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ABSTRACT

The behavior of physical systems is usually modeled by differential equations. For in-

stance, the aerodynamics of airplanes is modeled by the Navier–Stokes equation; problems

of optimal control are modeled by the Ricatti differential equation; and the valuation of

stock options is modeled by the Black–Scholes equation. Thus, differential equations are

pervasive in almost every aspect of science and engineering, and being able to solve them

precisely and accurately, but also while trusting that the solutions are accurate, is of utmost

importance. Since many of these differential equations are mostly difficult or intractable

to solve analytically, they are typically solved numerically. This leads to an accumulation

of errors at each approximation step. In the past, this accumulation of errors has led to

catastrophic consequences like the failure of the Patriot missile system due to floating-point

errors; and the infamous multi-million dollar loss in the Vancouver stock exchange due to

accumulation of floating-point errors. It is thus important that we analyze each approxi-

mation error rigorously and formalize conditions which could lead to unexpected divergent

behaviors of numerical solvers.

In my thesis, I propose a mechanized error analysis framework, which treats errors from

each approximation step modularly, in a formal setting like the Coq theorem prover. This

framework connects a differential equation to the actual implementation of a linear solver

for computing solutions to a differential equation. We show convergence of a finite-difference

method, which is used to discretize the differential equation; compute an approximated

solution to the discretized set of equations using stationary iterative methods, and prove

its convergence formally in the field of reals. We then extend this analysis to a concrete

implementation of a stationary iterative algorithm: Jacobi iteration, and prove correctness,

accuracy and convergence of the implementation in the presence of floating-point errors. Our

floating-point error analysis takes into account exceptional floating-point behaviors including

overflow and underflow, and we prove the absence of overflow at each iteration by deriving

concrete bounds on the input variables to the algorithm.

Some of the important contributions of this thesis include: the formalization of a generic

statement about convergence for finite-difference methods – the Lax–equivalence theorem;

the formalization of a generic statement about iterative convergence in the field of reals; the

xii



formalization of properties of the l2 and l∞ matrix and vector norms; norm-wise forward error

bounds for matrix-vector operations in floating-point arithmetic; and the demonstration of

a modular approach to achieve program verification on the Jacobi iteration method. This

thesis further proposes ways to extend our end-to-end verification framework beyond Jacobi

iteration to any stationary iterative method, and proposes ways in which automation could

be achieved, as future extensions of this work.

xiii



CHAPTER 1

Introduction

1.1 Background and motivation

The behavior of physical systems is usually modeled by differential equations. For instance,

the aerodynamics of airplanes is modeled by the Navier–Stokes equation [9]; problems of

optimal control are modeled by the Ricatti differential equation [116]; and the valuation of

stock options is modeled by the Black–Scholes equation [137]. Thus, differential equations

are pervasive in almost every aspect of science and engineering, and being able to solve them

precisely and accurately, but also while trusting that the solutions are accurate, is of utmost

importance.

Since many of these differential equations are difficult or intractable to solve analytically,

they are typically solved numerically. The differential equations are discretized in a finite

computational domain, and solved numerically, which leads to an accumulation of errors

at each approximation step. These errors are commonly classified [124] into acknowledged

errors, for which a set procedures exist to identify and possibly remove them, and unacknowl-

edged errors, which are commonly computer programming error, as illustrated in Figure 1.1.

When a differential equation is discretized in a finite computational domain (grid) using a

choice of numerical methods like the finite difference method, finite element method, finite

volume method etc., we incur the first layer of approximation error called the discretization

error. The discretization error is defined as the distance between the numerical solution

computed in a grid and the exact solution from the differential equation projected onto this

grid. The set of discretized equations we thus obtain from this discretization, which is usually

abstracted as a linear system of equations, is then solved for the unknown quantities using

a linear solver. This linear solver usually relies on iterative methods to build a sequence of

approximations of the “true numerical solution”, which is ideally computed by taking an

inverse of the coefficient matrix. These iterative methods are less expensive computationally

than direct matrix inversion and therefore used in most practical settings, but incur another
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Classification of 
errors

Unacknowledged Acknowledged

Temporal 
discretization

Discretization
Computer 

programming

Physical 
modeling

Geometry 
modeling

Spatial 
discretization

Iterative 
convergence 

Floating-point
Physical 

approximation

Figure 1.1: Classification of errors in scientific computing. Figure based on [124].

layer of approximation error called the iterative convergence error. Finally, since this linear

solver is implemented using a programming language in a finite precision machine, the so-

lutions from this solver is corrupted by the floating-point error and computer programming

error. All of these sources of errors have to be analyzed rigorously and bounded carefully to

guarantee that the numerical solution obtained from these linear solvers is bounded within

a certain range of the exact solution of the differential equation.

The importance of a rigorous analysis of these errors can be motivated by some infamous

disasters like the failure of the Patriot missile system [60] due to floating-point errors, and the

infamous multi-million dollar loss in the Vancouver stock exchange [74] due to accumulation

of floating-point errors. A case study of the devastating effect of the rounding errors is

presented in the book by Nicholas Higham [68]. This book presents an example constructed

by Hammarling and Wilkinson [61] for solving a linear system Ax = b numerically using

the successive over-relaxation (SOR) method, and the exact solution for this linear system

is given by xi = 1 − (−2/3)i. The coefficient matrix A is a 100 × 100 lower bidiagonal

matrix with Aii = 1.5 and Ai,i−1 = 1, and bi = 2.5. The relaxation parameter for this

method, ω = 0.5. The SOR method converges in exact arithmetic since the spectral radius

of the iteration matrix is 1/2, but diverges in the presence of rounding error, as illustrated

in the Figure 1.2. The forward error, defined as ||x̂k − x||∞/||x||∞, levels off after about 100

iterations instead of converging asymptotically to 0, as would be the case in exact arithmetic.

Here, x̂k denotes the numerical solution, x denoted the exact solution, and ||.||∞ denotes the

2



Figure 1.2: Effect of rounding error on convergence of the SOR method. Figure from [68]

ℓ∞ norm of a vector. This divergence was accounted not because of the ill-conditioning of

the matrix A, but due to the rapid growth error resulting from the iteration matrix being

far from normal leading the norms of its power to become very large before they ultimately

decay by a factor ≈ 1/2 with each successive power. This subtle issue in theory could turn

out to be catastrophic in practice if this method were used deep inside some linear solver

used in engineering design. It is thus important that we analyze each approximation error

rigorously and formalize conditions which could lead to unexpected divergent behaviors of

numerical solvers.

The above motivating example raises an important question about the credibility of com-

putational results. William L. Oberkampf and Christopher J. Roy define the credibility of a

computational result as the result of an analysis being worthy of belief or confidence [108].

They further enumerate fundamental building blocks that build credibility in computational

results, which includes: (a) quality of analysts conducting the work, (b) quality of physical

modeling, (c) verification and validation practices, and (d) uncertainty quantification and

sensitivity analysis. An analyst is mostly concerned with formulating a mathematical model

of a physical system, choosing the right discretization scheme, setting up simulations, and

analyzing the results of the simulation. The quality of a physical model is judged by the

3



fidelity and comprehensiveness of the physical detail embodied in the mathematical model

representing a physical system. Both (a) and (b) mainly touch upon the modeling aspects of

a physical system, which is not the primary interest of this work. We also do not deal with

uncertainty quantification (d) in this work, since we only analyze deterministic systems. We

are primarily concerned with the verification and validation aspects (c) of a computational

result, assuming that we are given the right mathematical model by numerical analysts.

Verification and Validation practices are primarily concerned with assessing and quantifying

the accuracy of computational results. Verification is the process of assessing the correctness

and numerical accuracy of the solution to a given mathematical model, while Validation is

the process of assessing the physical accuracy of a mathematical model based on comparisons

between the computational results and experimental data [108]. In other words, verification

is about solving the equations right, while validation is about solving the right equation.

In this work, we will be mostly discussing about what it means to solve the equation right,

i.e., verification. The meaning of verification is fuzzy among the practitioners, and most

often verification is assumed synonymous to testing. Most verification practitioners use the

testing approach to observe the relation between the inputs and output of their algorithmic

implementation. This approach however suffers from a major drawback of state space explo-

sion, which means that one needs to generate a large number of input vectors to capture the

entire behavior of the system and depends on the number of state variables, thereby leading

to memory issues in most practical problems. Thus, testing is as good as the input vectors

generated and often exposes shallow bugs in the implementation. This issue is well captured

by a famous quote by an eminent Dutch computer scientist Edsger Wybe Dijkstra, “Program

testing can be used to show the presence of bugs, but never to show their absence!” [107].

This issue is alleviated by formal verification, which provides a way to identify functional

errors in human-engineered designs and proves the absence of bugs. In formal verification,

one defines a formal specification for the program implementation, which is a mathematical

formula and captures the entire testing space, thereby capturing all the corner cases, which

might not be caught by testing. The algorithmic or program implementation is then verified

against this formal specification to achieve an end-to-end proof of correctness of the algo-

rithm. In this work, we will be using the approach of formal verification to develop proof of

correctness for numerical programs.

There are thus two crucial parts in this approach of formal verification – developing for-

mal specification, and developing formal proofs. Formal specifications are developed using

a logic language like ACSL C [10], Linear Temporal Logic (LTL) [36], Gallina [34], Higher

Order Logic [58], etc. The correctness of a program with respect to this formal specification

is then evaluated using a program logic, which generates verification goals. These verifica-

4



tion goals are then discharged with a proof of correctness or a counterexample if no proof

is found, either using automated theorem provers like Z3 [49], CVC4 [8], Alt-Ergo [40], or

interactive theorem provers like Coq [34], Isabelle/HOL [58], PVS [110], etc. Automated

theorem provers use constraint solvers like SAT solvers for solving the Boolean satisfiability

problem, or SMT solvers which uses satisfiability modulo theories to solve more complex

formulas involving real numbers, integers, and/or various data structures like lists, arrays,

bit vectors and strings. Interactive theorem provers on the other hand allow users to de-

velop proof scripts interactively by relying on a much more comprehensive theory of domain

specific problems, as compared to the automated theorem provers. In our work, we will

be using the Gallina specification language to develop formal specifications and the Coq

proof assistant to develop proof scripts interactively. We use the Coq theorem prover over

other interactive theorem provers because Coq provides a rich formalization of linear algebra,

real analysis and the IEEE-754 floating-point standard, some of which are lacking in other

theorem provers. Coq also interacts well with some of the automated tools for program veri-

fication like Frama-C [43],the Verifiable Software Toolchain (VST) [33], and semi-automated

floating-point analysis tools like VCFloat [114] and VCFloat2 [7]. This interaction with these

tools has been important to us in our development of floating-point and program correct-

ness proofs. We do not use the automated theorem provers in our work because of the lack

of expressiveness in specifying properties like limits and statement of convergence; under-

developed libraries on real analysis and functional analysis; and lack of comprehensive formal

treatment of the IEEE-754 floating-point standards, even though there has been a recent

thrust in this regard in the automated theorem proving community [118].

A number of works have recently emerged in the area of formalization of numerical anal-

ysis. This has been facilitated by advancements in automated and interactive theorem

proving [109, 28, 54, 103]. Some notable works in the formalization of numerical analy-

sis include the formalization of the Kantorovich theorem by Ioana Pasca [112] to prove

convergence properties of the Newton method, the formalization of the matrix canonical

forms by Cano et al. [32], and the formalization of the Perron-Frobenius theorem in Is-

abelle/HOL [133] for determining the growth rate of An for small matrices A. In terms of

formal analysis for ordinary differential equation (ODE) solvers, Boldo and her colleagues

have made significant contributions. Boldo et al [21, 23, 22] proved consistency, stability

and convergence of a second-order centered scheme for the wave equation, connecting these

formal analysis to the actual implementation of the wave equation in C programming lan-

guage using the Frama-C tool. Louise Ben Salem-Knapp, Sylvie Boldo and William Weens

formalized [122] round-off error bounds for the 1-D and 2-D upwind advection schemes,

by taking into account the exceptional behaviors of floating-points. Sylvie Boldo, Florian
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Faissole and Alexandre Chapoutot formalized [25] round-off error bounds for the Runge-

Kutta (RK4) method, taking into account exceptional behaviors of floating-points, such as

overflow and underflow. Besides Coq, numerical analysis of ODEs have also been done in

Isabelle/HOL. Fabian Immler and Johannes Hölzl formalize [78] the initial value problem

of ODEs and prove the existence of a unique solution using the Picard–Lindelöf theorem.

Immler et al. [77, 80, 81] formalized flows, Poincaré map of dynamical systems, and verified

rigorous bounds on numerical algorithms in Isabelle/HOL. Immler also formalized [76] a

functional algorithm that computes enclosures of solutions of ODEs in Isabelle/HOL.

1.2 Dissertation contributions

Despite several advances in previous work, the existing formalizations of error analysis of

ordinary differential equation (ODE) solvers do not address the issue of iterative convergence.

Iterative methods are extensively used in the ODE solvers to obtain numerical solutions of

physical systems. Our work therefore addresses this gap in the current state of the art in the

formalization of numerical analysis, by providing a formalization of asymptotic convergence

of iterative convergence errors for a general class of iterative methods – stationary iterative

methods [131]. We further develop a generalized framework for forward error analysis in

presence of floating-point errors for stationary iterative methods, and perform an end-to-end

verification of the Jacobi stationary iteration method by proving accuracy, convergence and

correctness of its actual implementation in the C programming language.

Futhermore, we demonstrated an approach to discretize an ordinary differential equation

in a finite computational domain, in a formal setting. We chose a finite difference method

for this discretization, and formalized conditions under which this discretization error con-

verges to zero asympotically, i.e., convergence of the solution from a finite-diiference method

to the true solution of a differential equation. While Boldo et al. proved convergence for

a particular finite difference scheme, we formalized [130] a generic convergence statement –

the Lax–equivalence theorem [94] for a class of finite-difference schemes. This statement can

be instantiated with any finite-difference scheme of choice, and we applied the formalization

of the Lax–equivalence theorem to show convergence of a centered finite-difference scheme.

Thus, my thesis proposes an approach for end-to-end verification for numerical programs,

keeping the underlying error-analysis as generic as possible, thereby making important con-

tributions to the Coq and numerical analysis community.

Besides the main projects for my thesis, I have also contributed to the development of

a tool called Dandelion [13], which generates a certified polynomial approximation of tran-

scendental functions. This tool takes as input a Scala program containing transcendental
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functions like sin, cos, tan etc. and replaces its every occurrence with a polynomial approxi-

mation generated by the tool Sollya [35], which also generates a maximum error bound for

approximation in a given interval. The transcendental function, its polynomial approxima-

tion, and the maximum error bound forms a certificate, whose soundness is verified using a

library for transcendental function approximation in the HOL4 theorem prover, of which I

was the prime developer. By connecting this certificate verification process with the verified

binary generation using the CakeML compiler [93], we develop an end-to-end verification

framework for transcendental function approximation. I have also contributed in the formal-

ization of sufficiency and necessary conditions for a set of normal nodes to achieve asymptotic

consensus in a control network [132]. This formalization takes into account malicious attacks

by adversarial agents for a particular attacker model, and is the first known mechanized proof

in the area of distributed controls, to our knowledge.

1.3 Thesis structure

This thesis is structured as follows. In Chapter 2, we discuss the discretization error, which

arises due to discretization of a continuous system in a finite computational domain . We

formalize the Lax–equivalence theorem [94], to prove asymptotic convergence of this error

for a class of finite difference schemes. We then specialize this formalization to a centered

finite-difference scheme to prove convergence of the numerical solution x obtained from this

scheme, to the true analytical solution. In Chapter 3, we compute the numerical solution x

using stationary iterative methods [119]. We obtain a sequence of iterative solutions, {xk},
which are approximations of x. The distance between an iterative solution xk and x is

called the iterative convergence error at step k. We formalize the sufficient and necessary

conditions for asymptotic convergence of the sequence {xk} to x. We then instantiate this

iterative convergence theorem to two classical stationary iterative methods – the Gauss–

Seidel method and the Jacobi method to prove convergence on a model problem. We also

formalize an easily verifiable condition for convergence of solutions from the Gauss–Seidel

iteration, which just relies on the structure of the original coefficient matrix, instead of

explicitly computing eigenvalues of the iteration matrix obtained from this coefficient matrix.

The error analysis in this chapter is done in the field of reals, but the actual implementation of

an iterative algorithm is done in a finite precision machine. We therefore formalize the effect

of finite precision on iterative convergence in Chapter 4. In chapter 4, we define a floating-

point functional model to compute a floating-point solution for the Jacobi iteration process.

We then formalize conditions such that the residual (b − Axk) computed for this iteration

algorithm reaches below a user-specified tolerance τ , within k iterations, for given inputs
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- the coefficient matrix A and the right hand side vector b. We formalize explicit bounds

on the inputs such that no overflow occurs at each iteration step, and connect this to an

actual implementation of the Jacobi iteration algorithm, implemented in the C programming

language, to get a proof of accuracy, convergence and correctness of this iteration algorithm.
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CHAPTER 2

Spatial Discretization Error and

Lax–equivalence Theorem

2.1 Introduction

Physical systems are usually modeled mathematically using differential equations. For ex-

ample, the aerodynamics of an airplane is modeled by the Navier–Stokes equation [9]; the Ri-

catti differential equation [116] is used in problems of optimal control; and the Black–Scholes

equation [137] is used to model valuation of stock options. Thus, differential equations are

pervasive in almost every aspect of science and engineering, and being able to solve them

precisely and accurately, but also while trusting that the solutions are accurate, is of utmost

importance.

Since analytical or true solution of differential equations is intractable for most practical

problems of interests, these differential equations are solved numerically in a finite compu-

tational domain. In this process, a continuous problem (differential equation) is discretized

to obtain a set of discretized equations, which is solved numerically to obtain an approx-

imation of the true solution. This approximation error is called the discretization error.

Since discretization can be done both in time and space, the discretization error is of two

kinds– temporal discretization error and spatial discretization error. A numerical approx-

imation is said to be good if this discretization error decreases as one refines the grid or

decreases the discretization step size. This idea is captured by the notion of convergence of

a numerical scheme. A numerical scheme is said to be convergent if the global discretization

error approaches zero in the limit of infinitesimal discretization. Under these conditions, the

numerical solution converges to or approaches the analytical solution. This idea is formally

articulated by the Lax–equivalence theorem [94], which states that if a numerical method is

consistent and stable, then it is convergent. We will discuss formal definitions of consistency,

stability and convergence, and formally state the Lax–equivalence theorem in Section 2.3.1.

9



Proofs of consistency, stability, and convergence are typically performed by hand, making

them prone to possible errors. Formal verification of mathematical proofs provides a much

higher level of confidence of the correctness of proofs. Further, formal verification offers a

pathway to leverage mathematical constructs therein, and to extend these proofs to more

complex scenarios. Since the Lax–equivalence theorem is an essential tool in the analysis

of numerical schemes using finite differences, its formalization in the general case opens

the door to the formalization and certification of finite difference-based numerical software.

The present work will enable the formalization of convergence properties for a large class of

finite difference numerical schemes, thereby providing formal proofs of convergence properties

usually proved by hand, making explicit the underlying assumptions, and increasing the level

of confidence in these proofs.

Contributions: Overall this work makes the following contributions:

• We provide a formalization in the Coq proof assistant of a general form of the Lax–

equivalence theorem.

• We prove consistency and stability of a second order accurate finite difference scheme

for a model problem – differential equation d2u
dx2 = 1.

• We formally apply the Lax equivalence theorem on this finite difference scheme for our

model problem, thereby formally proving convergence for this scheme.

• We also provide a generalized framework for a symmetric tri-diagonal (sparse) matrix

in Coq. We define its eigen system and provide an explicit formulation of its inverse in

Coq. We show that since the symmteric tri-diagonal matrix is normal, one can perform

the stability analysis by just uniformly bounding the eigen values of the inverse. This

is important because discretizations of mathematical model of physical systems are

usually sparse [90].

This work was published at the 13th NASA formal methods symposium, 2021 [130] 1. An

important point to note here is that of the two kinds of discretization error, we only deal

with the spatial discretization error for our model problem.

2.2 Overview of the Coq proof assistant

Coq [34] is a formal proof management system, which provides a formal language to write

specifications of a system and prove properties about the system, interactively.

1Our Coq formalization is available at https://github.com/mohittkr/Lax_equivalence.git
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2.2.1 Coq standard real library

The Coq standard real library is a general purpose library that contains various develop-

ments and axiomatizations of real numbers. This library defines ordering of real numbers,

inequalities, maximum, minimum and absolute functions over reals, trigonometic functions,

logarithms and powers of real numbers. This library also formalizes some results from anal-

ysis like Rolle’s theorem, Mean-value theorem, Weierstrass theorem etc.

2.2.2 Coquelicot analysis library

Coquelicot [28] is a library in Coq which defines theory for real analysis like the derivatives,

integrals, limits, power series etc. Even though Coquelicot relies on the axiomatic definition

of real numbers in the standard real library, it differs from the standard library in that

Coquelicot relies on total functions to define limits, derivatives, integrals etc. as opposed

to their definition using dependent types in the standard real library in Coq. Thus, the

formalization of real analysis in Coquelicot is intuitive and easy to use as compared to

the standard real library . We use the following theory from Coquelicot throughout our

formalization:

• Limits: We use limits to prove asymptotic convergence of a class of finite-difference

schemes in our formalization of the Lax–equivalence in this chapter, and for our proof

of iterative convergence in the next chapter. Coquelicot defines limits using filters [28].

Intuitively, a filter in a partially ordered set P is a subset of P that includes as members

the elements which are large enough to satisfy some criterion. Since filters can be

interpreted as sets, operations on filters like such as composition, addition, maps, etc.

can be viewed as set operations. Therefore, filters provide a nice abstraction to factor

numerous proofs that satisfy a given criterion. For instance, the sum of limits of

two sequences, and sum of limits of two functions are all instances of same proof about

addition, and their proofs can be abstracted using a proof about filters for addition [28].

Coquelicot defines the limit of a real-valued function f : R → R using the is lim predicate

which is defined in Coq as

Definition is lim (f : R → R) (x l : Rbar) :=

filterlim f (Rbar locally' x) (Rbar locally l).

where the filter Rbar locally x defines an open neighborhood of x in the extended real

line: R ∪+∞∪−∞. filterlim maps every point in the open neighborhood of x to a set
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which is contained in the open neighborhood of l. i.e.,

filterlim(f, F,G) := ∀P, P ∈ G =⇒ f−1(P ) ∈ F

Coquelicot also defines the ϵ− δ definition of limits (is lim'), and an equivalence between

is lim and is lim' to switch between the filter definition and the ϵ− δ definition of limits

at our convenience.

• Algebraic structures: Coquelicot also defines algebraic structures like ring, field,

abelian group, metric space, module space, normed modules, etc., which we use heavily

in our proof of the Lax–equivalence theorem in this chapter. This library also defines

iterated sums sum n m, and basic matrix operations, which we use in the proof of

convergence of a finite difference scheme in this chapter. All of these formalization can

be found in the file Coquelicot.Hierarchy.v file.

• Extended reals and bounds: Coquelicot defines an extended real set (Rbar): R ∪
+∞∪−∞, and operations on Rbar in the file Coquelicot.Rbar.v file.

Coquelicot also defines least upper bound on Rbar (Lub Rbar) and the greatest lower

bound on Rbar (Glb Rbar) in the file Coquelicot.Lub.v file.

Even though we discussed only a few theory from the Coquelicot library, more theories on

real analysis can be referred to in this library [28].

2.2.3 Lax–Milgram formalization

The Lax–Milgram formalization [19] provided us with necessary tools to define operator

norms, linear mapping, normed vector spaces etc. This work by Boldo et al, essentially

proved the existence and uniqueness of the solution of a continuous problem and of its

discretized counterpart with the aim of proving correctness of a finite-element method. This

work also formalized important results from geometry, linear algebra, functional analysis and

Hilbert spaces. Some of these results that we used in our formalization are as follows

• Properties about continuous linear maps and operator norms can be found in the file

continuous linear map.v in the formalization [20, 19]. It is noteworthy to discuss their

formalization of an operator norm. An operator norm is defined formally in this file as

Definition operator norm (f:E → F) : Rbar :=

match Is only zero set dec E with

| left ⇒ Lub Rbar (fun x ⇒ ∃ u:E, u <> zero ∧
x = norm (f u) / norm u)
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| right ⇒ 0

end.

corresponding to the mathematical definition

||f ||ϕ = sup
u̸=0E∧ϕ(u)

||f(u)||F
||u||E

(2.1)

f is a mapping from a Normed module E to another Normed module F , and ϕ : E →
Prop is such that the operator norm of f denoted by ||f ||ϕ is defined on a subset of

ϕ. A module is a structure of an abelian group with respect to addition over a ring,

while a vector space is the same but with respect to a field. Since every field is a

ring, a vector space is a module. Thus, a module is a generalization of a vector space.

A Normed module is a module equipped with norms. Therefore, in the process of

defining operator norm over a normed module, Boldo et al have also defined operator

norm over a normed vector space. The definition operator norm states that if ϕ is {0E},
i.e., ϕ is empty, we do not expect a supremum. In this case, the default value of an

operator norm is set to 0, since the operator norm is defined as a total function in

Coq. However, when ϕ is not empty, the definition of operator norm corresponds to 2.1.

The supremum is defined in Coquelicot using Lub Rbar, where Lub stands for the least

upper bound. An important point to note here is that the supremum is defined in the

extended real line Rbar, which includes +∞ and −∞.

• Properties and definition of a linear map are defined in the linear map.v file in [20, 19].

This linear map is defined from a Module space E to another Module space F .

We use all of the above infrastructure provided by Coq to develop our proofs for the Lax–

equivalence theorem and proof of convergence of a finite-difference scheme.

2.3 Proof the Lax–equivalence theorem

2.3.1 Consistency, stability, and convergence

Definition 1 (The Continuous Problem [123]). Let X (the space of solutions) and Y (the

space of data) be normed spaces, both real or both complex. We consider a linear operator

A with domain D ⊂ X and range R ⊂ Y. The problem to be solved is of the form

Au = f, f ∈ Y (2.2)
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Here A is not assumed to be bounded, so that unbounded differential operators are

included. The problem (2.2) is assumed to be well-posed, i.e., there exists a bounded, linear

operator, E ∈ B(Y,X), such that EA = I in D, and that for f ∈ Y, equation (2.2) has a

unique solution, u = Ef . Furthermore, the solution u depends continuously on the data.

Definition 2 (The Approximate Problem [123]). Let H be a set of positive numbers such

that 0 is the unique limit point of H. For each h ∈ H , let Xh, Yh be normed spaces and

consider the approximate or discretized problem

Ahuh = fh, fh ∈ Yh (2.3)

where Ah is a linear operator Ah : Xh −→ Yh.

We assume that for each h ∈ H, problem (2.3) is well-posed and there exists a solution

operator, Eh = A−1
h , i.e. uh = Ehfh. The true solution u and the approximate solution uh

can be related with each other by defining a bounded, linear operator, rh : X → Xh for each

h ∈ H. Similarly, data f ∈ Y can be related to data in a discrete space, fh ∈ Yh by defining

a restriction operator sh. For each h ∈ H, sh : Y → Yh is also a bounded, linear operator.

We assume that the operator norms can be uniformly bounded:

||rh|| ≤ C1, ||sh|| ≤ C2, (2.4)

where the constants C1, C2 are independent of h. The true solution u = Ef is compared

with the discrete solution uh = Ehshf corresponding to the discretized datum f . The family

(Xh, Yh, Ah, rh, sh) defines a method for the solution of (2.2) [123].

Definition 3 (Convergence [123]). Let f be a given element in Y. The method

(Xh, Yh, Ah, rh, sh) is convergent for the problem (2.2) if

lim
h→0

||rhEf − Ehshf ||Xh
= 0 (2.5)

We say that the method is convergent if it is convergent for each problem (2.2) for any f in

Y.

Intuitively, this means that in the limit of the discretization step, h, tending to zero, the

numerical solution Ehshf approaches the analytical solution rhEf . The analytical solution

rhEf is the restriction of the true (analytical) solution, u = Ef , onto the grid of size N = 1/h,

and Ehshf is the discrete solution, uh = Ehfh computed on the grid of size N .

Definition 4 (Consistency [123]). Let u be a given element in D. The method is consistent

at u if

lim
h→0

||Ahrhu− shAu||Yh
= 0 (2.6)
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A method is consistent if it is consistent at each u in a set Do such that the image A(Do) is

dense in Y.

Intuitively, this means that in the limit of the discretization step, h, tending to zero, the

finite difference scheme Ahuh = fh approaches the differential equation Au = f , i.e., we are

discretizing the right differential equation.

Definition 5 (Stability [123]). The method is stable if there exists a constant K such that

||Eh||B(Yh,Xh) ≤ K (2.7)

Intuitively, stability of the numerical scheme means that a small numerical perturbation

does not allow the solution to blow up. Uniform boundedness of the inverse Eh = A−1
h is a

check on the conditioning of matrices (sensitivity to small perturbations), i.e., it ensures that

the matrix Ah is not ill-conditioned. Thus, if the numerical problem (2.3) were unstable, even

though we were trying to solve the right differential equation, we would never converge to the

true solution. Hence, both stability and consistency are sufficient for proving convergence of

the numerical scheme.

The quantities within the norms (2.5) and (2.6) are, respectively, the global and local

discretization errors.

2.3.2 Coq formalization

The Lax–equivalence theorem, which is a statement of convergence for a family of finite-

difference schemes is stated as

Theorem 6 (Lax–equivalence theorem [123]). Let (X, Y,A,Xh, Yh, Ah, rh, sh) be as above.

If the method is consistent and stable, then it is convergent.
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Proof. We start with the definition of convergence in (2.5),

lim
h→0

||rhEf − Ehshf ||Xh

= lim
h→0

||rhu− Ehshf ||Xh
(u

∆
= Ef)

= lim
h→0

||rhu− EhshAu||Xh
(f

∆
= Au)

= lim
h→0

||Irhu− EhshAu||Xh
(rhu = Irhu)

= lim
h→0

||EhAhrhu− EhshAu||Xh
(EhAh

∆
= I)

≤ lim
h→0

||Eh||B(Yh,Xh)||(Ahrhu− shAu)||Yh

≤ K lim
h→0

||(Ahrhu− shAu)||Yh
(From stability: (2.7))

= 0 (From Consistency: (2.6))

We use the mathematical structures from the Coquelicot library [28] for implementing

the proof. Since we use the Coquelicot and standard reals libraries which are based on classical

axiomatization of reals [28], our proofs are also non-constructive. Since sh and rh have to

be bounded linear operator, we define a bounded linear operators in Coq as

Definition is bounded linear (E F: CompleteNormedModule R AbsRing) (phi:E→ F):=

is linear mapping E F phi ∧ (∃ K:R, 0<=K ∧ (∀ x:E, norm(phi x) <= K∗ norm x)).

where we have used the predicate is linear mapping from the Lax–Milgram formalization [19]

to assert a linear map from E to F . Since the spaces (X, Y, Xh, Yh) have to be Ba-

nach spaces or complete normed vector spaces [92], we define the linear mapping from a

CompleteNormedModule E to another CompleteNormedModule F in Coq. We augment the defi-

nition of a linear mapping with condition of boundedness of the linear operator between two

Banach spaces [92], i.e.

||ϕ(x)|| ≤ K ||x||; ϕ : E → F

where K is a constant independent of the choice of x ∈ E.

The definition of consistency (2.6) and convergence (2.5) hold in the limit of h tending to

zero. Thus, an important step in the proof is to express these limits in Coq. Formally, the

notion of f tending to l at the limit point x requires, for any ϵ > 0, to find a neighborhood V

of x such that any point u of V satisfies |f(u)− l| < ϵ [28]. This notion has been formalized

in Coquelicot [28] using the concept of filters. In topology, a filter is a set of sets, which is

nonempty, upward closed, and closed under intersection [39]. It is commonly used to express
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the notion of convergence in topology. We have used a filter, locally x [96] to denote an

open neighborhood of x, and predicate filterlim [96] to formalize the notion of convergence

(in the context of limits) of f towards l at limit point x, i.e. limx→a f(x) = l. Therefore, the

definition of consistency (2.6) is expressed as:

(is lim (fun h:R ⇒ norm (minus (Ah h (rh h u)) (sh h (A u)))) 0 0

where the limits of functions is expressed using the predicate is lim [28].

We next discuss the formalization of the statement of convergence of a finite difference

scheme in Coq. We note that from Theorem 6, consistency and stability imply convergence.

This notion is expressed in Coq as follows:

(is lim (fun h:R ⇒ norm (minus (Ah h (rh h u)) (sh h (A u)))) 0 0 (∗Consistency∗) ∧
(∃ K:R , ∀ (h:R), operator norm(Eh h)<=K ) (∗ Stability∗) →
is lim(fun h:R⇒ norm (minus (rh h (E(f))) (Eh h (sh h (f))))) 0 0) (∗Convergence∗).

where the operator norm is defined as ||f ||ϕ = supu̸=0E∧ϕ(u)
||f(u)||F
||u||E

and has been formally

defined in [19].

The basic idea is that we bound the global discretization error (||rhEf − Ehshf ||) above
using the stability criterion, i.e. ||rhEf−Ehshf || ≤ K ||Ahrhu−shAu||, and then prove that

as the local discretization error (||Ahrhu− shAu||) tends to zero in the limit of h tending to

zero, the upper bound on the global discretization error tends to zero (using the property of

limits). Using the property of norm , i.e. 0 ≤ ||rhEf − Ehshf ||, we arrive at the inequality

0 ≤ ||rhEf − Ehshf || ≤ K ||Ahrhu− shAu||

In Coq, we define the lower bound of the inequality as a constant function with value 0 as:

fun ⇒ 0. Since the limit of a constant function is the constant itself, i.e. limh→0 0 = 0,

and limh→0 ||Ahrhu − shAu|| = 0 (Consistency), using the sandwich theorem for limits,

limh→0 ||rhEf − Ehshf || = 0. The sandwich theorem [125] states that if we have functions

obeying the inequality: f(x) ≤ g(x) ≤ h(x) and limx→a f(x) = L ∧ limx→a h(x) = L on

some open neighborhood of x = a , then limx→a g(x) = L. This proves the convergence 2.5

and completes the proof of the Lax–equivalence theorem.

We state the statement of Lax–equivalence theorerm in Coq as

Theorem is convergent:

∀ (u:X) (f:Y) (h:R) (uh: Xh h) (rh: ∀ (h:R), X → (Xh h)) (sh: ∀ (h:R), Y→ (Yh h))

(E: Y→ X) (Eh:∀ (h:R), (Yh h)→ (Xh h)),

is linear mapping X Y Aop →
(∗ Hypothesis that A is a linear mapping from X to Y∗)

f=Aop u→
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(∗ Differential equation: A u = f ∗)

(∀ (h:R), is linear mapping (Xh h) (Yh h) (Ah op h) )→
(∗ Hypothesis that Ah is a linear mapping from Xh to Yh for each h∗)

(∀ (h:R), is bounded linear X (Xh h) (rh h))→
(∗ Hypothesis that rh is a bounded linear operator (restriction) from X to Xh for each h∗)

(∀ (h:R), is bounded linear Y (Yh h) (sh h))→
(∗ Hypothesis that sh is a bounded linear operator (restriction) from Y to Yh∗)

is bounded linear Y X E →
(∗ Hypothesis that E is a bounded linear operator from Y to X∗)

u= E f→
(∗ Defining solution in continuous space (true solution) ∗)

(∀ (h:R), is bounded linear (Yh h) (Xh h) (Eh h)) →
(∗ Hypotheis that Eh is a bounded linear operator from Yh to Xh for each h∗)

(∀ h:R, is finite (operator norm(Eh h))) →
(∗ Hypothesis that ||Eh|| is finite∗)
(uh= Eh h (sh h f))→
(∗ Defining a discrete solution uh ∗)

( Ah op h uh = sh h f)→
(∗ Discretized set of equation: Ah uh = fh ∗)

(∀ (h:R), rh h u= Eh h (Ah op h (rh h u)))→
(∗ uh =Eh Ah uh, where Eh Ah=I ∗)

(∀ h:R, minus (Ah op h (rh h u)) (sh h (Aop u)) <> zero )→

(is lim (fun h:R ⇒
norm (minus (Ah op h (rh h u)) (sh h (Aop u)))) 0 0 (∗Consistency∗) ∧

( ∃K:R , ∀ (h:R), operator norm(Eh h)<=K ) (∗ Stability∗)→
is lim (fun h:R⇒

norm (minus (rh h (E(f))) (Eh h (sh h (f))))) 0 0) (∗Convergence∗).

2.4 Proof of convergence of a finite difference scheme

2.4.1 Overview of finite difference scheme

A finite difference scheme (FD) approximates a differential equation with a difference equa-

tion. The derivatives are expressed in terms of function values at finite number of points in

the discretized domain. Thus, an analytical kth derivative, dku
dxk at point xo is approximated
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numerically as

d̂ku

dxk

∣∣∣
xo

≈
r∑

i=l

aiui

where l is the number of points to the left of xo, and r is the number of points to the

right of xo, as illustrated in the Figure 2.1. Let us consider the example of approximating

Figure 2.1: Discretization of a continuous function is a discrete domain.

a first derivative at point xi as illustrated in the Figure 2.2. A forward difference scheme

Figure 2.2: Illustration of common finite-difference schemes
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(illustrated in the top of Figure 2.2) would be written as

d̂u

dx

∣∣∣
xi

≈ u(xi+1)− u(xi)

∆x

A backward difference scheme would be written as

d̂u

dx

∣∣∣
xi

≈ u(xi)− u(xi−1)

∆x

Similarly, a central difference scheme would be written as

d̂u

dx

∣∣∣
xi

≈ u(xi+1)− u(xi−1)

2∆x

Thus, each of these schemes approximate a first derivative with function values at discrete

set of points, i.e., u(xi−1), u(xi), u(xi+1) in a given domain, depending on the choice of

direction, i.e., forward, backward, or central. The value of coefficient ai depends on the

order of accuracy for a given scheme. In the case of a forward scheme (first order accurate)

to approximate the first derivative, ai = −1, ai+1 = 1. Similarly, for the backward scheme

(first order accurate), ai = 1, ai−1 = −1, and for the central scheme (second order accurate),

ai+1 = 1/2, ai = 0, ai−1 = −1/2. A more detailed perspective on developing FD schemes

for a differential equation can be referred to in the book [119].

Since we are computing a numerical approximation of the exact derivatives, we are inter-

ested in knowing the order of the discretization error.

Definition 7 (Discretization error). Let D(u) denote the true derivative of a function u :

R → R and N(u) denote the finite difference approximation of the true derivative. The

discretization error (commonly referred to as the truncation error) (τ) is then defined as:

τ
∆
= D(u)−N(u) (2.8)

If the function u is analytic, it can be expressed as a Taylor series expansion at the point

of evaluation. The truncation error is then evaluated by expressing the numerical derivatives

in terms of a truncated Taylor polynomial and then taking a difference of the true derivative

and the numerical derivative. This gives us an upper bound on the discretization error. If a

numerical method is consistent, the truncation error can be expressed as:

τ = O(∆x)n

when ∆x tends to zero, and where n is the order of the truncated Taylor polynomial. Thus,

if a finite difference scheme is second order accurate, then the truncation error (τ) would
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be of the order of O(∆x)2. We use this idea to formalize the proof of consistency of a

finite difference scheme. This requires the use of an important theorem from calculus, the

Taylor–Lagrange theorem.

Theorem 8 (Taylor–Lagrange theorem). Suppose that f is n + 1 times differentiable on

some interval containing the center of convergence c and x, and let Pn(x) = f(c)+ f (1)(c)
1!

(x−
c) + f2(c)

2!
(x − c)2 + .. + f (n)(c)

n!
(x − c)n be the nth order Taylor polynomial of f at x = c.

Then f(x) = Pn(x) + En(x) where En(x) is the error term of Pn(x) from f(x). i.e. En =

f(x) − Pn(x), and for ξ between c and x, the Lagrange remainder form of the error En is

given by the formula En(x) =
fn+1(ξ)
(n+1)!

(x− c)(n+1).

2.4.2 Example problem

We will consider a 1−D differential equation,

d2u

dx2
= 1 (2.9)

in a domain x ∈ (0, L) with a simple boundary condition, u(0) = 0 and u(L) = 0, where

L is the length of the domain. We will use a second order accurate central finite-difference

scheme to approximate 2.9 to obtain a discretized equation

u(x+∆x)− 2u(x) + u(x−∆x)

(∆x)2
= 1 (2.10)

where ∆x is the discretization step and x is the point at which the difference equation is

evaluated. We will assume a uniform discretization step through out the domain. We will

refer this 2.10 as a numerical scheme Nh.

2.4.3 Proof of convergence

Theorem 6 requires that we prove consistency and stability of a FD scheme to prove its

convergence. We will therefore discuss the formalization of consistency and stability of the

scheme Nh.
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2.4.3.1 Proof of consistency

Stacking the point-wise discretized equation Nh 2.10 in a 1−D domain, we obtain the fol-

lowing linear system

1

h2



1 0 0 0 . . . 0

1 −2 1 0 . . . 0
...

. . . . . . . . .
...

0 . . . 1 −2 1 0

0 . . . 0 1 −2 1

0 . . . 0 0 0 1


︸ ︷︷ ︸

Ah



uo

u1

...

uN−2

uN−1

uN


︸ ︷︷ ︸

rhu

=



0

1
...

1

1

0


︸︷︷︸
shAu

(2.11)

Instantiating the definition of consistency 2.6 with equation 2.11, we want to prove

lim
h→0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1

h2



1 0 0 0 . . . 0

1 −2 1 0 . . . 0
...

. . . . . . . . .
...

0 . . . 1 −2 1 0

0 . . . 0 1 −2 1

0 . . . 0 0 0 1





uo

u1

...

uN−2

uN−1

uN


−



0

1
...

1

1

0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= lim
h→0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



uo

h2

uo−2u1+u2

h2 − 1
u1−2u2+u3

h2 − 1
...

uN−2−2uN−1+uN

h2 − 1
uN

h2



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (2.12)

Theorem 9 (Scheme consistency). ∀h : R, h > 0, the scheme Nh is consistent in the

domain x ∈ (0, L) if the l1 vector norm of equation 2.12

lim
h→0

[ ∣∣∣uo

h2

∣∣∣+ ∣∣∣∣uo − 2u1 + u2

h2
− 1

∣∣∣∣+ ..+

∣∣∣∣uN−2 − 2uN−1 + uN

h2
− 1

∣∣∣∣+ ∣∣∣uN

h2

∣∣∣ ] = 0 (2.13)

Proof. Since, we are computing the limit of a finite summation, equation 2.13 can be written
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as a finite of sum of individual limits using the addition rule for limits [125] as

lim
h→0

∣∣∣uo

h2

∣∣∣+ N−1∑
i=1

lim
h→0

∣∣∣∣ui−1 − 2ui + ui+1

h2
− 1

∣∣∣∣+ lim
h→0

∣∣∣uN

h2

∣∣∣ = 0 (2.14)

We can prove the equivalence between equation 2.13 and equation 2.14 by mathematical

induction on the summation index i. limh→0

∣∣uo

h2

∣∣ = 0 and limh→0

∣∣uN

h2

∣∣ = 0, trivially because

of the boundary conditions we imposed, i.e. uo = 0 and uN = 0. The norm used in (2.12)

are in the space Yh, i.e., ||.||Yh
. Thus, 2.14 reduces to proving:

N−1∑
i=1

lim
h→0

∣∣∣∣ui−1 − 2ui + ui+1

h2
− 1

∣∣∣∣ = 0 (2.15)

To prove 2.15, we need to prove

lim
h→0

∣∣∣∣ui−1 − 2ui + ui+1

h2
− 1

∣∣∣∣ = 0; ∀ i, 1 ≤ i ≤ N − 1 (2.16)

The limit 2.16 can be proved using the sandwich theorem for limits [125]. We will show using

the point-wise consistency analysis, as will be discussed next, that the function

f(h) =

∣∣∣∣ui−1 − 2ui + ui+1

h2
− 1

∣∣∣∣
can be bounded by a function g(h) such that limh→0 g(h) = 0. Since f(h) is bounded below

trivially by 0, by sandwich theorem for limits,

N−1∑
i=1

lim
h→0

∣∣∣∣ui−1 − 2ui + ui+1

h2
− 1

∣∣∣∣ = 0.

Proving point-wise consistency: The point-wise consistency analysis of the scheme Nh

is the application of the Taylor–Lagrange Theorem 8 to Nh. We will specifically prove that

for the scheme Nh, 2.10, the truncation error τ is quadratic in ∆x:

τ =

∣∣∣∣d2udx2
− u(x+∆x)− 2u(x) + u(x−∆x)

(∆x)2

∣∣∣∣ = O(∆x)2 (2.17)

By invoking the definition of Big-O notation, the theorem for point-wise consistency analysis

is stated as
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Theorem 10. For a given x ∈ (a, b), ∃ γ > 0 and ∃ Γ > 0, such that ∀ ∆x > 0, (x+∆x) ∈
(a, b), (x−∆x) ∈ (a, b) and ∆x < γ,∣∣∣∣d2udx2

− u(x+∆x)− 2u(x) + u(x−∆x)

(∆x)2

∣∣∣∣ ≤ Γ(∆x)2

Note that both γ and Γ are independent of the discretization step size ∆x. We state the

Theorem 10 in Coq as

Theorem taylor FD (x:R): Oab x →
∃ gamma:R, gamma >0 ∧ ∃G:R, G>0 ∧
∀ dx:R, dx>0 → Oab (x+dx) → Oab (x−dx)→ (dx< gamma →
Rabs((D 0 (x+dx)− 2∗(D 0 x) + D 0 (x−dx)) / (dx ∗ dx)− D 2 x) <= G∗(dxˆ2)).

where Oab x represents an open interval, i.e., a < x < b and D k x denotes kth derivative of

u with respect to x. Thus, the function u(x) will be denoted as D 0 x.

We start by introducing the following lemmas required to complete the proof.

Lemma 11 (|F (x)| ∼ O(∆x)4). ∀x ∈ (a, b),∃ η ∈ R, η > 0 ∧ ∃ M ∈ R,M > 0 ∧
∀∆x ∈ R,∆x > 0 → (x+∆x) ∈ (a, b) → ∆x < η → |F (x)| ≤ M(∆x)4.

Here, F (x) is the Lagrange remainder in the expansion of u(x+∆x) up to degree 3 and

is defined as:

F (x)
∆
= u(x+∆x)− u(x)−∆x

du

dx

∣∣∣
x
− 1

2!
(∆x)2

d2u

dx2

∣∣∣
x
− 1

3!
(∆x)3

d3u

dx3

∣∣∣
x

(2.18)

Thus, Lemma 11 states that the Lagrange remainder F (x) = 1
4!
(∆x)4 d

4u(ξ)
dx4 is of order (∆x)4

for all ξ ∈ (x, x+∆x).

Lemma 12 (|G(x)| ∼ O(∆x)4). ∀x ∈ (a, b),∃ δ ∈ R, δ > 0 ∧ ∃ K ∈ R, K > 0 ∧
∀∆x ∈ R,∆x > 0 → (x−∆x) ∈ (a, b) → ∆x < δ → |G(x)| ≤ K(∆x)4.

Here, G(x) is the Lagrange remainder in the expansion of u(x−∆x) up to degree 3 and

is defined as:

G(x)
∆
= u(x−∆x)− u(x) + ∆x

du

dx

∣∣∣
x
− 1

2!
(∆x)2

d2u

dx2

∣∣∣
x
+

1

3!
(∆x)3

d3u

dx3

∣∣∣
x

(2.19)

Thus, Lemma 12 states that the Lagrange remainder G(x) = 1
4!
(∆x)4 d

4u(ξ)
dx4 is of order (∆x)4

for all ξ ∈ (x−∆x, x).

Both the lemmas are straightforward applications of the Taylor–Lagrange theorem (The-

orem 8), and are crucial to the formalization of the proof of consistency of a finite difference

scheme.
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Next, we present an informal proof of the Theorem 10 (taylor FD) followed by a discussion

on its formalization.

Proof.

|F (x)| ≤ M(∆x)4 [From Lemma 11] (2.20)

|G(x)| ≤ K(∆x)4 [From Lemma 12] (2.21)

Adding equation (2.20) and (2.21), we get:

|F (x)|+ |G(x)| ≤ (M +K)(∆x)4

=⇒ |F (x) +G(x)| ≤ (M +K)(∆x)4

[Using the triangle inequality, (|F (x) +G(x)| ≤ |F (x)|+ |G(x)|) ]

=⇒ |F (x) +G(x)| ≤ Γ(∆x)4 (Instantiating Γ := M +K) (2.22)

Unfolding the definitions F (x) and G(x), and doing the algebra we get:

∣∣∣u(x+∆x)− 2u(x) + u(x−∆x)− (∆x)2
d2u

dx2

∣∣∣ ≤ Γ(∆x4)

=⇒
∣∣∣u(x+∆x)− 2u(x) + u(x−∆x)

(∆x)2
− d2u

dx2

∣∣∣ ≤ Γ(∆x2) [QED] (2.23)

An important point to note is that the condition |F (x)| + |G(x)| ≤ M(∆x)4 +K(∆x)4

holds when 0 < |∆x| < γ, where γ is as defined in 10. We therefore choose, γ = min(η, δ),

where η is such that, |F (x)| ≤ M(∆x)4 holds when 0 < ∆x < η, and δ is such that,

|G(x)| ≤ K(∆x)4 holds when 0 < ∆x < δ.

Formalization in Coq: We followed the proof above and formalized it in the Coq

proof assistant. To apply the Taylor–Lagrange theorem [103] to the consistency analysis of a

central difference approximation, we broke down the Theorem 10 into two lemmas 11, and

12. Therefore, we next discuss the proof of these lemmas.

Proof of Lemma 11: We state the lemma 11 formally in Coq as

Lemma taylor uupper (x:R): Oab x→ ∃ eta: R, eta>0 ∧
∃M :R, M>0 ∧ ∀ dx:R, dx>0 → Oab (x+dx) →
(dx<eta → Rabs(D 0 (x+dx)− Tsum 3 x (x+dx))<=M∗(dxˆ4)).

In the proof of lemma taylor uupper, existential quantification associated with η and M has

to be addressed. We chose η as b − x, since the interval in which we are studying Taylor–

Lagrange for u(x + ∆x) is [x, b]. Since ∆x ∈ (x, b) and ∆x < η, it seems logical to chose
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η = b − x. For the choice of M , we obtained extreme bounds in the interval. Since the

function u and its derivatives are continuous in a compact set [x, b], we are guaranteed to

get maximum and minimum values [cite]. In Coq, we applied the lemma continuity ab max to

obtain a maximum value,
(

d4u
dx4

)
max

= d4u(F )
dx4 such that d4u(ξ)

dx4 ≤ d4u(F )
dx4 ,∀ξ ∈ [x, b]. Similarly,

we apply the lemma continuity ab min to obtain a minimum value,
(

d4u
dx4

)
min

= d4u(G)
dx4 such

that d4u(G)
dx4 ≤ d4u(ξ)

dx4 ,∀ξ ∈ [x, b]. Thus, M := max
(∣∣∣d4u(G)

dx4

∣∣∣ , ∣∣∣d4u(F )
dx4

∣∣∣). With this choice of M ,

we can bound the Lagrange remainder or the truncation error from above and thus prove

Lemma 11.

Proof of Lemma 12: Formally Lemma 12 is stated in Coq as:

Lemma taylor ulower (x:R): Oab x → ∃ delta: R, delta>0 ∧
∃K :R, K>0 ∧ ∀ dx:R, dx>0 → Oab (x−dx) →
(dx<delta → Rabs(D 0 (x−dx)−Tsum 3 x (x−dx))<=K∗(dxˆ4)).

The proof of Lemma 12 follows the same approach as that of Lemma 11. Here, we chose δ as

x− a, since the interval in which we are studying Taylor–Lagrange theorem for u(x−∆x),

∆x ∈ (a, x), and ∆x < δ. We chose K in the same way as we chose M in Lemma 11 except

that the interval in which we obtain maximum and minimum values for d4u
dx4 is [a, x] in this

case. Thus,
(

d4u
dx4

)
min

= d4u(G)
dx4 ,

(
d4u
dx4

)
max

= d4u(F )
dx4 , and K := max

(∣∣∣d4u(G)
dx4

∣∣∣ , ∣∣∣d4u(F )
dx4

∣∣∣) ,∀c ∈
[a, x].

We can then instantiate Γ := M +K, and γ := min (η, δ) in Theorem 10, where (M, η)

and (K, δ) have been defined as in Lemma 11 and 12 respectively. To implement this in-

stantiation, we have to carefully destruct the lemmas introduced in the theorem statement.

Then, we simply apply lemma 11 and 12, to complete the proof of taylor FD.

Proving the main consistency theorem: We formalized the main theorem statement 9

in Coq as

Theorem consistency inst: ∀ (U:X) (f:Y) (h:R) (uh: Xh h)

(rh: ∀ (h:R), X → (Xh h)) (sh: ∀ (h:R), Y→ (Yh h))

(E: Y→ X) (Eh: ∀ (h:R),(Yh h)→ (Xh h)),

is lim (fun h:R ⇒ norm (minus (Ah h (rh h U)) (sh h (A U)))) 0 0.

As discussed earlier, we prove Theorem 9 by conveniently reducing its proof to point-wise

consistency analysis – application of the Taylor–Lagrange theorem at each point x in the

1−D domain. Thus, to integrate this Taylor–Lagrange analysis (taylor FD) into the main

theorem for consistency (consistency inst), we prove the following lemma 2.16 in Coq

Lemma lim sum: is lim (fun h:R ⇒
sum n m (fun i:nat ⇒ Rabs (( D 0 (x i −h) −2∗ (D 0 (x i))
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+ D 0 (x i +h))∗/(hˆ2) −1)) 1%nat (pred N)) 0 0.

where sum n m defines
∑m

i=n in Coq. In order to represent xi, i = 0, . . . , N , we define x of

type: nat → R. The boundary conditions for Nh are imposed as hypothesis statements:

Hypothesis u 0 : (D 0 (x 0))= 0.

Hypothesis u N: (D 0 (x N)) =0.

The differential equation is defined as

Hypothesis u 2x: ∀ i:nat, (D 2 (x i)) =1.

We note here that the above-mentioned formalization (consistency inst) is not unique to the

second order scheme that we discussed. The approach we discuss can easily be generalized

to verify consistency of any finite difference scheme. The crucial step in such a generalization

is the appropriate instantiation of the Ah matrix and the vectors rhu and shAu.

2.4.3.2 Proof of stability

In this section we discuss the stability of the scheme Nh. We will be treating stability from a

spectral viewpoint – reason stability using the eigenvalue-eigenvector pair of the matrix Ah.

From section 2.3.1, stability of a numerical scheme requires the solution operator Eh = A−1
h

to be uniformly bounded.

Theorem 13 (Scheme stability).

∃ K ∈ R, ∀ h ∈ R, ||Eh||op ≤ K

where ||.||op is the operator norm.

For our proof of stability of Nh, we consider ||.||op as the ||.||2 of a matrix. We prove

Theorem 13 by bounding the eigenvalues of Eh uniformly. Eigenvalues of Eh are just inverse

of the eigenvalues of Ah. We prove this fact using the following lemma statement in Coq

Lemma inverse eigen (m N:nat) (a b:R) :

(2< N)%nat → (0<=m<N)%nat → 0<a →
((invertible N (Ah N a b a) (inverse A N a b)) ∧ (LHS m N a b a= RHS m N a b a)) →
(Eigen vec m N a b a) =

Mmult (inverse A N a b) (Mmult (Eigen vec m N a b a) (Lambda m N a b a)).

where, LHS
∆
= Ahsm and RHS

∆
= smλm for the eigenvalue-eigenvector pair (eigen-system)

(λm, sm). We use the precondition N > 2 in the lemma inverse eigen and any other lemmas

related to the matrix Ah because we need at least three points in the 1−D domain to define

a matrix system corresponding to the scheme Nh.
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Proof. We start with the definition of eigen-system (λm, sm),

Ahsm = λmsm

Multiplying by A−1
h on both sides and using the definition :A−1

h Ah = I,

A−1
h Ahsm = A−1

h λmsm =⇒ sm = λmA
−1
h sm =⇒ sm

λm

= A−1
h sm

We have developed a generalized framework for the formalization of stability for a sym-

metric tri-diagonal matrix in Coq. We denote this matrix with Ah(a, b, c) with c = a for

symmetry. This notation means that b is on the diagonal, c is on the upper diagonal and a

is on the lower diagonal. All the other entries are zero. We define the matrix Ah(a, b, c) in

Coq as

Definition Ah (m:nat) (a b c: R) := mk matrix m m

(fun i j ⇒ if (eqb i j) then b else

if (eqb (sub i j) one) then a else

if (eqb (sub j i) one) then c else 0).

Ah takes the dimension m, and a, b, c as parameter and constructs a tri-diagonal matrix

using the matrix constructor mk matrix defined in Coquelicot. We will use Ah interchangeably

with Ah(a, b, c) for the sake of brevity. Since Ah is tri-diagonal, we can define a closed form

expression for its eigen-value λm (Lambda), and the corresponding eigenvector sm (Eigen vec)

as

λm = b+ 2
√
ac cos

[
mπ

N + 1

]
; sm = (sj)m =

[a
c

]j−1/2
√

2

N + 1
sin

[
j

mπ

N + 1

]
(2.24)

∀m, j = 1, . . . , N . The corresponding Coq definitions are
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Definition Eigen vec (m N:nat) (a b c:R):= mk matrix N 1%nat (fun i j ⇒
sqrt ( 2 / INR (N+1))∗(Rpower (a ∗/c) (INR i +1 −1∗/2))∗

sin(((INR i +1)∗INR(m+1)∗PI)∗/INR (N+1))).

Definition Lambda (m N:nat) (a b c:R):= mk matrix 1%nat 1%nat (fun i j ⇒
b + 2∗ sqrt(a∗c)∗ cos ( (INR (m+1) ∗ PI)∗/INR(N+1))).

Since naturals in Coq start with zero, we write INR (m+1) and INR i+1, where INR is an

injection from naturals to reals in Coq.

Lemma to verify that the eigenvalues and eigenvectors belong to the spectrum

of Ah(a, b, a): We then formally verify that the analytical expressions for the pair (λm, sm)

indeed belong to the spectrum of Ah. In Coq, we state this formally as:

Lemma eigen belongs (a b c: R): ∀ (m N:nat),

(2 < N)%nat → (0 <= m < N)%nat → a=c ∧ 0<c→
(LHS m N a b c) = (RHS m N a b c).

Here we used the definition of eigenvalue-eigenvector, i.e., Ahsm
∆
= λmsm. Formalizing the

proof of the lemma eigen belongs was challenging due to the structure of the matrix Ah. Ah is

a tri-diagonal matrix with non-zero entries on the diagonal, sub-diagonal and super-diagonal.

The other entries are zero and hence the matrix is sparse.

∴
N−1∑
j=0

Ah(i, j)sm(i)︸ ︷︷ ︸
Ah(i, j) ̸= 0

+
N−1∑
j=0

Ah(i, j)sm(i)︸ ︷︷ ︸
Ah(i, j) = 0

= λmsm(i); 0 ≤ i ≤ N − 1 (2.25)

In Coq, we had to carefully destruct the matrix Ah to separate the non-zero and zero sums

in the LHS of equation (2.25). The idea is to do a case analysis on the row-index i as

illustrated in Figure 2.3. The lemma mat prop 1 asserts that all elements in the row i = 0

are zero except for the first and second element, i.e. j = 0, 1. The lemma mat prop 2 asserts

that all elements of the second row, i = 1 are zero except for the first three elements. The

lemma mat prop 3 asserts that all elements to the right of the super diagonal entries of the

matrix Ah for all rows, 2 ≤ i < N − 2 are zero. Similarly, the lemma mat prop 6 asserts that

all elements to the left of the sub diagonal entries of the matrix Ah for all row, 2 ≤ i < N−1

are zero. The lemma mat prop 4 asserts that Ah(2, 0) = 0, and the lemma mat prop 5 asserts

that all elements in the last row except the last two elements are zero.

Now that we have formally defined the eigen-system, we will discuss the formalization of

boundedness of the matrix norm of Eh = A−1
h to prove stability of Nh. We have used an
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Figure 2.3: Formalizing the tri-diagonal structure of the matrix. This formalization can be
used for any tri-diagional system. coeff mat A i j is Coquelicot’s definition for Ai,j

explicit formulation of A−1
h [73] in our formalization and we verify this formally using the

definition: A−1
h Ah = I ∧ AhA

−1
h = I. In Coq, we state the following lemma to verify the

invertibility of Ah:

Lemma invertible check (a b:R) : ∀ (N:nat), (2<N)%nat → 0<a →
Mk N (b/a) <> 0 → invertible N (Ah N a b a ) (inverse A N a b ).

Here, Mk is the determinant of Ah of size k. We used the recurrence relation [73]: Mk =

D × Mk−1 − Mk−2, D = b
a
. Overall, the approach is similar to the proof of the lemma

eigen belongs, i.e. we exploit the tridiagonal structure of Ah. The proof required us to

formalize some properties about combinatorics.

For the scheme that we are considering, D = −2. Two important steps that were required

to complete the proof of Mk ̸= 0 for the scheme Nh were:

1. Proving that Mk = (−1)k×(k+1): We proved this using strong induction on k and the

recurrence relation described above. To get an intuition of why it is true, we observe

the values of Mk for initial values of k: M0 = 1, M1 = −2, M2 = 3, M3 =

−4 · · ·Mk = (−1)k × (k + 1)

2. Proving that the determinant, Mk ̸= 0
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Lemma on the boundedness of the matrix norm for scheme Nh: Here, we have

used the definition of the spectral (2-norm): ||A||2 = ρ(A), where ρ(A) is the spectral radius

of A and is defined as the maximum eigen-value of A, i.e. ρ(A) = maxm |λm(A)|. For the

symmetric tri-diagonal matrix Ah, A = Eh and λm(Eh) = 1/λm(Ah). Since λm(Ah) < 0,

maxm |λm(Eh)| = 1/|λmin(Ah)|. Hence, we define the matrix norm in Coq as follows:

Definition matrix norm (N:nat):= 1/ Rabs (Lambda min N).

To show that the matrix norm is uniformly bounded, we need to show that 1/|λmin(Ah)| is
uniformly bounded. This is where we instantiate the tri-diagonal matrix Ah with the scheme

Nh. Thus, we prove the following lemma in Coq:

Lemma spectral: ∀ (N:nat),(2<N)%nat → 1/Rabs(Lambda min N) <= Lˆ2/4.

where L is the length of the domain, independent of h, and is constant throughout.

Lambda min is the minimum eigenvalue for the instantiated matrix, A′
h = Ah(

1
h2 ,

−2
h2 ,

1
h2 ).

A proof of the uniform boundedness of the eigenvalues of the scheme Nh is as follows

Proof.

λmin(A
′
h) =

2

h2

[
−1 + cos

(
π

N + 1

)]
[For m=1 in the expression of λm]

Since all eigenvalues are negative, min|λm(A
′
h)| = |λmin(A

′
h)|,

∴
1

|λmin(Ah′)|
=

1∣∣ 2
h2

[
−1 + cos

(
π

N+1

)]∣∣ =⇒ 1

|λmin(A′
h)|

=
h2

4 sin2
(

π
2(N+1)

)
[Using the identity: −1 + cos(2x) = −2 sin2(x)]

Using the definition, h
∆
=

L

N + 1
, where L is the domain length,

∴
1

|λmin(A′
h)|

=
L2

4(N + 1)2 sin2
(

π
2(N+1)

) =
L2

π2

π2

4(N + 1)2 sin2
(

π
2(N+1)

) =
L2

π2

x2

sin2(x)

where, x =
π

2(N + 1)

Using the relation, ∀x ∈ (0, π/2],
2x

π
≤ sin(x), or,

x

sin(x)
≤ π

2
,we get :

x2

sin2(x)
≤ π2

4

∴
1

|λmin(A′
h)|

≤ L2

4

We prove the relation ∀x ∈ (0, π/2], x
sin(x)

≤ π
2
, by using the concavity of sin(x) in

[0, π/2]. We define a concave function f : R → R in Coq as follows:
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Definition concave (f:R→ R) (x y c:R):=

0<=c<=1 → f(c∗x + (1−c) ∗ y) >= c∗ f x + (1−c) ∗ f y.

The proof for x2

sin2(x)
≤ π2

4
, ∀x ∈ (0, π/2] is formalized as the following lemma statement in

Coq:

Lemma spectral intermed:∀ (x:R),0<x<=PI/2 → (xˆ2)/(sin x)ˆ2 <=(PIˆ2)/4.

To show that all the eigenvalues have the same bound, we prove that 1
λmin(A′

h)
is the

maximum eigenvalue of E ′
h. The lemma statement is as follows:

Lemma eigen relation: ∀ (i N:nat), (2<N)%nat → (0<=i<N)%nat →
Rabs (lam i N) <= 1/ Rabs( Lambda min N).

This completes the proof on the boundedness of the eigenvalues of E ′
h. The lemma,

eigen relation also shows that the spectral radius of E ′
h is 1

|λmin(A′
h)|
, and justifies the defintion

of matrix norm.

We note that the definition of the matrix norm of A−1
h is valid only if A−1

h is a normal

matrix . We therefore verify that A−1
h is normal. This lemma is stated as:

Lemma inverse is normal (a b:R): ∀ (N:nat),
Mmult (inverse A N a b ) (mat transpose N (inverse A N a b )) =

Mmult (mat transpose N (inverse A N a b )) (inverse A N a b ).

We also provide a proof that Ah is diagonalizable, i.e. Ah = SΛST , where S is the matrix of

eigenvectors and Λ is a diagonal matrix of Eigen-values of Ah.

Proof. We start with the definition of an Eigensystem:

AhS = SΛ =⇒ AhSS
T = SΛST =⇒ Ah = SΛST [SST = I]

Here, we use the fact that S−1 = ST , since S is orthonormal. We verify this by using

the definition of inverse of matrices, i.e. SST = STS = I. In Coq, we prove the following

lemma:

Lemma Scond:∀ (N:nat) (a b:R), (2<N)%nat → 0<a →
Mmult (Sm N a b) (Stranspose N a b) = identity N ∧

Mmult (Stranspose N a b) (Sm N a b) = identity N.

To prove the lemma Scond, we split the proof into two sub-proofs:

1. i = j,
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2. i ̸= j

For the first case, we have the condition that s⃗i · s⃗i = 1, i.e. ||s⃗i||2 = 1. This reduces to

proving that the sum of the following sine-squared series is 1.

N∑
m=1

2

N + 1
sin2

[
j

mπ

N + 1

]
= 1 (2.26)

In Coq, we prove the following lemma to verify (2.26):

Lemma sin sqr sum: ∀ (i N:nat), (2<N)%nat ∧ (0<=i<N)%nat →
sum n m (fun l:nat ⇒ (2/(INR(N+1)))∗

sin(((INR l+1)∗ INR (i+1)∗PI)∗/ INR (N+1)) ˆ2) 0 (pred N)=1.

Here, we make use of the following theorem from [91]:

Theorem 14. If a b ∈ R and d ̸= 0 and n is a positive integer,∑n−1
k=0 cos(a+ kd) = sinnd/2

sin d/2
cos
(
a+ (n−1)d

2

)
; where sin2 (θ) = (1− cos (2θ))/2.

We state the Theorem 14, using the following hypothesis statement in Coq:

Hypothesis cos series sum: ∀ (a d:R) (N:nat), d <>0→
sum n m (fun l:nat ⇒ cos (a+(INR l)∗d)) 0 (pred N)=

sin(INR N∗d/2)∗ cos(a+INR(N−1)∗d/2)∗/ sin(d/2).

We then use the hypothesis cos series sum to prove the lemma sin sqr sum.

For the second case, we have the orthogonality condition s⃗i · s⃗j = 0, i ̸= j. This reduces to

proving:
N−1∑
k=0

sin

[
(k + 1)

(i+ 1)π

N + 1

]
sin

[
(k + 1)

(j + 1)π

N + 1

]
= 0 (2.27)

since, 2
N+1

is a constant, it can be taken outside the summation.

Using the trigonometric identity,

sinA sinB =
1

2
[cos (A−B)− cos (A+B)]

we can reduce (2.27) into sums of cosines as follows:

1

2

N−1∑
k=0

cos
[
(k + 1)

(i− j)π

N + 1

]
− 1

2

N−1∑
k=0

cos
[
(k + 1)

(i+ j + 2)π

N + 1

]
= 0 (2.28)

Using Theorem (14), we can further reduce each sum in equation (2.28) into the product

of sine and cosine. By doing some algebra, we prove that if (i − j) and (i + j + 2) are
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simultaneously even or they are simultaneously odd, the sums in equation (2.28) cancel out.

We further note that it is always the case that (i− j) and (i+ j+2) are simultaneously even

or they are simultaneously odd. We provide an informal proof of this fact as follows:

Proof. Case 1: (i− j) is even:

∃m : nat, (i− j) = 2m

=⇒ i = 2m+ j

=⇒ i+ j + 2 = 2m+ j + j + 2

=⇒ i+ j + 2 = 2 ∗ (m+ j + 1) ∴ Even

Case 2: (i− j) is odd:

∃m : nat, (i− j) = 2m+ 1

=⇒ i = j + 2m+ 1

=⇒ i+ j + 2 = j + 2m+ 1 + j + 2

=⇒ i+ j + 2 = 2 ∗ (j +m+ 1) + 1 ∴ Odd

and vice-versa for each cases. This completes the proof of orthogonality of the Eigen

vectors. In Coq, we prove the following lemma to verify (2.28):

Lemma cos sqr sum: ∀ (i j N:nat),
(2<N)%nat ∧ (0<=i<N)%nat ∧ (0<=j<N)%nat ∧ (i<>j) →
sum n m (fun l:nat ⇒ mult(/INR(N+1))

(cos((INR(i) − INR(j)) ∗ PI / INR (N + 1) +

INR l ∗ (INR(i) − INR(j)) ∗ PI / INR (N + 1)) −

cos(INR(i+j+2)∗PI ∗/ INR(N+1) +

INR l ∗ INR(i+j+2)∗PI ∗/ INR(N+1)))) 0 (pred N)=0.

This helps us to formally establish that the eigen vectors are orthogonal and hence the eigen

space is complete.

Main stability theorem: We integrate all of the previous lemmas to prove the main

stability Theorem (13).

Theorem stability: ∀ (u:X) (f:Y) (h:R) (uh: Xh h)

(rh: ∀ (h:R), X → (Xh h))(sh: ∀ (h:R), Y→ (Yh h))

(E: Y→ X) (Eh:∀ (h:R), (Yh h)→ (Xh h)),
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∃K:R , ∀ (h:R), operator norm(Eh h)<=K.

where the operator norm is instantiated with the matrix norm, ||.||2 using the following

hypothesis:

Hypothesis mat op norm: ∀ (u:X) (f:Y) (h:R) (uh: Xh h)

(rh: ∀ (h:R), X → (Xh h))(sh: ∀ (h:R), Y→ (Yh h))

(E: Y→ X) (Eh:∀ (h:R),(Yh h)→ (Xh h)),

operator norm (Eh h) = matrix norm m.

2.4.3.3 Application of the Lax–equivalence theorem

In this section, we apply the Lax equivalence theorem is convergent that we proved in Sec-

tion 2.3.1 to a concrete differential equation d2u
dx2 = 1 and the numerical scheme Nh. We recall

that the proof of convergence using the Lax equivalence theorem requires that the difference

scheme is consistent with respect to the differential equation and is stable. We discussed

the proof of consistency of the scheme in Section 2.4.3.1 and the stability in Section 2.4.3.2.

Thus, we apply these proofs to complete the proof of convergence for the scheme Nh.

2.5 Conclusion

This work investigated the formalization of convergence, stability and consistency of a finite

difference scheme in the Coq proof assistant. Any continuously differentiable function can be

approximated by a Taylor polynomial. The Lagrange remainder of a Taylor series provides an

estimate of the truncation error and we formally proved that this error can be bound by nth

power of the discretization step, ∆x, where n− 1 is the order of the Taylor polynomial. We

implemented the proof of the consistency of a finite difference scheme by breaking down the

theorem statement into lemmas, each corresponding to function values at points neighboring

the point of evaluation. These lemmas were proved individually by applying the Taylor–

Lagrange theorem, the proof of which is already formalized in the Coq.Interval library [103].

Consistency and stability guarantees convergence as stated by the Lax–equivalence theorem.

Following the proof of the the Lax–equivalence theorem, we formally proved convergence

of a specific finite difference scheme. Specifically, we proved that the global discretization

error could be bounded above by a constant factor of the local discretization error. Then,

by applying the sandwich theorem for limits, we proved that the convergence condition is

satisfied in the limit ∆x → 0. In the process of formalizing the proof of stability for the

numerical scheme, we also developed tools for linear algebra and spectral theory, for the

Coquelicot definition of matrices in Coq, which can be reused. As noted earlier, the approach
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we follow is not specific to the sample numerical scheme, but can be easily extended to other

numerical schemes with appropriate instantiation of the matrix Ah, and vectors, rhu, shAu.

Formalization of the proof of orthogonality of the eigenvectors helped us report the missing

constant
√

2
N+1

in sm that occurs in most textbooks/literature on numerical analysis.

We want to highlight the fact this work relied on Coquelicot formalization of matrix

and finite sums. However, as we explored later in our work, the mathcomp library [100]

provides better infrastructure for matrix operations and finite sums. The finite sums can

be defined as an instance of the iterated big operations, which includes both iterated finite

sums and products, using the infrastructure provided by the bigop [16] library in mathcomp.

Thus, the bigop library provides a unified abstraction for defining iterated finite operations,

which would help us deal with sparsity in matrix operations in a better way. Similarly, the

matrix formalization in mathcomp abstracts matrix and vectors over a generic ring type, and

provides a unified approach for treating any instance of ring type. The Coquelicot definition

of matrix is however defined over real numbers, and by extension for complex numbers

as well, since complex numbers are treated as a pair of reals in Coquelicot. The matrix

formalization in mathcomp library also provides a rich formalization of linear algebra, and

includes definitions and properties of determinants, trace, block matrices etc, which is missing

in the matrix formalization of Coquelicot. We therefore used the mathcomp formalization of

linear algebra in our subsequent developments, after our initial experiments with Coquelicot.

The formalization done as part of this work could be ported easily to mathcomp.

So far in this work, we have just proved the existence of a unique numerical solution, and

proved that this numerical solution converges to the true analytical solution under certain

conditions, for a choice of a class of numerical methods. But, we also need to solve for this

numerical solution. This solution will incur another set of approximation errors like method

error and floating-point errors, which we will discuss in next chapters.
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CHAPTER 3

Iterative Convergence Error

3.1 Introduction

In the previous chapter, we saw how to mathematically model a physical system and formu-

late a system of discretized equations. We also formalized a set of conditions under which

the solution of these discretized set of equations converge to some “true” solution. The next

logical step is to solve this discretized set of (linear) equations. For the linear system of the

form, Ax = b, one approach (direct) to obtain the solution x is to invert the matrix A to

obtain x := A−1b. Let us denote x as the true numerical solution. However, such direct

approaches which typically involves matrix inversion are computationally expensive. The

computational (time) complexity of matrix inversion is of the order O(n3), where n is the

dimension of the matrix. Thus, as the dimension of the linear system increases, which is typ-

ically the case for most practical physical problems, direct approaches become intractable.

We therefore need better approaches for solving a linear system of equations. Fortunately,

the classical numerical analysis literature is abundant with low cost methods for solving the

linear system. One such class of methods is called the iterative methods [119].

The goal of an iterative method is to build a sequence of approximations of the true

numerical solution. One starts with an initial guess vector xo, and builds a sequence of

approximate solutions: {x1, x2, . . . , xk−1, xk} for k iterations, with the hope that xk is close to

the true numerical solution. The distance between xk and the true numerical solution is called

the iterative convergence error. To ensure the asymptotic convergence of these approximate

solutions to the true numerical solution, we need to bound the iterative convergence error,

and further show that this error decreases as we increase the number of iterations.

Many general purpose ordinary differential equation (ODE) solvers use some kind of itera-

tive method to solve the linear system. For instance, ODEPACK [71], which is a collection of

FORTRAN solvers for initial value problem for ODEs, uses iterative (preconditioned Krylov)

methods instead of direct methods for solving linear systems. Since most codes in scientific
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computing are still written and maintained in FORTRAN, these solvers are being widely

used. Another widely used suite of ODE solvers is the SUNDIALS [72]. SUNDIALS has

support for a variety of direct and Krylov iterative methods for solving the system of linear

equations. SUNDIALS solvers are used by the mixed finite element (MFEM) package for

solving nonlinear algebraic systems and by NASA for spacecraft trajectory simulation [72].

Because those iterative methods are widely used, it is important to obtain formal guarantees

for the convergence of iterative solutions to the “true” solutions of differential equations. In

this work we use the Coq theorem prover to formalize the convergence guarantees for a class

of iterative methods called the Stationary iterative methods.

Contributions: We provide an overview of the Stationary iterative methods in Section 3.2,

followed by formalization of a generalized iterative convergence theorem in Coq, and its

specialization to two classical iterative methods in Section 3.4. Overall, this work 1 makes

the following contributions:

• We provide a formalization of the necessary and sufficient conditions for iterative con-

vergence in the Coq proof assistant;

• We formalize conditions for convergence of the Gauss–Seidel classical iterative method

for a specific matrix structure and prove convergence on an example problem;

• We then apply the main theorem on iterative convergence to an example of the Jacobi

iteration, another classical iterative method, to prove its convergence;

• During our formalization, we develop libraries for dealing with complex matrices and

vectors on top of the mathcomp complex formalization;

• We also formalize the properties of the 2-norm of a matrix and its spectral properties.

3.2 Discussion about Stationary iterative methods

We will provide an overview of the Stationary iterative methods adopted from the book [119].

3.2.1 Theory

Let x be the true numerical solution, or the direct solution obtained by inverting the linear

system Ax = b as

x
∆
= A−1b (3.1)

1Our Coq formalization is available at https://github.com/mohittkr/iterative_convergence.git
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Here, the coefficient matrix A ∈ Rn×n and the right hand side vector b ∈ Rn are known to

us and we are computing for the unknown vector x ∈ Rn. We assume that the matrix A

is non-singular. Thus, there exists a unique solution x of the linear system Ax = b. For

any iterative algorithm, we start with an initial guess vector xo and obtain a sequence of

numerical solutions which are an approximation of the solution x. Let xk be the iterative

solution obtained after k iterations obtained by solving the iterative system

Mxk +Nxk−1 = b (3.2)

for some choice of initial solution vector xo. The vector xk−1 is the iterative solution obtained

after k− 1 iterations. At the kth iteration step, xk−1 is known to us. The matrices M and N

are obtained by splitting (regular splitting [119]) the original coefficient matrix A such that

M is easily invertible. Therefore,

A = M +N (3.3)

The choice of matrices M and N define the choice of an iterative method. For instance, if we

choose M to be the diagonal entries of matrix A and N to be the strictly lower and upper

triangular entries of A, we obtain the Jacobi method. Thus, for the Jacobi method, M = D,

and N = L+U . We discuss the Jacobi method in detail in section 3.2.3. If we choose M to

be the lower triangular entries of A and N to be the strictly upper triangular entries of A,

we get the Gauss–Seidel iterative method. Thus, for the Gauss–Seidel method, M = L+D,

and N = U . We discuss the Gauss–Seidel method in detail in section 3.2.2. Therefore, the

Figure 3.1: Initial partitioning of matrix A = L +D + U . L is the strictly lower triangular
matrix. D is the diagonal matrix. U is the strictly upper triangular matrix.

matrices M and N are also known to us based on the choice of an iterative method. The

right hand vector b is also known to us. Thus, the unknown solution vector xk at kth step is
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obtained by rearranging terms in the iterative system (3.2) as

xk = M−1(b−Nxk−1) (3.4)

Since we are computing the iterative solution in the field of reals, equation 3.4 can be

equivalently written as

xk = (−M−1N)xk−1 +M−1b (3.5)

It is important to note that when we compute the iterative solution in finite precision using

the floating-point arithmetic, equation 3.4 is not equivalent to the equation 3.5 for the reasons

explained in the next chapter. We will choose equation 3.4 to define our floating-point

iterative solution, as will be discussed in the next chapter. In this chapter we will use

equation 3.5 to define the iterative system since we work in the field of reals, and this

representation makes it easier to define and work with the error recurrence relation 3.7 in

Coq.

The quantity (−M−1N) in equation 3.5 is called an iterative matrix and we will denote

it as S. Therefore,

S
∆
= −M−1N (3.6)

The iterative convergence error after k iterations is defined as

ekiterative
∆
= xk − x = Skeo (3.7)

The iterative solution xk is said to converge to x if and only if

lim
k→∞

||ekiterative|| = lim
k→∞

||xk − x|| = 0 (3.8)

where ||.|| denotes a vector norm. In this chapter, we will be using the l2 vector norm defined

as

||x||2 =

√√√√ n∑
j=1

|xi|2.

We will next discuss two classical iterative methods – the Gauss–Seidel method and the

Jacobi methods. Both of these methods are instances of stationary iterative methods.

3.2.2 Gauss–Seidel method

The Gauss–Seidel iterative method is an instance of stationary iterative methods to solve the

system of linear equations Ax = b or
∑n

j=1 Aijxj = bi, ∀i = 1, . . . , n using the following
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update formula [119]

xk+1,i =
1

Aii

(
bi −

i−1∑
j=1

Aijxk+1,j −
n∑

j=i+1

Aijxk,j

)
, i = 1, 2, . . . , n. (3.9)

where xk+1,i is the value of xi after k+1 iterations, and xk,i is the value of xi after k iterations.

We can expand equation 3.9 to obtain a system of simultaneous equations as

A11xk,1 + A12xk−1,2 + A13xk−1,3 + . . .+ A1nxk−1,n = b1

A21xk,1 + A22xk,2 + A23xk−1,3 + . . .+ A2nxk−1,n = b2

A31xk,1 + A32xk,2 + A33xk,3 + . . .+ A3nxk−1,n = b3
...

An1xk,1 + An2xk,2 + An3xk,3 + . . .+ Annxk,n = bn (3.10)

By comparing equation 3.10 with equation 3.2, the matrix M and N can be written as [119]:

(M)ij =

Aij if i ≥ j

0 if i < j
; (N)ij =

Aij if i < j

0 if i ≥ j
(3.11)

The iteration matrix SG would then be:

SG
∆
= −M−1N = −(L+D)−1U

where D is the diagonal matrix, L is strictly lower triangular matrix, and U is strictly upper

triangular matrix of A.

3.2.3 Jacobi method

The Jacobi method is another instance of stationary iterative methods to solve the system of

linear equations Ax = b or
∑n

j=1Aijxj = bi, ∀i = 1, . . . , n by successive approximations.

We solve for the values xi at the kth iteration, by keeping the other elements of the vector

x fixed at the value obtained after k − 1 iterations. This gives us the following update

formula [119]:

xk,i =
bi −

∑
j ̸=i Aijxk−1,j

Aii

(3.12)
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Comparing the system of equations (3.12) with the iterative system (3.2), we can define the

matrix M and N as [119]:

(M)ij =

Aij if i = j

0 otherwise
; (N)ij =

Aij if i ̸= j

0 otherwise
(3.13)

The iterative matrix SJ , would then be:

SJ
∆
= −M−1N = −D−1(A−D) = I −D−1A (3.14)

where D is the diagonal matrix, L is strictly lower triangular matrix and U is strictly upper

triangular matrix of A.

We will next discuss the existing state-of-the art in Coq, and formalization of the iterative

convergence error in Coq.

3.3 Current state-of-the art in Coq

We have formalized the iterative convergence theorem in Coq theorem prover. Before we

delve deeper into the formalization, it is worth providing an overview of the infrastructure

provided by Coq. We primarily use two libraries in Coq on top of the standard reals library –

mathcomp library [100] for its formalization of linear algebra and ssreflect language for proof

automation, and the Coquelicot library [28] for its formalization of real analysis.

3.3.1 Discussion about the mathematical components library

We work extensively with matrices, finite sequences, and canonical forms in our formaliza-

tion. Thanks to the the mathcomp [100] formalization of linear algebra, we have all the tools

to work with these components.

• Matrix and vectors: A matrix is defined as a function from a finite set to an

appropriate ring type.

Variant matrix : predArgType := Matrix of {ffun 'I m x 'I n → R}.

where 'I m and 'I n are ordinal types and represent a finite set of natural numbers from

{0, . . . , (m− 1)} and {0, . . . , (n− 1)}, respectively. A matrix denoted in mathcomp as

Notation ”\matrix (i,j) E” := (matrix of fun (fun i j ⇒ E)).

For instance, a 2× 2 real valued matrix, A = [1, 2; 3, 4] can be defined as
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Definition A := \matrix (i< 2, j < 2)

(if (i == 0%N :> nat) then

(if (j == 0%N :> nat) then 1%Re else 2%Re) else

(if (j == 0%N :> nat) then 3%Re else 4%Re)).

where :> nat is a coercion to natural numbers. Since ordinal types is composed of a

base type, which in this case is nat, and a proof that the set of naturals is less than

the maximum ordinal specified, we just need the base value for comparison between

natural numbers. Thus, we need to specify this explicit coercion to naturals, in the if

clause.

• Finite sequences: The seq library in mathcomp provides a formalization of finite

sequences. In our formalization, we use sequences to define eigenvalues from the roots

of the characteristic polynomial of a matrix A. The following notation defines a map

for each element x in the sequence s

[seq E | x <− s] := map (fun x ⇒ E) s.

An instance where we use mapping is in the definition of absolute values of eigenvalues

for defining the spectral radius of an iteration matrix. We can then extract an ith

element in the sequence s using the notation: nth x0 s i, where x0 is the default value

of the sequence. Since we switch between the set notation and sequences, we will use

the enum function provided by mathcomp , which allows us to translate from the set

notation to sequences.

• Iterated sums and products: The bigop [16] formalization in mathcomp pro-

vides necessary infrastructure for working with iterated summation and product. The

notation

Notation ”\big [ op / idx ] ( i <− r \ P ) F” :=

(bigop idx r (fun i ⇒ BigBody i op P%B F)) : big scope.

allows us to define iterated sums and products by instantiating the op operator and the

appropriate identity idx. Here, F is a function of i chosen from a finite sequence s when

the predicate P holds true. The matrix operations like matrix-vector multiplication,

dot products, traces, etc. are defined in term of these big operations.

• Jordan canonical forms: The canonical forms [32] defines the Jordan canonical

forms which we use extensively in our proof of iterative convergence. In particular, we

will be using the definition of a block diagonal matrix which is defined in Coq as
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Definition diag block mx s F :=

if s is x :: l return 'M ((size sum s).+1) then diag block mx rec x l F else 0.

where s is a sequence of natural numbers and is a sequence of algebraic multiplicity of

the eigenvalues of a matrix. The function (F : (∀ n, nat → 'M[R] n.+1)) defines a block

in the block diagonal matrix. It takes the size of a block, and the location of the block

in the block diagonal matrix and returns a matrix of size n + 1. The block diagonal

matrix is defined recursively using the following definition

Fixpoint diag block mx rec k (s : seq nat) (F : (∀ n, nat → 'M[R] n.+1)) :=

if s is x :: l return 'M ((size sum rec k s).+1)

then block mx (F k 0%N) 0 0 (diag block mx rec x l (fun n i ⇒ F n i.+1))

else F k 0%N.

The definition block mx generates a matrix using four block matrices. size sum defines

the size of a sequence s recursively.

3.3.2 Discussion about the Coquelicot library

Coquelicot [28] is an extension of the standard reals library and formalizes important results

in real analysis like limits, derivatives, integrals, etc. We discussed the Coquelicot library

in the previous chapter. In this chapter, we will discuss briefly the formalization of limits

of sequences in Coquelicot. Limit of a sequence is defines in Coquelicot using the is lim seq

predicate. This predicate is implemented using filters, as discussed in the previous chapter,

and is defined in Coquelicot as

Definition is lim seq (u : nat → R) (l : Rbar) := filterlim u eventually (Rbar locally l).

We use the is lim seq predicate to define the limit of iterative solutions, i.e., limk→∞ ||xk||.
There exists an equivalent ϵ − δ definition of limits in Coquelicot [28] which states that a

sequence un has a limit l if and only if

∀ϵ > 0, ∃N ∈ N,∀n ∈ N, n ≥ N ⇒ |un − l| < ϵ

Formally, this is defined in Coquelicot [28] as

Definition is lim seq' (u : nat → R) (l : Rbar) :=

match l with

| Finite l ⇒ ∀ eps : posreal, eventually (fun n ⇒ Rabs (u n − l) < eps)

| p infty ⇒ ∀M : R, eventually (fun n ⇒ M < u n)

| m infty ⇒ ∀M : R, eventually (fun n ⇒ u n < M)

end.
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where eventually is a topology on natural numbers and states that given a property P , there

exists a natural number N such that a property P n, holds for all n ≥ N . In Coq,

Definition eventually (P : nat → Prop) := ∃N : nat, ∀ n, (N <= n)%nat → P n.

In our formalization, we often had to switch between the filter definition of limits and the

ϵ − δ definition of limits. This was possible due to the following equivalence lemma in

Coquelicot [28]

Lemma is lim seq spec : ∀ u l, is lim seq' u l ↔is lim seq u l.

3.3.3 Missing formalization in mathcomp

While there exists a rich formalization of real analysis, linear algebra, finite sets and sequences

in Coq, generic properties about complex vectors and matrices were lacking. In this section,

we will discuss about how we addressed these gaps in our formalization.

3.3.3.1 Formalizing properties of complex matrices and vectors

The complex theory in the real closed [37] library in mathcomp defines complex numbers

and basic operations on them. They define complex numbers as a real closed field, thereby

allowing us to instantiate a generic field with a complex field. This was useful when we used

the eigenvalue definition from mathcomp matrix algebra library and the canonical forms

library by Cano et al [32]. However, since the basic properties like modulus of a complex

number, conjugates, properties of complex matrices and vectors were lacking, we added them

in our formalization.

We define the modulus of a complex number as

Definition C mod (x: R[i]):= sqrt ( (Re x)ˆ+2 + (Im x)ˆ+2).

Here, the type complex is denoted by R[i], and Re x and Im x denote the real and imaginary

part of x, respectively. We proved some basic properties of the modulus, which we enumerate

in Table 3.1. The complex theory in mathcomp defines the conjugate x̄ of a complex number

x as

Definition conjc {R : ringType} (x : R[i]) := let: a +i∗ b := x in a −i∗ b.

The Table 3.2 lists the missing formalization of complex conjugates that we added for this

formalization. We define the conjugate transpose of a complex matrix in Coq as

Definition conjugate transpose (m n:nat) (A: 'M[complex R] (m,n)):=

transpose C (conjugate A).

where transpose C is the transpose of a complex matrix, which we define in Coq as
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Mathematical properties Formalization in Coq

||0|| = 0 Lemma C mod 0: C mod 0 = 0%Re.

0 ≤ ||x|| Lemma C mod ge 0:
∀ (x: complex R), (0<= C mod x)%Re.

||xy|| = ||x|| ||y|| Lemma C mod prod: ∀ (x y: complex R),
C mod (x ∗ y) = C mod x ∗ C mod y.

||x
y
|| = ||x||

||y|| , y ̸= 0
Lemma C mod div: ∀ (x y: complex R),
y <> 0 →
C mod (x / y) = (C mod x) / (C mod y).

||x|| ≠ 0, if. x ̸= 0 Lemma C mod not zero: ∀ (x: complex R),
x <> 0 → C mod x <> 0.

||1|| = 1 Lemma C mod 1: C mod 1 = 1.

||xn|| = ||x||n Lemma C mod pow: ∀ (x: complex R) (n:nat),
C mod (xˆ+ n) = (C mod x)ˆ+n.

||x+ y|| ≤ ||x||+ ||y|| Lemma C mod add leq : ∀ (a b: complex R),
C mod (a + b) <= C mod a + C mod b.

|| 1
x
|| = 1

||x|| , if x ̸= 0 Lemma C mod inv : ∀ x : complex R,
x <> 0 → C mod (invc x) = Rinv (C mod x).

||xy||2 = ||x||2||y||2
Lemma C mod sqr: ∀ (x y : complex R),
Rsqr (C mod (x ∗ y)) =
(Rsqr (C mod x)) ∗ (Rsqr (C mod y)).

|| − x|| = ||x|| Lemma C mod minus x: ∀ (x: complex R),
C mod (−x) = C mod x.

||
∑n

j=0 u(j)|| ≤
∑n

j=0 ||u(j)||
Lemma C mod sum rel:
∀ (n:nat) (u : 'I n.+1 → (complex R)),
(C mod (\big[+%R/0] j (u j))) <=
\big[+%R/0] j ((C mod (u j))).

Table 3.1: Formalization of properties of complex modulus in Coq
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Mathematical properties Formalization in Coq

xy = x̄ ȳ Lemma Cconj prod: ∀ (x y: complex R),
conjc (x∗y)%C = (conjc x ∗ conjc y)%C.

x+ y = x̄+ ȳ Lemma Cconj add: ∀ (x y: complex R),
conjc (x+y) = conjc x + conjc y.

||x|| = ||x̄|| Lemma Cconjc mod: ∀ (a: complex R),
C mod a = C mod (conjc a).

x = ¯̄x Lemma conj of conj C: ∀ (x: complex R),
x = conjc (conjc x).

x̄x = ||x||2 Lemma conj prod: ∀ (x:complex R),
((conjc x)∗x)%C = RtoC (Rsqr (C mod x)).

1

Re[x] +Re[x̄] = 2Re[x] Lemma Re conjc add: ∀ (x: complex R),
Re x + Re (conjc x) = 2 ∗ (Re x).∑n

j=0 f(i) =
∑n

j=0 f(i)
Lemma Cconj sum: ∀ (p:nat) (x: 'I p → complex R),
conjc (\big[+%R/0] (j < p) x j)=
\big[+%R/0] (j < p) conjc (x j).

Table 3.2: Formalization of properties of complex conjugates in Coq

aHere, RtoC is a coercion from reals to complex.

Definition transpose C (m n:nat) (A: 'M[complex R] (m,n)):= \matrix (i<n,j<m) A j i.

and conjugate is the conjugate of a rectangular matrix. In Coq,

Definition conjugate (m n:nat) (A: 'M[complex R] (m,n)):= \matrix (i<m,j<n) conjc (A i j).

The lemma

Lemma conj scal mat mul:

∀ (m n : nat) (l:complex R) (x: 'M[complex R] (m,n)),

conjugate transpose (scal mat C l x) = scal mat C (conjc l) (conjugate transpose x).

proves the scaling property of a complex matrix, A

(lA)T = l̄(Ā)T

Lemma conj matrix mul :

∀ (m n p:nat) (A: 'M[complex R] (m,p)) (B: 'M[complex R] (p,n)),

conjugate transpose (mulmx A B) = (conjugate transpose B) ∗m (conjugate transpose A).

The lemma conj matrix mul states that the conjugate transpose of the product of matrices

A and B equals the product of conjugate transpose of the matrices, i.e., AB = B̄Ā.

Lemma conj of conj: ∀ (m n:nat) (x: 'M[complex R] (m,n)),
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conjugate transpose (conjugate transpose x) = x.

The lemma conj of conj states the idempotent property of the conjugate transpose of a

complex vector, v, i.e., v = v.

3.3.3.2 Formalization of vector and matrix norms

Another missing piece in the existing formalization was the norm of a vector and a matrix.

In this work, we formalize the l2-norm of a vector and its induced matrix norm. In Coq, we

define the l2-norm of a matrix as

Definition matrix norm (n:nat) (A: 'M[complex R] n.+1) :=

Lub Rbar (fun x⇒
∃ v: 'cV[complex R] n.+1, v != 0 ∧ x = (vec norm C (mulmx A v))/ (vec norm C v)).

where vec norm C is the l2-norm of a complex vector, which we define in Coq as

Definition vec norm C (n:nat) (x: 'cV[complex R] n.+1):=

sqrt (\big[+%R/0] l (Rsqr (C mod (x l 0)))).

The definition Lub Rbar is the least upper bound and is already defined in the

Coquelicot [28] library. Mathematically, matrix norm formalizes the following definition

of a matrix norm

||A||i = sup
x ̸=0

||Ax||
||x||

for a given vector norm ||.||, which in this case is the l2 vector norm and is mathematically

defined as

||x|| =

√√√√ n∑
j=1

|xj|2

In Table 3.3 and Table 3.4, we enumerate the properties of matrix and vector norms that

we formalized.

An important point to note here is that since we are using the Coquelicot definition of

an extended real line, Rbar, coercion of a quantity of type Rbar to real requires us to prove

finiteness of that quantity. We therefore have to prove that the matrix norm is finite, which

we state as the following lemma in Coq

Lemma matrix norm is finite: ∀ (n:nat) (A: 'M[complex R] n.+1),

is finite (matrix norm A).

Since we prove asymptotic convergence of component-wise limit of the elements of a

Jordan matrix, we have to work with the Frobenius norm of a matrix, which we define in

Coq as
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Mathematical properties Formalization in Coq

0 ≤ ||A||i
Lemma matrix norm ge 0:
∀ (n:nat) (A: 'M[complex R] n.+1),
(0 <= matrix norm A)%Re.

||Ax|| ≤ ||A||i||x||, x ̸= 01

Lemma matrix norm compat:
∀ (n:nat) (x: 'cV[complex R] n.+1)
(A: 'M[complex R] n.+1),

x != 0 →
vec norm C (mulmx A x) <=
((matrix norm A) ∗ vec norm C x)%Re.

||AB||i ≤ ||A||i||B||i
Lemma matrix norm prod:
∀ (n:nat) (A B: 'M[complex R] n.+1),
(matrix norm (A ∗m B) <=
(matrix norm A) ∗ (matrix norm B))%Re.

0 ≤ ||A||i ≤ ||A||F 2
Lemma mat 2 norm F norm compat:
∀ (n:nat) (A: 'M[complex R] n.+1),
(0 <= matrix norm A <= mat norm A)%Re.

Table 3.3: Formalization of properties of matrix norm in Coq

aHere, x is a vector and the relation proves compatibilty relation between a matrix norm and its induced
vector norm.

bHere, ||A||F is the Frobenius norm and we prove that the 2-norm of a matrix is bounded above by the
Frobenius matrix norm. The Frobenius norm of a matrix is defined as

||A||F =

√√√√ n∑
j=1

n∑
j=1

|Aij |2
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Mathematical properties Formalization in Coq

0 ≤ ||v||
Lemma vec norm C ge 0:
∀ (n:nat) (v: 'cV[complex R] n.+1),
(0<= vec norm C v)%Re.

||av|| = |a| ||v||, a is scalar

Lemma ei vec ei compat: ∀ (n:nat)
(x:complex R) (v: 'cV[complex R] n.+1),
vec norm C (scal vec C x v) =
C mod x ∗ vec norm C v.

||v1 + v2|| ≤ ||v1||+ ||v2||
Lemma vec norm add le:
∀ (n:nat) (v1 v2 : 'cV[complex R] n.+1),
vec norm C (v1 + v2) <=
vec norm C v1 + vec norm C v2.

v ̸= 0 =⇒ ||v|| ≠ 01
Lemma non zero vec norm: ∀ (n:nat)
(v: 'cV[complex R] n.+1),
vec not zero v → (vec norm C v <> 0)%Re.

Table 3.4: Formalization of properties of vector norm in Coq

avec not zero is Coq’s definition of v ̸= 0.

Definition mat norm (n:nat) (A: 'M[complex R] n.+1) : R:=

sqrt (\sum i (\sum j (Rsqr (C mod (A i j))))).

We will next discuss how we will use all of the above infrastructure to prove iterative con-

vergence in Coq.

3.4 Discussion about the Coq formalization

In this section we will provide a Coq formalization of the asymptotic convergence of the

iterative convergence error in the field of reals and show its application to two classical

iterative methods– the Gauss-Seidel method and the Jacobi method. We will use the example

of the 1−D differential equation that we used in the previous chapter and show convergence

of the Gauss–Seidel and Jacobi methods on this example. For the Gauss–Seidel method, we

also prove a sufficient condition [115] for iterative convergence for a specific matrix structure.

This condition provides an easy check for convergence and does not require us to compute

the eigenvalues of an iterative matrix to show iterative convergence.

3.4.1 Problem set-up: Discuss the model problem

In our work, the linear differential equation Au = f that we chose was d2u
dx2 = 1 for x ∈ (0, 1)

and the boundary conditions being u(0) = u(1) = 0. Here, the differential operator A is d2

dx2 ,
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and f is the constant function 1. We chose a uniform grid with P points in the interior of

the 1−D domain. The grid has a uniform spacing h. We will be using a central difference

scheme [130] for discretizing the differential equation. Therefore, the difference equation at

point xi in the interior of the 1−D domain is given by

−u(xi+1) + 2u(xi)− u(xi−1)

h2
= −1; h = xi+1 − xi =

1

P + 1
(3.15)

When we stack the equation (3.15) for all points in the interior of the 1−D domain, we get

a linear matrix system

1

h2



2 −1 0 0 0 . . . 0

−1 2 −1 0 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 0 −1 2 −1

0 . . . 0 0 0 −1 2


︸ ︷︷ ︸

A



u1

u2

...

uN − 1

uN


︸ ︷︷ ︸

x

=



−1

−1
...

−1

−1


︸ ︷︷ ︸

b

(3.16)

Here, A is the coefficient matrix, b is the right hand side vector and x is the unknown

solution vector, which can be exactly obtained by inverting the matrix A, i.e., x = A−1b.

But, we will obtain an approximation of x using iterative algorithms. We will instantiate

two classical iterative algorithms: Gauss–Seidel and Jacobi, with this example problem and

apply Theorem 15 to prove convergence of the approximate solutions, obtained using these

algorithms, to the exact solution.

3.4.2 Generic iterative convergence theorem

The following theorem provides necessary and sufficient conditions for iterative convergence

Theorem 15. Let an iterative matrix be defined as (3.6) for the iterative system (3.2). The

sequence of iterative solutions {xk} converges to the direct solution x for all initial values

xo, if and only if the spectral radius of the iterative matrix S is less than 1.

Spectral radius of a matrix is defined as the maximum eigenvalue in magnitude. We next

discuss the proof of Theorem 15 followed by its formalization in the Coq proof assistant. It

is noteworthy that while such proofs have been discussed in numerical analysis literature, we

found several missing pieces during the formalization. Most facts about intermediate steps in

the proof have just been stated in the numerical analysis literature without a rigorous proof.

We therefore spent considerable time developing those proofs during our formalization. In
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that regard, a contribution of this work is to provide a clean machine-checked proof of the

main theorem and any intermediate lemma or fact that was required to close the proof of

the Theorem 15.

3.4.2.1 Proof of Theorem 15

To prove Theorem 15, we first need to obtain a recurrence relation for the iterative conver-

gence error at kth step in terms of the initial iteration error (xo − x). Therefore,

Proof.

xk − x = −M−1Nxk−1 +M−1b− x

= −M−1Nxk−1 +M−1(Ax)− x [Ax
∆
= b]

= −M−1Nxk−1 +M−1(M +N)x− x [M +N = A]

= −M−1Nxk−1 +M−1Mx+M−1Nx− x

= −M−1N(xk−1 − x) [M−1M
∆
= I]

Taking norm of the vector on both sides, the iterative convergence error at the kth step can

be written in terms of the iterative convergence error at (k − 1)th step as

||xk − x|| = ||(−M−1N)(xk−1 − x)|| (3.17)

Since, the system is linear, equation (3.17) can be written in terms of the initial iteration

error as

||xk − x|| = ||(−M−1N)k(xo − x)|| (3.18)

Taking limits of the vector norms on both sides of equation (3.18),

lim
k→∞

||xk − x|| = lim
k→∞

||(−M−1N)k(xo − x)|| (3.19)

If xo = x, the iterative convergence error is zero trivially. The case xo ̸= x is interesting and

we can prove Theorem 15 by splitting it into two lemmas

Lemma 16. For given matrices M ∈ Rn×n and N ∈ Rn×n respecting the regular splitting,

i.e., A = M +N , the sequence of iterative solutions {xk} converges to x for any given initial

vector x0 if and only if the l2 matrix norm of the iterated product of the iteration matrix,
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(−M−1N)k approaches zero as k → ∞, i.e.,

(∀xo, lim
k→∞

||(−M−1N)k(xo − x)|| = 0) ⇐⇒ lim
k→∞

||(−M−1N)k|| = 0 (3.20)

Proof. (Necessity): We need to prove that

lim
k→∞

||(−M−1N)k|| = 0 =⇒ (∀xo, lim
k→∞

||(−M−1N)k(xo − x)|| = 0)

Given xo,

lim
k→∞

||(−M−1N)k(xo − x)|| ≤ lim
k→∞

||(−M−1N)k|| ||xo − x||; [ ||Ax|| ≤ ||A|| ||x|| ]

=
(
lim
k→∞

||(−M−1N)k||
)(

lim
k→∞

||xo − x||
)

= 0; [ since, lim
k→∞

||(−M−1N)k|| = 0 ]

(Sufficiency): We need to prove that

(∀xo, lim
k→∞

||(−M−1N)k(xo − x)|| = 0) =⇒ lim
k→∞

||(−M−1N)k|| = 0

We start by unfolding the definition of the norm of the iterative matrix

||(−M−1N)k|| = sup
(xo−x)̸=0

||(−M−1N)k(xo − x)||
||xo − x||

(3.21)

Therefore, we need to prove that

lim
k→∞

(
sup

(xo−x)̸=0

||(−M−1N)k(xo − x)||
||xo − x||

)
= 0 (3.22)

We can prove (3.22) by choosing an upper bound for the matrix norm in (3.21), proving that

the limit of this upper bound converges to zero and then applying the sandwich theorem [125]

for limits. We choose this upper bound as
∑

j<n ||(−M−1N)kej||, i.e.,

sup
(xo−x)̸=0

||(−M−1N)k(xo − x)||
||xo − x||

≤
∑
j<n

||(−M−1N)kej|| (3.23)

where ej is the unit vector corresponding to a principal direction in the cartesian coordinate

system, i.e., ej = 1j. The vector 1j is a unit vector with the entry 1 in the jth place and
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other entries in the vector being 0. Therefore,

lim
k→∞

(
sup

(xo−x)̸=0

||(−M−1N)k(xo − x)||
||xo − x||

)
≤ lim

k→∞

∑
j<n

||(−M−1N)kej||

=⇒ lim
k→∞

(
sup

(xo−x) ̸=0

||(−M−1N)k(xo − x)||
||xo − x||

)
≤
∑
j<n

(
lim
k→∞

||(−M−1N)kej||
)

We can quantify xo in the hypothesis with x + ej,∀j, j < n. Therefore, ∀j, j < n, we have

from the hypothesis,

lim
k→∞

||(−M−1N)ej|| = 0

Thus, ∑
j<n

(
lim
k→∞

||(−M−1N)kej||
)
= 0

We can then apply the sandwich theorem [125] for limits to prove that

lim
k→∞

(
sup

(xo−x)̸=0

||(−M−1N)k(xo − x)||
||xo − x||

)
= 0 (3.24)

We justify the choice of the upper bound in (3.23) in the following proof.

Proof. We can decompose the vector xo − x into its components along the principal axes in

the cartesian coordinate system as

xo − x =
∑
j<n

(xo − x)jej

Therefore,

(−M−1N)k(xo − x) =
∑
j<n

(−M−1N)k(xo − x)jej (3.25)

By taking a vector norm on both sides of (3.25),

||(−M−1N)k(xo − x)|| = ||
∑
j<n

(−M−1N)k(xo − x)jej||

Using the triangle inequality property of the vector norm, we get

||(−M−1N)k(xo − x)|| ≤
∑
j<n

||(−M−1N)k(xo − x)jej|| (3.26)
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Since (xo − x) ̸= 0, ||xo − x|| ≠ 0. Hence, dividing by ||xo − x|| on both sides of (3.26),

||(−M−1N)k(xo − x)||
||xo − x||

≤
∑
j<n

||(−M−1N)k(xo − x)jej||
||xo − x||

≤
∑
j<n

|(xo − x)j|
||xo − x||

||(−M−1N)kej||

≤
∑
j<n

||(−M−1N)kej||

Here, we first use the absolute homogenity property (||ax|| = |a|||x||, for any scalar a and

vector x) of the vector norm. Then we use the fact that

|(xo − x)j| ≤ ||xo − x||

Lemma 17. For given matrices M ∈ Rn×n and N ∈ Rn×n respecting the regular split-

ting, i.e., A = M + N , the l2 matrix norm of the iterated product of the iteration matrix,

(−M−1N)k approaches zero as k → ∞ if and only if the spectral radius of the iteration

matrix is less than 1, i.e.,

lim
k→∞

||(−M−1N)k|| = 0 ⇐⇒ ρ(−M−1N) < 1 (3.27)

The quantity ρ(−M−1N) is the spectral radius of the iteration matrix, S = (−M−1N)

and is defined as

ρ(S) = max
i

{ | λi(S) | },∀i = 0, . . . , (n− 1)

where λi(S) is the ith eigenvalue of S. Therefore,

ρ(S) < 1 ⇐⇒ (∀i, i < n =⇒ |λi(S)|)

Proof. (Sufficiency): We need to prove that

lim
k→∞

||(−M−1N)k|| = 0 =⇒ ρ(−M−1N) < 1

Since

ρ(−M−1N) = max
0≤i<n

|λi(−M−1N)|,

lim
k→∞

||(−M−1N)k|| = 0 =⇒ (∀i, 0 ≤ i < n, |λi| < 1)
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Applying,

lim
k→∞

|λi|k = 0 =⇒ |λi| < 1, ∀i, 0 ≤ i < n

to the goal statement, we need to prove:

lim
k→∞

|λi|k = 0, ∀i, 0 ≤ i < n

under the hypothesis limk→∞ ||(−M−1N)k|| = 0. We now use the definition of an eigensys-

tem, i.e.,

(−M−1N)vi = λivi

where vi is an eigenvector corresponding to the eigenvalue λi. Therefore,

lim
k→∞

|λi|k = 0 =⇒ lim
k→∞

|λi|k||vi|| = 0

=⇒ lim
k→∞

||λk
i vi|| = 0; [|λi|k = |λk

i | ∧ |λk
i | ||vi|| = ||λk

i vi||]

=⇒ lim
k→∞

||(−M−1N)kvi|| = 0; [(−M−1N)kvi = λk
i vi] (3.28)

But the compatibility relation for vector and matrix norms dictates,

0 ≤ ||(−M−1N)kvi|| ≤ ||(−M−1N)k|| ||vi|| (3.29)

Since, ||vi|| ≠ 0 by definition of an eigensystem,

lim
k→∞

||(−M−1N)k|| = 0 =⇒ lim
k→∞

||(−M−1N)k|| ||vi|| = 0 (3.30)

We can then apply the sandwich theorem [125] to prove that

lim
k→∞

||(−M−1N)kvi|| = 0

(Necessity): We need to prove that

ρ(−M−1N) < 1 =⇒ lim
k→∞

||(−M−1N)k|| = 0.

To prove necessity, we obtain the Jordan decomposition of the iterative matrix, S =

(−M−1N). From the Jordan normal form theorem [119], we know that there exists

V, J ∈ Cn×n, V non-singular and J block diagonal such that:

S = V JV −1 (3.31)
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with

J =



Jm1(λ1) 0 0 . . . 0

0 Jm2(λ2) 0 . . . 0
... . . .

. . . . . .
...

0 . . . 0 Jms−1(λs−1) 0

0 . . . . . . 0 Jms(λs)


; Jmi

(λi) =



λi 1 0 . . . 0

0 λi 1 . . . 0
...

...
. . . . . .

...

0 0 . . . λi 1

0 0 . . . 0 λi


where Jmi

(λi) is the Jordan block corresponding to the eigenvalue λi. Thus, S
k = V JkV −1.

Since J is block diagonal,

Jm =



Jk
m1

(λ1) 0 0 . . . 0

0 Jk
m2

(λ2) 0 . . . 0
... . . .

. . . . . .
...

0 . . . 0 Jk
ms−1

(λs−1) 0

0 . . . . . . 0 Jk
ms

(λs)


Now, a standard result on the kth power of a mi×mi Jordan block states that, for k ≥ mi−1

Jk
mi
(λi) =



λk
i

(
k
1

)
λk−1
i

(
k
2

)
λk−2
i . . .

(
k

mi−1

)
λk−mi+1
i

0 λk
i

(
k
1

)
λk−1
i . . .

(
k

mi−2

)
λk−mi+2
i

...
...

. . . . . .
...

0 0 . . . λk
i

(
k
1

)
λk−1
i

0 0 . . . 0 λk
i


To prove that limk→∞ ||Sk|| = 0, we need to prove that limk→∞ ||Jk|| = 0, since V is

non-singular, i.e. ||V || ̸= 0. Since the 2-norm of a matrix is bounded above by the

Frobenius matrix norm as: ||Jk||2 ≤ ||Jk||F , we can prove limk→∞ ||Jk||2 = 0 by proving

limk→∞ ||Jk||F = 0. The Frobenius norm of matrix Jk is defined as:

||Jk||F
∆
=

√∑
i

∑
j

|(Jk)(i,j)|2

Thus, we need to prove that

∀i j, lim
k→∞

|(Jk)(i,j)|2 = 0 (3.32)

The zero entries of the Jordan block diagonal matrix tend to zero trivially. Since, |λi| < 1,

the diagonal elements of the Jordan block, Jk
mi
(λi) tend to zero. Proving that the off diagonal
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elements tend to zero is more difficult.

We have to prove that limk→∞
(
k
m

)
|λi|k−m = 0, ∀m ≤ mi − 1. The function f(k) =

(
k
m

)
increases as k increases while the function g(k) = |λi|k−m decreases as k increases since

0 < |λi| < 1. Informally, it can be argued that g(k) decreases at a faster rate than the

function f(k). Hence, the limit should tend to zero. But proving it formally in Coq was

challenging. We need to first bound the function f(k) with a function h(k) = km

m!
to obtain

a sequence, km

m!
|λi|k−m, for which it would be easy to prove the limit. Therefore, we split the

proof into proofs of two facts:

• (
k

m

)
≤ km

m!
(3.33)

•
lim
k→∞

km

m!
|λi|k−m = 0 (3.34)

The inequality 3.33 follows the following proof

Proof. (
m

k

)
=

m!

(m− k)!k!

=
(m− k + 1)(m− k + 2)...(m− 1)m

k!
(3.35)

Since (m− k + 1) ≤ m, (m− k + 2) ≤ m, and so on, the product of terms in the numerator

of (3.35) is bounded by mk. Hence, (
m

k

)
≤ mk

k!

In order to prove limk→∞
km

m!
|λi|k−m = 0, we use the ratio test for convergence of sequences.

The formalization of ratio test has not yet been done in Coq to our knowledge. So, we

formalized the ratio test since it provides an easier test for proving convergence of sequences

as compared to first bounding the function with an easier function for which the convergence

could be proved with the existing Coq libraries. The process of bounding the function

Γ(k) = f(k)g(k) with an easier function to prove convergence was challenging for us due to

the behavior of Γ(k). Using plotting tools like Wolfram plot or MATLAB plot, we observed

that for |λi| ≤ 0.5, the function Γ(k) was monotonously decreasing, while for 0.5 < |λi| < 1,

Γ(k) increases first and then decreases. Moreover, the location of the maxima of Γ(k) in the
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interval 0.5 < |λi| < 1 depends of the number of iterations. Hence, bounding Γ(k) with a

monotonically decreasing function is challenging for 0.5 < |λi| < 1. But we know that Γ(k)

decays eventually. For such scenarios, just comparing the terms Γ(k + 1) and Γ(k) provides

a much simpler test for the convergence of the sequence Γ(k). This is where ratio test for

the convergence of sequence comes to rescue. The ratio test for the convergence of sequences

is stated as follows.

Theorem 18. If (an) is a sequence of positive real numbers such that limn→∞
an+1

an
= L and

L < 1, then (an) converges and limn→∞ an = 0.

Proof. Let (an) be a sequence of real numbers such that limn→∞
an+1

an
= L. Since (an) is a

sequence of positive numbers, 0 ≤ L. By the Density of Real Numbers theorem, there exists

a real r, such that L < r < 1.

Unfolding the definition of limn→∞
an+1

an
= L, for ϵ = r − L > 0, ∃N ∈ N, such that forall

n ≥ N ,
∣∣∣an+1

an
− L

∣∣∣ < ϵ = r − L, which implies that,

−ϵ <
an+1

an
− L < ϵ =⇒ L− ϵ <

an+1

an
< L+ ϵ =⇒ an+1

an
< L+ (r − L) = r

Therefore, ∀n, n ≥ N , an+1 < anr. This implies, anr < an−1r
2, and an−2r

2 <

an−3r
3, . . . , aN+1r

n−N < aNr
n−N+1. We thus obtain the following inequality:

an+1 < anr < an−1r
2 < . . . < aN+1r

n−N < aNr
n−N+1

Let K = aN
rN

. Therefore aNr
n−N+1 = Krn+1. Thus for n ≥ N , we have that anr < Krn+1,

or rather an < Krn. Since 0 < r < 1, we have that limn→∞ rn = 0. Then by the squeeze

lemma, limn→∞ an = 0.

In our case, the sequence an = nm|λi|n. Therefore, the ratio an+1

an
= (n+1)m|λi|n+1

nm|λi|n . There-
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fore,

lim
n→∞

an+1

an
=

(n+ 1)m|λi|n+1

nm|λi|n

= lim
n→∞

(
1 +

1

n

)m

|λi|

= |λi|
[
lim
n→∞

(
1 +

1

n

)m]
= |λi|

[
lim
n→∞

(
1 +

1

n

)]m
= |λi|

Therefore, L = |λi|, which we know is less than 1. Thus, we can apply Theorem 18 to prove

that limn→∞ nm|λi|n = 0. Since m! and |λi|m are non zero constants, limk→∞
km

m!
|λi|k−m =

0.

3.4.2.2 Formalization in Coq

We state Theorem 15 in Coq as follows:

Theorem iter convergence:

∀ (n:nat) (A: 'M[R] n.+1) (b: 'cV[R] n.+1) (M N : 'M[R] n.+1),

A \in unitmx →
M \in unitmx →
A = M + N →
let x := (Aˆ−1) ∗m b in

(let S mat:= RtoC mat (− ( Mˆ−1 ∗m N)) in

(∀ (i: 'I n.+1), (C mod (lambda S mat i) < 1)%Re)) ↔
(∀ x0: 'cV[R] n.+1,

is lim seq (fun k:nat ⇒ vec norm ((X m k.+1 x0 b M N) − x)) 0%Re).

Since we deal with a generic case where a real matrix is allowed to have complex eigenvalues

and eigenvectors, we also work in the complex field. RtoC mat transforms a real matrix to a

complex matrix so as to be consistent with types. In mathcomp , a complex number is defined

on top of a real closed field [37, 38]. Thus, given a real matrix A, RtoC mat transforms a

real entry Aij : R to a complex number Ãij : C := (Aij + i ∗ 0). In Coq, we formally define

RtoC mat as follows:

Definition RtoC mat (n:nat) (A: 'M[R] n):'M[complex R] n :=

\matrix (i<n, j<n) ((A i j) +i∗ 0)%C.
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Let us now discuss the hypothesis of the theorem statement. The first hypothesis states that

the matrix A is invertible. Hence, there exists a unique solution to the linear system Ax = b.

We define this solution vector x in Coq using the let binding

let x := (Aˆ−1) ∗m b

The hypothesis A = M + N corresponds to the definition (3.3). As discussed earlier, we want

the matrix M to be easily invertible so as to construct the iterative matrix S = −(M−1N).

The invertibility condition is stated by the hypothesis

M \in unitmx

We define the iterative solution after k steps, xk from the iterative system (3.2) using the

Fixpoint operator in Coq

Fixpoint X m (k n:nat) (x0 b: 'cV[R] n.+1) (M N: 'M[R] n.+1) : 'cV[R] n.+1:=

match k with

| O ⇒ x0

| S p ⇒ ((− ((Mˆ−1) ∗m N)) ∗m (X m p x0 b M N)) + ((Mˆ−1) ∗m b)

end.

The Fixpoint operator in Coq lets us define a recurrence relation, which in this case is given

by the equation 3.4. We define the iterative matrix S in the let binding of iter convergence in

Coq.

In our formalization of the iterative convergence, we rely on the existing formalization

of the Jordan canonical forms by Guillaume Cano and Maxime Dénès [32]. We use their

definition of eigenvalues of a matrix derived from the roots of the characteristic polynomials

of the Smith Normal form of a matrix A. We first define a sequence of eigenvalues as the

diagonal entries of Jordan matrix.

Definition lambda seq (n: nat) (A: 'M[complex R] n.+1):=

let sizes:= size sum [seq x.2.−1 | x <− root seq poly (invariant factors A)] in

[seq (Jordan form A) i i | i <− enum 'I sizes.+1].

root seq poly p returns a sequence of pair of roots and its multiplicity, of the polynomial

p. The invariant factors are the polynomials in the diagonal of the Smith Normal form

of a matrix. In this case, the sequence contains the pair of eigenvalues of matrix A and its

multiplicity. The Jordan form matrix contains these eigenvalues in its diagonal which we

extract using lambda seq.

The ith eigenvalue of a matrix A is then defined as the ith component of the sequence of

eigenvalues lambda seq.

Definition lambda (n: nat) (A: 'M[complex R] n.+1) (i: 'I n.+1) :=
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(@nth 0%C (lambda seq A) i).

To take full advantage of the lemmas describing eigenvalues and eigenvectors as defined in

mathcomp, we had to relate the definition of eigenvalue, lambda, and the one defined in

mathcomp. In mathcomp, an eigenvalue a, of a matrix A is defined as a predicate

Definition eigenvalue : pred F := fun a ⇒ eigenspace a != 0.

stating that the eigenspace corresponding to this eigenvalue is non-zero.

Lemma Jordan ii is eigen:

∀ (n: nat) (A: 'M[complex R] n.+1),

∀ (i: 'I n.+1), @eigenvalue (complex fieldType ) n.+1 A (@nth 0%C (lambda seq A) i).

The lemma Jordan ii is eigen asserts that lambda satisfies the predicate eigenvalue, and is indeed

an eigenvalue of a matrix A.

It should be noted that a square matrix A is assumed to be of size at least 1. This

design choice is justified by Cano and Dénès in [32]. A square matrix only forms a ring

when its size is at least one [32]. The ring property of a square matrix was really helpful

in the formalization of diagonal block matrices by Cano and Dénès. Therefore, to use their

formalization of canonical forms, we also stick with denoting the type of a complex matrix

as ’M[complex R] n.+1.

As discussed earlier, we split the proof of the Theorem 15 into two lemmas 16 and 17.

The statement of these lemmas are formalized in Coq as:

(Lemma 16):

(∀ x0: 'cV[R] n.+1,

is lim seq (fun m : nat ⇒ vec norm ((X m m.+1 x0 b A1 A2) − x)) 0%Re) ↔
is lim seq (fun m:nat ⇒

(matrix norm (RtoC mat ((− (A1ˆ−1 ∗m A2))ˆ+m.+1) ))) 0%Re

(Lemma 17):

is lim seq (fun m:nat ⇒ matrix norm

(RtoC mat ((− ((A1ˆ−1 ∗m A2)))ˆ+m.+1 ))) 0%Re ↔
(let S mat := RtoC mat (− (A1ˆ−1 ∗m A2)) in

∀ i : 'I n.+1, (C mod (lambda S mat i) < 1)%Re)

We have used the is lim seq predicate from the Coquelicot [28] library to define the limits

for the sequence of solution vectors {xk} converging to x.

For the proof of the fact in the forward direction in the Lemma 16, we prove the following

lemma in Coq

Lemma lim max: ∀ (n:nat) (A: 'M[R] n.+1) (x: 'cV[R] n.+1),
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(∀ x0: 'cV[R] n.+1,

let v:= x0 − x in

let vc:= RtoC vec v in

is lim seq (fun m: nat ⇒ vec norm C ((RtoC mat (Aˆ+m.+1)) ∗m vc)) 0%Re) →
is lim seq (fun m:nat ⇒ matrix norm (RtoC mat (Aˆ+m.+1))) 0%Re.

The lemma lim max corresponds to the proof of (3.24). As discussed earlier, to prove

lim max, an important step was to decompose the vector xo − x into its components along

the principal axis of the Cartesian coordinate system. We prove this fact in Coq using the

following lemma statement

Lemma base exp: ∀ (n:nat) (x: 'cV[complex R] n.+1),

x = \big[+%R/0] (i < n.+1) (x i 0 ∗: e i i).

where we defined the principal unit vector e i i in Coq as

Definition e i {n:nat} (i: 'I n.+1): 'cV[complex R] n.+1 :=

\col (j < n.+1) (if (i==j :> nat) then (1 +i∗ 0)%C else (0 +i∗ 0)%C).

To prove the sufficiency in the Lemma 17, we had to prove the following lemma:

Lemma is lim seq geom nec (q:R):

is lim seq (fun n ⇒ (q ˆ n.+1)%Re) 0%Re → Rabs q <1.

While a lemma exists for the other direction in the Coquelicot [28] formalization of limits,

lemma is lim seq geom nec was missing.

As discussed earlier, to prove sufficiency condition for iterative convergence, we had to

formalize the ratio test for convergence of sequences which was missing in the existing Coq

libraries. In Coq, we state Theorem 18 as:

Lemma ratio test: ∀ (a: nat → R) (L:R),

(0 < L ∧ L < 1) →
(∀ n:nat, (0 < a n)%Re) →
(is lim seq ( fun n:nat ⇒ ((a (n.+1))/(a n))%Re) L) →
is lim seq (fun n: nat ⇒ a n) 0%Re.

We then use the lemma ratio test to formally prove

lim
m→∞

(m+ 1)kxm+1 = 0

which we state in Coq as:

Lemma lim npowk mul to zero: ∀ (x:R) (k:nat),
(0 < x)%Re → Rabs x < 1 →
is lim seq (fun m:nat ⇒ ((m.+1)%:Rˆk ∗ xˆ m.+1)%Re) 0%Re.
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To bound the binomial coefficient
(
m
k

)
with mk

k!
, we formally state the inequality (3.33) as

follows

Lemma choice to ring le: ∀ (n k:nat), (0<n)%N → (k<=n)%N →
('C(n,k)%:R <= (n%:Rˆ+k / (k`!)%:R) :> complex R) .

Since the inequality holds in a complex field, we have to first convert the complex inequality

to a real inequality. This was possible using the existing formalization of complex fields in

mathcomp. Since the choice function and the factorials are naturals in Coq, we then define

a lemma which proves that if the inequality holds for naturals, the inequality also holds in

real field after a coercion is defined from naturals to reals. In Coq, we formalize the lemma

as:

Lemma nat ring mn le: ∀ (m n:nat), (m<= n)%N → (m%:R <= n%:R)%Re.

Applying the lemma nat ring mn le, we obtain the following inequality((
n

k

)
≤ nk

k!

)
%N (3.36)

It should be noted that the division in (3.36) is an integer division. The inequality (3.36) can

easily be proved as discussed in the previous section. However, to use the inequality (3.36) in

the proof of lemma choice to ring le, one needs to be careful with converting an integer

division to a real division.

To prove that each element of the Jordan block matrix converges to zero as in equa-

tion (3.32), we prove the following lemma in Coq

Lemma each entry zero lim:

∀ (n:nat) (A: 'M[complex R] n.+1),

let sp := root seq poly (invariant factors A) in

let sizes := [seq x0.2.−1 | x0 <− sp] in

∀ i j: 'I (size sum sizes).+1,

(∀ i: 'I (size sum sizes).+1 , (C mod (nth 0%C (lambda seq A) i) < 1)%Re ) →
is lim seq (fun m: nat ⇒
let block :=

(fun n0 i1 : nat ⇒
let lambda := (nth (0, 0%N) (root seq poly (invariant factors A)) i1).1 in

\matrix (i2, j0)

(('C(m.+1, j0 − i2))%:R ∗ (lambda ˆ (m.+1 − (j0 − i2))) ∗+ (i2 <= j0))) in

(C mod ((diag block mx sizes block) i j))ˆ2) 0.

The lemma each entry zero lim states that if the magnitude of each eigenvalue of a matrix

A is less than 1, i.e., |λi(A)| < 1, ∀i, 0 ≤ i < N , then the limit of each term in the expanded
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Jordan matrix is zero as k approaches ∞. Here, the block diagonal matrix diag block mx

takes an expanded Jordan block Jk
mi
(λi),∀i, 0 ≤ i < N and constructs the Jordan matrix

Jk. We then take a modulus of each entry of Jk and prove that its limit is zero as k → ∞.

A key challenge we faced when proving the lemma each entry zero lim was extracting each

Jordan block of the diagonal block matrix. The diagonal block matrix is defined recursively

over a function which takes a block matrix of size µi denoting the algebraic multiplicity of

each eigenvalues λi. We had to carefully destruct this definition of diagonal block matrix

and extract the Jordan block and the zeros on the off-diagonal entries. We can then prove

the limit on this Jordan block by exploiting its upper triangular structure.

We state the lemma to extract a Jordan block from the block diagonal matrix as follows:

Lemma diag destruct (R: ringType)

(s : seq nat) (F : (∀ n, nat → 'M[R] n.+1)):

∀ i j: 'I (size sum s).+1,

(∃ k l m n,

(k <= size sum s)%N ∧ (l <= size sum s)%N ∧
(∀ p:nat, (diag block mx s (fun k l:nat ⇒ (F k l)ˆ+ p.+1)) i j =

((F k l)ˆ+ p.+1) m n) ∧
(diag block mx s F i i = (F k l) m m)) ∨
(∀ p:nat, (diag block mx s (fun k l:nat ⇒ (F k l)ˆ+ p.+1)) i j = 0).

where size sum is the sum of the algebraic multiplicities of the eigenvalues and equals the

total size of the matrix n. We prove this fact using the following lemma statement in Coq

Lemma total eigen val: ∀ (n:nat) (A: 'M[complex R] n.+1),

(size sum [seq x.2.−1 | x <− root seq poly (invariant factors A)]).+1 = n.+1.

The lemma total eigen val helps us get around the dimension constraint imposed by the

design of the Jordan form of a matrix A. Limits of the off-diagonal elements can then be

trivially proven to zero. This completes the proof of sufficiency condition for convergence of

iterative convergence error.

3.4.3 Gauss–Seidel method

To prove the convergence of a Gauss–Seidel method, we need to prove that the spectral radius

of SG is less than 1. But computing the eigenvalues of SG explicitly is almost impossible for

a generic matrix. Therefore, we need an easier check to assert that the spectral radius of SG

is indeed less than 1. The Reich theorem [115] provides a sufficient condition for the spectral

radius of SG to be less than 1, for a real and symmetric coefficient matrix A, with all of the

elements in its main diagonal positive. This condition provides a much easier check, which
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is linear in time, and when layered with the Theorem 15, provides a sufficient condition for

convergence of the Gauss–Seidel iteration for a real and symmetric coefficient matrix A, with

all of the elements in its main diagonal positive.

We next discuss the formalization of the Reich theorem, followed by the main convergence

theorem for the Gauss–Seidel iterate.

3.4.3.1 Reich theorem

Theorem 19. [115] If A is real, symmetric nth-order matrix with all terms on its main

diagonal positive, then a sufficient condition for all the n characteristic roots of (−A−1
1 A2)

to be smaller than unity in magnitude is that A is positive definite.

From an application point of view, only the sufficiency condition is important. This is

because to apply Theorem (15), we only need to know that the magnitude of the eigenvalues

are less than 1. Thus, to prove the convergence of Gauss–Seidel iteration, we first apply

Theorem 15 to get the eigenvalue condition in the goal and then apply Theorem 19 to

complete the proof. Since computing eigenvalues are not very trivial in most cases, the

positive definite property of the matrix A provides an easy test for |λ| < 1 for Gauss–Seidel

iteration matrix. The proof of necessity uses an informal topological argument that would

be difficult to formalize. Therefore, it is enough to just formalize the sufficiency condition.

Next we present an informal proof [115] followed by its formalization in the Coq proof

assistant.

Proof. Let zi be the i
th characteristic vector of −(A−1

1 A2) corresponding to the characteristic

root µi. Then

−(A−1
1 A2)zi = µizi (3.37)

Multiplying by −(z̄i
′A1) on both sides,

(−z̄i
′A1)(−A−1

1 A2)zi = −µiz̄i
′A1zi (3.38)

where z̄i
′ is the conjugate transpose of zi obtained by taking the conjugate of each element

of zi followed by transpose of the vector. Equation (3.38) then simplifies to:

z̄i
′A2zi = −µiz̄i

′A1zi; [A1A
−1
1 = I] (3.39)

Consider the bi-linear form, z̄i
′Azi,

z̄i
′Azi = z̄i

′(A1 + A2)zi = z̄i
′A1zi + z̄i

′A2zi = z̄i
′A1zi − µiz̄i

′A1zi = (1− µi)z̄i
′A1zi (3.40)
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Taking conjugate transpose of equation (3.40) on both sides,

z̄i
′Azi = (1− µ̄i)z̄i

′A′
1zi (3.41)

Let D be the diagonal matrix defined as:

Dij =

Aij if i = j

0 if i ̸= j
(3.42)

It can be shown that

A′
1 = D + A2 (3.43)

Substituting equation (3.43) in equation (3.41),

z̄i
′Azi = (1− µ̄i)z̄i

′(D + A2)zi

= (1− µ̄i)z̄i
′Dzi + (1− µ̄i)z̄i

′A2zi = (1− µ̄i)z̄i
′Dzi +

(1− µ̄i)

1− µi

z̄i
′Azi (3.44)

Simplifying equation (3.44),

(1− µ̄iµi)z̄i
′Azi = (1− µ̄i)(1− µi)z̄i

′Dzi (3.45)

But, µ̄iµi = |µi|2 and (1− µ̄i)(1− µi) = |1− µi|2 Hence, equation (3.45) simplifies to,

(1− |µi|2)z̄i′Azi = (|1− µi|2)z̄i′Dzi (3.46)

Since, the diagonal elements of A is positive, i.e., Aii > 0, z̄i
′Dzi is positive definite, i.e.,

z̄i
′Dzi > 0. Since z̄i

′Dzi > 0 and z̄i
′Azi > 0, |µi| < 1.

Formalization in Coq: The Theorem 19 is formalized in Coq as follows:

Theorem Reich sufficiency: ∀ (n:nat) (A: 'M[R] n.+1),

(∀ i:'I n.+1, A i i > 0) →
(∀ i j:'I n.+1, A i j = A j i) →
is positive definite A →
(let S G:= − ( (RtoC mat (M G A)ˆ−1) ∗m (RtoC mat (N G A))) in

(∀ i: 'I n.+1, C mod (lambda S G i) < 1)).

where positive definiteness of a complex matrix A is defined as:

∀x ∈ Cn×1, Re [x∗Ax] > 0
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x∗ is the complex conjugate transpose of vector x and Re [x∗Ax] is the real part of the

complex scalar x∗Ax. We defined is positive definite in Coq as:

Definition is positive definite (n:nat) (A: 'M[R] n.+1):=

∀ (x: 'cV[complex R] n.+1), x != 0 →
Re (mulmx (conjugate transpose x) (mulmx (RtoC mat A) x) 0 0) >0.

We compared our definition of a positive definite matrix with a related work from Pierre

Roux [117]. While their work define positive definiteness for a real matrix, ours define it for

a complex matrix. The definitions however are similar. The hypothesis

∀ i:'I n.+1, A i i > 0

states that all terms in the main diagonal of A are positive. The hypothesis

∀ i j:'I n.+1, A i j = A j i

states that the matrix A is symmetric.

3.4.3.2 Using the main theorem to prove convergence

We can then apply the theorem iter convergence with Reich sufficiency to prove convergence

of the Gauss–Seidel iteration method. We formalize the convergence of the Gauss–Seidel

iteration method in Coq as

Theorem Gauss Seidel converges:

∀ (n:nat) (A: 'M[R] n.+1) (b: 'cV[R] n.+1),

let x:= (Aˆ−1) ∗m b in

A \in unitmx →
(∀ i : 'I n.+1, 0 < A i i) →
(∀ i j : 'I n.+1, A i j = A j i) →
is positive definite A →
(∀ x0: 'cV[R] n.+1,

is lim seq (fun k:nat ⇒ vec norm ((X m k.+1 x0 b (M G A) (N G A)) − x)) 0%Re).

We next demonstrate the convergence of the Gauss–Seidel iteration on the example (3.16).

We choose N = 1. Thus, we have a symmetric tri-diagonal coefficient matrix of size 3 × 3,

which we will denote as AGS. To show that iterative system for the system AGSx = b

converges, we need to show that AGS is positive definite. In Coq, we prove that AGS is

positive definite as the following lemma statement

Lemma Ah pd: ∀ (h:R), (0<h)%Re → is positive definite (Ah 2%N h).

Proving that AGS is positive definite by definition for a generic N is tedious and does not

add much to our line of argument. Hence, we chose to do it for AGS of size 3 × 3. One
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can perform the exercise for any choice of N and get the same result. The statement of

convergence of Gauss–Seidel iteration method for the 3× 3 matrix is stated in Coq as

Theorem Gauss seidel Ah converges:

∀ (b: 'cV[R] 3) (h:R),

(0 < h)%Re →
let A := (Ah 2%N h) in

let x:= (Aˆ−1) ∗m b in

∀ x0: 'cV[R] 3,

is lim seq (fun k:nat ⇒ vec norm ((X m k.+1 x0 b (A1 A) (A2 A)) − x)) 0%Re.

This closes the proof of the convergence of the Gauss–Seidel iteration for the model problem.

3.4.4 Jacobi method on the model problem

We next apply the Theorem 15 to prove convergence of the Jacobi iteration on the model

problem 3.16. As discussed earlier, the iteration matrix for a Jacobi iteration method is

SJ = I−D−1AJ . We choose P = 1, thereby obtaining a 3× 3 matrix system, like we did for

the Gauss–Seidel iteration. However, the Jacobi matrix, AJ , that we will consider will be a

negation of the coefficient matrix, A in (3.16). We essentially shift the negation to the right

hand side of (3.16). The reason we do this is that, to define the explicit form of eigenvalues

of the Jacobi matrix for the example problem (3.16), we need to take the square root of

the off-diagonal elements of AJ . In Coq, the square root definition of a real number has a

precondition that the real number must be non-negative. Thus, we require the off-diagonal

elements of AJ to be non-negative. This does not change the problem in consideration, but

transforms it into a form that is easy to formalize in Coq.

The eigenvalues of I −D−1AJ would then be 1+ h2

2
λ(AJ). For a tri-diagonal matrix with

a on the lower diagonal, b on the diagonal and c on the upper diagonal entries, λi(AJ) is

defined as

λi(AJ) = b+ 2
√
ac

[
cos

(
mπ

P + 1

)]
, 0 ≤ i < P, 1 ≤ M ≤ P (3.47)

For the matrix AJ , b = − 2
h2 , a = c = 1

h2 .

λi(A) = − 2

h2
+ 2

1

h2

[
cos

(
mπ

P + 1

)]
=

−2

h2

[
1− cos

(
mπ

P + 1

)]
(3.48)

Hence,

|λi(SJ)| =
∣∣∣∣1 + h2

2
λi(AJ)

∣∣∣∣ = ∣∣∣∣cos( mπ

P + 1

)∣∣∣∣ (3.49)

Thus, to prove the convergence of the Jacobi iteration for this model problem, we need to
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prove that ∣∣∣∣cos( mπ

P + 1

)∣∣∣∣ < 1 (3.50)

Formalization in Coq: In Coq, we formalized the condition (3.50) as:

Theorem eig less than 1:

∀ (n:nat) (i: 'I n.+1) (h:R),

(0 < h)%Re → (0 < n)%N → (C mod (lambda J i n h) < 1)%Re.

where the eigenvalues of the iterative matrix SJ is defined as below:

Definition lambda J (m P:nat) (h:R) :=

(b P h) + 2∗ sqrtc(p P h)∗ RtoC (cos((m.+1%:R ∗ PI)∗/ P.+2%:R)).

In Coq the natural numbers start from 0, hence we increment m and P by one as compared

to the formula (3.47).

Since the above definition of eigenvalues hold for a tri-diagonal matrix, we formally prove

that SJ = I −D−1AJ , thereby preserving the tri-diagonal structure of AJ . This is stated in

Coq as:

Lemma S mat simp: ∀ (n:nat) (h:R), (0<h)%Re →
S mat J n h = RtoC mat (addmx 1%:M (oppmx (mulmx (invmx (M J n h)) (Ah n h)))).

where RtoC mat is a coercion from a real to a complex matrix as discussed earlier. This

lemma holds for 0 < h. This condition is required since h denotes the discretization step

size i.e. h = xi+1 − xi.

Since λi(SJ) is in general complex, to prove (3.50), we need to prove that the real part of

λi(SJ) is equal to the the eigenvalue of AJ . We prove this formally in Coq as the following

lemma:

Lemma lambda simp: ∀ (m P:nat) (h:R), (0<h) → (0< P) →
Re (lambda J m P h) = (1 + ((hˆ2)/2) ∗Lambda Ah m P h)).

where Lambda Ah m P h is the mth eigenvalue of the matrix AJ . The hypothesis 0 < P is

a constraint on the number of internal points in the domain. The equation (3.15) dictates

that there must be at least one point in the interior.

One of the requirements of defining an iterative system is that the matrix M be invertible.

We prove this formally in Coq for this example as the following lemma statement:

Lemma M invertible: ∀ (n:nat) (h:R), (0<h) → (M J n h) \in unitmx.

To prove the above lemma, we have to directly prove that MM−1 = I. This is stated in Coq

as the following lemma statement:
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Lemma invmx A1 mul A1 1:∀ (n:nat) (h:R),

(0<h) → (M J n h) ∗m (M J n h)ˆ−1 = 1%:M.

Since M is a diagonal matrix, we can obtain a direct formulation of the inverse of M . This

is stated in Coq as the following lemma statement:

Lemma invmx A1 J: ∀ (n:nat) (h:R), (0<h) → (M J n h)ˆ−1 = ((−(hˆ+2)/2) ∗: 1%:M).

The lemma invmx A1 J was the last piece in the puzzle to complete the proof of invertibility

ofM . We apply the Theorem 15 to the 3×3 example to prove convergence of Jacobi iteration

matrix on this example.

Theorem Jacobi converges: ∀ (b: 'cV[R] 3) (h:R), (0 < h) →
let A := (Ah 2h) in

let x := (Aˆ−1) ∗m b in

(∀ x0: 'cV[R] 3, is lim seq (fun k:nat ⇒ (X m k.+1 x0 b (M J 2 h) (N J 2 h)) − x).

Here, we instantiate the eigenvalue lambda with the lambda J using

Hypothesis Lambda eq: ∀ (n:nat) (h:R) (i: 'I n.+1),

let S mat := RtoC mat (− ( (M J n h)ˆ−1 ∗m (N J n h) )) in

lambda S mat i = lambda J i n h.

We further formally prove that lambda J is an eigenvalue of the Jacobi matrix, AJ , using

the eigenvalue predicate in mathcomp.

Lemma lambda J is an eigenvalue:

∀ (h:R), (0 < h) →
let S mat := RtoC mat (oppmx (invmx (A1 J 2 h) ∗m A2 J 2 h)) in

(∀ i: 'I 3, @eigenvalue (complex fieldType ) 3 S mat (lambda J i 2 h)).

This closes the proof of iterative convergence for Jacobi iteration on the model problem.

3.5 Conclusion

In this work we formalized a generalized theorem about convergence of the solutions of

an iterative algorithm to the true numerical solution (direct solution). We formalized the

sufficient and necessary conditions for asymptotic convergence of a sequence of iterative

solutions {xk} to the direct solution x of the original system Ax = b, for generic iterative

algorithms, which respect the regular splitting [119]. To prove convergence, one needs to

construct an iterative matrix S
∆
= −M−1N , and prove that its eigenvalues are less than

1 in magnitude. We leverage the existing development of the Jordan canonical forms in

Coq [32], to develop our generalized framework for verifying asymptotic iterative convergence
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in the field of reals. In this process, we clarify various details in the proof of convergence,

which are missing in the classical numerical analysis literature. We then instantiate this

generalized theorem to two classical iterative methods – the Gauss–Seidel method, and the

Jacobi method. Since it is cumbersome to compute the eigenvalues of a generic matrix

system, and verify that its magnitude is less than 1, we provide a much easier check for

convergence, especially for the Gauss–Seidel method, which relies on the matrix structure.

We formally prove that if the coefficient matrix A is real, symmetric with all of the terms in

its main diagonal positive, then a sufficient condition for the spectral radius of S to be less

than 1 is that A is positive definite. This theorem is called the Reich theorem in classical

numerical analysis literature [115]. Positive definiteness of a matrix is a much easier check

as compared to computing the eigenvalues. We then show that by composing the Reich

theorem with the generalized iterative convergence theorem, we can prove convergence for

the Gauss–Seidel iteration for a real, symmetric matrix A with all its main diagonal elements

positive. We then instantiate this theorem with our model problem to prove convergence of

the Gauss–Seidel method on it. We also proved convergence of the Jacobi iterative process

for our model problem. During our fomalization, we develop a library in Coq to deal with

complex vectors and matrices. We defined absolute values of complex numbers, common

properties of complex conjugates and operations on conjugate matrices and vectors. This

development leverages the existing formalization [37, 38] of complex numbers and matrices

in mathcomp. The overall length of the Coq code and proofs is about 8.5k lines of code. It

took us about 8 person-months of full time work for the entire formalization.

An important point to note here is that the analysis done in this chapter is done in the

field of reals. However, the actual implementation of an iterative algorithm is done in finite

precision. We therefore, study the effect of floating point errors on iterative convergence.

Since we cannot prove asymptotic convergence in floating-point arithmetic, we prove a bound

on the iterative convergence error in presence of rounding errors. This requires us to com-

pute a bound on the real true numerical solution x. We therefore prove a corollary to the

Theorem 15 which states that ||x|| = limk→∞ ||xk|| when A is invertible and ρ(S) < 1.

Corollary 20. Given a coefficient matrix A, a right hand side vector b, and matrix splittings

M and N , such that A and M are invertible and M and N respect the regular splitting,

A := M +N , if all the eigenvalues of the iteration matrix, S
∆
= −M−1N , are less than 1 in

magnitude, then ||x||2 = limk→∞ ||xk||2 for any arbitrary initial vector x0.

We state and proof the Corollary 20 in Coq as

Theorem x limit eq:

∀ (n:nat) (A: 'M[R] n.+1) (b: 'cV[R] n.+1) (M N : 'M[R] n.+1),
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A \in unitmx →
M \in unitmx →
A = M + N →
let x := (Aˆ−1) ∗m b in

(let S mat:= RtoC mat (− ( Mˆ−1 ∗m N)) in

(∀ (i: 'I n.+1), (C mod (lambda S mat i) < 1)%Re)) →
(∀ x0: 'cV[R] n.+1,

Lim seq (fun m:nat ⇒ vec norm (X m m.+1 x0 b M N)) = vec norm x).

This Corollary 20 comes handy when we bound ||x|| using the inputs: the coefficient matrix

A, the right hand side vector b, the tolerance τ , and the iteration count k, as will be discussed

in section 4.5.2.2. The proof of lemma 27 uses an intermediate lemma which proves that

||x||∞ = limk→∞ ||xk||∞ for a Jacobi iterative algorithm when xo = 0, and ||D−1N ||∞ < 1.

Since ρ(S) = ρ(D−1N) ≤ ||D−1N ||∞ (not proved in Coq) and using the relation between

the ||.||2 norm and the ||.||∞ norm, the corollary 20 can be specialized to the Jacobi iteration

to prove this intermediate lemma. Therefore, the corollary 20 can be used in the proof for

bound of ||x|| for a general iteration scheme, which is one of the future directions of our work

on iterative covergence in the presence of rounding errors.

This work could also be extended to verifying solutions of non-linear systems. Most

physical systems behave non-linearly, and the analysis of these non-linear systems is usually

done by linearlizing it around an optimal trajectory. Once we have a linearized system, we

can then plug that in our framework and analyze the convergence error when iterative solvers

are used to obtain their solution.
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CHAPTER 4

Iterative Convergence with Rounding Error

4.1 Introduction

So far, our analysis on stationary iterative methods have been done in the field of reals. But

the actual implementation of an iterative algorithm is done in a finite precision machine. This

introduces another source of error called the floating point error. Besides, the implementation

of an algorithm is prone to programming errors like null pointer de-referencing and data-

type handling. Because these iterative methods are often used as subroutines deep within

larger computational libraries and solvers, it is important that we study the effect of floating

point errors on the convergence of solutions from iterative algorithms, while guaranteeing

that we rule out programming errors. More importantly, it is useful to be able to prove

theorems of the form: “Given inputs A and b with certain properties, the algorithm will

converge to a tolerance τ within k iterations”. This allows the user to figure out reasons as

to why a subroutine using these methods failed to converge, and also make the development

of computational libraries more robust.

Most of the floating-point analysis on stationary iterative methods use a simplified

floating-point model that omits subnormal numbers [68], or the analysis is for a model

of an algorithm [86] but not the actual software. And when one reaches correctness and

accuracy proofs of actual software, it is useful to have machine-checked proofs that connect

in a machine-checkable way to the actual program that is executed, for programs can we

complex and as programs evolve one must ensure that their correctness theorems evolve with

them.

In this chapter, we discuss the development of an end-to-end verification framework [129]

using the state-of-the art tools like VCFloat2 [87] for semi-automated analysis of floating-

point errors, Verifiable Software Toolchain (VST) [33] analyzing programming errors, and

the MathComp library [100] for matrix analysis. The problem that we address here is of

the form “Given inputs A and b with certain properties, the algorithm will converge to a
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tolerance τ within k iterations”. We focus on Jacobi iteration algorithm applied to strictly

diagonally dominant matrices, i.e., in which in each row the magnitudes of the diagonal

element exceeds the sum of the magnitude of the off-diagonals. Strict diagonal dominance

is a simple test for invertibility and guarantees convergence of Jacobi iteration in exact

arithmetic. Strictly diagonally dominant matrices arise in cubic spline interpolation [4],

analysis of Katz centrality in social networks [85], Markov chains associated with PageRank

and related network analysis methods [55], and market equilibria in economic theory [104],

among other domains.

Contributions: We present both a Coq functional model of floating-point Jacobi iteration

(at any desired floating-point precision) and a C program (in double-precision floating-point),

with Coq proofs that:

• the C program (which uses efficient sparse-matrix algorithms) correctly implements

the functional model (which uses a simpler matrix representation);

• for any inputs A, b and desired accuracy τ that satisfy the Jacobi preconditions for

a given natural number k, the functional model (and the C program) will converge

within k iterations to a vector xk such that ||Axk − b||2 < τ ;

• this computation will not overflow into floating-point “infinity” values;

• and the Jacobi preconditions are natural properties of A, b, τ, k that (1) are easily

tested and (2) for many natural engineering problems of interest, are guaranteed to be

satisfied.

We thus provide a first convergence proof of Jacobi that takes into account floating-point

underflow and overflow, and a first machine-checked connection to a real program. Software

packages not written in C can still be related to our functional model and make use of our

floating-point convergence and accuracy theorems. And even for inputs that do not satisfy

the Jacobi preconditions, we have proved that our C program correctly and robustly detects

overflow.

Specific contributions from co-authors: This work 1 has been accepted for pub-

lication at the 16th Conference on Intelligent Computer Mathematics, 2023, and is a joint

work with my collaborators: Prof. Andrew Appel from Princeton University, Ariel Kellison

from Cornell University and Prof. David Bindel from Cornell University. Prof. Andrew

1Our Coq formalization is available at https://github.com/VeriNum/iterative_methods/tree/v0.1.
0
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Appel worked on the implementation of the Jacobi iteration algorithm in C using the sparse

matrix-vector operations and the proof of correctness of this implementation with respect to

a functional model, using the Verifiable Software Toolchain [33]. Ariel Kellison worked on

defining the dot-product operation using fused-mutiply add (FMA), and formalized a bound

on the forward error for dot-product operation and conditions for absence of overflow for

this operation. Prof. David Bindel provided us with notes on error analysis for this work.

We will first provide an overview of the floating-point arithmetic, and then discuss about

our error analysis framework.

4.2 Introduction to floating-point arithmetic

Floating point arithmetic is ubiquitous in computer systems. Numerical quantities are han-

dled by computer using floating-point arithmetic. Implementation of many safety critical

software systems like control software, weather forecasts, trading algorithms, embedded sys-

tems depend on floating-point computations. In the past, errors in rounding have led to

various disastrous consequenes, some of which are enumerated below:

• Trading companies: An infamous case study of the effect of rounding errors in

trading is the Vancouver Stock Exchange [74]. This stock exchange set up a new index

in January 1982, with a value set to 1,000. The index was updated with each trade

but the index was truncated to three decimal places. Since this rounding operation

was done about 3,000 times a day, the error accumulated, resulting in the exchange to

close at 524.811 points on Friday, November 25th, 1983. When, the rounding error was

fixed, and the exchange reopened, the index was 1098.892. This difference was solely

due to the rounding error bug.

• Defense:

i Another infamous disaster due to floating point errors has been the failure of the

Patriot missile system to intercept the Iraqi “Scud” missile during the Gulf war

on February 25, 1991 [60]. The Scud missile hit the barracks, killing 28 people.

This failure was attributed to an error in differencing of floating point numbers

obtained by converting and scaling an integer timing register. This error was

traced to the software powering the clock of the system, which recorded time in

one tenth of a second but stored the data as an integer. It converted the time

into a 24-bit floating point number to do this. However, this system experienced

gradually decreasing accuracy due to the errors accumulated from rounding the
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time. As a result, the Patriot missile system was not able to intercept missiles

after 20 hours of continuous use.

ii A misplaced decimal point in the calculation led to a flawed design of the first

submarine built under the Spain’s S-80 submarine program [98] in 2003. After

the submarine was designed, it was discovered that this submarine was about 70

tons heavier than expected. This mistake is expected to have incurred a total loss

of about e14 million.

iii The Ariane 5 rocket exploded 36 seconds after the lift-off on June 4, 1996 which

led to a loss of about $ 370 million to the European Space Agency. The problem

was in the Inertial Reference System, which produced an operation exception

trying to convert a 64-bit floating-point number to a 16-bit integer [15].

• Parliamentary election: The effect of rounding error was also felt in the Parlia-

mentary elections for the state of Schleswig– Holstein in Germany [74]. According to

the rules of the German election, no party with less than 5% of votes was allowed to

have a candidate seated in the parliament. There were two parties in close race – the

Green party and the Social Democrats (SPD) party. The Green party secured 4.97%

of votes, but program rounded it to 5%, which put the Green party to an advantage.

This rounding error was discovered later in the midnight, and after re-calculation, the

Green party failed to satisfy the 5% clause, and SPD party got a one seat majority in

the parliament.

• Embedded systems: The infamous “Y2K bug” or the Millenium bug affected many

devices containing computer chips, ranging from elevators to temperature-control sys-

tems in commercial buildings to medical equipment [42]. The problem was that up

until 1990s, many computer programs were designed to abbreviate four digits of year

into two digits to save memory space. For example, the year 1998 was saved as 98.

This issue first surfaced when the clock struck midnight on January 1, 2000. The year

2000 was now saved as 00, which could also represent the year 1900. This anomaly

created a lot of havoc, and as a result about $ 300 billion was spent on upgrading the

computer systems to fix this anomaly.

These are a few of the many practical examples that demonstrate how critical the issue

of floating-point error is. Therefore, it is of utmost importance that we study this error

rigorously, and formalize the conditions under which such critical errors could be caught

earlier in the design cycle.
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4.2.1 Theory of floating-points

We will be providing an overview of the IEEE-754 standard [75], which defines floating-

point formats, attributes and rounding, exceptional values, and exceptional handling. This

discussion is mostly adopted from the book on Computer Arithmetic and formal proofs [31].

4.2.1.1 Overview of floating point arithmetic

FP formats Let us consider an integer β called the radix. In the binary number system,

β = 2, while in the decimal system, β = 10. In a simplified model, an FP number is just

a real value mβe satisfying constraints on m and e. The integer m is called the significand,

and the integer e is called the exponent. The exponent e is bounded as: emin ≤ e ≤ emax.

The significand, m satisfies the bound |m| < βp, where p is called the precision. Hence, a

floating-point number is a real value representable in the considered floating-point format:

mβe; such that |m| < βp ∧ emin ≤ e ≤ emax

The standard floating-point formats described by the IEEE-754 standards [75] are illustrated

in the Table 4.1.

Single Single-extended Double Double-extended
p 24 ≥ 32 53 ≥ 64
emax +127 ≥ 1023 +1023 ≥ 16383
emin −126 ≤ −1022 −1022 ≤ −16382

Table 4.1: IEEE-754 Format Parameters [56]

The floating point finite numbers are divided into two classes:

• normal numbers: The normal numbers satisfy the following constraints on m and

e:

βp−1 ≤ |m| < βp ∧ emin ≤ e ≤ emax

Normal numbers are floating-point numbers greater than or equal to βp−1+emin .

• sub-normal numbers: The subnormal numbers are represented as mβemin with

|m| < βp−1. Equivalently, subnormal numbers are floating point numbers that are

smaller than βp−1+emin .

The numbers in an FP format form a discrete finite set that may be represented on the real

axis, as illustrated in the Figure 4.1.

78



Figure 4.1: Distribution of floating-point numbers over the real axis. Figure from [31]

The maximum representable floating-point number is therefore given by Fmax = (βp −
1)βemax . If the exponent of a floating point number is larger than emax, i.e. e > emax, we have

an overflow. When a floating-point number has a value smaller than the minimum normal

floating-point number, i.e., < βp−1+emin , we have an underflow, and may get a subnormal

number.

Unit in the last place: As illustrated in the Figure 4.1, when the exponent increases,

the distance between the floating-point numbers also increases. In fact, the distribution of

the floating-point numbers is logarithmic, i.e., denser closer to zero, and scarcer away from

zero. For a positive floating-point number x, ulp, or the “unit in the last place” is defined

as the δx such that there is no floating-point number between x and x+ δx. More precisely,

if x = mβe, then

ulp(x) = βe

Rounding: Most floating-point computations are not exact in general. When a result

of such FP computations are between two floating-point numbers, one of the bracketing

floating-point numbers must be returned instead. The choice of this floating-point number

depends on the rounding mode. The IEEE-754 standard recommends five rounding modes

for a floating-point number x:

• Rounding of x to +∞

• Rounding of x to −∞

• Rounding of x to 0

• Rounding to nearest, i.e., the result is expected to be the floating-point number nearest

to x. When the real to be rounded is exactly at the mid-point of two floating-point

numbers, tie-breaking is done using the following rules
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a Tie breaking to even: the chosen floating-point number is the one with even

significand

b Tie breaking away from zero: the chosen floating-point number is the one with

larger magnitude

For binary formats, the default tie-breaking rule, is rounding to nearest, tie breaking to even.

Floating-point operations: The IEEE-754 mandates correct rounding for basic oper-

ations: addition, subtraction, multiplication, division, and square root. Correct rounding

means that the operations are performed as if they are done over reals, and then rounded to

a floating-point number according to one of the rounding rules discussed earlier. For other

functions like exp, sin, and pow, IEEE-754 standard only recommends correct rounding, since

correct rounding is much harder for these functions due to the table maker’s dilemma [95],

which is the problem of unknown cost of rounding transcendental functions. In these cases,

one needs to be very accurate during intermediate computations to be able to decide which

FP number is the closest.

Error analysis: Although correct rounding is the best we might expect from a floating-

point computation, it is not exact, and the results of floating-point computations are often

truncated, depending on the precision. This introduces an error called the round-off error.

We might have to bound this round-off error to assess the quality of truncated result. There

are two ways of representing this error – absolute error, and relative error. For a real number

x and its approximation x̃, the absolute error is defined as |x̃ − x|, and the relative error

is defined as (|x̃ − x|)/x, provided x ̸= 0. In this chapter, we will be discussing only the

absolute error analysis for the Jacobi iteration.

4.2.1.2 Issues and anomalies with floating points

Floating-point computations are infamous for anomalies, some of which are enumerated

below:

• Floating-point numbers do not follow the rules of real arithmetic. For instance, the

addition is not associative, i.e, (x+ (y + z)) is different from (x+ y) + z.

x=0.1+(0.2+0.3);

y=(0.1+0.2)+0.3;

sprintf('%.17f',x)

% ans = '0.59999999999999998'
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sprintf('%.17f',y)

% ans = '0.60000000000000009'

The above MATLAB code illustrates that the floating-point addition is non-associative.

• Adding very big values to very small values results in inaccuracies. The small numbers

get lost. For example, for 32-bit floats, 262144.0 + 0.01 = 262144.0. This is because

there are no 32-bit floating-point numbers between 262144.0 and 262144.03125. So,

262144.0 + 0.01 is rounded to the nearest, 262144.0.

Similarly, subtracting two floating-point numbers of similar magnitude results in in-

accuracies. Such cancellations are called catastrophic cancellations [106], and have to

dealt with carefully. One way to deal with catastrophic cancellation is to re-arrange

terms, or do some re-writings, as in the tool Herbie [111].

Example illustrating catastrophic cancellation: Suppose that we are comput-

ing b2 − 4ac for b = 3.34, a = 1.22, and c = 2.28.

b2 = (3.34)2 = 11.1556 ≈ 1.12× 101

4ac = 4× 1.22× 2.28 = 4.88× 2.28 = 11.1264 ≈ 1.11× 101

b2 − 4ac ≈ 1.12× 101 − 1.11× 101 = 0.01× 101 = 1.00× 10−1

But the exact value is 0.0292 = 2.92× 10−2. This has a relative error of

|0.0292− 0.1|
0.0292

=
0.0708

0.0292
= 2.242 . . . > 240%

Thus, subtracting two floating-point numbers that are very close to each other leads

to loss of significant digits.

• There are two zeros +0 and −0, and they are not represented in the same way. There-

fore, when we multiply a finite floating-point number x with +0, we need to consider

that the result could be either +0 or −0, depending on the sign of x. In our proofs

for this project, we had to write lemmas that would consider the cases of +0 and −0

separately.

• NaN/infinity values can propagate and cause chaos. For instance, in floating-point it

is not the case that ∀y, 0 · y + s = s, when y is ∞ or NaN.
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Therefore, floating-point computations must be dealt with carefully, and the subtleties be

treated in a formal and rigorous way.

4.2.1.3 Floating points in Coq

The floating point formats and operations have been formalized in the Flocq [30] library in

Coq. This library follows an approach similar to the IEEE-754 standard [75] in providing

several levels of abstraction to characterize the various ways to represent and manipulate

floating-point numbers. Although, there is usually not a one-to-one correspondence between

the various ways to represent FP formats in Coq and the IEEE-754 standard. An example

of this difference is in the way Flocq treats infinity and the way IEEE-754 standard treats

infinity. The level 1 in the IEEE-754 standard includes infinities as possible values of floating-

point numbers, while Flocq supports only real numbers as an abstract representation of

floating-point numbers and treats infinities separately.

Discussion about generic floating-point format in Flocq: Formats are formalized in

Flocq as predicates over real numbers. They mostly deal with a subset of rational numbers

that can be represented as mβe, where β is a fixed radix and m and e are two integers

representing the significand and exponent, respectively.

A radix is defined in Flocq using a record data structure containing an integer radix val

and a proof that this integer is at least 2, so as to avoid the degenerate cases β = 0; β = 1.

Record radix := {
radix val : Z;

radix prop : Zle bool 2 radix val = true

}

The bpow function performs an exponentiation by a signed integer constant e, and returns a

real number, βe. In Flocq, this function is defined as

Definition bpow : radix → Z → R.

A float type is defined as a record type in Flocq, which contains two fields: an integer

significand and an exponent, and is parameterized by the radix of the format.

Record float (beta : radix) := Float {Fnum : Z; Fexp : Z }.

Flocq also defines an F2R function which converts an element of the float type to a real

number.

Definition F2R {beta : radix} (f : float beta) := Z2R (Fnum f) ∗ bpow beta (Fexp f).
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Mathematically, F2R function takes β, m, e and returns the real m · βe.

A generic format is then defined in Flocq as

Definition generic format (x:R) :=

x = F2R (Float beta (Ztrunc (scaled mantissa x)) (cexp x)).

Mathematically, this is equivalent to

∃m ∈ Z, x = m · βcexp(x).

The integer m is called the scaled mantissa of x. An important observation here is that the

scaled mantissa is a real number and not an integer in general. Thus Ztrunc (scaled mantissa x)

returns an integer by either invoking a ceiling function if x < 0 or a floor function if x ≥ 0.

cexp is called the canonical exponent of a real number, and returns an integer exponent e

such that the modulus of a real number x, |x| lies in the range [βe−1; βe).

Thus, x is said to be part of a format if it is equal to the floating-point number that

has a significand equal to the truncated scaled mantissa of x and an exponent equal to the

canonical exponent of x [31]. This is how the predicate generic format is defined in Flocq.

Thus, generic format gives an explicit representation of x as a number of type float beta. The

basic properties of this generic format can be referred to in the book [31]. There are two

main specializations of this generic format in floating-points that is worth discussing. The

Flocq library defines these specializations as the FLT format, which supports underflow,

and the FLX format, which does not support underflow. Both these formats do not support

overflow. Therefore, while in theory, an arbitrary large floating-point numbers fit in both the

formats, in practice, one need to prove the absence of overflow separately. Similarly, if one

uses the FLX format, one needs to prove the absence of underflow separately. These levels

of abstraction are defined such that it makes the proofs of error analysis less complicated

and eases the verification effort. Details on their formal definitions and properties can be

referred to in the book [31].

IEEE-754 binary formats: Our discussion so far has ignored exceptional values like

infinities and signed zeros, and defined a generic floating-point format. Flocq also provides

support for binary IEEE-754-compliant formats. Flocq defines an IEEE-754 binary format

as an inductive type binary float, and is implicitly parameterized by p and emax.

Inductive binary float :=

| B754 zero (s: bool)

| B754 infinity (s : bool)

| B754 nan (s: bool) (p1 : positive) : nan pl pl = true → binary float
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| B754 finite (s: bool) (m : positive) (e : Z),

bounded m e = true → binary float.

Thus the inductive type binary float has four cases: B754 zero corresponding to signed zero,

B754 infinity corresponding to signed infinities, B754 nan corresponding to signed NaN, and

B754 finite correspoding to a finite non-zero number. In all of these cases, the boolean value

s encodes the sign of the floating-point number, and is true when the number is negative.

The cases for NaNs and for finite numbers store proofs that their arguments are not out

of range. Flocq then uses the inductive definition binary float to define the three IEEE-754

binary formats binary32, binary64, and binary128 by instantiating the implicit parameters

p and emax with their corresponding precision and maximum exponent values characterized

by Table 4.1.

Discussion about floating-point operations Flocq defines basic arithmetic operations

like +, ÷, ×,
√
· on floats compliant with IEEE-754 specifications by accepting a binary float

number and a rounding mode, and returning a binary float number. These operators have to

be structured such that they handle exceptional inputs such as zeros, infinities, and NaNs

carefully. For instance, consider the following formalization of × operator in Flocq

Definition Bmult (mult nan: binary float → binary float → {nan | is nan nan = true})
(m: mode) (x y : binary float):=

match x, y with

| B754 nan, | , B754 nan ⇒ B754 nan

| B754 infinity sx, B754 infinity sy ⇒ B754 infinity (xorb sx sy)

| B754 infinity sx, B754 finite sy ⇒ B754 infinity (xorb sx sy)

| B754 finite sx , B754 infinity sy ⇒ B754 infinity (xorb sx sy)

| B754 infinity , B754 zero ⇒ B754 nan

| B754 zero , B754 infinity ⇒ B754 nan

| B754 finite sx , B754 zero sy ⇒ B754 zero (xorb sx sy)

| B754 zero sx, B754 finite sy ⇒ B754 zero (xorb sx sy)

| B754 zero sx, B754 zero sy ⇒ B754 zero (xorb sx sy)

| B754 finite sx mx ex Hx, B754 finite sy my ey Hy ⇒
SF2B (proj1 (Bmult correct aux m sx mx ex Hx sy my ey Hy))

end.

Since, the binary float format requires us to provide a payload for NaNs, Bmult function needs

to provide them, which is why Flocq parameterizes Bmult with mult nan. The Bmult operator

handles the exceptional values as follows:

The result of an infinity with sign sx and another infinity with sign sy is an infinity with
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sign that is xor of sx and sy. The product of infinity and a finite number is infinity with sign

computed as xor of each of their signs. Similary, the product of zero and a finite number is

zero. However, the product of zero and infinity is NaN.

The product two finite numbers is finite when no overflow occurs and the result depends

on the rounding mode. The rounding modes that we discussed earlier are formalized using

the inductive data-type in Flocq as

Inductive mode := mode NE | mode ZR | mode DN | mode UP | mode NA

Thus, we also need to pass the rounding mode m as a parameter to the Bmult function.

Other arithmetic operators are also defined similarly in Flocq. An important observation

to make in the case of finite inputs for these operators is the presence of the correctness spec-

ification in the definition of the operator itself. For instance, the Bmult correct aux predicate

in the Bmult definition specifies what the correct result of the product of two floating-point

finite numbers mean. This predicate is a conjunction of three clauses: (i) the result of Bmult

is a correctly rounded result, (ii) the result is finite, and (iii) the result respects the sign

convention of Bmult, assuming the result is not a NaN. All of these three clauses hold if the

product does not overflow. Flocq treats the case of overflow separately. Thus, for the finite

cases, proj1 (first clause of the conjunction) will return the correct result for an arithmetic

operation. Details about the implementation of other arithmetic operations in Flocq can be

referred to in the book [31].

4.2.2 Specialization to our problem

We have proved accuracy bounds for any floating-point precision. That is, our floating-point

functional models, and the proofs about them, are parameterized by a floating point type,

expressed in Coq as type:Type, with operations: [7]

fprec: type → Z (∗ number of mantissa bits ∗)

femax: type → Z (∗ maximum binary exponent ∗)

ftype: type → Type (∗ floating−point numbers ∗)

So for t:type, we have x:ftype(t) meaning that x is a floating-point number in format t. In

fact, ftype is defined in VCFloat [114] using the inductive definition binary float from Flocq as

Definition ftype (ty :type) := binary float (fprec ty) (femax ty).

We will write p for fprec(t) and emax for femax(t). The maximum representable finite value is

Fmax = 2emax(1− 2−p). If |r| ≤ Fmax then rounding r to the nearest float yields a number f

such that f = r(1 + δf ) + ϵf , where |δf | ≤ δ = 1
2
21−p and |ϵf | ≤ ϵ = 1

2
23−emax−p. We follow

the IEEE-754 binary format formalized in Flocq, and leverage the automation provided by
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semi-automated floating-point reasoning tools: VCFloat [114] and its recent improvement,

VCFloat2 [7].

4.3 Overview of the verification framework

The main objective of this work has been the development of a modular verification frame-

work for the Jacobi stationary iterative method. As discussed in § 3.2, for the Jacobi iterative
method, the easily invertible matrix M = D. Therefore, the unknown xk is obtained from

the iterative system 3.2 as

xk = D−1(b−Nxk−1) (4.1)

We typically start with xo = 0, and equation 4.1 iterates until xk satisfies ∥Axk − b∥2 < τ ,

or until the program detects failure: overflow in computing xk, or maximum number of

iterations exceeded. Throughout this chapter, we let ∥ · ∥ denote the infinity vector norm

and its induced matrix norm, and we let ∥ · ∥2 denote the ℓ2 norm on vectors.

This approach is modular in the sense that we separate the proof of correctness from the

proof of convergence and accuracy, as will be discussed in detail in Section 4.3.2. These

two layers of proof interact with each other via a functional model, which we will discuss in

Section 4.3.1. Furthermore, we formalize lemmas about norm-wise error bounds for matrix-

vector operations like addition, subtraction and multiplication, each of which compose well

together to provide a forward error-bound for the solution at each iteration of the Jacobi

iteration, as will be discussed in the Section 4.4. This forward error-bound is then used

in the proof of convergence to guarantee that the residual of Jacobi computation converges

within a user-specified tolerance within a finite number of iterations. In this way, each layer

interacts modularly with one another to achieve an end-to-end verification of the Jacobi

iteration algorithm. This modularity in the approach is illustrated in the Figure 4.2.

For our model problem, the steps for an end-to-end verification of the implementation of

the Jacobi iteration 4.1 are as follows.

1. Write a C program that implements 4.1 by Jacobi iterations (and also implements an

appropriate stopping condition).

2. Write a floating-point functional model in Coq (a recursive functional program that

operates on floating-point values) that models Jacobi iterations of the form 4.1. This

model must perform almost exactly the same floating-point operations as the C pro-

gram.

3. Prove that the program written in Step 1 implements the floating-point functional
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model of Step 2, using a program logic for C.

4. Prove a relation between xk (the k-th iteration of the floating point model) and the

real solution x of Ax− b: the Jacobi forward error bound. If one could run the Jacobi

method purely in the reals, this is obviously contractive: ∥xk+1 − x∥ < ρ∥xk − x∥,
where ρ < 1 is the spectral radius of D−1N . But in the floats, there is an extra term

caused by roundoff error.

5. Prove floating-point convergence: under certain conditions, this extra term does not

blow up, and within a specified k iterations the residual ∥Axk−b∥2 is less than tolerance

τ .

6. Compose these to prove the main theorem: the C program converges to an accurate

result.

Figure 4.2: Theorem dependency. Bottom row: models and definitions; middle row: theo-
rems relating models.

4.3.1 Discussion about functional models

A functional model describes how an algorithm functions. It is often chosen as a functional

program that implements an algorithm and rules out the intricate semantics of a program-

ming language. These models are amenable to verification. We will use a functional model for

the floating-point implementation of the Jacobi iteration algorithm, and another functional

model for the computation of real solution.

4.3.1.1 Floating-point functional model

Our floating-point functional model for the implementation of the Jacobi algorithm is para-

metric in terms of the floating point type t: type. This model takes as input the matrix A
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represented by the matrix type matrix t, the right hand side vector b which is repesented

by the vector type vector t, the vector from previous iteration x repesented by the vector

type vector t, and the number of iterations repesented by the variable n of type nat. The

resuling vector from this model is also a vector of type vector t.

Definition jacobi n {t: type} (A: matrix t) (b: vector t) (x: vector t) (n: nat) : vector t :=

let A1 := diag of matrix A in

let A2 := remove diag A in

Nat.iter n (jacobi iter A1 A2 b) x.

The model jacobi n implements the recurrence relation repesented mathematically as

xk = D̃−1 ⊗ (b⊖ (N ⊗ xk−1)). (4.2)

The operators ⊗,⊖ represent the floating-point matrix-vector multiplication, and the

floating-point vector subtraction, respectively. The diagonal matrix D is repesented in the

definition jacobi n by diag of matrix, which is defined in Coq as

Definition diag of matrix {t: type} (A: matrix t) : diagmatrix t :=

map (fun i ⇒ matrix index m i i) (seq 0 (matrix rows nat m)).

The diag matrix A maps a diagonal function (fun i => matrix index m i i) to a

sequence of row numbers in the matrix A and extracts the diagonal elements in each row,

and builds a vector of type diagmatrix t, which is essentially a wrapper around the vector

type vector t. The matrix N in the relation 4.2 is repesented in Coq by remove diag A,

which is defined in Coq as

Definition remove diag {t} (A: matrix t) : matrix t :=

matrix by index (matrix rows nat m) (matrix rows nat m)

(fun i j ⇒ if Nat.eq dec i j then Zconst t 0 else matrix index m i j).

The remove diag maps a non-diagonal function (fun i j => if Nat.eq dec i j then

Zconst t 0 else matrix index m i j) to the matrixA, and builds a matrix by extracting

the non-diagonal elements in A. The jacobi iter function builds the recurrence relation

in 4.2 and is defined in Coq as

Definition jacobi iter {t: type} (A1: diagmatrix t) (A2: matrix t)

(b: vector t) (x: vector t) : vector t :=

diagmatrix vector mult (invert diagmatrix A1) (vector sub b (matrix vector mult A2 x)).

The jacobi iter function takes the diagonal matrix D, and inverts it using the

invert diagmatrix function, which is defined in Coq as
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Definition invert diagmatrix {t} (v: diagmatrix t) : diagmatrix t :=

map (BDIV (Zconst t 1)) v.

The invert digmatrix extracts an element from the vector diagmatrix t, and inverts it

using the division operation defined in Flocq library of Coq as BDIV. BDIV function performs

a floating point division and therefore adds a source of the division error. This builds

the inverse matrix D̃−1. The jacobi iter function then multiplies D̃−1 with the vector

(b⊖ (N ⊗ xk−1)). The vector (b⊖ (N ⊗ xk−1)) is built by subtracting the vector b with the

vector N ⊗ xk−1. This vector subtraction function is defined in Coq by vector sub as

Definition vector sub {NAN: Nans}{t:type} (v1 v2 : vector t) :=

map2 (@BMINUS t) v1 v2.

The vector sub function maps the function (@BMINUS t) with the vectors v1 and v2 to

performs a floating point subtraction using BMINUS. The operation BMINUS adds another

source of floating point error. The function matrix vector mult perform a matrix-vector

multiplication in floating point by performing a dot-product between a row of the matrix

and the vector. Therefore, this matrix-vector multiplication inherits the floating-point error

coming from such dot-product operations.

Definition matrix vector mult {NAN: Nans}{t: type} (m: matrix t) (v: vector t) : vector t :=

map (fun row ⇒ dotprod row v) m.

The jacobi iter is now the vector xk, which is further fed into the recurrence relation

defined by Coq’s iter function as

Nat.iter n (jacobi iter A1 A2 b) x

to build the next vector xk by instantiating x with xk−1.

4.3.1.2 Real functional model

The functional model for a real solution x of the matrix system Ax = b is defined as

Definition x fix {n:nat} x b (A: 'M[R] n.+1) : 'cV[R] n.+1 :=

let r := b − ((A2 J real A) ∗m x) in

diag matrix vec mult R (A1 diag A) r.

and implements the following mathematical model

x = D−1(b−Nx) (4.3)

Thus, x is the fixed point solution of the Jacobi iteration method, and can be obtained by

re-arranging the original system Ax = b by splitting the matrix A = D + N . Here, a fixed
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point solution refers to the solution from a fixed-point iteration, i.e. f(xfix) = xfix. The

Coq definition x fix takes the fixed point vector x, the right hand side vector b, and the

A matrix and returns the fixed point vector x, whose type is ’cV[R] n.+1. ’cV[R] n.+1

is a mathcomp notation for a column vector of size n + 1, whose elements are of real type,

denoted in Coq as a set R. x fix builds a vector of dimension n + 1 instead of n, because

natural numbers in Coq are defined using the Peano arithmetic, i.e., by successively building

natural numbers from 0. Therefore, the natural 1 will be built in Coq as S 0, i.e., successor

of 0. Similarly 2 will be built as S (S 0). Therefore, there is a possibility of getting a vector

of dimension 0, operations on which are unsound and do not type check in Coq. To type-

check the vector operations, we need to either introduce an additional constraint 0 < n in

the definition x fix, or add that constraint instrinsically into the type of matrix and vector

by replacing n by n+ 1. Now, we are able to define operations on a matrix A and a vector

b, which will be accepted by the type system in Coq, since the minimum dimension of the

matrix A will be 1× 1, and that of the vector will be 1. Therefore, in this case, the matrix

A will be a scalar, and the vector b will be a scalar, and operations on them will be sound.

The function x fix then first builds a diagonal matrix D defined out of A using the

definition A1 diag A. It then builds another vector r by subtracting the vector b with Nx,

which is defined by the mathcomp matrix vector multiplication denoted by the operator *m,

as ((A2 J real A) *m x). x fix then performs a diagonal matrix D multiplication with

r, and returns the fix-point vector x in 4.3.

4.3.1.3 Defining forward error using the functional models

Once we have a functional model for the iterative solution xk, and the fixed-point solution

x, we can then define the forward error for the Jacobi iteration as

Definition f error {ty} {n:nat} m b x0 x (A: 'M[ftype ty] n.+1):=

let x k := X m jacobi m x0 b A in

let A real := FT2R mat A in

let b real := FT2R mat b in

let x := x fix x b real A real in

vec inf norm (FT2R mat x k − x).

The function f error builds the forward error ||xk − x||∞ by taking the inputs: m for

the iteration count, b; the right hand vector of floats b ∈ F(n+1)×1; initial guess vector

xo ∈ F(n+1)×1; the fixed-point real vector x ∈ R(n+1)×1; and the matrix A ∈ F(n+1)×(n+1)

of floats ’M[type t] n.+1. The function f error first builds the ierative solution xk using

another floating point functional model X m jacobi, which is defined in Coq as
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Definition X m jacobi {ty} {n:nat} m x0 b (A: 'M[ftype ty] n.+1) : 'cV[ftype ty] n.+1 :=

Nat.iter m (fun x0 ⇒ jacobi iter x0 b A) x0.

where jacobi iter is a mathcomp style implementation of 4.2. We need two different float-

ing point models X m jacobi, which is implemented in the mathcomp style, and jacobi n,

which is implemented in the standard Coq lists of lists definition, because the mathcomp

style is easier to perform mathematical analysis upon, while the lists of lists definition is

more amenable to reason about the matrix and vectors data structures in the C program

itself. We then prove an equivalence between these two styles of defining the functional

model using the lemma

Lemma func model equiv {ty} (A: matrix ty) (b: vector ty) (x: vector ty) (n: nat) :

let size := (length A).−1 in

let x v := vector inj x size.+1 in

let b v := vector inj b size.+1 in

let A v := matrix inj A size.+1 size.+1 in

(0 < length A)%nat →
length b = length A →
length x = length A →
vector inj (jacobi n A b x n) size.+1 = @X m jacobi ty size n x v b v A v.

where vector inj is an injection of a vector defined using the lists definition to the mathcomp

vector, and matrix inj is an injection of a matrix defined using the lists of lists definition to

the mathcomp matrix. Using the lemma func model equiv we bridge the gap between the

world of numerical analysis and the world of program verification. A real, and b real are

real-projections of the floating point matrix A and the floating point vector b, respectively,

using our Coq definition

Definition FT2R mat {m n: nat} {ty} (A : 'M[ftype ty] (m.+1, n.+1)) :

'M[R] (m.+1, n.+1):= \matrix (i, j) FT2R (A i j).

FT2R is a real projection of the floating point number Aij. The function f error then takes

an infinity norm of the difference between xk and x. We defined the infinity norm of a vector

in Coq as

Definition vec inf norm {n:nat} (v : 'cV[R] n) :=

bigmaxr 0%Re [seq (Rabs (v i 0)) | i <− enum 'I n].

The mathcomp definition bigmaxr takes a maximum of the sequence {|vo|, |v1|, . . . , |vn−1|}.
Now that we have defined the forward error f error for the Jacobi iteration, we would

like to get a bound on this error, which we discuss in the Section 4.4.
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4.3.2 Discussion about the end-to-end verification framework

We follow the modular approach for an end-to-end verification of programs, first discussed

by [6], and is illustrated in Figure 4.3

Figure 4.3: Illustration of the end-to-end framework

We write a high level property specification using higher order logic in the Coq proof

assistant. This high level property specification will be a statement on iterative convergence

in the presence of floating point errors. The actual implementation of the algorithm –

Jacobi iteration algorithm in our case, is done in the C programming language. We cannot

directly prove that this C program respects the high level property specification, since the

standard Coq library does not contain theory for reasoning about programs. Reasoning

about C programs is handled by the Verifiable Software Toolchain (VST) [33]. VST provides

a foundational framework for reasoning about C programs in the Coq theorem prover. We

write an intermediate representation of an algorithm we want to verify, which is called the

functional model. This functional model is a functional program implementing the algorithm

and is easy to verify. The proof is then divided into two layers:

• Property proof: In this layer, we prove that the functional model respects the

high level property specification. For the Jacobi algorithm, this layer would con-

stitute proving that the functional model jacobi n satisfies the high level theorem
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jacobi iteration bound lowlevel, stated formally in Section 4.5.

• Refinement proof: In this layer, we prove that the C program is a refinement of the

functional model jacobi n, i.e., the C program faithfully implements jacobi n. This layer

requires us to deal with the intricate semantics of C programming language, and data

structures in C. Proofs in this layer show the absence any programming errors.

Due to the modularity of this approach, the property proof layer can be handled separately

by numerical analysts, while the refinement proof layer can be handled separately by experts

in programming languages. These two communities interact at the functional model layer.

By composing these two layers, we get an end-to-end proof of the program with respect to

a high level specification.

In this work, the property proof layer was handled by me, while the refinement proof layer

was handled by Prof. Andrew Appel.

4.4 Error analysis for Jacobi iteration method

In this section, we discuss the building blocks of the first layer of our framework, property

proof. These building blocks include a formal dot-product analysis, its adaptation to norm-

wise error bounds for common matrix-vector operations, and finally a forward error analysis

for the Jacobi iteration method.

4.4.1 Dot-product forward error analysis

A dot-product ⟨u, v⟩ between two real vectors u and v is defined as
∑

0≤i<n uivi. A matrix-

vector multiplication Av can be seen as the dot-product of each row of A with vector v.

Forward error bounds for a matrix-vector multiplication are therefore based on forward

error bounds for dot-product.

Our implementation and functional model of the dot-product use fused multiply-add

(FMA), which computes a floating-point multiplication and addition (i.e., a⊗ b⊕ c) with a

single rounding error rather than two.

Definition dotprod {t: type} (u v: list (ftype t)) : ftype t :=

fold left (fun z a ⇒ FMA (fst a) (snd a) z) (List.combine u v) (Zconst t 0).

The parameters to the dotprod functional model are the floating-point format t and two

lists of floating point numbers. The algorithm zips the two lists into a list of pairs (using

List.combine) and then adds them from left to right, starting with a floating-point 0 in format

t.
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We denote floating-point summation by
⊕

, so the floating-point dot product is⊕
0≤i<n uivi; real-valued summation is denoted as

∑
0≤i<n uivi. The notation finite(z) signi-

fies that the floating-point number z is within the range of the floating-point format (not an

infinity or NaN).

Theorem 21 (forward error + no overflow). Let u, v be lists of length n of floats in format

t = (p, emax), in which every element is ≤ vmax, and no more than s elements of u are

nonzero. The absolute forward error of the resulting dot product is∣∣∣∣∣ ⊕
0≤i<n

uivi −
∑

0≤i<n

uivi

∣∣∣∣∣ ≤ gδ(s)
∑

0≤i<n

|uivi| + gϵ(s). (4.4)

gδ(s) = (1 + δ)s − 1; gϵ(s) = sϵ(1 + gδ(s− 1))

Proof. See Kellison et al. [89].

[89] prove (in Coq) the correctness and accuracy of floating-point dot-product and sparse

matrix-vector multiply, as Coq functional models and as C programs.

Subnormal numbers. When some of the vector elements are order-of-magnitude 1, the

term gϵ(s) is negligible. But if the u and v vectors are composed of subnormal numbers,

then neglecting the underflow-error term would be unsound. Most previous proofs about

dot-product error (and about Jacobi iteration), and all previous machine-checked proofs to

our knowledge, omit reasoning about underflow.

4.4.2 Discussion about the norm-wise error bounds

The norm-wise forward error analysis for the Jacobi algorithm is based on the following

auxiliary error bounds on matrix-vector operations.

• Matrix-vector multiplication:

∥N ⊗ x−Nx∥ ≤ ∥N∥∥x∥gδ(n) + gϵ(n). (4.5)

This bound is derived from the dot product error bound that we stated in Section 4.4.1,.

In the ∥·∥ norm, the dot product errors directly give the error bound for matrix-vector

multiplication. In Coq, we state this error relation as the following lemma statement

Lemma matrix vec mult bound corollary {n:nat} {ty}:
∀ (A: 'M[ftype ty] n.+1) (v : 'cV[ftype ty] n.+1),

let l1 := vec to list float n.+1 (\row j A i j)ˆT in
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let l2 := vec to list float n.+1 v in

(∀ (xy : ftype ty ∗ ftype ty) (i : 'I n.+1),

In xy (combine l1 l2) → finite xy.1 ∧ finite xy.2) →
(∀ (i : 'I n.+1), finite (dotprod r l1 l2) ) →
vec inf norm (FT2R mat (A ∗f v) − (FT2R mat A) ∗m (FT2R mat v)) <=

(matrix inf norm (FT2R mat A) ∗ vec inf norm (FT2R mat v)) ∗ g ty n.+1 +

g1 ty n.+1 (n.+1 − 1).

The lemma matrix vec mult bound corollary states that for a given floating-point

matrix A, and vector v, the error relation 4.5 holds if each element in the row vector

constructed from A - (row j A i j), and the vector v is finite, and the dot-product

of the row vector and v is also finite.

The vec to list float is an injection from a mathcomp vector to a list of floats.

We need this injection, since we use the membership reasoning for lists, and our dot-

product functional model is defined over a list of pairs. xy.1 is the first projection of

a pair xy, and xy.2 is the second projection of a pair xy, i.e. xy = (xy.1, xy.2).

• Vector subtraction:

||(b⊖ (N ⊗ xk)− b(N ⊗ xk)|| ≤ (||b||+ ||N ⊗ xk||)δ. (4.6)

Here, we use the fact that |x ⊖ y − (x − y)| ≤ (|x| + |y|)δ. Since we are considering

infinity vector norm, the above element wise error bound composes well to provide the

resulting norm-wise error bound for vector subtraction. We state the error relation 4.6

in Coq as the following lemma statement

Lemma vec float sub {ty} {n:nat} (v1 v2 : 'cV[ftype ty] n.+1):

(∀ (xy : ftype ty ∗ ftype ty),

In xy (combine (vec to list float n.+1 v1) (vec to list float n.+1 v2)) →
finite xy.1 ∧ finite xy.2 ∧ finite (BPLUS xy.1 (BOPP xy.2))) →

vec inf norm (FT2R mat (v1 −f v2) − (FT2R mat v1 − FT2R mat v2)) <=

(vec inf norm (FT2R mat v1) + vec inf norm (FT2R mat v2)) ∗ (default rel ty) .

The lemma vec float sub states that for a given vectors v1 and v2, the error rela-

tion 4.6 holds if each element of the vectors v1 and v2 is finite, and the floating point

subtraction between each element of v1 and v2 is also finite.

• Vector inverse:

||D̃−1 −D−1|| ≤ ||D−1||δ + ϵ (4.7)
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Here, we make use of the fact that inverting each element of the vector D satisfies,

|(1⊘Di)− (1/Di)| ≤ |(1/Di)| δ + ϵ. We state the error relation 4.7 in Coq as the

following lemma statement

Lemma inverse mat norm bound {ty} {n:nat} (A: 'M[ftype ty] n.+1):

(∀ i, finite (BDIV (Zconst ty 1) (A i i ))) →
(∀ i, finite (A i i)) →
let A real := FT2R mat A in

(vec inf norm (FT2R mat (A1 inv J A) − A1 diag A real) <=

vec inf norm (A1 diag A real) ∗ (default rel ty) + (default abs ty))%Re.

The lemma inverse mat norm bound states that for a given matrix A, the error rela-

tion 4.7 holds if each element of A, and its inverse is finite.

An important observation to make in the Coq statements of each of these error relations is

that, the error relations 4.5, 4.6, and 4.7 hold if each element in the matrix and the vector

is finite, and the corresponding operations do not result in an overflow. This is important

because we will compose these atomic error relations to derive a forward error bound for

the Jacobi iteration in Section 4.4.3. It will then become important that we choose bounds

on the inputs, defined in jacobi preconditions 24 such that each of these atomic error

operations do not overflow, and the resulting composition do not overflow as well.

4.4.3 Jacobi-error-bound

We prove an explicit bound on the distance between the approximate solution xk at step k

and the exact solution x of the problem. Such bounds are commonly studied in computa-

tional science, but rarely take into account the details of floating-point arithmetic (including

underflow and overflow). They also usually have paper proofs while we provide a machine-

checked proof.

Theorem 22 (jacobi forward error bound). After k Jacobi iterations, if no iteration resulted

in an overflow, then the distance between the approximate (floating-point) solution xk and

the exact (real) solution x is bounded:

∥x− xk∥ ≤ ρk∥x− x0∥+
1− ρk

1− ρ
dmag (4.8)

where ρ is a bound on the spectral radius (largest eigenvalue) of D−1N , adjusted for floating-

point roundoff errors that arise in one iteration of the Jacobi method. The (small) value

dmag is the floating-point roundoff error in computing the residual ∥Axk − b∥. In Coq,
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Theorem jacobi forward error bound {ty} {n:nat}
(A: 'M[ftype ty] n.+1) (b: 'cV[ftype ty] n.+1): ∀ x0: 'cV[ftype ty] n.+1,

forward error cond A x0 b →
(∀ k i, finite (x {k, i})) ∧
(f error k ≤ rhoˆk ∗ (f error 0) + ((1 − rhoˆk) / (1−rho))∗ d mag.

where f error(k) is ∥x−xk∥, and the conditions on A ∈ F(n+1)×(n+1), x0 ∈ F(n+1)×1, b ∈ F(n+1)×1

for n ≥ 0, are characterized as follows:

Definition forward error cond {ty} {n:nat}
(A: 'M[ftype ty] n.+1) (x0 b: 'cV[ftype ty] n.+1) :=

(∀ i, finite (A {i,i} ) ∧ (rho < 1) ∧ invertible A ∧ (∀ i, finite (1 / A {i,i} )) ∧
(∀ i, finite (x {o,i} ) ∧ (∀ i j, finite(N {i,j} )) ∧ (∀ i, finite (b i) ∧
size constraint n ∧ input bound A x0 b.

size constraint n is a constraint on the dimension n of the matrix A (in double-precision,

about 6 · 109). The predicate input bound provides conditions on the bounds for the inputs

A, b, x0; it is implied by the Jacobi preconditions (Theorem 24) defined in the next section.

Proof. Assuming no overflow, the floating point iteration satisfies

xk+1 = D̃−1 ⊗ (b⊖ (N ⊗ xk))

where the operators ⊗, ⊖ represent the floating point multiplication and subtraction oper-

ations respectively. D̃−1 is the floating-point (not exact) inverse of the diagonal elements.

The forward error at step k + 1 is defined as

fk+1 = ∥xk+1 − x∥ = ∥(D̃−1 ⊗ (b⊖ (N ⊗ xk)))− (D−1(b−Nx))∥

Here, we write the true solution as x = D−1(b−Nx) which can be derived from Ax = b. We

use these norm-wise errors defined in Section 4.4.2 to expand the error definition fk+1:

fk+1 ≤
((

||D̃−1|| ( ||b||+ ||N || ||xk|| (1 + gδ) + gϵ )
)
(1 + δ)gδ + gϵ

)
+

||D̃−1|| ( ||b||+ ||N || ||xk||(1 + gδ) + gϵ ) δ+

||D̃−1|| ( ||N || ||xk||gδ + gϵ )+

( ||D−1||δ + ϵ ) ( ||b||+ ||N || ||xk|| ) + ||D−1|| ||N ||fk

Details of the derivation is presented in Appendix A. We then collect the coefficients of ||xk||
and expand using the error relation for fk as ||xk|| ≤ fk + ||x|| to get the error recurrence
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relation:

fk+1 ≤ ρfk + dmag

where dmag is a constant independent of k depending only on ||x||, δ, ϵ, gδ, gϵ. We can then

expand the above error recurrence relation to get

fk+1 ≤ ρk+1fo + (1 + ρ+ ρ2 + . . .+ ρk)dmag

This geometric series converges if ρ < 1 with closed form

fk+1 ≤ ρk+1fo +
1− ρk+1

1− ρ
dmag

Note that if the above iterative process were done in reals, then we would only require

ρr := ||D−1N || to be less than 1. Thus, the presence of rounding errors forces us to choose

a more conservative convergence radius ρ.

4.5 Proof of convergence

In this section, we discuss the high level theorem, which constitutes the property proof. We

use the building blocks from Section 4.4 to prove the high level convergence theorem.

4.5.1 Theorem statement

Theorem 22 had the premise, “if no iteration resulted in an overflow.” Most previous conver-

gence theorems for Jacobi iteration [121] have been in the real numbers, where overflow is not

an issue: multiplying two finite numbers cannot “overflow.” Higham and Knight [69] proved

convergence (but not absence of overflow), on paper, in a simplified model of floating-point

(without underflows). Let us now state a theorem, for an accurate model of floating point,

which accounts for the exceptional floating-point behaviors like overflow and underflow.

Theorem 23. If the inputs A, b, desired tolerance τ , and projected number of iterations

k satisfy the (efficiently testable) Jacobi preconditions, then the floating-point functional

model of Jacobi iteration converges, within j ≤ k iterations, to a solution xj such that

∥Axj − b∥2 < τ , without overflowing.

Proof. The proof for this theorem follows by the following cases:

i If A is diagonal then N is a zero matrix. Therefore, the solution vector at each iteration

is given by the constant vector xk = D̃−1 ⊗ b. Hence, the solution of Jacobi iteration
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has already converged after the first step, assuming certain bounds on b and A implied

by Jacobi preconditions.

ii If A is not diagonal but the vector b is small enough, Jacobi iteration has already

converged, without even running the iteration.

iii Suppose A is not diagonal and the vector b is not too small. Then

(a) The residual does not overflow for every iteration ≤ j. This follows from the

Jacobi preconditions and Theorem 22.

(b) We can calculate kmin such that the residual < τ within kmin iterations.

We formalized the Theorem 23 in Coq as

Lemma jacobi iteration bound lowlevel {t: type} :

∀ (A: matrix t) (b: vector t) (acc: ftype t) (k: nat),

jacobi preconditions A b acc k →
let acc2 := BMULT acc acc in

let x0 := (repeat (Zconst t 0) (length b)) in

let resid := jacobi residual (diag of matrix A) (remove diag A) b in

finite acc2 ∧
∃ j, Nat.le j k ∧
let y := jacobi n A b x0 j in

let r2 := norm2 (resid y) in

(∀ i, Nat.le i j → finite (norm2 (resid (jacobi n A b x0 i)))) ∧
BCMP Lt false (norm2 (resid (jacobi n A b x0 j))) acc2 = false.

The lemmas jacobi iteration bound lowlevel takes as input the matrix A, the right hand side

vector b, the user-specified tolerance acc (τ), and the maximum iteration count k, and proves

that there exists some iteration count j ≤ k, such that the residual, resid is finite for all

iteration iterations i through j, and the l2 norm of the residual is less than than acc (τ). BCMP

is the floating point comparison defined in the Flocq library of Coq. BCMP Lt false x y = false

means that the float x is less than y in floating points, and if x and y are finite, then x < y

in reals. We instantiate j with 1 in Case (i), j with 0 in Case (ii), and j with kmin in Case

(iii), in the proof of Theorem 23.
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4.5.2 Discussion about the jacobi preconditions

The efficiently computable (a straightforward arithmetic computation with computational

complexity linear in the number of nonzero matrix elements) Jacobi preconditions are defined

as follows

Definition 24 (jacobi preconditions Rcompute). A, b, τ, k satisfy the Jacobi preconditions

when:

• All elements of A, b, and D̃−1 are finite (representable in floating point);

• A is strictly diagonally row-dominant, that is, ∀i. Dii >
∑

j |Nij|;

• τ̃ 2 is finite;

• τ̃ 2 > gϵ + n(1 + gδ)(gϵ) + 2(1 + gδ)(1 + δ)∥D∥(d̂mag/(1− ρ̂))2;

τ̃ 2 > n(1 + gδ)(∥D∥(∥D̃−1∥(∥A∥d̂mag/(1− ρ̂) + gϵ)(1 + δ)(1 + gδ) + gϵ)(1 + δ)(1 + gδ) +

gϵ)
2 + gϵ;

• kmin ≤ k;

• n < ((Fmax − ϵ)/(1 + δ)− gϵ − 1)/(g(n− 1) + 1); n < Fmax/((1 + g(n+ 1))δ)− 1

• ∀i. |Aii|(1 + ρ̂)xbound + 2d̂mag/(1− ρ̂) + 2xbound < vmax − ϵ)/(1 + δ)2;

• ∀i, j. |Nij| < vmax;

• ∀i. |bi|+ (1 + gδ)((2xbound + d̂mag/(1− ρ̂))
∑

j |Nij|) + gϵ < Fmax/(1 + δ);

• ∀i. |D̃−1
ii |(|bi|+ (1 + gδ)(2xbound + d̂mag/(1− ρ̂))

∑
j |Nij|) + gϵ < Fmax/(1 + δ);

• (1 + ρ̂)xbound + 2d̂mag/(1− ρ̂) + 2xbound < Fmax/(1 + δ);

• ∀i. |bi| < (Fmax − ϵ)/(1 + δ);

• ∀i. |D̃−1
ii ||bi| < (Fmax − ϵ)/(1 + δ);

• ∀i. |D̃−1
ii ||bi|(1 + δ) + ϵ < (Fmax − ϵ)/(1 + δ);

• ∀i. |Aii|(|D̃−1
ii ||bi|(1 + δ) + ϵ) < (vmax − ϵ)/(1 + δ).

where d̂ = (∥D̃−1∥ + ϵ)/(1 − δ) is a bound on ∥D−1∥. Defining R = d̂ ∥N∥, we define an

upper bound on the norm of the solution x to Ax = b as xbound = d̂∥b∥/(1 − R). ρ̂ is the

adjusted spectral radius (ρr = ∥D−1N∥) of the iteration matrix, obtained by accounting

for the floating point errors in its computation. For the iteration process to converge in
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presence of rounding, we want ρ̂ < 1. d̂mag is a bound on the additive error in computing

the residual ∥Axk − b∥, the difference between computing the residual in the reals versus in

floating point. τ̃ 2 = τ ⊗ τ is the floating-point square of τ . The minimum k for which we

guarantee convergence is calculated as

kmin = 1 +


ln

(
xbound(1+δ)

((
√

(τ̃2−gϵ)/(n(1+gδ))−gϵ)/((1+gδ)+∥D∥(1+δ)))−2d̂mag/(1−ρ̂)

)
ln(1/ρ̂)

 (4.9)

Indeed these conditions are quite tedious – one might have difficulty trusting them without

a machine-checked proof. But they are all easy to compute in linear time. And, although we

state them here (mostly) in terms of operations on the reals, they are all straightforwardly

boundable by floating-point operations.

Remark 25 (not proved in Coq). The Jacobi preconditions can be computed in time linear

in the number of nonzero entries of A.

Proof. Let S be the number of nonzeros. Then n < S since the diagonal elements are nonzero.

The inverse diagonal D̃−1 is computed in linear time. The infinity norm (∥N∥, ∥D∥, d̂, ∥b∥) is
simply the largest absolute value of any row-sum (for matrix) or element (for vector), which

can be found in O(S) time. Then the values xbound, ρ̂, d̂mag, vmax, kmin can all be computed

in constant time. Then each of the tests in Definition 24 can be done in O(S) time.

The proof for Theorem 23 relies on a couple of intermediate, but important results.

4.5.2.1 Proof that strict diagonal row dominance implies inveribility

The Theorem jacobi forward error bound, which is used the proof of Theorem 23 re-

quires that the matrix A is invertible. This clause is defined as a conjuction in the

forward error cond. But computing an inverse of A, and checking for invertibility, is com-

putationally expensive. Therefore, we need a more efficient and direct approach to check for

invertibility of A, without actually computing A−1. A sufficient condition to guarantee that

A is invertible is the diagonal row dominance of A. Mathematically, a matrix A is said to

be strictly diagonally row dominant if

∀ i ∈ N, |Aii| >
∑
j ̸=i

|Aij| (4.10)

In Coq, we define the strict diagonal row dominance as
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Definition strict diagonal dominance {t} {n:nat} (A: 'M[ftype t] n.+1):=

∀ i, Rabs (FT2R mat A i i ) > \sum (j < n.+1 | j != i) Rabs (FT2R mat A i j).

We then formally prove that strict diagonal row dominance implies that A is invertible.

Lemma 26. If A is strictly row diagonally dominant, then A is inverible.

Proof. The matrix A is invertible if and only if its rows are linearly independent. By defini-

tion of linear row independence, forall column vectors v, if Av = 0, then v = 0. Therefore, to

prove that A is invertible, we need to prove that v = 0, under the assumption that Av = 0,

∀ v. We will prove this by introducing an axiom on the decidability of reals for the norm of

vector v, i.e., ||v||∞ = 0 ∨ ||v||∞ ̸= 0, and then reason by the following cases:

• Case 1: ||v||∞ = 0. This trivially implies that v = 0.

• Case 2: ||v||∞ ̸= 0. We will prove v = 0 by contradiction.

Since ||v||∞ ̸= 0, v ̸= 0. We will then show that Av ̸= 0.

Av ̸= 0 =⇒ ∃ j, (Av)j ̸= 0 (4.11)

Since ||v||∞ ̸= 0, there exists a k such that |vk| = ||v||∞ ∧ vk ̸= 0. We then instantiate

j in 4.11 with k to get (Av)k ̸= 0. Therefore,∑
i

Akivi ̸= 0

⇐ |Akkvk +
∑
i ̸=k

Akivi| ≠ 0

⇐ 0 < |Akkvk +
∑
i ̸=k

Akivi|

⇐ 0 < |Akkvk| − |
∑
i ̸=k

Akivi|

⇐ 0 < |Akk| |vk| −
∑
i ̸=k

|Aki| |vi|

⇐ |Akk| ||v||∞ −

(∑
i ̸=k

|Aki|

)
||v||∞

Since, |vk| = ||v||∞ ∧ ∀ i, |vi| ≤ ||v||∞

⇐ 0 < ||v||∞

(
|Akk| −

∑
i ̸=k

|Aki|

)

⇐ 0 < ||v||∞ ∧ 0 <

(
|Akk| −

∑
i ̸=k

|Aki|

)
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Since ||v||∞ ̸= 0, 0 < ||v||∞ holds. 0 <
(
|Akk| −

∑
i ̸=k |Aki|

)
holds by definition of

strict row diagonal dominance of the matrix A. This proves that Av ̸= 0. But, we

started with Av = 0. Hence, by contradiction v = 0.

We state the Lemma 26 in Coq as

Lemma diagonal dominance implies invertibility {t} {n:nat} (A: 'M[ftype t] n.+1):

strict diagonal dominance A → (FT2R mat A) \in unitmx.

where (FT2R mat A) in unitmx is MathComp’s style of stating that (FT2R mat A) is in-

vertible.

4.5.2.2 Proof for bound on ||x||∞

The residual rk is defined in the C implementation of the Jacobi iteration as ||D̃−1 ⊗ (xk ⊖
xk−1)||2,f . || · ||2,f denotes l2 norm of a vector in floating points. The square of the residual

rk is related to the foward error f error as

rk ⊗ rk ≤ n||D̃−1 ⊗ (xk ⊖ xk−1)||2∞ (1 + gδ) + gϵ

≤ n
(
||D̃−1||∞ ||xk ⊖ xk−1||∞ (1 + gδ) + gϵ

)2
(1 + gδ) + gϵ

≤ n
(
||D̃−1||∞ ||xk − xk−1||∞ (1 + δ) (1 + gδ) + gϵ

)2
(1 + gδ) + gϵ

≤ n
(
||D̃−1||∞ (||xk − x||∞ + ||xk−1 − x||∞) (1 + δ) (1 + gδ) + gϵ)

)2
(1 + gδ) + gϵ

≤
(
||D̃−1||∞

(
ρk fo +

1− ρk

1− ρ
dmag + ρk−1fo +

1− ρk−1

1− ρ
dmag

)
(1 + δ) (1 + gδ) + gϵ

)2

n(1 + gδ) + gϵ (4.12)

Here, we first use the fact that ||.||2,f ≤ ||.||2(1 + gδ) + gϵ, and then use the compatibility

relation between ||.||2 and ||.||∞, i.e., ||.||2 ≤
√
n ||.||∞.

Since xo = 0, fo = ||xo − x||∞ = ||x||∞. Therefore, a bound on rk ⊗ rk depends on the

||x||∞. But, we do not know ||x||∞ a priori, since the entire purpose of Jacobi iteration

algorithm is to compute x approximately. Fortunately, we can derive a bound on ||x||∞, and

obtain a bound on the computation of residual rk. The following lemma shows that there

exists a bound on ||x||∞.

Lemma 27. Let A be a n× n square matrix of floats in format t = (p, emax), and b be an

n-dimensional column vector of floats in format t = (p, emax). Let Areal be the real projection
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of A, and breal be the real projection of b. Suppose each element of the matrix A and its

inverse is finite, and Areal is invertible. Let d̂ = (||D̃−1||∞ + ϵ)/(1 − δ), R̃ = d̂||N ||∞, and

xbound = (d̂||breal||∞/(1− R̃). Assuming that we start with xo = 0, the infinity norm of real

solution x
∆
= A−1

real breal is bounded by xbound if R̃ < 1.

Proof. The real-iterative solution vector at kth iteration step for a Jacobi iteration is given

by

xk = D−1(breal −Nxk−1) = −D−1Nxk−1 +D−1breal (4.13)

Taking the norm on both sides,

||xk||∞ = || −D−1Nxk−1 +D−1breal||∞
≤ || −D−1N ||∞ ||xk−1||∞ + ||D−1breal||∞
≤ R ||xk−1||∞ + f ; [R := ||D−1||∞ ||N ||∞; f := ||D−1||∞ ||breal||∞]

≤ R (R ||xk−2||∞ + f) + f

= R2 ||xk−2||∞ +Rf + f

≤ R2 (R ||xk−3||∞ + f) +Rf + f

...

≤ Rk ||xo||∞ + f(1 +R +R2 + . . .+Rk−1)

= f(1 +R +R2 + . . .+Rk−1); [ ||xo||∞ = 0 ] (4.14)

Since R < 1 (can be proved from the fact that R̃ < 1), the geometric series in (4.14) converges

and we get a bound for ||xk||∞ as

||xk||∞ ≤ f(1−Rk)

1−R
(4.15)

Since ||x||∞ = limk→∞ ||xk||∞ (we proved this using the lemma lim of x minus xk is zero in
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Coq),

||x||∞ ≤ lim
k→∞

(
f(1−Rk)

1−R

)
= lim

k→∞

(
f

1−R

)
− lim

k→∞

(
f

1−R
Rk

)
=

f

1−R
−
(

f

1−R

)
lim
k→∞

Rk

=
f

1−R
−
(

f

1−R

)
0; Since R < 1

=
f

1−R
(4.16)

Thus,

||x||∞ ≤ ||D−1||∞ ||breal||∞
1− ||D−1||∞ ||N ||∞

(4.17)

Since ϵ, δ are non-negative, we can show that

||D−1||∞ ||breal||∞
1− ||D−1||∞ ||N ||∞

≤ xbound

Hence,

||x||∞ ≤ xbound (4.18)

We state the lemma 27 in Coq as

Lemma x bound exist {t} {n:nat} (A : 'M[ftype t] n.+1) (b : 'cV[ftype t] n.+1)

(Hinv: ∀ i, finite (BDIV (Zconst t 1) (A i i)))

(Ha : ∀ i j, finite (A i j)):

let A real := FT2R mat A in

let b real := FT2R mat b in

let x := A realˆ−1 ∗m b real in

let x1 := x fix x b real A real in

let A2 real := FT2R mat (A2 J A) in

let R def :=

(((vec inf norm (FT2R mat (A1 inv J A)) + default abs t) / (1 − default rel t)) ∗

matrix inf norm (A2 real)) in

(R def < 1) →
A real \in unitmx →
(vec inf norm x1 <=
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(((vec inf norm (FT2R mat (A1 inv J A)) + default abs t) / (1 − default rel t)) ∗

vec inf norm (\brealeal)) / (1 − R def)).

The lemma x bound exist holds if each element of A and its inverse is invertible, Areal is

invertible, and R̃ < 1.

4.6 Proof of correctness

In this section, we discuss the next layer of the proof structure, refinement proof. In this proof

layer, the C program is proven correct with respect to a floating-point functional model.

4.6.1 Refinement proof in Coq

Here’s the C program for a single iteration of Jacobi iteration,

double jacobi2 oneiter(double ∗A1, struct crs matrix ∗A2, double ∗b, double ∗x, double ∗y)

{
unsigned i, n=crs matrix rows(A2); double s = 0.0;

for (i=0; i<n; i++) {
double u = b[i] − crs row vector multiply(A2,x,i);

double a1 = A1[i], new = (1/a1)∗u, r = a1∗(new − x[i]);

s = fma(r,r,s);

y[i] = new;

}
return s;

}

It loops over rows i of the matrix, which is also elements i of the vectors b and x. For each i

it computes a new element yi of the result vector, as well as an element ri of residual vector.

It returns s, the sum of the squares of the ri. By carefully computing ri from yi, and not

vice versa, we can prove (in Coq, of course) that all overflows are detected: if s is finite, then

all the yi must be finite.

Here’s the program for iteration until convergence (s < τ 2), giving up early if there’s

overflow (tested by s∗0=0.0, since if s overflows then s∗0 is NaN) or if maxiter iterations is

reached.

double jacobi2(double ∗A1, struct crs matrix ∗A2, double ∗b, double ∗x, double τ2,

unsigned maxiter) {
unsigned i, n=crs matrix rows(A2);

double s, ∗t, ∗z=x, ∗y = (double ∗)surely malloc(n∗sizeof(double));
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do { s = jacobi2 oneiter(A1,A2,b,z,y);

t=z; z=y; y=t;

maxiter−−;

} while (s∗0==0.0 && s ≥ τ2 && maxiter);

if (y==x) y=z; else { for (i=0; i<n; i++) x[i]=y[i]; }
free(y);

return s;

}

This program starts with x(0) in x, computes x(1) into y, then x(2) back into x, and so on.

It mallocs y for that purpose and frees it at the end. Depending on whether the number of

iterations is odd or even, it may need to copy from y to x at the end.

The matrix A2 in the C program jacobi2() is a sparse matrix, and has been represented

in the standard sparse representation called the Compressed Row Storage (CRS) form. The

function jacobi2 oneiter() thus performs a sparse matrix vector multiply – crs row vector multiply

on the matrix A2 and a vector x. The CRS implementation has been discussed in detail by

[89].

The C program jacobi2() has been proven correct with respect to a functional model

Definition jacobi {t: type} (A: matrix t) (b: vector t) (x: vector t) (acc: ftype t) (n: nat) :

ftype t ∗ vector t :=

let A1 := diag of matrix A in

let A2 := remove diag A in

iter stop norm2 (jacobi residual A1 A2 b) (jacobi iter A1 A2 b) (Nat.pred n) acc x.

The jacobi function returns the solution vector xk after k iterations, and implements the

stopping criteria (s∗0==0.0 && s ≥ τ2 && maxiter). This functional model was proven equiv-

alent to jacobi n, i.e., both jacobi n and jacobi return the same vector xk once the program

terminates well within maxiter.

Correctness theorem The jacobi2 function is specified and proved with a VST function-

spec that we will not show here, but in English it says,

Theorem 28 (body jacobi2). Let A be a matrix, let b and x(0) be vectors, let A1p be the

address of a 1-dimensional array holding the diagonal of A, let A2p be the address of a

CRS sparse matrix representation of A without its diagonal, let bp and xp be the addresses

of arrays holding b and x(0), let τ be desired residual accuracy, and let maxiter be an in-

teger. Suppose these preconditions hold: the dimension of A is n × n, b and x(0) have

length n, 0 < n < 232, 0 < maxiter < 232, all the elements of A, b, x, acc2 (as well as
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the inverses of A’s diagonal) are finite double-precision floating-point numbers; the data

structures A1p,A2p,bp have read permission and xp has read/write permission. Suppose

one calls jacobi2(A1p,A2p,bp,xp,acc,maxiter); then afterward it will satisfy this postcondi-

tion: the function will return some s and the array at xp will contain some x(k), such

that (s, x(k)) ≃ jacobiAbx τ 2,maxiter, where ≃ is the floating-point equivalence relation and

jacobi is our functional model in Coq of Jacobi iteration; and the data structures at A1p,A2p,bp

will still contain their original values.

The proof of Theorem 28 is a refinement proof – the C program is a refinement of, or

correctly implements the functional model jacobi. This proof was done using the Verified

Software toolchain (VST), and was implemented by Prof. Andrew Appel.

4.6.2 Main theorem

The C program jacobi2() (and its functional model jacobi) satisfies either of two different

specifications:

Theorem 28 (above): if A, b, x satisfy the basic preconditions2 then perhaps Jacobi

iteration will return after maxiter iterations – having failed to converge – or might overflow

to floating-point infinities and stop early. But even so, the result (s, y) will be such that the

(squared) residual s = |Ay − b|22 accurately characterizes the result-vector y: if y contains

an ∞ then s = ∞, but if
√
s < τ then y is indeed a “correct” answer. That’s because the

functional model preserves infinities in this way, and the C program correctly implements

the model.

Theorem 29: if A, b, x,maxiter satisfy the Jacobi preconditions then the result (s, y) will

be such that s = |Ay − b|22, and
√
s < τ and indeed y is a “correct” finite answer. In fact

this is our main result:

Theorem 29 (main jacobi). If the inputs satisfy the Jacobi preconditions, then the C

program will converge within k iterations to an accurate result.

Proof. Using Theorems 23 and 28, with some additional reasoning about the stopping con-

dition in the functional model of the C program.

The theorem main jacobi integrates the proof of correctness (body jacobi2) and the proof of

convergence (jacobi iteration bound lowlevel).

2A an n× n matrix; b and x dimension n; 0 < n < 232; A, b, x all finite; A, b, x stored in memory in the
right places—but nothing else about the values of A, b, x.
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Jacobi iteration on inputs not known to satisfy the Jacobi preconditions The-

orem 28 is useful on its own, since there are many useful applications of stationary itera-

tive methods where one has not proved in advance the convergence conditions (e.g., Jacobi

preconditions)—one just runs the program and tests the residual. For such inputs we must

take care to correctly stop on overflow.

The induction hypothesis, for 0 < k ≤ maxiter iterations, requires that xk has not yet

overflowed, otherwise our sparse-matrix reasoning cannot be proved. Therefore the program

must check for floating-point overflow in xk after each iteration. In order to do that efficiently,

the program tests s⊗ 0 = 0 (which is a portable and efficient way of testing that s is finite);

and if so, then xk+1 is all finite.

Thus, the Theorem 29 provides an end-to-end proof for the Jacobi algorithm, i.e., our

proofs are faithful to the details of the implementation, including C program semantics and

floating-point arithmetic.

4.7 Empirical discussion

While we have formalized some theoretical bounds on forward error and the minimum num-

ber of iterations required to converge, it is useful to compare them with the actual computed

values, so that their feasibility can be accessed in practical adoption by numerical analysts.

We therefore perform some numerical experiments and compare the results. We compare

the theoretical value for minimum number of iterations kmin (theoretical) (eq. 4.9), re-

quired for the Jacobi iteration to converge, against the actual number of iterations required

by the C/C++ program to converge, kmin (computed). We use the BigFloat library from

Julia to compute kmin (theoretical) in arbitrary floating-point precision. The BigFloat li-

brary in Julia is a wrapper around the GNU MPFR library [53]. The BigFloat(x) method

takes a floating-point number x, in our case Float64 and generates an arbitrary precision

floating-point number, with the default precision set to 256 and the default rounding mode

being Rounding to nearest with ties being rounded to the nearest even number. We write a

C++ program to compute kmin (computed) in double-precision floating-point, which uses

dense matrix and vector operations in the Jacobi iteration implementation. This implemen-

tation is similar to the implementation jacobi2 oneiter and jacobi2, except that we use a dense

matrix-vector multiplication. We analyze a linear system Ax = b, with A(1.0,−3.0, 1.0) and

b = −1.0. A(1.0,−3.0, 1.0) represents a tri-diagonal matrix with the entry −3.0 in its main-

diagonal, and 1.0 in its lower diagonal and upper diagonal entries. b is a constant vector of

−1.0. We compare kmin (theoretical) and kmin (computed) for two parameters: dimension of

the linear system N and user-specified tolerance τ . Table 4.2 and Figure 4.4 illustrate the
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Dimension (N) kmin (theoretical) kmin (computed)
10 39 19
50 41 23
100 42 24
500 44 26
1000 45 27
5000 47 29

Table 4.2: Comparison of kmin with the dimension of the matrix A.

Figure 4.4: Comparison of kmin with the dimension of the matrix A.
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comparison of kmin with respect to the dimension of the linear system N . It can be observed

that the value of kmin (theoretical) is greater than kmin (computed), and each of their values

increase as we increase N . This is expected because kmin (theoretical) uses the maximum

error bound from each floating-point operation and error bounds from dense matrix-vector

operation. We propagate the maximum forward error bound for each iteration of the Ja-

cobi method, for the computation of kmin (theoretical) in our error-analysis framework. The

actual Jacobi method might not necessarily propagate the maximum forward error for each

iteration, which explains lower values of kmin (computed). Both kmin (theoretical) and kmin

(computed) increase with N , because of increase in accumulation of floating-point error due

to increase in floating-point operations.

Tolerance (τ) kmin (theoretical) kmin (computed)
10−3 25 16
10−4 31 18
10−6 42 24
10−9 59 33
10−10 65 35
10−11 73 38

Table 4.3: Comparison of kmin with the user-specified tolerance τ .

Table 4.3 and Figure 4.5 illustrate the comparison of kmin with respect to the user-specified

tolerance τ . It can be observed the minimum number of iterations required to converge to

a solution such that the residual is less than the user-specified tolerance τ , increases as we

decrease τ . This is consistent with the equation 4.9, which establishes an inverse relation

between kmin and τ . The value of kmin (theoretical) is greater than kmin (computed) at each

data point for the same reason as explained earlier.

Comparing the theoretical bound for the Jacobi forward error with the actual

error: We compare the theoretical bound for forward error from equation 4.8 for the Ja-

cobi method, computed after k iterations with the computed error from implementation

of the algorithm in C++. We compute the theoretical error bounds using the arbitrary

floating-point precision provided by the BigFloat library in Julia. We compute the actual

or the computed error in double precision in C++. The error bounds are obtained for the

implementation of the Jacobi iteration algorithm to compute approximate solution for the

matrix system Ax = b corresponding to the differential equation d2u
dx2 = −1. This differential

equation is discretized using a centered finite difference scheme to obtain the linear system

Ax = b. As observed from the Table 4.4 and the Figure 4.6, the theoretical error bound is
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Figure 4.5: Comparison of kmin with the user-specified tolerance τ . The plot is in semi-log
in x− axis.

about twice the computed error in magnitude.

4.8 Conclusion

In this work, we have presented a formal proof in Coq of the correctness, accuracy, and

convergence of Jacobi iteration in floating-point arithmetic. We derived generic maximum

error bounds for the matrix-vector operations, i.e., matrix-vector multiplication, vector ad-

dition and subtraction, matrix inversion, etc., and used these bounds to derive a forward

error bound for the Jacobi iteration. We then used this forward error bound to prove the

convergence of Jacobi iteration by proving that the residual after kmin iterations is less than

the user-specified tolerance. This convergence proof takes into account exceptional floating-

point behaviors including overflow and underflow, and we derive conditions on the inputs

A, b, xo to prove the absence of overflow, formally. We also derive a closed form expression for

kmin, and compare this bound with the actual number of iterations required to converge, as

computed using a C++ implementation of the Jacobi algorithm. From an empirical compar-

ison of this theoretical iteration bound kmin (theoretical) and the actual number of iterations
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k Computed error Theoretical error bound
10 0.06433 0.12346
20 0.03798 0.12346
50 0.05486 0.12346
100 0.06086 0.12346
500 0.06173 0.12346
1000 0.06173 0.12346
5000 0.06173 0.12346
10000 0.06173 0.12346
100000 0.06173 0.12346

Table 4.4: Comparison of the theoretical forward error bound 4.8 and the computed forward
error for the Jacobi iteration.

Figure 4.6: Comparison of the theoretical forward error bound 4.8 and the computed forward
error for the Jacobi iteration. The plot is semi-log in x-axis.
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required to converge kmin (computed) , we observe that kmin (theoretical) is greater than

the kmin (computed) and both kmin (theoretical) and kmin (computed) increase as we increase

the dimension of the coefficient matrix A. We further compare the theoretical forward error

bound with the actual forward error for the Jacobi iteration method, and perform numer-

ical experiments on the error bounds for the naive-dot product, which is discussed in the

Appendix B. We also connect the proof of accuracy and convergence to an actual C imple-

mentation of the Jacobi iteration algorithm which uses the sparse matrix-vector operations.

This C program is proven correct against a floating-point functional model, using the Verified

Software Toolchain. In this way, we provide an end-to-end correctness of the Jacobi iteration

algorithm in floating-point arithmetic. Finally, we present empirical results comparing our

theoretical bounds with respect to the actual/computed bounds.
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CHAPTER 5

Related Work

Formalization of Numerical analysis: There have been significant contributions by the

interactive theorem proving community on formalization of important results in numerical

analysis, in the past few years. This has been motivated by the development of libraries

on real analysis, linear algebra, functional analysis, etc. in interactive theorem provers like

Coq [34], HOL [58], PVS [110], and these libraries have been used in many applications

pertaining to the analysis of differential equations.

In terms of development of libraries in theorem provers, Sylvie Boldo and her colleagues

have made immense contributions in the formalization of results from functional analysis in

Coq. They [19] formalized the Lax–Milgram theorem, which is an important result in finite

element methods. This formalization led to the development of a general purpose library

on linear mappings, continuous linear mappings, operator norms, Hilbert spaces, etc. Be-

sides functional analysis, they Boldo et al have also made important contributions to the

real analysis in their development of the Coquelicot [28] library. The Coquelicot library pro-

vides necessary infrastructure for defining derivatives, limits, integrals, algebraic structures

like rings, fields, abelian groups, etc., and topology like metric spaces, normed modules,

complete normed modules, etc. Both of these formalizations of functional analysis and real

analysis have been really helpful in our formalization of the convergence of finite difference

schemes – Lax–equivalence theorem, and formalization of asymptotic convergence of itera-

tive convergence error. Boldo et al also formalized the Lebesgue integration of non-negative

functions [18] and Tonelli’s theorem in Coq [24], with the aim of developing necessary in-

frastructure like sigma algebra, product measures and their uniqueness, and construction of

iterated integrals, with application to probability theory, real analysis and numerical math-

ematics.

The mathematical components library [100] formalizes concepts from linear algebra, finite

sequences, finite sets, and algebraic structures in Coq. This library was a result of a six year

long work on formalization of the Feit-Thompson odd order theorem [57]. The big operators

formalization by [16] provides necessary infrastructure for iterated summation and product,
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as well as for computing the maximum and minimum in a list of real and natural numbers.

Besides the formalization of basic linear algebra, the mathematical components library has

been extended to real analysis through the development of mathcomp−analysis [1]. This exten-

sion has been facilitated by the recent work on design of hierarchical algebraic structures in

dependent type theory by [2]. In [3], the authors formalize a set of techniques and notations to

carry asymptotic analysis in Coq. This work was integrated into the mathcomp−analysis li-

brary and provides a rigorous approach to delay existential quantification in the classical

ϵ − δ reasoning to improve proof stability and readability, and develops a small theory for

the Bachmann–Landau notations or little-o and big-O notations. Asymptotic analysis forms

the core of reasoning about numerical approximations, and this development is an impor-

tant contribution towards a more generalized classical reasoning. We have used the rich

formalization of linear algebra in the mathematical components library in our formalization

of iterative convergence error, both in reals and floats.

The development of these libraries have facilitated its use in various applications of prac-

tical interest. Boldo et al. formalized the consistency, stability and convergence properties of

a centered scheme for 1-D wave equation [21]. They used the Coquelicot real analysis library

extensively in their formalization. However, their formalization of convergence was done for

a specific finite-difference method. In our work, we formalized the convergence of a general

class of finite-difference schemes, and later instantiated it with a centered finite-difference

scheme.

Evgeny Makarov and Bas Spitters formalized a constructive proof of the Picard–Lindelöf

theorem in Coq [101] based on the constructive reals from CoRN library and the MathClasses

library. Ioana Pasca formalized the Kantorovich theorem in Coq to prove convergence of

Newton method [112]. During this formalization, they also formalized concepts of multivari-

ate analysis, and formally verified criteria for regularity of interval matrices. Micaela Mayero

formalized a proof of correctness of the algorithm used by an automated differentiation tool

called Odyssée, which deals with FORTRAN programs. Martin-Dorel et al formalized Taylor

models in Coq [103]. Taylor models consist of a pair (P,∆), where P is a polynomial in a

given basis, and ∆ is an interval error bound. They also formalized the Taylor–Lagrange

theorem, which we use for our formalization of the Lax–equivalence theorem in Coq. Mah-

boubi et al. [99] provided an efficient method for computing and proving bounds on definite

intergrals in Coq.

Besides Coq, numerical analysis of ODEs have also been done in Isabelle/HOL [78].

They formalize the initial value problem of ODEs and formally prove the existence of its

solution using the Picard–Lindelöf theorem. They also formalize a generic one-step method

for obtaining numerical approximations of the solution, and formalize local and global error
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analysis for this method. Immler et al. [77, 80, 81] formalized flows, Poincaré map of dynam-

ical systems, and verified rigorous bounds on numerical algorithms in Isabelle/HOL. In [76],

Immler formalized a functional algorithm that computes enclosures of solutions of ODEs in

Isabelle/HOL, and proved safety of these enclosures. Fabian Immler and Yong Kiam Tan

formalized the Poincaré-Bendixon theorem [79] in Isabelle/HOL to prove the existence of

(limiting) periodic behavior in planar dynamical systems.

Formalization of floating-point error analysis: A formal analysis of floating-point

error has been facilitated by the recent developments in interactive theorem provers and

development of automated static analysis tools like MetiTarski [5], Daisy [44], Fluctuat [59],

FPTaylor [126], PRECiSA [134] and Gappa [46].

In terms of developing libraries for a formalized floating-point error analysis, Daumas et al

provided a first generic formalization of floating-point computations [47] in Coq. This formal-

ization is generic in terms of the base of the floating-point representation, and the mantissa

and exponent of the floating-point format. Boldo et al later provided a comprehensive formal-

ization of a generic floating-point format and the IEEE-754 standard [75] in Coq as a general

purpose library Flocq [30]. They then extended [17] the CompCert verified compiler [97] to

compiling floating-point programs by augmenting the platform with the formalization of

IEEE-754 floating-point standard in Flocq. Boldo et al also implemented a mechanism for

calling Gappa [46] within Coq for verifying floating-point programs. Gappa [46] is a tool

to automatically discharge proof obligations involving floating-point computations. Gappa

uses interval arithmetic and forward error analysis to generate bounds on mathematical ex-

pressions that involve rounded and exact operators. The proofs generated by Gappa can

be automatically checked with proof assistants like Coq or HOL-Light. Martin-Dorel et al

provide a tactic [102] in Coq to compute tight bounds on univariate functions, which is

based on the formalization of floating-point arithmetic and interval arithmetic, and relies on

on-the-fly computation of Taylor polynomials. In [48], the authors use the Gappa tool to

verify tight error bounds for elementary functions.

John Harrison made important contributions in the development of a generic floating-

point library in the HOL theorem prover [63]. This library develops a theory for floating-point

computations, which is generic in terms of the floating-point format, and was also specialized

to prove correctness of the implementation of various pieces of the mathematical software

used in Merced, the first implementation of Intel’s IA-64 computer architecture. He then

applied this formalization to formally verify [64] an algorithm that evaluates transcendental

functions like sine and cosine in double-extended floating-point precision. In [62], John

Harrison formalized an algorithm given by Tang [128] to compute the value of exponential
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function in floating-point arithmetic. Following Tang, he formalized three sources of error –

error in range reduction for large input intervals, error in polynomial approximation of the

exponential function, and the rounding error, and also treats exceptional behavior of floating-

points like overflow and underflow, formally. In [65], John Harrison formalized in HOL-Light,

the division algorithm in floating-point arithmetic for the IA-64 computer architecture. John

Harrison also formalizes [66] in HOL-Light, square root algorithms based on fused-multiply

add (FMA), developed for Intel Itanium architecture.

Becker et al formalized a new language Icing [11], which provides formal semantics for fast-

math style optimizations in a verified compiler. They then extended this formal semantics

in the verified CakeML compiler (RealCake [12]) to generate an end-to-end correctness of

the fast-math style optimization of floating-point arithmetic which includes an accuracy

bound for the result from this optimized code. Becker et al developed an automated tool

called FloVer [14] to certify the round-off error bounds generated by static analysis tool, like

Daisy [44]. FloVer proves correctness of each analyzed expression with respect to concrete

bit-level IEEE-754 floating-point semantics [75], and the soundness of this tool was verified

in Coq and HOL4.

The formal methods group at NASA have also made immense contributions to the formal-

ization of floating-point arithmetic. They developed a modular static analysis technique [105]

for computing provably sound over-approximation of floating-point round-off errors, which

has been implemented in their prototype tool PRECiSA. Given a floating-point expression,

this tool computes a symbolic upper bound automatically using denotational semantics, and

generates a proof certificate of soundness in the PVS theorem prover [110]. Titolo et al

implemented an abstract analysis framework [134] in PRECiSA, which defines a parame-

terized semantics that collects an error expression representing provably strong round-off

error bounds for each combination of an ideal and floating-point computational path of a

functional program. This framework also provides a strong support for typical programming

language constructs like conditions, recursions and loops, and defines a widening operator

to ensure convergence of recursive functions and loops. One of the issues with floating-point

programs is the case of unstable tests, which arise due to the divergence between the control

flow of a real program and a floating point programs at conditionals due to accumulation of

round-off error. Titolo et al developed a program transformation techique [135] to transform

the original program into another program that conservatively (and soundly) detects and

corrects unstable tests. The correctness of this transformation was formally verified in the

PVS theorem prover.

There have been some work in automating the floating-point error analysis to some extent,

by extending the libraries of SMT solvers to support floating-point arithmetic. Rümmer and
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Wahl [118] proposed a theory for floating-point arithmetic in the SMT-LIB 2.0 standard,

which defines semantics for floating-point arithmetic following the IEEE-754 standard [75].

They defined a floating-point format and added support for all the five rounding modes

standarized by the IEEE-754, along with a formal treatment of the exceptional floating-

point values: +∞,−∞ and NaN. In [41], the authors extend SMT solvers with floating-point

reasoning. They propose a three-layered approach to reason about floating-point arithmetic

in SMT solvers, which extends the SMT-LIB standard of reducing a floating-point expression

to reals with explicit rounding and then reasons about rounding using the lemmas from Flocq.

This strategy was implemented in the Alt-Ergo SMT solver.

In the context of rigorous numerical approximation of the solutions of ordinary differential

equations, Boldo et al formalize [25] tight error bounds on the solutions obtained from

integration schemes like the Runge-Kutta (RK) family of methods (RK-2 and RK-4 methods)

and Euler’s method in floating-point arithmetic. This analysis however does not take into

account the effect of overflow and underflow in their formalization. Later [26], they revised

the analysis by taking into account overflow and underflow, and refined the error bounds

using optimal bounds on relative errors studied in details by Jeannerod and Rump [82].

Work on end-to-end verification: There have been significant work in developing an

end-to-end verification framework, which connects an actual implementation in a program-

ming language like C, to the formal analysis developed using an interactive theorem prover

or an automated theorem prover.

Some early experiments on verifying floating-point poperties of numerical programs were

done by Slyvie Boldo and Claude Marché in [29]. They used the Frama-C [43] tool, its Jesse

plugin and the Why platform, and provers like Coq, Z3, Alt-Ergo, Gappa [46], CVC3 to carry

an end-to-end verification of problems like Sterbenz subtraction [127], Veltkamp/Dekker

Algorithm [50, 136] to compute the exact error of floating-point multiplication, and the

Kahan algorithm for accurate discriminant [84]. Boldo and her colleagues [22, 23] also

provided an end-to-end verification of a C program implementing a 1-D wave equation.

They used the Frama-C [43] tool to annotate the C program with formal specifications of

correctness, especially the method error and floating-point errors, and generate theorems

that guarantee soundness of the code. These theorems were then discharged using the SMT

solvers, Gappa [46], and Coq.

The work by Andrew Appel and Yves Bertot [6] provides a modular approach to perform

end-to-end verification of a C program implementing Newton’s method to compute square

root. The modularity in their approach comes from the fact that the proof of correctness of

the C program was carried separately using VST, from the proof of numerical accuracy and
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numerical correctness, which was done by leveraging the IEEE-754 standard formalization

done in the Flocq library in Coq. This work was inspirational to our work on end-to-end

verification of C program implementing the Jacobi iteration algorithm.

Becker et al developed a tool called Dandelion [13], which generates a certified polyno-

mial approximation of transcendental functions, and provided an end-to-end correctness and

accuracy guarantees by extracting a verified binary with the formally verified CakeML [93]

compiler. This tool takes a Scala program implementing transcendental functions as input,

and generates a certificate containing the original transcendental function, its polynomial

approximation, the maximum error bound in a given interval, which is proved sound in the

HOL4 theorem prover [58].

In the context of an end-to-end verification of solutions of ordinary differential equations,

Ariel Kellison and Andrew Appel provided a formalization of a C program implementing

the Störmer-Verlet method [88]. They verified that the C program faithfully implements

this method assuming only the operational semantics of C and of IEEE-754 floating-point

arithmetic. They used the VCFloat tool [114] in their formalization. VCFloat automatically

generates an annotated real expression with appropriate error bounds from a floating-point

expression. This tool provides an infrastructure to prove numerical properties of C programs

with trusted base limited to formal specifications of C in Coq, the IEEE-754 floating-point

standard formalization in Coq and the underlying logic of Coq. Appel and Kellison extended

VCFloat in their tool VCFloat2 [7] with key improvements to VCFloat – better integration

with the Coq-interval package and Gappa to produce useful bounds for cases where VCFloat

fails, and support for natural-style functional models which are based on reification approach–

lifting a formula to an abstract syntax tree for symbolic analysis, thereby making these

models independent of C or CompCert. VCFloat on the other hand took input expressions

from C programs as parsed by the CompCert’s [97, 27] front end. We used the VCFloat2

tool for its Coq library of definitions such as “type” and “fprec” and “ftype”, and the VST

tool for proving correctness of the C program implementing this algorithm.
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CHAPTER 6

Conclusion and Future Work

6.1 Conclusion

In this work, we proposed an approach for end-to-end verification of numerical programs.

We started with a differential equation, a 1-D differential equation in our case. We showed

an approach to discretize this differential equation using a centered finite difference scheme,

in a formal setting such as the Coq theorem prover. We then proved convergence of this

scheme by proving its consistency with respect to the differential equation and convergence

of its solution with respect to the “true” solution of the differential equation. To prove

convergence, we first formalized the Lax–equivalence theorem and then applied this theorem

to this particular scheme. The Lax–equivalence theorem is a statement of convergence for

the solution obtained from a general class of finite-difference scheme, and we discussed its

formalization in detail in Chapter 2. We focused on the spatial discretization error, since the

discretization of the 1-D differential equation was done in space with a uniform discretization

step, ∆x. Using the Taylor–Lagrange theorem, whose formalization can be found in the

Coq.Interval library, we formally proved that this discretization error can be bounded above

by a term of the order of O(∆x)2. Since this bound approaches zero in the limit of ∆x → 0,

the centered finite-difference scheme that we used for discretization is consistent with respect

to the differential equation. We also proved the stability of the scheme, by formalizing

spectral properties of the coefficient matrix A of the linear system obtained from the resulting

discretization using the centered finite-difference scheme. We showed that the l2 matrix norm

of the inverse of the coefficient matrix A, i.e., ||A−1||2, is uniformly bounded. Thus, this

linear system is robust with respect to any perturbations in the system, and the numerical

errors are bounded. With the discretized equation approaching the differential equation in

the limit of ∆x → 0, and the numerical errors being bounded, the solution obtained from

this scheme is expected to converge to the “true” solution of the differential equation, i.e.,

lim∆x→0 ||u∆x − u|| = 0.
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The above formalization proved the convergence of a numerical solution obtained from

the scheme to the “true” solution, assuming that this numerical solution exists. We did not

discuss a methodology to obtain such a numerical solution from the original linear system

though. One can argue that this solution can be obtained simply (naively) by inverting

the coefficient matrix A, using the formula u∆x
∆
= A−1b. But such matrix inversion is

computationally expensive (time complexity is the order of O(n3), where n is the dimension

of A), and often intractable for large and dense matrices. Therefore, low cost methods such

as iterative methods are used extensively in the scientific computing community. In this

work, we focus on a class of iterative methods called the stationary iterative methods, which

is presented in Chapter 3. This methods build a sequence of solution vectors xk, which

are an approximation of u∆x. This approximation introduces another layer of error called

the iterative convergence error. The main goal in using these iterative methods is to carry

sufficient number of iterations such that the iterative convergence error approaches zero in

the limit of k → ∞, i.e., limk→∞ ||xk−u∆x|| = 0. In this work, we formalize the sufficient and

necessary conditions for the convergence of iterative solutions to u∆x. We then instantiate

this theorem to two classical stationary iterative methods – the Gauss–Seidel method and

the Jacobi method. Since the proof of convergence involves the computation of eigenvalues of

the iteration matrix, which is often expensive and intractable for most practical problems, we

formalize easily testable conditions to show convergence of the Gauss–Seidel method. These

easily testable conditions, which are captured by the Reich theorem [115], rely on the positive

definiteness of the coefficient matrix A, which has a specific structure: real, symmetric,

with all elements in the main diagonal as positive. We then layer the Reich theorem with

the main theorem for convergence to prove convergence of the solutions obtained from the

Gauss–Seidel iteration algorithm to u∆x. This approach can be followed for other stationary

iterative methods as well. One just needs to come up with easily testable conditions that

relate to the proof of the eigenvalues of the iteration matrix being less than 1, and then layer

this relation with the main iterative convergence theorem, which we proved in Coq. We then

demonstrate convergence on the same centered scheme that we use in Chapter 2 for both

the Gauss–Seidel method and the Jacobi method, in Coq.

It is important to note that formalizations presented in Chapter 2 and 3 are done in

the field of reals. But the actual implementation of an algorithm is implemented in finite

precision. This introduces another layer of error called the floating-point error. In Chapter 4,

we provide an overview of the floating-point arithmetic, formalization of the basic concepts

of the floating-point arithmetic and the IEEE-754 standard in the Flocq [30] library in Coq.

Since we can no longer talk about the asymptotic convergence of the iterative solutions to u∆x

in the floating-point arithmetic, we need to bound the floating-point errors or the rounding
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errors for each floating-point operations. Therefore, in this work, we develop an error-analysis

framework which formalizes norm-wise error bounds for the matrix-vector operations like

matrix-vector multiplication, vector addition and vector subtraction. These norm-wise error

bounds are computed for the l∞ norms which also allow us to do componentwise analysis

of errors and the bounds obtained are tighter as compared to the l2 norm. Nevertheless,

since l2 norms are also widely used in numerical programs, we define a compatibility relation

between the l∞ and l2 vector norms. This helps us connect the residual computation in C

program to its error analysis in our framework in Coq. We use the above norm-wise error

analysis framework to prove convergence of the solutions obtained from the Jacobi algorithm.

The convergence here is defined in terms of the norm of the residual (b − Axk) being less

than the user-defined tolerance τ . We first prove a forward error bound for the Jacobi

iteration algorithm, and then use this to prove convergence for this algorithm. Our error

analysis takes into account the exceptional floating-point behaviors including overflow and

underflow, and we prove the absence of overflow in the solutions for each iteration, by proving

concrete bounds on the inputs A, b, xo. We go a bit further and also provide the minimum

number of iterations kmin need to achieve convergence for the Jacobi iteration. An important

point to note is that our proofs of accuracy and convergence are connected to the actual

implementation of the Jacobi algorithm in C. The proof of correctness of the C program

with respect to a functional model, which we develop in Coq and against which we prove

our error bounds, is done by Prof. Andrew Appel using the Verifiable Software Toolchain

(VST), developed by his group [33]. In this way, we develop an end-to-end framework for

verifying numerical programs and take into account the spatial discretization error, iterative

convergence error, floating-point error and computer programming error, as illustrated in

Figure 1.1. An overview of our verification effort is illustrated in Figure 6.1.

Lessons learnt: A key lesson we learnt during our formalization effort was in relating

Chapter 3 and Chapter 4. When we started the work on Chapter 4, we analyzed the

iterative convergence error in reals and the rounding error separately, which was published

in our Correctness workshop, 2022 paper [86]. In this initial experiment, we formalized

the forward error bound for the Jacobi iteration, which provides the error incurred after k

iterations. Our initial impression when we started generalizing this work to an n×n matrix

was that we could compose this forward round-off error with the real iterative convergence

error to get the total iterative error. Mathematically, this would mean composing, using the

triangle inequality, the round-off error ||x̂k − xk|| with the real-iterative convergence error,

||xk−x|| to get the total error ||x̂k−x||, where x̂k is the numerical iterative solution, xk is the

real iterative solution and x is the true numerical solution. However, the bounds obtained
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Figure 6.1: High level overview of how our formalization of different errors fit in together.
Part 1 refers to our formalization of the spatial discretization error, i.e., the Lax–equivalence
theorem and the proof of convergence of the centered finite difference scheme. Part 2 refers
to our formalization of the iterative convergence theorem in the field of reals. Part 3 refers to
our formalization of the floating-point error for iterative convergence for a concrete imple-
mentation of the Jacobi iteration algorithm. Part 3 also tackles the computer programming
error in the proof of correctness of the algorithm.

through this approach were coarse, and did not leverage the fact that some numerical errors

might be cancelled out in the iteration process as we move towards the true numerical

solution. After discussions with numerical experts, we changed our strategy and used the

fixed-point argument to derive a tighter bound for the total iterative error, i.e., directly

bounding ||x̂k − x||.
Another lesson that we learnt was during the formalization effort in Chapter 3, with

respect to effectively navigating between different libraries in Coq. Continuing our work

with the Coquelicot definition of matrices, as discussed in Chapter 2, we ran into issues with

formalizing theory of matrix inverse, determinants, eigenvalues etc. When we posted this

issue in the Coq-club mailing list, the Coq community pointed us to the mathcomp library,

which alleviated our issue by providing us with a rich formalization of linear algebra and

connecting our formalization to the pre-existing formalization of the Jordan canonical forms.

Thus, it is important to make an extensive survey of the existing libraries for any formal

analysis, before beginning any new formalization.
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Formalization effort: The formalization of the Lax–equivalence theorem and the proof

of convergence of the centered difference scheme for solving the 1-D differential equation

numerically, took about 15 person-months. The total length of the Coq proof scripts is

about 14,000 lines of code, of which less than 1200 lines are specific to the scheme. The rest

of the formalization can be reused for a generic symmetric tri-diagonal matrix.

The formalization of the iterative convergence theorem and its application to the classical

iterative methods – the Gauss–Seidel method and the Jacobi method, as discussed in the

Chapter 3 took about 8 person-months of full time work. The overall length of the Coq

proof scripts is about 8.5k lines of code.

The formalization of the accuracy and convergence proofs of the Jacobi iteration algo-

rithm, which includes a generalized error-analysis framework based on norm-wise bounds

for matrix-vector operations, spans over 14,000 lines of Coq proof script and took about

5 person-months of full-time work. The proof of correctness of the algorithm, which was

carried using the VST tool spans over 2,000 lines of proof script.

6.2 Future work

6.2.1 Direct extension of our work

Our work on formalized error analysis for stationary iterative methods can be extended in

the following ways:

• The error analysis framework for floating-points can be extended to a more generic

matrix splitting for the stationary iterative methods. The floating-point error analysis

that we have done is specialized to the Jacobi iteration method, for which M = D and

N = L+U . While we have the basic tools like norm-wise error bounds for matrix-vector

multiplication, vector addition and subtraction, vector-vector multiplication etc., which

can be used for any matrix and vector based error analysis, we can generalize our

framework to any stationary iterative methods, which respect regular splitting. To do

this, the main convergence theorem needs to be parameterized in terms of the matrix

splittings, M and N . This theorem can then be instantiated to the Jacobi method

and the Gauss–Seidel method, and their implementation in C can be verified correct

with respect to this main theorem using the analysis framework that we discussed in

Chapter 4.

• Our work on error analysis of stationary iterative methods can also be extended to the

Krylov subspace methods. Stationary iterative methods are used as building blocks for
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Krylov subspace methods [119]. A Krylov subspace method computes an approximation

of the true numerical solution x
∆
= A−1b of the linear system Ax = b from the basis of

Kyrlov subspace defined as

Km(A, ro) = span{ro, Aro, A2ro, . . . , A
m−1ro}; ro = b− Ax̃o

to obtain the approximate solution at mth step defined as

x̃m = x̃o + qm−1(A, ro)

where x̃o is an arbitrary initial vector and qm−1(A, ro) is a polynomial of degree m− 1

constructed from the basis of the Krylov subspace Km(A, ro).

Since Krylov subspace methods are used to compute approximate solutions for high-

dimensional linear algebra problems, they are used for testing the observability and

controllability of systems in control theory. These tests involve checking the rank of

Krylov subspaces [67]. The Arnoldi methods, which are a class of the Krylov subspace

methods, are used for approximating the eigenvalues of large sparse matrices [119].

Krylov subspace methods could also be used in the frequency response calculations

in input/output analysis, since one needs to compute c(A − jωI)−1b for many values

of ω, and the Krylov subspaces are invariant under arbitrary shifts to the matrix A,

i.e., Km(A, v) = Km(A− sI, v) for any s. An approximation of the solution vector for

(A− jωI)−1b can then be obtained using the formula

xm(ω) = βVm(Hm − jωI)−1e1

as suggested in [45]. In [120], Youcef Saad also discussed about the use of Krylov

subspace methods to solve partial pole placement problems in control systems. Since

Krylov subspace methods have several applications in dynamical systems, it is crucial

to formalize the error bounds for approximate solution obtained from these methods.

The error analysis framework that we developed in this work, which includes norm-wise

bounds on matrix-vector operations, provides necessary tools for analyzing Krylov sub-

space methods. Besides, the stationary iterative methods are used as preconditioners

for Krylov subspace methods, to aid faster convergence. In a preconditioned Krylov

subspace method, instead of solving the linear system Ax = b, one solves the modified

systemM−1Ax = M−1b, where M−1 is chosen as an inexpensive approximation of A−1.

Thus, if we start from an initial guess x̃o = 0, the approximate solution at kth step,

x̃k ∈ Kk(M
−1A,M−1b). The M matrix used in classical stationary iterative methods
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like the Gauss–Seidel method, Jacobi method or the successive over-relaxation (SOR)

methods, are used as default preconditioners for the Krylov subspace methods. Thus,

our work on error analysis for stationary iterative methods are directly relevant to the

Krylov subspace methods in this context.

• The approach for achieving an end-to-end verification by decomposing the errors at

each stage of approximation as illustrated in the Figure 1.1 can also be applied to

obtain rigorous estimates for the following use cases

(a) Reduced order modeling: We have discussed earlier that a physical system

is modeled mathematically using differential equations, which is discretized to

be solved numerically in a finite computational domain. These set of discretized

equations is often abstracted in terms of a linear system An×n xn×1 = bn×1, and

then solved for x using a linear solver. Often the dimension of the system n could

be large, especially if such computations are performed real-time in embedded

control applications. For those cases, reduced order modeling seeks a low dimen-

sional problem Ãk×k x̃k×1 = b̃k×1, where k << n. This is typically accomplised by

finding a trial basis Vh ∈ Rn×k that spans a subspace V ⊂ Rn such that Vhx̃ is a

good approximation to x. Thus, we have to ensure that this approximation error

is small and the rounding error due to its implementation in a finite precision

machine is also small. The error analysis framework that we developed is directly

applicable for this problem, except that there is an added layer of approximation

coming from the dimension reduction, that needs to be formalized.

(b) Uncertainty quantification: The analysis that we have done in this work as-

sumes that the differential equation is deterministic, i.e., there is no randomness

is the physical system. However, in most practical systems, there is natural vari-

ability in the system. For instance, if one wants to simulate the power generated

by a wind turbine, it is not accurate to assume that the wind speed is deter-

ministic. It is more sensible to assume that the wind speed is a random variable

with a known probability distribution, and seek the probability distribution of

the output of the simulation, i.e., power, such that more informed decision can

be made. This process of uncertainty propagation is relevant in many areas of

science and engineering, such as weather forecasting, and the testing of nuclear

weapons, as uncertainties abound in those problems. Propagating the uncertainty

in random variables through the differential equation amounts to evaluating the

solution of the differential equation at pre-specified sampling locations, which are

determined by the quadrature points, and using a quadrature rule to estimate
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the statistical moments of the quantities of interest. Since the quadrature rule is

an approximation of definite integrals, this introduces additional errors. In the

context of this problem, our error analysis framework can be extended by adding

another layer of error, which accounts for this approximation error.

To summarize, the error analysis framework that we have developed is modular, and this

framework can be extended to problems involving approximation of differential equations by

adding an extra layer of approximation error.

6.2.2 Automation

A drawback of this work is the lack of automation. Most of the proofs are done interactively

and rely heavily on rewriting and the use of Coq tactics to build a proof script. This often

leads to large proof scripts, which could be difficult to maintain and lead to robustness

issues for formalization of more complicated problems. While we try to alleviate this issue

by introducing some abstraction in terms of intermediate lemmas which could be used across

theorems, there is still scope for more automation.

One of the ways in which automation can be achieved is the use of Coq’s tactic language

Ltac [51] or Ltac2 [113]. Coq’s tactic language is a small functional core with recursors,

and provides powerful pattern matching for Coq terms and proof contexts. This allows us to

manipulate the Coq term directly at the desired location, group Coq’s tacticals, and perform

repeated rewrites by leveraging its powerful pattern matching feature, in a few lines of Coq.

For instance consider the proof of the following theorem in Coq

a : R, b : R, c : R ⊢ a+ b+ c− a = b+ c

If we were to prove this theorem in Coq using the set of primitive Coq tactics, the Coq script

would be as illustrated in the listing 6.1

Listing 6.1: Proof script without tactic language

Require Import Reals Psatz.

Local Open Scope R scope.

Theorem prove simple:

∀ a b c : R, a + b + c − a = b + c.

Proof.

intros.

assert (a + b + c − a = a + b + c + (− a)).

{ reflexivity. } rewrite H.
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rewrite Rplus comm. rewrite Rplus assoc.

rewrite <−Rplus assoc. rewrite Rplus comm.

assert ((− a + a) = a − a).

{ rewrite Rplus comm. reflexivity. } rewrite H0.

rewrite Rminus diag eq; try reflexivity.

rewrite Rplus comm. rewrite Rplus 0 l.

reflexivity.

Qed.

The proof of theorem proof simple is done by replacing the term (a+b+c−a) with (a−a)+b+c.

Using the lemmas from the Coq standard library, we need to perform a lot of rewrites, which

leads to larger proof script. However, this proof can be discharged succintly using the Coq’s

tactic for nonlinear arithmetic nra, as illustrated in the listing 6.2

Listing 6.2: Proof script with tactic language

Theorem prove tactic:

∀ a b c:R,

a + b + c − a = b + c.

Proof. intros. nra. Qed.

The tactic nra provides an automated decision procedure for non-linear arithmetic and is

defined using the Ltac language as

Ltac nra := first [ Lra.nra | Lqa.nra ].

nra performs recursive search in a Coq term using pattern matching, invokes the lemma

from the standard real library to perform rewrites, and solves atomic propositions over reals.

Thus, Coq’s tactic language provides a powerful infrastructure to perform such automation.

In the context of our work, this tactic language could be used to define automated decision

procedures for performing norm-wise error bound analysis in the proof context and perform

repeated rewrites for similar expressions.

Another approach for automation is leveraging the existing interface between SMT solvers

and Coq, SMTCoq [52], to invoke the floating-point theory of SMT-LIB [118]. SMTCoq is

an open source tool that allows the user to send a goal to external SAT/SMT solvers, which

when proven correct by these solvers, are returned back to Coq as a proof witness or a certifi-

cate and its soundness is verified correct in Coq in a fully automated way. The trusted base

consists only of the Coq itself; if something goes wrong like Coq fails to validate the certifi-

cate or the SMT solver fails to prove the goal, the tactic will fail. Thus, no unsoundness is

introduced in the system. Rümmer and Wahl [118] proposed a theory for floating-point arith-

metic in the SMT-LIB 2.0 standard, which defines semantics for floating-point arithmetic
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following the IEEE-754 standard [75]. This formalization defines a floating-point format

of the form ( FP <ebits> <sbits>), where <ebits> represents the number of bits in the ex-

ponent and <sbits> represents the number of bits in the significand; supports all the five

rounding modes standardized by IEEE-754; and also treats exceptional floating-point values

: +∞,−∞ and NaN, formally. This formalization also defines a semantics for the fused-

multiply add and square root operations, and largely alleviates the issue of lack of reliable

and scalable floating-point decision procedures for automated verification. Thus, we believe

that a great degree of automation can be introduced in reasoning about floating-point verifi-

cation, using a healthy integration of the SMT-LIB theory for floating-point arithmetic and

the SMTCoq checker. This will help us prove soundness of the error analysis for numerical

methods, which we currently prove interactively using the Flocq formalization of floating-point

arithmetic, with a greater degree of automation.

Following up on the previous discussion on SMTCoq, one could automate the accuracy

or convergence analysis for numerical methods to some extent using the approach of cer-

tification. This approach is a bit different from the full formal verification of a numerical

algorithm that we discuss in this thesis, in that instead of verifying the algorithm itself,

we would like to certify that the result from this numerical algorithm is accurate within a

given bound. This error bound is provided by an external analysis tool, an example of that

being the tool Sollya [35]. This error bound, along with a functional representation of the

algorithm would form a certificate, which can be proven sound in an interactive theorem

prover like Coq. This approach is inspired by a work that we did in collaboration with Dr.

Heiko Becker, Prof. Eva Darulova and Prof. Anastasia Volkova, on the development of a

tool called Dandelion [13] for certified polynomial approximation of transcendental functions,

and other tools like Flover [14] for certifying soundness of error bounds for floating-point

arithmetic from static analysis tools like Daisy [44]. Even though the trusted base includes

the semantics of these external tools in addition to the basic kernel of a theorem prover, this

approach provides a neat generalization to a class of methods that rely on a similar error

analysis. The basic error analysis and formalization of the property of interest, along with a

proof of soundness of the certificate checker is formalized in a theorem prover only once, and

can be used with any off-the shelf external tools that implements the numerical algorithm of

interest. In this way, we can introduce automation and generalization for formal verification

of numerical algorithms.
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APPENDIX A

Derivation for the forward error bound for

the Jacobi iterate

Here, I present a derivation of the bound on the forward error for the Jacobi iteration fk+1

after k + 1 steps, which is defined as

fk+1 = ||xk+1 − x|| = ||(D̃−1 ⊗ (b⊖ (N ⊗ xk)))− (D−1(b−Nx))||

in Section 4.4.3. Using the norm-wise error relations in Section 4.4 to expand the error

definition fk+1, we get:

fk+1 = ||(D̃−1 ⊗ (b⊖ (N ⊗ xk)))− (D−1(b−Nx))||

≤ ||(D̃−1 ⊗ (b⊖ (N ⊗ xk)))− (D−1(b−Nxk))||+ ||(D−1(b−Nxk))− (D−1(b−Nx))||

= ||(D̃−1 ⊗ (b⊖ (N ⊗ xk)))− (D−1(b−Nxk))||+ ||D−1||N ||||xk − x||

≤ ||(D̃−1 ⊗ (b⊖ (N ⊗ xk)))− (D̃−1(b−Nxk))||+ ||(D̃−1(b−Nxk))−D−1(b−Nxk)||+

||D−1|| ||N ||fk
≤ ||(D̃−1 ⊗ (b⊖ (N ⊗ xk)))− (D̃−1(b−Nxk))||+ ||D̃−1 −D−1|| ||b−Nxk||+

||D−1|| ||N ||fk
≤ ||(D̃−1 ⊗ (b⊖ (N ⊗ xk)))− (D̃−1(b⊖ (N ⊗ xk)))||+

||(D̃−1(b⊖ (N ⊗ xk)))− (D̃−1(b−Nxk))||+

(||D−1||δ + ϵ) (||b||+ ||N || ||xk||) + ||D−1|| ||N ||fk
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≤ ((||D̃−1|| ||(b⊖ (N ⊗ xk))||)gδ + gϵ) + ||D̃−1||||(b⊖ (N ⊗ xk))− (b−Nxk)||+

(||D−1||δ + ϵ) (||b||+ ||N || ||xk||) + ||D−1|| ||N ||fk
≤ ((||D̃−1|| (||b||+ ||N || ||xk||(1 + gδ + gϵ))(1 + δ)gδ + gϵ)+

||D̃−1|| ||(b⊖ (N ⊗ xk))− (b− (N ⊗ xk))||+ ||D̃−1||||(b− (N ⊗ xk))− (b− (Nxk))||

+ (||D−1||δ + ϵ) (||b||+ ||N || ||xk||) + ||D−1|| ||N ||fk
≤ ((||D̃−1|| (||b||+ ||N || ||xk||(1 + gδ + gϵ))(1 + δ)gδ + gϵ)+

||D̃−1|| (||b||+ ||N ⊗ xk||)δ + ||D̃−1|| ||(N ⊗ xk)−Nxk||+

+ (||D−1||δ + ϵ) (||b||+ ||N || ||xk||) + ||D−1|| ||N ||fk
≤ ((||D̃−1|| (||b||+ ||N || ||xk||(1 + gδ + gϵ))(1 + δ)gδ + gϵ)+

||D̃−1|| (||b||+ ||N || ||xk||(1 + gδ) + gϵ)δ + ||D̃−1|| (||N || ||xk||gδ + gϵ)+

+ (||D−1||δ + ϵ) (||b||+ ||N || ||xk||) + ||D−1|| ||N ||fk
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APPENDIX B

Numerical experiments for error bounds on

dot-product

The dot-product of two vectors is a building block for matrix-vector multiplication, since

each entry of a matrix-vector multiplication is computed from the dot-product of a row from

the matrix and the vector. Thus, the accuracy of a matrix-vector multiplication depends

on the accuracy of a dot-product operation. We therefore performed numerical experiments

comparing the theoretical error bound and the actual error bound between a naive floating-

point dot-product of two vectors, which is denoted as
⊕

0≤i<n ui⊗vi, and the real dot-product,

which is denoted as
∑

0≤i<n uivi. The theoretical error bound comprises of floating-point

errors coming from both the addition and product of two floating-point numbers. For the

naive-dot product, we obtain the theoretical bound as∣∣∣∣∣ ⊕
0≤i<n

ui ⊗ vi −
∑

0≤i<n

uivi

∣∣∣∣∣ ≤ ((1+δ)n−1)
∑

0≤i<n

|uivi|+nϵ(1+δ)n−1+
ϵ

δ
((1+δ)n−1−1) (B.1)

assuming that no overflow occurs for the dot-product operation.

We used the “uniform real distribution” method to generate random floating-point num-

bers. This generator picks random floating-point numbers between 1.0 and 2.0 with uniform

probability. The theoretical error bound is defined as the difference between the theoretical

bounds, provided by the equation B.1, for a float dot and a long-double dot. Here, we used

the long-double data-type in C++ to store the real dot-product, and the float data-type

to store the floating-point dot-product. The actual error bound is defined as the difference

between a float dot and a long-double dot that the machine computes. We generate 1000

random samples for the dot-product, and plot the error distribution for actual error bound

and the theoretical error bound in Figure B.1. The Listing B provides the C++ code for

this numerical experiment.

#include<bits/stdc++.h>
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#include<vector>

#include<fstream>

#include<iostream>

#include <random>

using namespace std;

int main(){

int n = 10;

long double d = 1e−7;

long double e = 1e−45;

int m = 1000;

float random, random1;

default random engine gen;

uniform real distribution <float> distribution(1.0, 2.0);

float dot sum;

long double dot sumr;

vector<float> vec sum1;

vector<long double> vec sum2;

// generate two random vectors and do independent dots

for(int i = 1; i <= m ; i++){
vector<float > vec1, vec2;

vector<long double> vec1r, vec2r;

// first vector

for(int j = 0; j < n; j++){
random = distribution(gen);

vec1.push back(random);

vec1r.push back(random);

}
// second vector

for(int j = 0; j < n; j++){
random1 = distribution(gen);

vec2.push back(random1);

vec2r.push back(random1);

}
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//cout << vec1[0] << '\t' << vec2[0] << endl;

// dot these two vectors

dot sum = 0.0;

dot sumr = 0.0;

for (int j = 0; j < n; j++){
dot sum = dot sum + vec1[j] ∗ vec2[j];

dot sumr = dot sumr + vec1r[j] ∗ vec2r[j];

}

vec sum1.push back(dot sum);

vec sum2.push back(dot sumr);

}

// compute differences

vector<long double> diff;

vector<long double> dot comp;

for (int i = 0; i < m; i++){
diff.push back(fabs(vec sum1[i] − vec sum2[i]));

dot comp.push back( vec sum2[i]∗ (pow((1. +d), n) − 1) + n ∗ e ∗ pow(1+d, n−1) +

(e / d ∗ (pow (1. +d, n−1) − 1)));

}

ofstream myfile;

myfile.open(”exp5.txt”);

for (int i =0; i< m ;i++){
myfile << i+1 << '\t' << diff[i] << '\t' << dot comp[i] << endl;

}
myfile.close();

return 0;

}

From Figure B.1, we observe that the theoretical bound for the dot-product error has an

even Gaussian distribution, whereas the actual dot-product error has a skewed distribution.

We also observe that the dot-product error increases as we increase the dimension of the

vector. This is due to increased accumulation of errors due to increase in floating-point

addition and product operations. In Figure B.2, we plot the mean and standard deviation of
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Figure B.1: Probability distribution for the error with respect to the dimension of the matrix.
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Figure B.2: Mean and standard deviation of the error distribution. The plot compares the
error (on Y-axis) with the matrix dimension (on X-axis).

the error distribution with respect to the matrix dimension. We can observe that the mean

of the theoretical error bound is roughly two orders of magnitude greater than the actual

error.

One of the reasons for higher gaps between these two errors is that, our analysis is

conservative. We perform the worst case error analysis, while the actual errors might behave

differently. For example, there might be cancellation of terms, in which case the actual

relative error might be very small (assuming the absence of catastrophic cancellation), instead

of adding up the relative errors, which is usually done in most traditional error analysis. One

of the ways to obtain tighter error bounds is to treat round-off errors as a random variables

and make probabilistic assumptions about the behavior of rounding errors. Higham and

Mary [70] argue that the probabilistic error bounds are smaller than the traditional error

bounds by a factor of
√
n, for a problem size n. Another approach to obtain tighter error

bounds is to use better summation algorithms like the Kahan–Babuška summation [83],

where the relative error (proportional to 2ϵ +O(nϵ2)) is effectively independent of n. Even

though, in principle, the relative error grows linearly with n, the term nϵ2 is practically zero,

unless n is roughly 1/ϵ or larger.
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[14] Heiko Becker, Nikita Zyuzin, Raphaël Monat, Eva Darulova, Magnus O. Myreen, and
Anthony Fox. A verified certificate checker for finite-precision error bounds in coq
and hol4. In 2018 Formal Methods in Computer Aided Design (FMCAD), pages 1–10,
2018.

[15] Mordechai Ben-Ari. The bug that destroyed a rocket. ACM SIGCSE Bulletin,
33(2):58–59, 2001.

[16] Yves Bertot, Georges Gonthier, Sidi Ould Biha, and Ioana Pasca. Canonical big
operators. In Theorem Proving in Higher Order Logics: 21st International Conference,
TPHOLs 2008, Montreal, Canada, August 18-21, 2008. Proceedings 21, pages 86–101.
Springer, 2008.

[17] S. Boldo, J.-H Jourdan, X. Leroy, and G. Melquiond. A formally-verified c compiler
supporting floating-point arithmetic, 2014.

[18] Sylvie Boldo, François Clément, Florian Faissole, Vincent Martin, and Micaela Mayero.
A coq formalization of lebesgue integration of nonnegative functions. J. Autom. Rea-
son., 66(2):175–213, may 2022.

[19] Sylvie Boldo, François Clément, Florian Faissole, Vincent Martin, and Micaela Mayero.
A Coq formal proof of the Lax-Milgram theorem. In Proceedings of the 6th ACM
SIGPLAN Conference on Certified Programs and Proofs, pages 79–89. ACM, 2017.

[20] Sylvie Boldo, François Clément, Florian Faissole, Vincent Martin, and Micaela Mayero.
https://www.lri.fr/˜sboldo/elfic/index.html. https://www.lri.fr/~sboldo/elfic/

index.html, 2017. (Accessed on 04/30/2023).

139

https://www.lri.fr/~sboldo/elfic/index.html
https://www.lri.fr/~sboldo/elfic/index.html


[21] Sylvie Boldo, François Clément, Jean-Christophe Filliâtre, Micaela Mayero, Guillaume
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[29] Sylvie Boldo and Claude Marché. Formal verification of numerical programs: from C
annotated programs to mechanical proofs. Mathematics in Computer Science, 5:377–
393, 2011.

[30] Sylvie Boldo and Guillaume Melquiond. Flocq: A unified library for proving floating-
point algorithms in coq. In 2011 IEEE 20th Symposium on Computer Arithmetic,
pages 243–252. IEEE, 2011.

[31] Sylvie Boldo and Guillaume Melquiond. Computer Arithmetic and Formal Proofs:
Verifying Floating-point Algorithms with the Coq System. Elsevier, 2017.

[32] Guillaume Cano and Maxime Dénès. Matrices à blocs et en forme canonique. In
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