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Abstract: Common vetch (Vicia sativa L.) is a grain legume used in animal feeding, rich in protein
content, fatty acid, and mineral composition that makes for a very adequate component to enrich
feedstuff. In addition, relevant pharmacological properties have been reported in humans. The
common vetch, similar to other legumes, can fix atmospheric nitrogen, a crucial feature for sustainable
agricultural systems. These properties enhance the use of vetch as a cover crop and its sowing in
intercropping systems. Moreover, several studies have recently pointed out the potential of vetch
in the phytoremediation of contaminated soils. These characteristics make vetch a relevant crop,
which different potential improvements target. Varieties with different yields, flowering times,
shattering resistance, nutritional composition, rhizobacteria associations, drought tolerance, nitrogen
fixation capacity, and other agronomic-relevant traits have been identified when different vetch
accessions are compared. Recently, the analysis of genomic and transcriptomic data has allowed the
development of different molecular markers to be used for assisted breeding purposes, promoting
crop improvement. Here, we review the potential of using the variability of V. sativa genetic resources
and new biotechnological and molecular tools for selecting varieties with improved traits to be used
in sustainable agriculture systems.
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1. Introduction

The common vetch (Vicia sativa L., Tribe Viciae, Family Fabaceae) is one of the world’s
most economically important annual grain legumes, used as animal feed, as forage (grain,
hay, and for silage production) or as grain legume as a cheap and rich source of protein
and minerals of high digestibility and high energy content [1,2]. Additionally, vetch
fixes atmospheric nitrogen through its symbiotic interactions with rhizobia soil bacteria,
which could improve the soil fertility significantly, making its cultivation appropriate
in sustainable agriculture, as a main crop, as an element of rainfed rotation, as a cover
crop, or in rotation with cereals [3] by decreasing the use of fertilizers and reducing CO2
emissions and other pollutants [4]. The main bottleneck of this species is the presence
of antinutritional factors in various parts of the plant, but the enormous dependence on
proteins of vegetable origin for animal feed and the interest in the EU for the use of species
of environmental value make the use of this crop a relevant agricultural option with an
essential role in the implementation of environmental measures such as From Farm to Fork
Strategy and the new Common Agricultural Policy (CAP) directive. In this work, we have
tried to review the status and evolution of vetch cultivation and gene bank genetic resources
throughout the world from a historical, economic, and environmental perspective. We have
reviewed the main nutritional and pharmacological uses and environmental benefits of
this crop as a nitrogen-fixer legume in cover crops, intercropping, or soil phytoremediators
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(Figure 1). The main abiotic and biotic threats to this crop have also been explored. Finally,
we present the status of the main genomic and transcriptomic tools, from a biotechnological
perspective and by means of the use of plant genetic resources collections to address the
challenge of vetch crop improvement through combined strategies.
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2. Taxonomy

The botanical tribe Viceae, from the subfamily Papilioboideae, of the family Fabaceae,
includes some genus of agricultural interest such as Lens, Cicer, Pisum, Lathyrus, and
Vicia [5]. The genus Vicia, whose center of origin and diversification has been placed in
the Mediterranean and Irano-Turanian regions [6], includes a number of species ranged
between 150 [7] and 210 [8], from which 34 are cultivated. The genus is, nowadays,
distributed in temperate regions of the northern hemisphere in Asia, Europe, and North
America, and also in the non-tropical region South America [9]. This genus has an enormous
phenotypic variation [10]; in fact, there has been a big number of taxonomic revisions
made over the genus, more than 20 since the original classification presented by Linneo
(1735–1770) in the 18th century, following for those of Jaaska and other authors [9,11–15].
In a focus on V. sativa section Vicia, which includes the most important agricultural species,
one of the last classifications was proposed by Van der Wouw et al. [16] after several studies
focus on Vicia L. series Vicia, who presented a classification of this series in four species:
V. babazitae Ten&Guss., V. incisa M.Bieb., V. pyrenaica Pourr., and V. sativa, which includes six
subspecies: nigra (L.) Ehrh., segetalis (Thuill) Čelak., amphicarpa L.Batt, macrocarpa (Moris)
Arcang., cordata (Wulfen ex Hoppe) Batt., and sativa. This group of forms is named the
V. sativa aggregate.

Commercially vetch includes, in addition to V. sativa, V. villosa Roth. (winter vetch,
hairy vetch) and other species of similar local importance such as V. pannonica L. in Turkey,
V. pannonica, V. ervilia L. and V. articulata Hormen in Spain, and V. benghalensis L. in Australia;
the same term, vetch, has been used for different species such as Lathyrus sativus L. and
other Lathyrus species in Africa [17]. In this paper, we will use the name vetch to refer
exclusively to cultivated species included in the Vicia sativa aggregate.
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3. A Historical Crop

The common vetch, similar to other species of the Fabaceae family, has been cultivated
together with cereals since the beginning of agriculture. Archaeological evidences indi-
cate the Mediterranean Basis as the center of origin and primary diversification of this
species [18,19]. We present below an historical revision of vetch use based on the Spanish
Inventory of Traditional Knowledge about Agricultural Biodiversity [20], one of the most
complete reviews of vetch uses.

Some authors indicate that the first archaeological references to vetch seeds date back
to the Neolithic Periodic and the Bronze Age. This point is not clearly established because
these seeds could also belong to wild species, associated with the crops. Additionally,
others authors such as Zohary [21] disagree with this approach, dating the use of vetch
into the agricultural systems in the Roman Empire, at a time when the use of vetch as a
fodder species as already been reported, together with others species such as alfalfa and
lupin or fenugreek, also associated with cereals and others grain legumes [22]. Columela,
an ancient Roman scientist and writer who lived in the first century B.C. cited the use of
vetch for poultry (hens and pigeons) feeding and as a fodder and green manure, together
with other legumes such as alfalfa and fenugreek [23]. In the same time period, Plinius The
Elder (First century B.C.) said that their use would improve soil fertility, giving indications
about the sowing times in the function to the final use, including the use as fallow [24].
This author mentioned that vetch was the best feed for the bullocks. In the 4th century,
Paladio described the use of a mixture of lupin and vetch as a soil improver when cutting
in green, and they also made mention of the differences in the sowing date of the function
of the final use. Isidore of Seville, who lived between the 6th–7th century, highlighted the
scarce production of seed of vetch compared with other legumes [25]. In the Middle Age
(11th and 12th century), vetch was a minority crop in Europe [26], even if the Andalusian
author Abü l-Jayr indicated names such as Umda or Amank to identify different forms of
vetches [27].

In the 16th century, Juan de Járava wrote that this species could be found among
cereals and that it could be eaten as lentils, although it did not taste good [28]. In this
century, vetch traveled to the New World, adapting perfectly to the local conditions of
America, to the point that some escapees from cultivated vetches came to grow wild in
the new environmental conditions [26]. Thus, in the 19th century, vetch was introduced
to Argentina by Italian immigrants (settlers) establishing it as a well-known fodder [29].
To conclude this historical revision, a book from the 18th century used several names for
cultivated and wild vetches and mentioned that they were a well-known crop in Europe,
and that they could have reached Spain from the east by crossing France. Here, also, its
uses as grain, green manure, and as a flour component to make bread in times of scarcity
are mentioned [30].

4. Worldwide Vetch Cultivation

Due to its economic and ecological advantages (Figure 1), vetch is now widespread
throughout many parts of the world. Figure 2A shows, based on data by FAOSTAT and the
Spanish Ministry of Agriculture, Fisheries and Food [31], the surface and production of
this crop from 1961 to 2021 are shown in Figure 2A. In the agricultural season of 2020–2021,
the main producers were Ethiopia, the Russian Federation, Spain, Mexico, and Australia
(Figure 2B,C).
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According to FAO data from FAOSTAT, the economic value of the agricultural gross
production of vetches worldwide was USD 139,237,000. This value was clearly well below
the economic value of other legumes, partly due to its low production. Comparing its
production worldwide with that of other legumes (average of last 5 years, 2017–2021), vetch
production was 8 times less than lentil production or 18 times less than the production
of chickpeas [31,32]. One of the reasons for this reduced production was the presence of
antinutritional factors (ANFs) present in the grains. Therefore, as we discuss below, this is
one of the main aims for common vetch improvement.

5. Nutritional and Pharmacological Properties

The nutritional value of the common vetch as a livestock feedstuff has been analyzed in
different studies that have recently been reviewed [2,32]. The main conclusions of different
works agree with the potential of common vetch grain, despite of the well-known deficit in
sulfur amino acids (methionine and cysteine), as a rich source of proteins, minerals, and
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other nutrients, while being cheaper than other alternatives. The average crude protein
values range from 21 to 39% (dry matter) and crude fat ranges from 9% to 38%, with high
levels of palmitic and linoleic acids. The main essential and non-essential amino acids
are leucine and glutamic acid, respectively. The seeds have high caloric content and are
highly digestible [2]. These characteristics make vetch a potential nutrient-rich resource to
be incorporated into animal diets and are very suitable to replace soy or a large proportion
of cereals in certain feeds, maintaining their energy content. The nutritional content of
the vetch seeds has been analyzed, and great differences in protein content, fatty acid
composition, and mineral composition, including iron, were observed between accessions
from different geographical origins. Although these studies have been carried out on a
small scale, these data support the use of the variability of genetic resources from the gene
banks of V. sativa for breeding purposes [33]. Remarkably, the large variation in crude
protein and mineral content between different cultivars is much greater even than that due
to climatic conditions [2,34,35]. This fact must be considered when selecting varieties with
better nutritional conditions.

The medical uses of V. sativa have been also explored [36]. The seed flour and plant ex-
tract are traditionally used as an anti-poison and antiseptic [37,38], as an anti-asthmatic and
respiratory stimulant in bronchitis [39], and as rheumatism treatment and an antipyretic [40].
Anti-acne [41] and antibacterial activity has been also validated [42]. However, most of the
phytopharmacological mechanisms of action remain to be unraveled.

As described in other grain legumes, common vetch seeds contain a variety of antinu-
tritional factors (ANFs), such as vicine, convicine, tannins, phenolic compounds, trypsin
inhibitors, and cyano-alanines. Although some of these elements, such as polyphenols,
have been studied as a source of antioxidants [43], these ANFs have partially limited
the use of the seeds in food and/or feedstuffs, especially in the diets of monogastric an-
imals [44]. However, the inclusion of a high proportion of common vetch seeds in the
diet of ruminants does not produce relevant negative effects on their health [45–50]. The
levels of anti-nutritional factors such as tannins, trypsin inhibitors, and hydrogen cyanide
nutrients show huge variations between different accessions conserved in gene banks [33].
These variations have permitted the selection of low vicianine levels in common vetch
accessions and have allowed the production of cultivars such as Blanchefluer without vicia-
nine [51,52], extensively growing in Australia as a substitute for red lentils, although its
consumption in humans is residual [17]. Last year, the molecular bases that regulate the
hydrogen cyanide (HCN) synthesis from these cyanogenic glycosides have been unraveled
in common vetch. Transcriptomic assays at different seed developmental stages enlighten
important information about the regulatory network of this pathway. Eighteen key reg-
ulatory genes that are involved in HCN biosynthesis have been identified. These genes
would be crucial as molecular markers for the selection and breeding of low HCN levelled
vetch germplasm [53]. In any case, and especially for non-ruminant diets, it seems that
these ANFs present in common vetch seeds need to be reduced or partially inactivated by
adequate grain processing methods. A practical approach would be the selective breeding
of varieties with a lower content of these antinutrients, but also the processing by soaking,
chemical treatment, dehulling heat treatment, or germination. These treatments not only
reduce the ANF content, but also improve the digestibility, palatability, and availability of
the nutrients [35,54,55].

6. Environmental Benefits

The multiple benefits of common vetch for the farm as a versatile crop have been
reviewed [2,32]. Plants need relatively large amounts of nitrogen for proper growth and
development. The largest input of N into the terrestrial environment occurs through the
process of biological nitrogen fixation (BNF). Therefore, BNF has great agricultural and
ecological relevance, since N is often a limiting nutrient in many ecosystems [56]. The
reduction of synthetic nitrogen fertilizers through the use of legumes not only has a decrease
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in environmental impact but also an economic one, due to the prices of these fertilizers,
whose synthesis involves a large energy cost [57].

Rhizobia from legume-symbiotic systems make use of its nitrogenase enzyme to
catalyze the conversion of atmospheric nitrogen (N2) to ammonia (NH3), which is a plant
assimilable nitrogenous compound. This process utilizes energy produced by the legume
photosynthesis and takes place in the symbiotic nodules of the legume roots. As other
species of the Vicia genus, common vetch forms indeterminate-type root nodules through
symbiosis with rhizobia to promote nitrogen fixation (Figure 3C). The interaction between
the bacteria and host legume is so intricate that many rhizobial species nodulate in a
host-specific manner despite the fact that the same symbiotic bacteria can infect different
species, and even different genera, of legume. Rhizobium leguminosarum biovar viciae (Rlv)
is the most common symbiont of V. sativa in which effective nitrogen fixation has been
validated [56]. Furthermore, different strains of the Mesorhizobium and Bradyrhizobium genus
have been isolated from V. sativa nodules, although there are no data about their ability to
fix nitrogen [58]. Specific rhizobial nodule establishment in the plant host not only depends
on the strain abundance in soil but also their nodulation competitiveness. R. leguminosarum
biovar viciae establishes symbiosis with several legume genera, and genomics studies
reveal plant preferences between specific rhizobial genotypes and the host V. sativa [59].
The complexity of these symbiotic associations and their specificity have been extensively
addressed. These interactions present differences between V. sativa cultivars and wild
relatives and are also affected by environmental conditions [58]. Moreover, the analysis
of symbiotic genes of R. leguminosarum isolated from V. sativa from different geographical
locations reveals a common phylogenetic origin, suggesting a close coevolution among
symbiotic genes and legume host in this Rhizobium-Vicia symbiosis [60]. Symbiosis within
V. sativa and Rlv has also been chosen as a model system to analyze different bacterial
compounds, mainly oligosaccharides, and the plant-produced nod gene inducers (NodD
protein activating compounds) involved in the establishment of the effective symbiosis
with its host plant and the requirements for the host-plant specificity [61–64]. The bacterial
nodulation genes (nod) are activated by flavonoids excreted by the common vetch roots [65],
and, subsequently, the plant responds with the development of the root nodule [66]. Several
physiological, biochemical, and transcriptomic analyses support an increase in drought
tolerance in nodulated vetch plants compared to non-nodulated ones. Transcriptomic
analysis has helped to discover specific drought pathways that are specifically activated in
nodulated V. sativa plants, improving the understanding of the impact of the symbiosis-
associated genetic pathways on the plant abiotic stress response [67].

Crop systems in which legumes intercropped with cereals have traditionally been
used in preference to legume or cereal monocultures, as it will result in higher forage yields
and minimize synthetic fertilizers due to the nitrogen fixation ability of the legumes. The
intercropping system of spring wheat (Triticum aestivum L.) with common vetch had a
significant advantage on grain yield, beneficial effects on root development on both crops,
and less N and P fertilizer requirements [68]. The use of vetch in the rotation of maize (Zea
mays L.) and wheat helped to reduce the N deficiency, the increase in N concentration in the
soil during next growing season, and the reduction in N losses by leaching [69]. Systems
of oats (Avena sativa L.) or ryegrass (Lolium multiflorum Lam.) intercropped with common
vetch have also proven to be especially profitable on dairy farms in central Mexico for
silage cow feeding [70]. Finger millet (Eleusine coracana L.) is a widely grown cereal crop
in some arid and semiarid areas in Africa, such as Ethiopia. Field assays in which ringer
millet was intercropped with three vetch species, including V. sativa, concluded a general
improving of the total dry matter yield and the quality of the intercrops [71–73]. Although
the most well-characterized intercropped systems are those of legume cereal, other systems
have been documented as intercropping with rapeseed (Brassica napus L.), which require
higher levels of N fertilizers [73]. Additionally, the use of V. sativa in kiwifruit orchards
increases the microbial community, moisture, and nutrients in the soil, activating plant
growth [74].
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Cover crops play an essential role in agroecosystems. They are unharvested plants
grown in the gap between crops or integrated into rotations, which improve soil health, re-
duce erosion, enhance water availability, promote nutrient capture, are useful for controlling
pests, weeds, and other diseases, and promote additional benefits for agriculture [75–77].
The use of legumes such as V. sativa as a cover crop allows the fixation of atmospheric
nitrogen in the rhizobia symbiosis nodules, then the plant residue decomposes and remains
available in the soil for the next harvest, acting as green manure by reducing the amount
of inorganic fertilizer and reducing CO2 emissions [77,78]. It has recently been observed
that V. sativa helps prevent water losses and soil erosion in vineyards (Vitis vinifera L.) [79].
In the USA, V. sativa is the most widely used legume cover crop [76]. In Argentina, V.
sativa and V. villosa are the most important cultivated cover crop [80]. In Central Spain,
the use of vetch as a cover crop in maize planted in the summer and autumn ensured the
good production of principal crops and significant biomasses and N contents in the next
following spring [81].
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In recent years, environmental problems derived from soil and water contamination
have begun to gain importance. In this context, the role that cover crops can have in phy-
toremediation is of great relevance [82]. V. sativa, together with V. faba, is the species of Vicia
genus most frequently used in phytoremediation studies against inorganic and organic pollu-
tants [83]. Different studies of phytoremediation, tolerance, and accumulation of inorganic
and organic pollutants on V. sativa are summarized in Table 1. The relevance of V. sativa for
the remediation of saline soils has recently been revealed. The phytodesalination process
implies a high capacity of the plant to tolerate, absorb, and accumulate sodium in harvestable
tissues [84]. Regarding the detoxification of organic compounds on V. sativa, the effect of
the herbicide sulfosulfuron was evaluated without relevant effects on root or shoot growth
parameters [85]. Similar studies assessed the effect of phenol and mepiquat chloride on
seed yield and yield components in V. sativa plants, without drastic damages [86–88]. The
growth, nodulation nitrogen fixation activity and V. sativa were less negatively affected by
high concentrations of phenolics than in other tested legumes [89]. Wider studies on phytore-
mediation of diesel-fuel-contaminated soil were also developed in common vetch. The assays
showed a greater tolerance of the vetch in diesel-contaminated soils and a greater capacity
for decontamination of the soils compared to other crops [90]. Although V. sativa cannot
be considered a hyperaccumulating plant capable of storing high concentrations of metals,
copper tolerance has been described for germinative seeds [91,92]. Molecular mechanisms
responsible for this tolerance remain to be explored, although it has been shown that vetch
may prevent oxidative damage in the presence of some pollutants such as phenol by increas-
ing the activity of lipid kinase and phosphatidic acid avoiding its toxicity [86,93]. V. sativa
plants can also accumulate and concentrate different heavy metals. Curiously, these plants
accumulate mercury (Hg) in the roots [94] but concentrate cadmium (Cd), lead (Pb), zinc (Zn),
and nickel (Ni) in the aerial parts [95–98]. The tolerance of V. sativa to Cd seems to be related to
antioxidant enzymes [99]. Phytochelatin synthases (PCS) and γ-Glutamylcysteine synthetase
(γ-ECS) are directly involved in metal detoxification in plants. Ectopic overexpression of V.
sativa PCS (VsPCS1) and γ-ECS (Vsγ-ECS) genes, which are Cd-inducible genes, are capable
of increasing the tolerance to cadmium and the triggering of the detoxification pathway in
Arabidopsis [100,101]. These results support the potential biotechnological use of these plants
in phytoremediation processes against metal contamination.

Table 1. Summary of studies of phytoremediation, tolerance, and accumulation of inorganic and
organic pollutants on V. sativa.

Pollutant Developed Assay References

Cd Cd tolerance. Oxidative damage
accumulation. [96]

Cd and Zn Zn and Cd accumulation in different tissues [95]

Zn Zn tolerance [98]

Cu Cu tolerance [91,92]

Salt Tolerance to salt. Na and K accumulation [84]

Hg Hg accumulation in different tissues [94,100]

Ni Ni accumulation. Oxidative damage
accumulation. [97]

Sulfosulfuron herbicide Tolerance to sulfosulfuron [85]

Diesel fuel Tolerance to diesel [90]

Phenol derivatives Polychlorinated biphenyl (PCB) dissipation [87]

Phenolics Tolerance to phenolics. Effects on biomass,
nodulation and nitrogen fixation activity [89]

Mepiquat Tolerance to mepiquat [88]
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It has recently been shown that the rhizosphere microorganisms associated with the
vetch roots can synergistically increase the decontamination potential by maximizing the
efficiency of the process [102–104]. However, it is necessary to analyze the possible synergies
or antagonisms derived from symbiosis to improve their efficiency in phytoremediation.
On some occasions, bacterial strains tolerant to different pollutants do not show this activity
when they are in symbiosis with V. sativa [83].

7. Pests and Diseases on Common Vetches

Diseases cause losses in quality and yield of common vetch crops and include viral,
bacterial, and fungal infections, and, also, insect, spider, and nematode pests [105].

Many of the insects of forage legumes attack vetches, including beetle, flies, and
aphids, promoting direct injuries or causing indirect damages by being vectors of virus
transmission [106]. The herbivorous beetle vetch weevil (Bruchus rufipes Herbst.) is an
important pest for legumes, including vetches. Their larvae feed on the grains, reducing the
germination capacity of the seeds. The beetle Sitona lineatus L. is also a V. sativa common
pest. Adults promote leaf damage, and the larvae produce symbiotic nodule destruction at
a root level. Bemisia tabaci (Gennadius) flies cause damage to the crop, due to the suction of
sap and the injecting of toxins through their saliva, which causes an overall weakening of
the plant. Delia platura (Meigen), the seedcorn maggot, or the seed fly, is a polyphagous
that significantly attacks vetch. Their larvae feed on seeds, young shoots, seedling stems,
and roots, causing a general weakening or even vetch death. The pea moth (Laspeyresia
nigricana Fabricius) is a lepidopteran that also attacks vetch. Their larvae cause damage to
the pod and grain, promoting premature yellowing and the loss of its germinative power.
Aphids also attack vetches. Thus, the black legume aphid (Aphis craccivora Koch) and the
green legume aphid (Acyrthosiphon pisum Harris) attack young shoots, biting and sucking
the sap, causing leaf deformation, shoots yellowing, and reducing photosynthesis. Other
arthropods, such as the red spider mite (Tetranychus urticae Koch.), also promote severe
damage to V. sativa. The affected leaves decrease their photosynthetic and transpiration
capacity, causing defoliation, especially at the first phases of the crop that are the most
sensitive period to the attack of this spider [107].

Fungal infections are the diseases most likely to cause the greatest losses in vetch.
An extensive review has been carried out on fungal diseases affecting vetch, such as
anthracnose, powdery mildew, rust, and botrytis [105]. At least 14 fungal diseases on
V. sativa had been reported from 28 countries [108]. Over 43 fungal pathogenic species infect
common vetch. These pathogens belong to the Deuteromycotina (58%), Ascomycotina
(16%), Basidiomyotina (14%), and Mastigomycotina (12%) groups. Anthracnose is the
main fungal disease in common vetch and is mainly caused by six pathogenic fungi:
Colletotrichum vicia Dearness, C. villosum Weimer, C. sativum Horn, C. vicia-sativa Sawada, C.
lentis Damm, and C. spinaciae Ellis & Halst. [108].

In vetch, there are no known severe diseases caused by bacterial pathogens. Bacterial
blight was one of the first and more relevant infections identified in V. sativa. The disease,
recorded in Australia for the first time, was caused by Pseudomonas stizolobii Wolf [109] that
promotes necrotic lesions on stems, leaves, and flowers, which, in many cases, causes the
complete wilting of the plant [110].

No severe economic losses associated with viral infections in common vetch crops
have been reported. However, different viruses capable of infecting V. sativa and promoting
effects on the quality and quantity of production have been identified [111]. Artichoke Yellow
Ringspot Virus (AYRSV) infection in V. sativa was reported from Greece and Italy. This virus
(Nepovirus genus; Secoviridiae Family) promotes severe stunting and leaf mottling in the
infected vetch plants [112]. Additionally, Bean Yellow Mosaic Virus (BYMV) infections have
been identified in Germany a long time ago. BYMV (Potyvirus genus; Potyviridae Family)
promotes several symptoms, including leaf and stalk necrosis, distortion of plants, and
dark to yellow green stripes along the veins on the lower surface. The virus is transmitted
by aphid vectors in a non-persistent manner [113]. Broad Bean Stain Virus (BBSV) infection
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was reported from Slovakia in V. sativa crops. BBSV (Comovirus genus; Secoviridae Family)
is transmitted by weevils [114]. Chickpea Chlorotic Stunt Virus (CpCSV) infection has been
identified in V. sativa crops from Syria. Symptoms in virus-infected vetches include exhibit
yellowing, reddening, and stunting. This virus (Polerovirus Genus; Luteoviridae Family) is
transmitted by aphid vectors in a circulative, non-propagative manner [115]. For the Faba
Bean Necrotic Yellows Virus (FBNYV), V. sativa-infection was identified from Azerbaijan. The
virus-infected vetch plants exhibit leaf rolling, yellowing, and stunting symptoms. FBNYV
(Nanovirus Genus; Nanoviridae Family) is transmitted by aphid vectors in a persistent but
non-propagative manner [116].

Annual and parasitic weeds are the most important constraints for legume production,
including vetches, because of their slow initial growth that causes poor competition to
weeds. In the case of parasitic weeds, broomrapes (Orobanche and Phelipanche spp.) are
obligate parasites that infect roots of dicotyledoneous plants, including Vicia genus. Broom-
rapes represent severe weed problems causing relevant yield losses on crops. Orobanche
spp. are particularly important in Southern and Eastern Europe, the Middle East, and
North Africa. Orobanche foetida Viv. is considered important as an agricultural parasite
of common vetch crops in the western Mediterranean area, including Portugal, Spain,
Morocco, Algeria, and Tunisia [117]. Recently, O. crenata Forssk. has been identified as a
parasite on vetch crops in Spain [118]. Different components isolated from V. sativa root
exudates were reported as stimulants of Orobanche or Phelipanche sp. seed germination [119].
The basis of host resistance to broomrapes is almost unknown, but vetch resistance based on
inducing necrosis of broomrape tubercles by the formation of mucilage and the occlusion of
host xylem has been reported [120]. The dodders (Cuscuta spp.) are also damaging parasitic
plants of vetch crops that are highly susceptible to C. campestris. However, recently, some
resistant genotypes have been identified in V. sativa germplasm collections [121].

The use of pre-emergence herbicides is effective, but the use in post-emergence is scarce
due to their lack of safety [122] and the shortage of available active substances [123,124]. An
additional constraint in some regions is the strict limitation on the use of plant protection
for weed control (Council Directive 2009/128/EC of the European Parliament and of the
Council of 21 October 2009 that establishes a framework for Community action to achieve
the sustainable use of pesticides). Strengthening research is the most adequate way to
improve this situation, both in the search of environmentally friendly active ingredients as
well as in the design of varieties with the genetic capacity to compete with weeds.

8. Germplasm Gene Banks and Common Vetch Genetic Diversity

Gene banks are relevant resources for the conservation of natural genetic diversity and
provide a source of novel features for fluctuating circumstances associated with climate change
and new disease outbreaks and are crucial for sustained crop improvement [125–127].

The total number of varieties and accessions of common vetch ex situ conserved is
quite difficult to estimate due to the taxonomic complexity of this species. GENESYS
(https://www.genesys-pgr.org/ accessed on 15 February 2023) is an online platform that
includes information on Plant Genetic Resources (PGR) for food and agriculture conserved
in gene banks worldwide, and it was accessed in February 2023. This data base includes
a total of 54,743 accessions that belong to the genus Vicia, 13,694 of which belong to the
species sativa, including the next taxons: V. sativa, V. sativa subsp sativa, V. sativa subsp
nigra, V. sativa subsp cordata, V. sativa subsp amphicarpa, V. sativa subsp macrocarpa, V, sativa
subsp incisa, V. cordata, V angustifolia, and V. macrocarpa, most of them landraces and wild
forms. Regarding the provenance, these accessions has been mainly collected in Russia,
Turkey, Spain, Italy, Syria, and Bulgaria. Figure 4 shows the number of accessions by
holding institutions.

https://www.genesys-pgr.org/
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Regarding Europe, EURISCO, the European catalog of plant genetic resources (https:
//eurisco.ipk-gatersleben.de/ accessed on 15 February 2023), includes a total of 7943
accessions named V. sativa, including also the species and some subspecies. The most
important collections are those kept at the gene banks of the Russian Federation, Germany,
Spain, and Bulgaria.

Despite the abundance of genetic resources, the situation regarding the availability
of commercial varieties of vetch, at least in Europe, is limited. The European Common
Catalogue (https://ec.europa.eu/food/plant-variety-portal/ accessed on 15 February
2023), includes 110 commercial varieties and 2 conservation varieties of this crop, registered
by 14 countries. Italy, France, and Spain are the countries with the highest number of
registered varieties.

One of the limiting factors for the use of these germplasm collections is the lack
of characterization data; another limitation is the possible environmental influence on
the expression of the agro-morphological traits. The solution to increase the value of
these resources is the genotyping of these collections and the use of molecular marker-
assisted selection.

9. Generating Genomic and Transcriptomic Tools

Recent years have witnessed the development of different types of increasingly ef-
ficient molecular markers that have allowed the characterization of the diversity of the
accessions present in collections around the world (Summarized in Table 2). The first works
were based on the use of retrotransposon-derived Sequence-Specific Amplified Polymor-
phism (SSAP) markers and allowed a preliminary characterization of the genetic diversity
of the genus Vicia [128]. The use of Amplified Fragment Length Polymorphism (AFLP)
derived markers allowed the diversity analysis of the genetic singularity coefficients in
Russian V. sativa varieties [129]. Seed reserve protein patterns were also used to characterize
the diversity present in the germplasm on a collection of Spanish vetches [130]. Start Codon
Targeted (SCoT) markers have been used for analyzing the intra-population diversity of
several common vetch varieties and optimizing the minimal sample size to assess their
genetic diversity [131]. Inter Simple Sequence Repeats (ISSR) markers have been also
used for characterizing more than 25 accessions from the Spanish V. sativa germplasm
collection [132]. During the last few years, the rapid emergence and efficient develop-
ment of next-generation sequencing (NGS) technologies have allowed the transcriptomic
analysis of many species in a high-throughput manner with reasonable economic costs
and in a time-efficient approach. This methodology has made the in-depth analysis of

https://www.fao.org/wiews/data/organizations/en
https://www.fao.org/wiews/data/organizations/en
https://eurisco.ipk-gatersleben.de/
https://eurisco.ipk-gatersleben.de/
https://ec.europa.eu/food/plant-variety-portal/
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gene expression and the annotation of a large number of genes possible, but it has also
been very useful for analyzing the presence of polymorphisms, managing to design molec-
ular markers as simple sequence repeats (SSRs) and single nucleotide polymorphisms
(SNPs) associated with functional transcribed genes and associated traits [133,134]. Thus,
the analysis of V. sativa transcripts from RNA-seq data has allowed the identification of
cDNA-SSR molecular markers with a high degree of polymorphisms [135–137]. These
markers have shown a high amplification potential in other species of the Vicia genus [138],
supporting the possibility of using heterologous markers for diversity analysis of related
species. These SSRs are mapped in coding regions of the genome, less polymorphic but
potentially more conserved. This fact could favor the high rate of transferability across
closely related species of the same genus. Recent works have developed a minimum set
of 14 SSR reference alleles that have allowed the genotyping of over 545 common vetch
worldwide accessions, including landraces, cultivars, and wild relatives. This analysis
has allowed an exhaustive analysis of the diversity present in this collection based on
which a Spanish vetch core collection (Figure 3B,D) has been created with a minimum
loss of genetic diversity in comparison with the total collection [132]. Genome-derived
polymorphisms have also been identified. Over 24,000 single nucleotide polymorphisms
(SNP) have been identified from 1243 plants of the 12 natural V. sativa Japanese populations,
and double-digest restriction-site associated DNA sequencing (ddRAD-Seq) was used to
evaluate heterogeneity of these accessions [139]. A total of 76,810 different SSR have been
also identified, tri- (36%) and tetra-nucleotide (13%) repetitions being the most abundant.
Some of these SSR have been used to analyze the genetic diversity of Chinese common
vetches [140].

Table 2. Summary of molecular markers used for diversity characterization of V. sativa germplasm.

Type of Molecular Marker Target References

Retrotranspon-derived
Sequence-Specific Amplified

Polymorphism (SSAP)
Genomic sequences [128]

Amplified Fragment Length
Polymorphism (AFLP) Genomic sequences [129]

Seed reserve protein patterns Protein [130,132]

Start Codon Targeted (SCoT) marker cDNA sequences [131]

Inter Simple Sequence Repeats (ISSR) Genomic sequences [132]

cDNA-SSR cDNA sequences [132,135,136,138,140–142]

SNP cDNA sequences [132,139,142]

double-digest restriction-site
associated DNA sequencing

(ddRAD-Seq)
Genomic sequences [139]

genomic-SSR Genomic sequences [140]

9.1. Genomic Data and Transcriptomic Characterization of Some Traits and Developmental Stages

The lack of a high-quality and complete publicly available reference genome sequence
of V. sativa has restricted the advances in molecular breeding and functional genomics
efforts to improve this crop. Previous publications have reported controversial karyotypes
with at least three different chromosome numbers (2n = 10, 12, and 14) inside the V.
sativa aggregate. The four main taxa, sativa, macrocarpa, cordata, and angustifolia, suggest
taxonomic ascription problems into the V. sativa aggregate or spontaneous amphidiploids
or hybrid derivatives [143,144].

During this last year, two groups have sequenced the common vetch genome. Recently,
a draft of common vetch chromosome-level genome has been published with a partial 85%
assembly of over 1.5 Gb and 31,146 predicted genes [139], validating a ploidy of 2n = 14
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for the sequenced cultivar (V. sativa subsp. sativa Cv. Studenica). Another lab has reported
similar results with an estimated sequenced genome size of 1.6 Gb [140]. Further efforts
will make it possible to have a complete and annotated genome, which will make it easier to
have efficient genomic tools. Meanwhile, different transcriptional approaches by RNA-seq
have been developed, making it possible to have gene expression data and sequences of
transcripts from different tissues, developmental stages, and stress responses. These results
have been very useful to understanding at genetic level processes such as flowering time,
floral development, pod shattering, metabolic processes associated with HCN synthesis, or
plant responses to different abiotic stress as drought, salt, or cold, and their interconnection
between different plant tissues as root and leaves, summarized in Table 3, whose results
are explained below.

Flowering time is an important determinant of harvesting time. In common vetch,
early flowering promotes plant seed production, but it affects the yield of forage biomass.
Therefore, understanding the flowering process is crucial for breeding purposes. To un-
ravel the molecular mechanisms of flowering regulation, V. sativa accessions with different
flowering times were analyzed at different developmental stages for integrative analyses of
the transcriptomes and metabolomes. Among the differentially expressed genes (DEGs),
synthesis and signal transduction of plant hormone pathways were the most enriched
pathways. Moreover, the contents of three metabolites related to salicylic acid biosyn-
thesis correlated with the observed differences in DEGs [145]. The development of the
zygomorphic flower of V. sativa (Figure 3A) has also been analyzed at the transcriptional
level by comparative expression analyses on six floral organs (sepals, dorsal petals, lateral
petals, ventral petals, stamens, and carpels) in common vetch. Results show that these
gene expression patterns of the vetch flower fitted a strict ABC model, similar to the core
eudicots Arabidopsis [146].

The seed dispersion by pod shattering is the main form of propagation of many
wild species and is one of the plant characters radically changed by crop domestication,
already studied in legumes such as soya [147], chickpea [148], and common bean [149].
This behavior is frequent in cultivated V. sativa, and it is one of the most important defects
that limits its utilization [150]. To better understand the pod shattering mechanism at
a molecular level, comparative transcriptomic analysis of pod ventral sutures between
shattering-susceptible and shattering-resistant vetch accessions has been performed. The
most enriched pathways among the differentially expressed genes were processes related to
cell wall modifications and hydrolases associated with pod shattering. The results helped to
unravel the pod-shattering gene regulation networks in vetch. This information is relevant
for the identification of pod-shattering-related genes and the design of future molecular
markers assisted selection in breeding programs [142,151].

9.2. Genomic Data and Transcriptomic Characterization of Stress Responses

The physiological response of V. sativa germplasm collections has been explored
under treatments with different concentrations of NaCl to select salt-tolerant accessions for
breeding programs. Salt-tolerant vetches have a higher K+/Na+ ratio than salt-sensitive
plants under these treatments. To unravel molecular mechanisms involved in salt tolerance,
the expression of genes involved in ion homeostasis was evaluated. Salt-tolerant varieties
had higher expression levels in the ion transporters NHX7, HKT1, AKT2, and HAK17,
compared with the salt-sensitive ones. Proline levels, expression of the enzyme P5CS1
involved in proline biosynthesis, and antioxidant enzymes SOD, CAT, and APX were
also higher in salt-tolerant varieties [152]. A comparative transcriptomic analysis of the
leaves and roots of common vetch under salinity stress was also performed. This assay
has allowed us to begin to unravel the complex molecular mechanisms associated with the
salt stress response and the differences and interconnections that are established between
the aerial and radicular parts of the plant and how these can help explain the behavior
observed in some salt-tolerant varieties [153].
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Drought is one of the main stresses that threatens current agriculture. It is estimated
that its effects will be more dramatic in the coming years, as a direct consequence of climate
change. Drought pressures vetch production, both in forage and grain. Therefore, it is
important to understand the mechanisms of response and tolerance to drought in this
legume. Physiological drought responses of V. sativa have been analyzed at a photosyn-
thetic [154,155] and biochemical level [142]. Recent years have witnessed numerous studies
addressing the drought response from a molecular perspective, trying to understand the
genetic networks involved. Transcriptomes carried out on whole tolerant and sensitive
vetch plants under different drought treatments reveal a functional enrichment of genes
involved in relevant process as “oxidation reduction”, “lipid metabolism”, “oxidoreductase
activity”, or “plant hormone signaling” [142]. Additionally, the aquaporin gene family
seems to play an essential role during drought stress [156]. Moreover, miRNAs that are
small noncoding RNAs that negatively regulate the expression of downstream target genes
have been recently identified as regulators of the drought response in V. sativa. Potential
targets of the identified drought-responsive miRNA include genes involved in various path-
ways, as cell wall biosynthesis, reactive oxygen removal, and protein transport, providing
new insights into the miRNA-mediated regulatory networks of drought stress response in
common vetch [155,157]. The response to drought stress is complex and involves different
gene regulatory networks and physiological responses in the root and the aerial parts that
are responsible for water uptake and stomatal evapotranspiration, respectively (Figure 3E).
Comparative transcriptomic analyses have been performed in common vetch leaves and
roots under drought stress. These studies shed light on the coordinated response of aerial
and radicular tissues of common vetch to drought stress. Hormone signal transduction,
starch and sucrose metabolism, and arginine and proline metabolism were extensively
enriched in genes belonging to drought-responsive pathways, including the enzyme P5CS1,
involved in the biosynthesis of proline. Various TFs’ (Transcription factors) family mem-
bers (WRKY, bHLH, AREB/ABF, MYB, and AP2/ERF) seem to be crucial regulators in the
crosstalk between leaves and roots during drought response. Previous studies support that
the expression profile in the roots was more stable than that in the leaves. However, both
the aerial and root parts coordinate the gene response to optimize the whole-plant adaption
in drought stress by undergoing similar biological processes [155]. Similar approaches were
performed combining drought and cold abiotic stresses, analyzing the crosstalk between
aboveground and underground parts of common vetch. This study identifies specialized
and unique responses to combined stresses in common vetch [158]. To understand the
molecular networks involved not only in drought response, but also in adaptive mecha-
nisms of drought tolerance, transcriptomic differences and specific polymorphic variants
(mainly SNPs and SSRs) between tolerant and sensitive accessions under drought have
been analyzed. This strategy has allowed the design of drought-associated markers to be
used as new molecular breeding tools [142].
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Table 3. Developmental, metabolic, or stress processes with transcriptomic analysis in Vicia sativa.
Analysis was performed at indicated plant tissue or developmental stage.

Process Analyzed Plant Tissue References

Flower Development
Floral organs (dorsal, lateral and ventral

petals, sepals, stamens, carpels) leaf,
and roots

[146]

Flowering time Aerial part at different stages [145]

Pod Shattering Pod ventral sutures [151]

Drought Tolerance Whole plant under different drought
treatments [137]

Drought Stress Root, stem, and leaf tissue under PEG
treatments [156]

Drought Stress Comparative leaf versus root [155]

Drought response and tolerance Aerial part of tolerant and sensitive
varieties [142]

Cold–drought combined stress Comparative leaf versus root [158]

Drought Stress Aerial part under PEG treatments [157]

Salinity Stress Leaf versus root [153]

Hydrogen Cyanide Synthesis Seed development [53]

10. Perspectives for Future Breeding Strategies

Leguminous crops face several challenges, in the context of achieving sustainable
agriculture. Among the main ones, it included the improvement of different agronomic and
nutritional traits in common vetch by using several approaches. Traditional strategies have
included the selection of cultivars with high forage and/or grain production. Additionally,
the selection of varieties with flowering times or pod shattering adapted to different climatic
conditions. Nowadays, to cope with increasing climate change in arid areas, breeding
strategies for more tolerant and resilient crops, including common vetch, will be essential.
The different tolerance mechanisms and management of drought stress and other associated
abiotic stresses in grain legumes have been thoroughly reviewed and analyzed [159].
Legume crops face the challenge of managing water deficits by creating different ways
for efficient water management at the same time as increasing crop yield [160]. Selecting
drought-tolerant genotypes is strategically crucial to cope with water deficits. Breeding
approaches as a result of the combination of traditional–classic techniques with novel tools
of breeding techniques would generate yield improvements under drought. The use of
classical breeding tools includes the exploitation of the diversity of plant genetic resources
that is present in gene banks, including the use of crop wild relatives, for screening and
selecting improved accessions. Novel strategies involve the use of biotechnological and
molecular tools. V. sativa is particularly recalcitrant to transformation, thus obtaining
transgenic plants transformed with Agrobacterium tumefaciens has been extremely difficult.
Therefore, up to now the improvement in Vicia has been only reported by conventional
methods. Hopeful results have only recently been achieved through the development of
systems based on the use of R. rhizogenes for in vitro hairy root transformation by infecting
different explants [161]. New approaches to cope with drought in legumes include the
construction of transgenic legumes or Genome Editing (GE) tools, and also include the
novel molecular and genomic techniques of Genome-Wide Association Studies (GWASs),
Marker-Assisted Selection (MAS) with molecular markers, Genomic Selection (GS), and
OMICs-based technologies by using transcriptome, genome, phenotype, proteome, and
metabolome data as biotechnological tools. Within this strategy, several works have
reported information on different drought-associated molecular markers (mainly SSRs and
SNPs) in V. sativa to be used as new breeding tools for the molecularly assisted selection.
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Analysis of agronomic traits associated with drought have been carried out over a V. sativa
core collection representative of the genetic diversity of a 545 whole collection (Figure 3B),
selecting promising accessions.

In addition to these combined breeding strategies, new agronomy approaches are
available. These tools include the exogenous application of plant Growth Regulators
(PGRs), osmoprotectants, and bioinoculants of Plant-Growth-Promoting Rhizobacteria
(PGPR). The improvement of biological nitrogen fixation by rhizobium symbiosis and the
selection of new generation of highly effective rhizobia inoculants are some of the main
challenges of sustainable agriculture research. The importance of the symbiotic interaction
between legumes and rhizobium has promoted the production of commercial rhizobia
inoculants. Inoculation of leguminous crops with rhizobia strains not only promotes
sustainable farming systems by reducing fertilizer inputs, but also a considerable increase
in crop yields from an economic and environmental point of view. In addition to selecting
legume genotypes especially tolerant to abiotic stresses, another focus of the study is that
the potential selection of rhizobia more tolerant to these types of stresses. This symbiotic
systems with selected strains of Rhizobium could increase the legume production under
drought conditions [67,162]. Selecting varieties with a high capacity for nitrogen fixation
would be of interest to sustainable agriculture. In this sense, common vetch has shown
novel applications and great potential for soil improvement in recent years linked with its
ability as a phytoremediator, capable of reducing organic and inorganic pollutants in the
soil, mediated by their roots’ bacterial communities. This capacity makes vetch a promising
crop for improving soil health by decreasing contaminants.

Another potential target of improvement, as previously discussed, is associated with
selecting varieties with increased nutritional properties. The large variations observed
in protein and mineral content between different varieties open a promising gateway
for selecting varieties with these characteristics. We must not forget that these selection
strategies must correlate with the reduction in anti-nutritional factors, including tannins,
trypsin inhibitors, and hydrogen cyanide, which also present variability between different
varieties. Together with this, some authors have reported the use of V. sativa seeds as a
source of functional components, mainly polyphenols, for the elaboration of functional
foods [163]. The use of classical procedures to reduce the ANFs content (heating, washing,
germination, fermentation, soaking . . . ) and the new ones such as the Controlled Pressure
Drop, ultrasound, or microwaves that could be used as an alternative to the cooking and
germination to reduce the level of ANF [164] could be used to increase the use of legumes
in general, and vetch, in particular, for animal and human consumption.
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