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Abstract

Our aim in this thesis has been to consider questions concerning the relationship between a
Generalized Quadrangle (GQ) and various substructures, with a view to proving characterisa-
tion and classification results. We also lay the groundwork for new GQ construction methods,
although no new GQs are constructed here.

In Chapter 1 we introduce preliminary concepts and results required for the rest of the
thesis, involving graphs, quadrics, geometries, GQs, algebraic topology on a simplicial complex
and covers of geometries.

Chapter 2 contains a detailed investigation of the ovoid K1(o) of Q(4,q) constructed by
Kantor in [30], including construction of non-elation rosettes of Q(4,¢) containing only K1(c)
ovoids and rosettes containing both K1(o) ovoids and elliptic quadric ovoids.

In Chapter 3 we show that if S is a GQ of order (s,s?) and S’ is a subquadrangle of order s
doubly subtended in S, then the subtended ovoid/rosette structure is a Semi-Partial Geometry
(SPG). A new SPG is constructed from a GQ of Kantor ([31]) and a Q(4,q) subquadrangle.
For a ¢g-clan GQ S, ¢ even, Payne constructed a family of subquadrangles S, of order ¢ ([45]).
We derive the algebraic conditions under which S, is doubly subtended in S, and hence gives
an SPG.

In Chapter 4 it is shown that if ¢ is even a non-classical GQ of order (g,q?) containing a
subquadrangle isomorphic to Q(4,q) implies the existence of a new ovoid of PG(3,q). Also,
by a homology calculation, it is shown that if S is a GQ of order (q,q?), ¢ odd, such that S
contains a Q(4, q) subquadrangle, with each ovoid of Q(4, ¢) subtended by S an elliptic quadric
ovoid, then § is isomorphic to Q(5, q).

In Chapter 5 we show a GQ S of order s with a regular point (00) gives rise to a cover of the
affine plane constructed from § and (00), as in [49, 1.3.1]. Given an affine plane 7 of order s and
an s-fold cover of m satisfying special conditions we construct a GQ of order s with a regular
point. If the cover of 7 is algebraic the condition on the cover is interpreted in cohomological

terms; we investigate these for the remainder of the Chapter 5.
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Preface

Generalized Quadrangles (GQs) were introduced by J. Tits in 1959 ([66]) in his work on triality.
Tits was also responsible for the construction of the first non-classical GQ of order (s, s?), the
GQ T3() of order (g, q*) where ¢ = 2¢, e 0odd, and 6 is the Suzuki-Tits ovoid of PG(3, q), which
first appeared in [19]. After the classical GQ Q(5,q) of order (g, ¢?) and T3(0), the next GQ of
order (s, s2) was constructed by Kantor via the group coset geometry method ([29]). A number
of new GQs of order (s, s?) followed using the group coset geometry method of Kantor, all of
which, except the Roman GQ of Thas and Payne [65], arise from g¢-clans (see [43, 45] and [31]).
In all cases the parameter s is a prime power.

Relatively little is known about subquadrangles of the known GQs of order (s, s?) although
there are a number of examples of subquadrangles of order s. The GQ Q(5, ¢) has subquadran-
gles isomorphic to Q(4, q); the GQ of Kantor in [31] and the Roman GQ both have subquadran-
gles isomorphic to (4, ¢), while the GQs derived from g-clans for ¢ even have subquadrangles
isomorphic to the GQ T5(O), for O some oval of PG(2,q). This thesis is largely devoted to
investigating the combinatorics of a subquadrangle of order s of a GQ of order (s, s2).

A result of Payne and Thas ([49]) shows that if S is a GQ of order (s,s?) and &’ is a
subquadrangle of order s, then each point of S\ & is collinear to the s2 + 1 points of an ovoid
of §'. A line of S\ &' contains s such points of §\ S’ and the corresponding set of ¢ ovoids of &’
has the property that any two elements intersect in a fixed point (the point where the line meets
S"). A suggestion of Christine O’Keefe and Tim Penttila was to study these “rosettes” of ovoids
of a GQ &' of order s (defined combinatorially as a set of s ovoids meeting pairwise in a fixed
point) to see what they revealed about GQs of order (s, s2) containing S’ as a subquadrangle. A
result in this direction had already been proved by Payne and Thas ([65, VII.1.]) showing that
the GQ Q(5, q) is characterised by the existence of a Q(4, ¢) subquadrangle with each point of
Q(5,9) \ Q(4, q) being collinear to an elliptic quadric ovoid of Q(4, q).

An obvious first step in considering ovoids and rosettes of GQs of order s is to consider
ovoids and rosettes of @Q(4,q). For ¢ even the only known non-classical ovoid of Q(4,q) is for
the case ¢ = 2¢, e odd, and is isomorphic to the Tits ovoid of W(q). In Chapter 4 rosettes of
these “Tits” ovoids of Q(4, q) are used to show that the existence of a non-classical GQ of order
(¢,4%), q even, containing a subquadrangle isomorphic to Q(4, ¢) implies the existence of a new
ovoid of PG(3,q). (Note that the latter is fairly unlikely!).

For q odd there are a number of non-classical ovoids of Q(4,q) known, the most “struc-
tured” of these being the K1(o) ovoid constructed by Kantor in [30]. Chapter 2 is devoted to
investigating the properties of this ovoid and the rosettes of Q(4,q) containing it.

The other obvious problem for ¢ odd it to show that Q(5,q) is characterised by the ex-
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istence of a (4, q) subquadrangle with each point of Q(5,q) \ Q(4,¢q) being collinear to an
elliptic quadric ovoid of @Q(4,q). Consideration of this problem led to considering the general
combinatorial setting: that is, a GQ S of order (s, s?) with a subquadrangle S’ of order s such
that if the points of an ovoid of &' are collinear with a point of S\ &', then they are collinear
with exactly two points of S\ §’. A consequence of a result of Bose and Shrikhande ([8], see
[49, 1.2.4]) is that any set of points of an ovoid of S’ may be collinear with at most two points
of §\ & and so §' is a combinatorially “extreme” subquadrangle. It was observed by Metz (see
[18]) and Hirschfeld and Thas (see [26]) that in the case where S = Q(5,9) and S’ = Q(4,q)
that the ovoids and rosettes of Q(4,q) associated with the points and lines of S\ &’ form a
geometry which is a Semi-Partial Geometry (SPG). In Chapter 3 it is shown that this is also
true in general for any such S and &' described above. A new SPG is constructed from a GQ
of Kantor in [31] and a Q(4, q) subquadrangle.

In this “extreme” case the relationship between the SPG and the geometry of S\ &' is a
cover, and more specifically an algebraic cover. The question of how many “different” GQs of
order (s,s?) give rise to a given SPG in this manner becomes a problem in cohomology. In
Chapter 4 this approach allows us to prove [65, VIL.1] in the case where ¢ is odd.

This idea of the geometry of a “substructure” of a GQ being related to the geometry of the
GQ “outside” the substructure is explored again in Chapter 5. In this case the GQ is of order
s with a regular point (0o), and the substructure is an affine plane of order s, as defined in [49,
1.3.1.]. It is shown that such a GQ always gives rise to a cover of the associated affine plane
(and also a distance-regular cover of the complete graph on s? vertices). The rest of Chapter 5
is spent exploring the idea of algebraic covers of an affine plane and their relation to GQs of
order s with a regular point. This seems a promising approach to constructing new GQs of

order s, although none, as yet, have been found.
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Chapter 1

Preliminaries

In this chapter we give definitions and results that will be used throughout the thesis. We will
assume that reader is familiar with the theories of finite fields and projective spaces over finite
fields; an excellent and thorough introduction to projective spaces over finite fields is given in
[24]. For notational convenience we will associate a point of the projective space PG(n,q) with

the homogeneous coordinate vector that represents it.

1.1 Graphs

A graph G is an ordered pair (V, E) where V is a non-empty set of elements called vertices
and F is a set of unordered pairs of distinct vertices, called edges. Two vertices of G, u and v,
that are contained in E are said to be adjacent and we write u ~ v.

A path of G is a finite, ordered set of vertices vg,v1,... ,v, such that v; ~ v for 0 < ¢ <
n — 1. The path is said to have length n. Two vertices u and v are said to be connected if
there exists a path vg,v1,... , v, such that vg = v and v, = v. A graph G is connected if each
pair of vertices of G is connected.

A path vg,v1,... ,vy is said to be closed if vg = v,,. Alternatively, we may think of a closed
path as a set of edges of G such that each vertex of G appears an even number of times in edges
in the path. This set of edges is called the edge set of the path. A circuit of G is a closed
path such that no edge is repeated. We will represent the circuit vg, v1,... ,vn With v9 = v,
by (vo,v1,... ,Un—1). For convenience we will often consider two circuits that differ only by a
cyclic permutation of their vertices to be the same circuit. An elementary circuit is a circuit
V0, V1, .-+ ,Un—1,v0 such that v; # v; for 0 < 4,5 < n—1, 1 # j. The elementary circuit C' is
said to be induced if each vertex of C is adjacent to exactly two others in C.

Let G = (V, E) and G' = (V', E') be graphs. The graph G’ is a subgraph of Gif V' CV
and E' = {(u,v) : u,v € V' and (u,v) € E}. If v is a vertex of G, then G, is the subgraph of



G with vertex set {u: u ~ v}. In general, if A CV with A = {v1,vs,... ,vp}, then G4 is the
subgraph of G with vertex set {u: u~wv; fori =1,... ,n}. A clique of G is defined to be a
complete subgraph of G. A connected component of G is a maximal connected subgraph.

A connected graph G = (V, E) is regular if for every vertex u € V, [{v € V : u~v}| =k,
for some fixed k. The number k is called the valence of the graph G.

Let u and v be two vertices of the connected graph G = (V, E) and let
U = Ug,Ul,... ,Upn_1,Un = ¥ be a path of shortest length from u to v. The distance between u
and v is defined to be n and we denote this by d(u,v) = n or d(v,u) = n. The diameter of G
is defined to be the number d = maz{d(u,v) : u,v € V}. If u is a vertex of G, then let G;(u)
be the set {v: d(u,v) =1i}. Thus Go(u) = {u} and G1(u) = G..

A connected graph G = (V, E) is called distance-regular if there exists integers b;,c;
(i > 0) such that for any two vertices u,v € V, with i = d(u,v), there are precisely ¢; vertices
contained in G;_1(u) that are adjacent to v and b; vertices contained in Gj;i(u) that are
adjacent to v. The sequence {bg,b1,... ,b4_1;¢1,¢2,... ,¢q}, where d is the diameter of G, is
called the intersection array of G. Note that it follows that G is regular with valence k = bg
and that by = ¢ = 0 and ¢; = 1. For more information on distance-regular graphs see [9] or
[5]. A distance-regular graph of diameter 2 is called a strongly regular graph. If G = (V, E)
is a strongly regular graph, then it has parameters v, k, y, A, where v = |V, k is the valence of
G,u=ccand A=k —-b — 1.

For any connected graph G = (V, E) of diameter d > 1 we denote by G; (fori = 1,2,... ,d)
the graph with vertex set V and with vertices u and v adjacent if d(u,v) =4 in G. The graph

G is antipodal if G is a disjoint union of cliques.

1.2 Quadrics

In this section we introduce quadrics of PG(3, ¢); for a more detailed treatment see [24, Chapters
5, 6 and 7], [25, Chapters 15, 16, 17 and 20] and [27, Chapter 22].

A quadric Q, of PG(n,q) is the set of points of PG(n, q) whose homogeneous coordinates
satisfy a quadratic form F(zg,21,... ,Tn) = Sorg @iT2 + Yicjaijrizy. If F cannot be reduced
to a form in fewer than n -+ 1 variables by a linear transformation, then F' is non-degenerate
and Q,, is non-singular. If n is even, then every non-singular quadric in PG(n, ¢) is projectively
equivalent to the parabolic quadric, denoted by P,. If n is odd, then PG(n,q) has exactly
two projectively distinct non-singular quadrics, the elliptic quadric, denoted by &, and the

hyperbolic quadric, denoted by H,. Canonical forms for the non-singular quadrics are as



follows:

Pn = V(.’B(z) +z1Z2+ ...+ Tp_1Zn),
En = V(f(zo,z1) +z223+ ... + Tp_124),

Hn V(zor: + zoz3 + ... + Tn_1Zn),

fl

where f is an irreducible binary quadratic form.

If we allow F' to be degenerate, then the quadric defined by F' may be singular, that is,
a cone I1;Q,. This cone is the join of the vertex I, a subspace of PG(n,q) of dimension k&
and a non-singular quadric Q; in the subspace II; of dimension s, with II and II; skew and
k+s=n-1.

Suppose that Q, is a non-singular quadric of PG(n,q) defined by the quadratic form
F(zg,21,... ,Tn). Then the bilinear form J associated with F' is given by §(X,Y) =
F(X+Y)—-F(X)—F(Y). The bilinear form gives the geometry of the quadric, as the following

lemma shows.

Lemma 1.2.1 [27, Lemma 22.3.1] Let Y € Q. Then

(i) If X & Oy, then B(X,Y) =0 <= (X,Y) is tangent to Q.
(ii) If X € Qp, then B(X,Y) =0+ (X,Y) C Qn.

(i) BX,Y) #0 <> [(X,Y)NQul =2.

Lemma 1.2.2 [27, Lemma 22.3.3] If ¢ and n are not both even, the correspondence Y «—
V(B(Y, X)) is a polarity. For q odd, the set of self-polar poinis is Q. For q even, the polarity

is null and every point in PG(n,q) is self-polar.

We will denote the action of the polarity by L. If Y is a point of PG(3,¢), then the polar
hyperplane V(3(Y, X)) is called the tangent space or tangent hyperplane of Y. For details
of the action of the polarity on subspaces of PG(n, q), see [27, Theorem 22.7.2].

Now we consider the symmetries of Q,, where ¢ and n are not both even. Let () be a point

of PG(n,q) \ Qn and let g : Qn — Qn be defined as follows. For P in Q,

P if (P,Q) is a tangent to O,

pQ(P) = ,
P if (P,Q) meets Q,, at P! # P.

The map pg may be extended to an automorphism of PG(n,q) (fixing Q) given by

X x - BEQ

F(Q)
([27, Lemma 22.6.3]).



1.3 An introduction to geometries

An (incidence) geometry is an incidence structure S = (P,B,I) in which P and B are
disjoint (non-empty) sets of objects called points and lines, respectively, and for which I C
(P x B)U (B x P) is a symmetric point-line incidence relation. In addition, we require that two
distinct points of S are incident with at most one line and two distinct lines of S are incident
with at most one point. Two points of § that are incident with a common line are said to be
collinear and two lines of § that are incident with a common point are concurrent.

The dual of a geometry S = (P, B, ) is the geometry 8" = (B, P,I). So, the points of "
are the lines of S, the lines of S are the points of S and the incidence relation between P and
B is the same in both S and S™.

An automorphism of a geometry S = (P,B,I) is a bijection ¢: PUB — P U B, such
that ¢ maps points to points, lines to lines and preserves incidence. By preserving incidence we
mean that if P € P and £ € B, then P I £ if and only if ¢(P) I ¢(£). The point graph of S is
the graph with vertex set P and edge-set the set of collinear pairs of points of S.

The geometry &' = (P',B',I') is a subgeometry of S if P’ C P, B’ C B and I’ is the
restriction of I to (P’ x B)U (B' x P'). If §' is a subgeometry of S, then we write ' C S. If
S # &', then we say that S’ is a proper subgeometry of S and write S’ C . If §’ C S, then
it follows that P’ # P or B' # B.

1.3.1 Examples of geometries

A (finite) partial geometry (PG) is an incidence structure W = (P, B,I), satisfying the

following axioms:

(i) Each point is incident with 1+t lines (¢ > 1) and two distinct points are incident with at

most one line;

(ii) Each line is incident with 1 + s points (s > 1) and two distinct lines are incident with at

most one point;

(iii) If X is a point and £ is a line not incident with X, then the number of pairs (Y, m) € Px B
for which X I m I'Y I ¢ is a constant o (o > 0).

The integers s, t and « are called the parameters of W. It follows that [P| = (s+1)(st+a)/a,
|B| = (t + 1)(st + @)/ and that the point graph of W is strongly regular. Partial geometries
were introduced by Bose in [7] to investigate strongly regular graphs.

A (finite) semi-partial geometry (SPG) is an incidence structure 7 = (P, B, I), satisfying

the following axioms:



(i) Each point is incident with 1+ ¢ lines (¢t > 1) and two distinct points are incident with at

most one line;

(ii) Each line is incident with 1 + s points (s > 1) and two distinct lines are incident with at

most one point;

(iii) If X is a point and £ is a line not incident with X, then the number of pairs (Y,m) € P x B
for which X I m I'Y I £ is either 0 or a constant a (& > 0);

(iv) For any pair of non-collinear points (X,Y’) there are p (1 > 0) points Z such that Z is
collinear with both X and Y.

The integers s,t,«,u are the parameters of 7. It follows that |P| = 1 + (¢ + 1)s(u +
t(s —a+1))/p and |B] = p(t + 1)/(s + 1). Note that axiom (iii) of a semi-partial geometry is
a generalisation of axiom (iii) for a partial geometry, while axiom (iv) forces the point graph
of a semi-partial geometry to be strongly regular. Thus, partial geometries are a subclass of
semi-partial geometries. The point graph of T' has parameters

(t+s)s(p+t(s—a+1))
7’

v=1+ k=@ +1)s, ,u, A=s—-1+ta—-1).

Semi-partial geometries were first introduced by Debroey and Thas in [18]. For more information
on partial geometries and semi-partial geometries see [17].

An important class of partial geometries (and hence semi-partial geometries) is the case
a = 1, the generalized quadrangles. A (finite) generalized quadrangle (GQ) is an incidence

structure S = (P, B, I), satisfying the following axioms:

(i) Each point is incident with 1+ ¢ lines (¢ > 1) and two distinct points are incident with at

most one line;

(ii) Each line is incident with 1 4 s points (s > 1) and two distinct lines are incident with at

most one point;

(iii) If X is a point and £ is a line not incident with X, then there is a unique pair (Y, m) € PxB
for which X ImIY IZ.

It follows that |P| = (s + 1)(st + 1) and |B| = (¢t + 1)(st + 1). We say that S has order (s, t)
while if s = t, then we say that S has order s. A subgeometry of a GQ S that is also a GQ
is called a subquadrangle or subGQ. Generalized quadrangles were introduced as part of a

larger class of geometries called generalized n-gons, by Tits in [66]. For a complete list of the

known GQs see [64].



1.4 Generalized Quadrangles (GQs)

1.4.1 Combinatorics of GQs

In this section we give some combinatorial definitions and properties of GQs. For more details
see [49)].

Let S be a GQ of order (s,t). Given two points X, Y of S, we write X ~ Y if X and Y
are collinear, or if X =Y, otherwise we write X o Y. Dually, for two lines £, m of S, we write
¢ ~ m if £ and m are concurrent, or if £ = m, otherwise we write £ ¢ m.

For X € P, define X- ={Y € P: Y ~ X}. Theset X' is called the trace of X. The trace
of a pair of distinct points X and Y, is the set X L NY+L and is denoted {X,Y}+. The size of
{X,Y}tiss+1lort+1,accordingas X ~Y or X o Y. For X # Y, the span of the pair (X,Y)
s (XYL ={UeP:Uezforall Z € {X,Y}1}, that is, {X, Y} = (X, Y})" In
general, if P’ C P, then Pt = Nxep X+ and P = (P'J')l.

FX~Y, X#Y,orif X #Y and [{X,Y}+!]| = ¢t + 1, we say that the pair (X,Y) is
regular. The point X is regular if (X,Y") is regular for each Y € P such that ¥ # X.

A triad (of points) of S is a triple of distinct, pairwise non-collinear points.

An ovoid of a GQ & of order (s,t) is a set @ of points such that each line of S is incident
with precisely one point of §. It follows that 6 has st + 1 points. Dually, a spread of S is a set
Q of st + 1 lines of 8, such that each point of § is incident with exactly one line of €.

A rosette based at a point X of S is a set R of ovoids with pairwise intersection {X}
and such that {8\ {X}:6 € R} is a partition of the points of S not collinear with X. The
point X is called the base point of R. It follows that a rosette R has s ovoids. A rosette is
homogeneous if all of its ovoids are of the same isomorphism class in S. A rosette that isn’t
homogeneous is inhomogeneous.

Let the GQ S’ = (P',B',I') of order (s',t') be a subGQ of the GQ § = (P,B,I). If §' is
a proper subGQ of S, that is 8’ # S, and £ € B then by [49, 2.1], exactly one of the following
occurs: (i) £ € B'; (ii) £ ¢ B’ and ¢ is incident with a unique point X € P’, in which case we
say £ is tangent to &' at X; or (iii) £ € B’ and £ is incident with no point of P’, in which case

we say £ is external to &’. Dually, we may define external points and tangent points.

Lemma 1.4.1 ([61], [41], see [49, 2.2.1}) Let S = (P,B,I) be a GQ of order (s,t) with a
subquadrangle 8’ = (P', B, I') of order (s,t'). Each point of S, external to &', is collinear with
the 1 + st’ points of an ovoid of &'.

An ovoid arising as in Lemma 1.4.1 is said to be subtended by P, or just subtended. The
ovoids of S’ subtended by the points in P \ P’ are said to be the ovoids subtended by S or

just the subtended ovoids.



If £ is a line of S that is tangent to &' then each of the s points incident with ¢ and not
contained in P’, is external to 8’. Furthermore, the set of s ovoids subtended by these points
is a rosette of S’. To see this, first observe that if X,Y I £ and X,Y € P\ P/, then the ovoids
6x and Oy, subtended by X and Y respectively, are both incident with the point £NS’. Also,
if 0x and Oy are both incident with a further point Z of &', then X,Y, Z form a triangle. We
say that the rosette constructed as above is subtended by the line £, or just subtended.

We define subtended spreads and subtended rosettes of S’ dually.

1.4.2 The classical GQs

The classical GQs are those GQs corresponding to the classical groups and are as follows (see

[49, Section 3.1]).

1(a) The GQ Q(3,q) of order (g, 1) arises as the points and lines of the non-singular hyperbolic
quadric in PG(3, q), given by the equation zoz1 + z2z3 = 0. Since ¢ = 1, the structure of

Q(3,q) is trivial.

1(b) The GQ Q(4,q) of order q arises as the points and lines of the non-singular (parabolic)
quadric in PG(4, ¢), given by the equation z3 + z1z2 + z324 = 0.

1(c) The GQ Q(5,q) of order (q,¢?) arises as the points and lines of the non-singular elliptic
quadric in PG(5,¢) given by the equation z3 + azozs + bx% + z129 + 2324 = 0, where

z? + azors + bz is an irreducible binary quadratic form.
Note that Q(5,¢) contains subquadrangles isomorphic to Q(4, q) (see [49, 3.5(a)]).

2(a) The GQ H(3,q?) of order (¢%, g) arises as the points and lines of the non-singular hermitian

variety of PG(3, ¢?), given by the equation xgﬂ + m‘{“ + 23t 4 a;g"'l =0.

2(b) The GQ H(4,4?) of order (g%, ¢°) arises as the points and lines of the non-singular her-

mitian variety of PG(4, ¢), given by the equation zd*! + 29" + 24t 4 23t + it =o0.

3(a) The GQ W(q) of order ¢ arises as the absolute points and absolute lines of a symplectic

polarity in PG(3, g), with canonical bilinear form zoy1 — z1yo + z2y3 — z3y2 = 0.

It has been shown, independently by Buekenhout and Lefévre in [11] and Olanda in [39, 40],
that the classical GQs are precisely the GQs S = (P, B, I) such that P is a subset of the pointset

of some projective space PG(n,¢) and B is a set of lines of PG(n, q).



1.4.3 The non-classical GQ of Tits

The following constructions of the non-classical GQs T5(O) and T3(f) are due to Tits and first
appeared in [19].
Let ¥ = PG(3,q) and H = PG(2,¢) be a hyperplane of 3. Further, let O be an oval of H.
Define T5(O) to be the following incidence structure:
Points: (i) The points of ¥\ H
(ii) The planes of ¥, not H, meeting H in a tangent to O
(iii) The symbol (0o0)
Lines: (a) Lines of ¥, not contained in H, that meet O

(b) Points of O
(

Incidence: (i)(a)  Incidence in ¥
(ii)(a)  Containment in 3
(iii)(a) None
(i)(b)  Nome
(ii)(b) Incidence in X
(iii)(b) Al

Let &' = PG(4,q) and H' = PG(3,q) be a hyperplane of X'. Further, let 6 be an ovoid of
H'. Define T3(6) to be the following incidence structure:

Points: (1) The points of &'\ H’
(it) The hyperplanes of ¥/, not H', meeting 6 in a unique point
(iii) The symbol (00)

Lines: (a) Lines of ¥', not contained in H’, that meet 6
(

b) Points of 8
Incidence: (i)(a)  Incidence in ¥/
(ii)(a)  Containment in ¥’
(iii)(a) None

(i)(b)  None

(ii)(b)  Incidence in ¥/
(iii)(b)  All

1.4.4 Isomorphisms between GQ

In this section we give some isomorphisms between the GQs defined in Section 1.4.2 and Sec-

tion 1.4.3. For proofs of the isomorphisms, see the cited result in [49].

Theorem 1.4.2 [49, 3.2.1] The GQ Q(4,q) is isomorphic to the dual of W(q). Moreover,
Q(4,q) (or W(q)) is self-dual if and only if q is even.

8



Theorem 1.4.3 [49, 3.2.2] The GQ T>(O) is isomorphic to Q(4,q) if and only if O is an

irreducible conic; it is isomorphic to W(q) if and only if q is even and O is a conic.
Theorem 1.4.4 [49, 8.2.3] The GQ Q(5,q) is isomorphic to the dual of H(3,q%).

Theorem 1.4.5 [49, 8.2.4] The GQ T5(0) is isomorphic to Q(5,q) if and only if 6 is an elliptic
quadric of PG(3,q).

1.4.5 The g-clan GQs

In this section we give a summary of results on the g-clan construction of GQs of order (g, q?).
First consider the group coset construction of a GQ as introduced by Kantor [29]. Let G be
a finite group of order s%t, s > 2, t > 2 and suppose that G admits two families of subgroups
F ={So,...,St}, F* = {S§,...,Sf} such that |Sj| = s, |S}| = st and S; C S}. If F and F*
satisfy:

K1 58NSy=1 fork+#4,jandi#jand

K2 SrnSj=1 fori#j

then F is a 4-gonal family for G. The following point-line geometry S(G, F) is a GQ of order
(s,1).

Points: (i) Elements of G
(ii) Right cosets, Sfg,i=0,...,t, g€ G
(iii) (o0)
Lines: (a) Right cosets S;g,1=0,...,t,9€ G

(b)  Symbols [S;], i =0,... ,t.

A point g of type (¢) is incident with each line S;g. A point Sfg of type (i) is incident with [S;]
and with each line S;h C S¥g. The point (co) is incident with each line [S;] of type (b). These
are all of the incidence relations.

We now consider g-clans and give the construction of a 4-gonal family from a g-clan, the
development of which is due to Payne [43, 45] and Kantor [31]. For q a prime power a g-clan
is a set C = {A;: t € GF(q)} of 2 x 2 matrices over GF(g) such that for distinct s,t € GF(g),
(a,b)(Ag — Ay)(a,b)T = 0 has only the trivial solution @ = b = 0. We can normalise a g-clan

Tt Yt Tt Yt

such that for g odd A; = and for q even A; =
Y 2 0 2z



Now consider the particular group G = {(«a,¢,0) : a,8 € GF(q)%, ¢ € GF(q)} and define a

binary operation on G by
(@, B) - (s ¢, B) = (a+d e+ + B(a)T, 6+ B).

This binary operation makes G into a group where (a, ¢, 8)™! = (=, —¢,—f). Let C be
a normalised g-clan and let K; = A; + A] for t € GF(q). Define the following subgroups of G:

Al) = {(0,0,8): B€GF(g)°}
A*(00) = {(0,c,B): c € GF(g),a € GF(¢)*}

Alt) = {(o,a4;aT,aK;): a € GF(g)’} for t € GF(q)
A*t) = {(a,c,0K;): c € GF(q),a € GF(g)®} for t € GF(q),

where 0 is the identity element of GF(q)%. Then F(C) = {A(t) : t € GF(g) U {co}} is a 4-gonal
family for G which gives rise to a GQ S(G, F(C)) of order (¢?,q). We will denote S(G, F(C))
by S(C).

The following three theorems are results on the automorphism group of a g-clan GQ.

Theorem 1.4.6 [48, TIL.(1)] Suppose G1, G are groups and F is a 4-gonal family for G1.
If §: Gi —» Gg is a group isomorphism or a group anti-isomorphism, then S(G1,F) and
S8(Gs,0(F)) are isomorphic GQs.

(A group anti-isomorphism is a one-to-one and onto map 6 : G1 — G such that
8(g9") = 6(9')0(g) for all g,¢" € G1.)
In particular, if we have a group automorphism of G then it induces an automorphism of

5(G, F).

Theorem 1.4.7 [48, IV.1.] Let C be a normalised ¢-clan, ¢ odd, with A9 = Ko = 0. Let
S(C) = (P,B,T) be the associated GQ of order (¢?,q). Let © be a collineation of §(C) which
fixes (00), [A(00)], and (0,0,0). Then there is

a permutation ¢ — 7 of the elements of GF(q),
a nonzero element X of GF(q),
an automorphism o of GF(¢) and ,

a 2 x 2 matrix D € GL(2,q)
for which the following holds

(DT (A7 — Ag) D! — AA7 is a skew symmetric matrix (with 0 diagonal)

for all t € GF(q). (1.4.1)
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Moreover, O is induced by an automorphism of G, and is given by
oO: (O[, c, ,3) — (Ota)\_lD_T,)\_lca + }\—ZaaD—TAaD—l(aa)T,ﬁaD + Oza)\_lD_TKﬁ).

Conversely, given D, o, X and ¢ — T as just described, the © as above is a collineation of S(C).

When ¢ is odd, and if each A; € C is symmetric, 1.4.1 may be replaced by
A; = ADTAID + A; for all t € GF(g).

The automorphism © is denoted by ©(m, A, 0, D).

The automorphisms in Theorem 1.4.7 all fix the line [A(c0)], in the following theorem we

consider automorphisms not fixing [A(c0)].

0 0

0 0
then C' = {A;': 0 #t € GF(g)} U{Ao} is a g-clan with S(C) = §(C). In fact, the switch from

Theorem 1.4.8 [48, IIL.5.] If C = {A;: t € GF(q)} is a g-clan, ¢ odd, with 4¢ =

?

C to C' just amounts to interchanging the roles of A(co) and A(0) in the coordinatisation of S.

Note that from the proof of Theorem 1.4.8 in [48] the isomorphism in Theorem 1.4.8 is given
by the group anti-automorphism 6: G — G: (a,¢,8) — (B,2¢,2a). Thus the subgroup
Q1 = (GF(q) x 0) x GF(g) x (GF(q) x 0) is fixed under the isomorphism.

1.4.6 Ovoids and rosettes of GQs
Ovoids of Q(4,q)

Let Q(4,q) C PG(4,q), for ¢ odd or even, and let X be a hyperplane of PG(4,q) such that
¥ N Q(4,q) = 6 is a non-singular elliptic quadric of ¥. Then 6 is an ovoid of Q(4,¢) and an
ovoid that arises in such a way is called classical.

If g is even, then Q(4, q) is isomorphic to W (q) and so an ovoid of Q(4, q) is equivalent to an
ovoid of W(q). If W(q) C PG(3,¢), then an ovoid of W (qg) is also an ovoid of PG(3, ¢), that is
a set of g2 + 1 points of PG(3, q), no three collinear. Further, any ovoid of PG(3, ¢) is an ovoid
of a, GQ W (q)', where W(q)' C PG(3,q) and W(g)' is isomorphic to W(q) ([55]). Two ovoids of
W (q) are isomorphic under an automorphism of W (q) if and only if they are isomorphic under
an automorphism of PG(3,q) ([2, Prop. 1]). Thus, the distinct classes of ovoids of W(q) are
exactly the projectively distinct ovoids of PG(3, g).

If ¢ = 2¢, e even, then every known ovoid of PG(3,¢) is classical. For q = 2, it is straight-
forward to show that the only ovoids of PG(3,q) (and hence of W (q)) are the classical ovoids.
Further, PG(3, ¢) has only the classical ovoid when ¢ = 4, [4] (see also [25, 16.1.7]) and q = 16,
[36]. If ¢ = 2°, e 0odd, e = 2h + 1 say, and e > 3, then in addition to the classical ovoid PG(3, g)
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also contains the Tits ovoid. The canonical form of the Tits ovoid is the following set of points

of PG(3,q).
{57 +st+17%2,5,1) - 5,t € GF(q)} U{(0,1,0,0)}

where o is the automorphism of GF(q) such that o : z — 22", For q = 8, PG(3,q) contains
only the classical ovoid and the Tits ovoid, which was shown with the assistance of a computer
by Fellegara in [20] and without the use of a computer by Penttila and Praeger in [52]. For
q = 32, PG(3, q) contains only the classical ovoid and the Tits ovoid [37]. For more information
on ovoids of PG(3, q) see [35, 25] and for a discussion of the connection between ovoids of Q(4, q)
and ovoids (and spreads) of PG(3, q) see [49, 3.2.1, 3.4.1].

We now consider ovoids of Q(4,q) when ¢ is odd. As we have seen, Q(4,q) contains the
classical ovoids and further there are three non-classical ovoids of Q(4,q). The first two were
constructed by Kantor in [30]. The ovoid K1 exists for the case ¢ = pP, with p an odd prime
and h > 2. In [30] K1 is defined to be the set of points

{(Ly,2,-my®, —z +my™!) : y, 2 € GF(q) } U{(0,0,0,0,1)}

of Q(4,q) with the form zoxs + z124 + 223, where m is a non-square element of GF(q) and o
is a non-trivial automorphism of GF(q). In this thesis we shall indicate that a K1 ovoid has
associated field automorphism ¢ by calling it a K1(c) ovoid. The ovoid K2 of Q(4, q) exists for
the case ¢ = 3%"+! with r > 1. The third type of non-classical ovoid of Q(4, q) was constructed
by Thas and Payne ([65]) for ¢ = 3" with A > 3. The ovoid of Thas and Payne arises as a
subtended ovoid of the embedding of (4, ¢) as a subquadrangle in the dual of the Roman GQ
([65]). For g = 3,5 or 7, every ovoid of Q(4,q) is classical [10, 34, 16, 14, 15, 33]. For more

information on ovoids of Q(4, q) and ovoids Q(2n, q) in general, see [38].

Elation rosettes of Q(4,q)

We saw in Section 1.4.4 that the GQ Q(4,q) is dual to W(q) and that for ¢ even, Q(4,q) is
also isomorphic to W{(g). We shall use this and elations of the ambient PG(3,q) of W(q) to
construct rosettes of Q(4,q).

An elation of PG(n,q) is an automorphism of PG(n,q) that fixes a given hyperplane
pointwise and a given point on the hyperplane linewise. The hyperplane is the axis of the

elation and the point is the centre of the elation. For more details on elations see [1].

Lemma 1.4.9 [1, VIIL5 lemma 2] Let P be a point and © a plane of PG(3,q) with P € 7 and
let £ be a line of PG(3,q) such that P € £ and ¢ . The group consisting of the elations with

centre P and axis 7, acts regularly on the set of points |\ P.
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Let 7 be an ovoid of Q(4,q) and suppose that ¢ is even. Since Q(4,q) and W(q) are
isomorphic GQs for g even, there is an ovoid § of W(q) that is the image of ¢ under the
isomorphism from Q(4, q) to W (q). We will use specific elations of PG(3, q) to construct rosettes

containing 6.

Lemma 1.4.10 [59, p. 71] Let o be an elation of the ambient PG(3,q) of W (q) with centre P

and azis PL, then o can be naturally restricted to an automorphism of W(q).

Given an ovoid 6 of W(q) containing a point P we will now consider a description of § that
will be useful in the work that follows. The points of W(q) collinear with P are exactly the
points of the plane PL and so the the ¢ points of 8\ {P} are in the set PG(3,q)\ P+. Also, no
two of these points span a line of PG(3, ¢) that is incident with P, since in that case  contains
three collinear points, contradicting the definition of an ovoid in PG(3,q). Thus each of the ¢*

lines of PG(3,q) \ P incident with P is incident with exactly one further point of 6.

Lemma 1.4.11 Let P be a point of W(q) and 6 an ovoid of W(q) such that P € 6. An elation
o which has centre P and azis P maps 6 to an ovoid of W(q) containing P. Furthermore the
group consisting of the set of such elations, acting on the set of ovoids of W(q), has a rosette

based at P and containing 6 as the orbit containing 6.

Proof: By Lemma, 1.4.10, the elation o induces an automorphism of W(q) and fixes P, hence
6° is an ovoid of W(q) containing P. Recall that § has one point per line through P not in
P1 and the elation group acts regularly on the points of such lines, not P. So the ¢ ovoids
which are images of 6 under the action of the group of such elations have P as their pairwise
intersection and partition the points of PG(3,¢q) \ PL. Thus the orbit of # under this group is
a rosette of W(q) based at P.

O

We will call the rosette based at P, containing # and generated as in Lemma 1.4.11 an
elation rosette with respect to P and 6.

For ¢ even the only known ovoids of W(q) are the elliptic quadric ovoids and the Tits ovoids.
In Chapter 4 we shall see that if # is either an elliptic quadric ovoid or a Tits ovoid of W(g)
and P is a point of 8, then the elation rosette R constructed in Lemma 1.4.11 is the unique

homogeneous rosette containing § and with base point P.

Now, let 6 be an ovoid of Q(4,q) and let g be odd or even. Since Q(4,q) and W(q) are
dual GQs, there exists a spread Sy of W(q) such that Sy is the image of 8 under the duality
from Q(4, q) to W(q). Let £ be a fixed line of Sp and P a point incident with £. The plane P+

contains £ and consequently, every other line of Sy meets P in a point.
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We introduce the term rosette of spreads of a GQ to mean the dual of a rosette of ovoids.

Lemma 1.4.12 Let £ be a line of W(q) and S a spread of W(q) such that £ € S. Let P be a
point of W(q) incident with £. An elation o which has centre P and axis Pt maps S to a spread
of W(q) containing £. Furthermore, the group consisting of the set of such elations, acting on
the set of spreads of W(q), has a rosette of spreads based at £ and containing S as the orbit

containing S.

Proof: We consider the action of the elation o on the lines of S. Since ¢ is contained in the
axis of o it follows that ¢ is fixed by o. If m € S with m # £, then m N P+ is a point {Q}, say
and < m, P > is a plane m,, say. Since m,, contains P, it is fixed by o and so o(m) is a line
contained in m,,, containing @, but not P. By Lemma 1.4.9 the group of g elations with centre
P and axis P+ map m onto the ¢ distinct lines of m,, which contain @, but not P. Thus if ¢
and ¢’ are two clations with centre P and axis PL, then o(m) = ¢/(m) if and only if o = ¢’
If m' is a line of S such that m' # £,m, meeting PL in the point @', then Q # @' and so no
elation with centre P and axis P+ maps m onto m'. Thus, the orbit of S under the group of
elations with centre P and axis P1 has size ¢ and has the property that any two spreads in the
orbit intersect in exactly £.

O

If 6 is an ovoid of Q(4,q) and P is a fixed point of §, then by dualising Lemma 1.4.12 we
construct g + 1 homogeneous rosettes containing 6 and based at P. We will call these rosettes,
elation rosettes. Thus, if ¢ is even, there are ¢ + 1 elation rosettes containing 6 and based at
P, from Lemma 1.4.12, and 1 elation rosette containing 6 and based at P from Lemma 1.4.11.
However, for both known examples of ovoids of Q(4,¢q), where g is even, the elliptic quadric
ovoid and the ovoid isomorphic to the Tits ovoid of W (q), there is a unique homogeneous rosette
containing a given ovoid of that type and based at a given point. (Suppose that 6 is an elliptic
quadric ovoid of Q(4,q) with ambient hyperplane ¥ and that 6’ is a second elliptic quadric
ovoid with ambient hyperplane ¥'. If 6N ¢’ = {P}, then 7 = £ N ¥’ is the unique tangent plane
to @ at P in X. Thus the only elliptic quadric ovoids of Q(4, ¢) that intersect 8 in exactly P are
the ¢ elliptic quadric ovoids whose ambient hyperplane contains w. This is the unique rosette
containing # with base point P. In the case where 6 is isomorphic to a Tits ovoid of W(q) see
Lemma 4.1.7.) Thus the ¢ 4+ 2 elation rosettes are identical.

In the case where q is odd, there are ¢ + 1 elation rosettes containing 6 and based at P.
For 6 an elliptic quadric ovoid, the ¢ + 1 elation rosettes are identical (by the same argument
presented for the ¢ even case in the preceding paragraph). In Chapter 2 we shall show that
if 8 is a K1 ovoid, then there exist a point P such that the ¢ 4+ 1 elation rosettes based at P

are distinct. We shall also construct homogeneous rosettes of K1 ovoids, that are not elation
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rosettes.

1.5 Algebraic topology on a simplicial complex

In this section we introduce the concept of a simplicial complex and the homology and co-
homology groups of the simplicial complex over an abelian group. Useful introductory texts
to algebraic topology are [23], [58], [67] and [32]. We will not be concerned with the more
general topological aspects of simplicial complexes only the calculation of their homology and

cohomology, for which the results that follow will suffice.

1.5.1 Modules

Let R be a ring with identity 1 # 0. A left R-module A is an additive abelian group together

with a function p: R x A — A, written p(r,a) = ra, such that

(r+r)a = ra+ra,
(rrYa = r(r'a),
rla+ad) = ra+rd,
la = a

where r,7/ € R and a,a’ € A. It follows that 0a = 0 and (—1)a = —a.

We can define right R-modules in the obvious manner. Since we will not be using right R-
modules in what follows, we will refer to a left R-module as an R-module, or simply a module
if the ring R is understood from context. If I is a field, then an -module is a vector space over
F.

Note that for any abelian group A we may find a ring R such that A is an R-module. As an
example, if A is any abelian group, then we may turn it into a Z-module. If m is any positive
integer, and a any element of A, then define ma =a+a+ ...+ a (m times). If we also define
(—m)a = —(ma) then this makes A a Z-module.

A subset S of an R-module A is a submodule, if S is closed under addition and if r € R,
s € S imply rs € S; then S itself is an R-module. As S is a subgroup of A, we may form the
factor group A/S, which is also an R-module, since r(b+ S) = rb+ S. The R-module A/S is
called a quotient module.

If A and B are both R-modules, then a: A — B is an R-module homomorphism if

ala+d') = aa+ ad, a(ra) =r(ala))

where r € R and a € A.
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We define Hompg(A, B) to be the set of all R-module homomorphisms from A into B. If
f € Homp(A,B) and t € R, then we define tf : A — B by (tf)(a) = t(f(a)) for all a € A. If

the ring R is commutative, then we have that

(tf)(ra) = t(f(ra)) = tr(f(a)) = ri(f(a)) = r[(¢f)(a)],

which shows that tf € Hompg(A,B) and so Hompg(A, B) is an R-module. In particular, if
A = B and R is a field, then Homp(A, A) is the space of linear functionals of the vector space

A, that is the dual vector space.

1.5.2 Simplicial complexes, homology and cohomology

A simplicial complex I' = (V, S) consists of a set V' of vertices and a set S of finite non-empty

subsets of V called simplexes such that
(a) Any set consisting of exactly one vertex is a simplex.
(b) Any non-empty subset of a simplex is a simplex.

A simplicial complex IV = (V’,S’) is a subcomplex of I' = (V,5) f V' C V and $' C S and a
proper subcomplex if I # T.

A simplex containing exactly g + 1 vertices is called a ¢-simplex. The dimension of a
g-simplex is defined to be g. The dimension of the simplicial complex I', denoted by diml, is
defined to be equal to —1 if T is empty, equal to n if I' contains an n-simplex but no (n + 1)-
simplex and equal to oo if I' contains n-simplexes for all n > 0. The simplicial complex I is
said to be finite if it contains only a finite number of simplexes.

If s and s’ are simplexes of " and s’ C s, then s is called a face of s (a proper face if
s’ # s) and if &' is a p-simplex, it is called a p-face of s.

A simplex becomes oriented, or is given an orientation, when we specify a particular
ordering of its vertices. Two orderings of the vertices which agree up to an even permutation of
the vertices determine the same orientation. If ¢ is the simplex s with a particular orientation,
then we represent s with the opposite orientation by —o.

Let R be a finite ring and I’ a simplicial complex. Let Sg(I', R) be the R-module whose
elements are the formal linear combinations ), rs0, where o runs through the oriented g¢-
simplexes of I' and r, is an element of R. The operations of the R-module are defined as
follows:

ZT‘UO'-*-ZT‘:,O' = Z(ra—i-r,',)o
[+ ag

a

r (Z raa> = Z(rra)a for r € R.

o
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Now let B be a list of the g-simplexes of I' with each simplex given an orientation. Then since
each oriented ¢-simplex is either o0 or —o for a unique element o of B, it follows that each
element of S¢(I', R) can be written uniquely in the form

Z Te0 + Z rl (—o)

o€B oEB
where r, and r/, are both elements of R.

Let Sy(T, R) be the submodule of S¢(T', R) generated by elements of the form ro + r(—o),
where r € R and o is an oriented g-simplex. We define Cy(T", R) to be the quotient module
Sq(T,R)/Sy(T, R). An element of the R-module Cy(T', R) is called a g-chain of I' over R.
Essentially, in Cy(T, R) we are allowed to replace ro by —r(—o) wherever we please. If I is
non-empty, then we define C_;(T', R) = 0 and if T has finite dimension n we define Cy(I', R) =0
for ¢ > n.

The g-th boundary operator is an R-homomorphism 9, : Cy(T', R) = Cy—1(T', R). Let
s = (PpPy ... P;) be an oriented g-simplex of ' (and so also a g-chain), then the action of J; on
s is

q

6(1(8) = Z(—l)i(P()Pl o Pi_1Pi+1 e Pq).
1=0

The (g — 1)-simplex {PyPy ... Pi_1Piy1... Py} is the face of s opposite P;. Note that Jy(s) is
independent of the ordering of the vertices we use to represent the orientation of s. If we take an
even permutation, T, on the ordering of the vertices of s, we may consider the permutation as
the product of a permutation, 7}, fixing the vertex P; in the i-th position, and a permutation,
Ty, shifting P; r positions. In terms of the formula for J;, T1 induces a permutation on the
vertices of the face of s opposite P;, while T5 multiplies the oriented face opposite F; by a factor
of (—1)". Since T is even, Ty and T3 are either both odd or both even. In either case, the
orientation of the face of s opposite to P;, as it appears in 9,(s) is preserved.

We extend 9, to act on g-chains of I" over R by letting it act linearly, that is,
04(re0) =1:0q(0) and 9y(c + o'} = 8g(0) + 9,(d").

where 7, is an element of R and ¢ and ¢’ are oriented ¢-simplexes of I'. The (g — 1)-chain 94(s)
is called the boundary of s. Note that since 9,(0) + J4(—0) = 0 for any g-simplex o. The
operator d; does not depend on which representation of a g-chain we choose.

The following lemma is an exercise in algebra:
Lemma 1.5.1 J;0 0g41 = 0.

Proof: Let s = (P, Pi,...,P;41) be a oriented (g + 1)-simplex of I'. Now

Oq 2 8q+1 (8) Bl Z k)ij(P()Pl o .Pi._1131;+1 vee Pj—l-Pj—H 50 Pq+1),
0<i<j<g+1
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where k;; is some element of R for each 7,7, 0 <4 < j < ¢+ 1. We now show that every k;; = 0.
The oriented (g — 1)-simplex (PyPy... P 1Py ... Pj_1Pjy1... Pyyy) appears in 8y - - - 8541(s)

either by 0,41 “removing” the vertex P; and 8, removing the vertex Pj, or vice versa. Hence
iy = (—1F(= 1+ (-1} (-1) =0,

Thus 8, 0 8541(s) = 0 for any oriented (¢ + 1)-simplex s and it follows that Jy 0 9441 = 0.
(]

A g-chain s such that 9;(s) = 0is called a g-cycle and if s = Jg.11(s’) for some (g+1)-chain &',
then s is called a g-boundary. Two ¢-chains that differ by a boundary are called homologous
and a g-cycle that is homologous to the zero g-chain is called null homologous. The set of
g-cycles form an R-module (ker(0d,)) denoted by Z,(I', R) and the set of g-boundaries also from
an R-module (im(9y4+1)) which is denoted by B,(T', R). If s is a g-boundary with s = 941 (s'),
then 9,(s) = 9y 0 9g+1(s") = 0 by Lemma 1.5.1 and so By(T, R) is a subgroup of Z,(T', R).
The quotient group Z4(T', R)/By(T', R) is called the g-th homology group of I' over R, and is
denoted Hy(T', R). Note that H_1(I', R) = 0 and if I has finite dimension n, then H,(I', R) = 0
for g > n.

Let A be an R-module, then Hompg(Cy(L', R), A) is the abelian group of R-homomorphisms
from Cy(T, R) to A. We will denote Hompg(Cy(T', R), A) by CU(T', A), where A is understood
to be an R-module. Any element of C%(I", A) is called a g-cochain of I into A.

The g-th coboundary operator is a group homomorphism §9 : C9(T', A) — CITY(T', A). Let
¢ be a g-cochain and s = (PP, ... Py41) an oriented g + 1-simplex of I'. Then the action of §%¢
on s is defined as

q+1

89c(s) = (=1)'c(RoPy... Py Pig1 ... Pypy).
=0

By linearity this determines the action of 49¢ on all ¢ + 1-chains. The g+ 1-cochain §9c is called

the coboundary of c.

We have an analogous result to Lemma 1.5.1 for 67:
Lemma 1.5.2 6971067 = 0.
The following lemma links the boundary and coboundary operators:

Lemma 1.5.83 Let s be a (g + 1)-chain and ¢ a g-cochain. Then
d9¢(s) = c(Og+18)-

Proof: First let s = (PyP;...Py41) be an oriented (g + 1)-simplex of I'. Then
q+1

0g41(s) = Y _(—=1)*(PoPy... Pi1Piy1 ... Pyya),
1=0
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and so
q+1

c(Bg+1(8)) = Y _(—1)'c(PoPy ... Pi1Pi1 ... Pyy1)
1=0

since ¢ is an R-homomorphism. Now by definition

q+1

8%c(s) =Y _(=1)'c(PoPy... Pio1Piy1... Pypa)
1=0

and so §9¢(s) = c(0y+1(s)) for any oriented (g + 1)-simplex s. From this it follows that §%¢(s) =
c(9g+1(s)) for any (g + 1)-chain s.
O
A g-cochain ¢ such that 6%¢ = 0 is called a g-cocycle and if ¢ = §7~1¢’ for some (g — 1)-
cochain ¢/, then ¢ is called a coboundary. Two g-cochains that differ by a boundary are called
cohomologous. Z4(T', A) is the group of g-cocycles (ker(8?)) and BI(T', A) is the group of
g-coboundaries (im(§971)). Lemma 1.5.2 tells us that BY(T', A) is a subgroup of Z4(T', A). The
quotient group Z9(T', A)/B%(T', A) is the ¢-th cohomology group of I over A, and is denoted
HI(T, A).
In the special case where T is finite and R = A = F for some field F we have the following

theorem:
Theorem 1.5.4 Let I’ be a non-empty, finite simplicial complex and F a field. Then
Hy(T,F) 2 HYT,F) forallqg> —1.

Proof: Let the dimension of I" be n, which is necessarily finite. If ¢ = —1 or ¢ > n then
H,(T,F) = HI(I',F) = 0.

Now suppose that 0 < ¢ < n. Since I is finite and F is a field, C,(T',F) is a vector space
over F, of dimension k, say, and CI(T,F) is the dual space of Cy4(I',F). Z,(I',IF) and By(T',F)
are subspaces of Cy(T',F). We will denote the respective dimensions of Z4(T',F) and B,(T',F)
by k1 and k.

Now

annihilator(B,(T,F)) = {ce€ CYT,F): c(s) =0forall s € By(I',F)}
= {ce CUT,F): ¢(87s') =0 for all s’ € Cyrr (T, F)}
= {ce€ CYL,F): §%(s") =0 for all s' € Cg31(T,F)}
— Z9(T,F)

Thus Z4(T', F) is a subspace of C4(T', F) with dimension k — k3. By a similar argument we obtain
that annihilator(B4(T,F)) = Z4(T',F) which implies that the dimension of BY(T',F) is k — k.
Now, the dimension of Hy(T,F) = ki — k2 and the dimension of HY(I',F) = (k— k) — (k—k1) =
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ki1 — ko. Since Hy(I',F) and HY(I',F) are vector spaces over I with the same dimension, we

have that H,(T,F) = HI(T,F).

1.5.3 Cohomology groups of a simplicial complex

Recall, that in the previous section we defined C4(T, A) to be the group Homp(C,(T', A)) where
A was understood to be an R-module. By linearity, if ¢ is any element of Homg(Cy(T', A)), then
¢ is determined by how it maps the oriented g-simplexes. If o is an oriented g-simplex of I", then
the only restriction on ¢(o) is that ¢(o) = —c(—0). At this point we observe that the abelian
group C4(T', A) is independent of the ring R. So for any simplicial complex I' and any abelian
group A we will define the ¢-th cohomology group of I into A, without reference to any ring, or
to A as an R-module. The group C%(T', A) is defined to be the group of alternating functions
from the oriented g-simplexes into A (where a function c is alternating if ¢(o) = —c¢(—0o) for all
oriented g-simplexes o). We then define the coboundary operator and cohomology group as in

Section 1.5.2.

1.5.4 The simplicial complex of a graph

Let G be a graph with vertex set V and edge set E. We define I'¢ to be the simplicial
complex which has as 0-simplexes the vertices of G, 1-simplexes the edges of G, 2-simplexes the
complete subgraphs on 3 vertices and in general, has as g-simplexes the complete subgraphs on
q + 1 vertices.

If T is a simplicial complex, then the g-skeleton I'Y of I is the simplicial complex consisting
of all p-simplexes of I for p < q. The 1-skeleton of I" is the simplicial complex of 0-simplexes
and 1-simplexes of I', which is a graph. The 1-skeleton of I' is G.

1.5.5 Homology and cohomology over Z,

Suppose that T" is a simplicial complex and that R is a ring with even characteristic, that is
—r = r for any 7 € R and hence (—r)(—o) = ro for any r € R and oriented ¢-simplex o.
Recall, from the construction of Cy(I', R), that if ¢ is an oriented g-simplex, then the g-chain
represented by o is the same as that represented by o + (0 + (—0)) = (1 +1)(0) + (—0) = —0.
In other words, the orientation of the simplex is unimportant and Cy(T', R) may be considered
as the R-module of formal linear sums of g-simplexes (unoriented) of T, over R.

In the case where R = Zj, we may represent Cy(I', R) as follows. The elements of Cy(I', R)
are the subsets of the set of g-simplexes and the abelian group operation is symmetric difference

on the subsets. Given an element s of Cy(T', R), as a sum of g-simplexes, the subset of g-simplexes

20



corresponding to s contains those g-simplexes whose coefficient in s is 1. The boundary of a
g-simplex s is the set of (¢ — 1)-faces of s and the boundary of a g-chain o is the symmetric
difference of the sets of (¢ — 1)-faces of the g-simplexes of 0. Note, that from the definition of
an R-module, we know that 1.0 = ¢ and 0.0 =0 for any o € Cy(T, R).

If we consider the cohomology group C4(T', A) where A is a Zs-module, it should be noted
that A has characteristic 2, since for a € A we have that a+a =1-a+1-a = (1+1)-a =0-a =0.

In particular, we now consider the vector space Hy(T', Z3), for some finite simplicial complex
I'. Let o be a l-cycle of T, then 81(0) = 0 and so each O-simplex of ' is contained in an
even number of 1-simplexes of ¢ (the number may be 0). Let ¢’ be a 1-boundary of T' with
o' = 8y(0"), then ¢ is the symmetric difference of the sets of 1-faces of the 2-simplexes of ¢”.

Let o = {s1,89,... ,8n} be a 1-cycle of I'. We say that o is an elementary 1-cycle of I, if
each vertex of I appears in exactly none or two 1-simplexes of 0. We say that ¢ is induced if
for any 1-simplex s such that ;(s) = {P,Q} with P € 0,(s;), @ € 01(sj), then s € 0. If 0 is
an induced 1-cycle that is not the boundary of a 2-simplex, we say that o is a proper induced

1-cycle.

Lemma 1.5.5 A 1-cycle of T' may be written as the sum of elementary 1-cycles, with no com-

mon 1-simplezes.

Proof: Let o be a l-cycle of T, which we represent as the set {s1,s2,...,s,}, where the
s; are distinct 1-simplexes of I'. Let 7 € {1,2,... ,n} and let 0i(s;) = {P1, P2}, where P,
and P, are O-simplexes of I". Since o is a 1-cycle, there is an 4; such that 1 < ¢ < n and
01(ss,) = { P, P3}, for some O-simplex P3 of I'. Similarly, there is an i3 such that 1 <3 <n
and 0i(s;,) = {Ps, P4}, for some O-simplex P, of I'. Continuing this process will eventually
yield an i, such that 1 < i, < n and 9;(s;,) = {Pr41, P1}. The l-cycle g; = {4, Si;, Sizy-- -, Si, }
is an elementary 1-cycle. If we now choose s; € o \ 0;, we can generate a elementary l-cycle
contained in o and disjoint to o;. Continuing this process gives o as the sum of elementary
1-cycles.

O

Now we prove a lemma showing that we may break down an elementary 1-cycle into induced

1-cycles.
Lemma 1.5.6 An elementary 1-cycle of ' can be written as the sum of induced 1-cycles of T'.

Proof: Let o = {s1,82,...,8,} be an elementary 1-cycle of I such that 9;(s;) = {F;, Piy1}
for 1 < i <n-—1and 0i1(sp) = {Pn,P1}. If o is an induced l-circuit, then there is no
more to show, so suppose that o is not induced. Since o is not induced we may assume,

without loss of generality, that for some ¢, 7 # 1,2,n there exists a 1-simplex s with 9;(s) =
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{P1, P;}. Then o may be written as the sum of the elementary 1-cycles {sy,s2,...,8;-1,s} and
{84y 8i+1,--- s5n, S}, both of which have fewer elements than 0. We continue this process until

we have written o as sum of induced 1-cycles.

Combining Lemma 1.5.5 and Lemma 1.5.6 gives us the following result.
Corollary 1.5.7 A l-cycle of I' can be expressed as the sum of induced 1-cycles of T'.
Thus we have the following theorem.
Theorem 1.5.8 H(T',Zs) is trivial if and only if each induced 1-cycle of T is a 1-boundary.

The above definitions and results make more intuitive sense in the graph I'l, the 1-skeleton
of I'. Recall that a 2-simplex of T is a triangle in T'!, a 1-simplex an edge and a 0-simplex a
vertex of T'l. In I'! a 1-cycle of I is a set of edges such that each vertex appears in an even
number of edges, that is, the set of edges of a circuit of I'l. An elementary l-cycle is the set
of edges of a elementary circuit of I'! and an induced 1-cycle is the set of edges of an induced
circuit of T'!. Lemma 1.5.5 says that every circuit may be decomposed into elementary circuits,
while Lemma 1.5.6 says that any elementary circuit may be decomposed into induced circuits.
Finally, Theorem 1.5.8 says that H'(T,Zs) is trivial if and only if each induced circuit of the

raph T'! can be decomposed into triangles.
g

1.6 Covers of a graph and covers of a geometry

In this section we introduce the cover of a graph and the cover of a geometry, as in [12] (see
also [56]).

Let G be a graph, then an m-fold cover of G is a pair (G, p) where G is a graph and p is
a map from G to G satisfying:

(i) For any vertex P € G, p~!(P) consists of m pairwise non-adjacent vertices
(ii) For any edge e of G, p~!(e) consists of m disjoint edges
(iii) For any non-edge {P,Q} of G, p~! ({P,Q}) is a graph with no edges.

If G is the point graph of a geometry S and (G, p) satisfies

(iv) For any line £ of S, if Py = {P € P: P I £}, then p~'(P,) consists of m disjoint complete
graphs

then we can form a geometry S with pointset the vertices of G' and lines (as sets of points)

defined to be the complete graphs from (iv). The map p naturally induces a map from S to
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S, which, introducing an abuse of notation, we also call p. The pair (S,p) is called an m-
fold cover of S. The geometry S will be called the covering geometry and the map p the
covering map. We will often take the existence of the map p to be understood and call S
an m-fold cover of S. Any element of p~1(P) will be called a cover of P and similarly, any
element of p~1(£) a cover of £,

Note that if (iv) is satisfied, and £ is a line of S, then (i) and (ii) imply that each line in
the set p~1(£) has the same size as £ (as a set of points). Also, if P I £, then each point in
the set p~!(P) is incident with exactly one element of p~!(¢). This means that if £ (as a set of
points) is {Py, Py, ... , Ps11}, then each line of the set p~*(¢) has the form {P{,Pj,... , P}, },
where P! € p~Y(P;), for i = 1,2,... ,s+ 1. That is, P’ incident with ¢' in § implies that p(P’)
is incident with p(¢') in S.

If (S,p) is an m-fold cover of the geometry S, S is the dual geometry of S and S" is the
dual geometry of S, then it is relatively straight-forward to show that (3/\, p) is an m-fold cover
of .

Let G be a graph, I'g the simplicial complex of G and A an additive abelian group of order
m. To simplify matters, we will identify a vertex of I'¢ with the corresponding vertex of G, and
a 1-simplex of I'¢ with the corresponding ordered pair of adjacent vertices of G. Recall that
a l-cochain ¢ of I'g into A is a map from the set of ordered pairs of adjacent vertices of G to
A, such that ¢(P,Q) = —c(Q, P) for {P,Q} any pair of adjacent vertices of G. An algebraic
m-fold cover of G over A is an m-fold cover of G, (G,p) where G is the graph with

Vertex Set: {(P,a): P€G, a€ A}
Adjacency: (P,a)~ (Q,8) f P~ Q and ¢(P,Q) =a—p

and p is the map p((P,a)) = P. Any l-cochain c defines an m-fold cover of G in the above
way. If G is the point graph of a geometry S and (S,p) is an m-fold cover of S, then we say
that (S, p) is an algebraic m-fold cover of S.

Let G be the point graph of a geometry S and let (G, p) be an algebraic m-fold cover of G.
We investigate conditions under which condition (iv) above is satisfied.

Let £ be a line of S such that Py, = {P1, P,... ,Psy1}, then (P, ) is collinear to the set
of points {(P2,a — (P, P2)), (P3, & — ¢(P1, P3)), ..., (Pst1, — ¢(P1, Psy1)). Thus, p~ 1 (Py)

consists of m disjoint complete graphs if and only if the m complete graphs have vertex sets
{(P1, Ot), (Pz,Ot = C(Pl,Pg)), o 2y (Ps—i—la o — C(Pl, Ps+1))} for o € A.
This is true if and only if

(P, ¢ — c(Py, P)) ~ (Pj,a — ¢(Py, P;)) for all P;, P; where i # j, 4,5 # 1 and o € A.
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Writing & for the first coboundary operator 4%, we see that this is true if and only if
dc(P1, P, Pj) =0 for all P;, P; where i # j and 4,5 # 1.
Equivalently,

6C(Pi)Pj7Pk) = C(-Pi)-Pj)_c(-P’i;Pk)‘i‘c(]Dj,Pk)
= (c(P1, Bj) — c(P1, B)) — (¢(Pr, Py) — c(P1, B)) + (c(P1, Py) — c(P1, Pj))
= 0,

for all P;, P; where 4,5,k are distinct and 4,5,k # 1. Thus (G, p) gives rise to an algebraic

m-fold cover of § if and only if
dc(P, @, R) = 0 for all distinct collinear points P, @, R.

We will call (G,p) and (S,p) the algebraic m-fold covers of G and S respectively, defined by
¢, or say that ¢ defines (G, p) and (S,p) respectively.

If (S,p) and (3’, p') are two algebraic m-fold covers of the geometry S, defined by ¢ and ¢
respectively, such that S and S are isomorphic geometries, then we say that (S, p) and (S, p')
are equivalent. Where S and S’ are understood to be covers of & , we say that ¢ and ¢ are
equivalent. Note that if ¢ and ¢’ are cohomologous, with ¢’ = ¢ + b, where § is the first

coboundary operator 1, then ¢ and ¢’ are equivalent, and the map i : (P, ) — (P,a + b(P))

. . . i =/
is an isomorphism from S to .
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Chapter 2

The Kantor ovoid K1(o)

In this chapter we investigate the K1(c) ovoid of Kantor constructed in [30]. The K'1(o) ovoid
exists for g = p”, where p is an odd prime, b > 2 and o is a non-trivial automorphism of GF(g).
For this chapter we will assume that ¢ is of the above form. In Section 2.1 we investigate the
connection between the K1(o) ovoid and the g-clan (see Section 1.4.5) of Kantor ([31, (4.1)
Theorem]), via the work of Thas on flocks ([63]). In Section 2.2 and Section 2.3 we consider
the symmetry properties of the K1(o) ovoid and the intersections of the K1(o) ovoid with
the elliptic quadric ovoids of Q(4,q). Section 2.5 contains some characterisations of the K1(o)
ovoid, while Section 2.6 is dedicated to constructing rosettes of Q(4,q) containing a K1(o)

ovoid.

Let the non-singular quadric Q% (5,q) be given by the equation zozs + z124 + z2z3 = 0 in
PG(5,q). In section 5 of [30] Kantor constructs a family of ovoids of Q% (5, ¢), given by the set

of points
{(0,0,0,0,0,1)} U{(L,y, 2,27, —my”, —z" " + my"*") : y,z € GF(q)}

where ¢ and 7 are automorphisms of GF(q), not both trivial, and m is a fixed non-square
element of GF(q).

In [30], Kantor makes the comment that if we let 7 = 1, then the above ovoid of Q7 (5,¢)
is contained in a hyperplane section of Q1 (5,q) (with equation z2 = x3) and hence is an ovoid
of the GQ Q(4,q). In this case, Q(4,q) is given by the equation zozs + z123 + 3 = 0 and the

ovoid comprises the following set of points
{(0,0,0,0,1)} U{(L,y, 2, —my”, =2 + my"*') : y,z € GF(g)}

Any ovoid of Q(4, q) that is isomorphic to this set of points is a K1(o) ovoid of Q(4, q).
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2.1 Flocks and Ovoids

If we represent the above K1(o) ovoid as the intersection of (4, q) with the variety defined by
the equation mz{ +x8—1x3 = 0, then it may be viewed as a perturbation of the classical elliptic
quadric ovoid that is the intersection of Q(4, ¢) with the hyperplane with equation mxz;+x3 = 0.
To put the K1(o) ovoid into a broader geometrical context, we will consider the connection
between ovoids of Q(4,q) and flocks of a quadratic cone of PG(3, g).

Let C be a conic of PG(2,q) and let £ be the quadratic cone with vertex a point V' of
PG(3,q) \ PG(2,q) and base C. A flock of K is a set of ¢ disjoint conics that partition the
points of K\ {V} (see [21] and [19, p.254]). Note that we can equivalently define a flock to be
the set of planes containing these ¢ conics. We will swap between the two definitions according
to which is more convenient. The following result, proved independently by Thas and Walker
([63] and [67], respectively), shows how we may construct an ovoid of Q1 (5,q) from a flock of
PG(3,9).

Theorem 2.1.1 Let K be a quadratic cone of PG(3,q) and F a flock of K. Then F gives rise
to an ovoid of the Klein quadric QT (5,q).

Proof: ([63]) Consider the flock F = {C1,...,C,} (of conics) of the quadratic cone K with
vertex V. Embed K into @ = Q7 (5,q) and let L denote the polarity of Q. Note Cf is a conic
on Q ([27, Theorem 22.7.2)).

If m; is the plane containing C; then m;N; is an exterior line to Q, for i # 7, and so (7#, 7er)
is a non-singular three dimensional elliptic section of Q. Hence no two points of Cil U CJJ-- are
on a common line of Q. Now (m;, m;) is the section containing K and so N 7rJJ-- is a tangent
to Q. Thus Ci- N CJJ- = {V}. So now the set C{- U...U Cj- is a set of ¢> + 1 points, no two on a

common line of @, which is an ovoid of Q.

O

Corollary 2.1.2 Let K be a quadratic cone in PG(3,q) and let F = {m,... ,mq} a flock (of
planes) of K. If there is a point P € PG(3,q) such that P is an exterior point to K and P € ;

fori=1,...,q, then F gives rise to an ovoid of Q(4,q).

Proof: By the construction outlined in Theorem 2.1.1, the flock F gives an ovoid O of Q* (5, g).
If the planes of F have a common exterior point P, then the conic planes that form O are
contained in P1; a common parabolic section of Q1 (5,q). Such a section is isomorphic to
Q(4,q) and since O is a set of ¢> + 1 points of Q(4,q), no 3 collinear, O is an ovoid of Q(4, g).

a
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In [63, Section 2.5.3] Thas constructs a flock of a quadratic cone of PG(3, ¢) from a ¢-clan.
We now consider the flock F, constructed in this manner from the ¢-clan of Kantor given in
[31] and derive the corresponding ovoid of Q% (5,q). We will show that the ovoid of Q™ (5, q)
corresponding to the flock F, is an ovoid of Q(4,q), for Q(4,q) C Q*(5,q) and, in fact, is a
K1(0) ovoid of Q(4,q). Let K be a quadratic cone of PG(3,q) given by the equation zgz; = 3
(and so with vertex V = (0,0,0, 1)), then the planes of the Kantor flock F, are

m: txg—mt’zy +x3 =0,

where o € Aut(GF(q)), o # identity, m is a fixed non-square of GF(q) and t € GF(q).
Now embed the PG(3,q) containing K into the PG(5,q) containing Q¥ (5, q), given by the

equation zoxy + T223 + w425 = 0, so that K occurs as the intersection of Q1 (5,¢) and
¥ = {(zo, %1, %2, 3, X4, %5) : T2 + z3 = 0 and x5 = 0}.

Thus, in this representation, PG(3, ¢) is in coordinates (zo,z1,Z2,z4), the cone K has equation
zoz1 — 3 = 0 and 7 is the intersection of ¥ with the hyperplane of PG(5,q) with equation
trg — mt’x1 + x4 = 0.

If we let L represent the polarity of the Q" (5, q), then
71'#‘ = ((—-mt’,t,0,0,0,1),(0,0,1,1,0,0),(0,0,0,0, 1,0)).

The point (0,0,1,—1,0,0) is on the plane m; for all ¢ € GF(q) and so the ovoid constructed
from F, is contained in the hyperplane (0,0,1,~1,0,0)+, which has equation x5 = z3. The
corresponding section of Qt(5,q) is the Q(4, ¢) with equation zoz1 + 23 + z425 = 0.

Since x9 = x3, we suppress the x3 coordinate. In PG(4,q) with homogeneous coordinates

(zo, 1, T2, Ta, T5); Q(4,q) has equation zoz; + 23 + 2425 = 0 and

- = ((0,0,0,1,0),(0,0,1,0,0), (—mt°,t,0,0,1))

= {(zo,x1,22,24,%5) : To+ mt’ lzy =0 and 21 — trs = 0}.

Now 73 N Q = {(—mt°,t,z,—22 + mt" 1, 1) : z € GF(q)} U {(0,0,0,1,0)} is a conic, Ct, say,

and so the ovoid is
0y = {(—mt°,t,z,—2% + mt°t1 1) : t,2 € GF(q)} U {(0,0,0,1,0)}.

This is exactly the form of the (canonical) K1(c) ovoid of Kantor as given in Kantor [30].
The line 4, = ((0,0,1,0,0),(0,0,0,1,0)) is a tangent to the Q(4,q) and has the property

that ¢ C r,ﬂ- for : = 1,...,q. The line £, is known as the special tangent line to 6,. The

point X, = (0,0,0,1,0) has the property that X, € m- N Q(4,q) for i = 1,...,q. In fact,
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X, =CNCy, for t,t' € GF(q) and t # t'. The point X, is known as the special point of the
ovoid 8. Any element of the set {m;" : t € GF(q)} will be called a plane of §,.

Now if F,, is the Kantor flock defined by fixed non-square m and field automorphism o and
F! is the Kantor flock defined by fixed non-square m’ and field automorphism o, then by the
proof of [31, Theorem (4.1)(i)] and the fundamental theorem of g-clan geometry ([47]), it follows
that F, and F, are projectively equivalent. That is, there is an automorphism of ¥ that fixes X
and maps F, onto F,,. This is the case if and only if there is an automorphism of PG(5, q) that
fixes Q*(5,q), Q(4,9) and maps the ovoid corresponding to F, onto the ovoid corresponding
to F!. Hence the ovoids are isomorphic in Q(4,¢g). This means that the isomorphism class of
K1(co) ovoids does not depend on the non-square m.

Similarly, if F, and F; are two Kantor flocks, defined by the same fixed non-square m
and field automorphisms ¢ and 7, respectively, then by the proof of [31, Theorem (4.1)(i)] and
the fundamental theorem of g-clan geometry ([47]), it follows that F, and F,, are projectively
equivalent if and only if 7 = o or 0~!. By a similar argument to above, the ovoids corresponding
to F, and F,, respectively, are isomorphic in Q(4, q) if and only if 7 = ¢ or o1

As we shall see in Chapter 3, the Kantor flock F, is interesting not only because it gives
the K'1(o) ovoid but also because the g-clan GQ associated with F,, contains a Q(4,q) subGQ,

in which the subtended ovoids are K'1(o) ovoids.

2.2 Symmetry properties of the K1(o) ovoid

Recall in Section 2.1 that 6, was an ovoid of Q(4,q) In this case Q(4,q) was the non-singular
quadric in PG(4, q), in coordinates (g, T1, %2, ¥4, T5), defined by the equation zox1 +x3+z4z5 =
0, lying on the Klein quadric Q% (5,q) in PG(5, q). Since from this section onwards we will not
be using the embedding of Q(4, ¢) in @* (5, q), we define Q(4, ) to be the non-singular quadric
in PG(4, q), in coordinates (xg, 1, T2, 3,74), defined by the equation zoz1 + 73 + z3z4 = 0. In

this representation we let

0, = {(=mt’,t,z,—2%>+mt° 1) t,2 € GF(q)} U{(0,0,0,1,0)}
X, = (0,0,0,1,0)

¢, = {(0,0,0,1,0),(0,0,1,0,0))

o zo+mt®lz =0

z1 —txg =0, for t € GF(q).

Note that we are now using 7; for the plane 7;- in Section 2.1, and so we will let C; denote the
conic that is the intersection of 7y and Q(4,q). As in Section 2.1 any plane 7 for ¢t € GF(g)

(that contains the special line £, and meets 6, in a conic) is called a plane of 6,.
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In this section we will investigate particular elements of the stabiliser of 8,, in the group of
Q(4, q) and what they tell us about the symmetry properties of 6,. By the construction of the
K1(o) ovoid from the flock F,, we can see that any element of the stabiliser of 8, in the group
of Q(4, q), must necessarily fix the point X, and the line ;.

For the calculations that follow it will be useful to consider the point P, € m; with the
coordinates (—mt?,t,0,0,1), so m = (¢, P;). For t € GF(q) \ {0}, let S; be the automorphism
of PG(4, q) defined by

Sy(z0, T1, T2, T3, 34) = (1720, b1, VT H129, 87 23, 4).
Note that S; fixes Q(4,q), X, and £,. Also

Si(Py) = (-mt7t?,¢,0,0,1)
= (—m(tt)7,tt',0,0,1)

= Ptt’a

which means that S; : 7y — m and thus S; fixes 6,.

For t € GF(q) let T; be the automorphism of PG(4, ¢) defined by
Ty(zo, x1, T2, T3, 24) = (—mt® x4 + o, trs + 21, T2, —txg + Mtz + 23 + mt°xy, 24).
The automorphism T; fixes Q(4,q), X, and ¢,. Also

Ty(Py) = (-mt®—mt"”,t+1,0,-,1)
= (-m(t+1)7,t+1,0,-,1)

S PRRT

which means that T} : my — m4¢ and thus T; fixes ,.
From the automorphisms T; it is immediately obvious that the group of 6, is transitive on
the planes 7. However, by using both the S and T automorphisms we can say more than this,

since
TSy _¢(mo,m1) = Ty(mo, my—¢)
= (’ITt,ﬂ'tl)

Thus the group of 6, is transitive on the ordered pairs of planes (m,7y), t,t' € GF(q) and
t # t'. This is equivalent to saying that the Kantor flock F, is doubly transitive.
Now we consider the orbits of the group of the canonical K1(o) ovoid 6, on the points of

0,. One orbit consists of the special point X,. Suppose that P and P’ are two points of the set
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C:\ {X,}. Let the point @ be the intersection of the line £, with the line (P, P'). Recall from
Section 1.2 the symmetry pg, where for R € Q(4, q) we have

R if (R, Q) is tangent to Q(4,q)

po(R) = _
R’ if (R,Q) meets Q(4,q) at R’ # R,

is the automorphism of PG(4,q) that fixes Q(4,q). In fact fixes each subspace of Q(4,q)
containing Q. Thus ug fixes £,, X4, my for t' € GF(q) and hence the ovoid 6,. We also have
that ug(P) = (P'). Now suppose that P and P’ are two distinct points of 8,, where (P, £,) = 7
and (P',£4,) = my for some t,t' € GF(q) with ¢t # t'. Since we have transitivity on the planes
of 0, there exists U, an element of the stabiliser of 8,, that maps m; to my. Hence, U(P) is an
element of Cy \ {X,} and by the above may be mapped onto P’ by an element of the stabiliser

of 6, (possibly 0). We may summarise the above in the following theorem.

Theorem 2.2.1 Let 6, be the canonical K1(o) ovoid of Q(4,q). Let X, be the special point of
05, and let {m, : t € GF(q)} be the set of planes of 0, through the special line £; meeting 0, in

a conic. The group of 6, is 2-transitive on the planes of 6, and has two orbits on the points of

0,. The two orbits on the points of 0, are {X,} and 6, \ {X;}.

2.3 Intersections of §, and elliptic quadrics on Q(4, ¢), containing

Xo

In this section we investigate the intersection of the canonical K1(o) ovoid 6, and the elliptic
quadric ovoids of Q(4, q), given that the special point of §,, X,, is contained in the intersection.
Let ¥ be a three dimensional projective subspace of PG(4,q) that intersects the @Q(4,¢) in a
non-singular elliptic quadric O . Suppose that X, € O, then we calculate the intersection of 6,

and 0. We separate this intersection problem into the case where ¢, C ¥ and the case where

¢ .

2.3.1 Casel: {,CX

Now since £, C X it follows that if ¥ contains a point P of 8,, then it contains the whole plane
of 8, containing P. Thus the intersection of 6, and the elliptic quadric £ N Q(4, q) is the union
of a number of the conics C1,Ca, ... ,Cq (possibly 0).

Now let Xy = (m, 7y ), then ;¢ is a three dimensional projective subspace that intersects

Q(4, q) in an elliptic quadric. The equation of ¥; s is

(t —tYazo +mEt” —t'7)z1 + (M7t — mt°t)zs = 0.
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Using the 2-transitivity on the planes of 6, we need only consider the elliptic quadric Og;
on Q(4, g) that is the intersection of (4, ¢) and the three-dimensional subspace ¥ ;, which has
equation zp + mz; = 0. We now ask how many of the planes m; are contained in 3 ;, which

will in turn tell us the intersection size of the 6, and Op;. Now

e C 20,1 <— P e 20,1
— -mt’+mt=0

= t7=t,

and so m; C Xo 1 if and only if t € Fiz(o), where Fiiz(o) is the fixed field of the automorphism
o. Let |Fiz(o)| = k, then |Xo1 N K1(o)] = kg + 1 and consequently

|Et,t’ M 00| = k‘q + ].,

where t,t' € GF(q) with ¢ # t'. That is, if a three-dimensional subspace of PG(4, g) contains two
elements of the set {m;: t € GF(q)} (and so necessarily meets Q(4,q) in an elliptic quadric),
then it contains exactly k. Thus there are (2)/ (’2“) =q(q — 1)/k(k — 1) elliptic quadric ovoids of
Q(4, q) intersecting the 6, in k conic planes.

For a given m; there are (¢ — 1)/(k — 1) three-dimensional subspaces of PG(4, ¢) containing
m; and containing k elements of the set {m; : t € GF(¢)}. In total there are (¢ — 1)/2 three-
dimensional subspaces of PG(4, ¢) containing m; and meeting Q(4, ¢) in an elliptic quadric and
so there are (¢—1)(1/2—1/(k — 1)) elliptic quadrics ovoids of Q(4, ¢) meeting 6, in exactly the
conic C; = m N Q(4, q), that is, with an intersection size of ¢ + 1.

This leaves

elliptic quadrics ovoids of Q(4,q) which intersect 6, in exactly X,.

2.3.2 Case 2: {, ¢ X but X, € &

Now suppose that X, € O but that ¢, ¢ ¥. For t € GF(q), let £, = m; N 3. Now X, € ¢; and
¢y # £, so it follows that £; is a secant line to the conic C; = m N Q(4,¢). Thus we have that
|6, N O] = ¢+ 1. There are ¢*(g — 1)/2 elliptic quadric ovoids of Q(4,¢) containing X, and

q(q — 1)/2 of these sections have an ambient three space containing £,. Thus there are

@(q—1) qlg—1) q(g—1)*

2 2 2
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elliptic quadric ovoids of Q(4, q) intersecting 6, in the above way.

We summarise the intersection sizes of the two cases above in the following theorem

Theorem 2.3.1 Let 6, be the canonical K1(c) ovoid of Q(4,q) and let X, be the special point
of 0,. Suppose that ¥ is a hyperplane of PG(4,q) that intersects Q(4,q) in a non-singular
elliptic quadric O and that X, € O. If b, C X, then |0, NO| = q+ 1 or k(g + 1), where k is
the size of the fized field of 0. If £, ¢ 3, then |0, NO| =q+ 1.

2.4 More properties of the >,

In this section we investigate some more properties of the set of three dimensional subspaces
{Ev : t, 1 € GF(q) with t # '}, where L,y has equation (¢ — t')wo + m(t” — ')z, + (mt'7t —
mt?t)zy = 0.

Now in Section 2.3.1 we saw that
m € Toq <= t" € Fiz(o),
and since S /(t/_t)T_t(Et,t/) = Xo,1, it follows that
myn € Ly <= Sy —pyT—t(myr) € To 1.

Thus we have
"

" — .
T € Zt,t’ — ﬁ S F’LJJ(O’).

First we determine when the intersection of ¥y and Xy y» is a plane of 6, (recall 7 is a
plane of , if it is an element of the set {m : t € GF(q)}). To do this we first consider the

conditions under which 3g; N3y is a plane of 6,. Now by the above

"

o1 Ny = mp < t" € Fiz(o) and T € Fiz(o).
Now
t”"‘t . t”_t a tﬁ'_t )
t’, 7 € Fiz(o) < (t’ = f.) = and t" € Fiz(o),
= "=t —t)= ("7 —t")(t" —t) and t" € Fiz(0),
7 — ' .
— t'= € Fiz(o).

7 —17 —t' +1
Thus it follows that 391 N Xy is a plane of 6, if and only if

o — e
HO —t0 — ¢+t

€ Fiz(o).

The conditions under which the intersection ¥y and 3y is a plane of 6, can be determined

by using the transitivity of the group of 8, on the set {X; s : 5,5’ € GF(q) and s # s'}.

32



Note that for |o] = 2, (tt'7 —1't7) /(#'7 —17 —t' +1) is fixed by o and so Xy Ny ;v is always
a plane of 6,.

Second we investigate the elliptic quadric ovoids of Q(4,q) whose ambient three space con-
tains k planes of 6,. Since m; C 3 if and only if ¢ € Fiz(o) it follows that m C Ty (3,1) if
and only if ¢t € Fiz(o) +t'. Thus the additive cosets of Fiz(co) partition the planes of 6, into
q/k sets of size k, each set contained in a distinct three-dimensional subspace of PG(4, g).

Now g1 : @o + mz; = 0 meets Q(4,q) in the elliptic quadric with the equation —ma? +
x3 + 324 = 0. The tangent plane at X, to this elliptic quadric is the plane 7’ : x4 = 0. Thus
7' has equations zg +mz; = 0 and z4 = 0, and ' = {(—m, 1,0,0,0), (0,0, 1,0,0), (0,0,0,1,0)).
Since Ty (—m, 1,0,0,0) = (—m,1,0,mt’ + mt,0), which is an element of 7', it follows that Ty
fixes 7. Thus for ¢,#' € GF(q), with ¢t # t/, the hyperplanes T;(Xo,1) and Ty (3p,1) meet in the

plane 7'. We generalise this set of hyperplanes to give the following definition.

Definition 2.4.1 Let § be a K1(0o) ovoid of Q(4,q). Let 7 be a set of q/k distinct hyperplanes
of PG(4,q), each meeting Q(4,9) in a non-singular elliptic quadric and each containing the
special tangent line of 6. Suppose that any two elements of T intersect in a fized plane 7', that
is tangent to Q(4,q). If each plane of 8 is a subspace of an element of T, then we say that the
set T is a trade of 6. The plane 7' is called the base plane of the trade 7.

Note that it follows from Theorem 2.3.1 that if 7 is a trade of the K1(o) ovoid 6, then each
element of 7 contains exactly k planes of 6.

Note also that since any two elements of a trade intersect in a fixed plane tangent to Q(4, q),
it follows that the set of ¢/k elliptic quadric ovoids of Q(4, ¢) formed by the intersection of the
trade with Q(4, q) meet pairwise in a fixed point. Suppose that p is a set of g/k K1(o) ovoids
meeting pairwise in a fixed point and with a common trade 7. In Section2.6 we shall see that if
R is a rosette containing p, then we may take R, “trade” p for the set of elliptic quadric ovoids
corresponding to 7, and form a new rosette.

Our original model for the definition of a trade of a K1(o) ovoid of Q(4,q) was to take
the canonical ovoid 6, and consider the set 7 = {T3(Zo1): t € GF(¢)} and the plane =’
with equations 4 = 0 and zy + ma; = 0. By transitivity on the planes of 8, it follows
that every hyperplane of the form 3,y is contained in a trade of f,. Now consider the point
(—m,1,0,0,0) € n'\ £,. We have that (—m,1,0,0,0) € Sy if and only if t —t' € Fiz(o) and so
(—m, 1,0,0,0) is contained in exactly g/k of the X; . Consequently, the plane 7’ is contained
in exactly ¢/k of the ¥; ¢, and so is the base plane for exactly one trade of 6, namely the trade
7 = {Ty(S0,1) : t € GF(q)}. Now since for any element T3(Xg,1) of 7, n’ is the unique plane
of T3(3o,1) that is tangent to Q(4,q) at X, it follows that T;(Xo,1) is contained in exactly one

trade of 6,. Hence it follows that every hyperplane of the form 3; ;s is contained in exactly one
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trade of 6, (the unique trade with base plane the tangent plane to 3,y N Q(4,q) at X,).

We conclude this section with a summary theorem.

Theorem 2.4.2 Let 0, = {(—mt%,t,2,—2% + mt°T1,1) : t,2 € GF(q)} U {(0,0,0,1,0)} be the

canonical K1(o) ovoid of Q(4,q), where Q(4,q) is defined by the equation xozy +24+ 2324 = 0,

with special point X, = (0,0,0,1,0). Let {E:p: t,t' € GF(q)} be the set of hyperplanes of

PG(4,q) where Ty p i (t—t)zo +m(t” — ")z + (mt'7t — mt7t')zy = 0. Each hyperplane Xy y

meets Q(4,q) in a non-singular elliptic quadric and contains k = |Fiz(o)| planes of 6,. Further
(i) If t — t' & Fix(o) then the plane 31 N Xy is a plane of 0, if and only if

e — e
PO — 0 — '+t

€ Fiz(o).

(it) Each Syy is contained in a unique trade of 65, with base plane X;,L NY;y. The plane
Xin Yty is the base plane for ezactly one trade of 6,.

2.5 Characterisations of the K1(o) ovoid

In this section we give three characterisations of the K'1(o) ovoid. The first two are in terms of

the conic structure of the ovoid. The third is a characterisation in terms of the trade structure

of the K'1(o) ovoid.

Theorem 2.5.1 ([63]) Let 6 be a set of points of Q(4,q) consisting of q conics, Cy,...,Cq
intersecting pairwise in a point X, that is, C; N C; = {X} for 4,7 = 1,2,...,q, 1 # j. Let
T1,... ,mq be the planes of PG(4,q) such that C; C m;, fori=1,... ,q. Suppose that £ is a fized
line of PG(4,q) such that m;Nm; = £ fori,j € GF(q), i # j and that no hyperplane of PG(4, q)
contains all the m;. Suppose also that for each pair i,j € GF(q), i # j the hyperplane (m;, m;)
intersects Q(4,q) in a non-singular elliptic quadric. Then the set 0 is isomorphic to the K1(o)

ovoid.

Proof: Suppose that we have such a set of points §. Embed Q(4,¢) in Q*(5,q), which has
polarity denoted by L. Then n{,... ,wj- forms a flock F (of planes) of the cone £-NQ*(5,q).

Since 6 is not contained in a hyperplane of PG(4, ¢), and so it follows that F is non-linear (that
1

is, the planes of the F do not intersect pairwise in a fixed line). Each plane 7;- contains the

exterior point PG(4,q)" and so by [63, Section 1.5.6] F is a Kantor flock F, for some field
automorphism o and so 8 is a K1(o) ovoid.

O

Note that the automorphism is only determined up to the size of its fixed field, which is

equal to the number of elements of the set {7y, 72 ... , 74} contained in the space (m;, 7;).
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Theorem 2.5.2 ([63] and [22], see [6, Lemma 15]) Let 6 be a non-classical ovoid of Q(4,q)
consisting of the q conics Cy,. .. ,Cq, that meet pairwise in a fized point X. Then 6 is isomorphic

to the K1(o) ovoid, for some o € aut(GF(q)).

Proof: In general let m; be the plane containing C;. Then for any 4,5 € GF(q) with ¢ # 7,
C; UC; is a set of 2¢ + 1 points of Q(4,¢), no two collinear. Suppose that m; N m; = {X} for
some 4,j € GF(q) with ¢ # j.

If | represents the polarity of Q(4, ¢), then 7er is a line of PG(4, q), which is either a secant
to Q(4,q) or external to Q(4,q). Let H; be the set of three-dimensional subspaces of PG(4, q)
containing 7; and intersecting Q(4,q) in a non-singular hyperbolic quadric. If 7rJJ-- is a secant
line to Q(4, q), then |H;| = (¢ —1)/2 and if 1er is an external to Q(4, q), then |Hj| = (¢ +1)/2.
Now let ¥ and ¥’ be two distinct elements of H;. Since the intersection of 7; and m; is a single
point, it follows that (m;, ;) is PG(4,¢) and that neither ¥ nor ¥’ contains m;. Thus £ = XNy
and ¢/ = ¥ N m; are both lines of 7;, and in fact distinct lines of 7; since if £ = £/, then ¥ = X
Now since X is incident with both £ and ¢ and 7; contains a unique line that is tangent to C;
at X, it follows that at least one of £ and ¢’ is a secant to C;. Thus, without loss of generality
we may suppose that ¥ contains a point of C; \ {X}, say Y. Since Y ¢ C; and (m;,Y) meets
Q(4, q) in a non-singular hyperbolic quadric, it follows that Y is collinear with two points of C;,
which gives a contradiction. Thus m; N ; is a line tangent to Q(4,¢) at X for all 4,5 € GF(q),
with 1 # j. Further if we let £; be the (unique) tangent to C; at X, it follows by the above that
m Ny = ¢ for i =2,...,q. Thus £ is contained in all of the planes 7; and so is the pairwise
intersection of any two of them. Since C; UC; is a set of points with no two collinear it follows
that (m;, ;) intersects Q(4,¢) in a non-singular elliptic quadric. Thus by Theorem 2.5.1, the
ovoid 6 is isomorphic to the K1(c) ovoid for some o € aut(GF(q)).

O

Theorem 2.5.8 Let Q = Q(4,q), let £ be a line tangent to Q and let X = €N Q. Let 0 €

k—1’k

of q(q — 1)/k(k — 1) hyperplanes of PG(4,q), each element of which contains £ and meets Q in

aut(GE(q)) and k = |Fiz(c)|. Let S = {7‘1,1,7'1’2,... STLL T2 Ly e 5 T2, 8500 5 Tzl 1} be a set

a non-singular elliptic quadric. Suppose that the following two conditions hold:
(i) 7ij N T = o is o tangent plane to Q at X and o; # oy if i # k.
(11) For each 7;; there are k sets of the following form.:
Tt Tiaoies = = = 3 Ty sl
{ 2,70 112,721 ) 'Li:_lr ]H}

such that elements of each set intersect pairwise in the same plane of PG(4,q), which

intersects Q(4,q) in a conic and is contained in no other 7y jr.
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Then the points of the conics in (%) form an ovoid of Q isomorphic to the K1(o) ovoid.

Proof: Since each pair of sets of hyperplanes in (ii) intersect in exactly one element, it follows
that the span of any two planes in (ii) is a hyperplane intersecting Q in an elliptic quadric.
Hence if we can show that there are ¢ conics in (ii), then by Theorem 2.5.2 we have a K1(o)
ovoid. If we let the number of planes be a then counting the incident (plane, 7; ;) pairs for the

planes of the conics in (ii) yields

—1 ~1
a-1°-_91 k

k-1 k k—1

and so a = q.

Note that in Theorem 2.5.3 the trades of the K'1(o) ovoid are the sets
{rnj:j=12,...,q/k} for i =1,2,... ,q/k.

2.6 Rosettes containing K1(o) ovoids

In this section we will construct a number of types of rosettes of @(4,¢q) that contain K1(o)
ovoids. We will consider the two types of elation rosettes of K'1(o) ovoids (where the basepoint
is a non-special point and a special point, respectively), non-elation rosettes consisting entirely
of K1(o) ovoids and rosettes containing both K1(o) ovoid and elliptic quadric ovoids.

We will conclude the section by constructing all of such rosettes of the GQ Q(4,9), with the

aid of a computer search conducted by Gordon Royle ([54]).

2.6.1 Elation rosettes of K1(c) ovoids

Let 6 be an ovoid of Q(4, q), ¢ odd, and P a fixed point of §. We recall the construction of the
q + 1 elation rosettes containing 6§ and with base point P, from Section 1.4.6. In the dual of
Q4,q), W(q), 0 is a spread S of W(q) and P a line £ of S. If ) is any point of W (q) (and so of
PG(3,q)) incident with £, then W (q) admits the elations of PG(3,q) with axis Q1 and centre
Q (where L is the polarity of W(q)). The image of S under this group of elations is a rosette
of spreads of W(q). Since there are ¢ + 1 points of W{(q) incident with ¢, it follows that there
are ¢ + 1 such rosettes. Dualising, these are the q + 1 elation rosettes containing § and with
base point P. Now for the case where 6 is an elliptic quadric ovoid there is a unique rosette
R of elliptic quadric ovoids containing § and with basepoint P. If 7 is the tangent plane to 6
at P, then R is the set of elliptic quadric ovoids for which 7 is also a tangent plane. Thus the
q + 1 elation rosettes containing € and based at P coincide. In Chapter 4 (Lemma 4.1.7) we

will see that a similar result holds if 6 is a Tits-type ovoid (that is, if the image of § under an
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isomorphism from Q(4,q) to W(q) is a Tits ovoid). This, however, is not true in general for
elation rosettes of Q(4, q), since if 8 is a fixed K1(o) ovoid and P a non-special point of 8, then

elation rosettes containing 6 and with base point P are not all identical:

Theorem 2.6.1 Suppose that § is a K1(o) ovoid of Q(4,q) and that P is a point of Q(4,q)
such that P € 0, but that P is not the special point of 8. Then the q + 1 elation rosettes
containing 0 and with base point P are distinct. Further, any two such rosettes intersect in

ezactly 0.

Proof: We will work in W(q) the dual of Q(4,q). Let S be the dual of 8, £ be the dual of P,
£ the dual of the special point of 6 and let L represent the polarity (symplectic) of W(q). If
Q is a point of ¢, then let Eg be the group of elations of PG(3, ¢) with axis Q* and centre Q.
Let R be the elation rosette of spreads {T'(S) : T € Eq}, containing S and with base line £.

Now Q7 is a plane of PG(3, q) not containing £o, and so QN4 is a point of PG(3,q), Quo
say. Since Qo is contained in the axis of the elation group Eq, it is fixed by the elements of
Eg and so the special line of each element of R contains Qoo. Further, since £, the special
line of 8, is not contained in the plane Q-+, the axis of the elations in Eg, it follows that each
element of R has a distinct special line. Thus the set of special lines of spreads of Rq is the
set of ¢ lines of W(q), not £, incident with Q (note that the lines in this set are all contained
in the plane QZ). If Q and Q' are two distinct point of £, then clearly the sets of special lines
of the corresponding elation rosettes Rq and R are concurrent at different points of W (q),
and so Rg and R¢y are distinct.

Now suppose that @ and Q' are two distinct points of £ such that Rg and R¢ contain a
common spread S’. Let the intersection of Q'" and 4o be the point QL Now if Qe = QL
then {Qwo, @, @'} is a triangle in W(q), and so Qs # Q4. By the above, since §' is an element
of both R¢g and Ry, it follows that the special line of §' is incident with both Qo and Q..
This means that the special line of §’ is (Qoo, @), but this line is £, the special line of S.
Thus S = 8'.

O

Now we consider the elation rosettes containing a fixed K'1(o) ovoid 6 and with base point
P, where P is the special point of §. We will start with elations in W (q) the dual of Q(4,q)
and dualise (via the Klein quadric) to get the elation rosettes of the K'1(o) on its special point.

The first result we prove is that all of the elation rosettes coincide.
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Theorem 2.6.2 Let 0 be a K1(0) ovoid of Q(4,q) and P the special point of 8. Then the q+1

elation rosettes of Q(4,q) containing 0 and with base point P, coincide.

Proof: Let @ = Q% (5, q) be the Klein quadric with equation zoz; + Zox3 + 425 = 0. We will
consider the case where Q(4,q) is the intersection of Q' and the hyperplane of PG(5,¢q) with
equation o = z3. In this setting we abuse notation by saying the canonical K1(c) ovoid 8,

has the form
0y = {(—mt’,t, 2, 2, 22+ mt‘”’l, 1): t,z € GF(¢q)} U {(0,0,0,0,1,0)}

with special point X, = (0,0,0,0,1,0) and special tangent line

¢, = {((0,0,0,0,1,0),(0,0,0,1,0,0)). Let Sg, be the dual spread of 8, in W(q) and £x, the

dual line of X, in W(q). We will first establish the form of the elations of PG(3, ¢), with centre

Q € £x, and axis Q1 (where L denotes the polarity of W(q)), as automorphisms of Q(4, g).
If £ = ((xo, 1, T2, z3), (Y0, Y1, Y2, y3)) is a line of PG(3, ¢), then the Klein correspondence A,

mapping lines of PG(3, q) to points of ', sends £ to the point

(o1, 223, Loz, €31, Lo3, £12) Where £;; = zy; — z4y;

(see [25, Chapter 15]). The Klein correspondence defines a duality from W(q), defined by the
equation zoye — Tayo — Z3y1 + T1ys = 0, to Q(4,q) C Q. We shall denote the bilinear form
associated with W (q) by B((xo, 1, %2,23), (Y0,Y1,Y2,¥3)) = Toy2 — T2Yo — T3Y1 + T1Y3-

Now the special line of the spread Sg_ is

bx, = A Y(X,)
= 1710,0,0,0,1,0)
= {((1,0,0,0),(0,0,0,1)).
If U is a point of W(q), then the group of elations with centre U and axis U is {t, v : V —
V +aB(U,V)Ul|a € GF(q)}. The automorphism of (4, q) equivalent to ¢, is the restriction

of the automorphism A, yA~t of Q to Q(4,q). If we let U, = (s,0,0,1) and Uy = (1,0,0,0),
then £x, = {Us: s € GF(¢)} U{U}
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Now to,u, (V) =V +a(—sve +v1)Us = (vg — as?vs + asvy,v1, v2,v3 — asve + avy) which acts
on the Plucker coordinates by
loy +— (xo — as’zy + asz1)yr — z1(yo — as®y2 + asy;)
=fo + as2€12,

229 + asz1)y2 — 22(yo — as?ys + asy1)

oo — (zo—as
= lo2 + aslya,

los — (z0— as’zy + asz1)(ys — asyz + ay1) — (73 — asz2 + az1)(yo — as?ys + asyy),
= lo3 — aslyy + alyy — as®laz — aslsy

b2 = TYy2 — T2yt
= by,

€31 = (z3—asza +az1)yr — z1(ys — asyz + ay1)
= 31 + aslia,

lyz — x2(ys — asya +ay1) — (T3 — asza + az1)y2

= ly3 — alys.

Thus

-1
Mg,u, A~ (0, T1, T2, T3, T4, Ts5)

= (zo + as’zs, T1 — aTs, Ty + aSTs, T3 + AST5, T4 + AT — ASST) — ASTy — AST3, Ts),
When we restrict this to to Q(4,q) we have the automorphism

Eo s(z0, 21,2, T2, T4, Ts5)

2

= (zo + as2x5,x1 — azs, To + asTs, To + aSTs, Ta + axg — as°Ty — 2a8Tg, Ts).

We now repeat the above for the elations ¢4y, .
Now to v, (V) = V+a(—v2)Us = (vo—avy,v1,v2,v3) and so acts on the Plucker coordinates
by
(€o1, 202, Lo3, €12, £31,£23) = (Lo + ali2, Loz, Lo3 — alas, £12, 431, L23),
that is

-1
)\ta,UcoA ($0,$1,$2,$3,$4,!E5) = (xO + axs,T1, T2, T3, L4 — a$1,$5).

When restricted to to Q(4,q) we have the automorphism
Ea,,oo(an T1,T2,T2, T4, .’1?5) = (IO + axs, &1, T2, T2, T4 — a1, :I;S)-

The g + 1 elation rosettes of Q(4,q) containing 6, and with special point X, = (0,0,0,0,1,0)

are

Rs = {Eas(0,): a € GF(q)} fors e GF(q)
Roo = {Fa0(bs): a € GF(g)}.
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We now show that Roo = Rs for any s € GF(g). Consider the ovoid E, 4(0,) € R, then

Eos(0:) = {(—mt° + as?,t —a,z + as, z + as, —2° + mt° ! — mat® — as’t — 2asz, 1):

t,z € GF(g)} U {(0,0,0,0,1,0)}

2

Now let @’ = as® — ma?, then consider

By 0o(0s) = {(—mt” +d',t, 2, 2, —22 +mt°tt —d't,1) : 2,t € GF(¢g)} U {(0,0,0,0,1,0)}

= {(—mt” + ma® +a,t —a,2,2,— 2> + ma”t! — mat” — ma”t + mt° ! + ad’ - a't,

1): 2,t € GF(q)} U {(0,0,0,0,1,0)} by replacing the parameter ¢ by ¢ — a,

= {(—mt° + as?,t — a,z + as, 2 + as, — 2> — 2asz — a®s* + ma’*! — mat® — ma’t +

mt°tt —ad’ —a't,1): z,t € GF(g)} U{(0,0,0,0,1,0)} by replacing z by z + as,

= {(-mt° + as?,t — a,z + as, z + as, — 2> — 2asz — mat’ + mt°+! — as’t, 1)

: z,t € GF(q)} U {(0,0,0,0,1,0)} by substituting a’ = as? — ma?,

= E,s(0s)-

Thus each ovoid of R is contained in Rqo, and so Ry = R for all s € GF(g). From this it
follows that the ¢ + 1 elation rosettes coincide.

O

We now consider Q(4,q) to be the quadric in PG(4, q) defined by the equation zoz; + 3 +

z3z4 = 0 and the canonical K'1(o) ovoid 6, to be
0, = {(-mt%,t,z,—2* + mt°T1,1) : t,2 € GF(q)} U{(0,0,0,1,0)}

with special point X, = (0,0,0,1,0) and special tangent line
¢, = {(0,0,0,1,0),(0,0,1,0,0)). In this setting the elations derived in the proof of Theo-

rem 2.6.2 have the form

2

2
Eq s(mo, 71,22, 23,24) = (%o + asT4, T — ax4, Ta + asx4, 23 + azg — as”x, — 20812, 24),

Eqoo(o, 1, 2,23, 24) = (%o + az4,71,T2,T3 — aT1,T4)
for a,s € GF(q).
Let R, be the elation rosette of Q(4,q) containing 6, and with base point X, the special

point of 8. In the following we investigate the structure of R, by calculating the action of the

elation group {E,o : a € GF(q)} on R,.
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Theorem 2.6.3 Let 61 be a K1(o) ovoid of Q(4,q) with special point P. Let

R = {61,02,... ,04} be the (unique) elation rosette of Q(4,q) containing 6; and based at P. If
Q; is the set {r’' : =’ is a base plane of a trade of 6;}, then Q; = Q;, for all 1 < 4,5 < q with
i # j. Further, if 7; is any trade of 8; and 7; is any trade of 0, then 7; and 7; are either equal

or disjoint.

Proof: We prove the result for the case where Q(4, q) is defined by the equation zox; + 3 +
z374 = 0 and 6; = 6,, the canonical K1(o) ovoid.

The rosette R is generated as the set of images of 6, under the group of elations {E, : a €
GF(q)}, that is R = {Es0(05) : a € GF(q)}. Let B, be the set of base planes of trades of the
ovoid Eq0(0,). We first show that B, = By for all a,a’ € GF(g) with a # a'.

Recall from Theorem 2.4.2(ii) that the three-dimensional subspace of PG(4, q) 3y (which
contains k = |Fiz(o)| planes of 6,) is contained in a unique trade of 6, and the base plane of
this trade is X} NX; . Now since the group {Sy : 7 € GF(¢)*} (where Sy, is the automorphism
of Q(4, q) fixing 6,, introduced in Section 2.2), also fixes X;- and is transitive on the set of ; 4,

it follows that the set of base planes of trades of 8, is
By = {7y = Sy(Zo1 N X)) = Toy N XF : n € GF(g)*}.
Note that the size of this set is (g — 1)/(k — 1) and that the plane 7, has equations

Ty ¢ Nz +mnry =0

z4 = 0.

Now let A; € T\ £ be the point with coordinates (—-mn°~1,1,0,0,0), and so T, = (€5, Ay).
The point E,o(A4,) = (—mn°~1,1,0,—man®~1,0) € T, and E,0(¢s) = £, from which it follows
that F,o(7) = . Since B, is the set of base planes of the ovoid E,(6;) € R, it follows that

B, = Euo(Bo)
= {Eoo(Ty) : n € GF(@)"}
= {7y: n€GF(9)"}
= By,

and so B, = By for all a,a’ € GF(q) with a # d'.

Now let 7 be a trade of E,(6,), with base plane T and 7' a trade of Ey ¢(6,), with base
plane 7. We show that 7 and 7/ are either equal or disjoint. If 3 is an element of 7 and 7/, then
it contains both 7 and 7. Now 7 and 7 are both planes tangent to Q(4,q) at the point X,
but ¥ contains a unique plane tangent to ¥ N Q(4,q) at X,, thus T = 7. So if 7 and 7’ have
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different base planes, then they are disjoint. We now consider the case where T and 7' share the
same base plane, that is T = 7. Since B, = By for all a € GF(q), it follows that ¥ = T € By,
that is T = 7, € By for some 1 € GF(g)*. Now by the above F,o(7y) = Eq o(T,) = 7y, and so
if 7, is the unique trade of 6, with base plane T, then 7 = E, o(7;) and 7' = Ey (7). Recall
from Section 2.2 that the trade of 6, with base plane 7; (that is, the trade containing ¥ ) is
11 = {Ta(Zo,1) : o € GF(g)} where T, is the automorphism of Q(4,q) fixing 6, introduced in

Section 2.2. Now since 7, = Sp(71) it follows that

Ty = Sy(m1)
= {SyTa(X0,) : @ € GF(q)}
= {Zpamat1) : @ € GF(g)} (see Section 2.2)

= {[n,mn°,0,0,mn"* (a —a”)]: a € GF(q)}
Now E, o([n,mn%,0,0,mn° ! (a — a?)]) = [7,mn?,0,0,mn° (na — na’ + a)], and so
7 = Eq (1) = {[n,mn°,0,0,mn’ (na —na’ + a)] : o € GF(q)}.

Similarly
7' = Ea0(1y) = {[n,mn?,0,0,mn’ (na —na’ +a')] : o € GF(q)}.

Consequently 7 = 7' if a — o’ = n(8 — 37) for some § € GF(q) and 7 and 7' are disjoint if
a—a #n(B - %) for all B € GF(q).

O

If 7’ is a base plane of a trade of an ovoid of R, then 7' is called a base plane of R and

any trade of an ovoid of R is called a trade of R.

Corollary 2.6.4 Let 6, be a K1(0) ovoid of Q(4,q) with special point P. Let
R = {01,6a,...,04} be the (unique) elation rosette of Q(4,q) containing 6, and based at P. If
7' is a base plane of R, then the set of trades of R, with base plane ' partitions the set of

hyperplanes that contain ' and intersect Q(4,q) in a non-singular elliptic quadric.

If 7' is a base plane of R, then the set T of trades of R with base plane 7’ as base plane is
called a tower of R and 7’ is called the base of the tower 7.

2.6.2 Rosettes, trades and towers

In this section we will use the ideas of a trade of a K1(o) ovoid and a tower of an elation rosette
of K1(o) ovoids to construct a variety of rosettes of Q(4,q), each of which contains K1(o)

ovoids.
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The general idea of the constructions is as follows. Let & be a GQ of order s. Let R =
{01,02,...,60,} and R' = {61,65,...,0,} be two rosettes of ovoids of §, that have the same
base point P. Suppose that as sets of points

B Uby... U0, =0,UbU...U0,,

then both {61,05,...,0,,0r4+1,0r42,...,0s} and {61,02,...,6,,0, 1,6, ,,...,0,} are rosettes
of § with base point P.

Now we consider the particular case where S = Q(4, q) and R is an elation rosette of K1(o)
ovoids of Q(4,q) with base point P, where P is the special point of the rosettes of R. Let T be
a tower of R with base 7 and let R’ = {61,6),...,0;} be the rosette of elliptic quadric ovoids
with tangent plane 7. Let 7 = {61,62,...,60,/1} € T be a trade of R such that, without loss
of generality, the elements of 7 intersect the Q(4, ¢) in the elliptic quadric ovoids 6/, 65,... ,0;
(where k = |Fiz(o)|) and the k ovoids of R that have 7 as a trade are 61,63,... ,6;. Then
the sets of ovoids {61,605, ... ,0%,0k+1,0k42,... ,04} and {61,02,... 04,0}, 4,... 04}, are both
a rosette of ovoids of Q(4,¢q) with base point P, containing both K1(o) ovoids and elliptic
quadric ovoids.

We can generalise these construction in the following way. Let the elements of the tower
T of R be 71,72,... , 74k Let the set of k ovoids of R that have 7; as a trade be denoted 7.
Then the set of ovoids p; U p2 U ... U pg/, where p; = 7; or 7; for each 4, is a rosette of ovoids
of Q(4,q) with base point P. Note that this construction includes both R and R'. If = and =’
are two distinct tangent planes to the Q(4,q) at P and 6 and ¢’ are two elliptic quadric ovoids
with 7 and 7' as tangent planes, respectively, then 6 and ' intersect in a conic. Thus, in the
above construction all the trades 7; must come from the same tower of R.

A natural extension of the above construction provides a construction of rosettes of Q(4, q)

containing all K1(o) ovoids, but that are not elation rosettes.

Theorem 2.6.5 Let R be an elation rosette of K1(o) ovoids of Q(4,q) and let
T = {r1,72,... ,Tqi} be a tower of R. Let p; be a set of q/k K1(o) ovoids contained in a

common elation rosette (not necessarily R), and sharing the trade 7;,. Then the set of ovoids

pLUp2U...Upgyy is a rosette of Q(4,9).

We are interested in determining whether rosettes constructed as in Theorem 2.6.5 exist.
We do this by looking for K'1(o) ovoids, not contained in R that share a trade with R. This is
the direction we pursue in the next two sections. To complete this section we summarise all of

the above constructions of rosettes.

Theorem 2.6.6 Let R be an elation rosette of K1(o) ovoids of Q(4,q) and let
T ={m,72,... ,Tq/1} be a tower of R. Let p; be either
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1. a set of ¢/k K1(o) ovoids contained in a common elation rosette (not necessarily R), and

sharing the trade 7;; or

2. the set of q/k elliptic quadric ovoids of Q(4,q) whose elements are the intersection of the
elements of 7; with Q(4,q).

Then the set of ovoids p1 U paU...Upyy is a rosette of Q(4,q).

K1(o) ovoids sharing a trade and with the same special tangent line

Our aim in this section is to find examples of K1(o) ovoids that have the same special tangent
line as the canonical K1(o) ovoid 6, and share a trade with 6,. From Section 2.6.1 we have
the example of the ovoids of the elation rosette R, containing 6, and with base point X,. Here
we calculate whether there are any examples of K1(o) ovoids sharing a trade and the special
tangent line with 6,, that are not in R,.

We first consider collineations of PG(4, q) that fix Q(4, ¢) (with equation zoz; + 23+ 2374 =
0) and £,, the special tangent line of 6, which map 6, onto K1(o) ovoids with special tangent
line £,. Now suppose that 6 is a K1(o) ovoid with special tangent line 4, and such that 6 and
0, share the trade 7. Since by Theorem 2.2.1 the group of 6, is 2-transitive on the planes of
65, we may assume that 7 is the trade of §, containing 3¢ ;. Also, the group of § is 2-transitive
on the planes of 8, so we consider collineations of PG(4, ¢) that fix Q(4,q), 0,1 and £,.

Let T = T be the collineation of PG(4, q) consisting of the automorphic collineation « (we
will use « to represent both the automorphic collineation of PG(4, ¢) and the automorphism of
GF(q)) and the homography T, which has matrix [t;;] where 0 < 4,7 < 4. From this point we
will associate the homography T with the matrix [t;;]. Now we require that Y fixes Xg 1, £,

and X,, and hence fixes 23:1 = (m,1,0,0,0), X, = (0,0,0,1,0) and ¢4; so

1(0,0,0,1,0) = (0,0,0,1,0),
Y(m,1,0,0,0) = (m,1,0,0,0) and
1(0,0,1,0,0) = (0,0,1,a,0)

for some a € GF(g). Now we also require that Y fixes £+ = [0,0,1,0,0] N [0,0,0,0,1]. The
intersection of £, with Q(4,q) is the line pair ¢; = ((0,0,0,1,0),(1,0,0,0,0)) and
45 = {(0,0,0,1,0),(0,1,0,0,0)). We will first consider the case where T(£;) = £; and Y (£3) = £o.

Thus
Y(1,0,0,0,0) = (1,0,0,b,0) and

1(0,1,0,0,0) = (0,1,0,¢c,0)
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for some b, c € GF(q). Thus T has the form:

( too 0 0 0 t04 \
0 tooma_l 0 0 tia
T= 0 0 tog 0 tgg |, such that mb+c=0.

btoo ctoom® ! atye tss tas

\0 0 0 0t44)

We also require that Y fixes Q(4,q). Since (zoz1 +23+2324)% = 2§z + (2§)? + 1§23, it follows
that the automorphic collineation « fixes Q(4,¢). Thus to find the conditions under which T
fixes Q(4,q) we find the conditions under which T fixes Q(4, q). These conditions are:

me 1t =13, = tastu,
toot14 + btootss = O,
tootoam® ! + tootaam® e = 0,

0
2tootos + atootss = O,
0

toat1a + 13, + taatay =

We normalise by letting t44 = 1 and let too = s € GF(q) \ {0}. Thus, T has the form

( s 0 0 0 —c \
0 sm*! 0 0 —b
T=| o 0 +ys 0 —a/2 (2.6.1)
bs csm® ! Zays mols? —bc—a?/4
\ 0 0 0 0 1 )

for b, c € GF(g) such that mb+c =0, s € GF(¢) \ {0} and v = m{®~1/2,
If G, is the group fixing Q(4,q), Lo, and £;, then the subgroup of G, consisting of the
elements of G, that fix £; (and hence also fix £3), is a subgroup of index 2 in G,. We will denote

this subgroup of G, by G'.. The group G/, consists of collineations of the form T« where T is
of the form in 2.6.1. If we define

W(mo,th%x& .’E4) . (mxl,mo/m, T2, JJ3,£L'4),

then W is a collineation of PG(4, ¢) fixing Q(4,q), ¥o,1 and ¢, and swapping ¢; and ¢,. Thus

we have that

G, =G, UWG,.

We are now interested in elements of G, that fix the trade 7 of 6, that contains X 1, since the
image of 6, under such a collineation is a K'1(o) ovoid for which 7 is also a trade. The group of

such elements is the stabiliser of 7 in G, which we will denote by (G4)r. Using the description
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of 7 in the proof of Theorem 2.6.3 we may easily show that 7 consists of the hyperplanes of
PG(4,q) with coordinates [1,m,0,0,u] where u = m(t® — t) for some ¢t € GF(q). First we
consider the action of T € G, on the polar point of the hyperplane [1,m,0, 0, u| which is given
by

Y(m,1,0,u4,0) = T(m%1,0,u%,0)

= (sm® sm® 1, 0,m* 1s%u®,0)

(m, 1,0, su®,0)

Thus the collineation T = T'a € G, (where T has the form of 2.6.1) fixes the trade 7 if and
only if for each t € GF(q) there is a t' € GF(g) such that s(m(t” —t))® = m(t'° —t'). That is,
for each t € GF(q) there is a t' € GF(q) such that

sm@ (1% —t*) = m(t'7 — ) (2.6.2)
This is equivalent to the single condition
sm® Y7 —t: t € GF(¢)} = {t” —t: t € GF(q)}. (2.6.3)

Solving this problem in general is messy so we will instead consider a subset of the solutions,
which will correspond to a subgroup of the stabiliser of 7 in GY,.

We consider the elements T = Ta of G%. (so T is of the form of 2.6.1) such that sm®~! €
Fiz(o) from which it follows that T satisfies 2.6.3. Let two such collineations be Y = T« and
Y =T'o/. Now (To)(T'e!) = (TT'®)(ac’) (where T'* is the matrix obtained by operating on

each element of T with a) and

(ssla)maa’—l — (sma—l)(slma —1)a.

Now Fiz(o) is the unique subfield of GF(q) of order k, so Fiz(o)* = Fiz(o) which implies

that (s'm®~1)® is an element of Fiz(c). Thus (sm®1)(s'm® 1) € Fiz(o) and
H ={Y=Ta: Y €G, and sm*™! € Fiz(o)}

is a subgroup of G'.. Now for any automorphism o of GF(q) there are k — 1 possibilities for s
such that sm®~! € GF(q), which gives a total of h(k — 1) pairs (s, ). Further in the matrix T
b is any element of GF(q), c is dependent on b and @ may be any element of GF(g). Hence the
order of G* is 2(k — 1)hq?.

Note that the elements of the set {t° —t: ¢t € GF(q)} are in a one-to-one correspondence to
the additive cosets of Fiz(o) . Thus the set has size ¢/k and the maximum number of solutions,

inz,tox{t"—t: t € GF(q)} = {t°—t: t € GF(q)} is ¢/k. But if z € Fiz(0), then z is clearly
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a solution so there are at least k solutions. In the case where k = ¢/k the maximum number
of solutions in z is equal to the number of solutions where z € Fiz(c). Thus every T € G/
that satisfies 2.6.3 is an element of H/, that is, H, is the full stabiliser of 7 in G. Note that

k = q/k if and only if 02 is the identity automorphism of GF(q).

Now W(m,1,0,0,0) = (m,1,0,0,0) and so the trade 7 = {[1,m,0,0,u]: u = m(t® —
t) for some t € GF(q)} is fixed by W. Since HJ, is a subgroup of G/, each element of H, fixes £;
and it follows that the set W H, is a set of elements of G, that swap ¢; and £;. We now show
that H, = H, UW H, is a subgroup of G, by displaying that multiplication amongst elements
of H, is closed.

Let h and h' be two elements of H,. If h,h' € H], then hh' € H,, C H,. If h € WH], say
h = WTa and h € H!, then hh' = W(Tah') € WH, C H,. f h,h' € WH,, say h = WT«
and ' = WT'o where

[ s 0 0 0 e
0 sm*! 0 0 —b
T=1]|0 0 +ys 0 —a/2 where mb + ¢ = 0 and vy = m{@~ /2,
bs csm® L +avys me1s2 —pe— a2/4
\ 0 0 0 0 1 )
then
[ 0 0 0 b )
0 sm®l 0 0 —c/m
WIwW®=| 0 0 £vs 0 —a/2

cs/m bsm® Fays m®1ls? —bc—a?/d

\ 0 0 0 0 1 )

and so (WTW®?)a is an element of H.. Thus hh' = (WTa)(WT'a') = (WTW*)(oT'd) =
(WTW®a(T'o!) € H, C H,. Finally, if h € H],, h =Ta say and b’ € WH,, b = WT'd/ say,
then
kb = (Ta)(WT'd)

= (W2To)(WT'&/) since W2 is the identity

— W(WTo)WT'a))

€ WH/, C H,.
We have shown that multiplication of elements of H, is closed and so H, is a subgroup of
(G¢)s. The order of H, is 4h(k — 1)g* where q = p".

Note that in the case where o2 is the identity H, is the full stabiliser of 7 in G, that is,
H, = (Gy)T.
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Now H, is a group of collineations of PG(4, q) fixing Q(4,q), £o,1, £, and the trade 7 of 6,
that contains ¥ ;. Thus the image of 6, under any element of H, is a K'1(o) ovoid of Q(4,q)
that share the trade 7 with 6,. Now if 8; and 6, are K1(o) ovoids with special tangent line
¢, and with the common trade 7, then there exists an element of (G, ), mapping 6; to 6, (this
follows from the 2-transitivity of the group of a K'1(o) ovoid on its planes). Thus we may use
the orbit-stabiliser theorem on (G,), to determine the number of distinct K1(o) ovoids with
special tangent line ¢, and with 7 as a trade.

In the case where o2 is the identity, since H, = (G, ), it follows that

# distinct ovoids with special tangent line £, and trade 7
_ |H, |
|Stabiliser of 8, in Hy,|

(2.6.4)

2

In the case where o is not the identity, since H, is a subgroup of (G,)r, it follows that

# distinct ovoids with special tangent line 4, and trade 7
_ (Go)e]
|Stabiliser of 6, in (Gs)r|
|H, |
~ |Stabiliser of 8, in (Gy)r|

(2.6.5)

Now if T € G, fixes 0, then since T fixes 3 ; it follows that Y also fixes 7, that is, T € (G, ).
Thus the stabiliser of 8, in G, is equal to the stabiliser of 6, in (G,),;. Consequently we
calculate the stabiliser of 8, in G,,.

First we consider T = Ta € G/,. Now T fixes 6, if and only if it fixes the set of planes of 0.
Recall from Section 2.2 that the plane m; of 8, may be written as (¢,, (—mt?,t,0,0,1)), and so

since T fixes £, it follows that

T(ﬂ't) = T(wm(_mta’taoaoal»)

= (b, (—m®t7%s — ¢, sm* 1 — b, —, —, 1))

Now recall from Section 2.2 that the plane m, of 8, is defined by the equations zg +mn®lz; =0
and z; — nz4 = 0, and so Ta(—mt?,t,0,0,1) € m if and only if

n=sm* 1% —band —m®°®s —c+m(sm* 1 —b)° =0,
Combined, these equations imply that the Y(m;) is a plane of 8, if and only if
17 (—=m®s + s"m(@ o) _ o —mp® =0 (2.6.6)

Now, T fixes the set of planes of 8, if and only if 2.6.6 is satisfied for all ¢ € GF(g). This is

equivalent to the polynomial z7%*(—m® + s"m("‘_l)""'l) — ¢ — mb” being identically zero. This
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in turn holds, if and only if the following two equations are satisfied

—m%s + sme" Vot = ¢ (2.6.7)

—c—mb? = 0 (2.6.8)

Since b and ¢ are related by mb+c = 0, 2.6.8 is equivalent to b7 = —b. If b° = —b, then b = b?
and so b?> € Fiz(c). Now suppose that z is a non-zero element of GF(q), such that z° = z. If
y? = z, then y?° = y? and so either y” = y or y° = —y. Since the other square root of z is
—1, it follows that if y7 = y, then (—y)? = (—y) and if y° = —y, then (—y)? = —(—y). Thus,
for = a square such that z° = z, either both square roots of z are in Fiz(o), or both are in
the set {b: b = —b} C GF(q) \ Fiz(0). Since Fiz(o) is a field of order k, there are (k —1)/2
elements of Fiz(o) that are square in GF(g) and have square roots in Fiz(c). If ¢ = p® and
k = p", then the other (k — 1)/2 non-zero elements of Fiz(o) are square in GF(q) if and only
if 2 divides (h/r). When 2 divides (h/r) there are (k — 1) non-zero solutions to b° = —b and
including the solution b = 0 gives a total of k. If 2 does not divide (h/r), then the only solution
to the equation b = —bis b= 0.

Now solving equation 2.6.7,

_mas+sam(a—1)a+1 = 0
= -—m%+(sm*Hm = 0

— (sm® 1) =smo L

Thus, 2.6.7 is satisfied if and only if sm®~! € GF(q). Hence if 2 divides h/r then there are
2qk(h(k — 1)) elements of G, that fix 6, and if 2 does not divide h/r, then there are 2gh(k —1)
elements of G/, that fix 6,.

Having calculated which elements of G!, fix 8,, we now calculate which elements of WG,
fix 6,.

Now

Il

W(ﬂ-t) W(<£0'a (_mto,taoao’l)))

= {({s, (mt,—17,0,0,1))
and so W fixes 6, if and only if
t—17" =0 for all t € GF(q).

Thus, in the case where ¢? is the identity automorphism of GF(q), W fixes 6, and so the set
of elements of WG, that fix 8, is {WY : T € G/, and Y(0,) = 6,}. Hence if 0? is the identity
(and so 2 divides h/r) there are 4qgk(h(k — 1)) elements of G, that fix 0.

49



In the case where o2 is not the identity, if T = Ta € G/, then

WT('/Tt) = WTOZ((&,, (_mta) t,0,0, 1)))

= (s, (sm*t™ — mb, —m*~'t°*s — ¢/m, —, —, 1))

and so WT fixes 6, if and only if

sm*t* — mb + m(—m® 7% — %)" = 0 forallt e GF(q)
= sm*t*—mb+m (—ma_lstaza - C—a) = 0 forallte GF(q)
m
a
= —m%st?® + m%st* — mb — (;_1 = 0 for all t € GF(q).
m

Thus, WT fixes 6, if and only if the polynomial

c
—m®sz27% + m%sz® — mb —
ma—l
is identically zero. This, in turn, yields the equations
g
—m%s =0and —mb— ;
ma’—l

Since s # 0 these equations are never satisfied.
Hence if 02 is not the identity and 2 divides h/r, then there are 2qkh(k — 1) elements of G,
that fix 6, and if 2 does not divide h/r, then there are 2qh{k — 1) elements of G, that fix 6,

Theorem 2.6.7 Let 0 be a K1(o) ovoid of Q(4,q) with special tangent line £ and let T be a

trade of 6. The number of K1(o) ovoids, with special tangent line £, that have 7 as a trade is:

at least 2q if 2 does not divide h/r,
at least  2(q/k) if 2| (q/k) and 0 # identity,
ezactly q/k if 0% = identity.

Proof: Recall that the stabiliser of 6, in (G,); is equal to the stabiliser of 8, in G,. Thus

using 2.6.4 and 2.6.5, |[H,| = 4h(k — 1)¢* and the size of the stabiliser of 8, in G, calculated
above we have the result.

O

We are now able to determine the conditions under which there exists two K1(c) ovoids

with the same special tangent line and a common trade but not in a common elation rosette.

Corollary 2.6.8 Let o be a non-identity automorphism of GF(q), q odd. If o2 is the identity,
then any two K1(o) ovoids of Q(4,q) with the same special tangent line and sharing a trade

are contained in a common elation rosette. If o2 is not the identity, then for any K1(c) ovoid
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of Q(4,q) 6 and trade T of 0, there exists at least one K1(o) ovoid 8', not equal to 6, such that
0" has the same special tangent line as 6, has T as a trade but is not contained in a common

elation rosette with 6.

Proof: Let R be the rosette of Q(4, q) containing # and with base point the special point of 6.
Then there are q/k ovoids of R (including #) with 7 as a trade (and necessarily with the same

special tangent line as 8). Applying Theorem 2.6.7 gives the result.

K1(o) ovoids sharing a trade but with different special tangent lines

In this section we find K1(o) ovoids that share the trade 7 = {[1,m,0,0,u]: ©u = m(t —
t) for some t € GF(q)} (the trade of 6, containing ¢ 1, as in Section 2.6.2) with 6, but not the
special tangent line with 6,. We do this by finding automorphisms of Q(4, ¢) that fix 7, but do
not fix £,.

If A is a point of 7\ {X,} then recall the symmetry pa of Q(4,q) from Section 1.2 and
Section 2.2. The symmetry u4 fixes X, and every subspace of PG(4, ¢) that contains A. Thus
it follows that p4(6,) is a K1(o) ovoid with special point X, with 7 as a trade and with special
tangent line p4(4;). Now £, is such that £+ is a plane intersecting Q(4, q) in a pair of lines (as
observed in Section 2.6.2). There are (¢ + 1)/2 such tangents, containing X, in 7 and we may
easily show that the set of symmetries {4 : A € 7\{X,}} is transitive on these tangents. Thus
there are (at least) (¢g—1)/2 K1(o) ovoids (not including 6,) of the form p4(65), A € 7\ {Xs},
that share the trade 7 with 8,. If R4 is the elation rosette containing u4(6,) and with base
point X, then there are ¢/k ovoids in R4 with 7 as a trade, each with special tangent line
pa(fy). Thus there are (at least) (¢ — 1)g/(2k) K1(o) ovoids that share the trade 7 with 6,,

but not the special tangent line £,. Thus we have the following theorem.

Theorem 2.6.9 Let 0 be a K1(0) ovoid of Q(4,q) with special tangent line £. Let T be a trade
of 0. Then there are (at least) (q—1)q/(2k) K1(o) ovoids of Q(4,q) that share the trade T with
0, but not the special tangent line £.

2.6.3 Rosettes of Q(4,9)

In this section we consider rosettes containing K1(o) ovoids of Q(4,9), where o is the non-
identity automorphism of GF(9) (that is, z° = 2% and o2 is the identity). Penttila and Royle
have shown ([53]) that there are only two isomorphism classes of ovoids of Q(4,9), the elliptic
quadric ovoids and the K1(o) ovoids. Hence if {61,62,... ,09} is a rosette of Q(4,9), then for

eachi=1,2,...,9 the ovoid 6; is either and elliptic quadric ovoid or a K1(¢) ovoid. We know
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that if 0; is an elliptic quadric ovoid for ¢ = 1,2,...,9, then the rosette is an elation rosette.
Otherwise the rosette must contain a K'1(o) ovoid, without loss of generality the ovoid 6;. A

computer search by Gordon Royle ([54]) gives us the following result on such rosettes.

Theorem 2.6.10 [54] Let 61 be a fized K1(o) ovoid of Q(4,9) with special point X. Then
every rosette {01,0a,... ,09} is included in the following table.

Isomorphism Size of orbits
Base point Type # rosettes | (K1(0), EQ) on ovoids
Fixed non- I 2 (9,0) 9
special point IT 8 (9,0) 9
A 32 (6,3) 3,6
B 48 (9,0) 3,6
C 48 (9,0) 3,6
Special point N 4 (3,6) 20
E 8 (6,3) 3,6
F 1 (9,0) 9

In the above table the first column indicates whether the base point of the rosette is the
special point X of 01, or not. The second column indicates the different isomorphism classes of
rosettes containing 01, while the third gives the number of rosettes in each isomorphism class.
The fourth column gives the number of K1(o) and elliptic quadric ovoids in a rosette of a
particular isomorphism type. The final column gives the orbit sizes for the action of the group

of a rosette (in a particular isomorphism class) on the ovoids of the rosette.

We will see that all of these rosettes may be constructed either as in Theorem 2.6.1 or by
the method shown in Theorem 2.6.6 and the work in Section 2.6.2.

By Theorem 2.6.1, if P is a fixed non-special point of 8, then there are ¢ + 1 = 10 elation
rosettes containing #y with base point P. These are precisely the rosettes of type I and II.

In the current context Theorem 2.6.6 says the following: let X be the special point of
the K1(o) ovoid 6; and R the elation rosette containing 6; and with base point X. Let
T = {11, 72,73} be a tower of R (see Section 2.6.1) such that 7 is a trade of ;. Let p; be the

set of ovoids of R that have 7, as a trade and p;, for ¢ = 2,3 be either

1. a set of 3 K1(o) ovoids contained in a common elation rosette (not necessarily R), and

sharing the trade 7;; or

2. the set of 3 elliptic quadric ovoids of Q(4,9) whose elements are the intersection of the

elements of 7; with Q(4,9).
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Then the set of ovoids p; U pa U p3 is a rosette of Q(4,9). We will call these different types of
sets of ovoids sets of type 1 or 2, as enumerated above.

Note that R has (¢ — 1)/(k — 1) = 4 towers and that the group of 6; is transitive on these
towers.

The rosette of type F is the (unique) elation rosette R, containing 6; and with base point
X, the special point of 6;.

Recall in Section 2.6.2 that we found (¢+1)/2 = 5 possible sets of type 1 for ps, including the
set of 3 ovoids of R for which 75 is a trade. Each of these sets has the property that the ovoids
it contains have a common special tangent line. Also the special tangent line corresponding to
each of these sets is distinct (the special tangent lines are those tangent lines in the base plane
of 7 that have a polar with hyperbolic character). A similar result holds for sets of type 1 for
P3-

Now the rosette p; U 12 U 73 is of type D and the 4 towers give the 4 rosettes of type D.

If po is the set of type 1 contained in R, then p; U pp U 73 is a rosette of type E. Similarly,
the rosette p; U mops with po C R. The 4 towers give us the 8 rosettes of type E.

If py is a set of type 1 not contained in R, then p; U po U T3 is a rosette of type A and there
are 4 such rosettes. Similarly, there are 4 rosettes of the form p; U, U p3 of type A and the 4
towers give us the 32 rosettes of type A.

Now suppose that py and ps are sets of type 1. Let ¢; be the special tangent line of the
ovoids in p;. There are two possibilities: either two elements of {£1,£s,£3} coincide, or they are
all distinct (if all three coincide then we have the elation rosette of type F). These 2 possibilities

correspond to the rosettes of type B and C.

2.7 Remarks

With a little more computational effort it may be possible to classify the rosettes of Q(4,q)
such that each ovoid of the rosette is either an elliptic quadric ovoid of a K1(o) ovoid (for fixed
o). Also of interest is considering rosettes of Q(4,¢) containing other ovoids of Q(4,g), to try
and determine whether there is a GQ of order (g, ¢%) containing Q(4, q) as a subquadrangle and
subtending rosettes of these ovoids. Similarly for g even since the g-clan GQs all possess sub-
quadrangles of order q isomorphic to T>(O) for some oval O of PG(2, ¢), it would be interesting
to investigate rosettes of the GQ T»(O).
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Chapter 3

SPGs and GQs of order (r,r?)

3.1 SPGs from GQs of order (r,r?)

Consider the SPG (constructed by Metz see [18] and by Hirschfeld and Thas [26]) with param-
eters s =q—1,t = ¢, @ = 2, n = 2q(q— 1), where q is a prime power. The construction due to
Metz as follows: let @ = (4, q) and let P be the set of three dimensional, non-singular elliptic
quadrics contained in Q. Let a bundle of Q be a set of ¢ elements of P that meet pairwise in
a common point. Let B be the set of bundles of Q. Define incidence I C (P x B) U (B x P)
to be containment. Since each bundle is a set of ¢ elliptic quadric ovoids of @ sharing a com-
mon tangent plane at the point where the elliptic quadrics intersect, and two elements of P
that are tangent are incident with exactly one common bundle, it follows that the structure
T = (P,B, I) is a SPG with the above parameters.

Now consider the GQ § = Q(5,¢). S contains Q as a subGQ and the subtended ovoids
are exactly the elements of P. Moreover, the subtended rosettes are the bundles and 7 is the
incidence structure obtained by taking subtended ovoids as points and subtended rosettes as
lines. This relation between Q(5, q), Q(4, ¢) and the SPG T depends on the combinatorics of the
situation, rather than the specific geometry. In this section we generalise the Metz/ Hirschfeld
and Thas construction of an SPG by using a GQ of order (r,72) and a subquadrangle of order
r (with particular combinatorial properties) in the place of Q(5,¢) and Q(4,¢), resulting in
Theorem 3.1.7. In Section 3.1.1 we construct an algebraic 2-fold cover of the SPG constructed
in Theorem 3.1.7 and use this in Section 3.2 to solve the isomorphism problem for such SPGs.
In Section 3.3 we construct a new SPG from a GQ constructed by Kantor in [31]. In Section 3.4
we investigate the g-clan GQs, q even and the subquadrangles of order ¢ constructed by Payne
in [45]. We determine the conditions under which a g-clan GQ, with such a subquadrangle,
gives rise to an SPG by the method of Theorem 3.1.7.

To begin with we state and prove a lemma which is implicit in [49, Chapter 2]. The lemma
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proves important for the work in this chapter and in Chapter 4. Recall from Section 1.4.1 that
if S is a GQ with a subGQ &', then each line of S is a line of &', is incident with exactly one
point of &’ or is incident with no point of &'. In the last two cases the line is called tangent

and external (to §'), respectively. Dually we define tangent points and external points.

Lemma 3.1.1 Let S = (P,B,I) be a GQ of order (r,72) and 8' = (P',B',I') a subquadrangle
of S of order r. Then each point of P\ P’ is an external point to S’ and each line of B\ B' is

a tangent line to S'.

Proof: If £ € B, then it follows that each point of S incident with £ is a point of §’. Thus a
point of P \ P’ is incident with no line of 8’ and hence is external to §'. By [49, 2.2.1] each
external point P is collinear with exactly 1 4+ r2 points of &', that is, each line incident with P
is incident with exactly one point of &’. Thus each line of B\ B’ is a tangent line to &'

O

Corollary 3.1.2 Let S = (P, B, 1) be a GQ of order (r,72) and S’ = (P!, B, I') a subquadrangle
of S of order r. Then each point of P\P' subtends an ovoid of S’ and each line of B\B' subtends
a rosette of S8’ (as in Section 1.4.1).

Now we are interested in determining the intersection of subtended ovoids. To this end we

recall a result of Bose and Shrikhande, interpreted in the GQ context.

Lemma 3.1.3 ([8], see [49, 1.2.4]) If S is a GQ of order (r,r?) and {X,Y, Z} is a triad of S,
then |[{X,Y,Z} | =r+ 1.

Corollary 3.1.4 Let S be a GQ of order (r,r?) and S’ a subGQ of order r. A subtended ovoid
of 8' is subtended by at most two points of S. Further, if an ovoid 6 is subtended by two points
X, X', then the size of the intersection of 6 with any other subtended ovoid Oy, Y # X, X', is
determined: if Y ~ X orY ~ X', then |[6N6y| =1 and if Y £ X, X', then |0NOy| =1r+1.

Proof: Suppose that an ovoid @ is subtended by three points X,Y, Z. These three points are
necessarily pairwise non-collinear and so form a triad of S. Since |{X,Y, Z}*| > r2 +1 we have
a contradiction of Lemma 3.1.3. Thus any ovoid may be subtended by at most two points.

Now suppose that @ is subtended by exactly two points X and X’. Let 8y be the ovoid
subtended by the point Y, Y # X, X’. Suppose that Y ~ X or Y ~ X'; without loss of
generality we may suppose that Y ~ X. Thus 8x and fy are contained in the rosette subtended
by the line (X,Y) and so x N8y = {P} for some point P and |8 N Oy| = [{X, X', Y} =1.
Suppose now that Y ¢ X, X', then {X, X',Y} is a triad of S and so [§Nfy| = [{X, X", Y}!| =
r+ 1.
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If a GQ S of order (r,7?) has a subGQ &' C S of order r such that each subtended ovoid
of &' is subtended by exactly two points of S, then we say that S’ is doubly subtended in
S. In some sense a doubly subtended subquadrangle is an ‘extreme’ subquadrangle, so it is not
surprising that we get some nice geometry from it. At this stage we introduce a slight abuse of
notation. If X is a point of S, then we denote this by X € §. If X is a point of S but not a
point of S/, then we denote this X € S\ §'.

We might now ask how many subtended rosettes can two subtended ovoids have in common.
Let 0x and 6y be two subtended ovoids; subtended by X and Y, respectively, where 0x # 6y.

There are three cases to consider: (i) neither 8x nor 8y is subtended by a second point,
(ii) Ox is subtended by another point X' and 6y is not subtended by a second point, (iii) 6x
and 0y are each subtended by a second point, say X’ and Y’ respectively. For case (i) 8x and
0y are contained in exactly one common subtended rosette if X ~ Y and in none otherwise.
In case (ii) Y may be collinear with at most one of X, X' since otherwise Y € {X, X'}* c &'
which contradicts Y € &\ §'. Thus for case (ii) fx and 6y have one common rosette if Y ~ X
or Y ~ X' (not both) and none otherwise. For case (iii), to each unordered, incident pair taken
from {X, X', Y,Y’}, there corresponds a subtended rosette containing fx and fy. So there may
be none, one or two subtended rosettes containing §x and fy. Note that it is possible that two
distinct lines subtend the same rosette.

We have already seen that a GQ S of order (r,r2) with a subGQ &' of order r that has all
subtended ovoids of S being subtended twice is a special and also extremal case of a subGQ
of §. We now give a result which shows the relationship between double subtending and the
existence of a particular type of involution of the GQ &. The idea for the construction of the
involution comes from Thas [62]. For the following we will denote the ovoid subtended by a

point X by 0x.

Lemma 3.1.5 Let S be a GQ of order (r,r?) and S' a subGQ of order r. Then S’ is doubly

subtended in S if and only if there exists a non-identity involution of S that fizes S' pointwise.

Proof: First, let T be an involution of S that fixes S’ pointwise. We first show that 7 fixes no
point of S\ §’. Suppose that X € S\ S8’ and 7(X) = X. Consider a line £ such that X € £ and
let £NS' = P, say. Now 7(P) = P and so 7(£) = £. Now let R € £, R # P. Then g = 0,(p)
but 7(R) € £ and so R = 7(R). Thus £ is fixed pointwise by 7. Now consider a point Y € §\&’,
Y « X. If y = Ox then since an ovoid may only be subtended twice and 7(Y") subtends 0y we
must have that 7(Y) = Y. If 8y # 0x, then there exists a point R' such that R’ € £, R' € S\ &'

and Y ~ R'. However, R is fixed by 7 as it is collinear with X and so every point collinear
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with R’ is fixed, so 7 also fixes Y. Thus 7 fixes every point of S and so is the identity, which is
a contradiction. Hence 7 fixes no point in §\ §'.

Thus we can now say that for any point X € §\ &' we have 7(X) = X' # X and so 0x is
subtended by the distinct points X, X'.

Now, suppose that &' is doubly subtended in §. If X € §\ & then let X’ be the second
point subtending 8x. Now define 7 to be the following map:

7: X=X XeS\§

X—~X Xe&.

Consider points P,Q € S, with P~ Q. If P,Q € §'then P=7(P) ~7(Q)=Q. If P € &',
Q €S\ S then P € 0g = 0y = 0,(q) and so P ~ 7(Q), that is 7(P) ~ 7(Q).

Now if P,Q € §\ &' then |0p NOg| = |6,(py N, (g)| = 1; so by Corollary 3.1.4 we have that
7(Q) ~ P or 7(Q) ~ 7(P). Since @ ~ P it must be that 7(Q) % P and so 7(P) ~ 7(Q). Thus
T is an automorphism of § and clearly an involution.

O

Corollary 3.1.6 If S is a GQ of order (r,r?) that has a doubly subtended subGQ S’ of order r,
then for each incident point, subtended ovoid pair (X,0) there exists a unique subtended rosette

R, containing 0 and with basepoint X.

Proof: If 6 is subtended by the points Y and Y, then the only subtended rosettes containing

6 and with base point X, are those subtended by the lines (X,Y) and (X,Y”). However (X,Y)

is the image of (X,Y") under the involution constructed in Lemma 3.1.5, and vice-versa. Since

the involution in Lemma 3.1.5 fixes the subquadrangle S’ pointwise (and linewise), the rosette
subtended by (X,Y) and the rosette subtended by (X,Y’) are the same.

O

Now we show that if a subGQ is doubly subtended, then we get an SPG from its subtended

ovoid/rosette structure.

Theorem 3.1.7 Let S be a GQ of order (r,r2) containing a subGQ S’ of order r, such that S’

is doubly subtended in S. Consider the following incidence structure T :

Points : Subtended ovoids of S’.
Lines : Subtended rosettes of S'.

Incidence : Containment.

Then T is a SPG with parameters s=r—1,t =72, a =2 and p = 2r(r — 1).
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Proof: A rosette contains 7 ovoids, thus s = r—1. By Corollary 3.1.6 there are r2+1 subtended
rosettes containing a subtended ovoid fx, that is, t = r2.

Now consider a subtended rosette R with basepoint P and not containing the ovoid 0.
Recall that ovoids of R partition the points of S’ that are not collinear with P. Suppose that
P e€0x. Then x C 8'\ PL. Let ny and n,41 be the number of ovoids of R that meet 6y in 1

and r 4+ 1 points, respectively. Then we have the following equations:

Net1-T+n1-0 = 7

N1 +N1 = T

Solving simultaneously gives n,41 = r and n; = 0, that is, fx meets each ovoid in R in
r + 1 points.
Suppose now that P ¢ 8x. Then 0x has 2 — r points non-collinear with P and so we have

the following equations:

g1 (r+1)+n = r*—r

Ney1+n1 = 1

Solving simultaneously we have ny41 =r —2 and n; = 2.

In terms of 7 the above means that if we have a non-incident point/line pair (4,¢) in T
there are 0 or 2 point/line pairs (B, m) such that AT m I B I .

Now consider two subtended ovoids of S, say 6x and 0y, such that |#x Nfy| =r + 1. Let
Q = 6x \ 8y. By Corollary 3.1.6, for each @ € Q there exists exactly one subtended rosette
R, with base point @ and containing 8x. By the above, we see that there are two subtended
rosettes containing fy and an ovoid in R, and so two subtended ovoids that are contained in a
subtended rosette with #x and contained in a distinct subtended rosette with 8y. This is true
for all points in Q and so there are 2(r? — r) subtended ovoids that are contained in a rosette
with both 6x and 6y. In T, this means that given two non-collinear points A and B there are
2r(r — 1) points collinear to both A and B.

Thus 7 is an SPG with the parameters as required.

O

Corollary 3.1.8 Let S be a GQ of order (r,72) containing a subGQ S’ of order r such that
there exists a non-identity involution of S that fizes S’ pointwise. Then there is an associated

SPQG with parameters s=1r —1,t =12, a =2 and p = 2r(r — 1).
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3.1.1 Algebraic 2-fold covers of SPGs and the GQ condition

Suppose that S is a GQ of order (r,72) and &’ is a subquadrangle of order r that is doubly
subtended. Let 7 be the SPG constructed from S and &’ as in Theorem 3.1.7. In this section
we show that if 7 is the geometry of S\ S’ (that is, the subgeometry of S consisting of the
points and lines not in §'), then there exists a map p from T to 7 such that (7,p) is a 2-fold
cover of 7. In fact the 2-fold cover is an algebraic 2-fold cover. We then show that we may
reconstruct S from S’ and 7. Generalising this construction we construct a GQ of order (r,r2)
from &', T and an algebraic 2-fold cover of T, provided the cover has a property called the GQ
condition.

Let S, 8’ and T be as above and let (7, p) be an algebraic 2-fold cover of T over Z, (where
Z+ is the unique abelian group of order 2), defined by the 1-cochain c¢. Then (T,p) is said to
satisfy the GQ condition if for each set {P, Q, R} of pairwise collinear points of T

6c(P,Q, R) = ¢(P,q) — ¢(P,R) + ¢(Q, R) = 0 <= P, Q, R are collinear points of 7. (3.1.1)

Theorem 3.1.9 Let S = (P,B,I) be a GQ of order (r,r?) and S' = (P',B,I) a doubly
subtended subGQ of order r. Let T be the SPG constructed from S and S’, as in Theorem 8.1.7
and let T be the geometry (P \ P',B\ B',I). Let © be the set of subtended ovoids of S' and
represent P \ P’ as the set {(0,0),(0,1) : 6 € ©}. Let ¢ be the 1-cochain (of the simplicial
complez of the point graph of T ) defined by

0 if|6;n6;| =1 and (6;,0) and (8;,0) are collinear.

c(6;,0;) =
v 1 if|0;N0;] =1 and (6;,0) and (6;,0) are not collinear.

Then ¢ defines an algebraic 2-fold cover of T with covering geometry T. Furthermore, c satisfies

the GQ condition.

Proof: Let 6; and 6; be two collinear points of 7 and so |6; N Oz = 1. Clearly, ¢(61,6;) =
c(f2,01) and so c¢ is a 1l-cochain. Since they are collinear points of 7, ¢, and 62 are two
subtended ovoids of &’ contained in a common subtended rosette, that is subtended by two
lines of 8. The point labelled (61,0) is incident with one of these lines and (6;,1) is incident
with the other, and similarly for (fs,0) and (62,1). Thus (0;, @) is collinear with (6;, 3) if and
only if ¢(61,02) = a + B. Thus c defines an algebraic 2-fold cover of the point graph of 7.

To show that ¢ defines an algebraic 2-fold cover of the geometry 7 we need to show
that dc(61,602,03) = 0 whenever 01, 6, and 63 are collinear points of 7. Let 6;, 62 and
03 be three collinear points of 7, then they are contained in a common subtended rosette
R of §'. Now (61,0) is collinear with (02,c(0:1,62)) and (6;,0) with (03,¢(61,65)). Since
((61,0),(02,c(61,62))) and ((61,0), (03,c(61,03))) both subtend the rosette R, it follows that
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(02, c(61,62)) and (03, c(61,03)) are collinear and so de(6y,02,603) = 0. Thus ¢ defines a cover of
the geometry 7.

If 6;, 62 and 03 are pairwise collinear but not incident with a common line of 7, then
it follows that they are not contained in a common subtended rosette of S&’. Thus (6y,0),
(62,c(81,62)) and (83,c(1,03)) are not incident with a common line of 7 and so (62, c(61,62))
and (63, c(61,03)) are not collinear since this would be a triangle in S. Hence, dc(6;,602,603) =1

and c satisfies the GQ condition.

Given the notation of Theorem 3.1.9, consider the following description of S.

Points (i) Points of S’
(i)  Points of 7.
Lines (a) Lines of &'
(b) LU P where £ is a line of 7 and
P the basepoint of the subtended rosette covered by £.
Incidence (i),(a) asinS’.
(i),(b) A point P of type (i) is incident with a line £U Q of type (b)
if and only if P = Q.
(ii),(a) None.
(i1),(b) A point P of type (ii) is incident with a line £U @ of type (b)

if and only if P is incident with £ in T

Now suppose that in the above incidence structure instead of using the algebraic 2-fold cover of
T from Theorem 3.1.9 we use an arbitrary algebraic 2-fold cover of 7. The following theorem

specifies the conditions under which this new incidence structure is a GQ.

Theorem 3.1.10 Let S = (P,B,I) be a GQ of order (r,r2) and S' = (P',B',I) a doubly
subtended subGQ of order r. Let T be the SPG constructed from S and S', as in Theorem 3.1.7
and let (T,p) be an algebraic 2-fold cover of T defined by the 1-cochain c. Define W to be the
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following incidence structure:

Points (i) Points of S'.
(i) Points of 7.
Lines (a) Lines of &'
(b) €U P where £ is a line of T and
P the basepoint of the subtended rosette covered by £.
Incidence (i),(a) asin &'
(i),(b) A point P of type (i) is incident with a line £U Q of type (b)
if and only if P = Q.
(ii),(a) None.
(ii),(b) A point P of type (ii) is incident with a line £ U Q of type (b)

if and only if P is incident with £ in T

Then S is a GQ of order (r,r?) if and only if c satisfies the GQ condition. In this case S
contains S’ as a subquadrangle and S’ is doubly subtended by S. The SPG constructed from S
and S’ as in Theorem 8.1.7 is T .

Proof: Any line of &' is incident with r + 1 points of &’ and so r + 1 points of W. A line £U P
of type (b) is incident with P and with the r points of T incident with £. Thus each line of S
is incident with 7 + 1 points.

Let @ be a point of type (i), then @ is incident with r + 1 lines of S’. There are (r? —r)/2

subtended rosettes that have Q as a basepoint and so there are r2

— 7 lines of § of type (b)
that are incident with Q. Thus Q is incident with 72 + 1 lines of S. By Corollary 3.1.6 each
subtended ovoid of S’ is contained in r2 + 1 subtended rosettes and so each type (ii) point of S
is incident with 2 + 1 lines of W.

We check the third GQ axiom for each non-incident point/line pair, (P,£) of S. If P is of
type (i) and £ is of type (a), then since 8’ is a GQ the property holds. Let P be of type (i)
and £ U Q of type (b). If P and Q are collinear then there is no ovoid of &' containing both
P and Q. Thus, @ is the unique point of £ U @Q that is collinear with P. If P is not collinear
with @ then P is contained in a unique ovoid in the rosette subtended by £. There is a unique
subtended rosette containing this ovoid and with basepoint P.

Let P be of type (ii) and £ of type (a). The ovoid 8, corresponding to P meets £ in exactly
one point X. There is a unique subtended rosette containing § and with basepoint X and thus

a unique line of type (b) containing P and X.
Let P be of type (ii) and let £U @ of type (b). Let € be the ovoid of &’ corresponding to P
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and R = {6y,...,0,} the subtended rosette of &’ corresponding to £. Without loss of generality
suppose that P = (#,0). There are two possibilities for £, either

¢ ={(61,0),(02,c(61,62)),-..,(0r,c(61,0;))} or

¢ = {(61,1),(02,c(01,62) +1),...,(0r,c(6r,61) + 1)}. Suppose that # € R and that with-
out loss of generality & = 6;. Then since (,0) is not incident with £ we have that £ =
{(61,1), (62,¢(61,62) + 1), ... ,(0r,c(61,68;) + 1)} and (8,0) is collinear with none of the points
on £. Thus @ is the unique point on £ U @ that is collinear with P. Now suppose that § € R
and that without loss of generality £ = {(61,0), (02, c(61,62)),... ,(0r,¢c(6,,01))}. If Q € O then
0 meets each of the 6; in » + 1 points and is contained in a unique subtended rosette with
as the basepoint, which gives a unique line incident with P and a point of /U Q. If Q ¢ 6,
then there are two ovoids of R that meet 8 in precisely one point. Without loss of generality let
these ovoids be #; and 6. Now (61,0) is collinear to (62, c(61,602)) (on £) and (6;,1) is collinear
to (62,c(01,602) + 1), while (6,0) is collinear to exactly one point of the form (6;,—) and one of
the form (62, —). So (6,0) is collinear to exactly to one point on £U @ if and only if either (6,0)
is collinear to (61, 0) and (02, c(61,62) + 1) or (6,0) is collinear to (61,1) and (02, c(61,62)). This
occurs if and only if ¢(6,802) = ¢(6,61) + c(61,602) + 1. That is, if and only if

(50(0, 04, 92) S 6(9, 91) + 6(9, 02) + 6(01, 92)
S 6(0,91) + (6(9,01) + 6(01,92) + 1) + 6(01,92)
= il

This is precisely the GQ condition. Thus W is a GQ of order (r,r?) if and only if ¢ satisfies the
GQ condition.

Now suppose that W is a GQ of order (r,r?). If X is a point of type (i) of S, then let 0x
be the ovoid of S’ that is covered by X. The set of lines of W incident with X meets &’ in the
set of basepoints of subtended rosettes containing 8x. So, in W, X subtends the ovoid 8y in
S'. Tt then follows that a line £ U P of W subtends the rosette that is covered by the line £ of
T. Thus &' is doubly subtended in W and subtended ovoid/rosette structure is 7.

We will study this construction in greater depth in Chapter 4.
Note that in Theorem 3.1.10 since ¢ defines an algebraic 2-fold cover of T, it follows from

Section 1.6 that c satisfies one half of the GQ condition
dc(61,62,03) = c(61,02) — c(01,03) + c(62,03) = 0 if 61,02, 03 are distinct collinear points of 7.

In fact by Theorem 3.1.10 any 1-cochain satisfying the GQ condition, defines an algebraic 2-fold

cover of T and the construction in Theorem 3.1.10 is a GQ.
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3.2 Isomorphisms of SPGs

In this section we determine when two SPGs, constructed from the double subtending process,

are isomorphic. We also calculate the group of such an SPG.

Theorem 3.2.1 Let W and S be two GQs of order (r,r?) and let W' and S’ be subGQs of W
and S respectively, of order r. Let W' and 8’ be doubly subtended in W and S and let the SPGs
constructed as in Theorem 3.1.7 be Tw and Ts. The SPGs Tw and Ts are isomorphic if and

only if there exists an isomorphism from W' to 8’ that induces an isomorphism from Ty to Ts.

Proof: First, let cs define an algebraic 2-fold cover of Tg, as in Theorem 3.1.9, and let
i: Tw — Ts be an isomorphism. If § and 6’ are two points of Ty, then we may easily show
that the function cyy = ¢s(i(),i(#’)) defines an algebraic 2-fold cover of Ty, that satisfies the
GQ condition. Let (752", pw) be the algebraic 2-fold cover of Ty defined by cw, (T35 ,ps)
the algebraic 2-fold cover of Ty, defined by cs and S the GQ of order (r,72) constructed from
(T, ,pw) and W' as in Theorem 3.1.10. Now, let 7 be the map from the pointset of 7,3 to
the pointset of 75,5, which acts by (6, ) — (i(), @)), for § a point of Ty and o € Zy. If the
lines of Ty are considered as sets of points of 7y, then ¢ induces an isomorphism from TVva to
Ty » which we also denote by i. We show that i may be extended to an isomorphism from S
to S.

Let £ and m be two skew (that is, non-concurrent) lines of S that are tangent to YW'. A line
of S that is tangent to W' is said to be a transversal to £ and m if it is concurrent to both £
and m.

Let P be a point of W' incident with £, then P is the unique point of W’ that is incident
with £. Let Q be the unique point of W' that is incident with m. Now if P and Q are not
collinear, then by the third GQ axiom one point of the set £\ {P} is collinear with @ and each
of the remaining r — 1 points of £\ {P} is collinear with a unique point of m \ {Q}. Thus there
are r — 1 transversals to £ and m in this case. If P is collinear to @ (with the line incident with
P and Q necessarily a line of W'), then each point of £\ {P} is collinear with a unique point
of m\ {@}. Thus there are r transversals to £ and m.

Now if £ and m are not skew, but meet in a point of W', that is P = @, then the third GQ
axiom decrees that there are no transversals to ¢ and m.

Let ¢ and m' be the lines of 7,3)Y such that £ = ¢ U {P} and m = m' U {Q}. Let a line of
T be a transversal to £ and m’ if it is concurrent to both £’ and m/. Consider the incidence
structure which has pointset {£: L is a set of ¢> — ¢ pairwise skew lines of TA¥} and points
L1 and L5 collinear if 1 and £3 have exactly r transversals, for all £, € £1 and £y € Lo

(lines are the maximal sets of pairwise collinear points). The above calculations show that this
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incidence structure is W'.

Thus 7 may be extended to an isomorphism from S to S. The restriction of ¢ to W' is an
isomorphism from W' to &' that induces i from Ty, to Ts.

Now suppose that there exists an isomorphism from W' to &' that takes T}y to Ts. Since
such an isomorphism maps ovoids to ovoids, rosettes to rosettes and preserves inclusion of an
ovoid in a rosette, it induces an isomorphism from Ty to Ts.

O

As a corollary of Theorem 3.2.1 we state the automorphism group of an SPG arising from

the double subtending process.

Corollary 3.2.2 Let S be a GQ of order (r,7?) and S’ a subGQ of order r. Let S' be doubly
subtended in S, with SPG T constructed as in Theorem 3.1.7. The automorphism group of T
is the stabiliser of T in the automorphism group of S'.

Proof: From the proof of Theorem 3.2.1, if T = Ty = Ts and ¢ is an automorphism of 7,
then there is an automorphism of &’ that induces 1. Also, any automorphism of S’ that fixes 7
induces an automorphism of 7. Since any point of 8’ may be expressed as the intersection of
two ovoids that are points of 7, any automorphism of S’ that induces the identity on 7 must be
the identity. So, if we consider the group of &’ that fixes T acting on 7 by the automorphism

it induces, the action is faithful and so it is the group of 7.

3.3 A GQ of Kantor, an ovoid of Kantor and a new SPG

In [31] Kantor constructed the g-clan C,, which has associated GQ S(C,) of order (q?,q) (see
Section 1.4.5 for details and references). In this section we investigate the connection between
the GQ S(C,) and the ovoid 6, constructed by Kantor in [30] and studied in Chapter 2 of this
document. The dual GQ S(C,) possesses a subquadrangle isomorphic to Q(4, q) and we show
that each subtended ovoid of the Q(4,q) subquadrangle is isomorphic to 8,. We also show
that the Q(4,q) subquadrangle is doubly subtended in §(C;). Since the subtended ovoids are
isomorphic to 8,, Theorem 3.2.1 shows that the SPG constructed as in Theorem 3.1.7 is distinct
from the Metz/Hirschfeld and Thas SPG constructed in the classical case. Hence we have a
new SPG. Note that the work in this section relies heavily on the work of Payne and Rogers in

[48].

Consider the g-clan

0
Co_ = At = 1 te GF(q)

0 —mt°
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where ¢ is an odd prime power, m a fixed non-square of GF(q) and o € Aut(GF(q)), as con-
structed in [31]. Recall from Section 1.4.5 that if G is the group with elements {(a,¢,3) : o, 8 €
GF(q)?, ¢ € GF(q)} and operation

(@ ¢,8) - (., f) = (@ + o sc+ +B(e)T, B+ B),
then the family of subgroups of G (of order ¢?)

A() = {(0,0,8): B€GF(e)*}
Alt) = {(o,adiaT,aKy): a€ GF(¢q)?} for t € GF(q), where K; = A, + AT
= {(a,adia’,204;): a € GF(g)?} for t € GF(q)

is a 4-gonal family for G (see Section 1.4.5) which we denote by F(C,). The family of subgroups

A*(0) = {(@,c,B): c€ GF(g),a € GF(g)*}
A*(t) = {(o,¢,204;): c € GF(q),a € GF(q)?} for t € GF(q)

is denoted by F*(C,). The GQ of order (¢?,q) constructed from the 4-gonal family F(C,) is
denoted by S(C,). Note that Kantor observes that S(Cy) =2 S(C,-1).

In [31] Kantor observes that if @1 = (GF(q) x0)xGF(q) %X (GF(q)x0) and Q3 = (0xGF(g)) x
GF(q) x (0 x GF(q)) are subgroups of G, then for i =1 or 2, F; = {A;i(t) = Af)N Q;: t €
GF(q) U {co}} is a 4-gonal family for Q; giving rise to an Sp(4,q) subquadrangle, that is, a
subquadrangle of S(C,;) isomorphic to W(q). We saw in Lemma 1.4.1 that if W is a GQ of order
(r,72) with W' a subquadrangle of order r, then each point of W, external to W', subtends an
ovoid of W'. Dually, W” is a GQ of order (r?,r) with W)" a subquadrangle of order r and
each line external to (W')" subtends a spread of (W')". If W' is doubly subtended in W, then
we say that (W')" is doubly subtended in W". So, we are interested in the subtended spreads
of the GQ determined by F; and F». It can be shown using Theorem 1.4.7 ([48, IV.1.]) that
there exists an isomorphism of S(C,) that maps the subquadrangle determined by Fi to the
subquadrangle determined by F». Since this is the case, we will consider only the subquadrangle
determined by Fi, which we will referred to as W(q) from here on.

Firstly, we show that the subtended spreads of W(q) are pairwise isomorphic. We do this by
showing that the group of §(C,) that fixes W{q) is transitive on the lines of S(C,) external to
W (q). The lines of S(C,) that are external to W (q) are A(oc0)g, for g € G, such that A(co)gN Oy
is empty, and A(t)g, for t € GF(q) and g € G, such that A(t)g N Q; is empty. The following

lemma deals with the external lines of the form A(o0o)g.

Lemma 3.3.1 The stabiliser of W(q) in S(Cy) is transitive on lines external to W(q) that have
the form A(oco)g.
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Proof: Let A(co)g and A(co)g’ be two external lines of §(C,) external to W(q). So g =

((91,92), 93, 94, (94, 95)) with g # 0 and g = ((91, 92), 93, 94, (g4, 95)) With g5 # 0. Our aim is to
find an automorphism of §(C,) that fixes W(q) and maps A(oc)g to A(oo)g'.

Recall from Theorem 1.4.6 that an automorphism of the group G naturally induces an
automorphism of the GQ §(C,). We first find an automorphism of G that maps g to an element
of G of the form ((g},95),—,(—,—)), such that the corresponding induced automorphism of
S8(Cy) fixes W(q). For z,k € GF(q) let

Tz : (aa c, ﬂ) = ((011 + 2,y 012), ¢, (/Blaﬂ2)) where a = (041, 012) and ﬂ = (ﬁla /82)

St (¢ B) = (ka, k%c,kB)
Now T, and Sj, are automorphisms of G; hence induce automorphisms of S(C,) which we also
denote by T, and Sy. Clearly, T, and S, both fix Q; and hence fix W(q). Choosing z = ¢{92/45
and k = g5/g2, we have that

SIcTz g ((g,lagIZ)’ ] (_7 _))a

as required. So, without loss of generality we may assume that g = ((g7, %), g3, (94, 95)).

Let z = g + (94 — 94)9) + (95 — g5)95, then the automorphism ©, of G defined by
@x : (aac’ﬂ) = (oz,c—i—x _g3aﬂ)

maps g to ((g},95), 2, (94,95)). A straight-forward calculation shows that ©,¢ and ¢’ are in the
same coset of A(c0), and so A(0c0)@z = A(oo)g’. Thus, if ©4 induces the automorphism ©, of

S(Cs), then ©, maps A(oo)g to A(oo)g'.

Lemma 3.3.2 The stabiliser of W(q) in S(Cs) is transitive on lines external to W (q).

Proof: First we show that the stabiliser of W(q) in §(C,) is transitive on the set {[A(t)] : t €
GF(q)}. Let s € GF(q) and let 7 be a permutation of GF(q), 7: t =t =1+ s. Then

t+s 0
A=Ay, =
0 -—m(t+s)°
t 0 s 0
= +
\ 0 —mit? 0 —ms”?

= At+As=At+A6

So by Theorem 1.4.7 there is an automorphism © of S(C,) with A = 1, ¢ the identity, D = I

(see Theorem 1.4.7 for notation) and associated permutation 7. By Theorem 1.4.7 we have that
© : T(A®)]) = [Al+5)]

Ts(a, ¢, ﬂ) = (o, c+ aAsozT, B+ 20A;)
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Now © fixes W(q) and if we let s vary over GF(g), then we have the desired transitivity on
{[A(®)] : ¢ € GF(q)}.

From this it can be shown that any line external to W (q), of the form A(t)g may be mapped
to an external line of the form A(0)g’, for some ¢’. We now wish to show to construct an
automorphism of §(C,) that fixes W(g) and swaps [A(oco)] and [A(0)] (and hence maps a line of
the form A(0)g to one of the form A(co)g’ and vice versa). Consider the g-clan C!, = {A;1: t €

10
GF(q) \ {0}} U{A4o}. Now if S = then the automorphism of G given by (o, ¢, 8) —
0 m

(aS™1, ¢, BS) induces an isomorphism from §(C.) to S(C,) which maps ([A(¢)], [4(0)], [A(c0)])
to ([A(t71)],[A(0)],[A(o0)]) for t € GF(qg) \ {0}. Composing this isomorphism with that in
Theorem 1.4.8 yields an automorphism of S(C,) mapping [A(c0)] +» [A(0)] and fixing W(q).

Thus any line of S(C;) external to W (q), that has the form A(t)g may be mapped to a line
of the form A(co0)g’ by an automorphism of §(C,) fixing W(g). Lemma 3.3.1 then implies that
the stabiliser of W{(q) in 8§(C,) is transitive on the lines of §(C,) external to W(q).

O

We now show that each spread of W (q) subtended by a line of S(C,) external to W (g), is
dual to a K'1(o) ovoid of Q(4, q). That is, under the duality from W (q) to Q(4, ¢) any subtended
spread of W(q) is mapped to a K1(o) ovoid of Q(4,¢). Given Lemma 3.3.2, if one subtended
spread of W (q) is dual to a K1(c) ovoid, then all subtended spreads must be.

The K1(o) ovoid of Kantor ([30]) was studied in detail in Chapter 2, but for our present
purposes we require only the canonical form of the K1(o) ovoid. We will let (4, ¢q) be defined

by the equation g4 + 123 + 23 = 0 and let ¢, be the canonical K1(o) ovoid, where
b0 = {(0,0,0,0,1)} U{(L,9,2,—my?, —2? + my”*") for y,z € GF(q) }

Here m is the same fixed non-square and o the same automorphism of GF(g) used in the
definition of C,. The ovoid ¢, may also be written as the intersection of Q(4,q) with the
variety defined by the equation mz{ + xg_lacg =0.

Note that this form is slightly different to the canonical form for Q(4,q) and the K1(o)
ovoid presented in Chapter 2.

The GQ W(q) may be represented as the set of absolute points and lines of a symplectic
polarity in PG(3, q). The canonical form of W (q) in PG(3, q) is given by the polarity which has
associated bilinear form zoy; —21yo+2x2ys —z3y2 = 0. In the following lemma we give an explicit
isomorphism between the W (q) as a subquadrangle of S(C,) and the canonical representation

in PG(3, q).

Lemma 3.3.3 Let 71 = {A1(t) = A(t)N Q1 : t € GF(q)U{o0}} be the 4-gonal family for W(q)
as above. Let W(q)' be the GQ arising in PG(3, ¢) as the set of absolute points and absolute
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lines of the symplectic polarity with associated bilinear form xoy; — z1yo + 22ys — 23y2 = 0.

Then the map p is an isomorphism from W(q) to W{(q)' where p acts as follows:

(0) — (0,1,0,0)
[4:1(¢)] — ((0,0,2¢,1),(0,1,0,0))
[A1(c0)] = ((0,1,0,0),(0,0,1,0))
((91,0),92,(93,0)) = (1,292 — 9193, 93,91)
A1(t)((91,0),92,(93,0)) — ((1,292 — 9193,93,91), (0,201t — g3, 2t, 1))
A1(0)((91,0),92,(93,0)) +— ((1,292 — 9193, 93,91), (0,91, 1,0))
1()((91,0),92,(93,0)) — (0,2tg1 — g3,2¢,1)
At (00)((91,0), 92, (g3,0)) +— (0,291,1,0)

where t,91,92,93 € GF(Q)

Theorem 3.3.4 Let W(q) be the subquadrangle of S(Cs) given by Fi. Then, each spread of
W (q) subtended by a line of S(C,) external to W(q) is dual to a K1(o) ovoid of Q(4,q).

Proof: Given Lemma 3.3.2, we may take our favourite fixed line of S(C,) external to W(q)
and find its subtended spread S. Let £ = A(o0)g be the external line where g = ((0, 1), 0, (0, 0)).
Then the points on A(co)g are

{((0,1),uz, (u1,u2)) : u1,us € GF(g)} U {A*(0c0)g}

where A*(00)g = {((0,1),us, (u4,us)) : us,us,us € GF(q)}.

For each point on A(oco)g there is a unique line of W(q) incident with it, which is a line
of the subtended spread. For the point A*(oco) the corresponding line is [A(c0)]. Now let
h(u1,u2) = ((0,1),usg, (u1,u2)) for uy,us € GF(q), then for each pair (u1,ug) we need to find
t € GF(q) such that A(t)h(u1,u2) is a line of W(g). Now

A(t)h(ur,ue) = {((vl, vy + 1), 02t — mv3t® + ugy — 2mwat®, (2uit 4 u1, —2must’ + uz))
t v1,v2 € GF(g)}

and is a line of W(q) if it contains any point of W(q) (in which case it contains ¢ + 1 points
of W(q)). This occurs if, as a coset of A(t) in G, A(t)h(u1,u2) contains an elements of Q;

(in which case it contains ¢ elements of Q;). So v2 = —1 and —2muw,t” = —uy which implies

e
a 2m ’

Thus the spread of W (q) subtended by S(C;) has the form:

[A(c0)]

A (— (3&) ri) h(ui,u2) wu1,u2 € GF(q)

2m
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To express the spread in the group coset representation of W (g) without reference to S(Cy),
0.—1
we need a representative of the coset A (— (%—) ) h(u1,us2) that is in Q, say ((0,0),ug +
m

2mt?, (u1,0)) = ((0,0),u2/2, (u1,0)). Thus the spread is

[A(c0)]

2m

up \% u
4 (— (32) ) (0,0, %2, (u1,0)) w1,z € GF(g),
By using the isomorphism in Lemma 3.3.3, S has the following form in W{(q)':

{zo = 0;23 = 0} = ((0,1,0,0),(0,0,1,0))
S e 0__1
((1,u2,1,0), 0, ~u1, 28,1), t==(32) forui,u € GR(),

We use Plucker coordinates and the Klein correspondence (see [25, Chapter 15]) to give a
duality from W (q)' to Q(4,q). Thus, in Q(4,q) the spread S becomes an ovoid 6, say, which
has the form:

(07 0’ 0’ 0, 1)

6= -1

a
(1,2t, —uy, ug, —2ugt — u?), t=— <2u_;b) for uy,uy € GF(q).

o

Now since

g o—1 _ —Uz M\’
m(2t) +1 ug = m|2|—= + ug

2m

it follows that every point of § satisfies the equation ma{ + xg_lacg = 0. Thus 8 is the canonical

K1(o) ovoid ¢,.

Theorem 3.3.5 There is an involution of S(C,) that fizes W(q).

Proof: Consider the automorphism @p = O(w, A, p, D) of S(C,), using the notation of Theo-
rem 1.4.7, where 7 is the identity permutation on GF{(q), A = 1, p the identity automorphism

1 0
of GF(q) and D = € GL(2,q). Then
0 -1

Op: (¢ B) = ((a1, —az), ¢, (B1,—B2)) where a = (a1, az) and 8 = (B, Be).

Thus Op is an involution of S(C,) that fixes W (q).
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Corollary 3.3.6 The SPG constructed by the GQ §(C,)" and the subGQ isomorphic to Q(4,q),
as in Theorem 8.1.7, is not isomorphic to the known SPG with parameters s =q— 1, t = ¢,

a=2and p=2q(qg—1).

Proof: The GQ S(C,)" of order (g,¢?) has a subquadrangle of order ¢ isomorphic to Q(4, q)
such that there is a collineation of S(C,)" that fixes this subquadrangle pointwise. Thus, by
Corollary 3.1.8 we have an SPG and since each subtended ovoid of the subquadrangle is non-
classical, by Theorem 3.2.1 it is not isomorphic to the known SPG of that order.

O

It would be interesting to determine the configuration in Q(4,q) of the special points of
the K1(o) ovoids that are points of the SPG (that is, subtended in Q(4,q) by S(C,)"). One
possible conjecture is that the special points form a line £ of (4, ¢) and that the set of rosettes
with base point P € £ are the elation rosettes with special tangent line in the polar plane of ¢
(with respect to Q(4,q)). This sort of information would be important in using the techniques

of Section 4.2 to try to characterise the GQ S(C,)" by the Q(4, q) subquadrangle.

3.4 SPG from g-clan GQs, q even

Let S be a GQ of order (¢2, q), q even, constructed from a g-clan, as in Section 1.4.5 and reprised
in Section 3.3. For any such GQ S Payne ([45]) has constructed a family of subquadrangles,
{Sa : @ € GF(g)}, of order g. In this section we investigate whether any of the subquadrangles
S, is doubly subtended in & and so leads to an SPG via the construction in Theorem 3.1.7
(note that we are considering the dual of the situation in Theorem 3.1.7). In Section 3.4.1 we
determine the algebraic conditions on the g-clan under which S, is doubly subtended in S. In
Section 3.4.2 we use the algebraic conditions generated in Section 3.4.1 to show that of the
known g-clan GQs, q even, only in the classical case § = Q(5, q), is any S, doubly subtended
in S.

3.4.1 Algebraic conditions

In this section we outline the construction of the subquadrangles S, and then look for an
automorphism of S that fixes S5. By Lemma 3.1.5 such an automorphism exists if and only if
S, is doubly subtended in S.

The following derivation of the subquadrangles S, is taken from [46].

For ¢ = 2¢ a g-clan C may be normalised to a g-clan C’ giving a GQ isomorphic to that given
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by C, such that C’ has the form {A; : ¢ € GF(q)}, where

00 11 . Ty t
Ay = ;o A= (with trace(d) = 1); and A; = ,t € GF(q).
0 0 0§ 0

From this point we will assume that a ¢-clan C has the above normalised form.
We now introduce a group isomorphic to G where the subgroups generating the subGQs

will be easier to recognise. In Section 1.4.5 4-gonal families are constructed for the group
G ={(e,c,8) : & € GF(g)’,c € GF(q)}
with the group operation
(a,¢,B) - (o, B") = (@+,c+ ¢ + BT, 8+ 8).
The subgroups of the 4-gonal family are then:

A(0) = {(0,0,8): B € GF(¢)’}
A(t) = (a,adi0T,0K;): a € GF(g)?}
A*(00) = {(0,c,8) € G: c € GF(q),8 € GF(q)*}

A1) = {ocakK,): ac GF(g)?}
where Ky = Ay + AT

Now, let E = GF(¢?), such that E = GF(q)(r) where u2 + i + & (where d is an element of
GF(q) with trace(d) = 1). We will associated the element a + by of E with the element (a,b)
of GF(¢?). Let  — % = 29 and define a0 8 = a8 + @B. We now define a new group

G={(o,c,0): o,8 € E,c e GF(q)}

with operation

(a,c,B) - (,d,8)=(a+d,c+ +Bod,B+3).

01 = . . . =
IfP = ,then(: G — G : (a,c¢,B) = (a,1/c, BP) is an isomorphism with (™! : G —
10

G: (@,c,B) ~ (o, BP).
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Thus the g-clan C gives the following 4-gonal family F.

A(oo) = {(0,0,8): B € E}
A(t) = (a,VadiaT,ya): a € E}
A(0) = {(0,¢,8): c€GF(q), € E}

At = {ocye): acE}

Consider the following subgroup of G:

Gq = {(aa,c,ba) € G: a,b,c € GF(q)} where « € E
The group operation of G restricts to G, in the following way:

(aq,c,ba) - (d'a,d,bla) = (aa+da,c+cd +Vbaoada,ba+ba)

= ((e+d)a,c+,(b+b)a)

So G is an elementary abelian group of order ¢, and in fact G, 2 GF(¢)® under component-
wise addition.

Now consider the following subgroups of G:

Ag(00) =A(0)NGo = {(0,0,be) : b€ GF(q)}
At =A@)NGy = {(aq,av/adial,ata): a € GF(q)}
A(c0) = A*(00)NGa ={(0,c,ba) : b,c € GF(q)}

LB =A*(t)NGa = {(aa,c,ata): a,c € GF(q)}.

The family Fo = {Za(t) : te€ GF(q) U {(oo)}} is a 4-gonal family for a subGQ, which we will
denote by &,.

At this point we make the following definition from [48]

z a b
Definition 3.4.1 Let A,B € GL(2,q) such that A = Y and B = . Then
z w c d

A=Bifz=a,y=d, z+y=b+c

Given this definition it can be shown that, for ¢ even, [48, IV.1] is equivalent to the following

theorem.
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00
Theorem 3.4.2 Let C = {A;: t € GF(q)} be a ¢-clan with Ay = . Let © be a

00
collineation of the GQ & = S(G,F(C)) derived from C which fixes the point (co), the line

[A(o0)] and the point (0,0,0). Then the following must exist:
(i) A permutation 7: ¢ — t' of F.
(ii) X € GF(g), A #0.
(iif) o € Aut(GF(q)).
(iv) D € GL(2,q) for which Ay = ADTAYD — Ay, for all t € GF(q).

Conversely, given g, D, and a permutation 7 : ¢t — ', satisfying the above conditions, the
g g

following automorphism © of G induces a collineation of S, fixing (00),[A(c0)] and (0,0, 0).

©=0(mM\o,D): G- G:

(@¢,8) = (A aD"T, A3 + A7y/a? D-TAy D=}(a?)T, 7 PDP + A 'yga” D7),
Theorem 3.4.3 Let C = {A;: t € GF(q)}, q even, be a q-clan normalised as follows:

Ay = ;o A= (with trace(d) = 1); and A; = ,t € GF(q).
00 0 4 0 u

Let S be the GQ of order (¢°,q) defined by C and let S,, be the subquadrangle of S defined by

the subgroup Go of G, where a = (a1,09). Then S, defines an SPG, as in Theorem 3.1.7, if

and only if

Zxy + oy, + (0 +8a3)t =0 for all t € GF(g) \ {0,1}.

Proof: By Lemma 3.1.5, it suffices to find conditions under which & admits a non-identity
involution © that fixes the subGQ S, pointwise.

Now (00), [A(c0)] and (0,0,0) are all contained in the subGQ S, and so © must fix these.
Thus © has the form of the automorphisms of S given by Theorem 3.4.2. Using the notation of
Theorem 3.4.2 we have that, Ay = Ag (since [A(0)] € S, and so if fixed) and Ay = ADTA?D,
for some X € GF(q), A # 0, o0 € Aut(GF(q)) and D € GL(2,q). Since 8, is fixed by @ it follows
that Ay = A; and so

Ay =2DTA?D (3.4.2)
The subgroup G, = {(aa,c,ba) : a,b,c € GF(q)} is fixed element-wise by ©. But

©: (0,¢,0) — (0,A\"2¢,0),
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thus \"3¢” = cfor all ¢ € GF(q). Letting ¢ = 1 implies that A = 1 and so ¢’ = ¢, that is ¢
fixes GF(q) and hence o is the identity automorphism on GF(g).
Now we know that © : (a,c,8) — (aD~T,c, SPDP) so D? is the identity matrix, I (since

a b
© is an involution). We also know that A; = DTA,D. If D = , then D? = I, gives

c d
us the following equations
a®+bc = 1 (3.4.3)
ab+bd = 0 (3.4.4)
ac+cd = 0 (3.4.5)
be+d? = 1 (3.4.6)

As D is non-singular, equations 3.4.3 and 3.4.4 imply that a = d, in which case equations 3.4.4

and 3.4.5 are satisfied.

Now

T a ¢ 11 a b

D A\D =
b d 0 6 c d
a a-+cod a b
b b+dé c d
a’?+ac+c*5 ab+ ad+ cdé
ab+bc+cds b2+ bd+ d?6

and so by 3.4.2 we have

a24+ac+c?s =1 (3.4.7)
¥V +bd+d*s = § (3.4.8)
(ab+ ad + cdd) + (ab+bc+cdd) = 1

=ad+bc=|D| =1 (3.4.9)

Note that since a = d 3.4.3, 3.4.6 and 3.4.9 are equivalent.

Since © fixes S, we have that
0: (aq,c,ba) = (aaD~T,c,baPDP) = (aa, ¢, ba),
which gives us the following equations:

aDT = o

aPDP = o
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Now

b
= =S by 3.4.9

d c
b a

Now PDP = D~T, and so the two equations in D and « are identical, giving us the equations

and so DT =

dop +bos = oy (3.4.10)
col +acs = o, (3.4.11)

where a = (a1, a2). Now if a3 = 0 then ay # 0 and it follows that b=0,a =d=1and c=0

or1/6. If ¢ =0, then D = (1) (i and © is the identity automorphism of S.
If a; # 0 and ae = 0, then it follows that c =0, a =d =1 and b = 0 or 1. In the case
where b=0, D = (1) (1) and © is the identity automorphism of S.
Now if oy, a0 # 0, then we may rewrite 3.4.10 and 3.4.11 as follows
a+ bj—j = 1 (3.4.12)
c2ig = 1, (3.4.13)

and so b = ca? /a3. Substituting this value for b into equation 3.4.3 yields a = d = 1 + cay /as.

Given these formulae for a, b, d in terms of ¢, we may rewrite 3.4.7 as

2
1+c2a—%+c+c2ﬂ+c26 =1
2
<=>c<1+c(a—;+ﬂ+5>> = 0. (3.4.14)

Note that since trace(d) = 1, it follows that z2+x+6 is irreducible, and so o? /02 +a1 /as+6 # 0.

Equation 3.4.14 is satisfied if and only if ¢ = 0 or

1 a%
€ = =5 = =g o
o o of + ajag + ba
= +6 A
Rewriting 3.4.8 yields
4 2 2
c2%+cﬂ(1+cﬂ>+ 1+3221)6 = 6
Gy %) as
4 2 3 2
— cza—i+ca—é+c2%+c25a—é =0
o5 a5 a; of
Ol% a1
= clltc|l—5+—+6¢ = 0,
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which is precisely 3.4.14.
If c =0, then b =0 and ¢ = d = a, that is D is the identity matrix and # the identity
automorphism of S. If ¢ = o} /(a? + a1as + 6a3), then

b= od a=d=1+
Ha'f+a-1a2+§a§’ D

a0 . o2 + 6o
ot +arag + 602 of +ajas + 6o

Now notice that these formulae also give the previously determined values for a,b, ¢ and d in
the case where oy = 0, a2 # 0 and D is not the identity matrix and the case where oy # 0,
ag = 0 and D is not the identity matrix.

We now need to check whether when the possibilities for D that we have calculated satisfy

the property 3.4.2.

DT A.D
a1 + 6o o Tt a1 + a3 o

1

N (a% + ajag + (501%)2
of  af+daj 0y a3 of+doh

. (a2 + 6ad)zy (02 + 6ad)t + o3y o? + 6o o?

(o} +arag + 003)?
oty a3t + (2 + 6ad)y: o’ of + 6o

1
X
(&? + arag + 603)?

(o} +0%a8)z: + ady: + (o +da2)adt (a2 + 6ad)alz: + (af + 8%a3)t + (o + dad)ady:

(o} + 6ad)adz; + adadt + (a2 + dad)ddy: alz: + (af + 82ad)y; + (@2 + 6ad)a?t

Now DT A;D = Ar if and only if the following three equations are satisfied

(af + 62a3)z; + ojys + (oF + d03)tad
(2 + aras + da2)?

ry =

bz + (af + 62a5)y: + (o2 + dad)a?t
(@? + ajas + da2)?

Yt

(o} + a?ad + 6%ad)t _
(o + ayag + 6a3)?

Note that the third of these equations always holds. Rewriting the first of the three equations
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yields

zi(of + ofed + 8%a3) + (of + 6%as)z: + agy: + oj(ef + daf)t = 0
— 23z + by + Ad(a? + 6ad)t = 0
= o3(ofz; + adys + (o +6a3)t) = 0

and similarly the second of the three equations may be rewritten as
o2 (adzs + odys + (o + 8ad)t) = 0.
Now if a3 # 0, then the second equation yields
2z + ody + (@2 +6ad)t =0
and if ay # 0, then the first equation also gives this. Thus the conditions that we require are
o2zy + o2y + (a2 + 6ad)t =0 for all £ € GF(g) \ {0,1}. (3.4.15)

Note that the normalised form of the g-clan ensures that the equation in 3.4.15 is always satisfied

fort=0and t =1.

3.4.2 Examples

In this section we consider the examples of g-clan GQs, ¢ even. We show that if S is a known
example that has a doubly subtended subquadrangle S,, for some a € GF(q)?\ {(0,0)}, then
S is the classical GQ, that is S = H(3,¢%) = Q(5,¢)". In this case, S, is doubly subtended for
all & € GF(g)%\ {(0,0)}.

Classical (see [44] for example): The GQs exist for all ¢ = 2¢. The g-clan is

4
: t € GF(q) p where trace(a) =1,

0 at

and so the condition on & in Theorem 3.4.3 is equivalent to the polynomial in ¢ given by
a3t + agat + (o + aad)t

begin identically zero for (a1, az) # (0,0). This is clearly always the case.
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Fisher-Thas-Walker (see [63]): The GQs exist for ¢ = —1 (mod 3), so for the q even case
this is ¢ = 2%, e odd and e > 1. The g-clan is

N

0 VB : t€ GF(q) ¢,

that is z; = V1, ys = Vi3 and § = 1, using the notation of Theorem 3.4.3. The condition for
the existence of an SPG is that the polynomial in ¢ given by

o3V + a3V + (&2 + Bt

is identically zero for fixed oy, ag, (a1, @) # (0,0). Clearly, this is never the case.

Payne [45]: The GQs exist for ¢ = 2¢, e odd and e > 1. The g-clan is

28
o s : t € GF(q) },

and so the condition from Theorem 3.4.3 is equivalent to the polynomial in ¢ given by
o2t + odt® + (a2 + ad)t?

being identically zero for (e, ae) # 0, which is clearly never the case.

Subiaco [13]: The GQs exist for ¢ = 2° and ¢ > 8. The g¢-clan is given by

t2
1) : t € GF(q) ¢,
0 a?g(t)
where

2 (14 21 d2 t3 t2

1) = d(t* +t) +d°(1+d+d°)(#° + )+t1/2,
(t2 + dt + 1)2

444 4 d3(1 2 d2 + d4)3 4+ 3 2 1/2

o) = d*t* +d°(1 4+ d° +d*)t° + d°(1 + d°)t d 12 4nd

(d? + d° + d1/2)(#2 + dt + 1)2 TETHT an
d? + d° + d'/?

a = —

d(1+d+d?)’

with d € GF(q) such that d> + d + 1 # 0 and trace(1/d) = 1.

The condition from Theorem 3.4.3 becomes

2 f(t)% + oda?g(t)? + (@2 + dad)t =0 for all t € GF(q),

78



which is equivalent to the polynomial in ¢ given by

dtt + d3(1+d? +d)P + B+ d)t\”  td(t +dt+ 1)1
d(l+d+ %) E(1+d+ad)? |

Il [(dz(t4 +t)+ 2L+ d+d)(E + )2+t +dt+ 1)4] o2 + (a2 + 6a)t(t2 + dt + 1)*

being identically zero. If we equate the coefficient of 2 to zero we obtain

dS(1 + d*)
20 14 2
At et @

= Z(1+d>+d)+ad(1+dY) = 0

and by equating the coefficient of % to zero we obtain

dS(1 +d* + d®)

2 14 2 4 2 —
Ad*(1+d +d)+a2d2(1+d+d2) = 0
= (@@+ad)1+d2+dY) = 0
— a1 = Q.

Substituting a; = vy into the t2 coefficient equation yields a?d? = 0, which means that o =

a2=0.
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Chapter 4

Characterisations of (zQs of order

(r, %)

Let S = (P,B,I) be a GQ of order (r,7?) and &' = (P',B',I) a subquadrangle of S of order
r. In Chapter 3 (Lemma 3.1.1) we observed that every point of P \ P’ is external to &’ and so
subtends an ovoid of &', while every line of B\ B’ is tangent to &’ and so subtends a rosette
of ovoids of & (see Section 1.4.1 for definitions). Two questions naturally arise at this point.
The first is: given &', a GQ of order r what ovoid/rosette structures of &’ may be subtended
by a GQ S of order (r,2) that contains o’ as a subquadrangle? This is particularly interesting
in the light of Theorem 3.1.10 which says that in the case where &' is doubly subtended in S
(that is, each ovoid of &’ that is subtended by S is subtended by exactly two points of §), that
S can be reconstructed from &', the subtended ovoid/rosette structure (an SPG in this case)
and an algebraic 2-fold cover of the subtended ovoid/rosette structure. If we choose the ‘right’
ovoid/rosette structure of S’ can we ‘naturally’ construct a GQ S of order (r,r2) from S’ and
this ovoid/rosette structure?

The second question is: given S, a GQ of order (r,72) containing a subquadrangle S’ of order
r, does the subtended ovoid/rosette structure of &’ characterise the GQ S, or is it possible to
find another GQ S of order (r,7%), not isomorphic to S, but with &’ as a subquadrangle and
subtending the same ovoid/rosette structure in &’ as 8?7 A result in this direction, which served
as the inspiration for the work in this chapter, is the following theorem due to Thas and Payne

[65, VIL1].

Theorem 4.0.4 Let S = (P,B,I) be a GQ of order (q,q%), q even, having a subquadrangle S’
isomorphic to Q(4,q). If in 8’ each ovoid Oy consisting of all of the points collinear with a
gwen point © of S\ S’ is an elliptic quadric, then S is isomorphic to Q(5,q).

In the first section of this chapter we consider the question: which ovoid/rosette structures of
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W(q), q even, (recall W(q) is isomorphic to Q(4, q) for ¢ even) may be subtended by a GQ of
order (gq,q?)? As a result we are able to strengthen the characterisation of Theorem 4.0.4.

In the second section of this chapter we consider a GQ S of order (r,r?) containing a
doubly subtended subquadrangle S’ of order r. We formulate the question of whether S can
be characterised by &’ and the associated SPG (a generalisation of the case Q(4,q) C Q(5,q)
in Theorem 4.0.4) as a cohomological problem, the solution of which allows us to prove the

equivalent result to Theorem 4.0.4 for ¢ odd.

4.1 Characterisations of Q(5,q), ¢ even

Recall that for ¢ even the GQ W (q) is isomorphic to Q(4,q) ([49, 3.2.1}). If # is an ovoid of
W (q), then 6 is also an ovoid of the ambient PG(3,q) of W(q), and if §' is an ovoid of PG(3, ¢q),
then there is an automorphism 7' of PG(3, ¢) such that T(6’) is an ovoid of W(q) ([55]). Note
that it is not true in general that any ovoid of PG(3, ¢) is an ovoid of W (q).

For ¢ = 2¢, e even, the only known ovoid of W(q) is the elliptic quadric ovoid of PG(3, q)
while for ¢ = 2%, e odd, there is also the Tits ovoid (see Section 1.4.6 for the explicit form of
the Tits ovoid).

Now if Q(4, q) is the non-singular quadric of PG(4,¢), P a point of Q(4,¢) and ¥ a hyper-
plane of PG(4, q) not containing P, then the projection of points and lines of Q(4,q) from P
onto ¥ is the geometry W(q) and X is the ambient PG(3, ¢) of this W(q) (see the proof of [49,
3.2.1]). From this isomorphism it follows that an elliptic quadric ovoid of (4, ¢) is isomorphic
to an elliptic quadric ovoid of W(g). Thus Theorem 4.0.4 is equivalent to the following.

Theorem 4.1.1 Let S = (P,B,I) be a GQ of order (q,q%), q even, having a subguadrangle
S' = (P!, B, 1) isomorphic to W(q). If in S8’ each ovoid Ox subtended by a point X € P\ P’

is an elliptic quadric ovoid, then S is isomorphic to Q(5,q).

4.1.1 The intersection and subtending of ovoids of W(q), ¢ = 2¢, e odd

In this section we look at the size of the intersection of a given Tits ovoid of W (g) with elliptic
quadrics of W (q). We show that if W (q) is a subquadrangle of a GQ S of order (g, ¢*) then the
set of ovoids of W (gq) subtended by & cannot contain both a Tits ovoid and an elliptic quadric

and cannot be all Tits ovoids.

Theorem 4.1.2 [3, Theorem 1(a)] The intersection of an elliptic quadric of W (q) with a Tits
ovoid of W (q) consists of either ¢+ /2q + 1 points or ¢ — /2q + 1 points.

For the proof of the following theorem recall the preliminary section on graphs, Section 1.1.
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Theorem 4.1.3 [50] Let W(q) be a subquadrangle of a GQ S of order (g,q?). Let N be the
graph with vertices the set of ovoids of W(q) subtended by S and with two vertices adjacent if

their corresponding ovoids meet in exactly one point. Then N is connected.

Proof: Consider the graph M with vertices the points of § not in W(q) and two vertices
adjacent if their corresponding points are collinear in §. Let P and @ be two vertices of M. If
P and @) are collinear in S, then they are adjacent and therefore connected. Otherwise there
exist two lines of S, [ and m, on P and Q respectively, such that ! and m meet W(q) in P’ and
Q' respectively. We can assume that P’ # @Q'. By the third GQ axiom we may choose R € m
such that R is not collinear with P’ in S. Also by the third GQ axiom there exists a point
T €l, T # P’ such that T is collinear with R in S§. Thus P,T, R, Q is a path of M and hence
P and @) are connected. We have shown, therefore, that the graph M is connected.

Now we consider the graph N. Let 6 and ¢ be two ovoids of W(q) subtended by points P
and @, respectively. If P and @ in S are collinear, then by Lemma 3.1.1 the line z joining them
is a tangent to W (q) at some point U. The line z subtends a rosette based at U containing 6
and ¢. Thus 6 and ¢ intersect in exactly one point and are adjacent as vertices of N. If P and
(@ are not collinear in S, then they are connected as vertices of M, since M is connected. Let
P, Cy,...,C,, Q be the path of M connecting P and @ and 8,1, ..., %y, ¢ the ovoids subtended
by the elements of the path. Since P and C) are collinear in S, it follows that 6 and +); intersect
in exactly one point and are hence connected in N. Similarly, C; is connected in N to Cjy; for
1 <i<n-—1and also C, is connected to ¢ in N. Thus 0,1, ...,%,, ¢ is a path connecting 8
and ¢. As these were arbitrary points of the graph N, it follows that IV is connected.

O

Recall from Section 1.4.1 that a rosette R of a GQ of order r is homogeneous if any two
ovoids of R are isomorphic, and inhomogeneous otherwise. We extend this definition to the

following,.

Definition 4.1.4 Let S be a GQ of order (r,72) and S’ a subquadrangle of S of order r. S'
is homogeneous in S if the ovoids of S’ subtended by S are all isomorphic. If this is not the

case 8’ is said to be inhomogeneous in S.

Theorem 4.1.5 [50] Let W(q) be a subguadrangle of a GQ S of order (q,q?) and suppose
that W(q) is inhomogeneous in S. Then the set of ovoids of W(q) subtended by S cannot be
contained in the union of the set of Tits ovoids of W(q) and the set of elliptic quadrics of W (q).

Proof: Suppose that the set of subtended ovoids is contained in union of the set of Tits ovoids
of W(q) and the set of elliptic quadrics of W(q). In other words, that each subtended ovoid is

either a Tits ovoid or an elliptic quadric. Then since S’ is inhomogeneous in S, it follows that
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there occurs at least one ovoid of each type. Now from Theorem 4.1.3 the graph N is connected,
which implies that there exists a Tits ovoid 6 and an elliptic quadric ¢ of W (q) that are connected
vertices of N. Thus there exists a path of N of the form 8 = Cy, C1,Cs, ...,Cp_1,Cp, = ¢, where
C; is either a Tits ovoid or an elliptic quadric. If j is the smallest number such that Cj is
an elliptic quadric then C;_; is a Tits ovoid, and so by Theorem 4.1.2 they intersect in either
exactly ¢ +v/2¢ + 1 or ¢ — /2¢ + 1 points. But C; and C;_; are adjacent in N and so the
corresponding ovoids of W(q) intersect in exactly one point; a contradiction.

O

We now consider the case where S is a GQ of order (g, ¢?) containing W (q) as a subquad-
rangle, such that each subtended ovoid of W (q) is a Tits ovoid.

Let G be the graph with vertices the Tits ovoids of W(q) and with two vertices adjacent
if they intersect in exactly one point of W(q). We denote the automorphism group of G by
aut (G).

Note that an automorphism of W(g) maps a Tits ovoid to a Tits ovoid and preserves
collinearity, thus inducing an automorphism of G. Suppose that T is an arbitrary, non-trivial,
automorphism of W(q) and let P be a point such that @ = T(P) # P. Now consider a Tits
ovoid @ of W(q) such that P € 6 and Q ¢ 6. Since Q € T(0) but Q & 6, it follows that
6 # T'(0). Thus the induced action of any group fixing W(q) is faithful (that is, the only
element of the group that induces the identity automorphism on G is the identity element of the
group). In particular, the induced action of the group Sp(4,q) on G is faithful and so Sp(4,q)
is isomorphic to a group of automorphisms of §. Now the Suzuki group Sz(q) is the stabiliser
of the Tits ovoid in Sp(4,¢q) ([25, Corollary 16.4.7]) and an element of the conjugacy class of
Sz(q) in Sp(4,q) induces a group of automorphisms on ¢ which is isomorphic to Sz(gq). This
induced group fixes a vertex in G corresponding to the ovoid fixed by the particular conjugate
of Sz(q) in Sp(4,¢). For simplicity we will use Sp(4,q) to denote the group of automorphisms
of G induced by Sp(4,q) and Sz(q) to denote the group of automorphisms of G induced by a
conjugate of Sz(g) fixing a particular Tits ovoid . We introduce a slight abuse of notation by

using 6 to refer to a particular ovoid PG(3,q) and also the corresponding vertex of G.

Lemma 4.1.6 Let G be the graph with vertices the Tits ovoids of W(q) and with two vertices
adjacent if they intersect in exactly one point of W(q). Then G is a connected graph.

Proof: Let aut(G), denote the stabiliser of 6 in aut (G); then we have Sz(g) C aut (G), and
Sp(4,q) C aut (G). By Lemma 1.4.11 we know that 6 lies in an elation rosette of W (q), and so
is in a non-trivial connected component C of G, with stabiliser denoted by aut ().

Thus Sz(q) C aut (G).NSp(4,q) C Sp(4,q). Now since C is non-trivial it contains a vertex ¢
such that ¢ # 6. The subgroup aut (G),, of aut (G) that fixes ¢ also preserves adjacency in G and
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so fixes C. Furthermore, it contains a subgroup isomorphic to Sz(g), induced by a conjugate of
Sz(g) in Sp(4, q). Thus since Sz(q) and its conjugate that fixes the ovoid ¢ are both in aut (G),
and they are not identical in Sp(4,q) we have that aut (G); N Sp(4,q) # Sz(q). Finally Sz(q)
is maximal in Sp(4, q), so aut (G). N Sp(4,q) = Sp(4,q), and as Sp(4,q) is transitive on G we
have C = G. Thus G is connected.

O

Lemma 4.1.7 Let 6 and ¢ be two Tits ovoids of W (q) such that 6N¢ = {P}. Then 0 and ¢ lie
in ezactly one common rosette of Tits ovoids based at P, namely the elation rosette with respect
to P and 0 (or equivalently P and ¢). Furthermore, for every point Q € 0 there is exactly one

rosette of Tits ovoids based at QQ which contains 0, namely the elation rosette with respect to Q

and 0.

Proof: The number of Tits ovoids that intersect  in exactly one point is (g — 1)(¢? + 1)
([3] Theorem 5(b)). By considering the elation rosette with respect to # and P for all points
P € 6, we obtain (g—1)(¢® + 1) Tits ovoids intersecting # in exactly one point. Thus the ovoids
intersecting € in exactly one point are precisely those in elation rosettes containing 6, and there
are only g — 1 Tits ovoids intersecting 6 in a given point P. Thus since |#N¢| = 1, 6 and ¢ lie in
a common elation rosette: the unique rosette of Tits ovoids containing € and ¢. It also follows
that the elation rosette with respect to 8 and Q) is the only rosette of Tits ovoids containing 6
and based at Q.

O

Theorem 4.1.8 There does not ezist a GQ of order (q,q?) such that W(q) is homogeneous in
the GQ and all subtended ovoids are Tits ovoids.

Proof: Suppose such a GQ § = (P, B, I) exists. Let 0 be a vertex of the graph G subtended
by X € P. Let ¢ be a vertex of G adjacent to 8, so that |[¢p N8| =1, and let $N 6 = {P}. Now
by Lemma 4.1.7 there is a unique elation rosette R of Tits ovoids based at P and containing
the ovoids € and ¢. The tangent joining P and X in S subtends a rosette R’ in W(g). By
assumption, all subtended ovoids are Tits ovoids, so R’ is a rosette of Tits ovoids based at P
and containing 6. Thus by Lemma 4.1.7 R = R’ and ¢ is a subtended ovoid of W (q).

We have shown that if one vertex G corresponds to a subtended ovoid of W (q) then so does
each adjacent vertex. Since G is connected by Lemma 4.1.6 it follows that if one vertex of G
corresponds to a subtended ovoid then all of the vertices do. Thus all Tits ovoids of W (g)
are subtended. W (q) contains q?(q + 1)(¢® — 1) Tits ovoids (= |[Sp(4,q) : Sz(¢)]|), but there
are only ¢* — ¢ points of S subtending ovoids, so we have a contradiction and the theorem is

proved.
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4.1.2 Applications to Q(5,¢), ¢ even

We now apply the work of Section 4.1.1 to extend the characterisation of Q(5,q) in Theo-
rem 4.1.1 to include Tits ovoids of W {(qg).

Theorem 4.1.9 [65, VIL1] If a GQ S of order (q,q?), q even, has a subquadrangle isomorphic
to W(q) and subtends only ovoids isomorphic to the elliptic quadric, then S is isomorphic to

the classical GQ Q(5,q).

Now using the work in this chapter we can extend this characterisation to include Tits

ovoids.

Theorem 4.1.10 If a GQ S of order (q,q%), q even, has a subquadrangle isomorphic to W (q)
and each subtended ovoid is either an elliptic quadric or a Tits ovoid then S is isomorphic to

the classical GQ Q(5,q).

Proof: By Theorem 4.1.5 if W (q) is a subquadrangle of a GQ S of order (g, ¢%) there cannot be
a mixture of Tits ovoids and elliptic quadric ovoids subtended. By Theorem 4.1.8 the subtended
ovoids are not all Tits ovoids and thus all the subtended ovoids are elliptic quadric ovoids. Hence
by Theorem 4.1.9 S is isomorphic to the classical GQ Q(5, q).

d

Corollary 4.1.11 Suppose q is even and that the only ovoids of W(q) are Tits ovoids and the
elliptic quadric ovoids. If S is a GQ of order (q,q%) containing a subquadrangle isomorphic to

W(q), then S is isomorphic to the classical GQ Q(5,q).

Corollary 4.1.12 If there exists a GQ S of order (q,q%) such that S is not isomorphic to Q(5,q)
and 8 contains a subquadrangle isomorphic to W(q), then there is a new ovoid of PG(3,q).

Corollary 4.1.13 For q < 32, q even, if S is a GQ of order (g,q?) containing a subquadrangle
isomorphic to W(q), then S is isomorphic to the classical GQ Q(5,q).

Proof: For q = 2 the GQs of order 2 and (2,4) are unique ([49], 5.2.3 and 5.3.2 (ii)). By [4]
(g = 4), [20] (¢ = 8), [36] (¢ = 16) and [37] (¢ = 32), the only ovoids in W(q) for 4 < ¢ < 32

and ¢ even are Tits ovoids and elliptic quadric ovoids.

85



4.2 GQs of order (r,r?) with a doubly subtended subquadrangle

of order r

Let S = (P, B, I) be a GQ of order (r,72) and &' = (P, B/, I) a subquadrangle of order r. Recall
from Chapter 3 that S’ is said to be doubly subtended in S if each ovoid of S’ subtended by a
point of P \ P’ is subtended by exactly two points of P \ P’. Recall from Theorem 3.1.7 that
there is an associated SPG 7. In this section we will investigate the number of embeddings of
S’ in a GQ of order (r,72) such that S’ is doubly subtended in the GQ, with associated SPG
T.

Suppose that Ty and Tgr are SPGs constructed by the subtending of the GQs W' and &',
of order r, in the GQs W and S, of order (r,2) (note that in Chapter 3 we denoted these SPGs
by Tw and Tg respectively) . Let (7,47, pw) and (757, ps) be the algebraic 2-fold covers of Ty
and Tgr, given by W and S respectively, as in Theorem 3.1.9. Recall from Section 1.1 that if
G is a graph of diameter d and G4 is the graph with the same vertex set as G and two vertices
adjacent if they are at distance d in G, then G is antipodal if G4 is the disjoint union of cliques.
Now if § = (P,B,I) and §' = (P',B',I), then Tg# = (P\ P',B\ B',I) (this is the definition
in Theorem 3.1.9), from which we may easily show that the point graph of 7g has diameter 3.
We can also show that the point graph of Tg° is antipodal, with two points antipodal if they
subtend the same ovoid of &', or (equivalently) if they cover the same point of Tg.

If there exists an isomorphism from ﬁv"," to Tg°, then the isomorphism must induce a graph
isomorphism on the corresponding point graphs. Since the antipodal nature of the graphs must
be preserved under an isomorphism, it follows that a set of antipodal vertices of the point graph
of TVCV"," maps onto a set of antipodal vertices of the point graph of 75°. Thus we have an induced
bijection from the pointset of 7y, onto the pointset of Ts. Further, we can easily show that
this bijection induces an isomorphism from the geometry 7y, to the geometry 7s:. We say that
this isomorphism is induced by the isomorphism from 7,)" to 75°. Note that Section 5.3.2
contains a more detailed exposition of the fact that an isomorphism of covering geometries
induces an isomorphism of the geometries being covered. Although Section 5.3.2 deals with
different geometries to those considered here, the general arguments are still applicable.

The following result is a consequence of the proof of Theorem 3.2.1.

Theorem 4.2.1 Let W and S be two GQs of order (r,7%) and let W' and S’ be subGQs of
W and S respectively, of order r. Let W' and S8’ be doubly subtended in W and S and let the
SPGs constructed as in Theorem 8.1.7 be Ty and Ts. Let the algebraic 2-fold covers of Ty
and T determined by W and S as in Theorem 3.1.9 be (T,5)¥,pw) and (T5%,ps), defined by

the 1-cochains cy and cs respectively. If i: TY — Tsf is an isomorphism, then i extends
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uniquely to an an isomorphism i: W — S. Further, iW') = S’ and i and i induce the same

isomorphism from T to Ts.

Proof: From the discussion above it follows that the isomorphism 4 : T2 — T¢$® induces a
unique isomorphism from 7y to 7sr. In the proof of Theorem 3.2.1 it was shown that given i
and the induced isomorphism from Ty to Tgr there is a unique isomorphism i from W to S,
taking W’ to S’ and inducing the same isomorphism from Ty to T as i.
O
Theorem 4.2.1 means that, in order to characterise a GQ of order (r,72) in terms of a doubly
subtended subGQ of order r, we need to consider the isomorphism classes of covering geometries
of algebraic 2-fold covers of the associated SPG. Note that Theorem 4.2.1 does not preclude the
possibility that given an SPG Ty, two covers (7,4, p) and ( VC\:,, p') which give rise to the GQs
S and W of order (r,r?), as in Theorem 3.1.10, and 735, not isomorphic to 'TVC\;, that & = W.
In this case S and W are isomorphic but there is no isomorphism from S to W that maps W'

to W' and Ty and Tyyr.

Suppose that Ty is an SPG constructed by the GQ W' of order r being doubly subtended
in a GQ W of order (r,72). We now consider isomorphisms between algebraic 2-fold covers of
T such that the defining 1-cochain satisfies the GQ condition (3.1.1); that is, covers that give
rise to a GQ of order (r,72), as in Theorem 3.1.10. Let (7:5,,p) and ( 1,‘\;,, p') be two algebraic
2-fold covers of Ty, defined by ¢ and ¢’ respectively. Let U : Tyc\;, — Ty be an isomorphism. If
(P, @) is a point of ’Tl,c\;,, then U acts by (P,a) — (U(P),up(c)), where U is the automorphism

of Ty induced by U and up is a permutation of Zo, such that
d(P,Q) =a+ <+ cUP),UQ)) =up(a) +ug(B). (4.2.1)

Now there are only two permutations on Zs, the identity permutation and the permutation that
swaps 0 and 1. Let b be the 0-cochain defined by b(P) = 0 if up is the identity and b(P) = 1
if up swaps 0 and 1. Thus up(a) = a + b(P). So, rewriting the condition 4.2.1 U and the

permutations up, we have that
d(P,Q)=a+p < c(UP),UQ)) =a+bP)+8+bQ)

That is, (P, Q) = c(U(P),U(Q)) + 6°b(P,Q). Conversely, if b is a 0-cochain and U an au-
tomorphism of Ty, we define ¢/ (P, Q) = ¢(U(P),U(Q)) + 6°(P, Q). Then the map (P,a)
(U(P),b(P) + a) is an isomorphism from 'Tyc\;, to Tyir.

The above work gives us the following theorem.

Theorem 4.2.2 Let W be a GQ of order (r,72) and let W' be a subGQ of W of order r.
Let W' be doubly subtended in W and the SPG constructed as in Theorem 38.1.7 be Tyr. Let
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(T3, p) and ( VC‘;,,p’) be two algebraic 2-fold covers of Ty, defined by ¢ and ¢ respectively, such
that ¢ and ¢ satisfy the GQ condition 3.1.1. Then T, and 'T),C\;, are isomorphic if and only if
d(P,Q) = c(U(P),U(Q)) + 8°6(P, Q), where U is an automorphism of Ty and b a 0-cochain.
In this case the map i : T,,C\:, — Ty that acts by (P, ) = (U(P), o+ b(P)) is an isomorphism.

Proof: Let (P, a) and (Q, 8) be points of Tyyr. Then i(P,a) = (U(P),b(P)+ ), and i(Q, B3) =
(U(Q),b(Q) + B) and i(P, ) and #(Q, B) are collinear if and only if

c(U(P),U(Q)) = a+ B+b(P)+b(Q).

This is the case if and only if c(U(P),U(Q)) +6°(P, Q) = ¢(P,Q) = a + 3, which is true if and
only if (P,«) and (@, 8) are collinear.
O
Recall from Section 1.6 that two 1l-cochains ¢ and ¢’ are said to be equivalent if 7.,
and 'TVC\;, are isomorphic, that is, if and only if ¢/(P,Q) = c(U(P),U(Q)) + 6°(P, R), for some
automorphism U of Ty and 1-coboundary 6°b. Note that if b is a 0-cochain, then the 1-cochains
c and ¢ + 6°b are equivalent.
Having established the form of the 1-cochains which give isomorphic covers of a given SPG,
we now consider automorphisms of a cover. From the above, we know that an automorphism of
7or has the form (P, a) = (U(P), oo+ b(P)) where ¢(U(P),U(Q)) = c(P, Q) + 6°(P, Q), for U
an automorphism of Ty and b a 0-cochain. Such an automorphism U is said to be admitted
by Tyi». The automorphisms of 7y admitted by 73, form a subgroup of the automorphism
group of Ty, which we denote by aut(Tw)e.

4.2.1 Introducing the cohomology

Suppose that Ty is an SPG constructed by the GQ W' of order r being doubly subtended in a
GQ W of order (r,r2). Recall that if G is the point graph of 7y and I'g the simplicial complex
of G, then ¢ € C'(Tg, Z3) (that is, ¢ is a 1-cochain) satisfies the GQ condition 3.1.1 if and only

if the following condition holds
§'¢(P,Q,R) = 0 <= P,Q, R are distinct collinear points of Ty.

Since we are working over Zs, if §'c(P,Q, R) is not 0 then it must be 1, and hence every
1-cochain that satisfies the GQ condition has the same coboundary. Thus if ¢ is a particular
1-cochain satisfying the GQ condition, then the set of all 1-cochains satisfying the GQ condition
is

c+ ZYTg, Zs),
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where Z1(T'g,Zs) is the set of 1-cocycles (that is, 1-cochains with a zero coboundary). So,
given one algebraic 2-fold cover of 7y satisfying the GQ condition, we can find all others by
adding on 1-cocycles. The question we now answer is: what is the relationship between the set
of covers equivalent to ¢ and the first cohomology group H'(T'g, Z2)?

Recall from Section 1.5.2 that the first cohomology group is given by
HYTg,Z3) = ZY(Tg,Z2)/B(Tg,Zs); that is it’s the group that results from factoring the
1-coboundaries out of the 1-cocycles. Thus an element of H'(I'g,Z>) is a set of 1-cocycles of
the form z+ B'(Tg, Zs) = {z+6%: 6% € B'(T'g,Z2)}, where z is a fixed 1-cocycle. Since two
1-cochains whose difference is a 1-coboundary are equivalent, it follows that any two elements
of ¢ + (z + BY(T'g, Z2)) are equivalent.

We now consider the conditions under which two 1-cochains equivalent to ¢ are in a common

element of ¢ + H(Tg, Z3). Let ¢ and ¢” be two 1-cochains equivalent to ¢, such that
d(P,Q) = c(S(P),S(Q)) + 6% (P,Q) and
¢d'(P,Q) = c(T(P),T(Q))+"(P,Q),

where S and T are automorphisms of Ty and §°0' and §%” are 1-coboundaries. The 1-cochains
¢ and ¢" are in the same element of ¢ + H!(T'g, Zy) if and only if their sum is a 1-coboundary.

Now

d(P,Q) +¢"(P,Q) = ¢(S(P),S(Q)) + c(T(P), T(Q)) + 6°' (P, Q) + 6°" (P, Q),

(4.2.2)
but 8% (P, Q) + 6°" (P, Q) is a 1-coboundary. So 4.2.2 holds if and only if
c(S(P),8(Q)) +c(T(P), T(Q)) = 6°b(P, Q)
for some 1-coboundary 6. This is the case if and only if
c(P,Q) +c(S7LoT(P),5 o T(Q)) = 8°8(S~1 o T(P), S 0 T(Q)), (4.2.3)

but since §°(S~! o T(P), S~ ! o T(Q)) is a 1-coboundary, it follows that 4.2.3 holds if and only
if S~' o T € aut(Tr)e. This is the case if and only if S and T are in the same left coset of
aut(Tw)c in aut(Tyr). Thus, we have a one-to-one correspondence from the set of left cosets
of aut(Twr)c in aut(Tyr) to the set of elements of H!(['g,Z2) (note that the correspondence
need not be onto). Note that if h € H*(I'g, Zs) corresponds to the left coset H of aut(Tyr). in

aut(Twr), then every element of h acts by

c(S(P),5(Q)) + éb(P, @),

for some S € H and 1-coboundary §b.

From the above we have the following theorem.
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Theorem 4.2.3 Let W and S be two GQs of order (r,7?) and let W' be a subGQ of order
r of both W and 8. Suppose that W' is doubly subtended in both W and S and that Ty
is the SPG constructed from both W and T, as in Theorem 3.1.7. Let the 2-fold algebraic
cover of Ty constructed from W as in Theorem 3.1.9 be (T,3y,p) and let the 1-cochain ¢ define
(T, ). LetTq be the simplicial complex of the point graph of TS, If laut(Tw) :+ aut(Tr)e] =
|H (T, Z2)|, then there exists an isomorphism i: W — S, such that i(W') = W',

Proof: Let h be an element of H(I'g, Z2). Since |aut(Twr) : aut(Tw)e| = |H'(Tg,Z2)|, by
the correspondence above it follows that if ¢’ is any 1-cochain in the set ¢ + h, then ¢ acts by
d(P,Q) = c(S(P),S(Q)) + 6°(P, Q) for some 1-coboundary §° and some automorphism § of
Tw: contained in the coset of aut(7y). corresponding to h. Thus ¢ is equivalent to ¢. Since
this holds for any h € H'(I'g,Z) it follows that any 1-cochain of the form c+ 1-cocycle is
equivalent to ¢. These are precisely the 1-cochains of I' over Z, that satisfy the GQ condition.
Thus if ( VC[;,, ps) is the algebraic 2-fold cover of Ty constructed from S, then it follows that ¢
and ¢’ are equivalent and by Theorem 4.2.1 we have the existence of the isomorphism .
O
If we let aut(W')w denote the subgroup of aut(W') that is induced by aut(W), then The-

orem 4.2.3 has the following corollary.

Corollary 4.2.4 Let W and S be two GQs of order (r,r2) and let W' be a subGQ of order r of
both W and S. Suppose that W' is doubly subtended in both W and S and that Ty is the SPG
constructed from both W and T, as in Theorem 3.1.7. Let the 2-fold algebraic cover of T,
constructed from W as in Theorem 3.1.9, be (T}, p) and let the 1-cochain c define (T, p).
Let T be the simplicial complex of the point graph of (Ty5y,c). If |aut(Tw) : aut(W')w| =
|HY(Tg,Z2)|, then there exists an isomorphism i : W — S, such that i(W') = W',

Proof: We show that aut(Ty) = aut(W')w, and so the result follows from Theorem 4.2.3.
Let T be an element of aut(W')y and let T be an automorphism of W that induces T on W'.
Thus T induces an element of aut(Ty)e. Let i : aut(WV')w — aut(Tiyr). be the map taking
an element of aut(W')yy to the (unique) element of aut(7) it induces. We can easily show
that 7 is a group homomorphism, so now we show that it is also both one-to-one and onto and
hence an isomorphism. By Corollary 3.2.2 any element S of aut(Tp). is induced by a unique
element of aut(W’), and so i is one-to-one. Now any element S of aut(Tiy). is induced by an
automorphism of 7}5, (by definition), and so by Theorem 4.2.1 there is an element of aut(W')wy

inducing S. Hence i is onto and so is an isomorphism, that is, aut(Ty) = aut(W)w.
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4.2.2 Calculating the homology

This section depends heavily on the definitions and results of Section 1.5 and Section 1.1. In
Section 4.2.1 we established that characterising a GQ of order (r,72) by a doubly subtended
subGQ of order  depends on the order of the first cohomology group of the simplicial complex of
the point graph of the subtended SPG. By Theorem 1.5.4, we know that the first cohomology
group, over a field, is isomorphic to the first homology group. In this section we will work
towards calculating the first homology group of the simplicial complex of the point graph of the
subtended SPG.

From Section 1.5.5, the fact that we are calculating homology over Zs means that we may
represent a 1-chain as the set of 1-simplexes with a coefficient of 1 in the 1-chain. The sum of
two 1-chains is the symmetric difference of the corresponding sets of 1-simplexes.

Let W be a GQ of order (r,72) with a subGQ W' of order r, and suppose that W' is doubly
subtended in W, we will denote the associated SPG by 7. Let G be the point graph of 7 and
I'¢ the simplicial complex of G.

Recall from the discussion after Theorem 1.5.8 that the 1-cycles of I'¢ are the edge sets
of circuits of G. The elementary l-cycles of I'g are the edge sets of elementary circuits of G
and the induced 1-cycles of I'¢ are the edge sets of the induced circuits of G. We use this
representation of 1-cycles of ' as it is more intuitive, and leads us to results that will allow us
to calculate the homology directly from G.

A 1-boundary of T'¢ is a triangle in the graph G. In much of the work that follows in this
section we will be selectively replacing an edge e; of the edge set of a circuit of G with two edges
ez and e3 of G, where {ej, ez, e3} is a triangle of G. This is equivalent to adding the boundary
of a 2-simplex to a 1-cycle of I'g, which produces a homologous 1-cycle. We use this technique
to manipulate 1-cycles into more convenient forms.

In the following theorem we show that any induced 1-cycle of I is homologous to a sum of
induced 1-cycles, each of which consists of four 1-simplexes. A circuit of G with edge set that is
a l-cycle of I'g consisting of four 1-simplexes will be called a four-circuit of G. If in addition
the 1-cycle is induced, then we call the corresponding circuit and induced four-circuit. In
other words, an induced four-circuit is a circuit of length four such that “opposite” vertices of
the circuit are not adjacent. Recall from Section 1.1 that if X1, Xs,... , Xy, Xp41 is a circuit
of G of length n (and so X,+1 = X1) then we represent it by (X1, Xo,... ,X,).

Recall from Section 1.5 that two l-cycles of I'g¢ are homologous if their difference is a 1-
boundary and that any 1-cycle that is homologous to the zero 1-cycle (that is, any 1-boundary)

is null homologous.
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Theorem 4.2.5 Let o be an induced 1-cycle of I'g consisting of at least four 1-simplexes. Then
there exist induced 1-cycles 01,09,... ,0, such that each o; consists of four 1-simplexes and o

ts homologous to the sum of the o;.

Proof: Let o consist of n 1-simplexes; we proceed by induction on n. If n = 4, then the result
is immediate. If n > 5, then let o be the edge set of the circuit (X1, Xs,...,X,). Recall from
the construction of 7 (Theorem 3.1.7) that the X; are ovoids of W', and that X; and X are
adjacent (in G) when the ovoids they represent intersect in exactly one point. Now suppose
that X3 N X2 = {P} and that R is the rosette, with basepoint P, containing both X; and
X2. By the proof of Theorem 3.1.7, if X4 does not contain P then X, intersects exactly two
ovoids of R in one point, and if X4 does contain P then X4 does not intersect any ovoid of R in
exactly one point. Suppose first that P is not a point of X4. Since ¢ is an induced circuit and
we have assumed that n > 5, it follows that X, is adjacent to neither X7 nor X,. Thus there
exists an ovoid X, X # Xi, Xg, such that X is in R and X intersects X4 in exactly one point.
Hence the induced 1-cycle o may be expressed as the sum of the 1-cycles that are the edge
sets of the circuits (X1, X, X4, X5,... , Xn), (X1, X2, X) and (X2, X3, X4, X). If X3 is adjacent
to X, then (X5, X3,X) and (X4, X3, X) are triangles in G and so the 1-cycle corresponding
to (X2, X3, X4,X) is null homologous. If X3 is not adjacent to X, then (Xo, X3, Xy, X) is
an induced four-circuit. Now the induced 1-cycle o contains n 1-simplexes, and the 1-cycles
corresponding to the circuits (X1, X, X4, Xs,... , X,) and (X5, X3, X4, X) contain n — 1 and
four 1-simplexes, respectively. Thus the induced 1l-cycle o is homologous to the sum of an
elementary 1-cycle containing n — 1 1-simplexes and a 1-cycle containing four 1-simplexes (both
of which may or may not be induced). By the proof of Lemma 1.5.6 we can write both of these
1-cycles as the sum of induced 1-cycles, each consisting of fewer than n 1-simplexes.

Now suppose that P is a point of the ovoid Xy. Let ) be a point contained in the ovoid
X1 but in neither X3 nor X4. By Corollary 3.1.6, there is a (unique) subtended rosette R’,
containing X; and having basepoint . Since X3 does not contain the basepoint of R/, it follows,
from the proof of Theorem 3.1.7, that X3 is adjacent to two ovoids in R’. If we let one such
ovoid be X', then o can be expressed as the sum of the 1-cycles corresponding to the circuits
(X1, X2, X3,X’) and (X1, X', X3, X4,... ,Xp). Now, since X4 does not contain the basepoint of
the rosette R’, and X4 is not adjacent to X7, there is a second ovoid X", contained in R/, such
that X4 is adjacent to X”. The 1-cycle corresponding to the circuit (X1, X', X3, Xy4,... , Xp)
can be expressed as the sum of the l-cycles corresponding to the circuits (X', X3, X4, X"},
(X1, X', X") and (X, X", X4, ... ,Xy). The circuit ¢ = (X3, X", X4,... , Xy,) has length n—1,
but is not necessarily induced. If o, is the 1-cycle corresponding to the circuit ¢, then o, contains

n — 1 1-simplexes and is not necessarily induced. If o, is not induced, then by the proof of
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Lemma 1.5.6, we may write o, as the sum of induced 1-cycles, each consisting of fewer than n
1-simplexes. Thus the 1-cycle 0 may be written as the sum of induced circuits each of which
contains fewer than n 1-simplexes. Thus, ¢ is homologous to the sum of induced circuits each

of which has at least four and at most n — 1 1-simplexes. The result follows by induction.

By using Theorem 1.5.8 and Theorem 4.2.5 we have the following.

Theorem 4.2.6 Let W be a GQ of order (r,r?) with a subGQ W' of order r. Suppose that W'
is doubly subtended in W, with associated SPG T. Let G be the point graph of T and T'g the
simplicial complex of G. Then H1(T'q,Zs) is trivial if and only if each induced 1-cycle of T'g,

consisting of four 1-simplexes, is a 1-boundary (that is, null homologous).

Proof: By Theorem 1.5.8 H;(T'g,Z>) is trivial if and only if every induced 1-cycle is null

homologous and by Theorem 4.2.5 every induced 1-cycle of I'g is null homologous if and only
if every induced 1-cycle consisting of four 1-simplexes is null homologous.

O

Given Theorem 4.2.6 we now need a method for showing that a given induced four-circuit

is null homologous. The following lemma provides this.

Lemma 4.2.7 Let o be an induced 1-cycle of I'q and let ¢ = (X,Y, Z,W) be the corresponding

induced four-circuit of G. If G{x 7z} is connected, then o is null homologous.

Proof: Suppose that G(x 7} is connected and let Y,vo,v1,... ,vn, W be a path connecting
Y and W in G(x,7;- Then o is equal to the sum of the 1-cycles corresponding to the cir-
cuits (X,Y,vo), (Z,Y,v0), (X,v0,v1), (Z,v0,v1), .. (X,0n—1,Vn), (Z,0n-1,vp), (X, vy, W) and
(Z,vn, W). Since each of these 1-cycles is a 1-boundary, it follows that ¢ is null homologous.

a

4.3 Application to Q(5,q)

In this section we apply the work of the previous section to the classical GQ Q(5,q) where ¢
is odd and show that Q(5,q) is characterised by a Q(4,q) subquadrangle and the subtended
ovoid/rosette structure. Recall from Section 3.1 that Q(5,q) contains subGQs, of order g,
isomorphic to Q(4,q). Each such subGQ is doubly subtended in Q(5,¢) and the set of such
subGQs form a single orbit under the action of the group of Q(5,¢q) [27, Theorem 22.6.6]. The
set of subtended ovoids of Q(4, q) is exactly the set of elliptic quadric ovoids of Q(4,q). If we
use the notation of the previous section, that is, W = Q(5,q), W = Q(4,q) with SPG T,
then every automorphism of Q(4,q) fixes 7 and so by Corollary 3.2.2 aut(Tyy) & aut(W') &
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aut(Tw)wr. Since every automorphism of Q(4, ¢) is induced by an automorphism of Q(5, q) we
have aut(W')y = aut(W'). Thus by Theorem 4.2.3 Q(5,q) is characterised by having Q(4, q)
as a doubly subtended subGQ with associated SPG T, if and only if H!(T'g, Zs) is trivial, which
is the case if and only if H1(['g, Zs) is trivial, by Theorem 1.5.4.

As in Section 4.2.2 let G be the point graph of the SPG T and I'g the simplicial complex
of G. To show Hi(I'g,Zs) is trivial we will employ Lemma 4.2.7 and so need a “user-friendly”
representation of the graph G. For ¢ odd under the polarity of Q(4,q) the ambient three-
dimensional subspace of an elliptic quadric ovoid maps to a non-singular point of PG(4, ¢) and
two elliptic quadric ovoids are adjacent in G if and only if the corresponding polar points span
a tangent to Q(4,q). In this polar representation, a rosette is the set of non-singular points
on a tangent to Q(4,q) (note that if one non-singular point on a line tangent to Q(4,q) has a
polar hyperplane that intersects Q(4,¢) in an elliptic quadric ovoid, then so do all the other
non-singular points on the line). In the following section we show that Hy(T'g,Zs) is trivial for
q odd.

For ¢ even the theory of Section 4.2.2 also applies and the most obvious representation to
use seems to be that given in [26]. The calculation, however, would seem to be more involved
than that for the ¢ odd case, and certainly longer than the proof of the same result by Thas
and Payne in [65].

4.3.1 Explicit homology calculation for Q(4,¢), ¢ odd

Let 7 be the SPG with pointset the elliptic quadric ovoids of @(4,q) and lineset the rosettes
of elliptic quadric ovoids. Let G be the point graph of 7 and I'¢ the simplicial complex of G.
In this section we show that Hi(['g,Z2) is trivial. We show that for each induced four-circuit
(X1, X2, X3,X4) of G either the subgraph G(x, x,} or the subgraph G(x,,x,) is connected.
By Lemma 4.2.7 this implies that each induced 1-cycle of I'¢ over Z, that consists of four
1-simplexes is null homologous. By Theorem 4.2.6 this implies that H{(T'g, Z2) is trivial.

Let @ = Q(4,q) be the non-singular (parabolic) quadric of PG(4, q) defined by Q(X) =
23 + z122 + 2374 = 0, where X has coordinates (g, z1, 2,3, 24). The bilinear form associated
with Q is given by B(z,y) = 2zoyo + Z1y2 + Toy1 + ZTsys + z4y3 and if L denotes the polar-
ity associated with Q, then (g, 1,2, %3,%4)" = [2%0, T2, %1, %4, 23] and [ag, a1, a2, as,as]’t =
(a0/2,az,a1,a4,a3). If X and Y are two points of Q such that the line (X,Y") is singular (that
is, B(X,Y) = 0), then we write X ~ Y. If X is a point of PG(4, ¢) not on the quadric Q, and
Y is a second point of PG(4,¢q) (which may be either singular or non-singular) such that the
line (X,Y) is tangent to Q, then we say that X and Y are cotangent and write X ~Y.

It will be useful in what follows to have an algebraic condition that determines when two
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points of PG(3,¢) are cotangent with respect to Q. Let X and Y be two points of PG(4,q)
such that X is not contained in Q. Then the set of points incident with the line (X,Y’) but not
equal to X is {\X +Y : A € GF(q)}. The points X and Y are cotangent if and only if the line
(X,Y) intersects Q in precisely one point; that is, the equation Q(AX +Y) = 0 has exactly one

solution in A. Now

QOX +7Y)

BAX,Y) +Q(AX) +Q(Y)
= Q)N+ B(X,Y)A+Q(Y).

This quadratic in A has a unique solution, A = —3(X,Y)/(2Q(X)), if and only if the discrimi-

nant of the quadratic is zero. That is,

B(X,Y)? —4Q(X)Q(Y) = 0.

We define A(X,Y) = B(X,Y)? - 4Q(X)Q(Y).

If X is a non-singular point of PG(4, ¢), then the lines tangent to Q containing X form a
quadric Tx. The quadric T is a cone with vertex X and base X+ N Q. The cone T is called
the tangency cone of X.

If X is a non-singular point of PG(3,q), then the hyperplane X' intersects Q in a non-
singular hyperbolic quadric if and only if Q(X) is a non-zero square of GF(q), and in a non-
singular elliptic quadric if and only if Q(X) is a non-square of GF(q). If ¥; and ¥, are two
hyperplanes of PG(4, ¢), such that ;N Q and ¥5NQ are both non-singular elliptic quadrics, then
the two elliptic quadrics intersect in exactly one point if and only if the line (£, £4) is tangent

to Q. That is, £{ and T are cotangent. Given this, we have the following representation of

G:

Vertex set: {X € PG(4,q) : Q(X) is a non-square of GF(q)}.

Adjacency: Cotangency.

In this representation of the points of 7 the lines of 7 are the lines of PG(4,q) that are
tangent to @ and have a polar plane intersecting Q in exactly one point (the base point of the
rosette corresponding to the line of 7). Recall that 7 is an SPG with parameter a = 2 and
so if (P, £) is a non-incident point/line pair of 7, then P is collinear to exactly 0 or 2 points
of £. Recall from the proof of Theorem 3.1.7 that P is collinear to 0 points of £ when it is an
ovoid containing the base point of the rosette corresponding to £, and collinear to two points
of £ when it does not. We state the equivalent result in the current setting, which will prove

useful for the calculations that follow.
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Lemma 4.3.1 Let £ be a line of PG(4, q) tangent to Q at the point Q, such that the polar space
of each non-singular point of £ intersects Q in a non-singular elliptic quadric. Let P be a point
of PG(4,q) such that P+ intersects Q in a non-singular elliptic quadric and P & . Then one

of the following must be the case

(1) There are exactly two points incident with £ and cotangent to P, both of which are not on

Q; or
(ii) The point Q € Q is the only point incident with £ that is cotangent to P.

Proof: Consider the plane m = (£, P). If 7 intersects Q in a conic, then P is an exterior point
to the conic and there are exactly two points of £ cotangent to P, both of which are non-singular
with respect to Q. The other possibilities for 7 are that it intersects Q in a line pair (where the
lines intersect in @) or that it intersects Q in the unique point Q. In either case, 7 contains a
unique tangent on P and @ is the unique point of £ cotangent to P.
a
We now consider four-circuits of G. If ¢ = (X1, X9, X3,X4) and ¢ = (X{, X}, X}, X}) are
two four-circuits of G and S is a collineation of PG(4, q) that fixes Q, such that
S (X1, Xe, X3, X4) — (X1, X5, X5, X}), then we say that S maps ¢ to ¢ and write S(c) = ¢’
Now, any collineation of PG(4, ¢) that fixes Q also fixes both the vertex set of G and the set
of tangents to @ and so preserves cotangency amongst the vertices of G. Thus S induces an

automorphism of the graph G. From this we have the following result.

Lemma 4.3.2 Let ¢ and ¢’ be two four-circuits of G and let S be a collineation of PG(4,q)
such that S fizes Q and S(c) = . Let the edge sets of c and ' be the 1-cycles o and o' of T'q,

respectively. Then o is null homologous if and only if o' is null homologous.

Proof: Suppose that o is null homologous, so that & is the boundary of some 2-chain
{A1,Aq,...,An}, where each A; is a 2-simplex of I'g. Each A; is a triangle in G and since
o = 0({A1,As,... ,An}) it follows that the edge set of ¢ is the symmetric difference of the
edge sets of the triangles Ay, Ag,... ,A,. This property is preserved by any automorphism of
G and, since the above discussion shows that S induces an automorphism of G, it follows that
¢’ is null homologous.
O
By Theorem 4.2.6, to prove that Hi(I'g,Zy) is trivial we need to show that the edge set
of every induced four-circuit is a null homologous 1-cycle. By Lemma 4.3.2, we can do this
by directly showing that the edge set of a given induced four-circuit of G is null homologous
or by showing it is isomorphic in PG(4,¢) to an induced four-circuit with a null homologous

edge set. We proceed by using the elements of the group of Q in PG(4, q) to choose canonical
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forms for the induced four-circuits of G, and then apply Lemma 4.2.7 to the canonical induced
four-circuits.

The following result gives a canonical form for the induced four-circuits of G.

Lemma 4.3.3 Let c be an induced four-circuit of G. Then c is isomorphic to an induced four-
circuit of the form (O, A, B,C()X)) where O = (0,1,7,0,0) for n a fized non-square of GF(q),
A=1(0,1,1,0,1), C(A) =(0,1,9,A,0), for some A € GF(q) \ {0,—4n} and B is a non-singular
point of PG(4,q) such that A(O,B) # 0.

Proof: Let ¢ = (X1, X2, X3, X4) and let the plane (X1, X2, X4) = 7. Since c is an induced
four-circuit X9 and X4 are not adjacent in G. Thus the lines (X, X2) and (X7, X4) are tangents
at distinct points of @ and the line (X5, X4) is not a tangent to Q. From this it follows that =
intersects Q in a conic and that 7' is a line exterior to Q. By [27, Theorem 22.6.6] we know
that the group of Q is transitive on such planes, so we may assume that = = [0,7,—1,0,0] N
[1,0,0,0,0], where 7 is a fixed non-square of GF(g). Now let (X1,X2) N Q = P, (X1,X4) N
Q = Py and X5 N7wN Q = {P,Ps}. By [24, Lemma 7.2.3 Corollary 8] we know that the
group of Q is three transitive on the singular points incident with 7. So we may assume that
P = (0,0,0,0,1), Py = (0,0,0,1,0) and Py = (0,—1/(2n),—1/2,1,~1/(4n)). This means
that X is the intersection of the tangent on (0,0,0,0,1) incident with 7 and the tangent on
(0,0,0,1,0) incident with 7. That is, X; = O = (0,1,7,0,0). Similarly X» = A and X; = C()\)
for some A € GF(q) \ {0}. Now the circuit c is induced if and only if X3 is a non-singular point
of PG(4, q) such that A(O, X3) # 0 and A(4,C())) # 0. Since

A(A’ O()\)) = A(((), 1’77’0’ 1)’(0’ 1, n, A’ O))
= (2n+ )% —4(n)(n)
= A(dn+ M),

we have the required result.
O
We now consider induced four-circuits of the form (O, A, B,C())) (using the notation of
Lemma 4.3.3) where A # 0,—47. First we need to establish for a given A\, X # 0, —4n, the
possible points B. Since (O A B C())) is a four-circuit if and only if B ~ A, B ~ C()\) and B
is non-singular, then, for a fixed A, A # 0, —47, the set of possible points B is (TA NTgy )\)) \ Q.
It is straight-forward to show that the quadric T4 has equation

2 2 2
2 M¥1 Ty T3 1Tz  Tixz T3

4 dn  4n 2 2 2n

+ z3z4 =0,

o Mzt 3 Nxk T1Ty  AT1T4 Aoty
4 4n 4n 2 2 2n

+ z324 = 0.
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We will now show that for A # 0, —4n, there exist two hyperplanes of PG(4,q), £;()\) and
¥2(A), such that £;(A) N Q = & (A) and Za(A) N Q@ = &(A) are both non-singular elliptic
quadrics and Ta N Tg(y) = E1(A) U E2(N).

Let ¥1(A) be the hyperplane of PG(4,q) with coordinates [0,0,0,1,—)\]. Since ¥1()\) con-
tains neither A nor C()\) it meets T4 in a non-singular elliptic quadric, and similarly for To-
The equation for the section of T4 in ¥1()) is that of T4 with the substitution z3 = Az4:

4 T1T9 Am1m4 )\1:2:174
4 4n 4n 2 2 2n

+ Az2 =0,

which is the same as the equation for the section of Ty in $1(A), that is X1(A) N Ty =

21(A) NTeny- Let £1(X) be the non-singular elliptic quadric ¥1(A) N T4 = L1(A) N Ty
Similarly, let £2()) be the hyperplane of PG(4, q) with coordinates [0, 27,2,1,A]. The hy-

perplane ¥2()) contains neither A nor C(A) and the intersection of T4 with £5()) has equation:

22 ﬁ B a:_% _ (=2nm1 — 225 - Az4)? 4 F1o2
. 4 4n 4n 2
_ml(—2nx1 — 229 — Ax4) B zo(—2nz1 — 229 — AT4) b oams= 0
2 2n
n 1 1 1 22 1
< $g+(—z—'f}+’l7)$%+(—%—54-;):17%—5.’1224-(5—24-1-{-1)321332
A
+(=A+ %)551934 + (—% g %)132934 +z324 =0
2 2 2,2
2_%_58_*)\.’124 x1x2_)\x1x4_)\x2x4 _
= ) In I 9 5 o + z3z4 = 0.

Thus the intersection of T4 with 3()) is the same as the intersection of Tg(y) with La(A). Let
this non-singular elliptic quadric section be £3(}).

The intersection of the quadrics £;(A) and £3(A) is contained in the plane ) = 21(A)NE3(N),
which has equations z3 = Az4 and 2nz; + 225 + z3 + Az4 = 0. Substituting the first equation
of 7 into the second yields nxq + x2 + Azq = 0, or nzy + 2 + 3 = 0, which are the equations
of C(M\)* and Al respectively. So my, C C(A\)1, A+ and in fact 7y, = C(A\)* N AL. Thus
(TA n TC(/\)) NQ=mnq, andso &(\) NEN) =ENNQ=EN)NQ.

Using the above we now prove the following result.

Lemma 4.3.4 Let A € GF(q)\ {0, —4n} and let £1()\) and Xa(\) be the hyperplanes of PG(4,q)
with the equations x3—Azs = 0 and 2nz1+2z9+x3+Az4 = 0, respectively. Let £1(X) and E2(N) be
the non-singular elliptic quadrics, £1(A\)NQ and £a(A)NQ, respectively. If A = (0,1,7,0,1) and
C(A) = (0,1,7,X,0), then TANTg ) = E1(A)UE(A) and E1(A)NQ = E(A)NQ = E(A)NE(N).
Proof: We have already established that £,(A\) N Q = &(A) N Q = & (A) NE(N) and that
E1(A) U &2()N) € Ta NTg(ny, so we must now show that T4 N Ty € E1(A) U E2(N).

Let P be a point of T4 NTg(y). It P € Q, then by the above T4 NTp) NQ =mNQ =
E1(A) N &E(A) and so P € £1(N) U&(N). If P ¢ Q, then consider the line £ = (P, A) tangent to
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Q. By Lemma 4.3.1, since C(\) is cotangent to P and P ¢ Q, it follows that C()) is cotangent
to exactly two points of £, both of which are non-singular with respect to @ and one of which
is P. We also know that C()) cotangent to the points P; = £N&1()\) and Pp = £N E1(N). Since
E1(A) N&(A) C Q, it follows that P, and P, are distinct and so either P = P; or P,. Thus
Pe&ED)UEN).

From Lemma 4.2.7, if ¢ is the induced four-circuit (O, A, B, C())) of G, for
B € (&1(A) U&2(A)) \ Q, and the subgraph G4 ¢y of G is connected, then the edge set of ¢
is null homologous. Thus if G4 ¢(x)} is connected, then all the canonical induced four-circuits

of G have null homologous edge sets. In the next section we show that G4 c(x)} is connected.

4.3.2 The graph Gi4co)y, A #0,—4n

The subgraph G4 c(x)) of G has vertex set the set of points (£1(A) U&2(N))\ Q@ =
(E1A)UE W)\ (E1(XA) N&y(N)) of PG(4,q). Two vertices of this set are adjacent if they are
cotangent. We now prove a result which simplifies the task of showing that G4 c(x); is con-

nected.

Lemma 4.3.5 Let the graph I'1(\) be the subgraph of G with vertex set £1(A\) \ Q. If T'1()) s

connected then G4 c(n)y 18 connected.

Proof: Suppose that I'; () is connected and that X and Y are two vertices of G4 c(nyy- If X
and Y are both vertices of I';()), then there is a path connecting them in I’y ()\) and hence in
Gia,c(n)}- Now suppose that X is a vertex of I'1()) and that Y is not. That is, X is a point
of £&(A)\ Q and Y is a point of £2(A\) \ Q. Consider the line (Y, 4) that is tangent to Q. Since
(Y, A) contains a point of £\ Q it also contains a (distinct) point of &1 (), Y’ say. As X and Y’
are connected in I'1(A), it follows that X and Y are connected in G4 c()}- A similar argument
shows that if neither X nor Y are vertices of I'1(}), then they are connected in G c(r)-

0

We now prove that I';()) is connected. The first step is to prove some results on the group

of Fl ()\)
Lemma 4.3.6 The stabiliser of £1(\) in the group of Q is transitive on the points of &1(\)\ Q.

Proof: Let X and Y be two points of £1(A) \ Q. Since &£1(A), (X,Y) and the plane ) are
contained in the hyperplane £; () of PG(4, q), it follows that the tangent (X,Y’) meets the plane
m) in a point P. Recall from Section 4.3.1 that 7 was the plane such that £;(A\)NQ = QN and
so X,Y & ) and by Lemma 4.3.1 P € Q. Since P is not on Q, we consider the automorphism
pp of Q (see Section 1.2). Now from Section 4.3.1 we have that m) C A+, C()\)* and so since
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P € 7y, it follows that up fixes both A+ and C(\)L. Thus pp fixes T4 N Teny- Also since
P € 31()\) it follows that up fixes £1()) and so pup fixes £1()). Since pp fixes the lien (X,Y)
and £1()\) it also fixes (X, Y)N & (A) = {X,Y}. If up fixes X, then it must also fix Y. Now
pp fixes X if and only if

B(X, P)

HP(X)=X_WP:Xa

which is the case if and only if (X, P) = 0. That is, X € PL. So if up fixes both X and Y,
then the line (X,Y) is contained in P+, which implies that P € PL. But this is a contradiction
as P ¢ Q. Thus up(X) =Y.

d

Corollary 4.3.7 The automorphism group of the graph I'1(\) is transitive on the vertices of
ri(A).

Proof: Any automorphism of Q fixing £ () induces an automorphism of I'y ()).
O

Corollary 4.3.8 The automorphism group of I'1()\) is transitive on the connected components

Of 1—‘1()\)

We now proceed to show that I';(A) has a connected component containing more than half the
vertices of I'1(A), since by Corollary 4.3.8 this means that I'; (A) is connected.

Now if X and Y are two points of £()) \ Q, then they are cotangent if and only if the
line (X,Y) is tangent to the quadric £;(A\) N Q. That is, the graph I'1 () can be defined from
E1(A)\ @ and £1(A\) N Q. We first define an isomorphism from ¥;(A) to PG(3,q) which will
make calculating the connected components of I'; (\) a little easier.

Let U : £;()) — PG(3,q) (where PG(3, q) has coordinates zg, z1, z2,23) be such that
U(zg,x1, T2, A\T4,T4) = (To,Z1,Z2,24). I E1(N) = U(E1(N)), @ = U(Z1(A\) N Q) and =) =
U(my), then & (), @ and 7, have equations

2 2 2,2
. 2_&_:10_2_)\303 $1$2_)\$1$3_>\$2$3 N2 =
Q 3 i+ T2+ A3 = 0
7'(‘3\ : nry1+xa+ixs = 0

If X is the point of PG(3, ¢) with coordinates (zo, z1, T2, z3), then let Q'(X) = x2 + z115 + Az,
The bilinear form of PG(3, g) associated with Q' is /(X,Y") = 2zgyo+z1y2 + Toy1 +2Ax3y3, and

we will denote the polarity associated with @ by L’. If X and Y are two distinct, non-singular
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points of PG(3, ¢q), then X and Y are cotangent with respect to Q' if and only if A’(@;i, Y)=0
where A'(X,Y) = (8'(X,Y))? — 4Q(X)Q'(Y). Using the above, an alternative reprébéi’itat' M
of Ty (M) is -

Vertex set: & (M) \ Q.
Adjacency: Cotangency with respect to Q'.

At this point we note that, as in Theorem 4.3.6, if X and Y are two points of £1()\)' \ @' and
P =(X,Y) N, then up fixes both £ (A\)' and Q', as well as interchanging X and Y.

Now O € & () \ @ and so O' = (0,1,7,0) is the image of O under U, O' = (0,1,7,0) and
O € & (M) \ Q. We now determine the points of £1(A)' that are cotangent to O'. Let mor be
the plane of PG(3,q) with equation 2nz; + 229 + Az3 = 0 and note that O' € mos. The points

of mor that lie in £1(\)’ have equation

o mzi a3 (2nm1 + 2mp)° 4 Ti%2 (—2nz1 — 229) 11

e 2 3
(—217.’171 - 2:172).'1’)2 (2?’,’.’1)] + 2.’132)2
= + =0
2n A
o mzi 23 2 T L1722 2
= 15— T—E —nacl—?—2x1x2+7+nw1+x1m2+m1x2
2 2
T 2nz; + 2
%2 (20 +209)° _0
n A
2 2 2
9 mzy x5 wixa | (2nz1 + 229)
el 22 =0.
The points of mpr that are cotangent to O' are those that satisfy the equation
2nx 2z
A (0', (560,301,962,—% = T2)> =0
201 + 212)?
= (nzy+x2)2 —4n (a:g +z179 + ML}\&) =0
2 2 2
o Mm@ | T1%z | (2071 + 239) _
— o~ In 5 + 3 =0. (4.3.4)

Thus the set of points of mor that are cotangent to O’ is exactly the intersection of £ (A\)' with
mor. Now the set of lines incident with O' that are tangent to Q' form a quadratic cone T},
(regardless of whether Q' is a hyperbolic or elliptic quadric), and so it follows that the set of
points of mor cotangent to O’ is the conic T, Nmor = Cor. Also since the point O' is on exactly
q + 1 tangents to Q', it follows that the set of points of £ (A), that are cotangent to O, is
exactly Cor.

Note that the discussion preceding Lemma 4.3.4 shows that £;(A\)' N Q' = 7y N Q'. Thus the
points of Cor that are also on Q' are precisely the points of £1(\)’ on the line 7o N ). Now any

point of £1(A\)’ on the line mor N ) must satisfy the equations, 2 = —nz; and z3 = 0. Since 5
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is a non-square of GF(q) there is no point that satisfies these equations. Hence Cor contains no
points of Q’.

By the proof of Lemma 4.3.6 the stabiliser of £ ()’ in the group of Q' is transitive on the
points of £1(A) \ @' and so the above results for O’ apply for all X € &(\)' \ @'.

Lemma 4.3.9 Let X be a point of E1(A)'\ Q' (for A # 0,—4n). Then the set of points of E1(N\)’
that are cotangent to X form a conic, Cx in the plane wx. Furthermore, Cx contains no points

of Q.
We now calculate the conditions under which 7x = 7y for X,Y € &, (\) \ Q.

Lemma 4.3.10 Let X € &(\)'\ Q. If A # —8n, then for eachY € E;(N)'\ Q' and X #Y it
follows that x # my. If A = —8n, then Y = (nx)L is the unique point of EL(A) \ Q' such that
wx =7y and X #Y.

Proof: We show that the result holds for the case X = O’ and so the general result holds by
the transitivity on the points of £())' (Lemma 4.3.6).

Now it follows from the proof of Lemma 4.3.6 that if Y € £;(A\)'\ @ and 7y N (Y,0') = P,
then up fixes @ and £1(A\)' \ @', and interchanges O’ and Y. Hence mor = 7y if and only if
pp(mo) = mor. We also know from the proof of Lemma 4.3.6 that any point P € 7 \ Q' has
the property that up fixes @' and £1(A)'\ Q' and either fixes O’ of maps it to a different point
of £&1(\)' \ @'. Thus we look for points P of 7} \ Q' such that pup fixes o but not O'.

Now up fixes mor if and only if pup fixes the point (7ror)J-' and this is the case if and only
if P €mgror P= (7r0:)J-'. In the first case P is any point of mor N 7y which is a line with
equations 2nz1 + 2z2 + Azs = 0 and nz; + 22 + Azg = 0, that is gz, + 22 = 23 = 0. However,
the polar plane of O' with respect to Q' has equation nz; + z2 = 0 and so contains the line
nor N 7y. Thus if P € mor N ), then it is also contained in the polar plane of O', and so up
fixes O'.

For the second case we note that P = ﬂéj = (0,4,4n,1), which lies on = if and only if
A = —8n. In this case, pp(mo’) = mor and pp(0') # O'.

O

Given Lemma 4.3.9 and Lemma 4.3.10, we are now equipped to show that I'y ()\) is connected.
Theorem 4.3.11 The graph I'1(\) is connected.

Proof: We show that the connected component of I'; (A) containing O’ has size greater than
IT1(A\)|/2 = (¢® — q)/2. Recall from Lemma 4.3.9 that the vertices at distance 1 to X form the
conic Cx in the plane mx of PG(3,¢q). We now find a lower bound for the number of vertices at

distance 0, 1 or 2 to O'.
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We separate the proof into two cases, A = —8n and A # —8n (note that we still have the
restriction that A\ # 0, —47).

Suppose that A = —87. To obtain a lower bound for the number of points at distance 2 to
O' we consider the points at distance 1 to a point X € Cor, that is, the points of the conic Cx.
Since A = —8n we have that O', (mo/)Y' € Cx. Since there are at most two lines contained in
mor that are incident with X and tangent to @', it follows that |Cor N Cx| < 2. Thus there at
least g — 3 of the points in the set Cx \ {(ro/)*'} that are at distance 2 to O'. Now suppose that
Y € Cor \ {X}, then either my # mx and Cx NCy = {0, (WO:)J-'}, or x = my and Cx = Cy.
Thus if Z € Cx and is at distance 2 to O', and not equal to (7rO:)J-', then Z is at distance 1 to
at most one other point of Co/. Hence a lower bound on the number of points at distance 2 to
O'is (¢g+1)(g — 3)/2 + 1 and so a lower bound for the number of points at distance 0, 1 or 2
to O' is:

@+Da-1) =g _ L)
B It R

WHH(]H)H -

This shows that I'; ()) is connected for A = —81.

Now suppose that A # —8n. As above we consider a point X € Cor. By an argument above
there are at most two points at distance 1 to X in Cor. Hence at least ¢ — 2 of the points of Cx
are at distance 2 to O'. Now let Z be a point at distance 2 to O’. Since 7z # mor, it follows
that w7 Nmo is a line and |Cz NCor| < 2, that is, any point at distance 2 to O’ is at distance 1
to at most two points of Cor. Hence a lower bound for the number of points at distance 2 to O’
is (¢ + 1)(g — 2)/2. Thus a lower bound for the number of points at distance 0, 1 or 2 to O’ is

(¢+1)(g—2)

1 2
. (g+Dg_ , ¢—¢ _ I

)+1 =
+@+1)+ 5 2 9

This shows that I';()\) is connected for A # —81.

O
We now have the following string of consequences of Theorem 4.3.11.
Corollary 4.3.12 The graph Ga,c(n)} s connected.
Proof: By Lemma 4.3.5.
a

Theorem 4.3.13 H(T'g,Z>) is trivial.

Proof: By Theorem 4.2.6 H;(T'g,Z>) is trivial if and only if the edge set of each induced
four-circuit of G is null homologous. By Lemma 4.3.2 and Lemma 4.3.3 the edge set of every

induced four-circuit of G is null homologous if all the canonical induced four-circuits have null
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homologous edge sets (where the canonical induced four-circuit are the induced four-circuits
(0, A, B,C())) for some A € GF(q) \ {0, —4n}). By Lemma 4.2.7 if G4 ¢(r)} is connected, then
the edge set of (O, A, B, C(A)) is null homologous. Thus Corollary 4.3.12 proves the result.

Theorem 4.3.13 has the following corollary:

Theorem 4.3.14 Let S be a GQ of order (q,q%), q odd, and S' a subquadrangle of S of order
q isomorphic to Q(4,q). If each ovoid of S’ subtended by S is isomorphic to an elliptic quadric
ovoid, then S is isomorphic to Q(5,q).

Proof: Since Hi(T'g,Zs) = H'(I'g,Zs) is trivial, the result follows from Theorem 4.2.3.
O
Combining Theorem 4.3.14 with the corresponding result for ¢ even given in [65] we have

the following result for general g.

Theorem 4.3.15 Let S be a GQ of order (q,q?) and S' a subquadrangle of S of order q iso-
morphic to Q(4,q). If each ovoid of S' subtended by S is isomorphic to an elliptic quadric
ovoid, then S is isomorphic to Q(5,q).

4.4 Remarks

Theorem 4.3.14 now makes it possible to prove results similar to those in Section 4.1 for the
case where ¢ is odd. In the case where ¢ = 9 Penttila and Royle have shown that the only ovoids
of Q(4,q) are K1(o) ovoids, where o : z — z3, and the elliptic quadric ovoid ([53]). Further
(still for ¢ = 9) Penttila has shown that there is no GQ of order (q,¢?) with a subquadrangle
isomorphic to Q(4,¢q) that subtends both an elliptic quadric ovoid and a K1(o) ovoid ([51]).
Thus, by Theorem 4.3.14, a new GQ S of order (9,81) with a subquadrangle isomorphic to
Q(4,9) must subtend an ovoid-rosette configuration in Q(4,9) where every subtended ovoid is
a K1(o) ovoid. Using the work in Section 4.2 it may be possible to rule out the existence of a
new GQ subtending the SPG found in Chapter 3 by characterising S(C,)" (as in Chapter 3)
by its doubly subtended Q(4,9) subquadrangle. Of course it may also be possible to prove this
characterisation for ¢ = p”, where p is an odd prime and h > 1, using the work of Section 4.2,

although it is likely to be a more difficult problem than the classical case solved in Section 4.3.
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Chapter 5

Affine planes and GQs of order s

In this section we study the connections between affine planes and GQs of order s containing
a regular point. In particular, it is known that if S is a GQ of order s, with a regular point,
then there is an associated affine plane of order s ([49, 1.3.1]). The GQ defines an s-fold cover
of the affine plane and we investigate the relationships between the GQ, the affine plane and
the associated cover of the affine plane.

To begin we consider the classical case, for ¢ even. Let Q@ = Q(4,q), the non-singular
(parabolic) quadric in PG(4, q) and let I denote incidence between points and lines of Q. For
such a quadric there is a unique point N ¢ Q, called the nucleus of Q. The point IV has the
property that every tangent space to Q contains N. In addition, every line of PG(4, ¢) incident
with IV is either tangent to Q or is external to Q [27, Lemma 22.3.3(ii) and Lemma 22.3.1(i)].

Let V be a fixed point of Q. By [49, 3.3.1.(i)] every point of Q(4,q), ¢ even, is regular, and
so it follows that V is regular. Let V+ denote the tangent space to Q at V, then V4 N Q is
a quadratic cone K with vertex V [27, Lemma 22.7.3). If X is any point of @ \ V1, that is, a
point of Q not collinear to V in Q, then X+ NV~ is a plane of PG(4, q) that intersects K in a
conic, Cx. We say that X subtends the conic Cx in K.

Let £ be a line of Q such that V is not incident with £. Then there exists a unique point/line
pair (Y,m) such that VI m I'Y I £. If Z is a point of the set £\ {Y} (where £ is considered
as the set of points incident with it), then by the above, Z subtends a conic Cz in K. If Z; and
Z, are two distinct point of £\ {Y'}, then the tangent spaces Zi- and Z5 intersect in the plane
(¢,N) of PG(4,q). Thus, Cz, # Cz,, and in fact Cz, NCz, = {Y'}. Hence each point of £\ {Y}
subtends a distinct conic and the line (N,Y) is a tangent to each of these conics. We say that
the tangent (N,Y’) is subtended by ¢.

Let 7 be the incidence structure with pointset the set of conics of X whose plane contains N,
lineset the tangents to Q contained in V-, except the tangent (V, N), and incidence inherited

from PG(4, q). Then 7 is an affine plane, and in fact 7 is the affine plane obtained by removing
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AN o L\ P
the line N from the projective plane ] and so m =2 AG(2,q).

If the line m of V1 is a line of 7, then it is determined by the unique point of Q incident with
it, since all such lines are incident with V. Thus an equivalent description of 7 is to redefine
the lineset as the set K\ {V'}, keep the pointset as the set of conics of V1 whose plane contains

N, and keep incidence as incidence in PG(4, ¢). This is a specific case of the following theorem.

Theorem 5.0.1 [49, 1.3.1] Let X be a regular point of the GQ & = (P,B,1I) of order (s,t).
Then the incidence structure with pointset X+ \ {X}, lineset the set of spans {Y, Z}*+, where
Y,Z € X'\ {X}, Y # Z and with natural incidence, is the dual of a net of order s and degree
t+1. If s=12> 2 it is a dual affine plane of order s.

5.1 Covering affine planes

Let S = (P,B,I) be a GQ of order s and (c0) a point of S that is regular. Let 7 = 7 be
the affine plane constructed from S and (oo) as in Theorem 5.0.1. We will define a map p from
S\ (co)t to 7 that defines an s-fold cover of 7.

Let X be a point of P\ (c0)+. Then {X,(c0)}* is a point of 7. Since (co0) is regular
it follows that |{X,(c0)}**| = s+ 1, and if Y € P\ (c0)* then {Y, (c0)}* = {X, (c0)}* if
and only if Y € {X, (c0)}**. So if we define the map p from P \ (co)' into the pointset of
7 by p(X) = {X, (c0)}*, then p has the property that for any point {Y,(co0)}+ of , the set
p~H({Y, (00)}1) = {Y, (00)} 1 consists of s pairwise non-adjacent points of P \ (co) .

Now suppose that {X, (c0)}* and {Y, (co)}+ are two distinct points of 7. Then {X, (c0)}+N
{Y,(c0)}+ = Z for some point Z € (0o)l. Now each of the s lines of S incident with Z,
but not incident with (co), is incident with exactly one point of {X,(c0)}*++ \ {(c0)} and
exactly one point of {V,(co)}++ \ {(c0)}. Also, any line of S that contains one point of
{X,(00)}*+ \ {(c0)} and one point of {V,(c0)}++ \ {(c0)} must contain Z. Thus the set
p L ({{X, (00)}*, {Y, (00)}*}) consists of s disjoint, incident pairs of points of P \ (co)L.

If T is the subgraph of the point graph of S defined on the vertex set P \ (co)', then thus
far we have shown that (I',p) satisfies requirements (i) and (ii) of an s-fold cover of the point
graph of 7 (see Section 1.6). Since any two points of 7 are collinear, requirement (iii) is satisfied
vacuously; so (T, p) is an s-fold cover of the point graph of 7. We now show that this gives rise
to an s-fold cover of .

Let P be a fixed line of 7: that is, a point of (co) \ (c0)*. Then the set
{p7'{X, (c0)})* : P is incident with {X, (c0)}t in 7} = {X € P\ (00)*: X I P}. Now if
T, is the subgraph of T' defined on the vertex set {X € P\ (co)' : X I P}, then the s lines of

S incident with P, but not (co), divide I'y into s disjoint complete graphs, each of size s. Thus
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the map p satisfies condition (iv) in Section 1.6, and so we have the following theorem.

Theorem 5.1.1 Let S = (P,B,I) be a GQ of order s with a regular point (c0). Let m be
the affine plane with lineset (co)t \ (00), pointset the set of spans {X,Y}+L, where X,Y €
(00)t \ (00), X £ Y and natural incidence. Let T be the geometry with pointset P \ (c0)t,
lineset the set of lines of & not incident with (00), and incidence as in S. Letp: T — m be
such that: p(X) = {X, (c0)}* for X € P\ (00)*, and for £ a line of S not incident with (co0),
p(f) =Y, where Y is the unique point such that Y I £ and Y ~ (00). Then (7,p) is an s-fold

cover of T.

Note that in Theorem 5.1.1 p denotes the map induced on 7 by the map p in the discussion
preceding Theorem 5.1.1.

At this point it is natural to consider under what conditions we can “reverse” the covering
process in Theorem 5.1.1 and construct a GQ of order s, with a regular point, from an s-fold

cover of an affine plane of order s.

Theorem 5.1.2 Let m be an affine plane of order s and (T,p) an s-fold cover of m. Let S be

the following incidence structure

Points: i) Lines of 7

ii) Points of 7

iii) (oo)

) Parallel classes of 7
b)
i)

Lines of @

(

(

(
Lines: (a

(
Incidence I: (

a) Containment

The s covers of the point of type (i)

The geometry S is a GQ of order s if and only if for each non-incident point-line pair (P, £),
where P 1is of type (ii) and £ is of type (b) and p(P) is not incident with p(€) in m, there is a
unique incident point-line pair (Q,m) such that P I m I Q I £. Further, if S is a GQ, then

the point (c0) is regular.

Proof: In Section 1.6 it was noted that if £ is a line of 7 and is incident with the set
of points {Py, Py,...,Ps;1}, then each element of p~1(£), as a set of points, has the form
{P|,P;,...,P, 1}, where p(P)) = P; for i = 1,2,... ,s + 1. We will be using this fact, implic-
itly, throughout this proof.
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Let £ be a line of type (a) (that is, a parallel class of 7). Then, in S, £ is incident with the
s lines of 7 it contains as a parallel class of 7 and the point (00), s+ 1 in total. Let £ be a
line of type (b) (that is, a line of 7). Then, in S, £ is incident with the s points incident with
it in 7 and the point of type (i) p(£), s + 1 in total. We now show that two distinct lines of S
intersect in at most one point. Let £ and m be two lines of S, with £ # m. If £ and m are both
of type (a), then they are concurrent at the unique point (0o). If £ is of type (a) and m is of
type (b), then they are concurrent if and only if the line m (as a line of ) is a cover of the line
n of m, which is contained in the parallel class m. In this case n is the unique point incident
with both £ and m. If £ and m are both of type (b) and cover the same line n of 7, then they
are concurrent at the point n and no other point of §. If £ and m cover different lines of 7 and
X is a point of S such that X I £,m, then X is a point of 7. Since 7 is a geometry there is at
most one such point.

Let m be a point of type (i) (that is, a line of 7). Then, in §, m is incident with the s lines
of type (b), p~1(m), and the parallel class of 7 containing it, s + 1 in total. Let P be a point
of type (ii) (that is, a point of 7). Then, in S, P is incident with the s + 1 lines of 7 incident
with it in @. The point (co) is incident with the s + 1 lines of type (a). Now let X be a point
of type (i) and Y a point of type (ii). Any line of S incident with both X and Y must be a line
of 7, covering X (as a line of 7) and incident with Y in 7. Since it is a property of the cover
(7,p) that the s covers of m are pairwise non-concurrent, it follows that m is incident with at
most one such line. It is straight-forward to show for the other cases that two points of S are
incident with at most one common line.

It now remains to check the GQ incidence axiom. Let (P, £) be a non-incident point-line pair
of S. Suppose P is of type (i) and £ is of type (a). Let £ be the parallel class of 7 containing
P. Then ((00), L) is the unique point-line pair such that P I £ I (co) I £. Now suppose that
P is of type (i) and £ is of type (b). Then p(¢) is a line of = such that P # p(¢). If P and p(¢)
belong to the same parallel class of m, £ say, then (p(¢), £) is the unique point-line pair such
that P I L1 p(¢) I¢. If P and p(f) intersect in the point @), say, then there is a unique point
Q' of 7 such that Q' I £ and p(Q’) = Q. There is also a unique line m of T such that p(m) = P
and Q' I m. Now suppose that P is of type (ii) and £ is of type (a). Let m be the unique line
of 7 such that p(P) € m and m € £ (as a parallel class). Then there is a unique element m' of
p~1(m), such that P is incident with m in ¥ and (m,m') is the unique point-line pair such that
P Im'ImlI¢¥{ Now suppose that P is (00) and £ is of type (b). Let £ be the parallel class of
7 containing p(¢), then (£, p(£)) is the unique point-line pair such that P I £ I p(¢) I £.

The only cases that we haven’t yet considered are where P is (0c0) and £ is of type (a), in

which case P and £ are always incident, and where P is of type (ii) and £ is of type (b). In this
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second case, if P and £ are non-incident in § and p(P) is incident with p(¢) in m, then there
exists a unique element of p~!(p(¢)), m say, such that P T m. Then (p(£),m) is the unique
point-line pair such that P I m I p(¢) = p(m) I £.

This leaves the case where P is of type (ii), £ is of type (b) and p(P) is not incident with
p(€) in 7. Hence S is a GQ if and only if pairs of this type satisfy the GQ incidence axiom.

If S is a GQ, then consider the non-collinear pair of points of S, {(c0), X}. It follows that X
must be a point of type (ii). Now {X, (co)}++ = p~1(p(X))U(0c0) and so |{X, (c0)}+4| = s+1.
Thus the pair {(c0), X} is regular and therefore (0c0) is also regular.

a

Note that if 7 is an affine plane of order s and (7, p) is an s-fold cover of 7 such that the
incidence structure S defined in Theorem 5.1.2 is a GQ with regular point (co), then the s-fold
cover of 7 constructed as in Theorem 5.1.1 is (7, p).

Let m be an affine plane of order s and (7,p) an s-fold cover of 7 giving rise to a GQ of
order s as in Theorem 5.1.2. If T is the point graph of 7 (a complete graph on s? vertices) and
T the point graph of 7, then (T,p) is an s-fold cover of I'. We now prove that T is antipodal
and distance-regular. (See Section 1.1 for the definition of an antipodal graph and a distance

regular graph.)

Theorem 5.1.3 Let S be a GQ of order s, with a reqular point (00), and let w be the affine plane
constructed from S and (00) as in Theorem 5.0.1. Let (T, p) be the s-fold cover of ™ constructed
in Theorem 5.1.1. If T’ is the point graph of 7, then I' is an antipodal distance-regular graph,

with intersection set {s> —1,s(s —1),1;1,5%,s% — 1}.

Proof: For the purposes of this proof we will use ~ to denote adjacency in the graph T and
d(X,Y) to denote the distance between two vertices X and Y of .

First observe that I' is a regular graph with valence s2 — 1. Now let X and Y be two
non-collinear points of 7. If p(X) # p(Y) then, in S, {(c0), X}*+ # {(c0),Y}*. Let Z be a
point of the set {(00), X} \ {(00), Y} and £ the line (Z, X). Now Y & £ and Y is not collinear
to Z since Z ¢ {(c0),Y}. So it follows from the GQ incidence axiom that there exists a
point Z' € £\ {Z} collinear to both Y and X. Hence d(X,Y) = 2. If p(X) = p(Y), then
{(00), X}*+ = {(00),Y}* in S and so in S we have that {X,Y}+ = {(c0), X}* C (c0)*. Thus
there are no points of 7 collinear to both X and ¥ and so d(X,Y) > 2. If Z is a point of 7
collinear to X, then Z is not collinear to Y and p(Z) # p(Y). Hence d(Y, Z) = 2 and therefore
d(X,Y) = 3. Thus, the diameter of " is 3. We now consider the graph T's, which is defined on
the same vertex set as I and has two vertices adjacent if they are at distance 3 inT. If P is a
point of m, then the set p~!(P), as vertices of ', is a clique and so T is an antipodal graph.

We now show that T is distance-regular by calculating its intersection array. Let X and Y
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be two distinct vertices of I'. The parameter by is the valence of T', s2 — 1, and ¢ = 0. Now
suppose that d(X,Y) =1 (so X ~Y), Z is a vertex of I and X ~ Z. If, as a point of S, Z is
not incident with the line spanned by X and Y (considered as points of S), then Y ¢ Z, since
otherwise {X,Y, Z} is a triangle in S; and so d(Y, Z) = 2. Hence, the vertices of T at distance
1 to X and distance 2 to Y are precisely the points of S\ (co)* that are collinear to X but not
incident with the line (X,Y). Thus b; = s(s — 1). The parameter ¢; = 1. Now suppose that
d(X,Y) = 2. Since p(X) and p(Y") are adjacent in the point graph of 7, then it follows that Y is
adjacent to a unique element of the set p~!(p(X)), that is by = 1. The set of vertices at distance
1 to both X and Y is the set of points {X,Y}*\ (co)t of S. Since |{X,Y}*+ N (c0)t| =1, it
follows that c; = s. Finally, suppose that d(X,Y) = 3. If Z is a vertex adjacent to X, then
d(Y,Z) # 1 and d(Y, Z) # 3, since in the case d(Y, Z) = 3 the point Z is antipodal to Y and so
must also be antipodal to X. Thus every point adjacent to X in T is at distance 2 to Y, and

socg =82 —1.

5.2 Algebraic covers and GQs

In Theorem 5.1.2 we constructed a geometry S from an affine plane 7 of order s and (7,p),
an s-fold cover of m. The geometry S was a GQ of order s if and only if 7 satisfied certain
conditions. In this section we consider the case where (7, p) is an algebraic s-fold cover of 7 over
the abelian group A, defined by the 1-cochain c. We establish the conditions on the 1-cochain
¢ under which S is a GQ of order s and rewrite Theorem 5.1.2 for the case where (7,p) is an
algebraic s fold cover of m over A. We will then show that every known GQ of order s, with a

regular point, can be constructed via an algebraic cover of AG(2,q).

Let 7 be an affine plane of order s and (7, p) and algebraic s-fold cover of 7 over the abelian

group A, defined by the 1-cochain c¢. The 1-cochain c is said to satisfy the GQ condition if
dc(P,Q,R) = 0 < P, Q, R are distinct, collinear points of 7. (5.2.1)

In the following theorem we shall prove that this condition on c is equivalent to the conditions
on (7, p) under which the geometry S in Theorem 5.1.2 is a GQ of order s.

Note that in 5.2.1 and for the rest of the chapter we have adopted the convention of repre-
senting any coboundary operator by J and allowing the context to determine which coboundary

operator it is. For example, in 5.2.1 § is the coboundary operator §'.

Theorem 5.2.1 Let 7 be an affine plane of order s and let (7, p) be an algebraic s-fold cover of

 over the abelian group A, defined by the 1-cochain c. Let S be the incidence structure defined
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from 7 and (7,p) as in Theorem 5.1.2. Then, S is a GQ if and only if the 1-cochain c satisfies
the GQ condition 5.2.1. Further, if S is a GQ, then the point (00) is regular.

Proof: First we observe that since (7, p) is an algebraic s-fold cover of w and is defined by c, it
follows from Section 1.6 that if P,Q, R are distinct collinear points of , then de(P, @, R) = 0.
Thus we are required to show that S is a GQ if and only if de(P, Q, R) = 0 implies that P,Q, R
are distinct collinear points of 7: equivalently, if P,Q, R is a triple of distinct non-collinear
points of , then dc(P, @, R) # 0.

Now recall from Theorem 5.1.2 that S is a GQ if and only if each non-incident point-line
pair (P, £), where P is a point of type (ii) and £ is a line of type (b) and p(P) is not incident
with p(£) in , satisfies the GQ incidence axiom (axiom (iii)).

Let (P,£) be such a point-line pair, then P = (P, ) for some P € 7 and « € A (that is,
P = p(P)) such that P & p(£). If p~*(p(£)) = {£1,4s,... ,£s} and (without loss of generality)
£ = {q, then for each i = 1,2,...,s the point-line pair ((P,«),4;) is a non-incident point-
line pair, where P = (P,a) is a point of type (ii), ¢; a line of type (b) and P & p(¢;). If
p(f1) = {Q1,Q2,... ,Qs}, then (P,a) is collinear to exactly one cover of each of the Q;. In
particular, (P,«) is collinear to (Q;,« — ¢(P,Q;)) for each ¢ = 1,2,...,s. Thus the s non-
incident point-line pairs ((P, @), 1), ((P,«a),£2), ..., ((P,«a),{s) each satisfy the GQ incidence
axiom if and only if each line ¢; is incident with a unique point of the form (Q;, o — ¢(P, Q;)).
Now each point (Q;,a — ¢(P,Q;)) is incident with exactly one line of p~!(p(¢1)) and so each
line ¢; is incident with a unique point of the form (Q;,a — ¢(P,Q;)) if and only if no line of
p~1(p(£1)) is incident with two points of (Q1,a — ¢(P,Q1)),...,(Qs, & — ¢(P,Q5)). Now if the
points (Q;, e — ¢(P, @;)) and (Q;,a— c(P,Q;)) are collinear, then they span a line of p~1(p(¥)),
and so no line of p~!(p(£y)) is incident with two points of (Q1, a—c(P, @1)),. . ., (Qs, a—c(P, Qs))
if and only if no two points of (Q1,a — ¢(P,@1)), ..., (Qs,a — c(P,Qs)) are collinear. That is

(Qiya — (P, Qi) # (Qj,a — c(P,Q;)) for all Q;,Q; such that i,5 =1,... ,s with i # j.

Thus the point-line pairs ((P, @), £1),..., ((P,a),¥4s) all satisfy the GQ incidence axiom if and
only if
5c(P, Qi, Qj) # 0 for all Q;,Q; such that i,5 =1,...,s with i # 3.

Hence every non-incident point-line pair (P, £), where P is a point of type (ii) and £ is a line of

type (b) and p(P) is not incident with p(¢) in =, satisfies the GQ incidence axiom if and only if
dc(P,Q, R) # 0 for all distinct non-collinear triples P, @, R of points of 7 .

From this and our observation at the start of the proof, it follows § is a GQ if and only if the
1-cochain c¢ satisfies the GQ condition 5.2.1.
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By Theorem 5.1.2 if § is a GQ then the point (00) is regular.
O
Theorem 5.2.1 demonstrates that if ¢ is a 1-cochain on the simplicial complex of the point
graph of an affine plane 7 of order s and c satisfies the GQ condition, then ¢ defines an algebraic
s-fold clover of w. Further, this algebraic s-fold cover gives rise to a GQ S of order s by the
construction in Theorem 5.1.2. In this case the GQ § is said to be defined by ¢ and we say
that ¢ defines S.

The only known examples of GQs of order s containing a regular point are: W{q) which has
all points regular by [49, 3.2.1 and 3.3.1], T»(O) where O is an oval of PG(2, q), g even, which
has regular point (00) by [49, 3.3.2 (i)] (for the construction of T5(O) see Section 1.4.3) and the
dual To(O)" of T»(O), where O is not a translation oval of PG(2,¢), which has regular points
corresponding to the lines of type (b) of To(O) by [49, 3.2.2]. It should be noted that for ¢ even
W(q) = Q(4,q) ([49, 3.2.2]) and that Q(4,q) = T»(O) where O is a non-degenerate conic ([49,
3.2.2). Also, by [49, 12.5.2], the GQ T5(O)" is isomorphic to the GQ T»(0'), for some O if and
only if O is a translation oval. In this case, To(O0)" = T»(0). If O is a translation oval, then
T>(O) has q + 2 regular points, while if O is not a translation oval, then T5(O) has a unique
regular point (o), by [49, 12.4.5 (ii)].

In the following two sections we will derive algebraic g-fold covers of AG(2,q) which give
rise to W (q) and T5(O), respectively, by the construction in Theorem 5.2.1. In the second case
the regular point is (00). In Section 5.6 we will consider the regular points of T5(©0)" dual to

the lines of type (b) of T5(O) and derive corresponding algebraic covers.

5.2.1 A cover associated with the GQ W(q)

Consider W (q) defined as the set of absolute points and absolute lines of a symplectic polarity
of PG(3,q). If P is a point of W(q), then P is a regular point of W(q). The g+ 1 lines of W(q)
that contain P form a pencil of lines, through P, on the polar plane 7p of P ([49, 3.1.1(iii)]).

Now let P be a fixed point of W(q). We will determine the affine plane 7 constructed from
W (q) and the regular point P via Theorem 5.0.1, and also calculate the cover of 7 constructed
from W(q), as in Theorem 5.1.1. The lines of 7 are the points of PL\ {P}, which is the
set of points mp \ {P} of PG(3,q). The points of m are the sets of points {P, X}+, where
X € W(q) \ PL. If 7x is the polar plane of X, then {P, X} is equal to the set of points on
the line mp N 7x (note that P ¢ mx). Hence, 7 = (7p \ {P})P = AG(2,q).

If ¢ is a point of 7 (and so £ is a line of 7p), then the point X of W(q) \ P is a cover of
£ if and only if £ C wx. This is the case if and only if X is incident with the image of ¢ under

the symplectic polarity. Thus if £’ is the image of £ under the symplectic polarity then P € ¢
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and the g covers of £ are the points of £'\ {P}. If Q is a line of 7, and so a point of mp, then it
is covered by the set of lines of W(q), not (P, @), that are contained in the plane m¢.

Now we introduce coordinates. Let W(q) have the canonical bilinear form zgy; — z1yo +
zoy3 — x3ye = 0. If X = (x¢, 21,22, 23), then wx has plane coordinates [—zy,zg, —3,z2]. If
P =(0,1,0,0), then mp = [1,0,0,0], 7 has pointset {[0,1,z1,z2]N7p : z1,22 € GF(q)} and the
covers of the point [0, 1, z1, z2)N7p of 7 are the elements of the set {(1,\, z2, —z1) : A € GF(q)}.
If we denote [0,1,z1,z2] N wp by (x1,22), then m assumes the canonical form of AG(2,q).
In addition, we denote (1, \,z2, —z1) by the pair ((z1,z2),A), where (z1,22) € AG(2,q) and
) € GF(q). With this notation the covering map (defined as in Theorem 5.1.1) (1, A, 2, —z1) —
[0,1, 21, z2]N7p becomes ((z1,22),A) — (21, z2). If we can find a 1-cochain ¢ (on the simplicial
complex of the point graph of AG(2,q) and over the abelian group (GF(q),+)) such that
((m1,x2), @) ~ ((y1,y2), B) if and only if (z1,z2) ~ (y1,y2) and ¢((z1,z2), (¥1,y2)) = a— 3, then
the g-fold cover of , defined by W (q) as in Theorem 5.1.1, is an algebraic ¢-fold cover.

Now (1,z1,9,23) and (1,y1,y2,y3) are collinear points of W(q) if and only if y; — z1 +
xoyz — z3y2 = 0. So (1,z1,72,23) ~ (L,y1,¥2,y3) if and only if 8 — o — zoy1 + 2192 = 0
and hence ((z1,72),a) ~ ((y1,y2),8) if and only if &« — 8 = z1y2 — zoy1. Now the map
c((z1,z2), (y1,y2)) = T1y2 — T2y is symmetric in (z1,22) and (y1,y2), so it follows that c is a
1-cochain and is such that the g-fold cover of 7 constructed from W(q) in Theorem 5.1.1 is an
algebraic cover defined by c. Note that from Theorem 5.2.1 ¢ satisfies the GQ condition 5.2.1.
The GQ constructed from AG(2,q) and ¢ in Theorem 5.2.1 is W (q).

5.2.2 A cover associated with the GQ T3(0), q even

Let 3 = PG(3,q), q even, and let H = PG(2,q) be a plane of ¥. Let O be an oval of H with
nucleus N. Let T2(O) be the GQ, of order g, constructed from £, H and O, as in Section 1.4.3.

First we calculate the affine plane 7 constructed from 75(O) and its regular point (oo), and
the g-fold cover of 7 defined by T»(O), as in Theorem 5.1.1. Consider a point X of T5(O) that
is not an element of (co)t. Then X is a point of type (ii) of T2(O), that is, a point of ¥\ H.
The set {(00), X} consists of the points of type (ii) of T5(O) that are collinear with X. That
is, planes of ¥ containing X and meeting H in a tangent to O. Thus {(co), X }* is the pencil
of planes of ¥ on the line (IV, X'), and this is the point of 7 that is covered by X. Let £ be a
line of T3(O) not incident with (00). Then £ is a line of type (a) of T5(0): that is, a line of ¥
not contained in H and incident with a point of (. The line £ is incident with a unique point
of (00)t and this point is the point of type (ii) (¢, N). Hence (¢, N) is the line of 7 covered by
L.

Thus 7 is the incidence structure with pointset the pencils of planes of 3 about lines of the
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form (N, X), where X € ¥\ H; lineset the set of planes of X, not including H, that contain N;
and incidence inherited from 3. If we let the point of 7 that is the pencil of planes about the
line (N, X), where X € ¥\ H, be represented by the line (N, X), then 7 is isomorphic to the
incidence structure
Points : Lines (N,X) with X e X\ H
Lines : Planes of ¥, not H, containing N
Incidence : Inherited from X.

For this description of 7, the point X € X\ H of T5(O) covers the point (N, X) of 7, and the
line £ of type (a) of T»(O)) covers the line (¢, N) of w. Given this form of = we have

IR

> H
T2 o\ FAGE2,9).

We now introduce coordinates. Let H be the plane of ¥ = PG(3,q) with equation zy = 0. We

may assume that
0 ={(0,1,¢,F(t)) : t € GF(q)} U{(0,0,1,0)},

where F is a polynomial satisfying the conditions of [24, 8.4.2 Theorem]|. In this case the nucleus
N is the point (0,0,0,1). The affine plane = has pointset {(N, (1,z1,z2,23)) : (1,21,%2,23) €
Y\ H} and the covers of (N, (1,z1,x2,23)) are the points (N, (1,21, 9, z3)) \ {N}. That is,
the elements of the set {(1,z1,z2,) : A € GF(q)}. If we denote the point (N, (1, z1,z3,z3)) of
7 by (z1,z2), then 7 assumes the canonical form of AG(2,¢). In addition, we denote the point
(1, 21,2, A) of X\ H by the pair ((z1, x2), A), where (z1,z2) is a point of AG(2, ¢) and X € GF(q).
With this notation the covering map onto 7 given by (N, (1, z1, z2, z3)) — (1, 2,22, A) becomes
((z1,72),\) — (z1,22). If we can find a 1-cochain ¢ (on the simplicial complex of the point
graph of AG(2,q) over the abelian group (GF(g),+)) such that ((z1,z2),®) ~ ((y1,¥2),0) if
and only if c¢((z1,%2), (y1,¥2)) = a + B, then the g-fold cover of 7 defined by T»(O), as in
Theorem 5.1.1, is an algebraic g-fold cover.

Now (1,z1,2,z3) and (1,y1,y2,ys) are collinear points of T>(O) if and only if
((1,z1,22,23), (1,y1,Y2,y3)) intersects H in a point of O. The point of intersection of the line
((1,z1,x2,23), (1,y1,Y2,y3)) with H is the point (0,21 + y1,Z2 + y2, 3 +ys3), and this is a point
of O if and only if

0 ifz1 =1y
T3+ Y3 = . ) -
(z1 +y1)F (,,"1’—4_%) if 1 # y1
Now ((5171,1}2),01) it ((ylayZ)vﬂ) if and Only if (1,1151,.'172,1123) = (1?y17y2’y3)’ which is the case if
and only if
itz =y
o+ ﬂ = " ' :
(z1 + 1) F (mi_-l-ny) if 71 # y1
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If we define the map

0 ifz; =y
C((wl,mz)a (yhyz)) = .Y . )
(z1+y)F (wl—ﬂ%) if £1 # 41

then since c¢ is symmetric in (z1,22) and (y1,y2) it is a 1-cochain. Further, ((z1,z3),a) ~
((y1,y2),B) if and only if ¢((z1,22), (y1,¥2)) = o+ B. Thus the g-fold cover of 7 constructed
from T5(0O) in Theorem 5.1.1 is an algebraic cover defined by c¢. Note that Theorem 5.2.1
implies that c satisfies the GQ condition 5.2.1. The GQ constructed from AG(2,¢) and c in
Theorem 5.2.1 is T5(O).

5.2.3 A “geometric” construction of a cover of T>(0), with regular point (co)
Let O be an oval of PG(2,q), ¢ even, with canonical form
0 ={(1,t,F(1) : te GF(g)} U{(0,1,0)},

where F is a polynomial satisfying the conditions of [24, 8.4.2 Theorem]. In this case, the
nucleus of O is the point (0,0,1).

Let AG(2,q) be the subgeometry of PG(2,q) with pointset {(z1,22,1) : z1,22 € GF(q)},
and denote the point (0,0, 1) by O. Note that the line at infinity of AG(2, ¢) contains the points
(1,0,0) and (0,1,0) of O, which correspond to the parallel classes {zo = d: d € GF(g)} and
{z1 =d: d € GF(q)} of AG(2,q) respectively. If X and Y are two distinct points of AG(2,q),
then consider the line £xy = (O,X —Y) of AG(2,q). If xy is neither the line given by the
equation £1 = 0, nor that given by zo = 0, then £xy contains a point of O, say ®xy. Let

X = (z1,%2,1), Y = (y1,y2,1) and define the 1-cochain c as follows:

0 ifzy=yorazy=
c(X,Y)= 1=%N 2 =Y .
r wherexz1 #y1, o Fyand X - Y =r.®xy

Now, let X, Y and Z = (21, 22, 1) be three distinct points of AG(2, q) and suppose that the sets
{z1,y1,21} and {z2,y2, 22} both consist of three distinct elements. In this case X, Y and Z are
collinear if and only if ®xy = ®xz = Pyz. Now ®xy = &xz = Py if and only if
O = X-Y)-(X-2)+(Y -2

= C(X, Y)@Xy — C(X, Z)CPXZ + C(Y, Z)@yz

= 6c(X,Y, Z)@xy,
which holds if and only if d¢(X,Y, Z) = 0.

Now suppose that ; = y3. Then X, Y, Z are collinear if and only if ; = y; = 2;, which

holds if and only if d¢(X,Y, Z) = 0. Similarly, in the case where z3 = y2, X, Y, Z are collinear
if and only if §¢(X,Y, Z) = 0.
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Thus for X,Y, Z any three distinct points of AG(2,q), X,Y, Z are collinear if and only if
de(X,Y,Z) =0.

Now suppose that 21 # y1, T2 # y2 and that &xy = (1/F(t),t/F(t),1), for some t € GF(q).
Then it follows that X — Y = r.®xy, where r and ¢ satisfy the equations

T+ e r and
1 yl . F(t)
T9 + = rt
Then it follows that ¢t = —2 i yz’ r=(z1+y)F <$2_+y2> and so
1+ 1+ Y1
o(X,Y) = (z1 +y1)F (” + yQ).
x1 + Y1

If x1 = y1, or 1 = Y9, then ¢(X,Y) = 0. Thus, c is precisely the 1-cochain that was derived in
Section 5.2.2.

5.3 Equivalence of covers of 7

5.3.1 Normalised algebraic covers

Let 7 be an affine plane of order s and (7, p) an algebraic s-fold cover of =, defined by the
1-cochain c. It was noted in Section 1.6 that if ¢’ = ¢+ éb for any 1-coboundary 6b and if (7, p')
is the algebraic s-fold cover of 7 defined by ¢/, then the geometries 7 and 7 are isomorphic.
Thus, by judiciously choosing the 1-coboundary b, we may assume a normalised form for the
1-cochain c.

Let O be a fixed point of 7. The 1-cochain ¢ is normalised with respect to O if ¢(O, P) =0
for all P € w\ {0}. If (T, c) is any algebraic s-fold cover of 7, then define ¢ = ¢ + b, where
b(P) = ¢(O, P) if P # O and b(0O) = 0. The 1-cochain ¢’ is normalised with respect to O and
is called the form of ¢ normalised with respect to O. Suppose that c + db and ¢ + 6b’ are both
normalised with respect to the point O. Then §b(0, P) = 6b'(0, P) = 0 for all points P of
such that P # O. Let b(O) — b'(O) = k, then it follows that b(P) — b'(P) = k for all points P
of w such that P # O. Thus §b = §b' and so the normalised form of a 1-cochain with respect to
a fixed point of 7 is unique.

Now, let £ be a fixed parallel class of 7w and let £ be an element of £. Then the simplicial
complex T'; of the point graph of £ is a subcomplex of the simplicial complex I' of the point
graph of w. Thus the 1-cochain ¢ of I" over the abelian group A induces a 1-cochain on I'; over
A, c; say. Since c defines a cover of the geometry = it follows that de(P,Q,R) = 0 for P,Q, R
any three distinct points of £. Thus ¢y is a 1-cocycle and since the point graph of ¢ is complete,

it follows from [12, Proposition 2.2] that H*(I'y, A) is trivial and so ¢; is a 1-coboundary, dby
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say. Now let ¢ = ¢ + b be a 1-cochain on I' over A such that if P € ¢, where £ € L, then
b(P) = bg(P). Thus, ¢’ has the property that ¢'(P,Q) = 0 if (P,Q) € L. In this case we say

that ¢’ is normalised with respect to the parallel class L.

5.3.2 Equivalent algebraic covers of 7

Let 7w be an affine plane of order s and let A be an abelian group of order s. We will represent
A as an additive group with identity element 0. Let (7, p) and (7,p’) be two algebraic s-fold
covers of m defined by ¢ and ¢’ respectively, such that ¢ and ¢’ both satisfy the GQ condition.
Let S = (P,B,I) and §' = (P',B',I') be the GQs of order s constructed from (7, p) and (7, p’),
respectively, as in Theorem 5.1.2. Let the point of type (iii) of S be denoted by (co) and the
point of type (iii) of &’ be denoted by (c0)’. We are naturally interested in the conditions under
which S and &' are isomorphic. A first step is to determine the conditions under which there
is an isomorphism from S to &' that maps (co) to (0o0)’. This is the objective of the current

section.

Theorem 5.3.1 Leti: S = S' be an isomorphism such that i : (0o) — (00)'. If 7 is the map

obtained by restricting i to the subgeometry T, then i : T — T is an isomorphism.

Proof: The pointset of 7 is P \ (c0)® and the lineset is B\ {£: (c0) I £}. Since i maps (c0)
to (co)', it also maps 7 to 7. As T and 7 are subgeometries of § and &’ respectively, it follows
that 4 induces an isomorphism from 7 to 7.
O
Recall from Section 1.6 that if there exists an isomorphism from 7 to 7', then we say ¢ and
¢ are equivalent. If there exists an isomorphism i : & — &', such that 7 : (0c0) — (00)’, we
say that the 1-cochains ¢ and ¢’ are GQ equivalent.
Our eventual aim is to determine the conditions under which two 1l-cochains that satisfy
the GQ condition are GQ equivalent. First we show that any isomorphism from 7 to 7 may

be “completed” to an isomorphism from S to §'.

Lemma 5.3.2 Leti: ™ — 7 be an isomorphism. Then for each point P of 7,1 : {(P,a) : a €
A} = {(P',a) : a € A}, for some point P' of m. Furthermore, the map T : P+ P’ defines an

automorphism of m.

Proof: Since 7 is an isomorphism, it induces an isomorphism from the point graph of 7 to the
point graph of 7. By Theorem 5.1.3 the point graph of 7 and the point graph of 7 are both an-
tipodal graphs, with the sets of antipodal points being {(P,a) : o € A} for both graphs. Thus,
for P a point of m,7: {(P,a) : e € A} = {(P',a): a € A}, for some point P’ of 7. Now let £
be a line of 7 represented by the set {(Py, 1), (P, a2),. .. , (Ps, )} of points of 7 incident with
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¢. Then the image of £ under 7 is the set of points {(T'(P1), ), (T(Ps), ), ... , (T(Ps),a})}
for some o} € A, where i = 1,2,...,s. Since {(T'(P1),a}),(T(P2),ah),... ,(T(Ps),c)} is a
line of 7 it follows that {P], P},... ,P.} is a line of 7, £ say. Thus, 7 extends to a well defined
map on the lines of 7, mapping £ to £'.

Now from Section 1.6 we know that if the point (P,a) of T (or 7 respectively) is incident
with the line £ of T (or 7 respectively), then the point P of 7 is incident with the line p(£).
Further if (P, m) is an incident point-line pair of 7, then there exists an incident point-line pair
((P,c),£) of T (or 7 respectively) such that m = p(€) (or m = p(¢) respectively). In fact for
each o € A there is a unique such element ! of p~!(m). So suppose that (P,m) is a incident
point-line pair of 7 and ((P, a),#) is an incident point-line pair of 7 such that m = p(£). Now
i((P,a),£) = ((P',d),£) for some o/ € A and ((P',¢),¢') is an incident point-line pair of 7,
from which it follows that (P’,p'(£')) is an incident point-pair of m. Now p(i(£)) = m' (where
m' is the image of m under the map on 7 induced by ¢) and so the map on =« induced by %

preserves incidence and is therefore an automorphism of .

O

Theorem 5.3.3 Let t: © — 7 be an isomorphism. Then there exists a unique isomorphism

i: 8§ —= &', such that i: (00) — (0o) and i induces i, as in Theorem 5.3.1.

Proof: Let 7 induce the collineation T on 7, as in Lemma, 5.3.2. Consider the mapi: § — &’
defined as follows. If £ is a point of S of type (i) (that is, a line of ), then 3(¢) = T'(¢). If (P, @)
is a point of S of type (ii) (that is, a point of 7), then i((P, ) = ¢((P, @)). Let i : (00) — (00)'".
If £ is a line of S of type (a) (that is, a parallel class of 7), then (L) = T(L). Finally, if £
is a line of S of type (b) (that is, a line of 7), then i(£) = i(£).
The map ¢ is an isomorphism of the form required. Since 7" determines the action of i on
(00)+, 7 determines the action of i on S\ (c0)t and i: (00) = (00)', it follows that i is the

unique isomorphism from S to S’, mapping (00) to (o)’ that induces 7 for 7 to 7. O

By Theorem 5.3.1 and Theorem 5.3.3, we have the following corollary.

Corollary 5.3.4 Let (7,p) and (7,p') be two algebraic s-fold covers of w, defined by ¢ and ¢,
respectively, such that ¢ and ¢’ both satisfy the GQ condition. Then c and ¢’ are GQ equivalent

if and only if they are equivalent.

We want to determine when § 2 &’ by an isomorphism that maps (co) to (c0)' and by Corol-
lary 5.3.4 this occurs if and only if ¢ and ¢’ are equivalent. Our aim now is to determine the
conditions under which ¢ and ¢’ are equivalent. The first step is to determine the conditions

under which there exists an isomorphism from 7 to @ that induces a given collineation T of .
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If 7 is an isomorphism from 7 to 7 that induces the collineation T' of 7, then ¢ must act on
the points of 7 by
i: (P,a) = (T(P),tp(a)) for P € 7 and o € A,

where {tp : P € 7} is some set of permutations on A.

Now suppose that 7 is a map from the pointset of T to the pointset of 7, such that
1: (P,a) — (T(P),tp(c)), where tp is an automorphism on A. If we determine the con-
ditions under which this map is an isomorphism from 7 to 7, then since, by the above, all
isomorphisms from 7 to 7 have this form, we will have determined all isomorphisms from T to

7. The map 1 is an isomorphism if and only if
(P,a) ~ (Q,B) in T <= (T(P),tr(e)) ~ (T(Q), tq(B)) in 7,
forall P,Qem P# Q and o,3 € A. Now (P,a) ~ (Q,) in 7 if and only if 8 = a — ¢(P, Q),
and so ¢ is an isomorphism from 7 to 7 if and only if
(T(P),tp(a)) ~ (T(Q),tg(a —c(P,Q)) for all P,Q € 7, P # Q and o € A, (5.3.2)
This is the case if and only if
d(T(P), T(Q)) =tp(a) —tgla—c(P,Q)) forall PLQenm, P#Qandac A.  (5.3.3)

We now consider the case where ¢ is normalised with respect to the point O of 7w and ¢ is
normalised with respect to the point T'(O) of =.

For k a constant element of A, the map (P, «) — (P,a+ k) is an automorphism of 7. Thus
it follows that there is an isomorphism from 7 to 7 that induces T if and only if there is an
isomorphism 7 : (P,a) — (T(P),tp(a)), such that to(0) = 0. By 5.3.3 such an isomorphism

exists if and only if

d(T(P), T(Q)) =tp(a) —tgla—c(P,Q)) for all P,Q € m, P # Q and a € A.
(5.3.4)

Substituting Q@ = O we have that tp(a) = to(a) for all P € 7 and o € A, and so 5.3.4 is

equivalent to
d(T(P), T(Q)) = tola) —tola—c(P,Q)) forall bLQen, P#Qanda€ A.  (5.3.5)

By substituting o = 0 into this expression it follows that

d(T(P), T(Q)) = —to(—c(P,Q)) forall PLQem, P#Qand a € A
— —d(T(P), T(Q) = tolc(Q,P)) foral P,Qen, PAQandac A
— dJ(TQ),TP) = tolcQ,P)) foral P,Qenm, P£Qandae€ A
— JT(P),TQ) = tole(P,Q)) forall P,Q €m, P#Q and a € A.
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Thus with ¢/ (T'(P),T(Q)) = to(c(P,Q)) 5.3.5 is equivalent to
to(a) =to(a—c(P,Q)) +to(c(P,Q)) for all P,Q € 7, P # Q and « € A. (5.3.6)

If we can show that to maps onto A, then tp must be an automorphism of A. Let £ be a line
of m such that O € £ and X a point of 7 not incident with £. Now if ¢(X,Y) = ¢(X,Y"), for
Y, Y’ distinct points of £, then

6ce(X,Y,Y) =c(X,Y) — e(X,Y) + (Y, Y?) = ¢(X,Y) — ¢(X,Y') = 0.
(5.3.7)
However, X,Y, Z are not collinear in 7 and so 5.3.7 contradicts the fact that c satisfies the GQ
condition 5.2.1. Thus {¢(X,Y): Y € £} = A. Hence to maps onto A and is an automorphism
of A.
Thus we have established that there exists an isomorphism from 7 to 7 that induces the

collineation T' on 7 if and only if
d(T(P), T(Q)) = o(c(P,Q)), where o is an automorphism of A. (5.3.8)

In this case 1 : (P,a) — (T(P),o(a)) is such an isomorphism.
In the following lemma we restate this result and calculate all isomorphisms from 7 to 7

that induce the collineation T on .

Lemma 5.3.5 Let w be an affine plane of order s. Let (7, p) and (7,p') be two algebraic s-fold
covers of m over the abelian group A, defined by the 1-cochains ¢ and ¢ respectively, such that
¢ and ¢ satisfy the GQ condition. Let T be a collineation of m and suppose that c and ¢’ are
normalised with respect to the points O and T(O) respectively. Then there exists an isomorphism

from T to T that induces T if and only if there exists a unique automorphism o of A such that

¢(T(P),T(Q)) = o(c(P, Q))-

In this case, the full set of isomorphisms from T to & that induce T on m is {ix: k € A},

where i (P, ) = (T(P),o(a) + k).

Proof: The condition for the existence of an isomorphism that induces T comes from 5.3.8,
and we are also furnished with an example of such an isomorphism, namely ¢ where i : (P, a) —
(T(P),o(a)). The isomorphisms from 7 to 7 that induce T on 7 are exactly those of the form
71, where 7 is an automorphism of 7 inducing the identity on 7. Thus we now calculate the
set of such 7. Since 7 induces the identity on 7, it is of the form 7 : (P,a) — (P, 7p(c)), where

Tp is a permutation on A. Now a map of this form is an automorphism of = if and only if

(P,a) ~ (@, 8) <= (P,tp(a)) ~ (Q,1q(B)) for Qe P#Qand o, 8 € A.
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This is the case if and only if « — 3 = 7p(a) —7g(B) for all P,Q € 7, P # Q and o, 3 € A. Let
O be a fixed point of 7 and let 70(0) = k. Then 7p(a) = a + k, for all points P, not O and for
all o € A. To determine the permutation 7o note that 7o(a) = @ — 8+ 7p(8) = o + k. Thus
we have the full set of isomorphisms from 7 to 7 that induce T on 7.
O
We now generalise to the case where ¢ and ¢’ are any pair of 1-cochains satisfying the
GQ condition. Let T be a collineation of m, ¢ 4+ éb the form of ¢ normalised with respect
to O and ¢ + b’ the form of ¢’ normalised with respect to T(0O). Let 7 be the covering
geometry of the algebraic s-fold cover of m defined by ¢ + éb. The map from 7 to 7, acting
by (P,a) — (P,a + b(P)) is an isomorphism. Similarly, let 7}, be the covering geometry of
the algebraic s-fold cover of m defined by ¢’ + 6b'. Then the map from 7 to 7}, acting by
(P,a) — (P, + b/(P)) is an isomorphism.
Now there is an isomorphism from 7 to 7 that induces T on 7 if and only if there is an

isomorphism from 7, to 7y, and by Lemma 5.3.5 this is the case if and only if

¢(T(P),T(Q)) = o(c(P,Q)) + o (8b(P,Q)) — /(T (P), T(Q)) for all P,Q € m, P #Q,
for some o € aut(A). (56.3.9)

Note that by Lemma 5.3.5 the automorphism o of A is unique.

We now show that 5.3.9 holds if and only if

¢(T(P), T(Q) = o(c(P,Q)) +6d(P,Q) for all P,Q € 7, P #Q,

for some o € aut(A) and 1-coboundary éd. (5.3.10)

Note that the map o (6b(P, Q))—db' (T'(P),T(Q)) is a 1-coboundary. It follows that 5.3.9 satisfies
5.3.10.

Now suppose that dd is a 1-coboundary that acts by §d(P, Q) = ¢ (T(P), T(Q)) —o(c(P, Q)),
for some o € aut(A). That is, the 1-cochains ¢ and ¢’ satisfy 5.3.10. Then define dd' to be the

1-coboundary that acts by
8d'(P,Q) = 0™ (8d(P, Q) + 8V (T(P), T(Q))).
Thus 6d(P, Q) = o(5d'(P,Q)) — 8b'(T(P), T(Q)) and so
a(6d'(P,Q)) — 0¥ (T(P), T(Q)) = ¢ (T(P), T(Q)) — o(c(P, Q)).
From this it follows that
¢(T(P),T(Q)) + 8V (T(P), T(Q)) = o(c(P,Q) + dd' (P, Q))-
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Now ¢ + 6b' is normalised with respect to T'(O) and so ¢+ dd’ is normalised with respect to O.

Hence §d' = db. Substituting éd’ = b into the definition of dd yields

which when substituted into 5.3.10 yields 5.3.9. Hence we have that 5.3.10 is equivalent 5.3.9
and thus holds if and only if there is an isomorphism from 7 to 7 that induces T' on 7. Note
that we observed that ¢ is the unique automorphism of A such that 5.3.9 holds, and so since
dd is determined by ¢, ¢ and o, it follows that (o, dd) is the unique pair such that 5.3.10 holds.

Lemma 5.3.5 and the above discussion give the following result.

Lemma 5.3.6 Let 7 be an affine plane of order s. Let (T,p) and (7', p") be two algebraic s-fold
covers of m over the abelian group A, defined by the 1-cochains ¢ and ¢’ respectively, such that c
and ' satisfy the GQ condition. Let T be a collineation of m. Then there exists an isomorphism
from T to T that induces T if and only if there ezxists a unique automorphism o of A and unique

1-coboundary b, such that

¢(T(P),T(Q)) = o(c(P,Q)) + 6b(P, Q).

In this case, the full set of isomorphisms from 7 to T that induce T on w is {ix : k € A},

where ix (P, o) = (T(P),0(a) + k + d(P)).

Proof: From the above discussion there is an isomorphism from 7 to 7 that induces T on 7

if and only if there is a unique pair (o,dd) with o € aut(A) and éd a 1-coboundary such that
¢(T(P),T(Q)) = o(c(P,Q)) + 6d(P,Q) for all P,Q € m, P # Q.

Now 6b normalises ¢ with respect to the point O and §b' normalises ¢’ with respect to
the point T(0O). If 7, and 7}, are the covering geometries defined by ¢ + db and ¢ + ¥/,
then by Lemma 5.3.5 the full group of isomorphisms from 7 to 7}, that induce T on 7 is
{(P,a) = (T(P),o(a)+k) : k€ A}. Since (P,0) — (P,a+b(P)) is an isomorphism from 7 to
7 and (P,a) = (P,a — ¥ (P)) is an isomorphism from 7}, to 7, it follows that the full group

of isomorphisms from 7 to 7 that induce T on 7 is
{(P,a) — (T(P),0(a+b(P))-b (P)+k) : k € A} = {(P,a) = (T(P),o(a)+d(P)+k) : k € A}.

0
Lemma 5.3.6 allows to calculate all of the 1-cochains equivalent to a fixed 1-cochain ¢ (such
that c satisfies the GQ condition). In the next section we will use this to calculate the stabiliser

of the regular point (0o) in the group of the GQ S constructed from ¢ (as in Theorem 5.2.1).
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Theorem 5.3.7 Let w be an affine plane of order s and (T,p) an algebraic s-fold cover of ,
over the abelian group A, defined by the 1-cochain c, such that c satisfies the GQ condition.

The set of 1-cochains equivalent to c is

{c': d(P,Q) =o(c(T(P), T(Q)) + b(T(P), T(Q)), for all P,Q € m, P #Q
where o € aut(A) and T € aut(m)}

Proof: This result follows directly from Lemma 5.3.6.
O

If o is an automorphism of A, then let ¢, be the 1l-cochain that acts by c,(P,Q) =
o(c(P,Q)), and if T is a collineation of 7, then let cr be the 1-cochain that acts by cr(P, Q) =
c(T(P),T(Q)). Thus if ¢ is a 1-cochain and ¢ is the 1-cochain such that
d(P,Q) = o(c(T(P),T(Q))) + 6b(P,Q), then ¢’ = (cr)s + 0b.

Now by [12, Proposition 2.2], since the point graph of 7 is complete, it follows that two 1-
cochains are cohomologous if and only if their difference is a 1-coboundary. Thus ¢’ = (er)s+0b
if and only if ¢’ = 8(cr),. Note that in this case §¢'(P, @, R) = o(der(P,Q, R)). Given this

we have the following corollary to Theorem 5.3.7.

Corollary 5.3.8 Let 7 be an affine plane of order s. Let (T,p) and (7',p') be algebraic s-fold
covers of m, over the abelian group A, defined by the 1-cochains ¢ and ¢ respectively, such that
c and ¢ satisfy the GQ condition. Then c and ¢’ are equivalent if and only if there exists an

automorphism o of A, and T collineation of w, such that 6c' = é(cr),.

5.4 The automorphism group of 7 and the group of S fixing (o)

Let 7 be an affine plane of order s and (7, p) an algebraic s-fold cover of 7 over the abelian
group A, defined by the 1-cochain ¢, such that c satisfies the GQ condition. Let S be the GQ
constructed from (7,p) as in Theorem 5.1.2. In this section we show that the automorphism
group of 7 is isomorphic to the subgroup of the automorphism group of S that fixes (c0). Then
we calculate the automorphism group of the geometry 7.

If we consider Theorem 5.3.1 and Theorem 5.3.3 for the case where ¢ = ¢’ (so T = 7 and
S = &') and (00) = (c0)’, then the automorphisms of S fixing (co) are “equivalent” to those

fixing 7. More precisely:

Theorem 5.4.1 Let m be an affine plane of order s and (T,p) an algebraic s-fold cover over
the abelian group A, defined by the 1-cochain ¢, such that c satisfies the GQ condition. Let S
be the GQ of order s constructed from (T,p), as in Theorem 5.1.2. If aut(S)() denotes the
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subgroup of the group of S fizing (00), and aut(T) denotes the group of T, then
aut(S) (c0) = aut (7).

Proof: Let ¢: aut(S) o) — aut(7) be the map that takes an element of aut(S) () to the

element of aut(7) it induces as in Theorem 5.3.1 (with ¢ = ¢). Then ¢ is a homomorphism.
By Theorem 5.3.3 ¢ is one-to-one and onto and so is an isomorphism.

O

In the previous section it was shown that if ¢ is an automorphism from 7 to 7', then 4 induces

a collineation of 7 (Lemma 5.3.2). In the case where ¢ = ¢, ¢ is an automorphism of 7 and the

collineation of 7 that is induced by 7 is said to be admitted by c. In the following theorem we

determine the conditions under which a collineation of 7 is admitted by c.

Theorem 5.4.2 Let m be an affine plane of order s and (7,p) an algebraic s-fold cover of ™
over the abelian group A, defined by the 1-cochain c, such that c satisfies the G() condition. Let

T be a collineation of w. Then the following statements are equivalent
1. The collineation T is admitted by c.

2. There exists a unique automorphism o of A such that

der = dc,.

3. There is a unique 1-coboundary, db and a unique automorphism or of A such that

cr = ¢y + 6b.

Proof: The collineation T' is admitted by c¢ if and only if there is an automorphism of 7
that induces T. By setting ¢ = ¢’ in Lemma 5.3.6, it follows that 1 is equivalent to 3 By [12,
Proposition 2.2], it follows that 2 is equivalent to 3.
O
Note that the set of collineations of 7 that are admitted by ¢ forms a group, which will be
denoted by aut(r). and is called the subgroup of aut(r) that is admitted by c.

We now calculate the automorphism group of the geometry .

Theorem 5.4.3 Let w be an affine plane of order s and (,p) an algebraic s-fold cover of m,
over the abelian group A, defined by the 1-cochain c, such that c satisfies the GQ condition.

Then the full automorphism group aut(T) of the geometry T comprises the elements
(P,a) = (T(P),or(c) + k + br(P)),
where k € A, T € aut(r). and (or,dbr) is the unique pair, such that cr = c(g,) + dbr.
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Proof: Use ¢ = ¢ in Lemma 5.3.6.
O
In the proof of Theorem 5.3.3 the unique element of aut(S)(c) that induces a given element
of aut(T) was explicitly constructed from the element of aut(7). Combining this construction

and Theorem 5.4.3 enables the explicit construction of the subgroup of the automorphism group

of S that fixes (00).

5.4.1 Elations and symmetries about (co)

Let 7 be an affine plane of order s and (7, p) an algebraic s-fold cover over the abelian group
A, defined by c, such that c satisfies the GQ condition. Let § = (P, B,I) be the GQ of order
s constructed from 7, ¥ and p as in Theorem 5.1.2. In this section we consider particular
types of elements of the group aut(S) ), called elations and symmetries. The terminology and
definitions in this section are taken from [49, Chapter 8].

A whorl of S about a point P is an automorphism of S that fixes each line incident with P.
An elation of S about P is a whorl of S about P, that fixes no point of P\ P+. If 4 is a whorl
of S about (00), then 6 induces an automorphism 6’ of = that fixes each parallel class of 7.
(We can show this by using Theorem 5.3.1 and Lemma. 5.3.2, or it is relatively straight-forward
to verify directly). If II is the projective completion of 7 with line at infinity £, then by [28,
Theorem 4.9], the extension of €' to II is either an elation of a homology of II and hence either
a translation or a dilatation of 7.

A symmetry of S about P is an automorphism of S that fixes each point of PL. Any
symmetry about P is an elation about P. Now by [49, Chapter 8] the set of symmetries
about P forms a group, the order of which must divide s. In the case where the order of the
symmetry group is s, the point P is called a centre of symmetry (and must be regular).
By Theorem 5.4.3, the group of symmetries about (o0) is {(P,a) — (P,a+ k): k € A}
and so (co) is a centre of symmetry of S. Note that any symmetry about (co) induces the
identity automorphism on 7. A symmetry about a line £ of S is defined dually (that is, as an
automorphism of o that fixes each line of £-). A line whose symmetry group has maximal order
s is an axis of symmetry. Suppose that £ is a line of S incident with (0o0) and S is a symmetry
about £. Now S fixes (00) linewise and ¢ pointwise, and so S induces a collineation of 7 that
fixes each parallel class of m and fixes the parallel class of 7 corresponding to ¢ linewise. Thus
by [28, Theorem 4.9] S induces a translation on 7. Note that this implies that each symmetry
about a line incident with (co) is an elation about (00), although the converse of this does not
necessarily hold. The line £ is an axis of symmetry if and only if 7 has a full translation group,

of order s, fixing the parallel class of 7 corresponding to £ linewise, and ¢ admits this group.
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The GQ S is an Elation Generalized Quadrangle (EGQ), with basepoint P, if G is a
group of elations about P acting regularly on the points of P\ PL. Since G acts regularly on
the points of P \ P+ it is a maximal group of elations about P.

The GQ S is a Translation Generalized Quadrangle (TGQ), with basepoint P, if S is
an EGQ with basepoint P, such that the elation group G contains a full group of s symmetries

about each line through P.

Theorem 5.4.4 The GQ S is a TGQ with base point (00) if and only if w is a translation

plane and c admits the translation group of .

Proof: Suppose that S is a TGQ with base point (c0). Recall from the above discussion that
if ¢ is a line of S incident with (0o), then £ is an axis of symmetry if and only if 7 has a full
translation group, of order s, fixing the parallel class of 7 corresponding to £ linewise, and c
admits this group. Thus if each line incident with (oco0) is an axis of symmetry, then = is a
translation plane and ¢ admits the full translation group of =.

Now if 7 is a translation plane and ¢ admits the full translation group G, then by Theo-

rem 5.4.3 the group
{(P,a) = (T(P),or(c) + br(P)+k): T€ G, k€ Aand cr = c(op) + Sbr}

is a group fixing 7. By Theorem 5.3.3 this group is isomorphic to a group of S that is an elation
group about (co) acting regularly on the points of P\ (co)t. Thus S is an EGQ with base
point (00).

Let £ be a line of S incident to (0co) and Gy the full group of translations of 7 fixing the
parallel class of 7 corresponding to £. By Theorem 5.4.3 the group

{(P,a) = (T(P),or(a) + br(P)+ k) : T € Gy, k € A and cr = c(op) + Sbr}

is a group fixing 7, which by Theorem 5.3.3 extends to a group of symmetries of S about £.
Thus £ is an axis of symmetry. Since this is true for each line incident with (00), it follows that
S is a TGQ with base point (00).
O
The discussion of TGQ was introduced for GQ of order s by Thas in [60], and technical
aspects were developed by Payne in [42], before it assumed the form given in [49, Chapter 8].
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5.4.2 Example: The subgroup of AI'L(3,q) admitted by z1ys — zoy;

Consider the classical affine plane AG(2,q) with pointset {(z1,2z2) : z1,22 € GF(¢)} and lines
given by the equations 5 = mz; + d and z; = d, where m,d € GF(q). Then

aut(AG(2,q) = ATL(2,q)
= {T: T(%1,%2) = (a+ baf + czh, d + ez + fab),
such that a,b,c,d,e, f € GF(q) and bf — ec # 0},

which may be derived from the fundamental theorem of projective geometry (see [24, 2.1(ii)]).
From Section 5.2.1 the algebraic g-fold cover of AG(2,q) giving rise to W(q) is defined by
the 1-cochain ¢, where c((z1, Z2), (y1,¥2)) = Z1y2 — zath. If T € aut(AG(2,q)), then

c(T(21,22), T(y1,92)) = (a+bof{+cah)(d+ey] + fuh) — (d+ex] + faf)(a + byl +cyf)
= (bf — ce)(zm1y2 — z2y1)” + (bd — ae)(z1 — y1)”
+(cd — af)(z2 — y2)”
= (bf — ce)e(w1,22), (Y1, 92))° + ((bd — ae)zd + (cd — af)zh)
—((bd ~ ae)yf + (cd — af)ys).

That is, cr = ¢(gy) +08br, where or(z) = (bf —ec)z? and 6br(z1,22) = (bd—ae)zf +(cd—af)zh.
Thus, by Theorem 5.4.2 we have that

aut(AG(2,q)). = ATL(3,q).

5.4.3 Example: Covers of AG(2,q), ¢ even, of the form (z, + y;)F (mz + y2>

T+
Let m be an affine plane of order s and (7,p) an algebraic s-fold cover of 7 over the abelian
group A, defined by the general 1-cochain c, (that is, ¢ need not satisfy the GQ condition). Let
T be a collineation of m and o an automorphism of A. Recall from Section 5.4 that cr denotes
the 1-cochain which acts by e (X,Y) = ¢(T(X), T(Y)) and that ¢, denotes the 1-cochain which
acts by ¢, (X,Y) = o(¢(X,Y)).

The collineation T is said to be admitted by c if there exists an automorphism o of A
and a 1-coboundary b such that cr = ¢; + 6b. If T is admitted by ¢, then it follows that
der = dc, and so der = 0 if and only if ¢ = 0. Note that if c satisfies the GQ condition, then
by Theorem 5.4.2 this definition of admitted agrees with that given in Section 5.4.

We will now give an example showing how the definition of T being admitted by a general

1-cochain ¢ may be used to help determine if ¢ satisfies the GQ condition. Let ¢ = 2°, 7 =
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AG(2,q), A = GF(q) and for X = (z1,22), Y = (y1,y2) define

(1 +y1)F ( ) if 21 # y1

0 if z1 = y1,

T2+ Y2

oX,Y) = z1+ %

for some function F' on GF(q). We know from Section 5.2.2 and Section 5.2.3 that if F' has
the property that O = {(1,t, F(t)) : t € GF(q)}U{(0,1,0)} is an oval of PG(2, ¢) with nucleus
(0,0,1), then c satisfies the GQ condition. We wish to determine all functions F' such that c
satisfies the GQ condition.

Let T(,5) be the collineation of AG(2,q) that acts by translating the points of AG(2,q) by
(a,b). That is T(gp)(z1,22) = (21 + a,22 + b).

Now given the points X = (z1,22) and Y = (y1,y2) of AG(2, ¢) such that z1 # y1, we have

(Tap)(X), Tap) (V) = c((z1 +a,32 +b), (y1 +a,y2 + b))

m2+y2+b+b)
r1t+yi1t+a+a

= (z1+mn +a+a)F(
= ¢(X,Y).

If 1 = y1, then z1 +a = y1 + a and so
C(T(a,b) (X)’ T(a,b) (Y)) =0=c¢(X, Y)

Thus T is admitted by c for all a,b € GF(q). Now c satisfies the GQ condition if and only
if for X,Y, Z distinct points of AG(2,q)

de(X,Y,Z) =0 < X,Y, Z are collinear.
Now
0e(X,Y,Z) = 8c(Tx(X),Tx(Y),Tx(Z))
= 6¢(0,Tx(Y),Tx(Z)), where O = (0,0),
since T'x is admitted by c. So in this case, the GQ condition on c is equivalent to
0c(0,X,Y) =0<«= 0,X,Y are collinear.

If O, X,Y are collinear, either z; = y; = 0, in which case §¢(0, X,Y) =0, or
T2 _ Y2 _ 22 + Y = m, where the line collinear with O, X,Y has slope m. In this case
T Y1 Tty

(SC(O,X,Y) = F <E> 4+ F (y—z) + (.’131 + yl)F (M) =0.
1 ) 1+ Y1

Now suppose that O, X,Y are not collinear and that 1 =0 (so y; # 0). Then

5¢(0,X,Y) = yiF (22-) F oy F (M)
v n

- (e (2)er(=2),
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Thus, 6¢(0, X,Y) # 0 if and only if F is a permutation of GF(g). A similar result holds for
y1 = 0 and the case where z1 = y; # 0.
Now suppose that z1 # y1 and z1,y1 # 0. Then
) Y2 T2 + Yo
dc(0, X, Y =wF<—)+ F(—)—i—x + F(—————),
( ) Y\ B n (o1 +31) T+ 4%
so 6c(0,X,Y) # 0 if and only if
(2)er(e) r(2)r(z52)
a1 1+ . Y1 T+ %
T1Y2 + Y122 Z1Y2 + Y122 ?
r1(z1 +y1) yi(z1 +y1)

where z1y2 + zay1 # 0, since O, X, Y are non-collinear (this is the 1-cochain derived from W (q)

in Section 5.2.1). Now setting

_ T2, X2ty Y2
U=— 1= y 8= —,
1 r1+ Y1 "
we have that
F F(t F F
52(0,X,Y) #0 4= LT FO  F) + Fls)
u+t u—+ s

These conditions that we have determined for the function F' are exactly those under which O =

{(1,t,F(t)) : t € GF(g)}U{(0,1,0)} is an oval of PG(2, g) with nucleus (0,0,1). Thus the only

1-cochains of the form (z1 + y1)F (wz + 2
1+

) satisfying the GQ condition are precisely those
that define T5(©), with regular point (co) as derived in Section 5.2.2. (Note that in Section 5.2.2
we supposed that F' had the form as in [24, 8.4.2 Theorem]. All that the construction required,

however, was that F was such that the set of points O formed an oval).

5.5 Automorphisms of A and coboundaries associated with

collineations of 7

In this section we consider 1-cochains that define an s-fold cover of an affine plane 7 of order
s over an abelian group A, and admit a particular subgroup G of aut(w). We investigate
conditions under which such a 1-cochain satisfies the GQ condition.

Now suppose that 7 is an affine plane of order s, (7, p) an algebraic s-fold cover of , over the
abelian group A, defined by the 1-coboundary c such that c satisfies the GQ condition. Recall
that if T is a collineation of 7, then T is admitted by c if there is a (unique) pair (o, dbr),
such that

o(T(P),T(Q)) = or(c(P,Q)) + dbr (P, Q).

Let ¢ be normalised with respect to a fixed point O of w. If P and @ are any two points

of 7 such that O € (P,Q), then ¢(P,Q) = 0. Further, if T is a collineation of 7 admitted
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by ¢, then c¢(T(P), T(Q)) = dbr(P,Q). So c is at least partially determined by the admitted
collineations and their associated 1-coboundaries. Now we establish conditions under which we
may construct a 1-cochain satisfying the GQ condition from collineations of 7 and associated
1-coboundaries.

If S and T are collineations of 7 admitted by ¢ then

c(SoT(P),SoT(Q)) = os(c(T(P),T(Q)) + bs(T(P),T(Q))
US(UT(C(Pa Q)) + JbT(Pa Q)) + 6bS(T(P)7T(Q))
= osoor(c(P,Q)) + dbr(P,Q) + dbs(T(P), T(Q)),

and hence ogo7 = 05 o o7 and dbsor = (0br)s + (8bs)r. Note also that the 1-coboundary
associated with the identity collineation of 7 is the zero 1-cochain, and that if T(O) € (P, Q),
then ¢(P, Q) = ér(T~1(P),T~1(Q)). We incorporate these ideas into the following theorem.

Theorem 5.5.1 Let 7 be an affine plane of order s, O a fized point of m and A an additive
abelian group of order s. Let G be a group of automorphisms of m that acts transitively on
the points of m. For each T € G let by be a 1-coboundary on the simplicial complex of the
point graph of ™ and or an automorphism of A. Suppose that dbr and or satisfy the following

conditions
1. If I denotes the identity collineation of m, then éby =0
2. ogo7 = 0g 0 o and Sbser = (05)dbr + (6bs)T, for all S, T € G
3. If $(0),T(0) € (P,Q) then &br(T~'(P),T~1(Q)) = dbs(S~(P), S7H(Q))-

If we define ¢(P, Q) = sbr(T~H(P),T~YQ)) for T € G such that T(O) € (P,Q), then ¢ defines
an algebraic s-fold cover of m over A. Further, c is normalised with respect to the point O and
admits all elements of the group G with cr = ¢(gp) + 0br. Finally, if 0bp satisfies the following

condition
4. If T(O) € (P,Q), then
br(T~1(P), T~(Q)) = 0 if and only if O € (P,Q),

then c satisfies the GQ condition.

Proof: Let P and @Q be any pair of distinct points of . Since there is an element T" of G such
that T(O) = P, it follows that c(P, Q) is defined. By condition 3 ¢ is well defined.

Now since O € (O, P), it follows that ¢(O, P) = 6b;(O, P) = 0. Hence c is normalised with
respect to the point O.
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We now wish to show that ¢ admits each element of G, so we consider the 1-cochain cr for
T € G. Let P and Q be two distinct points of = and suppose that S(O) € (P, Q) for some
S € G. Then by repeatedly using condition 2 we have the following:

o(T(P),T(Q)) = dbs(S™ oT(P),S™ o T(Q))
= Gbsos-1o) (P> Q) — 0 (Sb(s-107) (P, Q))
= %ﬂRQ%ms@@%w@%HwM&mﬂﬂ@
—6WT_%SﬂS‘1oT%PLS_1OTTQ»))
= §bp(P,Q) — or (—ab(T_los)(S‘l oT(P),5 ' o T(Q)))

= §bp(P,Q) + or(c(P,Q)).

Thus, cr = (s + by, for all T' € G and so ¢ admits each element of G.

We now show that ¢ defines an algebraic s-fold cover of 7 over A. Let P,Q, R be three
distinct collinear points of m such that P,Q, R are incident with the line £ of 7. Since G is
transitive on the points of 7 there is an element T of G such that T'(O) € £. In this case let
T € G be such that T(0O) = P. Then we have

3c(P,Q,R) = c(P,Q)—c(P,R)+c(Q,R)
= Sbp(T~Y(P), T7H(Q)) — Sbp (T~ (P), T~ (R)) + 6br(T~H(Q), T~ (R))
= 0,

and so c defines an algebraic s-fold cover of 7 over A.

Now suppose that the dbr satisfy condition 4, which is equivalent to ¢(P,Q) # 0 if O ¢
(P, Q). We show that c satisfies the GQ condition. Let P,Q, R be three distinct non-collinear
points of w. Let £ = (P,Q) and T be an element of G such that T(O) = P. Then

5c(P,Q,R) = or(8c(T~1(P),T~1(Q),T~}(R))) since T is admitted by c
= or(6c(0,T7HQ), T~ (R)))
= or(c(T7HQ), T (R))),

and so by 4 we have c(T~'(P), T~*(Q)) # 0. Thus éc(P,Q,R) # 0 and c satisfies the GQ

condition.
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Note that in Theorem 5.5.1 we do not actually need G to be transitive on the pointset of 7
for ¢ to be defined for all pairs of points of . In fact we could relax the condition to require
that the orbit of G on the pointset of 7 containing O have a point incident with each line of 7
and still have ¢ well defined and defining an algebraic s-fold cover of m. However, this would

entail strengthening condition 4 to force ¢ to satisfy the GQ condition.

5.6 Covers associated with T5(0)"

Let O be an oval of PG(2, q), ¢ even, with nucleus N. In Section 5.2.2 we calculated the algebraic
g-fold cover of AG(2,q) arising from T5(Q) and its regular point (co). From [49, 3.3.2(i)], all
lines of type (b) of T5(O) are regular (lines of type (b) are the points of O), thus in the dual GQ
T»(O)", the points of type (b) of T5(O) are regular points. In this section we show that for each
of these regular points of T5(O)" there is an associated affine plane isomorphic to AG(2, ¢) and
an algebraic g-fold cover of AG(2,q). For each of these ¢+ 1 algebraic ¢-fold covers of AG(2, q)
we calculate an explicit 1-cochain which defines the cover.

We represent T5(0)” by swapping the labels point and line in the construction of T5(0)
(see Section 1.4.3). Thus we will have points of type (a) and (b) and lines of type (i), (ii) and
(iii). The regular points we are considering are ¢ + 1 points of type (b).

Let T5(O) be constructed from ¥ = PG(3,q), H = PG(2,q) contained in 3 and the oval
O of H, which has nucleus N. Let X be a point of type (b) in T»(0)" = (P,B,I) and nx
the affine plane of order ¢ constructed from T5(0)”" and X as in Theorem 5.0.1. The lines of
T5(O)" incident with X are the planes of 3 meeting H in the line (N, X) and the line of type
(i), which we will denote by [0o]. The points of X+ are X, the lines of ¥ incident with X but
not contained in H, and the points of O\ {X}.

Let £ € P\ X1. Then £ is a point of type (a) of To(O)" not incident with X. That is,
a line of ¥ such that ¢ ¢ H and £ is incident with a point of O \ {X}1, Y say. In T»(0)",
{X, £} consists of the point Y of type (b) and the ¢ points of type (a) that are the g lines of &
contained in the plane (¢, X), incident with X but not contained in H. This set, {X, 0t isa
point of m and the ¢ points of To(0)” that cover {X,£} are the ¢ points of type (a) that are
lines of the plane (X, ¢), incident with ¥ but not X.

Let H' be a line of type (ii) of To(O)" such that X is not incident with H'. Then H' is a
plane of & containing a unique point of O\ {X}, Z say. Now Z € X+ (since Z I [00] I X) and
so Z is the line of mx covered by H'. The q lines of T5(O)" that cover Z (as a point of wx) are
the ¢ lines of type (ii) that are planes of ¥ meeting H in the line (N, Z).

Let P be a line of type (i) of To(O)" such that P ¢ X*. That is, P is a point of £\ H.
The line of mx that is covered by P is the line (P, X), and the g lines of T5(O)" covering the
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line (P, X) are the q points (P, X) \ {X} of type (i).

Now a point of my is a set of ¢ coplanar lines, so we will identify the point of mx with this
plane. We will identify a line of mx which is a point of Y € O \ {X} with the line (Y, X), and
a line of wx that is a line of X, not contained in H and incident with X, will be identified with

itself. With these identifications mx is the incidence structure
Points: Planes of X, not H, containing X, but not N.
Lines: Lines of ¥ containing X, but not N.

Incidence: Inherited from .

Hence,

= (i\(X,M

T—)D >~ AG(2,q).

Now we introduce coordinates by letting & = PG(3, ¢q), H the plane with equation z9 = 0 and

letting O have the canonical form
O ={(L¢t,F(t) : t € GF(9)} U{(0,1,0)},

where F' is a polynomial, as in [24, 8.4.2 Theorem]. In this case, the nucleus of O is the point
(0,0,1).
We consider the various possibilities for the point X and construct 1-cochains corresponding

to the g-fold covers of AG(2, g).

5.6.1 Case (a) X =(0,0,1,0)

The pointset of mx is the set of planes of ¥ containing (0,0, 1,0), not including H. That is,
the planes with coordinates [z1,z2,0,1] with z1,22 € GF(gq). Note that if we let the point
[€1,29,0,1] of Tx be represented by the pair (x1,z2), then mx assumes the canonical form of
AG(2,q).

The plane [z, x2,0,1] contains X and a second point of Y of O. Now the point (0, 1,¢, F (%))
of O\ {X} is contained on the plane [z1,22,0,1] of ¥ if and only if ¢ = F~Y(zq) (F~! is defined
since F is a permutation of GF(q)), and so Y = (0,1, F~!(z3),z2). The covers of the point
(z1,y) of AG(2,q) are the lines of ¥ contained in the plane [z, z2,0, 1] that are incident with
Y, but not X. In order to show that the s-fold cover of mx defined by T5(O)" is algebraic we
must first represent the covers of [z1,%2,0,1] as the set {((z1,%2),) : @ € GF(q)} and then
define an appropriate 1-cochain. Now the set of covers of (z1,22) may be described as the
intersection of the plane [z, 22,0, 1] with the set of planes {[a, F~*(z2),1,0] : o € GF(g)}. So

let ((z1,x2), ) represent the cover of (z1,%2), [z1,Z2,0,1] N[, F~(z2),1,0].
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Consider the points of 72(O)" represented by ((z1,x2),«) and ((y1,y2), 8). If zo # ys, then
((z1,%2), @) and ((y1,%2), B) are collinear in To(O)" if and only if [z1, 2,0, 1]N[e, F~1(x2), 1,0]
and [ys,%1,0,1] N [8, F~1(y2), 1,0] are concurrent lines of . This is the case if and only if

1+ Y1 (-1 -1
= —=F .
a+f w2+y2( (22) + F (1))

If z; = y1, then ((z1,22),a) and ((y1,y2), 3) are incident with the same point of type (b) of
T»(O)", and are collinear as points of To(O)" if and only if the plane they span contains the
point N. This is the case if and only if o + 8 = 0.

Thus the 1-cochain

+ _ _
' n L (F Yzo) + F 1(yg)) for zo # —yo
coo((Z1,22), (Y1,92)) = T2 T Y2
0 for To = Y2

defines the g-fold cover of AG(2,q) constructed from T>(O)” and the regular point (0,0, 1,0).

5.6.2 Case (b) X = (0,1,, F(t)), t € GF(q)

At this point we note that the only property of F' that we used in deriving c,, was that
O ={(0,1,s,F(s)) : s € GF(g)}uU{(0,0,1,0)} is an oval with nucleus (0,0,0,1). Suppose that
we can find a collineation T of H = PG(2, ¢) that maps O onto an oval @', such that (0, 1,¢, F(t))
is mapped to (0,0,1,0) and (0,0,0,1) is fixed. Then T(O) = O’ = {(0,1,u,G(u)): u €
GF(¢)} U {(0,0,1,0)}, for some polynomial G. Since T induces an isomorphism from T5(0)"
to T»(0")", it follows from Corollary 5.3.4 that the derivation in Section 5.6.1 gives a 1-cochain
equivalent to that defining the g-fold cover given by T5(O)" and the regular point (0,1, ¢, F'(t)).
In what follows we define such collineations and calculate the corresponding 1-cochains. Note
that we still assume that F satisfies the conditions of [24, 8.4.2 Theorem]|.

Now let T be the collineation of H that acts by T'(zg,z1,%2,23) = (zo,Z2 + tz1,%1,23 +

F(t)1). Then T(0,0,0,1) = (0,0,0,1), T(0,1,t, F(t)) = (0,1,t, F(t)) and

T(0)

Il

{(0,s +¢t,1,F(s)+ F(t)): s € GF(q)}U{(0,1,0,0)}

_ {(0,1, 1 F(s)+F(t)):seGF(q)\{t}}

s+t s+t

= { (0, laua w) TuE GF(Q) \ {O}} U {(0, 1,0, O)a (O,Oa 170)}

= {(0,1,u, fi(u)) : v € GF(¢9)} U{(0,0,1,0)},
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where 1 )

o (1 1

( (u+t>+F(t))/u ifu0
0 ifu=0

which may be written as the polynomial f(z) = z972, then f; = F; o f where F; is the permu-
tation s — (F(t + s) + F(t))/s defined in [24, 8.4.2 Theorem].

Given the above, we have that

r1+Y1 /.4 1 : B
ct((z1, ®2), (y1,92)) = To + Yo (ft (z2) + f4 (112)) if o # —yo ,

0 if.’L‘g—_—’yQ

is a 1-cochain that defines the g-fold cover of AG(2,q) given by T»(O)" and the regular point
(0,1,¢, F(2)).

By a similar approach to that taken in Section 5.4.3, it is possible to show that if

1ty .

———(G(22) + G(y2)) ifz2#yo
c((a"lam2)7 (ylay2)) = Z2 + Y2

0 if T2 = Y2

is a 1-cochain of the simplicial complex of the point graph of AG(2, g), then c satisfies the GQ
condition if and only if the set {(1,%,G(t)) : t € GF(q)} U {(0,1,0)} is an oval of PG(2,q).

5.7 Remarks

The work in this chapter raises many questions and possibilities for future research. An obvious
line of enquiry is to investigate 1-cochains of the simplicial complex of the point graph of a
non-desarguesian affine plane 7 of order s. Any such 1-cochain that satisfies the GQ condition
gives rise to a GQ of order s that is new, since all of the known GQs of order s with a regular
point have associated affine plane AG(2,s) (as in Theorem 5.0.1) for s a prime power. (This
was shown for W(q) in Section 5.2.1. For T3(O) it was shown in Section 5.2.2 that the affine
plane associated with the regular point (o) is AG(2, g). For T5(O)" the affine plane associated
with each of the regular points of type (b) was shown to be AG(2,¢) in Section 5.6. Note that
these results are already well known! (See [49, Chapter 8], for example). By [49, 3.3.3 (i)]
the only regular points of T»(O)" are the points of type (b) and by [49, 12.4.6] if T5(0) has
a regular point not (co0), then O is a translation oval and so by [49, 12.5.3 (i)] is isomorphic
to To(O')" for some oval (. Thus the work in Sections 5.2.1, 5.2.2 and 5.6 covers all regular

points of known GQ of order s).
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By Sections 5.2.1, 5.2.2 and 5.6 and by Theorem 5.3.7 we know all 1-cochains of the simplicial
complex of the point graph of AG(2,¢) that give rise to the known GQ of order ¢. It would
be interesting to investigate the 1-cochains to see if others satisfying the GQ condition could
be found. A possible approach is to consider a particular group G of AT'L(3,q) and see it it is
possible to find a 1-cochain admitting G and satisfying the GQ condition by the construction
in Theorem 5.5.1.

It was observed in Section 1.6 that an s-fold cover of a geometry is equivalent to an s-
fold cover of the dual geometry. Thus the construction in Theorem 5.1.2 can be equivalently
rewritten in terms of an s-fold cover of the dual affine plane. Presumably the algebraic s-fold
covers of an affine plane 7 are equivalent to the algebraic s-fold covers of the dual geometry
of 7, and so the corresponding theories regarding GQs of order s with a regular point are
presumably also equivalent. However, it may be that covering the dual affine plane offers some
computational advantages. Note that even though the point graph of a dual affine plane is
not complete it is relatively straight-forward to show that the first cohomology group of the
corresponding simplicial complex is trivial, and so the cohomological aspects of the theory

remain simple.

In Section 5.1 the theory of GQs with a regular point and covers of the associated affine
plane was introduced for a general cover rather than an algebraic cover. It would be interesting
to try and find other “natural” constructions of covers, apart from the algebraic covers, and

investigate those with respect to the construction in Theorem 5.1.2.
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