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Abstract

Our aim in this thesis has been to consider questions concerning the relationship between a

Generalized Quadrangle (GQ) and various substructures, with a view to proving characterisa-

tion and classification results. We also lay the groundwork for new GQ construction methods,

although no new GQs are constructed here.

In Chapter 1 we introduce preliminary concepts and results required for the rest of the

thesis, involving graphs, quadrics, geometries, GQs, algebraic topology on a simplicial complex

and covers of geometries.

Chapter 2 contains a detailed investigation of the ovoid y'(l(o) of Q@,q) constructed by

Kantor in [30] , including construction of non-elation rosettes of Q (4, q) containing only KL(o)

ovoids and rosettes containing both K|(o) ovoids and elliptic quadric ovoids.

In Chapter 3 we show that if 5 is a GQ of order (s, s2) and 5' is a subquadrangle of order s

doubly subtended in.S, then the subtended ovoid/rosette structure is a Semi-Partial Geometry

(SPG). A new SPG is constructed from a GQ of Kantor ([31]) and a 8(4,q) subquadrangle.

For a q-clan GQ 5, q even, Payne constructed a family of subquadrangles .So of order q (t45]).

We derive the algebraic conditions under which 5o is doubly subtended in 5, and hence gives

an SPG.

In Chapter 4 it is shown that if g is even a non-classical GQ of order (q,q2) containing a

subquadrangle isomorphic to Q(a,ù implies the existence of a new ovoid of PG(3,q). Also,

by a homology calculation, it is shown that if 5 is a GQ of order (q, q\, q odd, such that 5

contains a Q(4,q) subquadrangle, with each ovoid of Q(a,ù subtended by 5 an elliptic quadric

ovoid, then .9 is isomorphic to Q(5, q).

In Chapter 5 we show a GQ 5 of order s with a regular point (oo) gives rise to a cover of the

affine plane constructed from ,S and (oo), as in [49, 1.3.1]. Given an affi.ne plane zr of order s and

an s-fold cover of n satisfying special conditions we construct a GQ of order s with a regular

point. If the cover of zr is algebraic the condition on the cover is interpreted in cohomological

terms; we investigate these for the remainder of the Chapter 5.
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Preface

Generalized Quadrangles (GQs) were introduced by J. Tits in 1959 ([00]) in his work on triality.

Tits was also responsible for the construction of the first non-classical GQ of order (s, s2), the

GQ 
"B(g) 

of order (q,q') where q :2', e odd, and g is the Suzuki-Tits ovoid of PG(3, q), which

first appeared in [19]. After the classical GQ Q(5,q) of order (q,q') and ?3(g), the next GQ of

order (s, s2) was constructed by Kantor via the group coset geometry method ([29]). A number

of new GQs of order (s, s2) followed using the group coset geometry method of Kantor, all of

which, except the Roman GQ of Thas and Payne [65], arise from q-clans (see [43, a5] and [31]).

In all cases the parameter s is a prime power.

Relatively little is known about subquadrangles of the known GQs of order (s, s2) although

there are a number of examples of subquadrangles of order s. The GQ 8(5, g) has subquadran-

gles isomorphic to Q(a,ù; the GQ of Kantor in [31] and the Roman GQ both have subquadran-

gles isomorphic to Q(4,q), while the GQs derived from g-clans for q even have subquadrangles

isomorphic to the GQT2(0), for O some oval of PG(2,q). This thesis is largely devoted to

investigating the combinatorics of a subquadrangle of order s of a GQ of order (s,s2).

A result of Payne and Thas ([49]) shows that if E is a GQ of order (", "') and 5/ is a

subquadrangle of order s, then each point of S\S'is collinear to the s2 +l points of an ovoid

of 5/. A line of 5 \ 5' contains s such points of 5 \.9/ and the corresponding set of q ovoids of 5/

has the property that any two elements intersect in a fixed point (the point where the line meets

S'). A sufgestion of Christine O'Keefe and Tim Penttila was to study these "rosettes" of ovoids

of a GQ 5' of order s (defined combinatorially as a set of s ovoids meeting pairwise in a fixed

point) to see what they revealed about GQs of order (s, s2) containing .S' as a subquadrangle. A

result in this direction had already been proved by Payne and Thas ([65, VII.l.]) showing that

the GQ Q$,q) is characterised by the existence of a QØ,q) subquadrangle with each point of

Q6,ù \ 8(4, q) being collinear to an elliptic quadric ovoid of QØ,q).
An obvious first step in considering ovoids and rosettes of GQs of order s is to consider

ovoids and rosettes of. Q(4,q). For q even the only known non-classical ovoid of Q(4,q) is for

the case q:2',, e odd, and is isomorphic to the Tits ovoid of W(q). In Chapter 4 rosettes of

these "Tits" ovoids of Q(4,q) are used to show that the existence of a non-classical GQ of order

(q,q2), q even, containing a subquadrangle isomorphic to QØ,q) implies the existence of a new

ovoid of PG(3, q). (Note that the latter is fairly unlikely!).

For q odd there are a number of non-classical ovoids of Q(4,q) known, the most "struc-

tured" of these being the -úf1(ø) ovoid constructed by Kantor in [30]. Chapter 2 is devoted to

investigating the properties of this ovoid and the rosettes of Q(4,g) containing it.

The other obvious problem for q odd it to show that Q(5, q) is characterised by the ex-
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istence of. a Q(4,q) subquadrangle with each point of Q$,q) \ 8(4,q) being collinear to an

elliptic quadric ovoid of QØ,q). Consideration of this problem led to considering the general

combinatorial setting: that is, a GQ 5 of order (", r') with a subquadrangle 5' of order s such

that if the points of an ovoid of 5' are collinear with a point of S \ S', then they are collinear

with exactly two points of .S \ 5'. A consequence of a result of Bose and Shrikhande ([8], see

149, L.2.41) is that any set of points of an ovoid of 5t may be collinear with at most two points

of 5 \,S' and so 5' is a combinatorially "extreme" subquadrangle. It was observed by Metz (see

[18]) and Hirschfeld and Thas (see [26]) that in the case where 5:8(5,q) and E' : Q(4,q)

that the ovoids and rosettes of Q(4, g) associated with the points and lines of S \ 5' form a

geometry which is a Semi-Partial Geometry (SPG). In Chapter 3 it is shown that this is also

true in general for any such 5 and 5' described above. A new SPG is constructed from a GQ

of Kantor in [31] and a QØ,q) subquadrangle.

In this "extreme" case the relationship between the SPG and the geometry of 5 \ 5' is a

cover, and more specifically an algebraic cover. The question of how many "different" GQs of

order (s, s2) give rise to a given SPG in this manner becomes a problem in cohomology. In

Chapter 4 this approach allows us to prove [65, VII.I] in the case where q is odd.

This idea of the geometry of a "substructure" of a GQ being related to the geometry of the

GQ "outside" the substructure is explored again in Chapter 5. In this case the GQ is of order

s with a regular point (oo), and the substructure is an affine plane of order s, as defined in [49,

1.3.1.]. It is shown that such a GQ always gives rise to a cover of the associated affine plane

(and also a distance-regular cover of the complete graph on s2 vertices). The rest of Chapter 5

is spent exploring the idea of algebraic covers of an affine plane and their relation to GQs of

order s with a regular point. This seems a promising approach to constructing new GQs of

order s, although none, as yet, have been found.
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Chapter 1

Preliminanes

In this chapter we give definitions and results that will be used throughout the thesis. We will

assume that reader is familiar with the theories of finite fields and projective spaces over finite

fields; an excellent and thorough introduction to projective spaces over finite fields is given in

[24]. For notational convenience we will associate a point of the projective space PG(n,g) with

the homogeneous coordinate vector that represents it.

1.1 Graphs

A graph G is an ordered pair (Iz, -Ð) where I/ is a non-empty set of elements called vertices

and -E is a set of unordered pairs of distinct vertices, called edges. Two vertices of G, u andu,

that are contained in -E are said to be adjacent and we write u - o.

A path of G is afinite, ordered set of vertices 1)0t'ur¡... tun such that ui-ui+r for 0 ( z (
n - L The path is said to have length n. Two vertices z and u are said to be connected if
thereexistsapath l)¡t'urt...,un suchthat u0:'uandu,-:u. A graphGisconnectedif each

pair of vertices of G is connected.

A path nl,'ur¡... ,tun is said to be closed if ug : ur¿. Alternatively, we may think of a closed

path as a set of edges of G such that each vertex of G appears an even number of times in edges

in the path. This set of edges is called the edge set of the path. A circuit of G is a closed

path such that no edge is repeated. We will represent the circuit tr1,'urr...¡un with u6 :2r,
by (ro,,nt¡... ,un-L). For convenience we will often consider two circuits that differ only by a

cyclic permutation of their vertices to be the same circuit. An elementary circuit is a circuit

'uo¡'t)r¡...tun_r¡u6suchthatu¿fu¡for0(i,j<n-L,ilj.TheelementarycircuitCis
said to be induced if each vertex of C is adjacent to exactly two others in C.

Let G : (V,E) and Gt : (V',,Ð') be graphs. The graph G/ is a subgraph of G if V' çV
and Et : {(u,u) : u,u eV'and (u, u) e E}. If u is a vertex of G, then G, is the subgraph of
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G with vertex set {z : u - u}. In general, if ,4 g V with A: {ut,'u2t,..,'t,rr}, then G¿ is the

subgraph of G with vertex set {z : Lt N u¿fori - 1,... ,"r}. A clique of G is defined to be a

complete subgraph of G. A connected component of G is a maximal connected subgraph.

A connected graph G : (V,.8) is regular if for every vertex u €.V, l{u eV i u - u}l : k,

for some fixed k. The number k is called the valence of the graph G.

Let u and u be two vertices of the connected graph G : (V,E) and let

,¡1, : ,ttrot,utt. . . tun-r¡un : 'u be a path of shortest length from u to u. The distance between u

and o is defined to be n and we denote this by d(u,u) : n or d(u,u): n. The diameter of G

isdefinedtobethenumber d,:mar{d,(u,u): u,u€V}. Ifzisavertexof G,thenletG¿(u)

be the set {u : d,(u,u):i).Thus Gs(u) : {"} and G1(z) - Gu.

A connected graph G : (V,.8) is called distance-regular if there exists integers b¿,c¿

(, > 0) such that for any two vertices ulu e V, with i: d(u,r.,), there are precisely c¿ vertices

contained in G¿-1(u) that are adjacent to u and b¿ vertices contained in G¿-.1(u) that are

adjacent to r.'. The sequence {bo,br, ... ,ba-t;ct¡c2t... ,cd,}, where d is the diameter of G, is

called the intersection array of G. Note that it follows that G is regular with valence lc: bo

and that bd : c0: 0 and c7 : L For more information on distance-regular graphs see [9] or

[5]. A distance-regular graph of diameter 2 is called a strongly regular graph. If G : (V, E)

is a strongly regular graph, then it has parameters u, k, þ, \, where u : lVl,, k is the valence of

G,þ:c2a,ndÀ:lc-h-7.
For any connected graph G: (V,E) of diameter d> Iwe denote by G¿ (for i: I,2,... ,d)

the graph with vertex set V and with vertices u and u adjacent if d(u,u) : i' in G. The graph

G is antipodal if G¿ is a disjoint union of cliques.

L.2 Quadrics

In this section we introduce quadrics of P G (3, q) ; for a more detailed treatment see 124, Chapters

5,6 and 71,125, Chapters 15, 16, 1.7 and 20] and l27,Chapter22l.
A quadric Qnof PG(rz,q) is the set of points of PG(zr,q) whose homogeneous coordinates

satisfy a quadratic form -F(r6, ï7t... ,rn):Ð?=oa¿r! *D¿<j aij;r,t:rj.If f'cannot be reduced

to a form in fewer than r¿ * 1 variables by a linear transformation, then F is non-degenerate

and Qn is non-singular. If n is even, then every non-singular quadric in PG(n, q) is projectively

equivalent to the parabolic quadric, denoted by Pn. If n is odd, then PG(n, q) has exactly

two projectively distinct non-singular quadrics, the elliptic quadric, denoted by €" and the

hyperbolic quadric, denoted by 'Jln. Canonical forms for the non-singular quadrics are as

2



follows

Pn : v(rfi + r1r2J- ... -f rn-1rn),

en : V(l@o,rt) * !r2!Q* -.' * rn-1rn),

'17n : V(rsrl_l rzre+... + rn_rrn),

where / is an irreducible binary quadratic form.

If we allow -F to be degenerate, then the quadric defined by .F may be singular, that is,

a cone fInQr. This cone is the join of the vertex fl/r, a subspace of PG(n,,q) of dimension k

and a non-singular quadric Q, in the subspace fI, of dimension s, with fI¿ and fI" skew and

k+s:n-L
Suppose tlnat Qn is a non-singular quadric of PG(n, q) defined by the quadratic form

F(ro,rr,...,rn). Then the bilinear form B associated with f is given by p(X,Y) :
F(X +Y) - F(X) - F(Y). The bilinear form gives the geometry of the quadric, as the following

lemma shows.

Lemma L.z.L [27, Lemma 22.3.1] LetY e Qn. Then

(i) # X I Qn, then þ(X,Y) :0 ç (f,,Y) is tangent to Qn.

(ii) # X € Qn, then B(X,Y) :0 s ({,Y) c Q".

(iii) B(x, Y) + 0 4a l(X, Y) ñ Q"l : 2

Lemma L.2.2 [27, Lemma 22.3.3] If q and n are not both euen, the correspondence Y <---+

V(P(Y,X)) i,s a polarity. For q odd, the set of self-polar points i,s Qn. For q euen, the polarity

i,s null and euery point in PG(n, q) is self-polar.

\Me will denote the action of the polarity by I. If Y is a point of PG(3,q), then the polar

hyperplane V(P(Y,X)) is called the tangent space or tangent hyperplane of Y. For details

of the action of the polarity on subspaces of PG(n,q), see [27, Theorem22.7.2].

Now we consider the symmetries of Qrr, where q and r¿ are not both even. Let Q be a point

of PG(n, q) \ Q" and let p,q : Qn -) Qn be defined as follows. For P in Qn,

pq(P) : P if (P, A) is a tangent to Qn

P' if (P,Q) meets Qn at P' + P.

The map pe mLay be extended to an automorphism of PG(n, q) (fixing 8") given by

x r_+ x _ þ6,Q) oF(q \t

(127, Lemma 22.6.31).
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1.3 An introduction to geometries

An (incidence) geometry is an incidence structure 5 : (P,B,I) in which P and ß are

disjoint (non-empty) sets of objects called points and lines, respectivel¡ and for which 1 Ç

(P x ß)U(ß x 2) is a symmetric point-line incidence relation. In addition, we require that two

distinct points of 5 are incident with at most one line and two distinct lines of 5 are incident

with at most one point. Two points of 5 that are incident with a common line are said to be

collinear and two lines of S that are incident with a common point are concurrent.

The dual of a geometry 5: (P,ß,1) is the geometry 5^: (6,P,1). So, the points of .S^

are the lines of 5, the lines of 5^ are the points of 5 and the incidence relation between P and

6 is the same in both 5 and 5^.

An automorphism of a geometry .S : (P,8,1) is a bijection Ó, PUß -+ PUß, stch

that @ maps points to points, lines to lines and preserves incidence. By preserving incidence we

meanthatifPePand(.eß,thenPI(.ifandonlyifÓ(P)IÓ(¿).ThepointgraphofSis
the graph with vertex set 2 and edge-set the set of collinear pairs of points of 5.

The geometry E/ : (P',ß',1') is a subgeornetry of .S if Pt Ç P, ß' ç ß and .I' is the

restrictionof 1to (P'xß')U(BtxPt). IfS/isasubgeometryof S,thenwewriteS'ç5. If
E + E', then we say that 5' is a proper subgeometry of 5 and write .9' c S. If 5' C 5, then

it follows that Pt I P or ß' + B.

1.3.1 Examples of geometries

A (finite) partial geornetry (PG) is an incidence structure W : (P,6,1), satisfying the

following axioms:

(i) Each point is incident with 1 * ú lines (¿ > 1) and two distinct points are incident with at

most one line;

(ii) Each line is incident with 1 * s points (" 2 1) and two distinct lines are incident with at

most one point;

(iii) If X is a point and / is a line not incident with X, then the number of pairs (Y,*) €. P x B

for which X I m I Y I I is a constant a (a > 0).

The integers s, f and a are called the parameters of W. It follows that l2l : (s* I)(st-lcr)1a,,

16l : (t + 1)(sú + a) la and that the point graph of W is strongly regular. Partial geometries

were introduced by Bose in [7] to investigate strongly regular graphs.

A (finite) semi-partial geometry (SPG) is an incidence structureT : (P,,ß,1), satisfying

the following axioms:

4



(i) Each point is incident v/ith 1 * ú lines (ú > 1) and two distinct points are incident with at

most one line;

(ii) Each line is incident with 1 f s points (s 2 1) and two distinct lines are incident with at

most one point;

(iii) If X is apoint and/isalinenot incident withX, thenthenumberof pairs (Y,*) e PxB
for which X I m IY I /iseither0or aconstant a (a 20);

(iv) For any pair of non-collinear points (X,Y) there are p (p > 0) points Z sucln that Z is

collinear with both X andY

The integers s,ú, a,p are the parameters of 7. It follows that l2l : 1* (ú + l)s(¡r +

t(s- a+t))lt, and 16l : p(t + t)/(s * 1). Note that axiom (iii) of a semi-partial geometry is

a generalisation of axiom (iii) for a partial geometr¡ while axiom (iv) forces the point graph

of a semi-partial geometry to be strongly regular. Thus, partial geometries are a subclass of

semi-partial geometries. The point graph of T has parameters

lú+s)s(p*Ú(s - o+i), k: (t* 1)s, ,rf,, \:s - 1*ú(o - 1)..u: I _r 
t"

Semi-partial geometries rvere first introduced by Debroey and Thas in [18]. For more information

on partial geometries and semi-partial geometries see [17].

An important class of partial geometries (and hence semi-partial geometries) is the case

o¿: l, the generalized quadrangles. A (finite) generalized quadrangle (GQ) is an incidence

structure S: (P,6,1), satisfying the following axioms:

(i) Each point is incident with 1 * ú lines (¿ > 1) and two distinct points are incident with at

most one line;

(ii) Each line is incident with 1 * s points (" à 1) and two distinct lines are incident with at

most one point;

(iii) If X is a point and I is a line not incident with X, then there is a unique pair (Y, m) e PxB
forwhichXImIYI(,.

It follows that lPl : (s * 1)(sú + 1) and lßl : (t + 1)(sú * 1). We say that .S has order (s, ú)

whileif s:t, thenwe say that 5 has order s. A subgeometry of a GQ 5 that is also a GQ

is called a subquadrangle or subGQ. Generalized quadrangles were introduced as part of a

larger class of geometries called generalized r¿-gons, by Tits in [66]. For a complete list of the

known GQs see [64].
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L.4 Generalized Quadrangles (GQt)

L.A.L Combinatorics of GQs

In this section we give some combinatorial definitions and properties of GQs. For more details

see [49].

Let 5 be a GQ of order (s,f). Given two points X,Y of S, we write X -Y if X andY

are collinear, or if X :Y, otherwise we write X *Y. Dually, for two lines /, m of E, we write

[ - m if (, and n'L aÍe concurrent, or if. (.: rn, otherwise we write (. y'. rn.

ForX € 7>, define XL: {Y eP: Y - X}. ThesetXriscalledthetraceof X. Thetrace

of apairof distinctpointsXandY,isthesetXrlìYrandisdenoted {X,Y}L. Thesizeof

{X,Y}L is s*1or f f 1, according âs X - Y or X y''Y. For X +Y, the span of the pair (X,Y)

is {X, Y}LL : {U e.P: fI e ZL for all Z e {X,y}r}, that is, {X,y}rr : ({X,f}r)r. tn

general, if P' C?,thenP'L :lyçp,XL and P'rr : (P't)t'
If X-Y,Xf Y,orif X/' Yandl{x,y}[l :ttl,wesaythatthepair(X,Y) is

regular. The point X is regular if (X, Y) is regular for each Y € ? such that Y I X.

A triad (of points) of 5 is a triple of distinct, pairwise non-collinear points.

An ovoid of a GQ 5 of order (s,ú) is a set 0 of points such that each line of 5 is incident

with precisely one point of 0. It follows that 0 has sú * 1 points. Dually, a spread of 5 is a set

O of sú * 1 lines of 5, such that each point of 5 is incident with exactly one line of O.

A rosette based at a point X of S is a set 71. of ovoids with pairwise intersection {X}
and such that {0\{X}:0eR} is a partition of the points of E not collinear with X. The

point X is called the base point of R. It follows that a rosette 7l has s ovoids. A rosette is

hornogeneous if all of its ovoids are of the same isomorphism class in 5. A rosette that isn't

homogeneous is inhomogeneous.

Let the GQ.t' : (P',ß',,1) of order ("',t') be a subGQ of the GQ S : (P,6,1). If 5'is
apropersubGQof 5,thatis5/l5,and (.e ß thenbyl49,2.I], exactlyoneof thefollowing

occurs: (i)Leßt;(ä)¿øß'and(. isincidentwithauniquepointX e Pt,inwhichcase.rve

say I is tangent to 5' at X; or (ili) (. ø ß' and I is incident with no point of Pt, in which case

we say I is external to 5'. Dually, we may define external points and tangent points.

Lernma 1.4.1 ([61],l4ll, see [49, 2.2.L]) Let 5 : (P,B,I) be a GQ of order (s,ú) with a

subquadrangleS/:(P',ß',1') of order (t,t'). Eachpointof S,externaltoS',iscollinearwith

the 1 * sú' points of an ovoid of 5/.

An ovoid arising as in Lemma I.4.L is said to be subtended by P, or just subtended. The

ovoids of 5' subtended by the points in 2 \ P' are said to be the ovoids subtended by 5 or

just the subtended ovoids.
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If. [. is a line of 5 that is tangent to .S' then each of the s points incident witt' (. and not

contained in P' , is external to 5'. Furthermore, the set of s ovoids subtended by these points

is a rosette of .S/. To see this, first observe that if X,Y I (, and X,Y eP\P', then the ovoids

0x and 9y, subtended by X and Y respectively, are both incident with the point / n.S'. Also,

if. 0a and 0y are both incident with a further point Z of 5', then X,Y, Z form a triangle. \Me

say that the rosette constructed as above is subtended by the line l, or just subtended.

We define subtended spreads and subtended rosettes of .S/ dually.

t.4.2 The classical GQs

The classical GQs are those GQs corresponding to the classical groups and are as follows (see

[49, Section 3.1]).

1(a) The GQ 8(3,q) of order (q,1) arises as the points and lines of the non-singular hyperbolic

quadric in PG(3, q), given by the equation rs:q I r2ry - 0. Since t: l, the structure of

QQ,ù is trivial.

1(b) The GQ 8(4,g) of order q arises as the points and lines of the non-singular (parabolic)

quadric in PG(4, q), given by the equation rf, + rp2l r3n4 : Q.

1(c) The GQ 8(5,q) of order (q,q') arises as the points and lines of the non-singular elliptic

quadric in PG(5, q) given by the equation rf; + arsrs + br! * rvr2 * n3r4: 0, where

rf, + arsrs + br! is an irreducible binary quadratic form.

Note that Q$,q) contains subquadrangles isomorphic to Q(a,q) (see [49, 3.5(a)]).

2(a) The GQ .F1(3, 92) of order (q',q) arises as the points and lines of the non-singular hermitian

variety of PG(3, q2), given by the equation *3*t + r\*t + *l+t + 
"3+1 

: 0.

2(b) The GQ,Fl(4, q2) of order (q2,g3) arises as the points and lines of the non-singular her-

mitian variety of PG(4, q2), given by the equation *3*' + *1+t + *E+' + *1*' + ron+t :0.

3(a) The GQ W(q) of order q arises as the absolute points and absolute lines of a symplectic

polarity in PG(3, q), with canonical bilinear form 1691 - .rrAo I rzAt - rJA2:0'

It has been shown, independently by Buekenhout and Lefèvre in [11] and Olanda in [39, 40],

that the classical GQs are precisely the GQs S : (P,6, .I) such t}rat P is a subset of the pointset

of some projective space PG(n, q) and ß is a set of lines of PG(n, q).
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1.4.3 The non-classical GQ of Tits

The following constructions of the non-classical GQs fz@) and ?3(0) are due to Tits and first

appeared in [19].

Let E : PG(3,q) and H :PG(2,q) be a hyperplane of E. Fhrther, let O be an oval of fl'
Define Tz(0) to be the following incidence structure:

Points: (i) The points of E \ 11

(iÐ The planes of E, not .F1, meeting fI in a tangent to (?

(iii) The symbol (oo)

Lines: (u) Lines of D, not contained in -FI that meet o
(b) Points of (?

Incidence: (i)(u) Incidence in E

(ii)(a) Containment in E

(iii)(a) None

(i)(b) None

(ii)(b) Incidence in E

(iii)(b) All

Let D' : PG(4, g) and fI' : PG(3, q) be a hyperplane of E'. Further, Iet 0 be an ovoid of

fI'. Define 
"3(A) 

to be the following incidence structure:

Points: 
lll, ii:ffi,J,:.:l",, not H,,meeting 0 in aunique point

(iii) The symbol (oo)

Lines: (u) Lines of E', not contained in Ht, hat meet 0

(b) P ints of d

Incidence: (i)(u) I cidence in D'

(ii)(a) Containment in D'

(iii)(a) None

(i)(b) None

(iÐ(b) I cidence in E'

(iii)(b) All

I.4.4 Isomorphisms between GQ

In this section we give some isomorphisms between the GQs defined in Section 1.4.2 and Sec-

tion 1.4.3. For proofs of the isomorphisms, see the cited result in [49].

Theorern I.4.2 [49, 3.2.1] The GQ Q(a,ù is isomorphic to the dual of W(q). Moreouer,

QØ,q) (orW(q)) is self-dual if and' only if q is euen'
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Theorem L.4.3 [49, 3.2.2] The GQ Tz(O) is isomorphic to Q(4,q) if and only i,f o is an

irreducible con'ic; it is isomorphic tow(ù ¿f and only i,f q is euen and, O is a con'ic.

Theorem 1.4.4 [49, 3.2.3] The GQ Q6,ù 'i,s isomorphi,c to the dual of H(3,q2).

Theorem L.4.6 [49, 3.2.4] The GQ Ts(0) i,s isomorphic to Q(5,q) if and, only if 0 i,s an elliptic

quadric o/ PG(3, q).

L.4.5 The q-clan GQs

In this section we give a summary of results on the g-clan construction of GQs of order (q, q')'

First consider the group coset construction of a GQ as introduced by Kantor [29]. Let G be

a finite group of order s2t, s > 2, t ) 2 and suppose that G admits two families of subgroups

F : {50,... ,,9¿}, .F* : {Sð,... ,Sf} such that lS,l : "' lsil : sú and S¿ Ç Si. If. F and F*

satisfy:

KL

K2

S¿S¡ ì Sn: t

,9|n^9r:1

forkli,jandiljand
forilj,

then f is a  -gonal famity for G. The following point-line geometry S(G,f) is a GQ of order

(", ú).

Points ' (i) Elements of G

(ii) Right cosets, STg, i - 0,.. . ,t, g €. G

(iii) (*)
Lines: (u) Right cosets S¿g,i:0,...,t, g €G

(b) Symbols [O;], i:0,...,ú.

A point g of type (i) is incident with each line S¿g. A point ,9|9 of type (iz) is incident with [S¿]

and with each line S¿h C Sfg. The point (oo) is incident with each line [S,] of type (b). These

are all of the incidence relations'

We now consider g-clans and give the construction of a 4-gonal family from a q-clan, the

development of which is due to Payne 143,,451and Kantor [31]. For q a prime po\Mer a q-clan

isasetC:{At:¿€GF(q)}of2x2matricesoverGF(S) suchthatfordistincts,teGF(q),
solution a : b: 0. We can normalise a q-clan

(,,,,\
eVen,A¿: | |

\o ,,)
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Now consider the particular group G: {(a,c,þ): a,þ € GF(q)',c e GF(q)} and define a

binary operation on G by

(*, 
", þ)' (*', "', þ' ) : (* I at, c + c' + þ(o')', P + P' ).

This binary operation makes G into a group where (o,",þ)-r: (-o, otPT - c,-P).Let C be

a normalised q-clan and let Kt : At -f Al for ¿ € GF(q). Define the following subgroups of G:

,a(*) : {(0,0, þ), þe GF(q)2}

Æ(*) : {(0,c, þ), c€ GF(q),4 e GF(q)2}

A(t) : {(a,aA¡ar,aKt): a e GF(q)2} for ú € GF(q)

A*(t) : {(o,",c"K¡): c€ GF(q),o e GF(q)2} for ú € GF(q),

where 0 is the identity element of GF(q)2. Then f(C) : {A(t): ú € GF(q) u {-}} is a 4-gonal

familyforGwhichgivesrisetoaGQ S(G,F(C)) of order (q',q). Wewilldenote S(G,F(C))

by s(c).
The following three theorems are results on the automorphism group of a q-clan GQ.

Theorern L.4.6 l48,III.(1)] Suppose Gt, Gz are groups arrd F is a 4-gonal family for Gr.

If. 0 : G1 -+ Gz is a group isomorphism or a gloup anti-isomorphism, then 5(G1,F) and

E(G2,0(f)) are isomorphic GQs.

(A group anti-isomorphism is a one-to-one and onto map 0 : Gt -+ Gz such that

o(gs') : o(g')o(g) for all s,g' € Gr)
In particular, if we have a group automorphism of G then it induces an automorphism of

s(G,r).

Theorem L.4.7 148,IV.1.] Let C be a normalised q-clan, q odd, with ,4.¡ : lfo : 0. Let

5(C) : (P,B,f,) be the associated GQ of order (q2,q). Let O be a collineation of S(C) which

fixes (oo), [,a(-)], and (0,0,0). Then there is

a permutation ú Ð ú of the elements of GF(q),

a nonzero element À of GF(q),

an automorphism o of GF(q) and ,

a2x2 matrix DeGL(2,q)

for which the following holds

(n-t¡r Ø¡ - Aò D-L - ÀAfl is a skew symmetric matrix (with 0 diagonal)

for all ú e GF(q). (1.4'1)

10



Moreover, O is induced by an automorphism of G, and is given by

o : (o, c,, P) è (ao \-1p-r ,À-t"o I \-2a" D-r AuD-tça")r , þ" D + a" \-r D-'*ò.

Conversely, given D, ø, À and ú r+ i as just described, the O as above is a collineation of 5(C).

\Mhen q is odd, and if each A¡ € C is symmetric, 1.4.1 may be replaced by

At: \Dr Ai D + A6 for all ú € GF(q).

The automorphism O is denoted by O(zr, À,o,D)'

The autoåorphisms in Theorem I.4.7 all fix the line [,4(oo)], in the following theorem we

consider automorphisms not fixing [,a(*)].

Theorem1.4.8 [48, IILs.] If C:{A¿:te GF(q)}isaq-clan,qodd,withAs :(O Ol,
\o o )'

t¡¡enCt:{Atr:0lt € GF(q)}u{Ao} isaq-clanwithS(C) =5(C'). Infact, theswitchfrom

C to Ct just amounts to interchanging the roles of ,4(oo) and ,4(0) in the coordinatisation of 5.

Note that from the proof of Theorem 1.4.8 in [a8] the isomorphism in Theorem 1.4.8 is given

by the group anti-automorphism 0: G -+ G: (o,",þ) ,+ (P,,2c,2a)' Thus the subgroup

qr : (GF(s) x 0) x GF(q) x (GF(q) x 0) is fixed under the isomorphism.

1.4.6 Ovoids and rosettes of GQs

Ovoids of Q@,q)

Let Q(4,q) C PG(4,q), for g odd oï even, and let Ð be a hyperplane of PG(4,q) such that

E n Q(4,A) : 0 is a non-singular elliptic quadric of !. Then 0 is an ovoid of Q@,q) and an

ovoid that arises in such a way is called classical.

If g is even, then Q(a,ù is isomorphic to W(q) and so an ovoid of Q(4,g) is equivalent to an

ovoid of W(q). If W@) C PG(3, q), then an ovoid of W(q) is also an ovoid of PG(3, q), that is

a set of q2 +L points of PG(3,4), no three collinear. Further, any ovoid of PG(3,q) is an ovoid

of a GQ W(q)', where W(q)' c PG(3,q) and W(q)'is isomorphictoW(q) (t551). Two ovoids of

W (q) are isomorphic under an automorphism of W(q) if and only if they are isomorphic under

an automorphism of PG(3, q) [2, Prop. 1]). Thus, the distinct classes of ovoids of W(q) are

exactly the projectively distinct ovoids of PG(3' q).

If. q : 2", e eveîrthen every known ovoid of PG(3,q) is classical. For e : 2, it is straight-

forward to show that the only ovoids of PG(3,q) (and hence of W(q)) are the classical ovoids.

F\rrther, PG(3, q) has only the classical ovoid when Q : 4, [a] (see also [25, 16.1.7]) and q - 16,

[36]. If q : 2",e odd, e : 2h* 1 say, and e ) 3, then in addition to the classical ovoid PG(3,q)
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also contains the Tits ovoid. The canonical form of the Tits ovoid is the following set of points

of PG(3, q).

{{r,r" * st* tor2,r,ú) : s,ú € GF(q)} , {(0,1,0,0)}

whereoistheautomorphismofGp(q) suchthatoiïè*2n*'.Forq-8,PG(3,q) contains

only the classical ovoid and the Tits ovoid, which was shown with the assistance of a computer

by Fellegara in [20] and without the use of a computer by Penttila and Praeger in [52]. For

q:32, PG(3, g) contains only the classical ovoid and the Tits ovoid [37]. For more information

on ovoids of PG (3, q) see [35, 25] and for a discussion of the connection between ovoids of Q@, q)

and ovoids (and spreads) of PG(3, q) see 149,3.2.L,3.4.1].

We now consider ovoids of Q(4,q) when q is odd. As we have seen, QØ,q) contains the

classical ovoids and further there are three non-classical ovoids of Q(4,q). The fi.rst two were

constructed by Kantor in [30]. The ovoid Kl exists for the case q - ph, with p an odd prime

and fr, ) 2. In [30] 1l1 is defined to be the set of points

{{t, v, z, -n'tryo , -z * mgo+t) , a,,z e GF(q)} , {(0,0, 0, 0, 1)}

of Q(4,q) with the form rsrxs * :x1n4 * ir2rs1 wtrere rn is a non-square element of GF(q) and o

is a non-trivial automorphism of GF(q). In this thesis we shall indicate that a 1(1 ovoid has

associated field automorphism o by calling it a K1(ø) ovoid. The ovoid K2 of. QØ,q) exists for

the case q - 32r+7 with r ) 1. The third type of non-classical ovoid of Q(A,q) was constructed

by Thas and Payne ([65]) for e : 3h with h > 3. The ovoid of Thas and Payne arises as a

subtended ovoid of the embedding of Q(a,ù as a subquadrangle in the dual of the Roman GQ

(t65]). For q - 3,5 or 7, every ovoid of QØ,q) is classical [10, 34, 16, 14,15, 33]. For more

information on ovoids of Q(4,g) and ovoids Q(2n,q) in general, see [38].

Elation rosettes of Q(4,q)

We saw in Section I.4.4 that the GQ QØ,ù is dual to W(q) and that for q even, Q(4,q) is

also isomorphic to W(q). We shall use this and elations of the ambient PG(3,q) of W(q) to

construct rosettes of Q@,q).

An elation of. PG(n,q) is an automorphism of PG(n,q) that fixes a given hyperplane

pointwise and a given point on the hyperplane linewise. The hyperplane is the axis of the

elation and the point is the centre of the elation. For more details on elations see [1].

Lemma L.4.9 [1, Wn.Slemma 2] LetP beapoint andn aplane of PG(3,q) withP e r and

let (. be a l,ine of PG(S, q) such that P e [. and ( Ê n. The group consisti,ng of the elations with

centre P and aris n, acts regularly on the set of points I\P.

12



Let tþ be an ovoid of QØ,q) and suppose that q is even. Since Q(4,q) and W(q) arc

isomorphic GQs for q even, there is an ovoid 0 of W (q) that is the image of / under the

isomorphism from QØ,q) toW (q). We will use specific elations of PG(3, q) to construct rosettes

containing 0.

Lemrna 1.4.1-0 [Sg, p. 71] Leto be an elat'ion of the ambient PG(3,q) olW(q) with centre P

and aris PL, then o can be naturally restricted to an automorph'ism olw(q).

Given an ovoid 0 of W(q) containing a point P we will now consider a description of 0 that

will be useful in the work that follows. The points of W(q) collinear with P are exactly the

points of the plane Pr and so the the q2 points of g \ {P} are in the set PG(3,,q) \ Pr. Also, no

two of these points span a line of PG(3,q) that is incident with P, since in that case 0 contains

three collinear points, contradicting the definition of an ovoid in PG(3, q). Thus each of the q2

Iines of PG(3,q) \ Pr incident with P is incident with exactly one further point of á.

Lemma L.4.LL Let P be apoint oÍW(q) and0 an ouoi,d of W(q) suchthat P €0. An elation

o which has centre P and, aris PL maps 0 to an ouoid of W @) conta'in'ing P. Furthermore the

group consist'ing of the set of such elations, acting on the set of ouoids olW(q), has a rosette

based at P and containing 0 as the orbi't containing 0.

Proof: By Lemma 1.4.10, the elation o induces an automorphism of W(q) and fixes P, hence

0o is an ovoid of W (q) containing P. Recall that 0 has one point per line through P not in

Pr and the elation group acts regularly on the points of such lines, not P. So the q ovoids

which are images of 0 under the action of the group of such elations have P as their pairwise

intersection and partition the points of PG(3, q) \ Pr. Thus the orbit of 0 under this group is

a rosette of W (q) based at P.

!

We will call the rosette based at P, containing 0 and generated as in Lemma 1.4.11 an

elation rosette with respect to P and d.

For q even the only known ovoids of W (q) are the elliptic quadric ovoids and the Tits ovoids.

In Chapter 4 we shall see that if á is either an elliptic quadric ovoid or a Tits ovoid of l4z(q)

and P is a point of 9, then the elation rosette 7l constructed in Lemma 7.4.LI is the unique

homogeneous rosette containing 0 and with base point P.

Now, let 0 be an ovoid of QØ,,q) and let q be odd or even. Since Q(4,q) and W(q) are

dual GQs, there exists a spread 56 of W (q) such that ,9e is the image of 0 under the duality

frorn Q(4,,q) to W(q). Let !. be a fixed line of ,SB and P a point incident with {.. The plane Pa

contains (. and consequently, every other line of 5p meets PI in a point.
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We introduce the term rosette of spreads of a GQ to mean the dual of a rosette of ovoids.

Lemma L.4.L2 Let {. be a I'ine olw(q) and S a spread oÍW(q) such that (. e S. Let P be a

poi,nt of W(q) i,ncident with (.. An elati,on o which has centre P and aris PL maps S to a spread,

olw(q) conta'ining (.. Furthermore, the group cons'i,sting of the set of such elations, acting on

the set of spreads oÍW(q), has a rosette of spreads based at (. and containing S as the orbit

containing S.

Proof: We consider the action of the elation ø on the lines of ^9. Since / is contained in the

axis of ø it follows that (. is fixed by o. If m € S with rn f (., then mñ PL is a point {8}, .uy

and < m,P ) is a plane rrnt say. Since zr- contains P, it is fixed by o and so o(rn) is a line

contained in r*, containing Q, but not P. By Lemma 1.4.9 the group of q elations with centre

PandaxisPr r'rraprnontotheqdistinctlinesof zr-whichcontainQ,butnotP. Thusif o

and.otare two elations with centre P and axis Pr, then o(rn) : o'(m) if and only if o: o'.

If. mt is a line of ,S such that mt * 4m, meeting Pr in the point Qt , then I + Q' and so no

elation with centre P and axis Pr maps m onto mt. Thus, the orbit of ,5 under the group of

elations with centre P and axis Pr has size q and has the property that any two spreads in the

orbit intersect in exactly (..

!

If d is an ovoid of Q(4,q) and P is a fixed point of 0, then by dualising Lemma 7.4.12 we

construct g f t homogeneous rosettes containing á and based at P. We will call these rosettes,

elation rosettes. Thus, if q is even, there are q * l- elation rosettes containing 0 and based at

P, from Lemma 1,.4.12, and 1 elation rosette containing 0 and based at P from Lemma 1.4.17.

However, for both known examples of ovoids of Q(4,q), where q is even, the elliptic quadric

ovoid and the ovoid isomorphic to the Tits ovoid of W (q) ,, there is a unique homogeneous rosette

containing a given ovoid of that type and based at a given point. (Suppose that 0 is an elliptic

quadric ovoid of QØ,q) with ambient hyperplane X and that d' is a second elliptic quadric

ovoid with ambient hyperplane E'. If 0l)0t : {P}, then r : E l-l D/ is the unique tangent plane

to 0 at P in E. Thus the only elliptic quadric ovoids of Q(4,q) that intersect d in exactly P are

the g elliptic quadric ovoids whose ambient hyperplane contains zr. This is the unique rosette

containing 0 with base point P. In the case where I is isomorphic to a Tits ovoid of Irtrz(q) see

Lemma 4.1.7.) Thus the q*2 elation rosettes are identical.

In the case where q is odd, there are q * 1 elation rosettes containing 0 and based at P.

For d an elliptic quadric ovoid, the g * 1 elation rosettes are identical (by the same argument

presented for the q even case in the preceding paragraph). In Chapter 2 we shall show that

if0isaKlovoid,thenthereexistapointPsuchthattheq*lelationrosettesbasedatP
are distinct. We shall also construct homogeneous rosettes of. KL ovoids, that are not elation
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rosettes

1.5 Algebraic topology on a simplicial complex

In this section we introduce the concept of a simplicial complex and the homology and co-

homology groups of the simplicial complex over an abelian group. Useful introductory texts

to algebraic topology are [23], [58], [57] and [32]. We will not be concerned with the more

general topological aspects of simplicial complexes only the calculation of their homology and

cohomolog¡ for which the results that follow will suffice.

1.5.1 Modules

Let -R be a ring v/ith identity L # 0. A left A-module .4. is an additive abelian group together

with a function p i R x A -+ A, written p(r,a): rø, such that

(r + rt)a

(rr')a

r(a + a')

ra * rta,

r(r'a),

ra * rat,

o,

where r,r' e.R and a,a' e,4.. It follows that 0¿:0 and (-1)a : -or.

We can define right -R-modules in the obvious manner. Since we will not be using right .R-

modules in what follows, we will refer to a left R-module as an Ã-module, or simply a module

if the ring J? is understood from context. If F is a field, then an lF-module is a vector space over

F.

Note that for any abelian group ,4 we may find a ring.R such that ,4. is an .R-module. As an

example, if A is any abelian group, then we may turn it into a Z-modlila If. m is any positive

integer, and ø any element of ,4, then define Tna:aIal...la (rn times). If we also define

(-*)o : -(ma) then this makes A a Z-modrle.

A subset ,S of an R-module ,4 is a subrnodule, if ^9 is closed under addition and if r € R,

s € ,S imply rs € ,S; then ,5 itself is an .R-module. As ^9 is a subgroup of ,4., we may form the

factor group Af S,which is also an.R-module, since r(b+S) :rb*,S. The -R-module AIS is

called a quotient module.

If ,4 and B are both -R-modules, then a : A -+ B is an -R-module homomorphism if

a(a* o'): ool aat, a(ra):r(a(a))

la

where r€RandaeA.
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\Me define Homa(A,B) to be the set of all ,R-module homomorphisms from A into B. If
f e. Homp(A,B) and ú € Ã, then we defi.ne tf : A-+ B by (tl)@) : ¿(/(o)) for all a e A. If
the ring R is commutative, then we have that

(tf)(ra) : t(l(ra)) : tr(Í(a)) : rt(l@)): r[(t/)(ø)],

which shows thatt,f e HonxR(A,B) and so Homp(A,B) is an.R-module. In particular, if
A: B and -R is a field, then Homp(A,, A) is the space of linear functionals of the vector space

A, that is the dual vector space.

L.5.2 Simplicial complexes, hornology and cohomology

A simplicial complex I : (% S) consists of a set V of vertices and a set ,9 of finite non-empty

subsets of V called simplexes such that

(a) Any set consisting of exactly one vertex is a simplex.

(b) Any non-empty subset of a simplex is a simplex.

A simplicial complex l' : (V',,S') is a subcomplex of l: (%S) if.Vt ç I/ and,S'q ^9 and a

proper subcomplex if l' I l.
A simplex containing exactly q * 1 vertices is called a q-simplex. The dimension of a

g-simplex is defined to be q. The dimension of the simplicial complex f, denoted by diml, is

defined to be equal to -1 if f is emptg equal to r¿ if I contains an n-simplex but no (n * 1)-

simplex and equal to oo if I contains zr-simplexes for all n ) 0. The simplicial complex f is

said to be finite if it contains only a finite number of simplexes.

If s and s' are simplexes of f and s' C s, then st is called a face of s (a proper face if
s' I s) and if s' is a p-simplex, it is called a p-face of s.

A simplex becomes oriented, or is given an orientation, when we specify a particular

ordering of its vertices. Two orderings of the vertices which agree up to an even permutation of

the vertices determine the same orientation. If o is the simplex s with a particular orientation,

then we represent s with the opposite orientation by -o.
Let,R be a finite ring and f a simplicial complex. Let ,Sn(f,R) be the -R-module whose

elements are the formal linear combinations Dø roo, where o runs through the oriented q-

simplexes of f and ro is an element of .R. The operations of the A-module are defined as

follows:

Droo +lr'"o l{r" + rt")o
o o

D," \(rr")o forr€-RI
o

r
o
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Now let B be a list of the q-simplexes of I with each simplex given an orientation. Then since

each oriented g-simplex is either o ot -o for a unique element o of B, it follows that each

element of ,50(f ,.R) can be written uniquely in the form

Droo + D ,'"(-o)
o€B o€B

where ro and r'o are both elements of ,R.

Let Sf (f ,,8) be the submodule of ,Sq(|, R) generated by elements of the form ro i r(-o),
where r e R and a is an oriented q-simplex. We define Cq(f , Ä) to be the quotient module

Sq(l,R)lSL(f,R). An element of the R-module Cq(l,R) is called a q-chain of I over -R.

Essentially, in Co(f ,,R) we are allowed to replace ro by -r(-o) wherever we please. If f is

non-empty, then we define C-r (1, A) : 0 and if f has finite dimension n we define Cn(|,Ã) : O

for qln.
The g-th boundary operator is an.R-homomorphism ðn: Co(l,A) -+ Cq-r(l,rR). Let

s : (PoPr ...Pò be an oriented q-simplex of I (and so also a q-chain), then the action of ôo on

sis
(l

ôo(s) : D(-t)n(po P1... P¿4P¿+t...Pq).
i=0

The (q - L)-simplex {PoPr ... P¿-tP¿+t...Pq} is the face of s opposite P¿. Note that ôn(s) is

independent ofthe ordering ofthe vertices ì¡/e use to represent the orientation ofs. Ifwe take an

even permutation, T, on the ordering of the vertices of s, we may consider the permutation as

the product of a permutatioî,Tr, fixing the vertex P¿ in the z-th position, and a permutation,

?2, shifting P¿ r positions. In terms of the formula for 0q, fi induces a permutation on the

vertices of the face of s opposite P¿, while ?2 multiplies the oriented face opposite P¿ by a factor

of (-1)". Since ? is even, fi and T2 are either both odd or both even. In either case, the

orientation of the face of s opposite to P¿, as it appears in ôo(s) is preserved.

We extend 0o to act on q-chains of I over .R by letting it act linearl¡ that is,

ôo(roo) : roôq(o) and ôo(o + o') : ðn@) + ôn@').

where ro is an element of R and ø and o' a,re oriented q-simplexes of l. The (q - l)-chain ôo(s)

is called the boundary of s. Note that since Ôr(o) + 0o?") : 0 for any q-simplex ø. The

operator ôo does not depend on which representation of a g-chain we choose.

The following lemma is an exercise in algebra:

Lernrna 1.6.I Aq o ôq+r : 0.

Proof: Let s : (P0,,Pt,... ,Pq+r) be a oriented (q * l)-simplex of f. Now

ôq...00¡1(s) : t k¿¡(PsP1... P¿¡k+1... P¡-tP¡+l . ..Pq+l),
o<i<j<q+t
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where k¿¡ is someelement of Rforeachi, j,01i < j < qf 1. We now showthat every k¿j:0.
The oriented (q - l)-simplex (Poh... P¿-tP¡+t... P¡-rP¡¡r . . .Pq+r) appears in ôn.'.ôq+r(s)

either by ôq+r "removing" the vertex P¿ and ôn removing the vertex P¡, or vice versa. Hence

kij : (-I)ù(-t¡r-t + (-1)i(-1)i : 0

Thus ôo o ôoa1(s) :0 for any oriented (q + 1)-simplex s and it follows that ôo o ôq+r :0.

A g-chain s such that ôo(s) : 0 is called a q-cycle and if s : âq+r (s') for some (q*1)-chain s',

then s is called a q-boundary. Two q-chains that differ by a boundaxy are called hornologous

and a q-cycle that is homologous to the zero q-chain is called null homologous. The set of

g-cycles form an R-module (ker(O)) denoted by Zo(l,R) and the set of q-boundaries also from

an .R-module (im(ðo¡1)) which is denoted by Bo(1, n). If s is a q-boundary with s : ðq+t(st),

then ôo(s) - Ôøo ôq+r(s') :0 by Lemma 1.5.1 and so Bn(f,,R) is a subgroup of Zn(l,R).

The quotient group Zq(l,R)lBo(f,R) is called the q-th homology group of I over A, and is

denoted Ho(|,,R). Note that f1-1(l,R) :0 and if I has finite dimension n, then f/n(f, A) : 0

for q) n.

Let A be an A-module, then Hom¡¿(Cn(l,R),A) is the abelian group of .R-homomorphisms

from Cn(f,,R) to A. We will denote Hom¡¿(Cn(f,A),Á) by Cn(l,A), where,4, is understood

to be an .R-module. Any element of. Cq(|,,4) is called a q-cochain of I into ,4.

The g-th coboundary operator is a group homomorphism ôq : Cq(l,A) -+ çø+t(l,A). Let

cbe aq-cochainand s: (PoPr...Pc+r) anoriented q*l-simplexof l. Thenthe action of 6qc

on s is defined as q+t
ôqc(s) : D(-t)'c(PsP1... P¿¿P¿+r . ..Pq+r).

i:o
By linearity this determines the action of 6q c on all q * l-chains. The q * l-cochain 6q c is called

the coboundary of c.

We have an analogous result to Lemma l-.5.1 for ôq:

Lemrna L.6.2 6q+L o ôq : 0.

The following lemma links the boundary and coboundary operators:

Lemrna L.5.3 Let s be a (q i 7)-chain and c a q-cochai,n. Then

ôqc(s) : c(ôq+rs)

Proof: First let s : (PoPr . . .Pq+r) be an oriented (q * l)-simplex of f. Then

q+r
ôq+r(s) : I(-t)u (Poh... P¿-tP¿+t...Pq+t),

1=0
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and so
q+1

c(ðq+t(")) : |(-t)i"(ro P1 ... P¿4P¿+r . ..Pq+r)
1=0

since c is an R-homomorphism. Now by definition

q+7

6q c(s) : D(-t)o c(PsP1 . . . P¿tP¿+r . . . Pq+r)
1=0

and so ôqc(s) : c(ôq+r (s)) for any oriented (q -l l)-simplex s. Fþom this it follows that ôøc(s) :
c(ôn.,.1(s)) for any (g * l)-chain s.

¡
A q-cochain csuch that ôqc:0 is called aq-cocycle and if c: [e-t"r for some (q-t)-

cochain c', then c is called a coboundary. Two g-cochains that differ by a boundary are called

cohomologous. Zq(l,A) is the group of q-cocycles (ker(ôq)) and Bq(|,,4.) is the group of

g-coboundaries (zrn(ôø-l)). LemmaI.5.2 tells us that Bq(1,,4) is a subgroup of Zu(l,A). The

quotient group Zo (l , A) I Bq (l,A) is the q-th cohomology group of I over A, and is denoted

Hq(t, A).

In the special case where f is finite and .R : A : IF for some field F we have the following

theorem:

Theorem t.5.4 Letl be anon-empty, finite simpli'cial compler and,F afield. Then

¡Iq(f,lF) ^r Hs(f,F') for all q2 -1.

Proof: Let the dimension of f be rz, which is necessarily finite. If q : -1 or q ) n then

Ho(l,lF) : Ìls(I.,lF) :0.
Now suppose that 0 < q ( n. Since I is finite and lF is a field, Co(f,F) is a vector space

over IF, of dimension k, say, and Cq(f,lF) is the dual space of Co(f,F). Zq(l,F) and Bq(f,lF)

are subspaces of Cq(l,F'). We will denote the respective dimensions of Zq(l,F) and Bo(1,ß')

by lq and le2.

Now

annihilator(Bq(1, F)) : {c e Cq (l ,F) : c(s) : 0 for all s € Bq (1, F')}

: {c e Cq(l,F') : c(ôø+lt') : 0 for all s' e Coal(|,ß')}

: {c e Cq(l,lF) : ôqc(s') : 0 for all s' € Cq+l(f,lF)}

: zq(l,F)

ilhtß Zq(|, JF) is a subspace of Cø(f , F) with dimension le -kz. By a similar argument we obtain

thatannihilator(Bø(1,1F)) : Zq(l,F) whichimpliesthatthedimensionof Bø(f,F) is/c-k1.
Now,thedimensionof Iln(f,F) :kr-k2andthedimensionof Ho(|,1F) :(k-kz)-(k-kr):
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lq-kz. Since f/o(f,ìF) and Hq(l,F) are vector spaces over IF with the same dimension, we

have that Ho(l,F) ry ãq(l,F).
ú

1.5.3 Cohomology groups of a simplicial complex

Recall, that in the previous section we defined Co(l,A) to be the group Hom¡¿(Co(f , ,4)) where

á was understood to be an -R-module. By linearity, if c is any element of Hom¡¿(Cq(|, A)), then

c is determined by how it maps the oriented q-simplexes. If ø is an oriented q-simplex of l, then

the only restriction on c(o) is that c(o) : -"(-"). At this point we observe that the abelian

group Cq(1,,,4.) is independent of the ring .R. So for any simplicial complex f and any abelian

group A we will define the q-th cohomology group of I into .4,, without reference to any ring, or

to,4. as an,R-module. The group Cq(l,A) is defined to be the group of alternating functions

from the oriented q-simplexes into A (where a function c is alternating if c(o) : -c(-o) for all

oriented q-simplexes ø). We then define the coboundary operator and cohomology group as in

Section 1.5.2.

1.5.4 The simplicial complex of a graph

Let G be a graph with vertex set V and edge set -8. \Me define fç to be the simplicial

complex which has as O-simplexes the vertices of G, l-simplexes the edges of G, 2-simplexes the

complete subgraphs on 3 vertices and in general, has as q-simplexes the complete subgraphs on

g * 1 vertices.

If f is a simplicial complex, then the g-skeleton fq of f is the simplicial complex consisting

of all p-simplexes of f for p < q. The l-skeleton of f is the simplicial complex of O-simplexes

and l-simplexes of f , which is a graph. The l-skeleton of fç is G.

1.5.5 Homology and cohomology over Z2

Suppose that f is a simplicial complex and that ,R is a ring with even characteristic, that is

-r: r for any r € R and hence (-")(-o) : ro for any r € -R and oriented q-simplex ø.

Recall, from the construction of Co(f,R), that if o is an oriented q-simplex, then the g-chain

representedbyoisthesameasthatrepresentedbyøl(ø+(-o)) :(1-+1)(ø) +(-o):-o.
In other words, the orientation of the simplex is unimportant and Co(|,.R) may be considered

as the .R-module of formal linear sums of q-simplexes (unoriented) of f, over -R.

In the case where p : Zz, we may represent Cq(|, R) as follows. The elements of Co(f , iR)

are the subsets of the set of q-simplexes and the abelian group operation is symmetric difference

on the subsets. Given an element s of Co (1, .R) , as a sum of q-simplexes, the subset of q-simplexes
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corresponding to s contains those q-simplexes whose coefficient in s is 1. The boundary of a

q-simplex s is the set of (q - 1)-faces of s and the boundary of a q-chain o is the symmetric

difference of the sets of (q - l)-faces of the q-simplexes of ø. Note, that from the definition of

an -R-module, we know that L.o : o and 0.o : 0 for aîy o € Cq(f,,R).

If we consider the cohomology group Cq(l,A) where A is a Z2-modttle,, it should be noted

that A has characteristic 2, since for ¿ € A we have t}rat ala: t'all.a: (1+1) .a:0'a:0.
In particulâr, we now consider the vector space I11(f ,22), for some finite simplicial complex

f. Let o be a l-cycle of l, then ô1(o) : 0 and so each 0-simplex of f is contained in an

even number of 1-simplexes of o (the number may be 0). Let ot be a l-boundary of f with

o' : 0z(o"), then o' is the symmetric difference of the sets of L-faces of the 2-simplexes of ot'.

Let o: {sr, s2t...,sr} be a l-cycle of f. We say that o is an elementary l-cycle of f, if
each vertex of f appears in exactly none or two l-simplexes of o. We say that o is induced if
for any l-simplex s such that fi(s) : {P,Q} with P e 01(tù, Q e fi(s¡), then s € o. If o is

an induced l-cycle that is not the boundary of a 2-simplex, we say that o is a proper induced

1-cycle.

Lemma L.6.6 Al-cycle of I may be written as the sum of elernentary I-cycles, with no com-

mon I-simpleres.

Proof: Let o be a l-cycle of l, which we represent as the set {s1, s2t..',srr}, where the

s,i are distinct l-simplexes of f. Let i e {1,2,...,n} and let ôr(t¿) : {P1,P2}, where P1

andP2 are 0-simplexesof l. Sinceo is a l-cycle, there is anil suchthat 7 3û 3nand
ôr("¿r) :{Pz,P3},forsomeO-simplexP3of f. Similarly,thereisan'i2 suchthatLli,2 1n
and fi(s¿r) : {Pz,Pa}, for some O-simplex Pa of f. Continuing this process will eventually

yieldani"suchthatl lirSnandôr("¿,) :{Pr+r,P1}. Thel-cycle o¿:{s¿,sl^,siz,".,si.}
is an elementary 1-cycle. If we now choose s¡ e o \ o¿, we can generate a elementary 1-cycle

contained in ø and disjoint to o¡. Continuing this process gives o as the sum of elementary

1--cycles.

n

Now we prove a lemma showing that we may break down an elementary l-cycle into induced

1-cycles.

Lernrna t.6.6 An elementary l-cycle of I can be written as the sum of induced, [-cycles of I

Proof: Let o: {sr, s2t...,s,r} be an elementary l-cycle of f such that fi(s¿) : {P¿,P¿+t}

for 1 ( i 1 n - 1 and ôr(s") : {Pn,P1}. If o is an induced l-circuit, then there is no

more to show, so suppose that a is not induced. Since ø is not induced \Me may assume,

without loss of generality, that for some i, i,+ I,2,n there exists a l-simplex s with fi(s) :
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{h, P¿}. Then o may be written as the sum of the elementary l-cycles {"r, "2, 
. . . , si-l, s} and

{"i,"¿+r, ... ¡snrs}, both of which have fewer elements than o. We continue this process until

we have written d as sum of induced l-cycles.

D

Combining Lemma 1.5.5 and Lemma 1.5.6 gives us the following result.

Corollary L.6.7 A L-cycle of I can be erpressed as the sum of induced I-cycles of l.

Thus we have the following theorem.

Theorern 1.5.S .t/1(1,22) is triui,al iJ and only i,f each'inducedL-cycle of I i,s aI-boundary.

The above definitions and results make more intuitive sense in the graph 11, the l-skeleton

of f. Recall that a 2-simplex of I is a triangle in 11, a l-simplex an edge and a 0-simplex a

vertex of 11. In 11 a l-cycle of f is a set of edges such that each vertex appears in an even

number of edges, that is, the set of edges of a circuit of fl. An elementary l-cycle is the set

of edges of a elementary circuit of 11 and an induced l-cycle is the set of edges of an induced

circuit of 11. Lemma 1.5.5 says that every circuit may be decomposed into elementary circuits,

while Lemma 1.5.6 says that any elementary circuit may be decomposed into induced circuits.

Finally, Theorem 1.5.8 says that I11(l,Zz) is trivial if and only if each induced circuit of the

graph 11 can be decomposed into triangles.

1-.6 Covers of a graph and covers of a geometry

In this section we introduce the cover of a graph and the cover of a geometry, as in [12] (see

also [56]).

Let G be a graph, then an rn-fold cover of G is a pair (G,p) where G is a graph and p is

a map from G to G satisfying:

(i) For any vertex P e G, p-r(P) consists of rn pairwise non-adjacent vertices

(ii) For any edge e of G, p-r(") consists of rn disjoint edges

(iii) For any non-edge {P,8i of G, p-L ({P,A}) is a graph with no edges.

If G is the point graph of a geometry S and (G,p) satisfies

(iv) For any line Lof.E,if P¿: {P eP: P I (.},tlnenp-t(P¿) consists of rn disjoint complete

graphs

then we can form a geometry 5 with pointset the vertices of G and lines (as sets of points)

defined to be the complete graphs from (iv). The map p naturally induces a map from 5 to
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,S, which, introducing an abuse of notation, we also call p. The pair (.S,p) is called a,n Tn-

fold cover of 5. The geometry .9 will be called the covering geometry and the map p the

covering map. We will often take the existence of the map p to be understood and call 5

an rn-fold cover of 5. Any element of p-l(P) will be called a cover of P and similarl¡ any

element of p-r(l) a cover of l,
Note that if (iv) is satisfied, and l. is a line of 5, then (i) and (ii) imply that each line in

the set p-r@) has the same size as I (as a set of points). Also, if P I (,, then each point in

the set p-re) is incident with exactly one element of p-r(l). This means that if / (as a set of

points) is {Pr, P2,...,P,+r}, then each lineof the set p-r@) has the form {P{, Pl,...,Pi+r},
where Pl e p-t(P¿), for i : L,2,... , s f 1. That is, P' incident with t' in5 implies that p(Pt)

is incident with p(l') in E.

If (.S,p) is an rn-fold cover of the geometry 5, 5n is the dual geometry of ,S and 3n i. th"

dual geometry of 5, then it is relatively straight-forward to show that (5^,p) is an rn-fold cover

of S".

Let G be a graph, fç the simplicial complex of G and A an additive abelian group of order

m. To simplify matters, we will identify a vertex of f6 with the corresponding vertex of G, and

a l-simplex of f6 with the corresponding ordered pair of adjacent vertices of G. Recall that

a L-cochain c of lç into ,4 is a map from the set of ordered pairs of adjacent vertices of G to

,4., such that c(P, Q) : -c(Q,P) for {P,Q} any pair of adjacent vertices of G. An algebraic

rn-fold cover of G over ,4. is an rn-fold cover of G, (G,p) where G is the graph with

VertexSet: {(P,") : Pe G, aeA}
Adjacency: (P,o) - (Q,Ð if P -Q and "(P,Q):o- 0

and p is the map p((P, a)) : P. Any l-cochain c defines an rn-fold cover of G in the above

way. If G is the point graph of a geometry ,S and (,S,p) is an rn-fold cover of .S, then we say

that (3,p) is an algebraic rn-fold cover of ,S.

Let G be the point graph of a geometry 5 and let (G,p) be an algebraic rn-fold cover of G.

We investigate conditions under which condition (iv) above is satisfied.

Let (,be a line of S such thatP¿: {Pt,P2,...,P"+r}, then (P1,4) is collinear to the set

of points {(Pr,o - c(Pt,Pz)),(Ps,a - c(P1,Ps)),... , (Pr+r, a - c(P1,P"+r)). Thus, p-|(P¿)

consists of rn disjoint complete graphs if and only if the m complete graphs have vertex sets

{(Pr, a), (Pz,o - c(Pt,Pù),..' , (P"+r, a - c(P1,p"+r))} for a € A.

This is true if and only if

(P¿,, - c(Pt, P¿)) - (P¡, a - c(Pt,Pr' )) for all P¿,P¡ where i + i, i, i I I and a € A.

23



Writing ô for the first coboundary operator ó'1, we see that this is true if and only if

6c(P1,P¡.,P¡) :0 for all P¿,P¡ where i + i and i, i + r'

Equivalently,

õc(P¿'P¡'Pn) 

: ii:;',;::;:::,;"1å,'i,' ,r) - "(p,,p,)) + ("(p,,pn) - c(p1,p¡))

0,

for all P¿,Pj where i,j,k are distinct and i,j,k + I. Thus (G,p) gives rise to an algebraic

rn-fold cover of 5 if and only if

6c(P,Q,A) :0 for all distinct collinear points P,,Q,R.

We will cal (G,p) and (5,p) the algebraic rn-fold covers of G and 5 respectivel¡ defined by

c, or say that c deffnes (G,p) and (5,p) respectively.

If (5,p) and (5',p') are two algebraic m-fold.covers of the geometry 5, defined by c and c'

respectively such that 3 and 5' are isomorphic geometries, then we say that (3,p) and (3',p')

are equivalent. Where 3 and 5' ur" understood to be covers of ,5, we say that c and c' are

equivalent. Note that if c and c' a,re cohomologous, with c' : c f ôb, where ô is the first

coboundary operator ô1, then c and c' are equivalent, and the map'i : (Pra) r+ (P,c + b(P))

is an isomorphism from 5 to 3.
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Chapter 2

The Kantor ovoid KI(")

In this chapter we investigate the Kl(o) ovoid of Kantor constructed in [30]. The K1(o) ovoid

exists for q -ph, wherep is an odd prime, h) 2 and ø is a non-trivial automorphism of GF(q).

For this chapter we will assume that q is of the above form. In Section 2.1 we investigate the

connection between the Kl(o) ovoid and the q-clan (see Section 1.4.5) of Kantor ([31, (4.1)

Theorem]), via the work of Thas on flocks (t63]). In Section 2.2 ar'd Section 2.3 we consider

the symmetry properties of the 1(1(o) ovoid and the intersections of the KI(o) ovoid with

theellipticquadricovoids of Q( ,q). Section2.Scontainssomecharacterisationsof the KI(o)
ovoid., while Section 2.6 is dedicated to constructing rosettes of Q(4,g) containing a K7(o)

ovoid.

Let the non-singular quadric 8+(5,q) be given by the equation rsrs1-rr:L¿*r2rs:Qilv
PG(5,q). In section 5 of [30] Kantor constructs a family of ovoids of Q+(5,q), given by the set

of points

{(0,0,0,0,0,1)} U {(1, a,z,z',-ffiUo,-rrtr +^a"+r): y,z e Gp(q)}

where o and r are automorphisms of GF(q), not both trivial, and m is a fixed non-square

element of GF(q).

In[30],Kantormakesthecommentthatif welet r:I, thentheaboveovoidof Q+6,q)
is contained in a hyperplane section of Q+(5, q) (with equation rz: frt) and hence is an ovoid

of the GQ 8(4, q). In this case, Q(a,ù is given by the equation roüs * r(rs * nZ : 0 and the

ovoid comprises the following set of points

{(0,0,0,0,1)} U {(1, U,z,-ffiUo,-12 +n',ry"+r) : y,z € Gp(q)}

Any ovoid of Q(4,q) that is isomorphic to this set of points is a 111(o) ovoid of QØ,q)
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2.L Flocks and Ovoids

If we represent the above Kl(o) ovoid as the intersection of QØ, q) with the variety defined by

the equation mrl -f r[-tq: 0, then it may be viewed as a perturbation of the classical elliptic

quadric ovoid that is the intersection of. Q(4,q) with the hyperplane with equation rnrr+:h - 0.

To put the K1(a) ovoid into a broader geometrical context, we will consider the connection

between ovoids of Q(4,q) and flocks of a quadratic cone of PG(3, q).

Let C be a conic of PG(2,q) and let K be the quadratic cone with vertex a point I/ of

PG(3, q) \ PG(2, q) and base C. A flock of K is a set of q disjoint conics that partition the

points of K \ {V} (see [21] and [19, p.25a]). Note that we can equivalently define a flock to be

the set of planes containing these q conics. We will swap between the two definitions according

to which is more convenient. The following result, proved independently by Thas and Walker

([63] and [67], respectively), shows how we may construct an ovoid of 8+(5,q) from a flock of

PG(3, q).

Theorem 2.t.L Let K be a quadratic cone of PG(3, q) and, F a fl,ock of K. Then F giues rise

to an ouo'id of the Klei,n quadric Q+(5,q).

Proof: ([63]) Consider the flock f : {Ct,. . . ,Co} (of conics) of the quadratic cone K with

vertex V. Embed K into Q : Q+ (5,q) and let I denote the polarity of Q. Note Cnr is a conic

on Q (127, Theorem 22.7.2)).

If r'¿ is the plane containing C¿ lhen r¿Àn¡ is an exterior line to Q, for i + j, and so |n]¿,rf)
is a non-singular three dimensional elliptic section of Q. Hence no two points of CI U Ct' arc

on a common line of Q. Now (n¿,nj) is the section containing K and .o ø'¿r n zrrr is a tangent

to O. Thus C{nCf :{y}.Sonowtheset C{u...UCl isaset of.q2+1 points,notwoona

common line of O, which is an ovoid of O.

tr

Corollary 2.L.2 Let K be a quad,ratic cone in PG(3, q) and let F: {nt,...,Tq} a fl'ock (of

planes) of lC. Uthere'is apoint Pe PG(3,q) suchthatP'ís anerteriorpo'inttoK andP e r¿

for i:1,... , q, then F gi,ues rise to an ouo'id of QØ,q).

Proof: BytheconstructionoutlinedinTheorem2.l.l, the flockF givesanovoid(?of Q+(S,q).

If the planes of f have a common exterior point P, then the conic planes that forrr' O arc

contained in Pr; a common parabolic section of Q+(5,q). Such a section is isomorphic to

QØ,q) andsince Oisasetof q2+lpoints of Q(4,8),no3collinear,(?isanovoidof QØ,q).
!

26



In [63, Section 2.5.3] Thas constructs a flock of a quadratic cone of PG(3, q) from a q-clan.

We now consider the flock .Fo constructed in this manner from the q-clan of Kantor given in

[31] and derive the corresponding ovoid of 8+(5,q). \Me will show that the ovoid of 8+þ,q)
corresponding to the flock fo is an ovoid of QØ,q),, for Q(4,q) C 8+(5,q) and, in fact, is a

KI(o) ovoid of Q(a, ù. Let K be a quadratic cone of PG(3, q) given by the equation rsrl : rl
(and so with vertex V : (0,0,0,1)), then the planes of the Kantor flock Fo are

rtt i trg - mtort * ø3 : 0,

where o e Aut(GF(q)), o lidentity,mis a fixed non-square of GF(q) and ú e GF(s).

Now embed the PG(3,g) containing K into the PG(5,q) containing 8+(5,q), given by the

equation ï1r1J_r2rs1-:x4ü5:0, so that K occurs as the intersection of Q+(5,q) and

E : {(ro, rt¡r2¡ï3¡r4trg) : u2 I rB:0 and rr : 0}

Thus, in this representation, PG (3, q) is in coordinates (*0, *r, 12, r.4), the cone K has equation

ïorL - rZ : 0 and zr¿ is the intersection of Ð with the hyperplane of PG(5, q) with equation

txs - mtort i 14: Q.

If we let I represent the polarity of the Q+(5,g), then

r{ : \1-mto,t,0,0,0,1), (0,0,1,1,0,0), (0,0,0,0, 1,0)).

The point (0,0,1,-1,0,0) is on the plane r¿ for all ú e Gp(q) and so the ovoid constructed

frorn lo is contained in the hyperplane (0,0,1,-1,0,0)r, which has equatiorL ï2:23. The

corresponding section of Q+(5, q) is the QØ,q) with equation nsrl + r| + r4rs : Q.

Since 12 : uJ, we suppress the ø3 coordinate. In PG(4, q) with homogeneous coordinates

(*o,rt,ï2tï4¡*s); Q(4,q) has equation rs;r1I r/ * rans: 0 and

: ((0,0,0, 1,0), (0,0, 1,0,0), (-rnú", ¿,0,0, 1))

: {(*0,*r,r2tr4tr5) : rg I mto-r11: 0 and fi - trg: Q)

z e GF(q)) U {(0,0,0,1,0)} is a conic, C¡, saf,

and so the ovoid is

0o : {(-mto ,t, z, -"2 + mto*7 ,1) : ú, z e GF(q)} u {(0, 0, 0, 1,0)}.

This is exactly the form of the (canonical) Kl(o) ovoid of Kantor as given in Kantor [30].

The line {o: ((0,0,1,0,0),(0,0,0,1,0)) is a tangent to the QØ,q) and has the property

that (. C zr¿r foli:1,... ,e.The line /o is known as the special tangent line to 0o. The

point Xo : (0,0,0,1,0) has the property that Xo e r{ nQØ,q) for i : L,... ,e. In fact,

"I

Now zr¿r l\ Q : {(-mt" ,t, z, -22 + rnt"+t,l)
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Xo : C¿ I C¿, ,, for t,ú' e GF(q) aîd t + ú'. 'Ihe point Xo is known as the special point of the

ovoid do. Any element of the set {n ¿r : ú € GF(q)} will be called a plane of 0o.

Now if .F, is the Kantor flock defined by fixed non-square m and field automorphism ø and

Ftristhe Kantor flock defined by fixed non-square mt and field automorphism ø, then by the

proof of [31, Theorem (+.t)(i)] and the fundamental theorem of q-clan geometry ([47]), it follows

that Fo arrd FI are projectively equivalent. That is, there is an automorphism of E that fixes K

and maps Fo onto Ft, This is the case if and only if there is an automorphism of PG(5, q) that

fixes Q+(5,a), Q(4,q) and maps the ovoid corresponding to fo onto the ovoid corresponding

to Ft". Hence the ovoids are isomorphic in QØ,q). This means that the isomorphism class of

KI(o) ovoids does not depend on the non-square rn.

Similarly, if Fo and F, are two Kantor flocks, defined by the same fixed non-square rn

and field automorphisms o and r, respectively, then by the proof of 131, Theorem (4.1)(i)] and

the fundamental theorem of q-clan geometry (1471), it follows that fo and F'" are projectively

equivalent if and only if r : o or o-1. By a similar argument to above, the ovoids corresponding

to Fo and Fr, respectively are isomorphic in QØ,q) if and only if r : o or o-r.
As we shall see in Chapter 3, the Kantor flock Fo is interesting not only because it gives

the 111(ø) ovoid but also because the q-clan GQ associated with Fo contains a Q(4,q) subGQ,

in which the subtended ovoids are Kt(o) ovoids.

2.2 Symmetry properties of the KI(o) ovoid

Recall in Section 2.1 that go was an ovoid of Q(4,q) In this case Q(4,q) was the non-singular

quadric in PG(4, q), in coordinates (*o,rt,n2¡fr4,tr5), defined by the equation norylrS*ï4r5 -
0, lying on the Klein quadric 8+(5, q) in PG(5, q). Since from this section onwards we will not

be using the embedding of QØ,q) in Q+(5,8), we define QØ,q) to be the non-singular quadric

in PG(4, q), in coordinates (*o,*trü2¡ï3tza), defined by the equation rsrl l rl+ rsra: 0. In

this representation we let

0o : {(-*t" ,t, z, -22 I mto+I ,1) : ú, z e GF(q)} u {(0, 0, 0, 1, 0)}

Xo : (0,0,0, 1,0)

¿o : ((0,0,0, 1,0), (0,0, 1, 0,0))

l;t i r0 lmto-I11 :Q

i rt - tr¿ - 0, for ¿ € GF(q).

Note that we are now using r¿for the plane zrrr in Section 2.1, and so we will let C¿ denote the

conic that is the intersection of zr¿ and QØ,q). As in Section 2.I any plane r¿ for ú e GF(q)

(that contains the special line {.o and meets 0o in a conic) is called a plane of.0o.
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In this section we will investigate particular elements of the stabiliser of 0o, in the group of

QØ,q) andwhattheytellusaboutthesymmetrypropertiesof do. Bytheconstructionof the

KI(o) ovoid from the flock Fo , we can see that any element of the stabiliser of 0o, in the group

of Q(4,g), must necessarily fix the point Xo and the line (.o.

For the calculations that follow it will be useful to consider the point P¡ e r¿ with the

coordinates (-mt",ú,0,0,L), so zr¿ : (lo,P¿). For f € GF(q) \ {0}, let ,S¿ be the automorphism

of PG(4, q) defined by

St(ro, r I t 12 ¡ rs, r +) - (t", o, tr r, I t" # *2, to +r n 3, r 4).

Note that ^9¿ 
fixes Q(4,q), Xo and (.o. Also

S{Pr) (-mtotto ,¿',0,0, 1)

(-m(ttt)" ,¿úl,0,0, 1)

Pft,,

which means that ,9¿ i 7r¿r è iru, and thus 5¿ fixes do.

For ú € Gp(q) let 7¿ be the automorphism of PG(4, q) defined by

Tt(*0, rrt ß2t rs, r+) - (-mt" ra I rg,tr4 I r1, 12, -tro I mto r1* øg + mto+7 r.4, 14).

The automorphism ?¿ fixes QØ,q), Xo and (.o. Also

ft(h) : (-*t" - rnt'o ,t t t',0, -,1)
: (-^(t * t')o ,t + tt ,0, -, 1)

€ 'lrt+t',

which means that T¿ | ¡t¡r è Tt+t, and thus ?¿ fixes 0o.

Flom the automorphisms ?¿ it is immediately obvious that the group of go is transitive on

the planes zr¿r. However, by using both the ,S and ? automorphisms we can say more than this,

since

T¡S¿, -¡(trs,iT1) : Tt(no,rt,_'t)

: (tr¡, r¿,)

Thus the group of 0o is transitive on the ordered pairs of planes (nr,nr,),, t,t' e. GF(q) and

t + t'. This is equivalent to saying that the Kantor flock Fo is doubly transitive.

Now we consider the orbits of the group of the canonical KL(o) ovoid 0o on the points of

0 o . One orbit consists of the special point X, . Suppose that P and P' are two points of the set
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C¿ \ {X" } . Let the point Q be the intersection of the line {.o with the line (P, P/ ) . Recall from

Section 1.2 the symmetry Fe, where for .R e QØ,q) we have

pq(R): R if (n,8) is tangent to Q(4,q)

R' if (,R,8) meets QØ,q) at Rt f R,

is the automorphism of PG(4,q) that fixes Q(4,q). In fact fixes each subspace of Q(4,q)

containing Q. Thus pç fixes lo, Xo, r¿r for ú/ e GF(q) and hence the ovoid 0o. We also have

that U,q(P): (P'). Now suppose that P and Pt are two distinct points of go, where (P,[.o) : r¿

and (P/, %l : r¡t for some t, ú/ e GF(q) with ú f ú'. Since we have transitivity on the planes

of áo there exists [1, an element of the stabiliser of 0o, that maps ?r¿ to n¡,. Hence, U(P) is an

element of Cy \ {)f"} and by the above may be mapped onto P/ by an element of the stabiliser

of do (possibly 0). We may summarise the above in the following theorem.

Theorem 2.2.L Let 0o be the canonical KI(o) ouoid of QØ,q). Let Xo be the special poi,nt oJ

0o and let {tr¡: ú e GF(q)} be the set of planes of 0o through the special line (.o meet'ing 0o 'in

a conic. The group of 0o i,s 2-transitiue on the planes of 0o and has two orbits on the points of

0o. The two orbi,ts on the points of 0o are {X"} anilO" \ {X"}.

2.3 Intersections of 0o and elliptic quadrics on Q(A,g), containing

xo

In this section we investigate the intersection of the canonical I{L(o) ovoid do and the elliptic

quadric ovoids of. Q(4,q), given that the special point of 0o, Xo, is contained in the intersection.

Let D be a three dimensional projective subspace of PG(4,q) that intersects tkre Q(4,q) in a

non-singular elliptic quadric (2 . Suppose that Xo e O, then we calculate the intersection of 0o

and O. We separate this intersection problem into the case where (,o c D and the case where

¿" øÐ.

2.3.I Case l: Lo cE
Now since (.o cE it follows that if D contains a point P of 0o, then it contains the whole plane

of 0o containing P. Thus the intersection of 0o and the elliptic quadric EìQ(4,q) is the union

of a number of the conics Ct,Cz,... ,Cq (possibty 0).

Now let l,t,t, : (nr,nt,l , then X¿,¿, is a three dimensional projective subspace that intersects

QØ,ù in an elliptic quadric. The equation of I¿,¿, is

(t - t')rs + nx(to - t'")rt + (mt'"t - mt"tt)r4: g
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Using the 2-transitivity on the planes of 0o,we need only consider the elliptic quadric (26,1

on Q(4,q) that is the intersection of. Q(4,q) and the three-dimensional subspace l¡,1, which has

equation rs * mr1 : 0. We now ask how many of the planes r¿ âle contained in E¡,1, which

will in turn tell us the intersection size of the 0o and (?s,1. Now

zr¿CE6,1 <+ P¿€Eo,r

<+ -mto I mt :0

<+ to:t,

andso?r¿ C Ð¡,1if andonlyif ú e Fir(o),where Fir(o) isthefixedfieldof theautomorphism

o. Let lFir(o)l: k, then lXo,r n Kt(o)l : kq * 1 and consequently

lE¿,¿' n 0ol: leq * 7,

where t,tt e GF(q) with t + t'. That is, if a three-dimensional subspace of PG(4, q) contains two

elements of the set {a.¿ : ¿ € GF(q)} (and so necessarily meets QØ,q) in an elliptic quadric),

then it contains exactly /c. Thus there are (ÐlØ : q(q-I)lk(k - 1) elliptic quadric ovoids of

QØ,q) intersecting the 0o in k conic planes.

For a given zr¿ there ffie (q -L)l@ - 1) three-dimensional subspaces of PG(4,q) containing

?r¿ and containing k elements of the set {n¿: ú € GF(q)}. I" total there are (q -Ð12 three-

dimensional subspaces of PG(4, q) containing zr¿ and meeting Q(a,ù in an elliptic quadric and

so there are (q -1,)(l12-Ll(k - 1)) elliptic quadrics ovoids of Q(4,q) meeting do in exactly the

conic C¿:7hnQ(4,q), that is, with an intersection size of s + 1.

This leaves

+-ffi-q(q-lxå -frr
. .t1 1 1 1l

q(q - r) lr- rlr=¡ - t+ k _ Ll
q(q - L)

k

elliptic quadrics ovoids of Q(4,q) which intersect go in exactly Xo.

2.3.2 Case 2: (." (. E but Xo eD

Now suppose that Xo e O but that ¿" øE.For ú € GF(q), let (.¡: r¡ñÐ. Now Xo € lt and

{+ # lo so it follows that L¡ is a secant line to the conic Ct: rtìQØ,q). Thus we have that

10"ìOl:q+ 1. There areq2(q-I)12 ellipticquadricovoids of.Q(4,q) containingXo and

q(q-t)12 of these sections have an ambient three space containing lo. Thus there are

q2(q - t) q(q - r) q(q - I)2
22
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elliptic quadric ovoids of Q(4,q) intersecting 0o in the above way.

We summarise the intersection sizes of the two cases above in the following theorem

Theorem 2.3.L Let 0o be the canonical KI(o) ouoid of Q(a,ù and let Xo be the speci,al poi,nt

of 0o. Suppose that E is a hyperplane of PG(4, q) that intersects QØ,q) in a non-si,ngular

elliptic quadric O and that Xo € 0. Il (.o cE, thenl0oì01: q1-I or k(q+I), where le is

the size of the fi,red field of o. If lo Ø E, then l0" n Ol : q + L.

2.4 More properties of the X¿,¿,

In this section we investigate some more properties of the set of three dimensional subspaces

{E¡,¡, : t,tt eGF(q) with tlt'}, where !¿,¿, has equation (t-tt)rs+nx(t" -t'")*r]-(mtt"t-
mtott)ra: Q.

Now in Section 2.3.1 we saw that

:r.¡rr ÇN0,, ¿ ¡t' e Fi,n(o),

and since 51¡ç¿,-¿¡T-¡(E¿,y) : X0,1, it follows that

7Í¡rr €E¿,¿t # 51¡ç¿,-t¡T-¡(n¿,,) € Eo,r

Thus we have
+ll -+T¿tr €E¿,¡t e fi e Fi,r(o).

First we determine when the intersection of. E¿,¿, àrrd E¿,,,¿,,, is a plane of 0o (recall ¡' is a

plane of.0o if it is an element of the set {n'¿: ¿ € GF(q)}). To do this we first consider the

conditions under which Eo,r O E¿,¿, is a plane of do. Now by the above

+t, -tEo,r O I,L,L' :'tt¿tt þ t" e Fir(o) and "V 

-1 
€ Fit(o)'

Now

<+

<+

Thus it follows that E¡,1 lD¿,¿, is a plane of.0" if. and only if

tll r{, fi e Fir(o) (o),

f) and t't e Fir(o),

ttto - ttfFffieFi'r(o)
The conditions under which the intersection D¿,¿, aîd E¿,, ,¡,,, is a plane of 0o can be determined

by using the transitivity of the group of 0o on the set {E3,e, : s,s'€ GF(q) and s f s'}.
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Notethatforlol :2,(ttt"-t't")l(t'"-to-Úl+t) isfixedbyøandsoE¿,¿,î,8¿,,¿,r isalways

a plane of 0o.

Second we investigate the elliptic quadric ovoids of Q(4,q) whose ambient three space con-

tains k planes of.0o. Since n¿ C Eo,r if and only if t e Fi,r(o) it follows tlnat r¿ c ?¿,(Es,1) if
and only if t e Fir(o) + t' . Thus the additive cosets of Fir(o) partition the planes of 0o into

qfksetsof size k,eachsetcontainedinadistinctthree-dimensionalsubspaceof PG(4,q).

Now!¡,1 : rs*TTtr1 :0meets Q(a,ù intheellipticquadricwiththeequation -mrl+
nf +rsra:0. The tangent plane at Xo to this elliptic quadric is the plane zr' i r.4:0. Thus

zr'hasequationsr,6*mr1:0andr.4:0,andzr/--((-*,1,0,0,0),(0,0,1,0,0),(0,0,0,1,0))'
Since ?¿, (-^,Ir0,0,0) : (-m,I,O,mto lmt,O), which is an element of zr', it follows that T¿,

fixes n/. Thus for t,,tt e GF(q), with t * t', the hyperplanes ?¿(E6,1) and 4,(Xo,r) meet in the

plane zr'. We generalise this set of hyperplanes to give the following definition.

Definition 2.4.L Let0 be a KI(o) ouoid of QØ,q). Letr be a set of qfk d,istincthyperplanes

of PG( ,q), each meeting QØ,q) in a non-si,ngular elliptic quadri,c and each containing the

special tangent line oJ 0. Suppose that any two elements o! r 'i,ntersect in a fired plane rt , that

is tangent to Q(4,q). IÍ each plane of 0 is a subspace of an element of r, then we say that the

set r is ¿ trade of 0. The plane rt i,s called the t;.ase plane of the trade r.

Note that it follows from Theorem 2.3.1 that if r is a trade of the 1(l(o) ovoid 0, then each

element of r contains exactly k planes of 0.

Note also that since any two elements of a trade intersect in a fixed plane tangent to Q(4,q),

it follows that the set of qlk elliptic quadric ovoids of Q(4,q) formed by the intersection of the

trade with QØ,q) meet pairwise in a fixed point. Suppose that p is a set of qlk KI(o) ovoids

meeting pairwise in a fixed point and with a common trade r. In Section2.6 we shall see that if
7?. is a rosette containing p, then we may take R, "trade" p for the set of elliptic quadric ovoids

corresponding to r, and form a new rosette.

Our original model for the definition of a trade of a 1ll(o) ovoid of Q(a,,q) was to take

the canonical ovoid 0o and consider the set r : {T(Eo,r) : ú € GF(q)} and the plane zr'

with equations 14 : 0 and rs I mr7 : Q. By transitivity on the planes of 0o it follows

that every hyperplane of the form E¿,¿, is contained in a trade of 0o. Now consider the point

(-*,1,0,0,0) e nt\(.o. We have that (-rn, 1,0,0,0) e E¿, if and only if t-t' e Fi,r(o) and so

(-^,1,0,0,0) is contained in exactly qlk of the X¿,¿,. Consequentl¡ the plane n'is contained

in exactly qlk of the E¿,¿,, and so is the base plane for exactly one trade of 0o, namely the trade

r : {Tt(Eo,r) : f e GF(q)i. Now since for any element ?¿(Eo,r) of r, nt is the unique plane

of ?¿(E6,1) that is tangent to Q(4,,q) at Xo, it follows that 7¿(E6,1) is contained inexactly one

trade of 0o. Hence it follows that every hyperplane of the form E¿,¿, is contained in exactly one
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trade of 0" (t}re unique trade with base plane the tangent plane to Et,t,ìQØ,q) at X")
We conclude this section with a summary theorem.

Theorem 2.4.2 Let0":{(-mto,t,z,-22+mto*L,l): t,ze GF(q)}U{(0,0,0,1,0)} bethe

canonical KI(o) ouoid, of Q(4,q), where Q(a,ù i,s defined by the equat'ion rort*nZ1-r3r4: g,

wi,th special point Xo : (0,0,0,1,0). Let {I,¿,¡,: t,tt e. Gp(q)} be the set of hyperplanes of

PG(4, q) where D¡,¡, : (t - t')*o + rn(t" - t'")*, * (mtt"t - mt"t')r4 :0. Each hyperplane Ð¡,¿,

meets Q(a,ù 'in a non-singular elliptic quadri,c and containt ¡: lFir(o)l planes of 0o. Further

(i) $t-t'øFir(o) thentheplane\sJfìE¿,¿, is aplane of 0" i,f and only i,f

tttú _ |t+o

to -to -ine Fir(o)'

(i,i,) Each E¿,¿, is contained, in a unique trade of 0o, with base plane X! llE¿,¡,. The plane

X* nDt,t, 'i,s the base plane for eractly one trade of 0o.

2.6 Characterisations of t}ae KI(ø) ovoid

In this section we give three characterisations of the KI(o) ovoid. The first two are in terms of

the conic structure of the ovoid. The third is a characterisation in terms of the trade structure

of the KL(o) ovoid.

Theorem 2.5.L ([63]) Let 0 be a set of points oÍ Q(4,q) consisting ol q con'i'cs, Ct,.. . ,Cq

i,ntersecting pai,rwise in a poi,nt X, that i's, C¿ìCj : {X} for i',j :1,2,...,Q, i'+ i. Let

'trtt... ,ro be the planes of PG( ,q) such that C¡ C n¿, for i:1,... ,Q. Suppose that {. is a fi,red

Iine of PG(4, q) such that r¿lnj : (. for i,,j € GF(q), i I j and' that no hyperplane of PG( ,q)

contains aII the r¿. Suppose also that for each pair i, j e GF(q), i + j the hyperplane þr¿,r¡)
intersects Q(a,,q) in a non-singular elliptic quadric. Then the set 0 is 'isomorph'ic to the I{1(o)

ouoid,.

Proof: Suppose that we have such a set of points 0. Embed QØ,q) in Q+(5,q), which has

polarity denoted by L Then n'f, ... ,nl forms aflock 3 (of planes) of the cone /r ì8+$,ù.
Since g is not contained in a hyperplane of PG(4, q), and so it follows that .F is non-linear (that

is, the planes of the .F do not intersect pairwise in a fixed line). Each plane r¿r contains the

exterior point PG(4, g)l and so by [63, Section 1.5.6] .F is a Kantor flock Fo for some field

automorphism o and so 0 is a Kl(o) ovoid.

!

Note that the automorphism is only determined up to the size of its fixed field, which is

equal to the number of elements of the set {2r1,7r2... ¡no} contained in the space (n¿,zr¡).
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Theorem 2.6.2 ([63] and [22], see [6, Lemma 15]) Let 0 be a non-classical ouoi,d ol QØ,q)

consisting of the q conics Ct,. . . ,Co, that meet pairwise 'in a fired poi,nt X. Then 0 is i,somorphi,c

to the KI(o) ouoid, for some ø € azú(GF(q)).

Proof: In general let zi¿ be the plane containing C¿. Then for any ?,j € GF(q) with i + j,
C¿UC¡ is a set of 2qI1 points of Q(4,Ç), no two collinear. Suppose that n¿lÌr¡: {X} for

somei,je GF(q) withil j.
If Irepresentsthepolarity of Q(4,g), thenr.f isalineof PG(4,g), whichiseitherasecant

to Q(4,q) or externalto Q(4,q). Let H¡be the set of three-dimensional subspaces of PG(4,q)

containing n¡ arid intersecting Q(a,ù in a non-singular hyperbolic quadric. If nrr is a secant

line to Q(4,q), then lI1¡l : (q - I)12 and if zrrr is an external to Q(4,,q), then IH;|: @+ t¡¡2.
Now let E and E'be two distinct elements of H¡. Since the intersection of zr¿ and zr¡ is a single

point, it follows that (zr¿,zr¡) is PG(4,g) and that neither E nor E'contains zr¿. Thus (.:DÀn¡
and (t : E ñ iTj a,re both lines of zr¿, and in fact distinct lines of fii since if {: lt, then E : D'.

Now since X is incident with both / and lt and r¿ contains a unique line that is tangent to C¿

at X,, it follows that at least one of. (. and (t is a secant to C¿. Thus, without loss of generality

we may suppose that D contains a point of C¿ \ {X}, say Y. Since Y I C¡ and (n¡,,Y) meets

QØ.,q) in a non-singular hyperbolic quadric, it follows that Y is collinear with two points of C¡,

which gives a contradiction. Thus n¿ñr¡ is a line tangent to Q(4,q) at X for all i,, j eGF(q),

with i I j. Further if we let (.ybe the (unique) tangent to Ct at X, it follows by the above that

r11,r¡ : (t for i:2,... ,e. Thus I is contained in all of the planes 7T¡ aîd so is the pairwise

intersection of any two of them. Since C¿ U C¡ is a set of points with no two collinear it follows

that (zr¿,n.¡) intersects Q(4,q) in a non-singular elliptic quadric. Thus by Theorem 2.5.1, the

ovoid 0 is isomorphic to the KI(o) ovoid for some d e azú(GF(q)).

tr

Theorem 2.6.3 Let Q: Q(4,q), Iet (. be a line tangent to Q and let X : (.1,Q. Let o €
ì

øzú(GF(q)) and,lc: lFir(o)1. Let E: {"r,r, 
rt,2t... ,rr,I,tr2,rt... ,r2,1,... ,rfi,1} U" o ,"t

oÍ q(q-I)lk(k-I) hyperplanes of PG(4, q), each element of which contains (. and, meets Q i,n

a non-singular ellipti,c quadric. Suppose that the following two conditions hold:

(i) ,¿,¡f\r¿,¡,:a¿ is atangent planeto Q at X anda¡lan i'li+k.

(ä) For each r¿,¡ there are lc sets of the followi'ng form:

l- . -. ì-
\Ti,itTi2,i2t. 

. . trl, g,i g J

such that elements of each set intersect pairwise in the same plane of PG(A,q), whi,ch

intersects QØ,q) in a conic and is conta'ined in no otherT¿,,¡,.
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Then the poi,nts of the con'ics in (ü) form an ouoid of Q isomorphic to the KI(o) ouoid.

Proof: Since each pair of sets of hyperplanes in (ii) intersect in exactly one element, it follows

that the span of any two planes in (ii) is a hyperplane intersecting Q in an elliptic quadric.

Hence if we can show that there are q conics in (ii), then by Theorem 2.5.2 we have a KI(o)
ovoid. If we let the number of planes be a then counting the incident (plane, r¿,¡) pairs for the

planes of the conics in (ii) yields

q-L q q-l ,o" k-r: r'*-r'*
and so a,:8

Note that in Theorem 2.5.3 the trades of the Kl(o) ovoid are the sets

{r¿,i t j : I,2,...,q|k} for i : I,2,...,q|k.

2.6 Rosettes containing KL(o) ovoids

In this section we will construct a number of types of rosettes of. Q(4,q) that contain KI(o)
ovoids. We will consider the two types of elation rosettes of Kl(o) ovoids (where the basepoint

is a non-special point and a special point, respectively), non-elation rosettes consisting entirely

of KL(o) ovoids and rosettes containing both KI(o) ovoid and elliptic quadric ovoids.

We will conclude the section by constructing all of such rosettes of the GQ 8(4, 9), with the

aid of a computer search conducted by Gordon Royle (t54]).

2.6.L Elation rosettes of KI(o) ovoids

Let 0 be an ovoid of Q(4,q), q odd, and P a fixed point of 0. We recall the construction of the

q * 1 elation rosettes containing d and with base point P, from Section 1.4.6. In the dual of

Q(4,q), W(q),, á is a spread S of W(q) and P a line (. of S. If Q is any point of W(q) (and so of

PG(3, q)) incident with l, then l4z(q) admits the elations of PG(3, q) with axis Qa and centre

Q (where I is the polarity of W(q)). The image of S under this group of elations is a rosette

of spreads of W(q). Since there are q* l points of W(q) incident with /, it follows that there

are q* l such rosettes. Dualising, these are the q*l elation rosettes containing 0 and with

base point P. Now for the case where 0 is an elliptic quadric ovoid there is a unique rosette

1l of elliptic quadric ovoids containing 0 and with basepoint P. If zr is the tangent plane to d

at P, then R is the set of elliptic quadric ovoids for which zr is also a tangent plane. Thus the

g * 1 elation rosettes containing d and based at P coincide. In Chapter 4 (Lemma 4.1.7) we

will see that a similar result holds if 0 is a Tits-type ovoid (that is, if the image of 0 under an
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isomorphism from QØ,q) to W(q) is a Tits ovoid). This, however, is not true in general for

elation rosettes of. Q(4,q), since if 0 is a fixed y'(l(o) ovoid and P a non-special point of 0, then

elation rosettes containing d and with base point P are not all identical:

Theorern 2.6.I Suppose that 0 i,s a K1,(o) ouoid of Q(a,ù and that P is a poi,nt of QØ,q)

such that P e 0, but that P i,s not the special point of 0. Then the q i L elation rosettes

containing 0 and, wi,th base poi,nt P are di,stinct. Further, any two such rosettes intersect in

eractly 0.

Proof: We will work in W(q) the dual of QØ,q). Let S be the dual of 0, (. be the dual of P,

(.oo t}ne dual of the special point of 0 and let I represent the polarity (symplectic) of W(q). If
Q is a point of L,thenlet Eq be the group of elations of PG(3,q) with axis Qr and centre Q.

Let Rq be the elation rosette of spreads {"(S) : T e Eq}, containing S and with base lin:e (..

NowQrisaplaneofPG(3,q) notcontaining/-andsoSrfì/-isapointof PG(3,a),Q*

say. Since Qoo is contained in the axis of the elation group Eq, it is fixed by the elements of

Eq and so the special line of each element of Rq contains Q-. Further, since l*, the special

Iine of S, is not contained in the plane Qr, the axis of the elations in Eq, it follows that each

element of. Rq has a distinct special line. Thus the set of special lines of spreads of. Rq is the

setof qlines of W(q),noí(, incidentwithQ- (notethatthelinesinthissetareallcontained

in the plane Aå). If Q and Qt are two distinct point of l, then clearly the sets of special lines

of the corresponding elation rosettes Rq and7.?'q a,re concurrent at different points of W(q),

and so Rq an.d Rqt are distinct.

Now suppose that Q and Qt are two distinct points of / such that Rq and Rq, contain a

common spread S/. Let the intersection of Q'I and t*be the point Q'-. Now if Q*: Q'*,
then{Qoo,Q,,Q') isatriangleinW(q), andso Q*+ SL.gVtheabove,sinceS'isanelement
of both Rq and Rq,, it follows that the special line of S' is incident with both Q- and Q/-.

This means that the special line of S' is (Q-, Q!), but this line is (.*, the special line of S.

Thus S È S'.

¡
Now we consider the elation rosettes containing a fixed KL(o) ovoid 0 and with base point

P, where P is the special point of 0. We will start with elations in tr42(q) the dual of Q@,q)

and dualise (via the Klein quadric) to get the elation rosettes of the KI(o) on its special point.

The first result v/e prove is that all of the elation rosettes coincide.
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Theorem 2.6.2 Let 0 be a KI(o) ouoi,d of Q(a,ù and P the special point of 0. Then the q*l
elation rosettes ol Q(4,q) containing 0 and with base poi,nt P, coincide.

Proof: Let Qt : 8+ (5, q) be the Klein quadric with equation :roih * rz$t * ï4r5 - 0. We will

consider the case where QØ,q) is the intersection of Qt and the hyperplane of PG(5,q) with

equation 12 : {ü8. In this setting we abuse notation by saying the canonical KL(o) ovoid 0o

has the form

0o: {(-mto,t,z,z,-22 lmto+t,I) : t,z e GF(q)} u {(0,0,0,0, L,0)}

with special point Xo : (0,0,0,0, 1,0) and special tangent line

lo : ((0,0,0,0,1,0),(0,0,0,1,0,0)). Let Sp" be the dual spread of 0o inW(q) and (,y, the

dual line of. Xo inW(q). We will first establish the form of the elations of PG(3, q), with centre

Q e lx, and axis Qr (where l- denotes the polarity of W(q)), as automorphisms of Q@,,q).

If l, : ((ro,*t,:x2,rr),,(Ao,Ar,Az,As)) is a line of PG(3, g), then the Klein correspondence À,

mapping lines of PG(3, q) to points of Q' , sends / to the point

(ht,l.zs,loz,{zt,(,os,hz) where l¿j : *¿Aj - rjAi

(see [25, Chapter 15]). The Klein correspondence defines a duality fromW(q), defined by the

equation roUz - :x2A0 - tJAt + :xrAB : 0, to Q(4,q) C Q'. \Me shall denote the bilinear form

associated with I/(q) by þ((ro,rttn2trs),(yo,At,Az,g3)) : roUz - lr2Ao - rzUt I rtAs.

Now the special line of the spread SB. is

rx' 
: ì-'ïÎ0,0,1,0)

((1,0,0,0), (0,0, o, 1)).

If I/ is a point of W(q), then the group of elations with centre [/ and axis [/r is {úo,y : V r+

V -l aB(U,V)Ula e GF(q)). The automorphism of Q(4,q) equivalent to to,s is the restriction

of the automorphism Àúo,yÀ-r of Qto Q(4,q). If we let (Jr: (s,0,0,1) and [/-: (1,0,0,0);

then ly, : {t/" : s e GF(q)} u {f¡*}.
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Now úo,y, (V):V la(-su2+uùUs: (uo - as2uz+asnr)'ur)'u2tl)3- asuz*au1) which acts

on the Plucker coordinates by

lu + (rs - as2r2l asry)y1- r{ao - as2az -f asy)
: lot * as2l12,

loz l+ (rs - as2r2l asrl)y2 - rz(yo - as2Az i asy)
: (oz I as(v2,

[os + (rs - as2r2-l asr)(g - asaz+ ayù - (*t - &snzl o*r)(ao - as2azl asgl),

- {os - asloz I alor - as2l2s - as(.s1

ln + ttUz-rzAt
: tt2,

ln + (r3 - asr2l ary)y - rt(yz - asAz* ayù

: ln I asl12,

lzs '+ rz(as - asuz* agù - (r3 - asr2* ar1)y2

: lzz - aln.

Thus

\to,u,\-l (ro¡ rlt r.2¡ rgr:t4, r;5)

: (ro ¡ as2 r;5, û1 - aï5, 12 + asr¡) rz + o'srl i r 4 * arg - as2 11 - o,s:x2 - asrg, ng),

When we restrict this to to Q(4,q) we have the automorphism

Eo,r(r¡r fi!¡ ß2t 12, i[4, ix5)

: (øo ¡ as2rSrrl- ar5)r2*asrgrr2*asr5rr4*arg- or2r1 -2asr2,r;5).

We now repeat the above for the elations to,(J*.

Now úo,y- (V) : V +a(-u2)U* - (us-au2,'ütt'u2¡u3) and so acts on the Plucker coordinates

by

(hr, hz, {.os, ltz, [T, lzs) è (l,u * a(n, loz, los - alzg, [.e, ls7, {,y),

that is

Àúo,y- À-1( r0¡ ïr,,r.2¡ frB¡ 1:4, z;5) : (ro + ar51x:l) fr2, üzt i[4 - {rr1, iL5).

When restricted to to Q(4,q) we have the automorphism

Eo'o(*o, fiI¡ ï2¡ r2t ï4trs) : (rg * ar;, ïrt fr2¡ r2,, ï4 - a,!x1, r5).

The q * 1 elation rosettes of. Q(4,g) containing go and with special point Xo : (0,0,0,0,1,0)

R" {8",,(0"): ae GF(q)} fors€GF(s)

{8",*(0"): a e GF(q)}.

39

are

Roo



We now show that R*:71" for any I € Gp(q). Consider the ovoid Eo,r(flo) € /lr, then

Eo,(2o) : {(-*t" * as2,t - a,z * asrz + as,-22 * mt"*I - n'tato - o"2t - 2asz,I) :

t, z e GF(q)Ì u {(0, 0, 0, 0, 1, 0)}

Now let a' : o,s2 - n'Lao , then consider

Eo,,*(0o): {(-mt" *a',t,r,r,-22 lmt"rt - a't,1.): z,t e Gtr'(q)} U {(0,0,0,0,1,0)}

: {(-mt" *mao *a'rt-arzrzr-22 Imao*l -mato -maot*mt"*r +aa' -a't,
I) : z,t e GF(q)) U {(0,0,0,0,1,0)} by replacing the parameter ú by t - a,

: {(-mt" + as2, t - a, z I as, z i as, - z2 - 2as z - o2 12 I maoil - mato - mao t +

mto*r - a,a,'-a't,L): z,t€ Gp(q)Ì u {(0,0,0,0,1,0)} by replacing zby z+as,

-- {(-*t" * as2,t - a, z I as, z ¡ as, -22 - 2asz - mato I mtotr - as2t,I)

: z,t e Gp(q)Ì u {(0,0,0,0,1,0)} by substituting a' : as2 - rnT!,

: Eo,r(îo).

Thus each ovoid of 71" is contained in 7?oo, and so 71, - Roo for all s € GF(q). Flom this it

follows that the q * 1- elation rosettes coincide.

!
'We now consider QØ,q) to be the quadric in PG(4, q) defined by the equation roq I rZ I

nsï4-- 0 and the canonical KL(o) ovoid 0o to be

0o : {(-mto ,t, z,-22 + ffito*L,I) : t,z e GF(q)} U {(0,0,0, 1,0)}

with special point Xo : (0,0,0, 1,0) and special tangent line

lo : ((0,0,0,1,0),(0,0,1,0,0)). In this setting the elations derived in the proof of Theo-

rcm 2.6.2 have the form

Eo,(*¡rrr¡û2trsrra) : (rg+ as2ratrL - o,rur2* asr4rn3 I arg - or2*1 -2asr2rr4),
Eo,*(rorrt¡{x2tïg)r.4) : (rg* ar4rtL¡t2trg - aryr14)

forø,seGF(q).
Let Ro be the elation rosette of Q(4,q) containing 0o and with base point Xo, the special

point of 0o. In the following we investigate the structure of.Ro by calculating the action of the

elation group {Eo,o: ø e GF(q)} on7,?-o.
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Theorem 2.6.3 Let01 beal{l(o) ouoi,d,of QØ,q) withspecialpointP. Let

R: {h,02,... ,00} be the (unique) elati,on rosette oÍ Q(4,,q) containing fu and, based, at P. If
Q¿ is the set {trt : r' 'is a base plane of a trade ol0¿}, then Q¿: Qj, for all l1i, j < q wi,th

i+ j. Further, if r¿ i,s any trad,e of 0¿ andr¡'is any trade of 0¡, thenr¿ o,nd,rj are ei,ther equal

or disjoint.

Proof: We prove the result for the case where QØ,q) is defined by the equation roq I rZl
ïsrl - 0 and 0L : 0o, the canonical KL(o) ovoid.

The rosette 7? is generated as the set of images of 0o under the group of elations {Eop : a €

GF(q)Ì, that is R: {Eop(îo): a e Gf(q)}. Let ßo be the set of base planes of trades of the

ovoid .Eo,s(Oo). \Me first show that ßo - ßo, for all a,at e GF(q) with a f at.

Recall from Theorem 2.4.2(ii) that the three-dimensional subspace of PG(4, q) Et,t, (which

contains ¡ç: lFi,r(o)l planes of.0") is contained in a unique trade of 0o and the base plane of

this trade is X!(1Ð¿,¿,. Now since the group {Srt: tt e GF(q)-} (where ^9, is the automorphism

of Q(4,q) fixing go, introduced in Section 2.2), also fixes Xor and is transitive on the set of D¿,¿,,

it follows that the set of base planes of trades of 0o is

Bs : {nr: Sr/(Eo,r n x:) - Eo,nn x! : a e GF(q).}.

Note that the size of this set is (q -Ðl& - 1) and that the plane î, has equations

TTtt i qro I mr¡o u1 : Q

14:0'

Now let A,t e lttt\lo be the point with coordinates (-rn4o-r,I,0, 0, 0), and so n, : (lo, Ar).

The point Eo,o(Ar) -- (-*q"-t,L,0,-maq"-1,0) € n', and Eo,o(lo) : lo from which it follows

that Eo,6(Tr): trn.Since 6, is the set of base planes of the ovoid,Eo,e(0o) e R, it follows that

ßo 
: i";,Ïl,r: ae GF(q)*)

fnr, ,t e GF(q)-)

: ß0,

and so Bo : Bo, for all a, a,' e Gp(q) with a f at .

Now let r be a trade of Eo,o(Îo), with base plane r and rt a trade of Eo,,s(?o), with base

plane-zr'. Weshowthatrand T'areeitherequalordisjoint. If Eisanelementof randr',then
it contains both zr and-il. Now zr and lr''are both planes tangent to Q(4,q) at the point Xo,

but E contains a unique plane tangent to E lì Q(a,ù at Xo, thus zr : î'. So if r and r/ have
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different base planes, then they are disjoint. We now consider the case where r and r' share the

same base plane, that is tr : ¡rt. Since Bo : ßo for all a € GF(q), it follows that n :d e ß0,

thatis tr:rtt €6¡forsome?€GF(q)-. Nowbytheabove Eo,o(rr):Eo,,s(Tr):74,andso
if r, is the unique trade of 0o with base plane nr¡rthenr: Eo,s(rr,) and r/ : Eo,,o(rn). Recall

from Section 2.2 that the trade of 0o with base plane nl (that is, the trade containing l¡,1) is

7: {To(Do,r) : a e GF(q)} where Q is the automorphism of QØ,q) fixing 0o introduced in

Section 2.2. Now since nn : ^9q(nr) it follows that

ht : Sr('r)
: {,SaT"(Eo,r) : a€GP(q)}

: {En.',,t@+t): a e GF(q)} (see Section 2.2)

: {lq,*n",0,,0,mqo+r(o -.")]: o e GF(q)}

Now .Eo,s([T1,ffi\o ,0,0,mr¡o+1(o - o")]) : ln,mno ,0,0,mr¡o (r¡a - qao + ø)], and so

r: Eo,s(rr) : {[r1,ffi\o,0,0,mr¡"(r¡a-nao +a)] : a e GF(q)]

Similarly
_t_, - Eo,s(rrt) : {[rl, ffirf,0,0,mr¡"(r¡a-nao *ø')] : o e GF(q)].

Consequently r : rt if. a - a' : q(P - B") for some B e GF(q) and r and r' are disjoint if
o, - e; # n(þ - p") for all B e GF(q).

¡
If zr' is a base plane of a trade of an ovoid of 73, then zr' is called a base plane of /1. and

any trade of an ovoid of fl. is called a trade of /è.

Corollary 2.6.4 Let h be a Kl(o) ouoid of Q(a,ù ui,th special poi,nt P. Let

R: {0t,02,... ,00} be the (unique) elati,on rosette ol QØ,q) contai,ning 01 and based at P. IÍ
n' is a base plane of R, then the set of trades of R, with base plane r' partit'ions the set of

hyperplanes that contain nt and intersect QØ,q) in a non-singular elli,pti,c quadric.

If zr'' is a base plane of 1è, then the set ?r of trades of /l with base plane zr' as base plane is

called a tower of 1l and ø' is called the base of the tower T.

2.6.2 Rosettes, trades and towers

In this section we will use the ideas of a trade of a lf 1(o) ovoid and a tower of an elation rosette

of KI(o) ovoids to construct a variety of rosettes of Q(4,q), each of which contains Kl(o)
ovoids.
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The general idea of the constructions is as follows. Let 5 be a GQ of order s. Let 7l :
{0t,02,...,0r} and?ct : {01,0L,...,d!} be two rosettes of ovoids of 5, that have the same

base point P. Suppose that as sets of points

0lu 0L... u 0', : ïtu 1zu ... t) 0,,

then both {0't,0L,,... ,0'rr0r+rt0r+2t... ,0r} and {01, 02,... ,0r,0'r+t,,0'r*r,... ,0'r} are rosettes

of .9 with base point P.

Now we consider the particular case where E : Q(4,q) and 11, is an elation rosette of K7(o)

ovoids of Q(4,q) with base point P, where P is the special point of the rosettes of R. Let T be

a tower of 7l with base zr and let R' : {01,0t,... ,0'o} be the rosette of elliptic quadric ovoids

with tangent plane n. Let r: {0t,02,...,00¡*} e Tbe a trade of 7l such that, without loss

of generalit¡ the elements of r intersect the QØ,q) in the elliptic quadric ovoids 0't,0t,... ,0L

(where þ: lFir(o)l) and the k ovoids of /1, that have r as a trade are 0t,02,... ,0¿. Then

the sets of ovoids {0'r,0L,... ,0L,0¡¡t,0*+2,...,0n} and {d1,02,...,0¡,0'¡¡1,...,0'o}, are both

a rosette of ovoids of Q(4,q) with base point P, containing both K[(o) ovoids and elliptic

quadric ovoids.

We can generalise these construction in the following way. Let the elements of the tower

T of.R be 1, T2t... ,ro¡¡r. Let the set of k ovoids of Íl that have r¿ as a trade be denoted 4.

Then the set of ovoids øU pz U... U pq/nt where pi: ri or r¿ for each i, is a rosette of ovoids

of Q(A,q) with base point P. Note that this construction includes both R and Rt . If zr and n/

are two distinct tangent planes to the QØ,q) at P and d and 0' are two elliptic quadric ovoids

with z and zr' as tangent planes, respectively, then d and 0t intersect in a conic. Thus, in the

above construction all the trades r¿ must come from the same tower of 71.

A natural extension of the above construction provides a construction of rosettes of QQ,q)

containing all KL(o) ovoids, but that are not elation rosettes.

Theorem 2.6.6 LetR be an elation rosette of I<l(o) ouoids of QØ,q) and let

T : {rr,r2¡... ,rq/k} be a tower of R. Let p¿ be a set of qlk Kl(o) ouoids contained'i,n a

conxnxon elation rosette (not necessarily R), and sharing the trade r¡. Then the set of ouoid,s

øU pz U ... U pq/¡ is a rosette ol QØ,q).

We are interested in determining whether rosettes constructed as in Theorem 2.6.5 exist.

We do this by looking for 1f1(ø) ovoids, not contained in 7l that share a trade with 71. This is

the direction we pursue in the next two sections. To complete this section we summarise all of

the above constructions of rosettes.

Theorem 2.6.6 LetR be an elation rosette of I{7(o) ouo'i,ds ol Qe,q) and let

T : {rt,T2¡. . . ,Tq/k} be a tower of R, Let p¿ be ei,ther
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1. a set oÍqlk Kl(o) ouoids contained, in a common elation rosette (not necessarilyR), and

sharing the trade ri; or

2. the set of qlk ellipti,c quadric oaoids oÍ Q(4,q) whose elements are the intersect'ion of the

elements of r¿ with QØ,q).

Then the set of ouoi,ds ÆU pz U .. . U pqlx is a rosette oÍ QØ,q)

Kl(o) ovoids sharing a trade and with the same special tangent line

Our aim in this section is to find examples of KLþ) ovoids that have the same special tangent

line as the canonical .[l1(o) ovoid 0o and share a trade with do. FÌom Section 2.6.I we have

the example of the ovoids of the elation rosette Ro containing 0o and with base point Xo. Here

we calculate whether there are any examples of l{l(o) ovoids sharing a trade and the special

tangent line with 0o, that are not in?-o.

We first consider collineations of PG(4, q) that frx Q(4,q) (with equation roql 17* rsr4 :
0) and lo, the special tangent line of go, which map 0o onto 1(l(ø) ovoids with special tangent

line l.o. Now suppose that 0 is a KI(o) ovoid with special tangent line Lo and such that á and

0o share the trade r. Since by Theorem 2.2.I ttre group of 0o is 2-transitive on the planes of

0o,we may assume that r is the trade of 0o containing Do,r. AIso, the group of 0 is 2-transitive

on the planes of d, so we consider collineations of PG(4, q) that frx Q(4,Ç), Eo,r arrd Lo.

Let T : Ta be the collineation of PG(4, q) consisting of the automorphic collineation o (we

will use a to represent both the automorphic collineation of PG(4, q) and the automorphism of

Gp(q)) and the homography ?, which has matrix [ú¿¡] where 0 ( i, j < 4. Fhom this point we

will associate the homography ? with the matrix [ú¿¡]. Now we require that T frxes Es¡, lo

and. Xo, and hence fixes Dqrr : (mr1,0,0, 0), Xo: (0,0,0, 1,0) and lo; so

T(0,0,0, 1,0) : (0,0,0, 1,0),

T(m,I,O,0,0) : (m,L,O,0,0) and

T(0,0, 1,0,0) : (0,0, 1, ø,0)

for some ø e GF(q). Now we also require that T fixes (.j :10,0,1,0,0] n [0,0,0,0,1]. The

intersection of [,o with QØ,q) is the line pair (.1 : ((0,0,0, 1,0), (1,0,0,0,0)) and

(.2 : \(0,0,0, 1,0), (0, 1,0,0,0)). We will first consider the case where T((.ù : (l andT((.2) : ¿r.

Thus
T(1,0,0,0,0) : (1,0,0, b,0) and

T(0, 1,0,0,0) : (0, 1,0, c,0)
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for some ó,c e GF(q). Thus ? has the form:

at- _I-

We also require that T fixes Q(4, q). Since (nort+rZ+rsr+)o : rlrl +@i)2¡rtrft,, it follows

that the automorphic collineation a fixes QØ,q). Thus to find the conditions under which T

fixes Q(4, q) we find the conditions under which 7 fixes QØ,q). These conditions are:

mo-rtf;o: tl, : tßt,,+,

toott¿lbtsstaa : 0,

tssts4md-t I tsst44md-rc : 0,

2tzztz+Iat22taa : 0,

to¿tu I t\+I ts+t4 : 0.

We normalise by letting t+¿,: I and let t00 : s € GF(q) \ {0}. Thus, ? has the form

f
¿00

0

0

búoo

0

0

toomo-l

0

ctggmd-l

0

00to+
00t:_¿
tzz 0 tz+

atzz úes ts+

00t++

, such that mb * c: 0

-c
-b

-a,12

-bc-a2f4
1

T-

for b,ce GF(q) such that mb + c: 0, s e GF(q) \ {0} and 1 :r¡¿(a-L)12.

If Go is the group fixing Q(4,q), Xs,1 and to, then the subgroup of Go consisting of the

elements of G o that fix (.1 (and hence also fix (.2) , is a subgroup of index 2 in G o. We will denote

this subgroup of Goby G'o. The group G'o consists of collineations of the form ?o where 7 is

of the form in 2.6.L. If we define

W (, o, ß L ¡ ix 2 t r B, r 4) : (mn t, r o I m, :r 2, r s, ix 4),

then I,7 is a collineationof PG(4,q) fixing Q(4,q), E6,1 and [.o and swapping (.t and(.2. Ttrts

we have that

We are now interested in elements of Go that fix the trade r of 0o that contains E6,1, since the

image of do, under such a collineation is a,Kl(o) ovoid for which r is also a trade. The group of

such elements is the stabiliser of r in Go which we will denote by (G,)". Using the description

s0
0 smo-l

00
bs csn'ùo-l

00

0

0

*?s
Lals

0

0

0

0

*a-l ,2

0

(2.6.1)

Go: G'ouwcto
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of r in the proof of Theorem 2.6.3 we may easily show that r consists of the hyperplanes of

PG(4,q) with coordinates 1L,m,0,0,u] where u: m(to - ú) for some ú e GF(q). First we

consider the action of T e G| on the polar point of the hyperplane [1, m,0,0,u] which is given

by

r(m'L'o' u' o) 
: 'r!:,')):-i,,f)'-'",,-, 

o,

: (m,l,0,szo,0)

Thus the collineation T : Ta € G! (where T has the form of 2.6.1) fixes the trade r if and

only if for each ú e GF(q) there is a ú/ e GF(q) such that s(m(t" -t))" :m(t'o -ú'). That is,

for each ú e GF(q) there is a ú' e GF(q) such that

smo(too - to) : m(t'" - t') (2.6.2)

This is equivalent to the single condition

smo-t{t" -t: t e cr(q)} :{t" -t; te cp(q)}. (2.6.3)

Solving this problem in general is messy so \Me will instead consider a subset of the solutions,

which will correspond to a subgroup of the stabiliser of r in Gto.

We consider the elements T : Ta of. Gto (so ? is of the form of 2.6.1) such that sræ"-l €

Fi,r(o) from which it follows that T satisfies 2.6.3. Let two such collineations be T : Ta and

Ît : Ttat . Now ("a)(T'ot) : (TTto)(aat ) (where Tto is the matrix obtained by operating on

each element of Tt with a) and

(s s'o¡^oo' -r : (srnd-r) (r' *o' -t)o .

Now -Fir(ø) is the unique subfield of GF(q) of order k, so Fir(o)o : Fi'r(o) which implies

that (stm"'-t)o t. an element of Fir(o). Thus (srn"-t¡7stm.,'-t)" e Fir(o) and.

H'r: {T : Ta: T e Gto and srno-r e Fir(o)}

is a subgroup of G/". Now for any automorphism a of GF(q) there are k - 1 possibilities for s

such that sn'to-! e GF(q), which gives a total of h(k - 1) pairs (t,o). F\rrther in the matrix ?
b is any element of GF(q), c is dependent on b and a may be any element of GF(q). Hence the

order of Gto is 2(k - L)hq2.

Notethattheelementsoftheset{ú"-t:teGF(q)}areinaone-to-onecorrespondenceto
the additive cosets of. Fir(o). Thus the set has size qf k and the maximum number of solutions,

inø,tor{t"-t:t€Ge(s)}:{t"-t:teGF(q)}isqlk.ButifreFir(o),thenrisclearly
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a solution so there are at least k solutions. In the case where k : qlk the maximum number

of solutions in z is equal to the number of solutions where n € Fir(o). Thus every T e G!

that satisfies 2.6.3 is an element of H[, that is, 1{ is the full stabiliser of r in Gto. Note that

k : qlk if and only if ø2 is the identity automorphism of Gp(q).

Now l,/(rn,1,0,0,0) : (m,1,0,0,0) and so the trade r: {[1,m,0,0,u]: u: n'L(to -
ú) for some t e GF(q)) is fixed by W. Since ,F{ is a subgroup of G| each element of H', fixes /r
anditfollowsthatthesetWHt"isasetof elementsof Go thatswap {.tand{..2.Wenowshow

that Ho: H|UWHt" is a subgroup of Go by displaying that multiplication amongst elements

of Ho is closed.

Let h and htbe two elements of Ho. If h,ht e HL,thenhht e HI c Ho. If h eWHto, say

h:WTa and å, € Hr,then hht :W(Taht) e WHL C Ho. If h,ht €WHr, say lz: WTa

and h' : WTtat where

ryt_f-

s000-c
osmo-ro0-b
00*?s0-al2
bs csrno-r Lals *a-tt2 -bc - a2 f 4

00001

where mb + c: 0 and .y - m@-t)lz,

then

WTWO:

s000-mb
0smo-rg0-clm
00Í?s0-al2

csf m bsmo tals *a-tt2 -bc - a2 f 4

00001
and so (WTW")a is an element of Ht". Thus h,h/ : (WTa)(WT'at): (WTW")(aTta'):
(WTW")a(T'o.') e Ht" C flo. Finall¡ if. h e Hr, h:Ta say and ht eWH'", h' :WT'a' say,

then

hh' : (Ta)(WT'a')

: (W2Ta¿)(WT'a') since W2 is the identity

: W(WTa)(WTtat)

€ WHt, c H".

We have shown that multiplication of elements of Ho is closed and so Ho is a subgroup of

(G"),.The order of. Ho is 4h(k - l)q'where q: ph.

Note that in the case where o2 is the identity 11" is the full stabiliser of r in Go, that is,

Ho: (G")r.
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Now .É1" is a group of collineations of PG(4, q) fixing Q(4,q), E¡,r, (o and the trade r of 0o

that contains Es,1. Thus the image of go under any element of Ho is a Kl(o) ovoid of QØ,q)
that share the trade r with 0o. Now if d1 and 02 are Kl(o) ovoids with special tangent line

lo and with the common trade r, then there exists an element of (G")" mapping 01 to 02 (this

follows from the 2-transitivity of the group of a KI(o) ovoid on its planes). Thus we may use

the orbit-stabiliser theorem on (Go), to determine the number of distinct KI(o) ovoids with

special tangent line (.o and with Í as a trade.

In the case where ø2 is the identit¡ since f/o : (Go), it follows that

f distinct ovoids with special tangent line [o and trade r
lH"l (2.6.4)

lStabiliser of.0o in Hol

In the case where o2 is not the identit¡ since fIo is a subgroup of (Go)", it follows that

f distinct ovoids with special tangent line {.o and trade r
lG")"1

lStabiliser of 0o in (G"),1

= ,o' - ,-, lTîl , (2.6.5)- lStabiliser of 0o in (G")"1

Now if 1 e Go fixes 0o, then since T fixes X6,1 it follows that T also fixes r, that is, T € (G")".

Thus the stabiliser of 0o in Go is equal to the stabiliser of 0o in (G")". Consequently we

calculate the stabiliser of 0o in Go.

First we consider T : Ta € G'o. Now T fixes 0o if and only if it fixes the set of planes of go.

Recall from Section 2.2 that the plane r¿ of 06 may be written as ({o,(-*to ,¿,0,0, 1)), and so

since T frxes (,o, it follows that

T("r) : T((¿",(-mt",ú, o, o,1)))

: (lor(-m"t"o, - "rr^a'r¿a - br-r-,1))

Now recall from Section2.2 that the plane r, of 0o is defined by the equations rs*mrf -rrn : 0

and z1 - \r+: 0, and so Ta(-mto,,t,0,0' 1) € n¿ if and only if

n: srnd-rf -b and - n'ùotoos-cIm(sma-r¡a -b)" :0.

Combined, these equations imply that the T("r) is a plane of 0o if. and only if

too (-mo s I soy¡¡(a-t)ø+1) - c - mbo : 0 (2.6.6)

Now, T fixes the set of planes of.0" if. and only if 2.6.6 is satisfied for all ¿ € GF(q). This is

equivalenttothepolynomial *oo(-*o¡"o*(c,-r)ø+1) - c-mbo beingidenticallyzero. This
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in turn holds, if and only if the following two equations are satisfied

-n'ùas¡ro*(a-r)o*r : 0 Q.6.7)

-c-mbo : 0 (2.6.8)

Since b and c are related by mb* c: 0, 2.6.8 is equivalent to bo : -b. If bo : -b, llnen b2o : b2

and so b2 e Fir(o). Now suppose that ø is a non-zero element of GF(q), such that ro : r. I1

A2 : :x, t]¡en y2o - y2 and so either Ao : y or yo - -y. Since the other square root of z is

-U, it follows that if Ao : U, then (-g)" : (-y) and if yo : -A, then (-gr)" : -FA).Thus,
for r a square such that to : üt either both square roots of ø are in Fir(o), or both are in

the set {b: b" - -ó} c GF(q) \Fir(o). Since Fir(o) is afield of order k, there arc (k-I)12
elements of Fir(o) that are square in GF(q) and have square roots in Fir(o). If q : ph and

lç: p', then the other (k -I)12 non-zero elements of. Fir(o) are square in GF(q) if and only

if 2 divides (hlr). When 2 divides (hlr) there are (k - 1) non-zero solutions to bo : -b and

including the solution b : 0 gives a total of k. If 2 does not divide (hlr), then the only solution

to the equation bo : -b is b : 0.

Now solving equation 2.6.7,

_rnos¡"o*(a-l)o*l : 0

<+ -Tnos + (smo-L)"m : 0

<+ (t^o-t)" : sn¿o-r.

Thus, 2.6.7 is satisfied if and only if srno-r e GF(q). Hence if 2 divides hf r tlnen there are

2qk(h(k - 1)) elements of G!that fix go and if 2 does not divide hfr,then there are zqh(k-1)
elements of G| that frx 0o.

Having calculated which elements of Gto frx 0o, we now calculate which elements of WG|
frx 0o.

Now

w("t) W ((¿", (-^t",¿, 0, 0, 1)))

((,o,(mt, -úo,0,0, L))

t-to':0forallúeGP(q)

Thus, in the case where o2 is the identity automorphism of GF(q), I4l fixes 0o and so the set

of elements of.WGto that fix 0" is {WT: T e Gto and T(d") :0o}.Hence if ø2 is the identity

(and so 2 divides hf r) there are  qk(h(k - 1)) elements of Go that frx 0o.

and so 14/ fixes 0o if and only if
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and so I,7T fixes 0o if and only if

In the case where o2 is not the identity, if T : Ta e Gto, then

WT(tr¿) WTa(((,", (-^t",ú, 0, 0, 1)))

(Çr(smot" - mb,-*a-t¡oa, - clrn,-, -,1))

snfto - mb * m(-mo-rt"" t - *)" 0 for all ú e GP(q)

0 for all ú e GF(q)

<+ -n1,ostoo * mosto - mb - Tno-r
0 for all t e GF(q).

Thus, I,7T fixes 0o if and only if the polynomial

-n'Lo sroo * rnosx:o - mb - !-rno- L

is identically zero. This, in turn, yields the equations

-n'ro¡:0and -mb-I-n'Lt- L

Since s I 0 these equations are never satisfied.

Hence if.o2 is not the identity and2 divides hfr,thenthere are zqkh(k -1) elements of Go

that fix 0o and if 2 does not divide hfr,t}ren there are 2qh(k - 1) elements of Go that fix 0o

Theorern 2.6.7 Let 0 be a KI(o) oaoid of QØ,q) with special tangent li,ne (, and let r be a

trad,e of 0. The number of KI(o) ouoids, with speci,al tangent line (., that haue r as a trad,e'i,s:

at least 2q ,f 2 does not diuide hf r,

at least Z(qlk) ,f Z I @lk) and o2 f identity,

eractly qlk ,f o2 : i,denti,ty.

Proof: Recall that the stabiliser of 0o in (G"), is equal to the stabiliser of 0o in Go. Thus

using2.6.4and2.6.5, lEol:4h(k-1)g2andthesizeof thestabiliserof 0oinGocalculated

above we have the result.

¡
We a,re now able to determine the conditions under which there exists two Kl(o) ovoids

with the same special tangent line and a common trade but not in a common elation rosette.

Corollary 2.6.8 Let o be a non-identity automorphism of GF(q), q od,d,. If o2 is the i,tlentity,

then any two Kt(o) ouoids ol QØ,q) with the same special tangent line and sharing a trade

are contained in a con'¿n'ron elation rosette. If o2 is not the i,denti,ty, then for any KI(o) ouoi,d,

<+ smoto -mb*^(-*"-'"t"'" - #)
co
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of QØ,q) 0 and trade r of 0, there erists at least one I{L(o) ouoid 0', not equal to 0, such that

0t has the same speci,al tangent line as 0, has r as a trade but 'is not contained 'í,n a cornmon

elation rosette with 0.

Proof: Let R be the rosette of Q(4,g) containing 0 and with base point the special point of d.

Then there are qf lc ovoids of /l (including á) with r as a trade (and necessarily with the same

special tangent line as 0). Applying Theorem 2.6.7 gives the result.

tr

KI(o) ovoids sharing a trade but with different special tangent lines

In this section we find KL(o) ovoids that share the trade " : {[1, m,0,0,u]: u : m(t" -
ú) for some * e GF(q)) (the trade of 0o containing E¡,1, as in Section2.6.2) wittr0o but not the

special tangent line with do. We do this by finding automorphisms of Q(a,ù that fix r, but do

not frx lo.

If á is a point of zr \ {X"} then recall the symmetry þ.q of QØ,q) from Section 1.2 and

Section 2.2. The symmetry p4 fixes Xo and every subspace of PG(4,q) that contains,4. Thus

it follows that p,¡(ïo) is a /(1(o) ovoid with special point Xo with I as a trade and with special

tangent line p,¡({.o). Now lo is such that (.} is a plane intersecting QØ,q) in a pair of lines (as

observed in Section 2.6.2). There are (q +L)12 such tangents, containin1 Xo, in zr and we may

easily show that the set of symmetries {p¿ : A e "\{X"}} is transitive on these tangents. Thus

there are (at least) (q - t) lZ KI(o) ovoids (not including 0") of the form p,¡(îo), A e * \ {X"},
that share the trade r with 0o. If Ra is the elation rosette containing p,A(O") and with base

point Xo, then there are qf k ovoids inÎ-t with r as a trade, each with special tangent line

p,A(¿"). Thus there are (at least) (q -I)ql\k) Kl(o) ovoids that share the trade r witt'0o,

but not the special tangent line (.o. Thus we have the following theorem.

Theorem 2.6.9 Let 0 be a KI(o) ouoi,d of QØ,q) wi,th special tangent line (,. Let r be a trade

of 0. Thenthere are (atleast) (q-t)qlQk) I{t(o) oao'ids olQØ,q) that sharethetrader with

0, but not the special tangent line (..

2.6.3 Rosettes of Q(4,9)

In this section we consider rosettes containing KI(o) ovoids of Q(4,9), where o is the non-

identity automorphism of GF(g) (that is, íxo : nB arrd o2 is the identity). Penttila and Royle

have shown ([53]) that there are only two isomorphism classes of ovoids of. Q(4,9), the elliptic

quadric ovoids and the Kl(o) ovoids. Hence if. {0¡02,... ,0e} is a rosette of. Q(4,9), then for

each i : L,2,. . . ,9 the ovoid á¿ is either and elliptic quadric ovoid or a KI(o) ovoid. We know
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that if 0¿ is an elliptic quadric ovoid for i : L,2,. . . ,9, then the rosette is an elation rosette.

Otherwise the rosette must contain a K7(o) ovoid, without loss of generality the ovoid 0t. A
computer search by Gordon Royle ([5a]) gives us the following result on such rosettes.

Theorem 2.6.L0 [51] Let 01 be a fired Kl(o) ouoi,d ol Q(4,9) with spec'i,al point X. Then

euery rosette {01,02,... ,0s) is included in the followi,ng table.

Base point
Isomorphism

TYPe f rosettes (Kt(o),EQ)
Size of orbits

on ovoids

Fixed non-

special point

I 2 (e,0) I
II 8 (e,0) I

Special point

A 32 (6,3) 3,6

B 48 (e,0) 3,6

C 48 (9,0) 3,6

D 4 (3,6) 3,6

E 8 (6,3) 3,6

F 1 (9,0) I
In the aboue table the fi,rst column indicates whether the base point of the rosette is the

special point X of 01, or not. The second column i,ndicates the different i,somorphism classes of

rosettes contain'ing 01, whi,le the third, gi,ues the number of rosettes in each isomorph'ism class.

The fourth column giues the number o! KL(o) and ellipti,c quadric ouoids 'in a rosette of a
particular isomorphism type. The final column giues the orbit sizes for the act'ion of the group

of a rosette (in a parti,cularisomorphi,sm class) on the ouoi,ds of the rosette.

We will see that all of these rosettes may be constructed either as in Theorem 2.6.1 or by

the method shown in Theorem 2.6.6 and the work in Section 2.6.2.

ByTheorem2.6.I,if.Pisafixednon-specialpointof dl,thenthereare q+L: l0elation

rosettes containing 01 with base point P. These are precisely the rosettes of type I and II.

In the current context Theorem 2.6.6 says the following: let X be the special point of

the Kl(o) ovoid 01 and /1. the elation rosette containing 01 and with base point X. Let

T : {rt,r2,ß} be a tower of /l (see Section 2.6.1) such that 11 is a trade of 01. Let p1 be the

set of ovoids of 7l that have 11 as a trade and p¡, for i : 2,3 be either

1. a set of 3 K1(a) ovoids contained in a common elation rosette (not necessarily 7?), and

sharing the trade r¿; or

2. the set of 3 elliptic quadric ovoids of Q(4,9) whose elements are the intersection of the

elements of r¿ with QØ,9).
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Then the set of ovoids ÆU pz U p3 is a rosette of Q(4,9). \Me will call these different types of

sets of ovoids sets of type 1 or 2, as enumerated above.

Note that /l has (q-t)l]c - 1) :4 towers and that the group of 01 is transitive on these

towers.

The rosette of type F is the (unique) elation rosette 71, containing 01 and with base point

X, the special point of 01.

Recall in Section 2.6.2 that we found (q+t) 12 : 5 possible sets of type 1 for p2, including the

set of 3 ovoids of.?-for which 12isa trade. Each of these sets has the property that the ovoids

it contains have a common special tangent line. Also the special tangent line corresponding to

each of these sets is distinct (the special tangent lines are those tangent lines in the base plane

of T tlnat have a polar with hyperbolic character). A similar result holds for sets of type 1 for

Pz.

Now the rosette øU rz U 13 is of type D and the 4 towers give the 4 rosettes of type D.

If. p2 is the set of type 1 contained in /?., then Æ U pz U 13 is a rosette of type E. Similarl¡

the rosette prur2p¡with p2 C /1. The 4 towers give us the 8 rosettes of type E.

If p2 is a set of type 1 not contained in fl, then p1 U pzu 13 is a rosette of type A and there

are 4 such rosettes. Similarly, there are 4 rosettes of the form p1 Ur2lJ p3 of type A and the 4

towers give us the 32 rosettes of type A.

Now suppose that p2 and ps are sets of type 1. Let {.¿ be the special tangent line of the

ovoids in p¿. There are two possibilities: either two elements of {11, Lz,ls} coincide, or they are

all distinct (if all three coincide then we have the elation rosette of type F). These 2 possibilities

correspond to the rosettes of type B and C.

2.7 Remarks

With a little more computational effort it may be possible to classify the rosettes of Q(4,q)

such that each ovoid of the rosette is either an elliptic quadric ovoid of a Kl(o) ovoid (for fixed

a). Also of interest is considering rosettes of Q(4,q) containing other ovoids of Q(4,g), to try

and determine whether there is a GQ of order (q,q') containing QØ,q) as a subquadrangle and

subtending rosettes of these ovoids. Similarly for q even since the q-clan GQs all possess sub-

quadrangles of order q isomorphic to T2(0) for some oval O of PG(2, q), it would be interesting

to investigate rosettes of the GQT2(O).
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Chapter 3

SPGs and GQs of order (r, 12)

3.1 SPGs from GQs of order (r,r')

Consider the SPG (constructed by Metz see [18] and by Hirschfeld and Thas [26]) with param-

eters s - q-7rt:82, Q:2, þ:2q(q- 1), where q is a prime pov/er. The construction due to

Metz as follows: Iet Q: QØ,q) and let P be the set of three dimensional, non-singular elliptic

quadrics contained in Q. Let a bundle of. Q be a set of q elements of 2 that meet pairwise in

a common point. Let ß be the set of bundles of 8. Define incidence I ç (P x ß) U (ß x P)

to be containment. Since each bundle is a set of q elliptic quadric ovoids of Q sharing a com-

mon tangent plane at the point where the elliptic quadrics intersect, and two elements of 2
that are tangent are incident with exactly one common bundle, it follows that the structure

T : (P,ß, I ) is a SPG with the above parameters.

Now consider the GQ 5 : Q(5,q). 5 contains Q as a subGQ and the subtended ovoids

are exactly the elementsof P. Moreover, the subtended rosettes are the bundles andT is the

incidence structure obtained by taking subtended ovoids as points and subtended rosettes as

lines. This relation between QØ,q), Q(a,q) and the SPG 7 depends on the combinatorics of the

situation, rather than the specific geometry. In this section we generalise the Metzl Hirschfeld

and Thas construction of an SPG by using a GQ of order (r,12) and a subquadrangle of order

r (with particular combinatorial properties) in the place of Q(5,q) and Q(4,q), resulting in

Theorem 3.1.7. In Section 3.1.L we construct an algebraic 2-fold cover of the SPG constructed

in Theorem 3.1.7 and use this in Section 3.2 to solve the isomorphism problem for such SPGs.

In Section 3.3 we construct a new SPG from a GQ constructed by Kantor in [31]. In Section 3.4

we investigate the q-clan GQ., q even and the subquadrangles of order q constructed by Payne

in [a5]. \Me determine the conditions under which a q-clan GQ, with such a subquadrangle,

gives rise to an SPG by the method of Theorem 3.1.7.

To begin with we state and prove a lemma which is implicit in [49, Chapter 2]. The lemma
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proves important for the work in this chapter and in Chapter 4. Recall from Section 1.4.1 that

if 5 is a GQ with a subGQ ,S', then each line of 5 is a line of 5', is incident with exactly one

point of .S' or is incident with no point of 5'. In the last two cases the line is called tangent

and external (to 5'), respectively. Dually we define tangent points and external points.

LernrnaS.t.L LetE:(P,ß,1)beaGQof order(r,r')andS':(P',ß',1)asubquadrangle
of E of order r. Then each point of P\P' is an erternal point to Et and each line of ß\ßt is

a tangent line to E'.

Proof: If. ¿ €. ßt , t}ren it follows that each point of .S incident with [. is a point of S/. Thus a

point of P \P' is incident with no line of E/ and hence is external to E'. By [49, 2.2.I] each

external point P is collinear with exactly 7J-12 points of S/, that is, each line incident with P

is incident with exactly one point of 5'. Thus each line of 6 \ ß' is a tangent line to 5'.
!

Corollary 3.L.2 Let E : (P,ß,1) be a GQ of order (r,r2) and S' : (P',ß',1) a subquadrangle

of 3 of orderr. TheneachpointofP\Ptsubtendsanouoidof Etandeachlineof ß\Btsubtends

a rosette of Et (as i,n Section 1./+.1).

Now we are interested in determining the intersection of subtended ovoids. To this end we

recall a result of Bose and Shrikhande, interpreted in the GQ context.

Lernrna 3.L.3 ([S], see [/¡9, 1.2.4]) If S is a GQ o! order(r,r2) and{X,,Y,Z} i,s atriad of S,

thenl{X,Y,,Z}Ll :r+1.

Corollary 3.I.4 LetE be a GQ oÍ order (r,r2) andE' a subGQ of orderr. A subtended ouoi,d

of St is subtended by at most two po'ints of E. Further, if an ouoid 0 is subtend,ed by two poi,nts

X,X', then the size of the i,ntersection of 0 wi,th any other subtended ouoid 0y, Y + X,Xt, is

d,etermined: i,f Y -X orY -Xt,thenl0Àïyl:L andrfY *X,X',thenl0ll|yl:r1_1.

Proof: Suppose that an ovoid 0 is subtended by three points X,Y,Z. These three points are

necessarily pairwise non-collinear and so form a triad of 5. Since l{X,y, Z}Ll > 12 + I we have

a contradiction of Lemma 3.1.3. Thus any ovoid may be subtended by at most two points.

Now suppose that 0 is subtended by exactly two points X and Xt. Let 0y be the ovoid

subtended by the point Y, Y + X, Xt. Suppose that Y - X or Y - X'; without loss of

generality \Me may suppose that Y - X. Thus 0y atd 0y ale contained in the rosette subtended

by the line (X, Y) and so 0y À 0v - {P} for some point P and l0 n ïyl: l{X, Xt ,Y)Ll : 1.

Suppose now that Y * X,X', then {X, X' ,Y} is a triad of ,S and so ld n ïvl : l{X, X' ,Y}rl :
r*I.
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If a GQ ,5 of order (r,r') has a subGQ 5' c .S of order r such that each subtended ovoid

of 5' is subtended by exactly two points of 5, then we say that 5/ is doubly subtended in

5. In some sense a doubly subtended subquadrangle is an 'extreme' subquadrangle, so it is not

surprising that we get some nice geometry from it. At this stage we introduce a slight abuse of

notation. If X is a point of S, then we denote this by X e 5. If X is apoint of 5 but not a

point of 5', then we denote this X € S \ S'.

We might now ask how many subtended rosettes can two subtended ovoids have in common.

Let 0y and 0y be two subtended ovoids; subtended by X and Y, respectively, where 0x * 0v.

There are three cases to consider: (i) neither 0y rrcr 0y is subtended by a second point,

(ii) dx is subtended by another point Xt and 0y is not subtended by a second point, (iii) Ax

and 0y are each subtended by a second point, say X' and Y/ respectively. For case (i) 0¡ and

0y are contained in exactly one common subtended rosette 1f X - Y and in none otherwise.

In case (ii) y may be collinear with at most one of X,Xtsince otherwise Y € {X,X'}t c S'

whichcontradictsYe E\5/. Thusforcase(ii) Px an.d0y haveonecommonrosetteif.Y-X

or Y - X' (not both) and none otherwise. For case (iii), to each unordered, incident pair taken

from {X, X',Y,Y'}, there corresponds a subtended rosette containing 0y and dy. So there may

be none, one or two subtended rosettes containing 0¡ and 0y. Note that it is possible that two

distinct lines subtend the same rosette.

We have already seen that a GQ 5 of order (r,r') with a subGQ .S/ of order r that has all

subtended ovoids of .S being subtended twice is a special and also extremal case of a subGQ

of 5. \Me now give a result which shows the relationship between double subtending and the

existence of a particular type of involution of the GQ 5. The idea for the construction of the

involution comes from Thas [62]. For the following we will denote the ovoid subtended by a

point X by 0x.

Lemma 3.t.6 Let E be a GQ of order (r,r2) and E' a subGQ oJ order r. Then Et is doubly

subtended in E if and only i,f there erists a non-identi,ty inaolution of S that fi,res Et pointwise.

Proof: First, let r be an involution of 5 that fixes S/ pointwise. \Me first show that r fixes no

point of S\,S'. Supposethat X € 5\S' andr(X) :X. Consideraline/suchthat X e (.and

Iet LIE': P, say. Now r(P): P and so r(l):1. Now let R e ¿,, R+ P. Then 0a:0,(n)
but r(R) e .(.and so Ã: r(,R). Thusl isfixedpointwiseby r. Now consider apoint Y e 5\5',
Y * X. If 0y : 0x lhen since an ovoid may only be subtended twice and r(Y) subtends 0y we

must have that r(Y) :Y.If 0v * 0x, then there exists a point A/ such that ,R' e ¿, Rt € S\S'
and Y - R'. However, .R/ is fixed by r as it is collinear with X and so every point collinear
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with .Rt is fixed, so r also fixes Y. Thus r fixes every point of 5 and so is the identity, which is

a contradiction. Hence r fixes no point in 5 \ 5'.

Thus we can now say that for any point X € .S \ 5' we have r(X) : X' + X and so 0¡ is

subtended by the distinct points X,X'.
Now, suppose that S' is doubly subtended in .S. If X e ,S \ S' then let X' be the second

point subtending 9¡. Now define r to be the following map:

rt X+XtXeS\5'
Xr+X XeEt.

Consider points P,Q e 5, with P - Q.I1P,Q € 5'then P:r(P) - r(8):8. If.P €.S',

Q e E \5'then P e 0q- 0e,- 0,çq¡ and so P- r(Q), that is r(P) -r(Q).
Now if P,Q e 5 \ 5' then lOp n0Al: l0r@)ì0,@)l:1; so by Corollary 3.1.4 we have that

r(Q) - P or r(Q) -r(P).SinceQ -P it must bethat r(Q) / P and so r(P) -r(Q). Thus

r is an automorphism of 5 and clearly an involution.

I

Corollary 3.1.6 #5 is a GQ of order (r,r') thathas a doubly subtended subGQ Et of orderr,

then for each i,ncident point, subtended ouoid pair (X,0) there erists a unique subtend,ed rosette

R, containi,ng 0 and with basepoint X.

Proof: If d is subtended by the points Y and Y/, then the only subtended rosettes containing

0 and with base point X, are those subtended by the lines (X, Y) and (X,Y'). However (X,Y)

is the image of (X,Y') under the involution constructed in Lemma 3.1.5, and vice-versa. Since

the involution in Lemma 3.1.5 fixes the subquadrangle 5/ pointwise (and linewise), the rosette

subtended by (X, Y) and the rosette subtended by (X,Yt) are the same.

!
Now we show that if a subGQ is doubly subtended, then we get an SPG from its subtended

ovoid/rosette structure.

Theorem 3.L.7 LetE be a GQ of order (r,r2) containing a subGQ E' oÍ orderr, suchthat El

is doubly subtended in E. Consi,der the following i,ncidence structureT:

Points : Subtended ovoids of .S'.

Lines : Subtended rosettes of 5'.

Incidence : Containment.

Then T is a SPG with parameters s : r - I, t : 12, o, : 2 and p : 2r(r - 7).
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Proof: A rosette contains r ovoids, thus s : r-I. By Corollary 3.1.6 there are 12+1 subtended

rosettes containing a subtended ovoid 0y, that is, t : 12.

Now consider a subtended rosette 1l with basepoint P and not containing the ovoid 0¡.

Recall that ovoids of 1è partition the points of 5' that are not collinear with P. Suppose that

P e 0y. Then gx C .St \ Pr. Let n1 and n¡.r1 be the number of ovoids of 1{. that meet d¡ in 1

and r f 1 points, respectively. Then we have the following equations:

hr*I'r1-nt'0 : 12

nr+t*nt : r.

Solving simultaneously gives frr*r : r and u : 0, that is, 0¡¡ meets each ovoid in 7t. in

r * 1 points.

Suppose now that P l0x.Then g¡ has 12 - r points non-collinear with P and so we have

the following equations:

flr*r'(r*1) +n1 : ,2-,
ny¡1 ln1 : r

Solving simultaneously we have n"a1 : r - 2 and nr :2.
In terms of T the above means that if we have a non-incident point/line pair (A,l) inT

there are 0 or 2 point/line pairs (B,rn) such that,4 I m I B I I.

Now consider two subtended ovoids of S', say 0y and dy, such that l9y ì ïyl : r * 1. Let

dl : 0x \ 0y. By Corollary 3.1.6, for each Q € O there exists exactly one subtended rosette

7?, with base point Q and containing 0x. By the above, we see that there are two subtended

rosettes containing 0v and an ovoid in 7è, and so two subtended ovoids that are contained in a

subtended rosette with 0¡¡ and contained in a distinct subtended rosette with 0y. This is true

for all points in O and so there are 2(r2 - r) subtended ovoids that are contained in a rosette

with both 0y and 0v. In 7, this means that given two non-collinear points A and B there are

2r(r - 1) points collinear to both A and B.

Thus ?- is an SPG with the parameters as required.

tr

Corollary 3.L.8 Let S be a GQ oÍ order (r,r2) contai,ni,ng a subGQ E' oÍ ord,er r such that

there erists a non-identity inuoluti,on o! S that fi,res E' pointwise. Then there is an associated

SPG with parameters s : r - L, t: 12, a,:2 and, p,:2r(r - 7).
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3.1.1 Algebraic 2-fold covers of SPGs and the GQ condition

Suppose that 5 is a GQ of order (r,r') and 5' is a subquadrangle of order r that is doubly

subtended. Let T be the SPG constructed from .S and .9' as in Theorem 3.1.7. In this section

we show that if 7 is the geometry of 5 \ .S' (that is, the subgeometry of S consisting of the

points and lines not in 5'), then there exists a map p from T to T such that (T,p) is a 2-fold

cover of T. In fact the 2-fold cover is an algebraic 2-fold cover. We then show that we may

reconstruct 5 from 5' and 7. Generalising this construction we construct a GQ of order (r,r2)

from 5', T and an algebraic 2-fold cover of ?r, provided the cover has a property called the GQ

condition.

Let 5, 5t and ?r be as above and let (7,,p) be an algebraic 2-fold cover of T over Z2 (where

Z2 is the unique abelian group of order 2), defined by the l-cochain c. Then (T,p) is said to

satisfy the GQ condition if for each set {P, 8, R} of pairwise collinear points of 7

6c(P,Q,R):c(P,q) - c(P,R)+c(Q,A) :0 e PiQ,Rarc collinear points of 7. (3.1.1)

Theorem 3.L.9 Let E : (P,ß,1) be a GQ of order (r,r') and St : (P',ßt,I) a doubly

subtended subGQ of order r. LetT be the SPG constructed Jrom S and St, as in Theorem 3.1.7

and letT b" th" geometry (P\P',ß\ß',I). Let @ be the set of subtend,ed, ouo'ids of St and

represent P\P' as the set {(0,0),(0,7): 0 € O}. Let c be the l-cochain (of the simpli,cial

compler of the poi,nt graph of T ) defi,ned by

c(0¿,0¡): f 
o iÍllinltl:t and' (0¿'0) and'(p¡'0) are collinear'

[ 1 iÍ l1in?¡l: t and (0¿,0) and (0¡,0) are not collinear.

Thenc defines an algebra'ic2-fold couer of T w'ith couering geometryT. Furthernl,ore, c sati,sfies

the GQ condition.

Proof: Let h and 02 be two collinear points of Jr and so 101 a02l:1. Clearly, c(01,02) :
c(02,0) and so c is a l-cochain. Since they are collinear points of 7,, 01 and 02 are two

subtended ovoids of 5/ contained in a common subtended rosette, that is subtended by two

lines of .9. The point labelled (01,0) is incident with one of these lines and (d1,1) is incident

with the other, and similarly for (02,0) and (02,I). Thus (d1, a) is collinear with (02, þ) if and

only if c(0¡ 02) : a * B. Thus c defines an algebrai c 2-fold cover of the point graph of 7.
To show that c defines an algebraic 2-fold cover of the geometry T we need to show

that ôc(01,02,0s) : 0 whenever 01, 0z and 03 are collinear points of T. Let 01, 02 and

03 be three collinear points of 7, then they are contained in a common subtended rosette

R of Et. Now (á1,0) is collinear with (02,c(01,d2)) and (0r,0) with (03, c(01,0s)). Since

((dr,0), (02,c(0yd2))) and ((dr,0), (0s,c(fu,03))) both subtend the rosette 7?, it follows that
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(02,c(fu,02)) and (fu,c(0¡03)) are collinear and so 6c(01,02,0t):0. Thus c defines a cover of

the geometry 7.
If fu, 02 and d3 are pairwise collinear but not incident with a common line of T, then

it follows that they are not contained in a common subtended rosette of 5'. Thus (01,0),

(02,c(fu,02)) and (0s,c(fu,03)) are not incident with a common line of T and so (02, c(fu,02))

and (03, c(fu,?s)) are not collinear since this would be a triangle in .S. Hence, 6c(fu,02,fu) :1
and c satisfies the GQ condition.

!

Given the notation of Theorem 3.1.9, consider the following description of .S.

Points (i) Points of 5'.

(ii) Points of ?r.

Lines (u) Lines of .S'.

(b) I U P where (. is a line of T and

P the basepoint of the subtended rosette covered by l.

Incidence (i),(u) as in 5'.

(i),(b) A point P of type (i) is incident with a line (.U Q of type (b)

if and only if P : Q.

(ii),(a) None.

(ii),(b) A point P of type (ii) is incident with a line (,U Q of type (b)

if and only if P is incident with L inT

Now suppose that in the above incidence structure instead of using the algebraic 2-fold cover of

T from Theorem 3.1.9 we use an arbitrary algebraic 2-fold cover of T. The following theorem

specifies the conditions under which this new incidence structure is a GQ.

Theorem 3.1.10 Let E : (P,ß,1) be a GQ of order (r,r') and Et -- (P',ßt,I) a doubly

subtended subGQ of order r. LetT be the SPG constructed from S and, E', as in Theorem 3.1.7

and let (T,p) be an algebraic2-told couer of T defr,ned by the L-cochain c. Defi,neW to be the
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f ollowing incidence structure :

Points (i) Points of 5'.

(ii) Points of 7.

Lines (u) Lines of 5'.

(b) (.U P where (. is a line of T and

P the basepoint of the subtended rosette covered by /.

Incidence (i),(u) as in 5'.

(i),(b) A point P of type (i) is incident with a line [.U Q of type (b)

if and only if P : Q.

(ii),(a) None.

(ii),(b) A point P of type (ii) is incident with a line (.U Q of type (b)

if and only if P is incident with [. in T

Then S is a GQ of order (r,r') if and onty iJ c satisfies the GQ condition. In thi,s case E

contains E' as a subquad,rangle and Et is d,oubly subtended by E. The SPG constructed from E

and St as in Theorem 3.1.7 isT.

Proof: Any lineof ,S'is incidentwithr*l pointsof 5'andsorll points of W. AlirreLUP

of type (b) is incident with P and with the r points of 7 incident with /. Thus each line of 5

is incident with r * 1 points.

LetQ beapointof type(i),thenQisincidentwithr*llinesof 5'. Thereare(r2-r)12
subtended rosettes that have I as a basepoint and so there are 12 - r lines of 5 of type (b)

that are incident with Q. Thus Q is incident with r2 * 1 lines of ,S. By Corollary 3.1.6 each

subtended ovoid of 5' is contained in 12 + I subtended rosettes and so each type (ii) point of .S

is incident with 12 * 1 lines of W.

We check the third GQ axiom for each non-incident point/line pair, (P, l) of E. If P is of

type (i) and (. is of type (a), then since 5' is a GQ the property holds. Let P be of type (i)

and L U Q of type (b). If P and Q are collinear then there is no ovoid of .S/ containing both

P and Q. Thus, Q is the unique point of IUQ that is collinear with P. If P is not collinear

with Q then P is contained in a unique ovoid in the rosette subtended by l. There is a unique

subtended rosette containing this ovoid and with basepoint P.

Let P be of type (ii) and (. of type (a). The ovoid 0, corresponding to P meets / in exactly

one point X. There is a unique subtended rosette containing 0 and with basepoint X and thus

a unique line of type (b) containing P and X.
Let P be of type (ii) and let [.UQ of type (b). Let 0 be the ovoid of 5'correspondingto P
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and .R : {0t,. . . ,0r} the subtended rosette of .S' corresponding to l. Without loss of generality

suppose that P: (d,0). There are two possibilitiesfor (., either

I : {(il, 0), (02, c(fu , 02)), . . .,, (0,, c(0 y 0,))} or

(.: {(?uI),,(02,c(0¡02) + 1),. .. ,(0,,c(0,,01) + 1)}. Suppose that d € R and that with-

out loss of generality 0 : fu. Then since (0,0) is not incident with (. we have that (. :

{(0r,1), (02,c(fu,02)+I),... ,(0,,c(0¡0,) + 1)} and (0,0) is collinear with none of the points

on /. Thus Q is the unique point on (,U Q that is collinear with P. Now suppose that 0 ø R

and that without loss of generality [: {(0t,0),(02,c(0y02)),... ,(0,,c(0,,01))}.If Q e 0 then

0 meets each of the 0¿ in r * 1 points and is contained in a unique subtended rosette with Q
as the basepoint, which gives a unique line incident with P and a point of tUQ. If I 10,
then there are two ovoids of ,R that meet 0 in precisely one point. Without loss of generality let

theseovoidsbedl and0z. Now(01,0) iscollinearto(02,c(0¡02))(onl) and(01,1) iscollinear

to (02,c(fu,02) * 1), while (d,0) is collinear to exactly one point of the form (01,-) and one of

theform (02,-).So (0,0) iscollineartoexactlytoonepointon (.UQifandonlyif either (0,0)

is collinear to (01,0) and (02,c(01,02)+1) or (0,0) is collinear to (fu,l) and (02,c(fu,02)). This

occurs if and only if c(0,02) : c(0,0) + c(fu,02) + l. That is, if and only if

6c(0,fu,02) : c(0,0) * c(0,02) + c(0t,02)

: c(0,01) + (c(0,01) + c(0¡02) + 1) -t c(fu,02)

II.

This is precisely the GQ condition. Thus W is a GQ of order (r,r') if and only if c satisfies the

GQ condition.

Now suppose that W is a GQ of order (r, r2). lt X is a point of type (ii) of 5, then let 0y

be the ovoid of .5/ that is covered by X. The set of lines of W incident with X meets 5' in the

set of basepoints of subtended rosettes containing 0¡. So, inW, X subtends the ovoid 0y in

,5'. It then follows that a line (.UP of W subtends the rosette that is covered by the line I of

7. thus 5' is doubly subtended in W and subtended ovoid/rosette structure is 7.
¡

We will study this construction in greater depth in Chapter 4.

Note that in Theorem 3.1.10 since c defines an algebraic 2-fold cover of 7, it follows from

Section 1.6 that c satisfies one half of the GQ condition

õc(fu,02,0s) : c(ït,02) - c(fu,0s) + c(02,9s) : 0 if fu,02,03 are distinct collinear points of 7

In fact by Theorem 3.1.10 any l-cochain satisfying the GQ condition, defines an algebraic 2-fold

cover of T and the construction in Theorem 3.1.10 is a GQ.
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3.2 Isomorphisms of SPGs

In this section we determine when two SPGs, constructed from the double subtending process,

are isomorphic. We also calculate the group of such an SPG.

Theorem 3.2.L LetW and S be two GQs of order (r,r2) and letW' and S' be subGQs of W

ands respectiuely, of orderr. LetWt andSt be doubly subtendedinW andE andletthe SPGs

constructed, as in Theorem 3.1.7 be Tw and, Ts. The SPGs Tw and Ts are 'isomorph'ic i,f and

only if there erists an isomorphi,sm from Wt to Et that 'i,nduces an isomorphism from Tw to Ts.

Proof: First, let cs define an algebraic 2-fold cover of Ts, as in Theorem 3.1.9, and let

i : Tw -+ Ts be an isomorphism. If d and 0t are two points of Tw, then we may easily show

that the function cw: csþ(O),i(d/)) defines an algebraic 2-fold cover of T1,y,that satisfies the

GQ condition. Let (Tfif,pw) be the algebraic 2-fold cover of fi,,y defined by "w, (Tff ,ps)
the algebraic 2-fold cover of ?-w defined by cs and 5 the GQ of order (r,r2) constructed from

(T$l ,nw) and Wt as in Theorem 3.1.10. Now, let ã be the map from the pointset of T$l to

the pointset of Tff, which acts by (0,a) + (i(d),o)), for 0 a point of T1,y and a e 22. If the

lines of T1,y are considered as sets of points of. Tw, then ã induces an isomorphism from T$l to
Tff , which we also denote by ã. We show that i may be extended to an isomorphism from 5
to .S.

Let (. and rn be two skew (that is, non-concurrent) lines of 3 that are tangent toWt. A line

of 5 that is tangent to Wt is said to be a transversal to I and m if it is concurrent to both /
ar'd m^

Let P be a point of Wt incident with (., then P is the unique point of Wt that is incident

with L Let Q be the unique point of Wt that is incident with rn. Now if P and Q are not

collinear, then by the third GQ axiom one point of the set / \ {P} is collinear with Q and each

of the remaining r- l points of l\ {P} is collinear with a unique point of m\{8}. Thus there

are r-l transversals to I andm inthis case. If P is collinearto Q (withthe line incident with

P and Q necessarily a line of W'), then each point of l\ {P} is collinear with a unique point

of rn \ {Q}. Thus there are r transversals to I and m.

Now if I and n'L are not skew, but meet in a point of W', that is P : Q, then the third GQ

axiom decrees that there are no transversals to I and rn.

Let lt arrd mt be the lines of T$l strch that [.: {t l) {P} and rn: n1,'U i8}. Let a line of

T$l be a transversalto (t andm'if it is concurrent to both (t and rr¿l. Consider the incidence

structure which has pointset {L: L is a set of q2 - q pairwise skew lines of TÅY} and points

Ér and ,C2 collinear if 11 and 12 have exactly r transversals, for aII [1 e Lt and [,2 € L2

(lines are the maximal sets of pairwise collinear points). The above calculations show that this
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incidence structure is )4/.

Thus i may be extended to an isomorphism from 5 to S. The restriction of i to W' is an

isomorphism from Wt to 5' that induces i from Tw to Ts.

Now suppose that there exists an isomorphism from Wt to.S' that takes fia to ?g. Since

such an isomorphism maps ovoids to ovoids, rosettes to rosettes and preserves inclusion of an

ovoid in a rosette, it induces an isomorphism from Tyy to Ts.

As a corollary of Theorem 3.2.1 we state the automorphism group of an SPG arising from

the double subtending process.

Corollary 3.2.2 Let S be a GQ oÍ order (r,r2) and St a subGQ of order r. Let S' be doubly

subtended i,n E, with SPG T constructed as'in Theorem 3.1.7. The automorph'ism group of T
i,s the stabili,ser of T in the automorphi,sm group of Et .

Proof: From the proof of Theorem 3.2.1, if T : Tw : Ts and i is an automorphism of 7,
then there is an automorphism of .5' that induces i. Also, any automorphism of ,S' that fixes 7
induces an automorphism of 7. Since any point of .S/ may be expressed as the intersection of

two ovoids that are points of. T, any automorphism of 5/ that induces the identity on 7 must be

the identity. So, if we consider the group of 5/ that fixes 7 acting on T by the automorphism

it induces, the action is faithful and so it is the group of 7.
tr

3.3 A GQ of Kantor, an ovoid of Kantor and a ne\M' SPG

In [31] Kantor constructed the q-clan Co, which has associated GQ S(C") of order (q2,q) (see

Section 1.4.5 for details and references). In this section we investigate the connection between

the GQ S(C") and the ovoid 9o constructed by Kantor in [30] and studied in Chapter 2 of this

document. The dual GQ 5(C") possesses a subquadrangle isomorphic to QØ,q) and we show

that each subtended ovoid of ttre Q(4,q) subquadrangle is isomorphic to 0o. We also show

that the QØ,q) subquadrangle is doubly subtended in S(C"). Since the subtended ovoids are

isomorphic to 0o,, Theorem 3.2.1 shows that the SPG constructed as in Theorem 3.1.7 is distinct

from the Metz/Hirschfeld and Thas SPG constructed in the classical case. Hence we have a

new SPG. Note that the work in this section relies heavily on the work of Payne and Rogers in

[48].

Consider the q-clan

ú0
0 -mto

co:
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where q is an odd prime power, rn a fixed non-square of GF(q) and o e Aut(GF(q)), as con-

structedin[31]. RecallfromSectionl.4.SthatifGisthegroupwithelements{(r,c,13): a,þ€
GF(q)', c e GF(q)) and operation

(o,", þ) . (*' ,C , þ') : (o I tt ,c + ct + þ(r')' , p + p'),

then the family of subgroups of G (of order q2)

A(*) : {(0,0, þ)' þe cF(q)2}

A(t) : {(a,aA¡ar ,aKt): a e GF(q)2} for ú € GF(q), where Kt: At I AT

: {(a,aA¿ar,2aA¿) : a e GF(q)2} for Í € Gp(q)

is a 4-gonal family for G (see Section 1.4.5) which we denote by F(C"). The family of subgroups

A*(-) : {(0,r, þ), "€ GF(q),0 € GF(q)2}

,ryQ) : {(o,",2aA¿): ce GF(q),ae GF(q)2} fort€Gp(q)

is denoted by f*@"). The GQ of order (q',q) constructed from the 4-gonal family F(C") is

denoted by 5(C"). Note that Kantor observes that 5(C") = S(C"-r).

In [31] Kantor observes that if qt : (GF(ø) x0)x Gp(q)x (GF(q)x0) and q, : (}xcr(q))x
GF(q) x (0 x Gf(q)) are subgroups of G, then for i : 1 or 2, îi : {A¿(t) : A(t) rt Q¿ : t, e
Gp(q) U {*}} is a 4-gonal family for Q¿ giving rise to an Sp( ,q) subquadrangle, that is, a

subquadrangle of S(C") isomorphic to W (q). We saw in Lemma 1.4.1 that if W is a GQ of order

(r,r') withWta subquadrangle of order r, then each point of W, externaltoWt, subtends an

ovoidof W'. Dually,W^isaGQof order (r2,r) with(W/)^asubquadrangleof orderrand

each line external to (),¡/')^ subtends a spread of (W')^. If W' is doubly subtended in )4, then

v¡e sa,y that (W')^ is doubly subtended in W^. So, we are interested in the subtended spreads

of the GQ determined by Ft and fz. It can be shown using Theorem 1.4.7 ([48, IV.l.]) that

there exists an isomorphism of 5(C") that maps the subquadrangle determined by Ft to the

subquadrangle determined by .F2. Since this is the case, we will consider only the subquadrangle

determined by Ft, which we will referred to as l4z(q) from here on.

Firstly, we show that the subtended spreads of W(q) are pairwise isomorphic. We do this by

showing that the group of E(C") that fixes W(q) is transitive on the lines of E(C") external to

W(q). Thelinesof E(C") thatareexternaltoW(q) areA(oo)9, forg€ G,suchthat,4(oo)9nQ1

is empt¡ ar'd A(t)g, for ú € Gp(q) and g € G, such that A(t)g n Qr is empty. The following

Iemma deals with the external lines of the form ,4(oo)9.

Lemma 3.3.L The stabiliser of W (q) i,n E(C") is transitiae on lines erternal to W (q) that haue

the Jorm A(*)9.
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Proof: Let ,4(oo)9 and ,4(oo)9/ be two external lines of S(C") external to W(q). So 9 :
((gt,gz),98,94,(gq,gò) with s2l0 and g : ((sl,gL),gL,g+,(sL,g!)) with gL + 0. Our aim is to

find an automorphism of S(C") that fixes W(q) and maps ,4.(oo)g to A(æ)g'.

Recall from Theorem 1.4.6 that an automorphism of the group G naturally induces an

automorphism of the GQ S(C"). We first find an automorphism of G that maps g to an element

of G of the form ((g't,gÐ,-,(-,-)), such that the corresponding induced automorphism of

S(C") fixes W(q). For z,k e GF(q) let

Tz ' (4, c, P) è ((ot + z,c.z),c,(þt,B2)) where d: (at,a2) and þ : (þt,, þz)

S* ' (4, c,p) è (ka,k2c,teB)

Now I and ^9¿ are automorphisms of G; hence induce automorphisms of S(C") which we also

denote by T, and ,9¡. Clearly, T" and ,9¿ both frx Qt and hence frx W (q) . Choosing z : glgz I gL

and k : gLlgz, we have that

S¡T": g r+ (þl,gL),-,(-, -)),
as required. So, without loss of generality we may assume that g : (Øl,,gL),gs,(gt,gs)).

Let r : g's * Øa - gDgl + Øs - gÐgL,then the automorphism O, of G defined by

O, : (o, c,p) è (a,c* * - gs,þ)

maps g to ((gï,9L),r,(ga,gs)).4 straight-forward calculation shows that @r9 and gtare in the

same coset of A(oo), and so ,4(oo)Oø : A(æ)g'. Thus, if O, induces the automorphism O" of

S(C"), then O, maps,4(oo)g to A(æ)gt.

tr

Lemma 3.3.2 The stabiliser oÍW(q) in S(C") 'is transitiue on lines erternal to W(q).

Proof: First we show that the stabiliser of W(q) in.S(C") is transitive on the set {[A(t)] : ú e

GF(q)). Let s € Gp(q) andlet zr beapermutationof GF(q), r: tr+t:t* s. Then

AT: Ar+,
*s 0

0 -m(t + s)"
:(

:(

:A¡

t

ú0
0 -mto ).(

s0
0 -mso

1-As:At*AO

So by Theorem L4.7 t}irerc is an automorphism O of 5(C") with À : l, o the identit¡ D : I
(see TheoremL.4.7 for notation) and associated permutation n. By Theorem 1.4.7 we have that

o : T,(lA(t)l) F+ [A(¿ + s)]

: Tr(a,c,p) è (a,c* aA"aT,þ +ZaAr¡
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Now O fixes W(q) and if we let .s vary over GF(q), then we have the desired transitivity on

{tÁ(¿)l : ¿€GF(q)}.
From this it can be shown that any line externaltoW(q), of the form A(t)g may be mapped

to an external line of the form A(0)g', for some g'. We now wish to show to construct an

automorphism of S(C") that fixes W (q) and swaps [A(*)] and [A(0)] (and hence maps a line of

the form A(O)g to one of the form A(oo) gt and vice versa). Consider the q-clan Ct" : {Arr : t e(ro\
Gp(q) \ {0}} u{Ao}. Now if S : 

I O * ] 
then the automorphism of G given by (r, c,P) è

\/
(rS-t, c,13S) induces an isomorphism from S(C'") to 5(C") which maps ([,4(r)], [A(0)],l¿(*)])
ro ([A(ú-1)], [,4(0)], [¿(-)]) for ú € Gp(q) \ {0}. Composing this isomorphism with that in

Theorem 1.4.8 yields an automorphism of 5(C") mapping [Á(-)] <+ [A(O)] and fixing W(q).

Thus any line of S(C") external to W (q), that has the form A(t)g may be mapped to a line

of the form ,4.(oo)gt by an automorphism of S(C,) fixing W(q). Lemma 3.3.1 then implies that

the stabiliser of W(q) in 5(C") is transitive on the lines of E(C") external toW(q).
tr

We now show that each spread of W(q) subtended by a line of S(C,) external to l4z(q), is

dual to a KL(o) ovoid of QØ,q). That is, under the duality fromW(q) to Q(4,q) any subtended

spread of W(q) is mapped to a K7(o) ovoid of QØ,q).Given Lemma 3.3.2, if one subtended

spread of W @) is dual to a K[(o) ovoid, then all subtended spreads must be.

The 111(ø) ovoid of Kantor ([30]) was studied in detail in Chapter 2, but for our present

purposes we require only the canonical form of the K1(ø) ovoid. We will let Q(4,g) be defined

by the equation rsr4 i r(rs I rZ:0 and let óo be the canonical KI(o) ovoid, where

óo : {(0,0,0,0,1)} u {(1, a, z,-ffiao ,-22 + n"a"+r) for y, z € GF(q)}

Here m is the same fixed non-square and o the same automorphism of Gp(q) used in the

definition of Co. The ovoid óo may also be written as the intersection of Q(4,q) with the

variety defined by the equation mrl -f rff-rrs: g.

Note that this form is slightly different to the canonical form for QØ,,q) and the KI(o)
ovoid presented in Chapter 2.

The GQ W (q) may be represented as the set of absolute points and lines of a symplectic

polarity in PG(3, q). The canonical form of W (q) in PG(3, g) is given by the polarity which has

associated bilinear form rsyy-r1ys*rzAs-rsUz: 0. In the following lemma we give an explicit

isomorphism between the W(q) as a subquadrangle of 5(C") and the canonical representation

in PG(3, q).

Lernrna 3.3.3 Let Fy: {A1(t): A(t)ìQt: ú € GF(q)u{-}} be the 4-gonalfamily forW(q)

as above. LetW(q)tbe the GQ arising in PG(3,g) as the set of absolute points and absolute
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lines of the symplectic polarity with associated bilinear form rsyl - ïrA0 * rzqz -lxzAz : 0.

Then the map p is an isomorphism from W (q) to W (q)t where p acts as follows:

(-) r+ (0, 1,0,0)

[Ár(¿)] + ((0,0,2ú,1), (0,1,0,0))

[Ar(*)] r+ ((0, 1,0,0), (0,0, 1,0))

((gr,0), gz,(gs,O)) *+ (I,2g, - 9t9z,gs,gt)

h(t)((h,O),92, (gs,0)) r+ ((7,292 - 9t9z¡98,9t),(0,2sfi - 9s,2t,I))
Ár(-)((gr, 0),gz,k¡,0)) + ((I,2gz - 9t9s,gB,gt),(0,91, 1,0))

Ái(¿)((gr,0),s2, (gs,0)) + (0,2ts - ss,2t,I)
,ai(-)((st, 0),s2,(se,0)) r+ (0,2e1,1,0)

where t,gr,g2,ge e GF(q).

Theorem 3.3.4 Let W(q) be the subquadrangle oÍ E(C") gi,uen by F1. Then, each spread of

W(q) subtended by a li,ne ol E(C") erternal toW(q) is dual to a Kl(o) ouoiil o! QØ,q).

Proof: Given Lemma 3.3.2, we may take our favourite fixed line of E(C") external to W(q)

and find its subtended spread S. Let ¿ : A(æ)g be the external line where 9 : ((0, 1),0, (0,0)).

Then the points on A(oo)9 are

{((0,1), u2,(ut,uz)) t ur¡u2 e GF(q)} u i,4*(oo)9}

where A*(*)g: {((0,I),us,(u¿,us)) i uy)'tluør e GF(q)}.

For each point on A(*)g there is a unique line of l4r(q) incident with it, which is a line

of the subtended spread. For the point A*(oo) the corresponding line is [A(-)]. Now let

h(q,u2): ((0,7),u2,(ut,uz)) for z1,uz e GF(q), then for each pair (u1,u2) we need to find

¿ € GF(q) such that A(t)h(u1,u2) is a line of l4z(q). Now

A(t)h(u1, u2) : { ({rt, uz I l), rlt - multo + u2 - 2mu2to,, (2u1t * u1, -2rnu2t" * "ù)
i ur)'t)2 e Gf(q))

and is a line of W (q) if it contains any point of W (q) (in which case it contains q * 1 points

of W(q)). This occurs if, as a coset of A(t) in G, A(t)h(ut,uz) contains an elements of Qr

(in which case it contains g elements of Qt). So u2: -1 and -2rnu2to - -u2 which implies
_1/ u'\o '

t- -\^)
Thus the spread of W (q) subtended by .S(C") has the form:

lA(-)l

u2
2m(-t h(u1,u2) Ltrt)ll2 e GF(q)

S-
A

o-
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To express the spread in the group coset representation of W(q) without reference to S(C,),

we need a representative of the coset , (- (#)"-') nrut,u2) thatis in Q1, say ((0, O),uz t
2mto, (rr,0)) : ((0,0),u2f 2, (rr,0)). Thus the spread is

[Á(-)]
S_

'ttt¡1l2 e GF(q).

By using the isomorphism in Lemma 3.3.3, S has the following form in W(q)',

, (- (#)"-' ),,0, 
q,?,(ur,o))

S-

Now since

{*o :0;13 : 0} : ((0, 1,0,0), (0,0, 1,0))

((L,uz,ur,0), (0, -zr ,zt,I)), for u1,zz e GF(q).

for 21,22 e GF(q)

t

*uz

o-l
t- -

u2
2m

We use Plucker coordinates and the Klein correspondence (see [25, Chapter 15]) to give a

duality from W(q)' to Q(4,q). Thus, in Q(4,q) the spread 5 becomes an ovoid 0, sa¡ which

has the form:

0-
(0,0,0,0, 1)

(Ir2t, -u1ru2, -2u2t - u?), t - -

n'L(2t)" + lo-ruz

o-lu2

2^)

rn

n'I

2 (#) o-7

*uzu2
rn

0

it follows that every point of 0 satisfies the equatiorrrl,rol*rff-rrs:0. Thus d is the canonical

KI(o) ovoid /o.
¡

Theorem 3.3.5 There is an inuolution of S(C") that fires W(q).

@p : (a,c, P) + ((tt,-*z),c,(þt,-Pr)) where d: (at,c,2) and þ : (þt, þz)

Thus O¡ is an involution of E(C") that fixes W(q).

Proof: Consider the automorphism O¿ : O (er , À, p, D) of. E (C") , using the notation of Theo-

remL.4.7, where zr is the identity permutation on GF(q), À:1, p the identity automorphism
(to\

of GF(q) undD: I I eGL(2,s). Then

\0 -L )
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Corollary 3.3.6 The SPG constructed by the GQ S(C")n and, the subGQ isomorph,ic to Q(4,q),
as'in Theorem 3.1.7, is not isomorphic to the lcnown SPG wi,th parameters s: q-1r, t: q2,

a:2 and p,:2q(q-L).

Proof: The GQ E(C")n of order (q,q2) has a subquadrangle of order q isomorphicto Q(4,q)

such that there is a collineation of S(Co)^ that fixes this subquadrangle pointwise. Thus, by

Corollary 3.1.8 we have an SPG and since each subtended ovoid of the subquadrangle is non-

classical, by Theorem 3.2.1 it is not isomorphic to the known SPG of that order.

¡

It would be interesting to determine the configuration in Q(4,q) of the special points of

the K1(ø) ovoids that are points of the SPG (that is, subtended in Q(4, q) by S(C")^). One

possible conjecture is that the special points form a line I of QØ,q) and that the set of rosettes

with base point P € ( are the elation rosettes with special tangent line in the polar plane of /
(with respect to Q(4,q)). This sort of information would be important in using the techniques

of Section 4.2 to try to characterise the GQ E(C")n by the QØ,q) subquadrangle.

3.4 SPG from q-clan GQs, q even

Let 5 be a GQ of order (q2,q), q even, constructed from a q-clan, as in Section 1.4.5 and reprised

in Section 3.3. For any such GQ S Payne ([a5]) has constructed a family of subquadrangles,

{5o : a e GF(q)}, of order q. In this section we investigate whether any of the subquadrangles

,So is doubly subtended in 5 and so leads to an SPG via the construction in Theorem 3.1.7

(note that we are considering the dual of the situation in Theorem 3.1.7). In Section 3.4.1 we

determine the algebraic conditions on the q-clan under which 5o is doubly subtended in 5. In
Section 3.4.2 we use the algebraic conditions generated in Section 3.4.1 to show that of the

known q-clan GQr, q even, only in the classical case E = Q(5,q), is any 5o doubly subtended

in 5.

3.4.L Algebraic conditions

In this section we outline the construction of the subquadrangles 5o and then look for an

automorphism of .S that fixes 5o. By Lemma 3.1.5 such an automorphism exists if and only if
5o is doubly subtended in.S.

The following derivation of the subquadrangles 5o is taken from [46].

For q - 2' a q-clan C may be normalised to a q-clan C' giving a GQ isomorphic to that given
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by C, such that Ct has the form {,4.¿ : ¿ € GF(q)}, where

/\
oo:(o oli At:(' tl 

(wirhtrace(ô) :1); andA¿:(*' t l,úeGF(q).
\o o) \o 6) \o a,)

trÌom this point we will assume that a q-clan C has the above normalised form.

We now introduce a group isomorphic to G where the subgroups generating the subGQs

will be easier to recognise. In Section 1.4.5 4-gonal families are constructed for the group

G : {(a,c, þ) : a, þ €GF(q)',c e GF(q)}

with the group operation

(o,", þ) . (o',C, þ') : (o I a/,c + ct + 0(o')r, P + P')

The subgroups of the 4-gonal family are then:

A(-) : {(0,0, þ), þe cF(q)2}

A(t) (a, aA¿ar, rrK¡) : 0 € GF(q)2Ì

-4*(-) {(0,",ÐeG: ce GF(q),Ée Crlq¡2¡

A*(t) {a,c,o,K¿): a e GF(q)2}

where Kt: At + AT.

Now, Iet E : GF(q2), such that E : CF(q)(p) where þP i p* ô (where ô is an element of

GF(q) withtrace(ô) : 1). \Me will associated the element a*bp, of .E with the element (a,b)

of GF(q2). Let r r)î: øq and define ao þ: aB +dB. We now define a new group

G : {(a,,c, þ) : a, þ e E,c €GP(q)}

with operation

(o,", þ) ' (o',"',, þ') : (o * at,,c+ c' + B o a'.,8 1 p').

IfP: (r;) , then (: G -+G: (a,",þ)r+ (*,,t/",8P)isanisomorphismwith(-1 ' õ-+

G : (a,c, p) è (a,c2, BP).
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Thus the q-clan C gives the following 4-gonal family .F.

A(*) : {(0,0,fl:BeE}

A(t) (a,, J oA¿o!-, ata) : o¿ e E\

F(-) {(0,",þ), "e GF(q),þe E}

T@ : {a,c,y¡rr):aeE}

Consider the following subgroup of G:

Go: {(aa,c,bcr) e G : a,b, c e GF(g)} where a. e. E

The group operation of G restricts to Go in the following way:

(aa, c, bcr)' (a' a, c', b' a) (aa * at a,c i C + t/Ua " "ø,ba i bt a)

((a -f a')a,c I c' , (b + ó')a)

So Go is an elementary abelian group of order g3, and in fact Go = GF(q)3 under component-

wise addition

Now consider the following subgroups of Go:

,4"(-) :,4(oo) nGo :{(0,0,bo) :beGF(q)}

Ã,(t) : A(t) ÀGo : {(aa,ot/ãA¿F,ata) : o e GF(q)}

Zi(-) :A*(oo)nGo :{(0,c,ba): ó,ce GF(q)}

T"al

The family To: {Ã"(r)
denote by 5o.

At this point we make the following definition from [48]

: {(aa,c,ata) : a,c e GP(q)}.

ú € GF(q) u {(-)}} is a 4-gonal family for a subGQ, which we will

: A*(t) ¡G"

Definition 3.4.L Let A,B e GL(2,q) such that A: ("") and, B: (":) . Then

A:B i,f r:ú, U:d, zlA:blc.

Given this definition it can be shown that, for q even, [48, IV.l] is equivalent to the following

theorem.
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Theorem 8.4.2 Let c : {At: ú € cF(q)} be a q-clan with A6 : ( : : ) 
Let @ be a

collineation of the GQ .9 : ,S(G, F(C)) derived from C which fixes the point (oo), the line

[A(-)] and the point (0,0,0). Then the following must exist:

(i) A permutation n : t r+ t' of. F.

(ii) À € GF(q), 
^+0.

(iii) o e Aut(GF(q))

(iv) D eGL(2,q) forwhich Ar,:ÀDrA{D-As,, forallú€ GF(q)

Conversely, given o,D,), and a permutation r: t r+ ú', satisfying the above conditions, the

following automorphism O of G induces a collineation of 5, fixing (oo),[,a(oo)] and (0,0,0).

O: O(n', \,o,D): G -+ G:

(o, 
", 0) v+ (\-r a" D-r , ¡-l c" + À-i a" D-r As, D-r (ao)tt, p" P D P * \-t ys, c¿o D-T)

Theorem 3.4.3 Let C : {At: ú € GF(q)}, q euen, be a q-clan normalised as follows:

Ao: At:(::) (;;) (;' ',,) , ú € GF(q).(with trace(ô) : 1); and, A¡:

Let E be the GQ ol order (q2,q) defined by C and let Eo be the subquadrangte of E defined by

the subgroup Go of G, where a: (a1,c.2), Then Eo defines an SPG, as in Theorem 3.1.7, if
and only i,f

o?*, + *Zy, + (a! + ta|\t:0 for att t e cF(q) \ {0,1}.

Proof: By Lemma 3.1.5, it suffices to find conditions under which 5 admits a non-identity

involution O that fixes the subGQ 5o pointwise.

Now (oo), [A(-)] and (0,0,0) are all contained in the subGQ,9o and so O must fix these.

Thus O has the form of the automorphisms of 5 given by Theorem 3.4.2. Using the notation of

Theorem 3.4.2 we have that, Ao, -,4¡ (since t,4(0)] € 5o and so if fixed) and A¿, : 
^DT 

Al D,

forsome À e GF(q), 
^+0,o 

e Aut(GF(q)) and D eGL(2,q). Since,So isfixedby 9it follows

that A¿, : ,4.¿ and so

AT: ADT AT D

The subgroup Go : {(aa,c,ba): a,b,c€ Ge(q)} is fixed element-wise by O. But

O: (0,c,0) r+ (0,À-åc",0),
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thus À-åco : c for all c € Gp(q). Letting c: l implies that À:1and so co : c¡ that is o

fixes GF(q) and hence o is the identity automorphism on GF(q).

Now we know that O : (a, c, P) á (oD-' ,c, BPDP) so D2 is the identity matrix, .I2 (since

O is an involution). We also know that At : Dr AtD. rf o : (' b 
l, then D2 :l2 gives

\ " d )'"--"'-
us the following equations

a2 +bc

ab+bd

acl cd

bc+d2

:1
:0
:0
:1

(3.4.3)

(3.4.4)

(3.4.5)

(3.4.6)

As D is non-singular, equations 3.4.3 and 3.4.4 imply that a : d, in which case equations 3.4.4

and 3.4.5 are satisfied.

Now

DT ATD :
:);;)(;;)("

:::;: )(:")

and so by 3.4.2 we have

a2 + ac+ c2õ

b2+bd+d26

(ab + ad + cdõ) + (ob + bc -t cdõ)

+ adlbc: lDl

Note that since ¿ : d 3.4.3,3.4.6 and 3.4.9 are equivalent.

Since O fixes 5o we have that

@ : (aa,c,ba) r+ (aaD-r,c,baPDP) : (aa,c,ba),

aD-r : a

aPDP : o.
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a2 +ac+c26 ab+ad*cd6
ab+bc-fcdõ b2+bd+d26

:1
:d
:1
:1

(3.4.7)

(3.4.8)

(3.4.e)

which gives us the following equations:



Now

and so P-r -

by 3.4.9
db

):(:

b

o,

D-r
co,

d

b

c

a

Now PDP - D-7, and so the two equations in D and a are identical, giving us the equations

dat + baz : a.r (3'4.10)

cat i aaz : d2t (3'4'11)

where a:(at,a2). Now if a1 -0then tz*0 anditfollowsthat ö:0,a,:d,:1andc:0

or Il6. If c : 0, then

If. a1 l0 and d,2

(
10

where b:0, D : and O is the identity automorphism of ó
01

Now if dr¡e2 f 0, then we may rewrite 3.4.10 and 3.4.11 as follows

a+b9 : 1aI

o : ( t o I and @ is the identity automorphism of S.

\o L ):0, thenit followsthat c:0, o,: d,:1and b:0 or 1. Inthe case

(3.4.t2)

"%+o : 1, (3.4.13)
d2

and so b: ca?1a7. Substituting this value for b into equation 3.4.3 yields a: d,: 1+ calf a2.

Given these formulae for a,b,d in terms of c, we may rewrite 3.4.7 as

t+"24+c+c29L+c2õ: 1ai a2

ec('*"(#,.ä.r) : o (8414)

Note that sincetrace(ô) : 1, it follows that r2+r+ô is irreducible, and so allal+atlaz+6 * O.

Equation 3.4.14 is satisfied if and only if c : 0 or

1 al
al+a1a2+õal4*%*ua¿í a2

Rewriting 3.4.8 yields

<+ "'4+"4+"'ai a-2

a!
al + c26

+9!+¿
A2

"'4 + ""? 
(

ai d2\
OhL*c:
o¿2

+ Llc2 ô

0

al
a/ ),

a!
al

1 0,
al
4+ c<+ c

lÐ



which is precisely 3.4.14.

If c : 0, then ó : 0 and ¿ : d, : ø, that is D is the identity matrix and I the identity

automorphism of 5. If c : 
"71,o? 

* a1a2 + ôa!), then

Now notice that these formulae also give

the case where a1 : 0, az # 0 and D is
a2:0 and D is not the identity matrix.

We now need to check whether when

the property 3.4.2.

a: d: 1r ^ 
o'o' 

=al+a1a2+õa|
al + 6a|

t?+atazl6aB
the previously determined values for a,ó, c and d in

not the identity matrix and the case where at I 0,

the possibilities for D that we have calculated satisfy

Dr AtD
t cltl-6aZ al

1

(o?+o'pz*õaZ)2
At al al+ta/

al+ 6a| alfr¿ (al+õa|)t*oZu,
1

(o?+opzl-õo,Z)2
*?u alt + (al+ 6a|)s¡ al al+õa/

1

("? + apz -t 6aZ)2

(aft + õza$)rt * afiy, + (a2t + õal)alt (al + 6a/)a?r, + (oî + 62a[)t+ (ol + õo,2)a22y¿

(a?t + da2")a?", + o?o\t + (al + õal)aly¡ o,1*, + (a! + 62 afi)yt + (al + õo,l)aztt

Now D"A¿ D : Ar if and only if the following three equations are satisfied

X

6"7ar*

al

al+ õal

("1 + 62 a|)r¿ t o*y, + ("? + õa|)ta|
(a?+o'pz+6al)2

otu + @! + 62 a$)at + @l + 6a|)alt
(al+a1o,2+õal)2

)[

fr¿

t

At

Note that the third of these equations always holds. Rewriting the first of the three equations
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yields

r¡(a! + alal + õ2a|) + @1+ 62a$)r¿ t ota, + al@2, + 6al)t

<+ alafn¡*otar+a|(al+6al)t

<+ al@lr¿ + oZa, + @? + õa2r)t)

and similarly the second of the three equations may be rewritten as

o!(alr¿ * *?a, + @? + 6al¡t¡ : s.

Now if at * 0, then the second equation yields

a?rt + oZs, + ("? + 6al)t: o

and if az * 0, then the first equation also gives this. Thus the conditions that we require are

o?rt + oZat + @? + 6af)t:0 for all ú e Gp(q) \ i0,1Ì (3.4.15)

Note that the normalised form of the q-clan ensures that the equation in 3.4.15 is always satisfied

forú:0andt:I.
tr

3.4.2 Examples

In this section we consider the examples of q-clan GQs, q even. We show that if 5 is a known

example that has a doubly subtended subquadrangle .So, for some c e GF(q)2 \ {(0,0)}, then

.S is the classical GQ, that is 5 = H(3,q') = Q(5,q)n. Itr this case, So is doubly subtended for

alla€GF(q)2\{(0,0)}.

Classical (see [44] for example): The GQs exist for all e:2e. The q-clan is

0

0

0

{(; 
') : ú € GF(q) where trace(a) : l,

and so the condition on a in Theorem 3.4.3 is equivalent to the polynomial in ú given by

alt+alat*(al+aal)t

begin identically zero for (ouo2) I (0,0). This is clearly always the case.
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Fisher-Thas-'Walker (see [63]): The GQs exist for q = -L (mod 3), so for the g even case

this is q:2", e odd and e ) 1. The q-clan is

t

'/F
'/t
0

*le t
0 trls

: ¿ € GF(q)

: t e GF(q)

: ú e GF(q)

that is rt : ú, At: t/t3 and ô : 1, using the notation of Theorem 3.4.3. The condition for

the existence of an SPG is that the polynomial in ú given by

o!'/l+"?Jtt+("?+a|)t

is identically zero for fixed (tr,ot2, (otoz) I (0,0). Clearl¡ this is never the case.

Payne [a5]: The GQs exist for q - 2e, e odd and e ) 1. The q-clan is

and so the condition from Theorem 3.4.3 is equivalent to the polynomial in t given by

alt+oft\ +1al+ul¡t7

being identically zero for (tt,oz) 10, which is clearly never the case

Subiaco [13]: The GQs exist for g - 2e and q > 8. The q-clan is given by

r(ù2
0 a2s(t)2

t

where

r (t)

s(t)

d2(t4 +t) + d2(t + d+ d2)(f + P),,tt2_f L,t

d4t4 +a3(t + d2 + d4)t3 + d3(1 + d2)t dr12+ and
(dz ¡as ¡¿t/z)(tz +dt+I)2

d2+d5+drl2a: alt+a¡az¡'
with d e GF(q) such that d2 + d + | +0 and trace(Ifd) : 7.

The condition from Theorem 3.4.3 becomes

oUft)2 + ala2s(t)2 + (a? + õaf)t:0 for all ú e GF(q),

d2+d5+dU2
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which is equivalent to the polynomial in t given by

It
dtL + d3 t+d2+d4 +d3

d(L+d+
t+û al

+l{a'{tn + t)+ a2g + a+ a2¡1t3 +t'))' +4t2 + d,t+Ðnl"?+ ("?+ taf)tçt2 + dt+t)4

being identically zero. If we equate the coefficient of t2 to zero we obtain

:0

<+ al(t+d2+d4)+al$+d4) : o

and by equating the coefficient of t6 to zero we obtain

o!aag+d,2 +¿n¡+gffiffi : 0

<+ ("?+a/)(t+& +a4) : o

<+ dl : ot2.

Substitutinlo,t: o2 into the t2 coefficient equation yields ald2 :0, which means that a1 :
O¿Z:0'
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(r, 12)

Chapter 4

Characterisations of GQs of order

Let.5 : (P,B,I)be a GQ of order (r,r') and 5' : (P',8',1) a subquadrangle of 5 of order

r. In Chapter 3 (Lemma 3.1.1) we observed that every point of 2 \ 2' is external to 5' and so

subtends an ovoid of .S', while every line of ß\ß'is tangent to 5'and so subtends a rosette

of ovoids of 5' (see Section 1.4.1 for definitions). Two questions naturally arise at this point.

The first is: given 5/, a GQ of order r what ovoid/rosette structures of 5' may be subtended

by a GQ .S of order (r,r') that contains ø' as a subquadrangle? This is particularly interesting

in the light of Theorem 3.1.10 which says that in the case where ,S' is doubly subtended in S

(that is, each ovoid of 5'that is subtended by 5 is subtended by exactly two points of 5), that

.S can be reconstructed from 5/, the subtended ovoid/rosette structure (an SPG in this case)

and an algebraic 2-fold cover of the subtended ovoid/rosette structure. If we choose the 'right'
ovoid/rosette structure of 5' can \¡/e 'naturally' construct a GQ 5 of order (r,r') from 5/ and

this ovoid/rosette structure?

The second question is: given S, a GQ of order (r,r') containing a subquadrangle .9' of order

r, does the subtended ovoid/rosette structure of 5' characterise the GQ 5, or is it possible to

find another GQ S of order (r,r'), not isomorphic to .S, but with 5' as a subquadrangle and

subtending the same ovoid/rosette structure in 5' as 5? A result in this direction, which served

as the inspiration for the work in this chapter, is the following theorem due to Thas and Payne

[65, Vrr.1].

Theorern 4.O.4 Let S: (P,ß,1) be a GQ of order (q,q2), q euen, hauing a subquadrangle Et

'i,somorphic to Q@,q). If in Et each ouo'id O, consisting of ail of the poi,nts collinear wi,th a

giaen point r of E \5' is an elliptic quadric, then E is'isomorphic to Q(5,q).

In the fi.rst section of this chapter we consider the question: which ovoid/rosette structures of
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W(q), q even, (recall W(q) is isomorphic to Q(4,q) for q even) may be subtended by a GQ of

order (g, q2;? As a result we are able to strengthen the characterisation of Theorem 4.0.4.

In the second section of this chapter we consider a GQ 5 of order (r,r') containing a

doubly subtended subquadrangle 5' of order r. We formulate the question of whether 5 can

be characterised by S'and the associated SPG (a generalisation of the case Q(a,ù c Q$,q)
in Theorem 4.0.4) as a cohomological problem, the solution of which allows us to prove the

equivalent result to Theorem 4.0.4 for q odd.

4.I Characterisations of QØ,A), A even

Recall that for q even the GQ W(q) is isomorphic to Q(4,q) (149,3.2.1]). If g is an ovoid of

W(q), then 0 is also an ovoid of the ambient PG(3, q) of W(q), and if d/ is an ovoid of PG(3,q),

then there is an automorphism ? of PG(3,q) such thatT(?t) is an ovoid of W(q) ([55]). Note

that it is not true in general that any ovoid of PG(3,g) is an ovoid of W(q).

For q - 2", e even, the only known ovoid of W(q) is the elliptic quadric ovoid of PG(3,q)

while for q : 2" , e odd, there is also the Tits ovoid (see Section 1.4.6 for the explicit form of

the Tits ovoid).

Now if Q(a,ù is the non-singular quadric of PG(4, q), P a point of Q(a,ù and E a hyper-

plane of PG(4, q) not containing P, then the projection of points and lines of Q(4,q) from P

ontoDisthegeometryW(q)andEistheambientPG(3,q)of thisI,T(q) (seetheproof of [49,

3.2.1]). Flom this isomorphism it follows that an elliptic quadric ovoid of QØ,q) is isomorphic

to an elliptic quadric ovoid of W(q).Thus Theorem 4.0.4 is equivalent to the following.

Theorern 4.I.L Let E : (P,ß,1) be a GQ of order (q,q'), q euen, hauing a subquadrangle

S' : (P',ßt,I) i,somorphic toW(q). If in Et each ouoid Ox subtended by a point X €P\Pl
is an elliptic quadri,c oaoid, then E is isomorphic to Q(5,q).

4.1.1 The intersection and subtending of ovoids of W(q), e:2'¡ e odd

In this section we look at the size of the intersection of a given Tits ovoid of W (q) with elliptic

quadrics ofW(q). Weshowthatif W(q)isasubquadrangleof aGQSof order (q,q') thenthe

set of ovoids of W (q) subtended by ,S cannot contain both a Tits ovoid and an elliptic quadric

and cannot be all Tits ovoids.

Theorem 4.L.2 [3, Theorem 1(a)] The intersection of an elliptic quad,ric oÍW(q) with a Tits

ouoid of W(q) consists of ei,ther q+ \/Tql7 points or q- \/rq+7 points.

For the proof of the following theorem recall the preliminary section on graphs, Section 1.1.
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Theorem 4.L.3 [50] Let W(q) be a subquad,rangle of a GQ E of order (q,q'). Let N be the

graph with uertices the set of ouoids oÍ W (q) subtend,ed, by E and with two uertices adjacent if
their correspondi,ng ouo'ids meet'in eractly one point. Then N is connected,.

Proof: Consider the graph M with vertices the points of 5 not in W (q) and two vertices

adjacent if their corresponding points are collinear in 5. Let P and Q be two vertices of. M. If
P and Q are collinear in ,5, then they are adjacent and therefore connected. Otherwise there

existtwolinesof ,9, landn:l)onPandQrespectively,suchthatl arrdm meetI,T(q) inP/and

Q' respectively. We can assume tlnat P' I Q'. By the third GQ axiom we may choose R e m

such that -R is not collinear with P' in S. Also by the third GQ axiom there exists a point

T eI,T + P'such that 7 is collinear withR in 5. Thus P,T,R,Q is apath of M and hence

P and Q are connected. We have shown, therefore, that the graph M is connected.

Now we consider the graph l{. Let 0 and / be two ovoids of W (q) subtended by points P

and Q, respectively. If P and Q in 5 are collinear, then by Lemma 3.1.1 the line z joining them

is a tangent to W (q) at some point [/. The line z subtends a rosette based at [/ containing 0

and þ. Thus d and $ intersect in exactly one point and are adjacent as vertices of l/. If P and

Q are not collinear in 5, then they are connected as vertices of M, since M is connected. Let

P,Ct,...,Cn,Q be the path of M connecting P and Q and d, ,þt,...,tþ",$ the ovoids subtended

by the elements of the path. Since P and C1 are collinear in .S, it follows that 0 and tþl intersect

in exactly one point and are hence connected in l{. Similarly, C¿ is connected in l/ to C¿¡1 for

l<i < r¿- l and also C" is connected to / inl/. Thus0,1þt,...,rþn,/ is apath connecting0

and /. As these were arbitrary points of the graph lü, it follows that l[ is connected.

!

Recall from Section 1.4.I that a rosette R of a GQ of order r is homogeneous if any two

ovoids of 7l are isomorphic, and inhomogeneous otherwise. We extend this definition to the

following.

Definition 4.L.4 Let E be a GQ of order (r,r') and Et a subquad,rangle oJ E of order r. El

is homogeneous in S i,f the oaoids of St subteniled by S are all isomorphic. It this is not the

case Et is said to be inhornogeneous in E.

Theorern 4.t.5 þ01 LetW(q) be a subquadrangle of a GQ E of ord,er (q,q') and suppose

that W (q) is i,nhomogeneous 'in S. Then the set of oaoids oÍ W (q) subtend,ed, by S cannot be

contained, i,n the un'ion of the set of Tits oaoi,ds olW(q) and the set of ellipti,c quadrics oÍW(q).

Proof: Suppose that the set of subtended ovoids is contained in union of the set of Tits ovoids

of W(q) and the set of elliptic quadrics of W(q). In other words, that each subtended ovoid is

either a Tits ovoid or an elliptic quadric. Then since .S' is inhomogeneous in 5, it follows that
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there occurs at least one ovoid of each type. Now from Theorem 4.1.3 the graph -lrl is connected,

which implies that there exists a Tits ovoid 0 and an elliptic quadric þ of W (q) that are connected

vertices of Iü. Thus there exists a path of N of the form 0 : Co,CtrCz,...,Cn_r,,Cn : ó, where

C¿ is either a Tits ovoid or an elliptic quadric. If j is the smallest number such that C7 is

an elliptic quadric then C¡-t is a Tits ovoid, and so by Theorem 4.1.2 they intersect in either

exactly q+ \/n * 1 or q- \/n * 1 points. B:ut C¡ and C¡-r are adjacent in.ôl and so the

corresponding ovoids of W(q) intersect in exactly one point; a contradiction.

!
We now consider the case where 5 is a GQ of order (q,q2) containingW(q) as a subquad-

rangle, such that each subtended ovoid of W(q) is a Tits ovoid.

Let Ç be the graph with vertices the Tits ovoids of W(q) and with two vertices adjacent

if they intersect in exactly one point of W(q). We denote the automorphism group of Ç by

aut (Ç).

Note that an automorphism of W(q) maps a Tits ovoid to a Tits ovoid and preserves

collinearity, thus inducing an automorphism of 9. Suppose that ? is an arbitrary, non-trivial,

automorphism of W(q) andlet P be a point such that Q : f(P) I P. Now consider a Tits

ovoid 0 of W(q) such that P e 0 and Q / 0. Since Q € T(0) but Q ø 0, it follows that

0 + f(0). Thus the induced action of any group fixing W(q) is faithful (that is, the only

element of the group that induces the identity automorphism on g is the identity element of the

group). In particular, the induced action of the group Sp( ,q) on g is faithful and so Sp(A,q)

is isomorphic to a group of automorphisms of g. Now the Suzuki group Sz(q) is the stabiliser

of the Tits ovoid in Sp(4,ù (125, Corollary 16.4.7)) and an element of the conjugacy class of

Sz(q) in SpØ,q) induces a group of automorphisms on I which is isomorphicto Sz(q). This

induced group fixes a vertex in Ç corresponding to the ovoid fixed by the particular conjugate

of Sz(q) in Sp( ,q). For simplicity we will use,9p(4,q) to denote the group of automorphisms

of Ç induced by Sp( ,q) and Sz(q) to denote the group of automorphisms of Ç induced by a

conjugate of Sz(q) fixing a particular Tits ovoid 0. We introduce a slight abuse of notation by

using 0 to refer to a particular ovoid PG(3,q) and also the corresponding vertex of Ç,

Lemma 4.L.6 Let Ç be the graph wi,th uertices the Tits ouoids olw(q) and with two uert'ices

adjacent i,f they intersect in eractly one point olw(q). Then Ç is a connected graph.

Proof: Let aut(9)p denote the stabiliser of 0 inaut(Ç); then we have S"(q) çaut(Ç)6 and

Sp(a, ù Ç aut (Ç). gV Lemma 1'4.II we know that d lies in an elation rosette of W (q), and so

is in a non-trivial connected component C of Ç, with stabiliser denotedby aut(Ç)ç.
Thus Sz(q) Ç aut (Ç)rnSp(+,ù ç Sp(4,q). Now since C is non-trivial it contains a vertex /

such that ó + 0.The subgrorp aut(Ç)aofaut(Ç) that fixes / also preserves adjacency in I and
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so fixes C. Furthermore, it contains a subgroup isomorphic to Sz(q), induced by a conjugate of

S z(q) in SpØ, q) . Thus since S z(q) arrd its conjugate that fixes the ovoid / are both in aut (Ç) c

and they are not identical in Sp( ,q) we have that aut(Ç)cnSp( ,q) I Sz(q). Finally,gz(q)

is maximal in Sp(4,Ø), so aut(Ç)sìSp( ,q): Sp( ,q), and as Sp( ,g) is transitive on Ç we

have C : Ç. Thus Ç is connected.

Lemma 4.L.7 Let 0 and $ be two Tits ouoi,d,s olw(q) such that 0n6: {P}. Then 0 and, þ lie

in eractly one cornrnon rosette of Tits ouo'ids based at P, namely the elati,on rosette with respect

to P and 0 (or equiualently P and þ). Furthermore, for euery point Q e 0 there is eractly one

rosette of Tits ouoids based at Q whi,ch contains 0, namelg the elati,on rosette wi,th respect to Q
and 0.

Proof: The number of Tits ovoids that intersect d in exactly one point i. (q - t)(q2 + 1)

([3] Theorem 5(b)). By considering the elation rosette with respect to 0 and P for all points

P e 0, we obtain (q-I)(q2 * 1) Tits ovoids intersecting 0 in exactly one point. Thus the ovoids

intersecting d in exactly one point are precisely those in elation rosettes containing 0, and there

are only g- 1 Tits ovoids intersecting 0 ina given point P. Thus since l0O ól: l, d and / lie in

a common elation rosette: the unique rosette of Tits ovoids containing 0 and {. It also follows

that the elation rosette with respect to 0 and Q is the only rosette of Tits ovoids containing 0

and based at Q.

tr

Theorem 4.L.8 There does not erist a GQ of order (q,q2) suchthatW(q) is homogeneous'in

the GQ and all subtended, ouoids are Ti,ts ouoids.

Prooft Suppose such a GQ 5 : (P,6,1) exists. Let 0 be a vertex of the graph I subtended

by X e P. Let / be a vertex of Ç adjacent to 0, so that lóì01: 1, and let {nB: {P}. Now

by Lemma 4.L.7 there is a unique elation rosette -R of Tits ovoids based at P and containing

the ovoids 0 and S. The tangent joining P and X in,9 subtends a rosette R' inW(q). By

assumption, all subtended ovoids are Tits ovoids, so R' is a rosette of Tits ovoids based at P
and containing 0. Thus by Lemma 4.L.7 R: Ã' and @ is a subtended ovoid of W(q).

We have shown that if one vertex Ç corresponds to a subtended ovoid of W(q) ttren so does

each adjacent vertex. Since I is connected by Lemma 4.7.6 it follows that if one vertex of I
corresponds to a subtended ovoid then all of the vertices do. Thus all Tits ovoids of W (q)

are subtended. W(q) contains q2(q-11)(q2 - 1) Tits ovoids (: l[Sp(a, fl: Sz(q)]l), but there

are only qa - q2 points of S subtending ovoids, so \¡/e have a contradiction and. the theorem is

proved.
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4.1.2 Applications to QØ,q), q even

We now apply the work of Section 4.1.1 to extend the characterisation of Q(5,q) in Theo-

rem 4.1.1 to include Tits ovoids of W(q).

Theorem 4.t.9 [65, WLl] If a GQ E of order (q,q'), q euen, has a subquad,rangle isomorphic

to W (q) and, subtends only oao'ids isomorph'ic to the elliptic quadric, then E is isomorph,i,c to

the classical GQ Qþ,q).

Now using the work in this chapter we can extend this characterisation to include Tits

ovoids.

Theorem 4.1-.10 If a GQ E of order (q,q'), q euen, has a subquadrangle isomorphic to W(q)

and each subtend,ed, ouoid, is either an elliptic quadric or a Tits ouoid then E is isomorphic to

the class'ical GQ Q$,q).

Proof: By Theorem 4.1.5 if W(q) is a subquadrangle of a GQ 5 of order (q,,q') there cannot be

a mixture of Tits ovoids and elliptic quadric ovoids subtended. By Theorem 4.1.8 the subtended

ovoids are not all Tits ovoids and thus all the subtended ovoids are elliptic quadric ovoids. Hence

by Theorem 4.1.9 .S is isomorphic to the classical GQ 8(5,q).
!

Corollary 4.L.Lt Suppose q is euen and that the only ouoids olw(q) are Tits ouoids and the

etliptic quadric ouoids. If E is a GQ of order (q,q') conta'in'ing a subquad,rangle isomorphic to

W(q), then E is isomorphic to the classical GQ Q$,q).

Corollary 4.L.L2 If there erists a GQ E of order (q,q2) such that E is not isomorph'ic to Q@,q)

and E conta'i,ns a subquadrangle isomorphic toW(q), then there'is a new ouoid of PG(3,q).

Corollary 4.1.13 For q 132, q euen, if E is a GQ of order (q,,q2) containing a subquadrangle

'i,somorphic toW(q), then E i,s isomorphic to the class'i,cal GQ Q$,q).

Proof: For q - 2 the GQs of order 2and(2,4) are unique (149],5.2.3 and 5.3.2 (ii)). ny [a]

(q:4), [zo] (q : s), [36] (s : 16) and [37] (q:32), the only ovoids inW(q) for 41 q < 32

and q even are Tits ovoids and elliptic quadric ovoids.

tr
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4.2 GQs of order (r,r') with a doubly subtended subquadrangle

of order r

Let 5 : (P, ß,,1) be a GQ of order (r, 12) and E' : (P' , ßt ,I) a subquadrangle of order r. Recall

from Chapter 3 that ,S' is said to be doubly subtended in S if each ovoid of .S' subtended by a

point of P \P' is subtended by exactly two points of P \ 2'. Recall from Theorem 3.1.7 that

there is an associated SPG T.In this section we will investigate the number of embeddings of

5' in a GQ of order (r, 12) such that 5' is doubly subtended in the GQ, with associated SPG

T.
Suppose that T1a, and Tg are SPGs constructed by the subtending of the GQs W' and 5',

of order r, in the GQs W and .S, of order (r,,r') (note that in Chapter 3 we denoted these SPGs

by Tw andTs respectively) . Let (T$f;,nw) and (TfP,,ps) be the algebraic 2-fold covers of T1,y,

andTs,, given by W and 5 respectively, as in Theorem 3.1.9. Recall from Section 1.1 that if
G is a graph of diameter d and G¿ is the graph with the same vertex set as G and two vertices

adjacent if they are at distance d,inG, then G is antipod,al if G¿ is the disjoint union of cliques.

Now if E : (P,B,I) and E' : (P',ß',1), thenT[f : (P \ P',ß\6/,1) (this is the definition

in Theorem 3.1.9), from which we may easily show that the point graph of T[f has diameter 3.

We can also show that the point graph of T[f is antipodal, with two points antipodal if they

subtend the same ovoid of 5/, or (equivalently) if they cover the same point of Ts,.

If there exists an isomorphism from ffi to T[f , then the isomorphism must induce a graph

isomorphism on the corresponding point graphs. Since the antipodal nature of the graphs must

be preserved under an isomorphism, it follows that a set of antipodal vertices of the point graph

of T$f; maps onto a set of antipodal vertices of the point graph of TIP . Thus we have an induced

bijection from the pointset of 714¡, onto the pointset of Ts,. Further, we can easily show that

this bijection induces an isomorphism from the geometry T1,y, to the geometry 7s,. We say that

this isomorphism is induced by the isomorphism from Tfif; to Tff . Note that Section 5.3.2

contains a more detailed exposition of the fact that an isomorphism of covering geometries

induces an isomorphism of the geometries being covered. Although Section 5.3.2 deals with

different geometries to those considered here, the general arguments are still applicable.

The following result is a consequence of the proof of Theorem 3.2.1.

Theorem 4.2.L Let W and E be two GQs of order (r,r2) and let Wt and Et be subGQs of

W and, S respectiuely, of order r. LetWt and, Et be doubly subtended inW and S and let the

SPGs constructed as in Theorem 3.1.7 be 71,y, and, Ts,, Let the algebraic 2-fold coaers of 71,y,

and, Ts, determined by W and E as in Theorem 3.1.9 be (T$f;,nw) and (Tff ,ns), defi,ned by

the I-cochains q,y and, cs respectiuely. If i,: TÅi - Tff ls an 'isomorph'ism, then i ertends
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uniquely to an an isomorphisml,: W -+ E. Further,l(W'): E' andi andi induce the same

i,somorphism from Tw, to Ts,.

Proof: Fbom the discussion above it follows that the isomorphisrn i,: T$f; -+ T;f induces a

unique isomorphism from Tw, to Ts,. In the proof of Theorem 3.2.1 it was shown that given i
and the induced isomorphism from 71,y, to 7g' there is a unique isomorphism ã from W to .S,

taking W' to,5' and inducing the same isomorphism from T1,y, to Tgr as 'i.

!

Theorem 4.2.I means that, in order to characterise a GQ of order (r,r') in terms of a doubly

subtended subGQ of order r, we need to consider the isomorphism classes of covering geometries

of algebraic 2-fold covers of the associated SPG. Note that Theorem 4.2.I does not preclude the

possibility that given an SPG 71,y, , two coveïs (7.,î¡, ,ù and, (T1ly,, p/) which give rise to the GQs

5 and W of order (r,r'), as in Theorem 3.1.10, and,T$¡, not isomorphic to T$, that E =W.
In this case 5 and W are isomorphic but there is no isomorphism from E to W that maps W/

to Wt and 71,y, arld 71,y,.

Suppose that 71,y, is an SPG constructed by the GQ )ry' of order r being doubly subtended

in a GQ W of order (r,r2). \Me now consider isomorphisms between algebraic 2-fold covers of

Tyyt src}i' that the defining l-cochain satisfies the GQ condition (3.1.1); that is, covers that give

rise to a GQ of order (r,r'), as in Theorem 3.1.10. Let (Tfy,,n) and, (T1ly,,,p') be two algebraic

2-fold covers of T¡¡,, defined by c and c'respectively. Let t : \ly, -+ Tfv, be an isomorphism. If
(P,t) is a point of T¡f,1,, then Lr acts by (P,o) r+ (t/(P),up(a)), where t/ is the automorphism

of 71,y, induced by [/ and up is a permutation of 22, such that

"' 
(P,Q) : o * B e c(U(P),U@)) : up(a) + "q(þ) (4.2.1)

Now there are only two permutations onZ2, the identity permutation and the permutation that

sv¡aps 0 and 1. Let ó be the O-cochain defined by ó(P) : 0 if up is the identity and b(P) : 1

if up swaps 0 and 1. Thus up(a) : o + b(P). So, rewriting the condition 4.2.7 [/ and the

permutations up, we have that

c' (P,Q) : o * B e c(U(P),U@)) : a¿ *b(P) + 0 + Ug¡.

That is, "'(P,Q) 
: c(U(P),U@)) + 60b(P,Q). Conversely, if b is a 0-cochain and [/ an au-

tomorphism of Tw, we define "'(P,Q) 
: c(U(P),U@)) + õob(P,Q). Then the map (P,a) e

(U(P),b(P) + o) is an isomorphism from T$, to TrX,,.

The above work gives us the following theorem.

Theorem 4.2.2 Let W be a GQ of order (r,r') and let Wt be a subGQ of W of order r.
LetWt be doubly subtend,ed, inW and the SPG constructed as in Theorem 3.1.7 beT1,y,. Let
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(71ïu,,p)and,(71f,¡,,pt)betwoalgebraic2-fotd,couersofTl,y,,defined,bycand,ctrespectiuely,such

that c and ct sati,sfy the GQ condition 3.1.1. ThenTfy, andT$1, are isomorphic if and, only if

"' 
(P, Q) : c(U (P),U @)) + ô0b(P, Q), where (J is an autornorphi,sm of 77,y, and, b a \-cochain.

In this case the map i, , Trfl, -+ Trft,, that acts by (P, o) r+ (U(P), a + b(P)) ,is an isomorphism.

Proof: Let (P,a) and (Q,Ø be points of 71,y,. Theni(P, a): (U(P),b(P)*a), and i(Q,þ):
(U(Q),b(Q) + B) and i(P,a) and i,(Q,B) are collinear if and only if

c(u(P),,u@)): at Þ +u1n¡ +b(Q)

This is the case if and only if c(U(P),U@)) +ô0(P, Q): c'(P,Q): t*B, which is true if and

only if (P,o) and (Q, B) are collinear.

!

Recall from Section 1.6 that two l-cochains c and c' are said to be equivalent 'Lf T1k,

arrd.T1ly, are isomorphic, that is, if and only if c'(P,8): c(U(P),U@)) +60(P,Q), for some

automorphism [/ of.T1,y, and l-coboundary ô0b. Note that if b is a 0-cochain, then the l-cochains

c and c + ôob are equivalent.

Having established the form of the l-cochains which give isomorphic covers of a given SPG,

'we nov/ consider automorphisms of a cover. trYom the above, we know that an automorphism of

71fu, lnas the form (P,o) F+ (y(P), a + b(P)) where c(U(P),U@)) : c(P,Q) + t0U(p,Q), for U

an automorphism of T1,y, and b a O-cochain. Such an automorphism [/ is said to be admitted
by Tf,v,. The automorphisms of 77,y, admitted by Tfv, form a subgroup of the automorphism

group of T1,y,, which we denote by aut(I1,y,)".

4.2.I Introducing the cohomology

Suppose that T1,y, is an SPG constructed by the GQ )ry' of order r being doubly subtended in a

GQ yi of order (r,r"). Recall that if G is the point graph of.T1,y, and fç the simplicial complex

of G, then ce CI(lGj7Z2) (that is, c is a l-cochain) satisfies the GQ condition 3.1.1 if and only

if the following condition holds

61c(P,Q,R): Q 4a P,Q,R are distinct collinear points of 71,y,.

Since we are working over 22, if.6rc(P,Q,-R) is not 0 then it must be 1, and hence every

l-cochain that satisfies the GQ condition has the same coboundary. Thus if c is a particular

l-cochain satisfying the GQ condition, then the set of all l-cochains satisfying the GQ condition

is

c+ Zt(ls,Z2),
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where Zt(lc,Z2) is the set of 1-cocycles (that is, l-cochains with a zero coboundary). So,

given one algebraic 2-fold cover of 71,y, satisfying the GQ condition, we can find all others by

adding on l-cocycles. The question we now answer is: what is the relationship between the set

of covers equivalent to c and the first cohomology group Hr(16,22)?

Recall from Section 1.5.2 that the first cohomology group is given by

f/t(f", Zz) : Z'(lc,v'2)lBr(lG,Z2); that is it's the group that results from factoring the

l-coboundaries out of the 1-cocycles. Thus an element of f/l(16,V,2) is a set of l-cocycles of

the form z+Bt(l6,V,z): {z+60b: ô0b e Bt(fc, Z2)},where z is afixed l-cocycle. Since two

l-cochains whose difference is a l-coboundary are equivalent, it follows that any two elements

of c * (z + 81(lç,22)) arc equivalent.

We now consider the conditions under which two l-cochains equivalent to c are in a common

element of c * H'(lc,Z2). Let c' and c" be two l-cochains equivalent to c, such that

c'(P,Q) : c(S(P), S(A)) + ô0b'(P, Q) and

""(P,Q) 
: c(T(P),T@)) + 6ob" (P,Q),

where ,S and T are automorphisms of Tyy, and ô0b/ and 60b" are l-coboundaries. The l-cochains

c/ and c" ar.e in the same element of c+f/l(lç, Z2) if and only if their sum is a l-coboundary.

Now

¿ (P,Q) + ct'(P,Q) : c(S(P), ,9(8)) + c(r(P),r@)) + õ0b'(P,Q) + t0U" 1e,q¡,,
(4.2.2)

but ôOd(P, 8) + õ0btt (P,Q) is a l-coboundary. So 4.2.2 holds if and only if

c(s(P), s(a)) + c(r(P),r@)) : 6ob(P,Q)

for some l-coboundary ô0b. This is the case if and only if

"(P,Q) f c(5-1 oT(P),,S-1 o r@)): ô0ó(,S-1 oT(P),^9-1 o r(QD, Ø.2.3)

but since ô0b(,5-1 oT(P),,S-1 o T(Ø) is a l-coboundary, it follows tlnat 4.2.3 holds if and only

if S-1 o T e aut(T1,y,)". This is the case if and only if ^9 and ? are in the same left coset of

aut(T1,y,)" in aut(I1,y,). Thus, we have a one-to-one correspondence from the set of left cosets

of. aut(T¡,y,)" in aut(T1,y,) to the set of elements of f11(fç, Z2) (note that the correspondence

need,notbeonto). Notethatif h€¡l1(f c,Zz) correspondstotheleftcoset H of aut(T1,y,)"in

aut(I1,y,), then every element of h, acts by

c(S(P), s(A)) + 6b(P,Q),

for some S e H and 1-coboundary ôb.

FYom the above we have the following theorem.
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Theorern 4.2.3 Let W anil S be tuo GQs of order (r,r2) and let W' be a subGQ of order

r of both W and S. Suppose that Wt is doubly subtend,ed, in both W and E and, that 71,y,

is the SPG constructed from both W and T, as i,n Theorem 3.1.7. Let the 2-fold algebraic

couer of Tyyr constructed from W as in Theorem 3. 1.9 be (Tfv, , p) and let the I-cochai,n c defi,ne

(Tti),,p). Letlç bethe simpli,cial compler of thepoint graph of TÅ),. If laut(T1a,): aut(71,y,)"1:

lflt(fc, Z2)1, then there etists an isomorphism i: W -+ E, such that i,(Wt) :Wt.

Proof: Let h be an element of f11(fç, Z2). Since laut(T1,y,) : aut(T1,y,).1 : lf/l(fc ,Zz)1, by

the correspondence above it follows that if c' is any l-cochain in the set c * å, then c' acts by

c'(P,Q) : c(,9(P), S(A)) + ô0ó(P, Q) for some l-coboundary ô0ó and some automorphism ,5 of

Tw, contained in the coset of aut(T1,y,)c corresponding to /¿. Thus c is equivalent to c'. Since

this holds for any h e Hr(lç)722) it follows that any l-cochain of the form c* l-cocycle is

equivalent to c. These are precisely the l-cochains of lç over Z2 that satisfy the GQ condition.

Thus if (T,,lr,,ps) is the algebraic 2-fold cover of fi,y, constructed from 5, then it follows that c

and ct are equivalent and by Theorem 4.2.I we have the existence of the isomorphism i.

D

If we let aut(Wt)yy denote the subgroupof.aut(W') that is induced by aut(W), then The-

orem 4.2.3 has the following corollary.

Corollary 4.2.4 LetW and E be two GQs of order (r,r2) and letWt be a subGQ of order r of

both W and S. Suppose that Wt is doubly subtended i,n both W and E and that T1,y, i,s the SPG

constructed from both W and T, as in Theorem 3.1.7. Let the 2-fold algebraic couer of 714¡,,

constructed, from W as 'in Theorem 3.1.9, Ue (Ttk,,p) and let the 7-cochain c defi,ne (Tk,,p).

Letl¡; be the simplicial compler o! the poi,nt graph of (71\¡,,,c). If laut(T1at,): aut(Wt)yyl:

lflt(lc, Z2)1, then there eri,sts an isomorphi,sm i, : W -+ E, such that i(Wt) : Wt .

Proof: \Me show that aut(T1,y,) e aut(W')4r, and so the result follows from Theorem 4.2.3.

Let T be an element of aut(Wt)yy and let ? be an automorphism of W that induces T on Wt .

Thus ? induces an element of. aut(Tyy,)". Let i: aut(Wt)ry -+ aut(Tyy,)" be the map taking

an element of aut(Wt)yy to the (unique) element of. aut(T1,y,) it induces. We can easily show

that i is a group homomorphism, so nov¡ we show that it is also both one-to-one and onto and

hence an isomorphism. By Corollary 3.2.2 any element S of aut(T1a,)" is induced by a unique

element of aut(Wt), and so i is one-to-one. Now any element S of aut(T¡t,)" is induced by an

automorphism of Tfv, (by definition), and so by Theorem 4.2.7 there is an element of aut(Wt)yy

inducing 5. Hence i is onto and so is an isomorphism, that is, aut(Tw,) = aut(W')w.
!
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4.2.2 Calculating the homology

This section depends heavily on the definitions and results of Section 1.5 and Section 1.1. In

Section 4.2.1 we established that characterising a GQ of order (r,r') by a doubly subtended

subGQ of order r depends on the order of the first cohomology group of the simplicial complex of

the point graph of the subtended SPG. By Theorem 1.5.4, we know that the first cohomology

group, over a field, is isomorphic to the first homology group. In this section we will work

towards calculating the first homology group of the simplicial complex of the point graph of the

subtended SPG.

From Section 1.5.5, the fact that we are calculating homology over 22rrrearrs that we may

represent a l-chain as the set of l-simplexes with a coefficient of 1 in the l-chain. The sum of

two 1-chains is the symmetric difference of the corresponding sets of l-simplexes.

Let W be a GQ of order (r,r') with a subGQ Wt of order r, and suppose that W' is doubly

subtended inW, we will denote the associated SPG by T.Let G be the point graph of T and

f6 the simplicial complex of G.

Recall from the discussion after Theorem 1.5.8 that the l-cycles of f6 are the edge sets

of circuits of G. The elementary l-cycles of f6 are the edge sets of elementary circuits of G

and the induced l-cycles of fç are the edge sets of the induced circuits of G. We use this

representation of l-cycles of f6 as it is more intuitive, and leads us to results that will allow us

to calculate the homology directly from G.

A l-boundary of 16 is a triangle in the graph G. In much of the work that follows in this

section we will be selectively replacing an edge e1 of the edge set of a circuit of G with two edges

e2 aîd q of G, where {"t,"2,e3} is a triangle of G. This is equivalent to adding the boundary

of a 2-simplex to a l-cycle of lç, which produces a homologous l-cycle. We use this technique

to manipulate l-cycles into more convenient forms.

In the following theorem we show that any induced l-cycle of f6 is homologous to a sum of

induced l-cycles, each of which consists of four l-simplexes. A circuit of G with edge set that is

a l-cycle of f6 consisting of four l-simplexes will be called a four-circuit of G. If in addition

the l-cycle is induced, then we call the corresponding circuit and induced four-circuit. In
other words, an induced four-circuit is a circuit of length four such that (opposite" vertices of

the circuit are not adjacent. Recall from Section 1.1 that if X1.,X2,... ,Xn,Xrr11 is a circuit

of G of lengthn (and so Xr,+r : Xr) thenwe represent it by (X1, Xz,...,Xn).
Recall from Section 1.5 that two 1-cycles of f6r are hornologous if their difference is a 1-

bounda,ry and that any l-cycle that is homologous to the zero l-cycle (that is, any l-boundary)

is null hornologous.
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Theorem 4.2.6 Let o be an induced l-cycle of lç consi,sting of at least four l-si,mpleres. Then

there erist induced, I-cycles or¡o2,t... ,or such that each o¿ cons'ists of four I-simpleres and o

'i,s homologous to the sum of the o¿.

Proof: Let o consist of n l-simplexes; we proceed by induction on r¿. If n :4, then the result

is immediate. If n) 5, then let o be the edge set of the circuit (XuXz,... ,Xn).Recall from

the construction of 7 (Theorem 3.1.7) that the X¿ are ovoids of Wt, and that X¿ and X¡ üe
adjacent (in G) when the ovoids they represent intersect in exactly one point. Now suppose

that X1 l1 X2 - {P} and that 1l is the rosette, with basepoint P, containing both Xr and

Xz. By the proof of Theorem 3.1.7, if Xa does not contain P then X4 intersects exactly two

ovoids of 1l in one point, and if Xa does contain P then X¿ does not intersect any ovoid of 11, in

exactly one point. Suppose first that P is not a point of Xa. Since ø is an induced circuit and

we have assumed that n > 5, it follows that Xa is adjacent to neither X1 nor X2. Thus there

exists an ovoid X, X * Xt,X2, such that X is in l{. and X intersects Xa in exactly one point.

Hence the induced l-cycle o may be expressed as the sum of the l-cycles that are the edge

sets of the circuits (XuX,X4,Xs,... ,,Xn), (Xt,Xz,X) and (Xz,Xs,XuX). If X3 is adjacent

to X, then (þ, Xt,X) and (Xa,Xs,X) are triangles in G and so the 1-cycle corresponding

to (X2,Xy,X¿,X) is null homologous. If X3 is not adjacent to X, then (X2, Xy,XA,X) is

an induced four-circuit. Now the induced l-cycle o contains n l-simplexes, and the l-cycles

corresponding to the circuits (X¡X,XA,X;,...,Xn) and (X2,Xs,X+,X) contain r¿- 1 and

four l-simplexes, respectively. Thus the induced l-cycle ø is homologous to the sum of an

elementary l-cycle containing n - 1 l-simplexes and a l-cycle containing four l-simplexes (both

of which may or may not be induced). By the proof of Lemma 1.5.6 we can write both of these

l-cycles as the sum of induced l-cycles, each consisting of fewer than n L-simplexes.

Now suppose that P is a point of the ovoid Xa. Let Q be a point contained in the ovoid

X1 but in neither X3 nor X+. By Corollary 3.1.6, there is a (unique) subtended rosette 7l',

containing X1 and having basepoint Q. Since X3 does not contain the basepoint of Rt , it follows,

from the proof of Theorem 3.1.7, that X3 is adjacent to two ovoids in Rt. If we let one such

ovoid be X', then o carr be expressed as the sum of the l-cycles corresponding to the circuits

(Xt, Xz, Xs, X') and (X1, X' , Xz, X+, . . . , Xn). Now, since X4 does not contain the basepoint of

the rosette Rt, and Xa is not adjacent to X1, there is a second ovoid X", contained in 7ll, such

that Xa is adjacent to Xtt. The l-cycle correspondingto the circuit (XuX',Xs,X4,...,Xn)
can be expressed as the sum of the l-cycles corresponding to the circuits (X',Xs,X+,X"),,
(Xt,X',¡t,') and (Xt,X",X+,...,Xn). Thecircuit c:(Xt,,X"rX4r...,Xn) haslengthn-1,
but is not necessarily induced. If o" is the l-cycle corresponding to the circuit c, then ø" contains

n - I l-simplexes and is not necessarily induced. If o" is not induced, then by the proof of
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Lemma 1.5.6, we may write o" as the sum of induced l-cycles, each consisting of fewer than n

l-simplexes. Thus the l-cycle o mày be written as the sum of induced circuits each of which

contains fewer than n l-simplexes. Thus, ø is homologous to the sum of induced circuits each

of which has at least four and at most r¿ - 1 l-simplexes. The result follows by induction.

!

By using Theorem 1.5.8 and Theorem 4.2.5 we have the following.

Theorem 4.2.6 Let W be a GQ ol order (r,r2) with a subGQ W' ol order r. Suppose that Wt

i,s doubly subtend,ed, i,nW, with associated SPGT. Let G be the point graph of T andlç the

si,mplicial compler of G. Then Húlc,Z2) is tri,uial if and only if each'inducedl-cycle of f'c,
consisting of four 7-simpleres, is a L-boundary (that is, nuII homologous).

Proof: By Theorem 1.5.8 H{lc,Z2) is trivial if and only if every induced l-cycle is null

homologous and by Theorem 4.2.5 every induced 1-cycle of lç is null homologous if and only

if every induced l-cycle consisting of four l-simplexes is null homologous.

tr

Given Theorem 4.2.6 we now need a method for showing that a given induced four-circuit

is null homologous. The following lemma provides this.

Lemrna 4.2.7 Let o be an induced l-cycle of lç and let c: (X,Y, Z,W) be the corresponding

i,nduced four-ci,rcui,t of G. If Gg,zj is connected, then o is null homologous.

Proof: Suppose that G1x,z1 is connected and let Y,uo,t'ùt,t...,un¡W be a path connecting

Y and W in G1x,zj. Then ø is equal to the sum of the l-cycles corresponding to the cir-

cuits (X, Y,uo), (Z,Y,us), (X,uo,ut), (Z,uolur), ... (X,un-L,un), (Z,un-t,un), (X,un,W) and

(2, un,I,Z) . Since each of these l-cycles is a l-boundary, it follows that c is null homologous.

!

4.3 Application to QØ,q)

In this section we apply the work of the previous section to the classical GQ 8(5, q) where q

is odd and show that Q(5, q) is characterised by a Q(4,q) subquadrangle and the subtended

ovoid/rosette structure. Recall from Section 3.1 that Q$,q) contains subGQs, of order q,

isomorphic to Q@,q). Each such subGQ is doubly subtended in Q(5,q) and the set of such

subGQs form a single orbit under the action of the group of Q(5,q) 127, Theorem 22.6.6]. The

set of subtended ovoids of Q(4,g) is exactly the set of elliptic quadric ovoids of. Q(4,q). If we

use the notation of the previous section, that is, W : Q(5,8), W' : Q(4,q) with SPG 7,
then every automorphism of QØ,q) fixes 7 and so by Corollary 3.2.2 aut(T1a,) = aut(Wt) =
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aut(Tw,)w,. Since every automorphism of. Q(4,q) is induced by an automorphism of Q(5, q) we

have aut(W')w: aut(Wt). Thus by Theorem 4.2.3 Q$,g) is characterised by having QØ,q)
as a doubly subtended subGQ with associated SPG T,,lf andonly if flt(f", Z2) is trivial, which

is the case if and only if f/1(fç, Z2) is trivial, by Theorem 1.5.4.

As in Section 4.2.2let G be the point graph of the SPG ,- and fç the simplicial complex

of G. To show fft(lc,Zz) is trivial we will employ Lemma 4.2.7 and so need a "user-friendly"

representation of the graph G. For q odd under the polarity of. Q(4,q) the ambient three-

dimensional subspace of an elliptic quadric ovoid maps to a non-singular point of PG(4, q) and

two elliptic quadric ovoids are adjacent in G if and only if the corresponding polar points span

a tangent to Q(4,q). In this polar representation, a rosette is the set of non-singular points

on a tangent to Q(4,q) (note that if one non-singular point on a line tangent to Q(4,q) has a

polar hyperplane that intersects Q(4,g) in an elliptic quadric ovoid, then so do all the other

non-singular points on the line). In the following section we show that ffi(fç,22) is trivial for

g odd.

For q even the theory of Section 4.2.2 also applies and the most obvious representation to

use seems to be that given in [26]. The calculation, however, would seem to be more involved

than that for the q odd case, and certainly longer than the proof of the same result by Thas

and Payne in [65].

4.3.1 Explicit homology calculation for Q(4,q), q odd

Let T be the SPG with pointset the elliptic quadric ovoids of Q(4,q) and lineset the rosettes

of elliptic quadric ovoids. Let G be the point graph of. T and fç the simplicial complex of G.

In this section we show that ff1(fç,22) is trivial. \Me show that for each induced four-circuit

(Xt,Xz,Xs,X+) of G either the subgraph G{xr,xr} or the subgraph G{xr,xn} is connected.

By Lemma 4.2.7 this implies that each induced l-cycle of 16 over Z2 that consists of four

l-simplexes is null homologous. By Theorem 4.2.6 this implies that f/1(f 6 ,22) is trivial.

Let Q : Q(4,q) be the non-singular (parabolic) quadric of PG(4, g) defined bV Q6) --
r3+ rpz* r3r4: 0, where X has coordinates (*o,rt,r2trl¡øa). The bilinear form associated

withQisgivenbyþ(*,A):2royo*rtAzlrzyt*rsy+1_r+gsandifldenotesthepolar-
ity associated with Q, then (ro,*t,ï2trst*n)t : l2rs,r2rrttr4tø3] and lor,or,a2ta¡ton)t :
(oo12,a2tarta4,ar). If X and Y are two points of O such that the line (X,Y) is singular (that

is, B(X,Y) :0), then we write X -Y.If X is a point of PG(4,q) not on the quadric Q, and

Y is a second point of PG(4, q) (which may be either singular or non-singular) such that the

line (X,Y) is tangent to Q, then we say that X and Y are cotangent and write X ^Y.
It will be useful in what follows to have an algebraic condition that determines when two

94



points of PG(3,q) are cotangent with respectto Q. Let X and Y be two points of PG(4,q)

such that X is not contained in O. Then the set of points incident with the line (X, Y) but not

equal to X is {ÀXf Y: À e GF(q)}. The points X and Y are cotangent if and only if the line

(X,Y) intersects Q in precisely one point; that is, the equation QQX + y) : 0 has exactly one

solution in À. Now

QQx +Y) p(^x,Y)+Qøx)+gv)

e6)^2 + p(x,y)À+ AV).

This quadratic in À has a unique solution, \ : - þ(X,Y) I Q86)), if and only if the discrimi-

nant of the quadratic is zero. That is,

p(x,Y)2-4Q6)8(Y) :0.

We define L(X,Y) : p(X,Y)' - 4Q6)QV).
If X is a non-singular point of PG(4, q), then the lines tangent to I containing X form a

quadric Tx. The quadric Tsç is a cone with vertex X and base Xr O Q. The cone ?¡ is called

the tangency cone of X.
If X is a non-singular point of PG(3,g), then the hyperplane Xr intersects Q in a non-

singular hyperbolic quadric if and only if Q6) is a non-zero square of GF(q), and in a non-

singular elliptic quadric if and only if Q(X) is a non-square of GF(g). If tl and Ð2 are two

hyperplanesof PG(4,q), suchthat XrOQ andEzl\Qarebothnon-singularellipticquadrics, then

the two elliptic quadrics intersect in exactly one point if and only if the line (ti, X+) is tangent

to Q. That is, Xf and XrL are cotangent. Given this, we have the following representation of

G:

Vertex set: {X € PG(4, q) , Q6) is a non-square of Gp(q)}

Adjacency: Cotangency.

In this representation of the points of 7 the lines of T are the lines of PG(4, q) that are

tangent to Q and have a polar plane intersecting Q in exactly one point (the base point of the

rosette corresponding to the line of n. Recall that T is an SPG with parameter o : 2 and

so if (P, l) is a non-incident point/line pair of T, ttren P is collinear to exactly 0 or 2 points

of l. Recall from the proof of Theorem 3.1.7 that P is collinear to 0 points of I when it is an

ovoid containing the base point of the rosette corresponding to [, and collinear to two points

of / when it does not. We state the equivalent result in the current setting, which will prove

useful for the calculations that follow.
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Lemma 4.3.L Let {. be a line of PG( ,q) tangent to Q at the point Q, such that the polar space

of each non-singular poi,nt of {, intersects Q in a non-singular elli,pti,c quadri,c. Let P be a point

of PG(4,q) such that PL intersects Q in a non-singular elliptic quadric anil P / 1.. Then one

of the following must be the case

(i) There are eractly two po'ints incident wi,th l. and cotangent to P, both of which are not on

e; or

(ii) The poi,nt Q e Q is the only point inci,dent with [. that is cotangent to P

Proof: Consider the plane ,r : \[,P). If n intersects Q in a conic, then P is an exterior point

to the conic and there are exactly two points of / cotangent to P, both of which are non-singular

with respect to Q. The other possibilities for zr are that it intersects Qina line pair (where the

lines intersect in Q) or that it intersects I in the unique point Q. In either case, a,, contains a

unique tangent on P and Q is the unique point of I cotangent to P.

tr

\Me now consider four-circuits of G. If c: (XuXz,,Xs,X¿) and c' : (Xl,XL,X'r,Xt) are

two four-circuits of G and ,9 is a collineation of PG(4, q) that fixes Q, such that

,5: (X1,Xz,Xs,X+)è(XI,XL,Xâ,XL), thenwesaythat,Smaps ctoC andwrite S(c):¿t.
Now, any collineation of PG(4,q) that fixes Q also fixes both the vertex set of G and the set

of tangents to Q and so preserves cotangency amongst the vertices of G. Thus ,5 induces an

automorphism of the graph G. FYom this we have the following result.

Lemma 4.3.2 Let c and c' be two four-circui,ts of G and let S be a collineati,on of PG( ,q)

such that S fires Q and S(c) : c'. Let the edge sets of c and ct be the l-cycles o and ot of lç,
respectiuely. Then o is null homologous if and only if ot 'is null homologous.

Proof: Suppose that o is null homologous, so that 5 is the boundary of some 2-chain

{4r,42,... ,Ar}, where each A¿ is a 2-simplex of fç. Each A¿ is a triangle in G and since

o : ô({Ar , L2,. .. , A"}) it follows that the edge set of c is the symmetric difference of the

edge sets of the triangles Ar,42,... , Ar. This property is preserved by any automorphism of

G and, since the above discussion shows that ^9 induces an automorphism of G, it follows that

o' is null homologous.

n

By Theorem 4.2.6, to prove that /fi(f6,22) is trivial we need to show that the edge set

of every induced four-circuit is a null homologous l-cycle. By Lemma 4.3.2, we can do this

by directly showing that the edge set of a given induced four-circuit of G is null homologous

or by showing it is isomorphic in PG(4, q) to an induced four-circuit with a null homologous

edge set. We proceed by using the elements of the group of Q in PG(4, q) to choose canonical
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forms for the induced four-circuits of G, and then apply Lemma 4.2.7 to the canonical induced

four-circuits.

The following result gives a canonical form for the induced four-circuits of G.

Lernma 4.3.3 Let c be an induced four-circuit of G. Then c is 'isomorphi,c to an i,nduced, four-
ci,rcuit of the form (O,A,B,C(^)) where O : (0, L,T,0,0) for r¡ a fi,red non-sçtuo,re o/GF(q),

,4: (0,I,T,0,1), C(À) : (0,1,17,À,0), for some À e GF(q) \{0,-aq} and B'is anon-singular

point of PG(4, q) such that L(O,B) +0.

Proof: Let c: (X¡Xz,Xs,X+) and let the plane (Xr,X",X¿) : n. Since c is an induced

four-circuit X2 and X4 are not adjacent in G. Thus the lines (Xt Xz) and (X1, Xa) are tangents

at distinct points of I and the line (Xz,X+l is not a tangent to Q. FYom this it follows that ¡'

intersects Qin a conic and that nr is a line exterior to Q. By [27, Theorem22.6.6) we know

that the group of I is transitive on such planes, so we may assume that * : [0, \,-t,0,0] n
[1,0,0,0,0], where 4 is a fixed non-square of GF(q). Now let (Xt,Xz)1'Q: Pt, (Xt,Xa)n

Q: Pz and XI în-ft Q: {P1,ft}. By 124, Lemma 7.2.3 Corollary 8] we know that the

group of Q is three transitive on the singular points incident with a-. So we may assume that

Pr : (0,0,0,0,1), Pz: (0,0,0,1,0) and P3 : (0, -IlQn),-112,1,-Il@fl). This means

that X1 is the intersection of the tangent on (0,0,0,0, 1) incident with n and the tangent on

(0, 0, 0, 1, 0) incident with zr. That is, X1 : O : (0, 1, ?,0, 0). Similarly X2: ,4. and X¿ : C(\)
for some À e GF(q) \{0}. Now the circuit c is induced if and only if X3 is a non-singular point

of PG(4, q) such that A(O, Xs) t 0 and A(,4, C(À)) I 0. Since

A('4' c(À)) 
: ;ii';T''-''^';"1';1' 

4' À' o))

À(4a + À),

we have the required result.

!

We now consider induced four-circuits of the form (O, A,B,C(^)) (using the notation of

Lemma 4.3.3) where ), 10,-4q. First we need to establish for a given 
^, ^ 

+ 0,-4q, the

possiblepointsB. Since (O AB C(À)) isafour-circuit if andonly if.B ^ A, B n C(À) andB
is non-singular, then, for a fixed 

^, ^ 
+ 0, -4n, the set of possible points a i. (a n %t^l) \ A.

It is straight-forward to show that the quadric ?a has equation

*?-!4-rZ -ú-**"' -rtr3 -r2rs r.',r^:o4 4q 4q' 2 2 2r¡ | eóú4-v)

and the quadric ?c1.r¡ has equation

z \r? rl \2nl rp2 Àr1r4 Àr2ra*o- 4 - 4rt- 4rt - 2 - 2 - u t!x3r4:s'

97



\Me will now show that for 
^ 

+ 0,-4r¡, there exist two hyperplanes of PG(4,q), D1(À) and

Ez(À), such that Er(À) ì Q : á1(À) and tz(À) ì Q : á2(À) are both non-singular elliptic

quadrics and Ta n Tc(r) : tr(À) U ¿2(À).

Let E1(À) be the hyperplane of PG(4,q) with coordinates [0,0,0,1,-À]. Since E1(À) con-

tains neither ,4 nor C(À) it meets T¡ in a non-singular elliptic quadric, and similarly for ?6'1¡;.

The equation for the section of ?¿ in tr(À) is that of ?a with the substitution 13 : Àn4:

*z -Tr? -rZ -^2*? -rrr2 -),rfi+ _ Àrzrq,r \-2 - nn0- 4 - 4n- 4n - 2 - 2 - U 
'T/\;t' -v)

which is the same as the equation for the section of ?c()) in D1(À), that is tr(À) l)T¡:
Er(À) n 

"c(¡). 
Let á1(À) be the non-singular elliptic quadric Er(À) t)74 - Er(À) n 

"c(¡).
Similarly, letE2(À) bethehyperplaneof PG(4,q) withcoordinates[0,2q,2,1,À]. Thehy-

perplane Dz (À) contains neither A nor C(À) and the intersection of 7¡ with tz (À) has equation:

^2 nn? rl (-2rt*, - 2rz - 
^rq)2 , 

rrr2*o- 4 - 4rl- 4tl - z
r1(-2r¡q - 2rz - ^rn) 

r2(-2r¡q - 2rz - 
^r¿) * rgr4: g

2 2q

<+,3 * ?l - rt +,ù*? + e h - 
L * llú - fi"2 * è - 2 + | + r)n1r2

+(-À + ))*r*n* (-; + fi),r*o t rsr4: Q

<+ ú-!4-ú-t-"2 *ïrr2 -),rtr+ -++*rsr4:e.44n4q'222n
Thus the intersection of T¡ with Ez(À) is the same as the intersection of ?6'1¡¡ with D2(À). Let

this non-singular elliptic quadric section be á2(À).

The intersection of the quadrics á1(À) and á2(l) is contained in the plane zr¡ : Er(l)nEz(À),

which has equatioos Ø3 : Àra and 2qrt + 2rz * rs I \n+: 0. Substituting the first equation

of zr¡ into the second yields \rt I rz I \r+: 0, or \rt * 12l iLs: 0, which are the equations

of C(À)r and Ar respectively. So zr¡ C C(À)a,Ar and in fact zr.r : C(À)r nAr. Thus

(ronrrf^l) ì Q: rx.r Q, and. so ¿1(À) n ¿2(^) : tl(À) n Q: tz(À) ì Q.

Using the above we now prove the following result.

Lemma 4.3.4 Let À e GF(q)\{0,- rl} andlet tr(À) andE2(À) bethehyperplanes ofPG( ,,q)

uith the equations rs-À,r4: 0 and2nrt+2rz+rsiÀr4 :0, respectiuely. Let t1(\) and €z(Ð be

the non-s'ingular ellipt'ic quadri,cs, E1(À)n Q and t2(À)n Q. respectiuelg. If A: (0,1, r¡,0,I) and

C(À) : (0,1,tt,À,0), thenT¡tTsøy:dr(À)Ut2(À) and,€y(\)ñQ: t2(À)nQ:t{\)n¿2(À).

Proof: \Me have already established that t1(À) ìQ: e2ø)ìQ: €t(\) n¿2(À) and that

¿1(À) U €z(^) ÇT¡ìTç6¡, so'we must now show that T¿ìTç6¡ Ç tr(À) Ut2(À).

LetP beapoint of T¡n"c(r). If P€ S,thenbytheaboveT¡lTsç¡¡1rQ:r¡lìrQ:
t1(À) ná2(À) andsoP€¿r(À) U8z(^). If Pø S,thenconsidertheline (.:(P,A) tangentto
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Q. By Lemma 4.3.1, since C(À) is cotangent to P and P I Q, it follows that C(À) is cotangent

to exactly two points of l, both of which are non-singular with respect to O and one of which

is P. We also know that C(À) cotangent to the points Pt: (n¿1(À) and P2: [,ñtúÀ). Since

t1(À) n €2(À) c Q, it follows that P1 and P2 are distinct and so either P : Pt or P2. Thus

Petl(À) ut2(À).

tr

Fþom Lemma 4.2.7, if c is the induced four-circuit (O,A,B,C(^)) of G, for

B e (á1(À) Utr(À)) \ O, and the subgraph G{¿,c(.r)} of G is connected, then the edge set of c

is null homologous. Thus if G{¿,c(r)} is connected, then all the canonical induced four-circuits

of G have null homologous edge sets. In the next section we show that G1n,c1.l;1 is connected.

4.3.2 The graph G1a,cçx)\, 
^ 

+ 0,-4rt

The subgraph G1a,c1.r¡1 of G has vertex set the set of points (tr(f) U t2(À)) \ Q :
(¿r(f) Ut1(À)) \(tr(À) nt2(À)) ofPG(4,q). Twoverticesof thissetareadjacentiftheyare
cotangent. \Me now prove a result which simplifies the task of showing that G1t,c1,r¡1 is con-

nected.

Lemma 4.3.6 Let the graph f1(À) óe the subgraph of G w'ith uerter set t1(À)\A. ï f1(À) zs

connected then G1t,c1.l;1 is connected.

Proof: Suppose that f1(À) is connected and that X and Y are two vertices of.G1t,c(x)t.If X
and Y are both vertices of f1(À), then there is a path connecting them in f1(À) and hence in

Gg,c(\)j. NowsupposethatXisavertexof l1(À) andthatYisnot. Thatis,Xisapoint
of á1(À)\OandYisapointof tz(À)\Q. Considertheline (Y,A) thatistangentto O. Since

(Y,A) contains a point of áz\ Q it also contains a (distinct) point of ár(À), Yt say. As X and Y'
are connected in f1(À), it follows that X and Y are connected in G1a,c(À)Ì. A similar argument

shows that if neither X nor Y are vertices of 11(À), then they are connected in G1,a,c(.r)].

!

We now prove that f1(À) is connected. The first step is to prove some results on the group

of 11(À).

Lemma 4.3.6 The stabi,li,ser of t1(\) in the group ol Q is transit'iue on the points o/tr(À)\ I.
Proof: Let X and Y be two points of á1(À) \ Q. Since ár(À), (X,Y) and the plane n¡ are

contained in the hyperplane tr (À) of PG (4, q) , it follows that the tangent (X ,Y) meets the plane

zr¡ in a point P. Recall from Section 4.3.1 that er¡ was the plane such that á1(À)n Q : Qìtr¡ and

so X,Y / r¡ and by Lemma 4.3.L P É Q. Since P is not on Q, we consider the automorphism

þp of Q (see Section 1.2). Now from Section4.3.L we have that zr¡ C AL,C(À)r and so since
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P €. r¡, it follows that p,p fixes both,4r and C(À)r. Thus ¡^rp fixes ?,q n"ctrl. Also since

P e X1(À) it follows ttrat p,p fixes E1(À) and so pp fixes tr(À). Since pp fixes the lien (X, Y)

and t1(À) it also fixes (X,y) n¿1(À) : {X,y}. If pp fixes X, then it must also fix Y. Now

¡rp fixes X if and only if
pp(x)-x-\Pr:",ae)

which is the case if and only if þ(X,P) :0. That is, X e PL. So if pp fixes both X and.Y,

then the line (X, Y) is contained in Pr, which implies that P €. PL. But this is a contradiction

as P / O. Thus þp(X) :Y.
tr

Corollary 4.3.7 The automorphi,sm group of the graph f1(À) zs transitiue on the uertices of

rr())'

Proof: Any automorphism of Q fixing á1(À) induces an automorphism of 11(À)

Corollary 4.3.8 The automorphism group o/f1(À) 'is transitiue on the connected, components

o/ 11(À).

We now proceed to show that f 1(À) has a connected component containing more than half the

vertices of f1(À), since by Corollary 4.3.8 this means that f1(À) is connected.

Now if X and Y are two points of t1(À) \ Q, th"n they are cotangent if and only if the

Iine (X,Y) is tangent to the quadric tr(À) fl 8. That is, the graph f1(À) can be defined from

¿r(À) \ Q and Dr(À) n Q. We first define an isomorphism from Ðr(À) to PG(3, q) which will

make calculating the connected components of f1(À) a little easier.

Let U : E1(À) -+ PG(3, q) (where PG(3, q) has coordinates rotrttï2,ïr) be such that

U(*0,ïr¡r2¡),ra,ra) : (no,:x1,,it2,ir4). If t1(À)' : U(¿1(À)), Q' : t/(t1(À) fl 8) and zr¡ :
tl(n¡), then t1(À)', Q' and zr! have equations

ár(À)' , n?-nr?-r7-^zr3+rtr2-^"1!t )'r2r3 '¡ \ 2,6-ï-4- 4n!+i-i--r, -tÀrfi : 0

a, rf;+rp2+Àrl 0

n'^ i 4rtlrz*Àr3 : 0

If X is the point of PG(3,q) with coordinates (*0,*t,iL2,rs),, then let 8'Ø) : r3*nfiz*),r!.
The bilinear form of PG(3, q) associated with Q' is Bt(X,Y) : 2roAolrtyz*rzyt1-2Àr3ys, and

we will denote the polarity associated with Q' by I'. If X and Y are two distinct, non-singular
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points of PG(3, q), then X and Y are cotangent with respect to Qt if and only if A
where L'(X,Y): (Pt(X,,Y))' - 48'iol^)}'(Y). Using the above, an alternative

of f1(À) is

Vertex set: á1(À)'\ 8'.

Adjacency: Cotangency with respect to Q'

At this point we note that, as in Theorem 4.3.6, if X and Y are two points of á1(À)/ \ 8'and
P : (X,Y) ì lrt^, then pp fixes both tr (À)' and Qt , as well as interchanging X and Y .

Now O € t1(À) \ Q and so O': (0,1,?,0) is the image of O under U, O': (0,1,4,0) and

Ot e t1(À)t\ Q'. We now determine the points of á1(À)/ that are cotangent to Ot. Lel re, be

the plane of PG(3, q) with equation 2rlu + 2rz + Àr¡ - 0 and note that Ot / 16,. The points

of 16, that lie in t1(À)/ have equation

"fi
nr? rl (2qu + 2nz)2 rLr2 (-2qq-2r2)r1+4 4n 4r¡

(-2rt*, - 2r2)r2
2r¡

2 2

<+

<+

ú - + - * - nr? - ú - r*',, + !Ë2 + nr? t r1r2 * r1n2

, n| , (2nq + 2,2)2-1*- À

nú r|

-0

-0

-0.2
0T 4 Art

The points of rs, that are cotangent to Ot are those that satisfy the equation

n,(o,.(* 2nrt 2rn\\
\,\otïr¡î2¡--À -;)) :0

<+ þt*t + *r)' - +rr (rZ t r1r2 * Qnrt !2rù2\ - 0
\" À )

<: *?-q*?-ú**rrr+(2qq+2*z)2 -0. (4.g.4)-t *0- 4 2 - 

-,1Thus the set of points of n6, that are cotangent to O'is exactly the intersection of á1(À)'with

zrgr. Now the set of lines incident with O' that are tangent to O' form a quadratic cone T[,
(regardless of whether Qt is a hyperbolic or elliptic quadric), and so it follows that the set of

points of rs, cotangent to O'is the conic T[,nTs, - Co,.Also since the point O'is on exactly

q * 1 tangents to Q', it follows that the set of points of á1(À), that are cotangent to O', is

exactly C6,.

Note that the discussion preceding Lemma 4.3.4 shows that á1(À)' l) Q' : ,T\ñ Q' . Thus the

points of C6, that are also on Q' are precisely the points of á1(À)'on the linere,lìzi!. Now any

point of ár(À)'on the line16, Onl must satisfy the equatiorrs, fr2: -\rt and ø3 :0. Since ?

Y) :o
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is a non-square of Gp(q) there is no point that satisfies these equations. Hence Co, contains no

points of Q'.

By the proof of Lemma 4.3.6 the stabiliser of á1(À)'in the group of Q'is transitive on the

points of á1(À)'\ Q'and so the above results for Otapply for all X e á1(À)/ \ Q'.

Lemma 4.3.9 Let X be a point of E1(À)'\ O' (for \ * 0, -4n). Then the set of points of €1(\)t

that are cotangent to X form a conic, Cx in the plane ry. Furthernl,ore, Cy contains no po'i,nts

oÍ Q'.

\Me now calculate the conditions under which lrx :nTy for X,y € ¿1(À)'\ 8'.

Lemma 4.3.10 Let X € ¿1(À)/ \Q'. IÍ À # -8n, then for eachY € ¿1(À)' \Q' and X +Y it
follows that ry I nv. IÍ 

^: -8r¡, thenY : (nx)L' it th" unique point of €t(À)'\Qt such that

1f x :1fY and X lY.
Proof: We show that the result holds for the case X : Ot and so the general result holds by

the transitivity on the points of t1(À)/ (Lemma 4.3.6).

Now it follows from the proof of Lemma 4.3.6 that if Y e ár(À)' \ Q' and n|n (Y,O') : P,

then ¡.rp fixes 8' and á1(À)' \ 8', and interchanges O' and Y. Hence lTsr : zry if and only if

Lrp(tro,) : To,. We also know from the proof of Lemma 4.3.6 that any point P e r\ \ Q' ha.

the property that ¡.r,p fixes Qt and ár (À)' \ Q' and either fi.xes O' of maps it to a different point

of á1(À)'\ O'. Thus we look for points P of.nts\ Q'such that ¡.t,p fixes n¿, but not O/.

Now ¡.rp fixes zr¿, if and only if ¡,lp fixes the point (no,)t' and this is the case if and only

if P € Tot oî p : (tr6,)L'. Itt the first case P is any point of To,f)r! which is a line with

equations 2qU + 2rz I \rs : 0 and Trt t 12 * \rs : 0, that is 421 * rz - fiB : 0. However,

the polar plane of O' with respect to Q' has equation Trt * ï2 : 0 and so contains the line

To, I r!. Thus if P € To, f) zr!, then it is also contained in the polar plane of Ot, and so ¡.rp

fixes Ot.

For the second. case we note that p : rà',: (0,4,4q,1), which lies on z! if and only if
À : -8?. In this ca,se, pp(tre,) : ns, and p,p(Ot) I Ot.

D

Given Lemma 4.3.9 and Lemma 4.3.10, 'we are now equipped to show that f1(À) is connected.

Theorem 4.3.LL The graph f1(À) is connected.

Proof: We show that the connected component of 11(À) containing O/ has size greater than

lll(À)l/2 : (q2 - q)12. Recall from Lemma 4.3.9 that the vertices at distance 1 to X form the

conic Cy in the plane zr¡¡ of PG(3, q). We now find a lower bound for the number of vertices at

distance 0, 1 or 2 to O'.
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We separate the proof into two cases, À : -8r7 and À * -8n (note that we still have the

restriction that À *0,-4ù.
Suppose that À - -8q. To obtain a lower bound for the number of points at distance 2 to

O' we consider the points at distance 1 to a point X €Cs,, that is, the points of the conicCy,

Since À - -8r¡we have that Ot,(no,)t' €Cx.Since there are at most two lines contained in

Tst that are incident with X and tangent to Q' , it follows that lC6, ¡ Cxl < 2. Thus there at

least q-3 of the points in the set Cy\{(no,)r'} that are at distance 2 to Ot. Now suppose that

Y e Cs, \ {X}, then either ry I rx and. Cx ltCy - {O',(n6,)L'}, o, ',ry : ry and. Cx : Cv.

Thus if Z e Cx and is at distance 2to Ot, and not equal to (no,)L',then Z is at distance 1to
at most one other point of Cç,. Hence a lower bound on the number of points at distance 2 to

Ot is (q + 1)(q -3)12 * 1 and so a lower bound for the number of points at distance 0,L or 2

to O/ is:

(q+t)(q-s) +1+(q+1) *1 : (q+tXq-t) +2>q2-q - lrr(À)1.
2 ,r r\Y t Ll t L - 2 ,-- 2 - 2

This shows that l1(À) is connected for À - -Br¡

Now suppose that 
^ 

I -8n. As above we consider a point X e C6,. By an argument above

there are at most two points at distance 1 to X inC6,. Hence at least q-2 of. the points of C¡

areatdistance2toOt. Nowlet Zbeapointatdistance2toOt. Since12#no,, itfollows

that 12 O zre, is a line and lC2 ÀCç,112, that is, any point at distance 2 to Ot is at distance 1

to at most two points of Cç,. Hence a lower bound for the number of points at distance 2 to Ol

is (q * t)(q - 2)12. Tfu:is a lower bound for the number of points at distance 0, 1 or 2 to Ot is

(q+t\(o-2\ , _ (q+l)q_11>q'-q: lrr(À)l
ï+(q+l)+-t: 2 +r> 2 2

This shows that f1(À) is connected for À # -8q.

We now have the following string of consequences of Theorem 4.3.11

Corollary 4.3.L2 The graph G1.t,cçx¡¡ 'is connected.

Proof: By Lemma 4.3.5.

Theorem 4.3.13 Ht(lc,Z2) i,s tri,uial.

Proof: By Theorem 4.2.6 H{lc,Z2) is trivial if and only if the edge set of each induced

four-circuit of G is null homologous. By Lemma 4.3.2 and Lemma 4.3.3 the edge set of every

induced four-circuit of G is null homologous if all the canonical induced four-circuits have null
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homologous edge sets (where the canonical induced four-circuit are the induced four-circuits

(O, A, B, C (^)) for some À e GF(q) \ {0, -aq}). By Lemma 4.2.7 if G 1t ,c1s¡¡ is connected, then

the edge set of (O, A,B, C(À)) is null homologous. Thus Corollary 4.3.12 proves the result.

!

Theorem 4.3.13 has the following corollary:

Theorem 4.3.L4 Let E be a GQ of order (q,q'), q odd, and Et a subquad,rangle of S of ord,er

q i,somorphic to Q(4,q). Il each ouoi,d of Et subtendeil by E is isomorphic to an elli,ptic quadric

ouoid, then E is isomorphic to Q(5,q).

Proof: Since fI1(f c,Zz) : Hr(lc,Z2) is trivial, the result follows from Theorerr. 4.2.3.

tr

Combining Theorem 4.3.14 with the corresponding result for q even given in [65] we have

the following result for general q.

Theorem 4.3.15 Let E be a GQ of order (q,q') and Et a subquadrangle of E of order q iso-

morphi,c to Q(4,q). If each ouoi,d of Et subtended by E'is isomorphic to an elliptic quadric

ouoid, then E is'isomorphic to Q(5,q).

4.4 Remarks

Theorem 4.3.14 now makes it possible to prove results similar to those in Section 4.1 for the

case where q is odd. In the case where Ç : 9 Penttila and Royle have shown that the only ovoids

of Q(4,g) are KL(o) ovoids, where o : r è 13, and the elliptic quadric ovoid ([53]). F\rrther

(still for q:9) Penttila has shown that there is no GQ of order (q,q') with a subquadrangle

isomorphic to Q(4,q) that subtends both an elliptic quadric ovoid and a Kt(o) ovoid ([51]).

Thus, by Theorem 4.3.14, a new GQ S of order (9,81) with a subquadrangle isomorphic to

QØ,,9) must subtend an ovoid-rosette configuration in 8(4,9) where every subtended ovoid is

a Kl(o) ovoid. Using the work in Section 4.2 it may be possible to rule out the existence of a

new GQ subtending the SPG found in Chapter 3 by characterising E(C")n (as in Chapter 3)

by its doubly subtended QØ,9) subquadrangle. Of course it may also be possible to prove this

characterisation for g:ph, wherep is an odd prime andh ) 1, using the work of Section 4.2,

although it is likely to be a more difficult problem than the classical case solved in Section 4.3.
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Chapter 5

Affine planes and GQs of order s

In this section we study the connections between affi.ne planes and GQs of order s containing

a regular point. In particula,r, it is known that if 5 is a GQ of order s, with a regular point,

then there is an associated affine plane of order s ([49, 1.3.1]). The GQ defines an s-fold cover

of the affine plane and we investigate the relationships between the GQ, the affine plane and

the associated cover of the affine plane.

To begin we consider the classical case, for q even. Let Q : Q(4,g), the non-singular

(parabolic) quadric in PG(4, g) and let I denote incidence between points and lines of Q. For

such a quadric there is a unique point I/ / Q, calted the nucleus of 8. The point l/ has the

property that every tangent space to O contains l{. In addition, every line of PG(4, q) incident

with ll is either tangent to Q or is external to Q 127, Lemma 22.3.3(ii) and Lemma 22.3.t(i)].

Let V be a fixed point of Q. By [49, 3.3.1.(i)] every point of Q(4,q), q even, is regular, and

so it follows that V is regular. Let I/r denote the tangent space to Q at V, then Vr n Q is

a quadratic cone K with vertex V [27, Lemma 22.7.3]. If X is any point of I \ Vr, that is, a

point of Qnot collinear to V in Q,thenxr nVr is a plane of PG(4,q) that intersects Kina
conic, Cx. We say that X subtends the conic Cy in K.

Let (.be a line of Q such that I/ is not incident with /. Then there exists a unique point/line

pair (Y,rn) suchthat V I m IY I {.. If Z is apointof the set l\{Y} (wherelis considered

as the set of points incident with it), then by the above, Z subtends a conic C2 inK. If Zl and

22 are two distinct point of l\ {Y}, then the tangent spaces Z{ and Z} intersect in the plane

((.,N> of PG(4, g). Thus, Cz, I C2r, and in fact C2r 1'C7r: {y}. Hence each point of / \ {fi
subtends a distinct conic and the line (¡f, y) is a tangent to each of these conics. We say that

the tangent (¡f,y) is subtendedby (..

Let zr be the incidence structure with pointset the set of conics of K whose plane contains .ly',

lineset the tangents to Q contained in Va, except the tangent (%¡f), and incidence inherited

from PG(4, q). Then zr is an affine plane, and in fact r is the affine plane obtained by removing
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the line (#)' ,ro- the projective plane (#)', u'd so zr 3 AG(2,q).

If the line m of VL is a line of zr, then it is determined by the unique point of I incident with

it, since all such lines are incident with I/. Thus an equivalent description of zr is to redefine

the lineset as the set K \ {V}, keep the pointset as the set of conics of Vr whose plane contains

ll, and keep incidence as incidence in PG(4, q). This is a specific case of the following theorem.

Theorem 6.O.t [49, 1.3.1] Let X be a regular point of the GQ S: (P,ß,1) of order (s,t).

Then the incidence structure wi,th pointset XL \ {X}, Ii,neset the set of spans {Y, Z}LL , where

Y,Z exr \ {X}, Y * Z and wi,th natural inc'idence, i,s the dual of a net of order s and, d,egree

t +1. IÍ s : t) 2 it is a dual ffine plane of ord,er s.

5.1 Covering affine planes

Let 5 : (P,B,I) be a GQ of order s and (-) u point of 5 that is regular. Let r: 7r(oo) be

the affine plane constructed from 5 and (oo) as in Theorem 5.0.1. We will define a map p from

S \ (-)r to n that defines an s-fold cover of zr.

Let X be a point of P \ (oo)r. Then {X,(-)}r is a point of n. Since (oo) is regular

it follows that l{X,(-)}ttl : s*1, and if Y e P\ (-)r then {Y,(-)}r : {X,(oo)}] if
and only if Y e {X,(-)}[. So if we define the mapp from 

"\ 
(-)r into the pointset of

n by p(X) : {X,(*)}t, then p has the property that for any point {y, (-)}r of zr, the set

p-r({Y,(-)}t) : {y, (-)}tt consists of s pairwise non-adjacent points of P \ (-)r.
Now suppose that {X, (-)}a and {Y, (-)}t are two distinct points of ¡. Then {X, (oo)}ln

{y,(-)}r : Z for some point Z e (æ)r. Now each of the s lines of 5 incident with Z,

but not incident with (oo), is incident with exactly one point of {X, (-)}[ \ {(oo)} and

exactly one point of {y, (-)}tt \ {(-)}. Also, any line of 5 that contains one point of

{X, (oo)}[ \ {(-)} and one point of {y, (-)}rr \ {(-)} must contain Z. Thus the set

p-r({{X,(*)}t, {y, (-)}r}) consists of s disjoint, incident pairs of points of P \ (-)t.
If f is the subgraph of the point graph of .S defined on the vertex set P \ (-)4, then thus

far we have shown that (f,p) satisfies requirements (i) and (ii) of an s-fold cover of the point

graph of zi- (see Section 1.6). Since any two points of zr are collinear, requirement (iii) is satisfied

vacuously; so (f,p) is an s-fold cover of the point graph of n. We now show that this gives rise

to an s-fold cover of zr.

Let P be a fixed line of n: that is, a point of (oo) \ (-)1. Then the set

{p-t({X,,(-)})t: Pisincidentwith{X,(-)}r inr'}: {X eP \ (-)r: X I P}. Now if
f, is the subgraphof I definedon the vertex set {X e P\ (oo)r : X I P}, then the s linesof

S incident with P, but not (oo), divide fo into s disjoint complete graphs, each of size s. Thus
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the map p satisfies condition (iv) in Section 1.6, and so we have the following theorem.

Theorem 6.L.L Let E : (P,ß,1) be a Gq of order s with a regular poi.nt (æ). Let r be

the ffine plane with lineseú (-)l \ (-), pointset the set of spans {X,Y}LL, where X,Y e
(-)r \ (*), X ,y' Y anit natural inci,d,ence. Let tr be the geometry with pointset P \ (-)t,
Iineset the set of lines of E not i,ncident with (æ), and incidence as 'i,n E. Let p: n -+ r be

such that: p(X): {X, (-)}1 for X € P \ (-)r, and for {, a line of S not incident with (æ),

p(l):Y, whereY is the unique point such thatY I (. anil y - (oo). Then (n,p) i,s an s-fold

couer of n.

Note that in Theorem 5.L.1 p denotes the map induced on n by the map p in the discussion

preceding Theorem 5.1.1.

At this point it is natural to consider under what conditions we can "reverse" the covering

process in Theorem 5.1.1 and construct a GQ of order s, with a regular point, from an s-fold

cover of an af6.ne plane of order s.

Theorem 6.L.2 Let r be an ffine plane of order s and, (tr,p) an s-Jold couer of n. Let S be

the following i,ncidence structure

Points: (i) Lines of

(ii) Points of n'

(iii) (*)
Lines: (u) Parallel classes of n

(b) Lines of

Incidence 1: (i) (a) Containment

(b) The s covers of the point of type (i)

(ii) (a) None

(b) Incidence in n.

(iii) (a) All
(b) None

The geometry E is a GQ of order s if and only if for each non-incident point-line pair (P,l),

where P is of type (ü,) and {. is of type (b) and p(P) is not'incident with p(l) in r, there is a

uniqueinci,dentpoi,nt-Iinepair(Q,m) suchthatP I mI Q I ¿. Further, if S is aGQ,then

the point (oo) is regular.

Proof: In Section 1.6 it was noted that if {. is a line of n and is incident with the set

of points {Pt,P2,... ,P"+r}, then each element of p-r(t), as a set of points, has the form

{P!.,Pt,... ,Pj+r}, where p(Pl): P¿for i:t,2,.'. ,s*1' We willbe usingthis fact, implic-

itly, throughout this proof.
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Let (.be a line of type (a) (that is, a parallel class of n). Then, in,S, / is incident with the

s lines of zr it contains as a parallel class of zr and the point (*), 
" f 1 in total. Let {. be a

line of type (b) (that is, a line of z'). Then, in 5, / is incident with the s points incident with

it in n and the point of type (i) p(l), s * 1 in total. \Me now show that two distinct lines of 5
intersectinatmostonepoint. Letlandrnbetwolinesof 5,with(#*. If (.andrnareboth

of type (a), then they are concurrent at the unique point (oo). If (. is of type (a) and rn is of

type (b), then they are concurrent if and only if the line rn (as a line of zr) is a cover of the line

n of r, which is contained in the parallel class rn. In this case r¿ is the unique point incident

with both (. arrd m. If [, and rn are both of type (b) and cover the same line n of n, then they

areconcurrentatthepoint nandnootherpointof E.If (.andrn coverdifferentlinesof zrand

X is apoint of 5 such that X I1,,m, then X is apoint of n. Sincezr is ageometry there is at

most one such point.

Let mbe a point of type (i) (that is, a line of zr). Then, in S, rn is incident with the s lines

of type (b), p-'(*), and the parallel class of zr containing it, s * 1 in total. Let P be a point

of type (ii) (that is, a point of r-). Then, in 5, P is incident with the s f 1 lines of n incident

with it in zr. The point (oo) is incident with the s * 1 lines of type (a). Now let X be a point

of type (i) and Y a point of type (ii). Any line of 5 incident with both X and Y must be a line

of zr, covering X (as a line of zr) and incident with Y in zr. Since it is a property of the cover

(zr,p) that the s covers of m are pairwise non-concurrent, it follows that m is incident with at

most one such line. It is straight-forward to show for the other cases that two points of 5 are

incident with at most one common line.

It now remains to check the GQ incidence axiom. Let (P, l) be a non-incident point-line pair

of 5. Suppose P is of type (i) and I is of type (a). Let L be the parallel class of zr containing

P. Then ((-),.4) is the unique point-line pair such that P I L I (-) 1/. Now suppose that

P is of type (i) ar'd (. is of type (b). Then p(L) is a line of zr such that P *p(¿). If P andp(l)

belong to the same parallel class of r, L say, then (p(¿),L) is the unique point-line pair such

thatPILIp(¿)I(.. IfPandp(t)intersectinthepointQ,saythenthereisauniquepoint

Q'of.n suchthat Q' I ¿ andp(Q') :Q. Thereisalsoauniquelinernof nsuch thatp(m):P
andQt.Irn. NowsupposethatPisof type(ii) andlisof type(a). Letmbetheuniqueline

of zr such that p(P) € rn and m e (. (as a parallel class). Then there is a unique element r¿' of

p-r(^), such that P is incident with rn in n' and (*,*') is the unique point-line pair such that

PImtImI /. NowsupposethatPis(oo) andlisof type(b). Let4betheparallelclassof

zr containingp(¿), then (,C,p(l)) is the unique point-line pair such that P I L I p(4) I ¿.

The only cases that we haven't yet considered are where P is (oo) and (. is of type (a), in

which case P ar.d (. are always incident, and where P is of type (ii) and I is of type (b). In this
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second case, if P and / are non-incident in .S and p(P) is incident with p(/) in zr, then there

exists a unique element of p-t(p(l)), m say, such that P I m. Then (p(/),rn) is the unique

point-line pair such that P I m I p(l) : p(m) I 1..

This leaves the case where P is of type (ii), I is of type (b) and p(P) is not incident with

p(l) in n. Hence 5 is a GQ if and only if pairs of this type satisfy the GQ incidence axiom.

If S is a GQ, then consider the non-collinear pair of points of 5, {(oo), X}. It follows that X
mustbeapointof type(ii). Now{X,(*)}[:p-|(p(X))u(-) andsol{X,(-)}rtl :t+1.
Thus the pair {(oo),X} is regular and therefore (oo) is also regular.

I
Note that if zi is an affine plane of order s and (n',p) is an s-fold cover of n such that the

incidence structure 5 defined in Theorem 5.1.2 is a GQ with regular point (oo), then the s-fold

cover of zr constructed as in Theorem 5.1.1 is (n,p).

Let r be an affine plane of order s and (n,p) an s-fold cover of n giving rise to a GQ of

order s as in Theorem 5.1.2. If f is the point graph of zr (a complete graph on s2 vertices) and

f the point graph of zr, then (F,p) is an s-fold cover of f. \Me no\¡¡ prove that f is antipodal

and distance-regular. (See Section 1.1 for the definition of an antipodal graph and a distance

regular graph.)

Theorem 6.L.3 Let E be a GQ of order s, with a regular point (æ), and let n be the ffine plane

constructedfromE and(æ) asinTheorem5.0.1. Let(T,p)bethes-foldcouerof r constructed

,in Theorem 5.1.1. Ill i,s the poi,nt graph of n, thenl i,s an antipodal d'i,stance-regular graph,

wi,th intersection set {t' - I,s(s - 1), L¡I,s2,t2 - I}.

Proof: For the purposes of this proof we will use - to denote adjacency in the graph f and

d(X,Y) to denote the distance between two vertices X and Y of l.
First observe that f is a regular graph with valence s2 - L Now let X and Y be two

non-collinear points of zr. If p(X) + p(Y) then, in 5, {(oo),X}r I {(-),f}r. l,et Z be a

point of the set {(-),X}r \{(-),Y}r and I the line (Z,Xl.Now Y /.l. andY is not collinear

to Z since Z / {(æ),Y}r. So it follows from the GQ incidence axiom that there exists a

point Zt e ¿\{Z} collinear to both Y and X. Hence d(X,Y) :2. If p(X): p(Y), then

{(-), X}t : {(-),Y}r in 5 and so in 5 we have that {X,Y}t: {(-),X}r c (oo)r. Thus

there are no points of zr collinear to both X and Y and so d(X, Y) > 2. If. Z is a point of r.

collinear to X, then Z is not collinear to Y and p(Z) + p(Y). Hence d(Y, Z) : Z and therefore

d(X,Y): 3. Thus, the diameter of f is 3. We now consider the graph f3, which is defined on

the same vertex set as f and has two vertices adjacent if they are at distance 3 in f. If P is a

point of zr, then the set p-r (P), as vertices of 13, is a clique and so I is an antipodal graph.

We now show that f is distance-regular by calculating its intersection array. Let X and Y
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be two distinct vertices of f . The parameter ó¡ is the valence of F, s2 - 1, and co : 0. Now

suppose tlrrat d(X,Y) : t (so X -Y), Z is avertex of f and X - Z. If, as a point of E, Z is
not incident with the line spanned by X and Y (considered as points of 5), then Y / Z, since

otherwise {X,Y,Z} is a triangle in 5; and so d(Y, Z):2. Hence, the vertices of F at distance

1to X and distance2to Y are precisely the points of 5\ (oo)r that are collinear to X but not

incident with the line (X,Y). Thus br : s(s - 1). The parameter ct:1. Now suppose that

d(X,Y) : 2. Since p(X) and p(Y) arc adjacent in the point graph of zr, then it follows that Y is

adj acent to a unique element of the set p-t (p(X) ) , that is b2 : 1 . The set of vertices at distance

1 to both X and Y is the set of points {X,Y}L\ (-)t of .S. Since l{X,y}r n (-)rl : 1, it
follows t}rat cz: s. Finally, suppose that d(X,Y) : 3. If Z is a vertex adjacent to X, then

d(Y,Z) ll arrdd(Y,Z) f 3, since in the cased,(Y,Z):3 the point Z isantipodalto Y andso

must also be antipodal to X. Thus every point adjacent to X in f is at distance 2 to Y, and

SoC3: S2-1.
!

6.2 Algebraic covers and GQs

In Theorem 5.1.2 we constructed a geometry 5 from an affine plane zr of order s and (n,p),

an s-fold cover of zr. The geometry 5 was a GQ of order s if and only if ur. satisfied certain

conditions. In this section we consider the case where (n,p) is an algebraic s-fold cover of 7r over

the abelian group ,4, defined by the l-cochain c. \Me establish the conditions on the 1-cochain

c under which .S is a GQ of order s and rewrite Theorem 5.1.2 for the case where (zr,p) is an

algebraic s fold cover of ?r over A. \Me will then show that every known GQ of order s, with a

regular point, can be constructed via an algebraic cover of AG(2, q).

Let r be an affine plane of order s and (n',p) and algebraic s-fold cover of 7r over the abelian

group á, defined by the l-cochain c. The 1-cochain c is said to satisfy the GQ condition if

6c(P,Q,A) : O e P,Q,R are distinct, collinear points of zr (5.2.1)

In the following theorem we shall prove that this condition on c is equivalent to the conditions

on (zr,p) under which the geometry 5 in Theorem 5.1.2 is a GQ of order s.

Note that in 5.2.1 and for the rest of the chapter we have adopted the convention of repre-

senting any coboundary operator by ô and allowing the context to determine which coboundary

operator it is. For example, in5.2.L 6 is the coboundary operator 61.

Theorem 5.2.L Let r be an affine plane of order s and let (n,p) be an algebrai,c s-fold, couer of

T ouer the abelian group A, defi,ned by the I-cochain c. Let E be the 'incidence structure defined
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from r and (tr,p) as in Theorem 5.1.2. Then, E i,s a GQ i,f and only i,f the t-cochai,n c sati,sfies

the GQ cond,ition 5.2.1. Further, if E is a GQ, then the point (oo) is regular.

Proof: First we observe that since (n', p) is an algebraic s-fold cover of zr and is defined by c, it
follows from Section 1.6 that lf P,8,Ã are distinct collinear points of zr, then 6c(P,Q,À) : O.

Thus we are required to show that E is a GQ if and only if 6I(P,Q,A) : 0 implies that P,Q, R

are distinct collinear points of zr: equivalently, if P,Q,-R is a triple of distinct non-collinear

points of zr, then 6c(P,Q, R) + 0.

Now recall from Theorem 5.1.2 that 5 is a GQ if and only if each non-incident point-line

pair(P,/),wherePisapointof type(ii) and(.isalineof type(b) andp(P) isnotincident

with p(/) in zr, satisfies the GQ incidence axiom (axiom (iii)).

Let (P,/) be such a point-line pair, then P: (P,a) for some P € zr and a e A (that is,

P:p(P)) such that p lp(¿). If e-r@(l)): {h,(2,...,/"} and (without loss of generality)

| : lt, then for each i : L,2,... ,s the point-line pair ((P, a),1¡) is a non-incident point-

line pair, where P : (P,a) is a point of type (ii), l.¿ a line of type (b) and P I pQù. If
p(lù: {QuQz,...,,Qr}, then (P,a) is collinear to exactly one cover of each of the Q¿. In

particular, (P,o) is collinear to (Q¡,a- c(P,Q¿)) for each i, : t,2,... ,s. Thus the s non-

incident point-line pairs ((P, d),lt), ((P,*), b), ... , ((P, d),1") each satisfy the GQ incidence

axiom if and only if each line /¿ is incident with a unique point of the form (Q¡,o - c(P,Q¡)).

Now each point (Q¡, a - c(P,Q¡)) i. incident with exactly one line of p-r(p(¿ù) and so each

line[.¿ isincidentwithauniquepointof theform (Q¡,*-c(P,Q¡))tfandonlyif nolineof
p-r(p(¿t)) is incident with two points of (Qr, a - c(P,Qr)),. .. ,(Q,,a - c(P,Q')). Now if the

points (Q¿,o- c(P,Q¿)) and (Q¡,o- c(P,Q¡\ are collinear, then they span a line of p-1(p(/)),

and so no line of p-r(p([.1)) is incident with two points of (8r, a-c(P,Qr)), . . . ,(Q,,a-c(P,Q,))
if and only if no two points of (8r, a - c(P,,Qr)),. .. ,(Q,a - c(P,Q')) are collinear. That is

(Q¿,o - c(P,Qù) * (Q¡,o - c(P,,Q¡)) for all Q¿,Q¡ such that 'i, i :7,... ,s with i I j

Thus the point-line pairs ((P, d),tt),... , ((P, a),lr) all satisfy the GQ incidence axiom if and

only if
6c(P,Q¿,Q¡) t 0 for all Q¿,Q¡ such that i,j : L,...,s wittr i, I j.

Hence every non-incident point-line pair (P,l), where P is a point of type (ii) and / is a line of

type (b) and p(P) is not incident with p(l) in zr, satisfies the GQ incidence axiom if and only if

õc(P,Q,R) +0 for all distinct non-collinear triples P,Q,R of points of n

FYom this and our observation at the start of the proof, it follows 5 is a GQ if and only if the

l-cochain c satisfies the GQ condition 5.2.1.
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By Theorem 5.L2 if 5 is a GQ then the point (oo) is regular.

tr

Theorem 5.2.1 demonstrates that if c is a l-cochain on the simplicial complex of the point

graph of an affine plane zr of order s and c satisfies the GQ condition, then c defines an algebraic

s-fold cover of zr. Further, this algebraic s-fold cover gives rise to a, GQ 5 of order s by the

construction in Theorem 5.1.2. In this case the GQ .S is said to be defined by c and we say

that c defines 5.

The only known examples of GQs of order s containing a regular point are: I4z(q) which has

all points regular by [49, 3.2.1 and 3.3.1], fz(O) where O is an oval of PG(2, q), g even, which

has regular point (oo) by [49, 3.3.2 (i)] (for the constructionof T2(0) see Section 1.4.3) and the

ùnlT2(0)^ of T2(O), where (? is not a translation oval of PG(2,g), which has regular points

corresponding to the lines of type (b) of Tz(O) by [49, 3.2.2]. It should be noted that for q even

W(q) = QØ,q) (149,3.2.2]) and that Q(a,ù = T2(0) where O is a non-degenerate conic ([49,

3.2.2]. Also, by 149 , L2.5.21, the GQ Tr(O)n is isomorphic to the GQ T2(Ot) , for some Ot if and

only if O is a translation oval. In this case, Tz(O)n = T2(O). If 0 is a translation oval, then

Tz(O) has g * 2 regular points, while if (2 is not a translation oval, then T2(O) has a unique

regular point (oo), by [49, 12.4.5 (iÐ].

In the following two sections we will derive algebraic q-fold covers of AG(2,q) which give

rise to W(q) andTz(O), respectively, by the construction in Theorem 5.2.1. In the second case

the regular point is (oo). In Section 5.6 we will consider the regular points of T2())^ dual to

the lines of type (b) of fz(O) and derive corresponding algebraic covers.

5.2.L A cover associated with the GQ W(q)

Consider I,I/(q) defined as the set of absolute points and absolute lines of a symplectic polarity

of PG(3,q). If Pisapointof W(q), thenPisaregularpointof W(q). Theq*l lines ofw(q)
that contain P form a pencil of lines, through P, on the polar plane zrp of P ([49, 3.1.1(iii)]).

Now let P be a fixed point of W(q). We will determine the affine plane n constructed from

W(q) and the regular point P via Theorem 5.0.1, and also calculate the cover of zr constructed

fromW(q), as in Theorem 5.1.1. The lines of n are the points of Pr \ {P}, which is the

set of points np \ {P} of PG(3,q). The points of n are the sets of points {P,X}r, where

X e W(q) \Pr. If ry is the polar plane of X, then {P,X}L is equal to the set of points on

the line np l) ny (note that P I nx). Hence, r : (np \ {P})" ry AG(2, q).

If t is a point of zr (and so / is a line of rp),, then the point X of W(q) \Pr is a cover of
(. if and only if (. c rx. This is the case if and only if X is incident with the image of / under

the symplectic polarity. Thus if lt is the image of I under the symplectic polarity then P e [l
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andtheqcovers of.lare thepointsof /'\{P}. If Qisalineof zr,andsoapoint of np,thenit
is covered by the set of lines of W(q), not (P,Q), that are contained in the plane zrq.

Now we introduce coordinates . Let W (q) have the canonical bilinear forrn rsgl - rtAo I
lr2AB- rBA2:0. If X : (zo, rr,r2,ø3), then zr¡ has plane coordinates f-*t,ro,-rs,r2f. lf
P: (0,1,0,0), thenzrp: [1,0,0,0], zi haspointset {[0,1, rt,rzfl)rp: ïr¡fr2 € GF(q)] andthe

covers of the point [0,7)rL)r2]ìiTp of n are the elements of the set {(1, ),,12,-r1): À e GF(q)}.

If we denote [0,1, rr,rz] f-ì n-p by (ru*z), then zr assumes the canonical form of AG(2,q).

In addition, we denote (1,),,r2,-n1) by the pair ((u,*z),À), where (*t*z) € AG(2,q) and

À e GF(q). With this notation the covering map (defined as in Theorem 5.1.1) (7,),,12, -"t) +
[0, 1, 11, r2]ìnp becomes ((*t,,*z),À) r+ (r1, r2). If. we can find a l-cochain c (on the simplicial

complex of the point graph of AG(2,q) and over the abelian group (GF(q),*)) such that

((q,*z),a) - ((at,A2), P) if and only if (rt,*z) - (Ut,y2) and c((q,rz),(h,A2)) : a- 8,, then

the q-fold cover of n, definedbVW(q) as inTheorem 5.1.1, is an algebraic q-fold cover.

Now (1, rrtr2tr3) and (L,A¡,A%AB) are collinear points of W(q) if and only if At- rti
.r2AB-rsyz:0. So (1,rrtr2trr) - (l,Ar,A2,AJ) if andonlyif B-a-r2Arlr1y2:0
and hence ((*ur"),,o) - ((gr,A2),þ) if and only if a - B : rtA2 - r2qr. Now the map

c((q,rz),(at,a2)): lrtUz- r2y1is symmetric in (r1, r2) and (ar,yr), so it follows that c is a

l--cochain and is such that the q-fold cover of zr constructed from W(q) in Theorem 5.1.1 is an

algebraic cover defined by c. Note that from Theorem 5.2.I c satisfies the GQ condition 5.2.1.

The GQ constructed from AG(2,q) and c in Theorem5.2.1" isW(q).

5.2.2 A cover associated with the GQ Tr(O), q even

Let E : PG(3,g), q even, and let Il : PG(2,q) be a plane of I. Let O be anoval of fI with

nucleus N. Let Tz(O) be the GQ, of order q, constructed from D, fl and O, as in Section l.4.3.

First we calculate the affine plane r constructed fuomT2(O) and its regular point (oo), and

the q-fold cover of n. defined by T2(0), as in Theorem 5.1.1. Consider a point X of T2(0) that

is not an element of (oo)r. Then X is a point of type (ii) of Tz(0), that is, a point of E\fI.
The set {(-), X}r consists of the points of type (ii) of fz()) that are collinear with X. That

is, planes of X containing X and meeting fI in a tangent to (?. Thu. {(-),X}r is the pencil

of planes of E on the line (¡/,X), and this is the point of zr that is covered by X. Let (.be a

lineof fz(O) notincidentwith(oo). Then(.isalineoftype(a) of f2(0): thatis,alineof I
not contained in fI and incident with a point of O. The line I is incident with a unique point

of (oo)r and this point is the point of type (ii) (l,l/). Hence (¿,N) is the line of zr covered by

(..

Thus zr is the incidence structure with pointset the pencils of planes of E about lines of the
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form (N, X), where X e E \ f/; Iineset the set of planes of X, not including fI, that contain ly';

and incidence inherited from E. If we let the point of zr that is the pencil of planes about the

Iine (N, X), where X e D \ fI, be represented by the line (I{, X), then r is isomorphic to the

incidence structure

Points : Lines (¡f, X) with X € E \,Ff

Lines : Planes of D, not fI, containing Il
Incidence : Inherited from E.

For this description of r, the point X € t \ fI of T2(0) covers the point (¡f, X) of zr, and the

lineIof type (a) of f2(0)) coverstheline (¿,,N> of zr. Giventhisformof nwehave

"=if#=AG(2,q).
We now introduce coordinates. Let ff be the plane of D : PG(3, q) with equation ro : 0. We

may assume that

o : {(o,t,t, F(t)) : ú € GF(q)} u {(0, 0, 1, 0)},

where f is a polynomial satisfying the conditions of 124, 8.4.2 Theorem]. In this case the nucleus

l/ is the point (0,0,0,1). The affine plane zr has pointset i(¡f, (L,rt,r2,q)): (7,r1,n2,q) e
t \ f/) and the covers of (l/, (I,rr,rz,,ns)) are the points (¡tr,(1, üt¡r2t"e)) \ {ll}. That is,

the elements of the set {(1, ixt¡ï2tÀ) : À € GF(q)}. If we denote the point (l/, (1, rr,tn2tr3)) of

r by (r¡r2), then n assumes the canonical form of AG(2, q). In addition, we denote the point

(I,rt,rz,\) of E\ff bythepair ((r1, rz),\), where (a,*z) isapointof AG(2,q) andÀ e GF(q).

With this notation the covering map onto zr given by (¡tr, (1, rr¡ï2¡ra)) + (L,rz,r2, À) becomes

((*t,*z),À) r+ (r1, n2). If. we can find a l-cochain c (on the simplicial complex of the point

graph of AG(2,q) over the abelian group (GF(q),f)) such that ((z1,rz),d) - ((AuA2),P) if
and only if c((r1, uz),(Au42)) : a * þ, then the g-fold cover of zr defined by T2(0), as in

Theorem 5.1.1, is an algebraic g-fold cover.

Now (1, n7,ü2¡r3) and (l,Ay,Az,At) are collinear points of T2(0) if and only if
((1,r,.,fr2,l.'3),(l,Ut,A2,At)) intersects Hinapointof 0.Thepointof intersectionof theline

((1,,q,ï21.U),(7,At,yz,Ae)) with 11 is the point (0, rr + Ar,:r2+A2,rB+ gr3), and this is a point

of 0 il and only if

rB * as:
0 ifrt-gt
(q+aùF(ffi) irqlvl

Now ((ø1, r.2),d) - ((yrA2),,P) if and only if (1,"t, rz,rs) - (l,At,A2,AB), which is the case if

0

(u+at)F (ffi)
if. 11: yt

if. rt # at

and only if

al B:
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If we define the map

0
c((q,rz),(at,aù) :

(q+yùF (ffi)
then since c is symmetric in (*r,*z) and (g1, Az) it is a l-cochain. F\rrther, ((q,r2),a) -
((AuAz),B) if and only if c((a,rz),(At,yz)): a+ P.Thus the q-fold cover of zr constructed

from T2(O) in Theorem 5.1.1 is an algebraic cover defined by c. Note that Theorem 5.2.1

implies that c satisfies the GQ condition 5.2.1. The GQ constructed from AG(2, q) and c in

Theorem 5.2.1 is Tz(O).

5.2.3 A '(geometrictt construction of a cover of T2(O), with regular point (oo)

Let O be an oval of PG(2, q), q even, with canonical form

o : {(r,t, F(t)) : ú € GF(q)} u {(0, 1, 0)},

where -t' is a polynomial satisfying the conditions of 124, 8.4.2 Theorem]. In this case, the

nucleus of O is the point (0,0,1).

Let AG(2,q) be the subgeometry of PG(2,q) with pointset {(*t,*r,L): r1,r2 € GF(q)},

and denote the point (0,0, 1) by O. Note that the line at infinity of AG(2, q) contains the points

(1,0,0) and (0, 1,0) of O, which correspond to the parallel classes {*, : d: d e GF(q)} and

{rr:d: deGF(q)}of AG(2,q) respectively. If XandY aretwodistinctpointsof AG(2,q),

then consider the line (.yy : (O,X -Y) of AG(2,q). If (.xv is neither the line given by the

equation ït : 0, nor that given by 12 : 0, then {.yy contains a point of O, say Qyy. Let

X : (*t, rz,L), Y : (yt,y2,L) and define the 1-cochain c as follows:

lo if 11:yror,,2:a2c(X,Y): I
I r where rt*Ut, rzlAzand X -Y - r.Qxy

Now, Iet X, Y and Z : (rr, z2,L) be three distinct points of AG(2, q) and suppose that the sets

{*t,yt, z1} and {*r,Ar, z2) both consist of three distinct elements. In this case X, Y and Z are

collinear if and only if Qx;¡¡ : Qxz : Qy7. Now Qxy : @xz : Qy2 \L and only if

o : (x-Y)-(x-z)+(Y-z)
: c(X,Y)QyY - c(X,Z)Qxz * c(Y,Z)Avz

:6c(X,Y,Z)Qxv,

which holds if and only if 6c(X,Y, Z) : g.

Now suppose that .h:Ar.Then X, Y, Z are collinear if and only if rt:Ar: zr, which

holds if and only if. 6c(X,Y, Z) :0. Similarl¡ in the case where 12 : A2t X, Y, Z are collinear

if and only if 6c(X,Y, Z) : g.

if 11: yt

if. 11l 91
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Thus for X,y,Z any three distinct points of AG(2,e), X,Y,Z are collinear if and only if
6c(X,Y, Z) : g.

Now suppose that rt I gu rz * yz and that þxy : ¡lF(t),tlF(t),1), for some ú e GF(q).

Then it follows that X -Y - r.Qxy, where r and ú satisfy the equations

r
andrtlat

rz*Az
F (ú)

rt
F(t)

Then it follows thar ú : !2j 12, r : (rt _t at)F (", + ar\ and sort -f At \rt -f At /

c(X,Y): (rr + Ar)F (m)
If 11 : Ur, or 1L : U2t then c(X, Y) : 0. Thus, c is precisely the l-cochain that was derived in

Section 5.2.2.

5.3 Equivalence of covers of r
5.3.1 Normalised algebraic covers

Let n be an affine plane of order s and (n,p) an algebraic s-fold cover of zr, defined by the

l-cochain c. It was noted in Section 1.6 that if ct : c* õb for any l-coboundary ôb and if. (nt ,pt)

is the algebraic s-fold cover of r defined by "', then the geometries zr and ît are isomorphic.

Thus, by judiciously choosing the l-coboundary ôb, we may assume a normalised form for the

l-cochain c.

Let O be a fixed point of zr. The l-cochain c is normalised with respect to O if c(O, P) : 0

forall P er \{0}. If (tr,c) isanyalgebraics-foldcoverof zr, thendefine c':c*ôb, where

b(P) : c(O, P) if P + O and b(O) : 0. The l-cochain c' is normalised with respect to O and

is called the form of c normalised with respect to O. Suppose that c -f 6b and c * ôb' are both

normalised with respect to the point O. Then db(O,P) :6b'(O,P) : O for all points P of r
suchthat P+O. Letó(O) -b'(O):k,thenitfollowsthatb(P) -b'(P):kfor allpointsP
of zr such that P I O. Thus 6b : 6bt and so the normalised form of a l-cochain with respect to

a fixed point of r is unique.

Now, let Lbe a fixed parallel class of zr and let [.be an element of 4. Then the simplicial

complex l¿ of the point graph of (. is a subcomplex of the simplicial complex I of the point

graph of n'. Thus the l-cochain c of I over the abelian group A induces a l-cochain on lt over

A, c¿say. Since c defines a cover of the geometry zr it follows that ôc(P, Q,R):0for P,Q,R

any three distinct points of l. Thus c¿ is a l-cocycle and since the point graph of I is complete,

it follows from [12, Proposition 2.2] that Ht(l¿,r4,) is trivial and so c¿ is a l-coboundary,6b¿
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say. Now let ct:c*ôbbea1-cochainonlover,4.suchthat if P eL, where Le L,then
b(P) : b¿(P). Thus, c' has the property that "'(P,Q):0 if (P,Q> € L. In this case we say

that c' is norrnalised with respect to the parallel class 4.

5.3.2 Equivalent algebraic covers of zr

Let zr be an affine plane of order s and let ,4. be an abelian group of order s. \Me will represent

,4. as an additive group with identity element 0. Let (zi,p) and (n',p') be two algebraic s-fold

covers of zr defined by c and c' respectivel¡ such that c and c' both satisfy the GQ condition.

LetE:(?,ßrI)andE':(P',8',1') betheGQsof ordersconstructedfrom(n,p) and(n',p'),

respectivelg as in Theorem 5.1.2. Let the point of type (iii) of 5 be denoted by (oo) and the

point of type (iii) of 5' be denoted by (-)'. We are naturally interested in the conditions under

which .S and 5' are isomorphic. A first step is to determine the conditions under which there

is an isomorphism from 5 to 5' that maps (oo) to (oo)/. This is the objective of the current

section.

Theorern 5.3.L Let i: .S -+ St be an'isomorphism such that i: (oo) *+ (-)'. If î is the map

obtai,ned, by restri,cting i to the subgeometry n, theni: T 4 il 'ís an'isomorphism.

Proof: The pointset of z¡ is 2 \ (oo)r and the lineset is 6 \ {l : (oo) .I l}. Since i maps (oo)

to (oo)', it also maps zr to zr'. As n and tr' are subgeometries of 5 and E'respectively, it follows

that z induces an isomorphism from n to trt.

!

Recall from Section 1.6 that if there exists an isomorphism from n to r/, then we say c and

c' are equivalent. If there exists an isomorphism i : .5 -+ .S', such that i ' (oo) r+ (oo)', we

say that the l--cochains c and ct are GQ equivalent.

Our eventual aim is to determine the conditions under which two l-cochains that satisfy

the GQ condition are GQ equivalent. First we show that any isomorphism from zr to -/ may

be "completed" to an isomorphism from 5 to 5'.

Lemma 6,3.2 Leti : tr -+ nt be an isomorph'ism. Then for each point P of r, i' {(P, a) : a €

AÌ+ {(P',o): aeA},forsomepointP'of r. FurtherTnore,themapT: Pr+Ptdefinesan

automorphism of n.

Proof: Since i is an isomorphism, it induces an isomorphism from the point graph of zr to the

point graph of nt. By Theorem 5.1.3 the point graph of zr and the point graph of t/ are both an-

tipodal graphs, with the sets of antipodal points being {(.P, ") : a e A} for both graphs. Thus,

forPapointof r,i: {(P,a): a €,4}r+ {(P',t): ae A},forsomepointP'of n.. Nowlet/
bealineof zrrepresentedbytheset {(Pr,or), (Pz,o.z),... ,(P',4")}of pointsof zrincidentwith
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/. Then the image of I under i is the set of points {(7(P1),a\),(f(P2),aL),...,(T(P"),o',)}
for some a!¿ e A, where'i,: L,2,...,s. Since {("(P1),ti),(T(Pz),t),...,("(P"),a!)} is a

Iineof zi-it follows that {Pj, Pt,...,Pj} is a line of r,ltsay. Thus, ãextends to awell defined

map on the lines of zr, mapping (. to (t.

Now from Section 1.6 we know that if the point (P, a) of n (or nt respectively) is incident

with the line (, of ur' (or -zi' respectively), then the point P of r is incident with the line p(t).

Further if (P,m) is an incident point-line pair of zr, then there exists an incident point-line pair

((P,o), l) of T (or tl respectively) such that m: p(¿) (or m: p'(¿) respectively). In fact for

each a e ,4 there is a unique such element I of p-r(*). So suppose that (P,rn) is a incident

point-line pair of zr and ((P, 
"), /) is an incident point-line pair of zr such that m: p(l). Now

i((P,a),{) : ((Pt,a'),[') for some at e A and ((P', a'),[') is an incident point-line pair of f',
from which it follows that (P',pt (l')) is an incident point-pair of zr. Now p(i(¿)) : rr¿' (where

rn' is the image of rn under the map on zr induced by ã) and so the map on zr induced by ã

preserves incidence and is therefore an automorphism of r.
tr

Theorem 6.3.3 Let i: ¡r -+ -t{ be an isomorphism. Then there erists a unique 'isomorphism

i,: E -+ Et, such that i: (-) *+ (æ)' and i inducesi, as 'in Theorem 5.3.1.

Proof: Let i induce the collineation T on r, as in Lemma 5.3.2. Consider the map i : 5 -+ 5/

definedasfollows. Iflisapointof .Sof type(i) (thatis,alineof zr),theni(¿):T(¿). If (P,o)

is a point of 5 of type (ii) (that is, a point of n), then i'((P,a)) :i((P,a)). Let i : (oo) + (*)'.
If ^C is a line of 5 of type (a) (that is, a parallel class of n'), then i(L):f(L).Finall¡ if I

is a line of ,S of type (b) (that is, a line of n), then i(Z) :1,(7).

The map ,i is an isomorphism of the form required. Since 7 determines the action of i on

(-)t, ã determines the action of 'd on S \ (*)r and i : (-) *+ (oo)', it follows that i, is the

unique isomorphism from 5 to 5', mapping (oo) to (oo)' that induces i for tr to t/. !
By Theorem 5.3.1 and Theorem 5.3.3, we have the following corollary.

Corollary 6.3.4 Let (n,p) and (n',p') be two algebraic s-fold couers of r, defi,ned by c and, ct,

respectiuely, such that c and, ct both satisfy the GQ condition. Then c and ct are GQ equiualent

if and, only if they are equ'iualent.

\Me want to determine when .S = .S' by an isomorphism that maps (oo) to (oo)' and by Corol-

lary 5.3.4 this occurs if and only if c and c' are equivalent. Our aim now is to determine the

conditions under which c and c' are equivalent. The first step is to determine the conditions

under which there exists an isomorphism from n to d that induces a given collineation T of n.
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If ã is an isomorphism from tr to tr'that induces the collineation T of r, then'i must act on

the points of n' by

I : (P,,a) r+ (f (P), ¿p(o)) for P e zr and a € A,

where {tp : P € zr} is some set of permutations on -4.

Now suppose that i is a map from the pointset of. n to the pointset of r/, such that

i: (P,a) + (T(P),tp(a)), where úp is an automorphism on ,4. If we determine the con-

ditions under which this map is an isomorphism from 7 to nt, then since, by the above, all

isomorphisms from n to t/ have this form, we will have determined all isomorphisms from zr to

7T'. The map ã is an isomorphism if and only if

(P,o) - (Q, fl inn <+ ("(P) ,tp(a)) - (T(Q),tq(B)) inît ,

forall P,Qe r,P# Qand a,þ€,4.. Now (P,o)-(Q,B)inr if andonlyif þ:o-c(P,Q),
and so i is an isomorphism from n to tr' if and only if

(T(P),¿p(o)) -(T(Q),tq(o-I(P,QD forall P,Qe r, P*Qandae A, (5.3.2)

This is the case if and only if

c'(rçe¡,r@)):tp(a)-tq(o-c(P,Q)) for aIlP,Qe r, P IQ ando¿e A. (5.3.3)

We now consider the case where c is normalised with respect to the point O of zr and c' is

normalised with respect to the point T(O) of a.

For k a constant element of A, the map (P, o) *+ (P, a+ k) is an automorphism of lt'. Thus

it follows that there is an isomorphism from zr to -zi' that induces ? if and only if there is an

isomorphisml: (P,,4) + (T(P),úp(o)), such that ú¿(0) : 0. By 5.3.3 such an isomorphism

exists if and only if

c' 1rçe¡,7@)) : tp(a) - tq(t - c(P,Q)) for all P,Q e n, P I Q and a e A'
(5.3.4)

Substituting Q : O we have that úp(a) : to(a) for all P e r and a €,4, and so 5.3.4 is

equivalent to

c'(r(e¡,T@)):to(a)-to(a-c(P,Q)) for allP,Q e n, P lQ ando €A' (5.3.5)

By substituting o : 0 into this expression it follows that

<+
<+
<+

c'(T(P),7@)):
-c'(T(P),7@)) :

c'(T(Q),T(P)) :
c'(T(P),r@)):

-tç(-c(P,Q))
t6(c(Q, P))

to@(Q,P))

t6þ@,Q))

for all P,Q eT, P #Q and a e A

for all P,Q eT, P #Q and a e A

for all P,Q eT, P +Q and a Ç A

for all P,Q eT, P #Q and q € A.
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Thus with ct(T(P),7@)) : to(c(P,,ç)) 5.3.5 is equivalent to

to@):to(a-c(P,O)) +t6(c(P,Q)) for alrP,Q€r, PIQ ando e A. (5.3.6)

If we can show that ú¿ maps onto .4, then ú¿ must be an automorphism of ,4. Let / be a line

of nsuchthat O e(andX apointof zrnotincidentwith/. Nowif c(X,Y):c(X,Yt),for
Y, Y/ distinct points of (., tlren

6c(X,Y,Y') : c(X,Y) - c(X,Y') + c(Y,Ye) : c(X,Y) - c(X,Y') :0.
(5.3.7)

However, X,Y,Z are not collinear in zr and so 5.3.7 contradicts the fact that c satisfies the GQ

condition 5.2.1. Thus {"(X,Y): Y e (.}: A. Hence ú¿ maps onto A and is an automorphism

of A.

Thus we have established that there exists an isomorphism from tr to t/ that induces the

collineation T on n if and only if

c'(r(e¡,7@)) : o(c(P,Q)), where o is an automorphism of ,4.. (5.3.8)

In this case ã ' (P, o) r+ ("(P), o(a)) is such an isomorphism.

In the following lemma we restate this result and calculate all isomorphisms from tr to d
that induce the collineation ? on zr.

Lernma 5.3.6 Letr be an affine plane of order s. Let (n,p) and (r',p') betwo algebraic s-fold

couers of r ouer the abelian group A, d,efi,ned by the L-cochains c and ct respect'i,uely, such that

c and ct satisfy the GQ condi,ti,on. Let T be a collineati,on of r and suppose that c and ct are

normalised with respect to the points O andT(O) respectiuely. Then there erists an'isomorph'ism

frorn n to n' that ,induces T i,! and, only if there eri,sts a unique automorphism o of A such that

¿g(P),r@)): o(c(P,Q))

In this case, the fuII set of i,somorphisms from tr to il that induceT on n is {1,¡: k e A},

where I ¡,(e, a) : (T (P), o (a) + k).

Proof: The condition for the existence of an isomorphism that induces ? comes from 5.3.8,

and we are also furnished with an example of such an isomorphism, namely ã where l, : (P,a) r+

g(P),"(o)). The isomorphisms from n to î' that induce T on r are exactly those of the form

ri, wltere r is an automorphism of -n' inducing the identity on zr. Thus we now calculate the

set of such r. Since r induces the identity on n, it is of the form r : (P,a) r+ (P, rp(a)), where

rp is a permutation on ,4. Now a map of this form is an automorphism of zr if and only if

(P,o) - (Q,fl e (P,tp(a)) - (Q,tq(þ)) for P,Q € n, P + Q and o, þ e A.
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Thisisthecase if andonlyif a-þ:rp(r)-rA(ø for aII P,Q er, P I Q and a,þ e A. Let

O be a fixed point of zr and let re(O) : k. Then ,p(o) : d * k, for all points P, not O and for

all a € A. To determine the permutation r¿ note that ,o(t): a¿- þ+rp(þ): o¿I /c. Thus

we have the fuII set of isomorphisms from n to nt that induce T on n.

¡
We now generalise to the case where c and c' are any pair of l-cochains satisfying the

GQ condition. Let T be a collineation of r, c + ôb the form of c normalised with respect

to O and C + 6bt the form of c' normalised with respect to 
"(O). 

Let n6 be the covering

geometry of the algebraic s-fold cover of zi defined by c -l 6b. The map from zr to z16 acting

bV (P,o) r+ (P,a-l b(P)) is an isomorphism. Similarly, let r/6, be the covering geometry of

the algebraic s-fold cover of n defined try ct + õbt. Then the map from n' to ilu, acting by

(P,*) r+ (P, a + b'(P)) is an isomorphism.

Now there is an isomorphism from zr to -zr' that induces T on r if and only if there is an

isomorphism from n6 to nt6,, and by Lemma 5.3.5 this is the case if and only if

c'(T(P),r@D:o(c(P,Q)) + o(6b(P,0)) - õb'(T(P),T@)) for all P,Q er, P lQ,
for some o e aut(A). (5.3.9)

Note that by Lemma 5.3.5 the automorphism o of A is unique.

We now show that 5.3.9 holds if and only if

¿ (T(P)',T@)) : o(c(P,Q)) + 6d(P,Q) for all P,Q e r, P # Q,

for some o e aut(A) and l-coboundary ôd. (5.3'10)

Note that the map o(õb(P,QD-6bt (T(P), 
"(8)) 

is a l-coboundary. It follows that 5.3.9 satisfies

5.3.10.

Now suppose that 6d is a l-coboundary that acts by öd(P,Q) : c'(T(P),7(A))-o(c(P,Q)),

for some o e aut(A). That is, the l-cochains c and c' satisfy 5.3.10. Then define 6d,t to be the

l-coboundary that acts by

6dt (P,Q) : o-1 (ô d(P, Q) + 6bt (T(P), 
"(8)))

Thus ôd(P, Q): o(6d'(P,QD - õb'(T(P),7(Q)) and so

o(6d'(P,A)) - 6U (T(P),T@)) : c' (T(P),T@)) - o(c(P,Q))

Fþom this it follows that

c'(T(P),r@D + 6bt (r(P),r(QD : o(c(P,Q) + 6dt (P,8))

t2L



Now c't ôó' is normalised with respect to 
"(O) 

and so c* õdt is normalised with respect to O

Hence 6d,t : 6b. Substituting 6d' - ôö into the definition of ôd yields

õd(P, Q) : o(õb(P,A)) - õbt (T(P),7 (QD,

which when substituted into 5.3.10 yields 5.3.9. Hence we have that 5.3.10 is equivalent 5.3.9

and thus holds if and only if there is an isomorphism from zr to î' that induces 7 on n. Note

that we observed that ø is the unique automorphism of ,4. such that 5.3.9 holds, and so since

ôd is determined by c, c' and o, it follows that (o,õd) is the unique pair such that 5.3.10 holds.

Lemma 5.3.5 and the above discussion give the following result.

Lemma 5.3.6 Let n be an ffine plane of order s. Let (n,p) and (n',p') be two algebrai,c s-fold,

coaers oJ r ouer the abelian group A, defined by the I-cochains c and, ct respectiuely, such that c

andct satisfy the GQ condition. LetT be a collineation of r. Thenthere erists anisomorphism

from tr to î' that induces T i,f and only i,f there erists a un'ique automorphism o o! A and unique

I-cobound,ary õb, such that

c' (r(e),7 @)) : o(c(P,ç)) + 6b(P, Q).

In this case, the fuII set of isomorphisms from n tod that induceT on r i,s {l¡: k e A},

where i¡(P, a) : (T(P), o(a) + k + d(P)).

Proof: trYom the above discussion there is an isomorphism from tr to tr' that induces ? on zr

if and only if there is a unique pair (o, dd) with o e aut(A) and 6d a l-coboundary such that

¿ Qe),T@)) : o(c(P,e)) + 6d(P,Q) for all P,Q e n, P + 8'

Now ôb normalises c with respect to the point O and ôbl normalises c' with respect to

the point T(O). If zr'6 and t/6, are the covering geometries defined by c * ôb and c' + õb',

then by Lemma 5.3.5 the full group of isomorphisms from z16 to il6, that induce ? on zr is

{(f,o) è (T(P),o(a)+k): k € A}. Since (P,a) r-> (P,a+ó(P)) is an isomorphismfromzr to

z16 and (p, o) ,+ (P, a - bt(P)) is an isomorphism from 1'6, to rt , it follows that the full group

of isomorphisms from n to trt that induce ? on zr is

{(p, ') F+ (T(P), o(a+b(P))-bt (P)+k) : k e A}: {(P, a) ++ (T(P),o(a)+d(P)+¡') ' k e A).

!
Lemma 5.3.6 allows to calculate all of the l-cochains equivalent to a fixed l-cochain c (such

that c satisfies the GQ condition). In the next section we will use this to calculate the stabiliser

of the regular point (oo) in the group of the GQ S constructed from c (as in Theorem 5.2.I).
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Theorem 6.3.7 Let n be an ffine plane of order s and (n,p) an algebraic s-fold, couer of r,
oaer the abelian group A, defi,ned by the L-cochain c, such that c satisfi,es the GQ condition.

The set oJ I-cochains equ'i,ualent to c 'is

{c' : c'(P,Q) : o(c(T(P)' 
"(8)) 

+ õb(T(P),7(8Ð, for alt P,Q e r, P + Q

where o e aut(A) and T e aut(tr)\

Proof: This result follows directly from Lemma 5.3.6.

If ø is an automorphism of ,4, then Iet co be the l-cochain that acts by co(P,Q) :
o(c(P,Q)), and if ? is a collineation of zr, then let c1'l:,e the L-cochain that acts by cr(P,Q):
c(T(P),f (AÐ. Thus if c is a l-cochain and c/ is the l-cochain such that

"'(P,Q): o(c(T(P),"(8))) + 6b(P,Q), then c' : (cr)o + 6b.

Now by [L2, Proposition 2.2], since the point graph of zr is complete, it follows that two 1-

cochains are cohomologous if and only if their difference is a l-coboundary. Thus c' : (cr)o+õb

if and only if 6c' :6(cr)o. Note that in this case 6C(P,Q,R) : o(6o7(P,Q,R)). Given this

we have the following corollary to Theorem 5.3.7.

Corollary 5.3.8 Let r be an affine plane of order s. Let (n,p) and (¡',p') be algebraic s-fold

coaers of r, ouer the abelian group A, defined, by the l-cocha'ins c and, C respectiuely, such that

c and c' sati,sfy the GQ conditi,on. Then c and c' are equiualent if and only i,f there erists an

automorph'ism o of A, andT colli,neation of r, such that 6c' :6(cr)o.

5.4 The automorphism group of 7t and the group of S fixing (oo)

Let r be an affine plane of order s and (n,,p) an algebraic s-fold cover of 7r over the abelian

group A, defined by the l-cochain c, such that c satisfies the GQ condition. Let 5 be the GQ

constructed from (n,p) as in Theorem 5.1.2. In this section we show that the automorphism

group of zr is isomorphicto the subgroupof the automorphismgroup of 5 that fixes (oo). Then

we calculate the automorphism group of the geometry zr.

If we consider Theorem 5.3.1 and Theorem 5.3.3 for the case where c : c' (so n : zr' and

S : S') and (oo) : (oo)', then the automorphisms of .S fixing (oo) are "equivalent" to those

fixing zr. More precisely:

Theorem 6.4.t Let r be an ffine plane of order s and (n,p) an algebraic s-fold coner ol)er

the abelian group A, ilefi,ned by the I-cochain c, such that c sati,sfi,es the GQ conditi,on. Let E

be the GQ ol order s constructed from (n,p), as in Theorem 5.1.2. If aut(E)ç*¡ denotes the
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subgroup oJ the group of S fi,ning (æ), and aut(T) denotes the group of n, then

ozú(5)q*¡ = aut(n).

Proof: Let S: øzú(.S)1-) -+ aut(T) be the map that takes an element of auú(.S)1*¡ to the

element of aut(tr) it induces as in Theorem 5.3.1 (with c - "'). Then / is a homomorphism.

By Theorem 5.3.3 ó is one-to-one and onto and so is an isomorphism.

!

In the previous section it was shown that if i is an automorphism from r to -n', then ã induces

a collineation of zr (Lemma 5.3.2). In the case where c: ct, ã is an automorphism of n and the

collineation of zr that is induced by i is said to be admitted by c. In the following theorem we

determine the conditions under which a collineation of zr is admitted by c.

Theorem 6.4.2 Let r be an ffine plane of order s and (î,p) an algebra'ic s-fold couer of r
ouer the abelian group A, defined by the [-cochain c, such that c satisfies the GQ conditi,on. Let

T be a collineation of n. Then the following statements are equiualent

1. The collineation T is admitted by c

2. There erists a unique automorphism o of A such that

6cr: õco.

3. There is a unique I-coboundary, 6b and a unique automorphism oT' of A such that

cr: co * 6b'

Proof: The collineation ? is admitted by c if and only if there is an automorphism of n-

that induces ?. By setting c: ct in Lemma 5.3.6, it follows that 1 is equivalent to 3 By [12,

Proposition 2.2], it follows that 2 is equivalent to 3.

¡
Note that the set of collineations of n that are admitted by c forms a group, which will be

denoted by aut(tr). and is called the subgroup of autþr) that is admitted by c.

\Me now calculate the automorphism group of the geometry n.

Theorem 5.4.3 Let r be an ffine plane of order s and (n , p) an algebra'i,c s-f old coaer of n ,

ouer the abelian group A, defi,ned by the I-cochain c, such that c satisf,es the GQ condi,tion.

Then the full automorphism group aut(T) of the geometry n comprises the elements

(P, o) + (7(P), or(o) + k + bre)),

where le e A, T e autþr). and (oy,6by) is the unique pa'ir, such that cy : c(oy) I6br.
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Proof: Use c : c' irt Lemma 5.3.6.

!

In the proof of Theorem 5.3.3 the unique element of ouú(S)1-; that induces a given element

of aut(tr) was explicitly constructed from the element of aut(n). Combining this construction

and Theorem 5.4.3 enables the explicit construction of the subgroup of the automorphism group

of 5 that fixes (oo).

5.4.1 Elations and symmetries about (oo)

Let r be an affine plane of order s and (n,p) an algebraic s-fold cover over the abelian group

A, defined by c, such that c satisfies the GQ condition. Let 5 : (P,ß,1)be the GQ of order

s constructed from r, n and p as in Theorem 5.1.2. In this section we consider particular

types of elements of the group øøú(.S)1-¡, called elations and symmetries. The terminology and

definitions in this section are taken from [49, Chapter 8].

A whorl of 5 about a point P is an automorphism of 5 that fixes each line incident with P.

An elation of 5 about P is a whorlof .S about P, that fixes no point of 2\Pr. If á is awhorl

of 5 about (oo), then d induces an automorphism 0t of r that fixes each parallel class of zr.

(We can show this by using Theorem 5.3.1 and Lemma 5.3.2, or it is relatively straight-forward

to verify directly). If fI is the projective completion of n' with line at infinity /-, then by [28,

Theorem 4.9], the extension of 0' to II is either an elation of a homology of fI and hence either

a translation or a dilatation of n.

A symmetry of 5 about P is an automorphism of 5 that fixes each point of Pl. Atry

symmetry about P is an elation about P. Now by [49, Chapter 8] the set of symmetries

about P forms a group, the order of which must divide s. In the case where the order of the

symmetry group is s, the point P is called a centre of symmetry (and must be regular).

By Theorem 5.4.3, the group of symmetries about (oo) is {(p, o) + (P, a + k) : k e A}

and so (oo) is a centre of symmetry of 5. Note that any symmetry about (oo) induces the

identity automorphism on zr. A symmetry about a line l. of E is defined dually (that is, as an

automorphism of o that fi.xes each line of (,t. A üne whose symmetry group has maximal order

s is an axis of symmetry. Suppose that (, is a line of 5 incident with (oo) and ,5 is a symmetry

about l. Now ,S fixes (oo) linewise and / pointwise, and so ,S induces a collineation of zr that

fixes each parallel class of n and fixes the parallel class of zr corresponding to / linewise. Thus

by [28, Theorem 4.9] ,9 induces a translation on zr. Note that this implies that each symmetry

about a line incident with (oo) is an elation about (oo), although the converse of this does not

necessarily hold. The line I is an axis of symmetry if and only if zr has a full translation group,

of order s, fixing the parallel class of zr corresponding to I linewise, and c admits this group.
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The GQ 5 is an Elation Generalized Quadrangle (EGQ), with basepoint P, if G is a

group of elations about P acting regularly on the points of P \ Pa. Since G acts regularly on

the points of P \ Pa it is a maximal group of elations about P.

The GQ 5 is a TYanslation Generalized Quadrangle (TGQ), with basepoint P, if 5 is

an EGQ with basepoint P, such that the elation group G contains a full group of s symmetries

about each line through P.

Theorem 6.4.4 The GQ S i,s a TGQ with base point (æ) if and only if r is a translat'ion

plane and c admits the translat'ion group of r '

Proof: Suppose that 5 is a TGQ with base point (oo). Recall from the above discussion that

lf. (. is a line of 5 incident with (oo), then / is an axis of symmetry if and only if n. has a full

translation group, of order s, fixing the parallel class of zr corresponding to I linewise, and c

admits this group. Thus if each line incident with (oo) is an axis of symmetry then zr is a

translation plane and c admits the full translation group of n'

Now if zr is a translation plane and c admits the full translation group G, then by Theo-

rem 5.4.3 the group

{(p,o) F+ ("(P), or(t) +bi-e) +k): T eG, k e A and c7' : c(or)+ 6br}

is a group fixing tr. By Theorem 5.3.3 this group is isomorphic to a group of .S that is an elation

group about (oo) acting regularly on the points of P \ (*)r. Thus S is an EGQ with base

point (oo).

Let L be a line of 5 incident to (oo) and G¿ the full group of translations of n. fixing the

parallel class of 7r corresponding to t. By Theorem 5.4'3 the group

{(p,o) '+ ("(P), or(a)+br.(P) f k): T e G¿, keA andcT:c(or)+6br-}

is a group fixing n, which by Theorem 5.3.3 extends to a group of symmetries of 5 about l.

Thus I is an axis of symmetry. Since this is true for each line incident with (oo), it follows that

5 is a TGQ with base point (oo).

!

The discussion of TGQ was introduced for GQ of order s by Thas in [60], and technical

aspects were developed by Payne inl42l, before it assumed the form given in [49, Chapter 8].
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5.4.2 Example: The subgroup of Af.L(3, q) admitted by rtUz - rzAt

Consider the classical affine plane AG(2, q) with pointset {(*r,rr) ; rr)12 € GF(q)} and lines

given by the equatiorts r,2 : mr1 I d and r! : d, where m, d €. GF(q). Then

aut(ÃG(2, q)) : AIL(2, q)

: {T : T(r¡rz) : (a + brl t- cr$,d -t erl + f rE),

such that a,b,c,d,e,l e GF(q) and b/ - ec l0j,

which may be derived from the fundamental theorem of projective geometry (see [24, 2.1(ii)]).

Flom Section 5.2.1 the algebraic q-fold cover of AG(2,q) giving rise to W(q) is defined by

the L-cochain c, where c((q,rz),,(At,az)) : rrA2 - u2y1. If T e aut(AG(2, q)), then

c(T(q,rz),r(n,az)) : (a + brp, + cnpr)(d + eal + f aÐ - @ + erp, + f "E)@ 
+ byl + cyf)

: (bf - ce)(rßz - rzat)p + (bd - ae)(q - aùp

t(cd'-al)@z-az)P
: (bf - ce)c(rt,rz),(at,,az))p + ((bd - ae)r! + (cd - "f)"6)

-((bd - ae)al + þd - al)yÐ.

That is, c7 : cçoy)1-6by, where or(*) : (bf -ec)rP and 6b7(ry,rz) : (bd-ae)rl+(cd-af)r$.
Thus, by Theorem 5.4.2 we have that

aut(AG (2, a)) " 
: Al L(3, q).

5.4.g Example: Covers of AG(2, g), q even, of the form (rr + Orl, (?l*\
\rr -l at /

Let r be an affine plane of order s and (r,p) an algebraic s-fold cover of 7r over the abelian

group A, defined by the general l-cochain c, (that is, c need not satisfy the GQ condition). Let

? be a collineation of zr and o an automorphism of ,4. Recall from Section 5.4 that c7 denotes

the l-cochain which acts by ar(X,Y) : c(T(X), 
"(y)) 

and that co denotes the l-cochain which

acts by co(X,Y) : o(c(X,Y)).
The collineation ? is said to be adrnitted by c if there exists an automorphism o of A

and a l-coboundary ôb such that c2- : co + õb. If ? is admitted by c, then it follows that

õc7 : 6co and so 6c7 : 0 if and only if 6c:0. Note that if c satisfies the GQ condition, then

by Theorem 5.4.2 this definition of admitted agrees with that given in Section 5.4.

\Me will now give an example showing how the definition of ? being admitted by a general

L-cochain c rnay be used to help determine if c satisfies the GQ condition. Let q : 2", T :
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AG(2, e), A: GF(q) and for X : (*t,rz),Y : (yt,g2) define

I @,, +,,,\F (12 + a2\ ir q I atc(xrY): | 
1*r I tr" \r, +at)

[o if r1:y1,
for some function tr' on GF(q). !V" know from Section 5.2.2 and Section 5.2.3 that if -F has

the property that 0 : {(I,t, F(t)) : ú € GF(q)} U i(0, 1,0)} is an oval of PG(2, q) with nucleus

(0,0,1), then c satisfies the GQ condition. We wish to determine all functions f'such that c

satisfies the GQ condition.

Let T6,u¡ be the collineation of AG(2, q) that acts by translating the points of AG(2, q) by

(ø, b). That is ?1a,a; (ru*z): (zr + a,rz i b).

Now given the points X : (*t,r2) andY : (At,Az) of AG(2, q) such that ø1 f y1, wehave

c(T6,u) (X),71,,a¡(Y)) : "((u + a,ix2 i b),(vt * a,vz * b))

: :;;*a*")'(##+#")
If q - gt1, then 111- a: At * ¿ and so

c(?:6,u¡(X),T@,b) (Y)) : 0 : c(X,Y).

Thus ?1o,a¡ is admitted by c for all a,b e GF(q). Now c satisfies the GQ condition if and only

7f for X,Y, Z distinct points of AG(2, q)

6c(X,Y,Z):0 <+ X,Y,Z are collinear.

Now

õc(X,Y, Z) : 6c(TY(X),Tx(Y),rx(Z))

: 6c(O,Tv(Y),TxØ)), where g : (0,0),

since ?¡ is admitted by c. So in this case, the GQ condition on c is equivalent to

6c(O,X,Y) :0 e O,X,Y ate collinear.

If. O, X,Y are collinear, either :rt : AL: 0, in which case ôc(O, X,Y): 0, or
rz 

- Uz - 
rz * Uz : r¿, where the line collinear with O, X, Y has slope rn. In this caserr h rt*At

õc(o,x,y):,tF (?^).t', (i) * ("r + a,)F (m) : o.

Now suppose that O,X,Y are not collinear and that h : 0 (to gt I 0)' Then

õc(o,x,Y) : ,r, (fr)-raf ("#)
: u,(r(i).r(r#))
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Thus, 6c(O, X,Y) + 0 if and only if -t' is a permutation of GF(q). A similar result holds for

gt:0 and the case where 11: y f 0.

Now suppose that u * U and 21, gr I 0. Then

6c(o,x,Y):,,F (i).r,'(i)f (,r + a,)F (m),
so ôc(O, X,Y) + 0 if and only if

F Az +F' rz -l az

frtAz Ut:tz
r{u * aù aíq-r at)

where rtUz* rzAt I0, since O,X,Y are non-collinear (this is the l-cochain derived fuornW(q)

in Section 5.2.t). Now setting

12 rz*az azu:6't: *'¡0" t:û'

we have that

õc(o,x,Y) + o-' r(d + l(¿) r r(u) + !(s)u*t ' uls
These conditions that we have determined for the function ,F' are exactly those under which (? :
{(1, ¿, F(t)) : t e GF(q)} u {(0, 1,0)} is an oval of PG(2, q) with nucleus (0,0, 1). Thus the onlv

l-cochains of the form (r1 * ar)F (ffi) satisfying the GQ condition are precisely those

that define Tz(0), with regular point (oo) as derived in Section 5.2.2. (Note that in Section 5.2.2

we supposed that f' had the form as in [24, 8.4.2 Theorem]. AII that the construction required,

however, was that .F was such that the set of points (2 formed an oval).

5.5 Automorphisms of A and coboundaries associated with

collineations of r
In this section we consider 1-cochains that define an s-fold cover of an affine plane zr of order

s over an abelian group ,4, and admit a particular subgroup G of aut(tr). We investigate

conditions under which such a l-cochain satisfies the GQ condition.

Now suppose that zr is an affine plane of order s, (n,p) an algebraic s-fold cover of zr, over the

abelian group A, defined by the I-coboundary c such that c satisfies the GQ condition. Recall

that if ? is a collineation of zr, then ? is admitted by c if there is a (unique) pair (o7,,6b7),

such that

c(T (P)'r (A)) : or(c(P,q)) + 6br (P, Q)'

Let c be normalised with respect to a fixed point O of n. If P and Q are any two points

of zr such that O e (P,Q), then c(P,Q) : 0. F\rrther, if 7 is a collineation of zr admitted
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by c, then c(T(P),T@)) : õbr(P,Q). So c is at least partially determined by the admitted

collineations and their associated l-coboundaries. Now we establish conditions under which we

may construct a l-cochain satisfying the GQ condition from collineations of zr and associated

1-coboundaries.

If ,9 and T are collineations of zr admitted by c then

c(S oT(P), 
^9 

o 
"(Q)) 

: osþ(T(P),r(AD + ôbs("(P),r(Q))

: os(ov(c(P,8)) + 6b7(P,8)) + 6bs(r(P),7(A))

: os o o7(c(P,8)) + õb7(P,Q) + 6bs(T(P), 
"(8)),

and hence osoT : os o 07 and ôbso7 : (6br)" + (6bs)7-. Note also that the l-coboundary

associated with the identity collineation of a.is the zero l-cochain, and that if fQ) € (P,Q),

then c(P, Q) : 6r(T-t(P), 
"-1(8)). 

We incorporate these ideas into the following theorem.

Theorern 6.5.1 Let r be an ffine plane of order s, O a fired point of r and A an add,iti,ue

abeli,an group of order s. Let G be a group of automorphi,sms of r that acts transitiuely on

the poi,nts of r. For each T € G let õb7 be a l-coboundary on the si,mpli,cial compler of the

point graph of r and oT, an automorph'isrn of A. Suppose that 6br and oy sati,sfy the followi'ng

condit'ions

1. U I denotes the identity collineation of r, then õb¡:g

2. osoT - os o o7 and, 6bsor - (os)6b7 + (ôbs)", for all S,T e G

3. Il S(O),7(O) e (P,8) then õfu(T-t(P), r-1(q): ôbs(,s-1(P), s-t(8))

If we defi,ne "(P,Q): õbr(T-r(P),T-'(Q)) forT € G such thatT(o) e (P,Q), then c defines

an algebraic s-fold couer of tr oaer A. Further, c is normaliseil wi,th respect to the poi,nt O and'

admi,ts aII elements of the group G with cy: c(or)+6bT. Finally, il6b'r satisfi,es the following

cond,ition

4. IIT(O) e (P,Q), then

6b,r(T-r(P), 
"-t(8)) 

: 0 i,Í and only iÍ O e (P,8),

then c satisfies the GQ condi,tion.

Proof: Let P and Q be any pair of distinct points of r. Since there is an element T of G such

that 
"(O) 

: P, it follows that c(P, Q) is defined. By condition 3 c is well defined.

Now since O e (O,P), it follows t}rat c(O,P):6û(O,P):0. Hence c is normalised with

respect to the point O.
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We now wish to show that c admits each element of G, so we consider the 1-cochain c7 for

T e G. Let P and Q be two distinct points of zr and suppose that S(O) € (P,8) for some

S e G. Then by repeatedly using condition 2 we have the following:

c(r(P),7@)) ôbs(,S-1 oT(P),,S-l o T(Ø)

ôb1sos-ror) e,8) - "" (oa1r-,"")(P,8))

6br(P,Q) - os ("rrl'"rl (db1r-'.s¡"1s-1o?) (P,8)

-ôb1r-'.s¡ (.9-1 o T (P),S-t " "(A))))

6b7(P,Q) - or (-ôa1r-,"s¡(,S-1 o r(P),5'-t " "(8)))

: 6br(P,Q) + orþ(P,Q)).

Thus, c7 : c(o7) * 6b7, for all T e G and so c admits each element of G.

We now show that c defines an algebraic s-fold cover of n over A. Let P, Q,.R be three

distinct collinear points of zr such that P, Q,,R are incident with the line (. of n. Since G is

transitive on the points of zr there is an element ? of G such that 
"(O) 

€ 1.. In this case let

T e G be such that 
"(O) 

: P. Then we have

and so c defines an algebraic s-fold cover of r over A.

Now suppose that the dbr satisfy condition 4, which is equivalent to c(P,Q) + 0 if O ø
(P,Qr.\Me show that c satisfies the GQ condition. Let P,Q,Rbe three distinct non-collinear

points of r. Let l.: (P,Q) and ? be an element of G such that 
"(O) 

: P' Then

6c(P,Q,R) : o7(6c(T-t(P),T-r(Q),7-r(R))) since ? is admitted bv c

: oy(6c(o,T-L (e),,"-t (R)))

: o7þ(r-r (Q), 
"-t(A))),

and so by 4 we have c(?-1(P),f-r(QD + 0. Thus ôc(P,Q,R) + 0 and c satisfies the GQ

condition.
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Note that in Theorem 5.5.1 we do not actually need G to be transitive on the pointset of n

for c to be defined for all pairs of points of zr. In fact we could relax the condition to require

that the orbit of G on the pointset of n containing O have a point incident with each line of zr

and still have c well defined and defining an algebraic s-fold cover of zr. However, this would

entail strengthening condition 4 to force c to satisfy the GQ condition.

5.6 Covers associated with Tr(O)n

Let O be an oval of PG(2,e), e even, with nucleus Iü. In Section 5.2.2 we calculated the algebraic

q-fold cover of AG(2,q) arising frornT2(0) and its regular point (oo). Flom [49, 3.3.2(i)], all

Iines of type (b) of T2(0) are regular (Iines of type (b) are the points of O), thus in the dual GQ

Tz(O)^, the points of type (b) of Tz(0) are regular points. In this section we show that for each

of these regular points of T2())^ there is an associated affine plane isomorphic to AG(2, q) and

an algebraic q-fold cover of AG(2,q). For each of these q* 1 algebraic q-fold covers of AG(2,q)

we calculate an explicit 1-cochain which defines the cover.

\Me represent T2(0)^ by swapping the labels point and line in the construction of T2(O)

(see Section 1.4.3). Thus we will have points of type (a) and (b) and lines of type (i), (ii) and

(iii). The regular points we are considering are q * 1 points of type (b).

LetT2()) be constructed from E: PG(3,q), H: PG(2,g) contained in E and the oval

O of H, which has nucleus .ly'. Let X be a point of type (b) in Tz(O)n : (P,ß,1) and rv
the affine plane of order q constructed from Tz(O)n and X as in Theorem 5.0.1. The lines of

fz(O)n incident with X are the planes of E meeting 11 in the line (¡f, X) and the line of type

(i), which we will d.enote bV [-]. The points of Xr are X, the lines of E incident with X but

not contained in f/, and the points of {? \ {X}.
Let (. € P \ Xr. Then (. is a point of type (a) of Tz(O)n not incident with X. That is,

a line of E such that (. ( H and, / is incident with a point of O\ {X}r, Y say. InT2(0)^,

{X,¿} consists of the point Y of type (b) and the g points of type (a) that are the q lines of D

contained in the plane (1, X), incident with X but not contained in 11. This set, {X, l}r, is a

point of zr and the q points of T2(0)^ that cover {X,¿} are the q points of type (a) that are

lines of the plane (X,¿), incident with Y but not X'
Let Ht be a line of type (ii) of Tz())n such that X is not incident with ff'. Then fIl is a

planeof E containingauniquepointof (r\{X}, Z say. Now Z €.XL (since Z I læ]I X) and

so Z is the line of ny covered by H'. The q lines of Tz(O)n that cover Z (as a point of ry) arc

the q lines of type (ii) that are planes of E meeting fI in the line (N, Z).

Let P be a line of type (r) of T2())^ such that P ø xL. That is, P is a point of t \ fI.
The line of ry that is covered by P is the line (P,X), and the q lines of T2(O)^ covering the
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line (P,X) are the q points (P,X) \ {X} of type (i).

Now a point of zr¡ is a set of q coplanar lines, so we will identify the point of ry with this

plane. Wewillidentifyalineof ry whichisapointof Ye O\{X}withtheline(Y,X),and
a line of ry that is a line of E, not contained in f/ and incident with X, wiII be identified with

itself. With these identifications n¡ is the incidence structure

Points: Planes of X, not II, containing X, but not .fü

Lines: Lines of X containing X, but not N

Incidence: Inherited from E

Hence,

". = (+\ ry)D o,AG(2,q)

Now we introduce coordinates by letting E : PG(3, q), H the plane with equation r¡ : 0 and

letting O have the canonical form

0 : {(r,t,F(t)) : ¿ € GF(q)} u {(0, 1,0)},

whereFisapolynomial,asinl24,S.4.2 Theorem]. Inthiscase,thenucleus of Ois thepoint

(0,0, 1).

We consider the various possibilities for the point X and construct 1-cochains corresponding

to the q-fold covers of AG(2, q).

5.6.1 Case (") X : (0,0,1,0)

The pointset of ny is the set of planes of E containing (0,0,1,0), not including 11. That is,

the planes with coordinates lrr,*2,0,1] with rt,r2 e GF(q). Note that if we let the point

l*tr*2,0,1] of rybe represented by the pair (r1,u2), then 7rx assumes the canonical form of

AG(2, q).

The plane l*r, *r,0, 1] contains X and a second point of Y of. O. Now the point (0, L,t, F (t))

of O \ {X} is contained on the plane lrt,rz,0, 1] of E if and only if t : F-t(rz) (.F'-t is defined

since tr' is a permutation of GF(q)), and so Y : (0,I,F-r(rr),*z). The covers of the point

(rr,*z) of AG(2,g) are the lines of E contained in the plane lrt,rz,O,1] that are incident with

Y, but not X. In ord.er to show that the s-fold cover of zr¡ defined try T2(0)^ is algebraic we

must first represent the covers of [r1, 12,0,1] as the set {((r1, r2),a): a e Gp(q)} and then

define an appropriate l-cochain. Now the set of covers of (r1, r.2) may be described as the

intersectionof theplane[r1,r2,0,L)withthesetof planes{[o,F-1(rz),L,0] : ae GF(q)]' So

let ((r1, *z), o) represent the cover of (n1, rz), lrt, r2,0,Lf lì [a, f'-1 (r2), 1, 0].
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Consider the points of Tz(O)n represented by ((rr, rz),a) and ((gr1, az), þ). If 12 I y2, then

((*r,,*z),a) and ((Ataz),B) are collinear inT2(0)^ if and only if l*t,12,0, 1]n lo, F-t (r2), 1,0]

and,lg2,gr,0,1] ìlþ,F-r(az),1,0] areconcurrentlinesof D. Thisisthecaseif andonlyif

a + p:m(r-'(*r)a r-l(uz)).

If ry- gl,then ((*u*z),a) and ((Auaz),p)are incidentwiththesamepointof type(b) of

Tz(O)n, and are collinear as points of T2(0)^ if and only if the plane they span contains the

point I/. This is the case if and only if a + P :0.
Thus the l'cochain

\, \\ f :#(r-'(*r)*p-'@r)) ror12*-yz
c-((zr, rz),(at,az)) : \ nz+az '

I o for '2: y2

defines the q-fold cover of AG(2,q) constructed from Tz(O)n and the regular point (0,0,1,0).

6.6.2 Case (b) X : (0, 1, t, F(t)), ¿ € GF(q)

At this point we note that the only property of .t' that we used in deriving c* was that

O:{(0,1,s,,F(s)) : se GF(q)}u{(0,0,1,0)}isanovalwithnucleus(0,0,0,1). Supposethat

we can find a collineation T of. H : PG(2, q) that maps (? onto an oval Ot , such that (0, 1, ú, F(¿))

is mapped to (0,0,1,0) and (0,0,0,1) is fixed. Then T(O) : O' : {(0,I,u,,G(u)) " u €

Gp(q)) U {(0,0,1,0)}, for some polynomial G. Since ? induces an isomorphism from fz(O)n

toT2(Ot)^, it follows from Corollary 5.3.4 that the derivation in Section 5.6.1 gives a l-cochain

equivalent to that defining the q-fold cover given by f2(0)^ and the regular point (0, 1, ú, -F (ú)).

In what follows we define such collineations and calculate the corresponding l-cochains. Note

that we still assume that .t' satisfies the conditions of 124,,8.4.2 Theorem].

Now let ? be the collineation of f/ that acts by T(rs,r1,:D2,rB) : (ro, 12 * tryfr1,lx3 *
F(t)r). Then ?(0, 0, 0, 1) : (0, 0, 0, 1), ?(0, L,t, F(t)) : (0, 1, ú, F(ú)) and

T(O) {(0,s *ú,1,r'(s) +r'(ú)) : s e GF(q)}u{(0,1,0,0)}

(0,r,fr,1+++@) : se GF(q)\i¿i

(0, ,,,, -#) : z e GF(q) \ {0}} u {(0, 1,0,0), (0,0, 1,0)}

{(0, 1, u, ft(")) : u € GF(q)} u {(0,0, 1,0)},
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\Mhere

l{r):

ct((ru rz), (At,Az)) :

,. (; *') * ertDtl,
0

iful0
ifz:0

Now if we define the permutation / on GF(q) by

( t irulol("):1" ' 
,

[ 0 if u:0
which may be written as the polynomial f @) : *ø-2, tlnen h : Ft o / where F¿ is the permu-

tation s r+ (.F (f + s) * f (t)) ls defined in 124,8.4.2 Theorem].

Given the above, we have that
rtlat
rz*Az
0

(fft{"r) + ÍlL(az)) if. 12l -y2

1f 12: y,

is a l-cochain that defines the q-fold cover of AG(2, q) given lry T2(O)^ and the regular point

(0, 1, ú, r'(ú)).

By a similar approach to that taken in Section 5.4.3, it is possible to show that if

"'! " G(r2) + G(s2)) ir 12l y2
:r2 + A2

0 if 12: Y"
c((ru *z), (At,Az)) :

is a l-cochain of the simplicial complex of the point graph of AG(2, q), then c satisfies the GQ

condition if and only if the set i(1, ú, G(¿)) : ¿ € GF(q)Ì u {(0, 1,0)} is an oval of PG(2, q).

5.7 Remarks

The work in this chapter raises many questions and possibilities for future research. An obvious

line of enquiry is to investigate l-cochains of the simplicial complex of the point graph of a

non-desarguesian affine plane zr of order s. Any such l-cochain that satisfies the GQ condition

gives rise to a GQ of order s that is new, since all of the known GQs of order s with a regular

point have associated affine plane AG(2,s) (as in Theorem 5.0.1) for s a prime power. (This

was shown for W (q) in Section 5.2.1. For fz(O) it was shown in Section 5.2.2 that the affine

plane associated with the regular point (oo) is AG(2, q). For Tr(O)n the affine plane associated

with each of the regular points of type (b) was shown to be AG(2, q) in Section 5.6. Note that

these results are already well known! (See [49, Chapter 8], for example). By [49, 3.3.3 (i)]

the only regular points of. T2(0)^ are the points of type (b) and by [49, 12.4.6] if T2(0) has

a regular point not (oo), then (9 is a translation oval and so by 149, L2.5.3 (i)] is isomorphic

to T2(Ot)^ for some oval Ot. Thus the work in Sections 5.2.1, 5.2.2 and 5.6 covers all regular

points of known GQ of order s).
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By Sections 5.2.1, 5.2.2 and 5.6 and by Theorem 5.3.7 we know all l-cochains of the simplicial

complex of the point graph of AG(2,q) that give rise to the known GQ of order g. It would

be interesting to investigate the l-cochains to see if others satisfying the GQ condition could

be found. A possible approach is to consider a particular group G of AIL(3,q) and see it it is
possible to find a l-cochain admitting G and satisfying the GQ condition by the construction

in Theorem 5.5.1.

It was observed in Section 1.6 that an s-fold cover of a geometry is equivalent to an s-

fold cover of the dual geometry. Thus the construction in Theorem 5.1.2 can be equivalently

rewritten in terms of an s-fold cover of the dual affine plane. Presumably the algebraic s-fold

covers of an affine plane zr are equivalent to the algebraic s-fold covers of the dual geometry

of zr, and so the corresponding theories regarding GQs of order s with a regular point are

presumably also equivalent. However, it may be that covering the dual affine plane o ers some

computational advantages. Note that even though the point graph of a dual affine plane is

not complete it is relatively straight-forward to show that the first cohomology group of the

corresponding simplicial complex is trivial, and so the cohomological aspects of the theory

remain simple.

In Section 5.1 the theory of GQs with a regular point and covers of the associated affine

plane was introduced for a general cover rather than an algebraic cover. It would be interesting

to try and find other "natural" constructions of covers, apart from the algebraic covers, and

investigate those with respect to the construction in Theorem 5.1.2.
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