

west virginia department of environmental protection

Division of Air Quality 601 57th Street SE Charleston, WV 25 4 Phone (304) 926-0475 Fax (304) 926-0479 www.dep.wv.gov

G70-C GENERAL PERMIT REGISTRATION APPLICATION

PREVENTION	AND CONTROL OF AIR POLLUTION IN REGARD TO THE CONSTRUCTION, MODIFICATION	1.
	RELOCATION, ADMINISTRATIVE UPDATE AND OPERATION OF	
	NATURAL GAS PRODUCTION FACILITIES LOCATED AT THE WELL SITE	

□CONSTRUCTION ⊠MODIFICATION □RELOCATION □CLASS I ADMINISTRATIVE UPDATE □CLASS II ADMINISTRATIVE UPDATE

SECTION 1. GENERAL INFORMATION

Name of Applicant (as regis	tered with the WV Secretary of	State's Office):		
Jay-Bee Oil & Gas, Inc.				
Federal Employer ID No. (F	EIN): 55-073-8862			
Applicant's Mailing Address	s: 3570 Shields Hill Rd.			
City: Cairo	State: WV ZIP Code: 26337			
Facility Name: RPT-8 Well	Pad Production Facility			
Operating Site Physical Add If none available, list road,	ress: None city or town and zip of facility.	Big Run Road		
City: Alma	Zip Code: 2632	Zip Code: 26320 County: Tyler		
Latitude & Longitude Coord Latitude: 39.483171 Longitude: - 80.786055	inates (NAD83, Decimal Degree	es to 5 digits):	The design of the second seco second second sec	
SIC Code: 1311	DAQ Facility ID No. (For existing facilities)			
NAICS Code: 211111		095-00040		

CERTIFICATION OF INFORMATION

This G70-C General Permit Registration Application shall be signed below by a Responsible Official. A Responsible Official is a President, Vice President, Secretary, Treasurer, General Partner, General Manager, a member of the Board of Directors, or Owner, depending on business structure. A business may certify an Authorized Representative who shall have authority to bind the Corporation, Partnership, Limited Liability Company, Association, Joint Venture or Sole Proprietorship. Required records of daily throughput, hours of operation and maintenance, general correspondence, compliance certifications and all required notifications must be signed by a Responsible Official or an Authorized Representative. If a business wishes to certify an Authorized Representative, the official agreement below shall be checked off and the appropriate names and signatures entered. Any administratively incomplete or improperly signed or unsigned G70-C Registration Application will be returned to the applicant. Furthermore, if the G70-C forms are not utilized, the application will be returned to the applicant. No substitution of forms is allowed.

I hereby certify that is an Authorized Representative and in that capacity shall represent the interest of the business (e.g., Corporation, Partnership, Limited Liability Company, Association Joint Venture or Sole Proprietorship) and may obligate and legally bind the business. If the business changes its Authorized Representative, a Responsible Official shall notify the Director of the Division of Air Quality immediately.

I hereby certify that all information contained in this G70-C General Permit Registration Application and any supporting documents appended hereto is, to the best of my knowledge, true, accurate and complete, and that all reasonable efforts have been made to provide the most comprehensive information possible.

Responsible Official Signature: Name and Title: Shane Doweld, Office Manager Email: sdowell@jaybeeoil.com	- F	Phone: 304/628-3119 Date: 7-22-16	Fax: 304/628-3119
If applicable: Authorized Representative Signature: Name and Title: Email:	Phone: Date:	F	?ax:
If applicable: Environmental Contact Name and Title: Email:	Phone: Date:	F	² ax:

OPERATING SIT	TE INFORMATION			
Briefly describe the proposed new operation and/or any chan This is an existing facility operating under a G70-A Perm units and a glycol dehydration unit.	ge(s) to the facility: it. Jay-Bee is seeking to add two new wells, three new GPU			
Directions to the facility: From intersection of SR-18 and C CR 13 and follow 0.9 miles to CR 40 (Big Run Road) on the approximately 2 miles. Entrance to the facility is on the lo lease road	e left. Turn onto Big Run Road and proceed for			
ATTACHMENTS AND SUPPORTING DOCUMENTS				
I have enclosed the following required documents:				
Check payable to WVDEP - Division of Air Quality with the	appropriate application fee (per 45CSR13 and 45CSR22).			
 Check attached to front of application. I wish to pay by electronic transfer. Contact for payment (I wish to pay by credit card. Contact for payment (incl. n 				
 S500 (Construction, Modification, and Relocation) S300 (Class II Administrative Update) \$1,000 NSPS fee for 40 CFR60, Subpart IIII, JJJJ and/or OOOO ¹ \$2,500 NESHAP fee for 40 CFR63, Subpart ZZZZ and/or HH ² 				
¹ Only one NSPS fee will apply. ² Only one NESHAP fee will apply. The Subpart ZZZZ NESHAP fee will be waived for new engines that satisfy requirements by complying with NSPS, Subparts IIII and/or JJJJ. NSPS and NESHAP fees apply to new construction or if the source is being modified.				
\boxtimes Responsible Official or Authorized Representative Signat	ure (if applicable)			
\boxtimes Single Source Determination Form (must be completed in	n its entirety) – Attachment A			
Siting Criteria Waiver (if applicable) – Attachment B Current Business Certificate – Attachment C				
⊠ Process Flow Diagram – Attachment D ⊠ Process Description – Attachment E				
🖾 Plot Plan – Attachment F	🛛 Plot Plan – Attachment F 🕅 🖾 Area Map – Attachment G			
⊠ G70-C Section Applicability Form – Attachment H	🖾 Emission Units/ERD Table – Attachment I			
S Fugitive Emissions Summary Sheet – Attachment J				
⊠ Gas Well Affected Facility Data Sheet (if applicable) – A	ttachment K			
Storage Vessel(s) Data Sheet (include gas sample data, USEPA Tanks, simulation software (e.g. ProMax, E&P Tanks, HYSYS, etc.), etc. where applicable) – Attachment L				
⊠ Natural Gas Fired Fuel Burning Unit(s) Data Sheet (GPUs, Heater Treaters, In-Line Heaters if applicable) – Attachment M				
⊠ Internal Combustion Engine Data Sheet(s) (include manufacturer performance data sheet(s) if applicable) – Attachment N				
Tanker Truck Loading Data Sheet (if applicable) – Attachment O				
\boxtimes Glycol Dehydration Unit Data Sheet(s) (include wet gas analysis, GRI- GLYCalc TM input and output reports and information on reboiler if applicable) – Attachment P				
Pneumatic Controllers Data Sheet – Attachment Q				
\boxtimes Air Pollution Control Device/Emission Reduction Device(applicable) – Attachment R	(s) Sheet(s) (include manufacturer performance data sheet(s) if			
\boxtimes Emission Calculations (please be specific and include all	calculation methodologies used) – Attachment S			
\boxtimes Facility-wide Emission Summary Sheet(s) – Attachment T	·			
🛛 Class I Legal Advertisement – Attachment U				
\square One (1) paper conv and two (2) copies of CD or DVD with pdf copy of application and attachments				

 \boxtimes One (1) paper copy and two (2) copies of CD or DVD with pdf copy of application and attachments

All attachments must be identified by name, divided into sections, and submitted in order.

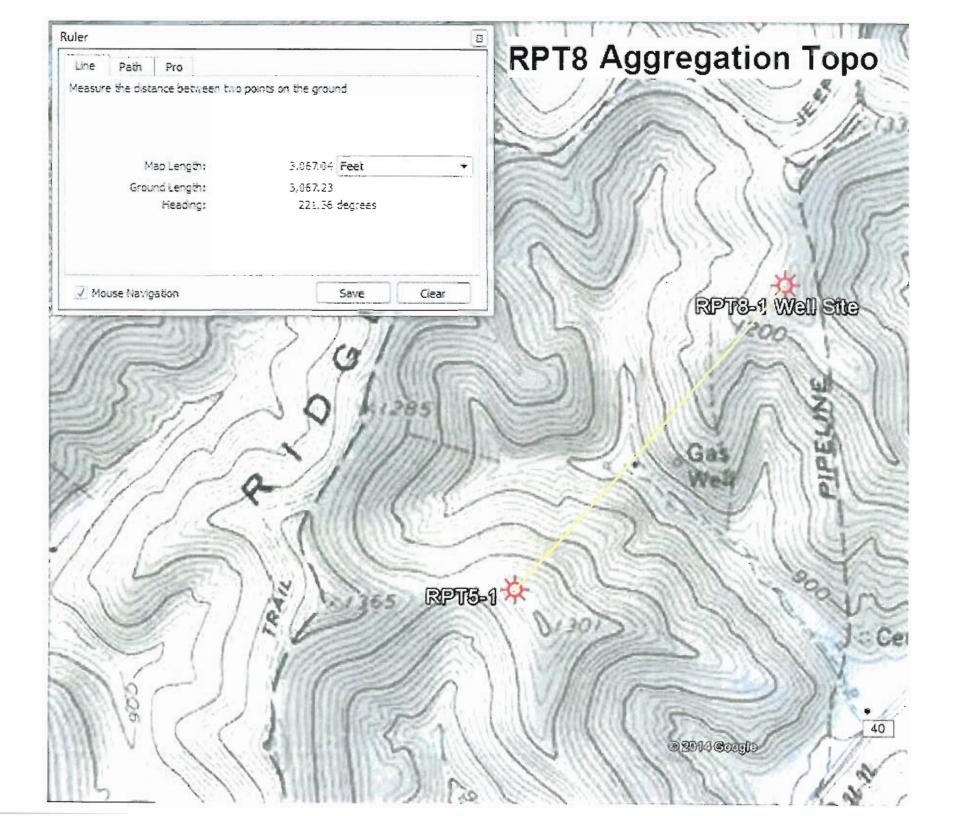
ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Classifying multiple facilities as one "stationary source" under 45CSR13, 45CSR14, and 45CSR19 is based on the definition of Building, structure, facility, or installation as given in §45-14-2.13 and §45-19-2.12. The definition states:

"Building, Structure, Facility, or Installation" means all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control). Pollutant-emitting activities are a part of the same industrial grouping if they belong to the same "Major Group" (i.e., which have the same two (2)-digit code) as described in the Standard Industrial Classification Manual, 1987 (United States Government Printing Office stock number GPO 1987 0-185-718:QL 3).

Is there a facility owned by or associated with the natural gas industry located within one (1) mile of the proposed facility? Yes \boxtimes No \square

If Yes, please complete the questionnaire on the following page (Attachment A).


Please provide a source aggregation analysis for the proposed facility below:

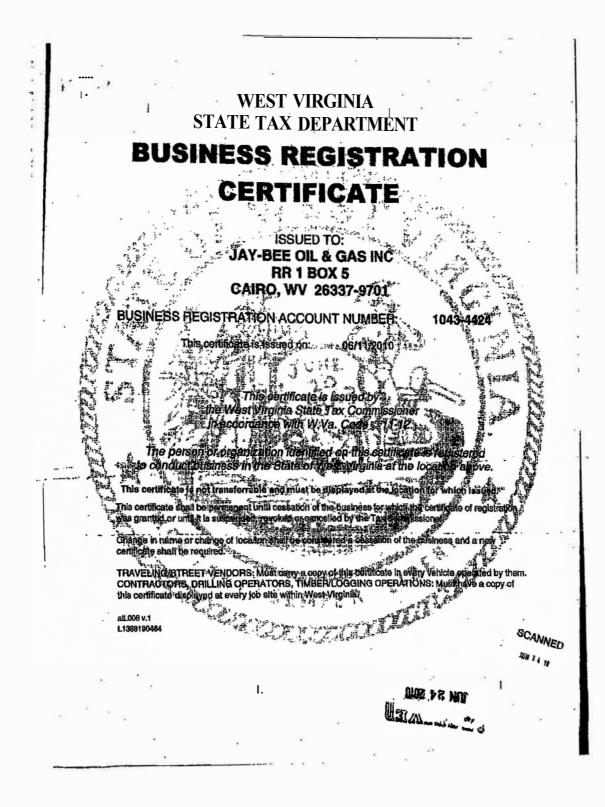
ATTACHMENT A - SINGLE SOURCE DETERMINATION FORM

Answer each question with a detailed explanation to determine contiguous or adjacent properties which are under a common control and any support facilities. This section must be completed in its entirety.

The planned modification does not impact the previous single source determination analysis.

Provide a map of contiguous or adjacent facilities (production facilities, compressor stations, dehydr which are under common control and those facilities that are not under common control but are supp indicate the SIC code, permit number (if applicable), and the distance between facilities in question	ort facilities	
Are the facilities owned by the same parent company or a subsidiary of the parent company? Provide the owners identity and the percentage of ownership of each facility. Jay-Bee Oil & Gas 100%	Yes 🗵	No 🗆
Does an entity such as a corporation have decision making authority over the operation of a second entity through a contractual agreement or voting interest? Please explain.	Yes 🗆	No 🛛
Is there a contract for service relationship between the two (2) companies or, a support/dependency relationship that exists between the two (2) companies? Please explain. Not relevant question. Both owned and operated by Jay-Bee	Yes 🗆	No 🛛
Do the facilities share common workforces, plant managers, security forces, corporate executive officers or board executives? Jay-Bee owns and operates both facilities.	Yes 🗵	No 🗆
Will managers or other workers frequently shuttle back and forth to be involved actively at both facilities? Jay-Bee owns and operates both facilities.	Yes 🗵	No 🗆
Do the facilities share common payroll activities, employee benefits, health plans, retirement funds, insurance coverage, or other administrative functions? Please explain. Jay-Bee owns and operates both facilities.	Yes 🗵	No 🗆
Does one (1) facility operation support the operation of the other facility?	Yes 🗆	No 🗵
Is one (1) facility dependent on the other? If one (1) facility shuts down, what are the limitations on the other to pursue outside business? Please explain.	Yes 🗆	No 🛛
Are there any financial arrangements between the two (2) entities? Jay-Bee owns and operates both facilities.	Yes 🗵	No 🗆
Are there any legal or lease agreements between the two (2) facilities? Jay-Bee owns and operates both facilities.	Yes 🗵	No 🗆
Do the facilities share products, byproducts, equipment, or other manufacturing or air pollution control device equipment? Please explain. Well pads operate independently.	Yes 🗆	No 🛛
Do all the pollutant-emitting activities at the facilities belong to the same SIC Code? Please provide the SIC Codes. 1311	Yes 🗵	No 🗆
Was the location of the new facility chosen primarily because of its proximity to the existing facility to integrate the operation of the two (2) facilities? Please explain.	Yes 🗆	No 🖂
Will materials be routinely transferred between the two (2) facilities? Please explain the amount of transfer and how often the transfers take place and what percentages go to the various entities.	Yes 🗆	No 🖾
Does the facility influence production levels or compliance with environmental regulations at other facilities? Who accepts the responsibility for compliance with air quality requirements? Please explain. No, facilities operate independently. Jay-Bee Office Manager is responsible for Air Quality Requirements for both facilities	Yes 🗆	No 🛛

ATTACHMENT C – CURRENT BUSINESS CERTIFICATE

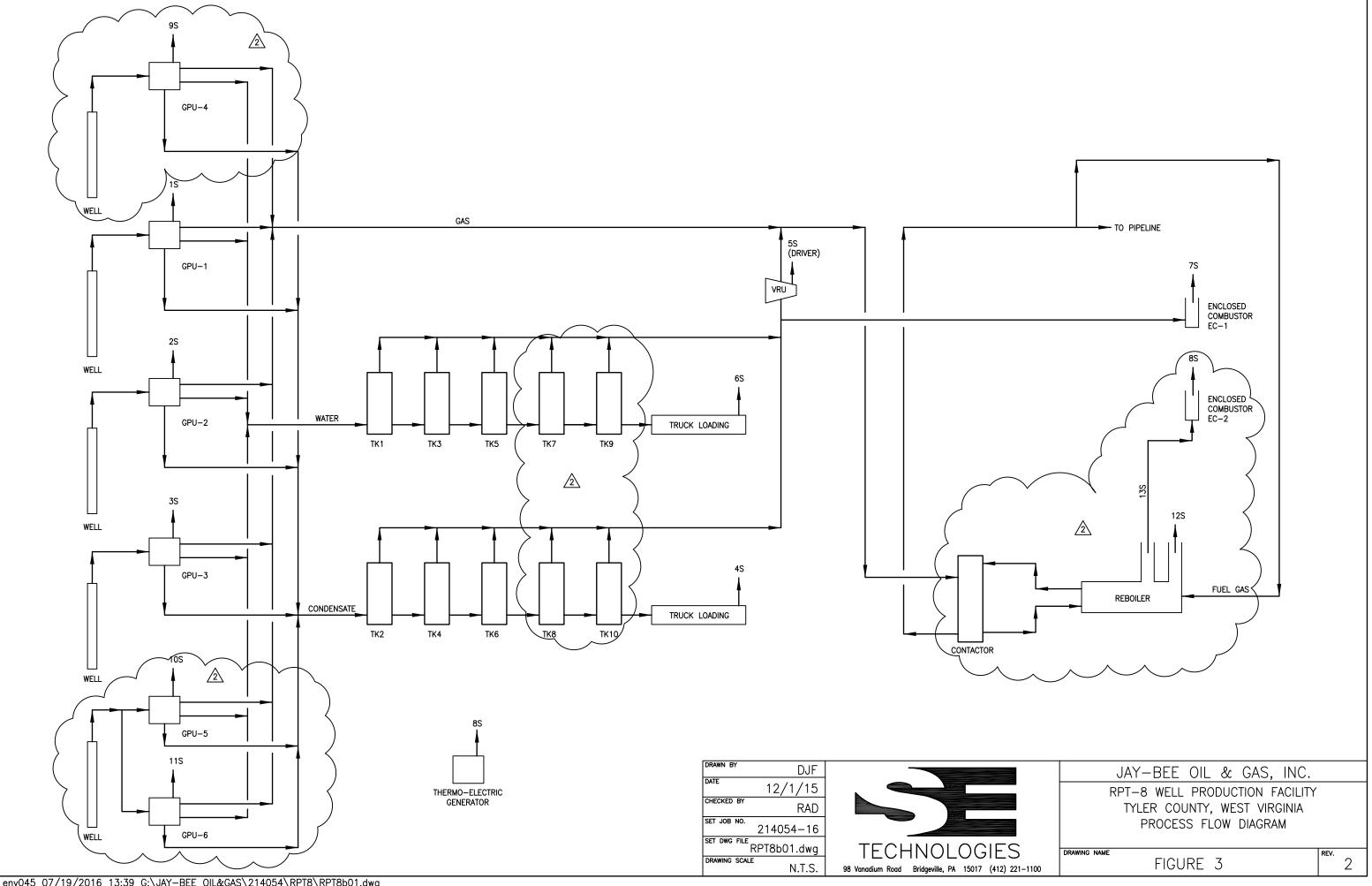

If the applicant is a resident of West Virginia, the applicant should provide a copy of the current Business Registration Certificate issued to them from the West Virginia Secretary of State's Office. If the applicant is not a resident of the State of West Virginia, the registrant should provide a copy of the Certificate of Authority/Authority of LLC/Registration. This information is required for all sources to operate a business in West Virginia regardless of whether it is a construction, modification, or administrative update.

If you are a new business to West Virginia and have applied to the West Virginia Secretary of State's Office for a business license, please include a copy of your application.

Please note: Under the West Virginia Bureau of Employment Programs, 96CSR1, the DAQ may not grant, issue, or renew approval of any permit, general permit registration, or Certificate to Operate to any employing unit whose account is in default with the Bureau of Employment Programs Unemployment Compensation Division.

Attachment C

Attached Current WV Business Certificate



ATTACHMENT D – PROCESS FLOW DIAGRAM

Provide a diagram or schematic that supplements the process description of the operation. The process flow diagram must show all sources, components or facets of the operation in an understandable line sequence of operation. The process flow diagram should include the emission unit ID numbers, the pollution control device ID numbers, and the emission point ID numbers consistent with references in other attachments of the application. For a proposed modification, clearly identify the process areas, emission units, emission points, and/or control devices that will be modified, and specify the nature and extent of the modification.

Use the following guidelines to ensure a complete process flow diagram:

- The process flow diagram shall logically follow the entire process from beginning to end.
- Identify each emission source and air pollution control device with proper and consistent emission unit identification numbers, emission point identification numbers, and control device identification numbers.
- The process flow lines may appear different for clarity. For example, dotted lines may be used for vapor flow and solid lines used for liquid flow and arrows for direction of flow.
- The process flow lines may be color coded. For example: new or modified equipment may be red; old or existing equipment may be blue; different stages of preparation such as raw material may be green; and, finished product or refuse, another color.

Plot: env045 07/19/2016 13:39 G:\JAY-BEE OIL&GAS\214054\RPT8\RPT8b01.dwg

ATTACHMENT E – PROCESS DESCRIPTION

Provide a detailed written description of the operation for which the applicant is seeking a permit. The process description is used in conjunction with the process flow diagram to provide the reviewing engineer a complete understanding of the activity at the operation. Describe in detail and order the complete process operation.

Use the following guidelines to ensure a complete Process Description:

- The process flow diagram should be prepared first and used as a guide when preparing the process description. The written description shall follow the logical order of the process flow diagram.
- All emission sources, emission points, and air pollution control devices must be included in the process description.
- When modifications are proposed, describe the modifications and the effect the changes will have on the emission sources, emission points, control devices and the potential emissions.
- Proper emission source ID numbers must be used consistently in the process description, the process flow diagram, the emissions calculations, and the emissions summary information provided.
- Include any additional information that may facilitate the reviewers understanding of the process operation.

The process description is required for all sources regardless of whether it is a construction, modification, or administrative update.

Jay-Bee Oil & Gas, Incorporated RTP-8 Well Pad Production Facility Attachment E Process Description

Jay-Bee currently operates the RTP-8 Well Pad Production Facility under a G70-A General Permit Registration. At this facility natural gas and Produced Fluids (condensate and water) are received from three wells and passed through Gas Processing Units (one per well for Marcellus Wells and two per well for the Utica Well) to avoid ice formation during subsequent pressure drops. The GPU also separates the gas from the liquids and separates the liquids into Condensate and Produced Water. The gas is routed to a gathering pipeline owned and operated by others.

Both the Condensate and Produced Water are accumulated in six 210 BBL tanks (three for Condensate and three for Produced Water), pending truck transportation by others. The Condensate is transported to a regional processing facility and the Produced Water to a regional disposal facility. Flash, working and breathing losses from these tanks is currently routed to a Vapor Recovery Unit (VRU) with the captured vapors routed back to the raw gas discharge line. In accordance with the G70-A permit registration a maximum capture and control efficiency of only 95% is claimed for the VRU. A back-up enclosed combustor was installed under a modification of the original G70-A permit registration early this year. Approval for the installation and operation of a Thermo-Electric Generator was also obtained at that time.

This modification application seeks approval for the installation of three additional GPU units associated with two new wells being installed on this well pad. Due to the additional liquid production anticipated with the added wells, four additional tanks will be installed, two for condensate and two for produced water. Additionally, Jay-Bee is seeking approval of a dehydration unit to reduce the water vapor content of the produced gas prior to injection into the gathering line owned and operated by others. The dehydration unit will not have a flash tank. Emissions from the reboiler will be controlled by an enclosed combustor (EC-2), separate from the current enclosed combustor utilized as backup for the VRU.

Lastly, in association with the additional storage tanks, Jay-Bee is requesting an increase in fugitive dust emissions due to an increase in potential truck traffic.

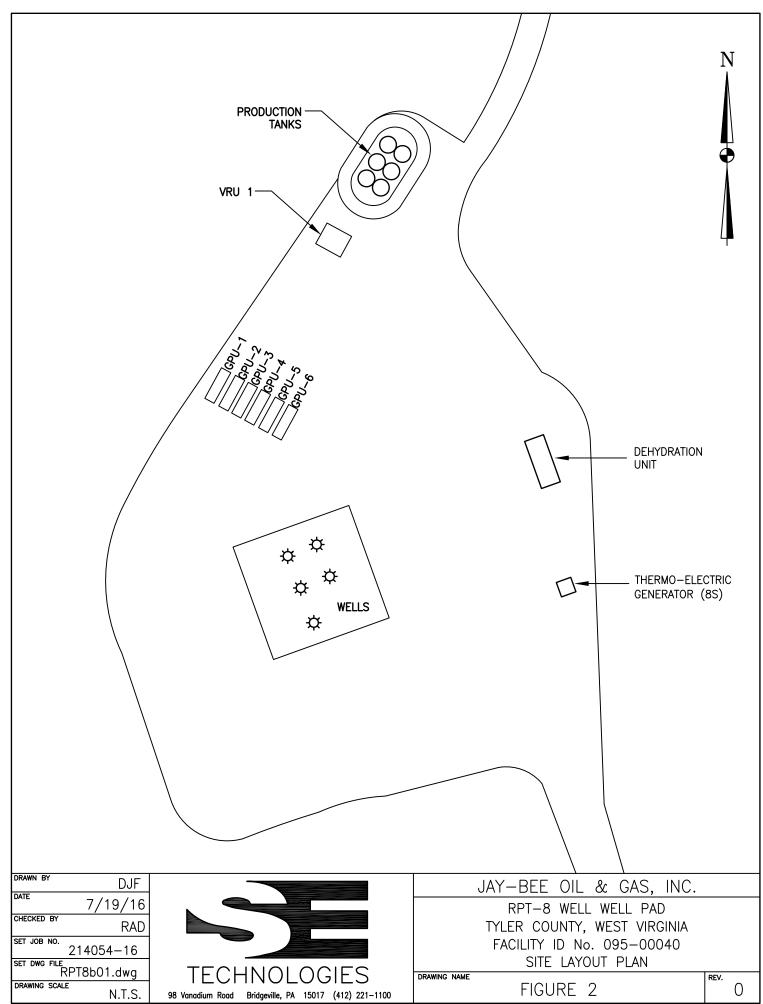
There are no other modifications being requested at this time

A Process Flow Diagram depicting the new and existing features is provided in Attachment D.

In summary, upon approval of this application, emission sources at this well pad will include the following. New sources are in bold.

- Six GPUs, each with a 1.5 MMBTU/Hr heater (Sources 1S, 2S, 3S, 9S, 10S and 11S)
- Five Produced Water Tanks (Sources TK1, TK3, TK5, **TK7 and TK9**)
- Five Condensate Tanks (Sources TK0, TK4, TK6, **TK8 and TK10**)
- One Vapor Recovery Unit with Cummins driver engine (Source 5S), controlling emissions from TK1-TK10
- Backup Enclosed Combustor for VRU (Source 7S)
- Condensate Truck Loading (Source 4S)
- Produced Water Truck Loading (Source 6S)
- Dehydration Unit (Sources 12S reboiler vent and 13S still vent)
- Enclosed combustor for control of still vent emissions EC-2

ATTACHMENT F – PLOT PLAN

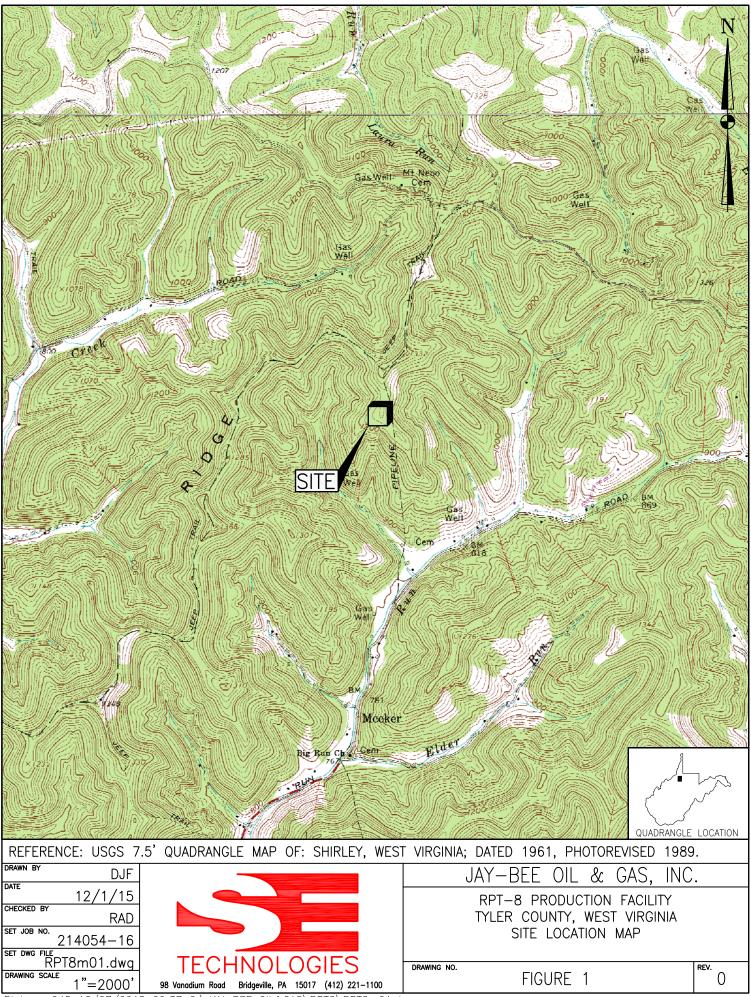

Provide an accurately scaled and detailed Plot Plan showing the locations of all emission units, emission points, and air pollution control devices. Show all emission units, affected facilities, enclosures, buildings and plant entrances and exits from the nearest public road(s) as appropriate. Note height, width and length of proposed or existing buildings and structures.

A scale between 1"=10' and 1"=200' should be used with the determining factor being the level of detail necessary to show operation or plant areas, affected facilities, emission unit sources, transfer points, etc. An overall small scale plot plan (e.g., 1"=300') should be submitted in addition to larger scale plot plans for process or activity areas (e.g., 1"=50') if the plant is too large to allow adequate detail on a single plot plan. Process or activity areas may be grouped for the enlargements as long as sufficient detail is shown.

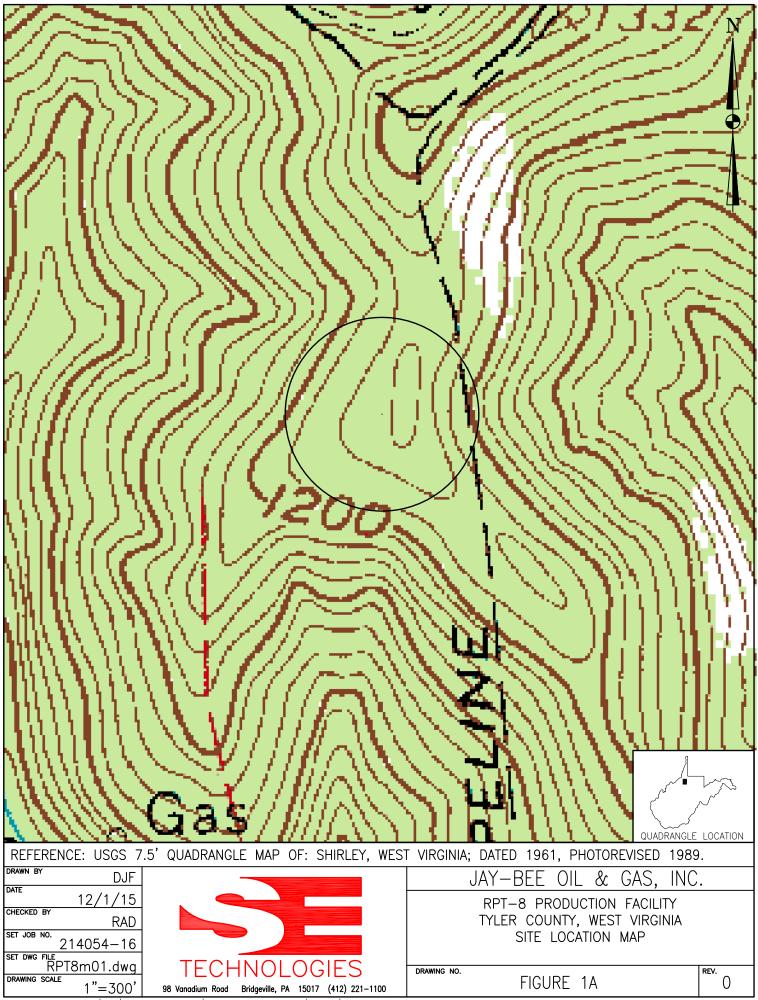
Use the following guidelines to ensure a complete Plot Plan:

- Facility name
- Company name
- Company facility ID number (for existing facilities)
- Plot scale, north arrow, date drawn, and submittal date.
- Facility boundary lines
- Base elevation
- Lat/Long reference coordinates from the area map and corresponding reference point elevation
- Location of all point sources labeled with proper and consistent source identification numbers

This information is required for all sources regardless of whether it is a construction, modification, or administrative update.


Plot: env045 07/19/2016 13:25 G:\JAY-BEE OIL&GAS\214054\RPT8\RPT8b01.dwg

ATTACHMENT G – AREA MAP


Provide an Area Map showing the current or proposed location of the operation. On this map, identify plant or operation property lines, access roads and any adjacent dwelling, business, public building, school, church, cemetery, community or institutional building or public park within a 300' boundary circle of the collective emission units.

Please provide a 300' boundary circle on the map surrounding the proposed emission units collectively.

This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Plot: env045 12/07/2015 09:37 G:\JAY-BEE OIL&GAS\RPT8\RPT8m01.dwg

Plot: env045 07/19/2016 13:52 G:\JAY-BEE OIL&GAS\RPT8\RPT8 300 RADm01.dwg

ATTACHMENT H – G70-C SECTION APPLICABILITY FORM

General Permit G70-C Registration Section Applicability Form

General Permit G70-C was developed to allow qualified applicants to seek registration for a variety of sources. These sources include gas well affected facilities, storage vessels, gas production units, in-line heaters, heater treaters, glycol dehydration units and associated reboilers, pneumatic controllers, centrifugal compressors, reciprocating internal combustion engines (RICEs), tank truck loading, fugitive emissions, completion combustion devices, flares, enclosed combustion devices, and vapor recovery systems. All registered facilities will be subject to Sections 1.0, 2.0, 3.0, and 4.0.

General Permit G70-C allows the registrant to choose which sections of the permit they are seeking registration under. Therefore, please mark which additional sections that you are applying for registration under. If the applicant is seeking registration under multiple sections, please select all that apply. Please keep in mind, that if this registration is approved, the issued registration will state which sections will apply to your affected facility.

G	SENERAL PERMIT G70-C APPLICABLE SECTIONS
Section 5.0	Gas Well Affected Facility (NSPS, Subpart OOOO)
Section 6.0	Storage Vessels Containing Condensate and/or Produced Water ¹
□Section 7.0	Storage Vessel Affected Facility (NSPS, Subpart OOOO)
Section 8.0	Control Devices and Emission Reduction Devices not subject to NSPS Subpart OOOO and/or NESHAP Subpart HH
Section 9.0	Small Heaters and Reboilers not subject to 40CFR60 Subpart Dc
□Section 10.0	Pneumatic Controllers Affected Facility (NSPS, Subpart OOOO)
□Section 11.0	Centrifugal Compressor Affected Facility (NSPS, Subpart OOOO) ²
Section 12.0	Reciprocating Compressor Affected Facility (NSPS, Subpart OOOO) ²
Section 13.0	Reciprocating Internal Combustion Engines, Generator Engines, Microturbines
Section 14.0	Tanker Truck Loading ³
Section 15.0	Glycol Dehydration Units ⁴

1 Applicants that are subject to Section 6 may also be subject to Section 7 if the applicant is subject to the NSPS, Subpart OOOO control requirements or the applicable control device requirements of Section 8.

2 Applicants that are subject to Section 11 and 12 may also be subject to the applicable RICE requirements of Section 13.

- 3 Applicants that are subject to Section 14 may also be subject to control device and emission reduction device requirements of Section 8.
- 4 Applicants that are subject to Section 15 may also be subject to the requirements of Section 9 (reboilers). Applicants that are subject to Section 15 may also be subject to control device and emission reduction device requirements of Section 8.

ATTACHMENT I – EMISSION UNITS / EMISSION REDUCTION DEVICES (ERD) TABLE

Include ALL emission units and air pollution control devices/ERDs that will be part of this permit application review. Do not include fugitive emission sources in this table. Deminimis storage tanks shall be listed in the Attachment L table. This information is required for all sources regardless of whether it is a construction, modification, or administrative update.

Emission Unit ID ¹	Emission Point ID ²	Emission Unit Description	Year Installed	Manufac. Date ³	Design Capacity	Type ⁴ and Date of Change	Control Device(s) ⁵	ERD(s) ⁶
GPU-1	15	GPU	2013		1.5 MMBTU/Hr	EXIST	None	
GPU-2	28	GPU	2013		1.5 MMBTU/Hr	EXIST	None	
GPU-3	38	GPU	2013		1.5 MMBTU/Hr	EXIST	None	
TLU-1	4S	Condensate Truck Loading	2013			EXIST	None	
VRU-1	55	VRU Driver	2013	3/19/12		EXIST	1C	
TLU-2	6S	Produced Water Truck Loading	2013			EXIST	None	
TNK1	5S/7S	Produced Water Tank	2013		210 BBL	EXIST	EC-1	VRU-1
TNK2	5S/7S	Condensate Tank	2013		210 BBL	EXIST	EC-1	VRU-1
TNK3	5S/7S	Produced Water Tank	2013		210 BBL	EXIST	EC-1	VRU-1
TNK4	5S/7S	Condensate Tank	2013		210 BBL	EXIST	EC-1	VRU-1
TNK5	5S/7S	Produced Water Tank	2013		210 BBL	EXIST	EC-1	VRU-1
TNK6	5S/7S	Condensate Tank	2013		210 BBL	EXIST	EC-1	VRU-1
TNK7	58/78	Produced Water Tank	Pending		210 BBL	NEW	EC-1	VRU-1
TNK8	5S/7S	Condensate Tank	Pending		210 BBL	NEW	EC-1	VRU-1
TNK9	58/78	Produced Water Tank	Pending		210 BBL	NEW	EC-1	VRU-1
TNK10	58/78	Condensate Tank	Pending		210 BBL	NEW	EC-1	VRU-1
EC-1	75	Enclosed Combustor	2016		10.0 MMBTU/Hr	EXIST	N/A	
TEG-1	85	Thermoelectric Generator	2016		4.4 KW/Hr	EXIST	None	
GPU-4	95	GPU	Pending		1.5 MMBTU/Hr	NEW	None	
GPU-5	105	GPU	Pending		1.5 MMBTU/Hr	NEW	None	
GPU-6	118	GPU	Pending		1.5 MMBTU/Hr	NEW	None	
RBV-1	128	Reboiler Vent	Pending		0.3 MMBTU/Hr	NEW	None	
RSV-1	138	Still Vent	Pending		40 MMSCFD	NEW	EC-2	
EC-2	135	Enclosed Combustor	Pending		10.0 MMBTU/Hr	NEW	N/A	

¹ For Emission Units (or Sources) use the following numbering system: 1S, 2S, 3S,... or other appropriate designation.

² For Emission Points use the following numbering system:1E, 2E, 3E, ... or other appropriate designation.

³ When required by rule

⁴ New, modification, removal, existing

⁵ For Control Devices use the following numbering system: 1C, 2C, 3C,... or other appropriate designation.

⁶ For ERDs use the following numbering system: 1D, 2D, 3D,... or other appropriate designation.

ATTACHMENT J – FUGITIVE EMISSIONS SUMMARY SHEET

Sources of fugitive emissions may include loading operations, equipment leaks, blowdown emissions, etc. Use extra pages for each associated source or equipment if necessary.

5	Source/Equipm	ent:						
	Leak Detection Method Used	L	⊠ Audible, visual, and olfactory (AVO) inspections	□ Infrared (FLIR) cameras	□ Other (pleas	se describe)		□ None required
Component	Closed		Source of	Leak Factors	Stream type		Estimated Em	issions (tpy)
Туре	Vent System	Count		ner (specify))	(gas, liquid, etc.)	VOC	НАР	GHG (CO ₂ e)
Pumps	□ Yes ⊠ No	1	API		⊠ Gas □ Liquid □ Both	<0.01	<0.01	0.34
Valves	□ Yes ⊠ No	44	EPA		□ Gas □ Liquid ⊠ Both	0.26	<0.01	2.65
Safety Relie Valves	$ f \qquad \Box Yes \\ \boxtimes No $	20	EPA		□ Gas □ Liquid ⊠ Both	0.04	<0.01	3.02
Open Ended Lines	□ Yes ⊠ No	6	EPA			0.02	<0.01	0.01
Sampling Connections	□ Yes ⊠ No	10	EPA		□ Gas □ Liquid ⊠ Both	1.16	0.01	23.59
Connections (Not sampling		98	EPA		□ Gas □ Liquid ⊠ Both	1.86	0.02	1.357
Compressors	S □ Yes No	1	API		Gas Liquid Both	<0.01	<0.01	0.07
Flanges	□ Yes ⊠ No	90	EPAAPI		☐ Gas □ Liquid ⊠ Both	0.04	<0.01	4.47
Other ¹	□ Yes ⊠ No		N/A	N/A		<0.01	0.01	7.5

¹ Other equipment types may include compressor seals, relief valves, diaphragms, drains, meters, etc.

Please provide an explanation of the sources of fugitive emissions (e.g. pigging operations, equipment blowdowns, pneumatic controllers, etc.):

Blowdowns (no change in this modification request) are presented under Other. Un-captured/controlled Tank Emissions are addressed in Attachment L. Truck Loading emissions are addressed in Attachment O

Please indicate if there are any closed vent bypasses (include component):

Thief Hatch set at 14 oz. VRU and Combustor to control pressure to below this set point.

Specify all equipment used in the closed vent system (e.g. VRU, ERD, thief hatches, tanker truck loading, etc.) **Thief Hatch, VRU and Enclosed Combustor**

Jay-Bee Oil & Gas, Inc. RTP-8 Well Pad Production Facility Attachment J Fugitive Emissions Data

Equipment Fugitive Emissions

As noted in the process description, Jay-Bee plans to install an enclosed combustor at its RTP-8 Well Pad Production Facility. This equipment will contain a variety of piping containing natural gas and tank vapors. During the normal course of operation minor leaks from valves, pressure release devices and various fittings associated with this piping may occur. The number of valves, flanges, etc. has been revised to reflect the inclusion of additional equipment that will be installed with this modification. A new potential emission rate of 3.44 tpy of VOCs and 35.15 tpy CO_2e has been estimated.

Estimates of these emissions are included in the calculations (Attachment S) and summarized on the form included in this section. These calculations are based on emission factors accepted by the American Petroleum Institute and EPA.

Pigging Emission Estimates

There are no pigging operations in association with this facility.

Facility Blowdown Emission Estimates

The proposed modification will not result in any changes to the blowdown emissions at this facility.

Storage Tank and Haul Road Fugitive Emissions

Produced Fluids (water and condensate) received by this facility are currently accumulated in six 210-BBL tanks (three condensate and three water) prior to off-site shipment. With this modification, the number is being expanded to ten 210-BBL tanks (five condensate and five produced water). Updated emissions from these tanks were determined by using flash gas measurements from pressurized condensate samples collected at this well pad and working/breathing losses using AP-42 methods using condensate vapor data from this facility. Given changes in condensate and water production and more accurate sample data, <u>un-controlled</u> emissions from these tanks were determined to be a maximum of 348.32 tons per year of VOCs. These vapors are routed to a VRU with an enclosed combustor backup for a capture and control efficiency of 98%. Emission calculations are presented in Attachment S.

Emissions from Truck Loading Operations have been correspondingly revised to match the current maximum water and condensate production rates.

Fugitive dust emissions from truck traffic on the access road have been revised in accordance with the revised produced water and condensate production and subsequent transportation needs.

ATTACHMENT K – GAS WELL AFFECTED FACILITY DATA SHEET

Complete this data sheet if you are the owner or operator of a gas well affected facility for which construction, modification or reconstruction commenced after August 23, 2011. This form must be completed for natural gas well affected facilities regardless of when flowback operations occur (or have occurred).

API Number	Date of Flowback	Date of Well Completion	Green Completion and/or Combustion Device
47-095-0283	2-28-2014	2-28-2014	Flow to separator and into gathering line as soon as practical
47-095-0284	2-28-2014	2-28-2014	Flow to separator and into gathering line as soon as practical
47-095-0285	2-28-2014	2-28-2014	Flow to separator and into gathering line as soon as practical
47-95-02329	Pending	Pending	Flow to separator and into gathering line as soon as practical
47-95-02330	Pending	Pending	Flow to separator and into gathering line as soon as practical

Note: If future wells are planned and no API number is available please list as PLANNED. If there are existing wells that commenced construction prior to August 23, 2011, please acknowledge as existing.

This is the same API (American Petroleum Institute) well number(s) provided in the well completion notification and as provided to the WVDEP, Office of Oil and Gas for the well permit. The API number may be provided on the application without the state code (047).

Every oil and gas well permitted in West Virginia since 1929 has been issued an API number. This API is used by agencies to identify and track oil and gas wells.

The API number has the following format: 047-001-00001

Where,

047 = State code. The state code for WV is 047.

- 001 = County Code. County codes are odd numbers, beginning with 001
- (Barbour) and continuing to 109 (Wyoming).
- 00001 = Well number. Each well will have a unique well number.

ATTACHMENT L – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

- □ Composition of the representative sample used for the simulation
- □ For each stream that contributes to flashing emissions:
 - \Box Temperature and pressure (inlet and outlet from separator(s))
 - □ Simulation-predicted composition
 - □ Molecular weight
 - \Box Flow rate
- □ Resulting flash emission factor or flashing emissions from simulation
- $\hfill\square$ Working/breathing loss emissions from tanks and/or loading emissions if

simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name RPT-8	2. Tank Name Tank 7 and Tank 9			
3. Emission Unit ID number TNK7 and TNK9	4. Emission Point ID number 5 S/ 7 S			
5. Date Installed , Modified or Relocated (<i>for existing tanks</i>)	6. Type of change:			
	\boxtimes New construction \square New stored material \square Other			
Was the tank manufactured after August 23, 2011?	\Box Relocation			
\boxtimes Yes \square No				
7A. Description of Tank Modification (<i>if applicable</i>)				
7B. Will more than one material be stored in this tank? If so, a separate form must be completed for each material.				
\Box Yes \boxtimes No				
7C. Was USEPA Tanks simulation software utilized?				
\Box Yes \boxtimes No				
If Yes, please provide the appropriate documentation and items 8-42 below are not required.				

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the internal cross-sectional area multiplied by internal height.				
210 BBL				
9A. Tank Internal Diameter (ft.) 12.5	9B. Tank Internal Height (ft.) 15			
10A. Maximum Liquid Height (ft.) 13	10B. Average Liquid Height (ft.) 8			
11A. Maximum Vapor Space Height (ft.) 14	11B. Average Vapor Space Height (ft.) 7			
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume". 180 BBL			
13A. Maximum annual throughput (gal/yr) 200,000	13B. Maximum daily throughput (gal/day) 7,000			
14. Number of tank turnovers per year 27	15. Maximum tank fill rate (gal/min) 50			
16. Tank fill method \Box Submerged \boxtimes Splash	□ Bottom Loading			
17. Is the tank system a variable vapor space system? \Box Yes	🖾 No			
If yes, (A) What is the volume expansion capacity of the system	n (gal)?			
(B) What are the number of transfers into the system per	year?			
18. Type of tank (check all that apply):				
\boxtimes Fixed Roof \square vertical \square horizontal \square flat roof \square cone roof \square dome roof \square other (describe)				
□ External Floating Roof □ pontoon roof □ double deck roof				
Domed External (or Covered) Floating Roof				
□ Internal Floating Roof □ vertical column support	□ self-supporting			
□ Variable Vapor Space □ lifter roof □ diaphragm				
□ Pressurized □ spherical □ cylindrical				
\Box Other (describe)				

PRESSURE/VACUUM CONTROL DATA

19. Check as many as ap	ply:								
\Box Does Not Apply				🗆 Ruptu	re Disc (p	osig)			
□ Inert Gas Blanket of _				□ Carbo	on Adsorp	tion ¹			
☑ Vent to Vapor Combu	ustion Dev	vice ¹ (vapo	or combus	tors, flares	, thermal	oxidizers,	enclosed c	combustors	s) as back-up to VRU
⊠ Conservation Vent (p	sig)			□ Conde	enser ¹				
0.4 oz. Vacuum Setting	14 oz	. Pressur	e Setting						
□ Emergency Relief Va	lve (psig)								
Vacuum Setting		Pressure	Setting						
☑ Thief Hatch Weighter	d⊠Yes∣	🗆 No							
¹ Complete appropriate A	ir Pollutio	n Control	Device S	heet					
20. Expected Emission R	Rate (subm	it Test Da	ata or Calc	ulations he	ere or else	where in	the applica	tion).	
Material Name	Flashin	g Loss	Breath	ing Loss	Worki	ng Loss	Total		Estimation Method ¹
							Emissio	ons Loss	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
VOC	0.03	0.15					0.03	0.15	MB
HAPs	< 0.01	0.01					< 0.01	0.01	MB

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATIO	N INFORMATION				
21. Tank Shell Construction:					
\Box Riveted \Box Gunite lined \Box Epoxy	y-coated rivets 🛛 🖾 Ot	her (de	scribe) Welded	l	
21A. Shell Color: Blue	21B. Roof Color: Blue	e		21C. Year	Last Painted: NEW
22. Shell Condition (if metal and unlined):					
🛛 No Rust 🛛 Light Rust 🗍 Dense	Rust 🛛 Not applica	able			
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating to	emperati	ire:	22C. If yes	s, how is heat provided to tank?
23. Operating Pressure Range (psig): 2 oz – 14	1 oz				
Must be listed for tanks using VRUs with		•			
24. Is the tank a Vertical Fixed Roof Tank?	24A. If yes, for dome n	oof prov	vide radius (ft):	24B. If yes	s, for cone roof, provide slop (ft/ft):
\boxtimes Yes \Box No					
25. Complete item 25 for Floating Roof Tanks	\Box Does not apply	\boxtimes			
25A. Year Internal Floaters Installed:	11.7				
25B. Primary Seal Type (check one): Met	allic (mechanical) sho	e seal	Liquid more	unted resilie	ent seal
	or mounted resilient se		□ Other (des		
				chibe).	
25C. Is the Floating Roof equipped with a second	ndary seal? 🗀 Yes	□ No			
25D. If yes, how is the secondary seal mounted	? (check one) \Box Sho	e 🗆	Rim 🗆 Oth	ner (describ	e):
25E. Is the floating roof equipped with a weather	er shield? 🛛 Yes	□ N	0		
25F. Describe deck fittings:					
26. Complete the following section for Interna	l Floating Roof Tanks	\boxtimes	Does not apply	1	
26A. Deck Type: Bolted W	/elded	26B. 1	For bolted decks,	provide decl	k construction:
				-	
26C. Deck seam. Continuous sheet constructio	n:				
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide	e \Box 5 x 7.5 ft. wide	□ 5 x	12 ft. wide \Box] other (de	scribe)
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):	26F. H	For column suppo	orted	26G. For column supported
		tanks,	# of columns:		tanks, diameter of column:
27. Closed Vent System with VRU? \boxtimes Yes	□ No				
28. Closed Vent System with Enclosed Combus	stor? 🛛 Yes 🗆 No 🛛	Back-uj	o to VRU		
SITE INFORMATION					
29. Provide the city and state on which the data	in this section are based:				
30. Daily Avg. Ambient Temperature (°F):		31. Ai	nnual Avg. Maxi	mum Tempe	rature (°F):
32. Annual Avg. Minimum Temperature (°F):		33. Av	vg. Wind Speed (mph):	
34. Annual Avg. Solar Insulation Factor (BTU/	ft ² -day):	35. At	mospheric Press	ure (psia):	
LIQUID INFORMATION					
36. Avg. daily temperature range of bulk	36A. Minimum (°F): 3	6		36B. Maxi	mum (°F):
liquid (°F): 60					
37. Avg. operating pressure range of tank	37A. Minimum (psig):	<0.1 p	si	37B. Maxi	mum (psig): 0.8 psi
(psig): 0-0.5 pis	26	200 (Tomoon on din a via		(main): 0 11
38A. Minimum liquid surface temperature (°F): 39A. Avg. liquid surface temperature (°F): 65	. 30		Corresponding va		-
40A. Maximum liquid surface temperature (°F).	· 100		Corresponding va	1 1	м /
41. Provide the following for each liquid or gas					(psia). 0.75
41A. Material name and composition:	Brine/Produced W		intonui puges ii i	leeessary.	
41B. CAS number:	7732-18-5, 7747-40				
	7647-14-5				
41C. Liquid density (lb/gal):	9-10 lb/gal				
41D. Liquid molecular weight (lb/lb-mole):41E. Vapor molecular weight (lb/lb-mole):	Varies				
41E. Vapor molecular weight (10/10-mole): 41F. Maximum true vapor pressure (psia):	18				
41F. Maximum due vapor pressure (psia). 41G. Maximum Reid vapor pressure (psia):	0.95				
410. Maximum Keld vapor pressure (psia). 41H. Months Storage per year.					
From: Jan To: Dec	12				
42. Final maximum gauge pressure and					
temperature prior to transfer into tank used as	N/A				
inputs into flashing emission calculations.					

ATTACHMENT L – STORAGE VESSEL DATA SHEET

Complete this data sheet if you are the owner or operator of a storage vessel that contains condensate and/or produced water. This form must be completed for *each* new or modified bulk liquid storage vessel(s) that contains condensate and/or produced water. (If you have more than one (1) identical tank (i.e. 4-400 bbl condensate tanks), then you can list all on one (1) data sheet). **Include gas sample analysis, flashing emissions, working and breathing losses, USEPA Tanks, simulation software (ProMax, E&P Tanks, HYSYS, etc.), and any other supporting documents where applicable.**

The following information is **REQUIRED**:

- □ Composition of the representative sample used for the simulation
- □ For each stream that contributes to flashing emissions:
 - \Box Temperature and pressure (inlet and outlet from separator(s))
 - □ Simulation-predicted composition
 - □ Molecular weight
 - \Box Flow rate
- □ Resulting flash emission factor or flashing emissions from simulation
- $\hfill\square$ Working/breathing loss emissions from tanks and/or loading emissions if

simulation is used to quantify those emissions

Additional information may be requested if necessary.

GENERAL INFORMATION (REQUIRED)

1. Bulk Storage Area Name RPT-8	2. Tank Name Tank 8 and Tank 10
3. Emission Unit ID number TNK10 and TNK10	4. Emission Point ID number 58/78
5. Date Installed , Modified or Relocated (<i>for existing tanks</i>)	6. Type of change:
	\boxtimes New construction \square New stored material \square Other
Was the tank manufactured after August 23, 2011?	□ Relocation
\boxtimes Yes \square No	
7A. Description of Tank Modification (if applicable)	
7B. Will more than one material be stored in this tank? If so, a	separate form must be completed for each material.
\Box Yes \boxtimes No	
7C. Was USEPA Tanks simulation software utilized?	
\Box Yes \boxtimes No	
If Yes, please provide the appropriate documentation and items	8-42 below are not required.

TANK INFORMATION

8. Design Capacity (specify barrels or gallons). Use the interna	l cross-sectional area multiplied by internal height.
210 BBL	
9A. Tank Internal Diameter (ft.) 12.5	9B. Tank Internal Height (ft.) 15
10A. Maximum Liquid Height (ft.) 13	10B. Average Liquid Height (ft.) 8
11A. Maximum Vapor Space Height (ft.) 14	11B. Average Vapor Space Height (ft.) 7
12. Nominal Capacity (specify barrels or gallons). This is also	known as "working volume". 180
13A. Maximum annual throughput (gal/yr) 200,000	13B. Maximum daily throughput (gal/day) 7,000
14. Number of tank turnovers per year 40	15. Maximum tank fill rate (gal/min) 50
16. Tank fill method Submerged Splash	Bottom Loading
17. Is the tank system a variable vapor space system? \Box Yes	□ No
If yes, (A) What is the volume expansion capacity of the system	(gal)?
(B) What are the number of transfers into the system per	year?
18. Type of tank (check all that apply):	
\boxtimes Fixed Roof \square vertical \square horizontal \square flat roof	\Box cone roof \Box dome roof \Box other (describe)
\Box External Floating Roof \Box pontoon roof \Box double	deck roof
Domed External (or Covered) Floating Roof	
□ Internal Floating Roof □ vertical column support	□ self-supporting
\Box Variable Vapor Space \Box lifter roof \Box diaphragm	
\Box Pressurized \Box spherical \Box cylindrical	
\Box Other (describe)	

PRESSURE/VACUUM CONTROL DATA

19. Check as many as appl	ly:								
Does Not Apply				🗆 Ruptu	re Disc (p	osig)			
□ Inert Gas Blanket of				□ Carbo	n Adsorp	tion ¹			
☑ Vent to Vapor Combus	tion Devi	ice ¹ (vapor	r combust	ors, flares	, thermal	oxidizers,	enclosed of	combustors) as back-up to VRU
Conservation Vent (psi	g)			□ Conde	enser ¹				
0.4 oz. Vacuum Setting	14 oz	. Pressure	e Setting						
□ Emergency Relief Valv	e (psig)								
Vacuum Setting		Pressure	Setting						
☑ Thief Hatch Weighted	🛛 Yes 🛛	∃ No							
¹ Complete appropriate Air	Pollution	n Control	Device Sh	neet					
20. Expected Emission Ra	te (submi	it Test Dat	ta or Calco	ulations he	ere or else	where in	the applica	tion).	
Material Name	Flashi	ng Loss	Breathi	ng Loss	Worki	ng Loss	Total		Estimation Method ¹
							Emissi	ons Loss	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	
VOC	79.5	348.17	0.05	0.22	0.11	0.49	79.7	348.9	MB and EPA
НАР	2.60	11.4	0.007	0.03	0.016	0.07	2.62	11.5	MB
				1					

¹ EPA = EPA Emission Factor, MB = Material Balance, SS = Similar Source, ST = Similar Source Test, Throughput Data, O = Other (specify) *Remember to attach emissions calculations, including TANKS Summary Sheets and other modeling summary sheets if applicable.*

TANK CONSTRUCTION AND OPERATIO	N INFORMATION					
21. Tank Shell Construction:						
\Box Riveted \Box Gunite lined \Box Epoxy	y-coated rivets 🛛 🛇	ther (de	scribe) Welded	l		
21A. Shell Color: Blue	21B. Roof Color: Blu	e		21C. Year	Last Painted: NEW	
22. Shell Condition (if metal and unlined):						
\boxtimes No Rust \square Light Rust \square Dense	Rust 🛛 Not application	able				
22A. Is the tank heated? \Box Yes \boxtimes No	22B. If yes, operating t	emperati	ire:	22C. If yes	s, how is heat provided to ta	ank?
23. Operating Pressure Range (psig): 2 oz – 14						
Must be listed for tanks using VRUs with			· 1 1 (0)	04D 16		(0. (0.)
24. Is the tank a Vertical Fixed Roof Tank ?	24A. If yes, for dome	coof prov	ride radius (ft):	24B. If yes	s, for cone roof, provide slo	/p (ft/ft):
⊠ Yes □ No						
25. Complete item 25 for Floating Roof Tanks	\square Does not apply					
25A. Year Internal Floaters Installed:						
25B. Primary Seal Type (check one): \Box Met	allic (mechanical) sho	e seal	□ Liquid mou	unted resili	ent seal	
🗆 Vap	or mounted resilient s	eal	\Box Other (des	cribe):		
25C. Is the Floating Roof equipped with a second	ndary seal? 🗆 Yes	🗆 No				
25D. If yes, how is the secondary seal mounted		e 🗆	Rim 🗆 Oth	er (describ	e).	
				ler (deserre	c).	
25E. Is the floating roof equipped with a weather	er shield? \Box Yes		0			
25F. Describe deck fittings:						
			Deservet smale			
26. Complete the following section for Interna			Does not apply			
26A. Deck Type: \Box Bolted \Box W	/elded	26B. I	For bolted decks,	provide dec.	k construction:	
26C. Deck seam. Continuous sheet constructio	n:					
\Box 5 ft. wide \Box 6 ft. wide \Box 7 ft. wide			12 ft wide	other (de	soriba)	
26D. Deck seam length (ft.): 26E. Area	of deck (ft ²):		For column suppo # of columns:	orted	26G. For column support tanks, diameter of column	
		tanks,	# of columns.		tanks, diameter of column	1.
27. Closed Vent System with VRU? \boxtimes Yes	No					
-) l				
28. Closed Vent System with Enclosed Combus	stor? \square ies \square ino i	раск-иј				
29. Provide the city and state on which the data	in this spation are based					
30. Daily Avg. Ambient Temperature (°F):	in this section are based:		nual Avg. Maxin	mum Tampa	ratura (°E).	
32. Annual Avg. Minimum Temperature (°F):			g. Wind Speed (Tatule (17).	
 34. Annual Avg. Solar Insulation Factor (BTU/ 	ft ² -day).		mospheric Press	-		
LIQUID INFORMATION	it day).	<i>33. 1</i>	mospherie i ress	ure (psiu).		
36. Avg. daily temperature range of bulk	36A. Minimum (°F): 3	6		36B. Maxi	mum (°F):	
liquid (°F): 60						
37. Avg. operating pressure range of tank	37A. Minimum (psig):	<0.1 p	si	37B. Maxi	mum (psig): 0.8 psi	
(psig): 0-0.5 pis						
38A. Minimum liquid surface temperature (°F):	: 36		Corresponding va		-	
39A. Avg. liquid surface temperature (°F): 65			Corresponding va			
40A. Maximum liquid surface temperature (°F)			Corresponding va		(psia): 0.95	
41. Provide the following for each liquid or gas			litional pages if n	ecessary.		
41A. Material name and composition:	Condensate					
41B. CAS number:	68919-39-1					
41C. Liquid density (lb/gal):41D. Liquid molecular weight (lb/lb-mole):	5.49					
41D. Equid molecular weight (lb/lb-mole): 41E. Vapor molecular weight (lb/lb-mole):	81.3 39.56					
41F. Maximum true vapor pressure (psia):	37.30					
41G. Maximum Reid vapor pressure (psia):	5.28					
41H. Months Storage per year.						
From: Jan To: Dec	12					
42. Final maximum gauge pressure and						
temperature prior to transfer into tank used as						
inputs into flashing emission calculations.						

STORAGE TANK DATA TABLE

List all deminimis storage tanks (i.e. lube oil, glycol, diesel etc.)

Source ID # ¹	Status ²	Content ³	Volume ⁴
TNK11	NEW	TEG	200

1. Enter the appropriate Source Identification Numbers (Source ID #) for each storage tank located at the compressor station. Tanks should be designated T01, T02, T03, etc. 2.

Enter storage tank Status using the following:

EXIST Existing Equipment NEW Installation of New Equipment

REM Equipment Removed

Enter storage tank content such as condensate, pipeline liquids, glycol (DEG or TEG), lube oil, diesel, mercaptan etc. 3.

4. Enter the maximum design storage tank volume in gallons.

ATTACHMENT M – SMALL HEATERS AND REBOILERS NOT SUBJECT TO 40CFR60 SUBPART DC DATA SHEET

Complete this data sheet for each small heater and reboiler not subject to 40CFR60 Subpart Dc at the facility. *The Maximum Design Heat Input (MDHI) must be less than 10 MMBTU/hr.*

Emission Unit ID# ¹	Emission Point ID# ²	Emission Unit Description (manufacturer, model #)	Year Installed/ Modified	Type ³ and Date of Change	Maximum Design Heat Input (MMBTU/hr) ⁴	Fuel Heating Value (BTU/scf) ⁵
GPU-1	15	Gas Processing Unit	2013	EXIST	1.5 MMBTU/Hr	1263
GPU-2	28	Gas Processing Unit	2013	EXIST	1.5 MMBTU/Hr	1263
GPU-3	38	Gas Processing Unit	2013	EXIST	1.5 MMBTU/Hr	1263
GPU-4	9S	Gas Processing Unit	Pending	NEW	1.5 MMBTU/Hr	1263
GPU-5	105	Gas Processing Unit	Pending	NEW	1.5 MMBTU/Hr	1263
GPU-6	115	Gas Processing Unit	Pending	NEW	1.5 MMBTU/Hr	1263
RBV-1	128	Exterran HANO-488750011	Pending	NEW	0.5 MMBTU/Hr	1263

- ¹ Enter the appropriate Emission Unit (or Source) identification number for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For sources, use 1S, 2S, 3S...or other appropriate designation. Enter glycol dehydration unit Reboiler Vent data on the Glycol Dehydration Unit Data Sheet.
- ² Enter the appropriate Emission Point identification numbers for each fuel burning unit located at the production pad. Gas Producing Unit Burners should be designated GPU-1, GPU-2, etc. Heater Treaters should be designated HT-1, HT-2, etc. Heaters or Line Heaters should be designated LH-1, LH-2, etc. For emission points, use 1E, 2E, 3E...or other appropriate designation.
- ³ New, modification, removal
- ⁴ Enter design heat input capacity in MMBtu/hr.
- ⁵ Enter the fuel heating value in BTU/standard cubic foot.

ATTACHMENT N – INTERNAL COMBUSTION ENGINE DATA SHEET

Complete this data sheet for each internal combustion engine at the facility. Include manufacturer performance data sheet(s) or any other supporting document if applicable. Use extra pages if necessary. *Generator(s) and microturbine generator(s) shall also use this form.*

Emission Unit I	$D#^1$	VR	U-1				
Engine Manufacturer/Model Manufacturers Rated bhp/rpm Source Status ²		Cummi	ns G5.9				
		84 hp/1	800 rpm				
		E	S				
Date Installed/ Modified/Remo	ved/Relocated ³	4-12	2-14				
Engine Manufac /Reconstruction		3/19	9/12				
Check all applic Rules for the en EPA Certificate if applicable) ⁵	gine (include	 ⋈ 40CFR60 S □ JJJJ Certifi □ 40CFR60 S □ IIII Certific □ 40CFR63 S □ NESHAP 2 JJJJ Window □ NESHAP 2 Sources 	ed? ubpart IIII ed? ubpart ZZZZ ZZZZ/ NSPS	□ NESHAP JJJJ Window	ied? Subpart IIII ed? Subpart ZZZZ	□ NESHAP JJJJ Window	ied? Subpart IIII ed? Subpart ZZZZ ZZZZ/ NSPS
Engine Type ⁶		4S	RB				
APCD Type ⁷		NS	CR				
Fuel Type ⁸		RG					
H ₂ S (gr/100 scf)	N	/A				
Operating bhp/r	pm	84 hp/ 1	800 rpm				
BSFC (BTU/bhj	p-hr)	7,9	914				
Hourly Fuel Th	roughput	583 ft ³ /hr gal/hi			/hr l/hr		/hr l/hr
Annual Fuel Th (Must use 8,760 emergency gene	hrs/yr unless	5.1 MMft ³ /yr gal/yr			Aft ³ /yr l/yr		Aft ³ /yr l/yr
Fuel Usage or H Operation Mete		Yes 🖂	No 🗆	Yes 🗆	No 🗆	Yes 🗆	No 🗆
Calculation Methodology ⁹	Pollutant ¹⁰	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)	Hourly PTE (lb/hr) ¹¹	Annual PTE (tons/year)
	NO _x	0.52	2.27				
	СО	0.89	3.89				
	VOC	0.02	0.09				
	SO ₂	< 0.01	< 0.01				
	PM10	0.013	0.06				
	Formaldehyde	0.01	0.06				
	Total HAPs	0.02	0.09				
	GHG (CO ₂ e)	89	391				

1 Enter the appropriate Source Identification Number for each natural gas-fueled reciprocating internal combustion compressor/generator engine located at the compressor station. Multiple compressor engines should be designated CE-1, CE-2, CE-3 etc. Generator engines should be designated GE-1, GE-2, GE-3 etc. Microturbine generator engines should be designated MT-1, MT-2, MT-3 etc. If more than three (3) engines exist, please use additional sheets.

2 Enter the Source Status using the following codes:

NS	Construction of New Source (installation)	ES	Existing Source
MS	Modification of Existing Source	RS	Relocated Source

REM Removal of Source

- 3 Enter the date (or anticipated date) of the engine's installation (construction of source), modification, relocation or removal.
- 4 Enter the date that the engine was manufactured, modified or reconstructed.
- 5 Is the engine a certified stationary spark ignition internal combustion engine according to 40CFR60 Subpart IIII/JJJJ? If so, the engine and control device must be operated and maintained in accordance with the manufacturer's emission-related written instructions. You must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required. If the certified engine is not operated and maintained in accordance with the manufacturer's emission-related written instructions, the engine will be considered a non-certified engine and you must demonstrate compliance as appropriate.

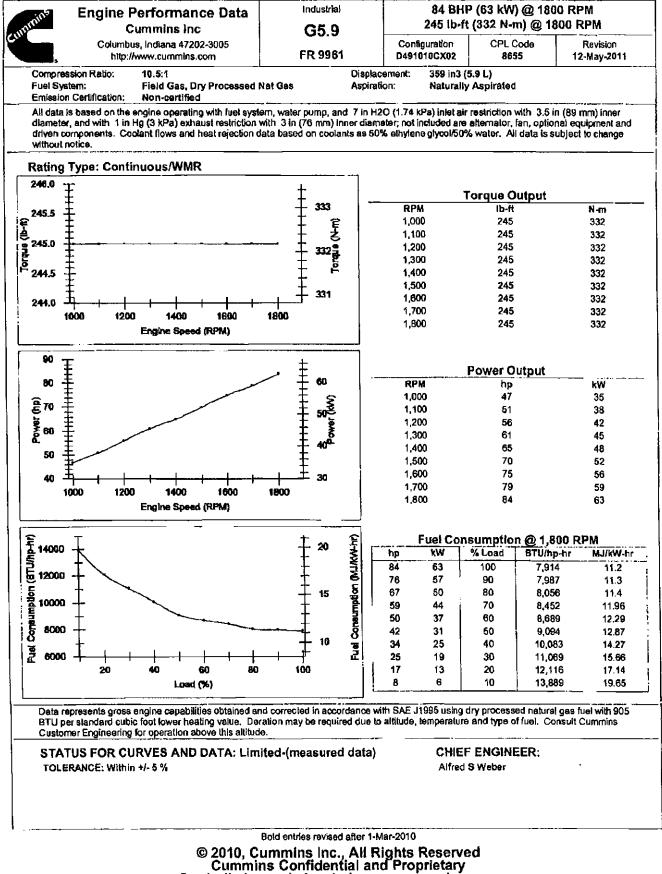
Provide a manufacturer's data sheet for all engines being registered.

6	Enter th	e Engine Type designation(s) using the following co	des:						
	2SLB 4SLB	Two Stroke Lean Burn Four Stroke Lean Burn	4SR	ΒI	Four St	roke Rich Burn			
7	Enter th	e Air Pollution Control Device (APCD) type designation	ation(s)	using	g the fo	llowing codes:			
	A/F HEIS PSC NSCR SCR	Air/Fuel Ratio High Energy Ignition System Prestratified Charge Rich Burn & Non-Selective Catalytic Reduction Lean Burn & Selective Catalytic Reduction		5 I	R SIPC LEC DxCat	Ignition Retard Screw-in Precon Low Emission C Oxidation Cataly	ombustion	bers	S
8	Enter th	e Fuel Type using the following codes:							
	PQ	Pipeline Quality Natural Gas R	G	Raw	Natural	Gas /Production	Gas	D	Diesel
9	Enter t	he Potential Emissions Data Reference design	ation 1	using	g the f	ollowing codes.	Attach all re	efer	ence data used.
	MD GR	Manufacturer's Data GRI-HAPCalc TM		AP OT	AP Oth		please list)		

10 Enter each engine's Potential to Emit (PTE) for the listed regulated pollutants in pounds per hour and tons per year. PTE shall be calculated at manufacturer's rated brake horsepower and may reflect reduction efficiencies of listed Air Pollution Control Devices. Emergency generator engines may use 500 hours of operation when calculating PTE. PTE data from this data sheet shall be incorporated in the *Emissions Summary Sheet*.

11 PTE for engines shall be calculated from manufacturer's data unless unavailable.

Date: May 27, 2014 Unil #: 6041 Customer: To Be Determined


ĩo:

Lease Location: To 8e Determined

Package Information Compressor Manufacturer: Arrow Compressor Model: VRC2 Compressor Serial Number: 12095 Compressor Cylinders: 6.5" x 4.0" x 2.25" Driver Manufacturer: Cummins Driver Model: G5.9 Rated HP & Speed 84 HP @ 1800 RPM Driver Type: 4-stroke Rich Burn Engine Serial Number: 73364060 3/19/2012 Engine Manufacturing Date: Engine Catalyst Model: VXC-1408-04-HSG Engine Catalyst Element: VX-RE-08XC Engine AFR Model: AFR-1RD-10-TK2 Engine Stack Height: 9' 5" Engine Stack Diometer: 4" Operating Information Suction Pressure: N/A psig Discharge Pressure: N/A psig Design Copacity: N/A MSCFD Gas Specific Gravity: N/A

Please find the below information for the USA Compression unit number listed above:

Emission Output Information included in the ottached catalyst specification sheet.

Ì

Controlled copy is located on gce.cummins.com

copy is located o

Intake Air System					
	air temperature rise over ambient at Intake M) or Turbo Compressor inlet (Turbo-charged				
	emissions, LAT and/or altitude capability)	Enginosy. (This	5 della deg F	8.3	delta deg C
Cooling System					
Maximum coolent ter	nperature for engine protection controls	21	5 deg F	102	deg C
Maximum coolant op	erating temperature at engine outlet (max, to	p lank lemp): 21:	2 deg F	100	deg Ç
Exhaust System					
Maximum exhaust ba	ack pressure:	:	2 In-Hg	7	kPe
Recommended exha	ust piping size (inner diemeter):	:	3 in	76	mm
Lubrication System					
Nominal operating of	pressure				
@ minimur	n low idle	1	0 psi	69	kPa
@ maximu	m rated speed	5	0 psi	345	kPa
Minimum engine oil p	xessure for engine protection devices				
@ minimur	n low idle	1	0 psi	69	kPa
Fuel System					
Maximum fuel Inlet p	ressure:		1 psi	5	kPa
Performance Data					
Engine low Idle spee	d:	90	0 RPM		
Maximum low idle sp	eed:	1,80	O RPM		
Minimum low idle sp	eed:	80	o rpm		
Engine high idle spe	ed	1,80	0 RPM		
Governor break sper	ed:				
Maximum lorque ave	sligble at closed throttle low idle speed:	5	0 Ib-ft	68	N-m
	100% Load	75% Load	1	50% Load	
Engine Second	1 000 BRM	1.600 BPM	1.800	RPM	

		100% LOad		73% LOau			5076 LOBO					
Engina Speed	1,800	RPM			1,600	RPM		1	1,800	RPM		
Output Power	84	hp	63	kW	63	hp	47	kW	42	հթ	31	kw
Torque	245	lb-fl	332	N-m	<u>t84</u>	lb-ft	249	N-m	123	lb-fi	167	N-m
Inleke Manifold Pressure	-1	in-Hg	-3	kPa	-5	in-Hg	-17	kPa	-9	in-Hg	-30	kPa
Inlet Air Flow	121	N3/min	57	Ua	10 1	ft3/min	48	Us	62	ft3/min	39	Us
Exhaust Gas Flow	430	R3/min	203	Lis	360	fi3/min	170	L/s	292	ñ3/mln	138	L/s
Exhaust Gas Temperature	1,078	deg F	581	deg C ¹	999	deg F	537	deg C	902	deg F	483	deg C
Heat Rejection to Coolani	3,824	BTUmin	67	kW	3,244	BTU/min	57	kW	2,596	BTU/min	48	kŴ
Heat Rejection to Ambient	1,194	BTU/min	21	k₩	784	BTU/min	14	kW }	613	BTU/min	11	kW
Heal Rejection to Exhaust	2,523	8TU/mìn	44	kW	1,916	BTU/min	34	kW .	1,371	BTU/min	24	kW
Fuel Consumption Air Fuel Ratio (dry)		BTU/hp-hr vol/vol	11	M √KW -hr		BTU/hp-hr vol/vol	12	MJ/kW-hr		8TU/hp-hr vol/vol	13	MJ/kW-h
Ignition timing (BTDC) Total Hydrocarbons VOC ppm w/o Catalyst		deg g/hp-hr	26	deg		deg g/hp-hr	26	deg		deg g/hp-hr	28	deg
VOC ppm with Catalyst NOx NOx ppm w/o Catalyst NOx ppm with Catalyst	11,41	g/hp-hr	15.3	g/KW-hr	13.7	g/hp-hr	18.37	g/kW-hr	12.85	g/hp-hr	17.23	g/kW-hr
CO CO opm w/o Calalyst	14.64	g/np-hr	19.63	g/kW-hr	0.82	g/hp-hr	1.1	g/kW-hr	1.38	g/hp-hr	1.85	g/kW-hr
CO ppm with Calalyst CO2 O2		g/hp-hr %	502	g/KW-hr	489 1.66	g/hp-hr	656	g/kW-hr	540 <u>3</u> .67	g/hp-hr %	724	g/kW-hr

Bold entries revised after 1-Mar-2010

© 2010, Cummins Inc., All Rights Reserved Cummins Confidential and Proprietary Controlled copy is located on gce.cummins.com

Cranking System (Cold Starting Capability) Unsided Cold Start:

Minimum cranking speed Cold starting aids available Maximum perasitic load at 10 deg F @

Noise Emissions

	Тор	89.9	dBa
	Right Side	90.1	dBa
	Left Side	89.8	dBa
	Front	90.5	dBa
	Exhaust noise emissions	103.1	dBa
d Free	Field Sound Pressure Level at 3.28h (Im) and Full-Load Governed Speed		

Estimated Free Field Sound Pressure Level et 3.281 (1m) and Pull-Load Governed Spe (Excludes Noise from Inteke, Externet, Cooling System and Driven Componenta)

.

Aftercooler Heat Rejection - Heat Load on Aftercooler BTU/min (kW)

		Ambient Temp deg F (deg C)						
		120 (49)	110 (43)	100 (38)	90 (32)	80 (27)	70 (21)	
	0 (0)	(.0)	(.0)	(.0)	(.0)	(.0)	(0)	
	1000 (305)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)	
	2000 (610)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)	
	3000 (914)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)	
	4000 (1219)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)	
Vtitude	5000 (1524)	(.0)	(.0)	(.0)	(.0)	(.0)	(0.)	
fi (m)	6000 (1829)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)	
	7000 (2134)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)	
	8000 (2438)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)	
	9000 (2743)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)	
	10000 (3048)	(.0)	(.0)	(.0)	(.0)	(.0)	(.0)	

End of Report

Bold entries revised after 1-Mar-2010

© 2010, Cummins Inc., All Rights Reserved Cummins Confidential and Proprietary Controlled copy is located on gce.cummins.com

250 RPM Block Heater, Oil Pan Heater

Engine Air Pollution Control Device Emission Unit ID# VRU-1

Air Pollution Co	ontrol Device Mar Yes ⊠	nufacturer's Data Sheet included? No □				
⊠ NSCR	□ SCR	□ Oxidation Catalyst				
Provide details of process control used for p	roper mixing/cont	rol of reducing agent with gas stream: N/A				
Manufacturer: Miratech		Model #: VXC-1408-04-HSG				
Design Operating Temperature: 1078 °F		Design gas volume: 430 acfm				
Service life of catalyst: Variable		Provide manufacturer data? 🛛 Yes 🛛 No				
Volume of gas handled: 430 acfm at 1078 °F		Operating temperature range for NSCR/Ox Cat: From 750 °F to 1250 °F				
Reducing agent used, if any: N/A		Ammonia slip (ppm): N/A				
Pressure drop against catalyst bed (delta P):	3.0 inches of H	20				
Provide description of warning/alarm system None Is temperature and pressure drop of catalyst		t when operation is not meeting design conditions:				
\square Yes \boxtimes No	required to be mo					
How often is catalyst recommended or require As warranted by maintenance checks or two						
How often is performance test required? Initial Annual Every 8,760 hours of operation Field Testing Required No performance test required. If so, why NSPS/GACT, Not required for engines <100	(please list any n) Hp	naintenance required and the applicable sections in				

ummins	Gas/Site Analysis & Engine Selection/Derate		Industrial G5.9	NG 84 HP (63 kW) @1800 RPM & 10.5:1 Compression Ratio	
	Cummine Stationary Netural Gas Engines		Available FR Number(s) From Selection:		
	Date: 4/10/2014		FR9936, FR9961	Industrial Continuous	
Engine (as entered	i by user)		n		
Application:		Industria	1		
Fuel Type:		NG			
Engine:	1	G5.9			
Fuel Rating: Compression Ratio:		Catalysi 10.6:1			
RPM:		1800			
HP (Natural Gas):		84 HP (6	3 kW)		
HP (Propana):		NA HP (
Site (as entered by		*••			
Ambient Air Tempe	cature:	90° F			
Relative Humidity:		30%			
Allitude:		1200 ft 8 HP			
Cooling Fen Load: Generator Efficienc		93%			
	sculated from Site Conditions Entered):	0.427 ini	Ha		
	led from Sile Conditions Entered):	54.4° F			
	culated from Site Conditions Entered):	28.22 ini	Hg		
Derate (Natural Ga					
Advertised NO Rati	ing:	84 HP (0 2%	53 KW)		
	to Site Attitude and Temperature:	276			
	to Gas Composition: b Low STU Fuel:	0%		🛆 The sample	
	o Methane Number:	0%	1	percentage for	
	bla (%) After All Applicable Derates:	96% of	rated 4	Name Sample ⁴ is	
	ue to Attitude, Temperature, and Gas Composition:	2 HP (1	UNIA I	99.991%. Results to based on the input sample	
Total Available Hor	sepower from Selected Engine Running on			ormatized to 190%.	
Specified Fuel Cor for cooling fan Ioa	mposition at Specified Site (Includes & HP reduction for	74 HP (
		74116 (33 KV7)		
Derate (Propane) Advertised Propan	a Bation:	NAHP	(NA KW)		
	to Site Alitude and Temperature:	NA%			
	ible (%) Alter All Applicable Densites:	NA% of	rated		
Total Site Derate d	ua to Atitude and Temperature:	NA HP	(NA KW)		
Total Available Ho at Specified Site (rsepower from Selected Engine Running on Propene includes 8 HP reduction for for cooling fan load):	NA HP	(NA KW)		
intake Manifold R	equirements for Turbocharged Engines		I		
Meximum Allowed based on FR9938	Intake Manifold Temperature for Selected Engine is na *F will	h a Maximun	n Aftercooler Water Intel (CA	Calrinlet) of na "F	
Factory Set Point	\$	Factory	/ Supplied	Recommended	
Engine Speed Tan	get:	1 800 rp	יחנ	NOTICE: A Change i	
Spark Plug Gap:		0.020 1	n l	Ignition Timing is	
Excess Oxygen Ta	amet-PV:	na %0.	2	Recommended Due Nethane Number of	
Propane Engine T	•	na *BT	DC Ìs	inetname pumper or	
	r air Press at Carb Low:	na inH2		÷•·	
	es al Sec Reg Target:	na InH			
Excess Oxygen T	•	0.45%	2		
Natural Gas Engir	ne Timing Target:	Factor		Recommended Timing: 25 * STDC	
	ek Press et Carb Targel:	5 inH2	0		
Matural Cas Bree	s at Sec Reg Target:	15 inH	20		

FR9936 Created/Revised On: 4/30/2013, Data Files Updated On: 12/12/2013

©2014 Cummins Inc., All Rights Reserved All Date is Subject To Change Without Notice Information contained in this report may be considered ©2014 Cummins Confidential Discretion is recommended when distributing. All rights reserved. Cummins, Inc. reserves the right to make changes at any time without obligation.

as Sample Analysis			The sample percentage for "Name Sample" is 99.091%. Results are based on the input sample normalized to 100%.
Sample Name: Name Sample	-		
Sse Compound:		Volume Fraction % (User Input)	Mass Frection % (Calculated)
Melhane:		77.09	59.36
Ethane:		14.83	21.41
Propane:		4.97	10.51
I-Butane:		0.62	1.72
n-Butane:		1,21	3.38
I-Pentane:		0.27	0,92
n-Pentane:	_ <u>_</u>	0.28	0.91
n-Hexane:		0.15	0.62
n-Heplane:		0.04	0.2
n-Octane:		0.02	0.09
n-Nonarie:		0	
n-Decane:		0	0.02
Hydrogen: Hydrogen Sulfide (H ₂ S):			
		0 ppm	0 ppm
Carbon Dioxide:		0.15	0.32
Carbon Monoxide:		0	0
Nitrogen:		0.39	0.53
Oxygen: Total Percent: (Sample Input Par	centage: 99.981%)	0 Normalized Percentage: 100%	<u> </u>
Performance Parameters:		Standard Units	Metric Units
Lower Heating Value (LHV):	by volume	1140.6 Btu/sci	42.5 MJ/scm
Lower Heating Value (LHV): Sinder Conditions (CCF/14.650psm)	by mass	20776 Stu/bm	48.326 MJ/kg
Higher Heating Value (HHV):	by volume	1257.5 Btu/scf	46.85 MJ/scm
Standard Conditions (80F/14.8960sta)	by mass	22906 Blu/lbm	53,280 MJ/kg
Methane Number:		56.1	58.1
Specific Gravity (5G):		0,7193	0.7193
Wobbe Index :	LHVNSC	1345 Btu/scl	50.11 MJ/scm
	HV/√SG	1483 Bku/scf	55.24 MJ/scm
Molecular Weight:		20.83 g/moi	20.83 g/mol
Specific Heat (Cp):	···· <u>····</u> ···· ··· ··· ··· ··· ··· ···	0.473 BTU/lbm-R	1.979 kJ/kg-K
Specific Heat Ralio (Cp/Cv):		1.253	1,253
Ideal Gas Density:		0.0549 ibm/tt3 3.492	0.8788 kg/m3 std
H/C Ratio: Gas Constant (R _{GAS});			3.492
Stoich Air Fuel Ratio (Dry):		95.3 BTU/fbm-*R 16.64	399.1 kJ/kg-*K 16.54
uel Flow Data			
BTU/HP-HR: Maximum Fuel Flow (SCFH):		7914 583	
Maximum Fuel Flow Calculation is Ba	sed an 100% Cantinuou	s Rating of 64 HP at 1600 RPM and	10.5:1 Compression Ratio from FR9936
Gas Regulator Details			

MIRATECH Emissions Control Equipment Specification Summary

Engine Data			
Number of Engines:	1		
Application:	Air Compression		
Engine Manufacturer:	Cummins		
Model Number:	G 5.9		
Power Output:	84 bhp		
Lubrication Oil:	0.6 wt% sulfated ash or less		
Type of Fuel:	Natural Gas		
Exhaust Flow Rate:	430 acfm (cfm)		
Exhaust Temperature:	1,078°F		
System Details			and the second second
Housing Model Number:	VXC-1408-04-HSG		
Element Model Number:	VX-RE-08XC		
Number of Catalyst Layers:	1		
Number of Spare Catalyst Layers:	1		
System Pressure Loss:	3.0 inches of WC (Fresh)		
Sound Attenuation:	28-32 dBA insertion loss		
Exhaust Temperature Limits:	750 1250°F (catalyst inlet); 1350°F	(catalyst outlet)	
NSCR Housing & Catalyst Deta	///s		
Model Number:	VXC-1408-04-XC1		
Material:	Carbon Steel		
Diameter:	14 inches		
nlet Pipe Size & Connection:	4 inch FF Flange, 150# ANSI standar	d bolt pattern	
Outlet Pipe Size & Connection:	4 inch FF Flange, 150# ANSI standar	d bolt pattern	
Overall Length:	53 inches		
Weight Without Catalyst:	152 lbs		
Weight Including Catalyst:	162 lbs		
Instrumentation Ports:	1 inlet/1 outlet (1/2" NPT)		
Emission Requirements	A CONTRACTOR OF CONTRACTOR		
THUR AND		Warranted	
Enaine	Outputs	Converter Outputs	Requested

Exhaust Gases	Engine Outputs (g/ bhp-hr)	Reduction (%)	Converter Outputs (g/ bhp-hr)	Requested Emissions Targets	
NO	11.41	75	2.8	2.8 g/bhp-hr	
co	14.64	67	4.8	4.8 g/bhp-hr	
Oxygen	0.5%				

Oxygen

MIRATECH warrants the performance of the converter, as stated above, per the MIRATECH General Terms and Conditions of Sale.

ATTACHMENT O – TANKER TRUCK LOADING DATA SHEET

Complete this data sheet for each new or modified bulk liquid transfer area or loading rack at the facility. This is to be used for bulk liquid transfer operations to tanker trucks. Use extra pages if necessary.

Truck Loadout Collection Efficiencies

The following applicable capture efficiencies of a truck loadout are allowed:

- For tanker trucks passing the MACT level annual leak test 99.2%
- For tanker trucks passing the NSPS level annual leak test 98.7%
- For tanker trucks not passing one of the annual leak tests listed above 70%

Compliance with this requirement shall be demonstrated by keeping records of the applicable MACT or NSPS Annual Leak Test certification for *every* truck and railcar loaded/unloaded. This requirement can be satisfied if the trucking company provided certification that its entire fleet was compliant. This certification must be submitted in writing to the Director of the DAQ. These additional requirements must be noted in the Registration Application.

Emission Unit ID#: TLU-1	Emission Point ID#: 4S			Year Installed/Modified: 2014			
Emission Unit Description:	Condensate	and Pro	duced Wate	er Truck Loa	ading Ar	ea	
			Loading A	Area Data			
Number of Pumps: 2 (on truck)Number of Liquids Loaded: 2Max number of trucks loading at (1) time: 2							f trucks loading at one
Are tanker trucks pressure If Yes, Please describe:	tested for leal	ks at this o	or any other	location?	□ Yes	⊠ No □	Not Required
Provide description of clos	ed vent system	n and any	bypasses.	None			
Are any of the following tr Closed System to tanke Closed System to tanke Closed System to tanke Projec	r truck passin r truck passin r truck not pa	g a MAC g a NSPS ssing an a	Γ level annu level annua innual leak	ll leak test? test and has v	-	urn? 'er point as a wl	nole)
Time	Jan – Ma	-	0	- Jun		Jul – Sept	Oct - Dec
Hours/day	24		2	4		24	24
Days/week	7		7		7	7	
'	Bul	k Liquid	Data (use e	xtra pages a	s necess	ary)	1
Liquid Name	Condens	ate		Produced	Water		
Max. Daily Throughput (1000 gal/day)	6.72			6.72			
Max. Annual Throughput (1000 gal/yr)	756			756			
Loading Method ¹	Sub			Sub			
Max. Fill Rate (gal/min)	50		50				
Average Fill Time (min/loading)	120			120			
Max. Bulk Liquid Temperature (°F)				75			
True Vapor Pressure ²	apor Pressure ² 3.6			0.3			
Cargo Vessel Condition ³	U			U			
Control Equipment or Method ⁴	None			None			
Max. Collection Efficiency (%)	N/A			N/A			

Max. Control (%)	Efficiency	N/A	N/A	
Max.VOC	Loading (lb/hr)	11.1	0.07	
Emission Rate	Annual (ton/yr)	1.25	0.02	
Max.HAP	Loading (lb/hr)	0.55	<0.01	
Emission Rate	Annual (ton/yr)	0.06	<0.01	
Estimation M	lethod ⁵	EPA	EPA	

1	BF	Bottom Fill	SP Splash Fill			SUB	Submerged Fill	
2	At maxii	num bulk liquid temperature						
3	В	Ballasted Vessel	С	Cleaned			U	Uncleaned (dedicated service)
	0	Other (describe)						
4	List as a	many as apply (complete and	submit app	propriate	Air Pollut	ion Conti	ol Device	Sheets)
	CA	Carbon Adsorption		VB	Dedicat	ed Vapor	Balance (d	closed system)
	ECD	Enclosed Combustion Device	ce	F	Flare			
	TO	Thermal Oxidization or Inc.	ineration					
5	EPA	EPA Emission Factor in AP	-42			MB	Materia	l Balance
	TM	Test Measurement based up	on test dat	ta submitt	tal	0	Other (de	escribe)
		-						

ATTACHMENT P – GLYCOL DEHYDRATION UNIT DATA SHEET

Complete this data sheet for each Glycol Dehydration Unit, Reboiler, Flash Tank and/or Regenerator at the facility. Include gas sample analysis and GRI-GLYCalc TM input and aggregate report. Use extra pages if necessary.								
Manufacturer: Exte		Use extra page	Model: N/A					
	Rate: 40 mmscf/day	v		at Input: 0.5 MMBT	`∐/hr			
Design Type: 🛛 TE		EG	Source Status ¹ : NS		0/11			
	ified/Removed ² : 9/1/1			ent APCD/ERD ³ : TO				
Control Device/ERI		10	Fuel HV (BTU/scf):					
H_2S Content (gr/100			Operation (hours/ye					
Pump Rate (gpm): 7			Operation (nours/ye					
Water Content (wt %) in: Wet Gas: Saturated Dry Gas: 7.0 lb/MMSCF								
Is the glycol dehydration unit exempt from 40CFR63 Section 764(d)? \mathbf{x} Yes \Box No: If Yes, answer the following: The actual annual average flowrate of natural gas to the glycol dehydration unit is less than 85 thousand standard cubic meters per day, as determined by the procedures specified in §63.772(b)(1) of this subpart. \Box Yes \mathbf{x} No The actual average emissions of benzene from the glycol dehydration unit process vent to the atmosphere are less than 0.90 megagram per year (1 ton per year), as determined by the procedures specified in §63.772(b)(2) of this subpart. \mathbf{x} Yes \Box No								
Is the glycol dehydi	ration unit located wi	thin an Urbanized Ar	ea (UA) or Urban Clu	ster (UC)? 🗆 Yes	x No			
Is a lean glycol pun	np optimization plan	being utilized? 🗆 Ye	s x No					
Recycling the glycol dehydration unit back to the flame zone of the reboiler. □ Yes ⊠ No Recycling the glycol dehydration unit back to the flame zone of the reboiler and mixed with fuel. □ Yes ⊠ No								
Still vent emissi	ons to the atmosphere ons stopped with valu	e.	e reboiler? Still vent	to enclosed combus	tor			
🔲 Flash Tank	e following equipment	-	nser or flash tank vap	ors				
	ient system that contr	•	Technical Data	015				
		Control Device	Teennicui Dutu					
	Pollutants Controlled		Manufacturer's	Guaranteed Control	Efficiency (%)			
Hydrocarbons			99+%					
		Emissic	ons Data					
Emission Unit ID / Emission Point ID ⁴	Description	Calculation Methodology ⁵	Controlled Maximum BTE ⁶ House					
RBV-1		AP-42	NO _x	0.05	0.219			
		AP-42	СО	0.042	0.184			
		AP-42	VOC	0.003	0.012			
	Reboiler Vent	AP-42	SO ₂	< 0.001	0.001			
		AP-42	PM ₁₀	0.004	0.017			
		EPA	GHG (CO ₂ e)	60	265			

RSV-1		GRI-GlyCalc TM	VOC	0.801	3.51
		GRI-GlyCalc TM	Benzene	0.010	0.043
	Glycol	GRI-GlyCalc TM	Toluene	0.033	0.146
	Regenerator Still Vent	GRI-GlyCalc TM	Ethylbenzene	< 0.001	<0.001
		GRI-GlyCalc TM	Xylenes	<0.001	< 0.001
		GRI-GlyCalc TM	n-Hexane	0.020	0.086
N/A		GRI-GlyCalc [™]	VOC		
	Glycol Flash Tank	GRI-GlyCalc TM	Benzene		
		GRI-GlyCalc TM	Toluene		
		GRI-GlyCalc [™]	Ethylbenzene		
		GRI-GlyCalc [™]	Xylenes		
	-	GRI-GlyCalc [™]	n-Hexane		

1 Enter the Source Status using the following codes: NS ES

Existing Source

Construction of New Source MS Modification of Existing Source

2 Enter the date (or anticipated date) of the glycol dehydration unit's installation (construction of source), modification or removal.

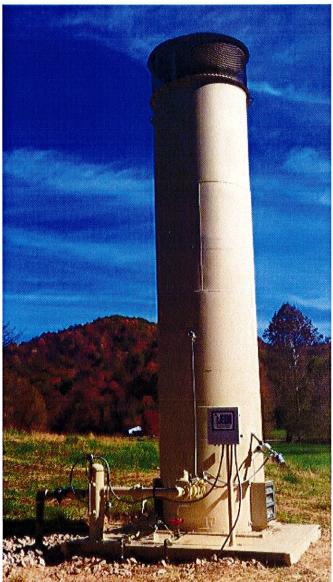
- 3 Enter the Air Pollution Control Device (APCD)/Emission Reduction Device (ERD) type designation using the following codes and the device ID number: FL Flare
 - NA None CD Condenser
- CC Condenser/Combustion Combination TO Thermal Oxidizer Other 0 (please list) Enter the appropriate Emission Unit ID Numbers and Emission Point ID Numbers for the glycol dehydration unit reboiler vent 4 and glycol regenerator still vent. The glycol dehydration unit reboiler vent and glycol regenerator still vent should be designated RBV-1 and RSV-1, respectively. If the compressor station incorporates multiple glycol dehydration units, a Glycol Dehydration Emission Unit Data Sheet shall be completed for each, using Source Identification RBV-2 and RSV-2, RBV-3 and RSV-3, etc.

5 Enter the Potential Emissions Data Reference designation using the following codes:

- Manufacturer's Data GRI-GLYCalcTM MD AP AP-42
 - GR OT Other (please list)
- Enter the Reboiler Vent and Glycol Regenerator Still Vent Potential to Emit (PTE) for the listed regulated pollutants in lbs 6 per hour and tons per year. The Glycol Regenerator Still Vent potential emissions may be determined using the most recent version of the thermodynamic software model GRI-GLYCalcTM (Radian International LLC & Gas Research Institute). Attach all referenced Potential Emissions Data (or calculations) and the GRI-GLYCalcTM Aggregate Calculations Report (shall include emissions reports, equipment reports, and stream reports) to this Glycol Dehydration Emission Unit Data Sheet(s). Backup pumps do not have to be considered as operating for purposes of PTE. This PTE data shall be incorporated in the Emissions Summary Sheet.

ATTACHMENT Q – PNEUMATIC CONTROLLERS DATA SHEET						
Are there any continuous bleed natural gas driven pneumatic controllers at this facility that commenced construction, modification or reconstruction after August 23, 2011?						
Yes No						
Please list approximate number.						
Are there any continuous bleed natural gas driven pneumatic controllers at this facility with a bleed rate greater than 6 standard cubic feet per hour that are required based on functional needs, including but not limited to response time, safety and positive actuation that commenced construction, modification or reconstruction after August 23, 2011?						
\Box Yes \boxtimes No						
Please list approximate number.						

VAPOR COMBUSTION									
(Including Enclosed Combustors)									
	General Information								
Control De	Control Device ID#: EC-2 Installation Date: 2016 New Modified								
Maximum scft	ttached curves)	Heat Input mfg. spec	Maximum Design Heat Input (from mfg. spec sheet)Design Heat Content BTU/scf10.0 MMBTU/hr						
	Control Device Information								
	Type of Vapor Combustion Control? Enclosed Combustion Device Elevated Flare Thermal Oxidizer Ground Flare								
Manufactu Model: CH	rer: Hy-Bon I 10.0			Hours of o	operation	per year? 8	3760		
List the en	nission units whose	emissions	are controlled by this	vapor conti	rol device	e (Emission	Point ID#)		
Emission Unit ID#	Emission Source	Description	n	Emission Unit ID#	Emissio	on Source I	Description		
RBV-1 Dehydration Still Vent									
If thi.	s vapor combustor o	controls en	nissions from more the	an six (6) en	nission ur	iits, please	attach additional pages.		
Assist Typ	e (Flares only)		Flare Height	Tip Diameter		er	Was the design per §60.18?		
Steam Pressu	re 🗌 Air	L	feet	feet			☐ Yes ☐ No Provide determination.		
			Waste Gas 1	Information	ı				
Maxim	um Waste Gas Flow 64.2 (scfm)	Rate		Vaste Gas Stream Exit Ve TU/ft ³		Exit Vel	elocity of the Emissions Stream (ft/s)		
	Provide an	attachme	nt with the characteri	stics of the v	waste gas	stream to	be burned.		
			Pilot Gas I	nformation					
Number of Pilot LightsFuel Flow Rate to Pilot1Flame per Pilot780 scfh			Heat Input per Pilot 985.1 MBTU/hr			Will automatic re-ignition be used? ⊠ Yes □ No			
If automat	ic re-ignition is use	d, please d	lescribe the method.						
*	Is pilot flame equipped with a monitor to detect the presence of the flame?If Yes, what type? \square Thermocouple \square InfraredUltraviolet \square Camera \square Other:								
Describe all operating ranges and maintenance procedures required by the manufacturer to maintain the warranty. (If unavailable, please indicate). Operating Range is dependent upon gas being combusted. See attached literature									
Please atta	Additional information attached? \boxtimes Yes \square No Please attach copies of manufacturer's data sheets, drawings, flame demonstration per 60.18 or $63.11(b)$ and performance testing.								



Vapor Combustor Unit (VCU)

HY-BON/EDI is pleased to provide the CH2.5 and CH10.0 enclosed combustors as an effective solution for eliminating VOC emissions. HY-BON/EDI's insulated combustors are automated and have been successfully tested per EPA 40, CFR 60 guidelines – making it the perfect blend of performance and safety. The combustor comes as a complete, skid mounted package containing the liquid knock-out vessel, liquid transfer pump, flame arrestor, bird screen and burner control system. Installation is simple and field performance adjustments can be made as production changes – making it the most flexible solution in the industry.

- EPA 40 CFR 60, Quad O Compliant
 <u>List of EPA Approved Combustion Control Devices</u>
- Completely Enclosed Combustion
- 99.99% Destruction Efficiency
- User Friendly Automated System
- · Operational and Quad O reporting data can be saved to a USB Key
- RS-232 or RS-485 Communication supports satellite, cellular, or radio
- Modbus Slave Protocol allows it to communicate with SCADA systems and other devices/software

GENERAL PROPERTIES	CH2.5	CH10.0		
BURNER SIZE (MMBTU/hr)	2.5	10.0		
OUTER DIAMETER (inches)	34	5 4		
HEIGHT (feet)	16	. 20		
INLET PRESSURE (oz/in²)	2	0.5		
DESTRUCTION EFFICIENCY	≥ 99	.99%		
SMOKELESS CAPACITY	10	100%		
TURN DOWN	SCAL	SCALABLE		

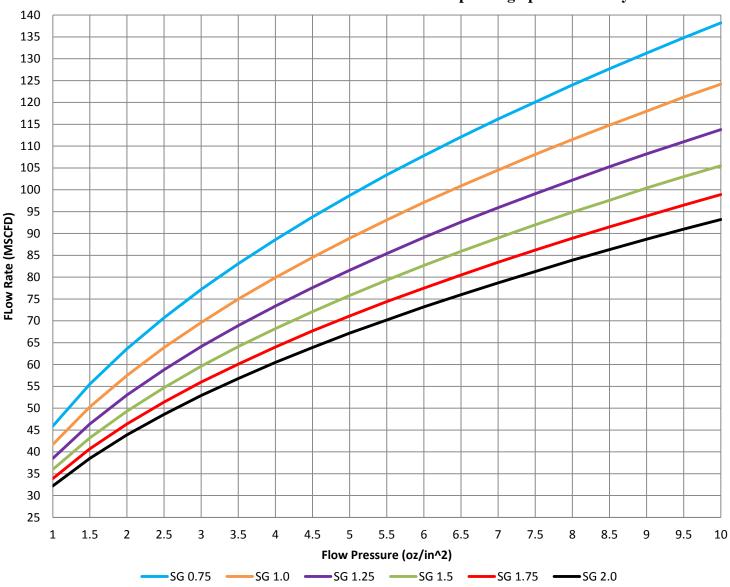
2404 Commerce Dr. Midland, TX 79703 432-697-2292 hy-bon.com

100 Ayers Blvd. Belpre, OH 45714 740-401-4000 ediplungerlift.com

With the fairly recent publication of the NSPS OOOO emission standard, all storage tank facilities constructed on or after August 23, 2011 will be allowed to emit 6 Tons or less of VOC's per year. This regulation not only forces companies to monitor and control their emissions, but it also forces the means of emission monitoring and controlling to be more reliable and exact. In response to such a stringent protocol, HY-BON Engineering Company is pleased to offer the CH10.0 enclosed Vapor Combustor Unit (VCU). Built upon a foundation of 60+ years' experience with tank vapors, the VCU is the solution for reducing residual tank vapor emissions when a Vapor Recovery Unit (VRU) is not sufficient or a viable option.

4	GENERAL PROPERTIES					
	GENERAL PROPERTIES					
	ТҮРЕ	Enclosed Tank Battery Flare				
	AMBIENT					
	TEMPERATURE	-20 °F to +100 °F				
	PILOT FUEL	Propane or Site Gas				
	REQUIREMENTS	@5psi of natural gas = 13.3 SCFM				
	REQUIREMENTS	@5psi of propane = 12.5 SCFM				
	BURNER SIZE	10.0 million BTU/hr				
	INLET PRESSURE	Minimum 0.5 oz/in ² (~1.0 inches				
•	REQUIRMENTS	w.c.)				
	TURN DOWN RATIO	5:1				
	DESTRUCTION					
	EFFICIENCY	99.99% DRE				
•	MECHANICAL PROPERTIES					
	DESIGN WIND SPEED	100 MPH				
	AMBIENT					
	TEMPERATURE	-20 °F to +120 °F				
	ELECTRICAL AREA	General Area Classification (Non-				
	CLASSIFICATION	Hazardous)				
		Thuzardous)				
	ELEVATION	up to 3,000ft ASL				
	PROCESS PROPERTIES					
00	SMOKELESS CAPACITY	100%				
	OPERATING	800 °F to 2000 °F (1500 °F				
	TEMPERATURE	Nominal)				
EPA 40 CFR 60, Quad O Compliant	UTILITIES					
•	PILOT GAS	Process Gas				
Completely Enclosed Combustion		1100055 045				
99.99% Destruction Efficiency	ELECTRICITY	1 Phase, 60 Hz, 120V/10A				
Fully Automated System	SOLAR PANEL OPTION	YES				
Output Operational Data via Thumb Drive	AVAILABLE	115				

- Output Operational Data via Thumb Drive \geq
- Capable of SCADA Integration \geq


 \geq

 \geq

Revision #3: 09/04/2015

2404 Commerce Dr. Midland, TX 79703 432-697-2292 hy-bon.com 100 Ayers Blvd. Belpre, OH 45714 740-401-4000 ediplungerlift.com

CH10.0: Flow Rate vs Flow Pressure with Corresponding Specific Gravity

Revision #3: 09/04/2015

VAPOR RECOVERY UNIT (See Attachment N - Existing Unit)						
	General I	nformation				
Emission U	Emission Unit ID#: Installation Date: New Modified Relocated					
	Device In	formation				
Manufactu Model:	rer:					
List the emission units whose emissions are controlled by this vapor recovery unit (Emission Point ID#)						
Emission Unit ID#	Emission Source Description	Emission Unit ID#	Emission Source Description			
If this	vapor recovery unit controls emissions from more t	han six (6) e	emission units, please attach additional pages.			
Additional information attached? Please attach copies of manufacturer's data sheets, drawings, and performance testing. The registrant may claim a capture and control efficiency of 95 % (which accounts for 5% downtime) for the vapor						
recovery u						
The registrant may claim a capture and control efficiency of 98% if the VRU has a backup flare that meet the requirements of Section 8.1.2 of this general permit.						
The registr	ant may claim a capture and control efficiency of 9	8% if the V	RU has a backup VRU.			

ATTACHMENT S – EMISSIONS CALCULATIONS

Provide detailed potential to emit (PTE) emission calculations for criteria and hazardous air pollutants (HAPs) for each emission point identified in the application. For hazardous air pollutants and volatile organic compounds (VOCs), the speciated emission calculations must be included.

Use the following guidelines to ensure complete emission calculations:

- All emission sources and fugitive emissions are included in the emission calculations, as well as all methods used to calculate the emissions.
- Proper emission point identification numbers and APCD and ERD identification numbers are used consistently in the emission calculations that are used throughout the application.
- A printout of the emission summary sheets is attached to the registration application.
- Printouts of any modeling must be included with the emission calculations. The modeling printout must show all inputs/outputs or assumptions that the modeled emissions are based upon.
- If emissions are provided from the manufacturer, the manufacturer's documentation and/or certified emissions must also be included.
- The emission calculations results must match the emissions provided on the emissions summary sheet.
- If calculations are based on a compositional analysis of the gas, attach the laboratory analysis. Include the following information: the location that the sample was taken (and whether the sample was taken from the actual site or a representative site); the date the sample was taken; and, if the sample is considered representative, the reasons that it is considered representative (same gas field, same formation and depth, distance from actual site, etc.).
- Provide any additional clarification as necessary. Additional clarification or information is especially helpful when reviewing modeling calculations to assist the engineer in understanding the basis of assumptions and/or inputs.

Please follow specific guidance provided on the emissions summary sheet when providing the calculations.

		NOx	со	CO2e	VOC	SO2	PM	n-Hexane	benzene	formaldehyde	Total HAPs
Source	Description	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	lb/Hr	lb/hr	lb/hr	lb/hr
VRU-1	VRU Compressor	0.52	0.89	89.36	0.02	0.000	0.013		0.001	0.014	0.021
GPU-1 to GPU-6	GPU's	0.90	0.76	1086.85	0.05	0.005	0.068	0.016	0.002	0.001	0.017
RBV-1	Dehy Reboiler	0.05	0.04	60.38	0.00	0.000	0.004	0.001	0.000	0.000	0.001
	Blowdowns ¹			N/A	N/A						
EC-1	Condensate Tanks + Water Tanks ²	0.26	0.96	400.03	1.60	0.001	0.015	0.212	0.000		0.050
EC-2	Still Vent Controlled Emissions	0.27	1.01	433.61	0.81	0.000	0.037	0.020	0.010	0.000	0.063
TEG-1	Thermo-Electric Generator	0.00	0.00	1.57	0.00	0.000	0.000	0.000	0.000	0.000	0.000
TL-1	Condensate Truck Loading ³				11.10						1.510
TL-2	Water Truck Loading ³				0.07						
	Truck Traffic Fugitive Dust						29.30				
	Fittings Fugitive Emissions			8.03	0.78						0.010
Total		2.00	3.66	2,080	14.43	0.01	29.44	0.25	0.01	0.02	1.67

Source		NOx tpy	CO tpy	CO2e tpy	VOC tpy	SO2 tpy	PM tpy	n-Hexane TPY	benzene tpy	formaldehyde tpy	Total HAPs tpy
VRU-1	VRU Compressor	2.27	3.89	391	0.09	0.002	0.06		0.005	0.062	0.093
GPU-1 to GPU-6	GPU's	3.94	3.31	4,760	0.22	0.024	0.30	0.071	0.000	0.003	0.074
RBV-1	Dehy Reboiler	0.22	0.18	264	0.01	0.001	0.02	0.004	0.000	0.000	0.004
	Blowdowns ¹			1	0.01						
EC-1	Condensate Tanks + Water Tanks ²	1.13	4.19	1,751	6.98	0.00	0.07	0.218	0.000		0.228
EC-2	Still Vent Controlled Emissions	1.18	4.44	1,913	3.53	0.00	0.16	0.093	0.043	0.001	0.284
TEG-1	Thermo-Electric Generator	0.01	0.00	7	0.00	0.00	0.00	0.000	0.000	0.000	0.000
TL-1	Condensate Truck Loading ³				1.25						0.090
TL-2	Water Truck Loading ³				0.02						
	Truck Traffic Fugitive Dust						2.93				
	Fittings Fugitive Emissions			35	3.44						0.040
Total		8.75	16.02	9,124	15.55	0.03	3.53	0.39	0.05	0.07	0.81
	Existing Permit Registration	4.89	8.89	3,882	30.96	0.01	3.17	1.70	0.00	0.06	2.80
	Increase	3.86	7.13	5,242	-15.41	0.02	0.36	-1.31	0.04	0.00	-1.99

¹ Blowdown emissions from initial permit submittal

² Condensate and water tank emissions are currently controlled by a VRU + Enclosed Combustor at 98%. This entry represents the un-controlled 2%. ³ Truck loading is un-controlled.

Controlled Emission Rates

Source VRU-1						
Flash Gas Compressor						
Engine Data:						
Engine Data: Engine Manufacturer	Cummins					
Engine Model	G5.9					
Type (Rich-burn or Low Emission)	Rich Burn					
Aspiration (Natural or Turbocharged)	Natural					
Manufacturer Rating	84	h				
Speed at Above Rating	04 1,800	hp rpm				
Configeration (In-line or Vee)	In-line	ipin				
Number of Cylinders	6					
Engine Bore	4.020	inches				
Engine Stroke	4.720	inches				
	4.720	Inches				
	0.50					
Engine Displacement	359	cu. in.				
Engine BMEP	103	psi Dtu/bha.hr				
Fuel Consumption (HHV)	7,914	Btu/bhp-hr				2
					AP-42	
Emission Patos:	albhn hr	lh/hr	tone/upor	a/br		kerich
Emission Rates:	g/bhp-hr 2.800	lb/hr	tons/year	g/hr	Ib/day Ib/mm	
Oxides of Nitrogen, NOx		0.52	2.27	235	12.44	Comment 453.59 grams = 1 pound
Carbon Monoxide CO	4.800	0.89	3.89	403	21.33 0.49	0
VOC (NMNEHC)	0.110	0.02	0.09	9 37 716		2,000 pounds = 1 ton
CO2 CO2e	449	83 89	364 391	37,716	1,996	
0025		09	291			
Total Annual Hours of Operation	8,760					
SO2		0.0004	0.0017			.0006
PM2.5		0.0063	0.0277			.0095
PM (Condensable)		0.0066	0.0289		0.0	00991
CH ₄		0.1262	0.5529		0	.0022 Factor From 40 CFR 98, Table C-2
N ₂ O		0.0115	0.0503		0	.0002 Factor From 40 CFR 98, Table C-2
acrolein		0.0017	0.0077			00263
acetaldehyde		0.0019	0.0081			00279
formaldehyde	0.0760	0.0141	0.0616			Per Mfg.
benzene		0.0011	0.0046		0.0	00158
toluene		0.0004	0.0016			00558
ethylbenzene		2E-05	0.0001			8E-05
xylene s		0.0001	0.0006			00195
methanol		0.002	0.0089			00306
total HAPs		0.0213	0.0932			
Exhaust Parameters:						
Exhaust Gas Temperature	1,078	deg. F				
Exhaust Gas Mass Flow Rate	1,070	lb/hr				
Exhaust Gas Mass Flow Rate	430	acfm				
Enhaust Cas mass r IOW IVale	-100	aum				
Exhaust Stack Height	96	inches				
LANAUSI SIdUK HEIGIII	96 8.00	feet				
Exhaust Stack Incide Discussion	4	in ch				
Exhaust Stack Inside Diameter	4	inches				
	0.333	feet				
Exhaust Stack Velocity	82.1	ft/sec				
·····,						
-	4,927.4	ft/min				

Jay-Bee Oil & Gas , LLC

RPT-8 Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Sources GPU-1 to GPU-6

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 9000.0 Mbtu/hr 6 GPU's at 1500 MBTU/Hr Each 98.0 % 1263.0 Btu/scf 174508.7 scfd 0.000 Mole % 8760

NOx	0.9004	lbs/hr	3.944	TPY
СО	0.7563	lbs/hr	3.313	TPY
CO2	1080.4	lbs/hr	4732.3	TPY
CO2e	1,087	lbs/hr	4,760	tpy
VOC	0.0495	lbs/hr	0.217	TPY
SO2	0.0054	lbs/hr	0.024	TPY
H2S	0.0000	lbs/hr	0.000	TPY
PM10	0.0684	lbs/hr	0.300	TPY
СНОН	0.0007	lbs/hr	0.003	TPY
Benzene	0.0000	lbs/hr	0.000	TPY
N-Hexane	0.0162	lbs/hr	0.071	TPY
Toluene	0.0000	lbs/hr	0.000	TPY
Total HAPs	0.0169	lbs/hr	0.074	TPY

AP-42 Factors Used

NOx	100 Lbs/MMCF	
СО	84 Lbs/MMCF	
CO ₂	120,000 Lbs/MMCF	Global Warming Potential = 1
VOC	5.5 Lbs/MMCF	
PM	7.6 Lbs/MMCF	
SO_2	0.6 Lbs/MMCF	
CH ₄	2.3 Lbs/MMCF	Global Warming Potential = 25
N ₂ O	2.2 Lbs/MMCF	Global Warming Potential =298
нсон	0.075 Lbs/MMCF	
Benzene	0.0021 Lbs/MMCF	
n-Hexane	1.8 Lbs/MMCF	
Toluene	0.0034 Lbs/MMCF	

Icon Midstream Pipeline,LLC

RPT-8 Well Pad Production Facility Tyler County, WV

Potential Emission Rates

500.0

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 500.0 Mbtu/hr 98.0 % 1263.0 Btu/scf 9,695 scfd 0.000 Mole % 8760

Source RBV-1

NOx	0.0500	lbs/hr	0.219	TPY
СО	0.0420	lbs/hr	0.184	TPY
CO2	60.0	lbs/hr	262.9	TPY
CO2e	60	lbs/hr	264	tpy
VOC	0.0028	lbs/hr	0.012	TPY
SO2	0.0003	lbs/hr	0.001	TPY
H2S	0.0000	lbs/hr	0.000	TPY
PM10	0.0038	lbs/hr	0.017	TPY
СНОН	0.0000	lbs/hr	0.000	TPY
Benzene	0.0000	lbs/hr	0.000	TPY
N-Hexane	0.0009	lbs/hr	0.004	TPY
Toluene	0.0000	lbs/hr	0.000	TPY
Total HAPs	0.0009	lbs/hr	0.004	TPY

AP-42 Factors Used

NOx	100 Lbs/MMCF	
СО	84 Lbs/MMCF	
CO ₂	120,000 Lbs/MMCF	Global Warming Potential = 1
VOC	5.5 Lbs/MMCF	
PM	7.6 Lbs/MMCF	
SO_2	0.6 Lbs/MMCF	
CH ₄	2.3 Lbs/MMCF	Global Warming Potential = 25
N_2O	2.2 Lbs/MMCF	Global Warming Potential =298
нсон	0.075 Lbs/MMCF	
Benzene	0.0021 Lbs/MMCF	
n-Hexane	1.8 Lbs/MMCF	
Toluene	0.0034 Lbs/MMCF	

'otential Emission Rate

Enclosed Combustor Pilot

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation 985.1 Mbtu/hr 99.0 % 1263.0 Btu/scf 18908.0 scfd 0.000 Mole % 8760

NOx	0.0976	lbs/hr	0.427	TPY
CO	0.0819	lbs/hr	0.359	TPY
CO2	117.1	lbs/hr	512.7	TPY
CO2e	118	lbs/hr	516	TPY
VOC	0.0054	lbs/hr	0.024	TPY
SO2	0.0006	lbs/hr	0.003	TPY
H2S	0.0000	lbs/hr	0.000	TPY
PM10	0.0074	lbs/hr	0.032	TPY
СНОН	0.0001	lbs/hr	0.000	TPY
Benzene	0.0000	lbs/hr	0.000	TPY
N-Hexane	0.0018	lbs/hr	0.008	TPY
Toluene	0.0000	lbs/hr	0.000	TPY
Total HAPs	0.0018	lbs/hr	0.008	TPY

AP-42 Factors Used (Tables 1.4.1-1.4.3)

NOx	100 Lbs/MMCF
CO	84 Lbs/MMCF
CO ₂	120,000 Lbs/MMCF
VOC	5.5 Lbs/MMCF
PM	7.6 Lbs/MMCF
SO ₂	0.6 Lbs/MMCF
CH ₄	2.3 Lbs/MMCF
N ₂ O	2.2 Lbs/MMCF
НСОН	0.075 Lbs/MMCF
Benzene	0.0021 Lbs/MMCF
n-Hexane	1.8 Lbs/MMCF
Toluene	0.0034 Lbs/MMCF

Global Warming Potential = 1

Global Warming Potential = 25 Global Warming Potential =298

Potential Emission Rates

Source EC-1

	Enclosed Vapor Combustor - Control of Tank Emissions				
Destruction Efficiency	98.0 %				
Gas Heat Content (HHV)	2292.0 Btu/scf				
Max Flow to T-E	0.025 MMSCFD	9.040 MMCF/Yr			
Max BTUs to Flare	2.367 MMBTU/Hr	20,719 MMBTU/Yr			
	NOx 0.16 lbs/hr	0.70 tpv			

NOx	0.16	lbs/hr	0.70	tpy
CO	0.88	lbs/hr	3.83	tpy
CO2	276.66	lbs/hr	1,210.9	tpy
CO2e	282.27	lb/hr	1,235.7	tpy
VOC	1.59	lb/hr	6.96	tpy
CH4	0.22	lbs/hr	0.9600	tpy
N2O	0.0005	lbs/hr	0.0023	tpy
PM	0.0078	lb/hr	0.0344	tpy
Benzene	0.0000	lb/hr	0.0000	tpy
СНОН	0.0001	lb/hr	0.0003	tpy
n-Hexane	0.0500	lb/hr	0.2100	tpy
Toluene	0.0000	lb/hr	0.0000	tpy
Total HAP	0.0500	lb/hr	0.2200	tpy

Notes: VOC, Total HAP, N-Hexane and CH4 emissions are taken from the Condensate and Produced Water Tank Emissions sheet in the Calculations Section.

BTU
D 10
BTU
BTU
BTU
BTU
CF

Potential Emission Rates

Source EC-2

	Enclosed Va	por Combustor	- Control S	Still Vent Emissions
Destruction Efficiency	98.0 %			
Gas Heat Content (HHV)	653.4 Btu/scf			
Max Flow to T-E	0.0924 MMSCF	D	33.726	MMCF/Yr
Max BTUs to Flare	2.516 MMBTU	J/Hr	22,037	MMBTU/Yr
	NOx 0.17	lbs/hr	0.75	tpy

NOx	0.17	lbs/hr	0.75	tpy
CO	0.93	lbs/hr	4.08	tpy
CO2	294.05	lbs/hr	1,288.0	tpy
CO2e	315.85	lb/hr	1,397.2	tpy
VOC	0.801	lb/hr	3.5066	tpy
CH4	0.99	lbs/hr	4.3362	tpy
N2O	0.0006	lbs/hr	0.0024	tpy
PM	0.0293	lb/hr	0.1282	tpy
Benzene	0.0097	lb/hr	0.0425	tpy
СНОН	0.0003	lb/hr	0.0013	tpy
n-Hexane	0.0196	lb/hr	0.0857	tpy
Toluene	0.0334	lb/hr	0.1463	tpy
Total HAP	0.0630	lb/hr	0.2758	tpy

Notes:

VOC, Total HAP, N-Hexane and CH4 emissions are taken as 2% of Still Vent Uncontrolled from the GLYCalc Run

Factors Used		
AP-42 Table 13.5-1	NOx	0.068 Lbs/MMBTU
AP-42 Table 13.5-1	CO	0.37 Lbs/MMBTU
40 CFR 98 Table C-1	CO2	116.89 Lbs/MMBTU
40 CFR 98 Table C-2	CH4	0.0022 Lbs/MMBTU
40 CFR 98 Table C-2	N2O	0.00022 Lbs/MMBTU
AP-42 Table 1.4-2	PM	7.6 lb/MMSCF
AP-42 Table 1.4-3	Benzene	0.0021 lb/MMSCF
AP-42 Table 1.4-3	Toluene	0.0034 lb/MMSCF
AP-42 Table 1.4-3	Hexane	1.8 lb/MMSCF
AP-42 Table 1.4-3	СНОН	0.075 lb/MMSCF

Jay-Bee Oil & Gas, LLC

RPT-8 Well Pad Production Facility Tyler County, WV

Potential Emission Rates

Burner Duty Rating Burner Efficiency Gas Heat Content (HHV) Total Gas Consumption H2S Concentration Hours of Operation

13.0 Mbtu/hr 98.0 % 1263.0 Btu/scf 252.1 scfd 0.000 Mole % 8760

Source TEG-1

NOx	0.0013	lbs/hr	0.006	TPY
СО	0.0011	lbs/hr	0.005	TPY
CO2	1.6	lbs/hr	6.8	TPY
CO2e	2	lbs/hr	7	tpy
VOC	0.0001	lbs/hr	0.000	TPY
SO2	0.0000	lbs/hr	0.000	TPY
H2S	0.0000	lbs/hr	0.000	TPY
PM10	0.0001	lbs/hr	0.000	TPY
СНОН	0.0000	lbs/hr	0.000	TPY
Benzene	0.0000	lbs/hr	0.000	TPY
N-Hexane	0.0000	lbs/hr	0.000	TPY
Toluene	0.0000	lbs/hr	0.000	TPY
Total HAPs	0.0000	lbs/hr	0.000	TPY

AP-42 Factors Used

NOx	100]	Lbs/MMCF	
СО	84]	Lbs/MMCF	
CO_2	120,000	Lbs/MMCF	Global Warming Potential = 1
VOC	5.5	Lbs/MMCF	
PM	7.6	Lbs/MMCF	
SO_2	0.6	Lbs/MMCF	
CH_4	2.3	Lbs/MMCF	Global Warming Potential = 25
N_2O	2.2	Lbs/MMCF	Global Warming Potential =310
нсон	0.075	Lbs/MMCF	
Benzene	0.0021	Lbs/MMCF	
n-Hexane	1.8	Lbs/MMCF	
Toluene	0.0034	Lbs/MMCF	

Fugitive VOC Emissions		
Volatile Organic Compounds, NMNEHC from gas analysis:	18.40	weight percent
Methane from gas analysis:	59.35	weight percent
Carbon Dioxide from gas analysis:	0.32	weight percent
Gas Density	0.0580	lb/scf

Emission Source:	Number	Oil & Gas Production*	VOC %	VOC, lb/hr	VOC TPY	CO2 lb/Hr	CO2 TPY	CH4 lb/hr	CH4 TPY	CO2e
Valves:										
Gas/Vapor:	26	0.02700 scf/hr	18.4	0.007	0.033	0.000	0.001	0.024	0.1058	2.646
Light Liquid:	18	0.05000 scf/hr	100.0	0.052	0.229					0.000
Heavy Liquid (Oil):	-	0.00050 scf/hr	100.0	0.000	0.000					0.000
Low Bleed Pneumatic	-	1.39000 scf/hr	18.4	0.000	0.000	0.000	0.000	0.000	0.0000	0.000
Relief Valves:	20	0.04000 scf/hr	18.4	0.009	0.037	0.000	0.001	0.028	0.1206	3.015
Open-ended Lines, gas:	6	0.06100 sfc/hr	18.4	0.004	0.017	0.000	0.000	0.000	0.0003	0.008
Open-ended Lines, liquid:	-	0.05000 lb/hr	100.0	0.000	0.000					0.000
Pump Seals:										
Gas:	1	0.00529 lb/hr	18.4	0.001	0.004	0.000	0.000	0.003	0.0138	0.344
Light Liquid:	-	0.02866 lb/hr	100.0	0.000	0.000					0.000
Heavy Liquid (Oil):	-	0.00133 lb/hr	100.0	0.000	0.000					0.000
Compressor Seals, Gas:	1	0.01940 lb/hr	18.4	0.004	0.016	0.000	0.000	0.001	0.0029	0.073
Connectors:										
Gas:	120	0.00300 scf/hr	18.4	0.004	0.017	0.000	0.000	0.012	0.0543	1.357
Light Liquid:	60	0.00700 scf/hr	100.0	0.420	1.840					0.000
Heavy Liquid (Oil):	-	0.00030 scf/hr	100.0	0.000	0.000					0.000
Sampling Connectors:										
Gas:	11	0.03300 lb/hr	18.4	0.067	0.293	0.000	0.000	0.215	0.9436	23.590
Light Liquid:	6	0.03300 lb/hr	100.0	0.198	0.867					0.000
Flanges:										
Gas:	80	0.00086 lb/hr	18.4	0.013	0.055	0.000	0.001	0.041	0.1788	4.472
Light Liquid:	40	0.00300 scf/hr	100.0	0.007	0.030					0.000
Heavy Liquid:		0.0009 scf/hr	100.0	0.000	0.000					0.000

гиз	itive Calculatio	ns:
	lb/hr	t/y
VOC	0.785	3.438
CH4	0.324	1.420
CO2	0.001	0.003
CO2e	8.026	35.15

 $Notes: \qquad \mbox{*Factors are from 40 CFR 98, Table W-1A (scf/hr), where available.} \\ . Sampling Connectors are from TCEQ. Remaining are API (lb/hr) \label{eq:approx}$

RPT-8 Well Pad Production Facility Tyler County, WV

Inlet Gas Composition Information:

	Fuel Gas mole %	Fuel M.W. lb/lb-mole	Fuel S.G.	Fuel Wt. %	LHV, dry Btu/scf	HHV, dry Btu/scf	AFR vol/vol	VOC NM/NE	Z Factor	GPM
Nitrogen, N2	0.394	0.110	0.004	0.530	Dtu/Sci	Dtu/Sci	-	INIVI / INL	0.0039	
Carbon Dioxide, CO2	0.151	0.066	0.002	0.319			-		0.0015	
Hydrogen Sulfide, H2S	0.000	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	77.080	12.366	0.427	59.347	701.0	778.5	7.346		0.7693	
Ethane, C2H6	14.832	4.460	0.154	21.404	240.1	262.5	2.474		0.1471	3.945
Propane	4.967	2.190	0.076	10.512	115.0	125.0	1.183	10.512	0.0488	1.361
Iso-Butane	0.616	0.358	0.012	1.718	18.5	20.0	0.191	1.718	0.0060	0.200
Normal Butane	1.210	0.703	0.024	3.375	36.4	39.5	0.375	3.375	0.0117	0.379
Iso Pentane	0.266	0.192	0.007	0.921	9.8	10.6	0.101	0.921	0.0027	0.097
Normal Pentane	0.262	0.189	0.007	0.907	9.7	10.5	0.100	0.907	0.0026	0.094
Hexane	0.151	0.130	0.004	0.625	6.6	7.2	0.068	0.625	0.0015	0.062
Heptane	0.071	0.071	0.002	0.341	3.6	3.9	0.037	0.341	0.0007	0.033
	100.000	20.837	0.719		1,140.8	1,257.7	11.875	18.400	0.9958	6.172

Gas Density (STP) =

1,257.7 1,236.6 -1,263.0 1,145.6) = 0.058

Ideal Gross (HHV)
Ideal Gross (sat'd)
GPM
Real Gross (HHV)
Real Net (LHV)

RPT-8 Well Pad Production Facility Tyler County County, WV

Condensate Tank Flash Vapor Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Ζ	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.036	0.010	0.000	0.026			-		0.0004	
Carbon Dioxide, CO2	0.141	0.062	0.002	0.157			-		0.0014	
Hydrogen Sulfide, H2S	0.000	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	24.485	3.928	0.136	9.940	222.7	247.3	2.333		0.2444	
Ethane, C2H6	25.943	7.801	0.269	19.741	419.9	459.1	4.327		0.2573	6.901
Propane	23.253	10.254	0.354	25.947	538.3	585.1	5.539	25.947	0.2285	6.373
Iso-Butane	4.773	2.774	0.096	7.020	143.2	155.2	1.478	7.020	0.0464	1.553
Normal Butane	10.980	6.382	0.220	16.150	330.6	358.2	3.401	16.150	0.1061	3.443
Iso Pentane	3.135	2.262	0.078	5.724	116.0	125.4	1.195	5.724	0.0314	1.141
Normal Pentane	3.175	2.291	0.079	5.797	117.7	127.3	1.210	5.797	0.0318	1.144
Hexane	2.378	2.049	0.071	5.186	104.7	113.1	1.076	5.186	0.0235	0.972
Heptane	1.701	1.704	0.059	4.313	86.8	93.6	0.891	4.313	0.0169	0.781
	100.000	39.518	1.364		2,079.8	2,264.3	21.451	70.137	0.9879	22.309

Gas Density (STP) = 0.110

Ideal Gross (HHV)	2,264.3
Ideal Gross (sat'd)	2,225.5
GPM	-
Real Gross (HHV)	2,292.0
Real Net (LHV)	2,105.2

RPT-8 Well Pad Production Facility Tyler County County, WV

Water Tank Flash Vapor Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Z	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.575	0.161	0.006	0.652			-		0.0057	
Carbon Dioxide, CO2	1.602	0.705	0.024	2.855			-		0.0160	
Hydrogen Sulfide, H2S	0.000	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Helium, He	-	-	-	-			-		-	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	74.187	11.902	0.411	48.188	674.7	749.3	7.070		0.7404	
Ethane, C2H6	9.798	2.946	0.102	11.929	158.6	173.4	1.634		0.0972	2.606
Propane	4.384	1.933	0.067	7.827	101.5	110.3	1.044	7.827	0.0431	1.202
Iso-Butane	1.841	1.070	0.037	4.332	55.2	59.9	0.570	4.332	0.0179	0.599
Normal Butane	2.043	1.187	0.041	4.808	61.5	66.6	0.633	4.808	0.0197	0.641
Iso Pentane	1.305	0.942	0.033	3.812	48.3	52.2	0.497	3.812	0.0131	0.475
Normal Pentane	0.928	0.670	0.023	2.711	34.4	37.2	0.354	2.711	0.0093	0.334
Hexane	1.149	0.990	0.034	4.009	50.6	54.6	0.520	4.009	0.0114	0.470
Heptane	2.188	2.192	0.076	8.877	111.6	120.4	1.147	8.877	0.0218	1.004
	100.000	24.699	0.853		1,296.4	1,424.0	13.469	36.376	0.9954	7.331

0.069

Gas Density (STP) =

Ideal Gross (HHV) Ideal Gross (sat'd)	1,424.0 1.399.9
GPM	1,399.9
Real Gross (HHV)	1,430.5
Real Net (LHV)	1,302.3

RPT-8 Well Pad Production Facility Tyler County, WV

Still Vent Vapors Composition Information:

	Fuel Gas	Fuel M.W.	Fuel S.G.	Fuel	LHV, dry	HHV, dry	AFR	VOC	Ζ	GPM
	mole %	lb/lb-mole		Wt. %	Btu/scf	Btu/scf	vol/vol	NM / NE	Factor	
Nitrogen, N2	0.157	0.044	0.002	0.210			-		0.0016	
Carbon Dioxide, CO2	0.163	0.072	0.002	0.343			-		0.0016	
Hydrogen Sulfide, H2S	0.000	0.000	0.000	0.000	0.0	0.0	0.000		0.0000	
Water	55.040	9.907	0.342	47.331			-		0.5507	
Oxygen, O2	-	-	-	-			-		-	
Methane, CH4	30.530	4.898	0.169	23.400	277.6	308.4	2.910		0.3047	
Ethane, C2H6	7.640	2.297	0.079	10.976	123.7	135.2	1.274		0.0758	2.032
Propane	3.290	1.451	0.050	6.931	76.2	82.8	0.784	6.931	0.0323	0.902
Iso-Butane	0.504	0.293	0.010	1.400	15.1	16.4	0.156	1.400	0.0049	0.164
Normal Butane	1.190	0.692	0.024	3.304	35.8	38.8	0.369	3.304	0.0115	0.373
Iso Pentane	0.276	0.199	0.007	0.951	10.2	11.0	0.105	0.951	0.0028	0.100
Normal Pentane	0.327	0.236	0.008	1.127	12.1	13.1	0.125	1.127	0.0033	0.118
Hexane	0.299	0.258	0.009	1.231	13.2	14.2	0.135	1.231	0.0030	0.122
Heptane	0.584	0.585	0.020	2.796	29.8	32.1	0.306	2.796	0.0058	0.268
	100.000	20.932	0.723		593.7	652.0	6.163	17.740	0.9979	4.080

Gas Density (STP) =

-653.4 594.9

652.0 641.5

0.058

Ideal Gross (HHV)
Ideal Gross (sat'd)
GPM
Real Gross (HHV)
Real Net (LHV)

GAS DATA INFORMATION

 Specific Graivity of Air, @ 29.92 in. Hg and 60 -F,
 28.9625

 One mole of gas occupies, @ 14.696 psia & 32 -F,
 359.2 cu ft. per lb-mole

 One mole of gas occupies, @ 14.696 psia & 60 -F,
 379.64 cu ft. per lb-mole

Hydrogen Sulfide (H2S) conversion chart:

0 grains H2S/100 scf	=	0.00000 mole % H2S
		0.0 ppmv H2S
<u>0</u> mole % H2S	=	0 grains H2S/100 scf
		0.0 ppmv H2S
0 ppmv H2S	=	0.000 grains H2S/100 scf
		0.00000 mole % H2S

Ideal Gas at 14.696 psia and 60°F

		MW	Specific	Lb per	Cu Ft	LHV, dry	HHV, dry	LHV	HHV	cu ft of air /	
		lb/mol	Gravity	Cu Ft	per Lb	Btu/scf	Btu/scf	Btu/lb	Btu/lb	1 cu ft of gas	Z factor
Nitrogen	N2	28.013	0.9672	0.0738	13.552	0	0	0	0	0	0.9997
Carbon Dioxide	CO2	44.010	1.5196	0.1159	8.626	0	0	0	0	0	0.9964
Hydrogen Sulfide	H2S	34.076	1.1766	0.0898	11.141	587	637	6,545	7,100	7.15	0.9846
Water	H20	18.000	0.6215	0.0474	21.091	0	0	0	0	0	1.0006
Oxygen	02	31.999	1.1048	0.0843	11.864	0	0	0	0	0	0.9992
Methane	CH4	16.043	0.5539	0.0423	23.664	909.4	1,010.0	21,520	23,879	9.53	0.9980
Ethane	C2H6	30.070	1.0382	0.0792	12.625	1,618.7	1,769.6	20,432	22,320	16.68	0.9919
Propane	C3H8	44.097	1.5226	0.1162	8.609	2,314.9	2,516.1	19,944	21,661	23.82	0.9825
Iso-Butane	C4H10	58.124	2.0069	0.1531	6.532	3,000.4	3,251.9	19,629	21,257	30.97	0.9711
Normal Butane	C4H10	58.124	2.0069	0.1531	6.532	3,010.8	3,262.3	19,680	21,308	30.97	0.9667
Iso Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,699.0	4,000.9	19,478	21,052	38.11	1.0000
Normal Pentane	C5H12	72.151	2.4912	0.1901	5.262	3,706.9	4,008.9	19,517	21,091	38.11	1.0000
Hexane	C6H14	86.178	2.9755	0.2270	4.405	4,403.8	4,755.9	19,403	20,940	45.26	0.9879
Heptane	C7H16	100.205	3.4598	0.2639	3.789	5,100.0	5,502.5	22,000	23,000	52.41	0.9947

Real Gas at 14.696 psia and 60°F

	cu ft of air /	
Btu/lb	1 cu ft of gas G	Gal/Mole
0 0	0	4.1513
0 0	0	6.4532
5 7,100	7.15	5.1005
		3.8376
0 0	0	3.3605
0 23,879	9.53	6.4172
2 22,320	16.68	10.126
4 21,661	23.82	10.433
9 21,257	30.97	12.386
0 21,308	30.97	11.937
8 21,052	38.11	13.86
7 21,091	38.11	13.713
3 20,940	45.26	15.566 16
0 23,000	52.41	17.468 1
	0 0 0 0 5 7,100 0 0 0 23,879 2 22,320 4 21,661 9 21,257 0 21,308 8 21,052 7 21,091 3 20,940	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

6.3227 17.468 GRI-GLYCalc VERSION 4.0 - SUMMARY OF INPUT VALUES Case Name: Jay-Bee - RPT-8 File Name: C:\Rogers_Files\Misc\Jay-Bee Oil & Gas\RPT-8 Expansion July 2016\RPT-8 No Cond 7-05-16.ddf Date: July 08, 2016 DESCRIPTION: Description: 40 MMSCFD Still Vent to Combustor No Flash Tank Annual Hours of Operation: 8760.0 hours/yr WET GAS: Temperature: 85.00 usy. 500.00 psig 85.00 deg. F Wet Gas Water Content: Saturated Component Conc. (vol %) _____ ___
 Carbon Dioxide
 0.1510

 Nitrogen
 0.3940

 Methane
 77.0800

 Ethane
 14.8320

 Propane
 4.9670

 Isobutane
 0.6160

 n-Butane
 1.2100

 Isopentane
 0.2660

 n-Pentane
 0.2620

 n-Hexane
 0.0580
 Cyclohexane0.0060Other Hexanes0.0930Heptanes0.0420Benzene0.0010Toluene0.0020 C8+ Heavies 0.0200 DRY GAS: Flow Rate: 40.0 MMSCF/day Water Content: 7.0 lbs. H2O/MMSCF LEAN GLYCOL: Glycol Type: TEG Water Content: 1.5 wt% H2O Flow Rate: 7.5 gpm PUMP : ______ Glycol Pump Type: Gas Injection Gas Injection Pump Volume Ratio: 0.080 acfm gas/gpm glycol

Page: 1

Page: 2

REGENERATOR OVERHEADS CONTROL DEVICE:

Control Device: Combustion Device Destruction Efficiency: 98.0 % Excess Oxygen: 5.0 % Ambient Air Temperature: 60.0 deg. F

Page: 1

GRI-GLYCalc VERSION 4.0 - AGGREGATE CALCULATIONS REPORT

Case Name: Jay-Bee - RPT-8

File Name: C:\Rogers_Files\Misc\Jay-Bee Oil & Gas\RPT-8 Expansion July 2016\RPT-8 No Cond 7-05-16.ddf

Date: July 05, 2016

DESCRIPTION:

Description: 40 MMSCFD Still Vent to Combustor No Flash Tank

Annual Hours of Operation: 8760.0 hours/yr

EMISSIONS REPORTS:

CONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs∕day	tons/yr
Methane	0.9905	23.773	4.3386
Ethane	0.4659	11.181	2.0405
Propane	0.2941	7.059	1.2883
Isobutane	0.0594	1.426	0.2602
n-Butane	0.1401	3.362	0.6136
Isopentane	0.0404	0.970	0.1770
n-Pentane	0.0478	1.146	0.2092
n-Hexane	0.0196	0.470	0.0857
Cyclohexane	0.0075	0.180	0.0328
Other Hexanes	0.0249	0.598	0,1091
Heptanes	0.0302	0.724	0.1321
Benzene	0.0097	0.232	0.0423
Toluene	0.0334	0.801	0.1462
C8+ Heavies	0.0887	2.129	0.3886
Total Emissions	2.2521	54.050	9.8641
Total Hydrocarbon Emissions	2.2521	54.050	9.8641
Total VOC Emissions	0.7957	19.096	3.4850
Total HAP Emissions	0.0626	1.502	0.2742
Total BTEX Emissions	0.0430	1.033	0.1885

UNCONTROLLED REGENERATOR EMISSIONS

Component	lbs/hr	lbs/day	tons/yr
Methane	49.5274	1188.657	216.9300
Ethane	23.2939	559.053	102.0271
Propane	14.7066	352.958	64.4148
Isobutane	2.9699	71.277	13,0081
n-Butane	7.0041	168.099	30.6781
Isopentane	2.0204	48.489	8.8492
n-Pentane	2.3881	57,313	10.4597
n-Hexane	0.9788	23.491	4.2871
Cyclohexane	0.3748	8.995	1.6416
Other Hexanes	1.2451	29.882	5.4534
Heptanes	1.5077	36.186	6.6039
Benzene	0.4825	11.581	2.1135
Toluene	1.6687	40.050	7,3091

C8+ Heavies	4.4359	106.461	Page: 2 19.4291
Total Emissions	112.6038	2702.492	493.2047
Total Hydrocarbon Emissions Total VOC Emissions Total HAP Emissions Total BTEX Emissions	112.6038 39.7826 3.1301 2.1513	2702.492 954.781 75.121 51.630	493.2047 174.2476 13.7097 9.4226

EQUIPMENT REPORTS:

~_____

COMBUSTION DEVICE

Ambient Temperature:	60.00	deg. F
Excess Oxygen:	5.00	%
Combustion Efficiency:	98.00	%
Supplemental Fuel Requirement:	5.460-001	MM BTU∕hr

Component	Emitted	Destroyed
Methane Ethane Propane Isobutane n-Butane	2.00% 2.00% 2.00% 2.00% 2.00% 2.00%	98.00% 98.00% 98.00% 98.00% 98.00% 98.00%
Isopentane	2.00%	98.00%
n-Pentane	2.00%	98.00%
n-Hexane	2.00%	98.00%
Cyclohexane	2.00%	98.00%
Other Hexanes	2.00%	98.00%
Heptanes	2.00%	98.00%
Benzene	2.00%	98.00%
Toluene	2.00%	98.00%
C8+ Heavies	2.00%	98.00%

ABSORBER

NOTE: Because the Calculated Absorber Stages was below the minimum allowed, GRI-GLYCalc has set the number of Absorber Stages to 1.25 and has calculated a revised Dry Gas Dew Point.

1.25	
3.55	lbs. H2O/MMSCF
85.0	deg. F
40.0000	MMSCF/day
Saturated	
63.67	lbs. H2O/MMSCF
4.45	gal∕lb H2O
	3.55 85.0 500.0 40.0000 0.1475 Saturated 63.67

Component	Remaining in Dry Gas	Absorbed in Glycol
Water	5,56%	94.44%
Carbon Dioxide	99,83%	0.17%
Nitrogen	99,99%	0.01%

		Page:	3
Methane	99.99%	0.01%	
Ethane	99.96%	0.04%	
Propane	99.93%	0.07%	
Isobutane	99.89%	0.11%	
n-Butane	99.85%	0.15%	
Isopentane	99.84%	0.16%	
n-Pentane	99.79%	0,21%	
n-Hexane	99.63%	0.37%	
Cyclohexane	98.39%	1.61%	
Other Hexanes	99.73%	0.27%	
Heptanes	99.26%	0.74%	
Benzene	86.02%	13.98%	
Toluene	79.47%	20.53%	
C8+ Heavies	97.12%	2.88%	

REGENERATOR

No Stripping Gas used in regenerator.

Component	Remaining in Glycol	Distilled Overhead
Water	38.47%	61.53%
Carbon Dioxide	0.00%	100.00%
Nitrogen	0.00%	100.00%
Methane	0.00%	100.00%
Ethane	0.00%	100.00%
Propane	0.00%	100.00%
Isobutane	0.00%	100.00%
n-Butane	0.00%	100.00%
Isopentane	0.33%	99.67%
n-Pentane	0.36%	99.64%
	0.110/	
n-Hexane	0.41%	99.59%
Cyclohexane	3.05%	96.95%
Other Hexanes	0.77%	99.23%
Heptanes	0,45%	99.55%
Benzene	4.97%	95.03%
	B 0.000	00 100
Toluene	7.88%	92.12%
C8+ Heavies	11.75%	88.25%

STREAM REPORTS:

WET GAS STREAM

85.00 deg. F 514.70 psia 1.67e+006 scfh		
 Component		Loading (lb∕hr)
 Carbon Dioxide Nitrogen Methane	1.340-001 1.510-001 3.930-001 7.700+001 1.480+001	2.920+002 4.850+002 5.430+004

Page: 4

Isobutane n-Butane Isopentane	$\begin{array}{c} 4.96 \pm +000\\ 6.15 \pm -001\\ 1.21 \pm +000\\ 2.66 \pm -001\\ 2.62 \pm -001\\ \end{array}$	1.57e+003 3.09e+003 8.43e+002
Cyclohexane Other Hexanes Heptanes		2.220+001 3.520+002 1.850+002
Toluene C8+ Heavies	2.00e-003 2.00e-002	
Total Components	100.00	9.170+004

DRY GAS STREAM

Temperature: Pressure: Flow Rate:	85.00 deg. F 514.70 psia 1.67e+006 scfh		
	Component		Loading (lb∕hr)
	Carbon Dioxide Nitrogen Methane	7.47e-003 1.51e-001 3.94e-001 7.71e+001 1.48e+001	2.91e+002 4.85e+002 5.43e+004
	Isobutane n-Butane Isopentane	4.960+000 6.150-001 1.210+000 2.660-001 2.610-001	1.57e+003 3.09e+003 8.42e+002
	Cyclohexane Other Hexanes Heptanes		2.18e+001 3.51e+002 1.84e+002
	Toluene C8+ Heavies	1.59e-003 1.94e-002	
	Total Components	100.00	9.16e+004

LEAN GLYCOL STREAM

		• •• • • • • • • • • • • • • • • • • •
Temperature: 85.00 deg. F Flow Rate: 7.44e+000 gpm		
Component	Conc. (wt%)	Loading (lb⁄hr)
Water Carbon Dioxide Nitrogen Methane	1.350-013 4.780-018	6.28e+001 4.93e-011 5.66e-012 2.00e-016
Propane	8.54e-008 6.79e-009 1.22e-009	2.84e-007

Page: 5 n-Butane 2.68e-009 1.12e-007 Isopentane 1.61e-004 6.75e-003 n-Pentane 2.07e-004 8.65e-003 n-Hexane 9.63e-005 4.03e-003 Cyclohexane 2.82e-004 1.18e-002 Other Hexanes 2.32e-004 9.72e-003 Heptanes 1.63e-004 6.83e-003 Benzene 6.03e-004 2.53e-002 Toluene 3.41e-003 1.43e-001 C8+ Heavies 1.41e-002 5.91e-001 _____ ____ ___ ___ ____ Total Components 100.00 4.19e+003 RICH GLYCOL AND PUMP GAS STREAM _____ Temperature: 85.00 deg. F Pressure: 514.70 psia Flow Rate: 7.89e+000 gpm NOTE: Stream has more than one phase. Component Conc. Loading (wt%) (lb/hr) TEG 9.37e+001 4.12e+003 Water 3.71e+000 1.63e+002 Carbon Dioxide 1.65e-002 7.27e-001 Nitrogen 1.01e-002 4.45e-001 Methane 1.13e+000 4.95e+001 Ethane 5.29e-001 2.33e+001 Propane 3.34e-001 1.47e+001 Isobutane 6.75e-002 2.97e+000 n-Butane 1.59e-001 7.00e+000 Isopentane 4.61e-002 2.03e+000 n-Pentane 5.45e-002 2.40e+000 n-Hexane 2.23e-002 9.83e-001 Cyclohexane 8.78e-003 3.87e-001 Other Hexanes 2.85e-002 1.25e+000 Heptanes 3.44e-002 1.51e+000 Benzene 1.15e-002 5.08e-001 Toluene 4 12e-002 1 81e+000 C8+ Heavies 1.14e-001 5.03e+000 _____ ___ -___ -___ Total Components 100.00 4.40e+003

REGENERATOR OVERHEADS STREAM

Temperature: 212.00 deg. F Pressure: 14.70 psia Flow Rate: 3.85e+003 scfh	
Component	Conc. Loading (vol%) (lb/hr)
Carbon Dioxide Nitrogen Methane	5.50e+001 1.00e+002 1.63e-001 7.27e-001 1.57e-001 4.45e-001 3.05e+001 4.95e+001 7.64e+000 2.33e+001
Isobutane	3.29e+000 1.47e+001 5.04e-001 2.97e+000 1.19e+000 7.00e+000

Page: 6

COMBUSTION DEVICE OFF GAS STREAM

1000.00 deg. F 14.70 psia 3.43e+001 scfh		
Component		Loading (lb/hr)
 Methane	6.820+001	9.91e-001
	1,71e+001	
	7.37e+000	
	1.13e+000	
n-Butane	2.66e+000	1.40e-001
Isopentane	6.198-001	4.04e-002
	7.32e-001	
n-Hexane	2.51e-001	1.960-002
Cyclohexane	9.840-002	7.50e-003
Other Hexanes	3.19e-001	2.49e-002
Heptanes	3.33e-001	3.02e-002
	1.37e-001	
Toluene	4.00e-001	3.34e-002
C8+ Heavies	5.76e-001	8.878-002
 Total Components	100.00	2.25e+000

.

Jay-Bee Oil & Gas, Incorporated RPT-8 Well Pad Production Facility Condensate Tank Emissions

Utilizing direct measurements of the Gas to Oil (GOR) ratio and flash gas composition from this well pad, the attached calculation spreadsheet was used to determine <u>un-controlled</u> VOC and HAP flash emissions from the Condensate tanks of 348.17 tpy and 11.4 tpy respectively for the **revised** maximum annual throughput of 18,000 BBL/Yr. Working and Breathing losses were calculated using EPA's Tanks 4.0.9 to be 0.71 tpy VOCs and 0.06 tpy HAPs (est.). RVP 6 Gasoline was used as a surrogate. As the RVP of the condensate at atmospheric pressure was measured at 5.48, this was deemed appropriate. Thus, total <u>uncontrolled</u> tank emissions are projected to be 348.9 tpy of VOCs and 11.5 tpy of HAPs. As emissions from these tanks are anticipated to be continuous, this is equivalent to 79.7 pounds per hour VOCs and 2.63 pounds per hour HAPs.

The largest component to the HAPs is Hexane. Using the process described above, potential uncontrolled n-Hexane emissions were determined to be 10.4 tons per year or 2.37 pounds per hour.

Methane is also be emitted (as a component of the flash gas) at a maximum rate of 49.3 tpy (11.26 lb/hr) from the condensate tanks. Using the GHG factor of 25 for Methane, the CO_{2e} uncontrolled emission rate is 1,232.5 tpy. This is equivalent to 281.4 lb/hr of CO_{2e}

The control system, comprised of a VRU with an Enclosed Combustor backup will control organic vapor emissions to at least 98%. Actual control efficiency is anticipated to be higher, but only 98% is claimed as allowed under the G70-C General Permit. Thus, when in operation, organic emissions from the combustor will be controlled to 1.59 pounds per hour of VOCs and 0.05 pounds per hour of HAPs. Methane emissions will be controlled to 0.22 lb/hr while n-Hexane will be controlled to 0.05 pounds per hour.

Enclosed Combustor Emissions

In order to include the enclosed combustor into the G70-C permit, it is assumed that the combustor will operate full time. Thus, it is conservatively estimated that the combustor will capture and control 98% of potential emissions. Total potential tank emissions via the combustor are therefore calculated as follows:

VOCs1.59 lb/hr (Controlled) x 8760= 13,928 lb/yr or 6.96 tpy<u>HAPs</u>0.05 lb/Hr (Controlled) x 8760= 438 lb/yr or 0.22 tpy

 $\frac{\text{n-Hexane}}{0.05 \text{ lb/Hr}}$ (Controlled) x 8760 = 438 lb/yr or 0.21 tpy

 $\frac{\text{Methane}}{0.22 \text{ lb/Hr} (\text{Controlled}) \times 8760} = 1,927 \text{ lb/yr or } 0.96 \text{ tpy}$

Gas Flow to Combustor

Total gas flow to the combustor from the condensate tanks is derived from the condensate flash calculation spreadsheets (496.2 tpy total organics) plus working and breathing losses for the condensate tanks (0.71 tpy) for a total of 496.9 tpy. Using the density of the condensate vapor shown in the Excel spreadsheet (0.110 lb/scf), an annual gas flow to the combustor of 9.03 MMSCF/yr or 24,752 scfd was determined.

Using the HHV of 2292 BTU/scf of the condensate tank flash vapors as a conservative surrogate, this results in a maximum heat loading of 2.36 MMBTU/Hr.

Jay-Bee Oil & Gas - RTP-8

Flash Emission Calculations

Using Gas-Oil Ratio Method

Un-Controlled

Site specific data				
Gas-Oil-ratio	=	500 scf/bbl (Using Actual GOR from RPT-8)		
Throughput	=	18,000 bbl/yr		
Stock tank gas molecular weight	=	39.56 g/mole		

		Conversions	
1 lb	=	453.6 g	
1 mole	=	22.4 L	
1 scf	=	28.32 L	
1 ton	=	2000 lb	

Equations

$E_{TOT} = Q \frac{(bbl)}{(m)} \times L$	(scf)	28.32(L)	_1(mole)	(g)	1(<i>lb</i>)	$\sim 1(ton)$
$E_{TOT} = Q \overline{(yr)} \times I$	$\frac{1}{(bbl)}$	1(scf)	$\frac{1}{22.4(L)}$	$\frac{1}{(mole)}$	453.6(g)	$\overline{2000(lb)}$

E_{TOT} = Total stock tank flash emissions (TPY)

- R = Measured gas-oil ratio (scf/bbl)
- Q = Throughput (bbl/yr)

MW = Stock tank gas molecular weight (g/mole)

$$E_{spec} = E_{TOT} \times X_{spec}$$

E_{spec} = Flash emission from constituent

X_{spec} = Weight fraction of constituent in stock tank gas

Flash Emissions

Constituent	TPY	
Total	496.1820	
VOC	348.1659	
Nitrogen	1.24E-01	
Carbon Dioxide	7.79E-01	
Methane	4.93E+01	
Ethane	9.78E+01	
Propane	1.29E+02	
Isobutane	3.48E+01	
n-Butane	8.00E+01	
2,2 Dimethylpropane	9.77E-01	
Isopentane	2.74E+01	
n-Pentane	2.87E+01	
2,2 Dimethylbutane	1.04E+00	
Cyclopentane	0.00E+00	
2,3 Dimethylbutane	1.50E+00	
2 Methylpentane	7.98E+00	
3 Methylpentane	4.77E+00	
n-Hexane	1.04E+01	HAP
Methylcyclopentane	7.59E-01	
Benzene	1.79E-01	HAP
Cyclohexane	1.08E+00	
2-Methylhexane	2.31E+00	
3-Methylhexane	2.27E+00	
2,2,4 Trimethylpentane	0.00E+00	1
Other C7's	2.16E+00	
n-Heptane	3.34E+00	
Methylcyclohexane	2.08E+00	
Toluene	4.07E-01	HAP
Other C8's	3.40E+00	
n-Octane	1.13E+00	1
Ethylbenzene	2.48E-02	HAP
M & P Xylenes	2.93E-01	HAP
O-Xylene	3.97E-02	HAP
Other C9's	1.41E+00	1
n-Nonane	3.37E-01	1
Other C10's	5.31E-01	1
n-Decane	6.95E-02	1
Undecanes (11)	7.44E-02	1

E_{TOT}

Sum of C3+

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Date Sampled: 04/07/14

Date Analyzed: 04/21/14

Sample: RPT 8-1

Job Number: J42794

FLASH LIBERATION OF HYDROCARBON LIQUID				
Separator HC Liquid Stock Tan				
Pressure, psig	340	0		
Temperature, °F	65	70		
Gas Oil Ratio (1)		500		
Gas Specific Gravity (2)	444-9-7-	1.387		
Separator Volume Factor (3)	1.2987	1.000		

STOCK TANK FLUID PROPERTIES	
Shrinkage Recovery Factor (4)	0.7700
Oil API Gravity at 60 °F	70.79
Reld Vapor Pressure, psi (5)	5.28

Quality Control Check				
Sampling Conditions Test Sampl				
Cylinder No.	£51175	W-2408*	W-2423	
Pressure, psig	340	299	297	
Temperature, °F	65	66	66	

(1) - Sci of flashed vapor per barrel of stock tank bil

(2) - Air = 1.000

(3) - Separator volume / Stock tank volume

(4) - Fraction of first stage separator liquid

(5) - Absolute pressure at 100 deg F

Analyst: M. G.

* Sample used for flash study

Base Conditions: 14.85 PSI & 60 °F

Certified: FESCO, Ltd. - Alice, Texas

David Dannhaus 361-661-7015

÷

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Sample: RPT 8-1

Gas Evolved from Hydrocarbon Liquid Flashed From 340 psig & 65 °F to 0 psig & 70 °F

Date Sampled: 04/07/14

Job Number: 42794.001

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	0.036	
Carbon Dioxide	0.141	
Methane	24.485	
Ethane	25.943	6.993
Propane	23.253	6.457
isobutane	4.773	1.574
n-Butane	10.980	3.489
2-2 Dimethylpropane	0.108	0.042
Isopentane	3.027	1.116
n-Pentane	3.175	1.160
Hexanes	2.378	0.988
Heptanes Plus	<u>1.701</u>	<u>0.761</u>
Totals	100.000	22.579

Specific Gravity	3.599	(Alr=1)
Molecular Weight	102.69	•
Gross Heating Value	5488	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.387	(Alr=1)
Compressibility (Z)	0.9850	. ,
Molecular Weight	39.56	
Gross Heating Value		
Dry Basis	2321	BTU/CF
Saturated Basis	2282	BTU/CF
*Hydrogen Sulfide tested in laboratory by: S	tained Tu	be Method (GPA 2377)

Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mo! %

Base Conditions: 14.850 PSI & 60 Deg F

Certified: FESCO, Ltd. - Alice, Texas

Analyst: MR Processor: AL Cylinder ID: ST# 20

David Dannhaus 361-661-7015

ł

CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT - GPA 2286

COMPONENT	MOL %	GPM	WT %
Hydrogen Sulfide*	< 0.001		< 0.001
Nitrogen	0.036		0.025
Carbon Dloxide	0.141		0.157
Methane	24.485		9.930
Ethane	25.943	6.993	19,719
Propane	23.253	6.457	25.920
Isobutane	4.773	1.574	7.013
n-Butane	10.980	3.489	16.132
2,2 Dimethylpropane	0.108	0.042	0.197
Isopentane	3.027	1,116	5.521
n-Pentane	3.175	1.160	5.791
2,2 Dimethylbutane	0.096	0.040	0.209
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.139	0.057	0.303
2 Methylpentane	0.738	0.309	1.608
3 Methylpentane	0.441	0.181	0.961
n-Hexane	0.964	0.400	2.100
Methylcyclopentane	0.072	0.025	0.153
Benzene	0.018	0.005	0.036
Cyclohexane	0.102	0.035	0.217
2-Methylhexane	0.184	0.086	0.466
3-Methylhexane	0.181	0.083	0.458
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.174	0.076	0.436
n-Heptane	0.266	0.124	0.674
Methylcyclohexane	0.169	0.068	0.419
Toluene	0.035	0.012	0.082
Other C8's	0.246	0.115	0.685
n-Octane	0.079	0.041	0.228
Ethylbenzene	0.002	0.001	0.005
M & P Xylenes	0.022	0.009	0.059
O-Xylene	0.003	0.001	0.008
Other C9's	0.089	0.046	0.284
n-Nonane	0.021	0.012	0.068
Other C10's	0.030	0.018	0.107
n-Decane	0.004	0.002	0.014
Undecanes (11)	0.004	0.002	<u>0.015</u>
Totals	100.000	22.579	100.000

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.387	(Air=1)
Compressibility (Z)	0.9850	
Molecular Weight	39.56	
Gross Heating Value		
Dry Basis	2321	BTU/CF
Saturated Basis	2282	BTU/CF

1

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Sample: RPT 8-1

Breathing Vapor From 0 psig & 70 °F to 0 psig & 100 °F

Date Sampled: 04/07/14

Job Number: 42794.011

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT - GPA 2286

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	0.185	
Carbon Dioxide	0.018	
Methane	0.000	
Ethane	0.202	0.054
Propane	10.137	2.815
Isobutane	8.852	2.920
n-Butane	30.167	9.586
2-2 Dimethylpropane	0.370	0.142
Isopentane	15.123	5.574
n-Pentane	17.412	6.361
Hexanes	13.160	5.466
Heptanes Plus	<u>4.374</u>	<u>1.881</u>
Totals	100.000	34.799

Specific Gravity	3.547	(Air=1)
Molecular Weight	98.01	
Gross Heating Value	5251	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	2.412	(Air=1)
Compressibility (Z)	0.9539	
Molecular Weight	86.84	
Gross Heating Value		
Dry Basis	3921	BTU/CF
Saturated Basis	3853	BTU/CF
*Hydrogen Sulfide tested in laboratory by: S	stained Tu	be Method (GPA 2377)

Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

Base Conditions: 14.850 PSI & 60 Deg F

Certified: FESCO, Ltd. - Alice, Texas

Analyst: MR Processor: AL Cylinder ID: ST# 21

David Dannhaus 361-661-7015

ł

CHROMATOGRAPH EXTENDED ANALY8IS TOTAL REPORT - GPA 2286

COMPONENT	MOL %	GPM	WT %
Hydrogen Sulfide*	< 0.001		< 0.001
Nitrogen	0.185		0.078
Carbon Dioxide	0.018		0.012
Methane	0.000		0.001
Ethane	0.202	0.054	0.091
Propane	10.137	2.815	6.708
Isobutane	8.852	2.920	7.721
n-Butane	30.167	9.586	26.312
2,2 Dimethylpropane	0.370	0.142	0.401
Isopentane	15.123	5.574	16.374
n-Pentane	17.412	6.361	18.852
2,2 Dimethylbutane	0.570	0.240	0.737
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.805	0.332	1.041
2 Methylpentane	4.259	1.782	5.508
3 Methylpentane	2.477	1.019	3.203
n-Hexane	5.049	2.093	6.529
Methylcyclopentane	0.356	0.124	0.450
Benzene	0.078	0.022	0.091
Cyclohexane	0.432	0.148	0.545
2-Methylhexane	0.606	0.284	0.911
3-Methylhexane	0.569	0.261	0.856
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.649	0.285	0.966
n-Heptane	0.658	0.306	0.989
Methylcyclohexane	0.408	0.165	0.601
Toluene	0.071	0.024	0.098
Other C8's	0.379	0.178	0.627
n-Octane	0.082	0.042	0.141
Ethylbenzene	0.002	0.001	0.003
M & P Xylenes	0.020	0.008	0.032
O-Xylene	0.002	0.001	0.003
Other C9's	0.048	0.025	0.091
n-Nonane	0.007	0.004	0.013
Other C10's	0.005	0.003	0.011
n-Decane	0.002	0.001	0.004
Undecanes (11)	<u>0.000</u>	0.000	<u>0.000</u>
Totals	100.000	34.799	100.000

Computed Real Characteristics Of Total Sample:

Specific Gravity	2.412	(Air=1)	
Compressibility (Z)	0.9539		
Molecular Weight	66.64		
Gross Heating Value			
Dry Basis	3921	BTU/CF	
Saturated Basis	3853	BTU/CF	

Page 1 of 7

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	Jay Bee RTP-8 Condensa Huntington West Virginia Jay-Bee Oil & Gas Vertical Fixed Roof Tank Condensate Tank W&B Er			1	
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	8,2	15.00 10.00 14.00 10.00 25.29 24.00 06.91			
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Gray/Light Good Gray/Light Good				
Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)	Cone	0.25 0.05			
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)		-0.03 0.03			

Meterological Data used in Emissions Calculations: Huntington, West Virginia (Avg Atmospheric Pressure = 14.33 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Jay Bee RTP-8 Condensate - Vertical Fixed Roof Tank Huntington, West Virginia

		Month		ily Liquid S perature (d Min.		Liquid Bulk Temp (deg F)	Vapo Avg.	or Pressure Min.	(psia) Max.	Vapor Mol. Weight.	Liquid Mass Fract.	Vapor Mass Fract.	Mol. Weight	Basis for Vapor Pressure Calculations	
Mixture/Component Gasoline (RVP 6)	-	All	61.42	53.10	69.74	57.09	3.0220	2.5373	3.5797	69.0000			92.00	Option 4: RVP=6, ASTM Slope=3	

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Jay Bee RTP-8 Condensate - Vertical Fixed Roof Tank Huntington, West Virginia

Annual Emission Calcaulations	
Standing Losses (lb):	451.6638
Vapor Space Volume (cu ft):	399.2441
Vapor Density (lb/cu ft):	0.0373
Vapor Space Expansion Factor:	0.1508
Vented Vapor Saturation Factor:	0.5512
•	
Tank Vapor Space Volume:	399,2441
Vapor Space Volume (cu ft):	10.0000
Tank Diameter (ft):	
Vapor Space Outage (ft):	5.0833
Tank Shell Height (ft):	15.0000
Average Liquid Height (ft):	10.0000
Roof Outage (ft):	0.0833
Roof Outage (Cone Roof)	
Roof Outage (ft):	0.0833
Roof Height (ft):	0.2500
Roof Slope (ft/ft):	0.0500
Shell Radius (ft):	5.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0373
Vapor Molecular Weight (lb/lb-mole):	69.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.0220
Daily Avg. Liquid Surface Temp. (deg. R):	521,0866
Daily Average Ambient Temp. (deg. F):	54.8458
Ideal Gas Constant R	10.731
(psia cuft / (lb-mol-deg R)): Liquid Bulk Temperature (deg. R):	516,7558
	0.5400
Tank Paint Solar Absorptance (Shell):	0.5400
Tank Paint Solar Absorptance (Roof):	0.0400
Daily Total Solar Insulation	1,246,2101
Factor (Btu/sqft day):	1,240.2101
Vapor Space Expansion Factor	0.4500
Vapor Space Expansion Factor:	0.1508
Daily Vapor Temperature Range (deg. R):	33.2847
Daily Vapor Pressure Range (psia):	1.0425
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	2 0000
Surface Temperature (psia):	3.0220
Vapor Pressure at Daily Minimum Liquid	2.5373
Surface Temperature (psia):	2.53/3
Vapor Pressure at Daily Maximum Liquid	0 6707
Surface Temperature (psia):	3.5797
Daily Avg, Liquid Surface Temp. (deg R):	521.0866
Daily Min. Liquid Surface Temp. (deg R):	512.7654
Daily Max. Liquid Surface Temp. (deg R):	529.4077
Daily Ambient Temp, Range (deg. R):	20.0583
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.5512
Vented Vapor Saturation Factor:	3.0220 5.0833

Working Losses (Ib):	980.0821
Vapor Molecular Weight (Ib/Ib-mole):	69.0000
Vapor Pressure at Daily Average Liquid	3.0220
Surface Temperature (psia):	197,406.9120
Annual Net Throughput (gal/yr.):	24.0000
Annual Turnovers:	1.0000
Turnover Factor:	8,225.2880
Maximum Liquid Volume (gal):	14.0000
Maximum Liquid Height (ft):	10.0000
Tank Diameter (ft): Working Loss Product Factor:	1.0000
Total Losses (Ib):	1,431.7459

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Jay Bee RTP-8 Condensate - Vertical Fixed Roof Tank Huntington, West Virginia

	Losses(lbs)					
Components	Working Loss	Breathing Loss	Total Emissions			
Gasoline (RVP 6)	980.08	451.66	1,431.75			

FESCO, Ltd. 1100 FESCO Avenue - Alice, Texae 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083

Sample: RPT 8-1

Separator Hydrocarbon Liquid Sampled @ 340 psig & 65 °F

Date Sampled: 04/07/14

Job Number: 42794.002

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2186-M

COMPONENT	MOL %	LIQ VOL %	WT %
Nitrogen	0.011	0.003	0.004
Carbon Dioxide	0.025	0.011	0,014
Methane	7.015	3.036	1.384
Ethane	7.995	5.461	2.958
Propane	9.072	6.384	4.919
lsobutane	2.654	2,218	1.896
n-Butane	7.473	6,018	5.341
2,2 Dimethylpropane	0.192	0.188	0,170
Isopentane	4.335	4.049	3.845
n-Pentane	5.799	5.369	5,144
2,2 Dimethylbutane	0.319	0.341	0.338
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.532	0.557	0.564
2 Methylpentane	3.616	3,833	3.831
3 Methylpentene	2.379	2.481	2.521
n-Hexana	6.324	6.642	6,701
Heptanes Plus	<u>42,259</u>	<u>53.409</u>	<u>60.372</u>
Totals:	100.000	100.000	100,000

Specific Gravity	0.7441	(Water=1)
*API Gravity	58.86	@ 60°F
Molecular Weight	116.2	
Vapor Volume	20.33	CF/Gal
Weight	6.20	Lbs/Gat

Characteristics of Total Sample:

Specific Gravity	0.6583	(Water=1)
"API Gravity	83.46	@ 60°F
Molecular Weight	81.3	-
Vapor Volume	25.69	CF/Gal
Weight	5.48	Lbs/Gal

Base Conditions: 14.850 PSI & 60 °F

Certified: FESCO

FESCO, Ltd. - Alice, Texas

Analyst: XG Processor: JCdjv Cylinder ID: W-2408

David Dannhaus 361-661-7015

TANKS DATA INPUT REPORT - GPA 2186-M

COMPONENT	Mol %	LiqVol %	Wt %
Carbon Dioxide	0.025	0.011	0.014
Nitrogen	0.011	0.003	0.004
Methane	7.015	3.038	1.384
Elhane	7,995	5.481	2,958
Propane	9.072	6.384	4,919
lsobutane	2.654	2,218	1.896
n-Butane	7.666	6.206	5,511
Isopentane	4.335	4.049	3.845
n-Pentane	5.799	5.389	5.144
Other C-6's	6.846	7.212	7,254
Heptanes	13,268	15.122	18.031
Octanes	12,697	15,144	16,932
Nonanes	4.935	6.806	7,697
Decanes Plus	8.665	13,799	16.337
Benzene	0.113	0.081	0.108
Toluene	0.613	0.525	0.695
E-Benzene	0.534	0.528	0.697
Xylenes	1.436	1.407	1.875
n-Hexane	6.324	6,642	6,701
2,2,4 Trimethylpentane	0.000	0.000	0.000
Totals:	100.000	100.000	100.000

Characteristics of Total Sample:

Specific Gravity 0.6583 (Water=	41) -
"API Gravity 83.46 @ 60"F	-
Molecular Weight 81,3	
Vapor Volume 25.69 CF/Gal	
Weight 5.48 Lbs/Gal	l

Characteristics of Decanes (C10) Plus:

Specific Gravity	0.7794	(Water=1)
Molecular Weight-	153,3	

Characteristics of Atmospheric Sample:

*API Gravity	
Reid Vapor Pressure (ASTM D-5191)	

QUALITY CONTROL CHECK				
Sampling Conditions Test Samples			amples	
Cylinder Number		W-2408*	W-2423	
Pressure, PSIG	340	299	297	
Temperature, °F	65	86	66	

70.79 @ 60°F 5.28 psi

* Sample used for analysis

FESCO, Ltd.

TOTAL EXTENDED REPORT - GPA 2186-M

Job Number: 42794.002

IOTAL EXT		5PA 2180-M	
COMPONENT	Mol %	LiqVot %	VVt %
Nitrogen	0.011	0.003	0.004
Carbon Dioxide	0.025	0.011	0.014
Methane	7.015	3.036	1.384
Ethane	7.995	5.481	2.956
Propane	9.072	6.384	4.919
Isobutane	2.854	2.218	1.896
n-Butane	7,473	6.018	5.341
2,2 Dimethylpropane	0.192	0,188	0.170
Isopentane	4.335	4.049	3.845
n-Pentane	5.799	5.369	5.144
2,2 Dimethytbutane	0.319	0.341	0.338
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.532	0.557	0.564
2 Methylpentane	3.616	3.833	3.831
3 Methylpentane	2.379	2.481	2,521
n-Hexane	6.324	6.642	6.701
Melhylcyclopentane	0.537	0.486	0.556
Benzene	0.113	0.081	0.108
Cyclohexane	0.956	0.831	0.989
2-Methylhexane	3.063	3.637	3.774
3-Methylhexane	2.577	3.022	3.175
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C-7's	1.532	1.725	1.868
n-Heptane	4.601	5.422	5.669
Methylcyclohexane	2.764	2.838	3.337
Toluene	0.613	0.525	0.695
Olher C-8's	7.205	8.736	9.764
n-Octane	2.728	3.569	3.831
E-Benzene	0.534	0.526	0.697
M & P Xylenes	0.616	0.611	0.804
O-Xylene	0.820	0.796	1.071
Other C-9's	3.468	4.696	5.383
n-Nonane	1.467	2,109	2.314
Other C-10's	2.979	4.434	5.175
n-decane	0.771	1.208	1,349
Undecanes(11)	2,240	3.420	4,048
Dodecanes(12)	1.277	2.107	2,529
Tridecanes(13)	0.746	1.320	1.606
Tetradecanes(14)	0.349	0.660	0.814
Pentadecanes(15)	0.160	0.324	0,404
Hexadecanes(16)	0.078	0.169	0.213
Heptadecanes(17)	0.037	0.085	0.108
Octadecanes(18)	0.018	0.043	0.055
Nonadecanes(19)	0.007	0.017	0.022
Eicosanes(20)	0,002	0.005	0.006
Henelcosanes(21)	0.001	0.003	0.003
Docosanes(22)	0.001	0.001	0.002
Tricosanes(23)	0.000	0.001	0.001
Tetracosanes(24)	0.000	0.001	0.001
Pentacosanes(25)	0.000	0.000	0.000
Hexacosanes(26)	0.000	0.000	0.000
Heptacosanes(27)	0.000	0.000	0.000
Octacosanes(28)	0.000	0.000	0.000
Nonacosanes(29)	0.000	0.000	0.000
Triacontanes (30)	0.000	0.000	0.000
Hentriacontanes Plus(31+) Total	<u>0.000</u>	<u>0.000</u>	0.000
1 0 (21	100.000	100.000	100.000

= HAP

Jay-Bee Oil & Gas, Incorporated RPT-8 Well Pad Production Facility Water Tank Emissions

Utilizing direct measurements of the Gas to Water (GOW) ratio and flash gas composition from a nearby Jay-Bee well pad (Schulberg), the attached calculation spreadsheet was used to determine <u>un-controlled</u> VOC and HAP flash emissions from the Water tanks of 0.15 tpy and 0.01 tpy respectively for the **revised** maximum annual throughput of 18,000 BBL/Yr. Working and Breathing losses were deemed negligible. Thus, total <u>uncontrolled</u> produced water tank emissions are projected to be 0.15 tpy of VOCs and 0.01 tpy of HAPs. As emissions from these tanks are anticipated to be continuous, this is equivalent to 0.034 pounds per hour VOCs and 0.003 pounds per hour HAPs.

The largest component to the HAPs is Hexane. Using the process described above, potential uncontrolled n-Hexane emissions were determined to be <0.01 tons per year and <0.01 pounds per hour.

Methane is also be emitted at a maximum rate of 0.195 tpy (0.04 lb/hr) from the water tanks. Using the GHG factor of 25 for Methane, the CO_{2e} uncontrolled emission rate is 4.9 tpy. This is equivalent to 1.1 lb/hr of CO_{2e}

Emissions are controlled at a minimum of 98% (VRU + Backup Combustor). Actual control efficiency is anticipated to be much higher, but only 98% is claimed as allowed under the G70-C General Permit. Thus, when in operation, un-captured/controlled produced water tank emissions will be controlled to <0.01 pounds per hour of VOCs and <0.01 pounds per hour of HAPs. Methane and n-hexane emissions will also be controlled to< 0.01 lb/hr and <0.01 lb/hr respectively.

Gas Flow to Combustor

Total gas flow to the combustor from the water tanks is derived from the water flash calculation spreadsheets (0.407 tpy total organics). Using the annual average density of the vapor from the water tanks shown in the Excel calculation spreadsheet (0.069 lb/scf), an annual gas flow to the combustor of 0.012 MMSCF/yr or 32 scfd was determined.

Using the HHV of 1431 BTU/scf of the water tank flash vapors as a conservative surrogate, this results in a maximum heat loading of 0.002 MMBTU/Hr.

Jay-Bee Oil & Gas - RTP-8

Flash Emission Calculations - Produced Water

Using Gas-Water Ratio Method

Un-Controlled

		Site specific data
Gas-Water-ratio	=	0.41 scf/bbl Using GOW from comparable well pad
Throughput	=	18,000 bbl/yr
Stock tank gas molecular weight	=	39.56 g/mole

		Conversions	
1 lb	=	453.6 g	
1 mole	=	22.4 L	
1 scf	=	28.32 L	
1 ton	=	2000 lb	

Equations

$E_{TOT} = Q \frac{(bbl)}{(m)} \times R \frac{(scf)}{(bbl)} \times$	28.32(L)	1(mole)	(g)	1(<i>lb</i>)	1(<i>ton</i>)
$L_{TOT} = Q \overline{(yr)} \times K \overline{(bbl)} \times$	l(scf)	$\frac{1}{22.4(L)}$	$\overline{(mole)}$	453.6(g)	$\overline{2000(lb)}$

 E_{TOT} = Total stock tank flash emissions (TPY)

- R = Measured gas-oil ratio (scf/bbl)
- Q = Throughput (bbl/yr)

MW = Stock tank gas molecular weight (g/mole)

$$E_{\textit{spec}} = E_{\textit{TOT}} \times X_{\textit{spec}}$$

 E_{spec} = Flash emission from constituent

X_{spec} = Weight fraction of constituent in stock tank gas

Flash Emissions

Constituent	ТРҮ	
Total	0.4069	
VOC	0.1489	
Nitrogen	2.64E-03	
Carbon Dioxide	1.16E-02	
Methane	1.95E-01	
Ethane	4.84E-02	
Propane	3.17E-02	
Isobutane	1.76E-02	
n-Butane	1.95E-02	
2,2 Dimethylpropane	0.00E+00	
Isopentane	1.55E-02	
n-Pentane	1.10E-02	
2,2 Dimethylbutane	1.39E-03	
Cyclopentane	1.63E-04	
2,3 Dimethylbutane	8.50E-04	
2 Methylpentane	4.91E-03	
3 Methylpentane	2.99E-03	
n-Hexane	5.93E-03	HAP
Methylcyclopentane	9.81E-04	
Benzene	1.20E-03	HAP
Cyclohexane	1.41E-03	
2-Methylhexane	2.73E-03	
3-Methylhexane	2.42E-03	1
2,2,4 Trimethylpentane	0.00E+00	1
Other C7's	2.75E-03	
n-Heptane	3.64E-03	
Methylcyclohexane	3.27E-03	
Toluene	2.65E-03	HAP
Other C8's	5.35E-03	
n-Octane	2.03E-03	
Ethylbenzene	1.22E-04	HAP
M & P Xylenes	1.36E-03	HAP
O-Xylene	2.28E-04	HAP
Other C9's	4.27E-03	1
n-Nonane	1.01E-03]
Other C10's	1.32E-03	1
n-Decane	2.32E-04	1
Undecanes (11)	4.43E-04	1

E_{TOT}

Sum of C3+

FESCO, Ltd. 1100 Fesco Avenue - Alice, Texas 78332

For: Jay-Bee Oil & Gas, Inc. 1720 Route 22 East Union, New Jersey 07083 Date Sampled: 08/21/2012

Date Analyzed: 08/27/2012

Job Number: J26159

Sample: Schulberg 1-HF

FLASH LIBERATION OF SEPARATOR WATER					
	Stock Tank				
Pressure, psig	165	0			
Temperature, *F	NA	70			
Gas Water Ratio (1)		0.41			
Gas Specific Gravity (2)		0.860			
Separator Volume Factor (3)	1.000	1.000			

(1) - Sci of water seturated vapor per berrel of stock tank water
(2) - Air = 1.000
(3) - Separator volume / Stock tank volume

Analyst: _____J. G.

Platon No. : WF-306

Base Conditions: 14.65 P81 & 60 *F

Certified: FESCO, Ltd. - Alice, Texas

David Dannhaus 361-661-7015

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: Jay-Bee Oil & Ges, Inc. 1720 Route 22 East Union, New Jersey 07083

Sample: Schulberg 1-HF

Gas Evolved from Separator Water Flashed From 155 psig & NA *F to 0 psig & 70 *F

Date Sampled: 08/21/2012

Job Number: 25159.001

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT

COMPONENT	MOL%		GPM
Hydrogen Sulfide*	< 0.001		
Nilrogen	0.575		
Carbon Dioxide	1.602		
Methane	74.187		
Ethane	9.798		2.605
Propane	4.384		1.201
Isobutane	1.841		0.599
n-Butane	2.043		0.640
2-2 Dimethylpropane	0.000		0.000
Isopentene	1.305		0.475
n-Pentane	0.928		0.334
Hexanes	1.149		0.471
Heptanea Plus	<u>2.188</u>		0.952
Totals	100.000		7.278
Computed Real Chara	cteristics Of H	leptanes (Plus:
Specific Gravity		•	(Alr=1)
Molecular Weight	·····	104.18	
Gross Heating Value		54 24	BTU/CF
Computed Real Chara	icteristics Of 1	fotel Sam	pie:
Specific Gravity			-
Compressibility (Z) -		0.9948	、 ,
Molecular Weight			
Gross Heating Value			
Dry Basis		1426	BTU/CF
Saturated Basis			BTU/CF
Hydrogen Sulfide tested in	n laboratory by:	Stained Tu	ibe Method (GPA 2377)
Results: <0.013 Gr/100			• •

Base Conditions: 14.650 PSI & 60 Deg F

Certified: FESCO, Ltd. - Alice, Texas

Analysi: MR Processor: MFG Cylinder ID: FL-9

.

David Dannhaus 361-661-7015

CHROMATOGRAPH EXTENDED ANALY818 TOTAL REPORT

COMPONENT	MOL %	GPM	WT %
Hydrogen Suifide*	< 0.001		< 0.001
Nitrogen	0.575		0.650
Carbon Dioxide	1.602		2.845
Methane	74.187		48.024
Ethane	9.798	2,605	11.888
Propane	4.384	1.201	7.800
Isobutane	1.841	0.599	4.318
n-Butane	2.043	0.640	4.791
2,2 Dimethylpropane	0.000	0.000	0.000
Isopentane	1.305	0.475	3.799
n-Penlane	0.928	0.334	2.702
2,2 Dimethylbutane	0.098	0.041	0.341
Cyclopentane	0.014	0,006	0.040
2,3 Dimelhylbutane	0.060	0.024	0.209
2 Melhylpentane	0.347	0.143	1.207
3 Methylpentane	0.211	0.086	0.734
n-Hexane	0.419	0.171	1.457
Methylcyclopentane	0.071	0.024	0.241
Benzene	0.094	0.026	0.298
Cyclohexane	0.102	0.035	0.346
2-Melhylhexane	0.168	0.077	0.671
3-Melhyihexane	0.147	0.067	0,594
2,2,4 Trimethylpentar	na 0.000	0.000	0.000
Other C7's	0.169	0.073	0.876
n-Heplane	0.221	0.101	0.894
Methylcyclohexana	0.203	0.081	0.804
Toluene	0.175	0.058	0.651
Other C8's	0.296	0.137	1.318
n-Octane	0.108	0.055	0.498
Ethylbenzene	0.007	0.003	0.030
M & P Xylenes	0.078	0.030	0.334
O-Xylene	0,013	0.005	0.056
Other C9's	0.206	0.104	1.049
n-Nonane	0.046	0.027	0.248
Other C10's	0.057	0.033	0.325
n-Decane	0.010	0.006	0.057
Undecanes (11)	0.017	<u>0.010</u>	<u>0.109</u>
Totals	100.000	7.278	100.000

Computed Real Characteristics Of Total Sample:

Specific Gravity	0.880	(Air#1)
Compressibility (Z)	0.9946	
Molecular Weight	24.78	
Gross Heating Value		
Dry Basis	1428	BTU/CF
Saturated Basis	1402	BTU/CF

Condensate Truck Loading Lost Emissions Per AP-42

Per AP-42, Chapter 5.2.2.1.1, the uncontrolled loading loss emission factor L_L can be estimated as follows:

$L_L = 12.46[SPM/T]$

Where:

L_L = uncontrolled loading loss in pounds per 1000 gallons of liquid loaded S= saturation factor (0.6) P=true vapor pressure of liquid loaded: 3.6 psia (per AP-42 conversion of RVP to TVP) M= Molecular weight of vapor in lb/lb-mole 64.35 (see attached breathing vapor analysis report) T= temperature of bulk liquid loaded in deg R or 460+deg F (60 Deg F)

Thus, $L_L = 12.46[0.6 \text{ x } 3.6 \text{ x } 64.35]/[460+60]$ $L_L = 3.33 \text{ lb}/1000 \text{ gallons loaded}$

Based on sample data of breathing vapor (attached), these emissions are 99.4% VOCs. It is assumed that vapor composition from truck loading is the same as that from the tank breathing vapors.

Given a maximum loading of 160 BBL (6,720 gallons) a day, uncontrolled VOC emissions are estimated at 22.2 lb of VOC per day [$6.72 \times 3.33 \times .994$]. With all daily loading taking place within 2 hours, the average hourly un-controlled emission rate is therefore estimated at 11.1 lb/hr VOCs. Emissions from truck loading are un-controlled.

Maximum annual throughput is 756,000 gallons (18,000 barrels) per year. Thus, un-captured/uncontrolled VOC emissions are conservatively estimated at 2502 pounds per year [756 x 3.33 x .994] or 1.25 tons per year.

Based on the attached analysis of a representative tank's breathing emissions, HAPs represent 6.76 percent of the emissions. Thus, hourly HAPs emissions equal 1.51 lb/hr [6.72 x $3.33 \times 0.0676 \times 0.5$]. Annual maximum HAPs emissions are estimated at 170 lb/yr [756 x 3.33×0.0676] or 0.09 tpy.

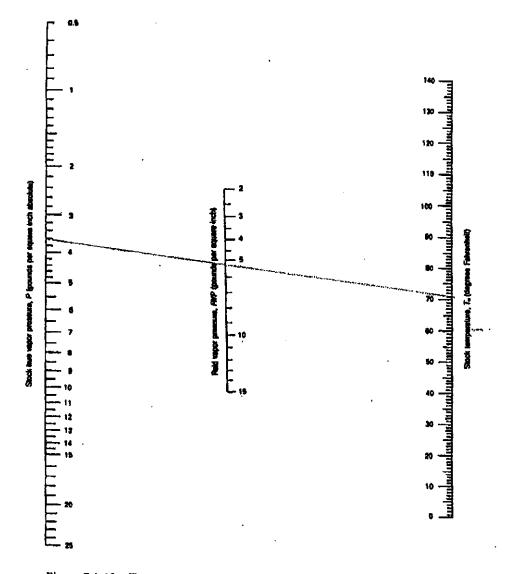


Figure 7.1-13a. True vapor pressure of crude oils with a Reid vapor pressure of 2 to 15 pounds per square inch.⁴

11/06

Produced Water Truck Loading Lost Emissions Per AP-42

Per AP-42, Chapter 5.2.2.1.1, the uncontrolled loading loss emission factor L_L can be estimated as follows:

$$L_{L} = 12.46[SPM/T]$$

Where:

L_L = uncontrolled loading loss in pounds per 1000 gallons of liquid loaded S= saturation factor (0.6) P=true vapor pressure of liquid loaded: 0.3 psia (water at 60 Deg. F) M= Molecular weight of vapor in lb/lb-mole 24.78 (flash gas of comparable water sample) T= temperature of bulk liquid loaded in deg R or 460+deg F (60 Deg F)

Thus, $L_L = 12.46[0.6 \times 0.3 \times 24.78]/[460+60]$ $L_L = 0.11 \text{ lb}/1000 \text{ gallons loaded}$

Based on sample data of breathing vapor (attached), these emissions are 36.59% VOCs. It is assumed that vapor composition from truck loading is the same as that from the tank breathing vapors.

Given a maximum loading of 80 BBL (3,360 gallons) a day, uncontrolled VOC emissions are estimated at 0.14 lb of VOC per day [$3.36 \times 0.11 \times .366$]. With all daily loading taking place within 2 hours, the average hourly un-controlled emission rate is therefore estimated at 0.07 lb/hr VOCs. Emissions from truck loading are un-controlled.

Maximum annual throughput is 756,000 gallons (18,000 barrels) per year. Thus, un-captured/uncontrolled VOC emissions are conservatively estimated at 30.4 pounds per year [756 x 0.11 x .366] or 0.02 tons per year.

Attachment I FUGITIVE EMISSIONS FROM UNPAVED HAULROADS

UNPAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

				,	,	PM		PM-1	0	
k =	Particle size multiplier				0.80			0.36		
s =	Silt content of road surface material (%)				10			3		
p = Number of days per year with precipitation >0.01 in.						157		157		
ltem Numbe	r Description	Number of Wheels	Mean Vehicle Weight (tons)	Mean Vehicle Speed (mph)	Miles per Trip	Maximum Trips per Hour	Maximur Trips pe Year		Control Efficiency (%)	
1	Produced Water Tanker Truck	10	27	10	6.0	1	225	None	0	
2	Condensate Tanker Truck	18	27	10	6.0	1	225	None	0	
3										
4										
5										
6										
7										
8			2							

Source: AP-42 Fifth Edition – 13.2.2 Unpaved Roads

 $E = k \times 5.9 \times (s \div 12) \times (S \div 30) \times (W \div 3)^{0.7} \times (w \div 4)^{0.5} \times ((365 - p) \div 365) =$ lb/Vehicle Mile Traveled (VMT) Where:

		PM	PM-10
k =	Particle size multiplier	0.80	0.36
s =	Silt content of road surface material (%)	10	3
S =	Mean vehicle speed (mph)	10	10
W =	Mean vehicle weight (tons)	27	27
w =	Mean number of wheels per vehicle	18	18
p =	Number of days per year with precipitation >0.01 in.	157	157

For lb/hr: [lb ÷ VMT] × [VMT ÷ trip] × [Trips ÷ Hour] = lb/hr

For TPY: [lb + VMT] × [VMT + trip] × [Trips + Hour] × [Ton + 2000 lb] = Tons/year

SUMMARY OF UNPAVED HAULROAD EMISSIONS

		PM				PN	1-10	
item No.	Uncon	Uncontrolled		Controlled		trolled	Cont	rolled
	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
1	11.50	1.29	11.50	1.29	2.42	0.27	2.4	0.27
2	17.80	2.00	17.80	2.00	1.55	0.17	1.6	0.17
3								
4								
5								
6								
7								
8								
TOTALS	29.30	3.29	29.30	3.29	3.97	0.44	4.0	0.44

FUGITIVE EMISSIONS FROM PAVED HAULROADS

=	Industrial augmentation factor (dimensionless)				
n ≕	Number of traffic lanes				
s =	Surface material silt content (%)				
L =	Surface dust loading (lb/mile)				
		Maximum	Maximum	Control	Cantral

INDUSTRIAL PAVED HAULROADS (including all equipment traffic involved in process, haul trucks, endloaders, etc.)

ltem Number	Description	Mean Vehicle Weight (tons)	Miles per Trip	Maximum Trips per Hour	Maximum Trips per Year	Control Device ID Number	Control Efficiency (%)
1	None						
2							
3							
4							
5							
6							
7							
8							

Source: AP-42 Fifth Edition – 11.2.6 Industrial Paved Roads

$$E = 0.077 \times I \times (4 + n) \times (s + 10) \times (L + 1000) \times (W + 3)^{0.7} =$$

Ib/Vehicle Mile Traveled (VMT)

Where:

=	Industrial augmentation factor (dimensionless)	
n =	Number of traffic lanes	
s =	Surface meterial silt content (%)	
L ≓	Surface dust loading (lb/mile)	
W =	Average vehicle weight (tons)	

For lb/hr: [ib + VMT] × [VMT + trip] × [Trips + Hour] = lb/hr

For TPY: [lb + VMT] × [VMT + trip] × [Trips + Hour] × [Ton + 2000 lb] = Tons/year

SUMMARY OF PAVED HAULROAD EMISSIONS

	Uncont	rolled	Controlled						
Item No.	lb/hr	TPY	lb/hr	TPY					
1									
2									
3									
4									
5									
6									
7									
8									
TOTALS				· · · · · · · · · · · · · · · · · · ·					

Α	TTACHN	MENT	T – FA	CILITY	Y-WID	E CON	TROL	LED EN	AISSIC)NS SU	MMA	RY SHE	EET	
List all sources o	of emission	ns in th	is table	. Use e	xtra pa	ges if n	ecessar	у.						
Emission Point ID#	NC	NO _x C		xo voc		SO ₂		PM ₁₀		PM _{2.5}		GHG (CO ₂ e)		
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
15	0.15	0.66	.013	0.55	0.01	0.04	<0.01	< 0.01	0.01	0.05	0.01	0.05	181	793
25	0.15	0.66	.013	0.55	0.01	0.04	< 0.01	< 0.01	0.01	0.05	0.01	0.05	181	793
35	0.15	0.66	.013	0.55	0.01	0.04	< 0.01	< 0.01	0.01	0.05	0.01	0.05	181	793
4S					11.1	1.25								
55	0.52	2.27	0.89	3.89	0.02	0.09	<0.01	< 0.01	0.01	0.06	0.01	0.06	89	391
6S					0.07	0.02								
7S	0.26	1.13	0.96	4.19	1.60	6.98	< 0.01	< 0.01	0.02	0.07	0.02	0.07	400	1,751
85	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	2	7
9 S	0.15	0.66	0.13	0.55	0.01	0.04	< 0.01	< 0.01	0.01	0.05	0.01	0.05	181	793
108	0.15	0.66	0.13	0.55	0.01	0.04	< 0.01	< 0.01	0.01	0.05	0.01	0.05	181	793
118	0.15	0.66	0.13	0.55	0.01	0.04	< 0.01	< 0.01	0.01	0.05	0.01	0.05	181	793
128	0.05	0.22	0.04	0.18	< 0.01		< 0.01	< 0.01	< 0.01	0.02	< 0.01	0.02	60	264
138	0.27	1.18	1.01	4.44	0.81	3.53	< 0.01	< 0.01	0.04	0.16	0.04	0.16	434	1,913
TOTAL														

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

АТТ	CACHME	NT T -	- FACI	LITY-W	IDE H	HAP C	ONTRO	OLLED	EMIS	SIONS	SUMM	IARY S	SHEET	
List all sources of	emissions	s in this	s table.	Use ext	ra page	es if ne	cessary							
Emission Point ID#	Formale	Formaldehyde		Benzene		Toluene		Ethylbenzene		Xylenes		xane	Total HAPs	
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
15	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	0.003	0.012	0.003	0.012
25	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	0.003	0.012	0.003	0.012
35	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	0.003	0.012	0.003	0.012
4S	< 0.01	< 0.01	0.010	0.001	0.011	0.001	<0.01	< 0.01	< 0.01	< 0.01	0.72	0.082	1.51	0.085
55	0.014	0.062	0.001	0.005	< 0.01	0.002	< 0.01	0.001	< 0.01	< 0.01	< 0.01	< 0.01	0.021	0.093
6S	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
75	0.001	0.003	< 0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	0.050	0.210	0.051	0.220
85	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
9S	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	0.003	0.012	0.003	0.012
105	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	0.003	0.012	0.003	0.012
115	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	0.003	0.012	0.003	0.012
128	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	0.001	0.004	0.001	0.004
138	< 0.01	0.001	0.010	0.086	0.033	0.147	<0.01	< 0.01	< 0.01	< 0.01	0.020	0.086	0.063	0.276
TOTAL														

Annual emissions shall be based on 8,760 hours per year of operation for all emission units except emergency generators. According to 45CSR14 Section 2.43.e, fugitive emissions are not included in the major source determination because it is not listed as one of the source categories in Table 1. Therefore, fugitive emissions shall not be included in the PTE above.

ATTACHMENT U – CLASS I LEGAL ADVERTISEMENT

Publication of a proper Class I legal advertisement is a requirement of the G70-C registration process. In the event the applicant's legal advertisement fails to follow the requirements of 45CSR13, Section 8 or the requirements of Chapter 59, Article 3, of the West Virginia Code, the application will be considered incomplete and no further review of the application will occur until this is corrected.

The applicant, utilizing the format for the Class I legal advertisement example provided on the following page, shall have the legal advertisement appear a minimum of one (1) day in the newspaper most commonly read in the area where the facility exists or will be constructed. The notice must be published no earlier than five (5) working days of receipt by this office of your application. The original affidavit of publication must be received by this office no later than the last day of the public comment period.

The advertisement shall contain, at a minimum, the name of the applicant, the type and location of the source, the type and amount of air pollutants that will be discharged (excluding fugitive emissions), the nature of the permit being sought, the proposed start-up date for the source, and a contact telephone number for more information.

The location of the source should be as specific as possible starting with: 1.) the street address of the source; 2.) the nearest street or road; 3.) the nearest town or unincorporated area, 4.) the county, and 5.) latitude and longitude coordinates in decimal format.

Types and amounts of pollutants discharged must include all regulated pollutants (Nitrogen Oxides, Carbon Monoxide, Particulate Matter-2.5, Particulate Matter-10, Volatile Organic Compounds, Sulfur Dioxide, Formaldehyde, Benzene, Toluene, Ethylbenzene, Xylenes, Hexane, Total Hazardous Air Pollutants and their potential to emit or the permit level being sought in units of tons per year.

In the event the 30th day is a Saturday, Sunday, or legal holiday, the comment period will be extended until 5:00 p.m. on the following regularly scheduled business day.

A list of qualified newspapers that are eligible to publish legal ads may be found:

http://www.sos.wv.gov/elections/resource/Documents/Qualified%20Newspapers.pdf

Affidavit Notice Will Be Submitted Upon Receipt

AIR QUALITY PERMIT NOTICE Notice of Application

Notice is given that Jay-Bee Oil & Gas, Inc. has applied to the West Virginia Department of Environmental Protection, Division of Air Quality, for modification of the G70-A General Permit Registration for its RTP-8 Well Pad Production Facility located off of Big Run Road near Alma, WV in Tyler County., West Virginia. The latitude and longitude coordinates are: Lat.39.48317, Long. -80.78606.

The applicant estimates following increases in the potential to emit the following regulated air pollutants:

3.86 tons of Nitrogen Oxides per year
7.13 tons of Carbon Monoxide per year
0.02 tons of Sulfur Dioxide per year
0.04 tons of Benzene per year
0.36 tons of Particulate Matter
5,242 tons of Greenhouse Gases per year

Startup of operation is planned to begin on or about the 1st day of October, 2016. Written comments will be received by the West Virginia Department of Environmental Protection, Division of Air Quality, 601 57th Street, SE, Charleston, WV 25304, for at least 30 calendar days from the date of publication of this notice.

Any questions regarding this permit application should be directed to the DAQ at (304) 926-0499, extension 1250, during normal business hours.

Dated this the (Day) day of (Month), (Year).

By: Mr. Shane Dowell Office Manager Jay-Bee Oil & Gas, Inc. 3570 Shields Ave. Cairo, WV 26337