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Foreword

Turbomachinery is a subject of considerable importance in a modern industrial civilization.
Steam turbines are at the heart of central station power plants, whether fueled by coal
or uranium. Gas turbines and axial compressors are the key components of jet engines.
Aeroderivative gas turbines are also used to generate electricity with natural gas as fuel.
Same technology is used to drive centrifugal compressors for transmitting this natural gas
across continents. Blowers and fans are used for mine and industrial ventilation. Large
pumps are often driven with steam turbines to provide feedwater to boilers. They are used
in sanitation plants for wastewater ckeanup. Hydraulic turbines generate electricity from
water stored in reservoirs, and wind turbines do the same from the flowing wind.

This book is on the principles of turbomachines. It aims for a unified treatment of the
subject matter, with consistent notation and concepts. In order to provide a ready reference
to the reader, some of the developments have been repeated in more than one chapter. This
also makes possible the omission of some chapters from a course of study. The subject
matter becomes somewhat more general in three of the later chapters.

xiii
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CHAPTER 1

INTRODUCTION

1.1 ENERGY AND FLUID MACHINES

The rapid development of modern industrial societies was made possible by the large-
scale extraction of fossil fuels buried in the earth’s crust. Today oil makes up 37% of
world’s energy mix, coal’s share is 27%, and that of natural gas is 23%, for a total of
87%. Hydropower and nuclear energy contribute each about 6% which increases the total
from these sources to 99%. The final 1% is supplied by wind, geothermal energy, waste
products, and solar energy. Biomass is excluded from these, for it is used largely locally,
and thus its contribution is difficult to calculate. The best estimates put its use at 10% of
the total, in which case the other percentages need to be adjusted downward appropriately
[54].

1.1.1 Energy conversion of fossil fuels

Over the the last two centuries engineers invented methods to convert the chemical energy
stored in fossil fuels into usable forms. Foremost among them are methods for converting
this energy into electricity. This is done in steam power plants, in which combustion of
coal is used to vaporize steam and the thermal energy of the steam is then converted to
shaft work in a steam turbine. The shaft turns a generator that produces electricity. Nuclear
power plants work on the same principle, with uranium, and in rare cases thorium, as the
fuel.

Principles of Turbomachinery. By Seppo A. Korpela 1
Copyright ©) 2011 John Wiley & Sons, Inc.



2 INTRODUCTION

Oil is used sparingly this way, and it is mainly refined to gasoline and diesel fuel. The
refinery stream also yields residual heating oil, which goes to industry and to winter heating
of houses. Gasoline and diesel oil are used in internal-combustion engines for transportation
needs, mainly in automobiles and trucks, but also in trains. Ships are powered by diesel
fuel and aircraft, by jet fuel.

Natural gas is largely methane, and in addition to its importance in the generation of
electricity, it is also used in some parts of the world as a transportation fuel. A good
fraction of natural gas goes to winter heating of residential and commercial buildings, and
to chemical process industries as raw material.

Renewable energy sources include the potential energy of water behind a dam in a river
and the kinetic energy of blowing winds. Both are used for generating electricity. Water
waves and ocean currents also fall into the category of renewable energy sources, but their
contributions are negligible today.

In all the methods mentioned above, conversion of energy to usable forms takes place
in a fluid machine, and in these instances they are power-producing machines. There are
also power-absorbing machines, such as pumps, in which energy is transferred into a fluid
stream.

In both power-producing and power-absorbing machines energy transfer takes place be-
tween a fluid and a moving machine part. In positive-displacement machines the interaction
is between a fluid at high pressure and a reciprocating piston. Spark ignition and diesel
engines are well-known machines of this class. Others include piston pumps, reciprocating
and screw compressors, and vane pumps.

In turbomachines energy transfer takes place between a continuously flowing fluid stream
and a set of blades rotating about a fixed axis. The blades in a pump are part of an impeller
that is fixed to a shaft. In an axial compressor they are attached to a compressor wheel. In
steam and gas turbines the blades are fastened to a disk, which is fixed to a shaft, and the
assembly is called a turbine rotor. Fluid is guided into the rotor by stator vanes that are
fixed to the casing of the machine. The inlet stator vanes are also called nozzles, or inlet
guidevanes.

Examples of power-producing turbomachines are steam and gas turbines, and water and
wind turbines. The power-absorbing turbomachines include pumps, for which the working
fluid is a liquid, and fans, blowers, and compressors, which transfer energy to gases.

Methods derived from the principles of thermodynamics and fluid dynamics have been
developed to analyze the design and operation of these machines. These subjects, and heat
transfer, are the foundation of energy engineering, a discipline central to modern industry.

1.1.2 Steam turbines

Central station power plants, fueled either by coal or uranium, employ steam turbines to
convert the thermal energy of steam to shaft power to run electric generators. Coal provides
50% and nuclear fuels 20% of electricity production in the United States. For the world
the corresponding numbers are 40% and 15%, respectively. It is clear from these figures
that steam turbine manufacture and service are major industries in both the United States
and the world.

Figure 1.1 shows a 100-MW steam turbine manufactured by Siemens AG of Germany.
Steam enters the turbine through the nozzles near the center of the machine, which direct
the flow to a rotating set of blades. On leaving the first stage, steam flows (in the sketch
toward the top right corner) through the rest of the 12 stages of the high-pressure section
in this turbine. Each stage consists of a set.rotor blades, preceded by a set of stator vanes.
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Figure 1.1 The Siemens SST-600 industrial steam turbine with a capacity of up to 100-MW.
(Courtesy Siemens press picture, Siemens AG.)

The stators, fixed to the casing (of which one-quarter is removed in the illustration), are
not clearly visible in this figure. After leaving the high-pressure section, steam flows
into a two-stage low-pressure turbine, and from there it leaves the machine and enters a
condenser located on the floor below the turbine bay. Temperature of the entering steam
is up to 540°C and its pressure is up to 140 bar. Angular speed of the shaft is generally
in the range 3500-15,000 rpm (rev/min). In this turbine there are five bleed locations for
the steam. The steam extracted from the bleeds enters feedwater heaters, before it flows
back to a boiler. The large regulator valve in the inlet section controls the steam flow rate
through the machine.

In order to increase the plant efficiency, new designs operate at supercritical pressures.
In an ultrasupercritical plant, the boiler pressure can reach 600 bar and turbine inlet tem-
perature, 620°C. Critical pressure for steam is 220.9 bar, and its critical temperature is
373.14°C.

1.1.3 Gas turbines

Major manufacturers of gas turbines produce both jet engines and industrial turbines. Since
the 1980s, gas turbines, with clean-burning natural gas as a fuel, have also made inroads
into electricity production. Their use in combined cycle power plants has increased the
plant overall thermal efficiency to just under 60%. They have also been employed for
stand-alone power generation. In fact, most of the power plants in the United States since
1998 have been fueled by natural gas. Unfortunately, production from the old natural
gas-fields of North America is strained, even if new resources have been developed from
shale deposits. How long they will last is still unclear, for the technology of gas extraction
from shale deposits is new and thus a long operating experience is lacking.

Figure 1.2 shows a gas turbine manufactured also by Siemens AG. The flow is from
the back toward the front. The rotor is equipped with advanced single-crystal turbine
blades, with a thermal barrier coating and film cooling. Flow enters a three-stage turbine
from an annular combustion chamber which has 24 burners and walls made from ceramic
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tiles. These turbines power the 15 axial compressor stages that feed compressed air to the
combustor. The fourth turbine stage, called a power turbine, drives an electric generator in
a combined cycle power plant for which this turbine has been designed. The plant delivers
a power output of 292-MW.

Figure 1.2 An open rotor and combustion chamber of an SGT5-4000F gas turbine. (Courtesy
Siemens press picture, Siemens AG.)

1.1.4 Hydraulic turbines

In those areas of the world with large rivers, water turbines are used to generate electrical
power. At the turn of the millennium hydropower represented 17% of the total electrical
energy generated in the world. The installed capacity at the end of year 2007 was 940,000
MW, but generation was 330,000 MW, so their ratio, called a capacity factor, comes to
0.35.

With the completion of the 22,500-MW Three Gorges Dam, China has now the world’s
largest installed capacity of 145,000 MW, which can be estimated to give 50,000 MW of
power. Canada, owing to its expansive landmass, is the world’s second largest producer of
hydroelectric power, with generation at 41,000 MW from installed capacity of §9,000 MW.
Hydropower accounts for 58% of Canada’s electricity needs. The sources of this power
are the great rivers of British Columbia and Quebec. The next largest producer is Brazil,
which obtains 38,000 MW from an installed capacity of 69,000 MW. Over 80% of Brazil’s
energy is obtained by water power. The Itaipu plant on the Parand River, which borders
Brazil and Paraguay, generates 12,600 MW of power at full capacity. Of nearly the same
size is Venezuela’s Guri dam power plant with a rated capacity of 10,200 MW, based on 20
generators.

The two largest power stations in the United States are the Grand Coulee station in the
Columbia River and the Hoover Dam station in the Colorado River. The capacity of the
Grand Coulee is 6480 MW, and that of Hoover is 2000 MW. Tennessee Valley Authority
operates a network of dams and power stations in the Southeastern parts of the country.
Many small hydroelectric power plants can also be found in New England. Hydroelectric
power in the United States today provides 289 billion kilowatthours (kwh) a year, or 33,000
MW, but this represents only 6% of the total energy used in the United States. Fossil fuels
still account for 86% of the US energy needs.
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Next on the list of largest producers of hydroelectricity are Russia and Norway. With its
small and thrifty population, Norway ships its extra generation to the other Scandinavian
countries, and now with completion of a high-voltage powerline under the North Sea,
also to western Europe. Norway and Iceland both obtain nearly all their electricity from
hydropower.

1.1.5 Wind turbines

The Netherlands has been identified historically as a country of windmills. She and
Denmark have seen a rebirth of wind energy generation since 1985 or so. These countries
are relatively small in land area and both are buffeted by winds from the North Sea. Since
the 1990s Germany has embarked on a quest to harness its winds. By 2007 it had installed
wind turbines on most of its best sites with 22,600 MW of installed capacity. The installed
capacity in the United States was 16,600 MW in the year 2007. It was followed by Spain,
with an installed capacity of 15,400 MW. After that came India and Denmark.

The capacity factor for wind power is about 0.20, thus even lower than for hydropower.
For this reason wind power generated in the United States constitutes only 0.5% of the
country’s total energy needs. Still, it is the fastest-growing of the renewable energy
systems. The windy plains of North and South Dakota and of West and North Texas offer
great potential for wind power generation.

1.1.6 Compressors

Compressors find many applications in industry. An important use is in the transmission
of natural gas across continents." Natural-gas production in the United States is centered
in Texas and Louisiana as well as offshore in the Gulf of Mexico. The main users are the
midwestern cities, in which natural gas is used in industry and for winter heating. Pipelines
also cross the Canadian border with gas supplied to the west-coast and to the northern states
from Alberta. In fact, half of Canada’s natural-gas production is sold to the United States.

Russia has 38% of world’s natural-gas reserves, and much of its gas is transported to
Europe through the Ukraine. China has constructed a natural-gas pipeline to transmit the
gas produced in the western provinces to the eastern cities. Extensions to Turkmenistan
and Iran are in the planning stage, as both countries have large natural-gas resources.

1.1.7 Pumps and blowers

Pumps are used to increase pressure of liquids. Compressors, blowers, and fans do the
same for gases. In steam power plants condensate pumps return water to feedwater heaters,
from which the water is pumped to boilers. Pumps are also used for cooling water flows in
these power plants.

Figure 1.3 shows a centrifugal pump manufactured by Schmalenberger Stromungstech-
nologie GmbH. Flow enters through the eye of an impeller and leaves through a spiral
volute. This pump is designed to handle a flow rate of 100 m®/h, with a 20 m increase in
its head.

In the mining industry, blowers circulate fresh air into mines and exhaust stale, con-
taminated air from them. In oil, chemical, and process industries, there is a need for large
blowers and pumps. Pumps are also used in great numbers in agricultural irrigation and
municipal sanitary facilities.
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Figure 1.3 A centrifugal pump. (Courtesy Schmalenberger GmbH.)

Offices, hospitals, schools and other public buildings have heating, ventilating, and air
conditioning (HVAC) systems, in which conditioned air is moved by large fans. Pumps
provide chilled water to cool the air and for other needs.

1.1.8 Other uses and issues

Small turbomachines are present in all households. In fact, it is safe to say that in most
homes, only electric motors are more common than turbomachines. A pump is needed in
a dishwasher, a washing machine, and the sump. Fans are used in the heating system and
as window and ceiling fans. Exhaust fans are installed in kitchens and bathrooms. Both an
airconditioner and a refrigerator is equipped with a compressor, although it may be a screw
compressor (which is not a turbomachine) in an air-conditioner. In a vacuum cleaner a fan
creates suction. In a car there is a water pump, a fan, and in some models a turbocharger.
All are turbomachines.

In addition to understanding the fluid dynamical principles of turbomachinery, it is
important for a turbomachinery design engineer to learn other allied fields. The main ones
are material selection, shaft and disk vibration, stress analysis of disks and blades, and
topics covering bearings and seals. Finally, understanding control theory is important for
optimum use of any machine.

In more recent years, the world has awoken to the fact that fossil fuels are finite and that
renewable energy sources will not be suffigient to provide for the entire world the material
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conditions that Western countries now enjoy. Hence, it is important that the machines that
make use of these resources be well designed so that the remaining fuels are used with
consideration, recognizing their finiteness and their value in providing for some of the vital
needs of humanity.

1.2 HISTORICAL SURVEY

This section gives a short historical review of turbomachines. Turbines are power-producing
machines and include water and wind turbines from early history. Gas and steam turbines
date from the beginning of the last century. Rotary pumps have been in use for nearly 200
years. Compressors developed as advances were made in aircraft propulsion during the
last century.

1.2.1 Water power

It is only logical that the origin of turbomachinery can be traced to the use of flowing water
as a source of energy. Indeed, waterwheels, lowered into a river, were already known to
the Greeks. The early design moved to the rest of Europe and became known as the norse
mill because the archeological evidence first surfaced in northern Europe. This machine
consists of a set of radial paddles fixed to a shaft. As the shaft was vertical, or somewhat
inclined, its efficiency of energy extraction could be increased by directing the flow of water
against the blades with the aid of a mill race and a chute. Such a waterwheel could provide
only about one-half horsepower (0.5 hp), but owing to the simplicity of its construction, it
survived in use until 1500 and can still be found in some primitive parts of the world.

By placing the axis horizontally and lowering the waterwheel into a river, a better design
is obtained. In this undershot waterwheel, dating from Roman times, water flows through
the lower part of the wheel. Such a wheel was first described by the Roman architect and
engineer Marcus Vitruvius Pollio during the first century B.C.

Overshot waterwheel came into use in the hilly regions of Rome during the second
century A.D. By directing water from a chute above the wheel into the blades increases the
power delivered because now, in addition to the kinetic energy of the water, also part of the
potential energy can be converted to mechanical energy. Power of overshot waterwheels
increased from 3 hp to about 50 hp during the Middle Ages. These improved overshot
waterwheels were partly responsible for the technical revolution in the twelfth—thirteenth
century. In the Wiiliam the Conquerer’s Domesday Book of 1086, the number of watermills
in England is said to have been 5684. In 1700 about 100,000 mills were powered by flowing
water in France [12].

The genius of Leonardo da Vinci (1452-1519) is well recorded in history, and his
notebooks show him to have been an exceptional observer of nature and technology around
him. Although he is best known for his artistic achievements, most of his life was spent in
the art of engineering. Illustrations of fluid machinery are found in da Vinci’s notebooks,
in De Re Metallica, published in 1556 by Agricola [3], and in a tome by Ramelli published
in 1588. From these a good understanding of the construction methods can be gained and
of the scale of the technology then in use. In Ramelli’s book there is an illustration of a
mill in which a grinding wheel, located upstairs, is connected to a shaft, the lower end of
which has an enclosed impact wheel that is powered by water. There are also illustrations
that show windmills to have been in wide use for grinding grain.
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Important progress to improve waterwheels came in the hands of the Frenchman Jean
Victor Poncelet (1788—1867), who curved the blades of the undershot waterwheel, so that
water would enter tangentially to the blades. This improved its efficiency. In 1826 he came
up with a design for a horizontal wheel with radial inward flow. A water turbine of this
design was built a few years later in New York by Samuel B. Howd and then improved by
James Bicheno Francis (1815-1892). Improved versions of Francis turbines are in common
use today.

About the same time in France an outward flow turbine was designed by Claude Burdin
(1788-1878) and his student Benoit Fourneyron (1802-1867). They benefited greatly from
the work of Jean-Charles de Borda (1733-1799) on hydraulics. Their machine had a set of
guidevanes to direct the flow tangentially to the blades of the turbine wheel. Fourneyron
in 1835 designed a turbine that operated from a head of 108 m with a flow rate of 20 liters
per second (L/s), rotating at 2300 rpm, delivering 40 hp as output power at 80% efficiency.

In the 1880s in the California gold fields an impact wheel, known as a Pelton wheel,
after Lester Allen Pelton (1829-1918) of Vermillion, Ohio, came into wide use.

An axial-flow turbine was developed by Carl Anton Henschel (1780-1861) in 1837 and
by Feu Jonval in 1843. Modern turbines are improvements of Henschel’s and Jonval’s
designs. A propeller type of turbine was developed by the Austrian engineer Victor Kaplan
(1876-1934) in 1913. In 1926 a 11,000-hp Kaplan turbine was placed into service in
Sweden. It weighed 62.5 tons, had a rotor diameter of 5.8 m, and operated at 62.5 rpm
with a water head of 6.5 m. Modern water turbines in large hydroelectric power plants are
either of the Kaplan type or variations of this design.

1.2.2 Wind turbines

Humans have drawn energy from wind and water since ancient times. The first recorded
account of a windmill is from the Persian-Afghan border region in 644 A.D., where these
vertical axis windmills were still in use in more recent times [32]. They operate on the
principle of drag in the same way as square sails do when ships sail downwind.

In Europe windmills were in use by the twelfth century, and historical research suggests
that they originated from waterwheels, for their axis was horizontal and the masters of
the late Middle Ages had already developed gog-and-ring gears to transfer energy from
a horizontal shaft into a vertical one. This then turned a wheel to grind grain [68]. An
early improvement was to turn the entire windmill toward the wind. This was done by
centering a round platform on a large-diameter vertical post and securing the structure of
the windmill on this platform. The platform was free to rotate, but the force needed to
turn the entire mill limited the size of the early postmills. This restriction was removed in
a towermill found on the next page, in which only the platform, affixed to the top of the
mill, was free to rotate. The blades were connected to a windshaft, which leaned about 15°
from the horizontal so that the blades would clear the structure. The shaft was supported
by a wooden main bearing at the blade end and a thrust bearing at the tail end. A band
brake was used to limit the rotational speed at high wind speeds. The power dissipated by
frictional forces in the brake rendered the arrangement susceptible to fire.

Over the next 500 years, to the beginning of the industrial revolution, progress was
made in windmill technology, particularly in Great Britain. By accumulated experience,
designers learned to move the position the spar supporting a blade from midcord to quarter-
chord position, and to introduce a nonlinear twist and leading edge camber to the blade
[68]. The blades were positioned at a steep angles to the wind and made use of the lift
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force, rather than drag. It is hard not to speculate that the use of lift had not been learned
from sailing vessels using lanteen sails to tack.

A towermill is shown in Figure 1.4a. It is seen to be many meters tall, and each of
the four quarter-chord blades is about one meter in width. The blades of such mills were
covered with either fabric or wooden slats. By an arrangement such as is found in window
shutters today, the angle of attack of the blades could be changed at will, providing also a
braking action at high winds.

{a) (b)

Figure 1.4 A traditional windmill (a) and an American farm windmill (b) for pumping water.

The American windmill is shown in Figure 1.4b. It is a small multibladed wind turbine
with a vertical vane to keep it oriented toward the wind. Some models had downwind
orientation and did not need to be controlled in this way. The first commercially successful
wind turbine was introduced by Halladay in 1859 to pump water for irrigation in the Plains
States. It was about 5 m in diameter and generated about one kilowatt (1 kW) at windspeed
of 7m/s [68]. The windmill shown in the figure is a 18-steel-bladed model by Aermotor
Company of Chicago, a company whose marketing and manufacturing success made it the
prime supplier of this technology during the 1900-1925.

New wind turbines with a vertical axis were invented during the 1920s in France by
G. Darrieus and in Finland by S. Savonius [66]. They offer the advantage of working
without regard to wind direction, but their disadvantages include fluctuating torque over
each revolution and difficulty of starting. For these reasons they have have not achieved
wide use.

1.2.3 Steam turbines

Although the history of steam to produce rotation of a wheel can be traced to Hero of
Alexandria in the year 100 A.D., his invention is only a curiosity, for it did not arise out
of a historical necessity, such as was imposed by the world’s increasing population at the
beginning of the industrial revolution. Another minor use to rotate a roasting spit was
suggested in 1629 Giovanni de Branca. The technology to make shafts and overcome
friction was too primitive at this time to put his ideas to more important uses. The age
of steam began with the steam engine, which ushered in the industrial revolution in Great
Britain. During the eighteenth century steam engines gained in efficiency, particularly
when James Watt in 1765 reasoned that better performance could be achieved if the boiler
and the condenser were separate units. Steam engines are, of course, positive-displacement
machines.
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Sir Charles Parsons (1854-1931) is credited with the development of the first steam
turbine in 1884. His design used multiple turbine wheels, about 8 cm in diameter each,
to drop the pressure in stages and this way to reduce the angular velocities. The first of
Parson’s turbines generated 7.5 kW using steam at inlet pressure of 550 kPa and rotating at
17,000 rpm. It took some 15 years before Parsons’ efforts received their proper recognition.

An impulse turbine was developed in 1883 by the Swedish engineer Carl Gustav Patrik
de Laval (1845-1913) for use in a cream separator. To generate the large steam velocities he
also invented the supersonic nozzle and exhibited it in 1894 at the Columbian World’s Fair
in Chicago. From such humble beginnings arose rocketry and supersonic flight. Laval’s
turbines rotated at 26,000 rpm, and the largest of the rotors had a tip speed of 400 m/s. He
used flexible shafts to alleviate vibration problems in the machinery.

In addition to the efforts in Great Britain and Sweden, the Swiss Federal Institute of
Technology in Zurich [Eidgendssische Technische Hochschule, (ETH)] had become an im-
portant center of research in early steam turbine theory through the efforts of Aure] Stodola
(1859-1942). His textbook Steam and Gas Turbines became the standard reference on the
subject for the first half of last century [75]. A similar effort was led by William J. Kearton
(1893-7) at the University of Liverpool in Great Britain.

1.2.4 Jet propulsion

The first patent for gas turbine development was issued to John Barber (1734—.1800) in
England in 1791, but again technology was not yet sufficiently advanced to build a machine
on the basis of the proposed design. Eighty years later in 1872 Franz Stolze (1836-1910)
received a patent for a design of a gas turbine power plant consisting of a multistage axial-
flow compressor and turbine on the same shaft, together with a combustion chamber and a
heat exchanger. The first U.S. patent was issued to Charles Gordon Curtis (1860-1953) in
1895.

Starting in 1935, Hans J. P. von Ohain (1911-1998) directed efforts to design gas turbine
power plants for the Heinkel aircraft in Germany. The model He178 was a fully operational
jet aircraft, and in August 1939 it was first such aircraft to fly successfully.

During the same timeframe Sir Frank Whittle (1907-1996) in Great Britain was de-
veloping gas turbine power plants for aircraft based on a centrifugal compressor and a
turbojet design. In 1930 he filed for a patent for a single-shaft engine with a two-stage axial
compressor followed by a radial compressor from which the compressed air flowed into a
straight-through burner. The burned gases then flowed through a two-stage axial turbine
on a single disk. This design became the basis for the development of jet engines in Great
Britain and later in the United States.

Others, such as Alan Arnold Griffith (1893-1963) and Hayne Constant (1904—-1968),
worked in 1931 on the design and testing of axial-flow compressors for use in gas turbine
power plants. Already in 1926 Griffith had developed an aerodynamic theory of turbine
design based on flow past airfoils.

In Figure 1.5 shows the De Havilland Goblin engine designed by Frank Halford in 1941.
The design was based on the original work of Sir Frank Whittle. It is a turbojet engine
with single-stage centrifugal compressor, and with can combustors exhausting the burned
combustion gases into a turbine that drives the compressor. The remaining kinetic energy
leaving the turbine goes to propulsive thrust.

Since the 1950s there has been continuous progress in the development of gas turbine
technology for aircraft power plants. Rolls Royce in Great Britain brought to the market
its Olympus twin-spool engine, its Dart single-spool engine for low-speed aircraft, and in
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Figure 1.5 De Havilland Goblin turbojet engine.

1967 the Trent, which was the first three-shaft turbofan engine. The Olympus was also
used in stationary power plants and in marine propulsion.

General Electric in the United States has also a long history in gas turbine development.
Its I-14, 1-16, 1-20, and 1-40 models were developed in the 1940s. The I-14 and I-16
powered the Bell P-59A aircraft, which was the first American turbojet. It had a single
centrifugal compressor and a single-stage axial turbine. Allison Engines, then a division of
General Motors, took over the manufacture and improvement of model 1-40. Allison also
began the manufacture of General Electric’s TG series of engines.

Many new engines were developed during the latter half of the twentieth century, not only
by Rolls Royce and General Electric but also by Pratt and Whitney in the United States
and Canada, Rateau in France, and by companies in Soviet Union, Sweden, Belgium,
Australia, and Argentina. The modern engines that power the flight of today’s large
commercial aircraft by Boeing and by Airbus are based on the Trent design of Rolls Royce,
or on General Electric’s GE90 [7].

1.2.5 Industrial turbines

Brown Boveri in Switzerland developed a 4000-kW turbine power plant in 1939 to Neucha-
tel for standby operation for electric power production. On the basis of this design, an
oil-burning closed cycle gas turbine plant with a rating of 2 MW was built the following
year.

Industrial turbine production at Ruston and Hornsby Ltd. of Great Britain began by
establishment of a design group in 1946. The first unit produced by them was sold to
Kuwait Oil Company in 1952 to power pumps in oil fields. It was still operational in
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1991 having completed 170,000 operating hours. Industrial turbines are in use today as
turbocompressors and in electric power production.

Pumps and compressors

The centrifugal pump was invented by Denis Papin (1647-1710) in 1698 in France. To be
sure, a suggestion to use centrifugal force to effect pumping action had also been made by
Leonardo da Vinci, but neither his nor Papin’s invention could be built, owing to the lack
of sufficiently advanced shop methods. Leonhard Euler (1707-1783) gave a mathematical
theory of the operation of a pump in 1751. This date coincides with the beginning of
the industrial revolution and the advances made in manufacturing during the ensuing 100
years brought centrifugal pumps to wide use by 1850. The Massachusetts pump, built in
1818, was the first practical centrifugal pump manufactured. W. D. Andrews improved
its performance in 1846 by introducing double-shrouding. At the same time in Great
Britain engineers such as John Appold (1800-1865) and Henry Bessemer (1813-1898)
were working on improved designs. Appold’s pump operated at 788 rpm with an efficiency
of 68% and delivered 78 L/s and a head of 5.9 m.

The same companies that in 1900 built steam turbines in Europe also built centrifugal
blowers and compressors. The first applications were for providing ventilation in mines
and for the steel industry. Since 1916 compressors have been used in chemical industries,
since 1930 in the petrochemical industries, and since 1947 in the transmission of natural
gas. The period 1945-1950 saw a large increase in the use of centrifugal compressors in
American industry. Since 1956 they have been integrated into gas turbine power plants and
have replaced reciprocating compressors in other applications.

The efficiencies of single stage centrifugal compressors increased from 70% to over 80%
over the period 1935-1960 as a result of work done in companies such as Rateau, Moss-GE,
Birmann-DeLaval, and Whittle in Europe and General Electric and Pratt & Whitney in the
United States. The pressure ratios increased from 1.2 : 1to 7 : 1. This development
owes much to the progress that had been made in gas turbine design [26].

For large flow rates multistage axial compressors are used. Figure 1.6 shows such a
compressor, manufactured by Mag Diesel & Turbo SE in Germany. It has 14 axial stages
followed by a centrifugal compressor stage. The rotor blades are seen in the exposed rotor.
The stator biades are fixed to the casing, the lower half of which is shown. The flow is from
right to left. The flow area decreases toward the exit, for in order to keep the axial velocity
constant, as is commonly done, the increase in density on compression is accommodated
by a decrease in the flow area.

1.2.6 Note on units

The Systeéme International (d’ Unités) (SI) system of units is used in this text. But it is still
customary in some industries English Engineering system of units and if other reference
books are consulted one finds that many still use this system. In this set of units mass is
expressed as pound (Ibm) and foot is the unit of length. The British gravitational system
of units has slug as the unit of mass and the unit of force is pound force (Ibf), obtained
from Newton’s law, as it represents a force needed to accelerate a mass of one slug at the
rate of one foot per second squared. The use of slug for mass makes the traditional British
gravitational system of units analogous to the SI units. When pound (Ibm) is used for mass,
it ought to be first converted to slugs (1 slug=32.1741bm), for then calculations follow
smoothly as in the SI units. The unit of temperature is Fahrenheit or Rankine. Thermal
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Figure 1.6 Multistage compressor. (Courtesy MAN Diesel & Turbo SE.)

energy in this set of units is reported in British thermal units or Btu’s for short. Asitis a
unit for energy, it can be converted to one encountered in mechanics by remembering that
1Btu = 778.17 ftIbf. The conversion factor to SI units is 1 Btu = 1055J. Power is still
often reported in horsepower, and 1 hp = 0.7457 kW. The flow rate in pumps is often given
in gallons per minute (gpm). The conversion to standard units is carried out by noting
recalling that 1 gal = 231in®. World energy consumption is often given in quads. The
conversion to SI units is 1 quad =1.055 EJ, where EJ is exajoule equal to 108 J.



CHAPTER 2

PRINCIPLES OF THERMODYNAMICS AND
FLUID FLOW

This chapter begins with a review of the conservation principle for mass for steady uniform
flow, after which follows the first and second laws of thermodynamics, also for steady
uniform flow. Next, thermodynamic properties of gases and liquids are discussed. These
principles enable the discussion of turbine and compressor efficiencies, which are described
in relation to thermodynamic losses. The final section is on the Newton’s second law for
steady and uniform flow.

2.1 MASS CONSERVATION PRINCIPLE

Mass flow rate 72 in a uniform flow is related to density p and velocity V of the fluid, and
the cross-sectional area of the flow channel A by

m=pVLA

When this equation is used in the analysis of steam flows, specific volume, which is the
reciprocal of density, is commonly used. The subscript n denotes the direction normal to
the flow area. The product V,, A arises from the scalar product V - n = V cos 6, in which
n is a unit normal vector on the surface A and 6 is the angle between the normal and the
direction of the velocity vector. Consequently, the scalar product can be written in the two
alternative forms

V- nA=VAcos=V,A=VA,
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in which A, is the area normal to the flow. The principle of conservation of mass for a
uniform steady flow through a control volume with one inlet and one exit takes the form

£1 VlAnl - pQ‘/QAnZ

Turbomachinery flows are steady only in a time-averaged sense; that is, the flow is periodic,
with a period equal to the time taken for a blade to move a distance equal to the spacing
between adjacent blades. Despite the unsteadiness, in elementary analysis all variables are
assumed to have steady values.

If the flow has more than one inlet and exit, then, in steady uniform flow, conservation
of mass requires that

Zpi‘/iAni = Zpe‘/:eAne (21)
i e
in which the sums are over all the inlets and exits.

B EXAMPLE 2.1

Steam flows at the rate 7 = 0.20kg/s through each nozzle in the bank of nozzles
shown in Figure 2.1. Steam conditions are such that at the inlet specific volume is
0.80 m3/kg and at the outlet it is 1.00 m3/kg. Spacing of the nozzles is s = 5.0 cm,
wall thickness at the inlet is t; = 2.5 mm, and at the outlet it is 5 = 2.0 mm. Blade
height is b = 3.0 cmn. Nozzle angle is a2 = 70°. Find the steam velocity at the inlet
and at the outlet.

v

1
— |
=
1 Y

t«t,

a,

Figure 2.1 Turning of flow by steam nozzles.

Solution: The area at the inlet is
A =b(s—t1) =3(5—0.25) = 14.25cm*
Velocity at the inlet is solved from the mass balance

Vi,
v1

m = P1V1A1 =
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which gives

mv;  0.20-0.80 - 1002
A, 14.25

At the exit the flow area is

Vi = =112.3m/s

Ay = b(scosag — t2) = 3[5cos(70°) — 0.20] = 4.53 cm?
hence the velocity is

vy 0.2-1.00 - 1002

V =
27 A, 4.53

=441.5m/s

2.2 FIRST LAW OF THERMODYNAMICS

For a uniform steady flow in a channel, the first law of thermodynamics has the form
, 1, . 1., .
miutpin+ Vi g | +Q=m{uztpat Vo g2 )+ W (22)

The sum of specific internal energy u, kinetic energy V2/2, and potential energy gz is
the specific energy e = u + %Vz + gz of the fluid. In the potential energy term g is
the acceleration of gravity and z is a height. The term p;v;, in which p is the pressure,
represents the work done by the fluid in the flow channel just upstream of the inlet to move
the fluid ahead of it into the control volume, and it thus represents energy flow into the
control volume. This work is called flow work. Similarly, povs is the flow work done by
the fluid inside the control volume to move the fluid ahead of it out of the control volume. It
represents energy transfer as work leaving the control volume. The sum of internal energy
and flow work is defined as enthalpy h = u + pv. The heat transfer rate into the control
volume is denoted as @ and the rate at which work is delivered is w. Equation (2.2) can
be extended to multiple inlets and outlets in the same manner as was done in Eq. (2.1).
Dividing both sides by v gives the first law of thermodynamics the form

1 1
h1+§V12+gz1+q:h2+§V22+gzg+w

in which ¢ = Q /moand w = 154 /. denote the heat transfer and work done per unit
mass. By convention, heat transfer into the thermodynamic system is taken to be a positive
quantity, as is work done by the system on the surroundings.

The sum of enthalpy, kinetic energy, and potential energy is called the stagnation
enthalpy

1
h() =h -+ §V2 + gz
and the first law can also be written as
hor +q=hgs+w

In the flow of gases the potential energy terms are small and can be neglected. Similarly,
for pumps, the changes in elevation are small and potential energy difference is negligible.
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Only for some water turbines is there a need to retain the potential energy terms. When the
change in potential energy is neglected, the first law reduces to

1 1
h1+§V12+q=h2+5V22+w

In addition, even if velocity is large, the difference in kinetic energy between the inlet and
exit may be small. In such a case first law is simply

hi+qg=ho+w

Turbomachinery flows are nearly adiabatic, so ¢ can be dropped. Then work delivered by
a turbine is given as
w = ho1 — ho2

and the work done on the fluid in a compressor is
w = ho2 — ho1

The compressor work has been written in a form that gives the work done a positive value.
Hence the convention of thermodynamics of denoting work out from a system as positive
and work in as negative is ignored, and the equations are written in a form that gives a
positive value for work, for both a turbine and a compressor.

B EXAMPLE 2.2

Steam flows adiabatically at a rate 1 = 0.01 kg /s through a diffuser, shown in Figure
2.2, with inlet diameter D; = 1.0 cm. Specific volume at the inlet v; = 2.40 m3/ kg.
Exit diameter is Dy = 2.5 cm, with specific volume at the outlet vy = 3.80 m3/kg.
Find the change in enthalpy neglecting any change in the potential energy.

Figure 2.2 Flow through a diffuser.

Solution: The areas at the inlet and outlet are

D? 012
_ D 1001 e 105 m?

Av=— 4

D2 .0252
A2=f4—2:”0%=4.91-10—4m2
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The velocity at the inlet is

Ty 0.01-24

Vi= A, 7.85-10-°

= 305.6m/s

and at the outlet it is

vy 0.01-3.8

Vo= A,  4.91-10-4

=77.4m/s

Since no work is done and the flow is adiabatic, the stagnation enthalpy remains

constant hgy = hge. With negligible change in potential energy, this equation
reduces to
loo 1.5 1 2 2
ho —hy = §V1 — §V2 = 5(305.6 —77.4%) =43.7kJ /kg
||

2.3 SECOND LAW OF THERMODYNAMICS

For a uniform steady flow in a channel the second law of thermodynamics takes the form

12 Q/ 22
m<82 — 81) = ?dg + / Slp d? (23)
41 £

in which s is the entropy. On the right-hand side (RHS) @’ is the rate at which heat is
transferred from the walls of the flow channel into the fluid per unit length of the channel.
The incremental length of the channel is d/, and the channel extends from location £; to 5.
The absolute temperature T in this expression may vary along the channel. In the second
term on the RHS, §;, is the rate of entropy production per unit length of the flow channel. If
the heat transfer is internally reversible, entropy production is the result of internal friction
and mixing in the flow. In order for the heat transfer to be reversible, the temperature
difference between the walls and the fluid has to be small. In addition, the temperature
gradient in the flow direction must be small. This requires the flow to move rapidly so that
energy transfer by bulk motion far exceeds the transfer by conduction and radiation in the
flow direction.

As Eq. (2.3) shows, when heat is transferred into the fluid, its contribution is to increase
the entropy in the downstream direction. If, on the other hand, heat is transferred from
the fluid to the surroundings, its contribution is to reduce the entropy. Entropy production
4, is caused by irreversibilities in the flow and is always positive, and its contribution is
to increase the entropy in the flow direction. For the ideal case of an internally reversible
process entropy production vanishes.

2.3.1 Tds equations

The first law of thermodynamics for a closed system relates the work and heat interactions
to a change in internal energy U. For infinitesimal work and heat interactions the first law
can be written as

aU =6Q — oW
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For a simple compressible substance, defined to be one for which the only relevant work is
compression or expansion, reversible work is given by

W, =pdV

This expression shows that when a fluid is compressed so that its volume decreases, work
is negative, meaning that work is done on the system. For an internally reversible process
the second law of thermodynamics relates heat transfer to a change in entropy by

0Qs =T14dS

in which it must be remembered that T is the absolute temperature. Hence, for an internally
reversible process, the first law takes the differential form

dU =TdS —pdV
Dividing by the mass of the system converts this to an expression
du=Tds—pdv

between specific properties. Although derived for reversible processes, this is a relationship
between intensive properties, and for this reason it is valid for all processes; reversible, or
irreversible. It is usually written as

Tds =du+ pdv 2.4)

and is called the first Gibbs equation.
Writing u = h — pv and differentiating gives du = dh — p dv — v dp. Substituting this
into the first Gibbs equation gives

Tds =dh—uvdp 2.5)

which is the second Gibbs equation.

2.4 EQUATIONS OF STATE

The state principle of thermodynamics guarantees that a thermodynamic state for a simple
compressible substance is completely determined by specifying two independent thermo-
dynamic properties. Other properties are then functions of these independent properties.
Such functional relations are called equations of state.

In this section the equations of state for steam and those of ideal gases are reviewed.
In addition, ideal gas mixtures are considered as they arise in combustion of hydrocarbon
fuels. Combustion gases flow through the gas turbines of a jet engine and through industrial
turbines burning natural gas. Preliminary calculations can be carried out using properties
of air since air is 78% of nitrogen by volume, which, although contributing to formation
of nitric oxides, is otherwise largely inert during combustion. Later in the chapter a
better model for combustion gases is discussed, but for accurate calculations the actual
composition is to be taken into account. Also in many applications, such as in oil and gas
production, mixtures rich in complex molecules flow through compressors and expanders.
Their equations of state may be very complicated, particularly at high pressures.
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2.4.1 Properties of steam

It has been found that a useful way to present properties of steam is to construct a chart, such
as is shown in Figure 2.3, with entropy on the abscissa and temperature on the ordinate.
On the heavy line water exists as a saturated liquid on the descending part on the left and as
saturated vapor on the right. Away from this vapor dome, on the right water is superheated
vapor, that is to say steam; and to the left, water exists as a compressed liquid. The state
at the top of the vapor dome is called a critical state, with pressure p. = 220.9 bar and
temperature 7, = 374.14°C. At this condition entropy is s, = 4.4298kJ/(kg - K) and
enthalpy is h. = 2099.6 kJ /kg. Below the vapor dome water exists as a two-phase mixture
of saturated vapor and saturated liquid. Such a state may exist in the last stages of a steam
turbine where the saturated steam is laden with water droplets.

7(C) p(bar) 800 300150 60 15 5 1 04
600 1000 500 200100 30 10 2 0.6 0.2

500 -

Critical point
400 |

300 1+

200

x=0

100

x=04 Y=0.6 x=0.8 &
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202530354045505560657.0758.0859095 10
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Figure 2.3 Ts-diagram for water.

The lines of constant pressure are also shown in Figure 2.3. As they intersect the vapor
dome, their slopes become horizontal across the two-phase region. Thus they are parallel
to lines of constant temperature, with the consequence that temperature and pressure are
not independent properties in the two-phase region. To specify the thermodynamic state in
this region, a quality denoted by x is used. It is defined as the mass of vapor divided by the
mass of the mixture. In terms of quality, thermodynamic properties of a two-phase mixture
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are calculated as a weighted average of the saturation properties. Thus, for example
h= (1 - x)hf + :I?hg

or
h=hs+ :I?hfg

in which h¢ denotes the enthalpy of saturated liquid, hg that of saturated vapor, and their
difference is denoted by hgz = hg — hr. Similarly, entropy of the two-phase mixture is

8§ = 8t + XSty

and its specific volume is
V= Vs + TVgg

Integrating the second Gibbs equation T'ds = dh — vdp between the saturated vapor and
liquid states at constant pressure gives

hfg = Tng

The first law of thermodynamics shows that the amount of heat transferred to a fluid flowing
at constant pressure, as it is evaporated from its saturated liquid state to saturated vapor
state, is

q:hg—hf:hfg

and this is therefore also
q="T(sg — s1) = T'sgg

States with pressure above the critical pressure have the peculiar property that if water at
such pressures is heated at constant pressure, it converts from a liquid state to a vapor state
without ever forming a two-phase mixture. Thus, neither liquid droplets nor vapor bubbles
can be discerned in the water during the transformation. This region is of interest because in
a typical supercritical steam power plant built today water is heated at supercritical pressure
of 262 bar to temperature 566°C, and in ultrasupercritical power plants steam generator
pressures of 600 bar are in use. Steam at these pressures and temperatures then enters a
high-pressure (HP) steam turbine, which must be designed with these conditions in mind.

Steam tables, starting with those prepared by H. L. Callendar in 1900, and Keenan
and Kays in 1936, although still in use, are being replaced by computer programs today.
Steam tables, found in Appendix B, were generated by the software EES, a product of the
company F-chart Software, in Madison, Wisconsin. It was also used to prepare Figures 2.3
and 2.4. Its use is demonstrated in the following example.

B EXAMPLE 2.3

Steam at p; = 6000kPa and 77 = 400°C expands reversibly and adiabatically
through a steam turbine to pressure po = 60kPa. (a) Find the exit quality and (b)
the work delivered if the change in kinetic energy is neglected.

Solution: (a) The thermodynamic properties at the inlet to the turbine are first found
from the steam tables, or calculated using computer software. Either way shows that
hy = 3177.0kJ/kg and s; = 6.5404kJ/(kg - K). Since the process is reversible
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and adiabatic, it takes place at constant entropy and s, = s1. The exit state is in the
two-phase region, and steam quality is calculated from
sp —s¢  6.5404 — 1.1451

T — s 7.5314— 1.1451

in which sy = 1.1451kJ/(kg - K) and s; = 7.5314kJ/(kg - K) are the values of
entropy for saturated liquid and saturated vapor at p, = 60kPa. Exit enthalpy is
then obtained from

ho = h¢ + 22hgg = 359.79 4 0.8448 - 2293.1 = 2297.0kJ /kg
(b) Work delivered is
ws = hy — ho = 3177.0 — 2297.0 = 880 kJ /kg
The calculations have been carried out using the EES script shown below.

"State 1"
T1=400 [C]
p1=6000 [kPal
h1=ENTHALPY (Steam,P=p1,T=T1)
s1=ENTROPY (Steam, P=p1,T=T1)
"State 2"
p2=60 [kPal
s2=s1
sf2=ENTROPY (Steam,P=p2,X=0)
sg2=ENTROPY (Steam,P=p2,X=1)
x2=(s82-sf2)/(sg2-sf2)
hf2=ENTHALPY (Steam,P=p2,X=0)
hg2=ENTHALPY (Steam,P=p2,X=1)
h2=(1-x2) *hf2+x2xhg2
"Performance Calculations"
wt=h1-h2

The results are:

h1=3177 [kJ/kg] h2=2297 [kJ/kg]

hf2=359.8 [kJ/kg]l hg2=2653 [kJ/kg]

p1=6000 [kPa]l p2=60 [kPa]

s1=6.54 [kJ/kg-K]  s2=6.54 [kJ/kg-K]

T1=400 [C] x2=0.8448 wt=879.9 [kJ/kg]

Calculation of enthalpy and steam quality at state 2 could have been shortened by
simply writing

p2=60 [kPal]
h2=ENTHALPY (Steam, P=p2, S=s1)
x2=QUALITY(Steam, P=p2, S=s1)

The T’s diagram is a convenient representation of the properties of steam, for lines of
constant temperature on this chart are horizontal in the two-phase region, as are the lines of
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constant pressure. Isentropic processes pass through points along vertical lines. Adiabatic
irreversible processes veer to the right of vertical lines, as entropy must increase. These
make various processes easy to visualize. An even more useful representation is one in
which entropy is on the abscissa and enthalpy is on the ordinate. A diagram of this kind
was developed by R. Mollier in 1906. A Mollier diagram, with accurate steam properties
calculated using EES, is shown in Figure 2.4.

The enthalpy drop used in the calculation of the work delivered by a steam turbine is
now represented as a vertical distance between the end states. If the exit state is inside the
vapor dome, there is a practical limit beyond which exit steam quality cannot be reduced.
In a condensing steam turbine quality at the exit is generally kept above the line x = 0.955.
Below this value droplets form, and, owing to their higher density, they do not turn as readily
as vapor does, and thus on their impact on blades, they cause damage. A complicating
factor in the analysis is the lack of thermodynamic equilibrium as steam crosses into the
vapor dome. Droplets take a finite time to form, and if the water is clean and free of
nucleation sites, their formation is delayed. Also, if the quality is not too low, by the time
droplets form, steam may have left the turbine.

The line below which droplet formation is likely to occur is called the Wilson line. It is
about 115kJ /kg below the saturated vapor line, with a steam quality 0.96 at low pressures
of about 0.1 bar. The quality decreases to 0.95 along the Wilson line as pressure increases
to 14 bar. Steam inside the vapor dome is supersaturated above the Wilson line, a term that
arises from water existing as vapor at conditions at which condensation should be taking
place.

B EXAMPLE 2.4

Steam from a steam chest of a single-stage turbine at p; = 3 bar and 77 = 440°C
expands reversibly and adiabatically through a nozzle to pressure of p = 1 bar. Find
the velocity of the steam at the exit.

Solution: Since the process is isentropic, the states move down along a vertical line
on the Mollier chart. From the chart, steam tables — or using EES, enthalpy of
steam in the reservoir — is determined to be h; = 3358.7 kJ /kg, and its entropy is
s1 = 8.1536 kJ/(kg - K). For an isentropic process, the exit state is determined by
pe = lbar and s; = 8.1536 kJ/(kg - K). Enthalpy, obtained by interpolating in the
tables, is ho = 3039.2kJ /kg.

Assuming that the velocity in the steam chest is negligible, the exit velocity is
obtained from

1
hl :h2+§‘/22

or

Vo = +/2(hy — hy) = 1/2(3358.7 — 3039.4) 1000 = 799.1m/s

An EES script used to solve this example is shown below. Conversion between
kilojoules and joules is carried out by the statement convert (kJ, J):

"State 1"
p1=3 [bar]
T1=440 [C]
h1=ENTHALPY(Steam, P=p1l, T=T1)
s1=ENTROPY (Steam, P=pl, T=T1)
"State 2"
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Figure 2.4 Mollier diagram for steam.
p2=1 [bar]
s2=s1

h2=ENTHALPY (Steam, P=p2, S=s2)
V2=sqrt (2% (h1-h2) *convert (kJ,J))

The results are:

h1=3359 [kJ/kg] h2=3039 [kJ/kgl
s1=8.154 [kJ/kg-K] $2=8.154 [kJ/kg-K]
p1=3 [bar] p2=1 [bar]

T1=440 [C] V2=799.3 [m/s]

25

To the left of the saturated liquid line water exists as a compressed liquid. Since specific

volume and internal energy do not change apprgciably as a result of water being compressed,
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their values may be approximated as

Enthalpy can then be obtained from
h(p,T) = ue(T) + pve(T)
which can also be written as

h(p,T) = w(T) + pe(T)ve(T) + (p — pe(T))ve(T)
h=he+ vf(p - pf) (2.6)

in which explicit dependence on temperature has been dropped and it is understood that all
the properties are given at the saturation temperature.

Consider next the calculation of a change in enthalpy along an isentropic path from the
saturated liquid state to a compressed liquid state at higher pressure. Integration of

Tds = dh —vdp
along an isentropic path, assuming v to be constant, gives
h = he +ve(p — pe) @7

This equation is identical to Eq. (2.6). Both approximations use the value of specific volume
at the saturation state.

B EXAMPLE 2.5

Water as saturated liquid at p; = 6kPa is pumped to pressure po = 3400kPa.
Find the specific work done by assuming the process to be reversible and adiabatic,
assuming that the difference in kinetic energy between inlet and exit is small and
can be neglected. Also calculate the enthalpy of water at the state with temperature
Ty = 36.17°C and pressure ps = 3400 kPa.

Solution: Since at the inlet to the pump water exists as saturated liquid, its tempera-
ture is Ty = 36.17°C, specific volume is v; = v¢ = 0.0010065 m3/ kg, and entropy is
s1 = 8¢ = 0.5208kJ/(kg - K). At this state its enthalpy h; = hy = 151.473kJ /kg.

Along the isentropic path from state 1 to state 2s, Eq. (2.7), gives the value
of enthalpy hgs, = 154.8890kJ/kg. On the other hand, the value using EES at
pas = 3400kPa and s9, = 0.5208kJ/(kg - K) is hes = 154.886 kJ /kg, which for
practical purposes is the same as the approximate value. Hence the work done 1s

ws = has — hy = 154.89 — 151.47 = 3.42kJ /kg
From Eq. (2.6) at pressure 3400 kPa an approximate value for enthalpy becomes
hota = 151.473 + (3400 — 6) - 0.0010065 = 154.889kJ /kg

whereas an accurate value obtained by EES for compressed liquid is 154.509 kJ /kg.
These values are shown at points 1 and 2t in Figure 2.5.
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State 2s
T, =36.26°C
h,, = 154.886 kJ/kg p = 3400 kPa

h,. = 154.889 kJ/kg

2s
State 2t 2t 1 p=6kPa State 1
T,=36.17°C 7,=36.17°C
h,, = 154.509 kJ/kg h,=151.473 kJ/kg

h,,= 154.889 kJ/kg

Figure 2.5  An illustration of how to obtain an approximate value for the enthalpy of compressed
liquid.

2.4.2 Ideal gases

An ideal gas model assumes that internal energy is only a function of temperature u = u(7T")
and the equation of state relates pressure and specific volume to temperature by

pv = RT or p = pRT 2.8)

in which R is an ideal gas constant. It is equal to the universal gas constant, R =
8.314 kJ /(kmol - K), divided by the molecular mass M of the gas, so that it is calculated
according to R = R/M. The ideal gas model has been shown to be valid for various gases
at low pressures. From Eq. (2.8) it follows that enthalpy for an ideal gas can be written in
the form h = u + RT, and this shows that enthalpy is also a function of temperature only.
Specific heats for an ideal gas at constant volume and constant pressure simplify to

Ou du
c(T) = <ﬁ>v =57 so that du = ¢, (TYdT

and Oh dh
cp(T) = <——> = — so that dh = ¢, (T)dT

or/, dT

Differentiating next, h = u + RT gives
dh =du+ RdT or ep(T)dT = ¢,(T)dT + RdT
from which it follows that
ep(T) = ¢, (T) + R

Thus even if specific heats depend on temperature, their difference does not. Henceforth
the explicit dependence on temperature is not displayed. With v = ¢, /¢, denoting the
ratio of specific heats, the relations

R ¥R

Cy = m Cp = m (29)

follow directly. The values of ¢, ¢p, and «y are shown for air in Figure 2.6.
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Figure 2.6 Specific heats for air and their ratio.

An approximate value for the ratio of specific heats is obtained from the equipartition
of energy principle of kinetic theory of gases. It states that each degree of freedom of a
molecule contributes %R to the specific heat at constant volume. For a monatomic gas there
are three translational degrees of freedom: one for each of the three orthogonal coordinate
directions. This means that for monatomic gases

3 5 )
cv:iR CPZ§R ’7232167

If a molecule of a diatomic gas is regarded as a dumbbell, the rotational degrees of freedom
about the two axes giving the largest moments of inertia contribute each one degree of
freedom and the third is neglected. The vibrational degrees of freedom are not excited at
relatively low temperatures. Hence, for diatomic gases the specific heats are

7
cy = —R cp=zR 7:521.40

Since air is made up mainly of the diatomic Ny and O, Figure 2.6 shows that the equiparti-
tion principle explains the low-temperature behavior of specific heats very well. Activation
of greater number of vibrational modes takes place as temperature is increased.

Products of combustion flowing through a gas turbine consist of complex molecules, and
the reasoning above suggests that the ratio of specific heats for them is closer to unity than
for diatomic molecules, for all three rotational and low-level vibrational modes are excited.
For combustion gases the value v = 1.333 is appropriate. For superheated steam at low
pressures the value v = 1.3 is acceptable, and for steam that is just below the saturated
vapor line Zeuner’s empirical equation v = 1.035 4 0.1z is often used, with = as the steam
quality. At saturation condition z = 1, and this gives v = 1.135 for saturated steam.
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2.4.3 Air tables and isentropic relations

In this section the influence of temperature variation of specific heats on the thermodynamic
properties of air are considered. Entropy for ideal gases can be determined by first writing

Tds =dh —vdp
in the form T p
14
ds = cp? - R »
and integrating. This gives
8(Tz,p2) — 8(T1,p1) = 8%(T2) — s°(T1) — Rlngz (2.10)
1
in which s? is defined as
0 T dT
s(T) = (1) =
Tref T

Entropy is assigned the value zero at the reference state, Tyt = 0 K and p,of = 1 atm. The
value of entropy at temperature 7" and pressure p is then calculated from

p
DPref
For a reversible process so = s1, and Eq. (2.10) shows that

P2 _ [s%Tz) - s”(Tl)]
D1 R

which can be also be written as

s(T,p) = s°(T) — RIn

p2 _ exp[s§(T2)/R]
pr exp[sY(Ty)/R]
Defining a reduced pressure as
(T
"R
it is seen that p; is only a function of temperature. The ratio of pressures at the endpoints
of a reversible process can now be expressed as
Pz _ Pez
P2 Prl

Specific volume ratio can be obtained from the pressure ratio by using the ideal gas law
pv = RT to recast the pressure ratio into the form

pr(T) = exp

p2 _ BRIz v _ pr
2 vo RIT  pn

Solving for the specific volume ratio yields

o =[] [

v |pe(T2)] | RTY
Now defining v, (T") = RT/p.(T) allows the specific volume ratio to be written as
U2 @

U1 Ur1

The values of s°(T"), p,(T) and v,.(T) are listed in the air Table (B.4) in Appendix B.
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B EXAMPLE 2.6

Alir enters a compressor at p; = 100kPa and 77 = 300K. It is compressed
isentropically to p; = 1200kPa. Assuming that there is no change in the kinetic
energy between the inlet and the exit, find the work done by the compressor using
the air tables.

Solution: Reversible work done is
We = h?s - hl

AtTy; = 300K, p,; = 1.386 and hy = 300.19kJ /kg. For an isentropic process

D2 1200
o= —p1 = ——1.386 = 16.632
Pr2 p1p 1 100
Temperature corresponding to this value of po is Ths = 603.5K and hys =

610.64 kJ/kg. Hence
we = has — by = 610.64 — 300.19 = 310.45kJ /kg

When specific heats are assumed to be constant, integrating the T'ds equations gives

T:
32—31=cvln—2 —{—Rlnfu—2
T1 1

or

T j2)
89 — 81 =¢cpln— — RIn=—=
S ) D1

For an isentropic process, the first of these gives

Q B E —1/(v-1)
V1 o T1

and the second one can be written as

Do T v/ (v=1)
n - (7)
Eliminating the temperature ratios gives
22 ()
n U2 P1

The next example illustrates the use of these equations for the same conditions as in the
previous example.
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B EXAMPLE 2.7

Air enters a compressor at p; = 100kPa and 77 = 300K. It is compressed
isentropically to p2 = 1200 kPa. Find the work done by the compressor assuming
constant specific heats with v = 1.4 and using variable specific heats and EES.

Solution: Work done is
We = Cp(T2S — Tl)

Temperature 75, is found from

D2 (v—=1)/~v
ns:13<;> =300-12°%14 = 610.18K
1

Hence
we = ¢p(Tos — T1) = 1.0045 (610.18 — 300) = 311.58kJ /kg
Carrying out the calculations with EES gives

"State 1"

p1=100 [kPal

T1=300 (K]

s1=ENTROPY (Air,P=p1,T=T1)

h1=ENTHALPY (Air,T=T1)
"State 2"

p2=1200 [kPa]

s2s=s1

h2s=ENTHALPY (Air ,P=p2, S=s2s)

T2s=TEMPERATURE (Air, H=h2s)
llworkll

wc=h2s-h1l

The results are:

h1=300.4 [kJ/kg] h2s=611.2 [kJ/kg]

p1=100 [kPal p2=1200 [kPal

51=5.705 [kJ/kg-K 82s=5.705 [kJ/kg-K]

T1=300 [K] T2s=603.7 [K] wc=310.8 [kJ/kg]

Owing to the relatively small temperature range, the error made in assuming constant
specific heats is quite small. The difference between the computer calculation and
using the air tables arises from interpolation and it is insignificant.

2.4.4 Ideal gas mixtures

Kinetic theory of ideal gas mixtures originates from the intuitive notion that the pressure on
the walls of a vessel containing a gas is caused by the momentum of colliding molecules.
This suggests that at relatively low densities each molecular species may be assumed to act
independently.
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Dalton’s model is based on such a consideration, and it states that the mixture pressure
is equal to the sum of the component pressures p;, which each of the molecular species in
the mixture would exert if it were to exist alone at the mixture temperature and volume.
Expressed algebraically, this is

p=p1tp2+-+pa

When ideal gas behavior can be assumed, the component pressure p; can be represented by

 NRT
Vv

in which N; is the number of moles of the ith component, T’ is the mixture temperature,
and V is the mixture volume. The value of the universal gas constant in SI units is

R =8.314kJ/(kmol - K).
For the mixture the ideal gas law is

Di

_ NRT

P="y
and N is the number of moles in the mixture. Dividing the last two equations by each other
gives

bi = Wp: Yip

and here y; is the mole fraction and p; is the partial pressure of the ith component. It is
equal to the component pressure only for ideal gases.

Other properties of an ideal gas mixture can be obtained by a generalization of Dalton’s
rule, called the Gibbs—Dalton rule. Thus internal energy of a mixture is given by

U=U,+Us+---+U,
Since the internal energy of the ith component can be written as
U, = N;u;

in which 4; is the internal energy per mole of the ith species, the internal energy of the
mixture can be expressed as

U = Ny@; + Notig + - - + Nptin
Dividing this by the total number of moles gives
U = Y; U1 + Yoo + - + Ynln
On a mass basis internal energy can be written as
U =miui +mous + -+ +mpu,

in which m; is the mass of the ith component. Dividing this by the mass of the mixture
gives

U= TiU) + ToUg + -+ + TplUn
and here x; = m;/m is the mass fraction of the ith component. Similar equations hold for

enthalpy:
h=yih1 + yohy + - + Ynha
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h= z;hy +x9hs + -+ +2,hn

Using the Gibbs—Dalton rule, entropy of the ith component in an ideal gas mixture behaves
as if it existed alone at the mixture temperature and its own partial pressure. Thus

S = N151(T,p1) + N232(T,p2) + -+ + Nu8n (T, pn)

or
S =mysi(T,p1) + masa(T,p2) + - - + Mnsu (T, pr)

On a molar basis the specific entropy is
8 =y151(T,v) + y252(T,v) + - - + ynSn (T, v)
and on a mass basis it is
s=z151(T,p1) + 2282 (T,p2) + - - + TS (T, Pn)
Gibbs equation for the ith component can be written as
Tds; = dh; — v; dp;

in which v; = V/m, is the specific volume of the ith component. Using the ideal gas law

p;v; = R;T puts the Gibbs equation into the form

dr dp;
R %P

dSi = cp,i? — fy; s

By assuming the specific heat to be constant, integrating this gives

T Pi2
As; =cy,;In—= — R;In=
P Y pia
or on a molar basis
Di2

As; = Cp.i In E —Rln
Ty Di
The pressure term on the right is called the entropy of mixing. In combustion reactions,
once the combustion is complete, the mixture of combustion products may be considered a
pure substance, just as is done for atmospheric air. Expansion through a turbine then takes
place at a constant mixture composition and the entropy of mixing vanishes. If the specific
heats are assumed to be constant, then, in order to carry out the calculations, it only remains
to determine the specific heat and molecular mass of the mixture.
The molecular mass of the mixture is obtained from

my+mo+---4+my,  NM;+NoMo 4+ + NoM,
M = =
N N
= ylMl +y2M2++ynMn

or .
M= Z yiM;
i=1

The mixture specific heat is

n —

c

= - P

Cp = E YiCpi and ¢, =-—
14 1-p P

o , M
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From earlier studies of combustion it may be recalled that combustion of methane with a
stoichiometric amount of theoretical air leads to the chemical equation

CH; + 2(02 + 3.76N3) — CO4 + 2H,0 + 7.52N,

Assuming that the water in the products remains as vapor, the total number of moles in the
gaseous products is 10.52. If the amount of theoretical air is 125% of the stoichiometric
amount, then the previous chemical equation becomes

CHy + 2.5(0g + 3.76N3) — COq + 2H20 + 0.509 + 9.40N,

and the number of moles of gaseous products is 12.90. The next example illustrates the
calculation of the mixture specific heat.

B EXAMPLE 2.8

Consider the combustion of methane with 125% of theoretical air. Find the molecular
mass of the mixture and the specific heat at constant pressure.

Solution: The number of moles of each species has been calculated above and are as
follows: Nco, = 1, Nu,0 = 2, No, = 0.5, and Ny, = 9.4. Hence the total number
of moles is N = 12.9 and the mole fractions are yco, = 0.0775, yg,0 = 0.1550,
Yo, = 0.0388, and yn, = 0.7287. The molecular masses and specific heats of
common gases are listed in the Appendix B. Using them, the molecular mass of the
mixture is given by

M = yco,Mco, + ya,0Mn,0 + yo, Mo, + yn, Mn,
= 0.0775-44.0 + 0.1550 - 18.0 + 0.0388 - 32.0 + 0.7287 - 28.0
= 27.845kg/kmol

The molar specific heat at constant pressure is then

Cp = YC0,CpC0O; T YH20CpHL,0 T Y0,Cp 0, + YNLCp N,
= 0.0775-37.329240.1550 - 33.5702+0.0388 - 29.3683+0.7287 - 29.1533
= 30.480kJ/(kmol - K)

The mixture specific heat is

Cp =

e _ 1.0946kJ/(kg - K
2 /(ke - K)
|
As pointed out by Cohen et al. [15], it has been found that for combustion products of jet
fuel it is sufficiently accurate to use the values
4

cp = 11487/ (kg - K) R =287]/(kg-K) T=3
As inspection of Figure 2.6 shows that the value of v decreases and that of ¢, increases
as temperature increases. Hence, if the actual mean temperature during a process is lower
than that for which these values apply, then the value of -~y is too large in the calculation
in which it is used to determine the temperature change, and therefore this leads to an
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excessively large change in the temperature. But then the value of ¢, is too low and the
product ¢, AT to determine the enthalpy change during the process is neatly correct, as it
involves compensating errors. By a similar argument the constant values

cp =10045J/(kg-K) R=287J/(kg-K) ~vy=14

can be used for air.

2.4.5 Incompressibility

The important distinction between an incompressible fluid and incompressible flow is
introduced next. Incompressibility may, on one hand, mean that specific volume does not
change with pressure, but it is allowed to change with temperature. A stricter model is to
have the specific volume remain an absolute constant. In liquid water even large changes
in pressure lead to only small changes in the specific volume, and by this definition it is
nearly incompressible, even if its specific volume changes appreciably with temperature.
In the flow of gases at low speeds pressure changes are mild and the flow is considered
incompressible, even if the fluid is clearly compressible.

With these distinctions in mind, consider a strictly incompressible fluid. With v constant,
the first Gibbs equation reduces to

du = Tds

This shows that internal energy changes only if the entropy changes. If the flow is adiabatic,
entropy increases only as a result of irreversibilities, and hence this can be the only cause
of an increase in internal energy. Similarly, if the flow is reversible and adiabatic, then
internal energy must remain constant. As a consequence, the first law of thermodynamics
in such a flow takes the form

m o, 1 p2 1

;+§V12+gz1 :;+5V22+gz2+ws 2.1
Thermal energy terms are completely absent, and this equation involves only mechanical
energy. When no work is done, it reduces to

1 1
%+§V12+gz1 =%+§V22+922 (2.12)

which is the familiar Bernoulli equation. Its usual development shows that for inviscid
flows

1
P+ 5PV? + pgz = po

is constant along a streamline, with the constant pg called the Bernoulli constant.

2.4.6 Stagnation state

Stagnation state is defined by the equations

1
hO:h+§V2+gz (2.13)
Sp =S

It is a reference state that may not correspond to any actual state in the flow. As was
pointed out earlier, enthalpy hg is called the stagnation enthalpy and h is now called the
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static enthalpy. Other properties, such as pressure, temperature, specific volume, or density
are designated similarly. This definition fixes to each static state in the flow a corresponding
unique stagnation state. The stagnation state is arrived at by a thought experiment in which
the flow is decelerated isentropically to zero velocity while it descends or ascends to a
reference elevation.

From the definition of a stagnation state, integrating T'ds = dh — v dp from a static state
to its stagnation state gives the following equation, since ds = 0:

Po Po
hg—h:/ ’udp:/ @
p p P

For an incompressible fluid this reduces to

ho—h="20_"P
PP

Substituting for hg from Eq. (2.13) into this gives

1
po=p+ 5pV2 + pgz (2.14)

This is the same equation that defines the Bernoulli constant, which is now seen to define
the stagnation pressure for an incompressible fluid. This expression can also be used in
low-speed compressible flow as an approximation to the true stagnation pressure.

2.5 EFFICIENCY

In this section various measures of efficiency for turbomachinery flows and their relationship
to thermodynamic losses are discussed.

2.5.1 Efficiency measures

Work delivered by a turbine is given as the difference between inlet and exit stagnation
enthalpy. A greater amount of work would be delivered along a reversible path to the same
exit pressure. With w the actual work and w; the isentropic work, their ratio

w  hoy — hog

Mt = (2.15)

ws  ho1 — hoss
is called a total-to-total efficiency. In the analysis of a turbine stage inlet to a stator (nozzle)
is given label 1 and 3 is the exit state from the rotor. Label 2 is reserved to identify a state
between the stator and the rotor. The process line for an adiabatic expansion between static
states hy and hs is shown in Figure 2.7, which also shows the process line between the
stagnation states hg; and hos. In addition to the constant pressure lines corresponding to
these states a line of constant stagnation pressure pgg3; is drawn. This stagnation pressure
corresponds to an end state along a reversible path with the same amount of work as in the
actual process. As will be shown below, the loss of stagnation pressure Apg = po3; — Pos
is a measure of irreversibility in the flow. However, a stagnation pressure loss calculated in
this way is only an estimate, and for a stage the losses across a stator and rotor need to be
calculated separately. This is discussed in’Chapter 5 and Chapter 6.
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p,” % T

N

Figure 2.7 Thermodynamic states used to define a turbine efficiency.

If no attempt is made to diffuse the flow to low velocity, the exit kinetic energy, for
example, a single-stage turbine, is wasted. For such a turbine a fotal-to-static efficiency is
used as a measure of the efficiency. By this definition efficiency is given as

ho1 — hos

= — 2.16
Ths hOl — h3s ( )
and the larger value of the denominator, caused by the wasted kinetic energy, reduces the
efficiency.
The total-to-total efficiency is clearly also
hi+ 2V2 — hg — 3V
Tt CAe. 2 3 2.17)

i VR 1

The flow expands between the static states with enthalpy h; and h3, with states 01 and 03
as the corresponding stagnation reference states. For an isentropic expansion to pressure
D3, the static enthalpy at the exit is hs,. To find its corresponding stagnation pressure, the
exit velocity V3, would have to be known. A consistent theory can be developed if it is
assumed that the state 03s lies on the constant-pressure line py3. Then integrating the Gibbs
equation along the constant-pressure p3 line and also along the constant py3 line gives the
two equations

_ . Tos
$3 — 51 =¢pln $3— 81 = In
3s 03s
from which
T3 _ Tos or Toz _ Toss
T35 Toss Ty Tss
From the definition of a stagnation state the following two equations are obtained
T %5 T VE
203 4 78 03s _ g, Vs

T3 QCpTg ! Tgs QCpTgs
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and the equality of the temperature ratios on the left-hand sides (LHSs) of these equations

shows that
Vs T3

‘/33 TBS
so that V3 > V3, but without a great loss of accuracy the temperature ratio is often replaced
by unity, and then Vj; is replaced by V3.
If a stage is designed such that V; = V3, then the kinetic energy terms in the numerator
of Eq. (2.17) be canceled. If next the approximation V3 = V3, is used, then Eq. (2.15) for
total-to-total efficiency reduces to

h1 — hg

T by~ hay

the more familiar definition of turbine efficiency from the study in the first course of
thermodynamics. In a multistage turbine the exit state would need a different label. It will
be denoted by label e when the distinction needs to be clarified.

B EXAMPLE 2.9

Steam enters an adiabatic multistage turbine at static pressure of 80 bar, static tem-
perature 520°C, and velocity 50m/s. It leaves the turbine at pressure 0.35 bar,
temperature 80°C, and velocity 200 m/s. Find the total temperature and pressure at
the inlet, total temperature and pressure at the exit, total-to-total efficiency, total-to-
static efficiency, and the specific work done.

Solution: Using steam tables static enthalpy and entropy of steam at the inlet and
exit are
hy = 3447.8k]J kg s1 =6.7873kJ/(kg - K)

he = 2645.0kJ kg se = 7.7553kJ/(kg - K)

Stagnation enthalpies are

1 502
hoy = hy + = V2 = 3447. = 3449, k
01 1+2V1 3 78+2.1000 3449.1kJ /kg
1 ., 2002
= “V2 =2645.0 + ——— = .
hoe m+2% 650+21m0 2665.0kJ kg

Had the flow been isentropic, the exit state would have corresponded to p, = 0.35 bar
and s.s = s;. This is inside the vapor dome at quality

Ses — 8f  6.7873 —0.9874

= = 0.8621
Sg — s8¢ 7.7148 — 0.9874 086

Les =

and the enthalpy at this state is
hes = he + 2es(hg — he) = 304.20 + 0.8621 - (2630.7 — 304.20) = 2309.9kJ /kg
Assuming that V., = V, then gives

2002
21000

1
hoes = hes + 5V = 2309.9 + — 2329.9kJ /kg
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and the total-to-total efficiency is

_ hot — hoe  3449.1 — 2665.0

= = = 0.7006
= e T hoes | 3449.1 — 2329.9

The total-to-static efficiency is

hor — hoe  3449.1 — 2665.0
- - — 0.6883
e = ol — hes . 3449.1 — 2309.9

and the definition of efficiency when kinetic energy changes are neglected is

_ hi—he  3447.8— 2645.0
T e —h..  3447.8 — 2309.9

= 0.7055

The specific work delivered is

w = hor — hoe = 3449.1 — 2665.0 = 784.1kJ /kg

Consider next a single-stage centrifugal compressor. The flow leaving the impeller enters
a diffuser section, and then a volute. These stationary parts of the machine are designed to
decelerate the flow so that at the exit velocity is well matched with the desired flow velocity
in the discharge pipe. Since kinetic energy from the impeller is utilized in this way, it is
again appropriate to define the efficiency as the total-to-total efficiency. It is given by

ws _ hoss — hoy

Mt = (2.18)

w  hoz — hot
The process lines between the stagnation states and the corresponding static states are
shown in Figure 2.8. Now, as for the turbine, the state 03s is assumed to be on the constant-
pressure line pg3, and the sketch reflects this. Had the same amount of compression work
been done reversibly the exit stagnation pressure would have been pg3;, which is also shown
in the figure.

In ventilating blowers no use is made of the exit kinetic energy and in such applications
the total-to-static efficiency is used. In these cases efficiency is defined as

h3s - hOl

s = hos — ho1

Since hjz, is smaller than hg3s, the efficiency is likewise smaller, and the difference accounts
for the wasted kinetic energy. To be sure, in ventilating a space, high velocity may be needed
to blow off light particulate matter sitting on the floors or attached to walls. In this case
a blower may be placed upstream of the ventilated space and forced draft used to remove
the particles. In induced draft contaminated air is drawn from the ventilated space into a
blower and the kinetic energy in the exhaust stream is lost to the surroundings.

B EXAMPLE 2.10

Air is drawn into a fan of diameter D = 95.4cm from atmosphere at pressure
101.325 kPa and temperature 288.0 K. The volumetric flow rate is @ = 4.72 m? /s
of standard air, and the power to the fanis W .= 2.52 kW. The total-to-total efficiency
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Figure 2.8 Thermodynamic states used to define a compressor efficiency.

of the fan is 0.8. (a) Find the total-to-static efficiency. (b) Find the stagnation pressure
rise across the fan.

Solution: As air is drawn from the atmosphere at standard temperature and pressure
into the blower, it undergoes a reversible adiabatic acceleration to the inlet of the
blower. The inlet stagnation pressure is therefore pp; = 101.325kPa, and the
stagnation temperature is Tp; = 288.0K. The density of standard air is p =
1.225kg/m?, and this corresponds to the actual density in the atmosphere in this

situation: 101325
Po1 3
_ _ =1.225k
PoL = Ry ~ 2872880 o

The mass flow rate is therefore

T = po1@Q = 1.225 - 4.72 = 5.78kg/s

The fan flow area and velocity are

1 9 Q 472
= — = U. 1 = —= —— = .
A 47rD 0.715m Vv 1= 0718 6.6m/s
The specific work is _
W 2520
= — = — = 4 . k
W= T G 43587 ke

and the isentropic work is
ws = nuw = 0.8 - 435.8 = 348.7 J /kg
The total-to-static efficiency may be written as

T35 — T Toss — To1 — V2/(2 V3 .62
= 3 01 = 03 0l /( CP) =Tt — =— = 08 —_ —6 6 = 0.75
TOS - T01 T03 — T01 ’ 2w 2436

nts
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(b) The stagnation pressure rise can be calculated from
Po3 — Po1 = pws = 1.225 - 348.7 = 427 Pa = 43.6 mm H,0

The exit states were labeled with subscript 3 even though this machine does not have
anything that functions as a stator.

|
In a multistage compressor with large pressure and temperature differences, the variability

of specific heats with temperature needs to be factored in to obtain an accurate result. This
is illustrated in the next example.

B EXAMPLE 2.11

Air from the atmosphere flows into a multistage compressor at pressure 1 bar and
temperature 300 K. The ratio of total pressures across the compressor is 30, and its
total-to-total efficiency is 0.82. (a) Find the loss of stagnation pressure during this
compression process, assuming specific heats to be constant. (b) Find also the loss
in stagnation pressure assuming specific heats to vary with temperature.

Solution: (a) The inlet to the compressor is labeled as state 1, and its exit is denoted
as e. The isentropic compression gives the stagnation temperature

(v=1)/~
Toes = To1 (p—) =300-30"/3% = 792.8 K
01

From the definition of efficiency

the exit temperature is

1 1
Toe = To1 + —(Toes — To1) = 300 + —=(792.8 — 300) = 901.0K
Mt 0.82

If the same amount of work had been done isentropically, the pressure ratio would

have been
Poei _ (Toe oD _ (991 > —~ 46.94
por \To1 ~\ 300 -

Hence pge; = 46.94 bar and the loss of stagnation pressure is Apor, = Poe; — Poe =
46.94 — 30 = 16.94 bar.

(b) For variable specific heats, at T; = 300 K, from air tables p,; = 1.386 and
ho1 = 300.19kJ/kg. Hence

Pre = prr 228 = 1.386 - 30 = 41.58

Po1

From air tables Tp.s = 771.32K and hq.s = 790.56 kJ /kg. Using the definition of
total-to-total efficiency
hOes - hOl

e = hoe’— ho1
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gives for the exit enthalpy the value

hoes — h .56 — 300.19
0 01 — 30019 + 790.56 — 3

hoe = h
Oe o1 + Tt 0.82

= 898.26 kJ /kg

From the air tables for this value p..; = 65.71. It then follows that

@ _ Prei _ 65.71
Po1 P 1.386

=4741

and pge; = 47.41 bar. Hence the loss of stagnation pressure is Apgr, = Dgei — Poe =
47.41 — 30.0 = 17.41 bar. There is now some difference in the calculated results
because the temperature range between inlet and exit states is large.

2.5.2 Thermodynamic losses

The effect of thermodynamic losses is illustrated by considering an increment on either a
turbine or a compressor process line, as shown in Figure 2.9. From the Gibbs equation

Tds=dh—vdp

the slope of the constant-pressure line is

(),
8 p

which shows that this slope is equal to the absolute temperature on an enthalpy—entropy
(hs) diagram The enthalpy change between the end states may be considered to be made up
of two parts. The irreversible change in enthalpy is dhy = T'ds, and the isentropic change
is obtained by setting ds = 0, which gives dh, = vdp. Substituting these back into the
T'ds equation shows that in this notation

dh = dh, + dhy

For a compressor, all three terms are positive. For a turbine, dh; is positive, but dh and
dh, have negative values. The irreversible process associated with dh is called reheating,
or internal heating. Although the former term is in general use to describe this, the latter is
better for it reflects what is happening physically. In other words, the irreversibilities cause
an increase in temperature.

The nature of the irreversibilities may be further illustrated by considering a flow channel
that extends from an inlet at location #; to some general location ¢. The first law of
thermodynamics for this control volume is

. 1 . 1 .
Q+m<u1+p1v1+§V12+gzl> :m(u+pv+§V2—|—gz>+W

Differentiating this with respect to £ and rearranging gives

cdu ., [d(pv) 1dV? dz| .,
e =Q m{ St s Y| W (2.19)
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h h s+ds , p+dp
A -- h+dh
dh = vdp dh
2s
14 T ,,,,,,,,, h
S s+ds
s s

(a) (b)

Figure 2.9 (a) An infinitesimal irreversible process in a turbine; (b) an infinitesimal irreversible
process in a compressor.

in which the rate of heat transfer and work interaction per unit length along the element d¢

have been defined as . )
. dq . aw
7 _ % WI -
@ dl al
Clearly, in those parts of the flow in which there are no heat interactions Q' = 0and
similarly W’ = 0 in those parts where there are no work interactions.

Differentiating the second law of thermodynamics

s—sl)—/ —df—}—/ 5,d¢
41

_ds Q'
m% =T + 8 (2.20)

with respect to £ gives

2.5.3 Incompressible fluid

For an incompressible fluid, density and its reciprocal specific volume are constant. For
this kind of fluid the first Gibbs equation reduces to

ds du

e de
Combining this with the second law in Eq. (2.20) gives

. du : .
s = Q' +7Té, (2.21)

As was remarked earlier, the second term on the right shows that internal energy in incom-
pressible flow always increases as a result of irreversibilities. The first term on the right
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side shows that internal energy increases by heat transfer into the fluid, but decreases when
heat is lost to the surroundings. Integrating Eq. (2.21) gives

1 [t
Uy — UL = (@ + - Ts; dé (222)
m 0
Substituting Eq. (2.21) into Eq. (2.19) puts the latter into the form

Cfdpv)  1dV? dz\ o, o
m( a7 +§—d£—+g% +W~— T.Sp

Integrating this gives

2
PLU + lV12 + gz = pov + 1‘/22 + gz +w+ i Ts d¢ (2.23)
2 2 m A P
In Egs. (2.21) and (2.23) absolute temperature 7" multiplies the entropy production rate 3,
and it is the product Ts'g), having the dimensions of energy flow rate per unit length of the
channel, which represents a thermodynamic energy loss.

In the first law of thermodynamics, flow work, kinetic and potential energy, and external
work, are all associated with mechanical energy. On the other hand, internal energy and
heat interaction are thermal energy terms. Viewed from this perspective Eq. (2.22) may be
said to be a thermal energy balance and Eq. (2.23) a mechanical energy balance. The term
associated with entropy production represents an irreversible conversion of mechanical
energy into internal energy and is the reason why it is also called a thermodynamic energy
loss. In contrast to a conservation principle in which there are no terms that would represent
conversion of one form of energy to another, in a balance equation such conversion terms
are present. Further examination shows that heat transfer to, or from, an incompressible
fluid changes only the internal energy and not the pressure, velocity, or elevation. These
quantities change only as a result of work done or extracted, and they decrease as a result of
irreversibilities in the flow. It is customary not to make a distinction between conservation
and balance principles in practice, and often the principle of conservation of mass, for
example, is called simply the mass balance. This practice will also be followed in this text.

For an incompressible fluid stagnation pressure has been shown to be given by

1
Po=p+ 50‘/2 + pgz

Making use of this relationship, Eq. (2.23) takes the form

L2
Poz = Po1 — pw — L3 s, de (2.24)
m Je,

This shows that stagnation pressure changes because of a work interaction with the sur-
roundings and it drops because of irreversibilities in the flow.

2.5.4 Compressible flows

For compressible flows the first law of thermodynamics is written for a flow extending from
location #1 to an arbitrary location ¢, as

. 1 . 1
Q+m<h1+§Vf+gzl) :W+m<h+5V2+gz>
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or in terms of stagnation enthalpies as
Q + 1hoy = W + 1ivho

Differentiating gives
. dhg
2

dt
The second law of thermodynamics in the differential form has been shown to have the
form

Q -W = (2.25)

cds Q'
Mm— = —+38§
a¢ T P
Writing next the second T'ds equation between stagnation states as
ds dh() dpo

AT T
and substituting ds/d¢ from this into the second law leads to

. dho . de TO . .
g~ Wz = ?Q' + Tos,,
Using Eq. (2.25) to eliminate dhg/d{ yields the equation
. dpo Ty : . :
o 20 = (? 1) Q- Tod, — W (2.26)

Turbomachinery flows are adiabatic so the heat transfer term may be dropped.
In an adiabatic flow integrating Eq. (2.26) gives

Po2 1 153
/ () dpo +w=—-—— T(]SQ) 114 (227)
Po1 m Je,
If the same amount of work had been done reversibly, then the exit stagnation pressure
would have been different. Because the work done is the same, the pressure pgo; lies along
the constant hgs line. A process line for this is shown in Figure 2.7, except that in that
figure the exit enthalpy hgs corresponds to the enthalpy Rg2.
Integrating next Eq. (2.26) for a reyersible process gives

Pozi
/ vo dpg + ws = 0 (2.28)

Po1
Thus, since it has been stipulated that w = wy, subtracting Eq. (2.27) from Eq. (2.28) gives

Po2i 1 £2
/ Vo dpo = - Tosi) dl
Po2 mJe
Integration of this along the constant hg, line means that Ti2 remains constant and factors
out after the substitution vo = RT;/po. Then, carrying out the integration gives
¢
. 1 2 .
RmP2 — — [ e
Po2 m Je,

But in an adiabatic flow 1 ds = 3, d¢, and this equation reduces to

S9 — 81 zsp:Ran—)O—Z—i
Po2
This relates the entropy increase to a loss in stagnation pressure. A simpler development

of this result is given in later chap*e~<
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EXAMPLE 2.12

The inlet stagnation temperature to a multistage turbine is 1400 K, and the inlet
stagnation pressure is 1000kPa. The pressure ratio is 10, and the total-to-total
efficiency of the turbine is 0.89. Assuming that gases flowing through the turbine
have v = % and R = 287 J/(kg - K), find the specific entropy production during the
expansion assuming constant specific heats.

Solution: In this multistage turbine the inlet state is denoted by 1 and the exit by e.
Assuming constant specific heats the definition of total-to-total efficiency reduces to

_ Tor — Toe 1 —Toe/Tor

= - 4 = -
ey To1 — Toes M= Toes/To1

from which

The isentropic temperature ratio is

(y=1)/v
T 1
Oes _ Poe = —— =0.5623
To1 Po1 104/4

so that
Thes = 1400 - 0.5623 = 787.3 K

and
Toe = 14001 — 0.89(1 — 0.5623)] = 854.7K

Since the amount of work done is proportional to the difference between the stagnation
temperatures, if this work had been done reversibly the exit pressure would reach the
value pg.; which is higher than before. It can be calculated from

;[M B & v/ (v=1) _ 854.7 4_01389
pnn \To1 T \1400,)

Hence pge; = 1000 - 0.1389 = 138.9kPa. Since the pressure ratio is 10, the exit
stagnation pressure is pgz = 100 kPa, and the stagnation pressure loss is

Doei — Poe = 138.6 — 100 = 38.6kPa

This represents 4.3% of the overall pressure difference py; — poe = 900kPa. The
entropy production is calculated to be

Doei 138.6
- 1 — = 2 — < = . -
sp = Rln . 87ln1 . 9.4J/(kg - K)
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2.6 MOMENTUM BALANCE

In this section the use of momentum balance is illustrated in applications of interest in
turbomachinery. In uniform steady flow in a channel the momentum balance reduces to

m(Vy— Vi) =F, +F, + Fp, (2.29)

in which F is a pressure force and F, is a viscous force. The force Fy, is present if the
control volume cuts across the solid parts of the machine. If the control volume contains
only fluid, this term is absent. Weights of the fluid and hardware have been omitted with
the understanding that when stress analysis is carried out, they will be taken into account.
The first illustration on the use of the momentum equation is to calculate the force a that
deflection of a jet causes on a fixed vane.

B EXAMPLE 2.13

Consider a jet of water that flows into a vane at an angle a;. The vane is equiangular
with ag = —ay, and it turns the flow so that it leaves at a negative angle oo, as shown
in Figure 2.10. Positive angles are measured in the counterclockwise direction from
the z axis. The jet velocity at the inlet is V', and pressure surrounding the jet and the
vane is atmospheric. Find the y component of the force on the vane.

y

Figure 2.10 Turning of a flow by a vane.

Solution: The inlet to the vane is denoted as station 1 and the exit as station 2. Since
the streamlines are straight, both at the inlet and at the exit, pressure at both of these
locations is equal to the atmospheric pressure p, across the jet. Then, with gravity
neglected, Bernoulli equation shows that velocity at the exit is the same as at the
inlet, so that V; = Vo = V.

Momentum equation in the y direction gives

m(VZy - Vly) = pr

in which the force F},,, is the y component of the pressure force exerted by the vane
on the fluid. An equal and opposite force acts on the vane and it is denoted by R,,.
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At the inlet Vi, = V sin «; and at the exit V5, = V sin &y, and for a negative value
of arg this velocity component points in the minus y direction. The force on the blade
is therefore

R, = mV(sina; — sinag)
The mass flow rate is m = pV A. Since the blade is equiangular, oz = —a;.
Substituting gives the force as

R, = 2pAV?sinq
The force is largest when cv; = 90° and the flow is turned 180°. u

Consider again the flow shown in Figure 2.10, but now let the blade move in the y direction
with velocity U, as shown in Figure 2.11. It is known that Newton’s second law is valid
in all coordinate systems that move at constant speed. Thus the momentum balance given
by Eq. (2.29) is also valid for a control volume that moves with a uniform velocity U, if
all velocities are to be replaced by relative velocities. In fact, noting that the relationship
between the absolute velocity V and relative velocity W is given by

V=W+U
and substituting this into Eq. (2.29) gives
m(Wy+U—-W; -U)=F, +F, +Fp
or
m(We—W;)=F,+F, + F (2.30)

In the next example the momentum balance is used to analyze the force on a moving blade.

B EXAMPLE 2.14

Consider a waterjet directed at a blade that moves with speed U. The angle a4 of the
jet is such that the relative velocity meets the blade smoothly at the angle 82. The
blade is shaped such that it deflects the flow backward at an angle 83 = — (9, as is
shown in Figure 2.11. (a) Find the work done on the blade per unit mass of the flow
and the blade speed for maximum work by carrying out the analysis in a set of fixed
coordinates. (b) Carry out the same analysis in a set of moving coordinates, and find
the y component of the force on the blade.

Solution: (a) The analysis is carried out first in fixed coordinates. Station 1 is now
the inlet to a nozzle (not shown) that issues the water at station 2 at velocity V; at
angle ay. Station 2 is also the inlet to the moving blade, and its exit is station 3. The
force that the blade exerts on the fluid is

Foy = m(Vasinas — Vo sinag)
and with R, = —Fy},, the force on the blade is
R, = m(Vasinay — Vi sin ag)

Assuming that there are no losses, applying the first law to the contro! volume shown
gives

Da 12 Pa 12
D2y VEi=224 s 2.31
p+22 'p+2V3+w 2.31)
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Figure 2.11 A water jet impinging on a moving blade.

and since the rate at which work is delivered to the blade is W = R, U, then

ws = U(Vasinas — Vasinag) (2.32)
Substituting this into Eq. (2.31) gives

%VQQ = %Vf + U(Vasin ag — Vi sin ag) (2.33)

As is shown in the vector diagrams for the velocities in Figure 2.11, the x and y
velocity components of absolute and relative velocity are related by

Wy cos By = V5 cos ag WasinBe = Vosinag — U (2.34)
Squaring each equation and adding them yields
W2 =V +U? - 2V,Usinay
which is a form of a law of cosines. A similar equation is obtained at the exit, namely
W3 cos 83 = V3 cosas Wssin 83 = Vasinag — U (2.35)
from which another law of cosines is
Wi =V:+U?-2V3Usinas

Solving the laws of cosines for V5 sin oy and V3 sin g and substituting them into
Eq. (2.32) reduces it to
W3 =Wy

so that W5 = Wj3. Thus the relative velocity at the exit is the same as at the inlet.
This means that an observer in moving coordinates sees that the blade changes only
the direction of the flow, but not its magnitude.

Substituting from Eqs. (2.34) and (2.35) into Eq. (2.32) gives

ws = U[Vasinag — (Wssin 83 + U)] = U(Vasinag + Wasin 8 — U)
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since 3 = —f3 and W3 = W, Also Wy sin 8y = Vosinag — U, so that
ws = 2U(Vasinag — U)

From this equation it is seen that ws = 0 when U = 0, or U = Vysinas. In the
former case the load on the blade is too large and cannot be made to move. In the
second case the load is too low, and the blade is free-wheeling. The condition for
maximum power to the blade is obtained by differentiating w, with respect to U and
setting it to zero. This gives

d v 1
%:Vgsina2A2U:O or I7—2~:§Sin012
For as = 90° the maximum work is done by the jet on the blade when the blade
moves at half the jet speed.

(b) If the moving coordinates are used, then
R, = m(W;sin 8y — W3 sin f3)
Substituting W3 = Wy and 83 = — /35 gives
Ry = 2mWa,sin f; = 2m(Vasinag — U)
and with the rate of work done W = R, U, the specific work becomes
wg = 2U(Vasinag — U)

as before.

Next, the momentum equation is applied to situations in which the results may be used to
quantify thermodynamic losses.

B EXAMPLE 2.15

Water with density p = 1000 kg/m? and velocity V; = 20m/s flows into a sudden
expansion as shown in Figure 2.12. The supply pipe has a diameter D; = 7cm,
and the pipe downstream has a diameter D, = 14 ¢cm. Find the increase in pressure
P2 — D1

| NNNNNANW
>
N

Figure 2.12 Flow in a channel with a sudden expansion.

Solution: Mass balance gives

AVr= A0,



MOMENTUM BALANCE

Thus , )
Vo = Vlg—% =20 <1l4> =5.0m/s
As the water enters a sudden expansion, it detaches from the boundaries and moves
into the larger space as a jef. Regions of recirculating flow develop at the upstream
corners. Flow speed in these corners is sufficiently low to make the pressure uniform.
The pressure across the jet at the exit plane is therefore equal to that in the recirculating
regions. The stream velocity rises from small backflow in the recirculating regions
to a large forward velocity in the jet. This leads to appreciable viscous forces in the
free shear layers forming the jet boundary. Such free shear layers are unstable to
small disturbances and roll up into vortices. These cause mixing of the low velocity
fluid in the recirculating zone with the fast flow in the jet. As a consequence, the
jet spreads and fills the channel. In the mixing zone the shear forces along the walls
influence pressure much less than the mixing, and therefore they may be neglected.
Applying the momentum balance in the z direction leads to

pA2Vo(Va — Vi) = (p1 — p2) A2
in which the mass balance, 1 = pV; A3 was used. Thus
p2 —p1 = pVo(V1 — Vo)
and the numerical value for the pressure increase is
p2 —p1 = 1000-5.0(20 — 5.0) = 75kPa

As the area A, is increased the exit velocity is reduced and finally becomes zero. In
that case ps = p;. This is the situation of a jet discharging to an atmosphere and then
the exit pressure is equal to the atmospheric pressure.

The loss in stagnation pressure in a sudden expansion is

1 1 1 1
—PV22 = §PV12—PV1V2+ 5[)‘/22 = §P(V1 _V2)2

1
— Pgo = ZoV2 _po—
Po1 — Po2 p1+2p 1 —D2 5

or
1
po1 — poz = 5 1000(20 — 5)2 = 112.5kPa

If the flow were to diffuse to the exit pipe without irreversibilities, there would be
no loss of stagnation pressure and the exit pressure could be calculated from the
Bernoulli equation. It would have the value

1 1
P2 —P1 = §P(V12 - V22) = 51000(202 - 52) = 187.5kPa

above the inlet pressure. Contrasting this to the value 75 kPa calculated in the actual
case shows that not all pressure is recovered, and the irreversibility can be regarded
as a loss in pressure.

This underscores the importance of a well-designed diffuser to recover as much of
the pressure as possible. The reduction of kinetic energy in diffusion goes into flow
work on the fluid particles ahead, causing pressure to increase. If part of the kinetic
energy is dissipated by viscous action in mixing, less is available for increasing the
pressure. This is clearly true if the sudden expansion takes place into a vast reservoir,

51
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for then all the kinetic energy leaving the pipe will be dissipated in the reservoir and
none is recovered. n

As a third example on the application of the momentum balance, consider how mixing of
a stream in a constant-area duct changes the pressure. This requires the use of the balance
equations in their integral forms.

B EXAMPLE 2.16

An incompressible fluid flows in channel of cross-sectional area A, as shown in
Figure 2.13. The flow is in the z direction with a nonuniform velocity profile
Vi = V(14 f(z,y)) at station 1 with the nonuniformity such that V' is the average
velocity. As a result of mixing, the flow enters station 2 with a uniform profile. Find
the pressure change between stations 1 and 2. Work out the solution when the inlet
velocity consists of two adjacent streams, one moving with velocity V(1+ f,) and
the other with velocity V(1+ f;,). Note that, since V' is the average velocity, either
fo or f, must have a negative value.

V(1+fix.y)) v
1 2
AL SIS IIIIS OIS ILTIISE TSI SIS IS IS I SIS SIS IIYS
A, A
Ab Vb
v

Figure 2.13 Mixing in a constant area channel.

Solution: Integral form of the mass balance

= ledA:/ pVa dA
A1 A2

applied to a control volume between stations 1 and 2 gives, with A = A; = A, and
V, =V this expression can be written as

/ V(1 + f(z,y))dA = VA
A

Since V is the constant average velocity this yields the condition

/ flz,y)dA=0
PR
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The x component of the momentum equation applied to this control volume gives
[ ovzaa~ [ pvias = -pa)a
A2 Al

Again, since at the exit velocity Vo = V is uniform, this can be written as

VA4 /A V2(1+ f(z,y))2dA = (ps — p1)A

Wall shear has been neglected under the assumption that mixing influences the
pressure change much more than does wall shear.
Expanding the integral leads to

/ (14 f2(z,y))dA = / (1+2f(2.y) + [Pla,y))dA = A+ / Pz, y)dA
A A A

for, as shown above, the middle term is zero. Denoting

PeL [ P
the pressure increase is seen to be
p2—p1 = pV2f*
With the velocities as shown on the bottom half of the figure, mass balance gives
AV, + AV, = AV

and since A = A, + A, this reduces to

. VaAa + ‘/bAb
o A, + Ay
Writing
Vo=V + fa) and Ve=V(1+ f)
and solving for f, and f;, gives
f __El__l_ (Va_‘/b)Ab
‘v  VaAa + VoA

and
—E—l_ (%_Va>Aa

Vv VoA, + VA

The value of f2 is the area-weighted average

o

JFZ — a2Aa + beAb - (Va - Vb)QAaAb
Ao+ Ay (VaAg + VpAp)?

Hence the pressure increase is

Az A

P2 —p1 = P(Va - Vb)Q(A——i—Ab)E
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As a special case, consider the situation in which V;, = 0. Then

VoAa Vo Ay
= — d a — V = —
VA and V. . + 4
and
p2 ~p1 = pV(V, - V) (2.36)
This is the same result that was developed in Example 2.15. [

In these examples the momentum equation could be used to obtain information about the
downstream pressure. This was possible because the viscous forces could be neglected.
Such a situation also characterizes many turbomachinery flows in which the important force
balance is between the inertia of the flow and pressure forces.

EXERCISES

2.1 Steam flows through a bank of nozzles shown in Figure 2.1 with wall thickness
to = 2mm, spacing s = 4 cmn, blade height b = 2.5 cm, and exit angle oz = 68°. The exit
velocity Vo = 400 m/s, pressure is p; = 1.5 bar, and temperature is 7, = 200°C. Find
the mass flow rate.

2.2 Airenters a compressor from atmosphere at pressure 102 kPa and temperature 42°C.
Assuming that its density remains constant, determine the specific compression work
required to raise its pressure to 140kPa in a reversible adiabatic process, given an exit
velocity of 50 m/s.

2.3 Steam flows through a turbine at the rate of 7n = 9000kg/h. The rate at which
power is delivered by the turbine is W = 440 hp. The inlet total pressure is po; = 70 bar,
and total temperature is 75, = 420°C. For a reversible and adiabatic process, find the total
pressure and temperature leaving the turbine.

2.4 Water enters a pump as saturated liquid at total pressure of pg; = 0.08 bar and leaves
it at pg2 = 30 bar. The mass flow rate is 7 = 10, 000 kg/h and assuming that the process
takes place reversibly and adiabatically, determine the power required.

2.5 Liquid water at 700 kPa and temperature 20°C flows at velocity 15m/s. Find the
stagnation temperature and stagnation pressure.

2.6 Water at temperature 73 = 20°C flows through a turbine with inlet velocity V; =
3m/s, static pressure p; = 780kPa, and elevation z; = 2m. At the exit the conditions
are Vo = 6m/s, po = 100kPa, and 2, = 1.2m. Find the specific work delivered by the
turbine.

2.7  Air at static pressure 2 bar and static temperature 300°K flows with velocity 60 m/s.
Find total temperature and pressure.

2.8 Air at static temperature 300°K and static pressure 140kPa flows with velocity
60m/s. Evaluate the total temperature and total pressure of air. Repeat the calculation
assuming that the airspeed is 300 m/s.

2.9 Air undergoes an increase of 1.75 kPa in total pressure through a blower. The inlet
total pressure is one atmosphere, and the inlet total temperature is 21°C. Evaluate the exit
total temperature assuming that the process is reversible adiabatic. Evaluate the energy
added to the air per unit mass flow.
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2.10 Air enters a blower from the atmosphere where pressure is 101.3kPa and temper-
ature is 27°C. Its velocity at the inlet is 46 m/s. At the exit the total temperature is 28°C
and the velocity is 123 m/s. Assuming that the flow is reversible and adiabatic, determine
(a) the change in total pressure in millimeters of water and (b) the change in static pressure,
also in millimeters of water.

2.11 The total pressure, static pressure, and the total temperature of air at a certain point
in a flow are 700 kPa, 350 kPa, and 450 K, respectively. Find the velocity at that point.

212 Air has static pressure 2 bar and static temperature 300°K while flowing at speed
1000 m/s. (a) Assuming that air obeys the ideal gas law with constant specific heats,
determine its stagnation temperature and stagnation pressure. (b) Repeat part (a) using the
air tables.

2.13 At a certain location the velocity of air flowing in a duct is 321.5m/s. At that
location the stagnation pressure is 700 kPa and stagnation temperature is 450 K. What is
the static density at this location?

2.14 Air flows in a circular duct of diameter 4 cm at the rate of 0.5kg/s. The flow is
adiabatic with stagnation temperature 288 K. At a certain location the static pressure is
110kPa. Find the velocity at this location.

2.15 Saturated steam enters a nozzle at static pressure 14 bar at velocity 52m/s. It
expands isentropically to pressure 8.2bar. Mass flow rate is n = 0.7kg/s. Find the
exit area, assuming that (a) steam behaves as an ideal gas with v = 1.135, and ¢, =
2731 J/kg K; (b) the end state is calculated with properties obtained from the steam tables.

2.16 A fluid enters a turbine with total temperature of 330 K and total pressure of 700 kPa.
The outlet total pressure is 100 kPa, and assume that the expansion process through the
turbine is isentropic. Evaluate (a) the work per unit mass flow assuming that the fluid is
incompressible with a density 1000 kg/m3, (b) and assuming that the fluid is air.

2.17 Air flows through a turbine that has a total pressure ratio 5 to 1. The total-to-
total efficiency is 80%, and the flow rate is 1.5 kg/s. The desired output power is to
be 250 hp (186.4kW). Determine (a) the inlet total temperature, (b) the outlet total
temperature, (c) the outlet static temperature given an exit velocity 90 m/s. (d) Then draw
the process on a T's diagram and determine the total-to-static efficiency of the turbine.

2.18 A blower has a change in total enthalpy of 6000 J/kg, an inlet total temperature
288 K, and an inlet total pressure 101.3 kPa. Find (a) the exit total temperature assuming
that the working fluid is air, (b) the total pressure ratio across the machine, given a total-to-
total efficiency of 75%.

2.19 A multistage turbine has a total pressure ratio of 2.5 across each of four stages. The
inlet total temperature is Tp; = 1200 K and the total-to-total efficiency of each stage is
0.87. Evaluate the overall total-to-total efficiency of the turbine by assuming that steam is
flowing through it. Steam can be assumed to behave as a perfect gas with v = 1.3. Why is
the overall efficiency higher than the stage efficiency?

2.20 Gases from a combustion chamber enter a gas turbine at a total pressure of 700 kPa
and a total temperature of 1100 K. The total pressure and total temperature at the exit of the
turbine are 140 kPa and 780 K. Assumingthaty = % is used for the mixture of combustion
gases, which has a molecular mass of 28.97 kg /kmol, find the total-to-total efficiency and
the total-to-static efficiency of the turbine, for an exit velocity of 210 m/s.
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2.21  Air enters a compressor from atmosphere at 101.3 kPa, 288 K. It is compressed to
a static pressure of 420 kPa, and at the exit its velocity is 300 m/s. The compressor total-
to-total efficiency is 0.82. (a) Find the exit static temperature by assuming that Vo, = V5.
(b) Find the exit static temperature, without making the assumption that Vs, is equal to Va.

2.22 Liquid water issues at velocity Vi = 201m/s from a bank of five oblique nozzles
shown in Figure 2.14. The nozzles with wall thickness ¢ = 0.2 cm are spaced s = 4cm
apart. The nozzle angle is ai; = 70°. Using the mass and momentum balance, (a) find the
downstream velocity V5, (b) find the pressure increase in the flow, (c) show how to deduce
this result from Eq. 2.36. (d) Assuming that the thickness of the wall is vanishingly small,
what is the change in pressure?

=7 T

AN

Figure 2.14 Nozzles with an oblique discharge.

2.23 Consider the flow shown in Figure 2.14. Prove that the kinetic energy lost in the
flow as it moves to the downstream section is equal to that associated with the transverse
component of the velocity. Neglect the wall thickness of the nozzles.



CHAPTER 3

COMPRESSIBLE FLOW THROUGH
NOZZLES

In this chapter the dynamics and thermodynamics of compressible fluid flow through nozzles
are discussed. First, the isentropic relations are developed and applied to a converging and
a converging—diverging nozzle. After that normal shock relations are given. Then nozzle
flows with friction are presented, various loss coefficients are introduced, and wet steam
behavior is discussed. The last topic of the chapter is the Prandtl-Meyer expansion.

3.1 MACH NUMBER AND THE SPEED OF SOUND

Consider a stationary fluid in which a weak pressure wave travels to the right at velocity
¢, as is shown on the top part of Figure 3.1. Pressure and other thermodynamic properties
change across the wavefront. Ahead of the front in the stagnant fluid velocity V' = 0, and
its pressure has the value p and its density is p. After the front has passed through a given
location, let the velocity there be AV and pressure and density be p + Ap and p + Ap,
respectively. It is advantageous to shift to a frame of reference that moves to the right with
speed c, for in that frame the front is stationary. Hence the balance principles in their steady
form can be applied to a stationary control volume containing the front. In this frame fluid
approaches the control volume with speed ¢ from the right. Mass balance then gives

pcA = (p+ Ap)(c— AV)A (3.1)
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Carrying out the multiplications on the right-hand side, (RHS) and assuming that the
pressure wave is weak so that AV Ap can be neglected reduces this equation to

cAp
P

AV = (3.2)

With the positive x direction pointing to the right, the z component of momentum equation,

p+Ap c P
—— AV —t— V=0
p+aAp p

Stationary frame

-
p+Ap !i p
|
|
c-AV --— i: - C
i1
p+Ap oK Y
il

Moving frame
Figure 3.1 Sketch illustrating a weak pressure wave.

obtained from Eq. (2.29) and applied to this control volume, gives
pcAlc — (¢ — AV)] = (p+ Ap)A — pA

which reduces to
pcAV = Ap
Substituting the expression for AV from Eq. (3.2) into this gives
2_ar
Ap

Since the pressure wave is assumed to be weak, the entire process may be assumed to be
isentropic. In that case the speed of the wave is given by

e
-\3)

This quantity is called the speed of sound because sound waves are weak pressure waves.
For an ideal gas, for which pp™" is constant in an isentropic process, taking logarithms and
differentiating gives

dp dp

lnp — v1Inp = constant y— =0
p P
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from which can be formed the partial derivative

op)g ' p

Speed of sound c for a perfect gas is therefore given by

c=+/YRT = y/vRT/M

For air R = R/M = 8314/28.97 = 287J/(kg - K) and v = 1.4 the speed of sound
at T = 300K is ¢ = 347m/s. For combustion gases with R = 287J/(kg - K) and
T =1200K itis ¢ = 677.6 m/s. For gases of large molecular mass the speed of sound is
small and the opposite is true for gases of low molecular mass. For example, the refrigerant
R134a, or tetrafluoroethane, with a chemical formula CHyFCF3, has a molecular mass of
M = 102.0 kg/kmol. Its ratio of specific heats is v = 1.14. Hence at T = 300K the
speed of sound in R134a is only ¢ = 167 m/s. For helium at the same temperature, speed
of sound is ¢ = 1019 m/s.
Mach number is defined to be the ratio of the local fluid velocity to the local sound speed
M=V
¢
Subsonic flows have M < 1, supersonic ones have M > 1, and for hypersonic flows
M > 1. Flows for which M ~ 1 are called transonic.

3.1.1 Mach number relations

In an ideal gas with constant specific heats the definition of stagnation enthalpy
1o
ho=h+ §V

can be recast as
2

14 (v=1) 0 y—1,.2
To=T+—=T+—2V?=T(1+ 1M
o=t T T TR T3

from which T 1
0 v 2
— =14+ -"—M
T + 2

From the definition of a stagnation state, it follows that

Po T v/(v—1) 0 T 1/(v-1)
2-(7) 2-(7)

These can be written in terms of Mach number as
_1 v/ (v=1)
P _ (1 T M2> (3.4)

and /1)
-1 Y=
Po _ (1 + 7—MQ) (3.5)
p 2.
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These equations are in dimensionless form, and they represent the most economical way to
show functional dependence of variables on the flow velocity.

Equation (3.4) for pressure can be expanded by the binomial theorem' for small values
of Mach number. This leads to

Po Yo 4 Yyt~ Y0 =206 Y g2 1o
=1 M ~M M =14+--M[14+-M"+-.-
p Tty T T3 < Tt )
which, when only the first two terms are retained, can be rearranged as
Po V2 Ip. o
— =1 =V
D * o9RT 2’yRT 1+ 2p
so that 1
Po=p+ §PV2

For incompressible fluids this was taken to be the definition of stagnation pressure. In fact,
it is seen to be approximately valid also for flows of compressible fluids when M < 1. In
practice, this approximation is quite accurate if M < 0.3.

B EXAMPLE 3.1

Atacertain location in a flow of air static pressure has been measured tobe p = 2.4 bar
and stagnation pressure, py = 3 bar. Measurement of the total temperature shows it
to be Ty = 468 K. Find the Mach number and flow rate per unit area.

Solution: Static temperature can be determined from

(y=1)/~ 2.4 1/3.5
T="T, (£> — 468 (—) = 439.1K
Po 3

Then, solving
1y Y=l
—=1+—M
T + 2
for Mach number gives M = 0.574. With Mach number known, velocity can be

determined from V' = M. Speed of sound at this temperature is

c=+/vRT = v1.4-287-439.1 = 420.0m/s

so that the velocity is
V=~Mc=241m/s

Static density is given by

P 240000

RT  287-439.1

Hence the mass flow rate per unit area is

p= = 1.904kg/m?

% = pV =1.904 - 241 = 458.9kg/(s - m?)

IBinomial theorem gives the expansion (1 4 a)® = ¥ 4 na + ”<g!_1) a? + n(n_la)!("72) a®+ -
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3.2 ISENTROPIC FLOW WITH AREA CHANGE

Consider a one-dimensional isentropic gas flow in a converging—diverging nozzle as shown
in Figure 3.2. Since the mass flow rate is

Figure 3.2 A converging—diverging nozzle.

m=pVA
and 7 is constant, taking logarithms and then differentiating yields

dp  dA _dV

?‘F A +-V—:0

Since in adiabatic flow hg is constant, differentiating

1
%:h+§W

gives
dh = -VdVv

Gibbs relation T'ds = dh — dp/p for isentropic flow leads to the relation

1
dh = —dp
p

Equating the last two expressions for enthalpy change gives
1 1
—WW:—@:—<@>@:8@
P P s

Using this to eliminate density from the mass balance and simplifying it gives

9 dav. dA
(M*-1) vV = A (3.6)
From this it is seen that for subsonic flow, with A < 1, an increase in area decreases the
flow velocity. Thus walls of a subsonic diffuser diverge in the downstream direction. For
supersonic flow with M > 1 a decrease in area leads to diffusion. Since a nozzle increases
the velocity of a flow, in a subsonic nozzle flow area decreases and in supersonic flow it
increases in the flow direction.
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In a continuously accelerating flow dV > 0, and Eq. (3.6) shows that at the throat,
where dA = 0, the flow is sonic with M = 1. If the flow continues its acceleration to
a supersonic speed, the area must diverge after the throat. Such a converging—diverging
nozzle, shown in Figure 3.2, is called de Laval nozzle. The assumptions made in arriving
at these results are that the flow is steady and one-dimensional and that it is reversible and
adiabatic. It has not been assumed that the fluid obeys the ideal gas law.

It was shown in the previous chapter that Mach number is a convenient parameter for
expressing the relationship between the static and stagnation properties. By assuming ideal
gas behavior and constant specific heats, the expressions

TO ’7—1 9
— =14 —M
T + 2
1 v/{v=1)
o _ (1 + 7—M2>
P 2

_ 1/(~—-1)
P _ <1 + Lle)
p 2

were obtained. Inverses of these ratios for a gas with v = 1.4 are shown in Figure 3.3

1

0.1}

0.01 ¢

0.001 -
0.1 1

10
Mach number M

Figure 3.3 Pressure, density, and temperature ratios as functions of Mach number.

At sonic condition, denoted by the symbol (*), and for which M = 1, they reduce to

T 2

—=——=0.83

To ¥+ 1 33

p* 2 v/ {v—1)
0

p* 9 1/(v~1)
0

The numerical values correspond to v = 1.4.
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Mass balance for a compressible flow, which obeys the ideal gas model, can be written
as

. pAM Y
= =2/ = pAM.| ——
m=pVA T ~vRT = pA BT

Multiplying and dividing the RHS by stagnation pressure and the square root of stagnation
temperature, and expressing p/pg ratio in terms of temperature ratio T'/ Ty gives

pOAM')/ (TO>1/2—’Y/(’Y—1)

Vep(y — 1To T

m:

T

which can be recast as

m CpTO ,YM v — 1 ) =(y+1)/2(v-1)
- 1+ m
Apo v-1

F = 3.7

2

This is called a flow function. Denoting the area at which the flow would reach M = 1 by
A*, the previous equation at this state gives

my/eTo N1 —(v+1)/2(v-1) 35)
A*pg -1\ 2 .
The ratio of the last two equations is
i B i i uM2 (7+1)/2(’771) (3 9)
A M \y+1 g+1 '

In the usual case area A* is the throat area in a supersonic flow through a converging—
diverging nozzle. But this equation is useful also when there is no location in the actual
flow where M = 1 is reached. Then A* can be regarded as a reference area. In the same
manner in which stagnation properties are reached in a thought experiment in an isentropic
deceleration of the flow to a rest state, so can the area A* in a thought experiment be
taken to be an area at which the sonic condition is reached in a hypothetical extension of a
properly designed and operated variable area duct. If the velocity V* denotes the velocity
at the location where M = 1, it can be used as a reference velocity, and a velocity ratio can

be written as >
V T 2 vy—=1_ .\
— =My —=M|—+—M 3.10

v T <'y+1 +'y+1 > (3.10)

This and the area ratio are shown in Figure 3.4. Maximum flow rate per unit area takes
place at the throat where M = 1. Itis given by Eq. (3.8) as

" 5o ( 5 )(7+1)/2(“/—1)
Ar cp(y —1To \7 1

@3.11)

B EXAMPLE 3.2

Air flows through a circular duct of diameter ) = 10 cm at the rate of v = 1.5 kg/s.
At a certain location, static pressure is p = 120kPa and stagnation pressure is
Ty = 318 K. At this location, find the values for Mach number, velocity, and static
density.
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100
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0.1 1 10

Mach number M

Figure 3.4 Area and velocity ratios as functions of Mach number.

Solution: Since the mass flow rate and diameter of the duct are known, mass balance
m=pVA

can be recast into a form in which the known quantities of area, pressure, and
stagnation temperature appear and Mach number is the only unknown. Thus

o P _ ST [
m—RTM\/’yRTA—pMA T\ T,

m RTO ’Y—l 2y1/2
—y|— =M1+ —M
oA\l 1+ )

Squaring both sides leads to a quadratic equation for M2, which may be simplified
and cast into the standard form:

L \2
2 2 RT,
M4 Mo = (—m> 20
v-1 y—1\p4d/ ~
For the data given this reduces to

M*+5M? —0.828=0

or

and solving it gives M = 0.40. Static temperature is then

Ty 318
T— = = 308.1K
1+ 25t Mm2 1.032

and the velocity and density are

D 120 3
— M+/~RT = 140. P 2 357K
v YRT =140.8m/s P=RT = 087 3081 ~ Lo0Tke/m
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3.2.1 Converging nozzle

A converging nozzle is shown in Figure 3.5. Consider a flow that develops from upstream
stagnation state and in which backpressure py, is controlled by a throttling valve located
downstream of the nozzle. When the valve is closed there is no flow. With a slight opening
of the valve pressure in the nozzle follows the line marked 1 and the flow leaves the nozzle
at exit pressure p, = ppi. The mass flow rate corresponds to condition labeled 1 in the
bottom right part of the figure. As the back pressure is reduced to ppo pressure in the
nozzle drops along the curve 2 and the mass flow rate has increased to a value indicated by
the label 2. A further decrease in the back pressure increases the flow rate until the back
pressure is reduced to the critical value pp, = p* at which point Mach number reaches unity
at the exit plane. Further reduction of the exit pressure has no effect on the flow upstream,
for the disturbances caused by further opening of the valve cannot propagate upstream of
the throat when the velocity there has reached the sonic speed. The flow at this condition is
said to be choked and its mass flow rate can no longer be increased. How the flow adjusts
from this exit pressure to the value of back pressure cannot be analyzed by one-dimensional
methods.

Flow rate through the nozzle can be determined at the choked condition if, in addition
to the stagnation pressure and stagnation temperature, the throat area is known. This is
illustrated in the next example.

7 LILLLLL 111777774

5
=)
<

P LINO —

PIpyl--============

Figure 3.5 Flow through a converging nozzle.

B EXAMPLE 3.3

Air at stagnation temperature Ty = 540K and stagnation pressure py = 200kPa
flows isentropically in a converging nozzle, with exit area A, = 10cm?. (a) If the
flow is choked, what are the exit pressure and the mass flow rate? (b) Assuming that
the backpressure is p, = 160 kPa, find the flow rate.
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Solution: (a). With the flow choked, the pressure ratio is

Pe _ 0.5283

Po

from which the exit pressure is determined to be p, = 106 kPa. The flow rate can be
obtained by first calculating the flow function

- 9 (v+1)/2(v—1)
F* = e
vy—1 (7 + 1)

which has the numerical value

e 4 <i>3—1281
T V04a\24) T

Then the mass flow rate per unit area can be determined to be

. ™ 1.281 - 200,000
mo_ Fpo = 347.9kg/(s - m?)
A JeTo  v/10045 540

so the flow rate is 7 = 0.348kg/s.

(b). The second part of the example asks for the flow rate when back pressure is
p, = 160kPa. Since this pressure is larger than the critical value 106 kPa, the flow
is no longer choked and p, = pp,. The exit Mach number is obtained from

_ v/ (v=1)
B (1+ 25 u)
De 2

Solving for M, gives

9 Do (=17~ 1/2
M= |—— (_> -1 = [5(1.2535 — 1)]/? = 0.574
71\ \Pe

The flow function at this Mach number is

~(r+1)/2(v-1)
YM. Y1,
F. = 1+

: 7—1<+ 2 MJ

and its numerical value is

_ 1.4-0.574
¢ V0.4

The mass flow rate can then be determined from

(1+0.2-0.574%)7° = 1.049

FpoA,  1.049-2 :
= Frode _ 1.049-200000-10 _oer
VeTo V10045 - 540 - 1002




ISENTROPIC FLOW WITH AREA CHANGE 67

3.2.2 Converging—diverging nozzle

Consider the operation of a converging—diverging nozzle in the same manner as was
described for the converging one. The flow rate is adjusted by a regulating valve downstream
of the nozzle. With the valve closed there is no flow and the pressure throughout equals the
stagnation pressure. As the valve is opened slightly, flow is accelerated in the converging
part of the nozzle and its pressure drops. It is then decelerated after the throat with rising
pressure such that the exit plane pressure p. reaches the backpressure py,. This corresponds
to case 1 shown in Figure 3.6. Further opening of the valve drops the backpressure and the
flow rate increases until the valve is so far open that the Mach number has the value one at
the throat and the pressure at the throat is equal to the critical pressure p*. After the throat
the flow diffuses and pressure rises until the exit plane is reached. The pressure variation is
shown as condition 2 in the figure. If the valve is opened further, acoustic waves to signal
what has happened downstream cannot propagate past the throat once the flow speed there
is equal to the sound speed. The flow is now choked and no further adjustment in the mass
flow rate is possible.

Py
Py
v, =

TO
p/p,

1

2

o e e 3

4

-5

Normal shock % 6

7

Figure 3.6 Supersonic nozzle with a shock in the diverging part of the nozzle.

The adjustment to the backpressure is now achieved through a normal shock and diffusion
in the diverging part of the nozzle. This situation is shown as condition 3 in Figure 3.6.
Flows with normal shocks are discussed in the next section. A weak normal shock appears
just downstream of the throat for backpressures slightly lower than that at which the flow
becomes choked, and as the backpressure is further reduced, the position of the shock
moves further downstream until it reaches the exit plane, which is shown as condition 4 in
the figure. After this any decrease in the backpressure cannot cause any change in the exit
plane pressure. Condition 5 corresponds to an, overexpanded flow, since the exit pressure
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has dropped below the backpressure and the adjustment to the backpressure takes place
after the nozzle through a series of oblique shock waves and expansion fans.

There is one value of backpressure for which the flow is isentropic and supersonic all
the way to the exit plane, and at this condition the exit plane pressure reaches the value of
the backpressure. This corresponds to one of the two solutions in the area ratio graph of
Figure 3.4. It is also shown by line 6 in Figure 3.6. For backpressures below this value, the
flow is said to be underexpanded as its pressure remains above the backpressure. The flow
adjusts to the backpressure by expanding through a series of oblique expansion waves and
shock waves as schematically shown by line 7 in the figure.

In flows through turbomachinery blade passages, the flow channel is not symmetric
about its centerline and oblique shocks may appear in the flow channel itself. In aircraft
propulsion the aim is to build lightweight machines with large mass flows. This requires
small blade passages and large velocities, which leads to locally supersonic flow. The next
example illustrates the conditions for isentropic supersonic flow.

B EXAMPLE 34

Air flows isentropically in a converging—diverging nozzle, with a throat of area of
10 cm?, such that at the exit M, = 2. The supply pressure and temperature at the
inlet are 2 bar and 540 K, respectively, and the inlet velocity is negligibly small. (a)
Find the fluid properties at the throat, (b) the exit area, pressure, and temperature,
and (c) the flow rate.

Solution: (a) At the stagnation state density is

_ o 20
T RT,  0.287-540

Since the flow is supersonic downstream of the throat, it is sonic at the throat. Hence

00 = 1.2905kg/m?

p* = 0.5283py = 0.5283 - 2 = 1.056 bar

T = 0.833375 = 0.8333 - 540 = 450.0K

p* = 0.6339 py = 0.6339 - 1.32905 = 0.8180 kg /m?>

V* = /yRT* =+/1.4-287-450.0 = 425.2m/s
(b) At the exit plane, where M, = 2, temperature is

T 540
T. = = e = S00K
1+ WTM{S +0.2-

and pressure and density are

T v/(vy=1) 300 3.5
Pe = Do <—> =2 ( > = 25.56 kPa

To 540
T\ 07D 300 \>® 5
= po [ =& =1.2905 [ =2 ) =0.2069k
Pe = PO <T0) (54()) 0.2969 kg/m

Since the throat area is A* = 10cm?, exit area is obtained by first calculating the
area ratio

A* M,

Ae 1 2 N v — 1 9 (r+1)/2(v-1) 153
yH1 gL

= — =1
5 6875
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from which the exit area is A, = 16.875 cm?.

(¢) The mass flow rate is obtained from

T = p*A*V* = 0.8180 - 0.001 - 425.2 = 0.348 kg /s

Examination of Figure 3.4 shows that for a given area ratio A/A*, the Mach number can
be supersonic or subsonic. The supersonic solution requires a low exit pressure, and this
was examined in the previous example. To find the subsonic solution, Eq. (3.9) needs to be
solved for Mach number when the area ratio is given. This can be carried out with Matlab’s
fzero function. Its syntax is

x=fzero(@(x) F(x),[x1,x2]);

This finds the value of z that satisfies F'(z) = 0, with the zero in the range |21, z2].
To obtain the subsonic solution, in the following Matlab script Mach number is bracketed
to the range [0.05, 1.0]. The variable k is used for ~, and a is the area ratio.

clear all;
a=1.6875; k=1.4;
M = fzero(@(M) farea(M,a,k),[0.05,1.0])

The function farea is defined as

function f = farea(M,a,k)
f = a-(1/M*((2/(&+1))*(1+0.5%(k-1)*M"2)) ~(0.5%(k+1) / (k-1));
%The name of this M-file is farea.

The result is:
M=0.3722
A separate function file is not needed if this is written as:

a=1.6875; k=1.4;
M = fzero(@(M) a-(1/M)*((2/(k+1))
(1+40.5%(k-1)*M"2)) " (0.5*(k+1)/(k-1)),[0.05,1.01)

3.3 NORMAL SHOCKS

In a converging—diverging duct two isentropic solutions can be found for a certain range
of backpressures. If the backpressure is reduced slightly from that corresponding to the
subsonic branch of the flow, a normal shock develops just downstream of the throat where
the flow is now supersonic. It will be seen that the flow after the shock is subsonic and
there is a jump in pressure across the shock. After the shock, the flow diffuses to the
backpressure. A Schlieren photograph of a normal shock is shown in Figure 3.7. The
shock is seen to interact with the boundary layers along the walls, and downstream of the
shock this interaction influences the flow across the entire channel. Still, one-dimensional
analysis gives good results even in this part of the flow.
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Figure 3.7 Interaction between a normal shock and wall boundary layers. (Photograph courtesy
Professor D. Papamoschou.)

The flow through a shock can be analyzed by considering a control volume around the
shock. Since the flow is adiabatic, the energy equation reduces to

1 1
hy + ivf = hy + 5Vy2 (3.12)

where the subscript z denotes the upstream state and subscript y, the downstream state.
Mass balance for this control volume yields

m
and A is the area at the location of the shock. The momentum equation becomes

m(Vy — Vz) = (pz — py)A (3.14)
since the wall friction can be neglected. Pressure increase across the shock is thus
m
Dy — Dz = Z(Vz - Vy) (315)
Making use of the mass balance, this equation takes the form

Pe+ PV = py + pyVy (3.16)

Since the flow is adiabatic, the energy equation, if ideal gas behavior is assumed, may be
written as

1 1
Ty + §V3 = ¢, Ty + 5Vy2 (3.17)
or as
Tox = Toy (3.18)
From the definition of stagnation state the expression
TOJ: Y- 1 2
—=14+—M
T, T3 Ve

is obtained, and a similar equation holds on the downstream side. Hence their ratio yields

Y—1,9
T, 1+—2 M
e 1'+——2—M§
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Making use of the ideal gas relation p = pRT and the mass balance p,V; = p,V}, in this
equation gives

Ly _pype _ Py Yy

e Pz Py Dz Vz
and, using V = Mc to eliminate the velocities, leads to

Ty _ pyMycy _ My [Ty

T, P Mzcy PaMy V Ty
Ty Py 2 M, ’
—= == .S 3.20
T, (pz> M, 320

Combining this with Eq. (3.19) gives
-1
J1+ VTMZQ

Dy
A S = 3.21H)
Pz My ’y—l 2

W14 — My

For an ideal gas p,V,2 = vp, M2, and a similar equation holds on the downstream side.
Substituting these into Eq. (3.16) gives

from which

g

Py _ 1+7Mx2

= 3.22
pe 142 G2

Equating Egs. (3.21) and (3.22) gives

vy—=1,9 y—1, 2
Mz\/1+TMz - My‘/1+TMy

1+ yM? 1+yM2

This is clearly satisfied if M; = My, but in this case nothing interesting happens and the
flow moves through the control volume undisturbed. Squaring both sides yields a quadratic
equation in Mg Solving it gives the result

VM (o) o

This equation relates the upstream and downstream Mach numbers across a shock, and the
expression is plotted in Figure 3.8. It shows that upstream states have M, > 1 and those
downstream have M, < 1. As will be shown below, only in this situation will entropy
increase across the shock, as it must.
Pressure before and after the shock is obtained by substituting Eq. (3.23) into Eq. (3.22),
giving the result
Py _ 2Y 42 71

Pz Y+1 % y+1
This shows that if M, = 1, there is no pressure jump. Defining the fractional increase in
pressure as measure of the strength of the shock, the strength is defined as

(3.24)

Py _q_ 27

o P (M2 —1) (3.25)
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The temperature ratio across a shock is obtained by substituting the value of My2 from
Eqg. (3.23) into Eq. (3.20). The result is

T, [2yMZ—(y-D]2+ (y—1)MZ]

Iy _ .26
T, (7 + 1202 (3:26)
The density ratio is
Py _ Yy _ My (3.27)
Px Vx 2+ (7 - 1)Mz2 .
Since Ty, = Toy, Eq. (3.11) shows that
A*
% =3 (3.28)
z Y

This equation is useful for finding the area at which a shock is located when the upstream
Mach number is known.
The ratio of stagnation pressures across a shock is obtained from

Poy _ Poy Py Pu

(3.29)
Pox Py Px Pox
which takes the form
Poy _ ( (v + 1) M2 )7/7_1 ( y4+1 >1/(7_1) (3.30)
Poz  \2+(v—1)M? 29MZ — (v - 1) '

The changes in properties across the shock are shown in Figure 3.8.

1 100
MY
0.5 50 p,/p,
pO)/p0x
T/T
y X
0.1 ; 10
0.05 : 5 :
. p,/lp,
0.01 1
1 5 10 1 10

5
MX

Figure 3.8 Normal shock relations for v = 1.4.
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3.3.1 Rankine-Hugoniot relations

A relationship between the pressure and density ratio across the shock can be obtained
from the momentum equation

Py =P = PV — PV = peV; (1 - p—””)
Py
which, when solved for upstream velocity, gives
1/2
V2 — |:(py - pm)py} / (3.31)
(Py = Pz)pe
A similar expression is obtained downstream of the shock:
v — {(py - m)pz} 2
= |
(y — 0z)py

The energy equation across the shock is
1o Lo
hy + QVz = hy + §Vy

Since

Y Dz Dy
h, —h, = T -T)= —0u | = -2
y = ¢p(Ts v) 51 <,07, ,Dy)

the energy equation can be written as

Y Pm+ py_pz p_y_ vy &_1_ py_pmp_z

Y=1pz 20y —pc)pz  Y—1py  2(py — pz) py

<7_+10_y>_1
Pz Y= 1pa

from which

= =0l 3.32
Dy 7_H _ Py ( )
Y- 1 Pz
Solving this for the density ratio gives
1
p (1 - 1%) "
Lt - i 3.33
Px g + 1 py ( )
_ + -z
Y- 1 Pz

Equations (3.32) and (3.33) are known as Rankine—Hugoniot relations [62, 40].
The strength of the shock is obtained from the first of the Rankine—Hugoniot equations.

Itis
2y (p_y _ 1)
—1 N
By 1= 1A (3.34)

)
7—1’ Pe
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and similarly for the density ratio

11:%&_Q
Py - 27 _\Pe (3.35)

-1
LG It (p—y—1>
2y Pz

Entropy change across a shock is given by integrating

Tds =du—pdv

across the shock. This gives
T, v T,\ (v, Y
—8y=c,In=L +Rln—+¥ =¢,1 y y
Sy T S =6 nTz+ nvx ¢ n(Tx Vg
The temperature ratio is

Ty _Pyvy _Pyps

T, Pz Vz Dz Py

so that the entropy change can also be written as

%
Sy — 8z = Cyln <&> ('0—‘”)
Pz Py

Substituting the expression for p, / p,, from Eq. (3.34) to this and noting thatc, = R/(y—1),
this equation can be recast as

— Sz 1 -1
() o))
Cy Dz 2y yZs 2y Pz

For weak shocks p, /. is just slightly greater than one. For this reason, let p, /p, = 1+¢,
and on substituting this in the previous equation and expanding in Taylor series for small
value of €, leads to 2

3 4
sy—sz:72~1 Py 4 _ -l Pv 1) 4.
Co 1292 \ p; 82\ pe

3 4
sy_SI:’Y+1 by 4 o+l Py 4 4
R 1292 \ps 8y \ps

Using Eq. (3.25) to express the shock strength in terms of Mach number gives

or

2
Sy — Sz

R

i (M2_1)3_ 27

_ 2 J— 4 PR
CESIL (’Y+1)3(MI 1)+ (3.36)

_2
3

This shows that were M, < 1, entropy would decrease across the shock. Thus shocks
are possible only for M, > 1. Furthermore, entropy increases only slightly across weak
shocks.

2For small values of & series expansion yields In(1 +%€) = ¢ — €2/2 4+ ¢3/3 — €2 /4 + - - - .
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The stagnation pressure change across weak shocks can also be developed by writing
M?=1+¢in

Poy _( (’Y'}‘l)MIQ )’Y/’Y—1< N4 1 )1/(7—1)
Poz  \2+(y— 1M 2yMZ —(v— 1)

and expanding the resulting expression in for small values of €. The result, when written
in terms of M2 — 1, is

Poy 2 9 ’

1 27

Poz 3(v+1)? (y+1)°

This is an important result as it shows that flows through weak shocks experience only a
small loss in stagnation pressure. In fact, Eq. (3.37) may be shown to be accurate to 1% for
M, < 1.2, and for M, = 1.2 it gives pg,/po; = 0.986, or a stagnation pressure drop of
less than 2%. The significance of this result for turbomachinery design is that in transonic

flows with shocks stagnation pressure losses are relatively small.

(M2 —-1)%3+ (M2 -1 ... (3.37)

3.4 INFLUENCE OF FRICTION IN FLOW THROUGH STRAIGHT NOZZLES

There are various ways in which the irreversibilities caused by friction have been taken into
account in studies of nozzle flow. These are discussed in this section. First, a polytropic
efficiency is introduced, and it is then related to a static enthalpy loss coefficient, which,
in turn, is related to a loss of stagnation pressure. Next, nozzle efficiency and the velocity
coefficient are discussed. After this the equations for compressible flow in a variable-area
duct with wall friction are given. In the discussion that follows, the flow is adiabatic and
no work is done. Therefore the stagnation temperature remains constant, and assuming
constant specific heats and ideal gas behavior, the relation
To Y — 1

—=14+1—M7 3.38
T + (3.38)

remains valid for adiabatic flow even when friction is present.

3.4.1 Polytropic efficiency
The concept of polytropic efficiency follows from examining the 7'ds equation
Tds =dh —vdp
for an isentropic process
dhs =vdp (3.39)

and a nonisentropic one. A pelytropic efficiency of an incremental expansion process is

defined as
dh

= dh,
so that dh = nydh,. The process is shown in Figure 2.9a in Chapter 2. Substituting this
into Eq. (3.39) and making use of the ideal gas relation gives

RT
dh =cpdT =npydp = np~p—dp
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From this follows the relation

d_T:np('Y‘l)@

(3.40)
T 04 p

A polytropic index n is now introduced via the equation

n—l_my -1 so that Ty = (”; 1) (%) (3.41)

and Eq. (3.41) can also be written as

v

- 3.42
" A ) (.42

Assuming that 1, and hence also n remain constant along the entire expansion path,
integrating Eq. (3.40) yields

T <;l72 )(n_l)/n

—=|—= (3.43)

T D1
Rewriting this as

n—1 o In TQ/Tl

n Inpa/p1

gives an equation from which the polytropic exponent may be calculated, if the inlet and
exit pressures and temperatures have been determined experimentally. Real gas effects have
been incorporated into the theory by Shultz [69], Mallen and Saville [55], and Huntington
[42].

If the inlet state is a stagnation state, then, writing Eq. (3.43) as

n—-1)/n
To1 (Pm >( 2
“o (P 3.44
T, D2 349

and making use of the ideal gas relation in Eq. (3.44) it follows that

por _ <&)1/(H) o _ (&)"
p2 T P2 p
Finally, using Eq. (3.38) the pressure and density ratios may be written as
n/(n—1) 1/(n—1)
Po1 -1 2) po1 ( y-1 2)
— =1+ —M — =14+ ——M,
D2 ( ' 2 2 P2 2 2

The flow velocity is

_ ~(1/2)
V = M\/7RT = M+/vRTy (1 + %IM2>

which can be used to express the mass flow rate per unit area at the throat in the form

) —(n+1)/2(n—1)
m~/cpTo1 v ( | 2)
- M1+ 1M 3.45

Po1A2 N 2 2 (3.49)
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With the conditions at the inlet fixed, M is the only variable in this equation. Differentiating
with respect to My gives that value of Mach number at the throat for which the maximum
flow rate is achieved. This operation leads to

n+DHv-1)
2(n—1)

~1
1+72 M2 MZ=0

which, when simplified and solved for Mo, gives

n—1

M, =
t ’Y_l

(3.46)

in which the subscript indicates that this is the Mach number at the throat at a choked
condition. Two alternative forms are

Tp
M= |— T My=+/1-(1—-n)n (3.47)
TV e (1) ' P

It is seen that Mach number at the throat is slightly less than one. Making use of this value
of Mach number the critical pressure ratio becomes

/(n—=1)
Dt 2 .
= 3.48
Po1 (n + 1) ( )

This has the same form as the expression for isentropic flow when v replaced by n.
Substituting M, from Eq. (3.47) into Eq. (3.45) gives

: (n+1)/(n-1)
m 2
(A—) = \/277pnp01p01 <n n 1) (3.49)
t max

Velocity at the throat at this condition is

Ty

V 2Cp T01 Tt \/—"—RTt T — 1) \/ nanTt
t

in which the relation Tp, /Tt = (n + 1)/2 was used. Alternatively, velocity at the throat
may be determined from V; = M;+/yR1;.

B EXAMPLE 3.5

Airin areservoir, with temperature 540 K and pressure 200 kPa, flows into a converg-
ing nozzle with a polytropic efficiency 1, = 0.98. The throat area is A, = 10cm?,
(a) If the flow is choked, what are the exit pressure and the mass flow rate? (b) Given
that the backpressure is p, = 160 kPa, find the mass flow rate.

Solution: (a) The polytropic exponent is

_ v B 1.4
T +4(1—ny) 098+ 1.4-0.02

=1.389

and the Mach number can then be determined to be

n—1 1.380 — 1
M. = =4/ = 0.986
i \/7—1 "14-1
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With the flow choked, pressure and temperature at the throat are
9 VW=D 9 1.389/0.389
— =9 - = 106 kP
Pe=Ppox <n+1) 00(1.389+1> é

T - 2751 2-540
T n+1 1.380+1
Mass flux at the throat at choked condition is

ﬁ B ~ L n+1 —(n+1)/2(n—-1)
A, = Po1 RTor 2 )
and, with A; = 10 cm?, flow rate is

m = 0.343kg/s

=452.1K

= 343.42kg/(s - m?)

(b) For p, = 160 kPa the flow is not choked. Hence M, is calculated from

(n—1)/n
2
M, = | —— l(lﬂ> - 1] — 0.5678

Yy—=1 |\ D
and the mass flux at the throat is obtained from
. —(n+1)/2(n—1)
m gl -1, 2
— =p Vi = — M |1+ —M = 281.7k .
A, PtVe = Po1 RTo, t ( + 2 t) g/(s-m*)

Hence the mass flow rate is

= 0.282kg/s
By comparing this to the calculation in Example 3.3 for an isentropic flow, the mass
flow rate is seen to be slightly smaller for the polytropic process. u

Since the sonic state does not appear anywhere in the actual flow, it serves as a reference
state. At the sonic state the static properties may be calculated from the stagnation state
upstream by using the following equations:

T* B 9 p* _( 2 )”/("_1) p* -.< 2 )1/(71”1)
Toy ~v+1 Po1 y+1 po1 v+1

Since Tj; remains constant, the relationship between the static temperature at the sonic
state and its value at the inlet is

T T T 2 -1
Lo _ L o <—> (1+’Y_M12>
Ty Tonn T v+1 2

T 2 vy—-1, ,

PR 4+ —
T y+1 ~v+1 !

or
The pressure ratio is clearly
* n/(n—1)
2 -1
(2 ol M12>
m v+l o+l

* 2 -1 1/(n-1)
L _+:Y__~M12
v+l y+1

and the density ratio is

A
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Figure 3.9 The thermodynamic states for a flow through a nozzle with friction.

3.4.2 Loss coefficients

In addition to the polytropic efficiency, there are other measures of irreversibility in nozzle
flow. The first of these is the loss coefficient for static enthalpy, defined as

_h2_h25_h2_h23

" hog—hy 1
02 — ho §V22

¢

(3.50)

where the end states are as shown in Figure 3.9. The numerator is the change in enthalpy
owing to internal heating.
This may also be written as

:h02_h25_(h02_h2):‘/225_‘/22_ 1

== -1
hog — h2 V22 C%

¢

in which ¢, = V5/Vay is called a velocity coefficient. For given inlet conditions and exit
pressure, the static enthalpy loss coefficient may be related to the polytropic efficiency, as
the next example illustrates.

B EXAMPLE 3.6

Airin areservoir, with temperature 540 K and pressure 200 kPa, flows in a converging
nozzle with a polytropic efficiency n, = 0.98. (a) Find the static enthalpy loss
coefficient, given an exit pressure of p» = 160 kPa. (b) Find the velocity coefficient.
(c) Find the loss in stagnation pressure.

Solution: (a) As in the previous example, the polytropic exponent is

_ v B 1.4
T e +(1—np)  0:98+1.4-0.02

n =1.389
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The exit temperature is therefore

(n=1}/n 1.389/0.389

1

Ty =T, 22 — 540 (160 — 507.29K
Po1 200

and the Mach number at the exit is

2 (To 2 [ 540
My =y —— (22 1) = /= (22 1) —0.5678
2 \/7—1<T2 ) \/0.4 (506.29 )

The exit velocity is therefore
Vo = Ma/vRTy = 0.5678v/1.4 - 287 - 507.3 = 256.34m/s

The temperature 75, is obtained from the expression for isentropic expansion

(k—1)/k 1/3.5
160
Ty = Ty <ﬂ> — 540 <—> = 506.65K

Po1 200

Hence the static enthalpy loss coefficient is

 2,(Ty —Tzs) _ 2-1004.5 - (507.29 — 506.65)

= =0.01
Vi 256.342 0-01976

¢

(b) The velocity coefficient is then

= (.9903

Cy =

1
vV1i+¢

(c) The loss of stagnation pressure is obtained by noting that
Doz Doz Do Tos ¥/ (y=1) Ty, ¥/(v=1) Ty, v/ (v=1)
E‘E?&“(f) (T02> _<Tz>

Ty, \ 7OV 506.65\ >°
— =200 2222} —199.11kP
Poz2 = o < T ) 507.29 a

Hence

The loss in stagnation pressure is Apg = pp1 — po2z = 890 Pa. Because the values
of pp1 and po2 are nearly equal, on subtracting one from the other, a number of
significant figures are lost. If the value of the static enthalpy loss coefficient is
known, the polytropic efficiency may be calculated by reversing the steps in this
example. [

The ratio of stagnation pressures pg2/po1 may also be developed by integrating the Gibbs
equation
Tds =dh —vdp

along the constant py line. This gives

Ty

2s

S3 — 81-=¢cpln
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Similarly, integrating it between states 01 and 02 along the constant hq line leads to

So — 81 = Rln @}—

Po2
Hence Jor=1)

T s Y/INY

This may also be written as

Z%i _ (PE)(’Y—U/’Y _ (pm _Ap0>(7~1)/7 _ <1_ Apo)('v—l)/’Y
15 Po1 Pot Po1

in which Apg = pg1 — po2. Assuming that Apg/po1 < 1 and making use of the binomial
theorem, the following approximation can be used
By _, -1 Apo

T Y Por

which may be also recast as

Ty —Ts v—1Apg

T, Y  Po1

and from which

hy — Ry = RT,Apo _ Apo/pon

-1
Po1 1+72 M22

so that the static enthalpy loss coefficient is

Apo/por
1 v—1
51/22 (1 + TM22>

(=

For small values of exit Mach number this reduces to
¢ = AZDO/ Po1
1z

and this is often called a stagnation pressure loss coefficient.
Another measure of the loss of stagnation pressure is given by

Y. — Po1 — Po2
Po2 — P2
which may be written as
-1
Y, = Po1/Po2
1 — p2/po2

The pressure ratios in this expression are

Po2 T02 v/ (v—1)
P <7{)
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and
Poy

T2s v/ (vy=1)
DPo2 B (T_Ol>

and the definition of static enthalpy loss coefficient, Eq. (3.50), can be rewritten as

T T

e g -

T2 T2
Substituting these into the expression for the stagnation pressure loss coefficient gives it
the form
T02 —v/(y—1)
()] -
Y, = 2

D _ _
L ZQ% v/(v—1)
15

or

For small M, this reduces to Y, = (. The development indicates that the value of ( is
not dependent on Mach number, but the loss of stagnation pressure is, and therefore also
the value of Y},. For this reason ¢ ought to be favored over other measures of irreversiblity
[18]. However, it is worthwhile to be familiar with the various loss coefficients, as they
have been and still are in use in the analysis of turbine nozzles.

3.4.3 Noazzle efficiency

The nozzle efficiency is defined as

 hi—hy
™ by~ has

or, since the stagnation enthalpy remains constant so that h; + V2/2 = hy + V2/2, this
relation can be rewritten as
Vi - V¢
N =S
2(h1 — has)
Similarly, when hy + V2/2 = hos + V2 /2 is used to rewrite the isentropic enthalpy

change in the denominator in terms of kinetic energy differences, nozzle efficiency takes

the alternative form
Ve - V¢

TVE V2

If the fluid enters the nozzle from a large reservoir where V; = 0, nozzle efficiency becomes

N

Vi V8 _

=—2 = =c
G 2(hor — has)  VE

Thus nozzle efficiency can be interpreted as a ratio of the actual increase in kinetic energy
of the flow to that in reversible adiabatic flow. Nozzle efficiency takes into account the
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losses in the entire nozzle, from its inlet to its exit. If the nozzle is a converging—diverging
type and the flow is subsonic, then most of the losses take place in the diverging part in
which the flow diffuses to a low velocity. Nozzle efficiency of a converging nozzle has a
value very close to unity.

For a flow that starts from the stagnation state nozzle efficiency

N = 2Cp(T0 — TQS)

may be further manipulated into the form

-1 MZ T

TR (1_T28>T_01
Io1

Expressing the isentropic temperature ratio Tos/Tp; and Tp, /T3 as

T D2 =0/ Tor v—1.5
Po1 Ts 2

To

and solving the resulting equation for the pressure ratio gives

_1YM2 v/ (v=1)

por { o2+ (v - M)
The following development of an expression for mass flow rate through a converging

nozzle makes use of this equation. In such a nozzle the exit area A is equal to the throat
area A, and the mass flux, which is the mass flow rate per unit area, at the throat is given

by
™m [ v JTn
i — 0. M. -0
A, eV = pe My RTo; T,
or

m Y D =1, ,
= o1y | e Mg/ 1+ M
At por RT01p01 £ 2 t

Substituting the pressure ratio from Eq. (3.52) into this gives

L \/T [1 __ -uym ]”“'” [Mg (1 - 1M4>r/2
Ac "' RTy N (2 + (v — 1)ME) ' 2
(3.53)

In this equation square of Mach number appears and therefore differentiating this equation
with respect to respect to M? and setting the result to zero gives the value of M; for
maximum mass flux at the throat. Carrying out the differentiation gives the equation

(v = 1(1 = )M ~ [(v = 1)3nn — 29 M — 29n = 0

From this the throat Mach number at the condition of maximum mass flux is obtained as

(y— 13— 1290/ [ D BT~y P8 () (D2 | -

M= 20y — 12(1— )

(3.54)
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If the nozzle efficiency is known, then polytropic efficiency can be calculated by equating
the Mach number obtained from Eq. (3.54) to M; = /(n — 1)/(y — 1). For vy = 1.4 and
nn = 0.98 the polytropic exponent becomes n = 1.3868.

Neither the polytropic efficiency nor the overall nozzle efficiency reveals how the length
and shape of the nozzle influence the magnitude of irreversibilities in the flow. These issues
are discussed in the next section.

3.4.4 Combined Fanno flow and area change

Compressible flow with friction in constant-diameter ducts goes by the name Fanno flow,
and for this flow the momentum equation is used to relate pressure and velocity changes
to wall friction. There are two closely related friction factors in use. The Fanning friction

Jactor is defined as
Tw

2PV
The Darcy friction factor is 4 times the Fanning value, f = 4f. Care must be exercised

that the right one is used. The Darcy friction factor can be calculated for turbulent flow
from the Colebrook formula

f=

e/Dy 251 > (3.55)

! _ 21
v °g1°<W+Re\/7

in which ¢ is a root-mean-square (RMS) roughness of the walls and D), is a hydraulic
diameter, equal to D, = 4A/C. Here A is a cross-sectional area and C is a wetted
perimeter.

Since this equation is nonlinear, the value of f for given Re has to be determined
iteratively; that is, an initial guess can be obtained by assuming Reynolds number Re to be
so large that the second term in the parentheses may be neglected. The value of f obtained
from this calculation is then substituted on the RHS. In this way a new value of f is then
found, and it is sufficiency accurate that the iterations can be stopped. In the equations that
follow, the Fanning friction factor is used, but the equations are left in a form in which 4 f
appears explicitly.

]
]
i
e (p+dp)(A-dA)
l
1
i
]
[}

§

Figure 3.10 A converging nozzle with friction.

To analyze the combined effects of friction and area change, equation of continuity and
energy are used together with the momentum equation. The z-component of the momentum
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balance for the control volume, shown in Figure 3.10, gives
pAV(V +dV — V) =pA —pdA — (p+ dp)(A — dA) — 7wCcosadL

Since in the sketch the flow area decreases, the downstream area is written as A — dA. In
order to draw the vector p dA in the correct direction for a converging channel, the area
change must be assumed to have the sign that is consistent with the sketch.

Making use of the relations C' = 4A4/D;, and cosadL = dz in this equation and
neglecting the small term dp d A, reduces it to the form

pVdV = —dp — %ldx

Introduction of the Fanning friction factor puts it into the form

Using the ideal gas relation and definition of Mach number to establish the equality pV2 =
ypM? gives, after each term has been divided by p, the equation

@+7M2dV2 'yM2

. 5 4 f— = (3.56)

To see the effect of area ratio and friction on the flow, this equation is next recast into a
form in which the first two terms are expressed in terms of area ratio and Mach number. The
second term is considered first. Since V? = M?vRT, taking logarithms and differentiating
this gives

dv? dMm?* dT

VZ M T
Next, since in adiabatic flow 7} is constant, taking logarithms and differentiating the
adiabatic relation 7o = T'(1 + f’g—lM 2) gives

v—1

2
T 5 M e
T = P e (3.57)
1+ ——M?
2
and eliminating d7'/T between the last two equations gives
de 1 dM?
1+ 1= 5 Ly

Next, an equation between Mach number, area ratio, and friction factor is obtained by
taking logarithms and differentiating the mass balance 1 = pAV. This gives

A similar operation on the ideal gas relation p = pRT leads to

dp dp dT
@ _o 4
p p T
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Eliminating the term involving density between these two equations gives

dp _ dA 1dVv? +£
p A 2V2 T
Substituting this expression for dp/p into Eq. (3.536) gives

dA 1 )
B A R S

Substituting Eqgs. (3.57) and (3.58) into this yields the form

2 T M2_
av? dT 5 4f%x:0

1— M? dM? dA  yM? _dz
= 4FE .
i - a2 YD (3.59)

from which the qualitative behavior of the flow can be seen. For sufficiently low backpres-
sure this equation shows that in a converging duct with dA/A < 0 both terms on the right
are positive. Hence in a flow that begins from a stagnation state, the Mach number increases
in the flow direction, as was also true in isentropic flow. If the nozzle has a throat with
dA = 0, the right side is still positive and the Mach number must still increase as it passes
through the throat. This means that the Mach number is less than unity at the throat. In a
supersonic nozzle the flow may reach M = 1 in the diverging part, with dA/A > 0, when
the terms on the RHS exactly cancel. Stagnation pressure may be calculated by solving

dpo

Va2 g 79
=——M4f— 3.60
w2 YD, 0

which shows that it drops only because of friction.

In steam turbines high-pressure steam is admitted into the turbine from a steam chest,
to which it has entered via a regulated valve system. From the steam chest it flows first
through a nozzle row arranged as shown in Figure 3.11. After leaving the nozzles it enters
an interblade gap and then a set of rotor blades. Steam enters the nozzles in the axial
direction, and the nozzles turn it into the general direction of the wheel velocity.

Shroud band

Figure 3.11 Steam turbine nozzles and blades. (Adapted from Keenan [47].)

Curvature of the nozzle passage does not introduce new complications into the analysis
of frictional flow except, of course, at the initial stage when the geometry is laid out.
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To illustrate turning of steam into the direction of the turbine wheel rotation, in the next
example, and as shown in Figure 3.12, the nozzle shape is a combination of a circular arc
followed by a straight-line segment. The length of the arc is chosen such that the following
straight line continues tangentially from the arc, and its direction is such that the flow leaves
the nozzle at the correct angle.

Wet steam may be assumed to follow an ideal gas model with adiabatic index from
Zeuner’s equation v = 1.035 4+ 0.1z. But usually as steam expands, it remains in a
supersaturated state, provided the state does not drop too far into the two phase-region.
In such a case isentropic flow is better modeled with an adiabatic index v = 1.3. This
calculation is illustrated in the next example.

B EXAMPLE 3.7

Consider steam flow through the nozzle shown in Figure 3.12. The nozzle is rect-
angular, 3 cm in height, and its width at the inlet is 5.12 cm. The nozzle walls are
made up of a circular arc of radius R = 2.85cm and a straight section at the nozzle
angle o = 75°. At the inlet steam is dry and saturated with pressure p; = 275kPa
and M; = 0.1. The friction factor is assumed to be 4f = 0.032. Find the steam
conditions through the nozzle, assuming that it remains supersaturated as an ideal
gas with v = 1.3.

y (cm)

x (cm)

Figure 3.12 Offset nozzle and its grid.

Solution: Since at the inlet steam is saturated vapor at p; = 275 kPa, its temperature
is T} = 403.7 K and specific volume is v; = 0.6578 m®/kg. The speed of sound at
the inlet is '

¢; = v/ YRT, = V1.3-461.5 - 403.7 = 492.1m/s
Hence the speed at the inlet is V; = ¢;M; = 49.2m/s and the mass flow rate is
Vi4;  49.3-3-5.12
v 0.6578- 1002

In order to check the value of friction factor, the size of the hydraulic diameter is
needed. For the inlet section it is
44 2Lb  2-0.0512-0.03
C L+b  0.0512+0.03

m:

= 0.116kg/s

Dy = =0.0378m
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With steam viscosity 1.322 - 107> kg/(m - s), the Reynolds number comes out to be

ViDpi  49.3-0.0378
vig  0.6578-1.322-10-5

The value of the friction factor from the Colebrook formula is seen to be about
4f = 0.032, for a pipe with relative roughness ¢/ Dy,; = 0.006. If the roughness of
the pipe is known, a more accurate value can be determined and the value clearly
varies along the flow path. This variation is ignored, and the value 4f = 0.032 is
used in the calculations.

To establish cross sections for the flow channel, the circular arc of the left wall
was divided into angular increments of 3°. The increment dy between the last two
points was chosen as an approximate vertical separation for the points along the
straight-line segment. The actual number of points was chosen such that the realized
vertical separation was closest to this value of dy. This procedure resulted in 52
grid points. Next, the circular arc along the right wall was divided into 51 arcs of
equal length, and the corresponding points on the left boundary were recaiculated by
choosing 52 points equally spaced in the value of their y coordinate. The locations
of the corresponding x coordinates were then obtained by interpolation, based on the
previously calculated base points along the left boundary. A sample grid is shown in
Figure 3.12.

It is assumed that the flow properties are uniform on each cross section. This
construction makes the flow path for the first element somewhat longer than the
others, but the change in the flow properties is rather small in this region in which
the cross-sectional area is large. Clearly, there are other ways in which to divide the
flow nozzle into suitable sections.

The governing equations can now be solved, for example, by the Euler method,
in which derivatives are replaced by forward differences. Equation (3.59) in finite-
difference form is

Re =

— 214,300

24 (y=1D)m;)m; (Aiy1—A;)  ymZ2+(y — 1)m;] 4fmi+1_xi

Mi 1=y —

in which m; = M?2.

To check the convergence, in addition to calculating the base with 51 elements, the
number of elements was increased also to 166 and then again successively roughly
doubled to 4642 elements. Accuracy to two significant figures can be obtained with
about 180 grid points. Three significant figures takes over 1000 elements. The results
are shown in Table 3.1, in which M, and p./p; are the exit values for isentropic flow
and M,f and p.f/pl are for a flow with friction.

The areas at the inlet and outlet are

A = 15.360cm A, = 3.976 cm

Hence, with M; = 0.1 at the inlet, the flow function is

m/GTo M, Y1 \OFD/26-D
= _— 1+ L ——M} — 0.2360
' Apo v —1 ( + 2 !

Therefore the flow function at the exit is

A M, -1 —(v+1)/2(v-1)
Fo=F2 209118 = (1 L7 M2>
Ae vy -1
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Table 3.1 Convergence of the solution for steam flow through a nozzle

N M, Mt Pe/P1 Pef/P1
51 0.3914 04018 09104 0.8942
166 0.4156 0.4238 09009 0.8828
340  0.4207 04293 0.8985 0.8798
689 0.4232 0.4321 0.8973 0.8783
1386 04245 04335 0.8967 0.8776
2782 04251 04341 0.8964 0.8772
4642 0.4254 0.4344 0.8962 0.8771

An exit Mach number for isentropic flow is obtained from the expression for the flow
function. This gives M, = 0.4258 and a normalized pressure p./p; = 0.8960. The

numerical solution is seen to agree with this,

Plots of Mach number and normalized pressure for isentropic flow and for frictional
flow are shown in Figure 3.13. Friction is seen to increase the Mach number, as was
also seen in the previous example. Similarly, pressure drops more rapidly in frictional

flow.
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Figure 3.13  Mach numbers and normalized pressure for a steam flow through a nozzle. At the
inlet M1 = 0.1 and p1 = 275 kPa. Dashed lines correspond to frictional flow and solid lines, to
isentropic flow.

The plots in this figure are shown with axial distance on the abscissa, and therefore
they do not show clearly how the variables'change along the streamline through the
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centerline of the nozzle. In particular, in the entrance region the flow moves approx-
imately in the negative y direction and a small increase in « coordinate corresponds
to a large increase in the path length. Hence the Mach number appears to increase
more rapidly than it would have if the path length had been used on the abscissa.

In the foregoing example, length of the nozzle was taken into account explicitly. Since the
irreversibilities are clearly a function of both the surface roughness and the length of the
flow passage, this is an improvement over assigning a polytropic exponent to the process,
or by estimating the nozzle efficiency by past experience. However, an objection may be
raised in the use of friction factors, obtained experimentally from flow of incompressible
fluids in pipes, to compressible flow with large area change. In addition, experiments have
shown that flows through curved nozzles develop secondary flows and these increase the
losses. To account for them it has been suggested that the friction factor might be increased
by some factor, but this procedure is not satisfactory, since it does not take into account the
amount of turning. But lack of better alternative has forced such choices on the designer in
the past. Today, it is possible to carry out computational fluid dynamics CFD simulations
to take account of frictional effects better than the one-dimensional analysis discussed here
yields. Nevertheless, it is still worthwhile to carry out a one-dimensional analysis by hand
and by use of effective software, such as Matlab and EES, for such methods increase
intuition, which is difficult to gain by CFD alone.

3.5 SUPERSATURATION

Consider again a steam flow through a nozzle, with steam dry and saturated at the inlet.
As the steam accelerates through the nozzle, its pressure drops, and, if the process were to
follow a path of thermodynamic equilibrium states, some of the steam would condense into
water droplets. The incipient condensation may begin from crevices along the walls, in
which case it is said to be by heterogeneous nucleation. The word nucleation suggests that
the droplets start by molecular processes at nucleation sites and that incipient nucleation
processes are distinct from those that cause the droplet to grow after it has reached a finite
size. Homogeneous nucleation may begin at dust particles, or ions, carried in the vapor.
At the nucleation sites the intermolecular forces that bind a vapor molecule to a site are
stronger than those between two isolated vapor molecules. Once a molecular cluster is
formed, the surface molecules form a distinct layer on which intermolecular forces on the
liquid side are sufficiently strong to keep the molecules in this layer from evaporating into
the vapor phase. The macroscopic manifestation of the distinct structure of a surface layer
is the surface tension of liquids.

Kinetic theory of gases and liquids shows that there is a distribution of energy among
the molecules, some having higher, some lower energy, than others. The more energetic
molecules in the liquid are more prone to leave the liquid surface, and the molecules in
the vapor phase with lower than average kinetic energy are more likely to condense. In a
droplet of small size the phase boundary is curved, and then net force on a surface molecule
originates from fewer neighbors than when the phase boundary is flat. As a consequence,
the smaller the liquid droplet, the weaker is the binding of the surface molecules. Hence
liquid in small droplets is more volatile, and its vaporization takes place at lower temperature
than it would if the phase boundaries were flat. In other words, at any given temperature
vapor is formed more readily from smaller droplets than from large ones, and they can
evaporate into a saturated vapor. This leads to supersaturation.
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Figure 3.14 Illustration of a condensation shock from Binnie and Woods [8].

Both the evaporation and droplet formation by homogeneous nucleation take place at
conditions not allowed by thermodynamic equilibrium. The practical effect is that steam
flowing through a nozzle will not readily condense by homogeneous nucleation, and its
temperature may drop quite far below the saturation temperature before nucleation takes
place. Under these conditions the vapor is also said to be undercooled or subcooled.

When clean, dry, and saturated steam enters a nozzle, it remains supersaturated to a
lower value of quality than if it were contaminated with foreign particles or ions. For clean
steam the limit of supersaturation is marked by the Wilson line with a quality of 0.96 when
the inlet steam is dry and saturated and has a pressure of 0.1 bar, and the quality drops to
0.95 along the Wilson line as the inlet pressure is increased to 14 bar.

When steam conditions pass the Wilson line, a condensation shock is formed. Binnie
and Woods [8] have measured the pressure change across such a condensation shock, and
their results are shown in Figure 3.14. They also carried out calculations to predict the
pressure rise across the shock. More extensive analysis of condensation shocks has been
carried out by Guha [31].

For purposes of calculation, the Wilson line will be assumed to correspond to constant
quality of x = 0.955. By this measure the Wilson line is reached by isentropic expansion
when enthalpy is 143.5 kJ /kg below the saturation line at pressure of 0.1 bar and 115 kJ /kg
at 14 bar. Supersaturated steam above x = 0.955 can be assumed to behave as an ideal
gas with v = 1.3. Thus dry saturated steam at inlet temperature 77 and pressure p;, when
it expands isentropically to pressure ps, reaches a temperature

(v=1)/~
e (2)
D2

The saturation pressure corresponding to temperature 75 is denoted by pss and the ratio
of the pressure ps to which the expansion takes place and pss is called the degree of
supersaturation. It is given by

s=2 (3.61)
pSS
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The equilibrium temperature 7,, corresponding to pressure ps is larger than 75, and the
amount of undercooling is given by T}, — T5.

B EXAMPLE 3.8

Steam expands from condition p; = 10 bar and T} = 473.2 K isentropically through
a nozzle to pressure p» = 3.60bar. Find the degree of supersaturation and the
amount of undercooling.

Solution: At the inlet condition the entropy of steam is s; = 6.693kJ/(kg - K).
At pressure pe = 3.60 bar and entropy se = 6.693 kJ/(kg - K) the steam quality is
9 = 0.9541. Thus the quality is close to the Wilson line. Assuming that the steam
is supersaturated, its temperature is

(yv=1)/v 3.60 0.3/1.3
=T (2 —a732 (22 — 373.6K
1 10

Saturation pressure corresponding to this temperature is pss = 1.028 bar. Hence the
degree of supersaturation is

_3.600

= —— = 3.502
1.028 350

The saturation temperature corresponding to po = 3.6 bar is T;, = 413.0K, and the
amount of undercooling is 39.4 K.

3.6 PRANDTL-MEYER EXPANSION

3.6.1 Mach waves

Consider a source of small disturbances that moves with supersonic speed to the left,
as shown in Figure 3.15. The source produces spherical acoustic waves that propagate

3VAL
- 4V At LR

Figure 3.15 Illustration of the formation of Mach cone

outward with speed ¢. Next, consider five instances of time, the present time and four



PRANDTL-MEYER EXPANSION 93

preceding instances of time, separated by equal time increments. At time —4At the source
was at location 4V At to the right of the present location and the wavefront which formed
at time —4At has moved a distance 4cAt from the source. Similar reasoning applies to
disturbances formed at —3At¢, —2A¢, and —At. The spherical wavefronts generated at
these times are shown in the figure. Examination of the figure reveals that a region of
influence of the disturbances is inside a cone with cone angle p given by

. c 1
sin p = AR (3.62)

If a fluid moves to the right at speed V' and meets a body at rest, the acoustic signal from
the body is again a spherical wave. It travels upstream with the absolute velocity ¢ — V and
downstream with velocity ¢ + V. In supersonic flow ¢ — V' is negative and the disturbance
cannot influence the flow outside a cone with cone angle u given by Eq. (3.62). This is
called a Mach cone.

In a two-dimensional flow in which the source of small disturbances is a line perpendic-
ular to the plane of the paper, the cone becomes a wedge. The region inside the cone, or
the wedge, is called a zone of action, that outside is a zone of silence. The dividing surface
between these zones is called a Mach wave.

3.6.2 Prandtl-Meyer theory

In a supersonic flow over an exterior corner, shown in Figure 3.16a, as the flow turns, Mach
waves emanating from the sharp corner form an expansion fan. Since the flow is supersonic
and moves to a larger area, its Mach number increases and pressure drops.

Leading Mach line

/ do T2+
7/2—u—-do

V+dV
Figure 3.16 Supersonic expansion of flow over a convex corner.
The expansion fan is located in the region between the Mach waves oriented at angles

sinp; = ¢1/Vi = 1/M; and sinps = co/Va = 1/My, with uo defining the terminal
Mach wave at which V is parallel to the downstream wall. Such an expansion fan is said
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to be centered about the corner. Upstream of the leading Mach wave, pressure is uniform
and the incremental pressure drop across a given Mach wave is the same regardless of
where the flow crosses it. If the expansion fan is considered to consist of a discrete number
of Mach waves, then the wedges between successive Mach waves are regions of constant
thermodynamic properties.

Turning of the flow across one Mach wave is shown in Figure 3.16b. From the law of
sines

V+dV  sin(n/24p)
V. sin(n/2 — p—db)

or
l—f—ﬂ— CoS 14
V  cos pcosdf — sin psin df

The angle df is small and is assumed to increase in the clockwise direction so that the
previous equation can be written as

av COS 14 1

1 = =
+ 1% cosp—dfsinyg 1 —dftanp

Again making use of the smallness of df, this can be expanded by binomial theorem, and
the following equation is obtained:

% =dftanp

Since tan u = ¢/VV? + ¢2 = 1/v/M? — 1, this can be written as

i

df =/ M? - (3.63)

Taking logarithms and differentiating V' = M /v RT gives
dV _dM 14T _1dM®  1dT
Vv M 2T 2M2 2T
The same operations on Ty = T[1 + (v — 1)M?/2)] give

Y1,
ar 7 M

- -1
T 1+’72 M2

Using this to eliminate dT' /T from the previous equation leads to

dv 1 dM?

av _ — i
v 2(1+VTM2> M

This can now be substituted into Eq. (3.63), which is then written as
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Next defining,

M
V(M) = / 2
1 2<1+—7_1M2) M
2
and integrating gives

1 -1
V(M) = /z_fl tan~! h(w 1) —tan'V/MZ—1  (3.64)

so that a flow that expands to a state at which the Mach number is M5 turns by an amount
Oy — 01 = vy — 1y
If the coordinates are aligned such that #; = 0, then
Vo =11 + 02

Two common situations are encountered. First, the wall along which the flow moves
has a convex corner of known magnitude. Hence the angle 6> is known and the angle v
can be determined and then the M, calculated from Eq. (3.64). The second situation is
one in which the flow leaves as a jet from a nozzle to a space in which the backpressure is
known. The next example illustrates the flow over a known convex corner.

B EXAMPLE 3.9

Consider a supersonic air flow over a convex corner with angle 3 = 10°, when the
inflow moves in the direction of #; = 0°. The upstream Mach number is M; = 1.46,
pressure is p; = 575.0kPa, and temperature is 77 = 360.0K. Find the Mach
number, temperature, and pressure after the expansion is complete.

Solution: The solution is obtained by the following Matlab script.

M1=1.46; k=1.4; thetadegz10; theta=thetadeg*pi/180;

mul=atan(1/(sqrt(M1°2-1))})*180/pi;

nul=sqrt ((k+1)/(k-1))*atan(sqrt ((k-1)*(M172-1) /(k+1)))
—atan(sqrt(M1°2-1));

nu2=nul+theta;

M2 = fzero(@(M2) nu2+sqrt((k+1)/(k-1))* ...
atan(sqrt ((k-1)*(M2°2-1)/(k+1)))
-atan(sqrt(M2°2-1)),[1.4,4]);

Result:

mul=43.23 deg

M2=1.800

The angle of the leading Mach wave is u; = 43.23°. After that, the Prandtl-Meyer
function at the inlet is calculated and when converted to degrees, it is v; = 10.73°.
The Prandtl-Meyer function for complete turning is obtained as

vg = 11 + 02 = 10.73° + 10° = 20.73° vy = 0.3618 radian

Since the Prandtl-Meyer function is implicit in the downstream Mach number, its
value is obtained by invoking Matlab’s fzero function. An assumed range of
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The second application of Prandtl-Meyer theory is from Kearton [46], who considers a
steam nozzle such as that shown in Figure 3.17. Assuming isentropic and choked flow, the
Mach number at the throat is unity. Hence the speed of sound and the velocity are equal
and the Mach waves are perpendicular to the flow and therefore aligned with the exit cross
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downstream Mach numbers is given as [1.4, 4], or something similar. The value of
Mach number after the expansion is My = 1.8.

This problem can also be solved by EES software, and for that the syntax is
simpler. Only the following statements are needed:

M1=1.46; k=1.4; theta2=10 [deg]

nul=sqrt ((k+1)/(k-1))*arctan(sqrt ((k-1)*(M1°2-1)/(k+1)))
-arctan(sqrt(M1°2-1));

nu2=nul+theta?2;

nu2=sqrt ((k+1)/(k-1))*arctan(sqrt ((k-1)*(M2"2-1) / (k+1)))
—arctan(sqrt (M272-1));

In this script the two equations that are split into two lines must be placed on a single
line in EES. The second statement is a nonlinear equation for the unknown Ms. Its
root is found by EES’s solution engine. It is possible to give the program an initial
guess if the default value is not satisfactory.

To find the temperature after expansion, stagnation temperature is first determined.
It is obtained from

T -1
=1+ WTMf = 1402 1462 =1426 Tp =513.48K
1
Downstream temperature is calculated from
T -1
01+ M2 sothat Ty =31155K
T 2

Downstream pressure is therefore

T v/(y=-1) 311.55 3.5
P2 = <T2> = 575.0 (360 00) — 346.7kPa
1 .

section of the nozzle. In addition, v(M;) = 0. Next, an angle ¢ is defined to be that

between the leading Mach wave and a Mach wave at any location in the expansion fan.

Hence -
== g
=5 —pt
in which 6 is the angle by which the flow has turned at this location. Since v(M)

v(Mi) + 6, then

s
= M — — t -1
¢ =v( )+2 an ——

or
v+1 1 /71 T 1 -1 1
=4/ ——=tanT' [ ——(M? 1)+ - —tan" VM2 -1 —tan"' ———=

But from a right triangle it is seen that

1
tan "' /M2 — 1 ftan! —— =

M?2-1 2
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so the expression for ¢ reduces to

by L— =tan~t /L (M2 1) (3.65)

S

Figure 3.17 Expansion of steam from a choked nozzle.

The term inside the square root on the RHS of Eq. (3.65) can be replaced by a pressure

ratio, for
_1 v/ (v—1)
Po _ (1 4 WTM2>

and therefore

-1
7__1(]\/[2_>_L @(7 )/771
v+1 y+1 P
Substitution yields
(v—1)/~
— 2
¢/ L — —tan!, | —— <@) ~1 (3.66)
y+1 v+1|\p
Denoting
b=¢ y-1
v+1
if follows that
(v=1)/~
2
tand = ,| —— <@> -1
Y+1{\p
and therefore (1))
1 Y= Y
cos?§ = % <;,pg) (3.67)

This can be reduced further using the identity 2 cos? z = 1 + cos 2x. Hence

p (v—=1)/~
1+4cos(20) = (v+1) (—)
’ Po
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Rewriting this in terms of ¢ gives

v —1 p (v=1)/~
1 2 ——o¢) = n{— 3.68
o2y T10 = (r+1) (2) (.68

which can be solved for the pressure ratio. The final form is
¥/ (v=1)
vy—1
14+cos{2y/——
( v+ 1) i
Po y+1

Streamlines can be calculated by considering a control volume of a wedge-shaped region
with an inlet at the throat and exit coinciding with an arbitrary Mach wave in the expansion
fan. The lateral boundary is taken to be a streamline across which there is no flow. Since
the component of velocity perpendicular to a Mach wave is the local sonic velocity, it is
this component that carries the flow trough the inflow and outflow boundaries of the chosen
control volume. For this reason, the continuity equation reduces to

1 A1 C1 = pAC

Since the nozzle is rectangular, A = rb, in which b is the nozzle height and r is the
distance from the corner to the chosen streamline. At the throat the areais A; = r1b, and
r1 1s the distance from the corner to the same streamline. Hence

r_pma_p [T
] pc p VT

In isentropic flow T/T, = (p/p1)"~1/7, and this equation reduces to

T <£>(’Y~1)/2’Y _ (£>—(’1+1)/2’Y
r1 P\ P1

From Eq. (3.67) the expression
1/2 (v=1)/2v
1
cosd = <i> <£> (3.69)
2 Po

is obtained. With sonic conditions at station 1, the pressure ratio there is

Po _ <7+1)’Y/(’Y—1) w that (74—1)1/2 _ (@>(71)/27
1 o2 2 ”m

and Eq. (3.69) can be recast as

2v/(y-1)
p [v—1
— = |cos -
D1 [ ( v+ 1¢>}

Hence the distance from the corner to the streamline bounding the control volume is

- ! (3.70)

71 ( v — 1 >('Y+1)/('Y—1)

CoS [/ ——
y+1
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Some streamlines have been plotted to Figure 3.17. Now, letting 71 denote the width of
the nozzle at the throat, the corresponding streamline is seen to leave the nozzle before its
end. If the nozzle shape were to coincide with the contour of this streamline, the Prandtl-
Meyer flow would be an exact solution of the equations for inviscid compressible flow
through a nozzle of this shape. Since the nozzle wall is straight, the solution presented is
an approximation to the actual situation.

Equation (3.65) may be recast into the form

vy—1 v—1
t —) =/ —— /M2 -1
an(\/'y+1¢) v+1

and since 1/4/M? — 1 = tan u, the following relation is obtained

v—1 v—1
t = t 3.71
an i \/7+1c0 \/7+1¢ (3.71)

For a given exit pressure lower than the critical one, the angle ¢ can be found from
either Eq. (3.66) or from Eq. (3.68), and Eq. (3.71) is then used to determine the angle of
the terminal Mach wave. After that, the amount of turning of the flow is obtained from

T
02 =0 — 5 t e

The flow direction is given by as = a3 — 6.

B EXAMPLE 3.10

Consider steam flow from a low-pressure nozzle such as shown in Figure 3.17, with
nozzle angle oo = 65°. At the inlet of the nozzle steam is saturated vapor at pressure
po = 20kPa. Steam exhausts into the interblade space, where pressure is 8 kPa.
Find the angle 6 by which the flow turns on leaving the nozzle, the far downstream
velocity, and its direction.

Solution: Since at the inlet steam is saturated, its adiabatic index, according to
Zeuner’s equation, is v = 1.135. Denoting station 1 to be the throat and station 2 the
exit where the backpressure is po = 8kPa, the ratio of backpressure to stagnation
pressure is ps /po = 8/20 = 0.4, and therefore the flow is choked. The Mach number
after the expansion is

(v=1)/v

2

My =, | —— K@) - 1] = 1.306
' ¥y—1|\p2

With this value of Mach number the temperature at the exit is

D (v=1)/~ 8 0.135/1.135
T, =Ty (-2) = 333.2 (-) = 298.8K
Do 20

The sonic speed at the exit is

ca = /nRT, = \/1.135 - 8314 - 298.8/18 = 395.8 m/s
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Hence V5 = Mycp = 516.9m/s. Angle ¢ can be calculated using Eq. (3.65), with
the result that ¢ = 47.44°. The Mach angle at the exit is

pp = sin~ ! (i) mtanl L _ 4997
i M, MF-1
Hence the amount of turning is
By = bo + p1g — % = 47.44° + 49.97° — 90° = 7.41°
The flow angle after turning is complete is
Oy = (1 — 92 =65 — 7.41° = 57.59°

The extent of the jet after it has reached the backpressure is

r 1
R =1.412

r P (v+1)/(v—1)
CoS 4| ——
< y+1 )

3.7 FLOW LEAVING A TURBINE NOZZLE

There is a second way to calculate the exit flow that does not rely on the Prandtl-Meyer
theory. It is illustrated next for a flow from the steam nozzle shown in Figure 3.18. The
mass balance equation gives the following relationship

Figure 3.18 Steam nozzle analysis by mass balance.

. AIVI A2V2
m = =

0 V2
in which the areas can be related to angles by the geometric relations
Ly Ly
cosqy = — cosqp = —
s S

Since A;/As = L1/ Lo, the jet angle o5 at the exit can be calculated from

Y2 CcOS (1 (3.72)
2V1

Ccos (g =
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B EXAMPLE 3.11

Consider the steam flow from a low-pressure nozzle as shown in Figure 3.17, with
nozzle angle o = 65°. At the inlet of the nozzle steam is saturated vapor with
~ = 1.135, at pressure pg = 20 kPa. Steam exhausts to the interblade space, where
pressure is 8 kPa. Using the continuity equation, find the angle 8 by which the flow
turns on leaving the nozzle, the far downstream velocity, and its direction .

Solution: The data given are the same as in the previous example, in which the values
T, = 298.8K and V5 = 516.9m/s were determined. Stagnation-specific volume,
obtained from the steam tables, is v = 7.66 m3/kg. At the throat M; = 1, so that

1/(v-1) 1/0.135
1 2.135
V1 = Vo <—7; > = 7.66 (———2 ) =12.43m3/ke

9T, 23322
T — = =312.1K
LTy 1 T 1135+ 1

Hence

1.135- 8314 - 312.1
Vl = \/’)/RTl = 18 = 404.5 m/s

Far downstream the specific volume is

RT, 83142988

= =17.25m%k
P 3.8 7.25m°/kg

Vo =

and the velocity was determined earlier to be Vo = 516.9m/s. Hence

V1’02 oS i — 404.5-17.25
Vauy 17 516.9 - 12.43

cosayp = cos(65°) = 0.460
and the flow angle is cvo = 62.7°, and the flow turns by only § = 2.3°. This is 5°
less than what is obtained by the Prandtl-Meyer theory.
n
There is a limit on the extent to which the flow can turn. This limit is reached when the
axial component of velocity of the jet reaches sonic speed. The condition may be analyzed

by writing the mass flow rate in terms of the flow function F'(M). This results in the
equations
my/cpTo = F(M1)Aipor = F(My)Agpga
so that
Aipoi
Azpoz

F(Mz) = F(My)
For a nozzle of constant height

Ay Li scosa; cosag

As Lo 8 COS (g coS g

The axial component of velocity at sonic speed can be written as

Viz = Vacosag = M/ YRI5 cos g = v/ YRT3

so that cos ag = 1/Mo.
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Substituting and simplifying gives

—(v+1)/2(v-1)

Y vy—1. .9 Pot
1+ M. = F(M —
y—1 ( 2 2) ( 1)Cosalpoz

from which M3 may be determined.

B EXAMPLE 3.12

Steam with v = 1.3 flows from a low-pressure nozzle shown in Figure 3.17, with
nozzle angle o = 65°. The throat at the exit plane is choked. Find the limiting Mach
number and the value of «y for the flow.

Solution: With flow choked at the throat, AM/; = 1, and

—(v+1)/2(v-1)
1 1.3
P = 7” - <ll;—) = =2 (1+0.5-0.3)"2/5 = 1.389

V0.3

Since cos aa = 1/Ms, assuming no losses so that pg2 = po1, the relation

F(My3) cos aapoe = F™* cos a1 pg1

can be written as

-1 —(y+1)/2(v-1)
77_1 (1—}—72 M22> = F*cos oy
With «; = 65°, solving this for M2 gives
2 1 2(y=1)/(v+1)
M2 = 7 Doz —1| =2.9314
v—1 v7v— 1 F*cosay por

so that M = 1.712. Therefore

1 1
Qg =cos ! <—M ) =cos " <——1 712) = 54.26°
2 .

This is an 8.4° greater amount of turning than was calculated in the previous example.
]

It has been mentioned that a flow for which Prandtl-Meyer analysis is valid requires a
nozzle in the shape of a streamline, which together with that along the opposite wall, define
the flow stream. If this is not the case, the flow is more complicated, consisting of expansion
waves that reflect from the adjacent nozzle wall and the jet boundary of the flow that leaves
the nozzle. An alternating set of oblique shocks and expansions fans form in the jet as it
moves downstream.

The turbine nozzle may also be designed such that the throat is upstream of the exit plane,
in which case the flow may become supersonic at the exit plane. Then, in an underexpanded
expansion, the flow adjusts to the backpressure through a set of shocks emanating from the
trailing edge. The stagnation pressure losses are small if the Mach number is just slightly
supersonic, as Eq. (3.37) shows. Such complex flows are beyond the scope of the present
text.
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EXERCISES

3.1 Conditions in an air reservoir are 680kPa and 560 K. From there the air flows
isentropically though a convergent nozzle to a backpressure of 101.3 kPa. Find the velocity
at the exit plane of the nozzle.

3.2 Airflowsin aconverging duct. At a certain location, where the areais A; = 6.5 cm?,
pressure is p; = 140kPa and Mach number is AM; = 0.6. The mass flow rate is h =
0.25kg/s. (a) Find the stagnation temperature. (b) If the flow is choked, what is the size
of the throat area? (c) Give the percent reduction in area from station 1 to the throat. (d)
Find the pressure at the throat.

3.3  Airflowsinaconvergent nozzle. At a certain location, where the areais A; = 5cm?,
pressure is p; = 240 kPa and temperature is 77 = 360 K. Mach number at this location is
M, = 0.4. Find the mass flow rate.

3.4 The area of a throat in a circular nozzle is A, = 1c¢m?. For a choked flow find the
diameter where M; = 0.5. Determine the Mach number value at a location where the
diameter is Dy = 1.941 cm. Assume the flow to be isentropic and v = 1.4.

3.5 In alocation in a circular nozzle where the area is A; = 4, Mach number has the
value M, = 0.2. Find the diameter at a location where M = 0.6.

3.6 Air flows through a circular duct 15 cm in diameter with a flow rate 2.25 kg /s. The
total temperature and static pressure at a certain location in the duct are 30°C and 106 kPa,
respectively. Evaluate (a) the flow velocity, (b) the static temperature, (c) the total pressure,
and (d) the density at this location.

3.7 Conditions in an air reservoir are 380kPa and 460 K. From there the air flows
through a convergent nozzle to a backpressure of 101.3 kPa. The polytropic efficiency of
the nozzle is n, = 0.98. Find, (a) exit plane pressure, (b) exit plane temperature, and (c)
the velocity at the exit plane of the nozzle.

3.8 Airissues from areservoir at conditions 260 kPa and 540 K into a converging nozzle.
The nozzle efficiency is estimated to be 7y = 0.986. The backpressure is p;, = 101.3 kPa.
Find, (a) exit Mach number, (b) exit plane temperature, (c) exit plane pressure, and (d) exit
velocity.

3.9 At the inlet to a nozzle the conditions are M; = 0.3, pg; = 320kPa, and Tp; =
430 K. The flow is irreversible with polytropic exponent n = 1.396. Show that

T_O% _ <89£)’Y/(’7—1) <££>(n—1)/n
13 D1 D2

Find the Mach number at a location where py; = 210kPa.

3.10 Flow from areservoir with pg; = 260 kPa and 7y, = 530 K flows through a nozzle.
It is estimated that the static enthalpy loss coefficient is { = 0.020. The exit pressure is
p2 = 180kPa. (a) Find the exit Mach number. (b) Find the polytropic efficiency of the
nozzle.

3.11 A two-dimensional nozzle has a shape

4 z(z—-1)
V=35 312
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The nozzle stretches from 0 < x/a < 2(v/2 — 1). The throat is at 7;/a = 2(v/2 — 1). The
scale factor a is chosen such that the half-width of the nozzle at x = 0 is 4a/5. Assume
that 4f = 0.02 and the inlet Mach number is A/; = 0.5. Calculate and plot p/p; as a
function of z. Calculate the Mach number along the nozzle and graph it on the same plot.

3.12 Steam enters a nozzle from a steam chest at saturated vapor state at pressure
po = 0.8bar. It expands isentropically through a steam nozzle. Find the degree of
supersaturation when it crosses the Wilson line at z = 0.96.

3.13 Consider a supersonic flow over a convex corner with angle §; = 5°, when the
inflow moves in the direction of §; = 0°. The upstream Mach number is M; = 1.1,
pressure is p; = 130kPa, and T3 = 310K. Find, (a) Mach number, (b) temperature, and
(c) pressure after the expansion is complete.

3.14 Consider the steam flow from a low-pressure nozzle at an angle o« = 65°. At the
inlet of the nozzle steam is saturated vapor at pressure po = 18 kPa. Steam exhausts into
the interblade space, where pressure is 7 kPa. Find the angle 6 by which the flow turns on
leaving the nozzle, the far downstream velocity, and its direction.

3.15 Consider the steam flow from a low-pressure nozzle at angle o = 65°. At the inlet
of the nozzle steam is saturated vapor at pressure py = 18kPa. Steam exhausts to the
interblade space, where pressure is 7 kPa. Using the continuity equation, find the angle 8
by which the flow turns on leaving the nozzle, the far downstream velocity, and its direction
Q9.



CHAPTER 4

PRINCIPLES OF TURBOMACHINE
ANALYSIS

In this chapter the fundamental equation for turbomachinery analysis is developed from the
moment of momentum balance. It gives an expression for the shaft torque in terms of the
difference in the rate at which angular momentum of the working fluid leaves and enters a
properly chosen control volume. Since power delivered (or absorbed) by a turbomachine
is a product of torque and angular speed, a relationship between the flow rates of angular
momentum at the inlet and exit, the rotational speed of the shaft, and power is obtained.
The equation derived this way is called the Euler equation of turbomachinery. It is the
most important equation in the study of this subject.

In earlier chapters power transferred to, or from, a turbomachine was expressed as the
product of mass flow rate and a change in stagnation enthalpy. By equating the expression
for work from the Euler equation of turbomachinery to the change in stagnation enthalpy,
concepts from fluid mechanics become linked to thermodynamics. This link is central to
understanding the performance of turbomachines.

In applying the momentum of momentum balance to a stationary control volume angular
momentum is usually expressed in terms of absolute velocity of the filuid. In the analysis
of the rotating blades velocity relative to the rotor is also needed. From it, together with
the absolute velocity and the blade velocity, one can construct a velocity triangle. These
velocity triangles are discussed first in this chapter. They are followed by the development
of the Euler equation for turbomachinery. After that the work delivered, or absorbed,
is recast in an alternative form and a concept of degree of reaction is developed. One
measure of the effectiveness at which work transfer takes place in a turbomachine is called
utilization. Although this concept is not extensively used today, it is introduced and its
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relationship to energy transfer and reaction is developed. The final section is on the theory
of scaling and similitude, both of which are useful in determining the performance of one
turbomachine from the known performance of a similar one.

4.1 VELOCITY TRIANGLES

The velocity vector of a fluid particle that flows through a turbomachine is most conveniently
expressed by its components in cylindrical coordinates. The vector sum of radial and axial
components

Vi = Veer + Ve, 4.1

is called the meridional velocity, for it lies on the meridional plane, which is a radial plane
containing the axis of rotation. The various velocity components are shown in Figure 4.1.

Meriodionai plane

v \
r

Figure 4.1 Meridional and tangential components of absolute velocity.

For axial machines the radial component of velocity is small and can be ignored, making
the meridional velocity equal to the axial velocity. Similarly, at the outlet of a centrifugal
compressor, or a radial pump, the axial velocity vanishes and the meridional velocity then
equals the radial velocity.

The absolute velocity V is the sum of the relative velocity W and the velocity of the
frame, or blade velocity U. They are related by the vector equation

V=W+U 4.2

By the usual construction this gives a velocity triangle, shown in Figure 4.2.

The angle that the absolute velocity makes with the meridional direction is denoted by
«, and the angle that the relative velocity makes with this direction is 3. These are called
the absolute and relative flow angles.

From Eq. (4.2) and Figure 4.2 it is seen that the meridional components yield

Vin =W, 4.3)
and the tangential components are given by

V=W, +U (4.4)
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Figure 4.2 A typical velocity triangle.

These velocities are related to the meridional velocity by
Vu =Vntana W, =W, tanp 4.5)

It is convenient to denote the tangential component by the subscript u and to take it positive
when it is in the direction of the blade motion. Tangential components are associated with
the blade forces; meridional components, with the rate at which fluid flows through the
machine.

B EXAMPLE 4.1

Consider the velocity diagram shown in Figure 4.3. The magnitude of the absolute
velocity is V7 = 240m/s, and the flow angle is a; = —20°. The blade speed is
U = 300 m/s. Find the magnitude of the relative velocity and its flow angle.

Solution: The axial velocity is given by
Vz1 = Vi cosag = 240 cos(—20°) = 225.5m/s

and W1 = V1. The tangential components of the absolute and relative velocities
are calculated as

Vul = V1 sin o] = 240 sin(—20°) = —82.1 III/S
Wul = Vul - U = —82.1 — 300 = —382.1 m/s

Hence the magnitude of the relative velocity is

Wy = /W2 + W2 =/225.52 + 382.22 = 443.7m/s

and the flow angle of the relative velocity becomes
1 (W1 —382.1
=tan"! ) =tan"!| ———— | = —59.4°
Ao = tan (WI1 > tan ( 225.5)
|

The foregoing example illustrates the sign convention for angles. Positive angles are
measured from the meridional direction, and they increase in counterclockwise direction.
Negative angles become more negative in the clockwise direction. Strict adherence to this
convention will be followed, and this makes computer calculations easy to implement.
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ul

B 2

Figure 4.3 A velocity diagram illustrating negative flow angles.

4.2 MOMENT OF MOMENTUM BALANCE

Consider a flow through a pump, shown in the schematic diagram in Figure 4.4. To apply
the moment of momentum equation, a control volume is chosen to include both the pump
impeller and the fluid. The velocity vector is written in cylindrical coordinates as

V= Vre'r + ‘/989 + Ve, (46)

in terms of the unit vectors e,, eg, and e,. A working equation for the angular momentum
balance for a uniform steady flow is

Th(l‘g X Vy—r1; X Vl) =Ty + Tt 4.7

On the right side, T, is the torque the shaft exerts on the impeller and T is a contribution
from fluid pressure and viscous stresses. The z component of this equation is obtained by
taking its scalar product with e,. Thus

me,-(rgxVa—ri xVy)=e, T, =T

Owing to symmetry about the axis of rotation, pressure forces do not contribute to the axial
torque, as they have radial and axial components only. Viscous forces act in the direction
opposite to rotation and increase the required torque in a shaft of a compressor and decrease
it in a turbine. These are neglected, or T  is taken to be the net torque after they have been
subtracted, or added. Rotation is taken to be clockwise when the pump is viewed in the flow
direction. Hence the rotation vector is 2 = Qe,. In order for the shaft to rotate the pump
impeller in this direction, torque must be given by T, = e, T, and thuse, - Ty, =T



ENERGY TRANSFER IN TURBOMACHINES 109

Figure 4.4 A schematic of a pump and a flow through it.

In cylindrical coordinates the radius vector is r = re, + ze., so that

e € €
rxV=|r 0

z | = —e.zVp —eg(rV, — z2V,) + e,rVy
Vi Vo V2

and
e, - (rxV)=rV

Hence the angular momentum equation becomes

T = m(TQVQQ — ?"1V91)

4.3 ENERGY TRANSFER IN TURBOMACHINES

The power delivered fo a turbomachine is given by
W=T-Q=TQ=mQroVos — V1)

The blade speeds are Uy = 1€, and Us = 752, and r; and 75 are the mean radii at the
inlet and outlet. Dividing this equation by the mass flow rate gives an expression for the
work done per unit mass,
' w = UaVy — U1 Vi (4.8)

This is the Euler equation for turbomachinery.

As was already done in Figure 4.2, it is common to relabel the various terms and call the
axial component of velocity V, and denote the component of the velocity in the direction
of the blade motion as V,,. In this notation there is no need to keep track of whether the
rotor moves in clockwise or counterclockwise direction. The sense of rotation, of course,
depends also on whether the rotor is viewed from the upstream or downstream direction.
With these changes in notation, the Euler equation for turbomachinery may be written as

w = UZVUQ'_ U1 Vul (49)
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This gives the work done by the shaft on the rotor, and it is thus applicable to a compressor
and a pump. For turbines, however, power is delivered by the machine, and the sign of
the work would need to be changed. Since it is generally known whether the machine is
power-absorbing or power-producing, work transfer will be taken as positive, and the Euler
turbine equation is written as

w = UQVuQ — U3Vu3 (4.10)

For turbines, since a stage consists of a stator followed by a rotor, the inlet to the stator is
designated as location 1, the inlet to the rotor is location 2, and the exit from the rotor is
location 3.

For an axial turbomachine U; = U, = U. Work delivered by a stage is then given by

w = U(Vug — Vug)
Its calculation is illustrated in the next example.

B EXAMPLE 4.2

The shaft of small turbine turns at 20000 rpm, and the blade speed is U = 250 m/s.
The axial velocity leaving the stator is Vo = 175m/s. The angle at which the
absolute velocity leaves the stator blades is ao = 67°, the flow angle of the relative
velocity leaving the rotor is 83 = —60°, and the absolute velocity leaves the rotor at
the angle a3 = —20°. These are shown in Figure 4.5. Find (a) the mean radius of the
blades, (b) the angle of the relative velocity entering the rotor, (c) the magnitude of
the axial velocity leaving the rotor, (d) the magnitude of the absolute velocity leaving
the stator, and (e) the specific work delivered by the stage.

U
Rotor a,= -20°
V3
B3= -60° U
Stator w.

Figure 4.5 An axial turbine stage.

Solution: (a) The mean radius of the rotor is

U 250 - 60
r=—

= =0 g4
Q20,000 27 94cm

With the axial velocity and flow angle known the tangential component of the velocity
is
Vg = Vo tan s = 175 tan(67°) = 412.3m/s

and therefore

Wy = Vag — U = 412.3 — 250 = 162.3m/s
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Since Wy = Vo

W .
B2 = tan™" (W 2) = tan ™! (1—16-3?3) = 42.8°
2

At the exit of the rotor

Vs =Wy +U Vestanas = Vg tan 63 +U

so that

U 250
Vz3 i

= = = 182.7
tanag —tan B3  tan(—20°) — tan{—60°) m/s
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(b) The absolute velocity is obtained by first calculating the tangential component

Vuz = Vygtan ag = 182.7tan(—20°) = —66.5m/s

and then

Vs =/VE + VG = V1827 4 66.52 = 194.4m/s

(c) Specific work done is

w = U(Vye — Viz) = 250(412.3 + 66.5) = 119.7kJ /kg

As the flow expands through the turbine, its density decreases, and to accommodate
this, the product of axial velocity and cross-sectional area needs to increase. Often
axial machines are designed to keep the axial velocity constant. In this example
the axial velocity increases by a small amount, and the cross-sectional area must be

adjusted to account for the increase in velocity and a decrease in density.

Work delivered by an axial turbine with constant axial velocity across a stage can be written

as

w=U(Vyo — Viu3) = UV, (tan as — tan ag)

Dividing by U? gives

w _Ye (tan e — ¢ )
— = = —tano
72U 2 3
Defining the blade-loading coefficient and flow coefficient as
_w Ve
V= =7

gives a nondimensional version of this equation:

1 = P(tanag — tan ag)

.11

The blade loading coefficient is an appropriate term for v, since it is the blade force times
the blade velocity that gives the work. Also, the flow coefficient ¢ is a ratio of the axial
velocity to blade velocity and is thus a measure of the flow rate through the machine. Much
use will be made of these nondimensional parameters, for they are independent of the size
of machine, and their values for best designs have been established over many years of

practice.

As another example of the general use of the Euler equation for turbomachinery, analysis

of a centrifugal pump is considered next.
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B EXAMPLE 4.3

Water at 20°C leaves a pump impeller with an absolute velocity of 13.94m/s at
the angle 72.1°. The blade speed at the exit is 25.17m/s, and the shaft speed is
3450rpm. The absolute velocity is axial at the inlet. The flow rate is 18.0L/s.
Find (a) the magnitude of the relative velocity and its flow angle (2, (b) the power
required, and (c) the outlet blade radius and the blade height assuming that the open
area at the periphery is 93% of the total area. The pump is shown in Figure 4.6.

U,=2517 m/s
V,=1394mis A
V,=13.26 m/s
o, =72.1° ‘
V,=4.29 m/s
Was
B,=-70.2°
w,=-11.91m/s
W, = 12.65 m/s

Figure 4.6 Pump exit and its velocity diagram.

Solution: (a) The tangential component of the absolute velocity at the exit is given
by
Ve = Vasinas = 13.94 sin(72.1°) = 13.26 m/s

and its meridional component, which is radial here, is
Vig = Vocosas = 13.94 cos(72.1°) =4.29m/s
The tangential component of the relative velocity is determined as
Wya = Vo —U =13.26 —25.17 = —11.91m/s

Since the radial component of the relative velocity is W, = Vo = 4.29m/s, the
angle of the relative flow can be calculated as

W 4, [ —11.91
B2 = tan™? (W—2> = tan~* ( 1 299 ) = -70.2°
2 .

The magnitude of the relative velocity is then

Wy = /W2 + W2, = v/4.29% + 11.912 = 12.65m/s

A velocity triangle can now be completed. The flow angle of the relative velocity is
approximately equal to the blade angle ', and in this pump the impeller blades curve
backward; that is, they are curved in the direction opposite to blade rotation.
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(b) Since the flow is axial at the inlet, V,,; = 0, and the work done is
w = UyV,e = 25.17 - 13.26 = 333.88 J /kg
With density of water at 20°C equal to p = 998 kg/m?, the mass flow rate is
m = pQ = 998 - 0.018 = 17.964 kg /s

and the power required is W = rhw = 17.964 - 333.88 = 6.0kW.
(¢) The outlet radius is

U, 25.17 - 30
== =— =697
270 T 3450 .« o
With the flow rate Q = 0.018 m3/ s, the outlet area is
Q 0.018 9
Ay = = —— =420
2TV, 429 .
The blade height is then
A 42.0
by 2 =1.03cm

T 093277  0093-27.6.97

The blade-loading coefficient and flow coefficient are defined in terms of the tip speed
of the blade at the exit:

w  333.88 Vo 429
=W 29990 527 =2 = 22— 0.170
V=702 = a5are =T, ~mar

4.3.1 Trothalpy and specific work in terms of velocities

Since no work is done in the stator, total enthalpy remains constant across it. In this section
an analogous quantity to the total enthalpy is developed for the rotor. Specifically, consider
a mixed-flow compressor in which the meridional velocity at the inlet is not completely
axial and at the exit from the blades not completely radial. The work done by the rotor
blades is

w = hoz — hor = U2Vu2 — Ur1Vix 4.12)

When this equation is written as
hor = Ur1Vu1 = hoz — U2V

the quantity
I=hy—-UV,

1s seen to be constant across the impeller. It can also be written as
Lo Lo 1o
I:h+§V —UVu:h+§Vm+§Vu -UV,
Adding and subtracting U? /2 to complete the square gives

1 1 1 1 1 1
I=h+V:4+(V,-UP-U2=h+-V24+-W?_- 20?2
+2m+2( ) 5 +2Vm+2 - 2U
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or since V,, = W,,,, and W2 = W2 + W2, it follows that

1
2

1 1
U? :h2+§W22— ~U? (4.13)

1
I:h1+§W12— 5

is constant across the impeller. The quantity I is called trothalpy.?
Solving Eq. (4.13) for hy and k9 and substituting them into the equation for work

1 1
w = hga — ho1 :h2+§V22—h1—|—§V12 (4.14)

gives, after I has been canceled, the following equation:
1 1 1 1 1 1

Rearranging gives the form

1 1 1
w=(Vy = Vi) + (U3 = U7) + 5 (W = W3) @4.15)
Equating this and Eq. (4.14) leads to
1 1
hy —hy = §(U22—U12)+§(W12—W22) (4.16)

From Eq. (4.14) it is seen that the work done in a centrifugal pump increases the kinetic
energy and the static enthalpy. Equation (4.16) shows first that the static enthalpy increase
involves moving the fluid into a larger radius, resulting in increased pressure. The second
term causes an increase in pressure as the relative velocity is reduced; that is, diffusion with
W, < W7 leads to pressure recovery. The pressure is increased further in the volute of a
centrifugal pump where diffusion of the absolute velocity takes place. Since this diffusion
is against an adverse pressure gradient, the kinetic energy at the exit of the impeller cannot
be so large that its deceleration through the volute causes separation of boundary layers
and a great increase in irreversibility. The use of these concepts is illustrated in the next
example.

B EXAMPLE 4.4

A small centrifugal pump with an impeller radius o = 4.5 cm operates at 3450 rpm.
Blades at the exit are curved back at an angle 5, = —65°. Radial velocity at the exit
is V.o = W,5 = 3.0m/s. Flow at the inlet is axial with velocity V; = 4.13m/s. The
mean radius of the impeller at the inlet is 71 = 2.8 cm. (a) Find the work done using
Eq. (4.12). (b) Calculate the kinetic energy change of the relative velocity, absolute
velocity, and that associated with the change in the blade speed and calculate work
done using Eq. (4.15). Confirm that the two methods give the same answer.

Solution: (a) Blade speed at the exit is

0.045 - 3450 - 2
Us = 1p§) = Tﬂ = 16.26m/s

3This quantity is commonly called rothalpy, a compound word combining the terms rotation and enthalpy. Tts
construction does not conform to the established rules for formation of new words in the English language, namely,
that the roots of the new word originate from the same language. The word trothalpy satisfies this requirement as
trohos is the Greek root for wheel and enthalpy is to put heat in, whereas rotation is derived from Latin rotare.
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Since W9 = Vo, the tangential component of the relative velocity is
Wyo = Vegtan 2 = 3.0 tan(—65°) = —6.43m/s
Tangential component of the absolute velocity is then
Ve = Uy + W2 = 16.26 — 6.43 = 9.83m/s

Since the flow at the inlet is axial V,,; = 0, the inlet does not contribute to the work
done as calculated by the Euler equation for turbomachinery, which reduces to

w = UsVy2 = 16.26 - 9.83 = 159.7 J /kg

(b) Magnitudes of the relative and absolute velocities at the exit are given by

Wo = /W2, + W2 =16.432 +3.02 = 7.10m/s
Vo= /V2 + V2 = /0,832 1 3.02 = 10.27m/s

Since the flow is axial at the inlet. V;; = V7 = 4.13m/s. The blade speed is

0.028 - 3450 ™

U1 :rlﬂ: 30

=10.11m/s
Tangential components of the expression relating absolute and relative velocity give
Wy =Vu1 —U; =0-10.11 = -10.11m/s
and therefore the magnitude of the relative velocity is
Wy = /W2 + W% = /10.112 + 4.13% = 10.92m/s
The kinetic energy changes are

(Vi = V) = 2(10.272 — 4.13%) = 44.21m?/s* = 44.21 J /kg

(UZ - U}) = =(16.26% — 10.11%) = 80.99m?/s? = 80.99J /kg

N = N =
= RN N

1
5(Wl2 —W3) = 2(10.93% — 7.10%) = 34.51 m?/s® = 34.51 J /kg

2
Their sum checks with the direct calculation of the work done.
|
Since there is no swirl at the inlet, V,,; = 0, the work done is independent of the inlet
conditions. This means that when work is represented in terms of kinetic energy changes,
terms involving inlet velocities must cancel. Velocity triangle at the inlet is a right triangle
with W7 as its hypothenuse, so that V2 + UZ = W{. Hence in this case

1
w=3(V#+U} - W)

and using the law of cosines gives w = Us V2, as it should.
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4.3.2 Degree of reaction

Degree of reaction, or reaction for short, is defined as the change in static enthalpy across
the rotor divided by the static enthalpy change across the entire stage. For the turbine this
is given as

_ha—h3

~ hy —hs

Since an enthalpy change is proportional to a pressure change, the degree of reaction can
be regarded in terms of pressure changes. In compressors pressure increases downstream,
and in order to keep the adverse pressure gradient small, the value of reaction provides a
means to assess the strength of this gradient.

Work delivered by a rotor in a turbine is

R

1
2

1
‘/22 _ h3 _ _V32

w = hoz — hoz = ho + 5

Since for nozzles (or stator) hg1 = hg2, work can also be written as
1
w:hl—h3+§(V12—V32)

Solving the last two equations for static enthalpy differences and substituting them into the
definition of reaction gives

2 (VE-VE) +
R=2 ( s 22) v 4.17)
3 (Vi =VP) +w
Substituting Eq. (4.15) for work into this and simplifying leads to
U2 _ U2 2 2
R= 2 —Us Wy — W; (4.18)

VE-VE+UZ-UZ+W2-W2

In a flow in which V; = V5, the reaction R = 1. Such a machine is a pure reaction
machine. A lawn sprinkler, rotating about an axis is such a machine, for all the pressure
drops take place in the sprinkler arms. They turn as a reaction to the momentum leaving
them.

The steam turbine shown in Figure 3.11 is an axial machine in which U, = Uj; and
its reaction is zero when Wy = W3, For the rotor buckets shown, the blade angles are
equal but opposite in sign and by adjustment of the flow area to account for the increase
in specific volume, the magnitude of the relative velocity can be made constant across the
rotor. Hence, since the trothalpy is also constant across the rotor, enthalpy change across it
vanishes and the reaction becomes R = 0.

B EXAMPLE 4.5

Consider an axial turbine stage with blade speed U = 350 m/s and axial velocity
V. = 280m/s. Flow enters the rotor at angle cg = 60°. It leaves the rotor at angle
ag = —30°. Assume a stage for which o1 = a3 and a constant axial velocity. Find
the velocities and the degree of reaction.

Solution: Since axial velocity is constant and the flow angles are equal at both the
entrance and exit of the stage, the velocity diagrams at the inlet of the stator and the
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exit of the rotor are identical. From a velocity triangle, such as shown in Figure 4.2,
the tangential velocities are:

Vi = Vi tan ag = 280.0 tan(60°) = 484.97m/s
Vs = Vy tan oy = 280.0 tan(—30°) = —161.66 m/s

and work done is
w = U(Viy2 — Vuz) = 350(484.97 + 161.66) = 226.32kJ /kg
Tangential components of the relative velocities are
Wys = Vyo — U = 484.97 — 350.00 = 134.97m/s
Wys = Vg — U = —161.66 — 350.00 = —511.66 m/s

V= 1/V2 + V2 = /484.972 4 280.02 = 560.00 m /s
Vs = /V2 + V2 = /161.662 + 280.02 = 323.32m/s
W = /W2, + W2 = /134.972 + 280.02 = 310.83m/s
W = /W2 + W2 = /511.662 + 280.02 = 583.26 m/s

Since U, = Us, the expression for reaction is

Hence

2 _ 172 2 2
p_ W3-W7 583267 -31083°
2w 2.226,320

A reaction ratio close to one-half is often used to make the enthalpy drop, and thus
also the pressure drop, in the stator and the rotor nearly equal. m

4.4 UTILIZATION

A measure of how effectively a turbine rotor converts the available kinetic energy at its
inlet to work is called utilization, and a utilization factor is defined as the ratio

£= — (4.19)
w + 5‘/;3
The denominator is the available energy consisting of what is converted to work and the
kinetic energy that leaves the turbine. This expression for utilization equals unity if the exit
kinetic energy is negligible. But the exit kinetic energy cannot vanish completely because
the flow has to leave the turbine. Hence utilization factor is always less than one. Maximum
utilization is reached by turning the flow so much that the swirl component vanishes; that
is, for the best utilization the exit velocity vector should lie on the meridional plane.
Making the appropriate changes in Eq. (4.15) to make it applicable to a turbine and
substituting it into Eq. (4.19), gives an expression for utilization

VE-V24+UZ-U+W2—- W}
VE+UZ-U2+W2 - W2

£ =

(4.20)
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in terms of velocities alone.
Next, from Eq. (4.17) it is easy to see that the work delivered is also

_ ‘/32 1 ‘/22 _ RV12

Substituting this into Eq. (4.19) gives

Vi — RV? — (1 - R)V{
‘/22 _ RV12

£ = 4.22)
In the situation in which R = 1 and therefore also V; = V1, this expression becomes
indeterminate. It is valid for other values of R.

In a usual design of a multistage axial turbine the exit velocity triangle is identical to the
velocity triangle at the inlet of a stage. Under this condition V; = V3 and o; = a3, and
the utilization factor simplifies to

Vi - Vg
E=—=———5 (4.23)
V22 _ RV32
The expression for work reduces to
V22 _ ‘/32
= S 4.24
YT 90 °R) (4.24)

With velocities expressed in terms of their tangential and axial components, this becomes

_Vh+ V- (VA + Vi)

2(1— R)
o 2 502 2 2 2 2
Visin®ag + V5 — (Viisin®ag + V3
- z 4.
w 51— R) (4.25)

At maximum utilization g = 0 and the work is w = UV,,2. Equating this to the work
given in Eq. (4.25) leads to the equality

Visin? o + V3 - V3

UVysina; = 50— R)

from which follows the relation

U _ (V& — V123)/V22. + sin® (4.26)
Va 2(1 — R)sinay

The left-hand side (LHS) is a speed ratio. It is denoted by A = U/V5. Since V,o/Vs =
cos aug, this reduces to

1-V2 /V2
N= w3/ 72 4.27
2(1 - R)sin g “.27)
from which the ratio )
V.
-2 =1 -2(1 - R)Asina (4.28)

%5
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is obtained. For maximum utilization, V3 = V3, and solving Eq. (4.23) for this ratio gives

Vi 1—enR

Here the subscript m designates the condition of maximum utilization. Equating the last
two expressions and solving for ey, gives

2 sin oy

= ———— 4.2
1 —2RAsinay (4.29

€m

If a stage is designed such that V3 = V5, then the speed ratio in Eq. (4.27) may be written

as follows: 9 12 ]
\ o 1- VM/'V2 _ _sinap 430)
2(1 - R)sinaz  2(1 — R)

Substituting this into Eq. (4.29) and simplifying gives

.9
€ S o 431)

1 — Rcos? ay

This is shown in Figure 4.7.

1.0 w
091
081
0.7f
061
05F
0.4+t
0.3¢
0.2t
0.1

0

:‘]l

Figure 4.7 Maximum utilization factor for various degrees of reaction as a function of the nozzle
angle.

It was mentioned earlier that a rotary lawn sprinkler is a pure reaction machine with
R = 1. Its utilization is therefore unity for all nozzle angles. Inspection of Figure 4.7,
as well as Eq. (4.31), shows that maximum utilization factor increases from zero to unity,
when the nozzle angle o increases from zero to ag = 90°. Hence large nozzle angles
give high utilization factors. Typically the first stage of a steam turbine has = 0, with a
nozzle angle in the range from 65° to 78°.

Many turbines are designed with a 50% stage reaction. For such a stage 3 = —a and
as = —Pa. Also V2 = W2. Work delivered by a 50% reaction stage is

w = U(Vuz — Vu3) = U(Vuz -V tanﬁg) = U(Vuz + V, tan 0(2)
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or

w=U{Vyo +Wy2) =U(Vya + Vg — U)=U(2Vasinas — U)
The quantity w + Vi /2 becomes

1 1 1
w+§V32 :w+§W22 :w+5(V§+(V32—U)2)

hence
1 1
w+ 5&/32 =w+ §(V22 — 2UV;sinag + U?)
and the utilization factor from Eq. (4.19) is given as

2U(2Vesinag — U)
2U(Vasinas —U) + VE+ U2

In nondimensional form this is

B 2X(2sinag — A)
°= 2A(sinas — A) + 1 4 A2 “32)

Figure 4.8 gives a graphical representation of this relation. By differentiating this with

1.0
0971 75
0.8 70
60 65
0.7
06
05+
04
03+
0.2+
01+
0

80 90

a,=45

0 0.2 0.4 0.6 0.8 1.0
A

Figure 4.8 Utilization factor for an axial turbine with a 50% reaction stage.

respect to A, shows that the maximum utilization factor is at A = sin 2, and the maximum
utilization is given by
2sin® oy
E€m =

1+ sin® a9

which is consistent with Eq. (4.31).
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Bl EXAMPLE 4.6

Combustion gases flow from a stator of an axial turbine with absolute speed V, =
500 m/s at angle o = 67°. The relative velocity is at an angle 5> = 30° as it enters
the rotor and at 83 = —65° as it leaves the rotor. (a) Find the utilization factor, and
(b) the reaction. Assume the axial velocity to be constant.

Solution: (a) The axial and tangential velocity components at the exit of the nozzle
are
Ve = Vacosas = 500 cos(67°) = 195.37Tm/s

Vo = Vasinag = 500 sin(67°) = 460.25m/s
Since W, = V,, the tangential component of the relative velocity is

Wao = W, tan 8 = 195.37tan(30°) = 112.80m/s

so that

Wo = /W2 + W2, = /195.372 + 112.802 = 225.59m/s
Next, the blade speed is obtained as
U=V, — Wy =460.25 — 112.80 = 347.46 m/s

Since the axial velocity remains constant, at the rotor exit the tangential component
of the relative velocity is obtained as

W3 = W, tan 83 = 195.37 tan(—65°) = —418.96 m/s

so that

Ws = /W2 + W2, = /195.372 4 418.962 = 462.27m/s
Tangential component of the exit velocity is then obtained as
Vg = Wys + U = —418.96 4 347.46 = —71.50m/s

At the exit

Vs —71.50
tanas = — = =

=———s = U that = —-20.1°
V. 19537 0.366 so tha sz

and the absolute velocity at the exit is

Vs = /V3 4+ V2 = /195.37% + 71.502 = 208.04m/s

To calculate the utilization factor using its definition Eq. (4.19), work is first deter-
mined to be

w = U(Vyg — Vi3) = 347.46 - (460.25 + 71.50) = 184, 763 J /kg

the utilization factor then becomes

wo 184763
w+ LVZ 184763 + 0.5 - 208.04

=0.895
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(b) Reaction is obtained from

W3 —-W3  462.27% — 225.59?

R=—5 = 2 13763

=0.44

As a second example, consider an axial turbine stage in which both utilization factor and
reaction are given, together with the nozzle angle and efflux velocity from the nozzle.

B EXAMPLE 4.7

An axial turbine operates at reaction R = 0.48 with utilization factor ¢ = 0.82.
Superheated steam leaves the nozzles at speed V5 = 430 m/s in the direction ap =
60.6°. Find the (a) work delivered by the stage and (b) relative flow angles at the
inlet and exit of the rotor. Assume the axial velocity to be constant through the stage.

Solution: Since the axial velocity is constant, the expression for the utilization factor
may be written as

VZ - V2 1 —cos? o/ cos? a3

£ = =
V2 —RV? 1— Rcos?ay/cos?as

Solving for the ratio of cosines gives
COS (vy 1—¢ 1-0.82
= = = (.5448
cos a3 \/1—R5 \/1—0.48-0.82

c0s(60.6°)
0.5448

There are two solutions. Which to choose? Inspection of Figure 4.8 shows that the
curves of constant nozzle angle are concave downward so that for given utilization
factor there are two speed ratios that satisfy the flow conditions. It is clear, however,
that the speed ratio must be less than one, for blades cannot move faster than the
flow. This is not yet a sufficient guideline for the correct choice for the sign, but after
calculations have been carried out for both angles, the proper angle becomes clear
after the fact. In addition, turbine blades typically turn the flow over 80°, and on this
basis the negative angle may be tentatively chosen as being the correct one.
Next, the velocity components at the inlet to the blades are calculated:

Thus

CoS (g = = 0.901 and a3 = +£25.7°

Ve = Vacosag = 430 cos(60.6°) = 112.1m/s

Vuz = Vasinag = 430sin(60.6°) = 374.6 m/s

With the axial velocity constant, the tangential component at the exit is:
Vus = Vi tanag = 311.1tan(—-25.7°) = —101.6 m/s

The magnitude of the absolute velocity at the exit is thus

Va=4/VZ2+VZE =2343m/s
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(a) Work delivered by the turbine may now calculated from

oW or  w— eVi  0.82.234.3
CwiVE T 2(1—-¢)  2(1-10.82)

= 125,015kJ /kg

(b) The blade speed is obtained from the expression

w 125,015
Vo — Vs 374.6 +101.6

w = U(Vya — Vi) U= = 262.5m/s

Thus A = U/V, = 262.5/430 = 0.61, and since this number is less than one, the
negative angle gives the correct solution.

It is worthwhile also to calculate the extent by which the blades turn the relative
velocity. Tangential components of the relative velocity at the inlet and exit of the
blade row are

Wiz = Vo —U =374.6 — 262.5 =112.1m/s

Wy = Vs — U = —101.6 — 262.5 = —364.1m/s

The flow angles of the relative velocity are finally

W 112.1
=tan"! | —— ) =tan™' [ —— ) = 28.0°
br = tan ( We ) o (211.1)

W —364.1

-1 u3 —1 o
—— _— _t —_ .

B3 = tan (Wz)uan (211.1)— 59.9

and the amount of turning is 28° + 59.9° = 87.9°.
For the positive exit flow angle, ag = 25.7°, and the tangential velocity becomes

Vs = Vi tanas = 211.1tan(25.7°) = 101.6 m/s

and therefore the magnitude of V3 is the same as before; so is the work delivered
since the utilization factor is the same. The blade speed, however, is changed, as it is
now calculated to be

w B 125015
Vo — Vus 3746 — 101.6

U= =457.9m/s

Consequently the blade speed ratio is A = U/V, = 457.9/430 = 1.06, a value
greater than one. Therefore this angle is the incorrect one. Proceeding with the
calculation, the tangential velocities of the relative motion are:

Wys = Vo — U = 374.6 — 457.9 = —83.3m/s

Wy = Vs — U = —101.6 — 457.9 = —356.3m/s

Calculating the flow angles of the relative velocity gives

W —83.3
=tan ' [ =2 ) =tan"! [ —— | = —21.6°
Pz = tan ( W, > an (211.1 )

-1 ”uS —1 o
= =t — ] = —99.
B3 = tan (Wz ) an ( 2111 > 59.3
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Now the flow turns only —21.6° + 59.3° = 37.7°. This small amount of turning is
typical of compressors, but not of turbines. Another way is to check the value of blade-
loading coefficient. It is 1 = w/U? = 125,015/262.5? = 1.82 for the negative
angle. Experience shows that blade-loading coefficients in the range 1 < ¢ < 2.5
give good designs.

The examples in this chapter have illustrated the principles of turbomachinery analysis.
Some of the thermodynamic properties that appear in the examples are extensive, and
some are intensive. Few are nondimensional, and of these the ones encountered so far
include the blade-loading coefficient, flow coefficient or speed ratio, reaction, utilization
factor, and Mach number. In addition, flow angles of the absolute and relative velocities
are nondimensional quantities. Once the nondimensional parameters, including the flow
angles, have been chosen, a choice is made for the magnitude of the exit velocity from the
nozzles or the value of the axial velocity. The blade speed can then be calculated. In order
to complete the aerothermodynamic analysis, thermodynamic losses need to be estimated.
After this, all the intensive parameters will be known.

For this much of the analysis there was no need to introduce any extensive variables. But,
for example, a rate at which a liquid needs to be pumped, or a power delivered by a turbine,
are typical design specifications. The size of the machine depends on these extensive
variables. Thus the cross-sectional flow areas are calculated with these specifications in
mind together with the size of rotor or impeller. Their diameter and the blade speed
determine the rotational speed of the shaft. In large machines rotational speeds are low; in
small machines they are high. Undoubtedly a design iteration needs to be carried out so
that the machine conforms to a class of successful past designs. This includes also a stress
analysis and vibrational characteristics of the blades, disks, and shafts. The next section
introduces other aspects of the use of nondimensional variables.

4.5 SCALING AND SIMILITUDE

The aim of scaling analysis is to compare the performance of two turbomachines of similar
design. Thus it is also used to relate the performance of a model turbomachine to its
prototype. Both tasks are carried out in terms of proper nondimensional variables. In
this section the conventional nondimensional groups for turbomachinery are introduced,
scaling analysis of a model and a prototype is reviewed, and performance characteristics
of a compressor and a turbine are presented.

4.5.1 Similitude

Similitude broadly refers to similarity in geometry and flow in two turbomachines. More
precisely, dynamic similarity is obtained if the ratios of force components at corresponding
points in the flow through these machines are equal. A necessary condition for dynamic
similarity is kinematic similarity, which means that streamline patterns in two machines
are the same. To achieve this, the two machines must be geometrically similar. This means
that they differ only in scale. Proportionality of viscous force components implies that the
Reynolds number is the same for the two machines. To obtain full dynamic similarity, the
two flows must have similar density distributions, for then inertial forces are proportional
at two corresponding points in kinematically similar flows. This is trivially satisfied for an
incompressible fluid of uniform density, but for compressible fluids Mach numbers must be
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the same at two corresponding points in the flow. The definition of Mach number involves
temperature, which together with pressure determine the value of density. Thus, in flows
in which the Mach numbers match, forces at corresponding points in kinematically similar
flows are proportional to each others and the flows are said to be dynamically similar.

In courses on fluid dynamics, systematic methods are presented for finding dimensionless
groups. They consist of deciding first what the important variables are, and grouping
them in categories of geometric parameters, fluid properties, operational variables, and
performance variables.

The most obvious geometric variable is the diameter D of the rotor. Density p and
viscosity 4 are the two most common fluid properties encountered in turbomachinery
flows, and since the fluid particles move along curved paths through the machine, the flow
is dominated by inertial effects. This means that pressure force is in balance with inertial
force and viscous forces are small when compared to these. Since the inertial term is
proportional to density, in turbomachinery flows density is a more important fluid property
than viscosity.

The rotational speed € of the rotor is the most important operational variable. It is
conventionally given in revolutions per minute, and in many performance plots it is not
converted to the standard form of radians per second. The performance variables include
the volumetric flow rate () and the reversible work done per unit mass w,, and quantities
such as the power W, related to them.

4.5.2 Incompressible flow

The meridional velocity in a turbomachine accounts for the rate at which fluid flows through
a machine. Thus the ratio V,,,/U is a measure of the flow rate. As has been seen already,
this ratio is used in theoretical analysis, but in testing it is converted and expressed in terms
of more readily measurable quantities. The meridional velocity times the flow area equals
the volumetric flow rate, and the blade speed is equal to radius times the rotational speed.
Then, with V;,, proportional to )/ D? and blade speed proportional to 2D, the combination

Q

Pa = aps

(4.33)

is dimensionless. It is called a flow coefficient.
A nondimensional variable that includes the fluid viscosity ¢ will lead to some form of
Reynolds number, such as Re = pV,, D/, for example. The usual form, however, is

B pQLD? _ QD?
===

Re

in which v is the kinematic viscosity and the blade speed, proportional to (2D, is used in
place of the meridional velocity. If the boundary layers on the flow passage do not separate,
viscous forces remain important only near the walls. Thus, as the machine size increases,
boundary-layer regions become a smaller part of the flow. One contributing factor to losses
in turbulent boundary layers is the size of wall roughness, which depends on manufacturing
methods used. Hence, for example the casing and the impeller of two pumps of different
size, but manufactured the same way may have about equal roughness. Since more of the
flow through the larger pump does not contact the walls of the flow channel, this part of
the flow does not experience as great a loss as does the flow through the boundary layer.
This concept goes by the name scale effect, and it makes the performance variables quite



126 PRINCIPLES OF TURBOMACHINE ANALYSIS

independent of Reynolds number, provided the machine is sufficiently large. It is for this
reason that in large machines Reynolds number effects are ignored in preliminary design
and also that efficiency increases with machine size. This discussion of the influence of
Reynolds number applies at a design condition. However, when turbomachines are operated
at off-design conditions, boundary layers may separate. In worst cases such operation can
be catastrophic. Thus the Reynolds number enters the theory of turbomachines indirectly
through its influence on the behavior of boundary layers.

The most important performance variable is the work done on the fluid, or delivered by
the machine. Its nondimensional form is the work coefficient

Ws

va=qepe

in which wj is the isentropic work and the product 2D in the denominator is proportional
to the blade speed, so that the denominator has the units of energy per unit mass, as does
isentropic work.

In the Bernoulli equation

1 1
p1+ §PV12 +pgz1 =p2 + 5,0‘/22 + pgz2

the kinetic energy term shows that in this form the units of each term are energy per
unit volume, since density has replaced mass. Furthermore, weight equals mass times
gravitational acceleration, and specific weight of a fluid is defined as pg. Dividing each
term by pg gives

Py in o+ 2y iV22+z:z

P9 29 rg 29
and each term has the dimensions of energy per unit weight of the fluid, which can be
reduced to a length, as the potential energy term shows. From hydraulic practice it is
common to call the first term in this equation a pressure head. The second term has the
name kinetic energy or dynamic head, and the third term is an elevation head. The sum is
called the fotal head.

The first law of thermodynamics applied to a flow through a pump gives

1 1
%+§V12+gzl+ws:%2~+§v22+gz'2

which can also be written as
wy, =gH

and here H is the change in the total head across the pump. Pump manufacturers report
the performance of pumps in terms of their head, making the values independent of the
fluid being pumped. They also report a value for efficiency, so that actual work may be
determined as w = ws /7.

From the definition of total pressure, isentropic work for an incompressible fluid can
also be calculated from

__ Po2 — Po1
’ p

which shows that if the total pressure change across the pump is reported, then, to obtain
the work done, density of the fluid being pumped needs to be known.
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Also from the hydraulic practice comes the custom of expressing pressure as a height of
a mercury, or a water column, particularly in fans and blowers in which the pressure rise is
small. The conversion is carried out by the manometer formula

Ap = pngd (4.34)

in which p, is the density of the manometer fluid and d is the manometer deflection. As a
consequence of the discussion above, for a pump, the work coefficient may be written as

gH
Y= gape
Power coefficient may be introduced as
. 1%
Py=———
d pQ3 D5

Here W is the actual rate at which work is done. Hence, multiplying the denominator of
1)q by the mass flow rate and dividing it by a quantity with dimensions of mass flow rate,
namely, by p QD D?, gives this form, except that efficiency of the machine must also be
taken into account. It is easy to see that the power coefficients for a turbine with efficiency
7y and compressor with efficiency 7, are

Py = nethadpa Py= %

respectively.

For dynamically similar situations two machines have the same values of the nondimen-
sional parameters ¥4 and ¢4. They are also expected to have the same efficiency if the
scale effect is neglected. This means that for machines 1 and 2 the following relationships

are true: Q Q
Wse Wg
<Q2D2)1 - <Q2D2 )2 (QD3>1 - (QD3)2

B EXAMPLE 4.8

Liquid water with density p = 998 kg/m® flows through an axial flow pump, with a
rotor diameter of 30 cm at a rate of 200 m® /h. The pump operates at 1600 rpm, and
its efficiency is i, = 0.78. The pump work is 180 J/kg. If a second pump in the
same series has a diameter of 20 cm and operates at 3200 rpm, at the condition of
same efficiency, find (a) flow rate, (b) the total pressure increase across it, and (c) the
input power.

Solution: (a) Since the pumps are geometrically similar and their efficiencies are the
same, dynamic similarity may be assumed. Thus

Q1 Q2 QD3 3200 - 20° 5
- = =200"—"—— =1185m%/h
WL D? QD3 Qe QlQIDgf 00 1600307 w?/
and the mass flow rate is
998 - 118.5
Mg = pQo = ——(———— = 32.86kg/s

3600
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(b) With equal work coefficient and efficiency, it follows that

We1 We2 Q2D32 32002 - 202
_ — w22 =180 ————— =320J/k
oZp? T Epz T Yieepe 16002 - 302 ke

The total pressure rise is given by

Apga = pwnn sothat  Apgs =998 -320-0.78 = 249.1kPa

(c) Pumping power is
Wo = 1ip wo = 32.86 - 320 = 10.5 kW

Since the ratio of rotational speeds and flow rates are used in the calculations, there
was no need to covert them to standard units. =

4.5.3 Shape parameter or specific speed

Flow coefficient and work coefficient can be combined in such a way that the diameter is
eliminated. Raising the result to a power such that it becomes directly proportional to the
rotational speed, gives a parameter that is called the specific speed, which is given by

B Q 1/2 r2p2 3/4_ QQ1/?
v~ (az) () ~Gam (39

This equation is of relevance to pumps and hydraulic turbines, since the working fluid for
them is a liquid. It shows that machines with low flow rates and high pressure rise have low
;. In centrifugal machines the inlet area, which is close to the shaft, is relatively small,
and to keep the inlet velocity within a desirable range, the flow rate is relatively low. The
centrifugal action causes a large pressure rise in such machines. Both make the specific
speed low. In axial pumps and turbines a large flow rate is possible, as the annulus area is
far from the axis and is therefore large. This leads to a high specific speed. The shape of
the machines thus changes from a radial to an axial type as the shape parameter increases.
Thus a better name for (25 would be a shape parameter. Diameter does not appear in the
definition of the specific speed, but since the velocity must be kept within reasonable limits,
it appears implicity through the flow rate, with a larger flow rate requiring a larger machine.
Shapes for pumps are shown in Figure 4.9. The figure shows that large machines have
higher efficiencies owing to the scale effect discussed above.

454 Compressible flow analysis

For compressible flows temperature must be listed among the fundamental dimensions. It
appears in the definition of Mach number, M = V/c¢, and with ¢ the speed of sound, equal
to ¢ = /yRT for an ideal gas, the ratio of specific heats appears as an additional parameter.

Flows with Mach numbers less than 0.3 can be approximated as incompressible. Hence,
in low-Mach-number flows, the influence of Mach number will be slight. Testing of cen-
trifugal compressors with refrigerants as working fluids also shows that their performance
depends only weakly on the ratio of specific heats [17]. This is useful to notice, for then
performance maps generated for air are not expected to lead to large errors when they are
used for other gases.
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Figure 4.9  Shapes of pumps with increasing specific speed. (Modified from a graph in Stepanoff
{741)

In compressible flows the volumetric flow rate is replaced by the mass flow rate, as only
the latter is constant through a machine. Conventional practice is to replace the volumetric
flow rate with 72/po1, where pgp is the inlet stagnation density. The other parameters
include a modified blade Mach number 2D /cg;, Reynolds number pg; 2D?/p, and the
ratio of specific heats. In the definition of ¢y; the inlet stagnation temperature is used.

The functional relationship between the reversible work and these parameters can be
expressed as

J 2
Ahos o ( m QD p01QD ,’)’) (436)

2D "\ po QD% oy’ p

For an ideal gas it was shown in Chapter 2 that

Ahgs _ 1 <Z_)2%)(’Y"1)/’Y L
&, v —1|\por
which may be recast as

| Ahos g 1 P2\ 1
92D2 o QQDQ Y — 1 Do
Since the blade Mach number and the ratio of specific heats are already taken as independent
parameters, the ideal work coefficient can be replaced by a stagnation pressure ratio. This
is done, regardless of whether the gas is ideal.
The flow coefficient may be written as
m m Co1 N Co1 Th\/ RT(n

p()lQD?’ - p01001D2 ﬁ o QD p01\/’7D2
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Again, since the blade Mach number and +y are already counted as independent parameters,
inspection of the right side shows that the flow coefficient may be modified to

o = m+/ Ryt
po1.D?

The power coefficient is manipulated into the form

|14 1hep ATy 0 1 & AT

p01Q3D5 o p01Q3D5 n p01QD3 Y- 1 Q2D2 T01

The first factor on the right is the original flow coefficient. It is multiplied by a factor
dependent only on -y and the reciprocal of the blade Mach number squared. Since all these
factors have been taken into account separately, the power coefficient may be replaced by
ATy /Ty . Hence

Po2 mvVRTyy QD pnQD?

R e ) @3
and

ATy _ <m Rl QD  poQD? ) w8

Tor pnD? ' \ARTo:, p '

Efficiency is another performance variable and is functionally related to the parameters
listed on the right in the equations above. For an ideal gas undergoing compression, it can

be calculated from
( Doz )(’7*1)/ v
— -1
Po1

For a particular design and fluid, the geometric parameters and -y are fixed. This allows
the flow coefficient and the blade Mach number to be replaced by

g = TV 100 L (4.39)

Do1 V7o

These are not dimensionless. Alternatively, the corrected mass flow rate and the rotational

speed
_ My tor/Lor vV To1/Toc Q L (4.40)

Po1/Por < v To1/Tor

are used, in which subscript r refers to a reference condition.

n = To2s — Tox _ To1
Toe =11 ATp

4.6 PERFORMANCE CHARACTERISTICS

Use of the performance map is illustrated in this section by representative compressor and
turbine maps for an automotive turbocharger. It is used to precompress air before it is
inducted to an internal combustion engine, thereby allowing a larger mass flow rate than
is possible in a naturally aspirated engine. A turbocharger is shown in Figure 4.10. It
consists of a centrifugal compressor and a radial inflow turbine. The exhaust gases from
the engine drive the turbine. Shaft speeds vary from 60,000 to 200,000 rpm in automotive
applications.
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Figure 4.10 A turbocharger. (Photo courtesy NASA.)

4.6.1 Compressor performance map

To characterize the performance of a compressor, the pressure ratio is typically plotted as
a function of the flow coefficient, as is shown in Figure 4.11. Here the flow rate and the
rotational speed are modified to a corrected flow rate and a corrected shaft speed

TOr TOr
[ QC =0
Q=0 Ty To1

This particular compressor map is for a centrifugal compressor of an automotive tur-
bocharger manufactured by BorgWarner Turbo Systems, similar to that shown in Figure
4.10. Air is drawn in from stagnant atmosphere with reference pressure py, = 0.981 bar
and reference temperature 7Ty, = 293 K. These are the nominal inlet stagnation properties.

Efficiency curves are superimposed on the plot on a family of curves at constant corrected
speed, given in rpm. The constant speed curves terminate at a line called a surge line. If
the flow rate decreases beyond this, the blades will stall. Severe stall leads to a condition
known as surge. Under surge conditions the flow may actually reverse direction, leading
to a possible flameout in a jet engine.

In an automotive application the operating speed of the turbomachine follows the engine
speed of the internal combustion engine. When the shaft speed is increased, the operating
condition moves across the constant speed curves in the general direction parallel to the
surge line to lower efficiency. At large flow rates the flow in the blade passages will choke
and this is indicated by the sharp drop in the constant-speed curves.

4.6.2 Turbine performance map

A sample plot of turbine characteristics is shown in Figure 4.12 for the radial inflow turbine
of the same BorgWarner turbocharger. Inlet to the turbine is identified by the label 3, and
its exit is a state 4. Pressure ratio is given as the ratio of stagnation pressures at states 3 and
4. Inlet reference temperature has a value T3, = 873 K. The rotational speed of the shaft
is corrected by the square root of the ratio of the reference temperature to its actual value at
the inlet. This arises from the square root dependence of speed of sound on temperature.
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Figure 4.11 Characteristics of a centrifugal compressor. (Courtesy BorgWarner Turbo Systems.)

Since the exit pressure from the turbine is close to the atmospheric value, the pressure
ratio is determined by the inlet pressure to the turbine, which in turn is related to engine
pressure. A high pressure ratio leads to choking of the turbine. Thus an increase in the
pressure ratio no longer increases the flow rate and the lines of constant speed remain flat,
as seen in Figure 4.12.

Efficiency curves are also flat near choking conditions, for the aecrodynamic design is
optimized for these conditions. This is in contrast to the small envelope of high efficiency
at low pressure ratios when the turbine can still accommodate a large change in the mass
flow rate as the pressure ratio is increased.

Although it would be desirable to have a consistent representation of the dimensionless
parameters, this is not yet a common practice. Hence, the dimensions and units in each of
the parameters need to be examined for each performance map encountered.

EXERCISES

4.1 Steam entefs a rotor of an axial turbine with an absolute velocity V, = 320 m/s at an
angle ap = 73°. The axial velocity remains constant. The blade speed is U = 165m/s.
The rotor blades are equiangular so that 83 = —f5, and the magnitude of the relative
velocity remains constant across the rotor. Draw the velocity triangles. Find (a) the relative
flow angle 32, (b) the magnitude of the velocity V3 after the flow leaves the rotor, and (c)
the flow angle a3 that V3 makes with the axial direction.

4.2 Water with density 998 kg/m?® flows in a centrifugal pump at the rate of 22 L/s. The
impeller radius is ro = 7.7 cm, and the blade width at the impeller exit is b, = 0.8 cm. If
the flow angles at the impeller exit are oz = 67° and 2 = —40°, what is the rotational
speed of the shaft in rpm?
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Figure 4.12  Characteristics of a radial inflow turbine. (Courtesy BorgWarner Turbo Systems.)

4.3 Ina velocity diagram at the inlet of a turbine the angle of the absolute velocity is 60°
and the flow angle of the relative velocity is —51.7°. Draw the velocity diagram and find
the value of U/V and V. /U.

4.4 A small axial-flow turbine has an output power of 37 kW when handling 1 kg of air
per second with an inlet total temperature of 335 K. The total-to-total efficiency of the
turbine is 80%. The rotor operates at 50,000 rpm and the mean blade diameter is 10 cm.
Evaluate (a) the average driving force on the turbine blades, (b) the change in the tangential
component of the absolute velocity across the rotor, and (c) the required total pressure ratio
across the turbine.

4.5 The exit flow angle of stator in an axial steam turbine is 68°. The flow angle of the
relative velocity leaving the rotor is —67°. Steam leaves the stator at Vo = 120m/s, and
the axial velocity is V;o = 0.41U. At the exit of the rotor blades the axial steam velocity
is V3 = 0.42U. The mass flow rate is 7n = 2.2kg/s. Find (a) the flow angle entering
the stator, assuming it to be the same as the absolute flow angle leaving the rotor; (b) the
flow angle of the relative velocity entering the rotor; (c) the reaction; and (d) the power
delivered by the stage.

4.6 The axial component of airflow leaving a stator in an axial-flow turbine is V5 =
175 m/s and its flow angle is 64°. The axial velocity is constant, the reaction of the stage is
R = 0.5, and the blade speed is U = 140m/s. Since the reaction is 50%, the relationships
between the flow angles are 85 = —q3 and ag = —f3. Find the flow angle of the velocity
entering the stator.

4.7 The airflow leaving the rotor of an axial-flow turbine is V3 = 140 m/s and its flow
angle is 0°. The axial velocity is constant and equal to the blade speed. The inlet flow
angle to the rotor is &z = 60°. Find the reaction.
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4.8 A large centrifugal pump operates at 6000 rpm and produces a head of 800 m while
the flow rate is 30,000 L/min. (a) Find the value of the specific speed. (b) Estimate the
efficiency of the pump.

4.9 A fan handles air at the rate of 500 L/s second when operating at 1800 rpm. (a) What
is the flow rate if the same fan is operated at 3600 rpm? (b) What is the percentage increase
in total pressure rise of the air assuming incompressible flow? (c) What is the power input
required at 3600 rpm relative to that at 1800 rpm? Assume that the operating point of the
fan in terms of the dimensionless parameters is the same in both cases.

4.10 An axial-flow pump having a rotor diameter of 20 cm handles water at the rate of
60 L /s when operating at 3550 rpm. The corresponding increase in total enthalpy of the
water is 120 J/kg and the total-to-total efficiency is 75%. Suppose that a second pump in
the same series is to be designed to handle water having a rotor diameter of 30 cm and
operating at 1750 rpm. For this second pump what will be the predicted values for (a) the
flow rate, (b) the change in the total pressure of water, and (c) the input power?

4.11 A small centrifugal pump handles water at the rate of 6 L /s with input power of 5
hp and total-to-total efficiency of 70%. Suppose that the fluid being handled is changed to
gasoline having specific gravity 0.70. What are the predicted values for (a) flow rate, (b)
input power, and (c) total pressure rise of the gasoline?

4.12 A blower handling air at the rate of 240 L /s at the inlet conditions of 103.1 kPa for
total pressure and 288 K for total temperature. It produces a pressure rise of air equal to
250 mm of water. If the blower is operated at the same rotational speed, but with an inlet
total pressure and total temperature of 20 kPa and 253 K. What are (a) the predicted value
for the mass flow rate and (b) the total pressure rise?

4.13 Consider a fan with a flow rate of 1500 cfm, [cubic feet per minute (ft3 /min)] and
a shaft speed of 3600 rpm. If a similar fan one half its size is to have the same tip speed,
what will the flow rate be at a dynamically similar operating condition? What is the ratio
of power consumption of the second fan compared to the first one?

4.14 A fan operating at 1750 rpm at a volumetric flow of 4.25 m?%/s develops a head of
153 mm of water. It is required to build a larger, geometrically similar fan that will deliver
the same head at the same efficiency as the existing fan, but at the rotational speed of 1440
rpm. (a) Determine the volume flow rate of the larger fan. (b) If the diameter of the original
fan is 40 cm, what is the diameter of the larger fan? (c) What are the specific speeds of
these fans?

4.15 The impeller of a centrifugal pump, with an outlet radius 7 = 8.75 cm and a blade
width b2 = 0.7 cm, operates at 3550 rpm and produces a pressure rise of 522kPa at a
flow rate of 1.5L/min. Assume that the inlet flow is axial and that the pump efficiency
is 0.63. (a) Find the specific speed. (b) Show that Eq. (4.15) for work reduces to w =
(V24 + U2 — W2,)/2, and calculate the work two ways and confirm that they are equal.



CHAPTER 5

STEAM TURBINES

5.1 INTRODUCTION

The prime mover in a steam power plant is a steam turbine that converts part of the thermal
energy of steam at high pressure and temperature to shaft power. Other components of the
plant are a steam generator, a condenser, and feedwater pumps and heaters. The plants
operate on various modifications of the Rankine cycle. The basic Rankine cycle, operating
between 40°C and 565° C, has a Carnot efficiency of 37%. Modifications, including
superheating, reheating, and feedwater heating, increase the efficiency by approximately
an additional 10%.

Most large power plants have two reheats and three or more turbines. The turbines
are said to be compounded when steam passes through each of them in series. The high-
pressure (HP) turbine receives steam from the steam generator. After leaving this turbine
the steam is reheated and then enters an intermediate-pressure (IP) turbine, also called a
reheat turbine, through which it expands to an intermediate pressure. After the second
reheat the rest of the expansion takes place through a low-pressure (LP) turbine, from
which it enters a condenser at a pressure below the atmospheric value.

A turbine from which the steam leaves at quality near 90% is called a condensing turbine.
An extraction turbine has ports from which steam is extracted for feedwater heating. An
induction turbine receives steam at intermediate pressures for additional power generation.

In a noncondensing or backpressure turbine, steam leaves at superheated conditions
and the thermal energy in the exhaust steam is used in various industrial processes. A
well-designed combined heat and power plant generates appropriate amount of power to
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drop the steam temperature and pressure to values that meet the process heating needs.
District heating is an application in which steam is used at even lower temperatures than in
many industrial processes. An important consideration in providing the heating needs of
an economy is to match the source to the application. Combined heat and power plants are
designed with this in mind.

In modern coal-burning power plants axial steam turbines are typically housed in three,
four, or five casings. Many LP turbines are double-flow type, and their single casing
accommodates a pair of turbines in which steam flows in opposite directions to balance
axial forces on the turbine shaft. When two or more turbines are connected to a common
shaft, they are said to operate in tandem, and the plant is said to be a tandem compound
type. If the steam is directed to a set of turbines on different shafts, then the system is said
to be cross-compounded. For example, a 1000-MW power plant could have an HP turbine
and an IP turbine on a single shaft and three LP turbines on a different shaft. Rotational
speeds are typically either 3600 or 1800 rpm; the lower speed for the LP turbines, that
have larger rotors in order to accommodate the larger volumetric flow rate of steam at low
pressure. The large volumetric flow rate at the low pressure end requires very long blades.
As an example, a General Electric/Toshiba LP steam turbine running at 3600 rpm has
blades 1016 mm in length and a flow area 8.2 m? in the last stage. When this is designed to
run at 3000 rpm for generating electricity at 50 Hz, the blades of the last stage are designed
to be 1220 mm long, with a corresponding flow area 11.9 m?. For a 26-stage steam turbine
the hub-to-casing radius ratio for the last stage may have a value 0.42, whereas for the first
stage a typical value is 0.96.

Outlet pressures from the boiler vary from a subcritical 10 MPa to a supercritical
30 MPa, or more. The condenser pressure is below the atmospheric pressure, typically
about 8 kPa, which corresponds to a saturation temperature of 41°C. This makes the overall
pressure ratio equal to 1250 for a conventional plant and 3 times this for supercritical plants.
In a 400-MW power plant the HP turbine provides about 100-MW, and power at about an
equal rate is delivered by the IP turbine. A double-flow LP turbine delivers the remaining
200-MW. The pressure ratios are 4.5 doe the HP turbine and 3 for the IP turbine. The LP
turbine has ports for extracting steam to feedwater heaters at pressure ratios ranging from
1.5t04.5.

Owing to the large inlet pressure, design of the HP turbine differs from that of the others.
The first stage is designed for low reaction, so that most of the pressure drop takes place at
the nozzles feeding this stage. This brings the steam to a very high velocity as it enters the
first rotor. However, the pressure is now sufficiently low that leakage flow through seals
is tolerable. Later stages are designed for higher reaction, and in IP and LP turbines the
reaction is close to 50%.

Table 5.1 lists some typical designs and rated power outputs for coal-burning steam
power plants. Designations such as 1SF and 3DF refer to one single-flow and three double-
fiow turbines [23]. At the preliminary design stage steam inlet pressure to the HP turbine
is specified. Intermediate pressures at which reheating takes place are then calculated
according to how much moisture is allowed at the exit of the HP and IP turbines. A similar
decision is made for the reheat (RH) turbine to determine the appropriate pressure at the
inlet of the LP turbines.

The steam turbine industry is very large. The annual worldwide electricity generation
from steam plants is 38.5 EJ (exajoules) equal to 1.2 TW (terawatts) of generated power.
This means that on the order of 10,000 steam turbines are in use. The major manufactures
include GE power systems in the United States, Siemens, Alstom, and Ansaldo Energia in
western Europe, Mitsubishi Heavy Industries, Hitachi and Toshiba in Japan. Many of the
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Table 5.1 Fossil steam power turbine arrangements

Output Steam pressure

(MW) Reheats (MPa) HP 1P RH LP

50-150 Oort 10.1 1SF - - 1SF
150-200 1 12.5 ISF  1SF - IDF
250-450 1 16.6 1SF  1ISF - IDF
450-600 1 16.6 1SF  1ISF - 2DF
450-600 1 242 1SF  1ISF - 2DF
600-850 1 16.6 IDF 1DF - 2DF
600-850 lor2 242 ISF  1SF 1DF 2DF
850-1100 1 16.6 IDF 1DF - 3DF
850-1100 lor2 242 ISF ISF IDF 3DF

steam turbines in eastern and central Europe are supplied by LMZ in Russia and Skoda in
the Czech Republic.

World’s wide production of electricity during the year 2008 was 18,800 billion kWh.
In standard units this is 67.7 EJ. In thermal plants electricity generation is fueled by coal,
natural gas, oil, and uranium. Coal provides 27 EJ; natural gas, 13 EJ; and oil, 3 EJ of
the generated electricity. Nuclear fuels provide 10 EJ. The remaining 12 EJ comes from
hydropower and a small amount from wind. In coal, fuel oil, and nuclear power plants the
working fluid is water and these steam plants provide 57% of the generated electricity. The
other 43% comes in about equal amounts from hydropower and from gas turbine power
plants fueled by natural gas [43]. Since these figures relate to production of electricity, they
do not take into account the energy value of coal, gas, and uranium that needs to be mined.
A rough value for thermal efficiency of fossil fuel plants is 38% and therefore the energy
content of the fuels delivered to the plants is a factor of 2.6 larger. Ordinarily the energy
requirement for mining and transporting the fuel needed by power stations is not factored
into the energy evaluation, as it should be.

5.2 IMPULSE TURBINES

This section begins with a discussion of impulse turbines and how a single-stage turbine is
compounded to multiple stages by two methods. These are called pressure compounding,
or Rateau staging, and velocity compounding, or Curtis staging. Both are used to reduce
the shaft speed, which in a single-stage impulse turbine may be intolerably high.

5.2.1 Single-stage impulse turbine

Carl Gustaf Patrik de Laval (1845-1913) of Sweden in 1883 developed an impulse turbine
consisting of a set of nozzles and a row of blades, as shown in Figure 5.1. This turbine
is designed to undergo the entire pressure drop in the nozzles and none across the rotor.
For sufficiently low exit pressure, converging-diverging nozzles accelerate the steam to a
supersonic speed. The angle of the relative velocity approaching the rotor blades is 32, and
the exit angle has a negative value 3. For equiangular blades 3 = — 2. This gives the
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blades a bucket shape because at the design condition the actual metal angles of the blades
are close to the flow angles of the relative velocity.

The blades change the direction of the momentum of the flow, and this gives an impulsive
force to the blades. This is the origin of the name for this turbine, for it appears as if the
fluid particles were executing trajectories similar to a ball striking a wall and caused to
bounce back by an impulsive force. But if the surface forces on the blades are examined, it
is clear that the difference between the high pressure on the concave side of the blade and
the low pressure on the convex side is the actual cause of the blade force. A combination
of a nozzle row and a rotor row make up a stage. For this reason the de Laval turbine is
also called a single-stage impulse turbine.

Work done on the blades is given by

w = hoa — hog = U(Viz — Viz)

and since the relative stagnation enthalpy is constant across the rotor
1 1
h2+§W§:h3+§W§ (5.1)

As seen from the hs diagram in Figure 5.1 irreversibilities cause the static enthalpy to
increase from ho to hz and then Eq. (5.1) shows that Wj is less than W,. For equiangular
blades, this means that the tangential and axial components of the relative velocity must
decrease in the same proportion.

Nozzle Ay, Rotor h01’hy” -

2s’ 35/5‘

Figure 5.1 Single-stage impulse turbine and its Mollier chart.

It is assumed that steam flows into the nozzles from a steam chest in which velocity is
negligibly small. The nozzle efficiency, as shown in the previous chapter, is given by
_ hoi—ha _ hoo —ho
h01 — hQs h02 - h2s
and the second expression follows since hg; = hgz. This can also be written in the form
v 2

N = 55 =N
VQS

N
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in which the velocity coefficient for the nozzle has been defined as cy = V5 /Va,. The loss
of stagnation pressure across the nozzles is Apg,Nn = po1 — Poz. Examination of Figure
5.1 shows that the velocity coefficient is defined such that it represents the loss of kinetic
energy in the nozzles.

For the rotor cg = W3/Wsjs, but since the state 3s is the same as state 2, the velocity
coefficient for the rotor is also cg = W3/Ws. The loss of stagnation pressure is given by
ApgLr = Po2r — Posr- The constant pressure lines poor and posr are shown in Figure
5.1. The velocity coefficient cg has been defined such that the decrease in kinetic energy of
the relative velocities represents a thermodynamic loss. The sum of the separate stagnation
pressure losses across the nozzles and the rotor gives a different and correct value for the
total loss than what was calculated in Chapter 2, where this loss in stagnation pressure was
determined for the entire stage.

The efficiency of the rotor is defined as

_ ho2 — hos
hoa — has

because the kinetic energy leaving the rotor is assumed to be wasted. Since hy = hg, this
can also be written as

Uis

w
MR = 11,2
Hz

The product
Tts = TINTIR

can be written as
_ ho2 —ha hoz —hoz _ ho1 — hos
"™ hop — hae hop — hae  hot — hses
since ho = hgs and has = hsss and the standard definition of the total-to-static efficiency
is recovered. With this introduction, the principles learned in Chapter 3 are next applied to

a single-stage impulse steam turbine.

B EXAMPLE 5.1

Steam flows from nozzles at the rate 0.2 kg/s and speed 900 m/s. It then enters the
rotor of single-stage impulse turbine with equiangular blades. The flow leaves the
nozzles at an angle of 70°, the mean radius of the blades is 120 mm, and the rotor
speed is 18,000 rpm. The frictional loss in the rotor blades is 15% of the kinetic
energy of the relative motion entering the rotor. (a) Draw the velocity diagrams at
the inlet and outlet of the rotor with properly calculated values of the inlet and outlet
flow angles for the relative and absolute velocities. (b) Find the power delivered by
the turbine. (c¢) Find the rotor efficiency.

Solution: (a) The blade speed is

0.12 - 18,000 - 27

U: Q:
" 60

= 226.2m/s
and the axial velocity is
Vo = Vo cos ae = 900 cos(70°) = 307.8m/s
and the tangential component of the absolute velocity at the inlet to the rotor is

Vi = Vasinag = 900 sin(70°) = 845.7m/s
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The tangential component of the relative velocity entering the rotor is therefore
Wye = Vo — U = 845.7 — 226.2 = 619.5m/s

so that the relative flow speed, since W9 = V5, comes out to be

Wy = /W2, + W2, = 1/307.82 4+ 619.52 = 691.8 m/s

The inlet angle of the relative velocity is then

Wi 619.5
=tan! [ =) =tan™! { —= ) = 63.6°
b2 = tan <W$2> o <307.8>
Since 15% of the kinetic energy of the relative motion is lost, at the exit the kinetic
energy of the relative flow is

%Wg = %(1 —0.15)W3 and W3 =0.85-691.82 = 637.8m/s
For equiangular blades, 83 = —f», and the axial velocity leaving the rotor is
W3 = W3 cos B3 = 637.8 cos(—63.6°) = 283.8m/s
and the tangential component of the relative velocity is
Wys = Wssin 83 = 637.8sin(—63.6°) = —571.2m/s
The tangential component of the absolute velocity becomes
Vg =U 4+ Wy3 =226.2 - 571.2 = —-345.0m/s

Hence, with V5 = W3, the flow angle at the exit is

— Lu3 —345.0
=t 1 _ =t 1 —_ . o
3 = tan (%3) = tan ( ] ) == 50.6

and the velocity leaving the rotor is

Vs = /VZ + V2 = 1/283.82 4 3452 = 446.7m/s

The velocity triangles at the inlet and outlet are shown in Figure 5.2.

(b) The specific work done on the blades is obtained as
w = U(Vya — Viuz) = 226.2(845.7 + 345.0) = 269.3kJ kg
and the power delivered is
W = rw = 0.2 269.3 = 53.87kW

(c) The kinetic energy leaving the nozzle is

1 1
QVQQ = 59002 =405.0kJ /kg
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Figure 5.2 Velocity diagrams for a single stage impulse turbine.

and the rotor efficiency therefore becomes

w  269.3

= Y044 66.5
V22 " om0 006 o %

TR
Of the difference 1 — nR a fraction is lost as irreversibilities and the rest as kinetic
energy leaving the rotor. The latter is obtained by calculating the ratio Vi /2 to V2/2,
which is (446.7/900)? = 0.246. Hence loses from irreversibilities are 1 — 0.665 —
0.246 = 0.089, or about 9%. It turns out that the blade speed in this example is too
low for optimum performance, as will be shown next. [

As the theory of turbomachinery advanced, measures more general than the velocity co-
efficients to account for irreversibility replaced them. A useful measure is the increase in
the static enthalpy by internal heating. The loss coefficients (i and (g are defined by the
equations

1 1
ha = has = SONVY hs — hgs = 5 CRW (5.2)

with the thermodynamic states as shown in Figure 5.1. Since the stagnation enthalpy is
constant for the flow through the nozzle, it follows that

1 1
hos + 5‘628 =ho + 5‘/22

which is rearranged to the form

1 1 1
ha — has = _Z'CN‘/QZ = §V225 - §V22
With Vo = Va2 /¢y, this equation can be expressed as
Vs 1
CN= 7 = —F—— 5.3
N T VTG e

Since the relative stagnation enthalpy is constant for the rotor,

1 1
hss + §W22 =’h3 + '2'W32
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and this equation can be rewritten in the form

1 1 1
hs — hzs = 5<RW:,? = §W22 - §W32
from which W )
3
CR= = = ———— 54
R =W, e (5.4)

The stagnation pressure loss across the nozzles is Apgr,n = po1 — Po2, and the stagnation
pressure loss across the rotor is ApgLr = po2r — Posr. The relative stagnation pressures
are determined by first calculating the relative stagnation temperatures, which are obtained
from

W2 W2
T02R2T2+2—2 Tosr = Ts + —>
Cp 2¢c,

and then relative stagnation pressures are determined from

Po2r _ (TozR)Wh_l) Po3R _ (TosR)W/(W_U
D2 P D3 T

To calculate the total-to-static efficiency, from 1 = nn7r the nozzle efficiency is first

determined from )

1+¢(n

and then the rotor efficiency needs to be found. This is done by manipulating its definition
into the form

N = ch = (5.5)

i_lzhog—hgs:%v}?“‘(hS_th)
IR hoa — hos w
which can be recast as 2 W2
1
1= 3+CR 3 (5.6)
7R 2w

Then, using
Ve = U+ Wyo Vs =U+Wys

the work done on the blades may be written as
w = U(VUZ —Vu ) = U(WUZ - Wy ) = U(WQ sin By — W3 Sin/BS)

For equiangular blades 33 = —#, and making use of the relationship W3 = W5 //1 + (r
this equation takes the form

w=UWs <1+ﬁ> sin By

or, with further substitution of Wo sin 8, = Vasinas — U, it is

w=rEEVIECR) ) 5.7)

vVi+Cr

The numerator of Eq. (5.6) still needs to be expressed in terms of V5 and as, as was done
for work. After the component equations for the velocities

W3 cos B3 = Vazcosag Wssin 33 + U = Vasinas



IMPULSE TURBINES 143

are squared and added, the relationship
W3 + 2UWssin 83 + U? = V7

is obtained. Making use of Eq. (5.4), the term V3 + (r W can be written as

w2 2UW, sin S W2
2 2 _ 2 2 2 2 RV2

or as .
2U W, sin By 12

Vv1+Cr

The relative velocity Ws is next expressed in terms of V, and a. Again, the component
equations for the definition of relative velocity give

Vi + W3 = W3 -

Wy cos B = Vo cos as Wosin 8y = Vasinay — U
which, when squared and added, lead to
W2 =V}? —2UV,sinag + U?
Hence the expression for V2 + (g W# takes the final form

(VZ —2UVysinag +2U%) (14 () — 2U(Vasinas — U)VI+ (r
1+ ¢r

Vi + WS =

The equation for the efficiency can now be written as

1 (VE —2UVasinag + 2U%)(1 + (g) — 2U (Vasinaz — U)v/1 + (g
— 1= >
MR 2U(1 + Cr + V14 Cr)(Vasinay ~ U)
Introducing the speed ratio A = U/V% into this gives
1 - (1 —2Xsinas + 22%)(1 + (r) — 2A(sinaz — A1+ Cr
o 2A(1 + (g + I+ Cr)(sinaz — A)

The rotor efficiency now can be expressed as

- 201+ +V1+()(sinas — A)

5.8
14+¢r (58)
and the stage efficiency as
2014 Cr+ V1 + (r)(sinas — A)
Nes = TINTIR = (5.9
(I+ ) (1 +<Cr)

By making use of Egs. (5.3) and (5.4) this can also be written as

Nes = 2Ac% (1 + cp)(sinag — A) (5.10)

The blade speed at which the stage efficiency reaches its maximum value is obtained by
differentiating this with respect to A and setting the result to zero. This gives

dnes

= 2¢ (1 + cr)(sinay — 20) =0
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Figure 5.3  Efficiency of a single-stage impulse turbine: ideal and actual with ey = 0.979,
cr = 0.940, and a2 = 70°.

and the maximum efficiency is obtained when the speed ratio is

3\ = Uu 1.

% "3 sin o
This equation is independent of the velocity coefficients. For typical nozzle angles, in the
range from 65° to 75°, the speed ratio A = U/V5 is about 0.47, so that the blade speed at
this optimum condition is about one-half of the exit velocity from the nozzles. The turbine
efficiency at this value of U/V5 is

1 .
Msope = 5021\1(1 +cr) sin? as

so that for cy = 0.979, cg = 0.940, and «; = 70°, the stage efficiency at the optimal
condition is 7, = 0.821. Figure 5.3 shows the stage efficiency for these parameters and
for an ideal case, with ¢y = 1 and cg = 1.

B EXAMPLE 5.2

Steam leaves the nozzles of a single-stage impulse turbine at the speed 900m/s.
Even though the blades are not equiangular, the blade speed is set at the optimum for
equiangular blades when the nozzles are at the angle 68°. The velocity coefficient of
the nozzles is ¢y = 0.97, and for the rotor blades it is cg = 0.95. The absolute value
of the relative flow angle at the exit of the rotor is 3° greater than the corresponding
inlet flow angle. Find (a) the total-to-static efficiency, and (b) find again the total-to-
static efficiency of the turbine, assuming that it operates at the same conditions, but
has equiangular blades. If one efficiency is higher than the other, explain the reason;
if they are the same, give an explanation for this as well.
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Solution: (a) With the optimum operating blade speed determined from
U= %Vg sinag = %9008in(680) =417.2m/s
the velocity components at the exit from the nozzles are
Vao = Vo cos ag = 900 cos(68°) = 337.2m/s
Vuz = Vasinay = 900sin(68°) = 834.5m/s
the velocity components of the relative velocity are
Wyo = Voo = 337.2m/s Wya = Vo — U = 834.5 — 417.2 = 4173 m/s

The magnitude of the relative velocity is

Wy = /W2, + W2, = 1/337.22 + 417.32 = 536.4m/s

The angle at which the relative velocity enters the rotor row is

w 417.
By = tan"! <$ 2) =tan~! (33%) = 51.06°
2 .

and the exit angle is f3 = —51.06° — 3° = —54.06°, and the magnitude of the
relative velocity is W3 = cg W3 = 0.95 - 536.4 = 509.6 m/s. Work delivered by the
rotor is

w = U(Wug - W, )Z U(1+CRC)WQSinﬂ2

in which C' = sin |f3|/ sin Sz = 1.041 and cg = 0.95. Therefore the work delivered
is w = 346.23kJ/kg. Since the exit kinetic energy is wasted, its value is needed.
The exit velocity components are

Ves = Wis = Wi cos 83 = 509.6 cos(—54.06°) = 299.1m/s

Vs = Wisin 3 + U = 509.6sin(~54.06°) + 417.2 = 4.6 m/s

Vs =/VZ + V% = 1/299.12 + 4.62 = 299.1m/s

In the calculation of rotor efficiency the rotor loss coefficient is (r = 1/cf — 1 =
0.208, so that

Hence

2w 2 - 346,230

= = = 0.855
2w+ VEZ + (W2 2-346,230 + 299.12 - 0.1026 - 509.62

R

and since 7y = ¢% = 0.97% = 0.941 the total-to-static efficiency becomes

s = Mnnr = 0.941 - 0.855 = 0.805

(b) If the blades were equiangular and the turbine were to operate at its optimal
condition, the total-to-static efficiency would be

1
s = §c12\](1 + cr)sin® ap = 0.789
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The loss of efficiency for equiangular blades is caused by the exit kinetic energy now
being larger than before. When the blades are not equiangular, even when the turbine
is not operated at its optimum blade speed, it has a high efficiency because the exit
velocity is nearly axial and the turbine has a high utilization. For equiangular blades
the exit flow angle is slightly larger and therefore the flow is faster, with more of the
kinetic energy leaving the stage.

5.2.2 Pressure compounding

The optimum blade speed for a single stage impulse turbine is about one half the exit
velocity from the nozzles. Such a high blade speed requires a high shaft speed, which may
lead to large blade stresses. To reduce the shaft speed, two or more single-stage impulse
turbines are arranged in series and the steam is then expanded partially in each of the set of
nozzles. This decreases the velocity from the nozzles and thus the blade speed for optimal
performance. This arrangement, shown in Figure 5.4, is called pressure compounding, or
Rateau staging, after Auguste Camille Edmond Rateau (1863-1930) of France. Between
any two rotors there is a nozzle row. The pressure drop takes place in the nozzles and none
across the rotor. As the steam expands, its specific volume increases and a larger flow area
is needed in order to keep the increase in velocity moderate. One approach is to keep the
mean radius of the wheel constant and to increase the blade height. When this is done the
blade speed at the mean radius remains the same for all stages and the velocities leaving
and entering a stage can be made equal. Such a stage is called a repeating stage, or a

normal stage.
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Figure 5.4  Sketch of a multistage pressure-compounded impulse turbine and the pressure drop and
velocity variation across each stage.
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Consider a multistage pressure-compounded impulse turbine with repeating stages.
Unlike in the single-stage turbine, the flow now enters the second set of nozzles at a
velocity close to the exit velocity from the preceding stage, and the function of the nozzle is
to increase it further. The process lines are shown in Figure 5.5. The stagnation states 03,

Figure 5.5 The process lines for a pressure-compounded impulse stage.

03s, and 03ss are reached from the static states 3, 3s, and 3ss, which are on the constant
pressure line p3. As was discussed earlier, it does not necessarily follow that the states 03s
and 03ss are on the constant-pressure line pg3 since the magnitudes of the velocities Vi,
and V3,4, in

1 1
hozs = has + §V32s hosss = hass + §V32ss

are not known. However, a consistent theory can be developed if it is assumed that the
stagnation states 03s and 03ss are on the constant pressure line pg3 and their thermodynamic
states are then fixed by the known value of pressure and entropy. The previous equations
then fix the magnitudes of V3, and Va,, to definite values.

With this assumption the Gibbs equation

dr dp
Tds =dh —vd ds =cp,— — R—
s vdp $=Cpr ’
when integrated between states 03s and 03 and then between states 03ss and 03s along the
constant pressure line po3 and similarly along the corresponding states along the constant
pressure line ps give

Toas Tos
S9 —s1=¢pln 53— sy =cpln
03ss To3s
and
Tgs T3

83— 81 =Cpln 33—32:cpln—T—

T3SS 3s



148 STEAM TURBINES

from which
Tos T3 Toss  Tss

= and =
TOSs T3s T03ss T3ss

and from these it follows that

(5.11)

Toz _ Toszs _ Tosss
TB T3s T3ss

Expressing these temperature ratios in terms of Mach numbers yields

TO3s
TBs

T3 vy—1, 5
— =1+ -—M.
Ty T M

v 1 2 T03ss Y — 1 2
=1 M. =1 M. 5.12
+ 2 3s T3ss + 9 3ss ( )

so that M3 = Mss = M3,
The stage efficiency for a pressure-compounded stage is the total-to-total efficiency

e = ho1 — hos

L

7 hoy — hosss

which can be recast into the form
1 h — h h - h s h s h 88
Ly _ N3 = o3ss _ Ros — os + hos 03 (5.13)
Mt ho1 — ho3 ho1 — hos

Subtracting one from each side of both Eqs. (5.11), multiplying by c,, and rearranging
gives

Toss
hos — hozs = %(hs — hss) hozs — hozss = 7 (h3s — Rass)

Substituting these into Eq. (5.13) leads to

Tozs To3ss
- hss — h
i 1= T3s (h3 h3$) + T3$S ( 3s 333)
Tt w

(5.14)

or, since the temperature ratios are the same, according to Egs. (5.12), this expression for
efficiency becomes

-1
1 (1 + ’YTM??> (hB - h3s + h2 - h2s)

Tht w

(5.15)

The Mach number at the exit of the rotor is quite low and is often set to zero. It is, of
course, easily determined once the work and exit velocity have been calculated. Then

w V2 V3
Tos =101 — — Ty = Tha — —2- and Ma =
03 01 & 3 03 2, 3 JRT,
Ignoring the Mach number and introducing the static enthalpy loss coefficients gives
1 W3 + (VS
_ 1= SeWs +onVy (5.16)

% 2w
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The relationship W% = ¢4 W2 may be substituted into this, giving

1 1= CREgWS + (N VE
Mt 2w
or 0
w
Tt 5.17)

- CRC%{WQ + CNV22 + 2w
The relative velocity Wy can be written as
W2 =VE - 2VaUsinay + U?
so that
1 B Crek (VE — 2VoUsinag + U?) + NVE

— =1
Tt 2w

The work delivered by the stage is
w = U(Vug — V()3) = U(Wug - W ) = U(l + CR)Wug = U(l + CR)(V2 sinog — U)

Substituting A\ = U/V5 into the previous expression for the stage efficiency, it takes the

form
1o Cred (1 — 2Xsinag + A2) + (v
Net B 2A(1 + er)(sinag — A)

Defining the quantity fi as

= A2~ 2sinag + 1+ (n(1+ (R)/Cr
PO G+ VIT GR/CR)(Asinas — A2)

in which the relation cg = 1/+/1 + (g has been used, the stage efficiency can now be
written as

1
1+ fi
from which it is clear that f7, is a measure of the losses. The maximum value for the effi-

ciency of a pressure-compounded stage is obtained by minimizing fi. Thus differentiating
it with respect to A and setting the result to zero gives

\2 2(¢r + (n(1 + CR)))\ N (r+n(1+¢R)
(r sin (R

Tt

=0

Of the two roots

U Gt (1 Gr) /(G G+ )G+ Gn(1 ) + Crsin® )

VQ o (R sin oz

)\opt =

is the correct one, as the second root leads to U/V; ratio greater than unity. This would
mean that the wheel moves faster than the approaching steam. The stage efficiency now
can be written as

_ 2A(1 + cr)(sinag — A)

~ 2M(1 4 cr)(sinaz — A) + (rei (A2 — 2Asinaz + 1) + (n

Nt (5.18)
The stage efficiencies for various nozzle angles are shown in Figure 5.6 for both a pressure-
compounded stage and for a single-stage impulse turbine with exit kinetic energy wasted.
The efficiency curves for the pressure-compounded stage are quite flat at the top and
naturally higher as the exit kinetic energy is used at the inlet of the next stage.
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Figure 5.6  Stage efficiencies of single stage impulse turbines with nozzle angles in the range from
60° to 78° with {ny = 0.02 and (r = 0.14; the exit kinetic energy is wasted for the set of graphs with
lower efficiency, and the family of graphs of higher efficiency are total-to-total efficiencies applicable
to a pressure-compounded turbine stage.

5.2.3 Blade shapes

Some details of the construction of impulse blades are considered next. The equiangular
blades are shown in the sketch Figure 5.7. The concave side of the blade is circular, drawn
with its center a distance ¢ cot 52/2 below the midchord point. Here c is the length of the
chord and the radius of the circular arc is given by

N &
~ 2sin By

To establish the geometric dimensions of the blade, a line segment of length equal to the
interblade spacing is marked off from the center along the line of symmetry. This point
becomes the center of the circular arc of the concave side of blade j. The convex side
of the blade ¢ consists of a circular arc that is drawn from the same origin and its extent
is such that a straight-line segment in the direction of the blade angle meets the exit at a
location that gives the correct spacing to the blades; that is, the radius of the arc is chosen
such that this line segment is tangent to the arc at point a. This point is chosen at the
location of the intersection of a perpendicular from the trailing edge of blade j to this line
segment. The blade at the inlet is made quite sharp, and at the outlet the blade may also
have a straight segment extending past the conventional exit plane. In a multistage turbine
the extent of the straight segment controls the spacing between the exit of the rotor and the
inlet to the next set of nozzles. These nozzles are usually designed to have an axial entry.
If the turbine operates at design the conditions and the absolute velocity at the exit is axial,
then the steam flows smoothly into these nozzles. At off-design conditions, the flow angle
at the entry will not match the metal angle of the nozzles, leading to increased losses in
the nozzles, particularly for blades with sharp edges. In order to improve steam turbine’s
operation at a fractional flow rate, absolute values of the flow angles, at both inlet and exit,
are made larger by 2° or 3° and in a multistage turbine for the blades next to the last stage
this may be 4° or 5°. For the last stage the,range from 5° to 10° is used [46].
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Impulse blading is designed to ensure equal pressures at the inlet and exit of the rotor.
However, owing to irrereversibilities, temperature increases across the rotor, and this causes
the specific volume to increase. Since mass flow rate is constant, mass balance gives

. AoWscos B, AsWscos B3
m = =

U2 U3

in which Vo = W5 cos 8z and V3 = Wj cos 3 have been used. Since f3 = —35 and
W3 < Wy, then with vs > vy, the flow area has to be increased. This is done by increasing
the height of the blade. However, it is also possible to alter the exit angle as was mentioned
above.

S
2 \W3

B, IB,|

Figure 5.7 Equiangular bucket blade shape. (Modified from Kearton [46].)

For blades that are not equiangular the absolute value of the outlet blade angle in most
impulse turbines is larger than the inlet angle. For them the radius of the concave surface

of the blade is given by
c

- sin B5 + sin | B3]

The offset between the leading and trailing edges in this case is
z = R(cos Bz — cos |Bs])

With |33] = B2 + 3° the bisector of the blade profile will lean to the right, as shown in
Figure 5.8. The channel width at the exit is given by d = b(scos|{fs| — t), in which ¢ is
the trailing edge blade thickness. For a flow with mass flow rate m and specific volume v3
mass balance gives

vy = W3Z b(scos|fB3] — t) (5.19)

in which Z is the number of blades in the rotor. For a given spacing of the blades, their
thickness and number, and for a specified mass flow rate and exit specific volume, this
equations shows that only two of the three parameters: blade height b, relative velocity
W3, and flow angle | 33|, may be chosen independently. If it is possible to accommodate
the increase in specific volume in the downstream direction by an increase in the blade
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height, then this equation shows that increasing |33| decreases the channel width d, and
this leads to an increase in the relative velocity W3. Equation (5.1) then shows that since
the trothalpy is constant, the static enthalpy decreases. A drop in static enthalpy along the
flow is associated with a drop of pressure, as process lines on a Mollier diagram show. The

Bz | ; X
f
ﬁ2 IB l |B3|
/4 3

Figure 5.8  Bucket construction details for unequal blade angles. (Modified from Kearton [46].)

acceleration of the flow increases the force on the blade, for by the momentum principle
F, = m<Vu2 —Vu ) = m(WuZ - Wu?;)

and since W3 is negative, an increase in its magnitude increases the force component F,.
It has become conventional to call this additional force a reaction force in analogy to the
thrust force given to a rocket being a reaction to the exit momentum leaving the rocket
nozzle. Reaction turbines are discussed more fully in the next chapter.

5.2.4 Velocity compounding

A second way of compounding a turbine was developed by the American Charles Gordon
Curtis (1860-1953). In his design steam first enters an impulse stage, and as it leaves this
stage, it enters a stator row of equiangular vanes. They redirect it to the second rotor row
of equiangular blades, but of course with a different magnitude for their angles than in the
first row. All the pressure drop takes place in the upstream nozzles, and thus no further
reduction of pressure takes place as the steam moves through the downstream stages. There
are practical reasons for not fitting the turbine by more than four stages. Namely, work
done by later stages drops rapidly. In this kind of Curtis staging, velocity is said to be
compounded from one stage to the next.
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Consider an n-stage Curtis turbine with equal velocity coefficients ¢, for each blade
row. Analysis of the first stage is the same as for a single-stage impulse turbine. Work
delivered is

Win = U(VuQ - Vu ) = U(WuQ - Wu3)

As was shown above for equiangular blades, W3 = —c, W2, and work delivered by the
first stage may be written as
wiy, = U1 + ¢y ) Wae

In the same way work delivered by the second and third stages are
Waon = U(l + Cv)Wu4

and
Wsp = U(l + Cv)WuG

If the relative velocity W4 is related to W2 and W, is related to W4, work from each
stage can be expressed in terms of W,,». With V4 = —¢, V, 3 for equiangular stator blades,
W4 can be written as

Wu=Vu—-U=—V,3—-U-= —CV(Wug + U) -U= _CV(—Cqu2 =+ U) -U
in which W3 = —c¢, W2 has been used. Hence the final result is
Wya = EWyz — (1 +¢,)U

Similarly
Wue = C%Wu4 — (1 + CV)U

Substituting W,,4 from the previous expression into this gives
W = ciWao — (1 4+ ¢,)(1 + AU

Work delivered by each of the three rotors is then

wi, = U +¢y)(Vasinag — U)

wap = U(1 +¢,)(Vasinay — U) — (1 +¢,)(1 +¢,)U?

Wiy, = U(14¢,)cd (Vasinag — U) — (1 +¢,)(1 4+ ¢y + 2 + 3)U?
Work delivered by the next stage is easily shown to be

Wan = U1+ ¢,)E(Vasinag —U) — (14 ¢) (1 + ey + 2+ &+t + S)U?

Inspection of these shows that work delivered by the nth stage is*

2n—2
Wen = U(1 +¢,)c2" 2 (Vasinag — U) — (14 ¢,) Z U
i=1
which can also be written as
2n—2 . I+e 2n—2\y72
Wpn = U1+ ¢y)ei” *(Vasinag —U) — T (1—c" U (5.20)

4That this conjecture is true can be shown by first proving by mathematical induction the three term recurrence
relationship w; 42, — (1 + c?,)wijq,n + c?,wi,n = 0 bgtween the stages and solving this difference equation.
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Optimum operating conditions are now developed for turbines with different numbers
of wheels. Work delivered by the single wheel of single-stage turbine is given by

wy = U(1 + ¢y)(Vosinag — U)
and the optimum blade speed was shown in the beginning of this chapter to be

v 1 ina
— = sl
Vo 2 2

At the optimum speed work from a single-stage turbine is

_ 1+¢,

wy = V2 sin? oy

and if ¢, = 1, this is
1
wy = §V22 sin? oy
Work delivered by a two-wheel Curtis turbine is, wg = w12 + wag, Or
we =U(l+¢,)1 4+ ¢,)(Vasinag — U) — (1 +¢,)(1 4 ¢, )U?

and when this is differentiated with respect to U and the result is set to zero, the optimum
blade speed is found to be
U  (1+c2)sinag

Vo 22+ ¢y + ¢2)

For ¢, = 1 this reduces to

Uu 1,

— = -sina

I
Hence a two-wheel Curtis turbine can be operated at about one-half the shaft speed of a
single-stage impulse turbine. At the optimum speed, work delivered by a two-wheel turbine
is as follows:

(1+c)(1+c2)?

42+ ¢, +c2)

Wy = Vi sin? ary

For ¢, = 1 this reduces to
1 .
Wy = §V22 sin? am

which is exactly the same as in a single-stage turbine. For a three-wheel Curtis turbine
work delivered is w3 = wj3 + woz + was, and the expression for the work, when written
in full, is

w3 = U(l+c¢,) (142 +cd) (Vo sinag — U)—(1+¢y ) (e, +c24+c3) U2~ (14c, ) (14¢, ) U?
Differentiating this to determine the value of blade speed for which work is maximum gives

U (14 c2 +cd)sinas
Vo 2[04+c2+e)+(14e+E+c3)+(1+c¢)]

and for ¢, = 1 this reduces to
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and the work delivered at this speed is

Ite)d+cf+ch)® oo
— v v V
Y AB eyt 22 B4 chy 2o

Finally, the optimum blade speed for a four-wheel turbine is

U (142 +ct +c8)sinay

Vo 2[4+t 4+ + (1o ++d et +e)+(1+e +c2+¢3)+(1+cy)]

and work delivered at this speed is

(L+e)(+ef +c+cb)?
w, =
T 44+ 30, +3¢2 + 263 + 2¢2 + 5+ 5)

Vi sin® o

Although velocity compounding with four wheels have been built in the past, they are no
longer in use.

If ¢, = 1 for a two wheel turbine the ratio of the work done is 3:1 between the
first and second stage. If further stages are included, the work ratios become 5:3:1 and
7:5:3:1 for three and four stage turbines respectively, and the optimum blade speeds
dropto U = sinapV5/6 and U = sinasV>2/8. As has been shown, addition of successive
stages does not increase the amount of work delivered by the turbine in the ideal case, and
its advantage lies entirely in the reduction of the shaft speed. When irreversibilites are
taken into account turbines with multiple stages deliver less work than does a single-stage
impulse turbine.

B EXAMPLE 5.3

Consider a velocity-compounded two-stage steam turbine. The velocity at the inlet
to the nozzle is axial and it leaves the nozzle with speed Vo, = 850m/s at angle
as = 67°. The blade speed is U = 195.6m/s. The velocity coefficient for the
nozzie is cy = 0.967 and for the rotors they are cg; = 0.939 and cgy = 0.971.
For the stator between the rotors it is ¢g = 0.954. The rotors and the stator are
equiangular. Find the efficiency of the turbine.

Solution: The axial and tangential velocity components are
Vo = Vacosas = 850 cos(67°) = 332.1m/s
Ve = Vasinas = 850sin(67°) = 782.4m/s
The relative velocity components are Wy = Vo = 332.1m/s and
Wya = Vo — U =782.4 — 195.6 = 586.8 m/s

so that
Wy = ngz + WSQ = 4/332.12 + 586.8% = 674.3m/s

and the flow angle becomes

586.
By = tan™! (3//“2> =tan~" (33%) = 60.49°
x2 .
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The flow angle of the relative velocity leaving the first rotor is 83 = —60.49°, and
its relative velocity is
W3 = criWa = 0.939 - 674.3 = 633.2m/s
so that its components are
W3 = W3 cos 3 = 633.2 cos(—60.49°) = 311.9m/s

W3 = Wssin 3 = 633.25in(—60.49°) = —551.0m/s

The axial component of the absolute velocity entering the stator is V3 = Wy3 =
311.9m/s, and its tangential component is

Vs = Wys +U = —-551.0 4+ 195.6 = ~355.4m/s

Therefore

=1/V& + V2 = /31192 4 355.42 = 472.9m/s

and the flow angle is

Vis ~355.4
=tan"! | = | = tan~! = —48.74°
@3 = tan (VI;),) an (311.9)

The flow angle leaving the stator is vy = —ag = 48.74° and the magnitude of the
velocity is

Vi=10c5V3 =0.954-472.9 = 451.1m/s
The components are

Vs = Vacosay = 451.1 cos(48.74°) = 297.5m/s
Vg = Vysinay = 451.1sin(48.74°) = 339.1m/s

The axial component of the redative velocity is Wos = Vp4 = 297.5m/s, and its
tangential component is

Wya = Vg — U =339.1 — 195.6 = 143.5m/s

so that
Wy = \/Wz24 + W34 = 1/297.52 + 143.52 = 330.3m/s

and the flow angle is

” _, [ 143.
B4 = tan™! (KV/ 4) = tan~? (%) = 25.75°
x4 .

At the inlet of the second rotor relative velocity is at the angle 85 = — 34 = —25.75°,
and its relative velocity is

W5 = craWy = 0.971 - 330.3 = 320.7m/s
so that its components are

w5 = Wscos 85 = 320.7 cos(—25.75°) = 288.9m/s



IMPULSE TURBINES 157

Wys = Wssin 85 = 320.7sin(—25.75°) = —139.3m/s

The axial component of the absolute velocity leaving the second rotor is V5 =
Wes = 288.89 m /s, and its tangential component is

Vs = Wys +U = —139.3 + 195.6 = 56.3m/s

For the exit velocity, this gives the value

Vs = y/V4 + V2 = /28892 + 56.32 = 204.3m/s

and the flow angle is

BWAZ _ 56.3 o
a5 = tan ! <ﬁz> = tan~! (m) = 11.03

Work delivered by the two stages are
wyg = U(Vya ~ Viuz) = 195.6(782.4 + 355.4) = 222.6 kJ /kg
wag = U(Vye — Vus) = 195.6(339.1 — 56.3) = 55.3kJ /kg
so the total work is
wo = Wiz + wag = 222.6 + 55.3 = 277.9k]J /kg
If all the velocity coefficients had been equal to ¢, = 0.96, the work would have been

(1 + o) (1 +c,)?

) .
B te td) Vs sin“ag = 285.4kJ /kg

Wo =

The total-to-total efficiency is

1 B A GRaWE 4 GV + GV 4 vV
Mt 2w
With
1 1 1 1
= 5 —1=——— —1=0.0694 = —l=—— —1=10.0988
N & 0.9672 s 2 0.9542
and
1 1 1 1
=5 —1=———1=0.1341 = —1=—— —1=0.0606
Cr1=o 0.9392 ‘R2= 7 0.9712

the reciprocal of efficiency is

1. 294.3240.0606-320.724-0.0988-451.124+0.1341-633.2240.0694 - 8502
Mt 2. 277,890

= 1.390
so that ¢ = 0.719.
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5.3 STAGE WITH ZERO REACTION

A stage design that is closely related to the impulse stage is one with zero reaction. As
Eq. (4.18) shows, for such a stage W3 = W5, and since trothalpy does not change across
the rotor, neither does the static enthalpy. If the axial velocity is constant, then the blades

need to be equiangular with 83 = — (5. The processes lines are shown in Figure 5.9. If the
p01 p02
hovhoz 01 Y Y
Rotor
A\
AN
A\ w
A\ Por |-\ ENTTE +vZ
A~ L
A h03 i Pos fws
| TN T a0 - 03 T~
A\ w2 ! )
1 3 p 1V
h h , 2 P, 2 +3
\/3 2 T3 - ——— Fmitet
2s,
B3\_< U hy / s
w.
’ h3ss 3ss
! !
s, s, s, s

Figure 5.9 Process lines for a turbine with 0% reaction.

exit kinetic energy is wasted, the stage efficiency is the total-to-static efficiency:

_ hor — hos
s hOl - h3ss
This is now rewritten in the form
L hos—hass _ 5Vi + hg — hass
s ho1 — hosz hor — hos

which can be recast further as

1 1= %V32 + h3 — has + hzs — h3ss _ V32 + CRWBS + CNVQZ

s hotr — hos 2w

The work delivered by the stage is
w=U(Vya — Viuz) = UWya — Wys) = 2UW,2 = 2U(Vasinas — U)
As before, the component equations for velocities are
W3 cos B3 = V3 cosag Wssinfs + U = Vasinas
and squaring and adding them gives

VEZ = W2 + 2UWssin B3 + U?
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Since W3 = W5 and 33 = — 3o, this can be written as
Vi = W3 — 2UWysin By + U?

Similarly
Wi cos B2 = Vo cos ag Wasin By = Vosinag — U

which when squared and added give
W2 = Vi —2UVysinag + U?

When these are included in the expression for efficiency, it takes the form

|| _ V- 4UVisinas +4U° + Gr(VF — 2UVssinay + U%) + GuVa
Nts B U (Vasina — U)
This can be written as 1
s = m

in which, after the substitution A = U/V5, has been made, fi, is given by

= 1 —4Asinag + 422 + (r(1 — 2Xsinag + A?) + (n
b AX(sina — A)

The maximum efficiency is obtained by minimizing the loss fr,. Thus differentiating f,
with respect to A and setting it to zero yields

A2 _ 2(1+C‘R+CN))\+ 1+ +0N _
CRSIHCYQ CR

and the maximum efficiency is at the speed ratio

k}+@+@—¢a+@+@m+@+@—@mwg

(R sin s

The efficiency may be written as

B 4A(sinag — A)
1+ GR(O2—2Xsinag + 1) + ¢y

These results are shown as the lower set of curves in Figure 5.10. The efficiencies of a
zero reaction stage for various nozzle angles are slightly lower than those for the pressure-
compounded impulse stage shown in Figure 5.6. The graphs for a 0% repeating stage
are also shown. Both are denoted by 7, which is to interpreted appropriately, either as
repeating stage, or as single stage with kinetic energy wasted.

The efficiency of a repeating stage is obtained from

d\(sinag — A)
((r — )N + (4 — 2(r)Asinaz + (r + (N

with maxima at speed ratios

Tts

Tt =

N RFGs \/(CR +(N)(Gr + (s — Crsin® az)
a CRSiIlQQ

These are left to be worked out as an exercise.
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Figure 5.10  Stage efficiencies of single-stage and pressure-compounded zero-reaction turbines
with nozzle angles in the range from 60° to 78° with {x = 0.02 and (g = 0.14; the exit kinetic
energy is wasted for the set of graphs with lower efficiency, and the family of graphs of higher
efficiency are total-to-total efficiencies applicable to a pressure-compounded turbine stage.

5.4 LOSS COEFFICIENTS

A simple correlation for the loss coefficients was developed by Soderberg [72]. In the
definition

1
h—hy = =CV?
3¢V

V replaced by V; for the stator and by W for the rotor. The loss coefficients are calculated
from

¢ = 0.04 4 0.06 (ﬁ)z

in which ¢ is the amount of turning of the flow. For the nozzles the amount of turning is
EN = ag — ag, and for the rotor it is eg = 2 - 3. In both expressions the angles are in
degrees. Soderberg’s correlation is based on steam turbine designs, which commonly have
axial entry into the nozzles, but it gives good results for the flow through the rotor as well,
for the loss appears to depend mainly on the deflection of the flow.

M EXAMPLE 5.4

Steam enters the nozzles of single-stage impuise turbine axially and leaves from the
nozzles with speed Vo = 555m/s at angle ap = 74°. The blade speed is U =
260 m/s. The exit flow angle of the relative velocity from the rotor is 83 = —65°.
What is the efficiency of the stage if the exit kinetic energy is wasted?

Solution: The tangential and axial velocities at the exit of the nozzles are
Vg = Vasinan = 555 - sin(74°) = 533.5m/s
Vaa = Vacosaz = 555 - cos(74°) = 153.0m/s

The components of the relative velocity at this location are

Wz = Vg — U = 533.5 — 260 = 273.5m/s W = Vyp = 153.0m/s
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Hence
Wa = /W2 + W2, = 1/153.02 + 273.52 = 313.4m/s
and the flow angle of the relative velocity is
Wuo 273.5
=tan"' [ 22} =tan ! | —— | =60.78°
Pz = tan (Wx2> an (153.0)

The amount of turning by the nozzles and by the rotor blades are

eN = az — ay = T74° er = f2 — B3 = 60.78° + 65° = 125.78°

The static enthalpy loss coefficients are

74\? 125.78\ >
(N 004+006(100) 0.07286 (r=0.0 +006< 100 ) 0.1349
and the velocity coefficients are therefore
1 1
eN = ———== = 0.9654 R = ———== = 0.9387
RRRVAEEY T VIE G

At the exit of the rotor the relative velocity has the magnitude
W3 = cgWo = 0.9387 - 313.4 = 294.2m/s
and its components are
Wus = Wasin 3 = 294.2sin(—65°) = —266.6 m/s
Wys = Wi cos 3 = 294.2 cos(—65°) = 124.3m/s
The components of the absolute velocity at the exit are
Vus = U 4+ Wy3 =260 — 266.6 = —6.6m/s  Vy3 = W,3 =124.5m/s

Hence
Vaf3 + Vu23 =1/124.32 + 6.62 = 124.5m/s

and the flow angle is

1 { Vs _, [ —6.6
=t T2 ) =4 H—= ) = =3.04°
o3 an <Vz3) an (134-3> 3.0

The work delivered by the turbine is
w = U(Vya — Vu3) = 260(533.5 + 6.60) = 140,430 J /kg
The nozzle efficiency is
N = ¢4 = 0.96542 = 0.9321
and the rotor efficiency is

B 2w B 2140, 426 09118
C 2w VE+ RW2E 2-140,426 + 124.52 4 0.1349 - 294.22 ~

The turbine efficiency is therefore

T = N7 = 0.9321 - 0.9118 = 0.850

R
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EXERCISES

5.1 Steam leaves the nozzles of a de Laval turbine with the velocity V2 = 1000 m/s. The
flow angle from the nozzle is oo = 70°. The blade velocity is U = 360 m/s, and the mass
flow rate is 800 kg /h. Take the rotor velocity coefficient to be cg = 0.8. The rotor blade
is equiangular. Draw the velocity diagrams and determine (a) the flow angle of the relative
velocity at the rotor, (b) the relative velocity of the steam entering the blade row, (c) the
tangential force on the blades, (d) the axial thrust on the blades, (¢) the power developed,
and (e) the rotor efficiency.

5.2 The diameter of a wheel of a single-stage impulse turbine is 1060 mm and shaft
speed, 3000 rpm. The nozzle angle is 72°, and the ratio of the blade speed to the speed at
which steam issues from the nozzles is 0.42. The ratio of the relative velocity leaving the
blades is 0.84 of that entering the blades. The outlet flow angle of the relative velocity is 3°
more than the inlet flow angle. The mass flow rate of steam is 7.23 kg /s. Draw the velocity
diagram for the blades and determine (a) the axial thrust on the blades, (b) the tangential
force on the blades, (c) power developed by the blade row, and (d) rotor efficiency.

5.3 The wheel diameter of a single-stage impulse steam turbine is 400 mm, and the shaft
speed is 3000 rpm. The steam issues from nozzles at velocity 275m/s at the nozzle angle
of 70°. The rotor blades are equiangular, and friction reduces the relative velocity as the
steam flows through the blade row to 0.86 times the entering velocity. Find the power
developed by the wheel when the axial thrust is £, = 120N.

5.4 Steam issues from the nozzles of a single-stage impulse turbine with the velocity
4001m/s. The nozzle angle is at 74°. The absolute velocity at the exit is 94 m/s, and its
direction is —8.2°. Assuming that the blades are equiangular, find (a) the power developed
by the blade row when the steam flow rate is 7.3 kg /s and (b) the rate of irreversible energy
conversion per kilogram of steam flowing through the rotor.

5.5 Carry out the steps in the development of the expression for ratio of the optimum
blade speed to the steam velocity for a single-stage impulse turbine with equiangular blades.
Note that this expression is independent of the velocity coefficient. Carry out the algebra
to obtain the expression for the rotor efficiency at this condition. (a) Find the numerical
value for the velocity ratio when the nozzle angle is 76°. (b) Find the rotor efficiency at this
condition, assuming that cg = 0.9. (c) Find the flow angle of the relative velocity entering
the blades at the optimum condition.

5.6 Steam flows from a set of nozzles of a single-stage impulse turbine at vy = 78° with
the velocity V2 = 305 m/s. The blade speed is U = 146 m/s. The outlet flow angle of the
relative velocity is 3° greater than its inlet angle, and the velocity coefficient is cg = 0.84.
The nozzle velocity coefficient is cy = 1. The power delivered by the wheel is 1000 kW.
Draw the velocity diagrams at the inlet and outlet of the blades. Calculate the mass flow
rate of steam.

5.7 Steam flows from a set of nozzles of a single-stage impulse turbine at an angle
ag = 70°. (a). Find the maximum total-to-static efficiency given velocity coefficients
cr = 0.83 and ey = 0.98. (b) If the rotor efficiency is 90% of its maximum value, what
are the possible outlet flow angles for the relative velocity.

5.8 The nozzles of a single-stage impulse turbine have a wall thickness ¢ = 0.3 cm and
height b = 15cm. The mean diameter of the wheel is 1160 mm and the nozzle angle is
g = 72°. The number of nozzles in a ring is 72. The specific volume of steam at the exit
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of the nozzles is 15.3 m®/kg and the velocity there is V, = 366 m/s. (a) Find the mass flow
rate of steam through the steam nozzle ring. (b) Find the power developed by the blades
for an impulse wheel of equiangular blades, given that the velocity coefficient is cg = 0.86
and ¢y = 1.0. The shaft turns at 3000 rpm.

5.9 The isentropic static enthalpy change across a stage of a single-stage impulse turbine
is Ahs = 22kJ/kg. The nozzle exit angle is «s = 74°. The mean diameter of the wheel
is 148 cm and the shaft turns at 1500 rpm. The blades are equiangular with a velocity
coefficient of cg = 0.87. The nozzle velocity coefficient is cy = 0.98. (a) Find the steam
velocity at the exit from the nozzles. (b) Find the flow angles of the relative velocity at the
inlet and exit of the wheel. (c¢) Find the overall efficiency of the stage.

5.10 Animpulse turbine has a nozzle angle oy = 72° and steam velocity Vo = 244 m/s.
The velocity coefficient for the rotor blades is cg = 0.85, and the nozzle efficiency is
nx = 0.92. The output power generated by the wheel is W = 562 kW when the mass flow
rate is 71 = 23 kg/s. Find the total-to-static efficiency of the turbine.

511 A two-row velocity-compounded impulse wheel is part of a steam turbine with
many other stages. The steam velocity from the nozzles is Vo = 580 m/s, and the mean
speed of the blades is U = 116 m/s. The flow angle leaving the nozzle is ap = 74°, and

the flow angle of the relative velocity leaving the first set of rotor blades is 83 = —72°. The
absolute velocity of the flow as it leaves the stator vanes between the two rotors is ay = 68°,
and the outlet angle of the relative velocity leaving the second rotor is 85 = —54°. The

steam flow rate is 7h = 2.4 kg/s. The velocity coefficient is ¢, = 0.84 for both the stator
and the rotor row. (a) Find the axial thrust from each wheel. (b) Find the tangential thrust
from each wheel. (c) Find the total-to-static efficiency of the rotors defined as the work out
divided by the kinetic energy available from the nozzles.

5.12 A velocity-compounded impuise wheel has two rows of moving blades with a mean
diameter of D = 72cm. The shaft rotates at 3000 rpm. Steam issues from the nozzles
at angle oy = 74° with velocity V2 = 555m/s. The mass flow rate is 7o = 5.1kg/s.
The energy loss through each of the moving blades is 24% of the kinetic energy entering
the blades, based on the relative velocity. Steam leaves the first set of moving blades at
B3 = —72° the guide vanes between the rows at oy = 68° and the second set of moving
blades at 55 = —52°. (a) Draw the velocity diagrams and find the flow angles at the blade
inlets both for absolute and relative velocities. (b) Find the power developed by each row
of blades. (c) Find the rotor efficiency as a whole.

5.13 Steam flows from the nozzles of a 0% repeating stage at an angle ax = 69° and
speed V2 = 450 m/s and enters the rotor with blade speed moving at U = 200 m/s. Find
(a) its efficiency when the loss coefficients are calculated from Soderberg’s correlation and
(b) the work delivered by the stage.

5.14 For arepeating stage the efficiency of a 0% reaction, by neglecting the temperature
factors show that the approximate form of the total-to-total efficiency is

A (sinag — A)
(Cr —4)A%2 + (4 — 2¢r)Asinag + Cr + (N

and its maximum values is at the condition A = U/V, given by

Tht =

Gt Gs = /(G + GG+ Gs — Gasin® o)

A -
Cr sin o




CHAPTER 6

AXIAL TURBINES

In the previous chapter the impulse stages of steam turbines were analyzed. This chapter
extends the development of axial turbine theory to reaction turbines. These include gas
turbines and all except the leading stages of steam turbines. The extent of the global steam
turbine industry was mentioned in the last chapter. Gas turbine industry is even larger,
owing to the use of gas turbine in a jet engine. Gas turbines are also used for electric
power generation in central station power plants. In addition, they drive the large pipeline
compressors that transmit natural gas across continents and provide power on oil-drilling
platforms.

The chapter begins with the development of the working equations for the reaction
stages. These relate the flow angles of the absolute and relative velocities to the degree of
reaction, flow coefficient, and the blade-loading coefficient. Three-dimensional aspects of
the flow are considered next. Then semiempirical theories are introduced to calculate the
static enthalpy rise caused by internal heating, which is then used to develop an expression
for the stage efficiency. After this the equations used to calculate the stagnation pressure
losses across the stator and the rotor are developed.

6.1 INTRODUCTION

Two adjacent blades of an axial reaction turbine are shown in Figure 6.1. Their spacing
along the periphery of the disk is called the pitch. The pitch increases in the radial direction
from the Aub of the rotor to its casing. The nominal value of the pitch is at the mean radius.
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The lateral boundaries of the flow channel are along the pressure and suction sides of the
blades and the endwalls along the hub and the casing.

The flow is from front to back in Figure 6.1, The blade chord is the straight distance
from the leading edge of the blade to its trailing edge. Its projection in the axial direction
is the axial chord. The path of a fluid particle, as it passes through the blade passage, is
curved and thus longer than the chord.

Tip leakage

Suction side

o]

Figure 6.1 Flow channel between two adjacent turbine blades.

The annular region formed from the blade passage areas is called the flow annulus. The
annulus area is calculated as

A =21rg(re —ry) = (r2 — i)

if the mean radius ry, is taken as the arithmetic average

Tm = % (re + 1)
of the casing radius 7. and the hub radius ry,. The blade height, or span, is b = r. — r, and
2nry, = Zs, in which Z is the number of blades and s is the mean pitch or spacing of the
blades. Therefore the annulus area is also A = Zsb.
An alternative is to define a mean radius such that the flow area from it to the hub and
to the casing are equal. This definition leads to the equality

) 2y _ 2 -2
7T(""m - Th) - 7T(T'C - Tm)
which, when solved for 7, gives

ré+
2

m =
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In using this RMS value of the radius, the annulus area is clearly

A=r(s? =) = 2m(r, = ) = 2m(r2 ~ )
The distance between the tip of the rotor blade and the casing is called a tip clearance. This
is kept small in order to prevent tip leakage flow in the rotor. Because the tip clearance is
small, in the discussion that follows the distinction between the casing radius and tip radius
is usually ignored. The stator blades, as shown in Figure 6.2, are fixed to the casing, and
their tips are near the hub of the rotor blades. In many designs, their tips are fastened to a
diaphragm that extends inward. At the end of the diaphragm a labyrinth seal separates it
from the rotating shaft. The seal prevents the leakage flow that is caused by the pressure
difference across the stator. Since the seal is located close to the shaft, the flow area for the
possible leakage flow is small.

-

b

L
)

Figure 6.2 A stage of an axial turbine.

Axial turbines are commonly designed such that the axial velocity remains constant, or
nearly so. Therefore as the gas expands through the turbine the annulus area must increase
from stage to stage. This flaring of the annulus is accomplished by changing the hub radius,
the casing radius, or both. If both are changed the mean radius can be kept constant.

6.2 TURBINE STAGE ANALYSIS

Consider a turbine stage as shown schematically in Figure 6.3. It consists of a stator
followed by a rotor. As in the previous chapter on steam turbines, the inlet to the stage is
station 1 and the outlet from the stator is station 2, which is is also the inlet to the rotor. The
outlet from the rotor, and hence the stage, is station 3. For a normal stage in a multistage
machine the magnitude and direction of the velocity at the outlet of the rotor are the same
as those at the inlet to the stator. Pressure, temperature, and density naturally change from
stage to stage.
Work delivered by a turbine stage is given by the Euler equation for turbomachinery

w = U(Vug - Vu3) - U(Wu2 t Wug) (61)
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Vv, U
U
S W
Rot
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v, P, u
Stator Turbine stage W,

Figure 6.3 Velocity triangles for a turbine stage.

For the situation shown in Figure 6.3, the inlet flow angle of the absolute velocity is negative
as the flow enters the stator. For the rotor a deflection is the difference in the swirl velocities
Vg — Vus = Wyo — W3, It is also measured by the amount of turning, 32 — 3. The
amount of turning across the stator is given by a, — «;. Clearly, if a stage is to deliver
a large amount of the work, for a given blade velocity, turning across the rotor must be
large. A typical value is 70°, and it rarely exceeds 90°. A large deflection also means that
the average pressure difference between the pressure and suction sides of a blade must be
large. Such blades are said to be heavily loaded.

In order to achieve a large amount of turning in the rotor, the stator must also turn the
flow, but in the opposite direction. The velocity diagrams in Figure 6.3 show that, as the
stator deflects the flow toward the direction of rotation, the stream velocity increases. Since
the stagnation enthalpy remains constant across the stator, it follows that

1 1 1
h1+§V12=h2+§V22 hl—hgz-i(x@—vf)

and the increase in kinetic energy leads to a drop in the static enthalpy. This expression
may be written as

1
(ug — uz) + prv1 — pave = 2 (V# - VP)

It shows that the increase in kinetic energy comes from conversion of internal energy and
from the difference in the flow work done in pushing the fluid into and out of the flow
passage. This may also be written in a differential form. By considering station 2 to be an
arbitrary location, and differentiating, yields

du d(pv) _1dv? _dV

e de 240 dl
in which df is an' element of length along the flow path. This shows that a drop in the
internal energy increases the kinetic energy of the flow, as does the net pv work term in
this small section of the channel. That both terms have the same sign is clear for an ideal
gas, for then du = ¢, dT and d(pv) = RdT and since internal energy drops in the flow
direction, so does temperature and pv. The ratio of these contributions is

du_l
dipv) ~v-1

with the numerical value corresponding to v = %. Thus the conversion of internal energy
contributes more to the increase in kinetic energy than the flow work.
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As the gas passes through the rotor, it is directed back toward the axis, reducing its
kinetic energy. The work delivered by the stage is given by

1
w = hoz — hoz = ha — hg + 3 (V& —V3) (6.2)

With the reaction defined as the static enthalpy drop across the rotor divided by the static
enthalpy drop across the stage, for positive stage reaction he > hs. An exception to this is
an expansion at constant pressure in impulse blades. Equation (6.2) may be written as

1
w = up — U3 + Pavz — Pavs + 3 (Vi = Vi) (6.3)

and, since each term is expected to be positive, each contributes to the work delivered by
the turbine. This is illustrated in the following example.

B EXAMPLE 6.1

Consider the flow of combustion gases, withy = 4 and R = 287 J/(kg - K), through
a normal turbine stage such that the flow angle at the exit of the rotor is the same
as that entering the stator, and o; = a3 = —14.4°. The inlet total temperature is
To; = 1200K. The axial velocity is constant 1, = 280m/s. The flow leaves the
stator at angle a; = 57.7°. The mean radius of the rotor is » = 17 cm, and the rotor
turns at 20, 000 rpm. (a) Find the work done and the drop in stagnation temperature
across the stage. (b) Determine the flow angles of the relative velocity at the inlet
and exit of the rotor. (c) Calculate the contribution of internal energy and flow work
in increasing the kinetic energy through the stator. (d) Calculate the contributions of
internal energy, flow work, and kinetic energy to work delivered by the stage.

Solution: (a,b) The specific heats at constant pressure and volume for the gas are

R
cp:—,y7 C=4-287=1148)/(kg - K) c,=cp—R=1148-287=861J/(kg - K)
The blade velocity is
0.17 - 20,000 -
U=rQ= Tﬂ — 356.0m/s

The tangential component and the magnitude of the absolute velocity leaving the
stator are
Ve = Vp tanag = 280tan(57.7°) = 442.9m/s

Vo= 1/V2+ V2 = V2802 + 442.92 = 524.0m/s

The tangential component and the flow angle of the relative velocity at the rotor exit
are
Wya = Vo — U = 442.9 — 356.0 = 86.9m/s

W2 86.9
_ -1 U =t -1 {22 _ 90
B2 = tan (Wz>“an <280>—172

At the exit of the rotor for a normal stage ovs = vy and the velocities are

Vus = Vi tanaz = 280 tan(—14.4°) = —~71.9m/s
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Vs = 1/V2 + V% = /2802 + 71.92 = 289.1m/s

The tangential component and the flow angle of the relative velocity there are

Wys = Vs —U = —71.9 — 356.0 = —427.9m/s

Bs = tan~! <w‘;;3> =tan ™! (4;2;9) = —56.8°

Work delivered by the turbine is

w = U{(Vya — Viu3) = 356.0(442.9 + 71.9) = 183.3kJ /kg
and the stagnation temperature drop across the rotor is

183.
AT, _ @ _ 1833

= 0 - 159.7K
o Lg%

(c) At the inlet to the stator the static temperature is given by

%% 289.12
P

At the exit of the stator the static temperature is

Ty =Too — % = 1200 — ;?jﬁg = 1200 — 119.6 = 1080.4 K
so that
uy — ug = ¢, (Ty — T2) = 0.861 (1163.6 — 1080.4) = 71.6kJ /kg
and

P11V — P2l = R(Tl — Tg) = 0287(11636 — 10804) =23.9 kJ/kg
Increase in the kinetic energy across the stator is
1 1
3 (Vi =Vv{) = 5(524.02 ~289.1%) = 95.5kJ /kg

which also equals the sum of the previous two terms.

(d) Since the stagnation temperature drop across the rotor is ATy = 159.7K, the
stagnation temperature after the rotor is

Tos = Toa — ATy = 1200 — 159.7 = 1040.3K

3 QCP 2 . 1148

The contributions to work are

Uy — uz = co(Ty — T3) = 0.861 (1080.4 — 1003.9) = 65.8kJ /kg
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and
DUy — P33 = R(T2 - Tg) = 0.287 (10804 - 10039) =219 kJ/kg

In a normal stage the increase in kinetic energy across the stator is equal to its decrease
across the rotor. Hence the decrease in kinetic energy across the rotor is

1 1
50@—4@):iﬁmo?—%gﬁ):gamaﬁg

The sums of internal energy changes and pv work, and the change in kinetic energy
across the rotor, add up to the work delivered by the stage.

]
6.3 FLOW AND LOADING COEFFICIENTS AND REACTION RATIO
The work delivered by a stage is given by
w=U(Vyg — Vi) = UWyz — Wy3)
which, if V; = W, is constant across the stage, may be written as
w = UV, (tan @z — tan az) = UV, (tan B2 — tan f3) 6.4)

Let ¢ = V. /U denote a flow coefficient and v = w/U? a blade-loading coefficient.
Then, dividing both sides of this equation by U/? gives the Euler turbine equation in a
nondimensional form as

¥ = ¢(tan ag — tan ag) (6.5)

Other names for the blade-loading coefficient are work coefficient and loading factor. In
addition to ¢ and ¢, a third nondimensional quantity of importance in the theory is the
reaction ratio R, introduced previously. It was defined as the ratio of the static enthalpy
change across the rotor to that across the entire stage. Hence

_hz—h3_hl—h3—(h1—h2)_1_h1—h2

R = = =
hy — ha hy — ha By — ha

(6.6)
Reaction naturally falls into the range 0 < R < 1, but it was seen to be slightly negative
for a pure impulse stage. This equation shows that the reaction is zero, if the entire static
enthalpy drop takes place in the stator.

Recalling that the total enthalpy of the relative motion, given by Eq. (4.13), remains
constant across a rotor in an axial stage, it follows that

1 1
h2+§W§:h3+5W§

or 1
hy —hs = 5 (W3 = W)

Hence, if Wy = W3 the reaction is zero. Across the stator the stagnation enthalpy is
constant so that

hi —hy = = (V§ = V?)

1
2
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The value of V7 is smallest for an axial entry, and this equation shows that the static enthalpy
drop across the stator increases and reaction decreases for increasing V,. In addition, a
large deflection of the flow across the stator leads to a large V5.

It is useful also to think of R in the incompressible limit, for then in an isentropic flow
across the stator internal energy remains constant and in the pv work only the pressure
changes. Thus pressure changes are directly proportional to changes in static enthalpy.
Hence in this limit a large reaction means a small pressure drop across the stator and a large
decrease in pressure across the rotor.

The reaction may be related to the flow angles by noting first that V> = V.2 + V.2 and
V# = V4 + V%, Then, for constant axial velocity V.1 = V2, and the change in enthalpy
across the stator may be written as

L2 2 12 2 2
hy —hy = §(Vu2 - Vul) = §V$ (tan o — tan 011)
For a normal stage Vi = V3, and therefore hy — hs = ho1 — hoz. With w = hg; — hgs,
Eq. (6.6) for the reaction may be written as
V2 (tan® az — tan? a3)

R=1-+% U2

or as
2

R=1- %}(tam2 ag — tan® a3) (6.7)

Substituting ¢ from Eq. (6.5) into this gives
1
R=1- §¢(tan a2 + tan ag) (6.8)

Next a is eliminated, again using Eq.( 6.5), and the important result
v=2(1-R— ¢tanas) 6.9)

is obtained. It shows that a decreasing R increases the loading. A small R means that
the pressure drop across the rotor is small, but the large loading is the result of a large
deflection. In the stator the flow leaves at high speed at large angle ao. The high kinetic
energy obtained this way becomes available for doing work on the rotor blades. The flow
is then deflected back toward the axis and beyond to a negative value of a3, so that the last
term in this equation is positive. Hence, for R fixed, an increase in the absolute value of
a3, obtained by increasing it in the direction opposite to U, leads to a large deflection and
a large value for the blade-loading factor ). Thus a fairly low value of R and high turning
gives heavily loaded blades and a compact design.
Equations (6.5) and (6.8), written as

tanog — tanasz = % (6.10)
tanas + tanag = 2 _¢2R 6.11)

when solved for the unknown angles, give
tanag = L L ¥/2 tan oy = L BT ¥/2 (6.12)

¢ 7
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Experienced turbomachinery designers choose the flow and loading coefficients and the
degree of reaction at the outset and then determine the flow angles from these equations.
These are true only for a normal stage. If the axial velocity does not remain constant, the
proper equations need to be redeveloped from the fundamental concepts.

Similar expressions are next developed for the flow angles of the relative velocity. The
Euler turbine equation may be written as

w = U(Wug — Wug) = UVz(tan,Bg — tanﬂg)
which after dividing through by U? gives
Y = ¢(tan Bz — tan f3) (6.13)

To arrive at the second equation relating the relative flow angles to the nondimensional
parameters, the reaction ratio

_ ha—h3

"~ hy—hs
is converted into an appropriate form. Since the stagnation enthalpy of the relative motion
is constant across the rotor, the relation

1 1
follows. Then, since W2 = W3, the term on the right may be rewritten in the form
1 1 1
ha —hg = E(Wz23 + W33 - Wan - W32) = §(W33 - sz) = EVf(tanz B3 — tan® B2)
In addition, for a normal stage, hy — hs = hgy —hogs = w =U 24). When this and the

previous equation are substituted into the definition of reaction ratio, it becomes

2 23, gan?2 2
_ Vi (tan® B3 — tan® Bs) or R= ?L(tanz B3 — tan? B,)

B 2 U2y T

Substituting v from Eq. (6.13) into this gives

R= —g(tan,@g, + tan fa)

This and Eq. (6.13) written as

tan By —tanfB3 = % (6.14)
tanfBg +tan By = - % (6.15)

when solved for the flow angles of the relative velocity, give
tan 83 = _R+T;!)/2 tan B = —R_T;’/}/Z (6.16)

The flow angles may now be determined if the value of the parameters ¢,1, and R are
specified. With four equations and seven variables, any three may be specified and the
other four calculated from them. One such calculation is illustrated in the next example.
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M EXAMPLE 6.2

Combustion gases withy = % and ¢, = 1148 J/(kg-K) flow through an axial turbine
stage with ¢ = 0.80 as the design value for the flow coefficient and ¢y = 1.7 for
the blade-loading coefficient. The stage is normal with flow into the stator at angle
a1 = —21.2°. The absolute velocity of the gases leaving the stator is V2 = 463 m/s.
The inlet stagnation temperature is Tp; = 1200 K, and the total-to-total efficiency is
0.89. (a) Find the flow angles for a normal stage, and the amount of turning by the
stator and the rotor. (b) Calculate the work delivered by the stage, and the drop in the
stagnation temperature. (c) Determine the static pressure ratio across the stage.

Solution: (a) With a3 = @, solving
P =2(1-R— ¢tanaz)
for R gives
R=1- % — ¢tanag =1—0.85—0.8tan(—21.2°) = 0.46

The remaining flow angles are

tan ay = LRJ—WQ = 1.737 ag = 60.08°
tan B3 = w — _1.638 Bg = —58.59°
tan p = ﬂi@ = 0.487 B = 25.97°

The amounts of turning by the stator and the rotor are
Qo — 3 — 81.270 /32 - 53 = 84.570
(b) The axial velocity is

Ve = Vi cos ap = 463 c0s(60.08°) = 231.0m/s

and the blade speed is
Ve, 231.0
U=—=——=2887
6 08 m/s

Hence the work done may be calculated from
w=yYU? = 1.7-288.72 = 141.7kJ /kg
and the drop in stagnation temperature is

w 141.7

ATy = — = =
07 ¢, 1.148

=1234K
The isentropic work is obtained by dividing the work w by the stage efficiency, which
is the total-to-total efficiency,

wo 141.7

s= 2 = 2l 1592k /k
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(c) The static temperature at the inlet is

V2 247.82
Ty =To — —+ = 1200 - ——— =1173.3K
LT T, 21148

Neither the static nor the stagnation pressure is known at the inlet, but their ratio can
be calculated from

o (LYY /11733 00130
por  \Tm S\ 1200 ) 7

The stagnation temperature at the exit of the stage comes out to be

w 141.7
Toz =To1 — — = 1200 — ——= = 1076.6 K
0BT 1.148
The exit velocity from the stage is
T 231.0
= Ya 3 = 247.8m/s

cosaz cos(—21.2°)

and therefore the static temperature at the exit is

V2 247.82
Ty = Tog — i =1094.7 — T 1049.8K
P

This can be used to calculate the ratio of static to stagnation pressure at the exit:

ps (LYY (10489 4_09043
oz \Tos “\10765/)

The stagnation temperature at the isentropic end state is determined to be

159.2
Tose = Tor — 22 — 1200 — 152

=1061.3K
p 1.1148

and the stagnation pressure ratio across the stage is therefore

pou (T \O7Y 1200 f e
po3  \ Toss S \1061.3/

The ratio of static pressures across the stage can now be determined:

pL_ pipope 091381635 o
P3  Po1 Po3 D3 0.9043 ’

The representative values for an axial turbine stage ¢» = 1.7, ¢ = 0.8 and R = 0.46
give these values for the stagnation and static pressure ratios and the amount of
turning comes out to be about 80°—85°. In addition, the stagnation pressure drop of
AT, = 123.4 K is representative for a stage.



176 AXIAL TURBINES

6.3.1 Fifty percent (50%) stage

A 50% reaction stage has equal static enthalpy drops across the stator and the rotor. For
such a stage, Eq. (6.9) reduces to

PY=1-2¢tanag 6.17)

The blades and velocity triangles are shown in Figure 6.4. To achieve a high efficiency,
the flow angle at the inlet is kept only slightly negative, but if some of the efficiency is
sacrificed to achieve higher performance, the inlet flow angle may reach ac; = —45°. For
such a stage, a flow coefficient may have a value of ¢ = 0.75, which then gives ¥ = 2.5.
Gas turbines for aircraft are designed for high performance and low weight. Hence the
number of stages is kept as low as possible and materials that withstand high stresses are
used for the turbine blades.

VX
Ty

VU

u B,
@, ViU
W2
o B Rotor a,

Stator 3

Turbine stage 1

Figure 6.4 Blading for a 50% reaction turbine.

For a 50% reaction stage Eqs. (6.12) and (6.16) for absolute and relative flow angles
reduce to

1-— 1

tan az = Wfﬁ tan ag = ;_—(;l) (6.18)
and . )

tan O3 = —;_—(;ﬁ tan B, = —2_—(;/} (6.19)
From these it is seen that

tan az = — tan fo tan as = —tan fy (6.20)
With their absolute values less than 90°, these equations are satisfied if @3 = —02 and
ag = —f3. Since W, = V, it follows that

WZ2=W24+W2 = V24+W2tan’p;

= VZ+Vitan®a, =V2+ V35, = V5
By a similar argument it can be shown that W2 = ViZ. Hence

W3 =V, Wy =V
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A combined velocity diagram is shown also in Figure 6.4. It is constructed by drawing the
inlet and exit velocity diagrams with a common side of distance U. If all velocities are
then divided by U, the diagram is normalized with a right side of length unity. The blade-
loading coefficient % can be identified as the vertical distance between the left vertices of
the two triangles. For a constant axial velocity, widths of the triangles are the same and
in a normalized diagram equal to the flow coefficient ¢. The results for the angles and
velocities show that the velocity triangles for 50% reaction stage are symmetric.

Bl EXAMPLE 6.3

Combustion gases, withy = 5 and R = 287kJ/(kg-K), flow through a 50% reaction
stage of an axial turbine, that has a total-to-total efficiency 7y, = 0.91 and design
flow coefficient ¢ = 0.80. The flow into the stator is at an angle oy = —14.0°,
and the axial velocity is V;, = 240m/s and constant across the stage. The inlet
stagnation temperature is 757 = 1200K. (a) Find the flow angles for a normal
stage, and the amount of turning by the stator and the rotor. (b) Find the work
delivered by the stage and the drop in the stagnation temperature. (c) Show that
1/ns = 1/ + ¢% /21 cos? a3 and calculate the total-to-static efficiency.

Solution: (a) The blade-loading coefficient is
Y=1-2ptanaz =1~ 2-0.8tan(—14.0°)) = 1.40

The remaining flow angles are

1 -
tan oy = ——% = 1.50 so that a9 = 56.3°

and
ﬁ3 = —Q2 = -56.3° 52 = —(Q3 = 14.0°

The amount turning by the stator and rotor are

Qg — Qg = 70.30 ﬂg - Bl = 70.30
(b) The blade speed is
V. 240

Hence the work delivered may be calculated from
w = YU? = 1.40 - 300.0° = 125.9kJ /kg

and the drop in stagnation temperature becomes ATy = w/c, = 109.7K, since
¢, = 1148 J/(kg - K). The isentropic work is

w 125.9
o= — = =2 - 138.4kJ/k
w - 0.1 38.4kJ/kg

(c) The total-to-static efficiency is obtained from

_ hor —hes _ hotr — hos _ w
hoi — has  hor — hoss + V2 /2 we +VE/2

Thts
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Assuming that V3, = V3 so that

1 ws + V,2/2cos? az 1 ¢?

Ths w o % 21) cos?as

1 0.82
= — =1.342
0.91 ta 1.40 cos?(—14°)

The total-to-static efficiency is therefore nys = 0.745.

6.3.2 Zero percent (0%) reaction stage

Consider a stage for which R = 0. Equation (6.16) then shows that

tan 83 = — tan By or Bz = —f

Assuming that the axial velocity constant, it follows from these that W, = W3. If the flow
angles were to be equal to the blade angles, then the blade would have a symmetric bucket
shape, as shown in Figure 6.5. With low reaction the blades are heavily loaded. This stage

|
vV, /lu
Vs
v
v, W, B, v Y=
a2

7174

3

v
U

4
\ A4

L§]

Figure 6.5 Blades for a 0% reaction stage.

reaction and the impulse stage were discussed in Chapter 5 for steam turbines, and the
differences between them were shown to be slight. Since the flow enters the nozzles from a
steam chest, the inlet to the nozzles is naturally axial, and if most of the pressure drop takes
place across the nozzles, the stage reaction is close to zero. Here the 0% reaction stage is
considered as a special case of a stage with an arbitrary reaction.

The normalized velocity diagram for a stage with a3 = 0 is shown on the right hand
side (RHS) of Figure 6.5. For a normal stage with axial entry and with R = 0, the relation

Y =2(1-R+ ¢tanas)

reduces to ¢ = 2. Thus the line indicating the blade loading is twice as long as blade speed
line.
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B EXAMPLE 6.4

A normal stage with R = 0 operates with axial entry. The nozzle turns the flow by
64°. (a) Find the flow coefficient. (b) What is the discharge velocity from the nozzles,
if the axial velocity is V,, = 240 m/s? (c) Calculate the work delivered by the stage
and the drop in the stagnation temperature, given gases with ¢, = 1148J/(kg - K).

Solution: (a) From
Y=2(1—R—¢tana;)

a stage with R = 0 and axial entry has ¢) = 2. Next, solving

1+9/2
¢

tan agy =

for ¢, gives
¢ = 2cot as = 2cot(64°) = 0.9755

(b) The discharge velocity is

v, 240
7 cosap  cos(64°) m/s

(c) The blade speed is

Ve 240
=—= = 246.0
6 ~ 0.9755 m/s
and the work delivered and the drop in the stagnation temperature are
9 w 121.1
= = 121.1kJ/k ATy = — = —— =1055K
w=9U I/ke 0= ., T 1.148

6.3.3 Off-design operation

When a turbine is operated away from its design conditions, the incidence of the flow
entering the blades changes, and this will increase the thermodynamic losses in the flow.
The angle at which the flow leaves the stator tends not to change, however; nor does the
angle of the relative velocity leaving the rotor. By recasting the Euler turbine equation

w = U(Vug - Vug)

in terms of the exit angles gives an equation that shows how the turbine performs under
off-design conditions. Replacing the exit velocity by

Vus =U +Wys

gives
w=U(=U - Wys + Vi) = —U? + UV, (tan oy — tan f3)

Dividing though by U? yields

¥ = —1+ ¢(tan az — tan B3) 6.21)
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The departure angle from the stator c; is positive, and the exit angle of the relative velocity
B3 from the rotor is usually negative. Therefore the term in parentheses is positive. As
these angles are close to the metal angles that are set by the design, they are fixed and the
trigonometric terms in Eq. (6.21) tend to remain constant when the machine is operated
away from its design condition. Thus Eq. (6.21) represents an operating line through the
design point.

Figure 6.6b shows this operating line. As the flow rate is increased beyond its design
value, the flow will eventually choke, and the flow coefficient no longer increases. In Figure
6.6a the velocity triangles illustrate how the incidence changes as the flow rate decreases.
The design condition is denoted by subscript d and off-design, by o. With the exit flow
angles held constant, the value of ¢’ + 1 drops in proportion to a drop in ¢, and as the sketch
shows, both a3 and 5 decrease in absolute value as the flow coefficient is reduced. This
means that incidence of the flow to the vanes and blades decreases. Although the improper
incidence leads to larger losses, these can be reduced by making the leading edges of the
blades and vanes well rounded.

(@) 2 (b) Choking
1
)
!

= Ah 1 / ldeal

Uz /
/
/

Actual’/
/

/
/
/
// Slope = tana,,-tanf,

W -

Figure 6.6 Off-design performance comparison.

cl<

B EXAMPLE 6.5

In an axial turbine stage, flow leaves the stator at Vo = 350m/s in the direction
ag = 60°. Its blade-loading coefficient is 1y = 1.8 and flow coefficient is ¢ = 0.7.
Assuming that the axial velocity is reduced by 25 m /s from its design condition, find
the percent reduction in the reaction.

Solution: The axial velocity at the design condition is
Ve = Vacosag = 350cos(60°) = 175m/s

and the reaction is

R=1+ % —¢tanay =1+ 0.9 — 0.7 tan(60°) = 0.688
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Hence the angle of the relative flow leaving the rotor is
R+vy/2 ~0.688+0.9
¢ 0.7

Reduction of the axial velocity by 25 m/s gives V.., = 150 m/s, and with the blade
speed constant the new value of flow coefficient is

Vin 150
n = =207=06
o= 0= 175 07

Assuming that the flow angles s and 83 remain constant, the new value for blade-
loading coefficient is

. Pn _ 1,06 _
Pn = _1+_5(¢+1) =—-1+ 0.7(1.84-1) =14

A new value for reaction is then obtained from the equality
R+9/2 _ Rn+n/2
¢ én

tan 53 = — = —2.2678 ﬁg = —66.2°

tan 83 = —

and it gives

Yo fn P 14 06 1.8
h= Z)l =4 o —2) =0.661
R >t (B3 5+ g 0688+ =

Hence the percent reduction for the reaction is (0.688 — 0.661)/0.688 = 0.039 or
about 4% when the axial velocity is reduced by 14.3%.

|
The values of the flow coefficients in the foregoing examples were chosen to be in their
typical range 0.5 < ¢ < 1.0 and the blade-loading coefficients were chosen to be in their
range of 1.4 < ¢ < 2.2, The reaction turned out to be generally close to 0.5, except,

of course, for the zero-reaction stage. The typical stagnation temperature drop across the
rotor is 120K - 150 K.

6.4 THREE-DIMENSIONAL FLOW

In the last stages of gas turbines, and certainly for steam turbines that exhaust to below
atmospheric pressure, the blades are long in order to accommodate the large volumetric
flow rate. Since the blade speed increases with radius, a simple approach is to construct
velocity triangles at each element of the blade. As a consequence, the blade loading and
reaction may vary considerably along the span of the blade. But this approach does not
take into account the pressure variation properly. The aim of this section is to take into
account the influence of the pressure increase from the hub to the casing in a flow with
a swirl velocity and as a result also of the variation of the reaction and the blade loading
along the span of long blades.

6.5 RADIAL EQUILIBRIUM

Consider a flow in which fluid particles move on cylindrical surfaces. Applying the
momentum balance in the radial direction to the control volume shown in Figure 6.7 gives

de 1
-2V, sin <?) pVudr =prdf — (p+ dp)(r + dr)df + 2 (p + 5dp> drsin <d70)
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The left side represents the rate at which the radial component of momentum leaves the
control volume and the right side is the net pressure force. Viscous terms have been
neglected. Noting that sin(df/2) ~ 8/2 for small df, simplifying, and dropping higher-
order terms reduces this equation to

1d V2
_p+_u:

—at 0 (6.22)

The first term represents the net pressure force on a fluid particle of unit mass. The second
term is the centrifugal force. Since the second term is positive, the pressure gradient must
increase in the radial direction so that the sum of the two terms vanishes. Therefore, if the
flow has a swirl component, its pressure must increase from the hub to the casing.

l p+dp

Figure 6.7 Radial equilibrium condition on a fluid element.

If the radial velocity is small, the definition of stagnation enthalpy can be written as

1
ho = h + §(V£ +V3) (6.23)
Differentiating gives
dhy dh dVy avy
— = —_— — 24
dr dr Ve dr Ve dr 6.24)

The Gibbs equation Tds = dh — dp/p can also be written as

pds _dh_1dp
dr  dr pdr

(6.25)

and substituting into this dh/dr from Eq. (6.24) and dp/dr from Eq. (6.22) gives

dho . ds vy av, V2
o T TVeg TV T

which can be rewritten as
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If neither hg nor s varies with r, then the left side is zero and this equation reduces to
—(rV,) =0 (6.26)

For a given the radial variation of V,,, the variation of the axial velocity with r can be
determined by solving this equation.

6.5.1 Free vortex flow

Let the radial variation of the tangential velocity be given by rV,, = K. Then the second
term in Eq. (6.26) vanishes, and V, is seen to be constant. The work done on the blades by
the fluid passing through a streamtube at radial location r of the rotor is given by
K K
w=U(Vyg — Vuz) = Qr(T2 - 73) = Q(K, — K3)
Since this is independent of r, the work done is the same at each radial location. The
meanline analysis that has been used in the previous chapters is thus justified if the tangential
velocity distribution follows V,, = K/r.
The degree of reaction has been shown to be

1 1 1
R=1- §¢(tana2 +tanag) =1-— ﬁ(Vz tanas + Vytanag) =1 — ﬁ(Vug + Vus)
o Ko+ K
2 3
= 1 _—_—
R 202

Hence the degree of reaction increases from the hub to the casing. The mass flow rate
through the annulus is given by

Te
m =27V, / ordr
Th

since V,, is constant. The integration could be carried out were the density variation with
the radial position known. It is found by noting first that a free vortex design leads to equal
work done on each blade element, and therefore the stagnation temperature will remain
uniform in the annulus. The loss of stagnation pressure takes place in the wake as the flow
leaves a blade row. There is also a loss in the endwall boundary layers and in the tip region
of the blades. Secondary flow losses are more evenly distributed across the annulus. To
make analytical progress, it is assumed that entropy and thus also stagnation pressure are
uniform across the flow channel. This can be achieved by good lateral mixing of the flow.
Even if such mixing cannot be justified, if this assumption is made, the stagnation density
is also uniform. Of course, irreversibilities still cause the stagnation pressure loss in the
flow direction. The density ratio may be written as

p T 1/(v=1) TO — V2/26p 1/(y=1) V2 1/(y=1)
—_— = _— = —_— = 1 —
po <T0> ( To ) ( 20,,T0>

The velocity in this expression is seen to vary with radius according to

r

2
VE=V24+VI=V24+V]), 2

r
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Here ry, is the mean radius, at which the tangential velocity is Vim. Defining y = r/rm,
the mass balance can be converted to the form

2/(1+x) V2 V2 o1 /(v—1)
m = 2nVyr2, / (1 -z - ﬂ—) d (6.27)
=m0 20/ (1+K) 2c, Ty 2cpT0 y? va

in which r¢/rm = 2/(1 + k), rn/rm = 26/(1 4+ &), and &k = 71, /.. This integral can be
evaluated in closed form, at least for values of ~y for which 1/(~ — 1) is an integer. But, for
example, if vy = %, the result of the integration is sufficiently complicated, that it is better
to proceed by numerical integration.

Cohen et al. [15] use the mean radius as a reference value and express at the inlet to the
rotor, the free vortex velocity distribution in the form

'erVu2m = T2vu2
which can be recast as
Tom Ve tan oy, = 1oV tan as

from which it follows that

tanoy = 2% tan agg (6.28)
T2

Here r, denotes an arbitrary radial position at the inlet of the rotor. Similarly, at the exit
T3m
tan g = —— tan agm (6.29)
T3

The relative velocity at the inlet is W0 = Vo — U, from which

U
tan By = tan oy — Vo

x2
or 1
tan B, = tan ap — 2 2 (6.30)
Tom ®2
Similarly
T3 1
tan B3 = tanag — — — (6.31)
T3m ¢3

These equations are valid even if the axial velocity differs between the inlet and exit of the
rotor.

B EXAMPLE 6.6

Combustion gases with v = % and R = 287 J/(kg - K) expand through a turbine
stage. The inlet stagnation temperature is 7g; = 1100 K and the stagnation pressure
is po1 = 420kPa. The mean radius is r,, = 0.17 cm, and it is constant across the
stage. The turbine is flared so that the axial velocity remains constant. The hub-to-
casing radius is k2 = 0.7 at the inlet and k3 = 0.6 at exit of the rotor. The flow
angles at the mean radius at the inlet are oo, = 60.08° and s, = 25.98°. At the
exit the corresponding angles are a3, = —21.20° and 3., = —58.59°. The axial
velocity is V, = 231 m/s. (a) Plot the inlet and exit flow angles along the span of
the blades. (b) Determine the reaction at the hub. (c) Calculate the mass flow rate
using both numerical integration and the mean density.
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Solution: (a) The reaction at the mean radius of this stage can be obtained by adding
both parts of Eq. (6.16) together and doing the same for Eq. (6.12) and then dividing
one by the other. This gives

1 tanaom +tanasy
Rm tan B2m + tan ﬂ?:m

Substituting the values of the angles gives R, = 0.460. The flow coefficient is then
obtained from 1

— = 0.800
tan com — tan Bom

Pm

and the blade-loading coefficient is
¥ =2(1 - Ry — ¢ tanagy) = 1.700

The flow angles are next calculated using Eqgs. (6.28) — 6.31. At the hub

1.7
tan ooy = + K2 tan agm = — tan(60.08°) = 2.11 aop = 64.64°
252 1.4
+ Ko 2,%2 1 °
t = t m— ———— = 1.08 =47.22
an o T an o [T b Ban
At the casing
1 1.7
tan age = + K tan agy = 5 tan(60.08°) = 1.48 Qo = 55.90°
14+ Ko 2 1
tan = tan g, — ~— =0.0064 .= 0.37°
Bac 2 1T s 0 B

The exit angles are calculated similarly. They are
agp = —26.72° Ban = —55.90° agze = —17.74° B3c = —61.41°

The variation in flow angles along the span is obtained from Eqgs. (6.28) — (6.31),
which, together with the blade shapes, are shown in Figure 6.8.

(b) The reaction at the hub is

m [ 1+ K 2
R,=1-— % ( 2 2) (tan gy, + tan ag., )
0.8 (1.7\° . .

(c¢) The mass flow rate is calculated from Eq. (6.27). The stagnation density is

Po1 420, 000 3
PoL = B T 2871100 oo g/m

With hub radius 7, = 0.14 m, and casing radius, 7. = 0.20 m, numerical integration
gives
m = 15.068 kg/s
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Figure 6.8 Variation of flow angles along the span for a gas with v = 1.4.

Cohen et al. {15] suggested that a very good approximation may be obtained by
ignoring the density variation along the span and using its value at the mean radius.

Since
Viem = Vy tan aom = 231tan(60.08°) = 401.40m/s

the mean temperature is

V22 2312 + 401.42
Yo * Yiam _ qyg0 - 22T 0066 K

Tom = Toz —
am 02 2¢, 2-1148

Hence

Ty \ 7Y 1006.6\® 5
= “2m =1. =1.019k
P2 Po2 (T02> 33 1100 019kg/m

The flow rate is then

m = 7(r? — rd)pom Ve = 217m (e — 1) p2m Ve

=27 -0.17-0.06 - 1.019 - 231 = 15.086 kg/s

The approximation of using the density at the mean radius is seen to be excellent.
|

6.5.2 Fixed blade angle

A design with a free vortex tangential velocity distribution has the attractive feature that
each blade element delivers the same amount of work and that the axial velocity remains
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constant. On the other hand, the reaction varies quite strongly along the span of the blade.
Other design possibilities exist. For example, if the nozzle angle is kept constant along
the span, manufacturing cost of nozzles can be reduced. As the flow moves through the
nozzles its stagnation enthalpy will not change, and, if the radial entropy gradients may be
neglected, the equation for radial equilibrium

dhy .d d av, V2
0 By Wy e, Y

dr dr - dr dr r
reduces to )
dr dr r

as before. This can also be written as

d (1 1 %
~(Zy24 Zy2 AT
dr <2 =ty “>+ r 0

Since V,, = Vsina and V.2 4+ V,2 = V2 this becomes

Vﬂ + V2sin? o ~0
dr r
or dV d
v = sin? a—; (6.32)

If the angle « is constant, integrating gives

In addition, V,, = Vsina and V,, = V cos ¢, so that for constant «
sin“o sin2am
r v = T Vum

For nozzles the exit flow angle is quite large (often between 60° and 70°). Therefore sinary
is in the range 0.75 — 0.88 and the velocity distribution is nearly the same as for a free
vortex. The rotor blades may then be twisted properly to give the free vortex distribution
at their exit.

6.6 CONSTANT MASS FLUX

It has been seen that, if the tangential velocity varies inversely with radius, axial velocity is
independent of radius. Since the density varies also, Horlock [35] suggested that a designer
might decide to hold the axial mass flux pV,, constant. This requires the blade angle to vary
in such a way that

pVeosa = py Vi €os ap

remains independent of radius. The flow angle in terms of the velocity and density ratios

is therefore

cosa Vi pm
cosan, V p (6.33)
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From the definition of stagnation temperature

-1
TO:T<1+ M2)~ <1+ 5 MZ)

the ratio of the static temperature to its value at the mean radius is

T 24 (y-1)M2
T~ 24 (DM (39

It then follows that

p _ (241 .

= (o) )
and '

p (24 (DM .

;IZ_<2+(7—1)M2) ©39)

The velocity ratio is obtained from the definition of Mach number:

Low T u(soouiy”

The ratio of cosines of the flow angles can now be written as

M, (2 1\ M2 (y+1)/2(v=1)
cosa _ Mp (24 (y- M” (6.38)
cosa, M \2+4(yv—1)M2
From the equation for radial equilibrium it follows that
av d d
v = —sin2a7r (cos® o — 1) :
and by logarithmically differentiating Eq. (6.37) yields the equation
dM? 9 dr
= -1)— 6.39
WPt (e - s e (639
Dividing through by cos? o — 1 and integrating both sides gives
M
° 2dM 1
= d —In-® =ln- (6.40)

m, M2+ (v—1)M?)(cos? o — 1) Th K

so that
I

K=e
Since the highest Mach number is at the hub, the way to proceed is to set it at an acceptable
value. This may be slightly supersonic. Then, if the flow angle and Mach number are
known at the average radius, Eq. (6.38) can be used to find the value of ay,. After that
Eq. (6.38) is rewritten as

(6.41)

cosa My M (r+1)/2(y-1)
COS ¢y, M
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and this is substituted for cos « in the integrand of Eq. (6.40). Finally, by trial, the value
of M. needs to be chosen so that the numerical integration gives the desired radius ratio .
For a flow at the exit of the nozzle the stagnation temperature is known, and with the mean
Mach number known, the mean temperature 73, can be determined. After that, the other
ratios are calculated from Egs. (6.34) — (6.37).

To obtain the radial locations that correspond to the calculated values of the thermody-
namic properties, Eq. (6.39) is written as

2dM dr
M2+ (y - )M?)(cos?a—1) 1 (6.42)

and this is solved numerically using a fine grid.

Results from a sample calculation for M), = 1.15 are shown in Figure 6.9. Panel (a)
shows the variation of the thermodynamic variables, normalized with respect to their values
at the mean radius. Since the flow resembles a free vortex type, the largest velocity is at

(a) 1.3 T T T (b) 70° T T T :
1.2
69°
1.1
1.0 68°
a
0.9 67°
0.8
66°
0.7
06 L L L L 650 '

0 02 04 06 08 10 0 02 04 06 08 10
(r-r)(r-r,) (r-r)/(r-r,)

Figure 6.9 (a) Temperature, density, pressure, and velocity along the span for a gas with v = 1.4;
(b) flow angle leaving a nozzle as a function of the radial location.

the hub. The temperature there has the smallest value, since the stagnation temperature
is constant across the span. Hence the Mach number is largest at the hub and drops to a
value M. = 0.6985 at the casing for a flow with radius ratio x = 0.6. Four significant
figures were used to make sure that k was also accurate to the same number of significant
figures. Radial equilibrium theory shows that pressure increases from the hub to the casing
in a flow with a swirl component of velocity. The density follows the ideal gas law and it
increases from the hub to the casing. The flow angles are shown in Figure 6.9b. The value
at the mean radius was set at o, = 68° and its value at the hub happens to come out to
be the same. At the casing the flow angle drops to o = 66.18° and the entire variation is
seen to be quite slight.
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6.7 TURBINE EFFICIENCY AND LOSSES

Three methods are in common use for the calculation of losses in axial turbines. The
correlation by Soderberg was introduced in Chapter 5. The other two methods are based
on the original work of Ainley and Mathieson [2] and the studies of Craig and Cox [16].
The former is discussed below; the latter is presented by Wilson and Korakianitis [81] in
their text on gas turbines. In this section analytical results are developed that relate the
stage efficiency to the flow parameters. They enable the calculation of efficiency contours
by methods introduced by Hawthorne {33] and Smith [71], and further developed by Lewis
[50]. Horlock [35] gives a comprehensive review of the early work.

6.7.1 Soderberg loss coefficients

The loss correlation of Soderberg makes use of the static enthalpy loss coefficient

h — hs
C:
g

with V replaced by V5 for the stator and by W for the rotor. The nominal value of the loss
coefficient is calculated from

0.04 +0.06 (=)

*=0.04+0.06 ()

¢ 590 100

in which ¢ is the amount of turning, es = ags — a3 for the stator and eg = 2 — 3 for
the rotor. The angles are in degrees. The nominal value, identified with superscript star,
is for a blade height-to-axial chord ratio b/c, = 3.0 and Reynolds number equal to 10°.
For different values of blade height to axial-chord-ratio, a new value for stator vanes is
calculated from

C=(1+¢) (0.993 + 0.02195) —1
and for the rotor, from
F=(1+¢) (0.975 + 0.075%“”) ~1
If Reynolds number differs from 10°, the Reynolds number correction is obtained from
105\ /* _
¢= <§> ¢

The Reynolds number is based on the hydraulic diameter, which is given approximately by
the expression

2sb cos ap
Dy = ———
scosap + b
for the stator and by
Dy = 2sbcos 33
scosf3 +b

for the rotor.
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6.7.2 Stage efficiency

The process lines for a turbine stage are shown in Figure 6.10. The states of static enthalpy
are drawn such that the enthalpy drop across the rotor is slightly larger than that across
the stator. The reaction therefore is slightly larger than one-half. An isentropic expansion
through the stator takes the process from state 1 to state 2s, whereas the actual end state is
at state 2. The stagnation enthalpy remains constant through the stator and its process line
is horizontal. The stagnation pressure in the interblade gap is denoted by pp2.

| Py Ap oLs
i Po>
|

Figure 6.10 Thermodynamic states for expansion across a turbine stage.

The irreversible expansion across the rotor takes the process to state 3, with a correspond-
ing stagnation stagnation enthalpy hs and stagnation pressure po3. The loss of stagnation
pressure is discussed in the next subsection. The losses can be related to efficiency by first
writing (as was done for steam turbines) the efficiency as

D = ho1 — hos
bt = T
ho1 — hosss
and then manipulating it into the form
1 hos—hosss _ hs = hass | Vi — Vi,
Mt ho1 — hos w 2w

This can be further rearranged as

_L —1= (hs — has) + (has — hsss) + (1 _ V32525> V_32
Tt w V3

2w
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The first term in the numerator is simply
1 3
hs — h3s = §CRW3

Next, integrating the Gibbs equation along the constant-pressure line ps from state 3ss to
3s gives
T3s

T3ss
Similarly, integration along the constant pressure line py yields

8 — 81 =c¢pln

In 22
S3— 81 = Cpln —
2 1 D TQS
Equating the RHSs gives
T3s T2
= 6.43
TBss TZS ( )
Subtracting one from each side, rearranging, and multiplying by ¢, gives
T
hBS h3ss - %(hQ - h23)
2s

Since T355/T2s = T5s/T> and
1 2
ho — has = 54.5‘/2

the expression for efficiency can be written as

1 1 TBS T3ss
— —1=— W2 22 Vi2 1-—- V2
et 2o [CR 3+ T CsVs + ( T ) 3

In the last term the equality V2 /VZ = T3,s/T5 was used, which follows from the fact
that M3 = Ms,,, as was shown in Chapter 5. Furthermore, since V,, = Wi cos 3 =
V5 cos ag = V3 cos ag, the expression for efficiency can be recast as

2
i—l—d)—[ T G +<1~T3”> ! ] (6.44)

T ) |cos2Bs Ty coslan Ts / cos?as
Often this is approximated by
1 ¢? Cr Cs
— 1== 4+ — 6.45
Tt 21 (COSQﬂg cos?ay (6.45)

It will shown in an example that the error in using this approximation is very small.

6.7.3 Stagnation pressure losses

The stagnation pressure drop across the stator can be related to the static enthalpy loss
coefficient by first integrating the Gibbs equation along the constant-stagnation-pressure

line h01 = h()Qi
s9—81 = RlIn <‘B(£>
Po2
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Similarly, integrating the Gibbs equation along the constant-pressure line py gives

Equating the RHSs gives

Po1 T, v/(v—1)
IE B <T2s>

The definition for the static enthalpy loss coefficient
1 2
ha = has = 5(sV3

can be written as ]
vy 2
T, — 15, = ——(sM5~vRT.
:- D= 5g (sM35vRT,

T2 ’)’—1 2_1
—— =11~ M.
T, ( 2 S

Since the second term involving the Mach number is small, this can be expanded as

from which

T2 ")/—~1
=1
To, + 2

(sM3

The pressure ratio pg; /po2 is therefore

-1 "//(7_1)
Por _ (1 +2 @M%)
Po2 2

and expanding this gives
P _ .7 (s M2
Po2 2
The expression for the stagnation pressure loss now takes the form

1Ty

ApoLs = %mesMgz = 5@002(3‘/22

or
v—1

1
Apors = poz(1 + —— M5) V5 (6.46)

Since the loss coefficient (g is rather insensitive to Mach number, this shows how the
stagnation pressure loss increases as compressibility becomes important.

The development of the stagnation pressure loss across the rotor is similar. It will be
carried out in detail in order to highlight the use of stagnation properties on the basis of
relative velocity. First, the stagnation enthalpy of relative motion is defined as

1
hosr = ha + §W32

and in using the Mach number in terms of W3, defined as
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this can be rewritten in the form

To3r

vy—1, 9
=1+ -—=M.
T, + 2 3R

The relative stagnation pressure is calculated from
/(v=1)
Po3R -1 9 >w
— =14+ —M
s < 5 3R

Since hgar = hgsr across the rotor, integrating the Gibbs equation along the line of
constant relative stagnation enthalpy and also along the constant-pressure line ps, gives

Po2r T;
83—~ 89 = Rln—— 83— 82 = ¢pln ——
Do3R T3

Po2r T3 ’Y/(’Y_l)
Posr - (T_as)

From the definition for static enthalpy loss coefficient for the rotor

so that

1
hs — h3s = ECRW??

the temperature ratio

T: —1 -

=3 = <1 S 5 CRM32R)

is obtained. Noting again that the term involving the Mach number is small and expanding
the RHS gives

T3 ’)’—1 9
kB I YV
T, T3 Mz

and the pressure ratio poar /posg, is therefore

/(v—=1)
Po2R v—1 Y
PR — (14 T —rM )
Do3r ( 2 3R
Expanding this gives

Po2Rr

POk 14 Loy

Po3R 2

The stagnation pressure loss across the rotor is therefore

1Ty3r

Aporr = %pO3RCRM3R =3

posr(rRW3

or

—1 1
ApoLr = posr (1 + VTM§R> §CRW32 6.47)
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B EXAMPLE 6.7

Combustion gases with ¥ = 3 and ¢, = 1148 J/(kg - K) flow through a normal

turbine stage with R = 0.60. The flow enters the stator at a; = —33.0° and leaves
at velocity Vo = 450 m/s. The inlet stagnation temperature is 1200 K, and the inlet
stagnation pressure is 15 bar. The flow coefficient is ¢ = 0.7, the blade height-to-
axial chord ratio is b/c, = 3.5, and the Reynolds number is 10°. Find the efficiency
of the stage.

Solution: The blade-loading coefficient is first determined from
1 =2(1— R— ¢tanaz) =2(1 — 0.6 — 0.7tan(—33°)) = 1.709
The flow angle leaving the stator is

1- 2 - 0. 1. 2
g = tan"! (—_Rq;_ v/ ) = tan™’ (1 0 6(;'} 709/

and the angle of the relative velocity leaving the stage is

B 4 (—-R—-v/2\ . _;(-06-1.709/2 _ o
3 = tan (7(1S )—tan (—0'7 >-. 64.30

The angle of the relative velocity at the inlet of the rotor is

—R+ w/2> - <—0.6 +1.709/2
¢ 0.7

The deflections are therefore

> = 60.84°

B2 = tan™! ( ) = 19.99°

£s = o — a7 = 60.84 + 33.00 = 93.84°
er = B2 — B3 = 19.99 + 64.30 = 84.29°

and the loss coefficients can now be calculated. First, the nominal values are

2 93.84\ 2
=0.04+0.06 ==2) =0.092
) +006( 100) 0.0928

€3

Zs :0.04+0.06(100

and

2
_ ER 2 8429
=0.04 0.06(—) — 0044006 2227) = 0.082
r + 00 +006(100> 0.0826

When corrected for b/c,, = 3.5 they are

Cs=(1+Cs) (0.993+0.o21%) —1=(1 +0.0928) <0.993+ W) =0.0917
_ 0.075
(r=(1+C(R) (0.975+0.075%”) —1=(1+0.0826) <0'975+W) —0.0788

The axial velocity is

V. = Vo cos az = 450 cos(60.84°) = 219.26 m/s
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and the tangential velocity leaving the rotor is
Vus = Vp tanag = 219.26 tan(—33°) = —142.39m/s

so that

Vs = 1/V2 + V% = /219.262 4 124.392 = 261.44m/s

The blade speed is U = V. /¢ = 219.26/0.7 = 313.23 m/s. The tangential compo-
nent of the relative velocity leaving the stage is

Wys = V3 — U = —142.39 — 313.23 = —455.62m/s

so that

Ws = /W2 + W2, = 1/219.262 + 455.62% = 505.63m/s

The work done by the stage is w = ¥U? = 1.709 - 313.23%2 = 167.69kJ/kg. An
approximate value for the stage efficiency may now be obtained by setting T35 = T
and T55s = T3 in

T3SS
1 The

] = 2
Nt 2w

W3 +

TSS

so that this expression evaluates to

L _, _ 0.0788-505.637 +0.0017 - 450°

=0.124

with the result that 7, = 0.8965.

To see the extent to which neglecting the temperature ratio T35/75 and the ki-
netic energy correction changes the efficiency, these terms are calculated next. The
isentropic stage work is ws = w/ny = 167.69/0.8965 = 187.05kJ/kg. With
Toe = To1 = 1200 K, the exit temperature is

w 167,690
Tos =Toz — — = 1200 — ——— =1053.9K
03 = Tor = = =1200 =~y
and for an isentropic process it is
w 187,046
Tozss = Toz — — = 1200 — ——— = 1037.1K
. Lo3 02 ” 1148
The static temperature at the exit is
%4 252.092
T3 = Tps — — = 1053.9 — =1024.2K
s=Tos =5 = 10539 -9 1g

and T3, can be calculated from

Togss , _ 1037.1

T 88 = p—
3 Tos > 1053.9

1024.2 = 1007.8K
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From the definition of static enthalpy loss coefficient across the rotor

rRW2 0.0788 - 505.637
Tss =Ts — =999.0 - —————"— =10154K
BT T o, 21148

In addition ) 5

Vi 450

Ty = Tpo — =2 = 1200 — =1111.8K
2T g, 00 = 51148

so that
1, _00m8. 505.63% + 13125 0.0917 - 450° + (1 - 15313)261.44% 01154

Therefore the total-to-total efficiency of the stage is n; = 0.8965, which to four
significant figures is the same as that without the temperature and velocity correction.
The temperature correction makes the loss through the rotor lower, but the velocity
correction adds slightly to the losses, with the net result that these are compensating
errors, and the shorter calculation gives an accurate result.

The stagnation pressure at the exit of the stator is obtained from

Po1 Y 2
— =1+ =(M
o3 2Cs 3
The Mach number is
Va 450
Mo = = = 0.690
7 VART, /1333 287 11118
so that
Po1 2-0.0917 - 0.690% 1500
— =1 = 1.0291 = —— =1457.6kP
pa T 3 Poz = 7597 — 1457.6kPa

and the stagnation pressure loss across the stator is
Apors = 1500 — 1457.6 = 42.4kPa

To calculate the loss of stagnation pressure across the rotor, the relative and absolute
Mach numbers at the exit are determined first:

Vs 261.44

M; = = =0.4176
37 JART;  V1333.287.1024.2

Mag = — 22 505.63 = 0.8077

~ VART;  /1.333-2871024.2
Then stagnation pressure at the exit is

TOSss 7/ (=1) 1037.1 4
= = 150 — ] = .
Po3 = po1 ( To, ) 500 1200 836.8 kPa

and ps is

—1, .\ 07 0.4176%\ *
P3 = Po3 <1 + WTMg) —836.8 (1 T ) — 746.14KkPa
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The stagnation pressure posg is obtained from

0.80772

- 1 v/(v—1) 4
Po3R = P3 (1 + —2~M§R> = 746.14 <1 + ) = 1127.5kPa

and the value of pgsog is then
2
Po2R = PO3R (1 + %CRM:?R) = 11275 (1 + 30088 0.80772> = 1166.1kPa

so that the loss of stagnation pressure across the rotor is

APOLR =1166.1 — 1127.5 = 38.6kPa

6.7.4 Performance charts

A useful collection of turbine performance characteristics was compiled by Smith [71] in
1965. His chart is shown in Figure 6.11. Each design is labeled in a small circle by the
value of efficiency that may be achieved for a given choice of flow coefficient ¢ = V, /U
and a stage-loading coefficient 1) = w/U? = Ahg/U?. The curves of constant efficiency
are based on a theory by Smith. He took blade losses other than tip losses into account,
and for this reason the actual values of efficiency are expected to drop slightly.

Lines of constant efficiency —7

3.0 — (86
NQ 28 T @7
2 26 = &
n — p—
> 24 e 8737 85077 (89
[¢)] .
5 87i3
z :
£ 20 G0 e VN NG
= . 865 R0 X \ \37 \
o 18 906 _ G5 *925 (@ 91,3 \0698 .
; . /247 ’92.8'92;‘2 9% oD e W20 gy 3\ @ \ \%882 / /
c 1.6 gz-ein.ﬁ"?-mn@)?%% P20\ lagha 89?‘,"37' .
= . F 933821 7 91.7\
8 1 4 [] Q37 93.8% ®*P2.4 94.0 * 906
o . s iG55 b

938 i (94) 933 93.07 93.0 89.0-/ '/ /{q/ /
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m 1.0 0530050035 eay / %28 2014004 / e
. 942 y 945
938! €935 / 93.2
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0.6
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Flow coefficient ¢ = V /U

Figure 6.11  Variation of measured stage efficiency with stage loading coefficient and flow
coefficient for axial-flow turbines. (Adapted from Smith [71].)

The flow coefficients in the range from 0.6 < ¢ < 1.0 give uncorrected efficiencies in a
range from 90% to 94%, depending on how heavily loaded the blades are. Typical turbines
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have a blade loading coefficient in the range 1.5 < ¢ < 2.2, but there are designs outside
this range.

Smith’s method for calculating the main features of the performance characteristics has
been extended by Lewis [50]. The present discussion follows Lewis, who suggests writing
the efficiency in the form

1
= 6.48
Tt 1+ ( )
The calculations in the foregoing example show that fi, can be approximated by
2
RWE + ¢V _ 1 Ws Y Vo
= = — — - 6.49
fu 7w 5% i )t Cs U (6.49)
Since LR 5 R 5
tanqy = —— 1= +9/ tanﬁgz—_( +9/2)
¢ ¢
it follows that
R 2
cos g = ¢ cos B3 = v/

Ve +(1— R+1/2)? Vo* + (R+1/2)?

and the velocity ratios may be written as

and

so that

2 2
=g lcR (¢2+<R+§)>+cs <¢2+(1—R+%)>

This may be expressed in a more convenient form by defining v = (s/(g and Fy, = f1./(r,
so that

1 , » 2 \ » 2
and the efficiency can now be written as
B 1
Nt = 15 Fica ¥ Filn

The maximum efficiency is obtained by minimizing Fi, with respect to ¢) with the value of
(r assumed to remain constant. Then, if the ratio v is also assumed to remain constant,
differentiating and setting the result to zero gives

(5),00 = wl(5e3) o (-me3))
Ll (e g) oo (ome3) )] o

,11}2
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which, when solved for v, leads to

" :2\/¢2+Rz+y(¢2+(1—3)2)
mm 1+l/

(6.51)

Forv =1and R = 1 this reduces to

Y = VAP T 1 (6.52)

Contours of constant F}, are obtained by rearranging Eq. (6.50) first as

v(1-R)+R— 2FL]w N 4[¢” + R? + v(¢? + (1 — R)?)]
1+v 1+v

and solving it for . This gives

4
P+ =0

2 [QFL—u(l—R)—R:t\/4FL2—4FL[1/(1—R)+ R]+4I/R(1—R)—I/—(1+I/)2¢)2}
1+v

For R = 0.5 and (s = (g = 0.9, the two branches of each of the curves are shown Figure
6.12. The knee of the curves is where the discriminant is zero, namely, at

S

3.5 , r
n,= 0-89

301 0.895 |

- 0.90 |
v 0.905

207 0.91 i

1.5 __ 0915 |

1.0 1

05F 1

0 L Il L il il I Il

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08

¢

Figure 6.12  Contours of constant efficiency for an axial turbine stage with R = 0.5, (s = 0.9,
and (g = 0.9; also shown is the curve of least losses.

_ VAFZ —AF[v(1-R)+ R|+v—4vR(1 - R)
N 1+v
The locus of points of the blade-loading coefficient for which the losses are minimum,

obtained from Eq. (6.52), is also shown. As stressed by Lewis, when the efficiency is
written as

Pm

1

™ R



TURBINE EFFICIENCY AND LOSSES 201

the factor Fy, depends primarily on the shape of the velocity diagrams, which, in turn, are
completely determined by v, ¢, and R. The irreversibilities are taken into account by (g
and (g. These depend on the amount of turning, but their influence on the shape of the
efficiency contours is less than the influence of the flow angles.

The results in Figure 6.12 are qualitatively similar those in Figure 6.11, but they differ
in important details. In the calculations the loss coefficients were assumed to be constant
with values (g = (s = 0.09. They clearly depend on the amount of turning and thus on
the values of ¢, ¢, and R. As mentioned, Smith subtracted out the tip losses, and they are
not included in Soderberg’s correlation, either. The experiments on which the Smith plot
is based were carried out on a test rig at low temperature, and therefore the results do not
represent real operating conditions. The amount of turning today is approaching 90° or
even higher [19]. This is achieved by using computational fluid dynamic analysis to design
highly three-dimensional blades. In fact, the high efficiencies achieved today make further
increases in efficiency more and more difficult to achieve [21].

The actual loss coefficients using the Soderberg correlation are easily included in the
calculations, and the contours of constant efficiency and the deflection for a 50% reaction
are shown in Figure 6.13. The results are based on a blade height-to-axial chord ratio of

3.0

£=140°/ 129"’ ——
/ 0.84 / £=100°,7 0.86

25

2.0

1.5

1.0

0.5

Figure 6.13  Contours of constant efficiency and deflection for a stage with R = 0.5, b/c, = 3,
and Re = 10°.

b/c, = 3, and the Reynolds number was set at Re = 10°. From the expression
P =2(1—-R— ¢tanas)

it is seen that when ¢ = 0 and R = %, the blade-loading coefficient is ¢ = 1. If this
stage has an axial entry with a3 = 0, the loading coefficient is ¢ = 1 for any value of
¢. Examination of the figure shows that for an axial entry, as ¢ is increased to 0.5, the
efficiency increases to slightly over 0.92 and decreases from there as ¢ is increased. Since
the stage reaction is 50% the flow turns across the rotor and stator by an equal amount. At
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¢ = 0.5and ¥ = 1, since a3 = a3 = 0, the flow angle a2 is

ag = tan™! (ﬂ) =tan~'(2) = 63.4°

@
On the other hand, if the entry angle is chosen to be a3 = a7 = —45°, then
v =1+2¢

and at ¢ = 0.5 the blade-loading coefficient would be 9 = 2. The flow angle leaving
the nozzle would then be a, = 71.56°, and the flow angles for the rotor would have the
values 3, = 45° and 3 = —71.56°. Hence the deflection would reach eg = 116.56°.
This is larger than that recommended, and the inlet angle is too steep. These calculations
show that good designs are obtained for a range of flow coefficients of 0.5 < ¢ < 1.5 and
the blade-loading coefficient in the range 0.8 < ¥ < 2.7, for then the deflection is less
than 80°. As the flow coefficient is increased from 0.5 to 1.5, the inlet flow angle may be
changed from an axial entry to one with aig = —30°.

Contours of constant-rotor-loss coefficients are shown in Figure 6.14. They are seen
to follow the shape of the deflection lines in Figure 6.13. When there is no turning, the
loss coefficient is (g = 0.04 and the line for (g = 0.05 corresponds to a turning of

B2 — B3 = 40°.
0.11 0.10 009 0.8

3.0 ‘ ' ‘
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201 1
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Figure 6.14 Lines of constant rotor loss coefficients for a stage with R = 0.5, b/c, = 3, and
Re = 10°.

For a zero-reaction stage the contours of constant efficiency are given in Figure 6.15.
Since R = 0, the equation
Y =2(1 - R— ¢tanaz)
shows that at ¢ = O the loading coefficient is ©» = 2. The lines of constant turning for the
rotor are now straight lines, owing to the relationship 83 = — 2 and

Y = ¢(tan B, — tan B3) = 2¢ tan fo
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If the deflection is kept at 70°, then 32 = 35°, and at ¢ = 1.5 the blade-loading coefficient
is ¥ = 2.1 and the efficiency is close to 0.87. At ¢ = 0.5 the blade-loading coefficient
has the value ¢ = 0.7 and the efficiency is slightly over 0.92. For axial eatry ¢ = 2
independent of ¢, and an efficiency of slightly under 0.89 may be maintained for the range
of ¢ from 0.3 to 0.8.

3.0

£=140% 120, ‘ 100%7
’

2.5

2.0
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0.5 1.0 1.5

Figure 6.15  Contours of constant efficiency and deflection for a stage with R = 0, b/c; = 3, and
Re = 10°.

6.7.5 Zweifel correlation

Zweife] [85] examined losses in turbines and developed a criterion for the space-to-chord
ratio at which losses are the smallest. He put the loading of the blades into a nondimensional
form by dividing the driving force by an ideal one defined as as the pressure difference
Po2 — p3 times the axial chord. The stagnation pressure pge is the maximum possible
pressure encountered and p3 is close to the minimum one as the flow accelerates through
the passage. The ratio becomes

_ Pst(VuQ - Vu3)

vr (1002 - p3)0z

in which ¢, is the axial chord length. This can be written as

s pV2(tan ag — tan asz)

Y =

Ca 3PVi
or
s 2
Y1 = 2— cos“az(tan as — tan ag) (6.53)
Cy

In examining the performance of various turbines, Zweifel determined that the losses are
minimized when ¥t = 0.8. With this value for ¥, this equation is used to determine the
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spacing of the blades. With the spacing known, the cross-sectional area of the flow channel
and its wetted area may be calculated and the Reynolds number determined. This may then
be used to obtain the loss coefficients from the Soderberg correlation. For the rotor the
flow angles of the absolute velocities are replaced by the relative flow angles.

6.7.6 Further discussion of losses

Ainley [1] carried out an experimental study of losses in turbines at about the same time as
Soderberg. His loss estimates are shown in Figure 6.16 for a flow that turns only by about

0.20 \ »

0.18
0.16 |
0.14
0.12
0.10
0.08 |
0.06
0.04
0.02

Figure 6.16 Stagnation pressure loss coefficients for turbine blades as a function of incidence, with
s/c=0.77 and b/c = 2.7 at Reynolds number Re = 2 - 10°, from measurements by Ainley [1].

40° and thus has fairly small losses at the design condition. He presented the results in the
form of a stagnation pressure loss coefficient, defined as

Y, = Po1 — Po2

Po2 — P2
The denominator of this expression clearly depends on the Mach number and therefore, so
does the value of the loss coefficient. The losses are separated into profile losses, secondary
flow losses, and the losses in the annulus boundary layers. The profile losses, associated
with the growth of the boundary layers along the blades, are lowest at a few degrees of
negative incidence. The secondary flow losses dominate at all values of incidence. The
losses in the annulus boundary layers represent a small addition to the secondary flow
losses, and they are typically grouped together as it is difficult to separate them from each
other.

The physical cause of the secondary flows is the curvature along the flow path. From
study of fundamentals of fluid dynamics, it is known that pressure increases from concave to
convex side of curved streamlines. This transverse pressure gradient gives rise to secondary
flows for the following reason. In the inviscid stream far removed from the solid surfaces
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viscous forces are small and inertial forces are balanced by pressure forces. The transverse
component of pressure force points from the pressure side of one blade to the suction side
of the next one, and the transverse component of the inertial force is equal and opposite to
this.
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Figure 6.17 Secondary flows in a channel between two blades.

In the endwall boundary layer viscous forces in the main flow direction retard the flow,
with the result that inertial forces in the boundary layers are smaller than those in the
inviscid stream. However, owing to the thinness of the endwall boundary layers, pressure
distribution in these layers is the same as in the inviscid stream. For this reason the
unbalanced part of the pressure force causes a transverse flow in the endwall boundary
layers toward the suction side of the blade. This is shown schematically in Figure 6.17.
This secondary flow takes place in both endwall boundary layers. Continuity requires that
there be a return flow across the inviscid stream. The return flow is more diffuse than that
in the boundary layers as it occupies a large flow area. The effect is the development of two
counterrotating secondary vortices, with axes in the direction of the main stream. Thus a
secondary flow exists in these vortices. If this were all, the secondary flow would be easy
to understand. But the flow in the boundary layer near the casing is also influenced by a
vortex that develops at the tips of the rotor blades. This interaction increases the intensity
of the secondary flow and the axis of the vortex migrates from the pressure side of the blade
to the suction side as it traverses the flow passage. A sketch of this is shown in Figure 6.18.
Further complication arises from the unsteadiness of the flow caused by a discrete set of
rotor blades passing by the row of stator vanes.

6.7.7 Ainley—Mathieson correlation

Ainley and Mathieson [2] continued the work of Ainley [1] on turbine cascades. Their
results are shown Figure 6.19. The flow enters the nozzles axially and leaves at the angle
o indicated. The profile loss coefficient Y, is seen to vary both with the space-to-chord
ratio and the amount of turning of the flow. The two curves in the figure, for which the flow
deflects 75° and 80°, are marked with dashed line, for the flow is seldom turned this much.
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Figure 6.18 Distortion of tip vortex as it moves through the passage.

To facilitate the use of these results with hand calculators (or in short computer calcu-

lations), they have been fitted with two parabolas. The data in Figure 6.19 are correlated
reasonably well by the biquadratic fit

You = [—0.627 (%)2 +0.821 (f—&)) —0.129] (2)2

+ [ 1.489 (%)2 —1.676 (16:)";)) + 0.242] (Z) (6.54)
—0.356 (%)2 +0.399 (1%20) +0.0077
Y,
0.08
0.04 |
0
0.2 0.4 0.6 0.8 1.0 12

slc

Figure 6.19  Stagnation pressure loss coefficients for nozzles, as measured by Ainley and Mathieson

[2].
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B EXAMPLE 6.8

A nozzle row is tested with air. The air enters the row axially and leaves it at angle
60°. The space-to-chord ratio is s/c¢ = 0.7. The inlet pressure is po; = 200kPa,
stagnation temperature at the inlet is T7j; = 540 K, and the exit static pressure is
p2 = 160kPa. Find (a) the exit stagnation pressure and (b) the static enthalpy loss
coefficient.

Solution: (a) For s/c = 0.7, the stagnation pressure loss coefficient is

2
60 60
= |-0. — 0.821 | — | —0.129] 0.72
Yoa [0627(100> + 1(10()) 0 9]07

2
60 60
1.4 —} =1 — . .
+ [ 89(100) 676<1OO>+0242]07

60 \° 60
—0. - . had 0077 = 0.0272
O356<100) +o399<100)+0007 0.0

Examination of Figure 6.19 shows that this value is smaller than what can be read
from the figure, which suggests that it should be increased to 0.032. If this error can
be tolerated, solving next
You = Po1 — Po2
Po2 — p2

for pgo gives

oL + Yoaps 200 4 0.0272 - 160
= = — 198.94kP
P2 = 1 VA 1.0279 a

so that Apgs = 1.06 kPa. A more accurate value using the actual charts is 1.24 kPa.
(b) The exit static temperature is

(v=1)/v
P2 ) 540 (160,000

Ty = Toy | £2
2 02( 198,913

1/3.5
) = 507.44K
Po2

and velocity is therefore

Vo = 4/ 2¢,(Toz — T2) = /2 - 1004.5(540 — 507.44) = 255.77m/s

These give a Mach number value of My = V,/\/yRT, = 0.566. The stagnation
density at the exit is

Po2 198, 940 3
_ _ —1.984%
POz = BT, ~ 287-540 g/m

The static enthalpy loss coefficient is calculated from

4Apos/ poz e 4-1060/1.284

¢ = VZ2(2+ (y—1)M3)  255.772(2 + (1.4 — 1)0.5662)

=0.0237
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The experiments of Ainley and Mathieson [2] also included the influence of the space-
to-chord ratio for impulse blades. This is shown in Figure 6.20. Again, the approach
velocity is at zero incidence. Since the rotor blades have the shape of impulse blades, the
different curves are labeled by the relative flow angles. In a two-stage velocity compounded
steam turbine, the stator between the two rotors has equiangular vanes as well, but this is
an exceptional situation in turbines. Ainley and Mathieson showed that the results from the
nozzles with axial entry and the impulse blades can be combined for use in other situations.
This is discussed below.

0.20
0.18 |
0.16 \
0.14
pe
0.12

0.10

0.08[

0.06

03 04 05 06 07 08 09 10
slc

Figure 6.20 Loss coefficients for impulse blades, 3 = —f2, and Re = 2 - 10°, M < 0.6, as
measured by Ainley and Mathieson [2].

The data shown in Figure 6.20 can be fitted to a biquadratic expression.

Ype = [—1.56 (1%2—0)2 +1.55 (%%) - 0.064] (Zf
+ [ 3.73 (1%20)2 343 (1%26) + 0.290] (Z) (6.55)

o \? o
083 (2) +078 (22) +0.078
0.8 100 +0.78 100 +
This is a reasonably good fit even if it was forced to a simple second-order polynomial
form. On the basis of values obtained from Eqs. (6.54) and (6.55), Ainley and Mathieson
recommend that for blades for which the inlet angle is between the axial entry of nozzles
and that of the impulse blades, the stagnation pressure loss coefficient can be estimated

from on Jaa]
t [s3 WD)
Y, = <ﬁ> (6.56)

2
aq
Ypa + (a_2> (Ype - Ypa) 0'2




TURBINE EFFICIENCY AND LOSSES 209

The subscripts in this expression have the following meaning: Y}, is the profile loss at
zero incidence; Y}, is the profile loss coefficient for axial entry, and Y, is the profile loss
coefficient for equiangular impulse blades. The absolute values are needed in the exponent
because a3 could be negative.

For a rotor the angle, o is replaced by 82 and a5 is replaced by 83. Thus Eq. (6.56)

takes the form 82/ 5a
t/C 2 3

—— 6.57

<0.2> ( )

52

2
Y= |Yoa + (ﬁ—> (Ype — Ypa)
3

In evaluating the loss coefficient from Eq. (6.55) for impulse blades, o is replaced by G,
for rotor blades, since 35 will be positive and 83 = — 5. The ratio of maximum thickness
to the length of the chord in these expressions is ¢/c, with a nominal value of 20%. Should
it be greater than 25% the value ¢/c = 0.2 is used. If it is less than 15%, its value is set at
t/c =0.15.

6.7.8 Secondary loss

Secondary and tip losses require examination of lift and drag on the rotor blades. Unlike
in the case for an airfoil, for which lift is the force component perpendicular to incoming
flow direction, in turbomachinery flows the direction of the lift is defined as the force
perpendicular to a mean flow direction. This, together with other important geometric
parameters, is shown in Figure 6.21. The mean direction is obtained by first defining the
mean tangential component of the relative velocity as

1
Wum - §(Wu1 + Wu?)
which can be rewritten in the form
1
Wum = —2‘Wz (tan ﬁg + tan ﬁg)

Next, writing W, = W, tan 3, gives

1
tan Bm = §(tan Ba + tan f3)

and 3, defines the mean direction. For the situation shown in the figure tan 3, is negative
and so is Vi p,.

Next, applying the momentum theorem to the rotor, the force in the direction of the
wheel motion is given by

F, = pSWm(WUB - Wu?) = pst(tan ﬂ3 — tan ﬂZ)

This is the force that the blade exerts on the fluid per unit height of the blade. The reaction
force R, = —F, is the force by the fluid on the blade, and it is given by

R, = psW2(tan B — tan f3) (6.58)
The component of the reaction forces are related to lift L and drag D by

R, = Dcos Bm — Lsin By, R, = Dsin By, + L cos B
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Figure 6.21 [Illustration of flow angles, blade angles, mean direction, and lift and drag forces on a
rotor.

The magnitude of the drag force has been drawn larger in the figure than its actual size, to
make the sketch clearer. If it is neglected, the reaction R, is related to lift by
R, = Lcos By
and Eq. (6.58) can be written as
L cos Bm = psW2(tan B2 — tan f3)
Introducing the lift coefficient leads to the expression

L/e f) Kg(tanﬁz — tan 33)

= =9
Cr 3pV2 (c V2 €08 B

Since W, = W, cos B, this reduces to

CrL =2 (Z) (tan B2 — tan fB3) cos Bm (6.59)
The secondary flow and tip losses according to Dunham and Came [24] are expressed as
NS 70 V2 cos?
Yo+ Yi= {00334 5P gk Oy cos 'y (6.60)
b cos B2 ¢ s/c) cos3Bm

The second term, in which the gap width k appears, accounts for the tip losses. The
parameter B = 0.47 for standard blades and B = 0.37 for shrouded blades. A shrouded
blade is shown in Figure 3.11 in Chapter 3.

The loss coefficients are similar for the stator. The mean flow direction is given by

1
tan oy, = i(tan o1 + tan as)
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and the lift coefficient is
CL=2 (f) (tan g — tan o) cos am
c

The loss coefficient of the secondary flows is

c CoS & LV cos?a
Yo=1 (0.0334 2) ( L) 2 (6.61)

cos a1 s/c/) cosdan

as there are no tip losses.
B EXAMPLE 6.9

Combustion gases, with v = % and ¢, = 1148 J/(kg - K), flow through a normal
turbine stage with R = 0.60. The flow enters the stator at «; = —33° and leaves
at velocity V, = 450 m/s. The inlet stagnation temperature is Tp; = 1200K, and
the inlet stagnation pressure is 15 bar. The flow coefficient is ¢ = 0.7, blade height-
to-axial chord ratio is b/c, = 3.5, and the Reynolds number is 105. The blades are
unshrouded with B = 0.4, and the tip-gap-to-blade height ratio is k/b = 0.02. Find
the stagnation pressure loss across the stator and the rotor based on Ainley—Matheison
correlations.

Solution: The blade-loading coefficient is first determined from
P =2(1—R—¢tanaz) =2(1 — 0.6 — 0.7tan{—33°)) = 1.709

The flow angle leaving the stator is

ag = tan™? (:@giﬁ_/?) = tan™? (1 — 0'6571'709/2> = 60.84°

Hence the mean flow angle is

1
= tan™?! [§(tan ay + tan aQ)} = 29.74°

The lift coefficient is
Cis =2 (f) (tan ag — tan oy ) cos ay,
c
= 2-0.9(tan(60.84) — tan(—33)) cos(29.74) = 3.82
The secondary loss coefficient for the nozzles is

2
Yin = 0.0334 £ £ 22
b cosdayy,

The value of profile losses obtained from Eqgs. (6.54) and (6.55) are

= (0.0434

Yoan = 0.0269 Ypen = 0.1151

t/_c loer/oal
0.2

so that for the particular nozzle row

Y,

2
(6%
pN = YpaN + (_1> (YpeN - YpaN)
(&%)
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comes out to be

—— = 0.052
60.84 0.0529

2
Yo = {0.0269 + ( > (0.1151 — 0.0269)

Thus the stagnation pressure loss coefficient is Yy = Ypn + Yon = 0.0963.
For the rotor, the angle of the relative velocity leaving the stage is

B3 =tan™! (%W) =tan ! <ﬁ:017L9/2> = —64.3°

and the angle of the relative velocity at the inlet of the rotor is

B = tan™" (—R%f/}/?> = tan ! <:_0__6+017i/2> = 20.0°

The mean flow angle is

Bm = tan™! B(tan B2 + tan 63)] = —40.6°

The lift coefficient is
CiLr =2 (f) (tan 85 — tan B3) cos By
c

= 2-0.9{tan(20) — tan(—64.3)] cos(—40.6) = 3.34

The secondary flow and tip losses can then be determined from

c cos (3 EN78| /1 CL Y cos?Bs
s Yir = 7 10.0334 B{ - —
Yor + Yir b { cos B2 + <c) s/c) cos®fm
1 cos(—64.3°) 098] (3-34)° cos?(—64.3°)
Ysr +Yir=-10.0334 ——————=+0.47-0.02" — ) ———=- =0.075
R YR 3[0 033 c0s(20.0°9) 2 0.9 ) cos?|—40.6°|

From Egs. (6.54) and (6.55) the profile losses coefficients are

Ypar = 0.0322 Yoer = 0.1334
so that ) B2/ 5a]
B tle 2/83
YpR = YpaR + (Ej) (YpeR - YpaR) (0/_2>
is
—20.0° Y’
Yor = |0.0322 + 6430 (0.1334 — 0.0322) | = 0.0419

The stagnation pressure loss coefficient for the rotor is therefore Yg = Ypr + Yer +
Yir = 0.1169.
The stagnation pressure loss across the nozzle row is obtained from

Yy = Po1 — Po2

Po1 — Poz = Yn(po2 — p2)
Po2 — P2
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Dividing through by pgs gives

@:1+YN<1—£2->:1+YN
DPo2 DPo2

T2 v/ (vy=1)
- (z2)
Too

2 2
Ve _ 99 - 2507
2%, 2-1148

Since the temperature 75 is

Ty = Too — =1111.8K

and My = Vo /+/vRT> = 0.690, the stagnation pressure ratio is

Po1 1111.8\*
P01 1400963 |1 — [ ——") | =1.02534
o T l (oo ) | =18

Hence ppe = 1500/1.02534 = 1462.9kPa, and the stagnation pressure loss is

APOLS = 37.2kPa.
The static pressure at the exit is

_ 1 _7/(7_1) 9 2 -4
P2 = Po2 <1 + ’YTMQQ) = 1462.9 (1 + %) = 1078.0kPa

Some preliminary calculations are necessary for the rotor. First

Vz = Vi cos ag = 450 cos(60.84) = 219.3m/s

and then v 919.3
7 cosBy  cos(20°) m/s
Va 219.3
W3 = = = 505.6
37 cosBs cos(—64.3°) m/s
v, 219.3
Va = = = 261.5
57 cosas cos(—33°) m/s
Also
Ve, 2193
U= Eﬂ” =57 = 3122m/s  w=yU? = 1.709 - 313.2% = 167.69kJ /kg
so that W 167,69
Tos = Tog — — = 1200 — —— = 1053.7K
03 02 e 1113 053.7
and V2 )
261.5
Ty = Toz — == = 1053.7 — =1024.2K
TS T e, 21148
Next - )
505.6
Tosr = Tz + —> = 1024.2 =1135.5K
03R =I5 50 HPIITE

and since TOQR = T03R

Toor Y/ Y 1135.5\*
= = 1078. = 1128.3kP
PO2R pz( ) 0 11118 8.3kPa
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The stagnation pressure loss coefficient for the rotor is

Ve = Po2Rr. — Po3R
Ro= e fUOR
Po3r — P3

so that

1

p(’ﬂ:lJrYR(l—p—B) =1+Yg
Po3Rr Po3R

Ty v/(v=1)
( Tosr )
The numerical value for the pressure ratio is

Pozr 1024.2\'
2R 1401169 |1 - = 1.040
Posr * [ (1135.5

and ppgg = 1172.9/1.040 = 1128.28 kPa. Hence the stagnation pressure loss across
the rotor is ApoLr = 44.6 kPa. The value obtained the by Soderberg correlation was
38.6 kPa, but that correlation neglects the tip losses. For the nozzle row the loss is
Apors = 37.1kPa, and the Soderberg correlation gave 42.4 kPa. Ainley—Mathieson
and Soderberg correlations are therefore in reasonable agreement.

6.8 MULTISTAGE TURBINE

6.8.1 Reheat factor in a multistage turbine

Consider next a multistage turbine with process lines as shown in Figure 6.22. The
isentropic work delivered by the jth stage is denoted as w;,, whereas the actual stage work
is w;. The stage efficiency is defined to be

and it is assumed to be the same for each stage. With
Wjs = hoj = ho,j41,s

the sum over all the stages gives

N

N
Y wis =D (hoj = hoji1,6)
Jj=1

j=1
The isentropic work delivered by the turbine is w; = ho1 — ho N+1,ss- A reheat factor

is defined as N N
RF — Zj:l Wis _ l2j=l Wi
Wg Ns w

in which w = Z;Vﬂ wj, so that
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Figure 6.22 Processes in a multistage turbine.
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Since the slope of constant-pressure line increases as temperature increases, it follows that

N
E Wjis > Wy
j=1

and RF > 1. Hence 1 > 7,, and the overall efficiency of a turbine is greater than the
stage efficiency. The reason is the internal heating, for the increase in static enthalpy by
irreversibilities becomes partly available as the expansion proceeds over the next stage.

The increase in the overall efficiency depends on the number of stages.

If the ideal gas model can be used, then the actual and ideal work delivered by the first

stage are
w = cp(Ton — Toz) ws = ¢p(To1 — To2s)
Since
Toas  { po2 =D/
Tor (pm)

the temperature difference for the isentropic process becomes
-1
- ( Poz >(7 )
Po1

Doz (v=1)/v
r=1- <—> then T01 - TOQS = (IIT()l
Po1

The actual temperature drop is then

To1 — To2s = Tn

Letting

T()l — T02 = nsme so that T02 = T01(1 — 77337)
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Assuming that the pressure ratio and the efficiency are the same for each stage, similar
analysis for the next stage gives

Toz — Tos = nzTp2  sothat Tos = Too(1 — nsx) = Ton (1 — nsx)?
and for the Nth stage
Tov —Toni1 =ns2Tony  sothat  Toni1 = Tor(1 — nsz)™
The work delivered by the entire turbine can then be expressed as

w = cp(Tor — Toz) + cp(Toz — Toz) + -+ + cp(To,vy — Ton+1) = cp(Tor — To,n+1)

which can be written as
w=c,Tp1[1 — (1 — nsx)N]

The isentropic work by the entire turbine is given by this same equation when s = 1, or
Ws = CpTol[l — (1 — x)N]

The isentropic work can also be written as

Po.N+1 (y=1)/v
We = CpT()l 1-— (’—+>
DPo1
and therefore
n__w__ 1—(1—77s$)N
W - (po,N+1)(7_1)/7
Do1
so that the reheat factor becomes
1—(1—nx)V
RF = (1 —nsz)

T D/
s ll _ (po,N+1)
Po1

6.8.2 Polytropic or small-stage efficiency

The polytropic process was introduced in Chapter 3. Here it is used for a small stage. If
the stagnation enthalpy change is small across a stage, the stage efficiency approaches the
polytropic efficiency. Consider the situation for which the ideal gas relation is valid and
for which an incremental process is as shown in Figure 6.23. The temperature drops for
actual and ideal processes are related and given by

np dTos = dTy
For an isentropic expansion
o Hos _ pdpo _ v dh_dpo
P T Po w(y—1) To  po

Integrating this between the inlet and the exit gives

Ton+1 (PO,N+1

(’Y—l)np/’Y
To Po1 )
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Figure 6.23 Processes across a small stage.

The reheat factor can then be written as

1— (PO,N+1
RF = no_ Po1

Mo Po.N+1 (v=1)/~
|1 — | ————
DPo1

The relationship between the turbine efficiency and polytropic, or small-stage efficiency is

(v=1)mp /v
1
(3
r
(v=1)/~
1
-(3)
r

in which r = pg1 /poe is the overall pressure ratio of the turbine. This relationship is shown
in Figure 6.24.

This completes the study of axial turbines, which began in the previous chapter on steam
turbines. Wind turbines and some hydraulic turbines are also axial machines. They are
discussed later. Many of the concepts introduced in this chapter are carried over to the next
one, on axial compressors.

>(7_1)Wp/’7

’]7:

EXERCISES

6.1 Atinlet to the rotor in a single-stage axial-flow turbine the magnitude of the absolute
velocity of fluid is 610 m/s. Its direction is 61° as measured from the cascade front in
the direction of the blade motion. At exit of this rotor the absolute velocity of the fluid
is 305m/s directed such that its tangential component is negative. The axial velocity
is constant, the blade speed is 305m/s, and the flow rate through the rotor is 5kg/s.
(a) Construct the rotor inlet and exit velocity diagrams showing the axial and tangential
components of the absolute velocities. (b) Evaluate the change in total enthalpy across the
rotor. (c) Evaluate the power delivered by the rotor. (d) Evaluate the average driving force



218 AXIAL TURBINES

1.00 : :
0.95 n,=0.9
0.90
0.85 r n,=08
0.80

T ors ) =07

0.70 ]
0.65 | ng= 06
0.60 |
0.55 | 1
0.50

r= p01/p0,N+1

Figure 6.24  Turbine efficiency as a function of pressure ratio and polytropic efficiency for a gas
with v = 1.4.

exerted on the blades. (e) Evaluate the change in static and stagnation temperature of the
fluid across the rotor, assuming the fluid to be a perfect gas with ¢, = 1148 J/(kg - K). (f)
Calculate the flow coefficient and the blade-loading coefficient. Are they reasonable?

6.2 A small axial-flow turbine must have an output power of 37 kW when the mass flow
rate of combustion gases is 0.5kg/s, and the inlet total temperature is 410 K. The value
of the gas constant is 287 J/(kg - K) and v = 4/3. The total-to-total efficiency of the
turbine is 80%. The rotor operates at 50,000 rpm, and the mean blade diameter is 10 cm.
Evaluate (a) the average driving force on the turbine blades, (b) the change in the tangential
component of the absolute velocity across the rotor, and (c) the required total pressure ratio
across the turbine.

6.3 A turbine stage of a multistage axial turbine is shown in Figure 6.3. The inlet gas
angle to the stator is a; = —36.8°, and the outlet angle from the stator is as = 60.3°.
The flow angle of the relative velocity at the inlet to the rotor is 82 = 36.8° and the flow
leaves at S35 = —60.3°. The value of the gas constant is 287 J/(kg - K) and vy = 4/3. (a)
Assuming that the blade speed is U = 220 m/s, find the axial velocity, which is assumed
constant throughout the turbine. (b) Find the work done by the fluid on the rotor blades
for one stage. (c) The inlet stagnation temperature to the turbine is 950 K, and the mass
flow rate is 7 = 400kg/s. Assuming that this turbine produces a power output of 145
MW, find the number of stages. (d) Find the overall stagnation pressure ratio, given that its
isentropic efficiency is 7.t = 0.85. (e) Why does the static pressure fall across the stator
and the rotor?

6.4 A single-stage axial turbine has a total pressure ratio of 1.5 to 1, with an inlet total
pressure 300 kPa and temperature of 600 K. The absolute velocity at the inlet to the stator
row is in the axial direction. The adiabatic total-to-total efficiency is 80%. The relative
velocity is at an angle of 30° at the inlet of the rotor and at the exit it is —35°. If the
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flow coefficient is ¢ = 0.9, find the blade velocity. Use compressible flow analysis with
cp =1148J/(kg-K),v = 3, and R = 287J/(kg - K).

6.5 Anaxial turbine has a total pressure ratio of 4 to 1, with an inlet total pressure 650 kPa,
and total temperature of 800 K. The combustion gases that pass through the turbine have
v = %, and R = 287J/(kg - K). (a) Justify the choice of two stages for this turbine. Each
stage is normal stage and they are designed the same way, with the blade-loading coefficient
equal to 1.1 and the flow coefficient equal to 0.6. The absolute velocity at the inlet to the
stator row is at angle 5° from the axial direction. The adiabatic total-to-total efficiency is
91.0%. Find, (b) the angle at which the the absolute velocity leaves the stator, (c) the angle
of the relative velocity at the inlet of the rotor, (d) the angle at which the relative velocity
leaves the rotor. (f) Draw the velocity diagrams at the inlet and outlet of the rotor. (g) What
are the blade speed and the axial velocity? A consequence of the design is that each stage
has the same work output and efficiency. Find, (h) the stage efficiency and (i) the pressure
ratio for each stage.

6.6 For a steam turbine rotor the blade speed at the casing is U = 300m/s and at the
hub its speed is 240m/s. The absolute velocity at the casing section at the inlet to the
rotor is Vo, = 540m/s and at the hub section it is Vo, = 667m/s. The angle of the
absolute and relative velocities at the inlet and exit of the casing and hub sections are
Qge = 65°, B3, = —60°, gy = 70°, and B3, = —50°. The exit relative velocity at
the casing is W3, = 456 m/s and at the hub it is W3, = 355m/s. For the tip section,
evaluate (a) the axial velocity at the inlet and exit; (b) the change in total enthalpy of the
steam across the rotor; and (c) the outlet total and static temperatures at the hub and casing
sections, assuming that the inlet static temperature is 540°C and inlet total pressure is
7 MPa, and they are the same at. all radii. Assume that the process is adiabatic and steam
can be considered a perfect gas with v = 1.3. The static pressure at the exit of the rotor is
the same for all radii and is equal to the static pressure at inlet of the hub section. Repeat
the calculations for the hub section. (d) Find the stagnation pressure at the outlet at the
casing and the hub.

6.7 Combustion gases, with v = 3 and R = 287kJ/(kg - K), flow through a turbine
stage. The inlet flow angle for a normal stage is «; = 0°. The flow coefficient is ¢ = 0.52,
and the blade-loading coefficient is ¢y = 1.4. (a) Draw the velocity diagrams for the stage.
(b) Determine the angle at which relative velocity leaves the rotor. (c) Find the flow angle
at the exit of the stator. (d) A two-stage turbine has an inlet stagnation temperature of
To; = 1250 K and blade speed U = 320 m/s. Assuming that the total-to-total efficiency
of the turbine is 7, = 0.89, find the stagnation temperature of the gas at the exit of the
turbine and the stagnation pressure ratio for the turbine. (e) Assuming that the density
ratio across the turbine based on static temperature and pressure ratios is the same as that
based on the stagnation temperature and stagnation pressure ratios, find the ratio of the
cross-sectional areas across the two-stage turbine.

6.8 Steam enters a 10-stage 50%-reaction turbine at the stagnation pressure 0.8 MPa
and stagnation temperature 200°C and leaves at pressure 5 kPa and with quality equal to
0.86. (a) Assuming that the steam flow rate is 7 kg /s, find the power output and the overall
efficiency of the turbine. (b) The steam enters each stator stage axially with velocity of
75m/s. The mean rotor diameter for all stages is 1.4 m, and the axial velocity is constant
through the machine. Find the rotational speed of the shaft. (c) Find the absolute and
relative inlet and exit flow angles at the mean blade height assuming equal enthalpy drops
for each stage.
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6.9 Combustion gases enter axially into a normal stage at stagnation temperature Tp; =
1200 K and stagnation pressure pg; = 1500 kPa. The flow coefficient is ¢ = 0.8 and the
reaction is R = 0.4. The inlet Mach number to the stator is M; = 0.4. Find, (a) the blade
speed and (b) the Mach number leaving the stator and the relative Mach number leaving
the rotor. (c) Using the Soderberg loss coefficients, find the efficiency of the stage. (d)
Repeat the calculations with inlet Mach number M; = 0.52.

6.10 For a normal turbine stage fluid enters the stator at angle 10°. The relative velocity
has an angle —40° as it leaves the rotor. The blade-loading factor is 1.6. (a) Determine the
exit angle of the flow leaving the stator and the angle of the relative velocity as it enters the
rotor. Determine the degree of reaction. (b) For the conditions of part (a), find the angle
at which the flow leaves the stator and the angle of the relative velocity entering the rotor,
as well as the degree of reaction. (c) Calculate the total-to-total efficiency using Soderberg
correlations. Take the blade height to axial chord ratio to be b/c,, = 3.5. (d) Determine the
stagnation pressure loss across the stator, given that the inlet conditions are Ty; = 700K
and pg; = 380 kPa, and the velocity after the stator is V5, = 420m/s.

6.11 For Example 6.6, write a computer program to calculate the mass flow rate and plot
the variation of the reaction from the hub to the casing.

6.12 For a normal turbine stage the exit blade angle of the stator at 70° and relative
velocity has angle —60° as it leaves the rotor. For a range of flow coefficients ¢ = 0.2—0.8,
calculate and plot the gas exit angle from the rotor, the angle the relative velocity makes as
it leaves the stator, the blade-loading coefficient, and the degree of reaction. Comment on
what is a good operating range and what are the deleterious effects in flow over the blades
if the mass flow rate is reduced too much or if it is increased far beyond this range.

6.13 For a normal turbine stage fluid enters the stator with the inlet conditions Tp; =
1100K and pg; = 380kPa. The inlet flow angle is 10°, and the velocity after the stator
is Vo = 420 m/s. The relative velocity has angle —40° as it leaves the rotor. The blade-
loading factor is 1.6. (a) Determine the exit angle of the flow leaving the stator and the
angle of the relative velocity as it enters the rotor. Determine the degree of reaction. (b)
For the conditions in part (a), calculate the flow exit angle and the angle of the relative
velocity entering the rotor. (c) Calculate the stagnation pressure losses across the stator and
the rotor using Ainley—Mathiesen correlations. Take the space to axial chord ratio equal
to s/c; = 0.75 and assume that the maximum thickness-to-chord ratio is t/c = 0.22. (d)
Determine the stagnation pressure loss across the stator, assuming the inlet conditions are
To1 = 1100 K, and po; = 380kPa, and the velocity after the stator is Vo = 420m/s.



CHAPTER 7

AXIAL COMPRESSORS

In Chapter 4 it was pointed out that axial compressors are well suited for high flow rates
and centrifugal machines are used when a large pressure rise is needed at a relatively low
flow rate. To obtain the high flow rate, gas enters the compressor at a large radius. The gas
is often atmospheric air and as it is compressed, it becomes denser and the area is reduced
from stage to stage, often in such a way that the axial velocity remains constant. As in
axial turbines, this may accomplished keeping the mean radius constant and by reducing
the casing radius and increasing the hub radius. In jet engines high pressure ratios are
obtained by pairing one multistage compressor with a turbine sufficiently powerful to turn
that compressor. This arrangement of a turbine and compressor running on the same shaft
is called a spool. A second spool consisting of intermediate-pressure (IP) compressor and
turbine is then configured with a compressor in front of, and a turbine behind, the central
high-pressure (HP) spool. The shaft of the IP spool is hollow and concentric with that
of the HP spool. These high and intermediate pressure spools serve as gas generators to
provide a flow to a low-pressure (LP) turbine that drives the fan in a turbofan jet aircraft or
a generator for electricity production in a power plant [64].

The larger IP compressor turns at a lower speed than the HP spool in order to keep
the blade speed sufficiently low to ensure that compressibility effects do not deteriorate
the performance of the machine. In a typical spool one turbine stage drives six or seven
compressor stages. The stage pressure ratio has increased with improved designs, reaching
1.3 and 1.4 in modern jet engine core compressors [64].

Pipeline compressors are often driven by a power turbine that uses a jet engine spool as
the gas generator. Alternatively, a diesel engine may provide the power to the compressor.
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An industrial compressor manufactured by MAN Diesel & Turbo SE in Germany is shown
in Figure 7.1. It has 14 axial stages and one centrifugal compressor stage with shrouded
blades.

Figure 7.1 A 14-stage axial compressor with a single centrifugal stage. (Photo courtesy MAN
Diesel & Turbo SE.)

The first section of this chapter is on the stage analysis of axial compressors. The theory
follows closely that discussed in the previous chapter for axial turbines. Then empirical
methods for calculation the flow deflection across the stator and rotor are introduced.
After that a semiempirical method for allowable diffusion limit is discussed. Too much
diffusion leads to separation of boundary layers, which may be catastrophic, with complete
deterioration of the compressor performance. Next, the efficiency of a compressor stage is
defined, followed by methods to calculate stagnation pressure losses. Three-dimensional
effects will receive mention as well. Once the stagnation pressure losses have been related to
flow angles, reaction, blade loading, and flow coefficient, an estimate of the stage efficiency
can be obtained. The task of a compressor engineer is to use this information to design a
well-performing multistage axial compressor.

7.1 COMPRESSOR STAGE ANALYSIS

A compressor stage consists of a rotor that is followed by a stator. In contrast to flow in
turbines, in which pressure decreases in the direction of the flow, in compressors flow is
against an adverse pressure gradient. The blade-loading coefficient is kept fairly low in
order to prevent separation, with design range 0.35 < 9 < 0.5. As a result, the amount of
turning is about 20° and does not exceed 45° [19]. A typical range for the flow coefficient
is 0.4 < ¢ < 0.7. If the flow is drawn into the compressor directly from an atmosphere, it
enters the first stage axially. However, a set of inlet guidevanes may be used to change the
flow angle «; to the first stage to a small pesitive value [18].
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7.1.1 Stage temperature and pressure rise

Figure 7.2 shows a typical compressor stage. Since the rotor now precedes the stator, the
inlet to the rotor is station 1 and its outlet is station 2. The outlet from the stator is station 3
and for a repeating stage the flow angles and velocity magnitudes there are equal to those
at the inlet to the rotor.

v,
o
1 U v,
Bl 4’
a,
Ay —
W,
1 v,
N )
\ a2
B,
W,
Figure 7.2 A typical axial compressor stage.
Work done by the blades is
w=UVy2 ~ Vyu1) 7.1

or
w = hga — ho1 = UV (tanas — tanay ) = UV, (tan B2 — tan ;)

With w = ¢,(Tps — To1), this can also expressed in the form

w ATy Uv,

= = tan — tan
cpTor  To cpTot (tan 5 b

which gives the nondimensional stagnation temperature rise. From the definition of stage

efficiency
_ Tozs ~Ton

Tos — To1
the stage pressure ratio can be written as

AT v/(v=1)
o3 = <1 + Tht 0)
Po1 To1

Tt

The stage temperature rise can also be written in the form

AT, U v2
- — 1) — Ji: 2 —
Tor (v ) V. @, (tan B2 — tan fy)

For axial entry, V,, is the inlet velocity. In terms of the flow coefficient and stagnation Mach

number, defined as -
Vi
= Mo = =%
® v 0=
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the temperature rise takes the form

ATy

=(y- 1)M—gl(tanﬂz — tan f1)
To1

¢

A typical inlet velocity is V; = 150m/s, and an inlet stagnation temperature is Ty, =
300 K. The stagnation Mach number is therefore

My =22 =20 _ g4

o1 v1.4-287-300

The actual Mach number is obtained by noting that
v, T, ~1_ N\
My = 2250 o[22 = My (1422 M}
Co1 C1 T 2

M M,
! and M, = oL

V1+VTWIM22 \/1_77_1M31

Hence for this value of the stagnation Mach number, M; = 0.440. For a flow coefficient
¢ = 0.56 (and axial entry), the relative velocity is at an angle

1
By =tan™! (xM) =tan~! (_V£> = tan™! <—$> = tan~? (—ﬁ) = —60.75°
zl T .

If the relative velocity is turned by 12°, the exit flow angle is S = —48.75°. With these
values, nondimensional stagnation temperature rise is
ATy M}
T2 = -p=t
To ¢
0.4 - 0.4322

= W(tan(—él&m ) — tan(—60.75°)) = 0.086

so that the actual stagnation temperature rise is ATy = 25.8°. Assuming a stage efficiency
ns = 0.9, the stage pressure rise is

so that

My, =

(tan B2 — tan By)

Pos _ (1+0.9-0.086)>° = 1.30
Po1
This falls into the typical range of 1.3 — 1.4 for core compressors.
The relative Mach number may be quite high at the casing, owing to the large magnitude
of the relative velocity there. With k = r},/r¢, the blade speed at the casing is U, =
2U/(1 + k). Hence the relative flow angle, for x = 0.4, at the casing is

2 2
g 71 —_— = *1 —_— = °
B1c = tan [(1 n n)qﬁ] tan (1.4 : 0.56) 68.6

and the relative mach number is

M, 0.44
Mige = = =
cos B 0.365
Hence the flow is supersonic (or transonic). As has been mentioned earlier, shock losses is
transonic flows do not impose a heavy penalty on the performance of the machine and are
therefore tolerable.
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7.1.2 Analysis of a repeating stage

Equation (7.1) for work can be rewritten in a nondimensional form by dividing both sides
by U?, leading to

¥ = P(tanag — tanay) = @(tan B — tan fr) (7.2)
The reaction R is the ratio of the enthalpy increase across the rotor to that over the stage
R— ho—hy  hg—hi+hy—hs _1_h3—h2
" hs—hy hs — hy N hs — hy

The work done by the blades causes the static enthalpy and kinetic energy (as seen from
Figure 7.2) to increase across the rotor. In the stator stagnation enthalpy remains constant,
and the static enthalpy and, therefore also a pressure increases, are obtained by decreasing
the kinetic energy. In a design in which the areas are adjusted to keep the axial flow
constant, the reduction in kinetic energy and increase in pressure result from turning the
flow toward its axis. A similar argument holds for the rotor, but now it is the stagnation
enthalpy of the relative flow that is constant. Hence pressure is increased by turning the
relative velocity toward the axis. The velocity vectors in Figure 7.2 show this turning.
The amount of turning of the flow through the rotor and stator are quite mild. A large
deflection could lead to rapid diffusion and likelihood of stalled blades. Since compression
is obtained in both the stator and the rotor, intuition suggests that the reaction ratio ought
to be fixed to a value close to 50% in a good design. But in the first two stages, at least,
where density is low and blades long, reaction increases from the hub to the casing and the
average reaction is made sufficiently large to ensure that the reaction at the hub is not too
low.

In the Figure 7.3 the thermodynamic states are displayed on a Mollier diagram. The
distances that represent the absolute and relative kinetic energies are also shown. The
relative stagnation enthalpy across the rotor remains constant at the value hog; = h1 +
W2/2 = hy + W2/2. The relative Mach number and the relative stagnation temperature
are related by

Tor _y 021
T 2
and the corresponding stagnation pressure and density are

—1 —_
Por _ Tor v/(y—1) por. _ Tor 1/(v=1)
P T p T

The loss of stagnation pressure across the rotor is given by pgr1 — pPora- Across the stator

the loss is pg2 — Po3-
For the stator hgs. = hgs and therefore

My

1 1 1 1
h2+§V22 :h3+§V32 or hs — hy = —2—V22—§V32
Since Vi = V4 + V.4 and V¥ = V% + V% and the axial velocity V, is constant
1 1
hs — hy = §(V32 -V = 51/302(tan2 ag — tan? a)
For normal stage Vi = V3 and hgs — hg1 = ha — hy. Since no work is done by the stator,

across a stage
w = hoz — hor = hg — by = YU?
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Figure 7.3 A Mollier diagram for an axial compressor stage.

Using these equations the reaction ratio, with «; = a3, may be expressed as

2

V2 (tan? ap — tan? a
_ Y 2 ) or Rzl—ﬂ(taHQag—tanzal)

R=1- - 1y

Substituting ¢ from Eq. (7.2) into this gives
1
R=1- §¢(tan ag + tanoy) (7.3)
Eliminating next oo from this, with the help of Eq. (7.2), yields
p=2(1-R- dtana) (7.4)

Equations (7.2) — (7.4) are identical to Eqgs. (6.5), (6.8), and (6.9) for turbines, provided o
is replaced by «3. Hence the flow angles for the stator can be calculated from

1-R—1y/2 1- 2
tana, = LR ¥/2 tana, = LR+ Y/2 7.5)
o o
Similarly, for the rotor, the flow angles can be determined from
R 2 —/2
tan 81 = —+TW tan By = —% (7.6)

In these four equations there are seven variables. Thus, once three have been specified, the
other four can be determined. For example, specifying R, ¢, and ¢, it is easy to obtain the
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flow angles. Suggested design ranges for these have already been mentioned. The situation
changes if the axial velocity is not constant because then two flow coefficients need to be
introduced. Equations (7.5) and (7.6) no longer hold, and the angles must be calculated
using basic relations from velocity diagrams and definitions of blade-loading coefficient
and reaction. Similarly, fundamental definitions need to be used if the flow angles entering
and leaving are not the same.

There are two situations of particular interest. First, for a 50% normal reaction stage,
these equations show that

tana; = —tan By a1 = —f

tanag = —tan By g = —f1

and the velocity triangles are symmetric. Second, from Eq. (7.4) it is seen that for axial
entry, with a; = 0, the blade-loading coefficient is related to reaction by ¢y = 2(1 — R)
and thus cannot be specified independently of the reaction. If the loading coefficient is to
be in the range 0.35 < 9 < 0.5, the stage would have to be designed for a reaction greater
than 50%. But if the flow enters the stator at a small positive angle, then the blade loading
can also be reduced by reducing the flow coefficient. The calculations for this situation are
illustrated in the following example.

B EXAMPLE 7.1

A normal compressor stage is designed for an inlet flow angle a;; = 15.8°, reaction
R = 0.63, and the flow coefficient ¢ = 0.6. (a) Find the blade-loading factor. (b)
Determine the inlet and exit flow angles of the relative velocity to the rotor and the
inlet flow angle to the stator.

Solution: (a) The value
Pp=2(1-R—¢tana) =2(1 —0.63 — 0.6tan(15.8°)) =04

for a blade loading coefficient falls into a typical range.
(b) The flow angles are

oy = tan~! (—1 - R 7/)/2> =tan~! (—1 —0.63+ 0‘2) = 43.54°

¢ 0.6
B 4 {—R—1/2 . 1 {—0.63-0.2Y) B o
B1 = tan <--—~———¢ > = tan (70.6 ) = —54.14
B 4 [—R+v/2) . 1 (~063+02Y) 3 o
B2 = tan (—-¢ > = tan <_——~——0.6 ) = —35.61

The rotor turns the relative velocity by A3 = 85 — 81 = 18.53°, and the stator
turns the flow by A = 27.74°. These are also in the acceptable range. The velocity
triangles in Figure 7.2 were drawn to have these angular values. A similar calculation
shows that for a 50% reaction the blade-loading coefficient would increase to 0.66
and the amount of turning would be 38.34° in both the stator and the rotor. [

In order to keep the diffusion low, a flow deflection of only 20° is typically used across the
compressor blades [18]. A large deflection would lead to a steep pressure rise and possible
separation of the boundary layer. A simple criterion, developed by de Haller, may be used
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to check whether the flow diffuses excessively [20]. He suggested that the ratios V1 /V}
and W5 /W, should be kept above 0.72. These ratios can be expressed in terms of the flow
angles, and for a normal stage they give the following conditions:

Wy  cospy
— = > (.72
W1  cosfe

Mo _ 0802 g

Vo cosoy
In the foregoing example when R = 0.63

Vi _ cosap _ cos(43.54°) 075 Wy cosfy  cos(—54.14°) 0.79
Vo  cosa; cos(15.80°) W, cosfla cos(—35.63°)

so the de Haller criterion is satisfied. If the reaction is reduced to R = 0.5, then for both
the rotor and the stator, these ratios are

cosay  cos(54.14°)

cosay  cos(15.80°) 0.6

and now the de Haller criterion is violated. On the basis of this comparison the higher
reaction keeps the diffusion within acceptable limits.

It has been mentioned that there is another reason why the reaction should be relatively
large for the first two stages. Since the gas density there is low, to keep the axial velocity
constant through the compressor, a large area and thus long blades are needed. This causes
reaction to vary greatly from the blade root to its tip. To see this, consider again the equation

w = U(Vug - Vu ) = Q(TVuQ — ’I‘Vul)

If the tangential velocity distribution is given by free vortex flow for which rV,, is constant,
then each blade section does the same amount of work. For a blading of this kind the
equation for reaction

1
R=1- §¢(tana2 +tanay)
may also be written as

Ve + Vi Co +C
R=1- =1-
2U 2rU
where Cy = rVy; and Cy = rV,5. Since U = rUy, /71, in which subscript m designates

a condition at the mean radius, for this flow the reaction takes the form
A

which shows that the reaction is low at the hub and increases along the blades. Thus, if the
reaction at the mean radius is to be 50%, the low reaction at the hub causes a large loading
and greater deflection of the flow. This leads to greater diffusion.

If guidevanes are absent, the flow enters the stage axially. Hence «; = 0 and Eq. (7.4)
reduces to ¢ = 2(1 — R). When this is substituted into Eqs. (7.5) and (7.6) the following
relations are obtained:

2(1-R) 1 2R—-1

- tan By = —— tan By = —
¢ ¢ ¢

Two of the parameters could now be assigned values and the rest calculated from these

equations.

tan ag =
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Another way to proceed is to use the de Haller criterion for the rotor flow angles and set

cosBi  [¢? 4+ (2R —1)?
cosfy P +1

= Dgr 1.7

in which Dg = 0.72, or slightly larger than this. This method of designing a stage is
discussed in the next example.

B EXAMPLE 7.2

A compressor stage is to be designed for axial entry and a reaction R = 0.82. Use
the de Haller criterion to fix the flow angles for the stage design.

Solution: With a; = 0 and R = 0.82, the blade loading coefficient is ¢ = 0.36.
Using the de Haller criterion, with Dg = 0.72, for limiting the amount of diffusion
in the rotor, the flow coefficient can be solved from Eq. (7.7). This yields

¢ = = 0.4753

D3 — (2R - 1)2 \/0722 (2-0.82—1)2
1—D2 1-0.722

The remaining calculations give

2—-2R 0.36
= -1 = -1 = ,140
oo = tan ( 3 ) tan (0'4753> 37
1 1
= -1 _— = -1 — = — ©
[1 = tan ( ¢> tan < 0'4753> 64.58

1-2R 0.64
= -1 = -1 — = — .4 °
B2 = tan ( 3 > tan < 0.4753> 53.40

Thus the de Haller criterion for the stator becomes

Ds = cosaz _ cos(37.14°) _ 0797
cos cos(0°)

and for the rotor it is

cos 1 cos(—64.58°)

= =0.720
cosfBz  cos(—53.40°)

Dy =

in agreement with its specified value. The deflection across the statoris Ao = 37.14°,
and across the rotor it is A = —53.40° + 64.58° = 11.18°. [

The velocity triangles of the foregoing example, drawn with U as a common side, are shown
in Figure 7.4. The example shows that even if the flow turns by greater amount through the
stator, it diffuses less than in the rotor. The reason is that the turning takes place at a low
mean value of a. In fact, were the flow to turn from, say, —10° to 10°, there would be no
diffusion at all, because the magnitude of the absolute velocity would be the same before
and after the stator. Thus it is the higher stagger of the rotor that leads to large diffusion
even at low deflection. For this reason, the de Haller criterion needs to be checked.

The deflection, represented by the change in the swirl velocity, is shown as the vertical
distance in the top left of the diagram. Dividing it by the blade speed gives the loading
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Figure 7.4 Velocity triangles on a common base for an axial compressor stage.

coefficient. The ratio of the horizontal V,, to blade speed is the flow coefficient. Thus a
glance at the horizontal width of the triangles and comparison with the blade speed shows
that the flow coefficient is slightly less than 0.5. The extents of turning across the stator
and rotor are shown as angles A« and A, respectively. The decrease in magnitude of the
velocity across the stator is slightly larger than the length of the side opposite to the angle
Ap in the triangle with sides W, and W5. Similarly, the length of the side opposite to the
angle Aq in the triangle with V] and V5 as its sides indicates the extent of reduction of
the relative velocity. Hence inspection confirms that even slight turning, may lead to large
diffusion when the blades are highly staggered.

7.2 DESIGN DEFLECTION

Figure 7.5 shows typical results from experiments carried out in a cascade tunnel [37].
It shows the deflection and losses from irreversibilities for a given blade as a function of
incidence. The incidence is ¢ = aig — X2, in which x5 is the metal angle. The losses increase
with both positive and negative incidence, but there is a large range of incidence for which
the losses are quite low. The deflection increases with incidence up to the stalling incidence
€s, at which the maximum deflection is obtained. At this value losses have reached about
twice their minimum value. This correspondence is not exact, but since the losses increase
rapidly beyond this, a stage is designed for a nominal deflection of ¢* = 0.8¢4, which also
corresponds to an incidence at which the loss is near its minimum. As shown in the figure,
at this condition the incidence is slightly negative. But for another cascade it may be zero,
or slightly positive. The loss coefficients have been defined as

" ~ ha — hag w _ ha — has
R = T1yp2 5= T1y2
§W1 §V2
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The upstream velocity is now the reference velocity. The relationship between these and
those based on the downstream velocity is
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Figure7.5 Mean deflection and stagnation loss coefficient as a function of incidence. (Drawn after
Howell [37].)

The conclusion from a large number of experiments is that the nominal deflection is
mainly a function the gas outlet angle and the space-chord ratio of the cascade. The camber
and incidence are additive, and both are responsible for the amount of deflection of the
flow. For the cascade shown in Figure 7.5, the nominal deflection is 30° with incidence at
—4°. Thus the camber is quite low, making the blades rather flat. From such experiments a
universal correlation, shown in Figure 7.6, that relates the deflection to the exit angle with
solidity o = ¢/s as a parameter was developed by Howell [37]. Solidity is the ratio of the
length of the blade chord to the spacing of the blades. It increases with reduced spacing,
and the term suggests that in this case the solid blades fill the flow annulus more than the
open passages. As the solidity increases the flow follows the blades better.

A curve fit for the nominal deflection, suitable for computer calculations, is

3 o

2 *
e* = (~3.680%+17.20+4.3) ( 1‘)(‘)%>+(12.602— 54.30 — 10.0) T% ~8.70%+ 36.40 + 6.1
(7.8)
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For example, for a cascade with o = 1.2, if the relative velocity leaves the rotor at angle
as = 30°, the nominal deflection is €* = 21.92°, For a cascade with solidity ¢ = % and
the flow leaving the stator at g = —10°, the nominal deflection is £* = 30.7°. For given
e* and asg, this equation is quadratic in o. Its solution has an extraneous root with a value
greater than 3 and it needs to be rejected.

This equation can also be used to calculate the deflection across a rotor by replacing a:g
with —f32. The two examples worked out earlier in this chapter show that the deflection
is larger across the stator than across rotor and that the angle at which the gas leaves the
stator is not large. The flow over the rotor is turned less, and the absolute value of its exit
angle is quite large. These are consistent with the results shown in Figure 7.6.

Nominal deflection ¢*

] L L

-10°  0° 10

s L L

o

20° 300 40 50 60° 70
Gas outlet angle a, or -8,

Figure 7.6 Nominal deflection as a function of gas outlet angle and solidity. Drawn after Howell
[37].

An alternative to Eq. (7.8) is the tangent difference formula, which for the rotor is

1.55
t > —t =— 7.9
anf —ten B = o o (7.9)
and a similar equation
tanaj — tanaj = 1.5 (7.10)
2 3 1+1.5/0g :

holds for a stator. They provide a quick way to calculate the nominal deflection and fit the
data well over most of the outlet angles. Atlow deflections they underpredict the deflection,
by about 3° at a3 = —10° and low solidity. Indeed, at o} = —10° and ¢ = % the tangent
difference formula gives €* = 26.7°, whereas Eq. (7.8) yields 30.7°. Typically the flow
does not leave the stator at a negative angle so that such exit angles are just outside the
range of usual designs.

For a normal stage with constant axial velocity the nondimensional equation for work is

= ¢(tan ay — taneq ) = ¢(tan Bz — tan B;)
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The tangent difference formulas now show that the solidity for the rotor is the same as that
for the stator, as the design is based on nominal conditions. It is determined by solving
Y 155
¢*  1+1.5/c
for 0. In order to prevent resonance vibrations, the number of blades in the rotor is slightly

different from the number of stator blades. Thus the spacing is changed, but the same
solidity can still be achieved by changing the length of the chord.

B EXAMPLE 7.3

A normal compressor stage is designed to have the flow leave the stator at the angle
a1 = 12.60°. Assume that the optimum design condition for least losses is achieved
when the reaction is £ = 0.68, and the flow coefficient ¢ = 0.56. For a normal
stage, find the blade loading factor, and the optimum value for the solidity. Check
also that the de Haller criterion is satisfied.

Solution: The loading coefficient is first determined from
P =2(1—R— ¢tana;) =2(1 —0.68 — 0.56 tan(12.6°)) = 0.39

and the flow angles are

ap = tan™! (—————1 — R(;_ ¢/2> = tan™? <—1 — 0'?52 0'195> = 42.60°
B1 =tan™! <7_R;¢/2> = tan~! (—_0'63;60'195> = —57.38°

— —0. 1
Bz = tan™! <7R ;¢/2)> = tan™! (—O 6(8).—;60 95) = —40.90°

The deflections are therefore
eg = 30.00° cg = 16.48°
The diffusion factors are

cosas  cos(42.60°) cos B cos(—5H7.38°)
= = 0.754 = =0.713
cosay  cos(12.60°) cosf2  cos(—40.90°)

so that the diffusion in the rotor is marginally too high. If the solidity is calculated
from the tangent difference formula, it yields

159

=0V 199
T 1556 — 9

In actual machines the values of ¢, 1, and R vary across the span, owing to the change
in the blade velocity with the radius, and v tends to be high near the hub and low near the
casing. The reaction is low near the hub and high near the casing, as R moves in opposite
direction to the loading coefficient. The blade angles are adjusted to counteract the natural
tendency that causes the values to change so that the loading can be kept more uniform. A
50% reaction ratio is common, and the blade-loading coefficient is typically in the range
0.3 <y < 0.45.
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7.2.1 Compressor performance map

Compressor blades tend to be quite thin, with maximum thickness-to-chord ratio of 5%. If
the solidity is high, the blades guide the flow well. An operating condition in which the
flow coefficient, ¢y, is larger than its design value, ¢4, is shown in Figure 7.7. Itis seen that
an increase in the flow rate causes a decrease in the blade-loading coefficient. This effect
becomes amplified downstream as the density does not change according to design, and the
difference cumulates from stage to stage. This subject is discussed in Cumpsty [18], who
shows that the last stage is one that is likely to choke. Similarly, examination of Figure 7.7
shows that if the flow coefficient decreases, the blade loading coefficient increases. The
blades now become susceptible to stall, and the last stage controls the stall margin.

(@ 9, ey

Blade
stalling

Y Choking

b=

¢d_>

Figure 7.7 Normalized velocity triangles at design and off-design operation and their performance
characteristics.

This reasoning can be carried out analytically be rewriting the Euler equation of turbo-
machinery
w = U(Vug — Vul)

into a different form. Substituting
Vg =U 4+ Wyo
into the previous equation gives
w=UU + Wy — V1) = U[U — V,(tan; — tan 83))
and dividing next each term by U? gives
¥ =1-$(tana; — tan Fz)

For a normal stage the exit angle from the stator is «;, and the exit angle of the relative
velocity from the rotor is f82. These then tend to remain constant even at off-design
conditions. Furthermore, the latter angle is’usually negative so that the term in parentheses
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is positive. With the trigonometric factors constant, this means that increasing the flow
coefficient decreases the loading.

This equation gives the compressor characteristic for an ideal compressor. It is a straight
line with a negative slope when the blade-loading coefficient is plotted against the flow
coefficient. This is shown in Figure 7.7b. The actual compressor characteristic is also
shown, and the differences away from the design point are caused by irreversibilites. Far
away from the design point to the left, the blades stall and at even lower flow rates (smaller
¢) the compressor may experience surge. This means that the flow can actually reverse its
direction and flow out the front of the compressor. For this reason compressors are operated
some distance away from the stall line. To the right of the design point irreversibilities
again cause deviation from the theoretical curve, and as the flow rate increases, the blade
row will choke.

7.3 RADIAL EQUILIBRIUM

The mean line analysis on which most of the calculations in this text are based ignores the
cross-stream variation in the flow. In axial-flow machines this means that only the influence
of the blade speed, that increases with radius, is taken into account. Today it is possible to
carry out calculations by CFD methods to resolve the three-dimensional aspects of the flow.
However, as was seen in the discussion of axial turbines, the elementary radial equilibrium
theory advances the understanding on how the important variables, such as the reaction and
the loading, vary from the hub to the casing. There (and in Appendix A) it was shown that
the principal equation to be solved is

dhg ds dVy av, V2

o Tty TV T

The first term on the right represents the entropy variation in the radial direction. Owing to
the entropy production in the endwall boundary layers, tip vortices, and possible shocks,
this is likely to be important near the walls. However, if the flow mixes well in the radial
direction, entropy gradients diminish and it may be reasonable to neglect this term. Of
course, irreversibilities would still cause entropy to increase in the downstream direction,
even if it does not have radial gradients.

The stagnation enthalpy is uniform at the entrance to the first row of rotor blades, and if
every blade section does an equal amount of work on the flow, it will remain uniform even
if the stagnation enthalpy increases in the direction of the stream. As a consequence, the
term on the left side of this equation may be neglected, and the equation reduces to

(7.11)

v av, 2
v, 0y, D M (1.12)
dr dr T

This is a relationship between the velocity components V,, and V. If the radial variation
of one of them is assumed, the variation of the other is obtained by solving this equation.
For example, as was seen in the discussion of axial turbines, if the axial component V is
assumed to be uniform, then the radial component must satisfy the equation

Ve __dr

V. r
the solution of which is rV,, = constant. This is the free vortex velocity distribution.
Before and after a row of blades the tangential velocity is

C1 Ca
Vul = Vu2 =
s s
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It was observed earlier that the expression for work is now
w=U(Viys — Vi) = 1 (C—2 - C—l) = Q(cs — 1)
r r

so that the work is independent of radius. This justifies dropping the term dho/dr in
Eq. (7.11).

7.3.1 Modified free vortex velocity distribution

The free vortex velocity distribution is a special case of the family of distributions
d d
Vur = er™ — - Via = er™ + ; (7.13)

in which 7 is a parameter. Regardless of the value of n, each member of this family has a
velocity distribution for which each blade section does an equal amount of work, as seen
from

d d

w=UVy-Va)=Qr|-+-]=20d

T
With the mean radius r,, the same at the inlet and the exit, a nondimensional radius may be
introduced as y = 7 /7. The tangential velocity components for a free vortex distribution
with n = —1 may now be written as

b —-b b +b
Vulzg__:a Vu2:g+_:a
¥y oy Y Yy oy Y
When the Eq. (7.12) for radial equilibrium is recast into the form
dv, Vi d
V:c = - qu
dy Y dy( )

it shows that for this velocity distribution RHS vanishes, as the substitution shows

dV, a—bd(a—Db)
de—y = 7 Ty =0 V, = constant

Clearly, the same result is obtained for the outlet, as only the sign of b needs to be changed
to describe the tangential velocity there. This reduced equation now shows that the axial
velocity is constant along the span of the blade, but it does not follow that it has the same
constant value before and after the blade row. The axial velocities can be made the same
by proper taper of the flow channel.
The reaction is given by
1V, 1 Vug + Vo
R=1- §F(tana2 +tanag) =1-— 5%
Here U = rQ) = Uy /7, or U = Uy was used. Since V2 + Vi, = 2a/y, the reaction

18
a

Umy?
If B, is the reaction at the mean radius y = 1, then a = U, (1 — Ry, ) and the reaction can
be written as

R=1-

R<y>=1—<1—Rm>§
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Figure 7.8  Reaction as a function of the radial position on the blade for a free vortex velocity
distribution for x = 0.4.
The parameter b can be related to the work done. From

w = U(Vug — Vul) = 2Umb

and b = w/2Uy, = 3¥mUn, in which ¢, = w/U2.
Another way to represent the data is to introduce a nondimensional radial coordinate
z=(r —rn)/(re — ), so that

in which & = r/r.. Clearly, the hub is now at z = 0 and the casing, at z = 1. The
variation in the reaction as a function of this variable is shown in Figure 7.8, for the hub
to tip radius x = 0.4 and for values of the mean reaction 