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SUMMARY

In 1914, Lebesgue posed the problem of determining
a closed set of least area which covers every set of
diameter 1 in the plane. Although such a set has not been
found, various sets with the required covering property have
been discovered. Also the problem has been generalized to
higher dimensions n and to measures other than n-dimension-
al volume.

In this thesis, the problem has been generalized
further. A universal cover of order k 1is a collection
of k ©Dbounded closed sets such that every n-dimensional
set of diameter 1 can be covered by at least one of the k
setse. Various examples are considered, and a number of
formal results produced. In particular, it is shown that
for fixed positive integers n and k there exists a
universal cover of order k whose sets are optimal with
respect to any one of the measures: volume, diameter or
surface area.

The covering sets of Lebesgue's problem have been
used successfully to solve the two and three dimensional
cases of Borsuk's problem: "Can every set of diameter 1 in
n-dimensional space be partitioned into n+1 sets of
diameter less than 19" Now, suppose d, (n+1) 1is the

infimum of all numbers d such that each set of diameter 1

(i1)



in n-dimensional space can be partitioned into n+1 sets
of diameter at most d. Universal covers can be used to
obtain upper bounds on the value of dn(n+1) for each

integer n. The method is illustrated in the case n=3.

(iii)
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INTRODUCTION

1.1 Lebesgue tile problem

A closed connected subset T of the Euclidean
plane is called a tile if any set of diameter < 1 in the
plane can be completely covered by it, i.e. if for every
set A in the plane of diameter < 1 there exists a subset
B of T directly congruent to A. By the diameter of a
set, we mean the supremum of the distance between pairs of
points of the set. In 1914, Lebesgue posed the problem
of finding the tile of smallest area. Although it is
easily seen that there is a positive lower bound on the
area of a tile, it is by no means obvious whether there
exists a tile of area equal to the greatest lower bound.

In 1920, Pal [19] reformulated the problem in the
following way, restricting it to convex tiles, as we shall
from this point on:

Problem. Let a, be the infimum of the area
a(T) of all convex tiles T.

Then (a) determine the value of &,

(b) determine whether a convex tile of area
a, exists

(¢) if there exists a convex tile with area
a,, are all convex tiles with area &,

of the form to be determined later?
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The problem has been partially solved. In the next chapter
we shall generalize this problem, and so we shall now look
at a few known results. For a more detailed account see
Meschkowski [18], Since we defined a tile to be a closed
set, we can assume that the sets to be covered are closed.
Since the diameter of the convex hull of a set is equal to
the diameter of the set, we can also restrict our attention
to convex sets.

For a convex set K in E* (Buclidean n-space)
and a unit vector u, the width of K in the direction u
is the infimum of the distances between any pair of hyper-
planes perpendicular to u and enclosing K. The set X
is said to be of constant width w if the width of K is
w in every direction Uu. Any set of constant width w
has diameter w. So, since every set of diameter 1 is
contained in a set of constant width 1 (see Eggleston [6],
P 126), we can assume that the sets to be covered are
closed convex sets of constant width 1.

Firstly, let us consider examples of tiles. The
smallest circular tile is the Jung's circle of radius %,/3,
[16]. Clearly no smaller circular region is a tile since
the circumcircle of the equilateral triangle of side 1 has
radius %,J?. We shall denote Jung's circle by T,; this
first tile has area &a(T,) = 1.047197¢cee «

It is evident that the square of side 1 is a tile,

which we shall denote by T,. Then a(Ty) = 1.
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ph1 [19] showed that the regular hexagon of width 1
is a tile; denote it by Tse Then a(Ts) = £/3=0.86602... s
Thus we know 6f three simple tiles. The two best
known tiles are formed by truncation of the hexagonal tile

Tq e

Suppose the vertices of the hexagonal tile are labelled
V,,Vs,Vs,V,,Vs,Vg in an anti~clockwise direction. If we
draw to the incircle of the hexagon the tangents which are
perpendicular to the diagonals, we obtain at each of the
six vertices an isosceles triangle. Now there is a strip
of width 1 between the regions at a pairﬁaf'opposite
vertices, and so no figure of diameter 1 can have a point
in each of a pair of opposite triangles. Using the
symmetry of the hexagon, without loss of generality we may
remove the triangular regions at V, and Vs, obtaining a
tile, T, Note that when we remove the-regions, we leave

the bases so that T, is closed. We shall always assume
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when we make %runcations that the resulting set (or sets in
later chapters) is closed unless we spscifically state
otherwise. On calculation of the area, we obtain

a(T,) = 2 = 2 /3 = 0.845299... » This is the best tile
that Pal found. We shall at times refer to it as the Pal

tile or as the truncated hexagonal tile.

A

&

fﬁ?f
IR
A

Vs Ve

We shall now consider & further improvement on this
tile. This improvement is not very significant in terms
of area, but is of interest since we shall use a similar
techniqué at a later stage. Suppose we label the vertices
as before, and suppose that AB, CD, EF are the tangents
to the incircle near Vg,V, and V, respectively, as shown
in the diagram. We have already restricted our attention
to closed sets of constan£ width 1. Since the hexagon is
of width 1, any set of constant width 1 when covered by the

P41 tile will touch each edge of the hexagon at exactly



5e

one point. In particular, the line joining the two points
where the set touches opposite edges will be perpendicular
to those two edges. Now, the set will touch V,V; and
V,Vs at a point in the segments V,C and V,B respect-
ively. Let us swing an arc FH of radius 1 and centre C,
intersecting VsV, at H, cutting a thin strip out of the
triangle V, EF. Similarly, we swing an arc of radius 1
and centre B intersecting the arc FH at K. Then the
figure V,CDVZ;EKFV ,AB forms a tile, Tso It was discov-
ered by R. Sprague [21] in 1936, and so we shall refer to
it as the Sprague tile. Sprague calculated the area and
obtained & (Ts) = 0.84L4100eese o

To my knowledge, the Sprague tile is the best tile
known. It is evident that the three remaining vertices of
the hexagonal tile may not e removed sincé they are
required for the Reuleaux triangle of width 1. However
it may be possible to find a better tile not based on the
hexagone.

To this stage our considerations have produced an
upper bound for a,, being

a, € 0.84014eees &

Clearly a, has a lower bound of zero. It is well known
that of all curves of diameter 1, the circle has largest
area. Since the circle must be covered by a tile, we

immediately have
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Pal considered the convex hull of the union of a circle of
radius & and the equilateral triangle of side length 1. He
showed that this set has least area if the centroid of the
triangle and the centre of the circle are concurrent. Since
both these sets must be covered by any convex tile, and since
this figure, F say, does not cover the regular pentagon of
width 1 and so is not a tile, he proved

O.

82571 1evse =«

a, > a(F)

Hence %w[-ﬁ = 0.825711.04s < 8, < 0.84414Ls
So although the value of a, has not been determined, the
value is contained in fairly narrow bounds.

PAl also proved that a tile of minimal area exists.
but the problem of finding one oOr more minimal tiles is
still open. We shall consider an extension and generaliza-
tion of his proof on the existence of a tile of minimal area

in Chapter IIT.

1.2 Extension of Lebesgue tile problem to E2.

An analogous problem is to consider the same tile
problem in E®, where the area criterion is replaced by
volume. For convenience, we shall refer to the covering
sets analogous to tiles in the 2-dimensional problem &as

covering bodies. Hence the problem is to find a covering

body of smallest volume V.
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Clearly the cube of side 1 is a covering bodye. A
slightly better covering body is the Jung's sphere of radius
%‘Jfg , [15], which we shall denote by D;» Then D, has

volume

V(D,) =%J_32 = 0096191 euee

D. Gale [7] discovered that the regular octahedron
of width 1 (i.e. of edge length % ) is a covering body,
D, say.

Then V(Dy) = £ 4/3 = 0.86602¢.¢

It is possible to reduce the covering body D, Dby a

method analogous to that applied by Pal to the regular

hexagon.

We place planes paraliel to and at a distance % from each

plane of symmetry of the octahedron. These cut from Dy
at each vertex a square-based pyramid with height

h==%(3-1). If we remove three of these pyramids in
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such a way that no two of the pyramids removed contain
opposite vertices of the original octahedron, we obtain a
new covering body Dse. Since the volume of each pyramid
is %(3 J3 - 5), it follows that
v(D,) - #(34/3 - 5)
2 -3
07679 cece o

V(Ds)

11

It is possible to reduce this covering body by an
argument similar to thatof Sprague, but this would prob-
ably result only in a small improvement.

The problem of finding a covering body of least
volume V, remains unanswered, as for the corresponding
problem in the plane, but bounds can be obtained on V,.
Clearly V, is greater than the volume of the sphere of

radius &, and we can deduce

% = 0.52359. 44 < Vy < 0.767%. .
Certainly we know that a covering body of minimal volume
exists, although as before we do not know if such a body is
unique.

1.3 PFurther generalizations of Lebesgue tile problem

There are essentially two forms of generalization
of this problem. We shall use both kinds in the following
chapters.

We could generalize the problem to n-dimensional
Euclidean space. Clearly, the generalized cube of side 1

is always a covering body. In E", the Jung's n-sphere



9.

|-

. n SN .
of radius <2n+2> is a covering body. Also, Gale [7]

showed that each set of diameter 1 can b? enclosed in a

z
regular simplex of edge length <§L%iil> . For large n,

the Gale simplex is of little interest since the edge length
and volume of the Gale simplex increase with n without
bound. On the other hand, the radius of the Jung's sphere

tends to +/2 as n increases, and the volume 1s
n
w2
onT (1 + +n) °

where T denotes the gamma function. This volume tends
to zero as n increases.

Alternatively, we could generalize the Lebesgue
tile problem by replacing the measure of volume by some
other measure, where by measure we do not necessarily mean
a measure in the sense of measure theorye. Suitable
alternative measures would be diameter or surface area.

1.4 Application to Borsuk's problem

Covering bodies have been found useful for the two
and three dimensional solutions of the following problem,
posed by G. Borsuk [3] in 1933:

Problem: Is it possible to decompose every bounded

set B in n-dimensional Euclidean space Er  into

n+1 sets, each of diameter less than that of B?
The partial solutions of this problem have been well summar-
ized by Grunbaum [9]. The following is a brief statement

of the results.
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Tt is easily seen that without loss of generality
we need consider the question only for those sets which are
closed, convex and of diameter 1e Since every set in E?
of diameter 1 is contained in a set of constant width 1, it
igs sufficient to consider only sets of constant width 1.
Hence Borsuk's problem is equivalent to the following:

Can every closed convex set B in Er  of constant

width 1 be partitioned into n+1 sets, each of

diameter less than 19

Hadwiger [10,11,12] used an analytic proof to show
that the result was affirmative for sets with a smooth
boundary, i.e. sets such that through every boundary point
there passes exactly one support hyperplane. This result
has been sharpened to some not necessarily smooth sets by
Anderson-Klee [1]. However, the general problem can not
be solved from Hadwiger's result by a limiting or approxi-
mation process.

A general proof for E® was published by
Eggleston in 1955 ([4] or [5], pp 77-92). A similar proof
was discovered independently by Perkal in 1947 (see the
comments of Grunbaum [9], p 273). Eggleston's proof
depends on the fact that two points of a convex set X of
diameter d are at a distance d apart only if there
exist two parallel supporting hyperplanecs of X, one
passing through each of the points. Due to difficulties

of a topological nature, no successful extension of this
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method to higher dimensions has been found.

For two or three dimensions, a simple proof, giving
results stronger than the affirmative solution of Borsuk's
problem, has been found using covering bodies.
| Gale [7] produced the
following proof for the plane
case. We recall that every
set of diameter 1 in the plane
may be covered by the regular
hexagon of width 1. Hence, if

we can divide the regular

hexagon of width 1 into three
sets of diameter at most «,

it will follow that every set of diameter 1 in the plane can
be divided into three sets of diameter < &. To divide the
tile in the required manner, we drop perpendiculars from the
centre of the hexagon to three alternate sides. The three
resulting pieces each have diameter i J3, being the
distance between the feet of the constructed perpendiculars.
Hence we deduce:

Any set in the plane of diameter < 1 can be

partitioned into three sets, each of diameter € & 3.
In addition, we note that % /3 is the best possible such
number, since in a partition of the circular disc of di-
ameter 1 into three sets, at least one of the sets has

diameter + .3 or greater.
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For three-dimensional Euclidean space, two sgimilar
partitions of the truncated octahedron (which we considered
earlier) have been described in the literature. The
dismeters of the parts in Heppes' partition [14] are
< 0.9977..., while in that of Grunbaum [8], the diameters
are <€ 0.9887..+ These dissections will be considered
in more detail later. It appears evident that further
truncation amd meticulous partitioning of the truncated
octahedron would result in an improvement in the diameters.
In fact, we shall find an improvement.

Since this method of covering bodies appears to give
stronger results, we now generalize Borsuk's problem in a
manner suggested by Grunbaum [9]. TFor a set K C EM with
diameter 1, and for a positive integer k, Ilet a, (K,k) De
the infimum of all real numbers o such that X may be
partitioned into k subsets, each of diameter < . Also,
for a positive integer Kk,

let d,(k) = supld, (X,k)|K C E, diam K = 1.
With the definition, for the affirmative solution of
Borsuk's problem, it is sufficient to obtain an affirmative
solution for the following:

Is d,(n+1) < 1 for every positive integer n?
However, there is also the additional problem of actually
determining the value of dn(n+1), and we shall refer to

this as the modified Borsuk's problem.
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The value of d,(3) has been determined as 3 /3.
For higher n, the value of dy(n+1) is not known.
Knaster [17] mentioned the problem of determining dp (B",k),
where B" denotes the solid n-dimensional sphere or ball of
diameter 1, but even the problem of determining dn(B“,n+1)
remains OpPEN. However, the obvious simplicial decomposi-
tion of B" shows

" n+1
J S5 for even n

d, (B ,n+1) <

| o ——
.\! 3o+ %J-——ﬁ;’% for odd n.

Hadwiger [13] proved that equality holds for n < 3, but

for n > U4 could establish only

. - n-1
dn(B“,n+1) >,J I+ %J T

Hence, in E3 the sphere of diameter 1 can be partitioned

into four sets, each of diameter

J‘T_(3 +43)/6 = 0.88807.. ,

and not into four sets, each of smaller diameter. No set

K of diameter 1 is known in BE® with

dg (K, L) >j (3 + J3)/6 = ds(B3,L).

We note that this is analogous to the result that there is

no set K of diameter 1 4in E? with

dp (K,3) > /3 = 4;(B?,3).
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T+ has been conjectured by Hadwiger [13] and Gale [7] that
a, (n+1) = 4,(B",n+1) for every positive integer =n. Wheth-

er this is true or not, it follows from our discussion that

j (3 + J3)/6 = 0.88807... < dg(lt) < 0.9887....,

and the conjecture is that dg (L) =‘jy(5 +/3)/6 .

In our use of covering bodies to obtain a partial
solution for the modified Borsuk's problem, we partitioned a
set which covered all sets of diameter 1. We could prob-
ably obtain a better bound for d3(u) if instead we consider
a collection of several sets {Ci,....,Ck} such that each
set of diameter 1 is covered by at least one of the Cj.
This gives us motivation for the concept of a universal
k-cover, which we shall define in the next chapters. We
shall use the k-covers to obtain a betier upper bound for
dg (L)

It is possible that the me thod of covering bodies
will not lead to a solution of Borsuk's problem in dimens-
jons greater than 3 (however, see Eggleston [5], pp 77,
91-92)., However in principle at least, the method of

universal k-covers can be used for any dimension.
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CHAPTER 1T

UNIVERSAL COVERS

2.1 Definition and statement of problems

We now make a generalization of the concept of
covering bodye.

Defn: Suppose n and k are positive integers, amnd that
Ug = {Cy,C0z50+4,Cx] is a collection of Kk bounded,
closed convex subsets of E' such that every sub-
set A of ER of diameter < 1 is covered by at
least one of the C; (1 < i < k), i.e. for each
set ACTEr with diam A < 1, there exist an
integer i with 1 < i <k and a set B C C; such
that A is directly congruent to B. Then we

shall call Uy a universal cover of order k in

Er, or more briefly, a k-cover in E°,

We immediately note that each of the covering
bodies of the Lebesgue tile problem in Er forms a 1-cover.
Also in the definition we need not insist that the set A
is directly congruent to B, but may allow A to be
congruent to B. If we do not insist on direct congru-
ence, we may be able to find smaller sets for a k-cover
since we would allow reflections to occur in the covering
Process. This alternative definition will be mentioned
from time to time although no work will be specifically
done on it. As in the case of the tile we can assume that

the sets A to be covered are closed, convex and of
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constant width 1.

With this general definition, we shall have several
gquestions to consider, mainly analogous to those posed by
Lebesgue and Pal. However, before posing these gquestions,
we settle some matters of notation.

We shall denote n-dimensional volume by Vn, and

the surface area of a bounded closed convex set S C E"

by
Vn(S+Br) - Vn(s)
A, (8) = 1lim o s
-0+

where B, is the sphere, centre the origin and radius r,
and

X+Y = {x+ X|§‘5 X and ye Y} for all X,Y C E%.
The diameter of a set X C EP will be denoted by an (X)

unless the dimension is clear, in which case we may use

diam X. Since X is a set, this does not cause confus~-
jon with the other use of d, wused in the modification of
Borsuk's problem.

Tor fixed positive integers n and k, suppose
Ug = {C;,Cpse00,Cx} 1is a k-cover in E", Then we define

the volume of the cover to be

Vn(Uk) = nax Vn(ci):
1<igk

the surface area of the cover to be

A (Ug) = max An(cl),

1<igk

and the diameter of the cover to be
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d,(Ug) = max dn(Cy).
1€igk

We also write

Vo, = inf V,(Ux), &,k = inf A, (Uyx) end dp x = inf d, (Ug)
Uk_ Uk Uk

where the infima are taken over all k-covers in E%.

Tn the cases n=2 and n=3, we may sometimes
shorten the notation. For n=2, we shall denote V; Dby
a for area, and hence denote Vy x by 8gs A, may be
denoted by p for perimeter, and hence Ay x by Dk
For n=3, we may denote the function Vs by V, or the
number V3 x bDY Vi, in cases where this would not cause
confusion. Then our results from the Lebesgue tile prob-
lem become

0.825711ees < 8y = Vg 4 < O.844 e s s

!

and. = 005235000 < Vi = V3,1 < 007679cno L]

oM

Since Barbier's theorem tells us that all sets of constant

width 1 in the plane have perimeter w, and since the pal
tile has perimeter 3.38119..., We have

m = 3-1)41590.- < Pg = .A.2,1 < 3.38119-:. °

Also, by consideration of the Pal tile, we have

.1

N

d‘2,1 < %;\/3 == 1.1514-0.. °

We now pose several questions about universal
COVErs.

Question 1. For given positive integers n and k,

what are the values of Vy x,A;,x @and dn,x?
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Although it appears to be difficult to find actual
values for these constants, we would hope to obtain close
bounds on their values.

Clearly Vi, ks An,x and d,,x 8are decreasing
sequences in k. Now dy,x is bounded below by 1. Also,
of all ezzzes of constant width 1 in E", the sphere has the
largest volume, and hence its volume is a lower bound on
Vn,x for all positive integers K. So we shall pose the
following question.

Question 2. For a given positive integer n,

does 1lim V, x = volume of the n-dimensional sphere

ksoo

of diameter 1,
lim A,y = sup{A(S)|S C B*, 8 closed,
koo

convex, and of constant width 1},

and lim 4, ,x = 19
ko0

In addition, are any of these limits attained for a
positive integer k?
One important question remains:
Question 3. For given positive integers n and Kk,
does there exist a k-cover Ux 1in Er  for which
(a)  Vy(Uk)
() An(Ux) = An,x s

(C) dn(Uk) =dy,k ?

Vn,K H

In each case, if there exists such an optimal k-cover,
(d) how many such k-covers exist?

(e) find such a k-cover.
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From our experience in the Lebesgue tile problem,
we can expect that the actual values of Vi,xs An,k and
dp,x are difficult to find, and that it is difficult to find
k—-covers with these particular values, although we would exX-
pect to be able to show that such optimal k-covers exist.
Of course, for the trivial case n=1, the line segment of
length 1 is the only convex sc¢t of diameter 1 and SO
Vy,xk =dy g =1 and A x = o for all positive integers K.
Also for n=1 and k a positive integer, there is
essentially only one optimal k-cover, since two k-covers
would only differ in that the sets not used for covering may
not be congruent. So the problem for n=1 1is solved.
Hence, from now on, we shall assume that n 2 2.

In the next three chapters, we shall see some
partial answers to these questionse Then we shall use the
k—covers to obtain a better bound on dg(L).

2,2 Simple examples of K-cOvVers.

As in the treatment of the Lebesgue tile problem,
we shall consider a few examples first. I have not
obtained many examples with the aim of lowering the upper
bound on diameters or surface area, and there are possibly
considerably better covers with respect to these measures
than those given here.

There is a general method for obtaining k-covers
which we shall frequently use, although other methods may

give better results at times. Suppose we have a bounded
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closed convex set S C EP which covers at least one set of
constant width 1. Then if we draw two parallel hyper-
planes, distance 1 apart, we divide 8 into three regions
A,B,C, where B 1lies between
the hyperplanes, and A and O
each lie on opposite sides of
the hyperplanes. We can also
assume that B 1s closed.
Then eny set of diameter < 1

which can be covered by 8 can

be covered by either AU B or
BU C, since the distance
separating A from C is 1. Furthermore, both AU B
and B U C are bounded, closed and convex, and So are
suitable sets to form part of a universal cover. In
practice, to obtain a k~cover, we apply this general method
to the sets of a universal cover of lower order, making a
suitable choice for the orientation and positioning of the
planese

We now consider two specific examples:

A 2-cover in the plane.

We can easily form a 2-cover in the plane from the
P4l tile, i.e. the truncated regular hexagon of width 1.
Suppose the vertices of the hexagon are Vi 5Va s Vg sV, s Vs Ve s

and that the truncations are at V, and Vg.
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If we draw tangents to the inscribed circle of the hexagon
at the points where the diagonal V,V, cuts the circle, we
form two isosceles triangles separated by a parallel strip
of width 1. Then we see that each set of diameter 1 in
the plane must be covered by one of the figures formed by
truncating three corners off the regular hexagon, by using
cuts tangent to the inscribed circle. This can be
achieved in essentially two different ways, namely by
removing vertices V,,Vg,Vg oOr by removing Vg,V ,Vge

Hence we obtain a 2-cover.
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Tach set of this 2-cover Uz has the same area, which

is found to be

a(U) =3 - £ 43
= 0'83)4-9360.0 .
The perimeter is p(Ug) = 12 = 2 J3

= 3.3397hees
This compares with the Pgl tile T, which has
a(TL) = 2 - '% \/_3- 008!-]-5299000
and p(T,) = 8 - %,JB 3,3811970 00

and also has less area and perimeter than the Sprague tile

Tg o

Since the curve of constant width 1 with greatest
area is the circle, and since every curve of constant width
1 has perimeter w, We see that

w

E Vz.,z < 3 - ‘E\/g = 0083)4-93600-
and T = 3414159000 < Pp = Ag,z < 12— 5J3 = 3:3397heee o

These are the best bounds we shall establish on these numb ers.

04785394+ < 8z

I

Pal produced a higher value for the lower bound on 8, by
considering the convex hull of the union of a Reuleaux
triangle of constant width 4 amd of a circle of diameter 1.
He showed that this convex hull has least area when the
centre of the circle and the centroid of the triangle are

coincident, and then the area is

+LL§|.=O.825711.°. .

ool
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Now the Reuleaux triangle may not be covered by the same
set of a 2-cover as the circle. However, if we consider
the Reuleaux triangle, the regular Reuleaux pentagon and
the circle, all of diameter 1, we see that at least one
pair of these three sets must be covered by the same set
of the 2-cover. By a similar proof kthat of Phl for the
case of the Reuleaux triangle.and the circle, I was able
to establish that the convex hull of the union of the
circle of diameter 1 and of the regular ReuleauX pentagon
of width 1 has least area when the centre of the circle
lies at the centroid of the pentagon. ‘T omit the proof
for two reasons; firstly, it is a long, tedious and yet
an easy extension of PAl's proof, and secondly, the in-

; 7. . . . '
crease in area over i is small, since the area 1is just

%' + ﬁ cot -%I-T = 0,7988c4s o«

L d

The convex hull of the union of the Reuleaux triangle and

the regular ReuleauX pentagon of width 1 has area 0.813..s
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when the two sets are positioned &s shown in the diagram.
This is the least value I have found for this area. I
conjecture that it is close to the actual least value and
that the least area possible is greater than 0.7988ee¢a
If this is true, then
a, » min{0.825711..., 0.7988..e1 = 0.7988..4,
and so0 0.7988... < @y = Vg 2 S 0.8%319%36.4s0 o
Earlier we saw that all the best known tiles were
formed from the regular hexagon of width 1. We noted
that there may be a better tile with respect to area which
can not be obtained from the hexagonal tile. Similarly,
there may also be 2-covers which can not be formed from the
hexagon. Hence I tried to obtain a 2~cover using two
§ifferent regular polygons of width 1, but I was unable to

obtain any useful results.

A P-cover in B3,

In 3-dimensional space, Weé shall apply our general
method to the truncated octahedron. This is the best
covering body we obtained, although we did note that it
could be improved by argument similar to that of Sprague.

In the plane we obtained a o-cover by truncating
corners, by taking tangents to the inscribed circle of the
truncated hexagonal tile at two opposite and previously
untruncated cornerse. We note that in the case of the
truncated octahedron covering body, there 1is no pair of

opposite untruncated corners, and hence this method can not
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be applied directly by taking tangent planes to the in-
scribed sphere at the vertices. However, the essential
idea of our method was tﬁat there existed a strip of width
1 which did not cover the covering body, and the éircle
only helped us in positioning the strip. So, in the case
of the truncated octahedron, we could make further trunca-
tions perpendicular to a diagonal by shifting the cutting
planes towards the remaining vertex at one gnd of the
diagonale. Alternatively, we could remove an e€dge. We
consider a 2-cover formed by each method.

(i) Consider the case where we make a further truncation

by a cut parallel to one of the previous cuts. Any set
of diameter of at most 1 can Dbe covered by the truncated
octahedron when either a small square-based pyramid is
removed or when a thin slice is_rémoved at the opposite
face, the pieces being removed each separated by a three-
dimensional parallel strip of width 1. Clearly, the vol-

ume of the 2-cover 8o obtained is least when the volumes of
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the pyramid and of the slice being removed are equal, since
one increases as the other decreases. Suppose equality
oceurs when the small pyramid being removed has height h.
Then the volume of the pyramid is %ha, and the volume of
the slice is %i(J3-1—h)3 - (4 J/3-1)2}. Applying Cardano's

formula for the solution of a cubic equation, we find

het y3-3 - L (=543 /3 + [ s84-510 /3
03 N

. — 1
+(=5+3 /3 ',J 881~510 J/3)% 1.

=0¢3055700 ¢ ¢ »

With this choice of h, the volume removed is 0.019021...,
and so the volume of the 2-cover is 0.7U8927see

(ii) Now, consider the case of a 2-cover formed by
truncation of edges. There are six pairs of opposite

edges on the truncated octahedron. Looking at them, we

see that the pairs fall into two classes.
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For example, the edges AzA; and C,Ci{ are opposite.
Edge AzA; 1is a long edge from the original octahedron,
whereas C,C, has been shortened at each end. So we shall
refer to C,C; as a short edge. On the other hand, the
opposite edges A,B, anmd AB; are of equal length, being
shortened at only one end. We shall refer to these as
medium length edges. On inspection, it is evident that
any pair of opposite edges is of one of these two typese.
It appears that a way of obtaining a fairly good 2-cover
may be to remove one of a pair of opposite edges. If we
remove a pair of unequal-length opposite edges, we obtain
only a small improvement in the volume of the set with the
short edge removed unless we make careful allowance of the
position of the cutting planes. If we remove a palr of
equal-length opposite edges, i.e. medium-length edges, one
at a time, by parallel cuts tangent to the inscribed sphere
as shown, we obtain a 2-cover with volume
(442 - 64 J3 + 7 JB)/6L
= 0.754612.. ,

which is larger than the volume of our previous 2-COVEr.
However, each set of this o-cover is obtainable from the
other by a reflection, ond so this gives us a lower value
for the volume of a 1-cover if we allow reflection to
occur in our covering process.

So we find that the first 2-cover has the lesser

volume, Vg(U,) say, where
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Vg (Uz) = 0.748927...,
which compares with the truncated octahedron covering body
which has

Vg (U,) = 0.7679% e

We note that further truncations could be applied

to the sets of the 2-covers in a manner similar to either of
those described above to obtain covers of higher order.
In Chapter IV, we shall see a Li-cover obtained from the
truncated octahedron, essentially obtained by a repetition
of the method used to obtain the first 2-cover from the
regular octahedron.

2.3 Formal results on k—covers.

In this section we deduce some results for k—covers
in E° where k and n can take any positive integral
values.

We recall that Vyh,x» Ay x and d,,x are the
infima of the volume, surface area and diameter respective-
ly taken over all k-covers in E!. It immediately follows
that Vn,ks An,k and d,,x are decreasing sequences in k,
since we can adjoin the empty set to a k-cover to form a
(k+1)-cover.

S0 Vu,k 2 Va,kats Bn,x 2 An,kes and dn,x 2 dn,k+1

for all positive integers n and K. e also note that a
k~cover in EP+1 can be formed from a k-cover in E° by
taking each set of the cover in gr+1  to be a right prism

of height 1 with cross—section congruent to the
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corresponding set of the¢ k-cover in E®, This
derived k-cover in ER+! has (n+1)~-dimensional volume
equal to the n-dimensional volume of the original k-cover
in E". This shows that V, x 1is 2 decreasing sequence
in n,

ie€e Vn,x 2 Vnayk for all n,ke Z*.

Even if the analogous results for surface area and diameter
are true, they can not be established by this method. The
obvious method of vrojecting the sets of a k-cover in ER+1
onto a hyperplane does not appear to resolve the issue or
to prove any similar results.

Clearly, for all positive integers n and k, each
of Vi, ks An,k amd d, ,x 1s bounded below by Zzero. Hence,
since for a fixed n, the sequences {Vp kilk=1,2,...s
{Ag xlk=1,2,... @nd {@n,k}x=1,2,... are decreasing and
bounded below,

1im Vn,k, lim A, and 1im 4,k
koo koo Kro0

all exist for each positive integer n.

In fact we can produce better lower bounds depending
on n for these quantities, A1l sets in EB® of diameter
< 1 can be covered by a set of constant width 1. But of
all sets of constant width 1, the sphere has the largest
volume. Hence, for any given n and ke 2+, the value
of V,,x 1is bounded below by the volume of the n-dimensional

sphere of diameter 1,
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. =
ieee Vp,x > (F)° TO+E) for all n,ke Z*.

The corollary to the next theoren will tell us that this is
the best possible such bound. In the case of surface aresa,
the problem is not quite so simple. For the case n=2,
surface area becomes perimeter and Barbier's theorem tells
us that all curves of constant width 1 have perimeter .
In higher dimensions, there is no analogous resulte. How-
ever, let
S, = sup An (X)

where the supremum is taken over all closed convex sets X
in EP of constant width 1. Then, of course,

Ay x 2 Sy 2 surface area of the sphere of diameter T
i.eo

n
_, _na?
Ap x = Sy 2 (f)n-12 T(ism)y for all n,ke Z*.

Again, we shall see that B8y is the best such bound.
Clearly, we have

dp,x 2 1 for all n,ke Z*,
and this is the best such bound as seen from the following
theorem. The theorem and its corollary answer most of
the questions posed as Question 2.

Theorem 2.1

lim d, x = 1 for all integers n > 2.
k—?oo

Proof: The proof is in two parts. Suppose n 1is a fixed

integer > 2, throughout the proof, and suppose m 1is &
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positive integer. Suppose U, 1is a covering body in E"
of diameter 4 (e.g. Jung's sphere).
(a) Choose any fixed direction, and cut closed strips of
width 1 + % perpendicular to the given direction in such
a way that each strip intersects the adjacent strip in a
strip of width 1. Then each set of diameter < 1 can be

covered by the intersection of the covering body with at

least one of the strips of width 1 + %.

Big

Now suppose we have r strips of width 1 +
overlapping in this manner and covering our covering bodye.
If we wish to guarantee that the body ig covered and that
we do not have an unnecessarily large number of strips, we

have the inequalities

a+%s 0 &1z d,
o m
and hence QL%:ll <r < ml - %,

and so, since r 1s an integer

n(d=1) . . < m.

d ~N
So for any given direction, the covering body can be
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divided into at most m overlapping pie€:ces of width at
most 1 + % in that direction, in such :. manner that each
set of diameter < 1 can be covered by at Least one of the
pleces.

Clearly the above argument can be applied success—
ively in many directions, since the fact that we started
with a covering body was used only to prove that each set
of diameter < 1 could be covered by at least one of the

sets produced. If we apply the argument in 8 different
directions, we obtain a universal cover of order at most
ms,

(b) We shall use these results for a proof of our theorem.
T shall give a specific argument in two dimensions and a
general proof for n dimensions. The first proof 1is
interesting since it can be used to obtain an upper bound
on dp,k for any positive integer k, whereas the general
proof does not give this extra information.

(1) Suppose n=2, and suppose s 1s an integer > 2.
Choose s different directions equally spaced at angular
intervals of %, and apply repetitively to U, the
process described above to obtain a universal cover of
order at most md. Without loss of generality, assume

the order is m®, since we can adjoin sets of diameter < 1
to the cover without jnereasing its diameter. (In fact,
no sets need be adjoined if our original covering body is

a set of constant width, for example the Jung's sphere,
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since then the order is m$ anyway.) So suppose our

cover is

Ums = {01,02,,....,Cms;.

Suppose ¥ describes an arbitrary direction.

WV
A

Then there is at least one of the directions used in the
construction of our cover which is at an angle of magnitude
0 < é% to ¢. Hence the width of each set C; in the

direction ¢ 1is at most
AB = (1 + %) sec 0

where 0O < 0 < é% < %. Since sec x 1s an increasing
function on [O,%), we have

width of each set C; in the direction ¢
d T
< (1 + m) sec 5= o

Since ¢ 1is an arbitrary direction, and since the diameter

of each C; is equal to its maximum width, we have

4
dz(Ums) < (1 + ﬁ) sec %% .
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But 4, is the infimum of the diameters of all m®-

2,mSs
covers in the plane, and SO

a a
1 < 4d < (1 + m) sec 5=

2,ms
This is true for all positive integers m,s with 8 2 2
Since (1 + %) sec é% + 1 as mwe and s-sw, and since
dz,x is = decreasing sequence in k, we deduce that

1im dz,K = 10
ko0

(ii) In the case of general n, my proof is not so explicit.
It is well known that there is a countable subset of points
on the surface of the n-dimensional unit sphere which is
dense in the surface of the sphere. Hence there must exist
a function f,:%2+*+ - R satisfying the following conditions:
(a) for any fixed integer s 2 n, there is a set of
s directions in EP such that for any arbitrary
direction ¢ in E", one of these directions is
at an angle of magnitude < fh(s) to ¢, where
fn(s) < %,
and (b) fp(s) » 0 as s = oo

Hence, by a similar argument to before, we have

1<d o< (1 + g) sec(f, (s)) for all integers s > T.
n,m m

Since dn ,x 1is 2 decreasing sequence in Kk, by allowing m

and s to tend to infinity, we deduce 1lim dp,x = 1.
Koo
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Corollary

For any integer n > 2,

lim V, x = volume of an n-dimensional sphere of
k-0

, diameter 1

<= (2)" r(1#i n/2)>’

and 1lim A, x = Spe
kereo

Proof: Suppose n is a fixed positive integer. Denote the
volume of an n-dimensional sphere of diameter d Dy g, (d).
We know that

gn (1) € Vy for all ke 2%,
and that g,(da) = a"g,(1) for all 4 > O.

Suppose €& is an arbitrary positive number, and
suppose &, 1s a positive number which will be determined
later, Then, by the theorem, there exists an integer kg
such that

1 €45,k <1 + & whenever k > Ko«

Hence for all k > k,, each set of some k-cover in E' can
be covered by a set of constant width 1 + €5 Since of
a1l sets of constant width 1, the sphere has greatest volume
it follows that

gn (1) < Vo,k < 8 (1+80) for all % > ko,
i.ee gu(1) € Vy,x € (1+e5)Pgn (1) for all k > Koo
Hence O < Vp x - g, (1) < {(1+eo)7~11g, (1) for all k > Ko.

Since g,(1) 1is finite, we can choose an &, > O such that

{(1+60)" = 1] (1) < e
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Therefore, with this choice for &q,
0 < Vy,x - g, (1) < &€ for all k> ko,

and so 1im V, i = g,(1)
K0
= volume of an n-dimensional sphere of

diameter 1.
The result on the surface area A, x 18 proved
similarly. Tﬂis requires the use of the result that
surface area is an increasing function,
j.e. if B and C are bounded closed convex gsets in E"
with B C C, then A,(B) < A,(C).

(For a proof of this result, see Eggleston [6].)

In the simple cases, the corollary says that

lim Vp = lim gy = ’ﬁ,

ko0 ko0

lim Ap x = 1lim px = 7,
k—m k—)oo

and

1im Vy x = lim Vi = %o
ko0 ko0

The theorem tells us that dn, ks and hence the
diameter of a k-cover in EP, can be made arbitrarily
close to 1 by allowing k to be a sufficiently large
integer. We posed the question in Question 2 whether
there exists a finite integer k for which dn,x = 1
At this stage we can deduce a part-answer to this question,
namely that for n=2 or 3 and for any positive integer Kk,

all k-covers .Ux in E" have d,(Ux) > 1; 1later, we shall
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see that in fact dn,x > 1. I also conjecture that this
result is true for all integral n 2 2
Now, each set of constant width 1 in E° must be
covered by at least one of the sets of a k-cover in E°.
But sets of constant width are complete in the sense that
if X 1is a closed convex set of constant width and x¢ X,
then diam({x} VU X) > diam X. (For proof of this, see
Eggleston [6], D 123.) Hence, a universal cover Ug of
order kX in EP, where Kk 1is possibly an infinite cardin-
al number, has diameter 1 if and only if there exists &
subset T of Ug which is a set of representatives of all
sets of constant width 1 in the following sense:
d, (Uy) = 1
¢<=> There exists a subset T of Uy such that
(i) if S is any closed convex set of constant

width 1 in EP, then there exists a set

We Uy such that S 1is directly congruent

to W,

(11) no two sets of T are directly congruent,

and (iii) every set of T 1is a closed convex set of

constant width 1.
So, if d,(Uy) = 1, it follows that Kk is not less than
the cardinality of a set of representatives of the closed
convex sets of width 1 in E". Since there is a regular
Reuleaux r-gon of constant width for every odd integer I,

it follows that the cardinality of the sets of represent-
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atives for the two dimensional case is infinite. In fact,
the cardinality is at least that of the real number system,
since in drawing a Reuleaux pentagon of constant width 1
with two given points distance 1 apart as vertices, two
other vertices can be chosen as arbitrary points on arcs.
In the three dimensional case, the cardinality is infinite
since each regular Reuleaux r-gon of width 1 for odd values
of r can be rotated about an axis of symmetry to give a
set of constant width 1. In higher dimensions, I know of
no proof that the cardinality is infinite, although I
conjecture that it is. My attempts to prove the result
by an %pductive procedure have been unsuccessful. However,
in low dimensions we can conclude the following:

Theorem 2.2

Suppose n=2 or 3, and that Ug 1is a k-cover in E"

with d,(Ux) = 1. Then k 1is infinite.

In fact, for the case n=2, the‘gonditions of the
theorem imply that k > ¢, the cardinality of the real
number system. I conjecture that this is true for any
integer n = 2.

The theorem immediately gives the following
corollaries. Bach holds for any integer n > 2 for
which the theorem is true.

Corollary 1

Suppose k is an integer > 2 and Uy 1is a

k-cover in EM where n=2 or 3. Then d,(Ug) > 1.
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Proof: BSince d,,x > 1 for all positive integers n and
k, this is just the contrapositive of the theorem.

Corollary 2.

Suppose k is an integer > 2 and Uy 1is a
k-cover in E® where n=2 or 3. Then Ap{(Ux) > Sps
In particular, for the case n=2,
p(Ux) > s
Proof: Suppose k,n,U, are as in the statement of the
corollary. Then by the previous corollary, there is a set
in Ux, ©C, wsay, and a closed convex set K of constant
width 1 such that &,(C,) > 1 and C, covers K. Since
dn(Ci) > 1, there exists a point xe C; ~ K, and hence
A, (Cy) > A (KU [x]) > An(K) > Sy,
because if X and Y are bounded closed convex sets in
E" and X C Y, then either X=Y or A, (X) = 4,(Y) =0
or A, (X) < A, (Y). (For proof of this, see Eggleston [6],
p 89.) So A,(C,) > 8, and so A,(Ux) > Spe
I do not know if there is af inite k-cover in E°
(n > 2) with V,(Ug) = volume of the n-dimensional sphere
éf diameter 1. Since all other closed convex sets of
constant width 1 have volume less than that of the sphere,
it may be possible that such a finite k-cover exists,

although I expect otherwise.
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CHAPTER III

EXISTENCE OF AN OPTIMAT, k-COVIER

Thus far we have considered some results concerning
the values of V, g, Ap,x and dj x without knowing wheth-
er for each measure there is a universal cover which attains
the optimal value. In this chapter, we shall prove that
there is, thus answering the first part of Question 3. We
now state the main result of the chapter.

Theorem 3.1

Given any positive integers n and k, and a

measure (volume, surface area or diameter), then

there exists at least one k-cover Uy in ER

which is optimal with respect to that measure;

i.e. if the measure is volume, Vo (Ux) = Vo ks

if the measure is surface area,A,(Ux) = An ks

and if the measure is diameter, d, (Ug) = an, ke

The proof of this theorem is similar to that of Pél
[19] where he proved the existence of a tile optimal with
regpect to area. However, several results have been prov-
ed here which Pal considered obvious. I feel that when
these results are generalized to higher dimensions they can
not be taken as trivial. The proof given is a proof of
the existence of a k-cover in E" with volume V, g, but
we indicate how to overcome any extra difficulties in the

proofs for the case of surface area or diameter. As with
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the Pal proof, this proof depends on the Blascqe Selection
Theorem, and so we must first define a metric on the set of
closed, bounded subsets of E".
Defn.

sPhevlbal
The speeisl neighbourhood of a point Xx in BN

with radius € > 0 is defined to be the set
N(x,e) = {ye Eo|ilx-gll < e},
where Hg“ denotes the Buclidean norm of Z. The

spherical neighbourhood of a set K in Er with

radius € > 0 is defined to be

N(K,e) = U N(g,e).
p = K

From this we can define our distance function.
Defn.
Suppose K, ,K, are two closed bounded sets in ER,

Then the distance between K, and K; 1s defined

to be
D(K, ,K;) = infie > 0]K, C N(K;,e) and K C N(K,,¢e)}.
The function D can be shown to be a metric:
i.e. If "A,B,C are any closed bounded sets in En, then
(i) D(A,B) > O where equality holds if and only if
A=B,
(ii) D(4,B) = D(B,A),
and (iii) D(4,B) < D(A,C) + D(C,B).
With this definition of distance between sets, we can define
convergence of a sequence of sets in the following obvious

mannere.



L2,
Defn.,

Suppose [K;} 1is a sequence of closed bounded sub-
sets of ER, If there is a closed bounded subset
K of E" such that 1im D(X,,K) = O, then we say

i—oo
that the seguence §K1¥ converges to the 1limit set

K, and write 1lim X; = K.
i-co
We now state:

Blasche Selection Theorem.

Suppose M 1is an infinite collection of uniformly
bounded nonempty closed convex subsets of E",
Then M contains a sequence which converges to a

nonempty bounded closed convex set.

(For a proof of this theorem, see a general book on convex-

ity, e.g. Eggleston [6], Benson [2] or Valentine [23].)

In addition to the Blasche Selection Theorem, we

need some lemmase. We know that the cube of side 1 is a

covering body, so any good cover has volume < 1. Since

each useful set of a k-cover covers at least one set of

constant width 1, the first lemma says in effect that the

sets of a good k-cover can not be long and thin.

Lemma 3.1.

Suppose n and k are positive integers, and
Ug = {Cyyeee,0x} is a k-cover in E° such that
(1) Qe C; for each 1i=1,2,...,k,

(ii) Vn(Uk) < 1;
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and (iii) for each i=1,2,....,k, there is a set of
constant width 1 covered by Cj.
Then each C; (1 € i < k) 1is a subset of the
closed sphere with centre 0O and radius n!
Proof: Suppose n,k,Ux,Cy;.0.4,Cx satisfy the conditions
of the lemma. Suppose i 1is an integer such that
1 <1<k, and let

r = sup “,}S_XH (: diam 01)9
X,y€Cy

where ||zll denotes the Euclidean norm of z. Since C,

is bounded and closed, there exists at least one pair of
points a,, b, € C; such that lag=boll = r. But we are
given that C, covers at least one set of constant width 1.
Hence, since C; 1is closed, there exist two points

8,, by € C;y such that lla,-p,ll =1 and g,-b, | ao-Do-

By induction, we obtain a
sequence of points gy and
a4 ~
by € C (j=1,2,e+00,n~-1) such

that HEJ"BJ“ = 1 for each

— j=1,2,...,n—1, and all the

(A
=

i

i

}

i

ay~by for j=0,1,2,¢e0,yn~1
are mutually perpendicular.
Then

conv {8y sBos81 5015825029+ 9¢38n-15Bn-1 } C Cy,
where conv denotes convex hull. But the volume of this

convex hull is at least the volume of a gemneralized octa-
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hedron with perpendicular diagonals of the same length as
the a;-b; (0 < j < n-1). Now the volume of the general-
ized octahedron

[(Xy peaesXn)| |Xe] #eveot ]xnl < ki
is 2"k"/n!, and so the volume of the octahedron

{(xi,...,xn)l%lxil + (% |4evenet]xy|) < 13
is r/nl. Hence

Vn(ci) 2 Vn(conv {E}o 500381 901 s0ees8n158n1 I)

> r/nl
Since we are given V,(Ux) < 1, we have r/n! < 1, and
80 T < n! Because Qe C;, it follows from the defini-
tion of r that

“,XV—,Q“ < r<n! for all xe Cy,
and hence C; 1is a subset of the closed sphere with centre
0 and radius mnl! This completes the proof of the lemma.

The importance of this lemma is that it shows that

the significant sets of any k-cover in E" which is a good
cover with respect to volume can be placed inside a sphere
with centre O and radius depending only on n. In the
case where we wish to optimize with respect to diameter,
there is no problem since the existence of Jung's sphere
tells us that there are k-covers of diameter at most

2n+2
diameter at most this value, and such that each set of

z
<—£——) . So the sets of all k—-covers in E° with

k-cover contains the origin, are subsets of the closed
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2n+2
If we wish to optimize with respect to surface area,

2
sphere with centre Q and radius ( L > .

we know that the n-dimensional cube of side-length 1 has
surface area 2n, and so the following lemma is sufficient.

Lemma %.1 A

Suppose n and k are positive integers, and

Ug = {Cy,e00,Ck} 1is a k-cover in E® such that

(1) Qe C for each i=1,2,...,k,

(ii) 2.(Uk) < 2n
and (iii) for each integer i with 1 < i € k, there is

a set of constant width 1 covered by Cj.

Then each C; is a subset of the closed sphere

with centre 0O and radius n!
Proof: Suppose n,k,Ux,C,,+00,0¢ satisfy the conditions
of the lemma. Suppose i is an integer with 1 <1<k,

and let r = sup “5‘%“ (=diam Cy).
'JVC,XGCI

Since C; 1is bounded and closed, there exist two points
apsPo € Cy such that “Eo-ko“ = T Now we project C,
onto a hyperplane parallel to the line segment [20500] Dy
a perpendicular projection. Denote the image of C; under
this projection by Py. Then

Va1 (Py) < % 8,(Cy) < no
However, since C; covers a set of constant width 1, Py

covers an (n-1)-dimensional set of constant width 1.
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Since the projection was a perpendicular projection onto a
hyperplane parallel to [8,,bo], the diameter of P, 1s

also 7r. Hence, by the argument in the proof of Lemma 3.1,
r

we have a1y < Vnoy (Py),
T
and so RN < n,
i.eo r € n!

Therefore, by the definition of r,

lx-oll « nt for all xe Cy,
i.es Cy is a subset of the closed sphere with centre [y
and radius n!

The remaining lemmas concern sequences of sets
converging in the sense defined earlier. The next lemma
has an unavoidably long and somewhat tedious proof. How-
ever the result is essential for the proof of our main
theorem.

Lemma 3.2

Supsose S is a simplex in E°, and suppose {8y}

is an infinite sequence of subsets S; of E"

such that each S; is obtained by a displacement of

S, and all the §S; are subsets of a bounded

region. Then there is a subsegquence {s;_} which

converges ®© a limit set 8§, which is obtainable by

a displacement of S.

Proof: Suppose S8 and {S;} are as in the statement of

the lemma. Since the 8; are uniformly bounded, nonempty
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closed convex subsets of BEBM, we can apply the Blasche
Selection Theorem. So we deduce that there is a subsequence
{8y.} of {8y} and a nonempty closed bounded convex set
S, such that the subsequence {S; } converges to Spe
It remains to prove that S, is Obtainable from 8 Dy a
displacement., Since we are now interested only in S, we
shall assume without loss of generality that the subsequence
{Sir} is just the original sequence, i.€. }im Sy = Sge

We now show that some further assumptzﬁns can be
placed on the sequence. Without loss of generality, we

can assume that QO is a vertex of S. So, suppose the
vertices of 8 are

8y 58p5r0e358ns8n41 = Qs
and the corresponding vertices of S; are

8145819000 e38ins31ns1e
Consider the set of points f{a;,|ie 2Z*}. This is an
infinite set of points contained in a bounded region, and so
there is an infinite subsequence {Siki of our sequence
{S;} such that ay,, converges to a limit, a} say, as
kK = oo Without loss of generality, since we are interested
in the properties of S,, we can assume that this sub-
sequence is just the original sequence {S;}. Proceeding
inductively we can finally assume that }im 8y =Sy, and

is00

that 1im a;; exists and is equal to &} (say) for each
1-r00
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j = 1,2,.-,,114—1,

i.e. 1lim a;y = aj for J = 1,2,0000,n+7,
10
Without loss of generality, we can make the further assump-
tion that af,, = Q. Since 8, 1is closed, it follows

that 2f,;8%5,e¢0580414 € So»

Since each simplex 8y is obtained by a displace-
ment of S, then for each positive integer 1 there
exist an orthogonal matrix A; of order n with

determinant 1 and a vector b; such that
a4 = Ay 85 + by for J = 15250000 yn1+7,

Also, since the n+1 vertices of a simplex are in
general position, and since 8p4,, = 8h., = Q, there exists

a unique nxn matrix A such that

'%3 =Aaj fOI’ j = 1,2,.--.,n+1¢

~

To complete the proof of the lemma we must show:

(i) A is the matrix of a displacement, i.e. A 1is

orthogonal with determinant 1

(11) 8 = COnV!%i,Eé,---s§é+1}-
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(i) Since a,,, =0, it follows immediately that
Py = 8yn4q for all 1€ 2%, But

:!-im %1"'!'1 = %{14.1 = 9, and SO 1im -Bi = 90
1—o0 iveo

Now 1lim ayy = 8§ for J = 1525000 ,n+%. Hence,
100

since ay; = Aj3y + By and aj = Aay, We have

lim (Ayay + by) = Aay,

1—00

and since 1lim by = O, 1t follows that 1im Aja8; = Aay
i-00 ieo

for J = 1,2,.40,n+41. Hence lim (Aj-A)ay = Q for

i—re0
J = 1,25000,n+1, For each positive integer 1, 1let
By = A;-A. Also, let D be the mnxn matrix with a; as
its j'th column. Then the condition above implies that
each term of the matrix B;D tends to zero as Ii-co.
Since @ys59s058558n44 = Q 2are in general position, it
follows that &8,,...,8, are linearly independent, and so
D is a nonsingular matrixe. Hence, since multiplication
of two mnxn matrices involves only a finite number of
multiplications and summations (the number depending only
on n), it follows that B; tends to the zero matrix term-

wise as iew, 1.€. AA termwise as I-co.  Applying the
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same argument again, we deduce that
A1TA1 o ATA termwise as i - w
and det A » det A as 1 - oo

But AITAi =TI ard det Ay =1 for each ie 2Z2*, since
the A, are orthogonal with determinant 1. Hence

ATA = I and det 4 =1,
i.es A 1is orthogonal with determinant 1, and so A 1is the
matrix of a displacement.
(ii1) We now show that S, = conv{gi,....,gg+1}, which is
sufficient to prove the result of the lemma. Now, since
Sp 1s convex and since 8f,esess8n44 € So, 1t immediately
follows that

So D convial,eeee,ahygle
To show that S, C convial,..s.,8l,,}, suppose x is &
point of E" not in conv{aj,...,84,4}s Then since
gg,....,g{+1 are in general position, X can be uniquely

expressed in the form

n
5:
]

M+

1 o al
a
5 iZy
n+i
where the oy are real and X Oy = 1. Suppose also that
=1
{g,} is a sequence of points converging to X. Then for

each ie 2*, x; can be expressed uniquely in the form

n+1

Xy = 24 0448
=z, Ty
n+1 )
where the oy; are real and 2 o5y = 1. Then since the
=1

a's are just barycentric coordinates of the 5'5 with
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's, and since 1lim 833 = 2}

respect to the appropriate a

100
for j=1,2,.es,n+1 and 1im X; = X, it follows by the
i—-)oo
properties of barycentric coordinates that 1im ;4 = Oy
o0

for j=1,2,+e00.,n+1. However, since x¢ convial,...,8k.1},
we deduce that at least one of the oy's 1is negative, and
hence for that particular Jj, a;4 is negative for all
sufficiently large i, and so Xy & S8; for all sufficient-
ly large 1i. Hence x is not the limit of any sequence

of points x;, each in B8j. But if xe€ 8y, then if K
is a positive number, then Xx e N(Si,u) for all sufficient-
ly large i, and so X would be the limit of a sequence

of points x; each belonging to S;. Hence x¢ S, and

S0
So C convial,eeve,8his}.

Thus S, = convial,ees,85,4}, and the lemma is proved.
Lemma 3.
Suppose {S;} is a sequence of nonempty closed
convex uniformly bounded sets in E! that converge
to a closed convex set S, and P is a flat such
that (int 8) NP £A@P. Then 8 NP> S NP as
1~ ooe

Proof: Suppose € is an arbitrary positive number. To

prove the result, we shall show that for all sufficiently

large integers 1,
D(Sy NP, SNP) < &,

To achieve this, we prove the existence of a positive
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integer ng, such that

sy NPCN(BNP,Z) and SNPCN( NP, 3)
whenever 1 > nNg.
(i) Firstly, we show that S, NP C N(S NP, —%) for all
sufficiently large 1i. For suppose this is not true.
Then for infinitely many positive integers i, there
exist points

z;e (8, NP) ~N(B NP, 3).

Suppose {i,} is the sequence of such integers 1. Then
{zy.] is an infinite sequence of points contained in a
bounded region, and so it has a point of accumulation, 2
Say. Since Z!.im 8, =8 and S 1is closed, it follows
that 2z € S. lI\Tw;w zy, € P for each re 2Z*, and,since
P 1is closed, we can deduce that 2z € P. Therefore
ze S NP, Since z 1is a point of accumulation of the
sequence {z, }, we see that
zi. € N(8 NP, %)

for infinitely many positive integers r. This contra-
dicts our definition of 2z;,., and so our assumption is
false. Hence, there exists a positive integer n,  such
that

8, NPCN(SNEP, %) whenever i > n .
(ii) Secondly, we show that S NP C N(S; NP) for all
sufficiently large 1. For suppose this is not true.

Then there exist infinitely many positive integers ip,
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and points z,, such that

)e

Since igr} is an infinite sequence of points contained in

zr € (SNP) ~N(8, NP,

nolo

the bounded set S, there exists a point of accumulation,
Z saye Since S NP 1is closed, ze€ S N P. But, as S

is convex and closed, and (int S) NP £@, it follows

that S NP = (int S) NP, and so there exists a point
we (int §) NP such that

Iz - ol < £ .
Because we (int 8) NP, there exist points
%1,%2,.0..,%,14_1 < S (o) P S'LlCh that

(a) we int convia, ,8z,ee008n44}

and () ng - QH < % for J = 1,25e0e0,n+1,
Let p; = inflla; - xl for j = 1,2,...,n41, and let
xeP
K = min K. Then 0 < 4 < %. Now since 1lim 8; = S,
1< j<n+ im0

there exists a positive integer m such that
D(Slr,S) < % whenever I > M.
Suppose r 1is an integer > m. Then there exist points

8riseessBrnss € Sir such that

“Qrd - gJH < % for j = 1,25e0ce,nt1e
Then, since 8,  1is convex, conv{8ryseessdrnsa} C Sy,
and also, it follows from the definition of 4 that

(convigra_’"°':§;rn+1 }) NP £ 3.
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S0 suppose yr € (ConV{§r19"°':2rn+1;) UPC S8y, N Pe

Then there exist nonnegative numbers Op,sssesOrpnyq Such

that
n+1 n+1i
Yr = Jgiarjg” and 351 opy = 1o
Then llze-gell < llze=zll + liz-@ll + llo-gll
1 n+1i
= HEr'E” + h%‘g” + “Q - 3?1 u}j%ri”

n+1i T
ng—g“ A “E-QH s jgiarjngﬂgrjn

N

since Op,sesvesOppgq =2 O

and 3 Opy =1

n+1
lze -zl + llz-wll + J?iarjillgg-—grll + |lac-ga0 4l 3

TR e,k
2+M+3=21a“38+2

n

A

Therefore, since yr € Sy, NP, we have

1]
Zr € N(8y NP, 3)

which is a contradiction to our definition of Zr. Hence
our assumption is false, and so there exists a positive

integer n, such that
S NPCNS, NP, -%) whenever 1 > nge.
(iii) Combining (i) and (ii), and letting

n, = max(n,,n,), we have
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S; NPCN(NP, ) and B8NP CNE NP, 3)

whenever i > n,, and so

D(S, NP, SNP) <« =< & whenever 1 > Nge

2
This completes the proof of the lemma.
Lemma 3.4

Suppose {S;] 1is a sequence of nonempty closed

convex uniformly bounded sets in E" which con-

verges to a nonempty closed bounded convex limit

set 5.

Then (i) V,(8;) = Vo(8) as i -

(11)  Aa(Sy) - Ax(S) as 1 - o

end (iii) d,(Sy) - d,(8) as i - oo

This lemma is proved for the case of volume in
three dimensional space in Benson [2 ], pp 142-3. His
proof can be adapted for the other cases.

We are now in a position to prove our theorem, i.e.
that a k-cover in E" which is optimal with respect to a
specified measure (volume, surface area or diameter) exists.
The following proof holds for the case of volume; after-
wards we indicate how this proof can be modified for the
other measures.

Proof of theorem: Let Vo, = inf v, (U)

where the infimum is taken over all k~covers U in E",
Then V, < 1 since the generalized cube of edge length 1

covers all sets of diameter 1. Hence, either there exists
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a k-cover U with V,(U) = V,, in which case there is
nothing to prove, or there exists an infinite sequence
{UI} of k-covers in E" gsuch that if for each 1e 2%,
Uy = {Cy45C1nseeesCix}s then
(i) Vv,(Uy) 1is a decreasing sequence in i

(i1) lim Vo (U;) = Vo

ieo
(iii) vVv,(Uy) £ 1 for all ie 2*
and (iv) for every ie Z+ and for each J = 1,2,...,Kk,
there exists at least one set of constant
width 1 in E® which is covered by Cyjy.
(We note that (iv) can always be achieved by assuming that
there is an integer ¢ with 1 < ¢ < kX such that
CyiseseesCyy are all distinet and Cyp=Cyg.s=eees=Cyga)
By the definition of k-cover, all the sets C,; are bounded,
closed and convexXe
There is one further assumption we can make about
the sets Cjjo It follows from results of Steinhagen [22]
and Santalo [20] that every closed convex set of constant

width 1 in E* contains a sphere with radius R(n) where

1
2
iﬂigl— for even n

R(n) - n+1

n

N

for odd n.

Suppose 4 1is the closed sphere in E" with centre 0
and radius R(n). Then (iv) allows us to make the extra
assumption:

(v) 4 CCyy for all ie Z* and each j=1,2,¢c4,Ke
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Suppose i 1is an arbitrary positive integer.
For each integer j with 1 < j < k, let Byy; Dbe the
subset of EP+J-1 gdefined as
Byy = [(Xysee0sXnegsOseees0,Xn,gss0sea0,0)]

(xi"°°sxn-1’xn+j~1) = CiJ}-

Then let By = conv<3§1B13>. This defines a sequence By |
of nonempty convex sets. Since each C;; 1is closed, it
follows that each By 1s closed. Also, since Lemma 3.1
tells us that the Cyy have a bound depending only on n, we
deduce that the B, are uniformly bounded. So, applying
the Blasche Selection Theorem, we see that there is a
subsequence {By_} of the sequence {B;y] and a nonempty
bounded convex subset B of EP+X-1  guch that
lim Bir = B. Without loss of generality, we can suppose

I'-00
that the subsequence {Bir} is just the original sequence

{By ]
Now for each integer Jj with 1 < J < k, 1let K,
be the subspace of EP+K-1 with basis
€158235%°¢°58n-1298n+j-19

where e; 1is the unit vector in ER*k-1 with zero com-
ponents except for the i'th component which is 1.
Thus K; = {(xi,....,xn_i,o,...,O,x“d_i,o,....,O)eE“*K“il.
Also, for each such Jj, let Ty be the projection

Ty:Ky - E"  defined by

TJ((xi,c...,Xn_i,O"...,O’Xn_._J_.i,O,o.ot,o))

= (xi’nncc’Xn_i’xn+j—1)°
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Then, let U = {T,(B NK,), To(B N Kg)yeeee,Tx(B N Ky)}e
We shall show that U is a k-cover, optimal with respect
to volume.,

Since B is bounded, closed and convex, it is clear
that the sets of U are bounded, closed and convexX. Hence
we must show that U has the required covering property and
that V,(U) = V,.

However, we shall first show that lim Cy; '
exists and equals T;(B NKy) for J = 1,2???.,k. We
recall that }im By =B, and that K; is a flat through O
for each integ;? j with 1 < J < k. By the choice of
our sequence, 4 C B, and so Qe (int B) N Ky for
j =1,2,0000,ks Hence, by Lemma 3.3, lim (By N Ky)

1—0c0

exists and equals B NKy; for Jj = 1,2,..0,K. Since T

is the projection of K; onto E®, it follows that

lim Ty(By N Ky) = T3(B N Ky) for J =1,2,c0.0,k,

100

i.e. lim Gy,
i

T;(B NKy) for J = 1,2,.00,k,
since T;(B; NK;) = C;4; for all positive integers 1 and
for J = 1,2,c00,Ks

Now, the covering property. Since any set of
diameter < 1 can be enclosed in a closed convex set of
constant width 1, suppose X 1is an arbitrary closed convex

subset of EP of constant width 1. Without loss of gen-

erality, suppose also that the origin is an interior point
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of X, Then by the infinite pigeon hole principle, there
exists an integer j for which X 1is covered by GC;; for
infinitely many positive integers 1i. Without loss of
generality, suppose j=1. Since we are then aiming to
prove that X 1is covered by T,(B NK,), and since B is
the 1limit of any infinite subsequence of {B;}, we shall
assume that X is covered by C;, for all 1ie Z*. Then
for each 1€ 2Z*, there is a displacement IL; such that
L;(X) C Cy4s  NOW, SUDDPOSE 8; yees058,,8n44 = O are the

vertices of a simplex S =f=widH=t which is a subset of

X amd such that no two of the edge lengths of S8 are
equal. (There is such a simplex since X has constant
width 1 and Oe int X.) ©For each ie 2Z*, let
S; =1,(8), and then 8, is a simplex obtained from S
by a displacement, and suppose its vertices are
gii),....,gﬁii where ggi) = Iy(ay;). Since the C;; are
uniformly bounded by & bound depending only on n, the
sequence {S;} is a sequence of simplices, each obtained
from S by a displacement, and all are subsets of a
pounded region. S0 by Lemma 3.2, there exists a simplex
8o Wwhich can be obtained by a displacement from S, and
a subsequence 53153 of the sequence {S;} such that
iim Slz = Sg. Without loss of generality, we shall

00

suppose that this is the original sequence, for we are

interested only in the limit sets involved. Hence, we
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have 1lim 8; = 545 Since S 1is a simplex with no two
100
edge lengths equal, there exists a unique displacement L

such that L(S) = Sg. It follows that 1im L(X) exists
100

and equals L(X). (For suppose xe X. Then Xx 1is

uniquely expressible in the form

n+4 n

1
Bn 8, Where % Bn =1,

X =
~ 1

m=1 m

and then

Li(x) = 2 By Dy(gy)

Bn L(sp) as i

m=21

= L(x).

Hence lim Ly (x) exists and equals L(X), and hence
lim Li(igw exists and equals L(X),since each Li(x) is bounded
g;wa bound depending only on n.) We shall prove that
L(X) CT,(BNK,), which is a set of U, and so X is
covered by U,

Now suppose L(X) £ T,(B NK,). Then there is a
point xe L(X) ~ T,(B NK,). Since T,(B NK,) is

closed,

inf Hg - X“ =38 > 0o
yeT, (BNK,)

But since 1im C;, = T,(B NK,), there is an integer 1
100
such that
D(T,(B NK,),Cyy) < % whenever i > i,,

and since 1im L;(X) = L(X), there is an integer i, such
oo



61,
that

D(L(X), Ly (X)) < % whenever i > ig.

Let i, = max(i,,i,). Then

8
D(T, (B NKy)y Cyy) < 5

and D(L(X), L (X)) < % whenever 1 > ig.
Now suppose i 1is an arbitrary integer > i,. Then there

is a point 2z e L;(X) such that

lz -zl <2 .

Since L;(X) C Cy,, it follows that ze C;;, and since
T,(B N K,) is closed, there exists a point we T,(B N X,)
such that

lz -al = ine  lz - gl
yeT,(BNK,)

So as D(T,(B NK,), Cy4) < %, we must have

lz - ol <3 .
Hence Iz - ol <liz - 2l + llz - &l
5 . 8
< 5 + >
= 80

But since we T,(BNK,), this is a contradiction to our
definition of &, and so L(X) € T,(B NX,). This proves
that our set U must have the required covering property.

Finally, we show that V,(U) = Vo. We proved that

lim Cyy = T3(B NKy) for J = 1,2,..40,k. So by
i—co

Lemma 3.4,
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1im Vo (Cyy) = Vu(Ty(B NKy)) for J = 1,2,0000,ks

1l—o0

Therefore

lim ( max V,(Cy4)) = max Vo(T;(B N Ky)),
ibeo 1€k 1<j<k

ice. lim v, (Uy) = vV, (U).

100

But 1lim V,(U;) = V,, and so V,(U) =V, This completes
1-00 3
the proof of the theorem for the case of volume.

The proofs in the cases of surface area and diameter
are identical, with volume being replaced by the appropriate
measure, since the only real differences occur when we
establish a bound on the sets of a k-~cover depending only
on n. This has been done for the surface area case in
Lemma 3.1 A and is obvious for the case of diameter.

We can now easily establish a result on the values
of A, x and 4, x, providing further answers to the
questions posed in Question 2 of the last chapter.

Corollary

For all positive integers k and for n = 2 or 3,

Ap x > 8, and d, ,x > 1.

Proof: This now follows from Theorem 2.2 which says that
d, (Ux) > 1 for all k-covers in E?® and E°®, and from its
corollary which says A,(Ugx) > Spe

Clearly, this corollary is true for all values of

n for which Theorem 2.2 18 true.
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CHAPTER IV

FURTHER EXAMPLES OF k-COVERS.

Earlier we saw examples of 2-covers in two and
three dimensional space. These were formed from covering
bodies by applying the general method of intersecting a
suitable strip of width 1 with the covering body. The
main problem now is to decide on a means of applying this
method in several different directions simultaneously with-
out producing a cover of large order. In the following
we shall produce several k-covers in the plane and in three
dimensional space by a similar application of the general
method. This application can be applied profitably to
covers based on the hexagon or the octahedron; we refer to

it as the circle method or sphere method, depending on the

dimension of the space. The method is illustrated well in

the first example.

£L6-cover in the plane derived from the regular hexagon.

In the plane, we can apply the general method to
the regular hexagon of width 1 in three different direct-
ions to obtain a 6-cover. Clearly, we could apply the
method to the truncated hexagonal tile and we shall do this

later.

Now, for the hexagon there are three diagonals and

we try to make suitable cuts perependicular to these.
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We must be careful to make use of
the symmetry of the set or we may
find that the order of the result-

ing cover is large.

Suppose O 1is the centre of the hexagon, and

suppose r is a number such that % < r < :E . Then we

J3

draw a circle of radius r with centre O.

The bounds on r guarantee that the circle éuts the bound-
ary of the hexagon, and that the incircle does not lie out-
side the circle of radius r. Draw tangents to the circle
where it intersects the diagonals of the hexagon. We

refer to the regions cut from the hexagon near its vertices
by these six tangents as corners. We say that two corners
are adjacent if the corresponding vertices of the hexagon
are adjacent, and are opposite if the corresponding vertices

are opposite. Since r > %, opposite corners are separat-
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ed by a strip of width at least 1. Hence a set S5 of
diameter < 1 intersects at most three corners of the
hexagon. Now suppose that the set S intersects a corner
A, as in the figure. Then
S does not intersect the
region B cut off by a line
parallel to the tangent cut at
A and distance 1 from the
tangent. Similarly, if 8
intersects B, it does not

intersect A. Hence we can

form a 2-cover by removing the
two regions A and B, one
at a time. We refer to cuts B made opposite an occupied

corner as large cuts.

The real benefit of the method is obtained when we
consider how many corners S can occupy simultaneously.

Suppose we label the vertices of the hexagon consecutively

\g v, VysVa, Vg, V, 3 Vs, Vg Then the various
cases are shown in the following table.
Vi y If two cases are similar in that one
§

can be obtained from the other by a
Vs Vi rotation, only one is shown, since
for our purposes they are identical. We denote the area of
a corner piece (or small cut) by S(r) and the area of a

large cut by L(r).
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Case|Corners which|Cuts made at vertices:|Area removed
S intersects|Corner cuts|Large cuts|from hexagon
Cy - 1,2,3,L4,5,6 - 6S(r)
Ca 1 2,3,5,6 L us(r)+L(r)
Ca 1,2 3,6 4,5 25 (r)+2L(r)
C, ily3 2,5 L,6 2s(r)+2L(r)
Cs 1,2,3 - Liy5,6 3L(r)
Ce 15355 - 2,4,6 3L(r)

We shall denote the resulting sets by C,,C;,C5,C,,

05 ’CG ] a.n.d. then Ue = ici ,Cz ,03 ’CL ’05 ’Ce ; iS a 6—00:\7'61'3

The sets are shown in the following diagram.
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Now each of the cuts is an isosceles triangle with
vertical angle 120°, which has area .,/3 h® where h is

the height of the triangle perpendicular to the odd side.

J3
For the large cuts, h =jl: -1+ r, and so
3

el 2
L(r) = 4/3(/-1; -1 + r> ‘ In order to find the best 6-cover
3

- 2
For the cormer cuts h = - - r, and so S(r) =~/3<‘% - r>.
3

of this form, we must find the number r with < r<g -j:
V3
such that the area of the cover is least. Since S(r) is

a strictly decreasing function of r, and L(r) is

strictly increasing on the interval [%, -%], the least
area removed is maximized when 28(r) = L(r), 1if this

occurs in the interval [3, j—_] On solving the equation,
3

one obtains:
r=J3 +J3 -1 -§¢‘6

0e51327100esy

It

which is within our bounds for r. For this value of r,
S(r) = 0.007112¢45
and L(r) = 0.014224...,
and the sets of the cover each have equal area, being

A(Ug) = 0.823353..4 o
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A 12-cover in the plane from the truncated hexagon.

We shall now apply the same method to Pal's tile,
the truncated hexagon. Again we draw tangents to the
circle with centre at the point of intersection of the
diagoﬁals of the hexagon and with radius 1r, where

I <rxg ;L. This time the resulting sets can be considere

V3

ed to have three types of cuts made on the regular hexagon,
being the small corner cuts of area S(r), the large cuts
of L(r), as before, and of course the cuts due to the

truncated corners of the Pal tile. We refer to these last

cuts as Pal cuts, and denote their area Dby P,. where

P=~/3<\71_§-

roj-+

)2 = 0.010362..¢ &




69. |
We label the vertices of the hexagon V,,Vy,Vg,V,.,

Vg and Vg, and suppose that V, and Vg are the trunc-
ated vertices of the Pél tile. As Dbefore, let us refer to
the small regions "outside" the tangents as corners. Then,
if S8 is a set of diameter < 1 covered by the truncated
hexagon, S may intersect with corners 1,3,4 or 5, but
never with both 1 and L. We consider the various ways in

which the set may intersect with corners in the following

table.,
Case|Corners which 6;;; made at yertices:|Area removed from
S intersects| Small |[Large Pal regular hexagon

C, - 1,3,4,5| - 2,6 us(r)+ 2P
Ce 1 3,5 L 2,6 23(r)+L(r)+2P
Cs 3 1,4,5 6 2 383 (r)+L(r)+ P
C, 5 15 6%l 2 6 38(r)+L(r)+ P
Gz L 355 1 2,6 28 (r)+L(r)+2P
Ce 1,3 5 4,6 2 S(r)+2L(r)+P
o 1,5 3 1,2 6 S(r)+2L(r)+P
Cg 354 5 1,6 2 S(r)+2L(r)+P
Cq b5 B 1,2 6 S(r)+2L(r)+P
Cio 3,5 1,0 2,6 - 23(r)+2L(r)
Cy. 1,3,5 - 2,b,6 - 3L(r)
Ciz 3,4,5 - 1,2,6 - 3L(r)

This 1list exhausts all cases, and so we obtain a

12-cover in the plane, U,;; say. We note however that
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each set of the pairs (Cs,C.), (Cs,C;) and (Cg,Cy) is
obtainable from the other by a reflection, and so if we
allowed reflections to take place in our process of covering
a set, we would have a 9-cover.

Now S(r) < P < L(r) for £ € r g 4:. Also S(r)

/3

A

is a decreasing function of r and L(r) is an increasing
function on the interval [%,-4:]. Hence it is easily
checked that the maximum area of the first nine sets is

least when

A(Cy) = A(Gy) = A(C,)

if this occurs when 4 < r < J: . In fact, these sets have
equal volume when JB
poo 225205
= 0:5193374 0

which is wi thin our bounds. Then
S(r) = 0.005829...,
L(r) = 0.016192...
and A(C,) = A(Cz) = A(C,) = 0.821982.¢. o
For this value of r, A(C,,) = A(C,) and on calculation
A(C,,) = A(C45) < A(C,). Hence
A(U,.) = A(C,) = A(Cs) = A(C,) = A(C,,) = 0.821982...,
and this is the best possible 12-cover of this form.

A 12~cover in the plane from truncated hexagonal 2-coOvVer.

So far, we have applied our method for the f orma-

tion of k-covers only to tiles. However there is no
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reason why we should not apply it to sets of a cover of
order larger than 1. We recall that a 2-cover in the
plane could be obtained by truncating three corners by Pél-
type cuts from the regular hexagon of width 1 in two diff-
erent ways; one by removing three adjacent vertices and
the other by removing alternate vertices.

Suppose we label the vertices of the hexagon
VisVg o VgV, 3 Vs ,Vge In the case where three adjacent
corners have been removed, suppose V,,V, and Vg are the
truncated corners. In the other case, suppose V,,V, and
Ve have been removed. As before, in each case we draw a

circle of radius r, + < r < L

-

V3
of the regular hexagon, and take tangents to it where the

with centre at the centre

diagonals of the hexagon cut it. In each case there are
three small corner pieces which may be removed. The sets
obtained from the set of the 2-cover with three adjacent

vertices removed are shown in the first table.

Case|Corners Cuts made at ert;ces: Area removed from
occupied|Small | Large Pal regular hexagon
Cy - 3,1,5 - 1,12,6 38 (r) 3P
Cy 3 b,5 6 1,2 2S(r)+ L(r)+2P
Cs L 3,5 1 2,6 23(r)+ L(r)+2P
C, 5 3,4 2 1,6 28(r)+ L(r)+2P
Cs 3,4 5 1,6 2 S(r)+2L(r)+ P
Ce 3,5 ] 2,6 1 S(r)+2L(r)+ P
Cy L,5 3 1,2 6 S(r)+2L(r)+ P
Cs | 3,4,5 - 11,2,6 - 3L(r)
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The following table gives the sets obtained from
the set of the 2-cover where the alternative vertices have

been removed.

Case|Corners Cuts mpade at yertjces: Area removed from

occupied|Small| Large Pal repular hexagon
Cg - 1,3,5| - 2,4,6 | 38(r)+ 3P
Cy 0 1 3,5 L 2,6 28(r)+ L(r)+2P
C, 4 1,3 5 Lh,6 2 S(r)+2L(r)+ P
Cio| 15355 = 2,4,6 - 3L(r)

This is the list of all different cases. Hence,
since we started with a 2-cover, and so any set of diameter
< 1 can be covered by one of the two original sets, we
have produced another 12-cover in the plane. However,
since each set of the pairs (Cyz,C,) and (Cs,C,) is
obtainable from the other by a reflection, we would have a
10-cover if we allowed reflections to occur in our covering
process.

After using a computer to calculate the areas, I

noted that all sets of the 12-cover have equal area when
_ 2.+ 3/3
r = -—211-

0e519337c00

Note that this is exactly the same value of r that gave

1l

the optimal 12-cover of the previous form. For this



value of r,
S(r)
L(r)

and then the cover, Ul, say, has area

0.005829. ..,

Il

0.0161924 <0

A(UL,) = A(C,) = A(Cz) =...=A(Cyp) = 0.817L4B...,
which is less than the area of the other 12-cover. This
must be the optimal value for a 12-cover of this form since
A(C,), say, is a decreasing function of r, and A(Cg),:

say, is an increasing function on the interval %,;E}.
5

A u;cover in E3

. We can apply a very similar method in E® to the
regular octahedron of width 1 or to the truncated octa-
hedron covering body. Suppose we first start with the
regular octahedron. In this case we draw a sphere with
centre at the centre of the octahedron and radius r,

L <r<i.J3  Then we draw tangent planes to the sphere
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where the diagonals cut its surface, cutting off pyramidal
pieces at the corners. We shall refer to these pyramidal
pieces as corners, and denote their volume by s(r) (for
small cut). Now each corner is a square pyramid of volume

%h? where h is the height of the pyramid. Hence

s(r) = £(3 43 - r)°.
At a distance 1 from each of these tangent planes, draw a
parallel plane cutting a larger pyramid from the octahedron,
the volume of which we shall denote by L(r). Then
L(r) = 2(%—J3 -1+ r)3. YNow a set S of diameter < 1
can not intersect with a corner A, as in the diagram,
and with the larger region B opposite. Also, S can
intersect at most three of the six corner pieces since
r > +. As there is a large degree of symmetry in the
octahedron, we find there is only one distinct way in which
S can intersect with no corner, one corner, two corners or
three corners. So we obtain a l-cover, U, say, the

cases being listed in the table.

Case|No.of corners S No. of No. of Vol.removed from
intersects small cuts|large cuts octahedron.
C, 0 6 0 6S(r)
Co 1 i 4 LS(r)+ L(r)
Cs 2 2 2 28(r)+2L(r)
o7} 3 0 3 3L(r)
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Since 8(r) 1is a decreasing function and L(r) is
an increasing function on [#,% 3], the volume removed is
maximized if L(r) = 28(r) if this occurs for r in the

interval [4,%/3]. But this equation has a unique real

solution for r Tbeing

1. &

%2(28 - 1) + 2

r = *
2(2% + 1)
= 005420975 L)
which lies in the required interval. In this case

S(r) = 0.02265%¢44,
L(r) = 0.045319.4.,

and V(U,) = V(C,) = V(Cy) = V(C3) = V(C,) = 0.730067¢ce
We can apply the same method to the truncated octa-
hedron, except in this case there are only three corner

pieces which may be occupdied.
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If a corner is occupied, we see that a slice can be
removed near the opposite vertex, since we already have
three P4l cuts of volume
£(3 3 - 1)
0.032692,.. .

P

I

Note how these pieces being removed are of just the same
form as those removed in the formation of the best 2-cover.
The sphere method gives a means of making cuts in three
directions simultaneously without giving a cover of too high
an order. As in the case of the previous cover, there is
enough symmetry to give a L-cover, U] say, with one set
corresponding to each of the numbers of corners which the

set S of diameter € 1 intersects.,

Case|No.of corners No. of cuts, Vol removed
8 intersects|Small{Large| Pal |[from reg. cctahedron
c, 0 3 0 3 38(r) +3P
Co 1 2 1 2 28(r)+ L(r)+2P
Cs 2 1 2 1 S(r)+2L(r)+ P
| Co | 3 0 3 0 B 3L(r)

The sets are illustrated on the following page. As in the
case of the 6-cover and the second 12-cover in the plane;
and of the other L-cover in E®, this L~cover has least
volume when the four sets have equal volume. This is

easily seen since S(r) is decreasing and L(r) is
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increasing on [4,%.3]. Hence the least volume removed is
maximized when

33(r) + 3P = 28(r) + L(r) + 2P = S(r) + 2L(r) + P = 3L(r)
provided this has a solution for r in the interval
£,54./3]. ©Now the equations are equivalent to the follow-
ing single equation:

S(r) - L(r) + P = 0O,
5 2 1 /= 3 201 1= 3 2¢1 /T 1\3
ieee 3(54/3-r)° - (3 /3-14r)% + 5(£/3-%)° = O.
Applying Cardano's formula for the solution of a cubic

equation, we obtain as the only real solution

— g _ !
r =3+ ﬁ_sz:{(-5+3«/3 +,\!88u-510~/3 ) 4 (-5+3/3 - ,[884~5104/3 )3]

which, on evaluation using a computer, gives
r = 0.560454051 4000

This is certainly within our bounds on r, and yields
8(r) = 0,019021..0 ,

L(r)

0.051712e 40
and V(Ui) = V(Ci) V(Cz) = V(Cg) = V(CL)

= 007108814-.0 e o

It is not surprising that the cuts made are just the same
cuts as those made in the formation of the 2-cover, except
here we make cuts perpendicular to each diagonal.,

This second 4~cover is a better L-cover than the
first, which is not surprizing as it was formed from a

better covering bhody. It is the best L~-cover I have found.
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A 6-cover in E3

We noted earlier that in three dimensional space we
can form k-covers by removing edges rather than vertices.
I describe here an attempt in this direction.

Let us label the edges of the regular octahedron of
width 1 with the numbers 1 to 12 as shown in the diagram.
We remove edges by cuts which
are tangent planes to the
inscribed sphere, parallel
to the edge being removed.
For example, in the diagram
edge 2 is being removed, and
the cut is the tangent plane

perpendicular to the line

joining the mid-point of the
edge to the centre of the

oc tahedron. Now there are three planes through the centre
of the octahedron with each containing four of the edges in
the form of a square. Since the tangent planes cutting
off opposite edges of one of these squares are distance 1
apart, we can remove either one of any pair of opposite
edges of the square. Applying tHAis argument in two direc-
tions on each of the three squares, we can remove siXx edges
of the octahedron. The table shows the distinct cases,

allowing for rotations:
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Case|Edges removed from, K square:

1,3,11,9|2,4,12,10(5,6,7,8
C, 1,3 2,4 5,6
Ca " iy 12 5,6
CS " " 6,7
CL " " 7,8
& it " 5,8
Ceg N 12,10 5,6

This is seen to be a complete table of cases, since one can
in turn remove edges from the first square, then from the
second and then from the third, noting the different cases.
So we obtain a 6-cover Ug in E®, or a H5-cover if
reflection is allowed in the covering process since Cg

and Cg are obtainable from each other by reflection.

On calculation, the volume cut off the octahedron
in removing the first edge is 0,02053..., and since six
edges are removed with some overlap of the removed edges,
it follows that

V(Ug) > /3 -~ 6 x 0.0206
= 0.742l0es
Since this figure is larger than the volume of the Li-cover
already obtained, and since the optimal volume of a
k-cover is a decreasing function of k, this new cover

provides no new insight into the value of Vj, ge
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These are the interesting examples of k-~covers I
obtained in the plane and in E3, I made attempts to find
k-covers in the plane based on polygons other than the
hexagon, or based on a combination of two or more different
polygons, but I was unable to find covers with lower area
than those given.

As mentioned earlier, I have done little work using
the measures of diameter and surface area. However by now
we have answered a large number of the questions posed in
Chapter II. In Question 1, we posed the problem of deter-—
mining the values of V, x, Ap,x and dp ke The examples
in this chapter give upper bounds on V, x for the approp-
riate values of n amd K.

These results are summarized in the following table.



Dimension Order
n k
1 General k
2 1
2 2
2 6
9
2 with reflection

General n

10

12
1

with reflectioT}

1

with reflectioT

General k

Best known upper
bound on Vi

OQ8LI-L|-1L|-)—L:' .

0.834936.

0.823353. 0

0.821982..

0.841744L48..

0.7679L1 ..

0.754612

0.7489274

0.71088L. .«
1

wf >

<2§22> r(1 +-§>

(+%5/2 as 1)

_upper bound |

Comment on cover
determining this

Sprague tile

Hexagon less 3
corners

Circle method app-
lied to hexagon

Circle mephod app-
lied to Pal's tile

Circle method on
2-cover

Truncated octa-
hedron

Remove one of a
pair of opposite
edges of truncated
octahedron

Fur ther truncation
at 2 opposite vert-
ices of truncated
octahedron.

Sphere method on
truncated octa-
hedron

Jung's sphere

Best known lower

bound on V, g

1

0825711«
% = 0.7853%98, .,
% = 0.785398..
ﬁ = 0.7853%98. .
ﬁ = 0.785398..
% = 0.523598..
% = 0.523598
% = 0.523598..
% = 0.523598..
n
=

4 n
2 Le
2 P<1 + 2)

(+0 as 1no>w)

82,
Comment on set deter-

mining this lower
bound

Convex hull of circle
and triangle

Circle
Suspect Vy 5 > 0.7988.,

by considering circle,
triangle and Reuleaux
pentagon.

Circle

Circle

Circle
Sphere

Sphere

Sphere

Sphere

Sphere
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CHAPTER V

APPLICATION TO THE MODIFIED BORSUK'S PROBLEM

5.1 The principle involved

In Section 1.4, we saw how a covering body can be
used to solve Borsuk's problem in two and three dimensions.
I stated that the attempt for a solution of the modified
Borsuk's problem gave motivation for the introduction of
the idea of k~cover. We recall that the modified Borsuk's
problem is to determine the value of dp(n+1) for each
positive integer n, where dn(n+1) denotes the infimum
of all real numbers d such that any set in E' of dia-
meter 1 can be partitioned into n+1 sets of diameter at
most d. Now, by Theorem 2.1, for any positive integer n,
lim 4y ,x = 1 So by taking k to be a sufficiently large
?gﬁeger, we can find a k-cover Ux of diameter dp(Uyx)
arbitrarily close to 1. Then this cover may be divided
into n+1 sets, each of diameter < dn(n+1) x dy (U)o
Hence, by taking k sufficiently large and then partition-
ing a good k-cover, we can obtain in principle an upper
bound on dn(n+1) which is arbitrarily close to its actual
value.

In this chapter we consider the case n=3. We

have seen that ds(L4) satisfies

J(3 +J3)/6 = 0.88807+.0 < dg(L) < 0.98874+4,
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and noted a conjecture that da(u) should equal this
lower bound. We shall improve on the upper bound.

5.2 Partitioning the sets of the lL-cover into four sets.

In this section, we use the l-cover obtained in the

previous chapter to prove
dg (4) € 0.97522.4 o

This result, although disappointing in its magnitude, has
appeal in that it is obtained using only simple geometrical
ideas. In this process, we mske further truncations to the
individual sets of the L~cover without producing a cover
of higher order. The partitions which we shall finally
obtain are in fact partitions of the derived L-cover.
Also, we notice that the construction of the L-cover is
independent of the value of the radius r of the sphere
used. Hence we are free to allow r to vary within the
bounds 5 < r < ./ 3. (since we are now interested in the
diameters of the sets of the partition, we do not reqguire
the value of r which gives the optimal volume. ) We
also note that it is sufficient to divide the surface of
the sets of the L-cover into four parts. For thé radius
of the sphere circumscribed about the original octahedron
is % ./3. Suppose that the surface is partitioned into
sets of diameter at most d where + /3 < d < 1. Then
the convex hull of the union of each of these subsets with
the centre of the circumsphere has diameter at most d.

However, since dg(4) > 0.888..., and 1 /3 = 0.86650., it
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immediately follows that d > % ./ 3.

In the construction of the L-cover, we considered
the number of '"corner'" pieces which were intersected by the
set being covered. In the following, we refer to these
numbers as the "number of corners occupied".

The case: 3 corners: occupied.

We shall consider the case '3 corners occupied"
first for the following reasons. For r=%, the set is
identical to the truncated octahedron covering body, and
hence the similar dissections of Grunbaum and Heppes suggest
an obvious means of dissecting the set. Also, if we obtain
a good result for the cage when r:%, we obtain a new upper
bound on ds(L).

We recall that this set of the L~cover is an octa-
hedron with square-based pyramids removed from three
adjacent vertices. We use the notation which Grunbaum
used in the publication of his dissection. Let the three
remaining vertices be labelled A, ,A, and Ay, and the
other vertices as in the Schlegel diagram.

The dissection which we consider is shown in detail

in the figure. Now, for i=1,2,3,

[

let B, = oF; + (1-a) B’—;B—‘,
D, = BC; + (1-B8)B,
and D{ = BC{ + (1-8)B§

where O < a1 and 0 <8 < 1. The three pieces of the



&6.
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dissection meeting at O are identical, while the fourth
piece does not contain a vertex of the original octahedron
and so is quite distinct. The diameters of each piece are
functions of o and §B. To find the best dissection of
this form, we seek the values of « and B which give the
least maximum diameter of the pileces. Since this is
difficult, T used a computer scan to find good dissections
of this form. However the dissections obtained are not
necessarily optimal.

From simple geometric considerations, one of the
following pairs must determine the diameter of each piece.,
Where a distance occurs twice, I give only one case€.

3 gimilar pieces: _
(0,E.), (0,D4), (0,4,), (0,C8), (&;,Bs),(6;,Fs),(G,D4),
(Gy,08) 5 (Fy,Fa) 5 (Fy,Bs) 5 (Fy,D4), (ByyAg) 5 (Fusha), (BysCE)

or (Di,Az).

Other piece:
(Ei 9E3) , (Bg ,Dz) ,(Ez ,Bé) »(Dg ,Di) or (Dg »BS) .

Having decided on possible critical distances, we
introduce coordinates. For simplicity, we suppose that
the centre of the circumcircle of the regular octahedron
lies at the origin, and that A,,A, and A; 1lie on the
X, Y and Z axes respectively. Then the coordinates

needed are listed below:



where

following dissections.

((’l-,B)a,—-ﬁa,r)

Ei <I’ s =

= 4 (1-a)%,r,—

aa
2

88.

(a,0,r)

a
<I‘,— i

B

L~

)

s (1003, - 2+ <1-—a)-§>

+ (1—0&)%,-—-

a=5%J3-1+r.

2

xa

8 (1_a)-g-)

oa

+ (1-a)g,r>

(0= 5 43 1 3)

((1"'ﬁ)a9r9"ﬁa)

Using this information and a computer, I found the

For

each value of r,

the dia-

meters of the different pieces are equal in at least the

first five decimal places, and this is the value given.

In each case I state one of the edges which determine the

diameter of each set;

these

are not unique.

r o B Critical edges Diameter
3 pieces|Other piece|of pieces

0.5 0.8857644|047196..|(G, ,Eq4 Eg,D, 0s987724¢
0.51 0.873284.|0e470154.| (G, ,Eg 3 Dy 0.978L1..
0.52 0.86121..|0.4686L.. 4 s Bg Es ,Dg 0.96913..
0.53 0.8L495244 [0.467H0. | (Gy , By Es,D, 0.95988..
0.560L5.4[0.81603..|0.46509.. 4 s Bz 3 sDp 0693191, %
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The last value of r is that for the L-cover of

optimal volume. The other values of r extend over the
range in which we shall be interested when we consider
dissections of each set of the L~cover for the same value
of r. However, note the value for the case r=>%. This
case is Jjust the truncated octahedron covering body, and

S0

J (3 + J/3)/6 = 0.88807.. < dg(l) < 0.98772.. .

This compares with Grunbaum's upper bound of 0.9887..
and Heppes' figure of 0.9977, both of which were obtained
by a similar dissection.

We need not consider any better dissection of this
set of the l~cover; for this dissection divides this set
into pieces of sufficiently low diameter to prove the
result on the upper bound of dz(4) which we shall obtain
from the L-cover. We shall see that the value of this
bound is determined by the cases '"No corner occupied" and
"4 corner occupied", for which I have not been able to find
as good a dissection. However, in Section 5.5, we shall
see a method how this dissection can be improved.

The case: No corner occupied.

We next consider the case 'mo corners occupied".
This set has symmetry like that of the case just considered.
Also, it covers the sphere and therefore is likely to give

a high value for the diameter of the sets of a dissection.
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Clearly, we would hope to use the symmetry of the
set in finding a dissection. We could use the same
dissection as that for the truncated octahedron covering
body. However, we note that none of the critical points
in the dissection of that cover have been removed and SO no
improvement is possible by this dissection. Therefore, in
order to obtain a better dissection, we use the fact that
all corners have been removed. There are two obvious forms
for the dissection as shown in the diagrams.

Where points are common with those in the previous
set, the notation is the same. The square formed on
removing A, has been labelled HLJiJgHz, on removing Ap
as HiJLT,H, and on removing A; as H{J{J Hs. Each of
these cuts is made at distance 1-r from the centre of the
regular octahedron, and these are the so-called "small cuts".

In the first dissection, HY HY 1is fairly long,

having length

0.96592,.. 1f 1 = 0.5,
0.98713%3... if r = 0.53

and 1.00867... if 1 = 0.560LHL.cs

]

As a result, the other dissection gives lower values, SO

we shall use it.
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The second dissection gives three similar pieces,
all meeting at 0, and one other piece. By simple
geometric considerations, the diameters are determined by
one of the following pairs of points if

0.5 < 1 < 0.560454.00 o

3 similar pieces:

(0’,Mé),(O’,Hgs)),(O',01),(0’,Hé),(Bf,Hé),(Bf,Mé),(Bf,Hés)),

(BY,Kg ), (Ky o Ms),  (Ky,08), (Ky,HE3) ), (Ky oKe) 5 (HES) 5B ) s
(H(®) ,0,) or (M§,B,).

O cher piece:

(5(e) B D), (H{®),M5),(H(®),d5) or (Ui,Ms).
We now introduce the necessary parameters. We
suppose that My = aJ; + (1-a)Hy,

M = adf + (1-a)Hy
J1+Ji

and H{® = K+ (1-B) —3

for i=1,2,3,
where O a< 1 and 0 < B < 1. Then the necessary

coordinates are:

or (3,43, V3 B, (4,0,4(/3-1))

BY (£,4+(/3-1),&(/3-1)) C, (3,-2(/3-1),0)
C:IB (Os'%(l\/—j"J')slz') Hé(os"‘rsjz'\/g"r)

35 (-r,~(%/3-r),0) K, (3,- #/3-1),~ +(/3-1))
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Ka (= #(/3-1), = $(/3-1),2) 1(® &,1(8+/3),4-(8+/3))

B9 (£(8/3),2(8+/3),5)
4 ((1-a) (/3-r) o (3/3-7) ,-r)
l (=1, - (&/3-) , (1-0) (4/3-7))

w5 (-a(%/3-r) ,—r, (1-a) (& 3-r)).

The following dissections were found using a

computer, In each case, the diameters of each set of
the dissection agree to at least five decimal places, 8O
I shall give the figure only once. I also state one edge

which determines the diameter of each piece.

r o B Critical edges Diameter

3 pieces|Other pilece
0.5 0.5 0.5 (BY,M5) (M4 ,Mg) 0.96592. .
0.51 0.501459. . | 0elildiliya o | (BY ;Mg ) (M4, ) 0.97068. .
0.52 0.50926.. |0 1lihly. o | (BY,Mg) (M] ,M5) 0.97553.
0.53 0.511402..[0.3989 .. | (B, Mg) (M, ,Mg) 0.98047 0
065604544 06534024 |0.35894.. | (By,M5) (M ,M5) 0.99709..

We note that for the case

r = 0.560454..., the

diameter of the sets is larger than that given Dby Grunbaum's

dissection.

ues of r

diameter are fairly high.

close to O:H,

Hence this dissection is useful only for val-
Unfortunately the values of the

This is not surprising since

this set covers the sphere which is conjectured to be the

set which has the worst dissection.
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Now the critical points of the dissection are
B{, B4, BY, My, M{, Mg, M, Mz and Mi. Of these points
we can remove at least one of the Bg's by an argument
similar to that of Sprague, Because of the similarity to
the "3 corners occupied" case, we can apply a similar pro-
cedure to that we shall see in Section 5.3, This gives
two different ways to round edges containing critical points,
I tried both methods, but neither gave a significant improve-
ment, Hence we omit the details.

The given dissection is the best dissection I could
find for wvalues of r close to 0.5, Later we shall see
values of the diameter for other values of r,

The case: 1 corner occupied

We now consider the case "1 corner occupied".
In the two previous cases we had a degree of rotational
symmetry. In this case, we have only symmetry about a
plane and we make use of this in our dissection. The
figure and dissection are shown in detail in the Schlegel
diagram, The square faces B3BiCiCy and BzBiCiCs are
the faces formed by Pal cuts, BgBéCéCz is a face formed
by large cuts, and the faces RiRiSisi and RaRésésa are
formed by small cuts, The notation is similar to that in
the previous cases.

Suppose that

O = 0B + (1-0)Az where O < o < 1,
Then Gy = PRs + (1-B)Az where B = é%% o,
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We could impose the extra condition that 0 < B < 1, How-
ever this is not necessary, since if this condition is no%
satisfied, the point so defined lies just off the surface of
the cover, Similarly, |

Gs = BRY + (1-B)Az.
Fur ther, sﬁppose that '

E{ = F, + 6(B-Cy) for i=1,3 where O<d<?

and Eg

Fz + ¢(B2-Cz) where O<¢<i.
Also, for parameters €,0 and ¥ satisfying
O<e<t, O<b6<1  and .Osy<i,
let Dy = €By + (1-€)Cu,
D = €B + (1-€)C4,

Di = 6Bf + (1-0)Ci,
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Ds = 6By + (1-6)C4,
¥Bz + (1-¥)Cq
and D& = yBL + (1=y)Ch.

The dissection yields four pieces, Two of these

D2

are obtained from each other by a reflection and so have the
same diameter, By simple geometric considerations, the
diameter of each piece is determined by one of the following
pairs,

2 congruent pieces:

(0,E4) ,(0,D4) ,(0,D2) ,(0,Bz) ,(0,F2) ,(0,C2) 5(0,C4),
(Gf,B2),(G1,F2),(G1,D2),(G1,C2),(Cs,D1),(Cs,Ee),(Fa,sCa),
(FesF2)y(F1,RE),(Es,RE),(Bs,G2),(DL,G2),(Di,Fe),(D2,Ra) o
(Fi,E2).

Piece containing the vertex As:

(0,B14), (0,D1), (0,82), (0,Cs), (Gs,BE1), (GasDa), (G3,C1),
(Fi,Fa), (Ea,Az) or (Di,Az).

Other piece:
(Di,Ds),(D4i,Bs),(Di,Bs),(Di,D4),(Di,D4),(Ds,DE),
(D1sB2),(Ds1,sB4),(D2,B4),(B2,BS),(Es1,Bs) or (Ey,BE).

The following coordinates are used.

Az(0,-%/3,0) B4(0,1-r,3/3~1+r)

Bs (0,%(v3-1),%) B4(%(V3-1),0,%)
Ci(jf"‘j?(\/g"1),o) Ci(iz'soy-%(\/g—1))
02(0,1—1",—(%\/-3--14-1')) Ra(O,—(Jz\/g—I‘),-I‘)
Ré(—(%ﬁ—r),o,—r) o(- a\f,- £1_E)\/§’“ ﬁg)

Gi(O,—%\E+ﬁr‘,—ﬁI‘) G’Z(" 3 \/_3.,0’_ * \/3-)
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Gs (-Br,~2V/3+pr,0)
Fa(%,-37(V3-1),=3(1-v) (V3-1))
Fz (-2(H/3-14r) ,1-r,-3(5/3-1+1)
Fo (-£(1-7) (V3-1),-3v(+3-1),%)
B (%,6(1-1)~3v(v3-1),8(1-r)=3(1-v) (v3-1))
Bz (£(2¢-1) (£/3-14r) ,1-1,%(2¢=1) (£/3-1+1))
Bs (6(1-r)=5(1-7) (vV3-1),6(1~r)-tv(v3-1),%)
D1(%,-2(1-€)(V3-1),%e(V3-1))
D4(%,20(v3-1),-5(1-0)(v/3-1))
De (Y(EH/3-1+1) ,1=r,~(1-¥) (5/3-1+r))
D4 (~(1-¥) (2/3-1+1) , 1=, ¥ (5/3-141r))
Da(-2(1-0)(v3-1),20(/3-1) ,%)
D4 (2e(V3-1),~2(1-6)(v3~1),%) .

Using a computer, I found that the diameter of the
sets of the dissection is determined by the two congruent
pieces and by the piece containing the vertex As. The
diameters are then determined by the lengths of the seg-
ments (By4,8z) or (Bz,G.) and (Gsz,Ey) respectively,
For each r in the range 0,5<r<0,56045L4,.., it appears
that the best dissection is obtained with these lengths
approximately 0,988, Hence, to improve on Grunbaum's
result, we need to remove some critical points.

We see that the face B;B{B:BiBsBi is parallel to
and distance 1 from the face AzR3R4R4R4I which contains the
Gt 's, Now, any closed set of constant width 1, when cover-
ed by this set of the L-cover, touches each of these two

faces at exactly one point with the line joining these two
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perpendicular to the faces, So we can apply a similar
rounding argument to that used when we constructed the
Sprague tile. Hence we can remove the edges containing
G4,Gz and Gs by spherical and cylindrical cuts. Thus
we remove three critical points. Of course, Az, Rz, R&,

R, and R{ are also removed by these cuts, but we shall
consider these points to be remaining unless they appear
critical, We now use the same dissection as that we have
just considered, Hence, we have a dissection, which,
although it is not a dissection of the original set of the
L~cover, is a dissection of a set which covers the same sets
of constant width 1.

In our dissection, some of the edges are curved,
So it appears that a critical distance may involve a point
in the middle of a curve, The following lemma, when
appropriately extended, implies that such points need not
be considered, We use |XY| to denote the distance
between two points X and Y.

Lemma
Consider the curve ABC in the

il : o plane shown in the diagram
@y : where
‘ i (1) AB is a circular arc
of radius 1 with centre
0
© (ii) BC is a tangent to the

circular arc at B
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(iii) /_AOB is no larger than g radians and
(iv) |ac] < 1.
Suppose P is a point on the same side of arc ABC as O
(i.e. the curve appears convex from P), and that
|ap| < 1 ana |cP| < 1.

Then if 8 is a point on ABC, then

|sp| < max{|AP|,|cP| 3.

The truth of this lemma is easily checked using
the following steps:
(1) Show that if S 1is a point on AB, then
|sP| < max{|aP|,|BP|}.
_(2) Clearly, if S 1is a point on BC, then
|sp| < max {|BP|,|CP|}.

(3) Show that |BP| is bounded by |AP| and |CP
We now revert to consideration of our dissectlon.
It is shown in detail in the Schlegel diagrame. The
regions removed have been indicated by shading.
Suppose Gf is the point on the face ApC,C{SzR; mnear Gy
where the dissection passes from the curved surface onto the
flat face. Also, suppose Gf and GL{ are points on the
faces R4S40,C48,R, and A CLCS{R{ respectively defined
similarly.
In our dissection, we can consider the curves like
GLO to be like the curve AC in the lemma. By the lemma,
we need only consider the endpoints of the curve, provided

the figure obtained for the dismeter of each set is at most
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1, which is the only case in which we are interested anyway.
At times, the length of the line BC 1in the lemma may be
zero, but this does not affect the truth of the result, So
we can replace all mention of G;,Gz and Gz in our
previous argument by Gi,34 &and Gi respectively, The
coordinates of these pdints are:

(BB + 2t, 23 + t, 23 + t)

G (~ £/3 + C(% - 3),C(1=r),- &3 + (3 - )

Gi(H3 + t, 23 + t, 13 + 2t)

where (¢ 1is the smaller solution of the equation
E(1-1)722-4(1=r)(3 + v3)z+(} - B(1-r) + &(1-1)?) = 0,

and, letting a = #(V/3-1),

-a - -8a
t = 6 »
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This modification results only in small improvements and

the critical lengths become

(Fi,Fz) and (G:’a,E1>o of

these critical points we can remove Fz Dby the following

rounding argument,

In the construction of
the L-cover, we considered
"corners" as the pleces of
the octahedron beyond tan-
gent planes to the sphere
of radius r. Now a
"corner" is a square-based
pyramid, Suppose S 1is
a closed set of constant
width 1 which when covered

by the octahedron inter-

sects the corner A,

Then no point of 8 can have distance more than 1 from the

base of the pyramid,

Hence in this set of the 1-cover, we

can round the edres of the large square opposite the occup-

ied corner.

The argument allows us to remove Fs,

we can remove Dz and D4,

In eddition,

but we shall do so only if

they appear to be critical points of the dissection.

Hence we do not change the coordinates of Dz and Dj.
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Also we assume that Es 1lies on the original face, al-
though a better dissection may exist with DIz on the curved
surface near Fa. Hence, the only new point we consider is
F4, as shown in the diagram, since by our lemma this is
the only new point which may determine a diameter. Now
P  has coordinates (x,y,z) where
Z=X, ¥ = 2X + %Jf,
and x 1is the larger root of the equation
2(x+5d)® + (2x+5/3+1)2 = 1

where d = 2/3-r,

Replacing all mention in the computer program of
Fe by P4, I obtained the following dissections. In
each case the diameters of the resulting sets are equal to

at least five decimal places,
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r Ol5
o 0.,66828,,
) 0.10000,,
€ 0.48683,,
0 0,58850,,
¥ 0.L3571..
Critical|edges
2 pieces| (G{,Ez)
Piece (G4 ,E,)
with As
Other (D} ,Es)
piece
Diameter|0.98623.,

0.51

0.65953. .
0.11063..
0.47251..,
0.58927..
0.45927..

(Gi;Ea)
(Gé,Ei)

(D{,Ez)
0.98057..

0.52

0.64897..
0.13653, .
0.50839..
0.5403L, .
0.48214. .

(Gi’EZ)
(a4,8,)

(D4 ,Es)
0.97L470..

0.53

0.6L247..
0.12568..
0.42701..
0.61325..
0.52165.,

(GisEz)
(Gé’Ei>

(Di,Ez)
0-969L|-7- .

0,56045. .
0.63081,.
0.14378.,
0.34181..

0.59552..
0.60691.,.

(Fi’Fé)
(Gé,Ei)

(D4,Es)
0.,96263,.

These are the best dissections of this set (or

strictly of a set covering the same sets) of the L-cover

that I have found.

Unfortunately,

obtaining significant improvement.

The case:

2 corners occupied.

I can see no way of

Pinally, we consider the case "2 corners occupied',

As in the case "1 corner occupied', we have symmetry only

about a plane.

The figure and the dissection we shall

consider are shown in detail in the Schlegel diagram,

The square face

The faces

cuts, and the face

B4BiCiCy
Rz Sz S4R4

and RsSaSéRé

HaJdgddH: Dby a small cut,

is similar to that used in the previous cases.

is a face formed by a Pal cut,

are both formed by large

The notation

As usual, we introduce parameters to describe the

points determining the dissection,

0 =

Suppose

%(Jé+Ja) + (1-0)Gy where O<oxl.,
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We could impose extra restrictions on .a by imposing the

conditions that Gz and Fe 1lie in the closed line seg-

ments AzJ3 and CzC4 respectively. However these con-
ditions are not necessary. Further, supposing that

Bs¥,0,6 and 6 are all parameters between O and 1,
let By = g(B1+B£) + (1-B)Fy,

Ee = Fo + Y(Bz-Cz),
Es = F3 + Y(Bs-Cs),

Dz = (1-6)Cz + dBs,
D4 = (1-6)cs + 6BS,
Dy = (1-€)Cys + €By,
Di = (1-e)ci{ + €BY,
D = (1-6)C4d + 6BS
and Dg = (1-6)Cs + 0Bg.,
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As with the dissections in the case "1 corner

occupied", there are two pieces of this dissection obtain-

able from each other by a reflection and two other incon-

gruent pieces. By the usual considerations, the diameters

of each set are determined by one of the following pairs,

2 congruent pieces:

(0,Es) ,(0,Di) ,(0,D2), (0,Ez) ,(0,C4) ,(0,45) ,(G1,Cz),
(G1,F2),(G1,B2),(%1,D2),(C1,D4),(G1,E1),(F1,B2),(F1,Fz),
(F1,G2),(E1,G2),(Ei,43),(Bs,F2),(Di,G2),(D4,As),(Dz,A5),
(D2 ,G2),(B2543) ,(B2,Cz2) ,(Ez,A3),(E2,G2) or (Fs,As).

Other base piece (i.e. other piece containing 0):

(0:02)D(O’Dé),(GZ;EG),(G29F3)9(G27D3)’(G2’CS) or (FstS)-

Other piece:

(Ei:Da)y(Eina),(EisEa),(Einz)y(DisDé),(DisEz)s(Di,Ra):
(Dili 9D2)9(D:’3 932);(}33 ,BZ)a(Ea ’Bi)y(anDi)y(Ea ’DZ):<D3 ,B:{)

or (Ez,Es).

The following coordinates are used.

A3(0,0,-%/3)

Bz (2V/3-1+1,1-1,0)

B3 (0,5/3-1+r,1~-r)
Ci(%,0,-%(v3-1))
Ct(~(H/3-1+1),1-r,0)
C4(0,-(2V3-1+r),1-r)

Js (~r,~(%/3-r),0)

0 (-ar,tar- #/3,3ar- #/3)

Bi(%,%(V/3-1),0)
BL(0,1-r,%5/3-1+r)

B4 (H/3-141,0,1-r)

C2 (0,1-r,-(5/3-1+r))
Ca(-(£H/3~1+r),0,1-r)
Ha(-1,0,~(3/3-r))
G1(0,- £/3,- £/3)

Gz (r(t-1),0,(t - &)r+3
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Fi(%,- #(3-1),- #(V3-1))
Fz (~(1-u)(H/3-141),1-v,-u(H/3-1+r))
Fs (~u(3H/3-1+r),~-(1-u) (H/3-1+r) ,1-r)
By (%,%(28-1)(V3-1),%(26-1)(V3-1))
Ez ((usv=1)(H/B-14r),1-r, (v-u) (2V/3-1+1))
Es ( (v-u) (£/3-1+4r),(u+r=1) (H/3-1+1) ,1-r)
Dy (%,5(e-1)(V3-1),%e(V3-1))
Di(%,%e(V3-1),%(e~1)(V3-1))
Dz (6(5/3-1+r),1-r,(6-1)(H/3-1+r))
D4((6-1)(H/3-141),1-r, 0(H/3~1+r))
Da((6-1)(5/3-1+1r),0(5/3-1+r),1-r)
D4 (8(23~141),(8-1)(H/B~1+r),1-1r)

where
t=1——3ﬁ9‘-— <
1
and u =% + 2%? + (t=1)r )
3 -1+

Using a computer, I obtained the dissections as

shown below,

r Digmeter

0.98770.,
1 0.98397..
2 0,97632..
3 0.97279..
60454 .,10.96232,,

However,‘we shall obtain better dissections than these.

The critical points in the dissections are Gz,Es,D},E4,Ds
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and similar points. Of these, Gs and Ds can be
removed by rounding arguments, Dz 1is removed by using
the fact that the opposite corner is occupied, However,
we get a sufficiently good result for our purposes by
removing Gz only, This is because the diameter of the
final partitioning of the sets of the modified L-cover is
determined by the cases "No corner occupied" and "1 corner
occupied".

Since the faces B,;BiB2BiBsBS and AsAsdszJdi are
distance 1 apart and parallel, we can round the edges of

the face Az2A3Jd3d4, in particular removing G4,G2 and Ggz.

In fact, we also remove As,A3,JdJs and Ji, but we need

not bother about changing-the coordinates of the points
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unless they appear critical in our modified dissection,
Suppose Gi{,G3f and Gi are the points near G;,Gz and Gs
respectively where the dissection line passes from the
curved surface to the face containing C,Ci, C2C4{ and
CsCs respectively, The lemma now allows us to replace
all mention of G3,Gz and Gz in the argument to this
stage by @G{,G4 and Gi. The new coordinates required

are:
¢i(2y + 253,5,¥)

where

y = = fBBE o 4(5m)
and Gi(r(t-1)+x+ £/3, 2x+5/3, (t = &)ridexs £/5)

where

x = 22 éE—Ea y 2 = »/3-14r, and 't is

defined as before.
The following dissections were obtained, We shall
consider other values of r 1later. In each case, the

diameters of each set are equal to at least five decimal

places,

r 0.5 10,51 0.52 0.53 0.56045. .,
o 0.57735..|0.52267..|0.L9L7L. . | 0.5666..]0.37637 .
B 0.12764,.]0,18179.,|0,16786.,|0.18873,.(0.21536, ,
Y 0.14665..]0:12720+ 2| 0116451 -2 |0:18L05 . - |0-21336 - °

048860 . |0:47906+ . [0sL71L1 + 1 |0045862 . -0 47730
€ 04605, |0.5707) - [ 0150629+ - | 0151463 - |0 80171 "
6 0.49176..|0.0L0497. . |0.07760+ . |0.L6L3B. - |0 L7955 "

Critical edges

2 pleces (G1,E2) (Di’Gé) (Einé) (Ei,Gé) (Einé)
Other base

piece (Gé’EB) (GésEa) (Gé’Ea) (Gé!ES) (Gé,Da)
otggzce (DiyE2) | (D4,Es) | (Ds»Bs) | (D4,Dz) | (Da,Ey)

Diameter [0.98769.,.]/0.98013,.]/0.97355..[0.96788..]0.95507..
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Combination of the four dissect.cns.

We now have divided into four pieces each éet of a
h~cover derived from the L-cover given in the last
chapter., If for a particular value of r (ig<r<i/3),
each set can be divided into four pieces of diameter < x
(say), then ds(L4) < x. The table shows the diameters of
interest as calculated by the program, Now the diameters
of the dissections in the cases "No corners occupied" and
"4 cornersoccupied" are monotonic functions of r (as I
conjecture are also the other two diameters). Hence, for
r = 0,519 and r = 0,5191, the diameters in the case
"No corner occupied" could read 0.97516.,. » The computer
appears to have found a local minimum for the diameter,

The results are illustrated on the graph,

¢

2

No corner ocecupied

h\\
\. \ carner occupied

-,

S

Plamgders of knewn dissections
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3
]
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& Bwrners awuple g
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0.5 031 0§ 0.53

Redine ¢



110,

Table: Diameters of known dissections

i Case: No. of corners occupied

0 1 2 k]
0.5 0.96592,.[0.,98623,,|0.,98769.,|0.98772..
0.51 0.,97068..[0,98057../0,98013..,]0.978L41..
0,52 0.97553..]0.97470..|0,97355..|0.96913,.
0.53 0.98047..(0.,96947.,]0.,96788..|0,95988.,
0.5604,,10,98772.,10.96263.,[/0.95507..10.93191.,
0.511 0.,97279.,]0.97987..[0.97898.,,|0,97748..
0,512 0,97166,.|0.97916,,|0.,97851,.]0.97655..
0.513 0.97226,.[0.97876,.]0.,97779..|0.97562, ,
0.514L 0,97261,.]0.97814..|0,97724.,0.97469,.
0.515 0.97310,.]|0,97756,..[0.97630,.|0.97377 ..
0,516 0.,97360,,|0.97702,.|0.,97567..[0.9728L..
0.517 0.97415,.,.]10,97653..]0.97549..]0.97191,.
0.518 0,97465,.10,97596,.|0.97447..|0.,97099..
0.519 0.,97518..]10,97536,.10.97388,.]/0.97006. .
0,5191 0,97522,,|0,97530,.,[0.,97395..|0.,96997..
0.5192 0.97516,,|0.97522,,|0.97369., 0.96987.,.,
0.5193 0.97525,.10,97519,,(0.97360,, |0.96978,.
0.5194 0.97525,.(0,97515,.10.,9735L,.,.|0.96969, .
0.5195 0.97540..[0.97509.,(0,97365,,|0.96960,,
0,5196 0.97540,.]0,97501..0,97351..(0.96950,,
0.5197 0,97543..10,97495..|0.97348.,|0,96941, .
0,5198 0,97544,.(0.,97489,,10,97340..(0.96932,,
0.5199 _[0.97560,.10.97484,.10.97330,,|0,96922, .




Looking at the case

ds(L) <€ 0.97522... &

r = 0,5192,

1M1,

we see that

This compares with the result proved earlier that

da(u) $ 00987720'. »

by meticulous partitioning, but the improvement would only

be slight,

parameters for each partition in the case

Also,

We could improve on this new result

The table below gives the values of the

appear in the earlier tables,

r = Oo5192.

it shows the critical distances in the order they

0

No. of corners occupied

1

2

3

Parameters

a=0,50896, ,
ﬁZOQu7OO6¢o

a=0,65017.,
§=0,13212,,
€=0.49221,.
6=0,55091..
$=0.14931..
U=0,L5676. ,

a=0,49600..
p=0.16807.,
y=0.15187..
§=0,L6107..
€=0,54290,,
0=Q.0L7807 .4

OC=O 08621 3 e 0
ﬁ':o -L|-6875 o »

Critical
edges

(BY,Ms)
(M4 ,Ms)

(Gi:Ez)
(G4,B4)
(DisEB)

(Einé)
(G4,E3)
(D4,EBs)

(GiyEa)
(Ea,Dz)

The result overall is disappointing.

It should be

noted that the dissections given may not be the best dis-

sections of

their forn.

Even with a computer it is imposs-

ible to undertake a thorough scanning process when six

variables are involved.

Hence any of the programs may

have produced a result which is a good approximation to a

local minimum but not a good approximation to the actual

minimum diameter,
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From the graph, we see that an improvement in the
case "No corner occupied" would give an improvement in the
diameter, However, even by applying rounding techniques
and using the symmetry of the set, I could obtain no
significant improvement in this case, For any value of
r(# < r < %/3), the diameter of the sets of a partition of
this set is at least 0.96592,, . This critical distance
occurs twelve times in the set and I can see no way of
eliminating it from the sets of a partition. Hence the
L-cover (with modification) can not give a result better
than 0,96592,. . To obtain a better result by the method
of k-covers, either a cover of larger order or a completely
different cover is needed. We shall look at an attempt

using a different cover in Section 5.l.

In an attempt to obtain a better result, I tried to
adjoin another set to the L-cover to obtain a 5-cover which
could be dissected to give a lower diameter., In particu-
lar, I tried to adjoin a sphere of diameter slightly greater
than 1 to the L-cover, so that many of the sets covered by
the set of the L-cover where no "corners" are occupied would
be covered by this sphere. Hopefully, this would allow
further truncation of this troublesome set of the Li~cover,
and hence yield a smaller bound on da(l4). My attempts

were unsuccessful,

5.2 Dissection of a 1-~cover

Using the L-cover, we have shown that
ds (4) < 0.97522., . It is an obvious question to ask
whether there exists a dissection of a 1-cover which gives

as good a result. So we now consider modifications to our
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dissection of the truncated octshzdron cosring body dis-
cussed in the previous section as the case "3 corners
occupied" with r=3.

Suppose the dissection is labelled as before. The
critical points of the dissection are G,,G3,G; and
D4,D{,Dg,D$,Ds,Dj. We can improve the dissection by
removing the G/s from the covering set, hence producing
smaller covering bodies, For suppose S 1is a closed set
of constant width 1 covered by the truncated octahedron.
Since the faces Ay,As,As and B,;Bi{B;BiB3Bi are distance
1 apart and parallel, S touches each at exactly one point
and the line joining these two points is normal to the two
faces, Then, using the symmetry of the truncated octa-
hedron, we can make either one of the following assumptions,
We can assume that S touches the face B;B{Bz:B4BsBi in
the region shaded in the figure labelled Case 1. Altern-
atively, S touches the face in the region shaded in the
figure label’ed Case 2,

B B,’ B, b;
B: B‘ b'g B@
B. 4 8, B,

&‘-‘&_L Cq:s 2
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I tried both assumptions separately, and obtained a better
dissection using Case 2, so we shall look at that case here,

We now assume thot any set of constant width 1,
when covered by the truncated octahedron, intersects the
shaded region in the figure labelled Case 2, It follows
that no point of the covering body with distance more than 1
from this region need be included in the cover, Hence we
can round the edges of the face AsjAzAs and, in particular,
remove G.,Gz and Gs, Hence we assume that we have
removed all points that we can from the covering body by
this argument using spherical and cylindrical cuts, This
gives a better covering body than the truncated octahedron.
We do not calculate its volume here, essentially because of
the difficulties involved, but also because the improvement
in volume is nrobably not large,

We label the vertices of the covering body as before,
Several of its vertices have been removed. However, in our
calculations, we assume that they are still present since no
vertex of the truncated octahedron is a critical point in
the previous dissection, If one appears to be critical in
our new dissection, we can then allow for its new position,
Hence for our calculation of diameters, we assume that only
G1,G2 and Gs have been removed., In the diagram, the
region removed has been shaded,

The dissection we use is shown in detail in the
diagram, We introduce parameters, The point O is no

longer fixed, being
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0 = (1-r)as + v 2the

where O<y<1i.

Suppose G4 1is the point on the face A 4C4iCzAsz where the
dissection line on the new covering body passes from that'
face onto the curved surface, Suppose Gf and Gi are

points near Gy and Gz similarly defined. As before,

let
E. = oF + (1-a) B23Bi,
Dz = BCz + (1-B)B:
and D4 = BCs + (1-B)Bi

where Ogog!l and 0gpk1, In addition, for parameters
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6,6 and ¥ between O and 1,

let E, =F + (1-6)(By - C,) for 1i=1,3
Di = ¢Cy+ (1-9)By,
D} = #Cs+ (1-¢)BS,

Di = yCi+ (1-¥)B4
YCs + (1'W)Ba.

The parameters o,B8,Y,0,¢ and ¥ détermine the dissection.

and Ds

Two of the sets of the dissection are obtainable
from one another by a reflection, By simple geometric
considerations including use of the lemma proved in the
previous section, one of the following pairs must determine
the diameter of each piece,

2 similar pieces:

(0,B2) ,(0,B4) ,(0,D2) ,(0,D{) ,(0,45) ,(0,Ci) ,(0,Cz),
(61,B2),(G4,Es),(GE,F1),(@1,D2),(G8,D1),(GL,C8),(Fs,Fe),
(Fa,E2),(F2,Es)5(Fs,Dz2),(Fz,D1),(B2,45),(B1,85),(F1,48),
(E2,Ci)5(E1,C2),(D2s83) or (Di,As).

Piece containing the vertex As:

(0,E4) ,(0,D4), (0,42) ,(0,C4) ,(Gi{,Es),(Gi,Fs5),(Gi,D4),
(F14F3),(F1,D4),(Fs,Es), (E1,42),(F1,A2),(Es,Ch) or (D4,Az).

Other pilece:
(EiyEZ)’(E19E3);(E39D2),(E2,Dé)’(Einé):(EisBs)9(E29Bé)9
(D2,D4),(Di,Ds),(Ds,B4),(D1,Bs),(D2,B4),(D{,Bs) or (Di{,Bs).

We now introduce coordinates. The following are

needed:



A2 (0,-%/3,0)

B4(0, 2 4 2)

Bi(a, 0, %)

Cz(0, %,-a)
Fe(~%a,%,-%a)
Dz((1-Ba,%,-pa)
Fi(%,-€a,~(1~€)a)
Es(%,(1-€-6)a,(e=06)a)
D1(Z,-pa,(1-¢)a)
Di(Z,(1-¥)a,-ya)

where

a = $(V3-1)
and
&:1—%Y,

17,
A5 (0,0,~5/3)
Bs(0, a, %)
ci(%, 0,-a)
C{(0,-a, %)
Ez (2(1-2a)a,z,%(1-2a)a)
o(~ #13,-2(1-YV3,- #1n/3)
Fa(-(1-€)a,-€ca,)
Eg((e-0)a,(1-c-0)a,)
Di((1-¢)a,-pa,%)
Da(-¥a,(1-¥)a,%)

€ =

2v/%6=1
La ‘

Also, suppose x 1is the smaller solution of the equation

6z%® + 2az +

1, where a 1is as gbove,

Then G4 = (x,2% + 3V/3,%X).

Finally, we determine the coordinates of Gi. There are

two possibilities,

Either the curved surface at @] is

spherical or it i s cylindrical, depending on the value of ¥.

Now,

G’i b (o"%&ﬁ"%(1'€)\5) + p(%s%’%)
where p 1is yet to be determined. Iff the cut is

spherical, then p is the smaller solution of the equation

928 - 1W/3Bz + 12(34%-384+1) = 0.

If the cut is cylindrical,

then p 1is the smaller solution
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of the equation
10522 + 12(38-16)v3z + 10842 = 0,
To decide whether the spherical or the cylindrical cut
applies, one simply takes the cut with the lower value of p.
Using a computer I found a dissection of the new
covering body into four sets of diameter 0,98006... . The
value of the parameters then are:
a=0,63139.. ,
B=0.31575.4 ,
Y=0,68205.. ,
0=0.91L35.. ,
$=0,.42166..,
and ¥=0.49931.. .
A critical edge of the two similar pieces is (G4,Es), of
the piece containing Az is (Fi,Fs), and of the other
piece (Es,Dz).
Hence, using a 1-cover, we have shown that
ds(l4) < 0.98006... .
We had previously dissected a 1-cover into four sets of
diameter 0,98772..., . This new result is the best result
I was able to find using a 1-cover. It compares with the
bound
ds(L4) < 0.97522,,.

found using the L-cover,
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5,4 Use of a different k-cover

Unfortunately the L-cover has not produced a large
reduction in the upper bound on dsz(L). So we shall try
another approach to the problem, Instead of starting with
a given k-cover, we shall try to obtain a k-cover which
gives a good dissection, Since the method of universal
covers is so effective in the case n=2, we look in
detail at the dissection involved.

When a circle is partitioned into three sets in the
best manner, the circumference is divided into three equal-
length arcs,. The points determining the diameters are the
endpoints of the arcs and are equally spaced around the
circle. Suppose we draw tangents to the circle at three

points, Then we obtain an

equilateral triangle which

happens to be a tile. In
fact, we can remove the corn-
ers of the triangle, as
shown, provided we do not

make the resulting set small-

er than the regular hexagon

of width 1, Provided we

remove gufficiently large regions at the corners, the

dissection induced by the circle proves that dz(3)=3/3.
We try a similar approach in three dimensional

Space. The best partition of the sphere is the obvious
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simplical partition, The
diameters are determined by
segments with one endpoint at
a vertex of the curvilinearq
triangle on the surface, and
the other at the midpoint of
the opposite arc of the tri-

angle, Now there are four

such vertices and six such
midpoints. Suppose we draw
tangent to the sphere at the points, The tangent planes

at the six midpo;nts determine a cube of width 1, and the
four other planes truncate
four corners to give a figure
as shown in the diagram,

We observe that no two
opposite corners of the cube
have been removed, This
suggests an obvious method
for forming a universal cover
by removing one of each pair

of opposite corners by making

cuts at tangent planes to the
sphere, This method pro-
duces a 3-cover of volume 0.83012,.,.,, so the cover gives no

new insight into the wvalue of Vs ,3 since it i s higher than

the volume of the truncated octahedron.
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The cdissection of the set
o o i formed by taking tangent
planes to the sphere is
shown., It is the ob-
vious partition induced
by the sphere and givés
four congruent pieces.
The diameter of each set
of the dissection is

easily calculated, It

is determined by segments

like XY in the diagram,
where X 1is the centroid of a triangular face and Y is
the midpoint of an intersection line of a triangular face
with a face of the cube, Then the diameter of the sets of

the partition is
.\[8_-%# = O-90055,-- .

This figure is encouraging since we have partitioned a set

containing the sphere, However, I could hot dissect the
other sets of the 3-cover in a satisfactory manner, and so
this attempt proves unsuccessful. |

5.3 Conclusion

We introduced the idea of k-cover to obtain an
improved upper bound on dn(n+1), especially for n=3,

Using a 1-mover, we have shown

\/(3+.x/3)/6 = 0.88807., < da(l) < 0,98006... .
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By using a L-cover, we have been able to obtain the better
upper bound of

da(l4) < 0,97522,.. .
The result is disappointing in its magnitude, However, it
is pleasing that it is obtained from simple geometrical
ideas, Our efforts indicate that although the method of
k-covers works in principle, a large amount of work is

required to obtain good results,
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