMETERS SPECIFIED 
EXPLANATION: A valid parameter has been specified more than
Chapter 12.  Messages 12.39



once and may have conflicting values (such as 
KEYEND=nnnn,KEYEND=mmmm).

SHS112A   CONFLICTING PARAMETERS SPECIFIED 
EXPLANATION: Parameters have been specified with explicitly
conflicting values (such as OPEN=RWD,OPEN=NORWD).

SHS113A   REQUIRED LRECL PARM NOT FOUND 
EXPLANATION: The LRECL parameter must be specified.

SHS114A   INSUFFICIENT STORAGE 
EXPLANATION: There was insufficient storage available for
SYNCHSTO to  run. Increase the SIZE=parameter on the // EXEC
statement, or run the program in a larger partition.

SHS115A   INVALID VOLUME VALUE 
EXPLANATION: VOLUME must be a numeric value.

SHS116A   INVALID WIDTH VALUE
EXPLANATION: WIDTH must be a numeric value, an even multi-
ple of 4, and no larger than 65524.

SHS117A   MISSING CONTINUATION
EXPLANATION: A continuation has been specified by ending a
control statement with a comma, but no continuation statement fol-
lowed it.

SHS118A  SORTIN1 FILE CONTAINS NO RECORDS
EXPLANATION: The input file to SYNCHSTO is empty.
SyncSort for z/VSE 3.7 Programmer’s Guide12.40



Appendix A.  Devices and Software Supported by 
SyncSort

Devices Supported by SyncSort 

All current disk and tape devices may be used for SyncSort input and output files as well as
any card reader for input and card punch or printer for output; all current disk devices may
be used for workfiles.

Whenever new devices become available, support will be developed for them. Should any
problems arise with new devices, please let us know.

Proprietary Software Packages Compatible with SyncSort

All proprietary software packages that interface with a sort/merge program are compatible
with SyncSort. Should any problems arise, please let us know.

Via a default setting (see the SyncSort for z/VSE Installation Guide), SyncSort can take
advantage of the presence of a variety of disk space management packages to dynamically
appropriate and release disk space at various stages of the sort/merge. For example, under
any package that allocates and frees disk space at OPEN and CLOSE, unused SORTOUT
space and all SORTWK extents will be returned to the system at termination of the sort.
Whenever all current SORTWK space is exhausted and more is needed, SyncSort will
OPEN additional extents from the preassigned pool that is part of these disk space man-
agement packages. 
Appendix A.  Devices and Software Supported by SyncSort A.1



For information regarding specific compatibility with a disk space management package,
please contact SyncSort for z/VSE Product Services. (See SyncSort for z/VSE Installation
Guide for technical support.)
SyncSort for z/VSE 3.7 Programmer’s GuideA.2



Appendix B.  Helpful Formulas for SyncSort 
Programs

Calculating How Much Disk Workfile Space Is Needed for a Job  

The rule-of-thumb is 15 to 20 percent more workfile space is needed than the amount of
space occupied by the total input for the job.

Minimum Storage Needed to Run a Sort or Merge

The minimum storage requirement for SyncSort is 64K. This minimum applies for small
applications; for more complex applications (such as the use of SortWriter features, multi-
ple output files and user exits) it is recommended that at least 128K of storage be used. 
Appendix B.  Helpful Formulas for SyncSort Programs B.1



SyncSort for z/VSE 3.7 Programmer’s GuideB.2



Appendix C.  VSE/VSAM Space Management for SAM 
Files

Introduction  

This appendix outlines the use of VSE/VSAM space management for SAM files (VSAM/
DMS/SAM) with SyncSort. It assumes a basic understanding of VSAM file organization
and access techniques, VSAM space allocation, and the IDCAMS utility. In particular, the
reader is assumed to have a working knowledge of the material covered in these IBM publi-
cations:

• VSE/VSAM Commands

• VSE/VSAM User’s Guide and Application Programming

The discussion that follows is for the user who has VSAM/DMS/SAM installed. This user
has already allocated space for Master and User catalogues, and for VSAM to build and
manage data structures and files. This appendix discusses the use of VSAM/DMS/SAM for
SORTOUT, SORTWK, and SORTIN files.

SAM ESDS Files  

By definition, SAM ESDS files are SAM files that have been loaded into VSAM/DMS/ SAM;
these files are typically changed to control interval format as part of the load. "Work files"
are those files whose space is managed by VSAM/DMS/SAM but whose format is important
only to the program using the file, e.g., SORTWK files. Regardless of the RECORDFOR-
Appendix C.  VSE/VSAM Space Management for SAM Files C.1



MAT value specified by the user, SORTWK files will not be loaded in control interval for-
mat, since this would lead to inefficiency.

SAM ESDS files can be read and accessed by VSAM as well as SAM access methods, pro-
viding RECORDFORMAT is set to F, FB, V, or FB, and not to U (undefined) or NCIF (non-
control interval, used only for work files). The VSAM parameter must be specified in the
DLBL statement. In the absence of other deciding factors, SyncSort will choose the access
method for a particular SAM ESDS file based on the presence or absence of a VSAM
parameter in the INPFIL/OUTFIL statement:

1. VSAM in the INPFIL or KSDS/ESDS/RRDS in OUTFIL statement: VSAM access.

2. VSAM parameter omitted from INPFIL/OUTFIL statement: SAM access.

With a RECORDFORMAT value of U, however, only SAM access methods can be used.

VSAM-Managed SORTIN Files  

A SAM ESDS input file is a file that already exists and has been defined as part of VSAM/
DMS/SAM. Therefore, a cluster already exists and it is necessary only to alert SyncSort to
its presence. The JCL for SAM ESDS SORTIN files must include a DLBL statement speci-
fying VSAM; EXTENT and ASSGN statements are not necessary.

For VSAM access of a SAM ESDS input file, the format is given below in Figure 451.

For SAM access of a SAM ESDS input file, the format is given below in Figure 452.

When mixing SAM ESDS files with other files as SORTIN, note the following:

// DLBL SORTIN1,'cluster NAME',,VSAM
.
.
.

INPFIL VSAM 

Figure  451. Sample for VSAM Access of a SAM ESDS Input File

// DLBL SORTIN1,'cluster NAME',,VSAM
.
.
.

INPFIL BLKSIZE=xxx 

Figure  452. Sample for VSAM Access of a SAM ESDS Input File
SyncSort for z/VSE 3.7 Programmer’s GuideC.2



• VSAM access is used if the VSAM parameter is specified in the INPFIL control
statement.

• It is possible to mix a VSAM file and/or a SAM ESDS file.

• SAM ESDS files of different control intervals can be mixed.

• RECORDSIZE (block size) values can be mixed provided each value evenly divides into
the BLKSIZE value specified in the INPFIL statement. In order for the BLKSIZE
parameter to be processed, VSAM can not be specified in the INPFIL statement; SAM
access methods will be used. As always, VSAM must appear in the DLBL statement to
indicate a VSAM-managed file. 

VSAM-Managed SORTWK Files  

The goal is to have SORTWK space managed by VSAM/DMS/SAM, i.e., to have VSAM
dynamically allocate the amount of SORTWK space requested for a particular job at OPEN
and then delete that space at CLOSE. SyncSort opens its SORTWK files as OUTPUT using
DTFPH.

VSAM-managed SORTWK files can be defined explicitly or implicitly (with or without a
model). If specified in the DEFINE CLUSTER command for an explicit define or a default
model, the optional RECORDS-RECORDSIZE pair of parameters will be used to determine
allocation size. RECORDS and RECORDSIZE will not be used to determine the character-
istics of the SORTWK file; SyncSort will control the use of the space allocated for SORTWK
in its own way. All SORTWK files will be treated as NCIF, regardless of the
RECORD-FORMAT value specified in the DEFINE CLUSTER command.

Successive sections describe the three methods of defining a VSAM-managed SORTWK
file, detailing each technique’s advantages and drawbacks.

Explicit Define Using DEFINE CLUSTER

In order to explicitly define SORTWK1,..., SORTWK9 as dynamic files, it is necessary to
specify NOALLOCATION and REUSE in their definitions. These parameters instruct
VSAM not to allocate space for these files until OPEN time. It is more efficient to access
single-extent SORTWK files. In order to ensure that VSAM will allocate DASD space for
SORTWK as a single extent, the special prefix DOS.WORKFILE.SYS must precede the
data component name. The IDCAMS utility program is executed with the DEFINE
CLUSTER command specifying NAME(%DOS.WORKFILE.SYSnnn...) for each of the clus-
ters.

Note: Under VSAM/DMS/SAM, SyncSort automatically obtains the secondary allocation
for SORTWK1 (WORK=DA is treated as WORK=1); therefore, the prefix is not necessary
when defining SORTWK1. However, the prefix is always required for
SORTWK2,...,SORTWK9.
Appendix C.  VSE/VSAM Space Management for SAM Files C.3



The IDCAMS job must be run once for each work file (SORTWK1,..., SORTWKn; n≤9) in
each partition in which SyncSort will execute. The '%' will add a partition identifier
(BG,F1,...,Fn) at the end of the cluster name (File-ID). Thus, DOS.WORK-
FILE.SYSWK4.BG could be used by a sort running in BG as its File-ID for SORTWK4.

The major disadvantage of this approach is the initial overhead (as many as 9 executions of
IDCAMS per partition). On the other hand, VSAM processing is most efficient when a clus-
ter is already explicitly defined at OPEN time, and there is never a need for an EXTENT
statement for SORTWK files that are explicitly defined as SAM ESDS files.

Implicit Define Using a Model

First, define a model that VSAM can use whenever it encounters a managed file (indicated
by the VSAM parameter of the DLBL statement) whose File-ID does not have a match in
the catalog. VSAM will use the model, which includes VOLUME information, to define a
cluster for all such files. Since VOLUME information is provided by the model, SORTWK
files will not require EXTENT statements when defined in this way.

Implicit Define Without a Model

In order to define SORTWK files implicitly without a model, both a DLBL and an EXTENT
statement will be necessary.

JCL Requirements for VSAM-Managed SORTWK Files 

The required DLBL statement in the job control stream or standard label cylinder is used
to trigger VSAM/DMS/SAM involvement. In the case of an implicit define without a model,
the DLBL statement must include allocation information (TRACKS/CYLINDERS/
BLOCKS or both RECORDS and RECSIZE). The DLBL statement’s allocation parameters
are also used to override allocation values provided by IDCAMS for a default model. Since
SyncSort opens its SORTWK files as OUTPUT, it is important to override the KEEP
default value with DISP=(,DELETE), as in Figure 453, below.

The DLBL statement above in Figure 453 instructs VSAM to allocate enough space to
contain 400 80-byte records (i.e., 32,000 bytes of data) and to DELETE the file at CLOSE.
Provided the cluster was not defined with a specific secondary allocation value, the primary
allocation is automatically supplemented by a secondary allocation of 20% (i.e., enough
space to contain 6,400 bytes of data) when the primary allocation is exhausted. Since
SyncSort’s structuring of the SORTWK space is not constrained by the RECORDS or the

// DLBL SORTWK1,'%DOS.WORKFILE.SYSWK1',0,
VSAM,RECORDS=400,RECSIZE=80,
DISP=(,DELETE) 

Figure  453. Sample DLBL Statement for a VSAM-Managed SORTWK File
SyncSort for z/VSE 3.7 Programmer’s GuideC.4



RECSIZE values, RECORDS=400,RECSlZE=80 is equivalent to RECORDS=80,
RECSIZE=400; or RECORDS=1, RECSIZE=32000.

The DLBL statement below in Figure 454 defines the primary allocation as enough space to
contain 40,000 bytes of data (40 1,000-byte records) and the secondary allocation as 50% of
that (20 1,000-byte records or 20,000 bytes of data).

Again, DISP’s KEEP default must be changed to DELETE. Assuming SORTWK1 was
explicitly defined or defined using a default model, allocation could be determined by
IDCAMS and allocation values omitted from the DLBL statement.

An EXTENT statement is required only when SORTWK files are implicitly defined without
a model. Figure 455 illustrates how to direct VSAM to the proper volume. It is assumed
that the user has already defined VSAM space on this volume.

An ASSGN statement is never required, although some unassigned logical units must be
available for VSAM’s use.

Sample JCL/Control Streams  

// DLBL SORTWK1,"%DOS.WORKFILE.SYSWK1',0,
VSAM,RECORDS=(40,20),RECSIZE=(1000),
DISP=(,DELETE) 

Figure  454. Sample DLBL Statement for a VSAM-Managed SORTWK File

// EXTENT ,VOL1 

Figure  455. Sample EXTENT Statement for a VSAM-Managed SORTWK File

// JOB EXPLICIT DEFINE FOR SORTWK3
// EXEC IDCAMS,SIZE=AUTO

DEFINE CLUSTER
(NAME(%DOS.WORKFILE.SYS.SORTWK3)-
VOLUMES(VSER77)-
CYLINDERS(8)-
RECORDFORMAT(NCIF)-
REUSE-
NOALLOCATION-
NONINDEXED)

/*
/& 

Figure  456. Explicitly Defined SAM ESDS SORTWK3 File
Appendix C.  VSE/VSAM Space Management for SAM Files C.5



In Figure 456, DEFINE CLUSTER specifies REUSE and NOALLOCATION to make
SORTWK3 a dynamic file (primary allocation at OPEN). A typical cluster NAME for
SORTWK3 might be %DOS.WORKFILE.SYS.SORTWK3, where the prefix is required by
SyncSort and the entryname, 'SORTWK3', may be selected by the user. IDCAMS must be
executed once for each partition in which sorting will be done in order to succeed in defin-
ing SORTWK3 as a SAM ESDS file. Similar jobstreams would be constructed for all addi-
tional SORTWK files to be used. The DLBL statement for SORTWK3 in the SyncSort
jobstream must specify VSAM in order to identify the file as a SAM ESDS file, as below in
Figure 457.

Note the use of DISP=(,DELETE) to delete the file at CLOSE, as required. Since allocation
values are not coded on the sample DLBL statement, allocation is determined by the
IDCAMS executions, which provide eight cylinders of primary space.

An EXTENT statement is not required.

The model is defined using IDCAMS with the required cluster NAME of DEFAULT.
MODEL.ESDS.SAM and the NOALLOCATION parameter (also required). The volume
specified can be overridden by an EXTENT statement for an implicitly defined SAM ESDS.

Although one of the DEFINE CLUSTER’s allocation parameters (TRACKS/BLOCKS/
CYLINDERS or both RECORDS and RECORDSIZE) is specified as required, the DLBL
statement can be used to change the allocation size.

Assuming the allocation value is acceptable for SORTWK, SORTWK2 is implicitly defined
as SAM ESDS using the DLBL statement in Figure 459.

// DLBL SORTWK3,'%DOS.WORKFILE.SYS.SORTWK3',0,
VSAM,DISP=(,DELETE) 

Figure  457. DLBL for Explicitly Defined SAM ESDS SORTWK File

// JOB MODEL FOR IMPLICIT SAM ESDS FILES
// EXEC IDCAMS,SIZE=AUTO
DEFINE CLUSTER

(NAME(DEFAULT.MODEL.ESDS.SAM)-
VOLUMES(VSER12)-
TRACKS(20)-
RECORDFORMAT(NCIF)-
REUSE-
NOALLOCATION-
NONINDEXED)

/*
/& 

Figure  458. Implicitly Defined SAM ESDS SORTWK File Using a Model
SyncSort for z/VSE 3.7 Programmer’s GuideC.6



Neither an EXTENT nor an ASSGN statement is required, although the EXTENT state-
ment could be used to override the model’s VOLUMES specification.

VSAM-Managed SORTOUT Files  

The techniques used to define VSAM-managed SORTWK files are basically applicable to
the definition of VSAM-managed SORTOUT files with the exceptions noted.

As before, VSAM must be specified in the DLBL statement. To access a SAM ESDS output
file, as a VSAM file, you must additionally specify the KSDS/ESDS/RRDS parameter in the
OUTFIL Statement, as well as explicitly defining SORTOUT with RECORDFORMAT (F,
FB, V, or VB). If the parameter ESDS is specified on the OUTFIL card, the file can be read
subsequently as either VSAM or SAM ESDS.

Explicit Define Using DEFINE CLUSTER

In order to explicitly define SORTOUT, it is necessary to specify NOALLOCATION and
REUSE in its definition. These parameters instruct VSAM not to allocate SORTOUT space
until OPEN time. Because SyncSort supports multiple extents for SORTOUT, the special
DOS.WORKFILE.SYS prefix need not be used in the cluster NAME.

Implicit Define Using a Model

Whenever a model is used to define SORTOUT, the model’s RECORDSIZE value becomes
important. Specifying RECORDSIZE (4000 4000), for example, will force a 4096-byte con-
trol interval even if the SORTOUT attributes (e.g., BLKSIZE=700) reveal that the data
would be more efficiently written to a smaller control interval. Since a larger BLKSIZE will
force a large control interval, it is advisable to use a relatively small value for
RECORDSIZE, such as RECORDSIZE(512 512), in the model.

Since VOLUME information is provided by the model, an EXTENT statement is not
required.

Implicit Define without a Model

In order to define the SORTOUT file implicitly without a model, both a DLBL and an
EXTENT statement will be necessary. The default for RECORDFORMAT in this case is U.

If the file is defined implicitly with or without a model, it cannot be read subsequently
using VSAM access methods. 

// DLBL SORTWK2,'%DOS.WORKFILE.SYSWK2',,
VSAM,DISP=(,DELETE) 

Figure  459. DLBL for Implicitly Defined SAM ESDS SORTWK File
Appendix C.  VSE/VSAM Space Management for SAM Files C.7



JCL Requirements for VSAM-Managed SORTOUT Files 

In Figure 460, the DLBL statement in the job control stream or standard label cylinder is
used to trigger VSAM/DMS/SAM involvement.

The sample DLBL statement instructs VSAM to allocate enough space to contain 1,000 80-
byte records (i.e., enough space to contain 80,000 bytes of data). Provided the cluster was
not defined with a specific secondary allocation value, this primary allocation is automati-
cally supplemented by a secondary allocation of 20% (i.e., enough space to contain 16,000
bytes of data) when the primary allocation is exhausted. Note the use of
DISP=(NEW,KEEP) to retain the sorted output after the sort.

An EXTENT statement is required only when SORTOUT is implicitly defined without a
model. Figure 461 illustrates how to direct VSAM to the proper volume. It is assumed that
the user has already defined VSAM space on this volume.

An ASSGN statement is never required.

Setting Up a JCL/Control Stream for Sorts with VSAM-Managed 
Files  

Figure 462 shows a sort with normal SAM input, output, and work files. The object of this
sort is to create a paycheck file from the input payroll data. Later, paychecks will be printed
from this output disk. The OUTREC feature has been used to select the pay, department,
and name fields from the input record for the new, shortened output records.

// DLBL SORTOUT,'SAM.ESDS.SORTOUT',0,
VSAM,RECORDS=1000,RECSIZE=80,
DISP=(NEW,KEEP) 

Figure  460. Sample DLBL Statement for a VSAM-Managed SORTOUT File

// EXTENT ,VOL1 

Figure  461. Sample EXTENT Statement for a VSAM-Managed SORTOUT File
SyncSort for z/VSE 3.7 Programmer’s GuideC.8



For a detailed discussion of this example, see “A Disk Input and Output Sort” on page 5.12.

Figure 463 on page C.10 illustrates how to code an equivalent jobstream for VSAM-man-
aged input, output, and work files.

Note: This jobstream assumes that the input file was previously loaded into VSAM-
managed space as a SAM ESDS file.

// JOB PAYROLL
// ASSGN SYS001,X'142'
// ASSGN SYS002,X'142'
// ASSGN SYS003,X'144'
// ASSGN SYS004,X'145'
// DLBL SORTOUT,PAYCHECKS'
// EXTENT SYS001,111111,1,0,2500,400
// DLBL SORTIN1,'PAYFILE',30
// EXTENT SYS002,111111,1,0,500,2000
// DLBL SORTWK1,,0,DA
// EXTENT SYS003,444444,1,0,200,500
// EXTENT SYS003,444444,1,1,1000,500
// EXTENT SYS003,444444,1,2,2300,500
// EXTENT SYS004,555555,1,3,450,500
// EXTENT SYS004,555555,1,4,1060,500
// EXTENT SYS004,555555,1,5,1800,500
// EXEC SORT

SORT FIELDS=(64,6,PD,A,2,3,CH,A)
RECORD TYPE=F,LENGTH=190
INPFIL BLKSIZE=3800
OUTREC FIELDS=(64,6,2,3,10,30)
OUTFIL BLKSIZE=780
OPTION PRINT=CRITICAL,ROUTE=LOG
END ***OCTOBER 15 PAYCHECKS***

/*
/& 

Figure  462. Sample JCL/Control Statement Stream, Normal SAM Files
Appendix C.  VSE/VSAM Space Management for SAM Files C.9



1  Creates a jobname.

2  The DLBL statement gives the filename SORTOUT to the VSAM-managed out-
put file. The file-id is 'PAYCHECKS' and the retention period is 30 days. This
file is implicitly defined to contain 4,300 780-byte records, or 3,354,000 bytes of
output data.

3  The EXTENT statement directs VSAM to define SORTOUT on disks with
serial number DISK03. The EXTENT statement is not required if a default
model is available.

4  This DLBL statement indicates a VSAM-managed input file with a filename of
SORTIN1, and a file-id of 'VSAM.PAYFILE' This file was defined by IDCAMS
and previously loaded by another program.

5  This DLBL statement gives the filename for the work file as SORTWK1, omits
both the file-id and retention date, and specifies VSAM space management.
This file is assumed to have been previously defined by IDCAMS with the
NOALLOCATE and REUSE attributes. VSAM is instructed to DELETE the
file at CLOSE.

6  These statements are identical to those in the previous (normal SAM) example.

The EXEC statement gives SORT as the SyncSort program name.

The SORT statement shows two control fields. The first, or major field, starts
on byte 64 of the input record, is 6 bytes long, has packed decimal format, and is
to be sorted according to ascending sequence. The second, or lesser field, begins

// JOB PAYROLL VSAM-MANAGED PAYROLL 1
// DLBL SORTOUT,'PAYCHECKS',30,VSAM, 2

RECORDS=4300,RECSIZE=780
// EXTENT ,DISK03 3
// DLBL SORTIN1,'VSAM.PAYFILE',,VSAM 4
// DLBL SORTWK1,,,VSAM,DISP=(,DELETE) 5
// EXEC SORT 6

SORT FIELDS=(64,6,PD,A,2,3,CH,A)
RECORD TYPE=F,LENGTH=190
INPFIL VSAM 7
OUTREC FIELDS=(64,6,2,3,10,30) 8
OUTFIL BLKSIZE=780
OPTION PRINT=CRITICAL,ROUTE=LOG
END ***OCTOBER 15 PAYCHECKS***

/*
/& 

Figure  463. Sample JCL/Control Statement Stream, VSAM-Managed Files
SyncSort for z/VSE 3.7 Programmer’s GuideC.10



on byte 2 of the record, is 3 bytes long, has character data, and is to be sorted
according to ascending sequence.

The RECORD statement codes an F for fixed-length records, and indicates that
the length of the input record is 190 bytes.

Note: This is the l1 value. The l2 and l3 values will be calculated by the sort and
the correct values will be used when it is time to change the length of the record
for the output file.

7  The INPFIL statement specifies VSAM as required for VSAM access of a SAM
ESDS input file.

8  These statements are identical to those in the previous (normal SAM) example.

The OUTREC statement shows how the input record is to be reconstructed to
form the output record. The FIELDS parameter shows that three fields will be
picked up. The first starts on byte 64 of the input record and is 6 bytes long.
The second starts on byte 2 of the input record and is 3 bytes long. The third
starts on byte 10 of the input record and is 30 bytes long. These are the pay,
department number, and employee name fields, respectively, that will later be
reproduced on paychecks. They will now run side-by-side from byte 1 through
byte 39 of the output record, and will be edited, with spacing, later when they
are printed.

The OUTFIL statement gives the blocksize of the output file as 780 bytes, i.e.,
twenty records per block. (VSAM access is not possible when SORTOUT is
implicitly defined as in this example.)

The OPTION statement requests that only critical messages be issued and that
they appear on the console.

The END statement requests the end of the control statements. A comment is
given.

The standard job control end statements are given. 
Appendix C.  VSE/VSAM Space Management for SAM Files C.11



SyncSort for z/VSE 3.7 Programmer’s GuideC.12



Index
Symbols

&DATEx 2.53–2.54
&DATEx(c) 2.53–2.54
&DATExP 2.53–2.54
’YDATEx’ 2.53

A

AC Format 2.43, 2.54, 2.96, 2.199, 2.228
Address Files 2.115–2.118
Addressing Modes 7.2, 8.5
ADDROUT Parameter (OPTION) 2.115–2.118
ALLDUPS Parameter (DUPKEYS) 2.33–2.34
Alternate Collating Sequence 2.30–2.31
Alternative Indexes 9.1–9.14
ALTSEQ Control Statement 2.30–2.31

Alternative to 7.5
AMODE 24 7.2, 8.5–8.6
AMODE 31 7.2, 8.5–8.6
ANALYZE Control Statement 2.32
AND Operator 2.46–2.47, 4.3
ANSI Control Characters 2.155–2.157
AQ Format 2.30, 2.43, 2.54, 2.96, 2.199, 2.228
ASL Format 2.43, 2.54, 2.96, 2.199, 2.228
Assembler Program

Initiating SyncSort 1.1, 7.1–7.6
ASSGN Statement 5.1
AST Format 2.43, 2.54, 2.96, 2.199, 2.228
AVG Parameter (DUPKEYS) 2.34, 2.169

B

BDW 2.65, 2.143
BI Format 2.43, 2.54, 2.96, 2.199, 2.228
BIAS Parameter (MERGE) 2.101
BIAS Parameter (SORT) 2.232
Binary Fields 2.227
Binary Zeros, Insertion of 2.176, 4.22–4.23
Bit Level Comparison 2.45
Bit Level Logic 2.45–2.46, 2.57–2.59
Bit Level Processing 2.26
BLKSIZE Parameter (INPFIL) 2.65
BLKSIZE Parameter (OUTFIL) 2.143–2.144
Block Descriptor Word (BDW) 2.65, 2.143
Block Size

for Fixed-length Records 2.65, 2.143
for Variable-length Records 2.65, 2.143

BUFLIM Parameter (INPFIL) 2.66
BUFLIM Parameter (OUTFIL) 2.144
BUFOFF Parameter (INPFIL) 2.66, 11.2
BUFOFF Parameter (OUTFIL) 2.144
BUILD Parameter (INPFIL) 2.66
BUILD Parameter (OUTFIL) 2.144
BYPASS Parameter (INPFIL) 2.66–2.67
Index I.1



C

C E15 8.21–8.30
C E35 8.46
C Exits 8.21–8.30, 8.46
CALC Parameter (ANALYZE) 2.32
CALCAREA Parameter (OPTION) 2.32, 2.118
CARDS Parameter (OUTFIL) 2.144
CCW Translation 2.135
Century Processing 2.96, 2.102, 2.119, 2.228, 

2.235
Data Formats 2.96, 2.228

Century Window with OUTREC 2.194, 2.213
CENTWIN 2.102, 2.194, 2.235

With Merge 2.102
with OUTREC 2.194
With Sort 2.235

CENTWIN Parameter (MERGE) 2.101
CENTWIN Parameter (OPTION) 2.119
CENTWIN Parameter (SORT) 2.233
CH Format 2.43, 2.54, 2.96, 2.199, 2.228
CHALT Parameter (OPTION) 2.119
CHANGE 2.188
Changing Records (Merge)

See Exit Programs
Changing Records and Files

See Exit Programs
Characters, Insertion of 2.176
Checkpoint 2.233, 5.4–5.5
Checkpointing

See Exit Programs
CHKPT Parameter (SORT) 2.233
CISIZE Parameter (OUTFIL) 2.145
CKD 2.32
CKPT Parameter (SORT) 2.233
CLO Format 2.43, 2.54, 2.96, 2.199, 2.228
CLOSE Parameter (INPFIL) 2.67
CLOSE Parameter (OUTFIL) 2.145
CMP Parameter (OPTION) 2.121
CMPINOM=CLC Parameter (OPTION) 2.121
CMPINOM=CPD Parameter (OPTION) 2.121
COBOL E15 8.14–8.21

DATA DIVISION 8.17, 8.60
ENVIRONMENT DIVISION 8.17, 8.60
EXIT-STATUS Codes 8.18, 8.61
Fixed-length Records 8.15, 8.19–8.20, 8.58
IDENTIFICATION DIVISION 8.17, 8.60
LINKAGE SECTION 8.14–8.17, 8.57–8.60
PROCEDURE DIVISION 8.17, 8.61
SyncSort for z/VSE 3.7 Programmer’s GuideI.2
RETURN-CODE Codes 8.18, 8.61
Variable-length Records 8.16–8.17, 8.21, 

8.59–8.60
WORKING-STORAGE SECTION 8.17, 8.60

COBOL E35 8.35–8.45
DATA DIVISION 8.38
ENVIRONMENT DIVISION 8.38
EXIT-STATUS Codes 8.39
Fixed-length Records 8.36–8.37, 8.41
IDENTIFICATION DIVISION 8.38
LINKAGE SECTION 8.36–8.38
PROCEDURE DIVISION 8.39
RETURN CODE Codes 8.39–8.40
Variable-length Records 8.37–8.38, 8.43–8.45
WORKING STORAGE SECTION 8.38

COBOL Exits 8.14–8.21, 8.35–8.45
COBOL Program

Initiating SyncSort 1.1, 7.6–7.10
CODE Parameter (ALTSEQ) 2.30
Collating Order 2.96, 2.228
Collating Sequence 2.91

Alternate Sequence 2.30–2.31
EBCDIC Sequence 2.30
Full-Date Formats 2.97

Combining Records in a File 2.246–2.248, 
4.13–4.16

Comments
in Control Statements 2.27

Compare 2.95, 2.100
See also FIELDS=COMPARE
See also MERGE Control Statement
Sample Application 5.26–5.28

Comparing Fields 2.41, 4.2–4.13
Bit Level Criteria 2.45–2.46
Constants 2.44
Decimal Field (PD, ZD) Comparison 2.121
Field to Constant Comparison 2.48
Field to Field Comparison 2.47

COND Parameter (INCLUDE/OMIT) 2.41
Constant_name 3.1–3.28
Control Statement Syntax 2.25–2.29
Control Statements

ALTSEQ 2.30–2.31
ANALYZE 2.32
Comments in 2.27
Continuation of 2.27–2.28
DUPKEYS 2.33–2.37
END 2.38



INCLUDE/OMIT 2.39, 4.2–4.7
INPFIL 2.64–2.78
INREC 2.83–2.86, 2.88, 4.7–4.13
JOIN 2.86–2.87
JOINKEYS 2.88–2.94
Labels in 2.28
MERGE 2.95–2.109
MODS 2.110–2.112
Notational Conventions 2.28
OMIT 2.113
OPTION 2.2, 2.114–2.140
OUTFIL 2.2, 2.141–2.172, 4.60
OUTREC 2.2, 2.174–2.218, 4.16–4.18
RECORD 2.2, 2.219–2.223
REFORMAT 2.224–2.226
Rules for Specifying 2.25–2.28
SORT 2.2, 2.227–2.246
Specifying Field Formats in 2.26
Specifying Field Lengths in 2.26
Specifying Field Positions in 2.26
Specifying Parameters in 2.25–2.26
SUM 2.2, 4.13–4.14
Summary of Functions 11.1
XDUPFIL 2.249
XSUMFIL 2.2, 2.249–2.250

CONVERT Parameter (OUTFIL) 2.145
Converting and Editing Numeric Data 4.23
Converting Data 4.23
Converting SMF Formats 2.199
Converting Variable-length Records to Fixed-length 

Records 2.145
Converting Year Data 2.194
Copy 1.1, 2.95, 2.100, 2.232

See also FIELDS=COPY
See also MERGE Control Statement
Defined 1.1
Phases of 1.2
Sample Application 5.23–5.26

Copying
See Copy

Counting Records 4.53–4.57
CRDSIZE Parameter (INPFIL) 2.68
CSF Format 2.43, 2.54, 2.96, 2.199
CSL Format 2.43, 2.54, 2.96, 2.199, 2.228
CST Format 2.43, 2.54, 2.96, 2.199, 2.228
CTO Format 2.43, 2.54, 2.98, 2.199, 2.230
D

Data Conversion 2.192
Data Conversion and Data Editing 4.23–4.31
DATA Parameter (INPFIL) 2.68
Data Utility 1.2–1.6, 4.1–4.60

Application Examples, Index to 4.2
Duplicate Records 4.13–4.16
Features of 4.1–4.2
Input Record Selection 4.2–4.13
Input Records, Selection of Relevant Fields

4.7–4.13
Output Files, Multiple 4.57–4.60
Output Records

Converting Data 4.27–4.29
Converting Data to Hexadecimal Format

4.25–4.27
Converting Data to Readable Form

4.23–4.25
Editing Data 4.16–4.29
Formatting Data Fields 4.29
Inserting Binary Zeros 4.22–4.23
Inserting Blanks 4.20–4.21
Reordering Field Positions 4.18–4.21

Output Reports
Counting Data Records 4.53–4.57
Headers and Trailers for 4.36–4.46
Sectioning of 4.33–4.36
Totaling and Subtotaling Data 4.46–4.52

Date Data Formats
Y2B 2.103, 2.119, 2.236
Y2C 2.103, 2.119, 2.236
Y2D 2.103, 2.119, 2.236
Y2P 2.103, 2.119, 2.236
Y2S 2.103, 2.119, 2.236
Y2T 2.119
Y2U 2.119
Y2V 2.119
Y2W 2.119
Y2X 2.119
Y2Y 2.119
Y2Z 2.103, 2.119, 2.236

DATE Parameter (OPTION) 2.122
DELBLANK Parameter (RECORD) 2.222–2.223
Device Support A.1
DEVIN Parameter (OPTION) 2.122
DEVOUT Parameter (OPTION) 2.122
DEVWK Parameter (OPTION) 2.123
DIAG Parameter (OPTION) 2.32, 2.124
Diagnostic Messages 2.124
Dictionary 3.1–3.28, 6.2
Index I.3



Constant_name Statement 3.11
Field_name Statement 3.13
Operator Statement 3.17, 3.21

Dictionary_statement 3.1–3.28
Disk Devices

CKD 2.32
FBA 2.32
Overriding the Default Device 2.123

DISK Parameter (OUTFIL) 2.146
Disk Space 2.118

See also SIZE Parameter (SORT)
Determining the Amount Needed 2.32, 2.118, 

2.234, 5.8, 5.17, B.1
Management A.1
Specifying the Number of Disk Files for Sort 

Work 2.235
Disk Work File Statements 5.5–5.8
DLBL Statement 5.2
DT1 2.199
DT2 2.199
DT3 2.199
DUMP Parameter (OPTION) 2.124
DUMP Parameter (OUTFIL) 2.146
Dumps 2.124
DUPKEYS 2.3, 2.20
DUPKEYS Control Statement 2.1, 2.3, 2.18, 2.20, 

2.33–2.37
Duplicate Records 4.13–4.16, 4.42–4.44

E

E15
See COBOL E15

EBCDIC Collating Sequence 2.30
Edit Patterns 4.17, 4.47
Editing Data 2.192, 4.16
Editing Masks 2.202–2.204, 4.17, 4.29, 4.47–4.48, 

4.50, 4.52
END Control Statement 2.38
ENDREC Parameter (INPFIL) 2.69
ENDREC Parameter (OUTFIL) 2.146
Equal-keyed Records 2.20, 2.102, 2.124, 

2.234–2.248
See also EQUALS Parameter (MERGE)
See also EQUALS Parameter (OPTION)
See also NOEQUALS Parameter (MERGE)
See also NOEQUALS Parameter (OPTION)

EQUALS Parameter (MERGE) 2.102, 2.234
SyncSort for z/VSE 3.7 Programmer’s GuideI.4
EQUALS Parameter (OPTION) 2.124
EQUALS Parameter (SORT) 2.234
ERASE Parameter (OPTION) 2.124, 2.130
Error handling 2.66
ESDS Parameter (OUTFIL) 2.146
EXEC PARM 6.1
EXEC Statement 5.5
EXIT Parameter (INPFIL) 2.70
EXIT Parameter (OUTFIL) 2.147
Exit Programs 2.110–2.112, 8.1–8.72

See also EXIT Parameter (INPFIL)
See also EXIT Parameter (OUTFIL)
See also MODS Control Statement
Changing Records (Merge) 8.54
Changing Records and Files 8.10–8.35
Checkpointing 8.6–8.7
E11 8.6–8.10
E15 2.70, 8.10–8.13
E17 8.66
E21 8.3
E25 8.32–8.33
E27 8.3
E31 8.6–8.10
E32 2.70, 8.54–8.56
E35 8.33–8.35
E37 8.66–8.67
Label Processing 8.6–8.10, 8.66–8.67
Label Writing 8.66–8.67
Linking 8.3–8.5
Loading 8.1–8.3
Phases 2.110–2.112
Reading Input (Merge) 8.55–8.56
Substituting Records (Merge) 8.55
Summary of Tasks 8.2
VSAM Exits 8.67–8.72

EXTENT Statement 5.3

F

FBA 2.32
FI Format 2.43, 2.54, 2.96, 2.199, 2.228
Field Format Codes 2.96, 2.228

AC 2.43, 2.54, 2.96, 2.199, 2.228
AQ 2.43, 2.54, 2.96, 2.199, 2.228
ASL 2.43, 2.54, 2.96, 2.199, 2.228
AST 2.43, 2.54, 2.96, 2.199, 2.228
BI 2.43, 2.54, 2.96, 2.199, 2.228
CH 2.43, 2.54, 2.96, 2.199, 2.228



CLO 2.43, 2.54, 2.96, 2.199, 2.228
CSF 2.43, 2.54, 2.96, 2.199
CSL 2.43, 2.54, 2.96, 2.199, 2.228
CST 2.43, 2.54, 2.96, 2.199, 2.228
CTO 2.43, 2.54, 2.98, 2.199, 2.230
FI 2.43, 2.54, 2.96, 2.199, 2.228
FL 2.96, 2.228
FS 2.43, 2.54, 2.96, 2.199
LS 2.43, 2.54, 2.199
OL 2.43, 2.54, 2.96, 2.199, 2.228
OT 2.43, 2.54, 2.199
PD 2.43, 2.54, 2.96, 2.199, 2.228
PD0 2.43, 2.54, 2.96, 2.199, 2.228
SFF 2.43, 2.47, 2.49, 2.97, 2.184, 2.193, 2.229
SS 2.43
TS 2.43, 2.54, 2.96, 2.199, 2.228
UFF 2.43, 2.47, 2.49, 2.97, 2.184, 2.193, 2.229
Y2B 2.43, 2.54, 2.199
Y2C 2.43, 2.54, 2.96, 2.199, 2.228
Y2D 2.43, 2.54, 2.96, 2.199, 2.228
Y2P 2.43, 2.54, 2.96, 2.199, 2.228
Y2S 2.43, 2.54, 2.96, 2.199
Y2T 2.44, 2.98, 2.185, 2.228, 2.231
Y2U 2.44, 2.98, 2.185, 2.228, 2.231
Y2V 2.44, 2.98, 2.185, 2.228, 2.231
Y2W 2.44, 2.98, 2.185, 2.228, 2.231
Y2X 2.44, 2.98, 2.185, 2.228, 2.231
Y2Y 2.44, 2.98, 2.185, 2.228, 2.231
Y2Z 2.43, 2.54, 2.96, 2.199
ZD 2.43, 2.54, 2.98, 2.199, 2.230

Field_name 3.1–3.28
Field_name Statement 3.8
field_name statement 3.8
Fields

Binary 2.39, 2.45–2.46, 2.227
Bit Level Comparison 2.45
Bit Level Processing 2.26
Comparing PD and ZD Fields 2.121
Comparison of 2.41, 4.2–4.13
Constants 2.44, 4.3
Format Codes, Full-Date 2.230–2.231
Format Codes, List of 2.96, 2.228
Insertion of Binary Zeros 4.22–4.23
Insertion of Blanks 4.20–4.21
Reordering 4.18–4.21
Rules for Specifying 2.100, 2.232
Selection of 4.7–4.13
Specifying Collating Order 2.96, 2.228
Specifying Format 2.26, 2.95, 2.228, 2.246, 
4.3, 4.14, 4.17–4.18, 4.46

Specifying Length 2.26, 2.95, 2.162, 2.176, 
2.227–2.228, 2.246, 4.3, 4.8, 4.14, 
4.17–4.18, 4.34, 4.46

Specifying Position 2.26, 2.162, 2.176, 2.227, 
2.246, 4.3, 4.8, 4.14, 4.17–4.18, 4.34, 
4.46

Substring Comparison 2.55
Use in Control Statements 2.26

FIELDS Parameter (INREC) 2.84
FIELDS Parameter (MERGE) 2.95–2.101
FIELDS Parameter (OUTREC) 2.175
FIELDS Parameter (SORT) 2.227–2.232
FIELDS Parameter (SUM) 2.246–2.247
FIELDS=COMPARE 2.95, 2.100

Sample Application 5.26–5.28
FIELDS=COPY 2.95, 2.100, 2.232

Sample Application 5.23–5.26
Figure 5.2
File Labels

See Labels
File Names 2.125, 5.2

See also FILNM Parameter (OPTION)
See also WORKNM Parameter (OPTION)
Default File Names 2.125, 5.4
Multiple File Names 2.125

FILES Parameter (INPFIL) 2.70
FILES Parameter (MERGE) 2.102
FILES Parameter (OUTFIL) 2.147, 4.57–4.60
FILES Parameter (SORT) 2.234
FILESOUT Parameter (MERGE) 2.102
FILESOUT Parameter (SORT) 2.234
FILNM Parameter (OPTION) 2.125–2.126, 5.2
FIRSTDUP Parameter (DUPKEYS) 2.35
Fixed-length Records 2.26, 2.65–2.66, 2.118, 

2.145, 8.15, 8.19, 8.58
Specifying Block Size for 2.65

FL Format 2.96, 2.228
FNAMES Parameter (INPFIL) 2.70
FNAMES Parameter (OUTFIL) 2.147
FORMAT 4.14
FORMAT Parameter (INCLUDE/OMIT) 4.3
FREEOUT Parameter (OUTFIL) 2.148
FS Format 2.43, 2.96, 2.199
FTHEN 2.205
Full-Date Formats 2.97, 2.230

Collating Sequence 2.107
Index I.5



INCLUDE/OMIT 2.43, 2.50–2.53, 2.106
INCLUDE/OMIT, Example 2.60, 2.62
MERGE 2.98–2.109
OUTREC 2.185, 2.194–2.199
OUTREC, Examples 2.217
SORT 2.231, 2.240–2.244

G

GETVIS Area 2.135
GVSRANY Parameter (OPTION) 2.126
GVSRLOW Parameter (OPTION) 2.126

H

HEADER1 Parameter (OUTFIL) 2.149–2.152, 
4.37

HEADER2 Parameter (OUTFIL) 2.149–2.152, 
4.37

Headers 2.149
See also Report Writing

Hexadecimal Digits
Insertion of 2.176

Horizontal Arithmetic 2.174

I

IFOUTLEN Parameter (INPFIL) 2.71
IFOUTLEN Parameter (INREC) 2.84
IFOUTLEN Parameter (OUTFIL) 2.152
IFOUTLEN Parameter (OUTREC) 2.205
IFTHEN Parameter (INPFIL) 2.72
IFTHEN Parameter (INREC) 2.84
IFTHEN Parameter (OUTFIL) 2.152
IFTHEN Parameter (OUTREC) 2.205
IGNRL4 Parameter (OPTION) 2.126–2.127
INCLUDE Parameter (OUTFIL) 4.57
INCLUDE/OMIT 2.39
INCLUDE/OMIT Control Statement 2.39, 4.2–4.7
INCLUDE/OMIT Parameter (INPFIL) 2.72
INCLUDE/OMIT Parameter (OUTFIL) 2.152
INCOR Parameter (OPTION) 2.126
Incore Sort 2.126, 2.130, 2.235, 5.17, B.1
Initiation of SyncSort

Sample JCL Streams 5.8–5.28
Using a Program 7.1–7.10

Assembler 1.1, 7.1–7.6
COBOL 1.1, 7.6–7.10
PL/1 1.1, 7.1
SyncSort for z/VSE 3.7 Programmer’s GuideI.6
Using JCL 5.1–5.28
INPFIL Control Statement 2.64–2.78
Input Buffers 2.66
Input Files 2.64–2.78

See also Address Files
See also DLBL Statement
See also INPFIL Control Statement
See also Tape Input and Output
See also TLBL Statement
See also VSAM Files
See also VSAM Input
ASCII Type 2.68
Checking for Spanned Input Records 2.74
EBCDIC Type 2.68
File Names 2.125, 5.4
Input Record Block Size 2.65
Labels 2.128
Processing Options 2.64–2.78
SAM Files 2.116
SORTIN Files 2.125
Specifying the Size of 2.234

INPUT Parameter (INPFIL) 2.72
Input Records

Selection of 4.2–4.13
INREC Control Statement 2.83–2.86, 2.88, 

4.7–4.13
Compared with OUTREC Control Statement

2.174
INREC Parameter (INPFIL) 2.72
Invoking 7.1
Invoking SyncSort 1.8, 7.1

From a Cobol Program 7.6
From an Assembler Program 7.1

J

Job Control Language 5.1
See also Job Control Statements
Sample Job Control Statements (VSAM)

C.8–C.11
Job Control Statements 5.1–5.5

ASSGN 5.1
DLBL 5.2
EXEC 5.5
EXTENT 5.3
for Disk Work Files 5.5–5.8
JOB 5.1
Requirements for VSAM-Managed SORTOUT 



Files C.8
Requirements for VSAM-Managed SORTWK 

Files C.4–C.7
Sample Job Control Statements 5.8–5.28
Sample Job Control Statements (VSAM)

C.5–C.7
TLBL 5.2

JOB Statement 5.1
JOIN Control Statement 2.86–2.87
JOINKEYS Control Statement 2.88–2.94
JOINWK 2.133
JOINWORK 2.235

K

KEYLEN Parameter (OPTION) 2.127–2.128
KEYS 2.1, 2.3
Key-Sequenced Data Sets 2.153, 2.161
KSDS Parameter (OUTFIL) 2.153

L

LABEL Parameter (OPTION) 2.128
Label Processing

See Exit Programs
Label Writing

See Exit Programs
Labels 2.128

See also Exit Programs
File Labels 2.128
in Control Statements 2.28
in Exit Programs 2.128

Language Environment for VSE 2.129
LASTDUP Parameter (DUPKEYS) 2.35
LENGTH Parameter (RECORD) 2.219–2.221
LINES Parameter (OUTFIL) 2.153–2.157
Linking Exit Programs

See Exit Programs
Loading Exit Programs

See Exit Programs
LOCALE 2.128

Processing with INCLUDE/OMIT 2.39
LRECL Parameter (INPFIL) 2.73
LRECL Parameter (OUTFIL) 2.157
LS Format 2.43, 2.54, 2.199
M

MAX Parameter (DUPKEYS) 2.35, 2.168
Merge 1.1, 2.95–2.109

Defined 1.1
Initiation from a Program 7.1–7.10
Initiation Using JCL 5.1–5.28
Phases of 1.2, 2.110
Premature Termination 2.124
Sample Merge with Labeled Tape Input/Out-

put Files 5.15–5.16
MERGE Control Statement 2.95–2.109
Merging

See Sort
Messages 2.124, 2.131, 12.1–12.37

Routing 2.132
MIN Parameter (DUPKEYS) 2.35, 2.168
MODS Control Statement 2.110–2.112, 8.35
Multiple Output Files 2.142, 2.147–2.148, 2.152, 

2.158, 2.234, 4.57–4.60, 5.8

N

National Language 2.39, 2.128
with INCLUDE/OMIT 2.39

NOCHAIN Parameter (INPFIL) 2.66
NOCHALT Parameter (OPTION) 2.119
NODETAIL Parameter (OUTFIL) 2.158
NODUMP Parameter (OPTION) 2.32, 2.124
NODUPS Parameter (DUPKEYS) 2.35
NOEQUALS Parameter (MERGE) 2.102, 2.234
NOEQUALS Parameter (OPTION) 2.124, 2.130
NOEQUALS Parameter (SORT) 2.234
NOINC Parameter (OPTION) 2.130
Notational Conventions 2.28
NOTPMK Parameter (OPTION) 2.130
NOTPMK Parameter (OUTFIL) 2.158
NRECOUT Parameter (OPTION) 2.130
NRECS Parameter (OPTION) 2.130
NZDPRINT Parameter (OPTION) 2.139

O

OL Format 2.43, 2.54, 2.96, 2.199, 2.228
OMIT Control Statement 2.113, 4.3, 4.7
OMIT Parameter (INPFIL) 2.72
OMIT Parameter (OUTFIL) 4.58
OPEN Parameter (INPFIL) 2.74
OPEN Parameter (OUTFIL) 2.158
Index I.7



Operator Statement 3.17
OPTION Control Statement 2.2, 2.114–2.140
OR Operator 2.46–2.47, 4.3
OT Format 2.43, 2.54, 2.199
OUTFIL Control Statement 2.2, 2.141–4.60
Output Buffers 2.144
Output Files 2.141–2.172

See also Address Files
See also ADDROUT Parameter (OPTION)
See also DLBL Statement
See also Multiple Output Files
See also Record Length
See also Tape Input and Output
See also TLBL Statement
See also VSAM Files
See also VSAM Output
Directing to Card Punch 2.160
Directing to Printer 2.160
Directing to Tape 2.164
Entry-sequenced Data Sets 2.146
File Names 2.125, 5.4
Key-Sequenced Data Sets 2.153, 2.161
Labels 2.128
Printing in Hexadecimal Format 2.146
Relative Record Data Sets 2.160
SORTOF Files 2.125
SORTOUT Files 2.125
Spanned Records 2.163
Storing on Disk 2.146
Tape Output Files 2.145

Output Lines, Multiple 2.159, 4.33
OUTPUT Parameter (OUTFIL) 2.158
Output Record Block Size 2.143–2.144
Output Record Length 2.146
Output Reports 4.33–4.60

See Report Writing
OUTREC Control Statement 2.2, 2.174–2.218, 

4.16–4.18
Compared with INREC Control Statement

2.174
OUTREC Parameter (OUTFIL) 2.158–2.159, 4.58
OVERLAY Parameter (INPFIL) 2.74
OVERLAY Parameter (INREC) 2.84
OVERLAY Parameter (OUTFIL) 2.159
OVERLAY Parameter (OUTREC) 2.209
OVFLO Parameter (OPTION) 2.131
SyncSort for z/VSE 3.7 Programmer’s GuideI.8
P

Pages
Logical 2.144, 2.153–2.157
Physical 2.144

PAGES Parameter (OUTFIL) 2.144
Parameter 2.152
Parameters

BUILD (INPFIL) 2.66
Parameters (Control Statements)

ADDROUT (OPTION) 2.115–2.118
ALLDUPS (DUPKEYS) 2.34
AVG (DUPKEYS) 2.34
BIAS (MERGE) 2.101
BIAS (SORT) 2.232
BLKSIZE (INPFIL) 2.65
BLKSIZE (OUTFIL) 2.143–2.144
BUFLIM (INPFIL) 2.66
BUFLIM (OUTFIL) 2.144
BUFOFF (INPFIL) 2.66, 11.2
BUFOFF (OUTFIL) 2.144
BUILD (INPFIL) 2.66
BUILD (INREC) 2.84
BUILD (OUTFIL) 2.144
BUILD (OUTREC) 2.175
BYPASS (INPFIL) 2.66
CALC (ANALYZE) 2.32
CALCAREA (OPTION) 2.32, 2.118
CARDS (OUTFIL) 2.144
CENTWIN (MERGE) 2.101
CENTWIN (OPTION) 2.119
CENTWIN (SORT) 2.233
CHALT (OPTION) 2.119
CHKPT(SORT) 2.233
CISIZE (OUTFIL) 2.145
CKPT (SORT) 2.233
CLOSE (INPFIL) 2.67
CLOSE (OUTFIL) 2.145
CMP (OPTION) 2.121
CMPINOM=CLC (OPTION) 2.121
CMPINOM=CPD (OPTION) 2.121
CODE (ALTSEQ) 2.30
COND 2.41
CONVERT (OUTFIL) 2.145
CRDSIZE (INPFIL) 2.68
DATA (INPFIL) 2.68
DATE (OPTION) 2.122
DELBLANK (RECORD) 2.222–2.223
DEVIN (OPTION) 2.122



DEVOUT (OPTION) 2.122
DEVWK (OPTION) 2.123
DIAG (OPTION) 2.32, 2.124
DISK (OUTFIL) 2.146
DUMP (OPTION) 2.124
DUMP (OUTFIL) 2.146
ENDREC (INPFIL) 2.69
ENDREC (OUTFIL) 2.146
EQUALS (MERGE) 2.102, 2.234
EQUALS (OPTION) 2.124
EQUALS (SORT) 2.234
ERASE (OPTION) 2.124, 2.130
ESDS (OUTFIL) 2.146
EXIT (INPFIL) 2.70
EXIT (OUTFIL) 2.147
FIELDS (MERGE) 2.95–2.101
FIELDS (OUTREC) 2.175
FIELDS (SORT) 2.227–2.232
FIELDS (SUM) 2.246–2.247
FILES (INPFIL) 2.70
FILES (MERGE) 2.102
FILES (OUTFIL) 2.147, 4.57–4.60
FILES (SORT) 2.234
FILESOUT (MERGE) 2.102
FILESOUT (SORT) 2.234
FILNM (OPTION) 2.125–2.126
FIRSTDUP (DUPKEYS) 2.35
FNAMES (INPFIL) 2.70
FNAMES (OUTFIL) 2.147
FORMAT (INCLUDE/OMIT) 4.3
FREEOUT (OUTFIL) 2.148
GVSRANY (OPTION) 2.126
GVSRLOW (OPTION) 2.126
HEADER1 (OUTFIL) 2.149–2.152, 4.37
HEADER2 (OUTFIL) 2.149–2.152, 4.37
IFOUTLEN (INPFIL) 2.71
IFOUTLEN (INREC) 2.84
IFOUTLEN (OUTFIL) 2.152
IFOUTLEN (OUTREC) 2.205
IFTHEN (INPFIL) 2.72
IFTHEN (INREC) 2.84
IFTHEN (OUTFIL) 2.152
IFTHEN (OUTREC) 2.205
IGNRL4 (OPTION) 2.126–2.127
INCLUDE (OUTFIL) 4.57
INCLUDE/OMIT (INPFIL) 2.72
INCLUDE/OMIT (OUTFIL) 2.152
INCOR (OPTION) 2.126
INPUT (INPFIL) 2.72
INREC (INPFIL) 2.72
KEYLEN (OPTION) 2.127–2.128
KSDS (OUTFIL) 2.153
LABEL (OPTION) 2.128
LASTDUP (DUPKEYS) 2.35
LENGTH (RECORD) 2.219–2.221
LINES (OUTFIL) 2.153–2.157
LRECL (INPFIL) 2.73
LRECL (OUTFIL) 2.157
MAX (DUPKEYS) 2.35
MIN (DUPKEYS) 2.35
NOCHAIN (INPFIL) 2.66
NOCHALT (OPTION) 2.119
NODETAIL (OUTFIL) 2.158
NODUMP (OPTION) 2.32, 2.124
NODUPS (DUPKEYS) 2.35
NOEQUALS (MERGE) 2.102, 2.234
NOEQUALS (OPTION) 2.124
NOEQUALS(SORT) 2.234
NOERASE (OPTION) 2.124, 2.130
NOIGNRL4 (OPTION) 2.126–2.127
NOINC (OPTION) 2.130
NOTPMK (OPTION) 2.130
NOTPMK (OUTFIL) 2.158
NOVLSHRT (OPTION) 2.126–2.127
NRECOUT (OPTION) 2.130
NRECS (OPTION) 2.130
NZDPRRINT (OPTION) 2.139
OMIT (INPFIL) 2.72
OMIT (OUTFIL) 4.58
OPEN (INPFIL) 2.74
OPEN (OUTFIL) 2.158
ORDER (MERGE) 2.102
OUTPUT (OUTFIL) 2.158
OUTREC (OUTFIL) 2.158–2.159, 4.58
OVERLAY (INPFIL) 2.74
OVERLAY (INREC) 2.84
OVERLAY (OUTFIL) 2.159
OVERLAY (OUTREC) 2.209
OVFLO (OPTION) 2.131
PAGES (OUTFIL) 2.144
PHn (MODS) 2.110–2.112
PRESEQ (INPFIL) 2.74
PRINT (OPTION) 2.32, 2.131
PRINT (OUTFIL) 2.160
PUNCH (OUTFIL) 2.160
REUSE (OUTFIL) 2.160
Index I.9



ROUTE (OPTION) 2.32, 2.132
RPS (OPTION) 2.132
RRDS (OUTFIL) 2.160–2.161
SAVE (OUTFIL) 2.161
SECTIONS (OUTFIL) 2.161–2.163, 4.33–4.34
SEQNUM (OUTREC) 2.176–2.177
SIZE (SORT) 2.32, 2.234
SKIPBYTE (INPFIL) 2.74
SKIPREC (INPFIL) 2.74
SKIPREC (OPTION) 2.132
SORTIN (OPTION) 2.133
SORTOUT (OPTION) 2.133
SORTWK (OPTION) 2.133
SPAN (INPFIL) 2.74
SPAN (OUTFIL) 2.163
SPANINC (OPTION) 2.134
STARTREC (INPFIL) 2.75
STARTREC (OUTFIL) 2.163–2.164
STOPAFT (INPFIL) 2.75
STOPAFT (OPTION) 2.134
STORAGE (OPTION) 2.135
SUM (DUPKEYS) 2.36
SYMNAMES (OPTION) 2.136
SYMNLIB (OPTION) 2.136
SYMNOUT (OPTION) 2.136
SYSIPT (INPFIL) 2.75
TAPE (OUTFIL) 2.164
TOL (INPFIL) 2.75
TOL (OUTFIL) 2.164
TP (OPTION) 2.137
TRAILER1 (OUTFIL) 2.164–2.170, 4.37, 4.46, 

4.53
TRAILER2 (OUTFIL) 2.164–2.170, 4.37, 4.46, 

4.53
TYPE (RECORD) 2.221–2.222
VERIFY (OPTION) 2.137
VLSHRT (OPTION) 2.126–2.127
VOLUME (INPFIL) 2.76
VSAM (INPFIL) 2.64, 2.76
VSCORE (OPTION) 2.137
VSCORET (OPTION) 2.137
WORK (SORT) 2.235
WORKNM (OPTION) 2.137
XSUM (SUM) 2.247
XSUMLAB (OPTION) 2.138
XSUMNM (OPTION) 2.138–2.139
XSUMOUT (OPTION) 2.138–2.139
ZDPRRINT (OPTION) 2.139
SyncSort for z/VSE 3.7 Programmer’s GuideI.10
PD Format 2.43, 2.54, 2.96, 2.199, 2.228
Comparison with a ZD Field 2.121

PD0 Format 2.43, 2.54, 2.96, 2.105, 2.195, 2.199, 
2.228, 2.238

Performance Considerations
See BUFLIM Parameter (INPFIL)
See BUFLIM Parameter (OUTFIL)
See BYPASS Parameter (INPFIL)
See CHKPT Parameter (SORT)
See CKPT Parameter (SORT)
See DEVIN Parameter (OPTION)
See DEVOUT Parameter (OPTION)
See DEVWK Parameter (OPTION)
See RPS Parameter (OPTION)
See SYSIPT Parameter (INPFIL)
See WORK Parameter (SORT)

Phases 2.110
See also Exit Programs
Diagnostic Messages 2.124

PHn (MODS) 2.110–2.112
PKEYS 2.20
PL/1 Program

Initiating SyncSort 1.1, 7.1
PRESEQ Parameter (INPFIL) 2.74
PRINT Parameter (OPTION) 2.32, 2.131
PRINT Parameter (OUTFIL) 2.160
Processing Sequence 1.5
PSI Format 2.195–2.196
PUNCH Parameter (OUTFIL) 2.160
PZ Format 2.196

R

RANGE 2.42
RDW 2.65, 2.143
Reading Input (Merge)

See Exit Programs
RECORD Control Statement 2.2, 2.219–2.223
Record Counts 4.53–4.57
Record Descriptor Word (RDW) 2.65, 2.143
Record Length 2.117–2.118, 2.145, 2.154, 2.157, 

2.219–2.221
Record Length and Block Size

Fixed-length ASCII Records 2.65
Fixed-length EBCDIC Records 2.65
Variable-length ASCII Records 2.65
Variable-length EBCDIC Records 2.65

Record Length and Error Handling 2.66



Record Selection
See also Selecting Records
Using Bit Level Logic 2.57–2.59

Record Type 2.221
REFORMAT Control Statement 2.224–2.226
Reformatting Input Records 2.83–2.86, 2.88, 

4.2–4.16
Reformatting Output

CHANGE Subparameter 2.188
Reformatting Output Records 2.25, 2.158–2.159, 

2.174–2.218, 4.16–4.31
Column Positioning 4.41–4.42, 4.44
Conversion of Numeric Data to Printable 

Format 2.205, 4.23
Conversion of Numeric Fields to Printable 

Format 4.23
Conversion of Record Fields to Hexadecimal 

Format 2.186, 4.25–4.27
Conversion of Variable-length Records to Fixed-

length 2.145
Converting and Editing Numeric Data 2.192
Data Conversion and Data Editing 4.23–4.31
Editing Data 4.16, 4.27–4.29
Field Positioning 4.18–4.22
Insertion of Binary Zeros 2.176, 4.22–4.23
Insertion of Characters 2.176
Insertion of Hexadecimal Digits 2.176
Insertion of Spaces 2.176, 4.20–4.21
Length of Converted Data 2.146
OUTFIL Control Statement 2.141
OUTREC Control Statement 2.174
OUTREC Parameter 2.22, 2.192
Record on Multiple Lines 2.159
Reordering Field Positions 4.18–4.21
Replace 2.234
Search and Replace 2.188
Specifying an Editing Pattern 2.205, 4.29, 

4.48, 4.50, 4.52
Use of Editing Masks 2.186, 2.202–2.204, 4.29, 

4.48, 4.50, 4.52
Reformatting Records

Replace 2.188
Relative Record Data Sets 2.160
Replace 2.188
Report Writing 1.3–1.6, 2.143, 4.33, 4.37–4.60

Date 2.122
Headers 2.149–2.152, 4.36–4.46

Types of 2.149
Logical Pages 2.153–2.157, 4.38
Sections 2.161–2.163, 4.33–4.36
Subtotaling Data 4.46–4.52
Title Page 4.38–4.39
Totaling Data 4.46–4.52
Trailers 2.164–2.170, 4.36–4.57

Types of 2.164
Repositioning Record Fields 4.18–4.21
Residence Modes 7.2, 8.5
REUSE Parameter (OUTFIL) 2.160
REXX exits 8.3
Rotational Position Sensing 2.132
ROUTE Parameter (OPTION) 2.32, 2.132
RPS Parameter (OPTION) 2.132
RRDS Parameter (OUTFIL) 2.160–2.161
RWD 2.26

S

SAM Files
See VSAM Files

SAVE Parameter (OUTFIL) 2.161
Search and Replace 2.188
SECTIONS Parameter (OUTFIL) 2.161–2.163, 

4.33–4.34
Selecting Fields 2.83–2.86, 2.88
Selecting Records 2.39, 2.132, 2.134, 2.152, 2.222, 

4.2–4.13
See also SKIPREC Parameter (OPTION)
See also STOPAFT Parameter (OPTION)

SEQNUM 2.83, 2.176–2.177
SFF Data Format 2.97, 2.229
SIZE Parameter (SORT) 2.32, 2.118, 2.234
SKIPBYTE Parameter (INPFIL) 2.74
SKIPREC Parameter (INPFIL) 2.74
SKIPREC Parameter (OPTION) 2.132
SMF Formats 2.199
SMF Formats, Converting 2.199
Sort

Control Statement 2.227–2.245
Defined 1.1
Initiation from a Program 7.1–7.10
Initiation Using JCL 5.1–5.28
Phases of 1.2, 2.110
Premature Termination 2.124
Sample Sort with Disk Input/Output Files

5.12–5.14
Sample Sort with Labeled Tape Input/Output 

Files 5.8–5.10
Sample Sort with Unlabeled Tape Input/Out-
Index I.11



put Files 5.10–5.12
Sample Sort with VSAM Input/Output Files

5.21–5.23
Sort with Card Input 5.17–5.19
SYNCHSTO 11.1
Work Space Requirements 2.32

SORT Control Statement 2.2, 2.95, 2.227–2.246
Sort Keys 2.127–2.128
SORTGETR 10.3
SORTIN End-of-File 8.18
SORTIN File 8.15–8.18, 8.58–8.61
SORTIN Files 2.125, 5.2

See also VSAM Files
SORTIN Parameter (OPTION) 2.133, 5.3
SORTOF Files 2.125, 5.8

See also Multiple Output Files
SORTOUT Files 2.125, 5.2, 5.8

See also Multiple Output Files
See also VSAM Files

SORTOUT Parameter (OPTION) 2.133, 5.3
SORTWK Devices 2.124
SORTWK Files 2.125, 5.2

See also VSAM Files
SORTWK Parameter (OPTION) 2.133, 5.3
SortWriter 1.2–1.6, 2.143, 2.149

See also Report Writing
Spaces

Insertion of 2.176, 4.20–4.21
SPAN Parameter (INPFIL) 2.74
SPAN Parameter (OUTFIL) 2.163
SPANINC Parameter (OPTION) 2.134
Spanned Input Records 2.74
SRTCLSE 10.3
SRTCORE 10.2
SRTFILL 10.2
SRTOPEN 10.2
SS Format 2.43
SSRAM 10.1

Assembler Parameter List 10.8
COBOL Parameter List 10.13
End-of-File Flag 10.3
EOFFLAG 10.9
File ID 10.3
FILEID 10.9
FORTRAN Parameter List 10.18
Key Definition Table 10.3
KEYDFTBL 10.9
Logical Unit Number 10.3
SyncSort for z/VSE 3.7 Programmer’s GuideI.12
LOGUNIT 10.9
PL/I Parameter List 10.22
RECLEN 10.9
Record Length 10.3
STORAGE 10.9
Storage 10.3

STARTREC Parameter (INPFIL) 2.75
STARTREC Parameter (OUTFIL) 2.163–2.164
STOPAFT Parameter (INPFIL) 2.75
STOPAFT Parameter (OPTION) 2.134
Storage

Determining the Size of 2.135, 2.137
STORAGE Parameter (OPTION) 2.135
SUBAVG 2.169
SUBMAX 2.169
SUBMIN 2.168
Substituting Records (Merge)

See Exit Programs
Substring Comparison 2.55
Subtotaling Data 4.46–4.52
SUM Control Statement 2.2, 2.16, 2.18, 2.20, 

2.246–2.248, 4.13–4.14
SUM Parameter (DUPKEYS) 2.36
Summing Data

Printing Summed ZD Data 2.139
Summing Records

See Combining Records in a File
SYMNAMES Parameter (OPTION) 2.136
SYMNLIB Parameter (OPTION) 2.136
SYMNOUT Parameter (OPTION) 2.136
SYNCBIX 9.1–9.14

Job Control Statements 9.13
Messages 9.14, 12.35
Parameters 9.12
Syntax Rules 9.12

SYNCHSTO 11.1
Control Parameters 11.2
Job Control Language 11.5
Messages 12.37

SyncSort Application Functions
See also MERGE Control Statement
See also SORT Control Statement
Compare 2.95
Copy 1.1–1.2, 2.227, 2.232
Merge 1.1–1.2, 2.95–2.109
Sort 1.1–1.2, 2.227–2.245

SyncSort for z/ VSE Data Utility
Summary of Application Functions



Copy 1.1
Summary of Features 1.1

SyncSort for z/VSE Data Utility
Applications 4.1–4.60
Device Support A.1
Initiation from a Program 7.1–7.10
Initiation Using JCL 5.1–5.28
SortWriter 1.2
Summary of Application Functions

Copy ??–1.2
Merge 1.1–1.2
Sort 1.1–1.2

Summary of Features ??–1.7
SYSIPT Parameter (INPFIL) 2.75

T

Tape Devices
Identification of 2.122–2.123

Tape Input and Output 2.66–2.67, 2.74, 2.76, 
2.145, 2.158, 5.2

See also CLOSE Parameter (INPFIL)
See also DLBL Statement
See also NOCHAIN Parameter (INPFIL)
See also OPEN Parameter (INPFIL)
Restrictions on Input 2.68–2.69
Sample Merge with Labeled Tape Input/Output 

Files 5.15–5.16
Sample Sort with Labeled Tape Input/Output

5.10
Sample Sort with Labeled Tape Input/Output 

Files 5.8
Sample Sort with Unlabeled Tape Input/Output 

Files 5.10–5.12
Tape Devices 2.122–2.123
Tape Mark in Unlabeled Output File 2.130, 

2.158
Treatment of Opened Tape Output Files 2.158

Tape Mark 2.130, 2.158
TAPE Parameter (OUTFIL) 2.164
TLBL Statement 5.2
TM1 2.199
TM2 2.199
TM3 2.199
TM4 2.199
TOL Parameter (INPFIL) 2.75
TOL Parameter (OUTFIL) 2.164
Totaling Data 4.46–4.52
TP Parameter (OPTION) 2.137
TRAILER1 Parameter (OUTFIL) 2.164–2.170, 
4.37, 4.46, 4.53

TRAILER2 Parameter (OUTFIL) 2.164–2.170, 
4.37, 4.46, 4.53

Trailers 2.164–2.170
See Report Writing

TS Format 2.43, 2.54, 2.96, 2.199, 2.228
TYPE Parameter (RECORD) 2.221–2.222

U

UFF Data Format 2.97, 2.229
Unit Names

Default Unit Names 5.4

V

Variable-length Records 2.26, 2.65–2.66, 2.118, 
2.145, 2.180, 4.11–4.13, 8.16–8.17, 8.21, 
8.37–8.38, 8.43–8.45, 8.59–8.60

and Field Selection 4.11–4.13
Specifying Block Size for 2.65

VERIFY Parameter (OPTION) 2.137
VOLUME Parameter (INPFIL) 2.76
VSAM Alternative Indexes 9.1–9.14
VSAM Exits 8.67
VSAM Files 2.64, 2.115–2.116, 2.146, 2.160, 

2.164, 5.21, 5.23, C.1–C.11
JCL Requirements for VSAM-Managed SOR-

TOUT Files C.8
JCL Requirements for VSAM-Managed SORT-

WK Files C.4–C.7
SAM ESDS Files C.1–C.3
Sort with VSAM Input/Output Files

5.21–5.23
SORTIN Files C.2–C.3
SORTOUT Files C.7
SORTWK Files C.3–C.7
VSAM Exits 8.67–8.72

VSAM Input 2.64, 2.75, 2.115–2.116, 5.21–5.23
VSAM Output 2.146, 2.153, 2.160–2.161, 

5.21–5.23
VSAM Parameter (INPFIL) 2.76
VSAM-managed SAM 2.145
VSCORE Parameter (OPTION) 2.137
VSCORET Parameter (OPTION) 2.137
Index I.13



W

Work Files
Changing Default Work File Names 2.137
File Names 2.125
Job Control Statements for Disk Work Files

5.5–5.8
Labels 2.128
SORTWK Files 2.125
Specifying the Number of Disk Files for Sort 

Work 2.235
WORK Parameter (SORT) 2.235
Work Space

See Disk Space
WORKNM Parameter (OPTION) 2.137, 5.2

X

XDUP Parameter (DUPKEYS) 2.36
XDUPFIL Control Statement 2.249
XRANGE 2.42
XSUM 4.14
XSUM Parameter (SUM) 2.247
XSUMFIL Control Statement 2.2, 2.249–2.250
XSUMLAB Parameter (OPTION) 2.138
XSUMNM Parameter (OPTION) 2.138–2.139
XSUMOUT Parameter (OPTION) 2.138–2.139

Y

Y constant 2.45
Y’DATEx’ 2.54–2.55
Y2B Format 2.43, 2.54, 2.119, 2.194, 2.199
Y2C Format 2.43, 2.54, 2.96, 2.119, 2.194, 2.199, 

2.228
Y2D Format 2.43, 2.54, 2.96, 2.119, 2.194, 2.199, 

2.228
Y2ID Format 2.194
Y2IP Format 2.194
Y2P Format 2.43, 2.54, 2.96, 2.119, 2.194, 2.199, 

2.228
Y2S Format 2.43, 2.54, 2.96, 2.119, 2.194, 2.199
Y2T Format 2.44, 2.54, 2.98, 2.119, 2.185, 2.199, 

2.228, 2.231
Y2U Format 2.44, 2.98, 2.185, 2.231
Y2V Format 2.44, 2.98, 2.185, 2.231
Y2W Format 2.44, 2.98, 2.185, 2.231
Y2X Format 2.44, 2.98, 2.185, 2.231
Y2Y Format 2.44, 2.98, 2.185, 2.231
SyncSort for z/VSE 3.7 Programmer’s GuideI.14
Y2U Format 2.54, 2.119, 2.199, 2.228
Y2V Format 2.54, 2.119, 2.199, 2.228
Y2W Format 2.54, 2.119, 2.199, 2.228
Y2X Format 2.54, 2.119, 2.199, 2.228
Y2Y Format 2.54, 2.119, 2.199, 2.228
Y2Z Format 2.43, 2.54, 2.96, 2.98, 2.119, 2.194, 

2.199, 2.230

Z

ZD Format 2.43, 2.54, 2.98, 2.199, 2.230
Comparison with a PD Field 2.121

ZDPRINT Parameter (OPTION) 2.139
Zoned 2.98, 2.230
ZSI Format 2.195–2.196





Syncsort Incorporated
50 Tice Boulevard

Woodcliff Lake, New Jersey 07677
(201) 930-8200

E-mail: vse_tech@syncsort.com


	Table of Contents
	Summary of Changes
	Performance Improvements
	Data Utility Features
	Operating System
	Messages

	Chapter 1. Introduction
	An Introduction to SyncSort for z/VSE
	SyncSort’s Basic Functions
	Sorting
	Merging
	Copying

	SyncSort’s Data Utility and SortWriter Features
	Processing Multiple Input Files
	Generating Multiple Output Files
	Creating Reports
	Selecting Records, Reformatting Records and Summing Fields
	Join Facility

	Join Processing Sequence
	Sample SortWriter Report
	SyncSort’s Operational Features
	Structure of the Programmer’s Guide
	Related Reading
	SyncSort for z/VSE Installation Guide
	Exploiting SyncSort for z/VSE: JOIN
	Exploiting SyncSort: SortWriter Data Utilities Guide


	Chapter 2. SyncSort Control Statements
	Control Statement Summary Chart
	Data Utility Processing Sequence
	Data Utility Processing Sequence
	INPFIL Processing Sequence
	OUTFIL Processing Sequence

	Maximum Record Length Allowed
	Control Statement Examples
	Rules for Control Statements
	Specifying Control Statements
	Specifying Parameters
	Specifying Field Positions, Lengths, and Formats
	Specifying Comments
	Specifying Continuation Card Images
	Specifying Labels
	Notational Conventions Used in the SyncSort for z/VSE Programmer’s Guide

	ALTSEQ Control Statement
	ALTSEQ Control Statement Format
	CODE Parameter (Required)
	Sample ALTSEQ Control Statements

	ANALYZE Control Statement
	CALC Parameter (Required)

	DUPKEYS Control Statement
	ALLDUPS Parameter (Optional)
	AVG Parameter (Optional)
	FIELDS Parameter (Optional)
	FIRSTDUP Parameter (Optional)
	FORMAT Parameter (Optional)
	LASTDUP Parameter (Optional)
	MAX Parameter (Optional)
	MIN Parameter (Optional)
	NODUPS Parameter (Optional)
	SUM Parameter (Optional)
	XDUP Parameter (Optional)
	Rules for Specifying DUPKEYS
	Sample DUPKEYS Control Statement

	END Control Statement
	INCLUDE/OMIT Control Statement
	LOCALE-Based Comparison Processing
	INCLUDE/OMIT Control Statement Format
	COND Parameter (Required)
	Specifying Standard Comparisons for Date Fields
	Current Date Constant Specification
	Full-Date Format Constant Specifications
	Substring Comparisons
	Sample INCLUDE/OMIT Control Statements without Date Data
	Sample INCLUDE/OMIT Control Statements with Date Data

	INPFIL Control Statement
	BLKSIZE Parameter (Optional)
	BUFLIM/NOCHAIN Parameter (Optional)
	BUFOFF Parameter (Optional)
	BUILD Parameter (Optional)
	BYPASS Parameter (Optional)
	CLOSE Parameter (Optional)
	CONVERT Parameter
	CRDSIZE Parameter (Optional)
	DATA=E/A Parameter (Optional)
	ENDREC Parameter (Optional)
	EXIT Parameter (Optional)
	FILES Parameter (Optional)
	FNAMES Parameter (Optional)
	FTOV Parameter (Optional)
	FTOV, no INREC Parameter
	FTOV, with INREC Parameter
	IFOUTLEN Parameter (Optional)
	IFTHEN Parameter (Optional)
	INCLUDE/OMIT Parameter (Optional)
	INPUT Parameter (Optional)
	INREC Parameter (Optional)
	LRECL Parameter (Optional)
	L4FILL Parameter (Optional)
	OPEN Parameter (Optional)
	OVERLAY Parameter (Optional)
	PRESEQ Parameter (Optional)
	SKIPBYTE Parameter (Optional)
	SKIPREC Parameter (Optional)
	SPAN Parameter (Optional)
	STARTREC Parameter (Optional)
	STOPAFT Parameter (Optional)
	SYSIPT Parameter (Optional)
	TOL Parameter (Optional)
	VLFILL Parameter (Optional)
	VLLONG Parameter (Optional)
	VLTRIM Parameter (Optional)
	VOLUME Parameter (Optional)
	VSAM Parameter (Optional)
	VTOF Parameter (Optional)
	Sample INPFIL Statements
	Sample Multiple INPFIL Statements

	INREC Control Statement
	INREC Control Statement Format
	FIELDS/BUILD Parameter
	IFOUTLEN Parameter (Optional)
	IFTHEN Parameter (Optional)
	OVERLAY Parameter (Optional)
	Sample INREC Control Statement

	JOIN Control Statement
	JOIN Control Statement Format
	Retaining Unpaired Records
	Discarding Paired Records

	JOINKEYS Control Statement
	JOINKEYS Control Statement Format
	FILE Parameter (Required)
	FIELDS Parameter (Required)
	FORMAT Parameter (Optional)
	LRECL Parameter (Required)
	TYPE Parameter (Required)
	BLKSIZE Parameter (Optional)
	BUFLIM Parameter (Optional)
	BUFOFF Parameter (Optional)
	BYPASS Parameter (Optional)
	CLOSE Parameter (Optional)
	CRDSIZE Parameter (Optional)
	DATA Parameter (Optional)
	ENDREC Parameter (Optional)
	INCLUDE/OMIT Parameter (Optional)
	OPEN Parameter (Optional)
	SKIPREC Parameter (Optional)
	SORTED Parameter (Optional)
	SPAN Parameter (Optional)
	STARTREC Parameter (Optional)
	STOPAFT Parameter (Optional)
	SYSIPT Parameter (Optional)
	TOL Parameter (Optional)
	VOLUME Parameter (Optional)
	VSAM Parameter (Optional)
	Sample JOINKEYS Control Statements

	MERGE Control Statement
	FIELDS Parameter (Required for a Merge)
	Valid Formats for Control Fields
	Rules for Specifying Control Fields
	Comparing PD and ZD Control Fields
	FIELDS=COPY (Required for a Copy)
	FIELDS=COMPARE (Required for a Compare)
	BIAS Parameter (Optional)
	CENTWIN Parameter (Optional)
	EQUALS/NOEQUALS Parameter (Optional)
	FILES/ORDER Parameter (Optional)
	FILESOUT Parameter (Optional)
	JOINWORK Parameter (Optional)
	CENTWIN (Century Window) Processing with MERGE: 2-Digit Year Formats
	CENTWIN (Century Window) Processing with MERGE: Full-Date Formats
	Collating Sequence with Full-Date Formats
	Sample MERGE Control Statements

	MODS Control Statement
	PHn Parameter (Required)
	Specifying Exits in More Than One Phase
	Sample MODS Control Statement

	OMIT Control Statement
	OPTION Control Statement
	ADDROUT Parameter (Optional)
	Rules for Specifying the ADDROUT Parameter
	Specifying the RECORD Statement and the ADDROUT and KEYLEN Parameters
	CALCAREA Parameter (Optional)
	CHALT/NOCHALT Parameters (Optional)
	CENTWIN Parameter (Optional)
	CMP=CLC/CMP=CPD Parameter (Optional)
	CMPINOM=CLC/CMPINOM=CPD Parameter (Optional)
	DATE Parameter (Optional)
	DEVIN/DEVOUT Parameters (Optional)
	DEVWK Parameter (Optional)
	DIAG Parameter (Optional)
	DUMP/NODUMP Parameter (Optional)
	EQUALS/NOEQUALS Parameter (Optional)
	ERASE Parameter (Optional)
	FILNM Parameter (Optional)
	GVSRANY Parameter
	GVSRLOW Parameter
	INCOR=OFF Parameter (Optional)
	IGNRL4/NOIGNRL4/VLSHRT/NOVLSHRT Parameter (Optional)
	JOINWK Parameter (Optional)
	KEYLEN Parameter (Optional)
	Rules for Specifying the KEYLEN Parameter
	LABEL Parameter (Optional)
	LOCALE Parameter (Optional)
	NOERASE Parameter (Optional)
	The NOERASE parameter is ignored.
	NOINC Parameter (Optional)
	NOTPMK Parameter (Optional)
	NRECS Parameter (Optional)
	NRECOUT Parameter (Optional)
	OVFLO Parameter (Optional)
	PRINT Parameter (Optional)
	ROUTE Parameter (Optional)
	RPS Parameter (Optional)
	SAMESDS Parameter (Optional)
	SKIPREC Parameter (Optional)
	SORTOUT, SORTIN, SORTWK, and JOINWK Parameters (Optional)
	SPANINC Parameter (Optional)
	STOPAFT Parameter (Optional)
	STORAGE Parameter (Optional)
	SYMNAMES Parameter (Optional)
	SYMNLIB Parameter (Optional)
	SYMNOUT Parameter (Optional)
	TP Parameter (Optional)
	VERIFY Parameter (Optional)
	VSCORE Parameter (Optional)
	VSCORET Parameter (Optional)
	WORKNM Parameter (Optional)
	XDUPLAB Parameter (Optional)
	XDUPNM Parameter (Optional)
	XDUPOUT Parameter (Optional)
	XSUMLAB Parameter (Optional)
	XSUMNM Parameter (Optional)
	XSUMOUT Parameter (Optional)
	ZDPRINT/NZDPRINT Parameter (Optional)
	Sample OPTION Control Statement

	OUTFIL Control Statement
	The Multiple Output Capability
	The SortWriter Capability
	BLKSIZE Parameter (Optional)
	BUFLIM Parameter (Optional)
	BUFOFF Parameter (Optional)
	BUILD Parameter (Optional)
	CARDS/PAGES Parameter (Optional)
	CISIZE Parameter (Optional)
	CLOSE Parameter (Optional)
	CONVERT/VTOF Parameter (Optional)
	DISK Parameter (Optional)
	DUMP Parameter (Optional)
	ENDREC Parameter (Optional)
	ESDS Parameter (Optional)
	EXIT Parameter (Optional)
	FILES Parameter (Optional)
	FNAMES Parameter (Optional)
	FREEOUT Parameter (Optional)
	FTOV Parameter (Optional)
	FTOV With BLKSIZE Parameter
	FTOV With OUTREC Parameter
	HEADER1/HEADER2 Parameters (Optional)
	Rules for Specifying HEADER Subparameters
	IFOUTLEN Parameter (Optional)
	IFTHEN Parameter (Optional)
	INCLUDE/OMIT Parameter (Optional)
	KSDS Parameter (Optional)
	LINES Parameter (Optional)
	Valid ANSI Control Characters
	LRECL Parameter (Optional)
	NODETAIL Parameter (Optional)
	NOTPMK Parameter (Optional)
	OPEN Parameter (Optional)
	OUTPUT Parameter (Optional)
	OUTREC Parameter (Optional)
	OVERLAY Parameter (Optional)
	PRINT Parameter (Optional)
	PUNCH Parameter (Optional)
	REPEAT Parameter (Optional)
	REUSE Parameter (Optional)
	RRDS Parameter (Optional)
	SAMPLE Parameter (Optional)
	SAVE Parameter (Optional)
	SPLIT Parameter (Optional)
	SECTIONS Parameter (Optional)
	SPAN Parameter (Optional)
	SPLITBY Parameter (Optional)
	STARTREC Parameter (Optional)
	TAPE Parameter (Optional)
	TOL Parameter (Optional)
	TRAILER1/TRAILER2 Parameters (Optional)
	Rules for Specifying TRAILER Subparameters
	VLFILL Parameter (Optional)
	VLTRIM Parameter (Optional)
	VTOF Parameter (Optional)
	Sample OUTFIL Control Statements

	OUTREC Control Statement
	OUTREC Control Statement Format
	FIELDS/BUILD Parameter
	Specifying the FIELDS Parameter for Variable-Length Records
	FIELDS Subparameters
	How to Convert Numeric Data
	Converting Year Data with Century Window Processing on INREC, OUTREC, INPFIL INREC or OUTFIL OUTREC: 2-Digit Year Data
	Converting Year Data with Century Window Processing on INREC, OUTREC, INPFIL INREC or OUTFIL OUTREC: Full-Date Data
	Converting SMF Date and Time Formats
	EDIT Subparameter
	LENGTH=n Subparameter
	Mm Subparameter (Editing Masks)
	SIGNS Subparameter
	IFOUTLEN Parameter (Optional)
	IFTHEN Parameter (Optional)
	OVERLAY Parameter (Optional)
	Sample OUTREC Control Statements without Date Data
	Sample OUTREC Control Statements with CENTWIN Processing: 2-Digit Year Formats
	Sample OUTREC Control Statements with CENTWIN Processing: Full-Date Formats

	RECORD Control Statement
	LENGTH Parameter (Required)
	Rules for Specifying the Length Parameter
	TYPE Parameter (Required)
	DELBLANK Parameter (Optional)
	Sample RECORD Control Statement

	REFORMAT Control Statement
	REFORMAT Control Statement Format
	FIELDS Parameter (Required)
	Specifying the FIELDS Parameter for Variable-Length Records
	FILL Parameter (Optional)

	SORT Control Statement
	FIELDS Parameter (Required for a Sort)
	Valid Formats for Control Fields
	Rules for Specifying Control Fields
	Comparing PD and ZD Control Fields
	FIELDS=COPY (Required for a Copy)
	BIAS Parameter (Optional)
	CENTWIN Parameter (Optional)
	CKPT/CHKPT Parameter (Optional)
	EQUALS/NOEQUALS Parameter (Optional)
	ERASEWK Parameter (Optional)
	FILES Parameter (Optional)
	FILESOUT Parameter (Optional)
	JOINWORK Parameter (Optional)
	SIZE Parameter (Optional)
	WORK Parameter (Optional)
	CENTWIN (Century Window) Processing with SORT: 2-Digit Year Formats
	CENTWIN (Century Window) Processing with SORT: Full-Date Formats
	Collating Sequence with Full-Date Formats
	Sample SORT Control Statements with CENTWIN: Full-Date Formats
	Sample SORT Control Statements without Date Data

	SUM Control Statement
	FIELDS Parameter (Required)
	XSUM Parameter (Optional)
	Rules for Specifying Sum Fields
	Sample SUM Control Statements

	XDUPFIL Control Statement
	XSUMFIL Control Statement

	Chapter 3. Using the SyncSort Dictionary Feature
	The Dictionary Feature
	Activating the Dictionary Feature
	Specifying Dictionary Listing Output
	Sample Dictionary Statements

	Dictionary Statement Format
	The Constant_name Statement: Rules and Syntax
	The Field_name Statement: Rules and Syntax
	Specifying Position (p) in Field_name Dictionary Statements
	Specifying Length (l) in Field_name Dictionary Statements
	Specifying Format (f) in Field_name Dictionary Statements
	Alternative Field_name Syntax

	The Operator Statement: Rules and Syntax
	Using POSITION in Operator Statements
	Using SKIP in Operator Statements
	Using ALIGN in Operator Statements

	Using Dictionary_names in SyncSort Control Statements
	Error Handling for Dictionary Statements

	Chapter 4. How to Use SyncSort Data Utility Features
	Introduction
	Sample Data Utility Applications
	Selecting Input Records
	Including Relevant Records
	Omitting Irrelevant Records

	Selecting Relevant Fields from the Input Records
	Selecting a Number of Fields from Longer Records
	Eliminating Irrelevant Data Field(s)
	Selecting Fields from Variable-Length Records

	Combining Records within a File
	Combining Records and Summing Numeric Data Fields
	Eliminating Duplicate Records

	Making Output Records Printable and Easy to Read
	Reordering the Positions of Record Fields
	Inserting Blanks and Repositioning Record Fields
	Inserting Binary Zeros
	Converting Unprintable Data to Readable Form
	Converting Unprintable Data to Hexadecimal Format
	Converting and Editing Unprintable Data
	Putting a Data Field in Standard Format
	Printing Input Records on Multiple Output Lines

	Dividing a Report into Sections
	Dividing Output into Sections

	Writing Headers and Trailers for a Report
	Writing a Title Page for a Report
	Writing a Page Header
	Writing a Section Header
	Using a Header to Eliminate Duplicate Information within a Section
	Writing a Report Trailer or Summary
	Writing a Page Trailer

	Totaling and Subtotaling Data
	Totaling Data at the End of a Report
	Subtotaling Data at the End of a Page
	Totaling Data at the End of a Section

	Counting Data Records
	Obtaining a Count of Data Records
	Obtaining a Cumulative, or Running, Count of Data Records

	Creating Multiple Output Files
	Generating Several Output Files with Different Information
	Writing Identical Output Files to Different Devices


	Chapter 5. Job Control Language and Sample Control Statement Streams
	Six Job Control Statements That May Be Needed for the Sort/Merge
	JOB
	ASSGN
	TLBL/DLBL
	EXTENT
	EXEC

	Symbolic Filenames and Symbolic Unit Names for Job Control
	Setting up Disk Work File Statements
	Method 1
	Method 2

	Calculating the Amount of Disk Work Space
	Setting up Multiple SORTOUT Files
	Sample JCL/Control Statement Streams
	A Standard-Labeled Tape Input and Output Sort
	An Unlabeled Tape Input and Output Sort
	A Disk Input and Output Sort
	A Tape Input and Output Merge
	A Sort Using Card Input
	A Disk Input and Output JOIN
	VSAM Input and Output
	Using the FIELDS=COPY Parameter
	Using the FIELDS=COMPARE Parameter


	Chapter 6. EXEC PARM Options
	PARM Option Summary
	SyncSort PARM Options
	CENTWIN/CW
	DIAG
	EQUALS/NOEQUALS
	ERASE/ERASEWK
	IGNRL4/NOIGNRL4
	INCOR=OFF
	PRINT
	ROUTE
	SF
	SYMNAMES
	SYMNLIB
	SYMNOUT
	VL5L6L7
	VSCORE
	VSCORET
	WORKNM


	Chapter 7. Invoking SyncSort from a Program
	Invoking SyncSort from an Assembler Program
	Addressing and Residence Modes For Invoking Programs
	The Parameter List of Address Constants
	The Control Statement Images
	The Return Code Parameter
	The ALTSEQ Control Statement Alternative
	A Sample Assembler Program Invoking SyncSort

	Invoking SyncSort from a COBOL Program
	A Sample COBOL Program Invoking SyncSort
	Problem Description


	Chapter 8. User Exit Programs
	What Is an Exit?
	Loading an Exit Program into Main Storage
	When SyncSort Loads a User-Supplied Program
	When Programs Are Preloaded
	High Level Language User Exit

	Linking Exit Programs to the Sort/Merge
	The Branch Table
	The Parameters the Sort/Merge Sets Up
	Addressing and Residence Modes of User Exits

	EXITS E11 and E31 Checkpointing and Label Processing
	Parameter and Entry Lists
	Checkpointing
	E11 Programs
	E31 Programs
	Label Processing
	E11 Programs
	E31 Programs

	EXITS E15, E25, and E35 - Changing Records and Files
	E15 Programs
	Parameter List
	CODE (in hexadecimal)
	A Sample EXIT E15 Program

	Coding a COBOL E15 Exit Program
	The LINKAGE SECTION
	Example 1: Fixed-Length Records
	Example 2: Variable-Length Records
	The IDENTIFICATION, ENVIRONMENT, and DATA DIVISIONs
	The WORKING-STORAGE SECTION
	The PROCEDURE DIVISION
	EXIT-STATUS Codes (Fixed and Variable-Length Records)
	RETURN-CODE Codes (Fixed and Variable-Length Records)
	To Change a Record
	Sample COBOL E15, Fixed-Length Records
	Sample COBOL E15, Variable-Length Records

	Coding a C E15 Exit Routine
	Exit Communication
	Fixed-Length Records - Function Definition
	Variable-Length Records - Function Definition
	RETURN-CODE Codes (Fixed and Variable-Length Records)
	How to Change a Record
	Sample C E15, Fixed-Length Records
	Sample C E15, Variable-Length Records

	E25 Programs
	Parameter List
	CODE (in hexadecimal)

	E35 Programs
	Parameter List
	CODE (in hexadecimal)

	Coding a COBOL E35 Exit Program
	The LINKAGE SECTION
	Example 1: Fixed-Length Records
	Example 2: Variable-Length Records
	The IDENTIFICATION, ENVIRONMENT, and DATA DIVISIONs
	The WORKING-STORAGE SECTION
	The PROCEDURE DIVISION
	EXIT-STATUS Codes (Fixed and Variable-Length Records)
	RETURN-CODE Codes (Fixed and Variable-Length Records)
	To Change a Record
	Sample COBOL E35, Fixed-Length Records
	Sample COBOL E35, Variable-Length Records

	Coding a C E35 Exit Routine
	Exit Communication
	Fixed-Length Records - Function Definition
	Variable-Length Records - Function Definition
	RETURN-CODE Codes (Fixed and Variable-Length Records)
	Change a Record
	Sample C E35, Fixed-Length Records
	Sample C E35, Variable-Length Records

	EXIT E32 - Merge Only - Changing and Substituting Records, Reading Input
	Changing Records
	Substituting Records
	Reading Input
	CODE (in hexadecimal)

	Coding a COBOL E32 Exit Program
	The LINKAGE SECTION
	Example 1: Fixed-Length Records
	Example 2: Variable-Length Records
	The IDENTIFICATION, ENVIRONMENT, and DATA DIVISIONs
	The WORKING-STORAGE SECTION
	The PROCEDURE DIVISION
	EXIT-STATUS Codes (Fixed and Variable-Length Records)
	RETURN-CODE Codes (Fixed and Variable-Length Records)

	Coding a C E32 Exit Program
	Exit Communication
	Fixed-Length Records - Function Definition
	Variable-Length Records - Function Definition
	RETURN-CODE Codes (Fixed and Variable-Length Records)

	EXITS E17 and E37 - Writing and Processing Labels
	E17 Programs
	E37 Programs

	Exits E18, E38, and E39-VSAM Exits
	Passwords for VSAM Files
	Exit List for VSAM Files
	Exit Coding Instructions

	Coding REXX Exits
	REXX Variables Provided by SyncSort
	Sample REXX Exit

	Chapter 9. Creating VSAM Alternate Index Files with SyncSort
	Introduction
	Steps to Create an Alternate Index

	Sample Alternate Index Definitions: IDCAMS and SYNCBIX
	Syntax Rules for SYNCBIX
	SYNCBIX Parameters
	SYNCBIX Job Control Statements
	SYNCBIX Messages

	Chapter 10. SyncSort Reentrant Access Method Operation
	Overview
	Syntax Conventions

	Linking to SSRAM
	Sort Call Overview
	Parameter List Overview
	The Key Definition Table
	Sample Key Definition Table

	Return Code Table Overview
	Duplicate Record Processing Overview
	ASSEMBLER Parameter List and Return Code Table
	ASSEMBLER Calls
	SRTCORE
	SRTOPEN
	SRTFILL
	SRTGETR
	SRTCLSE

	COBOL Parameter List and Return Code Table
	COBOL Calls
	SRTCORE
	SRTOPEN
	SRTFILL
	SRTGETR
	SRTCLSE

	FORTRAN Parameter List and Return Code Table
	FORTRAN Calls
	SSCOR
	SSOPN
	SSFIL
	SSGET
	SSCLS

	PL/I Parameter List and Return Code Table
	PL/I Calls
	SRTCORE
	SRTOPEN
	SRTFILL
	SRTGETR
	SRTCLSE


	Chapter 11. The SYNCHSTO Utility Program
	What is SYNCHSTO?
	Control Parameters for SYNCHSTO
	BLKSIZE
	CLOSE
	KEYEND
	LRECL (required)
	NRECS
	OPEN
	SORTNAME
	SPAN
	VOLUME
	VSAM
	WIDTH

	Job Control Language
	Sample SYNCHSTO Output

	Chapter 12. Messages
	SyncSort for z/VSE Messages
	WER002A
	WER003A
	WER004A
	WER007I
	WER008A
	WER009A
	WER010A
	WER012A
	WER014A
	WER015A
	WER017A
	WER018A
	WER019A
	WER021A
	WER022A
	WER023A
	WER024A
	WER025A
	WER026A
	WER027A
	WER028I
	WER029I
	WER030A
	WER031A
	WER032I
	WER033A
	WER034A
	WER034A
	WER034A
	WER036I
	WER036I
	WER037I
	WER039A
	WER040A
	WER042A
	WER043I
	WER044A
	WER047A
	WER048I
	WER049A
	WER051A
	WER054A
	WER056A
	WER056A
	WER058I
	WER059A
	WER063I
	WER065A
	WER066I
	WER067A
	WER068A
	WER070A
	WER072A
	WER075A
	WER076A
	WER080I/A
	WER081A
	WER082A
	WER083A
	WER084A
	WER085A
	WER090A
	WER091A
	WER099A
	WER100A
	WER101A
	WER102A
	WER103A
	WER105A
	WER106A
	WER108A
	WER109A
	WER110A
	WER112A
	WER113I
	WER114A
	WER115A
	WER116A
	WER117A
	WER118A
	WER119A
	WER120A
	WER123A
	WER123A
	WER124A
	WER124A
	WER127A
	WER128A
	WER129A
	WER130A
	WER132A
	WER133A
	WER134A
	WER136I
	WER137A
	WER138A
	WER139A
	WER140I
	WER141A
	WER146A
	WER147A
	WER148A
	WER149A
	WER149A
	WER149A
	WER150A
	WER150A
	WER151A
	WER152A
	WER153A
	WER154A
	WER155I
	WER156I
	WER157A
	WER158A
	WER159A
	WER160A
	WER161A
	WER162A
	WER163A
	WER164A
	WER165A
	WER166A
	WER167A
	WER168A
	WER169A
	WER170A
	WER171A
	WER172A
	WER173A
	WER174A
	WER175A
	WER176A
	WER177A
	WER178A
	WER179A
	WER180I
	WER181I
	WER182I
	WER183A
	WER184I
	WER185A
	WER186A
	WER187I
	WER187I
	WER188A
	WER189I
	WER190I
	WER191A
	WER192A
	WER193A
	WER194A
	WER195A
	WER196A
	WER197I
	WER198I
	WER199A
	WER200A
	WER200A
	WER201A
	WER202A
	WER203A
	WER204A
	WER205A
	WER206A
	WER207I
	WER208A
	WER209A
	WER210A
	WER211A
	WER212A
	WER212A
	WER213A
	WER214A
	WER215A
	WER216I
	WER217A
	WER218A
	WER219B
	WER220A
	WER221I
	WER222I
	WER223B
	WER224I
	WER225I
	WER227I
	WER227I
	WER228I
	WER229A
	WER230A
	WER231A
	WER232A
	WER234A
	WER235B
	WER236A
	WER237A
	WER238A
	WER239A
	WER240A
	WER241A
	WER242I
	WER243A
	WER244A
	WER245A
	WER246I
	WER248A
	WER250A
	WER251A
	WER252A
	WER253A
	WER254A
	WER255I
	WER256I
	WER256I
	WER300A
	WER301A
	WER400A
	WER401I
	WER402I
	WER403A
	WER405A
	WER406I
	WER407I
	WER408I
	WER409I
	WER500A
	WER900A
	WER901A
	WER901I
	WER902A

	Common SyncSort Errors
	SSRAM Messages
	SSRAM Error Checking
	SSRAM Message Format
	WERS001
	WERS002
	WERS005
	WERS006
	WERS010
	WERS011
	WERS101
	WERS102
	WERS103
	WERS104
	WERS105
	WERS106
	WERS107
	WERS108
	WERS109
	WERS110
	WERS111
	WERS113
	WERS114
	WERS116
	WERS191
	WERS201
	WERS202
	WERS203
	WERS204
	WERS210
	WERS211
	WERS212
	WERS213

	SYNCBIX Messages
	SBIX001A
	SBIX002A
	SBIX003A
	SBIX004A
	SBIX005A
	SBIX006A
	SBIX007A
	SBIX008A
	SBIX009A
	SBIX010A
	SBIX011A
	SBIX012I
	SBIX013I
	SBIX014A
	SBIX015I
	SBIX016A
	SBIX020A
	SBIX021A
	SBIX022I
	SBIX023A

	SYNCHSTO Messages
	SHS001I
	SHS002I
	SHS003I
	SHS004I
	SHS005I
	SHS006I
	SHS007I
	SHS008I
	SHS009I
	SHS010I
	SHS101A
	SHS102A
	SHS103A
	SHS104A
	SHS105A
	SHS106A
	SHS107A
	SHS108A
	SHS109A
	SHS110A
	SHS111A
	SHS112A
	SHS113A
	SHS114A
	SHS115A
	SHS116A
	SHS117A
	SHS118A


	Appendix A. Devices and Software Supported by SyncSort
	Devices Supported by SyncSort
	Proprietary Software Packages Compatible with SyncSort

	Appendix B. Helpful Formulas for SyncSort Programs
	Calculating How Much Disk Workfile Space Is Needed for a Job
	Minimum Storage Needed to Run a Sort or Merge

	Appendix C. VSE/VSAM Space Management for SAM Files
	Introduction
	SAM ESDS Files
	VSAM-Managed SORTIN Files
	VSAM-Managed SORTWK Files
	Explicit Define Using DEFINE CLUSTER
	Implicit Define Using a Model
	Implicit Define Without a Model

	JCL Requirements for VSAM-Managed SORTWK Files
	Sample JCL/Control Streams
	VSAM-Managed SORTOUT Files
	Explicit Define Using DEFINE CLUSTER
	Implicit Define Using a Model
	Implicit Define without a Model

	JCL Requirements for VSAM-Managed SORTOUT Files
	Setting Up a JCL/Control Stream for Sorts with VSAM-Managed Files

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z




