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Long range correlations in two-dimensional (2D) systems are significantly altered by
disorder potentials. Theory has predicted the existence of disorder induced phenom-
ena such as Anderson localization[1] and the emergence of novel glass and insulating
phases from the competition between interactions and disorder as for example the Bose
glass[2]. More recently, it has been shown that disorder breaking the 2D continuous
symmetry, such as a one dimensional (1D) modulation, can enhance long range corre-
lations [3]. Experimentally, it remains difficult to find well-controlled model systems.
Developments in quantum gases have allowed the study of the interplay between in-
teraction and disorder and the observation of a wealth of phenomena including the
transition between superfluid and insulating glassy states[4, 5]. However, there are
no experiments exploring the effect of symmetry-breaking disorder. In 2D supercon-
ducting vortex lattices, vortex density and interactions can be varied in presence of
quenched disorder by changing the magnetic field. Here, we create a 2D vortex lattice
at 0.1 K in a superconducting amorphous thin film with a well defined 1D thickness
modulation and track the field induced modification in the vortex arrangements using
scanning tunneling microscopy. We find that the 1D modulation becomes incommen-
surate to the vortex lattice and drives an order-disorder transition, behaving as a
scale-invariant disorder potential. Through direct visualization of individual vortices,
we show that the transition occurs in two steps and is mediated by the proliferation
of topological defects. We calculate orientational and positional correlation functions
and critical exponents. We find that they are far above theoretical expectations for
scale-invariant disorder [6–8] and that, unexpectedly, they follow instead the critical
behaviour which describes dislocation unbinding melting[9, 10]. Our data show for the
first time that randomness disorders a 2D crystal, and evidence the transformation
induced by symmetry breaking disorder in interactions and the critical behaviour of
the transition.

The competition between order and disorder is a
fundamental problem in condensed matter physics.
New insights impact directly the understanding of
disorder induced phenomena in many different sys-
tems such as crystalline solids[7, 11], electronic
or magnetic arrangements[12], localization in met-
als and superconductors or vortex lattices in su-
perconductors and condensates [4, 13]. In 2D,
long wavelength disorder induces deviations in the
atomic positions from the perfect lattice with the
mean squared displacement diverging logarithmi-
cally at large distances[14]. One major consequence
is the so-called Mermin-Wagner-Hohenberg (MWH)
theorem[14, 15] which states that no true order ex-
ists in 2D at any finite temperature. Usually, we
can distinguish between static quenched disorder
and fluctuations. In absence of quenched disorder,
thermal fluctuations drive the 2D melting transition
which is described by BKTHNY theory through the

two-stage proliferation and unbinding of topological
defects[9, 10, 16, 17]. Quenched disorder, on the
other hand, is expected to suppress long range cor-
relations more effectively than temperature[18]. It
can be classified as pinning with identifiable length
scales, such as impurities or defects in 2D crystals
or as scale-invariant (random) disorder as for ex-
ample in an amorphous film. Pinning destroys long
range 2D correlations at any strength[19, 20]. Scale-
invariant disorder produces power law decaying cor-
relations and a transition to a disordered lattice with
exponentially falling correlations above a critical dis-
order strength[6, 7]. The order-disorder transition
induced by scale invariant disorder has been inves-
tigated in a wide range of physical systems such as
2D disordered XY models[6], 2D solids[7], Joseph-
son junction arrays[21], colloids or Lennard-Jones
systems[22]. However, the disorder mechanism —
the way disorder proliferates at zero temperature—
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has not been observed directly. Disorder induced or-
der has been recently proposed when quenched dis-
order breaks the continuous 2D symmetry. This oc-
curs, for example, by introducing a 1D periodic dis-
order potential[3]. Within this scenario, true long
range order may be favored by the 1D disorder,
breaking MWH theorem. Calculations show the sta-
bilization of the quantum Hall ferromagnetic state
in graphene monolayers due to strain-induced easy-
plane anisotropy[23] or improved control of the rela-
tive phase in randomly coupled condensates[24]. The
experimental realization of such a disorder-induced
order in absence of thermal fluctuations has not been
reported yet. The effect of symmetry breaking on
microscopic properties and the critical exponents of
the order-disorder transition are unknown.

Here we shed light on these questions by directly
imaging the order-disorder transition in a 2D vor-
tex lattice induced by a 1D periodic potential. By
changing the magnetic field, we modify the cou-
pling strength between the 1D periodic potential and
the vortex lattice as well as the intervortex distance
a0 = (3/4)1/4(φ0/B)1/2. This allows us to go from a
locked 2D solid where the lattice is commensurate to
the 1D potential (Fig. 1a, left) to a floating 2D solid
at larger densities where it becomes incommensu-
rate with the 1D modulation. In the latter case, the
1D modulation behaves as quasi-random quenched
disorder for the vortex lattice and drives an order-
disorder transition (Fig.1a, right).

We follow the order-disorder transition by imaging
up to thousands of individual vortices from 0.01 T up
to close below Hc2, with the vortex density increasing
by a factor of 500. We determine the modifications
in the spatial correlation induced by disorder and vi-
sualize the microscopic details of ordered and disor-
dered phases. Our experiments show enhanced long
range correlations in presence of a 1D modulation.

We use Scanning Tunneling Mi-
croscopy/Spectroscopy (STM/S) and work at
temperatures low enough (0.1 K) to neglect any
temperature induced effect. Our sample is an ultra
flat amorphous thin film with a thickness, d, of 200
nm fabricated by focused-ion-beam-induced depo-
sition (microscopy and nanofabrication methods
are described in detail in sections I and II of the
Supplementary Information, SI). d is far below than
the characteristic length for the vortex bending
along the field direction, Lc, so that the vortex
lattice forms a 2D solid. The surface roughness
is below 1% of d and consists of a smooth 1D
modulation with period, w = 400nm (Fig. 1b).

The coupling strength between the vortex lattice
and the 1D modulation depends on the commensu-
rability ratio p, defined as p = w/a0, and the relative
orientation between them θ[25]. Commensurate vor-

tex configurations are expected at p = n or n
√

(3)/2,
with n an integer, and θ = 30 or 0 degrees, respec-
tively. Fig.1c shows the sequence of vortex lattice im-
ages obtained at lower magnetic fields. Below 0.4 T,
with p . 5, the lattice suffers a series of commensu-
rate to incommensurate transitions which produces
the rotation of its overall orientation between θ = 0◦

and 30◦, while keeping a perfect hexagonal arrange-
ment. Fig. 1d shows θ as a function of p for the
vortex lattice images taken as increasing the mag-
netic field. As increasing p above 0.4 T (p & 5), the
rotation of the vortex lattice ceases and its orienta-
tion becomes independent on the 1D potential. The
lattice is no longer commensurate to the 1D potential
and forms a floating 2D solid.

In Fig. 2a we show the sequence of vortex lattice
images between 0.5 T and 5.5 T. We identify three
different phases. In phase I, between 0.5 T and 2 T,
there are no topological defects, and all vortices are
surrounded by six nearest neighbors. However, the
vortex positions show small deviations from those
expected for a perfect hexagonal lattice which be-
come gradually more pronounced when increasing
the magnetic field. Between 2.5 T and 4.5 T, in
phase II, we observe the appearance of dislocations,
i.e. pairs of 5-fold and 7-fold coordinated vortices.
We identify bound dislocation pairs as well as iso-
lated dislocations. Above 4.5 T, in phase III, the
density of dislocations experiences a strong increase
and we identify the appearance of free disclinations
in form of isolated 5-fold or 7-fold coordinated vor-
tices. The images at 5 T and 5.5 T show that defects
are over the whole sample, and produce a disordered
vortex lattice.

One important observation —the appearance of
fluctuations in the local vortex density ρ— is shown
in Fig.2b-c. The standard deviation in ρ grows with
the field-induced proliferation of defects from less
than 5% in phase I to up to 20% at 5.5 T in phase
III (Fig. 2c). Density fluctuations are characteris-
tic of long wavelength or fully uncorrelated quenched
disorder potential[26].

To further quantify the spatial dependence of vor-
tex disorder, we calculate translational and orienta-
tional correlation functions, GK(r) and G6(r), di-
rectly obtained from the individual vortex positions
in the images. Deviations with respect to the per-
fect lattice produce a decay with r of the envelope of
GK(r) and G6(r) that describes, respectively, weak-
ening of translational and orientational correlations.
Fig. 3a shows the evolution with the magnetic field
of GK(r) and G6(r). In phase I, between 0.5 T and
2 T, we observe that G6(r) remains close to 1 and
independent of the distance, whereas GK(r) decays
following a power-law dependence, GK(r) ∼ r−ηK ,
with ηK increasing with field. Above 2 T, in phase II,
GK(r) decays exponentially at large distances when



3

Figure 1 | Unlocking of the 2D vortex lattice on a linear potential
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FIG. 1: Unlocking of the 2D vortex lattice on a linear potential. a When lattice constant disorder wavelength
are similar (small p), commensurate lattices with one crystal axis along the 1D modulation, and incommensurate
lattices oriented at an arbitrary angle may appear. Generally, the commensurate lattices are favored, because they
lower the elastic energy of the lattice. Commensurate arrangements are locked to the 1D potential (as shown in the
left panel). When the lattice constant is much smaller than the 1D modulation, the gain in elastic energy obtained by
adjusting to the potential decreases and the lattice can show incommensurate configurations. The lattice is unlocked
and produces a floating solid (as shown in the right panel). b Scanning Electron Microscopy image of the sample
(left panel). Sample is biased through the contact pads shown in the bottom of the panel (see SI). Top right panel
shows a STM topography of a 1× 1.2 µm2 area, and bottom right panel a cut through it. Red dotted lines mark the
1D modulation. c Sequence of vortex lattice images taken at 0.1 K when increasing the magnetic field up to 0.5 T
(see Supplementary video S1 for the whole sequence). Red dashed lines are again the 1D modulation and vortices are
shown as black points. Blue lines are Delaunay triangulation. d Dependence of the angle between the 1D modulation
and the vortex lattice with the magnetic field. Lines joining points are a guide to the eye. When p < 5 (H < 0.4 T;
blue background), the vortex lattice oscillates between the two primary commensurate arrangements θ = 0◦ (green
dotted line) and θ = 30◦ (yellow dotted line). This satisfies, respectively, w = n

√
3a0/2 and w = ma0, with n and m

integers (n = 1 and m = 1 are highlighted in upper (yellow) and lower (green) left panels of d). n = 1 and m = 4
commensurate arrangements are identified in the vortex images of c at respectively 0.05 T and 0.25 T. At fields above
0.4 T (w > p; khaki coloured in c and d, the lattice unlocks and adopts an orientation independent on 1D potential
that does not show angular variations with field any more.

ηK = 1/3, and when a finite amount of defects starts
to be observed in the images. G6(r) shows a power-
law decay, G6(r) ∼ r−η6 , with η6 continuously in-
creasing from 2 T up to 4.5 T. In phase III, above 5
T, G6(r) decays exponentially when η6 = 1/4, and
the defect density diverges, reaching 0.4, i.e. nearly
half of all vortices have 5 or 7 nearest neighbours at
5.5 T (Fig. 3b). The observed behaviour follows the
microscopic two-step sequence for the proliferation of
disorder described by BKTHNY theory, with critical
values for the exponents ηcK = 1/3 and ηc6 = 1/4[27].

To investigate the microscopic disorder mecha-
nism, we further analyse the first entrance of disorder
in the ordered phase I. Deviation in the vortex po-
sitions with respect to perfect hexagonal lattice can
be quantified by the relative displacement correlator
B(r) (B(r) = 〈[u(r)−u(0)]2〉/2 where u(r) = r− rp
is the displacement of each vortex at r from its po-

sition in the perfect lattice rp[26]). We find that
B(r) grows as ln(r/a0) in the dislocation-free Phase
I. In Fig. 3c we plot the result at 1.5 T (see SI for
details in calculations and B(r) at different fields in
Phase I). In 2D systems, this is the expected be-
haviour in response to a scale-invariant disorder[19].
Then, we fit the data using the Gaussian approxima-
tion GK(r) = e−K

2B(r)/2 (valid for Gaussian disor-
der potentials) and translational correlation function
GK(r) (shown in Fig. 3a). The comparison reveals
a very good agreement (Fig. 3c). Therefore, three
independent observations (local vortex density fluc-
tuations, logarithmic growth of B(r) and Gaussian
distribution of displacements) show that a random
potential drives the transition.

We next focus on the source of scale-invariant dis-
order driving the transition. No thermally or quan-
tum induced fluctuations are available to effectively
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Figure 2 | Order-disorder transition in the 2D-vortex lattice at 0.1 K
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FIG. 2: Order-disorder transition in the 2D-vortex lattice at 0.1 K. a Vortex lattice images taken at 0.1
K when increasing the magnetic field from 0.5 T to 5.5 T (see Supplementary video S2). Vortices are shown by
black points and the Delaunay triangulated lattice as blue lines. Vortices with five and seven nearest neighbours are
identified by green and orange points. Dislocations, formed by five and seven nearest neighbour pairs of vortices are
identified as black triangles, pairs of dislocations as black rectangles and isolated disclinations as black circles. Above
4 T the image size is decreased to better resolve individual vortices. Average intervortex distance a0 decreases with
field following the expected dependence in a triangular vortex lattice (see SI). Evolution of the disordering process
in the reciprocal space is shown in Section IV of the SI through the gradual changes of the height and width of the
vortex lattice Bragg peaks. b Positional fluctuations of the vortex density over the disorder process calculated from
the vortex images shown in a. We use the color scale given on the top right panel (see section III.3 in SI). Deviations
in the local vortex density become stronger with increasing the magnetic field. Histograms of the vortex density
obtained from the images in b are shown in c using the same color scale.

disorder the vortex lattice here. At 0.1 K, the tran-
sition induced by either thermal or quantum fluctu-
ations is expected to occur at a magnetic field ex-
tremely close to Hc2 (see SI). Our sample is compo-
sitionally homogeneous both laterally and across its
thickness, and amorphous. Thus, no quenched dis-
order is expected from compositional or structural
changes in our film. Thickness variations, which are
given here by the 1D modulation, come out as most
likely source for quenched disorder. The fundamen-
tal property of a scale-invariant potential V (r) is
that is has long range logarithmic correlations[6]

〈[V (r)− V (r′)]2〉 = 4σJ2ln(r − r′) (1)

where J = µda20/2π is the elastic interaction strength
(the magnetic field dependence of the shear modulus
µ is discussed in SI) and σ is the disorder strength. In
Fig. 3d we calculate the spatial correlations of V(r)
(first term in eq.1) by taking V1D(r) = z(r)·εL where
z(r) is the topography and εL = (φ20/4πµ0λ

2)ln(λ/ξ)
is the vortex energy per unit length (see SI for de-

tails). We find that V1D(r) has long range loga-
rithmic correlations and short range smooth peri-
odic correlations at integer multiple of w which are
strongly damped at large distances. Thus, incom-
mensurate 1D correlation behaves as a quasi-random
disorder potential.

We can write the free energy, F , following avail-
able renormalization group (RG) theory for random
disorder as[6, 7]:

F = −2T ln(L) + Jln(L)− J
√
σ/σcln(L) (2)

where the thermal Eth and elastic energy Eel (the
first and second term, respectively), and the disor-
der energy Edis (third term) diverge logarithmically
with the system size L[6, 7]. σc is the critical value
for the disorder strength. In the ordered phase at low
temperatures, the relative strength between Eel and
Edis determines the algebraical decay of the transla-
tional correlations with the exponent ηK in a hexag-
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Figure 3 | Correlation functions and critical exponents
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FIG. 3: Correlation functions and critical exponents. a Field induced changes in the correlation functions for
the translational order (GK(r) in left panel) and orientational order (G6(r) in right panel) between 0.5 T and 5.5 T.
Blue lines in the graphs are the fits for the envelopes of the correlation functions (black lines). Green and magenta lines
in left and right panels stand for the power decay law with, respectively, the critical exponents ηcK = 1/3 and ηc6 = 1/4.
The background color (yellow for GK(r) and green for G6(r)) represents the range of the order and turns from darker
(long-range) to lighter (short-range) when the the exponents ηK and η6 become higher than the critical values, and
correlation functions change from power-law to exponential decay with the distance r. The distance in the X-axis is
given in units of a0 and peaks in the correlation functions appear at the distances to n-th nearest neighbours. Note
that these peaks are well defined when the order is long ranged and become blurred when it turns to be of short range.
b The top panel shows the field dependence of the power-law decay exponents ηK (green points) and η6 (magenta
points). The crossover between phase I (yellow), phase II (green) and phase III (magenta) is determined at the fields
where the translational and orientational order become of short range and the exponents ηK and η6 reach the critical
values (dotted lines in the figure). The lower panel shows the density of five-fold and seven-fold coordinated vortices as
a function of the magnetic field. c Correlation function B(r)/a20 at 1.5 T (black dots, see text and SI for details). Red
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2)ln(r/a0) obtained within the Gaussian approximation for a scale invariant random potential (see
text and SI section VI). Blue line gives the ln2(r) dependence expected within correlated pinning disorder. d Spatial
dependence of mean squared correlation of 1D surface potential 〈[V1D(r) − V1D(r′)]2〉 at 1.2 T, where V1D(r) is as
defined in the text and r, r′ are the actual vortex positions obtained from the vortex image at 1.2 T (see section III.5
in SI for details in calculations). Red line has been obtained by simulating the topography with a periodic modulation
and extrapolating vortex position in an area 100 times larger than in the experiment (see SI). The experiment follows
well the simulation. Long range logarithmic correlations of V1D(r) and short range periodic modulation are attenuated
at large distances. Blue line is the fit to eq.1 in the text. e Magnetic field dependence of Eel (black line) and Edis

(blue and green circles). Edis is estimated independently from power law exponents ηK in positional correlation (green
circles) and long range logarithmic correlations of V1D(r) (blue circles). We find very good agreement between them.
Transition from Phase I (yellow) to Phase II (green) occurs when Edis increases above Eel and dislocations are first
observed in the images.

onal solid given by[19, 21],

ηK =
2

3
[
T

J
+ σ] (3)

Following the transition from power law to exponen-

tial decay in GK(r) we found ηcK = 1/3 (Fig. 3a)
which corresponds to σc = 1/2. We now calculate
Edis produced by V1D(r) (using eq.1 and 2) and,
independently, from the power law decaying of posi-
tional correlation functions (using eq.2 and 3 and ηK
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values from Fig.3b). The result obtained at differ-
ent magnetic fields is plotted in Fig. 3e (as blue and
green circles, respectively) together with the mag-
netic field evolution of Eel (black line). Note that
Eth at 0.1K is three orders of magnitude below Eel
and Edis, so it is negligible here. The agreement
between Edis determined from exponents in correla-
tion functions ηK (green circles) and from logarith-
mic correlations in 1D disorder potential (blue cir-
cles) is nearly perfect. This shows that the random
uncorrelated potential generated by the 1D incom-
mensurate surface corrugation drives the observed
order-disorder transition in the 2D lattice. Fig. 3e
shows that Edis increases above Eel at the magnetic
field where we start to observe dislocations in the
images.

Finally, let us discuss on the critical behaviour of
the observed transition. The order-disorder transi-
tion at zero temperature is expected, on the basis of
RG calculations and models for random quenched
disorder, at a disorder strength of σc = 1/8 and
a critical exponent for the hexagonal lattice ηcK =
1/12[6, 7, 18, 28]. Our experiments reproduce
closely the expected features for the zero tempera-
ture phases as induced by a random disorder, with, in
particular, positional fluctuations which increase as
ln(r) below the critical disorder and correlations de-
caying exponentially for high disorder strength. But
here we find critical values, σc = 1/2 and ηcK = 1/3,
which are far above the ones proposed in theory. The
difference between random field theories and our ex-
periments is the symmetry breaking 1D modulation.
It produces the disorder through incommensuration
and provides the energy scale for the random field
driving the transition (Fig.3e). A recent proposal
shows that the XY model with 1D symmetry break-
ing disorder has an increased order parameter at all
temperatures[3]. An earlier work also points out that
correlations in the disorder potential enhance the
critical value of σ[21]. This strongly suggests that
the 1D modulation, by breaking symmetry, modifies
the screening of the interactions among dislocations
to enhance the critical point and exponents with re-
spect to random field theories.

Our experiments show that, in presence of the 1D
symmetry breaking disorder, the critical exponents
increase up to the values expected by BKTHNY and
that the microscopic disordering behaviour follows
the sequence defined by the two-step thermal melt-
ing transition. Inherent to this is the presence of
an intermediate hexatic phase and of bound dislo-
cations in the order phase which are not expected
within random field models[29]. In presence of ran-
dom disorder, it has been shown that the critical
behaviour of the disorder transition at zero temper-
ature is not of BKTHNY type[28]. The question is
why does our experiment follow BKTHNY? To an-
swer this question, one needs to calculate new critical

points of the order-disorder transition at zero tem-
perature by taking into account symmetry breaking
correlations within randomness and their influence
on the renormalization of the parameters involved
in the transition. Our experiments show that the
2D solid tends to flow into the BKTHNY behaviour
with a reduction of the effect of disorder. The choice
of creating disorder in two steps by unbinding and
proliferation of topological defects describes possibly
more phenomena than just 2D thermal melting.

Overall, our data represent the first evidence that
incommensurate 1D modulation widens the stabil-
ity range of the ordered phase in 2D system at zero
temperature and raise questions that will motivate a
detailed examination of the effect of correlations in
the critical behaviour of disordered systems. 2D ran-
dom environments are usually unavoidable in differ-
ent fields, such as colloids, optical lattices, quantum
condensates, 2D crystals or graphene. The experi-
mental approach presented here reveals an exciting
new opportunity to produce coherence in the pres-
ence of 1D symmetry-breaking fields, as for example
nematicity.
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SUPPLEMENTARY INFORMATION

Enhancement of long range correlations in a 2D vortex lattice by incommensurate 1D
disorder potential

I. SCANNING TUNNELING MICROSCOPY METHODS

Imaging of the vortex lattice has been made in a home-made low temperature STM/S that is thermally
anchored to the mixing chamber of a dilution refrigerator and inserted into the bore of 9 T superconducting
magnet. The experimental set-up, described in detail in Ref. [S1 ], has a linear mechanical positioning system
that allows to change the tip’s position on top of the sample a distance up to a few mm with a precision in the
scale of a few tens of nm. The fine XYZ scanning is made using a conventional piezotube scanner that allows
for scanning windows up to 2×2 µm2 at low temperatures. Special effort was made to mechanically decouple
the STM head from low frequency vibrations of the building and rotatory pumps used for the cooling of the
dilution refrigerator. The tip is placed over the center of the W-nanodeposit at room temperature using an
optical microscope and its position remains the same within a few micrometers after it is cooled down to mK
temperatures.

We have improved the mechanical rigidity of the set-up and have been able to make long term measurements
over the same scanning window. This enabled us to study the field induced modifications of vortex lattice in
the same area of the sample during several weeks. Note that, thanks to the improved stability, we have been
able to make the STM images of the vortex lattice showing the largest amount of vortices.

The home-made STM-head and electronics provides a resolution of 15 µeV at 0.1 K, tested in low tem-
perature superconductors such as Al [S1 ]. This experimental set-up has been previously used to image the
vortex lattice in the W-based nanodeposits and a number of other superconducting materials [S2-S4 ]. To
image the vortex arrangement at fixed temperature and magnetic field, simultaneous topographic and spec-
troscopic maps of 256× 256 points are measured by taking a full IV curve on each position during the STM
scanning of the tip. STS vortex images are obtained by processing the numerical derivative of the IV curves,
σV = dI/dV , and building maps of the spatial changes of the zero-bias normalized conductance σ0(x, y).
The superconducting inter-vortex regions are represented as white areas whereas the normal vortex cores,
where σ0(x, y) is practically equal to 1, as black regions. The STS vortex images shown in the publication
and videos are raw and have not been filtered.

II. EXTRA-FLAT THIN FILMS OF W-BASED SUPERCONDUCTOR

Superconducting W-based nanodeposits are grown by sweeping a focused Ga+ ion beam (FIB) onto a
substrate in presence of the metal-organic precursor W(CO)6. The Ga+ beam dissociates the molecule of the
precursor gas adsorbed on the substrate and gives rise to deposits with lateral size and thickness controlled
down to nanometric scale. For the sample studied here, the growth process was optimized to reduce the
surface corrugation and produce an extra-flat film with a well-defined one dimensional (1D) modulation
created by the sweeping FIB.

Previous STM studies of W-based superconducting thin film were performed in samples with larger surface
corrugation [S2,S3 ]. The films were grown on top of a Au-Pd thin layer used to bias the sample and deposited
on a Si substrate. The Au-Pd layer produced a surface corrugation ∆d of up to 10% of the total thickness d,
i.e. of 20 nm.

In order to optimize the deposition method, we use a Si/SiO2 substrate and control the beam intensity to
get a random surface corrugation below an Å. We have also worked on the pitch of the ion beam to produce
the smallest possible and best controlled corrugation due to the sweeping beam. We obtain a perfectly 1D
corrugation with a near-sinusoidal form having a period w of 400 nm and a height ∆d of 2 nm. Remaining
corrugation is of atomic size. As the Si/SiO2 substrate is insulating, we contact the film by depositing two
lines that join the film to an Au-Pd layer deposited previously by thermal evaporation, as shown in the Fig.
1b of the manuscript.
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Figure S 1: Superconducting density of states of the extra-flat nanostructured W-film. Normalized tunneling
conductance taken at 0.1 K and 0 T. Red line is the the fit using BCS theory for ∆ = 0.66meV .

Previous STM studies of W-based superconducting thin film were performed in samples with larger surface corru-
gation [S2,S3 ]. The films were grown on top of a Au-Pd thin layer used to bias the sample and deposited on a Si
substrate. The Au-Pd layer produced a surface corrugation ∆d of up to 10% of the total thickness d, i.e. of 20 nm.

In order to optimize the deposition method, we use a Si/SiO2 substrate and control the beam intensity to get a
random surface corrugation below an Å. We have also worked on the pitch of the ion beam to produce the smallest
possible and best controlled corrugation due to the sweeping beam. We obtain a perfectly 1D corrugation with a
near-sinusoidal form having a period w of 400 nm and a height ∆d of 2 nm. Remaining corrugation is of atomic size.
As the Si/SiO2 substrate is insulating, we contact the film by depositing two lines that join the film to an Au-Pd
layer deposited previously by thermal evaporation, as shown in the Fig. 1b of the manuscript.

Homogeneity and composition of the extra-flat nanostructured thin film have been carefully characterized. High
resolution transmission electron microscopy, X-ray microanalysis, and X-ray photoelectron spectroscopy show that the
deposits are amorphous and that the composition is homogeneous as a function of the depth. The superconducting
density perfectly follows simple s-wave BCS behaviour over the whole surface [S2 ]. Fig. S1 shows a representative
curve for the tunneling conductance obtained at 0.1 K and zero magnetic field. Superconducting features are highly
homogeneous as a function of the position and give spatial changes below 10% of the value of the conductance at the
quasiparticle peaks.

2D character of vortex lattice

In the W-nanodeposits, the length scale for the vortex bending parallel to the field direction, Lc, is of the order
of 5 µm, which is far above the sample thickness d = 200 nm [S3 ]. Thus, the vortices do not bend and make up a
perfectly two-dimensional lattice. Actually, this occurs in most thin films of extreme type II superconductors, where
the magnetic penetration depth and Lc are most often far above the film thickness (see for example [S5,S6 ]).

Figure S 1: Superconducting density of states of the extra-flat nanostructured W-film. Normalized
tunneling conductance taken at 0.1 K and 0 T. Red line is the the fit using BCS theory for ∆ = 0.66meV .

Homogeneity and composition of the extra-flat nanostructured thin film have been carefully characterized.
High resolution transmission electron microscopy, X-ray microanalysis, and X-ray photoelectron spectroscopy
show that the deposits are amorphous and that the composition is homogeneous as a function of the depth.
The superconducting density perfectly follows simple s-wave BCS behaviour over the whole surface [S2 ]. Fig.
S1 shows a representative curve for the tunneling conductance obtained at 0.1 K and zero magnetic field.
Superconducting features are highly homogeneous as a function of the position and give spatial changes below
10% of the value of the conductance at the quasiparticle peaks.

2D character of vortex lattice

In the W-nanodeposits, the length scale for the vortex bending parallel to the field direction, Lc, is of the
order of 5 µm, which is far above the sample thickness d = 200 nm [S3 ]. Thus, the vortices do not bend
and make up a perfectly two-dimensional lattice. Actually, this occurs in most thin films of extreme type II
superconductors, where the magnetic penetration depth and Lc are most often far above the film thickness
(see for example [S5,S6 ]).

III. METHODS FOR NUMERICAL ANALYSIS OF STS VORTEX IMAGES

III.1.Vortex positions and Delanaunay triangulation

The first step to analyse the vortex lattice images is to determine the coordinates of each vortex in the
STS images. To locate the vortex positions, the cores are first identified as regions where the normalized
conductance σ0(x, y) is above 0.9 (see section I ). Then, an algorithm is used to find the centroids of the all
the vortices. At the highest fields, where the contrast in the images given by the change of σ0(x, y) between
inside and outside the cores is strongly reduced, we first make a low-pass filtering of the vortex images. The
result is always thoroughly checked and manually corrected when needed. We estimate that we only obtain
a quantifiable error at the highest magnetic fields, where contrast is strongly reduced. There, we may miss
or obtain doubtful positions in less than 1% of the total amount of vortices. For example, in image at 5.5 T
(Fig. 2 in the paper), we count 873 vortices and we estimate that our error is below 8 vortices.
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Delaunay triangulation of vortex positions is calculated using the Delaunay function available in the Matlab
library. Usually, at the edges of the images, Delaunay triangulation of the vortex arrangements gives triangles
whose vertices do not correspond to vortices being first neighbours. In the Delaunay triangulations presented
in the publication, these triangles have been removed from the images. This is relevant because, close to
the border, artificial topological defects appear due to the lacking neighbours outside the imaged window.
By removing the triangulation at the border, we thus improve the calculation of the spatial and angular
correlation functions.

III.2. Translational and orientational correlation functions

Translational and orientational correlation functions [S7 ], GK(r) and G6(r), are defined from the transla-
tional and orientational order parameters, ΨK(r) and Ψ6(r), as [S8 ],

GK(r) = < ΨK(r)Ψ∗K(0) >=
1

6

6∑

l

1

N(r)

N(r)∑

i,j

ΨKl
(ri)Ψ

∗
Kl

(rj), ΨKl
(ri) = eiKlri

G6(r) = < Ψ6(r)Ψ∗6(0) >=
1

N(r)

N(r)∑

i,j

Ψ6(ri)Ψ
∗
6(rj), Ψ6(ri) =

1

N i
N

Ni
N∑

k

ei6θ(rik)

where r is the distance of any lattice site to the origin, N(r) is the number of vortex pairs separated by a
distance r, N i

N is the number of the nearest neighbours of the vortex i as given by the Delaunay triangulation,
Kl stands for each of the six main reciprocal lattice vectors and θ(rik) is the angle of the nearest-neighbours
bond between vortices i and j with respect to the reference axis. GK(r) and G6(r) functions shown in the
publication (Fig. 3) are calculated using the above expressions from the vortex positions. The six main
reciprocal lattice vectors K are determined from the position of the Bragg peaks in the Fourier transforms
of the vortex position maps (see Section IV ).

We confirm that the calculated GK(r) and G6(r) for a perfect hexagonal lattice are equal to 1 when r
coincides with the distance to n-th nearest neighbours (Fig. S2 ). The relevant parameter for the discussion
in the publication is the upper envelope of GK(r) and G6(r). 4
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Figure S 2: GK(r) and G6(r) functions for a perfect hexagonal lattice. Left panel shows a perfect simulated hexagonal
vortex lattice and right panel the calculated translational (upper) and orientational (bottom) correlation functions. Insets in
right panels show a zooms-up of both correlation functions at distances up to 4a0. The three first maxima appear at r = a0,
r =

√
3a0 and r ≈ 2a0 as it is expected for a lattice with long range order.
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Figure S 3: GKl(r) functions in the translationally ordered and disordered phases. GKl(r) are calculated over the
main reciprocal lattice directions K1 (red), K2 (green) and K3 (blue) and averaged to give GK(r) functions shown in the
publication. a and b show, respectively, GKl(r) at 1.2 T and 3 T where translational order goes from long range to short range.

III.3.Vortex density maps

To calculate the vortex density ρ(x, y), we define a squared area centered at (x, y) with a lateral size of 3 times the
lattice parameter a0. We count the number of vortices in this area, and divide by A = (3a0)

2. For the points (x, y)
at a distance to the edges below 3a0/2, the local vortex density is calculated over a smaller area. These points are
not taken into account to calculate the histograms of the vortex density shown in Fig. 2c of the manuscript. In order
to decrease the discontinuity between nearby pixels in ρ(x, y) maps produced by the discrete nature of the vortex
arrangement, they are smoothed using a Gaussian low-pass filter, which is the same for all the fields.

The ρ(x, y) maps shown in the publication are normalized by the averaged vortex density which is obtained from
the total number of vortices in the image divided by the total area. Note that the mean vortex density is in good
agreement with the expected value for a hexagonal lattice at all magnetic fields. Fig. S4 shows the field dependence
of a0 which is proportional to the mean vortex density. a0 is experimentally determined as the position of the first
maximum in the histograms of the intervortex distances obtained from the vortex positions at each field.

Figure S 2: GK(r) and G6(r) functions for a perfect hexagonal lattice. Left panel shows a perfect simulated
hexagonal vortex lattice and right panel the calculated translational (upper) and orientational (bottom) correlation
functions. Insets in right panels show a zooms-up of both correlation functions at distances up to 4a0. The three first
maxima appear at r = a0, r =

√
3a0 and r ≈ 2a0 as it is expected for a lattice with long range order.

The position and sharpness of the peaks in the correlation functions are related to the averaged location
of the nearest neighbours. For example, in Fig.3a of the publication, the first three peaks in correlation
functions are located at r = a0, r =

√
3a0 and 2a0 at 0.5 T (insets in Fig. S2 ). At 5.5 T, the second and

third peaks merge in a single peak showing that order has become short range.
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publication. a and b show, respectively, GKl(r) at 1.2 T and 3 T where translational order goes from long range to short range.

III.3.Vortex density maps

To calculate the vortex density ρ(x, y), we define a squared area centered at (x, y) with a lateral size of 3 times the
lattice parameter a0. We count the number of vortices in this area, and divide by A = (3a0)

2. For the points (x, y)
at a distance to the edges below 3a0/2, the local vortex density is calculated over a smaller area. These points are
not taken into account to calculate the histograms of the vortex density shown in Fig. 2c of the manuscript. In order
to decrease the discontinuity between nearby pixels in ρ(x, y) maps produced by the discrete nature of the vortex
arrangement, they are smoothed using a Gaussian low-pass filter, which is the same for all the fields.

The ρ(x, y) maps shown in the publication are normalized by the averaged vortex density which is obtained from
the total number of vortices in the image divided by the total area. Note that the mean vortex density is in good
agreement with the expected value for a hexagonal lattice at all magnetic fields. Fig. S4 shows the field dependence
of a0 which is proportional to the mean vortex density. a0 is experimentally determined as the position of the first
maximum in the histograms of the intervortex distances obtained from the vortex positions at each field.

Figure S 3: GKl(r) functions in the translationally ordered and disordered phases. GKl(r) are calculated
over the main reciprocal lattice directions K1 (red), K2 (green) and K3 (blue) and averaged to give GK(r) functions
shown in the publication. a and b show, respectively, GKl(r) at 1.2 T and 3 T where translational order goes from
long range to short range.

To obtain GK(r) given in the publication, we average GKl
(r) over main reciprocal lattice directions. Fig.

S3 shows GKl
(r) at 1.2 T and 3 T, which are in phase I (long range translational order) and phase II (short

range translational order). The decay along different directions is very similar. Only in the ordered phase I
we find slight variations (Fig. S3 a) that are not relevant for the discussion.

III.3.Vortex density maps

To calculate the vortex density ρ(x, y), we define a squared area centered at (x, y) with a lateral size of 3
times the lattice parameter a0. We count the number of vortices in this area, and divide by A = (3a0)2. For
the points (x, y) at a distance to the edges below 3a0/2, the local vortex density is calculated over a smaller
area. These points are not taken into account to calculate the histograms of the vortex density shown in Fig.
2c of the manuscript. In order to decrease the discontinuity between nearby pixels in ρ(x, y) maps produced
by the discrete nature of the vortex arrangement, they are smoothed using a Gaussian low-pass filter, which
is the same for all the fields. 5
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Figure S 4: Intervortex distance vs magnetic field. Red points are the field dependent lattice parameter a0 determined
as the position of the first maximum in the histograms of the intervortex distance which are obtained from the vortex positions
at each value of the magnetic field. Black line is the expected intervortex distance for a superconductor with a hexagonal vortex
lattice a0 = (1.25)1/4(ϕ0/H)1/2, where ϕ0 is the flux quantum.

III.4. Relative displacement correlator B(r)

Deviations of the vortex arrangement with respect to a perfect hexagonal lattice are quantified by the relative
displacement correlator B(r) defined as B(r) = ⟨[u(r)−u(0)]2⟩/2. u(r) = r−rp is the displacement of each vortex at
r relative to its position in the perfect lattice rp. In order to calculate B(r), a perfect hexagonal lattice was generated
using the reciprocal lattice vectors obtained from the Fourier transform of the vortex position maps (see Section IV ).
The perfect hexagonal lattice is then compared to the real vortex arrangements in regions where all the vortices have
6 first neighbours. This allows to establish an unequivocal correspondence between each vortex and one single site in
the perfect lattice. Finally, the average over the mean squared displacements between the real and perfect lattices,
⟨|u(r)|2⟩, is minimized respect to translation and rotation of the perfect lattice to obtain the best match between the
two arrangements [S9,S10 ]. The positions for the perfect lattice obtained after minimizations are used to compute
the histograms and maps of the relative displacement, u(r), and correlation functions B(r) discussed in section VI.
To avoid errors related to discretization, we again smooth the relative displacement maps using a Gaussian function,
as in Section III.3.

III.5. Mean squared variations of disorder potential

Mean squared variation of disorder 1D potential, ⟨[V1D(r) − V1D(r′)]2⟩, are calculated by taking V1D(r) = z(r) ∗ εL

where z(r) is the topography measured simultaneously to vortex lattice maps and εL = (ϕ2
0/4πµ0λ

2)ln(λ/ξ) is the
vortex energy per unit length.

Values for the coherence length and London penetration depth in the W nanodeposits are, respectively, ξ = 6.25nm
and λ = 850nm. The average in ⟨[V1D(r) − V1D(r′)]2⟩ is made over all vortex positions r, r′. Fig. S5a shows V1D(r)

Figure S 4: Intervortex distance vs magnetic field. Red points are the field dependent lattice parameter a0
determined as the position of the first maximum in the histograms of the intervortex distance which are obtained
from the vortex positions at each value of the magnetic field. Black line is the expected intervortex distance for a
superconductor with a hexagonal vortex lattice a0 = (1.25)1/4(φ0/H)1/2, where φ0 is the flux quantum.

The ρ(x, y) maps shown in the publication are normalized by the averaged vortex density which is obtained
from the total number of vortices in the image divided by the total area. Note that the mean vortex density
is in good agreement with the expected value for a hexagonal lattice at all magnetic fields. Fig. S4 shows
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the field dependence of a0 which is proportional to the mean vortex density. a0 is experimentally determined
as the position of the first maximum in the histograms of the intervortex distances obtained from the vortex
positions at each field.

III.4. Relative displacement correlator B(r)

Deviations of the vortex arrangement with respect to a perfect hexagonal lattice are quantified by the
relative displacement correlator B(r) defined as B(r) = 〈[u(r)−u(0)]2〉/2. u(r) = r− rp is the displacement
of each vortex at r relative to its position in the perfect lattice rp. In order to calculate B(r), a perfect
hexagonal lattice was generated using the reciprocal lattice vectors obtained from the Fourier transform
of the vortex position maps (see Section IV ). The perfect hexagonal lattice is then compared to the real
vortex arrangements in regions where all the vortices have 6 first neighbours. This allows to establish an
unequivocal correspondence between each vortex and one single site in the perfect lattice. Finally, the average
over the mean squared displacements between the real and perfect lattices, 〈|u(r)|2〉, is minimized respect to
translation and rotation of the perfect lattice to obtain the best match between the two arrangements [S9,S10 ].
The positions for the perfect lattice obtained after minimizations are used to compute the histograms and
maps of the relative displacement, u(r), and correlation functions B(r) discussed in section VI. To avoid
errors related to discretization, we again smooth the relative displacement maps using a Gaussian function,
as in Section III.3.

III.5. Mean squared variations of disorder potential

Mean squared variation of disorder 1D potential, 〈[V1D(r) − V1D(r′)]2〉, are calculated by taking
V1D(r) = z(r) · εL where z(r) is the topography measured simultaneously to vortex lattice maps and
εL = (φ20/4πµ0λ

2)ln(λ/ξ) is the vortex energy per unit length.

Values for the coherence length and London penetration depth in the W nanodeposits are, respectively,
ξ = 6.25nm and λ = 850nm. The average in 〈[V1D(r) − V1D(r′)]2〉 is made over all vortex positions r, r′.
Fig. S5 a shows V1D(r) map and vortex lattice positions taken simultaneously at 1.2 T. The resulting mean
squared variation of V1D(r) is shown in Fig. 3d of the publication.

To fit and extrapolate the data at larger distances, we simulate topography and V1D(r) maps using a
periodic function in a region 100 times larger than the experimental area studied by STM, i.e, 10 × 10µm2

(Fig. S5 b). We also generate a hexagonal lattice over the same region using the reciprocal lattice vectors
obtained from the Fourier transform of vortex position maps (see in Section IV ). A zoom up of the simulated
V1D(r) and vortex lattice maps over a region with similar size than the experimental topography is shown in
Fig. S5 b. We calculate the mean squared variation of simulated disorder potential at the generated vortex
lattice positions to compare it with experiment (red line in Fig. 3d of the publication).

6

 

 

 

 a b

Figure S 5: Correlations in vortex lattice disorder potential. a shows a V1D(r) map obtained from spatial changes of
vortex energy due to 1D modulation in the film thickness. Red points mark vortex positions obtained from the conductance
maps measured at 1.2 T simultaneously to the topography. b Simulated V1D(r) in a region of 10× 10µm2. A hexagonal vortex
lattice covering the same area has been generated using the experimental reciprocal lattice vectors. For clarity, this is only
shown over a much smaller area of about the same size as the region studied by STM (a).

map and vortex lattice positions taken simultaneously at 1.2 T. The resulting mean squared variation of V1D(r) is
shown in Fig. 3d of the publication.

To fit and extrapolate the data at larger distances, we simulate topography and V1D(r) maps using a periodic
function in a region 100 times larger than the experimental area studied by STM, i.e, 10 × 10µm2 (Fig. S5b). We
also generate a hexagonal lattice over the same region using the reciprocal lattice vectors obtained from the Fourier
transform of vortex position maps (see in Section IV ). A zoom up of the simulated V1D(r) and vortex lattice maps
over a region with similar size than the experimental topography is shown in Fig. S5b. We calculate the mean squared
variation of simulated disorder potential at the generated vortex lattice positions to compare it with experiment (red
line in Fig. 3d of the publication).

IV. ORDER-DISORDER TRANSITION IN THE RECIPROCAL SPACE

We have studied the order-disorder transition in the reciprocal space. Structural transitions of the vortex lattice
in the Fourier space have been previously addressed through neutron diffraction experiments [S11 ]. Bragg peaks
obtained by neutron scattering mix structural information with vortex size or fluctuations. By contrast, our direct
images and their triangulation provide the exact positions of vortices. Thus, the Fourier transforms (FT) of images
consisting of solely the vortex position only contains information about the structural order of the vortex arrangement.

To extract the information about the modifications in the vortex arrangements, we make binary 512 × 512 maps
from the vortex positions found in the conductance maps and study their FT. To compare the field induced changes
in FT, binary maps at all magnetic fields contain the same number of vortices. Each vortex makes up one single pixel
in the binary maps so that the form factor of a single vortex is a delta function (Fig. S6a).

Fig. S6a shows the FT of the binary map for the vortex positions at 1.2 T. In order to measure the magnetic field
dependence of the sharpness of the Bragg peaks in the radial direction, we make circular profiles along the radius at
which we observe the six main Bragg peaks. An example is shown the inset of Fig. S6b for the FT at 1.2 T. The
angular average of the six Bragg peaks is shown in the figure along with the fit to a Lorentzian distribution.

Fig. S7a shows FT of binary binary maps corresponding to the vortex images in Fig. 2a of the publication. The
magnetic field dependence of the height and full width at half maximum (FWHM) of the averaged Bragg peaks as a
function of the magnetic field is shown in Fig. S7b. They give different behaviour in reciprocal space for each phase
discussed in the publication.

In phase I, the FT shows six sharp Bragg peaks and higher harmonics. The amplitude of the first harmonic Bragg
peaks slowly decreases with the magnetic field. But the FWHM is field independent (inset of Fig. S7b).

Figure S 5: Correlations in vortex lattice disorder potential. a shows a V1D(r) map obtained from spatial
changes of vortex energy due to 1D modulation in the film thickness. Red points mark vortex positions obtained
from the conductance maps measured at 1.2 T simultaneously to the topography. b Simulated V1D(r) in a region of
10× 10µm2. A hexagonal vortex lattice covering the same area has been generated using the experimental reciprocal
lattice vectors. For clarity, this is only shown over a much smaller area of about the same size as the region studied
by STM (a).
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IV. ORDER-DISORDER TRANSITION IN THE RECIPROCAL SPACE

We have studied the order-disorder transition in the reciprocal space. Structural transitions of the vortex
lattice in the Fourier space have been previously addressed through neutron diffraction experiments [S11 ].
Bragg peaks obtained by neutron scattering mix structural information with vortex size or fluctuations.
By contrast, our direct images and their triangulation provide the exact positions of vortices. Thus, the
Fourier transforms (FT) of images consisting of solely the vortex position only contains information about
the structural order of the vortex arrangement.

To extract the information about the modifications in the vortex arrangements, we make binary 512× 512
maps from the vortex positions found in the conductance maps and study their FT. To compare the field
induced changes in FT, binary maps at all magnetic fields contain the same number of vortices. Each vortex
makes up one single pixel in the binary maps so that the form factor of a single vortex is a delta function
(Fig. S6 a).

Fig. S6 a shows the FT of the binary map for the vortex positions at 1.2 T. In order to measure the
magnetic field dependence of the sharpness of the Bragg peaks in the radial direction, we make circular
profiles along the radius at which we observe the six main Bragg peaks. An example is shown the inset of
Fig. S6 b for the FT at 1.2 T. The angular average of the six Bragg peaks is shown in the figure along with
the fit to a Lorentzian distribution. 7
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Figure S 6: Fourier Transforms and Bragg peak profiles. Left panel in a shows a 512 × 512 map of the vortex positions
(black pixels) found at 1.2 T in a region containing around 600 vortices. Right panel in a shows the FT of the map in left
panel. Red circle is the circular profile shown in the inset of b which shows the Fourier amplitude of the six main Bragg peaks
along the circular path. The average of the six Bragg peaks is shown in b (red points). The black line is the fit to a Lorentzian
distribution. Light and dark blue arrows mark, respectively, the maximum height of the peak and the FWHM obtained from
the fit.

In phase II, the hexagonal symmetry remains, but first and higher order harmonics lose intensity and become
gradually more arc like instead of point like. The Fourier peak height drops faster with the magnetic field above 2 T,
and the FWHM starts to increase slowly up to 4 T.

Then, in phase III, the peaks become arc-like nearly extending over a circle. The Fourier amplitude is strongly
suppressed and the FWHM diverges.

Figure S 6: Fourier Transforms and Bragg peak profiles. Left panel in a shows a 512× 512 map of the vortex
positions (black pixels) found at 1.2 T in a region containing around 600 vortices. Right panel in a shows the FT of
the map in left panel. Red circle is the circular profile shown in the inset of b which shows the Fourier amplitude of
the six main Bragg peaks along the circular path. The average of the six Bragg peaks is shown in b (red points). The
black line is the fit to a Lorentzian distribution. Light and dark blue arrows mark, respectively, the maximum height
of the peak and the FWHM obtained from the fit.

Fig. S7 a shows FT of binary binary maps corresponding to the vortex images in Fig. 2a of the publication.
The magnetic field dependence of the height and full width at half maximum (FWHM) of the averaged Bragg
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Figure S 7: Order-disorder transition in reciprocal space. (a) FT of vortex positions corresponding to STS images
shown in Fig. 2a of the publication. In phase I (yellow framed FT), where the vortices are surrounded by six first neighbours,
FT images show sharp Bragg peaks with hexagonal symmetry. In phase II (green framed FT), FT images show a continuous
broadening of the Bragg peaks into arcs as a consequence of the of appearance of dislocations and dislocations pairs. In phase
III (in magenta), FT images show a circular structure reflecting the lost of orientacional order due to presence of large regions
of bunched five-fold and seven-fold coordinated vortices. (b) shows the magnetic field evolution of the circular average of the
six main Bragg peaks. Continuous lines are Lorentzian distribution fits to the averaged Bragg peaks. The peak height and
FWHM are shown in the inset as a function of the magnetic field.

V. MAGNETIC FIELD DEPENDENCE OF THE VORTEX INTERACTION

Vortex interaction in superconducting films with thickness much smaller than the London penetration depth, λ, the
so-called Pearl interaction [S12 ], is mainly dominated by the magnetic stray field. In this limit, the relevant length
for the screening of the in-plane supercurrents is given by the effective 2D penetration depth Λ = λ2/d. An analytical
expression for the Pearl interaction potential is [S13 ],

Uv(r) =
ϕ2

0

4Λµ0

[
H0

( r

2Λ

)
− Y0

( r

2Λ

)]

where H0 and Y0 are, respectively, the Struve function and Bessel function of the second kind of order zero.

In the W-based nanodeposits, the London penetration depth (λ = 850 nm) is more than four times higher than
the film thickness (d = 200 nm), and thus vortex interaction is well described by the above expression. Fig.S8
shows the magnetic field dependence of vortex interaction potential at a distance equal to a0. The variation with the
magnetic field comes from the field dependence of a0, λ and ξ which are described within Ginzburg-Landau theory
as a0 = (1.25)1/4(ϕ0/H)1/2, λH = λH=0/(1 − (H/Hc2)

2)1/2 and ξH = ξH=0/(1 − (H/Hc2)
2)1/2, respectively. In

our W-based superconducting thin film, vortex interaction shows a maximum around 1.5 T. Then, it continuously
decreases when magnetic field approaches to Hc2 (= 6.4 T ) showing a stronger field dependence above 4 T. Note that
first topological defects in our vortex images appear at magnetic fields (2 T) when Uv decreases.

VI. B(r) CORRELATION FUNCTIONS AND u(r) MAPS FOR THE 2D LATTICE IN W THIN FILMS

Fig. S9 shows the relative displacement u(r) maps and histograms and B(r) correlation functions for the vortex
lattice images between 0.5 T and 2 T (Fig. 2a in the publication). Spatial maps of u(r) (Fig. S9a) show deviations
of vortex positions relative to those in a perfect hexagonal lattice that appear randomly distributed over the surface.

Figure S 7: Order-disorder transition in reciprocal space. (a) FT of vortex positions corresponding to STS
images shown in Fig. 2a of the publication. In phase I (yellow framed FT), where the vortices are surrounded by
six first neighbours, FT images show sharp Bragg peaks with hexagonal symmetry. In phase II (green framed FT),
FT images show a continuous broadening of the Bragg peaks into arcs as a consequence of the of appearance of
dislocations and dislocations pairs. In phase III (in magenta), FT images show a circular structure reflecting the lost
of orientacional order due to presence of large regions of bunched five-fold and seven-fold coordinated vortices. (b)
shows the magnetic field evolution of the circular average of the six main Bragg peaks. Continuous lines are Lorentzian
distribution fits to the averaged Bragg peaks. The peak height and FWHM are shown in the inset as a function of
the magnetic field.

peaks as a function of the magnetic field is shown in Fig. S7 b. They give different behaviour in reciprocal
space for each phase discussed in the publication.

In phase I, the FT shows six sharp Bragg peaks and higher harmonics. The amplitude of the first harmonic
Bragg peaks slowly decreases with the magnetic field. But the FWHM is field independent (inset of Fig.
S7 b).

In phase II, the hexagonal symmetry remains, but first and higher order harmonics lose intensity and
become gradually more arc like instead of point like. The Fourier peak height drops faster with the magnetic
field above 2 T, and the FWHM starts to increase slowly up to 4 T.

Then, in phase III, the peaks become arc-like nearly extending over a circle. The Fourier amplitude is
strongly suppressed and the FWHM diverges.

V. MAGNETIC FIELD DEPENDENCE OF THE VORTEX INTERACTION

Vortex interaction in superconducting films with thickness much smaller than the London penetration
depth, λ, the so-called Pearl interaction [S12 ], is mainly dominated by the magnetic stray field. In this limit,
the relevant length for the screening of the in-plane supercurrents is given by the effective 2D penetration
depth Λ = λ2/d. An analytical expression for the Pearl interaction potential is [S13 ],

Uv(r) =
φ20

4Λµ0

[
H0

( r

2Λ

)
−Y0

( r

2Λ

)]

where H0 and Y0 are, respectively, the Struve function and Bessel function of the second kind of order zero.

In the W-based nanodeposits, the London penetration depth (λ = 850 nm) is more than four times
higher than the film thickness (d = 200 nm), and thus vortex interaction is well described by the above
expression. Fig.S8 shows the magnetic field dependence of vortex interaction potential at a distance equal
to a0. The variation with the magnetic field comes from the field dependence of a0, λ and ξ which are
described within Ginzburg-Landau theory as a0 = (1.25)1/4(φ0/H)1/2, λH = λH=0/(1 − (H/Hc2)2)1/2 and
ξH = ξH=0/(1 − (H/Hc2)2)1/2, respectively. In our W-based superconducting thin film, vortex interaction
shows a maximum around 1.5 T. Then, it continuously decreases when magnetic field approaches to Hc2
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Figure S 8: Intervortex interaction vs magnetic field. Field dependence of the interaction potential between two vortices,
Uv(r), at r = a0 in the W superconducting thin film studied here.

Histograms of u(r) (Fig. S9b) show that the amplitude of the vortex displacements roughly follows a Gaussian
distribution with the mean value and width increasing with the magnetic field from 0.5 T to 2 T.

Relative displacements correlation functions B(r) obtained from the vortex images and simulated perfect lattices
as described in section III.4 are shown in Fig. S9 c (black circles). We find that, in phase I, B(r) grows as ln(r/a0)

and that is related to the translational correlation function through a Gaussian approximation (GK(r) ≈ e−K2B(r)/2)
as described in the manuscript [S10, S14 and Ref. 26 in the publication]. In phase I, GK(r) = (r/a0)

−ηK so that
Gaussian relation gives (red lines in Fig. S9 c),

B(r)/a2
0 ≈ 3

8π2
ηK ln(r/a0)

In the Fig. S9 c and in the Fig. 3c of the publication, we show B(r) functions as obtained directly form the vortex
lattice images (black points) with those ones obtained using the above expression and the exponents ηK (red lines).
As we discuss in the manuscript, the agreement is very good.

Note that in presence of correlated pinning disorder, such as the disorder caused by Tc variations, voids, crystal
lattice dislocations or grain boundaries, B(r) in 2D systems grows as ln2(r/a0) [S15 and Refs. 6,19 in the publication].
As we discuss previously, our sample is fully amorphous, with a homogeneous distribution of the composition and a
homogeneous critical temperature. There are no voids, grain boundaries, dislocations or other distortions viewed in
our images nor in TEM studies. Also, there is no visible effect on the vortex lattice other than the 1D modulation.
Thus, the disorder in our sample is uncorrelated.

This, in turn means that vortex displacements B(r) have a weaker dependence on the distance (ln(r/a0) instead
of ln2(r/a0)) than in the case of correlated disorder. In the case of correlated disorder, the gain of disorder energy
is always larger than the attraction energy of dislocations pairs. An immediate consequence of this is that the 2D
lattice is unstable to the formation of free dislocations and no true order-disorder transition can exist. This is the
case of MoxGe, MoxSi and similar thin films where collective pinning leads to a phenomenology often characterized
in terms of peak effect and irreversible behaviour which depends on the sample growth methodology [S5,S16,S17 ].
In our amorphous and homogeneous thin film, uncorrelated disorder generates weak vortex displacements, and cor-
respondingly the response of the lattice is reversible, without a peak effect nor irreversible behaviour found in four
probe electrical transport and critical current measurements. The fundamental property is however the logarithmic

Figure S 8: Intervortex interaction vs magnetic field. Field dependence of the interaction potential between
two vortices, Uv(r), at r = a0 in the W superconducting thin film studied here.

(= 6.4 T ) showing a stronger field dependence above 4 T. Note that first topological defects in our vortex
images appear at magnetic fields (2 T) when Uv decreases.

VI. B(r) CORRELATION FUNCTIONS AND u(r) MAPS FOR THE 2D LATTICE IN W THIN
FILMS

Fig. S9 shows the relative displacement u(r) maps and histograms and B(r) correlation functions for the
vortex lattice images between 0.5 T and 2 T (Fig. 2a in the publication). Spatial maps of u(r) (Fig. S9 a) show
deviations of vortex positions relative to those in a perfect hexagonal lattice that appear randomly distributed
over the surface. Histograms of u(r) (Fig. S9 b) show that the amplitude of the vortex displacements roughly
follows a Gaussian distribution with the mean value and width increasing with the magnetic field from 0.5
T to 2 T.

Relative displacements correlation functions B(r) obtained from the vortex images and simulated perfect
lattices as described in section III.4 are shown in Fig. S9 c (black circles). We find that, in phase I, B(r) grows
as ln(r/a0) and that is related to the translational correlation function through a Gaussian approximation

(GK(r) ≈ e−K2B(r)/2) as described in the manuscript [S10, S14 and Ref. 26 in the publication]. In phase I,
GK(r) = (r/a0)−ηK so that Gaussian relation gives (red lines in Fig. S9 c),

B(r)/a20 ≈
3

8π2
ηK ln(r/a0)

In the Fig. S9 c and in the Fig. 3c of the publication, we show B(r) functions as obtained directly form the
vortex lattice images (black points) with those ones obtained using the above expression and the exponents
ηK (red lines). As we discuss in the manuscript, the agreement is very good.

Note that in presence of correlated pinning disorder, such as the disorder caused by Tc variations, voids,
crystal lattice dislocations or grain boundaries, B(r) in 2D systems grows as ln2(r/a0) [S15 and Refs. 6,19 in
the publication]. As we discuss previously, our sample is fully amorphous, with a homogeneous distribution of
the composition and a homogeneous critical temperature. There are no voids, grain boundaries, dislocations
or other distortions viewed in our images nor in TEM studies. Also, there is no visible effect on the vortex
lattice other than the 1D modulation. Thus, the disorder in our sample is uncorrelated.

This, in turn means that vortex displacements B(r) have a weaker dependence on the distance (ln(r/a0)
instead of ln2(r/a0)) than in the case of correlated disorder. In the case of correlated disorder, the gain of
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Figure S 9: Spatial maps, histograms and correlation functions B(r) of the relative displacement u(r). The figure
shows relative displacement maps (a), histograms (b) and correlation functions B(r) (c) for the vortex lattice images at 0.5 T,
1.2 T and 1.5 T. In a, real vortex positions and coordinates of the perfect hexagonal lattice that minimized the mean squared
deviation are marked, respectively, as magenta and blue dots. The color contrast in the images reflects the spatial variations
of u(r) according to the color scale shown on the right. The same color code is used in the histograms of u(r) shown in b.
c shows the relative displacement correlation functions B(r) calculated as described in section III.4. Red lines are the fits to
logarithmic behaviour.

distance dependence of B(r). This, together with the vortex density fluctuations and the Gaussian relation between
the translational correlation function GK(r) and B(r), give three independent evidences that the disorder potential
is uncorrelated and random.

VII. ESTIMATION BKTHNY 2D MELTING TRANSITION IN OUR W-BASED THIN FILM AT 0.1 K

We have calculated the thermal melting line predicted within BKTHNY theory. The BKTHNY transition tem-
perature, above which the 2D solid becomes unstable to the proliferation of dislocation, is given by the condition
[S18 ],

Aµa2
0d

KBT
= 4π

where µ is the shear modulus of the lattice and A = 0.65 is a constant that accounts for the renormalization of µ at
the transition. The shear modulus depends on both temperature and magnetic field as

µ =
Hc(T )2

4µ0
b(1 − 0.58b + 0.29b2)(1 − b)2

Figure S 9: Spatial maps, histograms and correlation functions B(r) of the relative displacement u(r).
The figure shows relative displacement maps (a), histograms (b) and correlation functions B(r) (c) for the vortex
lattice images at 0.5 T, 1.2 T and 1.5 T. In a, real vortex positions and coordinates of the perfect hexagonal lattice
that minimized the mean squared deviation are marked, respectively, as magenta and blue dots. The color contrast in
the images reflects the spatial variations of u(r) according to the color scale shown on the right. The same color code
is used in the histograms of u(r) shown in b. c shows the relative displacement correlation functions B(r) calculated
as described in section III.4. Red lines are the fits to logarithmic behaviour.

disorder energy is always larger than the attraction energy of dislocations pairs. An immediate consequence
of this is that the 2D lattice is unstable to the formation of free dislocations and no true order-disorder
transition can exist. This is the case of MoxGe, MoxSi and similar thin films where collective pinning leads
to a phenomenology often characterized in terms of peak effect and irreversible behaviour which depends on
the sample growth methodology [S5,S16,S17 ]. In our amorphous and homogeneous thin film, uncorrelated
disorder generates weak vortex displacements, and correspondingly the response of the lattice is reversible,
without a peak effect nor irreversible behaviour found in four probe electrical transport and critical current
measurements. The fundamental property is however the logarithmic distance dependence of B(r). This,
together with the vortex density fluctuations and the Gaussian relation between the translational correlation
function GK(r) and B(r), give three independent evidences that the disorder potential is uncorrelated and
random.

VII. ESTIMATION BKTHNY 2D MELTING TRANSITION IN OUR W-BASED THIN FILM AT
0.1 K

We have calculated the thermal melting line predicted within BKTHNY theory. The BKTHNY transition
temperature, above which the 2D solid becomes unstable to the proliferation of dislocation, is given by the
condition [S18 ],

Aµa20d

KBT
= 4π
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where µ is the shear modulus of the lattice and A = 0.65 is a constant that accounts for the renormalization
of µ at the transition. The shear modulus depends on both temperature and magnetic field as

µ =
Hc(T )2

4µ0
b(1− 0.58b+ 0.29b2)(1− b)2

where Hc(T ) = Hc2(T )/
√

2κ(1.25 − 0.25t)2, with b = H/Hc2(T ), t = T/Tc and κ the Ginzburg-Landau
parameter [S18 ]. These expressions give the melting transition line directly from the properties the super-
conducting thin film without any fitting parameter. Using the values for our W-based thin film given in
Section III.5, we find that the thermal melting transition line crosses 0.1 K at 6.2 T, which is far above the
fields at which we observe the order-disorder transition.

VIII. ESTIMATION QUANTUM MELTING TRANSITION IN OUR W-BASED THIN FILM AT
0.1 K

The possible appearance of quantum fluctuations in superconducting thin films with d > ξ can be discussed
through the magnitude of the resistance ratio ρn/dRq, where Rq = ~/e2 = 4.1kΩ is the quantum resistance
and ρn is the normal state resistivity [S19 ]. The quantum melting line is given by

Bqm = Bc2

[
1− 2

π
exp

(
2π

3
α− α2

2
− π3c2L

2

Rq
R∗n

)]
,

where cL is the Lindemann number, α = 2/
√
πν, ν a numerical constant of order unity and R∗n = ρn/a0 the

effective sheet resistance. Using ρn = 275 µΩcm for our W-based thin film, and taking cL = 0.1− 0.3 [S19 ],
we find that the quantum melting transition line at 0.1 K is above 6.1 T, which is again much higher than
the fields at which we observe the order-disorder transition. This value is of the same order than the fields at
which quantum melting has been observed through transport measurements in other superconducting thin
films with similar parameters(S20, S21 ).

IX. BRIEF DESCRIPTION OF SUPPLEMENTARY VIDEOS

Supplementary Video S1: LatticeCompression.avi. Whole sequence of the vortex images shown in Fig. 1
and Fig. 2 of the publication when increasing the magnetic field from 0.01 T to 5.5 T at 0.1 K.

Supplementary Video S2: OrderDisorderTransition.avi. Order disorder transition in the 2D vortex lattice
when increasing the magnetic field from 0.5 T to 5.5 T at 0.1 K. The video presents the vortex lattice images
and Fourier transforms shown in Fig. S7 along with histograms showing the number of 5-fold, 6-fold and
7-fold coordinated vortices.
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