

High Feed Radius End Mill for Hardened Steel

EHHRE-TH3

Epoch High Hard Radius

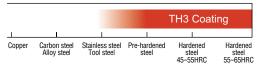
MOLDINO Tool Engineering, Ltd.

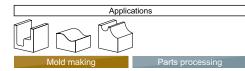
New Product News No. H2006A-1 2020-10

Utilize the high-feed indexable cutter design on a solid end mill. High feed cutting is also possible in high hardness steels.

Lineup of Φ 1 \sim Φ 12

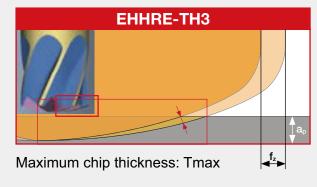
This multi-flute end mill allows for high efficiency machining on small precision molds.

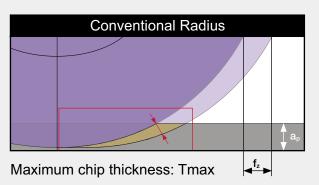

Features of EHHRE-TH3


Approximate radius creates a much thinner chip than a standard full radius.

02 Vibration-free peripheral clearance geometry

Newly developed "TH3" coating for hardened steel machining.

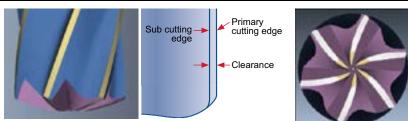


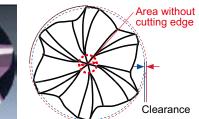


EHHRE-TH3 φ1~φ12 [13 Items]

Features 01

New Cutting Edge Geometry - Approximate radius creates a much thinner chip than a standard full radius.

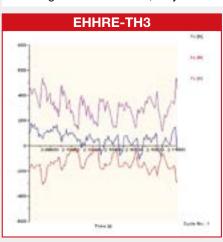

Thinner removed chip

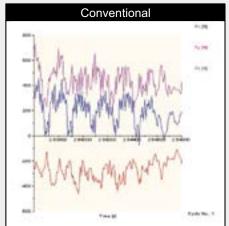


Effect

Composite R geometry on the bottom cutting edge creates a thinner chip than a conventional radius, which leads to reduced cutting forces. Furthermore, the bottom edge has a high helix shape, which improves the chip flow and achieves excellent chip removal performance.

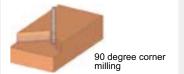
Vibration-free peripheral clearance geometry




Vibrations are reduced when milling into corners.

Work material: H13H 49HRC Machine: Vertical MC (HSK-A63) Tool: EHHRE6100-TH3

Cutting conditions : $n=6,000 \text{min}^{-1}(v_c=188 \text{m/min}) \text{ } v_f=1,800 \text{mm/min}^{'}(f_z=0.05 \text{mm/t})$

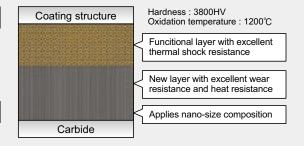

Cutting amount: 0.3mm, Dry with air blow

Effect

Chatter and vibrations are reduced when high speed machining internal corners. This prevents unexpected tool chipping and failure when machining the corners.

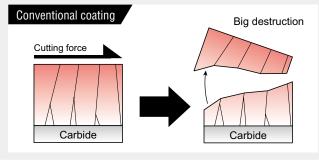
Features /

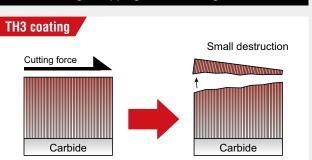
03

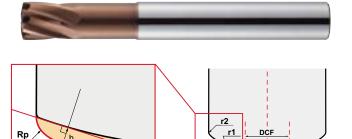

Newly developed "TH3" coating for hardened steel machining.

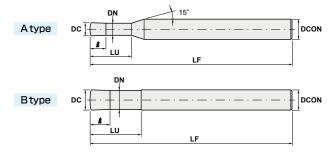
Features and performance

- · High hardness coating with excellent wear resistance and heat resistance
- Has excellent thermal shock resistance which reduces the risk of rapid tool chipping.
- Long tool life when cutting high-hardness materials (50HRC or higher) such as hardened steel

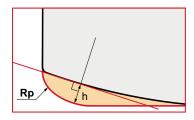

Target steel grade


• TH3 coating utilizes nano-size composition to reduce large chipping of the coating.


Point


TH3 coating utilizes nano-size composition to reduce large chipping of the coating.

Line Up


EHHRE (-S)-TH3

	_												
Order Number		Tool dia. DC	Approx radius Rp	Lowest point diameter DCF	End R r1	Corner radius r2	Under Neck length LU	Flute length	Neck dia. DN	Overall Length LF	Shank dia. DCON	No. of flutes	Туре
EHHRE4010-S4-TH3		1	0.134	0.28	1.1	0.1	3	1	0.95	50	4	4	Α
EHHRE4010-S6-TH3	•	1	0.134	0.26		0.1	3	1	0.95	50	6	4	Α
EHHRE4020-S4-TH3		2	0.404	0.56	2.2	0.1	6	2	1.9	50	4	4	Α
EHHRE4020-S6-TH3	•		0.194	0.56	2.2	0.1	0	2	1.9	50	6	4	Α
EHHRE4030-S4-TH3	•	3	0.328	0.84	3.3	0.2	9	3	2.9	60	4	4	Α
EHHRE4030-S6-TH3	•	3			3.3			3	2.9	60	6	4	Α
EHHRE6040-S4-TH3		4	0.387	1.12	4.4	0.2	12	4	3.9	60	4	6	В
EHHRE6040-S6-TH3	•	4	0.367					4	3.9	60	6	6	Α
EHHRE6050-TH3	•	5	0.521	1.4	5.5	0.3	15	5	4.7	60	6	6	Α
EHHRE6060-TH3		6	0.581	1.68	6.6	0.3	18	6	5.7	60	6	6	В
EHHRE6080-TH3		8	0.849	2.24	8.8	0.5	24	8	7.6	75	8	6	В
EHHRE6100-TH3	•	10	0.968	2.8	11	0.5	30	10	9.5	80	10	6	В
EHHRE6120-TH3		12	1.088	3.36	13.2	0.5	36	12	11.5	100	12	6	В

Stocked items.

Precaution for creating machining program

- When entering the corner radius into your CAM software, please use the approximate radius (RE1) in the table.
- If your CAM can utilize the exact tool geometry, please download the DXF data from our "TOOL SEARCH" website.

Tool Dia.		dius and maximum ns at CAM input	Ramping	Possible helical hole dia.	
DC	Approx radius	Max remains	angle <i>θ</i>		
	Rp	h			
Ф1	0.134	0.026		1.3~1.9	
Ф2	0.194	0.068		2.6~3.8	
Ф3	0.328	0.094		3.9~5.7	
Ф4	0.387	0.136		5.2~7.6	
Ф5	0.521	0.162	0.5° or less	6.4~9.5	
Φ6	0.581	0.204		7.7~11.4	
Φ8	0.849	0.255		10.3~15.2	
Ф10	0.968	0.34		12.8~19.0	
Ф12	1.088	1.088 0.424		15.4~22.8	

Recommended Cutting Conditions

	Work m	naterial			ardened ste 0~55HRC			Hardened steel (55~62HRC)					
	Tool dia.	No. of		Cutting s	speed vc=80	m/min			Cutting :	speed vc=60	m/min		
	DC (mm)	flutes	n (min-1)	Vf (mm/min)	IPM	a p (mm)	ae (mm)	n (min-1)	Vf (mm/min)	IPM	a p (mm)	a e (mm)	
	1		25,500	3,670	145	0.040	0.55	19,100	1,720	68	0.023	0.55	
	2	4	12,700	3,660	144	0.080	1.1	9,600	1,730	68	0.046	1.1	
	3		8,500	3,840	151	0.120	1.65	6,400	1,800	71	0.069	1.65	
ୁ ଜୁ	4		6,400	5,840	230	0.160	2.2	4,800	2,740	108	0.092	2.2	
eneral (Emph	5		5,100	5,940	234	0.200	2.75	3,800	2,760	109	0.115	2.75	
neral	6		4,200	5,870	231	0.240	3.3	3,200	2,790	110	0.138	3.3	
무희	8	6	3,200	6,140	242	0.320	4.4	2,400	2,880	113	0.184	4.4	
ig C	10		2,500	6,000	236	0.400	5.5	1,900	2,850	112	0.230	5.5	
cutti	12		2,100	5,750	226	0.480	6.6	1,600	2,740	108	0.276	6.6	
on to	Work m	naterial			ardened ste 2~66HRC			Hardened steel (66∼72HRC)					
onditions ool life)	Tool dia.	No. of		Cutting s	speed vc=50	m/min			Cutting s	speed vc=40	m/min		
₹ ₹	DC (mm)	flutes	n (min-1)	Vf (mm/min)	IPM	a p (mm)	ae (mm)	n (min-1)	Vf (mm/min)	IPM	a p (mm)	a e (mm)	
e e	1		15,900	1,070	42	0.019	0.55	12,700	570	22	0.013	0.5	
<u>w</u>	2	4	8,000	1,080	43	0.038	1.1	6,400	580	23	0.026	1	
	3		5,300	1,120	44	0.057	1.65	4,200	590	23	0.039	1.5	
	4		4,000	1,710	67	0.076	2.2	3,200	910	36	0.052	2	
	5		3,200	1,750	69	0.095	2.75	2,500	910	36	0.065	2.5	

	Work m	naterial			ardened ste 0~55HRC			Hardened steel (55~62HRC)					
	Tool dia.	No. of		Cutting s	peed <i>v</i> c=100	Om/min		Cutting speed vc=70m/min					
5	DC (mm)	flutes	<i>n</i> (min-1)	Vf (mm/min)	IPM	a p (mm)	ae (mm)	n (min-1)	Vf (mm/min)	IPM	a p (mm)	ae (mm)	
utting	1		31,880	4,730	186	0.038	0.7	22,280	2,070	82	0.022	0.7	
ηg	2	4	15,880	4,710	185	0.076	1.4	11,200	2,080	82	0.044	1.4	
	3		10,630	4,940	195	0.114	2.1	7,470	2,170	85	0.066	2.1	
æ٩	4		8,000	7,510	296	0.152	2.8	5,600	3,290	130	0.087	2.8	
nditio (Emph	5		6,380	7,650	301	0.190	3.5	4,430	3,320	131	0.109	3.5	
₽₹	6	6	5,250	7,550	297	0.228	4.2	3,730	3,350	132	0.131	4.2	
ons has	8	0	4,000	7,910	311	0.304	5.6	2,800	3,460	136	0.175	5.6	
S O	10]	3,130	7,740	305	0.380	7	2,220	3,430	135	0.219	7	
for	12		2,630	7,410	292	0.456	8.4	1,870	3,290	130	0.262	8.4	
으 구													

3.3

4.4

5.5

6.6

0.114

0.152

0.190

0.228

36

38

39

37

3

4

5

6

0.078

0.104

0.130

0.156

920

960

980

940

2,100

1,600

1,300

1,100

-															
hiah.	Work m	Hardened steel (62~66HRC)							Hardened steel (66~72HRC)						
₽ ‡;	Tool dia.	No. of		Cutting	speed vc=60	m/min		Cutting speed vc=50m/min							
5	DC (mm)	flutes	<i>n</i> (min ⁻¹)	Vf (mm/min)	IPM	ap (mm)	ae (mm)	n (min-1)	Vf (mm/min)	IPM	ap (mm)	ae (mm)			
D	1		19,080	1,330	52	0.018	0.7	15,880	740	29	0.012	0.6			
5	2	4	9,600	1,330	52	0.036	1.4	8,000	740	29	0.025	1.2			
`	3		6,360	1,390	55	0.054	2.1	5,250	760	30	0.037	1.8			
Ĺ	4		4,800	2,110	83	0.072	2.8	4,000	1,170	46	0.049	2.4			
₹	5		3,840	2,160	85	0.090	3.5	3,130	1,170	46	0.062	3			
5	6		3,240	2,190	86	0.108	4.2	2,630	1,180	47	0.074	3.6			
	8	6	2,400	2,220	87	0.144	5.6	2,000	1,240	49	0.099	4.8			
	10		1,920	2,220	87	0.181	7	1,630	1,260	50	0.124	6			
	12	1,560	2,060	81	0.217	8.4	1,380	1,220	48	0.148	7.2				

6

8

10

12

6

Note Use the appropriate coolant for the work material and machining shape.

1,770

1,800

1,800

1,670

2,700

2,000

1,600

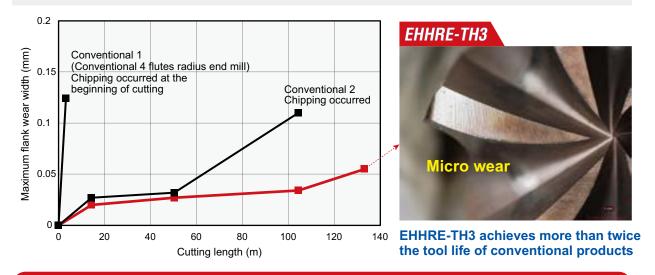
1,300

70

71

71

66

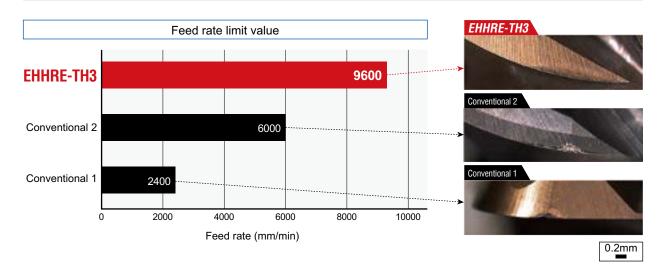

- ② Use the most accurate and rigid machine as possible.
- 3 These Recommended Cutting Conditions are standard parameters. When machining, these parameters should be adjusted according to the machining shape and the machine capabilities.
- ④ If the RPM available is lower than the recommended RPM, please reduce the feed rate by the same ratio.
- ⑤ Please use for contouring process.
- 6 If you set the pick feed (ae) larger than the lowest point diameter of the tool, then a cusp will remain on part.
- *1 This EHHRE-TH3 utilizes cutting edge geometry for high hardness steel cutting. It is not recommended for sticky hard material such as hot forging die material (H13). EMBE-ATH is recommended for those sticky materials.

Field data

0

Tool life evaluation of cutting D2H

Tool size : ϕ 10×6 flutes Work material : D2 \oplus (60HRC) Machine : Vertical MC (HSK-F63) Cutting conditions : n=1,900min⁻¹ (v=60m/min) v=2,850mm/min (fz=0.25mm/t) ap 0.2mm ae 5.5mm OH=30mm Coolant : Air-blow



High feed cutting of high hardness steel which was difficult with conventional radius geometry was realized.

0

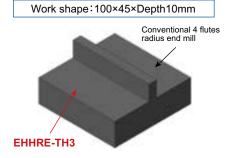
Marginal test to evaluate feed limit for cutting powder high-speed steel

Tool size: ϕ 10×6 flutes Work material: Powdered HSS (65HRC) Machine: Vertical MC (HSK-F63) Cutting conditions: n=2,000 min⁻¹($v_c=63$ m/min) $v_f=8$ for the below table a_p 0.15 mm a_e 3 mm OH=30 mm Coolant: Air-blow

High feed cutting of high hardness steel is possible by synergistic effect of low cutting force radius geometry and TH3 coating.

After roughing by EHHRE-TH3, recommended semi-finishing and finishing with the following tool.

Epoch High Hard Ball (EHHB-ATH), Epoch Deep Ball Evolution Hard -TH3 (EPDBEH-TH3)


Example of high-efficiency roughing of matrix high-speed steel

Work size: 100×100mm Work material: Matrix HSS

(58HRC)

Machine: Vertical MC(BT40) Coolant: Air-blow

Tool	Tool Dia. [mm]	R [mm]	Revolution [min ⁻¹]	speed	Feed rate [mm/min]	tooth	<i>а</i> _р [mm]	<i>a</i> e [mm]	Chip removal volume [cm³/min]	Machining time
EHHRE6100-TH3	10	0.968	2,200	69	4,000	0.3	0.2	6	4.8	24 min
Conventional (4 flutes radius)	10	2	2,100	66	2,000	0.24	0.15	3	0.9	1hr.25min.

Wear condition after cutting

EHHRE-TH3

Conventional 4 flutes radius end mill

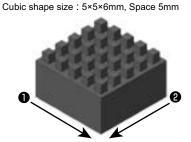
Micro wear, possible to use continuously

Chipping occured on R edge

EHHRE achieved 5 times the cutting efficiency than the conventional tool. Tool wear was minimal enough to continue using.

0.5mm

High-efficiency cutting example of powder high-speed steel


Work size: 50×50mm Work material: Powdered HSS (65HRC) Machine: Vertical MC(HSK-F63)

Process	Tool	Tool Dia. [mm]	R [mm]	Revolution [min ⁻¹]	Cutting speed [m/min]	Feed rate [mm/min]	Feed per tooth [mm/t]	a _p [mm]	<i>a</i> e [mm]	Removal stock [mm]	Coolant	Machining time
Contour roughing	EHHRE4030-S6-TH3	3	0.328	6,360	60	1,390	0.055	0.054	2	0.05	Air-blow	1hr. 3min.
Contour roughing 2	EHHRE4030-S6-TH3	3	0.328	6,360	60	1,390	0.055	0.054	2	0.05	Air-blow	1hr. 3min.

Figure Work model

Figure Work after cutting

Figure Wear condition after roughing

EHHRE can perform high-efficiency machining even for small work-piece of high hardness steel

Safety notes

1. Cautions regarding handling

(1) When removing the tool from its case (packaging), be careful that the tool does not pop out or is dropped. Be particularly careful regarding contact with the tool flutes. (2) When handling tools with sharp cutting flutes, be careful not to touch the cutting flutes directly with your bare hands.

2. Cautions regarding mounting

(1) Before use, check the outside appearance of the tool for scratches, cracks, etc. and that it is firmly mounted in the collet chuck, etc. (2) If abnormal chattering, etc. occurs during use, stop the machine immediately and remove the cause of the chattering.

- (1) Before use, confirm the dimensions and direction of rotation of the tool and milling work material.
 (2) The numerical values in the standard cutting conditions table should be used as criteria when starting new work. The cutting conditions should be adjusted as appropriate when the cutting depth is large, the rigidity of the machine being used is low, or according to the conditions of the work material.
 (3) Cutting tools are made of a hard material. During use, they may break and fly off. In addition, cutting chips may also fly off. Since there is a danger of injury to workers, fire, or eye damage from such flying pieces, a safety cover should be attached when work is performed and safety equipment such as safety goggles should be worn to create a safe environment for work.

 (4) There is a risk of fire or inflammation due to sparks, heat due to breakage, and cutting chips. Do not use where there is a risk of fire or explosion. Please caution of fire while using oil base coolant, fire presents in the processory.
- fire prevention is necessary.

 (5) Do not use the tool for any purpose other than that for which it is intended.

4. Cautions regarding regrinding

- (1) If regrinding is not performed at the proper time, there is a risk of the tool breaking. Replace the tool with one in good condition, or perform regrinding.

 (2) Grinding dust will be created when regrinding a tool. When regrinding, be sure to attach a safety cover over the work area and wear safety clothes such as safety goggles, etc.

 (3) This product contains the specified chemical substance cobalt and its inorganic compounds. When performing regrinding or similar processing, be sure to handle the processing in accordance with thelocal laws and regulations regarding prevention of hazards due to specified chemical substances.

California Office [Headquarters]

3535 Hyland Avenue, Suite 200 Costa Mesa, CA 92626

Customer Service: 800.523.0800

Technical Service: 800.486.2341

Toronto Office [Canada Branch]

3535 Laird Road Units 15 & 16

Mississauga, Ontario, Canada L5L 5Y7

Main: 905.814.0240 Fax: 905.814.0245

Chicago Office [Engineering]

1314B North Plum Grove Road Schaumburg, IL 60173

Main: 847.252.6300 Fax: 847.519.1732

Detroit Office [MOLDINO Products Customer Service]

41700 Gardenbrook Road, Suite 120

Novi, MI 48375

Main: 248.308.2620 Fax: 248.308.2627

Email: rfqHTdiv@mmus.com (MOLDINO Product & Techinical Inquiry)

MMC Metal de Mexico, S.A. DE C.V.

Av. La Cañada No.16. Parque Industrial Bernardo Quintana, El Marques, Queretaro C.P. 76246 MEXICO

Main: +52.442.221.61.36 Fax: +52.442.221.61.34

North Carolina-MTEC [Marketing & Technical Center]

105 Corporate Center Drive, Suite A

Mooresville, NC 28117 Main: 980.312.3100 Fax: 704.746.9292

DISTRIBUTED BY:

MOLDINO Tool Engineering, Ltd.

www.moldino.com/en-US/

(Manufacturer) 2020 1st Edition No. H2006A-1

