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Brassicaceae family includes an important group of plants of great scientific

interest, e.g., the model plant Arabidopsis thaliana, and of economic interest,

such as crops of the genus Brassica (Brassica oleracea, Brassica napus,

Brassica rapa, etc.). This group of plants is characterized by the synthesis and

accumulation in their tissues of secondary metabolites called glucosinolates

(GSLs), sulfur-containing compounds mainly involved in plant defense against

pathogens and pests. Brassicaceae plants are among the 30% of plant

species that cannot establish optimal associations with mycorrhizal hosts

(together with other plant families such as Proteaceae, Chenopodiaceae, and

Caryophyllaceae), and GSLs could be involved in this evolutionary process

of non-interaction. However, this group of plants can establish beneficial

interactions with endophytic fungi, which requires a reduction of defensive

responses by the host plant and/or an evasion, tolerance, or suppression of

plant defenses by the fungus. Although much remains to be known about

the mechanisms involved in the Brassicaceae-endophyte fungal interaction,

several cases have been described, in which the fungi need to interfere

with the GSL synthesis and hydrolysis in the host plant, or even directly

degrade GSLs before they are hydrolyzed to antifungal isothiocyanates. Once

the Brassicaceae-endophyte fungus symbiosis is formed, the host plant can

obtain important benefits from an agricultural point of view, such as plant

growth promotion and increase in yield and quality, increased tolerance to

abiotic stresses, and direct and indirect control of plant pests and diseases.

This review compiles the studies on the interaction between endophytic fungi

and Brassicaceae plants, discussing the mechanisms involved in the success

of the symbiosis, together with the benefits obtained by these plants. Due to
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their unique characteristics, the family Brassicaceae can be seen as a fruitful

source of novel beneficial endophytes with applications to crops, as well

as to generate new models of study that allow us to better understand the

interactions of these amazing fungi with plants.

KEYWORDS

glucosinolates, molecular dialog, Arabidopsis, Brassica, plant growth promotion,
abiotic stress tolerance, biological control agent, mycorrhiza

The beneficial symbiotic relationships between fungi and plants
are firstly based on the fungal ability to evade host plant
defenses and to engage in a mutualistic interaction with the
plant. In this context, the beneficial interaction between plants
of the Brassicaceae family and endophytic fungi represents
a remarkable object of study with specific characteristics. In
this review, we first describe the Brassicaceae family and its
distinguishing features, the mechanisms that fungal endophytes
may use to overcome plant defenses and colonize the tissues
of Brassicaceae hosts, and, finally, the benefits that Brassicaceae
plants may obtain from fungal endophytes and the known
mechanisms involved.

Brassicaceae family: Important
crops and model plants

The Brassicaceae (Cruciferae) family is one of the most
economically and scientifically relevant families of dicotyledons.
Generally, plants in the Brassicaceae family are herbs,
herbaceous woody climbers, shrubs, or small trees. The roots
can be conical, fusiform, or napiform and usually store food.
The floral structure is maintained throughout the family,
with four petals oriented in the shape of a cross, giving
the name “Cruciferae” to the family. The fruits are usually
siliques or siliqua types (Jabeen, 2020). Brassicaceae crops
were probably domesticated in the Neolithic period in various
regions of Eurasia and North Africa. Nowadays, these crops are
consumed as vegetables, condiments, or oils, and, in addition
to nourishing animals and humans, Brassicaceae plants have
also been used for medical purposes, research, ornamentation,
and bio-fumigation. The enormous diversity in its uses may
be because this family has more than 321 genera and 3,660
species (Raza et al., 2020). Some of the genera that stand
out in this family are Arabidopsis, Brassica, Capsella, Crambe,
Eruca, Diplotaxis, Moricandia, Orychophragmus, or Pachycladon
(Figure 1). However, the most important genus from an
economic perspective due to its role in agriculture is Brassica.
As of today, the genome sequences of more than 20 Brassicaceae
species are available (Chen et al., 2022), including those of
several Brassica crops (He et al., 2021).

The Brassica genus contains 37 species, which include
the most relevant crops of the Brassicaceae family. The three
most renowned species are Brassica oleracea, Brassica napus,
and Brassica rapa. These species are strongly related to each
other, and their phylogenetic relationships are collected in the
Triangle of U theory U (1935), based on genomic and cytological
studies (Allender and King, 2010). This theory states that the
three diploid species, Brassica nigra (2n = 16, genome BB),
B. oleracea (2n = 18, genome CC), and B. rapa (2n = 20, genome
AA), underwent a two-by-two interspecific hybridization and
generated the amphidiploids B. napus (AACC, 2n = 38),
Brassica juncea (AABB, 2n = 36), and Brassica carinata (BBCC,
2n = 34).

B. oleracea, B. napus, and B. rapa are cultivated practically
throughout the whole world (Jabeen, 2020; Raza et al., 2020).
B. oleracea is used as a vegetable (such as cabbage, kale, brussels
sprout, broccoli, or cauliflower), oil, and fodder crop. In 2020,
the production of cabbage and other B. oleracea vegetables was
approximately 70 M tons, with China and India being the main
producers. It can be highlighted that only the production of
broccoli and cauliflower reached the 25 M tons, with a gross
production of 15 M US$ (FAOSTAT, 2022). The most important
crop of B. napus is canola, rapeseed or colza, mostly used for
oil production. Indeed, B. napus is the third source of vegetable
oil worldwide, after soybeans and palm (Friedt et al., 2018),
entailing a gross production of 36M US$ in 2018 (FAOSTAT,
2022). B. rapa can also be cultivated for its oil, although in
some regions it is more popular for the consumption of its foliar
parts or its roots, such as turnip, Asian greens, or pak choy
(Raza et al., 2020). B. nigra, B. juncea, and B. carinata are used
primarily as condiments, although they may be used for their
oil and as leafy vegetables in certain regions (Rakow, 2004). In
addition to the Brassica genus, species within Sinapis, Camelina,
Crambe, Eruca, and Raphanus genera are also relevant in the oil
industry due to their use as biofuel, lubricant, or for human and
animal consumption.

Besides its importance as crops, the Brassicaceae family
has a remarkable relevance in research, and this is mainly due
to the species Arabidopsis thaliana, one of the best-studied
model organisms. A. thaliana was the first plant species to
have its genome sequenced and is essential in the study of
plant genetics and physiology (Koornneef and Meinke, 2010).
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Native to Europe, Asia, and some regions of Africa, it is
currently present throughout the world (Jabeen, 2020). Besides
A. thaliana, other Brassicaceae plants used in research are, for
example, A. helleri, which is useful for studying heavy metal
contamination (Jabeen, 2020) or Capsella spp., which stand
out for their wide distribution and high population densities
(Mitrović et al., 2020).

Glucosinolates: Relevant defense
and nutraceutical compounds in
the Brassicaceae family

Plants in the Brassicaceae family contain several bioactive
chemicals that can act in beneficial or harmful ways, including
glucosinolates, other sulfur-containing compounds, and erucic
acid. Glucosinolates (GSLs) are amino acid-derived natural
plant products found exclusively throughout the Capparales
order, as well as the major class of secondary metabolites
found in the family Brassicaceae. Approximately 150 GSLs
have been identified (Halkier and Gershenzon, 2006; Blažević
et al., 2020). Species in the Brassicaceae family typically produce
between 30 and 40 different GSLs. GSL types and concentrations
within the plants depend on the species and variety, and are
influenced by the environmental conditions under which the
plant is growing (Czerniawski et al., 2021). The hydrolytic
breakdown products of GSLs, especially isothiocyanates (ITCs),
have different biological effects. The most recognized and
studied during the last decade is the biocidal effect, including
antifungal, antimicrobial, herbicidal, and even insecticidal and
nematicidal effects (Prieto et al., 2019). There is evidence that the
distribution of GSLs throughout the plant tissues may be linked
to the probability of a plant organ being attacked by pathogens
or pests (Poveda et al., 2020b). However, it should be mentioned
that family-adapted herbivores may not be negatively affected
by these compounds. Delia radicum, Pieris rapae, or Plutella
xylostella recognize certain GSLs that act as signals to stimulate
oviposition (Städler and Reifenrath, 2009). GSL degradation
products are also highly recognized for their chemopreventive,
anti-inflammatory and antimutagenic effects, which have a
protective function against diseases like cancer, atherosclerosis,
degenerative heart diseases, glaucoma, etc. (Prieto et al., 2019).
In addition, GSL degradation products provide organoleptic
characteristics, associated with the pungent and bitter taste and
the sulfurous aroma of the Brassicaceae crops.

The GSLs consist of a β-D-glucopyranose residue linked
to a hydroximinosulfate ester by a sulfur bridge, plus an
R-group. The R-group is derived from one of the eight
amino acids and can be aliphatic (alanine, leucine, isoleucine,
methionine, or valine), aromatic (phenylalanine or tyrosine), or
indolic (tryptophan) (Halkier and Gershenzon, 2006). The GSLs
biosynthesis occurs through three independent stages: first,
there is the chain elongation of the precursor amino acid; the

second stage is the formation of the core structure; and the third
one is the secondary modifications of the amino acid side chain
process (Figure 2). These changes in structure due to secondary
modifications, side-chain elongations, substitutions to the side
chain, or esterifications of the thioglucose moiety are responsible
for all GSL structures known to date (Sønderby et al., 2010).
GSLs are constitutively produced, but differences in quantity
and type of GSLs occur between different parts and organs of
the plants (Poveda et al., 2020b; Czerniawski et al., 2021). Also,
GSL biosynthesis and hydrolysis can be modulated by biotic and
abiotic stimuli (Bones and Rossiter, 2006; Bednarek et al., 2011).
Despite the high amount of knowledge accumulated during
the last decades on GSL, aspects of the temporal and spatial
regulation of GSL biosynthesis, accumulation, and hydrolysis
still need much investigation (Czerniawski et al., 2021).

The enzymes that catalyze the hydrolysis of GSLs to ITCs
and other compounds are the myrosinases. Specifically, they
catalyze the first step of bioactivation of GSLs, the hydrolysis
of their thioglycosidic bond. Myrosinases are thioglucosidases
(thioglucoside glucohydrolases, EC 3.2.1.147) of glycoside
hydrolase family I, along with other b-glycosidases. Usually,
they are composed of two identical polypeptides, which are
glycosylated, resulting in a native molecular weight of 120–
150 kDa of the dimeric proteins. Myrosinases accept different
types of GSLs as substrates, but they differ in their affinity
and conversion efficiency. GSL-containing species often possess
several myrosinase isoforms with preferences for different
substrates or specific to organs, tissues, or developmental stages
(Wittstock et al., 2016). Depending on the parent GLS, the
hydrolysis conditions (pH, temperature), presence of Fe2+ ions,
and additional protein factors, the aglucon is converted into
different classes of degradation products, thus, embracing any of
the following: ITCs, thiocyanates, nitriles, epithionitriles (EPTs),
hydroxynitriles, oxazolidine-2-thiones, or indoles. Myrosinases
are often physically separated from their substrates at a cellular
or subcellular level (Nakano et al., 2017; Parchem et al., 2020).
Depending on the type of myrosinases, these can be present
in myrosin cells, whose distribution differs in individual plant
parts and also depends on the stage of development (Andréasson
et al., 2001) or in endoplasmic reticulum (ER) bodies (Nakano
et al., 2014). ER bodies are distributed in the root, hypocotyl,
and cotyledons, but absent in leaves, and contain PYK10-
like myrosinases (Yamada et al., 2020). It has been shown
that ER body’s number or shape are altered in the presence
of the defense-related phytohormone methyl jasmonate or
wounds (Nakano et al., 2014; Gotté et al., 2015). Tissue damage
caused by phytophagous insects initiates myrosinase-catalyzed
glucosinolate hydrolysis and generation of ITCs and other toxic
compounds that defend the plant against attack (Barth and
Jander, 2006), and similar mechanisms may also be involved
in defense against pathogens (Tierens et al., 2001). However,
other GSL hydrolysis mechanisms are independent of cellular
destruction, such as the indole glucosinolates (IGs) breakdown
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that takes place in living plant cells and is initiated by the atypical
peroxisome associated myrosinase PEN2, which accumulates at
pathogen contact sites during pre-invasive defense responses
(Bednarek et al., 2009). The metabolic pathway triggered by
PEN2 is needed for broad-spectrum defense against invasion
and growth of a diverse range of pathogenic fungi (Hiruma,
2019). Also, besides the supposed direct toxic effect on pests and
pathogens, the metabolic pathway of IGs is related to signaling
and activation of evolutionarily conserved immune responses in
the plant (Pastorczyk and Bednarek, 2016).

Plant–fungus interactions in
Brassicaceae: From pathogens to
endophytes

Brassicaceae plants, like all other plant species, can establish
a wide variety of relationships with fungi, ranging from
negative interactions with pathogens to positive associations
with beneficial fungi (Table 1). Besides, interactions can transit
among neutral (commensals), negative (parasitic), or positive
(mutualistic) depending on the environmental conditions or
the genetic variation in both fungus and plant host (Rai and
Agarkar, 2016; Zeilinger et al., 2016). The interactions with
pathogens have been the most studied and characterized ones
for many years, due to the economic impact of fungal diseases
on crops (Poveda et al., 2020a; Thoms et al., 2021). However,
today it is known that a large fraction of the fungal interactions
with plants is mutualistic and results in beneficial outcomes for
both partners (Kivlin et al., 2013; Martin et al., 2017; Strobel,
2018). Although fungal pathogens are still a major threat to
crops worldwide, many fungal species might be now regarded
as allies, rather than enemies, to improve the resilience of the
plant to the changing environment and sustainably increase
crop productivity (Lugtenberg et al., 2016; Poveda et al., 2021;
Pozo et al., 2021).

The rich variety of mutualistic plant-fungal interactions
includes both mycorrhizal and endophytic fungi (Rodriguez
et al., 2009; Hardoim et al., 2015; Brundrett and Tedersoo, 2018;
Genre et al., 2020). Mycorrhizae are the best-known plant–
fungus mutualisms, especially those classified as arbuscular
mycorrhiza (AMF) (Parniske, 2008; Miyauchi et al., 2020).
Mycorrhizal fungi are characterized by the formation of specific
structures in the host plant (i.e., vesicles or arbuscules),
establishing fine-tuned relationships, in which the plant
receives phosphorus and other mineral nutrients in return for
carbohydrates and lipids (Gutjahr and Parniske, 2013; Cosme
et al., 2018; Genre et al., 2020). Besides, mycorrhiza can also
confer plant resistance to abiotic and biotic stresses (Rivero
et al., 2018; Sanmartín et al., 2020). However, about 30% of
vascular plant species cannot establish optimal mycorrhizal
associations. Members of the Brassicaceae family are found

within this group of non-mycorrhizal plants, including the
model plant A. thaliana and relevant crops, such as oil-seed rape
(B. napus), cabbage (B. oleracea), or turnip (B. rapa) (Cosme
et al., 2018). Phylogenetic analyses within the Brassicaceae
family point to the loss of essential genes for mycorrhizal
symbiosis that occurred independently during non-mycorrhizal
lineages’ evolution (Delaux et al., 2014; Bravo et al., 2016).
Indeed, several Brassicaceae species form optimal mycorrhizae
(Orłowska et al., 2002; Vogel-Mikuš et al., 2006), and some
others considered non-mycorrhizal, such as Arabidopsis or
B. napus, are colonized by mycorrhizal fungi to some extent,
forming rudimentary structures, which, however, are not fully
functional or even detrimental for the host plant (Tommerup,
1984; Glenn et al., 1985; Demars and Boerner, 1996; Veiga
et al., 2013). The amount and diversity of GSL may be
an important factor in preventing mycorrhization (Vierheilig
et al., 2000; Anthony et al., 2020). These authors showed
that Brassicaceae crops lacking myrosinase enzymes were root-
colonized by mycorrhizal fungi, pointing out the key role of
these enzymes and their hydrolysis products in the evolutionary
loss of mycorrhization by Brassicaceae plants (Vierheilig et al.,
2000). It has also been shown that GSLs protect Arabidopsis
from the detrimental colonization by mycorrhiza forming fungi
(Anthony et al., 2020). Since both, the loss of symbiotic genes
and the presence of particular GSLs pathways, correlate with
the lack of mycorrhization ability, a relationship between the
three features in Brassicaceae can be hypothesized, although this
possible link has not been proven yet (Hiruma et al., 2018).

Besides mycorrhiza, fungal endophytes have emerged as an
alternative group of fungi conferring multiple benefits to plant
hosts (Yan et al., 2019; Sarkar et al., 2021). Fungal endophytes are
a highly diverse group of fungi that naturally colonize internal
plant tissues without causing disease symptoms for at least
part of their life cycle (Rodriguez et al., 2009; Hardoim et al.,
2015) (Table 1). Many of the plant-endophyte interactions are
mutualistic, with the exchange of benefits between the host and
the endophyte. Thus, the endophyte can promote plant growth,
facilitate plant adaptation and increase tolerance to biotic
and abiotic stresses, while the host plant provides shelter and
nutrients to the fungus (Poveda et al., 2021; Sarkar et al., 2021).
Endophytic fungi do not form the morphologically complex
structures within host plant cells typical of mycorrhiza (Peterson
et al., 2008) and, also in contrast with these obligate symbionts,
many of the fungal endophytes are axenically cultivable (Mesny
et al., 2021). However, fungal endophytes have been much less
studied than mycorrhiza so, in most the cases, the mechanisms
behind their interactions with the plant are not well-understood
(Card et al., 2015; Chitnis et al., 2020; Orozco-Mosqueda
and Santoyo, 2021). The association with fungal endophytes
seems to be universal across the plant kingdom, being found
in all surveyed plants and environments (Rodriguez et al.,
2009; Aamir et al., 2020). Thus, fungal endophytes acquire
special relevance for non-mycorrhizal plants (i.e., many of the
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FIGURE 1

Composition of images of species belonging to the Brassicaceae family. (A) Brassica rapa (turnip), (B) Brassica oleracea var. gongylodes
(Kohlrabi). (C) Different vegetable products belonging to the Brassica genus (cauliflower, cabbage, turnip...), (D) Brassica barrelieri, (E) B. rapa
subsp. Nippossinica, (F) Brassica gravinae, (G) Arabidopsis thaliana, (H) Capsella sp., (I) B. oleracea (cabbage), (J) Brassica juncea, (K) B. oleracea
subsp. capitata (red cabbage), (L) Eruca vesicaria, (M) Sinapis alba, (N) Brassica carinata.
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FIGURE 2

Diagram showing the three stages of the GSL biosynthetic pathway: chain elongation of the precursor amino acid, formation of the GSL core
structure, and minor modifications of the amino acid side chain process.

Brassicaceae species) as they can compensate for the lack of
ability for mycorrhization by providing counterpart benefits
(Hiruma et al., 2018).

During the last decade, several cultivation-dependent
and independent surveys have described the composition
and diversity of fungal endophytes in wild populations of
Arabidopsis and other wild Brassicaceae species across different
environments (Junker et al., 2012; García et al., 2013; Keim
et al., 2014; Glynou et al., 2016; Almario et al., 2017; Thiergart
et al., 2020). Regarding Brassicaceae crops, fungal endophytes
have been surveyed and isolated from turnip (Liang et al.,
2017), rapeseed (Glynou et al., 2018), kale (Poveda et al., 2020c),
Chinese cabbage, radish, or white cabbage (Chen et al., 2020),
as some examples. These works highlight the high diversity of
fungal endophytes hosted by them, comparable to other hosts.
Besides, the composition of the endophytic fungal assemblages

of these hosts, in general, is not very different from other non-
Brassicaceae hosts (Hiruma et al., 2018; Mesny et al., 2021).
Indeed, climate or seasonal and soil factors seem to be stronger
drivers of mycobiota composition than host genotype (García
et al., 2013; Glynou et al., 2016; Urbina et al., 2018; Thiergart
et al., 2020), even when comparing among different Brassicaceae
(Glynou et al., 2018; Chen et al., 2020; Maciá-Vicente et al.,
2020) or between Brassicaceae and non-Brassicaceae species, as
in the canola (B. napus) versus wheat comparison (Schlatter
et al., 2019). However, other works suggest a reduced diversity
of soil communities exposed to canola-derived GLSs (Lay et al.,
2018; Siebers et al., 2018). Even some works point to a higher
frequency of particular taxa, such as species in the order
Helotiales, associated with Brassicaceae hosts (Almario et al.,
2017; Chen et al., 2020; Maciá-Vicente et al., 2020). Therefore,
more studies comparing Brassicaceae and non-Brassicaceae
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TABLE 1 Definitions box.

Concept Definition References

Symbiosis The living together of two
different kinds of organisms that
may, but not necessarily, benefit
each organism.

D’Arcy et al., 2001

Mutualism A relationship between organisms
in which both benefit.

D’Arcy et al., 2001

Parasite An organism that lives in intimate
association with another
organism on which it depends for
its nutrition; not necessarily a
pathogen (contrasts with
saprophyte)

D’Arcy et al., 2001

Pathogen A disease-producing organism or
biotic agent.

D’Arcy et al., 2001

Endophyte Microorganism that naturally
colonizes internal plant tissues
without causing disease
symptoms for at least part of its
life cycle.

Hardoim et al., 2015

hosts are needed to fully ascertain if the features of Brassicaceae
metabolites condition microbiota recruitment, and the extent
of this effect on the composition and performance of the
endophytic mycobiota.

How do fungal endophytes
interact with Brassicaceae?

Like any other microorganism intending to enter the plant,
fungal endophytes need to evade the plant detection and
immunity system (Teixeira et al., 2019). The first layer of the
plant detection system is the cell-surface pattern recognition
receptors (PRRs) that can recognize microbe molecular patterns
conserved among practically all microorganisms that reach the
plant (called MAMPS). PRRs transduce signals that activate
defense reactions encompassed within the so-called pattern-
triggered immunity (PTI) (Zipfel and Oldroyd, 2017; Albert
et al., 2020). To evade these plant defense reactions and enter
into the plant, microorganisms may use effectors that, in turn,
can be detected by the second layer of plant receptors (mainly,
but not only, nucleotide-binding leucine-rich repeat – NRL-
receptors), touching off the second layer of defense reactions,
the effector-triggered immunity (ETI, Jones and Dangl, 2006).
The number and structural features of PRRs and NLR receptors
in Brassicaceae varies, as it is in other plant families (Dufayard
et al., 2017; Gao et al., 2018). Brassicaceae species are not among
those with higher numbers of these receptors, but many of them,
mostly belonging to A. thaliana, are among the best known
and characterized (Ngou et al., 2022). Indeed, in the study by
Ngou et al. (2022), 28 of the 59 PRRs with known ligands have
been characterized in A. thaliana, and one in B. napus. Twelve

of these receptors, including the one in B. napus, specifically
perceive fungal cell wall-derived MAMP ligands, such as chitin
and oligogalacturonides (OGs) (Brutus et al., 2010; Gong et al.,
2020), and apoplastic effectors or other proteinaceous elicitors,
including phytocytokine-like peptides (Long et al., 2011; Zhang
L. et al., 2014; Rhodes et al., 2021). Regarding NLR, Brassicaceae
species tend to express less of these receptors in roots, in
contrast with most other plant species (Munch et al., 2018). This
particular feature suggests that Brassicaceae roots do not depend
greatly on NLRs to defend against microbial attempts to enter
(Hiruma et al., 2018). Instead, constitutive levels and profiles of
GLS and other secondary components in Brassicaceae roots may
be important defense components and might play a relevant
role in the recruitment of root microbiota (Szűcs et al., 2018;
Plaszkó et al., 2021).

The two-tiered immune detection and response model
system is mostly based on knowledge on the interactions of
plants with pathogens (Jones and Dangl, 2006; Ngou et al.,
2022). More recently, it became clear that the recognition
mechanisms also hold for beneficial microorganisms, such
as mycorrhizae, although with some differences (Zipfel and
Oldroyd, 2017; Thoms et al., 2021). As it happens with
pathogenic and mycorrhizal fungi, plant receptors should
recognize molecular patterns from fungal endophytes, eliciting
immune responses. Indeed, different works show that gene
expression changes in Arabidopsis at the early stages of
endophytic fungal infection are comparable to those induced
by pathogens (Fesel and Zuccaro, 2016; Guo et al., 2021).
Plant recognition of pathogenic or mycorrhizal fungi triggers
local and systemic defense responses, in which SA- and JA/ET
phytohormones-dependent pathways are mainly involved
(Pieterse et al., 2009, 2014). In the same way, fungal
endophytes also elicit changes in these phytohormones and have
mechanisms to manipulate this early plant defensive response.
Arabidopsis colonization by Serendipita spp. endophytes is
followed by an increase in JA and a reduction in SA levels
(Jacobs et al., 2011; Lahrmann et al., 2015). SA- and JA-
related genes are also downregulated in A. thaliana after
24 h of incubation in the presence of Trichoderma harzianum
(Morán-Diez et al., 2012). Indeed, T. harzianum requires local
suppression of SA-related local defenses for root penetration and
colonization (Poveda et al., 2019b), in analogy with the defense
suppression necessary for mycorrhiza formation in host plants
(Pozo and Azcón-Aguilar, 2007). Thus, it has been documented
that T. harzianum inoculation allowed root colonization
of co-inoculated arbuscular mycorrhizal fungi (AMF) in
Arabidopsis and rapeseed (Poveda et al., 2019b), indicating that
modifications in defense responses by T. harzianum in these
non-mycorrhizal hosts “opened the door” to AMF, exerting
a synergistic effect between both fungal symbionts and the
plant. Remarkably, an intact innate immune system is necessary
for the beneficial effect of endophytic fungi, preventing its
excessive growth and pathogenic behavior. Arabidopsis SA
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accumulation-deficient mutants are unable to prevent entering
the root vascular system and pathogenic outcome in the
interaction with T. harzianum (Alonso-Ramírez et al., 2014),
and plant growth is not promoted or even inhibited by the
fungus in ethylene response mutants (Camehl et al., 2010).
In this sense, Brassicaceae-specific defense-related GSLs are
very important components in the interaction with endophytes,
as shown with Colletotrichum tofieldiae and Serendipita spp.
endophytes, which fail to induce beneficial effects in Arabidopsis
mutants in IGs synthesis pathways (Lahrmann et al., 2015;
Hiruma et al., 2016). However, the role of these compounds
is ambiguous and may change depending on the endophyte.
Arabidopsis mutants in IG synthesis were better colonized
by Trichoderma spp. root endophytes, increasing silique
production under abiotic stress and improving plant protection
against Botrytis cinerea, in contrast with the overexpressing IGs
Arabidopsis line, where root colonization and beneficial effects
of these endophytes were reduced (Poveda, 2021).

Indeed, the ability of fungal endophytes to deal with
Brassicaceae GSLs can be a key factor in their colonization
and interaction ability (Hiruma et al., 2018; Poveda et al.,
2020b). Some endophytic fungi can colonize Brassicaceae
roots by directly degrading GSLs, and especially sinigrin, as
it has been described for Fusarium oxysporum, Setophoma
terrestris, Macrophomina phaseolina, and Paraphoma radicina
in horseradish (Szűcs et al., 2018). This may be due to the
presence of myrosinase enzymes in these fungi, as it has
been described in several Brassicaceae-associated rhizosphere
and endophytic fungi (Ishimoto et al., 2000; Abdel-Fatah
et al., 2021). The molecules derived from the enzymatic
decomposition of the host’s GLSs (glucose and ITCs) can be
used as nutrients by those fungi, or to gain a competitive
advantage over less tolerant species (Szűcs et al., 2018). Thus,
GSL and ITC root exudates may shape microbial rhizosphere
composition and even be a potent allelopathic plant weapon
via effects on mycorrhizal fungi (Cipollini et al., 2012).
Even, myrosinase-producing fungi can act as plant allies by
hydrolyzing GSLs and increasing the amount of toxic ITCs
released to the rhizosphere (Ishimoto et al., 2004). A key
question is how tolerant fungi deal with these toxic compounds,
and several mechanisms have been described, mainly among
fungal pathogens adapted to Brassicaceae (Plaszkó et al., 2021).
One important mechanism relies on ITCs detoxification by
fungal glutathione S-transferases (GSTs). Genome-mining of
Alternaria brassicicola found 23 GST sequences (Calmes et al.,
2015). Some of these GSTs were induced during in planta
interaction and required for pathogenesis in planta, accepted
allyl ITC as a substrate, and its inactivation resulted in ITC
hypersensitivity. Instead of GSL hydrolysis and tolerance,
another mechanism to overcome this defensive plant pathway
is inhibiting it. Thkel1 gene increases the root colonization
ability of T. harzianum and reduces myrosinase activity of
Arabidopsis and rapeseed plants (Poveda et al., 2019a). This

gene encodes a protein with similarity to plant nitrile-specifier
proteins (NSPs) and epithiospecifier proteins (ESPs) (Hermosa
et al., 2011), which modulate myrosinases activity, resulting in
GLSs degradation to nitriles and ETSs that is less toxic than ITCs
(Martinez-Ballesta and Carvajal, 2015).

Apart from myrosinases and T. harzianum THKEL1
protein, fungal endophytes may make use of a diverse set
of molecules to evade host defenses and colonize the plant.
Serendipita indica encodes the fungal-specific β-glucan-binding
lectin FGB1 that binds β-glucan with high specificity. This
molecule alters fungal cell wall composition and properties and
suppresses the immunity triggered upon β-glucan recognition
by different plant hosts, such as Arabidopsis, barley, and
Nicotiana benthamiana (Wawra et al., 2016). Proteins with
carbohydrate-binding modules (CBMs) like FGB1 are enriched
in S. indica, as well as in the genomes of other endophytic
fungi, such as Harpophora oryzae and C. tofieldiae (Zuccaro
et al., 2011; Xu et al., 2015; Hacquard et al., 2016). Specifically,
proteins with chitin-binding CBM18 and LysM-chitin-binding
domains CBM50, which are known as suppressors of host
immunity against fungal plant pathogens by masking the
MAMP chitin (de Jonge and Thomma, 2009; Lahrmann and
Zuccaro, 2012; Romero-Contreras et al., 2019), and proteins
with cellulose-binding CBM1 (Carbohydrate-Binding Module
Family 1) modules, which are potentially involved in loosening
the plant cell wall (Gaulin et al., 2002; Saloheimo et al., 2002).
The expansion of these proteins compared with fungi with other
lifestyles has been proposed as a genomic signature common
to independently evolving root-associated fungal endophytes
(Fesel and Zuccaro, 2016). Mesny et al. (2021) compared
the genomes of 120 fungal isolates with different lifestyles
including isolates representative of the Arabidopsis root
mycobiota, identifying a set of 84 gene families associated with
endophytism. Plant cell wall-degrading enzymes (PCWDEs),
acting on xylan, cellulose, pectin, and hemicellulose were
highly represented within these families, but also carbohydrate
membrane transporters and genes involved in carbohydrate and
amino acid metabolism (Mesny et al., 2021). Fungal endophytes
also code a diverse repertoire of putative effector small secreted
proteins (SSPs) (Mesny et al., 2021), although a reduction of
effector repertoires and/or effector expression is observed when
comparing the genomes of endophytes with closely related
pathogens (Hacquard et al., 2016).

Besides the endophyte’s ability to evade or suppress the plant
immune system, it is the plant itself that could finally allow being
colonized, depending on the benefit expected from it (Thoms
et al., 2021). A link between plant nutrition and immunity
status has been hypothesized (Walters and Bingham, 2007;
Wang et al., 2011; Dindas et al., 2022) with mechanisms that
could modulate the plant immune system to accommodate the
entrance and plant colonization of beneficial microorganisms
under nutrients scarcity (Zipfel and Oldroyd, 2017; Shi et al.,
2021; Thoms et al., 2021; Tang et al., 2022). Low available
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phosphate (Pi) in the soil enhances AMF colonization of host
plants, whereas this is decreased under high Pi fertilization,
although it is still unclear if immunity modulation by the plant
is directly involved (Karandashov and Bucher, 2005; Nouri
et al., 2014; Kobae et al., 2016). The possible link between
plant immunity, Pi deficiency, and plant colonization seems
more clear in the system formed by the fungal endophyte
C. tofieldiae, which enhances Pi uptake and promotes plant
growth, and Arabidopsis (Hiruma et al., 2016; Frerigmann
et al., 2020). In this case, Pi deficiency increases colonization of
Arabidopsis by C. tofieldiae, and transcriptomic analyses showed
that defense-related responses were significantly reduced during
C. tofieldiae root colonization in low Pi conditions compared
to optimal conditions (Hacquard et al., 2016; Hiruma et al.,
2016; Frerigmann et al., 2020). In contrast, low Pi conditions
did not alter the plant immune response against colonization
by Colletotrichum incanum, a close relative of Colletotrichum
tofeldiae that behaves as a pathogen and is a less Pi supplier.
On the other side, plant nutrient status did not significantly
alter the expression of C. tofeldiae candidate effector genes.
All this evidence suggests that, in this system, it is the plant,
and not the fungus, who mainly controls the outcome of the
interaction through the modulation of its defensive response
in reaction, in turn, to fungal-mediated Pi transfer (Hacquard
et al., 2016; Hiruma et al., 2016). Hiruma et al. (2016) also
found a link between this defense response modulation and
the phosphate starvation response (PSR) system through MYB
transcription factors, PHR1 and PHL1, which positively regulate
root colonization of C. tofieldiae. PHR1 and PHL1 control
most transcriptional activation and repression responses to
phosphate starvation (Bustos et al., 2010). An important part of
the genes regulated by PHR is known or predicted to mediate
biosynthesis of defense-related IG (Castrillo et al., 2017). This
fact, together with the need for an intact PEN2-myrosinase-
dependent IG pathway for the beneficial interaction with
C. tofieldiae, points, again, to the relevance of these compounds
in regulating Brassicaceae interactions with fungal endophytes
(Hiruma et al., 2016; Frerigmann et al., 2020; Zimmermann
et al., 2021).

Benefits of fungal endophytes to
Brassicaceae: From plant models
to crops

The ability of endophytic fungi to provide benefits to
the plant is widely reviewed nowadays, highlighting their
importance in the development of sustainable agriculture
(Carla et al., 2021; Poveda et al., 2021). There are many
beneficial effects described in crop plants, which include the
following: plant growth promotion (PGP), yield increase, crop
quality improvement, and enhanced tolerance to abiotic and

biotic stresses (Supplementary Table 1). Despite the growing
evidence of their potential applications in agriculture, the
molecular mechanisms underlying these positive interactions
have not been elucidated in many cases. The growing number
of reports about the impact of endophytic fungi on growth
and physiological parameters are not usually accompanied by
deeper analyses that can explain the mechanisms by which they
manipulate plant physiology and exert their effects. For example,
root colonization of cabbage, rapeseed, black mustard, cress,
hoary stock or flixweed by Serendipita vermifera, or rapeseed
by Alternaria alternata or Leptosphaeria biglobosa, have been
reported to significantly increase root and stem biomass
(Dolatabadi and Goltapeh, 2013; Zhang Q. et al., 2014), but
without describing the mechanism of action behind this effect.
This is likely due to the lack of genomic information and mutant
lines for crop plant species and the difficulty of establishing
experiments under highly controlled conditions (in vitro or
growth chambers) (Koornneef and Meinke, 2010). For these
reasons, Arabidopsis has also been used as a good model to
understand how endophytic fungi interact with the plant.

Plant growth promotion and increase
in yield and quality

Beneficial fungi usually display different effects on plants
that ultimately result in PGP (Poveda et al., 2021; Sarkar et al.,
2021). The fungal endophyte may have different modes of
action that could be simultaneously contributing to the benefits
obtained by the plant (Yan et al., 2019; Sarkar et al., 2021).
These mechanisms include the following: the facilitation of
access to nutrients and enhanced nutrient uptake, an increase of
photosynthetic rates, and regulation of the action of secondary
metabolites, such as phytohormones or others with undescribed
functions (Poveda et al., 2021).

Nutrient supply via nutrient uptake is one of the main
beneficial functions attributed to fungal endophytes (Poveda
et al., 2021; Sarkar et al., 2021). This benefit from fungal
endophytes takes more relevance in Brassicaceae plants, which
cannot establish functional mycorrhizal symbiotic associations
(Cosme et al., 2018; Hiruma et al., 2018; Sarkar et al., 2021).
Fungal endophytes can increase the plant content of all
macronutrients and many micronutrients (Behie and Bidochka,
2014; García-Latorre et al., 2021). The mechanisms are not
clear in most cases, but they can broadly be divided into
three groups: (i) the increasing availability of soil nutrients
(such as metabolization of macromolecules, mineralization
and solubilization of organic or insoluble forms, or chelation
of cations that can therefore be better assimilated by the
plant), (ii) the transfer of nutrients from the soil to the root,
acting as root extensions that transport nutrients to the plant,
and (iii) the induction of changes in the plant, such as the
promotion of root growth and development, which increases its
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absorption ability, or promoting the activity of plant enzymes
or transporters (Behie and Bidochka, 2014; García-Latorre et al.,
2021; Sarkar et al., 2021).

Phosphorus (P) is one of the three essential macronutrients
for plant development (Maathuis, 2009) and, hence, the
tripartite interplay among P, endophytes, and plants has
been deeply studied (Behie and Bidochka, 2014; Hiruma
et al., 2018; Mehta et al., 2019; Bhalla et al., 2022). The
fungal endophyte C. tofieldiae has been embraced as a
fungal model to analyze endophyte-plant associations related
to efficient inorganic phosphorus (Pi) utilization in non-
mycorrhizal plants, such as A. thaliana (Fesel and Zuccaro,
2016; Hiruma et al., 2018). This endophyte was isolated
from a wild population of A. thaliana growing in poor-
nutrient soils (García et al., 2013), and established a mutualistic
interaction with A. thaliana, promoting plant growth and
fertility under Pi starvation conditions (Hiruma et al., 2016).
The observed PGP phenotype and the increased tolerance
to Pi-limiting conditions seem to be mainly the result of
two combined mechanisms: Pi translocation to plant tissues,
and the upregulation of the Arabidopsis genes AtPHT1;2 and
AtPHT1;3 related to Pi transport. In the interacting fungus,
in turn, the two most highly upregulated genes under low
Pi conditions were an acid phosphatase and a phosphate
H+ symporter, which can be related to Pi solubilization and
uptake, respectively (Hiruma et al., 2016). Besides Arabidopsis,
C. tofieldiae colonizes and promotes the growth of other two
very different hosts: tomato and maize (Díaz-González et al.,
2020). However, in these hosts, C. tofieldiae promotes growth
and yield under optimal P fertilization. These results point at
additional unknown mechanisms involved in PGP that may
change depending on the host and be modulated by the plant
growth conditions.

The transformation of non-bioavailable sources of nutrients
into inorganic forms, which can be assimilated by plants, has
also been pointed out as a PGP mechanism. Solubilization
of P is a well-extended trait among these microorganisms.
Some examples of P-solubilizing endophytic fungi studied
in Brassicaceae crops roots are Alternaria spp., Fusarium
spp., Mucor spp., or Penicillium spp. (Shi et al., 2017;
Zahoor et al., 2017). Fungal endophytes can also induce
phosphatase activity in colonized roots, increasing acid
release in root exudates and P availability to the plant,
as reported in rapeseed roots colonized by S. indica (Wu
et al., 2018). The transformation of organic nitrogen into
bioavailable forms mediated by endophytic fungi has also been
proposed (Usuki and Narisawa, 2017; Khastini and Jannah,
2021). Two different studies on Chinese cabbage (B. rapa)
suggested that the inoculation with different endophytic
fungi enabled the use of the amino acids Gly, Val, Leu,
and Phe as sources of nitrogen for the plant (Usuki and
Narisawa, 2017; Khastini and Jannah, 2021). Although further
evidence supporting this hypothesis is needed, the studies

indicated that the endophytic fungi could transform the
amino acids into nitrogen forms, which can be effectively
metabolized by the plant, as well as facilitate nitrogen uptake
through fungal hyphae.

Along with the increased nutrient supply, endophytic
fungi can promote plant growth through the modulation of
photosynthesis rates. Studies of this effect on Brassicaceae plants
are few and are mainly focused on Arabidopsis. One example is
the work of Rozpądek et al. (2019), which showed that the fungal
endophyte Mucor sp. optimized photosynthesis and carbon
uptake through the upregulation of genes involved in typical
photosynthesis response to carbon deficiency. This resulted in
an improved plant CO2 assimilation and water use efficiency
that finally led to increased growth of Arabidopsis plants.
Similarly, Trichoderma is known to regulate the expression of
genes related to photosynthetic systems and sugar metabolism
(Shoresh et al., 2010; Harman et al., 2021). A recent study
demonstrated that T. atroviride can modulate the expression of
the sucrose transporter AtSUC2 (Esparza-Reynoso et al., 2021).
The overexpression of this gene mediated by fungal volatiles
resulted in sucrose-enriched root exudates and increased sugar
supply to the shoots and roots, thus, improving Arabidopsis
development and root branching.

Many fungi regulate plant growth by the production of
secondary metabolites or the modulation of phytohormone
signaling and related gene expression in the plant (Sharma
et al., 2021). The production of indole-acetic acid (IAA)
and other auxins and the influence on auxin metabolism
has a direct effect on root architecture (Aloni et al., 2006).
Recent studies with different endophytic fungi co-cultivated
with Arabidopsis indicate that the molecular cross-talk between
the plant and the endophyte impacts the biosynthesis of
auxins in both partners, leading to the stimulation of
lateral root formation (Liao et al., 2017; Inaji et al., 2020;
Sun et al., 2020). This effect on root development might
finally result in an overall plant growth promotion. One
example was reported by Contreras-Cornejo et al. (2009), in
which Trichoderma virens increased lateral root and plant
growth in Arabidopsis through auxin-dependent mechanisms.
Further evidence is found in the inoculation of Chinese
cabbage with S. indica, in which the upregulation of auxin
signaling and transport genes, such as AUX1, led to enhanced
root hair development and increased seedling growth (Lee
et al., 2011). Additional examples of IAA-producing fungi
among Brassicaceae crops are Alternaria spp., Fusarium
spp., Mucor spp., or Penicillium spp. (Shi et al., 2017;
Zahoor et al., 2017).

Besides auxins, the synthesis and manipulation of other
phytohormones have been reported. Several studies point out
the ability of fungal endophytes to synthesize and induce
responses to cytokinin as key factors for their beneficial effect
(Vadassery et al., 2008; Bean et al., 2021). As an example,
Vadassery et al. (2008) demonstrated that trans-Zeatin and the

Frontiers in Plant Science 10 frontiersin.org

https://doi.org/10.3389/fpls.2022.932288
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-932288 August 5, 2022 Time: 7:22 # 11

Poveda et al. 10.3389/fpls.2022.932288

CRE1/AHK2 receptor played critical roles in the promotion of
Arabidopsis plant growth by S. indica. In addition, the plant-
growth-inhibiting effect of ethylene can be counteracted by the
synthesis of the enzyme 1-aminocyclopropane-1-carboxylate
(ACC) deaminase (Singh et al., 2015). This enzyme, which is
commonly secreted by PGP bacteria (Glick, 2005; Glick et al.,
2007), binds to ACC, lowering the levels of ethylene in the plant.
The biosynthesis of ACC deaminase has also been described in
fungi (Nascimento et al., 2014). For instance, it seems to play
a relevant role in the promotion of root elongation driven by
Trichoderma asperellum in canola roots since mutant strains
defective in the ACCD gene showed no ability to improve
root development (Viterbo et al., 2010). The production of
gibberellins (GAs) has also a direct relationship with plant
vegetative and reproductive development (Gao and Chu, 2020).
In Chinese cabbage roots, the endophytic fungus Neosartorya
sp. can produce the gibberellic acids GA1, GA3, GA4, GA7,
GA9, and GA15, thus, increasing plant length and biomass
(Hamayun et al., 2011).

Apart from vegetative growth, PGP can also affect fruits
and seed yield, either as a direct consequence of a better
nutritional status of the plant, or by phytohormonal changes
that promote the development of reproductive structures. For
example, in rapeseed plants, root-colonization by T. harzianum,
implied a significant increase in the number of siliques per
plant (Poveda et al., 2019a,b). Several authors have reported
the ability of fungal endophytes to regulate Arabidopsis
flowering mechanisms. In two different studies, the fungal
endophytes Pochonia chlamydosporia and S. indica accelerated
floral transition and increased seed production by modulating
the expression of key genes involved in flowering time, such as
FLOWERING LOCUS T (FT), LEAFY (LF) or FLOWERING
LOCUS C (Kim et al., 2017; Zavala-Gonzalez et al., 2017).
In contrast to P. chlamydosporia, the effect of S. indica was
also related to upregulation of gibberellin biosynthetic genes
(Kim et al., 2017).

Besides increasing plant growth and yield, endophytic fungi
can induce systemic changes in their host plant, increasing
nutraceutical components in their tissues and improving the
quality of derived foods. In different leafy Brassica vegetables,
root colonization by Trichoderma hamatum increased the
accumulation of GSLs and antioxidant activity, improving
their nutritional quality (Velasco et al., 2021). Similarly,
S. indica increased chlorophyll, carotenoids, and flavonoids
accumulation in Chinese cabbage leaves (Khalid et al., 2017).
On the other hand, these fungi can decrease the accumulation of
secondary metabolites detrimental to health. This is the case of
S. indica in rapeseed plants where, along with an increase in seed
yield, the fungus decreases the expression in the seeds of genes
related to the synthesis of erucic acid, a compound that is toxic to
humans (Su et al., 2017). The mechanisms behind these changes
could be related to the modulation by fungal endophytes of the
production of secondary metabolites related to biotic or abiotic

stresses (see below), although other non-described mechanisms
could also be involved.

Abiotic stress tolerance

The role of endophytic microorganisms in increasing plant
tolerance to abiotic stresses has been extensively studied in
recent years (Lata et al., 2018; Eid et al., 2019). Endophytic
fungi can act directly on the stress-causing agent and reduce
it, synthesize compounds that reduce plant stress or induce a
specific response in the plant that increases tolerance to the
stress (Lata et al., 2018; Eid et al., 2019).

One of the most damaging anthropogenic abiotic stresses
for plants is the contamination of soil and water with heavy
metals. To isolate endophytic fungi that promote plant tolerance
or phytoremediation of heavy metals, existing populations in
contaminated environments are often studied (Deng and Cao,
2017). This has also been carried out with different Brassicaceae
grown in mines or other contaminated environments (Jiang
et al., 2008; Diene et al., 2014; Liu et al., 2017), isolating
endophytes, such as dark septate fungi or Mucor sp. CBRF59,
that have shown to increase plant tolerance to Cd, Pb, Cr, Mn,
Co, Cu, or Zn (Deng et al., 2011, 2013; Zahoor et al., 2017).
The mechanisms involved in this effect include both organic
degradation of heavy metal compounds and their accumulation
in hyphae (Deng et al., 2011, 2013; Zahoor et al., 2017). Besides,
endophytic fungi may make use of self-produced siderophores,
which are molecules involved in iron chelation that can also
show an affinity for different heavy metals. Thus, the production
of siderophores by Alternaria sp., Fusarium sp., and Penicillium
sp. has been related to increased tolerance and phytoextraction
of Cd and Pb in rapeseed plants (Shi et al., 2017).

Under stress conditions, the enhanced protection against
oxidative stress seems to be a common mechanism in
mutualistic interactions between plants and fungal endophytes.
The production of antioxidants, such as phenolic compounds
(phenilpropanoids and flavonoids) or enzymes (i.e., catalase and
ascorbate peroxidase) or their induction in the host, are the
mechanisms involved in this effect (Hamilton et al., 2012). This
mechanism has been reported in cauliflower plants inoculated
with T. harzianum in Pb-contaminated soils (Afshari et al.,
2018). Also, under drought and salinity, Chinese cabbage roots
colonized by S. indica tolerated the stress due to the fungal
induction of antioxidant activity in the host plant, together
with the expression of drought/salinity response genes and an
accumulation in leaves of specific thylakoid (CAS) proteins (Sun
et al., 2010; Khalid et al., 2018). Similarly, Indian mustard and
rapeseed plants root-colonized by Trichoderma responded to
salinity and drought by increasing their antioxidant activity
(Ahmad et al., 2015).

Phytohormones also play crucial roles under salt and water
stress. IAA seems to be involved in Trichoderma-mediated
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tolerance of Arabidopsis to saline conditions (Contreras-
Cornejo et al., 2014). As a result, Na+ excretion through
root exudates might have been facilitated by the increased
number of lateral roots and root hairs. Additionally, inoculated
plants showed higher levels of abscisic acid (ABA), L-proline,
and ascorbic acid. Likewise, the inoculation of B. napus
with Trichoderma parareesei induced the expression of stress
tolerance genes related to ABA under water stress, and ethylene
under salt stress (Poveda, 2020).

Fungal-mediated plant thermotolerance may be due to
particular mechanisms, although it has not been much
investigated in Brassicaceae. However, some studies have
revealed promising results in Arabidopsis, both under heat
and cold stress. For example, González-Pérez et al. (2018)
showed that volatiles produced by T. virens and T. atroviride
positively impacted the growth of Arabidopsis seedlings
subjected to low temperatures. Moreover, plants exposed to
Trichoderma volatiles showed overexpression of the ERD14
gene, related to protection against dehydration and involved
in the response to different abiotic stresses, including cold
(Kovacs et al., 2008; González-Pérez et al., 2018). In another
study, the co-cultivation of Arabidopsis plants with the fungus
Paraphaeosphaeria quadriseptata increased plant heat stress
tolerance (McLellan et al., 2007). The research suggested
that the acquired thermotolerance was due to the fungal
production of monicillin I (MON), which inhibits HEAT
SHOCK PROTEIN90 (HSP90), thereby, inducing the activation
of heat stress transcription factors (HSF) and the transcription
of HSF-dependent components of the plant heat shock response,
such as HSP101 and HSP70 (McLellan et al., 2007).

Biotic stress tolerance: Endophytic
fungi as biological control agents and
inducers of systemic resistance

Numerous isolates of endophytic fungi have been identified
as efficient biological control agents (BCA) against plant
pathogens and pests. This way, fungal endophytes, together
with other microorganisms, pose a sustainable alternative
to chemical pesticides (Mantzoukas and Eliopoulos, 2020;
Fontana et al., 2021). One mechanism of action for plant
protection by fungal endophytes is the priming of plant
defense reactions through the elicitation of local or systemic
responses after the recognition of the fungus by the plant,
as explained in previous sections (Fadiji and Babalola, 2020;
Sarkar et al., 2021). However, endophytic fungi can also act
directly by competition, antagonism, or parasitism, including
the production of antimicrobial compounds (De Silva et al.,
2019; Fadiji and Babalola, 2020).

In Chinese cabbage and kale plants, it has been reported that
a significant reduction of leaf lesions caused by Pseudomonas
syringae pv. maculicola and Xanthomonas campestris pv.

campestris and the fungal pathogen A. alternata was produced
by systemic activation of plant defenses by different root
endophytic fungi, such as Heteroconium chaetospira,
Acrocalymma vagum, Curvularia sp., Phialocephala sp.,
S. terrestris, or T. hamatum (Morita et al., 2003; Poveda et al.,
2020c). S. indica acts against the oomycete Plasmodiophora
brassicae, the causal agent of clubroot disease, by inducing local
defensive responses in the roots of Chinese cabbage, increasing
the local flavonoid content, and reducing gall formation by the
pathogen up to 60% (Khalid et al., 2020). However, S. indica
was not effective in controlling clubroot in rapeseed plants,
highlighting the fungus-plant specificity in the effectiveness
of biological control strategies (Sedaghatkish et al., 2021).
H. chaetospira also protects plants against clubroot disease,
in this case by space competition, with reductions in disease
incidence up to 100% (Narisawa et al., 1998, 2004, 2005). The
pathogen Sclerotinia sclerotiorum behaves as an endophyte when
infected with the small-DNA mycovirus SsHADV-1, activating
the root defenses of the host plant, reducing the disease
severity of rapeseed stem rot and improving yield (Zhang et al.,
2020). Thus, different endophytic fungi can show different
mechanisms of action against the same plant pathogen. Even
the plant can selectively modify the composition of endophytes
upon infection, favoring the presence of efficient BCAs against
the pathogen, as also described for combating P. brassicae (Zhao
et al., 2017; Lebreton et al., 2019; Tian et al., 2019).

Mycoparasitism, competition for space and nutrients, and
the production of antifungal compounds have been reported to
be very effective in inhibiting the growth of fungal pathogens,
such as B. cinerea, S. sclerotiorum, or Sclerotinia trifoliorum
(Zhang Q. et al., 2014; Qin et al., 2019). A variety of antagonistic
species against fungi has been isolated from different organs
of rapeseed plants, such as Aspergillus capensis, Chaetomium
globosum, Clonostachys rosea, L. biglobosa, or Simplicillium
lamellicola, among many others (Zhang Q. et al., 2014; Qin
et al., 2019). Furthermore, endophytic fungi of Brassicaceae
crops can develop combined mechanisms of action as BCAs of
pathogenic fungi. In this sense, root colonization of Chinese
cabbage by Veronaeopsis simplex resulted in a reduction of
more than 70% in Fusarium wilt disease. This effect was
due to several mechanisms of action, including competition
for rhizosphere and root space, production of siderophores
that reduced Fe availability to the pathogen, activation of
host plant-root defenses, and an increased diversity and
number of possibly antagonistic fungi in the rhizosphere
(Khastini et al., 2012).

So far, many species of endophytic fungi have been described
with the ability to act directly and indirectly against plant-
parasitic nematodes (Poveda et al., 2020a). As far as Brassicaceae
crops are concerned, there are only a few publications on the use
of endophytic fungi as BCAs against these plant parasites. One
example is T. harzianum, which reduces the disease caused by
Meloidogyne incognita in turnip plants, although the mechanism
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of action involved is unknown (Ibrahim et al., 2012). In wild
turnip plants, root colonization by the endophyte F. oxysporum
caused a slowdown in the development of the root nematode
cysts, Heterodera schachtii, due to the volatiles emitted by the
fungus (Moisan et al., 2021).

Some endophytic fungi of Brassicaceae crops can act
directly on insect-pest larvae by parasitism, as they are present
in the plant tissues consumed by them. Thus, consumption
of cauliflower roots colonized by Trichoderma koningiopsis
caused larval death of the fly D. radicum (Razinger et al.,
2018). The same happened with larvae of the lepidopteran
P. xylostella fed with rapeseed leaves colonized by Metarhizium
anisopliae (Batta, 2013). On the other hand, endophytic fungi
of Brassicaceae crops can also activate the systemic resistance
of their host plant against herbivores by colonizing the roots.
For example, in Brussels sprouts and cabbage plants root-
colonized by Acremonium alternatum, a systemic accumulation
of phytosterol reduced feeding by P. xylostella larvae, increasing
their mortality (Raps and Vidal, 1998).

Furthermore, endophytic fungi from Brassicaceae crops
can be used as biotechnological tools for genetic engineering,
improving their ability to control agricultural pests. The fungus
C. globosum, isolated from rapeseed plants, was transformed
with the agglutinin gene from the plant Pinellia ternata.
Rapeseed plants colonized by this transgenic endophytic fungus
significantly inhibited the growth and reproduction of aphid
Myzus persicae, due to the accumulation of agglutinin (Qi et al.,
2011). In general, the use of endophytic fungi in the integrated
pest management of Brassicaceae crops can be an efficient
strategy. However, it is important to previously study the effect
of the use of insecticides on the endophytic fungal microbiota
of these plants, since it has been shown that it is significantly
affected (Zhou et al., 2016).

Conclusion

The Brassicaceae is a noteworthy plant family. It includes
important crops, namely, the genus Brassica (Jabeen, 2020;
Raza et al., 2020), and the essential model plant A. thaliana
(Koornneef and Meinke, 2010). Members of the family present
remarkable particularities, such as the presence of a diverse
number of defenses related to secondary metabolites, mainly
in the group of GSLs (Halkier and Gershenzon, 2006), and the
inability to form mutualistic associations with mycorrhizal fungi
(Cosme et al., 2018). In this context, the beneficial interactions
of this plant family with endophytic fungi acquire special
relevance. Endophytic fungi may provide Brassicaceae plants
with the benefits that mycorrhiza cannot offer. For that, fungal
endophytes must adapt to the GLS based particular immune
system of Brassicaceae and may have co-opted conserved
mechanisms of interactions with mycorrhiza (Hiruma et al.,
2018; Poveda et al., 2020b).

A. thaliana is one of the most famous Brassicaceae species.
This model plant has provided us with a great part of the
knowledge of plant genetics and molecular biology (Koornneef
and Meinke, 2010). More recently, the study of its wild
populations and other related wild Brassicaceae is also bringing
much understanding about plant ecology (Bergelson and Roux,
2010). Thus, much of the knowledge on the interactions of
plants with microorganisms comes from the Arabidopsis model
(Jones and Dangl, 2006; Bacete et al., 2018; Ngou et al., 2022).
This knowledge has been greatly biased toward pathogenic
interactions, probably because Arabidopsis cannot be used
as a model for the best-known mutualistic interactions with
microorganisms, such as nodulating rhizobia or mycorrhizal
fungi (Thoms et al., 2021). Lately, the study of alternative
beneficial interactions, such as those established with fungal
endophytes, is experiencing a significant expansion, and the
development of novel models of study with fungal endophytes
that interact with Arabidopsis is greatly contributing to it
(Fesel and Zuccaro, 2016; Hiruma et al., 2018). These novel
models bring us the opportunity to study both the particularities
involved in the interactions between these microorganisms
and the Brassicaceae plants and the subjacent generalities that
can be extended to other plant species, including conserved
features with the lost mycorrhization abilities. Thus far, most
of the questions about the interactions of fungal endophytes
with plants in general, and with Brassicaceae in particular,
are open. The extension and application of this knowledge to
Brassicaceae and other crops is still a pending subject that
should be approached.

The high diversity and the particularities of the Brassicaceae
family point to these plants as unique sources for the discovery
of novel beneficial interactions with fungal endophytes that
can be applied for a more efficient and sustainable agricultural
production, not only to Brassicaceae crops but also to other
agricultural species (Díaz-González et al., 2020; Poveda et al.,
2020c). Let’s take advantage of it.
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