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ST]MMARY

In 1914, Lebesgue posed. the problern of d-etermining

a closeil set of least area whlch covers every set of

d.iameter 1 in the p1ane" Although such a set has not been

founiL, various sets with tlre required covering property have

been d.iscovered.. Al-so the problern has been generalizeð' to

higher d.imensions n ancl to measures other than n-d.1mens1on-

aI volume.

In this thesis, the probtem has been generalized.

furthern A universal cover of ord-er k is a coll-ectlon

of k bound-ed. elosed. sets such that every n-d.imensional-

set of illameter 1 can be covered. by At l-east one of the k

sets. Vaniorrs examples ATe consld-ered", and. a number Of

forrnal resul-ts prod.ucecL. Iu. partlcuJ-ar, it is shown that

for fixed- posltive integers n and. k there exlsts a

universal cover of ord.er k ïvhose sets are optirnal wlth

respect to any one of the measures: volumer d.iameter or

surface ãtêãt

llhe covering sets of lebesgpef s problern have been

used. successfully to solve the two and. three d-imensional

cases of Borsukt s problen: rr0an every set of d.iameter 1 1n

n-clinensional space be partitlonecl into n+1 sets of

d-iameter less than 1?rr Now, suppose d-,r(n+1) i* the

infimum of al-1 numbers d. such that each set of d-iameter '1

(ri)



in n-d-imensional space can be partitioned- into n+1 sets

of d-iameter at most d.. Universal eovers can be used. to

obtain upper bound.s on the value of d.n(n+1) for each

integer no The method. is 1llustrated. in thre case n=3o

\ 1r-r /
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CIÍAPTER. I
INTR.ODUCTION

1 .1 Lebeszue ti]-e Problem

A closed. connected. subset T of the Eue]'i'd-ean

plane is ca]led. a 3æ if any set of d.iameter ( 1 in the

plane can þe completely covered. by it, ioÊ. if for every

set A in the plane of d.iameter < 1 there exlsts a subset

B of T d.irectly congruent to A. By the d.iameter of a

set, vue mean the supremum of the d.istance between pairs of

points of t}re set. In 1 914, Lrebesgue posed. the problem

of find.ing the tile of smallest area' Although it is

easily seen that there 1s a posltive lower bound. on the

area of a t1le, tt is by no means obvious Tuhether there

exlsts a t11e of area equal to the greatest lower þound-.

fn 192O, pâr t19] reformulate¿ the problem in the

folLowing vIay, restrictlng it to convex tilesr as we shall

from this polnt on:

Problen. Let aL þe the infimu¡n of the area

a(T) of atI convex tiles T.

Then (u) d-etermine the value of aa

(¡) d.etermine whether a convex tile of area

aL exlsts

(") if there exists a convex tile with area

ã!, are all convex t11es with area at

of the fc¡rm to be d.eterminecl later?
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The problem has been partially Solved. In ttre next chapter

u¡e shall gene ra1ize this problem, Ðd so we shall nou¡ look

at a few known results. For a more detailed. account see

Meschkowski [18]" Since we d.efineiL a tile to be a closeil

set, ïue can assume that the setg to be covered. are closed..

Since the Oiameter of the collvex hu]l of a set is equal to

the d-iameter of the sete ïue can also restrict our attention

to convex gets.

For a convex set K in En (Euclid-ean n-space)

and. a unlt vector gr the g!!!þ of K in ttre d.lrection g

is the infimum of the d.istances betlr/een any pair of ffirer-
planes perpeniticular t o g and. enclosing K. The set K

is said. to be of gqnstan!.-glgg w 1f the wid.tlt of K is

t4I in every d.lrection 11. ÆÌy set of constant wid.th w

has d.iameter rlr So, since every set of d.iameter 1 is

contai-ned. in a set of constant wid.th 1 (see Eggleston 16lt
p 126) r wê can assume that the sets to be covered- are

closed convex sets of constant wid.th 1.

Firstly, let us consider examples of tiles.
Êmallest circular tile 1s the Jungrs circle of rad-ius

fhe

ä ^t=,

1161. Clearly no smaller clrcular region 1s a tile since

the clrcumcircle of the equilateral triangle of side '1 has

rad.ius I lZ. ïile shall d-enote Jungt s clrcle by Tri thls
)\-

first tile has area a(fr) = 1.Ol+71)J.,.. .

It is evid.ent tTrat thre square of sid.e 1 is a tiIe,
which we sha1l d.enote by Tz. fhen a(tr) = 1.
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pâr [ 19] showed. that the regular hexagon of wid.th 1

is a t11e; d-enote it by Ta. lhen a(Ta) = LJ3=O.866O2... .

Thus we know of three s1mp1e tiles. The tWo best

known tiles are formed. by trrrncation of the hexagonal tile

Tg.

v"

v6

Suppose the vertj-ces of the hexagonal tile are labellecL

Vr rVz rVa ,V¿ ,Vs rVo 1n an anti-clockÏrise d-irection' If we

d.raw to ttre incircle of the hexagon the tangents which are

perpend-icul-ar to ttre iliagonalsr W€ obtain at each of the

six vertices an isoseeles tniangle. Nortr there 1s a strip

of wld.th 1 between the regions al a pair'öf opposlte

vertices, and. so no figure of diameter 1 can have a point

in each of a pair of opposite trlangles. Uslng the

syrnmetry of the hexagon, without Loss of general-ity we may

remove the tniangular reg:ions at Va and. V6 obtaining a

tile, T¿. Note that when we remove the reglonsr We leave

the bases so that T4 is closeiL. T[e shall always assume

v

vs
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when v{e mak*- .l;runcatlons that the resulting set (ot sets in

later cLrapte¡s) l-" cl,ose¿ unless we s.pecif1cally state

otherwlse" On cal-cul-ation of the ârea, we ob+.ain
Da(To) = ?- - í: J3 = 0,845299.., " This is the best tile

that Påf found-, We shal-l at times refer to it as tne PåI

t1le ori as the truncated. hexagona-l til-eè

we shall_ now consid.e¡: rz fu::'-l--hei? imp:¡owcnent orr this

tjle. Tkris. improvern,:nt is not very significant "Ln t'e7"4s

of area, but 1s of interest since we sha]l use a slmilar

teehnique at a laten stage, Sup¡rose TiIe l-abel the vertlces

as before, and- suppose that A3r GD, EF are the tangents

to the lnclrcle near Ve rVz and- V1 respectivelyr âS shown

in the d-iagrâIll¡ liVe have alread.y restricted. oun attention

to closed. sets of constant wid.th 1. Since the hexagon is

of wid.th 1, any set of constant wiflth 1 when covered. by the

påf t1Ie w1ll- touch eaeh edge of the hexagon at exactly

q6

V6
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one poj-nt. Tn particula¡, the 1j-ne ioining the two points

Ìuhere the set touches opposite ed.ges will be perpend-icular

to those two ed.ges. Now, the set will touch Yl-Y, and-

Vr-Vu at a point in the segments V"C and- VtB respect-

ively. l-,et us S1¡Iing an arc FH of rad-j-us 1 and. centre C,

intersecting VsV¿ at H, cuttlng a thln strip out of the

triangle v4EF. Similarly' w€ swing an a:rc of rad.ius 1

and. centre B intersecting the arc FH at K. Then the

figure VTCDV'EK¡'V'AB forms a ti1e, Tso It was iLiscov-

ered- by R, Sprague lZll in 1 936, and so r¡ile shal1 refer to

it as ttre Sprague til-e. Sprague calculated. the area and-

obtaineil a (tu) = OoS]il+1l-¡[.... o

To my knowled-ge, the Sprague tile is the þest tile

known. It is evid.ent that the three remaining vertices of

the hexagonal tile may not loe removed. sincè they are

requlred- for the Reuleaux triangle of width 1. However

it rnay be possiþle to find. a better tile not based- on the

hexagon.

To this s.tâge our consid.ere.tions have proctuced- an

upper bound. for àL, being

a1 <

Clearly al Ìras a lower bound- of zeto. It is well known

that of all curves of d.ùameter 1, the circle has largest

area. Since the circle must þe covered- by a tiler wê

lnmed.iately have
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al ,f =0,7853,.'o '

påt consid-ered. the convex hu1l of the union of a circle of

rad.ius ! and. tïre equilateral- triangle of sid-e length 1' Ile

sho\Med-thatthissethasleastareaifthecentroid.ofthe

triangle and- the centre of the circl-e are concurrent' since

both tlrese sets must lre covered- by any convex til-e, and' since

thisfigure'FSâYyd.oesnotcovertheregularpentagonof
wid.th 1 and. so 1s not a til-e, he proved'

,4

',lJ
l+

i.q

aL>

aHence

Soalthoughtkreva]ueofathasnotbeend.etermined-'the
value is contained. in fairly narroÌv bound's'

, pât al_so proveÖ that a tile of minimal area exists.

buttheproblemoffind.ingoneormorerninima]-tilesis
still- openc Ïlfe shalI consicl-er an extension and' general1za'

tion of h1s proof on the existence of a tile of minimal area

in Chapter III.
¡

æ
Ananalogousproblemistoconsid.ertheSametile

probleminE",wheretlreareacriterionisreplaced.by
volume.Forconvenience'Ïueshal]-refertothecovering
setsanalogoustotilesinthe2-d.lnensiona].problemas
coverine bggies. Hence the proble¡n 1s to find' a covering

boily of smalle st volume Vl'
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Clearlythecubeofsid-elisacoveringbod.y.A

slightly better covering þod.y is the Jungrs sphere of ra¿ius

+ [2, [15], whicn rie shal1 d.enote bv Dr.. Then D1 has

{a

volume

v(Pr )
T
4 = O.96191.... I

D. Gale t7] d.iscoverecl tl]at the regular octa]red-ron
,7

of width 1 (i-.e. of ecLge lengtlr lÉ ) is a covering þoily'
\e

Dz sayr

Then v(Da) = L J3 = 0.86602"' '
Itlspossibletoreclucethecoveringbod.yD2bya

nethod. analogous to that appliecl by päf to the regular

hexagon.

We place planes Para11el to ard- at, a d.istance t from each

plane of s¡rmmetry of the octahed'ron' These cut from Dz

ateachvertexasquare-based-pyramid.wit,}rheight

n = iQ3 1). If we remove tlrree of these pyramid.s in

I

t
I
I

+
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suclì. e, r¡/ay +,ira.t no two of the pyramid-s removetl eontain

opposite vertices of the origina]- octahed'ron' vúe obtain a

new coverirrg bodl¡ Deo since the volume of each pyrami-d-

is f,tS ^tZ - ile Ìt r<¡-lrows that

v(P" ) (o,) - +(3 J3 - 5)

-13
= 0.76794..." c

Itispossibletored.ucethiscoveringbod-ybyan

argument simil-ar to that of sprague, but this would- prob-

abl-y result only in a sniaLl lmprovement'

Theproblemoffirrd.ingacoveringbod-yofleast
volume v1 remains unanswered, as for the correspond-ing

problem in the p1ane, but þound.s can be obtained- on vl'

clearly v1 is greater than the r¡olume of the qphere of

rad.ius +, ard. we can d-eÖuce

[ = o.02359.,. ( vr <

Certainly vle knoiry that a covering bod-y of minlmal volume

exlsts, although as before IJVS d.o not know if such a bod-y is

unique.

l.3FurthergeneralizationsofLebesguetilqproblem
There are essentiall-y two f'orms of generalization

of this prorolem. We shal] use both kind's in the following

chapters.

TVecould-generallzet]neproblemton-d-imensional

EucLid.ean space. clear1y, the generallzed- cuþe of sid'e 1

is always a cover,irtg body. In En , the Jungl s n-sphere

_V
tr

2
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' / L\l is a covering bod-y. Also, Gale iZ]of rad-ius (Vn*r,
\-'^'-l

showed- that each set of ùlameter 1' can be enclosed' in a

r.egular simplex of ed-ge length (r(Ël))z' For large n'
'-o--- 

\ 
¿ 

/

the Gale slmplex is of 1itt1e lnterest slnce the ed'ge length

and- vol-ume of the Gale sirnplex increase with n without

bound_. on the other hand., the rad-ius cf the Jungts sphere

tend.s to L JZ as n increases, and- the volume is
n

TEãnT(T-ffir '
whereld-enotesthegammafunction.Thisvo]umetend.s
to zero as n increasesn

AJ.ternative]y9\¡/ecou]ilgenera"]-j-zetheLebesgue

ti]-eproblembyreplacingthemeasureofvolumebySome
other measure, where by measure we d-o not necessarily mean

a measure in the sense of measure theory' Suitable

alternative measures woulcl be d'j-arneter or surface âreâr

1 .l+ Appficalf-on-lg--Eprsukt s pro-ìc1em

Coverlngbod-ieshavebeenfounclusefulforthetwo

and. three d.lmensional- solutlons of ttre fol-lowing problem,

posed- by G. Borsuk l3l in 1 933t

Problem:Isitpossibletcd-ecomposeeverybounded

set B in n-d.imensional Euclid.ean space En into

n+lsets,eac}rofd.iameter]-essthanthatofB?

The partial- solutions of thls problem have been well sunmar-

al

izeð'byGrunbaumIg]'Thefo]-]-owingisabriefstatement
of the results.
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rt is easil-y seen tha.t without loss of general-ity

u¡e need- consicler the questi on only for those sets which are

cIosed., convex and. of d-iameter 1. Since every set in En

of djaneter 1 1s contained. in a set of constant rnrld'th 1, it

is sufficlent to consider only sets of constant wid-th 1 '

Hence Borsukf s problen is equivalent to the following:

Can every closed- convex set B in En of constant

wid.th 1 þe partitioned- 1nto n+1 sets, each of

d-iameter less than 1?

Had.wiger [10r11r12) used_ an analytic proof to show

that the result was affirmative for sets with a smooth

bound.ary¡ i.ê. s€ts such that through every' bound.ary point

there passes exactly one support hyperplane. This result

has been sharpened. to Sone not necessarily smooth sets by

And-erson-Klee [t]. However, the general problem can not

be solvefl from Hadwlgerr s result by a limlting or approxi-

mation process.

A general proof for EB was pi-rblished by

Egg'leston in 1955 (t[l or [¡] ' 
pp 77-92). A similar proof

was d.iscovered- lnd.epend-ently by Perkal in 1947 (see the

comments of eJrin¡aum [g], p zfi). Egglestonts proof

d.epend-s on the fact that two points of a convex set x of

d.iameter d. a]"e at a d.istance d. apart only if there

exist two parallel supporting h¡rperplanes of X, one

passing through eaclL of the points. Due to d-ifficulties

of a topologieal natlrer ilo succesSfUl extension of ttris
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method to higTrer cl.imensions has been found-'

For two or tlrree d'imensions, a simple proof' giving

results stronger than the affirnative solution of Borsukr s

problem, has been founil using covering boclies'

Gale tZ] Proctueed' the

foll.owing Proof for the Plane

case, !Vê recall th.at every

set of d-iameter 1 in the Plane

may be covered. bY the regular

Trexagon of v'¡idth 1. Hence, if

ïve can d.ivid.e the regular

hexagon of wri-dth 1 lnto three

sets of d.ianeter at most d',

it will follow that every set of diameter 'l in the plane can

be iliviiLecl lnto three sets of diameter ( oÛ' lo d-lvid-e tfie

tile in the required- manner, w€ d-rop perpeniliculars from the

centre of the hexagon to three alternate siiLes. Tkre three

resulting pieces each have d-ianeter + J3, being the

d.istance between the feet of ttre constructed- perpend'iculars'

Hence we d.educe:

Arry set Ín the plane of itiameter ( 1 can be

partitioned- lnto three sets, each of cl-iarneter ( + ^13'

In a¿¿ition, we note that L J3 is the best possible such

number,sincelnapartitionofthecircu]-and.iscofd.i-
ameterlintothreesetsrãtleastoneofthesetshas
d.iameter L JZ or greater'
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Forthree-d-imensionaltruclid-eanspacertwosimilar

partitiorrs of the tnrncated octahed.ron (whlch vre consid'ered'

earller) have been d-escribed. in the literatu¡e. The

d-lameters of the parts in Heppest partltion [14] are

a3e <

1n more d-etail latero It appears evictent that further

truncation ard. meticulous partitioning of the truncated'

octahed-ron would. result in an improvement in the d'iameters'

In f acf', we shall f ind an improvement'

since thls method- of covering boilles appears to give

stronger results, rtre no\M geneta]-j-ze Borsukr s problem in a

manner suggested. by cninbaun [g]. For a set K c En with

d-iameter I e and- for a positive integer k' l.et An (f rf ) be

the infimum of a.11 real nurnbers q. such that K nay be

partitioned, into k subsets, each of clianeter ( ct. Alsot

for a positive integer kt

let a, (ro) = supldn(K,k) lK c En ¡ d-iam K = 1j'

lÏj-th the clefinition, for the affirnatlve solution of

Borsukr s problem, it is sufficient to obtain an affirmative

solution for the fol-lowing:

Is d.n(n+1) <

However, thei.e iS also the ad.d.itional problem of actually

d_etermining the value of d.n(n+1), an¿ we shall refer to

this as the mo '
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The value of ar]) has beer:. d-etermined. as L J3"

For hlgher nr the value of dn (n+1 ) is not known'

Knaster t17] menti-oned- the problern of d.etermining itn(B"rk),

where Bn d.enotes the solicl- n-climensional sphere or ball of

d.iarneter 1, but even the problem of d-etermining cln (Bn rn+1 )

remains openc However, the obvious sinpllcial d-ecomposJ--

tion of Bn shows

for even n
dn(Bnrn+1) <

for od-d- 11.

Hadwiger [1J] proveil that equality hold-s for n ( 3, but

for. n ) 4 could. establish onlY

dn (Bn ,n+1) >/ L*L n-1
2n

Hence, i1l Es the sphere of cliameter 1 cên be partitioned.

into f our sets, each of iliameter

3 + J3)/6 = 0'88807.. '

and.notintofoursets,eachofsmallerd.iameter.Noset
K of d.lameter 1 is knovrn in EB witfr

(l * J7/6 = ds (s" ,4).

we note that this is analogous to the result that t¡ere is

no set K of d-iameter I 1n E2 with

d"(rri), + J3 = dz(8215).
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rt has been conjectured- by Had-wiger 11^ and- Gale t7] that

d.n (n+1) = dr, (Bn rn+1) for every positive integer rrr TUheth-

er this is true or not , iL f ollows from our d.iscussion that

3 + J3)/6 = o.BB8o7'" < (4) < o.9BB7!.'c,

and- the conjecture 1s that ar(4) = J 
C3 + J3)/6 '

Inouruseofcoveringbod-iestoobtainapartia].

solution f or the mod-if ied- Borsukt s problem, vre partltioned' a

set which covered- all- sets of d'iameter 1 ' We could' prob-

aþ1y olotaln a better bound. for ¿"(4) if insteacl- we consid'er

a coll-ection of several sets [C" r. o o o ¡C¡ ] such that each

set of cl-ianneter.l 1s covereú by at least one of the ct'

This gives us motlvation for the concept of a univerqal

k-cover, which rrie sha11 d'efine in the next chaptern \iïe

shallusethek-coverstoobtainabetterupperbound-for

¿" (l+) .

ItiSposslþlethatthemethod.ofcoveringbod.ies
wilf not lead. to a solution of Borsukts problem in d-imens-

ions greater t¡,an 3 (however, see Eggleston [¡], pp 77 '

91-gZ). However in principle at l-east' the method- of

uni-versal k-covers can be usecl for any cllmension'



15.

CFIÂPTER II

IrNrvERS.Al CqIERS

2.1 Def nition and- sta tement lcrobl ems

TVenowmakeageneralizatlonoftheconceptof

covering bod-Y.

Þ:Supposenand.karepositiveintegens,ard.tha.b
U¡ = I,CtrCrrn..rC¡J is a collection of k bouncLed't

closed.convexsubsetsofEnsuchthateverysub-
set A of En of illameter ( 1 is covered' by at

least one of the Cr (t <

setACEnrJrithcl-iamA<lrthereexlstan

J-nteger i with 1<i<k a¡d-aset BCCl such

that A is d-irectly congruent to Bo then we

sha1l call u¡ a unlversal cqver of order-J in'

En, or more bnieflY, a þ]52s in Eno

1]Veimneil-iatelyno.bethateaehofthecoverlng

bod-ies of the Lebesgue til-e problem 1n En forms a 1-cover'

Alsointhed.efinitionweneed.notinsistthatthesetA
is d.irectly congruent to B' but may a1low A to be

congruent to Bo If vre d.o not insist on cl-irect congru-

ence¡Wêmaybeabletofind.smallersetsforak-cover

since we would- allov,¡ refl-ections to occur in the covering

process. This alternative d.efinition will be mentioned'

from time to time although no work w111 be speclfically

d.one on it, As in the case of ttre tile we can assrfme that

the sets A to be covered- åre closed-, convex ancl of
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corì.stant wid.th 1.

Withthisgenerald-efinition,weshallhaveseveral

questlons to consid-er, mainly analogous to those posed' by

Lebesgue an¿ pâf . Ho1,,¡ever, before posing these questlons,

ïÍe settle solne mat-r,ers of notatlon'

ìllle sha1l d.enote n-d.imensional volume by vn, and-

the sur face area of a bound-ed- closed. convex set S C En

by
v,, (s+8" ) - v" (s)

A" (S) = lin
r.+O+

IT

where Br

and.

X + Y = [ã * ¿l*. X and Ne YJ for a]l X'Y c En"

The d.iameter of a. set l( C En will be d.enoted- by dt (X)

unless the d.imension is cl-ear, in which case we may use

d.iam X. Since X is a set, this d.oes not cause confus-

ion with the other use of d.n used. in tLre moclification of

Borsukr s problem.

For fixed" positive integers n and- k, suppose

U¡ = [C"rOrr.""rC¡] is a k-cover in En' Then we Clefine

the vo1 of the coveq to be

Vn (U*) = max Vn (Cr ) ,
1 <1<k

the sgrface @ to be

An(U*) = max ¡"(Cr)t
'1<i<k

1s the sphere, cenire the origin and raclius t,

and- the d.i eter o the cover to be
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max
1<i<k

We a]-so vrrite

Vr,,k = inf Vn(U*), An,* = -i-nf An(Ur) and' dn,k = inf dn(Ur)
ur< 

\-Á/' ¡¡"1 u¡ u¡ç

where the i nfima are taken over all k-covers i-n En .

In the cases rl=2 and- n=3, we may sonetimes

shorten the notationo For Ír=2t vre shall d-enote Vz by

a for area, and- hence d-enote V" , * by âk' l'2 may be

d.enoted. by p for perimeter, âd hence Ar,* by Pk'

For rt=3, we may d.enote the function Vs by V, or the

number vs , k by vr, in cases where this would- not cause

confusion. Then our results from the Lebesgue tile prob-

1en become

o.825711... <

and. E=O,5235... <V1 =Vs,1 <

Since Barþiert s theorem tells us that aL1 sets of constant

ryld-tb 1 in the plane Ìrave perlmeteryIle and" since tfre päl

til-e has perimeter 3"3811i. . . e ule have

TÍ = 3.1I+159... ( Pt = A2,L 1 3'3811!' o' o

A1so, þy consicLeration of tne Päf tile, we have

1 < drn, ,23J3 = 1.154..n .

llve now pose several questions about universal

Q;uestlon 1 . For glven positive integers n and' kt

dn (ur) dn (cr ).

COV€fS ¡

what are the values of Vn ,*rAo ,r and- dn ,t?
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Althorrghitappearstolrecliffieu]ttofind-actua.l.
values for t}rese constants, v,¡e would- hope to obtain close

bound"s on thelr values'

CJ-earl y Vn , *, A. 
o r ad dn , k are d"ecreasing

sequencesink.Nowdnn*islrouniled-be1owby1.A1So'
sets

of all- e#æ of constant wid-th 1 in En, the sphere has the

largestvol-umerandhenceltsvol-umeisalowerboundon
V, , * f or al-l positive integers kn So we shal1 pose the

following question.

O,uestion 2. For a given positive integer n'

d-oeslimVn,¡=volumeof.bhen-d.imensionalsphere
k-+oo

of d-iameter 1 ,

1im A11 ,¡ = sup [Ao (S) lS c En, S closed',
k-+oo

convex' and- of constant wid-th 1Jt

and. Iim d-n,¡ = 1?
k-roo

Inad-d.ition,areanyoftheselimitsattaineclfora

Positive integer k?

One irnportant question remains:

Sues^t,ion J. For giv.en positive integers n anil k'

d-oes there exlst a k-cover U¡ in En for whlch

(") vn (ur.) = vn , r t

(¡) An(ux) = An,r ,

(") dn(Ur) = dn,r ?

In each case, if there exists such an optimal k-cover'

(¿) how manY such k-covers exist?

(") find- such a k-cover'



19ç

F:romourexperienceinthel,ebesguetileproblem,

we can expect that the actual values of Vn,*, An,¡ and-

dn,k are il-ifficul-t to fÍnd-, and that it is d-ifficult'bo finil

k-covers ïyith these particular val.ues, although we would' ex-

pect to be able to show that such optinal k-covers exist'

of course, f¡or the trivial case n=1 t the line segment of

lengthlistheon]-yconvexsçtofcliameterland.So

V",*=d1,k=1and-A¿,k=2foral.lpositiveintegensk'

AJ-so for n=1 and. ]r a positlve integer, there is

essentially on1-y one optlmal k-covef , slnce two k-covers

would. only d-iffer in that the sets not used- for covering may

not 'oe congruent. So the problem for n='1 is so].ved'

Hence, from now onr ïYe shall assume that n > 2'

In the next three chapters, trve shall see some

partialarrslgerstothesecluestioos¡ThenÏueshallusethe
k-covers to obtain a better bouncL on a" (4)'

æ Si e examol s of k-coverq.

As in the treatment of the Lebesgue tile problem,

we shall- consid-er a f ew examples f irst' I have not

obtairied. many exarnples with the aim of lowering the upper

bound- on iliameters or surface area, and. there are possibly

consid.erably þetter covers with respect to these measures

than those glven here.

Thereisageneralmethoilforobtalningk-covers

whlch we s1:a11 frequently use, although other nethod.s nay

give bet-ber resulte at tjrnes. suppose vfe have a bound'ed'
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cl-osed- convex set S C En whi-ch covers at least one set of

constant width 1. Then if u¡e d.raw two parallel hyper-

planes, distance 1 apart, trve d.ivid.e s into three regions

AeB ,C , where B lie s between

the hyperplanes, and. A and- C

each l-ie on opposite sld-es of

the hy¡rerplanes. VtIe can also

assume that B 1s elos ed-'

Then eny set of d-iameter < 1

which can be covered. bY S can

be covered- by either A U B or

B U C, since the d-i stanc e

separating A from C is 1' Furthernorer both AU B

and- B U C are bound.ed., closed- and- convex, and so are

suitable sets to form part of a universal cover. In

practice, to orotaj-n a k-cover, we ap1lly this general method-

to the sets of a universal- cover of ]ov'/er ord.er, makÍng a

sultabl-e choice for the orientation anri. posltionlng of the

planes.

TVe nolv consid.er two specific examples:

a

I\Ie can easily form a 2-cover in the plane from the

pâf tile¡ i.e. tTre trrrncated. reg.¡llar hexagon of wid-th 1.

Suppose the vertices of the hexagon are Ya tVz rVs rV¿ rVu ,Ve t

and. that the truncations are at Vp and' Ve'
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V

vs vs

If we il-raw tangents to the inscribed' circle of the hexagon

at tLre points where the d-1agona1 vrv. cuts the circle, we

form two isosceles triangles separated by a paralle1 strip

of wid.th 1 ' Then we see that each' set of d'iameter 1 in

the plane must'be covered- by one of the f igures formed' by

truncating tlrree corners off the regul¿r hexagon, by using

cuts tangent to tlre inscribed. circle. This can be

achieved, in essentlally two cl-ifferent ways, namely by

removing vertices V1 rVe rVe or by removing V2 eV4 ¡V6'

Hence we obtain a 2-cover.

n t

t

%

l

a

I
(

J



Each set of this 2-cover IJz

is founcl to be
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Ïras the salne atea, whlcÏr

Ê

a(u,) = 3 - îrJ3
= O.831+936" ' '

Ihe perimeter is P(Uz) = 12 - 5 J3

= 3.339711.'" '

Thls compares v'¡ith the pâf til-e TÀ which has

a(n.) = 2 -3J3 = o.8452g9"'

arrd- p(T¿)=8-ï^tZ=3.3B1fJJ"t'
and.alsohaslessareaanctperimeterthant}reSpragrr-etile

Tc.

Sincethecurveofconstantwid.thlwithgreatest

area is the circle, and. since every curve atr constant wid't'h

t has perlmeter 7T, Ïve see that

f; = o.7g03g... <

and ?t' = 3.14159'.. ( PB = Az rz <

These are the þest bound-s v,¡e shall establish On these numbers'

pât prod.uced. a higher. value for the lower bouncl- on al by

consld.ering the convex hu1l of the union of a Reu1eaux

triangle of constant widtrr'1 ard. of a clrcle of d'iameter'1 '

Heshowed'thatthisconvexhullhasleasta:J"eawhenthe
centre of the clrcle anit th.e centnoicL of the triangle are

coincid.ent, and then the area is

Tf
E + ^134 = O.82511 1. n. a
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Now the Reul-eaux triarrgle may not be covered' by the sane

set of a 2-cover as the circle. However, lf We consid'er

the Reul-eaux trlangle, the regrrlar Reuleaux pentagon and'

ttre circl-e, al-l of d-lanteter 1, we see that at least one

pairofthesethreesetsmu-stbecovered.bytheSa]neset

of .bhe 2-cover. By a simllar proof t"that or pât f or tkre

case of the Reuleaux triangle and_ the circle, r was able

to establish that the convex hu]-l of the union of the

clrc]eofd-iameterland.oftheregularReuleauxpentagon
ofwid.thlhasleastareawhenthecentreofthecircle
lies af, tire centroid. of the pentagon. I omit the proof

fortworeasons;firstlyritisalong'ted'iousand'yet
an easy extension of pâtt s proof , and second'Iy' the in-

crease in ai:ea over n* is smaI]-, since the area is iust'

i-lco,tff = 0.7988...

The convex hull 0f the union of the Reuleaux trlangle and'

theregularReuleauxpentagonofwid.thlhasareao.BlJ.,.
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whent}retwoSetsarepositloned'asshownintheiliagram.

This is the least value I have found' for this ãTêãc I

conjecturethatitisclosetotheactualleastvalueancl

that the Least area posslble is greater than 0'7988"' '

If this is true, then

a2>

and. so O.7988... <

Earlierlvesawthata.llt}reþestknowntilegWere

formed.fromtheregularhexagonofwld.thl,lt/enotei!-
¡irrat.therenaybeabettertilewithrespeettoaîeawhich

can not be obtainecl from the hexagonal tiIe. simil-arlyt

there may aLso be 2-covers v¡hich can not be formed' from the

hexagon'Henceltrled.toobtaina2-coverusingtwo
d-ifferent regular polygons of width I ' but I was unable to

obtain anY useful- results'

A 2-cover inEs'
In J-d,imensional space, vre sha11 apply our general

method. to the tru.ncated- octahedron' This is the loest

coveri-ng bod.y we obtained-, although we d'1cl note that lt

cotrld-þeimproveclbyargumentsimilart,othatofsprague'
In the plane vue obtained' a 2-cover by truncating

cornersrbytakingtangentstotheinscribed-circleofthe

truncated.hexagonalti]-eattwooppositearrd'prevlously

untruncateÖ corners' We note that in the case of the

truncated. octahed-ron covering bod-y' there is no pair of

oBBosite untruncated- corners' and' hence this nethod- can not
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be applied- cl-irectly by taking tangent planes to the in-

scribed, sphere at tJ.e vertic€sr However, the essential

id.ea of our method- was that there exlsted" a strip, of wiclth

1 which d-id. not cover the covering body, anÔ' the circle

only helped. us in positioninf the stripn So' ifi the case

of the trunca.ted. octahed-rolt, ÏtIe could- make further trunca-

tions perpenilicular to a oiagonal by shifting the cuttlng

planes toward.s the remaining vertex at one end' of the

d.iagonal. Alternatlvely, We coulil remove an ed-ge. lMe

consid.er a 2-cover formed- by each nethod''

(i) consid.er the case where we make a further truncatlon

byacutparalleltooneofthepr'eviouecute'Anyset

of d.iameter of at most I cgn be covered. }y the truncated.

octahed.ron v¡hen either a small- square-basecl pyramid' is

removed. or rl,¡hen a thin slice is.removect at the opposite

face, the pieces being removed. e.aeh separated- by a three-

d.imensional' para11e1 strip of ,wid'th 1' Clearly' the vol-

ume of ttre 2-cover so obtained. is least wTen the volumes of
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thepyranrid.and-oftheslicebeingremoved-areequal,since
one increases as 'Lhe other d.ecreases. suppose equality

occurs when the small pyramld belng removed. has height h'

Then the volume of the pyramid' is 3n", and' the volume of

the slice is fi1.<JZ-r-h)" (L J3-Ð" l. Applying Caniranors

formula for the solution or a cuþic equation, we fincl

h=+ J3-L - Lu lGs+t J3 *
28

884-51 0 J3)+

t
+G5+3 J3 - ss4-510 /3)ã I

=O.305570'..,
ïvith this choice of h, the volume removed is o'o19021 " " "
and. so the volume of the 2-cover is 0'748927"' '
(ii) Nov/, consid-er the case of a 2-cover formed by

truncation of ed"ges. There are six pairs of opposite

ed.ges on the trunca'ted- octahedron. I,ooklng at theml Wê

see that the pairs fa1l into two classes'

I
t/

t
,

-a./

Ât
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For example, the ed.ges AzA" and' CrÇL are opposite'

Ed.geA*A"isalongeclgefrontheoriginal-octahed-ron'
whereasc,cLhasbeenshortened.ateachend..Soweshall

referto}rl'rasashorteilge'Ontheotherhand''the

oppositeed-gesL'BLar:d-ÀlBlareofequallength'being

shorteneÖatonlyoneend..Wesha]--]-refertotheseas
med.iun length ed-ges. On inspection' it 1s evid'ent that

ar¡y palr of opposite ed.ges is of one of tlrese tvro types'

It appears that a way of obtaining a fairly good' 2-eover

may be to remove one of a pair of opposlte ed'ges' If we

removeapairofrrnequal-lengthopposj-teeclgesrWeobtain
onlyasmal]-improvementinthevo]-umeofthesetwiththe
short,eilgeremoved.unlessvÍemakecarefulal]-owanceofthe

position of the cuttÍng planes' If we remove a pair of

equal-length oppositþ ed-gese io€' med'ium-length ed'ges' one

atatirne,byparallelcutstangenttotheinscribeil-sp}rere
as shown' .",;l;":"; 

r;'îl" r:r:;;"rume
= 0o754612' " t

whlch is larger than the volume of our prevlous 2-cover'

Hovrever, each set of this 2-covet is obtainable from the

other by a reflection, and' so this gives us a lower value

fortlrevo].umeofal.coverifwea].lowreflectionto
occur in our covering Process'

So we find- that the fir st 2-cover has the lesser

vol:me, V, (Ur) sâss where
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V"(Ur) = o.7l+8927""',

which compares wi th the truncated- octahed'ron covering bod'y

whlch has

v" (ur) = 0.167941 .. " r

Wenotethatfr.rrthertruncationscould.beapplled

to the sets of the 2-covers 1n a manner slnilar to either of

thosecl.escribectabovetoobtaincoversofhigherordero

InChapterIVrÌYeshallseea4-coverobtainecLfromthe
truncated. octahed.ron, essentlally oþtainecl- by a repetition

ofthemethod.used.toobtaintheflrstZ-coverfromthe
regular octahed-ron.

2.3 For '
Inttrissectionwed.educeSomeresultsfork-coverg

in En where k and. n can take any posltlve lntegral

values.

ïtIe reca11 that Vnr*f Anr¡ and' dt,* af.e the

infima of the volume, surface area and- dianeter respectlve-

ly taken over al-l- k-covers in En. It lmmed'ia'beIy follows

that Vn,k, Ar,r ând' dn,lc are d'ecreasing seçluences in kt

since we can ad-join the ernptf set to a k-cover to form a

(r+t )-coverr

So Vn,* ) Vn,k+lr A¡,x ) An rk*l. and' dn r* 2 dn 
'k+1

for all positive integers n anil k' l'Te also note that a

k-coverinEn+lcanbeformed-frornak-coverinEnby
taking each set of the cover in En+1 to be a right pnism

of helght 1 with cross-section congruent to the
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correspond.ing set of the- k-cover 1n En ' This

d.erived. k-cover in gn+1 has (n+1 )-d-imensional volume

equal to the n-cLimenslonal volume of the Or1g1na1 k-cover

in En. This shols that vn,* is a d-ecreasing sequence

in n,

i. êo Vn , r ) Vn+l, ¡ for all nrk € Z+ '
Even if the analogous results for Surface aÍ'ea ancl clianeter

are true, they can not be estaþlished.by this inethod'' lhe

obvious method. of projecting the sets of a k-cover in En+1

onto a hyperplane d.oes not appear to resolve the issue or

to prove anY similar l?esults.

C1ear1y, for all positive integers n and' k, each

of Vn , *, An , r and dn , k 1s bound-ed- below by zero' Hencet

since for a fixed- n, the sequences [Vn,r ì*=", 2, -. -,

[An,r J*=., p 1. t. and. ldn rr l*=., z ¡ ".. are d-ecreasing and'

bound.eil belowt

1i-m Vn , ¡ e ]irn A¡ , ¡ anil 11m d'n , ¡
lÊrco k-roo ' lç+oo

all exist for each positive integer rro

In fact r¡e can produce better l-ower bound-s d-epend.ing

on n for these quantities. All sets in En of dlameter

all sets of cofrstant lvld.th 1e the sphere has the langest

voLume. Ilence, for any given n ar¡d' k e Z*, the value

of vn,* is bound.ed- below by the volume of the n-il-imensional

sphere of d.iameter 1 t
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i.€. vn ,k ) (å)" -C-1ÉÐ for all n'k € z+ '

The corollary to the next theoren will tell us that this is

the best possible such bound.. In the case of surface aîeae

the problem is not Ealte so slmple. For the case tt=Zt

surface area becomes perlmeter and. Barbiert s theorem tel1s

usthatalfcurvesofconstantwid.thlhaveperimete::7f.
Inhigherd-imerrslons'thereisnoanalogousresultoHow-
ever, 1et

Sn = sup en (X)

where the Supremum is taken over all closed- conveÏ sets X

in En of constant v¡1i!-th 1' Then, of coureiet

An,n ) Sn >

i. eo

for all nrk € Z+.Ao rk >

Agaln, we shall- see tTrat Sn is the best such bound'o

Clearl-Y, we have

dn,r ) 'l for all nrk € Z*,

and. thls is the best s'uch bound.'as seen from the foll0wlng

theorem. The tl:eorem and' its corollary answer most of

the questlons posed- as Suestj-on 2n

Theorem 2.1

Iim d-n,¡ = 1 for all integers n2 2'
IG+oo

Proof: The proof is in two parts' Suppose n is a flxed'

integer ) 2t throughout tJ-e proof , and sup-oose n is a
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positlve lnteger. Suppose U1 is a eovering bod'y in En

of d.iameter d. (e. g. Jungt s sphere) '
(u) choose arSr fixed. d.irection, ancl cut closeil strlps of

width , * * pertrrend.icular to tlre given d-lrection in such

a \{ay tha t each strip intersects the ad. jacent strip 1n a

strip of widttr 1. then each set of d.iameter ( 1 can be

covered. b¡r the intersection of the covering þod-y with at

least one of the strips of wid-th t * *'

.T

(¿

_J-*
Now suppose we have r strlps of wid'th t * *

overlapping in this manner and- covering our covering body'

If lve wish to guarantee that the bod-y 1s covered. and' that

we d.o not have an unnecessarily large number of Strips, wê

Ìrave the inequalities
d-n * r * ff * 1 > d'

and_ hence qqjll < r < m+1 - ä,
and. sor since r is an integer

- l¡-,t \**r-<f(rn.
So for any given d-irection, the covering bocly can be
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d"ivld.ed- lnto at most m ovef.lapplng pie:es of wid'th at

,dmost 1 + ñ in trrat clirectj-on, in such i. manner that each

set of d_iameter ( 1 can be covered. by at, reast one of t'he

pieces o

Clearl.y the aþove argument can be applied

lvely in many directions, since the fact that we

with a covering body was used' onl.y to prove that

of d.ianeter ( 1 could- be covered- by at least one

sets producecl. If we apply the argumelr't in s

d.irectionsrweobtainauniversal-coveroford'eratmost

ms.

(¡)Ïrlesha]-lusetheseresultsfotaproofofourtheorem.

Ishal]-giveaSpecificargunrentintwocl.imensionsand-a
general proof for n d'imensiorrsr The first proof is

interesting since it can be used. to obtain an upper l¡ound-

on dr,k for any posltive lnteger ke whereas the general

proof d.oes not give this extra information'

(i) Suppose rt=Z, and- suppose s is an lnteger > 2'

Choosesdifferentd.irectionsequallyspaced.atangular

intervals of T, and apply repetitively to U1 the

process ileseribed. above to obtaln a universal cover of

ord-eratmostmsoTVithout]ossofgenerality,asgume
the ord.er is Íls, since we can ailjoln sets of ä'lameter ( 1

to the cover without increasing its d-iameter. (rtt fact,

nosetsneed'bead"joined.ifourorlgina]-coveringboilyis
a set of constant wid-th, for example the Jungrs spheret

success-

startecl-

each set

of the

different



35.

since then the orcler is ms arurÌl¡ay' ) so sllppose our

cover is
Um" = [Ct rC, t," " rC*" ! '

Suppose 'Ú d-escribes an arbitrary d'irectj'on'

r.*

fhen there is at least one of the d.irecti ons used- in the

construction of our cover which is at an angle of magnltucle

0 * * to Ú. Hence the wid-th of each set Cr in the

illrection V is at nost

aB = (r . fil sec o

where O < 0 u &" "h. 
Since sec x is an increasing

function on [or%\, we have
'/

wld.th or eacir set C1 in the d'irection Ú

(r . *) """ ft o

lsanarbitraryilj-rection,anil.sincethecliameter
Cr is equal to its maximum ulld'th, we have

ar(u*,) < (r . *) se" ft,

vA

Since þ

of each
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Butd,,*"istheinflnr:moftheiliameter.sofallms-
covers in thre plane, and. so

1 < urrt" <

This is true for all posltive integers ilrs wlth Ê >

Since ( f * *) su" ft - 1 as n+oo and' +)oot and' since

d¿rk is a clecreaslng sequence in kt we d'ed'uce that

lim d' k = 1"p t'¡

k-+oo

(ri) In the case of general n, my proof is not so explicit.

ft is well knolyn that there is a countable subset of polnts

on the surface of the n-d.imensional unlt sphere which 1s

d-ense in the surface of the sphere. Hence there must exist

a function fn: Z+ -+ R satisfyin€i the following conditions:

(") for any fixed' lnteger s > n, there is a set of

s directions in En such that for any arbitrary

Ölrection v 1n En, one of these dlrections is

at an angle of magnituil'e ( fn(s) to Ú' where

fn(=) ,T,
and. (¡) fn(s)-0 as g{ooo

Hence, by a sj.mil-ar argument to beforee v'Ie have

1 < dt't" <

k, by allowing

11m d.n,¡ = 1.
dn,r, is a d.ecreaslng seqllence 1nSince

and. s to tenct- to lrrflnity, r¡ve d-educe
iç+oo

m
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Corollarv

!'or any i-nteger n > 2,

1im Vn,¡ = voJ.ume of an n-dimensional sphere of
k+oo d.laneter 1

n
7ro

= (å)" I(1 + n/2) t(

and. lim A¡,¡ - Sno
k-+

Proof: suppose n is a fixed. positive integer'

volume of an n-d-imensional sphere of d'iameter d'

Denote the

bv gn (d).

k > kot

k > koo

forall k>ko.

eo>

ïVe knbw that
gn(1) ( Vn,r for all ke Z*,

ancl that g'(d) = d-nen(1) ror all iL > o'

Suppose e 1s an arbitrary positlve number' and

Supposeeoisapositivenumberwhichwillbed.etermineiL
Later.lhenrbythettreoremrthereexistsanintegerko
such that

1 ( dn,r <

Hence for all k > ko ' each set of sornø' k-cover in En can

be covered. þy a set of constant wid'th I + Eo' Since of

all sets of constant wid.th 1, the sphere has greatest volume

it fol-l-ows that

i.êo

Hence

SÍnce

gn('1 ) ( Vn,r <

g"(1) ( vn,k ( (1+eo)'e"(t) for all

o ( v¡,¡ sn(1) < [(t+eo)n-tje"(t)
gn(1) is finlte, we can choose an

[(t+eo)n 1i en(1) < ê¡
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Therefore, with this choice for êo t

O ( Vn,k g"(1) < e for all k> kot

and. so lim Vn,¡ = gr(1)
k-+oo

= voJ.u.me of an n-climensional sphere of

d.ianeter 1.

The nesult on the surface area ao , t is proved'

similarly. tÍr:-s requires the use of the result that

surface area is an increasing functlont

1.€. if B anÖ c are bounded. cl0sed. convex sets in En

with B c c, then ¿'(g) ( An(c)'

(for a proof of this resultr s€e Eggleston [6]')

In the simple cases, the corollary says that

Iim Vs,¡ = 1im a¡ =TU,
1çroo k'+oo

lim Ae,r = 1im pr -'tr,
k+oo lÇroo

and.

l1m V", ¡=1imV¡= T
o

k-+oo k-+oo

Tbe theorem tel-Is us that Ön,k' and' hence the

d.ianeter of a k-cover in En, can be made arþitrarily

c}osetolþyallowingktobeasufficlentlylarge
lnteger.Weposed.thequestioninQuestlon2whether
there exists a finite integer k for which dn, k = 1 '

At this stage we can d.ed.uce a part-answer to tÏris guestion'

namely that for n=2 ot 3 and for any positive integer kt

all k-covers -.U¡ in En have dn(Ur) > 1; later, we shall
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see that in f act dn , ¡c >

result 1s trrre for al-l integral n > 2'

Now, eactr set of constant wid'th 1 in En must be

covered. by at l-east one of the sets of a k-cover 1n En o

But sets of Constant wld.th are complete in the sense that

if X is a cLoseil convex set of constant width and- 5d X,

then dian( [¡i u x) >

Eggleston [6], p 123.) Hence, a universal cover U¡ of

ord.er k in En, where k is possibly an lnfinite carclin-

al number, has cliameter 1 if and' only if there exists a

subset T of u¡ whlch is a set of representa'tivee of all

sets of constant wid.th 1 in the following sense:

an (u*) = 1

(=) There exists a subset T of U¡ such that

(i) if S 1s any closed' convex set of constant

wid.th 1 in Et, then there exists a set

W e Ur such that S is d'irectly congruent

to ÏlÍt

( ri ) no two se ts of T are d'lrec t1y congtuent t

and(iii.)everysetofTlsacloseil'convexsetof
constant w10th 1.

So, if dn(Ur) = 1, 1t folJ.ows that k is not less than

thecard'ina]ityofasetofrepresentativesofthecloseil
convexsetsofwid.thllnEn.Slncethereisaregular
Reuleauxr-gonofcongtantwld.thforeveryod.clintegerl¡
it foilows that +.,he card.inality of the sets of represent-
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atives for the two d.imensional case 1s infinite. In fact,

the card.inallty is a.L least that of the real number system,

since in d.ralqing a Reuleaux pentagon of constarLt wid-th 1

vrith tvt¡o given points d.istance 1 apart as verticesr two

other vertices can be chosen as arbitrary points oñ âr"cSr

In the three d.lmensional case, the card-inality is infinite

since each regular Reuleaux r-gon of v¡id.th 1 for od.d- values

of r can þe rotated. about an axls of symmetry to glve a

set of constant wid.th 1. In higher d.imenslonËr I }cnow of

no proof that the card.inality is infinite, although I

conjecture that it is. My attempts to prove the result

by an i.nd.uctive proced.ure have been unsuccessful. Holrever,

in 1ow d-imensions ïue can concLud.e the following:

Theorem 2.2

Suppose n=2 or 3t and. that U¡ 1s a k-cover 1n En

with an (u*) = 1. Then k is lrlfinite'

In fact, for the case tt=2¡ theacond.itions of the

theorem imply that k > c, the card-inality of the real

number systen. I conJecture that this 1s true for argr

integer rL )- 2.

The theorem immed.lately gives the followlng

corol-laries. Each hold.s for any integer n > 2 for

which the theorem is true.

Corol1arv 1

Suppose k

k-cover in
1s an integer ) 2 and- U¡ is a

En where n=2 or 3. Then ch (Ur) > 1
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Proof: Since dn rr Þ 1 for all positive integers n ancl

k, this is just the contrapositlve of the theorem.

9ess.Irs#,-
Suppose k is an integer >

k-cover 1n En where t:r=Z ot 3. Then An(Ur) > Sn'

fn particular, for the caÊe n=Zg

p(uk) > rro

E4;|: Suppos e krnrU¡ are as in the statement of the

corollary. Then by the previous eorollary, there is a set

in ur, c1 sâv¡ and. a closed. convex set K of constant

wid.th 1 such that dn (C" ) > 1 and- AL covers K. Since

dn(C") > 1, there exists a point x€ C1 - Kr and- hence

A,(cr) > l.,.(t< u [+]), ¡"(r) >

because if X and. Y are bound.ed. cl-osed. convex sets in

En and- x c Y, then either X=Y or A" (x) = An (Y) = o

or A"(x) < Ar.,(y). (for proof of thls, see Eggleston [6],
p 89.) so A',,(c") > sn ancL so An(ur) > snn

I clo not know if there is a f inite k-cover in En

(n > 2) with Vn(Ur) - volume of the n-itimensional sphere

òf aiameter 1. Since all other closed- convex sets of

congtant wid.th t have volume less than that of the sphere,

it rnay be possibLe that such a finite k-cover exists,

although I expect other¡¡Ylse.
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CHAPTER IIT

EXISÍ5NCE OF AN OPTIMAT K-CO\@

îhus far we have consld.ered Some results concerning

the values of Vn,*, An,¡ and. dn,k without knowing wheth-

er for each measure there is a unÍversal cover whlch attains

the optimal va]ue. In thls chapter, Ìre shal1 prove that

there is, th¿s answering the first part of Questiori 3. TVe

now state the main result o f the chapter'

Theo-rem ã.1

Glven any positive integers n anit k, and- a

measure (volune e surf ace area or d-iameter) , then

there exists at least one k-cover U¡ 1n En

whieh is optimal with respect to that measure;

i.ên if the measure is volume, Vn (Un) = Vn,r,

lf the measure is surface arearAn(Ur) = An,r,

and. lf the measure j-s d-iameter, dn(Ur) = d'¡,¡o

The proof of this tlreorem is slmilar to that or pâr

t19] where lre proved- the existence of a tile optimal rvith

respect to a9ea. HOr¡¡eVer, several results haVe been prov-

ed here whicfi PâI consid.ered. obviouso f feel that when

these results are generallzed to higher climensioirs they can

not be taken aB trivial. The proof given is a proof of

the existence of a k-cover in En with volume Vn,*, but

u/e ind.icate hovu to overcome any extra d.lfficrrlties in the

proofs for the case of surface area or Oiameter. AS ÏuitÌL
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tne pâf proo{, tiris proof d.epend-s on the Blase}e Selection

Theorem, ancl So \'úe must first clefine a metric on the set of

closed., bound.eÖ subsets of En.

ÐÉ.
eÍ I Ca4

ZC

x

with rad.lus e > 0 is d.efinecL to be the

N(ë,") = [¿= n"lil5-Ull . eJ,

where ligll d.enotes the Euclid.ean norm of

in En

set

spherical ngiqllþellrEood- of a set K 1n En

raclius e > 0 is d.efined. to be

The

with

From this vre can d.eflne our d-istance function'

Ðg.&.

Suppose Kl rKz are two closed- bound-ed- sets in En '
Then the d.istance between Kn and- Kz 1s d.eflned-

to be

u(t<r,rr) = 1nf [e > olK, c N(Kz'e) and K, c N(&re) J'

The function D can be ghov¡n to be a metri-c:

i.e. If " ArBrC are any closed. bound.eil SetS in En, then

(i) D(A'B) > o where equality hold.s if and- only if

A=B t

(ii) D(A,B) = D(B,A),

and (i.ii) o(e,e) < o(R,c) + D(cÉ).

ïylth this d.eflnltion of d.lstance between setsr we can d.efine

convergence of a sequence of sets in the follOwing obvlous

N(K,e) = u N(Jr").
x€ K

IItâIlfI€ f .
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@.
Suppose lft Ì 1s a sequence of closed- bound'ed' sub-

sets of En. If there is a closed. bound.ed- subset

K of En such that ffm n(Nt rt<) = O, then we say

that "bhe sequen-c€-[Ar ges the limit set
i+oo
I

K , and. write 1im K1
a+oo

=K.
TVe nolr¡ state:

Blasche Selection theorem.

suppose tú. 1s an infinlte collection of uniformly

bound.ed. nonempty closed- convex subsets of En'

Then J,t contains a sequence which convenges to a

nonempty bound.ed- cLosed- convex seto

(for a proof of this theorernr see a general þook on convex-

ity, ê.g. Eggleston [6], Benson lzl or Valentlne lry)')
In ad.d.ition to the Blasche sel-ection Theorem¡ wê

need- some l-emmas. lJ[e know that the cube of sid'e 1 is a

covering bod.yr so any good- cover has voLume < '1 . Slnce

each useful set of a k-cover covers at least one set of

constant wiiLth 1, the first lemma says ln effect that the

sets of a good- k-cover can not be long ard' thin'

!9J4*.1.
Suppose n ancl k are positive lntegens' and-

U¡ = [Cr r... ¡C¡ J f" a k-cover in En such that

(i) O e Ct for each i=1 r 2e "'eJEe

(ii) vn(ur) < 1,
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and. (iii) for each i=1 r 2e.. '. ¡k¡ there is a set of

eonstant wid.th 1 covered. þY Cl o

Then each Ct (t <

closed. sphere with centre I and rad-ius n!

Proof: suppose nrkru¡rc1 e.o..ec¡ satlsfy the coniLitions

of the lemma. Suppose i is an integer such that

1<i(k, and.Let

f = SUp

$rf,e C1

where ll3ll d.enotes the Euclid.ean norm of zc Since Ct

is bound.ed- and c1osed., there exlsts at least one pair of

points 
^3o, þo € cr such tha.t llg"-þoll = P, But we are

glven that Ct covers at least one set of constant wid.th 1.

Hence, sirrce Ct is closed., there exlst two points

3r, þ, € cr such that llgr-þ"ll = 1 ancl- 3"-Þ" L 3o-þo"

tt5-Xll (= diam cr ),

3o

âr

By inductlon, vie obtain a

sequence of points .31 and-

þl € C¡ (i=1 ,2etc..¡rr-1 ) such

that llg¡-p¡ll = 1 for each

J-1 ,2r...rrr-1 , and. all the

pl-þ¡ for i=0r1 12r...¡fr-1
are mutually PerPeniLiculan.

Then

conv lgo ,þo ,lt rþ: rPz rþze ' ' ' ¡ê¡- r 'þn-l. J C Ct '
where conv d.enotes convex hull. But the volume of this

convex huLl is at l-east the volume of a gener'allzeiL octa-

þo

Þr
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hed-ron v¡ith perpend.icular" d-iagonals of the same length as

the 3¡ -þ¡ (o <

ized. octahed.ron

[(*.r...r*n)l 1", I r...'* l*"1< ki
1s 2nlkî/nl, and- so the volume of the octahed.ron

[(**,.or¡x¡)lál"rl * (l*=l*.....*l*nl) < åJ

is x/nl, Hence

vn(cr) >

Since xïe are given Vn(Un) < 1, we have r/nl <

so r < n! Because 0 e Cr, 1t follows from the defini-
tion of r that

ll*-gll <

and. hence Ct is a subset of the eloseil sphere witTt centre

I and. racLius nt This completes the proof of the lemma.

The importance of t'Lrls lemma is that it shows that

the significant sets of ar¡y k-cover 1n En which 1s a good.

cover with respect to volume can be placed. insid.e a sphere

wlth centre I and. rad-ius d.epend-ing only on rr. In the

case where we vrish to optlmize wit'h respect to d-lameter,

there is no problem since the existence of Jungt s sphere

tells us that there ar¿e k-covers of d.ianeter at nost
1

/-=tt =\ã" so the sets of all k-covers in En wlthlDntgl " vv

cliameter at most this value, and. such that each set of

k-cover eontains the origin, are sub sets of the closed.
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sphere ïy1th centre o and. rad.ius (#\' .
r './

If we wish to optimize vtj-i!.}I respect to surface areat

v¡e know that the n-d-imensional cutrc¿ of sld.e-length t has

surface area 2n, ancl so the foLlowlng l-emma 1s sufficient.

knm*:lJ
Suppose n and. k are positive integers, and

U¡ = [C., .. o ¡C¡ J f " a k-cover in En such that

(i) O e Ct for each i=1 t7e,.. ek2

(ii) ¡"(ux) < 2n

- /...\ano |\l_11/ for each integer i wlth 1 < i ( k, there is

a set of constant wid-th 1 covered by Ct'

fhen each Ct is a subset of the closed. sphere

with centre g and. rad-ius nl

Prqo:e : Suppose nrkrU¡ eCa e .. . eC¡ satisfy the cond'itions

of the lemma. Suppose i is an integer with 1 < i <

and let r = sup llf-¿ll (-aiam Cr ).
! tf,e01

slnce cl j-s bounited. and. closed., there exist two points

Ro¡þo e Cr such that llgo-poll = rr Now we proiect Ct

onto a hy¡rerpl-ane para11el to the llne segment [go,þo ] ¡y

a perpend.icular projection. Denote the irnage of ct uncler

this projection bY Pr. Then

vn-r(Pr) < å An(ct) <

However, slnce ct COVeTS A Set Of cOnstant w1d"th 1 r P1

covers an (n-1 )-d.imensional, set of constant wlcl.th 1.
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Since the proiectlon was a perpend.icular pro jection onto a

h¡4perplane paraI1-el to [go rþo], the d'iameter of Pt ls

also r, Hence, by the ¿lrgument in the proof of Lemma 3,1,

we lrave TñÉTr 
( vn-" (P, ) ,

and so T"-bT ( nr

i.eo r < n!

Therefore, by the d-efinition of tt

ll=-gil ( nt for all x € ct,

i.ê. Cr 1s a subset of the closefl sphere vr¡1th centre O

and. rad.ius nt

Ihe remaining lemmas concern sequences of sets

converging 1n the sense defined. earlier. The next lemma

has an unavoiclably long and. someïuhat ted.lous proof. How-

ever the rcsult is essential for the proof of our main

theorem.

Lemma 1,?

Sup,¡ose S is a simplex in En, and- suppose [St J

is an infinite sequence of guþsets St of En

such that each s1 1s obtalnecl by a d.isplacement of

S,and.alltheStaresubsetsofabound.ed.
r€gioll. Then there is a subsequence [St. J whlch

converges to a linit set so whlch is obtainaþle by

a d.isplacement of S.

proof: Suppose S a'd. [St J are as in the statement of

the lemma. Since the 51 are uniforrnly bound'ect, nonempty
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closed- convex sUbsets of En, Ìve can apply the Blasche

Selection Theorem. So we d.educe that there is a subsequence

[Sr" j of [St J and. a nonempty closed- þound-ed- convex set

So such that the subsequence [St" i converges to So.

It remains rue prov€ tTrat So ls obtainable from S by a

d.isplacenent. Since ïre are noi,it interested. only in So Ïue

sha11 assume without l-oss of generallty that the subsequence

[St. J is just the original sequence¡ i.€. Iin 51 = So.
a*loo

ljVe novrl show that some further assumptions can be

placed on the sequerlc€r Vilthout loss of generality¡ wê

can assume that I 1s a vertex of S. So, sup-Ðose the

vertices of S are

9tr9zr""$nr$n+t = It

and. the correspond-ing vertices of Sr are

2t t r}t z c o . r o ¡ê1 n r$t n+1'

Consid.er the set of points [3rrlf = 7'*1. This is an

infinite set of polnts contained. in a þound.ed. reglon, and so

there 1s an infinite subsequence [St* ] of our sequence

lst i such that Brr.1 converges to a Ilinit, 9L sâÍr as

k -+ oo. \¡\lj.thout loss of generality, since we are interested

in the properties of so, we can assume that thls sub-

sequence is just the original sequence [St i. Proceed.ing

lnd.uctively v,ie can finalJ-y assume that 1im S¡ - So, and-
1-roo

that lim a¡ ., exists and. i s equal to 9i ("uy) for each
. d¡ a,

1-roo
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j - 112, o. ç ¡rr*1 ¡

lÂ lin $r J = 3l for i - 1r2r. o. o 'rrt1 
.

1-+co

TVithout loss of general-1tye vre can make the further asstlmp-

tion that p|*t - 9. Since So is closed., it follows
-bhat 

3Lr?Le .. o eê{.¡+r € So'

Since each slmplelc Sr is obtained- by a d-lsplace-

ment of S, then for each positive integer i there

exj-st an orthogonal matrix A¡ of ord.er n v¡1th

d.eterminant 1 and- a vector þr such that

.3r I - At ,3¡ + þr for i = 112, o.. ' rn+1 '

Also, since the n+1 vertices of a slmplex are in

general position, ard. since $n+t = l|n. = 9, there exists

a unique rxn matrix .4. such that

Z! = ABI for i - 1r2r.. ô. rn+1.

'Io comple te the proof of the Lemma r¡¿e must sho\¡r:

(i) A is the matrix of a iLisplacemente i.ê. A is

orthogonal witft d.e'uerminant 1

( ii) so = eonv IZL ,ZL, . . . ,på * r. l"
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(i) Since gn+1 9, it folJ-ows lnmed.iatelY that

þt = $ln+e for all i e '/'+ ' But

lim Srn+r
1-+oo

$n+1 p, and- so

Now ]i* gt J = .35 for i
1+oo

112r.,.¡rr*1 . Hence,

J

ob1im
1-roo

c

since Brl = Ar3¡ + þr and. 3í A3¡ r we have

11m
i-roo

].im b,ë¡
i+oo

(¿r gr b Aa J,+

Aao

)

and. since I it follows tlrat 1in Alat
1-+oo

Hence 1im
i+oo

for j 1 ,2r.. n ¡fI*1 . (¿r -A)gr O for

i - 1r2r...¡rt*1 o For eachpositive lnteger ir let

Br = Ar-l\. ALso, let D be the rxn matrix wlth 3l as

its jtth column. Then the cond.ition above implles that

each term of the matrix BrD tend.s to zero as i-+oo.

Since 9tr..or3nr$n+r = O are in general position, it

follows that 3tr..'rgn are IlnearI¡¡ ind.epend-ent'and- So

D is a nonsing:Ulan mat¡|X. Hence, si-nce multiplication

of two rxn matrices lnvoLves only a finite number of

muLtipllcations and. summations (ttre numþer d-epend-ing on-ly

on n), it follows that Bt tend.s to the zero matrix term-

wlse as i-+oo, i.€. A1-rA tenmwise as j,'+oo' Applying the
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same argunent again, 17e ded.uce tllat

ArTAr * ATA termwise as i -r oo

ancL d.et A1 -+ d.et A as 1 -+ oo.

But Ar'4, =I ar¡d. cletA¡ = 1 foneach ie Z*, since

the A1 are ortfi.ogonal wi th d-eterminant 1 . Hence

ATA=I and. d.et.A,= 1,

1,er A is orthogonal with d.eterminant 1, and. so A 1s the

matrix of a d.isp1.acement.

( il ) We now show that So = collv f.g!r, . . o. eã!1*" J , which 1s

sufficient to prove the result of the lemma. Now, Since

So is convex and. since 1Lr... r9L+1 ë So, it immed.iately

follows that

So ) conv l1lrr,... eã!7*" J'

To show that So C conv Ig!" r.. .. eêd*, J,

point of En not in conv l3!., .: ' r3å n, J .

9îr.... eà(¡. are in general positlont

expressed. in tïre form

J=t
qr 3ÍX

n+1

where the cx,J are real and. 
nít d.r = 1. Suppose also that
J=1 r

lft J is a sequence of points converging to xr Then fon

each i e z*, Ir can be expressed, uniquely in the form

su'opose x is añ

Then since

I can be uniqueJ.Y

= 1. Then since the

n

I

+
2rx

L
cr r3r J

v¡here ttre cr J are rear *ta ,i]"r I

clt s are iust barycentric cooriLinatee of the xr s with
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respect to the appropriate Bt s, and. slnce liln 3l J = .3,¡
1-+oo

for i-1 ,2e . . o err*1 and. liln ët = 5, it follovús þy the
L-+oo

properties of barycentric coord.iriåtes that 1im ør J = dJ
l--+oo

for l-1 ,2..ccoefri1 . Hor¡rever, since Æd conv[2|r...r31*"J,

u/e d.ed.uce that at least one of the oJ t" 1s negatlve, and-

hence for that particular i, dr J 1s negatlve for all
sufflciently large i, and. so ër y' Sr for alL suffieient-
1y large 1. Hence 5 is not the limlt of any sequence

of points 5r, çacil in Sr. But if x € So, then if P

is a positive nr:m'ber, then x € N(Sr rp) for alL sufficient-
ly large i, and- so ë would. be the limi-t of a sequence

of points Ir each belonging to St. Hence 5 y' So r and

so

so C convÍgLr.,.. eâfi*r J .

Thus So = conv[gLr... r3l*, J, and. the leruna is proved..

Lemma 3.3

Suppose [St I is a sequence of nonenrpty closed.

convex uniformly bound.ed" sets in En that eorrverge

to a closed. convex set Sr ancl P is a f]-at such

that (int S) 
^P I Ø. Then Ss fì P -+ S n P as

i+oo.

þ,qt: Suppose e 1s an arbittary positive numþer' 1o

prove t¡e result, ïve shall show tþat for all sufficiently

large integers 1t

D(sr ñ P, s n P) <

To achieve this, vre prove the existence of a positive
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integer ao such that

sr n P c N(s n r, E) and s n P c N(sr n P, å)
wherrever i > no.

(i) Firstly, w€ shoriv ihat Sr nPcN(snP,å) for all

sufficiently large i. For suppose this is not tnte.

Then fon infinitely many positive i.ntegers ir there

exlst points

Zte (sr nP) - N(s ôP, Z),

Suppose [i" j is the sequence of such integers i. Then

l7r"l is an infinite sequence of points containeit in a

bound.ed. reglon, and so it has a point of accumulationr Z

sâgr Since 1im Sr = S a.nd- S is cl-osed-, it follov¡s
I-foo

that z e S. Now Zt, e P for each r € Z*, and, since

P is closeiL, lve can Oecluce that z e P. Therefore

z e S n P, Since 3 is a point of accumulation of the

sequence l1rr| wê see that

Zt, € N(S n 
", å)

for lnfinitely margr positive integers r. Thls contra-

Oicts our d-efinltion of Zt", and. so our assumption is

falseo Hence, there exists a positive integer lì¡ such

that

Sr n P c U(s n 
", å) whenever 1 ) r¡ .

(fi) Second.ly¡ we shorv that S n P c N(Sr n P) for al.L

sufflciently large i. For Suppose thls is not true.

Tþen tþet'e exist infinitely many posi-tive jntegers io,
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and- points Z, such that

zr e. (s n r) - N(Sr" ô P, E).
Since lZ"l is an infinlte sequ.ence of points contained. in
the bouniLed. set S, thene exists a point of accumulation,

Z say. Slnce S n P is c1osed., z e. S n P. But, as S

is convex and. closed., and (fnt S) 
^ 

P I Ø, 1t follovr¡s

that S n P = (int s) ñ P, and. so there exists a polnt

a) e (int S) n P such that

ll" - úrll . *N+

Because u e (int S) ñ P, there exist points

!t,t!2t.... r$n+r € S - P such that
(") u e. int conv Í2r rgrr.. c r ,pn*r J

anit (¡) llgr-gli .å for i-1,2,..re,n+'î .

Let l.t1 = i"4igt - äll for i - 1 e2,... errr1 , and let
xeP

¡

p- rnin þtr. Then O<u.Ë
1< jcn+1

there exists a positive integer

u(Sr",S) , ä whenever

Suppose ? is an lnteger > m.

3rrr...¡â¡n+1 € St" such that

Now since lln S¡ - S,
Lroo

a

m such that

f>fiI"

Then there exist polnts

llg'l - Blll ,ä for i - 1r2r....rn+1 .

Ihen, since S,, is convex, conv [3"r, r r r ¡ê¡n*" j C Sr*,

and. also, it foll-ov¡s f::on the d.efinition of p that

(conv[g.r.rrrereê¡n*rJ) n P lØ,
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so suppose f,, € (conv ígrrr.... ¡â¡n*, J) u p c sr" ñ P'

Then there exist non::egative nunbers o-ri"e. '. ¡cf¡¡.'1 such

tha t
n+1 n+1

f,r = ,1r""¡Brr and- ,ì; d"J = 1'

lls.-¿"ll < ll3"1ll + lls-eil + ll*r¿'ll

= lls.-:ll + liz
Then

since drlr.oo.ed¡¡¿1 >

d.J

,Ë*Ë.,Þl "",(å.Ð
ee€etiz*E*E*T6

n+1and. >
J=1

1

e=2
Therefore, since t" € Str A Pr we have

Z, e N(Sr" n P, å)

which 1s a contrad.iction to our d.efinitlon of zr. Hence

our assumption 1s false, and. so t}rere exists a positive

integer na such that

S n P c N(Sr nP, å) whenever I > nz'

(iri) Conbining (i) ancl (ii), and lettlng

rb = max(q ,4) , we ha.ve
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sr n P c N(s n r, B) and s n P c N(sr n P, å)

whenever i > no, and. so

D(sr A P, S n P) * å . e whenever i ) rb.

This completes the proof of the lemna,

Lemma fr,.h

Suppose [Sr J is a sequence of nonempty closed.

convex uniformly bound.ed sets 1n En which con-

verges to a. nonempty cLosed. bounri.ed. convex limit

set S..

Then (i) Vn (Sr ) * vn (S) as i + oo

(ri) ¿"(Sr)-¿n(s) as 1-rco

and- (ir:.) ¿n (sr ) -' dn (S) 
"" 

i -r oo.

Ihis lemma is proved for the case of volurne in

three d.imensional sBace in Benson lz )' pp 1L+2-3. His

proof can be ad.apteiL for the other câses¡

We are now in a position to prove our theorem¡ 1o€.

that a k-cover in En which is optimal with respect to a

specJ-fied. measure (voIume, surface area or d.ianeter) existso

The folLowing proof hold.s for the case of volume; after-

ward.s we indicate how this proof can be mod.ified. for the

other ilêâsüreso

Proof of theogem: Let Vo = irrf Vn(U)

where the inf i¡num is baken over all k-covers U in En '
Then Vo <

covers al-I sets of d.iameter 1. Hence, either there exists
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a k-cover U with Vn(U) = Vo, in which case there is

nothing to prover or there exlsts an infinite sequence

[Ut j of k-covers in En such that if for each L e Zt,

Ut = [CrrrCt"ro..¡Ct*J, then

(i) Vn(Ur) i* a d.ecreasing sequence in I
(ii) 1im vn (ut ) = vo

(iii) v, (u, ) <

and. (ilr) for every 1 e Z+ arrd f or each i - 1r2r... ¡k¡

there exists at least one set of constant

wiclth 1 in En which is covered. by Cr J.

(We note that (iv) can always be achieveiL by assuming that

there is an integer (. 'wit}i 1 < ¿ < k sueh that

Ctrr,... eC1¿ are al-1 dlstinct and. A1¿=Cl2+t=....=Clk.)

By the d.efinltion of k-cover, all the sets CrJ are bound.ed.,

cl-osed- and, convex.

There is one further assumption v/e can make about

the sets Cr J . It fol-l-cl'; s from results of Steinhagen lZZf

and. Santal6 [20] that every closed. convex set of constant

wid.th 1 in En contalns a sphere with rad.ius n(n) where

tt (n) =

1

l-,r¡\2J!L1-+J- for even n
n+'l

Suppose d

and. rad-ius

assumptlon:

(")

1

Tr'z for oild. rr.

osed- sphere in En with centre I
n(n). Then (i.t) allolvs us to make the extra
is tne c

¿ C Cr¡ for all ie Z+ ancl each i=l e2eo'oek'
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Suppose i 1s an arbitrary positive integer'

For each integer i wittr 1 < i < kr 1et BrJ be the

subset of En + J - 1 d.ef ined. as

Bf J = [(*r, r e r eX¡-1rO ,. â. tOrXn+J-1rOr... rO) I

(xlr.rrexn-1rxn*l-") a CtI J.

Then tet Br - "orr(lü."r r), this d.efines a sequence [s, J

of nonempty convex sets. Since each Cr J is closed-, it
follows that each Bl is closed.. AlSo, since Iremma 3.1

tells us that the C1¡ have a bounct d.epeniting only on 11, l¡¡e

clectuce that the Br are uniformly bound.ed.. Sor applying

the Blasche Sel-ection Theoremr w€ see that there is a

subsequence [8," J of the sequence lgr J and. a nonempty

bound.ed. convex subset B of Bn+k-1 such that

Iim B¡.. = B. lvlthout loss of generali-ty, r\¡e can suppose
f+oo
that the subsequence [gr, J 1s just th.e original sequence

let J.

Now for each integer i with 1 < i ( kr 3-et KJ

be the subspace of En+k-1 with þasis

9l ,P,z r ... . r$n-t r!n+ J - r r

where sr is the unit vector in 6n+lt-1 wltrl zeto cofl-

ponents except for the if th component which 1s 1 n

Thus KJ = [(*r, r.o.rxn-ie0¡... rOrxn+J-1¡O¡"" ¡O)=En*t(-1 J'

Also, for each sueh i, 1et [J be the proiection

Tt lK¡ -+ En d.efined. bY

T¡ ( (&, . . r ! rxn-1¡0e " " ¡O¡xn+ J-r '0" " t 
'O) 

)

= (*r, . r r r ¡X¡- l rXn+ j-r).
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Then, let u = [rr.(g ñ Kr), Tr(B ñ Kr)r....¡î¡(g n K*) J.

tiVe shaI1 show that U is a k-cover, optimal with respect

to volume,

Since B is bound-ed., closed. and- convex, 1t 1s eleatr

that the sets of U are bound-ed, closed. and. convex. Hence

we must show that U has the rec¿uired. covering property and.

that Vn (U) = Vs.

However¡ we shaIl flrst show that lim Cr¡
i-+co {

exists and. equals IJ (B n i(J ) ror J - 1r2r. o. ek. VI/e

recall that 1im B1 - B, and. that KJ is a flat through O

i-+oo
for eaclr integer j with '1 < i < k. By the cholce of

our sequence, d C B, and. so O e (int e) ñ Kl for
j - l r2rrooo¡kr Hence, by Lemma 3.3, ]i* (Br n KJ)

I+oo
exlsts and. ecluals B n KJ for i - 1 ,2r... ¡k. Since TJ

is the projection of KJ onto En, it fol-lows that

tim T¡(Br o Kl) = Tl(n n rt) for i - 1r2r..o.¡k¡
].-+oo

i.e. lim C1 J = TJ(B n Kj) for i = lr2r.o.eke
1-+oo

slnce TJ (Br Ô KJ ) = Cr l for all positive integers i ancL

for j = 1r2r o.. ek.

Now, the covering property. Since ar¡y set of

d.lameter ( 1 can be enclosed in a closed. convex set of

constant wid.th 1, Suppose X is an arbitrary closed. convex

subset of En of constant wid.th 1. Without loss of gen-

erality, sltppose also that the origin is an interior point
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of X. Tlren by the inf inite pigeon hole principle ' there

exists an integer i for which X is covered. by Cr J for

infinitely many posj-ti-ve integers i. Without loss of

generality, suppose i=1 . Since rive are then aining to

prove that X ls covered. by Tr.(e n Iq) ' and since B is

the limit of any infinite suþseo-uence of lgt J' v.¡e shall

assume that X is covered- by Ct, for all i e Z+. Then

for eaeh i e Z* , there is a d.isplacement L¡ such that

T,r(X) C C1a. Nowrsuppose gtr....el¡¡r$n+r = O are the

vertlces of a sinplex S # whieh is a subset of

X ard- such that no two of the ed.ge lengths of g are

equal. (There is such a simplex since X has constant

wid.thl and- Oe intX.) ¡'oreach ie Z*, let

Sl = Lt (S), and. then St is a simplex obtained. from S

by a d.isplacement, ard. suppose its vertices are

gl t ) 
'. ...,gÍll where 95 

t' 
= Lr (3r ) . since the cr J are

unifornly bound.ed" by a bound. d.epencllng only on llr the

sequence [St J j-s a sequence of sirnplices, each obtained.

from S by a illsplacement, and. all are subsets of a

bound.ecl region. So by Lemma 3.2, there exists a simplex

So which can be oþtainecL by a ilisplacement from Sr and-

a subsequence [St, i of the sequence [St J such that

I1m 31 . = So. IVithout loss of generality, v\Ie shall
L-+æ L

suppose that this is the orlginal sequence, for vte are

interested only in the limit sets involved.. Hence' ïYe
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have lim S1 = So. Since S is a simplex with no two
i-+oo

ed.ge lengths equal, there exi,sts a unique d.isplacement I-,

such that ], (S) - So. f t follows tfìat lim Lt (x) exists
1-)oo

and. equals l(x). (For suppose x e xo then J is
uniquely expressiþ1e in the form

and. then

L

llr - ¿ll = ô > 0o

n+1 n+1
5 =,ì" É* Êrr *h"*u,n?, þ^ = It

= 'ii '' r' (g' ))xr(

* 
'Þl 

u' r(e' ) as i-roo

= L(5) .

Hence J-im I,1 (x) exists and equals l(5), and. hence
1-+oo

lim f,r (X) exists and. equals L(X) rslnce-eoclr Lr(x) is bounil-ed.
i-+oo
by a bound. d-epend.lng only on n. ) TVe shall prove that

r(x) C Tr(e n Q), which is a set of U, and. so X is
covered- by Uo

Now suppose r,(x) / T"(e ñ Kr). lhen there is a

point x € l(X) æ Tr(g ñ Kr). Since Tr(n ñ Kr) f"
c1o sed.,

inf
¿err(enr,.)

But since lim C1r = Tr(g n K.), there is an integer iL
i+oo

such that

D(Tr(n n Kr),c,r) . å whenever i ) i",
and. since t-in f,t (x) = f,(X), there is an integer ip such

i-roo
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P(l(x), tr (x)) . å whenever i >

Let io = rnâx(i"ri"). Ihen

D(Tr(e n Q), cr") . å

and P(l(x),Lr(x)).å whenever i>
Now suppose i is an arbitrary lnteger > 1o.

is a point Z e I,r (X) such that

61 ,

Then there

I
I
zz-x

Since I,r (x) C Cr' it follows that Ze Çt.^, and. since

T, (g ô Kr) l" closed., there exlsts a point ue, T"(n n r")
such that

inf
¿et.(e niq)

E

þtso as D(rr(¡ ñ K1), crr) we mus t Ìrave

ll: - ell = lls - ¿ll '

ô

zz-u

z

E

2+

a

Hence llr - gll * ll= - ll *lls-ell
ð

2

= ô.

But since ue. 1r(g O K.), this is a contrad.lction to our

iLefinition of ô, and. so l(x) c T"(n A Kr.). This proves

that our set U must have the requlred. covering propentyo

Finallyr we shovr that V" (U) = Vo. TiIe proved- that

lim C1, - TJln nx¡) for i - 1rzr.crr¡kr So by
1-+co
Lemma 3.4,
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for i - 112r....¡k.Iim vn(c,¡) = vn(rr(e n KJ))
1+oo

Thenefore

lin
i-+*

( nax
1< j<k

v.(crr)) vn(ri(e n K¡)),max
'1< j<k

Iim vn (u, ) - vn (u) .
i-+oo

- Vo, and. :o 
Vr(U) = Vo. This completes

ttreorem for the case of volume.

1â

But rim vn (U1 )
i--+oo

the proof of the

The proofs in the cases of surface area and. d.lametep

are id.ent1caI, lvith volurne belng replaced. by the appropriate

measure, since the only real d.ifferences occur when we

establlsh a bound- on the sets of a k-cover d-epend.Íng only

on rr. This has been d.one for the surface area case ln

Lemma J.1 Ä and- is obvious for the case of iliameter.

Vrtre can noïv easily establish a result on the values

of An,* and. dn,*, providing further answers to the

questions posed- in Question 2 of the last chapter'

Coro-l-1arv

For all- positive integers k aniL for n - 2 or 3,

An,* >

re: This now follows from Theorem 2.2 which says that

dn(Ur) > 1 for all k-covers in E2 and- E'3r and- from its

corollary which says An(U*) > Sn.

Clear1y, this corollary is true for all- val-ues of

n for whlch Theoren 2'2 is '6rue.
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g$APÐm. rv
FURTHER EXAtìrlPLES OF k-COVERS

Earlier ìJve saw examples of 2-covers in two and.

three d"imensional space, These were formeiL fnom covering

bod.les by applying the general method of lntersecting a

suitabl-e strip of wid.th 1 with the covering bod¡r. The

main problem now is to d.eclde on a means of applying this

method. in several d.ifferent d.irections simultaneously with-

out producing a cover of large ord.er. fn the following

v¡e sha1l produce several k-covers 1n the plane ancL in three

d.imensional space by a similar application of the general

method.. This application can be applled- profltably to

covers based. on the hexagon or the octahed.ron; we refer to

it as the circle method" or _ç-phg,re method, d.epend.ing on the

cLlmension of the space. The method. is illustrated- well in

the first example.

A 6-cover in ttre olane d.eriv eri fnoil tire regular hexaRon.

Tn the plane, lffe can apply the general method- to

the regular hexagon of wld.th 1 in three d.ifferent d.irect-

ions to obtain a 6-cover. ClearJ-yr we could- apply the

method. to the truncated. hexagonal tile and- we shall cLo this

La ter.

Now, for the hexagon there are three d.iagonals and.

we try to make suitabl-e cuts pereBend.icular to tTrese.
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ï[e must be careful to make use of

the symmetry of the set or lue may

find. lhat the ord"er of t-&re result-

1ng cover is Iarge.

Suppose O is the centre of the hexagon, and
¡

sup-oose r isanumbersuchthat å<r<{. Thenlve
J3

d.raw a circle of racllus r with centre O.

The bound-s on r guarantee that the eircle cuts the þouncl-

ary of the hexagon, and. that the incircle d.oes not 1ie out-

sid.e the circle of rad.lus r. Draw tangents to the cit'cle

where it intersects the diagonals of the hexagon. i/Ve

refer to the regions cut from tJle hexagon near its vertices

by these sj-x tangents as æ. We say that two cornerÊ

are ggj.âcÆ if the correspond-ing vertices of the hexagon

are ad-jacent, âd are .ggpgúE if the corresponù1ng vertices

are oDllosit,e. Sinee r > +, opposite corners are separat-
-¡J - - ' ê t
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ed- by a strip of wid.th at l-east 1. Hence a set S of

d.iameter ( 1 intersects at most three corners of the

hexagon. Now suppose that the set S intersects a corner

A, as in the figure. Then

S d.oes not intersect the

region B cut off bY a line

paralIeI to the tangent cut at

A ancl d.istance 1 frorn ttre

tangent. Similarly, Íf S

intersects B, it ci-oes not

intersect A. Hence we carr

form a 2-cover by removing the

two reglons A and. Br one

at a time. lVe refer to cuts B mad-e opposite an occupied

corner as large cut .

The neal beneflt of the method. is obtained. when we

consid.er how many corners S can occupy simultaneously.

Suppose we 1abe1 the vertices of the hexagon consecutÍvely

Vl rVz rVs ,V+ ,Vu ,Ve ' Then the various

cases are shown in the following tabIe'

v If two cases are simllar in that one
v,

can be obtaineiL from the other hy a

rotatlon, only one is shown, since

for our purposes they are id.entical. Ttre d.enote the area of

a corner piece (o" small cut) by s(r) and- the anea of a

lar'ge cul, by L(r').

v6 Vs



Case

v1

c2

ca

c,

c5

c;

66.

Area removed.
from hexagon

6s(r)

4s ( r) +t( r)
2s (r) +2I( r)
2s ( r)+21(r)

3L(x)

3t(x)

We shall d.enote the resulting sets by Çrr?rr3sr3t,

Csr0e, and. then U6 = [CrrCzr)srC¿rC"rC"J is a 6-cover"

The sets are shown in the follot¡¡ing d.iagram'

1

112

113

11213

1 1315

l+

4r5

416

4,5,6
2 r4r6

11213r41516

2131516

316

2t5

Corners which
S intensects

Cuts mad.e a
Corner cuts I

vertices:
Irarge cuts
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Now each of trre cuts i-s an isosceles triangle with

vertical angle 12Oo, which has area J3 W v¡here h is

the height of the triangle perpend.icular to the od.d. sld-e.

For the corner cuts n = 4 - r, and so s(r) = rt(h - ")".

For the lange cuts, h = l- - '1 + r, and. so
J3

In ord.er to find. the best 6-coverr, (r) 1+r 2

)

of thris formr w€ must find. ttre nunþer r with å < r ( l_
J3

such tfrrat the area of the cover is least. Since S(t)

a strictly d.ecreaslng f uncti on of T t and. f,(r) is

strictly increasing on the lnterval tå, +], the least
J3-'

area removed. is maximizeð,l'rhen 2S(r) = T,(r), if this

I

^/B
*=J3+JZ-1-3

is

occurs in the interval l+,
one obtains¡

On solving the equationt

= 0.513271 o.. r t
whlch is within oúr' bound-s for lo For this value of ?,

S(r) = O.OO7t 12o. o

and. r,(") - o. 014224" . . ,

and. tire sets of the cover each have equal atea, being

A(Uu) = O.823353... .
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A_U-cov,eJ :-n_l,he planq_f so .

TVe shall now appfy the same method. to pälf s tile,

the truncated. hexagon. Again we d-raw tangents to the

circle v'¡ith centre at the point of intersection of the

d.iagonals of the hexagon and. with radius r, where
À

+ < r < -L. This time the resulting sets can be consid.er--.
J3

ed- to have three types of cuts mad-e on the regrrlar hexagont

being the smal] corner cuts of area S(r), thg large cuts

of f,(r) ¡ âs before, and. of course the cuts d-ue to the

truncated. corners of tfre pâf ti1e. TVe refer to these last

cuts as fu,, and- denote thelr area by P, where

T)r- ,=Ç+ .\2- z) = 0o010362...

Vr.

a

vå

\l+
v,

Vo w
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We 1abel the vertices of the hexagon VrrVrrV3 ¡V4r

V6 and. Vu, and. suppose that Vz and V6 are the tnunc-

ated. vertlces of tne PäI t1le. As before, let us refer to

the smal1 regions rrOutsid-err the tangents aS corners. Thent

if S is a set of d.iameter <

hexagon, S may intersect with corners 113t)+ or 5, but

never witkr both 1 and. l¡. trVe consid.er the various ì¡/ays in
which the set may intersect with corners in the following

table "

Case Area removed- from
re r hexa

cL

c2

ca

C,

c5

c6

G7

ce

ca

cro

Cr"

C,,

4s(r)+ ?t

2s(r)+L(r)+2P

ls(r)+L(r)+ P

3s(r)+l(r)+ P

2S(r)+L(r)+2P

S(r) +2L(r)+P

s(r) +zL(r)+P

S(r) +zL(r)+P

s (r) +zL(r)+P

2s(r)+2t(r)

l¡,G)
3t'(r)

This list exhausts all cases, md so r¡e obtain a

12-cover in the plane, U* sâ¡rr T[e nobe ]r<¡wever' that

l+

6

2

1

416

l+r2

116

1t2

216

2 r\16

1 e216

1 ,3 r4r5

315

I ,)+t5

1,314

3,5

5

3

5

3

1 ,l+

1

3

5

4

113

115

3,4

4,5

3,5

1 '3'5
3,4,5

2

6

2

6

I2 6

6

2

216

216

Corners which
S intersects

Cuts matle at v
Small lf,arge I

ertlces ¡
pâr
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each set of t he pairs (c" ,c. ) , (C" ,C, ) and. (C" ,C" ) i"

obtainable from the other by a reflection, and- so if we

allowed" refJ-ections to take place in our process of covering

a set, we would have a !-cover.
Now s(r)<P<l(r) for!<".{. Also s(r)

^13is a d.ecreasing function of T and. t(r) is an increasing

function on the intenval Lt, {]. Hence it is easily-- 
13-

checked. that the naxi-mum area of the first nine sets is

least when

¿(c" )

if this occurs when

equal volume when

In fact, these sets have

= A(cs )

å<r<
= A(c1 )
l_!
J3

= O,51 9337 . ..
which is withrin our bounds. Then

S(") = O.OO5B2)...,

L(r) = on 016192o..

and. n(Cr) = A(Ca) = R(C.) = 0.821982... .

For this value of T, A(C"o) = A(Cl) and" on calculation

A(Crr) = a(c"") <

A(urr) = A(cl) = ¡,(c") = A(c1 ) = A(c1o) = 0.821982.,.,

and- th.1s 1s the best possll¡le |2-cover of this form.

A 12..-çpy.g¡ in-!þe pLane f ron tfunc-aiLe<L--hexago-na1-2-cove4

So farr wê have applled- our method. for the f orma-

tion of k-covers only to tiles. However there is no

a
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reason why vre shoul-d not apply it to sets of a cover of

ord.er larger than '1 , ln/e recall that a 2-cover in the

plane could. be obtained 'by truncating three corners fy eâf-

type cuts fram tLe regular hexagon of wicLth 1 in two d.iff-

erent ïuays; one by removing three ad.jacent vertices and.

the other by removing alternate verticêsr

Suppose we 1abel the vertlces of the hexagon

Vr rV¿ rVs rV¿ ,Vu rVe ' In tlie case where three ad-jacent

corners have been removed., suppose VrrYz ar¡1 V6 are the

truncated- corners. In the other case, suppose VerV¿ and-

V6 have been removed.. As before, in each case rJve d.raw a

clrcle of rad.ius re å < " * {, wittr centre at the centre
JI

of the regrrlar hexagon, and- take tangents to it where the

d.iagonals of the hexagon cut it. In each ease there are

three smafl corner pieces wÌ:.ich may be removed. The sets

obtained. from the set of the 2-cover with three ad.jacent

vertices rernoved, are shovm ln the first table.

Case Corners Cuts iLe at ertrces: Area removed- from
oc ied- re

U1

c2

c-
c4

cs

c6

v7

cs

ls (r) 3P

2s( r)+ L( r)+2P
2s(r)+ r(r)+2P
2s (r)+ I,( r)+D
s(r)+2L(r)+ P

S (r) +zL(r)+ P

s(r) +zL(r)+ P

1t'(r)

3 rLrr5
4r5
315

3r4
5

4
3

3

h
5

314
3,5
415

3 ,4,5

2e

,2
,6
,6
2

I
6

1 6,
1

a1
z-

'1

6

1

2

116
216
1t2

,2 161



The foll-owing table glves

the set otr t'he 2-cover where the

been femov€d.o

Case

\.r g

C"o

Ct"

Ç",

72.

the sets obtained. from

alternative vertices have

Area removed- from

¡s (r) + 3P

2S(r)+ L( r)+2P

s ( r) +2L(r) + P

3L(r)

r that gave

For this

This is the l-ist of all d.ifferent cases" Hence,

since we started. with a 2-coven, and" so argr set of d.iameter

have prod.uced. another 12-cover in the plane. Holvever,

since each set of the pairs (C, ,Ct) and. (Cu , C-, ) l"

obtainable from the other by a reflection, we would- have a

1O-cover 1f we allov¿ed. reflections to occur in our covering

pfOC€SS r

After uslng a computer to calculate the arease I

noted. that all- sets of the 12-covet have equal axea when

L- 2-ãatj

- 0.519337 " ". .

Note tha'b tÏris i s e;lactly -bhe same value of

the optimal '12-cover of the previous form'

5

315

1 13t5

1 t3'5

I

113

2 1416

216

2

2 ,4,6

4

\t6

Corners
occunied-

Cuts ryaile at yertices:
Sma]-]-l I,arqe I Pâl
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value of r,
S(r) = Oo OO5829..,,

r,(r) = o. 0161)2.. o ¡

ar¡i. .then the cov"er, VL, sâSr has area

Á,(ulr) = A(cl ) = A(cp) =...-A(C"=) = ooS17l!+8r.c'

whieh is less than the area of the other 12-cover. This

grust be the optimal value for a 12-cover of this form since

A(Cr), salr is a d.ecreasing fìrnction of r, and. A(C"),
J

say¡. is an increasing ñrnction on tLre j-nterval [år+].
^/3

A l+-eover in Eg

We can apply a very similar method- in Es to the

regr:.lar octahed-ron of wid.th 1 or to the truncated octa-

hed.ron covering bod.y. Suppose we first start with the

regular octahed.ron. In this case ute d.raw a sphere ïrith

centre at the centre of the octaheilron arrl rad.ius r,

å < r < + J3. Then we d-raw tangent planes to the sphere

A
I
I

I
t.

\

E
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where the d-iagonals cut its s¿rface, cuttlng off pyramid-al

pleces at the corners. lit/e shall refer to these pyramid-al

pieces as -ç.o-rrie-tq-Ê., and. cLenote their volume by S(r) (for'

srnall cut). Nottr each corner is a Square pyramid. of volume

1n" where h is the heigþt of the pyramid.o Hence
t

s(r) =âr+ß - r)3.

At a distance 1 from eaeh of tlese tangent planes, draw a

parallel plane cutting a larger pyramid. from the octahed-ront

the volume of u¡hich we shall denote by f,(r). then

r(r)=3f+ß-i+r)3. Nowaset S of iliameter(1

can not lntersect wlth a corner Ar as in the d-iagram,

and. with the langer reglon B opposlte. Also, S can

intersect at niost three of the six corner pleces since

x > +. As there is a large d-egree of symmetry In the

octahed-ron, we find. there is only one d.istinct way in which

S can intersect With no corner, one corner, two cgrners or

three corners. So we obtain a l-¡-cover, U4 sâYr the

cases being listed- in the tab1e.

6s(r)
4s(r)+ t(r)
2s(r)+21(r)

3¡,G)

0

1

2

3

6

4
2

o

0

1

2

3

cl
a2

ca

c,

Vol.removed- from
octaheiLron.

No. of
large cuts

No.
smal1

of
cuts

No,of cornerg S
lntersects

Case
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Since g(r) ls a d.ecreasing function and. f,(r) is

an lncreasing function on l|t+ J3), the volume removed- is

maximized. if t(r) = 2S(r) if this occurs for r in the

interval l+,+ J3). But this equation has a rrnique real

solutiorr for r belng

I-

t

2( 2

1z

+ 1)

= O. 5l+2O97 " " ,

vuhich lies in the required. interval. In this case

S(r) = 0.022659r.. e

T,(r) = O.d+531j,..e

and. v(u¿) = v(c1) = v(cr) = v(c") = v(c.) = o.730067..- .

V'le can apply the same method. to the truncated- octa-

hed-ron, except in this case there are only three corner

pleces which may be occup,1ed..

I
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If a corner is occuBied., lve see that a slice can. be

removed. near the opposlte vertex, since v[e already have

three PäI cuts of volume

D _2r. tz _ å)"L - 3tz U J

= 0.032692... ,

Note how these pieces belng removed- are of just the sane

form as those removed. in the formation of tl:.e best 2-cover.

The sphere method. glves a means of making cuts in three

directions simultaneously vr¡it'hrout giving a cover of too high

an ond-en. As in the case of the previous cover, there is

enough syrrunet::y to give a l-¡--cover, UI sâ]rr with one set

corresponding to each of the numbers of corners lvhich the

set S of d-iameter( l intersectsn

ls(r) +3P

2s (r)+ L(r)+2P

s(r)+2t(r)+ P

3r, ( r)

3

2

1

o

o

1

2

3

3

2

1

o

o

1

2

3

ct

U2

cs

c4

Vol removed.
from reg. cctahed-ron

No. of cu
Smallf r,"re" 

I

ts
P

I
al

No"of corners
S intersects

Case

The sets are illustrated. on the following page. ,As lu the

case of the 6-cover and. t'Ire seeond. 12-cover in the p1ane,

and. of the other 4-cover in 8", this 4-cover has l-east

vol-ume when the f our sets have equal volume. Thls is

easily seen since S(r) is d.ecreasing anil- r,(r) is
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increasins on l+,+ J3).
maximlzed. 'ryhen
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Hence the least volume removed- 1s

3S(r) + 5P - 2S(r) + t(r) + ?t = s(r) + 2L(r) + P = 3L(r)

provid.ed. this has a soluti on for r in the interval

l+r+ J3). Now the equations are equivalent to the follow-
ing single equation:

S(r)-r,(r)+P-0,

i.€. Çf+ JZ-"¡' - $CL ^/3-t+r)s * Çf+ ß-+)s = o.

Applying Card.anors formula for the solution of a cubic

equatlon¡ we obtain as the only real solution

8s4-51oJ3 )
t
3 +Gs+sJ3 - ss4*51 oJ3 )

t
5r=t.+[Gs+tJ3- 2rL-

which, on evaluatlon using a computer, gives

:r = 0.56045451 o.. o .

This 1s certainly wi-thin our bound.s on re and. yield.s

S(r) = OoO19021. '. ,

f,(r) = O. 051712.. " ,

and v(u¿) = v(c1) = v(ca) = v(c") = v(c*)

= 0.710884... å

It is not surprislng that the cuts mad-e are just the same

cuts as those mad.e in the formation of 'bìre 2-cover:, except

here we make cuts perpend.icular to each d.iagonal.

This second. l-¡--cover i-s a better þcover than the

first, vr¡hlch is not surprizing as it was forred. from a

better covering body" It is t,hre best l¡-cover I Ï¡ave found.o
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A 6-cover in E3

Ille noted. earlier that j.n three d.lmensional- space we

can form k-covers by removing ed-ges rather than vertices.

I d.escrj-be here an attempt in this d-irection.

I,et us label the ed.ges of the regular octahed.ron of

wid.th 1 with the numbers 1 to 12 as shown 1n the d-iagram.

Tlle remove ed.ges by cuts which

are tangent planes to the

inscribed. sphere, para11el

to the ed-ge being removed..

For example, in the d.lagram

ed.ge 2 is being removed., and.

the cut is the tangent plane

perpend.j-cul-ar to the line
joÍning the mld.-point of the

ed-ge to the centre of the

octahed-ron, Now there are three planes through the centre

of tLre octahedron wlth each containing four of the ed.ges in
the form of a. square. Since the tangent planes cutting

off opposite ed-ges of one of these squares are d.istance 1

apant, we can remove either one of any pair of opposite

ed.ges of the square* Applying this argument 1n t wo d.irec-

tions on each of the three squaresr wê can remove six ed,ges

of the octahed.ron. The table shows the d-istinct casest

allowing for rotationsl

-.1

I
I

I
I

I

I
I

¡I
I

t
I
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5'6
516
6r7
7'B
5rB
516

2'4
\r12

il

It

It

12,1O

1 ,
ll

il

il

il

il

3cL

c2

ca

c¿

c5

c6

EiLges re
1,3r11 ,9

noved. from, square:
lz,4r1z,1ol5r6,7,B

Case

This is seen to be a complete table of casesr since one can

in turn remove ed.ges from the first square, then from the

second- and. ühen from the third., noting the d.ifferent casesn

So we obtain a 6-cover U6 in tr's r or a 5-cover if

reflectlon is allowed. j-n the covering process since Cz

and- C6 are obtainable from each other by reflectio1.

on calculation, ^r,he volulne cut off the octahed-ron

in removing the first ed-ge is O"O2O53.. o r ard. Since slx

ecLges are removecl with Some overlap of the renoved. ed.gest

it rollows tïI""r, 
+ J3 - 6 xo.o2o6

= 0o7424."" .

Since t]lis figure is larger than the volune of the [-cover

already obtained., and. since the optimal volume of a

k-coven 1s a d.ecreasing f\rncti on of kr thls nev\t cover

provlcLes no new insight Ínto the val-ue of V",uo



81 .

These are the interesting exsmples of k-covers r

obtained- in the plane and- in EB n I mad.e attempts to find.

k-covers in the ¡:1ane þased- on polygons other than the

hexagon¡ oF based- on a combination of two or more d.ifferent

polygons, but f was unable to find. covers lJrith lower area

than those given.

As nentioned- earJ.ier, I have d.one little work uslng

the measures of d-iarneter and- surface area. However by now

ïue have ansr,vered. a large number of the questions posed. in

Chapter II. In Question 1, we posed- tire problem of d-eter-

minlng the val-ues of Vn , *, An , * and. dn , rr. The examples

in this chapter glve upper bound.s on Vn,* for the approp-

riate val-ues of n ard. k.

These results are Summarized. in the following table"



Dimensi on
n

Best known upper
bound on Vn,¡

Comilent on cover
d.etermining thisOrd,er

k

82"

Best knov¡¡r lollter Comment on set ileter-
bound. ofr V¡,¡ nining this lower

bound.er bound.

General k

1

6

9
rr¡ith refl-ectio

10
with ref]-ectio

12

1

1

wlth reflecti

1

2

1

O. Bll4l Jl)l " .

o.823353..

o 
" 
821 982. .

o.B17l+48..

o"167 941 ".

o.751+612

O.710BBl+" .

1

o.82571 '1 , "
Convex hul-l of circle

and. triangle

22

Sprague tile

O "83l+936. "
Hexagon l-ess 3 : f; = 0.785398,,
corners

ClrcLe
Suspect Vr.e >
by c onsi'ieiing
trlangle and- R
pentagon.

Circ]-e

o"79BB.
circle,

eu]-eaux

2

2

Circle method- aPP-
J.ied. to hexagon = 0o785398..

= Oo7B539B" " CircLe

fl = o.7BDjgB..
¿+

Cirele

T
E

Circle nelhod- aPP-
l-ied. to Pälr s til-e

T
-4

2

3

3

Circle method. on
2-cover

Trrrncated- oc ta-
hed.ron E = o.523098.. Sphere

[ = o "5z3D9B Sphere

I = O,523598.. Sphere

r 1

23

l+3

O "7)+8927 " .
Fur ther trrrncation

E = o.023598., Spher eat 2 opposite ver
ices of truncatecl
octahed.ron.

Remove one of a
pair of oPPosite
éages of truncated-
oc tahed.ron

Sphere method. on
truncated- octa-
Ìred-ron

n n

æ/rw
[2-nÐ I t *ä .E

2+
General n General k

(*t^/2 as Þroo)

Jungr s sphere

(*O as rro*)

Sphere
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CHAPTER V

APPLICATTON TO THE MODIT'TED BORSTJK'S PRO¡LEII'I

5.1 the orinciple involved-

In Section 1 .l-¡, Tue saw how a covering bod-y can be

used- to sol-ve Borsukf s problem in trruo and' three d-imensions'

I statecl that the attempt for a solutlon of the mod.ified-

Borsukts probl-em gave motivation for the introd.uction of

tlre id-ea of k-covero TVe recall- that the mod.ified- Borsukts

problem is to determine the value of d.n(n+1) for each

positive integer n, where d.n (n+1) d-enotes the infimum

of al_l real numbers d. such that any set in En of d.ia-

neter 1 can be partitioneC. into n+1 sets of d.iame-ber at

most d-. Now, by Theorem 2.1 , f or any posÍ-tive integer ne

l-im dn,k = 1o So by taking k to be a sufficiently large
k-+co
integerr we can find. a k-cover U¡ of diameter dn (Ur)

arbitrarily close to 1. Then this cover may be fl1vld-ed

into n+1 sets, each of d.iameter < d-n (n+1) x dn (Ur) 
"

Hence, by taklng k sufficlently large aniL then partitlon-

ing a good k-coverr w€ can obtain in principle an upper

bound- on d-n (n+1 ) vrr¡ich is arbitrarily close to its actual

va1ue.

In this chapter we consid'er the case n=3' We

have seen that ¿. (4) satisfies

3 * JÐ/6 = o.BBBo7... <
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and noted- a conjecture that ¿" (4) should. equal this

1.orrver bound-. ïVe shaIl improve on the upper bound..

5.2 a

In this section, v/e use the l+-cover obtained. in the

prevlous chapter to prove

¿" (4) < 0.97522,. o

This result, al-though d.isappointing in its magnitud-e, has

appeal in that it is obtained. using only simple geometrical

id.eas. fn this process, we ma.ke further truncations to the

ind.ivid"ual sets of the [-cover v,rithout prod.ucing a cover

of hlgher ord-er. The partitions vrhlch we shal-I finall-y

obtain are iri fact partitlons of the d-er1ved. l¡-cover.

A]so, v¡e notice that the constmctlon of the 4-cover is

lnd.epend.ent of the value of the radius t of the sphere

used-" Hence V/e are free to al-l-ow r to vary within the

bound.s å < r < + J3" (Since vie are now lnterested- in the

d-ia.neters of the sets of the partition, \rye d-o not recluire

the value of r which gives the optimal volume.) !'Ve

also note that it is sufflcient to d.ivicle tire surface of

the sets of the [-cover into four parts" For the rad-ius

of the sphere cireumscribed. about the orlginal octahedron

is L" J3. Su;opose that the surface is partitio^ecl into

sets of d-lameter at most d. where L J3 < d- < 1. lhen

the convex hull of 'che union of each of these subsets with

the centre of the clrcumsphere has d.iameter at most clo

However, since d" (4) >
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immed.iately foll-ows that d. > + J3.
In the construction of the [-coverr wê consid.ered.

the number of rf cornerll pieces which ïvere inter"sected. by the

set being covered.. In the followingr we refer to these

numbers as the rlnunber of corners occupiedrl.

The case', 3 corners oecupied-.

We shall consid.er the case t'3 corners oecupied.rl

first for the folJ-owing peâsonsr For t=L, the set is

id-entical to the truncated octahed.ron covering bod.y, and

hence the similar d.issections of GËrinbaum and. Heppes suggest

an obvior-ls means of d-issecting tlre Set. Also, if we obtain

a good. resul-t for the case w.hen *=t, we obtain a new upper

bound- on dr (4) .

We recall that this set of the 4-cover 1s an octa-

hed.ron v¡ith square-based- pyramiiLs removed- from three

ad-jacent vertices. ''/Ve use the notation which Cftinbaun

used. in the publication of his d.issection. Ilet the three

remaining vertlces be labeJ-led. A¿- rA" and- As, and- the

other vertices as 1n the Sch-legel cliagram.

The d-issectlon which we consid.er is shor¡un in detail

in the figure. Now, for i=1 r2r3,

Let Er = ctlal * (r-o) t+,

Dr=BC1 +(t-É)nr
and Dt = pcl + (1-B)B{

where O<ct<1 and- O<B<



.tÉ |lD
+ P
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d-issection meeting at O are 1d-entlcal, while the fourth

plece does not contain a vertex of the original octahedron

and- so is quite d.istinct. Tþe il-iameters of each piece are

functions of d and- B. 1o f1nd. the best d-issection of

this formr we seek the values of ct and- 13 which give the

least naximum d.iameten of the pieces. Since this is

iLifflcult, I used- a computer scan to find- good- d"issections

of this form. However the ilissections obtained- ape not

necessarily optimal.

From sirnple geornetric consid-erations, one of the

following pairs must d-etermlne ttle d.lameter of each pi-ece.

lÄtrere a d-istance occurs tlvice, I give only one CâSer

1 similar oieces¡

(o,Er), (o,oå), (o,Ar), (o,cå), (G'8"),(Gr-,F"),(G",Då),

(e,- ,cá ) , (F,- ,F, ) , (F, ,8" ) , (Fr-,Då ) , (8",4, ) , (F",.A.2 ) , (n", cå )

or (på ,¡" ) .

Other oiece:

(E'n.), (E" rDr) r(E" rBá), (D'Då) or (Dr rBá) .

Having d.ecid.ed. on possibl-e critical d.istances, Ï'ì/e

introd-uce coord-1nates. tr'or simplicityr W€ Suppose that

the centre of the circumcircle of the regular octahed-ron

lies at tl:e origin, and. that A.arLz anil- As l1e on the

xrY and. 7., axes respectively, .Then the coord-inates

need.eil- are listed below!
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A2

dlvB

F3 (Ê'- å'')

o (- ¿ r3,- 2 ¡2,- ¿ fi)
Då ((t-B)a,-Êa,r)

arO rr)

((l -B ) ", 
* ,-í3 a)

o,- 1u 
^13,- 

trrt)

(o,-å J3,o)
( o, -a, r)

Bá

F1

G1

D2

aa\r t- 2,- Z)

(

(

(

E1 (", -ry'* U-")ä, -ff * ( 1-")Ë)

E2 (t-")ä,r,- E (1-")å)+ +

E3

where a=+J3- 1+r.
Using this lnformatlon anil a computer, f found- the

followlng d.issections. For each value of r, the d.ia-

meters of the d-lfferent pieces are equal in at least the

first five decimal places, and- this is the val'ue given.

In each case I state one of the ed.ges which d.etermine the

d-ianeter of each set; these are not uniqueo

(-f . (t-o)â,-ff+ (t-o)å'")

r

O.5
0.51
o.52
o,53

Dianeter
of pieces

o.98772.,
O.978)+1 " .o.96913..
0.95988..
o.931)1..

o.47196..
O,)+7O15. .
0.46864",
o.46740. ,
0.46509.,

o.88576..
o"87328..
0"86121..
O.Bl+952..
o. B'1 603. .

E" rD,
E" rD,
Es ,D,
Ea ,D,
E" rD,

LT1

G1
G1
G1
G1 t

,
,
t
,(

\

E3
E3
E3
E3
E3

pq Cri ti
3 pieces

a1 ed.ges
Other piece

c

I

o .56045 , .
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The l-ast va]-ue of T is that for the 4-cover of

optimal volume. The other valueg of T extend- over the

range in which we shal-l be interested- when u/e consid-er

d-issections of each set of the [-cover for the sarne value

of tt However, note the value for the case r'=L. This

case is just the truncated- octahed.ron covering bod-y, and-

SO

3 + JÐ/6 = o.BBBo7.. < t

This compares with Gririnbaumrs upper bound of O"9BB7"

and- Heppest figure of O.9977, both of which were obtained-

by a slmÍ1ar d-issection"

Vt¡e need. not consid.er any better d.issection of this

set of the h-cover; for this d-issection d.ivid.es this set

into pleces of srrf'ficiently 1ow d.iameter to prove the

resul-t on the uÞper bou-nd. of d"(Lf) which Tue sha1l o'btain

from the 4-cover. We sha.ll see that the value of this

bouniL is d.etermined. by the cases rrNo corner occupled'rt ancl-

lll corner occuplêôtt, for which T have not been able to find'

a.s good. a d-issection. However, 1fi Sectiorr J'J, vre shall

see a nethod. how this d.issection can be improved.o

The case: No c orner occupi-ed-'

\4Ie next consid.er the case lrno corners occupied-rl'

This set has symmetry like that of the case jus'b consiùered''

Also, it covers tlie sphere and. therefore is likely to give

a higþ value for the d.lameter of the sets of a d-j-ssect1on'
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Clearlyr we ït¡ould- hope to use the symmetry of the

set in flnd.ing a d-issectlon' We could- use -,,he same

d.issectlon aS that for the truncated. octahecl-ron covering

bod.y. However¡ 1ve note that none of the critical points

in the d-issection of that cover have been removed. and. So no

improvement i-s possible by this dissection. Therefore, in

ord-er to obtain a better ctissection, we use the fact that

aLl corners have been removed.. There are two obvious forms

for the d.issection as shown in the d.iagrâIrls.

\ifhere points are conmon 'Juith thc.¡se j-n the previous

set, the notation is the same. The square formed- on

removing .4.1 has been J.abellecl HLJLJsHB, on ranoving Az

as HåJåJ'H1 and- on removlng AB as HLJ ttJ zHz. Each of

these cuts is mad-e at d.istance 1-r from the centre of the

regular octahed-ron, and. these are the so-called- lf small cutstl.

In the first d.lssectlon, Hi Hg is fairly 1ong,

having length

o.96592. . "
o.gB71J o . .

and. 1 .00867,..

if f = O,5¡

if r = O.53

if :n = 0"56045)+.", a

As a result,
we shal1 use

the other clissection gives lor¡¡er val-uesr so

it.
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'Theseeond-d-issectiongivesthreesimi].arpieces'

all meeting at O' , ard- one other piece' By simple

geometric consid-erations, the d-ianeterS are d-eterninecl by

one of the followlng pairs of polnts if

o,5 < r < 0.560454.., .

7 similar nieces:

(0,,Má), (o',nå") ), (o',c"), (o' rHå ),(B{,Hå), (sl',Må), (B'l,Há") ),

(Bl,K.), (K",Må ), (K",cå ), (K'nå", ), (K'K"), (H5") ,Br\,

(¡1( s ) ,c, ) or (m6 ,n. ) .

O lher oiece:
or (r,nl,vt" ) "(Hl") ,n5") ), (nl") ,M") , (tt[s) ,r")

We novr introd-uce the necessary parameters'

suppose tlrat M1 = or,J1 + ( t-a)¡tt ,

Mí =aJl + (t-ø)ití

and- *Í", - PKt+ ?-P) + for i=1 , 2,3,

where O<a<'1 and O<B<

coord.inates are2

o/ (4, 1, lê¡ B'(t,o,tq3-1))

Bl (+,+(^!.3-1) ,iQ3-1)) c,(t ,-LQ3-t) 'o)

cá (o ,-tÇ/3-1) ,t) Hå ( o ,-r ,$f3-t)

rB (-r,- (L,J3-r) ,o) K" (å ,- tU3-1 ) ,- tÇ3-t))

\|iIe
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K" (- *Q3-t), - tQ3-t) ,L) HÍ" ) t$,tte-^t7 ,+'@-JT)

H:") +G47,i@-ß),9)

Mi ( ( 1-cr) çt¡3-r) ,-G (LJ-3-r) ,-r)

M. (-r ,-"?^13-r) , ( t-") (LJ s-") )

uå (-a (t"/3-") ,-r, ( 1-o) (h/3-")) .

The f ollowing d-lssections ïuere found using a

coutputero fn each case, the d-iameters of each set of

the d.issection agree to at least five d-ecimal places' so

I shall give the figure only onceo I also state one ed-ge

lvhlch d.etermines tlre d.iameter of each pi€c€o

r Diameter

O.5
0,51
o "52
o.53
o,56045. .

o.96592. "

o"97068" "

o,97555. "

0, gBo47. .
o.99709. .

Tfe note that for the case r = O .560\-54" -. , the

d-i-ameter of the sets is larger than that given by Grir'nbaumts

d.issectlon. Hence this d.issection is useful only for val-

ues of r cl-ose to Oolo Unfortlnately the values of the

d.iameter are fair]y high. This is not surprising since

this set covers thre sphere which 1s conjectured. to be tlre

set whlch has tire 'worst d.issection"

o.5
0 n J-+lt¡lil+o o

0.41,l¡)l)1. .

O "3989)+. .

O "3589)+. .

0"5
o ,50459 . .
0.50 926 " .

o.51402..
O.531+02" "

(ef , itr" )

(ef ,u" )
(nitr løu )

(n1/,tut" )
(e1trt,t, )

(m{ ,m" )
(tvt1 , tit" )

(ivrl,l,t" )
(u, ,wI" )
(u{,m" )

(3d Criti
J pieces

al- ed.ges
Other piece

c

I
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Now the critlcal points of the d.issection are

Bf, B{, B{, I{r, Mlr Mer Må, Ms ancl Má" Of these points

we can remove at least one of the B{" u by an argument

similar to that of Sprague, Beeause of the similarity to

the "3 corners occupied.'r caser we can apply a similar pro-

ced.ure to that we shall see in Seetion 5.3. This glves

two d-ifferent ways to round. edges containing cnltical points,

I tried. both method.s, but neither gave a significant improve-

ment, Hence rffe omit the details.
The given d.issection is the best dissectlon I could.

flnd for val-ues of T close to O,5, Later we shall see

values of the iliameter for other values of r"
The ease_: 1 cortel occupiecl

We now consid-er the case tt1 corner occupied.'r.

In the two previous cases we had a d_egree of rotational
symmetry. fn this case¡ w€ have only symmetry about a

plane and. we make use of this in our dissection, The

figure and. d.issection are shown in d_etai1 in the Schlegel

d-iagran. îhe square faees BlBiCiCl and BaBdCáCs are

the faces formed- ¡y pá1 cutso BzeJCåC, 1s a face formed-

by lange cuts¡ and- the faces nrnísis" and- R"RjsJs" are

forned. by smaI1 cuts. The notation is similar to that in
the previous cases r

Suppose that

o=dGs+(1-a)Az
Then G1 = BRs + ? -p) tz

where

where

O < cr < 1.

13
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Bl

TVe could- impose the extra cond.ition that O < B < 'l . How-

ever thÍs is not necessary, sing:e if this condition Ís no;

satlsfled-, the point so d.efined lies Just off the sunface of

the cover. Similarly,
Gs = FRL + (l-P)tz.

Further, suppose that

E¡ = tr'L + d(n¿-c¿ ) ror i=1 ¡J where o<d<1

and" Ez = Fz + C(B"-Cz) whene O<ø<1.

Also, f or parame ters € ,0 and. ,[ satisfying
O<e<1 , 0<0<1 and. ,O<Ú<1 ,

1et D1 = €Ba + ('1 -e )C1 ,

Dá=68å+(t-e)Cå,
Di =?BL + (-0)c¡,

,
B,

\
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D3 = 0Bs + (1-d)C¿'

Dz = VBz + Uql¡)Cz

and DL = 4¡Bå + (1Åþ)C,t .

The d.lssectlon yield.s f our pieces, Two of these

are obtalned. fnom each other by a reflection and. so have the

same d.iameter. By simple geometric consid'erations, the

d.iameter of each plece is d-etermined, by one of the following

pairs,
2 conqruent ni-eees

(o,ur) ,(o,n{) ,(o,Dr) ,(o,Ez) ,(orF") r(orcz) '(0,cí)'
(ci rEz ), (Gr rF, ) r(Gr,Dr) r(Gr, cz) r(Gr rDr) r(GtrEr) r(Ft rG, ),
(F.,F")r(FrrRå)r(ErrRá),(nr,Gz) r(Di,eB)r(pLrF,)r(Dr rR") o"

(Ft rE, ) '
1 e c nt_ the vertex

(orut), (o,or), (o¡Aa), (o,ct), (Gu,Et), (G"rD.), (G",cr),
(tr.r¡'"), (E"r¿r) or (D"rAr).

Other pieee:

(pj.,os ),(oL,Bu ) r(pirE" ),(oi,oå ),(Di ,DL),(Dr.,Då ),
(D,.,Er),(D" ,Bå) r(DrrBá) r(E" rBå) r(EtrB") o" ln1rnÄ) "

The followir¡g coord.inates are used.

Au (o,-Lrl3-,o) B¿(o,t-r,Uî-1+r)
s" (o ,t66-t ),å) BLG6E-1 ), o,+)

c 1( å , -tGR-t ¡ ,o¡ cLG ,o , -l(v3-i ) )

O, 1 -r ,-(L^13-l+r) ) ng(o'-(#-o)r-r)
-(â^ß-r), o, -r) oG #,- )

cz(

nå(

Gr( o r-L^E+FI",-Fr) Ga(-+rBro,-+rR)
v
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G" ( -Ér ,-LtE+Fr ro)

F' (å ,-t^r6ß-1) ,-+(1-r) 6ß-t¡¡
¡', (-å( 1-,8-t +r) , 1-r,-t(Lrß-t *n)

Fu (-å(t -v) 6R-t) ,-tr6ß-1 ),å)
Er(t,d( 1 -r) -triB-l ) , d( 1-r) -+(1-v) 6R-t))
n, ( å( 2þ-1) (LlB-t +o) , 1 -r ,LQø-t ) (bB-t **) )

nu ( d( 1 -r)-å( t -y) (r6-t), d( 1 -")-Lr(rB-1 ),+)
D r ( å, -L? -e ) (rB-t ),t, (rß-t'¡ 7

¡i ( å,to (,t3-t ), -+(1 -o) (,ß-t ¡ ¡
o, ({(L^R-t *r ) , 1 -r ,-( 1 -,/) G.R-t +r ) )

oá ( -( 1 4þ) (L,B-t +n ) , 1 -r ,ú(L,R-t +" ) )

n" ( -å( 1-o) (,ß-t) ,+o(,R-1) ,+)
o¿ ( åe (,R-t ) , -å( 1 -e ) (,ß-t ) ,+) 

"

Uslng a computer, I for-rnd. that the d.ia¡neter of the

sets of the d.Íssection Ís d-etermined by the two congruent

pleces and by the pieee eontaining the vertex Iþ , The

d-iameters are then d-etermlned. by the lengths of the seg-

ments (Er,Gr) o" (nr rGr) and. (Gu rEr) respectively,
For eaeh r in the range 0.5<r<0.560)+5\...,, it appeans

that the best d.issection is obtained. with these lengths

approxima+,ely 0.988, Hence, to improve on erün¡aumr s

resultr w€ ner:d. to remove some critieal pointsn

We see that the face etn{¡eeåBeBå is panal1e1 to

and- d.istance 1 fnom the face AzRsRáR¿Rl which con-bains the

G[ tso Nowt ãTrv closed. set of eonstant width 1, when cover-
ed. by thls set of the 4-cover, touches each of these two

faces at exaetly one point with the line joining these two
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perpend.icular to the faces, So we can apply a similar

round.ing argument to that used. when we constructed. the

Spnague ti1e. Hence we can nemove the eflges containing

Gt r\z and Gs by spherical and cylind.rlcal cuts. Thus

we remove three crltieal points. Of courset Az, Rer Rå,

R1 ancL Ri are also removed. by these cutsr but we shall

eonsider these points to be remaining irnless they appear

critical. Tl|e novu use the same dissection as that we have

just consid.eredl. Hence, we have a ilissection, which,

although lt is not a dissection of the original set of the

l+-cover., is a d.issection of a set which eovers the same sets

of constant wid.th 1.

In our d-issection, some of the edges are curved.

So it appears that a criticaL distance may involve a point

in the mid.dle of a curve. The followlng lemna, when

appropriately extend.ed-, implles tha.t such poi.nts need. not

be consid-ered-. We use lff l to denote the d.istance

between two points X anil Y.

-t;

Lemma

Consid,er the curve ABC in the

plane shown in the d.iagranr

where

(i) AB is a cincul-ar arc

of rad.ius '1 with centre

o

(ii) BC is a tangent to the

circular arc at B
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(i-ii) L*og is no larger tiran n, rad-j-ans and-

(i") l¿cl <

Suppose P is a point on the same sid-e of arc ABC

(i.u. the curve appears convex from P), and-'¿hat

l¿pl <

Then if 6 is a point on ABC, then

lspl ( maxt l¡Pl , lcPl J'

asO

The truth of this lemma is easily checked- using

the following steps:

(1) Show that if S 1s a point on A3e then

lspl < maxtlAPl,lnPli.

. (Z) C1ear1y, if S is a point on BC, then

lspl < max I lBPl , lcPl l"

3) show that lep I is bound-ed bv l¿p I and- lcp I "

uie now revert to consid-eration of our d.issection.

It is shown in d.etail in the schlegel d-1agram. The

regions removed- have -lreen 1nd-icated- by shad-ing'

Suppose CL is the point on the face ÇCICISBRB near Ga

where the d-issection paSSeS frorn the curved. sr:rface onto the

flat face. Al-so, suppose GL and- Gå are polnts on the

f aces RåSå CTALST-Rr and- ArCåCaSiRl respectively d'efined-

similarly"
In our d-isseetion, Ï,¡e can consid.er the curves ]-ike

GåO to be like the crlrve AC 1n the l-emma. By the 1emma,

r¡re need. only consid.er the endpoints of the curve, provld-ed'

the fignre obtained. for the d.iameter of eacir set is at niost
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1, which is the only case 1n which we are interested an¡rway.

.At times, the length of the line BC in the lemma may be

zero, hut this d.oes not a.ff'ect the truth of the result. So

we can replace all mention of Gr rGz and Ge in our

previous alrgument by GLrGL and- Cå respectivelyn the

coord-inates of these points âre:

eL(tr^ñ + 2t, hB * t' #,8 * t)
e¿(- *,/3 + (G - ä),e (1-r),- +v3 * e(å - Ð)
GL(b'R + t, LrR + t, b,ß * 2t)

where e is the smaller solution of the equation

+(1-r)'r'-t(1-o)(¡ + rß)z+(+ -#(J-n) + *(i-r)r) = or

and., letting a = t6ß-1),
r -B - \/æ;tu=-6-.
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Thls mod.ifÍcation results only in sma1I improvements and.

the critical lengtlrs become (FlrFz) and. (GårEr). of

these critical points we ean remove Fz by the following

round.ing argument,

A

In the construction of

the 4-eover, we consj.d.eneil

ttcornersrf as the. píeces of
the octahed.ron beyond. tan-
gent planes to the sphere

of nad.ius r, Now a
ttcor-nertt 1s a square-based"

pyramid.. Suppose S is
a closed" eet of constant

wid.th 1 which when eover:ed.

by the oetahedron lnter-
sects the corner A,

Then no point of S can have d.is t,ance more than 1 from the

base of the,pyramid., Hence in this set of the 1-coverr wg

can round the ed.ges of the large square opposite the occup-
íed. cornen.

the argument a11ows Lts to remove Fa. In addition,
we can remove Dz and. Då, but we shal1 d.o so only 1f
they appear to be critical points of the clissection.
Hence .we d.o not change the coord_lnates of Dz and. D¿.

d
t
Ï

tì
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83 Fí

ð t 3f

Also we assume that Ez l-ies on the original face, àI-
thor-rgh a better díssection nay exlst with ßz on the curved

surface near Fz. Hence, the on-1-y new point we consid.er is
Få, as sholvn in the cliagram, since by our lemma this is
the onl-y ne\M point which may d-etermine a d"iameter. Nov¡

l¡-¿ has coord.inates (* ry , z) where

z=xt y = 2x + b/3,
ancl x is the larger root of the equâtion

z(x+åa)a + (zx+l¿r,B+r)z =1
wlrere d = LV3-r.

Repl.a.cing at1 mention in the computer program of
F2 by Fà , I obtained the f ollowing d,issec+"ions. fn
each case the diame'bers of the resulting sets are equal to
at l-east five clecimal places,



o"5
o,66828. 

"
0.1 0000,,
g.4B6BJ. .

o,58850. ,
O,l+3571 . ,

edÊÇs

(ol,Ez )
(aå,nt)
(nírP.)

o.98623. .

o.52
O.6)+897 . .
o .13653. .
o.50839. .

o , r+o34, ,

o,482'14. .

( ei. ,s, )

(cå ,n' )
(ni,s" )

O.97Lr-7O. .

o.51
o.65953. .

o.11063. .

O "Lr7251 , .
o.58927 . ,
o,45927 . .

(el,Ee )
(eå,at)
(ol,Ez )

o.g8o51 ..

o,53
O,6l+2l,+7 . .
o.12568. ,

o.42101 . ,
o.61325. ,

o.52165. ,

(ei,82 )
(cå ,n" )

(¡l ,Ez )

o.96947 . .

103.

r
d
6
€

0

lr

O.56OLr5. .
o.63081 , .
o.1\.378. ,

O.3l+181 . .
o.59552, .
o.60691 . .

(rrrrá )
(cå,Er )

(nl ,Es )

o,96263. .

2 pieces
Pieee
with Az

Other
piece

Dianeter

These are the best ri-issections of this set (o*

strictly of a set covering the same sets) of the 4-eover

that I have found-, Unfortunately, T can see no way of

obtaining significant improvement.

îhe case: 2 corners occupied..

Fina1ly, r¡/e consid.er the case t'2 corners oecupied.'r,

As in the case rr'l corner oceupied", we have symmetry only

about a plane. The figure and the d.issection Tue shal1

consider are shovm in d.etail in the Sehlegel d-iagram.

The square face BrBlClCr is a face formed. by a påf cut.
The faces RzSzSáR¿ and. RaSsSåRå are both forrned by large
cuts, and- the faee HsJaJáH¿ by a smal-I cut. The notation
is similar to that used. in the pnevious caseso

As usuaf r w€ introd.uce parameters to d.escribe the

points determining the dissection, Suppose

$ru+r" )0= + (t-ø)er where O<ø<1.
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3,

sÍ S¡

ïVe cou1.d- impose extra restrictions on ot by imposlng the

eond.itions that Ge and. Fz lie in the closed. ]-ine seg-

ments AsJà and CzCå respectively. However these con-

d.itions are not necessary. Further, supposing that

þ rT rt r€ alrd. 0 are all parameters between O and. 1 ,

Iet Er.= $f"r+Bi) + (i-É)Fr,

. ßz = Fe + y(Bz-Cz),

Es-Fa+y(Ba-Cs),
Dz = (1-d)C2 + 6Bz,

' Då = (1-d)cå a óÞå,

D, = (t-e )Cr * €Ba2

Di=(t-e)Ci+eB{,
D,! = (i -0)U + oB,t

and. Ds = (1-d)CB + 08".

B,q

Bi
t
,

I

¿

t

I
I

I

I
¡
,

I
I

t
,

,
I
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As with the dissections in the case rr1 corner

oceupied.", there are two pieces of this d-issection obtain-

able fnom each other by a reflection and. two other incon-

gruent pieces. By the usual corrsid-erations, the d.iameters

of each set are d.etermined by one of the following pairs"
2 conE?uent nleces

(o,Er) ,(o,oi) ,(0,D"), (orpr) ,(o,cá.) ,(0,A") ,(Gl. ,c"),
(Gr,tr'= ) r(c",Er) r(G¿rn, ),(Gr rDl),(G.,Er), (Fr,E, ), (Fr,F, ),
(F",Gz) r(Errc." ) r(rr_rA" ) r(ErrF" ) r(oi,Gr) r(Dl rAa ), (Dr rA" ),
(D, ,Gz ), (nn ,¿" ) , (Er rG, ) , (Ez rAa ), (_rz ,Gz ) or (F, ,4" ) .

Othen base piecg (i.e. other plece containing O):

(orcz ),(o ,Dâ),(Gz,Ea ) r(er,F" ) r(G",D"1rçc, ,c. ) or (F, ,Fa ).
Other piece:

(Er rD") r(ErrB") r(ErrEs) r(Er_rD=) r(Dr rDâ) r(Dr. rE"),(ni rn"),
(oá,oz ), (Dá,Br) r(8",8, ) r(E",Bl) r(E" rDí) r(E",Dr) r(D" rBl)
or (Ð, ,Es ),

The following eoordinates are used..

A"(o,o,-^B) r'LG,+68-1),0)
Bz (^ß-1 +r ,1 -n, o ) B¿ ( o ,1 -r ,LtB-1 +r)

B"(o,hB-l+rr1-n) Bâ(^ß-1+l"to,1-n)

c i ( å ,o ,-t(rB-i )) cz ( o ,1 -r ,-(LrR-t +r) )

cå(-( LrlS-t+r) ¡1-r,o) c"(-( hß-t+r) ro,1-r)
cå ( o ,-(L'R-t +n) ,1 -r) H" ( -r, o,-( bß-r))
¡s (-r ,-(Áß-r) ,o) G"( o ,- *./3,- +-/Z)

o (-o"r|oo- hßrto*- +rß) er(r(t-1 )ro,(t - g)r+å
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Fr(å,- +6R-1 ),- LGR-t))
F, ( -( 1 -u) (L^B-t+r) , 1-r,-u(L,R-t +r) )

r" ( -u( i,,E-t+r) r -( 1 -u) (i,B-t +r) r 1 -r)
8,. ( å,*(zp-t ) (r6-t ),t(zl-t ) (,R-t ¡ ¡

Ez ( (u+r-1 )(Lr6-t+r) , 1-r,( r-rr) (â^ß-t *r) )

E"( (y-u) (t,6-t+r) r(u+y-1 )(Lrß-t+r),1-")
¡, ( å,t( e -1 ) (r,B-t ),t, 6R-t ¡ ¡
DL ( å,t, 6ß-t ),t( e -1 ) (,,8-t ¡ ¡
Dz ( d( L^ß-t +r) , 1-r ,( d-1 ) (LrB-t +r) )

oÁ ( ( 0-i) (L^B-t +r) r i -r , e(L^R-t +r) )

D" ( ( 0-1 ) ( L,R-t +r) , 0(LrR-t +r) ,1 -r)
Då ( d( irß-t+r) , ( d-i ) (L^B-t +r) ,1 -r)
where

Lt3g'rEr/=¡_T_-E

' B + (t'1)rand. u=É+Z! t- L^,8-l +r
Using a computer, I obtained the d.issections as

shown belowo

0
o
o
o
0

.98770. ,
a g\3g7. ,
97632. .
97279..
96232. .

a

a

o.5
o.5
o.5
o.5
0,5

I
2
3
60454. .

Diarnetern

Howeverr w€ shal1 obtain better d-issections than these,
The critieal points in the dissections are Ga,EseD{¡E1¡Dg
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and- simllar points. 0f these, Ge and Dg can þe

removed. by rorrncLing argumentÊ' Ds 1s t'emoved by usíng

the fact that the opposite eornen is occupled., Howevert

we get a sufficiently goocl result for our purposes by

removlng Ge on1y. This is because the d.iameter of the

final partitir:ning of tfÞ sets of the modlfled. 4-cover 1s

d.eterminecl by the cases ttNo corner occupied.rr and- "1 corner

occupiedtr.

Since the faces BrBlBzBåBsBå and- AzAg JaJ[ are

d.istance 1 apart and. para11el, rve can round. the ed.ges of
the faee AzAeJyJI, in partleular removing Gtrãz arrd Ge

D,

3í E¡

In faetr wê also remove l[2¡As¡Js and. îlt but we need.

not bother about ehanging the eoond.inates of the polnts

a

D,{

Êi

--- -- - É-- --

\
\

e2

,
,

,I

f
f
I

,¡

I
,
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unless they appear critical in our nodlfiecl dissection,
Suppose GlrGá ancl Gå are the points near GrrGz and. Gs

respectively where the disseetlon line passes from the

ennved. sunface to the face containing CñL' CzCL and.

CsCå respeetlvely. The lemma now aIlows us to replace

all mention of Gr rGz ard. Gg in the argument to this
stage by GL,G[ and. Gá . The new coord.lnates requlred.

are:

eLQv * L^R,v,y)

where

u =#, c =t6t?'-t)
and cå (r( t-1 ) +x+ {^,$, zx+LtB, ( t - *)n+å+x* *,rE)

where

*=# ¡ ã=LrR-1+r, and.'t is
defined. as before.

The following d.issections were obtained.. we shalI
consid.er other values of r later, In each case, the
d-iameters of each set are eqr:al to at least flve d.ecimal
places.

S

r
q.
p
T
ô
€
0
1Cri

o.5
o,57735
O .12761+
o.14665
o.i+B86l+
0.¿+4605
o.49176

eces L rÈz
o base

a?

aa

aa

aa
It

aa

o .56045. .
o.37637 ".o,21536. .
o.21236. .
o .)+7734. .
o.501 11 ..
o.47955. .

(Er,eá)
(eá ,Ds )
(De ,Er )

t

ple ce
Other

p1e ee

(eå ,n"
(D1rEa

)

)
)

0,53
o.u,5666. ,
o.1BB7J..
o.1B4og. .
o .45862. ,o.51\63..
0.46438,.

( Et,c4 )
(eá,u" )
(oá ,Dz )

0.96799..

o,52
0,49471+
o,16786
o,16451
O.471l.+1
o.50629
o.47760

(EtrGé
(Gé,8"
(D" , E,.

o.97355. .

)

)

)

oa

aa

aa

aa

at

at

o,51
o.52267 . .
0.19179..
o .12720. .
o.\7906. .
o.57Q7)+. .
0.44497..
(ní.,ç¿ )
(c¿,nu)
(oÍ.,n" )

o.gÙo13..t o B
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Combination of the four d.issêct-'.ns.
$le now have itivided into for:r pieees each set of a

h-cover d.erived. from the 4-cover given 1n the last
chapter. If fon a pantleulan value of r (t<r<t:R),
each set can þe d.ivid.ed. lnto four pleces of ðiameter < x
(s.y), then ds(4) <

interest as calculated. by the programr Now the d.iameters

of the ilissectlons in the cases ttNo @rners oecupiectrr and.

"3 eorner.goceupled.rr are monotonlc fr¡nctlons of r (r" f
conJectune are also the othen tùo cLiametens). Hence, for
r = O.519 and. p = 0,5191, the d.ianeters in the case

"No corner. occupied.rr could. read. 0.97516..o . The computer

appears to have found. a 1oca1 mlnimun for the d.iameter,

The r"esults are illustrated. on the gnaph.

t{o c¡.ae¡ ccc,eçigC

I c¡c¡cr â¿Gq ?¡ad

3 r¡.e,|a.ìt Ocat¡frd
¿ a-Êr¡Afil

o.8¿
Qrd¡¡rc

t
c
ott
('
t,
.gt
(
7
of

J

t

å.
Í
J
A

o.5r
?

o.Ít

"cc*ple,d
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Ta Ie: Diameters of known sec ons

o.98712, ,
O.9781+1 . .
o "96913. ,
0 , g5gBB. ,
o.g31g1 . ,
o,97748. .
Q.97655, .
o,97562, "
o.97469 . ,
o.97317 ..
o.972BL+. .
o.91191 ..
Q,g70gg.,
o.97006. .
o.96997 . ,
o.96987 . ,
o.96978. ,

o.96969 . .
o.96960. .
o.96950, .
o,96941 , ,
o,96932. .

o "96922. .

0,98769. ,

o.9801 J, .
o,97355. .
o.96788 . .
o.95507 . .
o,g7BgB. ,
o,g7B51 ..
o,91779. ,
O,9772)+. 

"
o.97630, .
o,97567. 

"
o.9751+9. ,
o.971+47 , .
o.97388. .
o,97395. .
o.97369, ,
o.97360,.
o,97354..
o,97365. .
O.91351 . .
0.9731+8, ,
o.973)+0. .
o.97330. .

o.98623. .
o.g\o57 . .
O.97470..
o,96941 " ,

o .96263. .
o,97987 . .
o.g7g16, ,
o.97876. .
0.97814.,
o.97756. .
o.97702, ,
o.9J653. .
o,97596, .
o,97536. .

o,97530. ,

o.97522, ,
o,g751g ,,
o.97515, .
o.97509. ,
o,97501 ..
o.971+95. .
o.97489 . ,
O.971+Bl+" .

o.96592. .

o, 97068 . ,
o.97553..
o, g8o47. ,
o,98172. ,
o.97279 , ,
o .97166 . .
o.97226,.
o.97261 . .
o.97310,.
o "97360, .

o.gl41 5. .
o,97465, ,
o.gJ51B. ,

o.97522..
o .97516 , .
o "97525. "
o.97525, .
O.9751+O. .
o.97540. .
o.9751+3. .
o 

'9751+4" .
o.9-7560. .

0,5
o.51
o "52
o.53
0.66.0¿[-r---

o "511
o .512
o "513
o.511+

o,515
o ,516
o,517
0.51 B

o.519
o.5191
o.5192
o,51 93
o.5194
o.5195
o,5196
o "5197
o.51 98
0. 51 9q

Case: No.

01
occupied.

32

of cornersr
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Looking at the case r - O,5192r wê see that
d" (l+) <

This eompares with the result pnoved" earlÌer that

d3(4) <
by meticulous partitioning, but the impnovement would. only
be slight. The table below gives the values of the

parametens for each partition in the case r = 0,5192.

A1so, it shows the criticaL d.istances in the onder they

appean in the earlier tables,

(

(

G1

Es

, Es

Dz

\

),

(Et,eá)
(a{ ¡Ea )
(o{,Es )

(ci.,n, )
(oå,nt)
(nL,r" )

(

(

B{
Mi

t Ms

Ma

)

),

Critlcal
ed.ges

a-o.49600. .

þ=O.16807 " .

Y=O *'1 5187 ..
d=o,h61 07 , "
€ =O o 5)+290. .
0=ô -1-.7F'c'7 - ^

cr=O.65017 . ,
d=0,13212,,
e=O.49221l . .
0=o.55091 .,
þ=O.1)+931 , ,
tb=o -b.tr,676 - ^

6¿=0 o 50896. .
9=o.l+7006. .

Parameters

o

No. of corners occupied.

12 3

c{,=0.86213."

9=o.46875..

the result overall is cl.isappointing. Tt should_ be

noted- that the d.issections given nay not be the best d.1s-

sections of their form. Even with a conputer it is imposs-

ible to undertake a thorough scaniring process when six
variables are lnvolved. Hence any of the programs may

have prod.uced. a result which is a good, approximation to a

1oea1 minimum but not a good, approximation to the actual
minimum diameter,
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From the graph, we see that an lmprovement in the

case "No corner occupied.rr would- give an improvement in the

d.iameter. However, even by applying nound.ing techniques

and. uslng the symmetry of the set, I could- obtain no

signlfÍcant improvement in this case. For any value of
r(å < " < tB), the d.iameter of the sets of a partition of
thÍs set is at least 0.96592.. . This critical ilistance
occurs twelve times in the set and. I can see no way of
elimì-nating 1t fnom the sets of a partition, Hence the
4-eover (with nodlfication) can not give a result better
than 0,96592.. . To obtain a better result by the rnethod_

of k-covers, either a cover of larger ord_en on a completely
d-ifferent cover is needed., TlIe shall look at an attempt
using a d.ifferent cover in Sectiofr 5.h.

In an attempt to obtain a better result, I tried to
ad.join another set to the 4-cover to obtain a þ-cover which

eould be dissected- to give a lower diameter. In particu-
lar, ï trieC to ad.join a sphere of diameten slightly greater
than 1 to the 4-coverr so that rnany of the sets covered. by
the set of the 4-cover where nottcornerstt are occupieil wou1d.

be covered. by this sphere. Hopefurly, this woulil a1low
further truncation of this troublesome set of the [-cover,
and- hence yield a smaller bound. on a"(4), My attempts
were unsuccessful.

LrJ. Dissection of a 1-cover

Using the 4-cover, we have shourn that
ds (4) <

whether there exists a d.issection o f a 1 -cover which gives

as good. a result. so we noïv consid.er modifications to our
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d-issection of the truneater-i- oct¡:ir::dron c¡,:--a*1¡.'g bodJf dis-
cussed 1n the previous section as the ease ,,3 corners
occupled'r with n=|.

suppose the d.isseetlon is 1abe1Ied. as before. The

cnitical points of the dÍssection are Cl1¡Gs¡Gs and.

DrrDi. tDz,DLrDa,Dá. TlIe ean lmprove the dissection by
nemoving the Gl s fron the coverlng set, hence proiluclng
smaller eovenlng bod.ies, For suppose s is a closed set
of eonstant width 1 coverect by the tnrncated octahedron.
since the faees ArrAs,As and. Bl.BiBaB¿BsBá are distanee
1 apant and. panarler, s touches eaeh at exactly one point
and. the line Jolning these two poÍnts 1s normal to the two

faces' Then, using the synmetry of the tnrncateil oeta-
hed.ron, \,ve can makÇ either one of the following assumptions.
we can assume that s touches the faee BaBiBaB¿BaBå in
the neglon shad.ed. in the figure 1abel1ed. Case 1 . Altern-
atlvely, s touches the face in the reglon shaded 1n the
figure labelr ed_ Case Z.

sí Sr

D¡

DiB

Bi

cq¡c J

B¡ d,

g.

Ssg¿
rj

Br
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I tried- both assumptions separately, and- obtained- a better

dissection usj-ng Case 2, so Tve shall. look at that case here,

Vire now assume that any set of constant wid.th 1t

when covered. by the truncated. octahed-ron, interseets the

shad-ed. region in the figure labelled- Case 2, It follows

that no point of the covening body with distance nore than 1

from this region need. be includ.ed. in the eover, Hence we

can round. the ed.ges of the face 'ArAzAs and, in particular,
remove GrrGB and- Ga, Hence lve assume that we have

removecl all points that we can from the covering bod.y by

this argument using spherical and. cyl-indrical cuts. This

gi-ves a better coverlng bod-y than the tnrmcated. octahed.ron.

ï\Ie d-o not calculate its volume herer €ssentially because of
the d.ifficulties invcl-ved-, but also beeause the improvement

in volume is orobabJ_y not 1arge,

1ll¡e labe1 the vertices of the covering bod_y as befor.e,

Severaf of its vertices have been removed.. However, in our

caleulations ¡ we assume that they are sti11 present since no

vertex of the truncated octahed.ron is a critical point in
the previous dissection, rf one appears to be critical in
our new d.issection, we can then allow for its new positiorr"
Hence for our calculation of diameters, we assume that only
GrrGz and. Ga have been removed-o In the d.iagram, the
region removed. has been shad_ed.,

The disseetion ïve use is shown in detail in the
diagnam' vt/e introd-uce parameters, The point o is no

longer fixed, being
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o = (r-y)¿* * 
" 

åËb
where O<y<1.

I tí

¡í

Suppose G¿ is the point on the face AtCâCzAs where the

d.issectlon line on the new covertng body passes from that
faee onto the eunved. su:rface. Suppose C{ and Gå are
polnts near G1 and. Gs sinilarly deflned.. As bêfone,

1et

F-z = crtr.2 + (r-") ry,
Dz = þCz + ?-p)Bz
Då = pcá + (1-p)BL

and O<B<1 . In ad.d.ltionr for parameters

8r

and.

where O<cr<1
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0 rþ and. V between O ând- 1 ,

1et E¿ - F¿ + (1-0)(Br - Ci ) fon i=1 ,J
D1 = þca+ (1-d)Br.,

Då = øcå+ (t-ø)så,

Di = ,lñL+ (-V)et
and. Ds =úCs + (t-ú)¡".

The panameterg drþrT r0 rþ and. lr d.êtermine the d.lssection.
îwo of the sets of the d.issection are obtainable

fr.om one another by a reflection. By simple geometric

considerations inel-ud.ing use of the lemma proved. in the

previ-ous section, one of the foI'l_owing pairs must determine

the d.iameter of each piece.

2 similar pieces

(o,nr) ,(o,ur) ,(0,D") '(o,oi) ,(orAu) ,(o,ci.) ,(o,cr),
(oL 

'n"
(F.rE,

),(

),(

GárEr),(Gå,Fr

FarEr)r(F"rD,
),(ei,D, ), (cd,Dl), (ei,câ),(F*,F, ),
), (Fr,Dl ) r(Ez ra" )' (Et rAa ), (FrrA"),

) or (o{ra").(Er,ci)' (Et, cz) r(Dr,A"
Plece eontalnÍne the ventex Ae:

(o,nr),(orDá), (o,ar),(o,cå) r(cirEs)r(eirF"),(ei,D¿),
(FrrF")r(¡'trnú)r(FtrEe), (EtrAr)r(Ft ruz) r(ntrcå) or (oå r¿z),
Other plece:

(EtrEu ),(Er rE") r(8",D, ) r(ne rDå ) r(Et rBå) r(E.,8" ) r(Er,Bå),
(Dz,Dá),(ni.rD"),(Dt,Bá ),(D",8" ) r(or,sá ) r(oí,¡å ) or (oi,Bs ).

ït/e now introd.uce cooriLinates. The followi_ng are

need.eil-:



A, ( o ,-ttß,o)
Bâ(o, + , a)

B{(a, O, å)

cz(0, tr-a)
¡', ( -åa , å, -å*)
D, ( ( 1-p)a,t,-9a)
Ft(å t-€ãr-(1 -e)a)
n, (å,(1 -e -o) a, ( e-o)a)

Dt(t,-þa, ( 1 -É)a)
D{(å ,(1-rlr)a,-Va)

111 
"

¿o (o ,o r-Ä13)

83(o, a, i)
cL(+, o,-a)

c$(o,-a, +)

E, ( å( t -2o") a,L ,t? -zo") a)

o(- Lv,E,-L( -Ò\R,- 4116)

F"(-(1-e)à¡-€arL)
E" ( ( €-o)a r(1 -e -o) " rL)

D¿( ( 1-þ)a,-þa,t)

o" ( -úa , (1 -rlr) a ,L)
where

a = å(,R-t)
and-

t-i-&y, €=#.
Also, suppose x is the smaller solution of the equation

6z2 + Zaz + 4 = ,, where a is as above,

Then cá = (*r 2x + I^Brx) .

Finallyr wê iLetermine the eoord-inates of Gl , There are

two possibillties, Either the cr:rved. surface at G{ ls
spherical on it i s cylind-ricaI¡ d.epend.ing on the value of y.

Now,

ei = @,-tîr$,-t?-î},â + p(+,+,+)
where p ls yet to be d.eterminecL. If the cut is
spherlcal, then p 1s the smaller solution of the equation

9zz 1l+rßz + 12(:,624î+1) = o,

rf the cut is cyrind.rieal., then p 1s the smaller sor-ution
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of the equation

lOJzz + 12(36-16)rR" + 1OBdz = O.

To decide whether the spherical o r the cylind-rical cut

applies, one simply takes the cut with the lot,r¡er value of p .

Using a computer f found a dissection of the neu/

covering bod-y into four sets of d-ianeter 0.98006.., , The

value of the parameters then are:

F=O.31575. . ,

y=0"68205..,

0__o "91\.35. . ,

þ=Q.42166. '
and Ú=0.49931 ...

A critical ed-ge of the two similar pieces is (eârEr), of
the piece containing Az is (FrrF"), and. of the other
plece (E" ,D" ) .

Hencer using a 1-coverr w€ have shovrn that
ds(4) <

Vt/e had. previously d.issected. a 1-cover into four sets of
d.ianeter 0,98772.., , This neïv result is the best result
I was able to find- using a'1 -cover. ft compares with the

bound.

ds(4) <

found. using the 4-cover,
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5rÀ Use of a d.ifferent k-cover

Unfortunately the l+-eover has not produced. a large

neduction 1n the upper bound on d"(¿[). So we shall try
another approach to the problem, Instead. of starting wlth

a given k-cover¡ w€ shall try to obtain a k-cover which

gives a good. dissection. Sj-nce the method. of rrniversal

covers is so effective in the case t:r=Zt rJr¡e look in
detail at the dissection involved..

lÃ/hen a eircle is partitioned into three sets in the

best manner, the circumference is d.ivid.ed. into three equal-

length arcs.- The points d-etermining the d-iameters are the

endpoints of the arcs and- are equal-l_y spaceil around the

circle. suppose we draw tangents to the eircle at three

points. Then we obtain an

equilateraì- triangle which

happens to be a tile. In
factr w€ ean remove the corn-
ers of the triangler âs

shown, provid.ed- we d.o not

make the resulting set smalI-

er than the regular hexagon

of wid-th 1 , Provid.ed we

remove sufficiently large regions at the corners, the

d-isseetion induced. by the circle proves that az(3)=h$.
We try a similar approach in three d.imensional

space. The best partition of the sphere is the obvious
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simplical partitiofl, The

d.iameters are d-etermlned. by

segnents with one end.point at
a vertex of the curvi]-inean.

tniangle on the surface, anil

the othen at the midpoint of
the opposite arc of the trl-
angIe. Now there ane four
such vertices and. eix sueh

mid.po ints , Suppos e we iLraw

tangent to the sphere at the points, The tangent planes

at the six mid-points determine a cube of wid.th 1 , and- the

four other planes truncate

forr corners to glve a figr:.ne

as shouãl in the dlagram.

ïlle observe that no two

opposite corners of the cuþe

have been removed.. This

suggests an obvioue method.

for forming a universal cover

by removing one of each pain

of opposite cornens by makirrg

cuts at tangent planes to the

sphere. This method. pro-
duces a 3-cover of volume O.B3O1 2,,, r so the cover gives no

new j-nsight into the value of va re since it is highen than
the volume of the trrrncated octahed.non.
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the c1i-ssection of the set

formed- by taking tangent

planes to the sphere is

shown. It 1s the ob-

vi.ous partition ind.ueed.

by the sphere and gives

four congruent pieces.

The d.iameten of each set

of the d.lssection is
easi1-y calcu1ated.. It
is d.etermined- by segments

like )nf in the d.iagram,

where X ls the centroid of a triangular fabe and y is
the midpoint of an intersecïion line of a triangular face
with a face of the cube, Then the d-i-ameter of the sets of
the partition is

I

8 +rR
12. - 0,9oo55.,. )

This figure is encouraging since Trre have pantitioned a set
containing the sphere. However, r could hot dlssect the
othen sets of the J-cover in a satisfactory manner, and so

this attempt proves unsÌlccessful.
Ê,7¿4. Conclusion

We lntrocluced the idea of k-cover" to obtain an

improved upper bound on d¡(n+1 ), especially for n-_3.

Using a 1-eoverr wê have shown

¿

-(.

//

>"ù.

3*tl3)/6 -- o.BB8o7., < a
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By usirrg a \-cover, we have been able to obtain the betten

upper: bound. of

tu(4) <

the result is dlsappointlng in its magnitud.e. However, lt
is pleasing that 1t is obtainect from slmple geometnical

ldeas. Oun efforts ind.lcate that although the method of
k-cover:s wonks in pninciple, a large anount of work is
required. to obtaln good. resultg.
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