

POWER REACTOR DESIGNS AN ANNOTATED BIBLIOGRAPHY VOLUME 1 GLOSSARY, SECTIONS AD-EF

JANUARY, 1969

AEC RESEARCH & DEVELOPMENT REPORT

BATTELLE BOULEVARD, P. O. BOX 1909, RICHLAND, WASHINGTON 198362

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting an behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting an behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

PACIFIC NORTHWEST LABORATORY

RICHLAND, WASHINGTON
operated by
BATTELLE MEMORIAL INSTITUTE

UNITED STATES ATOMIC ENERGY COMMISSION UNDER CONTRACT AT(45-1)-1830

3 3679 00061 2178

BNWL-936 VOL1 UC-80, Reactor Technology

POWER REACTOR DESIGNS
An Annotated Bibliography

Compiled by
E. R. Appleby
Technical Information

January 1969

BATTELLE MEMORIAL INSTITUTE PACIFIC NORTHWEST LABORATORY RICHLAND, WASHINGTON 99352

Printed in the United States of America
Available from
Clearinghouse for Federal Scientific and Technical Information
National Bureau of Standards, U.S. Department of Commerce
Springfield, Virginia 22151
Price: Printed Copy \$3.00; Microfiche \$0.65

NOTE: This document is three-hole punched so that it may be placed in a three-ring binder.

TABLE OF CONTENTS

INTRODUCTION p. iv

TEXT						
SECTION						
	GLOSSARY					
AD	AQUEOUS HOMOGENEOUS AND MOLTEN SALT REACTORS, DOMESTIC					
AF	AQUEOUS HOMOGENEOUS AND MOLTEN SALT REACTORS, FOREIGN					
BD	BOILING LIGHT WATER REACTORS, DOMESTIC					
BF	BOILING LIGHT WATER REACTORS, FOREIGN					
CD	CAVITY (GAS CORE) REACTORS, DOMESTIC					
CF	CAVITY (GAS CORE) REACTORS, FOREIGN					
DD	GAS COOLED REACTORS, DOMESTIC					
DF	GAS COOLED REACTORS, FOREIGN					
ED	HEAVY WATER MODERATED REACTORS, DOMESTIC					
EF	HEAVY WATER MODERATED REACTORS, FOREIGN					

INTRODUCTION

This Report is a complete revision of BNWL-326, an annotated bibliography of power and heat reactor design studies, produced by computer printout of information available as of December 1968. The computer program will permit frequent up-dating of the information and periodic publication of revisions. The program will also permit subject searches and the preparation of bibliographies from the stored information.

Sections of the Bibliography group the designs into broad reactor types, as listed in the Table of Contents. Each design is given an alpha-numeric code. Pagination follows this alpha-numeric order, with the reactor code number appearing at the upper right hand corner of each page. Tabs are provided for locating the sections.

BNWL-326 and revisions may be discarded.

		•
		•
		er (mag _a

GLOSSARY AND ADDRESSES JANUARY 1969 BNWL - 936 DOMESTIC GLOSSARY AND ADDRESSES AC ALLIS-CHALMERS MANUFACTURING CO. NUCLEAR POWER DEPT. 6935 ARLINGTON ROAD BETHESDA. MARYLAND 20014 FORMERLY NUCLEAR PRODUCTS ERGO DIV. ACF ACF ACF INDUSTRIES NUCLEAR PRODUCTS - ERCO DIVISION DIVISION ACQUIRED BY ALLIS-CHALMERS IN 1959 AEC U.S. ATOMIC ENERGY COMMISSION WASHINGTON 25, D.C. AEP AMERICAN ELECTRIC POWER CO. 2 BROADWAY 10004 NEW YORK, N.Y. **AEPSCO** AMERICAN ELECTRIC POWER SERVICE CORP. SUBSIDIARY, AMERICAN ELECTRIC POWER CO. AEROJET-GENERAL NUCLEONICS AGN SUBSIDIARY OF AEROJET-GENERAL CORPORATION P.O. BOX 78 94583 SAN RAMON, CALIF. AI ATOMICS INTERNATIONAL DIV. NORTH AMERICAN AVIATION INC. 8900 DE SOTO AVE. 91304 CANOGA PARK, CALIF. AFFILIATED WITH INTERATOM, DANATOM AIRESEARCH MANUFACTURING CO. AIRESEARCH DIV. GARRETT CORP. 402 S. 36TH ST. 85034 PHOENIX, ARIZ. ALCO ALCO PRODUCTS INC. NUCLEAR PROJECTS DEPT. 220 SCHENECTADY, N.Y.

AMES INSTITUTE FOR ATOMIC RESEARCH

50010

IOWA STATE UNIVERSITY

AMES, IOWA

AMF AMF ATOMICS

AMÉS

DOMESTIC GLOSSARY AND ADDRESSES

DIV. AMERICAN MACHINE + FOUNDRY CO.

140 GREENWICH AVE.

n683n GREENWICH, CONN.

AMSTAN AMERICAN STANDARD CORP.

DIV. AMERICAN RADIATOR AND STANDARD

SANITARY CORP.

1682 BROADWAY

94063 REDWOOD CITY, CALIF.

ADVANCED TECHNOLOGY LABORATORIES

369 WHISMAN ROAD

MOUNTAIN VIEW, CALIF. 94040

ANL ARGONNE NATIONAL LABORATORY

9700 SOUTH CASS AVE.

60439 ARGONNE, ILL.

APDA ATOMIC POWER DEVELOPMENT ASSOCIATES, INC.

1911 FIRST STREET

48226 DETRIOT, MICHIGAN

UTILITIES GROUP

ARDA ADVANCED REACTOR DEVELOPMENT ASSOCIATES

UTILITIES GROUP

PUBLIC SERVICE COMPANY OF COLORADO

DENVER, COLORADO

ARKANSAS P+L ARKANSAS POWER + LIGHT CO.

9-TH AND LOUISIANA STS.

72203 LITTLE ROCK, ARK.

SUBSID. MIDDLE SOUTH UTIL. INC.

ARMOUR RESEARCH FOUNDATION ARMOUR

SEE IITRI 10 W. 35TH STREET CHICAGO 6, ILLINOIS

ATOMIC AND SPACE DEVELOPMENT AUTHORITY ASDA

STATE OF NEW YORK

ASTRA ASTRA INC.

BOX 266

RALEIGH, N.C.

ATL ADVANCED TECHNOLOGY LABORATORIES

AMERICAN STANDARD CORPORATION

369 WHISMAN ROAD

MOUNTAIN VIEW, CALIF. 94040

ATLANTIC CITY ATLANTIC CITY ELECTRIC CO.

DOMESTIC GLOSSARY AND ADDRESSES

1600 PACIFIC AVE,

ATLANTIC CITY, N.J. 08404 MEMBER DELAWARE VALLEY UTIL.

BALTIMORE G+E BALTIMORE GAS + ELECTRIC CO.

GAS * ELECTRIC BUILDING

BALTIMORE, MD, 21203

BAR BURNS AND ROE INC.

700 KINDERKAMACK ROAD

ORADELL, N.J. 07649

BABCOCK AND WILCOX

ATOMIC ENERGY DIVISION

P.O. BOX 1260

LYNCHBURG, VIRGINIA

BECHTEL BECHTEL CORPORATION

220 BUSH STREET

SAN FRANCISCO, CALIF. 94119

BMI BATTELLE MEMORIAL INSTITUTE

COLUMBUS, OHIO

BNL BROOKHAVEN NATIONAL LABORATORY

UPTON, LONG ISLAND, N.Y.

BOSTON ED BOSTON EDISON COMPANY

800 BOYLSTON ST.

BOSTON: MASS. 02199

CALRD CALIFORNIA RESEARCH AND DEVELOPMENT CO.

LIVERMORE RESEARCH LABORATORY

LIVERMORE, CALIF.

CAROLINA P-L CAROLINA POWER + LIGHT CO.

336 FAYETTVILLE ST.

RALEIGH, N.C. 27602

CATALYTIC CATALYTIC CONSTRUCTION COMPANY

1528 WALNUT STREET

PHILADELPHÍA, PENNA. 19102

CDWR CALIFORNIA DEPT. OF WATER RESOURCES

CE COMBUSTION ENGINEERING INC. NUCLEAR DIVISION

PO BOX 500

WINDSOR, CONNECTICUT 06095

ACQUIRED GENERAL NUCLEAR ENGINEERING

CENTRAL HUDSON CENTRAL HUDSON GAS + ELECTRIC CO.

DOMESTIC GLOSSARY AND ADDRESSES

* * * * * * * * * * * * * * *

SOUTH ROAD

POUGHKEEPSIE, N.Y. 12602

CENTRAL IOWA CENTRAL IOWA POWER COOPERATIVE

PO BOX 389

MARION, IOWA 52302

CENTRAL UTILITIES CENTRAL UTILITIES ATOMIC POWER ASSOCIATES

10-UTILITY GROUP

CLEVELAND ELECTRIC CLEVELAND ELECTRIC ILLUMINATING CO.

PO BOX 5000

CLEVELAND, OHIO 44101

COM/ED COMMONWEALTH EDISON COMPANY

72 WEST ADAMS ST.

CHICAGO, II'L. 60690

CON/ED CONSOLIDATED EDISON COMPANY OF NEW YORK, INC.

4 IRVING PLACE

NEW YORK, NEW YORK 10003

CONNECTICUT L+P CONNECTICUT LIGHT + POWER CO.

PO BOX 2010

HARTFORD, CONNECTICUT 06101

CONNECTICUT YANKEE CONNECTICUT YANKEE ATOMIC POWER CO.

PO BOX 2010

HARTFORD, CONNECTICUT 06101

CONSUMERS POWER CO.

212 W. MICHIGAN AVE.

JACKSON, MICHIGAN 49201

CONSUMERS PUBLIC CONSUMERS PUBLIC POWER DISTRICT OF NEBRASKA

1452 TWENTY-FIFTH AVE.

COLUMBUS, NEBRASKA 68601

CORN BELT CORN BELT POWER COOPERATIVE

1300 THIRTEENTH ST.

HUMBOLDT, TOWA 50548

CVNPA CAROLINAS VIRGINIA NUCLEAR POWER ASSOC. INC.

SOUTH CAROLINA ELECTRIC + GAS CO.

PO BOX 390

COLUMBIA, SOUTH CAROLINA

DAIRYLAND DAIRYLAND POWER COOPERATIVE

2615 EAST AVE. S.

LA CROSSE, WIS. 54601

JANUARY 1969

DOMESTIC GLOSSARY AND ADDRESSES

DDL DONALD W. DOUGLAS LABORATORIES RICHLAND, WASH. 99352

DELAWARE VALLEY DELAWARE VALLEY UTILITIES

PUBLIC SERVICE-ELECTRIC AND GAS, N.J. PHILADELPHIA ELECTRIC CO. DELMARVA POWER AND LIGHT CO.

ATLANTIC CITY ELECTRIC CO.

DELMARVA DELMARVA POWER + LIGHT CO. OF MARYLAND

SALISBURY, MD, 21801

MEMBER. DELAWARE VALLEY UTILITIES

DETROIT/ED DETROIT EDISON Co.

2000 SECOND AVE.

DETROIT, MICH. 48226

DOD DEPARTMENT OF DEFENSE USA

DOUGLAS DOUGLAS AIRCRAFT

MISSILE AND SPACE SYSTEMS DIV.

5301 BOLSA AVENUE

HUNTINGTON BEACH, CALIFORNIA 92646

DOW CHEMICAL CO.

MIDLAND, MICH. 48640

DUKE POWER COMPANY

422 S. CHURCH ST.

CHARLOTTE, N.C. 28202

DUN DOUGLAS UNITED NUCLEAR INC.

FEDERAL BLDG.

RICHLAND, WASHINGTON 99352

DUPONT E.I. DU PONT DE NEMOURS AND CO.: INC.

1007 MARKET ST.

WILMINGTON, DEL. 19898

DUQUESNE DUQUESNE LIGHT COMPANY

435 6-TH AVE.

PITTSBURGH, PENNA. 15219

ECFWCNG EAST CENTRAL FLORIDA WEST COAST NUCLEAR GROUP

FLORIDA WEST COAST GROUP

101 SOUTH 5TH STREET

ST. PETERSBURG, FLA. 33701

ECNG EAST CENTRAL NUCLEAR GROUP

DOMESTIC GLOSSARY AND ADDRESSES

UTILITIES GROUP

ESADA EMPIRE STATE ATOMIC DEVELOPMENT ASSOC. INC.

4 IRVING PLACE

NEW YORK 3, NEW YORK

EUGENE W+E EUGENE WATER + ELECTRIC BOARD

500 4-TH AVE. EAST

EUGENE, OREGON 97401

FAIRCHILD FAIRCHILD ENGINE AND AIRPLANE CORP.

NEPA DIVISION

OAK RIDGE, TENN. 37830

FICO FORD INSTRUMENT COMPANY

DIVISION SPERRY RAND CORP.

31-10 THOMSON AVE.

LONG ISLAND CITY, N.Y. 11101

FITCHBURG G+E FITCHBURG GAS + ELECTRIC CO.

655 MAIN ST.

FITCHBURG, MASS. 01420

FLORIDA P-L FLORIDA POWER AND LIGHT COMPANY

PO BOX 310n

MIAMI, FLORIDA 33101

FLORIDA POWER FLORIDA POWER CORPORATION

101 FIFTH ST. SOUTH

ST. PETERSBURG, FLA. 33701

FLUOR CORPORATION LTD.

2500 S. ATLANTIC BLVD.

LOS ANGELES, CALIF. 90022

FW FOSTER WHEELER CORP.

110 S. ORANGE AVE.

LIVINGSTON: N.J. 07039

FWCNG FLORIDA WEST COAST NUCLEAR GROUP

FLORIDA POWER CORPORATION

FLORIDA POWER AND LIGHT COMPANY

TAMPA ELECTRIC COMPANY

GA SEE GGA

GD GENERAL DYNAMICS CORPORATION

GENERAL ATOMICS DIVISION

SAN DIEGO, CALIF.

GENERAL ATOMICS DIV. HAS BEEN BOUGHT BY

DOMESTIC GLOSSARY AND ADDRESSES

.

GULF OIL CO. SEE GGA.

GE GENERAL ELECTRIC COMPANY

ATOMIC POWER EQUIPMENT DEPT.

2151 FIRST ST.

SAN JOSE, CALIF. 95112

GEORGIA POWER GEORGIA POWER COMPANY

210 PEACHTREE ST.

ATLANTA, GA. 30303

SUBSIDIARY SOUTHERN CO. SYSTEM.

GGA GULF GENERAL ATOMIC COMPANY

GULF OIL CORPORATION PITTSBURGH, PENNA

FORMERLY GEN. ATOMICS DIV. GEN. DYNAMICS

GIC GENERAL INSTRUMENT CORPORATION

65 GOVERNEUR STREET

NEWARK, N.J. 07104

GILBERT GILBERT ASSOCIATES INC.

525 LANCASTER AVE.

READING, PENNA: 19603

GM GENERAL MOTORS CORPORATION

ALLISON DIVISION

INDIANAPOLIS 6, INDIANA

GNEC GENERAL NUCLEAR ENGINEERING CORP.

DIVISION COMBUSTION ENGINEERING

GOLDEN VALLEY GOLDEN VALLEY ELECTRIC ASSOCIATION

758 ILLINOIS ST.

FAIRBANKS, ALASKA 99701

GPU GENERAL PUBLIC UTILITIES CORPORATION

80 PINE ST.

NEW YORK, N.Y. 10005

HERC HERCULES INCORPORATED

HERCULES TOWER 910 MARKET ST.

WILMINGTON, DEL. 19899

HITTMAN HITTMAN ASSOCIATES INC.

4715 E. WABASH AVENUE BALTIMORE, MARYLAND 21215

HTRDA HIGH TEMPERATURE REACTOR DEVELOPMENT ASSOC.

DOMESTIC GLOSSARY AND ADDRESSES

* * * * * • • • • • • • • • • • • • •

89 EAST AVE.

ROCHESTER, NEW YORK 14604

IITRI ILLINOIS INST, TECHNOLOGY RES. INST.

10 W. 35 STREET

CHICAGO, ILL. 60016

INDIANA-MICHIGAN INDIANA AND MICHIGAN ELECTRIC COMPANY

PO BOX 18

BOWLING GREEN STATION, N.Y. 10004

SUBSIDIARY OF AEP

INTERNUC INTERNUCLEAR CO.

7 NORTH BRENTWOOD BLVD.

CLAYTON, MO. 63105

IOWA ELECTRIC IOWA ELECTRIC LIGHT AND POWER COMPANY

206 E. SECOND ST.

DAVENPORT, IOWA 52808

IOWA-ILLINOIS IOWA-ILLINOIS GAS AND ELECTRIC CO.

206 E. SECOND ST.

DAVENPORT: IOWA 52808

JERSEY CENTRAL JERSEY CENTRAL POWER AND LIGHT CO.

MADISON AVE. AT PUNCH BOWL RD. MORRISTOWN, N.J. 07960

JPL JET PROPULSION LABORATORY

CALIF. INST. TECHNOLOGY 4800 OAK GROVE DRIVE

PASADENA, CALIF. 91103

KANSAS G-E KANSAS GAS + ELECTRIC CO.

201 N. MARKET ST.

WICHITA, KANSAS 67201

KE KAISER ENGÎNEERS

DIVISION HENRY J. KAISER CO.

KAISER CENTER

DAKLAND, CALIF. 94612

KIDDE WALTER KIDDE NUCLEAR LABORATORIES

GARDEN CITY, N.Y. 11530

LADWP LOS ANGELES DEPARTMENT OF WATER AND POWER

PO BOX 111

LOS ANGELES: CALIFORNIA 90054

LAMONT GEOPHYSICAL OBSERVATORY

JANUARY 1969

DOMESTIC

GLOSSARY AND ADDRESSES

COLUMBIA UNIVERSITY

PALISADES, N.Y.

10964

LASL

LOS ALAMOS SCIENTIFIC LABORATORY

P.O. BOX 1663 LOS ALAMOS, N.M.

87544

LEWIS RESEARCH

LEWIS RESEARCH CENTER

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CLEVELAND, OHIO

LILCO

LONG ISLAND LIGHTING CO.

250 OLD COUNTRY RD.

MINEOLA, NEW YORK

11501

LOCKHEED

LOCKHEED MISSILES AND SPACE COMAPNY

DIVISION OF LOCKHEED AIRCRAFT CORPORATION

SUNNYVALE, CALIF.

LRL

LAWRENCE RADIATION LAB.

UNIV. CALIF.

LIVERMORE, CALIF.

MA

MARITIME ADMINISTRATION USA

MADISON G+E

MADISON GAS AND ELECTRIC COMPANY

100 N. FAIRCHILD ST.

MADISON, WIS. 53701

MAINE YANKEE

MAINE YANKEE ATOMIC POWER CO.

9 GREEN ST.

AUGUSTA, MAINE

04330

UTILITY GROUP

MAPP

MID-CONTINENT AREA POWER PLANNERS
50 UTILITIES FROM MINNESOTA,

WISCONSIN, IOWA, NEVADA, MONTANA,

THE DAKOTAS

MARQ

MARQUARDT CORPORATION NUCLEAR SYSTEMS DIVISION

16555 SATICOY STREET

VAN NUYS, CALIF. 91406

MARTIN

MARTIN-MARIETTA CORPORATION

NUCLEAR DIVISION

BALTIMORE, MD. 21203

MARTIN-MARIETTA NUCLEAR DIV. HAS BEEN ACQUIRED BY ISOTOPES, SUBSID. OF NUCLEAR SYSTEMS DIV., TELEDYNE

DOMESTIC GLOSSARY AND ADDRESSES

CORP.

MET-ED METROPOLITAN EDISON COMPANY

2800 POTTSVILLE PIKE

READING, PENNA: 19603

SUBSIDIARY GENERAL PUBLIC UTILITIES

MONSANTO MONSANTO CHEMICAL COMPANY

800 N. LINDBERGH BLVD.

ST. LOUIS, MO. 63166

MWD METROPOLITAN WATER DISTRICT OF S. CALIFORNIA

NAA NORTH AMERICAN AVIATION

ATOMICS INTERNATIONAL DIV.

NASA NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

400 MARYLAND AVE. SW

WASHINGTON; D.C.

NDA NUCLEAR DEVELOPMENT CORPORATION OF AMERICA

SEE UNITED NUCLEAR CORP.

NEE NEW ENGLAND ELECTRIC SYSTEM

441 STUART ST.

BOSTON, MASS. 02116

NEW HAMPSHIRE NEW HAMPSHIRE PUBLIC SERVICE COMPANY

NIAGARA MOHAWK NIAGARA MOHAWK POWER CORP.

300 ERIE BLVD. WEST

SYRACUSE, NEW YORK 13202

NIPSCO NORTHERN INDIANA PUBLIC SERVICE CO.

5265 HOHMAN AVE.

HAMMOND, INDIANA 46325

NPG NUCLEAR POWER GROUP

CHICAGO, ILLINOIS 8-COMPANY GROUP

NRDS NUCLEAR ROCKET DEVELOPMENT STATION

JACKASS FLATS, NEVADA

NRTS NATIONAL REACTOR TEST STATION

IDAHO FALLS, IDAHO

NSP NORTHERN STATES POWER CO.

414 NICOLLET MALL

MINNEAPOLIS, MINN. 55401

DOMESTIC GLOSSARY AND ADDRESSES

NTS NEVADA TEST SITE

JACKASS FLATS, NEVADA

NUMEC NUCLEAR MATERIALS AND EQUIPMENT CORPORATION

N. SEVENTH AND WARREN AVE.

APOLLO, PENNA. 15613

SUBSIDIARY ATLANTIC RICHFIELD.

NUTMEG PROJECT

CONNECTIONT UTILITIES STUDY GROUP

HARTFORD ELECTRIC LIGHT UNITED ILLUMINATING

CONNECTICUT LIGHT AND POWER

NY STATE NEW YORK STATE ELECTRIC + GAS CORPORATION

ITHACA, N.Y. 14850

OMAHA PUBLIC OMAHA PUBLIC POWER DISTRICT

1623 HARNEY ST.

OMAHA, NEBRASKA 68102

OPPD SEE OMAHA PUBLIC

ORANGE+ROCKLAND ORANGE + ROCKLAND UTILITIES INCORPORATED

10 N. BROADWAY

NYACK, N.Y. 10960

ORNL OAK RIDGE NATIONAL LABORATORY

OAK RIDGE, TENNESSEE

ORSORT OAK RIDGE SCHOOL OF REACTOR TECHNOLOGY

OAK RIDGE, TENNESSEE

OSW OFFICE OF SALINE WATER

DEPARTMENT OF THE INTERIOR U.S.A.

PENNA P+L PENNSYLVANÍA POWER + LIGHT COMPANY

901 HAMILTON ST.

ALLENTOWN, PENNA. 18101

PGE PACIFIC GAS + ELECTRIC COMPANY

245 MARKET ST.

SAN FRANCISCO, CALIF. 94106

PHILADELPHIA PHILADELPHIA ELECTRIC CO.

1000 CHESTNUT ST.

PHILADELPHÍA, PENNA. 19105

MEMBER DELAWARE VALLEY UTILITIES

PHILLIPS PHILLIPS PETROLEUM COMPANY

DOMESTIC GLOSSARY AND ADDRESSES

BARTLESVILLE, OKLAHOMA 74003

PNPG PACIFIC NORTHWEST POWER GROUP

RICHLAND, WASHINGTON 99352

PNWL BATTELLE MEMORIAL INSTITUTE

PACIFIC NORTHWEST LABORATORY

PO BOX 999

RICHLAND, WASHINGTON 99352

PORTLAND GE PORTLAND GENERAL ELECTRIC COMPANY

621 SW ALDER ST.

PORTLAND, OREGON 97205

PRDC POWER REACTOR DEVELOPMENT COMPANY

1911 FIRST STREET

DETROIT, MICHIGAN 48226

UTILITIES GROUP

PRWRA PUERTO RICO WATER RESOURCES AUTHORITY

PO BOX 4267

SAN JUAN, PUERTO RICO

PSCC PUBLIC SERVICE COMPANY OF COLORADO

PO BOX 840

DENVER, COLORADO 80201

PUBLIC SERVICE-NH PUBLIC SERVICE CO. OF NEW HAMPSHIRE

1087 ELM ST.

MANCHESTER, N.H. 03105

PUBLIC SERVICE-NJ PUBLIC SERVICE ELECTRIC + GAS, NEW JERSEY

80 PARK PLACE

NEWARK, N.J. 07101

MEMBER DELAWARE VALLEY UTILITIES

PWAC PRATT AND WHITNEY AIRCRAFT

DIVISION OF UNITED AIRCRAFT EAST HARTFORD, CONNECTICUT

RCA RADIO CORPORATION OF AMERICA

30 ROCKFELLER PLAZA

NEW YORK, N.Y. 10020

RCPA RURAL COOPERATIVE POWER ASSOC.

HIGHWAY 10 S.E.

ELK RIVER, MINNESOTA 55330

ROCHESTER G-E ROCHESTER GAS AND ELECTRIC CORPORATION

89 EAST AVENUE

DOMESTIC GLOSSARY AND ADDRESSES

ROCHESTER, NEW YORK 14604

RRC ROYAL RESEARCH CORPORATION

HAYWARD, CALIF.

S CAL ED SOUTHERN CALIFORNIA EDISON CO.

PO BOX 351

LOS ANGELES, CALIFORNIA 90053

SAEA SOUTHWEST ATOMIC ENERGY ASSOCIATES

306 PYRAMID BUILDING

LITTLE ROCK, ARKANSAS 72201

UTILITIES GROUP

SAL SARGENT + LUNDY

140 S. DEARBORN STREET

CHICAGO, ILL. 60603

SAN DIEGO G+E SAN DIEGO GAS + ELECTRIC CO.

861 SIXTH AVE.

SAN DIEGO, CALIF. 92112

SAP SANDERSON + PORTER

72 WALL STREET NEW YORK 5. N.Y.

SMUD SACRAMENTO MUNICIPAL UTILITY DISTRICT

SACRAMENTO, CALIF.

SNEC SAXTON NUCLEAR EXPERIMENT CORPORATION

PO BOX 542

READING, PENNA: 18501

SUBSIDIARY GENERAL PUBLIC UTILITIES

SNPO SPACE NUCLEAR PROPULSION OFFICE

U.S. ATOMIC ENERGY COMMISSION

NATIONAL AERONAUTICS AND SPACE ADMIN.

SOUTHERN CO SOUTHERN COMPANY

3390 PEACHTREE ROAD

ATLANTA, GA. 30326

STL SPACE TECHNOLOGY LABORATORIES INC.

THOMPSON RAMO WOOLRIDGE INC.

REDONDO BEACH, CALIF.

STUD STUDEBAKER-PACKARD CORPORATION

635 S. MAIN STREET

SOUTH BEND, IND. 46627

TAMPA ELECTRIC TAMPA ELECTRIC COMPANY

DOMESTIC GLOSSARY AND ADDRESSES

111 N. DALE MABRY HIGHWAY

TAMPA, FLA: 33609

THIOKOL THIOKOL CHEMICAL CORPORATION

NEWPORTVILLE-FALSINGTON RD.

BRISTOL, PENNA. 19007

TOLEDO ED TOLEDO EDISON COMPANY

420 MADISON AVE.

TOLEDO, OHIO 43601

TRG TECHNICAL RESEARCH GROUP

17 UNION SQUARE WEST

NEW YORK, N.Y. 10003

TRW SPACE TECHNOLOGY LABORATORIES

ONE SPACE PARK

REDONDO BEACH, CALIF, 90278 THOMPSON RAMO WOOLRIDGE

TVA TENNESSEE VALLEY AUTHORITY

NEW SPRANKLE BLDG.

KNOXVILLE, TENNESSEE 37902

UAC UNITED AIRCRAFT CORP.

400 MAIN ST.

EAST HARTFORD, CONN. 06108

UCRL UNIV. CALIF. RADIATION LAB.

LIVERMORE, CALIF.

UNC UNITED NUCLEAR CORPORATION

GRASSLANDS ROAD

ELMSFORD, N.Y. 10523

UNITED ILLUM UNITED ILLUMINATING COMPANY

80 TEMPLE ST.

NEW HAVEN, CONN. 06510

USAF UNITED STATES AIR FORCE

USBM UNITED STATES BUREAU OF MINES

WASHINGTON 25, D.C.

USN U.S. NAVY

VEPCO VIRGINIA ELECTRIC + POWER CO.

700 E. FRANKLIN ST.

RICHMOND, VA. 23219

VERMONT YANKEE VERMONT YANKEE NUCLEAR POWER CORPORATION

DOMESTIC GLOSSARY AND ADDRESSES

77 GROVE ST.

RUTLAND, VERMONT 05701

10-UTILITY GROUP

·VITRO CORPORATION OF AMERICA

90 PARK AVENUE

NEW YORK, NEW YORK 10016

WEPCO WISCONSIN ELECTRIC POWER COMPANY

231 W. MICHIGAN ST.

MILWAUKEE, WIS. 53201

WEST WESTINGHOUSE ELECTRIC CORPORATION

BETTIS ATOMIC POWER LABORATORY

P.O. BOX 1468

PITTSBURGH, PENNA, 15230

WMPCO WISCONSIN MICHIGAN POWER COMPANY

231 WEST MICHIGAN ST.

MILWAUKEE, WISCONSIN 53201

SUBSIDIARY WEPCO

WP+L WISCONSIN POWER + LIGHT COMPANY

122 W. WASHINGTON ST.

MADISON, WIS. 53701

WPPSS WASHINGTON PUBLIC POWER SUPPLY SYSTEM

130 VISTA WAY

PO BOX 166

KENNEWICK, WASHINGTON 99336

WPS WISCONSIN PUBLIC SERVICE CORPORATION

1029 N. MARSHALL ST.

MILWAUKEE, WIS. 53201

YAEC YANKEE ATOMIC ELECTRIC COMPANY

441 STUART ST.

BOSTON MASS. 02116

YANKEE-DIXIE YANKEE-DIXIE POWER CO.

NORTH CAROLINA-VIRGINIA

3M MINNESOTA MINING AND MANUFACTURING COMPANY

NUCLEAR RESEARCH DEPT.

2501 HUDSON ROAD

ST. PAUL, MINN. 55101

FOREIGN GLOSSARY AND ADDRESSES

ARGENTINA

CNEA COMISION NACIONAL DE ENERGIA ATOMICA

BUENOS AIRES, ARGENTINA

SEGMA POWER COMPANY

ARGENTINA

AUSTRALIA

AAEC AUSTRALIAN ATOMIC ENERGY COMMISSION

45 BEACH STREET

COOGEE

NEW SOUTH WALES, AUSTRALIA

AUSTRIA

OBRFA OSTERREICHISCHE BERATENDE

REGIERUNGSKOMMISSION FUR FRAGEN

DER ATOMENERGIE
3 HOHENSTAUFENGASSE
VIENNA 1, AUSTRIA

SGAE AUSTRIAN ATOMIC ENERGY STUDY GROUP

VIENNA, AUSTRIA

BELGIUM

ACEC ATELIERS DE CONSTRUCTIONS

ELECTRIQUES DE CHARLEROI S.A.

ATOMIC ENERGY DIVISION

AVENUE E. ROUSSEAU CHARLEROI, BELGIUM

ASSOCIATED COMPANIES, WESTINGHOUSE /U.S./ FRAMATOME /FRANCE/

BELGONUC SOCIETE BELGE POUR L INDUSTRIE

NUCLEAIRE S.A. /BELGONUCLEAIRE/

35 RUE DES COLONIES BRUSSELS, BELGIUM

CEA COMMISSARIAT A L ENERGIE ATOMIQUE

8 RUE DE LA LOI BRUSSELS, BELGIUM

CEN CENTRE D ETUDE DE L'ENERGIE NUCLEAIRE

FOREIGN GLOSSARY AND ADDRESSES

BRUSSELS, BELGIUM

CENTRATOME SOCIETE REUNIES D'ENERGIE DU BASSIN DE

L-ESCANT /EBES/

SOCIETE INTERCOMMUNALE BELGE DE GAZ ET

D-ELECTRICITE /INTERCOM/

EBES SOCIETE REUNIES D-ENERGIE DU BASSIN DE

L-ESCAUT

31 RUE DE LA SCIENCE BRUSSELS 4, BELGIUM

INTERCOM SOCIETE INTERCOMMUNALE BELGE DE GAZ ET

D-ELECTRICITE

1 PLACE DU TRONE
BRUSSELS, BELGIUM

TRACTION-ELEC TRACTION ET ELECTRICITE

BELGIUM

BRAZIL

CNEN COMISSAO NACIONAL DE ENERGIA NUCLEAR

350 AVENIDA MARECHAL CAMARA

RIO DE JANEIRO, BRAZIL

CANADA

AECL ATOMIC ENERGY OF CANADA, LTD.

P.O. BOX 711

OTTAWA, ONTARIO, CANADA

CGE CANADIAN GENERAL ELECTRIC COMPANY, LTD.

107 PARK STREET

PETERBOROUGH, ONTARIO, CANADA

HYDRO-QUEBEC QUEBEC HYDRO-ELECTRIC COMMISSION

75 DORCHESTER BLVD. WEST MONTREAL, QUEBEC, CANADA

ONTARIO-HYDRO HYDRO-ELECTRIC COMMISSION

BOX 113

CHALK RIVER, ONTARIO, CANADA

WEST-CAN CANADIAN WESTINGHOUSE INTERNATIONAL CO. LTD

BOX 510

HAMILTON, ONTARIO, CANADA

FOREIGN GLOSSARY AND ADDRESSES

CHINA

CHINA

CHINESE DEMOCRATIC REPUBLIC

ACADEMIA SINICA PEKING: CHINA

COMMITTEE OF NUCLEAR SCIENCE

CZECHOSLOVAKIA

NEA

MINISTRY OF POWER

NUCLEAR ENERGY ADMINISTRATION

JUNGMANNOVA 29

PRAGUE 2, CZECHOSLOVAKIA

DENMARK

DAEC

DANISH ATOMIC ENERGY COMMISSION

CHRISTIANSBORG RIDEBANE 10

COPENHAGEN K. DENMARK

DANATOM

DANISH ASSOCIATION FOR INDUSTRIAL DEVELOPMENT

OF ATOMIC ENERGY

STRANDVEJEN 102

HELLERUP /NEAR COPENHAGAN/, DENMARK

EAST GERMANY

AKK

GERMAN DEMOCRATIC REPUBLIC /EAST GERMANY/

AMT FUR KERNFORSCHUN UND KERNTECHNIK

SCHNELLERSTRASSE 1-5 BERLIN-NIEDERSCHONEWIEDE GERMAN DEMOCRATIC REPUBLIC

ATOMKRAFTWERK NORD

ATOMKRAFTWERK NORD

EAST GERMANY /GERMAN DEMOCRATIC REPUBLIC/

FINLAND

IMATRAN

IMITRAN VOIMA OY

STATE-OWNED POWER COMPANY

SUOMEN

SUOMEN VESTVOIMEN LIITO

FINNISH HYDROELECTRIC POWER ASSOCIATION

SUOMEN-ATOM

SUOMEN ATOMITEOLLISUUSRHYMA

YDIN VOIMA

YDIN VOIMAHYDISTYS

FOREIGN

GLOSSARY AND ADDRESSES

NUCLEAR POWER CO. LTD.
WILL BE DISSOLVED. MEMBERS TO FORM
STUDY GROUP SANKOYHTYMA /POWER CONCERN/
WITH SUOMEN VESIVOIMEN GROUP.

FORMOSA

AEC

* *

/REPUBLIC OF CHINA/ ATOMIC ENERGY COUNCIL 11 SOUTH CHUNG SHAN ROAD TAIPEL: FORMOSA

FRANCE

ALSTHOM SOCIETE GENERALE DE CONSTRUCTIONS ELECTRIQUES

ET MECANIQUES

SERVICES D-ETUDES NUCLEAIRES

20 RUE D-ATHENES

75 PARIS 9E

FRANCE

ATEN ASSOCIATION TECHNIQUE POUR LA PRODUCTION

ET L UTILIZATION DE L ENERGIE NUCLEAIRE

26 RUE DE CLICHY PARIS 8, FRANCE

BREVATOME BREVATOME

25 RUE DE PONTHIEU PARIS 8, FRANCE

CAFL COMPAGNIE DES ATELIERS ET FORGES DE LA

LOIRE

12. RUE DE LA ROCHEFOUCAULD

PARIS 9. FRANCE

MEMBER OF INDATOM

CEA COMMISSARIAT A L ENERGIE ATOMIQUE

29-33 RUE DE LA FEDERATION

PARIS 7, FRANCE

EDF ELECTRICITE DE FRANCE

2 RUE LOUIS MURAT PARIS 8, FRANCE

CLAMART /SEINE/, FRANCE

FR-ATOM FRANCE-ATOME

6 ET 8 BOULEVARD HAUSSMAN

FOREIGN GLOSSARY AND ADDRESSES

PARIS 9, FRANCE

GAAA GROUPEMENT ATOMIQUE ALSACIENNE ATLANTIQUE

20 AVENUE EDCUARD-HERRIOT

92/LE PLESSIS-ROBINSON /SEINE/ FRANCE

INDATOM INDATOM

48 RUE LA BOETIE PARIS 8, FRANCE

10-COMPANY ORGANIZATION

KUHLMANN SOCIETE UGINE KUHLMANN

10 RUE DU GENERAL-FOY

PARIS 8, FRANCE

PECHINEY PECHINEY

DIV. ENERGIE ET APPLICATIONS ATOMIQUES

23 RUE BALZAC PARIS 8, FRONCE

SCHNEIDER-CREUSOT SOCIETE DES FORGES ET ATELIERS DU CREUSOT

DEPT. DES ACTIVITES NUCLEAIRES

15 RUE PASQUÏER, 75 PARIS 8, FRANCE

SEEN SOCIETE D-ETUDES ET

D-ENTERPRISES NUCLEAIRE

15 RUE PASQUIER PARIS 8, FRANCE

SENA SOCIEITE D-ENERGIE NUCLEAIRE FRANCO-BELGE DES

ARDENNES

SENTA SOCIETE D-ETUDES NUCLEAIRES ET DE TECHNIQUES

AVANCEES

13 RUE DU R. P. CLOAREC, 92

PARIS, FRANCE

SNECMA SOCIETE NATIONALE D ETUDES ET DE CONSTRUCTION

DE MOTEURS D AVIATION

DIVISION ATOMIQUE

150 BOULEWARD HAUSMANN

PARIS 8, FRANCE

ASSOCIATE COMPANY, INDATOM

SOCIA SOCIETE POUR L-INDUSTRIE ATOMIQUE

48 RUE LA BOETIE, 75

PARIS 8, FRANCE

INDATOM AND SEEN

SOCIETE RATEAU SOCIETE RATEAU

FOREIGN GLOSSARY AND ADDRESSES

* * * * * * * * * * * * * * *

141 RUE RATEAU

93-LA COURNEUVE, FRANCE

SOGERCA SOCIETE GENERALE POUR L-ENTERPRISE DE

REACTEURS ET DE CENTRALES ATOMIQUES

GAAA ALSTHOM

HUNGARY

HUNGARY NATIONAL ATOMIC ENERGY COMMISSION

BUDAPEST, HUNGARY

INDIA

AEC ATOMIC ENERGY COMMISSION

APOLLO PIER ROAD BOMBAY, INDIA

INTERNATIONAL

ENEA EUROPEAN NUCLEAR ENERGY AGENCY

O.E.E.C.

38 BOULEVARD SUCHET PARIS 16, FRANCE

EURATOM EUROPEAN ATOMIC ENERGY COMMUNITY

51-53 RUE BELLIARD BRUSSELS, BELGIUM

INTER-NUCLEAR INTER NUCLEAR SA

THE NUCLEAR POWER GROUP /UK/

SNAM PROGETTI /ITALY/

GUTEHOFFNUNGSHUETTE /W. GERM./

BELGONUCLEAIRE /BELG./

FORMED TO MARKET HTGR SYSTEMS

IURN INSTITUT UNIFIE DE RECHERCHES NUCLEAIRES

DUBNA, ON VOLGA, USSR

OECD EUROPEAN NUCLEAR ENERGY AGENCY /ENEA/

38 BOULEVARD SUCHET PARIS 16, FRANCE

OECD HALDEN REACTOR PROJECT

PO BOX 173 HALDEN: NORWAY

FOREIGN GLOSSARY AND ADDRESSES

OECD HIGH TEMPERATURE REACTOR PROJECT

DRAGON

ATOMIC ENERGY ESTABLISHMENT WINFRITH, DORCHESTER, ENGLAND

SENA SOCIETE D-ENERGIE NUCLEAIRE FRANCO-BELGE

DES ARDENNES

SYNATOM FRENCH-BELGIAN COMBINE

OPERATION OF TIHANGE STATION

ISRAEL

IAEC ISRAEL ATOMIC ENERGY COMMISSION

P.O. BOX 7056

HAYIRYA

TEL-AVIV: ISRAEL

ISRATOM ISRAEL NUCLEAR ENGINEERING CO., LTD.

6 AHUZAT BAYIT ST. TEL-AVIV. ISRAEL

ITALY

AGIP NUCLEARE S.P.A

CASELLA POSTALE 4179

MILAN, ITALY

ANSALDO MECCANIO NUCLEARE

RECAPITO ANSALDO 2 PIAZZA CARIGNANO

GENOA, ITALY

CISE CENTRO INFORMAZIONI STUDI EXPERIENZE

VIA REDECESIO 12

SEGRATE

MILAN, ITALY

CNEN NATIONAL COMMITTEE FOR NUCLEAR ENERGY

/COMITATO NAZIONALE PER L ENGERGIA NUCLEAR/

VIA BELISARIO 15

ROME, ITALY

ENEL ENTE NAZIONALE PER L-ENERGIA ELLETRICA

181 VIA DEL TRITONE

ROME, ITALY

FIAT FIAT SPA

FOREIGN GLOSSARY AND ADDRESSES

SEZIONE ENERGIA NUCLEARE

CORSO SETTEMBRINI 23

TURIN, ITALY

MONTECATINI MONTECATINI ENERGY DEPT.

NUCLEAR DIVISION

LARGO GUIDO - DONEGANI 1-2

MILAN, ITALY

SELNI SOCIETA ELETTRONÚCLEARE ITALIANA

FORO BUONAPARTE 31

MILAN, ITALY

SENN SOCIETA ELETTRONÚCLEARE NAZIONALE

VIA TORINO 6 ROME, ITALY

SIMEA SOCIETA ITALIANA MERIDIONALE ENERGIA ATOMICA

VIA S TERESA 35 ROME, ITALY

SNAM-PROGETTI S.P.A.

20100 MILAN /PO BOX 4172/

ITALY

SORIN SOCIETA RICERCHE IMPIANTI NUCLEARI

VIA FATEBENEFRATELLI 19

MILAN, ITALY

JAPAN

HOKURIKI HOKURIKI ELECTRIC POWER COMPANY

AEC ATOMIC ENERGY COMMISSION OF JAPAN

2-2 KASUMIGASEKI

CHIYODA-KU TOKYO, JAPAN

CHOGOKU ELECTRIC CHOGOKU ELECTRIC POWER CO.

CHUBU ELECTRIC CHUBU ELECTRIC POWER CO.

FAPIG FIRST ATOMIC POWER INDUSTRY GROUP

TOKYO BOEKI KAIKAN BLDG.

2, 1-CHOME OHTEMACHI

CHIUODA + KU TOKYO , JAPAN

HITACHI HITACHI LTD.

FOREIGN GLOSSARY AND ADDRESSES

ATOMIC ENERGY DEPT.
4, 1-CHOME MARUNOUCHI

CHIYODA=KU TOKYO, JAPAN

HOKAIDO HOKAIDO ELECTRIC POWER COMPANY

JAERI JAPAN ATOMIC ENERGY RESEARCH INSTITUTE

1-1 SHIBA TAMURACHO

MINATO-KU TOKYO, JAPAN

JAPAN ATOMIC POWERED ORE CARRIER

RESEARCH GROUP

TOKYO, JAPAN

JAPON ELECTRIC POWER CO.

JAPAN ATOMIC POWERED SHIP DEVELOPMENT CORP.

TOKYO, JAPAN

KANSAI E-P KANSAI ELECTRIC POWER COMPANY

MAGAL

KYUSHU ELECTRIC KYUSHU ELECTRIC POWER CO.

MAPI SEE MITSUBISHI

MITSU MITSUBISHI ATOMIC POWER INDUSTRIES, INC.

OTEMACHI BEDG. CHIYODA-KU TOKYO, JAPAN

NAIG NIPPON ATOMIC INDUSTRY GROUP CO., LTD.

NO. 4 YURAKUCHO 2-CHOME

CHIYODA=KU TOKYO, JAPAN

SHIKOKU ELECTRIC SHIKOKU ELECTRIC POWER CO.

SUMITOMO SUMITOMO ATOMIC ENERGY INDUSTRIES LTD.

5-22 KITAHAMA HIGASHI-KU OSAKA, JAPAN

TOHOKU TOHUKU ELECTRIC POWER COMPANY

TOKYO ELECTRIC TOYKO ELECTRIC POWER COMPANY

TOKYO, JAPAN

FOREIGN GLOSSARY AND ADDRESSES

KOREA

KOREA ELECTRIC KOREA ELECTRIC CO.

OAE OFFICE OF ATOMIC ENERGY

ATOMIC ENERGY COMMISSION

77 SECHONG-RO CHONGRO-KU SEOUL, KOREA

MEXICO

CNEN COMISION ON NACIONAL DE ENERGIA NUCLEAR

AV. INSURGENTES SUR 1079, TERCER PISO

MEXICO 18, D.F., MEXICO

NETHERLANDS

CAE NUCLEAR ENERGY COMMISSION

/COMMISSIE VOOR ATOOM ENERGIE/

LE VAN DE BOSCHSTRAAT THE HAGUE, NETHERLANDS

GKN GEMEENSCHAPPELIJKE KERNENERGIECENTRALE

NEDERLAND

JOINT NETHERLAND NUCLEAR POWER STATION

KEMA COMPANY FOR TESTING ELECTROTECH, MATLS

ARNHEM, NETHERLANDS

NERATOOM NERATOOM N.V.

NOORDEINE 38

THE HAGUE, NETHERLANDS

ORGANIZATION OF DUTCH FIRMS

RCN REACTOR CENTRUM NEDERLAND

SCHEVEVINGSEWEG 112
THE HAGUE, NETHERLANDS

SEP SAMENWERKENDE ELECTRICITEITS

PRODUCTIEBEDRIJVEN

UTRECHTSEWEG 310
ARNHEM, NETHERLANDS

SKK STICHTING KERNVOORTSTUWING KOOPVAARDIJSCHEPEN

FOUNDATION FOR NUCLEAR PROPULSION

OF MERCHANT SHIPS/

NASSAULAAN 13

FOREIGN GLOSSARY AND ADDRESSES

THE HAGUE, NETHERLANDS

NORWAY

IFA SEE KRE

JENER JOINT ESTABLISHMENT FOR NUCLEAR ENERGY

RESEARCH

P.O. BOX 175

LILLESTROM: NORWAY

IFA/INSTITUT FOR ATOMENERGI/ AND RCN /REACTOR CENTRUM NEDERLAND/

KRE KJELLER RESEARCH ESTABLISHMENT

/INSTITUT FOR ATOMENERGI/IFE

KJELLER /NEAR LILLESTROM/, NORWAY

NAEC NATIONAL ATOMIC ENERGY COUNCIL

P.O. BOX 175

LILLESTROM: NORWAY

NORATOM NORATOM A/S

HOLMENVEIEN 20

VINDEREN

OSLO, NORWAY

REDERIATOM REDERIATOM

INUCLEAR RESEARCH GROUP OF NORWEGIAN

SHIPOWNERS/ P.O. BOX 175

LILLESTROM, NORWAY

PAKISTAN

PAEC PAKISTANI AT. EN. COMMISSION

KARACHI 29, PAKISTAN

PERU

JCEA JUNTA DE CONTROL DE ENERGIA ATOMICA

AVENIDA NICOLAS DE PIEROLA 611

APT. 914 LIMA, PERU

POLAND

CAE OFFICE OF GOVERNMENT HIGH COMMISSIONER

FOREIGN GLOSSARY AND ADDRESSES

FOR ATOMIC ENERGY

PALACE OF CULTURE AND SCIENCE, 18TH FLOOR

WARSAW, POLAND

INST. NUCL. RES. INSTITUTE OF NUCLEAR RESEARCH

WARSAW, POLAND

SPAIN

AQUARIUS AQUARIUS

COMPANY FORMED TO MANAGE PROJECTED

IBERIAN DUAL-PURPOSE STATION

CENUSA CENTRALES NUCLEARES S.A.

C/O 1 HERMOSILLA MADRID 1, SPAIN

FECSA FUERZAS ELECTRICAS DE

CATALUNA S.A.

MEMBER OF JOINT COMPANY FORMED TO BUILD THE

CATALONIA POWER STATION.

FENOSA FUERZAS ELECTRICAS DEL NORDESTE SA

HIFRANSA SOCIEDAD HISPANO-FRANCESA D-ENERGIA NUCLEAR

HYDROELECTRICA HYDROELECTRICA ESPANOLA SA

IBERDUERO IBERDUERO ELECTRIC

JEN MINISTERIO DE INDUSTRIA

JUNTA DE ENERGIA NUCLEAR

SERRANO 121 MADRID, SPAIN

NUCLENOR CENTRALES NUCLEAR DEL NORTE S.A.

MADRID, SPAIN

TECNATOM TECNATOM S.A.

VALLEHERMOSO 30 MADRID, SPAIN

UEM UNION ELECTRICA MADRILENA S.A.

AV. JOSE ANTONIO 4

MADRID, SPAIN

SWEDEN

AB-ATOM A.B. ATOMENERGI

FOREIGN GLOSSARY AND ADDRESSES

LOVHOLMSVAGEN 7 STOCKHOLM 9. SWEDEN

ARC SWEDISH ATOMIC RESEARCH COUNCIL

DOBELNSGATAN 64

STOCKHOLM VA. SWEDEN

ASEA ALLMANNA SVENSKA ELECTRISKA A.B.

NUCLEAR POWER DEPARTMENT

VASTERAS, SWEDEN

ATOM=ASEA ATOM=ASEA

CONSORTIUM, ASEA AND GOVERNMENT, TO

TAKE OVER ASEA PROJECTS.

GOTAVERK CHANTIERS DE CONSTRUCTION NAVALE DE GOTAVERKE

GOTEBORG 8, SWEDEN

/SWEDISH SHIPBUILDING RESEARCH FOUNDATION/

JOHNSON JOHNSON INDUSTRIAL GROUP

AXEL JOHNSON INSTITUTE FOR INDUSTRIAL

RESEARCH

NYNASHAMM. SWEDEN

KVS SWEDISH STATE POWER BOARD

NUCLEAR POWER DEPARTMENT

KARDUANSMAKARGATAN 8

FACK

STOCKHOLM 1, SWEDEN

OKAB OSKARSHAMMSVERKETS KRAFTGRUPP AG

GROUP OF PRIVATE AND MUNICIPAL

UTILITIES, CENTRAL AND SOUTHERN SWEDEN

OKG SEE OKAB

SWED STATE PB SWEDISH STATE POWER BOARD

FACK, STOCKHOLM 2

SWEDEN

SYNDKRAFT SYDSVENSKA KRAFT AKTIEBOLAGET

SOUTH SWEDEN POWER COMPANY

SWITZERLAND

AET AZIENDA ELECTRICA TICINESE

BELLINZONA, SWITZERLAND

MEMBER ENERGIE NUCLEAIRE SA

ATOMKRAFT ATOMELEKTRA A.G.

BNWL - 936 JANUARY 1969

GLOSSARY AND ADDRESSES FOREIGN

FORCE ATOMIQUE S.A.

PRIVATBANK + VERWALTUNGSGESELLSCHAFT

BARENGASSE 29

ZURICH 1, SWITZERLAND

BBC BROWN, BOVERI, AND CO. LTD.

ATOMIC POWER DEPARTMENT

BADEN, SWITZERLAND

BERNISCHE KRAFTWERKE A.G. BKW

> 2 VIKTORIAPLATZ BERN, SWITZERLAND

> > MEMBER OF SUISATOM

EIDGENOSSISCHE INSTITUT FUR REAKTORFORSCHUNG EIR

WURENLINGEN, AARGAU, SWITZERLAND

FEDERAL INSTITUTE FOR REACTOR RESEARCH

ELECTRO-WATT FLECTRO-WATT LTD.

16 TALACKER

ZURICH, SWITZERLAND

ENERGIE NUCLEAIRE S.A. ENUSA

> 10 AVENUE DE LA GARE LAUSANNE, SWITZERLAND

FCAE FEDERAL COMMISSION FOR ATOMIC ENERGY

> FFFINGERSTRASSF 55 BERN. SWITZERLAND

MOTOR-COLUMBUS ELECTRICAL MANAGEMENT CO. LTD. MOTOR - COLUMBUS

> 27, 5400 BADEN SWITZERLAND

NORDOSTSCHWEIZERISCHE KRAFTWERKE AG NOK

FORCES ELECTRIQUES DU NORD-EST

DE LA SUISSE

BADEN, SWITZERLAND

RAG REACTOR A.G.

WURENLINGEN/A.G.

SWITZERLAND

SNA SOCIETE NATIONALE POUR L ENCOURAGEMENT

DE LA TECHNIQUE ATOMIQUE INDUSTRIELLE

MEMBERS ARE ENUSA, THERMATON,

AND SUISATOM.

SUISATOM SUISATOM, S.A.

BAHNHOFPLATZ 3

FOREIGN GLOSSARY AND ADDRESSES

ZURICH 1, SWITZERLAND

SULZER SULZER BROTHERS, LTD.

WINTERTHUR

ZURICH, SWITZERLAND

THERMATOM THERMATOM, S.A.

ZURCHER STRASSE 9

WINTERTHUR

ZURICH, SWITZERLAND

TAIWAN

POWER TAIWAN POWER COMPANY

TAIPOWER CORPORATION

UNITED ARAB REPUBLIC

UAR AEE UNITED ARAB REPUBLIC

ATOMIC ENERGY ESTABLISHMENT

INSHAS

NR. CAIRO, EGYPT, UNITED ARAB REPUBLIC

UNION OF SOVIET SOCIALIST REPUBLICS

CENTRAL ATOMIC CENTRAL ATOMIC ENERGY UTILIZATION BOARD

USSR

KURCHATOV KURCHATOV ATOMIC ENERGY INSTITUTE

MOSCOW, USSR

MINISTRY USSR MINISTRY OF POWER STATIONS

USSR

USSR SOVIET ATOMIC ENERGY COMMITTEE

/STATE ATOMIC ENERGY COMMITTEE OF THE USSR

COUNCIL OF MINISTERS/ STAROMONETNY PEREULOK 26

MOSCOW, U.S.S.R.

UNITED KINGDOM

AEA UNITED KINGDOM ATOMIC ENERGY AUTHORITY

11 CHARLES II STREET

LONDON S.W. 1

FOREIGN GLOSSARY AND ADDRESSES

.

ENGLAND

A.E.I. - JOHN THOMPSON NUCLEAR ENERGY CO. LTD

RADBROKE HALL

KNUTSFORD, CHESHIRE

ENGLAND

.AERE ATOMIC ENERGY RESEARCH ESTABLISHMENT

HARWELL

DIDCOT, BERKSHIRE

ENGLAND

APC ATOMIC POWER CONSTRUCTION, LTD.

29 THEOBALDS ROAD

LONDON W.C. 1. ENGLAND

INTERNATIONAL COMBUSTION

FAIREY ENG.

RICHARDSONS-WESTGARTH

BABCOCK ENG. ELEC. BABCOCK ENGLISH ELECTRIC NUCLEAR LTD.

REORGANIZATION OF NDC.

ENGLISH ELECTRIC BABCOCK + WILCOX LTD.

TAYLOR WOODROW

INDUSTRIAL REORGANIZATION CORP.

BAW LTD BABCOCK AND WILCOX LTD

ATOMIC ENERGY DEPARTMENT

209 EUSTON ROAD LONDON N.W. 1

ENGLAND

SEE BABCOCK ENG. ELEC.

BNX BRITISH NUCLEAR EXPORT EXECUTIVE

ATOMIC POWER CONSTRUCTION LTD.

THE NUCLEAR POWER GROUP

NUCLEAR DESIGN AND CONSTRUCTION

UK ATOMIC ENERGY AUTHORITY

CEGB CENTRAL ELECTRICITY GENERATING BOARD

BANKSIDE HOUSE SUMNER STREET LONDON S.E. 1

ENGLAND

DEHAV DE HAVILLAND ENGÎNE CO. LTD.

NUCLEAR POWER GROUP LEAVESDEN, HERFORDSHIRE

ENGLAND

DER DOUNREAY EXPERÎMENTAL REACTOR ESTABLISHMENT

FOREIGN GLOSSARY AND ADDRESSES

DOUNREAY

THURSO, CAITHNESS

SCOTLAND

EE ENGLISH ELECTRIC CO. LTD.

ATOMIC POWER DIVISION

CAMBRIDGE ROAD

WHETSTONE, NEAR LEICESTER

ENGLAND

SEE BABCOCK ENG. ELEC.

EE-BW SEE NUCLEAR DESIGN AND CONSTRUCTION

EE-BW-TW ENGLISH ELECTRIC: BABCOCK AND WILCOX, AND

TAYLOR WOODROW ATOMIC POWER CONSTRUCTIONS LTD

CAMBRIDGE ROAD

WHETSTONE, NEAR LEICESTER

ENGLAND

FAIREY FAIREY ENGINEERING LTD.

HESTON, MIDDLESEX

ENGLAND

MEMBER OF APC

FW FOSTER WHEELER LTD.

FOSTER WHEELER HOUSE

3 IXWORTH PLACE LONDON S.W. 3

ENGLAND

GEC GENERAL ELECTRIC CO. LTD. OF ENGLAND

ERITH, KENT

ENGLAND

GEC-SC G.E.C. AND SIMON-CARVES ATOMIC ENERGY CO.

GENERAL ELECTRIC CO. LTD. OF ENGLAND /GEC/

SIMON-CARVES LTD. /SC/

HAG HUMPHREYS AND GLASGOW LTD.

POWER DIVISION
22 CARLISLE PLACE

LONDON S.W. 1

ENGLAND

HS HAWKER SIDDELEY NUCLEAR POWER CO. LTD.

SUTTON LANE

LANGLEY, NEAR SLOUGH

BUCKINGHAMSHIRE

ENGLAND

MITCHELL MITCHELL ENGINEERING LTD.

FOREIGN GLOSSARY AND ADDRESSES

NUCLEAR POWER DIVISION 1 BEDFORD SQUARE LONDON W.C. 1 FNGLAND

NDC NUCLEAR DESIGN AND CONSTRUCTION CO.

WHETSTONE, LEICESTER

UNITED KINGDOM

ENGLISH ELECTRIC BABCOCK + WILCOX LTD

TAYLOR WOODROW

REORGANIZED. SEE BABCOCK ENG. ELEC.

NPG NUCLEAR POWER GROUP

RADBROKE HALL

KNUTSFORD, CHESHIRE

ENGLAND

NPPC NUCLEAR POWER PLANT CO. LTD.

MEMBER OF NPG

RIO TINTO RIO TINTO ZINC CORPORATION LTD.

6 ST. JAMES SQUARE

LONDON, S.W. 1, ENGLAND

RR ROLLS-ROYCE AND ASSOCIATES LTD.

P.O. BOX 31

DERBY ENGLAND

SC SIMON CARVES LTD.

NUCLEAR POWER DIV.

CHEADLE HEATH

STOCKPORT, CHESHIRE

ENGLAND

SSEB SOUTH OF SCOTLAND ELECTRICITY BOARD

EDINBURGH, SCOTLAND

TNPG THE NUCLEAR POWER GROUP

SEE NPG

TW TAYLOR WOODROW CONSTRUCTION LTD.

345 RUISLIP ROAD

SOUTHALL, MIDDLESEX, ENGLAND SEE BABCOCK ENG. ELEC.

UKAEA UNITED KINGDOM ATOMIC ENERGY AUTHORITY

11 CHARLES II STREET

LONDON S.W. 1

FOREIGN GLOSSARY AND ADDRESSES

* * * * * * * * * * * * * *

ENGLAND

UPC UNITED POWER CO. LTD.

MAGNET HOUSE KINGSWAY LONDON W.C. 2

ENGLAND

VICK VICKERS NUCLEAR ENGINEERING LTD.

VICKERS HOUSE WESTMINSTER LONDON S.W. 1

ENGLAND

WEST GERMANY

AEG ALLGEMEINE ELECTRIZITATS GESELLSCHAFT

AEG-HOCHHAUS FRANKFURT 70

GERMANY

AKB SEE ATOMKRAFT-BAYERN

AKS ARBEITSGEMEINSCHAFT KERNKRAFTWERKE STUTTGART

STUTTGART, GERMANY

ALKEM ALKEM

KARLSRUHE, WEST GERMANY

NUKEM

DOW CHEMICAL INTERNATIONAL

APK ARBEITSGEMEINSCHAFT PROJEKT KERNKRAFTWERK

WIESMOOR

49 HORSTENER STRASSE HAMBURG-HARBURG, GERMANY

ATOMFORUM DEUTSCHES GESELLSCHAFT FUR ATOMENERGIE E.V.

WENZELGASSE 2 II BONN, GERMANY

ATOMKRAFT-BAYERN GESELLSCHAFT FUR DIE ENTWICKLUNG DER

ATOMKRAFT IN BAYERN M.B.H.

BLUTENBURGSTRASSE 6
MUNICH 2. GERMANY

AVR ARBEITSGEMEINSCHAFT DEUTSCHER ENERGIE-

VERSORGUNGS UNTERNEHMEN ZUR VORBEREITUNG DER ERRICHTUNG EINES LEISTUNGSVERSUCHS-

REAKTORS E'V.

FOREIGN GLOSSARY AND ADDRESSES

LUISSENSTRASSE 105 DUSSELDORF, GERMANY

BASF BADISCHE ANILIN UND SODA FABRIK

BBC-KRUPP CONSORTIUM BBC-KRUPP ARBEITSGEMEINSCHAFT

CARL-REISS-PLATZ 1-5
MANNHEIM, GERMANY

BEWAG BERLINER KRAFT UND LICHT

BERLIN, GERMANY

CHEMISCHE WERKE CHEMISCHE WERKE HULS AG

DEUTSCH BAW DEUTSCH BARCOCK UND WILCOX-DAMPFKESSELWERKE

ATOMABTEILUNG

DUISBURGERSTRASSE 375 OBERHAUSEN, GERMANY

DEUTSCH WERFT DEUTSCH WERFT A.G.

HAMBURG 1, GERMANY /MEMBER OF GKSS/

ELECTROMARK HAGEN

EVS ENERGIE-VERSORGUNG SCHWABEN

GEA ATOMKRAFT-BAYERN

GFK GESELLSCHAFT FUR KERNFORSCHUNG M.B.H.

1 FRIEDRICHSPLATZ KARLSRUHE, GERMANY

GFR GERMAN FEDERAL REPUBLIC /WEST GERMANY/

FEDERAL MINISTRY FOR NUCLEAR ENERGY AND

WATER ECONOMY LUISENSTRASSE 46

BAD GODESBERG, GERMANY

GHH GUTEHOFFNUNGSHÜETTE STERKRADE AG

42 OBERHAUSEN RD POSTFACH, GERMANY

GKSS GESSELLSCHAFT FUR KERNENERGIEVERTUNG

IM SCHIFFBAU UND SCHIFFAHRT M.B.H.

/COMPANY FOR THE UTILIZATION OF
NUCLEAR ENERGY IN SHIPBUILDING AND

NAVIGATION/ NORMANNENWEG 10 HAMBURG 6, GERMANY

FOREIGN GLOSSARY AND ADDRESSES

HAMBURGISCHE HAMBURGISCHE ELECTRICITATSWERKE AG

48 GERHART-HAUPTMANN-PLATZ

2000 HAMBURG 1 WEST GERMANY

HKG HOCHTEMPERATUR=KERNKRAFTWERK

GESELLSCHAFT MBH HAGEN, W. GERMANY

INTERATOM INTERNATIONALE ATOMREAKTORBAU G.M.B.H.

506 BENSBERG/KOLN POSTFACH, GERMANY

DEMAG, W.GERMANY NORTH AMERICAN AVIATION, U.S.

DEUTSCH BABCOCK AND WILCOX

KBWP KERNKRAFTWERK BADEN-WURTTEMBERG

PLANNINGSGESELLSCHAFT M.B.H. STUTTGART-O, NECKARSTR. 121

GERMANY

NOW KERNKRAFTWERK OBRIGHEIM G.M.B.H.

KERNKRAFTWERK LING KERNKRAFTWERK LINGEN G.M.B.H.

SUBSIDIARY OF VEW WITH AEG

KERNKRAFTWERK OBRIG KERNKRAFTWERK OBRIGHEIM G.M.B.H.

STUTTGART, GERMANY FORMERLY KBWP

KFA=JUELICH KERNFORSCHUNGSANLAGE JUELICH

JUELICH, GERMANY

KFK KERNFORSCHUNGSZENTRUM KARLSRUHE

KERNREAKTOR BAU- UND BETRIEBS-GESELLSCHAFT

M.B.H.

5 WEBERSTRASSE KARLSRUHE, GERMANY

KKL SEE KERNKRAFTWERK LINGEN

KKN KERNKRAFTWERK NIEDERAICHBACH

SEE KNK

KKO SEE KERNKRAFTWERK OBRIGHEIM

KNK KERNKRAFTWERK NIEDERAICHBACH G.M.B.H.

NIEDERAICHBACH NUCLEAR STATION

KRB KERNKRAFTWERK RWE-BAYERNWERK GMBH

FOREIGN GLOSSARY AND ADDRESSES

GUNDREMMINGEN, GERMANY KARLSRUHE, GERMANY

KSH KERNENERGIEGESELLSCHAFT SCHLESWIG-HOLSTEIN

KWO KERNKRAFTWERK OBRIGHEIM

SEE KBWP

MAN MASCHINENFABRIK AUGSBURG-NURNBERG A.G.

NURNBERG, KATZWANGERSTR. 101

GERMANY

NORDWEST KRAFTWERK NORDWESTDEUTSCHE KRAFTWERK A.G.

HAMBURG, GERMANY

PREUSSENELEKTRA PREUSSISCHE ELEKTRIZITATIS AG

10-12 PAPENSTEIG

3 HANOVER W. GERMANY

RWE RHEINISCH WESTFALISCHES ELECTRIZITATSWERKE

ESSEN, GERMANY

RWE-BAYERNWERK KERNKRAFTWERK RWE-BAYERNWERK G.M.B.H.

GUNDREMINGEN BAVARIA, GERMANY

SIEMENS SIEMENS SCHUCKERTWERKE A.G.

ABTEILUNG REAKTORENTWICKLUNG WERNER-VON-SIEMENS-STRASSE 50

ERLANGEN, GERMANY

SKW STUDIENGESELLSCHRAFT KERNKRAFTWERKE G.M.B.H.

PEPENSTIEG 10-12 HANOVER, GERMANY

VAK VEREINIGTE ELEKTRIZITATSWER WESTFALEN AG

RWE

BAYERNWERK A. G.

VEW VEREINIGTE ELEKTRIZITATSWERK WESTFALEN A.G.

JOINT ELECTRICITY SUPPLY GROUP

WIESMOOR SEE APK

YUGOSLAVIA

ELEKTROSTO ELEKTROSTOPANSTVO

MACEDONIA ELECTRIC BOARD

JANUARY 1969

BNWL - 936

FOREIGN

GLOSSARY AND ADDRESSES

FEDERAL NUCL

FEDERAL NUCLEAR ENERGY COMMISSION OF THE SOCIALIST FEDERAL REPUBLIC OF

YUGOSLAVIA

29 KOSANCICEV VENAC PO BOX 353

BELGRADE, YUGOSLAVIA

UNO

YUGOSLAV INDUSTRIAL SYNDICATE

AQUEOUS HOMOGENEOUS REACTORS AND MOLTEN SALT HOMOGENEOUS REACTORS DOMESTIC

JANUARY 1969 BNWL-936:

AQ. HOMOGENEOUS AND MOLTEN SALT REACTORS. DOMESTIC ADD+

NAME/OWNER NUCLEAR HYDRAZINE PRODUCTION REACTOR /AGN

DESIGNER AEROJET-GENERAL NUCLEONICS

LOCATION STUDY, EXPERIMENTAL LOOP IN MTR /AGN=302 LOOP/

PURPOSE CHEMONUCLEAR REACTOR, IN-REACTOR PRODUCTION OF

HYDRAZINE

TYPE HOMOGENEOUS SUSPENSION FUEL

POWER MWE(MWT) 0 175

COQLANT ANHYDROUS LIQUID AMMONIA WITH 1 WT. PER CENT

HYDRAZINE

MODERATOR SUSPENSION FLUID

FUEL MATERIAL URANIUM DIOXIDE PARTICLES SUSPENDED IN ANHYDROUS

LIQUID AMMONIA

FUEL ENRICH. 93 PER CENT U-235

FUEL CHARGE APPROX. 270 KG. URANIUM DIOXIDE

BURNUP(REFUEL) RECYCLED FUEL PLUS ABOUT

0.58 POUND URANIUM DIOXIDE/DAY

NEUTRON FLUX APPROX. 10 E+11

CONTROL RODS

COOLANT TEMP. INLET 100 F OUTLET 160 F

COOLANT PRESS. 750 PSIA

REACTOR VESSEL SPHERICAL VESSEL 8 FT. DIA.

CONTAINMENT CANYON TYPE SHIELDING, UNDERGROUND

REMARKS URANIÚM FUEL COMPOUNDS SOLUBLE IN LIQUID AMMONÍA

ARE BEING STUDIED. THE NUCLEAR HYDRAZINE

PRODUCTION REACTOR CONCEPT DIRECTLY UTILIZES THE URANIUM FISSION PROCESS TO PRODUCE HYDRAZINE FROM

LIQUID AMMONIA. BASIS FOR OPERATION IS A HOMOGENOUS SLURRY OF FINE URANIUM DIOXIDE

PARTICLES SUSPENDED IN ANHYDROUS LIQUID AMMONIA.

URANIUM DIOXIDE IS SEPARATED FOR RECYCLE TO THE REACTOR AND FUEL REPROCESSING WITH MAKEHUP FUEL ADDED AS REQUIRED. FIRST STUDIES CONSIDERED U

AQ, HOMOGENEOUS AND MOLTEN SALT REACTORS, DOMESTIC ADOL

COMPOUND SUSPENDED IN AN AIR COOLANT

//SMOKE-FUELED/. AGN, GENERAL TIRE + RUBBER, AND

UNION CARBIDE WILL WORK AS A RESEARCH TEAM UNDER

AN AEC CONTRACT IN FISSIOCHEMISTRY FIELD, NITROGEN

FIXATION WITH NATURAL GAS OR COAL GASIFICATION

PRODUCTS FOR FERTILIZER AND INTERMEDIATE CHEMICAL

PRODUCTION WILL BE ONE AREA OF INVESTIGATION.

PROJECT WILL INCLUDE DESIGN OF CHEMONUCLEAR LOOPS

AND REACTORS AND THE DEVELOPMENT OF CERAMIC AND

MIXED-CERAMIC-METAL FUELS. THE REACTOR WORK WILL

TAKE PLACE AT UNION CARBIDES STERLING PARK

FACILITIES.

REFERENCES

NUCLEAR REACTOR MAY MAKE CHEMICALS. CHEM. AND ENG. NEWS 37, 46-7 /AUGUST 10, 1959/

NUCLEAR HYDRAZINE PROGRAM, FINAL TECHNICAL ENGINEERING REPORT, MARCH 22 1960-MARCH 22 1961 JH CUSACK, OTHERS ASD-TR-61-7-840 JULY 1961/

AQ. HOMOGENEOUS AND MOLTEN SALT REACTORS. DOMESTIC: ADOZ:

NAME/OWNER LAPRE /LOS ALAMOS POWER REACTOR EXPERIMENT//AEC

DESIGNER LOS ALAMOS SCIENTÍFIC LABORATORY

OPERATOR LOS ALAMOS SCIENTÍFIC LABORATORY

LOCATION LOS ALAMOS, N.M.

PURPOSE POWER EXPERIMENT

TYPE AQUEOUS HOMOGENEOUS, CIRCULATING FUEL

POWER MWE(MWT) 0 800 KWT

CRITICAL 1958, HAS BEEN DISMANTLED.

COQLANT LIGHT WATER

MODERATOR HYDROGEN IN FUEL SOLUTION

FUEL MATERIAL - URANIUM DIOXIDE IN AQUEOUS SOLUTION OF PHOSPHORIC

ACID

FUEL ENRICH. 93.4 PER CENT U2235

FUEL CHARGE 6.5 Kg. U=235

SPECIFIC POWER 250 KW/KG U-235

NEUTRON FLUX THERMAL AVE. 1X10 E+13 FAST AVE. 6X10 E+13

CONTROL MOVABLE SLEEVE OF BERYLLIUM OXIDE AND GRAPHITE

COOLANT TEMP. INLET 400 F OUTLET 600 F

COOLANT PRESS. INLET 700 PSI OUTLET 600 PSI

REACTOR VESSEL CYLINDRICAL SS, GOLD INNER CLADDING

CONTAINMENT SAFETY ENCLOSURE TANK, CARBON STEEL, COPPER LINED

REMARKS TWO VERSIONS HAVE BEEN STUDIED, BOTH USING

PHOSPHORIC ACID SOLUTIONS OF ENRICHED U AS FUEL.
IN BOTH SYSTEMS THE HEAT EXCHANGER FOR POWER
REMOVAL IS IN THE SAME PRESSURE VESSEL AS THE
REACTING FLUID. FUEL SOLUTION CIRCULATION IS BY

CONVECTION IN ONE VERSION AND BY FORCED

CIRCULATION IN THE OTHER, IN THE CONVECTION FLOW PLANT THE ACID IS ABOUT 95 PER CENT STRENGTH.

JANUARY 1969 BNWL-936:

AQ, HOMOGENEOUS AND MOLTEN SALT REACTORS, DOMESTIC ADD2

WHILE IN THE FORCED CIRCULATION SYSTEM IT IS 50 PER CENT. PURPOSE OF THE EXPERIMENTS WAS TO DEVELOP HIGH PRESSURE SUPERHEATED STEAM FOR GOOD TURBINE UTILIZATION.

REFERENCES

THE LOS ALAMOS POWER REACTOR EXPERIMENT.

D FROMAN, ET AL.

PROC. INTL. CONF. ON THE PEACEFUL USES OF ATOMIC ENERGY 3, 283-6 /1955/

THE FUEL SYSTEM URANIUM DIOXIDE-PHOSPHORIC ACIDE-WATER AND LOS ALAMOS POWER REACTOR EXPERIMENT II BU THAMER SECOND U.N. INTL. CONF. ON THE PEACEFUL USES OF ATOMIC ENERGY 7, 54-6 /1958/

AQ, HOMOGENEOUS AND MOLTEN SALT REACTORS, DOMESTIC AD03

NAME/OWNER HRE /HOMOGENEOUS REACTOR EXPERIMENT//AEC

DESIGNER OAK RIDGE NATIONAL LABORATORY

OPERATOR OAK RIDGE NATIONAL LABORATORY

. LOCATION OAK RIDGE, TENNESSEE

PURPOSE POWER EXPERIMENT

TYPE AQUEOUS HOMOGENEOUS; TWO-REGION, CIRCULATING FUEL

HRE-1 CRITICAL IN 1953 WAS LIGHT WATER COOLED.

DISMANTLED IN 1954.

POWER MWE(MWT) 5 10

CRITICAL 1958. CLOSED OUT 1961

COOLANT HEAVY WATER SOLUTION

MODERATOR HEAVY WATER

FUEL MATERIAL URANYL SULFATE IN HEAVY WATER SOLUTION

FUEL ENRICH. 93 PER CENT U-235

FUEL CHARGE 4 KG. U-235

SPECIFIC POWER 1700 KW/KG FISSIONABLE MATERIAL

BURNUP (REFUEL) /600 DAYS AT 5 MW/

CONTROL NONE

COOLANT TEMP. INLET 494 F OUTLET 572 F /CORE/

INLET 533 F OUTLET 539 F /BLANKET/

COOLANT PRESS. 2000 PSI

REACTOR VESSEL SPHERICAL ZIRCALOY=2 CORE TANK WITHIN SS=CLAD

CARBON STEEL PRESSURE VESSEL

CONTAINMENT STEEL-LINED CONCRETE CELL

REMARKS PRELIMINARY STUDIES OF BOILING HOMOGENEOUS SYSTEMS

WERE BASED ON URANIUM TRIOXIDE-HEAVY WATER OR URANYL SULFATE SLURRIES AS FUEL, WITH HEAVY WATER AS COOLANT AND MODERATOR. SINGLE AND TWO-REGION

DESIGNS WERE STUDIED. HRE-III, PROPOSED FOR

INVESTIGATING THE THORIUM/U=233 CYCLE, HAS BEEN

AQ. HOMOGENEOUS AND MOLTEN SALT REACTORS, DOMESTIC AD03

CANCELED. FOSTER WHEELER HAS PROPOSED CONSTRUCTION OF AN AHR POWER BREEDER USING A BLANKET OF FERTILE MATERIAL SURROUNDING THE CORE.

REFERENCES

PRELIMINARY DESIGN AND FEASIBILITY STUDY OF A LARGE-SCALE BOILING SLURRY PLUTONIUM-POWER PRODUCER.
LC WIDDOES, OTHERS
CF-51-8-84 /1951/

BOILING HOMOGENEOUS REACTOR FOR PRODUCING POWER AND PLUTONIUM, HE KARMACK, OTHERS CF-54-8-238 /1954/

THE HOMOGENEOUS REACTOR EXPERIMENT, A CHEMICAL ENGINEERING PILOT PLANT.

SE BEALL, CE WINTERS

CHEM, ENG. PROG. 50, 256-63 /MAY 1954/

ULTIMATE HOMOGENEOUS REACTOR, REACTOR AND FEASIBILITY PROBLEM.
RA THOMAS, OTHERS
CF-54-8-239 /1954/

THE HOMOGENEOUS REACTOR TEST,
SE BEALL, JA SWARTOUT
PROC. INTL. CONF. ON THE PEACEFUL USES OF ATOMIC
ENERGY 3, 263-82 /1955/

CIVILIAN POWER REACTOR PROGRAM, PART III. STATUS REPORT ON AQUEOUS REACTORS. 1960. TID-8518 /BOOK 3/

HRE-3 PRELIMINARY DESIGN SUMMARY AND REFERENCE REPORT.
RH CHAPMAN
CF-59-11-112 /1958/

PROPOSED MODIFICATIONS TO THE HRE CORE CG LAWSON CF-60-1-20 /JANUARY 1960/

HRE-II DESIGN REPORT
RH CHAPMAN
ORNL-TM-348 /MARCH 1964/

AQ, HOMOGENEOUS AND MOLTEN SALT REACTORS, DOMESTIC AD04

NAME/OWNER MSRE /MOLTEN SALT REACTOR EXPERIMENT//AEC

DESIGNER OAK RIDGE NATIONAL LABORATORY

OPERATOR OAK RIDGE NATIONAL LABORATORY

LOCATION DAK RIDGE, TENNESSEE

PURPOSE ENGINEERING EXPERIMENT

TYPE MOLTEN SALT FUELED, HOMOGENEOUS, SINGLE REGION,

HIGH POWER DENSITY

POWER MWE(MWT) 0 10

CRITICAL FULL POWER, ABOUT 7,5 MWT, MAY 1966

COOLANT FUEL MIXTURE /LITHIUM FLUORIDE-BERYLLIUM FLUORIDE/

MODERATOR GRAPHITE

FUEL MATERIAL MOLTEN FLUORIDES, IN PER CENT, 65 LITHIUM-7

FLUORIDE, 21.1 BERYLLIUM FLUORIDE, 5 ZIRCONIUM

FLUORIDE, 0.9 URANIUM FLUORIDE.

FUEL ENRICH. 25-30 PER CENT U-235 FIRST LOAD, LATER FULLY

ENRICHED U FUEL: AND LATER ADDITION OF THORIUM

FUEL ASSEMBLY CORE REGION IS 64 IN. HIGH. CONSISTING OF UNCLAD

GRAPHITE-MODERATOR STRINGERS WITH 1140 VERTICAL CHANNELS FOR FUEL FLOW. EACH CHANNEL IS 1.2 IN. WIDE AND 0.4 IN. DEEP. A 1/4 IN. THICK CYLINDER OF INOR-8 SURROUNDS THE CORE TO DIRECT FLOW. DOWNWARD THROUGH ANNULUS BETWEEN CYLINDER AND

REACTOR VESSEL. CYLINDER IS 68 IN. HIGH AND 56 IN. ID. FLOW IS THEN UPWARD THROUGH THE

CHANNELS.

FUEL CHARGE FUEL VOLUME IN CORE 25 CU. FT.

70.5 CU. FT SYSTEM TOTAL

NEUTRON FLUX THERMAL AVE. 1.5 E+13

PEAK 3.4 E+13

CONTROL FLEXIBLE TUBES IN CANNED CYLINDRICAL SEGMENTS OF

GADOLÍNIUM-ALUMÍNÚM OXIDE //BEADS/, CLAD INSIDE AND

OUT WITH INCONEL.

COOLANT TEMP. INLET 1015 F OUTLET 1075 F

REACTOR VESSEL INOR-8 ALLOY, VERTICAL GRAPHITE STRINGERS WITH

AG. HOMOGENEOUS AND MOLTEN SALT REACTORS, DOMESTIC AD04

MILLED-IN FUEL CHANNELS. PRIMARY /FUEL/ LOOP IS SEALED IN STEEL CONTAINMENT VESSEL. COOLANT SALT IS IN 163 U-TUBES.

CONTAINMENT

CONTAINMENT CELL IS 24 FT. DIAM. AND 33 FT. DEEP. THERMAL SHIELD AROUND REACTOR IS A DOUBLE-WALLED SS TANK, ANNULUS FILLED WITH WATER AND CARBON STEEL BALLS. THE INNER WALL IS LINED WITH THERMAL INSULATION AND HEATERS. PRESSURE-SUPPRESSION SYSTEM ADDED.

REMARKS

THE PLANT HAS PERFORMED WELL DURING TWO YEARS OF TEST OPERATION.

OAK RIDGE HAS PROPOSED A MOLTEN SALT BREEDER FOR CONSTRUCTION, A REFERENCE DESIGN FOR A 1000 MWE STATION HAVING BEEN COMPLETED. SEE AD07.

MSRE WAS REFULED WITH U-233 IN FALL OF 1968

IT WILL PROVIDE INFORMATION APPLICABLE TO A MOLTEN SALT THERMAL BREEDER OPERATING ON A THORIUM/U-233 CYCLE. 37 KG OF U-233 REPLACED THE U-235 STRIPPED FROM THE FUEL SALT ON-SITE.

MAPP UTILITIES WILL PARTICIPATE IN AN R+D AND FEASIBILITY STUDY OF THE MOLTEN SALT REACTOR LEADING TO CONSTRUCTION OF A DEMONSTRATION PLANT

REFERENCES

MOLTEN SALT BREEDER REACTOR. HG MACPHERSON CF-59-12-64 /REV./ /1960/

EXPERIMENTAL MOLTEN SALT FUELED 30 MW POWER REACTOR.

LC ALEXANDER, OTHERS

ORNL-2796 /MARCH 1960/

A 10 MWT MOLTEN-SALT REACTOR EXPERIMENT. AL BOCH, OTHERS TRANS, AMERICAN NUCLEAR SOC. 4, 331-2 /NOV. 1961/

THE MOLTEN SALT REACTOR EXPERIMENT.
AL BOCH, OTHERS
POWER REACTOR EXPERIMENTS, VOL. 1, P. 247=92
INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA /1962/

MSRE, MOLTEN SALT REACTOR EXPERIMENT. ES BETTIS, WB MCDONALD NUCLEONICS 22, 66-70 /JAN, 1964/

MOLTEN SALT FAST REACTORS,

AQ. HOMOGENEOUS AND MOLTEN SALT REACTORS, DOMESTIC ADD4

LG ALEXANDER
PROC. CONF. ON BREEDING, ECONOMICS, AND SAFETY IN
LARGE FAST POWER REACTORS, ARGONNE NATIONAL LAB.,
OCTOBER 7-10, 1963,
ANL-6792 /p. 553-70/

FUEL PROPERTIES AND NUCLEAR PERFORMANCE OF FAST REACTORS FUELED WITH MOLTEN CHLORIDES.
PA NELSON, OTHERS
TRANS. AMERICAN NUCLEAR SOC. 8, 153-4 /JUNE 1965/

THE MOLTEN SALT REACTOR AN INGREDIENT OF NUCLEAR PROGRESS.

FA SMITH

POWER REACTOR TECH. REACTOR FUEL PROCESS. 10, 6-16

/WINTER 1966-67/

AQ. HOMOGENEOUS AND MOLTEN SALT REACTORS, DOMESTIC AD05:

NAME/OWNER PAR /PENNSYLVANIA ADVANCED REACTOR//WEST

DESIGNER WESTINGHOUSE ELECTRIC CORPORATION

PURPOSE POWER DEMONSTRATION PROPOSAL

. TYPE AQUEOUS HOMOGENEOUS, CIRCULATING SOLUTION OR

SLURRY FUEL, SINGLE REGION

POWER MWE(MWT) 80 /A/

150 /B/ 550 //B/

CRITICAL R+D

COOLANT FUEL SOLUTION /A/

FUEL SLURRY /B/

MODERATOR HEAVY WATER IN FUEL SOLUTION OR SLURRY

REF. DESIGN 1, SLURRY

FUEL MATERIAL A - URANYL SULFATE, HEAVY WATER SOLUTION

B - URANIUM-THORIUM OXIDE, HEAVY WATER SUSPENSION

FUEL GEOMETRY SOLUTION OR SLURRY

FUEL ENRICH. 93 PER CENT U=235

REACTOR VESSEL SPHERICAL STEEL VESSEL 15 FT. DIA. / 6 IN. WALL

THICKNESS

REMARKS PAR THIRD ROUND PROPOSAL BY PENNSYLVANIA POWER AND.

LIGHT AND BALTIMORE GAS AND ELECTRIC WAS DROPPED IN 1958. AN EXTENDED R+D EFFORT WAS GRANTED BY AEC

FOR JUSTIFICATION OF THE SYSTEM. WITH POSSIBLE

CONSTRUCTION OF A DEMONSTRATION PLANT.

REFERENCES PRELIMINARY SYSTEM ANALYSIS FOR THE PENNSYLVANIA

ADVANCED REACTOR T GOGNIAT, OTHERS WCAP-433 /1956/

THE PAR HOMOGENEOUS REACTOR PROJECT.

WE JOHNSON, OTHERS

ASME PREPRINT 56-A-170 /1956/

THE PAR HOMOGENEOUS REACTOR PROJECT-PLANT DESIGN

AND OPERATING PROBLEMS.

WE JOHNSON, OTHERS

PROC. AMERICAN POWER CONF. 19. 640-50 /1957/

AQ. HOMOGENEOUS AND MOLTEN SALT REACTORS, DOMESTIC ADOS

PROPOSED 80,000 KILOWATT HOMOGENEOUS REACTOR PLANT PROCESS AND PLANT DESCRIPTION. DH FOX, ED. WCAP~9 /1955/ DECLASSIFIED FEB. 1957

PAR HOMOGENEOUS UNIT.

JE KENTON

NUCLEONICS 15, 166 /SEPTEMBER 1957/

DESIGN CONSIDERATION FOR THE PAR SLURRY HOMOGENEOUS PLANT.
ATOMIC ENERGY 9, 202-10 /1958/

AQ, HOMOGENEOUS AND MOLTEN SALT REACTORS, DOMESTIC ADOC

NAMEZOWNER AQUEOUS HOMOGENEOUS REACTOR DESIGN ZBAW

DESIGNER BABCOCK AND WILCOX

PURPOSE POWER AND SPACE HEAT

. TYPE AQUEOUS HOMOGENEOUS. TWO REGION.

POWER MWE(MWT) 100 KWE 400 KWT

CRITICAL DESIGN STUDY

COOLANT FUEL SOLUTION

MODERATOR FUEL SOLUTION

FUEL MATERIAL URANYL SULFATE IN LIGHT WATER SOLUTION

FUEL ENRICH. SLIGHT

FUEL CHARGE 4:8 Kg. U-235

BURNUP (REFUEL) FUEL ADDITION 580 GM./YEAR

FUEL REPLACEMENT AFTER 5 YEARS

CONTROL AUTOMATIC BY POWER DEMAND

REMARKS A CONCEPTIONAL DESIGN FOR A 150 MWE PLANT HAS BEEN

COMPLETED, THIS CONCEPT IS A TWO-REGION REACTOR

WITH A THORIA PELLET BLANKET.

REFERENCES A DESIGN STUDY OF A LOW-POWER AQUEOUS HOMOGENEOUS

BOILING REACTOR POWER PLANT.

BA MONG, OTHERS

BW-AED-502 /JUNE 1, 1955 DECL. APRIL 3, 1959/

SINGLE-FLUID TWO-REGION AQUEOUS HOMOGENEOUS REACTOR POWER PLANT, CONCEPTIONAL DESIGN AND

FEASIBILITY STUDY. FINAL REPORT.

NUCLEAR POWER GROUP, BABCOCK AND WILCOX CO.

NPG-171 /JUNE 1957/

AQ, HOMOGENEOUS AND MOLTEN SALT REACTORS, DOMESTIC AD07

NAME/OWNER MSBR /MOLTEN SALT BREEDER REACTOR/ ORNL

DESIGNER OAK RIDGE NATIONAL LABORATORY

PURPOSE POWER BREEDER DEVELOPMENT

- TYPE MOLTEN SALT HOMOGENEOUS REACTOR: TWO=REGION:

TWO-FLUID SYSTEM. THERMAL BREEDER

POWER MWE(MWT) 1000 2225

CRITICAL REFERENCE DESIGN

COOLANT FUEL SALT

MODERATOR GRAPHITE

GRAPHITE REFLECTOR

FUEL MATERIAL CORE, URANIUM FLUORIDE DISSOLVED IN

LITHIUM-BERYLLIUM FLUORIDE SALTS.
BLANKET, THORIUM FLUORIDE DISSOLVED IN
LITHIUM-BERYLLIUM FLOURIDE SALTS.

FUEL GEOMETRY GRAPHITE TUBES, CHANNELED, 3.5 IN. OD.

FUEL ASSEMBLY CORE ASSEMBLY IS 12.5 FT. HIGH BY 10 FT. DIAM.

COMPOSED OF 534 GRAPHITE FUEL ELEMENTS. FUEL FLOW IS UPWARD THROUGH PASSAGES IN OUTER REGION OF TUBE

AND DOWNWARD THROUGH CENTRAL PASSAGE.

AN 18-IN. THICK MOLTEN SALT BLANKET IS FORMED BY BLANKET SALT FILLING THE INTERSTICES OF HEXAGONAL

MODERATOR BLOCKS SURROUNDING THE CORE.

SPECIFIC POWER 2,89 MWT/KG FISSILE

BURNUP (REFUEL) ON-SITE FUEL:

RECYCLE PROCESSING

NEUTRON FLUX THERMAL AVE. 6.7 E+14

FAST AVE. 12.1 E+14

COOLANT TEMP. FUEL SALT INLET 1000 F OUTLET 1300 F

BLANKET INLET 1150 F OUTLET 1250 F

REACTOR VESSEL HASTELLOY-N CYLINDER 14 FT. DIAM. BY 19 FT. HIGH. SIDE WALLS 1,25 IN. THICK, HEADS 2,25 IN. THICK.

CONTAINMENT REINFORCED CONCRETE REACTOR CELL, STEEL LINER.

VAPOR SUPPRESSION SYSTEM.

REMARKS AN MSBR /PA/ DESIGN REFERS TO THE DIRECT REMOVAL

AG. HOMOGENEOUS AND MOLTEN SALT REACTORS, DOMESTIC AD07

OF PROTACTINIUM FROM THE BLANKET STREAM IN THE BLANKET PROCESSING STEP. EXCEPT FOR THIS STEP THE PARAMETERS ARE THE SAME. ALTERNATIVE MSR DESIGNS ARE THE MSBR /PA=PB/, USING DIRECT CONTACT COOLING WITH MOLTEN LEAD AND PROTACTINIUM RECOVERY, THE SSCP /PA/ DESIGN FOR A SINGLE-STREAM CORE BREEDER WITH DIRECT REMOVAL OF PROTACTINIUM FROM THE FUEL STREAM, MOSEL /PA-PB/ WHICH IS AN EPITHERMAL BREEDER WITH DIRECT CONTACT COOLING WITH MOLTEN LEAD AND PROTACTINIUM REMOVED FROM FUEL STREAM, AND MSCR, A MOLTEN SALT CONVERTER REACTOR. SEE AD04.

REFERENCES

MOLTEN SALT CONVERTER REACTOR, DESIGN STUDY AND POWER COST ESTIMATES FOR A 1000 MWE STATION, LG ALEXANDER, OTHERS ORNL=TM-1060 /SEPT, 1965/

DESIGN STUDIES OF 1000-MWE MOLTEN SALT BREEDER REACTORS
PR KASTEN, OTHERS
ORNL=3996 /AUG. 1966/

AQUEOUS HOMOGENEOUS REACTORS AND MOLTEN SALT HOMOGENEOUS REACTORS FOREIGN

AQ. HOMOGENEOUS AND MOLTEN SALT REACTORS FOREIGN AF01:

NAME/OWNER PHOEBUS/CEA, FRANCE

DESIGNER CEA. FRANCE

LOCATION GRENOBLE, FRANCE

PURPOSE POWER EXPERIMENT

TYPE AQUEOUS HOMOGENEOUS, CIRCULATING SLURRY FUEL,

BOILING.

POWER MWE(MWT) 0 .1:

CRITICAL R+D

COOLANT LIGHT WATER FUEL SLURRY

MODERATOR LIGHT WATER FUEL SLURRY

FUEL MATERIAL URANIUM DIOXIDE IN GLASS MARBLES, SUSPENDED IN

WATER

REMARKS RESEARCH AND DEVELOPMENT PROJECT, PROTOTYPE

REPORTEDLY UNDER CONSTRUCTION. BOILING SLURRY CONCEPT. SECOND PHASE OF THE RESEARCH PROGRAM IS TO BE THE STUDY OF A BOILING CYCLONE-REACTOR. PHOEBUS HAS A CYLINDRICAL CORE. LIQUID FUEL IS INJECTED TANGENTIALLY AT THE PERIPHERY OF THE

CORE, AND A VORTEX FLOW MAINTAINED.

REFERENCES IDEAS ON A PROJECT FOR A HOMOGENEOUS REACTOR.

J BENEVISTE: OTHERS

SECOND U.N. INTL. CONF. ON THE PEACEFUL USES OF

ATOMIC ENERGY 9, 415-20 /1958/

AQ. HOMOGENEOUS AND MOLTEN SALT REACTORS FOREIGN AFO2

NAME/OWNER SUS-POP /SUSPENSION POWER ONLY PILE/ /RON-THE

NETHERLANDS

DESIGNER KEMA, THE NETHERLANDS

OPERATOR KEMA

LOCATION ARNHEIM, THE NETHERLANDS

PURPOSE POWER EXPERIMENT

TYPE AQUEOUS HOMOGENEOUS, CIRCULATING SLURRY FUEL

POWER MWE(MWT) 250 KWE

CRITICAL SUB-CRITICAL SYSTEM IN OPERATION 1955

COOLANT LIGHT WATER FUEL SLURRY

MODERATOR LIGHT WATER FUEL SLURRY

FUEL MATERIAL URANIUM DIOXIDE SUSPENSION IN WATER

FUEL ENRICH. 20 PER CENT U=235

CONTROL BORON CARBIDE SHIM-SAFETY RODS: IN THE REFLECTOR

REACTOR VESSEL STAINLESS STEEL CYLINDER

CONTAINMENT CONCRETE SHIELD

REMARKS A SUBCRITICAL SYSTEM HAS BEEN IN OPERATION. THREE-

PHASE PROGRAM HEAVY WATER SYSTEM, ENTAILING PRELIMINARY STUDY, DUTCH INDUSTRY STUDY, AND CONSTRUCTION, HAS BEEN INSTITUTED BY SEP WITH ASSISTANCE FROM KEMA, RCN AND U.S. INDUSTRY, REPLACING THE PRIMARY PROJECT, A SYSTEM USING A CIRCULATING FUEL OF THORIUM OXIDE AND URANIUM

OXIDE SUSPENDED IN HEAVY WATER WAS STUDIED, AND IS

CURRENTLY UNDER DEVELOPMENT. SEE KSTR.

REFERENCES THE DESIGN OF A SMALL SCALE PROTOTYPE OF A

HOMOGENEOUS REACTOR FUELED WITH URANIUM OXIDE

SUSPENSION.

H DE BRUYN, OTHERS

INTL CONF. ON THE PEACEFUL USES OF ATOMIC ENERGY

3, 116-20 /1955/

AQ. HOMOGENEOUS AND MOLTEN SALT REACTORS FOREIGN AF03

NAME/OWNER KSTR /KEMA SUSPENSION TEST REACTOR/ KEMA-RON-EUR.

NETHERLANDS

DESIGNER RON-KEMA-SEP, THE NETHERLANDS

OPERATOR REACTOR CENTRUM NEDERLAND

LOCATION ARNHEIM, THE NETHERLANDS

PURPOSE POWER EXPERIMENT

TYPE AQUEOUS HOMOGENEOUS, SLURRY FUEL, PROTOTYPE

POWER MWE(MWT) 250 KW

CRITICAL DESIGN AND CONSTRUCTION /SEE ALSO SUS-POP/

COOLANT HEAVY WATER

MODERATOR HEAVY WATER FUEL SLURRY
BERYLLIUM OXIDE REFLECTOR

FUEL MATERIAL URANIUM/THORIUM OXIDE SUSPENSION IN HEAVY WATER

FUEL ENRICH. HIGH

CONTROL UNDETERMINED

COOLANT TEMP. 250 C

REACTOR VESSEL CYLINDRICAL SS VESSEL, CONED ENDS,

23 IN. LONG/11.05 IN. DIA. 18 LITERS CAPACITY

CONTAINMENT DOUBLE CONTAINMENT, REACTOR SYSTEM IS IN STEEL

COMPARTMENTS BACKED UP BY CONCRETE BIOLOGICAL SHIELD = THE FIRST CONTAINMENT = AND A CONCRETE

REACTOR HALL . THE SECOND CONTAINMENT.

REMARKS SUBCRITICAL REACTOR IN OPERATION, SECOND STEP

/PROCESS/ REACTOR UNDER CONSTRUCTION. PART OF SEPS 3-PHASE PROGRAM /SEE SUS-POP/. THE SEP PROGRAM, WITH ASSISTANCE FROM KEMA, RCN, AND US INDUSTRY, LARGELY REPLACE KEMAS AHR DEVELOPMENT PROGRAM.

SUSPENSION FLOW IS UPWARD THROUGH VESSEL

REFERENCES DEVELOPMENT OF A 250 KW AQUEOUS HOMOGENEOUS SINGLE

REGION SUSPENSION REACTOR.

PJ KREYGER, OTHERS

SECOND U.N. INTL. CONF. ON THE PEACEFUL USES OF

ATOMIC ENERGY 9; 427-30 /1958/

AG. HOMOGENEOUS AND MOLTEN SALT REACTORS, FOREIGN AF03

KSTR. THE KEMA SUSPENSION TEST REACTOR, NUCLEAR ENG. 8, 437-39 /DEC 1963/

THE AQUEOUS HOMOGENEOUS SUSPENSION REACTOR PROJECT KEURING VAN ELECTROTECHNISCHE MATERIALEN, N.V. ARNHEIM. GENEVA, 1964. A/CONF. 28/P/635

THE HOMOGENEOUS SUSPENSION REACTOR PROJECT

JJ WEST
EURONUCLEAR 3 /2/. 89+92 /FEB. 1966/

AQ. HOMOGENEOUS AND MOLTEN SALT REACTORS FOREIGN AF04

NAME/OWNER DAVID POWER REACTOR /ASEA. SWEDEN

DESIGNER ASEA, SWEDEN

PURPOSE CONCEPT FOR POWER, DESIGN STUDY

TYPE SLURRY FUEL HOMOGENEOUS.

CRITICAL CONCEPT

COOLANT HEAVY WATER

MODERATOR HEAVY WATER

FUEL MATERIAL URANIUM THORIUM OXIDES IN HEAVY WATER. SLURRY

REMARKS EXPERIMENTAL WORK IN PROGRESS
NO RECENT INFORMATION.

REFERENCES A BOILING SLURRY REACTOR CONCEPT.

O. LINDSTROM. B. WIDELL

ASEA RESEARCH, NO. 7, PP. 239-70 /1962/

AG. HOMOGENEOUS AND MOLTEN SALT REACTORS FOREIGN AF05

NAME/OWNER MOSEL /MOLTEN SALT EPITHERMAL REACTOR//W GERMANY

DESIGNER KFA, JUELICH, W. GERMANY

PURPOSE POWER

TYPE TWO-FLUID, TWO-REGION MOLTEN SALT REACTOR

MODULAR CONSTRUCTION

POWER MWE(MWT) 500

CRITICAL CONCEPTUAL DESIGN

COOLANT BLANKET FLUID, INTERMEDIATE HEAT TRANSFER FLUID

FUEL MATERIAL CORE, URANIUM DISSOLVED IN MOLTEN FLUORIDES

BLANKET, THORIUM IN MOLTEN FLUORIDES SODIUM AND BERYLLIUM FLUORIDES

FUEL GEOMETRY MOLTEN SALT MIXTURE

FUEL ASSEMBLY FUEL CHANNEL DESIGNS INCLUDE PIPES OR PLATES

PLATE-TYPE CORES COULD INVOLVE CONCENTRIC RINGS.

SPIRALS, INVOLUTES, AND PLATES

SPECIFIC POWER 1-3 MW/KG

COOLANT TEMP. 550-640 C

REMARKS A CONCEPTUAL DESIGN AND ECONOMIC STUDY FOR A TWO-

FLUID, TWO-REGION REACTOR, POWER PLANT INCLUDES

THE REACTOR, TURBINE GENERATOR, AND FUEL

PROCESSING FACILITIES.

CORE IS SEPARATED FROM THE SURROUNDING BLANKET BY

A WALL. BLANKET SALT PASSES THROUGH THE CORE

BEFORE FLOWING THROUGH THE BLANKET REGION

INTERNAL DIRECT CONTACT COOLING, WITH LEAD AS THE COOLANT, AND INTERNAL COOLING WITH SEPARATE FUEL

AND COOLANT ARE BEING STUDIED, AS WELL AS EXTERNAL COOLING WITH DIRECT CONTACT HEAT EXCHANGE.

REFERENCES THE MOSEL REACTOR CONCEPT

PR KASTEN

GENEVA, 1964, PAPER =538

ATOMPRAXIS 10, 441-43 /1964/

THE MOSEL REACTOR CONCEPT

PR KASTEN

3RD U.N. INTL. CONF. ON THE PEACEFUL USES OF ATOMIC ENERGY, GENEVA. 1964. A/CONF.28/P/538

AQ, HOMOGENEOUS AND MOLTEN SALT REACTORS, FOREIGN AF05

DESIGN CONCEPTS FOR THE CORE STRUCTURE OF A MOSEL-MOLTEN SALT EXPERIMENT REACTOR
PR KASTEN
NUCLEAR STRUCTURAL ENG. 2, 224-32 /1965/

COOLING CONCEPTS FOR A COMPACT MOSEL: /MOLTEN SALT/ REACTOR.
U GAT
NUCLEAR ENG. DESIGN 5, 113-22 /MARCH 1967/

AG. HOMOGENEOUS AND MOLTEN SALT REACTORS FOREIGN AFO6

NAME/OWNER SAWA/INST. NUCLEAR RESEARCH, POLAND

DESIGNER INSTITUTE OF NUCLEAR RESEARCH, POLAND

PURPOSE POWER BREEDER

TYPE MOLTEN SALT HOMOGENEOUS, FAST BREEDER

POWER MWE(MWT) .1000

CRITICAL CONCEPT

COOLANT ALUMINUM CHLORIDE, BOILING.
CLOSED CYCLE CIRCULATION

FUEL MATERIAL CORE, PLUTONIUM TRICHLORIDE, MOLTEN

BLANKET, URANIUM CHLORIDES, SODIUM OR POTASSIUM

CHLORIDE AS DILUENT

FUEL ASSEMBLY 6000-LITER CORE

FUEL CHARGE 1000 KG, PLUTONIUM-239

4000 KG, URANIUM=238

SPECIFIC POWER 333 KW/LITER LIQUID SALT

COOLANT TEMP. INLET 280 C /Liquid/

OUTLET 800 C /VAPOR/

REMARKS SODIUM CHLORIDE IN THE CORE COMPOSITION IS AN

INACTIVE DILUENT. THE ALUMINUM CHLORIDE CIRCULATES

IN A CLOSED CYCLE, THE VAPOR TRANSFERRING HEAT

FROM CORE TO AN EXCHANGER OR TURBINE WITH CONDENSER, IT IS THEN RETURNED TO THE CORE IN

LIQUID STATE.

REFERENCES SALT-BOILING FAST REACTOR SAWA.

M TAUBE, OTHERS

INR-669/C /DEC: 1965/

CONCEPTS OF THE FUSED SALT REACTORS SAWA AND WARS.

COMPILATION OF CHARACTERISTICS.

M TAUBE A KOWALEW

KERNENERGIE 10, 184-6 /JUNE 1967/

NEW BOILING SALT FAST BREEDER REACTOR CONCEPTS.

M TAUBE, OTHERS

NUCLEAR ENG. DESIGN 5. 109-12 /1967/

BNWL-936 JANUARY 1969

AF07 AG. HOMOGENEOUS AND MOLTEN SALT REACTORS, FOREIGN

WARS/INST. NUCLEAR RESEARCH, POLAND NAME/OWNER

INSTITUTE OF NUCLEAR RESEARCH, POLAND DESIGNER

TYPE MOLTEN SALT FAST REACTOR

1000 POWER MWE(MWT)

CRITICAL DESIGN

BOILING MERCURY COOLANT

PLUTONIÚM TRICHLORIDE FUEL MATERIAL CORE.

BLANKET URANIUM CHLORIDE

SODIUM OR POTASSIUM CHLORIDE DILUENT

MERCURY IS PUMPED INTO THE FUSED SALT TO GIVE FUEL ASSEMBLY

A DISPERSED SYSTEM, AND IS HEATED TO BOILING

TEMPERATURE.

SPECIFIC POWER 400 KW/LITER SALT

COOLANT TEMP. INLET 600 C OUTLET 740 C

REACTOR VESSEL TANK-TYPE VESSEL

MERCURY-BOILING FUSED-SALT FAST REACTOR, WARS REFERENCES

M TAUBE, OTHERS

INR-706/C /APRIL 1966/

CONCEPT OF THE FUSED SALT REACTORS: SAWA AND WARS.

COMPILATION OF CHARACTERISTICS

M TAUBE, A KOWALEW

KERNENERGIE 10, 184-6 /JUNE 1967/

NEW BOILING SALT FAST BREEDER REACTOR CONCEPTS.

M TAUBE, OTHERS

NUCLEAR ENG. DESIGN 5, 109-12 /1967/

BOILING LIGHT WATER REACTORS DOMESTIC

BOILING LIGHT WATER REACTORS, DOMESTIC BD01

NAME/OWNER PATHFINDER ATOMIC POWER PLANT/AEC: NSP

DESIGNER ALLIS-CHALMERS MANUFACTURING CO.

OPERATOR NORTHERN STATES POWER COMPANY

LOCATION SIOUX FALLS, S. D. BIG SIOUX RIVER

PURPOSE POWER DEMONSTRATION

TYPE BWR, CONTROLLED RECIRCULATION, NUCLEAR SUPERHEAT

POWER MWE(MWT) 58,5 189

CRITICAL MARCH 1964, CORE/BOÎLER/AND SUPER HEATER DEC. 1964
SEE REMARKS

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL BOILER, URANIUM DIOXIDE PELLETS 0.348 AND

0.310 IN. DIA.

SUPERHEATER, URANIUM DIOXIDE-SS CERMET 0.020 IN.

THICK

FUEL GEOMETRY BOILER, RODS 72 IN. ACTIVE LENGTH

SUPERHEATER, CONCENTRIC TUBES 71,5 IN. ACTIVE

LENGTH

FUEL CLADDING BOILER, ZIRCALOY 2 0.04 IN. THICK

SUPERHEATER, SS. 0.006 IN. THICK

FUEL ENRICH. BOILER, 2.2 AND 3.2 PER CENT U#235

SUPERHEATER, 93 PER CENT U=235

FUEL ASSEMBLY BOILER, 81 RODS, 9X9,

96 ELEMENTS/LOADING

SUPERHEATER, 2 FUELED CERMET TUBES, CONCENTRIC.

412 ELEMENTS/LOADING

FUEL CHARGE BOILER 6560 KG. URANIUM

SUPERHEATER 50 KG, U-235

SPECIFIC POWER 24 KW/KG U IN BOILER

BURNUP (REFUEL) 10,000 MWD/TON U FUEL LIFETIME AVE. 1,3 YEARS

FOR SUPERHEAT, 9 MONTHS.

NEUTRON FLUX THERMAL AVE, 4X10 E+13 /BOILER/

BOILING LIGHT WATER REACTORS, DOMESTIC BD01

10 E+13 /SUPERHEATER/ FAST AVE. 2X10 E+14

CONTROL BORON-SS CONTROL RODS, CONTROLLED RECIRCULATION

COOLANT TEMP. INLET 360 F OUTLET 825 F

REACTOR VESSEL CYLINDRICAL, CARBON STEEL, SS LINED.

CONTAINMENT CYLINDRICAL STEEL VESSEL, HEMISPHERICAL TOP AND ELLIPSOIDAL BOTTOM, 50 FT, ID,/120,5 FT. HIGH. ABOUT ONE-HALF BELOW GRADE.

THE COOLANT IS CIRCULATED BY PUMPS LOCATED EXTERNALLY TO THE REACTOR VESSEL. WET STEAM GENERATED IN THE BOILING REGION PASSES THROUGH THE NUCLEAR SUPERHEATER FOR CONVERSION TO DRY STEAM FOR USE IN THE ELECTRICITY=GENERATING TURBINE. THE SECOND SUPERHEAT FUEL LOADING WILL CONSIST OF LOW-ENRICHMENT URANIUM DIOXIDE PELLETS. CLADDING UNDETERMINED, THE BOILER ELEMENTS WILL PROBABLY BE UNCHANGED.

SCHEDULED SHUT-DOWN IN SEPT. 1967 SHOWED SEVERAL FAILED STEAM SEPARATOR NOZZLES. NORTHERN STATES POWER HAS SHUT DOWN THE REACTOR PERMANENTLY

REFERENCES A CONTROLLED RECIRCULATION BOILING WATER REACTOR WITH NUCLEAR SUPERHEATER.

CB GRAHAM, OTHERS

SECOND U. N. INTL. CONF. ON THE PEACEFUL USES OF ATOMIC ENERGY 9. 74-8 /1958/

INTERIM FEASIBILITY REPORT, NUCLEAR SUPERHEATER FOR A CONTROLLED RECIRCULATION BOILING REACTOR. ALLIS-CHALMERS AECU-3704 /MAY 1958/

A CONTROLLED RECIRCULATION BOILING WATER REACTOR WITH NUCLEAR SUPERHEATER. PATHFINDER ATOMIC POWER PLANT FEASIBILITY REPORT. ALLIS-CHALMERS ACNP-5917 /AUGUST 1959/

PATHFINDER ATOMIC POWER PLANT SAFEGUARDS REPORT.
PART II. LICENSE APPLICATION.
NORTHERN STATES POWER CO.
ACNP-5905 /JANUARY 15, 1962/

DESIGN AND CONSTRUCTION PRACTICE, PATHFINDER AND BONUS.

BOILING LIGHT WATER REACTORS, DOMESTIC BD01:

W MITCHELL POWER REACTOR TECHNOLOGY 7/3/, 276-312: /SUMMER 1964/

BOILING LIGHT WATER REACTORS, DOMESTIC BD02

NAME/OWNER LA CROSSE BWR/DAIRYLAND POWER

DESIGNER ALLIS-CHALMERS MANUFACTURING CO.

OPERATOR DAIRYLAND POWER COOPERATIVE

LOCATION GENOA, WISCONSIN

MISSISSIPPI RIVER

PURPOSE POWER DEMONSTRATION, 2ND ROUND.

TYPE BWR, FORCED CIRCULATION, DIRECT CYCLE, SINGLE

PASS, SINGLE ZONE

POWER MWE(MWT) 50 165

CRITICAL JULY 1967.

ON-LINE TARGET OCT. 1968.

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS 0.350 IN. DIA./1.05 IN.

LONG

FUEL GEOMETRY ROD 0.396 IN. OD./83 IN. ACTIVE LENGTH

FUEL CLADDING STAINLESS STEEL TUBES 0.020 IN WALL THICKNESS

THICKNESS

FUEL ENRICH. 3.63 PER CENT U-235

FUEL ASSEMBLY ROD BUNDLE 10/10, ZIRCONIUM AND SS SHROUDS

72 ASSEMBLIES/CORE

SS SHROUDS OF INITIAL CORE WILL BE REPLACED PART WAY THROUGH CORE LIFE BY ZIRCONIUM SHROUDS. SHROUD

SECTIONS ARE REMOVABLE.

FUEL CHARGE 8600 KG. URANIUM

BURNUP(REFUEL) INITIAL CORE 12,700 MWD/T

NEUTRON FLUX THERMAL AVE. 1.5 x 10 E+13

CONTROL BORON CARBIDE PELLETS IN INCONEL TUBES:

CRUCIFORM SHEATHS OF SS CONTROLLED CIRCULATION

COOLANT TEMP. INLET 285.6 F

BOILING LIGHT WATER REACTORS, DOMESTIC BD02

COOLANT PRESS. INLET 1350 PSIA

REACTOR VESSEL CYLINDRICAL STEEL VESSEL, HEMISPHERICAL ENDS

SS LINING 0,188 IN. THICK

8.25 FT. ID/37 FT. HIGH, 4 IN. WALL THICKNESS WITH

CLADDING

SS INNER THERMAL SHIELD

CONTAINMENT STEEL BUILDING, HEMISPHERICAL DOME

LINED ABOVE-GRADE WITH 9-IN. CONCRETE. DOME IS

UNLINED

REFERENCES HAZARDS SUMMARY REPORT FOR CONSTRUCTION

AUTHORIZATION OF THE LA CROSSE BOILING WATER

REACTOR.

ALLIS-CHALMERS MANUFACTURING CO.

ACNP-62574 /OCTOBER 1962/

LA CROSSE BOILING WATER REACTOR, SAFEGUARDS

REPORT FOR OPERATING AUTHORIZATION.

ALLIS-CHALMERS

ACNP-65544 /VOL. 1-2/ JULY 1965

BOILING LIGHT WATER REACTORS, DOMESTIC BD03:

NAME/OWNER SUPERHEAT REACTOR STUDY /AC

DESIGNER ALLIS-CHALMERS MANUFACTURING CO.

PURPOSE POWER

TYPE BWR NUCLEAR SUPERHEAT AND BWR SUPERHEAT REHEAT

DESIGNS.

POWER MWE(MWT) 400

CRITICAL DESIGN

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE

REMARKS AN INTEGRAL SUPERHEAT REACTOR ISR IS DESIGNED TO

REACH STEAM AT 1450 PSIG AND 1000 F BY 3 PASSES THROUGH THE BOILER AND SUPERHEATER. A SUPERHEATER REHEAT REACTOR SSR CONCEPT WOULD USE TWO REACTORS. THE STEAM BEING DEVELOPED IN A SUPER HEAT BWR AND

REHEATED IN A SEPARATE SUPERHEAT REACTOR.

REFERENCES APPLIED ATOMICS DEC. 11, 1963 P 6-7.

NEWS RELEASE

BOILING LIGHT WATER REACTORS, DOMESTIC BD04

NAME/OWNER SUPERHEAT REACTOR FOR PROPULSION/AC

DESIGNER ALLIS-CHALMERS MANUFACTURING CO.

PURPOSE SHIP PROPULSION, SURFACE VESSEL

TYPE BWR, NUCLEAR SUPERHEAT

POWER MWE(MWT) 175

CRITICAL DESIGN

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL GEOMETRY RODS, ACTIVE LENGTH 7 FT.

FUEL ASSEMBLY BOILER, 136 ELEMENTS

SUPERHEATER /CENTRAL/, 343 ELEMENTS

CONTROL RODS

REACTOR VESSEL STEEL VESSEL 9.5 FT. ID./30 FT. LONG.

WALL THICKNESS INCLUDING CLAD 5 IN.

CONTAINMENT STEEL VESSEL PLUS LEAD SHIELDING.

REMARKS FULL DESIGN STUDY HAS BEEN DONE FOR GIBBS AND COX.

N. Y.

REFERENCES NUCLEAR SUPERHEAT PROPULSION SYSTEM FOR A

PASSENGER LINER.

ALLIS-CHALMERS, ATOMIC ENERGY DIV. ACNP-6125, SUPPLEMENT 1. /1961/

BOILING LIGHT WATER REACTORS, DOMESTIC BD05

NAME/OWNER ELK RIVER REACTOR/AEC

DESIGNER ALLIS-CHALMERS MANUFACTURING CO.

OPERATOR RURAL COOPERATIVE POWER ASSOCIATION

LOCATION ELK RIVER, MINNESOTA MISSISSIPPI RIVER

PURPOSE POWER DEMONSTRATION, 2ND ROUND

TYPE BWR, NATURAL CIRCULATION, INDIRECT CYCLE, SEPARATE

SUPERHEAT.

POWER MWE(MWT) 22 64

CRITICAL NOV. 1962. FULL POWER FEB. 1964

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM-THORIUM OXIDE PELLETS 0.407 IN. DIA./0.500

IN. LONG

FUEL GEOMETRY ROD, 5 FT. ACTIVE LENGTH

FUEL CLADDING SS 0.410 IN. ID./0.020 IN. THICK

FUEL ENRICH. 4.3 PER CENT U-235

SPIKE ELEMENTS 5.23 PER CENT

FUEL ASSEMBLY 25 RODS 5X5

148 ASSEMBLIES/CORE

SPIKE ASSEMBLIES 5.23 PER CENT ENRICHED WILL BE

LOADED 640 DAYS AFTER STARTUP.

FUEL CHARGE 185 KG. URANIUM

SPECIFIC POWER 341 KW/KG U-235

BURNUP(REFUEL) 10,000 MWD/T FUEL REFUELED APRIL 1967

AVE. 8730 MWD/T

NEUTRON FLUX THERMAL AVE. 1.55x10 E+13

FAST AVE. 4.8x10 E+13

CONTROL BORON ALLOYED WITH SS CLADDING TUBES: AS BURNABLE

POISON, SS-BORON ALLOY RODS.

COOLANT TEMP. INLET 450 F

BOILING LIGHT WATER REACTORS. DOMESTIC

BD05

COOLANT PRESS. INLET 940 PSIA

REACTOR VESSEL STEEL SHELL, SS CLAD, UPRIGHT CYLINDER 7 FT. ID./
25 FT. HIGH

CONTAINMENT VERTICAL STEEL CYLINDER 74 FT. DIA./115 FT. HIGH.

REMARKS SPIKE ASSEMBLIES WILL INCREASE CORE LIFE, AMOUNT IS NOT SPECIFIED.

REFERENCES

A PROPOSAL FOR A NUCLEAR STEAM GENERATING PLANT
FOR THE RURAL COOPERATIVE POWER ASSOCIATION, ELK
RIVER, MINNESOTA.
ACF IND. INC.
NP-7331 /1958/

ELK RIVER REACTOR QUARTERLY PROGRESS REPORT FOR JUNE, JULY, AUGUST 1959, ALLIS=CHALMERS ACNP=ERR-5 /1959/

FINAL HAZARDS REPORT FOR THE RCPA ELK RIVER REACTOR AT ELK RIVER, MINNESOTA, AND ADDITIONS AND CORRECTIONS TO FINAL HAZARDS REPORT FOR THE ELK RIVER REACTOR AT ELK RIVER, MINNESOTA. WS FARMER, DG STRAWSON TID-11734 /JULY 1960/

DESIGN PRACTICE. THE ELK RIVER REACTOR.
POWER REACTOR TECHNOLOGY 5. 33-47 /MARCH 1962/

NUCLEONICS REACTOR FILE NO. 18 ERR. ELK RIVER REACTOR NUCLEONICS 21 /7%. /JULY 1963/ /FOLDOUT/

TECHNICAL SPECIFICATIONS FOR THE RCPA ELK RIVER REACTOR AT ELK RIVER, MINNESOTA. ALLIS-CHALMERS MAF. CO. TID-21059 /REVISED SEPT. 1,1961/

BOILING LIGHT WATER REACTORS, DOMESTIC BD06

NAME/OWNER ZBSR /ZIRCONIUM BOILING-SUPERHEATING REACTOR//AI

DESIGNER ATOMICS INTERNATIONAL

PURPOSE POWER

TYPE BOILING-SUPERHEATING, DIRECT CYCLE, FORCED

CIRCULATION.

POWER MWE(MWT) 300 778

CRITICAL STUDY

COOLANT LIGHT WATER AND STEAM

MODERATOR BOILER, LIGHT WATER

SUPERHEATER, ZIRCONIUM HYDRIDE

FUEL MATERIAL BOILER, URANIUM DIOXIDE PELLETS

SUPERHEATER, URANIUM DIOXIDE SINTERED POWDER

FUEL GEOMETRY ROD BOILER, 0.394 IN. DIA, 10,396 IN. LONG

SUPERHEATER, 0,403 IN. DIA.

FUEL CLADDING BOILER, ZIRCALOY-2 TUBES. 0.450 IN. OD.

SUPERHEATER, SS THIN-WALL TUBES

FUEL ENRICH. BOILER, 2,53 PER CENT U-235

SUPERHEATER, 3.39 PER CENT U-235

FUEL ASSEMBLY BOILER, 140-ROD BUNDLE, 12x12 WITH 4 CENTRAL RODS

REMOVED.

ZIRCALOY BOX CONTAINS 5 BUNDLES

84 ASSEMBLIES/BOILER

SUPERHEATER, 7-ROD CLUSTER FITTED INTO A 1700-IN.

DIA. FLOW CHANNEL IN MODERATOR LOG ASSEMBLY.

16 CHANNELS/LOG.

45 LOGS IN SUPERHEAT REGION

FUEL CHARGE BOILER, 28,400 KG, URANIUM

SUPERHEATER 12,500 KG, URANIUM

SPECIFIC POWER 19 KW/KG U

BURNUP(REFUEL) 10,000 MWD/MTU /BATCH/

CONTROL BORON-SS: RODS

COOLANT TEMP. INLET 593 F OUTLET 600 F

COOLANT PRESS. 1550 PSIG

BOILING LIGHT WATER REACTORS, DOMESTIC BD06

REACTOR VESSEL CARBON STEEL VESSEL 11 FT. 4 IN. DIA. 151 FT. HIGH, SS LINER.

REMARKS

THE REACTOR CORE CONSISTS OF A CENTRAL SUPERHEAT REGION, AND A PERIPHERAL BOILING REGION, IN WHICH STEAM IS PRODUCED. THE BOILING REGION IS COOLED AND MODERATED BY LIGHT WATER. THE SUPERHEAT REGION CONSISTS OF ZIRCONIUM HYDRIDE MODERATOR LOG ASSEMBLIES, FUEL ASSEMBLIES AND CONTROL RODS. IT IS SEPARATED FROM THE BOILING REGION BY A FLOW BAFFLE, AND IS IN A STEAM ENVIRONMENT DURING OPERATION. A CONCEPT IN WHICH THE ZIRCONIUM HYDRIDE IS USED AS BOTH MODERATOR AND FUEL CLADDING MATERIAL WAS BRIEFLY INVESTIGATED, THE INTEGRAL FUEL-MODERATOR CONCEPT, AS WELL AS A 50-MWE CONCEPT.

REFERENCES

EVALUATION OF ZIRCONIUM HYDRIDE AS MODERATOR IN INTEGRAL BOILING WATER-SUPERHEAT REACTORS.

JD GYLFE, OTHERS

NAA-SR-5943 /MARCH 1962/

BOILING LIGHT WATER REACTORS, DOMESTIC BD07

NAME/GWNER BWR DUAL PURPOSE STUDY/AMF*MITCHELL

DESIGNER AMF-ATOMICS, MITCHELL ENG.

PURPOSE POWER, DUAL PURPOSE

TYPE BWR

POWER MWE(MWT) 25 110

COMBINED OUTPUT FROM NUCLEAR AND GEOTHERMAL

WOULD BE 50 MWE

CRITICAL STUDY

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE

FUEL GEOMETRY RODS

FUEL CLADDING SS

FUEL ENRICH. 2.2 PER CENT U-235

FUEL ASSEMBLY 8x8 ROD ASSEMBLY IN ZIRCONIUM BOX

CONTROL SILVER-INDIUM RODS

COOLANT TEMP. 476 F

REMARKS A STUDY SUBMITTED TO ITALY-S LARDERELLO CO. ON THE

FEASIBILITY OF INTEGRATING A BWR INTO THE

LARDERELLO GEOTHERMAL STEAM GENERATING SYSTEM.
COMPLETION OF STUDY IN 1962. AMF HAS DESIGNED A

DUAL PURPOSE REACTOR FOR POWER AND WATER

DESALINATION BASED ON THIS STUDY.

REFERENCES NUCLEAR POWER FEB. 1962 P. 77.

NEWS RELEASE.

NUCLEONICS 21, 27/APRIL 1963/.

NEWS RELEASE

BOILING LIGHT WATER REACTORS: DOMESTIC BD08

NAME/OWNER BWR-PWR STUDY/AMF

DESIGNER AMF ATOMICS

PURPOSE DUAL PURPOSE, POWER AND WATER DESALINATION.

TYPE BWR-PWR. BOILING-SUPERHEATING.

POWER MWE(MWT) 110

CRITICAL STUDY

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS

FUEL GEOMETRY ROD

FUEL CLADDING SS TUBES

FUEL ENRICH. 2.2 PERCENT U=235

FUEL ASSEMBLY 8x8 ROD ASSEMBLY, ZIRCONIUM BOX

CONTROL RODS

REMARKS THE REACTOR WOULD BE USED WITH A MULTISTAGE FLASH

UNIT SUPPLIED BY AMF-S MAXIM DIVISION. AND WOULD DESALINIZE 10 MILLION GALLONS PER DAY WITH ABOUT 156,000 KWH/DAY OF ELECTRICITY. THE DUAL PURPOSE

DESIGN IS AN OUTGROWTH OF AN AMF/UK-MITCHELL

STUDY OF A BOILING-SUPERHEAT REACTOR FOR ITALY-S LARDERELLO COMPANY, WHICH WAS PROPOSED FOR USE IN

COMBINATION WITH A GEOTHERMAL STEAM PLANT.

REFERENCES NUCLEONICS WEEK, MARCH 7, 1963, P. 3,

NEWS RELEASE.

BOILING LIGHT WATER REACTORS, DOMESTIC BD09

NAMEZOWNER VMR ZVARIABLE MODERATOR REACTORZAM=STANDARD

DESIGNER AMERICAN STANDARD CORP.

LOCATION CRITICAL ASSEMBLY AT ADVANCED TECHNOLOGY LABS.

CALIFORNIA

PURPOSE POWER PROTOTYPE

TYPE BWR, VARIABLE MODERATOR, DIRECT CYCLE, FORCED

CIRCULATION.

CALANDRIA /SHELL=AND=TUBE/ CORE STRUCTURE.

POWER MWE(MWT) 5-50

CRITICAL R AND D

COOLANT LIGHT WATER IN FUEL CHANNELS

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS, SINTERED AND GROUND,

0.320 IN. DIA.

FUEL GEOMETRY PINS, 0.353 IN. DIA., 50 IN. ACTIVE LENGTH

FUEL CLADDING ZIRCALOY OR 348 SS

FUEL ENRICH. 2,2 PER CENT U-235

FUEL ASSEMBLY HEXAGONAL 37 RODS

181 ASSEMBLIES/CORE

FUEL CHARGE 4590 KG, URANIUM DIOXIDE

BURNUP (REFUEL) 15,000 MWD/TU BATCH, 1/3 CORE PER YEAR

NEUTRON FLUX THERMAL AVE. 3.1X10 E+13

CONTROL MODERATOR LEVEL ADJUSTMENT, OR MODERATOR LEVEL

ADJUSTMENT AND SOLUTION POISON.

COOLANT TEMP. INLET 537 F OUTLET 545 F

COOLANT PRESS. 1000 PSIA OPERATING STEAM PRESSURE

REACTOR VESSEL CYLINDRICAL A212-B STEEL, 304 SS GLAD, 6 FT. 4 IN.

ID. / 14 FT. 6 IN. LONG.

REMARKS PROPOSAL HAS BEEN MADE BY WOLVERINE ELEC. COOP.,

BOILING LIGHT WATER REACTORS. DOMESTIC

BD09

MICHIGAN, FOR A POWER PROTOTYPE BASED ON AMERICAN-STANDARD-S DESIGN STUDY OF VARIABLE MODERATOR REACTOR. A VMR IS UNDER STUDY AT BATTELLE MEMORIAL INSTITUTE. REACTOR CONCEPT PROPOSES AN ARRANGEMENT OF FUEL RODS IN CLUSTERS WHICH ARE SEPARATED FROM ONE ANOTHER BY RELATIVELY WIDE MODERATOR CHANNELS. THE COOLANT WATER IN THE CHANNELS IS SEPARATED FROM THE MODERATOR WATER OUTSIDE THE CLUSTERS BY A CALANDRIA DESIGN OF THE CORE STRUCTURE. LEVEL OF THE MODERATOR CAN BE ADJUSTED TO REGULATE AND CONTROL REACTIVITY.

REFERENCES

VARIABLE MODERATOR REACTOR DEVELOPMENT PROGRAM.
QUARTERLY PROGRESS REPORT NO. 1, AUGUST 31, 1959,
ATL-A-100 /1959/

HAZARDS SUMMARY REPORT FOR THE VMR CRITICAL ASSEMBLY EXPERIMENTS.
RA EGEN, OTHERS
BMI-1445 /JUNE 10, 1960/

TECHNICAL FEASIBILITY AND ECONOMIC POTENTIAL OF THE VARIABLE MODERATOR REACTOR. FINAL REPORT. AMERICAN-STANDARD, ADV. TECHNOLOGY LABS. ATL-A-109 / REV. 17 / DECEMBER 1960/

BOILING LIGHT WATER REACTORS, DOMESTIC BD10

NAME/OWNER BORAX=4 /BOILING REACTOR EXPERIMENT=4/AEC

DESIGNER ARGONNE NATIONAL LABORATORY

OPERATOR ARGONNE NATIONAL LABORATORY

LOCATION NATIONAL REACTOR TEST STATION, IDAHO

PURPOSE POWER EXPERIMENT

TYPE BWR

POWER MWE(MWT) 2 20

CRITICAL 1957, CORE REVISION 1958

COQLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM-THORIUM DIOXIDE PELLETS 0.225 IN. DIA.
BORAX-3 USED URANIUM-ALUMINUM ALLOY FUEL

FUEL GEOMETRY PLATE

FUEL CLADDING ALUMINUM-NICKEL ALLOY

FUEL ENRICH. 7 PERCENT U-235 /BORAX-3 ENRICHMENT WAS

90 PERCENT/

FUEL ASSEMBLY EXTRUDED ALLOY PLATES WITH 2 1/2 IN. DIA. TUBULAR

CAVITIES CONTAINING FUEL PELLETS, THERMALLY

BONDED TO CLADDING WITH LEAD.

6 PLATES/ASSEMBLY 69 ASSEMBLIES/CORE

NEUTRON FLUX THERMAL AVE. 5X10 E+13

COOLANT TEMP. 400 F

COOLANT PRESS. 300 PSIG

REMARKS EARLY BORAX EXPERIMENTS USED METALLIC FUEL TO

INVESTIGATE BWR STABILITY.

REFERENCES DESIGN AND OPERATING EXPERIENCE OF A PROTOTYPE

BOILING WATER POWER REACTOR.

JR DIETRICH, OTHERS

PROC. INTL. CONF. ON THE REACEFUL USES OF ATOMIC

ENERGY 3. 56-60 /1958/

BOILING LIGHT WATER REACTORS. DOMESTIC

BD10

OPERATIONAL EXPERIENCE WITH BORAX POWER PLANT. WH ZINN, OTHERS NUCLEAR SCI. AND ENG. 1. 420-37 /OCTOBER 1956/

PERFORMANCE EVALUATION OF DIRECT CYCLE BOILING WATER NUCLEAR POWER PLANTS BASED ON RECENT EBWR AND BORAX DATA.

JM HARRER, OTHERS.
SECOND U. N. INTL. CONF. ON THE PEACEFUL USES OF ATOMIC ENERGY 9. 264-85 /1958/

CIVILIAN POWER REACTOR PROGRAM. PART III. STATUS REPORT ON THE BOILING WATER REACTOR TECHNOLOGY AS OF 1959.

BOILING LIGHT WATER REACTORS, DOMESTIC BD11

NAME/OWNER BORAX=5 /BOILING REACTOR EXPERIMENT=5//AEC

DESIGNER ARGONNE NATIONAL LABORATORY

OPERATOR ARGONNE NATIONAL LABORATORY

LOCATION NATIONAL REACTOR TEST STATION, IDAHO

PURPOSE POWER EXPERIMENT, NUCLEAR SUPERHEAT DEMONSTRATION.

TYPE BWR, FORCED OR NATURAL CIRCULATION, DIRECT CYCLE, NUCLEAR SUPERHEAT.

POWER MWE(MWT) 2 20

CRITICAL 1962. DRY SUPERHEATED STEAM PRODUCED OCTOBER 1963.

REACTOR PHASED OUT OF SUPERHEAT PROGRAM 1965

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL BOILER, URANIUM DIOXIDE PELLETS 0.343 IN. DIA.

SUPERHEATER, URANIUM DIOXIDE-SS CERMET

FUEL GEOMETRY BOILER, RODS, 3/8 IN. DIA./24 IN. ACTIVE LENGTH

SUPERHEATER, FLAT PLATE, 0,014 IN. THICK MEAT

FUEL CLADDING BOILER, SS TUBES, WALL THICKNESS 0.015 IN. SUPERHEATER, SS CLADDING 0.008 IN. THICK

FUEL ENRICH. BOILER, 10 PER_CENT U=235

SUPERHEATER, 93 PER CENT U=235

FUEL ASSEMBLY BOILER, 49 RODS, 7X7

SUPERHEATER, RIGID 4-PLATE ELEMENT

5 ELEMENTS/ASSEMBLY

12 ASSEMBLIES IN CENTRAL LOADING

NEUTRON FLUX BOILER, 1,33x10 E+13 /AXIAL/,1,45x10 E+13 /RADIAL/

SUPERHEATER 1.30X10 E+13 /AXIAL/

CONTROL BORAL, SS-CLAD RODS.

REACTOR VESSEL CYLINDRICAL, CARBON STEEL 66 3/8 IN. ID. /16 FT.

HIGH, SS LINED

CONTAINMENT PIT, SHIELDED BY HIGH DENSITY CONCRETE

REMARKS STEAM IS SUPERHEATED IN TWO PASSES, FLOWING DOWN

BOILING LIGHT WATER REACTORS, DOMESTIC

BD11

THROUGH FIRST-PASS ELEMENTS, THEN UPWARD THROUGH SECOND PASS. THREE SEPARATE CORE CONFIGURATIONS ARE POSSIBLE. BOILER-SUPERHEATER WITH CENTRAL SUPERHEAT. PURE BOILER, NO SUPERHEAT, AND BOILER WITH PERIPHERAL SUPERHEAT. DRY SUPERHEATED STEAM PRODUCED IN OCT. 1963.

REFERENCES

PRELIMINARY DESIGN AND HAZARDS REPORT. BOILING REACTOR EXPERIMENT V /BORAX-V/ ARGONNE NATIONAL LABORATORY ANL-6120 /FEBRUARY 1960/

A NUCLEAR SUPERHEATING REACTOR-BORAX-V.
N NOVICK, OTHERS
SMALL AND MEDIUM POWER REACTORS, Vol. 1,PP, 111-25
INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1962

DESIGN AND HAZARDS SUMMARY REPORT, BOILING REACTOR EXPERIMENT V /BORAX-V/, ARGONNE NATIONAL LABORATORY ANL-6302 /MAY 1961/

BORAX-V INTEGRAL NUCLEAR SUPERHEAT REACTOR EXPERIMENTS. WR WALLIN, OTHERS POWER REACTOR EXPERIMENTS, VOL. 2 PP. 9-26 INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1962

BORAX=V A NUCLEAR SUPERHEAT REACTOR.
RE RICE, WR WALLIN
AMERICAN POWER CONFERENCE 26TH ANNUAL MEETING.
CHICAGO, APRIL 1964, CONF=504=2

BOILING LIGHT WATER REACTORS. DOMESTIC 8012

NAME/OWNER ALPR /ARGONNE LOW POWER REACTOR//AEC-ARMY

DESIGNER ARGONNE NATIONAL LABORATORY

OPERATOR COMBUSTION ENGINEERING, INC.

LOCATION NATIONAL REACTOR TEST STATION, IDAHO

PURPOSE PROTOTYPE PACKAGE POWER REACTOR

TYPE BWR, NATURAL CIRCULATION, DIRECT CYCLE

250 KWE 3 POWER MWE(MWT)

1958. DESTROYED BY EXPLOSION JANUARY 1961 CRITICAL

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM-ALUMINUM-NICKEL ALLOY

FUEL GEOMETRY PLATE, 3 7/8 IN. BY 3 7/8 IN. BY 34 1/2 IN.

FUEL CLADDING ALUMINUM-NICKEL ALLOY, 0.035 IN. THICK

FUEL ENRICH. 91 PER CENT U=235

FUEL ASSEMBLY 9 PLATES/ASSEMBLY 40 ASSEMBLIES TO CORE

FUEL CHARGE .14 kg, u=235 in 40-element core, 21 kg, u=235

IN 60-ELEMENT CORE

SPECIFIC POWER 214 KW/KG U-235 IN 40-ELEMENT CORE

BURNUP(REFUEL) APPROX, 20 PER CENT 3 YEAR LIFE.

IN 60-ELEMENT CORE.

NEUTRON FLUX THERMAL AVE. 7.5X10 E+12

FAST MAX. $3.28 \times 10 E+12$

CONTROL BURNABLE POISON, BORON-10 IN ALUMINUM ATTACHED TO

ASSEMBLY.

9 CONTROL RODS

COOLANT TEMP. INLET 175 F OUTLET 420 F

COOLANT PRESS. 300 PSIG

REACTOR VESSEL STEEL

BOILING LIGHT WATER REACTORS, DOMESTIC BD12

CONTAINMENT CYLINDRICAL TANK-TYPE STRUCTURE, 38 FT. DIA./
48 FT. HIGH, GRAVEL SHIELDING FILL AROUND

PRESSURE VESSEL AND COMPONENTS.

REMARKS OPERATION 1958. EXPLOSION ON JANUARY 3, 1961

DESTROYED CORE, RESULTING IN THREE FATALITIES.

REACTOR HAS BEEN DISMANTLED.

REFERENCES DESIGN STUDY OF A NUCLEAR POWER PLANT FOR 100 KW

ELECTRIC AND 400 KW HEAT CAPACITY.

M TRESHOW, OTHERS ANL-5452 /1957/

ARGONNE LOW POWER REACTOR. A PROTOTYPE DIRECT CYCLE BOILING WATER REACTOR PACKAGE PLANT FOR

ELECTRIC POWER PRODUCTION AND SPACE HEATING.

CR BRAUN

SECOND U. N. INTL. CONF. ON THE PEACEFUL USES OF

ATOMIC ENERGY 9' 244-54 /1958/

ABWR PL-1 REFERENCE DESIGN REPORT.

FJ STARON, LM JOHNSON CEND-70 /JANUARY 1960/

DESIGN OF THE ARGONNE LOW POWER REACTOR /ALPR/

NR GRANT: OTHERS

ANL-6076 /MAY 1961/

BOILING LIGHT WATER REACTORS DOMESTIC BD13:

NAME/OWNER EBWR/EXPERIMENTAL BOILING WATER REACTOR//AEC

DESIGNER ARGONNE NATIONAL LABORATORY

OPERATOR ARGONNE NATIONAL LABORATORY

LOCATION LEMONT, ILLINOIS

DES PLAINES RIVER

PURPOSE POWER EXPERIMENT

TYPE BWR, NATURAL CIRCULATION, DIRECT CYCLE

POWER MWE(MWT) 5

100 MWT MODIFICATION IN 1962

CRITICAL 1956

SHUT DOWN PERMANENTLY JUNE 1967

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL CORE 1, URANIUM-NIOBIUM-ZIRCONIUM ALLOY

CORE 1A, URANIUM OXIDE IN ALUMINUM MATRIX

SPIKE ELEMENTS URANIUM OXIDE IN ZIRCONIUM OR

CALCIUM DXIDE

MODIFICATION FOR PLUTONIUM-URANIUM OXIDE FUEL 1964

FUEL GEOMETRY CORE 1, PLATES, THICK AND THIN, 4 FT ACTIVE LENGTH

CORE 1A, FUELED ROD 5 FT, LONG AS SPIKE ELEMENTS

FUEL CLADDING CORE 1, ZIRCALOY -2 0.020 IN. THICK

CORE 1A. ZIRCALOY=2.

FUEL ENRICH. CORE 1, 1,44 PER CENT U-235

CORE 1A, HIGH

FUEL ASSEMBLY CORE 1. 6-PLATE ELEMENTS

114 ASSEMBLIES/CORE

CORE 1A, 49-ROD ASSEMBLY

FUEL CHARGE 5600 KG. URANIUM /FIRST LOADING/

SPECIFIC POWER CORE 1, 270 KW/kg U=235

NEUTRON FLUX THERMAL AVE. /100 MWT/ 3x10 E+13

CONTROL MOVABLE RODS

COOLANT TEMP. INLET 130 F OUTLET 489 F

BOILING LIGHT WATER REACTORS, DOMESTIC BD13

REACTOR VESSEL STEEL VESSEL 84 IN. ID., SS CLAD

CONTAINMENT CYLINDRICAL STEEL TANK 80 FT. DIA./119 FT. HIGH.

REMARKS

ON NOVEMBER 15, 1962, THE EBWR REACHED 100 MWT. MODIFICATIONS INCLUDED ADDING 32 HIGHLY ENRICHED ELEMENTS TO THE CORE, ADDITION OF CONTROL RODS, APPROPRIATE PIPING AND VALVES. EBWR HAS BEEN SHUTDOWN AGAIN FOR FURTHER MODIFICATION LEADING TO FUELING WITH PLUTONIUM/URANIUM OXIDE. THE MIXED OXIDE FUEL WILL BE IN THE CENTER OF THE CORE, WITH ENRICHED URANIUM DIOXIDE ASSEMBLIES SURROUNDING IT.

ACHIEVED IN SEPT. 1965, WITH ELECTRICITY
GENERATION IN OCT. 1966. FULL POWER OF 42 MWT
WAS REACHED NOV. 11, 1966.

REFERENCES

THE EXPERIMENTAL BOILING WATER REACTOR /EBWR/ANL-5607 /MAY 1957/

REACTORS ON-THE-LINE. EXPERIMENTAL BOILING WATER REACTOR, NUCLEONICS 15. 52A-53A /JULY 1957/

HAZARDS EVALUATION REPORT ASSOCIATED WITH THE OPERATION OF EBWR AT 100 MW. EA WIMUNC, JM HARRER ANL-5781 /ADD/ /REV 1/ /OCTOBER, 1960/

MODIFICATION OF THE EXPERIMENTAL BOILING WATER REACTOR /EBWR/ FOR HIGH-POWER OPERATION.

JF MATOUSEK, COMP.

ANL-6552 /APRIL 1962/

HAZARDS SUMMARY REPORT ON THE EXPERIMENTAL BOILING WATER REACTOR /EBWR/ ANL-5781

BOILING LIGHT WATER REACTORS, DOMESTIC BD14

NAME/OWNER PL /PORTABLE LOW-POWER//AEC-U.S. ARMY

DESIGNER COMBUSTION ENGINEERING, INC.

PURPOSE POWER AND HEAT

TYPE BWR, NATURAL CIRCULATION, DIRECT CYCLE

POWER MWE(MWT) 1 8.5

CRITICAL DESIGN

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS

FUEL CLADDING SS TUBES

FUEL ENRICH. 4,8 PER CENT U-235

FUEL ASSEMBLY 59 FUEL ELEMENTS, 3 POISON ELEMENTS/ASSEMBLY 24 ASSEMBLIES/CORE

REMARKS PL IS ONE OF SEVERAL REACTORS IN THE ARMY-S BWR

PROGRAM PROPOSED FOR INSTALLATION IN A SNOW TUNNEL AT BYRD STATION, ANTARCTICA, THE CORE CONTAINS 24 FUEL ASSEMBLIES, EACH COMPOSED OF 59

FUEL ELEMENTS AND THREE POISON ELEMENTS.

REFERENCES PL FINAL DESIGN REPORT. VOL. IV. REACTOR DESIGN.

COMBUSTION ENGINEERING INC. CEND-135 /VOL. 4/ /1961/

VOLUMES 1-5 ARE DATED JUNE 30, 1961.

BOILING LIGHT WATER REACTORS, DOMESTIC BD15

NAME/OWNER VBWR/VALLECITOS BOILING WATER REACTOR//GE-PACIFIC

G + E

.DESIGNER GENERAL ELECTRIC COMPANY

OPERATOR PACIFIC GAS + ELECTRIC CO.

LOCATION PLEASANTON, CALIF.

PURPOSE POWER PROTOTYPE

TYPE BWR, NATURAL CIRCULATION, DIRECT CYCLE.

POWER MWE(MWT) 5 20

CRITICAL 1957, MODIFICATIONS 1960, PERMANENTLY SHUT-DOWN

1963

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE-SS MATRIX

FUEL GEOMETRY PLATES, 2,950 IN. WIDE/37 IN. LONG.

SOME RODS.

FUEL CLADDING SS 0.005 IN. THICK

FUEL ENRICH. 90 PER CENT U=235

FUEL ASSEMBLY 6-9 PARALLEL PLATES/ASSEMBLY.

120 PLATES/CORE

FUEL CHARGE 25 KG. U=235

SPECIFIC POWER 1200 KW/KG U=235

NEUTRON FLUX THERMAL AVE. 4.5x10 E+13

CONTROL POISON PLATES, BORON-SS AND BORON CARBIDE

COOLANT TEMP. INLET. VARIES OUTLET. 546 F

COOLANT PRESS. INLET. 1000 PSIA

REACTOR VESSEL CARBON STEEL, SS CLAD, 7 FT. OD., 3 1/2 IN. THICK

CONTAINMENT PRESSURE TIGHT, UPRIGHT CYLINDRICAL STEEL BUILDING

48 FT. DIA./100 FT. HIGH.

BOILING LIGHT WATER REACTORS, DOMESTIC

BD15

REMARKS TEST FACILITY FOR THE DRESDEN REACTOR, AND A

DEMONSTRATION PLANT: SUPERHEAT PROGRAMS WERE

INVESTIGATED. SEE VESR. SEE ALSO SADE.

REFERENCES REACTORS ON-THE-LINE. VBWR.

NUCLEONICS 16, INSERT, /FEBRUARY 1958/

GENERAL ELECTRIC VALLECITOS BOILING WATER REACTOR.

FINAL HAZARDS SUMMARY REPORT,

JL MURRAY, ED.

SG-VAL-2 /3RD ED/ /NOVEMBER 30, 1959/

BOILING LIGHT WATER REACTORS, DOMESTIC BD16

NAME/OWNER DRESDEN-1/COMMONWEALTH EDISON

DESIGNER GENERAL ELECTRIC COMPANY

OPERATOR COMMONWEALTH EDISON

LOCATION MORRIS: ILLINOIS

CONFLUENCE OF KANKAKEE AND DES PLAINES RIVERS

PURPOSE POWER

TYPE BWR, FORCED CIRCULATION, DUAL CYCLE

POWER MWE(MWT) 200 700

CRITICAL 1960

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS 0.498 IN. DIA./0.625 IN.

LONG.

FUEL GEOMETRY ROD, 1/2 IN, DIA./106.5 IN. ACTIVE LENGTH

FUEL ROD CONSISTS OF 4 FUEL SEGMENTS JOINED END-TO-END, WITH SPACER PLATES BETWEEN THE

SEGMENTS.

FUEL CLADDING ZIRCALOY=2, 0,030 IN. THICK

FUEL ENRICH, 1,5 PER CENT U-235

FUEL ASSEMBLY SQUARE CHANNEL, 36 RODS, 6x6,

488 ASSEMBLIES/CORE

FOURTH PARTIAL REFUELING APRIL-MAY 1967
106 ZIRCALOY-CLAD URANIUM DIOXIDE FUEL
ASSEMBLIES IN 464-ASSEMBLY CORE, INCLUDING

FOUR PLUTONIUM DIOXIDE RODS FROM REACTOR

PRODUCED PLUTONIUM.

FUEL CHARGE 51,500 KG, URANIUM

SPECIFIC POWER 11.50 MW/MTU

BURNUP(REFUEL) 10,000 MWD/TON BATCH REFUELING 10=30 PERCENT

NEUTRON FLUX THERMAL AVE. 3,15x10 E+13 FAST /TYPICAL/ 1x10 E+14

CONTROL MOVABLE POISON RODS, CADMIUM-SILVER ALLOY, SS CLAD

BOILING LIGHT WATER REACTORS, DOMESTIC BD16

COOLANT TEMP. INLET 504.7 F OUTLET 546.4 F

COOLANT PRESS, INLET 1027.7 PSIG

REACTOR VESSEL CARBON STEEL, SS CLAD, 12 FT. 2 IN. ID.

CONTAINMENT STEEL SPHERE, 190 FT. DIA., ABOVE-GRADE INSULATED.

REMARKS

SUBCOOLED WATER ENTERS AT THE BOTTOM OF THE REACTOR VESSEL AND FLOWS UPWARD THROUGH THE ASSEMBLIES, WHERE IT BOILS. THE STEAM-WATER MIXTURE FLOWS OUT AT THE TOP OF THE FUEL

ASSEMBLIES AND IS DIRECTED TO THE REACTOR VESSEL

OUTLET NOZZLES. EXTERNAL LOOPS HANDLE

RECIRCULATION FLOW, THERE BEING NO RECIRCULATION OF THE CORE COOLANT WITHIN THE REACTOR VESSEL.

REFERENCES PRELIMINARY HAZARDS SUMMARY REPORT FOR THE DRESDEN NUCLEAR POWER STATION.

G SEGE

GEAP-1044 /MAY 1, 1957

PRELIMINARY HAZARDS SUMMARY REPORT FOR THE DRESDEN NUCLEAR POWER STATION.

AMENDMENT NO. 1

GEAP = 3009 /MAY 1, 1958/

AMENDMENT NO. 2 /DP EBRIGHT/

GEAP 3053 /AUGUST 22, 1958/

AMENDMENT NO. 3 /JL MURRAY, DP EBRIGHT/

GEAP - 3076 / DECEMBER 23, 1958/

AMENDMENT NO. 4; PART I /DP EBRIGHT/

GEAPS3106 /FEBRUARY 1959/

AMENDMENT NO. 6 /DP EBRIGHT/

GEAP=3186 /JUNE 12, 1959/

DRESDEN ON-THE-LINE: NUCLEONICS 17. INSERT: /DECEMBER 1959/

PERFORMANCE AND OPERATING EXPERIENCE OF THE

DRESDEN NUCLEAR POWER STATION.

IL WADE

ASME PREPRINT 61-WA-268 /1961/

THE DRESDEN NUCLEAR POWER STATION.
POWER REACTOR TECHNOLOGY 4/4/, 56-68 /SEPT. 1961/

NUCLEAR INDUSTRY JUNE 1967 P. 19

BOILING LIGHT WATER REACTORS, DOMESTIC BD17

NAME/OWNER DRESDEN-2/COMMONWEALTH EDISON

DESIGNER GENERAL ELECTRIC COMPANY

OPERATOR COMMONWEALTH EDISON

LOCATION MORRIS. ILLINOIS

CONFLUENCE OF KANKAKEE AND DES PLAINES RIVERS

PURPOSE POWER

TYPE BWR. SINGLE CYCLE, FORCED CIRCULATION /2-LOOP/,

INTERNAL STEAM SEPARATION.

POWER MWE(MWT) 715 2300

CRITICAL CONTRACT AWARD FOR DRESDEN=2 AND =3, TARGET 1970.

REFERENCE DESIGN

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS 0,488 IN. DIA. /0,75 IN.

LONG

FUEL GEOMETRY ROD 144 IN. ACTIVE L'ENGTH

FUEL CLADDING ZIRCALOY-2 TUBES 0.036 IN. WALL THICKNESS

FUEL ENRICH. AVERAGE 2 PER CENT U-235

FUEL ASSEMBLY 49-ROD BUNDLE 7x7, APPROX. 14 RODS HAVE REDUCED

ENRICHMENT: ASSEMBLY ENCLOSED IN ZIRCALOY CHANNEL

724 ASSEMBLIES

BURNUP(REFUEL) AVERAGE INITIAL ANNUAL

15000 MWD/T PROGRESSIVE PARTIAL BATCH

CONTROL CRUCIFORM CONTROL BLADES, BORON CARBIDE POWDER IN

SS TUBES

TEMPORARY BORON-SS POISON CURTAINS

COOLANT TEMP. INLET 530.4 F

COOLANT PRESS. 1000 PSIG

REACTOR VESSEL ALLOY STEEL CYLINDER 6 1/8 IN. THICK, INNER SS

CLADDING 7/32 IN. THICK

CONTAINMENT PRESSURE-SUPPRESSION, CORE SPRAY SYSTEM.

BOILING LIGHT WATER REACTORS, DOMESTIC BD17

REMARKS TOTAL CAPACITY OF THE DRESDEN NUCLEAR STATION

WILL BE 1800 MWE

CONTRACT FOR A THIRD REACTOR HAS BEEN AWARDED.

POWER 809 MWE/2300 MWT, TARGET 1970.

INTAKE CANAL FOR CONDENSER COOLING WATER EXTENDS WEST FROM KANKAKEE RIVER AND DISCHARGE CANAL NORTH

TO ILLINOIS RIVER

REFERENCES DRESDEN NUCLEAR POWER STATION UNIT 2

PLANT DESIGN AND ANALYSIS REPORT

No-15538 /ND/ VOL. 1-2-3

DRESDEN NUCLEAR POWER STATION UNIT 3

PLANT DEISGN AND ANALYSIS REPORT

COMMONWEALTH EDISON CO.

DOCKET 50-249

BOILING LIGHT WATER REACTORS, DOMESTIC BD18

NAME/OWNER FITCHBURG GAS AND ELECTRIC PLANT/FITCHBURG G+E,

FITCHBURG PAPER CO

.DESIGNER GENERAL ELECTRIC COMPANY

LOCATION MASSACHUSETTS

PURPOSE POWER AND PROCESS HEAT

TYPE BWR, NATURAL CIRCULATION

POWER MWE(MWT) 28

CRITICAL PROPOSAL. SEE REMARKS.

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

CONTAINMENT PRESSURE-SUPPRESSION

REMARKS PLANT WOULD SUPPLY AN AVERAGE OF 140,000 POUNDS

OF STEAM PER DAY FOR PROCESS HEAT. GE=S DECISION TO BUILD NO NUCLEAR STATIONS UNDER 50 MWE WILL CAUSE FITCHBURG G+E TO RE-EVALUATE ITS PROPOSAL.

REFERENCES FORUM MEMO SEPT. 1963 P. 16

NEWS RELEASE.

BOILING LIGHT WATER REACTORS, DOMESTIC BD19

NAMEZOWNER SHOREHAM NUCLEAR STATION/LONG ISLAND LIGHTING CO.

DESIGNER GENERAL ELECTRIC COMPANY

OPERATOR LONG ISLAND LIGHTING COMPANY

LOCATION SHOREHAM, LONG ISLAND, NEW YORK LONG ISLAND SOUND

PURPOSE POWER

TYPE BWR, FORCED CIRCULATION, SINGLE CYCLE

POWER MWE(MWT) 523 1593

CRITICAL TARGET 1973

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS 0.487 IN. DIAM.

FUEL GEOMETRY ROD, 0.563 IN. OD. ACTIVE LENGTH 144 IN.

FUEL CLADDING ZIRCALOY=2, 0.032 IN. THICK

FUEL ENRICH. AVE. 2,28 PER CENT U=235

FUEL ASSEMBLY BUNDLE, 7x7, ZIRCALOY=4 CHANNELS
368 ASSEMBLIES/CORE

BURNUP (REFUEL) AVE. 19,000 MWD/T

REACTOR VESSEL STEEL CYLINDER 15 FT. 3 IN. ID/64 FT. 8 IN. LONG WALL THICKNESS 4 11/16 IN. SS LINING 1/8 IN. THICK

CONTAINMENT STEEL+LINED CONCRETE STRUCTURE
PRESSURE SUPPRESSION SYSTEM

REFERENCES SHOREHAM NUCLEAR POWER STATION

PRELIMINARY SAFETY ANALYSIS REPORT.

LONG ISLAND LIGHTING CO. DOCKET 50-322, VOL. 1-3

BOILING LIGHT WATER REACTORS, DOMESTIC BD20

NAME/OWNER BIG ROCK POINT STATION/CONSUMERS POWER CO.

DESIGNER GENERAL ELECTRIC COMPANY

OPERATOR CONSUMERS POWER COMPANY

.LOCATION CHARLEVOIX, MICH.

PURPOSE POWER, PRODUCTION OF COBALT-60

TYPE BWR, FORCED CIRCULATION, DIRECT CYCLE, HIGH

POWER DENSITY

POWER MWE(MWT) 71 240 /SEE REMARKS/

CRITICAL SEPT. 1962,

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS, 0,345 IN, DIA./0.019 IN.

THICK

FUEL GEOMETRY RODS /STACK OF CYL. PELLETS/, APPROX. 70 IN.

ACTIVE LENGTH

FUEL CLADDING: SS TUBES, 0.043 IN, THICK

JUNE 1967, SS-CLAD FUEL ELEMENTS, NEARLY ALL

REPLACED BY ZIRCALOY-CLAD ELEMENTS:

FUEL ENRICH. 3.2 PER CENT U-235

FUEL ASSEMBLY 144 RODS/ASSEMBLY, 12x12

56 ASSEMBLIES/CORE

SEE REMARKS

FUEL CHARGE 11.700 KG. URANTUM

BURNUP(REFUEL) 10,000 REFUELED MAY 1966
MARCH 1968

CONTROL CONTROL RODS CONTAINING BORON CARBIDE, CENTRAL AND

PERIPHERAL BOTTOM-ENTERING, POISON CURTAIN

BORATED SS. LIQUID POISON INJECTION.

COOLANT TEMP. INLET 346 F

COOLANT PRESS. 1050 PSIA

BOILING LIGHT WATER REACTORS, DOMESTIC

8D20

REACTOR VESSEL CARBON STEEL, SS-CLAD, 30 FT, HIGH/106 IN, ID,

CONTAINMENT

SPHERE, 130 FT. DIA., 103 FT. ABOVE-GRADE. EXTERNAL INSULATION OF CORK MASTIC COATING PROTECTED BY ACRYLIC RESIN.

REMARKS

THE ASSEMBLY HAS 12 SMALLER DIA. FUEL RODS, 3 TO EACH CORNER, TO REDUCE POWER PEAKING. IN PHASE II OF THE R+D PROGRAM THE CORE SIZE WILL BE INCREASED TO 86 BUNDLES. PLANNED STEP=WISE APPROACH TO 240 MWT IS INDICATED. ZIRCALOY+CLAD FUEL BUNDLES ARE BEING INSERTED INTO CORE TO REPLACE SS-CLAD FUEL. FIRST COBALT INSERTION FOR LARGE+SCALE PRODUCTION OF COBALT+60 WAS MADE DURING THE MAY 1966 REFUEL.

REFERENCES

NEW BOILING WATER NUCLEAR PLANT /BIG ROCK POINT, MICHIGAN/, MECH. ENG. 81, 80 /OCTOBER 1959/

FINAL HAZARDS SUMMARY REPORT FOR BIG ROCK POINT PLANT.

VOLUME I. PLANT TECHNICAL DESCRIPTION AND SAFEGUARD EVALUATION.

CONSUMERS POWER CO.

NP-11153 /VOL. i/ /NOVEMBER 1961/

HIGH POWER DENSITY DEVELOPMENT PROJECT. INTERIM REPORT, 300 MW/E/ HPD CONCEPTUAL DESIGN SUTDY. GEAP=3967 /JUNE 22, 1962/

DESIGN PRACTICE. HUMBOLDT BAY AND BIG ROCK POINT. W MITCHELL POWER REACTOR TECHNOLOGY 7/1/. 70-84 /WINTER 1963 1964/

NUCLEAR INDUSTRY JUNE 1967 P. 19

JANUARY 1969 BNWL = 936:

BOILING LIGHT WATER REACTORS, DOMESTIC BD21:

NAME/OWNER HUMBOLDT BAY PLANT/PACIFIC G+E

DESIGNER GENERAL ELECTRIC COMPANY

OPERATOR PACIFIC GAS + ELECTRIC CO.

LOCATION EUREKA, CALIF.
HUMBOLDT BAY

PURPOSE POWER

TYPE BWR, NATURAL CIRCULATION, SINGLE CYCLE

POWER MWE(MWT) 51 240

OPERATION AT 65 MWE IN 1968

CRITICAL FEB. 1963

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS 0,420 IN, DIA./0.6 IN.

LONG, SINTERED SOLID CYLINDRICAL,

FUEL GEOMETRY RODS, 79 IN. ACTIVE LENGTH

FUEL CLADDING SS.

SEE REMARKS

FUEL ENRICH. 2.6 PER CENT U=235

FUEL ASSEMBLY 49 RODS, 7X7

172 BUNDLES/CORE

FUEL CHARGE 13,840 KG. U /34,600 POUNDS URANIUM DIOXIDE/

SPECIFIC POWER 12.2 KW/KG

BURNUP(REFUEL) 10,000 MWD/TU BATCH, APPROX. 20 PER CENT

LATER CORES 15,400 MWD/TU

NEUTRON FLUX THERMAL AVE. 2X10 E+13

THERMAL MAX. 4X10 E+13 FAST AVE. 5X10 E+13

CONTROL MOVABLE RODS CONTAINING BORON CARBIDE, BOTTOM

DRIVEN AND PERIPHERAL. POISON CURTAIN BORATED SS.

LIQUID POISIN INJECTION.

COOLANT PRESS. 1035 PSIA

BOILING LIGHT WATER REACTORS, DOMESTIC BD21

REACTOR VESSEL CARBON STEEL, SS CLAD, 42 FT, HIGH/120 IN. ID.

CONTAINMENT PRESSURE-SUPPRESSION /DRY-WELL, SUPPRESSION

CHAMBER AND POOL/.

REMARKS DURING MARCH-APRIL 1968, 23 HIGH-EXPOSURE

ASSEMBLIES WERE REPLACED BY LOW-EXPOSURE FUEL. 3/4 OF THE SS-CLAD ELEMENTS HAVE BEEN REPLACED BY ZÍRCALOY-CLAD ELEMENTS, REMAINING TO BE REPLACED

IN FALL OF 1968.

REFERENCES PRELIMINARY HAZARDS SUMMARY REPORT.

HUMBOLDT BAY POWER PLANT UNIT NO. 3.

PACIFIC GAS + ELECTRIC CO. NP-7512 /APRIL 15,1959/

PACIFIC GAS + ELECTRIC COMPANY FINAL HAZARDS
SUMMARY REPORT, HUMBOLDT BAY POWER PLANT UNIT

No. 3.

PACIFIC GAS + ELECTRIC CO. NP=14319 /SEPT. 1,1961/

BOILING LIGHT WATER REACTORS, DOMESTIC BD22

NAME/OWNER BODEGA BAY ATOMIC PLANT/PACIFIC G+E

DESIGNER GENERAL ELECTRIC COMPANY

OPERATOR PACIFIC GAS + ELECTRIC CO.

LOCATION BODEGA BAY, SONOMA COUNTY, CALIF.

TYPE BWR, FORCED CIRCULATION, DIRECT CYCLE.

POWER MWE(MWT) 313 1000

CRITICAL PROJECT HAS BEEN CANCELED.

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS

FUEL GEOMETRY RODS

FUEL CLADDING SS

FUEL ENRICH. 2.7 PER CENT U-235

FUEL ASSEMBLY 49 RODS, 7X7

529 ASSEMBLIES / CORE

FUEL CHARGE 67,000 KG. URANIUM

BURNUP (REFUEL) 15,000 MWD/TON U

CONTAINMENT PRESSURE-SUPPRESSION, REINFORCED CONCRETE BUILDING

REMARKS THE PROJECT HAS BEEN CANCELED BECAUSE OF SITING

PROBLEMS.

REFERENCES NUCLEAR REACTORS BUILT, BEING BUILT, OR PLANNED

AS OF JUNE 30, 1962,

U. S. ATOMIC ENERGY COMMISSION TID-8200 /6TH REVISION/ /1962/

BODEGA BAY ATOMIC PARK, UNIT NUMBER 1, EXHIBIT C. PRELIMINARY HAZARDS SUMMARY REPORT, DECEMBER 28,

1962.

PACIFIC GAS AND ELECTRIC CO.

NP-12476 /1962/

BOILING LIGHT WATER REACTORS, DOMESTIC BD23

NAME/OWNER NIAGARA MOHAWK NUCLEAR PLANT /NINE MILE POINT/ NIAGARA MOHAWK POWER CORP.

DESIGNER GENERAL ELECTRIC COMPANY

OPERATOR NIAGARA MOHAWK POWER CORPORATION

"LOCATION OSWEGO, NEW YORK /NINE MILE POINT/ LAKE ONTARIO

PURPOSE POWER

TYPE BWR, FORCED CIRCULATION, SINGLE CYCLE

POWER MWE(MWT) 500 1538

CRITICAL TARGET 1969.

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS

FUEL GEOMETRY ROD, ACTIVE LENGTH 144 IN.

FUEL CLADDING ZIRCALOY=2 TUBES 0.5 IN. OD. WALL THICKNESS 0.03

FUEL ENRICH. 2.1 PER CENT U=235

FUEL ASSEMBLY 64-ROD ASSEMBLY, 8x8, ZIRCALOY-2 CHANNEL 500 ASSEMBLIES/CORE

FUEL CHARGE 95,400 KG, URANIUM

BURNUP(REFUEL) 15000 MWD/T BATCH, 20 PER CENT

FIRST FUEL DISCHARGE SCHEDULED

FOR JUNE 1969

CONTROL BORON CARBIDE POWDER IN SS TUBES
VARIABLE COOLANT RECIRCULATION FLOW.

COOLANT TEMP. INLET 530 F

COOLANT PRESS, INLET 1015 PSIA

REACTOR VESSEL CYLINDRICAL STEEL VESSEL, HEMISPHERICAL HEADS 17 Ft. 9 IN. ID/61 Ft. 2 IN. HIGH BETWEEN HEADS

WALL THICKNESS 7 IN.

SS INNER CLADDING 1/4 IN. THICK

BOILING LIGHT WATER REACTORS, DOMESTIC BD23

CONTAINMENT PRESSURE-SUPPRESSION STRUCTURE CONSISTING OF A DRYWELL CONTAINING THE REACTOR VESSEL AND FIVE RECIRCULATION LOOPS, AND SUPPRESSION POOL.

REACTOR BUILDING IS REINFORCED CONCRETE HIGH-BAY

STRUCTURE.

REMARKS CONTRACT FOR DESIGN AND CONSTRUCTION OF THE REACTOR, TURBINE GENERATOR AND RELATED EQUIPMENT

AWARDED TO GE IN OCTOBER 1963.

REFERENCES PRELIMINARY HAZARDS SUMMARY REPORT, NINE MILE POINT NUCLEAR STATION. VOLS. I AND II. NIAGARA MOHAWK POWER CORP. APRIL 1964. DOCKET 50-220.

/APRIL 1964/

FIRST SUPPLEMENT TO PRELIMINARY HAZARDS SUMMARY REPORT, NINE MILE POINT NUCLEAR STATION, NIAGARA MOHAWK POWER CORP. AUG. 1964 /EXHIBIT D. SUPP=1/

HAZARDS ANALYSIS BY THE DIVISION OF REACTOR LICENSING IN THE MATTER OF NIAGARA MOHAWK POWER CORPORATION 9-MILE POINT NUCLEAR STATION, OSWEGO DIV. REACTOR LICENSING, AEC TID-22438 /ND/

NINE MILE POINT NUCLEAR STATION.
PRELIMINARY HAZARDS SUMMARY REPORT
VOL. 1, 2, SUPPLEMENT 1
NIAGARA MOHAWK POWER CORP.
NP-15660

VOL.1, APRIL 1964 VOL.2, APRIL 1964 SUPPL. 1, AUG. 1964

BOILING LIGHT WATER REACTORS, DOMESTIC BD24

NAME/OWNER OYSTER CREEK STATION-1/JERSEY CENTRAL P+L

DESIGNER GENERAL ELECTRIC COMPANY

OPERATOR JERSEY CENTRAL POWER AND LIGHT CO.

LOCATION OYSTER CREEK, N. J.

FORKED RIVER /BARNEGAT BAY/

PURPOSE POWER

TYPE BWR DIRECT CYCLE, FORCED CIRCULATION

POWER MWE(MWT) 515 1600

CRITICAL DELAYED DUE TO CRACKS IN PRESSURE VESSEL.

TARGET 1969

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS

FUEL GEOMETRY ROD ACTIVE LENGTH 144 IN.

FUEL CLADDING ZIRCALOY=2 TUBES 0,502 IN. OD/0.034 IN. THICK

FUEL ENRICH. 2.1 PER CENT U-235

FUEL ASSEMBLY 64-ROD ASSEMBLY, 8x8, ZIRCALOY-2 CHANNEL

532 ASSEMBLIES/CORE

FUEL CHARGE 486 POUNDS URANIUM DIOXIDE/ASSEMBLY

BURNUP (REFUEL) 15000 MWD/T PARTIAL BATCH

25 PER CENT, SCATTER PATTERN

CONTROL - CRUCIFORM BLADES, BORON CARBIDE POWDER IN SS

BORON-SS POISON CURTAINS

COOLANT TEMP. 301 F

COOLANT PRESS, 1000 PSIG

REACTOR VESSEL STEEL CYLINDER 17 FT. 9 IN. ID/61 FT. 2 IN.

BETWEEN HEADS, CYLINDER CONTAINS CORE, STEAM

SEPARATORS AND DRIERS.

CONTAINMENT PRESSURE-SUPPRESSION SYSTEM CONSISTING OF DRYWELL

BOILING LIGHT WATER REACTORS. DOMESTIC

BD24

AND PRESSURE-ABSORPTION STRUCTURE. DRYWELL ENCLOSES REACTOR VESSEL, PUMPS, PIPING, CONTROL ROD DRIVES.
ABSORPTION CHAMBER IS A TOROIDAL STEEL SHELL ENCLOSED IN REINFORCED CONCRETE VAULT, OUTSIDE O

ENCLOSED IN REINFORCED CONCRETE VAULT, OUTSIDE OF AND BELOW DRYWELL AND PARTIALLY FILLED WITH WATER. CONTAINMENT STRUCTURE IS REINFORCED CONCRETE, PARTIALLY BELOW-GRADE.

PARTIALLY BELOW-GRADE.

REFERENCES

APPLICATION TO U. S. ATOMIC ENERGY COMMISSION FOR REACTOR CONSTRUCTION PERMIT AND OPERATING LICENCES, DYSTER CREEK NUCLEAR POWER PLANT UNIT PART B, PRELIMINARY SAFEGUARDS SUMMARY REPORT, MARCH 1964.

JERSEY CENTRAL POWER + LIGHT CO.

DOCKET 50=219
NP=14365 /ND/

OYSTER CREEK NUCLEAR ENG. 10, 225-28 /JUNE 1965/

BNWL - 936 JANUARY 1969

BOILING LIGHT WATER REACTORS. DOMESTIC BD25

NAME/OWNER BONUS /BOILING NUCLEAR SUPERHEAT//AEC. PRWRA

DESIGNER GENERAL NUCLEAR ENGINEERING CORPORATION

OPERATOR PUERTO RICO WATER RESOURCES AUTHORITY

LOCATION PUNTA HIGUERA, PUERTO RICO

CARIBBEAN SEA

PURPOSE POWER DEMONSTRATION

BWR, FORCED CIRCULATION, NUCLEAR SUPERHEAT TYPE

PRESSURE TUBE

16.5 POWER MWE(MWT) 50

APRIL 1964 CRITICAL

PROJECT TO BE TERMINATED /1968/

COOLANT LIGHT WATER AND STEAM.

LIGHT WATER MODERATOR

REFLECTOR, LIGHT WATER

FUEL MATERIAL CENTRAL BOILER, URANIUM DIOXIDE PELLETS

0.445 IN. DIA.

SUPERHEATER, URANIUM DIOXIDE PELLETS 9,5 IN, DIA.

BOILER, SEGMENTED ROD FUEL GEOMETRY

0.50 IN. OD., 54 IN. ACTIVE LENGTH SUPERHEATER, ROD 54,6 IN. ACTIVE LENGTH

FUEL CLADDING BOILER. ZIRCALOY-2 TUBES

0.025 IN. WALL THICKNESS

SUPERHEATER INCONEL 0.018 IN. THICK

BOILER, 2.4 PER CENT U-235 WITH NATURAL U IN 4 FUEL ENRICH.

CENTRAL ELEMENTS

SUPERHEAT, 3,25 PER CENT U-235

FUEL ASSEMBLY

BOILER, 32 TUBES, 64 ASSEMBLIES. SUPERHEAT, 32 RODS, 32 ASSEMBLIES IN PRESSURE

TUBES

BOILER, 2,81 TONS U FUEL CHARGE

SUPERHEAT, 1.79 TONS U

SPECIFIC POWER BOILER, 13.2 THW/TON U SUPERHEAT: 7.25 TMW/TON U

BURNUP (REFUEL) BOILER, 12,900 MWD/MTU

BOILING LIGHT WATER REACTORS, DOMESTIC BD25

SUPERHEATER, 13,000 MWD/MTU

CONTROL BORON-SS RODS, GRAVITY SCRAM. CRUCIFORM RODS IN BOILER SECTION AND SLAB RODS BETWEEN BOILER-SUPERHEATER, PLUS CHEMICAL SHIM.

OOQLANT TEMP. BOILER 540 F SUPERHEAT 900 F

COOLANT PRESS. 950 PSIG

REACTOR VESSEL CARBON STEEL CYLINDER 7 FT. ID./26 FT. 6 IN. HIGH AVERAGE THICKNESS 3 1/8 IN. INNER SS CLADDING 1/4 IN. THICK

CONTAINMENT
HEMISPHERICAL STEEL SHELL WELDED TO CYLINDRICAL
STEEL WALL, LOW-PRESSURE, HOUSES THE ENTIRE PLANT.
CYLINDRICAL CONCRETE OUTER WALL. BUILDING IS 107
FT. ABOVE GROUND.

REMARKS

HEMISPHERICAL STEEL SHELL 166 FT. 8 IN. DIA.,
13/32 IN. THICK, CONCRETE MAT, HOUSES ENTIRE
PLANT. LOW-PRESSURE DESIGN, 5 PSIG INTERNAL
PRESSURE.
ASSEMBLIES ARE ARRANGED IN FOUR GROUPS AROUND
THE SQUARE BOILER ZONE. THE FUEL ROD IS
SURROUNDED BY A STAINLESS STEEL TUBE TO FORM

SURROUNDED BY A STAINLESS STEEL TUBE TO FORM THE STEAM COOLANT ANNULUS, AND THIS IS SURROUNDED BY A STAINLESS STEEL PRESSURE TUBE TO PROVIDE A THERMAL INSULATING GAP BETWEEN THE COOLANT TUBE AND THE WATER MODERATOR. DESIGN HAS BEEN EXTRAPOLATED TO A LARGE CENTRAL STATION INTEGRAL NUCLEAR SUPERHEAT STEAM PLANT, GNEC IS DESIGNING AN ANNULAR SUPERHEAT ELEMENT TO REPLACE THE TUBULAR ELEMENTS OF THE FIRST CORE LOADING.

REFERENCES

BOILING NUCLEAR SUPERHEATER /BONUS/ POWER STATION.

PRELIMINARY DESIGN STUDY AND HAZARDS SUMMARY

REPORT. VOL. II. REFERENCE DESIGN. VOL. III.

ALTERNATE DESIGN STUDIES. VOL. IV. PRELIMINARY

HAZARDS SUMMARY REPORT.

PRWRA, GENERAL NUCLEAR ENG.

TID-8524 /JUNE 1960/

NUCLEAR SUPERHEAT. THE BONUS REACTOR.
POWER REACTOR TECHNOLOGY 3, 68-74 /SEPTEMBER 1960/

BOILING NUCLEAR SUPERHEATER /BONUS/ POWER STATION .
TECHNICAL SPECIFICATIONS.
F BEVILACQUA

BOILING LIGHT WATER REACTORS. DOMESTIC

BD25

GNEC-214 /OCTOBER 26, 1962/

BOILING NUCLEAR SUPERHEATER /BONUS/ POWER STATION.
SUPPLEMENTARY STUDY. EXTRAPOLATION TO LARGE
CENTRAL STATION INTEGRAL NUCLEAR SUPERHEAT PLANT.
GENERAL NUCLEAR ENG.
PRWRA-GNEC-4 /ND/

BOILING NUCLEAR SUPERHEATER /BONUS/ POWER STATION, FINAL SUMMARY DESIGN REPORT. PRWRA, GENERAL NUCLEAR ENG. PRWRA-GNEC-6 /FEB. 1, 1962/

BOILING NUCLEAR SUPERHEATER /BONUS/ POWER STATION. FINAL HAZARD SUMMARY REPORT. PRWRA. GENERAL NUCLEAR ENG. PRWRA-GNEC-5 /FEB. 1, 1962/

DESIGN AND CONSTRUCTION PRACTICE, BONUS, POWER REACTOR TECHNOLOGY 7/3/, 292-312/SUMMER 1964/

BOILING NUCLEAR SUPERHEATER /BONUS/ POWER STATION PUNTA HIGUERA SITE NEAR RINCON, PUERTO RICO PROJECT COMPLETION REPORT OAK RIDGE OPERATIONS OFFICE ORO-649 /JUNE 1966/

BOILING NUCLEAR SUPERHEATER BONUS POWER STATION FINAL HAZARDS SUMMARY REPORT PRWRA-GNEC-5 /REV/ FEB. 1, 1962. REV. NOV. 15,1965

AEC NEWS RELEASE L=151 /JULY 1, 1968/

BOILING LIGHT WATER REACTORS, DOMESTIC BD26

NAMEZOWNER NUSU ZNUCLEAR SUPERHEATZ

DESIGNER GENERAL NUCLEAR ENG. CORP., COMBUSTION ENG.

PURPOSE POWER

TYPE BWR, DIRECT CYCLE, FORCED CIRCULATION, NUCLEAR

SUPERHEAT

POWER MWE(MWT) 200 633

CRITICAL DESIGN

COOLANT LIGHT WATER AND STEAM

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS, ANNULAR, 1,114 IN. DIA./

0.20 IN. THICK

FUEL GEOMETRY BOILER, ANNULAR RODS

SUPERHEATER, DOUBLE-ANNULAR RODS

FUEL CLADDING BOILER, SS INNER AND OUTER, 0.020 IN. THICK

SUPERHEATER, OUTER SS, INTERMEDIATE HASTELOY X,

INNER HASTELOY X

FUEL ENRICH. BOILER, 4.5 PER CENT U-235

SUPERHEATER 2.4 PER CENT U-235

FUEL ASSEMBLY BOILER, 42-ROD ASSEMBLY, HEXAGONAL

30 ASSEMBLIES/CORE

SUPERHEATER, 18-ROD ASSEMBLY, HEXAGONAL

61 ASSEMBLIES/CORE

FUEL CHARGE 32.5 SHORT TONS URANIUM

SPECIFIC POWER 16.4 MW/T URANIÚM

BURNUP (REFUEL) BATCH, 1/3 CORE

CONTROL BORON-SS RODS

REACTOR VESSEL CARBON STEEL CYLINDER, HEMISPHERICAL HEADS, 11 FT.

6 IN. ID. AND 15 FT. 2 IN. HIGH, SS INNER CLADDING

CONTAINMENT CYLINDRICAL CONCRETE STRUCTURE, HEMISPHERICAL

STEEL DOME, CARBON STEEL SHELL. PRESSURE SUPPRESSION SYSTEM.

REMARKS DESIGN STUDY OF AN INTEGRAL BOILING-SUPERHEATING

BOILING LIGHT WATER REACTORS, DOMESTIC

BD26

DESIGN WITH A TWO-REGION CORE. BOTH BOILING AND SUPERHEATING OCCUR IN THE SUPERHEAT REGION, WHICH IS FUELED WITH DOUBLE ANNULAR FUEL ELEMENTS. STEAM IS SUPERHEATED ON THE INTERNAL SURFACES OF THE ELEMENT, AND BOILING OCCURS ON THE EXTERNAL SURFACE WHICH IS IN CONTACT WITH THE LIQUID COOLANT WATER. SURROUNDING BOILER REGION IS FUELED WITH SINGLE-ANNULAR ELEMENTS. BOILING OCCURS ON BOTH INNER AND OUTER SURFACES. LIQUID COOLANT FLOW IS TWO-PASS, THE BOILER SECTION AND THE BOILER PART OF THE SUPERHEAT SECTION BEING HYDRAULICALLY IN SERIES.

REFERENCES

DIRECT CYCLE BOILING WATER REACTOR WITH INTEGRAL NUCLEAR SUPERHEAT.

GENERAL NUCLEAR ENGINEERING CORP.

GNEC-212 /JAN. 1962/

A 200 MWE BOILER-SUPERHEATER REACTOR, PRELIMINARY DESIGN.
GENERAL NUCLEAR ENG.
GNEC-136 /OCT. 1960/

BOILING LIGHT WATER REACTORS, DOMESTIC BD27

NAME/OWNER PILGRIM STATION/BOSTON-ED.

DESIGNER GENERAL ELECTRIC COMPANY

OPERATOR BOSTON EDISON

LOCATION PLYMOUTH, MASSACHUSETTS

CAPE COD BAY

PURPOSE POWER

TYPE BWR, FORCED CIRCULATION, DIRECT CYCLE

POWER MWE(MWT) 625 1912

CRITICAL APPLICATION FOR CONSTRUCTION PERMIT 1967

TARGET 1971

COQLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIGXIDE PELLETS 0.488 IN, DIAM.

FUEL GEOMETRY ROD 0.562 IN. OD

FUEL CLADDING ZIRCALOY=2 0,032 IN. THICK

FUEL ENRICH, AVE. 2,18 PER CENT U=235

FUEL ASSEMBLY 49-ROD BUNDLE, 7x7, ZIRCALOY-4 CHANNEL

580 ASSEMBLIES/CORE

BURNUP (REFUEL) AVE, 19,000 MWD/T

CONTROL CRUCIFORM RODS, BORON CARBIDE IN SS TUBES

COOLANT PRESS. 1000 PSIG

REACTOR VESSEL STEEL VESSEL APPROX: 64 FT, 8 IN. HIGH.

18 FT. 8 IN. ID

SS CLAD 1/8 IN. THICK MIN.

CONTAINMENT DOUBLE PRESSURE-SUPPRESSION SYSTEM, WHICH INCLUDES

A DRYWELL AND PRESSURE-SUPPRESSION CHAMBER, PLUS A SECOND UNDERGROUND CHAMBER AND POOL SURROUNDING

THE REACTOR BUILDING, TO WHICH THE LATTER IS

VENTED, THE SECOND CHAMBER IS VENTED TO THE STACK.

REMARKS TYPE SELECTION IN FEBRUARY 1965.

BOILING LIGHT WATER REACTORS, DOMESTIC BD27

REFERENCES PILGRIM NUCLEAR POWER STATION

DESIGN AND ANALYSIS REPORT

BOSTON EDISON Co. DOCKET 50-293 /1967/

BOILING LIGHT WATER REACTORS, DOMESTIC BD28

NAME/OWNER SURFSIDE/ASDA, N.Y.

SMALL UNIFIED REACTOR FACILITY WITH SYSTEMS

FOR ISOTOPES, DESALTING, ELECTRICITY

DESIGNER AMF ATOMICS /HITTMAN ASSOCIATES/

-OPERATOR ATOMIC AND SPACE DEV. AUTHORITY

LOCATION LONG ISLAND SOUND, NEW YORK

PURPOSE POWER, DESALINATION, ISOTOPE PRODUCTION,

TYPE BWR, PRESSURE TUBE

POWER MWE(MWT) 2.5

CRITICAL DESIGN AND CONSTRUCTION CONTRACT AWARDED TO

HITTMAN ASSOC. OCTOBER 1968.

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS

FUEL GEOMETRY RODS

FUEL CLADDING ZIRCALOY TUBE 27 IN. LONG/0.440 IN. DIA.

FUEL ENRICH. 4-5 PER CENT U-235

FUEL ASSEMBLY 37-TUBE BUNDLE.

82 ELEMENTS WILL BE CONTAINED IN THE

ZIRCALOY PRESSURE TUBES. EITHER SINGLY OR IN CLUSTERS. TARGET MATERIALS CAN BE INSERTED

INDEPENDENT OF THE REFUELING.

REMARKS SURFSIDE WILL PRODUCE 2500 KWE NET, 1-MILLION GPD

OF WATER, AND NEUTRONS FOR AN EQUIVALENT OF

400,000 CURIES PER YEAR OF COBALT-60

REFERENCES NUCLEONICS WEEK JULY 22, 1965 P. 1=2

NEWS RELEASE

WATER DESALINATION REPORT OCT. 13, 1966 P. 1

NEWS RELEASE

NUCLEONICS WEEK OCT, 31, 1968, NUCLEAR INDUSTRY MARCH 1967 A. 60

BOILING LIGHT WATER REACTORS. DOMESTIC BD29

NAME/OWNER DEEP-POOL REACTOR/AEC

DESIGNER AEC-BECHTEL

PURPOSE WATER DESALINATION, PROCESS HEAT

.TYPE BWR

POWER MWE(MWT) 400

CRITICAL CONCEPTUAL DESIGN

COOLANT DEMINERALIZED LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS

FUEL GEOMETRY RODS

FUEL CLADDING ZIRCALOY-2

FUEL ENRICH. 2.75 PER CENT U-235 INITIAL

FUEL ASSEMBLY SQUARE ASSEMBLY

120 ASSEMBLIES/CORE ACTIVE HEIGHT 6 1/2 FT.

FUEL CHARGE 25,000 KG. URANIUM

BURNUP (REFUEL) 20,000 MWD/T

CONTROL BORON CARBIDE POWDER IN INCONEL TUBES

COOLANT TEMP. INLET 200 F OUTLET 270 F

COOLANT PRESS. 77 PSIA

REACTOR VESSEL 150 FT. DEEP TANK OF HIGH-PURITY WATER IN WHICH

REACTOR CORE IS LOCATED. CARBON STEEL, 11 FT. DIA.

CONTAINMENT STEEL-LINED CONCRETE PIT, 100 FT. BELOW-GRADE TO

50 FT. ABOVE-GRADE.

CONTROLLED VENTILATION CONCEPT

REMARKS DESIGN CONCEIVED BY AEC CHICAGO OPERATIONS OFFICE

AND DEVELOPED BY BECHTEL IN A 6-MONTH DESIGN STUDY THE REACTOR FURNISHES POWER FOR A 50 MGD SEA-WATER

CONVERSION PLANT

BOILING LIGHT WATER REACTORS, DOMESTIC BD29

REFERENCES DEE

DEEP-POOL REACTOR FOR WATER DESALTING BECHTEL CORP. COO-283 /1965/

CONCEPTUAL DESIGN OF A REACTOR FOR USE IN DESALINATION.
US AEC CHICAGO OPERATIONS OFFICE CO0-278 /OCT. 1964/

BOILING LIGHT WATER REACTORS, DOMESTIC BD30

NAME/OWNER MILLSTONE POINT STATION/CONNECTICUT L + P, HARTFORD ELECTRIC, WESTERN MASSACHUSETTS ELEC.

DESIGNER GENERAL ELECTRIC COMPANY

LOCATION WATERFORD, CONNECTICUT
LONG ISLAND SOUND

PURPOSE POWER

TYPE BWR, DIRECT CYCLE, FORCED CIRCULATION

POWER MWE(MWT) 550 2011

CRITICAL CONSTRUCTION. TARGET 1969

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS 0.488 IN. DIA.

FUEL GEOMETRY RODS, ACTIVE LENGTH 144 IN,

FUEL CLADDING ZIRCALOY=2 0.036 IN. THICK, 0.570 IN. OD.

FUEL ENRICH. AVE. 2.07 PER CENT U=235

FUEL ASSEMBLY 7x7 ROD BUNDLE, ZIRCALOY=4 CHANNEL 580 ASSEMBLIES

BURNUP (REFUEL) AVE. 15,000 MWD/T

CONTROL CRUCIFORM RODS, BOTTOM ENTRY.
BORON CARBIDE CONTROL MATERIAL
TEMPORARY POISON CURTAINS

COOLANT PRESS: 1000 PSIG

REACTOR VESSEL CYLINDER, 18 FT. 8 IN. ID/64 FT. 8 IN. LONG

CONTAINMENT STEEL AND REINFORGED CONCRETE STRUCTURE.

. PRESSURE SUPPRESSION SYSTEM.

REMARKS CONTRACT AWARD 1965

REFERENCES MILLSTONE NUCLEAR POWER STATION.

DESIGN AND ANALYSIS REPORT

CONNECTICUT LIGHT + POWER CO., HARTFORD ELECTRIC LIGHT CO., WESTERN MASSACHUSETTS ELECTRIC CO.

JANUARY 1969

BOILING LIGHT WATER REACTORS. DOMESTIC

NP=16147 /ND/

BOILING LIGHT WATER REACTORS, DOMESTIC BD31

NAME/OWNER ISRAELI BWR STUDY/US=ISRAEL JOINT BOARD

DESIGNER KAISER ENGINEERS/CATALYTIC CONSTRUCTION CO.

PURPOSE POWER AND DESALINATION

. TYPE BWR DIRECT CYCLE, FORCED RECIRCULATION

INTERNAL STEAM SEPARATION

POWER MWE(MWT) 250 1250

CRITICAL ENGINEERING AND ECONOMIC FEASIBILITY STUDY

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS

FUEL GEOMETRY ROD 0.570 IN. DIA., 12 FT. ACTIVE LENGTH

FUEL CLADDING ZIRCALOY=2

FUEL ENRICH. SLIGHT

FUEL ASSEMBLY 49-ROD BUNDLE 7X7, ZIRCALOY-4 CHANNEL

MODULAR, STACKED, CORE IS BUILT UP OF MODULES CONSISTING OF ONE CONTROL BLADE AND FOUR FUEL

ASSEMBLIES

BURNUP(REFUEL) SCATTER, ANNUAL, 20 PER CENT

CONTROL BORON CARBIDE PELLETS IN STAINLESS STEEL, CRUCIFORM. CONTROL OF RECIRCULATION RATE.

CONTAINMENT PRESSURE * SUPPRESSION, DRYWELL IS A STEEL PRESSURE

VESSEL VENTING INTO A TOROIDAL SUPPRESSION POOL.

REMARKS SEE ALSO PWR STUDY HD45.

THE 100 MGD DESALTING FACILITY WOULD BE A MULTI*

STAGE FLASH DISTILLATION PLANT

REFERENCES ENGINEERING FEASIBILITY, ECONOMIC STUDY FOR DUAL

PURPOSE ELECTRIC POWER-WATER DESALTING PLANT.

KAISER ENG., CATALYTIC CONSTR. REPORT NO. 66-I-RE /JAN. 1966/

BOILING LIGHT WATER REACTORS, DOMESTIC BD32

NAME/OWNER QUAD CITIES NUCLEAR STATION/IOWA-ILLINOIS E+G CORDOVA STATION

DESIGNER GENERAL ELECTRIC COMPANY

OPERATOR COMMONWEALTH EDISON

LOCATION CORDOVA, ILLINOÌS ON MISSISSÎPPI RIVER

PURPOSE POWER

TYPE BWR, DIRECT CYCLE, FORCED CIRCULATION.
TWO-REACTOR STATION

POWER MWE(MWT) 800 2255 PER REACTOR

CRITICAL TARGET NO.1. 1970 NO.2. 1971

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS 0.488 IN. DIAM.

FUEL GEOMETRY ROD, ACTIVE LENGTH 144 IN., 0.570 IN. OD

FUEL CLADDING ZIRCALOY=2, 0.036 IN, THICK

FUEL ENRICH. 2 PER CENT U-235

FUEL ASSEMBLY 7x7 ROD BUNDLE, ZIRCALOY-4 CHANNELS 724 BUNDLES/CORE

BURNUP (REFUEL) AVE. 15,000 MWD/T

CONTROL RODS, BOTTOM ENTRY, BORON CARBIDE IN SS

COOLANT TEMP. INLET 530.4 F

COOLANT PRESS. 1000 PSI

REACTOR VESSEL CYLINDER 21 FT. DIAM/69 FT. LONG

CONTAINMENT PRESSURE-SUPPRESSION, REACTOR BUILDING

REMARKS OPTION ON SECOND UNIT FOR SITE

REFERENCES UTILITIES COLLABORATE ON 1618-MW NUCLEAR STATION.

BOILING LIGHT WATER REACTORS. DOMESTIC BD32

EL MICHELSON
ELECTRICAL WORLD 168, 32-3 /JULY 17, 1967/

QUAD CITIES STATION UNIT 1. PLANT DESIGN ANALYSIS. COMMONWEALTH EDISON CO. DOCKET 50-254

BOILING LIGHT WATER REACTORS, DOMESTIC BD33

NAME/OWNER MONTICELLO NUCLEAR STATION/NORTHERN STATES POWER

DESIGNER GENERAL ELECTRIC COMPANY

OPERATOR NORTHERN STATES POWER

LOCATION MONTICELLO, MINNESOTA /NW OF MINNEAPOLIS/

PURPOSE POWER

TYPE BWR, FORCED CIRCULATION SINGLE CYCLE

POWER MWE(MWT) 500

AFTER CORE REPLACEMENT IN 1973, 545 MWE

CRITICAL TARGET 1970, FULL POWER NOV. 1970

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

REMARKS INDUCED DRAFT COOLING TOWERS ARE PROVIDED FOR

OPERATION DURING PERIODS OF LOW STREAM-FLOW

REFERENCES NUCLEAR INDUSTRY APRIL 1966 P. 39

NEWS RELEASE

BCILING LIGHT WATER REACTORS, DOMESTIC BD34

NAME/OWNER BROWNS FERRY NUCLEAR STATION/TVA

TVA NUCLEAR STATION

DESIGNER GENERAL ELECTRIC CO.

OPERATOR TENNESSEE VALLEY AUTHORITY

LOCATION BROWNS FERRY, LIMESTONE VALLEY, ALABAMA

WHEELER RESERVOIR /TENNESSEE RIVER/

PURPOSE POWER

TYPE BWR, SINGLE CYCLE, FORCED CIRCULATION

THREE-REACTOR STATION

APPLICATION FOR NO.3 JULY 1967

POWER MWE(MWT) 1100 3290 /PER REACTOR/

CRITICAL TARGET NO. 1, 1970

No. 2, 1971 No. 3, 1972

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLET 0.488 IN. DIAM.

FUEL GEOMETRY ROD 0,562 IN. OD. ACTIVE LENGTH 144 IN.

FUEL CLADDING ZIRCALOY=2 TUBES 0.032 IN, THICK

FUEL ENRICH, 2.19 PER CENT U-235

FUEL ASSEMBLY BUNDLE, 7x7,

ZIRCALOY=4 SPACERS, ZIRCALOY=4 CHANNELS.

764 ASSEMBLIES/CORE

BURNUP(REFUEL) 19000 MWD/T ANNUAL, BATCH

FUEL REMOVED FROM UNIT 1 AT FIRST BATCH RELOADING WILL BE INSTALLED IN UNIT

3 AS PART OF INITIAL

LOADING.

CONTROL SS TUBES WITH BORON, TEMPORARY CURTAINS.

CONTAINMENT COMMON. ZONED, SECONDARY CONTAINMENT. UNITS

INDEPENDENT OF EACH OTHER, REINFORCED CONCRETE, PRIMARY CONTAINMENT, STEEL PRESSURE VESSEL WITH

BOILING LIGHT WATER REACTORS, DOMESTIC BD34

ASSOCIATED PRESSURE-SUPPRESSION CHAMBER.

REMARKS APPROVAL IS BEING SOUGHT FOR AN UNDERGROUND

DIFFUSER PIPE COOLING SYSTEM FOR DISCHARGE WATER.

REFERENCES BROWNS FERRY NUCLEAR POWER STATION.

TENNESSEE VALLEY AUTHORITY. DESIGN AND

ANALYSIS REPORT.

TENNESSEE VALLEY AUTHORITY NP-16251 /VOL. 1-2/, 1966

TVA-S FIRST NUCLEAR PLANT

CP PALO, DB WEAVER

POWER ENG. 71, 38-42 /APRIL 1967/

BROWNS FERRY NUCLEAR POWER STATION, UNIT 3

TENNESSEE VALLEY AUTHORITY

DOCKET 50-296-1

BOILING LIGHT WATER REACTORS, DOMESTIC BD35

NAMEZOWNER VERMONT YANKEE/VERMONT YANKEE NUCLEAR POWER CORP.

DESIGNER GENERAL ELECTRIC CO.

OPERATOR VERMONT YANKEE NUCLEAR POWER CORP.

LOCATION BRATTLEBORO, VERMONT CONNECTIOUT RIVER

PURPOSE POWER

TYPE BWR

POWER MWE(MWT) 514 1600

CRITICAL TARGET 1971

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

REMARKS APPLICATION FOR CONSTRUCTION PERMIT NOV. 1966

CONSTRUCTION PERMIT GRANTED DEC. 1967.

PLANT ID DESIGNED FOR ONCE THROUGH COOLING, BUT AN OPEN OR CLOSED CYCLE COOLING TOWER SYSTEM

WILL BE REQUIRED.

REFERENCES NUCLEONICS WEEK AUG. 11, 1966 P. 1-2

NEWS RELEASE

BOILING LIGHT WATER REACTORS, DOMESTIC BD36

NAME/OWNER PEACH BOTTOM 2 - 3/PHILADELPHIA ELECTRIC /DELAWARE VALLEY UTILITIES/

DESIGNER GENERAL ELECTRIC COMPANY

OPERATOR DELAWARE VALLEY UTILITIES
ATLANTIC CITY ELECTRIC
PHILADELPHIA ELECTRIC

LOCATION PEACH BOTTOM, YORK COUNTY, PENNA.
CONOWINGO DAM

PURPOSE POWER

TYPE BWR, SINGLE CYCLE, FORCED CIRCULATION

TWO-REACTOR UNIT

POWER MWE(MWT) 1000 3295 PER REACTOR

CRITICAL TARGET NO. 1, 1971 NO. 2, 1973

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS 0.488 IN. DIAM.

FUEL GEOMETRY ROD, ACTIVE LENGTH 144 IN.

FUEL CLADDING ZIRCALOY=2, 0.562 IN. OD. AND 0.032 IN. THICK

FUEL ENRICH. AVE. 2.19 PER CENT U=235

FUEL ASSEMBLY 49-ROD BUNDLE, 7x7
ZIRCALOY-4 CHANNELS

764 ASSEMBLIES/CORE

CONTROL CRUCIFORM RODS, BORON CARBIDE,

VARIATION OF COOLANT FLOW. TEMPORARY POISON CURTAINS

REACTOR VESSEL STEEL VESSEL 20 FT. 11 IN. ID. 72 FT. LONG.

CORE SPRAY SYSTEM

CONTAINMENT REINFORCED CONCRETE AND STEEL SUPERSTRUCTURE WITH

METAL SIDING. SEPARATE CONTAINMENT FOR EACH

REACTOR, HOUSED IN SEPARATE BUILDINGS.
PRESSURE SUPPRESSION PRIMARY CONTAINMENT

REMARKS SERVICE WATER TO BE PUMPED FROM CONOWINGO DAM AND

BOILING LIGHT WATER REACTORS, DOMESTIC 8D36

DISCHARGED TO SOUTH OF STATION.

REFERENCES

PRELIMINARY SAFETY ANALYSIS REPORT VOL. 1-2-3
PEACH BOTTOM ATOMIC POWER STATION UNITS 2 AND 3

PHILADELPHIA ELECTRIC CO. DOCKET 50-277 AND 50-278

BOILING LIGHT WATER REACTORS, DOMESTIC BD37

NAME/OWNER DAVIDS ISLAND STA./CONSOLIDATED EDISON CO.

ORANGE + ROCKLAND UTILITIES

DESIGNER GENERAL ELECTRIC COMPANY

LOCATION DAVIDS ISLAND, LONG ISLAND SOUND, N.Y.

PURPOSE POWER

TYPE BWR

POWER MWE(MWT) 1000

CRITICAL TARGET 1978

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS

FUEL GEOMETRY ROD

FUEL CLADDING ZIRCALOY TUBES

FUEL ENRICH. 2,2 PER CENT U-235

FUEL ASSEMBLY ROD BUNDLE

764 BUNDLES/CORE

BURNUP(REFUEL) 1ST CYCLE 11,517 MWD/T

EQUIL. CORE 33,000 MWD/T

REFERENCES NEWS RELEASES

BOILING LIGHT WATER REACTORS, DOMESTIC BD38

NAME/OWNER JAMES A. FITZPATRICK STA./POWER AUTHORITY STATE
OF NEW YORK /PASNY/

DESIGNER GENERAL ELECTRIC COMPANY

LOCATION NINE MILE POINT, NEW YORK LAKE ONTARIO

PURPOSE POWER

TYPE BWR

POWER MWE(MWT) 800 /DATA REFERS TO EASTON 750 MWE DESIGN SEE REMARKS

CRITICAL TARGET 1973-74

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS

FUEL GEOMETRY ROD, 0.562 IN. oD, 144 IN. ACTIVE LENGTH

FUEL CLADDING ZIRCALOY=2 0.032 IN. THICK

FUEL ENRICH. 2,20 PER CENT U-235

FUEL ASSEMBLY 49=ROD BUNDLE: 7x7 ZIRCALOY=4 CHANNEL 548 ASSEMBLIES/CORE

REACTOR VESSEL VESSEL 18 FT 2 IN. ID/69 FT. 2 IN. HIGH

CONTAINMENT REINFORCED CONCRETE AND STEEL BUILDING, METAL

SIDING.

PRESSURE - SUPPRESSION

REMARKS NIAGARA MOHAWK HAS DROPPED ITS PROPOSED EASTON

STATION BECAUSE OF DELAYS IN GETTING APPROVAL AND ASSIGNED ITS CONTRACTS WITH GE TO PASNY, PART OF THE NINE MILE POINT SITE WILL BE SOLD TO PASNY.

THE REACTOR HAS BEEN UPDATED TO 800 MWE.

REFERENCES EASTON NUCLEAR STATION

PRELIMINARY SAFETY ANALYSIS REPORT

NIAGARA MOHAWK POWER CORP.

DOCKET 50-300 /1968/

BOILING LIGHT WATER REACTORS, DOMESTIC BD39

NAMEZOWNER BURNS HARBOR STATION/NIPSCO

BAILEY STATION-3

.DESIGNER GENERAL ELECTRIC COMPANY

OPERATOR NORTHERN INDIANA PUBLIC SERVICE CO /NIPSCO/

LOCATION DUNE ACRES, NEAR GARY, INDIANA

ON LAKE MICHIGAN

PURPOSE POWER

TYPE BWR

POWER MWE(MWT) 800

CRITICAL CONSTRUCTION 1968

TARGET 1972

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE

REFERENCES NUCLEONICS WEEK JAN: 19, 1967 P. 1:

NEWS RELEASE

BOILING LIGHT WATER REACTORS, DOMESTIC BD40

NAME/OWNER HIGH POWER DENSITY BWR

DESIGNER GENERAL ELECTRIC COMPANY

PURPOSE POWER

TYPE BWR, HIGH POWER DENSITY

POWER MWE(MWT) 600 1915

CRITICAL CONCEPTUAL DESIGN

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS 0,373 IN. OD

FUEL GEOMETRY ROD, 144 IN. ACTIVE LENGTH, 0.428 IN. DIAM.

FUEL CLADDING ZIRCALOY-2, 0.027 IN. THICK

FUEL ENRICH. 2.66 PER CENT U-235

FUEL ASSEMBLY BUNDLE, 9x9, ZIRCALOY-4 CHANNELS

CORNER RODS OF BUNDLES HAVE SMALLER DIMENSIONS FOUR BUNDLES SURROUND A CRUCIFORM CONTROL ROD

368 BUNDLES/CORE

CORE DIAMETER 136.8 IN.

ROD SPACING IS BY A GRID OF WIRES

BURNUP (REFUEL) 20,000 MWD/T BATCH, 8 MONTHS

CONTROL SS TUBES WITH BORON CARBIDE, CRUCIFORM RODS.

TEMPORARY BORON CARBIDE POISON CURTAINS.

REFERENCES 600 MWE HIGH POWER DENSITY BWR CORE - CONCEPTUAL

DESIGN. FINAL REPORT.

DR MILLER. OTHERS

GEAP-4974 /FEB: 1966/

BOILING LIGHT WATER REACTORS, DOMESTIC BD41

NAME/OWNER BELL STATION/N.Y. STATE ELECTRIC + GAS CO. CAYUGA LAKE

DESIGNER GENERAL ELECTRIC COMPANY

OPERATOR N.Y. STATE ELECTRIC + GAS CO.

LOCATION CAYUGA LAKE, NEAR ITHACA, NEW YORK

PURPOSE POWER

TYPE BWR, SINGLE CYCLE, FORCED CIRCULATION

POWER MWE(MWT) 800 2400

CRITICAL TARGET 1973

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS 0.488 IN. DIAM.

FUEL GEOMETRY ROD 0.562 IN. OD. ACTIVE LENGTH 144 IN.

FUEL CLADDING ZIRCALOY=2 0.032 IN. THICK

FUEL ENRICH. AVE. 2.23 PER CENT U-235

FUEL ASSEMBLY 49-ROD BUNDLE, 7X7
ZIRCALOY-4 CHANNELS
560 ASSEMBLIES/CORE

FUEL CHARGE 273,000 LBS. URANIUM DIOXIDE

BURNUP(REFUEL) 19,000 MWD/TU

CONTROL CRUCIFORM ROD, BORON CARBIDE IN SS TUBES, BOTTOM

ENTRY.

TEMPORARY POISON CURTAINS.

COOLANT PRESS, 1005 PSIG

REACTOR VESSEL VERTICAL CYLINDER 18 FT. 2 IN. ID. 69 FT. 4 IN.

LONG. WALL 5 17/32 IN. THICK STEEL.

CONTAINMENT PRESSURE - SUPPRESSION PRIMARY CONTAINMENT SYSTEM.

STEEL-LINED CONCRETE CYLINDRICAL STRUCTURE

REMARKS SERVICE WATER FROM CAYUGA LAKE WILL BE RETURNED

BOILING LIGHT WATER REACTORS, DOMESTIC BD41:

TO LAKE VIA CIRCULATING WATER DISCHARGE SYSTEM,

REFERENCES

BELL STATION. PRELIMINARY SAFETY ANALYSIS REPORT.
NEW YORK STATE ELECTRIC AND GAS CORP.

DOCKET 20-319, VOL. 1-2

BOILING LIGHT WATER REACTORS. DOMESTIC BD42

NAME/OWNER BRUNSWICK STATION/CAROLINA POWER + LIGHT CO.

CAPE FEAR STATION

DESIGNER GENERAL ELECTRIC COMPANY

OPERATOR CAROLINA POWER + LIGHT COMPANY

LOCATION CAPE FEAR RIVER, N. CAROLINA TIDAL ESTUARY

PURPOSE POWER

TYPE BWR. SINGLE CYCLE FORCED CIRCULATION.

3-REACTOR STATION

POWER MWE(MWT) 800 2436 PER REACTOR

CRITICAL CONTRACT JAN. 1968

TARGET NO.1, 1973 NO.2, 1974

NO.3, 1975

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS 0.487 IN. DIAM.

FUEL GEOMETRY ROD 0,563 IN. OD: 144 IN. ACTIVE LENGTH

FUEL CLADDING ZIRCALOY=2 0.032 IN, THICK

FUEL ENRICH. AVE. 2.25 PER CENT U-235

FUEL ASSEMBLY 49=ROD BUNDLE, 7X7 ZIRCALOY=4 CHANNEL 560 ASSEMBLIES/CORE

FUEL CHARGE AVE. 19,000 MWD/T

CONTROL RODS: BORON CARBIDE IN SS

REACTOR VESSEL STEEL CYLINDER 837 IN. HIGH, 218 IN. ID.

WALL THICKNESS 5 17/32 MIN. SS CLADDING 1/8 IN. THICK

CONTAINMENT STEEL-LINED CONCRETE STRUCTURE.

PRESSURE SUPPRESSION SYSTEM,

REMARKS COOLING WATER INTAKE IN THE WALDEN CREEK AREA AND

DISCHARGE IN THE VICINITY OF PRICE CREEK.

BOILING LIGHT WATER REACTORS. DOMESTIC BD42

REFERENCES BRUNSWICK STEAM ELECTRIC PLANT UNITS 1 + 2.

PRELIMINARY SAFETY ANALYSIS REPORT

CAROLINA POWER + LIGHT CO. DOCKET 50-324, 50-325 /1968/

BOILING LIGHT WATER REACTORS, DOMESTIC BD43

NAME/OWNER COOPER NUCLEAR STATION/CONSUMERS PUBLIC POWER.

IOWA LIGHT + POWER

.DESIGNER GENERAL ELECTRIC COMPANY

LOCATION BROWNVILLE, NEBRASKA MISSOURI RIVER

PURPOSE POWER

TYPE BWR, FORCED CIRCULATION, SINGLE CYCLE.

HIGH POWER DENSITY

POWER MWE(MWT) 780 2381

CRITICAL TARGET 1972

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS

FUEL GEOMETRY RODS

FUEL CLADDING ZIRCALOY

CONTAINMENT PRESSURE SUPPRESSION SYSTEM

REFERENCES COOPER NUCLEAR STATION.

PRELIMINARY SAFETY ANALYSIS REPORT,

CONSUMERS PUBLIC POWER DISTRICT

DOCKET 50-298 /19680

BOILING LIGHT WATER REACTORS. DOMESTIC BD44

NAME/OWNER DUANE ARNOLD STATION/IOWA :ELECTRIC LIGHT + POWER

DESIGNER GENERAL ELECTRIC COMPANY

OPERATOR IOWA ELECTRIC LIGHT + POWER COMPANY

-LOCATION PALO, IOWA
CEDAR RIVER

OFBAK WIATA

PURPOSE POWER

TYPE BWR, 2-REACTOR STATION.

UNIT 2 NOT OPTIONED TO GE

POWER MWE (MWT) 550 PER REACTOR

CRITICAL TARGET 1973

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

REMARKS CONTRACT AWARD FEB, 1968,

CLOSED-CIRCUIT COOLING TOWERS WILL BE USED

REFERENCES NEWS RELEASES

BOILING LIGHT WATER REACTORS, DOMESTIC BD45

NAME/OWNER EDWIN I. HATCH NUCLEAR PLANT/GEORGIA POWER CO.

DESIGNER GENERAL ELECTRIC COMPANY

OPERATOR GEORGIA POWER COMPANY

. LOCATION BAXLEY, GEORGIA

ALTAMAHA RIVER

PURPOSE POWER

TYPE BWR, FORCED CONVECTION CIRCULATION

POWER MWE(MWT) 800 2436

CRITICAL TARGET 1973

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS 0.487 IN. DIAM.

FUEL GEOMETRY ROD, ACTIVE LENGTH 144 IN,

FUEL CLADDING ZIRCALOY=2 TUBES 0.563 IN. OD.

FUEL ENRICH, 2,23 PER CENT U-235

FUEL ASSEMBLY 49-ROD BUNDLE, 7X7

ZIRCALOY-4 CHANNELS

560 ASSEMBLIES/CORE

BURNUP(REFUEL) FIRST CORE AVE, 20,000 MWT/TU

CONTROL CRUCIFORM RODS, BORON CARBIDE IN SS TUBES.

BOTTOM ENTRY.

TEMPORARY POISON CURTAINS.

COOLANT PRESS, 1020 PSIA

REACTOR VESSEL CORE SHROUD IS A STAINLESS STEEL CYLINDER AROUND

THE CORE, VESSEL IS A VERTICAL CYLINDRICAL STEEL

SHELL, 18 FT. 2 IN. ID BY 69 FT. 4 IN. LONG.

WALL THICKNESS 5 17/32 IN.

CONTAINMENT PRESSURE-SUPPRESSION PRIMARY CONTAINMENT SYSTEM:

REACTOR BUILDING.

REMARKS CONTRACT AWARDED IN DEC. 1967 WITH OPTION ON

BOILING LIGHT WATER REACTORS, DOMESTIC BD45

SECOND REACTOR.

A COOLING TOWER SYSTEM IS PROVIDED FOR IN THE

DESIGN.

REFERENCES EDWIN I. HATCH NUCLEAR PLANT.

PRELIMINARY SAFETY ANALYSIS REPORT VOL. 1-4

DOCKET 50-321 /MAY 1968/

JANDARY 1969 BNWE #936

BOILING LIGHT WATER REACTORS. DOMESTIC BD46

NAMEZONAER IBSHR ZINTEGRAL BOILING SUPERHEATING REACTOR/WEST

DESIGNER WESTINGHOUSE ELECTRIC CORPORATION

PURPOSE POWER

. TYPE SWR, NUCLEAR SUPERHEAT, PRESSURE TUBE

POWER MME (MMT) 310 820

CRITICAL DESIGN STUDY

COOLANT BOILING REGION, LIGHT WATER

SUPERHEAT REGION, LIGHT WATER STEAM

MODERATOR GRAPHITE

FUEL MATERIAL BOILING REGION

URANIUM DIOXIDE PELLETS .354 IN. DIAM.

SUPERHEAT REGION

URANIUM DIOXIDE PELLETS .370 IN. DIAM.

FUEL GEOMETRY RCD ,400 IN. OD

FUEL CLADDING BOILING REGION

ZIRCALDY 0.021 IN, THICK, GAS GAP

SUPERHEAT REGION

SS 0.015 IN. THICK

FUEL ENRICH, LOW

FUEL ASSEMBLIES WITH DIFFERENT ZONES OF

ENRICHMENT WERE STUDIED

FUEL ASSEMBLY BOILING REGION

85-ROD BUNDLE: 2 ASSEMBLIES/PRESSURE TUBE

256 ASSEMBLIES

SUPERHEAT REGION

55-ROD BUNDLE, 2 ASSEMBLIES/PRESSURE TUBE

240 ASSEMBLIES

ACTIVE CORE HEIGHT 16 FT.

FUEL CHARGE 51,935 KG URANIHM

BURNUP (REFUEL) BOILING REGION

AVE. 16,500 MWD/MT

SUPERHEAT REGION

AVE. 16,000 MWD/MT

CONTROL RODS, BORON CARBIDE

COOLANT TEMP. BOILING REGION

BOILING LIGHT WATER REACTORS, DOMESTIC BD46

INLET 602.5 F OUTLET 613.2 F SUPERHEAT REGION

INLET 613.2 F OUTLET 1000 F

COOLANT PRESS, BOILING REGION 1785 PSIA SUPERHEAT REGION 1670 PSIA

REACTOR VESSEL SS VESSEL 26.6 FT, ID, 32,25 FT, HIGH WALL 1,125 IN. THICK

CONTAINMENT PRESTRESSED CONCRETE CYLINDER 88 FT, ID/92 FT, OD.

139 FT, HIGH

VAPOR SUPPRESSION SYSTEM

REMARKS BOILING PRESSURE TUBES LOCATED CENTRALLY IN SQUARE

LATTICE, SURROUNDED BY SUPERHEAT REGION WITH

PRESSURE TUBES ALSO IN SQUARE LATTICE

REFERENCES GRAPHITE MODERATED INTEGRAL BOILING AND SUPER = -

HEATING PRESSURE TUBE REACTOR, WESTINGHOUSE ELECTRIC CORP. WCAP-1674 /DEC. 1, 1960/

BOILING LIGHT WATER REACTORS. DOMESTIC BD47

NAME/OWNER PHILADELPHIA ELECTRIC STAT/PHILADELPHIA ELECTRIC

DESIGNER GENERAL ELECTRIC COMPANY

OPERATOR PHILADELPHIA ELECTRIC COMPANY

. LOCATION UNDETERMINED

PURPOSE POWER

TYPE BWR. TWO-REACTOR STATION

POWER MWE(MWT) 1065 PER REACTOR

CRITICAL TARGET NO. 1, 1975

NO. 2, 1977

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

BOILING LIGHT WATER REACTORS, DOMESTIC BD48

NAME/OWNER ENRICO FERMI-2/DETROIT EDISON

DESIGNER GENERAL ELECTRIC COMPANY

OPERATOR DETROIT EDISON COMPANY

LOCATION MONROE, MICHIGAN

LAGOONA BEACH

PURPOSE POWER

TYPE BWR

POWER NWE(MWT) 1135

CRITICAL TARGET 1974

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

·			
			,

•		

BOILING LIGHT WATER REACTORS FOREIGN

BOILING LIGHT WATER REACTORS, FOREIGN BF01

NAME/OWNER GAMMA PROJECT/DANATOM, DENMARK

DESIGNER DANATOM. DENMARK

LOCATION KARLBY KLINT, DJURSLAND, JUTLAND

PURPOSE POWER

TYPE BWR, INTERNAL STEAM SEPARATION, SINGLE CYCLE

POWER MWE(MWT) 200 667

CRITICAL DESIGNATO BE BUILT

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS

FUEL GEOMETRY RODS , FUEL SEGMENTS OF PELLETS, EACH SEGMENT

CLAD WITH ZIRCALOY=2, ARE JOINED TO FORM A

FUEL ROD.

FUEL CLADDING ZIRCALOY=2

FUEL ENRICH. 1,9 PERCENT U=235

FUEL ASSEMBLY 15X15 ARRAY WITH SOME RODS OMITTED

89 ELEMENTS/CORE

CONTROL SPECTRAL SHIFT CONTROL HAS BEEN PROPOSED FOR STUDY

COOLANT TEMP. INLET 530 F OUTLET 485 F

WITH BOILING SYSTEM 520 F AND 476 F

WITH BOILING SYSTEM PRESSURE IS REDUCED.

CONTAINMENT PRESSURE-SUPPRESSION

REMARKS REVISED DESIGN. / GAMMA 2/ IS FOR A SINGLE CYCLE

SYSTEM.

REFERENCES GAMMA, A 200MW BOILING WATER REACTOR POWER

STATION. DANATOM

DANATOM=04=61 /AUGUST 1961/

GAMMA II-A 200MW BOILING WATER REACTOR POWER

STATION: A REVISION.

DANATOM

BOILING LIGHT WATER REACTORS, FOREIGN BF01

DANATOM-03-62 /JUNE 1962/

HEAVY WATER REACTOR WILL BOIL. A WILLIAMS POWER ENG. 72, 78-80 /NOV. 1968/

BOILING LIGHT WATER REACTORS, FOREIGN BF02

NAME/OWNER TARAPUR STATION/INDIA

DESIGNER GENERAL ELECTRIC CO. U.S.

LOCATION TARAPUR. INDIA ARABIAN SEA

PURPOSE FOWER, STATES OF BUJARAT AND MAHARASHTRA

TYPE BWR, DUAL CYCLE, FORCED CIRCULATION, INTERNAL

STEAM SEPARATION
TWO-REACTOR STATION

POWER MWE(MWT) 190 660 PER REACTOR

CRITICAL NO. 1 FUELED BEC. 1967 NO. 2 FUELED JAN. 1968

COCLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS

FUEL GEOMETRY ROD, 0,541 IN. OD,, ACTIVE LENGTH 12 FT.

FUEL CLADDING ZIRCALOY=2, 28 MILS THICK

FUEL ENRICH, AVE. 2,25 PER CENT URANIUM=235

FUEL ASSEMBLY 6x6 ROD ASSEMBLY, ZIRCALOY CHANNEL

284 ASSEMBLIES

FUEL CHARGE 87,870 LBS. URANIUM

CONTROL RODS

REACTOR VESSEL STEEL, SS CLAD, 12 FT, ID./53.9 FT, HIGH

5,375 IN. WALL THICKNESS

CONTAINMENT PRESSURE SUPPRESSION, STEEL DRYWELL. SPHERICAL

STRUCTURE, 65 FT. DIA., NECK 23FT. DIA., TOTAL HEIGHT 96.5 FT. BOTH REACTORS ARE HOUSED IN A

COMMON BUILDING BUT EACH REACTOR AND ITS

ACCESSORIES ARE ENCLOSED IN A SEPARATE DRY-WELL VENTING INTO ITS OWN PRESSURE-SUPPRESSION CHAMBER.

REMARKS FIRST FUEL LOADING WILL BE ENRICHED URANIUM, THE

POSSIBILITY IS BEING CONSIDERED OF OPERATING THE

PLANT, SUBSEQUENT TO FIRST LOADING, ON

BOILING LIGHT WATER REACTORS. FOREIGN

BF02

PLUTONIUM-ENRICHED NATURAL URANIUM FUEL, A
SMALL-SCALE PROTOTYPE VERSION OF THE TARAPUR BWR
IS CURRENTLY BEING DESIGNED BY INDIAN SCIENTISTS
AND WILL BE BUILT AT THE TROMBAY ATOMIC ENERGY
ESTABLISHMENT. INTENDED PRIMARILY FOR R+D, THE
20 MWE CAPACITY WOULD, HOWEVER, BE FED TO THE
BOMBAY POWER GRID.

REFERENCES

TARAPUR ATOMIC POWER STATION
M. N. CHAKRAVARTI, M. R. SRINIVASAN
3RD U.N. INTL. CONF. ON THE PEACEFUL USES OF
ATOMIC ENERGY. GENEVA, 1964, A/CONF.28/P/745

BF03 BOILING LIGHT WATER REACTORS. FOREIGN

NAME/OWNER GARIGLIANO NUCLEAR STATION/SENN, ITALY PUNTA FIUME

GENERAL ELECTRIC CO. =U.S. DESIGNER

OPERATOR SENN, ITALY

PUNTA FIUME /GARIGLIANO/, ITALY LOCATION

GARIGLIANO RIVER

PURPOSE POWER /US=EURATOM PROGRAM/

BWR. FORCED CIRCULATION, DUAL CYCLE TYPE

POWER MWE(MNT) 150 500

JUNE 1963. SEE REMARKS CRITICAL

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS, SINTERED, 0.456 IN, DIA.

FUEL GEOMETRY RODS, ACTIVE LENGTH 106.5 IN.

FUEL CLADDING ZIRCALOY=2, 0,019 IN. THICK SEE REMARKS

FUEL ENRIGH, 217 PER CENT U-235

81 RODS, 9x9 FUEL ASSEMBLY

208 ASSEMBLIES IN CORE

FUEL CHARGE 97,750 LBS. URANIUM

BURNUP(REFUEL) 13,000 MWD/TON /BATCH, 20 PER CENT/

CONTROL BLADES, TUBES FILLED WITH BORON CARBIDE CONTROL

PONDER. OPERATION IS FROM BELOW THE REACTOR

VESSEL.

COOLANT TEMF. INLET 190,50

COOLANT PRESS, 71.3 ATM, ABS.

REACTOR VESSEL CARBON STEEL CYLINDER: SS CLAD 141 IN. ID./5 IN.

THICK /INCLUDING CLAD//444 1/4 IN. LONG/

SPHERE, 160 FT, DIA,, CARBON STEEL, APPROX. CONTAINMENT

BOILING LIGHT WATER REACTORS, FOREIGN

BF03

0.94 IN. THICK

REMARKS

TRIAL OPERATIONS WERE DISCONTINUED IN SEPTEMBER 1963 BECAUSE OF MECHANICAL BREAKDOWN, OPERATION RESUMED IN 1964. REFUELED NOV. DEC. 1965, WITH ONE-HALF OF SS-CLAD FUEL REPLACED BY ZIRCONIUM CLAD FUEL.

SENN PLANS A SECOND REACTOR AT THE SITE.

REFERENCES

THE GARIGLIANO NUCLEAR POWER STATION.
M COVINO
NUCLEAR POWER 7: 65-7 /FEBRUARY 1962/

FINAL HAZARD SUMMARY REPORT FOR THE GARIGLIANO NUCLEAR POWER STATION.
SCCIETA ELETTRONUCLEARE NAZIONALE /SENN/, ITALY APED=4022 /1962/

GARIGLIANO NUCLEAR POWER PLANT.

R LEPORE, OTHERS.

3RD UN INTL. CONF. ON THE PEACEFUL USES OF ATOMIC ENERGY PAPER NO. 737 /1964/

GARIGLIANO NUCLEAR POWER PLANT EURATOM BULLETIN NO. 4, P. 4-12 /DEC. 1963/

BOILING LIGHT WATER REACTORS. FOREIGN BF04

NAME/OWNER JPDR /JAPAN POWER DEMONSTRATION REACTOR//JAER1

DESIGNER GENERAL ELECTRIC CO. . U.S.

OPERATOR JAERI JAPAN

LOCATION TOKAI-MURA, JAPAN

PURPOSE POWER DEMONSTRATION, SHIP PROPULSION R+D

TYPE BWR, NATURAL CIRCULATION, DIRECT CYCLE

POWER MWE(MWT) 12.5 45

CRITICAL AUG. 1963, ON-LINE OCT. 1963

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE CYLINDERS, SINTERED

FUEL GEOMETRY HOLLOW TUBES.

FUEL CLADDING SS

FUEL ENRICH. 3,1 PER CENT U-235

FUEL ASSEMBLY 36-ROD ASSEMBLY. EACH ROD CONSISTS OF 2 FUEL

SEGMENTS

72 ASSEMBLIES/CORE

BURNUP(REFUEL) 12,000 MWD/TON U /324 DAYS FIRST CORE/

REMARKS RESEARCH AND DEVELOPMENT IS IN PROGRESS ON JPDR-2.

A MODIFIED VERSION OF THE GE DESIGN. SEE BF15.

REFERENCES NUCLEAR POWERED TANKER DESIGN AND ECONOMIC

ANALYSIS, DIRECT CYCLE BOILING WATER REACTOR.

GEAP = 3294 /DEC, 1959/

REACTOR DESIGN REPORT FOR JPDR.

DA VERNIER, J JACOBSON

GEAP - 3767 /1961/

BOILING LIGHT WATER REACTORS: FOREIGN BF05

NAME/OWNER DODEWAARD NUCLEAR STATION/GKN

SEP BWR

DESIGNER GENERAL ELECTRIC COMPANY

OPERATOR NV GEMEENSCHAPPELIJKE KERNENERGIEGENTRALE

NEDERLAND /GKN/

JOINT NETHERLANDS NUCLEAR POWER STATION

LOCATION DOODEWAARD, THE NETHERLANDS /BETUWE DISTRICT/

WAAL RIVER

PURPOSE POWER

TYPE BWR DIRECT CYCLE, NATURAL CIRCULATION

POWER MWE(MWT) 50 165

CRITICAL 1968

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS

FUEL GEOMETRY RODS-ANNULAR

FUEL CLADDING ZIRCALOY-2 OR STAINLESS STEEL.

FUEL ENRICH. 2.5 PER CENT U=235

FUEL ASSEMBLY 36-ROD ASSEMBLY

156 ELEMENTS/CORE

FUEL CHARGE 13000 KG. URANIÚM

SPECIFIC POWER 36.3 KW/LITER OF CORE VOLUME

BURNUP (REFUEL) 13,000 MWD/TU

CONTROL SS TUBES CONTAINING BORON CARBIDE

REACTOR VESSEL CYLINDRICAL VESSEL 3 M. ID./11 M. LONG. STEEL WITH

SS LINING, VESSEL CONTAINS CORE AND SUPPORT

STRUCTURE, STEAM-WATER SEPARATOR, AND STEAM DRIER.

WALL THICKNESS 80 MM CLAD THICKNESS 4 MM

CONTAINMENT REACTOR BUILDING, PRESSURE-SUPPRESSION SYSTEM.

BOILING LIGHT WATER REACTORS, FOREIGN

BF05

REMARKS

SEP ENGINEERS WORKING WITH GE WILL DO PRELIMINARY DESIGN, SCOPING, AND ECONOMIC STUDIES. EURATOM HAS EAR-MARKED CONSTRUCTION FUNDS FOR THE PROJECT.

REFERENCES

THE DUTCH NUCLEAR POWER PLANT PROJECT.

JS TERPSTRA
-EURATOM BULLETIN NO. 4, 28=9 /DEC. 1963/

DODEWAARD NUCLEAR POWER STATION P MOSTERT EURONUCLEAR 3, 37-40 /JAN. 1966/

THE FIRST NETHERLANDS NUCLEAR STATION ENERGIE NUCLEAIRE 10, 293-96 /SEPT. 1968/

BOILING LIGHT WATER REACTORS, FOREIGN
BF06

NAME/OWNER SIMPEVARP REACTOR/OKAB, SWEDEN

OSKARSHAMM NUCLEAR POWER STATION

DESIGNER ASEA, SWEDEN

OPERATOR OSKARSHAMMSVERKETS KRAFTGRUPP AB /OKAB/, SWEDEN

LOCATION OSKARSHAMM, SIMPEVARP PENINSULA, SWEDEN

ON BALTIC COAST

PURPOSE POWER

TYPE BWR DIRECT CYCLE, FORCED CIRCULATION

POWER MWE(MWT) 400 1250

CRITICAL CONSTRUCTION.

TARGET AUGUST 1970

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS 10,5 MM DIAM,

FUEL GEOMETRY ROD, 12,25 MM OD, 3650 MM LONG

FUEL CLADDING ZIRCALOY=2 0.8 MM THICK

FUEL ENRICH. 2.5 PER CENT U=235, ZONED

FUEL ASSEMBLY 64-ROD BUNDLE, SQUARE LATTICE, ZIRCALOY ENVELOPES

448 ASSEMBLIES/CORE

FUEL CHARGE 80 TONS URANIUM

BURNUP(REFUEL) 20,000 MWD/T ANNUAL, ONE=HALF CHARGE

CONTROL CRUCIFORM RODS WITH BORON CARBIDE

COOLANT FLOW REGULATION

COOLANT TEMP. 160 C

REACTOR VESSEL STEEL VESSEL 17.4 M LONG, 5.0 M ID,

WALL THICKNESS 120 MM INCLUDING 5 MM SS CLAD.

CONTAINMENT PRESTRESSED CONCRETE ENGLOSING REACTOR, SERVICE

AND EQUIPMENT AUXILIARIES. OUTER STEEL LINING.

PRESSURE - SUPPRESSION SYSTEM.

REACTOR BUILDING A GAS-TIGHT CONCRETE STRUCTURE.

BOILING LIGHT WATER REACTORS, FOREIGN 8F06

REMARKS CONTRACT AWARD TO ASEA IN JULY 1965.

CONSTRUCTION SCHEDULED FOR SPRING 1966.

TARGET 1970

REFERENCES OSKARSHAMM NUCLEAR POWER STATION

EURONUCLEAR 2, 382-3 /AUG, 1965/

SWEDEN-5 LARGEST NUCLEAR POWER STATION ENGINEERING 200, 141 /JULY 30, 1965/

LA CENTRALE NUCLEAIRE D-OSKARSHAMN

O GIMSTEDT, S SANDSTROM

ENERGIE NUCLEAIRE 9, 298-302 /AUG-SEPT, 1967/

BOILING LIGHT WATER REACTORS, FOREIGN BF07

NAME/OWNER IBR /INTEGRAL BOILING REACTOR/AEA: UNITED KINGDOM:

DESIGNER UK AEA

PURPOSE SHIP PROPULSION

TYPE BWR, DIRECT OR INDIRECT CYCLE, PRESSURE TUBE,

POWER MWE(MWT) 60

CRITICAL CONCEPT

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS

FUEL GEOMETRY PINS

FUEL CLADDING SS OR ZR TUBES

FUEL ENRICH. 5 PER CENT U-235

FUEL ASSEMBLY FUEL PINS CLUSTERED AROUND CENTRAL BURNABLE POISON

PIN, AND MOUNTED WITH IN A ZIRCONIUM-NIOBIUM

ALLOY SHROUD.

REMARKS THE AEA HAS STUDIED THIS CONCEPT, AND THE BELGIUM

CONCEPT VULCAIN, IN THEIR SHIP PROPULSION PROGRAM, TWO VERSIONS OF THE IBR WERE BEING

INVESTIGATED. INDIRECT CYCLE, IN WHICH THE TUBES

CONTAINING THE FUEL ELEMENTS ARE CLOSED AND INTERCONNECTED TO FORM A CIRCUIT THROUGH WHICH HIGH PRESSURE WATER IS PUMPED AS AN INTERMEDIATE IN THE MAIN COOLANT, AND DIRECT CYCLE. IN WHICH THE TUBES CONTAINING THE FUEL ARE OPEN AT THE ENDS

THE COOLANT FLOWING DIRECTLY OVER THE FUEL. BOILING TAKES PLACE IN THE CORE. THE PRIMARY

COOLANT PUMP, STEAM SEPARATORS AND PRESSURIZER ARE

ALL WITHIN THE REACTOR VESSEL.

REFERENCES THE U. K. ATOMIC ENERGY AUTHORITYS NUCLEAR SHIP

CONCEPTS.

NUCLEAR ENG. 8, 88-9 /MARCH 1963/

BOILING LIGHT WATER REACTORS. FOREIGN BF 08

ULYANOVSK ATOMIC POWER STATION/CENTRAL ATOMIC NAMEZOWNER

ENERGY UTILIZATION BOARD, USSR.

DESIGNER USSR

OPERATOR CENTRAL ATOMIC ENERGY UTILIZATION BOARD

LOCATION MELEKESS /ULYAND\SK REGION/ US\R

VOLGA RIVER

PURPOSE POWER

BWR. DIRECT CYCLE TYPE

250 POWER MWE(MWT) 70

CRITICAL 1965

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS

FUEL GEOMETRY RODS

FUEL CLADDING NIOBIUM-ZIRCONIUM ALLOY

FUEL ENRICH. 1.5 PER CENT U-235

FUEL ASSEMBLY 91 FUEL RODS, HEXAGONAL

187 ASSEMBLIES/CORE

FUEL CHARGE 26 TONS ENRICHED URANIUM

SPECIFIC POWER 9.6 KW/KG ENRICHED URANIUM

NEUTRON FLUX THERMAL AVE. 3x10 E+13

CONTROL CONTROL RODS

236-310 C COOLANT TEMP.

32-100 KG/SQ. CM. COOLANT PRESS.

REACTOR VESSEL CYLINDER, BOILER PLATE STEEL 11.2 M. HIGH. 3.8 M.

DIA. 10 CM. THICK

REMARKS THE COOLANT WATER FLOWS INTO AN ANNULUS

BETWEEN THE STEEL PRESSURE VESSEL WALL AND THE

BOILING LIGHT WATER REACTORS, FOREIGN BF08

CORE, FLOWS DOWNWARD, PASSES OVER THE FUEL ELEMENTS IN THE CORE FROM THE BOTTOM TO THE TOP, LEAVES THE REACTOR AND GOES TO THE STEAM GENERATORS.

REFERENCES

DOUBLE WATER CIRCUIT POWER REACTORS IN THE USSR. SA SKORTSOV SOVIET J. ATOMIC ENERGY 5. 1107-19 //SEPTEMBER 1958/

VOL. I. POWER REACTORS. PP. 73-5 INTERNATIONAL ATOMIC ENERGY AGENCY. VIENNA. 1959.

BOILING LIGHT WATER REACTORS, FOREIGN BF09

NAME/OWNER BELOYARSK STATION/MINISTRY OF POWER. USSR.

PROJECT = 1

DESIGNER USSR

OPERATOR MINISTRY OF POWER STATIONS

LOCATION BELOYARSK URALS, USSR.

PURPOSE POWER

TYPE BWR, NUCLEAR SUPERHEAT, PRESSURE TUBE.

2-REACTOR STATION.

POWER MWE(MWT) 94 286 /BELOYARSK=1/

200 560 /BELOYARSK=2/

CRITICAL BELOYARSK=1, 1964

BELOYARSK-2, 1967

COOLANT LIGHT WATER AND STEAM

MODERATOR GRAPHITE

FUEL MATERIAL URANIUM-MOLYBDENUM ALLOY

FUEL GEOMETRY ANNULAR /HOLLOW/ CYLINDERS, 600 CM. LONG,

FUEL CLADDING SS INNER AND OUTER

FUEL ENRICH. BELOYARSK-1, 1,5 PER CENT U-235

BELOYARSK-2, 3.0 PER CENT 1-235

FUEL ASSEMBLY 6 CYLINDERS, HEXAGONAL

750 BOILING REGION

268 STEAM COOLED /SECONDARY STEAM/

FUEL CHARGE 15,880 KG. URANIUM

SPECIFIC POWER 3.2 KW/KG ENRICHED URANIUM

BURNUP(REFUEL) BELOYARSK-1, 4000 MWD/T

BELOYARSK-2, 10000 MWD/T

NEUTRON FLUX MAX, 2x10 E+13

CONTROL CONTROL RODS

COOLANT TEMP. INLET 300 C OUTLET 340 C

COOLANT PRESS. 150 ATM.

BOILING LIGHT WATER REACTORS, FOREIGN BF09

REACTOR VESSEL CYLINDER, CARBON STEEL, 9.6 M. HIGH, 9.0 M. DIA.

CONTAINMENT NONE OTHER THAN REACTOR HALL.

REMARKS SECOND REACTOR USES ANNULAR ELEMENTS WITH LARGER ANNULI BUT SAME OD, AND 3 PER CENT ENRICHED

URANIUM.

A THIRD PLANT IS PLANNED FOR THE COMPLEX, USING 5 PER CENT ENRICHED FUEL FOR 1000 MWE AND 2220 MWT

REFERENCES URANIUM-GRAPHITE REACTORS WITH SUPERHEATED STEAM FOR ELECTRIC POWER STATIONS.

NA DOLLEZHAL

SOV. J. ATOMIC ENERGY 5. 1085-1106

/SEPTEMBER 1958/

STEAM COOLED POWER REACTOR EVALUATION-BELOYARSK /URAL/ REACTOR. GENERAL ELECTRIC COMPANY, HANFORD HW=67473 /APRIL 1961/

EXPERIMENTAL UNIFLOW STEAM SUPERHEATING REACTOR INSTALLATION OF THE FIRST ATOMIC POWER PLANT. VV KOLOGOV, OTHERS FTD-TT-61-340 /1962/ /TRANSLATION/

URANIUM GRAPHITE POWER REACTOR WITH DIRECT FEEDING OF STEAM TO TURBINES.
NA DOLLEZHAL, OTHERS
FTD-TT-61-342 /1962/ /TRANSLATION/

ATOMIC ENERGY IN THE SOVIET UNION.
TRIP REPORT OF THE U.S. ATOMIC ENERGY DELEGATION
MAY 1963

OPERATION OF THE FIRST NUCLEAR POWER PLANT IN THE WORLD.

GN USHAKOV, OTHERS,

ATOMNAYA ENERGIYA 16.484-8 /1964/

AEC-TR-6463 /TRANSLATION/

IV KURCHATOV BELOYARSK NUCLEAR POWER PLANT.
PI ALESHCHENKOV, VM SHUVALOV
ATOMNAYA ENERGIYA 16.489-96 /1964/
AEC-TR-6462 /TRANSLATION/

START-UP AND PILOT OPERATION OF THE FIRST UNIT OF THE BELOYARSK NUCLEAR POWER STATION AFTER I.V. KURCHATOV.

BOILING LIGHT WATER REACTORS, FOREIGN
BF09

AN GRIGORYANTS, OTHERS

3RD N.N. INTL. CONF. ON THE PEACEFUL USES OF ATOMIC ENERGY, 1964, A/CONF. 28/P/308

WORLD-S POWER REACTORS 1966. CHART. NUCLEAR ENGINEERING APRIL 1966

BOILING LIGHT WATER REACTORS, FOREIGN BF10

NAME/OWNER KAHL EXP. HIGH TEMPERATURE REACTOR/RWE AND BAYERN.

RWE-1. VAK REACTOR

DESIGNER GE/AEG, US AND W. GERMANY

OPERATOR VERSUCHSATOMKRAFTWERK KAHL GMBH /VAK/, W. GERMANY

RWE AND BAYERNWERK AG

LOCATION KAHL-AM-MAIN, W. GERMANY

MAIN RIVER

PURPOSE POWER EXPERIMENT

TYPE BWR, NATURAL CIRCULATION, INDIRECT CYCLE.

FORCED CIRCULATION CAN BE ADDED AT A LATER DATE.

SUPERHEAT WILL BE ADDED.

POWER MWE(MWT) 15 60

CRITICAL NOV, 1960, FULL POWER DEC, 1961

FUEL MATERIAL URANIUM DIOXIDE SINTERED PELLETS, 0.5 IN. DIA./

0.63 IN. LONG

FUEL GEOMETRY ROD, ACTIVE LENGTH 29.9 IN.

FUEL CLADDING ZIRCALOY, 0.85 MM. WALL THICKNESS

FUEL ENRICH. 2.3-2.6 PER CENT U= 235 /1ST CORE, 4 ZONE

ENRICHMENT/

FUEL ASSEMBLY 72 RODS, TWO LAYERS, 6x6

88 ASSEMBLIES/CORE

FUEL CHARGE 5545KG. URANIUM

BURNUP(REFUEL) 8800 MWD/T BY ZONES

NEUTRON FLUX THERMAL AVE. 1.5X10 E+13

CONTROL RODS, 2 PER CENT ENRICHED BORIDED SS

COOLANT TEMP, 2860

COOLANT PRESS. 1000 PSIG

REACTOR VESSEL STEEL CYLINDER DOMED ENDS, 27 FT. 9 IN. HIGH.

8 FT. ID. CLAD. SS.

CONTAINMENT CYLINDER, DOMED ENDS, 106 FT, HIGH, 45 FT, DIA.

BOILING LIGHT WATER REACTORS, FOREIGN BF10

REMARKS

A PROVISION HAS BEEN MADE FOR DOUBLING THE DESIGN POWER, SECOND TURBOSET MAY BE OPERATED IN DIRECT CYCLE. AEG WILL DEVELOP THE CONCEPT IN A STUDY OF A SUPERHEAT STEAM PLANT /SEE RWE-BAYERNWERK AG STATION/. AEG HAS ALSO ANNOUNCED THAT A PROTOTYPE SUPERHEAT REACTOR WITH A CAPACITY OF 100 MWT WILL BE CONSTRUCTED NEAR KAHL, WITH COMPLETION SCHEDULED FOR 1968.

REFERENCES

THE KAHL NUCLEAR POWER STATION.
HJ BRUCHNER
NUCLEAR POWER 6: 67-70 /MARCH 1961/

COMMISSIONING KAHL-S 15 MW BWR.
R KUHNEL, R MISENTA
NUCLEAR ENGINEERING 7, 407-14 /OCTOBER 1962/

THE 15 EMW NUCLEAR POWER STATION WITH BOILING WATER REACTOR AT KAHL/MAIN /FEDERAL REPUBLIC OF GERMANY/.
HJ BRUCHNER
SYMP. ON SMALL AND MEDIUM POWER REACTORS.
PAPER SMPR/19
INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA,
SEPTEMBER 5-9, 1960.

BOILING LIGHT WATER REACTORS, FOREIGN

BF11

NAMEZOWNER KRB NUCLEAR STATIONZKRB, W. GERMANY

RWE-BAYERNWERK

DESIGNER ALLGEMEINE ELECTRIZITATS GESELLSCHAFT, /AEG/

OPERATOR KERNKRAFTWERK RWE-BAYERNWERK GMBH /KRB/

LOCATION GUNDREMINGEN, BAVARIA, W. GERMANY /ON DANUBE/

PURPOSE POWER

US-EURATOM

TYPE BWR. DUAL CYCLE, FORCED CIRCULATION

POWER MWE(MWT) 237 801

CRITICAL 1966

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS

FUEL GEOMETRY ROD 3,30 M. ACTIVE LENGTH

FUEL CLADDING ZIRCALOY=2 0.889 IN. THICK, 14.29 MM, OD.

FUEL ENRICH. AVE. 2.24 PER CENT U=235

FUEL ASSEMBLY 36-ROD BUNDLE, 6x6 IN ZIRCALOY-4 CHANNEL

89 FUEL ELEMENT CELLS MAKE UP THE CORE. EACH CELL CONSISTS OF 4 ELEMENTS WITH A

CENTRAL CONTROL ROD.

12 SINGLE ELEMENTS ARE ARRANGED ON THE

PERIPHERY OF THE CORE.

TOTAL RODS 13,248

FUEL CHARGE 53 TONS URANIUM DIOXIDE

BURNUP(REFUEL) 16,500 MWD/TU ANNUAL

90 ELEMENTS/YEAR

CONTROL CRUCIFORM RODS, BORON CARBIDE ABSORBER MATERIAL.

POISON CURTAINS.

COOLANT TEMP. INLET 266 C

COOLANT PRESS. 71.3 ATM. ABS.

REACTOR VESSEL STEEL VESSEL 3.71 M. ID., 16.5 M. HIGH.

BOILING LIGHT WATER REACTORS, FOREIGN
BF11

WALL THICKNESS 121 MM. SS CLAD 7 MM. THICK

CONTAINMENT CONCRETE SHELL, AIR GAP, AND STEEL CONTAINMENT. STEEL STRUCTURE IS 30 M. ID., 60 M. HIGH, WITH WALL THICKNESS 13.5/26.5 MM.

WALL THICKNESS 13,5/26.5 MM. CONCRETE SHELL THICKNESS 38 CM. WIDTH OF AIR GAP 15 CM.

REMARKS THE REACTOR IS A DEVELOPMENT OF THE US. GE.
DESIGNED RWE-1 REACTOR.

REFERENCES
THE GENERAL ELECTRIC COMPANY 100 MEGAWATT NATURAL CIRCULATION BOILING WATER REACTOR POWER PLANT.
GENERAL ELECTRIC CO., APED
TÎD-15057 /1960/

THE 150 MWE ATOMIC POWER STATION WITH AN EVAPORATING REACTOR, DESIGNED BY AEG. E MOLDOVANYI ENERGIA ES ATOMTECH. /HUNGARY/ 15. 139-43 /MARCH 1962/

THE NUCLEAR POWER STATION GUNDREMINGEN OF THE KERNKRAFTWERK RWE-BAYERNWERK GMBH. K PENSTER BRENNSTOFFE-WAERME-KRAFT 16.227-30 /MAY 1964/

THE GUNDREMMINGEN NUCLEAR POWER PLANT.
I DESFOSSES, OTHERS.
EURATOM BULLET IN NO. 4.26-27 /DEC. 1963/

KRB GUNDREMMINGEN NUCLEAR POWER STATION R JAERSHKY, R TAURIT EURONUCLEAR 3, 212-26 /MAY 1966/

GUNDREMMINGEN NUCLEAR POWER PLANT.

R JAERSCHKY /AEG/
ATOM, STROM, 12, 103-6 /SEPT-OCT 1966/

BOILING LIGHT WATER REACTORS, FOREIGN
BF12

NAME/OWNER BWR STUDY/AEG. DEUTSCH WERFT; W. GERMANY

DESIGNER AEG. W. GERMANY

PURPOSE SHIP PROPULSION

TYPE BWR

POWER MWE(MWT) STUDY. NO RECENT INFORMATION

CRITICAL STUDY

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

REMARKS DEUTSCHE WERFT AG HAS ANNOUNCED PLANS TO BUILD A

FREIGHTER OF AT LEAST 45,000 TONS TO BE POWERED BY

A BWR. STUDY AND DEVELOPMENT OF THE PLANS WAS

DONE IN COOPERATION WITH AEG.

REFERENCES ENERGIE NUCLEAIRE, JULY-AUGUST 1962, P. 296

NEWS RELEASE.

BOILING LIGHT WATER REACTORS, FOREIGN 8F13

NAME/OWNER LINGEN BWR/KERNKRAFTWERK LINGEN GMBH

VEW STATION

DESIGNER AEG. W. GERMANY

OPERATOR KERNKRAFTWERK-LINGEN, W. GERMANY

LOCATION DORTMUND-EMS CANAL, NORTH OF MUENSTEN, WESTPHALIA

PURPOSE POWER

TYPE BWR INDIRECT CYCLE. OIL-FIRED SUPERHEAT.

POWER MWE(MWT) 240 514

CRITICAL MAY 1968

COMMERCIAL OPERATION OCT. 1968

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS

FUEL GEOMETRY RODS

FUEL CLADDING ZIRCALOY=2 TUBES, 14.3 MM OD.

FUEL ENRICH. AVE. 2.2 PER CENT U-235

FUEL ASSEMBLY 36-ROD CLUSTER, SQUARE ZIRCALOY CASING

284 ASSEMBLIES/CORE

FUEL CHARGE 32.2 TONS URANIUM

BURNUP(REFUEL) AVE: 1ST CORE 16,500 MWD/TU

CONTROL CRUCIFORM RODS, BORON CARBIDE IN SS

REACTOR VESSEL STEEL CYLINDER 13.5 M HIGH/3.6 M ID.

WALL 90 MM THICK, SS CLAD 6 MM THICK.

FORGED RING STRUCTURE

CONTAINMENT STEEL VESSEL

REMARKS A JOINT PROJECT FOR A 240 MWE PLANT USING THE

AEG-SUPPLIED 160 MWE BWR REACTOR WITH A 90 MWE

OIL-FIRED SUPERHEATER.

COOLING WATER WITHDRAWN FROM CANAL AND RETURNED TO RIVER

BOILING LIGHT WATER REACTORS, FOREIGN

BF13

AT JUNCTION WITH THE CANAL.

REFERENCES THE LINGEN NUCLEAR POWER STATION

O DEUBLEIN

ATOMWIRTSCHAFT 10, 162-9 /APRIL 1965/

LINGEN A SURVEY OF THE KWL PLANT.

O DEUBLEIN

NUCLEAR ENG. 13; 929-45 /NOV. 1968/

BOILING LIGHT WATER REACTORS, FOREIGN
BF14

NAME/OWNER CANDU-BLW /CANDU-BOILING LIGHT WATER//AECL

GENTILLY NUCLEAR STATION

DESIGNER AECL, HYDRO-QUEBEC, CANADA

LOCATION POINTE-AUX-ROCHES, NEAR GENTILLY AND BECANCOUR.

QUEBEC. CANADA

ST. LAWRENCE RIVER

PURPOSE POWER PROTOTYPE

TYPE BWR, HEAVY WATER MODERATED, DIRECT CYCLE, VERTICAL

PRESSURE TUBE /CALANDRIA/,

POWER MWE(MWT) 500 803

PROTOTYPE 250 MWE

CRITICAL PROTOTYPE CONSTRUCTION

TARGET 1973

COOLANT LIGHT WATER

MODERATOR HEAVY WATER, HEAVY WATER REFLECTOR.

FUEL MATERIAL URANIUM DIOXIDE PELLETS

FUEL GEOMETRY ROD 0.78 IN. DIAM, 19.5 IN. LONG

SEE REMARKS

FUEL CLADDING ZIRCALOY-4, 0.023 IN. WALL THICKNESS

FUEL ENRICH. NATURAL

FUEL ASSEMBLY 18-ELEMENT BUNDLES

10 BUNDLES/CHANNEL, STACKED

308 CHANNELS

FUEL CHARGE 101.9 TON URANIUM

SPECIFIC POWER 24 W/G URANIUM

BURNUP (REFUEL) ON-LOAD, WEEKLY

CONTROL HORIZONTAL BOOSTER RODS OF ENRICHED URANIUM

ZIRCALOY TUBES WITH HELIUM=3 AS ABSORBER ELEMENTS SOLUBLE POISON ADDITION OR REMOVAL FROM MODERATOR

COOLANT TEMP. 520 F

COOLANT PRESS. OUTLET 980 PSIA

BOILING LIGHT WATER REACTORS, FOREIGN BF14

REACTOR VESSEL SS VERTICAL CYCLINDER 30 FT, DIA, 23 FT, HIGH, CALANDRIA TUBES ZIRCALOY=2, AND PRESSURE TUBES A ZIRCONIUM=NIOBIÚM ALLOY.

CONTAINMENT REINFORCED CONCRETE SHELL 100 FT. DIA., 182 FT. HIGH. HOUSING REACTOR VESSEL. VAULT. OTHER EQUIPMENT.

REMARKS

A FUEL CONFIGURATION DESIGNATED TUBE-IN-SHELL WAS CONSIDERED, CONSISTING OF A MASSIVE ELEMENT PENETRATED BY COOLANT TUBES, COOLANT WOULD FLOW THROUGH THE TUBES AND ALSO THROUGH ANNULUS BETWEEN THE ELEMENT AND THE PRESSURE TUBE. CLADDING WOULD BE A SHELL STRUCTURE.

JAPAN PLANS DEVELOPMENT OF AN ADVANCED CONVERTER BASED ON CANDU-BLW, WITH PROTOTYPE CONSTRUCTION IN 1969.

REFERENCES QUEBEC WILL GET CANDU-BLW REACTOR.

CANADIAN CHEM. PROCESSING 49, 57-62 /MAY 1965/

SECOND-GENERATION CANDU NUCLEAR ENG. 10, 301-2 /AUG. 1965/

NUCLEAR CANADA JUNE 1966 P. 3=4 NEWS RELEASE

BOILING LIGHT WATER REACTORS. FOREIGN

BF15

NAME/OWNER JAPCO TSURUGA STATION/JAPAN ATOMIC POWER CO.

DESIGNER GENERAL ELECTRIC COMPANY

OPERATOR JAPAN ATOMIC POWER CO. /JAPCO/

LOCATION TSURUGA, JAPAN. ON SEA OF JAPAN.

TYPE BWR, FORCED CIRCULATION, HIGH POWER DENSITY

POWER MWE(MWT) 310

CRITICAL CONSTRUCTION 1966, TARGET 1970

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

REMARKS RESEARCH AND DEVELOPMENT, MODIFICATION OF THE GE

JPDR=1 REACTOR.

REFERENCES RESEARCH AND DEVELOPMENT OF JPDR-2

A FORCED CIRCULATION, HIGH POWER DENSITY BOILING

WATER REACTOR.

J MIIDA, K MOCHIZUKI

NIPPON GENSHVIYOKU GAKKAISHI 6, 350-5 /JUNE 1964/

NUCLEONICS WEEK OCT. 7, 1965 P. 2

NEWS RELEASE

BOILING LIGHT WATER REACTORS, FOREIGN BF16

NAME/OWNER FUKUSHIMA NUCLEAR STATION/TOKYO ELECTRIC POWER CO.

DESIGNER GENERAL ELECTRIC COMPANY

OPERATOR TOKYO ELECTRIC POWER CO., JAPAN

LOCATION FUKUSHIMA, NORTHERN HONSHU, JAPAN

TYPE BWR, TWO-REACTOR STATION

POWER MWE(MWT) No. 1, 440

No, 2, 760

CRITICAL No. 1, 1970

NO. 2, 1973

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL ENRICH. LOW

REMARKS CONTRACT FOR NO. 2 STATION IN JAN. 1968

REFERENCES NEWS RELEASES

BOILING LIGHT WATER REACTORS. FOREIGN BF17

NAME/OWNER SANTA MARIA DE GARONA STATION/NUCLENOR, SPAIN

DESIGNER GENERAL ELECTRIC CO.

OPERATOR CENTRALES NUCLEARES DEL NORTE SA /NUCLENOR/ SPAIN

LOCATION SANTA MARIA DE GARONA, SPAIN

NEAR BURGOS

PURPOSE POWER

TYPE SWR

POWER MWE(MWT) 440 1481

CRITICAL TARGET 1970.

CONSTRUCTION PERMIT GRANTED

COOLANT LIGHT WATER

MCDERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE

FUEL GEOMETRY ROD

REACTOR VESSEL CYLINDER COMPOSED OF FORGED STEEL RINGS.

5.5 M. OD.

WALL THICKNESS 120-150 MM.

REFERENCES NEWS RELEASES.

BOILING LIGHT WATER REACTORS, FOREIGN BF18

NAME/OWNER MUEHLBERG STATION/BKW, SWITZERLAND

DESIGNER GENERAL ELECTRIC CO., BROWN BOVERI

OPERATOR BERNISCHE KRAFTWERK, SWITZERLAND

/BERNESE POWER COMPANY/

LOCATION MUEHLBERG, AAR RIVER, BERNE, SWITZERLAND

PURPOSE POWER

TYPE BWR

POWER MWE(MWT) 300

CRITICAL CONSTRUCTION, TARGET 1971

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

REFERENCES MUEHLEBERG NUCLEAR POWER STATION OF THE BERNESE

POWER COMPANY

WP AUER

BROWN BOVERI REV. 54, 51-68 /FEB=MAR, 1967/

BOILING LIGHT WATER REACTORS, FOREIGN BF19

NAME/OWNER TWISTED TAPE BWR/W. GERMANY, FRANCE

VORTEX FLOW BWR

DESIGNER AEG /W. GERMANY/ AND SNECMA /FRANCE/

PURPOSE POWER

TYPE BWR, HIGH POWER DENSITY

POWER MWE(MWT) 600 1800

CRITICAL FEASIBILITY STUDY

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS 12,5 MM. DIAM.

FUEL GEOMETRY ROD 14.4 MM, OD, ACTIVE LENGTH 3.66 M.

FUEL CLADDING ZIRCALOY=2 0.9 MM. THICK

FUEL ENRICH. SLIGHT

FUEL ASSEMBLY 49-ROD BUNDLE, 7X7, SQUARE ZIRCALOY-2 BOX,

592 ASSEMBLIES/CORE

METAL BANDS OF ZIRCALOY-2, 0.2 MM, THICK, ARE TWISTED BETWEEN THE FUEL RODS TO ROTATE THE STEAM-WATER FLOW ALONG THE ASSEMBLY.

FUEL CHARGE 117,250 KG. URANIUM

BURNUP (REFUEL) 22,500 MWD/TU BATCH, 20 PER GENT

CONTROL RODS

REACTOR VESSEL STEEL CYLINDER

REMARKS A PROTOTYPE TWISTED TAPE ASSEMBLY HAS BEEN TESTED

IN THE KAHL-VAK BWR.

REFERENCES TWISTED TAPE BOILING WATER REACTOR.

FINAL REPORT JULY 1965-SEPT. 1966

AEG, SNECMA

EUR-3651 /SEPT. 15, 1967/

BOILING WATER REACTOR WITH TWISTED TAPES BETWEEN

THE FUEL RODS.

J VOLLRADT

JANUARY 1969

BOILING LIGHT WATER REACTORS, FOREIGN

BF19

ATOMWIRT, ATOMTECH, 12, 595-601 /DEC, 1967/

BOILING LIGHT WATER REACTORS, FOREIGN BF20

NAME/OWNER CHOGOKU ELECTRIC STATION/GHOGOKU ELECTRIC POWER CO

DESIGNER HITACHI LTD /JAPAN/

OPERATOR CHOGOKU ELECTRIC POWER COMPANY /JAPAN/

LOCATION SHIMANE PENINSULA, NEAR HIROSHIMA, JAPAN

PURPOSE POWER

TYPE BWR

POWER MWE(MWT) 500

CRITICAL CONSTRUCTION TARGET 1971

OPERATION 1975

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

REFERENCES NEWS RELEASES

BOILING LIGHT WATER REACTORS. FOREIGN BF21

NAME/OWNER WUERGASSEN STATION/PREAG, W.GERMANY

DESIGNER AEG /W.GERMANY/

OPERATOR PREUSSEN ELEKTRA AG /PREAG/, W.GERMANY

LOCATION NEAR HOXTRA: UPPER WESER RIVER: W.GERMANY

PURPOSE POWER

TYPE BWR. DIRECT CYCLE, FORCED CIRCULATION

POWER MWE(MWT) 612 1912

CRITICAL TARGET 1972

COOLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE

FUEL GEOMETRY PIN

FUEL ENRICH. 2.6 PER CENT U-235

FUEL ASSEMBLY 49-PIN BUNDLE

444-ELEMENT CORE

FUEL CHARGE 86 TONS URANIUM DIOXIDE

BURNUP(REFUEL) 27,500 MWD/T

REACTOR VESSEL CYLINDRICAL PRESSURE VESSEL

CONTAINMENT SPHERICAL CONTAINMENT.

VAPOR = SUPPRESSION DESIGN.

CONTAINMENT BUILDING DOUBLE-WALL, PRESSURE AND

GAS TIGHT.

REFERENCES STADE AND WURGASSEN.

NUCLEAR ENG. 12, 756-7 /OCT, 1967/

BOILING LIGHT WATER REACTORS, FOREIGN
BF22

NAME/OWNER RHINGALS BWR/SWEDISH STATE POWER BOARD

DESIGNER ATOM-ASEA AND JOHNSON GROUP, SWEDEN

LOCATION RHINGALS, SWEDEN

PURPOSE POWER

TYPE BWR

POWER MWE(MWT) 750 2270

CRITICAL TARGET 1973

COQLANT LIGHT WATER

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE

FUEL GEOMETRY ROD, 12.25 MM AND 11.75 MM OD

FUEL CLADDING ZIRCALOY=2

FUEL ASSEMBLY 64-ROD BUNDLE, 8X8, ZIRCALOY BOX 648 ASSEMBLIES/CORE

FUEL CHARGE 130 TONS URANIUM DIOXIDE

BURNUP(REFUEL) FIRST CORE AVE, 18,600 MWD/TU 20 PER CENT EQUILIBRIUM CORE 26,800 MWD/MTU ANNUALLY

CONTROL RODS, BORON CARBIDE

REACTOR VESSEL STEEL CYLINDER 5.95 M ID/21.0 M HIGH WALL 145 MM THICK, SS LINER 5 MM THICK

CONTAINMENT CONCRETE AND STEEL CONTAINMENT STRUCTURE PRESSURE SUPPRESSION

REMARKS CONTRACT AWARD JULY 1968

REFERENCES RHINGALS
NUCLEAR ENG. 13; 838-9 /OCT, 1968/

CAVITY (GAS CORE) REACTORS DOMESTIC

CAVITY (GAS CORE) REACTORS, DOMESTIC CD01:

NAME/OWNER GASEOUS FUEL REACTOR STUDY/BURNS AND ROE

DESIGNER BURNS AND ROE INC.

PURPOSE SPACE PROPULSION

TYPE GASEOUS FUEL

POWER MWE(MWT) 30

CRITICAL STUDY

COOLANT HELIUM

MODERATOR GRAPHITE REFLECTOR

FUEL MATERIAL URANIUM HEXAFLUORIDE, GASEOUS FUEL WITH BROMINE

TRIFLUORIDE ADDED.

REMARKS A GASEOUS CORE REACTOR USING URANIUM HEXAFLUORIDE

AS FUEL AND HELIUM AS AN INTERNAL COOLANT PROPOSED FOR SPACE PROPULSION UNIT. CORE CHANNELS ARE OF ALUMINUM DOUBLE TUBE WALL.

URANIUM HEXAFLUORIDE IS INSIDE THE ALUMINUM TUBES.

HELIUM IS IN THE ANNULUS. COOLANT FLOW IS BY

NATURAL CIRCULATION. THERE IS A GRAPHITE

REFLECTOR.

REFERENCES GASEOUS-FUEL REACTOR.

S BARON

NUCLEONICS 16, 128, 130-33 /AUGUST 1958/

BNWL - 936 JANUARY 1969

CAVITY (GAS CORE) REACTORS, DOMESTIC CD02:

NAME/OWNER GASEOUS CORE REACTOR STUDY/GE

DESIGNER GENERAL ELECTRIC COMPANY

FLIGHT PROPULSION LAB.

BURPOSE SPACE PROPULSION

TYPE GASEOUS /PLASMA/ FUEL

CRITICAL STUDY

MODERATOR PROPELLANT

FUEL MATERIAL FISSIONABLE MATERIAL IN A PLASMA STATE

REMARKS

FEASIBILITY STUDY OF A CAVITY REACTOR. THE FISSIONABLE MATERIAL EXISTS IN THE GASEOUS /PLASMA/ STATE. THE MODERATING PROPELLANT IS HEATED BY FISSIONABLE FUEL AND FLOWS OUT AN EXHAUST NOZZLE TO PRODUCE THRUST, FUEL AND

PROPELLANT ARE SEPARATED BY HYDRODYNAMIC METHODS.

REFERENCES A GASEOUS *CORE NUCLEAR ROCKET UTILIZING

HYDRODYNAMIC RETENTION OF FISSIONABLE MATERIAL.

J GREY

PRESENTED AT THE ARS SEMI-ANNUAL MEETING, JUNE 8-11, 1959, SAN DIEGO, CALIFORNIA, /1959/

CAVITY REACTOR CRITICAL EXPERIMENT

JH LOFTHOUSE, OTHERS

GEMP=473

ANS TRANS. 9, 340 /1966/

CAVITY (GAS CORE) REACTORS. DOMESTIC CD03

NAME/OWNER GASEOUS CORE REACTOR STUDY/LASL

LOS ALAMOS SCIENTIFIC LABORATORY DESIGNER

PURPOSE DIRECT ELECTRIC POWER. FEASIBILITY STUDY

TYPE GASEOUS /PLASMA/ FUEL

MODERATOR GRAPHITE /HEAVY WATER BLANKET/

FUEL MATERIAL FISSIONABLE GAS, URANIUM-235 OR PLUTONIUM-239

REMARKS THE REACTOR IS A GRAPHITE CYLINDER FILLED WITH A

> FISSIONABLE GAS /FISSION-PLASMA REACTOR/, ENERGY RELEASED IN THE FISSION PULSE INDUCES A CURRENT IN A COIL WRAPPED AROUND THE GRAPHITE CYLINDER. THE

HEAVY WATER BLANKET SURROUNDS THE GRAPHITE.

REFERENCES PLASMA REACTOR PROMISES DIRECT ELECTRIC POWER.

S. A. COLGATE, RL AAMODT NUCLEONICS 15, 50-55 /AUGUST 1957/

CAVITY (GAS CORE) REACTORS. DOMESTIC CD04

NAME/OWNER GASEOUS CORE REACTOR STUDY=2/LEWIS RESEARCH CENTER

WHEEL FLOW GASEOUS CORE REACTOR

DESIGNER NASA LEWIS RESEARCH CENTER

PURPOSE ROCKET PROPULSION CONCEPTUAL STUDY

TYPE GASEOUS FUEL, COAXIAL FLOW

MODERATOR GRAPHITE OR HEAVY WATER

FUEL MATERIAL FISSIONABLE GAS, URANIUM=235 OR PLUTONIUM=239

REMARKS GASEOUS FUEL IS IN A CAVITY REGION SURROUNDED BY A

REFLECTOR MODERATOR REGION, CYLINDRICAL

GEOMETRY WAS STUDIED AS BEING MORE APPLICABLE THAN

SPHERICAL FOR ROCKET USE, FUEL REGION IS

CENTRALLY LOCATED IN CAVITY REGION, EXTENDING ENTIRE LENGTH OF THE CAVITY. FUEL IS CONTAINED BY FLOW THROUGH VORTEX TUBES. BY MEANS OF SEPARATE

COAXIAL STREAMS IN WHICH FUEL FLOW IS AT LOW

VELOCITY RELATIVE TO THE PROPELLANT, AND BY USE OF

MAGNETIC FORCES TO CONFINE THE FUEL TO A

PARTICULAR REGION: STUDY IS OF A CAVITY REACTOR WITH FUEL AND CAVITY REGIONS COMPLETELY ENCLOSED

BY A REFLECTOR-MODERATOR 100 CM. THICK.

REFERENCES TWO-DIMENSIONAL CRITICALITY CALCULATIONS OF

GASEOUS-CORE CYLINDRICAL-CAVITY REACTORS, RE HYLAND, OTHERS /LEWIS RESEARCH CENTER/

NASA=TN=D=1575 /MARCH 1963/

WHEEL-FLOW GASEOUS CORE REACTOR CONCEPT.

JC EVVARD

NASA=TN=D=2951 /NOV, 1965/

CAVITY (GAS CORE) REACTORS, DOMESTÍC CD05:

NAME/OWNER NUCLEAR LIGHT BULB/UAC, NASA

DESIGNER UNITED TECHNOLOGY CENTER

DIVISION UNITED AIRCRAFT CORP.

PURPOSE ROCKET PROPULSION

TYPE GASEOUS FUEL, VORTEX FLOW, VERY HIGH TEMPERATURE

CRITICAL STUDY

COCLANT NEON GAS

FUEL MATERIAL VAPORIZED URANIUM

PLUTONIUM FUEL ALSO STUDIED

FUEL GEOMETRY TRANSPARENT UNIT /BULB/ OF FUSED SILICA OR

SINGLE-CRYSTAL BERYLLIA TO CONTAIN THE FUEL VAPOR.

FUEL ASSEMBLY A COMPLETE ENGINE CONSISTS OF 7 UNIT CAVITIES.

STRUCTURAL GRID, MODERATOR REGIONS, FUEL

INJECTION DEVICES ETC. WITHIN PRESSURE SHELL.

VOLUME OF A UNIT CAVITY IS 24,2 CU. FT.

NEON COOLANT GAS IS INJECTED TANGENT TO THE

TRANSPARENT WALL TO DRIVE THE VORTEX.

CONTAINMENT VESSEL IS FILAMENT-WOUND GLASS PRESSURE-SHELL.

FOUR CONFIGURATIONS WERE STUDIED

REMARKS BOTH THE NUCLEAR LIGHT BULB ENGINE AND AN OPEN

CYCLE ENGINE ARE BEING STUDIED, IN THE OPEN-ENGINE SYSTEM, SEEDED HYDROGEN PROPELLANT IS INJECTED AT THE PERIPHERAL WALL OF THE CAVITY TO DRIVE THE VORTEX, HEAT BEING TRANSFERRED TO THE CAVITY

PROPELLANT BY RADIATION.

REFERENCES STUDIES OF SPECIFIC NUCLEAR LIGHT BULB AND OPEN-

CYCLE VORTEX STABILIZED GASEOUS NUCLEAR ROCKET

ENGINES.

GH MCLAFFERTY, OTHERS

NASA-CR-1030 /APRIL 1968/

OPEN-CYCLE AND LIGHT-BULB TYPES OF VORTEX-

STABILIZED GASEOUS NUCLEAR ROCKETS.

JW CLARK, OTHERS

J. SPACECRAFT + ROCKETS 5/8/, 941=7 /AUG. 1968/

CAVITY (GAS CORE) REACTORS, DOMESTIC CD06

NAMEZOWNER GASEOUS CORE REACTOR POWER STATION STUDYZPURDUE

DESIGNER PURDUE UNIVERSITY

PURPOSE CENTRAL STATION POWER

TYPE GASEOUS /CAVITY/ CORE, FORCED CIRCULATION OF FUEL

POWER MWE(MWT) 1000 2800

CRITICAL DESIGN

COOLANT GASEOUS FUEL MIXTURE

SECONDARY SYSTEM, WATER

MODERATOR EXTERNAL HEAVY WATER REFLECTOR

FUEL MATERIAL CORE, URANIUM HEXAFLUORIDE IN FLUORINE=HELIUM MIX.

BLANKET, THORIUM DIOXIDE-HEAVY WATER SOLUTION

FUEL GEOMETRY GAS

FUEL ENRICH. 100 PER CENT

FUEL ASSEMBLY CORE IS A SPHERICAL CAVITY 243 CM, RADIUS.

GASEOUS FUEL CIRCULATES THROUGH CORE AND

PRIMARY COOLANT LOOPS BY BLOWERS

REFLECTOR IS SEPARATED FROM CORE CAVITY BY THE

PRESSURE VESSEL, AND FROM THE EXTERNAL BLANKET

BY AN ALUMINUM SPHERICAL STRUCTURE.

BLANKET ENCLOSED BY OUTER ALUMINUM STRUCTURE.

NEUTRON FLUX EPITHERMAL SPECTRUM

COQLANT TEMP. CORE 1040 F

BLANKET 250 F

COOLANT PRESS, CORE 860 PSIA

BLANKET 30 PSIA

REACTOR VESSEL THICK ALUMINUM HOLLOW SPHERE 140 FT. DIA., 1 IN.

THICK.

INNER BONDED ALUMINA LINING.

REFLECTOR AND BLANKET ARE SPHERICAL ALUMINUM

STRUCTURES

CONTAINMENT STEEL SPHERE

BIOLOGICAL AND BLAST SHIELDS, CONCRETE, IRON,

REMARKS PLANT INCLUDES ON-SITE FUEL PROCESSING FACILITIES.

CAVITY (GAS CORE) REACTORS. DOMESTIC

CD06

MODIFIED FLUORIDE VOLATILITY PROCESS FOR CORE MATERIAL AND CONVENTIONAL THOREX PROCESS FOR BLANKET MATERIAL

REFERENCES

DESIGN AND EVALUATION OF A 1000 MWE CENTRAL STATION POWER PLANT WITH A CIRCULATING FUEL GASEOUS CORE REACTOR. A STUDY CARRIED OUT AS PART OF THE FIRST GRADUATE NUCLEAR ENGINEERING DEISON SEMINAR. JUNE 15-AUG. 7. 1964 FG ARCELLA, OTHERS TID-22225 /ND/

CAVITY (GAS CORE) REACTORS. DOMESTIC CD07

NAME/OWNER GLOW PLUG REACTOR

DESIGNER DOUGLAS AIRCRAFT CO.

PURPOSE SPACE PROPULSION

TYPE GASEOUS CORE REACTOR

CRITICAL PRELIMINARY DESIGN STUDY

COOLANT COOLANT-PROPELLANT GAS IS HYDROGEN

MODERATOR SEE REMARKS

FUEL MATERIAL URANIUM HEXAFLUORIDE /GASEOUS/

FUEL ASSEMBLY CORE CONSISTS OF INDIVIDUAL CONCENTRIC TUBES.

WITH GASEOUS FUEL IN THE INSIDE TUBES AND THE COOLANT-PROPELLANT FLOWING THROUGH THE TUBE

ANNULI. TUBE WALL MATERIAL STUDIED WERE SAPPHIRE. FUSED SILICA, AND MAGNESIA OPTICAL CRYSTALS. FUSED

SILICA WAS SELECTED FOR THE THERMAL STUDY.

REMARKS PARALLEL, CROSS-FLOW, AND COMBINATIONS WERE

STUDIED.

TUBES ARE COOLED REGENERATIVELY BY THE ENTERING COOLANT-PROPELLANT GAS, WHICH THEN PASSES THROUGH THE SURROUNDING MODERATOR-REFLECTOR, IS SEEDED, AND IS DIRECTED PAST THE OUTSIDE TUBES WHERE IT IS HEATED BY THERMAL RADIATION FROM THE FUEL TO

THE REQUIRED DISCHARGE TEMPERATURE,

REFERENCES CONCEPTUAL DESIGN OF THE GLOW PLUG GASEOUS CORE

REACTOR

FA ROSS, RJ HALL

NP=15906 /NOV: 15: 1963/

CAVITY (GAS CORE) REACTORS. DOMESTIC CD08

NAME/OWNER GAS-CORE NUCLEAR ROCKET/AEROJET-GENERAL

DESIGNER AEROJET-GENERAL

PURPOSE ROCKET PROPULSION

TYPE GASEOUS CORE REACTOR

POWER MWE(MWT) 14,400 MWT

CRITICAL REFERENCE DESIGN

COOLANT COOLANT-PROPELLANT HYDROGEN GAS

MODERATOR BERYLLIUM OXIDE REFLECTOR

FUEL MATERIAL URANIUM-233 DUST

FUEL CHARGE 24.1 KG. URANIUM-233

REACTOR VESSEL SPHERICAL VESSEL OF TITANIUM ALLOY WITH RADIAL

SPACING CARRYING HYDROGEN FOR COOLING

REMARKS TOTAL THRUST 405,000 LB.

REFERENCES GAS-CORE NUCLEAR ROCKET ENGINE

EE DUKE, WJ HOUGHTON

J SPACECRAFT ROCKETS 4, 1592-7 /DEC 1967/

CAVITY (GAS CORE) REACTORS FOREIGN

CAVITY (GAS CORE) REACTORS. FOREIGN CF01:

NAME/OWNER GASEOUS CORE REACTOR EXPERIMENT/USSR

DESIGNER USSR

OPERATOR USSR

PURPOSE EXPERIMENT, SPACE PROPULSION

TYPE GASEOUS FUEL

CRITICAL GROUND-BASED EXPERIMENT OPERATED

MODERATOR BERYLLIUM / GRAPHITE REFLECTOR/

FUEL MATERIAL URANIUM HEXAFLUORIDE, GASEOUS

FUEL CLADDING FUEL CHANNELS ARE ALUMINUM

FUEL ENRICH. 90 PER CENT URANIUM-235

REMARKS GROUND-BASED EXPERIMENT IS REPORTED TO BE IN

OPERATION.

REFERENCES EXPERIMENTAL REACTOR WITH GASEOUS FISSIONABLE

SUBSTANCE /URANIUM HEXAFLUORIDE/.

IK KIKOIN, OTHERS

SECOND U. N. INTL. CONF. ON THE PEACEFUL USES OF

ATOMIC ENERGY 9 /PART2/. 528-34 /1958/

SOVIET EXPERIMENTAL URANIUM HEXAFLUORIDE REACTOR. REVIEW OF SOVIET LITERATURE. AID WORK ASSIGNMENT

No. 16.

LIBRARY OF CONGRESS. AEROSPACE INF. DIV.,

WASHINGTON D. C.

NP-12239 /OCTOBER 18, 1962/

GAS COOLED REACTORS DOMESTIC

GAS COOLED REACTORS. DOMESTIC DD01:

NAME/OWNER GCRE-1 /GAS COOLED REACTOR EXPERIMENT-1//AEC

DESIGNER AEROJET-GENERAL NUCLEONICS:

OPERATOR AEROJET-GENERAL NUCLEONICS

LOCATION NATIONAL REACTOR TEST STATION /NRTS/ IDAHO

PURPOSE POWER EXPERIMENT, MOBILE PLANT /SEE ML=1/

POWER MWE(MWT) 0 2

CRITICAL CRITICAL EXPERIMENT OPERATION 1960. DISCONTINUED

1962

GCR

COOLANT NITROGEN

TYPE

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE DISPERSED IN SS /GERMET FUEL/

FUEL GEOMETRY CONCENTRIC CYLINDERS OR PLATES

ALTERNATE PINS

FUEL CLADDING SS

FUEL ASSEMBLY TUBE PLATES

ALTERNATE 19-PIN CLUSTERS

REMARKS A SOLID-MODERATED EXPERIMENT MAY BE CONSTRUCTED.

A SECOND FUEL ELEMENT DESIGN CONSISTED OF HIGHLY ENRICHED URANIUM DIOXIDE PELLETS CONTAINED IN A LONG TUBLAR CAN /PIN/. A 19-PIN HEXAGONAL CLUSTER FORMING AN ELEMENT. THE USE OF URANYL NITRATE INSTEAD OF URANIUM DIOXIDE IN THE CERMET MATRIX

WAS ALSO STUDIED.

REFERENCES ARMY GAS COOLED REACTOR SYSTEMS PROGRAM.

GCRE-I HAZARDS SUMMARY REPORT. ADDENDUM III.

AEROJET - GENERAL NUCLEONICS DO-28506 /ADD. 3/ /MAY 1960/

ARMY GAS COOLED REACTOR SYSTEMS PROGRAM.

FINAL SUMMARY REPORT OF THE GAS COOLED REACTOR

EXPERIMENT -1.

AEROJET-GENERAL NUCLEONICS

IDO-28598 /OCT. 1963/.

GAS COOLED REACTORS. DOMESTIC

DD03

NAME/OWNER GCRE=2 /GAS COOLED REACTOR EXPERIMENT=2//AEC

DESIGNER AEROJET-GENERAL NUCLEONICS

PURPOSE PROPOSED AS BACK-UP EXPERIMENT FOR GCRE-I

TYPE GCR. SOLID HOMOGENEOUS CORE

CRITICAL REFERENCE DESIGN. DEVELOPMENT.

COOLANT NITROGEN

MODERATOR GRAPHITE

FUEL MATERIAL URANIUM CARBIDE OR URANIUM DIOXIDE DISPERSED IN

GRAPHITE

FUEL GEOMETRY HEXAGONAL GRAPHITE ELEMENT

FUEL CLADDING SILICON CARBIDE COATING, NICKEL-BASE ALLOY CAN

FUEL ASSEMBLY HEXAGONAL FUELED GRAPHITE ELEMENT CONTAINING

19 COOLANT TUBES

REMARKS A SOLID-MODERATED EXPERIMENT MAY BE CONSTRUCTED.

REFERENCES CONCEPTUAL DESIGN AND FEASIBILITY STUDY FOR THE

GAS COOLED REACTOR EXPERIMENT-II.

GA LINDENBERGER

IDO-25530 /REV./ /1959/

GAS COOLED REACTORS, DOMESTIC DD03

NAME/OWNER ML-1 /MOBILE LOW-POWER-1//AEC.ARMY

DESIGNER AEROJET-GENERAL NUCLEONICS

OPERATOR US ARMY

LOCATION NATIONAL REACTOR TEST STATION /NRTS/ IDAHO

DEVELOPMENT AT FT. BELVOIR, VA.

PURPOSE PROTOTYPE FOR FIELD POWER GENERATING UNIT.

TYPE GCR. CLOSED CYCLE, PRESSURE TUBE, MOBILE,

POWER MWE(MWT) 330 KWE 3.3

CRITICAL 1961, TRIAL POWER RUN OCT, 1962, POWER OPERATION

1963.

COOLANT NITROGEN. LATER. AIR

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE AND URANIUM / BERYLLIUM OXIDE

PELLETS

FUEL GEOMETRY PINS 1,72 IN, OD,/32 IN, LONG. ACTIVE LENGTH 22 IN

FUEL CLADDING HASTELLOY-X 0.241 IN, OD, TUBES, 0.030 IN, THICK

FUEL ENRICH. 93 PER CENT U-235

FUEL ASSEMBLY 19-PIN BUNDLES: INNER 6 PINS, ENRICHED URANIUM

DIOXIDE, CUTER 12, URANIUM DIOXIDE DILUTED WITH BERYLLIUM OXIDE. CENTRAL PIN IS VOID.

ELEMENTS ARE INSULATED.

61 ELEMENT/CORE, CONTAINED IN PRESSURE TUBES

FUEL CHARGE 49 KG, U=235

BURNUP (REFUEL) 1ST CORE LIFETIME

3000 HRS.

NEUTRON FLUX THERMAL AVE. 1.9X10 E+12

FAST AVE, 1.7x10 E+13

CONTROL BURNABLE POISON LINER IN EACH FUEL ELEMENT AND

CONTROL BLADES.

COOLANT TEMP. INLET 791 F OUTLET 1200 F

BNWL - 936 JANUARY 1969

GAS COOLED REACTORS, DOMESTIC

DD03

COOLANT PRESS. INLET 313 PSIA OUTLET 289 PSIA

REACTOR VESSEL STEEL VESSEL 80 IN. HIGH/31 IN. DIA.

CONTAINMENT SHIELD TANK CONTAINING 2 PER CENT BORIC ACID SOLUTION AROUND THE CORE, RADIAL SHIELDING

MATERIALS.

REMARKS THE AEC-ARMY NUCLEAR PROGRAM WAS DISCONTINUED,

WITH PHASE-OUT OF ML=1: POWER CONVERSION FUNDING

CONTINUING TO JUNE 1966.

REFERENCES ARMY GAS COOLED REACTOR SYSTEMS PROGRAM.

PRELIMINARY HAZARDS SUMMARY REPORT FOR THE ML-1

NUCLEAR POWER PLANT. IDO-28537 /APRIL 1959/

ARMY GAS COOLED REACTOR SYSTEMS PROGRAM. THE ML-1:

DESIGN REPORT.

IDO-28550 /MAY 1960/

ARMY GAS COOLED REACTOR SYSTEMS PROGRAM,

CONCEPTUAL DESIGN STUDY, 3000 KWE MOBILE NUCLEAR

POWER PLANT. HC CARNEY, JR.

AGN-TM-383 /APRIL 1961/

ML=1 CRITICAL EXPERIMENTS.

DA DINGEE, JW RAY MND-C-2487 /p. 203-22/ /1961/

ARMY GAS COOLED SYSTEMS PROGRAM. FINAL HAZARDS SUMMARY REPORT FOR THE ML=4 NUCLEAR POWER PLANT.

AEROJET-GENERAL NUCLEONICS

IDO-28560 /VOL. 1/ /NOVEMBER 1960/ IDO-28560 /VOL. 2, SUPPLEMENT 1/ /SEPTEMBER 1961/

BNWL 936 JANUARY 1969

GAS COOLED REACTORS. DOMESTIC DD04

HDMR /HIGH DENSITY MODERATOR REACTOR/AEG-ARMY NAME/OWNER

DESIGNER AEROJET-GENERAL NUCLEONICS

PURPOSE MOBILE POWER PLANT STUDY FOR ARMY

GCR. CLOSED CYCLE /REGENERATIVE BRAYTON CYCLE/. TYPE

3.34 POWER MWE(MWT) 500 KWE

CRITICAL CONCEPTUAL DESIGN

YTTRIUM HYDRIDE; NICKEL-BERYLLIUM OXIDE REFLECTOR MODERATOR

FUEL MATERIAL URANIUM DIOXIDE PELLETS

FUEL GEOMETRY PINS, 0.35 IN. DIA., 16-IN. ACTIVE LENGTH

FUEL CLADDING HASTELLOY + X, 0.020 IN. THICK

FUEL ENRICH. 48 PER CENT U=235

FUEL ASSEMBLY INDIVIDUAL PINS. 1157 TO CORE + 578 MOD. PINS /SOME PINS CONTAIN URANIUM OXIDE FUEL AND SOME

CONTAIN YTTRIUM HYDRIDE.

108 KG. U-235 FUEL CHARGE

THERMAL AVE. 1.4X10 E+4 NEUTRON FLUX

CONTROL DRUM-TYPE ELEMENTS IN REFLECTOR

COOLANT TEMP. INLET 934 F OUTLET 1400 F

COQLANT PRESS. 500 PSIA

REACTOR VESSEL SS PRESSURE VESSEL. TUNGSTEN TOP SHIELD PLUS

TUNGSTEN IN THE LOWER ENDS OF THE FUEL PINS FOR SHIELDING, TUNGSTEN, SURROUNDING CORE RADIALLY AS

PRIMARY-GAMMA SHIELD.

CONTAINMENT

LEAD OUTSIDE THE TUNGSTEN SHIELD.

OVERALL PACKAGE. 109.5 IN. LONG. 109 IN. WIDE.

90 IN. HIGH

REMARKS CONCEPTUAL DESIGNS CONSIDERED WERE FOR VARIOUS

THERMODYNAMIC CYCLES, MODERATORS, AND GAS COOLANTS

HDMR EVOLVED AS THE OPTIMIUM POWER PLANT.

REFERENCES ARMY GAS COOLED REACTOR SYSTEMS PROGRAM. STUDY OF

GAS COOLED REACTORS, DOMESTIC DD04

MOBILE GAS-COOLED NUCLEAR POWER PLANTS.
VOLUME I. PLANT DESCRIPTION.
VOLUME II. ANALYSIS
VOLUME III. APPENDIXES,
AEROJET-GENERAL NUCLEONICS
DO-28584 /VOLS, 1,2,3/ /1962/

BNWL - 936 JANUARY 1969

GAS COOLED REACTORS. DOMESTIC DD05

ARGONNE TUNGSTEN REACTOR/AEC NAME/OWNER

DESIGNER ARGONNE NATIONAL LABORATORY

PURPOSE ROCKET PROPULSION, FEASIBILITY STUDY.

TYPE GCR, UNMODERATED, FAST REACTOR

GAS /HYDROGEN/ COOLANT

FUEL MATERIAL URANIUM DIOXIDE IN TUNGSTEN MATRIX.

FUEL CLADDING TUNGSTEN

REMARKS DESIGN IS BEING CONSIDERED AS A BACKUP FOR

KIWI-NERVA FUELED GRAPHITE REACTORS

REACTOR DEVELOPMENT PROGRAM PROGRESS REPORT: REFERENCES

FEBRUARY 1964.

ARGONNE NATIONAL LAB.
ANL-6860 /MARCH 15, 1964/

GAS COOLED REACTORS, DOMESTIC DD06

NAME/OWNER CHEMONUCLEAR REACTOR STUDY-1/BNL

CARBON DIOXIDE CRACKING

DESIGNER BROOKHAVEN NATIONAL LABORATORY

OPERATOR CONCEPTUAL DESIGN.

PURPOSE CHEMONUCLEAR PRODUCTION AND POWER.

TYPE GCR. CHEMONUCLEAR PLANT

POWER MWE(MWT) 171 571

CRITICAL CONCEPTUAL DESIGN

COOLANT CARBON DIOXIDE

MODERATOR GRAPHITE, GRAPHITE AXIAL AND RADIAL REFLECTORS.

FUEL MATERIAL URANIUM DIOXIDE DISPERSED IN ALUMINUM FOIL.

FUEL GEOMETRY FOIL

FUEL CLADDING NONE

FUEL ENRICH. 93 PER CENT U=235

FUEL ASSEMBLY FOIL SPACED BY A SYSTEM OF SCREENING AND ROD-

SPACERS COMPOSED OF SAP, CORE IS 19 FT, DIA.,

19 FT, HIGH

FUEL CHARGE 559 KG. U=235

BURNUP(REFUEL) 50,000 MWD/TON U /45 DAYS/

CONTROL POISON RODS INSERTED AXIALLY

COOLANT TEMP. 650 F

COOLANT PRESS. 500 PSI

REACTOR VESSEL SPHERICAL, 33 Ft. DIA.

REMARKS CONCEPT FOR THE USE OF FISSION-FRAGMENT ENERGY TO

SUPPLY THE HEAT OF REACTION TO CRACK CARBON

DIOXIDE TO CARBON MONOXIDE. CHEMICAL OUTPUT OF THE REACTOR WOULD BE 1220 TONS OF CARBON DIOXIDE PER DAY, USING 129 MW OF THE TOTAL REACTOR POWER OF

700 MW.

REFERENCES DESIGN OF AN EXTERNALLY MODERATED, FIXED=FUEL

GAS COOLED REACTORS, DOMESTIC DD06

CHEMONUCLEAR REACTOR.
DA GOELLNER
AMERICAN NUCLEAR SDC. TRANS. 5/2/. 436 /NOV. 1962/

GAS COOLED REACTORS, DOMESTIC DD07

NAME/OWNER CHEMONUCLEAR REACTOR STUDY=2/BNL

OZONE GENERATION

DESIGNER BROOKHAVEN NATIONAL LABORATORY

PURPOSE OZONE GENERATION.

TYPE GCR, CHEMONUCLEAR REACTOR

POWER MWE(MWT) 39

CRITICAL CONCEPTUAL DESIGN

COOLANT OXYGEN GAS FROM AIR SEPARATION PLANT

MODERATOR GRAPHITE, GRAPHITE REFLECTOR

FUEL MATERIAL URANIUM DISPERSED IN PALLADIUM FOIL, 2.5 MICRONS

THICK

FUEL ENRICH. 93.5 PER CENT U-235

FUEL ASSEMBLY HONEYCOMB CONFIGURATION IN EACH SUBASSEMBLY,

WHICH IS 3 IN./3 IN. WITH 0.04 IN. WALL THICKNESS.

ALUMINUM STRUCTURAL MATERIAL.

FUEL CHARGE 100 Kg. U=235

BURNUP(REFUEL) CORE OPERATION 635 FULL-POWER DAYS

CONTROL ABSORBING RODS, AXIAL INSERTION

COOLANT TEMP, INLET -4 F OUTLET 32 F

COOLANT PRESS. 300 PSIG

REMARKS GAS-PHASE OZONE PROCESS USES FISSION FRAGMENT

ENERGY FOR GENERATING OZONE FROM OXYGEN. THE

OXYGEN STREAM ACTS AS COOLANT, CHEMICAL REACTANT,

AND PROCESS MEDIUM.

REFERENCES DESIGN AND ECONOMIC STUDY OF A GAS-PHASE

CHEMONUCLEAR OZONE PROCESS.

M BELLER, OTHERS BNL-8281 /1964/

NUCLEAR APPLICATIONS 1, 322-6 /AUG. 1965/

GAS COOLED REACTORS. DOMESTIC

DD08

NAME/OWNER EBOR /EXPERIMENTAL BERYLLIUM OXIDE REACTOR//AEC

DESIGNER GENERAL ATOMICS DIV. GENERAL DYNAMICS

NOW GULF GENERAL ATOMIC

OPERATOR GENERAL DYNAMICS, TEST OPERATION

LOCATION NATIONAL REACTOR TEST STATION /NRTS/ IDAHO

PURPOSE PROTOTYPE

TYPE GCR, DIRECT CYCLE

POWER MWE(MWT) 0 10

CRITICAL SEE REMARKS

COQLANT HELIUM

MODERATOR BERYLLIUM OXIDE

FUEL MATERIAL URANIUM DIOXIDE/BERYLLIUM OXIDE PELLETS: 0.33 IN. DIA./0.43 IN. LONG.

FUEL GEOMETRY PINS. ACTIVE LENGTH 76 IN.

FUEL CLADDING HASTELLOY-X TUBES 0.020 IN. WALL THICKNESS

FUEL ENRICH. 70 PER CENT U=235

FUEL ASSEMBLY 19-PIN ELEMENT. EACH CORE ELEMENT IS A STACK OF BERYLLIUM OXIDE SQUARE-ANNULAR BLOCKS WITH PINS INSERTED INSIDE THE CORE ELEMENT LINER. THE

CENTER PIN CONTAINS ONLY BERYLLIUM OXIDE.

36 CORE ELEMENTS, IN SHROUD TUBES IN THE

BERYLLIUM OXIDE MODERATOR BLOCKS.

FUEL CHARGE 100 KG. U-235

BURNUP(REFUEL) 100,000 MWD/T

NEUTRON FLUX THERMAL AVE, 4.8X10 E+12

FAST AVE, 3.1×10 E+13

CONTROL CRUCIFORM RODS, BURNABLE POISON

COOLANT TEMP. INLET 750 F OUTLET 1300 F

COOLANT PRESS. 1120 PSIA

REACTOR VESSEL LOW ALLOY STEEL CYLINDRICAL SHELL 34 FT. HIGH.

GAS COOLED REACTORS, DOMESTIC

DD08

13 FT. OD., 5 1/4 IN. THICK

CONTAINMENT

REACTOR IS LOCATED IN A VAULT WITH CONCRETE WALLS:
AND BOTTOM, COVERED WITH REMOVABLE CONCRETE SLABS.

REMARKS

THE EBOR PROJECT HAS BEEN DROPPED BECAUSE OF WANING INTEREST IN BERYLLIUM OXIDE AS A MODERATOR AND EBORTS TARDINESS IN GETTING INTO OPERATION.

REFERENCES

MARITIME GAS COOLED REACTOR PROGRAM. MGCR PROTOTYPE PRELIMINARY DESIGN. VOL. I. GENERAL DYNAMICS GA=1612 /VOL. I/ /DECEMBER 1960/

THERMAL DESIGN OF THE MGCR CORE.

JT ROGERS, R KATZ

GAMD-1542 /AUGUST 4, 1960/

MARITIME GAS COOLED REACTOR PROGRAM. A REVIEW OF THE MARITIME GAS COOLED REACTOR PROGRAM. KA TRICKETT
GA-2603 / DECEMBER 1961/

THE EXPERIMENTAL BERYLLIUM OXIDE REACTOR. WC MOORE
ASME PREPRINT 61-WA-225 /1961/

EXPERIMENTAL BASES FOR THE DESIGN OF EBOR, WC MOORE POWER REACTOR EXPERIMENTS, VOL. 1, P. 79-101 INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1962

MGCR AS A LAND BASED ELECTRIC PLANT. F DE HOFFMANN, WT FURGERSON GA-1516 /SEPT. 6, 1960/

NUCLEONICS WEEK JAN. 5, 1967 P. 4. NEWS RELEASE

GAS COOLED REACTORS, DOMESTIC DD09

NAME/OWNER HTGR /HIGH TEMP. GCR/PHILADELPHIA ELECTRIC CO.

PEACH BOTTOM REACTOR

DESIGNER GENERAL ATOMICS DIV. GENERAL DYNAMICS

NOW GULF GENERAL ATOMIC

OPERATOR PHILADELPHIA ELECTRIC COMPANY

LOCATION PEACH BOTTOM, PENNA.

PURPOSE POWER PROTOTYPE

TYPE GCR. HIGH TEMPERATURE.

POWER MWE(MWT) 40 115

CRITICAL 1967

COQLANT HELIUM

MODERATOR GRAPHITE, GRAPHITE REFLECTOR

FUEL MATERIAL URANIUM/THORIUM CARBIDE DISPERSED IN GRAPHITE,

PELLETS

FUEL GEOMETRY ROD ACTIVE LENGTH 7.5 FT.

FUEL CLADDING PELLETS ARE CARBON COATED. GRAPHITE CAN, GRAPHITE

SLEEVE.

FUEL ENRICH. 93 PER CENT U=235

FUEL ASSEMBLY VENTED FUEL ELEMENT: FUEL COMPACT IN GRAPHITE

SLEEVE, UPPER AND LOWER REFLECTOR SECTIONS.

TOTAL LENGTH 12 FT.

804 FUEL ELEMENTS CORE, CLOSE-PACKED

FUEL CHARGE 220 KG. URANIUM + 1450 KG. THORIUM

SPECIFIC POWER AVE. 800 KW/KG U=235

BURNUP(REFUEL) 75,000 MWD/T /80 PERCENT PLANT LOAD,

URANIUM + THORIUM 36 MONTHS

NEUTRON FLUX THERMAL AVE. 4X10 E+13

CONTROL RODS, BOTTOM MOUNTED

COOLANT TEMP. INLET 660 F OUTLET 1380 F.

REACTOR VESSEL CARBON STEEL 14 FT. ID. / 37 FT. HIGH. WALL

GAS COOLED REACTORS. DOMESTIC

DD09

THICKNESS 2 1/2 IN.

REMARKS

A THREE-YEAR DEVELOPMENT PROGRAM ON THE HTGR CONCEPT IS BEING CONDUCTED BY GD FOR ESADA. NEW YORK. ADVANCED REACTOR DEVELOPMENT ASSOCIATES /ARDA/ HAS CONTRACTED WITH GENERAL DYNAMICS TO STUDY A 250 MW/E/ HTGR, MEMBERS OF ARDA ARE WESTERN UTILITY GROUPS. A 1000 MWE ADVANCED REACTOR PLANT IS BEING STUDIED //SEE TARGET/

REFERENCES

HTGR-UNDERLYING PRINCIPLES AND DESIGN.
P FORTESCU. OTHERS
NUCLEONICS 18. 86-90 /JANUARY 1960/

THE HTGR, AN ADVANCED HIGH TEMPERATURE GAS COOLED GRAPHITE MODERATED REACTOR.
CL RICKARD PROC. SYMP. ON GAS COOLED REACTORS, PHILADELPHIA. FEBRUARY 1960, FRANKLIN INSTITUTE. /1960/

APPLICATION OF PHILADELPHIA ELECTRIC COMPANY FOR CONSTRUCTION PERMIT AND CLASS 104 LICENSE. PEACH BOTTOM ATOMIC POWER STATION. PART A. GENERAL INFORMATION. PART B. PRELIMINARY HAZARDS SUMMARY REPORT. VOLUME I. PLANT DESCRIPTION AND SAFEGUARDS ANALYSIS. VOLUME II. SITE AND ENVIRONMENTAL INFORMATION. PHILADELPHIA ELECTRIC COMPANY NP-9115 /JULY 1960/

GAS COOLED REACTORS.

POWER REACTOR TECHNOLOGY 5. 60-70 /JUNE 1962/

STATUS OF THE HIGH TEMPERATURE GAS-COOLED REACTOR. T LE CLAIR
POWER APP. AND SYSTEMS NO. 62, P. 371-75 /OCTOBER
1962/

HIGH TEMPERATURE GAS-COOLED REACTORS.

F DE JOFFMANN, CL RICKARD

THIRD U. N. INTL. CONF. ON THE PEACEFUL USES OF ATOMIC ENERGY, GENEVA 1964, A/CONF.28/P/213

GAS COOLED REACTORS, DOMESTIC DD10

NAME/OWNER FORT ST. VRAIN NUCLEAR STATION/PSC, COLORADO

COLORADO HTGR

DESIGNER GULF GENERAL ATOMIC

OPERATOR PUBLIC SERVICE CO. OF COLORADO

LOCATION PLATTEVILLE, COLORADO, NORTH OF DENVER

FT. ST. VRAIN

PURPOSE POWER DEMONSTRATION.

TYPE GCR, HIGH TEMPERATURE

POWER MWE(MWT) 330 837

CRITICAL TARGET 1973

COOLANT HELIUM

MODERATOR GRAPHITE

GRAPHITE REFLECTOR

FUEL MATERIAL URANIUM AND THORIUM CARBIDE COATED WITH

PYROLYTIC CARBON AND SILICON CARBIDE

FUEL GEOMETRY HEXAGONAL GRAPHITE ELEMENTS, 14 IN. ACROSS FLATS,

31 IN, HIGH, CONTAINING FUEL PARTICLES IN CHANNELS

NON-VENTED

FUEL ASSEMBLY 1482 HEXAGONAL GRAPHITE ELEMENTS STACKED IN

247 VERTICAL COLUMNS.

ACTIVE CORE IS 15 1/2 FT. HIGH AND 19 1/2 FT. DIAM

OF 37 FUEL REGIONS, 31 HAVE 7 COLUMNS OF ELEMENTS AND 6 HAVE 5 COLUMNS OF ELEMENTS

SPECIFIC POWER 1200 KW/KG

BURNUP(REFUEL) 100,000 MWD/T 1/6 CORE PER YEAR

NEUTRON FLUX THERMAL AVE. 5X10 E+13

CONTROL RODS, BORON CARBIDE

COOLANT TEMP. INLET 760 F OUTLET 1400 F

COOLANT PRESS. 700 PSIA

REACTOR VESSEL PRESTRESSED CONCRETE VESSEL ENGLOSES COMPLETE
NUCLEAR STEAM SUPPLY SYSTEM, CARBON STEEL LINER

GAS COOLED REACTORS, DOMESTIC

DD10

IS 3/4 IN. THICK AND HELIUM-TIGHT. SPACE BETWEEN CONCRETE AND LINER IS PRESSURIZED WITH HELIUM. VESSEL IS 31 FT. DIAM. AND 75 FT. HIGH

CONTAINMENT

REACTOR BUILDING

REMARKS

THE PROPOSAL BY ROCHESTER G+E FOR THE HTGR WAS DROPPED. PSC OF COLORADO WILL BUILD THE PLANT IN ITS SYSTEM UNDER THE AEC ADVANCED CONVERTER PROGRAM.
PLANNING INCLUDES A SECOND NUCLEAR UNIT AT THE SAME LOCATION WITH A CAPACITY OF 600-700 MWE, TO BE COMPLETED IN 1975 OR 1976 INDUCED DRAFT COOLING TOWER PROVIDED FOR.

REFERENCES

NUCLEAR INDUSTRY DEC. 1965 P. 15 NEWS RELEASE

PUBLIC SERVICE COMPANY OF COLORADO PLANT, CONCEPTUAL DESIGN REPORT.
GENERAL DYNAMICS CORP., GENERAL ATOMICS DIV.
GA-6802 /NOV. 15, 1965/

330 MWE FORT ST. VRAIN HIGH TEMPERATURE GAS COOLED REACTOR A HABUSH, AM HARRIS NUCLEAR ENG. DESIGN 7, 312=21 /1968/

FORT ST. VRAIN NUCLEAR GENERATING STATION. PRELIMINARY SAFETY ANALYSIS REPORT. PUBLIC SERVICE CO. COLORADO DOCKET-50-267 /1966/

GAS COOLED REACTORS, DOMESTIC DD11

NAME/OWNER TARGET /THERMAL ADVANCED REACTOR GAS-COOLED

EXPLOITING THORIUM// GD-AEC

DESIGNER GENERAL ATOMIC DIV. GENERAL DYNAMICS

NOW GULF GENERAL ATOMIC

PURPOSE REFERENCE DESIGN, POWER, FUEL RECYCLE.

TYPE GCR, ADVANCED REACTOR.

POWER MWE(MWT) 1000 2270

CRITICAL REFERENCE DESIGN

COOLANT HELIUM

MODERATOR GRAPHITE AND BERYLLIUM OXIDE, GRAPHITE REFLECTOR

FUEL MATERIAL URANIUM/THORIUM CARBIDE COATED PELLETS /PYROCARBON

COATING/

FUEL GEOMETRY CYLINDERS

FUEL CLADDING GRAPHITE SLEEVE, BERYLLIUM OXIDE SPINES. 4,53 IN.

DIA./20 FT, LONG

FUEL ENRICH. HIGH

FUEL ASSEMBLY SINGLE ELEMENT EXTRUDED GRAPHITE BODY WITH FUEL

PARTICLES LOOSELY PACKED IN COLUMNS WITHIN THE BODY OF THE ELEMENT, AND BERYLLIUM OXIDE AS AN ELEMENT SPINE MATERIAL, AND AN INTERNAL FISSION

TRAP ASSEMBLY.
5,489 ELEMENTS.

J, 409 ELEMENTS.

FUEL CHARGE 2374 KG, U=235, 86,330 KG.THORIUM

BURNUP(REFUEL) 6-YEAR FUEL LIFE /BATCH 1/6 PER YEAR/

CONTROL RODS IN GRAPHITE GUIDE TUBES.

COOLANT TEMP. INLET 720 F OUTLET 1470 F

COOLANT PRESS. INLET 450 PSIA

REACTOR VESSEL PRESTRESSED CONCRETE HEXAGONAL VESSEL, INNER

CYLINDRICAL DIA: 56 FT. 6 IN. / 40 FT. HIGH:
INNER SS INSULATION, NEXT MILD STEEL CONCRETE
LINER, COOLING COILS WITH WATER CIRCULATION, AND
CONCRETE IN DIRECT CONTACT WITH LINER AND COOLING

GAS COOLED REACTORS, DOMESTIC DD11

COILS.

CONTAINMENT

A SECONDARY, CONVENTIONAL, LARGE LOW-PRESSURE CONTAINMENT STRUCTURE HAS BEEN EXAMINED. THE PRE-STRESSED CONCRETE REACTOR STRUCTURE, AS PER THE REFERENCE DESIGN, IS LOCATED WITHIN A METAL LEAK COLLECTOR WITHIN A CONVENTIONAL BUILDING.

REMARKS

PLANT DESIGN AND DEVELOPMENT, UNDER CONTRACT TO AEC, IS BASED ON HTGR CONCEPT, GAS COOLING FOR A FAST REACTOR HAS BEEN REPORTED AT THE 3RD GENEVA CONFERENCE, CONCEPT IS UNDER INVESTIGATION AT GEN. DYNAMICS. SEE HELIUM COOLED FAST REACTOR, DD-27.

REFERENCES

A CONCEPTUAL DESIGN OF A 1000-MWE HIGH TEMPERATURE GAS-COOLED REACTOR. RM FRYER ANS TRANSACTIONS, JUNE 1964, ABSTRACT.

DESIGN STUDY REPORT FOR TARGET, A 1000-MWE HIGH TEMPERATURE GAS-COOLED REACTOR. GENERAL ATOMICS DIV., GENERAL DYNAMICS CORP. GA-4706 /NOV. 1964/

GAS COOLED REACTORS, DOMESTIC DD12

NAME/OWNER HTRE-3 /HEAT TRANSFER REACTOR EXPERIMENT-3//AEC-

USAF

DESIGNER GENERAL ELECTRIC COMPANY

OPERATOR GENERAL ELECTRIC COMPANY

LOCATION NATIONAL REACTOR TEST STATION /NRTS/ IDAHO

PURPOSE AIRCRAFT PROPULSION EXPERIMENT

TYPE GCR, DIRECT CYCLE, HORIZONTAL CONFIGURATION.

POWER MWE(MWT) 0 32

CRITICAL HTRE=3 1958, POWER TESTS 1960-1961

COQLANT AIR /SEE REMARKS/

MODERATOR ZIRCONIUM HYDRIDE /SEE REMARKS/

FUEL MATERIAL URANIUM DIOXIDE IN NICKEL-CHROMIUM MATRIX

FUEL GEOMETRY ROD

FUEL CLADDING NICKEL-CHROMIUM ALLOY

FUEL ENRICH. 93.4 PER CENT U2235

FUEL ASSEMBLY FUEL-MODERATOR UNIT, SINGLE FUEL CARTRIDGE

150 UNITS/CORE

REMARKS THE SERIES HAS INVOLVED 2 REACTOR CONCEPTS, WATER-

MODERATED AND ZIRCONIUM-HYDRIDE MODERATED

REACTORS. HTRE-1 WAS WATER MODERATED AND THE CORE STRUCTURE WATER COOLED. HTRE-2 WAS A MECHANICALLY MODIFIED HTRE-1. HTRE-3 HAD SIMILAR CONFIGURATION BUT WAS MODERATED WITH SOLID ZIRCONIUM HYDRIDE AND THE CORE STRUCTURE WAS AIR-COOLED. THE REACTOR WAS TESTED WITH 2 J-47 ENGINES IN PARALLEL AT A 32.4 MW POWER LEVEL. THE CORE WAS COMPOSED OF AIR FLOW TUBES SURROUNDED BY A HEXAGONAL MODERATOR

TUBE, EACH FLOW TUBE CONTAINING A SINGLE FUEL CARTRIDGE OF ENRICHED URANIUM DIOXIDE IN A

NICKEL-CHROMIUM MATRIX. THE REACTOR OPERATED IN A

HORIZONTAL POSITION. THE PROJECT HAS BEEN DISCONTINUED, BUT GE IS CARRING OUT CONVERSION STUDIES TO A NUCLEAR MERCHANT SHIP POWER PLANT.

PROJECT IS DESIGNATED 630-A.

REFERENCES AND HTRE-S FULFILL TEST GOALS.

JANUARY 1969

GAS COQLED REACTORS, DOMESTIC

DD12

G THORNTON, B BLUMBERG NUCLEONICS 19, 45-51 /JANUARY 1961/

GAS COOLED REACTORS, DOMESTIC DD13:

NAMEZOWNER 630-A NUCLEAR STEAM GENERATORZGENERAL ELECTRIC CO.

DESIGNER GENERAL ELECTRIC COMPANY

LOCATION CRITICAL EXPERIMENT NRTS, IDAHO

PURPOSE SHIP PROPULSION

TYPE GCR

CALANDRIA /MARK 5A/ TUBE-TYPE /MARK 5B/

POWER MWE(MWT) 27,300 SHP 60.4 /MARK 5B/

PLUS POWER FOR SHIP AUX. NEEDS SEE REMARKS

CRITICAL NUCLEAR MOCKUP 1962

COQLANT HELIUM

MODERATOR LIGHT WATER

INNER REFLECTOR BERYLLIUM OXIDE

OUTER REFLECTOR GRAPHITE

FUEL MATERIAL -URANIUM DIOXIDE PELLET OR VIBRATORY COMPACTED

POWDER

FUEL GEOMETRY ROD. 0.357 IN. OD., 42.0 IN. ACTIVE LENGTH

LONG /4.184 IN. OD. STACKED IN CARTRIDGES. ACTIVE

LENGTH 27,5 IN.

FUEL CLADDING INCOLOY, 0.015 IN. THICK /COLLARSIBLE/ OR SS

STUDIED/

FUEL ENRICH. 6 PER CENT U=235

FUEL ASSEMBLY 27-ROD BUNDLE IN INCOLOY OR SS SHELL.

216 ELEMENTS DISPERSED AROUND AND SUPPORTED FROM 91 MODERATOR TUBES EXTENDING DOWNWARD

FROM SHIELD PLUG. HEXAGONAL PATTERN.

FUEL CHARGE 393 POUNDS U=235

SPECIFIC POWER 375 KW/KG

BURNUP (REFUEL) SEE REMARKS

CONTROL TOP-MOUNTED BORATED SS RODS, IN CENTER OF FUEL

ELEMENTS AND BETWEEN ELEMENTS

GAS COOLED REACTORS, DOMESTIC

DD13

to other other the other other than the state of the other o

COOLANT TEMP. INLET 553 F OUTLET 1200 F

COOLANT PRESS. 830 PSIA

REACTOR VESSEL STEEL CYLINDER, FLANGED, 16 Ft. 3 1/2 IN. HIGH

CONTAINMENT

LOW-CARBON STEEL PRESSURE VESSEL ENCLOSING ENTIRE REACTOR - SHIELD PLUG, BOILER, PRESSURE VESSEL, GAS CIRCULATORS, MODERATOR COOLING SYSTEM, INNER SHIELD ASSEMBLY.

12 1/2 FT. DIA., 39 FT. HIGH

REMARKS

MARK 1, 2, AND 3 DESIGNS FOR A 27,300 SHP NUCLEAR STEAM GENERATOR WERE 85-CELL AIR-COOLED SYSTEMS USING NICKEL ALLOY CLAD CONCENTRIC FUEL RINGS AND FULLY ENRICHED FUEL, MARK-4 WAS A 55-CELL CLOSED CYCLE SYSTEM. MARK-5 IS EITHER A CALANDRIA TYPE /5A/ OR TUBE-TYPE /5B/ SYSTEM. THE REACTOR-SHIELD-PLUG ASSEMBLY IS THE INTEGRAL UNIT, IN A REDESIGN FOR A 106 MW PLANT INCORPORATED INTO A BRAYTON CYCLE, FUEL LOADING WOULD BE 1,362 E4 POUNDS OF URANIUM DIOXIDE, 3,23 PER CENT ENRICHED, FOR A BURNUP OF 31,000 MWD/T AND AN OPERATING LIFE OF 6,37 YEARS

REFERENCES

630A MARITIME NUCLEAR STEAM GENERATOR SCOPING STUDY. GENERAL ELECTRIC CO., FLIGHT PROPULSION LABORATORY GEMP-108 /DECEMBER 1961/

630A MARITIME NUCLEAR STEAM GENERATOR. PROGRESS REPORT NO. 4. GENERAL ELECTRIC CO., FLIGHT PROPULSION LABORATORY GEMP=175 /JANUARY 31, 1963/

THE 630A CRITICAL EXPERIMENT. DESCRIPTION AND EXPERIMENTAL RESULTS.
GD PINCOCK, RE WOOD
TRANS. AMERICAN NUCLEAR SOC. 6/1/. 85-6 JUNE 1963/

630A MARITIME NUCLEAR STEAM GENERATOR SCOPING STUDY . SUMMARY REPORT. GENERAL ELECTRIC CO., FLIGHT PROP. LAB. DEPT. GEMP-107 /1962/

DESCRIPTION OF A 10,000 SHP 630A MARITIME NUCLEAR STEAM GENERATOR.
GENERAL ELECTRIC CO., ADV. TECHNOLOGY SERVICES
GEMP=239 /SEPT. 30, 1963/

GAS COOLED REACTORS, DOMESTIC

DD13.

THE 630A MARINE REACTOR.
NUCLEAR ENG. 9. 50-53 /FEB. 1964/

630A=MARITIME NUCLEAR STEAM GENERATOR.
STATUS REPORT NO. 1
GENERAL ELECTRIC CO., ADV. TECHNOLOGY SERVICES
GEMP=231 /SEPT. 12, 1963/

630A MARK-5 MARITIME NUCLEAR STEAM GENERATOR STATUS REPORT GEMP=342 /FEB, 26, 1965/

630A MARK-4 MARITIME NUCLEAR STEAM GENERATOR SUMMARY REPORT GEMP-341 /FEB. 26, 1965/

DESIGN OF A MARINE NUCLEAR POWER PLANT UTILIZING THE DIRECT BRAYTON CYCLE.
BS GATHY /US COAST GUARD ACADEMY/
NAVAL ENG. J. 79, 887-95 /DEC. 1967/

GAS COOLED REACTORS, DOMESTIC DD15

NAME/OWNER GCHWR /GAS COOLED HEAVY WATER=MODERATED REACTOR/ EAST COAST, FLORIDA WEST COAST NUCLEAR GROUP

DESIGNER GENERAL NUCLEAR ENGINEERING CORPORATION

OPERATOR TAMPA ELECTRIC CO., FLORIDA POWER CORP.

LOCATION POLK COUNTY, FLORIDA

PURPOSE POWER PROTOTYPE

TYPE GCR. VERTICAL PRESSURE TUBE

POWER MWE(MWT) 50 153,4

CRITICAL PROJECT DROPPED IN JUNE 1961

COQLANT CARBON DIOXIDE

MODERATOR HEAVY WATER

FUEL MATERIAL URANIUM DIOXIDE IN BERYLLIUM MATRIX, PELLETS
0,500 IN. DIA.

FUEL GEOMETRY ROD

FUEL CLADDING SS 0.015 IN. THICK /BERYLLIUM CLADDING STUDIED/

FUEL ENRICH. 2,05 PER CENT U-235

FUEL ASSEMBLY 19-ROD CLUSTER ASSEMBLIES IN VERTICAL PRESSURE

TUBES, 6-12 BUNDLES/PRESSURE TUBE

208 PRESSURE TUBES /ZIRCALOY-INSULATED/

FUEL CHARGE 20.3 SHORT TONS URANIUM DIOXIDE

BURNUP (REFUEL) 10,000 MWD/TON U

CONTROL CONTROL RODS, HORIZONTAL BLADES

COOLANT TEMP. INLET 550 F OUTLET 1050 F

COOLANT PRESS. 500 PSI

REACTOR VESSEL SS PRESSURE VESSEL 0.75 IN. THICK/13 FT. OD. /24

FT. HIGH

CONTAINMENT STEEL, CYLINDRICAL, 118.5 FT. HIGH/87 FT. DIA.

REMARKS NEW PROPOSALS FOR STUDY INCLUDE A HEAVY-WATER,

GAS COOLED REACTORS, DOMESTIC

DD15

NATURAL URANIUM REACTOR, WHICH WAS REFUSED BY THE AEC. EVALUATION STUDY DONE BY GNEC AND AEPSC INCLUDED A HEAVY WATER-MODERATED GCR, COLD PRESSURE TUBE DESIGN FOR 1630 MWT AND 480 MWE. FUEL WOULD BE BERYLLIUM-CLAD URANIUM DIOXIDE, NATURAL OR SLIGHTLY ENRICHED, WITH A BURNUP OF ABOUT 5000 MWT/MTU.

REFERENCES

INTERIM REFERENCE DESIGN. GAS COQLED, HEAVY WATER MODERATED, PRESSURE TUBE REACTOR PROTOTYPE /GCPTR/GENERAL NUCLEAR ENG.
GNEC-74 /SEPTEMBER, 1958/

PRELIMINARY HAZARDS SUMMARY REPORT. VOL. II.
DESCRIPTION OF REACTOR AND PLANT.
FLORIDA WEST COAST NUCLEAR GROUP
GEH-24950 / DECEMBER 1959/

APPLICATION FOR USAEC LICENSES BY FLORIDA WEST COAST NUCLEAR GROUP.

PART A . GENERAL INFORMATION.

PART B. PRELIMINARY HAZARDS SUMMARY REPORT.

VOLUME 1. CHARACTERISTICS OF SITE AND ENVIRONMENT.

VOLUME 2. DESCRIPTION OF REACTOR AND PLANT.

VOLUME 3. HAZARDS EVALUATION.

AMERICAN ELEC. POWER SERVICE CORP., GENERAL NUCLEAR ENG.

NP-8251 / DECEMBER 7, 1959/

HEAVY WATER MODERATED REACTORS EVALUATION STUDY. AMERICAN ELECTRIC POWER SERVICE CORP., GEN. NUCLEAR ENG. NP-12344 /VOLS. 1,2,3/ /OCT. 15, 1962/

GAS COOLED REACTORS, DOMESTIC DD16

NAME/OWNER EGCR /EXPERIMENTAL GAS COOLED REACTOR//AEC

DESIGNER KAISER ENG. /ACF INDUSTRIES

OPERATOR TENNESSEE VALLEY AUTHORITY

LOCATION OAK RIDGE, TENNESSEE

PURPOSE POWER AND EXPERÎMENT

TYPE GCR

POWER MWE(MWT) 22 85

CRITICAL TERMINATED. SEE REMARKS

COOLANT HELIUM

MODERATOR GRAPHITE, VERTICAL CHANNELS.

FUEL MATERIAL URANIUM DIOXIDE HOLLOW CYLINDERS 3/4 IN. LONG 0.707 IN. OD. 36 PELLETS PER ROD + 2 MAGNESIA PELLETS.

FUEL GEOMETRY ROD. ACTIVE LENGTH 27 IN.

FUEL CLADDING SS THIN-WALL TUBE 0.020 IN, WALL THICKNESS

FUEL ENRICH. 2.46 PER CENT U=235

FUEL ASSEMBLY 7 TUBES PER ASSEMBLY, GRAPHITE SLEEVE 1650 ASSEMBLIES/CORE EACH FUEL CHANNEL CONTAINS 6 ASSEMBLIES.

FUEL CHARGE 12,23 TONS URANIUM

BURNUP(REFUEL) 10,000 MWD/TU BATCH, FUEL SHUFFLING

NEUTRON FLUX THERMAL AVE. 0.78x10 E+13

CONTROL SS=BORON CARBIDE RODS, TOP=MOUNTED

COOLANT TEMP. INLET 510 F OUTLET 1043 F

COOLANT PRESS, INLET 313,7 PSIA OUTLET 303,4 PSIA

REACTOR VESSEL CARBON STEEL VESSEL 20 FT. ID. / 45 FT. HIGH PLATE 2 3/4 IN. THICK. SS INNER TEMPERATURE

BARRIER.

CONTAINMENT STEEL CYLINDER 114 FT, DIA./216 FT, HIGH, 147 FT,

GAS COOLED REACTORS, DOMESTIC

DD16

ABOVE-GRADE, WITH A STEEL VESSEL SURROUNDING THE REACTOR COMPLEX.

REMARKS

CORE IS A VERTICAL CYLINDER OF MONOLITHIC GRAPHITE AND CONTROL RODS. HELIUM COOLANT FLOW IS FROM THE BOTTOM OF THE CORE TO THE TOP, WHERE IT ENTERS TWO SEPARATE LOOPS EACH HAVING ITS OWN HEAT EXCHANGER AND BLOWER. FUEL DEVELOPMENT PROGRAM WILL INCLUDE WORK IN UC, SILIOON CARBIDE COATINGS, AND OTHER CERAMIC FUELS. A 750 MWE VERSION OF THE PLANT HAS BEEN EVALUATED BY TVA, WESTINGHOUSE, AND THE EGCR WILL BE TERMINATED, WITH APPROXIMATELY 57-MILLION EXPENDED TO DATE.

REFERENCES

EXPERIMENTAL GAS COOLED REACTOR PRELIMINARY HAZARDS SUMMARY REPORT. KAIŞER ENG. ORO-196 /MAY 1959/

EXPERIMENTAL GAS COOLED REACTOR PRELIMINARY PROPOSAL.

KAISER ENG. AND ALLIS=CHALMERS MFG. CO.

AECU-4701 /AUGUST 1959/

EGCR-DESCENDENT OF CALDER HALL WF BANKS
NUCLEAR ENG. 6. 28-32 /JANUARY 1961/

EXPERIMENTAL GAS COOLED REACTOR FINAL HAZARDS SUMMARY REPORT. VOLUME I. DESCRIPTION AND HAZARDS EVALUATION. ORO-586 /Vol. I/ /1962/

REVISIONS TO EXPERIMENTAL GAS COOLED REACTOR FINAL HAZARDS SUMMARY REPORT. VOL. 1. DESCRIPTION AND HAZARDS EVALUATION. OAK RIDGE OPERATIONS OFFICE, AEC ORO-586 /VOL. 1. SUPPL. 1/ /APRIL 1965/

AEC NEWS RELEASE J=4 /JAN. 7, 1966/

GAS COOLED REACTORS, DOMESTIC DD17

NAME/OWNER UHTREX/ULTRA HIGH TEMP. REACTOR EXP/AEC

LOS ALAMOS TURRET REACTOR

DESIGNER LOS ALAMOS SCIENTIFIC LABORATORY

OPERATOR LOS ALAMOS SCIENTIFIC LABORATORY

LOCATION LOS ALAMOS, N. M.

PURPOSE POWER EXPERIMENT: EXTENSION OF TURRET

TYPE GCR, HIGH TEMPERATURE, REVOLVING CORE, UNCLAD FUEL

POWER MWE(MWT) 3

CRITICAL 1968

COOLANT HELIUM

MODERATOR GRAPHITE

GRAPHITE REFLECTOR

FUEL MATERIAL URANIUM CARBIDE-GRAPHITE

FUEL GEOMETRY EXTRUDED HOLLOW CYLINDERS

1 IN. OD. BY 5.5 IN. LONG

FUEL CLADDING NONE

PYROLYTIC GRAPHITE COATING

FUEL ENRICH. 93 PER CENT U=235

FUEL ASSEMBLY FOUR FUELED CYLINDERS POSITIONED END-TO-END IN

HORIZONTAL FUEL CHANNELS BORED RADIALLY THROUGH

THE HOLLOW GRAPHITE CORE CYLINDER.

312 RADIAL CHANNELS

SPECIFIC POWER 450 W/G U=235

BURNUP(REFUEL) 10-50 PER CENT ON-LOAD

1-6 ELEMENTS DAILY

SEE REMARKS

NEUTRON FLUX THERMAL 2.4X10 E+13

CONTROL BORON CARBIDE AND BORON-SS RODS, ARTICULATED

COOLANT TEMP. INLET 1600 F OUTLET 2400 F

COOLANT PRESS. 500 PSIA

GAS COOLED REACTORS. DOMESTIC DD17

REACTOR VESSEL SPHERICAL PRESSURE VESSEL

CARBON STEEL 13.5 FT. OD., 1.75 IN. WALL.

INTERNAL INSULATION.

CONCRETE STRUCTURE, STEEL-LINED. CONTAINMENT

> DIVIDED INTO SEPARATELY SHIELDED REACTOR CELL. WITH PRIMARY LOOP AND FUEL LOADING EQUIPMENT. FUEL-DISCHARGE ROOM, GAS CLEANUP ROOM, TWO

GAS-CLEANUP PIPING ROOMS

REMARKS

THE REACTOR CORE IS A VERTICAL GRAPHITE CYLINDER FABRICATED FROM 5 NESTED, CONCENTRIC, HOLLOW CYLINDERS. TAPERED PLUG IN CENTER OF CORE IS SLOTTED ON ONE SIDE TO RECEIVE SPENT FUEL ELEMENTS. AND BORED AT THE BOTTOM FOR THE COOLANT INLET CHANNEL. CHANNELS RUN RADIALLY FROM THE CENTER OF THE CORE TO ITS OUTSIDE EDGE, FUEL ELEMENTS BEING LOADED AT THE PERIPHERY AND DISCHARGED IN THE CENTER. THE CORE ROTATES ON ITS AXIS FOR REFUELING. HELIUM COOLANT ENTERS AT THE BOTTOM

REFERENCES

TURRET, A HIGH TEMPERATURE GAS CYCLE REACTOR PROPOSAL. RP HAMMOND, OTHERS LA-2198 /JANUARY 23: 1958/

A PRELIMINARY STUDY OF THE TURRET EXPERIMENT - AN OPERATING TEST OF UNCLAD FUEL AT HIGH TEMPERATURES. RP HAMMOND, JP CODY LA-2303 /MARCH 1959/ NUCLEONICS 17. 106-9 /DECEMBER 1959/

ULTRA HIGH TEMPERATURE REACTOR EXPERIMENT /UHTREX/ HAZARD REPORT LOS ALAMOS SCIENTIFIC LAB. LA=2689 /MARCH 1962/

UHTREX

POWER REACTOR TECHNOLOGY 9, 51-63 /WINTER 1965-6/

GAS COULED REACTORS. DOMESTIC DD18

NAME/OWNER PROJECT ROVER/NÚCLEAR ROCKET//AEC=NASA PHOEBUS

DESIGNER LOS ALAMOS SCI. LAB. / WESTINGHOUSE ELECTRIC CORP.

OPERATOR LOS ALAMOS SCI. LAB. /KIWI/

LOCATION JACKASS FLATS, NEVADA /NEVADA TEST SITE/

PURPOSE NUCLEAR ROCKET PROPULSION

TYPE GCR

POWER MWE (MWT) PHOEBUS 5000 MWT

CRITICAL KIWI 1959-1961

NRX 1964

NERVA FULL POWER TEST MARCH 3, 1966

POWER RUN, PHOEBUS 18, FOR 30 MINUTES AT 1500 MWT

IN FEB. 1967

NRX-A6 /EXP. NERVA-1/ STARTUP IN DEC. 1967. FUEL

GAS EXIT TEMPERATURES APPROACHING 4500 R. PHOEBUS 2A INTERMEDIATE POWER RUN IN 1968, FOLLOWED IN TWO WEEKS, JUNE 1968, BY POWER RUN LASTING 32 MIN., REACHING POWER LEVEL OF 4000 MWT FOR 12.5 MIN, AND PEAKING AT 4200 MWT. DESIGN

POWER IS 5000 MWT AND 250,000 LB, THRUST.

COOLANT GASEOUS HYDROGEN

MODERATOR GRAPHITE

FUEL MATERIAL URANIUM CARBIDE DISPERSED IN GRAPHITE

REMARKS PHOEBUS-2 TESTS IN 1968 ARE END OF PROGRAM BEGUN

IN 1964, NEXT STEP WOULD BE DEVELOPMENT OF A FLIGHT-READY ENGINE WITH A SPECIFIC IMPULSE OF ABOUT 825 SEC. A SATURN V WITH A NUCLEAR THIRD STAGE COULD LAND ABOUT TWICE THE EQUIPMENT ON THE

MOON AS THE ALL-CHEMICAL VERSION AND EXTEND

EXPLORATION TIME FOR MANNED MISSIONS.

REFERENCES NUCLEAR ROCKETS, LOS ALAMOS PROJECT ROVER.

RE SCHREIBER

NUCLEONICS 16.70-2 /JULY 1958/

A REVIEW OF PROJECT ROVER

RE SCHREIBER

IRE TRANS. NUCLEAR SCI. NS-9, 16-20 /JAN. 1962/

GAS COOLED REACTORS, DOMESTIC

DD18

PHOEBUS MAY YIELD 268-POUND REACTOR.
FG MC GUIRE
MISSILES AND ROCKETS 12, 16-17 /APRIL 8, 1963/

REVIEW OF SOLID CORE NUCLEAR ROCKETS. FC SCHWENK IEEE TRANS. NUCLEAR SCIENCE NS-12 . 160-168 /FEB. 1965/

THE NERVA NUCLEAR ROCKET REACTOR PROGRAM. WESTINGHOUSE ENG. 25. 66-75 /MAY 1965/

NUCLEAR INDUSTRY SEPT. 1966 P. 19-22 NEWS RELEASE

NUCLEONICS WEEK NOV, 30, 1967 P. 4 NEWS RELEASE

AND PHOEBUS -GINS ARISE NEW SCIENTIST JUNE 27, 1968 p. 69214

GAS COOLED REACTORS, DOMESTIC DD19

NAME/OWNER NGE/NUCLEAR GAS ENGINE//AEC

DESIGNER OAK RIDGE NATIONAL LABORATORY

OPERATOR STUDY

PURPOSE SHIP PROPULSION

TYPE GCR, CLOSED CYCLE, DIRECT COUPLING TO

RECIPROCATING ENGINE

POWER MWE(MWT) 1.5 OR 20,000 SHP 60

CRITICAL STUDY

COQLANT NITROGEN OR HELIUM

MODERATOR GRAPHITE

FUEL MATERIAL URANIUM DIOXIDE PELLETS

FUEL GEOMETRY RODS, 24 IN, LONG

FUEL CLADDING SS CAPSULES

FUEL ASSEMBLY 7 CAPSULES/ASSEMBLY IN FUEL CHANNELS.

5 ASSEMBLIES/CHANNEL 665 ASSEMBLIES / CORE

CONTROL RODS

REACTOR VESSEL CARBON STEEL, 14 FT. DIA./23 FT. HIGH/8 IN. THICK

CONTAINMENT CARBON STEEL 26 FT. OD./32 FT. HIGH/3/8 IN. THICK

REMARKS A PRELIMINARY STUDY HAS BEEN DONE OF A

RECIPROCATING ENGINE COUPLED TO A GAS COOLED REACTOR, SIMILAR TO GCR-2 BUT WITH A SMALL CORE.

REFERENCES DESIGN CONSIDERATION FOR HIGH PRESSURE GAS COOLED

REACTORS WITH SMALL CORES.

OAK RIDGE NATIONAL LAB.

ORNL-CF-58-7-55 /SEPTEMBER 1958/

A NUCLEAR GAS ENGINE FOR MARINE PROPULSION.

OAK RIDGE NATIONAL LAB.

ORNL-CF-58-9-12 /SEPTEMBER 1958/

PROC. 1958 NUCLEAR MERCHANT SHIP SYMPOSIUM,

AUGUST 1958.

JANUARY 1969

BNWL=936

GAS COOLED REACTORS, DOMESTIC DD19

TID-7563 /JANUARY 1959/

GAS COOLED REACTORS, DOMESTIC DD20

NAME/OWNER PBRE /PEBBLE BED REACTOR EXPERIMENT/ /ORNL

DESIGNER OAK RIDGE NATIONAL LABORATORY

PURPOSE POWER EXPERIMENT

TYPE GCR, PEBBLE-BED

CRITICAL POSTPONED IN 1962

COOLANT HELIUM

MODERATOR GRAPHITE REFLECTOR

FUEL MATERIAL URANIUM/THORIUM OXIDE. OR URANIUM/THORIUM CARBIDE

IN GRAPHITE

FUEL GEOMETRY SPHERES, 1.5 IN. OD.

FUEL CLADDING GRAPHITE COATING

FUEL ENRICH. 2.91 PER CENT U-235

FUEL ASSEMBLY 11,700 FUELED SPHERES/CORE

FUEL CHARGE 17.2 KG. U-235

SPECIFIC POWER 3000 KW/KG U-235

BURNUP(REFUEL) 130,000 MWD/TON EXPOSED FUEL RECYCLED TO TOP,

ADDITION AND/OR REMOVAL BY

GRAVITY FLOW AT POWER.

CONTROL CONTROL BLADES, LOCATED IN REFLECTOR

COOLANT TEMP. INLET 550 F OUTLET 1250 F

COOLANT PRESS. 500 PSIA

REACTOR VESSEL CORE, GRAPHITE REFLECTED CYLINDER 2 1/2 FT. DIA./

4 FT. HIGH

PRESSURE VESSEL. CARBON STEEL CYLINDER 9.5 FT. OD.

20 FT, HIGH/2.5 IN. THICK

CONTAINMENT SHIELDED COMPARTMENTS, SECONDARY CONTAINMENT

BUILDING.

REMARKS BASIC DESIGN WAS CONCIEVED BY FARRINGTON DANIELS.

A TWO-REGION THERMAL BREEDER DESIGN, STUDY PROJECT BY SANDERSON AND PORTER, WAS TURNED

GAS COOLED REACTORS. DOMESTIC

DDSO

OVER TO ORNL FOR RESEARCH AND DEVELOPMENT.

SPHERICAL GRAPHITE FUEL PELLETS WERE EVALUATED.

FIRST PHASE STUDY, PBRE, 5 MWT, SECOND PHASE.

CONCEPTUAL DESIGN, 330 MWE, 800 MWT CENTRAL

STATION, RADIAL FLOW, DOWNFLOW AND UPFLOW

STUDIES, LARGE CORE WITH AXIAL FLOW SELECTED FOR

DEVELOPMENT. PBRE PROPOSED FOR INSTALLATION IN

HRE-2 FACILITY HAS BEEN POSTPONED.

REFERENCES

PRELIMINARY DESIGN OF A 10 MWT PEBBLE-BED REACTOR EXPERIMENT.

OAK RIDGE NATIONAL LAB.

CF-60-10-63 /NOVEMBER 1960/

DESIGN STUDY OF A PEBBLE-BED REACTOR POWER PLANT. AP FRAAS, OTHERS CF-60-12-5 /REV./ /MAY 1961/

CONCEPTUAL DESIGN OF THE PEBBLE-BED REACTOR EXPERIMENT.

OAK RIDGE NATIONAL LAB.

ORNL-RM-201 /MAY 1962/

DANIELS EXPERIMENTAL POWER PILE DESIGN PROPOSAL. MONN-188 /BOOKS 1 AND 2/

GAS COOLED REACTORS, DOMESTIC DD21:

NAME/OWNER GCR STUDY, SPACE PROPULSION/THIOKOL

DESIGNER THIOKOL CHEMICAL CORPORATION

PURPOSE SPACE PROPULSION

TYPE GCR, PEBBLE-BED

POWER MWE(MWT) 175

COQLANT HYDROGEN

MODERATOR GRAPHITE, LATERAL BERYLLIUM OXIDE REFLECTOR

FUEL MATERIAL FUELED GRAPHITE PELLETS, VARIABLE DIAMETERS

FUEL GEOMETRY PEBBLES

FUEL ASSEMBLY CORE STRUCTURE. CYLINDRICAL GRAPHITE SEPARATORS:

ENCLOSING FUEL RELLETS //COMPARTMENTED/* FUELED SPHERES HAVE DIFFERENT DIAMETERS FOR DIFFERENTIAL

LOADING.

CONTROL ROTATING ELEMENTS, BORON-CONTAINING DRUMS IN

REFLECTOR.

COOLANT TEMP. INLET 25 F OUTLET 4200 F

COOLANT PRESS. INLET 400 PSI OUTLET 100 PSI

REACTOR VESSEL GRAPHITE CYLINDER /CORE/ 5 FT. X 5 FT.

REMARKS A PARALLEL-PLATE CORE IS ALSO DISCUSSED. THE

PEBBLE-BED CORE STRUCTURE CONSISTS OF CYLINDRICAL GRAPHITE SEPARATORS ENCLOSING THE FUEL PELLETS. DIFFERENTIAL RADIAL LOADING PREVENTS INCREASING POWER DENSITY AT CORE CENTER AND REDUCES FLOW THROUGH THE LATERAL REFLECTOR. THICKOL HAS SET UP

A UNIT FOR RESEARCH AND DEVELOPMENT IN NUCLEAR PROPULSION FOR SPACE AT PARSIPANNY-TROY HILLS, NEW JERSEY. THEY ARE PRIME CONTRACTORS IN AN AIR FORCE CONTRACT /WITH GM AND NUCLEAR DEVELOPMENT CORP./ FOR A NUCLEAR PROPULSION SYSTEM STUDY.

REFERENCES PEBBLE-BED REACTOR LOOKS OKAY FOR NUCLEAR SPACE

VEHICLES.

MM LEVOY, JJ NEWGARD

SAE JOURNAL 68. 46-50 /JUNE 1960/

NUCLEAR SPACE VEHICLES USING PEBBLE-BED REACTORS.

GAS COOLED REACTORS, DOMESTIC

DD21:

MM LEVOY, JJ NEWGARD NP=8586 /1960/

PEBBLE-BED NUCLEAR REACTORS FOR SPACE VEHICLE PROPULSION.

MM LEVOY: JJ NEWGARD

AERO/SPACE ENGINEERING 19, 54-8 /APRIL 1960/

GAS COOLED REACTORS, DOMESTIC DD22

NAME/OWNER GCR-3 /GAS COOLED REACTOR-3/

DESIGNER OAK RIDGE NATIONAL LABORATORY

TENNESSEE VALLEY AUTHORITY COMBUSTION ENGINEERING CORP. WESTINGHOUSE ELECTRIC CORP.

PURPOSE ADVANCED DESIGN STUDY

TYPE GCR. ADVANCED EGCR TYPE

POWER MWE(MWT) 750 1908

CRITICAL STUDY

COOLANT HELIUM

MODERATOR GRAPHITE, HEXAGONAL COLUMNS

FUEL MATERIAL URANIUM DIOXIDE PELLETS 0.97 IN. OD./0.74 IN. ID.

1 IN. LONG STACKED ON A THIN CERAMIC TUBE.

FUEL GEOMETRY RODS 18.9 FT. ACTIVE LENGTH /TWO RODS/

FUEL CLADDING SS 0.015 IN. THÍCK

FUEL ENRICH. 3 PER CENT U-235

FUEL ASSEMBLY 7-ROD CLUSTERS, GRAPHITE SLEEVES THROUGH THE

MODERATOR BLOCKS.

1062 FUEL CHANNELS

FUEL CHARGE 218,000 LB URANIUM DIOXIDE

BURNUP(REFUEL) 20,000 MWD/T 4-STEP PER CORE LIFETIME.

CONTROL RODS, TOP-MOUNTED

COOLANT TEMP. INLET 577 F OUTLET 1150 F

COOLANT PRESS. 420 PSIA

REACTOR VESSEL SPHERICAL STEEL VESSEL 52 FT. 6 IN. ID., 4 IN.

THICK WALLS.

CONTAINMENT STEEL-LINED REINFORCED CONCRETE BUILDING.

REMARKS A STUDY TO EVALUATE THE FUTURE POTENTIAL OF GAS

COLLED REACTORS OF THE EGGR TYPE.

REFERENCES THE ORNL GCR=3, A 750-MWE GAS-COOLED CLAD-FUEL

JANUARY 1969

GAS COOLED REACTORS, DOMESTIC

DD22

REACTOR POWER PLANT. A JOINT DESIGN STUDY. M BENDER, WR GALL ORNE-3353 /JAN. 28, 1963/

GAS COOLED REACTORS, DOMESTIC DD23

NAME/OWNER PBR /PEBBLE BED REACTOR//SANDERSON + PORTER

DESIGNER SANDERSON AND PORTER

PURPOSE POWER

TYPE GCR, PEBBLE-BED

POWER MWE(MWT) 125 350

CRITICAL CONCEPTUAL DESIGN

COOLANT HELIUM

MODERATOR GRAPHITE REFLECTOR

FUEL MATERIAL URANIUM/THORIUM DIOXIDE IN GRAPHITE.
BLANKET THORIUM DIOXIDE IN GRAPHITE

FUEL GEOMETRY SPHERES 1 1/2 IN. DIA. BLANKET 3/4 IN. DIA.

FUEL CLADDING NONE

FUEL ASSEMBLY 7 VERTICAL FUEL CHANNELS CONTAIN CORE ELEMENTS,
BLANKET ELEMENTS IN ANNULAR RING FORMED BY THE
CORE CHANNEL STRUCTURE AND THE THERMAL SHIELD.
228,600 SPHERES/CORE
2,370,000 SPHERES/BLANKET

NEUTRON FLUX THERMAL AVE, 2.2X10 E+14

CONTROL RODS, TOP=DRIVEN

COOLANT TEMP. INLET 550 F OUTLET 1250 F

COOLANT PRESS. 965 PSIA

REACTOR VESSEL CARBON STEEL CYLINDER

CONTAINMENT CONTAINMENT VESSEL TO HOUSE PRIMARY SYSTEM, CONVENTIONAL STRUCTURE FOR SECONDARY SYSTEM.

REMARKS
HELIUM FLOW IS DOWNWARD THROUGH CORE AND BLANKET
IN PARALLEL. THE FUEL CHANNELS ARE 6 GRAPHITE
CYLINDERS, BORED AXIALLY WITH AN OBROUND HOLE

31 IN./37 IN. FORMING A CENTRAL CHAMBER.

REFERENCES

DESIGN AND FEASIBILITY STUDY OF A PEBBLE-BED
REACTOR-STEAM POWER PLANT. PART I. PLANT DESIGN.
SANDERSON + PORTER, ALCO PRODUCTS

JANUARY 1969

BNWL-936

GAS COOLED REACTORS. DOMESTIC

DD23

NYO-8753 VOL. I /MAY 1958/

GAS COOLED REACTORS, DOMESTIC DD24

NAME/OWNER TORY/AEC

DESIGNER UNIVERSITY OF CALIFORNIA RADIATION LABORATORY

OPERATOR UNIVERSITY OF CALIFORNIA RADIATION LABORATORY

LOCATION NEVADA TEST SITE

PURPOSE PROJECT PLUTO /NUCLEAR RAMJET/ EXPERIMENT

TYPE GCR, DIRECT CYCLE, HIGH TEMPERATURE, UNGLAD FUEL.

POWER MWE(MWT) 150
TORY=2C 600

CRITICAL ZERO POWER, DEC. 1960

TORY-2C, 1964

PLUTO PROGRAM DISCONTINUED

COOLANT AIR

MODERATOR BERYLLIUM OXIDE, GRAPHITE REFLECTOR

FUEL MATERIAL BERYLLIUM-URANIUM OXIDE

FUEL GEOMETRY HEXAGONAL TUBES 4 IN. LONG

FUEL CLADDING NONE

FUEL ENRICH. HIGH

FUEL ASSEMBLY HEXAGONAL BUNDLES CONTAINED IN UNFUELED BERYLLIUM

OXIDE STRUCTURAL ELEMENT, WITH AIR-COOLED HASTELLOY TUBE AT EACH CORNER OF ELEMENT.

APPROX. 100,000 FUEL ELEMENTS/CORE

CONTROL GRAPHITE CYLINDERS WITH BORON STEEL /ROTATING/

AND LINEAR RODS

REMARKS TORY-2-A-1 HAD A CYLINDRICAL CORE 45 INCHES LONG

BY 32 INCHES DIAMETER. THE RAMJET CONSISTS OF AN INLET DIFFUSER, A SINGLE-PASS STRAIGHT+THROUGH HEAT EXCHANGER /THE REACTOR/, AND AN EXHAUST

NOZZLE.

REFERENCES SUMMARY REPORT ON HIGH TEMPERATURE BERYLLIUM-

OXIDE CRITICAL EXPERIMENTS.

RG FINKE

UCRL-6329 /1961/

GAS COOLED REACTORS. DOMESTIC

DD24

NUCLEAR REACTORS BUILT, BEING BUILT, OR PLANNED IN THE UNITED STATES AS OF DECEMBER 31, 1961. TID-8200 /11TH REVISION/ /1964/

THE PLUTO PROGRAM.
HL REYNOLDS /LAWRENCE RADIATION LAB./
UCRL=6923 /MAY 17, 1962/

GAS COOLED REACTORS, DOMESTIC DD25

NAME/OWNER GCR STUDY, PROCESS HEAT/US BU-MINES

DESIGNER UNITED STATES BUREAU OF MINES

PURPOSE PROCESS HEAT FOR GASIFICATION OF COAL

TYPE GCR. PEBBLE-BED, INDIRECT CYCLE

POWER MWE(MWT) 750

COQLANT HELIUM

MODERATOR GRAPHITE

FUEL GEOMETRY PEBBLES

REMARKS A NONNUCLEAR SYSTEM TO SERVE AS A PROTOTYPE HAS

BEEN DESIGNED AND CONSTRUCTED. CONCEPT IS FOR A HELIUM-COOLED REACTOR /HELIUM ABOVE 1000 F/ TO HEAT STEAM. SUITABILITY OF HELIUM-GRAPHITE SUSPENSIONS AS REACTOR COOLANTS IS BEING

INVESTIGATED.

REFERENCES HIGH TEMPERATURE SYSTEMS FOR NUCLEAR PROCESS HEAT.

JP MC GEE

TID-7564 /P. 305/ /1958/

INDIRECT CYCLE NUCLEAR REACTOR SYSTEM TO FURNISH

PROCESS HEAT.

RC DALZELL, JP MCGEE

CHEM. ENG. PROG. 55. SYMP. SERIES =22. 111-18

/1959/

BNWL - 936 JANUARY 1969

DD26 GAS COOLED REACTORS. DOMESTIC

NAME/OWNER

GCR-MHD/WESTINGHOUSE

DESIGNER

WESTINGHOUSE ELECTRIC CORPORATION

PURPOSE

POWER = CONCEPT

TYPE

GCR, NUCLEAR FUELED MHD PLANT, GLOSED CYCLE.

POWER MWE(MWT)

600

CRITICAL

STUDY

COQLANT

HELIUM

MODERATOR

GRAPHITE

FUEL MATERIAL URANIUM CARBIDE-GRAPHITE

FUEL GEOMETRY ANNULAR RODS

FUEL CLADDING NONE

FUEL ENRICH.

SLIGHT

FUEL ASSEMBLY ANNULAR ELEMENTS POSITIONED IN FUEL CHANNELS

BURNUP (REFUEL)

/ON-LOAD REFUELING/

COOLANT TEMP. INLET 1690 F

OUTLET 2500 F

COOLANT PRESS.

25=50 PSIA

REACTOR VESSEL CORE. RIGHT CYLINDER OF GRAPHITE MODERATOR AND REFLECTOR PIERCED BY VERTICAL FUEL CHANNELS.

REMARKS

UTILIZATION OF FISSION PRODUCTS FROM UNCLAD FUEL FOR GAS IONIZATION. SYSTEM CONSISTS OF THE REACTOR, AN MHD GENERATOR, MHD COMPRESSOR,

REGENERATOR, COOLER, POSSIBLY A D.C. TO A.C.

CONVERTER.

REFERENCES

MHD POWER GENERATION BY NONTHERMAL IONIZATION AND

ITS APPLICATION TO NUCLEAR ENERGY CONVERSION.

EJ STERNGLASS, OTHERS

NUCLEAR ENERGY, MARCH 1963, P. 60-66.

GAS COOLED REACTORS, DOMESTIC DD27

NAME/OWNER GCR FAST REACTOR STUDY/GGA

HELIUM COOLED FAST BREEDER

DESIGNER GULF GENERAL ATOMIC

PURPOSE POWER, POSSIBLY DESALINATION

TYPE GCR, FAST BREEDER

POWER MWE(MWT) 415 1093

CRITICAL REFERENCE DESIGN

COOLANT HELIUM /CARBON DIOXIDE STUDIED/

MODERATOR NONE

FUEL MATERIAL URANIUM/PLUTONIUM OXIDE PELLETS, CORED, 0.5 IN.

LONG.

RADIAL BLANKET URANIUM DIGXIDE

FUEL GEOMETRY ROD 46 IN. LONG

UPPER AND LOWER BLANKET SECTIONS EACH 18 IN.

FUEL CLADDING HASTELLOY CANS 0.44 IN. OD., 12.5 MILS THICK

SPACING BY RIBS

FUEL ASSEMBLY BUNDLES

100 RODS/BOX, ACTIVE LENGTH 116.5 CM.

213 BOXES, SQUARE PITCH

GRID-PLATE IS EGG-CRATE STRUCTURE

FUEL CHARGE 1770 KG, FISSILE

SPECIFIC POWER 0.62 MWT/KG FISSILE

BURNUP (REFUEL) 100,000 MWD/T

CONTROL MOTION OF POISON ELEMENTS, FUEL, OR BOTH

COOLANT TEMP. INLET 300 C OUTLET 600 C

SEE REMARKS

COOLANT PRESS. 1000 PSIA

SEE REMARKS

REACTOR VESSEL PRESTRESSED CONCRETE CYLINDER, FLAT ENDS,

INNER STEEL LINING FACED WITH INSULATING MATERIAL.

ADJACENT BUILT-IN WATER COILS. VESSEL CONTAINS CORE, CIRCULATORS, STEAM GENERATORS, MAIN COOLANT

GAS COOLED REACTORS. DOMESTIC

DD27

DUCTING. ROD-DRÍVE MECHANISMS.

CONTAINMENT

CONCRETE - LINED PIT

REMARKS

CARBON DIOXIDE COOLÂNT AND CARBIDE FUELS: WERE ALSO STUDIED. REPRESENTATIVE DESIGNS INCLUDE A 463 MWE PLANT WITH HELIUM COOLANT, OXIDE FUEL, WORKING PRESSURE 1000 PSI, INLET 300 C AND OUTLET 596 C. AND A 1364 MWE PLANT WITH CARBON DIOXIDE COOLANT, CARBIDE FUEL, WORKING PRESSURE 2000 PSI, INLET 340 C AND OUTLET 615 C. STUDY UNDER AEC SPONSORSHIP APPLICATION TO WATER DESALINATION IS CONSIDERED. GENERAL ATOMICS HAS ANNOUNCED THE DEVELOPMENT OF GAFRE /GENERAL ATOMICS FAST REACTOR EXPERIMENT/ WITH EAST CENTRAL NUCLEAR GROUP. A JOINT PROGRAM WITH SWITZERLAND WILL STUDY GAS-COOLED FAST BREEDERS, WITH RESEARCH PERFORMED DURING 1968 AT THE SWISS FEDERAL INSTITUTE FOR WITH A GROUP OF 21 UTILITIES. GGA IS ENGAGED IN A 2-YEAR R+D PROGRAM FOR A GAS COOLED FAST REACTOR OR EXP. FACILITY, TO INCLUDE CORE DESIGN AND DEVELOPMENT, SYSTEM COMPONENT DEVELOPMENT, AND SAFETY ANALYSIS, WHICH WILL COMPLEMENT THE SWISS PROGRAM.

REFERENCES

GAS COOLING FOR FAST REACTORS.
P. FORTESCUE, OTHERS
3RD UN INTL. CONF. PEACEFUL USES ATOMIC ENERGY.
GENEVA, 1964, A/CONF. 28/P 694

DEVELOPMENT OF THE GAS-COOLED FAST REACTOR CONCEPTOR P. FORTESCUE, R.T. SHANSTROM, H. FRENCH NUCLEONICS 23 /5/, 56-60 /MAY 1965/

STUDY OF A GAS-COOLED FAST BREEDER REACTOR.
INITIAL STUDY. CORE DESIGN ANALYSIS AND SYSTEM
DEVELOPMENT PROGRAM. FINAL SUMMARY REPORT.
GENERAL ATOMIC DIV. GENERAL DYNAMICS
GA-5537 /AUG. 15, 1964/

DEVELOPMENT OF THE GAS-COOLED FAST REACTOR CONCEPTS P FORTESCUE, RT SHANSTROM

FAST REACTOR TECHNOLOGY, NATIONAL TOPICAL MEETING

APRIL 26-28, 1965, AMERICAN NUCLEAR SOCIETY.

ANS-100 /P.89-98/

GAS COOLED REACTORS. DOMESTIC DD28

NAMEZOWNER MMPPR ZMULTIPURPOSE MILITARY PORTABLE POWER

REACTOR.

DESIGNER AEROJET-GENERAL NUCLEONICS

PURPOSE MILITARY POWER REQUIREMENTS.

TYPE GCR, AIR OR SUPERHEATED STEAM COOLANT, PRESSURE

TUBE. PORTABLE PLANT.

POWER MWE(MWT) 1

CRITICAL DESIGN

COOLANT AIR OR SUPERHEATED STEAM. SEE REMARKS

MODERATOR LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE

FUEL GEOMETRY PIN

FUEL CLADDING HASTELLOY X

FUEL ENRICH. MODERATE

FUEL ASSEMBLY 19-PIN BUNDLE

CONTROL BLADES

COOLANT TEMP. 1000 F MAX' WITH BRAYTON CYCLE 1200 F

COOLANT PRESS. 500 PSI

REACTOR VESSEL ALUMINUM TANK, 8 FT. DIA./8 FT. HIGH, OUTER LEAD

SHIELDS TO FORM AN ANNULUS FOR CIRCULATION OF

BORATED WATER.

CONTAINMENT SHIELD TANKS, SAND BAGS.

REMARKS A DUAL-LOOP PLANT UTILIZING THE LOEFFLER OR THE

BRAYTON CYCLE, CONVENTIONAL SUPERHEATED STEAM POWER - CONVERSION EQUIPMENT. A DIRECT-STEAM CYCLE PLANT USES THE SAME GAS-COOLED REACTOR, BUT IS COOLED BY SUPERHEATED STEAM WHICH IS USED DIRECTLY AS THE TURBINE WORKING FLUID. PLANT IS DESIGNED FOR TRANSPORTATION TO REMOTE AREAS IN A TOTAL OF

25 PACKAGES.

REFERENCES DESIGNED, THE PORTABLE POWER REACTOR.

GAS COOLED REACTORS, DOMESTIC

DD28

S. LUCHTER /AEROJET-GENERAL NÚCLEONICS/ MECH. ENG. 87, 32-35 /JUNE 1965/

GAS GOOLED REACTORS, DOMESTIC DD29

NAME/OWNER GCR FAST REACTOR STUDY-1/ORNL

DESIGNER OAK RIDGE NATIONAL LABORATORY

PURPOSE POWER

TYPE GCR. INDIRECT CYCLE: FAST REACTOR

POWER MWE(MWT) 1080 2500

CRITICAL CONCEPTUAL DESIGN

COOLANT HELIUM

MODERATOR STEEL REFLECTOR

FUEL MATERIAL URANIUM/PLUTONIUM DIOXIDE

BLANKET, DEPLETED URANIUM DIOXIDE

FUEL GEOMETRY PIN 0.25 IN. DIA., 72 IN. LONG + 15 X 2 IN. AXIAL

BLANKET.

RADIAL BLANKET PINS 0.92 IN. DIA., 8.5 FT.

LONG

FUEL CLADDING SS

FUEL ASSEMBLY CORE, 421-PIN BUNDLE, CYLINDRICAL STEEL ALLOY

CONTAINER 9.763 IN. OD.

154 ASSEMBLIES

BLANKET, RADIAL, 9 IN. OD.

102 ASSEMBLIES

BURNUP (REFUEL) SHUT DOWN

CONTROL RODS

COOLANT TEMP. INLET 500 F OUTLET 1150 F

COOLANT PRESS. 1016 PSI

REACTOR VESSEL PRESTRESSED CONCRETE SPHERE 44 FT. ID., 11 FT.

WALL THICKNESS, LINED.

CONTAINMENT REINFORCED CONCRETE CYLINDER 100 FT. ID., 154.5 FT

HIGH, WALL THICKNESS 4.5 FT.

REMARKS TWO SYSTEMS WERE STUDIED, HELIUM-COOLED INDIRECT

CYCLE WITH CONVENTIONAL STEAM CYCLE, AND SULFUR DIOXIDE COOLED DIRECT CYCLE SYSTEM WITH A DIRECT

RANKINE CYCLE /SEE DD30/.

JANUARY 1969

BNWL - 936

GAS COOLED REACTORS, DOMESTIC DD29

A CARBON DIOXIDE-COOLED SYSTEM WAS BRIEFLY

REVIEWED.

REFERENCES

GAS COOLED FAST REACTOR CONCEPTS.
OAK RIDGE NATIONAL LAB.
ORNL=3642 /SEPT. 1964/

GAS COOLED REACTORS. DOMESTIC DD30

NAME/OWNER GCR FAST REACTOR STUDY=2/ORNL

DESIGNER OAK RIDGE NATIONAL LABORATORY

PURPOSE POWER

TYPE GCR, FAST REACTOR, DIRECT RANKINE CYCLE

POWER MWE(MWT) 3168

CRITICAL CONCEPTUAL DESIGN

COOLANT SULFUR DIOXIDE /SUPERCRITICAL/

MODERATOR CYLINDRICAL STEEL REFLECTOR.

FUEL MATERIAL CORE, URANIUM/PLUTONIUM DIOXIDE

BLANKET, DEPLETED URANIUM DIOXIDE OXIDES COMPACTED BY VIBRATORY METHODS

FUEL GEOMETRY PIN 72-IN. ACTIVE LENGTH + 15 X 2 IN. AXIAL

BLANKET.

RADIAL BLANKET LARGER DIA.

FUEL CLADDING HASTELLOY X SEAMLESS TUBING 1/4 IN. OD.

FUEL ASSEMBLY CORE, 577-PIN ASSEMBLY, CYLINDRICAL CONTAINER

135 FUEL ASSEMBLIES

114 RADIAL BLANKET ASSEMBLIES

CONTROL RODS: BOTTOM ENTRY

COOLANT TEMP. OUTLET 910 F

COOLANT PRESS, INLET 1350 PSIA OUTLET 1200 PSIA

REACTOR VESSEL CORE VESSEL 17 FT. ID, 8 IN. WALL THICKNESS,

CARBON STEEL CYLINDER, SS LINER ABOVE CORE, PRIMARY VESSEL MAY BE PRESTRESSED CONCRETE. ANNULAR SPACE BETWEEN CORE VESSEL AND PRIMARY

/COOLANT/ VESSEL.

CONTAINMENT SPHERICAL SHELL, ALL-METAL RECOMMENDED.

CENTRAL SHELL HOUSING THE REACTOR IS CONNECTED TO 5 IDENTICAL SURROUNDING SHELLS /REGENERATOR=

CONDENSER-PUMP SYSTEMY. EACH SHELL IS 80 FT. DIA.

WITH WALLS ABOUT 1 3/8 IN. THICK, SHELLS ARE

SEALED FROM THE REACTOR SHELL AND FROM EACH OTHER.

REMARKS CORE COOLANT IS IN THE SUPERCRITICAL PHASE.

GAS COOLED REACTORS. DOMESTIC

DD30

REACTOR SUPPLIES 910 F, 1200 PSIA SUPERCRITICAL SULFUR DIOXIDE TO TWO 500-MW TURBING GENERATORS. TURBINES EXHAUST THROUGH REGENERATORS TO SURFACE CONDENSERS AND CONDENSED LIQUID IS PUMPED BACK TO THE REACTOR THROUGH REGENERATORS WHICH PRE-HEAT REACTOR FEED TO 234 F AND 800 PSI. PRESSURE IS INCREASED BY A FEED PUMP TO 1405 PSIA AT 238 F.

REFERENCES

GAS COOLED FAST REACTOR CONCEPTS
OAK RIDGE NATIONAL LAB.
ORNL-3642 /SEPT. 1964/

GAS COOLED REACTORS, DOMESTIC DD31:

NAME/OWNER CHEMONUCLEAR REACTOR STUDY=3/BNL

NITROGEN FIXATION

DESIGNER BROOKHAVEN NATIONAL LABORATORY

TYPE GCR

POWER MWE(MWT) 1500

COOLANT NITROGEN-OXYGEN MIXTURE 1/2 BY VOLUME.

MODERATOR GRAPHITE

GRAPHITE WITH BORON REFLECTOR

FUEL MATERIAL URANIUM-ALUMINUM ALLOY

FUEL GEOMETRY HONEYCOMB FOIL

FUEL ENRICH. FULL

FUEL ASSEMBLY FOIL ARRANGED IN HEXAGONS

FUEL CHARGE 839 KG U+235

CONTROL RODS

COOLANT TEMP. INLET 485 F OUTLET 1075 F

COCLANT PRESS. 1000 PSI

REACTOR VESSEL PRESTRESSED CONCRETE PRESSURE VESSEL, SPHERICAL

REMARKS REACTOR PRODUCES ELECTRIC POWER FOR ELECTROLYTIC

HYDROGEN PRODUCTION FROM WATER, AMMONIA IS
PRODUCED BY CONVENTIONAL CATALYTIC COMBINATION
WITH ATMOSPHERIC NITROGEN, PROCESS DESIGN CONSISTS.

OF REACTOR SYSTEM, POWER CYCLE, AND CHEMICAL

PRODUCTION PLANT:

REFERENCES DUAL CYCLE CHEMONUCLEAR NITROGEN FIXATION PROCESS.

M BELLER, OTHERS

CHEM. ENG. PROGRESS 63, 51-55 /APRIL 1967/

GAS COOLED REACTORS FOREIGN

GAS COOLED REACTORS FOREIGN DF01:

NAME/OWNER HTGR /HIGH TEMP: GAS-COOLED REACTOR/AAEC, AUSTRALIA

DESIGNER AAEC-AUSTRALIA

PURPOSE POWER REACTOR STUDY

TYPE GCR, HIGH TEMPERATURE, PEBBLE-BED

POWER MWE(MWT) 500

CRITICAL FEASIBILITY STUDY

COOLANT CARBON DIOXIDE

MODERATOR BERYLLIUM OR BERYLLIUM OXIDE

FUEL MATERIAL /THORIUM-PLUTONIUM/ OXIDE-BERYLLIUM OXIDE PEBBLES

ABOUT 1 IN. DIA.

A PLUTONIUM/THORIUM/BERYLLIUM SYSTEM IS BEING

STUDIED.

FUEL GEOMETRY PEBBLES

FUEL CLADDING BERYLLIA COATING

FUEL ENRICH. FISSILE-FERTILE-MODERATOR RATIO 1-10-2000

SPECIFIC POWER 1:3 MW/KG FUEL

BURNUP (REFUEL) CONTINUOUS - ON-LOAD - PARTIALLY SPENT FUEL

RECIRCULATED.

COOLANT TEMP. INLET 350 C OUTLET 700-800 C

COOLANT PRESS. 35 ATM. /515 PSI/

REMARKS SYSTEM INVESTIGATION, FUEL ELEMENTS STUDIES.

MOST PROMISING ELEMENTS INCORPORATE BERYLLIUM, URANIUM, AND THORIUM. CERMET FUELS, BERYLLIUM OXIDE MATRIX ELEMENTS ARE UNDERGOING IRRADIATION

STUDIES. CONCEPT DEVELOPMENT TARGET IS 1980

A 500 MWE REACTOR HAS BEEN EVALUATED

REFERENCES TENTH ANNUAL REPORT: 1961-1962

AUSTRALIAN ATOMIC ENERGY COMMISSION

1962

HIGH TEMPERATURE GAS-COOLED REACTOR FEASIBILITY

STUDY.

GAS COOLED REACTORS, FOREIGN

DF 01

ENGINEERING DESIGN AND ANALYSIS OF A BERYLLIA MODERATED PEBBLE-BED REACTOR.

DR EBELING, JE HAYES
MECH. CHEM. ENG. TRANS, 119-37 /MAY 1967/

THE AUSTRALIAN HIGH TEMPERATURE GAS-COOLED REACTOR FEASIBILITY STUDY.
WH ROBERTS
J. NUCLEAR MATERIALS 14, 29-40 /1964/
PROC. 1ST. INTL. CONF. BERYLLIUM OXIDE, AUSTRALIA.
OCT. 1963

GAS COOLED REACTORS. FOREIGN

DF 02

NAME/OWNER BRAZILIAN POWER REACTOR/CEN, BRAZIL

DESIGNER

NOT SELECTED

LOCATION

PARATI, BRAZIL /MAMBUCABA RIVER/

BURPOSE

POWER

TYPE

GCR WAS PROPOSED. NO CURRENT INFORMATION.

POWER MWE(MWT) 150

REMARKS

ON COMPLETION OF STUDY, CEN WILL INVITE PUBLIC

BIDS FOR CONSTRUCTION.

REFERENCES

APPLIED ATOMICS JUNE 13,1962, P. 8-9

BNWL - 936 JANUARY 1969

DF 03 GAS COOLED REACTORS. FOREIGN

CZECHOSLOVAKIA ATOMIC POWER STATION/CZECH.SOC.REP. NAME/OWNER

USSR DESIGNER

OPERATOR CZECH.SOC.REP.

BOHUNICE, CZECH. LOCATION

PURPOSE POWER

GCR, HEAVY WATER MODERATED, PRESSURE TUBE TYPE

/CALANDRIA/

590 150 POWER MWE(MWT)

1969 /CONSTRUCTION/ CRITICAL No.1

No.2 1974

CARBON DIOXIDE COOLANT

MODERATOR HEAVY WATER

FUEL MATERIAL URANIUM

ROD 4 MM. DIA./4.0 M. LONG /WIRE/ FUEL GEOMETRY

MAGNESIUM-BERYLLIUM ALLOY 0,45 MM. THICK FUEL CLADDING

FUEL ENRICH. NATURAL

CLUSTER OF THIN FUEL RODS SUSPENDED AT TOP. EACH FUEL ASSEMBLY

CLUSTER IS IN A MAGNESIUM ALLOY SHIELD TUBE. 150.

200 RODS/ELEMENT.

FUEL CHARGE 25,400 KG. URANIUM

SPECIFIC POWER 23.2 KW/KG URANIUM

BURNUP (REFUEL) 3000 MWD/TON /CONTINUOUS/

RODS, SHIM-SAFETY AND REGULATING, GRAVITY DROP CONTROL

OUTLET 425 C COOLANT TEMP. INLET 100 C

COOLANT PRESS. 60 ATM.

REACTOR VESSEL STEEL VESSEL. IN IT IS MOUNTED AN ALUMINUM TANK

CONTAINING THE MODERATOR WITH ALUMINUM TUBES CONTAINING FUEL ELEMENTS, AND FOR COOLANT

CIRCULATION.

GAS COOLED REACTORS, FOREIGN

DF03

REMARKS

PLANS CALL FOR A 4-REACTOR STATION AT THIS SITE.
A 150-MWE STATION IS PROPOSED FOR THIS SITE.

REFERENCES

ROD FUEL ELEMENT FOR A GAS-COOLED HEAVY WATER REACTOR.
PI KHRISTENKO, OTHERS
SECOND UN INTL. CONF. PEACEFUL USES ATOMIC ENERGY
6, 370-78 /1958/

A HEAVY WATER POWER REACTOR WITH GAS COOLING.
AI ALIKHANOV, OTHERS
J. NUCLEAR ENERGY II, VOL. 3, 77-82 /1956/

ENGINEERING AND ECONOMIC ASPECTS OF CONSTRUCTION OF AN ATOMIC POWER STATION IN CZECHOSLOVAKIA. A SEVCICK SECOND UN INTL. CONF. PEACEFUL USES ATOMIC ENERGY 8, 322-8 /1958/

GAS COOLED REACTORS. FOREIGN DF04

NAME/OWNER BETA/DANATOM, DENMARK

DESIGNER DANATOM-DENMARK

PURPOSE POWER

TYPE GCR

POWER MWE(MWT) 175 574

CRITICAL DESIGN STUDY

COQLANT CARBON DIOXIDE

MODERATOR GRAPHITE

FUEL MATERIAL NATURAL URANIUM

FUEL GEOMETRY ROD. 29.2 MM. DIA. /1,15IN.//28.8 IN. LONG

FUEL CLADDING MAGNOX, FINNED.

FUEL ASSEMBLY RODS IN GRAPHITE SLEEVES, LOCATED IN VERTICAL

COOLANT CHANNELS IN CYL. GRAPHITE STRUCTURE.

9 ELEMENTS / CHANNEL

3176 FUEL CHANNELS / CORE

BURNUP (REFUEL) 3000-4500 MWD/T

NEUTRON FLUX THERMAL MAX. 3.26x10 E+13

THERMAL AVE. 1.74x10 E+13

CONTROL RODS, SAFETY AND SHIM, BORON-STEEL

COOLANT TEMP. INLET 190 C OUTLET 380 C

COOLANT PRESS. 156.5 PSIA

REACTOR VESSEL PRESSURE VESSEL 68 FT. 8 1/2 IN. ID. SPHERE.

LOW+C STEEL

REMARKS VERTICAL COOLANT CHANNELS ARE LOCATED WITHIN THE

CYLINDRICAL GRAPHITE STRUCTURE, THE CARBON DIOXIDE FLOWING IN THE ANNULAR SPACE BETWEEN THE GRAPHITE SLEEVES AND THE FUEL RODS. AFTER PASSING THROUGH THE HEAT EXCHANGERS, THE COOLANT GAS IS RETURNED

TO THE REACTOR.

REFERENCES BETA, A 175 MW GAS COOLED NUCLEAR REACTOR POWER

STATION. A PRELIMINARY DESIGN STUDY.

JANUARY 1969

BNWL - 936

GAS COOLED REACTORS. FOREIGN

DF04

DANATOM DANATOM 01-60 /MARCH 1960/

BETA: DANATOMS 175 MW DESIGN STUDY. NUCLEAR ENG. 5, 264-5 /JUNE 1960/

GAS COOLED REACTORS, FOREIGN

DF05:

NAME/OWNER NEUBRANDENBERG STATION/EAST GERMANY

DESIGNER USSR

OPERATOR E GERMANY

LOCATION NEUBRANDENBERG, EAST GERMANY

PURPOSE POWER EXPERIMENT

TYPE GCR, HEAVY WATER MODERATED, PRESSURE TUBE

/CALANDRIA/

POWER MWE(MWT) 70 300

CRITICAL 1964

COOLANT CARBON DIOXIDE

MODERATOR HEAVY WATER

FUEL MATERIAL URANIUM

FUEL ENRICH. SLIGHT

REMARKS NO RECENT INFORMATION. STATION REPORTEDLY TO BE

EQUIPPED WITH TWO 70 MW/E/ REACTORS BY 1965.

REFERENCES A HEAVY WATER, GAS COOLED REACTOR.

AI ALIKHANOV, OTHERS

J. NUCLEAR ENERGY 3, PART 2, 77-82 /AUGUST 1956/

GAS COOLED REACTORS, FOREIGN

DF06

NAME/OWNER G-1 /GRAPHITE-REACTOR 1/CEA, FRANCE

DESIGNER CEA-FRANCE

OPERATOR CEA-EDF

LOCATION MARCOULE, FRANCE

PURPOSE PLUTONIUM PRODUCTION, CENTRAL STATION POWER

PROTOTYPE

TYPE GCR, HORIZONTAL CONFIGURATION

POWER MWE(MWT) 17 38

CRITICAL 1956

COQLANT AIR

MODERATOR GRAPHITE - HORIZONTAL CHANNELS

FUEL MATERIAL NATURAL URANIUM CAST BARS /SLUGS/

FUEL GEOMETRY RODS 26 MM, DIA./100 MM, LONG

FUEL CLADDING MAGNESIUM ZIRCONIUM ALLOY

FUEL ASSEMBLY 37 SLUGS IN ONE SHEATH 2 ELEMENTS PER CHANNEL

1337 HORIZONTAL CHANNELS.

-FUEL CHARGE 100 TONS URANIUM

NEUTRON FLUX THERMAL AVE. 1.55x10 E+12

FAST AVE. 2X10 E+12

CONTROL VERTICAL CONTROL RODS /BORON CARBIDE/ AND

NEUTRON ABSORBER ELEMENTS.

COOLANT TEMP. INLET 20 C OUTLET 200 C

REACTOR VESSEL THERMAL AND BIOLOGICAL SHIELDS, NO PRESSURE VESSEL

REMARKS THE AIR-COOLED G-1 REACTOR HAS THREE AIR CIRCIUTS

FOR COOLING THE FUEL ELEMENTS, THERMAL SHIELD, AND FRONT AND REAR FACES. THE PRIMARY DIRECT CIRCUIT MAINTAINS THE URANIUM CLADDING AT A MAXIMUM 275 C.

REFERENCES THE G-1 REACTOR

D MARTIN

JANUARY 1969

GAS COOLED REACTORS, FOREIGN

DF06

ENERGIE NUCLEAIRE 5, 221-5 JUNE 1963/

GAS COOLED REACTORS, FOREIGN DF 07

NAME/OWNER G-2, G-3/CEA-ELECTRICITE DE FRANCE

CEA-FRANCE DESIGNER

OPERATOR CEA-EDF

MARCOULE, FRANCE LOCATION

PURPOSE PLUTONIUM PRODUCTION, POWER

TYPE GCR

32 200 JUPRATED TO 240 / POWER MWE(MWT)

G_2 1959, G_3 1962 CRITICAL

COOLANT CARBON DIOXIDE

MODERATOR GRAPHITE WITH HORIZONTAL CHANNELS

NATURAL U METAL, SOME CENTRAL RODS FUEL MATERIAL

URANIUM-ALUMINUM ALLOY, 15-20 CHANNELS LOADED WITH

THORIUM

RODS 28.2 CM. LONG/2.8 AND 3.1 CM./PERIPHERAL/DIA. FUEL GEOMETRY

MAGNESIUM-ZIRCONIUM ALLOY 1,5 MM. THICK. FINNED FUEL CLADDING

FINNED-CLAD RODS, 28 ELEMENTS/CHANNEL FUEL ASSEMBLY

1200 FUEL CHANNELS

-FUEL CHARGE 110 TONS URANIUM

SPECIFIC POWER 1.82 KW/KG

/ON-LOAD REFUELING/ BURNUP (REFUEL) 400 MWD/TON

THERMAL MAX. 2.8 X10 E+13 NEUTRON FLUX FAST AVE. 1.2x10 E+13

CONTROL BORON CARBIDE RODS, STEEL CLADDING, NO BURNABLE

POISON

333-307 C COOLANT TEMP.

COOLANT PRESS. 15 KG/SQ. CM.

REACTOR VESSEL PRESTRESSED CONCRETE HORIZONTAL CYLINDER, DISKED

ENDS, MASSIVE BASE. 33.6 M. LONG /14 M.ID.

REACTOR BUILDING - CONVENTIONAL. CONTAINMENT

GAS COOLED REACTORS, FOREIGN

DF07

REMARKS

BOTH G-2 AND G-3 HAVE BEEN UP-RATED TO 30-37 MWE AND 240 MWT. G-3 IS EXPECTED TO PRODUCE 40 MW FOR THE FRENCH NATIONAL GRID.

REFERENCES

DESCRIPTION OF REACTORS G-2 AND G-3. SECOND U. N. INTL. CONF. ON THE PEACEFUL USES OF ATOMIC ENERGY 8, 334-55 /1958/

THE WORLDS REACTORS, G-2 AND G-3.
NUCLEAR ENG. /INSERT/ /DECEMBER 1959/

THE G-2 AND G-3 INDUSTRIAL COMPLEXES.
L MAILLARD
ENERGIE NUCLEAIRE 5, 226-30 /JUNE 1963/

DIRECTORY OF NUCLEAR REACTORS. VOL. I. POWER REACTORS: P. 151
INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA. 1959

GAS COOLED REACTORS, FOREIGN

DF08

NAME/OWNER EL=4 /EAU LOURDE/ CEA=FRANCE

MONT D ARREE CENTRALE NUCLEAIRE

DESIGNER CEA-FRANCE

OPERATOR CEA-FRANCE

LOCATION MORLAIX, BRITTANY, FRANCE /NEAR BRENNILIS/

PURPOSE POWER, CONTRIBUTION TO EURATOM ORGEL PROJECT.

/PROTOTYPE/

TYPE GCR, HEAVY WATER MODERATED

HORIZONTAL PRESSURE TUBE

POWER MWE(MWT) 75 250

CRITICAL DECEMBER 1966, FULL POWER SUMMER 1967.

REACTOR DOWN IN JAN. 1968 BECAUSE OF CRACKS IN HEAT EXCHANGER. EXPECTED BACK ON-LINE BY

END OF 1968.

COOLANT CARBON DIOXIDE, FORCED CIRCULATION

MODERATOR HEAVY WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS 13 MM DIAM.

FUEL GEOMETRY ROD, 40 CM. LONG/11 MM. DIA.

FUEL CLADDING SS-THIN, LATER CORES BERYLLIUM, IRON-ALUMINUM OR

ZIRCONIUM ALLOYS

FUEL ENRICH. FIRST CORE 1.4 PERCENT U-235, LATER NATURAL

URANIUM

FUEL ASSEMBLY 19-ROD CLUSTER, GRAPHITE SLEEVE.

9 ELEMENTS /CHANNEL

SPECIFIC POWER 35 W/G URANIUM DIOXIDE

BURNUP(REFUEL) 10,000 MWD/TON /ON-LOAD REFUELING/

CONTROL GAS RODS AND SOLUBLE POISON

COOLANT TEMP. INLET 260 C OUTLET 475-500 C

COOLANT PRESS. 870 PSI

REACTOR VESSEL MOLYBDENUM-STAINLESS STEEL HORIZONTAL CYLINDER,

GAS COOLED REACTORS, FOREIGN

DF08

5.5 M. BETWEEN END PLATES, 4 M. ID., 30 MM, WALL THICKNESS. ZIRCALOY-2 FUEL TUBES JOINED TO END PLATES

CONTAINMENT

PRESTRESSED CONCRETE CYLINDER 46 M. ID, 44 M. HIGH WALL THICKNESS 2.36 IN.
SPHERICAL DOME 60 CM. THICK

REMARKS

PRESSURE TUBES ARE ZIRCALLOY, THERMALLY INSULATED FROM THE HOT GAS PASSING THROUGH THEM, COLD HEAVY WATER MODERATOR IS CONTAINED IN A VESSEL RIGIDLY CONNECTED TO THE POWER TUBES BY A LEAK-PROOF JUNCTION. THE HORIZONTAL CHANNELS ARE ACCESSIBLE FROM BOTH ENDS, THE FUEL ELEMENTS BEING MOVED ALONG THE LENGTH OF THE CHANNEL DURING IN-PILE LIFE. A SCALED-UP 500 MWE PLANT HAS BEEN STUDIED AS A REFERENCE DESIGN. AMONG THE COOLANTS STUDIED BRIEFLY WAS A SUSPENSION OF GRAPHITE IN CARBON DIOXIDE GAS. EL-5 AS PLANNED WILL BE A 300 MWE PLANT WITH ITHE SAME BASIC CHARACTERISTICS AS EL-4.

A 600 MWE PLANT HAS BEEN EVALUATED.
CEA, WITH SULZER, IS STUDYING A HEAVY WATER GCR
WITH VERTICAL CHANNELS INTEGRATED IN A PRESTRESSED
CONCRETE VESSEL, AND WITH SIEMENS A HEAVY WATER
BWR. ALSO WITH A PRESTRESSED CONCRETE VESSEL.

REFERENCES

EL-4. CHOICE OF PRINCIPAL PARAMETERS. B BAILLY DU BOIS. R. NAUDET SPM-620 /MARCH 1960/ IN FRENCH AEC-TR-4194 /TRANSLATION/

EL=4- AN ADVANCED NATURAL URANIUM REACTOR. NUCLEAR ENG. 8, 312-316 /SEPTEMBER 1963/

HEAVY WATER MODERATED GAS-COOLED REACTORS.

B BAILLY DU BOIS, OTHERS

THIRD U. N. INTL. CONF. ON THE PEACEFUL USES OF ATOMIC ENERGY, GENEVA 1964, VOL. 5, P. 343-49

EL=4 AND THE FRENCH HEAVY WATER/GAS LINE. R. CARLE, R. GIBRAT NUCLEAR ENG. 10, 171-174 /MAY 1965/

THE FRENCH NUCLEAR POWER STATION EL-4
JC BRISSET
INTL. CONF. CANADIAN NUCLEAR ASSOCN.
PREPRINT 65-CNA-212
CONF-650515-6

JANUARY 1969

BNWL -936

GAS COOLED REACTORS. FOREIGN

DF08

EL=4 FEATURES AND CONSTRUCTION PROBLEMS
R CARLE, P SCHULHOFF
3RD UN INTL. CONF. PEACEFUL USES ATOMIC ENERGY
VOL. 5, 350-6 /1964/

GAS COOLED REACTORS. FOREIGN DF 09

NAME/OWNER BRENDA/SNECMA AND CEA, FRANCE PILE CHAUD

DESIGNER SOCIETE NACIONALE D-ETUDES ET DE CONSTRUCTION

DE MOTEURS D-AVIATION /SNECMA/

LOCATION CADARACHE, FRANCE

PURPOSE AIRCRAFT PROPULSION PROTOTYPE

TYPE GCR

POWER MWE(MWT)

INITIAL CONSTRUCTION ONLY. DROPPED IN 1958 CRITICAL

COOLANT GAS

BERYLLIUM OXIDE, GRAPHITE OR WATER MODERATOR

FUEL MATERIAL URANIUM DIOXIDE PELLETS

FUEL CLADDING CERAMIC

NUCLEAR POWER 4,82 /APRIL 1959/ REFERENCES

NEWS RELEASE

J. NUCLEAR MATERIALS 14, 46-7 /1964/

1

GAS COOLED REACTORS. FOREIGN DF10

NAME/OWNER EDF-1/ELECTRICITE DE FRANCE

DESIGNER CEA, ELECTRICITE DE FRANCE

OPERATOR ELECTRICITE DE FRANCE

LOCATION CHINON, FRANCE
LOIRE RIVER

PURPOSE POWER

TYPE GCR. TWO-REGION CORE.

POWER MWE(MWT) 68 300

CRITICAL 1959

COOLANT CARBON DIOXIDE

MODERATOR GRAPHITE, VERTICAL CHANNELS

FUEL MATERIAL URANIUM-MOLYBDENUM ALLOY

FUEL GEOMETRY HOLLOW RODS 54CM. LONG/1.4 AND 3.5 CM. DIA.

FUEL CLADDING MAGNESIUM-ALUMINUM ALLOY 1.8 MM. THICK, FINNED 1.8 MM. THICK, RADIAL FINS

FUEL ASSEMBLY 15 CARTRIDGES /CHANNELS

-FUEL CHARGE 140,000 KG. URANIUM

SPECIFIC POWER 2.1 KW/KG

BURNUP (REFUEL) 3000 MWD/TON

NEUTRON FLUX THERMAL AVE. 1.6X10 E+13 FAST MAX. 3.3X10 E+13

CONTROL SHIM-SAFETY RODS, REGULATING RODS, NO BURNABLE

POISON

COOLANT TEMP, INLET 140 C OUTLET 335 C

COOLANT PRESS, 25 KG/SQ. CM.

REACTOR VESSEL STEEL CYLINDER, HEMISPHERICAL ENDS. 10CM. THICK/22.80 LONG, 10M. DIA.

CONTAINMENT STEEL SPHERE 55 M. DIA.

GAS COOLED REACTORS, FOREIGN

DF10

REMARKS FIRST REACTOR OF THE 3-REACTOR CHINON NUCLEAR

POWER STATION. REACTOR HAS A TWO-REGION CORE WITH

COMPACT CENTER, MORE WIDELY SPACED PERIPHERY.

COMMERCIAL OPERATION 1963.

REFERENCES THE CHINON NUCLEAR POWER PLANT EDF-1 AND EDF-2

M ROUX

SECOND U. N. INTL. CONF. ON THE PEACEFUL USES

OF ATOMIC ENERGY 8,356=79 /1958/

GAS COOLED REACTORS. FOREIGN DF11

NAME/OWNER EDF-2/ELECTRICITE DE FRANCE

DESIGNER CEA, ELECTRICITE DE FRANCE

OPERATOR ELECTRICITE DE FRANCE

LOCATION CHINON, FRANCE LOIRE RIVER

PURPOSE POWER

TYPE GCR

POWER MWE(MWT) 195 785

CRITICAL AUGUST 1964

HAS BEEN DOWN SINCE NOV. 1967 BECAUSE OF

LEAK IN FUEL ROD.

COOLANT CARBON DIOXIDE

MODERATOR GRAPHITE, VERTICAL CHANNELS, HEXAGONAL

FUEL MATERIAL URANIUM HOLLOW CYLINDERS

FUEL GEOMETRY HOLLOW RODS, 52.8 CM, LONG/2.4 AND 4.3 CM, DIA,

FUEL CLADDING MAGNESIUM-ZIRCONIUM ALLOY CANS, GRAPHITE SLEEVE.

/FINNED CANS/

FUEL ASSEMBLY FINNED HOLLOW ROD, 12 ELEMENTS/CHANNEL

2660 CHANNELS HEX SUBASSEMBIES 36 CHANNELS

EACH

FUEL CHARGE 250,000 KG.URANIUM

SPECIFIC POWER 3,1 KG/KW

BURNUP (REFUEL) 3000 MWD/TON

NEUTRON FLUX THERMAL AVE. 1.7X10 E+13

FAST MAX. 3,5x10 E+13

CONTROL SHIM-SAFETY AND REGULATING RODS

COOLANT TEMP. INLET 195 C OUTLET 365 C

COQLANT PRESS. 25 KG/SQ. CM.

REACTOR VESSEL SPHERE OF WELDED STEEL PLATES 18.3 M.DIA./10.6CM.

GAS COOLED REACTORS, FOREIGN DF11

THICK

CONTAINMENT NONE

REMARKS 2ND STATION OF THE 3-REACTOR CHINON NUCLEAR POWER STATION.

REFERENCES

THE CHINON NUCLEAR POWER PLANT EDF=1 AND EDF=2,
M ROUX
SECOND U. N. INTL. CONF. ON THE PEACEFUL USES
OF ATOMIC ENERGY 8, 356-79 /1958/

FIRST STEPS TOWARD CONVENTIONAL NUCLEAR POWER.

JP ROUX, C. BIENVENU

J. BRIT. NUCLEAR ENERGY SOC. 1/3/, 235-59

/JULY 1962/

NUCLEAR POWER STATION EDF-2,EDF-3,AND EDF-4 C BIENVENU, OTHERS THIRD U. N. INTL. CONF. PEACEFUL USES OF ATOMIC ENERGY, GENEVA, 1964, A/CONF, 28/P/38

GAS COOLED REACTORS. FOREIGN DF12:

NAME/OWNER EDF-3/ELECTRICITE DE FRANCE

DESIGNER ELECTRICITE DE FRANCE

OPERATOR ELECTRICITE DE FRANCE

LOCATION CHINON, FRANCE

LOIRE RIVER

PURPOSE POWER

TYPE GCR

POWER MWE(MWT) 480

CRITICAL MARCH 1966

DOWN SINCE NOV. 1967 DUE TO LEAK IN HEAT EXCHANGER. OPERATION MID-1968 AT 320 MWE.

COOLANT CARBON DIOXIDE

MODERATOR GRAPHITE

FUEL MATERIAL URANIUM-MOLYBDENUM ALLOY TUBE

FUEL GEOMETRY HOLLOW RODS

FUEL CLADDING MAGNESIUM-ZIRCONIUM ALLOY, FINNED

FUEL ASSEMBLY FINNED TUBE

2700 CHANNELS

FUEL CHARGE 400 TONS URANIUM

SPECIFIC POWER 1.1 MWE/TON

REACTOR VESSEL PRESTRESSED CONCRETE

REMARKS 3RD STATION OF THE CHINON NUCLEAR POWER COMPLEX

CONSTRUCTION WAS STARTED IN 1961.

REFERENCES THE DEVELOPMENT IN FRANCE OF THE REACTOR SYSTEM

NATURAL URANIUM-GRAPHITE-CARBON DIOXIDE EXPERIENCE

ACQUIRED. FUTURE PROSPECTS.

J HOROWITZ, JP ROUX

BULL, INFORM. SCI. TECH. /PARIS/ NO.76.3-11

/OCT. 1963/

NUCLEAR POWER STATIONS EDF-2, EDF-3, AND EDF-4.

C BIENVENU. OTHERS

JANUARY 1969

BNWL=936

GAS COOLED REACTORS, FOREIGN

DF12

3RD U. N. INTL. CONF. PEACEFUL USES OF ATOMIC ENERGY, GENEVA, 1964. A/CONF. 28/P/38

GAS COOLED REACTORS, FOREIGN DF13

NAME/OWNER EDF-4/ELECTRICITE DE FRANCE

SAINT LAURENT DES EAUX

DESIGNER ELECTRICITE DE FRANCE

OPERATOR ELECTRICITE DE FRANCE

LOCATION LOIR-ET-CHER, NORMANDY, FRANCE

LOIRE RIVER

PURPOSE POWER

TYPE GCR INTEGRATED DESIGN.

TWO-REACTOR STATION

POWER MWE(MWT) 500 1650

PER REACTOR

CRITICAL NO.1, 1968

NO.2, 1970

COOLANT CARBON DIOXIDE

MODERATOR GRAPHITE, GRAPHITE REFLECTOR

FUEL MATERIAL URANIUM ALLOY

FUEL GEOMETRY HOLLOW ROD 43 MM. OD. 123 MM. ID.

FUEL CLADDING GRAPHITE SLEEVE, ZIRCALOY CAN.

FUEL ENRICH. NATURAL

FUEL ASSEMBLY 43,110 FUEL ELEMENTS

2,874 FUEL CHANNELS

FUEL CHARGE 445 TONS URANIUM

CONTROL RODS

COOLANT TEMP. INLET 217 C OUTLET 400 C

COOLANT PRESS. 384 PSI

REACTOR VESSEL PRE-STRESSED CONCRETE VERTICAL CYLINDER. THE HEAT

EXCHANGER IS ALSO LOCATED INSIDE THE PRESSURE

VESSEL.

REMARKS CONSTRUCTION, TARGET FOR NO. 1 REACTOR 1968, PLANS

HAVE INCLUDED STUDY OF THE INTEGRATED CONCEPT OR

GAS COOLED REACTORS. FOREIGN

DF13

MONOBLOC DESIGN.

REFERENCES

NUCLEAR POWER STATIONS EDF-2, EDF-3, AND EDF-4, C BIENVENU, OTHERS.

3RD U. N. INTL. CONF. PEACEFUL USES OF ATOMIC ENERGY, GENEVA, 1964, A/CONF. 28/P/38

NEW DESIGN OF REACTOR COMPLEX AND OF LOADING MECHANISM.
ORNL-TN-82 /TRANSLATION OF PAPER FROM CANNES SYMPOSIUM. 1962/

GAS COOLED REACTORS. FOREIGN DF14

NAME/OWNER EDF-5/EDF-CEA, FRANCE

BUGEY-1

DESIGNER CEA, FRANCE

OPERATOR ELECTRICITE DE FRANCE

LOCATION BUGEY, NEAR LYONS, FRANCE

PURPOSE POWER AND EXPERÎMENTAL FACILITY

TYPE GCR

POWER MWE(MWT) 500 2400

CRITICAL TARGET 1971

COOLANT CARBON DIOXIDE

MODERATOR GRAPHITE

FUEL MATERIAL URANIUM TUBES

FUEL GEOMETRY ANNULAR ELEMENT

INTERNAL AND EXTERNAL COOLING

FUEL CLADDING MAGNESIUM ALLOY INNER AND OUTER CLADDING

FUEL ENRICH. NATURAL

REACTOR VESSEL PRESTRESSED CONCRETE

REMARKS PLANNED WORK ON ANNULAR METAL ELEMENTS IS IN

PROCESS /PROJECT INCA-INCORPORE ANNULAR/. THE CARBON DIOXIDE CIRCUIT WILL BE WITHIN THE CONCRETE VESSEL AND COMPLETELY INDEPENDENT OF STEAM AND

WATER LOOPS.

BUGEY-1 WILL BE THE FIRST OF FIVE UNITS

REFERENCES PROPRIETE INDUSTRIELLE NUCLEAIRE NO. 9 /5-15-64/.

VOL. 7, P. 14. NEWS RELEASE

BUGEY-1 NUCLEAR POWER STATION.

ME ROBERT, MP LAUNAY

BULL. INFORM. ATEN NO. 61, 21-33 /SEPT-OCT. 1966/

GAS COOLED REACTORS, FOREIGN DF15

NAME/OWNER VANDELLOS NUCLEAR STATION/FRANCE-SPAIN

CATALONIA STATION

DESIGNER SOCIA /INDATOM AND SEEN, FRANCE/

OPERATOR SOCIEDAD HISPANO-FRANCESCA DE ENERGIA NUCLEAR SA

/HIFRENSA/, FRANCE=SPAIN

LOCATION VANDELLOS, SPAIN /TARRAGONA/

ON MEDITERRANEAN COAST

PURPOSE POWER

TYPE GCR

DUPLICATE OF FRENCH EDF - 4

POWER MWE(MWT) 500 1667

CRITICAL CONSTRUCTION PERMIT JULY 1968.

TARGET 1972.

COOLANT CARBON DIOXIDE

MODERATOR GRAPHITE

FUEL MATERIAL URANIUM-MOLYBDENUM ALLOY

FUEL GEOMETRY ANNULAR ELEMENT

FUEL CLADDING ZIRCONIUM-MAGNESIUM ALLOY

FUEL ENRICH. NATURAL

FUEL ASSEMBLY SINGLE ELEMENT

FUEL CHARGE 500 TONS URANIUM

NEUTRON FLUX 2,3 E+13

COOLANT PRESS. 26.5 ATM.

REACTOR VESSEL PRESTRESSED CONCRETE VESSEL

28,5 M OD 19.0 M ID 50 M HIGH

HEAT EXCHANGER IS BELOW CORE WITHIN THE VESSEL

REMARKS NEGOTIATIONS WERE CONCLUDED IN OCTOBER 1966 AND

CONTRACTS SIGNED AT END OF YEAR. CONSTRUCTION

START JANUARY 1967.

GAS COGLED REACTORS. FOREIGN DF15:

PART OF THE ELECTRICITY WILL BE EXPORTED TO THE FRENCH GRID.

REFERENCES APPLIED ATOMICS OCT: 7,1964 P.12-13
NEWS RELEASE

FRENCH REACTOR FOR SPAIN.
NUCLEAR ENG. 9,393 /NOV.1964/

THE FRENCH-SPANISH STATION VANDELLOS. INDUSTRIES ATOMIQUES NOV. 1966 P. 79-80

GAS COOLED REACTORS. FOREIGN DF16

NAME/OWNER EDF-RWE STATION

ELECTRICITE DE FRANCE AND W. GERMANY RWE

DESIGNER SIEMENS /W. GERMANY/ AND GAAA /FRANCE/

LOCATION RHINE RIVER, FRENCH SIDE

PURPOSE POWER

TYPE GCR, GRAPHITE MODERATED

POWER MWE(MWT) 500

CRITICAL PLANNED

NO RECENT INFORMATION

COOLANT GAS

MODERATOR GRAPHITE

FUEL MATERIAL URANIUM DIOXIDE

FUEL ENRICH. NATURAL

REACTOR VESSEL PRESTRESSED CONCRETE

REMARKS AGREEMENT ON JOINT PROJECT HAS BEEN REACHED.

THERE IS ALSO A TENTATIVE PLAN FOR A HEAVY-WATER MODERATED GCR TO BE BUILT LATER ON THE GERMAN SIDE

OF THE RIVER.

.REFERENCES NUCLEONICS WEEK DEC. 17, 1964 P. 1-2

NEWS RELEASE

GAS COOLED REACTORS, FOREIGN DF17

NAME/OWNER BEERSHEBA STATION/ISRAEL

DESIGNER ISRAEL, FRENCH ASSISTANCE

LOCATION NEGEV DESERT NEAR BEERSHEBA, ISRAEL

PURPOSE PILOT POWER, RESEARCH

TYPE GCR, HEAVY WATER MODERATED

CRITICAL TARGET 1964-5

COOLANT CARBON DIOXIDE

MODERATOR HEAVY WATER

FUEL MATERIAL URANIUM

FUEL ENRICH. NATURAL

REMARKS REPORTEDLY UNDER CONSTRUCTION. NO RECENT

INFORMATION.

REFERENCES NUCLEONICS 19,26/FEB. 1961/

NEWS RELEASE

GAS COOLED REACTORS, FOREIGN DF18

NAME/OWNER LATINA/SIMEA, ITALY

DESIGNER NPPC /UK/ AND AGIP NUCLEARE /ITALY/

OPERATOR SIMEA, ITALY

LOCATION LATINA, ITALY

PURPOSE POWER

TYPE GCR

POWER MWE(MWT) 200 705

CRITICAL DEC. 1963

COOLANT CARBON DIOXIDE

MODERATOR GRAPHITE, VERTICAL CHANNELS

FUEL MATERIAL URANIUM

FUEL GEOMETRY URANIUM METAL RODS, 29.3 MM, DIA./914.4 MM, LONG

FUEL CLADDING MAGNOX CANS, 2 MM. THICK, GRAPHITE SLEEVE

FUEL ENRICH. NATURAL

FUEL ASSEMBLY SPIRAL FINNED ELEMENT, 8 ELEMENTS/CHANNEL 2929 FUEL CHANNELS

.FUEL CHARGE 268 TONS URANIUM

SPECIFIC POWER 2.62 KW/KG URANIUM

CONTROL BORON STEEL RODS

COOLANT TEMP. INLET 180 C OUTLET 390 C

REACTOR VESSEL PRESSURE VESSEL 20.35 M. DIA.

CONTAINMENT CONCRETE BUILDING

REMARKS ELECTRICITY PRODUCTION IN MAY 1963. FUEL IS

COMPOSED OF NATURAL URANIUM METAL RODS IN MAGNOX CANS. THE ELEMENT WILL BE THE POLYZONAL SPIRAL TYPE, WITH SPIRAL FINS AND AXIAL FLOW SEPARATORS

OR SPLITTERS.

REFERENCES FOR BASIC DESIGN SEE CALDER

GAS COOLED REACTORS, FOREIGN

DF18

LATINA.
NUCLEAR ENG. 4, 329-40 /OCTOBER 1959/

LATINA NUCLEAR POWER STATION. COMMISSIONING AND INITIAL OPERATING EXPERIENCE A BERTINI, OTHERS, 3RD UN INTL. CONF. PEACEFUL USES ATOMIC ENERGY VOL. 5, 38-46 /1964/

GAS COOLED REACTORS, FOREIGN DF19

NAME/OWNER TOKAL ATOMIC STATION/JAPCO, JAPAN

DESIGNER GEG-SC, UNITED KINGDOM

OPERATOR JAPAN ATOMIC POWER CO.

LOCATION TOKAI-MURA, JAPAN PACIFIC COAST

PURPOSE POWER

TYPE GCR

POWER MWE(MWT) 150 570

CRITICAL 1965, POWER PRODUCED NOV. 1965

COMMERCIAL OPERATION AT 120 MWE EARLY 1966

COOLANT CARBON DIOXIDE

MODERATOR GRAPHITE, VERTICAL CHANNELS

FUEL MATERIAL URANIUM

FUEL GEOMETRY RODS, HOLLOW, 40.8 MM, OD. /23.7 MM. ID. /714 MM. LONG

FUEL CLADDING MAGNOX CAN-OUTSIDE CANNING ONLY. GRAPHITE SLEEVE

.FUEL ENRICH. NATURAL

FUEL ASSEMBLY FINNED MAGNOX CANNED ELEMENTS, 8/CHANNEL 2048 CHANNELS

FUEL CHARGE 187 TON URANIUM

SPECIFIC POWER 3,14 KW/KG URANIUM

NEUTRON FLUX THERMAL AVE. 2X10 E+13

CONTROL RODS, TOP-MOUNTED

COOLANT TEMP. INLET 203 C OUTLET 390 C

COOLANT PRESS. 205 PSIG

REACTOR VESSEL SPHERICAL PRESSURE VESSEL, 62 FT.ID./3 1/4 IN.

THICK

REMARKS A HOLLOW FUEL ELEMENT, CANNED ON THE OUTSIDE ONLY,

HAS BEEN ADOPTED FOR THE TOKAL PLANT. THE CAN IS

JANUARY 1969

BNWL - 936

GAS COOLED REACTORS, FOREIGN

DF19

SEALED AT EACH END BY END PLUGS, IS LONGITUDINALLY FINNED WITH HELICAL SWIRLERS, AND IS SUPPORTED INSIDE A GRAPHITE SLEEVE.

REFERENCES

FOR BASIC DESIGN SEE CALDER

JAPANS FIRST NUCLEAR POWER STATION.
PA LINDLEY, OTHERS
NUCLEAR POWER 5, 104-13 /MARCH 1960/

GAS COOLED REACTORS, FOREIGN DF20

NAME/OWNER GCR STUDY/FAPIG. JAERI. JAPAN

DESIGNER FIRST ATOMIC POWER INDUSTRY GROUP

JAPAN ATOMIC ENERGY RESEARCH INST.

PURPOSE POWER

TYPE GCR, HIGH TEMPERATURE, DIRECT CYCLE

POWER MWE(MWT) 9.9 31

CRITICAL DESIGN

COOLANT HELIUM

MODERATOR GRAPHITE

FUEL MATERIAL URANIUM CARBIDE COATED WITH CARBON, DISPERSED IN

GRAPHITE. THORIUM CARBIDE MAY BE USED.

FUEL GEOMETRY ROD, 6.0 CM. OD./150 CM. LONG

FUEL CLADDING GRAPHITE SHEATH

FUEL ASSEMBLY RODS, DOUBLE GRAPHITE SHEATH

400 ELEMENTS

BURNUP (REFUEL) APPROX. 30 MONTHS

NEUTRON FLUX THERMAL AVE. 5.15 10+13

.COOLANT TEMP. INLET 488 C OUTLET 754 C

COOLANT PRESS. 30 KG/SQ. CM.

REACTOR VESSEL PRESSURE VESSEL

REMARKS DEVELOPMENTAL STUDIES.

REFERENCES ON NUCLEAR DESIGN OF THE

SEMI-HOMOGENEOUS, HIGH-TEMPERATURE, GAS-COOLED

REACTOR.

SIGERU YASUKAWA ET AL.

JAERI-1049 /MARCH 1963//IN JAPANESE/

CONCEPTUAL DESIGN OF A POWER STATION USING

A /EXPERIMENTAL/ SEMIHOMOGENEOUS: HIGH-TEMPERATURE

GAS COOLED REACTOR.

FIRST ATOMIC POWER IND. GROUP, TOKYO. FAPIG /TOKYO/ 27/2/, 91-120 /AUG. 1963/

/IN JAPANESE/

GAS COOLED REACTORS, FOREIGN DF21

NAME/OWNER SEDEYRN STATION/CEGB; UNITED KINGDOM

DESIGNER NOT SELECTED

OPERATOR CENTRAL ELECTRIC GENERATING BOARD, U.K.

LOCATION CAERNARYONSHIRE, WALES

PURPOSE POWER

TYPE GCR

CRITICAL PLANNED

COOLANT CARBON DIOXIDE

MODERATOR GRAPHITE

REMARKS PLANNED

REFERENCES FOR BASIC DESIGN SEE CALDER

BNWL - 936 JANUARY 1969

DF 22 GAS COOLED REACTORS. FOREIGN

CALDER HALL/ATOMIC ENERGY AUTHORITY UNITED KINGDOM NAME/OWNER

DESIGNER UK AEA

OPERATOR UK AEA

CALDER HALL, CUMBERLAND, ENGLAND LOCATION

TYPE GCR /4-REACTOR STATION/

235 45 POWER MWE(MWT)

CRITICAL 1956-1958 /A1,1956,A2,1956,B3,1958,B4,1958/

COOLANT CARBON DIOXIDE

MODERATOR GRAPHITE, VERTICAL CHANNELS

FUEL MATERIAL URANIUM

SOLID RODS, CYLINDRICAL 2,92 CM, DIA/101,5CM, LONG FUEL GEOMETRY

MAGNESIUM ALLOY /MAGNOX/ CAN, 0.8 MM. THICK FUEL CLADDING

FUEL ASSEMBLY SOLID RODS IN MAGNESIUM ALLOY CAN.

6 ELEMENTS/CHANNEL, HELICAL 'FINS

/RODS LOADED ONE ON TOP OF THE OTHER/

1696 VERTICAL FUEL CHANNELS

127 TON URANIUM FUEL CHARGE

SPECIFIC POWER 1,38 KW/KG U

THERMAL AVE. 6.02 E+12 NEUTRON FLUX

FAST AVE 2.14 E+13

RODS, BORON STEEL IN SS, TOP-MOUNTED CONTROL

OUTLET 336 C COOLANT TEMP. INLET 140 C

COOLANT PRESS. INLET 7.03 KG/SQ.CM.OUTLET 6.7 KG/SQ. CM.

REACTOR VESSEL STEEL CYLINDER, ELLIPSOID ENDS 11.25 M.ID. /21.65 M. HIGH, 5.08 CM. THICK

BIOLOGICAL SHIELD AND REACTOR BUILDING CONTAINMENT

THE HEAT OUTPUT OF EACH REACTOR HAS BEEN INCREASED REMARKS

TO 220 MW.

SYMPOSIUM ON CALDER WORKS NUCLEAR POWER PLANT. REFERENCES

GAS COOLED REACTORS, FOREIGN

DF22

J. BRIT, NUCLEAR ENERGY CONF. 2, 41-291 /1957/

COMMISSIONING AND OPERATION OF A STATION, CALDER WORKS. H. G. DAVEY

J. BRIT. NUCLEAR ENERGY CONF. 3, 101-8/APRIL 1958/

DESIGN OF GAS-COOLED, GRAPHITE MODERATED REACTORS DR POULTER, ED. OXFORD UNIV. PRESS, N. Y. 1963

GAS COOLED REACTORS, FOREIGN DF23

NAMEZOWNER CHAPEL CROSSZATOMIC ENERGY AUTHORITY, U.K.

DESIGNER UK AEA

OPERATOR UK AEA

LOCATION CHAPEL CROSS, DUMFRIESCHIRE, SCOTLAND

PURPOSE PLUTONIUM PRODUCTION, POWER

TYPE GCR-CALDER HALL DESIGN

POWER MWE (MWT) 35 235-240

4-REACTOR STATION

CRITICAL 1959-1960 /4TH REACTOR MARCH 1960/

DOWN /1968/ DUE TO MASSIVE FUEL MELTING.

COOLANT CARBON DIOXIDE

MODERATOR GRAPHITE, VERTICAL CHANNELS

FUEL MATERIAL URANIUM

FUEL GEOMETRY RODS 2.92 CM. DÍA./101.5 CM. LONG

FUEL CLADDING MAGNOX 0.8 MM. THICK REMOVABLE GRAPHITE SLEEVES

IN REACTORS 2,3, AND 4

FUEL ENRICH. NATURAL

·FUEL ASSEMBLY SOLID CYLINDRICAL RODS, MAGNOX CAN, FINNED

6 ELEMENTS/CHANNEL

1696 FUEL CHANNELS

FUEL CHARGE 127 TON URANIUM

SPECIFIC POWER 1,38 KW/KG U

CONTROL RODS BORON STEEL IN SS. TOP-MOUNTED

COOLANT TEMP. OUTLET 340 C

REMARKS HEAT OUTPUT OF EACH REACTOR WAS INCREASED TO 220

MW IN MARCH, 1961

REFERENCES CHAPEL CROSS.

NUCLEAR ENG. 4, 250-2 /JUNE 1959/

GAS COOLED REACTORS, FOREIGN DF24

NAMEZOWNER WINDSCALE AGRZATOMIC ENERGY AUTHORITY, U.K.

DESIGNER UK AEA

OPERATOR UK AEA

LOCATION WINDSCALE, CUMBERLAND, ENGLAND

PURPOSE POWER PROTOTYPE

TYPE GCR. HIGH TEMPERATURE

POWER MWE(MWT) 33 105

CRITICAL AUGUST 1962

COOLANT CARBON DIOXIDE /HELIUM STUDIED AS ALTERNATE/

MODERATOR GRAPHITE

FUEL MATERIAL URANIUM DIOXIDE PELLETS, SINTERED. 0.400 IN. DIA./

FUEL GEOMETRY PENCILS

FUEL CLADDING SS CANS 0.015 IN. THICK RIBBED

FUEL ENRICH. 2.5 PER CENT U-235

FUEL ASSEMBLY MARK 2 FUEL, 21-ELEMENT /PENCIL/ CLUSTER IN

GRAPHITE SLEEVE /3FT. LONG/, FUEL ELEMENT ASSEMBLY IS COMPOSED OF 2 CLUSTERS, FUEL ELEMENT STRINGER

/ACTIVE LENGTH 14 FT. 5 IN./ IS MADE UP OF

4 ASSEMBLES.

253 FUEL CHANNELS /197 IN USE/

FUEL CHARGE 290 KG. U=235

SPECIFIC POWER 350 KW/KG U-235

BURNUP (REFUEL) 10,000 MWD/TON U /CONTINUOUS = DURING OPERATION/

NEUTRON FLUX THERMAL AVE. 1.49x10 E+13

CONTROL BORON STEEL RODS

COOLANT TEMP. INLET 250-325 C OUTLET 508-575 C

COOLANT PRESS. 270 PSIG

REACTOR VESSEL CYLINDER 21 FT. ID./54 FT. HIGH. DOUBLE-SHELL

GAS COOLED REACTORS. FOREIGN

DF24

CONSTRUCTION

CONTAINMENT

STEEL HEMISPHERICAL TOP, TRUNCATED-CONE LOWER HALF

REMARKS

ZERO-ENERGY EXPERIMENT /HERO/ CRITICAL IN FEBRUARY 1962. BERYLLIUM CLADDING, PLANNED FOR FIRST CORE, WILL NOT BE USED. IN THE BERYLLIUM DESIGN, THERE WERE 36 FUEL ELEMENT RODS PER CLUSTER, AND THREE SUCH CLUSTERS PER BERYLLIUM ELEMENT SUBASSEMBLY. COOLANT FLOW IS UPWARD INTO A COLLECTOR BOX ABOVE THE CORE. PRESSURE VESSEL IS OF DOUBLE-SHELL CONSTRUCTION, THE INNER SHELL CONTAINING THE HOT GAS AND THE OUTER SHELL OPERATING AT THE COOLER INLET GAS TEMPERATURE. FULL POWER OPERATION IN FEBRUARY 1963, WITH ELECTRICITY SUPPLIED TO THE NATIONAL GRID.

AGR-S WILL BE IN OPERATION AT DUNGENESS-B /1970/.

AGR-S WILL BE IN OPERATION AT DUNGENESS-B /1970/, HINKLEY POINT-2 /1973/, HUNTERSTON-B /1973/.

REFERENCES

DESIGN CONCEPT OF THE AGR.
RV MOORE
ELEC. REVIEW 169, 774-92/NOVEMBER 17; 1961/

THE DESIGN OF GAS-COOLED, GRAPHITE-MODERATED REACTORS. DR POULTER, ED, OXFORD UNIV. PRESS, N. Y. 1963.

AGR NUCLEAR ENG. 6,151=58 /APRIL 1961/

SYMPOSUIM ON THE ADVANCED GAS-COOLED REACTOR. BRITISH NUCLEAR ENERGY SOC. J. 2/2/ 95-294/APRIL 1963/

GAS COOLED REACTORS. FOREIGN DF25

NAME/OWNER DUNGENESS-B/CEGB, UNITED KINGDOM

AGR-2

DESIGNER ATOMIC POWER CONSTRUCTION LTD. . UK.

AGR-2 DESIGN BY UK AEA

OPERATOR CENTRAL ELECTRIC GENERATING BOARD

LOCATION KENT, ENGLAND

PURPOSE POWER

TYPE GCR. ADVANCED HIGH TEMPERATURE

TWO-REACTOR STATION

POWER MWE(MWT) 600

PER REACTOR

CRITICAL TARGET 1971

DELAYS DUE TO CONSTRUCTION AND DESIGN

PROBLEMS

COOLANT CARBON DIOXIDE

MODERATOR GRAPHITE

FUEL MATERIAL URANIUM DIOXIDE PELLETS, SINTERED, 0.57 IN. DIA.

FUEL GEOMETRY PINS 0.57 IN. DIA. /40 IN. LONG

FUEL CLADDING SS CANS 0.015 IN. WALL THICKNESS

FUEL ENRICH. 1.47-1.76 PER CENT U-235

FUEL ASSEMBLY CLUSTERS, 18 PENCILS/CLUSTER, GRAPHITE SLEEVE.

3-RING CLUSTER

8-ELEMENT STRINGERS, 465 CHANNELS /412 AT

EQUILIBRIUM/

ACTIVE CORE HEIGHT 27 FT.

BURNUP (REFUEL) 18000-20000 MWD/T CONTINUOUS ON-LOAD

AXIAL SHUFFLING

CONTROL RODS

COOLANT TEMP, INLET 320 C OUTLET 675 C

COOLANT PRESS. 450 PSI

REACTOR VESSEL PRESTRESSED CONCRETE CYLINDER. INNER SEAL OF WATER

GAS COOLED REACTORS. FOREIGN

DF25

COOLED MILD STEEL MEMBRANE. VESSEL HOUSES CORE, GAS CIRCULATORS, AND BOILERS. INNER PRESSURE SHELL SEPARATES CORE FROM BOILER.

CONTAINMENT

SINGLE CONCRETE BUILDING HOUSES BOTH REACTORS AND OTHER PLANT EQUIPMENT, REACTOR CENTERS: ARE 160 FT. APART.

REMARKS

APC-S ADVANCED GCR DESIGN WAS SELECTED FOR THE SECOND COMPLEX AT DUNGENESS STATION. EURATOM PARTICIPATION HAS BEEN EXTENDED TO MARCH, 31, 1970.

REFERENCES

ADVANCED GAS-COOLED REACTORS-AN ASSESSMENT.

RV MOORE: UT THORN:

BRITISH NUCLEAR ENERGY SOC. U. 2/2/2 97-111

/APRIL 1963/

DUNGENESS+B AGR REACTOR POWER STATION ATOM NO. 7, P. 168-74 /SEPT. 1965/

MAIN DESIGN FEATURES OF DUNGENESS-B NUCLEAR ENG. 10, 347 /SEPT. 1965/

DUNGENESS*B AGR NUCLEAR POWER STATION CEGB. LONDON NP*15473 /ND/

DUNGENESS B. ADVANCED GAS COOLED REACTOR POWER STATION.
EP DUFFY
NUCLEAR ENG. 12; 524-28 July 1967/

GAS COOLED REACTORS, FOREIGN DF26

NAME/OWNER BERKELEY/CENTRAL ELECTRIC GENERATING BOARD, U.K.

DESIGNER AEI-JOHN THOMPSON, U.K.

OPERATOR CENTRAL ELECTRIC GENERATING BOARD

LOCATION BERKELEY, GLOUCESTERSHIRE, ENGLAND

PURPOSE POWER

TYPE GCR, CALDER TYPE

POWER MWE(MWT) 138 560

TWO-REACTOR STATION

CRITICAL APRIL-MAY 1962

COQLANT CARBON DIOXIDE

MODERATOR GRAPHITE, VERTICAL CHANNELS, GRAPHITE REFLECTOR

FUEL MATERIAL URANIUM

FUEL GEOMETRY ROD 1.1 IN. DIA:/19 IN. LONG

FUEL CLADDING MAGNOX, HELICAL FINS

FUEL ENRICH. NATURAL

FUEL ASSEMBLY U SLUGS IN MAGNOX TUBES, 24 IN. LONG

13 ELEMENTS/CHANNEL /STACKED/

3265 FUEL CHANNELS

FUEL CHARGE 231 TONS U

SPECIFIC POWER 2,4 KW/KG URANIUM

BURNUP (REFUEL) 3000 MWD/T AVE. ON-LOAD, PARTIAL

10 CHANNELS/WEEK

NEUTRON FLUX THERMAL AVE. 9.6X10 E+12

CORE CENTER 1.7x10 E+13

CONTROL RODS, BORON IN STEEL, TOP-MOUNTED

COOLANT TEMP. OUTLET 345 C

COOLANT PRESS. 139 PSIA /INLET/

REACTOR VESSEL CYLINDER, 50 FT. DIA., 3-IN. THICK STEEL,

GAS COOLED REACTORS, FOREIGN

DF26

80 FT HIGH AND 50 FT HIGH /2-REACTORS/

CONTAINMENT

REACTOR BUILDING

REMARKS

BOTH REACTORS IN OPERATION IN APRIL-MAY 1962. BERKELEY BEGAN PRODUCING 6000 KWE ON THE NO. 1: GENERATOR IN JUNE 1962.

REFERENCES

SEE CALDER

REACTORS ON-THE-LINE. NO. 10. BERKELEY.
NUCLEONICS 12. /FACING PAGE 36/ /DECEMBER 1961/

BERKELEY CONSTRUCTION, SECTION DRAWINGS

NUCLEAR ENG. 8,157-163 /MAY 1963/

GAS COOLED REACTORS. FOREIGN DF27

NAME/OWNER DRAGON/ATOMIC ENERGY AUTHORITY, U.K. AND

EUROPEAN NUCLEAR ENERGY AGENCY /ENEA/

DESIGNER ATOMIC ENERGY RESEARCH ESTABLISHMENT, U.K.

OPERATOR UK AERE

LOCATION WINFRITH HEATH, ENGLAND

PURPOSE POWER EXPERIMENT

TYPE GCR, HIGH TEMPERATURE, CERAMIC SYSTEM

POWER MWE(MWT) 0 20

CRITICAL AUG. 1964, POWER OUTPUT 20 MWT APRIL 1966

COQLANT HELÎUM

MODERATOR GRAPHITE

FUEL MATERIAL URANIUM-THORIUM CARBIDES, SINTERED COMPACTS WITH

GRAPHITE COATING

FUEL GEOMETRY ANNULAR ROD, 6 FT. LONG

FUEL CLADDING GRAPHITE TUBES

FUEL ASSEMBLY FUEL-MODERATOR ELEMENTS. CLUSTERS OF HEXAGONAL

GRAPHITE TUBES CONTAINING GRAPHITE FUEL BOXES

WITH ANNULAR FUEL INSERTS.

37 ASSEMBLIES/CORE. /CENTRAL AND PERIPHERAL

ZONES/ SEE REMARKS

SPECIFIC POWER 1.4 MW/KG

BURNUP(REFUEL) 100,000 MWD/TON CAPABILITY

CONTROL RODS, BORON CARBIDE IN SS TUBES

COOLANT TEMP. INLET 350 C OUTLET 750 C

COOLANT PRESS. 300 PSIA

REACTOR VESSEL CYLINDER, CONICAL TOP 350 CM. DIA.

CONTAINMENT INNER STEEL SHELL, OUTER CONTAINMENT BUILDING OF

SEALED CONCRETE.

REMARKS DRAGON IS A JOINT UNDERTAKING BY UK AND ENEA

GAS COOLED REACTORS, FOREIGN

*

DF27

/OF OECD/. HELIUM COOLANT FLOW IS UP THROUGH THE FUEL ELEMENT ASSEMBLIES, OVER SURFACES OF GRAPHITE CLADDING TUBES: AND WITH IN THE PASSAGES FORMED BY SPACER RIDGES ON THE GRAPHITE TUBES, PRELIMINARY STUDIES OF 1000 MWT REACTORS ARE BEING PERFORMED. HOT CRITICAL EXPERIMENT /ZENITH/ OPERATIONAL IN 1959. FUEL LOADING FOR DRAGON IN MARCH 1964. PROJECT WAS EXTENDED TO 1967 TO PROVIDE FOR THE DESIGN OF A POWER PRODUCTION PROTOTYPE, AND A FINAL DESIGN HAS BEEN COMPLETED FOR A 540 MWF REACTOR WHICH WOULD PRODUCE COOLANT GAS AT A TEMPERATURE OF 750 C. THIS TEMPERATURE MIGHT BE RAISED TO 850 C WITH LITTLE DESIGN CHANGE, MAKING IT POSSIBLE TO LINK THE SYSTEM DIRECTLY WITH A GAS TURBINE. PARTNERS IN THE DRAGON PROJECT ARE EURATOM MEMBER STATES PLUS AUSTRIA, BRITAIN: DENMARK, NORWAY, SWEDEN AND SWITZERLAND. DURING MAINTENANCE SHUTDOWN IN OCT, 1966 MOST OF THE ORIGINAL FUEL CHARGE WAS REPLACED. SECOND FUEL CHARGE CONTAINS NEWLY-DEVELOPED COATED FUEL PARTICLES, PLUTONIUM-BEARING FUELS, DIRECTLY COOLED FUEL COMPACTS, AND FUEL SAMPLES FROM THTR /W. GERMANY/ AND OAK RIDGE. START-UP IN JAN. 1967.

REFERENCES

HIGH TEMPERATURE GAS-COOLED REACTOR PROJECT. THE ENGINEER: 415-17 /MARCH 1959/

RESEARCH AND DEVELOPMENT ASPECTS OF THE DRAGON REACTOR EXPERIMENT. LR SHEPHERD, PJ MARIEN POWER REACTOR EXPERIMENTS VOL. I, PP. 13-47 INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1962

THE DRAGON REACTOR:
POWER REACTOR TECHNOLOGY 6 /1/: 74-80
/DECEMBER 1962/

THE DRAGON REACTOR DEVELOPMENT AND DESIGN OF THE HTGC.

GE LOCKETT, RAU HUDDLE

NUCLEAR POWER 5,112-17 /FEB. 1960/

HOW DOES THE DRAGON PROJECT STAND. P CAPRIOGLIO, M DE BACCI EURATOM 3,20-23 /SEPT. 1964/

APPLIED ATOMICS AUG. 17, 1966 p. 2-3 NEWS RELEASE

CHEM. + ENG. NEWS OCT. 17, 1966 P. 79

JANUARY 1969

BNWL 936

GAS COOLED REACTORS, FOREIGN

DF 27

NEWS RELEASE

APPLIED ATOMICS FEB. 15, 1967 P. 4 NEWS RELEASE

GAS COOLED REACTORS. FOREIGN DF28

NAME/OWNER TRANSFYNYDD/CENTRAL ELECTRIC GENERATING BOARD, U.K.

DESIGNER ATOMIC POWER CO. U.K.

OPERATOR CEGB

LOCATION MERIONETHSHIRE, WALES

LAKE TRAWSFYNYDD /RESERVOIR/

PURPOSE POWER

TYPE GCR. CALDER TYPE

POWER MWE (MWT) 250 870 /TWO-REACTOR STATION/

CRITICAL NO. 1 SEPT. 1964, ON-LINE JAN. 1965

No. 2 DEC. 1964

COOLANT CARBON DIOXIDE

MODERATOR GRAPHITE, VERTICAL CHANNELS

FUEL MATERIAL URANIUM

FUEL GEOMETRY ROD 1 1/8 IN. DIA.

FUEL CLADDING MAGNOX, LONGITUDINAL SPIRAL

FUEL ASSEMBLY 9 ELEMENTS/CHANNEL /STACKED/ 3720 FUEL CHANNELS

FUEL CHARGE 280 TONS URANIUM

SPECIFIC POWER 3,11 KW/KG URANIUM

BURNUP (REFUEL) 4500 MWD/TON U ON-LOAD

CONTROL BORON STEEL RODS

COQLANT TEMP. OUTLET 392 C

COOLANT PRESS. 240 PSIG

REACTOR VESSEL STEEL SPHERE 61 FT. ID., 3 1/2 IN. PLATE THICKNESS

REMARKS ON-LINE IN JANUARY 1965.

REFERENCES FOR BASIC DESIGN SEE CALDER

TRAWSFYNYDD

JANUARY 1969 BNWL=936:

GAS COOLED REACTORS, FOREIGN

DF28

NUCLEAR ENG. 6,12-23 /JAN. 1961/

THE APC-S DESIGN FOR TRAWSFYNYDD NUCLEAR ENG. 4, 289-90 /JULY, AUGUST, SEPTEMBER, 1959/

TRAWSFYNYDD DESIGN FEATURES, NUCLEAR ENERGY ENG. 13, 489-95 /OCTOBER 1959/

GAS COOLED REACTORS, FOREIGN DF29

NAMEZOWNER HINKLEY POINT-1/CENTRAL ELECTRIC GEN. BOARD, U.K.

DESIGNER ATOMIC POWER GROUP, U.K.

OPERATOR CEGB

LOCATION HINKLEY POINT, SOMERSET, ENGLAND

BRISTOL CHANNEL

PURPOSE POWER

TYPE GCR, CALDER TYPE

POWER MWE(MWT) 250 971

CRITICAL NO. 1, 1964, POWER TO GRID FEB. 1965

NO. 2, OCT. 1964, POWER 1966

COOLANT CARBON DIOXIDE

MODERATOR GRAPHITE, VERTICAL CHANNELS

FUEL MATERIAL URANIUM

FUEL GEOMETRY ROD 1 1/8 IN. DIA. /36 IN. LONG

FUEL CLADDING MAGNOX, FINNED

-FUEL ENRICH. NATURAL

FUEL ASSEMBLY 8 ELEMENTS/CHANNEL /STACKED/

4500/ FUEL CHANNELS

FUEL CHARGE 376 TONS URANIUM

BURNUP (REFUEL) MINIMUM 3000 MWD/TON

NEUTRON FLUX THERMAL MAX. 3X10 E+13

FAST MAX. 3.6X10 E+13

CONTROL RODS, BORON STEEL

COOLANT TEMP. INLET 180 C OUTLET 375 C

COOLANT PRESS. 200 PSTA

REACTOR VESSEL BOILER PLATE STEEL SPHERE, 67 FT. DIA.

CONTAINMENT REACTOR BUILDING

REMARKS CEGB WILL BUILD A SECOND STATION AT SITE.

GAS COOLED REACTORS. FOREIGN DF29

A PROPOSAL BY TNGP IS FOR AN ADVANCED GAS-COOLED REACTOR. SEE DF40

REFERENCES FOR BASIC DESIGN SEE CALDER

HINKLEY POINT NUCLEAR ENG. 3, 286 /JULY 1958/

HINKLEY POINT NUCLEAR POWER STATION D REED

NUCLEAR ENERGY SEPT. 1965 P. 272-83

GAS COOLED REACTORS, FOREIGN DF30

NAME/OWNER SIZEWELL/CENTRAL ELECTRIC GENERATING BOARD, U.K.

DESIGNER ATOMIC POWER GROUP, U.K.

OPERATOR CEGB

LOCATION ALDEBURGH, SUFFOLK COAST, ENGLAND

PURPOSE POWER

TYPE TWIN MAGNOX GCR

POWER MWE(MWT) 290 948

PER REACTOR

CRITICAL NO. 1 REACTOR DEC. 1965

NO. 2 REACTOR EARLY 1966

COQLANT CARBON DIOXIDE

MODERATOR GRAPHITE

FUEL MATERIAL URANIUM

FUEL GEOMETRY ROD, 42 IN. ACTIVE LENGTH

FUEL CLADDING MAGNOX, POLYZONAL HELICALLY FINNED

.FUEL ASSEMBLY 7 RODS/CHANNEL /STACKED/ 3800 FUEL CHANNELS

FUEL CHARGE 321 TONS URANIUM

SPECIFIC POWER 2.96 KW/KG URANIUM

BURNUP (REFUEL) ON=LOAD

CONTROL RODS, STEEL WITH BORON STEEL INSERTS

COOLANT TEMP. INLET 214 C OUTLET 410 C

COOLANT PRESS. 279 PSIA

REACTOR VESSEL STEEL SPHERES 63 FT. 6 IN. ID., 4.125 IN. THICK

CONTAINMENT SINGLE REACTOR BUILDING TO HOUSE BOTH REACTORS.

REMARKS CONSTRUCTION

REFERENCES FOR BASIC DESIGN SEE CALDER

GAS COOLED REACTORS, FOREIGN

DF30

SIZEWELL NUCLEAR POWER STATION.
BRITISH POWER ENG. 2/2/, 86-6 /JANUARY 1961/

SIZEWELL NUCLEAR POWER STATION.
HS ARMS, OTHERS
NUCLEAR POWER 6, 61-81 /SEPTEMBER 1961/

FROM HINKLEY TO SIZEWELL.
NUCLEAR ENG. 6. 364-70 /SEPT. 1961/

BRITAIN-S SEVENTH NUCLEAR POWER STATION ENGINEERING 200, 70 /July 16, 1969/

GAS COOLED REACTORS FOREIGN DF31:

NAME/OWNER HUNTERSTON-A/S. SCOTLAND ELECTRICITY BOARD

DESIGNER GENERAL ELECTRIC CO. LTD., SIMON CARVES, U.K.

OPERATOR S. SCOTLAND ELECTRICITY BOARD

LOCATION AYRSHIRE /WEST KILBRIDE/ SCOTLAND

FIRTH OF CLYDE

PURPOSE POWER

TYPE GCR, TWO-REACTOR STATION

POWER MWE(MWT) 150 530

PER REACTOR

CRITICAL NO. 1 SEPT. 1963 NO. 2 APRIL 1964

COOLANT CARBON DIOXIDE

MODERATOR GRAPHITE

FUEL MATERIAL URANIUM

FUEL GEOMETRY RODS 1.15 IN. DIA./24 IN. LONG

FUEL CLADDING MAGNOX, POLYZONAL AXIAL FINNED GRAPHITE SLEEVE

FUEL ENRICH. NATURAL

FUEL ASSEMBLY 10 RODS/CHANNEL /STACKED/ 3288 FUEL CHANNELS

FUEL CHARGE 251 TONS URANIUM

SPECIFIC POWER 2:13 KW/KG URANIUM

BURNUP(REFUEL) APPROX. 2100 MWD/TON /ON-POWER, BOTTOM LOAD/

NEUTRON FLUX THERMAL MAX. 1.35x10 E+13

CONTROL RODS, BORON STEEL

COOLANT TEMP. INLET 400 F OUTLET 735 F

COOLANT PRESS. 150 PSI

REACTOR VESSEL STEEL SPHERE 70 FT. ID. AND 3 IN. THICK WALL

CONTAINMENT REACTOR BUILDING

GAS COOLED REACTORS. FOREIGN DF31

REMARKS STATION ON-LINE IN JUNE 1964

HUNTERSTON-B WILL BA A 1250 MWE TWIN-REACTOR AGR.

SEE DF46

REFERENCES FOR BASIC DESIGN SEE CALDER

GAS COOLED REACTOR FOR THE SOUTH OF SCOTLAND

ELECTRICITY BOARD.

PJ GRANT

NUCLEONICS 16, 108-13 /MAY 1958/

HUNTERSTON, MOST POWERFUL ATOMIC STATION. ENGINEERING 198, 386-7 /SEPT. 25, 1964/

GAS COOLED REACTORS, FOREIGN DF32

NAME/OWNER DUNGENESS-A/CEGB, UNITED KINGDOM

DESIGNER THE NUCLEAR POWER GROUP, U.K.

OPERATOR CFGR

KENT, ENGLAND LOCATION

STRAIT OF DOVER

PURPOSE POWER

TYRE GCR, CALDER TYPE

275 POWER MWE(MWT) 840 /TWO=REACTOR STATION/

CRITICAL NO. 1 REACTOR JUNE 1965

NO. 2 REACTOR OCT. 1965

COQLANT CARBON DIOXIDE

MODERATOR GRAPHITE

FUEL MATERIAL URANIUM

ROD, 1.10 IN. DIA./38.3 IN. LONG FUEL GEOMETRY

FUEL CLADDING MAGNOX

.FUEL ENRICH. NATURAL

FUEL ASSEMBLY 7 ELEMENTS/CHANNEL /STACKED/

3932 CHANNELS

FUEL CHARGE 300 TONS URANIUM

SPECIFIC POWER 2.78 KW/KG URANIUM

CONTROL RODS

COOLANT TEMP. INLET 250 C OUTLET 410 C

REACTOR VESSEL MILD STEEL SPHERICAL VESSEL.

CONTAINMENT BUILDING WITH VAULT FOR REACTOR PRESSURE VESSEL

AGR HAS BEEN SELECTED FOR THE SECOND COMPLEX AT REMARKS

> DUNGENESS. SEE DF25

REFERENCES DUNGENESS NUCLEAR POWER STATION

GAS COOLED REACTORS, FOREIGN

RD VAUGHAN, OTHERS
NUCLEAR POWER 6, 76-96 /APRIL 1961/
RD VAUGHAU, OTHERS
NUCLEAR POWER 6, 76-96 /APRIL 1961/

GAS COOLED REACTORS. FOREIGN DF33

NAME/OWNER OLDBURY/CENTRAL ELECTRIC GENERATING BOARD, U.K.

DESIGNER THE NUCLEAR POWER GROUP, U.K.

OPERATOR CEGB

LOCATION OLDBURY-ON-SEVERN, GLOUCESTERSHIRE, ENGLAND

SEVERN ESTUARY

PURPOSE POWER

TYPE GCR, CALDER TYPE

2-REACTOR STATION

POWER MWE(MWT) 300 834

CRITICAL 1967

OPERATION OF NO. 1 REACTOR DELAYED DUE TO

LEAKAGE OF COOLANT GAS THROUGH REACTOR VESSEL

INSULATION.

COOLANT CARBON DIOXIDE

MODERATOR GRAPHITE

FUEL MATERIAL URANIUM

FUEL GEOMETRY RODS, 1.10 IN. OD. 138.3 IN. LONG

FUEL CLADDING MAGNOX, SPIRAL FINS

.FUEL ASSEMBLY 8 ELEMENTS/CHANNEL /STACKED/

3308 CHANNELS 3320 FUEL CHANNELS

FUEL CHARGE 293 TONS URANIUM

SPECIFIC POWER 2,85 KW/KG URANIUM

BURNUP (REFUEL) 4500 MWD/TON U

CONTROL RODS, TOP-SUSPENDED

COOLANT TEMP. INLET 245 C OUTLET 410 C

COOLANT PRESS. 364.3 PSIA

REACTOR VESSEL PRESTRESSED CONCRETE VERTICAL CYLINDER

77 FT, ID., 60 FT, INNER HEIGHT, END SLABS 22 FT.

THICK, WALL THICKNESS 15 FT.

GAS COOLED REACTORS, FOREIGN

DF33

MILD STEEL LINER

CONTAINMENT

REACTOR BUILDING

REMARKS

EACH REACTOR AND ITS BOILERS ARE WITHIN A CONCRETE PRESSURE VESSEL /INTEGRAL DESIGN/. CARBON DIOXIDE COOLANT FLOWS FROM BLOWERS BUILT INTO THE PRESSURE VESSEL BELOW THE FOUR BOILERS. WHICH ARE ARRANGED SYMMETRICALLY AROUND THE CORE. FLOW IS UPWARD

THROUGH THE CORE.

REFERENCES

FOR BASIC DESIGN SEE CALDER

OLDBURY, FIRST U. K. CONCRETE PRESSURE VESSEL. NUCLEAR ENG. 7, 446-8 /NOVEMBER 1962/

OLDBURY DESIGN APPRAISAL. NUCLEAR POWER 7, 44-50 /NOVEMBER 1962/

GAS COOLED REACTORS, FOREIGN DF34

NAME/OWNER BRADWELL/CENTRAL ELECTRIC GENERATING BOARD, U.K.

DESIGNER THE NUCLEAR POWER GROUP, U.K.

OPERATOR CEGB

LOCATION BRADWELL ON-SEA, ESSEX, ENGLAND

PURPOSE POWER

TYPE GCR, CALDER TYPE

POWER MWE(MWT) 150 538 /2-REACTOR STATION/

CRITICAL NO. 1, 1961 NO. 2, 1962,

COOLANT CARBON DIOXIDE

MODERATOR GRAPHITE, VERTICAL CHANNELS

FUEL MATERIAL URANIUM

FUEL GEOMETRY RODS, 1.155 IN. DIA. /3.3 FT. LONG

/3 FT. ACT. LENGTH/

FUEL CLADDING MAGNOX, RADIAL FINS

FUEL ENRICH. NATURAL

FUEL ASSEMBLY 8 ELEMENTS/CHANNEL /STACKED/

2837 CHANNELS

FUEL CHARGE 241 TONS URANIUM

SPECIFIC POWER 2,20 KW/KG URANIUM

BURNUP (REFUEL) 3000-4500 MWD/TON U

NEUTRON FLUX THERMAL AVE. 1.59x10 E+13

CORE CENTER 1.7x10 E+13

CONTROL RODS, BORON STEEL

COOLANT TEMP. INLET 180 C OUTLET 390 C

REACTOR VESSEL MILD STEEL SPHERE, 66 FT. 9 IN. DIA., 3 AND 4 IN.

THICK

CONTAINMENT REACTOR BUILDING

REMARKS POWER OPERATION IN NOVEMBER 1962

GAS COOLED REACTORS, FOREIGN DF34

REFERENCES

BRADWELL NUCLEAR POWER STATION. NUCLEAR POWER 7, 78-105 /APRIL 1962/

BRADWELL A HARD-WON ACHIEVEMENT NUCLEAR ENG. 8, 164-67 /MAY 1963/

GAS COOLED REACTORS FOREIGN DF35!

NAMEZOWNER WYLFAZCENTRAL ELECTRIC GENERATING BOARD, U.K.

DESIGNER ATOMIC POWER GROUP, U.K.

OPERATOR CEGB

LOCATION WYLFA HEAD, N. W. WALES /ANGLESEY ISLAND/

TRISH SEA COAST

PURPOSE POWER

TYPE GCR-CALDER TYPE, ONCE THROUGH BOILER

POWER MWE (MWT) 590 1870 /2 REACTOR STATION/

CRITICAL CONSTRUCTION CONTRACT AWARDED 1964, TARGET 1969.

COQLANT CARBON DIOXIDE

MODERATOR GRAPHITE, VERTICAL CHÂNNEUS

FUEL MATERIAL URANIUM

FUEL GEOMETRY RODS 1,10 IN. DIA:/42 IN. LONG

FUEL CLADDING MAGNOX, HERRINGBONE FINALL

FUEL ENRICH. NATURAL

FUEL ASSEMBLY 8 ELEMENTS/CHANNEL /STACKED/ 6150 FUEL CHANNELS

FUEL CHARGE 595,4 TONS URANIUM

SPECIFIC POWER 3,16 KW/KG URANIUM

BURNUP (REFUEL) ON-LOAD

CONTROL RODS, BORON STEEL OR MILD STEEL

COOLANT TEMP. INLET 247 C OUTLET 414 C

COOLANT PRESS. 400 PSIA

REACTOR VESSEL PRESTRESSED CONCRETE, SPHERICAL INNER SHAPE

11 FT. THICK WALL

CONTAINMENT REACTOR BUILDING

REMARKS UPC CONTRACT FOR REACTOR NO. 1: WAS: CANCELLED AND

JANUARY 1969

BNWL - 936

GAS COOLED REACTORS. FOREIGN

DF35

CONTRACT FOR 2-REACTOR STATION AWARDED TO APG IN FEB. 1964.

REFERENCES

WYLFA NUCLEAR POWER STATION NUCLEAR ENG. 10 /7/, 139-54 /APRIL 1965/

GAS COOLED REACTORS, FOREIGN DF36

NAME/OWNER WEISMOOR STATION/APK, W. GERMANY

DESIGNER NOT SELECTED. SEE REMARKS.

LOCATION WEISMOOR, W. GERMANY

PURPOSE POWER

TYPE GCR-ADVANCED TYPE

POWER MWE(MWT) 40

CRITICAL PROJECT HAS BEEN CANCELED

REMARKS: PROPOSALS FROM UK FOR AN AGR WERE SUBMITTED, AND

STUDY CONTRACT WAS MADE WITH GUTTEHOFFNUNGSHUTTE STERKRADE AG AND US GA. SITE WAS TO HAVE BEEN

WEISMOOR

A PROPOSAL BY GHH FOR A GAS TURBINE HTGR HAS BEEN

ACCEPTED BY KSH FOR A SITE NEAR HAMBURG.

SEE DF43.

REFERENCES NEWS RELEASES

GAS COOLED REACTORS, FOREIGN

NAME/OWNER AVR PEBBLE BED REACTOR/AVR, W. GERMANY

DESIGNER BBC-KRUPP, W. GERMANY

OPERATOR AVR. WEST GERMANY

LOCATION JUELICH, W. GERMANY

PURPOSE POWER EXPERIMENT, PROTOTYPE FOR 150 MWE PLANT.

TYPE GCR, HIGH TEMPERATURE, PEBBLE BED

POWER MWE(MWT) 15 46

CRITICAL AUGUST 1966

COOLANT NEON-HELIUM /PROBABLY PURE HELIUM WILL BE USED/

MODERATOR GRAPHITE

FUEL MATERIAL URANIUM, THORIUM CARBIDE PEBBLES

FUEL GEOMETRY SMALL SPHERICAL PEBBLES 6 CM. DIA.

FUEL CLADDING MACHINED GRAPHITE SHELLS. GRAPHITE PLUG.

FUEL ENRICH. 20 PER CENT U=235

FUEL ASSEMBLY GRAPHITE-CLAD PEBBLES
100,000 PEBBLES/CORE

BURNUP(REFUEL) /ON-LOAD/

CONTROL OF THE COOLANT' GAS - NO RODS: EXCEPT SHUT-DOWN

SHOTODONIA

COOLANT TEMP. INLET 200 C OUTLET 850 C

COOLANT PRESS. 10 ATM.

CONTAINMENT DESIGN WORK IS IN PROGRESS ON PRESTRESSED CONCRETE

PRESSURE VESSELS FOR LARGE UNITS. CONCTRUCTION

EXPECTED BY 1967.

REMARKS THE GCR PEBBLE-BED REACTOR CONCEPT WAS

STUDIED BY FARRINGTON DANIELS, AND A FURTHER DEVELOPMENT BY WINNETT BOYD WAS DESIGNATED THE DANIELS-BOYD NUCLEAR STEAM GENERATOR, WHICH USED LOW-ENRICHMENT URANIUM CARBIDE WAFERS IN A POROUS GRAPHITE SHEATH FOR THE PRODUCTION OF 400 MW E.

GAS COOLED REACTORS, FOREIGN

DF37

THE CONCEPT WAS STUDIED FURTHER BY WINNETT BOYD IN ASSOCIATION WITH ARTHUR D. LITTLE. AS WELL AS BY SANDERSON AND PORTER AND THE OAK RIDGE LABORATORY. THE AVR PROJECT AT JULICH WAS DESIGNED AND DEVELOPED BY BBC/KRUPP OF MANNHEIM. THE USAEC HAS REQUESTED FUNDS IN ITS CONSTRUCTION AUTHORIZATION BILL FOR A COOPERATIVE PROGRAM WITH THE AVR PROJECT. AEC WOULD DEVELOP AND HAVE FABRICATED A COATED-PARTICLE REACTOR CORE FOR IRRADIATION IN THE AVR PEBBLE-BED REACTOR. A EURATOM CONTRACT WAS SIGNED IN 1964 A LONG-TERM DEVELOPMENT PROGRAM FOR THE PEBBLE-BED CONCEPT INCLUDES THE 15 MW E PLANT AS A FIRST STAGE, A SECOND STAGE REACTOR ALSO 15 MW E BUT CYCLING THE HIGH-TEMPERATURE HELIUM DIRECTLY TO A GAS TURBINE, AND A 150 MW E REACTOR AS: THE FINAL STAGE, WITH A TARGET DATE OF 1970. THE REACTOR FAMILY HAS BEEN DESIGNATED THORIUM. HOCHTEMPERATUR REAKTOR /THTR/4 DESIGN STUDY FOR A 200 MWE FULL-SCALE THTREWILL BE DONE IN COOPERATION WITH EURATOM.

REFERENCES

DANIELS EXPERIMENTAL POWER PILE DESIGN PROPOSAL.
MONN-188 /BOOKS I AND II

PRELIMINARY DESIGN OF A 10 MW/T/ PEBBLE-BED REACTOR EXPERIMENT.

OAK RIDGE NATIONAL LAB.

CF-60-10-63 /NOVEMBER 1960/

DESIGN STUDY OF A PEBBLE-BED REACTOR POWER PLANT. AP FRAAS, OTHERS
DEVELOPED BY BBC/KRUPP OF MANNHEIM.
A GERMAN CONSORTIUM HOCHTEMPERATUR-KERNKRAFTWERK
GESELLSCHAFT HAS BEEN FORMED TO SPONSOR DEVELOPMENT OF A 300 MWE HIGH-TEMPERATURE THORIUM REACTOR
/THTR/, WITH CONSTRUCTION TARGETED FOR 1969 AND
OPERATION IN 1974. THE DESIGN, BY BBC/KRUPP AND
JUELICH RESEARCH CENTER UNDER EURATOM CONTRACT,
WILL BE EXTRAPOLATED TO COMMERICAL SCALE.
BBC/KRUPP IS EXPECTED TO MAKE A FORMAL BID TO THE
CONSORTIUM. SEE DF44,
NUCLEONICS 14. 34-51 /MARCH 1956/

BOYD-S ACTIVE CIRCUIT GAS REACTOR.
CANADIAN CHEM. PROCESSING 43. 54-6 /MAY 1959/

SPECIAL FEATURES OF THE BROWN BOVER FRRUPP REACTOR O MACHNIG, OTHERS NUCLEAR POWER 6, 63-6 /MARCH 1961/.

GAS COOLED REACTORS. FOREIGN

DF37

THE AVR HIGH TEMPERATURE GAS-COOLED REACTOR.

HW SCHMIDT

PREPRINT PAPER NO. 31. ENGINEERS JOINT COUNCIL,

NEW YORK, /1962/

HÌGH TEMPERATURE REACTOR DEVELOPMENT BY BBC/KRUPP R SCHULTEN, O MACHNIG ATOMPRAXIS 4. 117-122 /APRIL 1963/

ENERGY OUT OF PEBBLES
P SCHULTEN
EURATOM 4. 44-48 /JUNE 1965/

THE PEBBLE BED REACTOR. GERMANY-S HIGH TEMPERATURE GAS-COOLED PROJECT.
NUCLEAR ENG. 10, 333-34 /SEPT. 1965/

GAS COOLED REACTORS. FOREIGN

NAME/OWNER KNK NUCLEAR STATION/ATOMKRAFT BAYERN, W. GERMANY NIEDERAICHBACH STATION / BAYERNWERK REACTOR

DESIGNER SIEMENS. W. GERMANY

OPERATOR KERNKRAFTWERK NIEDERAICHBACH GMBH

LOCATION NÎEDERAICHBACH, BAVARÎA, W. GERMANY /ON ISAR RÎVER

PURPOSE POWER PROTOTYPE

TYPE HEAVY WATER MODERATED, GCR, PRESSURE TUBE

POWER MWE(MWT) 100

CRITICAL CONSTRUCTION 1966, TARGET 1970

COOLANT CARBON DIOXIDE

MODERATOR HEAVY WATER

FUEL MATERIAL URANIUM DIOXIDE

FUEL GEOMETRY RODS

FUEL CLADDING SS 0.25 MM. THICK

FUEL ENRICH. 1.1 PER CENT U-235

FUEL ASSEMBLY 19-ROD BUNDLE

1404 ELEMENTS IN 351 CHANNELS

SPECIFIC POWER 6.6 KW/KG

BURNUP(REFUEL) 11,600 MWD/T ON-LOAD

NEUTRON FLUX 4.5 E+13

COOLANT TEMP. 550 C

COOLANT PRESS. 880 PST

CONTAINMENT DOUBLE CONTAINMENT

REMARKS THE SIEMENS DESIGN STUDY WAS COMMISSIONED BY AKB.

FABWERKE HOECHST, AND BAVARIAN GOVERNMENT, IT HAS BEEN DECIDED THAT BAYERNWERKE WILL UNDERTAKE THE PROJECT ALONE, WITH CONSTRUCTION TO START IN 1965, KNK /KERNKRAFTWERK NIEDERAICHBACH/ GMBH HAS BEEN FORMED TO CONSTRUCT THE PLANT, AND WILL TAKE OVER

GAS COOLED REACTORS. FOREIGN

DF38

THE OPERATION AFTER FIVE YEARS.

REFERENCES

NUCLEAR POWER STATION WITH HEAVY WATER MODERATED PRESSURE TUBE REACTOR FOR HIGH TEMPERATURES. W KELLER, HANS-JOACHIM PRESUSS SIEMENS-Z. 37, 302-4 /APRIL 1963/

THE AKB PROJECT FOR A GAS-COOLED HEAVY WATER POWER REACTOR.
W KELLER
ATOMWIRTSCHAFT 8. 645-54 /DEC. 1963/

NIEDERAICHBACH NUCLEAR POWER STATION. EURONUCLEAR 2. 281-3 /JUNE 1965/

NUCLEAR INDUSTRY DEC. 1965 P. 22 NEWS RELEASE

BNWL - 936 JANUARY 1969

GAS COOLED REACTORS, FOREIGN DF39

NAME/OWNER FRUSS/POLAND

POWER, FOR SUPERHEATING SUPERCRITICAL STEAM. PURPOSE

TYPE GCR. PRESSURE TUBE

POWER MWE(MWT) 1000

CRITICAL DESIGN

COQLANT GAS

MODERATOR GRAPHITE

FUEL MATERIAL URANIUM

FUEL ENRICH. NATURAL

REFERENCES FRUSS - 1000 MWE NATURAL U GAS-COOLED GRAPHITE

MODERATED PRESSURIZED REACTOR FOR SUPERCRITICAL

STEAM PARAMETERS.

J. LOPUSZYNSKI /POLÍSH ACAD, SCI., INST. NUCLEAR RES. WARSAW/

PAN-543/IX/JULY 1964/

GAS COOLED REACTORS. FOREIGN DF40

NAME/OWNER HINKLEY POINT+B/CEGB, GT. BRITAIN

DESIGNER THE NUCLEAR POWER GROUP-UK

OPERATOR CENTRAL ELECTRIC GENERATING BOARD, GT. BRITAIN

LOCATION HINKLEY POINT, SOMERSET, ENGLAND BRISTOL CHANNEL

PURPOSE POWER

TYPE AGR /ADVANCED GCR/

TWO-REACTOR STATION

POWER MWE(MWT) 626 1504 /PER REACTOR/

CRITICAL CONSTRUCTION. TARGET 1972

COQLANT CARBON DIOXIDE

MODERATOR GRAPHITE

FUEL MATERIAL URANIUM DIOXIDE PELLETS 0.60 IN. DIAM.

FUEL GEOMETRY PIN

FUEL CLADDING SS

.FUEL ENRICH. LOW

FUEL ASSEMBLY 36-PIN BUNDLE, GRAPHITE SLEEVE.

8 ELEMENTS LINKED TO FORM STRINGER ACTIVE CORE HEIGHT 27.2 FT

CORE IS GRAPHITE STACK CONTAINING

308 FUEL CHANNELS.

FUEL CHARGE 122,5 TONS URANIUM

BURNUP(REFUEL) 18,000 MWD/T WHOLE CHANNEL DISCHARGE,

ON-LOAD

CONTROL RODS

COOLANT TEMP. INLET 310 C OUTLET 665 C

COOLANT PRESS. 34 KG/SQUARE CM.

REACTOR VESSEL VERTICAL CYLINDER, PRESTRESSED CONCRETE, 62 FT. ID

AND 63.5 FT. HIGH

INNER SURFACE INSULATED AND COOLED.

JANUARY 1969

BNWL=936

GAS COOLED REACTORS. FOREIGN

DF40

REMARKS

REACTOR UNITS ARE COMBINED IN A SINGLE COMPLEX,
BOTH BEING SERVED BY THE SAME REFUELING MACHINE.
BOILERS ARE IN AN ANNULUS SURROUNDING THE CORE.

REFERENCES HINKLEY POINT B. SURVEY OF DESIGN AND CONSTRUCTION NUCLEAR ENG. 13, 652-68 /AUG. 1968/

HÎNKLEY POINT B ENGÎNEER 223, 220-1 /FEB, 10, 1967/

GAS COOLED REACTORS, FOREIGN DF41:

NAME/OWNER FESSENHEIM STATION/EDF, FRANCE

DESIGNER EDF, CEA, SCHNEIDER GROUP /FRANCE/

OPERATOR ELECTRICITE DE FRANCE

LOCATION FESSENHEIM, FRANCE RHINE RIVER

VUTAC VIAC

PURPOSE POWER

TYPE GCR, TWO=REACTOR STATION

POWER MWE(MWT) 740 PER REACTOR

CRITICAL CONSTRUCTION AUTHORIZED. TARGET 1972

COOLANT CARBON DIOXIDE

MODERATOR GRAPHITE

FUEL MATERIAL URANIUM

FUEL GEOMETRY HOLLOW ROD, EDF 3 TYPE

FUEL CLADDING MAGNESIUM-ZIRCONIUM ALLOY

FUEL ENRICH. NATURAL

REACTOR VESSEL PRESTRESSED CONCRETE

REFERENCES THE FRENCH NATURAL-URANIUM GRAPHITE-MODERATED

GAS-COOLED NUCLEAR POWER STATIONS.

C BIENVENU, B SAITCEVSKY

ANS TRANS. 10. 315 /JUNE 1967/

GAS COOLED REACTORS, FOREIGN DF42

NAME/OWNER GCFR /GAS=COOLED FAST REACTOR/ UK AEA

DESIGNER UK ATOMIC ENERGY AUTHORITY

PURPOSE POWER BREEDER

TYPE GAS-COOLED FAST REACTOR, PEBBLE-BED

POWER MWE(MWT) 1000 :2380

CRITICAL STUDY

COOLANT HELIUM

MODERATOR GRAPHITE REFLECTOR

FUEL MATERIAL URANIUM/PLUTONIÚM OXIDE PEBBLES. DOUBLE COATING

OF PYROLYTIC CARBON AND SILICON CARBIDE.

BLANKET; URANIÚM DIOXIDE PEBBLES /AXIAL/
URANIÚM DIOXIDE PINS: /RADIAL/

FUEL GEOMETRY PEBBLES

RADIAL BLANKET, PINS

FUEL CLADDING SLEEVE OF SS GAUZE AND INNER SLEEVE OF SILICON

CARBIDE WITH MACHINED-IN ORIFICES, FORMING ANNULUS

FOR FUEL PEBBLES.

RADIAL BLANKET, THIN SS CANS.

FUEL ENRICH. 20 AND 26 PER CENT PLUTONIUM

FUEL ASSEMBLY CORE IS A PEBBLE BED DISPOSED AS AN ANNULUS WITH

COOLANT FLOWING RADIALLY FROM OUTER TO INNER SURFACE, THE ANNULAR CONTAINER BEING FORMED BY

TWO CONCENTRIC SLEEVES.

RADIAL BLANKET ASSEMBLIES ARE HEXAGONAL BUNDLES OF FUEL PINS HOUSED IN AN EGGCRATE

STRUCTURE, EACH ASSEMBLY RECEIVES AN

INDIVIDUAL COOLANT SUPPLY

FUEL CHARGE 1978 KG EQUIV. BLUTONIUM-239

BURNUP(REFUEL) 80,000 MWD/T OFF-LOAD, MONTHLY

CONTROL RODS, BORON CARBIDE

COOLANT TEMP. INLET 300 C OUTLET 1000 C

COOLANT PRESS. 750 PSI

REACTOR VESSEL PRESTRESSED CONCRETE VESSEL

GAS COOLED REACTORS, FOREIGN DF 42 * * * * * * * *

REFERENCES

A GAS+COOLED FAST REACTOR USING COATED PARTICLE FUEL.

CP GRATTON, OTHERS
J. BRITISH NUCLEAR ENERGY SOC. 7/3/, 233-42 /1968/

GAS COOLED REACTORS. FOREIGN DF43

NAME/OWNER KSH REACTOR/KSH, W. GERMANY

GEESTACHT GAS TURBINE REACTOR

DESIGNER GUTEHOFFNUNGSHUTTE STERKRADE AG /GHH/, W. GERMANY

OPERATOR KERNKRAFTWERK SCHLESWIG-HOLSTEIN GMBH /KSH/

LOCATION GEESTACHT#TESPERHUDE ON ELBE RIVER, W. GERMANY

NEAR HAMBURG

PURPOSE POWER PLUS DESALINATION OR DISTRICT HEATING

TYPE GCR, HIGH TEMPERATURE, DIRECT CYCLE

POWER MWE(MWT) 25

CRITICAL CONSTRUCTION TO START IN FALL 1969.

COQLANT HELIUM

MODERATOR GRAPHITE

GRAPHITE REFLECTOR

FUEL MATERIAL -URANIUM-THORIUM PELLETS COATED WITH SILICON

CARBIDE

FUEL GEOMETRY TUBES

.FUEL CLADDING GRAPHITE TUBES 3,27 M LONG, 8,9 CM THICK

FUEL ASSEMBLY ELEMENT CONSISTS OF A CYLINDRICAL GRAPHITE TUBE

FILLED WITH FUEL PARTICLES AND A CENTRAL GRAPHITE

KOD. .___

633 ELEMENTS/CORE

CONTROL BORON CARBIDE RODS

REACTOR VESSEL STEEL VESSEL 10 M LONG, 4 M ID, 85 MM THICK

WALLS

CONTAINMENT NO SAFETY CONTAINMENT

REMARKS REACTOR TO BE COUPLED TO A HELIUM TURBINE.

A 300 MWE DESIGN STUDY HAS BEEN DONE.

REFERENCES THE GEESTACHT GAS TURBINE HTGR CLOSED CYCLE GAS

TURBINE.

NUCLEAR ENG. 12; 542 /JULY 1967/

GAS COOLED REACTORS, FOREIGN DF44

NAME/OWNER THIR /THORIUM HIGH TEMP. REACTOR/ HKG. W. GERMANY

DESIGNER BBC/KRUPP, W. GERMANY

OPERATOR HOCHTEMPERATUR-KERNKRAFTWERK GESELLSCHAFT HKG

LOCATION POSSIBLE SITES ARE HAGEN AND DORTMUND

PURPOSE POWER PROTOTYPE

TYPE GCR, HIGH TEMPERATURE, PEBBLE-BED

POWER MWE(MWT) 300

CRITICAL CONSTRUCTION TARGET 1969, OPERATION 1974

COQLANT HELIUM

MODERATOR GRAPHITE.

GRAPHITE REFLECTOR

FUEL MATERIAL URANIUM AND THORIUM CARBIDE SPHERICAL PARTICLES

FUEL GEOMETRY SPHERES /PEBBLES/

FUEL CLADDING GRAPHITE SPHERES 6 CM. DIAM. CONTAINING FUEL

SPHERES.

.FUEL ENRICH. 92 PER CENT U=235

FUEL ASSEMBLY CYLINDRICAL CAVITY WITH CONICAL BOTTOM IN A

GRAPHITE AND CARBON STRUCTURE CONTAINS THE FUELED

SPHERES.

INITIAL CORE 650,000 SPHERES

CORE IS 5.6 M. DIAM. AND 5.1 M. HIGH

BURNUP(REFUEL) ON-LINE, CONTINUOUS

COOLANT TEMP. INLET 262 C OUTLET 750 C

COOLANT PRESS. 40 ATM.

REACTOR VESSEL PRESTRESSED CONCRETE

REMARKS DESIGN WILL BE EXTRAPOLATED TO COMMERCIAL SCALE.

THTR IS A DEVELOPMENT OF THE AVR JUELICH REACTOR.

SEE DF37.

REFERENCES THIR HIGH TEMPERATURE REACTOR PROTOTYPE.

ENGINEER AUG. 11, 1967 P. 204-5

GAS COOLED REACTORS, FOREIGN

DF44

CONCEPTUAL DESIGN STUDY FOR A 1000 MWE HIGH TEMPERATURE PEBBLE-BED REACTOR. W KERSTING NUCLEAR ENG. DESIGN 7: 345-66 /1968/

GAS COOLED REACTORS, FOREIGN

DF45

NAME/OWNER SEATON-CAREW STATION/CEGB, GT. BRITAIN

HARTLEPOOL STATION

DESIGNER TENDERS INVITED

LOCATION HARTLEPOOL, ENG. /N.E. COAST/

PURPOSE POWER

TYPE GCR. TWO-REACTOR STATION

POWER MWE(MWT) 625 PER REACTOR

CRITICAL TARGET NO.1, 1973

NO.2, 1974

REACTOR VESSEL PRESTRESSED CONCRETE

REMARKS HAS BEEN APPROVED

CONTRACT PLACED WITH BABCOCK ENGLISH

ELECTRIC NUCLEAR LTD.

GAS COOLED REACTORS, FOREIGN

NAME/OWNER HUNTERSTON-B/S. SCOTLAND ELECTRICITY BOARDS

DESIGNER THE NUCLEAR POWER COMPANY, U.K. /NPC/

OPERATOR SOUTH OF SCOTLAND ELECTRICITY BOARD

LOCATION HUNTERSTON, SCOTLAND FIRTH OF CLYDE

TYPE AGR /ADVANCE GCR/, TWO-REACTOR STATION

POWER MWE(MWT) 625 1500 PER REACTOR

CRITICAL TARGET 1973

FUEL MATERIAL URANIUM DIOXIDE

FUEL GEOMETRY PIN 1039 MM LONG, 15.25 MM DIAM.

FUEL CLADDING SS

FUEL ENRICH. SLIGHT

FUEL ASSEMBLY 8 ELEMENTS/CHANNEL 308 FUEL CHANNELS

FUEL CHARGE 122.5 TONS URANIUM

BURNUP(REFUEL) 18,000 MWD/T ON-LOAD

REACTOR VESSEL PRESTRESSED CONCRETE VESSEL FOR EACH REACTOR.

CONTAINMENT SINGLE CONTAINMENT BUILDING

REMARKS APPROVAL RECEIVED JULY 1967.

CONTRACT AWARD OCT 1967

REFERENCES NEWS RELEASES

HUNTERSTON-B

NUCLEAR ENG. 12, 924-25 /DEC. 1967/

HEAVY WATER MODERATED REACTORS DOMESTIC

HEAVY WATER MODERATED REACTORS, DOMESTIC ED01

NAME/OWNER SSCR /SPECTRAL SHIFT CONTROLLED REACTOR//AEC-BAW

DESIGNER BABCOCK AND WILCOX

PURPOSE POWER PROTOTYPE

TYPE PWR, SPECTRAL SHIFT REACTOR

POWER MWE(MWT) 330 1074

CRITICAL REFERENCE DESIGN

COOLANT HEAVY WATER - LIGHT WATER

MODERATOR HEAVY WATER - LIGHT WATER

FUEL MATERIAL URANIUM DIOXIDE POWDER, COMPACTED

FUEL GEOMETRY RODS, SWAGED. CORE ACTIVE HEIGHT 107 IN.

FUEL CLADDING ZIRCALOY-2 TUBES 0.025 IN. THICK. ALTERNATE SS.

FUEL ENRICH. 3.33 PER CENT U-235 AVERAGE

FUEL ASSEMBLY ZONE LOADING.

220-ROD ASSEMBLY, 72 ASSEMBLIES

188-ROD ASSEMBLY WITH CENTRAL CONTROL-ROD

BLADE, 25 ASSEMBLIES.

130-ROD, TRIANGULAR, PARTIAL ELEMENTS,

12 ASSEMBLIES

TOTAL 109 FUEL ASSEMBLIES

FUEL CHARGE 40,325 KG. URANIUM

BURNUP (REFUEL) 16780 MWD/MTU 790-DAY INTERVALS

CONTROL COMPOSITION OF COOLANT-MODERATOR MIXTURE, CONTROL

AND POISON RODS.

COOLANT TEMP. INLET 542F OUTLET 590F

COOLANT PRESS. 2140 PSIA

REACTOR VESSEL STEEL CYLINDER 13 FT. OD./29 FT. HIGH, SS INNER

CLAD.

CONTAINMENT SPHERE, 125 FT. DIA.

REMARKS VARIATIONS OF THE REFERENCE DESIGN INCLUDE CORE

WITH SS CLADDING, NUCLEAR PLANTS OF 154-458 MWE

HEAVY WATER MODERATED REACTORS: DOMESTIC

ED01

WITH ZIRCALOY-2 CLAD CORES, ALTERNATES USING SSECLADDING, AND A PLANT WITH A REACTOR CORE OF THORIUM OXIDE AND RECYCLED U-233 OXIDE CLAD IN ZIRCALOY. BURNS + ROE HAS STUDIED A DESALINIZATION-POWER PLANT FOR THE N.Y. ATOMIC RESEARCH AND DEVELOPMENT AUTHORITY WITH CONCENTRATION ON AN SSCR WITH THORIUM AS THE FERTILE FUEL. OTHER INTERESTS INCLUDE A PROPOSAL FOR A KEY WEST, FLORIDA, DESALINIZATION PLANT, LOS ANGELES DEPT. OF WATER AND POWER, AND SIERRA PACIFIC POWER, THE LATTER FOR A PLANT ON WALKER LAKE NEAR RENO, NEVADA.

REFERENCES

THORIUM AND URANIUM FÜEL CYCLES FOR SPECTRAL SHIFT CONTROLLED PRESSURIZED WATER REACTORS. GK RHODE, MC EDLUND ANS THIRD ANNUAL MEETING, JUNE 1957 PAPER 411 /1957/

THE SPECTRAL SHIFT CONTROL REACTOR DESIGN AND ECONOMIC STUDY.

D MARS, D GANS, JR.

BAW-1241 / DECEMBER 1961/

THE SPECTRAL SHIFT CONTROL REACTOR /A VARIATION OF PWR/.
MC EDLUND
SMALL AND MEDIUM POWER REACTORS. VOL.1. P. 165-78
INTERNATIONAL ATOMIC ENERGY AGENCY. VIENNA. 1961.

SPECTRAL SHIFT CONTROL REACTOR:
J COUGHLIN
ASME PREPRINT 61-PWR-6 /1961/

SPECTRAL SHIFT REACTOR.

POWER REACTOR TECH. 5/4/. 81=6 /SEPTEMBER 1962/

WATER COOLED THORIUM REACTORS
HS BARRINGER
TID-7650 /p. 172-93/ /1962/

HEAVY WATER MODERATED REACTORS: DOMESTIC ED02:

NAME/OWNER HWOCR /HEAVY WATER ORGANIC COOLED REACTOR/

DESIGNER COMBUSTION ENGINEERING

BABCOCK + WILCOX ATOMICS INTERNATIONAL

PURPOSE POWER

TYPE HEAVY WATER MODERATED; ORGANIC: COOLED, PRESSURE

TUBE

POWER MWE(MWT) 500 1550

CRITICAL DESIGN

PROJECT HAS BEEN CANCELED.

COOLANT ORGANIC LIQUID, SANTOWAX OMP

MODERATOR HEAVY WATER

FUEL MATERIAL URANIUM DIOXIDE OR URANIUM METAL

FUEL GEOMETRY ROD 0.513 IN. OD. /31 RODS/ AND 0.313 IN. /7 RODS/

FUEL CLADDING SAP TUBE 0.010 AND 0.016 IN, THICK

FUEL ENRICH. INITIAL 1,25 PER CENT U-235 OR NATURAL.

FUEL ASSEMBLY 37-ROD ASSEMBLY.

5 ELEMENTS/PRESSURE TUBE /STACKED/

600 PRESSURE TUBES

PRESSURE TUBES HAVE AN INNER LINER OF SAP, A GAS

GAP. AND AN OUTER TUBE OF ZIRCALOY=2.

FUEL CHARGE 246,000 LBS. URANIUM DIOXIDE-98,7 TONS: URANIUM

SPECIFIC POWER 15.7 MW/MTU IN ENRICHED FUEL DESIGN.

BURNUP(REFUEL) 20,000 MWD/MT

NATURAL FUEL 5000 MWD/MT

COOLANT TEMP. INLET 536F OUTLET 760F

COOLANT PRESS. 28.1 KG/SQ. CM.

REACTOR VESSEL HEAVY WATER TANK, VERTICAL PRESSURE TUBES

CONTAINMENT STEEL SPHERE

REMARKS REFERENCE DESIGN HAS BEEN DEVELOPED FOR ECONOMIC

HEAVY WATER MODERATED REACTORS, DOMESTIC

ED02

EVALUATION AND APPRAISAL. JOINT R+D WILL BE PERFORMED ON THE CONCEPT BY CE AND AI, WITH ASSISTANCE FROM DUPONT, UNDER AEC CONTRACT A PRELIMINARY CONCEPTUAL DESIGN FOR A 1000 MWE STATION HAS BEEN DONE BY CE AND AI.

REFERENCES

ORGANIC COOLED, HEAVY WATER MODERATED REACTOR POWER PLANT CONCEPTUAL DESIGN AND EVALUATION. VOL. II. REFERENCE PLANT DESIGN. COMBUSTION ENG., NUCLEAR DIV. CEND-175 /VOL. I AND II/ /MARCH 1963/

HEAVY WATER ORGANIC COOLED REACTOR 1000 MWE NUCLEAR POWER PLANT, PRELIMINARY CONCEPTUAL DESIGN, VOL. 2, PLANT DESCRIPTION COMBUSTION ENG., ATOMICS INTERNATIONAL

HEAVY WATER ORGANIC COOLED REACTOR, 500 MWE NUCLEAR DEMONSTRATION PLANT DESIGN. ATOMICS INTERNATIONAL, COMBUSTION ENGINEERING AI-CE-MEMO-25 /MARCH 29, 1966/

HEAVY WATER MODERATED REACTORS, DOMESTIC ED03

NAME/OWNER HWCTR/HEAVY WATER COMPONENTS TEST REACTOR/AEC

DESIGNER E.I. DUPONT DE NEMOURS AND CO. INC.

OPERATOR E.I. DUPONT DE NEMOURS AND CO. INC.

LOCATION SAVANNAH RIVER, GEORGIA

PURPOSE FUEL ELEMENT TESTING, POWER REACTOR CONDITION

TYPE HEAVY WATER COOLED AND MODERATED, PRESSURE VESSEL

POWER MWE(MWT) 0 60

CRITICAL MARCH 1962, SHUT DOWN 1965

COQLANT HEAVY WATER

MODERATOR HEAVY WATER

FUEL MATERIAL ZIRCONIUM-ORALLOY

FUEL GEOMETRY TUBES 2.3 IN. OD./1.96 IN. ID./9FT. 5 IN. LONG TARGETS WITH BORON ALONG AXIS

FUEL CLADDING ZIRCALOY=2 0.015 IN: THICK. ZIRCALOY=2 Housing

.FUEL ENRICH. 93 PER CENT U=235 IN DRIVER TUBES

FUEL ASSEMBLY DRIVER ELEMENTS /24/ ON OUTSIDE OF CORE, CENTER

OCCUPIED BY ELEMENTS UNDER TEST. 136 POSITIONS

AVAILABLE/.

TEST ELEMENTS /1ST CHARGE/ ARE NATURAL U TUBES

2.06 IN. OD.

AND 1.467 IN. ID. WITH 110 LB. NATURAL U/ELEMENT. /12 POSITIONS AVAILABLE/

BURNUP (REFUEL) OPERATING LIFE 33 MONTHS

CONTROL RODS, SS WITH BORON, GRAVITY DROP. /BURNABLE

POISON-BORON/

COOLANT TEMP. INLET 214C OUTLET 239C

COOLANT PRESS. 1000 PSI

REACTOR VESSEL CARBON STEEL, SS LINED, CYLINDRICAL, REMOVABLE TOP

CONTAINMENT PRESTRESSED REINFORCED CONCRETE /BELOW GRADE/ AND

HEAVY WATER MODERATED REACTORS, DOMESTIC

ED03

CARBON STEEL /ABOVE GRADE/. CYLINDRICAL BUILDING 70 FT. DIA./125 FT. HIGH.

REMARKS

HEAVY WATER FLOW IS DOWN THE FUEL ASSEMBLIES,
DISCHARGING AT THE BOTTOM OF THE FUEL HOUSINGS,
THEN UPWARD THROUGH THE MODERATOR SPACE AND OUT
NEAR THE TOP OF THE CORE. STEAM IS DISCHARGED TO
TO THE ATMOSPHERE. PROVISION HAS BEEN MADE
IN THE DESIGN FOR INSTALLATION OF ISOLATED COOLANT
LOOPS FOR AS MANY AS 6 OF THE TEST FUEL POSITIONS,
THE TWO CURRENTLY IN USE ARE FOR A LIQUID HEAVY
WATER-COOLED ISOLATED LOOP, AND A BOILING HEAVY
WATER-COOLED ISOLATED LOOP,
OPERATION WAS TERMINATED AFTER A 33-MONTH PERIOD.
THE HWOTR HAS BEEN PLACED ON STAND-BY, AND WILL
NOT BE FITTED FOR AN ORGANIC COOLANT.

REFERENCES

A PRELIMINARY EVALUATION OF GAS COOLING OF POWER REACTORS MODERATED BY HEAVY WATER, RC HOLMES, OTHERS DP=307 /AUGUST 1958/

HEAVY WATER COMPONENTS TEST REACTOR.
SAVANNAH RIVER PLANT. PLANS AND ESTIMATE.
DP-412 /OCTOBER 1959/

HWCTR. THE SAVANNAH RIVER COMPONENTS TEST REACTOR. NUCLEAR ENG. 5. 221-2 /MAY 1960/

FINAL HAZARDS EVALUATION OF THE HEAVY WATER CRITICAL TEST REACTOR /HWCTR/ LM ARNETT; OTHERS DP=600 /DEC. 1962/

HEAVY WATER MODERATED REACTORS, DOMESTIC: ED04-

NAME/OWNER HEAVY WATER REACTOR STUDY-1/DU PONT

DESIGNER E. I. DUPONT DE NEMOURS AND CO., INC.

PURPOSE POWER

TYPE HEAVY WATER MODERATED AND COOLED.

COLD PRESSURE TUBE

POWER MWE(MWT) 491: 1838

CRITICAL STUDY

COQLANT HEAVY WATER

MODERATOR HEAVY WATER

FUEL MATERIAL URANIUM DIOXIDE FUSED, COMPACTED, SWAGED WITH

ZIRC-2 TUBES

FUEL GEOMETRY COAXIAL TUBES /MASSIVE, FULL-LENGTH/ 3 CONCENTRIC

FUEL CLADDING ZIRCALOY=2 0.02 IN. THICK. DIA, OF TUBES AT OUTER

CLADDING 3.792 IN.

FUEL ENRICH. 1.19 PER CENT U-235

FUEL ASSEMBLY FUEL BUNDLE /COAXIAL TUBES///15FT. LONG/

226 FUEL POSITIONS

FUEL CHARGE 27.1 TONS URANIÚM

SPECIFIC POWER 68 MW/MTU

BURNUP(REFUEL) 14,000 MWD/MTU SHUT-DOWN

CONTROL RODS

COOLANT TEMP. INLET 260C

OUTLET 310C

COOLANT PRESS. 1730 PSIA

REMARKS ECONOMIC STUDIES

REFERENCES AN EVALUATION OF HEAVY WATER MODERATED POWER

REACTOR

DF BABCOCK, OTHERS. DP-830 /JUNE 1963/

BNWL 936 JANUARY 1969

HEAVY WATER MODERATED REACTORS, DOMESTIC ED05:

HEAVY WATER REACTOR STUDY-2/DU PONT NAME/OWNER

E. I. DUPONT DE NEMOURS AND CO., INC. DESIGNER

OPERATOR STUDY

SEA-WATER DISTILLATION PURPOSE

HEAVY WATER MODERATED AND COOLED, VERTICAL TYPE

PRESSURE TUBES

3500 POWER MWE(MWT) 550

CRITICAL STUDY

COQLANT HEAVY WATER

MODERATOR HEAVY WATER

URANIUM DIOXIDE COMPACTED SWAGED WITH ZIRC-2 TUBES FUEL MATERIAL

FUEL GEOMETRY CONCENTRIC TUBES /COAXIAL TUBES/=3. DIA. OUTER

CLAD TUBES 3.7 IN. OD.

FUEL CLADDING ZIRCALOY=2

1,2 PER CENT U=235 FUEL ENRICH.

· FUEL ASSEMBLY 3 COAXIAL TUBES 7 1/2 FT. LONG

420 ASSEMBLIES

APPROX. 63 TONS URANIUM - FUEL CHARGE

BURNUP (REFUEL) 15000 MWD/MTU INTERIM 1/3 REPLACEMENT

RODS, TOP-MOUNTED CONTROL, GRAVITY SAFETY CONTROL

320C COOLANT TEMP.

1700 PSI COOLANT PRESS.

REACTOR VESSEL SS TANK, WELDED-IN PRESSURE TUBES

CONTAINMENT CONVENTIONAL LOW-LEAKAGE STEEL SHELL

REMARKS PRIMARY COOLANT SYSTEM /8 LOOPS/, COOLANT

DISTRIBUTION TO PRESSURE TUBES BY HEADERS AND PIG ALL PRIMARY PIPING AND EQUIPMENT IS CARBON TAILS.

> STEEL. STUDY IS FOR APPLICATION TO SEARWATER

DISTILLATION PLANT.

HEAVY WATER MODERATED REACTORS, DOMESTIC ED05

REFERENCES

HEAVY WATER REACTORS FOR SEA-WATER DISTILLATION PLANTS.

DS ST. JOHN. OTHERS.

DS ST.JOHN, OTHERS, DP-866 /JAN. 1964/

HEAVY WATER MODERATED REACTORS, DOMESTIC ED06

NAME/OWNER HEAVY WATER REACTOR STUDY-3/DU PONT

DESIGNER E. I. DUPONT DE NEMOURS AND CO., INC.

PURPOSE SEA WATER DISTILLATION-STUDY

TYPE HEAVY WATER MODERATED, ORGANIC COOLED, PRESSURE

TUBES /COLD/

POWER MWE(MWT) 2660 8300

CRITICAL STUDY

COOLANT ORGANIC LIQUID

MODERATOR HEAVY WATER

FUEL MATERIAL URANIUM CARBIDE

FUEL GEOMETRY CONCENTRIC TUBES, 10 FT. LONG. OUTER TUBE, CLAD.

3,20 IN. DIA.

FUEL ASSEMBLY CONCENTRIC TUBES

1400 ASSEMBLIES

BURNUP(REFUEL) 8500 MWD/TON ON-LINE, 1 POSITION AT A TIME

CONTROL RODS

COOLANT TEMP. INLET 280C OUTLET 380C

. COOLANT PRESS. 300 PSI

REACTOR VESSEL CALANDRIA. ALUMINUM TUBES, TUBE SHEET AND SHELL.

AXIAL AND RADIAL THERMAL SHIELDS ARE ANNULAR

CARBON STEEL TANKS.

CONTAINMENT CONVENTIONAL STEEL VESSEL, INNER CONCRETE SHADOW

SHIELD.

REMARKS THE PRESSURE TUBES OF ZIRCONIUM-NIOBIUM ALLOY

ARE LINED WITH A DIFFUSION BARRIER. AN 0,120-IN.

ANNULUS OF INERT GAS IS PROVIDED BETWEEN THE PRESSURE TUBE AND THE CALANDRIA TUBE. IN THE

OPTIMUM FUEL ASSEMBLY DESIGN, THERE MAY BE A SOLID

CENTRAL ROD INSTEAD OF A SMALL DIA, TUBE.

PROTOTYPE PLANT DESIGN IS ON 3500 MMT.

REFERENCES HEAVY WATER REACTORS FOR SEA WATER DISTILLATION

PLANTS.

HEAVY WATER MODERATED REACTORS, DOMESTIC ED06

DS ST.JOHN, OTHERS. DP-866 /JAN, 1964/

HEAVY WATER MODERATED REACTORS, DOMESTIC ED07

NAME/OWNER HEAVY WATER REACTOR STUDY-4/DU PONT

DESIGNER E. I. DUPONT DE NEMOURS AND CO., INC.

PURPOSE POWER, U-233/THORIUM FUEL CYCLE,

TYPE HEAVY WATER MODERATED AND COOLED, PRESSURE TUBE

POWER MWE(MWT) 981

CRITICAL STUDY

COOLANT HEAVY WATER

MODERATOR HEAVY WATER

FUEL MATERIAL THORIUM METAL WITH 1.5 PER CENT U=233 AND THORIUM

BLANKET!

FUEL GEOMETRY TUBES. BLANKET THORIUM SLUGS

FUEL ASSEMBLY CONCENTRIC TUBES AND BLANKET SOLID ELEMENTS.

678 FUEL POSITIONS

FUEL CHARGE 103 TONS THORIUM + 1540 KG, U-233

CONTROL RODS

· COOLANT TEMP. INLET 264C OUTLET 304C

COOLANT PRESS. 500 PSI A

REMARKS U=233 THORIUM FUEL CYCLE STUDY: CONCEPT. FURTHER

DEVELOPMENT IS PROPOSED TO THE AEC.

REFERENCES THORIUM-FUELED HEAVY WATER MODERATED POWER

REACTORS

DF BABCOCK ET AL. DP-864 /1963/

HEAVY WATER REACTORS FOR BREEDING WITH THORIUM

DS ST.JOHN, JW WADE

NUCLEONICS 22,54-57 /SEPT. 1964/

HEAVY WATER MODERATED REACTORS, DOMESTIC EDOS

NAME/OWNER PRTR /PLUTONIUM RECYCLE TEST REACTOR///AEC

DESIGNER GENERAL ELECTRIC COMPANY

OPERATOR PACIFIC NORTHWEST LAB., BATTELLE MEMORIAL INST.

LOCATION HANFORD, RICHLAND, WASHINGTON COLUMBIA RIVER

000011012 1114511

PURPOSE POWER, PLUTONIUM RECYCLE DEMONSTRATION

TYPE HEAVY-WATER MODERATED AND COOLED, PRESSURE TUBE

/CALANDRIA/

POWER MWE(MWT) 0 70

CRITICAL DECEMBER 1960

COOLANT HEAVY WATER

MODERATOR HEAVY WATER

FUEL MATERIAL FIRST CORE URANIUM DIOXIDE WITH PLUTONIUM-ALUMINUM

SPIKE ASSEMBLIES. LATER, UNIFORM LOADING WITH

PLUTONIUM/URANIUM DIOXIDE,

FUEL GEOMETRY RODS 0.504 IN. DIA./7 FT. 4 IN. LONG. MARK 2

CONCENTRIC TUBES.

FUEL CLADDING ZIRCALOY = 2 0.030 IN. THICK

. FUEL ASSEMBLY 19-ROD ASSEMBLIES, 85 PROCESS TUBES.

CORE 1, 52 URANIUM DIOXIDE ASSEMBLIES

33 SPIKE ELEMENTS

1963, 44 URANIUM/PLUTONIUM OXIDE ELEMENTS 22 ALUMINUM-PLUTONIUM //TEST/ AND 19

URANIUM DIOXIDE /TEST/ ELEMENTS.

SPECIFIC POWER 15 KW/KG URANIUM DIOXIDE

BURNUP (REFUEL) URANIUM DIOXIDE ELEMENTS 5000-8000 MWD/T

PLUTONIUM-ALUMINUM ELEMENTS 50 PER CENT

NEUTRON FLUX THERMAL AVE. 8.3X10 E+13 /RADIAL/

FAST AVE. 2,7x10 E+13 /RADIAL

CONTROL MODERATER LEVEL, SHIM CONTROL BY ABSORBER ELEMENTS

COOLANT TEMP. INLET 478F OUTLET 530F

COOLANT PRESS. 1050 PSIG

HEAVY WATER MODERATED REACTORS: DOMESTIC

ED08

REACTOR VESSEL ALUMINUM CALANDRIA TANK CONTAINING THE MODERATOR WITH FUEL CHANNELS AND PROCESS TUBES MOUNTED VERTICALLY. PROCESS TUBES ARE ZIRCALOY-2 WITH GAS-GAP THERMAL INSULATIONS.

CONTAINMENT ALL-WELDED STEEL CYLINDER, HEMISPHERICAL TOP, 80 FT. DIA. AND 120 FT. HIGH

THERE ARE 85 FUEL CHANNELS, VERTICALLY MOUNTED WITHIN THE CALANDRIA, THE INNER PROCESS TUBE IS OF ZIRCALOY-2 AND CONTAINS THE FUEL ELEMENTS. INITIAL LOADING CONTAINED TWO TYPES OF ELEMENTS, THE MARK I ELEMENT IS A 19-ROD CLUSTER ASSEMBLY. THE MARK II ELEMENT IS COMPOSED OF A ROD SURROUNDED BY TWO CONCENTRIC ANNULAR RINGS IN ZIRCALOY-2 CLADDING. HEAVY WATER FLOWS VERTICALLY UPWARD WITHIN THE PROCESS TUBES. SHUTDOWN IN JUNE 1962 FOR REFUELING.

REFERENCES

THE PLUTONIUM RECYCLE PROGRAM, A RESUME OF THE CONCEPT, PROGRAM, AND FACILITIES.

HANFORD ATOMIC PROD, OPN.

HW-50700 /JUNE 12, 1957/

THE PLUTONIUM RECYCLE TEST REACTOR FINAL SAFEGUARDS ANALYSIS.
NG WITTENBROCK, OTHERS
HW-61236 /OCTOBER 1959/

THE PLUTONIUM RECYCLE TEST REACTOR.
POWER REACTOR TECHNOLOGY 3.53-57 /JUNE 1960/

MEASURED PHYSICS PARAMETERS, DESIGN FEATURES, AND OPERATING CHARACTERISTICS OF PRTR.

UR TRIPLETT, RE PETERSON
POWER REACTOR EXPERIMENTS VOL. 2, PP. 213-26
INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1962

HEAVY WATER MODERATED REACTORS, DOMESTIC ED09

NAME/OWNER PHWR STUDY/GNEC+AEPSC

DESIGNER GENERAL NUCLEAR ENGINEERING CORPORATION

PURPOSE STUDY

TYPE HEAVY WATER MODERATED, VERTICAL PRESSURE TUBE

/COLD/

POWER MWE(MWT) 489 1850

CRITICAL STUDY

COOLANT HEAVY WATER

MODERATOR HEAVY WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS 0,23 IN. ID. AND 0,500 IN.

OD.

FUEL GEOMETRY HOLLOW RODS

FUEL CLADDING ZIRCONIUM-NIOBIUM ALLOY 0,015 IN. THICK

FUEL ENRICH. 1.43 PER CENT U.235

FUEL ASSEMBLY 19-ROD BUNDLE, 4.5 FT. LONG, 4 BUNDLES ARE STACKED

END TO END IN EACH OF THE 560 ZIRCONIUM-NIOBIUM

PRESSURE TUBES.

560 FUEL POSITIONS

FUEL CHARGE 51.4 METRIC TONS URANIUM

SPECIFIC POWER 35.5 MW/TON U

BURNUP(REFUEL) 19,700 MWD/MTU /ON-LINE REFUELING/

CONTROL BALL COLUMNS, HYDRAULICALLY ACTUATED BORON SS

COOLANT TEMP. INLET 257 C OUTLET 302 C

COOLANT PRESS. 1760 PSIA

REACTOR VESSEL SS 22 FT. 4 IN. DIA. /21 FT. HIGH HEAVY WATER TANK.

1.25 IN. WALL THICKNESS.

CONTAINMENT SPHERICAL STEEL SHELL, 165 FT. DIA.

REMARKS STUDY MADE FOR ECNG

REFERENCES HEAVY WATER MODERATED REACTORS EVALUATION STUDY.

JANUARY 1969

BNWL-936

HEAVY WATER MODERATED REACTORS' DOMESTIC

ED09

AMERICAN ELECTRIC POWER SERVICE CORP. AND GENERAL NUCLEAR ENGINEERING CORP., EAST CENTRAL NUCLEAR GROUP INC.
NP-12344 /OCT. 15,1962. VOL. 1,2 AND 3.

HEAVY WATER MODERATED REACTORS, DOMESTIC ED10

NAME/OWNER BHWR STUDY/GNEC-AEPSC

DESIGNER GENERAL NUCLEAR ENGINEERING CORPORATION

PURPOSE POWER

TYPE HEAVY WATER COOLED AND MODERATED, BWR, PRESSURE

TUBE

POWER MWE(MWT) 1697

CRITICAL STUDY

COOLANT BOILING HEAVY WATER

MODERATOR HEAVY WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS, CORED, CYLINDRICAL,

0.50 IN. OD./0.20 IN. ID.

FUEL GEOMETRY ROD

FUEL CLADDING ZIRCONIUM-NIOBIUM TUBES, 0.015 IN. WALL THICKNESS

FUEL ENRICH. 1.352 PER CENT U+235

FUEL ASSEMBLY 19-ROD BUNDLES: 4 BUNDLES /ACT: LENGTH 18 FT:/

IN EACH ZIRCONIUM-NIOBIUM ALLOY PRESSURE TUBE

700 PRESSURE TUBES IN CORE

FUEL CHARGE 77.5 TONS URANIUM DIOXIDE

SPECIFIC POWER 24.8 MW/TON U

BURNUP(REFUEL) 19,620 MWD/MTU /ON-POWER, FUEL SHUFFLING/

CONTROL HY-BALL COLUMNS

COOLANT PRESS. 1100 PSIA

REACTOR VESSEL 24-FT, DIA, VESSEL, PENETRATED BY PRESSURE TUBES.

/STAINLESS STEEL/

CONTAINMENT SPHERICAL STEEL SHELL, 160 FT. DIA.

REMARKS STUDY FOR ECNG. CORE CONSISTS OF 700 PRESSURE

TUBES SURROUNDED BY MODERATOR, THE HOT BOILING

COOLANT IS INSULATED FROM THE MODERATOR AND

PRESSURE TUBE BY 4 ANNULI OF STAGNANT HEAVY WATER LOCATED INSIDE THE PRESSURE TUBE BETWEEN THE FUEL

HEAVY WATER MODERATED REACTORS, DOMESTIC ED10

BUNDLE AND THE TUBE:

REFERENCES

HEAVY WATER MODERATED REACTORS EVALUATION STUDY.
AMERICAN ELECTRIC POWER SERVICE CORP., GENERAL
NUCLEAR ENG. CORP.
NP-12344 /OCT. 15, 1962/ VOL. 1,2 AND 3.

HEAVY WATER MODERATED REACTORS, DOMESTIC ED11

NAME/OWNER HEAVY WATER REACTOR STUDY/ORNL BOILING LIGHT WATER COOLED

DESIGNER OAK RIDGE NATIONAL LABORATORY

PURPOSE POWER AND WATER DESALINIZATION

TYPE HEAVY WATER MODERATED. LIGHT WATER COOLED.

VERTICAL PRESSURE TUBE /CALANDRIA/.

POWER MWE(MWT) 8333

CRITICAL REFERENCE DESIGN

COOLANT BOILING LIGHT WATER

MODERATOR HEAVY WATER, GRAPHITE REFLECTOR.

FUEL MATERIAL URANIUM DIOXIDE, VIBRATORY COMPACTED RINGS ABOUT

0,6 IN, THICK

FUEL GEOMETRY 2 CONCENTRIC TUBES 4.326 IN. OD./72 IN. LONG

FUEL CLADDING ZIRCALOY=2 0.020 IN. THICK

FUEL ASSEMBLY STRING OF ELEMENTS IN EACH TUBE, ACTIVE CORE

LENGTH 28,5 FT.

1308 PRESSURE TUBES

FUEL CHARGE 747 TONS URANIUM

BURNUP(REFUEL) 7000 MWD/MTU FUEL SHUFFLING 10 ELEMENTS/DAY

COOLANT TEMP. INLET 464 F OUTLET 486 F

COOLANT PRESS, INLET 720 PSIA OUTLET 620 PSIA

REACTOR VESSEL CUBICAL ALUMINUM=CLAD STEEL CALANDRIA VESSEL: 34

FT. ON SIDE, CONTAINING COLD MODERATOR AND GRAPHITE REFLECTOR. ALUMINUM CALANDRIA TUBES,

GAS-GAP INSULATION FROM PRESSURE TUBES.

CONTAINMENT SEPARATE CYLINDRICAL BUILDING FOR EACH REACTOR OF

A COMPLEX STATION. DOUBLE CONTAINMENT, WITH ZONE BETWEEN THE TWO BARRIERS AT A NEGATIVE PRESSURE.

REMARKS REFERENCE DESIGN PREPARED FOR A DUAL PURPOSE

FACILITY USING THREE 8333 MWT REACTORS AND

PRODUCING 2-BILLION GAL, WATER/DAY, PLANT DESIGNS WERE PREPARED FOR ORNL BY SARGENT AND LUNDY FOR A

HEAVY WATER MODERATED REACTORS. DOMESTIC ED11

25000 MWT STATION AND A 3500 MWT REACTOR.

REFERENCES

A LARGE DESALINIZATION REACTOR BASED ON CURRENT TECHNOLOGY.
I SPIEWAK NUCLEONICS 21. 64, 66, 68 /July 1963/

SALINE WATER CONVERSION POWER REACTOR PLANTS SARGENT AND LUNDY /FOR OAK RIDGE NATIONAL LABORATORY/

SL-1998 /JANUARY 11, 1963/

HEAVY WATER MODERATED REACTORS, DOMESTIC ED12:

NAME/OWNER PARR SHOALS PLANT / CVNPA

CVTR, CAROLINAS-VIRGINIA TUBE REACTOR

DESIGNER WESTINGHOUSE ELECTRIC CORPORATION

OPERATOR CAROLINAS#VIRGINIA NUCLEAR ASSOCIATES /CVNA/

LOCATION PARR SHOALS, S. C.

PURPOSE POWER DEMONSTRATION, PROTOTYPE

TYPE HEAVY WATER MODERATED AND COOLED, PRESSURE TUBE

/U=TUBE/

POWER MWE(MWT) 17 56

CRITICAL MARCH 1963

CLOSED DOWN IN FALL OF 1967

GOOLANT HEAVY WATER

MODERATOR HEAVY WATER

FUEL MATERIAL | URANIUM DIOXIDE PELLETS 0.43 IN, DIA./0.636 IN.

LONG JOUTER ZONE/ AND 0.53 IN. /INNER/

FUEL GEOMETRY RODS, ACTIVE LENGTH 95.4 IN.

FUEL CLADDING ZIRCALOY=4 0.0215 IN. THICK + ZIRCALOY=4 WIRE

WRAPPING

FUEL ENRICH. OUTER ZONE, 2.0 PER CENT U=235

INNER ZONE, 1,5 PER CENT U-235

FUEL ASSEMBLY 19-ROD BUNDLE /HEX-COOLANT-FLOW BAFFLE AROUND

BUNDLE/

72 FUEL ASSEMBLIES /1 ASSEMBLY IN EACH END OF

U=TUBE/

36 PRESSURE TUBES /ZIRCALOY+4 INSIDE CORE,

SS OUTSIDE/

FUEL CHARGE 3280 KG. URANIUM

BURNUP(REFUEL) 8404 MWD/TON U CYCLIC REFUELING

/INITIAL CORE AVE./

CONTROL RODS, BORON-SS AND SS

COOLANT TEMP. INLET 505 F OUTLET 541 F

COOLANT PRESS. 1500 PSIA

HEAVY WATER MODERATED REACTORS, DOMESTIC ED12:

REACTOR VESSEL SS MODERATOR TANK WITH HEAVY WATER, UPRIGHT

CONTAINMENT RIGHT VERTICAL CYLINDER, FLAT BASE, HEMISPHERICAL DOME, STEEL LINED REINFORGED CONCRETE. 58 FT., ID. AND 114 FT. HIGH

REMARKS

COLD TUBE DESIGN, IN WHICH THE PRESSURE TUBE IS
INSULATED FROM THE HIGH TEMPERATURE CIRCULATING
FLUID. PHYSICS TESTS, MAINTENANCE SHUT-DOWN IN
JUNE-JULY 1964, POSSIBLE POWER PRODUCTION TARGET
JULY 1964, A LARGE PLANT DESIGN HAS BEEN

DEVELOPED.

REFERENCES CAROLINAS-VIRGINIA TUBE REACTOR REFERENCE
DESIGN II WESTINGHOUSE ELECTRIC CORP.,
STONE + WEBSTER ENG. CORP.
CVNA-40 /DECEMBER 16, 1959/

CVTR-PRESSURE-TUBE REACTOR.
PG DEHUFF
WESTINGHOUSE ENGR. 31. 98-102 /JULY 1961/

CAROLINAS VIRGINIA NUCLEAR POWER ASSOCIATES.
FINAL HAZARDS SUMMARY REPORT. PART B. LICENSE
APPLICATION.
CVNA-90 /1962/

CAROLINAS VIRGINIA PRESSURE TUBE REACTOR. NUCLEAR ENERGY, PP. 424-7, NOVEMBER 1962

DESIGN PRACTICE. THE CAROLINAS-VIRGINIA TUBE REACTOR.

POWER REACTOR TECH. 6. 63-81 /FALL: 1963/

THE CAROLINAS-VIRGINIA TUBE REACTOR. NUCLEONICS 23, 50-51 /MAY 1965/

HEAVY WATER MODERATED REACTORS! DOMESTIC ED13 *

CVNA REACTOR/WEST-CAROLINAS-VIRGINIA NUCLEAR ASSOC NAME/OWNER

CVNA

DESIGNER WESTINGHOUSE ELECTRIC CORPORATION

PURPOSE DESIGN STUDY, POWER

TYPE HEAVY WATER MODERATED AND COOLED, PRESSURE TUBE.

COLD TUBE U-TUBE

POWER MWE(MWT) 300 1136 AS IN CASE IV

CRITICAL DESIGN

COOLANT HEAVY WATER

MODERATOR HEAVY WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS 0.5 IN. DIA.

FUEL GEOMETRY RODS, 0.54 IN. OD. BY 16.03 FT. ACTIVE LENGTH

FUEL CLADDING ZIRCALOY

FUEL ENRICH. SEE REMARKS

FUEL ASSEMBLY 37-ROD CLUSTER /SEE REMARKS/.

5 ELEMENTS PER PRESSURE TUBE 384 PRESSURE TUBES IN REACTOR

SPECIFIC POWER 14.8 MWT/MTU

COOLANT TEMP. INLET 488 F OUTLET 570.8 F

COOLANT PRESS. 1480 PSIA

REACTOR VESSEL SS MODERATOR TANK, VERTICAL CYLINDER.

FOUR CASES WERE STUDIED. CASE 1, USING NATURAL REMARKS

URANIUM DIOXIDE FUEL IN 19-ROD CLUSTERS. CASE 2, ENRICHED URANIUM DIOXIDE IN 19-ROD CLUSTERS.

CASE 3, NATURAL FUEL IN 37-ROD CLUSTERS. AND CASE 4, ENRICHED FUEL IN 37-ROD CLUSTERS. PRIMARY

SYSTEM PRESSURE IS 1000 PSIA FOR THE NATURAL URANIUM SYSTEMS, TO MINIMIZE THE WALL THICKNESS

OF THE PRESSURE TUBES AND FUEL-ROD CLADDING

REFERENCES CAROLINAS VIRGINIA TUBE REACTOR. LARGE PLANT STUDY

WESTINGHOUSE ELEC. CORP.

RG MC GRATH, ED.

HEAVY WATER MODERATED REACTORS, DOMESTIC ED13:

CVNA=184 /JUNE 1963/

HEAVY WATER REACTORS. LARGE PLANT STUDIES. POWER REACTOR TECHNOLOGY 7. 401-6 /FALL 1964/

HEAVY WATER MODERATED REACTORS FOREIGN

HEAVY WATER MODERATED REACTORS. FOREIGN EF01:

NAME/OWNER NPD-2/AECL, ONTARIO HYDRO, CANADA NUCLEAR POWER DEMONSTRATION-2

DESIGNER CGE-CANADA

OPERATOR ONTARIO HYDRO

LOCATION DES JOACHIMS, ONTARIO, CANADA

OTTAWA RIVER

PURPOSE POWER DEMONSTRATION

TYPE HEAVY WATER MODERATED AND COOLED, HORIZONTAL

TO BE CONVERTED TO BOILING HEAVY WATER IN 1968

POWER MWE(MWT) 20 83

CRITICAL APRIL 1962

COOLANT HEAVY WATER

MODERATOR HEAVY WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS 2.38 CM. DIA./2.11 CM.

LONG

FUEL GEOMETRY ROD 0.6 IN. DIAM. 19.5 IN. LONG

FUEL CLADDING ZIRCALOY=2 TUBES 0.015 IN. WALL THICKNESS.

FUEL ENRICH. NATURAL

FUEL ASSEMBLY 7-ROD BUNDLE, WIRE-WRAP SPACING

9 BUNDLES/CHANNEL

132 CHANNELS

FUEL CHARGE 15,000 KG, URANIUM

SPECIFIC POWER 5.55 KW/KG. URANIUM

BURNUP (REFUEL) 5400 MWD/T

NEUTRON FLUX THERMAL AVE. 2.6X10 E+13

FAST AVE. 1.6X10 E+13

CONTROL 1 BOOSTER ROD. ADJUSTABLE MODERATOR LEVEL.

COOLANT TEMP. INLET 530 F OUTLET 485 F

WITH BOILING SYSTEM, 520 AND 476 F

COOLANT PRESS. INLET 78 KG/SQ.CM. OUTLET 72 KG/SQ.CM.

HEAVY WATER MODERATED REACTORS, FOREIGN EFO1

WITH BOILING SYSTEM, PRESSURE IS REDUCED

REACTOR VESSEL CALANDRIA /TUBE-IN-SHELL SYSTEM/. CALANDRIA TUBES.

ARE ALUMINUM, PRESSURE TUBES ARE ZIRCALOY-2.

HORIZONTAL CYLINDER, ALUMINUM, DOUBLE-WALLED.

CONTAINMENT REACTOR VAULT, CONCRETE

REMARKS

A 68 MWE REACTOR HAS ALSO BEEN STUDIED. A DESIGN
FOR AN OFF-THE-SHELF CONCEPT, HWR-80, HAS BEEN
MADE.

NPD WAS SHUT DOWN IN MARCH 1968 FOR CONVERSION TO AN EXPERIMENTAL BOILING SYSTEM. FUEL AND STEAM CONDITIONS ARE UNCHANGED.

REFERENCES THE CANADIAN NPD=2 POWER STATION.

IN MACKAY
SECOND U. N. INTL. CONF. ON THE PEACEFUL USES OF
ATOMIC ENERGY 8, 313-21 /1958/

DESIGN OF NPD AND CANDU IL WILSON AECL * 799 / PAPER NO. 11/ /1959/

NPD ON THE LINE. REACTOR FILE NO. 13.
NUCLEONICS 20. /FACING P. 46/ /NOVEMBER 1962/

NPD-2, CANADA-S PROTOTYPE POWER REACTOR. A WYATT NUCLEAR ENERGY, MAY 1962, Pp. 192-201

UPRATED NPD OR HWR-80
JL OLSEN
AECL-1599 /PP. 43-53/ /SEPTEMBER 1962/

HEAVY WATER MODERATED NATURAL URANIUM POWER REACTORS.
JL GRAY, OTHERS
AECL-1646 /OCTOBER 1962/

HWR- OFF-THE-SHELF DESIGN FOR NUCLEAR POWER.
DAB CHASE
CANADIAN NUCLEAR TECHNOLOGY 1 /6/. 31=8 /1962/

NUCLEAR POWER DEMONSTRATION GENERATING STATION. FINAL HAZARDS REPORT. CANADIAN GENERAL ELECTRIC CO. AECL-1813 /AUG. 1963/

HEAVY WATER REACTOR WILL BOIL

HEAVY WATER MODERATED REACTORS, FOREIGN EF01

A WILLAIMS POWER ENG. 72, 78-80 /NOV. 1968/

HEAVY WATER MODERATED REACTORS, FOREIGN EF02

NAME/OWNER ONTARIO HYDRO/ONTARIO HYDRO, AECL, CANADA
PICKERING NUCLEAR GENERATING STATION

DESIGNER AECL AND ONTARIO-HYDRO, CANADA

OPERATOR HYDROELECTRIC POWER COMM. OF ONTARIO /ONTARIO-HYD/

LOCATION FAIRPORT, LAKE ONTARIO, CANADA

PURPOSE POWER

TYPE HEAVY WATER MODERATED AND COOLED, HORIZONTAL

PRESSURE TUBE, HOT, 2-REACTOR STATION

POWER MWE(MWT) 508 1742 /PER REACTOR/

TWO-REACTOR STATION

CRITICAL NO.1 TARGET 1971

No.2 TARGET 1972

PLANT HAS BEEN DELAYED ABOUT A YEAR BY STRIKES AND EQUIPMENT PROCUREMENT PROBLEMS.

PICKERING 3 AND 4 HAVE BEEN AUTHORIZED

COGLANT HEAVY WATER PRESSURIZED

MODERATOR HEAVY WATER, COLD, HEAVY WATER REFLECTOR

FUEL MATERIAL URANIUM DIOXIDE PELLETS

FUEL GEOMETRY RODS 0.6 IN. DIA. OVER CLAD

. FUEL CLADDING ZIRCALOY TUBES 0.41 MM. WALL THICKNESS

FUEL ENRICH. NATURAL

FUEL ASSEMBLY 28-ROD BUNDLE

12 BUNDLES/CHANNEL

390 CHANNELS

FUEL CHARGE 105 TONS URANIUM DIOXIDE

SPECIFIC POWER 18,8 KW/KG

BURNUP(REFUEL) 8000 MWD/T

NEUTRON FLUX THERMAL MAX. 1X10 E+14

CONTROL RODS

COOLANT TEMP. INLET 249 C OUTLET 293 C

HEAVY WATER MODERATED REACTORS, FOREIGN EF02

COOLANT PRESS.

1285 PSIA

REACTOR VESSEL HORIZONTAL SS CALANDRIA WITH ZIRCALOY TUBES
ROLLED INTO SS END FITTINGS. COOLANT TUBE BORE
IS 10 CM.

VERTICAL REINFORCED CONCRETE CYLINDER, ELLIPSOID
DOME, ELASTOMER LINER. CALANDRIA VAULT.
PRESSURE-RELEASE SYSTEM.
INDIVIDUAL BUILDINGS WILL HOUSE THE TWO REACTORS.
THE CONTAINMENT SYSTEM DEPENDS ON PRESSURE
REDUCTION BY MEANS OF A LARGE VACUUM BUILDING.
TO WHICH ALL REACTORS ARE CONNECTED BY DUCTWORK.
THE BUILDING WILL BE PERMANENTLY EXHAUSTED TO

AT TOP OF THE VACUUM BUILDING WILL PROVIDE A DOUSING SPRAY IF THE PRESSURE RISES ABOVE 6,2 PSIA

1 PSIA. A TANK CONTAINING 350,000 CU. FT. WATER

REMARKS

ZÎRCONÎUM-NIOBIÚM ALLOY MAY BE USED FOR PRESSURE
TUBES. COOLANT TUBE ID. WILL BE INCREASED FROM
8.26 CM /DOUGLAS PT/ TO ABOUT 10 CM AND NO. OF
TUBES REDUCED BY ABOUT 1/3. AN ALTERNATE 22-ROD
BUNDLE MAY BE DEVELOPED FOR LATER LOADINGS.

REFERENCES POWER REACTOR DEVELOPMENT EVALUATION. A SUMMARY REPORT BY A COMMITTEE OF AECL STAFF. AECL=1730 /MAY 1,1963/

STUDIES OF CANDU-TYPE REACTORS IN THE 500 MWE RANGE.

IL WILSON, CE BEYNON, OTHERS

THIRD U. N. INTL. CONF. ON THE PEACEFUL USES OF ATOMIC ENERGY, GENEVA, 1964, A/CONF.28/P/6

DESIGN PARAMETERS FOR 500 MW CANDU REACTOR.
IL WILSON, CE BEYNON, OTHERS
CANADIAN NUCLEAR TECHNOLOGY 3/4/.38-42 /FALL 1964/.

THE PICKERING NUCLEAR GENERATING STATION CE BEYNON
AECL-2214 / APRIL 1965/

HEALTH PHYSICS MAY 1966 P. 725=6 NEWS NOTE

PROGRESS REPORT ON THE PICKERING GENERATING STATION
WG MORRISON
AECL=2558 /AUG. 1966/

HEAVY WATER MODERATED REACTORS. FOREIGN EFO2:

MULTI-UNIT ASPECTS OF THE PICKERING GENERATING STATION.

WG MORISON
HEAVY WATER POWER REACTORS, PROC. SYMPOSIUM, VIENNA, SEPT. 1967 P. 267-84
IAEA, VIENNA. 1968

HEAVY WATER MODERATED REACTORS, FOREIGN EF03

NAME/OWNER CANDU/AECL, CANADA

DOUGLAS POINT

DESIGNER AECL, ONTARIO-HYDRO, CANADA

OPERATOR HYDROELECTRIC POWER COMM. OF ONTARIO /ONTARIO HYD/

LOCATION DOUGLAS POINT, LAKE HURON, ONTARIO, CANADA

PURPOSE POWER AND COBALT-60 PRODUCTION.

TYPE HEAVY WATER MODERATED AND COOLED, PRESSURE TUBE

/HORIZONTAL/, CALANDRIA

POWER MWE(MWT) 220 688

CRITICAL OCT. 1966, FULL POWER JAN. 1967

COOLANT HEAVY WATER

MODERATOR HEAVY WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS 14,24 MM.DIA./20 MM. LONG

24 PER ROD.

FUEL GEOMETRY ROD 0.6 IN. DIA. OVERCLAD, 19.5 IN. LONG

FUEL CLADDING ZIRCALOY=2 TUBES 0.017 IN. THICK, 0.6 IN. OD

FUEL ENRICH. NATURAL

FUEL ASSEMBLY 19-ROD BUNDLES.

12 BUNDLES/FUEL CHANNEL

306 FUEL CHANNELS

3091 FUEL BUNDLES IN 2 FUEL ZONES

FUEL CHARGE 42,000 KG NATURAL U

SPECIFIC POWER 15,8 KW/KG NATURAL U

BURNUP(REFUEL) 8400 MWD/TU

5 BUNDLES/DAY

ON-LOAD

NEUTRON FLUX THERMAL AVE. 1.8 E+14

FAST AVE. 1.6 E+14

CONTROL REGULATING AND BOOSTER RODS.

CHANGE IN MODERATOR LEVEL, CHEMICAL SHIM

COOLANT TEMP. INLET 480 F OUTLET 560 F

HEAVY WATER MODERATED REACTORS: FOREIGN

EF 03

COOLANT PRESS, INLET 1480 PSI OUTLET 1310 PSI

REACTOR VESSEL CALANDRIA, A HORIZONTAL SS CYLINDER 19 FT. 8 IN. ID, 16 FT. 8 IN. LONG. WALL THICKNESS 1 IN. PRESSURE TUBES ARE ZIRCALOY-2, 306 TUBES PASSING THROUGH THE CALANDRIA.

CONTAINMENT STEEL AND CONCRETE VAULT.

REACTOR BUILDING A CONCRETE CYLINDER WITH HEMISPH. DOME OF 0,5 IN. STEEL. BUILDING IS 130 FT. ID. 140 FT. HIGH, CONCRETE WALLS 4 FT. THICK. ELASTOMER LINER

ELASTONER LIN

REMARKS COOLANT FLOW IS IN OPPOSITE DIRECTIONS IN ADJACENT

TUBES. BOILING CORES FOR THE CANDU CONCEPT HAVE ALSO BEEN STUDIED. AS WELL AS A REACTOR OF

INTERMEDIATE SIZE. ONTARIO HYDRO IS CONSIDERING A COMPLEX OF FOUR 450 MWE CANDUSTYPE REACTORS. WITH

PRESSURE * SUPPRESSION SYSTEM.

PRODUCED A PRACTICAL DESIGN FOR AN 1800 MW NUCLEAR

POWER PLANT, HWR-1800, BASED ON CANDU.

FOUR OF THE 306 FUEL CHANNELS HAVE BEEN LOADED WITH COBALT TOWARD THE SUPPLY OF INDUSTRIAL-GRADE

COBALT-60.

REFERENCES BASIC CONSIDERATIONS IN THE DESIGN OF A FULL

SCALE HEAVY WATER AND NATURAL URANIUM POWER

REACTOR. WB LEWIS

AECL = 785 /MARCH 28, 1959/

STATUS REPORT ON THE DOUGLAS POINT PROJECT.

DLS BATE

AECL=1599 /P. 54=68/ /SEPTEMBER 1962/

HEAVY WATER MODERATED NATURAL URANIUM POWER

REACTORS.

JL GRAY, OTHERS

AECL=1646 /OCTOBER 1962/

DOUGLAS POINT NUCLEAR GENERATING STATION.

ATOMIC ENERGY OF CANADA LTD.

AECL=1596 /OCTOBER 1962/

DESIGN AND COST ESTIMATE OF A MULTIPLE UNIT HEAVY WATER MODERATED AND COOLED NUCLEAR POWER

PLANT.

NE WILLIAMS /CANADIAN GENERAL ELECTRIC CO., LTD./

CANADIAN NUCLEAR ASSOCIATION-INTERNATIONAL

HEAVY WATER MODERATED REACTORS. FOREIGN

EF03

CONFERENCE, MONTREAL, MAY 1963 NUCLEAR ENG. 8. 343 /SEPTEMBER 1963/ ABSTRACT

DOUGLAS POINT. THE CANDU REACTOR. CE BEYNON AECL-1807 /P. 25-30/ /1963/

THE WORLD-S REACTORS NO. 37 CANDU /DOUGLAS POINT/ NUCLEAR ENG. 9. 289-294 /+INSET/ /AUG. 1964/

DOUGLAS POINT, A PRE-CRITICAL REPORT.
CANADIAN NUCLEAR TECH. 5, 19-33 /SEPT-OCT. 1966/

DOUGLAS POINT. ENGINEERING 203, 255-9 /FEB. 17, 1967/

DOUGLAS POINT. FACT SHEET CANDU-PHW-200.
DOUGLAS POINT NUCLEAR POWER STATION.
CANADIAN NUCLEAR TECHNOLOGY NOV-DEC 1967 P. 30-33

HEAVY WATER MODERATED REACTORS. FOREIGN EF04

NAME/OWNER WR-1: /WHITESHELL REACTOR-1/AEGL; CANADA

DESIGNER CANADIAN GENERAL ELECTRIC CO.

OPERATOR AECL

LOCATION WHITESHELL NUCLEAR RESEARCH ESTABLISHMENT.

PINAWA, MANITOBA, CANADA

PURPOSE ENGINEERING TEST REACTOR, REACTOR FUELS

AND MATERIALS

TYPE HEAVY WATER MODERATED, ORGANIC COOLED,

PRESSURE TUBE /CALANDRIA/

POWER MWE(MWT) 40-60

CRITICAL NOV. 1965

COOLANT TERPHENYL

MODERATOR HEAVY WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS

FUEL GEOMETRY ROD TYPE 1, LENGTH 75.1 CM.

TYPE 2, LENGTH 42,84 CM.

. FUEL CLADDING TYPE 1, SAP 1.43 CM. ID.

TYPE 2, ZIRCONIUM-NIOBIUM ALLOY 1.384 CM. ID.

. FUEL ENRICH. NATURAL

FUEL ASSEMBLY TYPE 1, 18-ELEMENT BUNDLE

3 BUNDLES/CHANNEL

TYPE 2, 18-ELEMENT BUNDLE 5 BUNDLES/CHANNEL

BURNUP(REFUEL) AVE. 5000 MWD/T

OFF-POWER

NEUTRON FLUX THERMAL AVE. 5.59 E+13

CONTROL PRIMARILY BY VARIATION IN MODERATOR LEVEL

AND TEMPERATURE.

COQLANT TEMP. INLET 640 F OUTLET 700 F

COOLANT PRESS. OUTLET 165 RSI

REACTOR VESSEL VERTICAL SS CALANDRIA, 5 M. HIGH, 2,7 M. ID.

HEAVY WATER MODERATED REACTORS, FOREIGN EF04

WALL 1,27 CM. THICK.

CONTAINMENT NO CONTAINMENT. STEEL AND CONCRETE SHIELDING.

REMARKS THE OCDRE PROJECT WAS DROPPED IN FAVOR OF AN ORGANIC TEST REACTOR, THE WR. 1

CANADIAN GE HAS PROPOSED A DESIGN FOR THE HEAVY WATER MODERATED, ORGANIC COOLED PROTOTYPE FOR JEN - SPAIN- DON. THE 106.5 MWT REACTOR CONSISTS OF A CALANDRIA, 132 FUEL CHANNELS, GENTRAL TEST CHANNEL, SHUT-DOWN SHIELDS, AND A TOP ROTATING

DECK PLATE.

REFERENCES THE OCDRE PROGRAM.

WM CAMPBELL

AECL=945 /OCTOBER 1959/

THE ORGANIC-COOLED HEAVY-WATER MODERATED REACTOR

SYSTEM. KH CAMPBELL

AECL-1807 /P. 68-73/ /1963/

WR-1 TYPE REACTOR PROPOSED FOR SPAIN-S: DON:
DBA CHASE P. ENG. /CAN. GENERAL ELECTRIC CO/
CANADIAN NUCLEAR TECHNOLOGY FALL: 1965 P. 42-43

WR=1 DESIGN DETAILS CANADIAN NUCLEAR TECHNOLOGY NOV-DEC 1967 P. 34-5

HEAVY WATER MODERATED REACTORS. FOREIGN EF05

NAME/OWNER ESSOR /ESSAI ORGEL//EURATOM

DEMAG AG, DEUTSCH B+W, AI

DESIGNER GAAA, INTERATOM, MONTECATINI

PURPOSE :COMPONENTS: TESTING: FOR ORGEL

TYPE HEAVY WATER MODERATED AND COOLED, PRESSURE TUBE

POWER MWE(MWT) 0 35

CRITICAL FULL POWER EARLY 1968

COOLANT HEAVY WATER

MODERATOR HEAVY WATER

FUEL MATERIAL URANIUM ALLOY FEED FUEL. SEE REMARKS.

FUEL GEOMETRY PLATES CURVED AND MOUNTED TO FORM 3-PART

TUBULAR ELEMENT 150 CM. LONG.

FUEL CLADDING ALUMINUM

FUEL ENRICH. 93 PER CENT U-235

FUEL ASSEMBLY BR=2 TYPE ELEMENTS, 16 CHANNELS SURROUNDING THE

EXPERIMENTAL OR ORGEL ZONE. 17-PLATE ELEMENTS:

IN 44 FUEL EMPLACEMENTS, 20 OF WHICH ARE

SUPPLEMENTARY. THE CENTRAL OR ORGEL ZONE HAS 12

CHANNELS, EACH WITH INDEPENDENT COOLANT LOOP.

BURNUP(REFUEL) 4 ELEMENTS: / MONTH

NEUTRON FLUX 10 E+14

CONTROL RODS

GOOLANT TEMP. INLET 47 C

REACTOR VESSEL CENTRAL ZONE COMPARTMENT AN ALUMINUM VESSEL.

VERTICAL SS TANK CONTAINING HEAVY WATER, WITH EXTENSIONS IN THE LOWER PART FOR PASSAGE OF THE ORGEL CHANNELS-ZIRCALOY CALANDRIA TUBES, SINTERED

SAP PRESSURE TUBES, GAS INSULATED.

CONTAINMENT CYLINDRICAL SHELL 45 M. DIA.

REMARKS TEST REACTOR IN THE EURATOM ORGEL PROGRAM FOR

TESTING COOLANT CHANNEL ASSEMBLY, PRESSURE TUBE,

HEAVY WATER MODERATED REACTORS: FOREIGN

EF05

THERMAL INSULATION, CALANDRIA TUBE, CONNECTIONS, FUEL ELEMENTS. ECO /EXPERIENCE CRITIQUE ORGEL/DESIGNED BY DUTCH NERATOOM IS UNDER CONSTRUCTION AT ISPRA CENTER IN ITALY. ECO WILL USE U METAL RODS IN ALUMINUM CANS, DIPHENYL COOLANT AND HEAVY WATER MODERATOR.

REFERENCES

DESCRIPTION OF A SPECIFIC TEST REACTOR FOR STUDYING THE ORGEL SYSTEM.

C CHASSIGNET, OTHERS
POWER REACTOR EXPERIMENTS, VOL. II, Pp. 183-212
INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1962

RESSOR. SPECIFIC TEST REACTOR FOR HEAVY WATER REACTOR CONCEPTS DEVELOPED BY EURATOM.

JC LENY, OTHERS
THIRD U. N. INTL. CONF. ON THE PEACEFUL USES OF ATOMIC ENERGY, 1964

A/CONF. 28/P/78

THE ORGEL PROJECT JC LENY, S ORLOWSKI NUCLEAR ENG. 10. 96-100 /MARCH 1965/

HEAVY WATER MODERATED REACTORS. FOREIGN EF06

NAME/OWNER ORGEL /ORGANIQUE EAU LOURDE//EURATOM

DESIGNER REF. DESIGN BELGONUCLEAIRE, INDATOM, SIEMENS

/SEE ALSO ESSOR/

PURPOSE POWER

TYPE HEAVY WATER MOD. ORGANIC COOLED-PRESSURE TUBE

/CALANDRIA/

POWER MWE(MWT) 250 759

CRITICAL DEVELOPMENT

COOLANT TERPHENYLS

MODERATOR HEAVY WATER

FUEL MATERIAL - URANIUM CARBIDE

FUEL GEOMETRY PENCILS OR TUBULAR ELEMENTS, 2.34 CM. OD.

FUEL CLADDING SAP 0.13 CM. THICK

FUEL ENRICH. NATURAL

FUEL ASSEMBLY REFERENCE FUEL IS A 19-ROD BUNDLE

. SPECIFIC POWER 24 MW/T

BURNUP (REFUEL) 8900 MWD/TON

NEUTRON FLUX THERMAL MAX. 6.9X10 E+13

COOLANT TEMP. INLET 265 C OUTLET 400 C

COOLANT PRESS. 16 KG/SQ.CM.

REACTOR VESSEL VERTICAL CYLINDER-SS-CONTAINING COLD HEAVY WATER,

ZIRCALOY CALANDRIA TUBES, SAP PRESSURE TUBES, GAS

INSULATED. /VERTICAL CALANDRIA TUBES/

REMARKS ESSOR, THE HEAVY WATER REACTOR DESIGNED BY GAAA

AND INTERATOM, IS AN EXPERIMENTAL REACTOR FOR ORGEL, EURATOM-S DEVELOPMENT OF THE ORGANIC

CONSTRUCTION AT ISPRA.

DESIGNED BY DUTCH NERATOOM, IS UNDER WAY AT ISPRA-CENTER IN ITALY. ECO WILL USE U METAL RODS IN AL-CANS, DIPHENYL COOLANT AND HEAVY WATER MODERATOR. EXPO, THE EXPONENTIAL EXPERIMENT, IS ALSO UNDER

HEAVY WATER MODERATED REACTORS: FOREIGN

EF06

STUDY FOR AN ORGEL PROTOTYPE. A THORIUM OXIDE FUELED REACTOR HAS BEEN STUDIED AS COMPARISON TO THE URANIUM CARBIDE SYSTEM.

REFERENCES

ORGEL-A EUROPEAN CONCEPT.

JC LENY

NUCLEAR ENG. 6. 508-12 / DECEMBER 1961/

DESIGN CRITERIA, ENGINEERING FEATURES, EXPERIMENTAL PROGRAM FOR THE ECO REACTOR. P BONNAURE, OTHERS ENERGIA NUCLEARE 9 /9/. 529-34 /SEPTEMBER 1962/

EXPERIENCE CRITIQUE ORGEL /ECO/ NUCLEAR ENG. 8.440-41 /DEC. 1963/

LE PROJET ORGEL NEUE TECHNIK /NT/ No. 10, 1963 P. 585-96

THE ORGEL PROJECT JC LENY, S ORLOWSKI NUCLEAR ENG. 10. 96-100 /MARCH 1965/

WHAT IS ORGEL - A BRIEF RECAP. EURATOM 4. 49-54 /JUNE 1965/

PERFORMANCE OF AN ORGEL REACTOR FUELED WITH THORIUM.
E LAFONTAINE, OTHERS
HEAVY WATER POWER REACTORS, PROC. SYMPOSIUM, VIENNA, SEPT. 1967 P. 409-28
IAEA, VIENNA, 1968

HEAVY WATER MODERATED REACTORS, FOREIGN EF07

NAME/OWNER VULCAIN / BELGONUCLEAIRE-UK AEA

DESIGNER BELGONUCLEAIRE-UKAEA

LOCATION SEE REMARKS

PURPOSE SHIP PROPULSION

TYPE PWR, SPECTRAL SHIFT

POWER MWE(MWT) 20 65 /FOR: 20:000 SHP/

CRITICAL CONSTRUCTION, DEVELOPMENT, SEE REMARKS:

COOLANT HEAVY WATER-LIGHT WATER.

MODERATOR HEAVY WATER-LIGHT WATER.

FUEL MATERIAL URANIUM DIOXIDE PELLETS, 7.5 MM. DIA.

FUEL GEOMETRY PINS, 3 FT. 8 3/4 IN. ACTIVE LENGTH

FUEL CLADDING SS

FUEL ENRICH. 6 PER CENT U-235

FUEL ASSEMBLY 181-PIN ASSEMBLY. HOLLOW INCOMPLETE HEXAGONAL. WITH CENTRAL ZIRCALOY TUBE AS GUIDE FOR SHUT-OFF

ROD. NO SHROUDS.

18 ASSEMBLIES IN CORE

. FUEL CHARGE 1283 KG. URANIUM

BURNUP(REFUEL) 40,000-45,000 MWD/T

3 YEARS

NEUTRON FLUX THERMAL AVE. 3X10 E+13

CONTROL SPECTRAL SHIFT, BORON=SS RODS

COOLANT PRESS. 2100 PSI

REACTOR VESSEL STEEL VESSEL 6 FT. 4 IN. ID., 153 IN. HGIH.

POSSIBLY SS INNER CLADDING.

CONTAINMENT STEEL SPHERE 25 FT. DIA., 1 1/8 IN. THICK.

SECONDARY CONCRETE SHIELDING.

REMARKS THE VULCAIN PROGRAM INCLUDED CONSTRUCTION AT CEN

OF A ZERO-POWER REACTOR VENUS /VULCAIN EXPERIMENT

HEAVY WATER MODERATED REACTORS: FOREIGN

EF07

NUCLEAR STUDY/, CRITICAL IN APRIL 1964 AND ENDED IN MARCH 1966. THE BR-3 REACTOR WAS MADE AVAILABLE: TO THE VULCAIN PROGRAM AND MODIFIED TO OPERATE: WITH A VULCAIN CORE, REACHING POWER IN DEC. 1966. SEE BR-3/VULCAIN, HF01

REFERENCES

PROJECT VULCAIN, DESCRIPTION AND PRINCIPAL CHARACTERISTICS.
VN=61=305 /BELGONUCLEAIRE, 1961/

THE VULCAIN PROJECT AND ITS DEVELOPMENT PROCESSES. P MALDAGUE ATOMWIRTSCHAFT 7. 317-21 /JUNE 1962/

THE VULCAIN REACTOR.

PE MALDAGUE

POWER REACTOR EXPERIMENTS, VOL. 2, P. 253-73

INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1962.

THE U. K. ATOMIC ENERGY AUTHORITY S NUCLEAR SHIP CONCEPTS:
NUCLEAR ENG. 8. 88-9 /MARCH 1963/

THE VULCAIN CORE POWER EXPERIMENT.

J STORRER
GENEVA 1964. A/CONF. 28/P/515

CENTRE DE L-ENERGIE NUCLEAIRE ANNUAL REPORT 1966 NP-17126

BNWL - 936 JANUARY 1969

HEAVY WATER MODERATED REACTORS, FOREIGN EF08

RAPP/RAJASTHAN ATOMIC POWER PROJECT//INDIA. NAME/OWNER

DESIGNER CANADIAN GENERAL ELECTRIC

RANA PRATAP SAGAR, RAJASTHAN STATE, INDIA LOCATION

RESERVOIR SITE

PURPOSE POWER

TYPE HEAVY WATER MODERATED AND COOLED, PRESSURE TUBE

/CALANDRIA/

TWO-REACTOR STATION

POWER MWE(MWT) 200 PER REACTOR

TARGET NO. 1, OCT. 1970 TARGET NO. 2, 1972 CRITICAL

COOLANT HEAVY WATER

MODERATOR HEAVY WATER

FUEL MATERIAL URANIUM DIOXIDE

FUEL GEOMETRY RODS

FUEL ENRICH. NATURAL

· REMARKS CANADA WILL SUPPLY HALF THE FUEL FOR THE FIRST

CHARGE. STATION WILL CONSIST OF TWO 200 MWE PLANTS

RAPP-1 AND RAPP-2.

REFERENCES FOR GENERAL DESIGN PARAMETERS SEE CANDU

HEAVY WATER MODERATED REACTORS, FOREIGN EF09

NAME/OWNER KALPAKKAM STATION / INDIA

MAPP PROJECT /MADRAS ATOMIC POWER STATION/

LOCATION KALPAKKAM, NEAR MADRAS, INDIA

PURPOSE POWER

TYPE CANDUMPHR TYPE

TWO=REACTOR STATION

CRITICAL PLANNED. NO. 1 TARGET 1972

COQLANT HEAVY WATER

MODERATOR. HEAVY WATER

FUEL MATERIAL URANIUM

FUEL ENRICH. NATURAL

REMARKS TWO CANADIAN-TYPE PRESSURIZE HEAVY WATER REACTORS

ARE PROJECTED FOR THE SITE.

INDIA IS UNDERTAKING CONSTRUCTION OF THE MAPP PROJECT DESIRING TO PROCEED WITHOUT FOREIGN ASSISTANCE. DETAILED DESIGN IS IN PROGRESS

REFERENCES NUCLEAR CANADA MARCH, 1968 P. 5-6

NEWS RELEASE

HEAVY WATER MODERATED REACTORS, FOREIGN EF10

NAME/OWNER HALDEN REACTOR/JENER, NORWAY AND GEEC

DESIGNER JENER, NORWAY

OPERATOR EUROPEAN NUCLEAR ENERGY AGENCY

LOCATION HALDEN, NORWAY

PURPOSE PROCESS STEAM

TYPE HEAVY WATER MODERATED AND COOLED BWR

POWER MWE(MWT) 0 20

CRITICAL 1959

COOLANT HEAVY WATER

MODERATOR HEAVY WATER

FUEL MATERIAL URANIUM DIOXIDE, FIRST CORE URANIUM METAL WITH

URANIUM DIOXIDE SPIKE ELEMENTS.

FUEL GEOMETRY RODS 25 MM. DIA./2.4 M. LONG

FUEL CLADDING SS. FIRST CORE FINNED ALUMINUM

FUEL ENRICH. SLIGHT. FIRST CORE NATURAL URANIUM.

FUEL ASSEMBLY 316 RODS/CORE. PROVISION FOR 325

. NEUTRON FLUX THERMAL PEAK 3X10 E+13

CONTROL SHIM AND SCRAM RODS, CADMIUM TUBES, SS GLAD

COOLANT PRESS. 400 PSI

REACTOR VESSEL CLAD STEEL CYLINDER 2.7 M. DIA. 1476 CM. HIGH.

CONTAINMENT FACILITY IS CONSTRUCTED IN A CAVE WITH THE

REACTOR IN A DEEP PIT IN THE FOUNDATION. REACTOR

HALL IS 28 M./10 M./11.4 M. HIGH.

REMARKS SECOND CORE OPERATION MARCH 1962, PROPOSED

CONVERSION TO SPECTRAL SHIFT CONTROL: INTEREST IS IN APPLICATION TO AN OCEANOGRAPHIC RESEARCH

VESSEL. A 3-YEAR RESEARCH PROGRAM WILL BE DEVOTED

TO LONG-TERM TESTING OF FUEL ELEMENTS, EXPERIMENTAL CHEMISTRY, DEVELOPMENT OF

INSTRUMENTATION. PARTICIPANTS WILL INCLUDE

HEAVY WATER MODERATED REACTORS. FOREIGN

EF10

UK AEA, NORWEGIAN INST. FOR ATOMENERGI, DANISH AND FINNISH AEC, RCN /NETHERLANDS/, AB-ATOMENERGI /SWEDEN/, AND US AEC. FULL DESIGN OUTPUT OF 20 MWT /ON SECOND FUEL CHARGE/ HAS BEEN USED TO PROVIDE PROCESS STEAM FOR NEARBY PAPER AND PULP MILLS /JANUARY 1964/
THE DEVELOPMENT PROGRAM HAS BEEN EXTENDED TO DECEMBER 1969 AND WILL INCLUDE ON-LINE COMPUTER CONTROL OF THE REACTOR, AND THORIUM PHYSICS INVESTIGATIONS.

REFERENCES

THE HALDEN BOILING WATER REACTOR. N HIDLE. O DAHL HPR-2 /1958/

HALDEN BWR NUCLEAR ENG. 4. 106-12 /MARCH 1959/

HEAVY WATER MODERATED REACTORS: FOREIGN _____EF11

NAME/OWNER KANUPP/KARACHI NUCLEAR POWER PROJ./PAKISTAN AEC

DESIGNER CANADIAN GENERAL ELECTRIC

LOCATION KARACHI AREA, PAKISTAN /PARADISE POINT/

PURPOSE POWER

TYPE HEAVY WATER MODERATED AND COOLED.

HORIZONTAL PRESSURE TUBE, INTEGRAL DESIGN

POWER MWE(MWT) 125

CRITICAL TARGET 1970

COOLANT HEAVY WATER

MODERATOR HEAVY WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS

FUEL GEOMETRY RODS

FUEL CLADDING ZIRCALOY

FUEL ENRICH. NATURAL

FUEL ASSEMBLY 19-ELEMENT BUNDLE

2288 FUEL BUNDLES/CORE 11 BUNDLES/FUEL CHANNEL

. BURNUP (REFUEL) ON-LOAD

REACTOR VESSEL INTEGRAL CALANDRIA/DUMP=TANK SURROUNDED BY A LIGHT WATER THERMAL SHIELD, CALANDRIA IS SS 16 FT. 6 IN,

BY 16 FT. 4 IN. FUEL CHANNELS ARE ZIRCONIUM ALLOY.

CONTAINMENT PRESTRESSED CONCRETE CYLINDRICAL BUILDING

115 FT, ID/120 FT, HIGH, WALLS 4.5 FT, THICK

HEMISPHERICAL DOME, ELASTOMER LINING,

THE REACTOR VAULT IS A SEALED, STEEL-LINED, REINFORCED CONCRETE STRUCTURE FILLED WITH LIGHT WATER IN WHICH THE CALANDRIA CONTAINING THE

MODERATOR IS IMMERSED.

REMARKS CANADIAN CONSTRUCTION OF THE NUCLEAR POWER PLANT

HAS BEEN APPROVED.

THE UNITIZED SYSTEM COMBINES CALANDRIA AND DUMP

TANK IN A SINGLE UNIT.

REFERENCES PAKISTAN TURNKEY CONTRACT FOR CGE

HEAVY WATER MODERATED REACTORS' FOREIGN EF11

CANADIAN NUCLEAR TECHNOLOGY 4, 23-24 /SUMMER 1965/

KANUPP DESIGN DETAILS
CANADIAN NUCLEAR TECHNOLOGY 4, 24 /SUMMER 1965/
KARACHI NUCLEAR POWER PROJECT. PROGRESSIVE
CONSTRUCTION AND DESIGN FEATURES
RC JOHNSTON
HEAVY WATER POWER REACTORS, PROC. SYMPOSIUM,
VIENNA, SEPT. 1967, p. 113-23
IAEA, VIENNA. 1968

DEVELOPMENT IN REACTOR BUILDING DESIGN FOR CANDU-TYPE NUCLEAR POWER PLANTS. RL WILLIAMSON, WP RAFFERTY ENGINEERING JOURNAL 50, 41-48 /OCT. 1967/

HEAVY WATER MODERATED REACTORS, FOREIGN EF12

NAME/OWNER DON / JEN, CENUSA-SPAIN

DESIGNER AT JUNITED STATES, JEN

OPERATOR CENTRALES NUCLEARES SA /CENUSA/

PURPOSE POWER PROTOTYPE

TYPE HEAVY WATER MODERATED, ORGANIC COOLED, CALANDRIA.

POWER MWE(MWT) 30 106.5

CRITICAL DESIGN. PROJECT DROPPED

COOLANT SANTOWAX OMP

MODERATOR HEAVY WATER, HEAVY WATER REFLECTOR

FUEL MATERIAL URANIUM CARBIDE PELLET 12,7 MM. DIA.

FUEL GEOMETRY ROD, 2895.6 MM. ACTIVE LENGTH

FUEL CLADDING SAP 0.5 MM. THICK, FINNED

FUEL ENRICH. 1.7 PER CENT U-235

FUEL ASSEMBLY 19-ROD CLUSTER, SAP SHROUD TUBE.
138 ELEMENTS/CORE

FUEL CHARGE 12230 KG. URANIUM

. SPECIFIC POWER 8,2 KW/KG U

BURNUP (REFUEL) 8000 MWD/MTU

CONTROL RODS, STEEL TUBES FILLED WITH BORON CARBIDE

COOLANT TEMP. INLET 299 C OUTLET 343 C

REACTOR VESSEL ALUMINUM CALANDRIA STRUCTURE FOR THE HEAVY WATER.

PROCESS TUBES ARE SAP IN CORE REGION, SS AND

CARBON STEEL IN THE REST.

CONTAINMENT CONVENTIONAL BUILDING, LEAK TIGHT.

REMARKS CONCEPTUAL DESIGN BY AT HAS BEEN COMPLETED.

FINAL PLANS WILL BE DEVELOPED BY JEN, CONSTRUCTION

TARGET WAS 1965.

PROJECT HAS BEEN DROPPED IN FAVOR OF FAST REACTOR

DEVELOPMENT.

HEAVY WATER MODERATED REACTORS: FOREIGN EF12

REFERENCES

ORGANIC COOLED HEAVY WATER MODERATED POWER: REACTOR: STUDY.
BL HOFFMAN
TID-7575 /P. 108/ /MARCH 1959/

THE 22ND PROJECT:
L PALACOIS, G VELARDE /JEN, MADRID/
PREPRINT /OTTOWA/
CANADIAN NUCLEAR ASSOC., 1962

THE DON PROJECT.

F PASCUAL, L PALACOIS, MK SANDERS

THIRD U. N. INTL. CONF. ON THE PEACEFUL USES OF ATOMIC ENERGY, GENEVA, 1964, A/CONF. 28/P/601:

SAFETY FEATURES OF THE DON REACTOR CONCEPT.
A ALONSO, BL HOFFMAN.
THIRD U. N. INTL. CONF. ON THE PEACEFUL USES OF ATOMIC ENERGY, GENEVA, 1964. A/CONF. 28/P/495

DEVELOPMENT OF THE DON PROJECT EURONUCLEAR 2, 283-4 /JUNE 1965/

NUCLEONICS WEEK JUNE 1, 1967 P. 8 NEWS RELEASE

HEAVY WATER MODERATED REACTORS, FOREIGN EF13

NAME/OWNER AGESTA REACTOR STATION/STATE POWER, AB-ATOMENERGI,

CITY OF STOCKHOLM, SWEDEN

DESIGNER ASEA-AB ATOMENERGI

R/3-ADAM

OPERATOR STATE POWER BOARD, SWEDEN

LOCATION AGESTA, SWEDEN

LAKE MAGELUNGEN

PURPOSE POWER AND DISTRICT HEATING

TYPE HEAVY WATER MODERATED AND COOLED PWR

POWER MWE(MWT) 10 65

CRITICAL JULY 1963, FULL POWER MARCH 1964

DOWN IN 1968 BECAUSE OF PIN-HOLE CORROSION OF FUEL CLADDING, WITH SOME RELEASE OF

RADIOACTIVITY TO HEAVY WATER SYSTEM.

BACK ON-LINE OCT. 1, 1968 WITH FUEL

ELEMENTS OF NEW DESIGN

COOLANT HEAVY WATER

MODERATOR HEAVY WATER

- FUEL MATERIAL URANIUM DIOXIDE PELLETS 17 MM, DIA, 1733 MM, LONG

FUEL GEOMETRY ROD COMPOSED OF 3 ELEMENTS SCREWED TOGETHER,

3 M. LONG

FUEL CLADDING ZIRCALOY=2 TUBE

FUEL ENRICH. NATURAL

FUEL ASSEMBLY 19-ROD BUNDLE, 4 BUNDLES MAKE UP THE FUEL ELEMENT.

IN ZIRCALOY PROTECTIVE CAN.

140 ELEMENTS/CORE

NEW CORE HAS 84 ASSEMBLIES OF

NEW DESIGN

FUEL CHARGE 18 TON URANIUM DIOXIDE

BURNUP (REFUEL) 5000 MWD/T

CONTROL RODS, HYDRAULIC OPERATION, SILVER-INDIUM-CADMIUM

IN SS CLADDING

COOLANT TEMP. INLET 400 F OUTLET 430 F

HEAVY WATER MODERATED REACTORS, FOREIGN EF13:

GOOLANT PRESS. 495 PSIG

REACTOR VESSEL STEEL VESSEL, INNER SS CLADDING, 4.5 M. DIA. AND 6 M. HIGH

CONTAINMENT CAVERN, LINED WITH CONCRETE AND WELDED STEEL PLATE

REMARKS

THE PROJECT DEVELOPED FROM TWO DESIGN STUDIES. DESIGNATED R-3 AND ADAM. IN THE ADAM CONCEPT DEVELOPED BY ASEA FOR HOUSE HEATING PURPOSES. PRESSURE VESSEL WAS FILLED WITH HEAVY WATER. COOLANT ENTERED THE REACTOR VESSEL BY 8 PIPES THROUGH THE BOTTOM, FLOWED UPWARD THROUGH THE MODERATOR, AND WAS TURNED DOWNWARD BETWEEN THE THERMAL SHIELD AND THE VESSEL WALL. IT WAS THEN DISTRIBUTED TO THE FUEL ELEMENTS THROUGH A SPACE BETWEEN THE GRID PLATE AND THE BOTTOM ALUMINUM AFTER PASSING THE FUEL RODS THE HEAVY WATER ENTERED THE UPPER PLENUM AND LEFT THE REACTOR. A FUEL ELEMENT WAS COMPOSED OF 19 ALUMINUM CANS CONTAINING FUEL PELLETS. WERE 168 ELEMENTS IN THE CORE. IN THE RES CONCEPT DEVELOPED BY ABATOMENERGI FOR POWER AND HEAT PRODUCTION, THE FUEL ELEMENT CONTAINED FIVE SUBASSEMBLIES OR BUNDLES COMPOSED OF 19 INDIVIDUAL FUEL RODS IN A SUPPORTIVE SHROUD OF ZIRCALDY-2. EACH FUEL ROD WAS BUILT UP OF URANIUM DIOXIDE PELLETS ENCASED IN A ZIRCALOY-2 CAN. COOLANT FLOW WAS UPWARD THROUGH THE FUEL ELEMENT SHROUDS. THEN DOWNWARD THROUGH THE MODERATOR AND BOTTOM REFLECTOR REGIONS TO THE OUTLET NOZZLES, THE AGESTA PWR HAS A CYLINDRICAL CORE CONTAINING 140 ELEMENTS SECURED TO THE LID OF REACTOR PRESSURE VESSEL. ELEMENTS PENETRATE BOTTOM CORE PLATE INTO COOLANT PLENUM. COOLANT FLOW IS FROM THE INLET PLENUM UPWARD THROUGH ELEMENTS, DOWNWARD IN THE MODERATOR SPACE BETWEEN THE ELEMENTS. IS A PROVISION FOR RAISING THE REACTOR OUTPUT TO 125 MWT BY MEANS OF A MORE POWERFUL CORE AND ADDED HEAT EXCHANGERS /STAGE II/.

REFERENCES

R/3-ADAM. SWEDISH NUCLEAR HEAT-ELECTRIC STATION. NUCLEAR ENG. 5. 202-5 /MAY 1960/

DESCRIPTION OF THE AGESTA PLANT, /BOOK IN PREPARATION. NEW TECHNIQUE /NT/ 12,713, 1963/

THE AGESTA REACTOR.

HEAVY WATER MODERATED REACTORS: FOREIGN

EF13

B MC HUGH NUCLEAR ENERGY SEPT: 1964 p. 252-261

THE SWEDISH AGESTA POWER REACTOR
FA ABADIE-MAUMERT
ENERGIE NUCLEAIRE 7, 330-32 /SEPT.-OCT. 1965/

HEAVY WATER MODERATED REACTORS. FOREIGN EF14

NAME/OWNER MARVIKEN POWER STATION/STATE POWER BOARD, SWEDEN

DESIGNER ASEA, AB ATOMENERGI, SWEDEN

OPERATOR STATE POWER BOARD, SWEDEN

LOCATION MARVIKEN, SWEDEN /NORKOPINGS BAY AREA/

PURPOSE PROTOTYPE, POWER AND SPACE HEAT

TYPE HEAVY WATER MODERATED AND COOLED BWR. DIRECT

CYCLE, NATURAL CIRCULATION, INTEGRAL NUCLEAR

SUPERHEAT

POWER MWE(MWT) 200

CRITICAL CONSTRUCTION

TARGET 1968

COOLANT HEAVY WATER AND STEAM

MODERATOR HEAVY WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS 12.5 MM. DIA. /BOILING/

AND 11.5 MM, DIA. /SUPERHEATING/

FUEL GEOMETRY ROD

- FUEL CLADDING BOILER ZIRCALOY-2

SUPERHEATER CHROMIUM-NICKEL STEEL

. FUEL ENRICH. BOILER 1.3 PER CENT U=235

SUPERHEATER 1,5 PERCENT

FUEL ASSEMBLY 36-ROD CLUSTERS IN BOILING REGION.

48-ROD CLUSTERS IN SUPERHEATING REGION.

147 BOILING CHANNELS, NON-INSULATED SHROUDS
32 SUPERHEAT CHANNELS, INSULATED SHROUDS

SUPERHEAT CHANNELS WILL BE EMPTY DURING FIRST

YEAR OF OPERATION.

SPECIFIC POWER 18 KW/KG URANIUM

BURNUP (REFUEL) 13000 MWD/T

ON-LOAD FOR BOILING

ELEMENTS.

SHUT - DOWN FOR SUPER

HEAT ELEMENTS.

CONTROL RODS

COOLANT TEMP. INLET 120 C OUTLET

HEAVY WATER MODERATED REACTORS. FOREIGN _____EF14

BOILING 263 C SUPERHEAT 475 C

COOLANT PRESS. INLET 49.5 ATM.

REACTOR VESSEL CARBON-MANGANESE STEEL VESSEL 26 M HIGH,

5 M DIAM.

MODERATOR TANK SEPARATING MODERATOR FROM BOILING

CIRCUIT

CONTAINMENT CIRCULAR WALLS AND PRESSURE-SUPPRESSION

CONTAINMENT OF PRESTRESSED CONCRETE.

REMARKS A REDESIGN OF THE ORIGINAL PROPOSAL WAS DONE UNDER PROJECT BASHFUL, WHICH WAS CONCERNED WITH A

NATURAL CIRCULATION DIRECT CYCLE PLANT: THE ORIGINAL PROPOSAL WAS FOR A 100 MWE BWR.

ADVANCED DESIGN ENVISAGES THE GENERATION OF

SUPERHEATED STEAM TO PRODUCE 204 MWE, BUT IT COULD PRODUCE 160 MWE OPERATING WITH SATURATED STEAM.

PLUTONIUM FUELS WILL BE STUDIED. THE PROJECT HAS BEEN RENAMED MARVIKEN-K. SWEDISH PARLIAMENT HAS APPROVED CONSTRUCTION OF A 200 MWE STATION. PRELIMINARY WORK IS REPORTEDLY IN PROGRESS ON AN ENLARGED REACTOR. BASHFUL-1000 OF THE MARVIKEN

TYPE.

REFERENCES BF-4. SUMMARY REPORT /PRE-PROJECT/ CONCERNING

BASHFUL AB. ATOMENERGI REPORT, MAY 1962

NEUE TECH. /NT/ 4/12/. 713 /1963/

THE DEVELOPMENT WORK LEADING UP TO THE MARVIKEN

NUCLEAR POWER STATION.

PH MARGEN

NEUE TECH. /NT/ 4/12/. 699-714 /1963/

HEAVY WATER STEAM IN DIRECT CYCLE-MARVIKEN

R NILSEN

NUCLEAR ENG. 11, 456-60 /JUNE 1966/

HEAVY WATER MODERATED REACTORS: FOREIGN

EF15

NAME/OWNER PHWR /PRESSURIZED HEAVY WATER REACTOR/

AB-ATOMENERGI, SWEDEN

DESIGNER AB-ATOMENERGIE, SWEDISH JOHNSON CO.

PURPOSE POWER REACTOR STUDY.

TYPE HEAVY WATER MODERATED AND COOLED, CROSS-FLOW

POWER MWE(MWT) 250-400 1200

CRITICAL CONCEPT

COOLANT HEAVY WATER

MODERATOR HEAVY WATER

FUEL MATERIAL URANIUM /LATER PLUTONIUM-ENRICHED URANIUM/

FUEL GEOMETRY ROD

FUEL CLADDING ZIRCONIUM

FUEL ENRICH. 1,5 PER CENT U-235

FUEL ASSEMBLY SINGLE ELEMENT - NO CLUSTERING

FUEL CHARGE APPROX. 33.7 TONS URANIUM

SPECIFIC POWER 35.6 KG/KG U

. REACTOR VESSEL CYLINDRICAL, 36 M. DIA./50 M. HIGH

REMARKS CONCEPT IS BASED ON A CROSS-FLOW REGIME, WITH THE

FUEL ELEMENTS LAID ACROSS THE PATH OF THE COOLANT FLOW, PROVIDING DIRECT CONTACT BETWEEN FUEL AND HEAVY WATER, PHWR-400 IS AN INVESTIGATION OF CONCEPT AS A POSSIBLE CHOICE FOR FULL-SCALE INSTALLATION FOR 1970 SERVICE, FULL-SCALE

REACTOR EVALUATION HAS BEEN DONE BY NORDSTJERNAN GROUP IN COLLABORATION WITH AB ATOMENERGIE AND US WESTINGHOUSE. A FINAL REPORT ON THE FEASIBILITY

OF A 250 MW PLANT HAS BEEN COMPLETED FOR AB ATOMENERGIE BY WESTINGHOUSE, BECHTEL, JOHNSON CO.

THE FEASIBILITY OF BUILDING A PHWR IN MADRAS STATE, INDIA, IS BEING STUDIED BY JOHNSON CO. AND

INDIA S AEC.

REFERENCES APPLIED ATOMICS, MAY 16, 1962, P. 11-12.

HEAVY WATER MODERATED REACTORS. FOREIGN EF16

NAME/OWNER SULZER PROJECT/FEDERAL INST. TECH., SWITZERLAND

DESIGNER SULZER BROTHERS: SWITZERLAND

OPERATOR FEDERAL INSTITUTE OF TECHNOLOGY, SWITZERLAND

LOCATION ZURICH, SWITZERLAND LIMMAT RIVER

PURPOSE POWER AND DISTRICT HEAT

TYPE HEAVY WATER MODERATED AND COOLED, PRESSURE TUBE

POWER MWE(MWT) 6-8 30

COOLANT HEAVY WATER

MODERATOR HEAVY WATER, GRAPHITE REFLECTOR

FUEL MATERIAL URANIUM METAL

FUEL GEOMETRY HOLLOW RODS

FUEL CLADDING ZIRCALOY

FUEL ENRICH. NATURAL /OUTER ANNULAR RING 1 PER CENT U=235/

FUEL ASSEMBLY INDIVIDUAL FUEL TUBE IS BONDED ON THE INSIDE TO A ZIRCALOY PRESSURE TUBE, 13 MM. ID. EIGHT TUBE ELEMENTS, WITH AN OUTER THIN ZIRCALOY SHEATH, ARE HOUSED IN AN OUTER CASING TUBE, SEPARATED FROM THE HOT URANIUM SURFACE BY INSULATION.

88 ELEMENTS/CORE

CONTROL RODS

REACTOR VESSEL MODERATOR TANK, THIN-WALLED ALUMINUM, OPEN AT TOP GRAPHITE REFLECTOR BELOW AND AT SIDES, THERMAL SHIELDS, AND CYLINDRICAL BIOLOGICAL SHIELD OF CONCRETE WHICH CAN SERVE AS PRESSURE VESSEL.

THERMAL SHIELD IS WATER - COOLED.

CONTAINMENT UNDERGROUND CONSTRUCTION.

REFERENCES SULZER PROJECT FOR A PROTOTYPE HEAVY WATER POWER

REACTOR FOR LOCATION IN AN UNDERGROUND CAVERN.

P DE HALLER, AF FRITZSCHE

SECOND U. N. INTL. CONF. ON THE PEACEFUL USES OF

ATOMIC ENERGY 9. 16-35 /1958/

HEAVY WATER MODERATED REACTORS. FOREIGN

EF16

REPORT ON THE CONSTRUCTION OF A NUCLEAR HEAT AND POWER STATION FOR THE DISTRICT HEATING STATION OF THE FEDERAL INSTITUTE OF TECHNOLOGY.

SULZER BROS.

NP-7945 /N.D./

HEAVY WATER MODERATED REACTORS: FOREIGN EF17

NAME/OWNER EXPERIMENTAL POWER PLANT LUCENS/SNA, SWITZERLAND

DESIGNER SULZER BROTHERS, SWITZERLAND

OPERATOR SNA, SWITZERLAND

LOCATION LUCENS, SWITZERLAND

PURPOSE POWER EXPERIMENT

TYPE HEAVY WATER MODERATED AND COOLED, PRESSURE TUBES

/CALANDRIA/

POWER MWE(MWT) 6-7 30

CRITICAL 1966

COOLANT HEAVY WATER

MODERATOR HEAVY WATER

FUEL MATERIAL URANIUM-CHROMIUM ALLOY

FUEL GEOMETRY ROD, 17 MM. DIA: /650 MM. LONG. 4 SEGMENTS/ROD

FUEL CLADDING MAGNESIUM-ZIRCONIUM ALLOY, FINNED, 1.75 MM. THICK

FUEL ENRICH. 0.96 PER CENT U-235

FUEL ASSEMBLY 7-ROD ELEMENT /GRAPHITE SUPPORT IN THE PRESSURE

TUBE, INTO WHICH RODS ARE INSERTED/

CORE IS CYLINDRICAL WITH 2 CONCENTRIC ZONES.

73 ELEMENTS

FUEL CHARGE 5640 KG, URANIUM

SPECIFIC POWER 12 KW/KG U

CONTROL RODS, TUBULAR, SILVER-CADMIUM ALLOY CLAD WITH SS,

GAS-COOLED

COOLANT TEMP. INLET 221 C OUTLET 384 C

COOLANT PRESS, 60 ATM.

REACTOR VESSEL MODERATOR VESSEL ALUMINUM CYLINDER, ZIRCALDY

PRESSURE TUBES

CONTAINMENT CAVERN CONSTRUCTION, BIOLOGICAL SHIELD.

REMARKS SNA IS SPONSORING THE PROJECT, WHICH HAS REPLACED

HEAVY WATER MODERATED REACTORS. FOREIGN

EF17

THE PROPOSAL CONSIDERED BY SNA MEMBERS THERMATOM, ENUSA AND SUISATOM FOR A REACTOR OF SULZER DESIGN. THE CORE IS DIVIDED INTO TWO AREAS BY THE PITCH OF THE FUEL ELEMENTS. THE PRESSURE TUBES ARE OF ZIRCALOY=2. COOLANT FLOWS DOWN THE INSIDE OF THE TUBE AND PASSES UP OVER THE FUEL ELEMENT PROPER.

REFERENCES

LUCENS. SWITZERLAND-S EXPERIMENTAL PRESSURE TUBE REACTOR.
NUCLEAR ENG. 7. 449-51 /NOVEMBER 1962/

THE EXPERIMENTAL NUCLEAR PLANT AT LUCENS. P DE HALLER, W HELBLING ENERGIC NUCLEAIRE 5, 501-11 /NOV. 1963/

THE NUCLEAR EXPERIMENTAL STATION AT LUCENS. P VERSTRAETE
INDUSTRIES ATOMIQUES 3/4 . 55-67 /1964/

BNWL - 936 JANUARY 1969

HEAVY WATER MODERATED REACTORS! FOREIGN EF18

SGHWR /STEAM GENERATING HWR/AEA, UNITED KINGDOM NAME/OWNER

DESIGNER U.K. ATOMIC ENERGY AUTHORITY

OPERATOR U.K. ATOMIC ENERGY AUTHORITY

WINFRITH HEATH, DORSET, ENGLAND LOCATION

POWER PROTOTYPE PURPOSE

HEAVY WATER MODERATED, LIGHT WATER COOLED, TYPE

DIRECT CYCLE

PRESSURE TUBE, /CALANDRIA/

294 100 POWER MWE(MWT)

FULL POWER JAN. 1968 CRITICAL

LIGHT WATER, BOILING COQLANT

MODERATOR HEAVY WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS 0.57 IN. DIAM.

ROD, ACTIVE LENGTH 144 IN. FUEL GEOMETRY

FUEL CLADDING ZIRCALDY-2 CAN 0,028 IN. WALL THICKNESS

- FUEL ENRICH. 1.4 PER CENT U-235

FUEL ASSEMBLY 36-ELEMENT CLUSTER

FUEL CHARGE 21.41 TON U

BURNUP(REFUEL) 12,000 MWD/T ON-LOAD

VARIATION IN HEAVY WATER LEVEL, BORIC ACID CONTROL

INJECTION FOR QUICK SHUTDOWN AND REACTIVITY

ADJUSTMENT.

EMERGENCY CORE SPRAY BY MEANS OF CENTRAL SPARGE

PIPE IN CORE.

OUTLET 538 F COOLANT TEMP. INLET 527 F

COOLANT PRESS. INLET 970 PSI

REACTOR VESSEL ALUMINUM-MAGNESIUM ALLOY MODERATOR TANK MOUNTED

INSIDE WATER-FILLED SHIELD TANKS. ALUMINUM-MAGNESIUM CALANDRIA TUBES, ZIRCALDY IN-CORE

PRESSURE TUBES.

HEAVY WATER MODERATED REACTORS; FOREIGN

EF18

CONTAINMENT

THICK REINFORCED CONCRETE SHIELD AROUND REACTOR, STEAM DRUMS AND PRIMARY DRUMS, SECONDARY CONTAINMENT ENCLOSES WHOLE OF MAIN BUILDING. WALLS ARE STEEL-LINED.

REMARKS

PROTOTYPE CONSTRUCTION WAS STARTED IN MAY, 1963.
THE UK HAS BEEN STUDYING THIS REACTOR CONCEPT
SINCE 1958. BRITAIN-S INDUSTRIAL CONSORTIA WILL
COLLABORATE AND SHARE IN DESIGN AND DEVELOPMENT
OF THE PROJECT. TECHNICAL COLLABORATION WILL ALSO
BE CARRIED ON WITH CANADA AND SWEDEN.
LOW-LEVEL FORCED-DRAFT COOLING TOWERS WILL BE USED
DEISGN FOR A LARGE-SCALE DUAL PURPOSE REACTOR
HAS BEEN DEVELOPED.

REFERENCES

SYMPOSIUM ON PRESSURE TUBE WATER REACTORS.
BRITISH NUCLEAR ENERGY SOCIETY, RISLEY, LANCS.,
ENGLAND. JULY 1962.

THE SGHWR PROTOTYPE REACTOR.
A FIRTH, JER HOLMES
NUCLEAR ENG. 9.46-9 /FEB. 1964/

GENERAL DESIGN OF THE STEAM GENERATING HEAVY WATER REACTOR.

S FAWCETT, OTHERS
THIRD U. N. INTL. CONF. ON THE PEACEFUL USES OF ATOMIC ENERGY, GENEVA, 1964, A/CONF.28/P/129

THE STEAM GENERATING HEAVY WATER REACTOR H CARTWRIGHT TRG REPORT 1246 R /1966/

SGHWR. A DARK HORSE COMPETITOR
H CARTWRIGHT
NUCLEONICS 24, 60-63 /SEPT. 1966/

BRITAIN-S HEAVY WATER REACTOR, ENGINEERING 204, 411-15 /SEPT. 15, 1967/

WINFRITH SGHWR NUCLEAR ENG. 13/144/ p. 416-25 /1968/

STEAM GENERATING HEAVY WATER REACTOR UK AEA
BROCHURE ISSUED FEB. 1968

PRODUCTION.

A LARGE-SCALE DUAL-PURPOSE PLANT FOR WATER/POWER

HEAVY WATER MODERATED REACTORS, FOREIGN: EF18

DW CLELLAND DESALINATION 2, 215-19 /1967/

HEAVY WATER MODERATED REACTORS. FOREIGN EF19

NAME/OWNER R-1 AND R-2 / USSR

DESIGNER USSR

PURPOSE POWER CONVERTER-CONCEPT DEVELOPMENT

TYPE HEAVY WATER MODERATED, ORGANIC COOLED, PRESSURE

TUBE.

POWER MWE(MWT) 500 1600

CRITICAL CONCEPTUAL DESIGNS R=1 AND R=2

COOLANT ORGANIC LIQUID

MODERATOR HEAVY WATER-GRAPHITE REFLECTOR.

FUEL MATERIAL R-1 NATURAL URANIUM METAL

R-2 URANIUM DIOXIDE

FUEL GEOMETRY R-1 RODS

R-2 TUBES

FUEL CLADDING MAGNESIUM-BERYLLIUM ALLOY

FUEL ENRICH. NATURAL

FUEL ASSEMBLY R-1 THICK-WALLED ANNULAR URANIUM.

680 CENTRAL CHANNELS 356 PERIPHERAL CHANNELS

R-2 TUBULAR CLUSTERS

580 CENTRAL CHANNELS 290 PERIPHERAL CHANNELS

FUEL CHARGE R-1 100 TONS URANIUM

R-2 120 TONS

BURNUP (REFUEL) R=2 9000 MWD/T

COOLANT TEMP. INLET 230 C OUTLET 300 C

REMARKS THE R-1 DESIGN HAS A HIGH PLUTONIUM PRODUCTION

RATE, AND R-2 A HIGH URANIUM FUEL BURNUP.

MATERIAL FOR THE PRESSURE TUBES IS NOT SPECIFIED.

REFERENCES NATURAL URANIUM HEAVY=WATER=MODERATED ORGANIC=

COOLED POWER CONVERTER REACTOR.

A ALICHANOV, OTHERS

THIRD U. N. INTL. CONF. ON THE PEACEFUL USES OF

ATOMIC ENERGY, MAY 1964, A/CONF. 28/P/877

HEAVY WATER MODERATED REACTORS, FOREIGN EF20

NAME/OWNER MZFR/MEHR=ZWECK-FORSCHUNGS REAKTOR//MINISTRY

ATOMIC POWER, W. GERMANY

DESIGNER SIEMENS, W. GERMANY

OPERATOR GESELLSCHAFT FUR KERNFORSCHUNG MBH

SOCIETY FOR NUCLEAR RESEARCH

LOCATION KARLSRUHE RESEARCH CENTER, KARLSRUHE, W. GERMANY

PURPOSE POWER PROTOTYPE

TYPE HEAVY WATER MODERATED AND COOLED, PRESSURE VESSEL

POWER MWE(MWT) 50 200

CRITICAL DECEMBER 1967, FULL POWER

DOWN IN 1968 DUE TO LEAKAGE OF HEAVY WATER

INTO BOILER DURING FUEL RECHARGE.

COOLANT HEAVY WATER

MODERATOR HEAVY WATER

FUEL MATERIAL URANIUM DIOXIDE PELLETS 1.04 MM. DIA.

FUEL GEOMETRY ROD 1.864 MM. ACTIVE LENGTH

FUEL CLADDING ZIRCALOY-2 0.6 MM, THICK TUBE

THICKNESS

. FUEL ENRICH. NATURAL

FUEL ASSEMBLY 37-ROD BUNDLE

TWO ELEMENTS STACKED IN FUEL CHANNEL

242 ELEMENTS/CORE

FUEL CHARGE 13570 KG. URANIÚM DÍOXIDE

BURNUP (REFUEL) ON=LOAD

NEUTRON FLUX THERMAL AVE. 1.2X10 E+14

CONTROL ABSORBER RODS, CADMIUM-INDIUM-SILVER, PLUS

VARIATION IN THE MODERATOR TEMPERATURE

COOLANT TEMP. INLET 252 C OUTLET 280 C

COOLANT PRESS. 1280 PSIA

REACTOR VESSEL CYLINDER 13.45 FT. ID., CONTAINING A SECOND

HEAVY WATER MODERATED REACTORS, FOREIGN EF20

SUSPENDED VESSEL HOLDING THE MODERATOR. VESSEL IS PERFORATED BY SHROUD TUBES INSULATED BY LAYERS OF STAGNANT WATER.

CONTAINMENT SPHERICAL STEEL BUILDING 98,4 FT. DIA., 23 FT. ABOVE GROUND.

REMARKS

RESEARCH AIMS ARE TO TEST NATURAL URANIUM
REACTOR FUEL ELEMENTS UNDER OPERATING CONDITIONS.

IN-PILE LOOP RESEARCH ON COOLANTS. MATERIALS
TESTING. THORIUM, U-233 FUEL CYCLE, ISOTOPE
PRODUCTION. PRODUCTION OF FISSILE MATERIAL.
NUCLEAR SUPERHEAT. NEW CONSTRUCTION DESIGNS. MZFR
IS A MODIFICATION OF THE SIEMENS SNDR-16/SIEMENS
NATURAL DEUTERIUM REACTOR/

REFERENCES
THE SIEMENS MULTIPURPOSE REACTOR DESIGN.
A ZEIGLER
NUCLEAR POWER 6. 71-4 /MARCH 1961/

APPLIED ATOMICS FEB. 16, 1966 P. 11 NEWS RELEASE

HEAVY WATER MODERATED REACTORS. FOREIGN EF21

NAMEZOWNER MITSUBISHI HEAVY WATER REACTOR/MITSUBISHI ATOMIC

POWER IND, INC., JAPAN

DESIGNER MITSUBISHI ATOMIC POWER IND. INC. JAPAN

PURPOSE POWER

TYPE HEAVY WATER MODERATED/COOLED, PWR, PRESSURE TUBE,

CLOSED CYCLE

POWER MWE(MWT) 345 1163

CRITICAL DESIGN STUDY

COOLANT HEAVY WATER

MODERATOR HEAVY WATER

REFLECTOR, LIGHT AND HEAVY WATER

FUEL GEOMETRY RODS

FUEL CLADDING ZIRCALOY TUBES

FUEL ENRICH. NATURAL PLUS DEPLETED URANIUM

FUEL ASSEMBLY 47,500 RODS/CORE

500 LONGITUDINAL PRESSURE TUBES, COLD

- BURNUP(REFUEL) 8000 MWD/TU

NEUTRON FLUX THERMAL AVE, 1.2 x 10 E+4

CONTROL RODS, MODERATOR POISON

COOLANT PRESS. 102 ATM.

REFERENCES DESIGN STUDY OF PRESSURIZE HEAVY WATER COOLED

POWER REACTOR.

MASA-TOSHI YOKOSUKA /MITSUBISHI AT, POWER IND./

GENSHIRYOKU HATSUDEN 8, 51-61 /SEPT, 1964/

HEAVY WATER MODERATED REACTORS. FOREIGN EF22

NAME/OWNER YUGOSLAV REACTOR

DESIGNER UNO /YUGOSLAVIA/ AND ASEA /SWEDEN/

PURPOSE POWER

TYPE HEAVY WATER MOD. AND COOLED. BWR

POWER MWE(MWT) 200-400

CRITICAL DEVELOPMENT. TARGET 1971-72

COOLANT HEAVY WATER

MODERATOR HEAVY WATER

REMARKS AN AGREEMENT BETWEEN ASEA AND UND ON REACTOR

DEVELOPMENT HAS BEEN SIGNED.

REFERENCES BUSINESS ATOMICS REPORT MARCH 16, 1966 P. 4

NEWS RELEASE

BNWL - 936 JANUARY 1969

EF23 HEAVY WATER MODERATED REACTORS! FOREIGN

VENTURE/CANADIAN GENERAL ELECTRIC NAME/OWNER

DESIGNER CANADIAN GENERAL ELECTRIC CO. LTD. CANADA

300 PURPOSE

TYPE HEAVY WATER MODERATED/COOLED

VERTICAL PRESSURE TUBE

GRITTCAL DESIGN

COOLANT HEAVY WATER

MODERATOR HEAVY WATER

FUEL MATERIAL URANIUM

FUEL GEOMETRY PENCIL

FUEL ENRICH. NATURAL

FUEL ASSEMBLY BUNDLES, STACKED IN FUEL CHANNELS

ON-LOAD, SINGLE FACE BURNUP (REFUEL)

DIGITAL COMPUTER CONTROLS MODERATOR LEVEL, CONTROL

ABSORBER AND CONTROL RODS.

- REACTOR VESSEL CALANDRÍA A VERTICAL WELDED SSETANK

ZIRCALOY=2 CALANDRIA TUBES ZIRCALOY=2 FUEL CHANNELS

INTERSPACE BETWEEN TUBE FILLED WITH

CARBON DIOXIDE

PRESTRESSED CONCRETE BUILDING, FREE-STANDING. CONTAINMENT

LINED WITH RESIN.

A TWO-REACTOR UNIT /600 MWE/ MAY BE CONSIDERED FOR REMARKS

LOCATION ON A RIVER IN EAST-CENTRAL CANADA

DESIGN DETAILS OF THE CGE VERTICAL HEAVY WATER REFERENCES

PRESSURE TUBE REACTOR. SOME FACTORS INFLUENCING

THE DESIGN. NL WILLIAMS

HEAVY WATER POWER REACTORS, PROC. SYMPOSIUM.

VIENNA, SEPT. 1967 P. 233-43

IAEA, VIENNA. 1968

NAME JOHNER ARGENTINE METRIARGENTINE AEC

ATUCHA STATION

DESIGNER SIEMENS. W. GERMANY

OPERATOR CNEA, ARGENTINA

LOCATION ATUCHA, ARGENTINA

PURPOSE POWER

TYPE HEAVY WATER MODERATED PWR

POWER MWE(MWT) 300 1100

CRITICAL CONSTRUCTION. TARGET 1972

COGLANT HEAVY WATER

MODERATOR HEAVY WATER

FUEL MATERIAL URANIUM DIOXIDE

FUEL GEOMETRY ROD 11.9 MM. OD

FUEL CLADDING ZIRCALOY-2

FUEL ENRICH. NATURAL:

FUEL ASSEMBLY 36-ROD BUNDLE

BURNUP (REFUEL) 8,000 MWD/T RADIAL SHUFFLING ON-LOAD

COOLANT TEMP. OUTLET 305.4 C

COQLANT PRESS. 117 KG/SQ. CM.

REACTOR VESSEL VESSEL 5360 MM. ID.

CONTAINMENT SPHERICAL STRUCTURE.

REFERENCES STEAM GENERATING AND OTHER HEAVY WATER REACTORS.

NUCLEAR ENG. 13, 521-2: /MAY 1968/

BNWL - 936 JANUARY 1969

EF25: HEAVY WATER MODERATED REACTORS, FOREIGN

BHWR/CZECHOSLOVÄKIA NAME/OWNER

PURPOSE POWER

HEAVY WATER BWR, NATURAL CIRCULATION, DIRECT CYCLE TYPE

POWER MWE(MWT) 500

CRITICAL STUDY

COOLANT HEAVY WATER

MODERATOR HEAVY WATER

FUEL MATERIAL JURANIUM

FUEL ENRICH. NATURAL

CONTINUOUS, ON-LOAD,

REACTOR VESSEL PRESTRESSED CONCRETE VESSEL

PRESSURE = DAMPING SYSTEM

A 500 MW BHWR#TYPE NUCLEAR PLANT REFERENCES

M JOVANIC: L MOJOVIC

NUKL. ENERG. 5 /4/, 7-15 /1967/

			•	
			•	
				ı
				1
			•	ı
				'
			•	I
				I
				I
				1
				I
				I
				ı
				I
				1
				1
				•
				1