

July 7, 2015

Mr. William Durham Director, Division of Air Quality West Virginia Department of Environmental Protection 601 57th Street Charleston, West Virginia 25304

Via FedEx

Subject:Rule 13 Air Permit Modification ApplicationNatrium Extraction and Fractionation Processing Plant (R13-2896C)Proctor, Marshall CountyBlue Racer Midstream, LLC

Dear Mr. Durham:

On behalf of Blue Racer Midstream, LLC (BRM), Apex TITAN Inc. (Apex), a Subsidiary of Apex Companies, LLC, is pleased to submit to the West Virginia Department of Environmental Protection (WV DEP) the enclosed Rule 13 Air Permit Modification Application to authorize the installation of two cryogenic processing trains and associated heaters, three glycol dehydration units and associated reboilers and vapor combustion devices, and additional piping and fugitive components (the Project) at the Natrium Extraction and Fractionation Processing Plant (the Plant), located in Proctor, Marshall County. All other existing equipment emission representations will remain unchanged by this permitting action. The Plant is currently authorized by WV DEP Rule 13 Air Permit Number R13-2896C. The Project is a minor modification to the Rule 13 Air Permit and will not trigger major source permitting for any criteria pollutants.

Enclosed please find one (1) hard copy and two (2) electronic copies of the Rule 13 air permit application.

BRM and Apex truly appreciate the WV DEP's review and approval of the enclosed application. If you have any questions or require additional information, please do not hesitate to contact Mr. Sean Wilson of BRM at (214) 580-7340 or at *SWilson@caimanenergy.com* or myself at 469-365-1121 or at *odeleon@apexcos.com*.

Sincerely, Apex TITAN, Inc.

Osman De Leon Project Manager

cc: Mr. Sean Wilson, Blue Racer Midstream Mr. Daniel Wentworth, Blue Racer Midstream

RULE 13 AIR PERMIT MODIFICATION APPLICATION

Natrium Extraction and Fractionation Processing Plant Proctor, Marshall County, West Virginia

July 2015

Apex TITAN Job No: 72500646-12

Prepared by:

Apex TITAN, Inc., a subsidiary of Apex Companies, LLC 2801 Network Boulevard, Suite 200 Frisco, TX 75034 T 469.365.1100 • F 469.365.1199 apexcos.com

TABLE OF CONTENTS

Section Introduction	<u>Page</u>
Application for Air Permit	
Application Fee	9

Attachments

Attachment A: Business Certificate	
------------------------------------	--

- Attachment B: Maps
- Attachment C: Installation and Start-Up Schedule
- Attachment D: Regulatory Discussion
- Attachment E: Plot Plans
- Attachment F: Detailed Process Flow Diagram
- Attachment G: Process Description
- Attachment H: Material Safety Data Sheets
- Attachment I: Emissions Unit Table
- Attachment J: Emission Points Data Summary Sheet
- Attachment K: Fugitive Emissions Data Summary Sheet
- Attachment L: Emissions Unit Data Sheets
- Attachment M: Air Pollution Control Device Sheets
- Attachment N: Supporting Emissions Calculations
- Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans
- Attachment P: Public Notice

i

INTRODUCTION

Blue Racer Midstream, LLC (BRM) is submitting this Rule 13 air permit modification application to the West Virginia Department of Environmental Protection (WV DEP) Air Permits Division (APD) to authorize the addition of two (2) Cryogenic trains, two (2) Regen Gas heaters, two (2) Cryo HMO heaters, three (3) glycol reboilers, three (3) glycol dehydration units, four (4) vapor combustors, update the emissions from the previously installed dehydration unit to be routed to a vapor combustor, and addition of piping and fugitive components (the Project) at the Natrium Extraction and Fractionation Processing Plant (Natrium Plant, or Plant) located in Proctor, Marshall County, West Virginia. The Plant emits carbon monoxide (CO), oxides of nitrogen (NO_X), particulate matter (PM), including PM with aerodynamic diameters of 10 and 2.5 microns or less (PM_{10} and $PM_{2.5}$, respectively), sulfur dioxide (SO₂), volatile organic compounds (VOC), hazardous air pollutants (HAPs), and Greenhouse Gases (GHG).

Plant Permitting History

In an effort to facilitate the WV DEP's review of air permitting applicability to the Project and retrospectively to the Plant, the following paragraphs present a summary of the Plant's air permitting and ownership history.

Original Plant Construction under Dominion Natrium LLC Ownership

- August 2011: Original air permit application submittal
 - 460 Million standard cubic feet per day (MMscfd) Natural Gas Processing Facility, including two 200 MMscfd cryogenic units and associated NGL fractionation
 - o February 1, 2012: Anticipated Start of Construction (SOC)
 - o December 1, 2012: Anticipated Start of Operation (SOO)
 - Site-wide Potential to Emit (PTE), excluding fugitives:

• CO	:	37.97 T/yr
■ NO	x:	23.94 T/yr
■ PM	$/PM_{10}/PM_{2.5}$:	4.76 T/yr
 SO₂ 	2:	0.37 T/yr
 VO 	C:	6.03 T/yr
• CO ₂	₂ e:	85,062 T/yr

- Synthetic minor source, due to federally enforceable operating limitations on the annual fuel firing rate of the Hot Oil Heater (Emissions Unit Number [EU#] S001).
- December 19, 2011: Permit R13-2896 issued
- May 15, 2013: Actual SOO (construction exceeded anticipated project timeline)
- Upon SOO, flare operational issues resulted in visible emissions in excess of those allowed under 40 Code of Federal Regulations (CFR) §60.18 (adopted by reference in WV regulation §45-16-4) and insufficient destruction efficiency.
- July 31, 2013: Consent Order issued by WV DEP

August 14, 2013: Change of Ownership to Blue Racer Natrium, LLC

•

- August 20, 2013: Rule 13 permit modification application submittal
 - Change of ownership from Dominion Natrium LLC to Blue Racer Natrium LLC
 - Replacement of the flare tip (modification to EU# S004) to resolve operational issues, per the Consent Order
 - Installation of a vapor recovery unit (VRU) on the Natural Gasoline Tank (EU# S005), per the Consent Order, to capture and route the tank emissions (primarily natural gas blanket emissions) to the Hot Oil Heater (EU# S001) fuel system instead of the flare
 - Installation of a VRU on the Slop Tank (EU# S007), per the Consent Order, to capture and route the tank emissions (primarily natural gas blanket emissions) to the Flare (EU# S004)
 - Installation of two new natural gas-fired heaters (EU#s S012 and S013) to provide heat to the second cryogenic unit
 - Update to site-wide PTE, excluding fugitives:

•	CO:	24.09 T/yr
•	NO _X :	34.35 T/yr
•	PM/PM ₁₀ /PM _{2.5} :	5.93 T/yr
•	SO ₂ :	0.46 T/yr
•	VOC:	2.22 T/yr
•	CO_2e :	94,877 T/yr

- Retention of synthetic minor source status due to federally enforceable operating limitations on the annual fuel firing rate of the Hot Oil Heater (EU# S001).
- December 26, 2013: Permit R13-2896B issued by WV DEP
- During this review, WV DEP agreed that the installation of the two heaters were a separate, distinct project from the original construction of the Plant, as these heaters were not anticipated to be needed during the original design and permitting of the Plant.

August 1, 2014: Fractionation Plant Expansion

- August 1, 2014: Rule 13 permit modification application submittal
- Change of owner/operator name to Blue Racer Midstream LLC (Blue Racer Natrium LLC is being absorbed into its parent company)
- Increase in NGL fractionation capacity of the Plant by:
 - Tying a new NGL pipeline into the Plant's receiving area, and increasing the potential truck, railcar, and barge unloading of NGL;
 - o Installation of two deethanizer towers and associated equipment;
 - Installation of an ethane amine treating unit and associated equipment;
 - Installation of a depropanizer tower and associated equipment;
 - Installation of a debutanizer tower and associated equipment;
 - Installation of four (4) natural gas-fired hot oil heaters (EU#s S016, S017, S018, and S019);
 - Installation of a glycol reboiler (EU# S020) and a regen gas heater (EU# S022);
 - Installation of a 38,788 bbl gasoline storage tank equipped with a natural gas blanket to reduce VOC emissions (EU# S023);

- Installation of four (4) pressurized butane bullet tanks;
- o Increased utilization of the existing Plant Hot Oil Heater (EU# S001);
- o Revised plant natural gas processing rate from 400 MMscfd to 460 MMscfd;
- Increased throughput of the existing Plant product storage tanks, which are pressurized to prevent emissions during normal operations;
- Update to site-wide PTE, excluding fugitives:

•	CO:	99.23 T/yr
•	NO _X :	72.55 T/yr
•	PM/PM ₁₀ /PM _{2.5} :	16.78 T/yr
•	SO ₂ :	1.63 T/yr
•	VOC:	10.20 T/yr
•	CO_2e :	288,861 T/yr

- Due to Supreme Court ruling, GHG emissions alone may not trigger Prevention of Significant Deterioration (PSD) permitting on sources with total criteria pollutant potential to emit less than the PSD major source threshold.
- November 6, 2014: Permit R13-2896C issued by WV DEP

April 15, 2015: Plant Flare Replacement

- April 15, 2015: Rule 13 permit modification application submittal
 - Replacement of the existing plant flare (EU# S004) with a ground flare (EU# S004A).
 - Update to site wide PTE, excluding fugitives:

•	CO:	97.45 T/yr
•	NO _X :	72.63 T/yr
•	PM/PM ₁₀ /PM _{2.5} :	16.76 T/yr
•	SO_2 :	1.63 T/yr
•	VOC:	9.58 T/yr
•	CO ₂ e:	288,527 T/yr

- The flare replacement did not result in an increase in potential emissions of criteria pollutants above major source permitting thresholds. Although GHG emissions are above the major source threshold of 100,000 T/yr CO₂e, GHG emissions cannot trigger PSD permitting unless one criteria pollutant triggers PSD permitting.
- WV DEP permit issuance is still pending for this update.

Project Description

With this filing, Blue Racer Midstream LLC is requesting that the WV DEP authorize the following additions and updates to the Plant operations:

- Installation of two (2) 230 MMscfd natural gas cryogenic processing trains;
- Installation of three (3) 230 MMscfd glycol dehydration units (EUs# S031, S032, S033) and associated 3.0 MMBtu/hr glycol reboilers (EUs# S028, S029, S030);
- o Installation of two (2) 9.7 MMBtu/hr Regen Gas Heaters (EU#s S024, S025);
- o Installation of two (2) 26.3 MMBtu/hr Cryo HMO Heaters (EU#s S026, S027);
- Update to emission controls for previously installed glycol dehydration unit (EU# S006);

- Installation of four (4) vapor combustor units (EU#s V001, V002, V003, V004) to control emissions from all dehydration units; and,
- Addition of piping and fugitive components (EU#s FUG AREA 3, FUG AREA 4).
- Although this modification will authorize the vapor combustors as the primary emission control mechanism for all glycol dehydration units, BRM would like to have the flexibility to route the dehydration unit emissions to the plant hot oil heater (EU# S001) as fuel or back to the plant inlet. For permitting purposes, BRM is representing continuous combustion of the dehydration unit emissions by the vapor combustors as the most conservative scenario.

	Site Total PTE
Regulated Air Pollutant	(T /y r)
Oxides of Nitrogen (NO _X):	120.49
Carbon Monoxide (CO):	152.77
Volatile Organic Compounds (VOC):	89.43
Particulate Matter (PM):	35.06
PM with an aerodynamic diameter of less than or equal to 10 microns (PM ₁₀)	23.91
PM with an aerodynamic diameter of less than or equal to 2.5 microns (PM _{2.5})	20.26
Sulfur Dioxide (SO ₂):	1.93
Greenhouse Gases (CO ₂ e):	342,248

- The Plant is an existing PSD minor source of regulated air contaminants. This modification project is not a PSD major source by itself. As a result, PSD permitting has not been triggered by the project for any regulated air contaminant.
- Although GHG emissions are above the PSD major source threshold of 100,000 T/yr CO₂e, GHG emissions cannot trigger PSD permitting unless one criteria pollutant triggers PSD permitting. As a result, BRM is submitting this Air Permit application to authorize the additions and modifications to the Plant.
- The addition of new equipment results in an increase in the site-wide potential emissions of NO_x and CO criteria pollutants above the Title V major source permitting thresholds. As a result, BRM will submit a Title V application within 12 months after start of operation of the project.

WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF AIR QUALIT 601 57 th Street, SE Charleston, WV 25304 (304) 926-0475 WWW.dep.wv.gov/dag		APPLICATION FOR NSR PER AND TITLE V PERMIT REVISIO (OPTIONAL)		E VISION		
PLEASE CHECK ALL THAT APPLY TO NSR (45CSR13) (IF K				-		
		ADMINISTRA				ODIFICATION
		IF ANY BOX ABC INFORMATION A				
FOR TITLE V FACILITIES ONLY: Please refer to "Title (Appendix A, "Title V Permit Revision Flowchart") and						
Se	ction l	. General				
1. Name of applicant (as registered with the WV Secretary of State's Office): 2. Federal Employer ID No. (FEIN): Blue Racer Midstream, LLC 46-1520107			V):			
3. Name of facility (if different from above):			4. The applicant is the:			
Natrium Extraction and Fractionation Processing Pla	ant (NPP))			RATOR	🛛 вотн
5A. Applicant's mailing address: 5949 Sherry Lane, Suite 1300 Dallas, TX 75225	5949 Sherry Lane, Suite 1300 Natrium Extraction and Fractionation Processing Plant 14787 Energy Road					
6. West Virginia Business Registration. Is the application			of West Viraini	a?	TYES 🕅	
 If YES, provide a copy of the Certificate of Incorporchange amendments or other Business Registration If NO, provide a copy of the Certificate of Authority amendments or other Business Certificate as Attack 	oration/O Certifica y/Author	organization/Limi ate as Attachmen rity of L.L.C./Reg	ited Partners nt A.	hip (one pa	age) includii	ng any name
7. If applicant is a subsidiary corporation, please provide			vration:			
 8. Does the applicant own, lease, have an option to buy 				ed site?		
 If YES, please explain: Applicant is the owner 						
 If NO, you are not eligible for a permit for this source. 						
9. Type of plant or facility (stationary source) to be constructed, modified, relocated, administratively updated or temporarily permitted (e.g., coal preparation plant, primary crusher, etc.): Natural Gas Extraction and Fractionation Facility10. North American Industry Classification System (NAICS) code for the facility				/stem		
211112 Natural Gas Liquid Extraction					Liquid	
11A. DAQ Plant ID No. (for existing facilities only): 051 – 00142 11B. List all current 45CSR13 and 45CSR30 (Title V) permit numbers associated with this process (for existing facilities only): R13-2896C						

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone. 12A. For Modifications, Administrative Updates or Temporary permits at an existing facility, please provide directions to the present location of the facility from the nearest state road; For Construction or Relocation permits, please provide directions to the proposed new site location from the nearest state road. Include a MAP as Attachment B. Facility is located off of State Road 2 at 14787 Energy Road, Proctor, WV. 12.B. New site address (if applicable): 12C. Nearest city or town: 12D. County: Proctor Marshall 14787 Energy Road Proctor, WV 26055 12.E. UTM Northing (KM): 4400.8 12G. UTM Zone: 17 12F. UTM Easting (KM): 512.1 13. Briefly describe the proposed change(s) at the facility: Authorize the addition of two (2) Cryo trains, two (2) Regen Gas heaters, two (2) Cryo HMO heaters, three (3) glycol reboilers, three (3) dehydration units; each routed to a vapor combustor, update the emissions from the previously installed dehydration unit to be routed to a vapor combustor, and addition of piping and fugitives. 14A. Provide the date of anticipated installation or change: 9/15/2015 14B. Date of anticipated Start-Up If this is an After-The-Fact permit application, provide the date upon which the proposed if a permit is granted: change did happen: 3/31/2016 14C. Provide a Schedule of the planned Installation of/Change to and Start-Up of each of the units proposed in this permit application as Attachment C (if more than one unit is involved). 15. Provide maximum projected **Operating Schedule** of activity/activities outlined in this application: Hours Per Dav 24 Davs Per Week 7 Weeks Per Year 52 16. Is demolition or physical renovation at an existing facility involved? 17. Risk Management Plans. If this facility is subject to 112(r) of the 1990 CAAA, or will become subject due to proposed changes (for applicability help see www.epa.gov/ceppo), submit your Risk Management Plan (RMP) to U. S. EPA Region III. 18. Regulatory Discussion. List all Federal and State air pollution control regulations that you believe are applicable to the proposed process (if known). A list of possible applicable requirements is also included in Attachment S of this application (Title V Permit Revision Information). Discuss applicability and proposed demonstration(s) of compliance (if known). Provide this information as Attachment D. Section II. Additional attachments and supporting documents. 19. Include a check payable to WVDEP - Division of Air Quality with the appropriate application fee (per 45CSR22 and 45CSR13). 20. Include a Table of Contents as the first page of your application package. 21. Provide a Plot Plan, e.g. scaled map(s) and/or sketch(es) showing the location of the property on which the stationary source(s) is or is to be located as Attachment E (Refer to Plot Plan Guidance) . Indicate the location of the nearest occupied structure (e.g. church, school, business, residence). 22. Provide a Detailed Process Flow Diagram(s) showing each proposed or modified emissions unit, emission point and control device as Attachment F. 23. Provide a Process Description as Attachment G. Also describe and quantify to the extent possible all changes made to the facility since the last permit review (if applicable).

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

24. F	Provide Material Safety Data Sheets	(MSDS) for all materials pr	processed, used or produced as Attachment H.		
	or chemical processes, provide a MSI				
	ill out the Emission Units Table and	•			
26. F	Fill out the Emission Points Data Su	mmary Sheet (Table 1 and	d Table 2) and provide it as Attachment J.		
27. F	fill out the Fugitive Emissions Data	Summary Sheet and provi	ride it as Attachment K.		
28. 0	Check all applicable Emissions Unit	Data Sheets listed below:			
🖾 Βι	Ik Liquid Transfer Operations	🛛 Haul Road Emissions	a Quarry		
🖂 CI	nemical Processes	Hot Mix Asphalt Plant			
	oncrete Batch Plant	Incinerator	Facilities		
G	ey Iron and Steel Foundry	Indirect Heat Exchang	ger 🛛 Storage Tanks		
G	eneral Emission Unit, specify: Fire F	Pump Engines (2), Flares,	, and Vapor Combustors (4).		
	ut and provide the Emissions Unit D				
	Check all applicable Air Pollution Co	ntrol Device Sheets listed	d below:		
	osorption Systems	Baghouse	⊠ Flare		
	dsorption Systems	Condenser	Mechanical Collector		
	terburner	Electrostatic Prec			
⊠ O1	her Collectors, specify: Electric Va	por Recovery Units (2) and	nd Vapor Combustors (4)		
	It and provide the Air Pollution Con				
	Provide all Supporting Emissions C tems 28 through 31.	alculations as Attachment	nt N, or attach the calculations directly to the forms listed	n	
t	31. Monitoring, Recordkeeping, Reporting and Testing Plans. Attach proposed monitoring, recordkeeping, reporting and testing plans in order to demonstrate compliance with the proposed emissions limits and operating parameters in this permit application. Provide this information as Attachment O.				
r		/ not be able to accept all m	whether or not the applicant chooses to propose such neasures proposed by the applicant. If none of these pla include them in the permit.	ns	
32. F	Public Notice. At the time that the a	pplication is submitted, plac	ce a Class I Legal Advertisement in a newspaper of ge	neral	
c	irculation in the area where the sourc	ce is or will be located (See	e 45CSR§13-8.3 through 45CSR§13-8.5 and Example Le	gal	
Å	Advertisement for details). Please se	ubmit the Affidavit of Publi	lication as Attachment P immediately upon receipt.		
33 . E	Business Confidentiality Claims. D	oes this application include	e confidential information (per 45CSR31)?		
		🖾 NO			
s	If YES, identify each segment of information on each page that is submitted as confidential and provide justification for each segment claimed confidential, including the criteria under 45CSR§31-4.1, and in accordance with the DAQ's " <i>Precautionary Notice – Claims of Confidentiality</i> " guidance found in the <i>General Instructions</i> as Attachment Q.				
	See	ction III. Certification	ion of Information		
	Authority/Delegation of Authority. Check applicable Authority Form bel		one other than the responsible official signs the application	n.	
_ Αι	Authority of Corporation or Other Business Entity Authority of Partnership				
_ Αι	Authority of Governmental Agency Authority of Limited Partnership				
Subm	Submit completed and signed Authority Form as Attachment R.				
	All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.				

35A. Certification of Information. To certify this permit application, a Responsible Official (per 45CSR§13-2.22 and 45CSR§30-2.28) or Authorized Representative shall check the appropriate box and sign below.

Certification of Truth, Accuracy, and Completeness

I, the undersigned Responsible Official / Authorized Representative, hereby certify that all information contained in this application and any supporting documents appended hereto, is true, accurate, and complete based on information and belief after reasonable inquiry I further agree to assume responsibility for the construction, modification and/or relocation and operation of the stationary source described herein in accordance with this application and any amendments thereto, as well as the Department of Environmental Protection, Division of Air Quality permit issued in accordance with this application, along with all applicable rules and regulations of the West Virginia Division of Air Quality and W.Va. Code § 22-5-1 et seq. (State Air Pollution Control Act). If the business or agency changes its Responsible Official or Authorized Representative, the Director of the Division of Air Quality will be notified in writing within 30 days of the official change.

Compliance Certification

Except for requirements identified in the Title V Application for which compliance is not achieved, I, the undersigned hereby certify that, based on information and belief formed after reasonable inquiry, all air contaminant sources identified in this application are in compliance with all applicable requirements.

compliance with all applicable requirements	-16 that A	NATE: 7/3/15
SIGNATURE(Please of	use blue ink)	DATE: (Please use blue ink)
35B. Printed name of signee: Daniel Wentwor	th	35C. Title: Sr. Vice President Engineering and Operations
35D. E-mail: daniel@caimanenergy.com	36E. Phone: 214-580-3700	36F. FAX: 214-580-3750
36A. Printed name of contact person (if differe	nt from above): Sean Wilson	36B. Title: Director, Environmental, Health, and Safety
36C. E-mail: <u>SWilson@caimanenergy.com</u>	36D. Phone: 214-580-7340	36E. FAX: 214-580-7360

PLEASE CHECK ALL APPLICABLE ATTACHMENTS INCLUDED WITH THIS PERMIT APPLICATION:					
 Attachment A: Business Certificate Attachment B: Map(s) Attachment C: Installation and Start Up Schedule Attachment D: Regulatory Discussion Attachment E: Plot Plan Attachment F: Detailed Process Flow Diagram(s) Attachment G: Process Description Attachment H: Material Safety Data Sheets (MSDS) Attachment I: Emission Units Table Attachment J: Emission Points Data Summary Sheet 	 Attachment K: Fugitive Emissions Data Summary Sheet Attachment L: Emissions Unit Data Sheet(s) Attachment M: Air Pollution Control Device Sheet(s) Attachment N: Supporting Emissions Calculations Attachment O: Monitoring/Recordkeeping/Reporting/Testing Plans Attachment P: Public Notice Attachment Q: Business Confidential Claims Attachment R: Authority Forms Attachment S: Title V Permit Revision Information Application Fee 				
Please mail an original and three (3) copies of the complete permit application with the signature(s) to the DAQ, Permitting Section, at the address listed on the first page of this application. Please DO NOT fax permit applications.					
FOR AGENCY USE ONLY – IF THIS IS A TITLE V SOURCE:					
Forward 1 copy of the application to the Title V Permitting Group and:					
For Title V Administrative Amendments:					

□ NSR permit writer should notify Title V permit writer of draft permit,

□ For Title V Minor Modifications:


Title V permit writer should send appropriate notification to EPA and affected states within 5 days of receipt,
 NSR permit writer should notify Title V permit writer of draft permit.

☐ For Title V Significant Modifications processed in parallel with NSR Permit revision:

□ NSR permit writer should notify a Title V permit writer of draft permit,

- □ Public notice should reference both 45CSR13 and Title V permits,
- EPA has 45 day review period of a draft permit.

All of the required forms and additional information can be found under the Permitting Section of DAQ's website, or requested by phone.

Bank of Texas Operati Agency Fee 72500646-12

2,000.00

ATTACHMENT A: BUSINESS CERTIFICATE

RULE 13 AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

BLUE RACER MIDSTREAM, LLC

I, Natalie E. Tennant, Secretary of State of the State of West Virginia, hereby certify that

BLUE RACER MIDSTREAM, LLC

Control Number: 99Y8J

a limited liability company, organized under the laws of the State of Delaware

has filed its "Application for Certificate of Authority" in my office according to the provisions of West Virginia Code §31B-10-1002. I hereby declare the organization to be registered as a foreign limited liability company from its effective date of December 20, 2012, until a certificate of cancellation is filed with our office.

Therefore, I hereby issue this

CERTIFICATE OF AUTHORITY OF A FOREIGN LIMITED LIABILITY COMPANY

to the limited liability company authorizing it to transact business in West Virginia

Given under my hand and the Great Seal of the State of West Virginia on this day of December 20, 2012

Il E. Your

Secretary of State

DFC 202012

IN THE OFFICE OF Natalie E. Tennant Secretary of State IN THE OFFICE OF SECRETARY OF STATE: (304)558-8000 1900 Kanawha Blvd E. Bldg 1, Suite 157-K Fax: (304)558-8381 Charleston, WV 25305 www.wvsos.com Hrs: 8:30 a.m. - 5:00 p.m. ET FILE ONE ORIGINAL WV APPLICATION FOR (Two if you want a filed **CERTIFICATE OF AUTHORITY OF** stamped copy returned to you) FEE: \$150 LIMITED LIABILITY COMPANY Control # ****A <u>CERTIFICATE OF EXISTENCE</u> dated during the current tax year, from your home state**** of original organization is required to accompany this filing. Blue Racer Midstream, LLC 1. The name of the company as registered in its home state is: State of Delaware and the state or country of organization is: 2. The name to be used in West Virginia will be: [The name must contain one of the required terms such as Home State name as listed above, if available in WV "limited liability company" or abbreviations such as "LLC" or "PLLC". See instructions for complete list of acceptable DBA name terms and requirements for use of trade name.) (ONLY if home state name is unavailable in WV) 3. The company will be a: [See instructions for limitations regular L.L.C. on professions which may form P.L.L.C. in WV. All members must have WV professional license. In most cases, a Letter of Professional L.L.C. for the profession of Authorization/Approval from the appropriate State Licensing Board is required to process the application.] 4. The address of the designated office of No. & Street: the company in WV, if any, will be: City/State/Zip: 120 Tredegar Street 5. The street address of the principal office No. & Street: is: Richmond, VA 23219 City/State/Zip: and the mailing address (if different) is: Street/Box: City/State/Zip: C T Corporation System 6. Agent of Process: Name: Properly designated person to whom 5400 D Big Tyler Road, notice of process may be sent, if any: Address: Charleston, West Virginia 25313 City/State/Zip:

7. E-mail address where business correspondence can be received:

Form LLF-1

Issued by the Office of the Secretary of State

Application for Certificate of Authority of a Limited Liability Company

8.	Website address of the business, if	fany:			
	The company is: The company is:	an at-will company, for an indefinite period a term company, for the term of	ll members.]		
	Tint the manual () - 641	manager-managed. [List the names and addresses of]			
	List the name(s) of the members/m	nanagers of the company (attach additional pages if n	ecessary).		
	Name	Street Address City, State	e, Zip		
	Dominion Natrium Holdings, Inc.	120 Tredegar Street			
		Richmond, VA 23219			
11.	 All or specified members of a limited liability company are liable in their capacity as members for all or specified debts, obligations or liabilities of the company. NoAll debts, obligations and liabilities of the company Yes-Those persons who are liable in their capacity as members for all debts, obligations or liabilities of the company are liable in their capacity as members for all debts, obligations or liabilities of the company are liable in their capacity as members for all debts, obligations or liabilities of the company have consented in writing to the adoption of the provision or to be bound by the provision 				
12.	12. The purpose for which this limited liability company is formed are as follows: (Describe the type(s) of business activity which will be conducted, for example, "real estate," "construction of residential and commercial buildings," "commercial printing," "professional practice of architecture.")				
	The purpose of the company is to engage in any lawful activity, including without limitation, the development				
	of gas processing and fractionation and NGL transportation and any and all related activities.				
13.	Is the business a Scrap Metal Deale Yes [If "Yes," you must complete and proceed to question 14.]	e the Scrap Metal Dealer Registration Form (Form SM	<u>D-1</u>)		
14		6			
1.	The number of pages attached and in The requested effective date is: [Requested date may not be earlier than filing nor later than 90 days after filing.]	the date & time of filing the following date and time			
Form	LLF-1	Issued by the Office of the Secretary of State	Revised 05/12		

Application for Certificate of Authority of a Limited Liability Company

a.		
	Contact Name	Phone Number
		Phone Number President, Dominion Natrium Holdings,
ь.	_ Gary L. Sypolt	Inc. as sole Member
	Print or type name of signer	Title / Capacity of Signer
	h p n	
c.	_ Mary L. Syport	
		Date
	•	

15. Contact and Signature Information:

Form LLF-1

Issued by the Office of the Secretary of State

Revised 0512

Page 3

Delaware

PAGE 1

The First State

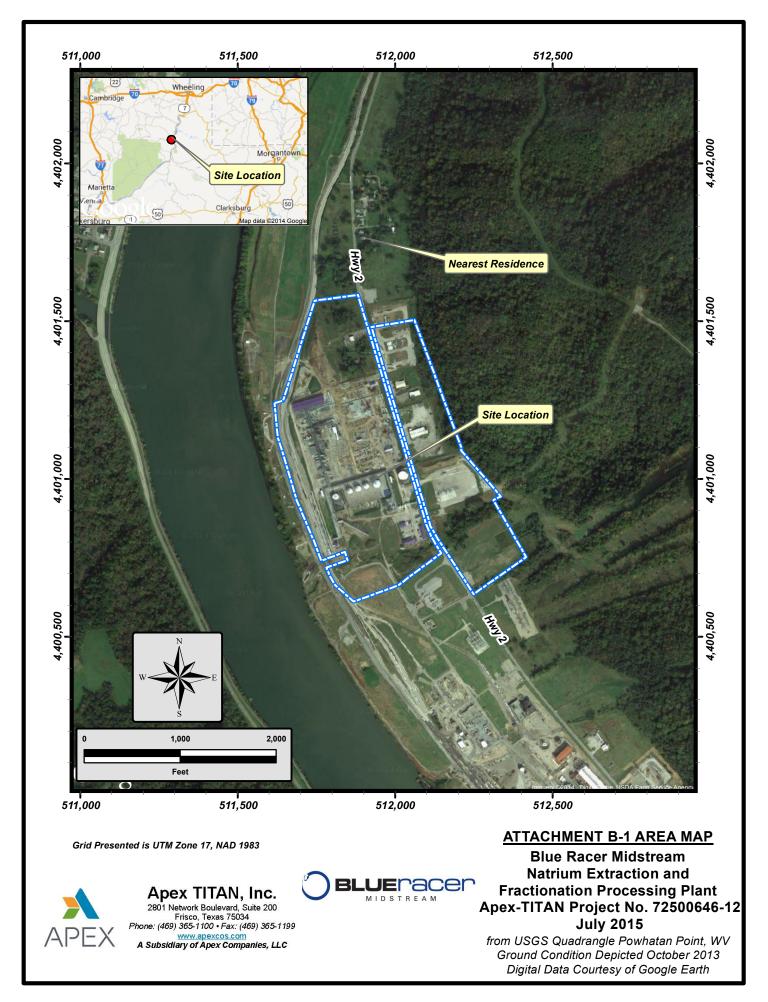
I, JEFFREY W. BULLOCK, SECRETARY OF STATE OF THE STATE OF DELAWARE, DO HEREBY CERTIFY "BLUE RACER MIDSTREAM, LLC" IS DULY FORMED UNDER THE LAWS OF THE STATE OF DELAWARE AND IS IN GOOD STANDING AND HAS A LEGAL EXISTENCE SO FAR AS THE RECORDS OF THIS OFFICE SHOW, AS OF THE NINETEENTH DAY OF DECEMBER, A.D. 2012.

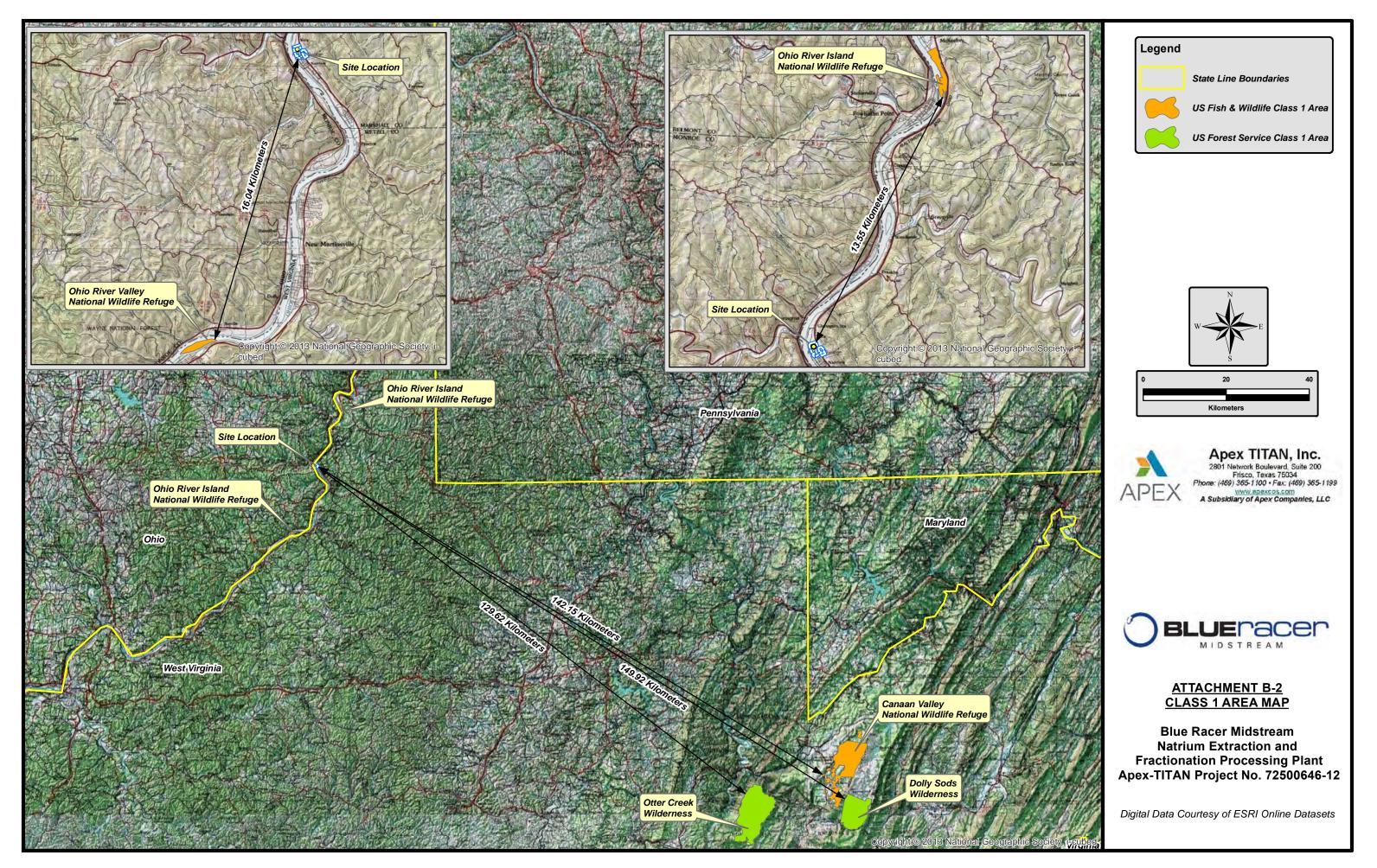
AND I DO HEREBY FURTHER CERTIFY THAT THE ANNUAL TAXES HAVE NOT BEEN ASSESSED TO DATE.

Jeffrey W. Bullock, Secretary of State AUTHENTYCATION: 0082629

DATE: 12-19-12

5245987 8300


121362169 You may verify this certificate online at corp.delaware.gov/authver.shtml


ATTACHMENT B: MAPS

RULE 13 AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

BLUE RACER MIDSTREAM, LLC

ATTACHMENT C: INSTALLATION AND START-UP SCHEDULE RULE 13 AIR PERMIT APPLICATION NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT BLUE RACER MIDSTREAM, LLC

Upon permit submittal, BRM intends to commence construction on those activities allowed by WV DEP, at the sole risk of BRM, with a tentative start date in early to mid-September 2015. BRM anticipates startup of operations of the equipment addition to commence on March 31, 2016.

ATTACHMENT D: REGULATORY DISCUSSION

RULE 13 AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

BLUE RACER MIDSTREAM, LLC

TABLE OF CONTENTS

Section

<u>L</u>	Page
D.1.	45 CSR 2 and 2A: PM from Combustion of Fuel in Indirect Heat
	Exchangers
D.2.	45 CSR 4: Discharge of Air Pollutants that Cause Objectionable
	Odors
D.3.	45 CSR 6: Control of Air Pollution from Combustion of Refuse
D.4 .	45 CSR 7: To Prevent and Control Particulate Matter Air Pollution
	from Manufacturing Processes and Associated Operations4
D.5.	45 CSR 10: To Prevent and Control Air Pollution from the Emission
	of Sulfur Oxides4
D.6 .	45 CSR 13: Permits for Construction, Modification, Relocation and
	Operation of Stationary Sources, Notification Requirements,
	Administrative Updates, Temporary Permits, General Permits,
	Permission to Commence Construction, and Procedures for
	Evaluation5
D.7 .	45 CSR 14: Permits for Construction and Major Modification of
	Major Stationary Sources for the Prevention of Significant
	Deterioration of Air Quality5
D.8 .	45 CSR 16: Standards of Performance for New Stationary Sources
D.8.1 .	NSPS A, §60.18
D.8.2 .	NSPS Db6
D.8.3 .	NSPS Dc6
D.8.4 .	NSPS Kb6
D.8.5.	NSPS KKK7
D.8.6 .	NSPS IIII
D.8.7 .	NSPS 0000
D.9 .	45 CSR 17: To Prevent and Control PM Air Pollution from
	Materials Handling, Preparation, Storage, and Other Sources of
	Fugitive PM8
D.10 .	45 CSR 19: Permits for Construction and Modifications in
	Nonattainment Areas8
D.11 .	45 CSR 20: Good Engineering Practices as Applicable to Stack
	Heights8
D.12.	45 CSR 22: Air Quality Management Fee Program

D.14.	45 CSR 34: Emission Standards for Hazardous Air Pollutants	.9
D.14.1.	MACT HH	.9
D.14.2.	MACT ZZZZ	10
D.14.3.	MACT DDDDD	10
D.14.4 .	MACT JJJJJJ	0

ATTACHMENT D: REGULATORY DISCUSSION

This attachment discusses the federal and state regulations that apply to the Project and the existing Plant.

D.1. 45 CSR 2 and 2A: PM from Combustion of Fuel in Indirect Heat Exchangers

45 CSR 2-3 limits opacity from fuel burning equipment to ten percent (10 %) opacity, based on a six minute block average, except during periods of startup, shutdown, or malfunction (SSM). At all times, including periods of start-ups, shutdowns and malfunctions, BRM will, to the extent practicable, maintain and operate the Plant's fuel burning unit(s) in a manner consistent with good air pollution control practice for minimizing emissions. Attachment O presents the Plant's monitoring methods for demonstrating compliance with this rule.

45CSR 2-4 contains weight-based PM emissions standards for fuel burning units. The Plant's heaters are all type "b" units, as defined in the rule. For type "b" fuel burning units, the PM emission limit is the product of 0.09 and the total design heat input for such units in million British thermal units per hour (MMBtu/hr), not to exceed 600 lb/hr PM from all such units. Fuel burning units with a heat input less than ten (10) MMBtu/hr are exempt from this rule. Therefore, other than the four Regen Gas Heaters (EU#s: S012, S022, S024, and S025) and the four Glycol Reboilers (EU#s: S020, S028, S029, and S030), the HMO heaters (EU#s: S013, S026, S027) and hot oil heaters (EU#s: S001, S016, S017, S018, S019) at the Plant are subject to this rule. These units have allowable and potential PM emission rates as follows:

Emissions Unit ID	Maximum Heat Input (MMBtu/hr)	Allowable PM Emission Rate (lb/hr)	Potential PM Emission Rate (lb/hr)
S001	216.7	19.50	1.61
S013	26.3	2.37	0.19
S016	61.6	5.54	0.46
S017	61.6	5.54	0.46
S018	61.6	5.54	0.46
S019	61.6	5.54	0.46
S026	26.3	2.37	0.20
S027	26.3	2.37	0.20
Total		600	4.04

As shown in the above table, these units satisfy the requirements of this rule.

No other requirements of this rule apply to the Plant.

D.2. 45 CSR 4: Discharge of Air Pollutants that Cause Objectionable Odors

This rule prohibits the discharge of air contaminants that cause or contribute to an objectionable odor. This rule applies to the Plant, and BRM will continue to comply with this rule.

D.3. 45 CSR 6: Control of Air Pollution from Combustion of Refuse

This rule establishes emission standards for PM and requirements for activities involving incineration of refuse which are not subject to, or are exempted from, regulation under a federal counterpart for specific combustion sources. This rule also prohibits (with limited exception) open burning and sets forth the registration, permitting, reporting, testing, emergency, natural disaster and exemption provisions for activities involving the combustion of refuse and land clearing debris. This rule applies to the Plant. BRM will continue to comply with the open burning provisions of this rule.

This rule limits the Flare and Vapor Combustor's visible emissions to 20% opacity, except during periods aggregating to no more than eight (8) minutes in any sixty (60) minute period, during which opacity is limited to 40%. This rule also requires that the Flare and Vapor Combustor be permitted, and that be tested upon agency request. BRM will operate the ground flare (EU#: S004A) and vapor combustors (EU#s: V001, V002, V003, and V004) in accordance with this rule. The emergency flare (EU#: S021) will continue to comply with the requirements of this rule.

D.4. 45 CSR 7: To Prevent and Control Particulate Matter Air Pollution from Manufacturing Processes and Associated Operations

This rule establishes emission standards for PM and opacity from manufacturing processes. This rule does not apply to emissions regulated by 45 CSR 2, 3, or 5 or to source(s) that have a PTE less than one (1) lb/hr PM and an aggregate of less than one thousand (1,000) lb/yr for all such sources of particulate matter located at the stationary source. Therefore, this rule does not apply to the Plant's fuel burning units (EU#s: S001, S012, S013, S016, S017, S018, S019, S020, S022, S024, S025, S026, S027, S028, S029, and S030) because they are regulated by 45 CSR 2. The remaining emissions sources at the Plant have negligible PM emission rates and/or are not manufacturing processes. Therefore, this rule does not apply.

D.5. 45 CSR 10: To Prevent and Control Air Pollution from the Emission of Sulfur Oxides

This rule establishes weight-based emission standards for SO_2 from fuel burning units. Marshall County is listed as a Priority I region in Table 45-10A. The Plant's heaters are all type "b" units, as defined in the rule. For type "b" fuel burning units in a Priority I region, the SO_2 emission limit is the product of 3.1 and the total design heat inputs for such units in MMBtu/hr, with each stack not exceeding 25% of the total allowable emission rate for the site. All heaters at the Plant are fired on sweet natural gas, with an emission rate well below this limitation.

No other requirements of this rule apply to the Plant.

D.6. 45 CSR 13: Permits for Construction, Modification, Relocation and Operation of Stationary Sources, Notification Requirements, Administrative Updates, Temporary Permits, General Permits, Permission to Commence Construction, and Procedures for Evaluation

This rule establishes the permitting requirements for minor sources. The Plant is currently permitted by Rule 13 Permit No. R13-2896C, in accordance with this rule. The Plant is a minor source related to PSD permitting thresholds, and the project-related emission increases are below the PSD major source thresholds, thus the Plant is subject to the permitting requirements of this rule. Detailed emission rate calculations are included in Attachment N to this application.

D.7. 45 CSR 14: Permits for Construction and Major Modification of Major Stationary Sources for the Prevention of Significant Deterioration of Air Quality

The Plant is a minor source related to PSD. The project-related emission increases are below the PSD major source threshold. Therefore, this rule is not applicable.

D.8. 45 CSR 16: Standards of Performance for New Stationary Sources

This rule incorporates by reference the NSPS codified in 40 CFR Part 60. The following sections address the NSPS applicable to the Plant, which include:

- NSPS Supbart A, §60.18 for Flares and Control Devices
- NSPS Subpart Db Standards of Performance for Industrial-Commercial-Institutional Steam Generating Units
- NSPS Subpart Dc Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units
- NSPS Subpart Kb Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984
- NSPS KKK Standards of Performance for Equipment Leaks of VOC from Onshore Natural Gas Processing Plant for Which Construction, Reconstruction, or Modification Commenced After January 20, 1984 and on or Before August 23, 2011
- NSPS IIII Standards of Performance for Stationary Compression Ignition Internal Combustion Engines
- NSPS OOOO Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution

D.8.1. NSPS A, §60.18

Because the ground flare (EU#: S004A) controls equipment subject to NSPS standards (e.g., pressure relief valves subject to NSPS OOOO), the ground flare is subject to the requirements of 40 CFR §60.18. BRM will design and operate the flare in accordance with 40 CFR §60.18, including specifications for minimum heating value of the waste gas and flame monitoring, as summarized in Attachment O. The emergency flare (EU#: S021) is used to control upset events only, and thus is not required to comply with this rule. The vapor combustors (EU#s V001 to V004) do not control equipment subject to an NSPS standard, and thus are not required to comply with this rule.

D.8.2. NSPS Db

NSPS Db (40 CFR 60, Subpart Db - Standards of Performance for Industrial-Commercial-Institutional Steam Generating Units) is applicable to steam generating units that commence construction, modification, or reconstruction after June 19, 1984, and that have a heat input capacity greater than 100 MMBtu/hr. The Hot Oil Heater (EU#: S001) is subject to the NO_X emission limitation of this subpart of 0.1 lb/MMBtu because it fires natural gas, as defined in this rule. The heater will continue to comply with this requirement through the use of next generation Low-NO_X Burners, which have a performance guarantee of 0.026 lb/MMBtu.

The heater meets the exemption from the SO_2 limitations because it fires natural gas, as defined in this rule, and has a PTE less than 0.32 lb/MMBtu SO_2 .

BRM will demonstrate continuous compliance with NSPS Db by complying with the applicable monitoring, recordkeeping, and reporting requirements of this rule as outlined in Attachment O.

D.8.3. NSPS Dc

NSPS Dc (40 CFR Part 60, Subpart Dc - Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units) outlines specific requirements for steam generating units built after June 9, 1989 with a heat duty between 10 MMBtu and 100 MMBtu. The remaining hot oil heaters and HMO heaters at the Plant are subject to this rule. Because they fire natural gas, the heaters have no emissions standards, but they will continue to comply with the monitoring, recordkeeping, and reporting requirements of this subpart, as applicable and as outlined in Attachment O. The glycol reboilers (EU#s: S020, S028, S029, S030) and regen gas heaters (EU#s: S012, S022, S024, S025) are not subject to this rule since the fuel firing rates are below 10 MMBtu/hr.

D.8.4. NSPS Kb

NSPS Kb (40 CFR Part 60 Subpart Kb – Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984) outlines specific requirements for storage vessels containing volatile organic liquids. NSPS Kb is not applicable to pressurized storage vessels, or to storage vessels with a capacity less than 75 cubic meters (472 barrels).

The Natural Gasoline Tanks (EU#: S005 and S023) are the only tanks at the Plant subject to NSPS Kb. These tanks are equipped with a natural gas blanket to reduce VOC emissions. The tank emissions are vented to a closed vent system through a VRU for compression and then to the Hot Oil Heater (EU#: S001) fuel supply. BRM will continue to comply with applicable monitoring, recordkeeping, and reporting requirements of NSPS Kb as outlined in Attachment O.

D.8.5. NSPS KKK

NSPS KKK (40 CFR Part 60 Subpart KKK - Standards of Performance for Equipment Leaks of VOC from Onshore Natural Gas Processing for which Construction, Reconstruction, or Modification commenced after January 20, 1984, and on or before August 23, 2011) is not applicable to the Project, since construction will be commenced after the applicability date of August 23, 2011.

The original Plant construction is subject to NSPS KKK. BRM will continue to comply with the applicable requirements of NSPS KKK as outlined in Attachment O.

D.8.6. NSPS IIII

NSPS IIII (40 CFR Part 60 Subpart IIII - Standards of Performance for Stationary Compression Ignition Internal Combustion Engines) outlines specific requirements for new or modified engines. According to 40 CFR §60.4200(a)(4), compression ignition internal combustion engines commencing construction after July 11, 2005 are subject to these standards. The existing emergency firewater pump engines (EU#s: S002 and S003) are manufacturer-certified as compliant with NSPS IIII; therefore, they meet the requirements of NSPS IIII. BRM will continue to comply with the applicable monitoring, recordkeeping, and reporting requirements of NSPS IIII as outlined in Attachment O.

D.8.7. NSPS 0000

NSPS OOOO (40 CFR Part 60 Subpart OOOO – Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution) outlines requirements for well completions, pneumatic controllers, equipment leaks from natural gas processing plants, reciprocating compressors, centrifugal compressors, and storage vessels which are constructed, modified or reconstructed after August 23, 2011.

The existing Plant commenced construction prior to August 23, 2011, and, therefore, is not subject to this rule. The NGL fractionation unit (EU# FUG AREA 2) and proposed cryogenic trains (EU#s: FUG AREA 3 and FUG AREA 4) are subject to NSPS OOOO.

This is subject to the equipment leak standards for onshore natural gas processing plants. According to \$60.5400 equipment leaks must comply with the requirements of \$\$ 60.482-1a(a), (b), and (d), 60.482-2a, and 60.482-4a through 60.482-11a, except as provided in \$ 60.5401. BRM will comply with the requirements of this rule with the following practices:

- Pumps in light liquid service will be monitored monthly to detect leaks and will be visually inspected every calendar week for indications of liquids dripping, and will follow the protocol for leak repairs as specified in §60.482-2a
- Relief values in gas service emissions will be routed to the ground flare and will comply with the monitoring and inspection requirements of §60.482-11a in lieu of the requirements of §482-4a(a) and (b).
- Sampling connections will comply with the requirements of §60.482-5a through the use of closed-loop sampling that does not cause additional emissions during sampling. Also, purged process fluid is returned to the process line. However, per §60.5401(c), sampling connections are not subject to the requirements of §60.482-5(a).
- Valves in vapor service and light liquid service will be monitored monthly to detect leaks as specified in §60.482-7a.
- Pumps, valves, and connectors in heavy liquid service and pressure relief devices in light liquid or heavy liquid service will be inspected and repaired as outlined in §60.482-8a.
- Connectors in vapor service and light liquid service will comply with the monitoring and repair requirements of \$60.482-11a.
- BRM will continue to comply with the recordkeeping requirements of \$60.486a and reporting requirements of \$60.487a as well as the additional requirements of \$60.5421 and \$60.5422.

The Ethane Amine Unit (EU#: S014) removes CO_2 and trace amounts of H_2S from the NGL stream. The requirements of NSPS OOOO do not apply to this Amine Unit since it does not process natural gas from wells.

D.9. 45 CSR 17: To Prevent and Control PM Air Pollution from Materials Handling, Preparation, Storage, and Other Sources of Fugitive PM

BRM will continue to utilize dust control measures to prevent fugitive PM from being emitted beyond the property line during the construction of the Project. BRM will also continue to maintain the Plant roads in a manner consistent with this rule.

D.10. 45 CSR 19: Permits for Construction and Modifications in Nonattainment Areas

The Plant is located in the Franklin Tax District in Marshall County, West Virginia. In 2013, EPA designated this area as nonattainment for the 2010 primary SO₂ NAAQS. Therefore, the major source threshold for SO₂ is 100 T/yr. As shown in Attachment N – Emissions Calculations, the post-Project Plant's potential to emit SO₂ will be well below this threshold. Therefore, this rule does not apply.

D.11. 45 CSR 20: Good Engineering Practices as Applicable to Stack Heights

The Plant does not include any existing or proposed stacks that exceed the Good Engineering Practice height.

D.12. 45 CSR 22: Air Quality Management Fee Program

This rule contains fee structure information for permits to construct and operate. In accordance with 45CSR§22-3, BRM is submitting an application fee in accordance with Rule 13 air permit application as follows:

•	NSPS Source:	\$ 1,000
•	Base Fee:	\$ 1.000

e: <u>\$ 1,000</u> **\$ 2,000**

D.13. 45 CSR 30: Requirements for Operating Permits

Upon implementation of this project, the Plant will be a major source of NO_x and CO with respect to Title V permitting thresholds; therefore BRM will submit a Title V application within 12 months after start of operation.

D.14. 45 CSR 34: Emission Standards for Hazardous Air Pollutants

This rule incorporates by reference the National Emissions Standards for Hazardous Air Pollutants codified in 40 CFR Part 61 (NESHAPs) and in 40 CFR Part 63 (MACTs).

40 CFR Part 61 contains standards for various materials, including radon, beryllium, mercury, vinyl chloride, radionuclides, benzene, asbestos, and inorganic arsenic emissions from various types of sources. The Plant is not subject to any NESHAPs listed in 40 CFR Part 61.

40 CFR Part 63 contains MACT standards for various source categories and/or industries. The Plant is an area source of HAPs. The Project does not include the installation of any equipment subject to a MACT standard listed in 40 CFR Part 63. The following sections address the MACT standards that potentially apply to the existing Plant, including:

- MACT HH National Emissions Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities
- MACT ZZZZ National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines
- MACT DDDDD National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers and Process Heaters
- MACT JJJJJJ National Emissions Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers at Area Sources

D.14.1. MACT HH

MACT HH (40 CFR Part 63 Subpart HH – National Emissions Standards for Hazardous Air Pollutants from Oil and Natural Gas Production Facilities) outlines specific requirements for major or area sources at oil and natural gas production facilities. As previously discussed, the Plant is located at an area source

of HAPs. The Glycol Dehydration Units (EU#: S006, S031, S032, and S033) are TEG dehydration units. Because each dehydration unit's potential benzene emissions are less than 1 T/yr, the units are only subject to recordkeeping requirements to demonstrate exemption from the control requirements of the rule. Attachment O contains a summary of these requirements.

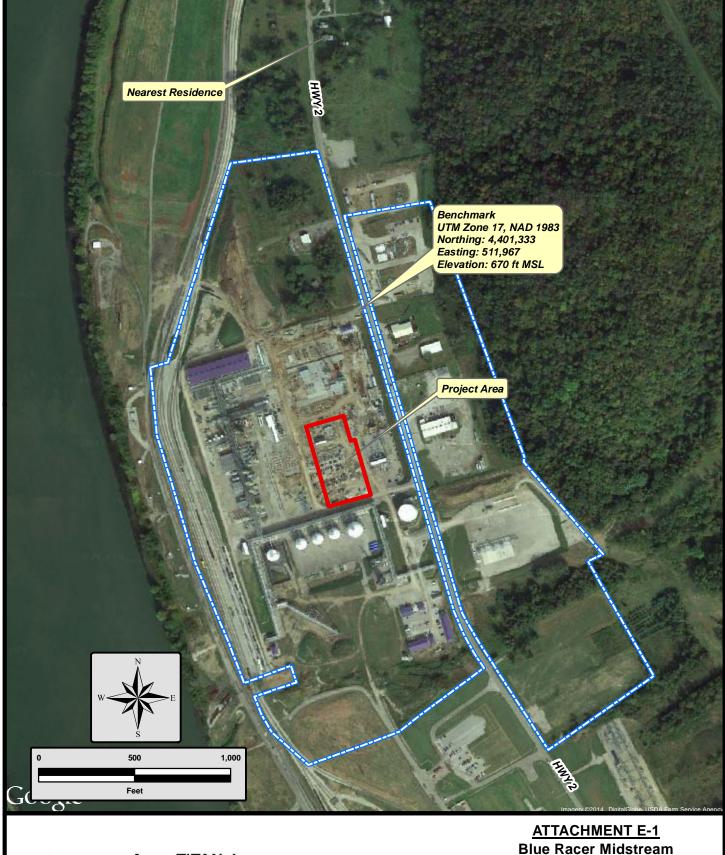
D.14.2. MACT ZZZZ

MACT ZZZZ (40 CFR Part 63 Subpart ZZZZ – National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines) outlines specific requirements for new or modified engines at major and area sources of HAPs. The emergency firewater pump engines (EU#s: S002 and S003) are new compression ignition reciprocating internal combustion engines located at an area source of HAPs. Accordingly, these units will continue to meet the requirements of MACT ZZZZ by meeting NSPS IIII.

D.14.3. MACT DDDDD

MACT DDDDD (40 CFR Part 63 Subpart DDDDD – National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers and Process Heaters) outlines specific requirements for industrial, commercial, and institutional boilers and process heaters at major sources of HAPs. The Plant is not a major source of HAPs and is thus not subject to the requirements of this rule.

D.14.4. MACT JJJJJJJ

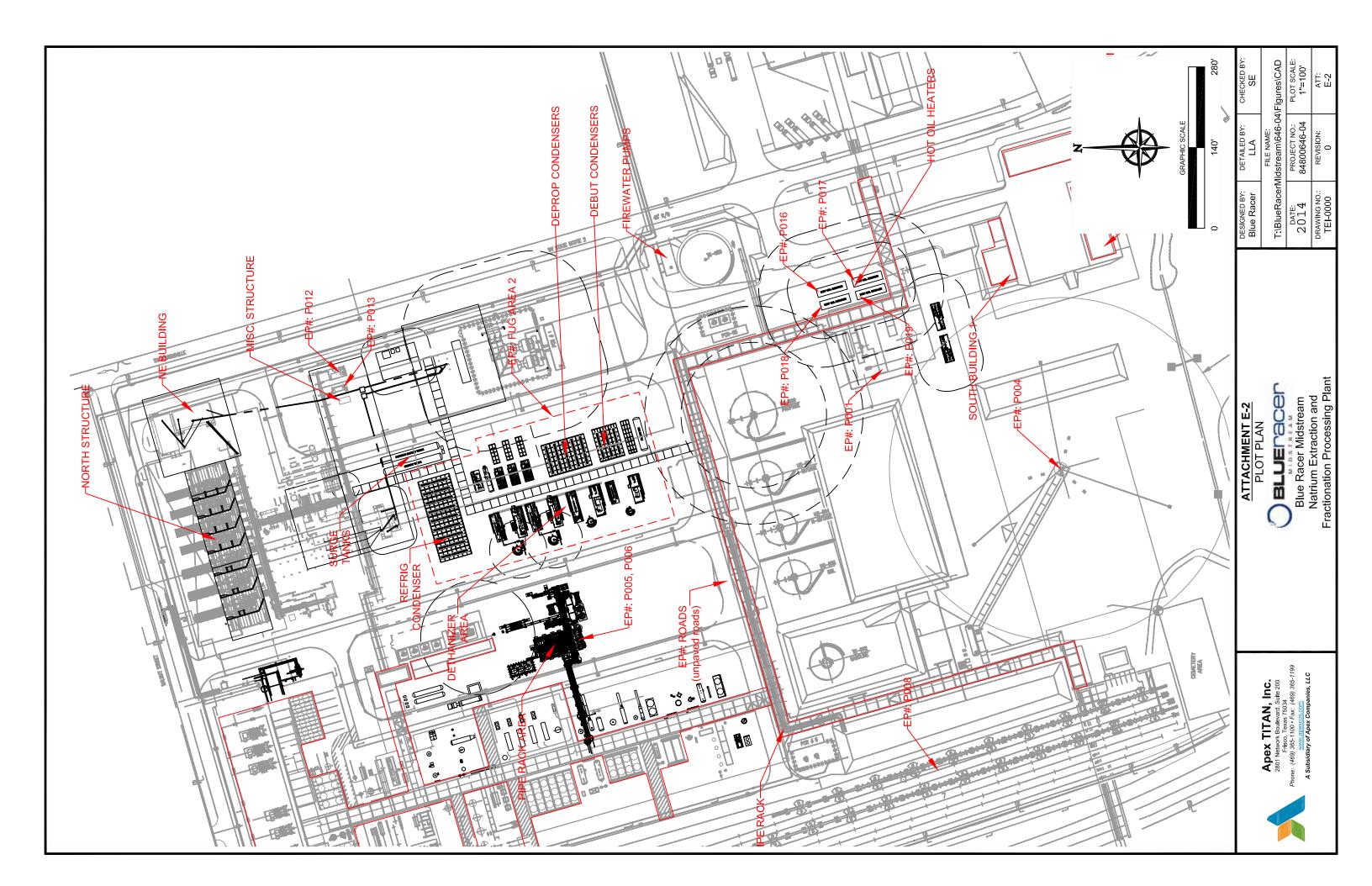

MACT JJJJJJ (40 CFR Part 63 Subpart JJJJJJ – National Emissions Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers at Area Sources) outlines requirements for boilers at area sources of HAPs. Per 63.11195(e), gas-fired boilers as defined by this subpart are not subject to the requirements of this rule. Therefore, the Plant's heaters are not subject to the requirements of this rule.

ATTACHMENT E: PLOT PLANS

RULE 13 AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

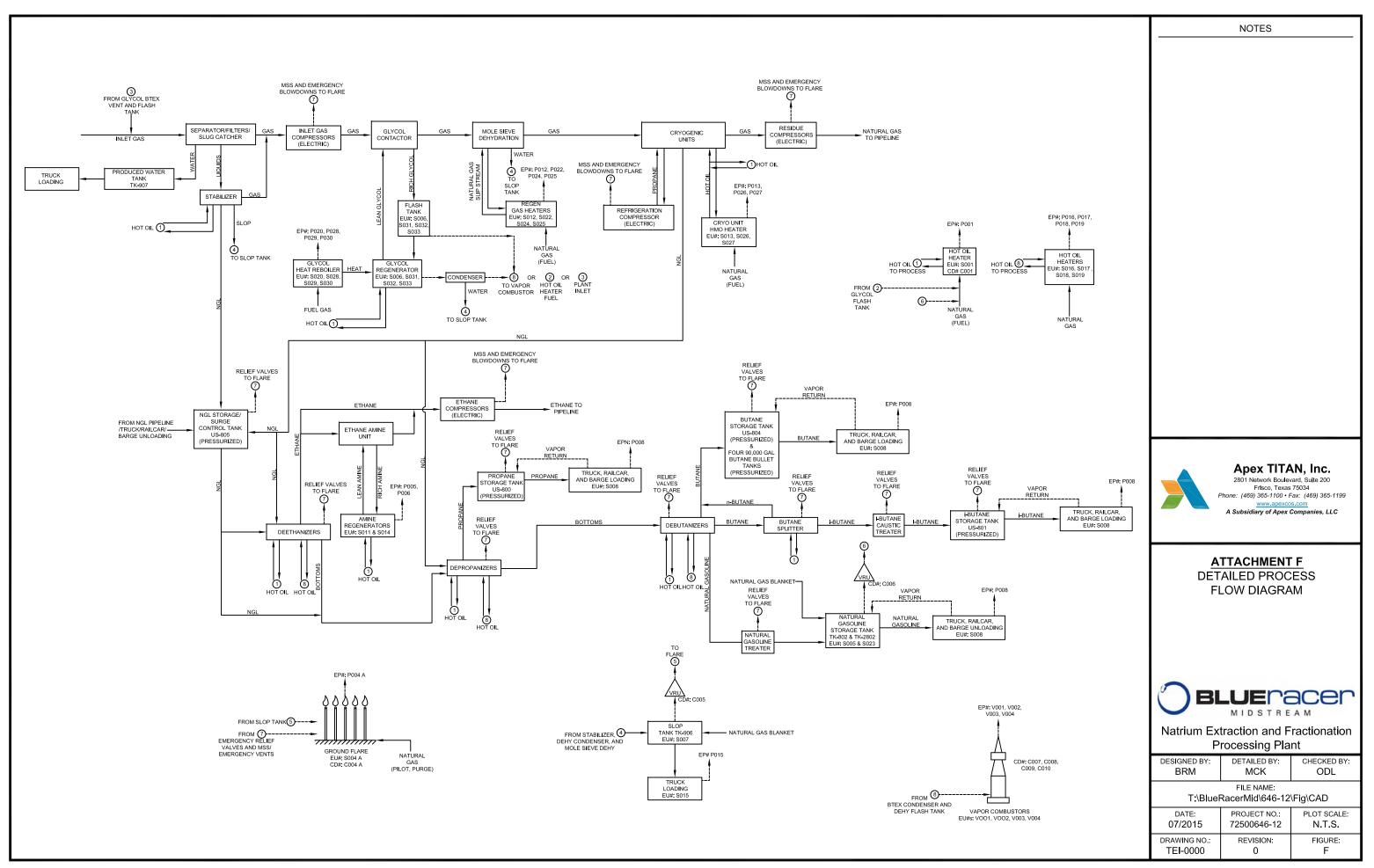
BLUE RACER MIDSTREAM, LLC



Apex TITAN, Inc. 2801 Network Boulevard, Suite 200 Frisco, Texas 75034 Phone: (469) 365-1100 + Fax: (469) 365-1199 WWW.apexcos.com A Subsidiary of Apex Companies, LLC

ATTACHMENT E-1 Blue Racer Midstream Natrium Extraction and Fractionation Processing Plant June 2015

from USGS Quadrangle Powhatan Point, WV Ground Condition Depicted March 2011 Digital Data Courtesy of Google Earth



ATTACHMENT F: DETAILED PROCESS FLOW DIAGRAM

RULE 13 AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

BLUE RACER MIDSTREAM, LLC

ATTACHMENT G: PROCESS DESCRIPTION

RULE 13 AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

BLUE RACER MIDSTREAM, LLC

ATTACHMENT G: PROCESS DESCRIPTION

The Natrium Extraction and Fractionation Processing Plant (Plant) is an existing 460 million standard cubic feet per day (MMscfd) natural gas processing plant with natural gas liquids (NGL) processing capability. This project will authorize the addition of two (2) cryogenic trains, two (2) Regen Gas heaters, two (2) Cryo HMO heaters, three (3) glycol reboilers, three (3) dehydration units with emissions routed to a vapor combustor, update the emissions from the previously installed dehydration unit to be routed to a vapor combustor, four (4) vapor combustors, and addition of piping and fugitives. Upon completion of the project, the Plant processing capacity will increase to 920 MMscfd.

G.1. Inlet Gas/Liquids Separation and Liquids Handling

Gas from the pipeline passes through horizontal separators, or slug catchers, which separate entrained liquids from the inlet gas. In addition, liquids can be received via "pigging" operations. "Pigging" is an industry term to describe a pipeline maintenance activity, in which a solid slug, called a "pig" is inserted into the pipeline at a "pig launcher." As the pig travels through the pipeline with the natural gas, it pushes liquids that have collected in lower areas of the pipeline. The liquids and the pig that is pushing the liquids arrive at a "pig receiver" downstream of the "pig launcher." The liquids are routed into the slug catcher.

The liquids are treated in the stabilizer (application of heat provided by the Plant Hot Oil Heater, where the lighter components are removed and combined with the separated inlet gas for processing. Light-end liquid components driven off in the stabilization process (NGL) are then routed to the pressurized NGL storage/surge tank prior to processing in the fractionation trains. Water/slop oil separated from the NGL in the stabilizer are routed to the Slop Tank and hauled off site via trucks.

The Slop Oil tank is equipped with a natural gas blanket to minimize air emissions. Emissions from the tank are routed via VRU to the ground flare for control.

NGL can also be received at the Plant via pipeline, truck, railcar, or barge. Received NGL is stored in the pressurized NGL tanks prior to processing. The NLG unloading operations are performed under pressure, in order to prevent emissions to the atmosphere.

G.2. Natural Gas Processing

After liquids separation, the inlet gas is compressed to increase pressure. The inlet compressors are electric-driven, such that they do not result in air emissions during normal operations (i.e., other than fugitive equipment piping leaks).

Each compressor is equipped with a blowdown vent through which a small amount of natural gas is emitted during shutdown (i.e., for decompression, which is required for safety purposes). Note that these emissions are re-routed back to the inlet suction when possible. Otherwise, they are routed to the ground flare for combustion. The ground flare will have one annual emission limit per pollutant, which will include normal operations and scheduled maintenance, startup, and shutdown (MSS) emissions (combustion of blowdown vent emissions).

After compression, the wet gas is transported to one of the four TEG Dehydration Units, which use TEG to remove water from the gas. Emissions from the BTEX condenser and flash tank can be routed to one of the four (4) vapor combustors for 98% destruction efficiency, to the plant hot oil heater for combustion as fuel, or recovered by a VRU and routed back to the plant inlet. Given the size of the heater, the waste gas contribution to the total fuel gas consumed by the heater is minimal. As a result, when waste gas is routed to the hot oil heater as fuel, emissions from the dehydration unit are considered negligible. BRM is permitting the dehydration unit emissions assuming that all waste gas is routed to one of the four vapor combustors on a continuous basis, to be conservative, but would like to keep the flexibility to route the waste gas to the hot oil heater or back to plant inlet as well.

From the TEG units, the gas is routed to the molecular sieve dehydration units, where the water content is reduced further. The natural gas-fired mole sieve regenerator heaters are used to heat a small amount of natural gas that is slip-streamed from the residue line as needed to regenerate the beds. The gas is then routed back into the residue gas stream. The molecular sieve units do not have vents to atmosphere. Therefore, the only emissions from these unit are associated with fugitive piping/equipment leaks and combustion-related emissions from the heaters.

After the molecular sieve dehydration units, the propane-cooled cryogenic units remove heavier components to produce NGL by cooling the stream and reducing the stream pressure. One cryogenic unit utilizes heat from the Hot Oil Heater, and the remaining three units have their own dedicated natural gas-fired heat medium oil (HMO) heaters. The natural gas leaving the cryogenic units is lean and dry (i.e., pipeline quality), and it is compressed via electric-driven residue gas compressors and shipped off site via pipeline.

The NGL liquids can be transferred back to the NGL storage/surge tanks or directly into the deethanizers of the NGL fractionation trains. The only emissions from these cryogenic units are associated with fugitive piping/equipment leaks and the associated HMO Heaters.

G.3. NGL Fractionation

NGL leaving the cryogenic units or received on site as raw material feed is fed to a series of trayed columns for separation into constituent product gases. At the bottom of each column is a reboiler that is heated by the Plant's heating oil system. As the NGL stream enters a column in the middle, the reboiler vaporizes a portion of the feed to produce stripping vapors rising inside the column. This stripping vapor rises up through the column contacting down-flowing liquids allowing for the fractionation of the liquids. Vapor leaving the top of the column enters a condenser where heat is removed by a cooling medium and the vapor condensed. Liquid is returned to the column as reflux to limit the loss of heavy components overhead. The product leaving the lower part of the column has the highest boiling point, whereas the hydrocarbon leaving the top of the column has the lowest boiling point.

The Plant's NGL Fractionation trains include three deethanizers, two depropanizers, two debutanizers, and a butane splitter.

Ethane product may be compressed and shipped off site via pipeline or further treated in one of the Plant's two Ethane Amine Units, depending upon customer specifications, prior to transportation.

In the Ethane Amine Units, amine contactors are used to remove CO_2 and the trace amounts of hydrogen sulfide (H₂S) from the ethane product stream. Small amounts of hydrocarbons may also be absorbed in this process as well. The saturated (rich) amine enters a flash tank where gaseous vapors are flashed and vented to atmosphere. After the flash tank, the liquid stream (rich amine) is routed to an amine regenerator, where heat from the Plant's heating oil system volatilizes the remaining CO_2 , H₂S and hydrocarbons from the rich amine stream. The lean amine is returned to the amine contactors for reuse while the waste gas from the amine regenerator is vented to the atmosphere. The amine unit vent streams are primarily (~97%) CO_2 , with water and trace amounts (~0.5%) of hydrocarbons.

The remaining separated streams (propane, butanes, and natural gasoline) are stored and shipped off-site via truck, railcar, and/or barge loading. All loading is pressurized with vapor return, in order to prevent emissions to atmosphere.

The propane and butane tanks are pressurized. The Natural Gasoline Storage Tanks are equipped with a natural gas blanket for emissions control. The emissions from these tanks are captured and compressed via VRU and routed to the Hot Oil Heater fuel system. The natural gas blanket used for the slop tank is vented to flare during upset events.

G.4. Hot Oil System

The hot oil systems provide heat to the Plant processes. By using oil, the heat can be transferred to the Plant processes with a minimum loss of heat to the oil, allowing for a quicker recovery to the desired temperature in a closed-loop system. The hot oil system is a network of piping that circulates hot oil through each of the units and provides heat as needed.

The hot oil systems result in emissions of VOC due to piping equipment leaks (i.e., fugitives). Also, the combustion of sweet natural gas in the heaters results in combustion-related emissions.

G.5. Diesel-Fired Engines

The Plant has two existing emergency diesel fire water pumps in case of fire. These engines are operated in nonemergency situations less than 100 hr/yr for testing and maintenance to ensure reliability during emergency situations.

ATTACHMENT H: MATERIAL SAFETY DATA SHEETS

RULE 13 AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT BLUE RACER MIDSTREAM, LLC

MSDS

Page

Natural Gas Liquids	.H-1
Isobutane	. H-5
N-Butane	. H-8
Natural Gasoline	.H-11
Propane	.H-14
Triethylene Glycol	.H-17
Representative Amine	. H-20
Heat Medium Oil	. H-28
Representative Lube Oils	. H-35

MATERIAL SAFETY DATA SHEET Issue Date: 8/10/05

Page 1 of 4

MANUFACTURER/SUPPLIER **DOMINION TRANSMISSION, INC.** 445 West Main Street Clarksburg, WV 26301

Section I. Company and Product Identification

Emergency Telephone Number: Chemtrec 1-800-424-9300 General MSDS Information: 1-304-627-3760

Product Name: NATURAL GAS LIQUIDS

Synonyms/Common Names:NGL's, Raw Product, Petroleum HydrocarbonsDOT Hazard Class:Class 2.1 Flammable GasDOT ID Number:UN 1075Chemical Family:MixtureChemical Formula:Mixture

National Fire Protection Association Hazard Rating:	Health	Fire	Reactivity	Special Hazard
	1	4	0	N/A

Hazard Rank Guide:				
Least - 0	Slight - 1	Moderate - 2		
High - 3	Extreme - 4			

Section II. Hazardous Components

	CAS	Percent	OSHA	ACGIH	
Ingredients	<u>Number</u>	by Wt.	PEL	TLV	
Ethane	74-84-0	1-4	NE	Asphyxiant	
Propane	74-98-6	1-50	1,000 ppm	Asphyxiant	
N-Butane	106-97-8	1-20	800 ppm	800 ppm	
Isobutane	75-28-5	1-11	NE	NE	
Isopentane	78-78 - 4	1-7	NE	NE	
Pentanes	109-66-0	1-4	600 ppm	600 ppm	
Hexane	110-54-3	1-4	50 ppm	50 ppm	
N-Pentane		1-6	,		

Section III. Physical Properties

Appearance:Colorless to straw colored liquid
Odor:Odor:Petroleum OdorBoiling Point:Not establishedVapor Density:>1 (Air = 1)Vapor Pressure:Not establishedSpecific Gravity:<1 (Water = 1)</td>Evaporation Rate:>1 (N-Butyl Acetate = 1)Volatility:CompleteWater Solubility:Negligible

NATURAL GAS LIQUIDS Page 2 of 4 Section IV. Fire and Explosion Data

Flash Point: Lower Explosive Limits (LEL): Upper Explosive Limits (UEL): Auto Ignite Temp: Extinguishing Media: Special Fire Fighting Procedures:	<-100°F (<-73°C) estimated 2.0 - 2.9% 9.5 -13% 882°F (472°C) estimated Dry chemical powder, foam, or carbon dioxide (CO ₂) Evacuate area of all unnecessary personnel. Shut of product source and allow fire to burn itself out. Use water fog or spray to cool exposed containers and equipment to prevent overheating, flashbacks of explosions. Firefighters directly addressing the fire must use proper protective equipment including breathing apparatus to protect against hazardous combustion products and/or oxygen deficiencies. DANGER EXTREMELY FLAMMABLEI Highly flammable vapors which are heavier than air may accumulate in low areas. These vapors may travel long distances to a poin of ignition and then flash back. Liquid propane wi vaporize rapidly at well below ambient temperatures and readily forms flammable mixtures with air. Flame: impinging on product storage vessels above the liquid level will cause sudden vessel failure, resulting in a BLEVE (Boiling Liquid Expanding Vapor Explosion) unless the vessel surfaces are kept cooled with water. I this cannot be done, evacuate the area. Gasoline portior may continue to "pool" after propane and butane vaporize.
Section V. Reactivity Data	
Stability: Conditions To Avoid: Incompatible Materials: Hazardous Decomposition Products: Hazardous Polymerization:	Stable Not applicable Oxygen and strong oxidizing agents Carbon oxides and various hydrocarbons form when burned. Will not occur
Section VI. Health Hazard Data	
Primary Routes of Entry: Eye Contact: Skin Irritation:	Inhalation May cause irritation including pain, blurred vision, redness, tearing and superficial corneal turbidity. May cause slight irritation. Extreme exposure may produce discoloration, muscle weakness, breathing difficultion and other control percent

difficulties and other central nervous system effects. Direct contact may cause freeze burns. Inhalation: At high concentrations a simple asphyxiant. May produce nausea, diarrhea, loss of appetite, dizziness, disorientation, headache, excitation, rapid respiration, drowsiness, labored breathing, anesthesia and other central nervous system effects. May cause lung paralysis and asphyxiation. Extreme overexposure

may cause unconsciousness and respiratory arrest.

Blue Racer Midstream, LLC Natrium Extraction and Fractionation Processing Plant

Ingestion: Not a likely route of exposure.

NATURAL GAS LIQUIDS

Page 3 of 4

Section IX.

Section VII. Protective Equipment

Ventilation:	To prevent accumulations of explosive mixtures, the use of local exhaust and general room ventilation may be essential. If mechanical ventilation is used, electrical equipment must meet National Electric Code requirements. Portable air movers, properly grounded, may be used.
Respiratory: Eye: Skin:	Not generally required. In case of spill or leak resulting in unknown concentration, use only NIOSH/MSHA approved self contained breathing apparatus. Use safety glasses with side shields. No special garments required. Avoid unnecessary skin contamination with material.

Section VIII. Emergency First Aid

Move victim to area of fresh air. For respiratory distress give air, oxygen or administer cardiopulmonary resuscitation if needed. Seek medical attention call 911 or emergency medical services.
Flush eyes gently with water for at least 15 minutes. If illness or adverse symptoms develop, seek medical attention.
Immediately flush skin with water for 15 minutes. Frozen tissue should be gradually warmed using warm water. Clothing frozen to the skin should be thawed before removal. Do not use hot water! Cryogenic burns may occur as evidenced by blistering. Protect affected area with dry gauze and get prompt medical attention.
Seek immediate medical attention.
porting
Keep containers tightly closed. Keep away from heat, open flames, or other sources of ignition. No smoking or open lighting. Outside or detached storage is preferred. Keep away from oxidizers, e.g. chlorine, oxygen, bleaches, fertilizers.
Avoid breathing vapor. Use self-contained breathing apparatus (SCBA) if appropriate. Use explosion-proof equipment and non-sparking tools in areas where explosive vapors may form. Electrically ground and bond shipping container, transfer line and receiving container. Material may be at elevated temperatures
and/or pressures. Exercise care when opening tank hatches, sampling ports and/or bleeder valves. DOT Proper Shipping Name: Liquefied Petroleum Gas Hazard Class: 2.1 Identification Number: UN 1075 DOT Label(s): Flammable Gas DOT Placard: Flammable Gas

Section X. Spill and Disposal

All non-essential personnel should be evacuated. Isolate area until all vapors disperse. Eliminate all ignition sources. Stop leak if you can do it without risk. Wear protective equipment/garments if exposure conditions

NATURAL GAS LIQUIDS

Page 4 of 4

warrant. Ventilate enclosed areas to prevent formation of flammable or oxygen-deficient atmospheres. Liquid spills will vaporize rapidly and produce vapor cloud. Be alert for latent pooling of gasoline portion. Because vapors are heavier than air they will not readily disperse. Avoid vapor cloud even with proper respiratory equipment.

Section X. Spill and Disposal Continued

Releases are expected to cause only localized non-persistent environmental damage. Waste mixtures containing these gases should not be allowed to enter drains or sewers where there is a danger of ignition and/or explosion. This material should be disposed of as an auxiliary fuel or burned in a properly designed flare or incinerator (in conformity with all applicable disposal regulations). Venting of gas to atmosphere should be avoided.

Under the Resource Conservation and Recovery Act (RCRA), it is the responsibility of the user of the product to determine, at the time of disposal, whether the material is a hazardous waste subject to RCRA. Consult local, state and federal regulations to ascertain the applicability of hazardous waste storage, transportation and disposal requirements.

The transportation, storage, treatment and disposal of RCRA waste material must be conducted in compliance with 40 CFR 262, 263, 264, 268, and 270. Disposal can occur only in properly permitted facilities. Check state regulations. Chemical additions, processing or otherwise altering this material may make the waste management information presented in this MSDS incomplete, inaccurate or otherwise inappropriate. Disposal of this material must be conducted in compliance with all federal, state and local regulations.

IMPORTANT NOTICE:

Dominion Transmission, Inc. makes no representations or warranties as to the accuracy or completeness of this information. DTI expressly disclaims all warranties of every kind and nature, including those of merchantability and of fitness for a particular purpose with respect to this product and to all information contained herein.

MATERIAL SAFETY DATA SHEET

.

Product name: Isobutane

anomohu

SECTIONI	Supplier Information		
Common Name: Chemical Name: Formula/CAS:	Isobutane, LP Gas Isobutane, Liquefied Propane Gas C4H10		
Supplier:	Dominion Transmission Corp. PO Bosx 2450 445 West Main Street Clarksburg WV 26302-2450	Phone Emergency Phone: CHEMTREC:	(304) 627-3760 (304) 627-3760 1-800-424-9300

Section II Ingredient Information

Propane C ₃ H ₈	% by volume <3	CAS no:	00074-98-6	PEL-OSHA: 1000ppm	TLV-ACGIH	1000 ppm **
Isobutane C4 H10	% by volume >95	CAS no:	00075-28-5	PEL-OSHA: NE	TLV-ACGIH	NE
n-Butane C4 H10	% by volume <2.5	CAS no:	00106-97-8	PEL OSHA: 800 ppm	TLV-ACGIH	800 ppm

Ingredient Hazard Statement

** Current OSHA standard for Propane and LPG mixtures. ACGIH labels ethane, propane, and butane as simple asphyxiants (control at 18 vol% minimum oxygen.)

Section III Physical/Chemical Characteristics

 Boiling Point:
 Isobutane @ 1 ATM.
 11° F

 Specific Gravity:
 0.564 (Water=1)

 Melting Point:
 N/A

 Vapor Pressure:
 50 to 60 PS1 at 100° F

 Vapor Density:
 2. (Air=1)

 Evaporation Rate:
 Very rapid

 Solubility/Water:
 Slightly soluble

Appearance and Odor

A colorless gas at room temperature and 1 ATM pressure. It can be liquefied by lowering the temperature, increasing the pressure or both. It can have a sulfurous odor like "natural gas", but sweetened isobutane has a slight, pleasant odor.

Section	IV	_Fire and	Explosion Haza	ard Data	
Flash Po	pint:	-117°F			
Autoign	ition	860 ° F			
LEL	>1.8 %				
UEL	8.5 %				
				NFPA Ha	zard Classification
	Flammabl	e: 4	Health:	Reactivity:	Special:

Extinguishing Media

If feasible, stop the flow of gas. Use water to cool fire-exposed tanks, surroundings and to protect personnel. If gas flow cannot be stopped, reduce the intensity of the fire by directing water spray, dry powder or carbon dioxide at the flame. Do not completely extinguish the flame unless gas flow is shut off.

Isobutane

Isobutane

Unusual Fire and Explosion Hazards

Isobutane is a dangerous fire and explosion hazard when mixed with air. Vapors may migrate for considerable distances before reaching an ignition source at which time the fire would flash back to the source of the release.

Special Fire Fighting Procedures

Those putting out fire must use self-contained breathing apparatus and protective equipment. Continue cooling containers with water until well after fire has been extinguished.

Section V Reactivity Data

Stability : Stable when stored as a liquid in steel tanks under its own pressure.
 Incompatibility : Avoid oxidizing agents
 Miscellaneous: Isobutane burns with a luminous , smoky flame; and it can produce carbon monoxide when oxidized with a deficiency of oxygen.
 Hazardous Decomposition or By -Products: Carbon monoxide and volatile hydrocarbon vapors
 Polymerization: No
 Conditions to avoid: Sparks, open flame, other ignition sources.

Section VI Health Hazard Data

Routes of Entry

Inhalation: Yes Skin: Yes Ingestion: No Eyes: Yes

Additional Information

The material is an asphyxiant (and it may have anesthetic properties at very high concentrations). If it is present in sufficient concentrations to reduce the oxygen level below 18% in inhaled air, symptoms such as rapid respiration, mental dullness, lack of coordination, poor judgment, nausea, and unconsciousness may result. (Oxygen deficiency may occur without warning in areas where this gas may displace air).

First Aid:

Inhalation: Remove victim to fresh air. Restore and/or support breathing. Prompt mouth to mouth resuscitation may be indicated. Administer oxygen if exposure was serious or if oxygen deficiency symptoms persist. Get medical help. (Caution: would-be rescuers need to be concerned with their own safety in oxygen deficient areas. Use self contained or air supplied breathing apparatus in such atmospheres.

Liquid contact: Contact with liquefied gas can produce frostbite. Promptly flush affected area with tepid water. If freezing burns have occurred apply a bulky, dry sterile bandage to protect the area and get medical help.

Carcinogenicity: None established

Section VII Precautions for Safe Handling and Use

DOT Classification: UN 1075 (LPG) UN 1969 (Propane) UN 1965 (Hydrocarbon Gas Liquefied); Label as: Flammable Gas.

Steps To Be Taken If Material Is Released Or Spilled

Personnel involved in leak stoppage should use self contained breathing equipment and should have protection against direct contact with liquid hydrocarbon. Ventilate closed spaces before entering them. Evacuate area:, eliminate sources of ignition. Supply maximum air ventilation (explosion-proof equipment) to keep concentration well below lower flammability limit. Stop leak or remove leaking cylinder or tank. Place cylinder or tank in remote place and allow gas to slowly bleed off to atmosphere or place in pit and ignite escaping gas.

Waste Disposal Method

Incinerate waste gas by laying a pipeline to a furnace and burning with caution in accordance with federal ,state, and local regulations.

Isobutane

Isobutane

Precautions To Be Taken In Handling and Storage

Store cylinders and tanks in well-ventilated areas, away from heat, sunlight, and sources of ignition. No smoking in areas of storage or use. Electrically bond and ground all lines and equipment used with isobutane Keep away from oxidizing agents and from cylinders or oxygen or chlorine. Follow standard procedures for handling cylinders and tanks of flammable compressed gas. Provide protection against damaging cylinders and tanks. See NFPA # 58 and # 59 for handling and storage of LPG.

Other Precautions

Provide adequate explosion-proof ventilation where this material is used to meet TLV requirements and to keep concentration in air below 25% of LEL. Provide special ventilation in sumps and confined areas. Self contained respirators should be available for non-routine and emergency use. Electrical services and equipment should be explosion-proof where isobutane is used. Where contact with liquid isobutane is possible, use protective clothing, gloves, and face shield. Monitoring methods for LPGNIOSH # 593.

Section VIII Control Measures

Respiratory Protection

Use Self-Contained or Air-Supplied breathing apparatus only.

Ventilation

Local exhaust, special exhaust, and mechanical exhaust must be Explosion-Proof.

Other Protection

Gloves: Insulated, impervious industrial quality gloves are recommended Eye Protection: Safety glasses (required) and goggle and /or face shield (recommended).

Isobutane

MATERIAL SAFETY DATA SHEET

Product name: Normal Butane

Section 1 SUPPLIER INFORMATION

Common Name: Butane Chemical Name: N-Butane, Butyl Hydride Formula: C4H₁₀

Supplier:	Dominion Transmission Corp.	Phone	(304) 627-3760
	PO Box 2450	Emergency Phone:	(304) 627-3760
	445 West Main Street	CHEMTREC:	1-800-424-9300
	Clarksburg, WV 26302-2450		

Section II ____INGREDIENT INFORMATION

n-Butane C ₄ H ₁₀	% by volume >95	CAS no. 106-97-8 PEL-OSHA: none listed	TLV-ACGIH: 800 ppm**
Propane C ₃ H ₈	% by volume <1	CAS No: 00074-98-6 PEL-OSHA: N/A	TLV-ACGIH 1000 ppm **
Isobutane C4 H10	% by volume <2	CAS no: 00075-28-5 PEL-OSHA: NE	TLV-ACGIH NE
C5 ⁺ Hydrocarbons	% by volume <2	CAS No: PEL OSHA: N/A	TLV-ACGIH

Ingredient Hazard Statement

** Current OSHA standard for Butane mixtures. ACGIH labels ethane, propane, and butane as simple asphyxiants (control at 18 vol% minimum oxygen.)

Section III PHYSICAL/CHEMICAL CHARACTERISTICS

Boiling Point:	31 ° F	Vapor Density: 2.07 (Air=1)
Specific Gravity:	0.584 @ 31° F (Water=1)	Evaporation Rate:
Melting Point:	N/A	Solubility/Water: Slightly
Vapor Pressure:	37 PSI @ 100° F	Solubility in alcohol or ether: very

Appearance and Odor

A colorless gas at room temperature and 1 ATM pressure. It can be liquefied by lowering the temperature, increasing the pressure or both. It has a slight disagreeable odor.

Section IV_____FIRE AND EXPLOSION HAZARD DATA

Flash Point:	-66 ° F
Autoignition:	
LEL:	1.8%
UEL:	8.4%

Flammable: 4 Health:

NFPA Hazard Classification Reactivity: Special:

Extinguishing Media

If feasible, stop the flow of gas. Use water to cool fire-exposed tanks, surroundings and to protect personnel. If gas flow cannot be stopped, reduce the intensity of the fire by directing water spray, dry powder or carbon dioxide at the flame. Do not completely extinguish the flame unless gas flow is shut off.

Unusual Fire and Explosion Hazards

Butane is a dangerous fire and explosion hazard when mixed with air. Vapors may migrate for considerable distances before reaching an ignition source at which time the fire would flash back to the source of the release. Explosion Hazard: High when exposed to flame, also when mixed with $[NI (CO)_4 + O_2]$

Special Fire Fighting Procedures

Those putting out fire must use self-contained breathing apparatus and protective equipment. Continue cooling containers with water until well after fire has been extinguished.

Normal Butane

Section V REACTIVITY DATA

Stability : Stable when stored as a liquid in steel tanks under its own pressure. Incompatibility : Avoid oxidizing agents; especially NI (CO)₄ +O₂ Miscellaneous: Butane burns with a luminous, smoky flame; and it can produce carbon monoxide when oxidized with a deficiency of oxygen. Hazardous Decomposition or By-Products: No pertinent Polymerization: No

Section VI HEALTH HAZARD DATA

Routes of Entry

Inhalation: Yes, can cause dizziness or difficulty in breathing Skin: Yes, liquid will cause frostbite

Ingestion: Data not available

Eyes: Yes, liquids may cause burns upon direct contact.

Effects of Overexposure:

Acute: produces drowsiness but no other evidence of systemic effect. Chronic : Systemic effects are unknown, but continued skin exposure to liquid splashes will cause drying and cracking of skin.

Additional Information

The material is an asphyxiant (and it may have anesthetic properties at very high concentrations). If it is present in sufficient concentrations to reduce the oxygen level below 18% in inhaled air, symptoms such as rapid respiration, mental dullness, lack of coordination, poor judgment, nausea, and unconsciousness may result. (Oxygen deficiency may occur without warning in areas where this gas may displace air).

First Aid:

Inhalation: Remove victim to fresh air. Restore and/or support breathing. Prompt mouth to mouth resuscitation may be indicated. Administer oxygen if exposure was serious or if oxygen deficiency symptoms persist. Get medical help. (Caution: would-be rescuers need to be concerned with their own safety in oxygen deficient areas. Use self contained or air supplied breathing apparatus in such atmospheres.)

Liquid contact: Contact with liquefied gas can produce frostbite. Promptly flush affected area with tepid water. If freezing burns have occurred apply a bulky, dry sterile bandage to protect the area and get medical help.

Carcinogenicity: None established

Section VII _____PRECAUTIONS FOR SAFE HANDLING AND USE

DOT Classification: UN 1075 (LPG) UN 1011 (N-Butane) UN 1965 (Hydrocarbon Gas Liquefied); Label as: Flammable Gas.

Steps To Be Taken If Material Is Released Or Spilled

Personnel involved in leak stoppage should use self contained breathing equipment and should have protection against direct contact with liquid hydrocarbon. Ventilate closed spaces before entering them. Evacuate area:, eliminate sources of ignition. Supply maximum air ventilation (explosion proof equipment) to keep concentration well below lower flammability limit. Stop leak or remove leaking cylinder or tank. Place cylinder or tank in remote place and allow gas to slowly bleed off to atmosphere or place in pit and ignite escaping gas.

Waste Disposal Method

Incinerate waste gas by laying a pipeline to a furnace and burning with caution in accordance with federal ,state, and local regulations.

Precautions To Be Taken In Handling and Storage

Store and use butane cylinders and tanks well-ventilated areas, away from heat, sunlight, and sources of ignition. No smoking in areas of storage or use. Electrically bond and ground all lines and equipment used with butane. Keep away from oxidizing agents and from cylinders or oxygen or chlorine. Follow standard procedures for handling cylinders and tanks of flammable compressed gas. Provide protection against damaging cylinders and tanks. See NFPA # 58 and # 59 for handling and storage of LPG,

Other Precautions

Provide adequate explosion-proof ventilation where this material is used to meet TLV requirements and to keep concentration in air below 25% of LEL. Provide special ventilation in sumps and confined areas. Self contained respirators should be available for non-routine and emergency use. Electrical services and equipment should be explosion-proof where butane is used. Where contact with liquid butane is possible, use protective clothing, gloves and face shield. Monitoring methods for LPG-NIOSH # 593.

Normal Butane

Normal Butane

Section VIII CONTROL MEASURES

Normal Butane

Respiratory Protection: Use self-contained or Air-Supplied breathing apparatus only. **Ventilation:** Local exhaust, special exhaust, and mechanical exhaust must be Explosion-Proof. **Other Protection:** Gloves and face shield

MATERIAL SAFETY DATA SHEET

Product name: Natural Gasoline

Vendor's Product N	lame: Natural Gasoline	
Synonyms:	Casinghead gasoline, 14#	
Common Name:	Natural Gasoline	
Chemical Name:	Gasoline	
Formula/CAS:	See ingredients	
Supplier:	Dominion Transmission	
	PO Box 2450	
	445 West Main Street	
	Clarksburg, WV 26302-2450	Phone
		Emergency Phone: CHEMTREC

Section II	Hazardous Components			
Ingredient	CAS NO.	% (approx.)	TLV	PEL
C4-C12		100	300 ppm	1000 ppm
Benzene	71-43-2	0.45	1 ppm	1 ppm
Cyclohexane	110-82-7	3.4	300 ppm	300 ppm
Xylene(s)	1330-20-7	029	100ppm	100ppm
Toluene	1080-88-3	0.75	200 ppm	200 ppm

Ingredient Hazard Statement

(304)627-3760 (304)627-3760 1-800-424-9300

Flammable, Skin Hazard, Eye Hazard Carcinogen.

Section III Physical/Chemical Characteristics

Physical Description:	Clear, colorless liquid, distinct hydrocarbon odo r
Boiling Point:	Natural gasoline @ 1 ATM. 80° F (IBP)
Specific Gravity:	0.670 (Water=1)
Melting Point :	N/A
Vapor Pressure :	11 to 14 PSI at 100° F
Vapor Density:	3-4 (Air=1)
Evaporation Rate:	Moderately rapid
Solubility/Water:	Slightly soluble

Appearance and Odor

A clear colorless liquid at room temperature and 1 ATM pressure, with a distinct hydrocarbon odor.

Section IV _____ Fire and Explosion Hazard Data (based on NFPA gasoline)

Flash Pe	oint:	-45° F
Autoign	ition	536° F
LEL	>1.4 %	
UEL	<7.6 %	

NFPA Hazard Classification

Flammable: 3	Health:	Reactivity:	Special:
		Extinguis	ning media

Dry chemical, foam, carbon dioxide

Natural Gasoline

Special Fire Fighting Procedures: Shut off the source of product as soon as possible. Use water to cool fire-exposed tanks, surroundings and to protect personnel, but avoid spraying water on the pooled liquid. If product flow cannot be stopped, reduce the intensity of the fire by directing foam, dry powder or carbon dioxide at the flame.

Unusual Fire and Explosion Hazards

Natural Gasoline is a dangerous fire and explosion hazard when mixed with air. Vapors may migrate for considerable distances before reaching an ignition source at which time the fire would flash back to the source of the release.

Special Fire Fighting Procedures

Those putting out fire must use self-contained breathing apparatus and protective equipment. Continue cooling containers with water until well after fire has been extin guished.

Section V Reactivity Data

Stability: Stable. Incompatibility: Avoid oxidizing agents Miscellaneous: Natural gasoline flame produces a heavy, black, thick smoke; and it can produce carbon monoxide when oxidized with a deficiency of oxygen. Hazardous Decomposition or By-Products: Carbon monoxide and volatile hydrocarbon vapors Polymerization: No Conditions to avoid: Sparks, open flame, other ignition sources.

Section VI Health Hazard Data

Routes of Entry

Inhalation: Yes Skin: Yes Ingestion: Yes Eyes: Yes

Additional Information

The material is an asphyxiant (and it may have anesthetic properties at very high concentrations). If it is present in sufficient concentrations to reduce the oxygen level below 18% in inhaled air, sy mptoms such as rapid respiration, mental dullness, lack of coordination, poor judgment, nausea, and unconsciousness may result. (Oxygen deficiency may occur without warning in areas where this gas may displace air.)

First Aid:

Inhalation: Remove victim to fresh air. Restore and/or support breathing. Prompt mouth to mouth resuscitation may be indicated. Administer oxygen if exposure was serious or if oxygen deficiency symptoms persist. Get medical help. (Caution: would-be rescuers need to be concerned with their own safety in oxygen deficient areas. Use self contained or air supplied breathing apparatus in such atmospheres.

Liquid contact: Dermal contact may result in drying of the skin and chronic dermatitis. Can cause blistering. May be absorbed through the skin and cause CNS depression.

Carcinogenicity: None established

Section VII Precautions for Safe Handling and Use

DOT Classification: UN 1203 Natural Gasoline, label as flammable liquid

Steps To Be Taken If Material Is Released Or Spilled

Personnel involved in leak stoppage should use self-contained breathing equipment and should have protection against direct contact with liquid hydrocarbon. Ventilate closed spaces before entering them. Evacuate area; eliminate sources of ignition. Supply maximum air ventilation (explosion-proof equipment) to keep concentration well below lower flammability limit. Stop leak or remove leaking can.

Waste Disposal Method

Incinerate waste gas by laying a pipe line to a furnace and burning with caution in accordance with federal, state, and local regulations.

Precautions To Be Taken In Handling and Storage

Store in well-ventilated areas, away from heat, sunlight, and sources of ignition. No smoking in areas of storage or use. Electrically bond and ground all lines and equipment used with natural gasoline Keep away from oxidizing agents and from cylinders of oxygen.

Other Precautions

Provide adequate explosion-proof ventilation where this material is used to meet TLV requirements and to keep concentration in air below 25% of LEL. Provide special ventilation in sumps and confined areas. Self-contained respirators should be available for non-routine and emergency use. Electrical services and equipment should be explosion-proof where natural gasoline is used. Where contact with liquid natural gasoline is possible, use protective clothing, gloves, and face shield.

Section VIII Control Measures

Respiratory Protection

Use Self-Contained or Air-Supplied breathing apparatus only.

Ventilation

Local exhaust, special exhaust, and mechanical exhaust must be Explosion-Proof.

Other Protection

Gloves: Insulated, impervious industrial quality gloves are recommended Eye Protection: Safety glasses (required) and goggles and /or face shield (recommended).

DOMINION TRANSMISSION, INC. MATERIAL SAFETY DATA SHEET

Product Name:	Propane					
Section I	SUPPLIER INFORMATION	1				
Common Name: Chemical Name: Formula/CAS:	LP Gas Liquefied Propane Gas C ₃ H ₈					
Supplier:	Dominion Transmission, Inc. PO Box 2450 445 West Main Street Clarksburg, WV 26302-2450		Phone Emergency Phone: CHEMTREC:	(304) 627-3760 (304) 627-3760 1-800-424-9300		
Section II	INGREDIENT INFORMATI	ON				
Propane C₃H ₈ Ethane C₂H ₆	% by volume >90 % by volume <7%		00074-98-6 PEL-03 00074-84-0 PEL-03		TLV-ACGIH TLV-ACGIH	1000 1

Ingredient Hazard Statement

PEL OSHA: N/A

** Current OSHA standard for Propane and LPG mixtures. ACGIH labels ethane, propane, and butane as simple asphyxiant (control at 18 vol% minimum oxygen.)

Section III PHYSICAL/CHEMICAL CHARACTERISTICS

% by volume <5%

Boiling Point: Specific Gravity:	Propane @ 1 ATM 47° F 0.508 @-42.2 ° (Water =1)	Vapor Density: 1.80 (Air=1) Evaporation Rate:
Melting Point :	N/A	Solubility/Water: Slightly soluble
Vapor Pressure :	208 PSI at 100° F	Expansion Ratio Propane Liquid to Vapor: 270:1 Appearance and Odor

CAS No:

A colorless gas at room temperature and 1 ATM pressure. It can be liquefied by lowering the temperature, increasing the pressure, or both . It can have an odor like "natural gas", but pure propane is odorless and requires the addition of odorant.

Section IV

FIRE AND EXPLOSION HAZARD DATA

Flash Point:AutoignitionLEL>2 %UEL10 %

-156 ° F

874 ° F

C4⁺ Hydrocarbons

NFPA Hazard Classification

Flammable: 4 Health: 1 Reactivity: 0 Special: -

Extinguishing Media

Shut off source of product as soon as possible. Use water to cool fire-exposed tanks, surroundings and to protect personnel. If gas flow cannot be stopped, reduce the intensity of the fire by directing water spray, dry powder or carbon dioxide at the flame. Do not completely extinguish the flame unless gas flow is shut off.

Unusual Fire and Explosion Hazards

Propane is a dangerous fire and explosion hazard when mixed with air. Vapors may migrate for considerable distances before reaching an ignition source at which time the fire would flash back to the source of the release.

Special Fire Fighting Procedures

Those putting out fire in confined spaces must use SCBA and protective equipment. Continue cooling containers with water until well after fire has been extinguished. Flames impinging on product storage vessels above the liquid level, will cause sudden vessel failure in approximately eight or more minutes resulting in a BLEVE (Boiling Liquid Expansion Violent Explosion), unless vessels are cooled by water. If this cannot be done, evacuate the area. Vapors will seek low-lying areas.

vrd_0002715756mfv_0003102420.doc

Page 1 of 3

11/22/06

ppm **

TLV-ACGIH

Product Name: Propane

Section V REACTIVITY DATA

Stability: Stable when stored as a liquid in steel tanks under its own pressure. Incompatibility: Avoid oxidizing agents.

Miscellaneous: Propane burns with a luminous, smoky flame, and it can produce carbon monoxide when oxidized with a deficiency of oxygen. One volume of propane requires about twenty-five volumes of air for complete combustion.

Hazardous Decomposition or By -Products:

Polymerization: No

Section VI HEALTH HAZARD DATA

Routes of Entry

Inhalation: Yes Skin: Yes Ingestion: No Eyes: Yes

Additional Information

The material is an asphyxiant (and it may have anesthetic properties at very high concentrations). If it is present in sufficient concentrations to reduce the oxygen level below 18% in inhaled air, symptoms such as rapid respiration, mental dullness, lack of coordination, poor judgment, nausea, and unconsciousness may result. (Oxygen deficiency may occur without warning in areas where this gas may displace air.)

First Aid:

Inhalation: Remove victim to fresh air. Restore and/or support breathing. Prompt mouth-to-mouth resuscitation may be indicated. Administer oxygen if exposure was serious or if oxygen deficiency symptoms persist. Get medical help. (Caution: would-be rescuers need to be concerned with their own safety in oxygen deficient areas. Use self-contained or air-supplied breathing apparatus in such atmospheres.)

Liquid contact: Contact with liquefied gas can produce frostbite. Promptly flush affected area with tepid water. If freezing burns have occurred, apply a bulky, dry sterile bandage to protect the area and get medical help.

Carcinogenicity: None established

Section VII PRECAUTIONS FOR SAFE HANDLING AND USE

DOT Classification: UN 1075 (LPG) UN 1978 (Propane) ; Label as: Flammable Gas; Shipping Name: Propane, Liquefied Petroleum Gas

Steps To Be Taken If Material Is Released Or Spilled

Personnel involved in leak stoppage must assure adequate oxygen for breathing, or should use self-contained breathing equipment and should have protection against direct contact with liquid hydrocarbon. Use water fog to displace vapors. Ventilate closed spaces before entering them.

Evacuate area, eliminate sources of ignition. Supply maximum air ventilation (explosion-proof equipment) to keep concentration well below lower flammability limit. Stop leak or remove leaking cylinder or tank. Place small cylinder or tank in remote place and allow gas to slowly bleed off to atmosphere or place in pit and ignite escaping gas, or install flare stack.

Waste Disposal Method

Incinerate waste gas by laying a pipeline to a furnace or flare stack and burning with caution in accordance with federal, state, and local regulations.

Precautions To Be Taken In Handling and Storage

Store and use propane cylinders and tanks in well-ventilated areas, away from heat, sunlight, and sources of ignition. No smoking in areas of storage or use. Electrically bond and ground all lines and equipment used with propane. Keep away from oxidizing agents and from cylinders of oxygen or chlorine. Follow standard procedures for handling cylinders and tanks of flammable compressed gas. Provide protection against damaging cylinders and tanks. See NFPA #58 and #59 for handling and storage of LPG.

Other Precautions

Provide adequate explosion-proof ventilation where this material is used to meet TLV requirements and to keep concentration in air below 25% of LEL. Provide special ventilation in sumps and confined areas. Electrical services and equipment should be explosion-proof where propane is used. Where contact with liquid propane is possible, use protective clothing, gloves, goggles, and face shield. Monitoring methods for LPG-NIOSH #593 and for propane -NOSH #587.

vrd_0002715756mfv_0003102420.doc

Page 2 of 3

11/22/06

Product Name:

Propane

Section VIII CONTROL MEASURES

Respiratory Protection

If concentrations are high enough to warrant respiratory protection, use only SCBA or air-supplied units. Also, the atmosphere may be flammable.

Ventilation

Local exhaust, special exhaust, and mechanical exhaust must be Explosion-Proof.

Other Protection

Gloves, splash goggles and face shield

Issued by: Dominion Transmission, Inc. September 30, 2001 Revised November 22, 2006 Paul E. Grubb Jr.

vrd_0002715756mfv_0003102420.doc

Page 3 of 3

MATERIAL SAFETY DATA SHEET

SECTION 1 – Chemical Product

Product/Chemical Name: TRIETHYLENE GLYCOL Chemical Formula: (CH20CH2CH2OH)2 CAS Number: 112-27-6 Synonyms; TEG

SECTION 2 - Hazards Indentification

Acute Effects:

Inhalation: Short term harmful health effects are not expected from vapor generated at ambient temperatures. No evidence of short term harmful effects from respirable aresol based on available information.

Eye: Splashing in eye causes irritation with transitory disturbances of corneal epithelium. However, these effects diminish and no permanent injury is expected. Vapors are non-irritating.

Skin: Prolonged exposure may cause skin irritation.

Ingestion: Abdominal discomfort, nausea and vomiting may occur.

Carcinogenicity: Not Classifiable as a Human Carcinogen.

Medical Conditions Aggravated by Long-Term Exposure: A knowledge of the available toxicology information and of the physical and chemical properties of the material suggests that overexposure is unlikely to aggravate existing medical conditions.

Chronic Effects: Exposure to high concentrations of aerosol generated at room temperature may cause lung injury and liver dysfunction.

SECTION 3 – First Aid Measures

Inhalation: Remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Call a physician.

Eye Contact: Immediately flush eyes with plenty of water for at least 15 minutes, lifting lower and upper eyelids occasionally. Get medical attention immediately.

Skin Contact: Remove any contaminated clothing. Wash skin with soap and water for at least 15 minutes. Get medical attention.

Ingestion: If large amounts are swallowed, give water to drink and get medical advice. Never give anything by mouth to an unconscious person. Get medical attention.

SECTION 4 – Fire Fighting Measures

Flash Point: 350°F (176.6°C) Flash Point Method: CC Burning Rate: Not available AutoIgnition Temperature: 700°F (371°C)

LEL: 0.9% v/v UEL: 9.2% v/v

Flammability Classification: Slight fire hazard when exposed to heat or flame.

Extinguishing Media: Dry chemical, foam or carbon dioxide. Water or foam may cause frothing. Water spray may be used to extinguish surrounding fire and cool exposed containers. Water spray will also reduce fume and irritiant gases.

Unusual Fire or Explosion Hazards: Above flash point, vapor-air mixtures are explosive within flammable limits noted above. Containers may explode when involved in a fire. LEAKS INTO POROUS INSULATION MATERIAL MAY IGNITE AT TEMPERATURES FAR BELOW PUBLISHED AUTOIGNITION OR INGNITION TEMPERATURES, POTENTIALLY EVEN BELOW THE NORMAL FLASH POINT.

1 of 3

SECTION 4 - Fire Fighting Measures - continued

Hazardous Combustion Products: Carbon Dioxide and Carbon Monoxide may form when heated to decomposition. May produce smoke and irritating fumes when heated to decomposition.

.

Fire-Fighting Instructions: Do not release runoff from fire control methods to sewers or waterways. **Fire-Fighting Equipment:** Wear full protective clothing and NIOSH approved self-contained breathing apparatus with full facepiece in the pressure demand or positive pressure mode.

SECTION 5 - Accidental Release Measures

Spill/Leak Procedures: Ventilate area of leak or spill. Remove all sources of ignition. Wear appropriate personal protective equipment. Isolate hazard area. Keep unnecessary and unprotected personnel from entering. Use non-sparking tools and equipment. Do not flush to sewer.

Small Špills: Contain and recover liquid when possible. Collect liquid in an appropriate container or absorb with an inert material (e.g., vermiculate, dry sand), and place in a chemical waste container. Do not use combustible materials, such as saw dust.

Large Spills:

Containment: Wear respirator and protective clothing as appropriate. Shut off source of leak if safe to do so. For large spills, dike far ahead of liquid spill for later disposal. Do not release into sewers or waterways.

Cleanup: Contain and recover liquid when possible. Collect liquid in appropriate container. Absorb residue with an inert material. Consult with your environmental department for detailed clean up instructions.

Regulatory Requirements: Follow applicable OSHA regulations (29CFR 1910.120). CERCLA requires reporting spills and release to soil, water and air in excess of reportable quantities.

SECTION 6 - Handling and Storage

Handling Precautions: Potential peroxide former. Store away from heat and light. If peroxide formation is suspected, do not open or move container.

Storage Requirements: Store in a cool, dry ventilated area. Separate from acids and oxidizing materials.

Regulatory Requirements: This product contains the following chemical(s) subject to the reporting requirements of SARA Title III Section 311, 312, and 313: None

SECTION 7 – Exposure Controls/Personal Protection

Engineering Controls: Controls should be such that adequate ventilation is provided.

Ventilation: Local exhaust ventilation is preferred because it prevents contaminant dispersion into the work area by controlling it at its source.

Respiratory Protection: Seek professional advice prior to respirator selection and use. Follow OSHA respirator regulations (29 CFR 1910.134) and, if necessary wear a MSHA/NIOSH approved respirator. Select respirator based on its suitability to provide adequate worker protection for given working conditions, level of airborne contamination, and presence of sufficient oxygen. For emergency or non-routine operations (cleaning spills, reactor vessels, or storage tanks), wear an SCBA. *Warning! Air-purifying respirators do not protect workers in oxygen-deficient atmospheres.* If respirators are used, OSHA requires a written respiratory protection program.

Protective Clothing/Equipment: Wear chemically protective gloves, boots, aprons, and gauntlets to prevent prolonged or repeated skin contact. Wear protective eyeglasses or chemical safety goggles, per OSHA eye and face protection regulations (29CFR 1910.133). Contact lenses are not eye protective devices. Appropriate eye protection must be worn instead of, or in conjunction with contact lenses. **Contaminated Equipment:** Separate contaminated work clothes from street clothes. Launder before

reuse. Remove this material from your shoes and clean personal protective equipment. **Comments:** Never eat, drink or smoke in work areas. Practice good personal hygiene after using this material.

2 Of 3

SECTION 7 – Physical and Chemical Properties

Physical State: Liquid Appearance and Odor: Clear, Colorless, mild odor Odor Threshold: NA Vapor Pressure: <0.01 mm Hg @ 20 C Vapor Density (Air=1): 5.2 Formula Weight: 150.7 Density: 9.3 lbs/gal @ 200 C Specific Gravity (H2O=1, @ 4ºC): 1.12 pH: NA

Water Solubility: Soluble Other Solubilities: Alcohols, methyl isosbutyl carbitol Boiling Point: 285⁰ C (545⁰F) Freezing/Melting Point: -5⁰ C (23⁰ F) Viscosity: 29cP @ 20⁰ C Refractive Index: 1.447 @ 20⁰C Surface Tension: 47 dyne/cm @ 200C % Volatile: Negligable @ 25⁰ C **Evaporation Rate: NA**

SECTION 8 – Stability and Reactivity

Stability: Stable, however forms peroxides of unknown stability. Polymerization: Hazardous polymerization will not occur. Chemical incompatibilities: Strong oxidizing agents, strong bases. Conditions to Avoid: Heat, flames, ignition sources, and incompatibles. Hazardous Decomposition Products: Carbon dioxide and carbon monoxide may form when heated to decomposition.

SECTION 9 – Disposal Considerations

Disposal: Follow applicable Federal, state, and local regulations. Container Cleaning and Disposal: Dispose of container and unused contents in accordance with Federal state and local requirements.

SECTION 10 – Transport Information

Shipping Name: Triethylene Glycol ID No.: NA Label: NA

Hazard Class: NA Packing Group: NA

SECTION 11 – Other Information

Disclaimer: This product is FOR INDUSTRIAL USE ONLY. Keep out of reach of children. Do not take internally.

Best Chemical Corporation believes that the information and recommendations contained herein are accurate as of the date hereof. No warranty of fitness for any particular purpose, warranty of merchantability, or any other warranty expressed or implied, is made concerning the information provided herein. The information provided herein relates on to the specific product designated and may not be valid where such product is used in combination with any other materials or in any process. Further, since the conditions and methods of use of the product and the information referred to herein are beyond the control of Best Chemical, Best Chemical expressly disclaims any and all liability as to any results obtained or arising from any use of the product or reliance on such information.

For addition product information contact Best Chemical Corporation at: P.O. Box 4284, Victoria, Texas 77903, or by phone at 361/575-6184 (24 hour answering service number), or fax at 361/572-8977.

Material Safety Data Sheet

1. Product and company identification

: Welding and cutting of metals.

Product name : DIGLYCOLAMINE® AGENT (DGA)

Product Use

Huntsman Petrochemical Corporation P.O. Box 4980 The Woodlands, TX 77387-4980

TELEPHONE NUMBERS Transportation Emergency Company: (800) 328-8501 CHEMTREC: (800) 424-9300 Medical Emergency: (409) 722-9673 (24 Hour) General MSDS Assistance: (281) 719-6000 Technical Information: (281) 719-7780 E-MAIL: MSDS@huntsman.com

Validation date : 12/6/2007.

In Case of Emergency

Spills Leaks Fire or Exposure Call Chemtrec: (800) 424-9300 Medical Emergency Information: (800) 328-8501 In Mexico: 01 800 00 214 00

2. Hazards identification

Physical state	: Liquid.
Odor	: Amine-like.
OSHA/HCS status	 This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200).
Emergency overview	: DANGER !
	CAUSES EYE AND SKIN BURNS. CAUSES RESPIRATORY TRACT IRRITATION. MAY BE HARMFUL IF SWALLOWED. ASPIRATION HAZARD IF SWALLOWED - CAN ENTER LUNGS AND CAUSE DAMAGE
	Corrosive to the skin. Causes burns. Harmful if swallowed. Irritating to eyes and respiratory system. Do not breathe vapor or mist. Do not ingest. Do not get in eyes or on skin or clothing. Use only with adequate ventilation. Keep container tightly closed and sealed until ready for use. Wash thoroughly after handling.
GENERAL INFORMATION	: Read the entire MSDS for a more thorough evaluation of the hazards.

12/6/2007.

MSDS # 00033118

3. Composition/information on ingredients

<u>Name</u> 2-(2-Aminoethoxy)ethanol	<u>CAS number</u> <u>%</u> 929-06-6 60 - 100
4. First aid mea	sures
Eye contact	Get medical attention immediately. Immediately flush eyes with plenty of water, occasionally lifting the upper and lower eyelids. Check for and remove any contact lenses. Continue to rinse for at least 10 minutes. Chemical burns must be treated promptly by a physician.
Skin contact	Get medical attention immediately. Flush contaminated skin with plenty of water. Remove contaminated clothing and shoes. Wash contaminated clothing thoroughly with water before removing or wear gloves. Continue to rinse for at least 10 minutes. Chemical burns must be treated promptly by a physician. Wash clothing before reuse. Clean shoes thoroughly before reuse.
Inhalation	Get medical attention immediately. Move exposed person to fresh air. If it is suspected that fumes are still present, the rescuer should wear an appropriate mask or self-contained breathing apparatus. Keep person warm and at rest. If not breathing, if breathing is irregular or if respiratory arrest occurs, provide artificial respiration or oxygen by trained personnel. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation. If unconscious, place in recovery position and get medical attention immediately. Maintain an open airway. Loosen tight clothing such as a collar, tie, belt or waistband. In case of inhalation of decomposition products in a fire, symptoms may be delayed. The exposed person may need to be kept under medical surveillance for 48 hours.
Ingestion	Get medical attention immediately. Wash out mouth with water. Move exposed person to fresh air. Do not induce vomiting unless directed to do so by medical personnel. Chemical burns must be treated promptly by a physician. Never give anything by mouth to an unconscious person.
Notes to physician	: Symptomatic and supportive therapy as needed. Following severe exposure medical follow-up should be monitored for at least 48 hours.
5. Fire-fighting	measures
Flash point	: Closed cup: 124°C (255.2°F)
Products of combustion	: Decomposition products may include the following materials: carbon oxides nitrogen oxides
Extinguishing media	
Suitable	: Use an extinguishing agent suitable for the surrounding fire.
Not suitable	: None known.
Special exposure hazards	: In a fire or if heated, a pressure increase will occur and the container may burst.
	Promptly isolate the scene by removing all persons from the vicinity of the incident if there is a fire. No action shall be taken involving any personal risk or without suitable training.
Special protective equipment for fire-fighters	: Fire-fighters should wear appropriate protective equipment and self-contained breathing apparatus (SCBA) with a full face-piece operated in positive pressure mode.

6. Accidental release measures

Personal precautions	:	No action shall be taken involving any personal risk or without suitable training. Evacuate surrounding areas. Keep unnecessary and unprotected personnel from entering. Do not touch or walk through spilled material. Avoid breathing vapor or mist. Provide adequate ventilation. Wear appropriate respirator when ventilation is inadequate. Put on appropriate personal protective equipment (see section 8).
Environmental precautions	:	Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers. Inform the relevant authorities if the product has caused environmental pollution (sewers, waterways, soil or air).
Methods for cleaning up	:	Stop leak if without risk. Move containers from spill area. Approach release from upwind. Prevent entry into sewers, water courses, basements or confined areas. Wash spillages into an effluent treatment plant or proceed as follows. Contain and collect spillage with non-combustible, absorbent material e.g. sand, earth, verniculite or diatomaceous earth and place in container for disposal according to local regulations (see section 13). Dispose of via a licensed waste disposal contractor. Contaminated absorbent material may pose the same hazard as the spilled product. Note: see section 1 for emergency contact information and section 13 for waste disposal.

7. Handling and storage

Handling	: Put on appropriate personal protective equipment (see section 8). Eating, drinking and smoking should be prohibited in areas where this material is handled, stored and processed. Workers should wash hands and face before eating, drinking and smoking. Do not get in eyes or on skin or clothing. Do not ingest. Avoid breathing vapor or mist. If during normal use the material presents a respiratory hazard, use only with adequate ventilation or wear appropriate respirator. Keep in the original container or an approved alternative made from a compatible material, kept tightly closed when not in use. Keep away from acids. Empty containers retain product residue and can be hazardous. Do not reuse container.
Storage	: Store in accordance with local regulations. Store in original container protected from direct sunlight in a dry, cool and well-ventilated area, away from incompatible materials (see section 10) and food and drink. Separate from acids. Keep container tightly closed and sealed until ready for use. Containers that have been opened must be carefully resealed and kept upright to prevent leakage. Do not store in unlabeled containers. Use appropriate containment to avoid environmental contamination.

8. Exposure controls/personal protection

Consult local authorities for acceptable exposure limits.

Preventive Measures	: Conditions of use, adequacy of engineering or other control measures, and actual exposures will dictate the need for specific protective devices at your workplace.
Engineering Controls	: Use local exhaust ventilation to maintain airborne concentrations below the TLV. Suitable respiratory equipment should be used in cases of insufficient ventilation or where operational procedures demand it. For guidance on engineering control measures refer to publications such as the ACGIH current edition of 'Industrial Ventilation, a manual of Recommended Practice.'
Personal protection	
Eyes	 Safety eyewear complying with an approved standard should be used when a risk assessment indicates this is necessary to avoid exposure to liquid splashes, mists, gases or dusts.
Skin	 Personal protective equipment for the body should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product.

12/6/2007.

Exposure controls/personal protection 8.

Respiratory	: Use a properly fitted, air-purifying or air-fed respirator complying with an approved standard if a risk assessment indicates this is necessary. Respirator selection must be based on known or anticipated exposure levels, the hazards of the product and the safe working limits of the selected respirator.
Hands	: Chemical-resistant, impervious gloves complying with an approved standard should be

cted respirator. ervious gloves complying with an approved standard should be worn at all times when handling chemical products if a risk assessment indicates this is necessary.

Physical and chemical properties 9.

General information

Appearance	
Physical state	: Liquid.
Color	: Clear.
Odor	: Amine-like.
Odor threshold	: Not available.
Important health, safety and	environmental information
рH	: 11.8
Boiling point	: 221°C (429.8°F)
Melting point	: -12.2°C (10°F)
Flash point	: Closed cup: 124°C (255.2°F)
Oxidizing properties	; Not available.
Vapor pressure	: <0.0013 kPa (<0.01 mm Hg)
Relative density	: 1.06 (Specific gravity)
Octanol/water partition coefficient	: -1.2
Viscosity	: Kinematic: 0.075 cm ² /s (7.5cSt at 51.7°C)
Vapor density	: 3.6 [Air = 1]
Auto-ignition temperature	: 370°C (698°F)
VOC content	: 99%

10. Stability and reactivity

Stability and reactivity	:	The product is stable.
Incompatibility with various substances	:	Extremely reactive or incompatible with the following materials: acids. Reactive or incompatible with the following materials: metals.
Hazardous polymerization	:	Will not occur.
Hazardous decomposition products	:	Decomposition products may include the following materials: carbon oxides nitrogen oxides

11. Toxicological information

Toxicity data

Acute toxicity				
Product/ingredient name	Test	Species	Result	Exposure
2-(2-Aminoethoxy)ethanol	LD50 Dermal	Rabbit	>2000 mg/kg	-
	LD50 Oral	Rat	2560 to 3000 mg/kg	-
	LD50 Oral	Mouse	2825 mg/kg	-

12/6/2007.

11. Toxicological information

Potential acute health effects

Ingestion	: Harmful if swallowed. May cause burns to mouth, throat and stomach.
Inhalation	: Irritating to respiratory system.
Eyes	: Corrosive to eyes. Causes burns.
Skin	: Corrosive to the skin. Causes burns.

Potential chronic health effects

Target organs	:	None known.
Carcinogenicity	:	No known significant effects or critical hazards.
Mutagenicity	:	No known significant effects or critical hazards.
Teratogenicity	:	No known significant effects or critical hazards.
Developmental effects	:	No known significant effects or critical hazards.
Fertility effects	:	No known significant effects or critical hazards.

12. Ecological information

Aquatic ecotoxicity				
Product/ingredient name	Test	Result	Species	Exposure
2-(2-Aminoethoxy)ethanol	-	Acute EC50 190 mg/L	Daphnia	48 hours
	-	Acute IC50 160 mg/L	Algae	72 hours
	-	Acute LC50 460 mg/L	Fish	96 hours
Bioaccumulative potential				
Product/ingredient name 2-(2-Aminoethoxy)ethanol	<u>Log</u> ₽₀₩ -1.2	BCF -		<u>Potential</u> low
Environmental effects	: This product shows a	a low bioaccumulation po	tential.	

13. Disposal considerations

Waste disposal

: The generation of waste should be avoided or minimized wherever possible. Dispose of surplus and non-recyclable products via a licensed waste disposal contractor. Disposal of this product, solutions and any by-products should at all times comply with the requirements of environmental protection and waste disposal legislation and any regional local authority requirements. Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers.

14. Transport information

Transportation Emergency Number 1-800-424-9300 (CHEMTREC).

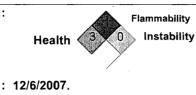
Regulatory nformation	UN number	Proper shipping name	Class	PG*	Label	Additional information
DOT Classification	UN3055	2-(2- Aminoethoxy)ethanol	8	(11		
TDG Classification	UN3055	2-(2- Aminoethoxy)ethanol	8			-
IMDG Class	UN3055	2-(2- Aminoethoxy)ethanol	8	111		Emergency schedules (EmS) F-A, S-B
IATA-DGR Class	UN3055	2-(2- Aminoethoxy)ethanol	8			

PG* : Packing group

15. Regulatory information				
<u>United States</u> HCS Classification U.S. Federal regulations	: Corrosive material : United States inventory (TSCA 8b): All components are listed or exempted.			
•	tances. : No ingredients listed.			
SARA 313	: No ingredients listed.			
	This product does not contain nor is it manufactured with ozone depleting substances.			
California Prop 65 Canada	: No ingredients listed.			
WHMIS (Canada)	: Class E: Corrosive material			
CEPA	: Canada inventory: All components are listed or exempted.			

This product has been classified according to the hazard criteria of the CPR and the MSDS contains all the information required by the CPR.

16. Other information				
Label requirements	: CAUSES EYE AND SKIN BURNS. CAUSES RESPIRATORY TRACT IRRITATION. MAY BE HARMFUL IF SWALLOWED. ASPIRATION HAZARD IF SWALLOWED - CAN ENTER LUNGS AND CAUSE DAMAGE			
Hazardous Material Information System (U.S.A.)	: Health 3 Fire hazard 1 Reactivity 0			


16. Other information

•

: 12/6/2007.

National Fire Protection Association (U.S.A.)

Date of printing

: No previous validation.

Date of issue Date of previous issue Notice to reader

While the information and recommendations in this publication are to the best of our knowledge, information and belief accurate at the date of publication, NOTHING HEREIN IS TO BE CONSTRUED AS A WARRANTY, EXPRESS OR OTHERWISE.

IN ALL CASES. IT IS THE RESPONSIBILITY OF THE USER TO DETERMINE THE APPLICABILITY OF SUCH INFORMATION AND RECOMMENDATIONS AND THE SUITABILITY OF ANY PRODUCT FOR ITS OWN PARTICULAR PURPOSE.

THE PRODUCT MAY PRESENT HAZARDS AND SHOULD BE USED WITH CAUTION. WHILE CERTAIN HAZARDS ARE DESCRIBED IN THIS PUBLICATION. NO GUARANTEE IS MADE THAT THESE ARE THE ONLY HAZARDS THAT EXIST.

Hazards, toxicity, and behavior of the products may differ when used with other materials and are dependent upon the manufacturing circumstances or other processes. Such hazards, toxicity and behavior should be determined by the user and made known to handlers, processors and end users.

NO PERSON OR ORGANIZATION EXCEPT A DULY AUTHORIZED HUNTSMAN EMPLOYEE IS AUTHORIZED TO PROVIDE, OR MAKE AVAILABLE, DATA SHEETS FOR HUNTSMAN PRODUCTS. DATA SHEETS FROM UNAUTHORIZED SOURCES MAY CONTAIN INFORMATION THAT IS NO LONGER CURRENT OR ACCURATE. NO PART OF THIS DATA SHEET MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM, OR BY ANY MEANS. WITHOUT PERMISSION IN WRITING FROM HUNTSMAN. ALL REQUESTS FOR PERMISSION TO REPRODUCE MATERIAL FROM THIS DATA SHEET SHOULD BE DIRECTED TO HUNTSMAN, MANAGER, PRODUCT SAFETY, AT THE ABOVE ADDRESS.

12/6/2007.

HUNTSMAN

Enriching lives through innovation

April 08, 2009

RECEIVED

JUN 0 8 2009

CL THOMAS Risk Management

THOMAS PETROLEUM PO BOX 1876 VICTORIA, TX 77902 USA

Dear Customer:

Enclosed please find a Material Safety Data Sheet (MSDS) for the product(s) identified at the bottom of this page. Please make this MSDS available to employees in your organization, including health and safety personnel, and your customers who could come in contact with this product.

We are in the process of updating our MSDSs. On some of the MSDSs, the actual hazard profile of the product will be different, since the process of conversion included a re-evaluation of each product. Please read over the MSDS carefully to determine if any changes will require a re-evaluation of your handling procedures. The amended sections will be highlighted with a triangle-sign at the beginning of the section (\mathcal{F}).

Applicable MSDSs are routinely mailed to our customers with the purchase of our products and, subsequently, with first purchases in every calendar year. Any significant changes in MSDS information also will result in mailing of the revised MSDS with the next order placed. MSDSs also are available upon request for any of our products.

We appreciate your business and we wish to continue serving your business needs. If you have any questions regarding our MSDSs or need copies, please call our MSDS Information Helpline on 1-800-257-5547

MSDS Details					
Products:		Code:	Order Number:	Product No.:	
		33118	55198144	800123	

Enclosure

8600 Gosling Rd, The Woodlands, Texas 77381 *281-719-7400 *Fax 281-719-7500

Material Safety Data Sheet

The Dow Chemical Company

Product Name: DOWTHERM* T HEAT TRANSFER FLUID

Issue Date: 11/19/2008 **Print Date:** 21 Jan 2009

The Dow Chemical Company encourages and expects you to read and understand the entire (M)SDS, as there is important information throughout the document. We expect you to follow the precautions identified in this document unless your use conditions would necessitate other appropriate methods or actions.

1. Product and Company Identification

Product Name

DOWTHERM* T HEAT TRANSFER FLUID

COMPANY IDENTIFICATION

The Dow Chemical Company 2030 Willard H. Dow Center Midland, MI 48674 USA

Customer Information Number:

800-258-2436

EMERGENCY TELEPHONE NUMBER 24-Hour Emergency Contact: Local Emergency Contact:

989-636-4400 989-636-4400

2. Hazards Identification

Emergency Overview

Color: Yellow Physical State: Liquid Odor: Odorless Hazards of product:

CAUTION! May cause eye irritation. May cause skin irritation. May cause central nervous system effects; may cause respiratory tract irritation. Highly toxic to fish and/or other aquatic organisms. Isolate area. Keep upwind of spill. Avoid temperatures above 310 °C (590 °F).

OSHA Hazard Communication Standard

This product is a "Hazardous Chemical" as defined by the OSHA Hazard Communication Standard, 29 CFR 1910.1200.

Potential Health Effects

Eye Contact: May cause slight eye irritation. May cause slight corneal injury. **Skin Contact:** Prolonged contact may cause moderate skin irritation with local redness. **Skin Absorption:** Prolonged skin contact is unlikely to result in absorption of harmful amounts.

®(TM)*Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow

Page 1 of 7

Inhalation: At room temperature, exposure to vapor is minimal due to low volatility. Vapor from heated material may cause respiratory irritation and other effects. May cause respiratory irritation and central nervous system depression. Symptoms may include headache, dizziness and drowsiness, progressing to incoordination and unconsciousness.

Ingestion: Very low toxicity if swallowed. Harmful effects not anticipated from swallowing small amounts.

Effects of Repeated Exposure: In animals, effects have been reported on the following organs: Blood.

	3.	Composition Information
--	----	-------------------------

Component	CAS #	Amount
Benzene, C14-30-alkyl derivatives	68855-24-3	100.0 %

4. First-aid measures

Eye Contact: Flush eyes thoroughly with water for several minutes. Remove contact lenses after the initial 1-2 minutes and continue flushing for several additional minutes. If effects occur, consult a physician, preferably an ophthalmologist.

Skin Contact: Wash skin with plenty of water.

Inhalation: Move person to fresh air. If not breathing, give artificial respiration; if by mouth to mouth use rescuer protection (pocket mask, etc). If breathing is difficult, oxygen should be administered by qualified personnel. Call a physician or transport to a medical facility.

Ingestion: No emergency medical treatment necessary.

Notes to Physician: Maintain adequate ventilation and oxygenation of the patient. If burn is present, treat as any thermal burn, after decontamination. No specific antidote. Treatment of exposure should be directed at the control of symptoms and the clinical condition of the patient.

5. Fire Fighting Measures

Extinguishing Media: Water fog or fine spray. Dry chemical fire extinguishers. Carbon dioxide fire extinguishers. Foam. Do not use direct water stream. May spread fire. Alcohol resistant foams (ATC type) are preferred. General purpose synthetic foams (including AFFF) or protein foams may function, but will be less effective.

Fire Fighting Procedures: Keep people away. Isolate fire and deny unnecessary entry. Do not use direct water stream. May spread fire. Burning liquids may be moved by flushing with water to protect personnel and minimize property damage. Avoid accumulation of water. Product may be carried across water surface spreading fire or contacting an ignition source. Contain fire water run-off if possible. Fire water run-off, if not contained, may cause environmental damage. Review the "Accidental Release Measures" and the "Ecological Information" sections of this (M)SDS.

Special Protective Equipment for Firefighters: Wear positive-pressure self-contained breathing apparatus (SCBA) and protective fire fighting clothing (includes fire fighting helmet, coat, trousers, boots, and gloves). If protective equipment is not available or not used, fight fire from a protected location or safe distance.

Unusual Fire and Explosion Hazards: Violent steam generation or eruption may occur upon application of direct water stream to hot liquids. Liquid mist of this product can burn. Flammable concentrations of vapor can accumulate at temperatures above flash point; see Section 9. **Hazardous Combustion Products:** During a fire, smoke may contain the original material in addition to combustion products of varying composition which may be toxic and/or irritating. Combustion products may include and are not limited to: Hydrocarbons. Carbon monoxide. Carbon dioxide.

6. Accidental Release Measures

Steps to be Taken if Material is Released or Spilled: Small spills: Absorb with materials such as: Non-combustible material. Collect in suitable and properly labeled containers. Large spills: Dike area to contain spill. Pump into suitable and properly labeled containers. See Section 13, Disposal Considerations, for additional information.

Personal Precautions: Isolate area. Keep upwind of spill. Ventilate area of leak or spill. Keep unnecessary and unprotected personnel from entering the area. Refer to Section 7, Handling, for additional precautionary measures. Use appropriate safety equipment. For additional information, refer to Section 8, Exposure Controls and Personal Protection.

Environmental Precautions: Prevent from entering into soil, ditches, sewers, waterways and/or groundwater. See Section 12, Ecological Information.

7. Handling and Storage

Handling

General Handling: Avoid contact with eyes, skin, and clothing. Avoid breathing vapor. Wash thoroughly after handling. Keep container closed. Use with adequate ventilation. Spills of these organic materials on hot fibrous insulations may lead to lowering of the autoignition temperatures possibly resulting in spontaneous combustion.

Storage

Do not store in: Opened or unlabeled containers. Store away from incompatible materials. See STABILITY AND REACTIVITY section. Store in tightly closed container. See Section 10 for more specific information. Additional storage and handling information on this product may be obtained by calling your Dow sales or customer service contact.

8. Exposure Controls / Personal Protection

Exposure Limits

None established

Personal Protection

Eye/Face Protection: Use chemical goggles.

Skin Protection: Wear clean, body-covering clothing.

Hand protection: Use gloves chemically resistant to this material when prolonged or frequently repeated contact could occur. Examples of preferred glove barrier materials include: Polyethylene. Ethyl vinyl alcohol laminate ("EVAL"). Polyvinyl alcohol ("PVA"). Polyvinyl chloride ("PVC" or "vinyl"). Styrene/butadiene rubber. Viton. Examples of acceptable glove barrier materials include: Butyl rubber. Chlorinated polyethylene. Natural rubber ("latex"). Neoprene. Nitrile/butadiene rubber ("nitrile" or "NBR"). NOTICE: The selection of a specific glove for a particular application and duration of use in a workplace should also take into account all relevant workplace factors such as, but not limited to: Other chemicals which may be handled, physical requirements (cut/puncture protection, dexterity, thermal protection), potential body reactions to glove materials, as well as the instructions/specifications provided by the glove supplier.

Respiratory Protection: Respiratory protection should be worn when there is a potential to exceed the exposure limit requirements or guidelines. If there are no applicable exposure limit requirements or guidelines, wear respiratory protection when adverse effects, such as respiratory irritation or discomfort have been experienced, or where indicated by your risk assessment process. For emergency conditions, use an approved positive-pressure self-contained breathing apparatus. The following should be effective types of air-purifying respirators: Organic vapor cartridge. **Ingestion:** Use good personal hygiene. Do not consume or store food in the work area. Wash hands before smoking or eating.

Engineering Controls

Ventilation: Use local exhaust ventilation, or other engineering controls to maintain airborne levels below exposure limit requirements or guidelines. If there are no applicable exposure limit requirements or guidelines, general ventilation should be sufficient for most operations. Local exhaust ventilation may be necessary for some operations.

9. Physical and Chemical Properties

Physical State Color Odor	Liquid Yellow Odorless
Odor Threshold	Odorless
Flash Point - Closed Cup	> 170 °C (> 338 °F) <i>ASTM D</i> 93
Flammability (solid, gas)	Not applicable to liquids
Flammable Limits In Air	Lower: Not determined
	Upper: Not determined
Autoignition Temperature	375 °C (707 °F) ASTM D2155
Vapor Pressure	< 0.01 mmHg @ 20 °C Measured
Boiling Point (760 mmHg)	> 320 °C (> 608 °F) ASTM D86 (@ 1 atmosphere).
Vapor Density (air = 1)	Not determined
Specific Gravity (H2O = 1)	0.86 - 0.89 <i>Literature</i>
Freezing Point	< -40 °C(< -40 °F) <i>Literatur</i> e Pour point
Melting Point	Not applicable to liquids
Solubility in Water (by	0.0001 % Literature
weight)	
рН	Not applicable
Decomposition	No test data available
Temperature	
Evaporation Rate (Butyl	Not applicable
Acetate = 1)	
Kinematic Viscosity	12 - 27 mm2/s @ 40 °C ASTM D7042

10. Stability and Reactivity

Stability/Instability

Thermally stable at typical use temperatures. **Conditions to Avoid:** Avoid temperatures above 310 °C (590 °F). Avoid contact with air (oxygen). Exposure to elevated temperatures can cause product to decompose.

Incompatible Materials: Avoid contact with oxidizing materials.

Hazardous Polymerization

Will not occur.

Thermal Decomposition

Decomposition products depend upon temperature, air supply and the presence of other materials.

11. Toxicological Information

Acute Toxicity Ingestion LD50, Rat > 5,000 mg/kg Skin Absorption LD50, Rabbit > 2,000 mg/kg **Repeated Dose Toxicity** In animals, effects have been reported on the following organs: Blood. **Genetic Toxicology** In vitro genetic toxicity studies were negative.

12. Ecological Information

ENVIRONMENTAL FATE

Movement & Partitioning

Bioconcentration potential is high (BCF > 3000 or Log Pow between 5 and 7).

Persistence and Degradability

Biodegradation may occur under aerobic conditions (in the presence of oxygen).

ECOTOXICITY

Material is very highly toxic to aquatic organisms on an acute basis (LC50/EC50 <0.1 mg/L in most sensitive species).

Fish Acute & Prolonged Toxicity

LC50, rainbow trout (Oncorhynchus mykiss), 96 h: > 100 mg/l **Aquatic Invertebrate Acute Toxicity** EC50, water flea Daphnia magna, 48 h, immobilization: 0.05 mg/l **Aquatic Plant Toxicity** EC50, graph clas Provide instrumental a subconstate (formatic length)

EC50, green alga Pseudokirchneriella subcapitata (formerly known as Selenastrum capricornutum), 96 h: > 1,000 mg/l

13. Disposal Considerations

DO NOT DUMP INTO ANY SEWERS, ON THE GROUND, OR INTO ANY BODY OF WATER. All disposal practices must be in compliance with all Federal, State/Provincial and local laws and regulations. Regulations may vary in different locations. Waste characterizations and compliance with applicable laws are the responsibility solely of the waste generator. AS YOUR SUPPLIER, WE HAVE NO CONTROL OVER THE MANAGEMENT PRACTICES OR MANUFACTURING PROCESSES OF PARTIES HANDLING OR USING THIS MATERIAL. THE INFORMATION PRESENTED HERE PERTAINS ONLY TO THE PRODUCT AS SHIPPED IN ITS INTENDED CONDITION AS DESCRIBED IN MSDS SECTION: Composition Information. FOR UNUSED & UNCONTAMINATED PRODUCT, the preferred options include sending to a licensed, permitted: Recycler. Reclaimer. Incinerator or other thermal destruction device. As a service to its customers, Dow can provide names of information resources to help identify waste management companies and other facilities which recycle, reprocess or manage chemicals or plastics, and that manage used drums. Telephone Dow's Customer Information Group at 1-800-258-2436 or 1-989-832-1556 (U.S.), or 1-800-331-6451 (Canada) for further details.

14. Transport Information

DOT Non-Bulk NOT REGULATED

DOT Bulk NOT REGULATED IMDG NOT REGULATED

ICAO/IATA NOT REGULATED

This information is not intended to convey all specific regulatory or operational requirements/information relating to this product. Additional transportation system information can be obtained through an authorized sales or customer service representative. It is the responsibility of the transporting organization to follow all applicable laws, regulations and rules relating to the transportation of the material.

15. Regulatory Information

OSHA Hazard Communication Standard

This product is a "Hazardous Chemical" as defined by the OSHA Hazard Communication Standard, 29 CFR 1910.1200.

Superfund Amendments and Reauthorization Act of 1986 Title III (Emergency Planning and Community Right-to-Know Act of 1986) Sections 311 and 312

Immediate (Acute) Health Hazard	Yes
Delayed (Chronic) Health Hazard	No
Fire Hazard	No
Reactive Hazard	No
Sudden Release of Pressure Hazard	No

Superfund Amendments and Reauthorization Act of 1986 Title III (Emergency Planning and Community Right-to-Know Act of 1986) Section 313

To the best of our knowledge, this product does not contain chemicals at levels which require reporting under this statute.

Pennsylvania (Worker and Community Right-To-Know Act): Pennsylvania Hazardous Substances List and/or Pennsylvania Environmental Hazardous Substance List:

To the best of our knowledge, this product does not contain chemicals at levels which require reporting under this statute.

Pennsylvania (Worker and Community Right-To-Know Act): Pennsylvania Special Hazardous Substances List:

To the best of our knowledge, this product does not contain chemicals at levels which require reporting under this statute.

California Proposition 65 (Safe Drinking Water and Toxic Enforcement Act of 1986)

This product contains no listed substances known to the State of California to cause cancer, birth defects or other reproductive harm, at levels which would require a warning under the statute.

US. Toxic Substances Control Act

All components of this product are on the TSCA Inventory or are exempt from TSCA Inventory requirements under 40 CFR 720.30

CEPA - Domestic Substances List (DSL)

All substances contained in this product are listed on the Canadian Domestic Substances List (DSL) or are not required to be listed.

Health

1

16. Other Information

Hazard Rating System

NFPA

Reactivity

Recommended Uses and Restrictions

Heat transfer fluid. Intended as a heat transfer fluid for closed-loop systems. For industrial use only. We recommend that you use this product in a manner consistent with the listed use. If your intended use is not consistent with the stated use, please contact your sales or technical service representative.

Fire

1

Revision

Identification Number: 81478 / 1001 / Issue Date 11/19/2008 / Version: 3.0 Most recent revision(s) are noted by the bold, double bars in left-hand margin throughout this document.

Legend

Logona	
N/A	Not available
W/W	Weight/Weight
OEL	Occupational Exposure Limit
STEL	Short Term Exposure Limit
TWA	Time Weighted Average
ACGIH	American Conference of Governmental Industrial Hygienists, Inc.
DOW IHG	Dow Industrial Hygiene Guideline
WEEL	Workplace Environmental Exposure Level
HAZ_DES	Hazard Designation
Action Level	A value set by OSHA that is lower than the PEL which will trigger the need for
	activities such as exposure monitoring and medical surveillance if exceeded.

The Dow Chemical Company urges each customer or recipient of this (M)SDS to study it carefully and consult appropriate expertise, as necessary or appropriate, to become aware of and understand the data contained in this (M)SDS and any hazards associated with the product. The information herein is provided in good faith and believed to be accurate as of the effective date shown above. However, no warranty, express or implied, is given. Regulatory requirements are subject to change and may differ between various locations. It is the buyer's/user's responsibility to ensure that his activities comply with all federal, state, provincial or local laws. The information presented here pertains only to the product as shipped. Since conditions for use of the product are not under the control of the manufacturer, it is the buyer's/user's duty to determine the conditions necessary for the safe use of this product. Due to the proliferation of sources for information such as manufacturer-specific (M)SDS, we are not and cannot be responsible for (M)SDS obtained from any source other than ourselves. If you have obtained an (M)SDS from another source or if you are not sure that the (M)SDS you have is current, please contact us for the most current version.

Lubricant: Pneutech XD 680

MATERIAL SAFETY

DATA SHEET

AIRDYNE INTERNATIONAL, LTD 149 10 Henry Rd., Houston, TX 77060 (281) 820-0000

DATE: 10/23/07

REVISED:

SUPERSEDES:

PRODUCT IDENTIFICATION

 Trade Name:	PNEUTECH XD680
Chief Constituent:	Polyol Ester Blend
Hazardous Ingredients/OSHA:	None
Carcinogenic Ingredients/OSHA/NTP/IARC:	None
Ingredients Regulated by SARA Title 3, Section 313:	None

II. WARNING STATEMENTS

This product is non-hazardous as defined in 29 CFR 1910.1200.

III. PHYSICAL AND CHEM	ICAL DATA
Appearance and Odor:	Bright and Clear, Mild Odor
Specific Gravity:	< 1.0
Boiling Point:	> 600°F
Vapor Pressure:	< 0.035 mm Hg @ 300°F

IV. FIRE PROTECTION	
Flash Point:	> 450°F _(COC)
Extinguishing Media:	Water fog, dry chemical, foam or CO ₂
Special Firefighting Procedure:	Burning will produce toxic fumes. Wear self-contained breathing
	apparatus and full turn out gear to fight fire. Avoid spreading liquid and
4	fire by water flooding.
Unusual Fire Hazard:	Exposure to heat builds up pressure in closed containers. Cool with water
	spray.

V. REACTIVITY DATA	
Thermal Stability:	Stable
Materials to Avoid:	Strong oxidizers
Hazardous Polymerization:	Will not occur
Hazardous Decomposition Products:	Burning will produce toxic fumes

VI. HEALTH HAZARD D	ΑΤΑ
Exposure Limits:	Not applicable
Effects of Overexposure:	Low oral and dermal toxicity. Prolonged or repeated exposure may cause
	irritation, nausea, and vomiting.

VII. PHYSIOLOGICAL EFFECTS SUMMARY		
ACUTE:		
Eyes:	Irritating and may injure eye tissue if not removed promptly.	
Skin:	Believed to be minimally irritating	
Respiratory System:	Believed to be minimally irritating	
CHRONIC:	Not determined	
OTHER:	None	

1

DATE: 10/23/07 AIRDYNE: PNEUTECH XD680 SUPERSEDES:

VIII. PRECAUTIONS FOR SAFE HANDLING

For general personal hygiene, wash hands thoroughly after handling material. Avoid contact with skin and eyes.

IX. PROTECTION AND CONTROL MEASURES

Protective Equipment:Impermeable gloves, splash goggles, eye wash and safety shower.Respiratory Protection:If overheated, use approved respiratory protective equipment.Ventilation:Local exhaust and mechanical recommended.

REVISED:

X. EMERGENCY AND FIRST AID PROCEDURES

Eye Contact:Flush eyes with water for 15 minutes. Call a physician if irritation develops.Skin Contact:Wash skin with soap and water.Inhalation:Remove to fresh air. Give artificial respiration or oxygen if necessary.Ingestion:First Aid not normally required. If uncomfortable, call physician.

XI. NOTES

	HAZAR	D RATING INF	ORMATION		
	NPCA/HMIS	NFPA	KEY		
Health	1	1	4 = Severe	1 = Slight	
Flammability	1	1	3 = Serious	0 = Minimal	
Reactivity	0	0	2 = Moderate		
	-				

XII. SPILL AND DISPOSAL PROCEDURES

Environmental Impact: Report spills as required to appropriate authorities. U. S. Coast Guard regulations require immediate reporting of spills that could reach any waterway including intermittent dry creeks. Report spill to Coast Guard Toll Free Number (800) 424-8802.

<u>Procedures if Material is Released or Spilled</u>: Absorb on fire retardant treated sawdust, diatomaceous earth, etc. Shovel up and dispose of at an appropriate waste disposal facility in accordance with current applicable laws and regulations, and product characteristics at time of disposal.

Waste Management: Dispose of according to Federal, State and Local regulations.

Toxic Substance Inventory Control Act: All components are included on the TSCA Inventory and are in compliance with the TSCA.

FOR ADDITIONAL INFORMATION CONTACT:

AIRDYNE INTERNATIONAL, LTD 14910 Henry Road Houston, TX 77060 (281) 820-0000

INFORMATION GIVEN HEREIN IS OFFERED IN GOOD FAITH AS ACCURATE, BUT WITHOUT GUARANTEE. CONDITIONS OF USE AND SUITABILITY OF THE PRODUCT FOR PARTICULAR USES ARE BEYOND OUR CONTROL; ALL RISKS OF USE OF THE PRODUCT ARE THEREFORE ASSUMED BY THE USER AND WE EXPRESSLY DISCLAIM ALL WARRANTIES OF EVERY KIND AND NATURE, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE IN RESPECT TO THE USE OR SUITABILITY OF THE PRODUCT. NOTHING IS INTENDED AS A RECOMMENDATION FOR USES WHICH INFRINGE VALID PATENTS OR AS EXTENDING LICENSE UNDER VALID PATENTS. APPROPRIATE WARNINGS AND SAFE HANDLING PROCEDURES SHOULD BE PROVIDED TO HANDLERS AND USERS

Lubricant: Cameron Compression

Cameron Compression Systems TurboBlend[™] 46 Material Safety Data Sheet

15 PRODUCT AND COMPANY IDENTIFICATION

Product Name:

MSDS Code: Intended Use:

Compressor Oil

775472

Responsible Party:

Customer Service:

MSDS Information:

Technical Information:

Emergency Telephone Numbers:

ConocoPhillips Lubricants 600 N. Dairy Ashford Houston, Texas: 77079-1175 888-766-7676

800-255-9556

Internet: http://w3.conocophillips.com/NetMSDS/

Cameron Compression Systems TurboBlend™ 46

Chemfrec: 800-424-9300 (24 Hours) California Poison Control System: 800-356-3218

HAZARDS IDENTIFICATION

Emergency Overview This material is not considered hazardous according to OSHA criteria.

Appearance: Clear and brigh Physical Form: Liquid Odor: Petroleum

Potential Health Effects

Eye: Contact may cause mild eye irritation including stinging, watering, and redness. Skin: Contact may cause mild skin irritation including redress and a burning sensation. Prolonged or repeated contact can defat the skin, causing drying and cracking of the skin, and possible demands (other status). A component of this eaterial may cause an allergic skin reaction. No harmful effects from skin absorption are expected.

Inhalation (Breathing): No information available on acute toxicit

Ingestion (Swallowing): Low degree of toxicity by ingestion.

Signs and Symptoms: Effects of overexposure may include irritation of the digestive tract, nausea and diarrhea. Inhalation of oil mist of vapors at elevated temperatures may cause respiratory irritation.

Pre-Existing Medical Conditions: Conditions aggravated by exposure may include skin disorders.

See Section 11 for additional Toxicity Information

775472 - Cameron Compression Systems TurboBlend™ 46 Date of Issue: 03-Jan-2008 Page 1/7 Status: Final

ĩ

Page 2/7 Status: Final

3. COMPOSITION / INFORMATION ON INGREDIENTS

Component	CAS	Concentration (wt%)
Lubricant Base Oil (Petroleum)	VARIOUS	>99
Additives	PROPRIETARY	<1

4. EIRST AID MEASURES

Eye: If irritation or redness develops from exposure, flush eyes with clean water. If symptoms persist, seek medical attention.

Skin: Remove contaminated shoes and clothing and cleanse affected area(s) thoroughly by washing with mild soap and water or a waterless hand cleaner. If irritation or redness develops and persists, seek medical attention.

Inhalation (Breathing): If respiratory symptoms develop, move victim away from source of exposure and into fresh air. If symptoms persist, seek medical attention.

Ingestion (Swallowing): First aid is not normally required; however, if swallowed and symptoms develop, seek medical attention.

Notes to Physician: Acute aspirations of large amounts of oil-laden material may produce a serious aspiration pneumonia. Patients who aspirate these oils should be followed for the development of long-term sequelae. Inhelation exposure to oil mists below current workplace exposure limits is unlikely to cause pulmonary abnormalities.

5. FIRE-FIGHTING MEASURES

NFPA 704 Hazard Class

Health: 0 Flammability: 1 Instability: 0 (0-Minimal, 1-Slight, 2-Moderate, 3-Serious, 4-Severe)

Unusual Fire & Explosion Hazards: This material may burn, but will not ignite readily. If container is not properly cooled, it can rupture in the heat of a fire.

Extinguishing Media: Dry chemical, carbon dioxide, foam, or water spray is recommended. Water or foam may cause frothing of materials heated above 212°F. Carbon dioxide can displace oxygen. Use caution when applying carbon dioxide in confined spaces.

Fire Fighting Instructions: For fires beyond the incipient stage, emergency responders in the immediate hazard area should wear bunker gear. When the potential chemical hazard is unknown, in enclosed or confined spaces, or when explicitly required by DOT, a self contained breathing apparatus should be worn. In addition, wear other appropriate protective equipment as conditions warrant (see Section 8).

Isolate immediate hazard area and keep unauthorized personnel out. Stop spill/release if it can be done with minimal risk. Move undamaged containers from immediate hazard area if it can be done with minimal risk. Water spray may be useful in minimizing or dispersing vapors and to protect personnel. Cool equipment exposed to fire with water, if it can be done with minimal risk. Avoid spreading burning liquid with water used for cooling purposes.

See Section 9 for Flammable Properties including Flash Point and Flammable (Explosive) Limits

Page 3/7 Status: Final

6. ACCIDENTAL RELEASE MEASURES

Personal Precautions: This material may burn, but will not ignite readily. Keep all sources of ignition away from spill/release. The use of explosion-proof electrical equipment is recommended. Stay upwind and away from spill/release. Notify persons down wind of the spill/release, isolate immediate hazard area and keep unauthorized personnel out. Wear appropriate protective equipment, including respiratory protection, as conditions warrant (see Section 8). See Sections 2 and 7 for additional information on hazards and precautionary measures.

Environmental Precautions: Stop spill/release if it can be done with minimal risk. Prevent spilled material from entering sewers, storm drains, other unauthorized drainage systems, and natural waterways. Use water sparingly to minimize environmental contamination and reduce disposal requirements.

Spills into or upon navigable waters, the contiguous zone, or adjoining shorelines that cause a sheen or discoloration on the surface of the water, may require notification of the National Response Center (phone number 800-424-8802).

Methods for Containment and Clean-Up: Notify fire authorities and appropriate federal, state, and local agencies. Immediate cleanup of any spill is recommended. Dike far ahead of spill for later recovery or disposal. Absorb spill with inert material such as sand or vermiculite, and place in suitable container for disposal.

7. HANDLING AND STORAGE

Precautions for safe handling: Wash thoroughly after handling. Use good personal hygiene practices and wear appropriate personal protective equipment.

Do Not Use this product in any compressor operating indoors or in closed circulation that produces "breathing air." Do not enter confined spaces such as tanks or pits without following proper entry procedures such as ASTM D-4276 and 29CFR 1910.146. Do not wear contaminated clothing or shoes.

"Empty" containers retain residue and may be dangerous. Do not pressurize, cut, weld, braze, solder, drill, grind, or expose such containers to heat, flame, sparks, or other sources of ignition. They may explode and cause injury or death. "Empty" drums should be completely drained, properly bunged, and promptly shipped to the supplier or a drum reconditioner. All containers should be disposed of in an environmentally safe manner and in accordance with governmental regulations. Before working on or in tanks which contain or have contained this material, refer to OSHA regulations, ANSI Z49.1, and other references pertaining to cleaning, repairing, welding, or other contemplated operations.

Conditions for safe storage: Keep container(s) tightly closed. Use and store this material in cool, dry, well-ventilated areas away from heat and all sources of ignition. Store only in approved containers, Keep away from any incompatible material (see Section 10). Protect container(s) against physical damage.

8 EXPOSURE CONTRO	DLS//PERSONAL/PROT	ECTION	
Component & Key	ACGIN	OSHA	Other: Association
Lubricant Base Oil (Petroleum)	TWA: 5mg/m ³	TWA: 5 mg/m ³	·
	STEL: 10 mg/m ³	as Oil Mist, if generated	•
	as Oil Mist, if generated		

Note: State, local or other agencies or advisory groups may have established more stringent limits. Consult an industrial hygienist or similar professional, or your local agencies, for further information.

Engineering controls: If current ventilation practices are not adequate to maintain airborne concentrations below the established exposure limits, additional engineering controls may be required.

Personal Protective Equipment (PPE):

Eye/Face: The use of eye protection that meets or exceeds ANSI Z.87.1 is recommended to protect against potential eye contact, irritation, or injury. Depending on conditions of use, a face shield may be necessary.

Skin: The use of gloves impervious to the specific material handled is advised to prevent skin contact. Users should check with manufacturers to confirm the performance of their products. Suggested protective materials: Nitrile.

Page 4/7 Status: Final

Respiratory: Where there is potential for airborne exposure above the exposure limit a NIOSH certified air purifying respirator equipped with R or P95 filters may be used.

A respiratory protection program that meets or is equivalent to OSHA 29 CFR 1910.134 and ANSI Z88.2 should be followed whenever workplace conditions warrant a respirator's use. Air purifying respirators provide limited protection and cannot be used in atmospheres that exceed the maximum use concentration (MUC) as directed by regulation or the manufacturer's instructions, in oxygen deficient (less than 19.5 percent oxygen) situations, or other conditions that are immediately dangerous to life and health (IDLH).

Suggestions provided in this section for exposure control and specific types of protective equipment are based on readily available information. Users should consult with the specific manufacturer to confirm the performance of their protective equipment. Specific situations may require consultation with industrial hygiene, safety, or engineering professionals.

9 PHYSICAL AND CHEMICAL PROPERTIES

Note: Unless otherwise stated, values are determined at 20°C (68°F) and 760 mm Hg (1 atm). Data represent typical values and are not intended to be specifications.

Appearance: Physical Form: Odor: Odor Threshold: pH: Vapor Pressure: Vapor Density (air=1): Boiling Point/Range: Melting/Freezing Point: Pour Point: Solubility in Water: Partition Coefficient (n-octanol/water) (Kow): Specific Gravity: Bulk Density: Viscosity: Percent Volatile: Evaporation Rate (nBuAc=1): Flash Point: **Test Method:** LEL (vol % in air): UEL (vol % in air): Autoignition Temperature:

Clear and bright Liquid Petroleum No data Not applicable <1 >1 No data <-13°F / <-25°C <-13°F / <-25°C Insoluble No data 0.86 @ 60°F (15.6°C) 7.2 lbs/gal 6.7 cSt @ 100°C; 46 cSt @ 40°C Negligible No data 320°F / 160°C Pensky-Martens Closed Cup (PMCC), ASTM D93, EPA 1010 No data No data No data

10. STABILITY AND REACTIVITY

Stability: Stable under normal ambient and anticipated conditions of storage and handling.

Conditions to Avoid: Extended exposure to high temperatures can cause decomposition.

Materials to Avoid (Incompatible Materials): Avoid contact with strong oxidizing agents.

Hazardous Decomposition Products: Combustion can yield oxides of carbon, nitrogen and sulfur.

Hazardous Polymerization: Not known to occur.,

Page 5/7 Status: Final

11. TOXICOLOGICAL INFORMATION

Chronic Data:

Lubricant Base Oil (Petroleum)

- Carcinogenicity: The petroleum base oils contained in this product have been highly refined by a variety of processes including severe hydrocracking/hydroprocessing to reduce aromatics and improve performance characteristics. All of the oils
- meet the IP-346 criteria of less than 3 percent PAH's and are not considered carcinogens by NTP, IARC, or OSHA.

Acute Data:

Component	Oral ED50	Service Dermal ED50	Section LC50
Lubricant Base Oil (Petroleum)	>5 g/kg	>2 g/kg	No data

12 ECOLOGICAL INFORMATION

Lubricant oil basestocks are complex mixtures of hydrocarbons (primarily branched chain alkanes and cycloalkanes) ranging in carbon number from C15 to C50. The aromatic hydrocarbon content of these mixtures varies with the severity of the refining process. White oils have negligible levels of aromatic hydrocarbons, whereas significant proportions are found in unrefined basestocks. Olefins are found only at very low concentrations. Volatilization is not significant after release of lubricating oil basestocks to the environment due to the very low vapor pressure of the hydrocarbon constituents. In water, lubricating oil basestocks will float and will spread at a rate that is viscosity dependent. Water solubilities are very low and dispersion occurs mainly from water movement with adsorption by sediment being the major fate process. In soil, lubricating oil basestocks show little mobility and adsorption is the predominant physical process.

Both acute and chronic ecotoxicity studies have been conducted on lubricant base oils. Results indicate that the acute aquatic toxicities to fish, Daphnia, Ceriodaphnia and algal species are above 1000 mg/l using either water accommodated fractions or oil in water dispersions. Since lubricant base oils mainly contain hydrocarbons having carbon numbers in the range C15 to C50, it is predicted that acute toxicity would not be observed with these substances due to low water solubility. Results from chronic toxicity tests show that the no observed effect level (NOEL) usually exceeds 1000 mg/l for lubricant base oils with the overall weight of experimental evidence leading to the conclusion that lubricant base oils do not cause chronic toxicity to fish and invertebrates.

Large volumes spills of lubricant base oils into water will produce a layer of undissolved oil on the water surface that will cause direct physical fouling of organisms and may interfere with surface air exchange resulting in lower levels of dissolved oxygen. Petroleum products have also been associated with causing taint in fish even when the latter are caught in lightly contaminated environments. Highly refined base oils sprayed onto the surface of eggs will result in a failure to hatch.

Extensive experience from laboratory and field trials in a wide range of crops has confirmed that little or no damage is produced as a result of either aerosol exposure or direct application of oil emulsion to the leaves of crop plants. Base oils incorporated into soil have resulted in little or no adverse effects on seed germination and plant growth at contamination rates up to 4%.

13 DISPOSAL CONSIDERATIONS

The generator of a waste is always responsible for making proper hazardous waste determinations and needs to consider state and local requirements in addition to federal regulations.

This material, if discarded as produced, would not be a federally regulated RCRA "listed" hazardous waste and is not believed to exhibit characteristics of hazardous waste. See Sections 7 and 8 for information on handling, storage and personal protection and Section 9 for physical/chemical properties. It is possible that the material as produced contains constituents which are not required to be listed in the MSDS but could affect the hazardous waste determination. Additionally, use which results in chemical or physical change of this material could subject it to regulation as a hazardous waste.

This material under most intended uses would become "Used Oil" due to contamination by physical or chemical impurities. Whenever possible, Recycle Used Oil in accordance with applicable federal and state or local regulations. Container contents should be completely used and containers should be emptied prior to discard.

14. TRANSPORTATION INFORMATION

U.S. Department of Transportation (DOT)

Note:

Shipping Description: Not regulated

If shipped by land in a packaging having a capacity of 3,500 gallons or more, the provisions of 49 CFR, Part 130 apply. (Contains oil)

Page 6/7 Status: Final

14 TRANSPORTATION INFORMATION

International Maritime Dangerous Goods (IMDG) Shipping Description: Not regulated

Note:

Federal compliance requirements may apply. See 49 CFR 171.12.

International Civil Aviation Org. / International Air Transport Assoc. (ICAO/IATA) UN/ID #: Not regulated

	LTD. QTY	Passenger Aircraft	Cargo Aircraft Only
Packaging Instruction #:			
Max. Net Qty. Per Package:			· ==

15 REGULATORY INFORMATION

CERCLA/SARA - Section 302 Extremely Hazardous Substances and TPQs (in pounds): This material does not contain any chemicals subject to the reporting requirements of SARA 302 and 40 CFR 372

CERCLA/SARA - Section 311/312 (Title III Hazard Categories)

Acute Health:	No
Chronic Health:	No
Fire Hazard:	No
Pressure Hazard:	No
Reactive Hazard:	No

CERCLA/SARA - Section 313 and 40 CFR 372:

This material does not contain any chemicals subject to the reporting requirements of SARA 313 and 40 CFR 372.

EPA (CERCLA) Reportable Quantity (in pounds):

This material does not contain any chemicals with CERCLA Reportable Quantities.

California Proposition 65:

This material does not contain any chemicals which are known to the State of California to cause cancer, birth defects or other reproductive harm at concentrations that trigger the warning requirements of California Proposition 65.

Canadian Regulations:

This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations (CPR) and the MSDS contains all the information required by the Regulations.

WHMIS Hazard Class

.....

National Chemical Inventories:

All components are either listed on the US TSCA Inventory, or are not regulated under TSCA. All components are either on the DSL, or are exempt from DSL listing requirements.

U.S. Export Control Classification Number: EAR99

Other Regulatory Information

Diphenylamine, CASRN 122-39-4, which is present at trace amounts, is subject to the export notification requirements of TSCA Section 12(b).

16 OTHER INFORMATION

Issue Date: Status: Previous Issue Date: 03-Jan-2008 Final 17-Aug-2006

Page 7/7 Status: Final

16. OTHER INFORMATION 1.5.2.1 NFPA ratings (Section 2) **Revised Sections or Basis for Revision:** Regulatory information (Section 15) 775472 MSDS Code:

MSDS Legend:

ACGIH = American Conference of Governmental Industrial Hygienists; CAS = Chemical Abstracts Service Registry; CEILING = Ceiling Limit (15 minutes); CERCLA = The Comprehensive Environmental Response, Compensation, and Liability Act; EPA = Environmental Protection Agency; IARC = International Agency for Research on Cancer; LEL = Lower Explosive Limit; NE = Not Established; NFPA = National Fire Protection Association; NTP = National Toxicology Program; OSHA = Occupational Safety and Health Administration; PEL = Permissible Exposure Limit (OSHA); SARA = Superfund Amendments and Reauthorization Act; STEL = Short Term Exposure Limit (15 minutes); TLV = Threshold Limit Value (ACGIH); TWA = Time Weighted Average (8 hours): UEL = Line: Explosive Limit; WHMIS = Worker Hezardous Malorials Information System (Canada) Average (8 hours); UEL = Upper Explosive Limit; WHMIS = Worker Hazardous Materials Information System (Canada)

Disclaimer of Expressed and implied Warranties:

The information presented in this Material Safety Data Sheet is based on data believed to be accurate as of the date this Material Safety Data Sheet was prepared. HOWEVER, NO WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY OTHER WARRANTY IS EXPRESSED OR IS TO BE IMPLIED REGARDING THE ACCURACY OR COMPLETENESS OF THE INFORMATION PROVIDED ABOVE, THE RESULTS TO BE OBTAINED FROM THE USE OF THIS INFORMATION OR THE PRODUCT, THE SAFETY OF THIS PRODUCT, OR THE HAZARDS RELATED TO ITS USE. No responsibility is assumed for any damage or injury resulting from abnormal use or from any failure to adhere to recommended practices. The information provided above, and the product, are furnished on the condition that the person receiving them shall make their own determination as to the suitability of the product for their particular purpose and on the condition that they assume the risk of their use. In addition, no authorization is given nor implied to practice any patented invention without a license.

Lubricant: Frick #12B

Material Safety Data Sheet FRICK #12B

1	Chemical Product and Company Identification		
	Johnson Controls Inc		
	9104 Yellow Brick Road		
	Baltimore, MD 21237		
	Phone: (410) 574-0400		
	Filolie: (410) 574-0400		
Product Trade Name	FRICK #12B		
CAS Number	Not applicable for mixtures.		
Synonyms	None.		
Generic Chemical Name	Mixture.		
Product Type	Multipurpose.		
Preparation/Revision Date	25 March 2010		
2	Hazards Identification		
Арреагансе	Clear to yellow liquid.		
Odor	Mild		
Principal Hazards	Caution.		
	May cause eye irritation.		
See Section 11 for complete heal	th hazard information.		
3	Composition/Information on Ingredients		
Hazardous Ingredients	This material contains no ingredients requiring disclosure under regulatory hazard criteria for this jurisdiction. See Section 11 for additional details.		
4	First Ald Measures		
Eyes	Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. If eye irritation persists, get medical attention.		
ikin	Wash with soap and water. Get medical attention if irritation develops. Launder contaminated clothing before reuse.		
nhalation	Remove exposed person to fresh air if adverse effects are observed.		
Dral	DO NOT INDUCE VOMITING. Get immediate medical attention.		
additional Information	Note to physician: Treat symptomatically.		
s	Fire Firebiling Measures		

Prepared according to 29CFR 1910.1200.

5 **Fire Fighting Measures** Flash Point 260 °C, 500 °F COC (Typical) Extinguishing Media CO2, dry chemical, or foam. Water can be used to cool and protect exposed material. Wear full protective firegear including self-containing breathing apparatus operated in the positive pressure mode with full facepiece, coat, pants, gloves and boots. Water may be ineffective fighting fires. **Firefighting Procedures** Unusual Fire & Explosion Hazards None known. 6 Accidental Release Measures

FRICK #12B Spill Procedures

Personal Protective Equipment must be worn, see Personal Protection Section for PPE recommendations. Ventilate area if spilled in confined space or other poorly ventilated areas. Prevent entry into sewers and waterways, dispose of in accordance with all federal, state and local environmental regulation. Pick up free liquid for recycle and/or disposal. Residual liquid can be absorbed on inert material.

7	Handling and Storage	
Pumping Temperature	Not determined.	
Maximum Handling Temperature	Not determined.	
Handling Procedures	Keep containers closed when not in use. Do not discharge into drains or the environment, dispose to an authorized waste collection point. Use appropriate containment to avoid environmental contamination. Avoid breathing dust, fume, gas, mist, vapors or spray. Wash thoroughly after handling. Empty container contains product residue which may exhibit hazards of product.	
Maximum Storage Temperature	Not determined.	
Storage Procedures	No special storage precautions required.	
Loading Temperature	Not determined.	
8	Exposure Controls/Personal Protection	
Exposure Limits	None established	
Other Exposure Limits	None known.	
Engineering Controls	Use with adequate ventilation.	
Gloves Procedures	Use nitrile or neoprene gloves.	
Eye Protection	Safety Glasses,	
Respiratory Protection	Use NIOSH/MSHA approved respirator with a combination organic vapor and high efficiency filter cartridge if recommended exposure limit is exceeded. Use self-contained breathing apparatus for entry into confined space, for other poorly ventilated areas and for large spill clean-up sites.	
Clothing Recommendation	Long sleeve shirt is recommended. Launder contaminated clothing before reuse.	
9	Physical and Chemical Properties	
Tash Point	260 °C, 500 °F COC (Typical)	
Jpper Flammable Limit	Not determined.	
ower Flammable Limit	Not determined.	
utoignition Point	Not determined.	
xplosion Data	Material does not have explosive properties.	
apor Pressure	Not determined.	
- H	Not determined.	
pecific Gravity	0.99 (15.6 °C)	
ulk Density	8.27 Lb/gal, 0.99 Kg/L	
Vater Solubility	Soluble.	
ercent Solid	Not determined.	
ercent Volatile	Not determined.	
olatile Organic Compound	Not determined.	
apor Density	Not determined.	
Chaporation Rate	Not determined.	
klor	Mild	
ppearance	Clear to yellow liquid.	
iscosity	92.3 Centistokes (40 °C) 18.6 Centistokes (100 °C)	
)dor Threshold	Not determined.	
oiling Point	Not determined.	
our Point Temperature	-40 °C, -40 °F	
Ielting / Freezing Point	Not determined.	
	The above data are typical values and do not constitute a specification. Vapor pressure data are calculated unless otherwise noted.	
10	Stability and Reactivity	
Stability	Material is normally stable at moderately elevated temperatures and pressures	

Stability	Material is normally stable at moderately elevated temperatures and pressures.
Decomposition Temperature	Not determined.
Incompatibility	Strong oxidizing agents.
Polymerization	Will not occur.
Thermal Decomposition	Smoke, carbon monoxide, carbon dioxide, aldehydes and other products of incomplete combustion.

FRICK #12B Conditions to Avoid

Miscellaneous Toxicity

Conditions to Avoid	Not determined.	
11	Toxicological Information	
	– ACUTE EXPOSURE –	
Eye Irritation	May cause eye irritation. Does not meet Canadian D2B or EU R36 criteria. Based on data from similar materials.	
Skin Irritation	Not expected to be a primary skin irritant. Based on data from components or similar materials. Prolonged or repeated contact may cause dermatitis. Contact with heated material may cause thermal burns.	
Respiratory Irritation	No data available to indicate product or components may cause respiratory irritation under normal workplace conditions an good industrial hygiene practices.	
Dermal Toxicity	The LD50 in rabbits is > 2000 mg/Kg. Based on data from components or similar materials.	
Inhalation Toxicity	No data available to indicate product or components may be a toxic inhalation hazard.	
Orał Toxicity	The LD50 in rats is > 10,000 mg/Kg. Based on data from components or similar materials. Swallowing material may cause irritation of the gastrointestinal lining, nausea, vomiting, diarrhea, and abdominal pain.	
Dermal Sensitization	No data available to indicate product or components may be a skin sensitizer.	
nhalation Sensitization	No data available to indicate product or components may be respiratory sensitizers.	
	- CHRONIC EXPOSURE -	
Chronic Toxicity	No data available to indicate product or components present at greater than 1% are chronic health hazards.	
Carcinogenicity	No data available to indicate any components present at greater than 0.1% may present a carcinogenic hazard.	
Mutagenicity	No data available to indicate product or any components present at greater than 0.1% are mutagenic or genotoxic.	
Reproductive Toxicity	No data available to indicate either product or components present at greater than 0.1% that may cause reproductive toxicity.	
Feratogenicity	No data available to indicate product or any components contained at greater than 0.1% may cause birth defects.	
	– ADDITIONAL INFORMATION –	
Other	No other health hazards known.	
12	Ecological Information	
	ENVIRONMENTAL TOXICITY	
Freshwater Fish Toxicity	The acute LC50 is 10 - 100 mg/L based on component data.	
Freshwater Invertebrates Toxicity	The acute EC50 is 10 - 100 mg/L based on component data.	
Algal Inhibition	The acute EC50 is 10 - 100 mg/L based on component data.	
Saltwater Fish Toxicity	Not determined.	
Saltwater Invertebrates Toxicity	Not determined.	
Bacteria Toxicity	Not determined.	

- ENVIRONMENTAL FATE -

Rindomusdution	- ENVIRONMENTAL FATE -
Biodegradation Bioaccumulation	Adequate data is not available to estimate the biodegradation potential of this material. Less than 1.0% of the components potentially bioconcentrate, based on octanol/water coefficients.
Soil Mobility	Less than 1.0% of the components potentially obconcentrate, based on octanor/water coefficients.
Son Mobility	Not determined.
[12	
13	Disposal Considerations

Not determined.

 13
 Disposal Considerations

 Waste Disposal
 This material, if discarded, is not a hazardous waste under RCRA Regulation 40 CFR 261. Treatment, storage, transportation, and disposal must be in accordance with applicable Federal, State/Provincial, and Local regulations.

14	Transport Information
ІСАОЛАТА І	Not regulated.
ІСАОЛАТА П	Not regulated.
IMDG	Not regulated.
IMDG EMS Fire	Not applicable.
IMDG EMS Spill	Not applicable.
IMDG MFAG	Not applicable.
MARPOL Annex II	Not determined.
USCG Compatibility	Not determined.
U.S. DOT Bulk	Not regulated.
DOT NAERG	Not applicable.
U.S. DOT (Intermediate)	Not regulated.
U.S. DOT Intermediate NAERG	Not applicable.

FRICK #12B

U.S. DOT Non-Bulk	Not regulated.
U.S. DOT Non-Bulk NAERG	Not applicable.
Canada	Not regulated.
Mexico	Not regulated.
Bulk Quantity	85000 KG, 187391 lbs.
Intermediate Quantity	11000 KG, 24251 lbs.
Non-Bulk Quantity	400 KG, 882 lbs.

Review classification requirements before shipping materials at elevated temperatures.

15	Regulatory Information
USA	Global Chemical Inventories
UOA	All components of this material are on the US TSCA Inventory or are exempt.
Other TSCA Reg.	None known.
EU	All components are in compliance with the EC Seventh amendment Directive 92 /32/EEC.
Japan	All components are in compliance with the Chemical Substances Control Law of Japan.
Australia	All components are in compliance with chemical notification requirements in Australia.
New Zealand	May require notification before sale under New Zealand regulations.
Canada	All components are in compliance with the Canadian Environmental Protection Act and are present on the Domestic Substances List.
Switzerland	All components are in compliance with the Environmentally Hazardous Substances Ordinance in Switzerland.
Korea	All components are in compliance in Korea.
Philippines	May require notification before sale under Philippines Republic Act 6969.
China	This product may require notification in China.
24 B 4 F-4 11 C 1 -	Other U.S. Federal Regulations
SARA Ext. Haz. Subst.	This product does not contain greater than 1.0% of any chemical substance on the SARA Extremely Hazardous Substances list.
SARA Section 313	This product does not contain greater than 1.0% (greater than 0.1% for carcinogenic substance) of any chemical substances listed under SARA Section 313.
SARA 311 Classifications	Acute Hazard No
	Chronic Hazard No
	Fire Hazard No
	Reactivity Hazard No
CERCLA Hazardous Substances	None known.
	State Regulations
Cal. Prop. 65	This product contains the following chemical(s) known to the state of California to cause cancer and/or birth defects based on maximum impurity levels of components: < 0.01 ppm 2-Naphthylamine, CAS no. 91-59-8 < 0.5 ppm 1-Naphthylamine, CAS no. 134-32-7 < 0.5 ppm Aniline, CAS no. 62-53-3 < 1 ppm 1, 4 Dioxane, CAS no. 123-91-1 < 1 ppm Ethylene oxide, CAS no. 75-21-8
	Decement Devictory
J.S. Fuel Registration	Product Registrations Not applicable.
innish Registration Number	Not Registered
wedish Registration Number	Not Registered
lorwegian Registration Number	Not Registered
Danish Registration Number	-
wiss Registration Number	Not Registered
	Not Registered
ialian Registration Number	Not Registered
	– Other / International
liscellaneous Regulatory Iformation	Not determined.
6	Other Information
S NFPA Codes	Health Fire Reactivity Special 1 1 0 N/E (N/E) - None established 0 N/E
MIS Codes	Health Fire Reactivity 0 1 0

FRICK #12B Precautionary Labels	Caution. May cause eye irritation. 	
Revision Indicators	Section: 2 Target organs.	Changed: 16 March 2010
	Section: 3 Hazardous ingredients.	Changed: 16 March 2010
	Section: 5 Unusual fire& explosion hazards.	Changed: 25 March 2010
	Section: 8 Hazardous ingredients.	Changed: 16 March 2010
	Section: 10 Incompatibility.	Changed: 16 March 2010
	Section: 11 Oral toxicity.	Changed: 16 March 2010
	Section: 15 SARA section 311/312	Changed: 16 March 2010
	Section: 16 HMIS codes.	Changed: 16 March 2010
• • • • • • • • • • • • • • • • • • • •		

Product Name: MOBIL DTE OIL HEAVY MEDIUM Revision Date: 19 Aug 2011 Page 1 of 10

MATERIAL SAFETY DATA SHEET

SECTION 1

PRODUCT AND COMPANY IDENTIFICATION

PRODUCT

Product Name:MOBIL DTE OIL HEAVY MEDIUMProduct Description:Base Oil and AdditivesProduct Code:201560501590, 600163-00, 970172Intended Use:Turbine oil

COMPANY IDENTIFICATION

 Supplier:
 EXXON MOBIL CORPORATION 3225 GALLOWS RD. FAIRFAX, VA. 22037
 USA

 24 Hour Health Emergency
 609-7

 Transportation Emergency Phone
 800-4

 ExxonMobil Transportation No.
 281-4

 Product Technical Information
 800-4

 MSDS Internet Address
 http://

USA 609-737-4411 800-424-9300 281-834-3296 800-662-4525, 800-947-9147 http://www.exxon.com, http://www.mobil.com

COMPOSITION / INFORMATION ON INGREDIENTS

No Reportable Hazardous Substance(s) or Complex Substance(s).

SECTION 3

SECTION 2

HAZARDS IDENTIFICATION

This material is not considered to be hazardous according to regulatory guidelines (see (M)SDS Section 15).

POTENTIAL HEALTH EFFECTS

Low order of toxicity. Excessive exposure may result in eye, skin, or respiratory irritation. High-pressure injection under skin may cause serious damage.

NFPA Hazard ID:	Health:	0	Flammability:	1	Reactivity:	0
HMIS Hazard ID:	Health:	0	Flammability:	1	Reactivity:	0

NOTE: This material should not be used for any other purpose than the intended use in Section 1 without expert advice. Health studies have shown that chemical exposure may cause potential human health risks which may vary from person to person.

SECTION 4	FIRST AID MEASURES

INHALATION

Remove from further exposure. For those providing assistance, avoid exposure to yourself or others. Use

Product Name: MOBIL DTE OIL HEAVY MEDIUM Revision Date: 19 Aug 2011 Page 2 of 10

adequate respiratory protection. If respiratory irritation, dizziness, nausea, or unconsciousness occurs, seek immediate medical assistance. If breathing has stopped, assist ventilation with a mechanical device or use mouth-to-mouth resuscitation.

SKIN CONTACT

Wash contact areas with soap and water. If product is injected into or under the skin, or into any part of the body, regardless of the appearance of the wound or its size, the individual should be evaluated immediately by a physician as a surgical emergency. Even though initial symptoms from high pressure injection may be minimal or absent, early surgical treatment within the first few hours may significantly reduce the ultimate extent of injury.

EYE CONTACT

Flush thoroughly with water. If irritation occurs, get medical assistance.

INGESTION

First aid is normally not required. Seek medical attention if discomfort occurs.

SECTION 5

FIRE FIGHTING MEASURES

EXTINGUISHING MEDIA

Appropriate Extinguishing Media: Use water fog, foam, dry chemical or carbon dioxide (CO2) to extinguish flames.

Inappropriate Extinguishing Media: Straight Streams of Water

FIRE FIGHTING

Fire Fighting Instructions: Evacuate area. Prevent runoff from fire control or dilution from entering streams, sewers, or drinking water supply. Firefighters should use standard protective equipment and in enclosed spaces, self-contained breathing apparatus (SCBA). Use water spray to cool fire exposed surfaces and to protect personnel.

Hazardous Combustion Products: Smoke, Fume, Aldehydes, Sulfur oxides, Incomplete combustion products, Oxides of carbon

FLAMMABILITY PROPERTIES

Flash Point [Method]: >223C (433F) [ASTM D-92] Flammable Limits (Approximate volume % in air): LEL: 0.9 UEL: 7.0 Autoignition Temperature: N/D

SECTION 6

ACCIDENTAL RELEASE MEASURES

NOTIFICATION PROCEDURES

In the event of a spill or accidental release, notify relevant authorities in accordance with all applicable regulations. US regulations require reporting releases of this material to the environment which exceed the applicable reportable quantity or oil spills which could reach any waterway including intermittent dry creeks. The National Response Center can be reached at (800)424-8802.

Product Name: MOBIL DTE OIL HEAVY MEDIUM Revision Date: 19 Aug 2011 Page 3 of 10

PROTECTIVE MEASURES

Avoid contact with spilled material. See Section 5 for fire fighting information. See the Hazard Identification Section for Significant Hazards. See Section 4 for First Aid Advice. See Section 8 for advice on the minimum requirements for personal protective equipment. Additional protective measures may be necessary, depending on the specific circumstances and/or the expert judgment of the emergency responders. For emergency responders: Respiratory protection: respiratory protection will be necessary only in special cases, e.g., formation of mists. Half-face or full-face respirator with filter(s) for dust/organic vapor or Self Contained Breathing Apparatus (SCBA) can be used depending on the size of spill and potential level of exposure. If the exposure cannot be completely characterized or an oxygen deficient atmosphere is possible or anticipated, SCBA is recommended. Work gloves that are resistant to hydrocarbons are recommended. Gloves made of polyvinyl acetate (PVA) are not water-resistant and are not suitable for emergency use. Chemical goggles are usually adequate. Large spills: full body suit of chemical resistant, antistatic material is recommended.

SPILL MANAGEMENT

Land Spill: Stop leak if you can do it without risk. Recover by pumping or with suitable absorbent.

Water Spill: Stop leak if you can do it without risk. Confine the spill immediately with booms. Warn other shipping. Remove from the surface by skimming or with suitable absorbents. Seek the advice of a specialist before using dispersants.

Water spill and land spill recommendations are based on the most likely spill scenario for this material; however, geographic conditions, wind, temperature, (and in the case of a water spill) wave and current direction and speed may greatly influence the appropriate action to be taken. For this reason, local experts should be consulted. Note: Local regulations may prescribe or limit action to be taken.

ENVIRONMENTAL PRECAUTIONS

Large Spills: Dike far ahead of liquid spill for later recovery and disposal. Prevent entry into waterways, sewers, basements or confined areas.

	HANDLING AND STORAGE	1
SECTION 7	HANDUNGAND STURAGE	4

HANDLING

Prevent small spills and leakage to avoid slip hazard. Material can accumulate static charges which may cause an electrical spark (ignition source). When the material is handled in bulk, an electrical spark could ignite any flammable vapors from liquids or residues that may be present (e.g., during switch-loading operations). Use proper bonding and/or ground procedures. However, bonding and grounds may not eliminate the hazard from static accumulation. Consult local applicable standards for guidance. Additional references include American Petroleum Institute 2003 (Protection Against Ignitions Arising out of Static, Lightning and Stray Currents) or National Fire Protection Agency 77 (Recommended Practice on Static Electricity) or CENELEC CLC/TR 50404 (Electrostatics - Code of practice for the avoidance of hazards due to static electricity).

Static Accumulator: This material is a static accumulator.

STORAGE

The container choice, for example storage vessel, may effect static accumulation and dissipation. Do not store in open or unlabelled containers. Keep away from incompatible materials.

SECTION 8

EXPOSURE CONTROLS / PERSONAL PROTECTION

Product Name: MOBIL DTE OIL HEAVY MEDIUM Revision Date: 19 Aug 2011 Page 4 of 10

Exposure limits/standards for materials that can be formed when handling this product: When mists/aerosols can occur the following are recommended: 5 mg/m³ - ACGIH TLV (inhalable fraction), 5 mg/m³ - OSHA PEL.

NOTE: Limits/standards shown for guidance only. Follow applicable regulations.

ENGINEERING CONTROLS

The level of protection and types of controls necessary will vary depending upon potential exposure conditions. Control measures to consider:

No special requirements under ordinary conditions of use and with adequate ventilation.

PERSONAL PROTECTION

Personal protective equipment selections vary based on potential exposure conditions such as applications, handling practices, concentration and ventilation. Information on the selection of protective equipment for use with this material, as provided below, is based upon intended, normal usage.

Respiratory Protection: If engineering controls do not maintain airborne contaminant concentrations at a level which is adequate to protect worker health, an approved respirator may be appropriate. Respirator selection, use, and maintenance must be in accordance with regulatory requirements, if applicable. Types of respirators to be considered for this material include:

No special requirements under ordinary conditions of use and with adequate ventilation.

For high airborne concentrations, use an approved supplied-air respirator, operated in positive pressure mode. Supplied air respirators with an escape bottle may be appropriate when oxygen levels are inadequate, gas/vapor warning properties are poor, or if air purifying filter capacity/rating may be exceeded.

Hand Protection: Any specific glove information provided is based on published literature and glove manufacturer data. Glove suitability and breakthrough time will differ depending on the specific use conditions. Contact the glove manufacturer for specific advice on glove selection and breakthrough times for your use conditions. Inspect and replace worn or damaged gloves. The types of gloves to be considered for this material include:

No protection is ordinarily required under normal conditions of use.

Eye Protection: If contact is likely, safety glasses with side shields are recommended.

Skin and Body Protection: Any specific clothing information provided is based on published literature or manufacturer data. The types of clothing to be considered for this material include:

No skin protection is ordinarily required under normal conditions of use. In accordance with good industrial hygiene practices, precautions should be taken to avoid skin contact.

Specific Hygiene Measures: Always observe good personal hygiene measures, such as washing after handling the material and before eating, drinking, and/or smoking. Routinely wash work clothing and protective equipment to remove contaminants. Discard contaminated clothing and footwear that cannot be cleaned. Practice good housekeeping.

Product Name: MOBIL DTE OIL HEAVY MEDIUM Revision Date: 19 Aug 2011 Page 5 of 10

ENVIRONMENTAL CONTROLS

See Sections 6, 7, 12, 13.

SECTION 9

PHYSICAL AND CHEMICAL PROPERTIES

Note: Physical and chemical properties are provided for safety, health and environmental considerations only and may not fully represent product specifications. Contact the Supplier for additional information.

GENERAL INFORMATION

Physical State: Liquid Color: Amber Odor: Characteristic Odor Threshold: N/D

IMPORTANT HEALTH, SAFETY, AND ENVIRONMENTAL INFORMATION

Relative Density (at 15 C): 0.87 Flash Point [Method]: >223C (433F) [ASTM D-92] Flammable Limits (Approximate volume % in air): LEL: 0.9 UEL: 7.0 Autoignition Temperature: N/D Boiling Point / Range: > 316C (600F) [Estimated] Vapor Density (Air = 1): > 2 at 101 kPa [Estimated] Vapor Pressure: < 0.013 kPa (0.1 mm Hg) at 20 C [Estimated] Evaporation Rate (n-butyl acetate = 1): N/D pH: N/A Log Pow (n-Octanol/Water Partition Coefficient): > 3.5 [Estimated] Solubility in Water: Negligible Viscosity: 67.9 cSt (67.9 mm2/sec) at 40 C | 8.7 cSt (8.7 mm2/sec) at 100C Oxidizing Properties: See Hazards Identification Section.

OTHER INFORMATION

Freezing Point:N/DMelting Point:N/APour Point:-27°C (-17°F)DMSO Extract (mineral oil only), IP-346:< 3 %wt</td>Decomposition Temperature:N/D

SECTION 10

STABILITY AND REACTIVITY

STABILITY: Material is stable under normal conditions.

CONDITIONS TO AVOID: Excessive heat. High energy sources of ignition.

MATERIALS TO AVOID: Strong oxidizers

HAZARDOUS DECOMPOSITION PRODUCTS: Material does not decompose at ambient temperatures.

HAZARDOUS POLYMERIZATION: Will not occur.

SECTION 11	TOXICOLOGICAL INFORMATION	
ACUTE TOXICITY		
Route of Exposure	Conclusion / Remarks	

Product Name: MOBIL DTE OIL HEAVY MEDIUM Revision Date: 19 Aug 2011 Page 6 of 10

Inhalation	
Toxicity (Rat): LC50 > 5000 mg/m3	Minimally Toxic. Based on test data for structurally similar materials.
Irritation: No end point data.	Negligible hazard at ambient/normal handling temperatures. Based on assessment of the components.
Ingestion	
Toxicity (Rat): LD50 > 5000 mg/kg	Minimally Toxic. Based on test data for structurally similar materials.
Skin	
Toxicity (Rabbit): LD50 > 5000 mg/kg	Minimally Toxic. Based on test data for structurally similar materials.
Irritation (Rabbit): Data available.	Negligible irritation to skin at ambient temperatures. Based on test data for structurally similar materials.
Eye	
Irritation (Rabbit): Data available.	May cause mild, short-lasting discomfort to eyes. Based on test data for structurally similar materials.

CHRONIC/OTHER EFFECTS

Contains:

Base oil severely refined: Not carcinogenic in animal studies. Representative material passes IP-346, Modified Ames test, and/or other screening tests. Dermal and inhalation studies showed minimal effects; lung non-specific infiltration of immune cells, oil deposition and minimal granuloma formation. Not sensitizing in test animals.

Additional information is available by request.

The following ingredients are cited on the lists below: None.

	REGULATORY LISTS SEA	RCHED
1 = NTP CARC	3 = IARC 1	5 = IARC 2B
2 = NTP SUS	4 = IARC 2A	6 = OSHA CARC

SECTION 12

ECOLOGICAL INFORMATION

The information given is based on data available for the material, the components of the material, and similar materials.

ECOTOXICITY

Material -- Not expected to be harmful to aquatic organisms.

MOBILITY

Base oil component -- Low solubility and floats and is expected to migrate from water to the land. Expected to partition to sediment and wastewater solids.

PERSISTENCE AND DEGRADABILITY

Biodegradation:

Base oil component -- Expected to be inherently biodegradable

Product Name: MOBIL DTE OIL HEAVY MEDIUM Revision Date: 19 Aug 2011 Page 7 of 10

BIOACCUMULATION POTENTIAL

Base oil component -- Has the potential to bioaccumulate, however metabolism or physical properties may reduce the bioconcentration or limit bioavailability.

SECTION 13

DISPOSAL CONSIDERATIONS

Disposal recommendations based on material as supplied. Disposal must be in accordance with current applicable laws and regulations, and material characteristics at time of disposal.

DISPOSAL RECOMMENDATIONS

Product is suitable for burning in an enclosed controlled burner for fuel value or disposal by supervised incineration at very high temperatures to prevent formation of undesirable combustion products. Protect the environment. Dispose of used oil at designated sites. Minimize skin contact. Do not mix used oils with solvents, brake fluids or coolants.

REGULATORY DISPOSAL INFORMATION

RCRA Information: The unused product, in our opinion, is not specifically listed by the EPA as a hazardous waste (40 CFR, Part 261D), nor is it formulated to contain materials which are listed as hazardous wastes. It does not exhibit the hazardous characteristics of ignitability, corrositivity or reactivity and is not formulated with contaminants as determined by the Toxicity Characteristic Leaching Procedure (TCLP). However, used product may be regulated.

Empty Container Warning Empty Container Warning (where applicable): Empty containers may contain residue and can be dangerous. Do not attempt to refill or clean containers without proper instructions. Empty drums should be completely drained and safely stored until appropriately reconditioned or disposed. Empty containers should be taken for recycling, recovery, or disposal through suitably qualified or licensed contractor and in accordance with governmental regulations. DO NOT PRESSURISE, CUT, WELD, BRAZE, SOLDER, DRILL, GRIND, OR EXPOSE SUCH CONTAINERS TO HEAT, FLAME, SPARKS, STATIC ELECTRICITY, OR OTHER SOURCES OF IGNITION. THEY MAY EXPLODE AND CAUSE INJURY OR DEATH.

	TRANSPORT INFORMATION
I SECTION 14	

- LAND (DOT): Not Regulated for Land Transport
- LAND (TDG): Not Regulated for Land Transport
- SEA (IMDG): Not Regulated for Sea Transport according to IMDG-Code
- AIR (IATA): Not Regulated for Air Transport

SECTION 15

REGULATORY INFORMATION

OSHA HAZARD COMMUNICATION STANDARD: When used for its intended purposes, this material is not classified as hazardous in accordance with OSHA 29 CFR 1910.1200.

EXonMobil

Product Name: MOBIL DTE OIL HEAVY MEDIUM Revision Date: 19 Aug 2011 Page 8 of 10

Complies with the following national/regional chemical inventory requirements: DSL, IECSC, TSCA, EINECS, PICCS, AICS

EPCRA: This material contains no extremely hazardous substances.

SARA (311/312) REPORTABLE HAZARD CATEGORIES: None.

SARA (313) TOXIC RELEASE INVENTORY: This material contains no chemicals subject to the supplier notification requirements of the SARA 313 Toxic Release Program.

The following ingredients are cited on the lists below:

Chemical Name	CAS Number	List Citations	
PHOSPHORODITHOIC ACID,	68649-42-3	15	
O,O-DI C1-14-ALKYL ESTERS,			
ZINC SALTS (2:1) (ZDDP)			

--REGULATORY LISTS SEARCHED--

	REGULATOP	T LISTS SEARCHED	
1 = ACGIH ALL	6 = TSCA 5a2	11 = CA P65 REPRO	16 = MN RTK
2 = ACGIH A1	7 = TSCA 5e	12 = CA RTK	17 = NJ RTK
3 = ACGIH A2	8 = TSCA 6	13 = IL RTK	18 = PA RTK
4 = OSHA Z	9 = TSCA 12b	14 = LA RTK	19 = RI RTK
5 = TSCA 4	10 = CA P65 CARC	15 = MI 293	

Code key: CARC=Carcinogen; REPRO=Reproductive

SECTION 16	OTHER INFORMATION
N/D = Not determined	/A = Not applicable

ineo, iwa = ivot applicable

THIS SAFETY DATA SHEET CONTAINS THE FOLLOWING REVISIONS:

Revision Changes:

Section 06: Notification Procedures - Header was modified.

Section 13: Disposal Considerations - Disposal Recommendations was modified.

Section 10 Stability and Reactivity - Header was modified.

Section 13: Disposal Recommendations - Note was modified.

Section 13: Empty Container Warning was modified.

Section 09: Phys/Chem Properties Note was modified.

Section 09: Boiling Point C(F) was modified.

Section 09: Flash Point C(F) was modified.

Section 09: n-Octanol/Water Partition Coefficient was modified.

Section 08: Personal Protection was modified.

Section 08: Hand Protection was modified.

Section 07: Handling and Storage - Handling was modified.

Section 07: Handling and Storage - Storage Phrases was modified.

Section 11: Dermal Lethality Test Data was modified.

E%onMobil

Product Name: MOBIL DTE OIL HEAVY MEDIUM Revision Date: 19 Aug 2011 Page 9 of 10

Section 11: Oral Lethality Test Data was modified. Section 05; Hazardous Combustion Products was modified. Section 06: Accidental Release - Spill Management - Water was modified. Section 09: Relative Density - Header was modified. Section 09: Flash Point C(F) was modified. Section 09: Viscosity was modified. Section 14: Sea (IMDG) - Header was modified. Section 14: Air (IATA) - Header was modified. Section 14: LAND (TDG) - Header was modified. Section 14: LAND (DOT) - Header was modified. Section 15: List Citation Table - Header was modified. Section 14: LAND (DOT) - Default was modified. Section 14: LAND (TDG) Default was modified. Section 14: Sea (IMDG) - Default was modified. Section 14: Air (IATA) - Default was modified. Section 15: National Chemical Inventory Listing - Header was modified. Section 15: National Chemical Inventory Listing was modified. Section 16: Code to MHCs was modified. Section 08: Exposure limits/standards was modified. Hazard Identification: OSHA - May be Hazardous Statement was modified. Section 06: Notification Procedures was modified. Section 09: Oxidizing Properties was modified. Section 01: Company Contact Methods Sorted by Priority was modified. Section 06: Protective Measures was added. Section 06: Accidental Release - Protective Measures - Header was added. Section 15: Chemical Name - Header was added. Section 15: CAS Number - Header was added. Section 15: List Citations - Header was added. Section 15: List Citations Table was added. Section 09: Decomposition Temperature was added. Section 09: Decomposition Temp - Header was added. Section 09. Vapor Pressure was added. _____ The information and recommendations contained herein are, to the best of ExxonMobil's knowledge and belief, accurate and reliable as of the date issued. You can contact ExxonMobil to insure that this document is the most current available from ExxonMobil. The information and recommendations are offered for the user's consideration and examination. It is the user's responsibility to satisfy itself that the product is suitable for the intended use. If buyer repackages this product, it is the user's responsibility to insure proper health, safety and other necessary information is included with and/or on the container. Appropriate warnings and safe-handling procedures should be provided to handlers and users. Alteration of this document is strictly prohibited. Except to the extent required by law, re-publication or retransmission of this document, in whole or in part, is not permitted. The term, "ExxonMobil" is used for convenience, and may include any one or more of ExxonMobil Chemical Company, Exxon Mobil Corporation, or any affiliates in which they directly or indirectly hold any interest. _____

Internal Use Only MHC: 0B, 0B, 0, 0, 0, 0

PPEC: A

DGN: 2007083XUS (1013293)

Product Name: MOBIL DTE OIL HEAVY MEDIUM Revision Date: 19 Aug 2011 Page 10 of 10

Copyright 2002 Exxon Mobil Corporation, All rights reserved

Lubricant: Mobil DTE Oil BB

Ex on Mobil

Product Name: MOBIL DTE OIL BB Revision Date: 27Sep2007 Page 1 of 8

MATERIAL SAFETY DATA SHEET

USA

609-737-4411

SECTION 1

PRODUCT AND COMPANY IDENTIFICATION

PRODUCT

MOBIL DTE OIL BB **Product Name:** Product Description: Base Oil and Additives **Product Code:** 600221-00, 970905 Intended Use: Circulating/gear oil

COMPANY IDENTIFICATION

Supplier: EXXON MOBIL CORPORATION 3225 GALLOWS RD. FAIRFAX, VA. 22037 24 Hour Health Emergency **Transportation Emergency Phone** ExxonMobil Transportation No. **MSDS Requests** Product Technical Information **MSDS Internet Address**

800-424-9300 281-834-3296 713-613-3661 800-662-4525, 800-947-9147 http://www.exxon.com, http://www.mobil.com

SECTION 2

COMPOSITION / INFORMATION ON INGREDIENTS

No Reportable Hazardous Substance(s) or Complex Substance(s).

SECTION 3

HAZARDS IDENTIFICATION

This material is not considered to be hazardous according to regulatory guidelines (see (M)SDS Section 15).

POTENTIAL HEALTH EFFECTS

Low order of toxicity. Excessive exposure may result in eye, skin, or respiratory irritation. High-pressure injection under skin may cause serious damage.

NFPA Hazard ID:	Health:	0	Flammability:	1	Reactivity:	0
HMIS Hazard ID:	Health:	0	Flammability:	1	Reactivity:	0

NOTE: This material should not be used for any other purpose than the intended use in Section 1 without expert advice. Health studies have shown that chemical exposure may cause potential human health risks which may vary from person to person.

SECTION 4	FIRST AID MEASURES

INHALATION

Remove from further exposure, For those providing assistance, avoid exposure to yourself or others. Use adequate respiratory protection. If respiratory irritation, dizziness, nausea, or unconsciousness occurs, seek immediate medical assistance. If breathing has stopped, assist ventilation with a mechanical device or use

E%onMobil

Product Name: MOBIL DTE OIL BB Revision Date: 27Sep2007 Page 2 of 8

mouth-to-mouth resuscitation.

SKIN CONTACT

Wash contact areas with soap and water. If product is injected into or under the skin, or into any part of the body, regardless of the appearance of the wound or its size, the individual should be evaluated immediately by a physician as a surgical emergency. Even though initial symptoms from high pressure injection may be minimal or absent, early surgical treatment within the first few hours may significantly reduce the ultimate extent of injury.

EYE CONTACT

Flush thoroughly with water. If irritation occurs, get medical assistance.

INGESTION

First aid is normally not required. Seek medical attention if discomfort occurs.

SECTION 5 FIRE FIGHTING MEASURES

EXTINGUISHING MEDIA

Appropriate Extinguishing Media: Use water fog, foam, dry chemical or carbon dioxide (CO2) to extinguish flames.

Inappropriate Extinguishing Media: Straight Streams of Water

FIRE FIGHTING

Fire Fighting Instructions: Evacuate area. Prevent runoff from fire control or dilution from entering streams, sewers, or drinking water supply. Firefighters should use standard protective equipment and in enclosed spaces, self-contained breathing apparatus (SCBA). Use water spray to cool fire exposed surfaces and to protect personnel.

Unusual Fire Hazards: Pressurized mists may form a flammable mixture.

Hazardous Combustion Products: Aldehydes, Oxides of carbon, Incomplete combustion products, Sulfur oxides, Smoke, Fume

FLAMMABILITY PROPERTIES

Flash Point [Method]: >234C (453F) [ASTM D-92] Flammable Limits (Approximate volume % in air): LEL: 0.9 UEL: 7.0 Autoignition Temperature: N/D

SECTION 6

ACCIDENTAL RELEASE MEASURES

NOTIFICATION PROCEDURES

In the event of a spill or accidental release, notify relevant authorities in accordance with all applicable regulations. In the event of a spill or accidental release, notify relevant authorities in accordance with all applicable regulations. US regulations require reporting releases of this material to the environment which exceed the applicable reportable quantity or oil spills which could reach any waterway including intermittent dry creeks. The National Response Center can be reached at (800)424-8802.

Product Name: MOBIL DTE OIL BB Revision Date: 27Sep2007 Page 3 of 8

SPILL MANAGEMENT

Land Spill: Stop leak if you can do it without risk. Recover by pumping or with suitable absorbent.

Water Spill: Stop leak if you can do it without risk. Confine the spill immediately with booms. Warn other shipping. Remove from the surface by skimming or with suitable absorbents. Seek the advice of a specialist before using dispersants.

Water spill and land spill recommendations are based on the most likely spill scenario for this material; however, geographic conditions, wind, temperature, (and in the case of a water spill) wave and current direction and speed may greatly influence the appropriate action to be taken. For this reason, local experts should be consulted. Note: Local regulations may prescribe or limit action to be taken.

ENVIRONMENTAL PRECAUTIONS

Large Spills: Dike far ahead of liquid spill for later recovery and disposal. Prevent entry into waterways, sewers, basements or confined areas.

SECTION 7 HANDLING AND STORAGE

HANDLING

Prevent small spills and leakage to avoid slip hazard.

Static Accumulator: This material is a static accumulator.

STORAGE

Do not store in open or unlabelled containers.

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Exposure limits/standards for materials that can be formed when handling this product: When mists / aerosols can occur, the following are recommended: 5 mg/m³ - ACGIH TLV, 10 mg/m³ - ACGIH STEL, 5 mg/m³ - OSHA PEL.

NOTE: Limits/standards shown for guidance only. Follow applicable regulations.

ENGINEERING CONTROLS

The level of protection and types of controls necessary will vary depending upon potential exposure conditions. Control measures to consider:

No special requirements under ordinary conditions of use and with adequate ventilation.

PERSONAL PROTECTION

Personal protective equipment selections vary based on potential exposure conditions such as applications, handling practices, concentration and ventilation. Information on the selection of protective equipment for use with this material, as provided below, is based upon intended, normal usage.

Product Name: MOBIL DTE OIL BB Revision Date: 27Sep2007 Page 4 of 8

Respiratory Protection: If engineering controls do not maintain airborne contaminant concentrations at a level which is adequate to protect worker health, an approved respirator may be appropriate. Respirator selection, use, and maintenance must be in accordance with regulatory requirements, if applicable. Types of respirators to be considered for this material include:

No special requirements under ordinary conditions of use and with adequate ventilation.

For high airborne concentrations, use an approved supplied-air respirator, operated in positive pressure mode. Supplied air respirators with an escape bottle may be appropriate when oxygen levels are inadequate, gas/vapor warning properties are poor, or if air purifying filter capacity/rating may be exceeded.

Hand Protection: Any specific glove information provided is based on published literature and glove manufacturer data. Work conditions can greatly affect glove durability; inspect and replace worn or damaged gloves. The types of gloves to be considered for this material include:

No protection is ordinarily required under normal conditions of use.

Eye Protection: If contact is likely, safety glasses with side shields are recommended.

Skin and Body Protection: Any specific clothing information provided is based on published literature or manufacturer data. The types of clothing to be considered for this material include: No skin protection is ordinarily required under normal conditions of use. In accordance with good

industrial hygiene practices, precautions should be taken to avoid skin contact.

Specific Hygiene Measures: Always observe good personal hygiene measures, such as washing after handling the material and before eating, drinking, and/or smoking. Routinely wash work clothing and protective equipment to remove contaminants. Discard contaminated clothing and footwear that cannot be cleaned. Practice good housekeeping.

ENVIRONMENTAL CONTROLS

See Sections 6, 7, 12, 13.

SECTION 9

PHYSICAL AND CHEMICAL PROPERTIES

Typical physical and chemical properties are given below. Consult the Supplier in Section 1 for additional data.

GENERAL INFORMATION

Physical State: Liquid Color: Brown Odor: Characteristic Odor Threshold: N/D

IMPORTANT HEALTH, SAFETY, AND ENVIRONMENTAL INFORMATION

Relative Density (at 15 C): 0.89 Flash Point [Method]: >234C (453F) [ASTM D-92] Flammable Limits (Approximate volume % in air): LEL: 0.9 UEL: 7.0 Autoignition Temperature: N/D Boiling Point / Range: > 316C (600F) Vapor Density (Air = 1): > 2 at 101 kPa Vapor Pressure: < 0.013 kPa (0.1 mm Hg) at 20 C Evaporation Rate (n-butyl acetate = 1): N/D pH: N/A

Product Name: MOBIL DTE OIL BB Revision Date: 27Sep2007 Page 5 of 8

> Log Pow (n-Octanol/Water Partition Coefficient): > 3.5 Solubility in Water: Negligible Viscosity: 220 cSt (220 mm2/sec) at 40 C Oxidizing Properties: See Sections 3, 15, 16.

OTHER INFORMATION Freezing Point: N/D Melting Point: N/A Pour Point: -12°C (10°F) DMSO Extract (mineral oil only), IP-346: < 3 %wt

SECTION 10 STABILITY AND REACTIVITY

STABILITY: Material is stable under normal conditions.

CONDITIONS TO AVOID: Excessive heat. High energy sources of ignition.

MATERIALS TO AVOID: Strong oxidizers

HAZARDOUS DECOMPOSITION PRODUCTS: Material does not decompose at ambient temperatures.

HAZARDOUS POLYMERIZATION: Will not occur.

SECTION 11

TOXICOLOGICAL INFORMATION

ACUTE TOXICITY

Route of Exposure	Conclusion / Remarks
Inhalation	
Toxicity (Rat): LC50 > 5000 mg/m3	Minimally Toxic. Based on assessment of the components.
Irritation: No end point data.	Negligible hazard at ambient/normal handling temperatures. Based on assessment of the components.
Ingestion	
Toxicity (Rat): LD50 > 2000 mg/kg	Minimally Toxic. Based on test data for structurally similar materials.
Skin	
Toxicity (Rabbit): LD50 > 2000 mg/kg	Minimally Toxic. Based on test data for structurally similar materials.
Irritation (Rabbit): Data available.	Negligible irritation to skin at ambient temperatures. Based on assessment of the components.
Eye	
Irritation (Rabbit): Data available.	May cause mild, short-lasting discomfort to eyes. Based on assessment of the components.

CHRONIC/OTHER EFFECTS

Contains:

Base oil severely refined: Not carcinogenic in animal studies. Representative material passes IP-346, Modified Ames test, and/or other screening tests. Dermal and inhalation studies showed minimal effects; lung non-specific infiltration of immune cells, oil deposition and minimal granuloma formation. Not sensitizing in test animals.

Product Name: MOBIL DTE OIL BB Revision Date: 27Sep2007 Page 6 of 8

Additional information is available by request.

The following ingredients are cited on the lists below: None.

	REGULATORY LISTS SE	ARCHED
1 = NTP CARC	3 = IARC 1	5 = IARC 2B
2 = NTP SUS	4 = IARC 2A	6 = OSHA CARC

SECTION 12

ECOLOGICAL INFORMATION

The information given is based on data available for the material, the components of the material, and similar materials.

ECOTOXICITY

Material -- Not expected to be harmful to aquatic organisms.

MOBILITY

Base oil component -- Low solubility and floats and is expected to migrate from water to the land. Expected to partition to sediment and wastewater solids.

PERSISTENCE AND DEGRADABILITY

Biodegradation:

Base oil component -- Expected to be inherently biodegradable

BIOACCUMULATION POTENTIAL

Base oil component -- Has the potential to bioaccumulate, however metabolism or physical properties may reduce the bioconcentration or limit bioavailability.

	DISPOSAL CONSIDERATIONS	
SECTION 13	DISPOSAL CONSIDERATIONS	
I AFGIUNIA		

Disposal recommendations based on material as supplied. Disposal must be in accordance with current applicable laws and regulations, and material characteristics at time of disposal.

DISPOSAL RECOMMENDATIONS

Product is suitable for burning in an enclosed controlled burner for fuel value or disposal by supervised incineration at very high temperatures to prevent formation of undesirable combustion products.

REGULATORY DISPOSAL INFORMATION

RCRA Information: The unused product, in our opinion, is not specifically listed by the EPA as a hazardous waste (40 CFR, Part 261D), nor is it formulated to contain materials which are listed as hazardous wastes. It does not exhibit the hazardous characteristics of ignitability, corrositivity or reactivity and is not formulated with contaminants as determined by the Toxicity Characteristic Leaching Procedure (TCLP). However, used product may be regulated.

Empty Container Warning Empty Container Warning (where applicable): Empty containers may contain residue and can be dangerous. Do not attempt to refill or clean containers without proper instructions. Empty drums should be completely drained and safely stored until appropriately reconditioned or disposed. Empty containers should be taken

Product Name: MOBIL DTE OIL BB Revision Date: 27Sep2007 Page 7 of 8

for recycling, recovery, or disposal through suitably qualified or licensed contractor and in accordance with governmental regulations. DO NOT PRESSURISE, CUT, WELD, BRAZE, SOLDER, DRILL, GRIND, OR EXPOSE SUCH CONTAINERS TO HEAT, FLAME, SPARKS, STATIC ELECTRICITY, OR OTHER SOURCES OF IGNITION. THEY MAY EXPLODE AND CAUSE INJURY OR DEATH.

	TRANSPORT INFORMATION	
SECTION 14		

- LAND (DOT): Not Regulated for Land Transport
- LAND (TDG): Not Regulated for Land Transport
- SEA (IMDG): Not Regulated for Sea Transport according to IMDG-Code
- AIR (IATA): Not Regulated for Air Transport

SECTION 15

REGULATORY INFORMATION

OSHA HAZARD COMMUNICATION STANDARD: When used for its intended purposes, this material is not classified as hazardous in accordance with OSHA 29 CFR 1910.1200.

NATIONAL CHEMICAL INVENTORY LISTING: TSCA, AICS, PICCS, ENCS, DSL, EINECS, IECSC, KECI

EPCRA: This material contains no extremely hazardous substances.

SARA (311/312) REPORTABLE HAZARD CATEGORIES: None.

SARA (313) TOXIC RELEASE INVENTORY: This material contains no chemicals subject to the supplier notification requirements of the SARA 313 Toxic Release Program.

The Following Ingredients are Cited on the Lists Below: None.

	REGULATORY LISTS SEARCHED		
1 = ACGIH ALL	6 = TSCA 5a2	11 = CA P65 REPRO	16 = MN RTK
2 = ACGIH A1	7 = TSCA 5e	12 = CA RTK	17 = NJ RTK
3 = ACGIH A2	8 = TSCA 6	13 = IL RTK	18 = PA RTK
4 = OSHA Z	9 = TSCA 12b	14 = LA RTK	19 = RI RTK
5 = TSCA 4	10 = CA P65 CARC	15 = MI 293	

Code key: CARC=Carcinogen; REPRO=Reproductive

SECTION 16	OTHER INFORMATION	
N/D = Not determined, N/A = Not applicable		

THIS SAFETY DATA SHEET CONTAINS THE FOLLOWING REVISIONS: No revision information is available.

ExonMobil

Product Name: MOBIL DTE OIL BB Revision Date: 27Sep2007 Page 8 of 8

The information and recommendations contained herein are, to the best of ExxonMobil's knowledge and belief, accurate and reliable as of the date issued. You can contact ExxonMobil to insure that this document is the most current available from ExxonMobil. The information and recommendations are offered for the user's consideration and examination. It is the user's responsibility to satisfy itself that the product is suitable for the intended use. If buyer repackages this product, it is the user's responsibility to insure proper health, safety and other necessary information is included with and/or on the container. Appropriate warnings and safe-handling procedures should be provided to handlers and users. Alteration of this document is strictly prohibited. Except to the extent required by law, re-publication or retransmission of this document, in whole or in part, is not permitted. The term, "ExxonMobil" is used for convenience, and may include any one or more of ExxonMobil Chemical Company, Exxon Mobil Corporation, or any affiliates in which they directly or indirectly hold any interest.

Internal Use Only MHC: 0, 0, 0, 0, 0, 0

PPEC: A

DGN: 2007132XUS (546634)

Copyright 2002 Exxon Mobil Corporation, All rights reserved

ATTACHMENT I: EMISSIONS UNIT TABLE

RULE 13 AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

BLUE RACER MIDSTREAM, LLC

Attachment I

Emission Units Table

(includes all emission units and air pollution control devices

that will be part of this permit application review, regardless of permitting status)

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed/ Modified	Design Capacity	Type ³ and Date of Change	Control Device ⁴
S024	P024	Regen Gas Heater (9.7 MMBtu/hr)	2015	9.7 MMBtu/hr	New	None
S025	P025	Regen Gas Heater (9.7 MMBtu/hr)	2015	9.7 MMBtu/hr	New	None
S026	P026	Cryo HMO Heater (26.3 MMBtu/hr)	2015	26.3 MMBtu/hr	New	None
S027	P027	Cryo HMO Heater (26.3 MMBtu/hr)	2015	26.3 MMBtu/hr	New	None
S028	P028	Glycol Reboiler (3.0 MMBtu/hr)	2015	3.0 MMBtu/hr	New	None
S029	P029	Glycol Reboiler (3.0 MMBtu/hr)	2015	3.0 MMBtu/hr	New	None
S030	P030	Glycol Reboiler (3.0 MMBtu/hr)	2015	3.0 MMBtu/hr	New	None
FUG AREA 3	FUG AREA 3	Fugitives (Cryo Train 3)	2015	N/A	New	None
FUG AREA 4	FUG AREA 4	Fugitives (Cryo Train 4)	2015	N/A	New	None
S031	V002	Dehydrator Still Vent	2015	230 MMSCFD	New	C008
S032	V003	Dehydrator Still Vent	2015	230 MMSCFD	New	C009
S033	V004	Dehydrator Still Vent	2015	230 MMSCFD	New	C010
V001	V001	Vapor Combustor	2015	N/A	New	C007
V002	V002	Vapor Combustor	2015	N/A	New	C008
V003	V003	Vapor Combustor	2015	N/A	New	C009

V004	V004	Vapor Combustor	2015	N/A	New	C010
S001	P001	Hot Oil Heater (216.7 MMBtu/hr)	2014	216.7 MMBtu/hr	Existing	None
S004A	P004A	Ground Flare	2015	N/A	Modification- 2015	Flare (C004A)
S004	P004	Main Flare	2013	N/A	Removal - 2015	Flare (C004)
S021	P021	Emergency Flare	2014	N/A	Existing	(C021)
S007	P004A	Slop Tank TK-906	2011	500 BBL	Existing	C005, C004A
S011	P005	Ethane Amine Regenerator	2011	29 MMscf/day	Existing	None
S014	P006	Ethane Amine Regenerator	2014	100 MMscf/day	Existing	None
S005	P001	Natural Gasoline Storage Tank	2011	17,000 BBL	Existing	C001
S023	P001	Natural Gasoline Storage Tank	2014	38,788 BBL	Existing	C001
S016	P016	Hot Oil Heater (61.6 MMBtu/hr)	2014	61.6 MMBtu/hr	Existing	None
S017	P017	Hot Oil Heater (61.6 MMBtu/hr)	2014	61.6 MMBtu/hr	Existing	None
S018	P018	Hot Oil Heater (61.6 MMBtu/hr)	2014	61.6 MMBtu/hr	Existing	None
S019	P019	Hot Oil Heater (61.6 MMBtu/hr)	2014	61.6 MMBtu/hr	Existing	None
S020	P020	Glycol Reboiler (3.0 MMBtu/hr)	2014	3.0 MMBtu/hr	Existing	None
ROADS (S010)	ROADS	Unpaved Roads	2011	N/A	Existing	None
FUG AREA 2	FUG AREA 2	Fugitives	2014	N/A	Existing	None
S006	V001	Glycol Dehydration System	2011	230 MMSCFD	Modification to control device - 2015	C007

S008	P008	Product Loading – closed loop	2011	35,000 gpm (Truck, Rail and Barge)	Existing	Vapor Return to Tank
S022	P022	Regen Gas Heater (9.7 MMBtu/hr)	2014	9.7 MMBtu/hr	Existing	None
S012	P012	Regen Gas Heater (9.7 MMBtu/hr)	2013	9.7 MMBtu/hr	Existing	None
S013	P013	Cryo HMO Heater (26.3 MMBtu/hr)	2013	26.3 MMBtu/hr	Existing	None
S002	P002	Fire Pump #1	2011	700 HP	Existing	None
S003	P003	Fire Pump #2	2011	700 HP	Existing	None
FUG AREA 1 (S009)	FUG AREA 1	Fugitives – Equipment Leaks	2011	N/A	Existing	None
N/A	Flare (Emergency only)	Four (4) Pressurized Butane Bullet Tank	2014	90,000 gal	Existing	None
NA	Flare (Emergency only)	Horizontal Propane Storage Tank (US-800)	2011	51,000 BBL	Existing	Pressure Tank
NA	Flare (Emergency only)	Horizontal Isobutane Storage Tank (US-801)	2011	20,600 BBL	Existing	Pressure Tank
NA	Flare (Emergency only)	Horizontal Normal Butane Storage Tank (US-804)	2011	20,600 BBL	Existing	Pressure Tank
NA	Flare (Emergency only)	Horizontal Natural Gas Liquid Storage Tank (US-805)	2011	20,600 BBL	Existing	Pressure Tank
NA	Flare (Emergency only)	Miscellaneous Storage Tanks	2011	Varies	Existing	None

¹ For Emission Units (or <u>Sources</u>) use the following numbering system:1S, 2S, 3S,... or other appropriate designation. ² For <u>E</u>mission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ New, modification, removal ⁴ For <u>C</u>ontrol Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

ATTACHMENT J: EMISSION POINTS DATA SUMMARY SHEET

RULE 13 AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

BLUE RACER MIDSTREAM, LLC

Attachment J EMISSION POINTS DATA SUMMARY SHEE	
---	--

늡

Concentration (ppmv or mg/m⁴) Emission N/A N/AN/AMethod Used ⁶ Est. ΕE ΕE ΕE Liquid or Gas/Vapor) conditions, Solid, Emission Form or (At exit Phase Gas 13,465 ton/yr 4,966 4,966 11.29 Controlled Emissions⁵ 0.033.50 0.230.320.039.49 0.620.860.080.230.32 4.17 4.17 3.50 0 (2)9 Maximum Potential lb/hr 0.95 0.80 0.05 0.07 0.95 0.800.05 0.07 0.012.58 2.17 0.140.200.020.01 (2)ł ł 3 ł 9 ton/yr 13,465 4,966 4,966 Uncontrolled Emissions⁴ 11.29 0.030.864.17 3.50 0.230.320.03 4.17 3.50 0.230.329.49 0.620.083 0 0 Maximum Potential lb/hr 0.05 0.95 0.80 0.05 0.07 0.95 0.800.07 0.01 2.58 2.17 0.140.200.02 0.019 ł ł 9 3 ł Name/CAS³ Table 1: Emissions Data Regulated Pollutants -(Speciate VOCs & HAPS) Chemical CO_{2e}(1) CO_{2e}(1) $CO_{2e}(1)$ VOC HAPs HAPs VOC VOC HAPs ΡM \mathbf{SO}_2 SO_2 CO x NOx ΡM CO x ΡM \mathbf{SO}_2 CO ¥ processes only) Emission Unit Max (hr/yr) N/AVent Time for N/AN/A(chemical Short Term² U U U (Must match Emission Units Table & Plot Plan) Air Pollution Control Device Type N/AN/AN/ADevice ID No. N/AN/AN/ACryo HMO Heater Regen Gas Heater Regen Gas Heater Through This Point (Must match Emission Units Table & Plot Plan) Emission Unit Vented Source ID No. S026 S024 S024 Emission Point Type¹ Vertical Vertical Vertical (Must match Emission Units Table-& Plot Plan) Point ID No. Emission P026 P024 P025

N/A	N/A	N/A	N/A	A/A	N/A
B	EE	EE	EE	EE	EE
Gas Gas Gas Gas Gas Gas	Gas Gas Gas Gas Gas Gas	Gas Gas Gas Gas Gas Gas	Gas Gas Gas Gas Gas Gas	Gas Gas Gas Gas Gas	Gas Gas Gas Gas
$\begin{array}{c} 11.29\\9.49\\0.62\\0.86\\0.08\\13,465\\(2)\end{array}$	1.29 1.08 0.07 0.10 0.10 1,536 (2)	1.29 1.08 0.07 0.10 0.10 1,536 (2)	1.29 1.08 0.07 0.10 0.10 1,536 (2)	4.17 0.04 1.52 38 (2)	4.17 0.04 1.52 38 (2)
2.58 2.17 0.14 0.20 0.02 0.02 	0.29 0.25 0.02 0.02 0.02 0.002 	0.29 0.25 0.02 0.02 0.02 0.002 	0.29 0.25 0.02 0.02 0.02 0.002 	0.95 (2)	0.95 (2)
$\begin{array}{c} 11.29\\9.49\\0.62\\0.86\\0.08\\13,465\\(2)\end{array}$	1.29 1.08 0.07 0.10 0.10 1,536 (2)	1.29 1.08 0.07 0.10 0.10 1,536 (2)	1.29 1.08 0.07 0.10 0.10 1,536 (2)	4.17 0.04 1.52 38 (2)	4.17 0.04 1.52 38 (2)
2.58 2.17 0.14 0.20 0.02 0.02 	0.29 0.25 0.02 0.02 0.02 0.002 	0.29 0.25 0.02 0.02 0.02 0.002 	0.29 0.25 0.02 0.02 0.02 0.002 	0.95 (2)	0.95 (2)
NO _x CO PM SO ₂ CO _{2e} (1) HAPs	NO _x CO VOC PM SO ₂ CO _{2e} (1) HAPs	NO _x CO PM SO ₂ CO _{2e} (1) HAPs	NO _x CO VOC PM SO ₂ CO _{2e} (1) HAPs	VOC CO ₂ CH ₄ CO _{2e} (1) HAPs	VOC CO ₂ CH ₄ CO _{2e} (1) HAPs
N/A	N/A	N/A	N/A	N/A	N/A
U	C	U	ပ	C	C
N/A	A/A	N/A	N/A	V /N	A/N
N/A	N/A	N/A	N/A	N/A	N/A
Cryo HMO Heater	Glycol Reboiler	Glycol Reboiler	Glycol Reboiler	Fugitives (Cryo Train)	Fugitives (Cryo Train)
S027	S028	S029	S030	FUG AREA 3	FUG AREA 4
Vertical	Vertical	Vertical	Vertical	A/N	A/A
P027	P028	P029	P030	FUG AREA 3	FUG AREA 4

N/A					N/A					N/A					N/A					N/A							N/A						
EE					EE					EE					EE					EE							EE						
Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas
8.89	0.38	6.83	171	(2)	8.89	0.38	6.83	171	(2)	8.89	0.38	6.83	171	(2)	8.89	0.38	6.83	171	(2)	3.27	6.53	0.001	0.11	0.01	2,768	(2)	3.27	6.53	0.001	0.11	0.01	2,768	(2)
2.03	1	1	1	(2)	2.03	ł	1	1	(2)	2.03	1	1	ł	(2)	2.03	1	1	1	(2)	0.75	1.49	0.0002	0.03	0.002	ł	(2)	0.75	1.49	0.0002	0.03	0.002	1	(2)
8.89	0.38	6.83	171	(2)	8.89	0.38	6.83	171	(2)	8.89	0.38	6.83	171	(2)	8.89	0.38	6.83	171	(2)	3.27	6.53	0.001	0.11	0.01	2,738	(2)	3.27	6.53	0.001	0.11	0.01	2,768	(2)
2.03	ł	ł	1	(2)	2.03	ł	ł	ł	(2)	2.03	1	ł	ł	(2)	2.03	ł	ł	ł	(2)	0.75	1.49	0.0002	0.03	0.002	ł	(2)	0.75	1.49	0.0002	0.03	0.002	1	(2)
VOC	CO_2	CH_4	$\mathrm{CO}_{2\mathrm{e}}(1)$	HAPs	VOC	CO_2	CH_4	CO _{2e} (1)	HAPs	VOC	CO_2	CH_4	CO _{2e} (1)	HAPs	VOC	CO_2	CH_4	$CO_{2e}(1)$	HAPs	NO_X	CO	VOC	ΡM	SO_2	$\mathrm{CO}_{2\mathrm{e}}(1)$	HAPs	NO_X	CO	VOC	ΡM	\mathbf{SO}_2	$CO_{2e}(1)$	HAPs
N/A					N/A					N/A					\mathbf{N}/\mathbf{A}					N/A							N/A						
C					C					С					С					U							С						
N/A					N/A					N/A					N/A					N/A							N/A						
N/A					N/A					N/A					N/A					N/A							N/A						
Dehydrator	Still Vent				Dehydrator	Still Vent				Dehydrator	Still Vent				Dehydrator	Still Vent				Vapor	Combustor						Vapor	Combustor					
S006					S031					S032					S033					V001							V002						
Vertical					Vertical					Vertical					Vertical					Vertical							Vertical						
V001					V002					V003					V004					V001							V002						

J-3

N/A	N/A	N/A	N/A	N/A
田	ΕE	EE	EE	EE
Gas Gas Gas Gas Gas Gas	Gas Gas Gas Gas Gas Gas	Gas Gas Gas Gas Gas Gas	Gas Gas Gas Gas Gas Gas	Gas Gas Gas Gas Gas Gas
3.27 6.53 6.53 0.001 0.11 0.01 2,768 (2)	3.27 6.53 0.001 0.11 0.01 2,768 (2)	24.68 14.24 1.61 7.07 0.69 1111,058 (2)	0.65 1.30 0.06 0.03 0.002 565 (2)	0.11 0.60 0.23 0.01 103 (2)
0.75 1.49 0.0002 0.03 0.002 	0.75 1.49 0.0002 0.03 0.002 	5.63 3.25 0.37 1.61 0.16 	1.19 2.39 0.61 0.06 0.001 	0.03 0.14 0.05 0.001 (2)
3.27 6.53 0.001 0.11 0.11 2,768 (2)	3.27 6.53 0.001 0.11 0.01 2.768 (2)	24.68 14.24 1.61 7.07 0.69 111,058 (2)	0.65 1.30 0.06 0.03 0.002 565 (2)	0.11 0.60 0.23 0.01 - 103 (2)
0.75 1.49 0.0002 0.03 0.002 	0.75 1.49 0.0002 0.03 0.002 	5.63 3.25 0.37 1.61 0.16 	1.19 2.39 0.61 0.06 0.001 	0.03 0.14 0.05 0.001 (2)
NO _X CO VOC PM SO ₂ CO ₂₆ (1) HAPS	NO _X CO VOC PM SO ₂ CO _{2e} (1) HAPs			
N/A	N/A	N/A	N/A	N/A
υ	U	U	υ	U
N/A	A/N	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A
Vapor Combustor	V apor Combustor	Hot Oil Heater	Ground Flare	Emergency Flare
V003	V004	S001	S004A	S021
Vertical	Vertical	Vertical Stack	Vertical	Vertical
V003	V 004	P001	P004A	P021

J-4

i					1	_																						
N/A	N/A				N/A	N/A	N/A							N/A							N/A			N/A				
N/A	EE				N/A	N/A	EE							EE							AP-42			EE				
Gas	Gas Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas		Gas	Gas	Gas	Gas	Gas	Gas		Solid	Solid	Solid	Gas	Gas	Gas	Gas	Gas
	0.71 25.492	1.25	25,523	(2)		-	6.47	15.91	1.45	2.01	0.20	31,560	(2)	1.29	1.08	0.07	0.10	0.01	1,537	(2)	15.20	4.05	0.41	5.22	0.56	1.21	31	(2)
1	0.16 5.820	0.28	5,827	(2)	1	1	1.48	3.63	0.33	0.46	0.04	ł	(2)	0.29	0.25	0.02	0.02	0.002	1	(2)	1	ł	-	1.19	ł	ł	1	(2)
1	0.71 25.492	1.25	25,523	(2)	1	1	6.47	15.91	1.45	2.01	0.20	31,560	(2)	1.29	1.08	0.07	0.10	0.01	1,537	(2)	15.20	4.05	0.41	5.22	0.56	1.21	31	(2)
:	0.16 5.820	0.28	5,827	(2)	1	1	1.48	3.63	0.33	0.46	0.04	ł	(2)	0.29	0.25	0.02	0.02	0.002	ł	(2)	1	ł		1.19	ł	ł	ł	(2)
:	VOC CO,	CH_4	$CO_{2e}(1)$	HAPs	1	1	NOx	CO	VOC	PM	SO_2	$CO_{2e}(1)$	HAPs	NO_x	CO	VOC	PM	SO_2	$CO_{2e}(1)$	HAPs	PM	PM_{10}	$PM_{2.5}$	VOC	CO_2	CH_4	$CO_{2e}(1)$	HAPs
N/A	N/A				N/A	N/A	N/A							N/A							N/A			N/A				
N/A	С				N/A	N/A	С							С							N/A			N/				
Natural Gas Blanket and VRU to Flare	N/A				Natural Gas Blanket and	VRU Natural Gas Blanket and VRU	N/A							N/A							WT/WC			N/A				
N/A	V/N				C001	C001	N/A							N/A							N/A			N/A				
Slop Tank TK-906	Ethane Amine Regenerator(s)	0			Natural Gas Storage Tank	IN-502 Natural Gas Storage Tank TK-2802	Hot Oil	Heater(s)						Glycol	Reboiler						Unpaved	Roads		Fugitives				
S007	S011, S014				S005	S023	S016, S017,	S018, S019						S020							ROADS			FUG	AREA2			
Vertical	Vertical Stack				Vertical	Vertical	Vertical	Stack						Vertical							Fugitive			N/A				
P004A	P005, P006				P001	P001	P016, P017,	P018, P019						P020							ROADS			FUG AREA2				

N/N	N/A	N/A	N/A	N/A
Ë	EE	EE	EE	EE
Gas Gas Gas Gas Gas Gas	Gas Gas Gas Gas Gas Gas	Gas Gas Gas Gas Gas Gas	Gas Gas Gas Gas Gas Gas	Gas Gas Gas Gas Gas Gas
4.17 3.50 0.23 0.23 0.32 0.03 4,971 (2)	4.13 3.47 0.23 0.31 0.02 4,971 (2)	$11.19 \\ 9.40 \\ 0.62 \\ 0.85 \\ 0.07 \\ 13,478 \\ (2)$	0.27 0.11 0.004 0.002 0.01 41 (2)	0.27 0.11 0.004 0.02 0.01 41 (2)
0.95 0.80 0.05 0.07 0.01 	0.94 0.79 0.05 0.07 0.006 	2.56 2.15 0.14 0.19 0.02 - 1 (2)	5.31 2.18 0.08 0.03 0.01 	5.31 2.18 0.08 0.03 0.01
4.17 3.50 0.23 0.32 0.32 4,971 (2)	4.13 3.47 0.23 0.31 0.02 4,971 (2)	$11.19 \\ 9.40 \\ 0.62 \\ 0.85 \\ 0.07 \\ 13,478 \\ (2)$	0.27 0.11 0.004 0.02 0.01 41 (2)	0.27 0.11 0.004 0.02 0.01 41 (2)
0.95 0.80 0.05 0.07 0.01 	0.94 0.79 0.05 0.07 0.01 	2.56 2.15 0.14 0.19 0.02 	5.31 5.31 2.18 0.08 0.03 0.01 	5.31 2.18 0.08 0.03 0.01
NO _x CO PM SO ₂ HAPS	NO _x CO PM SO ₂ HAPs	NO _x CO PM SO ₂ HAPs	NO _x CO VOC PM SO ₂ CO ₂ ¢ HAPs	NO _x CO VOC PM SO ₂ CO ₂ e HAPs
N/A	N/A	N/A	N/A	N/A
C	υ	U	υ	C
N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A
Regen Gas Heater	Regen Gas Heater	Cryo HMO Heater	Fire Pump #1	Fire Pump #2
S022	S012	S013	S002	S003
Vertical Stack	Vertical Stack	Vertical Stack	Vertical Stack	Vertical Stack
P022	P012	P013	P002	P003

N/A	o be titive	
Z	onsidered to from the sou EET for fugi s needed to VOCs, H ₂ S, C/20 minute 5 lb VOC/20 5 lb VOC/20	
EE	ically cons ssions frons rates as n cS ₂ , VO cS ₂ , VO es. i lb VOC/2 es. (e.g. 5 lb cify). or phosph	
Gas Gas Gas Gas	Warming Potential of each. ed process emission unit emissions are not typicall SUMMARY SHEET. Please note that total emissio ste the FUGITIVE EMISSIONS DATA SUMMARY tent venting (ie., 15 min/hr). Indicate as many rate tent venting (ie., 15 min/hr). Indicate as many rate ts Service (CAS) number. LIST Acids, CO, CS Do NOT LIST H ₂ , H ₂ O, N ₂ , O ₂ , and Noble Gases. In record emissions per batch in minutes (e.g. 5 lb hr, then record emissions per batch in minutes (e. hr, then record emissions per batch in minutes (e. 5 lb)	
28.80 0.05 15.50 387 (2)	each. unit emission Please note IISSIONS D/ IISSIONS D/ IISSIONS D/ IISSIONS D/ IISSIONS D/ IISSIONS D/ Note: LIST O, N2, O2, an stimate; O uffuric, nitric, ts of ppmv (S	
(2)	otential of emission SHEET. SITIVE EN (ie., 15 m (ie., 16 m)))))))))))))))))))))))))))))))))))	
28.80 0.05 15.50 387 (2)	Warming P ad process SUMMARY ste the FUG ient venting is Service (DO NOT LI hr, then rec hr, then rec hr, then rec hr, then rec hr, then rec N is a miner Ilutant is SC	
	he Global uncaptur TS DATA TS DATA ise compl in cap, etc or intermit al Abstrac al Abstrac in hr, thei ss than 1 ate of test, e emissio	
VOC CO ₂ CH ₄ CO _{2e} (1) HAPs	 (D₂, CH₄, and N₂O, taking into account the Global Warming Potential of each. (D₂, CH₄, and N₂O, taking into account the Global Warming Potential of each. a SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the source ions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive al stack, horizontal stack, relief vent, rain cap, etc. (ge short-term venting rate with units, for intermittent venting (ie., 15 min/h1). Indicate as many rates as needed to rouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases. (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₃, O₃, and Noble Gases. rating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute into operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute into operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute for to prasions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute into operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute form operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute form operating. If the emission is a mineral acid (sulturic, intric, hydrochloric or phosphoric) use for ad 29:022 inches Hg) (see 45CR7). If the pollutant is SO₂, use units of ppmv (See 45CSR10). 	
N/A	N ₂ O, taki y emission ad on the E captured 6 contal stat venting venting (including (ssions oc If emissi se; ST = s ne (ppmv inches Hg	
C	O ₂ , CH4, and emissions by A SHEET anc ons (e.g. unc al stack, horiz ge short-term ge short-term rating. If emii nt operating. aterial balanc illion by volum F and 29.92 i	
N/A	ns include CO ₂ , ummation of err S UNIT DATA S other emissions ify the average ify the average all HAPs. F rable Greenhou Lipment operati irol equipment c ws: MB = mate parts per millio aditions (68 °F a	
N/A	 ²e emissio ²e emissio ²Nides a subvides a subvides a subvides a subvide, and stack, dow vise, spec vise, spec vise, spec vise, subvidi ³, all applied and applied and and and and and and and and and an	
Fugitives	 Notes: (1) Hourly emissions could not be quantified. CO₂e emissions include CO₂, CH₄, and N₂O, taking into account the Global Warming Potential of each. (2) Individual HAPs are provided in Attachment N. The EMISSION POINTS DATA SUMMARY SHEET provides a summation of emissions by emission unit. Note that uncaptured processs emission unit emissions are not typically considered to tugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the sou are equat to all vented emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please note that total emissions from the sou are equal to all vented emissions, plus all other emissions (e.g. uncaptured emissions). Please complete the FUGITIVE EMISSIONS DATA SUMMARY SHEET for fugitive and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET. Please and descriptors such as upward vertical stack, horizontal stack, relief vent, rain cap, etc. ¹ Please add descriptors such as upward vertical stack, horizontal stack, relief vent, rain cap, etc. ² Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (e., 15 min/m). Indicate as many rates as needed to clarify trequency of venting (e.g., 5 min/day, 2 days/wk). ³ Indicate by "C" if venting is continuous. Otherwise, specify the average short-term venting rate with units, for intermittent venting (ie., 15 min/m). Indicate as many rates as needed to clare mission rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per barch. Toos, NOC, So, NOC, So, So, all applicable Green	
FUG AREAI	Hourly emissions could not be Individual HAPs are provided in AISSION POINTS DATA SUMMA and must be accounted for on the ual to all vented emissions, all fug and activities. Please add descriptors such as up Indicate by "C" if venting is conti arify frequency of venting (e.g., 5 r List all regulated air pollutants. organics, Lead, Organics, O ₃ , NO, Give maximum potential emission tch). Indicate method used to determ Indicate method used to determ Provide for all pollutant emission its of milligram per dry cubic mete	
N/A	s: (1) Hourly emiss (2) Individual HA EMISSION POINT ve and must be ac equal to all vented equal to all vented equal to all vented for all vented sion activities. Please add dest Please add dest relarify frequency c clarify frequency c a List all regulat Indicate by "C" 5 Give maximum batch). 6 Indicate meth ninute batch). 7 Provide for all units of milligram p	
FUG AREA I	Notes: (1) Hourly el (2) Individua (2) Individua (2) Individua fugitive and must b are equal to all ver the are and must b are equal to all ver Please add 2 Indicate by clarify frequer 3 List all reg Inorganics, Le 4 Give maxim patch). 5 Give maxim minute batch) 6 Indicate ru 1 Provide foi units of milligr	
ц	J-7	

WVDEP-DAQ Revision 2/11

page _7_ of _9_

Attachment J EMISSION POINTS DATA SUMMARY SHEET

Exit Gas Volumetric Flow ¹ Vel (acfm) at operating conditions (ft	Vel (fj	Velocity (fps)	Emission Point Elevation (ft) Ground Level Stack H (Height above emission mean sea level) ground	evation (ft) Stack Height ² (Release height of emissions above ground level)	UTM Coordinates (km) Northing Ea	tes (km) Easting
				Facility Coordinates	440.82608	512.10631
	~1,300	N/A	655 ft	N/A	440.82608	512.10631
	~1,300	N/A	655 ft	N/A	440.82608	512.10631
	6,068	10	655 ft	20 ft	440.11971	511.96864
	6,068	10	655 ft	20 ft	440.11971	511.96864
	1,273	27	655 ft	20 ft	440.82608	512.10631
	1,273	27	655 ft	20 ft	440.82608	512.10631
	1,273	27	655 ft	20 ft	440.82608	512.10631
	Not Applicable				440.10907	511.91575
	Not Applicable				440.10907	511.91575
	N/A	N/A	655 ft	N/A	440.82608	512.10631
	N/A	N/A	655 ft	N/A	440.82608	512.10631
	N/A	N/A	655 ft	N/A	440.82608	512.10631
	N/A	N/A	655 ft	N/A	440.82608	512.10631
	81,551	N/A	655 ft	60 ft	440.09092	511.97901
	N/A	N/A	655 ft	N/A	440.08144	511.92532
	N/A	N/A	655 ft	N/A	440.82608	512.10631
	131		655 ft		440.10716	511.83455
	131		655 ft		440.10716	511.83455

WVDEP-DAQ Revision 2/11

page _8_ of _9_

P006		120	438		655 ft		440.10716	511.83455
P016	4.0	670	23,182	102	655 ft	26 ft	440.09433	512.01931
P017	4.0	670	23,182	102	655 ft	26 ft	440.09242	512.02482
P018	4.0	670	23,182	102	655 ft	26 ft	440.09414	512.01261
P019	4.0	670	23,182	102	655 ft	26 ft	440.09225	512.01773
P020	1.0	800	1,273	27	655 ft	20 ft	440.82608	512.10631
ROADS	N/A	N/A	Not Applicable				440.09919	511.86586
FUG AREA 2	N/A	N/A	Not Applicable				440.10907	511.91575
P002	~0.5	~950	~1,300	N/A	655 ft	N/A	440.82608	512.10631
P003	~0.5	~950	~1,300	N/A	655 ft	N/A	440.82608	512.10631
P022	~0.5	~950	~1,300	N/A	655 ft	N/A	440.82608	512.10631
P012	2.5	550	8,500	30	655 ft	20 ft	440.11979	511.97605
P013	4.0	225	6,068	10	655 ft	20 ft	440.11971	511.96864
FUG AREA 1	N/A	N/A	Not Applicable					
¹ Give a	at operating condit.	Give at operating conditions. Include inerts.	² Release height of emissions above ground level	s above ground level				

ATTACHMENT K: FUGITIVE EMISSIONS DATA SUMMARY SHEET

RULE 13 AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

BLUE RACER MIDSTREAM, LLC

Attachment K

FUGITIVE EMISSIONS DATA SUMMARY SHEET

The FUGITIVE EMISSIONS SUMMARY SHEET provides a summation of fugitive emissions. Fugitive emissions are those emissions which could not reasonably pass through a stack, chimney, vent or other functionally equivalent opening. Note that uncaptured process emissions are not typically considered to be fugitive, and must be accounted for on the appropriate EMISSIONS UNIT DATA SHEET and on the EMISSION POINTS DATA SUMMARY SHEET.

Please note that total emissions from the source are equal to all vented emissions, all fugitive emissions, plus all other emissions (e.g. uncaptured emissions).

	APPLICATION FORMS CHECKLIST - FUGITIVE EMISSIONS
1.)	Will there be haul road activities?
	Yes No
	If YES, then complete the HAUL ROAD EMISSIONS UNIT DATA SHEET.
2.)	Will there be Storage Piles?
	□ Yes
	☐ If YES, complete Table 1 of the NONMETALLIC MINERALS PROCESSING EMISSIONS UNIT DATA SHEET.
3.)	Will there be Liquid Loading/Unloading Operations?
	⊠ Yes (insignificant source) □ No
	If YES, complete the BULK LIQUID TRANSFER OPERATIONS EMISSIONS UNIT DATA SHEET.
4.)	Will there be emissions of air pollutants from Wastewater Treatment Evaporation?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
5.)	Will there be Equipment Leaks (e.g. leaks from pumps, compressors, in-line process valves, pressure relief devices, open-ended valves, sampling connections, flanges, agitators, cooling towers, etc.)?
	Yes No
	☐ If YES, complete the LEAK SOURCE DATA SHEET section of the CHEMICAL PROCESSES EMISSIONS UNIT DATA SHEET.
6.)	Will there be General Clean-up VOC Operations?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET.
7.)	Will there be any other activities that generate fugitive emissions?
	□ Yes
	If YES, complete the GENERAL EMISSIONS UNIT DATA SHEET or the most appropriate form.
	bu answered "NO" to all of the items above, it is not necessary to complete the following table, "Fugitive Emissions mmary."

		Maximum Potenti	al Uncontrolled	Maximum Poter	ntial Controlled	÷c L
FUGITIVE EMISSIONS SUMMARY	All Regulated Pollutants	Emissions ²	ons ²	Emissions ³	ons ³	Est. Method
		lb/hr	ton/yr	lb/hr	ton/yr	Used ⁴
Haul Road/Road Dust Emissions Paved Haul Roads	Not Applicable					
Unpaved Haul Roads	PM PM10 PM2.5	Does not apply	15.20 4.05 0.41	Does not apply	15.20 4.05 0.41	AP-42
Storage Pile Emissions	Not Applicable					
Loading/Unloading Operations	Not Applicable, Insignificant Activity					
Wastewater Treatment Evaporation & Operations	Not Applicable					
c Equipment Leaks	VOC (Refer to Attachment N for emission speciation)	Does not apply	Area 1: 28.80 Area 2: 5.22 Area 3: 4.17 Area 4: 4.17	Does not apply	Area 1: 28.80 Area 2: 5.22 Area 3: 4.17 Area 4: 4.17	EPA Factors
General Clean-up VOC Emissions	Not Applicable					
Other	Not Applicable					
¹ List all regulated air pollutants. Speciate VOCs. including al	iding all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number LIST Acids. CO. CS-	al name with Chemi	cal Abstracts Serv	rice (CAS) numbe	er. LIST Acids. C	S C

List all regulated air pollutants. Speciate VOCs, including all HAPs. Follow chemical name with Chemical Abstracts Service (CAS) number. LIST Acids, CO, CS₂, VOCs, H₂S, Inorganics, Lead, Organics, O₃, NO, NO₂, SO₂, all applicable Greenhouse Gases (including CO₂ and methane), etc. DO NOT LIST H₂, H₂O, N₂, O₂, and Noble Gases.

² Give rate with no control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch). ³ Give rate with proposed control equipment operating. If emissions occur for less than 1 hr, then record emissions per batch in minutes (e.g. 5 lb VOC/20 minute batch).

⁴ Indicate method used to determine emission rate as follows: MB = material balance; ST = stack test (give date of test); EE = engineering estimate; O = other (specify).

K-2

ATTACHMENT L: EMISSIONS UNIT DATA SHEETS

RULE 13 AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

BLUE RACER MIDSTREAM, LLC

Attachment L EMISSIONS UNIT DATA SHEET CHEMICAL PROCESS

For chemical processes please fill out this sheet and all supplementary forms (see below) that apply. Please check all supplementary forms that have been completed.							
 Emergency Vent Summary Shee Leak Sources Data Sheet Toxicology Data Sheet Reactor Data Sheet Distillation Column Data Sheet 	t						
	 Chemical process area name and equipment ID number (as shown in Equipment List Form) 						
	Fugitives FUG AREA 1, FUG AREA 2, FUG AREA 3, and FUG AREA 4.						
2. Standard Industrial Classification 1321	1321						
 List raw materials and attach MSDSs Natural Gas 							
Natural Gas							
4. List Products and Maximum Prod	uction and 🗌 attach MSDSs						
Description and CAS Number							
Ethane	402,767	1,764,119					
5. Complete the Emergency Vent S	ummary Sheet for all emergency relief	devices.					
maintenance program to minimize planned inspection frequency, a requirement (e.g. 40CFR60, Sub Refer to Attachment N fugitive calcu The new equipment is subject to NSP	6. Complete the Leak Source Data Sheet and describe below or attach to application the leak detection or maintenance program to minimize fugitive emissions. Include detection instruments, calibration gases or methods, planned inspection frequency, and record-keeping, and similar pertinent information. If subject to a rule requirement (e.g. 40CFR60, Subpart VV), please list those here. Refer to Attachment N fugitive calculations for control efficiency claimed for Leak Detection and Repair (LDAR) program. The new equipment is subject to NSPS OOOO, and will comply with the requirements of this rule regarding monitoring, leak definitions, recordkeeping, and reporting.						
 Clearly describe below or attach t spill or release. 	o application Accident Procedures to be	e followed in the event of an accidental					

8A.	Complete the Toxicology Data Sheet or attach to application a toxicology report (an up-to-date material safety data
:	sheets (MSDS) may be used) outlining the currently known acute and chronic health effects of each compound or
	chemical entity emitted to the air. If these compounds have already been listed in Item 3, then a duplicate MSDS
	sheet is not required. Include data such as the OSHA time weighted average (TWA) or mutagenicity,
	teratogenicity, irritation, and other known or suspected effects should be addressed. Indicate where these are unknown, and provide references.

- 8B. Describe any health effects testing or epidemiological studies on these compounds that are being or may be conducted by the company or required under TSCA, RCRA or other federal regulations. Discuss the persistence in the environment of any emission (e.g. pesticides, etc.).
- 9. Waste Products Waste products status: (If source is subject to RCRA or 45CSR25, please contact the Hazardous Waste Section of WVDEP, OAQ at (304) 926-3647.)

9A. Types and amounts of wastes to be disposed:

9B. Method of disposal and location of waste disposal facilities: Carrier: Phone:

9C. Check here if approved USEPA/State Hazardous Waste Landfill will be used

10. Maximum and Projected Typical Operating Schedule for process or project as a whole (circle appropriate units).

ciro	cle units:	(hrs/day) (hr/batch)	(days), (batches/day), (batches/week)	(days/yr), (weeks/year)
10A.	Maximum	24 hrs/day	7 days/week	365 days/year
10B.	Typical	24 hrs/day	7 days/week	365 days/year

11. Complete a *Reactor Data Sheet* for each reactor in this chemical process.

12. Complete a Distillation Column Data Sheet for each distillation column in this chemical process.

13. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING	RECORDKEEPING
See Attachment O-1	See Attachment O-1
REPORTING	TESTING
See Attachment O-1	See Attachment O-1
See Attachment O-1	See Attachment 0-1

MONITORING. Please list and describe the process parameters and ranges that are proposed to be monitored in order to demonstrate compliance with the operation of this process equipment operation or air pollution control device. **RECORDKEEPING.** Please describe the proposed recordkeeping that will accompany the monitoring.

REPORTING. Please describe the proposed frequency of reporting of the recordkeeping.

TESTING. Please describe any proposed emissions testing for this process equipment or air pollution control device.

14. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty $N\!/\!A$

INFORMATION REQUIRED FOR CHEMICAL PROCESSES

The notes listed below for chemical processes are intended to help the applicant submit a complete application to the OAQ; these notes are not intended to be all inclusive. The requirements for a complete application for a permit issued under 45CSR13 are designed to provided enough information for a permit reviewer to begin a technical review. Additional information beyond that identified may be required to complete the technical review of any individual application.

Process Description

Please keep these points in mind when completing your process description as part of this permit application.

- 1. Provide a general process overview. This brief, but complete, process description should include chemical or registered trademark names of chemical products, intermediates, and/or raw materials to be produced or consumed, and the ultimate use(s) of the product(s). A list of the various chemical compounds is helpful.
- 2. Describe <u>each process step</u>. Include the process chemistry and stoichiometrically balanced reaction equation or material mass balance on all components.
- 3. Describe the methods and equipment used to receive, store, handle, and charge raw materials.
- 4. Describe the methods and equipment used to handle, store, or package final products and intermediates.
- 5. Provide process flow diagrams or equipment layout drawings which clearly show the process flow relationships among all pieces of process and control equipment. Identify all air emission discharge points. Discuss instrumentation and controls for the process.
- 6. Discuss the possibilities of process upsets, the duration and frequency of upsets, and consequences (including air emissions) of these upsets. Include a description of rupture discs, pressure relief valves, and secondary containment systems.
- 7. Discuss any fugitive emissions and the methods used to minimize them.
- 8. Include the following plans for the process if available:
 - a. preventative maintenance and malfunction abatement plan (recommended for all control equipment).
 - b. continuous emissions (in-stack) monitoring plan
 - c. ambient monitoring plan
 - d. emergency response plan

Regulatory Discussion

The following state and federal air pollution control regulations may be applicable to your chemical process. You should review these regulations carefully to determine if they apply to your process. Please summarize the results of your review in your permit application along with any other regulations you believe are applicable.

- Title 45 Legislative Rule Division of Environmental Protection, Office of Air Quality contains West Virginia's air pollution control regulations, including the following promulgated rules which may require emissions reductions or control technologies for your chemical process:
 - a. 45CSR27 Best Available Technology (BAT) for Toxic Air Pollutants (TAPs)
 - b. 45CSR21 VOC emissions controls for ozone maintenance in Kanawha, Cabell, Putnam, Wayne, and Wood counties.
 - c. 45CSR13 (Table 45-13A) plantwide emission thresholds for permitting for certain pollutants.
- Federal Guidelines for case-by-case MACT determinations under section 112(g) of the 1990 CAAA for individual and total HAPs greater than 10 and 25 tons per year, respectively.
- There are also subparts of the federal Standards of Performance for New Stationary Sources (NSPS), 40CFR60 60, and the National Emission Standards for Hazardous Air Pollutants (NESHAP) at 40CFR61 and 40CFR63, which apply to various chemical and nonchemical processes. These subparts are too numerous to list here, but these areas of the federal regulations should be consulted carefully to determine applicability to your process.

Emissions Summary and Calculations

Please keep these points in mind when submitting your emissions calculations as part of this permit application.

- 1. For each pollutant, provide the basis for the emissions estimate and for all emission reduction(s) or control efficiency(ies) claimed.
- 2. For all batch processes provide the following
 - a. Emissions of each pollutant in pound(s) per batch, from each process step
 - b. Annual emissions based on number of batches requested per year
 - c. The total time for each process step and the duration of the emissions during the process step
 - d. Total batch time, total emissions per batch (or per day), and annual emissions based on the number of batches requested per year.

EMERGENCY VENT SUMMARY SHEET

List below all emergency relief devices, rupture disks, safety relief valves, and similar openings that will vent only under abnormal conditions.

Emission Point ID ¹	Equipment to Relief Vent (type, ID if available) ²	Relief Vents (type) & Set Pressure (psig)	Name of Chemical(s) or Pollutants Controlled	Worst Case Emission per Release Event (lbs)

All routine vents (non-emergency) should be listed on the Emission Points Data Summary Sheet.

¹ Indicate the emission point, if any, to which source equipment normally vents. Do <u>not</u> assign emission point ID numbers to each emergency relief vent or device.
 ² List all emergency relief devices next to the piece of equipment from which they control releases.

Source Category	Pollutant	Number of Source Components ¹	Number of Components Monitored by Frequency ²	Average Time to Repair (days) ³	Estimated Annual Emission Rate (Ib/yr) ⁴
Pumps ⁵	light liquid VOC 6,7				
	heavy liquid VOC ⁸				
	Non-VOC ⁹				
Valves ¹⁰	Gas VOC				
	Light Liquid VOC				
	Heavy Liquid VOC		FUG AREA 1 – as required by	FUG AREA 1 – as	
	Non-VOC		NSPS subparts KKK and VV.	required by NSPS subparts KKK and VV	
Safety Relief Valves ¹¹	Gas VOC		FUG AREA 2 – as required by NSPS subnart 0000	EIIG AREA 2 - as	
	Non VOC	See Attachment N for	FILE ADE A 2 (Caro train) 20	required by NSPS	
Open-ended Lines ¹²	VOC	approximate component counts	required by NSPS subpart		See Attachment N for estimated emissions.
	Non-VOC	and service.	.0000	FUG AKEA 3 (Cryo train) – as required by	
Sampling Connections ¹³	VOC		FUG AREA 4 (Cryo train) – as required by NSPS subpart	NSPS subpart 0000	
	Non-VOC		.0000	FUG AREA 4 (Cryo train) – as required by	
Compressors	VOC			NSPS subpart 0000	
	Non-VOC				
Flanges	VOC				
	Non-VOC				
Other	VOC				
	Non-VOC				

LEAK SOURCE DATA SHEET

^{1 - 13} See notes on the following page.

Revision 03/2007

Page 5 of 13

L-5

Notes for Leak Source Data Sheet

- 1. For VOC sources include components on streams and equipment that contain greater than 10% w/w VOC, including feed streams, reaction/separation facilities, and product/by-product delivery lines. Do not include certain leakless equipment as defined below by category.
- By monitoring frequency, give the number of sources routinely monitored for leaks, using a portable detection device that measures concentration in ppm. Do not include monitoring by visual or soap-bubble leak detection methods. "M/Q(M)/Q/SA/A/O" means the time period between inspections as follows:

Monthly/Quarterly, with Monthly follow-up of repaired leakers/Quarterly/Semi-annual/Annually/Other (specify time period)

If source category is not monitored, a single zero in the space will suffice. For example, if 50 gas-service valves are monitored quarterly, with monthly follow-up of those repaired, 75 are monitored semi-annually, and 50 are checked bimonthly (alternate months), with non checked at any other frequency, you would put in the category "valves, gas service:" 0/50/0/75/0/50 (bimonthly).

- 3. Give the average number of days, after a leak is discovered, that an attempt will be made to repair the leak.
- 4. Note the method used: MB material balance; EE engineering estimate; EPA emission factors established by EPA (cite document used); O other method, such as in-house emission factor (specify).
- 5. Do not include in the equipment count sealless pumps (canned motor or diaphragm) or those with enclosed venting to a control device. (Emissions from vented equipment should be included in the estimates given in the Emission Points Data Sheet.)
- 6. Volatile organic compounds (VOC) means the term as defined in 40 CFR 51.100 (s).
- 7. A light liquid is defined as a fluid with vapor pressure equal to or greater than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if 20% w/w or more of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a light liquid.
- 8. A heavy liquid is defined as a fluid with a vapor pressure less than 0.04 psi (0.3 Kpa) at 20°C. For mixtures, if less than 20% w/w of the stream is composed of fluids with vapor pressures greater than 0.04 psi (0.3 Kpa) at 20 °C, then the fluid is defined as a heavy liquid.
- 9. LIST CO, H₂S, mineral acids, NO, NO₂, SO₃, etc. DO NOT LIST CO₂, H₂, H₂O, N₂, O₂, and Noble Gases.
- 10. Include all process valves whether in-line or on an open-ended line such as sample, drain and purge valves. Do not include safety-relief valves, or leakless valves such as check, diaphragm, and bellows seal valves.
- 11. Do not include a safety-relief valve if there is a rupture disk in place upstream of the valve, or if the valve vents to a control device.
- 12 Open-ended lines include purge, drain and vent lines. Do not include sampling connections, or lines sealed by plugs, caps, blinds or second valves.
- 13. Do not include closed-purge sampling connections.

References Irritation⁵ Chronic⁴ **Acute³** TC_{LO} - Animal LC_{LO} - Animal LC₅₀ - Animal Ч **OSHA** Limits² TWA **Descriptor Name/CAS** Number

TOXICOLOGY DATA SHEET¹

¹ Indicate by "ND" where no data exists, in company's knowledge.

² Time Weighted Average, Ceiling Limit, or other, with units. ³ If inhalation data is not available, provide other data as available. ⁴ Relying on animal or human studies, indicate if any data suggests: C = carcinogenicity, M = mutagenicity, T = teratogenecity, O = oncogenicity. ⁵ Indicate if there are dermal or eye irritation effects and whether they are considered to be low, moderate, or severe.

Page 7 of 13

REACTOR DATA SHEET

Provide the following information for <u>each</u> piece of equipment that is a potential or actual source of emissions as shown on the *Equipment List Form* and other parts of application.

Identification Number (as shown on <i>Equipment List Form</i>):							
1. Name and type	1. Name and type of equipment (e.g. CSTR, plug flow, batch, etc.)						
		atab ^r	Continueur			omi hotal	<u></u>
2. Type of operatio		atch				emi-batch	1
-	Equipment C	perating Schedule (propriate lir	nes):		
hrs/day		days/v	veek			weeks/	year
hrs/batch batches/day, weeks day,weeks/yr (Circle one) (Circle one)							
4. Feed Data Flow In = gal/hr, or gal/batch							
Material Name & CAS No.	Phase ^a	Specific Gravity	Vapor Pressure ^b	C Normal	harge Ra Max	te Units	Fill Time (min/batch, run) ^c
 a. S = Solid, L = Lid b. At feed condition c. Total time that e 	าร	or vapor lling per batch or run	(start-up), fo	r tank or v	essel-tvp	e equipme	ent.
		ns that will be involv					

 Provide all chemical reactions that will be involved (if applicable), including the residence time and any side reactions that may occur as well as gases that may be generated during these reactions. Indicate if the reaction(s) are exothermic or endothermic.

			7A. Maximum Pressure 7B. Max. Set Pressure for venting					
•	°C				mmHg	-		mmHg
	°F				psig psig			-
8. Output Data Flow Out =			<u> </u>	gal/hr or gal/batch				
Material Name and CAS	Phase	Specific		Vapor	He	ourly or Ba	tch Outpu	t Rate
No.		Gravity	' P	Pressure	Normal	Max	imum	Units
9. Complete the followin						eader exh	aust syste	em, giving emissions
levels <u>before</u> entering	-		.e. De	etore cor	itrol equipment).			
Check here if not a Emission Point ID (exhau			svst	em):				
Material Name and CAS		1	-		ential Emission R	ate (lb/hr)		Method **
			-			,		
** MB - material balance:	EE - En	aineerina	Estin	nate: TM	- Test Measurem	ent (submi	t test data): O - other (Explain)

addi			that may be attached to this reactor. Attach d for this reactor. Complete the Condenser Air
	Check here if not applicable		
10A	. Cooling material		
10B	. Minimum and Maximum flowrate of cooli	ng material (gal/	/hr)
10C	. Inlet temperature of cooling material (°F)		
10D	. Outlet temperature of cooling material (°I	F)	
10E	. Pressure drop of gas to be condensed from	om inlet to outle	t (psig)
10F.	. Inlet temperature of gas stream (°F)		
10G	. Outlet temperature of gas stream (°F)		
10H	. Number of passes		
10I.	Cooling surface area		
11. Prov	vide the following pertaining to auxiliary equip	ment that burns	fuel (heaters, dryers, etc.):
11B.	Provide maximum percent sulfur (S) ash	content of fuel	and the energy content using appropriate units:
	%S	% Ash	BTU/lb, std. ft ³ /day, gal
			(circle one)
11C	. Theoretical combustion air requirement ir PSIA:	n SCFD per unit o	of fuel (circle appropriate unit) @ 70°F and 14.7
	SCFD/lb, SCFD, gal	(circle one)	
11D	. Percent excess air:	%	
11E	. Type, amount, and BTU rating of burners	s and all other fir	ring equipment that are planned to be used:
11F.	. Total maximum design heat input:		×10 ⁶ BTU/hr.

12. Proposed Monitoring, Recordkeeping, Rep	porting, and Testing
Please propose monitoring, recordkeeping, ar	nd reporting in order to demonstrate compliance with the proposed
operating parameters. Please propose testing	g in order to demonstrate compliance with the proposed emissions
limits.	
MONITORING	RECORDKEEPING

MONITORING	RECORDREEPING
REPORTING	TESTING

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS PROCESS EQUIPMENT OPERATION OR AIR POLLUTION CONTROL DEVICE.

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT OR AIR POLLUTION CONTROL DEVICE.

13. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

NOTE: An AIR POLLUTION CONTROL DEVICE SHEET must be completed for any air pollution device(s) (except emergency relief devices) used to control emissions from this reactor.

DISTILLATION	COLUMN DA	TA SHEET
--------------	-----------	-----------------

Identification Number (as assigned on Equipment List Form):							
1.	Name and type of equipment						
#.	Projected actual equipment operatin	g schedule (complete appropriate lines):					
	hrs/day	days/week	weeks/year				
	hrs/batch	batches/day, batches/week (circle one)	days/yr, weeks/yr (circle one)				
2.	Number of stages (plates), excluding	g condenser					
3.	Number of feed plates and stage loc	ation					
4.	Specify details of any reheating, recy	ycling, or stage conditioning along with the stage	elocations				
5.	Specify reflux ratio, R (where R is def R=L/D, where L = liquid down colum	fined as the ratio of the reflux to the overhead pro n, D = distillation product)	duct, given symbolically as				
6.	Specify the fraction of feed which is v continuously as vapor).	aporized, f (where f is the molal fraction of the fee	ed that leaves the feed plate				
	Type of condenser used: total For each condenser provide process compositions.	partial multiple operating details including all inlet and outlet ter	☐ other nperatures, pressures, and				
8.	 Feed Characteristics A. Molar composition B. Individual vapor pressure of eac C. Total feed stage pressure D. Total feed stage temperature E. Total mass flow rate of each street 						
9.	Overhead Product A. Molar composition of components B. Vapor pressure of components C. Total mass flow rate of all stream	ts ns leaving the system as overhead products					
10.	Bottom Product A. Molar composition of all compon B. Total mass flow rate of all steam	ents is leaving the system as bottom products					

	and Testing ting in order to demonstrate compliance with the proposed
	r to demonstrate compliance with the proposed emissions
limits. MONITORING	RECORDKEEPING
REPORTING	TESTING
	SS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE HTHE OPERATION OF THIS PROCESS EQUIPMENT OPERATION OR
RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED REC	CORDKEEPING THAT WILL ACCOMPANY THE MONITORING.
REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCE	
	TESTING FOR THIS PROCESS EQUIPMENT OR AIR POLLUTION
13. Describe all operating ranges and maintenance proce	edures required by Manufacturer to maintain warranty

NOTE: An AIR POLLUTION CONTROL DEVICE SHEET must be completed for any air pollution device(s) (except emergency relief devices) used to control emissions from this distillation column.

Attachment L FUGITIVE EMISSIONS FROM UNPAVED HAULROADS

UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

				i	,	PM		,	PM-1	3	
k =	Particle size multiplier	•							0.36		
s =	Silt content of road surface ma			6.0			6.0				
p =	Number of days per year with	precipitati	on >0.01	in.		150			150		
Item Numbe	r Description	Number of Wheels	Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour			Control Device ID Number	Control Efficiency (%)	
1	Average NGL Truck	18	15	5	0.4	8	21,900		N/A	N/A	
2											
3											
4											
5											
6											
7	Note: the equation below has b	-	eded by late	est version	of AP-42.	Newest eq	uatio	n has	been used	for	
8	calculations. See attached sprea	adsheet.									

Source: AP-42 Fifth Edition - 13.2.2 Unpaved Roads

 $E = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365) =$ Ib/Vehicle Mile Traveled (VMT) Where:

		PM	PM-10
k =	Particle size multiplier	0.80	0.36
s =	Silt content of road surface material (%)	6.0	6.0
S =	Mean vehicle speed (mph)	5	5
W =	Mean vehicle weight (tons)	15	15
w =	Mean number of wheels per vehicle	18	18
p =	Number of days per year with precipitation >0.01 in.	150	150

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: [Ib ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] × [Ton ÷ 2000 lb] = Tons/year

SUMMARY OF UNPAVED HAULROAD EMISSIONS

	PM			PM-10				
Item No.	Uncon	trolled	Cont	rolled	Uncontrolled		Controlled	
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1		15.20		15.20		4.05		4.05
2								
3								
4								
5								
6								
7								
8								
TOTALS		15.20		15.20		4.05		4.05

FUGITIVE EMISSIONS FROM PAVED HAULROADS

l =	Industrial augmentation factor (dimensionless)						
n =	Number of traffic lanes						
s =	Surface material silt content (9						
L =	Surface dust loading (lb/mile)						
			Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)	
1							

INDUSTRIAL PAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

Source: AP-42 Fifth Edition – 11.2.6 Industrial Paved Roads

$$E = 0.077 \times I \times (4 \div n) \times (s \div 10) \times (L \div 1000) \times (W \div 3)^{0.7} =$$

Ib/Vehicle Mile Traveled (VMT)

Where:

l =	Industrial augmentation factor (dimensionless)	
n =	Number of traffic lanes	
s =	Surface meterial silt content (%)	
L =	Surface dust loading (lb/mile)	
W =	Average vehicle weight (tons)	

For lb/hr: $[lb \div VMT] \times [VMT \div trip] \times [Trips \div Hour] = lb/hr$

For TPY: [Ib ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] × [Ton ÷ 2000 lb] = Tons/year

SUMMARY OF PAVED HAULROAD EMISSIONS

	Uncor	ntrolled	Cont	rolled
Item No.	lb/hr	TPY	lb/hr	TPY
1				
2				
3				
4				
5				
6				
7				
8				
TOTALS				

Attachment L Emission Unit Data Sheet (INDIRECT HEAT EXCHANGER)

Control Device ID No. (must match List Form): $\rm N/A$

	Equipment	Information				
1.	Manufacturer:	2. Model No.				
		Serial No.				
3.	Number of units: 4	4. Use				
		Provide heat for dehydration unit.				
5.	Rated Boiler Horsepower: hp	6. Boiler Serial No.:				
7.	Date constructed: TBD	8. Date of last modification and explain: N/A				
9.	Maximum design heat input per unit:	10. Peak heat input per unit:				
	3.0 ×10 ⁶ BTU/hr	3.0 ×10 ⁶ BTU/hr				
11.	. Steam produced at maximum design output:	12. Projected Operating Schedule:				
	N/A LB/hr	Hours/Day 24				
		Days/Week 7				
	psig	Weeks/Year 52				
13.	. Type of firing equipment to be used: ☐ Pulverized coal	14. Proposed type of burners and orientation: Vertical				
	Spreader stoker					
	☐ Oil burners	 □ Opposed				
	🛛 Natural Gas Burner	Tangential				
	Others, specify	Others, specify				
15.	. Type of draft: 🛛 Forced 🗌 Induced	16. Percent of ash retained in furnace: N/A %				
17.	. Will flyash be reinjected?	18. Percent of carbon in flyash: N/A %				
_	Stack or	Vent Data				
19.	. Inside diameter or dimensions: 1.0 ft.	20. Gas exit temperature: 800 °F				
21.	. Height: 20 ft.	22. Stack serves:				
		This equipment only				
23.	. Gas flow rate: 1,273 ft ³ /min	Other equipment also (submit type and rating of all other equipment exhausted through this				
24.	. Estimated percent of moisture: %	stack or vent)				

			Fuel Requ	Fuel Requirements								
25.	Туре	Fuel Oil No.	Natural Gas		Gas (other, specify)	Coal, Type:	Other:					
	Quantity (at Design Output)	gph@60°F	2,915 ft ³ /hr		ft ³ /hr	TPH						
	Annually	×10 ³ gal	25.5 ×10 ⁶ ft ³ /yr		×10 ⁶ ft ³ /hr	tons						
	Sulfur	Maximum: wt. % Average: wt. %	0.25 gr/100 ft ³		gr/100 ft ³	Maximum: wt. %						
	Ash (%)		N/A			Maximum						
	BTU Content	BTU/Gal. Lbs/Gal.@60°F	1,029 BTU/ft ³		BTU/ft ³	BTU/lb						
	Source		Plant Residue									
	Supplier		N/A									
	Halogens (Yes/No)		No									
	List and Identify Metals		N/A									
26.	Gas burner mode		omatic hi-low	27	7. Gas burner mar	ufacture: TBD						
	Manual Automatic full m		omatic ni-low comatic on-off	28	3. Oil burner manu	facture: N/A						
29.	If fuel oil is used, h	ow is it atomized?	Oil Pressu Compress	sed	l Air 🗍 Rotary Cu							
30.	Fuel oil preheated:	: 🗌 Yes 🛛 [No	31	. If yes, indicate to	emperature:	°F					
		lated theoretical air c feet (ACF) per uni 70 °F, 1	it of fuel:			e fuel or mixture c pisture	of fuels described					
	Emission rate at ra	•	e Attachment N									
34.	Percent excess air	r actually required for	or combustion of	f th	e fuel described:	15 %						
			Coal Chara	act	eristics							
35.	Seams:											
36.	Proximate analysis	% of	Fixed Carbon: Moisture: Ash:			% of Sulfur: % of Volatile Matter:						

Emissions Stream

Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
0	0.25			
Hydrocarbons				
NO _x	0.29			
Pb				
PM ₁₀	0.02			
SO ₂	0.002			
VOCs	0.02			
Other (specify)				
What quantities of poll	utants will be emitted from t	he boiler after contr	ols?	
	Pounds per Hour		a : -	
Pollutant	lb/hr	grain/ACF	@ °F	PSIA
		grain/ACF	W F	PSIA
CO	lb/hr	grain/ACF	@ 'F	PSIA
CO Hydrocarbons	lb/hr	grain/ACF	@ 'F	
CO Hydrocarbons NO _x	0.25	grain/ACF	@ 'F	
Pollutant CO Hydrocarbons NO _x Pb PM ₁₀	0.25			
CO Hydrocarbons NO _x Pb	0.25 0.29			
CO Hydrocarbons NO _x Pb PM ₁₀	Ib/hr 0.25 0.29 0.02			
CO Hydrocarbons NO _x Pb PM ₁₀ SO ₂	Ib/hr 0.25 0.29 0.02 0.002			
CO Hydrocarbons NO _x Pb PM ₁₀ SO ₂ VOCs	Ib/hr 0.25 0.29 0.02 0.002			
CO Hydrocarbons NO _x Pb PM ₁₀ SO ₂ VOCs	Ib/hr 0.25 0.29 0.02 0.002			
CO Hydrocarbons NO _x Pb PM ₁₀ SO ₂ VOCs Other (specify)	Ib/hr 0.25 0.29 0.02 0.002			

42.	Pro	posed	Monitoring,	Recordkee	ping, Re	porting.	and T	esting

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) the ranges and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device. See Attachment O-1

TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollution control device. See Attachment O-1

RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring. See Attachment O-1

REPORTING: Please describe the proposed frequency of reporting of the recordkeeping. See Attachment O-1

43. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty. TBD

Control Device ID No. (must match List Form): N/A

Equipment	Information
1. Manufacturer: Heatec or equivalent	2. Model No. TBD
	Serial No. TBD
3. Number of units: 4	4. Use
5. Rated Boiler Horsepower: N/A hp	6. Boiler Serial No.: TBD
7. Date constructed: TBD	8. Date of last modification and explain: N/A
9. Maximum design heat input per unit:	10. Peak heat input per unit:
9.7 ×10 ⁶ BTU/hr	9.7 ×10 ⁶ BTU/hr
11. Steam produced at maximum design output:	12. Projected Operating Schedule:
N/A LB/hr	Hours/Day 24
	Days/Week 7
psig	Weeks/Year 52
 13. Type of firing equipment to be used: Pulverized coal Spreader stoker Oil burners Natural Gas Burner Others, specify 	 14. Proposed type of burners and orientation: Vertical Front Wall Opposed Tangential Others, specify
15. Type of draft: 🛛 Forced 🗌 Induced	16. Percent of ash retained in furnace: 0 %
17. Will flyash be reinjected? Yes No	18. Percent of carbon in flyash: N/A %
Stack or	Vent Data
19. Inside diameter or dimensions: 2.5 ft.	20. Gas exit temperature: 550 °F
21. Height: 20 ft.	22. Stack serves:
23. Gas flow rate: 8,500 ft ³ /min	Other equipment also (submit type and rating of all other equipment exhausted through this
24. Estimated percent of moisture: %	stack or vent)

	Fuel Requirements						
25.	Туре	Fuel Oil No.	Natural Gas	Gas (other, specify)	Coal, Type:	Other:	
	Quantity (at Design Output)	gph@60°F	9,427 ft ³ /hr (based on max hourly heat rate)		ТРН		
	Annually	×10 ³ gal	82.6 million scf	×10 ⁶ ft ³ /hr	tons		
	Sulfur	Maximum: wt. % Average: wt. %	negible gr/100 ft ³	gr/100 ft ³	Maximum: wt. %		
	Ash (%)		N/A		Maximum		
	BTU Content	BTU/Gal. Lbs/Gal.@60°F	1,029 BTU/ft ³	BTU/ft ³	BTU/lb		
	Source		Plant Residue				
	Supplier		N/A				
	Halogens (Yes/No)		No				
	List and Identify Metals		N/A				
26.	Gas burner mode		omatic hi-low	27. Gas burner manufacture:			
	Automatic full n			28. Oil burner manu	ufacture: N/A		
29.	If fuel oil is used, h	ow is it atomized?	 Oil Pressu Compress Other, spe 	ed Air 🗍 Rotary Cι			
30.	Fuel oil preheated:	Yes [No	31. If yes, indicate t	temperature:	°F	
	Specify the calcul above actual cubic @			pr combustion of th , % m	e fuel or mixture o oisture	f fuels described	
33.	Emission rate at ra	ited capacity: See	e Attachment N lb)/hr			
34.	Percent excess air	actually required f		the fuel described:	%		
35	Seams:		Coal Chara	cteristics			
55.	ocamo.						
36.	Proximate analysis	% of	Fixed Carbon: Moisture: Ash:		% of Sulfur: % of Volatile Matter:	:	

Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
0	0.80			
Hydrocarbons				
NO _x	0.95			
Pb				
PM ₁₀	0.07			
SO ₂	0.01			
VOCs	0.05			
Other (specify)				
What quantities of poll Pollutant	utants will be emitted from t Pounds per Hour Ib/hr	he boiler after contro grain/ACF	ols? @ °F	PSIA
	15/11	-		
СО	0.08			
Hydrocarbons				
Hydrocarbons NO _x	0.08			
Hydrocarbons NO _x Pb	0.08			
Hydrocarbons NO _x Pb PM ₁₀	0.08			
Hydrocarbons NO _x Pb PM ₁₀ SO ₂	0.08			
CO Hydrocarbons NO _x Pb PM ₁₀ SO ₂ VOCs Other (specify)	0.08 0.95 0.07 0.01			
Hydrocarbons NO _x Pb PM ₁₀ SO ₂ VOCs	0.08 0.95 0.07 0.01			
Hydrocarbons NO _x Pb PM ₁₀ SO ₂ VOCs Other (specify)	0.08 0.95 0.07 0.01		sposed of?	

42. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) the ranges and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device.

Monitor and record actual fuel usage on a monthly basis. Actual fuel consumption will be used to ensure compliance with the potential annual emissions.

TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollution control device.

N/A

RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring. Maintain records of the monthly fuel usage and calculate a 12 month rolling total.

REPORTING: Please describe the proposed frequency of reporting of the recordkeeping. $N\!/\!A$

43. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty. $N\!/\!A$

Control Device ID No. (must match List Form): N/A

Equipment	Information
1. Manufacturer: Heatec or equivalent	2. Model No. TBD
	Serial No. TBD
3. Number of units: 3	4. Use
5. Rated Boiler Horsepower: N/A hp	6. Boiler Serial No.: TBD
7. Date constructed: TBD	8. Date of last modification and explain: N/A
9. Maximum design heat input per unit:	10. Peak heat input per unit:
26.3 ×10 ⁶ BTU/hr	26.3 ×10 ⁶ BTU/hr
11. Steam produced at maximum design output:	12. Projected Operating Schedule:
N/A LB/hr	Hours/Day 24
	Days/Week 7
psig	Weeks/Year 52
 13. Type of firing equipment to be used: Pulverized coal Spreader stoker Oil burners Natural Gas Burner Others, specify 	 14. Proposed type of burners and orientation: Vertical Front Wall Opposed Tangential Others, specify
15. Type of draft: 🛛 Forced 🗌 Induced	16. Percent of ash retained in furnace: 0 %
17. Will flyash be reinjected? Yes No	18. Percent of carbon in flyash: N/A %
Stack or	Vent Data
19. Inside diameter or dimensions: 4 ft.	20. Gas exit temperature: 255 °F
21. Height: 20 ft.	22. Stack serves: ☐ This equipment only
23. Gas flow rate: 6,6068 ft ³ /min	Other equipment also (submit type and rating of all other equipment exhausted through this
24. Estimated percent of moisture: %	stack or vent)

	Fuel Requirements						
25.	Туре	Fuel Oil No.	Natural Gas	Gas (other, specify)	Coal, Type:	Other:	
	Quantity (at Design Output)	gph@60°F	25,559 ft ³ /hr (based on max hourly heat rate)		ТРН		
	Annually	×10 ³ gal	223.9 million sc	f ×10 ⁶ ft ³ /hr	tons		
	Sulfur	Maximum: wt. % Average: wt. %	negible gr/100 ft ³	gr/100 ft ³	Maximum: wt. %		
	Ash (%)		N/A		Maximum		
	BTU Content	BTU/Gal. Lbs/Gal.@60°F	1,029 BTU/ft ³	BTU/ft ³	BTU/lb		
	Source		Plant Residue				
	Supplier		N/A				
	Halogens (Yes/No)		No				
	List and Identify Metals		N/A				
26.	Gas burner mode			27. Gas burner manufacture:			
	Manual Automatic full n		omatic hi-low omatic on-off	28. Oil burner man	ufacture: N/A		
29.	If fuel oil is used, h	ow is it atomized?	 Oil Pressu Compresse Other, spe 	ed Air 🗍 Rotary Cu			
30.	Fuel oil preheated:	Yes [No :	31. If yes, indicate	temperature:	°F	
	Specify the calcul above actual cubic @			or combustion of th , % m	e fuel or mixture o oisture	f fuels described	
33.	Emission rate at ra	ited capacity: See	e Attachment N lb	o/hr			
34.	Percent excess air	actually required f		the fuel described:	%		
25	Seams:		Coal Chara	cteristics			
55.	ocamo.						
36.	Proximate analysis	% of	Fixed Carbon: Moisture: Ash:		% of Sulfur: % of Volatile Matter:	:	

Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
0	2.17			
Hydrocarbons				
NO _x	2.58			
Ър				
PM ₁₀	0.20			
SO ₂	0.02			
VOCs	0.14			
Other (specify)				
What quantities of pollo Pollutant	utants will be emitted from the provident of the providen	he boiler after contro grain/ACF	ols? @ °F	PSIA
	id/hr	•		
СО	2.17	-		
		_		
Hydrocarbons				
Hydrocarbons NO _x	2.17			
Hydrocarbons NO _x Pb	2.17			
Hydrocarbons NO _x Pb PM ₁₀	2.17			
Hydrocarbons NO _x Pb PM ₁₀ SO ₂	2.17 2.58 0.20			
Hydrocarbons NO _x Pb PM ₁₀ SO ₂ VOCs	2.17 2.58 0.20 0.02			
CO Hydrocarbons NO _x Pb PM ₁₀ SO ₂ VOCs Other (specify)	2.17 2.58 0.20 0.02			
Hydrocarbons NO _x Pb PM ₁₀ SO ₂ VOCs Other (specify)	2.17 2.58 0.20 0.02		sposed of?	

42. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) the ranges and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device.

Monitor and record actual fuel usage on a monthly basis. Actual fuel consumption will be used to ensure compliance with the potential annual emissions.

TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollution control device.

N/A

RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring. Maintain records of the monthly fuel usage and calculate a 12 month rolling total.

REPORTING: Please describe the proposed frequency of reporting of the recordkeeping. $N\!/\!A$

43. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty. $N\!/\!A$

Control Device ID No. (must match List Form): $\rm N/A$

Equipmen	t Information			
1. Manufacturer: Heatec, Inc	2. Model No.			
	Serial No.			
3. Number of units: 4	4. Use			
	Provide hot oil for natural gas processing.			
5. Rated Boiler Horsepower: hp	6. Boiler Serial No.:			
7. Date constructed: 2014	8. Date of last modification and explain: N/A			
9. Maximum design heat input per unit:	10. Peak heat input per unit:			
61.6 ×10 ⁶ BTU/hr	61.6 ×10 ⁶ BTU/hr			
11. Steam produced at maximum design output:	12. Projected Operating Schedule:			
	Hours/Day 24			
N/A LB/hr	Days/Week 7			
psig	Weeks/Year 52			
13. Type of firing equipment to be used:	14. Proposed type of burners and orientation:			
Pulverized coal				
Spreader stoker Oil burners	Front Wall Opposed			
☐ On burners ☑ Natural Gas Burner	Tangential			
Others, specify	☐ Others, specify			
15. Type of draft: 🛛 Forced 🗌 Induced	16. Percent of ash retained in furnace: N/A %			
17. Will flyash be reinjected? Yes No	18. Percent of carbon in flyash: N/A %			
Stack or	Vent Data			
19. Inside diameter or dimensions: 4.0 ft.	20. Gas exit temperature: 670 °F			
21. Height: 26 ft.	22. Stack serves:			
	This equipment only			
23. Gas flow rate: 23,182 ft ³ /min	Other equipment also (submit type and rating of all other equipment exhausted through this			
24. Estimated percent of moisture: %	stack or vent)			

			Fuel Requ	irements			
25.	Туре	Fuel Oil No.	Natural Gas	Gas (other, specify)	Coal, Type:	Other:	
	Quantity (at Design Output)	gph@60°F	66,523 ft ³ /hr	ft ³ /hr	TPH		
	Annually	×10 ³ gal	582.74 ×10 ⁶ ft ³ /yr	×10 ⁶ ft ³ /hr	tons		
	Sulfur	Maximum: wt. % Average: wt. %	0.25 gr/100 ft ³	gr/100 ft ³	Maximum: wt. %		
	Ash (%)		N/A		Maximum		
	BTU Content	BTU/Gal. Lbs/Gal.@60°F	1,027 BTU/ft ³	BTU/ft ³	BTU/lb		
	Source		Plant Residue				
	Supplier		N/A				
	Halogens (Yes/No)		No				
	List and Identify Metals		N/A				
26.	Gas burner mode			27. Gas burner manufacture: TBD			
	Manual Automatic full m		omatic hi-low omatic on-off	28. Oil burner manu	ufacture: N/A		
29.	If fuel oil is used, h	ow is it atomized?	Oil Pressu	sed Air 🗍 Rotary Cເ			
30.	Fuel oil preheated:	: Yes	No	31. If yes, indicate t	temperature:	°F	
		lated theoretical air c feet (ACF) per unit 70 °F, 1	it of fuel:	or combustion of th	ne fuel or mixture o oisture	of fuels described	
33.	Emission rate at ra	· · ·	e Attachment N lb	•			
34.	Percent excess air	r actually required f	or combustion of	the fuel described:	15 %		
			Coal Chara	octeristics			
35.	Seams:						
36.	Proximate analysis	% of	Fixed Carbon: Moisture: Ash:		% of Sulfur: % of Volatile Matter:	:	

Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
со	3.63			
Hydrocarbons				
NOx	1.48			
Pb				
PM ₁₀	0.46			
SO ₂	0.04			
VOCs	0.33			
Other (specify)				
What quantities of poll Pollutant	utants will be emitted from t	he boiler after contro grain/ACF	ols? @ °F	PSIA
	lb/hr	0		
СО	3.63			
Hydrocarbons				
Hydrocarbons NO _x	3.63			
Hydrocarbons NO _x Pb	3.63			
Hydrocarbons NO _x Pb PM ₁₀	3.63			
CO Hydrocarbons NO _x Pb PM ₁₀ SO ₂ VOCs	3.63 1.48 0.46			
Hydrocarbons NOx Pb PM ₁₀ SO ₂ VOCs	3.63 1.48 0.46 0.04			
Hydrocarbons NOx Pb PM ₁₀ SO ₂	3.63 1.48 0.46 0.04			
Hydrocarbons NO _x Pb PM ₁₀ SO ₂ VOCs Other (specify)	3.63 1.48 0.46 0.04		sposed of?	

42.	Pro	posed	Monitoring,	Recordkee	ping, Re	porting.	and T	esting

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) the ranges and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device. See Attachment O-1

TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollution control device. See Attachment O-1

RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring. See Attachment O-1

REPORTING: Please describe the proposed frequency of reporting of the recordkeeping. See Attachment O-1

43. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty. TBD

Control Device ID No. (must match List Form): $\rm N/A$

	Equipment	Information			
1.	Manufacturer: Heatec, Inc	2. Model No.			
		Serial No.			
3.	Number of units: 1	4. Use			
		Provide hot oil for natural gas processing.			
5.	Rated Boiler Horsepower: N/A hp	6. Boiler Serial No.: N/A			
7.	Date constructed: 2011	8. Date of last modification and explain: N/A			
9.	Maximum design heat input per unit:	10. Peak heat input per unit:			
	216.7 ×10 ⁶ BTU/hr	216.7 ×10 ⁶ BTU/hr			
11.	Steam produced at maximum design output:	12. Projected Operating Schedule:			
	N/A LB/hr	Hours/Day 24			
		Days/Week 7			
	psig	Weeks/Year 52			
13.	Type of firing equipment to be used:	 Proposed type of burners and orientation: ☐ Vertical 			
	Spreader stoker	Front Wall			
	☐ Oil burners				
	⊠ Natural Gas Burner	Tangential			
	Others, specify	Others, specify TBD			
15.	Type of draft: Forced Induced	16. Percent of ash retained in furnace: N/A %			
17.	Will flyash be reinjected? Yes No	18. Percent of carbon in flyash: N/A %			
	Stack or	Vent Data			
19.	Inside diameter or dimensions: 10.75 ft.	20. Gas exit temperature: 670 °F			
21.	Height: 60 ft.	22. Stack serves:			
22	Coo flow roto: 91 551 ft3/min	This equipment only			
23.	Gas flow rate: 81,551 ft ³ /min	Other equipment also (submit type and rating of all other equipment exhausted through this			
24.	Estimated percent of moisture: N/A %	stack or vent)			

			Fuel Requi	irements		
25.	Туре	Fuel Oil No.	Natural Gas	Gas (other, specify)	Coal, Type:	Other:
	Quantity (at Design Output)	gph@60°F	210,531 ft ³ /hr	ft ³ /hr	TPH	
	Annually	×10³ gal	1,844 ×10 ⁶ ft ³ /yr	×10 ⁶ ft ³ /hr	tons	
	Sulfur	Maximum: wt. % Average: wt. %	0.25 gr/100 ft ³	gr/100 ft ³	Maximum: wt. %	
	Ash (%)		N/A		Maximum	
	BTU Content	BTU/Gal. Lbs/Gal.@60°F	1,027 BTU/ft ³	BTU/ft ³	BTU/lb	
	Source		Plant Residue			
	Supplier		N/A			
	Halogens (Yes/No)		No			
	List and Identify Metals		N/A			
26.	Gas burner mode			27. Gas burner mai	nufacture: TBD	
	Manual Automatic full n		omatic hi-low comatic on-off	28. Oil burner manu	ufacture: N/A	
29.	If fuel oil is used, h	ow is it atomized?	Oil Pressu	sed Air 🗍 Rotary Cເ		
30.	Fuel oil preheated:	: Yes [No	31. If yes, indicate t	emperature:	°F
		lated theoretical air c feet (ACF) per unit 70 °F, 1	it of fuel:	or combustion of th , N/A % m	ne fuel or mixture o oisture	of fuels described
33.	Emission rate at ra		e Attachment N lb	•		
34.	Percent excess air	r actually required f	or combustion of	the fuel described:	15 %	
			Coal Chara	cteristics		
35.	Seams:					
36.	Proximate analysis	% of	Fixed Carbon: Moisture: Ash:		% of Sulfur: % of Volatile Matter:	:

Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
CO	3.25			
Hydrocarbons				
NO _x	5.63			
Pb				
PM ₁₀	1.61			
SO ₂	0.16			
VOCs	0.37			
Other (specify)				
What quantities of poll	utants will be emitted from t	he boiler after contr	ols?	
Pollutant	Pounds per Hour Ib/hr	grain/ACF	@ °F	PSIA
со	3.25			
60	5.25			
	3.23			
Hydrocarbons NO _x	5.63			
Hydrocarbons NO _x				
Hydrocarbons NO _x Pb				
Hydrocarbons	5.63			
Hydrocarbons NOx Pb PM ₁₀	5.63			
Hydrocarbons NOx Pb PM ₁₀ SO ₂	5.63 1.61 0.16			
Hydrocarbons NOx Pb PM ₁₀ SO ₂ VOCs	5.63 1.61 0.16			
Hydrocarbons NO _x Pb PM ₁₀ SO ₂ VOCs Other (specify)	5.63 1.61 0.16	trol equipment be di	isposed of?	
Hydrocarbons NO _x Pb PM ₁₀ SO ₂ VOCs Other (specify) How will waste materia	5.63 1.61 0.16 0.37	trol equipment be di	isposed of?	

42.	Pro	posed	Monitoring,	Recordkee	ping, Re	porting.	and T	esting

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING PLAN: Please list (1) describe the process parameters and how they were chosen (2) the ranges and how they were established for monitoring to demonstrate compliance with the operation of this process equipment operation or air pollution control device. See Attachment O-1

TESTING PLAN: Please describe any proposed emissions testing for this process equipment or air pollution control device. See Attachment O-1

RECORDKEEPING: Please describe the proposed recordkeeping that will accompany the monitoring. See Attachment O-1

REPORTING: Please describe the proposed frequency of reporting of the recordkeeping. See Attachment O-1

43. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty. TBD

Attachment L EMISSIONS UNIT DATA SHEET STORAGE TANKS

See attached data following this EUDS for all information on the Natural Gas Liquids (NGL), propane, butane, and isobutene storage tanks.

Provide the following information for <u>each</u> new or modified bulk liquid storage tank as shown on the *Equipment List Form* and other parts of this application. A tank is considered modified if the material to be stored in the tank is different from the existing stored liquid.

IF USING US EPA'S TANKS EMISSION ESTIMATION PROGRAM (AVAILABLE AT <u>www.epa.gov/tnn/tanks.html</u>), APPLICANT MAY ATTACH THE SUMMARY SHEETS IN LIEU OF COMPLETING SECTIONS III, IV, & V OF THIS FORM. HOWEVER, SECTIONS I, II, AND VI OF THIS FORM MUST BE COMPLETED. US EPA'S AP-42, SECTION 7.1, "ORGANIC LIQUID STORAGE TANKS," MAY ALSO BE USED TO ESTIMATE VOC AND HAP EMISSIONS (<u>http://www.epa.gov/tnn/chief/</u>).

I. GENERAL INFORMATION	(required)
------------------------	------------

1.	Bulk Storage Area Name	2.	Tank Name
3.	Tank Equipment Identification No. (as assigned on <i>Equipment List Form</i>)	4.	Emission Point Identification No. (as assigned on <i>Equipment List Form</i>)
5.	Date of Commencement of Construction (for existing	tanl	ks)
6.	Type of change	lew	Stored Material Other Tank Modification
7.	Description of Tank Modification (if applicable)		
7A.	Does the tank have more than one mode of operation (e.g. Is there more than one product stored in the tan		Yes No
7B.	If YES, explain and identify which mode is covere completed for each mode).	ed b	y this application (Note: A separate form must be
7C.	Provide any limitations on source operation affecting variation, etc.):	em	issions, any work practice standards (e.g. production
	II. TANK INFORM	ATI	ON (required)

 Design Capacity (specify barrels or gallons). height. 	Use the internal cross-sectional area multiplied by internal
9A. Tank Internal Diameter (ft)	9B. Tank Internal Height (or Length) (ft)
10A. Maximum Liquid Height (ft)	10B. Average Liquid Height (ft)

11A. Maximum Vapor Space Height (ft)	11B. Average Vapor Space Height (ft)
12. Nominal Capacity (specify barrels or gallons). liquid levels and overflow valve heights.	This is also known as "working volume" and considers design

13A. Maximum annual throughput (gal/yr)	13B. Maximum daily throughput (gal/day)
14. Number of Turnovers per year (annual net throughpu	ut/maximum tank liquid volume)
15. Maximum tank fill rate (gal/min)	
16. Tank fill method Submerged	Splash Bottom Loading
17. Complete 17A and 17B for Variable Vapor Space Ta	Ink Systems Does Not Apply
17A. Volume Expansion Capacity of System (gal)	17B. Number of transfers into system per year
 18. Type of tank (check all that apply): Fixed Roofverticalhorizontalother (describe) External Floating Roofpontoon roof Domed External (or Covered) Floating Roof Internal Floating Roofvertical column su Variable Vapor Spacelifter roof Pressurizedsphericalcylindrica Underground Other (describe) 	double deck roof upport self-supporting diaphragm
	ATION (optional if providing TANKS Summary Sheets)
19. Tank Shell Construction:	
Riveted Gunite lined Epoxy-coate	
20A. Shell Color 20B. Roof Colo	or 20C. Year Last Painted
21. Shell Condition (if metal and unlined): ☐ No Rust ☐ Light Rust ☐ Dense R	Rust 🗌 Not applicable
22A. Is the tank heated? YES NO	
22B. If YES, provide the operating temperature (°F)	
22C. If YES, please describe how heat is provided to t	tank.
23. Operating Pressure Range (psig): to	
24. Complete the following section for Vertical Fixed Ro	oof Tanks Does Not Apply
24A. For dome roof, provide roof radius (ft)	
24B. For cone roof, provide slope (ft/ft)	
25. Complete the following section for Floating Roof Ta	nks Does Not Apply
25A. Year Internal Floaters Installed:	
25B. Primary Seal Type: Metallic (Mechanical) (check one) Vapor Mounted Resi	· ·
25C. Is the Floating Roof equipped with a Secondary	Seal? YES NO
25D. If YES, how is the secondary seal mounted? (ch	eck one) Shoe Rim Other (describe):
25E. Is the Floating Roof equipped with a weather shi	eld? YES NO

25F. Describe deck fittings; indicate	e the number of eac	ch type of fitting:	
	ACCESS	S НАТСН	
BOLT COVER, GASKETED:	UNBOLTED COVI	ER, GASKETED:	UNBOLTED COVER, UNGASKETED:
			1
BOLT COVER, GASKETED:		JGE FLOAT WELL	UNBOLTED COVER, UNGASKETED:
BOET COVER, GASRETED.		LIN, GAGNETED.	UNBOLTED COVER, UNGASKETED.
	COLUM	N WELL	
			PIPE COLUMN – FLEXIBLE
COVER, GASKETED:	COVER, UNGASK	(ETED:	FABRIC SLEEVE SEAL:
	LADDE	R WELL	
PIP COLUMN - SLIDING COVER, GA	ASKETED:	PIPE COLUMN -	SLIDING COVER, UNGASKETED:
	0.0000000000000000000000000000000000000		
		SAMPLE PORT	
SLIDING COVER, GASKETED:		SLIDING COVER,	UNGASKETED:
	ROOF LEG OR	HANGER WELL	
	WEIGHTED		SAMPLE WELL-SLIT FABRIC SEAL
ACTUATION, GASKETED:	ACTUATION, UNG	GASKETED:	(10% OPEN AREA)
	- - - -		
	VACUUM	BREAKER	
WEIGHTED MECHANICAL ACTUATI			ANICAL ACTUATION, UNGASKETED:
		1 1 1	
		VENT	
WEIGHTED MECHANICAL ACTUATI	ION GASKETED:		ANICAL ACTUATION, UNGASKETED:
	DECK DRAIN (3-I	NCH DIAMETER)	
OPEN:	- (-	90% CLOSED:	
	STUB	DRAIN	
1-INCH DIAMETER:			
OTHER (DESCR	RIBE, ATTACH ADD	DITIONAL PAGES I	IF NECESSARY)
		_	,

26. Complete the following section for Internal Floating	Roof Tanks Does Not Apply
26A. Deck Type: Deck Type: Welded	
26B. For Bolted decks, provide deck construction:	
26C. Deck seam:	
 Continuous sheet construction 5 feet wide Continuous sheet construction 6 feet wide 	
Continuous sheet construction 7 feet wide	
☐ Continuous sheet construction 5 × 7.5 feet wide ☐ Continuous sheet construction 5 × 12 feet wide	4
Other (describe)	
26D. Deck seam length (ft)	26E. Area of deck (ft ²)
For column supported tanks: 26F. Number of columns:	26G. Diameter of each column:
	al if providing TANKS Summary Sheets)
27. Provide the city and state on which the data in this	
28. Daily Average Ambient Temperature (°F)	
29. Annual Average Maximum Temperature (°F)	
30. Annual Average Minimum Temperature (°F)	
31. Average Wind Speed (miles/hr)	
32. Annual Average Solar Insulation Factor (BTU/(ft ² d	ay))
33. Atmospheric Pressure (psia)	
V. LIQUID INFORMATION (optiona	al if providing TANKS Summary Sheets)
34. Average daily temperature range of bulk liquid:	
34A. Minimum (°F)	34B. Maximum (°F)
35. Average operating pressure range of tank:	
35A. Minimum (psig)	35B. Maximum (psig)
36A. Minimum Liquid Surface Temperature (°F)	36B. Corresponding Vapor Pressure (psia)
37A. Average Liquid Surface Temperature (°F)	37B. Corresponding Vapor Pressure (psia)
38A. Maximum Liquid Surface Temperature (°F)	38B. Corresponding Vapor Pressure (psia)
39. Provide the following for <u>each</u> liquid or gas to be sto	ored in tank. Add additional pages if necessary.
39A. Material Name or Composition	
39B. CAS Number	
39C. Liquid Density (lb/gal)	
39D. Liquid Molecular Weight (lb/lb-mole)	
39E. Vapor Molecular Weight (lb/lb-mole)	

	sure				
39F. True (psia)					
<u>39G. Reid (psia)</u> Months Storage per Y	00r				
39H. From	eai				
39I. To					
	VI. EMISSIONS A			DATA (required)	
40. Emission Control	Devices (check as many			· · · ·	
Carbon Adsorp		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_		
Condenser ¹					
Conservation \	/ent (psig)				
Vacuum S			Pressure Se	ettina	
	lief Valve (psig)			5	
Inert Gas Blan					
Insulation of Ta					
Liquid Absorpt					
Refrigeration o	,				
Rupture Disc (
Vent to Inciner					
Other ¹ (describ					
	oriate Air Pollution Cont	rol Device S	Sheet		
	n Rate (submit Test Da	ta or Calcul	ations here	or elsewhere in the a	oplication)
41. Expected Emissio	n Rate (submit Test Da				oplication).
	n Rate (submit Test Da Breathing Loss (lb/hr)	ta or Calcul Workin Amount		or elsewhere in the a Annual Loss (lb/yr)	Estimation Method ¹
41. Expected Emissio Material Name &	Breathing Loss	Workin	g Loss	Annual Loss	
41. Expected Emissio Material Name &	Breathing Loss	Workin	g Loss	Annual Loss	
41. Expected Emissio Material Name &	Breathing Loss	Workin	g Loss	Annual Loss	
41. Expected Emissio Material Name &	Breathing Loss	Workin	g Loss	Annual Loss	
41. Expected Emissio Material Name &	Breathing Loss	Workin	g Loss	Annual Loss	
41. Expected Emissio Material Name &	Breathing Loss	Workin	g Loss	Annual Loss	
41. Expected Emissio Material Name &	Breathing Loss	Workin	g Loss	Annual Loss	
41. Expected Emissio Material Name &	Breathing Loss	Workin	g Loss	Annual Loss	
41. Expected Emissio Material Name &	Breathing Loss	Workin	g Loss	Annual Loss	
41. Expected Emissio Material Name &	Breathing Loss	Workin	g Loss	Annual Loss	

 1 EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify)

Remember to attach emissions calculations, including TANKS Summary Sheets if applicable.

FOR NATURAL GAS LIQUID (NGL), PROPANE, BUTANE, ISOBUTANE AND GASOLINE EMISSIONS UNIT DATA SHEET - STORAGE TANKS AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT BLUE RACER MIDSTREAM, LLC

I. General Information							
Tank Name	Tank Equipment ID No.	Emission Point ID No.	Control Device ID No.	Date of Construction	Type of Change	Does the tank have more than one mode of operation?	Limitations
Propane Storage Tank ¹	US-800	NA	C004	2012	Existing	No	None
Isobutane Storage Tank ¹	US-801	NA	C004	2012	Existing	oN	None
Butane Storage Tank ¹	US-804	NA	C004	2012	Existing	oN	None
Butane Storage Tanks ¹ (4)	N/A	NA	C004	2014	Existing	No	None
NGL Storage Tank ¹	US-805	NA	C004	2012	Existing	oN	None
Gasoline Storage Tank	TK-802	P001	C001	2012	Existing	No	None
Gasoline Storage Tank	TK-2802	P001	C001	2014	Existing	oN	None
Slop Oil Tank	TK-906	NA	C004	2012	Existing	oN	None
Note: ¹ Pressurized vessel. Only ventino of the tanks is durino emergency situations or non-routine maintenance activities	tanks is during emerge	ency situations or not	n-routine maintenanc	e activities			

II. Tank Information								
Tank Name	Type of Tank	Fill Method	Capacity (gallons)	Tank Diameter (ft)	Tank Length (ft)	Truck Loading (gpm)	Rail Loading (gpm)	Barge Loading (gpm)
Propane	Horizontal, Pressurized, Cylindrical	Bottom	2,142,000	81	49	3,600	4,000	3,000
Isobutane	Horizontal, Pressurized, Cylindrical	Bottom	865,200	60.5	36	3,600	4,000	
Butane	Horizontal, Pressurized, Cylindrical	Bottom	865,200	60.5	36	3,600	4,000	
NGL	Horizontal, Pressurized, Cylindrical	Bottom	865,200	60.5	36	3,600		
Gasoline TK-802	Atmospheric, Cylindrical, Dome Roof	Top/Bottom	714,000	59	39.75	009	2,000	3,000
Gasoline TK-2802	Atmospheric, Cylindrical, Dome Roof	Top/Bottom	1,629,096	TBD	TBD	V/A	V/A	W/N
Slop Oil	Atmospheric, Cylindrical, Dome Roof	Top/Bottom	20,000	12	24.75	ΥN	ΥN	νv

III. Tank Construction and Operation	on and Operation			
Tank Name	Tank Shell Construction	Shell/ Roof Color	Operating Pressure (psig)	Is Tank Heated?
Propane	Welded	White	180	Yes
Isobutane	Welded	White	78	Yes
Butane	Welded	White	46	Yes
NGL	Welded	White	181	Yes
Gasoline	Welded	White	0	oN
Slop Oil	Welded	White	0	No

EMISSIONS UNIT DATA SHEET - STORAGE TANKS FOR NATURAL GAS LIQUID (NGL), PROPANE, BUTANE, ISOBUTANE AND GASOLINE AIR PERMIT APPLICATION NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT BLUE RACER MIDSTREAM, LLC

LIQUID INFORMATION

Tank Name	CAS#	Liquid Density (lb/gal)	Liquid Molecular Weight (lb/lb-mole)	Vapor Molecular Weight (lb/lb-mole)	True Vapor Pressure (psia)	Reid Vapor Pressure (psia)
Propane	74-98-6	4.24	44.096	44.096	126.15	190
Isobutane	75-28-5	4.58	58.12	58.12	45	71
Butane	106-97-8	4.84	58.12	58.12	33.5	52.4
NGL	64741-48-6	4.26	52.29	52.29	132.4	124.6
Gasoline	8006-61-9	6.17	62	60	13.5	12
Slop Oil			Assume same as gasoline	gasoline		

EMISSIONS DATA

Tank Name	Type of Tank	Emissions
	Horizontal, Pressurized,	
Propane	Cylindrical ¹	
	Horizontal, Pressurized,	- - - - - -
Isobutane	Cylindrical ¹	There are no emissions for these pressure vessels, except during emergency or
	Horizontal, Pressurized,	цряет солациона, от пон-гоциле планценансе п млиси еннахода мли ос уелиси иноиди а mescure relief valve (PRV) to the Flare
Butane	Cylindrical	
	Horizontal, Pressurized,	
NGL	Cylindrical	
	Atmospheric, Cylindrical,	
Gasoline	Dome Roof	The VOC emissions from these tanks are vented to the flare.
	Atmospheric, Cylindrical,	
Slop Oil	Dome Roof	The VOC emissions from this tank are vented to the flare.
Motor Decomined .	in the second point of the	Motor Beconversed vessel - Only vesseling of the trade in during an environment of trade on an environment of the trade of

Note: ¹ Pressurized vessel. Only venting of the tanks is during emergency situations or non-routine maintenance activities.

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): S011

1	 Name or type and model of proposed affected source: 	
	Carbon dioxide will be removed from the ethane product in an amine unit contacting system. The total eth	iane
	product is contacted with a diethylamide (DEA) solution in the Amine Contactor where the CO2 in the eth	nane
	product is removed to less than 500 ppmw. The rich amine from the Contactor is regenerated in the Am	nine

product is contacted with a diethylamide (DEA) solution in the Amine Contactor where the CO2 in the ethane product is removed to less than 500 ppmw. The rich amine from the Contactor is regenerated in the Amine Regenerator where heat input is used to drive the CO2 and water overhead and vented to atmosphere. The lean amine from the bottom of the regenerator is then recycled back to the Amine Contactor. The main emissions from the amine system are CO2 and water.

 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.

3. Name(s) and maximum amount of proposed process material(s) charged per hour:

1.20 MMscf/hr ethane product (~18,000 bbl/day)

4. Name(s) and maximum amount of proposed material(s) produced per hour:

1.20 MMscf/hr ethane product (~18,000 bbl/day)

5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:

N/A

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	Co	mbustion Dat	ta (if applic	able):			
	(a) Type and amount in appropriate units of fuel(s) to be burned:						
	N/A						
N	[/A						
-	(b)	Chomical an		operad fuel(c) ex		including maxim	num percent sulfur
	(U)	and ash:	ialysis ol pi	oposed idei(s), ex	ciuuling coal,		ium percent sului
	(c) Theoretical combustion air requirement (ACF/unit of fuel):						
			@		°F and		psia.
	(d)	Percent exc	ess air:				
-	(e)	Type and B	ΓU/hr of bu	rners and all othe	r firing equipr	ment planned to	be used:
						-	
	(f)	If coal is pro coal as it wil	posed as a	source of fuel, ide	entify supplie	r and seams and	d give sizing of the
			i be meu.				
F	(g)	Proposed m	aximum de	sign heat input:			× 10 ⁶ BTU/hr.
7.	Pro	jected opera	ting schedu	ıle:			
Hc	ours/	Day	24	Days/Week	7	Weeks/Year	52

8.	Projected amount of pollutants that would be emitted from this affected source if no control devices were used:						
@		°F and		psia			
a.	NOx		lb/hr	grains/ACF			
b.	SO ₂		lb/hr	grains/ACF			
c.	со		lb/hr	grains/ACF			
d.	PM ₁₀		lb/hr	grains/ACF			
e.	Hydrocarbons	6.92	lb/hr	grains/ACF			
f.	VOCs	0.04	lb/hr	grains/ACF			
g.	Pb		lb/hr	grains/ACF			
h.	Specify other(s)	1					
	Carbon Dioxide	1302.78	lb/hr	grains/ACF			
			lb/hr	grains/ACF			
			lb/hr	grains/ACF			
			lb/hr	grains/ACF			

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
REPORTING See Attachment O-1	TESTING See Attachment O-1
	I IE PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROP MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	OPOSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
10. Describe all operating ranges and maintemaintain warranty $_{N\!/A}$	nance procedures required by Manufacturer to

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): S014

1. Name or type and model of proposed affected source:
Carbon dioxide will be removed from the ethane product in an amine unit contacting system. The total ethane product is contacted with a diethylamide (DEA) solution in the Amine Contactor where the CO2 in the ethane product is removed to less than 500 ppmw. The rich amine from the Contactor is regenerated in the Amine Regenerator where heat input is used to drive the CO2 and water overhead and vented to atmosphere. The lean amine from the bottom of the regenerator is then recycled back to the Amine Contactor. The main emissions from the amine system are CO2 and water.
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
4.17 MMscf/hr ethane product (~62,000 bbl/day)
4. Name(s) and maximum amount of proposed material(s) produced per hour:
4.17 MMscf/hr ethane product (~62,000 bbl/day)
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
N/A

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6.	Co	mbustion Data	a (if applica	able):			
	(a)	Type and am	ount in ap	propriate units of f	uel(s) to be b	urned:	
N	I/A						
-	(h)	Chamical and	lucio of pr	appaged fuel(a) av			
	(U)	and ash:	aysis oi pi	oposed idei(s), ex	ciuding coal,	including maxin	ium percent sulfur
	(c)	Theoretical co	ombustion	air requirement (A	ACF/unit of fu	el):	
			@		°F and		psia.
╞	<i>(</i>)						
	(d)	Percent exce	ss air:				
	(e)	Type and BTI	U/hr of bu	mers and all other	firing equipm	nent planned to	be used:
┢							
	(f)	If coal is prop coal as it will	osed as a be fired [.]	source of fuel, ide	ntify supplier	and seams and	I give sizing of the
	(g)	Proposed ma	ximum de	sign heat input:			× 10 ⁶ BTU/hr.
7		-					
		jected operati	-				
Ho	ours/	Day 2	24	Days/Week	7	Weeks/Year	52

8.	Projected amount of pollutants that would be emitted from this affected source if no control devices were used:					
@		°F and		psia		
a.	NO _X		lb/hr	grains/ACF		
b.	SO ₂		lb/hr	grains/ACF		
c.	со		lb/hr	grains/ACF		
d.	PM ₁₀		lb/hr	grains/ACF		
e.	Hydrocarbons	21.45	lb/hr	grains/ACF		
f.	VOCs	0.12	lb/hr	grains/ACF		
g.	Pb		lb/hr	grains/ACF		
h.	Specify other(s)	1				
	Carbon Dioxide	4517.25	lb/hr	grains/ACF		
			lb/hr	grains/ACF		
			lb/hr	grains/ACF		
			lb/hr	grains/ACF		

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
REPORTING See Attachment O-1	TESTING See Attachment O-1
	I IE PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROP MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	OPOSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMI POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
10. Describe all operating ranges and maintemaintain warranty $_{N\!/A}$	nance procedures required by Manufacturer to

Attachment L EMISSIONS UNIT DATA SHEET GENERAL

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): \$006, \$031, \$032, \$033

1. Name or type and model of proposed affected source:
A glycol dehydration system is used to dry the incoming gas. Emissions from the BTEX condenser and flash tank can be routed to the plant hot oil heater (EU#: S001) for combustion as fuel. BRM is permitting the dehydration unit emissions assuming that all waste gas is routed to a vapor combustor, but would like to keep the flexibility to route the waste gas to the hot oil heater as well.
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
Natural Gas - 9.58 MMscf/hr (230 MMscf/day)
4. Name(s) and maximum amount of proposed material(s) produced per hour:
Natural Gas - 9.58 MMscf/hr (230 MMscf/day)
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
N/A
* The identification number which appears here must correspond to the air pollution control

6.	6. Combustion Data (if applicable):							
	(a) Type and amount in appropriate units of fuel(s) to be burned:							
N	I/A							
┢	(h)	Chomical an		opocod fuol(c) ox		including maxim		
	(b) Chemical analysis of proposed fuel(s), excluding coal, including maximum percent sulful and ash:							
<u> </u>								
	(c)	Theoretical	combustion	air requirement (ACF/unit of fu	iel):		
			@		°F and		psia.	
	(d) Percent excess air:							
╞	(e) Type and BTU/hr of burners and all other firing equipment planned to be used:							
	(f) If coal is proposed as a source of fuel, identify supplier and seams and give sizing of the coal as it will be fired:							
	(g)	Proposed m	aximum de	sign heat input:			× 10 ⁶ BTU/hr.	
7.	7. Projected operating schedule:							
Ho	ours/	Day	24	Days/Week	7	Weeks/Year	52	

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:						
@		°F and		psia			
a.	NO _X	N/A	lb/hr	grains/ACF			
b.	SO ₂	N/A	lb/hr	grains/ACF			
c.	со	N/A	lb/hr	grains/ACF			
d.	PM ₁₀	N/A	lb/hr	grains/ACF			
e.	Hydrocarbons	N/A	lb/hr	grains/ACF			
f.	VOCs	2.03	lb/hr	grains/ACF			
g.	Pb	N/A	lb/hr	grains/ACF			
h.	Specify other(s)						
			lb/hr	grains/ACF			
			lb/hr	grains/ACF			
			lb/hr	grains/ACF			
			lb/hr	grains/ACF			

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
	TESTINO
REPORTING None.	TESTING None.
	I E PROCESS PARAMETERS AND RANGES THAT ARE ISTRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROF MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	DPOSED FREQUENCY OF REPORTING OF THE
POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
10. Describe all operating ranges and mainten maintain warranty N/A	nance procedures required by Manufacturer to

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): S002 and S003

1. Name or type and model of proposed affected source:
Emergency Fire Pump Engine - Model C18, 700 hp @ 1,750 rpm
 On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
Diesel Fuel Consumption ~ 35.9 gal/hr
4. Name(s) and maximum amount of proposed material(s) produced per hour:
Combustion of Diesel fuel, where combustion gases push piston through cylinder to produce power.
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
Combustion of Diesel fuel, where combustion gases push piston through cylinder to produce power.
* The identification number which appears here must correspond to the air pollution control

6 Compution Data (if applie	abla);			
	6. Combustion Data (if applicable):			
(a) Type and amount in ap	(a) Type and amount in appropriate units of fuel(s) to be burned:			
Diesel Fuel Consumption ~ 35.9 ga	l/hr			
(b) Chemical analysis of p	oposed fuel(s), exclud	ing coal, ir	cluding maxim	um percent sulfur
and ash:				
(c) Theoretical combustion	air requirement (ACF	/unit of fue	el):	
@		°F and		psia.
				p5id.
(d) Percent excess air:				
(e) Type and BTU/hr of bu	rners and all other firin		ant planned to k	
		ig equipine		
 (f) If coal is proposed as a coal as it will be fired: 	source of fuel, identify	supplier a	and seams and	give sizing of the
coar as it will be fired.				
(g) Proposed maximum de	sign heat input:			× 10 ⁶ BTU/hr.
7. Projected operating sched	7. Projected operating schedule:			
Hours/Day 24	Days/Week	7	Weeks/Year	52
				52

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:				
@		°F and psia			
a.	NOx	5.31	lb/hr	grains/ACF	
b.	SO ₂	0.01	lb/hr	grains/ACF	
c.	со	2.18	lb/hr	grains/ACF	
d.	PM ₁₀	0.30	lb/hr	grains/ACF	
e.	Hydrocarbons		lb/hr	grains/ACF	
f.	VOCs	0.08	lb/hr	grains/ACF	
g.	Pb		lb/hr	grains/ACF	
h.	h. Specify other(s)				
	Negligible HAP emissions, as shown in Attachment N		lb/hr	grains/ACF	
			lb/hr	grains/ACF	
			lb/hr	grains/ACF	
			lb/hr	grains/ACF	

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
REPORTING The fire pump is regulated per 40CFR60 Subpart IIII and will follow those requirements as discussed in Attachment D.	TESTING The fire pump is regulated per 40CFR60 Subpart IIII and will follow those requirements as discussed in Attachment D.
PROPOSED TO BE MONITORED IN ORDER TO DEMON PROCESS EQUIPMENT OPERATION/AIR POLLUTION	E PROCESS PARAMETERS AND RANGES THAT ARESTRATE COMPLIANCE WITH THE OPERATION OF THISCONTROL DEVICE.POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRO RECORDKEEPING.	DPOSED FREQUENCY OF REPORTING OF THE
	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
	nance procedures required by Manufacturer to

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): S021

1. Name or type and model of proposed affected source:
1. Name of type and model of proposed anected source.
Flare will control VOC emissions from emergency activities (i.e. process upset conditions) that are vented to the
flare on an as-needed basis.
2. On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be
made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
N/A
4. Name(s) and maximum amount of proposed material(s) produced per hour:
N/A
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
Continuous burning of pilot gas.
Continuous ourning of prot gas.

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6. Combustion D	ata (if applica	able):			
(a) Type and a	(a) Type and amount in appropriate units of fuel(s) to be burned:				
3 pilots at 65 scf/hr	each of natural	gas.			
(h) Ohemieele					
(b) Chemical a and ash:	analysis of pr	oposea tuei(s), e	xcluding coal, in	cluding maximi	um percent sulfur
See Attachment M d	lesign summary	•			
(c) Theoretica	l combustion	air requirement	(ACF/unit of fue	l):	
	@		°F and		psia.
(d) Percent ex	cess air: %)			
(e) Type and E	(e) Type and BTU/hr of burners and all other firing equipment planned to be used:				e used:
3 pilots at 66,885 Btu/hr (65 scf/hr and 1,029 Btu/scf)					
-					
			and the arms all an a		
(i) ii coal is pr coal as it w	vill be fired:	source of fuel, id	entity supplier a	ind seams and	give sizing of the
N/A					
(g) Proposed i	maximum de	sign heat input:	22,4	500	× 10 ⁶ BTU/hr.
	7. Projected operating schedule:				
	-				
Hours/Day 24	(flare pilot)	Days/Week	7 (flare pilot)	Weeks/Year	52 (flare pilot)

8.	8. Projected amount of pollutants that would be emitted from this affected source if no control devices were used:				
@	°F and psia				
a.	NO _X	lb/hr	grains/ACF		
b.	SO ₂	lb/hr	grains/ACF		
c.	СО	lb/hr	grains/ACF		
d.	PM ₁₀	lb/hr	grains/ACF		
e.	Hydrocarbons	lb/hr	grains/ACF		
f.	VOCs	456,809* lb/hr	grains/ACF		
g.	Pb	lb/hr	grains/ACF		
h.	Specify other(s)				
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

* Represents the worst case for an entire hour, which is for plant wide emergency, which is not expected.

with the proposed operating parameters. I compliance with the proposed emissions lim MONITORING	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
REPORTING Flare is subject to 45CSR6 and 45 CSR10-5. Blue racer will comply with these requirements.	TESTING Flare is subject to 45CSR6 and 45 CSR10-5. Blue racer will comply with these requirements.
MONITORING. PLEASE LIST AND DESCRIBE TH PROPOSED TO BE MONITORED IN ORDER TO DEMON PROCESS EQUIPMENT OPERATION/AIR POLLUTION	STRATE COMPLIANCE WITH THE OPERATION OF THIS
RECORDKEEPING. PLEASE DESCRIBE THE PROF MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
	POSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMIS POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
	nance procedures required by Manufacturer to

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on *Equipment List Form*): S004A

1. Name or type and model of proposed affected source:
1. Name of type and model of proposed anected source.
The Ground Flare will control VOC emission maintenance activities and other miscellaneous equipment that are
vented to the flare on an as-needed basis.
2. On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be
made to this source, clearly indicated the change(s). Provide a narrative description of all
features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
N/A
4. Name(s) and maximum amount of proposed material(s) produced per hour:
N/A
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
Combustion of waste gas from maintenance venting.
Combustion of waste gas from maintenance venting.

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6. Combustion	Data (if applica	able):			
		propriate units of	fuel(s) to be bu	rned:	
9 pilots at 83 scf/h	each of natural	gas, and 117 scf/hr p	ourge gas.		
(b) Chemical and ash:	analysis of pr	oposed fuel(s), e	xcluding coal, in	cluding maximu	um percent sulfur
See Attachment M	design summary				
(c) Theoretic	al combustion	air requirement	(ACF/unit of fue	l):	
	@		°F and		psia.
(d) Percent e	xcess air: %	, D			
(e) Type and	(e) Type and BTU/hr of burners and all other firing equipment planned to be used:				e used:
9 pilots at 85,000 Btu/hr (83 scf/hr and 1,029 Btu/scf) and 117 scf/hr purge gas.					
	proposed as a will be fired:	source of fuel, id	entify supplier a	and seams and	give sizing of the
N/A					
(g) Proposed	maximum de	sign heat input:	22,5	500	× 10 ⁶ BTU/hr.
7. Projected operating schedule:					
Hours/Day 24	4 (flare pilot)	Days/Week	7 (flare pilot)	Weeks/Year	52 (flare pilot)

8.	 Projected amount of pollutants that would be emitted from this affected source if no control devices were used: 				
@	2 °F and psia				
a.	NO _X	lb/hr	grains/ACF		
b.	SO ₂	lb/hr	grains/ACF		
c.	со	lb/hr	grains/ACF		
d.	PM ₁₀	lb/hr	grains/ACF		
e.	Hydrocarbons	lb/hr	grains/ACF		
f.	VOCs	456,809* lb/hr	grains/ACF		
g.	Pb	lb/hr	grains/ACF		
h.	Specify other(s)				
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		

NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.

(2) Complete the Emission Points Data Sheet.

* Represents the worst case for an entire hour, which is for plant wide emergency, which is not expected.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate hits. RECORDKEEPING
REPORTING	TESTING
Flare is subject to 45CSR6 and 45 CSR10-5. Blue racer	Flare is subject to 45CSR6 and 45 CSR10-5. Blue racer
will comply with these requirements.	will comply with these requirements.
	E PROCESS PARAMETERS AND RANGES THAT ARE STRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROF MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRORECORDKEEPING.	DPOSED FREQUENCY OF REPORTING OF THE
TESTING. PLEASE DESCRIBE ANY PROPOSED EMIS POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
	nance procedures required by Manufacturer to

To be used for affected sources other than asphalt plants, foundries, incinerators, indirect heat exchangers, and quarries.

Identification Number (as assigned on Equipment List Form): V001, V002, V003, V004

1. Name or type and model of proposed affected source:
The vapor combustor will control the waste gas emissions from the dehy BTEX condenser and flash tank.
2. On a comparety about (a) furnish a cluster (as) of this offertal course. If a modification is to be
2. On a separate sheet(s), furnish a sketch(es) of this affected source. If a modification is to be made to this source, clearly indicated the change(s). Provide a narrative description of all features of the affected source which may affect the production of air pollutants.
3. Name(s) and maximum amount of proposed process material(s) charged per hour:
N/A
A News (a) and maximum amount of an analysis of more starial (a) and used non-barrier
4. Name(s) and maximum amount of proposed material(s) produced per hour:
N/A
5. Give chemical reactions, if applicable, that will be involved in the generation of air pollutants:
Combustion of waste from BTEX condenser and flash tank.

* The identification number which appears here must correspond to the air pollution control device identification number appearing on the *List Form*.

6 Compution Data (if applicable):			
6. Combustion Data (if applicable):			
(a) Type and amount in appropria	te units of fuel(s) to	be burned:	
One pilot at 30 scf/hr for each vapor combu	stor.		
(b) Chemical analysis of proposed	l fuel(s). excluding a	oal, including maxim	num percent sulfur
and ash:			
See Attachment M design summary.			
(c) Theoretical combustion air rec	juirement (ACF/unit	of fuel):	
@	°F	and	psia.
(d) Percent excess air:			
(e) Type and BTU/hr of burners a	nd all other firing ec	uipment planned to	be used:
One pilot at 30 scf/hr for each vapor combu	stor.		
(f) If coal is proposed as a source coal as it will be fired:	e of fuel, identify sup	plier and seams and	d give sizing of the
N/A			
(g) Proposed maximum design he	eat input:	5.38	× 10 ⁶ BTU/hr.
7. Projected operating schedule:		1	
Hours/Day 24 (pilot) Days/	Week 7 (pilot	Weeks/Year	52 (pilot)

8.	 Projected amount of pollutants that would be emitted from this affected source if no control devices were used: 				
@		°F and	psia		
a.	NO _X	lb/hr	grains/ACF		
b.	SO ₂	lb/hr	grains/ACF		
c.	СО	lb/hr	grains/ACF		
d.	PM ₁₀	lb/hr	grains/ACF		
e.	Hydrocarbons	lb/hr	grains/ACF		
f.	VOCs	N/A lb/hr	grains/ACF		
g.	Pb	lb/hr	grains/ACF		
h.	Specify other(s)				
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		
		lb/hr	grains/ACF		

- NOTE: (1) An Air Pollution Control Device Sheet must be completed for any air pollution device(s) used to control emissions from this affected source.
 - (2) Complete the Emission Points Data Sheet.

	and reporting in order to demonstrate compliance Please propose testing in order to demonstrate
222027040	7507040
REPORTING Refer to Attachment O.	TESTING Refer to Attachment O.
	E PROCESS PARAMETERS AND RANGES THAT ARE STRATE COMPLIANCE WITH THE OPERATION OF THIS CONTROL DEVICE.
RECORDKEEPING. PLEASE DESCRIBE THE PROP MONITORING.	POSED RECORDKEEPING THAT WILL ACCOMPANY THE
REPORTING. PLEASE DESCRIBE THE PRO RECORDKEEPING.	DPOSED FREQUENCY OF REPORTING OF THE
POLLUTION CONTROL DEVICE.	SSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR
10. Describe all operating ranges and mainten maintain warranty N/A	nance procedures required by Manufacturer to

Attachment L EMISSIONS UNIT DATA SHEET BULK LIQUID TRANSFER OPERATIONS

Furnish the following information for each new or modified bulk liquid transfer area or loading rack, as shown on the *Equipment List Form* and other parts of this application. This form is to be used for bulk liquid transfer operations such as to and from drums, marine vessels, rail tank cars, and tank trucks.

Identification Number (as assigned on Equipment List Form):

1. Loading Area Name: Product Loading

2. Type of cargo vessels accommodated at this rack or transfer point (check as many as apply):

G Drums X Marine Vessels X Rail Tank Cars X Tank Trucks

3. Loading Rack or Transfer Point Data:

Number of pumps	TBD
Number of liquids loaded	4 – Propane, Isobutane, Butane & Natural Gas Liquids (NGL) and Natural Gasoline
Maximum number of marine vessels, tank trucks, tank cars, and/or drums loading at one time	TBD

4. Does ballasting of marine vessels occur at this loading area? G Yes G No XDoes not apply

5. Describe cleaning location, compounds and procedure for cargo vessels using this transfer point:

6. Are cargo vessels pressure tested for leaks at this or any other location? G Yes G No

If YES, describe:

7. Projected Maximum Operating Schedule (for rack or transfer point as a whole):

Maximum	Jan Mar.	Apr June	July - Sept.	Oct Dec.
hours/day	24	24	24	24

page __ of __

WVDEP-OAQ Revision 03-

days/week	7	7	7	7
weeks/quarter	13	13	13	7

8. Bulk Liquid Data (add pages as necessary):							
Pump ID No.		TBD	TBD	TBD	TBD	TBD	T B D
Liquid Name		Propane	Isobutane	Butane	NGL	Natural Gasoline	
Max. daily thro	oughput (1000 gal/day)						
Max. annual tl	hroughput (1000 gal/yr)						
Loading Methe	od ¹	BF	BF	BF	BF	BF	
Max. Fill Rate	(gal/min)	10,600	7,600	7,600	3,600	5,600	
Average Fill T	ime (min/loading)						
Max. Bulk Liquid Temperature (°F)		125	200	200	120	100	
True Vapor Pressure ²		126.15	45	33.5	132.4	13.5	
Cargo Vessel Condition ³		С	С	С	С	С	
Control Equip	ment or Method ⁴	VB	VB	VB	VB	VB	
Minimum cont	rol efficiency (%)	100	100	100	100	100	
Maximum Emission	Loading (lb/hr)	Negligible	Negligible	Negligible	Negligible	Included in Flare	
Rate	Annual (lb/yr)	Negligible	Negligible	Negligible	Negligible	Included in Flare	
Estimation Me	ethod ⁵						
¹ BF = Bottom Fill SP = Splash Fill SUB = Submerged Fill							
² At maximum bulk liquid temperature							
3 B = Ballasted Vessel, C = Cleaned, U = Uncleaned (dedicated service), O = other (describe)							
⁴ List as many as apply (complete and submit appropriate Air Pollution Control Device							

page __ of __ WVDEP-OAQ Revision 03-

 Sheets):CA = Carbon Adsorption
 LOA = Lean Oil AdsorptionCO =

 Condensation
 SC = Scrubber (Absorption)CRA = Compressor

 Refrigeration-Absorption
 TO = Thermal Oxidation or Incineration

 CRC = Compression-Refrigeration-Condensation
 VB = Dedicated Vapor Balance (closed system)

 O = other (descibe)
 5

 EPA = EPA Emission Factor as stated in AP-42

MB = Material Balance

TM = Test Measurement based upon test data submittal

O = other (describe)

9. Proposed Monitoring, Recordkeeping, Reporting, and Testing

Please propose monitoring, recordkeeping, and reporting in order to demonstrate compliance with the proposed operating parameters. Please propose testing in order to demonstrate compliance with the proposed emissions limits.

MONITORING	RECORDKEEPING
Refer to Regulatory Discussion in Attachment D	Refer to Regulatory Discussion in Attachment D
REPORTING	TESTING
Refer to Regulatory Discussion in Attachment D	Refer to Regulatory Discussion in Attachment D

page ___ of ___ WVDEP-OAQ Revision 03-

MONITORING. PLEASE LIST AND DESCRIBE THE PROCESS PARAMETERS AND RANGES THAT ARE PROPOSED TO BE MONITORED IN ORDER TO DEMONSTRATE COMPLIANCE WITH THE OPERATION OF THIS

RECORDKEEPING. PLEASE DESCRIBE THE PROPOSED RECORDKEEPING THAT WILL ACCOMPANY THE MONITORING.

REPORTING. PLEASE DESCRIBE THE PROPOSED FREQUENCY OF REPORTING OF THE RECORDKEEPING.

TESTING. PLEASE DESCRIBE ANY PROPOSED EMISSIONS TESTING FOR THIS PROCESS EQUIPMENT/AIR POLLUTION CONTROL DEVICE.

10. Describe all operating ranges and maintenance procedures required by Manufacturer to maintain warranty

N/A

page __ of __ WVDEP-OAQ Revision 03-

ATTACHMENT M: AIR POLLUTION CONTROL DEVICE SHEETS

RULE 13 AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

BLUE RACER MIDSTREAM, LLC

Attachment M Air Pollution Control Device Sheet (FLARE SYSTEM)

Control Device ID No. (must match Emission Units Table): C007, C008, C009, C010

Equipment	Information
 Manufacturer: TCI USA Inc. Model 500 Enclosed Combustor 	 Method: Elevated flare Ground flare Other Describe: Vapor Combustor
3. Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state	em with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.
 Method of system used: □ Steam-assisted □ Air-assisted 	Pressure-assisted Non-assisted
 Maximum capacity of flare: scf/min 3380 scf/hr 	6. Dimensions of stack: Diameter ft. Height ft.
7. Estimated combustion efficiency: (Waste gas destruction efficiency) Estimated: 98 % Minimum guaranteed: 98 %	 8. Fuel used in burners: Natural Gas Fuel Oil, Number Other, Specify:
 9. Number of burners: Rating: 5,380,000 BTU/hr 10. Will preheat be used? ☐ Yes ☐ No 	11. Describe method of controlling flame: Pressure Staging
12. Flare height: ft.13. Flare tip inside diameter: (burner riser) ft	14. Natural gas flow rate to flare pilot flame per pilot light: scf/min 30 scf/hr
15. Number of pilot lights: 1 Total 30817 BTU/hr	16. Will automatic re-ignition be used? ⊠ Yes □ No
•	on. A thermocouple controller is used to indicate a air/gas mixture at the panel. The panel then begins
 18. Is pilot flame equipped with a monitor?	☐ No -Red era with monitoring control room
10 Hours of unit operation per year: Dilete: 8 760 hours	Flare: As Needed

19. Hours of unit operation per year: Pilots: 8,760 hours Flare: As Needed

Steam Injection				
20. Will steam injection be used? Yes	🛛 No	21. Steam pressure PS	SIG	
		Minimum Expected:		
		Design Maximum		
22. Total Steam flow rate:	LB/hr	23. Temperature: °F		
24. Velocity	ft/sec	25. Number of jet streams		
26. Diameter of steam jets:	in	27. Design basis for steam injected:		
		LB steam/LB hvdrocarb	on	
28. How will steam flow be controlled if steam injection is used?				

Characteristics of the Waste Gas Stream to be Burned

29.	Name	Quantity	Quantity	Source of Material		
	See Attachment N	Grains of H ₂ S/100 ft ³	(LB/hr, ft ³ /hr, etc)			
30.	Estimate total combustible t	to flare: see Atta	achment N LB/hr	or ACF/hr		
21	(Maximum mass flow rate of	if waste das) flore ipoluding motoriole tr	scfm be burned, carrier gases, aux	williamy fuel ato :		
31.		-) De Dufneo, carrier gases, au	killary fuel, etc.:		
32	See Attachment N Give composition of carrier	LB/hr or ACF/hr				
52.	See Attachment N	yases.				
33.	Temperature of emission st		34. Identify and describe all a			
		tachment N °F	see Attachment N BTU/scf			
	Heating value of emission s	stream: BTU/ft ³		BTU/scf		
	Mean molecular weight of e			BTU/scf		
	MW = Ib/Ib-me			BTU/scf		
35.	Temperature of flare gas:	see attached °F	36. Flare gas flow rate:	scf/min		
37.	Flare gas heat content: see	e attached BTU/ft ³	38. Flare gas exit velocity: s	see attached scf/min		
39.	Maximum rate during emerg	gency for one major piece	of equipment or process unit:	see attached scf/min		
			of equipment or process unit:			
41.			outlet gas conditioning process	ses (e.g., gas cooling, gas		
	reheating, gas humidificatio	n):				
42.	Describe the collection mate	erial disposal system:				
43.	Have you included Flare Co	ontrol Device in the Emis	sions Points Data Summary S	heet? Yes		

Please propose r proposed operatin proposed emission MONITORING: Proposed continuou presence with a thern O-1 for a description	ng parameters. Please propose as limits. As monitoring of the flame	RECORDKEEPING: Refer to Attachment O-1 for a description of all monitoring, testing, recordkeeping, and reporting				
	t O-1 for a description of all recordkeeping, and reporting	TESTING: Refer to Attachment O-1 for a description of all monitoring, testing, recordkeeping, and reporting requirements.				
MONITORING: RECORDKEEPING: REPORTING: TESTING: 45. Manufacturer's Gu	RECORDKEEPING: REPORTING: monitored in order to demonstrate compliance with the operation of this process equipment or air control device. Please describe the proposed recordkeeping that will accompany the monitoring. Please describe any proposed emissions testing for this process equipment on air pollution control device.					
N/A	aranteed Control Efficiency for eac					
47. Describe all operat	ting ranges and maintenance proce	edures required by Manufacturer to maintain warranty.				

Attachment M Air Pollution Control Device Sheet (FLARE SYSTEM)

Control Device ID No. (must match Emission Units Table): C021

	Equipment Information				
1.	Manufacturer: John Zinc Company Model No. KMI Model 12-26 Multipoint Tip	2. Method: Ground flare Other Describe			
3.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state	em with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.			
4.	Method of system used:	Pressure-assisted INon-assisted			
5.	Maximum capacity of flare: scf/min 19,800,000 scf/hr	6. Dimensions of stack:Diameter 4.5 (outer support stack)ft.Height 376.5ft.			
7.	Estimated combustion efficiency: (Waste gas destruction efficiency) Estimated: 98 % Minimum guaranteed: 99.5 %	 8. Fuel used in burners: Natural Gas Fuel Oil, Number Other, Specify: 			
9. 10.	Number of burners: 1 Rating: 22,500,000,000 BTU/hr . Will preheat be used? Yes No	11. Describe method of controlling flame: Pressure Staging			
12.	Flare height:12.5 ft. (The tip is $10' - 0"$ and the spool piece is $2'-6"$)Flare tip inside diameter:2.5 (inner gas riser)ft	14. Natural gas flow rate to flare pilot flame per pilot light: scf/min 65 scf/hr			
15.	. Number of pilot lights: three (3) Total 200,655 BTU/hr	16. Will automatic re-ignition be used? ⊠ Yes □ No			
17.	6	ion. A thermocouple controller is used to indicate a a air/gas mixture at the panel. The panel then begins			
18.	. Is pilot flame equipped with a monitor? ☑ Yes If yes, what type? ☑ Thermocouple ☑ Infra- ☑ Ultra Violet ☑ Cam ☑ Other, Describe: ☑	☐ No -Red era with monitoring control room			
10	Hours of unit operation per year: Pilots: 8 760 hours	Flare: As Needed			

Steam Injection							
20. Will steam injection be used? Yes	🛛 No	21. Steam pressure Minimum Expected:	PSIG				
		Design Movimum					
22. Total Steam flow rate:	LB/hr	23. Temperature:	°F				
24. Velocity	ft/sec	25. Number of jet streams					
26. Diameter of steam jets:	in	27. Design basis for steam injected:					
	LB steam/LB hvdroca	arbon					
28. How will steam flow be controlled if steam injection is used?							

Characteristics of the Waste Gas Stream to be Burned

29.	Name	Quantity Grains of H ₂ S/100 ft ³	Quantity (LB/hr, ft ³ /hr, etc)	Source of Material		
	See Attached					
30.	Estimate total combustible t			or ACF/hr		
31.	(Maximum mass flow rate of Estimated total flow rate to	flare including materials to	scfm. o be burned, carrier gases, au	xiliary fuel, etc.:		
	See attached	LB/hr or ACF/hr				
32.	Give composition of carrier gases: See attached					
33.	Temperature of emission st	ream:	34. Identify and describe all a	auxiliary fuels to be burned.		
	See att		see attached	BTU/scf		
	Heating value of emission s	stream: BTU/ft ³		BTU/scf		
	Mean molecular weight of e	=		BTU/scf		
	MW = lb/lb-me			BTU/scf		
35.	Temperature of flare gas:	see attached °F	36. Flare gas flow rate:	scf/min		
37.	Flare gas heat content: see	e attached BTU/ft ³	38. Flare gas exit velocity:	see attached scf/min		
39.	Maximum rate during emerged	gency for one major piece	e of equipment or process unit:	see attached scf/min		
			e of equipment or process unit:			
41.	. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):					
	Describe the collection mate					
43.	Have you included Flare Co	<i>ontrol Device</i> in the Emis	sions Points Data Summary S	heet? Yes		

Please propose n proposed operatin proposed emission MONITORING: Proposed continuou presence with a therr O-1 for a description	ng parameters. Please propose as limits.	RECORDKEEPING: Refer to Attachment O-1 for a description of all monitoring, testing, recordkeeping, and reporting				
	t O-1 for a description of all recordkeeping, and reporting	_				
MONITORING: RECORDKEEPING: REPORTING: TESTING:	RECORDKEEPING: REPORTING: monitored in order to demonstrate compliance with the operation of this process equipment or air control device. Please describe the proposed recordkeeping that will accompany the monitoring. Please describe any proposed emissions testing for this process equipment on air pollution control device.					
N/A	aranteed Capture Efficiency for eac aranteed Control Efficiency for eac 9.5%					
47. Describe all operat	ing ranges and maintenance proce	edures required by Manufacturer to maintain warranty.				

Attachment M Air Pollution Control Device Sheet (FLARE SYSTEM)

Control Device ID No. (must match Emission Units Table): C004A

	Equipment Information				
1.	Manufacturer: Callidus Model No. CAL-MP staged, multipoint flare system	 Method: □ Elevated flare □ Ground flare □ Other □ Describe 			
3.	Provide diagram(s) of unit describing capture syste capacity, horsepower of movers. If applicable, state	em with duct arrangement and size of duct, air volume, hood face velocity and hood collection efficiency.			
4.	Method of system used:	Pressure-assisted Non-assisted			
5.	Maximum capacity of flare: scf/min 19,800,000 scf/hr	6. Dimensions of stack:Diameter 1 ft.Height 7 ft.			
7. 9.	Estimated combustion efficiency: (Waste gas destruction efficiency) Estimated: 98 % Minimum guaranteed: 99.5 % Number of burners: 229	 8. Fuel used in burners: Natural Gas Fuel Oil, Number Other, Specify: 11. Describe method of controlling flame: Pressure Staging 			
10.	Rating: 22,500,000,000 BTU/hr Will preheat be used? ☐ Yes ⊠ No				
	Flare height:7 ft.Flare tip inside diameter:0.25 (burner riser) ft	14. Natural gas flow rate to flare pilot flame per pilot light: scf/min 83 scf/hr			
15.	Number of pilot lights: nine (9) Total 765,000 BTU/hr	16. Will automatic re-ignition be used? ⊠ Yes □ No			
17.	• •	ion. A thermocouple controller is used to indicate a e air/gas mixture at the panel. The panel then begins			
18.	Is pilot flame equipped with a monitor? If yes, what type? Thermocouple Infra- Ultra Violet Cam Other, Describe:	☐ No -Red lera with monitoring control room			
19.	Hours of unit operation per year: Pilots: 8,760 hours	Flare: As Needed			

Steam Injection					
20. Will steam injection be used?	′es 🛛 No	21. Steam pressure P	SIG		
		Minimum Expected:			
		Design Maximum			
22. Total Steam flow rate:	LB/hr	23. Temperature: °I	F		
24. Velocity	ft/sec	25. Number of jet streams			
26. Diameter of steam jets:	in	27. Design basis for steam injected:			
-		LB steam/LB hvdrocar	bon		
28. How will steam flow be controlled if steam injection is used?					

Characteristics of the Waste Gas Stream to be Burned

29.	Name	Quantity Grains of H ₂ S/100 ft ³	Quantity (LB/hr, ft ³ /hr, etc)	Source of Material		
	See Attached					
30.	Estimate total combustible t		ched LB/hr	or ACF/hr		
31.			be burned, carrier gases, au	xiliary fuel, etc.:		
	See attached	LB/hr or ACF/hr				
32.	Give composition of carrier See attached	gases:				
33.	Temperature of emission st	ream:	34. Identify and describe all a	auxiliary fuels to be burned.		
	See att		see attached	BTU/scf		
	Heating value of emission s			BTU/scf		
	Mean molecular weight of e	BTU/ft ³		BTU/scf		
	MW = Ib/Ib-me			BTU/scf		
35.	Temperature of flare gas:	see attached °F	36. Flare gas flow rate:	scf/min		
37.	Flare gas heat content: see	e attached BTU/ft ³	38. Flare gas exit velocity:	see attached scf/min		
39.	Maximum rate during emerged	gency for one major piece	of equipment or process unit:	see attached scf/min		
			of equipment or process unit:			
41.	I. Describe any air pollution control device inlet and outlet gas conditioning processes (e.g., gas cooling, gas reheating, gas humidification):					
	Describe the collection mate	· ·				
43.	Have you included Flare Ce	ontrol Device in the Emise	sions Points Data Summary S	iheet? Yes		

Please propose n proposed operatin proposed emission MONITORING: Proposed continuou presence with a thern O-1 for a description	ng parameters. Please propose as limits. As monitoring of the flame	RECORDKEEPING: Refer to Attachment O-1 for a description of all monitoring, testing, recordkeeping, and reporting				
	t O-1 for a description of all recordkeeping, and reporting	TESTING: Refer to Attachment O-1 for a description of all monitoring, testing, recordkeeping, and reporting requirements.				
MONITORING: RECORDKEEPING: REPORTING: TESTING:	RECORDKEEPING: REPORTING: monitored in order to demonstrate compliance with the operation of this process equipment or air control device. Please describe the proposed recordkeeping that will accompany the monitoring. Please describe any proposed emissions testing for this process equipment on air pollution control device.					
N/A	aranteed Capture Efficiency for eac aranteed Control Efficiency for eac 9.5%					
47. Describe all operat	ting ranges and maintenance proce	edures required by Manufacturer to maintain warranty.				

Attachment M Air Pollution Control Device Sheet (OTHER COLLECTORS)

Control Device ID No. (must match Emission Units Table):

Equipment Information

1.	Manufacturer: TBD Model No.	2. Control Device Nam Type: Electric Comp	ne: Vapor Recovery Unit pressor			
3.	Provide diagram(s) of unit describing capture system with duct arrangement and size of duct, air volume, capacity, horsepower of movers. If applicable, state hood face velocity and hood collection efficiency.					
4.	On a separate sheet(s) supply all data and calculation	ns used in selecting or de	signing this collection device.			
5.	Provide a scale diagram of the control device showing	g internal construction.				
6.	Submit a schematic and diagram with dimensions and	d flow rates.				
7.	Guaranteed minimum collection efficiency for each pollutant collected:					
8.	Attached efficiency curve and/or other efficiency infor	mation.				
9.	Design inlet volume: SCFM	10. Capacity:				
	 Indicate the liquid flow rate and describe equipment provided to measure pressure drop and flow rate, if any. N/A 					
12.	Attach any additional data including auxiliary equip control equipment.	ment and operation deta	ails to thoroughly evaluate the			
13.	. Description of method of handling the collected mater N/A	rial(s) for reuse of disposa	al.			
	Gas Stream C	haracteristics				
14.	Are halogenated organics present? Are particulates present? Are metals present?	☐ Yes ⊠ No □ Yes ⊠ No □ Yes ⊠ No				
15.	Inlet Emission stream parameters:	Maximum	Typical			
	Pressure (mmHg):					
	Heat Content (BTU/scf):					
	Oxygen Content (%):					
	Moisture Content (%):					
	Relative Humidity (%):					

16.	Type of pollutant(s) o		☐ SO _x	☐ Odor ⊠ Other VOC			
17.	Inlet gas velocity:		ft/sec	18. Pollutant	specific gravity:		
19.	Gas flow into the col ACF @	lector: °F and	PSIA	20. Gas strea	m temperature: Inlet: Outlet:		°F °F
21.	Gas flow rate: Design Maximum: Average Expected:		ACFM ACFM	22. Particulat	e Grain Loading Inlet: Outlet:	g in grains/scf:	
23.	Emission rate of eac	h pollutant (spe	ecify) into and out	of collector:			
	Pollutant	IN P	ollutant	Emission	OUT Po	ollutant	Control
		lb/hr	grains/acf	Capture Efficiency %	lb/hr	grains/acf	Efficiency %
	A						
	В						
	С						
	D						
	E						
24.	Dimensions of stack:	: He	ight	ft.	Diameter		ft.
25.	25. Supply a curve showing proposed collection efficiency versus gas volume from 25 to 130 percent of design rating of collector.						
			Particulate	Distribution			
26.	Complete the table:			stribution at InletFraction Efficiency of CollectorCollector			Collector
Pa	articulate Size Range	e (microns)		or Size Range Weight % for Size Range			Range
	0-2	, ,					U
	2 – 4						
	4 – 6						
	6 – 8						
	8 – 10						
	10 – 12						
	12 – 16						
	16 – 20						
	20 - 30						
30 – 40							
40 - 50							
50 - 60							
	60 – 70						
70 - 80							
	80 - 90						
	90 - 100						
	>100						

27. Describe any air p reheating, gas hun		utlet gas conditioning processes (e.g., gas cooling, gas
	ction material disposal system: asoline and slop oil tanks will be co	mpressed and sent back to process.
29. Have you included	Other Collectores Control Devic	ce in the Emissions Points Data Summary Sheet?
Please propose n	ig parameters. Please propose	and Testing eporting in order to demonstrate compliance with the testing in order to demonstrate compliance with the
MONITORING: In accordance with	n operating plan per §60.113b(c).	RECORDKEEPING:
REPORTING:		TESTING: N/A
MONITORING: RECORDKEEPING: REPORTING: TESTING:	monitored in order to demons equipment or air control device. Please describe the proposed re Please describe any proposed pollution control device.	bcess parameters and ranges that are proposed to be strate compliance with the operation of this process cordkeeping that will accompany the monitoring. emissions testing for this process equipment on air emissions testing for this process equipment on air
31. Manufacturer's Gu	aranteed Control Efficiency for eac	h air pollutant.
32. Manufacturer's Gu	aranteed Control Efficiency for eac	h air pollutant.
33. Describe all operat	ting ranges and maintenance proce	edures required by Manufacturer to maintain warranty.

ATTACHMENT N: SUPPORTING EMISSIONS CALCULATIONS

RULE 13 AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

BLUE RACER MIDSTREAM, LLC

													Potential to Emit								
				NOX		CO		VOC		PM	PM ₁₀		$PM_{2.5}$		0_2	0	2	CH4		CO2e	8
Emission Unit ID	Control Device ID	Emission Point ID	Description	Hourly A (lb/hr) (Hourly Annual (lb/hr) (T/yr)		Hourly Annual (lb/hr) (T/yr)		Hourly Annual (Ib/hr) (T/yr)	Hourly Annual (lb/hr) (T/yr)		Hourly Annual (lb/hr) (T/yr)		Hourly Annual (lb/hr) (T/yr)	Hourly (lb/hr)	Annual (T/yr)	Hourly Annual (lb/hr) (T/yr)	Annual (T/yr)	Hourly (lb/hr)	Annual (T/yr)
PROJECT-AFI S024	PROJECT-AFFECTED SOURCES S024 N/A	ES P024	Regen Gas Heater (9.7 MMBhr/hr)	0.95	4.17	0.80	3.50	0.05 0.23	23 0.07	0.32	0.07	0.32	0.07 0.32	10.0	0.03	:	;			:	4.966
S025	N/A	P025	Regen Gas Heater (9.7 MMBtu/hr)		4.17		3.50							0.01	0.03	;	:	;	;		4,966
S026	N/A	P026	Cryo HMO Heater (26.3 MMBtu/hr)	2.58	11.29	2.17	9.49				0.20	0.86		0.02	0.08	;	:				13,465
S027	N/A	P027	Cryo HMO Heater (26.3 MMBtu/hr)		11.29									0.02	0.08	;	;	;	;	;	13,465
S028	N/A	P028	Glycol Reboiler (3.0 MMBu/hr)	0.29	1.29		1.08			0.10				0.002	0.01	:	:				1,536
SU29	N/A	P029	Glycol Reboiler (3.0 MMBu/hr)	67.0	67.1	c7.0	1.08	0.02 0.07	0.02	0.10	0.02	010	0.02 0.10	0.002	10.0	;	:				1,536
FLIG AREA 3		FU30 FIIG AREA 3	Crycol reboliet (5.0 MiMbu/III) Fugitives (Cryo Train 3)							01-0					10:0	: :	0.04		- 1.52		38
FUG AREA 4		FUG AREA 4	Fugitives (Crvo Train 4)		:			0.95 4.1		:	,	:	•		:	:	0.04		1.52		38
S006	C007	V001	Dehydrator Still Vent		:			2.03 8.89	- 68	;		:			;	:	0.38		6.83	1	171
S031	C008	V002	Dehydrator Still Vent	1	:					1	1	:		•	;	:	0.38	1	6.83	1	171
S032	C009	V003	Dehydrator Still Vent		:	;				1				;	:	:	0.38		6.83	1	171
S033	C010	V004	Dehydrator Still Vent		;					:		:	:		;	:	0.38		6.83	1	171
V001	N/A	V001	Vapor Combustor	0.75	3.27					0.11		_	0	0.002	0.01	:	:	;			2,768
V002	N/A	V002	Vapor Combustor	0.75	3.27	1.49						-	0.03 0.11	0.002	0.01	;	;	;	;	1	2,768
V003	N/A	V003	Vapor Combustor	0.75	3.27									0.002	0.01	:	:				2,768
V 004	N/A	V004	Vapor Combustor	c/.0	3.21	1.49) 50.0	0.000 2000.0	01 0.03	0.11	0.03	- 11-0	0.03 0.11	0.002	10.0	;	;	1			7/08
EXISTING/UN	EXISTING/UNMODIFIED SOURCES	RCES	1							000				1000	0000						
S004A	N/A	P004A	Ground Flare		0.65					0.03				0.001	0.002	:	:				565
2001	N/A	P001	Hot Oil Heater (216.7 MMBtu/hr)		24.68									0.16	0.69	:	:				111,058
2010	N/A N/A	P010	Hot Oil Heater (61.6 MMBtu/hr) Hot Oil Hontor (61 & MMBtu/hr)	1.48	6.47	3.05	15.01	0.33 1.45		107		10.2		0.04	070	;	;				31,560
S018	N/A	P018	Hot Oil Heater (01.0 MMBm/hr) Hot Oil Heater (61.6 MMBm/hr)	1.46	6.47				15 0.46		0.46		0.46 2.01	0.04	0.20	:	:				31 560
S019	N/A	P019	Hot Oil Heater (61.6 MMBtu/hr)		6.47									0.04	0.20						31.560
S020	N/A	P020	Glycol Reboiler (3.0 MMBut/hr)	0.29	1.29									0.002		:	:			:	1.537
S022	N/A	P022	Regen Gas Heater (9.7 MMBtu/hr)	0.95	4.17	0.80	3.50		23 0.07		0.07	0.32	0.07 0.32	0.01		;	;	1	1	1	4,971
S021	N/A	P021	Emergency Flare	0.03	0.11			0.05 0.23					0.001 0.01	3.8E-05	0						103
S007	N/A	P004A	Slop Tank TK-906, with Natural Gas Blanket and VRU to Flare (insignificant intermittent source)		;	ı	;			1	I	1		I	;	1	;	I	ı	I	I
S011 S014	N/A	P005 P006	Ethane Amine Regenerators	,	;	,	;	0.16 0.71	12	;	,	;	:	,	;	5 820	25 492	0.78	1.25	5 827	25 523
S005	C001	POOL	Natural Gasoline Storage Tank TK-802, with Natural Gasoline Storage Tank TK-802, with Natural Gasoline Storage Tank TK-802, intermittent source)	1		1				:	1			1	:			5			a na ai
S023	C001	P001	Natural Gasoline Storage Tank TK- 2802, with Natural Gas Blanket and	ı	;	1	;	:		:	ı	;	:	ı	1	:	;	ı	ı	1	1
			VRU to Hot Oil Heater (insignificant intermittent source)																		
S008	N/A	P008	Propane, i-Butane, Butanes, and Natural Gasoline Loading (Truck, Railcar, and Barge)	I	:	1	:		1	1	I	1	:	1	1	1	1	I	1	I	ı
ROADS	N/A	ROADS	Unpaved Roads		;		;			15.20	1	4.05	0.41		;	:	:				
FUG AREA 2	N/A	FUG AREA 2	Fugitives	ł	1			1.19 5.22		1				1	;	;	0.56	;	1.21	;	31
S012	N/A	P012	Regen Gas Heater (9.7 MMBtu/hr)		4.13		3.47			0.31				0.01	0.02	;	;	1	;	;	4,971
S013	N/A N/A	P013	Cryo HMO Heater (26.5 MMBtwhr) Eter Dunne #1 (700 he)	2.20	61.11	012	9.40	0.14 0.6	01 0.19	0.00	0.19	68.0	0.19 0.80	0.01	0.07	:	;				15,478
2003	V/N	1.002 D003	The Lunp #1 (700 hr)		17.0		1110							10.0	100	:	: :				41
FUG AREA 1	N/A	FUG AREA 1	Fugitives		-		-			-				-	-	:	0.05		15.50		387
			City Total ³ .	30.05	120.49	41.28 1		14 50 80	43 5.18		5 18 2		5 18 20 26	0.45	1 93	5 820	25 404	0.78	18 31	5 827	342, 748
		Previously At	Previously Authorized Emissions (Permit R13-2896C):		72.55		99.23	44.22		31.98		20.83	17.18	2	1.63		- velow				289,280
			Project Changes ^b :		47.94		53.54	45.	21	3.08		3.08	3.08		0.30						52,968
												· · ·									

PSD Major Source Cuanges: 10.0
 PSD Major Source Cuanges: 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 10.0
 1

100,000

100

100

100

											Potentia	Potential to Emit							
				5	CH ₂ O	H-N	N-Hexane	Ben	Benzene	Toluene	iene	Ethylbenzene	enzene	Xylene	ne	Other HAPS	SAAH	Total HAPs	HAPs
Emission Unit ID	Control Device ID	e Emission Point ID	Description	Hourly (lb/hr)	Annual (T/yr)	Hourly (lb/hr)	Annual (T/yr)	Hourly (Ib/hr)	Annual (T/yr)	Hourly (lb/hr)	Annual (T/yr)	Hourly (lb/hr)	Annual (T/yr)	Hourly (lb/hr)	Annual (T/yr)	Hourly (Ib/hr)	Annual (T/yr)	Hourly (lb/hr)	Annual (T/yr)
PROJECT-AFF	PROJECT-AFFECTED SOURCE	E	Dorrow Goe Horitor (0.7 MMDIn/he)	7 13E 04	3 17E /03	7.66E.03	1 16E 02	2 00E 05	0 75E 05	3 73E 05	1 426 04	0.005.00	0.005.00	0.005-00	0.000	2.43E.05	1.06E.04	3 A5E 03	1515.00
5024 S075	N/A	P024	Regen Gas Heater (9.7 MMBtu/hr) Decen Gee Heater (9.7 MMBtu/hr)	7.13E-04	3.12E-03		1.16E-02	2.00E-05	8.75E-05	3.23E-05	1.42E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.43E-U5	1.06E-04	3.45E-U3 3.45E-03	1515-02
302.0 S026	N/N	P026	Crvo HMO Heater (26.3 MMBtu/hr)	1.93E-03	8.47E-03	7.21E-03	3.16E-02	5.41E-05	2.37E-04	8.77E-05	3.84E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.59E-05	2.89E-04	9.35E-03	4.09E-02
S027	N/A	P027	Cryo HMO Heater (26.3 MMBtu/hr)	1.93E-03	8.47E-03		3.16E-02	5.41E-05	2.37E-04	8.77E-05	3.84E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.59E-05	2.89E-04	9.35E-03	4.09E-02
S028	N/A	P028	Glycol Reboiler (3.0 MMBtu/hr)	2.21E-04	9.66E-04		3.60E-03	6.18E-06	2.71E-05	1.00E-05	4.38E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.51E-06	3.29E-05	1.07E-03	4.67E-03
S029	N/A	P029	Glycol Reboiler (3.0 MMBtu/hr)	2.21E-04	9.66E-04		3.60E-03	6.18E-06	2.71E-05	1.00E-05	4.38E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.51E-06	3.29E-05	1.07E-03	4.67E-03
S030 ETIC ABEA 2	N/A	P030	Glycol Reboiler (3.0 MMBtu/hr) Emitting (Caro Troin 3)	2.21E-04	9.66E-04	8.22E-04	3.60E-03	6.18E-06	2.71E-05	1.00E-05	4.38E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.51E-06	3.29E-05	1.07E-03	4.67E-03
FIG AREA 4	N/A	FIG AREA 3	Fugitives (Cryo Itam 3) Fugitives (Cryo Train 4)	: :		1.0HE-03	8.07E-03	2.33E-04	1 02E-03	2.90E-04	1 30E-03	1 20E-05	5.27E-05	1 26E-04	5.53E-04	: :		2.51E-03	1.10E-02
S006	V001	V001	Dehydrator Still Vent	;	1	2.53E-02	1.11E-01	2.74E-02	1.27E-01	1.19E-01	5.23E-01	0.00E+00	0.00E+00	1.38E-01	6.06E-01	;	1	3.10E-01	1.37E+00
S031	V002	V002	Dehydrator Still Vent	:	-	2.53E-02	1.11E-01	2.74E-02	1.27E-01	1.19E-01	5.23E-01	0.00E+00	0.00E+00	1.38E-01	6.06E-01			3.10E-01	1.37E+00
S032	V003	V003	Dehydrator Still Vent	:	1	2.53E-02	1.11E-01	2.74E-02	1.27E-01	1.19E-01	5.23E-01	0.00E+00	0.00E+00	1.38E-01	6.06E-01			3.10E-01	1.37E+00
S033	V004	V004	Dehydrator Still Vent	-	1	2.53E-02	1.11E-01	2.74E-02	1.27E-01	1.19E-01	5.23E-01	0.00E+00	0.00E+00	1.38E-01	6.06E-01			3.10E-01	1.37E+00
1007	N/A	1007	Vapor Combustor	2.54E-04	1.11E-03	6.09E-03	2.67E-02	7.10E-06	3.11E-05	1.15E-05	5.03E-05	;	;	;	;	6.42E-06	2.81E-05	6.36E-03	2.79E-02
V002	N/A N/A	V002	Vapor Combustor Vapor Combustor	2.54E-04 2.54E-04	1.11E-03 1.11E-03	6.09E-03 6.09E-03	2.6/E-02 2.67E-02	7.10E-06	3.11E-05 3.11E-05	1.15E-05	5.03E-05		: :	: :	: :	6.42E-06 6.42E-06	2.81E-05	6.36E-03 6.36E-03	2./9E-02 2.79E-02
V004	N/A	V004	Vapor Combustor	2.54E-04	1.11E-03	6.09E-03	2.67E-02	7.10E-06	3.11E-05	1.15E-05	5.03E-05					6.42E-06	2.81E-05	6.36E-03	2.79E-02
EVISTING/UND	EXISTING/INMODIETED SOURCES	BCFS																	
S004A	N/A	P004A	Ground Flare	;	I	2.23E-04	9.77E-04	4.52E-05	1 98E-04	4 59E-05	2.01E-04	2.60E-06	1.14E-05	1.34E-05	5 86E-05	;	I	3 30E-04	1 45E-03
S001	N/A	P001	Hot Oil Heater (216.7 MMBtu/hr)	5.02E-03	2.20E-02	1.87E-02	8.20E-02	1.41E-04	6.16E-04	2.28E-04	9.97E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.71E-04	7.49E-04	2.43E-02	1.06E-01
S016	N/A	P016	Hot Oil Heater (61.6 MMBtu/hr)	4.53E-03	1.98E-02	1.69E-02	7.39E-02	1.27E-04	5.55E-04	2.28E-04	9.97E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.54E-04	6.76E-04	2.19E-02	9.60E-02
S017	N/A	P017	Hot Oil Heater (61.6 MMBtu/hr)	4.53E-03	1.98E-02	1.69E-02	7.39E-02	1.27E-04	5.55E-04	2.28E-04	9.97E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.54E-04	6.76E-04	2.19E-02	9.60E-02
S018	N/A	P018	Heater (61	4.53E-03	1.98E-02	1.69E-02	7.39E-02	1.27E-04	5.55E-04	2.28E-04	9.97E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.54E-04	6.76E-04	2.19E-02	9.60E-02
S019	N/A	P019	Hot Oil Heater (61.6 MMBtu/hr)	4.53E-03	1.98E-02	1.69E-02	7.39E-02	1.27E-04	5.55E-04	2.28E-04	9.97E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.54E-04	6.76E-04	2.19E-02	9.60E-02
S020 S023	N/A N/A	P020	Glycol Reboiler (3.0 MMBtu/hr) Recen Gas Heater (9.7 MMBtu/hr)	2.21E-04 7 13E-04	9.66E-04 3.12E-03	3.22E-04	3.60E-03 1.16E-02	0.18E-06	2.71E-05 8.75E-05	3 23E-05	4.38E-05 1.42E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.51E-06 2.43E-05	3.29E-05 1.06E-04	1.07E-03 3.45E-03	4.67E-03 1 51E-02
S021	N/A	P021	Emergencov Flare	+0-761.7							10000							0.00E+00	0.00E+00
S007	N/A	P004A	Slop Tank TK-906, with Natural Gas	;		1					:	:	:	:	:	:		0.00E+00	0.00E+00
			Blanket and VRU to Flare (insignificant																
			intermittent source)																
S011, S014	N/A	P005, P006	Ethane Amine Regenerators	;	1	ı	ı	1	1	1	;	;	;	;	;	;	1	0.00E+00	0.00E+00
S005	C001	P001	Natural Gasoline Storage Tank TK-802, with Natural Gas Blanket and VRU to Hot Oil Heater (insignificant intermittent source)	1	I	1	1	I	1	1	1	1	1	1	1	1	1	0.00E+00	0.00E+00
S023	C001	P001	Natural Gasoline Storage Tank TK- 2802, with Natural Gas Blanket and VRU to Hot Oil Heater (insignificant intermittent source)	:	1	1	1	1	1	1	1	1	1	ł	:	:	1	0.00E+00	0.00E+00
S008	N/A	P008	Propane, i-Butane, Butanes, and Natural Gasoline Loading (Truck, Railcar, and Barge)	1	I	1	I	I	1	1	1	1	1	1	1	1	I	0.00E+00	0.00E+00
ROADS	N/A	ROADS	Unpaved Roads	;	;	;		;	;	;	;	;	:	;	;	:	1	0.00E+00	0.00E+00
FUG AREA 2	N/A	FUG AREA 2	Fugitives	;	:	7.07E-03	3.10E-02	1.43E-03	6.26E-03	1.45E-03	6.37E-03	8.23E-05	3.61E-04	4.23E-04	1.85E-03	6.87E-03	3.01E-02	1.73E-02	7.59E-02
S012	N/A	P012	Regen Gas Heater (9.7 MMBtu/hr)	7.13E-04	3.12E-03	2.66E-03	1.16E-02	2.00E-05	8.75E-05	3.23E-05	1.42E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.43E-05	1.06E-04	3.45E-03	1.51E-02
5005	N/A	PUL5	Cryo HNU Heater (20.3 MMBU/III) Eira Duma #1 (700 ha)	1.95E-U5 3 88E-04	0.4/E-05	/.2115-03	2.10E-02	3 87E-03	2.5/E-04 1.01E-04	8.//E-05 1 39E-03	5.84E-04 6.01E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.395-03	2.89E-04 6.03E-05	7.74E-03	3 87E-04
S003	N/A	P003	Fire Pump #2 (700 hp)	3.88E-04	1.94E-05			3.82E-03	1.91E-04	1.38E-03	6.91E-05			9.49E-04	4.75E-05	1.21E-03	6.03E-05	7.74E-03	3.87E-04
FUG AREA 1	N/A	FUG AREA 1	Fugitives	1		3.29E-01	1.44E+00	1	-		1	1	:			1	-	3.29E-01	1.44E+00
				0.03	0.15	0.59	2.57	0.12	0.52	0.48	2.11	0.0001	0.0005	0.56	2.43	0.01	0.04	1.79	7.81
			Major Source Thresholds:		0T		ΛT		Π		ΛT		10		AT				9

GROUND FLARE POTENTIAL TO EMIT

AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

Emission Unit ID	S004A					
Process Streams Annual Emissions (for tpy)	to Flare					
Pilot Emissions- Continual						
Pilot Fuel consumption	743.44	scf/hr				
Pilot heat input rating	0.765	MMBtu/hr				
Fuel gas HHV Annual operating hours	1,029 8,760	Btu/ft ³ hr/yr				
rinnan operating nours	0,700					
Purge Gas- Continual						
Purge Gas consumption Pruge Gas input rating	117 0.120	scf/hr MMBtu/hr				
Fuel gas HHV	1,029	Btu/ft ³				
Annual operating hours	8,760	hr/yr				
<u>Fotal (Maintenance and Blowdowns)</u> Total annual heat input to flare	929	MMBtu/yr				
Total annual gas volume to flare	1	MMBtu/yr MMcf/yr				
Total annual VOC to flare	2	ton VOC/yr				
Total annual CH4 to flare	13	ton CH4/yr				
Total annual HAP to flare	0	ton HAP/yr				
otal (Pressure Revief Value Leaks)						
Total annual heat input to flare	735	MMBtu/yr				
Total hourly heat input to flare	0.08	MMBtu/hr				
Total hourly consumption to flare	81.5	scf/hr				
Total annual gas volume to flare	0.6	MMcf/yr				
Total Hourly VOC to flare Total annual VOC to flare	1.1 5	lb/hr VOC ton VOC/yr				
Total annual CH4 to flare	3	ton CH4/yr				
Total annual HAP to flare	0.1	ton HAP/yr				
Maximum Short-Term Emissions Max short-term VOC to flare (Case 13)	112	lb/hr				
Max short-term VOC to hare (Case 13) Max short-term CH4 to flare (Case 12)	260	lb/hr				
Max short-term HAP to flare	0	lb/hr				
Max short-term heat input (Case 11)	8	MMBtu/hr				
Total consumption to flare	7472.2	scf/hr				
lare control efficiency	99.5%					
	55.570	-1			Potential	Emissions
Pollutant	CAS	REF	Emission Factor	Units	lb/hr	tons/yı
Pilot						
riteria Pollutants		1	0.400	1. (10/17)	0.14	0.44
NOx	N/A	1	0.138	lb/MMBtu	0.11	0.46
CO	630-08-0	1	0.2755	lb/MMBtu	0.21	0.92
VOC	N/A	3	5.5	lb/MMscf	0.004	0.02
PM-10	N/A	3	7.6	lb/MMscf	0.006	0.02
PM-2.5	N/A	3	7.6	lb/MMscf	0.006	0.02
SO2 Greenhouse Gases	7446-09-5	2	4.0	ppm	0.001	0.002
Carbon dioxide	124-38-9	4	53.02	kg/MMBtu	89.42	391.66
Methane	74-82-8	5	1.0E-03	kg/MMBtu	0.0017	0.01
Nitrous oxide	10024-97-2	5	1.0E-04	kg/MMBtu	0.00017	0.001
CO ₂ e	N/A	6			89.51	392.06
urge Gas						
riteria Pollutants						1
NOx	N/A	1	0.138	lb/MMBtu	0.02	0.07
CO	630-08-0	1	0.2755	lb/MMBtu	0.03	0.15
VOC	N/A	3	5.5	lb/MMscf	0.001	0.003
				1 0 0 0 0	0.001	0.004
PM-10	N/A	3	7.6	lb/MMscf		
		3	7.6 7.6	lb/MMscf	0.001	0.004
PM-10 PM-2.5 S02	N/A					0.004
PM-10 PM-2.5 S02 reenhouse Gases	N/A N/A 7446-09-5	3 2	7.6 4.0	lb/MMscf ppm	0.001 0.0001	0.0003
PM-10 PM-2.5 S02 Freenhouse Gases Carbon dioxide	N/A N/A	3 2 4	7.6 4.0 53.02	lb/MMscf ppm kg/MMBtu	0.001 0.0001 14.07	0.0003 61.64
PM-10 PM-2.5 S02 irreenhouse Gases	N/A N/A 7446-09-5 124-38-9	3 2	7.6 4.0	lb/MMscf ppm	0.001 0.0001	0.0003
PM-10 PM-2.5 S02 reenhouse Gases Carbon dioxide Methane	N/A N/A 7446-09-5 124-38-9 74-82-8	3 2 4 5	7.6 4.0 53.02 1.0E-03	lb/MMscf ppm kg/MMBtu kg/MMBtu	0.001 0.0001 14.07 0.0003	0.0003 61.64 0.001
PM-10 PM-2.5 S02 reenhouse Gases Carbon dioxide Methane Nitrous oxide C0 ₂ e fare	N/A N/A 7446-09-5 124-38-9 74-82-8 10024-97-2	3 2 4 5 5	7.6 4.0 53.02 1.0E-03 1.0E-04	lb/MMscf ppm kg/MMBtu kg/MMBtu kg/MMBtu	0.001 0.0001 14.07 0.0003 0.00003	0.0003 61.64 0.001 0.0001
PM-10 PM-2.5 S02 recehouse Gases Carbon dioxide Methane Nitrous oxide CO2e fare riteria Pollutants	N/A N/A 7446-09-5 124-38-9 74-82-8 10024-97-2 N/A	3 2 4 5 5 6	7.6 4.0 53.02 1.0E-03 1.0E-04 	lb/MMscf ppm kg/MMBtu kg/MMBtu kg/MMBtu 	0.001 0.0001 14.07 0.0003 0.00003 14.09	0.0003 61.64 0.001 0.0001 61.70
PM-10 PM-2.5 S02 Carbon dioxide Methane Nitrous oxide C0 ₂ e C0 ₂ e Iare Tieriar Dollutants N0x	N/A N/A 7446-09-5 124-38-9 74-82-8 10024-97-2 N/A N/A	3 2 4 5 5 6	7.6 4.0 53.02 1.0E-03 1.0E-04 0.138	lb/MMscf ppm kg/MMBtu kg/MMBtu lb/MMBtu	0.001 0.0001 14.07 0.0003 0.00003 14.09 1.07	0.0003 61.64 0.001 0.0001 61.70 0.11
PM-10 PM-2.5 SO2 Carbon dioxide Carbon dioxide Methane Nitrous oxide C0 ₂ e C0 ₂ e C0 ₂ e C0 ₂ e C0 ₂ e C0 ₂ e C0 ₂ C C0 ₂ C C0 C0 C0 C0 C0 C0 C0 C0 C0 C0 C0 C0 C0	N/A N/A 7446-09-5 124-38-9 74-82-8 10024-97-2 N/A N/A 630-08-0	3 2 4 5 5 6 4 6	7.6 4.0 53.02 1.0E-03 1.0E-04 0.138 0.2755	lb/MMscf ppm kg/MMBtu kg/MMBtu kg/MMBtu lb/MMBtu lb/MMBtu	0.001 0.0001 14.07 0.0003 0.00003 14.09 1.07 2.14	0.0003 61.64 0.001 61.70 0.11 0.23
PM-10 PM-2.5 S02 reenhouse Gases Carbon dioxide Methane Nitrous oxide C0_2e riteria Pollutants N0x C0 V0C - combustion	N/A N/A 7446-09-5 124-38-9 74-82-8 10024-97-2 N/A N/A 630-08-0 N/A	3 2 4 5 5 6 6 1 1 3	7.6 4.0 53.02 1.0E-03 1.0E-04 0.138 0.2755 5.5	lb/MMscf ppm kg/MMBtu kg/MMBtu lb/MMBtu lb/MMBtu lb/MMStu	0.001 0.0001 14.07 0.0003 0.00003 14.09 1.07 2.14 0.04	0.0003 61.64 0.001 0.0001 61.70 0.11 0.23 0.004
PM-10 PM-25 S02 reenhouse Gases Carbon dioxide Methane Nitrous oxide CO2e Gase Jare	N/A N/A 7446-09-5 124-38-9 74-82-8 10024-97-2 N/A N/A 630-08-0	3 2 4 5 5 6 4 6	7.6 4.0 53.02 1.0E-03 1.0E-04 0.138 0.2755	lb/MMscf ppm kg/MMBtu kg/MMBtu kg/MMBtu lb/MMBtu lb/MMBtu	0.001 0.0001 14.07 0.0003 0.00003 14.09 1.07 2.14	0.0003 61.64 0.001 61.70 0.11 0.23
PM-10 PM-25 S02 Carbon dioxide Carbon dioxide Methane Nitrous oxide C0 ₂ e Carbon dioxide Kotane C0 C0 V0C - combustion V0C - controlled process stream	N/A N/A 7446-09-5 124-38-9 74-82-8 10024-97-2 N/A N/A 630-08-0 N/A	3 2 4 5 5 6 6 1 1 3	7.6 4.0 53.02 1.0E-03 1.0E-04 0.138 0.2755 5.5	lb/MMscf ppm kg/MMBtu kg/MMBtu lb/MMBtu lb/MMBtu lb/MMStu	0.001 0.0001 14.07 0.0003 0.00003 14.09 1.07 2.14 0.04	0.0003 61.64 0.001 0.0001 61.70 0.11 0.23 0.004
PM-10 PM-2.5 S02 reenhouse Gases Carbon dioxide Methane Nitrous oxide C0_2e Iare riteria Pollutants N0x C0 VOC - combustion VOC - controlled process stream PM-10	N/A N/A 7446-09-5 124-38-9 74-82-8 10024-97-2 N/A N/A 630-08-0 N/A N/A N/A	3 2 4 5 5 6 1 1 3 	7.6 4.0 53.02 1.0E-03 1.0E-04 0.138 0.2755 5.5 113	lb/MMscf ppm kg/MMBtu kg/MMBtu lb/MMBtu lb/MMBtu lb/MMStcf lb/hr	0.001 0.0001 14.07 0.0003 0.00003 14.09 1.07 2.14 0.04 0.57	0.0003 61.64 0.001 0.0001 61.70 0.11 0.23 0.004 0.04
PM-10 PM-2.5 S02 reenhouse Gases Carbon dioxide Methane Nitrous oxide C0_2e Iare riteria Pollutants N0x C0 VOC - combustion VOC - controlled process stream PM-10	N/A N/A 7446-09-5 124-38-9 74-82-8 10024-97-2 N/A N/A 630-08-0 N/A N/A N/A N/A	3 2 4 5 5 6 1 1 3 3	7.6 4.0 53.02 1.0E-03 1.0E-04 0.138 0.2755 5.5 113 7.6	lb/MMscf ppm kg/MMBtu kg/MMBtu lb/MMBtu lb/MMBtu lb/MMscf lb/hr	0.001 0.0001 14.07 0.0003 0.00003 14.09 1.07 2.14 0.04 0.57 0.06	0.0003 61.64 0.001 0.0001 61.70 0.11 0.23 0.004 0.04 0.01
PM-10 PM-25 S02 Carbon dioxide Carbon dioxide Methane Nitrous oxide C02e C02e C0 C0 C0 C0 V0C - controlled process stream PM-10 PM-25 HAP - controlled process stream	N/A N/A 7446-09-5 124-38-9 74-82-8 10024-97-2 N/A N/A N/A N/A N/A N/A	3 2 4 5 5 6 4 6 1 1 3 3 3	7.6 4.0 53.02 1.0E-03 1.0E-03 1.0E-04 0.138 0.2755 5.5 5.5 113 7.6 7.6	lb/MMscf ppm kg/MMBtu kg/MMBtu kg/MMBtu lb/MMBtu lb/MMBtu lb/MMscf lb/hr lb/MMscf	0.001 0.0001 14.07 0.0003 0.00003 14.09 1.07 2.14 0.04 0.57 0.06 0.06	0.0003 61.64 0.001 0.0001 61.70 0.11 0.23 0.004 0.04 0.01 0.01
PM-10 PM-25 S02 Carbon dioxide Methane Nitrous oxide C0-ge C0-ge C0-ge V0C - combustion V0C - controlled process stream PM-10 PM-2.5 HAP - controlled process stream C0TAL	N/A N/A 7446-09-5 124-38-9 74-82-8 10024-97-2 N/A N/A N/A N/A N/A N/A	3 2 4 5 5 6 4 6 1 1 3 3 3	7.6 4.0 53.02 1.0E-03 1.0E-03 1.0E-04 0.138 0.2755 5.5 5.5 113 7.6 7.6	lb/MMscf ppm kg/MMBtu kg/MMBtu kg/MMBtu lb/MMBtu lb/MMBtu lb/MMscf lb/hr lb/MMscf	0.001 0.0001 14.07 0.0003 0.00003 14.09 1.07 2.14 0.04 0.57 0.06 0.06	0.0003 61.64 0.001 0.0001 61.70 0.11 0.23 0.004 0.04 0.01 0.01
PM-10 PM-25 S02 Carbon dioxide Methane Nitrous oxide C0-ge C0-ge C0-ge V0C - combustion V0C - controlled process stream PM-10 PM-2.5 HAP - controlled process stream C0TAL	N/A N/A 7446-09-5 124-38-9 74-82-8 10024-97-2 N/A N/A N/A N/A N/A N/A	3 2 4 5 5 6 1 1 3 3 3 	7.6 4.0 53.02 1.0E-04 0.138 0.2755 5.5 5.5 5.5 113 7.6 7.6 0	ib/MMscf ppm kg/MMBtu kg/MMBtu kg/MMBtu ib/MMBtu ib/MMBtu ib/MMscf ib/MMscf ib/hr	0.001 0.0001 14.07 0.0003 0.00003 14.09 1.07 2.14 0.04 0.57 0.06 0.06 0.00	0.0003 61.64 0.001 0.0001 61.70 0.11 0.23 0.004 0.04 0.01 0.00
PM-10 PM-2.5 S02 reenhouse Gases Carbon dioxide Methane Nitrous oxide C0_2e C0_2e C0 V0C - controlled process stream PM-10 PM-2.5 HAP - controlled process stream OTAL riteria Pollutants N0x	N/A N/A 7446-09-5 124-38-9 74-82-8 10024-97-2 N/A	3 4 5 5 6 1 1 1 3 3 3 	7.6 4.0 53.02 1.0E-03 1.0E-03 1.0E-04 0.138 0.2755 5.5 1.13 7.6 7.6 0 7.6 0	ib/MMscf ppm kg/MMBtu kg/MMBtu kg/MMBtu b/MMBtu ib/MMBtu ib/MMBtu ib/MMscf ib/hr ib/hr ib/hr	0.001 0.0001 14.07 0.0003 0.00003 14.09 1.07 2.14 0.04 0.57 0.06 0.06 0.00 0.00 0.00 0.00 0.00 0.0	0.0003 61.64 0.001 0.0001 61.70 0.11 0.23 0.004 0.04 0.01 0.01 0.00
PM-10 PM-25 S02 Carbon dioxide Methane Nitrous oxide C0 ₂ e Carbon dioxide Methane Nitrous oxide C0 ₂ e C0 VOC - controlled process stream PM-10 PM-25 HAP - controlled process stream CTAL C0	N/A N/A 7446-09-5 124-38-9 7448-28 10024-97-2 N/A 630-08-0 N/A N/A	3 2 4 5 5 6 6 1 1 1 3 3 3 3 	7.6 4.0 53.02 1.0E-03 1.0E-04 0.2755 5.5 5.5 113 7.6 7.6 0	ib/MMscf ppm sg/MMBtu kg/MMBtu kg/MMBtu ib/MBtu ib/MMBtu ib/MMBtu ib/MMscf ib/MMscf ib/hr ib/hr	0.001 0.0001 14.07 0.0003 14.09 1.07 2.14 0.04 0.57 0.06 0.06 0.00 1.19 2.39	0.0003 61.64 0.001 0.0001 61.70 0.11 0.23 0.004 0.04 0.01 0.01 0.00 0.00
PM-10 PM-25 S02 reenhouse Gases Carbon dioxide Methane Nitrous oxide C0 ₂ e Gase Viteria Pollutants NOX CC CO VOC - combustion VOC - controlled process stream PM-10 PM-25 HAP - controlled process stream OTAL riteria Pollutants NOX CO CO VOC	N/A N/A 7446-09-5 124-38-9 774-82-8 10024-97-2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	3 2 4 5 5 6 1 1 1 3 3 3 3 5 6	7.6 4.0 53.02 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 5.5 5.5 5.5 5.5 113 7.6 7.6 0	ib/MMscf ppm kg/MMBtu kg/MMBtu kg/MMBtu ib/MMBtu ib/MMBtu ib/MMscf ib/MMscf ib/hr ib/hr 	0.001 0.0001 14.07 0.0003 0.00003 14.09 1.07 2.14 0.04 0.57 0.06 0.06 0.00 0.00 0.00 0.00 0.00 0.0	0.0003 61.64 0.001 0.0001 61.70 0.11 0.23 0.004 0.04 0.01 0.01 0.00 0.00 0.65 1.30 0.06
PM-10 PM-25 S02 Carbon dioxide Methane Nitrous oxide C0 ₂ e Carbon dioxide Methane Nitrous oxide C0 ₂ e C0 VOC - controlled process stream PM-10 PM-25 HAP - controlled process stream CTAL C0	N/A N/A 7446-09-5 124-38-9 7448-28 10024-97-2 N/A 630-08-0 N/A N/A	3 2 4 5 5 6 6 1 1 1 3 3 3 3 	7.6 4.0 53.02 1.0E-03 1.0E-04 0.2755 5.5 5.5 113 7.6 7.6 0	ib/MMscf ppm sg/MMBtu kg/MMBtu kg/MMBtu ib/MBtu ib/MMBtu ib/MMBtu ib/MMscf ib/MMscf ib/hr ib/hr	0.001 0.0001 14.07 0.0003 14.09 1.07 2.14 0.04 0.57 0.06 0.06 0.00 1.19 2.39	0.0003 61.64 0.001 0.0001 61.70 0.11 0.23 0.004 0.04 0.01 0.01 0.00 0.00

. 1. CO and NO $_{\rm x}$ are based upon TNRCC Guidance Document for Flares (dated 10/00) for non-assisted high-BTU flares.

2. SO₂ is estimated using a mass balance approach and the actual sulfur content of the gas.
3. AP-42 Table 1.4-2
4. 40 CFR 98 Table C-1

6. 40 CFR 98 Table A-1 Waste gas GHG combustion emissions calculated in accordance with 40 CFR 98 Subpart W.

HEATERS POTENTIAL TO EMIT AIR PERMIT APPLICATION NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT BLUE RACER MIDSTREAM, LLC

Data state Data s			Maximum Hourly	Maximum	Annual	Emission	VOC PTF	, ,	Emission	NO _X PTF	L.	Emission	CO PTF	[1	Emission	PM ^d PTF	Ĩ	Emission	SO2 ⁶ PTF	1
0.0054 0.33 1.45 0.024 1.48 6.47 0.059 3.63 15.91 0.00745 0.46 2.01 4.0 0.04 0.0054 0.33 145 0.024 1.48 6.47 0.059 3.63 15.91 0.00745 0.46 2.01 4.0 0.04 0.0054 0.33 1.45 0.024 1.48 6.47 0.059 3.63 15.91 0.00745 0.46 2.01 4.0 0.04 0.0054 0.33 1.45 0.024 1.48 6.47 0.059 3.63 15.91 0.00745 0.46 2.01 4.0 0.04 0.0054 0.33 1.45 0.059 3.53 15.91 0.00745 0.46 2.01 4.0 0.04 0.0017 0.37 1.61 0.026 5.63 24.68 0.015 3.55 1.424 0.00745 0.46 2.01 4.0 0.04 0.0017 0.37 0.09 0.23	ΞŠ	Heat Input Heat Input (MMBtu/hr) (MMBtu/yr)	Amual Heat Input (MMBtu/yr)			Emission Factor ^a (lb/MMBtu)		Annual ^c (T/yr)	Enussion Factor ^a (lb/MMBtu)		Amual ^c (T/yr)	Emission Factor ^a (lb/MMBtu)		Annual ^c (T/yr)	Emission Factor ^a (lb/MMBtu)	Hourly ^b (lb/hr)	Annual ^c (T/yr)	Emission Factor ^a (ppm S)	Hourly (lb/hr)	Annual ^c (T/yr)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Existing Equipment S016 Hot Oil Heater 61.58 539,441		539,441		8,760	0.0054	0.33	1.45	0.024	1.48	6.47	0.059	3.63	15.91	0.00745	0.46	2.01	4.0	0.04	0.20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hot Oil Heater 61.58 539,441		539,441		8,760	0.0054	0.33	1.45	0.024	1.48	6.47	0.059	3.63	15.91	0.00745	0.46	2.01	4.0	0.04	0.20
0.0054 0.33 1.45 0.024 1.48 6.47 0.059 3.63 15.91 0.00745 0.46 2.01 4.0 0.04 0.0017 0.37 1.61 0.026 5.63 24.68 0.015 3.25 14.24 0.00745 1.61 7.07 4.0 0.16 0.0054 0.07 0.098 0.29 1.29 0.082 0.25 1.08 0.00745 0.10 4.0 0.00 0.0054 0.05 0.23 1.08 0.00745 0.07 4.0 0.002 0.0054 0.05 0.23 1.08 0.00745 0.07 4.0 0.002	Hot Oil Heater 61.58 539,441	539,441			8,760	0.0054	0.33	1.45	0.024	1.48	6.47	0.059	3.63	15.91	0.00745	0.46	2.01	4.0	0.04	0.20
0.0017 0.37 1.61 0.026 5.63 24.68 0.015 3.25 14.24 0.00745 1.61 7.07 4.0 0.16 0.0054 0.02 0.098 0.29 1.29 0.082 0.25 1.08 0.00745 0.10 4.0 0.02 0.0054 0.02 0.098 0.29 1.29 0.082 0.25 1.08 0.00745 0.0 4.0 0.002 0.0054 0.05 0.23 0.182 0.80 3.50 0.00745 0.07 4.0 0.01	Hot Oil Heater 61.58 539,441	539,441			8,760	0.0054	0.33	1.45	0.024	1.48	6.47	0.059	3.63	15.91	0.00745	0.46	2.01	4.0	0.04	0.20
0.0054 0.02 0.098 0.29 1.29 0.082 0.25 1.08 0.00745 0.02 0.10 4.0 0.002 0.0054 0.05 0.23 0.998 0.95 4.17 0.082 0.80 3.50 0.00745 0.32 4.0 0.01	Hot Oil Heater 216.70 1,898,292	1,898,292			8,760	0.0017	0.37	1.61	0.026	5.63	24.68	0.015	3.25	14.24	0.00745	1.61	7.07	4.0	0.16	0.69
0.0054 0.05 0.23 0.098 0.95 4.17 0.082 0.80 3.50 0.00745 0.07 0.32 4.0 0.01	Glycol Reboiler 3.0 26,280		26,280		8,760	0.0054	0.02	0.07	860.0	0.29	1.29	0.082	0.25	1.08	0.00745	0.02	0.10	4.0	0.002	0.01
	Regen Gas Heater 9.7 84,972		84,972		8,760	0.0054	0.05	0.23	0.098	0.95	4.17	0.082	0.80	3.50	0.00745	0.07	0.32	4.0	0.01	0.03

HEATERS POTENTIAL TO EMIT AIR PERMIT APPLICATION NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

BLUE RACER MIDSTREAM, LLC

	Maximum	Maximum	Annual		VOC			NOX			co			PM^{d}			SO_2^e	
	Hourly	Annual	Operating	Emission	PTE	E	Emission	PTE	E	Emission	PTE	E	Emission	PTE	E	Emission	PTE	Е
Description	Heat Input (MMBtu/hr)	Heat Input Heat Input (MMBtu/hr) (MMBtu/yr)	Hours (hr/yr)	- -	Hourly ^b (Ib/hr)	Annual ^c (T/yr)	Factor ^a Hourly ^t (lb/MMBtu) (lb/hr)		Annual ^c (T/yr)	Factor ^a (Ib/MMBtu)	Hourly ^b (lb/hr)	Annual ^c (T/yr)	Factor ^a Hourly ^t (lb/MMBtu) (lb/hr)	Hourly ^b (Ib/hr)	Annual ^c (T/yr)	Factor ^a (ppmS)	Hourly (lb/hr)	Annual ^c (T/yr)
Proposed Equipment S024 Regen Gas Heater	7.6	84,972	8,760	0.0054	0.05	0.23	860.0	0.95	4.17	0.082	0.80	3.50	0.00745	0.07	0.32	4.0	0.01	0.03
Regen Gas Heater	2.6	84,972	8,760	0.0054	0.05	0.23	860.0	0.95	4.17	0.082	0.80	3.50	0.00745	0.07	0.32	4.0	0.01	0.03
Cryo HMO Heater	26.3	230,388	8,760	0.0054	0.14	0.62	860.0	2.58	11.29	0.082	2.17	9.49	0.00745	0.20	0.86	4.0	0.02	0.08
Cryo HMO Heater	26.3	230,388	8,760	0.0054	0.14	0.62	860.0	2.58	11.29	0.082	2.17	9.49	0.00745	0.20	0.86	4.0	0.02	0.08
Glycol Reboiler	3.0	26,280	8,760	0.0054	0.02	0.07	860.0	0.29	1.29	0.082	0.25	1.08	0.00745	0.02	0.10	4.0	0.002	0.01
Glycol Reboiler	3.0	26,280	8,760	0.0054	0.02	0.07	860.0	0.29	1.29	0.082	0.25	1.08	0.00745	0.02	0.10	4.0	0.002	0.01
Glycol Reboiler	3.0	26,280	8,760	0.0054	0.02	0.07	0.098	0.29	1.29	0.082	0.25	1.08	0.00745	0.02	0.10	4.0	0.002	0.01

^a CO and NO_x emission factors are from vendor commitments. VOC emission factor for unit ID S001 is from vendor commitment. All other emission factors are from AP-42 Table 1.4-2 (dated 7/98), converted to Ib/MMBtu by dividing by 1,020 Btu/scf.

^b An hourly VOC emission calculation example follows:

VOC (lb/hr) = (Maximum Heat Input, MMBtu/hr)*(Emission Factor, lb/MMBtu)

VOC (lb/hr) = $(61.58 \text{ MMBtu/hr})^*(0.0054 \text{ lb/MMBtu})$

VOC (lb/hr) = 0.33 lb/hr VOC

° An annual VOC emission calculation example follows:

VOC (T/yr) = (Hourly PTE, lb/hr)*(Annual Operating Hours, hr/yr)/(2,000 lb/T)

 $VOC \ (T/yr) = \ (0.33 \ lb/hr)^{*}(8,760 \ hr/yr)/(2,000 \ lb/T)$

VOC (T/yr) = 1.45 T/yr VOC

^d All PM is assumed to be less than 2.5 microns in diameter per footnote "c" of AP-42 Table 1.4-2.

^e A material balance approach was used to estimate the SO₂ emission rates using the maximum sulfur concentration in the natural gas.

An example calculation for hourly PTE SO_2 follows:

 $SO_{2} (lb/hr) = (Maximum Heat Input, MMBtu/hr)/(Fuel Heating Value, Btu/scf)*(Sulfur Content, ppm)*(1 lb-mol/379 scf)*(64.06 lb SO_2/lb-mol S) SO_{2} (lb/hr) = (61.58 MMBtu/hr)/(926 Btu/scf)*(4.0 lb-mol S/MMlb-mol gas)*(1 lb-mol/379 scf)*(64.06 lb SO2/lb-mol S) SO_{2} (lb/hr) = (61.58 MMBtu/hr)/(926 Btu/scf)*(4.0 lb-mol S/MMlb-mol gas)*(1 lb-mol/379 scf)*(64.06 lb SO2/lb-mol S) SO_{2} (lb/hr) = (61.58 MMBtu/hr)/(926 Btu/scf)*(4.0 lb-mol S/MMlb-mol gas)*(1 lb-mol/379 scf)*(64.06 lb SO2/lb-mol S) SO_{2} (lb/hr) = (61.58 MMBtu/hr)/(926 Btu/scf)*(4.0 lb-mol S/MMlb-mol gas)*(1 lb-mol/379 scf)*(64.06 lb SO2/lb-mol S) SO_{2} (lb/hr) = (61.58 MMBtu/hr)/(926 Btu/scf)*(4.0 lb-mol S/MMlb-mol gas)*(1 lb-mol/379 scf)*(64.06 lb SO2/lb-mol S) SO_{2} (lb/hr) = (61.58 MMBtu/hr)/(926 Btu/scf)*(4.0 lb-mol S/MMlb-mol gas)*(1 lb-mol/379 scf)*(64.06 lb SO2/lb-mol S) SO_{2} (lb/hr) = (61.58 MMBtu/hr)/(926 Btu/scf)*(4.0 lb-mol S/MMlb-mol gas)*(1 lb-mol/379 scf)*(64.06 lb SO2/lb-mol S) SO_{2} (lb/hr) = (61.58 MMBtu/hr)/(926 Btu/scf)*(4.0 lb-mol S/MMlb-mol gas)*(1 lb-mol/379 scf)*(64.06 lb SO2/lb-mol S) SO_{2} (lb-mol gas)*(1 lb-mol/379 scf)*(1 lb-mol/379 scf)*(1 lb-mol gas)*(1 lb-mol gas)*(1 lb-mol/379 scf)*(1 lb-mol/379 scf)*(1 lb-mol/379 scf)*(1 lb-mol gas)*(1 lb-mol gas)*(1 lb-mol/379 scf)*(1 lb-mol/379 scf)*(1 lb-mol gas)*(1 lb-mol gas)*(1 lb-mol gas)*(1 lb-mol gas)*(1 lb-mol gas)*(1 lb-mol gas)*(1 lb-mol/379 scf)*(1 lb-mol gas)*(1 lb-mol gas)$

= 0.04 lb/hr SO₂

COMBUSTION SOURCES POTENTIAL TO EMIT (SPECIATED)

AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

BLUE RACER MIDSTREAM, LLC

	Emission Factor a 1.4 07/98 - Natt sustion - Heaters (lb/MMBtu) ^(e) 5.39E-03		S016, S017 Emissi Per I Hourly ^(d) (lb/hr) 1 61.6 8,760 0.33	I Heater , S018, S019 on Rate, Heater Annual ^(o) (T/yr)	S Emiss Per Hourly ^(d) (lb/hr) 1	l Heater)01 on Rate, Heater Annual ^(e) (T/yr)	Per H Hourly ^(d)	S029, S030 on Rate,	S022, S0 Emissie Per F	as Heater 124, S025 on Rate, Heater	S026 Emissi	IO Heater , S027 on Rate, Heater
Coml (lb/10 ⁶ scf)	Factor a 1.4 07/98 - Natu oustion - Heaters (lb/MMBtu) ^(c)	Rating	Emissi Per l Hourly ^(d) (lb/hr) 1 61.6 8,760 0.33	Annual ^(e)	Emiss Per Hourly ^(d) (lb/hr) 1	on Rate, Heater Annual ^(e)	Emissie Per F Hourly ^(d)	on Rate, Ieater	Emissie Per F	on Rate,	Emissi	on Rate,
Coml (lb/10 ⁶ scf)	n 1.4 07/98 - Nati pustion - Heaters (lb/MMBtu) ^(c)	Rating	Hourly ^(d) (lb/hr) 1 61.6 8,760 0.33	Annual ^(e)	Hourly ^(d) (lb/hr) 1	Annual ^(e)	Hourly ^(d)			Ieater	Per I	Ieater
Coml (lb/10 ⁶ scf)	ustion - Heaters (lb/MMBtu) ^(c)	Rating	(lb/hr) 1 61.6 8,760 0.33		(lb/hr) 1			Annual ^(e)				
			1 61.6 8,760 0.33	(T/yr)	1	(T/yr)			Hourly ^(d)	Annual ^(e)	Hourly ^(d)	Annual ^(e)
5.50E+00	5.39E-03	с	8,760 0.33		1		(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)
			0.33		216.7 8,760 0.37 1.17 31.5%		1 3.0 8,760 0.02 0.02 100.0%		1 9.7 8,760 0.05 0.05 100.0%		1 26.3 8,760 0.14 0.14 100.0%	
2.40E-05 1.80E-06 1.60E-05 1.80E-06 1.80E-06 1.80E-06 1.80E-06 2.10E-03 1.20E-06	2.35E-08 1.76E-09 1.57E-08 1.76E-09 1.76E-09 2.35E-09 2.06E-06 1.18E-09	D E E E E B E E	0.00E+00 0.00E+00 0.00E+00 1.45E-06 0.00E+00 1.09E-07 9.66E-07 1.09E-07 0.00E+00 0.00E+00 1.45E-07 1.09E-07 1.27E-04 7.24E-08	0.00E+00 0.00E+00 0.00E+00 6.35E-06 0.00E+00 4.76E-07 4.23E-06 4.76E-07 4.76E-07 4.76E-07 4.76E-07 4.76E-07 4.76E-07 5.55E-04 3.17E-07	0.00E+00 0.00E+00 0.00E+00 1.61E-06 0.00E+00 1.21E-07 1.07E-06 1.21E-07 1.21E-07 1.21E-07 0.00E+00 0.00E+00 1.61E-07 1.21E-07 1.41E-04	0.00E+00 0.00E+00 0.00E+00 7.04E-06 0.00E+00 5.28E-07 5.28E-07 5.28E-07 5.28E-07 0.00E+00 7.04E-07 5.28E-07 6.16E-04 3.52E-07	0.00E+00 0.00E+00 0.00E+00 7.06E-08 0.00E+00 5.29E-09 4.71E-08 5.29E-09 5.29E-09 0.00E+00 0.00E+00 7.06E-09 5.29E-09 5.29E-09 5.29E-09	0.00E+00 0.00E+00 0.00E+00 3.09E+07 0.00E+00 2.32E-08 2.32E-08 2.32E-08 2.32E-08 2.32E-08 2.32E-08 2.32E-08 2.32E-08 2.32E-08 2.32E-08 2.71E-05 1.55E-08	0.00E+00 0.00E+00 0.00E+00 2.28E-07 0.00E+00 1.71E-08 1.52E-07 1.71E-08 1.71E-08 1.71E-08 1.71E-08 1.71E-08 1.71E-08 1.71E-08 1.71E-08	0.00E+00 0.00E+00 0.00E+00 1.00E-06 0.00E+00 7.50E-08 7.50E-08 7.50E-08 7.50E-08 0.00E+00 0.00E+00 1.00E-07 7.50E-08 8.75E-05 5.00E-08	0.00E+00 0.00E+00 0.00E+00 6.19E-07 0.00E+00 4.64E-08 4.13E-07 4.64E-08 4.64E-08 4.64E-08 4.64E-08 5.41E-05 5.41E-05 3.09E-08	0.00E+00 0.00E+00 0.00E+00 2.71E-06 0.00E+00 2.03E-07 2.03E-07 2.03E-07 2.03E-07 2.03E-07 2.03E-07 2.37E-04 1.36E-07
1.80E-06 1.20E-06 1.80E-06	1.76E-09 1.18E-09 1.76E-09	E E	1.09E-07 0.00E+00 7.24E-08 1.09E-07 0.00E+00 0.00E+00 0.00E+00 0.00E+00	4.76E-07 0.00E+00 3.17E-07 4.76E-07 0.00E+00 0.00E+00 0.00E+00 0.00E+00	1.21E-07 0.00E+00 8.04E-08 1.21E-07 0.00E+00 0.00E+00 0.00E+00 0.00E+00	5.28E-07 0.00E+00 3.52E-07 5.28E-07 0.00E+00 0.00E+00 0.00E+00 0.00E+00	5.29E-09 0.00E+00 3.53E-09 5.29E-09 0.00E+00 0.00E+00 0.00E+00 0.00E+00	2.32E-08 0.00E+00 1.55E-08 2.32E-08 0.00E+00 0.00E+00 0.00E+00 0.00E+00	1.71E-08 0.00E+00 1.14E-08 1.71E-08 0.00E+00 0.00E+00 0.00E+00 0.00E+00	7.50E-08 0.00E+00 5.00E-08 7.50E-08 0.00E+00 0.00E+00 0.00E+00 0.00E+00	4.64E-08 0.00E+00 3.09E-08 4.64E-08 0.00E+00 0.00E+00 0.00E+00 0.00E+00	2.03E-07 0.00E+00 1.36E-07 2.03E-07 0.00E+00 0.00E+00 0.00E+00 0.00E+00
1.80E-06 1.20E-06 1.20E-03 3.00E-06 2.80E-06	1.76E-09 1.18E-09 1.18E-06 2.94E-09 2.75E-09	E E E E	1.09E-07 7.24E-08 7.24E-05 0.00E+00 0.00E+00 1.81E-07 1.69E-07	4.76E-07 3.17E-07 3.17E-04 0.00E+00 0.00E+00 7.93E-07 7.40E-07	1.21E-07 8.04E-08 8.04E-05 0.00E+00 0.00E+00 2.01E-07 1.88E-07	5.28E-07 3.52E-07 3.52E-04 0.00E+00 0.00E+00 8.80E-07 8.21E-07	5.29E-09 3.53E-09 3.53E-06 0.00E+00 0.00E+00 8.82E-09 8.24E-09	2.32E-08 1.55E-08 1.55E-05 0.00E+00 0.00E+00 3.86E-08 3.61E-08	1.71E-08 1.14E-08 1.14E-05 0.00E+00 0.00E+00 2.85E-08 2.66E-08	7.50E-08 5.00E-08 5.00E-05 0.00E+00 0.00E+00 1.25E-07 1.17E-07	4.64E-08 3.09E-08 3.09E-05 0.00E+00 0.00E+00 7.74E-08 7.22E-08	2.03E-07 1.36E-07 1.36E-04 0.00E+00 0.00E+00 3.39E-07 3.16E-07
7.50E-02 1.80E-06	7.35E-05 2.74E-04 1.76E-09	B E	4.53E-03 1.69E-02 1.09E-07 0.00E+00 0.00E+00 3.68E-05	1.98E-02 7.39E-02 4.76E-07 0.00E+00 0.00E+00 1.61E-04	5.02E-03 1.87E-02 1.21E-07 0.00E+00 0.00E+00 4.09E-05	2.20E-02 8.20E-02 5.28E-07 0.00E+00 0.00E+00 1.79E-04	2.21E-04 8.22E-04 5.29E-09 0.00E+00 0.00E+00 1.79E-06	9.66E-04 3.60E-03 2.32E-08 0.00E+00 0.00E+00 7.86E-06	7.13E-04 2.66E-03 1.71E-08 0.00E+00 0.00E+00 5.80E-06	3.12E-03 1.16E-02 7.50E-08 0.00E+00 0.00E+00 2.54E-05	1.93E-03 7.21E-03 4.64E-08 0.00E+00 0.00E+00 1.57E-05	8.47E-03 3.16E-02 2.03E-07 0.00E+00 0.00E+00 6.89E-05
6.56E-04 1.70E-05 5.00E-06 3.40E-03	6.44E-07 1.67E-08 4.90E-09 3.33E-06	D E C	3.96E-05 1.03E-06 0.00E+00 3.02E-07 0.00E+00 2.05E-04	1.74E-04 4.50E-06 0.00E+00 1.32E-06 0.00E+00 8.99E-04	4.40E-05 1.14E-06 0.00E+00 3.35E-07 0.00E+00 2.28E-04	1.93E-04 4.99E-06 0.00E+00 1.47E-06 0.00E+00 9.97E-04	1.93E-06 5.00E-08 0.00E+00 1.47E-08 0.00E+00 1.00E-05	8.46E-06 2.19E-07 0.00E+00 6.44E-08 0.00E+00 4.38E-05	6.24E-06 1.62E-07 0.00E+00 4.75E-08 0.00E+00 3.23E-05	2.73E-05 7.08E-07 0.00E+00 2.08E-07 0.00E+00 1.42E-04	1.69E-05 4.38E-07 0.00E+00 1.29E-07 0.00E+00 8.77E-05	7.41E-05 1.92E-06 0.00E+00 5.65E-07 0.00E+00 3.84E-04
2.00E-04	1.96E-07	E	0.00E+00 0.00E+00 1.21E-05	0.00E+00 0.00E+00 5.29E-05	0.00E+00 0.00E+00 1.34E-05	0.00E+00 0.00E+00 5.87E-05	0.00E+00 0.00E+00 5.88E-07	0.00E+00 0.00E+00 2.58E-06	0.00E+00 0.00E+00 1.90E-06	0.00E+00 0.00E+00 8.33E-06	0.00E+00 0.00E+00 5.16E-06	0.00E+00 0.00E+00 2.26E-05
1.20E-05 1.10E-03 1.40E-03 8.40E-05 8.50E-04 3.80E-04 2.60E-04 1.10E-03 2.10E-03 2.40E-05 2.30E-03	1.18E-08 1.08E-06 1.37E-06 8.24E-08 8.33E-07 4.90E-07 3.73E-07 2.55E-07 1.08E-06 2.06E-06 2.35E-08 2.25E-06	D E D D C D D C E D E	7.24E-07 6.64E-05 8.45E-05 5.07E-06 5.13E-05 3.02E-05 1.57E-05 6.64E-05 1.27E-04 1.45E-06 1.39E-04	3.17E-06 2.91E-04 3.70E-04 2.22E-05 2.25E-04 1.32E-04 1.00E-04 6.88E-05 2.91E-04 6.38E-06 6.08E-04	8.04E-07 7.37E-05 9.38E-05 5.63E-06 5.69E-05 3.35E-05 2.55E-05 1.74E-05 7.37E-05 1.41E-04 1.61E-06 1.54E-04	3.52E-06 3.23E-04 4.11E-04 2.46E-05 2.49E-04 1.47E-04 1.11E-04 7.63E-05 3.23E-04 6.16E-04 7.04E-06 6.75E-04	3.53E-08 3.24E-06 4.12E-06 2.47E-07 2.50E-06 1.47E-06 1.12E-06 7.65E-07 3.24E-06 6.18E-06 7.06E-08 6.76E-06	1.55E-07 1.42E-05 1.80E-05 1.08E-06 1.10E-05 6.44E-06 4.90E-06 3.35E-06 1.42E-05 2.71E-05 3.09E-07 2.96E-05	1.14E-07 1.05E-05 1.33E-05 7.99E-07 8.08E-06 4.75E-06 3.61E-06 2.47E-06 1.05E-05 2.00E-05 2.28E-07 2.19E-05	5.00E-07 4.58E-05 5.83E-05 3.50E-06 3.54E-05 2.08E-05 1.58E-05 1.08E-05 8.75E-05 1.00E-06 9.58E-05	3.09E-07 2.84E-05 3.61E-05 2.17E-06 2.19E-05 1.29E-05 9.80E-06 6.70E-06 2.84E-05 5.41E-05 6.19E-07 5.93E-05	4.97E-04 1.36E-06 1.24E-04 1.58E-04 9.49E-06 9.60E-05 5.65E-05 4.29E-05 2.94E-05 1.24E-04 2.37E-04 2.37E-04 2.60E-04 3.28E-03
	1.80E-06 1.60E-05 1.80E-06 1.80E-06 1.80E-06 1.80E-06 1.20E-06 1.80E-06 1.20E-06 1.80E-06 1.20E-06 1.20E-06 1.20E-06 1.20E-06 1.20E-06 1.20E-03 3.00E-06 2.80E-06 7.50E-02 1.80E-06 3.40E-05 5.00E-04 3.40E-03 1.20E-03 1.40E-	1.80E-06 1.76E-09 1.20E-06 1.18E-09 1.20E-03 1.18E-09 1.20E-06 1.18E-09 1.20E-06 1.76E-09 2.80E-06 2.75E-09 7.50E-02 7.35E-05 2.74E-04 1.80E-06 1.70E-05 1.67E-09 6.10E-04 5.98E-07 6.56E-04 6.44E-07 1.70E-05 1.67E-08 5.00E-06 4.90E-09 3.40E-03 3.33E-06 2.00E-04 1.96E-07 4.0E-03 1.37E-06 1.00E-03 1.38E-08 </td <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td></td> <td></td> <td>2.40E-05 2.35E-08 D 1.45E-06 6.36E-06 7.04E-06 7.04E-06 7.04E-06 7.04E-06 0.00E+00 1.21E-07 5.23E+07 5.29E+09 2.23E+08 1.71E-08 1.30E-06 1.76E-09 E 1.09E+07 4.76E+07 1.21E+07 5.23E+07 5.29E+00 2.23E+08 1.71E-08 1.30E-06 1.76E+09 E 1.09E+07 4.76E+07 1.21E+07 5.28E+07 5.29E+00 2.32E+08 1.71E-08 2.00E+00 0.00E+00 0.00</td> <td>2.406-05 2.328-08 D 1.458-06 6.335-06 1.048-06 0.006-10 0.</td> <td>2.40E-05 2.33E-08 D 1.44E-06 6.33E-06 1.04E-06 7.04E-06 7.04E-06 3.00E-07 2.23E-07 1.00E-06 0.00E-00 1.80E-06 1.76E-09 E 1.00E-07 1.23E-07 5.28E-07 5.28E-07</td>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$			2.40E-05 2.35E-08 D 1.45E-06 6.36E-06 7.04E-06 7.04E-06 7.04E-06 7.04E-06 0.00E+00 1.21E-07 5.23E+07 5.29E+09 2.23E+08 1.71E-08 1.30E-06 1.76E-09 E 1.09E+07 4.76E+07 1.21E+07 5.23E+07 5.29E+00 2.23E+08 1.71E-08 1.30E-06 1.76E+09 E 1.09E+07 4.76E+07 1.21E+07 5.28E+07 5.29E+00 2.32E+08 1.71E-08 2.00E+00 0.00E+00 0.00	2.406-05 2.328-08 D 1.458-06 6.335-06 1.048-06 0.006-10 0.	2.40E-05 2.33E-08 D 1.44E-06 6.33E-06 1.04E-06 7.04E-06 7.04E-06 3.00E-07 2.23E-07 1.00E-06 0.00E-00 1.80E-06 1.76E-09 E 1.00E-07 1.23E-07 5.28E-07 5.28E-07

(a) PAH, so summed in PAH total.
(b) AP-42 emission factors have been adjusted by the ratio of the proposed VOC emission rate to the VOC emission rate calculated with AP-42 emission factors.
(c) Emission Factor (lb/MMBtu) = (Emission Factor, lb/10⁶ scf) / (HHV Btu/scf).

(d) Hourly Emission Rate (lb/hr) = [Heat Input (MMBtu/hr) * Emission Factor (lb/MMBtu)] * VOC Ratio

(e) Annual Emission Rate (T/yr) = (Hourly Emission Rate, lb/hr) * (Annual Hours of Operation, hr/yr) / (2,000 lb/T) (2,00

(f) The hexane emission factor for industrial boilers is the average of the test data of boilers > 80 MW in the MACT DDDDD background information document.

Natrium Natural Gas Extraction and Fractionation Processing Plant

Potential Emission Worksheet for Two New Combustion Units

Item	Regen Gas Heater (P012)	Cryo HMO Heater (P013)	Units]					
Max Heat Input Rating	9.7	26.3	MMBtu/hr						
Heat Content of Fuel	1.029	1.029	Btu/scf						
Hourly Fuel Usage	9,424	25,551	scf/hr	-					
Annual Hours of Operation	8,760	8,760	501/11						
Annual Fuel Usage	82.6	223.8	MMscf/yr						
Annual Fuel Usage	84,972	230.388	MMBtu/yr						
innun rueroouge	0 1377 1	100,000	inibia/yr	[Regen G	as Heater	Cryo HM	0 Heater	Combined Units
Pollutant	CAS	REF	Emission Factor	Units	lb/hr	ТРҮ	lb/hr	ТРҮ	ТРҮ
Criteria Pollutants				1		1	1	1	
NOx	N/A	1	100	lb/MMscf	0.94	4.13	2.56	11.19	15.32
СО	630-08-0	1	84	lb/MMscf	0.79	3.47	2.15	9.40	12.87
VOC	N/A	1	5.5	lb/MMscf	0.05	0.23	0.14	0.62	0.84
PM-10	N/A	1	7.6	lb/MMscf	0.07	0.31	0.19	0.85	1.16
PM-2.5	N/A	1	7.6	lb/MMscf	0.07	0.31	0.19	0.85	1.16
S02	7446-09-5	1	0.6	lb/MMscf	0.006	0.02	0.015	0.07	0.09
Greenhouse Gases						T	T		_
Carbon dioxide	124-38-9	2	53.02	kg/MMBtu	1,134	4,966	3,074	13,465	18,431
Methane	74-82-8	3	1.0E-03	kg/MMBtu	2.1E-02	0.09	5.8E-02	0.25	0.35
Nitrous oxide	10024-97-2	3	1.0E-04	kg/MMBtu	2.1E-03	0.01	5.8E-03	0.03	0.03
CO ₂ e	N/A	4			1,135	4,971	3,077	13,478	18,449
Hazardous Air Pollutants									
Benzene	71-43-2	5	2.1E-03	lb/MMscf	1.98E-05	8.67E-05	5.37E-05	2.35E-04	3.22E-04
Dichlorobenzene	25321-22-6	5	1.2E-03	lb/MMscf	1.13E-05	4.95E-05	3.07E-05	1.34E-04	1.84E-04
Formaldehyde	50-00-0	5	7.5E-02	lb/MMscf	7.07E-04	3.10E-03	1.92E-03	8.39E-03	1.15E-02
Hexane	110-54-3	5	1.8E+00	lb/MMscf	1.70E-02	7.43E-02	4.60E-02	2.01E-01	2.76E-01
Naphthalene	91-20-3	5	6.1E-04	lb/MMscf	5.75E-06	2.52E-05	1.56E-05	6.83E-05	9.34E-05
Toluene	108-88-3	5	3.4E-03	lb/MMscf	3.20E-05	1.40E-04	8.69E-05	3.81E-04	5.21E-04
РОМ									
2-Methylnaphthalene	91-57-6	5	2.4E-05	lb/MMscf	2.26E-07	9.91E-07	6.13E-07	2.69E-06	3.68E-06
3-Methylchloranthrene	56-49-5	5	1.8E-06	lb/MMscf	1.70E-08	7.43E-08	4.60E-08	2.01E-07	2.76E-07
7,12-Dimethylbenz(a)anthracene	N/A	5	1.6E-05	lb/MMscf	1.51E-07	6.60E-07	4.09E-07	1.79E-06	2.45E-06
Acenaphthene	83-32-9	5	1.8E-06	lb/MMscf	1.70E-08	7.43E-08	4.60E-08	2.01E-07	2.76E-07
Acenaphthylene	203-96-8	5	1.8E-06	lb/MMscf	1.70E-08	7.43E-08	4.60E-08	2.01E-07	2.76E-07
Anthracene	120-12-7	5	2.4E-06	lb/MMscf	2.26E-08	9.91E-08	6.13E-08	2.69E-07	3.68E-07
Benz(a)anthracene	56-55-3	5	1.8E-06	lb/MMscf	1.70E-08	7.43E-08	4.60E-08	2.01E-07	2.76E-07
Benzo(a)pyrene	50-32-8	5	1.2E-06	lb/MMscf	1.13E-08	4.95E-08	3.07E-08	1.34E-07	1.84E-07
Benzo(b)fluoranthene	205-99-2	5	1.8E-06	lb/MMscf	1.70E-08	7.43E-08	4.60E-08	2.01E-07	2.76E-07
Benzo(g,h,i)perylene	191-24-2	5	1.2E-06	lb/MMscf	1.13E-08	4.95E-08	3.07E-08	1.34E-07	1.84E-07
Benzo(k)fluoranthene	205-82-3	5	1.8E-06	lb/MMscf	1.70E-08	7.43E-08	4.60E-08	2.01E-07	2.76E-07
Chrysene	218-01-9	5	1.8E-06	lb/MMscf	1.70E-08	7.43E-08	4.60E-08	2.01E-07	2.76E-07
Dibenzo(a,h)anthracene	53-70-3	5	1.2E-06	lb/MMscf	1.13E-08	4.95E-08	3.07E-08	1.34E-07	1.84E-07
Fluoranthene	206-44-0	5	3.0E-06	lb/MMscf	2.83E-08	1.24E-07	7.67E-08	3.36E-07	4.60E-07
Fluorene	86-73-7	5	2.8E-06	lb/MMscf	2.64E-08	1.16E-07	7.15E-08	3.13E-07	4.29E-07
Ideno(1,2,3-cd)pyrene	193-39-5	5	1.8E-06	lb/MMscf	1.70E-08	7.43E-08	4.60E-08	2.01E-07	2.76E-07
Phenanthrene	85-01-8	5	1.7E-05	lb/MMscf	1.60E-07	7.02E-07	4.34E-07	1.90E-06	2.60E-06
Pyrene	129-00-0	5	5.0E-06	lb/MMscf	4.71E-08	2.06E-07	1.28E-07	5.60E-07	7.66E-07
Total POM Metals	N/A	5	8.8E-05	lb/MMscf	8.31E-07	3.64E-06	2.25E-06	9.87E-06	1.35E-05
Arsenic	7440-38-2	6	2.4E-04	lb/MMscf	2.26E-06	9.91E-06	6.13E-06	2.69E-05	3.68E-05
Beryllium	7440-38-2	6	1.2E-05	lb/MMscf	1.13E-07	4.95E-07	3.07E-07	1.34E-06	1.84E-06
Cadmium	7440-41-7	6	1.2E-03 1.1E-03	lb/MMscf	1.04E-05	4.93E-07 4.54E-05	2.81E-05	1.34E-06 1.23E-04	1.69E-04
Cadmium Chromium	7440-43-9	6	1.1E-03 1.4E-03	lb/MMscf	1.32E-05	4.54E-05 5.78E-05	2.81E-05 3.58E-05	1.23E-04 1.57E-04	2.14E-04
Cobalt	7440-47-3	6	1.4E-03 8.4E-05	lb/MMscf lb/MMscf	7.92E-05	3.47E-06	3.58E-05 2.15E-06	9.40E-06	2.14E-04 1.29E-05
Manganese	7439-96-5	6	8.4E-05 3.8E-04	lb/MMscf	3.58E-06	3.47E-06 1.57E-05	2.15E-06 9.71E-06	9.40E-06 4.25E-05	1.29E-05 5.82E-05
Manganese Mercury	7439-96-5	6	3.8E-04 2.6E-04	lb/MMscf	2.45E-06	1.07E-05	9.71E-06 6.64E-06	4.25E-05 2.91E-05	3.98E-05
Nickel	7439-97-6	6	2.6E-04 2.1E-03	lb/MMscf	2.45E-06 1.98E-05	8.67E-05	5.37E-05	2.91E-05 2.35E-04	3.98E-05 3.22E-04
Selenium	7782-49-2	6	2.1E-03 2.4E-05	lb/MMscf	2.26E-07	9.91E-07	6.13E-07	2.53E-04 2.69E-06	3.68E-06
Scientum	1102-47-2	0	2.76-03	10/19191501	2.201-07	7.716-07	0.136-07	2.071-00	3.000-00

Total HAPs:

0.29 tons/yr

Notes: 1. AP-42 Table 1.4-2 (7/98) 2. 40 CFR 98 Table C-1 3. 40 CFR 98 Table C-2 4. 40 CFR 98 Table A-1 5. AP-42 Table 1.4-3 (7/98) 6. AP-42 Table 1.4-4 (7/98) CRYO TRAIN 3 PIPING FUGITIVES POTENTIAL TO EMIT (FUG AREA 3)

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT BLUE RACER MIDSTREAM, LLC AIR PERMIT APPLICATION

Material control Turner (a) Turner (b) Turner (c) Turner (c) <thturner (c) Turner (c) Tu</thturner 			Emission	Operating	Maximum	Maximum	Maximum	Reduction	PLE VOC	VOC	PIE CO ₂	P1E Methane	$CO_{2}e$
Matrix 131 137<	Component	Number of Components	Factors ^a (lb/hr-component)	Hours (hr/yr)	VOC (%1%)	CO ₂ (wt%)	CH4 (wt%)	Credit ^a (%)	Hourly ^b (Ib/hr)	Annual ^c (T/yr)	Annual ° (T/yr)	Annual ^c (T/yr)	Annual ^e (T/yr)
Stram Result (main start) 134 (main start) 0.002 (main start) 270 (main start) 134 (main start) 0.002 (main start) 130 (main start) 130	Valves												
Attent (Method) 31 0.002 5/0 0/0	Gas Streams	1,204	0.00992	8,760	20%	1%	70%	97%	0.0717	0.3139	1.57E-02	1.10E+00	27.4802
Light Stand (Light Strain (NGL)) 91 0.035 570 0.064 13 23 0.035 0.017 0.556/0 0.017 0.556/0 0.017 0.556/0 0.017 0.556/0 0.016 0.017 0.556/0 0.016 0.017 0.556/0 0.016 0.017 0.556/0 0.016 0.017 0.556/0 0.016 0.017 0.556/0 0.016 0.016 0.017 0.556/0 0.016 0.012 0.012 0.012 0.012 0.016 <td>Gas Stream (Propane)</td> <td>363</td> <td>0.00992</td> <td>8,760</td> <td>100%</td> <td>9%0</td> <td>9%0</td> <td>97%</td> <td>0.1080</td> <td>0.4732</td> <td>0.00E+00</td> <td>0.00E+00</td> <td>0.0000</td>	Gas Stream (Propane)	363	0.00992	8,760	100%	9%0	9%0	97%	0.1080	0.4732	0.00E+00	0.00E+00	0.0000
Light Memol 3 0.005 % 00 0.001 </td <td>Light Liquid Stream (NGL)</td> <td>871</td> <td>0.0055</td> <td>8,760</td> <td>60%</td> <td>1%</td> <td>2%</td> <td>97%</td> <td>0.0862</td> <td>0.3777</td> <td>6.29E-03</td> <td>1.26E-02</td> <td>0.3210</td>	Light Liquid Stream (NGL)	871	0.0055	8,760	60%	1%	2%	97%	0.0862	0.3777	6.29E-03	1.26E-02	0.3210
India Ham 13 0.0031 8.76 0.06 0.66 0.76 0.033 0.0031 0.036 <th0.036< th=""> 0</th0.036<>	Light Liquid Stream (Methanol)	2	0.0055	8,760	100%	0%	%0	97%	0.0003	0.0014	0.00E+00	0.00E+00	0.0000
Open state 53 000018 3.70 0019 0.70 0.007 0.007 0.015 0.0017 0.0150 0.0014 0.0017 0.0150 0.0150	Water/Light Liquid Stream	105	0.000216	8,760	100%	%0	%0	97%	0.0007	0.0030	0.00E+00	0.00E+00	0.0000
Remain for the form of the for	Heavy Liquid Stream	525	0.0000185	8,760	100%	%0	%0	%0	0.0097	0.0425	0.00E+00	0.00E+00	0.0000
Strand Barting Light Strand (1) 6 0014 (1) 8.70 (1) 0.014 (1) 1.70 (1) 0.017 (1)	elief Valves												
Stand Stand Object Stand Object Stand Object Stand Object Stand	Gas Streams	68	0.0194	8,760	20%	1%	70%	97%	0.0079	0.0347	1.73E-03	1.21E-01	3.0352
Liquid Strain (Net) 17 0.0165 8.70 0% 1% 2% 0% 0.033 <th0< td=""><td>Gas Stream (Propane)</td><td>26</td><td>0.0194</td><td>8,760</td><td>100%</td><td>0%</td><td>%0</td><td>97%</td><td>0.0151</td><td>0.0663</td><td>0.00E+00</td><td>0.00E+00</td><td>0.0000</td></th0<>	Gas Stream (Propane)	26	0.0194	8,760	100%	0%	%0	97%	0.0151	0.0663	0.00E+00	0.00E+00	0.0000
Liquid Stream (Action) 0 0005 8.70 00% 0% 0% 0.000	Light Liquid Stream (NGL)	17	0.0165	8,760	60%	1%	2%	%0	0.1683	0.7372	1.23E-02	2.46E-02	0.6266
Individual Stant 11 0.000 8.70 006 06<	Light Liquid Stream (Methanol)	0	0.0165	8,760	100%	0%	%0	9%0	0.0000	0.0000	0.00E+00	0.00E+00	0.0000
y Ligad Steam 25 00063 8,70 006 05 06 003 0036 <	Water/Light Liquid Stream	11	0.0309	8,760	100%	9%0	%0	%0	0.3399	1.4888	0.00E+00	0.00E+00	0.0000
aux Stati Station Stati	Heavy Liquid Stream	26	0.0000683	8,760	100%	9%0	%0	9%0	0.0018	0.0078	0.00E+00	0.00E+00	0.0000
Strating 3 0.014 8.60 0.04 8.60 0.06 0.05 0.125 0.060 0.055 0.1264 0.055 0.1264 0.055 0.1264 0.055 0.1264 0.055 0.056 0.055 0.056 0.055 0.056 0.055 0.056 0.055 0.056 0.055 0.056 0.055 0.056 0	ompressor Seals												
Stream Stream 0004 870 009 017 0077 0077 0077 0077 0077 0077 0077 00770 0 0 0073 007	Gas Streams		0.0194	8.760	20%	1%	70%	95%	0.0006	0.0025	1.27E-04	8.92E-03	0.2232
Lingia Steam (AGL) 1 i 0105 8 70 060 18 25 000 003 033 732501 010 010 010 010 010 010 010 010 010	Gas Stream (Propane)	. (1)	0.0194	8.760	100%	%0	%0	95%	0.0029	0.0127	0.00E+00	0.00E+0.0	0.0000
Lighed Steam (Method) 0 0.016 8.70 0.09 0.00 0.0000 0.000 0.000	Light Liquid Stream (NGL)		0.0165	8.760	60%	1%	2%	%0	0.0099	0.0434	7.23E-04	1.45E-03	0.0369
or inglit lajid Steam 0 0.000 8.700 0.000	Light Liquid Stream (Methanol)	. 0	0.0165	8.760	100%	%0	% 0	%0	0.0000	0.0000	0.00E+00	0.00E+00	0.0000
y Liquid Stream 0 0.000683 8,760 10% 0% 0% 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 <	Water/Light Liquid Stream	0	0.0309	8.760	100%	%0	%0	%0	0,0000	0.0000	0.00E+00	0.00E+00	0.0000
Mission Streams 1 0.0052 8.700 0.0% 1% 70% 0.0%	Heavy Liquid Stream	0	0.0000683	8,760	100%	%0	9%0	9%0	0.0000	0.0000	0.00E+00	0.00E+00	0.0000
Streams 1 0.0629 8.760 0.06 18 70% 0% 0.001 0.006 2.32E-04 Liquid Stream (Verland) 15 0.00529 8.760 00% 0% 0% 0% 0019 0.00520 0.005-00	mn Seals												
Stream (Nethol) 3 0.0053 8.760 100% 0.8 0.015 0.0053 0.0054 0.0054 0.0055 <td>Gas Streams</td> <td>-</td> <td>0.00529</td> <td>8,760</td> <td>20%</td> <td>1%</td> <td>70%</td> <td>%0</td> <td>0.0011</td> <td>0.0046</td> <td>2.32E-04</td> <td>1.62E-02</td> <td>0.4057</td>	Gas Streams	-	0.00529	8,760	20%	1%	70%	%0	0.0011	0.0046	2.32E-04	1.62E-02	0.4057
Light Identify 15 0.0286 8.760 00% 0% 0.9% 0.0%	Gas Stream (Propane)	33	0.00529	8,760	100%	9%0	%0	%0	0.0159	0.0695	0.00E+00	0.00E+00	0.0000
Light Jarten (Methand) 1 00366 8,760 100% 0% 0% 93% 0.000 0.008 0.002 0.006-00 0 er/Light Jarten (Methand) 1 0.00022 8,760 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	Light Liquid Stream (NGL)	15	0.02866	8,760	60%	1%	2%	93%	0.0181	0.0791	1.32E-03	2.64E-03	0.0672
vrLight Liquid Stream 11 0.00022 8,760 100% 0% 0% 0% 0.000 0.0002 0.002-00 0 y Liquid Stream 11 0.00013 8,760 100% 0% 0% 0% 0.013 0.0147 7.33E-04 Stream (Porne) 36 0.00036 8,760 100% 0% 0% 0% 07% 0.0073 0.0044 7.33E-04 Liquid Stream (NetLin) 274 0.00036 8,760 100% 0% 0% 07% 0.0000 0.0002 0.00E-00 0 Liquid Stream (NetLin) 274 0.00036 8,760 100% 0% 0% 0% 07% 0.0003 0.0035 0.00E-00 0 1.3339 0.00044 8,760 100% 0% 0% 0% 07% 0.0003 0.0023 0.00E-00 0 Stream Stream (NetLin) 1,339 0.00044 8,760 100% 0% 0% 07% 0.0003 0.0002 0.00E-00 0 1.4442 0.00036 8,760 100% 0% 0% 0% 07% 0.0003 0.0003 0.0024 0.000E-00 0 2.532-01 0 2.5336 0.00044 8,760 100% 0% 0% 0% 07% 0.0115 0.0024 0.0013 0.0002 0.00E-00 0 Stream (Popuno) 711 0.00044 8,760 100% 0% 0% 07% 0.0115 0.0034 0.0013 0.0002 0.00E-00 0 Stream (Popuno) 711 0.00044 8,760 100% 0% 0% 07% 0.0115 0.0164 0.016-00 0 Stream (Popuno) 1.313 0.00043 8,760 100% 0% 0% 07% 0.0115 0.0164 0.016-00 0 Stream (Popuno) 1.313 0.00043 8,760 100% 0% 0% 07% 0.0123 0.0164 0.016-00 0 Liquid Stream (NetLin) 1.313 0.00043 8,760 100% 0% 0% 07% 0.0123 0.0164 0.016-00 0 VLiquid Stream (NetLin) 1.313 0.000165 8,760 100% 0% 0% 0% 07% 0.0123 0.0164 0.0024 0.0024 Liquid Stream (NetLin) 1.313 0.000165 8,760 100% 0% 0% 0% 07% 0.0123 0.0164 0.0026 0.002-0.00260 Stream (Popuno) 1.313 0.000165 8,760 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0.0024 0.0123 0.0064 0.00260 0.00222 Liquid Stream (NetLino) 1.313 0.000165 8,760 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0.0023 0.00240 0 Stream (Popuno) 1.313 0.000165 8,760 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0.0022 0.0064 0.0026 0.00260 0.00220 0.00240 0.0000 0.00023 0.0024 0.0024 0.0022 0.0064 0.0025 0.0064 0.0022 0.0064 0.0022 0.0064 0.0022 0.0064 0.0022 0.0064 0.0022 0.0064 0.0022 0.0064 0.0022 0.0064 0.0022 0.0064 0.0022 0.0064 0.0022 0.0064 0.0022 0.0064 0.0022 0.0064 0.0022 0.0064 0.0022 0.0064 0.0022 0.0064 0.0022 0.0064 0.0022 0.0064 0.0022 0.0064 0.0000 0.00023 0.0000 0.0002 0.0002 0.0022 0.0064 0.0022 0.0064 0.0022 0.0004 0.00004 0.0004 0.0004 0.0000 0.0002 0.00	Light Liquid Stream (Methanol)	-	0.02866	8,760	100%	%0	%0	93%	0.0020	0.0088	0.00E+00	0.00E+00	0.0000
y Liquid Stream 16 0.0113 8,760 100% 0% 0% 0% 0.0131 0.0722 0.005-00 1 Stream Kropane) 16 0.0013 8,760 100% 0% 0% 97% 0.0033 0.0147 7.33E-04 1 Stream Kropane) 36 0.000343 8,760 100% 0% 0% 97% 0.0009 0.006-00 0 Liquid Stream (Kru) 1,339 0.000343 8,760 100% 0% 0% 97% 0.0009 0.0002 0.006-00 0 art Liquid Stream (Kru) 1,339 0.000048 8,760 100% 0% 0% 97% 0.0009 0.0002 0.006-00 0 art Liquid Stream (Kru) 1,339 0.000048 8,760 100% 0% 0% 0% 97% 0.0009 0.0002 0.006-00 0 art Liquid Stream (Kru) 1,339 0.00044 8,760 100% 0% 0% 0% 97% 0.0009 0.0002 0.006-00 0 art Liquid Stream (Kru) 1,339 0.00044 8,760 100% 0% 0% 97% 0.0009 0.0002 0.006-00 0 art Liquid Stream (Kru) 1,319 0.00043 8,760 100% 0% 0% 97% 0.0009 0.0003 0.006-00 0 Stream (Kru) 1,313 0.00043 8,760 100% 0% 0% 97% 0.0019 0.0019 0.006-00 0 Art Liquid Stream (Kru) 2.336 0.00043 8,760 100% 0% 0% 97% 0.0019 0.0019 0.006-00 0 Stream (Kru) 2.336 0.00043 8,760 100% 0% 0% 0% 97% 0.0019 0.0019 0.006-00 0 Art Liquid Stream (Kru) 1,313 0.000163 8,760 100% 0% 0% 0% 97% 0.0019 0.0019 0.002-0 Art Liquid Stream (Kru) 1,313 0.000163 8,760 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0.0024 0.0019 0.002-0 Art Liquid Stream (Kru) 1,313 0.000165 8,760 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	Water/Light Liquid Stream	Π	0.000052	8,760	100%	%0	%0	93%	0.0000	0.0002	0.00E+00	0.00E+00	0.0000
Streams 649 0.00086 8.760 20% 7% 0.0033 0.0147 7.33E-04 Arean 70% 0.0079 0.0346 0.0079 0.0079 0.0079 0.0074 Arean 70% 70% 70% 77% 0.0019 0.0086 1.4E-04 Liquid Sream (NGL) 442 0.000243 8.760 100% 0% 97% 0.0019 0.003 1.4E-04 Liquid Sream (Nethano) 2 0 0% 97% 0.0003 0.0024 8.760 100% 0% 97% 0.0003 0.0015-00 0 er/Light Liquid Sream (Nethano) 234 0.000046 8.760 100% 0% 97% 0.0013 0.0015-00 0 </td <td>Heavy Liquid Stream</td> <td>16</td> <td>0.00113</td> <td>8,760</td> <td>100%</td> <td>%0</td> <td>%0</td> <td>%0</td> <td>0.0181</td> <td>0.0792</td> <td>0.00E+00</td> <td>0.00E+00</td> <td>0.0000</td>	Heavy Liquid Stream	16	0.00113	8,760	100%	%0	%0	%0	0.0181	0.0792	0.00E+00	0.00E+00	0.0000
Stream 649 0.0086 8,760 20% 1% 7% 0.013 0.0147 7.33E.04 Stream (Powne) 306 0.0086 8,760 100% 0% 97% 0.0079 0.0346 0.002-40 0 Liquid Stream (Nethanol) 0 0.000243 8,760 100% 0% 97% 0.0009 0.00640 0.00240 0 er/Liquid Stream (Nethanol) 0 0.000243 8,760 100% 0% 97% 0.000 0.0002 0.00E400 0 er/Liquid Stream (Nethanol) 12 0.000046 8,760 100% 0% 97% 0.0000 0.0023 0.01E400 0 er/Light Liquid Stream 1.339 0.00044 8,760 100% 0% 97% 0.0013 0.012E-00 1.41E6.04 stream 711 0.00044 8,760 100% 0% 97% 0.0113 0.0124.0 0.0254.0 0.0024 0.0254.0 0.0024 0.0254.0 0.0024.0 0.0115	anges												
am (Propane) 306 0.0086 8.760 100% 0% 0% 0% 97% 0.0079 0.0346 0.001-0 0 quid Stream (NGL) 0 0 000243 8.760 100% 0% 0% 97% 0.0000 0.0008 1.11E-04 quid Stream (NGL) 0 0.000243 8.760 100% 0% 0% 0% 97% 0.0000 0.0002 0.00E+00 10 ght Liquid Stream (NGL) 1.339 0.000066 8.760 100% 0% 0% 97% 0.0008 0.0035 0.00E+00 10 ght Liquid Stream (NGL) 2.336 0.00044 8.760 100% 0% 0% 0% 0% 0.0008 0.0033 0.00E+00 10 am Propane) 711 0.00044 8.760 100% 0% 0% 0% 0.0008 0.0033 0.00E+00 10 ght Stream (NGL) 2.336 0.00044 8.760 100% 0% 0% 0% 0.0024 0.0115 0.0504 2.02E+03 quid Stream (NGL) 2.336 0.00046 8.760 100% 0% 0% 0% 0.0024 0.0119 0.00E+00 10 ght Idjuid Stream (NGL) 2.336 0.00046 8.760 100% 0% 0% 0% 0.0024 0.0119 0.00E+00 10 ght Idjuid Stream (NGL) 2.336 0.00046 8.760 100% 0% 0% 0.0024 0.0115 0.0054 0.0016+00 10 gind Stream (NGL) 2.336 0.00046 8.760 100% 0% 0% 0% 0.0024 0.0115 0.0024 0.0016+00 10 gind Stream (NGL) 2.336 0.00046 8.760 100% 0% 0% 0% 0.0024 0.0115 0.0024 0.0016+00 10 gind Stream (NGL) 2.336 0.00046 8.760 100% 0% 0% 0.0024 0.0115 0.0024 0.0016+00 10 gind Stream (NGL) 2.336 0.00046 8.760 100% 0% 0% 0.0024 0.0126 0.0024 0.0024 gind Stream (NGL) 2.336 0.00046 8.760 100% 0% 0% 0.0024 0.0126 0.0024 0.0024 gind Stream (NGL) 2.336 0.00046 8.760 100% 0% 0% 0.0024 0.0166 0.0024 gind Stream (NGL) 2.3336 0.00046 8.760 100% 0% 0% 0% 0.0024 0.0166 0.0024 0.0024 gind Stream (NGL) 2.3336 0.00046 8.760 100% 0% 0% 0% 0.0024 0.0166 0.0024 0.0024 gind Stream (NGL) 2.3336 0.00046 8.760 100% 0% 0% 0% 0% 0% 0.0024 0.0026 0.0024 gind Stream (NGL) 2.3336 0.00046 8.760 100% 0% 0% 0% 0% 0% 0% 0% 0.0024 0.0026 0.0024 gind Stream (NGL) 2.336 0.00046 8.760 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	Gas Streams	649	0.00086	8,760	20%	1%	70%	97%	0.0033	0.0147	7.33E-04	5.13E-02	1.2842
quid Stream (NGL) 412 0.000243 8.760 00% 1% 2% 0.0019 0.0035 0.0036 1.41E-d4 quid Stream 274 0.000043 8.760 100% 0% 97% 0.0000 0.0002-100 0 aprid Stream 1.339 0.0000066 8.760 100% 0% 97% 0.0000 0.0002-100 0 aprid Stream 1.339 0.0000066 8.760 100% 0% 97% 0.0013 0.0014-00 0 aprid Stream 1,339 0.000046 8.760 100% 0% 97% 0.0014 0.0014-00 0 ans 333 0.00046 8.760 100% 0% 97% 0.0014 0.0014-00 1.42E-03 and Prepane) 711 0.000463 8.760 100% 0% 97% 0.0115 0.0164-00 0 and Prepane) 174 0.000463 8.760 100% 0% 97% 0.0164 0.0014 0.0164	Gas Stream (Propane)	306	0.00086	8,760	100%	%0	%0	97%	0.0079	0.0346	0.00E+00	0.00E+00	0.000
quid Stream 0 0.000243 8,760 100% 0% 97% 0.0000 0.0012	Light Liquid Stream (NGL)	442	0.000243	8,760	60%	1%	2%	97%	0.0019	0.0085	1.41E-04	2.82E-04	0.0072
jäh Liquid Stream 274 0.00006 8.760 100% 0% 0% 0% 0.000 0.002 0.002 0.002 0.00140 1 Jajuid Stream 1.339 0.0000086 8.760 100% 0% 0% 3.0% 0.0008 0.0035 0.00140 0.0035 0.00140 0.0035 0.00140 0.00340 0.0035 0.00140 0.011 0.00340 0.0034 0.000463 8.760 0.0036 0.0034 0.0034 0.0105 0.00340 0.0	Light Liquid Stream (Methanol)	0	0.000243	8,760	100%	%0	%0	97%	0.0000	0.0000	0.00E+00	0.00E+00	0.000
Jquid Stream 1,339 0.0000066 8,760 100% 0% 30% 0.0038 0.0035 0.001400 ams 4,359 0.00044 8,760 100% 0% 97% 0.015 0.0504 2.52E-03 ams 711 0.00044 8,760 100% 0% 97% 0.015 0.0504 2.52E-03 am (Propme) 711 0.00044 8,760 100% 0% 97% 0.015 0.054 0.054-03 0.0015-00 guid Stream (NGL) 2,336 0.000463 8,760 100% 0% 97% 0.015 0.00540 0.0015-00 0 agit Stream (NGL) 2.53 0.00043 8,760 100% 0% 97% 0.016 0.0016-00 0 agit Stream (Nethanol) 174 0.000143 8,760 100% 0% 97% 0.016 0.0016-00 0 0.015-00 0 0.016-40 0.016-40 0.016-40 0.016-40 0.016-40 0.016-40 0.016-40 <td>Water/Light Liquid Stream</td> <td>274</td> <td>0.00006</td> <td>8,760</td> <td>100%</td> <td>%0</td> <td>%0</td> <td>97%</td> <td>0.0000</td> <td>0.0002</td> <td>0.00E+00</td> <td>0.00E+00</td> <td>0.0000</td>	Water/Light Liquid Stream	274	0.00006	8,760	100%	%0	%0	97%	0.0000	0.0002	0.00E+00	0.00E+00	0.0000
ams (Argane)	Heavy Liquid Stream	1,339	0.0000086	8,760	100%	%0	%0	30%	0.0008	0.0035	0.00E+00	0.00E+00	0.0000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	onnectors												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gas Streams	4,359	0.00044	8,760	20%	1%	70%	97%	0.0115	0.0504	2.52E-03	1.76E-01	4.4129
2.336 0.000463 8.760 60% 1% 2% 77% 0.0155 0.0853 1.42E-03 174 0.000463 8.760 100% 0% 0% 97% 0.0195 0.0664 0.00E+00 0 263 0.000243 8.760 100% 0% 0% 37% 0.0192 0.008+0 0.00E+00 0 1.313 0.000165 8.760 100% 0% 0% 30% 0.0152 0.0664 0.0016+00 0 1.313 0.000165 8.760 100% 0% 0% 30% 0.0152 0.0664 0.00140 0 0.0210 0.0220 Light Light Grean (Pepane): 0.1952 0.0974 0.000 Uzint Light Light Grean (NGL): 0.3039 1.3310 0.0222 Light Light Light Grean (NGL): 0.3036 1.2005 0.000 WararLight Grean: 0.0455 0.1908 0.000	Gas Stream (Propane)	711	0.00044	8,760	100%	%0	%0	97%	0.0094	0.0411	0.00E+00	0.00E+00	0.0000
174 0.000463 8.760 100% 0.% 97% 0.0024 0.0105 0.002400 0 263 0.000243 8.760 100% 0% 9% 97% 0.0015 0.0015400 0 1,313 0.000165 8.760 100% 0% 0% 30% 0.0021 0.0015400 0 1,313 0.000165 8.760 100% 0% 0% 30% 0.0021 0.005400 0 1,313 0.0000165 8.760 100% 0% 0% 0% 0% 0 0 0.0154 0.0014-00 0 1,311 0.0000165 8.700 100% 0% 0% 0% 0% 0% 0% 0 0.0154 0.0014-00 0 0 0.0154 0.0014-00 0 0 0.0154 0.00154 0.0164-00 0 0 0 0 0 0.0214 0 0 0 0 0 0 0 0	Light Liquid Stream (NGL)	2,336	0.000463	8,760	60%	1%	2%	97%	0.0195	0.0853	1.42E-03	2.84E-03	0.0725
263 0.000243 8.760 100% 0% 0% 0% 0% 0.0019 0.0084 0.00140 0 1,313 0.0000165 8.760 100% 0% 0% 30% 0.0152 0.005400 0 1,313 0.0000165 8.760 100% 0% 0% 30% 0.0152 0.005400 0 13.13 0.0000165 8.760 100% 0% 0% 30% 0.0152 0.005400 0 13.10 0.0152 0.0195 0.0051 0.11504 0.4208 0.0010 Light Liquid Stream (Yethano): 0.1196 0.0228 1.13010 0.0222 Light Liquid Stream (Nethano): 0.0048 0.0238 0.0000 0.0000 Ware/Light Liquid Stream: 0.0455 0.1905 0.0000	Light Liquid Stream (Methanol)	174	0.000463	8,760	100%	%0	%0	97%	0.0024	0.0106	0.00E+00	0.00E+00	0.0000
1,313 0.0000165 8,760 100% 0% 30% 0.0152 0.0664 0.001-00 0 Cas Streams 0.9951 0.4208 0.0210 0 0.0210 0 Light Liquid Stream (YGL): 0.1332 0.6974 0.0000 0.0222 0.0000 Light Liquid Stream (YGL): 0.3039 1.3310 0.0222 0.0000 Ward/Light Liquid Stream (Methano): 0.0048 0.0000 Ward/Light Liquid Stream: 0.4256 0.0000 Ward/Light Liquid Stream: 0.4355 0.0000 Ward/Light Liquid Stream: 0.4455 0.0000	Water/Light Liquid Stream	263	0.000243	8,760	100%	%0	%0	97%	0.0019	0.0084	0.00E+00	0.00E+00	0.0000
0.0961 0.4208 0.0210 0.1592 0.6974 0.0000 0.3039 1.3310 0.4222 0.0048 0.0268 0.4000 0.3425 1.5015 0.4000 0.3425 0.1995 0.4000	Heavy Liquid Stream	1,313	0.0000165	8,760	100%	9%0	0%	30%	0.0152	0.0664	0.00E+00	0.00E+00	0.0000
0.1592 0.6974 0.0000 0.3039 1.3310 0.0222 0.3048 0.0208 0.0000 0.3426 1.5005 0.0000 0.0455 0.1995 0.0000							0	as Streams:	0.0961	0.4208	0.0210	1.4728	36.8414
0.3039 1.3310 0.0222 0.0048 0.0208 0.0000 0.3426 1.5005 0.0000 0.0455 0.1995 0.0000							Gas Strean	1 (Propane):	0.1592	0.6974	0.0000	0.0000	0.0000
0.0048 0.0208 0.0000 0.3426 1.5005 0.0000 0.0455 0.1995 0.0000							Light Liquid Str	cam (NGL):	0.3039	1.3310	0.0222	0.0444	1.1314
0.3426 1.5005 0.0000 0.0455 0.1995 0.0000						Lig	ht Liquid Stream	(Methanol):	0.0048	0.0208	0.0000	0.0000	0.0000
0.0455 0.1995 0.0000							Water/Light Lic	uid Stream:	0.3426	1.5005	0.0000	0.0000	0.0000
										10010	0.000		

N-8

 Annual VOC and H₅S emission rates are calculated as follows:
 (1,204 components) * (0.00992 lb/hr-component) * (8.760 hr/yr) * (20% VOC) * (100% - 97% reduction credit) / (2,000 lb/T) = 0.3139 T/yr ^b Hourly VOC and H₅S emission rates are calculated as follows: (1.204 components) * (0.00992 lb/hr-component) * (20% VOC) * (100% - 97% reduction credit) = 0.0717 lb/hr

Fugitives. Hatel October 2000. The emission factors are for the function credits are for content or Equipment Leak Fugitives, dated October 2000. The emission factors are for total hydrocarbon. Reduction credits are for a ^a 28LAER monitoring program per TCEQ guidance dated July 2011.

CRYO TRAIN 3 FUGITIVES POTENTIAL TO EMIT (SPECIATED)

AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

BLUE RACER MIDSTREAM, LLC

	РТ																																	
	Total	VOC	Met	hane	1	Ethane	Pro	pane	N-B	utane	Isob	outane	N-1	Pentane	Isop	entane	n-H	exane	Other	Hexanes	Be	nzene	He	ptane	00	ctane	То	luene	Ethyl	benzene	Xy	lene	Met	thanol
Stream	Hourly (lb/hr)	Annual (T/yr)	% in Stream	Hourly (lb/hr)	% in Strear		% in VOC	Hourly ^a (lb/hr)	% in VOC	Hourl (lb/hi																								
Gas (Natural Gas)	0.0961	0.4208	63.60%	0.0611	19.719	6 0.01894	57.00%	0.0548	17.76%	0.0171	11.66%	0.0112	3.58%	0.0034	5.20%	0.0050	0.84%	0.0008	1.71%	0.0016	0.02%	0.0000	1.23%	0.0012	0.79%	0.0008	0.09%	0.0001	0.00%	0.0000	0.07%	0.0001	0.00%	0.000
Gas (Propane)	0.1592	0.6974	0.00%	0.0000	1.32%	0.0021	97.70%	0.1556	0.49%	0.0008	1.81%	0.0029	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.000
Light Liquid (Methanol)	0.0048	0.0208	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	100.00%	0.004
Light Liquid (NGL)	0.3039	1.3310	1.00%	0.0030	46.999	6 0.1428	57.14%	0.1736	20.20%	0.0614	8.15%	0.0248	6.33%	0.0192	5.80%	0.0176	0.34%	0.0010	1.46%	0.0045	0.07%	0.0002	0.18%	0.0006	0.23%	0.0007	0.07%	0.0002	0.00%	0.0000	0.02%	0.0001	0.00%	0.000
Water/Oil	0.3426	1.5005	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.000
Heavy Liquid	0.0455	0.1995	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.000
Total (lb/hr):	0.95			0.0641		0.1638		0.3840		0.0792		0.0388		0.0227		0.0226		0.0018		0.0061		0.0002		0.0017		0.0015		0.0003		0.0000		0.0001		0.004
Total (T/yr):	4.17			0.2810		0.7176		1.6817		0.3471		0.1701		0.0993		0.0991		0.0081		0.0267		0.0010		0.0076		0.0064		0.0013		0.0001		0.0006		0.020

^a An example calculation for propane follows:

Propane (lb/hr) = (PTE Total VOC, lb/hr) * (% Propane in VOC)

Propane (lb/hr) = (0.0961 lb/hr Total VOC) * (57.00% Propane in VOC)

Propane (lb/hr) = 0.0548 lb/hr Propane

CRYO TRAIN 4 PIPING FUGITIVES POTENTIAL TO EMIT (FUG AREA 4)

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT BLUE RACER MIDSTREAM, LLC AIR PERMIT APPLICATION

		Emission	Operating	Maximum	Maximum	Maximum	Reduction	PTE VOC	VOC	PTE CO_2	PTE Methane	$CO_{2}e$
Component	Number of Components	Factors ^a (lb/hr-component)	Hours (hr/yr)	VOC (wt%)	CO ₂ (wt%)	CH4 (wt%)	Credit ^a (%)	Hourly ^b (lb/hr)	Annual ° (T/yr)	Annual ^c (T/yr)	Annual ° (T/yr)	Annual ^c (T/yr)
Valves												
Gas Streams	1,204	0.00992	8,760	20%	1%	70%	97%	0.0717	0.3139	1.57E-02	1.10E+00	27.4802
Gas Stream (Propane)	363	0.00992	8,760	100%	0%	%0	97%	0.1080	0.4732	0.00E+00	0.00E+00	0.0000
Light Liquid Stream (NGL)	871	0.0055	8,760	60%	1%	2%	97%	0.0862	0.3777	6.29E-03	1.26E-02	0.3210
Light Liquid Stream (Methanol)	2	0.0055	8,760	100%	%0	%0	97%	0.0003	0.0014	0.00E+00	0.00E+00	0.0000
Water/Light Liquid Stream	105	0.000216	8,760	100%	9%0	9%0	97%	0.0007	0.0030	0.00E+00	0.00E+00	0.0000
Heavy Liquid Stream	525	0.0000185	8,760	100%	%0	9%0	%0	0.0097	0.0425	0.00E+00	0.00E+00	0.0000
Relief Valves												
Gas Streams	68	0.0194	8,760	20%	1%	70%	97%	0.0079	0.0347	1.73E-03	1.21E-01	3.0352
Gas Stream (Propane)	26	0.0194	8,760	100%	%0	9%0	97%	0.0151	0.0663	0.00E+00	0.00E+00	0.0000
Light Liquid Stream (NGL)	17	0.0165	8,760	60%	1%	2%	%0	0.1683	0.7372	1.23E-02	2.46E-02	0.6266
Light Liquid Stream (Methanol)	0	0.0165	8,760	100%	9%0	9%0	%0	0.0000	0.0000	0.00E+00	0.00E+00	0.0000
Water/Light Liquid Stream	11	0.0309	8,760	100%	%0	960	%0	0.3399	1.4888	0.00E+00	0.00E+00	0.0000
Heavy Liquid Stream	26	0.0000683	8,760	100%	%0	9%0	%0	0.0018	0.0078	0.00E+00	0.00E+00	0.0000
Compressor Seals												
Gas Streams	.0	0.0194	8.760	20%	1%	70%	95%	0.0006	0.0025	1.27E-04	8.92E-03	0.2232
Gas Stream (Propane)	3	0.0194	8,760	100%	%0	%0	95%	0.0029	0.0127	0.00E+00	0.00E+00	0.0000
Light Liquid Stream (NGL)	-	0.0165	8,760	60%	1%	2%	%0	0.0099	0.0434	7.23E-04	1.45E-03	0.0369
Light Liquid Stream (Methanol)	0	0.0165	8,760	100%	%0	960	%0	0.0000	0.0000	0.00E+00	0.00E+00	0.0000
Water/Light Liquid Stream	0	0.0309	8,760	100%	%0	%0	%0	0.0000	0.0000	0.00E+00	0.00E+00	0.0000
Heavy Liquid Stream	0	0.0000683	8,760	100%	%0	%0	%0	0.0000	0.0000	0.00E+00	0.00E+00	0.0000
Pump Seals												
Gas Streams	-	0.00529	8,760	20%	1%	70%	%0	0.0011	0.0046	2.32E-04	1.62E-02	0.4057
Gas Stream (Propane)	3	0.00529	8,760	100%	%0	%0	%0	0.0159	0.0695	0.00E+00	0.00E+00	0.0000
Light Liquid Stream (NGL)	15	0.02866	8,760	60%	1%	2%	93%	0.0181	0.0791	1.32E-03	2.64E-03	0.0672
Light Liquid Stream (Methanol)	- :	0.02866	8,760	100%	%0	%0	93%	0.0020	0.0088	0.00E+00	0.00E+00	0.0000
water/Lignt Liquid Stream Heavy I ionid Stream	11	20000.0	8,760	100%	%D	% O	93% 0%	00000	2000.0	0.00E+00	0.00E+00	0,0000
TRATA PRANT STORE	01	CT10000	00.10	0/001	0.0	0.0	0/0	10100	7610.0	001-7000	001-1000	00000
Flanges	010	200000	071.0	2000	10	òot	70120	0.000	21100	1 330 04	5 120 00	01001
Gas Stream (Pronana)	306	0.00086	8,760 8,760	20%07 1000	1 %0	%0/ /0%	97.% 07.0%	0200.0 0700.0	0.014/	0.00E±00	20-361.6 0.00E±00	0.0000
I inht I inuid Straam (NGI)	000	0.000043	8,760	100%	10%	200	0.70	01000	2800.0	0.00E+00	2 87E-04	0.0000
Light Liquid Stream (Methanol)	ţ	0.000243	8,760	100%	%T	~~0 %	97%	00000	0000	0.00E+00	0.00E+00	0.0000
Water/Light Liquid Stream	274	0.00006	8,760	100%	%0	%0 %0	91%	0.0000	0.0002	0.00E+00	0.00E+00	0.0000
Heavy Liquid Stream	1,339	0.0000086	8,760	100%	%0	9%0	30%	0.0008	0.0035	0.00E+00	0.00E+00	0.0000
Connectors												
Gas Streams	4,359	0.00044	8,760	20%	1%	70%	97%	0.0115	0.0504	2.52E-03	1.76E-01	4.4129
Gas Stream (Propane)	711	0.00044	8,760	100%	%0	%0	97%	0.0094	0.0411	0.00E+00	0.00E+00	0.0000
Light Liquid Stream (NGL)	2,336	0.000463	8,760	60%	1%	2%	97%	0.0195	0.0853	1.42E-03	2.84E-03	0.0725
Light Liquid Stream (Methanol)	1/4	0.000463	8,700	100%	%0	%D	%/6 %/6	0.0024	9010.0	0.00E+00	0.00E+00	0.000
water/Light Liquid Stream	202	0.0000165	8,760 8,760	100%	%0 %0	%0 %0	30%	0.0152	0.0664	0.00E+00	0.00E+00	0.0000
						U c	Gas Streams:	0.0961	0.4208	0.0210	1.4728	36.8414
						T inht I innid Stream (NGI):	T iquid Stream (NGI):	765T.0	1 3310	0,000	0.0000	0,000
					iT	Light Liquid Stream (Methanol):	(Methanol):	0.0048	0.0208	0.000	0.000	0.0000
					Ĩ	Water/Light Liquid Stream:	uid Stream:	0.3426	1.5005	0.000	0.0000	0.0000
						Heavy Lic	Heavy Liquid Stream:	0.0455	0.1995	0.000	0.000	0,000
							and the second		C(110	000000	00000	00000

^b Hourly VOC and H₂S emission rates are calculated as follows: (1,204 components) * (0.00992 lb/hr-component) * (20% VOC) * (100% - 97% reduction credit) = 0.0717 lb/hr

Fugitives. Hadron Fractors and Reduction Credits are per TCEQ Technical Guidance Document for Equipment Leak Fugitives, dated October 2000. The emission factors are for total hydrocarbon. Reduction credits are for a * 28LAER monitoring program per TCEQ guidance dated July 2011.

^c Annual VOC and H₃S emission rates are calculated as follows: (1.204 components) * (0.00992 lb/hr-component) * (8,760 hr/yr) * (20% VOC) * (100% - 97% reduction credit) / (2,000 lb/T) = 0.3139 T/yr

N-10

CRYO TRAIN 4 FUGITIVES POTENTIAL TO EMIT (SPECIATED)

AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

BLUE RACER MIDSTREAM, LLC

	РТ																																	
	Total	VOC	Met	hane	1	Ethane	Pro	pane	N-B	utane	Isob	outane	N-1	Pentane	Isop	entane	n-H	exane	Other	Hexanes	Be	nzene	He	ptane	00	ctane	То	luene	Ethyl	benzene	Xy	lene	Met	thanol
Stream	Hourly (lb/hr)	Annual (T/yr)	% in Stream	Hourly (lb/hr)	% in Strear		% in VOC	Hourly ^a (lb/hr)	% in VOC	Hourl (lb/hi																								
Gas (Natural Gas)	0.0961	0.4208	63.60%	0.0611	19.719	6 0.01894	57.00%	0.0548	17.76%	0.0171	11.66%	0.0112	3.58%	0.0034	5.20%	0.0050	0.84%	0.0008	1.71%	0.0016	0.02%	0.0000	1.23%	0.0012	0.79%	0.0008	0.09%	0.0001	0.00%	0.0000	0.07%	0.0001	0.00%	0.000
Gas (Propane)	0.1592	0.6974	0.00%	0.0000	1.32%	0.0021	97.70%	0.1556	0.49%	0.0008	1.81%	0.0029	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.000
Light Liquid (Methanol)	0.0048	0.0208	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	100.00%	0.004
Light Liquid (NGL)	0.3039	1.3310	1.00%	0.0030	46.999	6 0.1428	57.14%	0.1736	20.20%	0.0614	8.15%	0.0248	6.33%	0.0192	5.80%	0.0176	0.34%	0.0010	1.46%	0.0045	0.07%	0.0002	0.18%	0.0006	0.23%	0.0007	0.07%	0.0002	0.00%	0.0000	0.02%	0.0001	0.00%	0.000
Water/Oil	0.3426	1.5005	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.000
Heavy Liquid	0.0455	0.1995	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.000
Total (lb/hr):	0.95			0.0641		0.1638		0.3840		0.0792		0.0388		0.0227		0.0226		0.0018		0.0061		0.0002		0.0017		0.0015		0.0003		0.0000		0.0001		0.004
Total (T/yr):	4.17			0.2810		0.7176		1.6817		0.3471		0.1701		0.0993		0.0991		0.0081		0.0267		0.0010		0.0076		0.0064		0.0013		0.0001		0.0006		0.020

^a An example calculation for propane follows:

Propane (lb/hr) = (PTE Total VOC, lb/hr) * (% Propane in VOC)

Propane (lb/hr) = (0.0961 lb/hr Total VOC) * (57.00% Propane in VOC)

Propane (lb/hr) = 0.0548 lb/hr Propane

FUGITIVE AREA 2 POTENTIAL TO EMIT

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT AIR PERMIT APPLICATION

BLUE RACER MIDSTREAM, LLC

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Maximum	Maximum	ximum Maximum U	Uncontrolled	rolled						
Mut Farty Farty Party P			Emission	Operating	VOC	c02	CH4	PTE	700	Reduction	PTE	VOC	PTE CO2	PTE Methane	PTE CO2e
Image: constrained by the co	Component/Stream	Number of Components	Factors ^a (kg/hr-component)	Hours (hr/yr)	Content (%)	Content (%)	Content (%)	Hourly ^b (Ib/hr)	Annual ^c (T/yr)	Credit ^a (%)	Hourly ^b (lb/hr)	Annual ^c (T/yr)	Annual ^c (T/yr)	Annual ^c (T/yr)	Annual ^c (T/yr)
Matrice 9 000 </td <td>Valves</td> <td></td>	Valves														
member 6 000 500 000 <td>Gas (Natural Gas)</td> <td>56</td> <td>0.0045</td> <td>8,760</td> <td>1%</td> <td>1%</td> <td>95%</td> <td>0.0056</td> <td>0.0243</td> <td>97%</td> <td>0.0002</td> <td>0.0007</td> <td>0.0007</td> <td>0.0694</td> <td>1.73</td>	Gas (Natural Gas)	56	0.0045	8,760	1%	1%	95%	0.0056	0.0243	97%	0.0002	0.0007	0.0007	0.0694	1.73
minution (1) i ord	Gas (Eurane) Gas (Pronane)	606 999	0.0045	8,760 8,760	100%	<u>ہ</u> ج	8 2 7	0.0090	7659 28 7659	%D %D	0.1970	0.8630	0.0000	0.0000	00.0
Lugal Neurolis 11 0001	Gas (Butane)	24	0.0045	8,760	100%	9%0	960 960	4.5040	19.7277	97%	0.1351	0.5918	0.0000	0.0000	0.00
International 19 002 190 003 190 003 190 003 190 003 190 003 190 003 190 003 190 003 190 003 100 003 100 003 <t< td=""><td>Light Liquid (Methanol)</td><td>11</td><td>0.0025</td><td>8,760</td><td>100%</td><td>0%</td><td>9%0</td><td>0.0606</td><td>0.2655</td><td>97%</td><td>0.0018</td><td>0.0080</td><td>0.000</td><td>0.0000</td><td>0.00</td></t<>	Light Liquid (Methanol)	11	0.0025	8,760	100%	0%	9%0	0.0606	0.2655	97%	0.0018	0.0080	0.000	0.0000	0.00
Hall 106 0035 570 0 <th< td=""><td>Light Liquid (Natural Gasoline)</td><td>520</td><td>0.0025</td><td>8,760</td><td>100%</td><td>0%</td><td>9%0</td><td>2.8660</td><td>12.5531</td><td>97%</td><td>0.0860</td><td>0.3766</td><td>0.0000</td><td>0.0000</td><td>0.00</td></th<>	Light Liquid (Natural Gasoline)	520	0.0025	8,760	100%	0%	9%0	2.8660	12.5531	97%	0.0860	0.3766	0.0000	0.0000	0.00
C(1) C(1) <th< td=""><td>Light Liquid (NGL)</td><td>1,106</td><td>0.0025</td><td>8,760</td><td>60%</td><td>1%</td><td>2%</td><td>3.6575</td><td>16.0197</td><td>97%</td><td>0.1097</td><td>0.4806</td><td>0.0080</td><td>0.0160</td><td>0.41</td></th<>	Light Liquid (NGL)	1,106	0.0025	8,760	60%	1%	2%	3.6575	16.0197	97%	0.1097	0.4806	0.0080	0.0160	0.41
Optimize 10 0.000 500 100 0.0	Water/Oil	96	0.00098	8,760	100%	%0	960 200	0.0207	0.0908	%0 %0	0.0207	0.0908	0.0000	0.0000	0.00
Microscope International Internatinternatintera Internatera Inte	Heavy Liquid	1,002	0.0000084	8,760	100%	0%	0%	0.0186	0.0813	0%0	0.0186	0.0813	0.0000	0.0000	0.00
Mandiology (Matrice) 4 0.08 5/0 1 1 0.03	Relief Valves ^d														
Intention 1 0.000 5.700 0.14 7.00 0.000 0	Gas (Natural Gas)	4	0.0088	8,760	1%	1%	95%	0.0008	0.0034	100%	0.0000	0.0000	0.000	0.0000	0.00
Memory (1ed) 1 0.06	Gas (Ethane)	4	0.0088	8,760	1%	1%	2%	0.0008	0.0034	100%	0.0000	0.0000	0.0000	0.0000	0.00
Remention 3 0.005 5.00 0.005 5.00 0.005 0.000 0	Gas (Propane)	2	0.0088	8,760	100%	9%0	9%0	0.0388	0.1699	100%	0.0000	0.0000	0.0000	0.0000	0.00
Interfact (Mathing) 0 0000	Gas (Butane)	<i>с</i> о і	0.0088	8,760	100%	9%0	%0	0.0582	0.2549	100%	0.0000	0.0000	0.0000	0.0000	0.00
Tigener for the function of the functio	Light Liquid (Methanol)	0 0	0.0075	8,760	100%	0%	%0	0.0000	0.0000	100%	0.0000	0.0000	0.000	0.0000	0.00
Opponent 2 0001 500 000	Light Liquid (Natural Gasoline) T i abet I ianid (NGT)	× ç	2/00/0 2200/0	8,/60	%001	% - - 0%	%0 6	0.1525	10301	100%	0.000	0,000,0	0.000	0,000,0	0.00
Under Statistication 1 00000 500 0000 <td>Water/Oil</td> <td>67 C</td> <td>0.00.0</td> <td>8,760</td> <td>100%</td> <td>8 J</td> <td>9% 7 7 %</td> <td>0.0617</td> <td>10020</td> <td>100%</td> <td>0,0000</td> <td>0,000,0</td> <td>0,0000</td> <td>0,0000</td> <td>0000</td>	Water/Oil	67 C	0.00.0	8,760	100%	8 J	9% 7 7 %	0.0617	10020	100%	0,0000	0,000,0	0,0000	0,0000	0000
	Heavy Liquid	23	0.000032	8,760	100%	%0	%0	0.0016	0.0071	100%	0.0000	0.0000	0.000	0.0000	0.00
Name 0 0.008 5.70 18 1 0.000	Compressor Seals														
Math Math <th< td=""><td>Gas (Natural Gas)</td><td>0</td><td>0.0088</td><td>8,760</td><td>1%</td><td>1%</td><td>9%0</td><td>0.000</td><td>0.0000</td><td>95%</td><td>0.0000</td><td>0.0000</td><td>0.0000</td><td>0.0000</td><td>0.00</td></th<>	Gas (Natural Gas)	0	0.0088	8,760	1%	1%	9%0	0.000	0.0000	95%	0.0000	0.0000	0.0000	0.0000	0.00
Hamboli 1 0.041 8.70 1% 7% 0.033 0.035 <td>Pump Seals[°]</td> <td></td>	Pump Seals [°]														
Thrane Thrane<	Gas (Ethane)	11	0.024	8,760	1%	1%	2%	0.0058	0.0255	9%0	0.0058	0.0255	0.0255	0.0510	1.30
	Gas (Propane)	9	0.024	8,760	100%	9%0	960	0.3175	1.3905	93%	0.0222	0.0973	0.0000	0.0000	0.00
Liquid (Netal Gaolity) 2 0.013 8.700 0.005 9.8 0.103 0.701 0.000	Gas (Butane)	10	0.024	8,760	100%	9%0	%0	0.5291	2.3175	93%	0.0370	0.1622	0.0000	0.0000	0.00
	Light Liquid (Methanol)	7.7 4	0.013	8,760	100%	%0 0	ŝŝ	0.00/0	1162.0	95% 2020	0.0040	9/10/0	0.000	0,0000	0.00
	Light Liquid (NGL)	0 1-	0.013	8,760 8,760	%097	8 8	5 2	0.1204	0.5272	93%	0.0084	0.0369	0.0006	0.0012	0.03
y Liquid 13 00051 8.700 100% 00% 0% 0147 0643 0% 0147 0643 00% 0000 0000 0000 0000 0000 0000 000	Water/Oil	5	0.000024	8,760	100%	%0	%0	0.0001	0.0005	0%	0.0001	0.0005	0.0000	0.0000	0.00
	Heavy Liquid	13	0.00051	8,760	100%	9%0	960	0.0147	0.0643	0%	0.0147	0.0643	0.0000	0.0000	0.00
Natural Gasi 87 0.002 8.70 1% 1% 5% 0.001	Connectors ^f														
Ethane) 2.304 0.002 8.760 1% 1% 0.012 0.0145 0.0145 0.0145 0.0145 0.0145 0.0145 0.0145 0.0145 0.0145 0.0145 0.0035 0.003 0.003 0.003 0.0035 <	Gas (Natural Gas)	87	0.0002	8,760	1%	1%	95%	0.004	0.0017	97%	0.0000	0.0001	0.0001	0.0048	0.12
Humen 1.902 0.0002 8.760 100% 0% 0.886 3.732 9.7% 0.102 0.0000 <	Gas (Ethane)	2,304	0.0002	8,760	1%	1%	2%	0.0102	0.0445	9%0	0.0102	0.0445	0.0445	0.0890	2.27
1.218 0.0002 8.700 100% 0.66 0.031 2.732 2.737 9.7% 0.001 0.001 0.0000	Gas (Propane)	1,902	0.0002	8,760	100%	0%	%0 360	0.8386	3.6732	97%	0.0252	0.1102	0.000	0.0000	0.00
	Uas (Butane) I inter I inuid (Mothenel)	817'1 75	700000	8,/00	1000%	0.% 0	%D	0/55.0	2255.2	%/6 705	10100.0	00/000	0.000	0,000,0	0.00
Lipidi (XcI) 2.50 0.0001 8.760 60% 1% 2% 0.628 2.8592 97% 0.016 0.003 0.001 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0	Light Liquid (Natural Gasoline)	1.143	0.00021	8.760	100%	0%0	80	0.5292	2.3178	% 16 %26	0.0159	0.0695	0.0000	0.0000	0.00
Total 123 0.00011 8.760 100% 0% 0.0258 0.1360 30% 0.0295 0.0391 0.0301 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001	Light Liquid (NGL)	2,350	0.00021	8,760	60%	1%	2%	0.6528	2.8592	97%	0.0196	0.0858	0.0014	0.0029	0.07
y Liquid 2.146 0.000075 8.760 100% 0% 0% 0.0355 0.154 30% 0.0248 0.1088 0.000	Water/Oil	123	0.00011	8,760	100%	9%0	9%0	0.0298	0.1306	30%	0.0209	0.0915	0.000	0.0000	0.00
Katural Gas) 5 0.0088 8.760 1% 1% 9.5% 0.001 0.0042 0.7% 0.0001 0.0010 0.0001	Heavy Liquid	2,146	0.0000075	8,760	100%	9%0	9%0	0.0355	0.1554	30%	0.0248	0.1088	0.0000	0.0000	0.00
5 0.008 8.760 1% 1% 2% 0.001	Other ⁸	,													
1 171 0.0008 8.700 10% 0.0009 0.0019 0.0009 0.0010	Gas (Natural Gas)	2 IQ	0.0088	8,760	8 3	- 18	95%	0.0010	0.0042	97%	0.0000	0.0001	0.001	0.0121	0.30
1/1 0.0008 8,70 100% 0.06 0.000 0.0	Gas (Emane)	101	0.0008	8,/00	1.00ev	£ 3	8,7 G	0.0190	0.0000	85 6	0610.0	8C8U.U	000000	01/1/0	80.4 00.0
0 0.0075 8.760 100% 0.0 0.000	Gas (Friopane) Gas (Burane)	14	0.0088	8,760 8,760	100%	800	%D	0.8536	3 7380	%//6 %/0	0.0756	0.1120 0.1120	0,000	00000	000
49 0.0075 8.760 100% 0% 0.8102 3.5487 97% 0.023 0.1065 0.000 0.000 74 0.0075 8.760 100% 1% 2% 0.7341 3.2155 97% 0.0220 0.006 0.0000 0.0000 7 0.0175 8.760 100% 0% 0.1343 0.7341 3.2155 97% 0.1320 0.006 0.0000 0.0000 7 0.018 0% 0.1543 0.7341 3.2155 97% 0.1543 0.0365 0.0005 0.0000 0.0000 7 0.018 0% 0.1635 0% 0.1635 0.000 0.0000 0.0000 8.760 100% 0% 0.0158 0.0158 0% 0.0016 0.0000 0.0000 9.000022 8.760 100% 0% 0.0158 0.0158 0.0000 0.0000 0.0000 9.000022 8.760 100% 0% 0.0158 0% 0.0	Light Liquid (Methanol)	ţ¢	0.0075	8,760	100%	80	80	0.000	0000.0	~~0	0.0000	00000	0.0000	0.0000	0.00
74 0.0075 8.760 60% 1% 2% 0.741 3.2155 97% 0.0220 0.0965 0.016 0.0035 5 0.014 8.760 100% 0% 0.1543 0.6739 0% 0.1543 0.003 51 0.00032 8.760 100% 0% 0.0168 0.000 0.000 6 0.0032 8.760 100% 0% 0.0158 0.000 0.000 TOTAL: 1.9 5.22 0.56 1.21	Light Liquid (Natural Gasoline)	49	0.0075	8.760	100%	%0	%0	0.8102	3.5487	97%	0.0243	0.1065	0.0000	0,0000	0.00
5 0014 8,760 100% 0% 01543 0.6759 0% 0.1543 0.6759 0.000 0.000 51 0.00032 8,760 100% 0% 0% 0.036 0.0138 0% 0.036 0.0138 0.000 0.000 TOTAL: 1.19 5.2 0.56 1.21	Light Liquid (NGL)	74	0.0075	8,760	60%	1%	2%	0.7341	3.2155	97%	0.0220	0.0965	0.0016	0.0032	0.08
51 0.000032 8,760 100% 0% 0.0036 0.0158 0% 0.0056 0.0158 0.0000 0.0000 TOTAL: 1.19 5.22 0.56 1.21	Water/Oil	5	0.014	8,760	100%	0%	960	0.1543	0.6759	9%0	0.1543	0.6759	0.0000	0.0000	0.00
1.19 5.22 0.56 1.21	Heavy Liquid	51	0.000032	8,760	100%	9%0	0%	0.0036	0.0158	0%	0.0036	0.0158	0.0000	0.0000	0.00
										TOTAL:	1.19	5.22	0.56	1.21	30.71
	^a Find two Finiteson Horizon and her see a	Accument HPAL	WWW DOID - UL-ND- OLD -		THE LEADERS IN THE ST	The property in the second sec	Equimont I and	Eventing I ombourd	sector distants		The shakes we				

¹ Pigtive Emission Factors are per EPA document EPA 453(R-95-01)7, dated November 1995; pp.2-15 and TCEQ Emission Factors for Equineen Lack Fugitive Components, dated January 2005. Reduction Credits are per TCEQ Control Efficiencies for TCEQ Lack Detection and Repair Programs Revised 07/11 (APDG 6129v.2) and TCEQ Technical Guidance Document for Equipment Lack Fugitives, dated July 2011. The emission factors are for total hydroxarbon. Reduction credit is for a 28LAER monitoring program.

^b Hourly VOC emissions are calculated as follows:

(56 components) * (0.0045 kg/hr-component) * (11b' 0.454 kg) * (100% VOC) * (100% - 97% reduction credit) = 0.0002 lb/hr < Annual VOC emission rates are calculated as follows: < 0.0002 lb/hr) * (8760 hr/yr) / (2.000 Hr/) = 0.0007 T/yr < 0.0012 lb/hr) * (8760 hr/yr) / (2.000 Hr/) = 0.0007 T/yr < 0.0012 lb/hr) * (8760 hr/yr) / (2.000 Hr/) = 0.0007 T/yr

• Leakless pumps are not included in the pump count.
¹Sampling connections are included in this category, because all sampling utilizes inline analyzars (i.e., closed loop sampling), such that additional emissions per sample do not occur.
¹Sampling connections are included in this category, because all sampling utilizes inline analyzars (i.e., closed loop sampling), such that additional emissions per sample do not occur.
¹Sampling connections are included in this category, because all sampling utilizes inline analyzars (i.e., closed loop sampling), such that additional emissions per sample do not occur.
¹Sampling connections are included in this category, because all sampling utilizes inline analyzars (i.e., closed loop sampling), such that additional emissions per sample do not occur.

FUGITIVES POTENTIAL TO EMIT (SPECIATED)

AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

BLUE RACER MIDSTREAM, LLC

	Total	VOC	Met	hane	E	thane	Pro	pane	N-B	utane	Isob	utane	N-P	entane	Isope	entane	n-He	exane	Other 1	Hexanes	Be	enzene	He	ptane	Oc	tane	То	luene	Ethyl	benzene	Xyl	lene	Met	ethanol
Stream	Hourly (lb/hr)	Annual (T/yr)	% in Stream	Hourly (lb/hr)	% in Stream	Hourly (lb/hr)	% in VOC	Hourly ^a (lb/hr)	% in VOC	Hour (lb/h																								
Gas (Natural Gas)	0.0002	0.0009	93.65%	0.0002	5.42%	0.00001	100.00%	0.0002	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.00
Gas (Ethane)	0.1252	0.5482	1.34%	0.0017	98.34%	0.1231	100.00%	0.1252	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.00
Gas (Propane)	0.2892	1.2668	0.00%	0.0000	1.32%	0.0038	97.70%	0.2826	0.49%	0.0014	1.81%	0.0052	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.00
Gas (Butane)	0.2139	0.9368	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	98.78%	0.2113	0.43%	0.0009	0.01%	0.0000	0.78%	0.0017	0.01%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.00
Light Liquid (Methanol)	0.0069	0.0301	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	100.00%	6 0.00
Light Liquid (Natural Gasoline)	0.1382	0.6053	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.91%	0.0013	0.18%	0.0002	35.91%	0.0496	29.95%	0.0414	4.72%	0.0065	20.36%	0.0281	0.96%	0.0013	2.55%	0.0035	3.16%	0.0044	0.97%	0.0013	0.06%	0.0001	0.28%	0.0004	0.00%	0.00
Light Liquid (NGL)	0.1598	0.6997	1.00%	0.0016	46.99%	0.0751	57.14%	0.0913	20.20%	0.0323	8.15%	0.0130	6.33%	0.0101	5.80%	0.0093	0.34%	0.0005	1.46%	0.0023	0.07%	0.0001	0.18%	0.0003	0.23%	0.0004	0.07%	0.0001	0.00%	0.0000	0.02%	0.0000	0.00%	0.00
Water/Oil	0.1961	0.8587	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.00
Heavy Liquid	0.0617	0.2702	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.00
Total (lb/hr):	1.19			0.0035		0.2020		0.4992		0.2462		0.0194		0.0598		0.0523		0.0071		0.0305		0.0014		0.0038		0.0047		0.0015		0.0001		0.0004		0.00
Total (T/yr):	5.22			0.0152		0.8846		2.1865		1.0785		0.0851		0.2617		0.2291		0.0310		0.1335		0.0063		0.0167		0.0207		0.0064		0.0004		0.0019		0.03

^a An example calculation for propane follows:

Propane (lb/hr) = (PTE Total VOC, lb/hr) * (% Propane in VOC)

Propane (lb/hr) = (0.0002 lb/hr Total VOC) * (100.00% Propane in VOC)

Propane (lb/hr) = 0.0002 lb/hr Propane

FUG AREA 2 PRESSURE RELIEF VALVE EQUIPMENT LEAKS TO FLARE

AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

BLUE RACER MIDSTREAM, LLC

	U	Incontrolled V to Flare	OC	Me	hane	Et	hane	Pro	pane	N-E	Butane	Isol	outane	N-P	entane	Isop	entane	n-H	exane	Other	Hexanes	Bei	nzene	He	otane	00	ctane	Ethv	lbenzene	Tol	luene	Xylene
Stream	% in Stream	Hourly (lb/hr)	Annual (T/yr)	% in Stream	Hourly ^a (lb/hr)	% in Stream	Hourly ^a (lb/hr)	% in VOC	Hourly ^b (lb/hr)	% in Ho VOC (ll																						
Gas (Natural Gas)	1%	0.0008	0.0034	93.65%	0.0727	5.42%	0.0042	100.00%	0.0008	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00% 0.
Gas (Ethane)	1%	0.0008	0.0034	1.34%	0.0010	98.34%	0.0763	100.00%	0.0008	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00% 0.
Gas (Propane)	100%	0.0388	0.1699	0.00%	0.0000	1.32%	0.0005	97.70%	0.0379	0.49%	0.0002	1.81%	0.0007	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00% 0.
Gas (Butane)	100%	0.0582	0.2549	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	98.78%	0.0575	0.43%	0.0002	0.01%	0.0000	0.78%	0.0005	0.01%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00% 0.
Light Liquid (Natural Gasoline)	100%	0.1323	0.5794	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.91%	0.0012	0.18%	0.0002	35.91%	0.0475	29.95%	0.0396	4.72%	0.0062	20.36%	0.0269	0.96%	0.0013	2.55%	0.0034	3.16%	0.0042	0.06%	0.0001	0.97%	0.0013	0.28% 0.
Light Liquid (NGL)	60%	0.2877	1.2601	1.00%	0.0048	46.99%	0.2253	57.14%	0.1644	20.20%	0.0581	8.15%	0.0234	6.33%	0.0182	5.80%	0.0167	0.34%	0.0010	1.46%	0.0042	0.07%	0.0002	0.18%	0.0005	0.23%	0.0007	0.00%	0.0000	0.07%	0.0002	0.02% 0.
Water/Oil	100%	0.0617	0.2704	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00% 0.
Heavy Liquid	100%	0.0016	0.0071	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00% 0.
Total (lb/	ır):	0.58			0.0785		0.3063		0.2038		0.1170		0.0246		0.0657		0.0568		0.0072		0.0311		0.0015		0.0039		0.0048		0.0001		0.0015	0.
Total (T/	vr):	2.55			0.3439		1.3417		0.8928		0.5125		0.1079		0.2879		0.2486		0.0316		0.1364		0.0064		0.0171		0.0212		0.0004		0.0065	0.

^a An example calculation of the PRV emission rate to flare for methane and ethane follows:

Methane (lb/hr) = (Uncontrolled VOC to Flare, lb/hr) / (% VOC in Stream) * (% Methane in Stream)

Methane (lb/hr) = (0.0008 lb/hr VOC) / (1% VOC) * (93.65% Methane)

Methane (lb/hr) = 0.0727 lb/hr Methane

^b An example calculation of the PRV emission rate to flare for VOC constituents follows:

Propane (lb/hr) = (Uncontrolled VOC to Flare, lb/hr) * (% Propane in VOC)

Propane (lb/hr) = (0.0008 lb/hr VOC) * (100.00% Propane)

Propane (lb/hr) = 0.0008 lb/hr Propane

		Fmission	Oneratina	Maximum	Uncontrolle PTF VOC	Uncontrolled PTF VOC	Reduction	PTR	PTF VOC
Component/Stream	Number of Components	Factors ^a (kg/hr-component)	Hours (hr/yr)	Content (%)	Hourly ^b (lb/hr)	Annual ^c (T/yr)	Credit ^a (%)	Hourly ^b (lb/hr)	Annual ^c (T/yr)
Relief Valves ^d									
Gas (Natural Gas)	36	0.0088	8,760	1%	0.0070	0.0306	100%	0.0000	0.0000
Gas (Ethyl mercaptan)	1	0.0088	8,760	100%	0.0194	0.0850	100%	0.0000	0.0000
Gas (Ethane)	10	0.0088	8,760	1%	0.0019	0.0085	100%	0.0000	0.0000
Gas (Propane)	10	0.0088	8,760	100%	0.1940	0.8497	100%	0.0000	0.0000
Gas (Butane)	4	0.0088	8,760	100%	0.0776	0.3399	100%	0.0000	0.0000
Gas (isoButane)	6	0.0088	8,760	100%	0.1746	0.7648	100%	0.0000	0.0000
Light Liquid (Natural Gasoline)	5	0.0075	8,760	100%	0.0827	0.3621	100%	0.0000	0.0000
Light Liquid (NGL)	1	0.0075	8,760	60%	0.0099	0.0435	100%	0.0000	0.0000
Water/Oil	1	0.014	8,760	100%	0.0309	0.1352	100%	0.0000	0.0000
Heavy Liquid	5	0.000032	8,760	100%	0.0004	0.0015	100%	0.0000	0.000
							TOTAL:	0.00	0.00

PRESSURE RELIEF VALVES POTENTIAL TO EMIT

AIR PERMIT APPLICATION

Reduction Credits are per TCEQ Control Efficiencies for TCEQ Leak Detection and Repair Programs Revised 07/11 (APDG 6129v2) and TCEQ Technical Guidance Document for Equipment Leak ^a Fugitive Emission Factors are per EPA document EPA-453/R-95-017; dated November 1995; pp.2-15 and TCEQ Emission Factors for Equiment Leak Fugitive Components, dated January 2005. Fugitives, dated July 2011. The emission factors are for total hydrocarbon. Reduction credit is for a 28LAER monitoring program.

^b Hourly VOC emissions are calculated as follows:

(36 components) * (0.0088 kg/hr-component) * (1 lb/ 0.454 kg) * (100% VOC) * (100% - 100% reduction credit) = 0.0000 lb/hr

° Annual VOC emission rates are calculated as follows:

(0.0000 lb/hr) * (8760 hr/yr) / (2,000 lb/T) = 0.0000 T/yr

^d All gas and light liquid relief valves are vented to the Flare. Thererefore, any leaks are routed to flare, and not to atmosphere as fugitive emissions (i.e., 100% control is taken). The Flare PTE calculation includes these potential leaks. PLANT PRESSURE RELIEF VALVE EQUIPMENT LEAKS TO FLARE

AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

BLUE RACER MIDSTREAM, LLC

	τ	ncontrolled to Flare	VOC	M	thane	E4	h	Dere		NT		Teeb		ND	entane	T		- 1	exane	04	Hexanes	D		E4bad and		11		0		Ether	·	T -1		V-d-m-
				Me			hane		pane	<u>N-E</u>	utane	1500	utane			· · · ·	entane	<u>n-r</u>		Other			izene	Ethyl me	· ,	не	ptane		tane	Ethyl	benzene	10	luene	Xylene
Stream	% in Stream	Hourly (lb/hr)	Annual (T/yr)	% in Stream	Hourly ^a (lb/hr)	% in Stream	Hourly ^a (lb/hr)	% in VOC	Hourly ^b (lb/hr)	% in VOC	Hourly ⁵ (lb/hr)	% in Hourly VOC (lb/hr																						
Gas (Natural Gas)	1%	0.0070	0.0306	93.65%	0.6541	5.42%	0.0378	100.00%	0.0070	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00% 0.000
Gas (Ethane)	1%	0.0194	0.0850	1.34%	0.0260	98.34%	1.9078	100.00%	0.0194	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00% 0.000
Gas (Ethyl mercaptan)	100%	0.0019	0.0085	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	100.00%	0.0019	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00% 0.000
Gas (Propane)	100%	0.1940	0.8497	0.00%	0.0000	1.32%	0.0026	97.70%	0.1895	0.49%	0.0010	1.81%	0.0035	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00% 0.000
Gas (Butane)	100%	0.0776	0.3399	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	98.78%	0.0767	0.43%	0.0003	0.01%	0.0000	0.78%	0.0006	0.01%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00% 0.000
Gas (iButane)	100%	0.1746	0.7648	0.00%	0.0000	0.00%	0.0000	1.81%	0.0032	1.54%	0.0027	96.65%	0.1688	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00% 0.000
Light Liquid (Natural Gasoli	ne) 100%	0.0827	0.3621	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.91%	0.0008	0.18%	0.0001	35.91%	0.0297	29.95%	0.0248	4.72%	0.0039	20.36%	0.0168	0.96%	0.0008	0.00%	0.0000	2.55%	0.0021	3.16%	0.0026	0.06%	0.00005	0.97%	0.0008	0.28% 0.000
Light Liquid (NGL)	60%	0.0099	0.0435	1.00%	0.0002	46.99%	0.0078	57.14%	0.0057	20.20%	0.0020	8.15%	0.0008	6.33%	0.0006	5.80%	0.0006	0.34%	0.0000	1.46%	0.0001	0.07%	0.0000	0.00%	0.0000	0.18%	0.0000	0.23%	0.0000	0.00%	0.0000	0.07%	0.0000	0.02% 0.000
Water/Oil	100%	0.0309	0.1352	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00% 0.000
Heavy Liquid	100%	0.0004	0.0015	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00%	0.0000	0.00% 0.000
Total (lb/hr):	0.60			0.6802		1.9560		0.2247		0.0831		0.1736		0.0303		0.0259		0.0039		0.0170		0.0008		0.0019		0.0021		0.0026		0.00005		0.0008	0.000
Total	· ·	2.62			2.9795		8.5671		0.9844		0.3639		0.7602		0.1328		0.1136		0.0172		0.0744		0.0035		0.0085		0.0093		0.0115		0.0002		0.0035	0.001

^a An example calculation of the PRV emission rate to flare for methane and ethane follows:

Methane (lb/hr) = (Uncontrolled VOC to Flare, lb/hr) / (% VOC in Stream) * (% Methane in Stream)

Methane (lb/hr) = (0.0070 lb/hr VOC) / (1% VOC) * (93.65% Methane)

Methane (lb/hr) = 0.6541 lb/hr Methane

^b An example calculation of the PRV emission rate to flare for VOC constituents follows:

Propane (lb/hr) = (Uncontrolled VOC to Flare, lb/hr) * (% Propane in VOC)

Propane (lb/hr) = (0.0070 lb/hr VOC) * (100.00% Propane)

Propane (lb/hr) = 0.0070 lb/hr Propane

PRESSURE RELIEF VALVES TO FLARE POTENTIAL TO EMIT

AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

BLUE RACER MIDSTREAM, LLC

Emission Point ID	Flare	P004				
	Component	Area 2 Pressu	Emissions From re Relief Valve nt Leaks ^a	Flare	Potential	to Emit ^c
Component	LHV (Btu/lb)	Hourly (lb/hr)	Annual (T/yr)	DRE (%)	Hourly (lb/hr)	Annual (T/yr)
Methane	21,502	0.0785	0.3439	99%	0.0008	0.0034
Ethane	20,416	0.3063	1.3417	99%	0.0031	0.0134
Propane	19,929	0.2038	0.8928	99%	0.0020	0.0089
i-Butane	19,614	0.0246	0.1079	98%	0.0005	0.0022
n-Butane	19,665	0.1170	0.5125	98%	0.0023	0.0103
i-Pentane	19,451	0.0568	0.2486	98%	0.0011	0.0050
n-Pentane	19,499	0.0657	0.2879	98%	0.0013	0.0058
n-Hexane	19,391	0.0072	0.0316	98%	0.0001	0.0006
Other Hexanes	19,147	0.0311	0.1364	98%	0.0006	0.0027
Benzene	18,000	0.0015	0.0064	98%	0.0000	0.0001
Heptane	19,163	0.0039	0.0171	98%	0.0001	0.0003
Octane	19,104	0.0048	0.0212	98%	0.0001	0.0004
Toluene	18,501	0.0015	0.0065	98%	0.00003	0.0001
Ethlybenzene	17,780	0.0001	0.0004	98%	0.000002	0.00001
Xylene	18,410	0.0004	0.0019	98%	0.00001	0.00004
TOTAL:	20,081	0.90	3.96		0.01	0.05
TOTAL VOC:		0.52	2.27		0.01	0.04
TOTAL HAPs:		0.01	0.05		0.0002	0.0009

Uncontrolled Emissions From Plant Palief Valva Equipment

		Plant Relief Va	dve Equipment			
	Component	Lea	ıks ^b	Flare	Potential	to Emit ^c
Component	LHV (Btu/lb)	Hourly (lb/hr)	Annual (T/yr)	DRE (%)	Hourly (lb/hr)	Annual (T/yr)
Methane	21,502	0.6802	2.9795	99%	0.0068	0.0298
Ethane	20,416	1.9560	8.5671	99%	0.0196	0.0857
Propane	19,929	0.2247	0.9844	99%	0.0022	0.0098
i-Butane	19,614	0.1736	0.7602	98%	0.0035	0.0152
n-Butane	19,665	0.0831	0.3639	98%	0.0017	0.0073
i-Pentane	19,451	0.0259	0.1136	98%	0.0005	0.0023
n-Pentane	19,499	0.0303	0.1328	98%	0.0006	0.0027
n-Hexane	19,391	0.0039	0.0172	98%	0.0001	0.0003
Other Hexanes	19,147	0.0170	0.0744	98%	0.0003	0.0015
Benzene	18,000	0.0008	0.0035	98%	0.0000	0.0001
Ethyl Mercaptan	20,416	0.0019	0.0085	98%	0.0000	0.0002
Heptane	19,163	0.0021	0.0093	98%	0.0000	0.0002
Octane	19,104	0.0026	0.0115	98%	0.0001	0.0002
Toluene	18,501	0.0008	0.0035	98%	0.0000	0.0001
Ethlybenzene	17,780	0.00005	0.0002	98%	0.0000	0.0000
Xylene	18,410	0.0002	0.0010	98%	0.0000	0.0000
TOTAL:	20,522	3.20	14.03		0.04	0.16
TOTAL VOC:		0.57	2.48		0.01	0.04
TOTAL HAPs:		0.01	0.03		0.0001	0.0005

^a Please refer to the calculation sheet "Fug Area 2 Pressure Relief Valve Equipment Leaks to Flare."

^b Please refer to the calculation sheet "Plant Pressure Relief Valve Equipment Leaks to Flare."

^c An example calculation for Potential to Emit Ethane follows:

Ethane PTE (lb/hr) = (Uncontrolled PRV Equipment Leaks, lb/hr) * (1 - Flare DRE, wt%)

Ethane PTE (lb/hr) = [(0.3063 lb/hr)] * (1 - 99% wt%)

Ethane PTE (lb/hr) = 0.0031

GLYCOL DEHYDRATOR STILL VENT POTENTIAL TO EMIT AIR PERMIT APPLICATION NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT BLUE RACER MIDSTREAM, LLC

	Control Device Efficiency
Flash Tank	98%
Condenser Vent	98%

		Emi	ssion Unit IDs S	5006, S031, S03	2, S033	
	Regenerato	r Emissions	Flash Tank	Emissions	Total Emissi	ons (Per Unit)
<i>a</i>	Hourly	Annual	Hourly	Annual	Hourly	Annual
Component	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)
Carbon Dioxide	0.0396	0.1734	0.0477	0.2091	0.0873	0.3825
Nitrogen	0.0012	0.0051	0.0182	0.0796	0.0193	0.0847
Hydrogen Sulfide	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Methane	0.0985	0.4314	1.4613	6.4005	1.5598	6.8319
Ethane	0.2324	1.0179	1.0158	4.4491	1.2482	5.4669
Propane	0.2606	1.1415	0.5000	2.1898	0.7606	3.3313
Isobutane	0.0812	0.3556	0.1041	0.4562	0.1853	0.8118
n-Butane	0.1801	0.7886	0.1758	0.7702	0.3559	1.5588
sopentane	0.0488	0.2139	0.0421	0.1842	0.0909	0.3981
n-Pentane	0.0465	0.2035	0.0319	0.1397	0.0784	0.3432
Cyclopentane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
n-Hexane	0.0183	0.0800	0.0070	0.0309	0.0253	0.1108
Cyclohexane	0.0163	0.0714	0.0016	0.0072	0.0180	0.0786
Other Hexanes	0.0251	0.1098	0.0128	0.0560	0.0378	0.1657
Heptanes	0.0478	0.2095	0.0092	0.0402	0.0570	0.2497
Methylcyclohexane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Benzene	0.0270	0.1184	0.0003	0.0084	0.0274	0.1268
Γoluene	0.1184	0.5187	0.0010	0.0044	0.1194	0.5231
Ethylbenzene	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Kylenes	0.1379	0.6039	0.0005	0.0020	0.1383	0.6060
C8+ Heavies	0.1321	0.5788	0.0025	0.0109	0.1346	0.5897
2,2,4-trimethylpentane	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Fotal VOC	1.14	4.99	0.89	3.90	2.03	8.89

Notes:

1. A 10% safety factor has been added to all emissions to account for variability in gas composition. Although the still vent will employ a BTEX condenser, no control from the condenser has been taken into account for this PTE.

2. BTEX condenser emissions and flash tank emissions are routed to vapor combustor for 98% destruction efficiency.

3. Calculations shown are for one glycol dehydration unit.

4. Emissions from the BTEX condenser and flash tank can be routed to the plant hot oil heater (Unit ID S001) for combustion as fuel. Given the size of the heater, the waste gas contribution to the total fuel gas consumed by the heater is minimal. As a result, when waste gas is routed to the hot oil heater as fuel, emissions from the dehydration unit are considered negligible. Alternatively, the dehydration unit emissions can be routed to the plant inlet, or routed to a vapor combustor with a destruction efficiency of 98%. Blue Racer Midstream is permitting the dehydration unit emissions assuming that all waste gas is routed to a vapor combustor, but would like to keep the flexibility to route the waste gas to the hot oil heater or the plant inlet as well.

VAPOR COMBUSTOR POTENTIAL TO EMIT SUMMARY AIR PERMIT APPLICATION NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

BLUE RACER MIDSTREAM, LLC

			Pilo	Pilot Gas	Wast	Waste Gas	To	Total
			Potential to	Potential to Emit (PTE) ^a	Potential to	Potential to Emit (PTE) ^b	PTE En	PTE Emissions
			Hourly	Annual	Hourly	Annual	Hourly	Annual
Unit ID	Description	Pollutant	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)
V001	Vapor Combustor	CO	0.01	0.04	1.48	6.49	1.49	6.53
	4	NO _x	0.004	0.02	0.74	3.25	0.75	3.27
		PM	0.0002	0.001	0.03	0.11	0.03	0.11
		\mathbf{SO}_2	0.00002	0.0001	0.002	0.01	0.002	0.01
		VOC (combustion)	0.0002	0.001	1	1	0.0002	0.001
		CH_2O	0.00002	0.00001	0.0003	0.001	0.0003	0.001
		Benzene	0.000001	0.000003	0.00001	0.00003	0.00001	0.00003
		Toluene	0.0000001	0.0000004	0.00001	0.00005	0.00001	0.0001
		n-Hexane	0.0001	0.0002	0.01	0.03	0.01	0.03
		Other HAP	10000000	0.000002	0.0001	0.000.0	10000.0	0.0000
V002	Vapor Combustor	CO	0.01	0.04	1.48	6.49	1.49	6.53
		NO _X	0.004	0.02	0.74	3.25	0.75	3.27
		PM	0.0002	0.001	0.03	0.11	0.03	0.11
		\mathbf{SO}_2	0.00002	0.0001	0.002	0.01	0.002	0.01
		VOC (combustion)	0.0002	0.001	I	I	0.0002	0.001
		CH_2O	0.000002	0.00001	0.0003	0.001	0.0003	0.001
		Benzene	0.0000001	0.0000003	0.00001	0.00003	0.00001	0.00003
		Toluene	0.0000001	0.0000004	0.00001	0.00005	0.00001	0.00005
		n-Hexane	0.0001	0.0002	0.01	0.03	0.01	0.03
		Other HAP	0.000001	0.0000002	0.00001	0.00003	0.00001	0.00003
V003	Vapor Combustor	CO	0.01	0.04	1.48	6.49	1.49	6.53
		NO _X	0.004	0.02	0.74	3.25	0.75	3.27
		PM	0.0002	0.001	0.03	0.11	0.03	0.11
		SO_2	0.00002	0.0001	0.002	0.01	0.002	0.01
		VOC (combustion)	0.0002	0.001	1	:	0.0002	0.001
		CH_2O	0.000002	0.00001	0.0003	0.001	0.0003	0.001
		Benzene	0.000001	0.0000003	0.00001	0.00003	0.00001	0.00003
		Toluene	0.000001	0.000004	0.00001	0.00005	0.00001	0.0001
		n-Hexane Other HAP	0.000001	0.0000002	0.0001	0.00003 0.00003	0.00001	0.00003 0.00003
V004	Vapor Combustor	CO	0.01	0.04	1.48	6.49	1.49	6.53
		NOv	0.004	0.02	0.74	3.25	0.75	3.27
		PM	0.0002	0.001	0.03	0.11	0.03	0.11
		SO_2	0.00002	0.0001	0.002	0.01	0.002	0.01
		VOC (combustion)	0.0002	0.001	1	1	0.0002	0.001
		CH_2O	0.00002	0.00001	0.0003	0.001	0.0003	0.001
		Benzene	0.000001	0.000003	0.00001	0.00003	0.0001	0.00003
		Toluene	0.0000001	0.000004	0.00001	0.00005	0.00001	0.0001
		n-Hexane	0.0001	0.0002	0.01	0.03	0.01	0.03
		Other HAP	0.000001	0.0000002	0 00001	0 00003	0 00001	0 00003

^a The Pilot Gas PTE emissions are from the Calculation of Vapor Combustor Gas Combustion Potential to Emit worksheet. ^b The Waste Gas CO, NO_X, PM and SO₂ PTE emissions are from the Calculation of Vapor Combustor Waste Gas Combustion Potential to Emit worksheet.

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

BLUE RACER MIDSTREAM, LLC

		Filot Flow	Fuel Higher Heating	Annual Onerating				Potential to	Potential to Emit (PTE)
		Rate	Value	Hours		Emission		Hourly ^a	Annual ^b
Unit ID	Description	(scf/hr)	(Btu/scf)	(hr/yr)	Pollutant	Factors ^a	Units	(lb/hr)	(T/yr)
V001	Vapor Combustor	30.00	1,027	8,760	CO	0.2755	lb/MMBtu	0.01	0.04
					NO_X	0.1380	lb/MMBtu	0.004	0.02
					ΡM	7.6	lb/MMscf	0.0002	0.001
					\mathbf{SO}_2	4	mqq	0.00002	0.0001
					VOC	5.5	lb/MMscf	0.0002	0.001
					CH_2O	0.075	lb/MMscf	0.000002	0.00001
					Benzene	0.0021	lb/MMscf	0.000001	0.000003
					Toluene	0.0034	lb/MMscf	0.000001	0.0000004
					n-Hexane	1.8	lb/MMscf	0.0001	0.0002
					Other HAP	0.0019	lb/MMscf	0.000001	0.0000002
V002	Vapor Combustor	30.00	1,027	8,760	CO	0.2755	lb/MMBtu	0.01	0.04
					NO_X	0.1380	lb/MMBtu	0.004	0.02
					ΡM	7.6	lb/MMscf	0.0002	0.001
					SO_2	4	mqq	0.00002	0.0001
					VOC	5.5	lb/MMscf	0.0002	0.001
					CH_2O	0.075	lb/MMscf	0.000002	0.0001
					Benzene	0.0021	lb/MMscf	0.000001	0.000003
					Toluene	0.0034	lb/MMscf	0.000001	0.000004
					n-Hexane	1.8	lb/MMscf	0.0001	0.0002
					Other HAP	0.0019	lb/MMscf	0.000001	0.0000002
V003	Vapor Combustor	30.00	1,027	8,760	CO	0.2755	lb/MMBtu	0.01	0.04
					NO_X	0.1380	lb/MMBtu	0.004	0.02
					Μd	7.6	lb/MMscf	0.0002	0.001
					\mathbf{SO}_2	4	mqq	0.00002	0.0001
					VOC	5.5	lb/MMscf	0.0002	0.001
					CH_2O	0.075	lb/MMscf	0.000002	0.00001
					Benzene	0.0021	lb/MMscf	0.0000001	0.0000003
					Toluene	0.0034	lb/MMscf	0.000001	0.000004
					n-Hexane	1.8	lb/MMscf	0.0001	0.0002
						0,000.0			

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

BLUE RACER MIDSTREAM, LLC

			BLU	BLUE RACER MIDSTREAM, LLC	STREAM, LLC				
		Pilot Flow	Fuel Higher Heating	Annual Operating				Potential to Emit (PTE)	Emit (PTE)
		Rate	Value	Hours		Emission	1 -	Hourly ^a	Annual ^b
	Description	(sct/hr)	(Btu/scf)	(hr/yr)	Pollutant	Factors "	Units	(Ib/hr)	(1/yr)
V004	Vapor Combustor	30.00	1,027	8,760	CO	0.2755	lb/MMBtu	0.01	0.04
					NO_X	0.1380	lb/MMBtu	0.004	0.02
					ΡM	7.6	lb/MMscf	0.0002	0.001
					SO_2	4	udd	0.00002	0.0001
					VOC	5.5	lb/MMscf	0.0002	0.001
					CH_2O	0.075	lb/MMscf	0.000002	0.00001
					Benzene	0.0021	lb/MMscf	0.000001	0.000003
					Toluene	0.0034	lb/MMscf	0.000001	0.000004
					n-Hexane	1.8	lb/MMscf	0.0001	0.0002
					Other HAP	0.0019	lb/MMscf	0.000001	0.0000002

¹ Emission Factors for CO and NO_X are based upon the Draft TNRCC Guidance Document for Flares and Vapor Oxidizers (dated 10/00) for non-assisted high-But flares. An example calculation for hourly CO emissions for Unit ID V001 follows:

CO (lb/hr) = (Fuel Flow Rate, scf/hr) * (Fuel Heating Value, Btu/scf) * (MM/10⁶) * (Emission Factor, lb/MMBtu)

CO (lb/hr) = $(30.00 \text{ scf/hr})*(1,027 \text{ Blu/scf})*(MM/10^6)*(0.2755 \text{ lb/MMBu})$

= 0.008 lb/hr CO

SO₂ emission rates are estimated using a mass balance approach and the actual sulfur content of the gas. An example calculation for hourly SO₂ emissions for Unit ID V001 follows: $SO_2 (lb/h) = (Fuel Flow Rate, scf/h)^* (MMscf/10^{+} scf)^* (Suffur Content, scf S/MMscf gas)^* (1 lb-mol/379 scf)^* (32.06 lb S/lb-mol)^* (64.06 lb S/$ SO₂ (lb/hr) = (30.00 scf/hr) * (MMscf/10^6scf) * (4.0 scf S/MMscf gas) * (1 lb-mol/379 scf) * (32.06 lb S/lb-mol) * (64.06 lb SO2/32.06 lb S)

= 0.00002 lb/hr SO₂

Emission Factors for PM, VOC, and HAPs based upon AP-42 Table 1.4-2 and Table 1.4-3 (dated 7/98). An example calculation for hourly VOC emissions for Unit ID V001 follows:

VOC (lb/hr) = (Fuel Flow Rate, scf/hr) * (MM/10⁶) * (Emission Factor, lb/MMscf)

VOC (lb/hr) = $(30.00 \text{ scf/hr}) * (MM/10^{6}) * (5.5 \text{ lb/MMscf})$

= 0.00017 lb/hr VOC

^b An example calculation for annual CO emissions for Unit ID V001 follows:

CO(T/yr) = (Hourly Emissions, lb/hr) * (Annual Operating Hours, hr/yr) * (1 T/2,000 lb)

CO (T/yr) = (0.008 lb/hr) * (8,760 hr/yr) * (1 T/2,000 lb)= 0.04 T/yr CO

CALCULATION OF VAPOR COMBUSTOR WASTE GAS COMBUSTION POTENTIAL TO EMIT AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

BLUE RACER MIDSTREAM, LLC

		Flow	WG Higher Heating	Annual Operating	Waste Gas	Waste Gas Feed Rate ^a				Potential to	Potential to Emit (PTE)
		Rate ^a	Value	Hours	Hourly	Annual		Emission		Hourly ^b	Annual ^c
Unit ID	Description	(scf/hr)	(Btu/scf)	(hr/yr)	(MMBtu/hr)	(MMBtu/yr)	Pollutant	Factors ^b	Units	(lb/hr)	(T/yr)
V001	Vapor Combustor	3,350.76	1,604.27	8,760	5.38	47,101.84	CO	0.2755	lb/MMBtu	1.48	6.49
							NO_X	0.1380	lb/MMBtu	0.74	3.25
							ΡM	7.6	lb/MMscf	0.03	0.11
							\mathbf{SO}_2	4	mqq	0.002	0.01
							CH_2O	0.075	lb/MMscf	0.0003	0.001
							Benzene	0.0021	lb/MMscf	0.00001	0.00003
							Toluene	0.0034	lb/MMscf	0.00001	0.0000
							n-Hexane	1.8	lb/MMscf	0.01	0.03
							Other HAP	0.0019	lb/MMscf	0.00001	0.00003
V002	Vapor Combustor	3,350.76	1,604.27	8,760	5.38	47,101.84	CO	0.2755	lb/MMBtu	1.48	6.49
							NO_X	0.1380	lb/MMBtu	0.74	3.25
							ΡM	7.6	lb/MMscf	0.03	0.11
							SO_2	4	mqq	0.002	0.01
							CH_2O	0.075	lb/MMscf	0.0003	0.001
							Benzene	0.0021	lb/MMscf	0.00001	0.00003
							Toluene	0.0034	lb/MMscf	0.00001	0.0000
							n-Hexane	1.8	lb/MMscf	0.01	0.03
							Other HAP	0.0019	lb/MMscf	0.00001	0.00003
V003	Vapor Combustor	3,350.76	1,604.27	8,760	5.38	47,101.84	CO	0.2755	lb/MMBtu	1.48	6.49
							NO_X	0.1380	lb/MMBtu	0.74	3.25
							ΡM	7.6	lb/MMscf	0.03	0.11
							SO_2	4	mqq	0.002	0.01
							CH_2O	0.075	lb/MMscf	0.0003	0.001
							Benzene	0.0021	lb/MMscf	0.00001	0.00003
							Toluene	0.0034	lb/MMscf	0.00001	0.0000
							n-Hexane	1.8	lb/MMscf	0.01	0.03
							Other HAP	0.0019	lh/MMscf	0.0001	0 00003

CALCULATION OF VAPOR COMBUSTOR WASTE GAS COMBUSTION POTENTIAL TO EMIT AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

BLUE RACER MIDSTREAM, LLC

WG WG Higher Flow Heating		WG Higher Heating		Annual Operating	Waste Gas]	Waste Gas Feed Rate ^a				Potential to Emit (PTE)	Emit (PTE)
value (Btu/scf)	vanue (Btu/scf)		ruorr (hr/yr)		nourty (MMBtu/hr)	Annual (MMBtu/yr)	Pollutant	Emission Factors ^b	Units	(lb/hr)	Annual (T/yr)
Vapor Combustor 3,350.76 1,604.27 8,760	1,604.27		8,760		5.38	47,101.84	CO	0.2755	lb/MMBtu	1.48	6.49
							NO_X	0.1380	lb/MMBtu	0.74	3.25
							ΡM	7.6	lb/MMscf	0.03	0.11
							\mathbf{SO}_2	4	uudd	0.002	0.01
							CH_2O	0.075	lb/MMscf	0.0003	0.001
							Benzene	0.0021	lb/MMscf	0.00001	0.00003
							Toluene	0.0034	lb/MMscf	0.00001	0.00005
							n-Hexane	1.8	lb/MMscf	0.01	0.03
							Other HAP	0.0019	lb/MMscf	0.00001	0.00003

The waste gas flow rate and feed rate for the vapor combustors was taken from the Calculation of Vapor Combustor Feed Rate from Dehydration Unit Emissions worksheet.

Emission Factors for CO and NO_X are based upon the Draft TNRCC Guidance Document for Flares and Vapor Oxidizers (dated 10/00) for non-assisted high-But flares. An example calculation for hourly CO emissions for Unit ID V001 follows:

CO (lb/hr) = (WG Feed Rate, MMBtu/hr) * (Emission Factor, lb/MMBtu)

CO (lb/hr) = (5.38 MMBtu/hr) * (0.2755 lb/MMBtu)

= 1.48 lb/hr CO

SO₂ emission rates are estimated using a mass balance approach and the actual sulfur content of the gas. An example calculation for hourly SO₂ emissions for Unit ID V001 follows:

 $SO_2 (lb/hr) = (Fuel Flow Rate, scf/hr)^* (MMscf/10^{6}scf)^* (Sulfur Content, scf S/MMscf gas)^* (1 lb-mol/379 scf)^* (32.06 lb S/hb-mol)^* (64.06 lb SO2/32.06 lb S)^* (1 lb-mol/379 scf)^* (32.06 lb S)^* (1 lb-mol/379 scf)^* (32.06 lb S)^* (32$

SO₂ (lb/hr) = (3350.76 scf/hr) * (MMscf/10^6scf) * (4.0 scf S/MMscf gas) * (1 lb-mol/379 scf) * (32.06 lb S/lb-mol) * (64.06 lb SO2/32.06 lb S)

= 0.002 lb/hr SO₂

Emission Factors for PM and HAPs based upon AP-42 Table 1.4-2 and Table 1.4-3 (dated 7/98). An example calculation for hourly PM emissions for Unit ID V001 follows:

 $PM (lb/hr) = (Fuel Flow Rate, scf/hr) * (MM/10^6) * (Emission Factor, lb/MMscf)$

 $PM (lb/hr) = (3350.76 \text{ scf/hr}) * (MM/10^{\circ}6) * (7.6 lb/MMscf)$ $= 0.11 \qquad lb/hr VOC$

^c An example calculation for annual CO emissions for Unit ID V001 follows:

CO (T/yr) = (WG Feed Rate, MMBtu/yr) * (Emission Factor, lb/MMBtu) * (1 T/2,000 lb)

CO (T/yr) = (47101.84 MMBtu/yr) * (0.2755 lb/MMBtu) * (1 T/2,000 lb)

= 6.49 T/yr CO

CALCULATION OF VAPOR COMBUSTOR FEED RATE FROM DEHYDRATION UNIT EMISSIONS AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT BLUE RACER MIDSTREAM, LLC

			Total Uncontrolled Regenerator	ed Regenerator	Total Uncontrolled Flash Tank	led Flash Tank						
	Heating	Molecular	Emissions	ions	Emissions	sions	Total Uncontro	Total Uncontrolled Emissions ³	Vapor Combi	Vapor Combustor Feed Rate	Volumetric Feed Rate ⁴	Volumetric Feed Rate
Constituent	Value ¹ (Btu/lb)	Weight (lb/lb-mole)	Hourly ² (lb/hr)	Annual ² (T/yr)	Hourly ² (lb/hr)	Annual ² (T/yr)	Hourly (lb/hr)	Annual (T/yr)	Hourly (MMBtu/hr)	Annual (MMBtu/yr)	Hourly (scf/hr)	Annual (scf/yr)
Nitrogen	0	28.013	0.0530	0.2321	0.8260	3.6179	0.9669	4.2350	0.0000	0.0000	13.15	115,157.30
Carbon Dioxide	0	44.01	1.8000	7.8840	2.1700	9.5046	4.3670	19.1275	0.0000	0.0000	37.79	331,055.93
Hydrogen Sulfide	0	34.0809	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00	0.00
Methane	23861	16.043	4.4765	19.6069	66.4232	290.9337	77.9897	341.5947	1.8609	16,301.5804	1,851.47	16,218,882.44
Ethane	22304	30.07	10.5630	46.2661	46.1714	202.2306	62.4078	273.3464	1.3919	12,193.4349	790.44	6,924,291.13
Propane	21646	44.097	11.8457	51.8843	22.7254	99.5372	38.0282	166.5637	0.8232	7,210.8735	328.44	2,877,177.27
Isobutane	21242	58.123	3.6904	16.1638	4.7339	20.7344	9.2667	40.5880	0.1968	1,724.3414	60.72	531,918.73
n-butane	21293	58.123	8.1841	35.8463	7.9929	35.0090	17.7947	77.9408	0.3789	3,319.1882	116.60	1,021,439.01
isopentane	21025	72.15	2.2194	9.7210	1.9116	8.3727	4.5441	19.9031	0.0955	836.9241	23.99	210,125.70
n-pentane	21072	72.15	2.1117	9.2491	1.4500	6.3509	3.9179	17.1600	0.0826	723.1910	20.68	181,165.87
n-hexane	20928	86.177	0.8297	3.6341	0.3202	1.4027	1.2649	5.5405	0.0265	231.9023	5.59	48,972.41
cyclopentane	20350	72.15	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.00	0.00
cyclohexane	20195	84.161	0.7415	3.2476	0.0745	0.3261	0.8976	3.9311	0.0181	158.7759	4.06	35,579.13
other hexanes	20928	86.177	1.1392	4.9899	0.5808	2.5439	1.8920	8.2872	0.0396	346.8682	8.36	73,250.54
heptanes	20825	100.204	2.1744	9.5240	0.4170	1.8266	2.8505	12.4857	0.0594	520.0277	10.83	94,912.17
2,2,4 trimethyl	20583	114.231	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.00	0.00
benzene	18172	78.114	1.2291	5.3837	0.0159	0.3810	1.3695	6.3412	0.0249	230.4635	6.68	61,835.23
toluene	18422	92.141	5.3833	23.5788	0.0453	0.1983	5.9715	26.1548	0.1100	963.6478	24.68	216,219.11
ethylbenzene	18658	106.168	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.00	0.00
xylene	18438	106.167	6.2676	27.4519	0.0209	0.0916	6.9174	30.2979	0.1275	1,117.2635	24.82	217,379.06
c8+ heavies	20747	114.231	6.0062	26.3071	0.1131	0.4953	6.7312	29.4826	0.1397	1,223.3527	22.44	196,597.43
		Total VOC:	51.8223	226.9816	40.4015	177.2697	101.4462	444.6764				
		Total HAPs:	13.7097	60.0485	0.4023	2.0736	15.5232	68.3343				
								Total Feed Rate:	5.3755	47,101,8352	3.350.76	29 355 958 46

¹ Heating values taken from Perry's Chemical Engineers' Handbook, Table 3-207 (pg. 3-155)

² Emissions from dehydration unit still vent and flash tank taken from GlyCalc simulation report.

³ Total uncontrolled emissions include a 10% increase to account for potential fluctuations in gas composition.

⁴ Volumetric feed rate for each contaminant calculated using the Ideal Gas Law at standard conditions of 14.65 psia and 60 °F. Sample volumetric feed rate calculation for Methane is as follows: (66.4232 lb/hr) / (16.043 lb/lb-mole) * (10.73 psia-ft3/lb-mol-deg. R) * (520 deg. R) / (14.65 psia) = 1851.4711 scf/hr Vapor Combustor Feed Rates are calculated for one dehydration unit.

GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES

Case Name: Natrium Plant Dehydration Unit

File Name: T:\Blue Racer Midstream - 646\646-12 Natrium Cryo Addition Permitting\Calculations\Natrium Dehy Calculations 2015.ddf Date: June 27, 2015

DESCRIPTION:

Description: 230 MMscf/day glycol dehydration. Emissions are 98% controlled.

Annual Hours of Operation: 8760.0 hours/yr

WET GAS:

Temperature: 120.00 deg. F Pressure: 1200.00 psig Wet Gas Water Content: Saturated

Component	Conc.
(vol	%)
Carbon Dioxid	e 0.1480
Nitrogen	0.4780
Methane	79.9160
Ethane	13.2170
Propane	4.0920
Isobutane	0.6350
n-Butane	0.9670
Isopentane	
n-Pentane	0.1570
n-Hexane	0.0310
Cyclohexane	0.0050
Other Hexane	s 0.0580
Heptanes	0.0390
Benzene	0.0010
Toluene	0.0030
Yulonos	0.0020

Xylenes 0.0020 C8+ Heavies 0.0230

DRY GAS:

Flow Rate: 230.0 MMSCF/day Water Content: 7.0 lbs. H2O/MMSCF

LEAN GLYCOL:

Glycol Type: TEG Water Content: 1.5 wt% H2O Flow Rate: 40.0 gpm

PUMP:

Glycol Pump Type: Electric/Pneumatic

FLASH TANK:

Flash Control: Combustion device Flash Control Efficiency: 98.00 % Temperature: 125.0 deg. F Pressure: 75.0 psig

REGENERATOR OVERHEADS CONTROL DEVICE:

Control Device: Condenser Temperature: 125.0 deg. F Pressure: 14.7 psia

Control Device: Combustion Device Destruction Efficiency: 98.0 % Excess Oxygen: 0.0 % Ambient Air Temperature: 80.0 deg. F

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Natrium Plant Dehydration Unit File Name: T:\Blue Racer Midstream - 646\646-12 Natrium Cryo Addition Permitting\Calculations\Natrium Dehy C Date: June 27, 2015

DESCRIPTION:

Description: 230 MMscf/day glycol dehydration. Emissions are 98% controlled.

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr		tons/yr
Methane	0.0895	2.147	
Ethane	0.2108	5.060	0.9235
Propane	0.2352	5.644	1.0301
Isobutane	0.0728	1.748	0.3190
n-Butane	0.1608	3.859	0.7042
Isopentane	0.0425	1.020	0.1862
n-Pentane	0.0401	0.963	0.1758
n-Hexane	0.0148	0.355	0.0648
Cyclohexane	0.0126	0.303	0.0553
Other Hexanes	0.0208	8 0.50	0 0.0912
Heptanes	0.0328	0.787	0.1436
Benzene	0.0197	0.473	0.0862
Toluene	0.0652	1.564	0.2855
Xylenes			
C8+ Heavies			
Total Emissions			
Total Hydrocarbon Emis Total VOC Emissio			

	0.1010		0.0000
Total HAP Emissions	0.1426	3.423	0.6247
Total BTEX Emissions	0.1278	3.068	0.5599

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	4.4765	107.435	 19.6069
Ethane	10.5630	253.513	46.2661
Propane	11.8457	284.297	51.8843
Isobutane	3.6904	88.569	16.1638
n-Butane	8.1841	196.418	35.8463
Isopentane	2.2194	53.266	9.7210
n-Pentane		50.680	9.2491
n-Hexane	0.8297	19.913	3.6341
Cyclohexane	0.7415	17.795	3.2476
Other Hexanes	1.1392	2 27.34	2 4.9899
Heptanes	2.1744	52.186	9.5240
Benzene		29.499	5.3837
Toluene	5.3833	129.199	23.5788
Xylenes	6.2676	150.422	27.4519
C8+ Heavies	6.0062	144.14	8 26.3071
Total Emissions	66.8618	3 1604.6	 83 292.8546

Total Hydrocarbon Emissions	66.861	8 1604.68	3 292.8546
Total VOC Emissions	51.8223	1243.734	226.9815
Total HAP Emissions	13.7097	329.033	60.0485
Total BTEX Emissions	12.8800	309.120	56.4144

FLASH GAS EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane			
Ethane			
Propane			
Isobutane			
n-Butane	0.1599	3.837	0.7002
Isopentane	0.0382	0.918	0.1675
n-Pentane	0.0290	0.696	0.1270
n-Hexane	0.0064	0.154	0.0281
Cyclohexane	0.0015	0.036	0.0065
Other Hexanes	s 0.011	6 0.27	9 0.0509
Heptanes	0.0083	0.200	0.0365
Benzene			
Toluene			
Xylenes			
C8+ Heavies			
Total Emissions	3.0599		
Total Hydrocarbon Emis Total VOC Emissic Total HAP Emissic Total BTEX Emissic	ons 0.8 ons 0.00	080 19 080 0.	.393 3.5392 193 0.0352

FLASH TANK OFF GAS

Component	lbs/hr	lbs/day	tons/yr
Methane	66.4232	1594.157	290.9337
Ethane 4	46.1714	1108.113	202.2306
Propane	22.7254	545.409	99.5372
Isobutane	4.7339	113.613	20.7344
n-Butane	7.9929	191.830	35.0090
Isopentane	1.9116	45.878	8.3727
n-Pentane	1.4500		
n-Hexane	0.3202	7.686	1.4027
Cyclohexane	0.0745	1.787	0.3261
Other Hexanes	0.5808	3 13.93	9 2.5439
	0.4470	10.000	4 0000
Heptanes	0.4170	10.009	1.8266
Benzene	0.0159	0.381	0.0695
Toluene	0.0453	1.087	0.1983
Xylenes	0.0209	0.502	0.0916
C8+ Heavies	0.1131	2.714	0.4953

Total Emissions 152.9960 3671.904 670.1224

Total Hydrocarbon Emissions	s 152.9960	3671.9	904 670.1224
Total VOC Emissions	40.4014	969.633	176.9581
Total HAP Emissions	0.4023	9.655	1.7621
Total BTEX Emissions	0.0821	1.970	0.3594

CONDENSER AND COMBUSTION DEVICE

Condenser Outlet Temperature: 125.00 deg. F Condenser Pressure: 14.70 psia Condenser Duty: 2.17e-001 MM BTU/hr Hydrocarbon Recovery: 1.09 bbls/day Produced Water: 54.16 bbls/day Ambient Temperature: 80.00 deg. F Excess Oxygen: 0.00 % Combustion Efficiency: 98.00 % Supplemental Fuel Requirement: 2.17e-001 MM BTU/hr

Component	Emitted	Destroyed
Methane	2.00%	98.00%
Ethane	2.00%	98.00%
Propane	1.99%	98.01%
Isobutane	1.97%	98.03%
n-Butane	1.96%	98.04%
Isopentane n-Pentane n-Hexane Cyclohexane Other Hexanes	1.92% 1.90% 1.78% 1.70% 1.83%	98.08% 98.10% 98.22% 98.30%
Heptanes	1.51%	98.49%
Benzene	1.60%	98.40%
Toluene	1.21%	98.79%
Xylenes	0.69%	99.31%
C8+ Heavies	0.02%	99.98%

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

Calculated Absorber Stages: 1.25 Calculated Dry Gas Dew Point: 6.86 lbs. H2O/MMSCF

Temperature: 120.0 deg. F Pressure: 1200.0 psig Dry Gas Flow Rate: 230.0000 MMSCF/day Glycol Losses with Dry Gas: 16.8830 lb/hr Wet Gas Water Content: Saturated Calculated Wet Gas Water Content: 89.52 lbs. H2O/MMSCF Calculated Lean Glycol Recirc. Ratio: 3.03 gal/lb H2O

Rema Component	aining Abso in Dry Gas	
Water	7.65% 9	2.35%
Carbon Dioxide	99.76%	0.24%
Nitrogen	99.97%	0.03%
Methane	99.98%	0.02%
Ethane	99.94%	0.06%
_		
Propane	99.92%	0.08%
Isobutane	99.91%	0.09%
n-Butane	99.89%	0.11%
Isopentane	99.90%	0.10%
n-Pentane	99.88%	0.12%
	00.000/	0 4 70/
n-Hexane	99.83%	0.17%
Cyclohexane	99.23%	
Other Hexanes	99.86%	0.14%
Heptanes	99.74%	0.26%
Benzene	93.69%	6.31%
Toluene	92.23%	7.77%
Xylenes	88.27%	11.73%
C8+ Heavies	99.38%	0.62%

Flash Control: Combustion device Flash Control Efficiency: 98.00 % Flash Temperature: 125.0 deg. F Flash Pressure: 75.0 psig							
Left in Component	n Remove Glycol F	ed in Flash Gas					
	- ,						
Water	99.97%	0.03%					
Carbon Dioxide	45.26%	54.74%					
Nitrogen	6.03%	93.97%					
Methane	6.31%	93.69%					
Ethane	18.62%	81.38%					
Propane	34.26%	65.74%					
lsobutane 43.81% 56.19% n-Butane 50.59% 49.41% Isopentane 53.96% 46.04%							
Isopentane 53.96% 46.04% n-Pentane 59.49% 40.51%							
n-Hexane 72.29% 27.71%							
Cyclohexane 91.17% 8.83% Other Hexanes 66.57% 33.43%							
Other Hexanes	66.57%	33.43%					
Heptanes	83.99%	16.01%					
Benzene	98.79%	1.21%					
Toluene	99.23%	0.77%					
Xylenes							
C8+ Heavies	98.37%	1.63%					

REGENERATOR

No Stripping Gas used in regenerator.

Rema	aining Dis	tilled
Component	in Glycol	Overhead
Water	29.85%	70.15%
Carbon Dioxide	0.00%	5 100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	0.93%	99.07%
n-Pentane	0.84%	99.16%
n-Hexane	0.69%	99.31%
Cyclohexane	3.51%	96.49%
Other Hexanes	s 1.50%	6 98.50%
Heptanes	0.60%	99.40%
Benzene	5.06%	94.94%
Toluene	7.97%	92.03%
Xylenes	12.98%	87.02%
C8+ Heavies	12.23%	87.77%

....

STREAM REPORTS:

WET GAS STREAM

Temperature: 120.00 deg. F Pressure: 1214.70 psia Flow Rate: 9.60e+006 scfh

> Component Conc. Loading (vol%) (lb/hr)

Water 1.89e-001 8.60e+002 Carbon Dioxide 1.48e-001 1.65e+003 Nitrogen 4.77e-001 3.38e+003 Methane 7.98e+001 3.24e+005 Ethane 1.32e+001 1.00e+005

Propane 4.08e+000 4.56e+004 Isobutane 6.34e-001 9.32e+003 n-Butane 9.65e-001 1.42e+004 Isopentane 2.28e-001 4.16e+003 n-Pentane 1.57e-001 2.86e+003

n-Hexane 3.09e-002 6.75e+002 Cyclohexane 4.99e-003 1.06e+002 Other Hexanes 5.79e-002 1.26e+003 Heptanes 3.89e-002 9.87e+002 Benzene 9.98e-004 1.97e+001

Toluene 2.99e-003 6.98e+001 Xylenes 2.00e-003 5.36e+001 C8+ Heavies 2.30e-002 9.90e+002

Total Components 100.00 5.10e+005

DRY GAS STREAM

Temperature: 120.00 deg. F Pressure: 1214.70 psia Flow Rate: 9.58e+006 scfh

Component Conc. Loading (vol%) (lb/hr)

Water 1.45e-002 6.58e+001 Carbon Dioxide 1.48e-001 1.64e+003 Nitrogen 4.78e-001 3.38e+003 Methane 7.99e+001 3.24e+005 Ethane 1.32e+001 1.00e+005

Propane 4.09e+000 4.56e+004 Isobutane 6.35e-001 9.32e+003 n-Butane 9.66e-001 1.42e+004 Isopentane 2.28e-001 4.15e+003 n-Pentane 1.57e-001 2.86e+003

n-Hexane 3.10e-002 6.74e+002 Cyclohexane 4.96e-003 1.05e+002 Other Hexanes 5.79e-002 1.26e+003 Heptanes 3.89e-002 9.85e+002 Benzene 9.37e-004 1.85e+001

Toluene 2.77e-003 6.44e+001 Xylenes 1.77e-003 4.74e+001 C8+ Heavies 2.29e-002 9.84e+002

Total Components 100.00 5.09e+005

LEAN GLYCOL STREAM

Temperature: 120.00 deg. F Flow Rate: 4.00e+001 gpm

Component Conc. Loading (wt%) (lb/hr)

TEG 9.85e+001 2.22e+004 Water 1.50e+000 3.38e+002 Carbon Dioxide 1.76e-012 3.97e-010 Nitrogen 3.90e-013 8.79e-011 Methane 1.06e-017 2.38e-015

Ethane 1.19e-007 2.68e-005 Propane 6.25e-009 1.41e-006 Isobutane 1.12e-009 2.53e-007 n-Butane 1.78e-009 4.01e-007 Isopentane 9.22e-005 2.08e-002

n-Pentane 7.95e-005 1.79e-002 n-Hexane 2.57e-005 5.78e-003 Cyclohexane 1.20e-004 2.70e-002 Other Hexanes 7.72e-005 1.74e-002 Heptanes 5.78e-005 1.30e-002

Benzene 2.91e-004 6.55e-002 Toluene 2.07e-003 4.66e-001 Xylenes 4.15e-003 9.35e-001 C8+ Heavies 3.72e-003 8.37e-001

Total Components 100.00 2.25e+004

RICH GLYCOL STREAM

Temperature: 120.00 deg. F Pressure: 1214.70 psia Flow Rate: 4.20e+001 gpm NOTE: Stream has more than one phase.

Component Conc. Loading (wt%) (lb/hr)

TEG 9.42e+001 2.22e+004 Water 4.81e+000 1.13e+003 Carbon Dioxide 1.69e-002 3.97e+000 Nitrogen 3.74e-003 8.79e-001 Methane 3.01e-001 7.09e+001

Ethane 2.41e-001 5.67e+001 Propane 1.47e-001 3.46e+001 Isobutane 3.58e-002 8.42e+000 n-Butane 6.88e-002 1.62e+001 Isopentane 1.76e-002 4.15e+000

n-Pentane 1.52e-002 3.58e+000 n-Hexane 4.91e-003 1.16e+000 Cyclohexane 3.58e-003 8.43e-001 Other Hexanes 7.39e-003 1.74e+000 Heptanes 1.11e-002 2.60e+000

Benzene 5.57e-003 1.31e+000 Toluene 2.51e-002 5.89e+000 Xylenes 3.07e-002 7.22e+000 C8+ Heavies 2.96e-002 6.96e+000

Total Components 100.00 2.35e+004

FLASH TANK OFF GAS STREAM

Temperature:125.00 deg. FPressure:89.70 psiaFlow Rate:2.49e+003 scfh

Component Conc. Loading (vol%) (lb/hr)

Water 2.57e-001 3.04e-001 Carbon Dioxide 7.52e-001 2.17e+000 Nitrogen 4.49e-001 8.26e-001 Methane 6.30e+001 6.64e+001 Ethane 2.34e+001 4.62e+001

Propane 7.84e+000 2.27e+001 Isobutane 1.24e+000 4.73e+000 n-Butane 2.09e+000 7.99e+000 Isopentane 4.03e-001 1.91e+000 n-Pentane 3.06e-001 1.45e+000

n-Hexane 5.66e-002 3.20e-001 Cyclohexane 1.35e-002 7.45e-002 Other Hexanes 1.03e-001 5.81e-001 Heptanes 6.33e-002 4.17e-001 Benzene 3.09e-003 1.59e-002

Toluene 7.48e-003 4.53e-002 Xylenes 3.00e-003 2.09e-002 C8+ Heavies 1.01e-002 1.13e-001

Total Components 100.00 1.56e+002

FLASH TANK GLYCOL STREAM

Temperature: 125.00 deg. F Flow Rate: 4.17e+001 gpm

Component Conc. Loading (wt%) (lb/hr)

TEG 9.49e+001 2.22e+004 Water 4.84e+000 1.13e+003 Carbon Dioxide 7.69e-003 1.80e+000 Nitrogen 2.27e-004 5.30e-002 Methane 1.92e-002 4.48e+000

Ethane 4.52e-002 1.06e+001 Propane 5.07e-002 1.18e+001 Isobutane 1.58e-002 3.69e+000 n-Butane 3.50e-002 8.18e+000 Isopentane 9.59e-003 2.24e+000

n-Pentane 9.11e-003 2.13e+000 n-Hexane 3.58e-003 8.35e-001 Cyclohexane 3.29e-003 7.68e-001 Other Hexanes 4.95e-003 1.16e+000 Heptanes 9.36e-003 2.19e+000

Benzene 5.54e-003 1.29e+000 Toluene 2.50e-002 5.85e+000 Xylenes 3.08e-002 7.20e+000 C8+ Heavies 2.93e-002 6.84e+000

Total Components 100.00 2.34e+004

FLASH GAS EMISSIONS

Flow Rate: 9.91e+003 scfh Control Method: Combustion Device Control Efficiency: 98.00

Component Conc. Loading (vol%) (lb/hr)

Water 6.18e+001 2.91e+002 Carbon Dioxide 3.76e+001 4.33e+002 Nitrogen 1.13e-001 8.26e-001 Methane 3.17e-001 1.33e+000 Ethane 1.18e-001 9.23e-001

Propane 3.95e-002 4.55e-001 Isobutane 6.24e-003 9.47e-002 n-Butane 1.05e-002 1.60e-001 Isopentane 2.03e-003 3.82e-002 n-Pentane 1.54e-003 2.90e-002

n-Hexane 2.84e-004 6.40e-003 Cyclohexane 6.77e-005 1.49e-003 Other Hexanes 5.16e-004 1.16e-002 Heptanes 3.19e-004 8.34e-003 Benzene 1.56e-005 3.18e-004

Toluene 3.76e-005 9.06e-004 Xylenes 1.51e-005 4.18e-004 C8+ Heavies 5.08e-005 2.26e-003

Total Components 100.00 7.27e+002

REGENERATOR OVERHEADS STREAM

Temperature:212.00 deg. FPressure:14.70 psiaFlow Rate:1.73e+004 scfh

Component Conc. Loading (vol%) (lb/hr)

Water 9.69e+001 7.94e+002 Carbon Dioxide 8.97e-002 1.80e+000 Nitrogen 4.16e-003 5.30e-002 Methane 6.13e-001 4.48e+000 Ethane 7.72e-001 1.06e+001

Propane 5.90e-001 1.18e+001 Isobutane 1.40e-001 3.69e+000 n-Butane 3.99e-001 8.18e+000 Isopentane 6.76e-002 2.22e+000 n-Pentane 6.43e-002 2.11e+000

n-Hexane 2.12e-002 8.30e-001 Cyclohexane 1.94e-002 7.41e-001 Other Hexanes 2.91e-002 1.14e+000 Heptanes 4.77e-002 2.17e+000 Benzene 3.46e-002 1.23e+000

Toluene 1.28e-001 5.38e+000 Xylenes 1.30e-001 6.27e+000 C8+ Heavies 7.75e-002 6.01e+000

Total Components 100.00 8.62e+002

CONDENSER PRODUCED WATER STREAM

Temperature: 125.00 deg. F Flow Rate: 1.58e+000 gpm
Component Conc. Loading (wt%) (lb/hr) (ppm)
Water 1.00e+002 7.90e+002 999667.
Carbon Dioxide 2.23e-003 1.76e-002 22.
Nitrogen 1.79e-006 1.42e-005 0.
Methane 2.88e-004 2.28e-003 3.
Ethane 7.63e-004 6.03e-003 8.
Propane 9.06e-004 7.16e-003 9.
Isobutane 1.52e-004 1.20e-003 2.
n-Butane 4.42e-004 3.49e-003 4.
Isopentane 8.18e-005 6.46e-004 1.
n-Pentane 8.27e-005 6.54e-004 1.
n-Hexane 2.50e-005 1.98e-004 0.
Cyclohexane 1.19e-004 9.37e-004 1.
Other Hexanes 2.85e-005 2.25e-004 0.
Heptanes 3.05e-005 2.41e-004 0.
Benzene 5.09e-003 4.02e-002 51.
Toluene 1.37e-002 1.09e-001 137.
Xylenes 9.33e-003 7.38e-002 93.
C8+ Heavies 7.10e-007 5.61e-006 0.

Total Components 100.00 7.90e+002 1000000.

CONDENSER RECOVERED OIL STREAM

Temperature: 125.00 deg. F Flow Rate: 3.18e-002 gpm

> Component Conc. Loading (wt%) (lb/hr)

Water 3.78e-002 5.11e-003 Carbon Dioxide 8.95e-003 1.21e-003 Nitrogen 7.39e-005 1.00e-005 Methane 8.42e-003 1.14e-003 Ethane 1.08e-001 1.46e-002

> Propane 5.91e-001 7.99e-002 Isobutane 3.55e-001 4.80e-002 n-Butane 1.05e+000 1.41e-001 Isopentane 6.88e-001 9.30e-002 n-Pentane 7.74e-001 1.05e-001

n-Hexane 6.63e-001 8.97e-002 Cyclohexane 8.07e-001 1.09e-001 Other Hexanes 7.21e-001 9.76e-002 Heptanes 3.95e+000 5.35e-001 Benzene 1.51e+000 2.04e-001

Toluene 1.49e+001 2.02e+000 Xylenes 2.99e+001 4.05e+000 C8+ Heavies 4.39e+001 5.94e+000

Total Components 100.00 1.35e+001

CONDENSER VENT STREAM

Temperature:125.00 deg. FPressure:14.70 psiaFlow Rate:5.73e+002 scfh

Component Conc. Loading (vol%) (lb/hr)

Water 1.33e+001 3.62e+000 Carbon Dioxide 2.67e+000 1.78e+000 Nitrogen 1.25e-001 5.30e-002 Methane 1.85e+001 4.47e+000 Ethane 2.32e+001 1.05e+001

Propane 1.76e+001 1.18e+001 Isobutane 4.15e+000 3.64e+000 n-Butane 9.16e+000 8.04e+000 Isopentane 1.95e+000 2.13e+000 n-Pentane 1.84e+000 2.01e+000

n-Hexane 5.68e-001 7.40e-001 Cyclohexane 4.97e-001 6.31e-001 Other Hexanes 8.00e-001 1.04e+000 Heptanes 1.08e+000 1.64e+000 Benzene 8.34e-001 9.84e-001

Toluene 2.34e+000 3.26e+000 Xylenes 1.34e+000 2.15e+000 C8+ Heavies 2.40e-002 6.18e-002

Total Components 100.00 5.85e+001

COMBUSTION DEVICE OFF GAS STREAM

Temperature: 1000.00 deg. F Pressure: 14.70 psia Flow Rate: 9.62e+000 scfh

Component Conc. Loading (vol%) (lb/hr)

Methane 2.20e+001 8.95e-002 Ethane 2.77e+001 2.11e-001 Propane 2.10e+001 2.35e-001 Isobutane 4.94e+000 7.28e-002 n-Butane 1.09e+001 1.61e-001

Isopentane 2.32e+000 4.25e-002 n-Pentane 2.19e+000 4.01e-002 n-Hexane 6.77e-001 1.48e-002 Cyclohexane 5.92e-001 1.26e-002 Other Hexanes 9.53e-001 2.08e-002

Heptanes 1.29e+000 3.28e-002 Benzene 9.94e-001 1.97e-002 Toluene 2.79e+000 6.52e-002 Xylenes 1.60e+000 4.30e-002 C8+ Heavies 2.86e-002 1.24e-003

Total Components 100.00 1.06e+000

COMBUSTION SOURCES POTENTIAL TO EMIT GREENHOUSE GASES

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT AIR PERMIT APPLICATION

BLUE RACER MIDSTREAM, LLC

Combustion-Related Greenhouse Gas Emissions

Combustion Source Emission	Cor				Annual Operating	Fuel Usage	CO ₂ ^a Emissions	CH4 ^a Emissions	N2O ^a Emissions	CO ₂ e ^a sharf T/vr	GHG Mass ^a short T/vr
Unit ID	Description	HP	Btu/hp-hr	MMBtu/hr	Hours	MMBtu/yr	short T/yr	short T/yr	short T/yr		
S016	Hot Oil Heater			61.6	8,760	539,440.80	31,527.05	0.5946	0.0595	31,559.63	31,527.70
S017	Hot Oil Heater			61.6	8,760	539,440.80	31,527.05	0.5946	0.0595	31,559.63	31,527.70
S018	Hot Oil Heater			61.6	8,760	539,440.80	31,527.05	0.5946	0.0595	31,559.63	31,527.70
S019	Hot Oil Heater			61.6	8,760	539,440.80	31,527.05	0.5946	0.0595	31,559.63	31,527.70
S001	Hot Oil Heater			216.7	8,760	1,898,292.00	110,943.68	2.0925	0.2092	111,058.34	110,945.98
S020	Glycol Reboiler			3.0	8,760	26,280.00	1,535.91	0.0290	0.0029	1,537.49	1,535.94
S022	Regen Gas Heater			<i>7.6</i>	8,760	84,972.00	4,966.10	0.0937	0.0094	4,971.23	4,966.20
S024	Regen Gas Heater			9.7	8,760	84,972.00	4,966.10	0.0937	0.0094	4,971.23	4,966.20
S025	Regen Gas Heater			9.7	8,760	84,972.00	4,966.10	0.0937	0.0094	4,971.23	4,966.20
S026	Cryo HMO Heater			26.3	8,760	230,388.00	13,464.78	0.2540	0.0254	13,478.70	13,465.06
S027	Cryo HMO Heater			26.3	8,760	230,388.00	13,464.78	0.2540	0.0254	13,478.70	13,465.06
S028	Glycol Reboiler	1		3.0	8,760	26,280.00	1,535.91	0.0290	0.0029	1,537.49	1,535.94
S029	Glycol Reboiler			3.0	8,760	26,280.00	1,535.91	0.0290	0.0029	1,537.49	1,535.94
S030	Glycol Reboiler			3.0	8,760	26,280.00	1,535.91	0.0290	0.0029	1,537.49	1,535.94
V001	V apor Combustor			5.4	8,760	47,359.37	2,767.87	0.0522	0.0052	2,770.73	2,767.93
V002	Vapor Combustor			5.4	8,760	47,359.37	2,767.87	0.0522	0.0052	2,770.73	2,767.93
V003	Vapor Combustor			5.4	8,760	47,359.37	2,767.87	0.0522	0.0052	2,770.73	2,767.93
V004	V apor Combustor			5.4	8,760	47,359.37	2,767.87	0.0522	0.0052	2,770.73	2,767.93

^aSample calculations:

 CO_2 , CH_4 , or $N_2O = Fuel * HHV * EF (Eq. C-1, \$98.33(a)(1)(i) and C-8, \$98.33(c)(1))$

Where:

CO₂, CH₄, or N₂O = Annual emissions from combustion in kilograms Fuel = volume combusted, scfy HHV = High heat value of fuel, MMBtu/scf EF = Emission Factors from Tables C-1 and C-2 of 40 CFR 98, Subpart C are as follows:

53.02 kg/MMBu 0.001 kg/MMBu 0.0001 kg/MMBu $CO_2 = CH_4 = N_2O =$

The heater design rating in MMBtu/hr was substituted for Fuel and HHV in Equation C-1 and a conversion from metric tons to short tons was applied in the following sample calculation for Emissions Unit ID S016:

 $CO_2(short\ T/yr) = (0.001\ metric\ T/g)^{*} (Fuel\ usage,\ MMBuu/yr))^{*} [CO_2\ EF,\ kg/MMBuu] \\ * (2.204.6\ lb/metric\ T)/(2,000\ lb/short\ T)/(2,00\ lb/short\ T)/(2,00\ lb/short\ T)/(2,00\ lb/short\ T)/(2,00\ lb/s$

An example calculation for CO₂e in using Eq. A-1 and global warming potential factors found in Table A-1: CO_2e (short T/yr) = (CO2 Emission, short T/yr) + 25 * (CH4 Emission, short T/yr) + 298 * (N2O Emission, short T/yr) short T/y1 31,527.05

short T/yr 31,559.63

An example calculation for GHG Mass in short T/yr for Emission Unit ID S016 follows: GHG Mass (short T/yr) = (CO2 Emission, short T/yr) + (CH4 Emission, short T/yr) + (N2O Emission, short T/yr) = 31,327,70 short T/yr

^bWaste gas combustion GHG emissions from the flare is calculated on the following sheets.

EMERGENCY FLARE POTENTIAL TO EMIT

AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

BLUE RACER MIDSTREAM, LLC

Emission Unit ID	S021					
Process Stre	eams to Flare					
Annual Emissions (for tpy) <u>Pilot Emissions- Continual</u>						
Pilot fuel consumption	195	scf/hr				
Pilot heat input rating	0.201	MMBtu/hr				
Fuel gas HHV	1,029	Btu/ft ³				
Annual operating hours	8,760	hr/yr				
Flare control efficiency	99.5%					
Pollutant	CAS	REF	Emission Factor	Units	Potential lb/hr	Emissions tons/yr
Pilot			1 40001			
Criteria Pollutants						
NOx	N/A	1	0.025	lb/hr	0.03	0.11
СО	630-08-0	1	0.1366	lb/hr	0.14	0.60
VOC	N/A	1	0.0516	lb/hr	0.05	0.23
PM-10	N/A	2	7.6	lb/MMcf	0.001	0.006
PM-2.5	N/A	2	7.6	lb/MMcf	0.001	0.006
S02	7446-09-5	1	3.78E-05	lb/hr	0.00004	0.00017
Greenhouse Gases						-
Carbon dioxide	124-38-9	4	53.02	kg/MMBtu	23.45	102.73
Methane	74-82-8	5	1.0E-03	kg/MMBtu	0.0004	0.0019
Nitrous oxide	10024-97-2	5	1.0E-04	kg/MMBtu	0.00004	0.00019
CO ₂ e	N/A	6			23.48	102.84
TOTAL						
Criteria Pollutants			1	1		
NOx	N/A				0.03	0.11
СО	630-08-0				0.14	0.60
VOC	N/A				0.05	0.23
PM-10	N/A				0.001	0.006
PM-2.5	N/A				0.001	0.006
S02	7446-09-5				0.00004	0.00017

Notes:

1. Vendor

2. AP-42 Table 1.4-2

3. AP-42 Tables 13.5-1 and -2

- 4. 40 CFR 98 Table C-1
- 5. 40 CFR 98 Table C-2
- 6. 40 CFR 98 Table A-1

CALCULATION OF GREENHOUSE GAS EMISSIONS FROM FLARE WASTE GAS COMBUSTION AIR PERMIT APPLICATION NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT BLUE RACER MIDSTREAM, LLC

CO ₂ Combust	ion Emissions
-------------------------	---------------

	Number of	Molecular	Pressure Relief	Vents (Area 2) ^a	Pressure Relie	f Vents (Plant) ^a	Maintenance a	nd Blowdowns	Total Er	missions	Total CO ₂	Emissions
	Carbon	Weight	Hourly	Annual	Hourly	Annual	Hourly	Annual	Hourly	Annual	CO2 Hourly	CO2 Annual
Compound	Atoms	lb/lbmol	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)
Methane	1	16.043	0.0785	0.3439	0.6802	2.9795	260.3405	13.3676	261.0993	16.6911	708.9376	45.3196
Ethane	2	30.07	0.3063	1.3417	1.9579	8.5756	274.7789	4.1295	277.0431	14.0469	802.6603	40.6972
Propane	3	44.097	0.2038	0.8928	0.2247	0.9844	60.8592	1.2764	61.2878	3.1536	181.6243	9.3456
i-Butane	4	58.123	0.0246	0.1079	0.1736	0.7602	9.9553	0.2088	10.1535	1.0769	30.1305	3.1956
n-Butane	4	58.123	0.1170	0.5125	0.0831	0.3639	24.3563	0.5108	24.5564	1.3872	72.8711	4.1166
i-Pentane	5	72.15	0.0568	0.2486	0.0259	0.1136	6.8754	0.1442	6.9581	0.5064	20.7923	1.5132
n-Pentane	5	72.15	0.0657	0.2879	0.0303	0.1328	7.6338	0.1601	7.7298	0.5808	23.0984	1.7355
n-Hexane	6	86.172	0.0384	0.1681	0.0209	0.0916	2.3859	0.0500	2.4452	0.3097	7.3413	0.9299
Heptane	7	100.198	0.0039	0.0171	0.0021	0.0093	0.0000	0.0000	0.0060	0.0264	0.0181	0.0795
Benzene	6	78.00	0.0015	0.0064	0.0008	0.0035	0.0000	0.0000	0.0023	0.0099	0.0075	0.0328
Toluene	7	92.13	0.0015	0.0065	0.0008	0.0035	0.0000	0.0000	0.0023	0.0101	0.0075	0.0330
Ethylbenzene	8	106.165	0.0001	0.0004	0.0000	0.0002	0.0000	0.0000	0.0001	0.0006	0.0004	0.0019
Xylene	8	106.165	0.0004	0.0019	0.0002	0.0010	0.0000	0.0000	0.0007	0.0029	0.0022	0.0095
Octane	8	114.224	0.0048	0.0212	0.0026	0.0115	0.0000	0.0000	0.0075	0.0327	0.0225	0.0987
									Total (CO ₂ Emissions:	1,847.5140	107.1084

Sample calculation CO2 combustion (using methane):

 $\begin{array}{l} \text{CO}_2 \mbox{ Hourly=} (\mbox{Total Waste Gas Flow, lb/hr})*(0.99 \mbox{ destruction efficiency})*(\mbox{No. of C, lbmol C/lbmol CH})*(44 \mbox{ lb CO2/lbmol C})/(\mbox{MW, lb CH}_4/\mbox{lbmol CH}_4) \\ = \underline{(261.10 \mbox{ lb/hr})*(0.99)*(1 \mbox{ lbmol C/lbmol CH})}*(44 \mbox{ lb CO2/lbmol C})/(16.04 \mbox{ lb CH4/lbmol CH}_4) \\ \end{array}$

708.9376 lb/hr

 $CO_2 Annual = (Total Waste Gas Flow, T/yr)*(0.99 \ destruction \ efficiency)*(No. \ of \ C, \ lbmol \ C/lbmol \ CH_4)*(44 \ lb \ CO2/lbmol \ C)/(MW, \ lb \ CH_4/lbmol \ CH_4) \ destruction \ efficiency)*(No. \ of \ C, \ lbmol \ C/lbmol \ CH_4)*(44 \ lb \ CO2/lbmol \ C)/(MW, \ lb \ CH_4/lbmol \ CH_4/lbmol \ CH_4)*(44 \ lb \ CO2/lbmol \ C)/(MW, \ lb \ CH_4/lbmol \ CH_4/lbmol \ CH_4)) \ destruction \ efficience \ destruction \ efficience \ destruction \ destruc$ = (16.69 T/yr) * (0.99) * (1 lbmol C/lbmol CH4) * (44 lb CO2/lbmol C) / (16.04 lb CH4/lbmol CH4) = 45.3196 T/yr

 $N_2O = Fuel * HHV * 0.0001$ (Eq. W-40, §98.233(z)(6))

Where:

 N_2O = Annual emissions from combustion in kilograms Fuel = volume combusted, scfy

HHV = High heat value of fuel, MMBtu/scf

N₂O Combustion Emissions

	Pressure Relief Vents (Area 2) a	Pressure Relief Vents (Plant) a	Maintenance and Blowdowns
Waste Gas Flow (scf/yr)	81,424.10	394,127.73	775,247.40
Heating Value (Btu/scf)	1,951.73	1,136.03	1245.24
N ₂ O Emissions (T/yr)	0.00002	0.00005	0.0001

Sample Calculation for Tank and Loading Emissions:

$$\begin{split} & \text{N}_{2}\text{O} = (0.0001 \text{ kg N}_{2}\text{O}/\text{MBtu}) * (\text{Waste Gas Flow, scf/yr}) * (\text{Heating Value, Btu/scf}) / (10^{6} \text{ Btu/MMBtu}) / (0.4536 \text{ kg/lb}) / (2000 \text{ lb/T}) \\ & = (0.0001 \text{ kg N}_{2}\text{O}/\text{MBtu}) * (81.424.10 \text{ scf/yr}) * (1.951.73 \text{ Btu/scf}) (10^{6} \text{ Btu/MMBtu}) / (0.4536 \text{ kg/lb}) / (2000 \text{ lb/T}) \\ & = \boxed{0.00002 \text{ T/yr}} \end{split}$$

Emission Summary:

Pressure Relief	Vents (Area 2) a	Pressure Relief	Vents (Plant) ^a	Maintenance a	nd Blowdowns	Total E	missions	Combustion	Combustion	
Uncombusted	Uncombusted	Uncombusted	Uncombusted	Uncombusted	Uncombusted	Uncombusted	Uncombusted	CO_2	N ₂ O	CO ₂ e ^D
CO ₂ (T/yr)	CH ₄ (T/yr)	CO_2 (T/yr)	CH ₄ (T/yr)	CO_2 (T/yr)	CH ₄ (T/yr)	CO ₂ (T/yr)	CH ₄ (T/yr)	(T/yr)	(T/yr)	(T/yr)
0.00	0.003	0.00	0.03	0.04	0.13	0.04	0.17	107.11	0.0002	111.37

^a Pressure relief vents from Area 2 and Plant were taken from Pressure Relief Valves To Flare Potential To Emit worksheet.

^b Total GHG emissions from flare waste gas combustion are calculated as follows:

(0.04 T/yr Uncombusted CO2) + (107.11 T/yr Combustion CO2) + ((0.17 T/yr Methane) * 25) + ((0.0002 T/yr N2O) * 298) = 111.37 T/yr CO2e

UNPAVED ROADS POTENTIAL TO EMIT

AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

BLUE RACER MIDSTREAM, LLC

		DOADO
Emission Unit ID	Unpaved Roads	ROADS

Input Parameters

Input	Symbol	Value	Units
Total Daily Delivery and Haulout Trips ^a	n	60	trips/day
Road-to-Plant Distance (one way)	d	1,000	ft
Delivery Days	D	365	days/yr
Days with Precipitation > 0.01 "	Р	150	days/yr
Empty Truck Weight	W _e	10	ton
Full Truck Weight	W _f	20	ton
Average Truck Weight	W	15	ton
Surface Material Silt Content	S	6.0	%

^a Includes NGL deliveries, product, slop oil, produced water, and used oil loadouts.

Calculation of Emission Factor, E (lb/VMT)

		k	S	W	а	b	Е
		(unitless)	(%)	(tons)	(unitless)	(unitless)	(lb/VMT)
Average NGL Truck	РМ	4.9	6.0	15	0.7	0.45	6.22
Average NGL Truck	PM-10	1.5	6.0	15	0.9	0.45	1.66
Average NGL Truck	PM-2.5	0.15	6.0	15	0.9	0.45	0.17

 $E = k (s/12)^{a} (W/3)^{b}$

AP-42 Chapter 13.2.2, Eq. 1a, November 2006

Calculation of Emissions (tpy)

		Е	Eext	VMT	Emissions
		(lb/VMT)	(lb/VMT)	(miles/yr)	(tpy)
Average NGL Truck	РМ	6.22	3.67	8,295	15.20
Average NGL Truck	PM-10	1.66	0.98	8,295	4.05
Average NGL Truck	PM-2.5	0.17	0.10	8,295	0.41

 $E_{ext} = E[(365 - P)/365]$

AP-42 Chapter 13.2.2, Eq. 2, November 2006

AMINE PLANT VENT POTENTIAL TO EMIT

AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

BLUE RACER MIDSTREAM, LLC

Emission Unit ID Annue Flant Vent 5011, 5014	Emission Unit ID	Amine Plant Vent	S011, S014
--	-------------------------	------------------	------------

Values are full plant operation at 460 MMSCFD

Amine Unit 1:

Total Exhaust	1,347.6926	lb/hr
Total Exhaust	31.9434	lbmol/hr

	Mole	Flow	Flow	Flow
	Fraction	(lbmol/hr)	(lb/hr)	(tons/yr)
Methane	0.0138%	0.0044	0.07	0.31
Ethane	0.7088%	0.2264	6.81	29.82
Propane	0.0029%	0.0009	0.04	0.18
Water	6.6048%	2.1098	38.01	166.48
CO2	92.6700%	29.6019	1302.78	5706.18

Amine Unit 2:

Total Exhaust	4,670.3300	lb/hr
Total Exhaust	110.6695	lbmol/hr

	Mole	Flow	Flow	Flow
	Fraction	(lbmol/hr)	(lb/hr)	(tons/yr)
Methane	0.0121%	0.0133	0.21	0.94
Ethane	0.6346%	0.7023	21.12	92.50
Propane	0.0025%	0.0028	0.12	0.53
Water	6.6049%	7.3096	131.68	576.78
CO2	92.7459%	102.6414	4517.25	19785.55

Amine unit vent emissions taken from Promax simulation reports.

FIRE PUMP #1 POTENTIAL TO EMIT

AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

BLUE RACER MIDSTREAM, LLC

Emission Unit ID		Fire Pump #	1	S002		
Item	Value	Units	I			
Rated Horsepower	700	Нр				
Max Fuel Consumption rate	35.9	gal/hr	1			
Max Fuel Consumption rate	4.92	MMBtu/hr	1			
Annual Operating Hours	100	hr/yr	1			
Annual Fuel Consumption	3,590	gal/yr	1			
Sulfur Content of Fuel	0.0015	%				
Heat Content of Fuel	137,030	Btu/gal	1			
	,	70	4		Potential	Emissions
Pollutant	CAS	REF	Emission Factor	Units	lb/hr	tons/yr
Criteria Pollutants			Tublor			
NOx	N/A	1	5.31	lb/hr	5.31	0.27
СО	630-08-0	1	2.18	lb/hr	2.18	0.11
VOC	N/A	1	0.08	lb/hr	0.08	0.00
PM-10	N/A	1	0.3	lb/hr	0.30	0.02
PM-2.5	N/A	1	0.3	lb/hr	0.30	0.02
S02	7446-09-5	2	1.52E-03	lb/MMBtu	0.01	0.000
Hazardous Air Pollutants	•		,	,		
Acetaldehyde	75-07-0	3	2.52E-05	lb/MMBtu	1.2E-04	6.2E-06
Acrolein	107-02-8	3	7.88E-06	lb/MMBtu	3.9E-05	1.9E-06
Benzene	71-43-2	3	7.76E-04	lb/MMBtu	3.8E-03	1.9E-04
Formaldehyde	50-00-0	3	7.89E-05	lb/MMBtu	3.9E-04	1.9E-05
Toluene	108-88-3	3	2.81E-04	lb/MMBtu	1.4E-03	6.9E-05
Xylenes	1330-20-7	3	1.93E-04	lb/MMBtu	9.5E-04	4.7E-05
PAHs						
Acenaphthene	83-32-9	4	4.68E-06	lb/MMBtu	2.3E-05	1.2E-06
Acenaphthylene	208-96-8	4	9.23E-06	lb/MMBtu	4.5E-05	2.3E-06
Anthracene	120-12-7	4	1.23E-06	lb/MMBtu	6.1E-06	3.0E-07
Benzo(a)anthracene	56-55-3	4	6.22E-07	lb/MMBtu	3.1E-06	1.5E-07
Benzo(a)pyrene	50-32-8	4	2.57E-07	lb/MMBtu	1.3E-06	6.3E-08
Benzo(b)fluoranthene	205-99-2	4	1.11E-06	lb/MMBtu	5.5E-06	2.7E-07
Benzo(g,h,l)perylene	191-24-2	4	5.56E-07	lb/MMBtu	2.7E-06	1.4E-07
Benzo(k)fluoranthene	205-82-3	4	2.18E-07	lb/MMBtu	1.1E-06	5.4E-08
Chrysene	218-01-9	4	1.53E-06	lb/MMBtu	7.5E-06	3.8E-07
Dibenz(a,h)anthracene	53-70-3	4	3.46E-07	lb/MMBtu	1.7E-06	8.5E-08
Fluoranthene	206-44-0	4	4.03E-06	lb/MMBtu	2.0E-05	9.9E-07
Fluorene	86-73-7	4	1.28E-05	lb/MMBtu	6.3E-05	3.1E-06
Ideno(1,2,3-cd)pyrene	193-39-5	4	4.14E-07	lb/MMBtu	2.0E-06	1.0E-07
Naphthalene	91-20-3	4	1.30E-04	lb/MMBtu	6.4E-04	3.2E-05
Phenanthrene	85-01-8	4	4.08E-05	lb/MMBtu	2.0E-04	1.0E-05
Pyrene	129-00-0	4	3.71E-06	lb/MMBtu	1.8E-05	9.1E-07
Total PAH		4	2.12E-04	lb/MMBtu	1.0E-03	5.2E-05
Greenhouse Gases	4					
Carbon dioxide	124-38-9	2	165	lb/MMBtu	811.70	40.58
Methane	74-82-8	2	0.0081	lb/MMBtu	0.04	0.00
Nitrous oxide	10024-97-2		0	lb/MMBtu	0.00	0.00
CO ₂ e	N/A	5			812.69	40.63

Total Criteria :	0.41	tons/yr
Total HAPs:	0.0004	tons/yr

Notes: 1. Vendor spec

2. AP-42 Table 3.4-1 (10/96)

3. AP-42 Table 3.4-3 (10/96)

4. AP-42 Table 3.4-4 (10/96) 5. 40 CFR 98 Table A-1

N-41

FIRE PUMP #2 POTENTIAL TO EMIT

AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

BLUE RACER MIDSTREAM, LLC

Emission Unit ID		Fire Pump #	2	S003		
Item	Value	Units	I			
Rated Horsepower	700	Нр				
Max Fuel Consumption rate	35.9	gal/hr				
Max Fuel Consumption rate	4.92	MMBtu/hr				
Annual Operating Hours	100	hr/yr				
Annual Fuel Consumption	3,590	gal/yr				
Sulfur Content of Fuel	0.0015	%				
Heat Content of Fuel	137,030	⁷⁰ Btu/gal				
leat content of Fuel	137,030	Dtu/gai	l	1	Potontial	Emissions
Pollutant	CAS	REF	Emission Factor	Units	lb/hr	tons/yr
Criteria Pollutants	I		Tuttor			
NOx	N/A	1	5.31	lb/hr	5.31	0.27
СО	630-08-0	1	2.18	lb/hr	2.18	0.11
VOC	N/A	1	0.08	lb/hr	0.08	0.00
PM 10	N/A	1	0.3	lb/hr	0.30	0.02
PM2.5	N/A	1	0.3	lb/hr	0.30	0.02
SO2	7446-09-5	2	1.52E-03	lb/MMBtu	0.01	0.000
Hazardous Air Pollutants						
Acetaldehvde	75-07-0	3	2.52E-05	lb/MMBtu	1.2E-04	6.2E-06
Acrolein	107-02-8	3	7.88E-06	lb/MMBtu	3.9E-05	1.9E-06
Benzene	71-43-2	3	7.76E-04	lb/MMBtu	3.8E-03	1.9E-04
Formaldehyde	50-00-0	3	7.89E-05	lb/MMBtu	3.9E-04	1.9E-05
Toluene	108-88-3	3	2.81E-04	lb/MMBtu	1.4E-03	6.9E-05
Xylenes	1330-20-7	3	1.93E-04	lb/MMBtu	9.5E-04	4.7E-05
AHs	1000 20 /	0	1001 01	15/ Milbla	7101 01	10 1 00
Acenaphthylene	208-96-8	4	9.23E-06	lb/MMBtu	4.5E-05	2.3E-06
Acenaphthene	83-32-9	4	4.68E-06	lb/MMBtu	2.3E-05	1.2E-06
Anthracene	120-12-7	4	1.23E-06	lb/MMBtu	6.1E-06	3.0E-07
Benzo(a)anthracene	56-55-3	4	6.22E-07	lb/MMBtu	3.1E-06	1.5E-07
Benzo(a)pyrene	50-32-8	4	2.57E-07	lb/MMBtu	1.3E-06	6.3E-08
Benzo(b)fluoranthene	205-99-2	4	1.11E-06	lb/MMBtu	5.5E-06	2.7E-07
Benzo(g,h,l)perylene	191-24-2	4	5.56E-07	lb/MMBtu	2.7E-06	1.4E-07
Benzo(k)fluoranthene	205-82-3	4	2.18E-07	lb/MMBtu	1.1E-06	5.4E-08
Chrysene	218-01-9	4	1.53E-06	lb/MMBtu	7.5E-06	3.8E-07
Dibenz(a,h)anthracene	53-70-3	4	3.46E-07	lb/MMBtu	1.7E-06	8.5E-08
Fluoranthene	206-44-0	4	4.03E-06	lb/MMBtu	2.0E-05	9.9E-07
Fluorene	86-73-7	4	1.28E-05	lb/MMBtu	6.3E-05	3.1E-06
Ideno(1,2,3-cd)pyrene	193-39-5	4	4.14E-07	lb/MMBtu	2.0E-06	1.0E-07
Naphthalene	91-20-3	4	1.30E-04	lb/MMBtu	6.4E-04	3.2E-05
Phenanthrene	85-01-8	4	4.08E-05	lb/MMBtu	2.0E-04	1.0E-05
Pyrene	129-00-0	4	3.71E-06	lb/MMBtu	1.8E-05	9.1E-07
Total PAH		4	2.12E-04	lb/MMBtu	1.0E-03	5.2E-05
Greenhouse Gases		I	LILL OF	io _j minibiu	1.01 05	0.21 05
Carbon dioxide	124-38-9	2	165	lb/MMBtu	811.70	40.58
Methane	74-82-8	2	0.0081	lb/MMBtu	0.04	0.00
Nitrous oxide	10024-97-2		0.0001	lb/MMBtu	0.00	0.00
			5	io/ mibiu	0.00	0.00

Total Criteria :	0.41	tons/yr
Total HAPs:	0.0004	tons/yr

Notes: 1. Vendor spec

2. AP-42 Table 3.4-1 (10/96) 3. AP-42 Table 3.4-3 (10/96) 4. AP-42 Table 3.4-4 (10/96)

5. 40 CFR 98 Table A-1

Automatication in the second in the s	Annual nour of operation	8,760											
Intermediate Control Control Control Control UNC Intermediate Control Control <th colspa="</td"><td>Output</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td>Output</td> <td></td>	Output											
voc HMP ¹ COC HMP ¹			Uncontrolled	Emissions		Control Efficiency ¹		Controlled	Emissions				
Light Lipude Yalve Ensistens Econyrat Lemyrat Lemyrat <thlemyrat< th=""> Lemyrat <thle< th=""><th></th><th>VOC</th><th>HAP²</th><th>C02</th><th>CH4</th><th>1.00</th><th>V0C</th><th>4VP²</th><th>C02</th><th>CH4</th><th></th><th></th></thle<></thlemyrat<>		VOC	HAP ²	C02	CH4	1.00	V0C	4VP ²	C02	CH4			
Ugger Values v_{21} v_{21} v_{21} v_{21} v_{21} v_{22} v_{22} v_{21} v_{21} v_{22} v_{23}		(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(%)	(ton/yr)	(ton/yr)	(ton/yr)	ton/yr)			
Under target intention 32 0.2 0.1 0.7 0.7 0.7 0.7 0.7 0.7 0.0	Light Liquids Valve Emissions	2.05	4.9	0.0	0.7	84%	0.6	0.0	0.0	0.0			
Weiner Franksion 7.5 0.03 0.0 9.5 7.5 0.0 0.0 Pump Emissions 11.1 5.9 0.3 0.0 0.0 0.0 1.6 0.1 0.0 PUMP Emissions 11.1 5.9 0.3 0.0 0.0 0.0 0.0 0.0 0.1 0.0	Vapor Valve Emissions Light Liquid Flange Emissions	2.02	0.5	1.0	4.0.1 0.0	07.%0	4./ 5.0	0.0	0.0	6.c 0.0			
Themp Entridents 5.3 0.3 0.0 0.0 60%. 1.6 0.1 0 UTAU Entridents 11.1 5.5 55.4 28.6 1.4 0 0 UTAU Entridents 11.1 5.5 55.4 0.2 55.4 1.4 0 1 Table 42-0 Control Effectiveness for a LDAR Program at a SOMI Process Bint from Profered and Atternative Methods for Estimating Figures Loads: Folome 28.6 1.1 0	Vapor Flange Emissions	7.5	0.03	0.0	9.5		7.5	0.0	0.0	9.5			
TOTAL Emissions 111 5.9 0.2 55.4 1 28.8 1.4 1.4 0 1 Table 4.2 Control Effectiveness for an LDAR Program at a SOCMI Process Unit from Pryfered and Alternative Methods for Edutioner from Equipment Leades. Volume 2 Elements is used as astrongate for HANs 3.0 Ial dGas Production Age Emission Eactors from Table 2.4 OI and Gas Production Operations Average Emission Eactors from Proposition Equipment Leades. Volume 2.0 Indicated as astrongate for HANs 3.0 Ial dGas Production Age Emission Eactors from Table 2.4 OI and Gas Production Operations Average Emission Eactors From Proposition Equipment Leades. Volume 2.0 Indicated Control I.0 Indicated Contrelation I.0 Indicated Control I.0 Indicated Control I.0 Indica	Pump Emissions	5.3	0.3	0.0	0.0	%69	1.6	0.1	0.0	0.0			
1 Table 4.2.2 Corrrol Effectiveness for an LDAR Program at a SOCMI Process that from <i>Proferred and Alternative Methods for Edunating Pagitive Ensiston Factors for May</i> 2 Hearnes+ is used as a surrogate for HAPs 2 Hearnes+ is used as a surrogate for HAPs 3 Old 4 Old 3 Old 4 Old <td>TOTAL Emissions</td> <td>111.1</td> <td>5.9</td> <td>0.2</td> <td>55.4</td> <td></td> <td>28.8</td> <td>1.4</td> <td>0.1</td> <td>15.5</td> <td></td> <td></td>	TOTAL Emissions	111.1	5.9	0.2	55.4		28.8	1.4	0.1	15.5			
3. 01 and Gas Production Avg Emission Factors (fig/hr/source) from <i>Protocol for Equipment Lack Emission</i> 1995 Arande Gas Production Avg Emission Factors (fig/hr/source) from <i>Protocol for Equipment Lack Emission</i> 1995 Arande Emission Factors from Table 2-4. 01 and Gas Production Operations Average Emission Factors (fig/hr/source) from <i>Protocol for Equipment Lack Emission</i> Light Liquid Service Units Condensate NGL Ethmic Propane Planete Planete 1.0 Instrument Lack (count) 213 343 243 362 391 27 Instrument Lack (count) 511 1.1 0.1 0.2 362 371 211 Instrument Lack (nb/hr) 1.1 0.1 0.2 0.1 0.2 0.1 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0	1 Table 4.2-2 Control Effectiveness for a 2 Hexanes+ is used as a surrogate for H.	ın LDAR Program at a 9 APs	SOCMI Process Uni	t from <i>Preferred an</i>	d Alternative Methu	ods for Estimating F	ugitive Emissions fr	om Equipment Lea	ks. Volume II: Chap	<i>ter</i> 4, November 199	96		
Alter Interview Alter Interview <t< td=""><td>3. Oil and Gas Production Avg. Emissior 1995</td><td>Factors from Table 2</td><td>4. Oil and Gas Prod</td><td>uction Operations /</td><td>Average Emission I</td><td>²actors (kg/hr/sour</td><td>ce) from <i>Protocol</i>,</td><td>for Equipment Leak</td><td>Emission Estimate</td><td>s, EPA-453/R-95-01</td><td>7, November</td><td></td></t<>	3. Oil and Gas Production Avg. Emissior 1995	Factors from Table 2	4. Oil and Gas Prod	uction Operations /	Average Emission I	² actors (kg/hr/sour	ce) from <i>Protocol</i> ,	for Equipment Leak	Emission Estimate	s, EPA-453/R-95-01	7, November		
Ight liquid Service Units Condensate NGL Ethane Propane Pathane Fabrane	Valves and Flanges												
s (count) 213 343 245 426 362 391 Factor ³ (g/m/sources) 25E-03 25E-03 25E-03 25E-03 25E-03 25E-03 Sions from Valves (un/m) 511 823 25E-03 25E-03 25E-03 25E-03 sions from Valves (un/m) 511 823 518 12.2 86.9 938 sions from Valves (h/m) 0.1 0.2 0.1 0.2 0.2 0.2 sions from Flanges (h/m) 13.7 0.1 0.2 0.1 0.2 0.2 0.2 Patco ³ (h/m) 1.3 0.1 0.2 0.1 0.2 0.2 0.2 Emissions (h/m) 1.3 0.1 0.2 2.5 2.4 0.4 Emissions (h/m) 1.3 0.0 0.0 0.0 0.0 0.0 0.0 Emissions (h/m) 5.7 9.1 0.4 0.0 0	Light Liquid Service	Units	Condensate	NGL	Ethane	Propane	n-Butane	i-Butane	Gasoline	Mixed Butanes	Refrigerant	TOTAL	
Factor factor (up/h)(up/h) $2.5E.03$ $2.2E.03$ $2.2E.03$ $2.2E.03$ $2.2E.03$ 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.24	# of valves	(count)	213	343	245	426	362	391	296	262	213	2,751	
sions from Valves (B/hr) 1.2 1.9 1.3 2.3 2.0 2.2 s ex (bm/hr) 511 823 588 1022 8669 938 5 ex (bm/hr) 0.116-04 0.126-04 1.16-04 1.0	Emission Factor ³	(kg/hr/sources)	2.5E-03	2.5E-03	2.5E-03	2.5E-03	2.5E-03	2.5E-03	2.5E-03	2.5E-03	2.5E-03		
es (count) 511 823 588 1022 869 938 1 Facto ³ (g/h/sources) 1.1E-04 1.024 1.04 1.04	TOC Emissions from Valves	(lb/hr)	1.2	1.9	1.3	2.3	2.0	2.2	1.6	1.4	1.2	15.1	
	# of flanges	(count)	511	823	588	1022	869	938	710	629	511	6,601	
situnt Flanges (lb/hr) 0.1 0.2 0.2 0.2 0.2 0.2 aretating Hours (ln/yr) 3.760 8.760	Emission Factor ³	(kg/hr/sources)	1.1E-04	1.1E-04	1.1E-04	1.1E-04	1.1E-04	1.1E-04	1.1E-04	1.1E-04	1.1E-04		
erating Hours (hr/yr) 8.760	TOC Emissions from Flanges	(lb/hr)	0.1	0.2	0.1	0.2	0.2	0.2	0.2	0.2	0.1	1.6	
Emissions (h/hr) 1.3 2.1 1.5 2.6 2.2 2.4 N Emissions (ton/yr) 5.7 9.1 6.5 11.3 9.6 10.4 Emissions (ton/yr) 5.7 4.7 0.0 0.0 2.6 2.2 2.4 N Emissions (ton/yr) 5.7 4.7 0.0	Annual Operating Hours	(hr/yr)	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760		
Emissions (ton/yr) 5.7 9.1 6.5 11.3 9.6 10.4 10.4 Emissions (b/hr) 1.3 1.1 0.0 2.6 2.4 10.4 Emissions (b/hr) 5.7 4.7 0.0 0.0 0.0 0.0 ane+Emissions (b/hr) 0.5 0.0 0.0 0.0 0.0 0.0 ane+Emissions (b/hr) 0.5 0.0 0.0 0.0 0.0 0.0 ane+Emissions (b/hr) 2.7 0.1 0.0 0.0 0.0 0.0 ane+Emissions (b/hr) 2.7 0.1 0.0	Total TOC Emissions	(lb/hr)	1.3	2.1	1.5	2.6	2.2	2.4	1.8	1.6	1.3	16.7	
Emissions (D/hr) 1.3 1.1 0.0 2.6 2.4 N ane Emissions (Dn/yr) 5.7 4.7 0.0 11.2 9.6 10.4 N ane Emissions (Dn/yr) 5.7 4.7 0.0 0.0 0.0 0.0 0.0 ane Emissions (Dn/yr) 2.7 0.1 0.0 <	Total TOC Emissions	(ton/yr)	5.7	9.1	6.5	11.3	9.6	10.4	7.9	7.0	5.7	73.3	
Constituent 0.0	Total VOC Emissions	(lb/hr) (****	1.3	1.1	0.0	2.6	2.2	2.4	1.8	1.6	1:3 E 6	14.2	
ander Emissions (m/yr) 2.7 0.1 0.0 <td>Total Hexane+ Emissions</td> <td>(Ih/hr)</td> <td>0.6</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.6</td> <td>0.0</td> <td>0.0</td> <td>1.2</td>	Total Hexane+ Emissions	(Ih/hr)	0.6	0.0	0.0	0.0	0.0	0.0	0.6	0.0	0.0	1.2	
Constituent Units Condensate NGL Ethane Propane n-Butane i-Butane (Weight %) 0.00% 0.19% 0.01% 0.00% 0.	Total Hexane+ Emissions	(ton/yr)	2.7	0.1	0.0	0.0	0.0	0.0	2.5	0.0	0.0	5.4	
Constituent Units Condensate NGL Ethane r -Data i -Butane													
	Constituent	Units	Condensate	NGL	Ethane	Propane	n-Butane	i-Butane	Gasoline	Mixed Butanes	Refrigerant		
	C02	(Weight %)	0.00%	0.19%	0.01%	0.00%	0.00%	%00.0	0.00%	0.00%	0.00%		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nitrogen	(Weight %)	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Water	(Weight %)	0.00%	0.00%	0.01%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Methane	(Weight %)	0.00%	1.00%	2.10%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		
Real (Weight %) 0.00% 27.03% 0.01% 9.5.1% 0.00% 1.81% 1.81% tane (Weight %) 3.64% 4.22% 0.00% 1.79% 1.68% 96.55% tane (Weight %) 15.92% 10.47% 0.00% 0.49% 96.57% 15.4% intane (Weight %) 13.14% 3.01% 0.00% 0.00% 0.00% 0.00% intane (Weight %) 19.26% 3.28% 0.00% 0.00% 0.00% 0.00% intane (Weight %) 19.26% 3.28% 0.00% 0.00% 0.00% 0.00%	Ethane	(Weight %)	0.00%	47.01%	97.81%	1.32%	0.00%	0.00%	0.00%	0.00%	0.67%		
cane (Weight %) 3.04% 4.22% 0.00% 1.09% 1.00% 1.00% 1.00% $9.0.5\%$ tiane (Weight %) 15.92\% 10.47% 0.00% 0.49% 96.57% 154% intane (Weight %) 13.14\% 3.01% 0.00% 0.00% 0.14% 0.00% intane (Weight %) 19.26% 3.28% 0.00% 0.00% 0.00% 0.00% intane (Weight %) 1.02% 0.00% 0.00% 0.00% 0.00%	Propane	(weight %)	0.00%	4 220	0.07%	90.41%	0.00%	%T9.T	0.00%	0.45%	7 0007		
trane (Weight %) 15.92% 10.47% 0.00% 0.49% 96.57% 1.54% ntane (Weight %) 13.14% 3.01% 0.00% 0.00% 1.51% 0.00% ntane (Weight %) 19.26% 3.28% 0.00% 0.00% 0.00% 0.00% ntane (Weight %) 19.26% 3.28% 0.00% 0.00% 0.00% 0.00%	1-Butane	(weight %)	3.04%	4.4.4%	0.00%	1./9%	1.08%	0%c0.06	%8T'0	0%61.62	0.60.2		
name (Weight %) 1.5.14% 5.0.1% 0.00% 0.00% 1.5.1% 0.00% ntame (Weight %) 19.26% 3.28% 0.00% 0.00% 0.00% 0.00% ntame (Weight %) 19.26% 3.218% 0.00% 0.00% 0.00% 0.00%	n-Butane	(Weight %)	15.92%	10.47%	0.00%	0.49%	90.57%	1.54%	%76.0C	/10.07	0.85%		
ntane (Wisiangan %) 19.26% 2.85% U.07% 0.00% 0.24% U.07% 0.00% (Wisiangan 2.26% 1.30% 0.00% 0.00% 0.02% 0.00%	I-Pentane	(Weight %)	13.14%	3.01%	0.00%	0.00%	%1C.1	0.000 0	30.30%	0,610.1	0.00%		
	n-Pentane C64	(Weight %)	19.26% 47 99%	3.28%	0.00%	0.00%	0.24%	%00.0 %00.0	36.33%	1.66% 0.00%	0.00%		
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		(VEIBIL 70)	1000001	04.6TT	04000	04.000	100.000	100.000	04.07.70	100.001	0/.00.0		

FUG AREA 1 POTENTIAL TO EMIT

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT AIR PERMIT APPLICATION

BLUE RACER MIDSTREAM, LLC

Fugitives

Fugitives Area 1

Emission Unit ID

	Units	Residue Gas	Dry Ethane	weinner	Dry Inlet	wet etnane	Fropane	Mixed Butanes	1-Butane	Refrigerant	IUIAL
# of valves	(count)	764	179	175	395	107	228	155	155	194	2,352
Emission Factor ³	(kg/hr/sources)	4.5E-03	4.5E-03	4.5E-03	4.5E-03	4.5E-03	4.5E-03	4.5E-03	4.5E-03	4.5E-03	1
TOC Emissions from Valves	(lb/hr)	7.6	1.8	1.7	3.9	1.1	2.3	1.5	1.5	1.9	23.3
# of flanges	(count)	1,834	430	420	948	257	547	372	372	466	5,646
Emission Factor ³	(kg/hr/sources)	3.9E-04	3.9E-04	3.9E-04	3.9E-04	3.9E-04	3.9E-04	3.9E-04	3.9E-04	3.9E-04	
TOC Emissions from Flanges	(lb/hr)	1.6	0.4	0.4	8.0	0.2	0.5	0.3	0.3	0.4	4.8
Annual Operating Hours	(hr/yr)	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	
rotal TOC Emissions	(lb/hr)	9.1	2.1	2.1	4.7	1.3	2.7	1.9	1.9	2.3	28.1
Total TOC Emissions	(ton/yr)	40.0	9.4	9.2	20.7	5.6	11.9	8.1	8.1	10.2	123.2
rotal VOC Emissions	(lb/hr)	0.0	0.0	0.4	6.0	0.0	2.7	1.9	1.9	2.3	10.0
Total VOC Emissions	(ton/yr)	0.0	0.0	1.8	3.7	0.0	11.8	8.1	8.1	10.1	43.7
Total Hexane+ Emissions	(lb/hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Hexane+ Emissions	(ton/yr)	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.2
Constituent	Ilnits	Recidine Gac	Dry Fthane	Wet Inlet	Dry Inlet	Wet Fthane	Pronane	Mived Butanes	i-Rutane	Refrigerant	
CO3	CMcirch+ 02.)	0.2202		0.2102	0.2102	0.0102		0 000	0.0002		
UZ litroren	(Weight %)	0,670%	%c7.0	0/17/0	3 050%	%T0.0	0.00%	0.000	0/0000 20000	0.00%	
Muater Water	(Weight %)	0.01%	0.00%	0.40%	%0000 %0000	0.00%	%00.0 %00.0	0.00%	%0000 0/0000	0.00%	
Methane	(Weight %)	93.65%	1.34%	59.10%	58.17%	2.10%	0.00%	0.00%	0.00%	0.00%	
Ethane	(Weight %)	5.42%	98.34%	19.99%	19.67%	97.81%	1.32%	0.00%	0.00%	0.67%	
Propane	(Weight %)	0.07%	0.07%	10.46%	10.29%	0.07%	96.41%	0.45%	1.81%	96.39%	
i-Butane	(Weight %)	0.00%	0.00%	1.53%	1.47%	0.00%	1.79%	25.19%	96.65%	2.09%	
n-Butane	(Weight %)	0.00%	0.00%	3.86%	3.64%	0.00%	0.49%	71.61%	1.54%	0.85%	
-Pentane	(Weight %)	0.00%	0.00%	1.21%	1.04%	%00.0	0.00%	1.09%	%00.0	0.00%	
n-Pentane	(Weight %)	0.00%	0.00%	1.38%	1.14%	0.00%	0.00%	1.66%	0.00%	0.00%	
C6+	(Weight %)	0.00%	0.00%	1.24%	0.41%	0.00%	0.00%	0.00%	0.00%	0.00%	
Pumps							5				
Light Liquid Service	Units	P-214A/B	P-216A/B	P-404A/B	P-412A/B	P-417A/B	P-442A/B	P-803A/B	P-811A/B	P-812A/B/C/D	P-813A/B
sdund Jo #	(count)	2	1	2	2	2	2	2	2	4	2
Emission Factor ³	(kg/hr/sources)	1.3E-02	1.3E-02	1.3E-02	1.3E-02	1.3E-02	1.3E-02	1.3E-02	1.3E-02	1.3E-02	1.3E-02
TOC Emissions from Pumps	(lb/hr)	0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Annual Operating Hours	(hr/yr)	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760
Total VOC Emissions	(lb/hr)	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Total VOC Emissions	(ton/yr)	0.1	0.1	0.0	0.2	0.3	0.3	0.2	0.2	0.5	0.3
Total HAP Emissions Total HAP Emissions	(lb/hr) (ten/wr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	(1011/31)	0.0	1.0	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0
Constituent	Units	P-214A/B	P-216A/B	P-404A/B	P-412A/B	P-417A/B	P-442A/B	P-803A/B	P-811A/B	P-812A/B/C/D	P-813A/B
02	(Weight %)	0.00%	0.00%	0.22%	0.00%	0.00%	%00.0	0.00%	%00.0	0.00%	0.00%
Nitrogen	(Weight %)	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
120	(Weight %)	0.00%	0.00%	0.07%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Oxygen	(Weight %)	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Methane	(Weight %)	1.00%	0.00%	0.71%	%00.0	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Ethane	(Weight %)	47.00%	0.00%	98.85%	1.32%	0.00%	0.00%	1.28%	1.28%	1.28%	0.00%
Propane	(Weight %)	29.62%	0.00%	0.16%	96.41%	0.46%	0.05%	96.05%	96.05%	96.05%	0.00%
i-Butane	(Weight %)	4.22%	0.00%	0.00%	1.79%	25.54%	3.35%	2.11%	2.11%	2.11%	1.76%
n-butane	(Weight %)	10.4/% 3.010/	0.00%	0.00%	0.000	1 1 1 0/	14.03%	0/00/0 /000/0	%ac.0	%0C.U	90.44%
-remane	(Weight %)	0/10/C	0,0000	0.00%	0.000	0.170/	17 7002	0.00%	0.000	0.00%	0.420
u-reitaile	(Weight %)	2000.0	0,0000	0.0002	0,000	06/TTO	0/0/07	0,0000	0/0000	0.000	0,0000
u-nexaue n-Hentane	(Weight %)	0.00%	0.00% 0.00%	0.00%	%0000 0000	0.00%	51 30%	0.00%	0.00% 0.00%	0.00%	0.00%
Methanol	(Weight %)	0.00%	100.00%	0.00%	0.00%	0.13%	0.89%	0.00%	0.00%	0.00%	0.04%
Lube Oil	(Weight %)	0000	70UU U	10000	.000	/0000	10000	0000	10000	70UU U	1000 0
		010000	0.00.0	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00.0	0.00%

Light Liquid Service	Units	P-814A/B	P-815A/B	P-816A/B	P-818A/B	P-819A/B	P-820A/B	P-817A/B	P-902A/B	P-908	P-2214A/B
# of pumps	(count)	2	2	2	2	2	2	2	2	1	2
Emission Factor ³	(kg/hr/sources)	1.3E-02	1.3E-02	1.3E-02							
TOC Emissions from Pumps	(lb/hr)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.1
Annual Operating Hours	(hr/yr)	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760
Total VOC Emissions	(lb/hr)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0
Total VOC Emissions	(ton/yr)	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.2	0.1	0.1
Total HAP Emissions	(lb/hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total HAP Emissions	(ton/yr)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Constituent	Units	P-814A/B	P-815A/B	P-816A/B	P-818A/B	P-819A/B	P-820A/B	P-817A/B	P-902A/B	P-908	P-2214A/B
C02	(Weight %)	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.21%
Nitrogen	(Weight %)	%00'0	%00.0	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
H20	(Weight %)	%00'0	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	14.41%	5.88%	0.00%
Oxygen	(Weight %)	%00'0	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Methane	(Weight %)	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	1.06%
Ethane	(Weight %)	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	2.32%	0.00%	0.00%	49.60%
Propane	(Weight %)	%00'0	1.83%	1.83%	0.00%	0.00%	0.00%	47.73%	0.00%	0.00%	28.08%
i-Butane	(Weight %)	1.76%	96.89%	96.89%	0.06%	0.06%	0.06%	10.97%	11.63%	2.31%	4.00%
n-Butane	(Weight %)	96.44%	1.28%	1.28%	2.62%	2.62%	2.62%	18.78%	14.54%	2.31%	9.89%
i-Pentane	(Weight %)	1.54%	0.00%	0.00%	28.27%	28.27%	28.27%	7.53%	18.05%	7.36%	2.82%
n-Pentane	(Weight %)	0.22%	0.00%	0.00%	32.77%	32.77%	32.77%	6.12%	18.05%	7.36%	3.07%
n-Hexane	(Weight %)	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	3.50%	10.78%	4.39%	0.00%
n-Heptane	(Weight %)	0.00%	0.00%	0.00%	36.01%	36.01%	36.01%	3.04%	12.54%	5.11%	1.27%
Methanol	(Weight %)	0.04%	0.00%	0.00%	0.27%	0.27%	0.27%	0.00%	0.00%	0.00%	0.00%
Lube Oil	(Weight %)	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	65.28%	0.00%
VOC	(Weight %)	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	97.68%	85.59%	94.12%	49.13%

Light Liquid Service	Units	P-2216A/B	P-2404A/B	P-2412A/B	P-2417A/B	P-2908	TOTAL
# sdund Jo	(count)	1	2	2	2	2	49
Emission Factor ³	(kg/hr/sources)	1.3E-02	1.3E-02	1.3E-02	1.3E-02	1.3E-02	1
TOC Emissions from Pumps	(lb/hr)	0.0	0.1	0.1	0.1	0.1	1.4
Annual Operating Hours	(hr/yr)	8,760	8,760	8,760	8,760	8,760	
Total VOC Emissions	(lb/hr)	0.0	0.0	0.1	0.1	0.1	1.2
Total VOC Emissions	(ton/yr)	0.1	0.0	0.2	0.3	0.2	5.3
Total HAP Emissions	(lb/hr)	0.0	0.0	0.0	0.0	0.0	0.1
Total HAP Emissions	(ton/yr)	0.1	0.0	0.0	0.0	0.0	0.3
Constituent	Units	P-2216A/B	P-2404A/B	P-2412A/B	P-2417A/B	P-2908	
C02	(Weight %)	0.00%	0.22%	0.00%	%00.0	0.00%	
Nitrogen	(Weight %)	0.00%	0.00%	0.00%	0.00%	0.00%	
H20	(Weight %)	0.00%	0.00%	0.00%	0.00%	5.88%	
Oxygen	(Weight %)	0.00%	0.00%	0.00%	0.00%	0.00%	
Methane	(Weight %)	0.00%	0.67%	0.00%	0.00%	0.00%	
Ethane	(Weight %)	0.00%	98.97%	1.32%	0.00%	0.00%	
Propane	(Weight %)	0.00%	0.14%	96.41%	0.51%	0.00%	
i-Butane	(Weight %)	0.00%	%00'0	1.85%	28.49%	2.31%	
n-Butane	(Weight %)	0.00%	%00'0	0.43%	69.63%	2.31%	
i-Pentane	(Weight %)	0.00%	0.00%	0.00%	1.10%	7.36%	
n-Pentane	(Weight %)	0.00%	%00'0	%00'0	0.17%	7.36%	
n-Hexane	(Weight %)	0.00%	%00'0	%00'0	%00.0	4.39%	
n-Heptane	(Weight %)	0.00%	%00'0	%00'0	%00.0	5.11%	
Methanol	(Weight %)	100.00%	%00'0	%00'0	%60:0	0.00%	
Lube Oil	(Weight %)	0.00%	0.00%	0.00%	0.00%	65.28%	
VOC	(Weight %)	100.00%	0.14%	%89'86	100.00%	94.12%	

ATTACHMENT O: MONITORING/RECORDKEEPING/REPORTING/TESTING PLANS

RULE 13 AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

sion Control Emission						
it Device Point ID ID	Description	Applicable Citation(s)	Limitation/Standard	Monitoring	Testing	Recordkeeping
	Site-Wide Requirements (Natural Gas Processing Plant)		Wet natural gas throughput: <= 920 MMscf/day			Maintain records of the amount of natural gas processed in the gas processing plant
P001	Hant) Hot Oil Heater (216.7 MMBtu/hr)		Maximum heat input: <= 216.7 MMBtu/hr <= 210,531 scf/hr <= 1.844 MMscf/yr	Annual sampling for composition (extended analysis) and heat content of each stream combusted in the boiler, including: Plant residue gas, Glycol Dehydrator flash tank and stil vent exit streams, and Gasoline Storage Tank VRU exit stream.	1	Monthly and rolling 12-month total records of natural gas consumed and hours of operation Rolling 12-month records of GHG emissions, estimated using the methodology in 40 CFR Part 98, the annual fuel gas sample(s), and the monthly natural gas combustion records.
		45CSR§2-3.1, 45CSR§2-3.2	10% opacity	At such reasonable time as the Secretary may designate, conduct 40 CFR Part 60, Appendi A, Method 9 opacity observations	x Opacity must be determined by 40 CFR Part 60, Appendix A, Method 9 observations or by measurements from a COMS approved by the Director	Maintain records of all opacity observations, per Permit SC 5.4.5.
		NSPS Db	0.32 lb/MMBtu SO ₂ , in order to qualify for exemption from §60.42b(k)(1) [40CFR§60.42b(k)(2)]	Weekly fuel analysis sampling [\$60.47b(f) and \$60.49b(r)(2)] NOTE: Can request approval for less frequent sampling.] The owner or operator of an affected facility that only combusts very low sulfur oil, natural gas, or a mixture of these fuels with any other fuels not subject to an SO, standard is not subject to the compliance and performance testing requirements of this section if the owner or operator obtains fuel receipts as described in \$60.49b(r). [\$60.45b(k)]		Daily fuel type and amount combusted [§60.48b(g)(1)] Obtain and maintain at the affected facility fuel receipts from the fuel supplier that certify that the gascoss fuel meets the definition of natural gas as defined in §60.41b [§60.49b(r)] or perform sampling of fuel gas in accordance with site-specific fuel analysis plan per §60.49b(r)(2).
			0.1 lb/MMBu NO _X [§60.44b(a)(1)(i)]	Install, calibrate, maintain, and operate CEMS for measuring NO _X and O ₂ (or CO ₂) emissions discharged to the atmosphere, and shall record the output of the system [§60.48b(b)(1)] CEMS shall be operated and data recorded during all periods of operation of the affected facility except for CEMS breakdowns and repairs. Data is recorded during calibration checks, and zero and span adjustments. [§60.48b(c)] In instances of CEMS breakdowns, repairs, calibration checks and zero and span adjustments, emission data will be obtained by using standby monitoring systems, Method 7/7 A to provide data for a minimum of 75% of the daily operating hrs, in at least 22 out of 30 successive steam generating unit operating days.	Conduct initial performance test for NO _X using the CEMS to collect 30 days of data [§60.8 and §60.44b(e)(1)] Conduct subsequent performance tests as requested [§60.44b(e)(4)]	Record 1-hr avg NO _X measured by the CEMS, in ng/J or Ib/MMBtu heat input, and used that to calculate the avg emission rates under §60.44b. The 1-hour averages shall be calculated using the data points required under §60.13(h)(2). [§60.48b(d)] Keep daily records of all measurements; hourly NO _X emission rates (measured or predicted); rolling 30-day avg NO _X emission rate (ng/J or Ib/MMBtu heat input); all calibrations and span checks; excess emissions, with the reasons for such excess emissions as well as a description of corrective actions taken; missing pollutant data, including reasons for not obtaining sufficient data and a description of corrective actions taken; excluded emission data and the reasons for excluding data; "F" factor; out of range times; any modifications to the CEMS that could affect compliance with Perf. Spec.2 or 3; and results of daily CEMS drift tests and quarterly RATAs. [§60.49(g)]
P012, P022, P024, P025	Regen Gas Heater (9.7 MMBtu/hr)	45CSR§2-3.1,	Maximum heat input: <= 9.7 MMBtu/hr <= 9.424 sc/hr <= 82.55 MMsc/fyr 10% opacity	At such reasonable time as the Secretary may designate, conduct 40 CFR Part 60, Appendi	x (Opacity must be determined by 40 CFR Part 60, Appendix A, Method 9 observations or by	Monthly and rolling 12-month total records of natural gas consumed and hours of operation Maintain records of all opacity observations, per Permit SC 7.4.2.
		45CSR§2-3.2		A, Method 9 opacity observations	measurements from a COMS approved by the Director	

	Reporting
it	
operation. 40 CFR cords.	
	Any opacity deviation (s), as soon as practicable, but within ten (10) calendar days of the occurrence. Report shall include at least the results of the observation, the cause or suspected cause of the violation(s), and any corrective measures taken or planned. [Permit SC 5.5.3] SSM Excess opacity periods < 30 mins and <= 40% may be reported on a quarterly basis unless otherwise required by the Director. [45CSR§2-9.3.a] If SSM > 30 mins or > 40%, report by telephone, telefax, or e-mail by the end of the next business day after becoming aware of such condition. Then file a certified written report concerning the malfunction with the Director within 30 days providing: a detailed explanation of the factors involved or causes of the malfunction; the data and time of duration (with starting and ending times) of the period of excess emissions; an estimate of the malfunction; the malfunction give the malfunction period; the maximum opacity measured or observed during the malfunction; and a detailed explanation of the circutor tor mitigate the effects of the malfunction; and a detailed explanation of the circutor tor mitigate the fields of the malfunction and a schedule for such implementation. [45CSR§2-9.3.b]
certify .49b(r)] per	Site-specific fuel analysis plan no later than 60 days before the date you intend to demonstrate compliance. [§60.49b(r)(2)]
d used e	Notice of start of construction and actual startup [§60.7 and §60.49b(a)] Report performance test data from the initial performance test and the performance evaluation of the CEMS using the applicable performance specifications in appendix B of this part. [§60.49b(b)]
ll nissions ng n; times; ; and	Semi-annual excess emissions reports [§60.7, §60.49b(b)(2)(i), and §60.49b(i)]
operation.	
	Any opacity deviation (s), as soon as practicable, but within ten (10) calendar days of the occurrence. Report shall include at least the results of the observation, the cause or suspected cause of the violation(s), and any corrective measures taken or planned. [Permit SC 7.5.1] SSM excess opacity periods < 30 mins and <= 40% may be reported on a quarterly basis unless otherwise required by the Director. [45CSR§2-9.3.a] If SSM > 30 mins or > 40%, report by telephone, telefax, or e-mail by the end of the next business day after becoming aware of such condition. Then file a certified written report concerning the malfunction with the Director within 30 days providing: a detailed explanation of the factors involved or causes of the mass of excess emissions discharged during the malfunction period; the maximum opacity measured or observed during the malfunction; immediate remedial actions taken at the time of the malfunction to correct or mitigate the effects of the malfunction; and a detailed explanation of the corrective measures or program that will be implemented to prevent a recurrence of the malfunction and a schedule for such implementation. [45CSR§2-9.3.b]

AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

mission Cont						
Unit Devi ID ID	vice Po	Dint Description	Applicable Citation(s) Limitation/Standard	Monitoring	Testing	Recordkeeping
10 10 13, 26, 27		 Cryo HMO Heater (26.3 MMBtu/hr) 	Maximum heat input: <= 26.3 MMBtu/hr <= 25.551 sct/hr	MORITOR ING	resting	Monthly and rolling 12-month total records of natural gas consumed and hours of operation
			<= 223.8 MMscFyr 45CSR§2-3.1, 10% opacity 45CSR§2-3.2	At such reasonable time as the Secretary may designate, conduct 40 CFR Part 60, Appendix A, Method 9 opacity observations	Dpacity must be determined by 40 CFR Part 60, Appendix A, Method 9 observations neasurements from a COMS approved by the Director	or by Maintain records of all opacity observations, per Permit SC 6.4.5.
			NSPS Dc	Daily fuel type and amount combusted [§60.48c(g)(1)]		Daily fuel type and amount combusted [§60.48c(g)(1)] -OR- Monthly fuel type and amount combusted [§60.48c(g)(2)] -OR- Monthly fuel delivered to site [§60.48c(g)(3)]
116, 117, 118, 119	- P016 P017 P018 P019	, MMBtu/hr)	Maximum heat input: <= 61.6 MMBtu/hr <= 66,523 scf/hr <= 582.74 MMscf/yr			Monthly and rolling 12-month total records of natural gas consumed and hours of operatio Rolling 12-month records of GHG emissions, estimated using the methodology in 40 CFR Part 98, the annual fuel gas sample(s), and the monthly natural gas combustion records.
		45CSR§2-3.2 10% opacity 45CSR§2-3.2	At such reasonable time as the Secretary may designate, conduct 40 CFR Part 60, Appendix A, Method 9 opacity observations	Jpacity must be determined by 40 CFR Part 60, Appendix A, Method 9 observations neasurements from a COMS approved by the Director	or by Maintain records of all opacity observations.	
			NSPS Dc	Daily fuel type and amount combusted [§60.48c(g)(1)]		Daily fuel type and amount combusted [§60.48c(g)(1)] -OR- Monthly fuel type and amount combusted [§60.48c(g)(2)] -OR- Monthly fuel delivered to site [§60.48c(g)(3)]
20, 28, 29, 30	- P020 P028 P029 P030	s, MMBtu/hr)	Maximum heat input: < 3.0 MMBtu/hr < 2.921 sc/hr < 25.59 MMscf/yr			Monthly and rolling 12-month total records of natural gas consumed and hours of operatio
			45CSR§2-3.1, 45CSR§2-3.2	At such reasonable time as the Secretary may designate, conduct 40 CFR Part 60, Appendix A, Method 9 opacity observations	Dpacity must be determined by 40 CFR Part 60, Appendix A, Method 9 observation: neasurements from a COMS approved by the Director	or by Maintain records of all opacity observations.

ion. Any opacity deviation (s), as soon as practicable, but within ten (10) calendar days of the occurrence. Report shall includ least the results of the observation, the cause or suspected cause of the violation(s), and any corrective measures taken or plannel. [Permit SC 6.5.2] SSM excess opacity periods < 30 mins and <= 40% may be reported on a quarterly basis unless otherwise required by the Director. [45CSR§2-9.3.a] If SSM > 30 mins or > 40%, report by telephone, telefax, or e-mail by the end of the next business day after becoming av of such condition. Then file a certified written report concerning the mailfunction with Director within 30 days provid a detailed explanation of the factors involved or causes of the mailfunction; timediate explanation of the factors involved or causes of the mailfunction; immodiate remedial actions tak the time of the mailfunction or the mast or excess emissions. Such access emissions: a settimate of the mailfunction of work or such implemented to prevent a recurrence of the mailfunction and a schedule for such implementation. [45CSR§2-9.3.b] Notice of start of construction and actual startup [§60.7, §60.48c(a)] ion. R Any opacity deviation (s), as soon as practicable, but within ten (10) calendar days of the occurrence. Report shall includ least the results of the observation, the cause or suspected cause of the violation(s), and any corrective measures taken or planned. [Permit SC 5.5.3] SSM excess opacity periods < 30 mins and <= 40% may be reported on a quarterly basis unless otherwise required by the Director. (FACSR§2-9.3.1) If SSM > 30 mins or > 40%, report by telephone, telefax, or e-mail by the end of the next business day after becom		Reporting
least the results of the observation, the cause or suspected cause of the violation(s), and any corrective measures taken or planned. [Permit SC 6.5.2] SSM excess opacity periods < 30 mins and <= 40% may be reported on a quarterly basis unless otherwise required by the Director. [45CSR§2-9.3]	ion.	
Director. [45CSR§2:9.3.a] If SSM > 30 mins or > 40%, report by telephone, telefax, or e-mail by the end of the next business day after becoming av of such condition. Then file a certified written report concerning the malfunction; with the Director within 30 days provid a detailed explanation of the factors involved or causes of the malfunction; inmediate remediat actions tak the time of the mass of excess emissions is an estimate of the mass of excess emissions of its charged during the malfunction; munediate remediate actions tak the time of the malfunction is correct or mitigate the effects of the malfunction; and a detailed explanation of the correctiv measures or program that will be implemented to prevent a recurrence of the malfunction and a schedule for such implementation. [45CSR§2-9.3.b] Notice of start of construction and actual startup [§60.7, §60.48c(a)] ion. iR Any opacity deviation (s), as soon as practicable, but within ten (10) calendar days of the occurrence. Report shall includ least the results of the observation, the cause or suspected cause of the violation(s), and any corrective measures taken or planned. [Permit SC 5.5.3] SM excess opacity periods < 30 mins and <= 40% may be reported on a quarterly basis unless otherwise required by the Director. [45CSR§2-9.3.a]		
of such condition. Then file a certified written report concerning the maffunction; the date and time of duration (with starting an ending times) of the period of excess emissions; an estimate of the mass of excess emissions discharged during the maffunction period; the maximum opacity measured or observed during the malfunction; immediate remedial actions takk the time of the maffunction to correct or mitigate the effects of the malfunction; and a detailed explanation of the correctiv measures or program that will be implemented to prevent a recurrence of the malfunction and a schedule for such implementation. [45CSR§2-9.3.b] Notice of start of construction and actual startup [\$60.7, \$60.48c(a)] ion. rR Any opacity deviation (s), as soon as practicable, but within ten (10) calendar days of the occurrence. Report shall includ least the results of the observation, the cause or suspected cause of the violation(s), and any corrective measures taken or planned. [Permit SC 55.3] SSM excess opacity periods < 30 mins and <= 40% may be reported on a quarterly basis unless otherwise required by the Director. [45CSR§2-9.3.a)		SSM excess opacity periods < 30 mins and <= 40% may be reported on a quarterly basis unless otherwise required by the Director. [45CSR§2-9.3.a]
ion. 'R Any opacity deviation (s), as soon as practicable, but within ten (10) calendar days of the occurrence. Report shall includ least the results of the observation, the cause or suspected cause of the violation(s), and any corrective measures taken or planned. [Permit SC 5.5.3] SSM excess opacity periods < 30 mins and <= 40% may be reported on a quarterly basis unless otherwise required by the Director. [45CSR§2-9.3.a]		malfinuction period: the maximum opacity measured or observed during the malfunction; immediate remedial actions taken at the time of the malfunction to correct or mitigate the effects of the malfunction; and a detailed explanation of the corrective measures or program that will be implemented to prevent a recurrence of the malfunction and a schedule for such
ion. 'R Any opacity deviation (s), as soon as practicable, but within ten (10) calendar days of the occurrence. Report shall includ least the results of the observation, the cause or suspected cause of the violation(s), and any corrective measures taken or planned. [Permit SC 5.5.3] SSM excess opacity periods < 30 mins and <= 40% may be reported on a quarterly basis unless otherwise required by the Director. [45CSR§2-9.3.a] If SSM > 30 mins or > 40%, report by telephone, telefax, or e-mail by the end of the next business day after becoming av of such condition. Then file a certified written report concerning the malfunction with the Director within 31 days provid a detailed explanation of the factors involved or causes of the malfunction; immediate remediat actions take the time of the malfunction is of of duration (with starting an ending times) of the period of excess emissions; an estimate of the mass of excess emissions discharged during the malfunction; and a detailed explanation of the correctiv measures or program that will be implemented to prevent a recurrence of the malfunction and a schedule for such implementation. [45CSR§2-9.3.b] Notice of start of construction and actual startup [§60.7, §60.48c(a)] ion. Any opacity deviation (s), as soon as practicable, but within ten (10) calendar days of the occurrence. Report shall includ least the results of the observation, the cause or suspected cause of the violation(s), and any corrective measures taken or		
R Any opacity deviation (s), as soon as practicable, but within ten (10) calendar days of the occurrence. Report shall includ least the results of the observation, the cause or suspected cause of the violation(s), and any corrective measures taken or planned. [Permit SC 5.5.3] SSM excess opacity periods < 30 mins and <= 40% may be reported on a quarterly basis unless otherwise required by the Director. [45CSR§2-9.3.a]		Notice of start of construction and actual startup [§60.7, §60.48c(a)]
Any opacity deviation (s), as soon as practicable, but within ten (10) calendar days of the occurrence. Report shall includ least the results of the observation, the cause or suspected cause of the violation(s), and any corrective measures taken or planned. [Permit SC 5.5.3] SSM excess opacity periods < 30 mins and <= 40% may be reported on a quarterly basis unless otherwise required by the Director. [45CSR§2-9.3.a]	ion.	
least the results of the observation, the cause or suspected cause of the violation(s), and any corrective measures taken or planned. [Permit SC 5.5.3] SSM excess opacity periods < 30 mins and <= 40% may be reported on a quarterly basis unless otherwise required by the Director. [45CSR§2-9.3.a]	R	
least the results of the observation, the cause or suspected cause of the violation(s), and any corrective measures taken or planned. [Permit SC 5.5.3] SSM excess opacity periods < 30 mins and <= 40% may be reported on a quarterly basis unless otherwise required by the Director. [45CSR§2-9.3.a]		
Director. [45CSR\$2-9.3.a] If SSM > 30 mins or > 40%, report by telephone, telefax, or e-mail by the end of the next business day after becoming aw of such condition. Then file a certified written report concerning the malfunction with the Director within 30 days provid a detailed explanation of the factors involved or causes of the malfunction; the date and time of duration (with starting an ending times) of the period of excess emissions; an estimate of the mass of excess emissions discharged during the malfunction; the period; the maximum opacity measured or observed during the malfunction; mediate remediat actions tak the time of the malfunction to correct or mitigate the effects of the malfunction; and a detailed explanation of the correctiv measures or observed during the malfunction; mediate remediat actions tak the time of the malfunction in period; the maximum opacity deviation to correct or mitigate the effects of the malfunction; and a detailed explanation of the correctiv measures or program that will be implemented to prevent a recurrence of the malfunction and a schedule for such implementation. [45CSR\$2-9.3.b] Notice of start of construction and actual startup [\$60.7, \$60.48c(a)] ion. Any opacity deviation (s), as soon as practicable, but within ten (10) calendar days of the occurrence. Report shall includ least the results of the observation, the cause or suspected cause of the violation(s), and any corrective measures taken or		
of such condition. Then file a certified written report concerning the malfunction with the Director within 30 days provid a detailed explanation of the factors involved or causes of the malfunction; the date and time of duration (with starting an ending times) of the period of excess emissions; an estimate of the mass of excess emissions discharged during the malfunction period; the maximum opacity measured or observed during the malfunction; immediate remedial actions takk the time of the malfunction to correct or mitigate the effects of the malfunction; and a detailed explanation of the correctiv measures or pogram that will be implemented to prevent a recurrence of the malfunction and a schedule for such implementation. [45CSR§2-9.3.b] Notice of start of construction and actual startup [§60.7, §60.48c(a)] ion.		SSM excess opacity periods < 30 mins and <= 40% may be reported on a quarterly basis unless otherwise required by the Director. [45CSR§2-9.3.a]
ion. Any opacity deviation (s), as soon as practicable, but within ten (10) calendar days of the occurrence. Report shall includ least the results of the observation, the cause or suspected cause of the violation(s), and any corrective measures taken or		malfiniction period; the maximum opacity measured or observed during the malfunction; immediate remedial actions taken at the time of the malfunction to correct or mitigate the effects of the malfunction; and a detailed explanation of the corrective measures or program that will be implemented to prevent a recurrence of the malfunction and a schedule for such
Any opacity deviation (s), as soon as practicable, but within ten (10) calendar days of the occurrence. Report shall includ least the results of the observation, the cause or suspected cause of the violation(s), and any corrective measures taken or		Notice of start of construction and actual startup [§60.7, §60.48c(a)]
least the results of the observation, the cause or suspected cause of the violation(s), and any corrective measures taken or	ion.	
least the results of the observation, the cause or suspected cause of the violation(s), and any corrective measures taken or		

AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

					BLUE KACEK MIDSI KEAM, LLC							
Emission Unit	n Control Device	Emission Point		Applicable								
ID	ID	ID	Description	Citation(s)	Limitation/Standard	Monitoring	Testing	Recordkeeping				
V001, V002, V003, V004	-	V001, Vapor C V002, V003, V004	Combustor		Natural gas firing rate: <= 29.35 MMscf/yr The vapor combustors will control emissions from the dehydration units BTEX condensers and flash tanks.	Annual sampling for composition (extended) and heat content of each stream combusted in the vapor combustor, including: dehydration unit flash gas and condenser vent waste gas.		Monthly and rolling 12-month total records of fuel gas combusted. Rolling 12-month records of GHG emissions, estimated using the methodology in 40 CFR Part 98, the annual fuel gas sample(s), and the monthly natural gas combustion records.				
					Pilot flame present at all times when emissions may be vented, except periods of SSM. Combustion and destruction efficiency of 98%. PM Emissions (lb/hr) = F x Incinerator Capacity (T/hr) Where, F = either 5.43 for an incinerator with a capacity <15,000 lbs/hr or 2.72 for an incinerator with a capacity >=15,000 lbs/hr or 2.72 for an incinerator with a capacity >=15,000 lbs/hr or 2.72 for an incinerator with a capacity >=15,000 lbs/hr or greater. 20% opacity, except for up to 8 minutes/startup 40% opacity during startup, not to exceed 8 minutes total No objectionable odors. If unavoidable malfunction of equipment, excess emissions exceeding may be permitted by the Director for <=5 days upon specific application to the Director. Such application shall be made within 24 hrs of the malfunction. In cases of major equipment failure, additional time periods may be granted by the Director provided a corrective program has been submitted by the owner or operator and approved by the Director.	Continuous monitoring of pilot flame presence, using thermocouple or other equivalent device. The inlet gas flow rate, documenting <= the maximum specified by the manufacturer.	An initial operational assurance test by the vendor shall be conducted to ensure flame stability and smokeless operation of the vapor combustor. Monthly opacity observations, to demonstrate no visible emissions are observed for more than a total of 5 minutes during any 2 consecutive hour period using 40CFR60 Appendix A Method 22. The visible emission checks shall determine the presence or absence of visible emissions. At an imimum, the observer must be trained and knowledgeable regarding the effects of background contrast, ambient lighting, observer position relative to lighting, wind, and the presence of uncombined water (condensing water vapor) on the visibility of emissions. If the vapor combustor fails the visible emissions test, the permittee must follow manufacturer's repair instructions, if available, or best combustion engineering practice as outlined in the unit inspection and maintenance plan, to return the unit to compliant operation. All repairs and maintenance aliable for inspection. Following return to operation from maintenance or repair activity, each device must pass an EPA Method 22, 40 CFR part 60, appendix A, visual observation.	All repairs and maintenance activities must be recorded in a maintenance and repair log an must be available for inspection. A record of the vapor combustor design evaluation. The vapor combustor design evaluation shall include, net heat value calculations, exit (tip) velocity calculations, and all supporting concentration calculations and other related information requested by the Director.				
				§60.18	No visible emissions, except 5 mins in any 2-hr period. Flame present at all times when receiving emissions. Diameter of >=3", nonassisted, H2 content of >=8% vol, and exit velocity <122 fps and < Vmax. [\$601.18(c)(3)(i)] -OR- Air Assist: Heat content >=300 Btu/scf and veloc, <vmax Steam Assist: >= 300 Btu/scf and 60 fps or lesser of Vmax and 400 fps -OR- >1,000 Btu/scf and 60 - 400 fps Nonassist: >= 200 Btu/scf and < 60 fps or lesser of Vmax or 400 fps -OR- >1,000 Btu/scf and 60 - 400 fps [\$60.18(c)(3)(ii), (c)(4)]</vmax 	Continuous monitoring of pilot flame presence, using thermocouple or other equivalent device. [§60.18(f)(2)]	Visible emissions observations shall be made using EPA Method 22.	Maintain records of all Method 22 observations.				
S004A		P004A Ground			Natural gas firing rate: <= 2.71 MMscFyr The vent steam pressure shall be used to promote mixing at the burner tip in lieu of air or steam. The ground flare (S004A) will control emissions for maintenance events from multiple operations within the Plant. Pilot flame present at all times when emissions may be vented, except periods of SSM. Combustion efficiency of 98% and destruction efficiency of 99.5%. PM Emissions (lb/hr) = F x Incinerator Capacity (T/hr) Where, F = either 5.43 for an incinerator with a capacity <15.000 lbs/hr or 2.72 for an incinerator with a capacity >=15.000 lbs/hr or greater. 20% opacity, except for up to 8 minutes/startup 40% opacity during startup, not to exceed 8 minutes total No objectionable odors. If unavoidable malfunction of equipment, excess emissions exceeding may be permitted by the Director for <=5 days upon specific application to the Director. Such application shall be made within 24 hrs of the malfunction. In cases of major equipment failure, additional time periods may be granted by the Director provide a corrective program has been submitted by the owner or operator and approved by the Director. Comply with the requirements of Section 2.12 of the permit during emergency operation of the flare.		An initial operational assurance test by the flare vendor shall be conducted to ensure flame stability and smokeless operation of the flare. Monthly opacity observations, to demonstrate no visible emissions are observed for more than a total of 5 minutes during any 2 consecutive hour period using 40CFR60 Appendix A Method 22. The visible emission checks shall determine the presence or absence of visible emissions. At a minimum, the observer must be trained and knowledgeable regarding the effects of background contrast, ambient lighting, observer position relative to lighting, wind, and the presence of uncombined water (condensing water vapor) on the visibility of emissions. If the flare fails the visible emissions test, the permittee must follow manufacturer's repair instructions, if available, or best combustion engineering practice as outlined in the unit inspection and maintenance advitties for the flare must be recorded in a maintenance and repair solg and must be available for inspection. Following return to operation from maintenance or repair activity, each device must pass an EPA Method 22, 40 CFR par 60, appendix A, visual observation. Upon Agency request, conduct PM stack sampling using EPA Method 5 or equivalent.	Records of the times and duration of all periods which the pilot flame was absent. Records of visible emissions tests.				
					No visible emissions, except 5 mins in any 2-hr period. Flame present at all times when receiving emissions. Diameter of >=3", nonassisted, H2 content of >=8%vol, and exit velocity <122 fps and < Vmax. [§60.18(c)(3)(i)] -OR- Air Assist: Heat content >=300 Btu/scf and veloc. <vmax Steam Assist: >= 300 Btu/scf and 60 fps or lesser of Vmax and 400 fps -OR- >1,000 Btu/scf and 60 - 400 fps Nomassist: >= 200 Btu/scf and < 60 fps or lesser of Vmax or 400 fps -OR- >1,000 Btu/scf and 60 - 400 fps (§60.18(c)(3)(i)), (c)(4)]</vmax 	Continuous monitoring of pilot flame presence, using thermocouple or other equivalent device. [§60.18(f)(2)]	Visible emissions observations shall be made using EPA Method 22.	Maintain records of all Method 22 observations.				

	Reporting
R	
	Report any deviation(s) from the allowable visible emission requirement for any emissions discovered during opacity
	observations in writing as soon as practicable, but <10 calendar days of the occurrence; include at least: the results of the visible determination of opacity of emissions, the cause or suspected cause of the violation(s), and any corrective measures taken or planned.
and	Any deviation(s) from the vapor combustor design and operation criteria shall be reported in writing to the Director as soon as practicable, but no later than ten (10) calendar days of discovery of such deviation.
on	If testing is requested, submit a protocol at >30 days prior to testing and notification of the testing date at least 15 days prior to testing. Submit the testing results within 60 days of testing and provide all supporting calculations and testing data.
•5	SSM excess opacity periods < 30 mins and <= 40% may be reported on a quarterly basis unless otherwise required by the Director. [45CSR§2-9.3.a]
	If SSM > 30 mins or > 40%, report by telephone, telefax, or e-mail by the end of the next business day after becoming aware of such condition. Then file a certified written report within 30 days providing: a detailed explanation of the factors involved or causes of the malfunction; the date and time of duration (with starting and ending times); an estimate of the malfunction emissions discharged during the malfunction period; the maximum opacity measured or observed during the malfunction; immediate remedial actions taken at the time of the malfunction to correct or mitigate the effects of the malfunction; and a detailed explanation of the corrective measures or program that will be implemented to prevent a recurrence of the malfunction and a schedule for such implementation. [45CSR§2-9.3b]
R	
	Report any deviation(s) from the allowable visible emission requirement for any emissions discovered during opacity observations in writing as soon as practicable, but <10 calendar days of the occurrence; include at least: the results of the visible determination of opacity of emissions, the cause or suspected cause of the violation(s), and any corrective measures taken or planned.
d	Any deviation(s) from the flare design and operation criteria in Permit SC 13.1.7 and permit application R13-2896C shall be reported in writing to the Director as soon as practicable, but no later than ten (10) calendar days of discovery of such deviation.
t	Report the time, cause of event, estimate of emissions and corrective actions taken when the flare was used for an emergency at the facility.
	If If testing is requested, submit a protocol at >30 days prior to testing and notification of the testing date at least 15 days prior to testing. Submit the testing results within 60 days of testing and provide all supporting calculations and testing data.
	SSM excess opacity periods < 30 mins and <= 40% may be reported on a quarterly basis unless otherwise required by the Director. [45CSR§2-9.3.a]
	If SSM > 30 mins or > 40%, report by telephone, telefax, or e-mail by the end of the next business day after becoming aware of such condition. Then file a certified written report writtin 30 days providing: a detailed explanation of the factors involved or causes of the malfunction; the date and time of duration (with starting and ending times); an estimate of the mass of excess emissions discharged during the malfunction period; the maximum opacity measured or observed during the malfunction; immediate remedial actions taken at the time of the malfunction to correct or mitigate the effects of the malfunction; and a detailed explanation of the corrective measures or program that will be implemented to prevent a recurrence of the malfunction and a schedule for such implementation. [45CSR§2-9.3.b]

AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

Unit D	ontrol Device ID	Emission Point ID	Description	Applicable Citation(s)	Limitation/Standard	Monitoring	Testing	Recordkeeping	
			Emergency Flare		Natural gas firing rate: <= 2.71 MMscf/yr	Annual sampling for composition (extended) and heat content of each stream combusted in		Monthly and rolling 12-month total records of fuel gas combusted.	
					The vent steam pressure shall be used to promote mixing at the burner tip in lieu of air or steam. The flare (S021) will control emissions for emergency conditions.	the flare, including: Plant residue gas and flare waste gas stream during normal operations.		Rolling 12-month records of GHG emissions, estimated using the methodology in 40 CFR Part 98, the annual fuel gas sample(s), and the monthly natural gas combustion records.	
				45CSR§6	Pilot flame present at all times when emissions may be vented, except periods of SSM.	Continuous monitoring of pilot flame presence, using thermocouple or other equivalent device.	An initial operational assurance test by the flare vendor shall be conducted to ensure flame stability and smokeless operation of the flare.		Rep obse
					Combustion efficiency of 98% and destruction efficiency of 99.5%.	The inlet gas flow rate, documenting <= the maximum specified by the manufacturer.	Monthly opacity observations, to demonstrate no visible emissions are observed for more	Records of the times and duration of all periods which the pilot flame was absent.	visit take
					PM Emissions $(lb/hr) = Fx$ Incinerator Capacity (T/hr) Where, F = either 5.43 for an incinerator with a capacity <15,000 lbs/hr or 2.72 for an incinerator with a capacity >=15,000 lbs/hr or greater.		than a total of 5 minutes during any 2 consecutive hour period using 40CFR80 Appendix A Method 22. The visible emission checks shall determine the presence or absence of visible emissions. At a minimum, the observer must be trained and knowledgeable regarding the	Records of visible emissions tests. All repairs and maintenance activities for the flare must be recorded in a maintenance and	Any repr
					20% opacity, except for up to 8 minutes/startup		effects of background contrast, ambient lighting, observer position relative to lighting, wind, and the presence of uncombined water (condensing water vapor) on the visibility of	repair log and must be available for inspection.	devi
					40% opacity during startup, not to exceed 8 minutes total No objectionable odors.		emissions. If the flare fails the visible emissions test, the permittee must follow manufacturer's repair instructions, if available, or best combustion engineering practice as unliked in the unit instructions of must be the start of the unit to explore the	A record of the flare design evaluation. The flare design evaluation shall include, net heat value calculations, exit (tip) velocity calculations, and all supporting concentration calculations and other related information requested by the Director.	Rep at th
					If unavoidable malfunction of equipment, excess emissions exceeding may be permitted by		outlined in the unit inspection and maintenance plan, to return the unit to compliant operation. All repairs and maintenance activities for the flare must be recorded in a maintenance and repair log and must be available for inspection. Following return to	A record of the initial operational assurance test and any other testing performed.	If te testi
					the Director for <=5 days upon specific application to the Director. Such application shall be made within 24 hrs of		operation from maintenance or repair activity, each device must pass an EPA Method 22, 40 CFR part 60, appendix A, visual observation.		SSN
					the malfunction. In cases of major equipment failure, additional time periods may be granted by the Director provided a corrective program has been submitted by the owner or operator and approved by the Director.		Upon Agency request, conduct PM stack sampling using EPA Method 5 or equivalent.		Dire If SS
					Comply with the requirements of Section 2.12 of the permit during emergency operation of the flare.				of su or ca emis
									imm deta and
002	1	2002 1	Fire Pump #1 (700 hp)		Maximum heat input:		Stack testing at the request of the agency.	Monthly and rolling 12-month total of diesel fuel burned and hours of operation.	Subi
					<= 35.9 gal/yr <= 3.590 gal/yr			Records of monitoring information per Permit SC 8.3.2.	
					Annual operating hours: <= 500 hr/yr			Maintenance records relating to failure and/or repair of fire pump equipment. In the event of equipment or system failure, these records shall document the permittee's effort to maintain proper and effective operation of such equipment and/or systems.	
				45CSR§2-3.1, 45CSR§2-3.2	10% opacity	At such reasonable time as the Secretary may designate, conduct 40 CFR Part 60, Appendi: A, Method 9 opacity observations	x Opacity must be determined by 40 CFR Part 60, Appendix A, Method 9 observations or by measurements from a COMS approved by the Director	Maintain records of all opacity observations, per Permit SC 6.4.5.	Any least plan
					Over life of engine:	Install a non-resettable hour meter prior to startup of the engine. [§60.4209(a)]		Maintain manufacturer certification documentation. [§60.4211(c)]	
					3.0 g/hp-hr NMHC + NO _X 2.6 g/hp-hr CO 0.15 g/hp-hr PM [§60.4205(c), Table 4, §60.4206] Nonemergency hours (for maintenance checks and readiness testing, etc.) limited to 100/yr.	If stationary CI internal combustion engine is equipped with a diesel particulate filter to comply with the emission standards in §60.4204, the diesel particulate filter must be installed with a backpressure monitor that notifies the owner or operator when the high backpressure limit of the engine is approached. [§60.4209(b)]		Starting with the model years in table 5 to this subpart, if the emergency engine does not meet the standards applicable to non-emergency engines in the applicable model year, the owner or operator must keep records of the operation of the engine in emergency and non- emergency service that are recorded through the non-resettable hour meter. The owner must record the time of operation of the engine and the reason the engine was in operation during	
								that time. [§60.4214(b)] If the stationary CI internal combustion engine is equipped with a diesel particulate filter,	
					Fire diesel that meets 40 CFR §80.510(b) for nonroad diesel fuel. [§60.4207(b)] Purchase certified engine and operate per manufacturer's written instructions or procedures			In the stationary C1 internal comoustion engine is equipped with a dresser particulate inter, the owner or operator must keep records of any corrective action taken after the backpressure monitor has notified the owner or operator that the high backpressure limit of	
					developed by the owner or operator that are approved by the engine manufacturer; only change settings allowed by manufacturer; and			the engine is approached. [§60.4214(c)]	
					meet 40 CFR Parts 89, 94, and 1068 as applicable. [§60.4211(a) and (c)]				
003	1	2003 1	Fire Pump #2 (700 hp)	MACTZZZZ	Meet MACT ZZZZ by complying with NSPS IIII. Maximum heat input:		Stack testing at the request of the agency.	Monthly and rolling 12-month total of diesel fuel burned and hours of operation.	Sub
					<= 35.9 gal/hr <= 3,590 gal/yr Annual operating hours:			Records of monitoring information per Permit SC 8.3.2.	
					<= 500 hr/yr			Maintenance records relating to failure and/or repair of fire pump equipment. In the event of equipment or system failure, these records shall document the permittee's effort to maintain proper and effective operation of such	
								equipment and/or systems.	
				45CSR§2-3.1, 45CSR§2-3.2	10% opacity	At such reasonable time as the Secretary may designate, conduct 40 CFK Part 60, Appendi: A, Method 9 opacity observations	x Opacity must be determined by 40 CFR Part 60, Appendix A, Method 9 observations or by measurements from a COMS approved by the Director	Maintain records of all opacity observations, per Permit SC 6.4.5.	Any least plan
					Over life of engine: 3.0 g/hp-hr NMHC + NO _x	Install a non-resettable hour meter prior to startup of the engine. [§60.4209(a)]		Maintain manufacturer certification documentation. [§60.4211(c)]	
					2.6 g/hp-hr CO 0.15 g/hp-hr PM [§60.4205(c), Table 4, §60.4206]			Starting with the model years in table 5 to this subpart, if the emergency engine does not meet the standards applicable to non-emergency engines in the applicable model year, the owner or operator must keep records of the operation of the engine in emergency and non-	
					Nonemergency hours limited to 100/yr. [§60.4211(f)]			emergency service that are recorded through the non-resettable hour meter. The owner must record the time of operation of the engine and the reason the engine was in operation during that time. [§60.4214(b)]	
					Fire diesel that meets 40 CFR §80.510(b) for nonroad diesel fuel. [§60.4207(b)]			that tune. [§60.4214(b)] If the stationary CI internal combustion engine is equipped with a diesel particulate filter,	
1				1	Purchase certified engine and operate per manufacturer's written instructions or procedures			the owner or operator must keep records of any corrective action taken after the	
					developed by the owner or operator that are			backpressure monitor has notified the owner or operator that the high backpressure limit of	
								backpressure monitor has notified the owner or operator that the high backpressure limit of the engine is approached. [§60.4214(c)]	

	Reporting
40 CFR ords.	
	Report any deviation(s) from the allowable visible emission requirement for any emissions discovered during opacity observations in writing as soon as practicable, but <10 calendar days of the occurrence; include at least: the results of the visible determination of opacity of emissions, the cause or suspected cause of the violation(s), and any corrective measures taken or planned.
nce and	Any deviation(s) from the flare design and operation criteria in Permit SC 13.1.7 and permit application R13-2896B shall be reported in writing to the Director as soon as practicable, but no later than ten (10) calendar days of discovery of such deviation.
et heat	Report the time, cause of event, estimate of emissions and corrective actions taken when the flare was used for an emergency at the facility.
	If testing is requested, submit a protocol at >30 days prior to testing and notification of the testing date at least 15 days prior to testing. Submit the testing results within 60 days of testing and provide all supporting calculations and testing data.
	SSM excess opacity periods < 30 mins and <= 40% may be reported on a quarterly basis unless otherwise required by the Director. [45CSR§2-9.3.a]
	If SSM > 30 mins or > 40%, report by telephone, telefax, or e-mail by the end of the next business day after becoming aware of such condition. Then file a certified written report within 30 days providing: a detailed explanation of the factors involved or causes of the malfunction; the date and time of duration (with starting and ending times); an estimate of the mass of excess emissions discharged during the malfunction period; the maximum opacity measured or observed during the malfunction; immediate remedial actions taken at the time of the malfunction to correct or mitigate the effects of the malfunction; and a detailed explanation of the corrective measures or program that will be implemented to prevent a recurrence of the malfunction and a schedule for such implementation. [45CSR§2-9.3.b]
	Submit written reports of all performance tests.
	Submit white types of an performance cost.
e event of maintain	
	Any opacity deviation (s), as soon as practicable, but within ten (10) calendar days of the occurrence. Report shall include at least the results of the observation, the cause or suspected cause of the violation(s), and any corrective measures taken or planned.
es not	
ear, the	
ner must	
on during	
e filter,	
limit of	
	Submit written reports of all performance tests.
ailure.	
	Any opacity deviation (s), as soon as practicable, but within ten (10) calendar days of the occurrence. Report shall include at least the results of the observation, the cause or suspected cause of the violation(s), and any corrective measures taken or
	planned.
es not	
ear, the	
nd non- ner must	
ner must on during	
e filter,	
limit of	

AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

n Contr Devi		mission Point	L	Applicable				
ID		ID	Description	Citation(s)	Limitation/Standard	Monitoring	Testing	Recordkeeping
C006,		201,	Four glycol dehydration	Citation(5)	Maximum wet natural gas throughput: 230 MMscfd per dehydration unit (rolling 12-		1 county	Monthly and rolling 12-month total of wet natural gas throughput.
C007,			units with waste gas		month average)			
C008,		003,	emissions routed to vapor					
C009	V0	004	combustor, with flexibility		The dehydration unit waste gas emissions are routed to the vapor combustor, with the			
			to route waste gas to the hot		flexibility to route the waste gas to the hot oil heater (EU# S001) as fuel or back to inlet			
			oil heater or back to inlet suction.		suction.			
				MACT HH	Benzene emissions: < 1 T/yr	Operating hours per quarter, Quarterly throughput (MMscf/quarter), Annual daily average		For the purpose of documenting compliance with the emission limitations, HAP major
				MACTINI	[§63.764(e)]	(MMscf/day), and Maximum design capacity (MMscf/day).		source thresholds, as well as the benzene exemption, maintain records of all monitoring
					1300000 (0)1	(·····································		data, wet gas sampling, and annual GRI-GLYCALC emission estimates.
					Calculate benzene annual emissions. [§63.772(b)(2)]	At least once Quarterly: Absorber temp and pressure, lean glycol circulation rate, glycol		[45 CSR§13-5.11]
						pump type and max design (gpm), flash tank temp and pressure, stripping gas flow rate, if		
					If actual HAPs >= 5 T/yr of a single HAP or >= 12.5 T/yr of all HAPs, then update major	applicable, wet gas composition ,		
						wet gas water content, dry gas water content at a point directly after exiting the dehydration		
					12 months. [§63.760(c)]	column and before any additional separation points.		
						Can use default GRI-GLYCALC parameters for water contents and lean glycol circulation		
						rate.		
						[§63.772(b)(2)(i), 45 CSR§13-5.11]		
	P00	005	Ethane Amine Regenerator		Maximum gas throughput: 460 MMscfd (rolling 12-month average)	Annual sampling for composition (C6+) of Amine inlet gas stream.		Monthly and rolling 12-month total of amine unit feed stream.
					Ethane product CO ₂ content: < 1 mol%	Monthly flow rate of amine unit inlet feed stream.		12-month rolling records of GHG emissions estimated using the methodology in 40 CFR
					Paralle product CO2 content. < 1 more	Monthly now face of annual and mot feed steam.		Part 98, the annual gas analysis, and the flow rate records.
	P00	006	Ethane Amine Regenerator		Maximum gas throughput: 460 MMscfd (rolling 12-month average)	Annual sampling for composition (C6+) of Amine inlet gas stream.		Monthly and rolling 12-month total of amine unit feed stream.
					Ethane product CO ₂ content: < 1 mol%	Monthly flow rate of amine unit inlet feed stream.		12-month rolling records of GHG emissions estimated using the methodology in 40 CFR
C001	P00	01	Natural Gasoline Storage		Emissions from the Gasoline Storage Tank (S005) shall be controlled by a natural gas	Monitor the VRU units in accordance with the plans and specifications and manufacturer's		Part 98, the annual gas analysis, and the flow rate records. Daily records of flow to from the VRU to the Hot Oil Heater.
0001	100		Tank TK-802, with Natural		blanket and VRU. The VRU shall recover and direct any emissions from the tank (i.e.,	recommendations.		bany records of now to nom the vice to the rise on mean.
			Gas Blanket and VRU to		blanket gas) to the Hot Oil Heater (S001) for use as fuel.			12-month rolling records of GHG emissions estimated using the methodology in 40 CFR
			Hot Oil Heater					Part 98, the natural gas analysis, and the VRU exit flow records.
					The VRU system will employ a vapor return which shall be designed to achieve a minimum	a		
					guaranteed capture			Maintenance of VRU: VRU equipment inspection and/or preventative maintenance
					efficiency of 100% for the storage tank (S005).			procedures.
					The Gasoline Storage Tank (TK-802) shall be designed and operated in accordance with the			Malfunctions of VRU: occurrence and duration of any malfunction or operational
					information file in permit applications R13-2896 and R13-2896B.			shutdown of the VRU during which excess emissions occur. For each such case, the
					1 11			following information shall be recorded: the equipment involved; steps taken to minimiz
								emissions during the event; duration of the event; estimated increase in emissions during
								the event; in case of equipment malfunction, also record the cause of the malfunction and
								the steps taken to correct the malfunction; and any changes or modifications to equipmer
								or procedures that would help prevent future recurrences of the malfunction.
				NSPS Kb	A closed vent system and control device meeting the following specifications:	Monitor parameters as laid out in the monitoring plan. [§60.113b]		A copy of the operating plan for the tank, closed vent system, and control device.
					(i) The closed vent system shall be designed to collect all VOC vapors and gases discharged			
					from the storage vessel and operated with no detectable emissions as indicated by an instrument reading of less than 500 ppm above background and visual inspections, as	Storage temperature used to determine the maximum true vapor pressure may be determined below per §60.116b(e).		A record of the measured values of the parameters monitored in accordance with §60.113b(c)(2).
					determined in part 60, subpart VV, § 60.485(b).	pressure may be determined below per \$60.1160(e).		[§60.115b(c)]
					 (ii) The control device shall be designed and operated to reduce inlet VOC emissions by 			[300.1100(0)]
					95% or greater. If a flare is used as the control device, it shall meet the specifications			Readily accessible records showing the dimension of the storage vessel and an analysis
					described in the general control device requirements (§ 60.18) of the General Provisions.			showing the capacity of the storage vessel. [§60.116b(b)]
					[§60.112b(a)(3)]			
					On sector that a local sector and a sector blassical and associate the association of the placed			
					Operate the closed vent system and control device and monitor the parameters of the closed vent system and control device in accordance with the operating plan submitted to the			
					Administrator in accordance with paragraph (c)(1) of this section, unless the plan was			
					modified by the Administrator during the review process. In this case, the modified plan			
					applies.			
1			1	1	[§60.113b(c)]			

	Reporting
jor ring	
CFR	
CFR	
CFR	Upon request by the Director, report deviations within a requested time from of any occurrences when the control device was operated outside of the parameters defined in the monitoring plan.
imize luring n and pment	
	Submit an operating plan for the tank, closed vent system, and control device, including: 1) Documentation demonstrating that the control device will achieve the required control efficiency during maximum loading conditions. This documentation is to include a description of the gas stream which enters the control device, including flow and VOC content under varying liquid level conditions (dynamic and static) and manufacturer's design specifications for the control device. If the control device or the closed vent capture system receives vapors, gases, or liquids other than fuels from sources that are not designated sources under this subpart, the efficiency demonstration is to include consideration of all vapors, gases, and liquids received by the closed vent capture system and control device. If an enclosed combustion device with a minimum residence time of 0.75 seconds and a minimum temperature of 816 °C is used to meet the 95 percent requirement, documentation that those conditions will exist is sufficient to meet the requirements of this paragraph. 2) A description of the parameter or parameters to be monitored to ensure that the control device will be operated in conformance with its design and an explanation of the criteria used for selection of that parameter (or parameters). [[860.113b]

AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

ssion Control							
nit Device D ID	Point ID		Applicable Citation(s)	Limitation/Standard	Nr. 11. 1	The state of the s	D
C001	P001	Description Natural Gasoline Storage	Citation(s)		Monitoring mitor the VRU units in accordance with the plans and specifications and manufacturer's	Testing	Recordkeeping Daily records of flow to from the VRU to the Hot Oil Heater.
0001	1001	Tank TK-2803, with Natural			ommendations.		bany records of now to nom the vice to the not on nearer.
		Gas Blanket and VRU to		blanket gas) to the Hot Oil Heater (S001) for use as fuel.			12-month rolling records of GHG emissions estimated using the methodology in 40 CFR
		Hot Oil Heater					Part 98, the natural gas analysis, and the VRU exit flow records.
				The VRU system will employ a vapor return which shall be designed to achieve a minimum			
				guaranteed capture			Maintenance of VRU: VRU equipment inspection and/or preventative maintenance
				efficiency of 100% for the storage tank (S023).			procedures.
				The Gasoline Storage Tank (TK-2803) shall be designed and operated in accordance with			Malfunctions of VRU: occurrence and duration of any malfunction or operational
				the information file in permit applications R13-2896 and R13-2896B.			shutdown of the VRU during which excess emissions occur. For each such case, the following information shall be recorded: the equipment involved; steps taken to minimize
							emissions during the event; duration of the event; estimated increase in emissions during
							the event; in case of equipment malfunction, also record the cause of the malfunction and
							the steps taken to correct the malfunction; and any changes or modifications to equipment
							or procedures that would help prevent future recurrences of the malfunction.
			NSPS Kb		5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
			NSPS KD	A closed vent system and control device meeting the following specifications: Mo (i) The closed vent system shall be designed to collect all VOC vapors and gases discharged	mitor parameters as laid out in the monitoring plan. [§60.113b]		A copy of the operating plan for the tank, closed vent system, and control device.
					rage temperature used to determine the maximum true vapor		A record of the measured values of the parameters monitored in accordance with
					ssure may be determined below per §60.116b(e).		\$60.113b(c)(2).
				determined in part 60, subpart VV, § 60.485(b).			[§60.115b(c)]
				(ii) The control device shall be designed and operated to reduce inlet VOC emissions by			
				95% or greater. If a flare is used as the control device, it shall meet the specifications			Readily accessible records showing the dimension of the storage vessel and an analysis
				described in the general control device requirements (§ 60.18) of the General Provisions.			showing the capacity of the storage vessel. [§60.116b(b)]
				[§60.112b(a)(3)]			
				Operate the closed vent system and control device and monitor the parameters of the closed vent system and control device in accordance with the operating plan submitted to the			
				Administrator in accordance with paragraph (c)(1) of this section, unless the plan was			
				modified by the Administrator during the review process. In this case, the modified plan			
				applies.			
				[§60.113b(c)]			
0005	Doo ()	al million la					
C005, C004A	P004A	Slop Tank TK-906, with Natural Gas Blanket and		Emissions from the Slop Tank (S005) shall be controlled by a natural gas blanket and VRU (C005). The VRU shall direct any tank emissions to the flame zone of the Hot Oil Heater	onitor the VRU units in accordance with the plans and specifications and manufacturer's ommendations.		Maintain daily records of flow to flare.
C004A		VRU Vented to Flare		(S001).	onniendations.		Maintain 12-month rolling records of GHG emissions estimated using the methodology 40
		Vice Venice to Pinice		(5001).			CFR Part 98 and the fuel flow records.
				The VRU system will employ a vapor return which shall be designed to achieve a minimum			
				guaranteed capture			
				efficiency of 100% for the storage tank (S005).			
				The Gasoline Storage Tank (TK-802) shall be designed and operated in accordance with the			
				information file in permit applications R13-2896 and R13-2896B and in this Rule 13 application.			
A C004A	P004A	Compressor Blowdown		appreadon.			Maintain daily records of blowdowns and vents to flare, including duration, volume venter
		Vents and Relief Valves to					reason for blowdown (i.e., MSS or upset).
		Flare					
N/A	N/A	Refrigeration Compressor					Maintain daily records of blowdowns and vents to flare, including duration, volume vented
N/A	N/A	(Electric)					reason for blowdown (i.e., MSS or upset).
N/A	N/A	Residue Gas Compressors (4 Electric)					Maintain daily records of blowdowns and vents to flare, including duration, volume venter reason for blowdown (i.e., MSS or upset).
N/A	N/A	Ethane Compressors					Maintain daily records of blowdowns and vents to flare, including duration, volume vented
		(Electric)					reason for blowdown (i.e., MSS or upset).
N/A	P008	Propane, Butane, and		Maximum throughput limitations listed in Permit SC 15.1.1.			Maintain 12-month rolling total of product loading throughputs.
		Natural Gasoline Loading					
		(Truck, Railcar, and Barge)		Operated in accordance with the plans and specifications filed in Permit Application R13-			
				2896. The system will employ a vapor balance (closed system) to route all vapors back to			
N/A	N/A	NGL Storage Tank US-805		the tanks, for 100% control of loading emissions. Maintain sufficient operating pressure to prevent air emissions to atmosphere.			
18/25	19/24	NOL Stolage Talk 03-805		Manuali sufficient operating pressure to prevent an emissions to atmosphere.			
				Pressure relieve devices shall be vented to ground flare (C004A).			
N/A	N/A	Propane Storage Tank US-		Maintain sufficient operating pressure to prevent air emissions to atmosphere.			
		800					
				Pressure relieve devices shall be vented to ground flare (C004A).			
N/A	N/A	Produced Water Tank TK-		Maintain sufficient operating pressure to prevent air emissions to atmosphere.			
		907		Pressure relieve devices shall be vented to ground flare (C004A).			
N/A	N/A	Produced Water Truck		Maintain sufficient operating pressure to prevent air emissions to atmosphere.			
ner a	10/1	Loading		Manuali sufficient operating pressure to prevent an emissions to atmosphere.			
				Pressure relieve devices shall be vented to ground flare (C004A).			
N/A	N/A	n-Butane Storage Tank US-		Maintain sufficient operating pressure to prevent air emissions to atmosphere.			
		804					
37/4	NT/ -	1 D . O. D 1		Pressure relieve devices shall be vented to ground flare (C004A).			
N/A	N/A	i-Butane Storage Tank US- 801		Maintain sufficient operating pressure to prevent air emissions to atmosphere.			
1		001		Pressure relieve devices shall be vented to ground flare (C004A).			
				a resource remove devices shall be vented to ground fidite (C004/A).			

	Reporting
	Upon request by the Director, report deviations within a requested time from of any occurrences when the control device was
	operated outside of the parameters defined in the
R	monitoring plan.
ize	
ing	
nd	
ent	
	Submit an operating plan for the tank, closed vent system, and control device, including:
	1) Documentation demonstrating that the control device will achieve the required control efficiency during maximum loading
	conditions. This documentation is to include a description of the gas stream which enters the control device, including flow
	and VOC content under varying liquid level conditions (dynamic and static) and manufacturer's design specifications for the
	control device. If the control device or the closed vent capture system receives vapors, gases, or liquids other than fuels from
\$	sources that are not designated sources under this subpart, the efficiency demonstration is to include consideration of all
	vapors, gases, and liquids received by the closed vent capture system and control device. If an enclosed combustion device
	with a minimum residence time of 0.75 seconds and a minimum temperature of 816 °C is used to meet the 95 percent requirement, documentation that those conditions will exist is sufficient to meet the
	requirements of this paragraph.
	2) A description of the parameter or parameters to be monitored to ensure that the control device will be operated in
	conformance with its design and an explanation of the criteria used for selection of that parameter (or parameters).
	[§60.113b]
	[3001120]
y 40	
nted,	
nted,	
,	
nted,	
nted.	
mea,	
_	

AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

	Control I										
	Device			Applicable							
ID	ID	ID	Description	Citation(s)	Limitation/Standard		Monitoring		Testing	Recordkeeping	Reporting
FUG			gitives (VOC service)	NSPS KKK	Comply with NSPS KKK for equipment in VOC service, defined as 10% wt VOC.	Implement NSPS KKK LDAR.		Implement NSPS KKK LDAR.		Maintain LDAR requirements as follows:	Semiannual report of LDAR monitoring results and records, including number of PRV leaks and repairs.
AREA 1	A	AREA 1								1) leaking equipment shall be tagged	
					Leak definition: 10,000 ppmv for most components, 500 ppmv for PRVs and closed vent					2) tag may be removed after repair	
					systems. Leaking equipment shall be tagged; tag may be removed after repair.					3) for leaks, keep: instrument and operator ID, equipment ID, date detected, date(s) of each	
										attempt to repair the leak, repair methods applied in each attempt to repair the leak, "above	
					When a leak is detected, repair as soon as practicable, within 15 calendar days, or put on					10,000 ppm," repair delayed and reason for delay, if not repaired within 15 calendar days,	
					delay of repair list. First repair attempt must be within 5 calendar days. PRVs may not					signature of RO or designate who determined delay was necessary, expected date of repair	
					operate > 30 days after pressure release without monitoring.					for delayed repair, date of successful repair,	
										ID numbers for equipment with no detectable emissions	
					Flares must meet §60.18.					documentation proving exemption criteria are met	
FUG	N/A F	UG Fug	gitives (VOC service)	NSPS OOOO	Comply with NSPS OOOO for equipment in VOC service, defined as 10% wt VOC.	Implement NSPS OOOO LDAR.		Implement NSPS OOOO LDAR.		Maintain LDAR requirements as follows:	Semiannual report of LDAR monitoring results and records, including number of PRV leaks and repairs.
AREA 2	А	AREA 2			1, , , , , , , , , , , , , , , , , , ,	1		1		1) leaking equipment shall be tagged	
					Leak definition: 500 ppmv for most components, 2,000 ppmv for light liquid pumps.					2) tag may be removed after repair	
					Leaking equipment shall be tagged; tag may be removed after repair.					 a) for leaks, keep: instrument and operator ID, equipment ID, date detected, date(s) of each 	
					5 1 1 55 7 5 7					attempt to repair the leak, repair methods applied in each attempt to repair the leak, "above	
					When a leak is detected, repair as soon as practicable, within 15 calendar days, or put on					500 ppm," repair delayed and reason for delay, if not repaired within 15 calendar days,	
					delay of repair list. First repair attempt must be within 5 calendar days. PRVs may not					signature of RO or designate who determined delay was necessary, expected date of repair	
					operate > 30 days after pressure release without monitoring.					for delayed repair, date of successful repair,	
					1					4) ID numbers for equipment with no detectable emissions	
					Flares must meet §60.18.					5) documentation proving exemption criteria are met	
										, , , , , , , , , , , , , , , , , , , ,	
FUG	N/A F	UG Fug	gitives Cryo Trains (VOC	NSPS OOOO	Comply with NSPS OOOO for equipment in VOC service, defined as 10% wt VOC.	Implement NSPS OOOO LDAR.		Implement NSPS OOOO LDAR.		Maintain LDAR requirements as follows:	Semiannual report of LDAR monitoring results and records, including number of PRV leaks and repairs.
AREA 3,	A	AREA, serv	rvice)			*		•		1) leaking equipment shall be tagged	
FUG	F	UG			Leak definition: 500 ppmv for most components, 2,000 ppmv for light liquid pumps.					2) tag may be removed after repair	
AREA 4	А	AREA 4			Leaking equipment shall be tagged; tag may be removed after repair.					3) for leaks, keep: instrument and operator ID, equipment ID, date detected, date(s) of each	
										attempt to repair the leak, repair methods applied in each attempt to repair the leak, "above	
					When a leak is detected, repair as soon as practicable, within 15 calendar days, or put on					500 ppm," repair delayed and reason for delay, if not repaired within 15 calendar days,	
				1	delay of repair list. First repair attempt must be within 5 calendar days. PRVs may not					signature of RO or designate who determined delay was necessary, expected date of repair	
				1	operate > 30 days after pressure release without monitoring.					for delayed repair, date of successful repair,	
						1				4) ID numbers for equipment with no detectable emissions	
					Flares must meet §60.18.					5) documentation proving exemption criteria are met	
ROADS	N/A R	ROADS Unr	npaved Roads	45 CSR 17	Maintain PM control of the plant premises, and plant owned, leased or controlled access						
			*		roads, by paving, application of asphalt, chemical dust suppressants or other suitable dust	1					
				1	control measures.						
				1		1					1

ATTACHMENT P: PUBLIC NOTICE

RULE 13 AIR PERMIT APPLICATION

NATRIUM EXTRACTION AND FRACTIONATION PROCESSING PLANT

Notice of Application

Notice is given that Blue Racer Midstream, LLC has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for a Rule 13 Air Permit for a Modification to the Natrium Natural Gas Extraction and Processing Plant located on 14787 Energy Road, near Proctor, in Marshall County, West Virginia. The latitude and longitude coordinates are: 39° 45' 34.9" N; 80° 51' 42.2" W.

Blue Racer Midstream, LLC estimates the modification will result in the following emissions of Regulated Air Pollutant discharges to the atmosphere of:

Regulated Air Pollutant	Emissions (T/yr)
Oxides of Nitrogen (NO _X):	47.94
Carbon Monoxide (CO):	53.54
Volatile Organic Compounds (VOC):	45.21
Particulate Matter (PM):	3.08
PM with an aerodynamic diameter of less than or equal to 10 microns (PM ₁₀)	3.08
PM with an aerodynamic diameter of less than or equal to 2.5 microns (PM _{2.5})	3.08
Sulfur Dioxide (SO ₂):	0.30
Greenhouse Gases (CO ₂ e):	52,968

The addition of emission sources and operations are planned to begin on or about the 15th day of August, 2015. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1227, during normal business hours.

Dated this the (Day) day of (Month), (Year).

Richard Moncrief President and COO 5949 Sherry Lane, Suite 1300 Dallas, Texas 75225